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Résuḿe

Ce document a pour vocation de présenter mon travail de thèse sur les resommations en
Chromo-Dynamique Quantique (QCD) pour la production hadronique de paires de jaugi-
nos.

Dans le premier chapitre, nous introduisons quelques motivations pourétendre le Mod̀ele
Standard (MS) de la physique des particules, telles que le problème de híerarchie et l’absence
de candidat pour former la matière noire observ́ee dans l’univers. Parmi les extensions
possibles, nous mentionnons l’ajout de la supersymétrie (SUSY) qui permet, en plus de
résoudre les problèmes pŕećedemment cit́es, l’unification des trois couplages de jauges du
MS. Le MS Supersyḿetrique Minimal (MSSM) est l’extension la plus simple du MS qui
inclut la SUSY. Ainsi, nous pŕesentons les limites et contraintes actuelles sur les paramètres
du MSSM provenant̀a la fois des donńees cosmologiques sur la matière noire et des diverses
exṕeriences aux collisionneurs.

Le second chapitre traite du MSSM. Tout d’abord, nous introduisons la SUSY via la
superalg̀ebre. Puis, nous nous concentrons sur le MSSM et présentons son contenu en
particule, sa densité de Lagrange et la brisure douce de la SUSY. Enfin, nous décrivons les
états propres de masse et les mélanges induits par la brisure de la symétrieélectrofaible, en
particulier, ceux deśetats neutralinos et charginos.

Les techniques ńecessaires aux resommations pour la production de paires de jauginos
sont pŕesent́ees dans le troisième chapitre. Les notations sont introduites via la présentation
de ŕesultats majeurs de la QCD perturbative que sont la liberté asymptotique et le théor̀eme
de factorisation. Nous détaillons ensuite les formalismes de resommations au seuil et en
impulsion transverse, abordant les différentes refactorisations qui mènentà la resomma-
tion des logarithmes dominants. Plusieurs techniques et améliorations des formalismes de
resommations sont aussi exposées.

Les chapitres 4 et 5 sont dédíesà la production hadronique des paires de jauginos. Dans
le chapitre 4, nous présentons nos calculs perturbatifs aux ordres dominant et sous-dominant
en QCD. A l’ordre dominant, nous donnons les résultats analytiques des sections efficaces
partoniques polariśees, et nous présentons unéetude nuḿerique des sections efficaces to-
tales et des asyḿetries simple/double-spin pour la production de différentes paires de jaug-
inos aux collisionneurs RHIC, Tevatron et LHC. A l’ordre sous-dominant, les corrections
QCD supersyḿetriques sont́etudíees. Nous pŕesentons tout d’abord notre calcul des correc-
tions virtuelles en pŕecisant le sch́ema de renormalisation des masses, des fonction d’onde
et des matrices de ḿelange des quarks et des squarks (partenaires SUSY des quarks).Puis,
nous d́etaillons le traitement des corrections réelles par les ḿethodes de soustractions des
dipôles et des contributions dues aux squarks sur couche de masse. Numériquement, nous
trouvons que les corrections sont importantes et positives aux collisionneurs actuels.

Notre analyse nuḿerique des effets de resommations au seuil et en impulsion transverse
pour la production de paires de jauginos est présent́ee au chapitre 5. Alors que les effets
de seuil n’augmentent que peu la distribution en masse invariante et la sectionefficace to-
tale, ils stabilisent grandement nos prédictions vis-̀a-vis des d́ependances aux́echelles de
renormalisation et de factorisation. Concernant la distribution en impulsion transverse, la
resommation permet d’obtenir des résultats convergents pour des petites impulsions trans-
verses, contrairement aux résultats perturbatifs. Nous avons comparé nos distributions avec

iii



celles obtenues avec des géńerateurs Monte-Carlo et nous avonsétudíe en d́etail l’impact
des incertitudes dus aux fonctions de distributions de partons et aux effets non-perturbatifs.

Finalement, le chapitre 6 conclut sur l’apport de nos résultats pour la d́ecouverte des
paires de jauginos et les perspectives futures quant aux développements des géńerateurs
Monte-Carloà l’ordre sous-dominant et des techniques de resommation.
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les pŕecaires du groupe, Roberto Bonciani, Björn Herrmann, Tomas Jezo, Karol Kovařı̀k et
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1
Introduction

The Standard Model of particle physics is based on the gauge group SU(3)C ×SU(2)L ×
U(1)Y and includes both the strong and electroweak interactions [1, 2, 3, 4, 5].At present,
there are experimental evidences for all of its particles except for the Higgs boson, which
continues to defy the scientific community. It is the last necessary piece to describe the ob-
served electroweak symmetry breaking and is supposed to couple to everymassive particle
[6, 7]. Despite its great success in describing Nature, the Standard Model leaves several
questions unanswered. From the point of view of particle physics, the most quoted argu-
ment is probably the hierarchy problem. It originates from the large difference between
the electroweak scale ofO(100 GeV) and the Planck scale ofO(1019 GeV). This leads to
unnaturally large radiative corrections to the scalar masses in the theory (in the Standard
Model there is only one scalar boson, the Higgs boson). Therefore, the Standard Model
parameters have to be fine-tuned to respect all electroweak precision data. On the cosmo-
logical side, the Standard Model does not include the dark matter, which is observed in the
Universe. These considerations are taken as hints of new physics, which might appear at
the scale ofO(1 TeV).

Many models propose to extend the Standard Model in order to solve one orseveral
of these problems. Among them, supersymmetry is probably the best-known and certainly
the best studied extension [8, 9]. Linking bosons and fermions in an elegant formalism,
supersymmetry allows for a natural solution of the hierarchy problem and for accurate uni-
fication of the three Standard Model gauge couplings at a high unification scale ofO(1016

GeV). Furthermore, ifR-parity is conserved, it provides a convincing candidate for the
large amount of cold dark matter observed in the Universe. In the Minimal Supersymmetric
Standard Model, this is generally the lightest neutralino (χ̃0

1), one of the spin-1/2 super-
symmetric partners of the electroweak gauge bosons (gauginos) and of the Higgs bosons
(Higgsinos), which mix to form four neutral (neutralino) and two charged(chargino) mass
eigenstates. The gaugino/Higgsino decomposition of the neutralinos/charginos contains
important information about the supersymmetry-breaking mechanism and plays a crucial
role in the determination of the dark matter relic densityΩCDM. With the precision mea-
surements of the Cosmic Microwave Background, the satellites COBE and WMAP have
imposed strong limits onΩCDM [10, 11], thus allowing for dramatic discriminations be-
tween different supersymmetric scenarios [12]. In Fig. 1.1, we show several constraints for
minimal supergravity scenarios in them0 −m1/2 plane,m0 and m1/2 being the universal
scalar and gaugino mass, respectively.1 The region allowed by the WMAP constraint is in-

1The minimal supergravity parameters and supersymmetric particles arediscussed in Sec. 2.2.3.
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Figure 1.1: Them0−m1/2 plane for tanβ = 10 andµ > 0 [12]. The pre-WMAP (light blue),
post-WMAP (dark blue) andgµ −2 (pink) favoured regions are shown as well asb → sγ
(green) and charged dark matter (brown) excluded regions. The different lines indicate the
LEP constraints on the Higgs boson mass (red), chargino mass (black) and selectron mass
(blue).

deed a very narrow band, and several regions are preferred: thebulk region at smallm0 and
m1/2, the focus point at very largem0, and the co-annihilation region just above the region
excluded because of a charged dark matter (usually this is the lightest stauτ̃1).

Unfortunately, the collider constraints are less severe, and supersymmetric particles
have yet to be found at high-energy accelerators. The Large Electron Positron (LEP)
and Tevatron colliders have constrained the gauginos and scalar partners of the fermions
(squarks/sleptons) to be heavier than a few tens and hundreds of GeV,respectively. In
Fig. 1.2, we show the present limits for the search of the associated production of light-
est chargino (̃χ±

1 ) and next-to-lightest neutralino (χ̃0
2) at the D0 and CDF experiments. The

current Tevatron searches exclude only the low mass region of the parameter space (roughly
m0 < 150 GeV andm1/2 < 250 GeV), and the search for supersymmetric particles has thus
become one of the defining tasks of the Large Hadron Collider (LHC) at CERN. In spite of
difficulties in September 2008, due to a serious fault between two superconducting bending
magnets, the proton beams were finally circulating in the LHC and first collisionswere ob-
served in November 2009. At present, the LHC is running with a centre-of-mass energy of
7 TeV and should collect 1 fb−1 by the end of 2011. A fewW andZ bosons have already
been seen, and the very firsttt̄ events are being analysed as you are reading this manuscript.
Concerning supersymmetry, ATLAS and CMS should have enough data atthe end of run
one to double today’s sensitivity to certain new discoveries, pushing the discovery range
up to masses of 620 GeV [16]. The end of run one will see a longer shutdown for routine
maintenance and repair completion, the goal being to reach first a centre-of-mass energy
of 10 TeV, and then the LHC design energy and luminosity of 14 TeV and 1034 cm−2s−1,
respectively.

In this document, we present precision calculations for gaugino-pair production at cur-
rent hadron colliders. In the second chapter of this thesis, we introducesupersymmetry

2
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searches for charginos (light grey) and sleptons (dark grey) [13], and by CDF (black line)
[14]. The assumed minimal supergravity parameters areA0 = 0 GeV, tanβ = 3 andµ > 0
[15].

and concentrate on the simplest realistic model, the Minimal Supersymmetric Standard
Model. We therefore present its particle content, its Lagrange density andthe resulting
mass eigenstates of the theory, emphasising the neutralino and chargino masseigenstates.
In chapter three, we present important features of perturbative QCD and focus on threshold
and transverse-momentum resummations. The pioneering work of Collins, Soper and Ster-
man on all-order resummations [17, 18] as well as more recent improvements are detailed.
Chapter four is devoted to our fixed-order calculations for gaugino-pairproduction. We
study the polarised total cross sections and the supersymmetric QCD radiative corrections
to the unpolarised cross sections. In chapter 5, we apply the resummation formalisms to the
production of the gaugino pairs. Analytical and numerical results are detailed focusing on
the transverse-momentum spectra, invariant-mass distributions, and total cross sections at
both the Tevatron and the LHC. Our conclusion and outlook are presentedin chapter 6.
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2
Supersymmetry

The Standard Model (SM) of particle physics, developed in the 70’s, has known a great
success in describing Nature. Based on the gauge-symmetry group SU(3)C ×SU(2)L ×
U(1)Y , it consistently includes both the electroweak and the strong interactions [1,2, 3, 4,
5]. At present, its only missing piece is the discovery of the Higgs boson, responsible for
the generation of the electroweak gauge-boson masses and the fermion masses through its
Yukawa couplings [6, 7].

However, there are still several fundamental open questions, and manySM extensions
propose to solve some of them. Among these extensions, the Minimal Supersymmetric
SM (MSSM) is probably the most famous and best studied [8, 9]. Weak scale supersym-
metry (SUSY) is indeed one of the most appealing extensions of the SM. It can break
the electroweak symmetry radiatively, allows for its grand unification with the local gauge
symmetry of strong interactions, offers a natural explanation of the large hierarchy between
electroweak and gravitational interactions and appears naturally in string theories. From a
theoretical point of view, the main motivation for SUSY is that it is the only way to extend
the Poincaŕe symmetry with internal symmetries (as discussed in the next section).

This chapter is devoted to the presentation of the MSSM. We first introduce SUSY itself
and then focus on the MSSM with its field content and its symmetries, broken or not, and
finally its mass spectrum.

2.1 The superalgebra

It is known that Poincaré symmetry is realised in Nature and that symmetries play an im-
portant role in particle physics. Therefore, one may ask whether it is possible to extend the
Poincaŕe group with internal symmetries. Recall that the generators of the Poincaré algebra
satisfy the commutation relations

[Pµ ,Pν ] = 0, (2.1)

[Pµ ,Mνρ ] = i(gµνPρ −gµρPν), (2.2)

[Mµν ,Mρσ ] = −i(gµρMνσ −gµσ Mνρ +Mµρgνσ −Mµσ gνρ), (2.3)

wheregµν = diag(1,−1,−1,−1) is the Minkowski metric,Pµ is the energy-momentum
operator andMµν are the generators of angular momenta and Lorentz boosts.

In 1967, Coleman and Mandula published their so-calledno-go theorem, where starting
from an interacting four-dimensional quantum field theory with massive one-particle states

5



2 Supersymmetry

and assuming some non-zero scattering amplitudes, they proved that any Liegroup which
contains both the Poincaré groupP and an internal symmetry groupG must be a trivial
direct productP ×G [19]. This is well-known nowadays and it is actually realised in the
SM with gauge symmetries, whose generators trivially commute with those of the Poincaŕe
group. For instance, concerning the gauge group SU(N), its generatorsT a, with 1≤ a ≤
N2−1, satisfy the following commutation relations

[T a,T b] = i f abcT c, (2.4)

[T a,Pµ ] = 0 = [T a,Mµν ], (2.5)

where f abc are the structure constants of the gauge group. And this would be the end of the
story if nobody had managed to bypass this no-go theorem.

In 1975, Haag, Lopuszanski and Sohnius extended the Coleman-Mandula theorem by
allowing not only commuting, but also anticommuting symmetry generators. They proved
that there is a unique non-trivial extension of the Poincaré algebra which is called superalge-
bra [20]. The superalgebra is defined by the usual relations of the Poincaŕe algebra together
with the new (anti)commutation relations

{Qi
α , Q̄ j

β̇
} = 2(σ µ)αβ̇ Pµδi j, (2.6)

{Qi
α ,Q j

β} = εαβ Zi j, (2.7)

[Qi
α ,Pµ ] = 0, (2.8)

[Qi
α ,Mµν ] = i(σµν)

β
α Qi

β , (2.9)

[Qi
α ,T a] = 0, (2.10)

whereQi
α , with 1≤ i ≤ N , are theN SUSY generators,Zi j = −Z ji are central charges

which commute with all the generators of the superalgebra, andεαβ is the two-dimensional
antisymmetric tensor withε12 = 1. Note that the SUSY generators carry a spinorial index
(α = 1,2 in Weyl notation), thus changing the spin of the state they act on by one-half. Our
conventions for the matricesσ µ , σ̄ µ andσ µν are

(σ µ)αα̇ = (I,σx,σy,σz)αα̇ , (2.11)

(σ̄ µ)α̇α = ε α̇β̇ εαβ (σ µ)ββ̇ , (2.12)

(σ µν)
β

α =
1
4
(σ µ σ̄ν −σν σ̄ µ)

β
α , (2.13)

whereI is the identity matrix andσx,y,z are the usual Pauli matrices.
The particle states lie in the irreducible representations of the above superalgebra, name-

ly the supermultiplets. Each of them contains an equal number of bosonic andfermionic
degrees of freedom. As can be seen from Eqs. (2.8) and (2.10), the SUSY generators com-
mute with both the squared mass operatorP2 and the generators of the gauge transforma-
tions. Thus, particles in the same supermultiplet have equal mass, electric charge, weak
isospin and colour quantum numbers. In principle, there can beN ≤ 4J distinct sets of
SUSY generators, whereJ denotes the maximal spin of the particles involved in the theory.
For instance for renormalisable gauge theories whereJ = 1, one should in principle consider
the cases 1≤ N ≤ 4. However, forN ≥ 2, left-handed and right-handed fermionic states
belong to the same supermultiplet and have equal weak isospin quantum number. Since
we know that parity is violated by the weak interactions, only the caseN = 1 is viable
phenomenologically.

6



2.2 The Minimal Supersymmetric Standard Model

Names Superfield Spin 0 Spin 1/2

Squarks/Quarks Q q̃L = (ũL, d̃L) qL = (uL,dL)

U ũ†
R u†

R

D d̃†
R d†

R

Sleptons/Leptons L l̃L = (ν̃L, ẽL) lL = (νL,eL)

E ẽ†
R e†

R

Higgs/Higgsinos H1 h1 = (H0
1 ,H−

1 ) h̃1 = (H̃0
1 , H̃−

1 )

H2 h2 = (H+
2 ,H0

2) h̃2 = (H̃+
2 , H̃0

2)

Table 2.1: Chiral supermultiplets of the MSSM.

Names Superfield Spin 1/2 Spin 1

Gluinos/Gluons G g̃ g

Winos/W -bosons W W̃±,W̃ 0 W±,W 0

Bino/B-boson B B̃0 B0

Table 2.2: Vector supermultiplets of the MSSM.

2.2 The Minimal Supersymmetric Standard Model

Although SUSY had appeared before in some articles published in the SovietUnion [21,
22], it was the work of Wess and Zumino in 1974 that triggered the great interest on SUSY
[23]. It is fair to say that most of the SUSY extensions of the SM like the MSSMhave
followed the path set by their work [24, 25]. For a complete introduction to SUSY field
theory with an emphasis on the MSSM see Refs. [9, 26].

2.2.1 Field Content of the MSSM

The MSSM is the minimal model which includes both the SM andN = 1 SUSY. It is
built on two kinds of supermultiplets. The first one is called the chiral supermultiplet. It is
composed of a complex scalar field and a Weyl fermion. The second one contains also a
Weyl fermion, but associated with a vector boson. It is called a vector supermultiplet.

The SM fermions, the quarks and the leptons, are incorporated in chiral supermultiplets,
thus getting scalar partners called squarks and sleptons, respectively.In addition, to preserve
SUSY and avoid gauge anomalies, two Higgs doublets are needed in the MSSM, unlike the
SM. They are organised in chiral supermultiplets together with their fermionic partners, the
Higgsinos. Finally, all the SM gauge bosons are associated with vector supermultiplets,
and we call their SUSY partners the gauginos. The MSSM content of chiral and vector
supermultiplets is summarised up in Tabs. 2.1 and 2.2 respectively.

2.2.2 Supersymmetric Lagrange density

In order to be more concise, we will denote the complex scalar and Weyl fermion within
the chiral supermultiplets byφ andψ , while the gauge bosons and the gauginos from vec-
tor supermultiplets will be denoted byAµ andλ respectively. The Lagrange density of a

7



2 Supersymmetry

renormalisable SUSY theory is then given by

Lsusy= (Dµφ)†
i (D

µφ)i + iψiσµ(Dµ ψ̄)i + iλ aσµ(Dµ λ̄ )a − 1
4

Fa
µν(Fa)µν

+
[
− ig

√
2ψ̄iλ̄ aT a

i jφ j −
1
2

∂ 2W
∂φi∂φ j

ψiψ j +h.c.
]
−V (φi,φ†

j ). (2.14)

The first line contains all the kinetic terms and the gauge interactions involving vector
bosons. These interactions are hidden either in the covariant derivative Dµ = ∂µ + igAa

µT a,
which ensures the gauge invariance of the Lagrangian, or in the field strength tensorFa

µν =

∂µAa
ν − ∂νAa

µ − g f abcAb
µAc

ν . The first term in the second line involves the interactions be-
tween scalars and fermions, and the second term, namely the scalar potential,is defined
by

V (φi,φ†
j ) = ∑

i

∣∣∣∣
∂W
∂φi

∣∣∣∣
2

+
1
2 ∑

a
(gφ†

i T a
i jφ j + ka)2, (2.15)

where the Fayet-Iliopoulos termka is non-zero for U(1) gauge fields only [27].
Having fixed the list of the chiral and vector supermultiplets in the previous section, the

MSSM is then specified by the choice of its superpotential written in terms of the chiral
superfields

WMSSM = −EyELH1−DyDQH1 +UyU QH2−µH1H2. (2.16)

For brevity, we have suppressed the possible flavour and gauge indices. The first three terms
correspond to the Yukawa couplings and give rise to the (s)fermion masses. The last term,
so-called theµ-term, is related to the Higgs(ino) masses.

In principle, when imposing only renormalisability and gauge invariance, we could have
included four additional terms in the superpotential. However, three of themviolate lepton
number and the fourth violates baryon number, leading to serious problems with the present
limits on proton decay. To avoid these, one must assume one or several additional symme-
tries. Usually, it isR-parity which is chosen. It is defined by

R = (−1)3B+L+2S, (2.17)

B andL being the baryon and lepton numbers andS the spin of the particle. Under this new
quantum number, the SM particles haveR = 1, while their SUSY partners haveR = −1.
SinceR is multiplicative, only vertices with an even number of SUSY particles are allowed.
They can therefore only be produced by pairs and may decay only into final states containing
an odd number of SUSY particles. Consequently, the Lightest SUSY Particle(LSP) is stable
and can only interact via (co-)annihilation processes. If in addition the LSP is electrically
neutral and colourless, it can be a viable Dark Matter (DM) candidate, one of the missing
pieces of the SM.

2.2.3 Supersymmetry breaking

At this stage, the action obtained from the Lagrange density of Eq. (2.14) isinvariant under
global SUSY transformations. Therefore all the SUSY particles have the very same mass
as their SM partners. This is in contradiction with the observation that SUSY particles
have not been discovered so far, meaning that SUSY must be broken. Since the breaking
mechanism is not known, we parameterise it by adding terms which break SUSY explicitly.
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2.3 Mass eigenstates

At present, the consensus is that these terms must not introduce quadraticdivergences in
quantum corrections. In the MSSM, the soft SUSY-breaking terms are given by [28]

Lsoft =− 1
2

(
M1B̃B̃+M2W̃W̃ +M3g̃g̃+h.c.

