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Summary

Understanding compaction processes in sediments or rocks is important for instance for the

characterisation of compaction in sedimentary basins or for sealing of active fault. The aims of

the present study are firstly to separate and quantify the relative role of mechanical and chem-

ical compaction in carbonate sediments. Secondly to better understand chemical compaction

processes acting on sediments.

The potential for porosity loss by mechanical compaction of platforms carbonate strata was

investigated by carrying out K0 triaxial tests. Eleven samples cemented with low–Mg cal-

cite and five dolomitized samples from the Marion plateau, offshore northeast Australia (ODP

(ocean drilling program) Leg194) were uniaxially compacted at effective stresses up to 70 MPa.

Early cementation of bioclastic carbonate samples created a stable cemented framework with

a high degree of over–consolidation and low compressibility. Water saturation of the samples

produces weakening of the mechanical strength and greater scatter in the correlation of P–wave

velocity versus porosity. Most of the tested samples were already so strongly cemented at 30–

400 meters that further porosity loss during burial up to 4–5 km depth must occur mainly by

chemical rather than mechanical processes. To study chemical processes two other types of

experiments were carried out.

Pressure solution is the main chemical compaction mechanism affecting sediments during

burial, therefore the rate of calcite deformation by pressure solution creep at a single contact

was studied. The results enable the identification of the relative importance of pressure solution

driven by normal load, and free surface dissolution driven by strain energy. Two different pro-

cesses occur during pressure solution of calcite crystals at the grain scale. In one case, diffusion

of the dissolved solid takes place in the pore fluid present along a rough interface between cal-

cite and the indenter. In the second case, diffusion occurs through cracks that propagate from

the contact toward the less stressed part of the crystal. Strain rates are higher for experiments in

which crack propagation occurred. Overall it seems strain rates are not really stress dependent

but rather dependent on whether crack propagation occurs or not.

Eventually, both mechanical and chemical compaction processes were studied on aggregates

of calcite and bioclastic carbonate sands. Experimental compaction showed that compaction of

carbonates sands should be modelled as a function of both mechanical and chemical compaction

also at relatively shallow depth and low temperature. In all cases, the nature of the fluid, the

initial grain packing, and the grain size represent important control parameters of the final strain

and the strain rates at a given stress. Samples saturated with non–reactive fluids, e.g. air or
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decane, show less strain than samples saturated with reactive fluids at the same effective stress

since the compaction was only mechanical. During the loading phase, chemical compaction

occurs by pressure solution creep which is enhanced by the presence of cracks at the grain–to–

grain contacts. This is also supported by the identification of compaction related microstructures

in thin–sections. During creep tests, the samples compressibility is controlled by, in order of

importance, grain size, stress, and water saturation. Low ultrasonic velocities are especially

observed in samples saturated with reactive fluids. Dissolution and transport affecting the grain–

to–grain contacts geometry and crack propagation are likely to be the reason for such velocity

alteration.

In conclusion, porosity loss in carbonate sediments is mostly due to chemical compaction

and very little to mechanical compaction. Chemical compaction processes are pressure solution

and pressure solution enhanced by subcritical crack growth. The predominance of one or the

other mechanism is to be related to the fluid in presence and to the nature of the grains.
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Résumé

La compréhension des mécanismes de compaction des roches et des sédiments est importante

dans différents domaine des géosciences en particulier pour caractériser la compaction dans

les bassins sédimentaires ou le colmatage dans les failles actives. Les objectifs de cette thèse

sont d’une part de séparer et de quantifier le rôle respectif de la compaction mécanique et

chimique dans les sédiments carbonatés. D’autre part d’obtenir une meilleure compréhension

des procédés aboutissant au fluage des roches sédimentaires carbonatées.

La perte de porosité par compaction mécanique a été étudiée en réalisant des essais triaxi-

aux K0 sur des échantillons provenant de plateformes carbonatées. Onze échantillons cimentés

par de la calcite faiblement magnésienne et cinq échantillons dolomitisés provenant du Mar-

ion Plateau au large de la côte nord-est Australienne (ODP (ocean drilling program) Leg194)

ont été compactés de manière uniaxiale à des contraintes effectives allant jusqu’à 70 MPa. La

cimentation à faible profondeur à laquelle ces échantillons ont été soumis a créé une structure

cimentée stable ayant un fort degré de sur–consolidation et une faible compressibilité. La plu-

part des échantillons testés étaient tellement cimentés à 30–400 mètres que la perte de porosité

à des profondeurs atteignant 4–5 km doit être principalement liée à des procédés chimiques

et non à des procédés mécaniques. Pour étudier ces processus chimiques deux autres types

d’expériences ont été réalisées.

La dissolution sous contrainte est le principal mécanisme responsable du fluage des roches

sédimentaires pendant leur enfouissement. Par conséquent la vitesse de déformation de la cal-

cite par dissolution sous contrainte à l’échelle d’un contact a été étudiée. Les résultats obtenus

permettent l’identification de l’importance respective de la dissolution sous contrainte résultant

de l’application de la contrainte normale et celle de la dissolution au niveau des surfaces ’libres’

résultant de l’accumulation de l’énergie élastique ou plastique. Deux mécanismes différents se

produisent lors de la dissolution sous contrainte de cristaux de calcite à l’échelle du grain. Dans

un premier cas, la diffusion du solide en solution se produit dans le fluide présent à l’interface

rugueuse entre la calcite et le poinçon. Dans un deuxième cas, la diffusion se produit le long

de fractures qui se propagent du contact vers la partie du cristal soumise à des contraintes plus

faibles. Les vitesses de déformation sont plus élevées dans les expériences pour lesquelles la

propagation de fractures se produit. De manière générale la vitesse de déformation n’apparait

pas comme étant dépendante de la contrainte, mais plutôt de la propagation ou non de fractures.

Finalement, les procédés mécaniques et chimiques actifs pendant la compaction ont été
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étudiés sur des agrégats de cristaux de calcite ou de sables bioclastique. Les expériences mon-

trent que la compaction des sables carbonatés doit être modélisée en prenant en compte à la

fois la compaction mécanique et chimique. Dans toutes les expériences la nature du fluide

saturant, l’organisation initiale des grains et la taille des grains sont des paramètres important

contrôlant la déformation finale ainsi que la vitesse de déformation à une contrainte donnée.

La déformation des échantillons saturés avec des fluides non réactifs, e.g. air ou décane, est

moins importante qu’avec des fluides réactifs, puisque dans ce cas la compaction est seulement

mécanique. Pendant la phase de chargement, la compaction chimique se produit par dissolution

sous contrainte, dont la vitesse est augmentée par la présence de petites fractures au niveau des

contacts intergranulaires. Cette interprétation est confirmée par l’observation des échantillons

en lame-minces. Les vitesses ultrasoniques se propageant dans les agrégats saturés avec des flu-

ides réactifs ont été mesurées et il a pu être montré que la dissolution et le transport de matière

affectant la géométrie des contacts au niveau des grains, ainsi que la fracturation des grains sont

probablement les raison de cette diminution de vitesse.

En conclusion, la perte de porosité dans les sédiments carbonatés est principalement due

à la compaction chimique et très peu à la compaction mécanique. Les procédés chimique de

la compaction sont d’une part la dissolution sous contrainte, et d’autre part la dissolution sous

contrainte assistée par la propagation sous–critique de fissures. La prédominance de l’un ou

l’autre de ces procédés est liée à la nature du fluide présent dans l’espace poreux ainsi qu’á la

nature des grains.
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Introduction: Problem statement, main

findings and conclusions of the thesis





1.1 Introduction

Sedimentary rocks are formed by deposition or precipitation of particles which are then com-

pacted in sedimentary basins. Carbonate rocks represent one of the major sedimentary materials

and are economically important as for instance for hydrocarbons reservoirs. Despite this, many

questions remains regarding the evolution of their petrophysical properties with stress, temper-

ature, and pore fluid composition changes. The present thesis investigates the relative roles

of mechanics and chemistry on the porosity loss of carbonates under stress. Three different

experimental setups were used to quantify the effects of various parameters on compaction.

Since different sediments have different mechanical and chemical properties leading to vari-

ous compaction trends, four types of carbonates were studied: cemented limestones, cemented

dolostones, calcite single crystals, and bioclastic sand. Carbonate rocks containing clay, such

as marl that may contain up to 75% carbonate, were not studied. Chalk is characterized by

mechanical and chemical compaction processes relatively different than for other carbonates

(Scholle and Halley, 1985), it was therefore also excluded from the present study.

Understanding the evolution of sediments petrophysical properties as a function of the pore

fluid composition, the mineralogy, or the applied stress is of importance for several fields. For

instance, compaction curves, i.e. porosity or density versus depth curves, are used as an input

for basin modelling, and prediction of reservoir properties (Sclater and Christie, 1980; Audet

and Fowler, 1992; Goldhammer, 1997; Giles, 1997; Heydari, 2000; Ehrenberg, 2004); or for

backstripping analyses that require to take separately into account the various mineralogy (Watts

and Ryan, 1976; Marcussen et al., 2010). Compaction processes may drastically modify the

rock permeability and affect the fluid flow (Budd, 2002; Revil et al., 2002). Therefore the

effect of the variation of mechanical and chemical conditions in a reservoir during production

or injection also need to be evaluated.

To invert seismic and well log data, a good understanding of the relation between seismic

and rock properties is needed (Christensen and Szymanski, 1991). Compaction processes affect

porosity, permeability, grain contact stiffness or produce microstructures which in turn affect

the acoustic signal. The variety of grain size, shape, type of pore and chemical reaction affect-

ing the carbonates makes the relation between acoustic wave velocity and sediment properties

especially difficult (Rafavich et al., 1984; Anselmetti and Eberli, 1993; Vanorio et al., 2010).

The data presented in this thesis can be mainly used to interpret compaction in sedimentary

basins. However, most of the present study considers unconsolidated carbonate and processes

affecting such granular materials are also of interest in other research areas. For instance fault

gouges are restrengthening during interseismic periods (Rice, 1983; Marone et al., 1995). One
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of the major process leading to the sealing of wet active fault is pressure solution (Renard

et al., 2000; Tondi, 2007). An other example is the prediction of gravity driven instabilities. To

achieve it, processes leading to more or less cohesion in granular media and rock mass need to

be studied, one of them is stress corrosion (Faillettaz et al., 2010). Pressure solution creep and

cracks propagation in aggregates are processes also occurring during sediment compaction and

studied in the present thesis.

In the first part of this thesis a brief scientific background of the work is given. It includes

an introduction to compaction of sediments, including mechanical and chemical compaction

as well as their effects on acoustic velocities. Characteristics specific to carbonates are shortly

reviewed. Secondly, based on this scientific background the scope of the thesis is described,

an introduction to the experimental methods used is given and the main results of the study are

presented. Finally this chapter is closed by concluding remarks and suggestions are given for

further research within carbonates rock mechanics and rock physics. In the following chapter

carbonate compaction is reviewed. Then three individual papers present in more details the

work carried out during this PhD project.

1.2 Compaction of sediments

Compaction of sediments during burial involves decrease of the bulk volume occurring mainly

by progressive decrease in porosity with increasing depth and/or temperature. Overall sediments

are driven toward higher mechanical and thermodynamical stability (Bjørlykke, 1999). Com-

paction is generally divided into two regimes, that is mechanical and chemical compaction. In

siliceous sediments these two regimes are rather well separated. In those sediments, mechanical

compaction dominates at shallow depth, while chemical compaction becomes predominant at

depth corresponding to 60–80 ◦C (∼ 2–3 km) (Bjørlykke et al., 1989). In carbonate sediments,

these two effects are difficult to separate.

1.2.1 Mechanical compaction

Mechanical compaction starts immediately after deposition and is driven by the effective stress

applied on the sediments. The effective stress is the stress applied by the overlying sediments

from which the pore pressure is subtracted (Terzaghi, 1925). Increasing stress leads to water

expulsion when possible, if not then overpressure develops and reduces or stop mechanical

compaction. In the case of unconsolidated loose sediments, mechanical compaction occurs

mainly by grain sliding, rearrangement, and eventually grain crushing. The strain achieved
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by mechanical compaction is then dependent on the grain size, the grain sorting and the clay

content. Conversely, cemented porous rocks undergo less mechanical compaction, most of the

deformation is then elastic and is usually analysed using poroelasticity theory (Wong et al.,

2004).

Mechanical compaction ceases to be the main mechanism for compaction when sediments

become cemented and therefore over-consolidated with respect to the applied effective stress.

Mechanical compaction may, however, be reactivated during reservoir depletion as it was for in-

stance demonstrated by the famous subsidence cases of Wilmington or Ekofisk oil fields (Nagel,

2001).

1.2.2 Chemical compaction

Chemical compaction is controlled by thermodynamics and kinetics of fluid–rock interactions.

In carbonates, dissolution, conversion of aragonite to calcite, and cementation processes occur

at shallow depth. Then pressure solution creep becomes the main active process during chem-

ical compaction. It is driven at the micro-scale by chemical potential differences between the

stressed and unstressed part of the solid which causes i) dissolution of minerals along the con-

tact, ii) diffusion toward the pore space, and iii) precipitation on the less-stressed faces of the

grains (Sorby, 1863; Weyl, 1959). The overall rate of deformation is controlled by the slowest

of these three processes. Pressure solution may therefore be controlled by the kinetics of ei-

ther dissolution or precipitation reactions, or by the rate of diffusion along the grain boundary.

Diffusive transport along the grain contact is driven by the chemical potential gradient existing

between the liquid in the contact and the one in the pore space, the rate of transport also depends

on the geometry, i.e. thickness and microstructure, of the grain-to-grain contacts. Intergranu-

lar pressure solution creep may be associated with crack propagation in which case the rate of

deformation by chemical compaction will be faster.

1.2.3 Rock physics and compaction processes

One goal of rock physics is to link seismic properties to geologic properties by providing quanti-

tative interpretation of physical rock properties, lithologies and pore fluids (Avseth et al., 2005).

This goal can only be achieved by first undertaking studies that correlate mineralogy to well–

log or seismic data, and second by linking compaction processes, or evolution of various type

of porosity with increasing effective stress; this can be done using a combination of laboratory

data and rock physics modelling.

In the North Sea, a correlation between mineralogical or geochemical changes and seismic
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response was observed (Thyberg et al., 2000). There for instance, quartz cementation in mud-

stones was linked to seismic velocity increase (Peltonen et al., 2009; Thyberg et al., 2009). In

carbonates, lithology and pore type influence acoustic velocities (Anselmetti and Eberli, 1993;

Eberli et al., 2003; Agersborg et al., 2008). The influence of the pore type might be linked to

the surface available for reactions between fluid and rock. For instance the increase or decrease

of shear wave moduli between dry and brine saturated carbonates is attributed to the change in

surface energy of the pore walls and to dispersion effects (Verwer et al., 2010). More exper-

imental and modelling data need however to be collected to better take into account changes

affecting the carbonate framework due to chemical reactions (Vanorio et al., 2010).

1.3 Specificities of carbonate sediments

Porosity versus depth curves for carbonates are less understood than for siliciclastic sediments.

This situation is mostly due to the high variability of the carbonates deposition environments

(Bathurst, 1971) as well as their great chemical reactivity (Moore, 2001). Various chemical

processes inducing porosity loss have to be considered in carbonate compaction studies. These

processes include dissolution, conversion of aragonite to calcite, cementation and dolomitiza-

tion. Dissolution by meteoric water at the surface may however create high porosities, for

instance by the formation of karst.

Compared to siliciclastic sediments, grain shapes in carbonates are highly variable and

grains can contain microscopic or macroscopic pores. Therefore individual carbonate grains

show varying strength, and aggregates can retain much higher porosity than siliciclastic sands

(Braithwaite, 2005). Uncemented carbonates have higher friction angles than siliciclastic sand,

with ϕ = 40 (Coop, 1990), and limestones are usually less compressible than sandstones (Wong

et al., 2004). The mean value for compressive strength of limestones is 100 MPa, a wide range

of value is observed, however (Braithwaite, 2005).

The various carbonate minerals have different thermodynamics properties (Morse and Macken-

zie, 1990), therefore chemical compaction affects them differently. Aragonite, CaCO3, is about

1.5 times more soluble than calcite. Calcite, CaCO3, is thermodynamically stable and, unlike

quartz, its solubility decreases with increasing temperature in the range 25–350 ◦C (Morey,

1962). Dolomite, CaMg(CO3)2, is thermodynamically more stable than the two other phases.

Solid solutions between calcite and magnesite, Mg–calcites, are often found in shallow water

marine sediments, where they are derived from skeletons of organisms and by direct precipita-

tion of marine cements. Their magnesium content has a strong influence on their solubility, for

instance, in seawater biogenic magnesian calcite containing about 11 mol % MgCO3 may have
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the same solubility as aragonite (Morse and Mackenzie, 1990). In this thesis dolomite, calcite

and high Mg–calcite are studied.

1.4 Scope of the thesis

A survey of the published literature in the following chapter gives an overview of what is known,

and what is not, about carbonate compaction. Based on this knowledge, two main objectives are

defined for this thesis. The first objective is to separate and quantify the relative role of mechan-

ical and chemical compaction during carbonate sediments burial. A general question regarding

burial of carbonates is: Why is there still porosity left in deeply buried limestones? Based on

this the second objective of the thesis is to understand the various mechanisms responsible for

porosity loss in carbonate sediments and especially chemical compaction processes.

In nature mechanical and chemical compaction act together (see section 2.2). To be able to

separate their effects it is therefore necessary to study them with specifically designed laboratory

experiments. Mechanical compaction proceeds differently whether it acts on unconsolidated or

consolidated sediments (see section 2.3.1) and, in carbonates, cementation can occur right at the

surface. Therefore mechanical compaction of both cemented limestones and dolostones from

shallow buried bioclastic carbonate platforms (Paper 1) and unconsolidated carbonate sands

(Paper 3) are studied by carrying out uniaxial compression tests.

The main controlling parameters for chemical compaction are stress, temperature, advective

and diffusive flow and the pore water composition (see section 2.2.2). The main chemical com-

paction mechanism is pressure solution associated, or not, with crack propagation. Theoretical

compaction laws for aggregates compacting by pressure solution are found in the literature,

however no good agreement between theory and experiments has yet been found for carbonates

(see section 2.3.2). This points out the need for a better understanding of pressure solution

mechanisms at the grain scale. To this end, single contact indentation experiments are carried

out on calcite crystals (Paper 2). How chemical compaction acts on aggregates subjected to

effective stresses equivalent to 2–3 km burial depth is investigated on calcite and bioclastic

carbonate sand by varying the parameters controlling chemical compaction (Paper 3).