)

−m2
1h†

1h1−m2
2h†

2h2 +(bh1h2 +h.c.)

−
(
− ẽ†

RaE l̃Lh1− d̃†
RaDq̃Lh1 + ũ†

RaU q̃Lh2 +h.c.
)

− ẽ†
Rm2

E ẽR − l̃†
Lm2

L l̃L − d̃†
Rm2

Dd̃R − ũ†
Rm2

U ũR − q̃†
Lm2

Qq̃L, (2.18)

where the gaugino-, Higgs- and sfermion-mass terms are shown in the first,second and
last lines, respectively. The third line involves the trilinear scalar interactions. Here again,
summations over possible flavour and gauge indices are understood.

The explicit breaking of SUSY, as presented in Eq. (2.18), may appear inelegant. One
would prefer to break SUSY spontaneously, so that the action is still invariant under SUSY
transformations, but the ground state of the theory is not. A mechanism, whichworks
directly in the MSSM, is unfortunately not known. In present models, spontaneous SUSY
breaking has to happen in a hidden sector and is mediated to the visible sector,the MSSM,
through a shared interaction. Unfortunately, neither the particle content of the hidden sector
nor the mediation with the visible sector are known.

The most popular SUSY-breaking model is called minimal SUperGRAvity (mSUGRA)
[29, 30, 31]. In this framework, the hidden and visible sectors communicatethrough the
gravitational interactions. The effective soft terms in Eq. (2.18) are thendetermined by
only five parameters, which are the universal scalar and gaugino masses m0 andm1/2, the
universal trilinear couplingA0, the sign of theµ-parameter and the ratio of the vacuum
expectation values of the Higgs fields tanβ , discussed in Sec. 2.3.1. At the unification
scale, we assume the following relations

m2
0 = m2

1 = m2
2 = m2

E = m2
L = m2

D = m2
U , (2.19)

m1/2 = M1 = M2 = M3, (2.20)

A0yE = aE , A0yD = aD and A0yU = aU . (2.21)

Then, the parameters at low energy are obtained through their renormalisation-group equa-
tions (RGE). In the work presented here, we only consider mSUGRA scenarios, even if
several other mediations have been proposed in the literature, e.g. mediations through gauge
interactions or the super-Weyl anomaly.

2.3 Mass eigenstates

In order to give masses to theW - andZ-bosons, electroweak symmetry has to be broken.
Consequently, all particles with the same spin, electric and colour charge mix,as do theB0-
andW 0-bosons in the SM. In the following, we will focus on the ElectroWeak Symmetry
Breaking (EWSB) and the resulting mixings which occur in the Higgs, gaugino/Higgsino
and sfermion sectors.

9



2 Supersymmetry

2.3.1 Higgs sector

As already mentioned in the previous section, the MSSM contains two Higgs doublets. The
scalar Higgs potential is then given by

VHiggs = (|µ|2 +m2
1)|h1|2 +(|µ|2 +m2

2)|h2|2− (bh1h2 +h.c.)

+
1
8
(g2 +g′2)(|h1|2−|h2|2)2 +

1
2

g2|h†
1h2|2, (2.22)

where we have included the contributions from both the SUSY scalar potential in Eq. (2.15)
and the soft breaking terms in Eq. (2.18). The standard procedure is to use a SU(2)L trans-
formation to rotate away any vacuum expectation values (vevs) of the charged Higgs fields.
We simply get〈H±

2,1〉 = 0 which allows for electric charge conservation in the theory. The
next step is to choose theb-parameter real and positive (by redefining the phases of the
Higgs fields if necessary). Hence,CP symmetry is not spontaneously broken, and the scalar
Higgs mass eigenstates are alsoCP-eigenstates. EWSB is achieved, if the following condi-
tions are fulfilled:

(|µ|2 +m2
1)(|µ|2 +m2

2) < b2 and (|µ|2 +m2
1)+(|µ|2 +m2

2) ≥ 2b. (2.23)

This enforces the neutral components of the Higgs doublets to acquire non-vanishing vevs
〈H0

1,2〉 = v1,2/
√

2. Traditionally, the two vevs are parameterised by the SM-like vacuum
expectation valuev and the angleβ defined by

v2 = v2
1 + v2

2 and tanβ =
v2

v1
, β ∈ [0,

π
2

[. (2.24)

After EWSB, among the eight degrees of freedom present in the two Higgsdoublets,
three become the massless Nambu-Goldstone bosonsG0,±. The other five become two
neutralCP-even(h0,H0), oneCP-odd A0 and two chargedH± Higgs bosons. They are
related to the interaction eigenstates through

(
H0

h0

)
=

(
cosα sinα
−sinα cosα

)(√
2Re(H0

1)− v1√
2Re(H0

2)− v2

)
, (2.25)

(
G0

A0

)
=

(
−cosβ sinβ
sinβ cosβ

)(√
2Im(H0

1)√
2Im(H0

2)

)
, (2.26)

(
G+

H+

)
=

(
−cosβ sinβ
sinβ cosβ

)(
H−∗

1

H+
2

)
, (2.27)

whereα is the Higgs mixing angle. At tree level, the Higgs-boson masses are then

m2
h0,H0 =

1
2

[
m2

A0 +m2
Z ∓
√

(m2
A0 +m2

Z)2−4m2
A0m2

Z cos2(2β )
]
, (2.28)

m2
A0 =

2b
sin(2β )

and m2
H± = m2

A0 +m2
W , (2.29)

where, as in the SM, theW - andZ-boson masses are

m2
W =

g2

4
v2 and m2

Z =
g2 +g′2

4
v2. (2.30)
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2.3 Mass eigenstates

2.3.2 Sfermion sector

In the most general case, the sfermions mass eigenstates are obtained by diagonalising 6×6
matrices, because left- and right-handed sfermions of the three families mix. Assuming
that no mixing occurs between sfermions of different flavours reducesthe problem into the
diagonalisation of three 2×2 matrices. The mass term for sfermions of flavourf can then
be written as

L ⊃−
(

f̃ ∗L f̃ ∗R

)( m2
LL f

m2
LR f

(m2
LR f

)∗ m2
RR f

)(
f̃L

f̃R

)
(2.31)

with the following mass matrix entries:

m2
LL f

= m2
{L,Q} f

+(T 3
f − e f sin2 θW )m2

Z cos2β +m2
f , (2.32)

m2
RR f

= m2
{E,D,U} f

+ e f sin2 θW m2
Z cos2β +m2

f , (2.33)

m2
LR f

= m f A
∗
{E,D,U} f

−m f µ(tanβ )−2T 3
f . (2.34)

We denotem f , e f andT 3
f the mass, electric charge and weak isospin quantum number of the

sfermion of flavourf . The diagonalisation of the mass matrix is performed with the unitary
matrix R f̃ , and the resulting sfermion mass eigenstates are given by

(
f̃1
f̃2

)
= R f̃

(
f̃L

f̃R

)
, (2.35)

where by conventionm f̃1 < m f̃2. At tree level, the mass eigenvalues are given by

m f̃1,2
=

1
2

[
m2

LL f
+m2

RR f
∓
√

(m2
LL f

−m2
RR f

)2 +4|m2
LR|2

]
. (2.36)

2.3.3 Gaugino/Higgsino sector

The electroweak gauginos and the Higgsinos with same electric charge also mix. The re-
sulting neutral and charged mass eigenstates are named the neutralinos andthe charginos
respectively.

For the neutral eigenstates, the mass term in the Lagrange densityL = Lsusy+Lsoft is
given by

L ⊃−1
2
(ψ0)TY ψ0 +h.c. (2.37)

It is bilinear in the (two-component) fermionic partners

ψ0
j = (−iB̃0,−iW̃ 0, H̃0

1 , H̃0
2)T with j = 1, . . . ,4 (2.38)

of the neutral electroweak gauge and Higgs bosons and proportional tothe, generally com-
plex and necessarily symmetric, neutralino mass matrix

Y =




M1 0 −mZ sinθW cosβ mZ sinθW sinβ
0 M2 mZ cosθW cosβ −mZ cosθW sinβ

−mZ sinθW cosβ mZ cosθW cosβ 0 −µ
mZ sinθW sinβ −mZ cosθW sinβ −µ 0




,

(2.39)
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2 Supersymmetry

whereθW is the electroweak mixing angle. After diagonalisation of the mass matrixY , one
obtains the neutralino mass eigenstates

χ0
i = Ni jψ0

j , i = 1, . . . ,4, (2.40)

whereN is a unitary matrix satisfying the relation

N∗Y N−1 = diag(mχ̃0
1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4
). (2.41)

In four-component notation, the Majorana-fermionic neutralino mass eigenstates can be
written as

χ̃0
i =

(
χ0

i

χ̄0
i

)
. (2.42)

At tree level, the application of projection operators leads to relatively compact analytic
expressions for the mass eigenvaluesmχ̃0

1
< mχ̃0

2
< mχ̃0

3
< mχ̃0

4
[32]. As we choose them to

be real and non-negative, our unitary matrixN is generally complex [33].
The chargino mass term in the Lagrange density

L ⊃−1
2

(
ψ+ ψ−

)(0 XT

X 0

)(
ψ+

ψ−

)
+h.c. (2.43)

is bilinear in the (two-component) fermionic partners

ψ±
j = (−iW̃±, H̃±

2,1)
T with j = 1,2 (2.44)

of the charged electroweak gauge and Higgs bosons and proportionalto the, generally com-
plex, chargino mass matrix

X =

(
M2 mW

√
2sinβ

mW
√

2cosβ µ

)
. (2.45)

SinceX is not symmetric, it must be diagonalized by two unitary matricesU andV , which
satisfy the relation

U∗XV−1 = diag(mχ̃±
1
,mχ̃±

2
) (2.46)

and define the chargino mass eigenstates

χ+
i = Vi jψ+

j and χ−
i = Ui jψ−

j . (2.47)

In four-component notation, the Dirac-fermionic chargino mass eigenstates can be written
as

χ̃±
i =

(
χ±

i

χ̄∓
i

)
. (2.48)

As Eq. (2.46) implies
V X†XV−1 = diag(m2

χ̃±
1
,m2

χ̃±
2
), (2.49)

the hermitian matrixX†X can be diagonalized using onlyV , and its eigenvalues

m2
χ̃±

1,2
=

1
2

[
|M2|2 + |µ|2 +2m2

W ∓
√

(|M2|2 + |µ|2 +2m2
W )2−4|µM∗

2 −m2
W s2β |2

]
(2.50)
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2.3 Mass eigenstates

are always real. If we take also the mass eigenvaluesmχ̃±
1

< mχ̃±
2

to be real and non-negative,
the rotation matrix

V =

(
cosθ+ sinθ+e−iφ+

−sinθ+eiφ+ cosθ+

)
(2.51)

can still be chosen to have real diagonal elements, but the off-diagonalphasee∓iφ+ is needed
to rotate away the imaginary part of the off-diagonal matrix element inX†X ,

Im[(M∗
2sβ + µcβ )eiφ+ ] = 0. (2.52)

The rotation angleθ+ ∈ [0,π] is uniquely fixed by the two conditions

tan2θ+ =
2
√

2mW (M∗
2sβ + µcβ )eiφ+

|M2|2−|µ|2 +2m2
W c2β

and (2.53)

sin2θ+ =
−2

√
2mW (M∗

2sβ + µcβ )eiφ+

√
(|M2|2−|µ|2 +2m2

W c2β )2 +8m2
W [(M∗

2sβ + µcβ )eiφ+ ]2
. (2.54)

OnceV is known, the unitary matrixU can be obtained easily from

U = diag(m−1
χ̃±

1
,m−1

χ̃±
2
)V ∗XT . (2.55)
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3
Resummation

In this chapter, we present all the formulae needed to apply the threshold and transverse-
momentum resummation formalisms to the production of gaugino pairs. To fix the no-
tations, we recall some of the major results of perturbative QCD in Sec. 3.1. Then, we
present the formalisms of threshold resummation and transverse-momentum resummation
in Sec. 3.3 and Sec. 3.4, respectively. Finally, since both formalisms are defined in con-
jugate spaces, some subtleties to switch back to the physical spaces are detailed in Sec.
3.5.

3.1 Perturbative QCD

Let us consider the production of a non-coloured systemF with massM and transverse
momentumpT in the collision of two hadronsA andB,

A+B → F(M2, p2
T )+X (3.1)

(see Fig. 3.1). For example,F can be a vector boson, a Higgs boson, a lepton pair or a
gaugino pair. At largeM2, the differential cross section for the production ofF can be
written in the collinear-factorised form [34]

M2 dσAB

dM2d p2
T

(τ =
M2

S
) = ∑

ab

∫ 1

0
dxadxbdz[xa fa/A(xa,µ2)][xb fb/B(xb,µ2)]

× zσ̂ab(z,M
2,M2/p2

T ,M2/µ2)δ (τ − xaxbz), (3.2)

where fa/A and fb/B are the parton distribution functions (PDF) of partona,b in hadron
A,B. We denote

√
S the hadronic centre-of-mass energy,xa,b the longitudinal momentum

fractions of the two partons andµ the factorisation scale. For the time being, the renormali-
sation scale is set equal toµ. In Eq. (3.2), the PDFs are convoluted with the hard-scattering
function σ̂ab, which is usually evaluated as a power series in the strong coupling constant
αs = αs(µ2),

σ̂ab(z,M
2,M2/p2

T ,M2/µ2) =
∞

∑
n=0

(
αs

2π
)nσ̂ (n)

ab (z,M2,M2/p2
T ,M2/µ2)

=
∞

∑
n=0

an
s σ̂ (n)

ab (z,M2,M2/p2
T ,M2/µ2). (3.3)
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fa/A

fb/B

σ̂ab

F (M2, p2
T )

a

b

A

B

Figure 3.1: Schematic representation of Eq. (3.2) for the production of a colourless system
F , balanced by a gluon emission, in the collision of two hadronsA andB.

In the second line, we have taken the opportunity to specify the reduced coupling as(µ2)
employed for the rest of this chapter. Its dependence on the renormalisation scale is deter-
mined by the very well-known renormalisation group equation

das(µ2)

d ln µ2 = −
∞

∑
n=0

βnan+2
s (µ2), (3.4)

where the minus sign on the right-hand side makes explicit that QCD is an asymptotically
free theory [4, 5]. The first expansion coefficientsβ0 andβ1 [35] are given by

β0 =
11CA −2N f

6
and β1 =

17C2
A −5CAN f −3CFN f

6
. (3.5)

These coefficients depend on the number of active light flavoursN f and the Casimir oper-
ators of SU(Nc) in the fundamental and adjoint representations. ForNc = 3, they take the
values

CF =
N2

c −1
2Nc

=
4
3

and CA = Nc = 3. (3.6)

Note that the coefficientsβ0 andβ1 are independent of the renormalisation scheme unlike
the higher coefficients.

At leading order (LO), where no additional partons are produced besidesF , the hard
scattering function

σ̂ (0)
ab (z,M2,M2/p2

T ,M2/µ2) = σ̂ (0)
ab (M2,M2/µ2)δ (1− z)δ (p2

T ) (3.7)

has its support entirely atz = 1 and p2
T = 0. At higher order in QCD, it develops more

complicated structures that we will discuss in the next sections.
In the following, instead of working withτ- andz-dependent cross sections in Eq. (3.2),

we will prefer their Mellin moments. We define the Mellin transform of a functionF(x) by

F(N) =
∫ 1

0
dxxN−1F(x), (3.8)
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where for economy of notation, we denote the transform ofF(x) with respect to its variable
x by changing its argument toN. After a Mellin transform, the convolution in Eq. (3.2)
simplifies to a simple product

M2 dσAB

dM2d p2
T

(N −1) = ∑
ab

fa/A(N,µ2) fb/B(N,µ2)σ̂ab(N,M2,M2/p2
T ,M2/µ2). (3.9)

We also define the partonic cross section by

M2 dσab

dM2d p2
T

(N −1) = ∑
cd

φc/a(N,µ2)φd/b(N,µ2)σ̂cd(N,M2,M2/p2
T ,M2/µ2), (3.10)

whereφc/a(xc,µ2) andφd/b(xd,µ2) are parton-in-parton distributions of partonsc,d in par-
tons a,b, respectively. Like the PDFs, they are defined at fixed longitudinal momentum
fractionxc,d .

WhenpT 6= 0, the remaining collinear singularities ofdσab/dM2/d p2
T are absorbed in

the parton-in-parton distribution functions leaving the hard-scattering function σ̂ab infrared
safe order by order in perturbation theory. This procedure, called mass factorisation, con-
tains some degrees of freedom. One can actually shift any finite part of thehard-scattering
function into theφ -distributions. This introduces the factorisation scale dependence into
the definition of both the parton-in-parton distributions and the hard-scattering function. In
the following, we will stick to theMS factorisation scheme, in which the parton-in-parton
distributions are “pure counterterms”, i.e. a series of poles inε = 2−D/2 in D space-time
dimensions (together with the usual constant terms ln(4π)− γE , γE being the Euler con-
stant).

The dependence ofφc/a on the factorisation scale is governed by the so-called Altarelli-
Parisi (AP) equation [36]

∂φc/a(N,µ2)

∂ ln µ2 = ∑
b

Pcb(N,as(µ2))φb/a(N,µ2), (3.11)

where the splitting functionsPcb(N,as) = ∑n an
s Pcb(N) are calculable order-by-order in per-

turbation theory. At LO inas, they are given by

P(1)
qq (N) = CF

[
3
2

+
1

N(N +1)
−2

N

∑
k=1

1
k

]
, (3.12)

P(1)
qg (N) =

1
2

[
2+N +N2

N(N +1)(N +2)

]
, (3.13)

P(1)
gq (N) = CF

[
2+N +N2

N(N2−1)

]
, (3.14)

P(1)
gg (N) = β0 +2CA

[
1

N(N −1)
+

1
(N +1)(N +2)

−
N

∑
k=1

1
k

]
. (3.15)

In order to write the solution of Eq. (3.11) in a compact form, it is convenientto introduce
the QCD evolution operatorEab(N,µ2,µ2

0) defined as the solution of the equation

∂Eab(N,µ2,µ2
0)

∂ ln µ2 = ∑
c

Pac(N,as(µ2))Ecb(N,µ2,µ2
0). (3.16)
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Then the solution of Eq. (3.11), written in terms of the evolution operator, is simply

φc/a(N,µ2) = ∑
b

Ecb(N,µ2,µ2
0)φb/a(N,µ2

0). (3.17)

Note that the expression of the evolution operatorEab is in general quite complicated. How-
ever, it can be considerably simplified by working in the quark/flavour singlet and non-
singlet basis. For instance, by solving the LO approximation of Eq. (3.16)

∂E(1)
ab (N,µ2,µ2

0)

∂ ln µ2 = as ∑
c

P(1)
ac (N,as(µ2))E(1)

cb (N,µ2,µ2
0), (3.18)

one is able to write the LO evolution operatorE(1)
ab in a closed exponential form [37].

3.2 Resummation philosophy

As can be seen in Eq. (3.2), to compute the differential cross section for the process in
Eq. (3.1), we need two different parts. The first part is the knowledgeof the PDFs. The
PDFs are non-perturbative functions and must be obtained from experiments. Fortunately,
they are universal and obey the evolution equations in Eq. (3.11), so that we can reuse the
PDFs obtained in an experiment to get predictions for another experiment. The other part
is the hard-scattering function̂σab. It is a highly process-dependent function and must be
calculated as a power series inas. The first coefficient of the serieŝσ (0)

ab is often not too
hard to compute for 2→ m processes, withm small. However, asn grows, the number of
Feynman diagrams one must compute to getσ̂ (n)

ab increases factorially. Current calculations
reach typicallyn = 0 or 1 and very rarelyn = 2.

For the evaluation of̂σ (1)
ab , one must consider real-emission contributions and virtual-

loop corrections, and one has to deal with different kinds of singularities. The ultraviolet
singularities, present in the virtual contributions, are removed by the renormalisation pro-
cedure. The infrared singularities are present in both the virtual and real-emission contri-
butions. The cancellation of the these singularities is guaranteed by the Bloch-Nordsieck
mechanism [38] and the resulting cross section is infrared safe.

Although infrared safe,σ̂ (1)
ab still contains singular distributions at the phase space

boundaries, e.g. atz = 1 and pT = 0. In such kinematical configurations, the cancella-
tion of the infrared singularities between virtual and real-emission diagrams isconstrained
by the requirements that the real gluon is either soft or collinear, leaving these (potentially)
large terms in the hard-scattering function. Note that because of their infrared origin, those
singular structures take the form of logarithmic distributions. That is why the differential
cross sectiondσAB/dM2/d p2

T is sometimes called an infrared sensitive quantity. Fortu-
nately, these logarithmic terms have a definite structure. They can therefore be organised
and summed to all orders inas using resummation formalisms.

We have already mentioned that the factorisation procedure in Eq. (3.10) isnot unique
and involves some degrees of freedom. Resummation formalisms make heavy use of this
property. The starting point is the refactorisation of the cross section in thekinematical
regions that give rise to the logarithms. To sketch the resummation procedure, let us take an
infrared sensitive quantityR(M2,m2), which depends on two scales: the hard scaleM and
a scalem, which measures the distance from the critical region. One must show, andit is

18



3.3 Threshold resummation

highly non-trivial, that in the limitm2 ≪ M2, R can be factorised as

R(M2,m2) = H(M2/µ2)S(m2/µ2), (3.19)

where we have separated the two scalesM andm by introducing a factorisation scaleµ.
We see that the functionsH andS contain potentially large ratios, depending on the value
we assign toµ. Note that this refactorisation does not necessarily hold in the original
momentum space, but more often in a “conjugate” space, e.g. Mellin or impact-parameter
space.

From the independence ofR on µ, we get the evolution equations

d lnH
d ln µ2 = γS(µ2) = − d lnS

d ln µ2 . (3.20)

Solving the equation forS naturally leads to the following exponentiation

S(m2/µ2) = S(1)exp

[
−
∫ µ2

m2

dq2

q2 γS(q
2)

]
. (3.21)

With the specific choiceµ = M, Eq. (3.19) becomes

R(M2,m2) = H(1)S(1)exp

[
−
∫ M2

m2

dq2

q2 γS(q
2)

]
. (3.22)

We see that the potentially large ratios in the functionsH and S are no longer present.
They can therefore be computed safely using perturbation theory and thefull dependences
on the two scales are now in the exponential, sometimes called the Sudakov formfactor.
Computing the anomalous dimensionγS to a specific order inas resums the large logarithmic
terms to a given accuracy.

In the next sections, we present two resummation formalisms. More precisely, Sec. 3.3
is devoted to the threshold resummation [18, 39] which reorganisesz = 1 singularities. In
Sec. 3.4 we present the formalism of transverse-momentum resummation [40,41] which
controls thepT = 0 singularities.

3.3 Threshold resummation

Close to partonic threshold, i.e. whenz = M2/s is close to one, the hard-scattering function
reveals potentially large logarithmic structures. The threshold resummation proposes to
organise the terms of the forman

s [(1− z)−1 lnm(1− z)]+, with m ≤ 2n−1, which appear in
σ̂ab. In Mellin space, these terms turn into large logarithms of the Mellin variableN

(
lnm(1− z)

1− z

)

+

−→ lnm+1 N + · · · (3.23)

and it is thus possible, in theN → ∞ limit, to retain only the leading power inN. In particu-
lar, one can neglect parton mixing contributions since they contribute atO(1/N). This can
be seen already atO(as): Taking the large-N limit in Eqs. (3.12)–(3.15), one can see that
the AP splitting functions behave as

P(1)
qq (N) = CF

(
3
2
−2lnN̄

)
+O(

1
N

), P(1)
qg (N) ∼ 1

2N
,

P(1)
gq (N) ∼ CF

N
and P(1)

gg (N) = β0−2CA ln N̄ +O(
1
N

), (3.24)
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3 Resummation

with N̄ = NeγE andγE being the Euler constant.
Consequently, after the integration of Eq. (3.10) overp2

T and the removal of the parton-
mixing contributions, the partonic cross section becomes

M2 dσab

dM2 (N −1) = φa/a(N,µ2)φb/b(N,µ2)σ̂ab(N,M2,M2/µ2)+O(
1
N

). (3.25)

3.3.1 Refactorisation

As mentioned above, this factorisation exhibits singular distributions atz = 1. To control
them, we follow the work of Sterman [18] and refactorise the partonic crosssection as

M2 dσab

dM2 (N −1) = Hab(M
2,M2/µ2)

×ψa/a(N,M2)ψb/b(N,M2)Sab(N,M2/µ2)+O(
1
N

). (3.26)

The hard functionHab organises infrared-safe coefficients independent ofN and can be
therefore computed as power series inas,

Hab(M
2,M2/µ2) =

∞

∑
n=0

an
s H(n)

ab (M2,M2/µ2). (3.27)

The parton-in-parton distributionsψa/b are defined at measured fraction of energy rather
than at usual longitudinal momentum fraction (as inφa/b). They satisfy the evolution equa-
tion

∂ψa/a(N,µ2)

∂ ln µ2 = γa(as(µ2))ψa/a(N,µ2), (3.28)

where the anomalous dimensions of the fielda, γa(as) = 1/Za∂Za/∂ ln µ2 = ∑n asγ
(n)
a , cor-

respond in the axial gauge [42] to theN-independent (virtual) parts ofPaa(N,as). Finally,
the functionSab describes the large-angle emission of soft gluons and can thus be computed
in the eikonal approximation.

To perform mass factorisation, we include Eq. (3.26) in Eq. (3.25) and get

σ̂ab(N,M2,M2/µ2) =

Hab(M
2,M2/µ2)

ψa/a(N,M2)ψb/b(N,M2)

φa/a(N,µ2)φb/b(N,µ2)
Sab(N,M2/µ2)+O(

1
N

). (3.29)

3.3.2 Exponentiation

Using gauge invariance and renormalisation group arguments, the evolutionequations sat-
isfied byφa/a andψa/a (Eqs. (3.11) and (3.28) respectively) can be solved near threshold,
and together with the property of exponentiation of the eikonal functionSab [43], the cross
section can be cast in the exponential form

σ̂ab(N,M2,M2/µ2) = Hab(M
2,M2/µ2)exp[Gab(N,M2,M2/µ2)]+O(

1
N

), (3.30)
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3.3 Threshold resummation

where the functionGab can be written [39]1 as

Gab(N,M2,M2/µ2) =

ln∆a(N,M2,M2/µ2)+ ln∆b(N,M2,M2/µ2)+ ln∆(s)
ab (N,M2). (3.31)

The radiation factors∆’s are given by integrals of the running coupling constant

ln∆a(N,M2,M2/µ2) =
∫ 1

0
dz

zN−1−1
1− z

∫ (1−z)2M2

µ2

dq2

q2 Aa(as(q
2)), (3.32)

ln∆(s)
ab (N,M2) =

∫ 1

0
dz

zN−1−1
1− z

Dab(as((1− z)2M2)). (3.33)

The functionAa collects the effects of collinear soft-gluon radiation off the initial-state
partona, and the functionDab collects the process-dependent contributions from large-angle
soft-gluon emissions. Both can be expanded as power series inas

Aa(as) =
∞

∑
n=1

an
s A(n)

a and Dab(as) =
∞

∑
n=1

an
s D(n)

ab . (3.34)

After the integrations in Eqs. (3.32) and (3.33) have been performed, thehard-scattering
function in Eq. (3.30) becomes

σ̂ab(N,M2,M2/µ2) = Hab(M
2,M2/µ2)exp[Gab(N,M2,M2/µ2)]+O(

1
N

). (3.35)

Here, the perturbative coefficients of the hard function

Hab(M
2,M2/µ2) =

∞

∑
n=0

an
sH

(n)
ab (M2,M2/µ2) (3.36)

have been redefined with respect to those in Eq. (3.27) in order to absorb the non-logarithmic
terms resulting from the integration, i.e.

H
(0)

ab (M2,M2/µ2) = H(0)
ab (M2,M2/µ2), (3.37)

H
(1)

ab (M2,M2/µ2) = H(1)
ab (M2,M2/µ2)+

π2

6
(A(1)

a +A(1)
b )H(0)

ab (M2). (3.38)

The functionGab takes the form

Gab(N,M2,M2/µ2) = Lg(1)
ab (λ )+g(2)

ab (λ ,M2/µ2)+asg
(3)
ab (λ ,M2/µ2)+ · · · (3.39)

with λ = asβ0L andL = ln N̄. The first term in Eq. (3.39) collects the leading logarithmic
(LL) large-N contributionsL(asL)n and depends onA(1)

a only. The coefficientsA(2)
a , A(1)

a

andD(1)
ab determine the functiong(2)

ab which resums the next-to-leading logarithmic (NLL)

terms(asL)n. Similarly, the functionsg(n+1)
ab resum the NnLL and depend on the coefficients

A(n+1)
a , A(k)

a andD(k)
ab with 1≤ k ≤ n.

1We prefer to present the functionGab as in Ref. [39] rather than the one described in Ref. [18]. Of course
it has been shown that both formulations are equivalent [44].

21



3 Resummation

3.3.3 NLL approximation

The LL and NLL logarithmic contributions are resummed thanks to the functions

2λβ0g(1)
ab (λ ) = (A(1)

a +A(1)
b )
[
2λ +(1−2λ ) ln(1−2λ )

]
, (3.40)

2β0g(2)
ab (λ ,M2/µ2) = (A(1)

a +A(1)
b ) ln(1−2λ ) ln

M2

µ2

+(A(1)
a +A(1)

b )
β1

β 2
0

[
2λ + ln(1−2λ )+

1
2

ln2(1−2λ )
]

− (A(2)
a +A(2)

b )
1
β0

[
2λ + ln(1−2λ )

]
+D(1)

ab ln(1−2λ ), (3.41)

where the needed coefficients are found to be [39]

A(1)
a = 2Ca, A(2)

a = 2Ca

[(
67
18

− π2

6

)
CA −

5
9

n f

]
and D(1)

ab = 0. (3.42)

The colour factorsCa areCq = CF andCg = CA.
The comparison of̂σab in both Eq. (3.3) and Eq. (3.35) yields

H
(0)

ab (M2,M2/µ2) = σ̂ (0)
ab (M2,M2/µ2), (3.43)

H
(1)

ab (M2,M2/µ2) = σ̂ (0)
ab (M2,M2/µ2)

×
[
A0 +(δP(1)

aa +δP(1)
bb ) ln

M2

µ2 +
π2

6
(A(1)

a +A(1)
b )
]
, (3.44)

whereδP(1)
aa is the coefficient of theδ (1− x) term in the LO splitting functionP(1)

aa (x). The
coefficientA0 represents the IR-finite part of the renormalised virtual correction

M
(1)

M
(0)† +h.c. =

as

(
4πµ2

M2

)ε Γ(1− ε)

Γ(1−2ε)

(
A−2

ε2 +
A−1

ε
+A0

)
|M (0)|2 +O(ε), (3.45)

whereM (0) andM (1) are the Born and one-loop amplitudes of the processab → F(M2),
summed over spins and colours. Eq. (3.45) is obtained using the prescriptions of theMS
scheme inD = 4−2ε dimensions.

3.3.4 Improvement of the threshold resummation

Up to this point, we have systematically neglected all terms ofO(1/N). However, since the
dominant 1/N-terms, i.e. those of the forman

s L2n−1/N, stem from the universal collinear
radiation of initial state partons, they are expected to exponentiate as well. This has been
proven to next-to-next-to-leading order for deep-inelastic scattering and Drell-Yan type pro-
cesses [45] and can be achieved by making the replacement (cf. Eq. (3.55) below)

H
(1)

ab → H
(1)

ab +H
(0)

ab (A(1)
a +A(1)

b )L/N, (3.46)

i.e. by including the corresponding subleading terms of the diagonal splitting functions
Paa,bb(N) in Eqs. (3.12) and (3.15). Carrying on with this argument, it is even possibleto
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3.3 Threshold resummation

resum the terms ofO(1/N) coming from the diagonal and non-diagonal splitting functions
by identifying the terms [46]

exp
[
−L

A(1)
a +A(1)

b

β0
ln(1−2λ )

]
⊂ exp

[
Lg(1)

ab (λ )
]

(3.47)

with the LL approximation of the QCD evolution operatorsEab defined in Eq. (3.17) and
then promoting the LL to the full one-loop approximationE(1)

ab . The resummed cross sec-
tion, Eq. (3.35), can then be written in a collinearly improved form as

σ̂ab(N,M2,M2/µ2) = ∑
cd

H̃cd(M
2,M2/µ2)exp[G̃cd(N,M2,M2/µ2)]

×E(1)
ca (N,M2/N̄2,µ2)E(1)

db (N,M2/N̄2,µ2), (3.48)

where the collinearly improved hard coefficient functionH̃ab is expanded as usual as a
power series inas(µ2) and its LO and NLO coefficients read now

H̃(0)
ab (M2,M2/µ2) = σ̂ (0)

ab (M2,M2/µ2), (3.49)

H̃(1)
ab (M2,M2/µ2) = σ̂ (0)

ab (M2,M2/µ2)
[
A0 +

π2

6
(A(1)

a +A(1)
b )
]
. (3.50)

The Sudakov exponential functioñGab is expanded in the same way asGab in Eq. (3.39)
with

2λβ0g̃(1)
ab (λ ) = (A(1)

a +A(1)
b )
[
2λ + ln(1−2λ )

]
, (3.51)

2β0g̃(2)
ab (λ ,M2/µ2) = (A(1)

a +A(1)
b )
[
2λ + ln(1−2λ )

]
ln

M2

µ2

+(A(1)
a +A(1)

b )
β1

β 2
0

[
2λ + ln(1−2λ )+

1
2

ln2(1−2λ )
]

− (A(2)
a +A(2)

b )
1
β0

[
2λ + ln(1−2λ )

]

+(B(1)
a +B(1)

b +D(1)
ab ) ln(1−2λ ). (3.52)

Here the coefficientsB(1)
a have been introduced to cancel NLL terms in the one-loop ap-

proximationE(1)
ab of the evolution operators. They can be directly related toδP(1)

aa and their
values are [47, 48]

B(1)
q = −3CF and B(1)

g = −2β0. (3.53)

3.3.5 Matching procedure

As mentioned above, the large logarithms, which spoil the convergence of the perturbative
series and must be resummed to all orders, appear close to production threshold. Conversely,
the perturbative cross section should be valid far from this threshold. Toobtain a reliable
prediction in all kinematic regions, both results must be consistently matched through

σ̂ab = σ̂ (res)
ab + σ̂ (f.o)

ab − σ̂ (exp)
ab , (3.54)

i.e. by subtracting from the sum of the resummed (res) cross section in Eq. (3.48) and the
fixed order (f.o) cross section their overlap. The latter can be obtained byexpanding (exp)
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3 Resummation

the resummed cross section to the same order inas as the perturbative result. AtO(as), one
then obtains

σ̂ (exp)
ab (N,M2,M2/µ2) = H̃(0)

ab (M2,M2/µ2)+asH̃
(1)
ab (M2,M2/µ2)

−as

(
2L− ln

M2

µ2

)
∑
c

[
H̃(0)

ac (M2,M2/µ2)P(1)
cb (N)+P(1)

ca (N)H̃(0)
cb (M2,M2/µ2)

]

−asH̃
(0)
ab (M2,M2/µ2)

[
L2(A(1)

a +A(1)
b )+L(B(1)

a +B(1)
b )
]
. (3.55)

3.4 Transverse-momentum resummation

The transverse-momentum resummation proposes to organise the large terms of the generic
form an

s [p
−2
T lnm(M2/p2

T )]+, with m ≤ 2n−1. To correctly take into account the kinemat-
ical constraints of transverse-momentum conservation, we will follow Collins, Soper and
Sterman (CSS) [40]2 and work with the Fourier transformWab of the partonic cross section
defined by

M2 dσab

dM2d p2
T

(N) =
∫

d2b
4π

eib·pT Wab(N +1,M2,M2b̄2,M2/µ2) (3.56)

=
∫ ∞

0
db

b
2

J0(bpT )Wab(N +1,M2,M2b̄2,M2/µ2), (3.57)

whereb is the impact parameter,3 b̄ = beγE /2 and the Bessel functionJ0 comes from the an-
gular integration. In impact-parameter space, thepT = 0 singularities give rise to logarithms
which get large in the limitMb̄ → ∞

(
1

p2
T

lnm M2

p2
T

)

+

−→ lnm+1 M2b̄2 + · · · (3.58)

3.4.1 Refactorisation

In their paper, CSS refactorise the cross section and absorb the remaining collinear sin-
gularities in the parton-in-parton distributionsPc/a(x,k

2
T ,M2/k2

T ). These distributions are
defined at longitudinal momentum fractionx and at fixed parton transverse-momentumkT .
The resulting factorisation takes the form

Wab(N,M2,M2b̄2,M2/µ2) = ∑
cd

Hcd(M
2,M2/µ2)

×Pc/a(N,b2,M2b̄2)Pd/b(N,b2,M2b̄2)Scd(N,M2b̄2)+O(
1

M2b̄2
), (3.59)

whereScd is a pure eikonal function that describes coherent soft-gluon emission at fixed
transverse momentum. The functionHcd is a short-distance function which absorbs the
hard gluon corrections independent ofb and can therefore be computed as a power series in
as

Hcd(M
2,M2/µ2) =

∞

∑
n=0

an
s H(n)

cd (M2,M2/µ2). (3.60)

2The CSS formalism was first developed for the production of back-to-back jets ine+e− annihilation [49,
50] because of a debate whether Drell-Yan like processes (like Eq. (3.1)) factorise.

3Here,b describes the minimal distance of the two incident particles in the limit of no interaction.
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3.4 Transverse-momentum resummation

Here we use same notations as in the previous section to show that both resummation for-
malisms are very similar. However, one must keep in mind that the functionsHcd andScd

in Eq. (3.60) are not exactly the same as those in Eq. (3.26).

3.4.2 Exponentiation

By solving the evolution equations ofPc/a and using the eikonal exponentiation ofScd , one
obtains the equation

Wab(N,M2,M2b̄2,M2/µ2) = ∑
cd

Hcd(M
2,M2/µ2)

×Pc/a(N,b2,1)Pd/b(N,b2,1)exp[Gcd(M
2,M2b̄2,M2/µ2)]. (3.61)

The Sudakov exponentGcd has the integral representation

Gcd(M
2,M2b̄2,M2/µ2) =

− 1
2

∫ M2

1/b̄2

dq2

q2

[
Ac(as(q

2)) ln
M2

q2 +Bc(as(q
2))
]
+(c ↔ d) (3.62)

and thePb/a-distributions can be related to the usualkT -integrated parton-in-parton distri-
bution functionsφb/a by

Pb/a(N,b2,1) = ∑
c

Cbc(N,as(1/b̄2))φc/a(N,1/b̄2). (3.63)

We now apply the mass-factorisation procedure and get the resummed formula

σ̂ab(N,M2,M2/p2
T ,M2/µ2) =

∫ ∞

0
db

b
2

J0(bpT ) ∑
cde f

Hcd(M
2,M2/µ2)exp[Gcd(M

2,M2b̄2,M2/µ2)]

×Cce(N,as(1/b̄2))Cd f (N,as(1/b̄2))Eea(N,1/b̄2,µ2)E f b(N,1/b̄2,µ2) (3.64)

where we have used Eq. (3.17) to evolve the parton distributionφc/a from the factorisation
scaleµ to the natural scale of the process 1/b̄.