During all the uniaxial compression tests (Papers 1 and 3) ultrasonic P- and S–waves veloc-

ities were recorded in order to link compaction processes to elastic wave velocities evolution.
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1.5 Experimental setups used

Three different experimental setups were used (Figure 1.1). Two different types of uniaxial

compression tests were carried out: K0 triaxial tests and œdometer tests. Uniaxial compression

tests are used for compaction studies because they prevent lateral strain which is also prevented

in sedimentary basins (Fjær et al., 1992; Giles, 1997). To investigate the mechanisms of calcite

dissolution under stress at the micrometer scale, a simple setup was designed in which a half–

ball lens was pressed against a calcite crystal (Figure 1.1).

σ1

σ3 σ3

σ1

σ1

σn

K0 Triaxial Test 
(Paper 1)

Oedometer Test
(Paper 3)

Single contact indentation
(Paper 2)

Figure 1.1: Schematic description of the three experimental setups used. The grey colour rep-
resents carbonates.

Following the linear elasticity theory, stresses applied on elastic material are linked to the

resulting strain by a linear relationship. This enables the determination of two important static

material characteristics, that is the elastic modulus, or Young’s modulus and the Poisson ratio.

In the case of uniaxial strain, the static Young’s modulus, Estat, is defined as follows (Turcotte

and Schubert, 1982),

Estat =
(1 + ν) · (1− 2ν)

(1− ν)
· σ
′
1

ε1
, (1.1)

with σ′1 the vertical effective stress, ε1 the vertical strain, and νstat the static Poisson ratio which

can be expressed as follows,

νstat =
σ′3

σ′1 + σ′3
, (1.2)

with σ′3 representing the minimum horizontal stress. From these two parameters it is then pos-
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sible to determine the material resistance to compression, the bulk modulus, as well as the

material resistance to shear stress, the shear modulus.

In K0 triaxial tests, both the vertical and horizontal stresses are known, the determination

of the material elastic moduli is then straightforward. In the case of œdometer tests, only the

vertical applied stress is known, the Poisson ratio would therefore have to be assumed to enable

the determination of the other material characteristics.

During uniaxial compression tests, ultrasonic elastic wave propagation through the samples

were monitored. Because elastic waves mechanically disturb the samples, their velocity are

linked to the elastic moduli and the bulk density, ρ, by the wave equation. Elastic moduli

calculated from P- and S–wave velocities, Vp and Vs, respectively, are the dynamic moduli. The

dynamic Young’s modulus, Edyn, is obtained by,

Edyn = 2ρV 2
s (1 + ν), (1.3)

with the dynamic Poisson ratio, νdyn, expressed as,

νdyn =
V 2
p − 2V 2

s

2(V 2
p − V 2

s )
. (1.4)

The material resistance to compressive and shear stress may then also be expressed as a function

of Vp and Vs.

In this thesis, carbonate sediments were characterised by either static moduli (Paper 1) or

dynamic moduli (Paper 3). Theoretically, calculation of static and dynamic moduli should give

the same values. However, in reality they are significantly different and thus hardly comparable.

Several reasons may explain this discrepancy, the main one is certainly that geological materials

are often characterised by a non strictly linear stress–strain relationship. Therefore the stress–

to–strain ratio over a large strain measurement is different than for a very small one. This

results in a strain amplitude of about 10−2 during static moduli measurements compared to a

strain amplitude of 10−7 or less during static moduli measurements, and therefore significant

differences between static and dynamic moduli (Fjær et al., 1992; Mavko et al., 2009).

During experiments the influence on final strains or strain rates of various parameters such as

pore fluid composition, temperature or stress, was quantified. Then the samples were observed

ex situ using optical microscopy, scanning electron microscopy or white light interferometry,

so that stress–strain relationships during mechanical compaction or strain rates during chemical

compaction could be linked to the resulting microstructures.
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1.6 Main findings

Paper 1

Petrophysical properties of bioclastic platform carbonates: implications for porosity controls

during burial (Marine and Petroleum Geology)

This experimental study investigates the potential for porosity loss by mechanical com-

paction of platform carbonate strata. To this end sixteen core–plugs samples from two Miocene

carbonate platforms on the Marion Plateau, seaward of the Great Barrier Reef, offshore north-

east Australia (ODP Leg194) were tested. The samples include eleven bioclastic limestones

and five bioclastic dolostones that were deposited in platform-top settings having paleo-water

depths of less than 10 to 90 m. They were variably cemented with low-Mg calcite and five of

the samples were dolomitized before burial to present depths of 39-635 m below sea floor with

porosities of 8 to 46 %.

K0 tests were carried out and the vertical effective stress, σ′1, was increased from 0 to 70

MPa. Ten samples tested under dry conditions had up to 0.22 % strain at σ′1 = 50 MPa, whereas

six samples tested saturated with brine, under drained conditions, had up to 0.33 % strain. The

yield strength was reached in five of the plugs.

Overall velocities increased with decreasing porosity. Vp ranged from 3640 to 5660 m/s and

Vs from 1840 to 3530 m/s. Poisson coefficient was 0.20-0.33 and Young’s modulus at 30 MPa

ranged between 5 and 40 GPa. Water saturated samples had lower shear moduli and slightly

higher P- to S-wave velocity ratios. Mechanical creep at constant stress was observed only in

samples that reached their yield strength, indicating a slow propagation of microcracks.

Although deposited as loose carbonate sand and mud, the studied carbonates acquired reef-

like petrophysical properties by early calcite and dolomite cementation. The main conclusions

of the study are:

• Total porosity and early cementation are fundamental controls on carbonate rock strength

and compressibility, as well as on other parameters like elastic moduli.

• Early cementation of bioclastic carbonate sediments created a stable cemented framework

with a high degree of over-consolidation and low compressibility.

• Water saturation of the samples produced weakening of the mechanical strength and

greater scatter in the correlation of P-wave velocity versus porosity.

• Variation in mineralogy does not influence the compressibility of the plugs strongly, but

acoustic velocities of dolostones are systematically higher than in limestones.

10



• Most of the present carbonate sediments were already so strongly cemented at 30–400

meters that further porosity loss during burial up to 4–5 km depth must occur mainly by

chemical rather than mechanical processes. The more porous samples, however, would

respond to increased burial by failure due to crack propagation.

Paper 2

Calcite dissolution under stress: Evolution of grain contact microstructure during pressure

solution creep (Journal of Geophysical Research)

This experimental study investigates the rate of calcite deformation by pressure solution

creep at a single contact, and determines the evolution of the contact geometry during dissolu-

tion under stress. Iceland spar calcite crystals were indented by half–ball lenses made of either

glass or sapphire. The surface area of the samples was about 2*2 mm2 and their thickness var-

ied in the range 150–680 µm. Water was present at the calcite/lens interface. Two nanometre

resolution techniques both in situ and ex situ were used to measure deformation and their results

compared.

From these results it was possible to identify the relative importance of pressure solution

driven by normal load, and free surface dissolution driven by strain energy, and how these

mechanisms couple to mass transport in fluid films and fractures. The main conclusions of the

study are:

• Two different processes occur during pressure solution of calcite crystals at the grain

scale. The occurrence of one or the other mechanism does not appear to be ruled by the

applied stress but is most likely dependent on the presence or not of a flaw in the crystal.

In one case, diffusion of the dissolved solid takes place in the pore fluid present along

a rough interface between calcite and the indenter. In the second case, diffusion occurs

through cracks that propagate from the contact toward the less stressed part of the crystal.

• Strain rates are higher for experiments in which crack propagation occurred. This in

agreement with earlier experimental studies, which show that for experiments conducted

on aggregates or single crystals, strain rates increase by one to two orders of magnitude

when crack propagation occurs.

• Overall it seems strain rates are not really stress dependent but rather dependent on the

grain size or whether crack propagation occurs or not.
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Paper 3

Experimental mechanical and chemical compaction of carbonate sand (submitted to Journal of

Geophysical Research)

This experimental study determines mechanical and chemical compaction processes active

during compaction of carbonate sands saturated with various fluids. Carbonate sand petrophys-

ical properties and their evolution during burial or fault zones processes are quantified.

Two types of samples were used in this study. Firstly, Holocene shell fragments from

beaches near Tromsø, northern Norway were compacted. These samples contain small amount

of siliceous impurities and are characterised by a large amount of mollusc shells having internal

porosity. Secondly, calcite single crystals were crushed and then compacted. Three grain sizes

were used in the range 63–500 µm. The samples were saturated with air, decane, glycol, water

in equilibrium with carbonate, or a solution of 5% NH4Cl in equilibrium with carbonate. The

samples were uniaxially compacted up to 32 MPa effective stress. Creep tests were also carried

out on bioclastic sands at effective stress of 10, 20 and 30 MPa. P- and S–waves were monitored

during both loading and creep phase.

Experimental compaction has shown that compaction of carbonates sands should be mod-

elled as a function of both mechanical and chemical compaction also at relatively shallow depth

and low temperature. In all cases, the nature of the fluid, the initial grain packing, and the grain

size represent important control parameters of the final strain and the strain rates at a given

stress. The main conclusions of the study are:

• In samples saturated with reactive fluids, e.g. water in equilibrium with carbonate or gly-

col/water mixture, significant chemical compaction was documented during the loading

phase. Samples saturated with non–reactive fluids, e.g. air or decane, showed less strain

at the same effective stress since the compaction was only mechanical.

• During the loading phase, chemical compaction occurred by pressure solution creep

which was enhanced by the presence of cracks at the grain–to–grain contacts. This is also

supported by the identification of compaction related microstructures in thin–sections.

• During creep tests carried out on bioclastic carbonate sand, the deformation was mostly

due to chemical reactions. Furthermore, pore water analysis, and especially the evolution

of the Mg2+/Ca2+ ratio, showed that magnesian calcite dissolved during experiments.

• In all the creep experiments, the strain versus time relation followed a power law in time,

with a single exponent equal to 0.23. Overall it was found that a combination of pressure
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solution creep and subcritical crack growth was responsible for strain, and strain rates in

the range 2.9·10−8–2.8·10−6 s−1.

• During creep tests, the samples compressibility was controlled by, in order of importance,

grain size, stress, and water saturation. Pressure solution was most likely the dominant

mechanism of compaction in samples saturated with water. Conversely, in samples satu-

rated with glycol or anisole, subcritical crack growth was most likely the main mechanism

of deformation.

• Ultrasonic velocity measurements showed that P- and S–waves velocities were in the

range of 705 to 2440 m/s and 535 to 1250 m/s, respectively. Low velocities were es-

pecially observed in samples saturated with reactive fluids. Dissolution and transport

affecting the grain–to–grain contacts geometry and crack propagation are likely to be the

reason for such velocity alteration.

1.7 Conclusions

Mechanical compaction was studied during uniaxial compression tests of samples saturated

with air or decane. Cemented limestones and dolostones samples having up to 32% inital

porosity showed almost no porosity loss at effective stresses up to 50 MPa (∼ 3–4 km). Their

compaction was close to purely linear–elastic until those stresses. Loose bioclastic carbonate

sands starting with 60% porosity had still about 40% porosity at 32 MPa effective stress, and

crushed calcite samples having initial porosities of about 46% had still about 25% porosity when

compacted up to 32 MPa (∼ 2–3 km). Looking at natural compaction trends for carbonate sed-

iments, porosity at such depth are found to be around 10-20%. This allows the conclusion that

in sedimentary basins carbonates would probably loose most of their porosity through chemical

compaction and that this starts at shallow depth.

In the samples studied and within the range of stresses investigated, chemical compaction

occurred most of the times by a combination of pressure solution and subcritical crack growth.

Whether dissolution under stress occurred by pressure solution only or by a combination of

pressure solution and subcritical crack growth resulted in two different grain contact geome-

tries. Propagation of cracks at the grain–to–grain contact affected the fluid diffusion path and

therefore the strain rates. In aggregates, parameters controlling chemical compaction, and there-

fore strain rates, were the grain size and initial packing, the applied effective stress and the water

saturation. The predominance of pressure solution or subcritical crack growth during aggregates

compaction was found to be related to the fluid in presence. While propagation or not of cracks
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during single contact calcite indentation was most likely related to the presence or absence of

flaws near the contact.

In cemented rocks, water saturation resulted in a weakening of the mechanical strength

associated with a greater scatter in the ultrasonic P–wave velocity versus porosity relation. In

aggregates, ultrasonic velocities were found to be abnormally low in samples saturated with

reactive fluids, probably due to dissolution modifying the grain–to–grain contact geometry, and

crack propagating through the grains weakening the grain framework strength.

The present results raised questions that could not be answered within the given time or

pointed out potentially interesting research topics. To be able to fully answer the question ”why

is there still porosity at depth up to 5 km in carbonate sediments?” a better understanding of

the interaction between pressure solution and crack propagation is needed. The coupling of

this two mechanisms and the derivation of strain rate laws describing compaction by mean of

pressure solution associated with subcritical crack growth as initiated by Zhang et al. (1990) or

Yasuhara and Elsworth (2008) should be studied in more details and extended to carbonates.

This would also need more experiments investigating the relation between applied stress and

crack propagation at both the grain and aggregate scale. Single contact experiments on calcite–

calcite contacts investigating the potential for grain contact healing in carbonate would also be

useful. To apply the knowledge obtained on carbonate compaction in the laboratory to sedi-

mentary basins, correlation between the resulting rock properties and seismic properties need

to be done. Ultrasonic waveforms were recorded during uniaxial compression tests. More could

be done on these data to investigate the effect of compaction processes on ultrasonic velocities

and try to link it to seismic data. To this end the relation between static and dynamic moduli in

carbonates should also be investigated. In addition, specific experiments should be designed to

investigate the effect of contact geometry and chemical processes at the grain–to–grain contact

on ultrasonic velocities.
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Abstract

Carbonates are one of the major sedimentary materials. Understanding their compaction be-

haviour is important for porosity prediction in sedimentary basins or to improve the knowledge

about sealing of active faults. In carbonates, as opposed to siliciclastic sediments, diagenesis

starts at shallow depth and can contribute to the formation of a mechanically stable framework.

Vertical stress, grain size and clay content are the main parameters influencing mechanical com-

paction. After 1-2 km burial, chemical compaction by pressure solution becomes an effective

process of porosity reduction. The main parameters controlling porosity loss then become ver-

tical stress, temperature, diffusive flow and pore fluid chemistry. Both mechanical and chemical

compaction can lead to either pervasive compaction or localized deformation. The effect of

the different parameters cannot easily be differentiated in observations of natural samples, as

various deformation processes occur and interact simultaneously. However, control parameters

may be separated in specifically designed theoretical and experimental studies.

Compaction of unconsolidated carbonate sands in laboratory occurs mostly at low stress and is

mainly controlled by mineralogy and initial packing of grains. It can explain porosity reduction

down to about 30% at 2.5 km. Conversely, very little porosity loss (< 1%) is obtained by me-

chanical compaction of cemented rock. In sedimentary basins, however, much lower porosity

values are usually encountered at such depth. Given that mechanical compaction does not ex-

plain satisfactorily porosity–depth trends observed in sedimentary basins, the effect of chemical

compaction on porosity must be considered. Among chemical mechanisms, pressure solution

involves local mass transfer by dissolution, diffusion and precipitation processes at the grain

scale. Subcritical crack growth is also a fluid assisted process contributing to compaction. Pres-

sure solution creep strain rate depends on grain size, porosity, applied stress, fluid chemistry,

and temperature. So far little experimental work has been performed on pressure solution and

subcritical crack growth in carbonates. However, time dependent creep experiments on calcite

powder and indenter experiments on calcite crystals show that time dependent compaction is a

water assisted process. Even though the different controlling parameters were tested, no clear

consensus exists on the rate limiting step of deformation and, consequently, on the creep law.

Individual processes leading to porosity loss in carbonates are rather well identified. No con-

sensus exists on their respective importance during burial, however. Even at shallow burial

(<1 km) chemical compaction is needed to explain the gap between porosity loss obtained dur-

ing experimental mechanical compaction and porosity-depth curves from sedimentary basins.

This chapter provides a review of the various processes at work during carbonate compaction

and synthesizes the current understanding on the respective importance of thermodynamic and
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petrophysical parameters at different stages of the carbonate compaction.

2.1 Introduction

Sedimentary materials are consolidated, or compacted, during their burial history. Porosity

loss in sedimentary basins has been widely studied especially due to the interest of the oil and

gas industry in understanding accumulation of hydrocarbons. Even though 60% of the world

oil and 40% of the world gas reserves are held in carbonates (Schlumberger market analysis,

2007) their burial compaction trends, i.e. porosity versus depth curves, are less understood

than for siliciclastic sediments. This situation is most likely due the the high variability of the

carbonates deposition environments (Bathurst, 1971) as well as their great chemical reactivity

(Moore, 2001).

Principal deformation mechanisms responsible for compaction are on the one hand me-

chanical, i.e. grains sliding and fracturing, and on the other hand chemical, i.e. intergranular

pressure solution creep in association, or not, with subcritical crack growth. Various chemical

processes inducing porosity loss have to be taken into account in carbonate compaction stud-

ies. These processes include dissolution, conversion of aragonite to calcite, cementation and

dolomitization.

Compaction studies based on outcrops and core materials lead to the conclusion that pres-

sure solution creep is an important process of porosity reduction in carbonate sedimentary rocks

(Weyl, 1959; Schmoker and Halley, 1982; Rutter, 1983; Meyers and Hill, 1983; Scholle and Hal-

ley, 1985). However, from natural observation, it is rather difficult to separate the influence of

different parameters such has stress, temperature or pore fluid composition. Thus theoretical

and experimental studies are conducted to quantify the influence of these different parame-

ters. Understanding processes driving porosity loss in sedimentary basins is necessary to, for

instance, enable prediction of porosity in geological reservoirs.