As for the threshold resummation, the needed functionsAa, Ba andCab can be calculated
perturbatively in powers ofas,

Aa(as) =
∞

∑
n=1

an
s A(n)

a , Ba(as) =
∞

∑
n=1

an
s B(n)

a , (3.65)

and Cab(N,as) = δab +
∞

∑
n=1

an
sC(n)

ab (N). (3.66)

The resummation of the logarithms is completely achieved by computing the four functions
Hab, Aa, Ba andCab at a given order inas. The knowledge of the coefficientsH(0)

ab , A(1)
a leads

to the resummation of the LL contributions. Analogously, the coefficientsH(1)
ab , A(2)

a , B(1)
a

andC(1)
ab give the NLL terms,H(2)

ab , A(3)
a , B(2)

a andC(2)
ab give the NNLL terms, and so forth.
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3.4.3 NLL approximation

By performing the integral in Eq. (3.62), the exponentGab can be expanded as

Gab(M
2,M2b̄2,M2/µ2) = Lg(1)

ab (λ )+g(2)
ab (λ ,M2/µ2)+ · · · (3.67)

with λ = asβ0L andL = lnM2b̄2. Again, the first term of the expansion collects the LL
contributions and the second term collects the NLL contributions present inGab. The two
functionsg(1,2)

ab have the following explicit expressions

2λβ0g(1)
ab (λ ) = (A(1)

a +A(1)
b )
[
λ + ln(1−λ )

]
, (3.68)

2β0g(2)
ab (λ ,M2/µ2) = (A(1)

a +A(1)
b )
[ λ

1−λ
+ ln(1−λ )

]
ln

M2

µ2

+(A(1)
a +A(1)

b )
β1

β 2
0

[λ + ln(1−λ )

1−λ
+

1
2

ln2(1−λ )
]

− (A(2)
a +A(2)

b )
1
β0

[ λ
1−λ

+ ln(1−λ )
]

+(B(1)
a +B(1)

b ) ln(1−λ ), (3.69)

where the coefficientsA(1)
a , A(2)

a andB(1)
a are known [47, 48] and are actually the same as

for the threshold resummation in Eq. (3.42) and Eq. (3.53).
As was shown in Ref. [51], there is actually some freedom in how one assigns the indi-

vidual contributions toH(1)
ab , C(1)

ab andB(2)
a,b. A choice for one coefficient uniquely determines

the others. For instance, in the original CSS formulation, the functionHab is fixed to

Hab(M
2,M2/µ2) = σ̂ (0)

ab (M2,M2/µ2). (3.70)

With this specific choice, the coefficientsB(2)
a andC(1)

ab are given by [52, 53]

C(1)
ab (N) = δab

[
Ca

π2

6
+

1
2
A0

]
−P(1),ε

ab (N), (3.71)

B(2)
a = −2δP(2)

aa +β0

[2π2

3
Ca +A0

]
, (3.72)

whereP(1),ε
ab is the O(ε) term in the AP splitting kernel,δP(2)

aa is the coefficient of the
δ (1−x) term in the two-loop AP splitting function, andA0 is the finite part of the one-loop
virtual contributions defined in Eq. (3.45). We see that with this choice of resummation
scheme, even the Sudakov exponent depends on hard contributions coming from the one-
loop amplitude. That is why, in the following we will prefer a more “physical” choice for
which the full A0-dependence of the coefficientsB(2)

a andC(1)
ab is absorbed in the short-

distance functionHab

Hab(M
2,M2/µ2) = σ̂ (0)

ab (M2,M2/µ2)
[
1+asA0

]
+O(a2

s ). (3.73)

Given this choice, the needed coefficientC(1)
ab to achieve NLL accuracy becomes

C(1)
ab (N) = Ca

π2

6
δab −P(1),ε

ab (N), (3.74)
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3.4 Transverse-momentum resummation

where

P(1),ε
qq (N) =

−CF

N(N +1)
, P(1),ε

qg (N) =
−1

(N +1)(N +2)
,

P(1),ε
gq (N) =

−CF

N +1
, P(1),ε

gg (N) = 0. (3.75)

3.4.4 Improvements of the resummation formalism

In the implementation of Eq. (3.64), the resummation of the large logarithmic contributions
L = lnM2b̄2, affects not only the small-pT region (Mb̄ → ∞) but also the region of largepT

(Mb̄ → 0) where resummation is not justified. This problem can be solved by implementing
the following change [41]

b̄2 → b̃2 with b̃2 = b̄2 +
1

M2 . (3.76)

Note that this replacement is legitimate to arbitrary logarithmic accuracy becausein the
small-pT region, ln(M2b̃2) = L +O(1/M2/b̄2). However, at largepT , the resummed cross
section has a far better behaviour. Furthermore, this change allows us to recover the corre-
sponding fixed-order total cross section upon integration overpT [41].

In Eq. (3.64), the variableb is integrated from 0 to∞. Whenb & 1/ΛQCD, the resum-
mation formalism is no longer reliable because of complicated long-distance effects which
cannot be computed perturbatively. Nevertheless, due to their long-distance nature, these
Non-Perturbative (NP) effects are assumed to be universal and canbe measured in experi-
ments. Practically, these effects are introduced thanks to the replacement

Gcd → Gcd + lnFNP
cd (N,M2,b2). (3.77)

Global fits of experimental Drell-Yan data allow for different forms of the NP functionFNP
ab ,

whose explicit expressions4 can be found in Refs. [54, 55, 56, 57].

3.4.5 Matching procedure

Although resummation is needed at smallpT , it is not justified in the largepT -region,
where the usual perturbative calculation is fully reliable. A consistent description of the
whole phase space requires a matching between the two results that avoids double count-
ing. Therefore, we adopt the following matching procedure

σ̂ab = σ̂ (res)
ab + σ̂ (f.o)

ab − σ̂ (exp)
ab , (3.78)

whereσ̂ (res)
ab is the resummed hard-scattering function given in Eq. (3.64) andσ̂ (f.o)

ab is the

fixed-order perturbative result at a given order inas. Finally, σ̂ (exp)
ab denotes the expansion

of the resummed result to the same order inas asσ̂ (f.o)
ab .

4The expressions of the functionFNP
ab are usually written inx-space rather than in Mellin space as presented

here.
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3 Resummation

The perturbative expansion of the resummed component is easily obtained byexpanding
Eq. (3.64) to the desired accuracy. At orderO(as), we find

σ̂ (exp)
ab (N,M2,M2/p2

T ,M2/µ2) = H(0)
ab (M2,M2/µ2)+asH

(1)
ab (M2,M2/µ2)

−as

(
I − ln

M2

µ2

)
∑
c

[
H(0)

ac (M2,M2/µ2)P(1)
cb (N)+P(1)

ca (N)H(0)
cb (M2,M2/µ2)

]

+as ∑
c

[
H(0)

ac (M2,M2/µ2)C(1)
cb (N)+C(1)

ca (N)H(0)
cb (M2,M2/µ2)

]

−asH
(0)
ab (M2,M2/µ2)

[I 2

4
(A(1)

a +A(1)
b )+

I

2
(B(1)

a +B(1)
b )
]
, (3.79)

where the full dependence onpT is embodied in the Bessel integral

I =
∫ ∞

0
db

b
2

J0(bpT ) ln(M2b̃2). (3.80)

3.5 Inverse transforms

After the resummation has been performed inN- and/orb-space, we have to switch back
to the physicalx- and/orpT -space in order to achieve phenomenological studies. Special
attention has to be paid to the singularities in the resummed exponents (whenλ = 1 or 1/2
in Eqs. (3.40), (3.41), (3.68) and (3.69)). They are related to the presence of the Landau pole
in the perturbative running ofas and prescriptions for both the Mellin and Fourier inverse
transforms are needed.

For the Fourier inverse transform of Eq. (3.64) we follow Ref. [58] and deform the
integration contour of theb-integral in the complex plane. We define then two integration
branches

b = (cosϕ ± isinϕ)t, t ∈ [0,∞[ (3.81)

whereϕ has to be chosen in the range]0,π/2[. The Bessel functionJ0 in Eq. (3.64) is then
replaced by the sum of the two auxiliary functions

h1(z,v) = − 1
2π

∫ −π+ivπ

−ivπ
dθe−izsinθ , (3.82)

h2(z,v) = − 1
2π

∫ −ivπ

π+ivπ
dθe−izsinθ . (3.83)

The functionsh1,2 are finite for any value ofz, and their sum, independent ofv, is always
equal toJ0(z). Since they distinguish positive and negative phases in the complexb-plane,
they can be associated with only one of the two branches.

For the inverse Mellin transform,

F(x) =
∫

CN

dN
2πi

τ−NF(N), (3.84)

we choose an integration contour(CN) inspired by the minimal prescription [59] and the
principal value resummation [60], where one again defines two branches

CN : N = C + ze±iφ , z ∈ [0,∞[. (3.85)
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3.5 Inverse transforms

The parameterC must be chosen in such a way that the poles in the Mellin moments of the
PDFs, which are related to the small-x (Regge) singularity, lie to the left and the Landau
pole to the right of the integration contour. While formally the angleφ can be chosen in
the range[π/2,π[, it is advantageous to takeφ > π/2 to improve the convergence of the
inverse Mellin transform.
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4
Gaugino-pair production:
Fixed-order calculations

In this chapter, we present our perturbative calculations for gaugino-pair production at
hadron colliders, while we dedicate the next chapter to the results using resummation tech-
niques.

In Sec. 4.1, we present an exploratory study of gaugino-pair production in polarised
hadron collisions, focusing on the correlation of beam polarisation and gaugino/Higgsino
mixing in the general MSSM. Analytical and numerical results for the LO cross section and
spin asymmetries are then given for several hadron colliders. In Sec. 4.2, we present our
NLO SUSY-QCD calculations, focusing on the squark mixing, the ultraviolet renormali-
sation procedure and the dipole substraction method employed for the cancellation of the
infrared divergences among virtual and real contributions.

The results presented here have been published in Refs. [61, 62].

4.1 LO cross section and spin asymmetries

Unpolarised cross sections for gaugino pairs have already been calculated in Refs. [63, 64,
65, 66]. Here, we generalise these results by including the effects of both initial-state polar-
isations and mixing of the left- and right-handed squarks. We start by fixingthe notations
for the different couplings we need in order to then compute analytically the partonic cross
sections for the pair production of gauginos and Higgsinos.

4.1.1 Coupling definitions

For the electroweak interactions, we define the square of the weak coupling constantg2 =
e2/sin2 θW in terms of the electromagnetic fine structure constantα = e2/(4π) and the
squared sine of the weak mixing angle sin2 θW . The couplings of the neutralinos and
charginosχ̃0,±

i to the electroweak gauge bosonsγ, W andZ are then given by

Lγ χ̃+
i χ̃+

j
= −eδi j, Rγ χ̃+

i χ̃+
j

= Lγ χ̃+
i χ̃+

j
, (4.1)

LW χ̃0
i χ̃+

j
= g
[
− 1√

2
Ni4V

∗
j2 +Ni2V

∗
j1

]
, RW χ̃0

i χ̃+
j

= g
[ 1√

2
N∗

i3U j2 +N∗
i2U j1

]
, (4.2)
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4 Gaugino-pair production: Fixed-order calculations

LZχ̃0
i χ̃0

j
=

g
2cosθW

[
−Ni3N∗

j3 +Ni4N∗
j4

]
, RZχ̃0

i χ̃0
j
= −L∗

Zχ̃0
i χ̃0

j
, (4.3)

LZχ̃+
i χ̃+

j
=

g
cosθW

[
−Vi1V

∗
j1−

1
2

Vi2V
∗
j2 +δi j sin2 θW

]
and

RZχ̃+
i χ̃+

j
=

g
cosθW

[
−U∗

i1U j1−
1
2

U∗
i2U j2 +δi j sin2 θW

]
, (4.4)

where the matricesN, U andV relate to the gaugino/Higgsino mixing (see Sec. 2.3.3).
The coupling strengths of the left- and right-handed quarks to electroweak gauge bosons

are proportional to

Lγqq′ = −eeqδqq′ , Rγqq′ = Lγqq′ , (4.5)

LZqq′ = − g
cosθW

(T 3
q − eq sin2 θW )δqq′ , RZqq′ =

g
cosθW

eq sin2 θW δqq′ , (4.6)

LWud = − g√
2

and RWud = 0, (4.7)

where the weak isospin quantum number isT 3
q = ±1/2 for left-handed up- and down-type

quarks, and their fractional electromagnetic charges are denoted byeq.1 To simplify the
notations, we have suppressed the generation indices, i.e. the subscriptud stands for any
pair ud, cs andtb.

The SUSY counterparts of these interactions correspond to the gaugino-squark-quark
couplings, which are given by

Lχ̃0
i d̃ jd = −g

√
2
[
(ed −T 3

d ) tanθW N∗
i1 +T 3

d N∗
i2

]
Rd̃

j1− ydN∗
i3Rd̃

j2,

Rχ̃0
i d̃ jd = −g

√
2
[
− ed tanθW Ni1

]
Rd̃

j2− ydNi3Rd̃
j1, (4.8)

Lχ̃0
i ũ ju = −g

√
2
[
(eu −T 3

u ) tanθW N∗
i1 +T 3

u N∗
i2

]
Rũ

j1− yuN∗
i4Rũ

j2,

Rχ̃0
i ũ ju = −g

√
2
[
− eu tanθW Ni1

]
Rũ

j2− yuNi4Rũ
j1, (4.9)

Lχ̃+
i ũ jd = −gV ∗

i1Rũ
j1 + yuV ∗

i2Rũ
j2,

Rχ̃+
i ũ jd = ydUi2Rũ

j1, (4.10)

Lχ̃+
i d̃ ju = −gU∗

i1Rd̃
j1 + ydU∗

i2Rd̃
j2,

Rχ̃+
i d̃ ju = yuVi2Rd̃

j1, (4.11)

whereRũ,d̃
i j are the elements of rotation matrices diagonalising the up- and down-type squark

mass matrices presented in Sec. 2.3.2. These general expressions can be simplified by
neglecting the Yukawa couplings

yu =
gmu√

2mW sinβ
and yd =

gmd√
2mW cosβ

, (4.12)

except for the one of the top quark, whose mass is not small compared tomW . All other
couplings vanish due to electromagnetic charge conservation.

1Here, we are neglecting the non-diagonal entries of the CKM matrix.
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Figure 4.1: Tree-level Feynman diagrams for the production of gaugino pairs.

4.1.2 Polarised partonic cross section

The process
q(ha, pa)q̄

′(hb, pb) → χ̃0,+
i (p1)χ̃0,−

j (p2) (4.13)

is induced by initial quarksq and antiquarks ¯q′ with definite helicitiesha,b and momenta
pa,b and is mediated bys-channel electroweak gauge-boson andt- andu-channel squark
exchanges (see Fig. 4.1). Using a Fierz transformation, its cross sectioncan be expressed
generically as

dσha,hb
qq̄′

dt
=

s−2 f
48π

{
(1−ha)(1+hb)

[
|Qu

LL|2uχ̃iuχ̃ j + |Qt
LL|2tχ̃itχ̃ j +2Re[Qu∗

LLQt
LL]mχ̃imχ̃ j s

]

+(1+ha)(1−hb)
[
|Qu

RR|2uχ̃iuχ̃ j + |Qt
RR|2tχ̃itχ̃ j +2Re[Qu∗

RRQt
RR]mχ̃imχ̃ j s

]

+(1−ha)(1−hb)
[
|Qu

LR|2uχ̃iuχ̃ j + |Qt
LR|2tχ̃itχ̃ j −2Re[Qu∗

LRQt
LR](ut −m2

χ̃i
m2

χ̃ j
)
]

+(1+ha)(1+hb)
[
|Qu

RL|2uχ̃iuχ̃ j + |Qt
RL|2tχ̃itχ̃ j −2Re[Qu∗

RLQt
RL](ut −m2

χ̃i
m2

χ̃ j
)
]}

, (4.14)

i.e. in terms of generalised chargesQt,u
IJ , the conventional Mandelstam variables

s = (pa + pb)
2, t = (pa − p1)

2 and u = (pa − p2)
2, (4.15)

the gaugino and squark massesmχ̃0,±
i, j

andmq̃k , and the masses of the neutral and charged

electroweak gauge bosonsmW andmZ. Propagators and scalar products of momenta appear
as mass-subtracted Mandelstam variables,

sγ = s, sW = s−m2
W , sZ = s−m2

Z, (4.16)

tq̃k = t −m2
q̃k

, uq̃k = u−m2
q̃k

, (4.17)

tχ̃i = t −m2
χ̃i
, uχ̃i = u−m2

χ̃i
. (4.18)

The Majorana nature of the neutralinos is taken into account thanks to the symmetry factor
f = 1/(1+δχ̃i χ̃ j).

Unpolarised cross sections, averaged over initial spins, can easily be derived from the
expression

dσ =
dσ1,1 +dσ1,−1 +dσ−1,1 +dσ−1,−1

4
, (4.19)

while single- and double-polarised cross sections, including the same average factor for
initial spins, are given by

d∆σL =
dσ1,1±dσ1,−1∓dσ−1,1−dσ−1,−1

4
and (4.20)

d∆σLL =
dσ1,1−dσ1,−1−dσ−1,1 +dσ−1,−1

4
, (4.21)
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4 Gaugino-pair production: Fixed-order calculations

where the upper (lower) signs refer to polarised (anti-)quarks. The partonic single- and
double-spin asymmetries then become

ÂL =
d∆σL

dσ
and ÂLL =

d∆σLL

dσ
. (4.22)

The generalised charges are given by

Qu
LL = ∑

V=γ,W,Z

LV qq′LV χ̃i χ̃ j

sV
−∑̃

qk

L∗
χ̃iq̃kq′Lχ̃ j q̃kq

2uq̃k

, (4.23)

Qt
LL = ∑

V=γ,W,Z

LV qq′RV χ̃i χ̃ j

sV
+∑̃

qk

Lχ̃iq̃kqL∗
χ̃ j q̃kq′

2tq̃k

, (4.24)

Qu
RR = ∑

V=γ,W,Z

RV qq′RV χ̃i χ̃ j

sV
−∑̃

qk

R∗
χ̃iq̃kq′Rχ̃ j q̃kq

2uq̃k

, (4.25)

Qt
RR = ∑

V=γ,W,Z

RV qq′LV χ̃i χ̃ j

sV
+∑̃

qk

Rχ̃iq̃kqR∗
χ̃ j q̃kq′

2tq̃k

, (4.26)

Qu
LR = −∑̃

qk

R∗
χ̃iq̃kq′Lχ̃ j q̃kq

2uq̃k

, (4.27)

Qt
LR = +∑̃

qk

Lχ̃iq̃kqR∗
χ̃ j q̃kq′

2tq̃k

, (4.28)

Qu
RL = −∑̃

qk

L∗
χ̃iq̃kq′Rχ̃ j q̃kq

2uq̃k

, (4.29)

Qt
RL = +∑̃

qk

Rχ̃iq̃kqL∗
χ̃ j q̃kq′

2tq̃k

. (4.30)

After accounting for our harmonisation of generalised charge definitions, which are now
similar for all gaugino channels, our results agree with those published in Ref. [67]. The
cross section for chargino-pair production ine+e−-collisions can be deduced by changing
all the (s)quark masses and coupling to the (s)lepton ones and multiplying the cross section
by the colour factorNc = 3. Neglecting all Yukawa couplings, we can then reproduce the
calculations of Ref. [65]. In the case of non-mixing squarks with neglected Yukawa cou-
plings, we agree with the results of Ref. [66] and Ref. [68], provided we correct a sign in
their Eq. (2) as described in the Erratum. Note that forχ̃+

i χ̃−
j -production, there is no inter-

ference betweent- andu-channel diagrams due to (electromagnetic) charge conservation.

4.1.3 Numerical results

We now present numerical predictions for the cross sections and single-and double-spin
asymmetries of gaugino-pair production at the polarisedpp collider RHIC [69] and possible
polarisation upgrades of thepp̄ and pp colliders Tevatron [70] and LHC [71]. Thanks to
the QCD factorisation theorem, total unpolarised hadronic cross sections

σAB =
∫ 1

(mχ̃i+mχ̃ j )
2/S

dτ
∫ 1/2lnτ

−1/2lnτ
dy
∫ tmax

tmin

dt fa/A(xa,µF) fb/B(xb,µF)
dσab

dt
(4.31)
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4.1 LO cross section and spin asymmetries

can be calculated by convolving the relevant partonic cross sectionsdσ/dt, computed in
Sec. 4.1.2, with universal parton densitiesfa/A and fb/B of partonsa,b in the hadronsA,B,
which depend on the longitudinal momentum fractions of the two partonsxa,b =

√
τe±y and

on the unphysical factorisation scaleµF . Polarised cross sections are computed similarly
by replacing either one or both of the unpolarised parton densitiesfa,b(xa,b,µF) with their
polarised equivalents∆ fa,b(xa,b,µF) and the unpolarised partonic cross sectiondσ , given in
Eq. (4.19), with its single- or double-polarised equivalent given in Eqs.(4.20) and (4.21).
The hadronic centre-of-mass energy is denoted by

√
S, and the Mandelstam variablet is

integrated over the range

tmin,max =
−(s−m2

χ̃i
−m2

χ̃ j
)∓
√

(s−m2
χ̃i
−m2

χ̃ j
)2−4m2

χ̃i
m2

χ̃ j
)

2
. (4.32)

Efforts over the past three decades have produced extensive data sets for polarised
deep-inelastic scattering (DIS), resulting in a good knowledge in particularof the polarised
valence-quark (non-singlet) distributions. For consistency with our leading order (LO) QCD
calculation in the collinear approximation, where all squared quark masses (except for the
top-quark mass)m2

q ≪ s, we employ related sets of unpolarised (GRV [72]) and polarised
(GRSV [73]) LO parton densities. We estimate the theoretical uncertainty dueto the less
well known polarised parton densities by showing our numerical predictions for both the
GRSV2000 LO standard (STD) and valence (VAL) parameterizations, which treat the po-
larised sea-quarks in a flavour-symmetric or flavour-asymmetric way. Thepolarised gluon
density could not be constrained very well in the fits to the DIS data, but it fortunately does
not enter directly in our analysis.

Results from semi-inclusive DIS with an identified hadron in the final state have the
promise to put individual constraints on the various quark flavour distributions in the nu-
cleon. In addition, precise asymmetry measurements from RHIC are expected to put signif-
icant constraints on the polarised gluon distribution. A first step in this direction has been
undertaken very recently by including semi-inclusive DIS data from the SMC, HERMES
and COMPASS experiments andπ0 and jet production data from the PHENIX and STAR
collaborations in a global analysis [74].

If not stated otherwise, we set the factorisation scaleµF to the average mass of the
final state SUSY particles. The bottom- and top-quark densities in the proton are small
and absent in the GRV and GRSV parameterizations, as is the charm-quark density. We
therefore consider for squark exchanges only the SUSY-partners of the light quark flavours
without mixing and all degenerate in mass. The corresponding uncertainty isestimated
by giving predictions for two different squark masses, one at the mass limitset by the D0
collaboration at 325 GeV [75] and one for a typical SUSY-breaking scale of 1 TeV.

Gaugino masses and mixings

We wish to study the correlations of beam polarisations and the gaugino/Higgsino fractions
of charginos and neutralinos without referring to a particular SUSY-breaking model. Fur-
thermore, we wish to keep the physical gaugino masses as constant as possible, since the
absolute cross sections depend strongly on them through trivial phase space effects. We
start therefore by fixing the lightest chargino massmχ̃±

1
to either 80 GeV (for our RHIC pre-

dictions) or 151 GeV (for our Tevatron and LHC predictions). The relatively strong limit
of 151 GeV has recently been obtained by the CDF collaboration at Run II of the Tevatron
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4 Gaugino-pair production: Fixed-order calculations

and holds for a constrained MSSM with light non-mixing sleptons [76]. On theother hand,
charginos with a mass as low as 80 GeV may still be allowed, if they are gaugino-like, their
mass difference with the lightest neutralino is very small, and if the sneutrinos are light
[77, 78]. The second-lightest neutralino usually stays close in mass to the lightest chargino
(see below) and must be heavier than 62.4 GeV, while the lightest neutralino can be half as
heavy and is constrained to masses above 32.5–46 GeV, depending againon the sfermion
masses [79]. The associated production of the second-lightest neutralino with the light-
est chargino is usually experimentally easily identifiable through the gold-plated tri-lepton
decay. It has been pointed out that the electroweak precision fits improvewhen including
heavy sfermions as proposed by split-SUSY scenarios, but light gauginos or Higgsinos with
masses close to the current exclusion limits [80].

In the MSSM, the gaugino masses and mixing depend on thea priori unknown SUSY-
breaking parametersM1, M2, µ, and on tanβ (see Sec. 2.3.3). Taking tanβ = 10 and assum-
ing Bino and Wino mass unification at the GUT scale, so thatM1 = 5

3 tan2 θW M2 ≃ 0.5M2

at the electroweak scale, we can compute the Higgsino mass parameterµ from Eq. (2.50),

µ =
m2

W M2s2β ±mχ̃±
1

√
(m2

χ̃±
1
−M2

2 −m2
W )2−m4

W c2
2β

M2
2 −m2

χ̃±
1

, (4.33)

as a function of the only remaining parameterM2, once the lightest chargino massmχ̃±
1

is
fixed. Since the one-loop contribution to the anomalous magnetic momentaµ = (gµ −2)/2
of the muon induced by gauginos and sleptons of common massMSUSY is approximately
given by [81]

aSUSY,1−loop
µ = 13×10−10

(100 GeV
MSUSY

)2
tanβsgn(µ), (4.34)

negative values ofµ would increase, not decrease, the disagreement between the recent
BNL measurement and the theoretical SM value ofaµ [79]. The regionµ < 0 is therefore
disfavoured, and we takeµ > 0 unless noted otherwise.

As the off-diagonal matrix elements of the gaugino mass matrices depend on sinβ and
cosβ (see Sec. 2.3.3), one might be tempted to fixM2, e.g. to 2mχ̃±

1
, and study rather

the variation of the chargino/neutralino masses and gaugino/Higgsino fractions with tanβ .
However, this parameter can often be constrained from the Higgs sector alone [82], at least if
it is large [83]; otherwise measurements from the sfermion or neutralino sector may still be
necessary [84]. Furthermore, sinβ and cosβ vary significantly only for low tanβ = 2−10.
In this range, the gaugino fraction of the lightest negative chargino decreases, e.g., from
40% to 20% in the optimal case ofM2 = 2mχ̃±

1
= 160 GeV.

In Fig. 4.2 we show the physical masses of the two charginos and the four neutralinos as
a function ofM2 for mχ̃±

1
= 80 GeV (left) and 151 GeV (right). The lightest chargino mass

(short-dashed line) is, of course, constant in both cases. As mentionedabove, the mass of the
second-lightest neutralino stays close to it, except aroundM2 = 190 GeV (320 GeV), where
an avoided crossing withmχ̃0

3
occurs, which is typical of Hermitian matrices depending

continuously on a single parameter. At this point, these two neutralino eigenstates change
character, as can clearly be seen from the gaugino fractions plotted in Fig. 4.3. While for
small values ofM2 ≪ |µ| the lighter neutralinos, diagonalised by the matrixN, are gaugino-
like, they become Higgsino-like for large values ofM2 ≫ |µ|. Furthermore, in this region
the mass difference between the lightest neutralino and chargino becomes small (see Fig.
4.2). It can also be seen from this figure that the heavier chargino and the heaviest neutralino
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Figure 4.2: Neutralino and chargino masses as a function of the SUSY-breaking parameter
M2 for a fixed lightest chargino mass ofm±

χ̃1
= 80 GeV (left) and 151 GeV (right). We

choose tanβ = 10, µ > 0 using Eq. (4.33), and fixM1 = 5
3 tan2 θW M2.
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Figure 4.3: Gaugino and Higgsino fractions of the four neutralinos as a function of the
SUSY-breaking parameterM2 for a fixed lightest chargino mass ofm±

χ̃1
= 80 GeV (left) and

151 GeV (right). We choose tanβ = 10,µ > 0 using Eq. (4.33), and fixM1 = 5
3 tan2 θW M2.
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Figure 4.4: Gaugino and Higgsino fractions for charginos as a function of the SUSY-
breaking parameterM2 for a fixed lightest chargino mass ofm±

χ̃1
= 80 GeV (left) and 151

GeV (right). We choose tanβ = 10, µ > 0 using Eq. (4.33), and fixM1 = 5
3 tan2 θW M2.

are mass-degenerate for all values ofM2 and that their mass grows linearly withM2, when
M2 ≫ |µ|. The gaugino fractions of the negative and positive charginos, diagonalised by
the matricesU andV , are shown in Fig. 4.4. They behave similarly to those of the lightest
and heaviest neutralinos. We will frequently refer to these well-known variations of the
neutralino/chargino masses and gaugino/Higgsino fractions in the subsequent sections when
discussing the behaviour of cross sections and asymmetries.

RHIC cross sections and asymmetries

RHIC is scheduled to operate in the years 2009 through 2012 in its polarisedpp mode at an
increased centre-of-mass energy of

√
S = 500 GeV and with a large integrated luminosity

of 266 pb−1 during each of the ten-week physics runs [69]. It has been demonstrated that
polarisation loss during RHIC beam acceleration and storage can be keptsmall, so that a
polarisation degree of about 45% has already been and 65%–70% may ultimately be reached
[85]. Recently, the STAR experiment have shown the first results on the measurement of
W -boson production in polarizedpp collisions [86]. It is therefore interesting to investigate
the influence of proton beam polarisation on production cross sections and longitudinal spin
asymmetries for SUSY particle production at the existing polarisedpp collider RHIC.

In the upper left part of Fig. 4.5, we show the total unpolarised cross section for the pair
production of the lightest chargino of mass 80 GeV (short-dashed line) and the one for its
associated production with the second-lightest neutralino (dot-dashed line) at thepp collider
RHIC, expected to produce a total integrated luminosity of about 1 fb−1 during the next two
years [69]. Both cross sections exceed 1 fb (short-dashed horizontal line, corresponding
to one produced event) in most of theM2 range shown and depend little on the squark
mass, indicating thats-channel gauge-boson exchanges dominate. From Eqs. (4.8–4.11)
and (4.23–4.30) we learn indeed that, in the absence of heavy bottom- and top-quarks,
squark exchanges contribute only toQt,u

LL for chargino pairs and in addition toQu
LR andQt

RL
for the associated channel. For the latter, we sum both charge conjugate processes, even
though it might be interesting to identify the chargino charge, given that the dependence of
its gaugino fraction onM2 is slightly different for the two charges (see Fig. 4.4). The pair
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Figure 4.5: Unpolarised gaugino-pair production cross sections (top left), single- (top right)
and double-spin asymmetries (bottom left) for chargino-neutralino associated production,
and single-spin asymmetry for neutralino-pair production (bottom right) withmχ̃0

2
≃ mχ̃±

1
=

80 GeV inpp collisions at RHIC and
√

S = 500 GeV using LO GRV [72] and GRSV [73]
parton densities. We choose tanβ = 10, µ > 0 using Eq. (4.33), and fixM1 = 5

3 tan2 θW M2.
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4 Gaugino-pair production: Fixed-order calculations

production of the second-lightest neutralino (not shown) does receive squark contributions
from all generalised charges, but the corresponding cross section lies below 10−2 fb and
will therefore be invisible at RHIC. As our cross sections are computed atLO, they depend
to some extent on the factorisation scaleµF . Since this scale is unphysical and unknown,
we vary it in the traditional way by a factor of two around the average finalstate mass,
representing the large perturbative scale in the partonic cross section (shaded bands).

Among the bosons exchanged in thes-channel, theW -boson is most sensitive to the po-
larisation of the initial quarks and antiquarks, and consequently the single-spin asymmetry
for the associated channel, shown in the upper right part of Fig. 4.5, reaches large values
of around –20%. Note that polarisation of the proton beam(s) will not be perfect, so that
all calculated single-spin (double-spin) asymmetries should be multiplied by the degree of
beam polarisationPA,B ≃ 0.7 (squared).

As the mass of the neutralino increases and the gaugino fractions of the chargino and
neutralino fall up toM2 ≤ 200 GeV, the cross section and the absolute value of the asym-
metry decrease, too. For these values ofM2, the conditions of the LEP chargino mass limit
still apply. The uncertainty in the scale variation is with 0.5% considerably smallerthan the
variation in the asymmetry of 2%, while the uncertainty coming from the polarised parton
densities is with 1.5% of almost comparable size. Single-spin asymmetry measurements
for associated chargino-neutralino production at the only existing polarised hadron col-
lider RHIC could therefore be used to determine the gaugino and Higgsino components of
charginos and neutralinos, provided the polarised quark and antiquarkdensities at momen-
tum fractions ofxa,b ≃ 2×80 GeV / 500 GeV= 0.32 are slightly better constrained. For the
double-spin asymmetry (lower left part of Fig. 4.5), the parton density uncertainty exceeds
the variation and leads to a sign change of the relatively small asymmetry (+6%/−6%), so
that in this case no useful information on the gaugino/Higgsino mixing can be extracted.

The single-spin asymmetry for neutralino pairs (lower right part of Fig. 4.5) reaches
similar size as those for the associated channel, since the left- and right-handed couplings
of theZ-boson exchanged in thes-channel are also different. Althought the corresponding
cross section is unfortunately too small at RHIC, the variation of the asymmetrywould,
however, be quite dramatic:AL changes its sign from -20% to +20% forM2 ≤ 200 GeV.

For chargino pairs, massless photons can be exchanged in thes-channel which leads to
single- and double-spin asymmetries that vary very little withM2 (as can be seen in Fig.
4.6) and that can therefore not be used to extract information on gaugino/Higgsino mixing.
In addition, these asymmetries depend strongly on the polarised parton densities.

Tevatron cross sections and asymmetries

The pp̄ collider Tevatron will continue running in 2011 and possibly until 2014, andthe
future accelerator program at Fermilab is currently less clear than ever.The feasibility of
polarising the proton beam has been demonstrated many years ago [70]. It would require
replacing some of the dipoles with higher-field magnets to gain space to install thesix
required Siberian snakes at a very moderate cost [87] and would represent an interesting
possibility for QCD studies as well as new physics searches. Given the recent impressive
achievements at RHIC, the degree of polarisation should be comparable, i.e. about 65%–
70%. Polarisation of the antiproton beam is, however, much more challenging.

In the upper left part of Fig. 4.7, we show the total unpolarised cross sections for gaugino
production withmχ̃±

1
= 151 GeV at the Tevatron, which is currently running at

√
S = 1.96
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Figure 4.6: Single- (left) and double-spin asymmetries (right) for chargino-pair production
with mχ̃±

1
= 80 GeV in pp collisions at RHIC and

√
S = 500 GeV using LO GRV [72]

and GRSV [73] parton densities. We choose tanβ = 10, µ > 0 using Eq. (4.33), and fix
M1 = 5

3 tan2 θW M2.

TeV and expected to produce a total integrated luminosity of 10 fb−1 recorded per exper-
iment up to 2011. Therefore, besides the pair production of the lightest chargino (short-
dashed line) and its associated production with the second-lightest neutralino (dot-dashed
line), also pair production of the latter might be visible (long-dashed line), atleast for low
values ofM2 ≤ 300 GeV, where the gaugino component is still large (see Figs. 4.3 and
4.4) and the cross section exceeds 1 fb (short-dashed horizontal line). The influence of
squark exchanges and the dependence on the squark mass are clearlyvisible in this channel,
whereas they are again much smaller (but slightly larger than at RHIC) for the other two
channels. The factorisation scale dependence (shaded bands) remains modest (10%–13%)
at the Tevatron.

The single-spin asymmetry for chargino-pair production (upper right part of Fig. 4.7)
at a possible proton beam polarisation upgrade of the Tevatron [70] could be very large
and reach−40%. Since the physical mass has been fixed at 151 GeV and the unpolarised
cross section stays almost constant, the reduction in absolute value by about 6% for any
given curve is directly related to the reduction of the gaugino fraction, asM2 increases. The
parton density (and factorisation scale) uncertainties are (much) smaller than this variation,
i.e. 2% (or 1%), so that significant information could be extracted from this asymmetry. On
the other hand, the double-spin asymmetry (not shown), although large withabout –20%, is
almost insensitive to the gaugino fraction and would furthermore require polarisation of the
antiproton beam, which is a technical challenge.

In contrast to our results for RHIC, the associated channel (lower part of Fig. 4.7) is
not very interesting at the Tevatron. While the single- and double-spin asymmetries may be
large (about−10% and+15%, respectively), they are almost constant and would not yield
new information on the gaugino fractions.

The single- and double-spin asymmetries (see Fig. 4.8) for the pair production of the
second lightest neutralino are most sensitive to its gaugino component and (relatively mod-
est) mass variation, in particular for the low values ofM2≤ 300 GeV, where the cross section
should be visible. Here,AL changes sign from−50% to almost+30% and the theoretical
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Figure 4.7: Unpolarised gaugino-pair production cross sections (top left), single-spin asym-
metries for chargino-pair (top right) and chargino-neutralino production(bottom left), and
double-spin asymmetries for chargino-neutralino production (bottom right)with mχ̃0

2
≃

mχ̃±
1

= 151 GeV inpp̄ collisions at the Tevatron and
√

S = 1.96 TeV using LO GRV [72]
and GRSV [73] parton densities. We choose tanβ = 10, µ > 0 using Eq. (4.33), and fix
M1 = 5

3 tan2 θW M2.
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Figure 4.8: Single- (left) and double-spin asymmetries for neutralino-pair production (right)
with mχ̃0

2
≃ mχ̃±

1
= 151 GeV inpp̄ collisions at the Tevatron and

√
S = 1.96 TeV using LO

GRV [72] and GRSV [73] parton densities. We choose tanβ = 10, µ > 0 using Eq. (4.33),
and fixM1 = 5

3 tan2 θW M2.

uncertainties are extremely small. In the same region, the absolute value ofALL increases
by about 5% and can almost reach−35% for the standard GRSV parameterization of the
polarised parton densities. The parton density uncertainty remains modest with about 3%.
For largeM2 ≥ 300 GeV, both asymmetries are constant in this channel.

LHC cross sections and asymmetries

As the LHC is now running, different upgrade scenarios are emerging,concerning foremost
higher luminosity and beam energy [88], but also beam polarisation [71].It is interesting to
remember that a detailed study has been performed some time ago for the SSC, resulting in
a design that had reserved 52 lattice locations for the future installation of Siberian snakes
[87]. Since this is currently not the case at the LHC, its polarisation upgrade would require
replacing some of the dipoles with higher-field magnets to create these locations, just as in
the case of the Tevatron. The number of resonances to be crossed during acceleration would
be considerably larger due to the higher energy of the LHC, requiring longer tuning before
ultimately reaching polarisations of up to 65%–70%.

For pp collisions of 14 TeV centre-of-mass energy at the LHC, we show the unpo-
larised total cross sections for a chargino of mass 151 GeV in the upper left part of Fig. 4.9.
With the high luminosity originally expected at the LHC, pair production of the lightest
chargino (short-dashed line), its associated production with the second-lightest neutralino
(dot-dashed line), and pair production of the latter (long-dashed line) should all be well
visible. Whereas the cross sections for the first two channels are again almost constant and
fairly independent of the squark mass, at least for the Higgsino-like region of M2≥ 300 GeV,
the neutralino-pair production cross section is again quite sensitive to squark exchanges in
the gaugino-like region below that value and stays almost constant above.The factorisa-
tion scale dependence is very small at the LHC and included in the line width of the upper
left part of Fig. 4.9. Note, however, that with 100 fb−1 of data, the mass of the lightest
chargino will only be measured with an uncertainty of±11% [89]. This induces a very
visible uncertainty (shaded bands) in the total cross sections (lower left part of Fig. 4.9).
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Figure 4.9: Unpolarised gaugino-pair production cross sections (left) and single-spin asym-
metries for neutralino-pair production (right) withmχ̃0

2
≃ mχ̃±

1
= 151 GeV inpp collisions

at the LHC and
√

S = 14 TeV using LO GRV [72] and GRSV [73] parton densities. The
shaded bands (bottom) show the uncertainty induced by the error on the chargino mass as
determined with 100 fb−1 of data [89]. We choose tanβ = 10, µ > 0 using Eq. (4.33), and
fix M1 = 5

3 tan2 θW M2.
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Figure 4.10: Single-spin asymmetries for neutralino-pair production with tanβ = 10 and
µ < 0 (top left), tanβ = 2 andµ > 0 (top right), andM2 = 2mχ̃±

1
with µ > 0 as a function

of tanβ (bottom left) inpp collisions at the LHC and
√

S = 14 TeV. For the third scenario,
we show also the gaugino and Higgsino fractions of the second-lightest neutralino (bottom
right). We fix µ using Eq. (4.33) andM1 = 5

3 tan2 θW M2.

For a possible polarisation upgrade of the LHC [71], we show the single-spin asymmetry
for neutralino-pair production in the right parts of Fig. 4.9, again with the scale (line width,
top) and chargino mass (shaded bands, bottom) uncertainty. AtM2 ≥ 300 GeV, where the
gaugino fraction is small, the asymmetry is not very interesting, as it is almost constant
and smaller than 5%. In the gaugino-like region atM2 ≤ 300 GeV, it changes sign from
−20% to almost+10%, a variation, that is considerably larger than the parton density
uncertainty of at most 7%, the squark mass dependence of at most 2%, thealmost invisible
scale dependence, and also the chargino mass uncertainty of 3% to 10%. At a polarised
LHC, a measurement of the single-spin asymmetry for neutralino-pair production would
therefore yield interesting information about its gaugino fraction.

While the cross sections vary very little when changing the sign ofµ or varying tanβ ,
it is interesting to study further the single-spin asymmetries for neutralino pairsin these
alternative scenarios. When comparing the asymmetry forµ < 0, shown in the upper left
part of Fig. 4.10, to the one forµ > 0, shown in the upper right part of Fig. 4.9, one notices
an even steeper rise in the former to more than+15%, asM2 approaches the critical value
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4 Gaugino-pair production: Fixed-order calculations

of 2mχ̃±
1

, the neutralino changes its character from gaugino to Higgsino, and the sign and
(smaller) absolute value of the Higgsino mass parameterµ become of particular importance.

A similar effect is observed when comparing forµ > 0 the asymmetry with a lower
value of tanβ = 2 in the upper right part of Fig. 4.10 to the one for the standard value of
tanβ = 10 in the upper right part of Fig. 4.9. In this case, the asymmetry rises less (barely
above zero) towardsM2 = 2mχ̃±

1
, where the gaugino/Higgsino decomposition is flipped, the

ratio of the two Higgs vacuum expectation values tanβ is particularly important, and the
absolute value of the Higgsino mass parameterµ is effectively larger than in the standard
scenario.

The dependence on tanβ at the critical pointM2 = 2mχ̃+
1

can be seen more clearly in the
lower left part of Fig. 4.10, and indeed the asymmetry decreases from large to small tanβ
from distinctively positive values to values at or below zero for all choices of squark masses
(1 TeV or 325 GeV) and parton density functions (standard or valence GRSV parameter-
izations). This decrease is correlated with a similar decrease in the Bino fraction |N21|2
and with an increase in the Wino fraction|N22|2 of the second-lightest neutralino, while the
Higgsino fractions|N23|2 and|N24|2 stay almost constant, as can be seen in the lower right
part of Fig. 4.10.

The double-spin asymmetry for neutralino pairs, as well as the one for chargino pairs
and the associated channel, are always smaller than 4% and 2%, respectively. Furthermore,
they vary by less than 2% and are therefore not shown here. The single-spin asymmetry for
chargino pairs (not shown) can reach a slightly larger value of−12%, but again it varies
by less than 3% as a function ofM2, which is almost of the same size as the parton density
uncertainty (2%). The situation for the single-spin asymmetry of the associated channel
(not shown, either) is similar with a maximum of−10%, a variation withM2 of about 1%
and a parton density uncertainty of less than 1%.