This review aims at outlining the state of knowledge on carbonate compaction based on

natural observations, laboratory experiments and theoretical modelling. During diagenesis of

carbonate sediments, change in porosity are induced by a combination of deformation pro-

cesses, dissolution and cementation. Even though this is not the focus of the present review,

dissolution and cementation at shallow depth will be covered in the extent that it affects com-

paction processes. In the first part an overview of natural observation of carbonate compaction

is given. It is shown that by using natural observation, log and seismic data, it is possible to

qualitatively separate the main deformation processes. Compaction of siliciclastic sediments is

not the focus of this review but the topic will be address succinctly since comparison may help
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to the understanding of carbonate compaction. In a second part theoretical models for mechan-

ical and chemical compaction of carbonates are reviewed. These models are usually calibrated

based on laboratory experiments that lead to a better quantification of the control parameters

involved in natural processes.

2.2 Carbonate compaction in sedimentary basins

Compaction is a phenomenon taking place in all sedimentary basins. It involves several pro-

cesses whose rates differ from one lithology to another. For instance, comparison of limestones

compaction trends within the first hundred meters of burial with siliciclastic sediments shows

that porosity loss is far more important in calcareous sediments (Hamilton, 1976). Similarly,

Ehrenberg and Nadeau (2005) study of carbonate and sandstone petroleum reservoirs, show that

carbonate reservoirs have lower values of median and maximum porosity for a given depth than

sandstone reservoirs. Moreover, this compaction can be pervasive, where porosity reduction

is quite homogeneous within the rock (Ginsburg, 1957), or highly localized, i.e. compaction

bands, stylolites (Ehrenberg, 2003).

Within carbonates, three main lithology groups may be differentiated, that is dolomite, lime-

stone and chalk. Dolomite and chalk can be seen as two end members as far as porosity loss with

depth is concern. Porosity loss is faster in limestones than in dolomites (Schmoker and Halley,

1982; Ehrenberg et al., 2006b), while porosity loss in chalk occurs faster than in shallow water

carbonates (Scholle and Halley, 1985). Dolomites are chemically (Bathurst, 1971) and mechan-

ically (Hugman and Friedman, 1979) more stable than limestones. Thus dolomitic rocks loss

less volume by compaction than limestone (Glover, 1968). In contrast the fine grained nature of

chalk enhances mechanical reorganization. Hence high porosities and low permeabilities char-

acteristic of chalk make them very susceptible to deform by pore collapse and hydro-fracturing

(Blanton, 1981). These different compaction trends between various lithologies point out the

necessity to analyze them separately. In the following, the focus will be primarily on limestone

and, to some extent, dolomite and chalk compaction will be addressed.

Porosity of carbonate sediments ranges from 50-70% at shallow depth (e.g. few hundreds of

meters) (Hamilton, 1976; Schmoker and Halley, 1982; Fabricius, 2003) to nearly zero at depth

greater than 6 km (Friedman et al., 1981; Heydari, 2000). It is, however, worth to mention that

some carbonate reservoirs preserve high porosity even though being deeply buried, the most

recent discovery being the deep water carbonate reservoir in the Santos basin, off-shore Brazil

(Caminatti et al., 2009).

Figure 2.1 displays some typical trends of porosity loss with depth in carbonates sediments.
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Figure 2.1: Porosity loss with depth in carbonates from different environments (Fitting curves
for DSDP leg 27 from Hamilton (1976), and for ODP Leg 130 from Bassinot et al. (1993).)

Those curves illustrate the large variability of carbonate compaction, especially at shallow

depth, which might partly be explained by the wide range of initial porosities 10 to 70% (Figure

2.1). These data represent carbonates from various environments, deep-sea calcareous sedi-

ments from DSDP leg 27 and ODP leg 131 (Hamilton, 1976), and near-surface sediments from

the South Florida basin (Schmoker and Halley, 1982). Both data-sets indicate a fast compaction

in the top 600 m and show that sediments with high initial porosity compact more readily.

While within the two first kilometres porosity versus depth curves have various trends, below

this depth compaction curves are more or less parallel (Figure 2.1). Although compaction trends

are quite similar among the different environments represented in figure 2.1, at five kilometres

depth a wide porosity range is still observable, i.e. from 5 to 15%.

Processes responsible for compaction involve both mechanical, i.e. stress dependent and

time independent, and chemical, i.e. involving time-dependent fluid-rock interactions, mecha-

nisms. A detailed review of their effect on porosity loss is undertaken in the following part of

this section. Porosity–depth trends (Figure 2.1) are regular, indicating that porosity reduction in

carbonates is a continuous process (Scholle and Halley, 1985). Mechanical and chemical com-

paction are, therefore, expected to always act together, the first one being dominant at shallow

depth, while chemical compaction slowly becomes the main porosity reduction mechanism.

2.2.1 Mechanical compaction

Field observations, core and log data analysis (Hamilton, 1976; Enos and Sawatsky, 1981;

Scholle and Halley, 1985; Bassinot et al., 1993; Wallace et al., 2002) tend to conclude that
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mechanical compaction is the principal mechanism of porosity loss during the first hundreds

meters of burial. Empirical mechanical compaction law often describe porosity loss with depth

as an exponential decay (Athy, 1930; Sclater and Christie, 1980),

Φ = Φ0e
−bz, (2.1)

with Φ the porosity function of the initial porosity, Φ0, the burial depth, z, and a constant,

b. These laws can fit porosity-depth trends of grain supported carbonates from the Cenozoic

platform of West-Central Florida (Budd, 2001), ooze limestones in the shallow waters of the

Ontong Java Plateau (Hamilton, 1976; Bassinot et al., 1993), and cold water carbonates of

the Gippsland basin, Australia (Wallace et al., 2002). From these studies it seems that, even

though early diagenesis and chemical compaction due to replacement of aragonite by calcite

occur, mechanical compaction is the predominant mechanism of porosity loss at shallow depth

in various environments.

From microstructural studies, at least four different mechanisms involved in mechanical

compaction can be discriminated, that is grain sliding, grain crushing, micro-crack propagation,

and pore collapse. Mechanical compaction in carbonates is affected mainly by stress, grain size

and sorting, and clay content. Grain size in carbonates is related to the biological and physical

origin of the carbonate (Coogan and Manus, 1975). Due to the increase in friction, adhesion

and bridging with decreasing grain size, compaction of fine sediments is less effective than for

coarse grains (Coogan and Manus, 1975). Heterogeneity in grain size distribution enhances

mechanical compaction as well (Chuhan et al., 2003). In carbonates sediments mixed with

clays, mechanical compaction is more important in layers containing clays (Ricken, 1987). This

can be explained by two mechanisms, on the one hand, clay particles increase the heterogeneity

of the grain size distribution. On the other hand, clay trapped along carbonate grain contacts

may prevent healing of these contacts and reduce the friction coefficient, allowing grain sliding

(Renard et al., 2001).

The rate of sedimentation, or sediments loading, is also a very important control of com-

paction. Carbonate sediments which undergone fast burial show more mechanical compaction

patterns than those subjected to a slower sedimentation rate (Scholle and Halley, 1985). Within

sediments compacting slowly enough time is available for chemical compaction processes to be

operative. This may therefore reduce the effect of mechanical compaction. In natural environ-

ments, mechanical compaction is very effective to reduce porosity down to 30-40 %. To reduce

further the porosity, either large differential stresses, producing pore collapse or fracturing, are

needed, or chemical compaction has to play a role (Scholle and Halley, 1985).

27



2.2.2 Chemical compaction

Chemical compaction involves early meteoric and marine diagenesis, as well as crack propaga-

tion in presence of reactive fluid and dissolution - precipitation resulting from pressure solution.

While early diagenesis is not a function of the stress, pressure solution and crack propagation

are strongly dependent on stress. All these mechanisms are also strongly dependent on the fluid

chemistry.

Pressure solution produces characteristic microstructures such as stylolites (Figure 2.2A, B)

or grain–to–grain indentation (Figure 2.2D). Crack propagating in grains can then be sealed by

calcite precipitating in the veins (Figure 2.2C). Petrographic studies allow some quantification

of the respective role of mechanical and chemical compaction in natural carbonate through

observation of microstructures (Meyers, 1980; Gratier et al., 1999; Budd, 2002).

A) B)

C) D)

200 µm

200 µm

1 cm

Figure 2.2: A) Microstylolite (white arrow), foraminifers are truncated by enhanced dissolution
adjacent to a thin clay seam (picture from ODP Leg 192, Site 1183). B) Stylolite (white arrow)
in Flamborough chalk, Yorkshire, UK. C) Limestone pebble fractures fill with calcite (white
arrow), area of grenoble, France (picture from Gratier et al. (1999)). D) Avon park grainstones,
USA, m = microspar cement, large arrow = grain interpenetration (Picture from Budd (2002)).

High permeability favours water-rock interaction and thus porosity loss. In some cases,

highly permeable shallow water carbonates may be affected by dissolution and thus porosity

gain, however. High permeability are found in coarse sands or grain supported carbonates (Enos
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and Sawatsky, 1981; Budd, 2001). Conversely, carbonate muds are highly porous but have very

low permeability, thus carbonate muds are less affected by early cementation than carbonate

sands (Enos and Sawatsky, 1981; Goldhammer, 1997). Nevertheless when reactive flow condi-

tions required for early cementation are met, precipitation of matter in the pore space contribute

to the formation of a mechanically stable framework which prevents further compaction. For

instance the Upper Jurassic Smackover Formation (Alabama) is constituted of oolitic and pel-

letal grainstones, which were strongly affected by early cementation. In these reservoirs a stable

framework was built (Kopaska-Merkel et al., 1994), therefore very little mechanical compaction

occurred and an average porosity of 17 % was preserved at about 3600 m depth.

Burial depth, or effective vertical stress applied on sediments plays an important role on

porosity reduction. Interactions with other controlling parameters such as temperature, pore

water chemical composition, clay content are significant. Time is of course an important pa-

rameter for chemical compaction since it involves the chemical reaction kinetics. However,

considering the fast kinetics of carbonate reactions, geological time is not a limiting factor and

therefore this parameter is not taken into account here. In the following paragraphs, the role

of stress, temperature, water flow and pore fluid chemistry are discussed separately. A special

emphasis is made on their relative importance in carbonate compaction by pressure solution

creep.

Effect of stress

From field observations, decrease of porosity in carbonates appears to be primarily a function

of depth rather than time (Royden and Keen, 1980; Schmoker and Halley, 1982). In other words

stress appears as the main driving force for compaction in carbonate sedimentary sequences.

Vertical effective stress acting at the grain-to-grain contact is the main driving force for pres-

sure solution creep. As a matter of fact intergranular pressure solution initiates with stress and

to some extent with temperature increase. Once initiated it then becomes a very effective mean

of porosity reduction (Meyers and Hill, 1983). In their study of Oligocene-Holocene cool wa-

ter carbonates, Wallace et al. (2002) noticed that calcite cement increased with depth. In this

same study, few signs of pressure solution were observed at depths less than one kilometre.

Conversely, at greater depth, intergranular pressure solution was well developed and was the

most obvious deformation mechanism in skeletal packstones (Wallace et al., 2002). Carbonate

rocks from Anadarko basin (south-west Oklahoma), or ooid grainstones of the Upper Jurassic

Smackover Formation (Alabama) (Friedman et al., 1981; Heydari, 2000) were exposed to high

vertical stresses, i.e. burial depth of 6 and 9 km respectively, but also to high temperatures
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exceeding 200◦C. In those formations, combination of mechanical and chemical compaction

acted to reduce porosity. Macro- and microscopic observations of these sediments show exten-

sive twin development on large calcite crystals, cataclastic textures, pressure solution features,

cementation and grain deformation (Friedman et al., 1981; Heydari, 2000), making difficult to

separate the effects of all these mechanisms. The combination of all these processes reduced

porosity to almost zero in these formations. A common feature of these different studies is

that, while very little signs of pressure solution are observed at shallow depth, the number of

pressure solution features increase significantly with depth. This might be an indication that

pressure solution starts to be an active process of porosity reduction when a minimum amount

of stress is reached.

Effect of temperature

Comparison of siliciclastic and carbonate sediments show that carbonate compaction is more

sensitive to stress and to a lesser extend to temperature (Giles, 1997). Dissolution and precip-

itation processes in calcite are affected by the temperature in two manners. On the one hand,

solubility of calcite decreases with temperature, on the other hand kinetics of calcite dissolution

is activated by a temperature increase. These two effects compete each other, and almost cancel

for pressure solution creep (Renard et al., 2000). Several field observations, however, indicate

that porosity loss with increasing depth can be related to increasing thermal exposure in sev-

eral carbonate reservoirs (Friedman et al., 1981; Heydari, 2000; Ehrenberg and Nadeau, 2005;

Bolås et al., 2008).

Effect of advective and diffusive fluid flow

Advective flow in sedimentary basin is in general rather slow (Bjørlykke, 1993). However, shal-

low water circulation plays, in some cases, an important role for early cementation (Enos and

Sawatsky, 1981; Budd, 2001). Since low porosity reservoirs are more often found in carbonate

than in sandstone, it is inferred that fractures occur more in carbonate (Ehrenberg and Nadeau,

2005), if not it would be too difficult to produce from carbonate reservoirs. This observation

is significant since fracture propagation can, in some cases, control fluid flow in sedimentary

basin. Fractures that are not sealed are in fact a preferential area for dissolution and therefore

diffusion of matter to the surrounding area.

Local diffusion of solute is an important process since it keeps pore water under-saturated

with respect to calcite, allowing further dissolution and therefore compaction. The two main

structures enabling fast diffusion rate are fractures and stylolites. Local dissolution along stylo-
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lites induces diffusion of matter in the surrounding media and participates to porosity occlusion

(Finkel and Wilkinson, 1990), leading to the observation that porosity loss by cementation is

actually positively correlated to the presence of stylolite (Ehrenberg, 2006; Bjørlykke, 2006).

Field observations also suggest that stylolitic dissolution is enhanced by clay minerals or phyl-

losilicates (Weyl, 1959; Ehrenberg, 2004, 2006).

Effect of pore water composition

In formation waters, concentration of dissolved elements is a function of initial pore water

chemistry which tends to equilibrate with minerals in presence (Bjørlykke, 1993). The degree

of saturation with respect to minerals in the shallow depth pore water is of importance, since it

will favour or not reactions. For instance the low degree of saturation, with respect to calcite,

of Mississippian skeletal limestones paleo-groundwater is shown to favour porosity loss by

intergranular pressure solution rather than mechanical grain repacking and plastic deformation

(Meyers and Hill, 1983).

At shallow depth, pore waters equilibrate and become saturated with respect to carbonate

minerals. In Figure 2.3 evolution of the Mg2+ to Ca2+ ratio and of the Ca2+ to Sr2+ ratio as a

function of depth are displayed for few shallow and deep carbonate formations. The Mg2+ to

Ca2+ ratio decreases at shallow depth which can be interpreted by the dissolution of carbonate

and progressive saturation of pore water with respect to calcite. The increase of the Ca2+ to

Sr2+ ratio is related to incorporation of strontium into aragonite structure. Magnesium content

is also of prime importance, since it is known to inhibit dissolution of calcite (Arvidson et al.,

2006). For instance in shallow-water carbonates rocks of South Florida, porosity is inversely

related to magnesium content of pore water (Schmoker and Halley, 1982).

At greater depth, i.e. below 100 meters, pore water composition might be less important

since it is already saturated with respect to minerals. Low variability of the Mg2+ to Ca2+

ratios at greater depth (Figure 2.3) demonstrates that water became saturated with respect to

calcite. The lowest values of this ratio can be explained by the increase of the calcium car-

bonate solubility with pressure. The Ca2+ to Sr2+ ratios are slightly lower in subsurface than

at shallow depth, indicating that, once the substitution of Sr2+ into the mineral has occurred,

strontium - carbonate reaction vanishes. At these depths, the different ratios only evolve due to

local dissolution by pressure solution creep.

From natural observations several questions remain unanswered on the dynamics of me-

chanical and chemical compaction. The amount of overburden necessary for pressure solution

to become the main process of porosity loss is difficult to determine from field observations.
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Figure 2.3: Comparison of porosity-depth trends with formation water chemistry. Upper graphs:
shallow depth carbonates. Lower graphs: deep carbonates. (Smackover data: Schmoker and
Halley (1982); Moldovanyi and Walter (1992); Ekofisk data: Lubanzadio et al. (2002); Warren
and Smalley (1994).)
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The role of temperature on chemical processes in carbonates is rather ambiguous, and the rate

limiting step of pressure solution can not be determined from field observations. Answering

these questions is not easy especially since once chemical compaction is operative, it is dif-

ficult to separate its effect from mechanical compaction processes on the porosity-depth data

sets or in microstructures observations. In order to understand the influence of these various

compaction mechanisms, and their interactions, several laboratory experiments and theoretical

developments were pursued. These theoretical and experimental development are the topic of

the following section.

2.3 Compaction of carbonate: theory and experiments

2.3.1 Mechanical compaction

Theoretical background

As sediments get buried, the applied vertical stress increases, which in turn leads to reduction of

sediments thickness, porosity loss and increase in the bulk density. The principal component of

the stress field is usually the vertical stress. The reduction in sediments thickness occurs mainly

without lateral strain because surrounding sediments exert lateral stresses that prevent it (Giles,

1997). Taking this into consideration while describing mechanical compaction in this section,

the assumption is made that deformation in sedimentary basins is uniaxial.

At shallow depth, without early cementation processes, carbonate sediments compaction

can be modelled using soil mechanics approaches. At early stage of sediment deposition, when

cementation has not occurred yet, the main process conducting to volumetric strain is grain

rearrangement and expulsion of water. The consolidation theory, first expressed by Terzaghi

(1925), states that the increase of effective stress leads to the expulsion of water and therefore

to consolidation of soil. The effective stress, σ′, is defined by,

σ′ = σ − Pp, (2.2)

where σ is the applied stress and Pp the pore pressure. Following Therzaghi’s consolidation

theory, a logarithmic relation is found between the void ratio, e, and the effective stress, σ′

(Terzaghi and Peck, 1967),

e0 − ef = Cc · log(
σ′f
σ′0

), (2.3)

the indices 0 and f indicate the initial and final states of the sediment void ratio respectively,
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the void ratio can be related to porosity through Φ = e/(1 + e). The compression index, Cc, is

a phenomenological coefficient used to characterize the different soils compaction.