4.2 SUSY-QCD corrections

SUSY-QCD corrections for gaugino-pair production have been first calculated in Ref. [68].
Here, we generalise these results by including the squark mixing effects and present in detail
the renormalisation scheme and the substraction method we have chosen.

4.2.1 Virtual corrections

At NLO of SUSY-QCD,O(αs), the cross section for gaugino pair production receives con-
tributions from the interference of the virtual one-loop diagrams shown in Figs. 4.11–4.13
with the tree-level diagrams shown in Fig. 4.1 on the one hand and from realgluon (Fig.
4.14) and (anti-)quark emission diagrams on the other hand, where the latterare obtained
by crossing the final-state gluon in Fig. 4.14 with the initial-state antiquark (Fig. 4.15) or
quark (not shown). All diagrams have been evaluated analytically with self-written FORM
programs and cross-checked independently with self-written MATHEMATICA programs.

The virtual self-energy diagrams for left- and right-handed quarksqL,R = PL,Rq = 1
2(1∓
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Figure 4.11: Self-energy insertions (top) and contributions (bottom) to the production of
gaugino pairs.

γ5)q (Fig. 4.11, third line),

Σ(g)
L,R(p) = −g2

sCF

16π2

[
(D−2)/pB1(p,mq,0)+DmqB0(p,mq,0)

]
PL,R, (4.35)

Σ(g̃)
L (p) = −g2

sCF

8π2

2

∑
i=1

[
/pB1(p,mg̃,mq̃i)R

q̃∗
i1 Rq̃

i1 +mg̃B0(p,mg̃,mq̃i)R
q̃∗
i2 Rq̃

i1

]
PL, (4.36)

Σ(g̃)
R (p) = −g2

sCF

8π2

2

∑
i=1

[
/pB1(p,mg̃,mq̃i)R

q̃∗
i2 Rq̃

i2 +mg̃B0(p,mg̃,mq̃i)R
q̃∗
i1 Rq̃

i2

]
PR, (4.37)

expanded as usual into vector (V) and scalar (S) partsΣ(p) = [ΣV
L (p2)/p+ΣS

L(p2)]PL +(L ↔
R), as well as those for squarks (Fig. 4.11, fourth line),

Σ(g)
i j (p2) = −g2

sCF

16π2

[
p2(B0(p,mq̃i ,0)−2B1(p,mq̃i ,0)+B21(p,mq̃i ,0)

)

+DB22(p,mq̃i ,0)
]
δi j, (4.38)

Σ(g̃)
i j (p2) = −g2

sCF

4π2

{[
p2(B1(p,mq,mg̃)+B21(p,mq,mg̃)

)
+DB22(p,mq,mg̃)

]
δi j

−mqmg̃B0(p,mq,mg̃)
(
Rq̃

i1Rq̃∗
j2 +Rq̃

i2Rq̃∗
j1

)}
and (4.39)

Σ(q̃)
i j (p2) =

g2
sCF

16π2

2

∑
k=1

Sq̃
kiS

q̃∗
k j A0(mq̃k) with Ski = Rq̃∗

k1Rq̃
i1−Rq̃∗

k2Rq̃
i2, (4.40)

contain ultraviolet (UV) divergences in the scalar integralsB0,1,...(p,m1,m2) [90], which
exhibit themselves as 1/ε poles inD = 4− 2ε dimensions.2 They must therefore be ab-
sorbed through a suitable renormalisation procedure into the fundamental wave functions,

2As it is customary, we absorb a factor of(2πµR)4−D in the definition of the scalar integrals, whereµR is
the renormalisation scale.
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Figure 4.12: Vertex correction insertions (top) and contributions (bottom) tothe production
of gaugino pairs.

48



4.2 SUSY-QCD corrections

mass parameters, and coupling constants of the SUSY-QCD Lagrangian

L =
[
q̄0

Li/∂q0
L − q̄0

Rm0
qq0

L +(L ↔ R)
]
+
[ 2

∑
i=1

(∂µ q̃0
i )

†(∂ µ q̃0
i )− q̃0†

i (m2
q̃)

0
iiq̃

0
i

]
+ · · · (4.41)

The two components of the unrenormalised squark field ˜q0 correspond originally to the left-
and right-handed chiralities of the unrenormalised SM quark fieldq0, but mix due to the
fact that soft SUSY-breaking and Higgs terms render the 2× 2-dimensional mass matrix
(m2

q̃)
0 non-diagonal (see Sec. 2.3.2). In Eq. (4.41) we have diagonalized thismass matrix

with the squark rotation matrixRq̃0, so that the componentsi = 1(2) of the squark field
correspond to the squark mass eigenvaluesm0

q̃i
. The squark self-energies in Eqs. (4.38)–

(4.40) thus also carry indicesi, j = 1,2 corresponding to the (outgoing and incoming) squark
mass eigenstates. Multiplicative renormalisation is achieved perturbatively byexpanding
the renormalisation constants,

q0
L,R =

(
1+

1
2

δZq

)
qL,R, m0

q = mq +δmq, (4.42)

q̃0
i =

(
δi j +

1
2

δZq̃,i j

)
q̃ j, (m2

q̃)
0
i j = (m2

q̃)i j +(δm2
q̃)i j, (4.43)

with the usual factor of 1/2 for the (s)quark wave functions. The renormalised self-energies
are then

Σ̂(p) =
[
ΣV

L (p2)+
1
2
(δZq +δZ†

q)
]
/pPL

+
[
ΣS

L(p2)− 1
2
(mqδZq +δZ†

qmq)−δmq

]
PL +(L ↔ R) (4.44)

for quarks and

Σ̂i j(p2) = Σi j(p2)+
1
2

(
δZq̃,i j +δZ∗

q̃, ji

)
p2

− 1
2

2

∑
k=1

[
(m2

q̃)ikδZq̃,k j +δZ∗
q̃,ki(m

2
q̃)k j
]
− (δm2

q̃)i j (4.45)

for squarks.
We choose to renormalise the wave functions in theMS-scheme, so that the definition

of the quark fields corresponds to the one employed in the parton densities inthe external
hadrons. In this scheme, the quark wave function counterterm

δZq = δZ(g)
q +δZ(g̃)

q (4.46)

with

δZ(g)
q = δZ(g̃)

q = −g2
sCF

16π2 ∆ and ∆ =
1
ε
− γE + ln4π, (4.47)

defined as the UV-divergent plus universal finite parts of the on-shell counterterm−ΣV
L,R(m2

q)

−m2
q[ΣV ′

L,R(m2
q)+ ΣV ′

R,L(m
2
q)]−mq[ΣS′

L,R(m2
q)+ ΣS′

R,L(m
2
q)] [91], is hermitian (δZq = δZ†

q) and
the same for left- and right-handed quarks. The superscriptsg and g̃ label the gluon and
gluino exchange contributions, respectively, andγE is the Euler constant. The squark wave
function counterterms

δZq̃,i j = δZ(g)
q̃,i j +δZ(g̃)

q̃,i j +δZ(q̃)
q̃,i j, (4.48)
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Figure 4.13: Box diagrams contributing to the production of gaugino pairs atNLO.

with

δZ(g)
q̃,ii = −δZ(g̃)

q̃,ii =
g2

sCF

8π2 ∆ and δZ(q̃)
q̃,ii = 0 (4.49)

for i = j and

δZ(g)
q̃,i j = 0, (4.50)

δZ(g̃)
q̃,i j =

g2
sCF

4π2

2∆
m2

q̃i
−m2

q̃ j

[
mqmg̃

(
Rq̃

i1Rq̃∗
j2 +Rq̃

i2Rq̃∗
j1

)]
and (4.51)

δZ(q̃)
q̃,i j =

g2
sCF

16π2

2∆
m2

q̃i
−m2

q̃ j

2

∑
k=1

m2
q̃k

SkiS
∗
k j (4.52)

for i 6= j, defined similarly as the UV-divergent plus universal finite parts of the on-shell
counterterms−ReΣ′

ii(m
2
q̃i
) for i = j and 2ReΣi j(m2

q̃ j
)/(m2

q̃i
−m2

q̃ j
) for i 6= j [91], enter only

through the renormalisation of the squark mixing matrix,

Rq̃0 = Rq̃ +δRq̃ with δRq̃
i j =

1
4

2

∑
k=1

(δZq̃,ik −δZ∗
q̃,ki)R

q̃
k j =

1
2

2

∑
k=1

δZq̃,ikRq̃
k j, (4.53)

since in theMS-scheme the gluon and gluino contributions fori = j in Eq. (4.49) can-
cel each other. In the last step of Eq. (4.53), we have made use of the fact that in the
MS-scheme the squark wave-function renormalisation constants are anti-hermitian matri-
ces (δZq̃,i j = −δZ∗

q̃, ji). The (s)quark masses are renormalised in the on-shell scheme to
make them correspond to the physical masses. The quark mass counterterm is then defined
by mqΣV (m2

q)+ΣS(m2
q) [91] with the result

δmq = δm(g)
q +δm(g̃)

q (4.54)

and

δm(g)
q = −g2

sCF

16π2 mq

[
(D−2)B1(mq,mq,0)+DB0(mq,mq,0)

]
, (4.55)

δm(g̃)
q = −g2

sCF

16π2

2

∑
i=1

[
mqB1(mq,mg̃,mq̃i)+2mg̃B0(mq,mg̃,mq̃i)Re

(
Rq̃∗

i2 Rq̃
i1

)]
. (4.56)

For our numerical results, we will set the masses of external quarks to zero in accordance
with the collinear factorisation of quarks in hadrons. The squark mass counterterm is de-
fined by Re[Σii(m2

q̃i
)]. The result is

δm2
q̃i

= δm2(g)
q̃i

+δm2(g̃)
q̃i

+δm2(q̃)
q̃i

(4.57)
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with

δm2(g)
q̃i

=
g2

sCF

8π2 m2
q̃i

[
B1(mq̃i ,mq̃i ,0)−B0(mq̃i ,mq̃i ,0)

]
, (4.58)

δm2(g̃)
q̃i

= −g2
sCF

4π2

[
m2

q̃i
B1(mq̃i ,mq,mg̃)+m2

qB0(mq̃i ,mq,mg̃)+A0(mg̃)

−2mqmg̃B0(mq̃i ,mq,mg̃)Re(Rq̃
i1Rq̃∗

i2 )
]

and (4.59)

δm2(q̃)
q̃i

=
g2

sCF

16π2

2

∑
j=1

|S ji|2A0(mq̃ j). (4.60)

Supersymmetric Ward identities link the quark-quark-gauge boson and quark-squark-
gaugino vertices to the weak gauge-boson and gaugino self-energies.As the latter do not
receive strong corrections at NLO, the former require no further renormalisation beyond
the one for the (s)quark wave functions discussed above. However,the artificial breaking
of supersymmetry by the mismatch of two gaugino and(D−2) transverse vector degrees
of freedom must be compensated by a finite counterterm ˆg = g[1−αsCF/(8π)], effectively
shifting the quark-squark-gaugino scalar coupling constant ˆg with respect to the weak gauge
coupling constantg [92, 93].

4.2.2 Real corrections

Apart from the (now UV-finite) virtual correctionsdσ (V )
ab to the LO cross sectiondσ (0)

ab
described above, the NLO cross section

dσ (1)
ab (pa, pb) =

∫

2+1

[(
dσ (R)

ab (pa, pb)
)

ε=0
−
(

∑
dipoles

dσ (0)
ab (pa, pb)⊗dVdipole

)
ε=0

]

+
∫

2

[
dσ (V )

ab (pa, pb)+dσ (0)
ab (pa, pb)⊗ I

]
ε=0

+∑
a′

∫ 1

0
dx
∫

2

[
dσ (0)

a′b (xpa, pb)⊗
(
P+K

)a′,a
(x)+dσ (0)

aa′ (pa,xpb)⊗
(
P+K

)a′,b
(x)
]

ε=0

(4.61)

also receives contributionsdσ (R)
ab from real gluon (Fig. 4.14), quark (Fig. 4.15) and antiquark

(not shown) emission diagrams, where the emitted parton carries four-momentum p3. In
the Catani-Seymour dipole formalism [94], the real contributions are rendered infrared (IR)
finite by subtracting from them their soft and collinear limits (pa,b · p3 → 0)

dσ (0)
ab (pa, pb)⊗dVdipole = ∑

i

[
D

a3,b(p1, p2, p3; pa, pb)F
(2)

J (p̃1, p̃2; p̃a3, pb)+(a ↔ b)
]

(4.62)
before integration over the three-particle final-state phase space. Theycan then be evaluated
in four dimensions (i.e. withε = 0). In the case at hand of two initial-state partons and no
coloured final state particles at LO, the only dipole contribution comes from an initial state
emitter and an initial state spectator, e.g.

D
a3,b(p1, p2, p3; pa, pb) = − 1

2pa · p3

1
x3,ab

2,ab〈1̃, 2̃;ã3,b|Tb ·Ta3

T2
a3

Va3,b|1̃, 2̃;ã3,b〉2,ab

(4.63)
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Figure 4.14: Gluon emission diagrams contributing to the production of gauginopairs at
NLO.
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(see Eq. (5.136) of Ref. [94]). The colour chargesTa3,b and splitting functionsVa3,b (Eqs.
(5.145)-(5.148) of Ref. [94]) act on Born-like squared matrix elements, which are written
here in terms of vectors|1̃, 2̃;ã3,b〉2,ab in colour and helicity space. These matrix elements
involve an initial-state partoña3 with momentum parallel topa,

p̃µ
a3 = x3,ab pµ

a where x3,ab =
pa · pb − p3 · pa − p3 · pb

pa · pb
, (4.64)

and rescaled four-momenta of the final-state gauginos

p̃µ
1,2 = pµ

1,2−
2p1,2 · (K + K̃)

(K + K̃)2
(K + K̃)µ +

2p1,2 ·K
K2 K̃µ , (4.65)

whereKµ = pµ
a + pµ

b − pµ
3 andK̃µ = p̃µ

a3+ pµ
b . The phase space functionF(2)

J (p̃1, p̃2; p̃a3, pb)
tends to zero withpa · p3 and ensures therefore that the LO cross section is IR-finite. To
compensate for the subtracted auxiliary dipole termdσ (0)

ab (pa, pb)⊗dVdipole, the latter must
be integrated analytically over the full phase space of the emitted parton,

I = ∑
dipoles

∫

1
dVdipole, (4.66)

and added to the virtual cross section. The integrated dipole term is definedexplicitly in Eq.
(10.15) of Ref. [94]; it contains all the simple and double poles inε necessary to cancel the
IR singularities indσ (V )

ab . The insertion operators

Pa′,a(p1, ..., pm, pb;xpa,x; µ2
F) =

αs

2π
Pa′a(x)

1

T2
a′

[
∑

i

Ti ·Ta′ ln
µ2

F

2xpa · pi
+Tb ·Ta′ ln

µ2
F

2xpa · pb

]
(4.67)

are directly related to the regularized Altarelli-Parisi splitting distributions atO(αs),3

Pqq(x) = CF

[
1+ x2

(1− x)+
+

3
2

δ (1− x)

]
, (4.68)

Pqg(x) = TR

[
x2 +(1− x)2

]
, (4.69)

Pgq(x) = CF

[
1+(1− x)2

x

]
and (4.70)

Pgg(x) = 2CA

[
1

(1− x)+
+

1− x
x

−1+ x(1− x)

]
+β0δ (1− x), (4.71)

whereβ0 = 11CA/6−2N f TR/3 andβ1 = (17C2
A−5CAN f −3CFN f )/6 are the one- and two-

loop coefficients of the QCD beta-function,CF = 4/3, TR = 1/2, CA = 3, andN f is the
number of quark flavours. They cancel the dependence of the hadronic cross section on the
factorisation scaleµF up to NLO accuracy. The insertion operators

K a′,a(x) =
αs

2π

{
K

a′a
(x)−Ka′a

FS (x)+δ a′a ∑
i

Ti ·Ta
γ(1)

i

T2
i

[ 1
(1− x)+

+δ (1− x)
]}

− αs

2π
Tb ·Ta′

1

T2
a′

K̃a′a(x) (4.72)

3Note that these distributions are simply the inverse Mellin transform of those previously defined in Eqs.
(3.12)–(3.15).
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Figure 4.17: Tree-level diagram for a squark decaying into a gaugino and a quark.
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K
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qq̄

(x) = 0, (4.77)

and

K̃ab(x) = Pab
reg(x) ln(1− x)+δ abT2

a

[( 2
1− x

ln(1− x)
)

+
− π2

3
δ (1− x)

]
(4.78)

depend on the factorisation scheme through the termKaa′
FS (x), which vanishes in theMS-

scheme, and also on the regular parts of the Altarelli-Parisi splitting distributions given by
Pab

reg(x) = Pab(x), if a 6= b, and otherwise by

Pqq
reg(x) = −CF(1+ x) and Pgg

reg(x) = 2CA

[
1− x

x
−1+ x(1− x)

]
. (4.79)

The last line in Eq. (4.61) contains therefore the finite remainders that are left after the fac-
torisation of collinear initial-state singularities into the parton densities in theMS-scheme at
the factorisation scaleµF . As guaranteed by the Kinoshita-Lee-Nauenberg and factorisation
theorems, the total NLO cross section is then not only UV-, but also IR-finite.
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Figure 4.18: K-factors for gaugino-pair production at the Tevatron (left) and the LHC (right)
using LO CTEQ6L1 and NLO CTEQ6.6M parton densities [96].

Finally, one subtlety must still be addressed: in Fig. 4.15, the centre and right diagrams
of lines one and three proceed through a squark propagator, which can become on-shell
if mq̃ ≥ mχ̃ ands ≥ (mq̃ + mχ̃)2. The singularity associated with the pole of the on-shell
squark propagator is regularized by a small finite widthΓq̃ ∼ 10−2mq̃ (the exact value has
little influence numerically) [92, 95]. To avoid double counting, the resonance contribution

dσ (q̃)
qg = dσ(qg → χ̃ q̃)×BR(q̃ → χ̃q) (4.80)

must be subtracted from the gaugino pair production process using the narrow-width ap-
proximation, as it is identified experimentally as the associated production of a gaugino and
a squark (Fig. 4.16), followed by the decay of the squark into a gaugino and a quark (Fig.
4.17).

4.2.3 Numerical results

Here we now present numerical results showing the impact of the SUSY-QCD corrections
to the total cross section for the gaugino-pair production. In Figs. 4.18 and 4.19, we show
the NLO K-factors, defined by

K =
σNLO

σLO , (4.81)

as a function of the average gaugino massmχ̃ = (mχ̃i + mχ̃ j)/2 and the universal trilinear
couplingA0, respectively. This is for the Snowmass slope SPS1a, whose mSUGRA param-
eters are [97]

m0 = −A0 = 0.4m1/2, tanβ = 10 and µ > 0. (4.82)

The low-scale SUSY parameters are obtained with the computer code SuSpect2.41 [98].
The QCD corrections are found to be large and positive at both the Tevatron (up to 25%)
and the LHC (up to 40%), increasing the mass range of neutralino and chargino that can be
covered by the two colliders.
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Figure 4.19: K-factor for the associated production of a chargino and aneutralino at the
Tevatron (left) and the LHC (right) using LO CTEQ6L1 and NLO CTEQ6.6M parton den-
sities [96].

In Fig. 4.19,4 we compare our predictions to those obtained with the computer code
Prospino2.1 [68]. Since in the latter squark-mixing effects are neglected,we also show
our predictions without squark mixing for comparison. The predictions without mixing
(dashed) are in very good agreement with the those of Prospino2.1 (dot-dashed), whereas
the results with mixing are slightly shifted in the large-|A0| region. This is expected, because
the squark mass splitting is proportional toA0 (see Eq. (2.34)).

A careful analysis of factorisation and renormalisation scale dependences as well as
PDF uncertainties will be presented in Sec. 5.4.

4To produce these figures, we had to correct a bug in the mass factorisation in Prospino2.1.
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5
Gaugino-pair production:
Resummed calculations

We now turn to our numerical analysis of transverse-momentum and threshold resummation
effects on the production of various gaugino pairs at the Tevatronpp̄-collider (

√
S = 1.96

TeV) and the LHCpp-collider (
√

S = 7, 10 and 14 TeV). For the masses and widths of
the electroweak gauge bosons, we use the current values ofmZ = 91.1876 GeV andmW =
80.403 GeV. The squared sine of the electroweak mixing angle

sin2 θW = 1− m2
W

m2
Z

(5.1)

and the electromagnetic fine structure constant

α =

√
2GFm2

W sin2 θW

π
(5.2)

can be calculated in the improved Born approximation using the world averagevalue of
GF = 1.16637·10−5 GeV−2 for Fermi’s coupling constant [99]. The CKM-matrix is as-
sumed to be diagonal, and the top quark mass is taken to be 173.1 GeV [100]. The strong
coupling constant is evaluated in the one-loop and two-loop approximation for LO and
NLO/NLL+NLO results, respectively, with a value ofΛn f =5

MS
corresponding to the employed

LO (CTEQ6L1) and NLO (CTEQ6.6M) parton densities [96].
In Sec. 5.1, we present our choices for the different benchmark points in the MSSM

parameter space. Then, we study the transverse-momentum and invariant-mass spectra of
the gaugino pairs at current hadron colliders in Sec. 5.2 and 5.3, respectively. Finally, the
total cross sections and the effects of the threshold enhanced contributions are studied in
Sec. 5.4. The results presented here have been published in Refs. [62, 101].

5.1 Benchmark points

The running electroweak couplings as well as the physical masses of the SUSY particles and
their mixing angles are computed with the computer program SPheno 2.2.3 [102], which in-
cludes a consistent calculation of the Higgs boson masses and all one-loopand the dominant
two-loop radiative corrections in the renormalisation group equations linking the restricted
set of SUSY-breaking parameters at the gauge coupling unification scaleto the complete
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Scenario SPS1a’ LM0 LM1 LM7 LM9 SU2 SU3

m0 [GeV] 70 200 60 3000 1450 3550 100

m1/2 [GeV] 250 160 250 230 175 300 300

A0 [GeV] -300 -400 0 0 0 0 -300

tanβ 10 10 10 10 50 10 6

sgn(µ) + + + + + + +

mχ̃0
1

[GeV] 98 61 96 94 70 124 118

mχ̃±
1 ,χ̃0

2
[GeV] 184 113 178 176 128 229 223

mχ̃0
3

[GeV] 400 313 346 337 263 355 465

mχ̃±
2 ,χ̃0

4
[GeV] 415 329 366 359 284 384 481

mq̃ [GeV] 550 420 550 3000 1480 3560 650

mg̃ [GeV] 604 409 603 636 487 809 715

Table 5.1: Names, mSUGRA parameters and physical SUSY particle masses ofthe bench-
mark points used in our numerical studies.

set of observable SUSY masses and mixing angles at the electroweak scale. We choose
the widely used minimal supergravity (mSUGRA) point SPS1a’ [93] as the benchmark for
most of our numerical studies. This point has an intermediate value of tanβ = 10 andµ > 0
(favored by the rare decayb → sγ and the measured anomalous magnetic moment of the
muon), a light gaugino mass parameter ofm1/2 = 250 GeV, and a slightly lower scalar mass
parameterm0 = 70 GeV and trilinear couplingA0 = −300 GeV than the original point
SPS1a [97] in order to render it compatible with low-energy precision data,high-energy
mass bounds, and the observed cold dark matter relic density. It is also similarto the post-
WMAP point B’ (m0 = 60 GeV andA0 = 0) [103], which has been adopted by the CMS
collaboration as their first low-mass point (LM1) [104]. In the SPS1a’ scenario, theχ̃0

1 is
the LSP with a mass of 98 GeV, the gauginos producing the trilepton signal have masses
of mχ̃±

1
≃ mχ̃0

2
= 184 GeV, and the heavier gauginos, which decay mostly into the lighter

gauginos,W andZ bosons as well as the lightest Higgs boson, have masses ofmχ̃0
3

= 400
GeV andmχ̃±

2
≃ mχ̃0

4
= 415 GeV. The average squark and gluino masses aremq̃ ≃ 550 GeV

andmg̃ = 604 GeV.

Apart from the low-mass point LM1, we will also study the points LM7 and LM9, since
all three points have been found by the CMS collaboration to lead to visible three-lepton
signals. For LM7, the direct̃χ±

1 χ̃0
2 production cross section exceeds even 70% of the total

SUSY particle production cross section [104]. The ATLAS collaboration have studied the
direct production of gauginos at the points SU2 and SU3 with or without a jetveto (denoted
JV, i.e. no jet in the event with transverse momentumpT > 20 GeV) in order to suppress the
background from top quark pair production [105]. We also present results for the common
CMS/ATLAS low-mass point LM0/SU4 with the objective of high cross sectionsand thus
early discovery at the LHC. A summary of all scenarios considered hereis presented in Tab.
5.1. Note that none of these points falls into (but most of them lie relatively close to) the
regions excluded by the Tevatron collaborations CDF and D0, which assume, however, a
lower value of tanβ = 3 and alwaysA0 = 0 [14].
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5.2 Transverse-momentum distribution

5.2 Transverse-momentum distribution

For an efficient suppression of the SM background from vector-boson and top-quark pro-
duction and a precise determination of the underlying SUSY-breaking modeland masses,
an accurate theoretical calculation of the signal (and background) cross section is impera-
tive. As the lightest SUSY particle (LSP) escapes undetected, the key distribution for SUSY
discovery and measurements is the missing transverse-energy (6ET ) spectrum, which is typi-
cally restricted by a cut of 20 GeV at the Tevatron and 30 GeV at the LHC. While the SUSY
particle pair is produced with zero transverse momentum (pT ) in the Born approximation,
the possible radiation of gluons from the quark-antiquark initial state or the splitting of glu-
ons into quark-antiquark pairs atO(αs) in the strong coupling constant induces transverse
momenta extending to quite substantial values and must therefore be taken into account.
In addition, the perturbative calculation diverges at smallpT , indicating the need for a re-
summation of soft-gluon radiation to all orders. Only after a consistent matching of the
perturbative and resummed calculations an accurate description of the (missing) transverse
energy spectrum and precise measurements of the SUSY particle masses can be achieved.

In the following, we report on the first precision analysis of the transverse-momentum
spectrum of gaugino pairs produced at the Tevatron and the LHC with centre-of-mass en-
ergies of 1.96 and 10 or 14 TeV, respectively. We briefly recall in the next section our im-
plementation of the resummation formalism and present then numerical results for the pro-
duction of various gaugino pairs at two typical MSSM benchmark points. Wealso discuss
the impact of the computed precise transverse-momentum spectrum on the determination
of SUSY mass parameters and investigate in detail the remaining theoretical uncertainties
coming from scale and parton-density function variations and non-perturbative effects.

5.2.1 Transverse-momentum resummation

In the Born approximation, the production of neutralinos and charginos athadron colliders

pp̄, pp → qq̄′ +X → χ̃i χ̃ j +X (5.3)

is induced by the quarksq and antiquarks ¯q′ in the initial (anti-)protons and is mediated
by s-channel electroweak gauge-boson andt- andu-channel squark exchanges. Its partonic
cross section̂σ (0)

ab can be expressed in terms of the gaugino and squark massesmχ̃0,±
i, j

and

mq̃, the masses of the electroweak gauge bosons, the Mandelstam variabless, t andu, and
generalized charges (see Eqs. (4.14)–(4.30)).

As shown in Sec. 4.2, at leading order (LO) in the strong coupling constant, O(αs),
virtual loop and real parton emission corrections must be taken into account. The latter
induce transverse momenta of the gaugino pair, that extend typically to valuesof the order
of the gaugino mass. In the small-pT region, where the bulk of the events is produced, the
convergence of the perturbative expansion is spoiled due to the presence of large logarithms
an

s/p2
T lnm(M2/p2

T ) with m ≤ 2n− 1 andas = αs/(2π). These must be resummed to all
orders in impact parameter (b) space in order to correctly implement transverse-momentum
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5 Gaugino-pair production: Resummed calculations

conservation. In MellinN-space, the resummed component is deduced from Eq. (3.64),

σ̂ (res)
ab (N,M2,M2/p2

T ,M2/µ2) =
∫ ∞

0
db

b
2

J0(bpT ) ∑
cde f

Hcd(M
2,M2/µ2)exp[Gcd(M

2,M2b̄2,M2/µ2)]

×Cce(N,as(1/b̄2))Cd f (N,as(1/b̄2))Eea(N,1/b̄2,µ2)E f b(N,1/b̄2,µ2). (5.4)

Here,b describes the minimal distance of the two incident particles in the limit of no inter-
action and is the conjugate variable of the transverse momentumpT , J0(x) is the 0th-order
Bessel function andM is the invariant mass of the gaugino pair. Theb-independent function
Hab (see Eq. (3.73)),

Hab(M
2,M2/µ2) = σ̂ (0)

ab (M2,M2/µ2)[1+asA0]+O(a2
s ) (5.5)

includes the IR-finite part of the renormalised virtual corrections as defined in Eq. (3.45)
and the exponential form factor

Gab(M
2,M2b̄2,M2/µ2) = Lg(1)

ab (asβ0L)+g(2)
ab (asβ0L,M2/µ2)+ · · · , (5.6)

resums the divergent leading and next-to-leading contributions in the logarithm L = ln(M2b̄2)

through the functionsg(1,2)
ab . Unphysical logarithmic divergences atb → 0 are regularized

by replacingL with ln(M2b̄2 +1). TheCab function are then given by Eq. (3.74) and, up to
NLL accuracy, the evolution from the factorisation scaleµ to the low scale 1/b̄ is achieved

through the one-loop approximationE(1)
ab defined in Eq. (3.18).

To obtain a valid hadronic cross section at all values ofpT , the O(αs) (LO) and re-
summed (res) partonic cross sections are matched by subtracting from theirsum the pertur-
batively expanded (exp) resummed cross section,

σ̂ = σ̂ (LO) + σ̂ (res)− σ̂ (exp), (5.7)

and by performing numerically the necessary inverse Mellin and Fourier transforms (as
described in Sec. 3.5), kinematic integrations, and parton density convolutions.

5.2.2 Numerical results

In this section, we present the transverse-momentum distributions of the gaugino pairs for
the minimal supergravity benchmark points LM0 and SPS1a’, defined in Tab.5.1. In the
latter, the lightest chargino and second-lightest neutralino decay almost exclusively to three
charged leptons and missing transverse energy albeit through real sleptons, which may be
experimentally reconstructed through endpoints in kinematic distributions [93].

In Fig. 5.1, we show the corresponding transverse-momentum spectra ofchargino-
neutralino pairs produced at run II of the Tevatron (top) and the initial run of the LHC
(bottom) with centre-of-mass energies of

√
S = 1.96 and 10 TeV, respectively. As expected,

the O(αs) predictions (dashed curves) diverge at lowpT , but become finite after match-
ing them to the resummed predictions at next-to-leading logarithmic (NLL) accuracy (full
curves). In this region, the perturbative expansions of the resummed predictions (dots)
coincide with those atO(αs), while at largepT they coincide with the resummed ones.
Through resummation, the perturbative predictions are considerably enhanced even at val-
ues of pT , which are of the order of the experimental6ET cuts. It is therefore important
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Figure 5.1: Transverse-momentum spectra of chargino-neutralino pairsat the Tevatron (left)
and the LHC (right). TheO(αs) calculation (green/dashed) is matched to the resummed
calculation (red/full) by subtracting its fixed-order expansion (dotted). The scale uncertainty
is shown as a shaded band, the PDF (below) and non-perturbative (insert) uncertainties as
separate graphs, and the matched result for the LHC design energy of

√
S = 14 TeV as a

dot-dashed line (bottom).
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Figure 5.2: Transverse-momentum spectra at NLL accuracy for the associated production
of charginos and neutralinos (full and dashed) as well as chargino (dotted) and neutralino
(dot-dashed) pairs (dotted) in three different collider modes.
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Figure 5.3: Transverse-momentum spectra at LO+NLL (full), LL (dashed), and generated
by the PYTHIA parton shower with default (bars) and tuned (crosses)parameters at the
Tevatron.

to clearly distinguish the effects induced by QCD radiation and by the unobserved LSPs
and neutrinos. By construction, the matched LO+NLL prediction allows to reproduce the
correctO(αs) correction (K) factor of the total perturbative cross section after integration
over pT , e.g. of 1.26 at the Tevatron. For comparison, we also show the matched LO+NLL
pT -spectrum (dot-dashed curve) for the 14 TeV design energy of the LHC, which extends to
considerably larger values ofpT than at 10 TeV. The theoretical predictions are influenced
by three main sources of uncertainty: scale variations, evaluated in the canonical range of
µF,R/m̄ = 0.5−2 (shaded bands), variations of the parton densities, evaluated through

∆PDF =

√
22

∑
i=1

(dσ+
i −dσ−

i )2

/
(2dσ) (5.8)

along the 22 eigenvector directions defined by the CTEQ collaboration (lower curves), and
three choices of non-perturbative (NP) form factors, evaluated through

∆NP =
dσNP−dσ

dσ
(5.9)

(insets) [54, 56, 57]. ForpT > 5 GeV, all theoretical uncertainties are smaller than 5%
for the LO+NLL predictions. In particular, the 5% PDF uncertainty is similar to the one
obtained for weak boson production [96].

In Fig. 5.2, the matchedpT -spectra for chargino (dotted) and neutralino (dot-dashed)
pairs are compared to those of the tri-lepton channel (full/dashed) discussed above. While
positive and negative charginos are produced with equal rates inpp̄ collisions at the Teva-
tron, their rates differ slightly inpp collisions at the LHC. The cross sections for neutralino
pair production are about one order of magnitude smaller, as the second-lightest neutralino
couples to thes-channelZ0-boson only through its relatively small Higgsino component.

In experimental analyses, QCD radiation in hadronic collisions is usually simulated with
tree-level matrix elements and parton showers based on an exponential Sudakov form fac-
tor, which resums the leading logarithms (LL) and some next-to-leading logarithms. In Fig.
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5.3, we compare therefore our matched LO+NLL prediction (full curve) with our resummed
prediction at LL order (dashed curve) and the default (bars) and tuned (crosses) predictions
of the PYTHIA6.4 Monte Carlo (MC) generator [106, 107]. While the default MC predic-
tion is clearly improved beyond the LL approximation and approaches the LO+NLL result,
it peaks at too small values ofpT . Tuning the intrinsicpT of the partons in the proton to
2.1 GeV forZ0-bosons (CDF tune AW) and 4 GeV for gaugino pairs (our tune AW’) im-
proves the description of the peak, but still underestimates the intermediatepT -region and
the mean value ofpT (14 GeV for PYTHIA6.4, 15 GeV for our tune AW’, and 18 GeV
for our LO+NLL prediction). This has, of course, a direct impact on thedetermination of
the gaugino (and slepton) masses through variables derived from the transverse momenta
of the observed leptonspT,i and 6ET , such as the effective massMeff = ∑i pT,i+ 6ET [108]
or the stransverse mass [109]. Let us mention that the contribution of unmeasured (low-pT

or forward) or mismeasured hadronic energy to the “fake”6ET is under close scrutiny both
at the Tevatron and at the LHC. The ATLAS trilepton analysis, e.g., does not identify jets
with pT < 10 GeV, and an optional cut on jets withpT > 20 GeV reduces the significance
considerably. As the two LSPs are often back-to-back, the6ET in the trilepton analysis is
required to be relatively small (> 30 GeV). It can then be affected by an error of up to 10%
(Aad et al. [105]).

5.3 Invariant-mass distribution

In this section, we present our results for the invariant-mass distributions of the gaugino
pairs at the Tevatron and the LHC within the mSUGRA model. A similar study has been
previously performed for the trilepton channelχ̃±

1 χ̃0
2 in Ref. [95]. In this work, we ex-

tend and improve this published result in several respects. First, we include not only the
QCD, but the full SUSY-QCD virtual loop contributions in the hard coefficient function of
the resummed cross section, which therefore reproduces, when expanded, the correct NLO
SUSY-QCD cross section in the threshold region. Second, we resum notonly the diagonal,
but the full matrix contributions coming from the anomalous dimension, thereby including
all universal subleading terms and full singlet mixing. For the Tevatron, we consider not
only the production ofχ̃±

1 χ̃0
2 , but also ofχ̃0

2 χ̃0
2 and χ̃+

1 χ̃−
1 pairs. In particular, the latter

can have significantly larger cross sections than trilepton production due tothe s-channel
exchange of massless photons. For the LHC, we concentrate on predictions for its ini-
tial centre-of-mass energy

√
S = 7 TeV and include also the production of heavy gaugino

(χ̃±
2 , χ̃0

3,4) combinations, where threshold effects and direct gaugino pair production pro-
duction (as opposed to the production from squark and gluino cascade decays) will be more
important. However, we will also show cross sections for

√
S = 14 TeV for comparison.

5.3.1 Threshold resummation

Starting at NLO, i.e. atO(αs), the cancellation of soft parton emission among virtual and
real corrections is restricted by the phase space boundary of the latter.This leads to logarith-
mic contributionsas[ln(1− z)/(1− z)]+ with as = αs/(2π) which may become large close
to partonic threshold i.e.z close to one. Threshold resummation reorganises and resums
these contributions to all orders inas in Mellin (N) space in order to correctly implement
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energy conservation.1 Hence, the resummed component can be obtained from Eq. (3.35),

σ̂ (res)
ab (N,M2,M2/µ2) = Hab(M

2,M2/µ2)exp[Gab(N,M2,M2/µ2)], (5.10)

where theN-independent functionHab (see Eq. (3.44)),

Hab(M
2,M2/µ2) = σ̂ (0)

ab (M2,M2/µ2)

+asσ̂
(0)
ab (M2,M2/µ2)

[
A0 +(δP(1)

aa +δP(1)
bb ) ln

M2

µ2 +
π2

6
(A(1)

a +A(1)
b )
]
. (5.11)

The coefficient functionH (1), given by the second line of Eq. (5.11)), agrees with the one
presented in Eq. (115) of Ref. [95] except for the last three terms. While their last term cor-
responds to the flavour-diagonal collinear improvement already discussed in Sec. 3.3.4, the
two other terms represent leading and next-to-leading logarithms and shouldtherefore not
be present. Furthermore, the two terms in(ln4πµ2

R/M2− γE) should be squared individu-
ally, not together, and the virtual correctioñM

QCD
V defined in Eq. (116) of Ref. [95] should

include the complete SUSY-QCD contributions and not only their UV-singular parts.
The exponential form factor

Gab(N,M2/µ2) = Lg(1)
ab (asβ0L)+g(2)

ab (asβ0L)+ · · · (5.12)

resums the leading and next-to-leading contributions in the logarithmL = ln(NeγE ) through

the functionsg(1,2)
ab . Futhermore, by following the procedure described in Sec. 3.3.4, the

dominantO(1/N) terms are also resummed.
The matching with the fixed-order calculation is achieved from Eq. (3.54),

σ̂ab = σ̂ (res)
ab + σ̂ (f.o)

ab − σ̂ (exp)
ab , (5.13)

where again̂σ (exp)
ab is the truncation of the resummed cross section to the same perturbative

order asσ̂ (f.o)
ab . At O(αs), it is given by Eq. (3.55).

In the following, when we present spectra in the invariant massM of the gaugino pair,
we identify the unphysical scalesµF = µR = µ with M. The remaining theoretical uncer-
tainty is estimated by varying the common scaleµ about these central values by a factor of
two up and down.

5.3.2 Numerical results

In Ref. [95], the cross section for the associated production ofχ̃±
1 andχ̃0

2 has been computed
as a function of tanβ andm1/2 for m0 = 200 and 1000 GeV and assumingA0 = 0 andµ > 0.
Unfortunately, the exact version of the renormalisation group program SPheno used there
could not be determined, and we were not able to reproduce the physicalSUSY particle
mass spectra of Ref. [95]. Since we also do not completely agree analytically with the
coefficient functionH (1)

ab (M2,µ2) of Ref. [95] (see above), we must refrain from a direct
comparison of our numerical results.

In Fig. 5.4 we present invariant mass spectraM3dσ/dM for the production of various
combinations ofχ̃±

1 and χ̃0
2 with mχ̃±

1
≃ mχ̃0

2
= 184 GeV in the SPS1a’ scenario at the

1In fact, it is the Laplace transform which correctly implement energy conservation. However, close to
threshold, Mellin and Laplace transforms are basically equivalent.
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Figure 5.4: Invariant mass spectra for the production of various light gaugino pairs at the
Tevatron in the SPS1a’ scenario and in the LO (blue), NLO (grey) and NLL+NLO (red)
approximation. The corresponding scale uncertainties are representedby the band widths.
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Figure 5.5: Same as Fig. 5.4 for the LHC with its current centre-of-mass energy of
√

S = 7
TeV.

Tevatron. The spectra start atM = mχ̃±
1

+ mχ̃0
2
= 368 GeV and increase considerably from

LO (blue) to NLO (grey), but much less from NLO to NLL+NLO (red). Thescale uncer-
tainty is considerably reduced from NLO to NLL+NLO, which indicates goodconvergence
of the reorganized perturbative series. The cross section is smallest for the production of
two neutralinos, since they are gaugino-like and couple only weakly to thes-channelZ-
boson (see Eq. (4.3)). Since the Tevatron is app̄ collider, the cross sections are identical
for χ̃0

2 χ̃−
1 and χ̃+

1 χ̃0
2 pairs. The largest cross section is obtained for chargino pairs due to

the s-channel photon contribution. Threshold resummation should be most important as
M →√

s andz → 1, but its effects on the partonic cross section are, of course, reduced in
the hadronic cross section shown here by the parton densities, which tendto 0 asxa,b and
z → 1. Nevertheless, on close inspection one observes that the NLL+NLO cross section for
two neutralinos no longer overlaps with the one at NLO for relatively large invariant masses
of M ≃

√
S/2.