If cementation occurs early then soil strength overcomes burial stresses, and mechanical

compaction processes are slowed down. Once sediments are consolidated and cemented, then

their deformation may be described by rock mechanics theories. Elastic deformation is then

the main deformation process up to much higher stresses than for soils. Rock mechanics divide

deformation induced by mechanical compaction into three main regions, i.e. linear-elastic, duc-

tile, and brittle (Figure 2.4). In geological materials, the ductile phase is usually very small and

restricted to situations of very high temperatures and stresses (Jaeger et al., 2007). Moreover,

in tectonically calm sedimentary basins most of deformation occurs in the elastic domain and

the strain is usually proportional to the applied stress and a function of the sediments intrinsic

properties (Figure 2.4).
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Figure 2.4: Top: Stress - strain relationship in the case of uniaxial compression. Bellow: Exam-
ple of stress–strain relationship from uniaxial compression tests in dry limestones (solid lines)
and dolostones (dashed lines), the porosity of the samples is indicated in the legend (data from
Croizé et al. (2009)).

Considering sediments to be linear–elastic, uniaxial deformation can be described by a linear

stress–strain relationship function of the Young’s modulus, E, and the Poisson ratio, ν, of the
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sediment (Turcotte and Schubert, 1982),

ε1 = σ1 ·
(1 + ν) · (1− 2ν)

E · (1− ν)
, (2.4)

where σ1 is the applied vertical stress and ε1 the vertical strain.

Poroelasticity is an extension of linear elasticity that takes into account the presence of a

diffusive fluid (Biot, 1941; Rice and Cleary, 1976). Poroelasticity theory is commonly used to

analyse compaction of fluid saturated rocks (Fjær et al., 1992; Guéguen et al., 2004). The strain

may then be expressed as follows,

ε =
1

K
· (σp − b · Pp); (2.5)

where K is the rock bulk modulus, σp the isotropic stress and b the Biot coefficient given by,

b = 1− K

Ks

; (2.6)

with Ks the bulk modulus of the solid phase. The uniaxial bulk compressibility, β1, and, there-

fore, the porosity loss are then described as a function of the effective stress and the Biot pa-

rameter (Giles, 1997; Wong et al., 2004),

β1 =
b · (1 + ν)

3 ·K · (1− ν)
. (2.7)

Typical values of the Biot parameter and bulk compressibility in limestones are given in Table

2.1.

Failure occurs when peak stress is reached (Figure 2.4). Unconsolidated sediments, first

need to reach a locked state then, when the vertical stress reaches a critical value, crushing

starts. Particle breakage occurs when the stress along the grain contact overcomes the yield

stress of the material. As force distribution is strongly dependent on the packing structure

(Chan and Ngan, 2005) and the geometry of the contact force network (Mair and Hazzard,

2007), the locking state of the grains determines the localization of breakage onset.

The stress value at which brittle failure starts in limestone is influenced by temperature.

Increase in temperature promotes ductility and increases the strain rate sensitivity (Paterson

and Wong, 2004). However, up to fracture limestone strength is relatively independent of strain

rate (Paterson and Wong, 2004). As in other type of rocks, failure in limestone involves strain

softening and strain localization (Evans et al., 1997). Since, in sedimentary basins, stress is

mostly vertical, fracture development is usually vertical or subvertical, unless a localized high

pore pressure fluid source initiate hydraulic fracture (Rozhko et al., 2007). Plastic pore collapse,
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Table 2.1: Some elastic moduli values for particular Limestones and Chalk found in the litera-
ture.

Rock φ ρ E ν K b β σc
a ref.

% g/cm3 GPa GPa GPa−1 MPa
Limestones:
Solenhofen 3 2.62 64 0.29 0.016 245 1, 3
Villeperdue 6.4 36 0.41 2
Tonnerre 13 19.3 0.53 0.052 72.4 2, 3
Chauvigny 17 16.3 0.69 0.061 42 2,3
Lavoux 21.9 13.8 0.77 0.072 30.4 2,3
Majella 30 37a 4
Saint Maximin 37 17a 4
Adana/Ceyhan 2.71 26.5 78 5
Adana/Karaisali 2.43 14.4 39 5
Hatay/Iskenderun 2.96 43.1 117 5
Adana/Pozanti 2.97 45.4 121 5
Chalk:
Lixhe 42.8 3.8 0.91 0.263 7.7 2, 3
a σc: Uniaxial compressive strength
b Effective pressure at the onset of grain crushing
1 : Fjær et al. (1992)
2 : Fabre and Gustkiewicz (1997)
3 : Vajdova et al. (2004)
4 : Baud et al. (2009)
5 : Yasar and Erdogan (2004)

grain breakage and failure occur at stresses above the yield stress (Carroll and Holt, 1972;

Curran and Carroll, 1979). During compaction, changes in pore shape, structure or connection

influence fluid flow in sedimentary basin (Evans et al., 1997).

Following is a description of some experimental studies done on carbonate sand and rocks.

Both types of material start compacting with quite a similar elastic behaviour. However, both

type of materials have different mechanical response when considering inelastic behaviours and

failure modes.

Experimental compaction of carbonate sand

The particular response of carbonate sand to loading was, first, mainly investigated within

geotechnical engineering studies. Triaxial testing of uncemented (Coop, 1990) and naturally

cemented (Airey, 1993) carbonate sands were carried at low stresses, i.e. below 8 MPa. Com-

paction studies being of geological interest, carbonate sands were also compacted at vertical

stresses corresponding to greater burial depths. Hydrostatic triaxial tests on modern carbonate

sediments from the great Bahamas bank (Fruth et al., 1966), compression tests on sand with

various grain size and carbonate content (Ebhardt, 1968; Chuhan et al., 2003), and confined

compression tests on shallow-water limestones cores from various sedimentary environments

(Shinn and Robbin, 1983) were carried out at vertical stresses up to 100 MPa.

Those tests focused on porosity decrease with increasing stress and studied the mechanical

strength of carbonate sands. The main results are, that carbonate sands have a stiff response up
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to a yield point and have higher friction angle, ϕ ≈40◦, than usually encountered in soils (Coop,

1990). The effective angle of friction, ϕ′, is an important parameter of the Mohr–Coulomb

failure criteria which might be defined as,

τf = c′ + σ′f tanϕ
′ (2.8)

with τf the shear strength at failure, c′ the effective cohesion, and σ′f the effective stress at

failure. After yielding, carbonate sands become very compressible resulting in large volumetric

strains. Carbonate sand compressibility can be related to the relatively high initial porosity

usually encountered in those soils and to their yield stress (Coop, 1990; Airey, 1993).

Tests conducted at more than 20 MPa effective stress showed that most of compaction oc-

curred in the early stage of loading, then, at effective stress greater than 5–10 MPa, the strain

rate decreased (Fruth et al., 1966; Ebhardt, 1968; Shinn and Robbin, 1983; Chuhan et al., 2003).

At low stress level, 5–10 MPa , where most of the compaction occurred, the stress–strain rela-

tionship strongly depends on the grain size and stiffness. For instance the five facies of the great

Bahamas bank, i.e. oolite, oolitic, grapestone, skeletal and mud facies, tested by Fruth et al.

(1966) showed different compaction behaviour up to 25 MPa. They compacted more or less

readily depending on their composition and initial porosity. Parameters controlling mechani-

cal compaction at these stresses are the composition of the sand and its initial stiffness (Fruth

et al., 1966), the initial packing and therefore porosity (Fruth et al., 1966; Shinn and Robbin,

1983), and the grain size. Finer sediments are less compressible (Ebhardt, 1968; Chuhan et al.,

2003) which is due to the fact that stress is distributed between more grain–to–grain contacts.

Ebhardt (1968) reported that temperature had some effect on compaction as well, more intense

compaction was observed in experiments conducted at 90◦C than on those conducted at room

temperature. However no more investigation has been done on the effect of temperature on

mechanical compaction. In Paper 3 mechanical compaction of bioclastic carbonate sand was

found not to be affected by temperatures in the range 20 to 70 ◦C.

At stresses higher than 25 MPa, stress–strain curves for different carbonate sands are much

more alike than at lower stresses, meaning that porosity loss in carbonate sediments is influ-

enced mainly by initial sorting and initial compaction (Fruth et al., 1966). Mechanical com-

paction of unconsolidated carbonate sediments is a very effective process of porosity loss at low

effective stress, but once a locking state is attained, then the strain rate is much slower.

The amount of mechanical strain achieved in carbonate sand can be rather important. Shinn

and Robbin (1983) showed that lime sediments can compact as much as 50% of their initial

thickness within first hundreds meters. However due to very large initial porosities, residual
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porosities higher than 30% are reported in carbonate sands and mud after mechanical com-

paction under effective stresses higher than 30 MPa (Fruth et al., 1966; Shinn and Robbin,

1983). These results show that if mechanical compaction is the only process responsible for

porosity loss, one could expect to find 30% porosity in limestones buried at 3 km. However

compaction curves of natural limestones show much lower porosity at this depth (Figure 2.1).

After mechanical compaction, microstructures observed in tested samples were very simi-

lar to those observed in naturally compacted carbonates. Grain fracturing was very common,

as well as grain penetration and buckling of spalled margins (Fruth et al., 1966); rotation of

shells towards the horizontal, reorganization of organic material, conversion of part of the core

from wackestone to packstone, obliteration of birdseyes and fenestral voids, flattening of fossils

(Shinn and Robbin, 1983) were also observed. Comparison of features produced experimen-

tally and naturally may enable a better understanding of when does cementation occur in natu-

ral environment. Features produced by mechanical compaction are certainly sites of enhanced

chemical compaction in nature.

Since cementation can occur very early in carbonate, effect of cement on sand mechanical

behaviour has to be taken into account. Cementation increases the shear modulus of the soil as

well as its yield strength (Airey, 1993).

Experimental compaction of carbonate rock

At small stresses, experimental mechanical deformation of carbonate rock is usually character-

ized by a non–linear stress–strain relationship, interpreted to be the closure of cracks, pores and

other defects (Vajdova et al., 2004). This early phase can be related to in situ stresses to which

the rock was subjected (Couvreur et al., 2001). Ultrasonic P- and S-waves velocity and quality

factor calculations enables also the monitoring of the end of the crack closure phase (Couvreur

et al., 2001). For salt water filled porosity, the electrical conductivity decreases at the beginning

of the test, that can be related to the closure of pores and sub-horizontal cracks (Jouniaux et al.,

2006). After this early phase, compaction is characterized by a linear elastic stress–strain rela-

tionship. This linear elastic phase can occur at different stress stages depending on the porosity

of the rock and the geometry of the pore space. Using Walsh’s model (Walsh and Brace, 1966),

the non–linear stress–strain relationship can be related to the amount of cracks and various type

of pores (Baud et al., 2000).

Vajdova et al. (2004) carried out hydrostatic triaxial tests on three limestones, the main

structural difference between them being the porosity. Solnhofen limestone has a porosity of

3 %, porosity of Tavel limestone is 10.4 %, porosity values of indiana limestones are 16, 18
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or 20 %. The compressibility of these limestones is increasing with porosity. Solnhofen lime-

stone has a compressibility of 0.016 GPa−1 (Baud et al., 2000; Vajdova et al., 2004), Tavel

limestone a compressibility of 0.033 GPa−1 and Indiana limestone a compressibility of 0.075

GPa−1 (Vajdova et al., 2004).

The main domain of investigation of experimental studies on carbonate rock compaction is

the onset of failure occurrence and on the failure mode. Fracture propagation in rocks is an

important mechanism of compaction, but is also of importance for fluid flow. A failure plane

creates a path for dissolution and transport of matter or can be a place of enhanced cementation

and fluid flow barrier.

Different mechanical parameters control failure in carbonates. These poro-elastic parame-

ters are usually inferred from mechanical triaxial tests (Renner and Rummel, 1996; Baud et al.,

2000; Palchik and Hatzor, 2002; Vajdova et al., 2004), compressional and shear waves propaga-

tion measurements (Couvreur et al., 2001; Eberli et al., 2003; Vanorio et al., 2008) or electrical

conductivity measurements in fluid saturated samples (Jouniaux et al., 2006). These different

methods allow to better constrain the mechanisms responsible for carbonate mechanical com-

paction. Hydrostatic triaxial tests (Baud et al., 2000; Couvreur et al., 2001; Vajdova et al.,

2004), uniaxial compression tests (Palchik and Hatzor, 2002; Jouniaux et al., 2006) and triaxial

compression tests with various confining pressure (Renner and Rummel, 1996; Couvreur et al.,

2001) were performed on limestones and dolomites. Carbonates tested had grain size ranging

from 5 to 400 µm, various chemistry, i.e. calcite, aragonite, dolomite, and various pore space

arrangement. Due to differences in the experimental procedures and microstructural properties

of the tested samples, the different tests are difficult to compare (Renner and Rummel, 1996).

The critical stress varies from 5 to more than 500 MPa in theses different studies. Porosity

seems to be the main controlling factor on the onset of failure, even though the scattering of the

critical stress as a function of the porosity is rather high (Figure 2.5). When samples are satu-

rated, water saturation increases preferentially in cracks and enhances formation of sub–vertical

fractures (Jouniaux et al., 2006). Therefore, critical stress is reached earlier in water saturated

samples (Figure 2.5).

Different failure modes were identified as a function of confining pressure (Renner and

Rummel, 1996; Baud et al., 2000). For confining pressure lower than 50 MPa, i.e. equivalent

to less than 3-4 km burial, dilatancy started and acted as precursor of brittle faulting. For

intermediate confining pressure, an initial stage of strain hardening could be measured. And

for confining pressure higher than 350 MPa, samples failed by cataclastic flow associated with

shear enhanced compaction and strain hardening (Baud et al., 2000). Compactive cataclastic

flow was commonly observed to be a transient phenomenon which evolved with increasing
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strain to dilatant cataclastic flow and ultimately shear localization (Baud et al., 2000).
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Figure 2.5: Critical axial stress in various carbonates as a function of porosity. The graph on the
right side is a zoom of the lower stress part of the left side graph (All the tests were conducted
under dry conditions, expected for the data from Jouniaux et al., 2006).

In very porous limestones a critical pressure beyond which stress-strain behaviour becomes

non-linear was observed, this limit corresponds to pore collapse and grain crushing (Vajdova

et al., 2004). Elastic, inelastic and failure properties of carbonate rocks can be related to their

porosity, and carbonate compressibility increases with porosity. Critical stresses for the onset of

pore collapse under hydrostatic and non-hydrostatic loading decrease with increasing porosity

(Vajdova et al., 2004). Mechanical twinning dominates in the most porous limestone, while dis-

location slip is activated in the most compact limestone (Vajdova et al., 2004). Elastic stiffness

and porosity are the main parameters influencing the onset of dilatation (Palchik and Hatzor,

2002).

In all these experiments, small strains were obtained for rock compaction. Carbonate are

in general less compressible than sandstones (Wong et al., 2004). In both carbonate sand and

rock compaction, the starting porosity is a crucial parameter, as the maximum compressibility

was obtained for samples with the highest initial porosity. All these experiments demonstrate

that loss of porosity in basin limestones are to some extend due to mechanical compaction.

However, mechanical compaction is mainly operative for sands or high porosity limestones.

For rocks with low porosities or in which a mechanically stable framework was built during

early diagenesis (Paper 1), the stresses needed to achieve grain crushing and shear fracturing

are usually higher than effective stresses usually encountered in sedimentary basins (Figures

2.4 and 2.5). Finally, mechanical compaction usually explains the decrease of porosity down

to 20–30% at stresses equivalent to burial depths of 2 to 4 km. In sedimentary basins, porosity

values are lower at those depths (Figure 2.1), therefore chemical compaction must play a key
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role in carbonate compaction to lower porosities below these values.

2.3.2 Chemical compaction

Theoretical background

Pressure solution: Pressure solution is an important process of porosity elimination in sedi-

mentary basins (Sorby, 1863; Rutter, 1983; Tada and Siever, 1989) or compaction and healing

of active fault (Angevine et al., 1982; Hickman and Evans, 1995; Renard et al., 2000; Yasuhara

et al., 2003). Various type of microstructures are associated with pressure solution, e.g. sutured

grain contact, grain truncation, indentation, clay seams or stylolites (Wanless, 1979; Buxton and

Sibley, 1981; Dysthe et al., 2002). The nature of microstructures associated with pressure so-

lution is a function of the rock lithology and structural resistance (Wanless, 1979; Buxton and

Sibley, 1981).

Pressure solution is a water assisted physico–chemical process occurring in relation to the

stress variation along the grain surface. First the increase of solubility of minerals with pressure

was observed, and the term pressure solution was created to describe the dissolution and diffu-

sion processes (Sorby, 1863). The term pressure solution was later associated with three serial

processes: i) dissolution at grain contact, ii) diffusion of solute matters toward the pore space

and iii) precipitation on the stress–free faces of grains and/or transport by diffusion or advection

(Weyl, 1959; Raj, 1982; Rutter, 1983; Tada and Siever, 1989; Lehner, 1990, 1995; Gundersen

et al., 2002). The rate of pressure solution is determined by the slowest of the three reaction,

i.e. dissolution, diffusion or precipitation (Rutter, 1983).

The driving force for pressure solution is the chemical potential gradient between the highly

stressed grain boundary and the pore space where stress is lower (Figure 2.6A). Numerous rate

laws for aggregates compacting by pressure solution have been derived. Theoretical equations

for creep rate due to intergranular pressure solution were first derived using a equilibrium ap-

proach (Paterson, 1973; Durney, 1976; Rutter, 1983). In order to describe the processes in a

more physically realistic way, a non-equilibrium approach was then used to develop models

for creep by grain boundary diffusional pressure solution, taking also into account the role of

precipitation on the overall strain rate (Lehner and Bataille, 1984; Lehner, 1990; Spiers and

Schutjens, 1990).

The grain boundary structure must be dynamically stable (Lehner and Bataille, 1984), i.e.

while continuous dissolution or precipitation occurs within a representative elementary volume

in the grain-to-grain contact, the average grain boundary structure remains constant. The equi-

librium between the solid phase under stress and the solution of the component forming the
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solid phase at the grain-to-grain contact is given by,

µ1 = f s + σn/ρ
s; (2.9)

where f s is the mass specific Helmotz free energy of the solid phase, ρs the density of the solid

phase, µ1 the chemical potential of the dissolved solid, σn is the stress normal to the grain to

grain contact, which is considered to be equal to the pressure, p, of the fluid within the grain

boundary (Lehner, 1990; Spiers and Schutjens, 1990). The chemical potential of the solute in

the pore space is therefore described by µeq1 = f s + pf/ρs with pf the pressure of the fluid in

the pore space. From there,

(σn − pf )/ρs = µ1 − µeq1 . (2.10)

Considering the above equations (eq. 2.9 and 2.10) in the case of equilibrium, supersatu-

ration in the pore space is attained. Precipitation might then heal the grain boundary and thus

stop pressure solution which will not be able to restart once the grain boundary is healed (Hick-

man and Evans, 1991). Since in nature a grain boundary remains permeable to fluid, therefore

equilibrium cannot exist at the grain boundary and equation 2.9 and 2.10 must be considered

for wet boundary approaching a state of equilibrium but not reaching it (Lehner, 1990).

Once dissolution occurred the chemical potential gradient,∇µ1, between the grain boundary

and the pore phase will drive diffusion. Diffusion occurs following Fick’s law which relates the

diffusive mass flux vector, J1, to the chemical potential gradient (Lehner, 1990),

J1 = − l

1− c1
∇µ1, (2.11)

with c1 = ρ1/ρ the mass fraction and l > 0 a phenomenological coefficient taking into account

the geometry of the grain-to-grain contact. For diffusion to occur the water film confined at

the grain–to–grain contact needs to support shear stress and enable diffusion of solutes (Weyl,

1959). The transport properties of the trapped thin film are somewhat different from those of the

pore fluid. The diffusion flux is proportional to the water film thickness at the grain–to–grain

contact (Durney, 1976), which is a function of the effective stress (Renard and Ortoleva, 1997),

and the diffusion coefficient of the thin film is also assumed to be lower than the one of bulk

water (Rutter, 1983). The actual diffusion coefficient is difficult to estimate, according to the

literature it is 2 to 10 times lower than for bulk water (De Meer and Spiers, 1999).

Grain boundary structure is a critical parameter allowing diffusion of dissolved material

outside of the contact area. Several types of grain boundary structures are debated in the litera-
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Figure 2.6: A) Schematic view of the three pressure solution steps. B) Three different grain
boundary geometries considered in the literature.

ture (Tada and Siever, 1986; Gratz, 1991; De Meer and Spiers, 1999; Dysthe et al., 2002; van

Noort et al., 2008). Pressure solution might occur as a combination of plastic deformation at

the grain-to-grain contact and free face dissolution at the edge of the contact (Tada and Siever,

1986; Karcz et al., 2006). A number of studies have assumed that water is present at the grain

boundary and have discussed several geometries (Figure 2.6B). The first one is an adsorbed

thin film which can support shear stresses (Weyl, 1959; Rutter, 1983). Secondly, and the one

mostly used in recent models, is the island and channel structure (Lehner, 1990), there stresses

are transmitted through solid-solid contacts. In this structure, the fluid is at hydrostatic pressure

and has pore fluid transport properties. A third type of structure is a clay filled grain boundary,

clays by increasing the water film thickness enhance diffusion (De Meer and Spiers, 1999). The

last structure, discussed here, is a thin-film short-circuited by cracks arrays (van Noort et al.,

2008).

Due to removing of matter by diffusion the diffusion path becomes longer, the change in the

diffusion path may then induce a change in the rate limiting step of pressure solution (Yasuhara

et al., 2003). The presence of stylolites is also important due to their role in diffusive mass

transfer. The diffusive transfer activity of stylolites increases with increasing presence of fine-

grained non-diffusible debris which increase the width of the stylolite (Hickman and Evans,

1995; Renard et al., 2001).

The solutes transported by diffusion from the contact to the pore space may be transported

out of the pore space by diffusion or advection (Lehner, 1995; Gundersen et al., 2002). In

the case of closed systems, the pore fluid becomes supersaturated with respect to the solid in
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solution and then precipitation occurs on the stress-free face of the grains. In some cases pre-

cipitation may be inhibited, for instance the presence of a large amount of clay minerals in the

sediments retard the precipitation (Tada and Siever, 1989), or in the case of quartz precipita-

tion does not occur at temperature below 80 ◦C due to the low reaction’s kinetics below this

temperature (Bjørlykke, 1999); in those cases supersaturation build up in the pore space. If the

pore fluid becomes largely supersaturated, the diffusion is no longer proportional to the normal

stress and pressure solution becomes interface controlled (Lehner, 1990).

From fundamentals thermodynamics relationships characterizing the solid, aqueous and

boundary phase, taking into account the three serial processes above described, macroscopic

Gibbs equations were derived for granular aggregates deforming by pressure solution (Lehner,

1990; Spiers and Schutjens, 1990; De Meer and Spiers, 1999). Even though some differences

exist between the different rate laws, especially in the definition of the parameters character-

izing the grain boundary geometry, they more or less all take the following form (Spiers and

Schutjens, 1990; van Noort and Spiers, 2009),

ε̇ =
GC(T )

dm
σeΩs

RT
f(φ), (2.12)

where ε̇ is the volumetric strain rate of the aggregate, G is a geometric constant function of

the grain packing, Ωs is the molar volume of the solid, R the gas constant and T the tempera-

ture. f(φ) is a dimensionless function of porosity, φ, taking into account the porosity dependent

changes in grain contact and pore wall area. σe is the effective stress and d is the grain di-

ameter. C(T ) is the thermally activated rate coefficient of the rate controlling process. C(T )

takes different form depending on which of dissolution, diffusion or precipitation rate is the

controlling rate of deformation. m is the grain size coefficient which varies depending on the

rate limiting process. In the case of a diffusion controlled compaction rate m = 3, while for an

interface-reaction controlled rate m = 1.

Various parameters such has grain size, clay, stress, time, cementation or solution chemistry

influence the rate of pressure solution (Tada and Siever, 1989). Intergranular pressure solution

theory (eq. 2.12) states that the compaction strain rate increases with decreasing grain size

(Weyl, 1959; Rutter, 1983; Tada and Siever, 1989; Lehner, 1990). In sediments with a wide

range of grain size, dissolution occurs preferentially within the small grain size and solute are

then transported towards areas of the sediments with coarser grain size where precipitation is

easier (Weyl, 1959; Tada and Siever, 1989). However, theory does not account very well for

wide grain size distribution (Niemeijer et al., 2009).

Clay minerals are not necessary for pressure solution to take place but certainly promote
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it (Tada and Siever, 1989). Strain rate increase due to clay mineral may be related to the

increase of the water film thickness which facilitate diffusion (Weyl, 1959) or to the fact that

clay minerals prevent grain boundary healing by maintaining the contacts open (Renard et al.,

2001). For stylolites, however, if the clay layer within the stylolite becomes thick compared to

the grain size, then the rate of pressure solution decreases (Weyl, 1959). The volumetric strain

rate is proportional to the effective stress (eq. 2.12).

Some theoretical works also state that a critical stress is needed to initiate pressure solution

and when, due to dissolution, the grain-to-grain contact becomes large enough so that the nor-

mal stress at the boundary is low enough then pressure solution will stop and grain boundary

healing starts (Tada and Siever, 1989; Yasuhara et al., 2003; van Noort et al., 2008). This crit-

ical stress is a function of the mineralogy of the compacting material. In sedimentary basins,

therefore, the amount of burial depth is an important factor controlling compaction by pressure

solution. To predict porosity loss by pressure solution, the burial history of the sediments needs

to be taken into account since dissolution, diffusion and precipitation are time dependent phe-

nomenons. The solution chemistry also plays a major role in controlling the rate of pressure

solution. In the case of an under-saturated pore fluid, free-face dissolution might occur (En-

gelder, 1982; Tada and Siever, 1989). In the case of supersaturation building up in the pore

space then the rate of dissolution will slow down and be a function of the precipitation kinetics

(Lehner, 1990).

Critical parameters to be studied are grain boundary structures (Paper 2) and their diffusiv-

ity, dissolution and precipitation kinetics of the studied mineral in different solution’s compo-

sition. Relation between compaction strain rate and applied stress, grain size or strains would

also give information about the process.

Subcritical crack propagation: Crack propagation is described using fracture mechanics

theory and would therefore have its place in the mechanical compaction section. However, as it

will be presented here, crack propagation in rocks is affected by the environment and the fluid

chemistry and can be seen as a chemical phenomenon induced by mechanical forces. Crack

propagation may occur at low stress and is usually characterized by a slow propagation, it is

then called subcritical crack propagation or stress corrosion. A short review of the fundamentals

of crack propagation in linear elastic material is given, followed by a discussion on the effect of

environmental conditions on propagation.

To study fracture mechanics, three important variables have to be taken into account: the

applied stress, the size of the flaw and the fracture toughness (Anderson, 1995). Fracture occurs

when the applied stress is sufficient to break its atomic bounds (Anderson, 1995; Scholz, 2002).
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Crack propagation may be described using the energy criterion theory (Griffith, 1920) based on

thermodynamic and energy balance. It shows that a crack will propagate in order to lower the

total energy of the system.

From the energy criterion theory, the crack will propagate when the energy needed for crack

to propagate is sufficient to overcome the resistance of the material. The energy release rate, G,

is the change in potential energy with crack area for a linear elastic material,

G =
πσ2a

E
, (2.13)

with σ the tensile stress, E the Young’s modulus of the considered material, and the crack’s

length is equal to 2a. For material having a linear elastic material the fracture toughness is

independent of the size and geometry of the cracked body, the theory is therefore applicable

at different scales. G is the mechanical driving force for crack propagation at equilibrium it is

equal to R the material resistance (Olagnon et al., 2006).
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Figure 2.7: Evolution of the crack propagation velocity at stress intensity factor lower than the
critical stress intensity factor.

The stress intensity factor KI = σ
√
πa characterizes the crack tip conditions in a linear

elastic material. KI is also a size independent material property. The relation between the

energy release rate and the stress intensity factor is,

G =
K2
I

E
. (2.14)
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The velocity of the crack propagation can be related to G or KI leading to the so-called

v − KI or v − G curves (Fig 2.7). For crack to propagate, the energy release rate needs to

overcome the material resistance to cracking, R. In general R may be set equal to the surface

energy, γ, and therefore R = 2γ under vacuum. Thus at equilibrium in a given environment,

G = Re = γe, (2.15)

with γe < γ (Olagnon et al., 2006). The above relations (eq. 2.13, 2.15) show that the crack

propagation is dependent on the local stress as well as on the environment. Due to pre-existence

of cracks in rocks, crack propagation may occur at stresses lower than required for slip or

twinning (Atkinson, 1982; Olagnon et al., 2006). The velocity may also be limited by the

reaction rate between the corrosive species and the material bounds.

Propagation of cracks occurring at stresses lower than the critical stress required for fracture

is an important fracture mechanism in the upper 20 km of the Earth’s crust (Atkinson, 1982).

The presence of water at the crack tip promotes weakening reactions and therefore make crack

propagation easier. Different terminologies are associated with this mechanism, in particular

stress corrosion or subcritical crack growth.

Subcritical growth occurs between stress intensity factors K0 and Kc (see Figure 2.7). K0

is the stress intensity factor below which, theoretically, no crack growth can occur, while at Kc

the cracks starts to propagate dynamically (Atkinson, 1982; Scholz, 2002).

For subcritical crack growth the crack velocity is usually described by a power law defined

by Charles (1958):

v = v0 · exp
(
−∆H

RT

)
·Kn

I , (2.16)

with v0 being a pre-exponential factor, ∆H the activation enthalpy and n is the stress corrosion

index, which is a material constant. Since crack propagation is a function of the reaction rate

at the crack tip, it might be affected by pH (Lawn and Wilshaw, 1975). How crack propagation

affects pressure solution creep rates in calcite is studied in Paper 2.

Experimental work on carbonate chemical compaction

Experimental studies on chemical compaction by pressure solution aim at finding out what is

the rate limiting step of the process, i.e. dissolution, diffusion, precipitation. This is done in

order to determine creep laws suitable for the material studied and easily applicable to natural

systems as it was for instance done for quartz by Gratier et al. (2009).
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If pressure solution is the deformation mechanism, the strain rate is influenced by the ma-

nipulation of dissolution, diffusion or precipitation. Following the theory of grain boundary

diffusional pressure solution the influence of parameters such as grain size, stress, porosity,

temperature, grain packing or the presence of clays, should be studied to discriminate which of

the three step is the rate limiting one. Experimental work was conducted on carbonate rocks

(Baker et al., 1980), and recent studies were carried on the one hand on fine grained (3 to 80µm)

super-pure calcite powder compacted using a microœdometer (Zhang et al., 2002; Zhang and

Spiers, 2005,b), and on the other hand on calcite crystals indented by glass (Zubtsov et al.,

2005).

Experiments on calcareous oozes were conducted at effective stresses in the range 4 to 100

MPa (Baker et al., 1980). Experiments on fine grained calcite were carried under effective stress

ranging from 1 to 4 MPa (Zhang et al., 2002; Zhang and Spiers, 2005,b). In these studies, test

experiments were conducted to ensure that pressure solution was the main deformation process

in wet experiments. Three main aspects were studied, that is the influence of effective stress,

grain size and pore fluid chemistry on carbonate compaction by pressure solution.

Increasing the effective stress increases the strain rate, and the rate of calcite recrystallisa-

tion (Baker et al., 1980). In the different experiments the stress–strain rate relationship does not

allow to determine the controlling step of calcite pressure solution. Nevertheless in one set of

experiments the strain rate versus stress shows a slope of 2 (Zhang et al., 2002), which accord-

ing to De Meer and Spiers (1999) favours the precipitation controlled intergranular pressure

solution.

A wider grain size distribution enhances the compaction rate (Zhang and Spiers, 2005,b) and

decreasing the grain size increases the strain and the strain rate at fixed strains (Zhang et al.,

2002; Zhang and Spiers, 2005b). In Zhang and Spiers (2005) the strain rate is linked to the

grain size by an inverse power law with an exponent equal to three, this indicates that diffusion

is most likely the rate limiting step of the process. Compaction of carbonate rocks also lead

to the conclusion that dissolution controls the rate of pressure solution (Baker et al., 1980).

However, the sensitivity to grain size in other experiments does not allow any conclusion on

which of the precipitation, diffusion or dissolution is the rate limiting step (Zhang and Spiers,

2005b).

In calcite aggregates, the strain rate is decreased by addition of Mg2+ in the pore fluid

at concentration ranging from 0.01 to 1 mol (Zhang et al., 2002; Zhang and Spiers, 2005).

Addition of PO3−
4 at 0.0001 to 0.001 mol/l (Zhang and Spiers, 2005), and NaHPO4 with con-

centration ranging from 10−6 to 10−3 mol/l (Zhang and Spiers, 2005b) also decrease the strain

rate. On the contrary, compaction creep increases with NaCl at 0.1 to 0.5 mol/l (Zhang and
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Spiers, 2005). Some of these results favour precipitation as a rate limiting step for pressure

solution, however the diffusion controlled hypothesis is never completely ruled out.

In carbonate environments where pore fluids are constituted of meteoric or organic poor

water, calcite pressure solution should be a really active diagenetic process. This process is

certainly much slower in environments where pore fluids are derived from seawater or are phos-

phate rich due to organic reactions or biological activity (Zhang and Spiers, 2005b).

Zubtsov et al. (2005) carried out indentation experiments at effective stresses ranging from

50 to 200 MPa and at temperatures of either 27◦C or 40◦C. In some experiments the applied

stress was constant and the deformation was measured ex situ. In experiments conducted with

a weak acid solution, a correlation was found between the depth of the hole and the applied

stress. Zubtsov et al. (2005) also carried out high-resolution pressure solution creep experiments

with continuous deformation recording. In that case, indenters were glass spheres, therefore the

contact area between the indenter and the crystal increases with strain and therefore the effective

applied stress decreases. In presence of a fluid in equilibrium with calcite, a direct relation

between the dead weight and the deformation rate is found. Dissolution of calcite forms holes

beneath indenters and dissolved calcite precipitates then around these holes.

In both methods pressure solution was established as the main deformation mechanism. In

these experiments, diffusion was found to be the rate limiting step for calcite pressure solution.

The deformation rate of calcite is more important when the solution contains NH4Cl which

enhances the solubility of calcite. The development of microcracks beneath the indenters short-

ened the diffusion transport at the indenter/calcite interface increased the strain rate (Zubtsov

et al., 2005).

Overall, no consensus on the rate limiting step of pressure solution in carbonates was ob-

tained. This is to some extent related to the absence of good agreement between macroscopic

strain rate laws and experimental results. A possible explanation is that present models do not

take grain–size distribution or packing of aggregates accurately into account. In addition, the

grain–to–grain geometry employed in the macroscopic models might not be suitable for car-

bonates.

In some experimental work the combination of pressure solution and subcritical crack growth

was observed both at the grain scale and at the aggregate scale (den Brok, 1998; den Brok et al.,

2002; Liteanu and Spiers, 2009). The effect of this combination on calcite grain contact ge-

ometry was investigated in Paper 2 and on the overall compaction behaviour of carbonate

aggregates in Paper 3.
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2.4 Implications for porosity prediction

Early cementation is an important particularity of carbonate rocks. Initial mineralogy, i.e. cal-

cite or aragonite, and saturation index of pore waters with respect to those minerals represent

important control parameters for porosity loss by chemical compaction at shallow depth (Mey-

ers and Hill, 1983; Bjørlykke, 1993). It participates to an early loss of porosity but also plays

an important role on stabilization and strengthening of the framework (cf. section 2.2). This

process can, to some extent, inhibit or retard mechanical compaction at shallow depth (Kopaska-

Merkel et al., 1994; Budd, 2001). If early cementation does not affect carbonate sediments, then

soil mechanics can be used to model compaction within the first 200 meters of burial (Audet,

1995; Goldhammer, 1997). Mechanical compaction is affected by the grain size, the clay con-

tent and the presence of different lithologies leading to differential compaction (cf. section

2.2). Experimental mechanical compaction shows the importance of porosity in the mechani-

cal strength of the sediments and that mechanical compaction can usually not explain porosity

values observed in nature.

Porosity loss as a function of the applied effective stress can be expressed by the consoli-

dation theory (Terzaghi, 1925) or the poroelasticity theory (Biot, 1941; Rice and Cleary, 1976)

whether unconsolidated sediments or rocks are taken into account. These theories involve elas-

tic moduli that are determined experimentally for the different sediments (see subsection 2.3.1).

The determination of the elastic parameters of rocks is crucial to understand their compaction

during increasing burial and therefore for porosity prediction.