A similar hierarchy of the different production channels is observed in Fig. 5.5 for the
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Figure 5.6: Same as Fig. 5.4 for the production of heavy gaugino pairs at the LHC with its
current centre-of-mass energy of

√
S = 7 TeV.

LHC with its current centre-of-mass energy of
√

S = 7 TeV. There are, however, two notable
differences. First, the LHC is app collider, so that the cross section forχ̃+

1 χ̃0
2 exceeds

the one forχ̃−
1 χ̃0

2 by a factor of two and becomes even larger than the one for chargino
pairs. Second, the NLO band is separated by a wider gap from the LO band than it was
the case at Tevatron, whereas the NLL+NLO and NLO bands overlap considerably more.
This is, of course, due to the fact that the light gauginos are now produced further away
from the threshold of the 7 TeV collider, so that the importance of soft-gluonresummation
is reduced. However, one still observes a sizeable reduction of the scale uncertainty from
NLO to NLL+NLO.

Heavier gaugino pairs can only be produced with sizeable cross sectionsat the LHC. We
therefore show in Figs. 5.6 and 5.7 the invariant mass spectraM3dσ/dM for the production
of various combinations of̃χ0

3,4 andχ̃±
2 at the LHC with

√
S = 7 TeV and 14 TeV and with

mχ̃0
3

= 400 GeV andmχ̃±
2
≃ mχ̃0

4
= 415 GeV in the SPS1a’ scenario. The spectra start at

M ≃ 800−830 GeV, and their magnitudes are considerably smaller than in the light gaugino
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Figure 5.7: Same as Fig. 5.4 for the production of heavy gaugino pairs at the LHC with its
design centre-of-mass energy of

√
S = 14 TeV.
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Figure 5.8: RatiosKNLL of NLL+NLO over NLO differential cross sections as a function
of the invariant massM of a gaugino pair at the Tevatron (top left) and LHC with

√
S = 7

TeV (top right and bottom left) and
√

S = 14 TeV (bottom right) in the SPS1a’ scenario.

case. However, they are now of comparable size for neutralino and chargino pairs due to the
fact that the dominantly higgsinõχ0

3 and χ̃0
4 now have sizeable couplings to thes-channel

Z-boson (see Eq. (4.3)). The associated production of a neutralino anda chargino is again
much larger for the positive chargino eigenstate than for its negative counterpart. The cross
sections forχ̃0

3 χ̃±
2 pairs are very similar to those for̃χ0

4 χ̃±
2 pairs and therefore not shown.

Higgsino-like neutralinos and charginos with larges-channel contributions are produced as
S-waves, so that the invariant mass spectra rise more steeply at lowM thanP-wave produced
gaugino-like neutralinos and charginos.

From Figs. 5.4–5.7, the impact of threshold resummation effects is difficult to estimate.
We therefore present in Fig. 5.8 the relative size

KNLL =
dσNLL+NLO

dσNLO (5.14)

of the NLL+NLO prediction with respect to the NLO prediction. As one expects, the cor-
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Colliders σNLL+NLO [fb] σNLO [fb] σLO [fb]

pp̄(
√

S = 1.96 TeV) 30.9+0.1
−0.2

+1.5
−1.9 31.2+0.9

−1.2
+1.5
−1.9 27.2+3.6

−3.0

pp(
√

S = 7 TeV) 263.3+0.6
−1.3

+11.4
−13.2 265.5+5.0

−4.3
+11.5
−13.2 223.1+6.9

−7.1

pp(
√

S = 10 TeV) 470.7+1.4
−2.3

+17.7
−19.3 474.0+8.3

−6.0
+17.7
−19.4 387.4+2.5

−4.3

pp(
√

S = 14 TeV) 772.7+1.6
−3.1

+25.5
−26.7 777.5+11.9

−7.4
+25.5
−26.7 623.7+4.7

−9.3

Table 5.2: Total cross sections for the production ofχ̃+
1 χ̃0

2 pairs in the SPS1a’ scenario
at different hadron colliders and centre-of-mass energies in the LO, NLO and NLL+NLO
approximation, together with the corresponding scale and PDF uncertainties.

rection is larger at the Tevatron with its lower centre-of-mass energy (top left) than at the
LHC (top right) and increases with the invariant mass. The relatively small differences
among theKNLL -factors for neutralino pair production and the channels involving at least
one chargino can be traced to the fact that the former receives most of itscontributions from
t- andu-channel squark exchanges, which are more sensible to strong corrections than the
exchanges of electroweak bosons in thes-channel.

The KNLL -factors for the production of heavy gaugino pairs at the LHC with
√

S = 7
TeV (14 TeV) are presented in Fig. 5.8 bottom left (bottom right). since the gaugino masses
as well as the invariant massesM are now closer to the hadronic centre-of-mass energies.
In addition, the result for thẽχ0

3 χ̃0
4 channel differs no longer substantially from the other

channels, since the heavy neutralinos are now higgsino-like and their production is now also
dominated by thes-channel exchange of a weak gauge boson.

5.4 Total cross section

The stability of the perturbative series and its reorganization is traditionally checked by
varying the factorisation and renormalisation scalesµF andµR about a central valueµ0. We
therefore present now the total cross sections for the production of light gaugino pairs at the
Tevatron (Figs. 5.9 and 5.10) and at the LHC with

√
S = 7 TeV (Fig. 5.11 and 5.12) as a

function of the ratioµF,R/µ0, where the central scaleµ0 is now chosen to be the average
mass of the produced gaugino pair. The LO prediction (blue, dot-dashed) of the electroweak
processes under consideration is, of course, independent of the renormalisation scaleµR

(right part of the figures), whereas the NLO prediction (black, dashed) depends inversely on
the logarithm ofµR through the strong couplingαs(µR). At NLL accuracy (red, full), the
resummed soft corrections attenuate this dependence and introduce a plateau region, so that
the prediction is stabilized. The factorisation scaleµF (central part of the figures) enters
the hadronic cross section already at LO through the largely logarithmic dependence of the
PDFs, which is then attenuated by the factorisation of initial-state singularities atNLO and
further at NLL accuracy. In all cases, the resulting total NLL+NLO prediction is thus much
less dependent on the common scaleµF = µR = µ (left part of the figures) than the LO and
NLO estimates.

In Tab. 5.2 we present the total cross sections for the trilepton channel inthe SPS1a’
scenario at the Tevatron (

√
S = 1.96 TeV) and LHC (

√
S = 7, 10 and 14 TeV). Besides

the central values (in fb) at LO, NLO and NLL+NLO, we also present thescale and PDF
uncertainties. The former are estimated as described above by a common variation of the

70



5.4 Total cross section

0.60.70.8
0.911.1
1.2

0.2 51
�[fb℄

�=�0 0.2 51�F=�0�R = �0 0.2 51�R=�0�F = �0

p�p! ~�02~�02 at pS = 1:96 TeV

�R = � = �F

NLL+NLO NLO LO

20222426
28303234
3638

0.2 51
�[fb℄

�=�0 0.2 51�F=�0�R = �0 0.2 51�R=�0�F = �0

p�p! ~�02~��1 at pS = 1:96 TeV

�R = � = �F

NLL+NLO NLO LO

Figure 5.9: Total cross sections for the production of neutralino (top) and chargino-
neutralino (bottom) at the Tevatron with

√
S = 1.96 TeV in the LO (blue, dot-dashed), NLO

(black, dashed) and NLL+NLO (red, full) approximation.
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Figure 5.10: Total cross sections for the production of chargino-neutralino (top) and
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Figure 5.11: Same as Fig. 5.9 for the LHC with its current centre-of-mass energy of
√

S = 7
TeV.
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Figure 5.12: Same as Fig. 5.10 for the LHC with its current centre-of-mass energy of
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TeV.
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Gaugino pair σNLL+NLO [fb] σNLO [fb] σLO [fb]

χ̃0
2 χ̃0

2 25.1+0.3
−0.2

+1.2
−0.7 25.5+0.8

−0.6
+1.3
−0.7 19.2+0.3

−0.4

χ̃+
1 χ̃−

1 665.8+1.0
−2.2

+20.6
−20.6 671.1+10.8

−6.6
+20.7
−20.6 533.4+3.4

−7.3

χ̃0
2 χ̃−

1 433.3+0.6
−0.8

+17.9
−16.0 436.9+7.2

−3.5
+17.9
−16.1 348.3+2.2

−4.9

χ̃+
1 χ̃0

2 772.7+1.6
−3.1

+25.5
−26.7 777.5+11.9

−7.4
+25.5
−26.7 623.7+4.7

−9.3

χ̃0
3 χ̃0

4 14.6+0.0
−0.1

+0.7
−0.7 14.8+0.3

−0.3
+0.7
−0.7 12.1+0.5

−0.5

χ̃+
2 χ̃−

2 14.0+0.1
−0.0

+0.7
−0.6 14.2+0.3

−0.3
+0.7
−0.6 11.7+0.5

−0.5

χ̃0
3 χ̃−

2 8.5+0.0
−0.0

+0.6
−0.5 8.6+0.2

−0.2
+0.6
−0.5 6.9+0.3

−0.3

χ̃+
2 χ̃0

3 19.1+0.1
−0.1

+0.9
−1.0 19.3+0.4

−0.4
+0.9
−1.0 16.0+0.7

−0.7

χ̃0
4 χ̃−

2 7.8+0.0
−0.0

+0.5
−0.5 7.9+0.2

−0.2
+0.5
−0.5 6.4+0.3

−0.3

χ̃+
2 χ̃0

4 17.7+0.1
−0.1

+0.8
−0.9 17.8+0.4

−0.3
+0.8
−0.9 14.9+0.7

−0.6

Table 5.3: Total cross sections for the production of various gaugino pairs in the SPS1a’
scenario at the LHC with its design centre-of-mass energy of

√
S = 14 TeV. The central

predictions are given at LO, NLO and NLL+NLO together with the corresponding scale
and PDF uncertainties.

renormalisation and factorisation scales by a factor of two about the average mass of the
two gauginos, the latter through

∆σPDF+ =

√
22

∑
i=1

[
max

(
σ+i −σ0,σ−i −σ0,0

)]2
and (5.15)

∆σPDF− =

√
22

∑
i=1

[
max

(
σ0−σ+i,σ0−σ−i,0

)]2
(5.16)

along the 22 eigenvector directions defined by the CTEQ collaboration. Since these are
available only for the NLO fit CTEQ6.6M, but not for the LO fit CTEQ6.6L1,we do not
present a PDF uncertainty for the LO prediction. Furthermore, the same PDF set enters at
NLO and NLL+NLO, so that the PDF uncertainties for these two predictions coincide. The
most important result is again the considerable reduction of the scale uncertainty from LO
to NLO and then to NLL+NLO. The total cross sections increase with the available centre-
of-mass energy due to the higher parton luminosity at smaller values ofx. A crude estimate
gives

σpp =
∫ 1

m2/S
dτ fq/p(xq) fq̄/p(xq̄)σqq̄ ∼

∫ 1

m2/S
dτ τ−1.8 1

τS
,∼

√
S

1.6
(5.17)

which agrees with the cross sections given in Tab. 5.2 surprisingly well.
In Tab. 5.3 we fix the LHC centre-of-mass energy to its design value of

√
S = 14 TeV

and show the total production cross sections for light and heavy gauginopairs in LO, NLO
and NLL+NLO together with the corresponding theoretical uncertainties. As it was already
mentioned above, the cross section for the higgsino-likeχ̃0

3 χ̃0
4 pairs is about as large as the

one for χ̃+
2 χ̃−

2 pairs, and it is in fact not much smaller than the one for the considerably
lighter gaugino-likeχ̃0

2 χ̃0
2 pairs. In general, the heavy gaugino cross sections are, however,

significantly smaller than those for light gauginos.
In Tab. 5.4, we present finally total cross sections for the trilepton channel in our differ-

ent benchmark scenarios at the LHC with its current centre-of-mass energy of
√

S = 7 TeV.
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Scenario σNLL+NLO [fb] σNLO [fb] σLO [fb]

LM1 294.6+0.8
−1.4

+12.8
−14.5 297.0+5.8

−4.8
+12.8
−14.5 248.2+7.1

−7.5

LM7 538.9+2.4
−3.5

+23.9
−26.7 543.8+12.8

−10.7
+24.0
−26.8 441.2+14.0

−14.3

LM9 1736.2+8.0
−12.1

+68.8
−74.3 1750.3+38.8

−28.8
+69.0
−74.4 1374.4+8.4

−15.7

SU2 171.7+0.5
−0.9

+8.5
−9.8 173.4+4.2

−3.9
+8.5
−9.8 145.0+7.4

−7.0

SU3 116.9+0.1
−0.4

+5.6
−6.4 118.0+2.2

−2.1
+5.6
−6.4 101.6+4.6

−4.4

SU2+JV 170.4+0.2
−0.7

+8.6
−9.8 172.0+3.9

−3.6
+8.6
−9.9 145.0+7.4

−7.0

SU3+JV 115.4+0.1
−0.1

+5.6
−6.4 116.6+1.9

−1.8
+5.6
−6.4 101.6+4.6

−4.4

Table 5.4: Total cross sections for the production ofχ̃+
1 χ̃0

2 pairs at the LHC with its current
centre-of-mass energy of

√
S = 7 TeV for different SUSY benchmark points. The central

predictions are given at LO, NLO and NLL+NLO together with the corresponding scale
and PDF uncertainties.

Since the masses ofχ̃±
1 andχ̃0

2 are always rather similar, one expects also similar total cross
sections. This is indeed confirmed by the

√
S = 7 TeV results in Tab. 5.2 and the numbers

in Tab. 5.4 with the notable exceptions of LM7 and LM9, where the cross section is about a
factor of two and one order of magnitude larger than for the other points, respectively. This
is partly due to the lower gaugino masses at LM9 and partly to the much heavier squark
masses, which suppress thet- andu-channels and thus their destructive interference with
thes-channel amplitudes. The additional jet veto (JV), i.e. the rejection of events contain-
ing jets with transverse momentumpT > 20 GeV, envisaged by the ATLAS collaboration
to suppress the background from top quark pair production, has obviously no consequences
at LO, since gauginos are exclusively produced at this order. An additional quark or gluon
can only be present at NLO or NLL+NLO, and restricting its transverse momentum to low
values reduces the total cross sections slightly with respect to the unrestricted predictions.
The small reduction of the signal cross section in combination with a large reduction of the
background should therefore indeed lead to a much better significance.
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Conclusion

Weak-scale supersymmetry is a very well motivated extension of the SM of particle physics.
It offers a natural explanation of the large hierarchy between electroweak and gravita-
tional interactions and allows for the grand unification of the local gauge symmetry of the
strong and electroweak interactions. Among the new particles predicted by the MSSM, the
fermionic partners of the neutral and charged gauge and Higgs bosons, called neutralinos
and charginos, may be relatively light. Indeed, the lightest neutralino, stabilized by an at
least approximateR-symmetry, represents one of the most promising dark matter candi-
dates, whose gaugino/Higgsino decomposition has important consequences for cosmology.
The search for SUSY particles and the identification of their properties have thus become
defining tasks of the current hadron collider program. Particular attentionhas since long
been paid to the production of gauginos, which are produced either directly or through
squark/gluino decays. Gauginos may decay leptonically and be thus easily identifiable at
the Tevatron and at the LHC. Gaugino-pair production is therefore a very important SUSY
discovery channel at both currently running hadron colliders.

In this thesis, we have presented the MSSM, with its field content, its Lagrangeden-
sity and the resulting mass eigenstates and mixing. Then, we have presented threshold
and transverse-momentum resummation techniques with improvements to resum collinear
sub-dominant contributions and the necessary prescriptions to get well-defined differential
cross sections. The second part of this document has been dedicated tothe gaugino-pair
production at presentpp and pp̄ colliders. We have studied the polarisation effects and
the effects of the SUSY-QCD corrections, generalising the existing resultsby allowing the
virtual squarks to mix. We have then performed an extensive analysis of the resummation
effects for gaugino-pair production in minimal supergravity scenarios. The threshold en-
hanced corrections have been found to increase the invariant-mass andtotal cross sections
only slightly, but stabilised the reorganised perturbative series with respect to the fixed-order
calculation. We have also calculated the transverse-momentum spectrum of gaugino pairs at
NLL accuracy and investigated in detail the theoretical uncertainties coming from scale and
parton-density function variations. We have found that this renders the perturbative predic-
tion finite, modifies considerably the traditional Monte Carlo predictions, and reduces the
theoretical uncertainties to the level of 5–10%. These calculations have a direct impact on
the extraction of the gaugino masses and properties, which are potentially related to dark
matter properties.

Quite recently, we have entered the era of the NLO Monte Carlo event generators. These
programs are often preferred, especially by experimentalists, becausethey allow to compare
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experimental data to theoretical predictions, or to simulate experimental signatures when
they are no data yet. It is expected that both the resummation and the parton showers im-
plemented in Monte Carlo generators correctly describe the effects of soft-gluon emission
from the incoming partons. Nevertheless, resummation techniques provide analytic formu-
lations, and are therefore complementary to the parton shower techniques inthe sense that
they allow for testing and improving the latter.

As perspectives, comparisons between resummed NLL+NLO and NLO Monte Carlo
predictions would be very interesting in order to improve our understandingof parton show-
ering. This last study would also permit to investigate the relevant cuts for theoptimisation
of signal to background, including the discriminant cut on/ET , and see what is the real
impact of our calculations on the experimental determination of the gaugino properties.

The resummation of both the threshold enhanced and small-pT contributions have been
incorporated in a single formalism, namely the joint resummation [46, 58, 110]. An imple-
mentation of that formalism is in progress and a comparison with the results presented in
this document will then be performed.

Resummation techniques have already been applied to other SUSY processes. Indeed,
threshold resummation has been applied to the production of squarks and gluinos [111,
112]. The soft-gluon enhancements have been found to be larger than for the gaugino
case, because of larger total colour charges of the produced particlepairs. For slepton-
pair production, transverse-momentum, threshold and joint resummations have been applied
[113, 114, 115]. A single resummation code for all the SUSY processes would then be a
very useful tool.
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Abstract

Weak-scale Supersymmetry (SUSY) is a very well motivated extension of theStandard
Model of particle physics. Linking bosons and fermions in an elegant formalism, SUSY
allows for a natural solution of the hierarchy problem and for accurate unification of the
three Standard Model gauge couplings at a high unification scale. Furthermore, if R-parity
is conserved, it provides a convincing candidate for the large amount ofcold dark matter
observed in the Universe. In the Minimal Supersymmetric Standard Model, this is gener-
ally the lightest neutralino, one of the spin-1/2 supersymmetric partners of theelectroweak
gauge bosons (gauginos) and of the Higgs bosons (Higgsinos), whichmix to form four
neutral (neutralino) and two charged (chargino) mass eigenstates. After an introduction
to supersymmetry, we present the transverse-momentum and threshold resummation for-
malisms. We then consider the gaugino-pair production at current hadroncolliders, i.e. at
RHIC, Tevatron and LHC. We study the corresponding effects of polarised initial hadrons
and full SUSY-QCD corrections. We finally apply transverse-momentum and threshold re-
summations to gaugino-pair production, and show that they have important impact on the
transverse-momentum and invariant-mass distributions. Throughout thesestudies, we also
investigate the theoretical uncertainties coming from scale and parton-density function vari-
ations.

Keywords: supersymmetry, neutralino, chargino, resummation, QCD, cross section, polar-
isation, collider.

Résuḿe

L’ajout de la supersyḿetrie au Mod̀ele Standard (MS) de la physique des particules est
très bien motiv́ee. Reliant les bosons aux fermions dans un formalismeélégant, la super-
symétrie propose une solution naturelle au problème de híerarchie et permet l’unification
des trois constantes de couplages du MSà grandéechelle d’́energie. De plus, si la R-parité
est conserv́ee, elle fournit un candidat naturel pour expliquer la grande quantité de matìere
noire observ́ee dans l’univers. Dans le MS supersymétrique minimal, c’est ǵeńeralement
le neutralino, l’un des partenaires supersymétriques des bosonsélectrofaibles (jauginos) et
des bosons de Higgs (Higgsinos), qui se mélangent pour former quatréetats propres de
masses neutres (neutralinos) et deux chargés (charginos). Après une introduction sur la
supersyḿetrie, nous pŕesentons les formalismes de resommation au seuil et en impulsion
transverse. Ensuite, nous considérons la production de paires de jauginos aux collision-
neurs hadroniques actuellement en marche, i.e. RHIC, Tevatron et LHC.Nousétudions les
effets dus̀a la polarisation des hadrons initiaux et aux corrections QCD supersymétriques
compl̀etes. Finalement, nous appliquons les resommations au seuil et en impulsion trans-
verseà la production de paires de jauginos, et nous montrons qu’elles ont un impact impor-
tant sur les distributions de masses invariantes et d’impulsion transverses.Tout au long de
cesétudes, nous analysons en détail les erreurs th́eoriques venant des variations d’échelles
et des fonctions de densités de partons.

Mots-clés: supersyḿetrie, neutralino, chargino, resommation, QCD, section efficace, po-
larisation, collisionneur.