In carbonate sands most of the compaction occurs at low stress, i.e. less than 5 MPa. Then

a locked state is reached and mechanical compaction proceeds by grain crushing with lower

strain rates. Compaction of sand depends on the initial packing, the sand composition and the

grain size, with finer grain–sized samples being less compressible. The shear modulus and

the yield strength increases with cementation. Rocks tested in the laboratory show a non–

linear stress–strain relationship which can be related to the amount of cracks and various types

of pore present (Baud et al., 2000). Porosity seem to be the main controlling factor on rock

compressibility. And overall carbonate rocks are less compressible than sandstones (Wong et al.,

2004). Understanding mechanical compaction and the determination of rocks elastic moduli is

important. However, these parameters are affected by chemical compaction processes that affect

the grain to grain contacts and modify the grain or rock framework stiffness.

Stress is the main drive of porosity loss by mechanical compaction, and it also triggers

chemical compaction. Pressure solution intensity is related to the amount of applied stress or

overburden (Royden and Keen, 1980; Schmoker and Halley, 1982; Spiers and Schutjens, 1990).
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Finally grain size and sorting is important because stress concentration at grain contact depends

on these parameters and control the onset of pressure solution creep (Heydari, 2000). At depth

greater than 500–800 meters, chemical compaction becomes the main mechanism of porosity

reduction in carbonates.

The main factors influencing carbonate pressure solution are stress, temperature, advective

and diffusive flow and the pore fluid composition (cf. section 2.2). Once pressure solution

is initiated, various factors control its kinetics. The effect of temperature pressure solution in

carbonates is not clear from natural data. The increase of temperature enhances dissolution

and precipitation kinetics, but diminishes calcite solubility. Hence Rutter (1983) demonstrated

that temperature is not a dominant control process for pressure solution. The diffusion part of

pressure solution is enhanced by the presence of open fractures, and especially by the presence

of stylolites. Stylolites are more present in part of the sediments where clays and siliciclastic

grains are present (Weyl, 1959; Ehrenberg, 2004, 2006). Formation waters composition seem

less important in the subsurface than at shallow depth, but might however play a role.

Models for pressure solution takes into account different grain–to–grain contact geometry

such as thin films or islands and channels models. However, some important effect are not

taken well enough into account in those theories, for instance the effect of grain size distribution

(Niemeijer et al., 2009), or the fact that the grain contact geometry and therefore the diffusion

path might be affected by the presence of cracks. The presence of cracks at the grain to grain

contact will fasten the strain rates. The velocity of crack propagation is found to be dependent

of the fluid in presence, since crack propagation at low stresses is controlled by the rate of

chemical reactions at the crack tip. Most of the experimental work on carbonate has focused on

trying to find the rate limiting step of pressure solution. However, comparing experimental data

with theory, no consensus was found so far. One explanation might be that the grain contact

geometry is not described well enough to be able to apply theory to experimental work. Also the

effect of grain size distribution and crack propagation oat the grain contact need to be accounted

for.

2.5 Conclusion

Mechanical compaction in carbonates does not play a major role on porosity loss. Already at

burial depth shallower than 1 km pressure solution might control the rate of sediments com-

paction. Therefore, unlike siliceous sediments, carbonate compaction can not be modelled by

mechanical compaction at depths corresponding to potential hydrocarbon reservoirs.

However, understanding mechanical compaction in carbonates is important. At shallow

51



depth, non–cemented sediments first loose porosity by mechanical compaction and reach a

locked–state. The configuration in which sediments are after initial mechanical compaction

determines the amount of grain to grain contacts and therefore further porosity loss by chemical

compaction.

Natural and experimental observations agree to say that pressure solution is the main pro-

cess of porosity loss in carbonates. Theory and experiments show that pressure solution is

dependent of effective stress, porosity, grain size and pore fluid chemistry. Although most ex-

perimental studies state that the rate limiting step for calcite pressure solution is diffusion, no

firm conclusion can be formulated. The rate limiting step might be of different nature depend-

ing on compaction condition, but that still has to be explored more thoroughly. Under which

conditions does this process starts and stops in limestone, is also not fully understood.
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Abstract

This study is based on rock mechanical tests of samples from platform carbonate strata to docu-

ment their petrophysical properties and determine their potential for porosity loss by mechanical

compaction. Sixteen core-plug samples, including eleven limestones and five dolostones, from

Miocene carbonate platforms on the Marion Plateau, offshore northeast Australia, were tested

at vertical effective stress, σ′1, of 0-70 MPa, as lateral strain was kept equal to zero. The sam-

ples were deposited as bioclastic facies in platform-top settings having paleo-water depths of

<10 to 90 m. They were variably cemented with low-Mg calcite and five of the samples were

dolomitized before burial to present depths of 39-635 m below sea floor with porosities of 8

to 46 %. Ten samples tested under dry conditions had up to 0.22 % strain at σ′1 = 50 MPa,

whereas six samples tested saturated with brine, under drained conditions, had up to 0.33 %

strain. The yield strength was reached in five of the plugs. The measured strains show an over-

all positive correlation with porosity. Vp ranges from 3640 to 5660 m/s and Vs from 1840 to

3530 m/s. Poisson coefficient is 0.20-0.33 and Young’s modulus at 30 MPa ranged between 5

and 40 GPa. Water saturated samples had lower shear moduli and slightly higher P- to S-wave

velocity ratios. Creep at constant stress was observed only in samples affected by pore collapse,

indicating propagation of microcracks. Although deposited as loose carbonate sand and mud,

the studied carbonates acquired reef-like petrophysical properties by early calcite and dolomite

cementation. The small strains observed experimentally at 50 MPa indicate that little mechani-

cal compaction would occur at deeper burial. However, as these rocks are unlikely to preserve

their present high porosities to 4-5 km depth, further porosity loss would proceed mainly by

chemical compaction and cementation.
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3.1 Introduction

Shallow water carbonates are strongly affected by early diagenesis (Friedman, 1964). Widely

variable early diagenetic processes affecting carbonate sediments make application of quantita-

tive models for petrophysical properties more difficult than for siliciclastic rocks which are more

stable at low temperature (Anselmetti and Eberli, 1993; Anselmetti and Eberli, 2001; Eberli

et al., 2003; Adam et al., 2006; Vanorio et al., 2008). In large part because of varying early

diagenesis, the Marion Plateau carbonate platforms display a wide range of petrophysical prop-

erties within a narrow range of depths (Isern et al., 2002; Ehrenberg et al., 2003, 2006c). They

are therefore well suited for studying the impact of early diagenesis on mechanical compaction.

Early carbonate diagenetic processes include dissolution of aragonite and magnesian calcite,

precipitation of low-Mg calcite, as well as dolomitization (Meyers and Hill, 1983; Scholle and

Halley, 1985). These processes can both add and remove large volumes of material, such that

subsequent mechanical compaction during the first several hundred meters of burial depends

strongly on the early diagenetic history (Hamilton, 1976; Scholle and Halley, 1985; Bassinot

et al., 1993; Wallace et al., 2002). Although initial porosities of carbonate sediments are very

high ranging around 50 - 60 % (Enos and Sawatsky, 1981; Kroenke et al., 1991), porosities

of subsurface carbonate reservoirs are generally much lower than in sandstones and commonly

show trends of regular decrease as burial increases (Schmoker, 1984; Brown, 1997; Ehrenberg

and Nadeau, 2005). At depth less than 2 - 2.5 km, i.e., temperature lower than 70 - 90 ◦C,

mechanical compaction is commonly the main process of porosity loss in sandstones (Bjør-

lykke and Høeg, 1997; Paxton et al., 2002), but its importance in carbonates is more difficult

to evaluate because of the irregular grain shapes and extensive diagenetic alteration character-

istic of many carbonate sediments. Laboratory experiments showed that when carbonates are

not cemented, mechanical compaction plays a major role on porosity loss (Goldhammer, 1997;

Chuhan et al., 2003). While carbonate rocks are mostly studied based on outcrop or cores from

reservoirs, the present study measures the petrophysical properties of Miocene carbonate rocks

buried at 39 - 635 meters below sea floor which represents their maximal burial depth. The

results provide a basis for predicting porosity at greater depth and understanding the respective

roles of mechanical and chemical compaction in carbonate sediments.

3.2 Samples

The samples studied are from two Miocene carbonate platforms that were cored during Ocean

Drilling Program (ODP) Leg 194 on the Marion Plateau, just seaward of the Great Barrier
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Reef on the northeastern Australian continental margin (Pigram et al., 1992; Isern et al., 2002).

These cores are characterized by strong petrophysical heterogeneities over short vertical depth

intervals, reflecting varying influence of both depositional textures and diagenesis (Ehrenberg

et al., 2006b). Details regarding the units sampled and the separation of the samples into dif-

ferent textural classes are provided by Isern et al. (2002); Ehrenberg et al. (2006a). Fifteen

horizontally oriented, 25 mm core-plugs were selected among the samples analysed by Ehren-

berg et al. (2003) (Figs. 3.1 and 3.2). One additional sample, plug 1.2, is a vertically oriented

plug drilled from whole-core sample EHWR1 (Ehrenberg, 2007). The samples consist of eleven

limestones and five dolostones cored from depth of 39 - 365 meters below sea floor. The sedi-

ments were deposited as loose bioclastic grains and mud in paleo-water depths estimated to have

been less than 10 to less than 100 meters (Isern et al., 2002). Principal bioclasts are large ben-

thic foraminifers, red algae and bryozoans. Plugs have porosities of 8 - 46 % and permeabilities

ranging from 0.04 to >50000 mD (Table 3.1). A wide scatter is observed in the permeability

- porosity relationship and no clear relationship between textures and porosity - permeability

trends is apparent (Fig. 3.3). Comparison between plug and whole core measurements for the

Marion Plateau samples shows that plug samples, despite their smaller size, adequately repre-

sent the petrophysical properties of the studied cores (Ehrenberg, 2007). The sixteen samples

selected for testing include nine plugs from site 1193, penetrating the Northern Marion Plat-

form (NMP) and seven plugs from site 1196, on the Southern Marion Platform (SMP) (Table

3.1). The samples include eleven limestones and five dolostones, meaning that they contain

80% or more calcite or dolomite, respectively. All samples originally had bioclastic textures

(packstone, grainstone, floatstone) and have negligible siliciclastic content.

3.3 Experimental method

3.3.1 K0 triaxial tests

The experimental method used is K0 triaxial testing under drained conditions. K0 stands for

coefficient of lateral stress at rest, K0 = σ′3/σ
′
1, where σ′3 is horizontal effective stress and σ′1

is vertical effective stress, both are expressed in MPa. The samples are cylindrical plugs of

about 25 mm in diameter and 17 - 29 mm in height. All plugs were ground at top and bottom

to make the two end surfaces plane and parallel. For some plugs plaster was added on the end

surfaces to fill large pores and ensure an uniform application of load on the surface. Plaster was

also applied at a few places on the sample sides to prevent the confining membrane from being

pressed into cavities and thereby being punctured at high cell pressures. The plugs were then
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Figure 3.1: Location of ODP drilling sites 1193 and 1196 where the tested samples were taken
(modified from Isern et al. (2002)).

Figure 3.2: Plugs 18, 21, 22 and 30 before compaction.
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Figure 3.3: Permeability versus porosity (Actual values are to be found in Table 3.1).
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dried at 50 - 60◦C. Two knobs were glued, diametrically opposed, at the middle height of the

sample for fixation of the radial deformation sensor. The samples were then sprayed with latex

rubber to create a confining membrane.

The samples were mounted into the triaxial cell and subjected to a vacuum of about 0.1

MPa inside the confining membrane and then subjected to a confining pressure of about 0.5

MPa. The vacuum was then released by allowing air into the sample for the dry tests and brine

for the saturated tests. For the saturated tests a back pressure of 5 MPa was applied by increasing

confining pressure and pore pressure simultaneously to 5.5 and 5.0 MPa, respectively, to secure

good saturation. The effective stresses were then increased to σ′1ini and σ′3ini values given in

Table 3.1. Then vertical stress was increased at a rate of 3.75 MPa per hour for the dry tests and

5 MPa per hour for the saturated tests to the σ′1final values given in Table 3.1, while strain in the

horizontal direction was prevented by continuously adjusting the lateral stress. The effective

vertical stress was calculated from the measurements of the effective confining pressure and the

deviator load applied by piston through the top of the cell and measured by the internal load

cell. The pressure controllers (for cell and pore pressure) and the loading press (for deviator

load) were connected to a PC so that the stresses could be applied automatically. Deformations

were recorded by two vertical LVDT deformation sensors and one radial LVDT deformation

sensor. Considering the experimental method and accounting for false deformation, vertical

deformation readings were estimated to be accurate to about ±0.002 mm. The brine used to

saturate the plugs consisted of 35 g dissolved NaCl per litre water. Tangent Young’s modulus,

E, and Poisson ratio, ν, were calculated at 30 MPa from stress and strain measurements (Table

3.1). The following relations were used to determine ν (eq. 3.1) and E (eq. 3.2) from stress and

vertical strain, ε1 (Turcotte and Schubert, 1982):

ν =
σ′3

σ′1 + σ′3
; (3.1)

E =
σ′1 · (1 + ν) · (1− 2ν)

(1− ν) · ε1
. (3.2)

3.3.2 Acoustic velocity measurement

Compressional and shear wave velocities were measured throughout the tests at regular time

intervals using the pulse transmission technique (Birch, 1960). P- and S-wave piezoelectric

transducers were mounted inside the base and top plates of the triaxial cell to measure P- and

S-wave velocities along the plug axis. Resonant frequency of the crystals was, according to the

manufacturer, 500 kHz. Compressional and shear wave velocities measured are between 3640
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- 5660 and 1840 - 3530 m/s, respectively. Although the resonant frequency of the glued crystal

may deviate somewhat from the one of the pure crystal, the wavelength of the ultrasonic pulse is

assumed to range from 3.7 to 11.3 mm, which is less than the plugs radius. This arrangement is

assumed to be sufficient to avoid diffraction phenomena and unwanted shape mode. The signals

were recorded on a computer, and first arrival times picked manually. At low stresses, S-wave

first arrivals are difficult to pick, but the clarity of the signal improves as effective vertical stress

increases. Correction for equipment was applied to the P- and S-wave velocities. First arrival

times, t0, were measured with no sample in between the base and top plates. This zero time

was then subtracted from the picked traveltime, ts, measured with a plug present. The plug’s

compressional or shear wave velocity was then calculated as: Vp/s = hs/(ts − t0), where hs is

the height of the sample. Bulk and shear modulus were calculated at 30 MPa from Vp and Vs

measurements.

3.4 Results

3.4.1 Stress - strain relationship

From the stress - strain curves (Fig. 3.4) most of the deformation is interpreted to be linear

elastic. The saturated tests show greater compressibility than the dry tests (Figs. 3.4 and 3.5).

At σ′1 = 50 MPa, the vertical strain, ε1, is less than 0.22 % for the dry tests, while ε1 is greater

than 0.22 % for the saturated tests (Figs. 3.4a, b). The critical strength, i.e., the stress value

where failure or gradual yielding starts, of the plugs was reached for two samples during the

dry tests and three samples during the saturated tests (Fig. 3.4c, d). For plug 1.2, at vertical

effective stress greater than 35 MPa, the stress - strain relation is non-linear possibly indicating

start of strain hardening. These five samples exhibiting the onset of failure or gradual yielding

all have high porosity relative to the other samples (Fig. 3.5), suggesting that rock strength

may be related to the degree of cementation. Compressibility, β = ∆ε/∆σ′1, was calculated

for dry and wet experiments. Compressibility of the dry plugs, βdry, is 1.30 - 4.42 · 10−11

Pa−1 and compressibility of the saturated plugs, βsat, is 3.57 - 18.8 · 10−11 Pa−1 (Fig. 3.5).

Compressibility correlates with porosity in both groups. Comparison with published data for

dry compressibility of carbonates (Bell, 1981; Baud et al., 2000; Vajdova et al., 2004) shows

that present samples are less compressible for a given porosity (Fig. 3.5). The non-linear part

of the stress - strain curves at low stresses is inferred to be due to closure of cracks (Baud et al.,

2000).

Young’s moduli are between 5 and 40 GPa and Poisson’s ratios are in the range 0.2 - 0.33
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(Fig. 3.6 and Table 3.1). The studied samples display a more or less linear relation between hor-

izontal and vertical effective stresses. This implies that Poisson’s ratio remains almost constant

during the tests, showing only minor decrease with increasing stress (Fig. 3.6). A dramatic

decrease of E with increasing stress is observed for sample 21, 69, 17, 1.2 and 31, this is

interpreted as the beginning of brittle deformations.

Both for dry and saturated samples, Young’s modulus decreases with increasing porosity

(Fig. 3.6). Dry limestones of the present study have lower Young’s moduli than found in those

studied by Palchik and Hatzor (2002), this is especially noticeable at low porosities (Fig. 3.6).

Calculations by the modified Mori - Tanaka’s relationship (Luo and Weng, 1987), using elastic

constants of calcite (Bhimasenachar, 1945) and dolomite (Nur and Simmons, 1969), give higher

values of both Young’s modulus and Poisson ratio than the experimental data (Fig. 3.6). Lack

of correlation betweenE or ν and porosity most likely indicates that others factors, such as pore

shape and texture, play an important role in determining the mechanical strength of carbonates.

Creep was observed in the five samples in which the critical strength was reached (Fig.

5.8), whereas no creep occurred in the plugs that did not reach their critical strength. Failure

was, most likely, followed by crack propagation and volume reduction, which could also be an

effective means of mechanical compaction.
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3.4.2 Acoustic velocities

P and S wave velocities show little increase with stress, which should be expected since strain

values are small (Fig. 3.8). Compressional velocities increase slightly at low stress, but become

approximately constant above σ′1 = 10 MPa, this is more pronounced for low velocity samples

(Fig. 3.8). The velocity increase is in agreement with the non linearity of the stress - strain

curves at low stresses which may be related to the closure of cracks (Fortin et al., 2007). At

similar porosities, higher compressional velocities are observed in saturated than in dry condi-

tions (Fig. 3.8), in agreement with previous studies (Winkler and Nur, 1979; Yale, 1985; Tao

et al., 1995; Adam et al., 2006).

Wide ranges of Vp and Vs values are observed in the present samples, with the lowest veloc-

ities occurring in the samples showing greatest strains (Figs. 3.4, 3.8). The high variability of

Vp and Vs within a narrow depth range is similar to the variability observed in samples from the

Great Bahama Bank (Anselmetti and Eberli, 2001). The samples with the lowest porosity have

as expected (Verwer et al., 2008) the highest Vp (Fig. 3.10). Scatter in the Vp values might be

due to variations in types of cement (Eberli et al., 2003), and pore geometry (Tao et al., 1995;

Dürrast and Siegesmund, 1999; Sayers, 2008; Verwer et al., 2008). Vp to Vs ratio is constant

during tests and tends to be higher in the saturated plugs. Vp/Vs is 1.39-1.87 for dry samples

and 1.80-1.95 for saturated samples (Fig. 3.9).
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Figure 3.8: P-wave velocity versus vertical effective stress for all samples.

Bulk and shear modulus calculated from Vp and Vs measurements are plotted together with
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Hashin - Shtrikman bounds in Fig. 3.11. Bulk modulus data are well predicted by theory. Two

limestones samples and one dolostone sample have higher shear modulus than the Hashin -

Shtrikman upper bound (Fig. 3.11). Dolostones have slightly higher bulk modulus, while shear

modulus does not seem to be influenced by mineralogy. The saturated tests have overall lower

shear modulus than the dry tests, but there are too few data to be certain (Fig. 3.11). Such an

effect is not predicted by Gassmann (1951), but has been noted in previous carbonate studies

(Baechle et al., 2005; Vanorio et al., 2008).
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Figure 3.11: Shear and bulk modulus at 30 MPa, calculated from Vp and Vs values, versus
porosity. Hashin - Shtrikman upper and lower bounds for bulk, KHS, and shear, µHS, modu-
lus were calculated for calcite and dolomite, the pores being filled by air.

3.4.3 Relationship between microstructures and physical properties

Two features common to all the limestone samples are dominance of bioclasts and cementation

by low-Mg calcite (plug 52, 18 Fig. 3.12). Dolostone samples were also constituted mainly of

bioclasts, but have been replaced and cemented by dolomite.

Of the five plugs that reached their critical strength, samples 21 and 31 have pore diameters

larger than encountered in most other tested plugs (see Table 3.2). The observation of Chuhan

et al. (2003) that coarse-grained sediments are more compressible than fine grained sediments

may explain the greater compaction shown by sample 1.2 which contains larger grains than

other samples (Fig. 3.12). Sample 69 is cemented by micro-crystals of dolomite that have

precipitated homogeneously inside the matrix, creating pores with a wide range of shapes and
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providing many sites for cracks nucleation and propagation. Sample 17 contains abundant

microporosity, in addition to larger pores, and inter-granular and intra-granular microcracks.

Coalescence of microcracks after compression tests was observed in samples 1.2 and 17 (Fig.

3.12).

52 1,2

6918

a

Figure 3.12: Thin sections of samples 52, 1.2, 18 and 69 before triaxial test showing the hetero-
geneity of the grains size and pore shapes. Samples 52 and 18 did not break, because sparitic
cement reinforced the pores, forming vault like structures that could sustain the stress. Sam-
ples 1.2 (a: cracks propagation) and 69 (no cement did reinforce the pores) did show a brittle
behavior at 50 MPa.

The aspect ratio of pores (long axis divided by short axis) was measured on thin section

photographs (Table 3.2). The data show that brittle behaviour is associated with higher values of

pore aspect ratio for given porosity (Fig. 3.13). At comparable porosity, larger pores (Table 3.2)

are associated with increased likelihood of failure. This can perhaps be explained by assuming

that smaller pore sizes result from higher cement contents and consequent increase in rock

strength.

Plug 4 and 52 have lower velocity than the other water saturated samples (Fig. 3.10). Plug

4 has a high pore aspect ratio (Table 3.2), which may explain its low compressional velocity

(Baechle et al., 2005; Adam et al., 2006; Vanorio et al., 2008). However this explanation is not
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Table 3.2: Mean values of the pore size and aspect ratio, and their dispersion.

Plug Na mean((a+b)/2)b var((a+b)/2)c mean(AR)d var(AR)c

18 40 0.25 0.053 2.7 2.2
69 54 0.19 0.171 2.6 1.2
21 40 0.35 0.100 3.5 6.2
22 32 0.16 0.012 2.1 0.6
30 40 0.32 0.109 2.2 1.2

114 47 0.08 0.003 2.5 7.7
160 41 0.24 0.083 1.9 0.3
167 57 0.24 0.020 2.0 0.8
201 45 0.22 0.025 1.9 1.2
203 49 0.29 0.028 2.1 0.6
1.2 18 0.21 0.012 2.2 1.4
2 35 0.36 0.139 2.6 1.6
4 28 0.22 0.016 2.8 2.7

17 38 0.16 0.013 2.5 2
52 39 0.18 0.012 2.1 1.7
31 35 0.57 0.171 2.4 1.2
a N = number of pores measured
b a = long axis of the pores (mm), b = small axis of the pores (mm)
c var = variance
d AR = Pore aspect ratio, AR = a/b
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valid for plug 52. Therefore, in the present study, the scatter in acoustic velocity is not explained

by changes in pore size and shape only.

3.5 Discussion

Eleven of the sixteen plug tested displayed a linear stress - strain relationship. Among those

plugs, little mechanical compaction was obtained during K0 triaxial tests at vertical effective

stress up to 70 MPa (Fig. 3.4). These Marion Plateau carbonates are less compressible than car-

bonates with lower porosity tested in other studies. Triaxial tests on dry Solnhofen, Indiana and

Tavel limestones with porosities ranging from 3 to 13 %, showed strains ranging from 0.19 to

0.46 % at confining pressure of 50 MPa (Vajdova et al., 2004). Dry tests on the Marion Plateau

plugs show maximum strain at σ′1 = 50 MPa of 0.22 % while on average they are more porous

than the carbonates studied by Vajdova et al. (2004) (Fig. 3.4). The lower compressibility of

the Marion Plateau samples than other cemented limestones (Bell, 1981; Baud et al., 2000;

Vajdova et al., 2004) is tentatively attributed to greater cementation of the former. The present

study suggests that cementation has made the Marion Plateau carbonates stronger than would be

expected from their porosity and depth values, resulting in only minor porosity reduction in re-

sponse to the stresses applied. Although the above comparisons concern specifically limestones,

the Marion Plateau dry dolostones do not display different stress - strain relationship than the

dry limestones. The formation of a stable framework built during early diagenesis, makes these

samples stronger than expected from porosity and depth values. Increasing applied stress on

these samples produced little porosity reduction, therefore for these type of rocks mechanical

compaction is not the main process of porosity reduction with burial.

The hypothesis of strength correlating with amount and, possibly, types of cementation can

be tested by measuring the samples by modal analysis, i.e., point counting, of thin sections.

These data are not part of the existing dataset, but are planned to be acquired, now that the

probable role of cementation has been identified.

During K0 tests, the plugs walls are prevented from collapsing by the regulation of the

lateral stress. This is also prevented in sedimentary basins due to lateral stresses exerted by

surrounding sediments. Nevertheless, five of the sixteen plugs reached their critical strength

during testing (Fig. 3.4). For the saturated samples, the three limestones out of six that reached

their critical strength, all have porosities greater than 20%. Among the saturated samples, three

different textures are represented, one of each reached its critical strength. For the dry tests, two

out of ten plugs failed, both having porosity greater than 20 %, although three other samples

with porosity greater than 20 % did not fail. One common feature of the two dry samples
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that reached their yield strength is the combination of high pore aspect ratio and high porosity

(Fig. 3.13, Table 3.2). Failure seems to be most likely occurring in coarse grained samples

than in fine grained ones, although this is not true in all cases. Different factors may decide

on competence versus failure of these samples, but the present study clearly shows that high

porosity is favourable to failure, as no failure occurred in samples with porosity less than 20 %

(Fig. 3.5).

Only the data for limestones can be compared between dry and saturated states because the

dolomite were only tested dry. The saturated limestones show much greater increase in com-

pressibility at higher porosities than dry samples, such that βsat − βdry increases with porosity

(Fig. 3.5). However, the compressibility - porosity correlation is much stronger for the dry sam-

ples. As expected from the compressibility results, the saturated limestones have lower elastic

moduli than the dry limestones (Fig. 3.6). Another effect of saturation is that shear moduli

values are lower and bulk moduli tend to be higher in saturated samples (Fig. 3.11). The dry

limestone and dolostone data define two parallel velocity - porosity trends (Fig. 3.10), whereas

no trend is apparent for the saturated samples. Higher Vp to Vs ratios are also found in saturated

limestones (Fig. 3.9).

Young’s modulus tends to decrease with increasing porosity as predicted by theory (Fig.

3.6), even though the predicted values are higher than the measured values. Young’s modu-

lus values obtained during this study are in agreement with values obtained on limestones by

Palchik and Hatzor (2002). As expected from the compressibility results, the saturated samples

have lower elastic moduli than the dry samples (Fig. 3.6). Porosity is probably the main fac-

tor controlling compressibility and elasticity, but poor correlations between porosity and these

mechanical properties indicates that other factors are also important. For the dry samples, bulk

and shear moduli are higher in dolostones than in limestones at equivalent porosity values (Fig.

3.11, table 3.1).

Vp ranges from 3640 to 5660 m/s and Vs from 1840 to 3530 m/s for the plugs of this study.

Compressional velocities are lower than most published data for which VpLimestone ranges from

6200 to 6500 m/s, and VpDolostone from 6900 to 7400 m/s (Mavko et al., 1998). Dolostone and

limestone do not display different stress - strain relationship (Fig. 3.5), but dolostone samples

do have significantly higher ultrasonic velocity (Fig. 3.10). As noted above, the dry limestone

and dolostone data define two parallel velocity - porosity trends (Fig. 3.10). The velocities

values of this study are similar to those measured on samples of equivalent porosity and depth

from the Great Bahamas Bank (Anselmetti and Eberli, 2001). The results of this study confirm

a strong correlation of P-wave velocity with total porosity under dry conditions and variably

higher velocities for given porosity in limestones under saturated conditions (Fig. 3.10). The

83



minimal scatter in the dry data suggests that these samples may share basic similarities in pore

geometry and matrix connectivity, as these factors are known to introduce scatter in velocity -

porosity data (Anselmetti and Eberli, 2001). The considerably greater scatter in the saturated

data in Figure 3.10 can be better examined when petrographic analyses become available.

Vertical stress of 50 MPa is equivalent to approximately 4-5 km burial depth under hydro-

static fluid pressure. TheK0 tests thus simulate the potential natural burial of the Marion Plateau

platforms to depths corresponding to the Earth’s deeper petroleum reservoirs. The present ex-

perimental results indicate that increasing burial of the Marion Plateau carbonates can therefore

be expected to result in two different types of behaviour:

1. The more strongly cemented samples will experience elastic deformation and little poros-

ity loss by mechanical compaction (Fig. 3.4a,b).

2. The less cemented or more porous samples will fail by crack propagation (Fig. 5.8),

breaking grain-to-grain contacts and allowing further porosity loss by mechanical com-

paction.

For the majority of the samples, the observation of very little compaction at stresses up to

50 MPa, indicates that almost no porosity reduction would occur by mechanical compaction if

these rocks were buried at 4 to 5 km depth. Average porosity of the set of samples is about 20 %

and very little porosity loss is obtained during testing. It is unlikely that this amount of porosity

would be preserved at 4-5 km burial depth. For example, Ehrenberg and Nadeau (2005) show

that average porosity of carbonate petroleum reservoirs world-wide is around 8 % at 4-5 km

depth. We may therefore conclude that the porosity reduction in such strata occurs mainly by

chemical processes as depth increases with burial. This implies that the rate of porosity loss is a

function of dissolution and precipitation processes and is unrelated to mechanical compaction.

For the subordinate population of weak samples with porosity greater than 20%, failure by crack

propagation will cause local porosity loss.

The stratigraphic distribution of porosity in the two Marion Platform profiles, together with

the tested sample locations, provides an indication of the locations prone to mechanical failure.

As the failed samples are all from depths of less than 80 meters below sea floor, it can be

speculated that these weak intervals might become more strongly cemented and thus resistant

to failure before burial deeper than a few hundred metres. In such case, the conclusions derived

from the non-failed samples may apply to the entire section of each platform.
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3.6 Conclusions

• In this study, total porosity and early cementation are identified as fundamental controls

on carbonate rock strength and compressibility, as well as on other parameters like elastic

Moduli.

• Early cementation of bioclastic carbonate sediments has produced a stable cemented

framework with a high degree of over-consolidation and low compressibility.

• The effect of water saturation was observed in both the weakening of the mechanical

strength and greater scatter in the correlation of P-wave velocity versus porosity.

• Variation in mineralogy does not influence the compressibility of the plugs strongly, but

acoustic velocities of dolostones are systematically higher than in limestones.

• Most of the present carbonate sediments were already so strongly cemented at 30 - 400

meters that further porosity loss during burial to to 4 - 5 km depth must occur mainly by

chemical rather than mechanical processes. The more porous samples, however, would

respond to increased burial by failure due to crack propagation.
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Abstract

For the first time, nanometre resolution techniques both in situ and ex situ were compared in

order to study calcite dissolution under stress. The results obtained enabled identification of

the relative importance of pressure solution driven by normal load and free surface dissolution

driven by strain energy. It is found that pressure solution of calcite crystals at the grain scale

occurred by two different mechanisms. Diffusion of the dissolved solid took place at a rough

calcite/indenter interface, or through cracks that propagated from the contact toward the less

stressed part of the crystal. It is also found that strain rates are mostly a function of the active

process, i.e. pressure solution associated or not with cracks, rather than being influenced by

stress variations. Strain rates obtained in this study are in agreement with published data of

experimental calcite and carbonate dissolution under stress.

4.1 Introduction

During burial, sediments are subjected to increasing stresses and temperature with depth. Their

compaction results in a porosity decrease and an increase in density. Compaction processes

may be either mechanical and thus a function of the effective stress, or chemical, involving

dissolution and precipitation of minerals. Pressure solution creep is a chemical deformation

mechanism occurring in the presence of a reactive fluid, and is responsible for slow and irre-

versible compaction of sediments. Intergranular pressure solution creep is an important process

of porosity loss in sedimentary basins (Rutter, 1983; Tada and Siever, 1989) or of healing of ac-

tive faults during the interseismic period (Ramsay, 1980; Angevine et al., 1982; Gratier, 1987;

Renard et al., 2000). An other possible irreversible deformation mechanism during compaction

of sediments is subcritical crack growth (Atkinson, 1982; Liteanu and Spiers, 2009).
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Pressure solution is driven at the micro-scale by chemical potential differences between

the stressed and unstressed part of the solid which cause i) dissolution of minerals along the

contact, ii) diffusion toward the pore space, and iii) precipitation on the less-stressed faces

of the grains (Sorby, 1863; Weyl, 1959). The overall rate of deformation is controlled by the

slowest of these three processes. Pressure solution may therefore be controlled by the kinetics of

either dissolution or precipitation reactions, or by the rate of diffusion along the grain boundary.

Diffusive transport along the grain contact is driven by the chemical potential gradient existing

between the liquid in the contact and the one in the pore space, the rate of transport also depends

on the geometry, i.e. thickness and microstructure, of the grain-to-grain contact.

Theoretical relations describing the strain rate of aggregates compacting by intergranular

pressure solution include phenomenological coefficients (Weyl, 1959; Lehner, 1990). They also

have different dependencies on grain size and stress according to whether the process is con-

trolled by kinetics or by diffusion. A number of experimental studies have been carried out to

determine these parameters, but few experimental data exist on calcite pressure solution creep.

Recent experimental studies were carried on both fine–grained (3 to 80 µm) super-pure calcite

powder compacted at 2–4 MPa effective stress (Zhang et al., 2002; Zhang and Spiers, 2005,b)

and at 30 MPa (Liteanu and Spiers, 2009) using an œdometer, and on calcite crystals indented

by glass (Zubtsov et al., 2005). Either the deformation was proposed to be controlled by diffu-

sion (Zhang and Spiers, 2005; Zubtsov et al., 2005) or by precipitation kinetics (Baker et al.,

1980; Zhang et al., 2002; Zhang and Spiers, 2005b). The lack of consensus on the rate–limiting

process of pressure solution in carbonates is related to the absence of good agreement between

macroscopic strain rate laws and experimental results. A possible explanation is that present

models do not take grain–size distribution or packing of aggregates accurately into account.

In addition, the grain–to–grain geometry employed in the macroscopic models might not be

suitable for carbonates.

Macroscopic predictive theories describing aggregate compaction by pressure solution creep

should be based on spatial averaging methods using micro-scale phenomenological descriptions

(Lehner, 1990). Therefore, to predict the strain rate at aggregate or outcrop scale, a good un-

derstanding of the three serial processes at the grain scale and of the detailed microstructure

of the grain contact is required. The structure of grain-to-grain contact and its effect on the

rate of pressure solution creep are still not fully understood, however. Several types of grain

boundary structures are debated in the literature (Tada and Siever, 1986; Gratz, 1991; De Meer

and Spiers, 1999; Dysthe et al., 2002; van Noort et al., 2008). Pressure solution might occur

as a combination of plastic deformation at the grain-to-grain contact and free face dissolution

at the edge of the contact (Tada and Siever, 1986; Karcz et al., 2006). A number of studies
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have assumed that water is present at the grain boundary and have discussed several geome-

tries. For instance the grain boundary may be flat and diffusion occurs through an adsorbed

thin film which can support shear stresses (Weyl, 1959; Rutter, 1983; Yasuhara et al., 2003)

and has a slightly smaller diffusion coefficient than a free fluid. Another type of grain contact

geometry is the dynamic island and channel structure (Raj, 1982; Lehner, 1990), where stresses

are transmitted through solid-solid contacts. In this model, the fluid is at hydrostatic pressure

and has transport properties similar to the pore fluid. A third type of structure is a thin film,

short-circuited by crack arrays (Gratz, 1991; den Brok et al., 2002).

Another process, that is less understood, is the formation of tiny cracks that grow slowly

and permanently damage the solid (Atkinson, 1982). The propagation of such cracks at stress

intensity factor lower than the critical stress intensity factor is called subcritical crack growth or

stress corrosion. The three important variables to be taken into account are the applied stress,

the size of the flaw and the fracture toughness (Anderson, 1995; Scholz, 2002). Following the

energy criterion theory, cracks will propagate in order to lower the total energy of the system

(Griffith, 1920). The driving force for crack propagation is the energy release rate which corre-

sponds to the change in potential energy with crack surface area for a linear elastic material. At

equilibrium the energy release rate is proportional to the material resistance to cracking, which

is also equivalent to the surface energy, therefore the material resistance to cracking is affected

by the environment (Olagnon et al., 2006). Due to the pre-existence of flaws in the rocks,

crack propagation may occur at stresses lower than required for slip or twinning (Atkinson,

1982; Olagnon et al., 2006), and the presence of water at the crack tip may promote weakening

reactions.

Grain contact healing, or neck growth, has been showed to be a mechanism taking place

in pressure solution experiments where both the indenter and the indented material were halite

(Hickman and Evans, 1991; Zubtsov et al., 2004; van Noort et al., 2007), this is possibly an

important mechanism for calcite as well (Yamasaki and Weiping, 1993). The present study aims

at understanding the important connection between contact geometry and strain–rate, however.

To this end an experimental set–up was designed, in which a point force is applied on a calcite

crystal via a hemi-spherical lens made of either glass or sapphire, to study stress–enhanced dis-

solution along a single contact. A film of water saturated with respect to calcite is present at

the calcite/lens interface. High stresses along the contact induce dissolution of calcite below the

lens and, therefore, an increase of the contact surface area. The growth of the contact and the re-

sulting displacement are followed during several tens of hours using optical interferometry, i.e.

displacement of Newton rings. This allows the determination of the rate of calcite dissolution

as a function of stress. Before and after experiments, crystal surface topography was measured
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down to nanometre resolution using white light interferometry, enabling determination of the

resulting microstructures. The rates measured in the present study are compared with previous

studies of calcite indentation or carbonate slow deformation.

4.2 Experimental method

A single indenter set-up was specifically designed to study dissolution of calcite under stress,

the method is similar to the one used by Hickman and Evans (1995). Firstly, Iceland spar calcite

crystals were cleaved and polished to start each experiment with a flat crystallographic surface.

The indented plane was normal to a cleavage and miscut with respect to the calcite rhombs.

Calcite samples used were natural samples mined in South-West China and manufactured by

Photox Optical System Ltd. Surface roughness was measured using white light interferometry

prior to the force application. The surface area of the samples was close to 2*2 mm2. Sample

thickness varied in the range 150–680 µm. Secondly, a single contact force was applied on one

point of the calcite crystal using a glass or sapphire half-ball lens provided by Edmund Optics.

Half-balls with three different radii were used (Table 4.1), providing different initial contact

surface areas. The calcite crystal and the half-ball lens were placed between a thin cover-glass

bent over the half-ball lens and glued at both ends onto a thicker cover-glass (as shown in

Figure 4.1a). The applied force was a function of the bending of the thin cover-glass, i.e. of the

total height of half-ball lens and calcite crystal. Thirdly, water saturated with respect to calcite

was introduced in the system, i.e. after loading. After the water injection, the progression of

the water at the calcite/lens interface and the complete wetting of the contact was observed

with the microscope. Because the half-ball lenses were either made of glass or sapphire, these

two materials being less reactive than calcite, they are assumed to be chemically inert. After

validating the experimental protocol on a dozen test experiments, a series of six experiments

was performed for which the experimental conditions are to be found in Table 4.1.

The relationship between applied force and deflection of the thin cover–glass was calibrated

using two different cover–glasses and four different dead weights (Figure 4.1b). Since the

calcite samples in the experiments were glued onto the thin cover–glass, calcite crystals of

similar size were glued on the thin cover-glasses during force calibration to ensure that the

elastic parameters of the set-up were similar. For calibration, a thin cover glass was initially

maintained horizontally by two stands, one on each side. A dead weight was then suspended on

the cover–glass using a sewing needle. For each cover–glass and weight, the deflection due to

the suspended weight was measured using an LVDT LD400-5 displacement sensor provided by

Omega Engineering Inc. The resulting deflection versus force curve was then used to determine
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Figure 4.1: a) Experimental set-up: a flat piece of polished calcite crystal is pressed against a
half-ball lens by means of a bent cover glass. b) Force calibration: deflection versus applied
force relationships obtained for the two types of cover–glasses used.

the applied force, F , in each experiment (Figure 4.1b).

The calcite/lens contact was observed using an inverted reflected light microscope (Olympus

GX 71). The light source was a green monochromatic LED with a specific wavelength of λ=530

nm. Light was transmitted across the loaded sample, and interference fringes formed around

the contact between the calcite sample and the half-ball lens. The light rays reflected from

the lens/water and water/calcite interfaces produced concentric constructive (high intensity)

and destructive (low intensity) interference fringes centred on the contact (Figure 4.2). These

interference fringes are called Newton rings and were produced when the distance between the

two solids was of the same order of magnitude as the light wavelength (Tolansky, 1973). The

motion of the interference fringes due to the increase of the contact was followed for several

tens of hours using time-lapse photography (D100 Nikon Digital Camera). The contact surface

area, A, was extracted using image processing software (ImageJ), by outlining by hand the dark

centre of the picture enclosed within the first Newton ring. The applied stress was then simply

calculated using σ = F/A. The picture resolution being λ/4, the actual surface area of contact

might therefore be smaller than the one outlined by hand, which implies that the calculated

stress values represent minimum values.

At the beginning of each experiments, water saturated with respect to calcite was introduced

at the calcite/lens interface with the help of a micro-syringe. The high stress at the wetted

calcite/lens interface induced a chemical potential gradient from the contact toward the non-

stressed part of the fluid. The enlargement of the contact surface area resulted in a change

of the set-up geometry (Figure 4.2), and the displacement of the Newton rings could then be

monitored. In some experiments the water film evaporated and a new saturated water droplet

was injected in the contact and the time noted. This shows that the solutions are usually super-
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Figure 4.2: Top: Geometry of the calcite/half-ball lens interface. During experiments, a water
film is present at the calcite/glass interface. R: radius of the half-ball lens used, d = contact di-
ameter. Bottom: Light intensity (arbitrary units) along a 1D profile across the contact, showing
constructive/destructive interference patterns.

saturated during experiments.

At the end of each experiment, the crystal was dried and the resulting surface topography

was measured using white light interferometry (Wyko 2000 Surface Profiler from Veeco). This

was done by means of a microscope with a reference arm creating interference fringes with

maximum intensity at equal optical path lengths of the imaging beam and reference beam.

By moving the sample vertically and simultaneously capturing an image of the interference

intensity envelope, the relative height of the imaged surface at each pixel can be determined

with a vertical resolution of 3 nm. The horizontal resolution depended on the lens used and

was in the range 0.24 to 0.50 micrometres. A detailed topography of the indented region was

obtained from these measurements. The results are displayed as a digital elevation image in

which the height range is shown as a colour scale.

4.3 Data analysis

4.3.1 In situ measurements

Colour pictures of the contact and the Newton rings were taken at regular interval for a period

of up to three days. Pictures were first split into the red, green and blue channels. Since a

green light source was used, the green channel only was selected to get a better signal to noise
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Figure 4.3: Data processing steps of the optical pictures to extract the contact diameter growth
rate for experiment F01. a) green channel of the first analysed picture showing the contact
surrounded by Newton rings, b) selected profile for pictures 1 to 11, c) each profile is filtered
and centred on X = 0, d) growth of the diameter through time.

ratio. In order to optimise the data visualisation, contrast enhancement filters were also used.

For each experiment, the lower and upper bounds of the recorded intensity were identified, then

the same linear contrast stretch was applied on the whole set of pictures. To ensure that the

Newton rings displacement was due to the contact dissolution and not to a movement of the

entire crystal, a static reference point on the pictures was chosen and an image cross-correlation

method was applied to the entire set of time-lapse pictures. If the cross-correlation revealed

an overall displacement of the set-up, for instance due to microscope vibrations, the selected

pictures were translated using the displacement vector obtained with the cross-correlation.

Figure 4.3 describes the successive data processing steps, which from the recorded pictures

lead to the determination of the rate of contact surface area enlargement. A profile perpendic-

ular to the Newton rings was chosen in each recorded picture, the profile was 10 pixels wide

and stacked to suppress some noise. The selected intensity profile was smoothed using a But-

terworth lowpass filter. Each profile was then centred such that the centre of the contact area

was located at X = 0. The evolution of the diameter with time was related to the increase of

the contact surface area and hence to the decrease of the applied stress, i.e. σ = F/A with F ≈
constant.

The volume of dissolved calcite is equal to the volume of the half-ball lens replacing solid
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calcite. To determine the volume of calcite dissolved through time, the vertical displacement of

the half-ball lens was calculated at different time steps ti. The vertical displacement occurring

between ti−1 and ti is expressed by δi,n, with n the order of the interference fringe considered.

Knowing the geometry of the set-up (Figure 4.2) and the horizontal displacement of the nth

Newton ring, vertical displacement is calculated as follows,

δi,n = (Xi,n −Xi−1,n) · tan

(
arcsin

(
Xi−1,n

R+

))
, (4.1)

where Xi,n is the distance from the considered Newton ring to the centre of the contact area

at ti and R+ the equivalent radius of the half-ball lens calculated on the assumption that the

contact between the half-ball lens of radius R and the calcite crystal follows the Hertz contact

theory between two elastic bodies, with R+ = (4Ea)/((1 − ν2)3πσ) (Fischer-Cripps, 1999).

E and ν are, respectively, the Young’s modulus and Poisson’s ratio of the half-ball lens, a =

((3FR)/(4Er))
1/3 is the calculated contact radius from Hertz contact theory, with Er = ((1−

ν2calcite)/(Ecalcite) + (1 − ν2indenter)/(Eindenter))−1, F being the applied force (Johnson, 1985).

To calculate Er, a and R+ the following elastic constants were used: νcalcite = 0.32, Ecalcite =

73 GPa, νglass = 0.25, Eglass = 82 GPa, νsapphire = 0.25 and Esapphire = 335 GPa.

From δi,n the total vertical displacement Zi,n at ti is then calculated as follows:

Zi,n =

j∑
i=1

δi,n. (4.2)

The largest source of error in the calculation of δi,n according to this method lies in deter-

mining the minima of the fringes, i.e. the value of Xi on the picture. This error is typically ± 3

pixels, one pixel being equivalent to 0.118 µm, it can be assumed that δi,n is accurate at± 0.009

µm. This calculation implies the assumption that, firstly the calcite surface is flat outside the

contact, secondly the calcite surface does not change outside the contact. The typical roughness

over a crystal surface of 3000 µm2 is about Ra = 50 nm both before and after experiments.

Therefore the accuracy of the vertical measurements Z can be assumed to be ± 0.009 µm.

The indenter used was a half-ball lens, therefore, the volume, Vi,n, of dissolved calcite is

equal to the volume of a spherical cap,

Vi,n = π · Z2
i−1,n ·

(
R+ − Zi,n

3

)
. (4.3)

The volume of dissolved calcite is then converted into a number of moles, N = Vi ∗ ρ/M ,

where ρ = 2.7 g/cm3 (the density of calcite) andM = 100 g/mol (the molecular mass of calcite).

The amount of dissolved calcite was monitored as a function of time using the displacement of
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Figure 4.4: Digital elevation image where the contact surface area Sfwli is outlined in red.
Values of Zfwli and h are calculated from profiles extracted from digital elevation images.

the Newton rings. For each experiment, δi,n, Zi,n and Vi,n were calculated for the first two

Newton rings, n = 1 and n = 2. The rate of calcite dissolution in mol/s could then be calculated

as a function of time and applied stress. Strain rates, ε̇ in s−1, were calculated from the increase

of in situ vertical displacement values through time,

ε̇ =
∆Z/Req

∆t
(4.4)

Req =
√

((S1 + Sf )/2)/π being the equivalent contact radius, i.e. diffusion path, taken as a

reference length, S1 and Sf are the initial and final surface areas of contact, respectively. Two

phases could be differentiated in the results for experiments F01, F02, F05, F06 and F07, two

strain rates are therefore calculated for these experiments.

4.3.2 White light interferometry measurements

Microstructures that developed during experiments below the indenter were analysed at the end

of each experiment, using digital elevation images obtained from white light interferometry. To

improve the quality of the results and their interpretation, linear tilts inherent to the system and

samples were removed, and pixels with no signal were interpolated. Surface areas of contact at

the end of experiments, Sfwli, were then outlined by hand on the digital elevation image using

image processing software (Figure 4.4, Table 4.1). Surface areas measured this way include

only the part of the contact where enough dissolution occurred to be clearly identified, therefore

stress values calculated using these surface areas would represent maximum stress. The actual

applied stress therefore lies between the value calculated from the in situ measurements and the

one calculated from the white light interferometry measurements.

Instantaneous plastic deformation occurred when the force was applied on calcite crystals.

To determine the magnitude of dissolution due to pressure solution as revealed by the white

light interferometry profiles, the residual imprint of the indenter after instantaneous plastic de-
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formation was measured, and removed. Dry tests were performed in which a calcite sample

was loaded and unloaded in the same conditions as in the experiments, i.e. similar crystals, ap-

plied forces and half-ball lenses. These tests enabled determination of the residual deformation

in the crystal. The residual holes were fitted with circles of radius Rres (see Table 4.1). The

equivalent shapes of the indenter represented on the vertical profiles obtained from white light

interferometry measurements have radius Rres. For each half-ball lens, the depth of the residual

hole resulting from plastic deformation, Zp, was measured. The volume of the residual hole,

Vp, was calculated from Zp and Rres. The vertical displacement due to pressure solution creep,

Zfwli, was calculated as being the penetration of the equivalent sphere into the resulting hole

minus the penetration depth, Zp, due to plastic deformation (Figure 4.4).

For most of the experiments the hole created by dissolution of the calcite is deeper than the

penetration of the half-ball lens; in these cases the height, h, of the hole below the indenter

was measured (Figure 4.4). The total volume of the hole, Vfwli, from which Vp was subtracted,

includes both the volume of calcite replaced by the half-ball lens and the volume of calcite

dissolved below. Therefore the value of Vf which includes only the volume of calcite replaced

by the half–ball lens (eq. 4.3) can not be compared to Vfwli. To get an idea of the three-

dimensionality of the contact, two topography profiles, perpendicular to each other, were taken

for each experiment. For these two profiles of the same surface, the half-ball lens was fitted so

that Zfwli is identical. In the case of noisy profiles an average profile was calculated including

the data from the entire hole. The calculated shape of the half–ball lens was fitted onto this

average profile. Therefore some points of the white light interferometry profiles can be located

above the line symbolizing the half–ball lens.

The holes observed after the experiments are deeper than the penetration depth of the in-

denter. Two explanations are possible: this is either due to the stress application or to the

dissipation of stored plastic strain energy, i.e. dislocations inducing dissolution. To determine

which of these two explanations applies, wet tests were performed. Once the residual deforma-

tion due to dry indentation was measured, some crystals were left in water saturated with respect

to calcite for 50 hours, without any load. At the end of the tests, some crystal reorganisation

was observed but the depth and shape of the holes was the same as before the water treatment

(Figure 4.5). This implies that the dissolution of calcite below the indenter and under stress is

related to the applied stress, i.e. dissolution and precipitation under the effect of a stress-driven

mechanism.
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Table 4.1: Experimental conditions and results from in situ and white light interferometry mea-
surements

Conditions In situ measurements WLI measurements
No ea IM b R R+ Rres F S1

c σ1
d Zf

e Vf
e tf

f Sf
c Zp Vp Zfwli

g Vfwli h Durationh Sfwli
µm mm mm mm N µm2 MPa µm µm3 hours µm2 µm µm3 µm µm3 µm hours µm2

F01 300 glass 0.77 1.60 1.27 1.15 2650 434 0.19 184 26.08 3603 0.085 28.90 0.84 5610.9 0.60 64.20 2169
F02 567 glass 0.50 1.04 1.27 1.14 1974 578 0.08 23.2 34.01 2090 0.083 27.70 0.52 2069.6 0.21 52.61 785
F03 580 glass 0.25 0.52 0.37 0.88 1065 826 0.02 0.79 24.44 1086 0.340 134.3 0.07 353.9 0 28.44 973
F05 510 glass 0.50 1.04 1.25 1.08 1397 773 0.06 12.8 28.50 2363 0.075 21.90 0.67 4592.1 0.45 40.51 1335
F06 153 glass 0.50 1.04 1.33 1.46 3327 439 0.12 46.4 37.42 3492 0.160 113.4 0.05 2592.6 2.58 90.42 1169
F07 682 sapphire 0.50 2.70 0.96 1.27 1572 808 0.05 20.4 46.75 1823 0.120 43.43 0.20 1225.2 0.60 49.88 777
a e: thickness of the calcite crystal used
b IM : indenter material
c S1, Sf : Initial and final surface area of contact calculated from in situ pictures
d σ1: Initial stress σ1 = F/S1
e Zf ,Vf : The subscript f denotes values obtained from the last picture. Zf has an accuracy of ± 0.009 µm
f tf : Time of the last picture used to determine in situ vertical displacement
g Zfwli has an accuracy of ± 0.003 µm
h Total duration of the experiments
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4.4 Results

4.4.1 In situ vertical displacements

For each experiment, Zi and Vi were calculated using the displacements of the two first New-

ton rings (Figure 4.2). Discrepancy may exist if the vertical displacements are calculated using

either the first or the second Newton ring. Trends are, however, rather similar for the two rings

and, except for experiments F05 and F07, the results obtained are within the same order of mag-

nitude (Figure 4.6). Overall, noise is more important in data obtained using the second Newton

ring, therefore, all the values of vertical displacement and volume of calcite dissolved, found

in Table 4.1, were calculated using the displacement of the first Newton ring. For experiments

F01, F02, F06 and F07 the water film at the contact evaporated during experiments; dissolution

started again when water was added once more to the system (Figure 4.6). In addition, no de-

formation was observed before water was added to the system, thus it can be concluded that the

observed deformations in the present study are due to dissolution of calcite under the effect of

stress.

Since lenses with different diameters were used (Table 4.1), comparison between the dif-

ferent experiments is easier when vertical displacements are converted into number of moles of

calcite dissolved. Evolution of calcite dissolution is then followed through time (Figure 4.6).

Strain rates for the different phases of experiments are displayed next to the dissolution versus

time curve (Figure 4.6). In all experiments surface areas of contact increase with time (see

S1 and Sf in Table 4.1), therefore applied stresses decrease accordingly. In experiment F01,

dissolution is rather constant throughout the experiment. In this case the strain rate is insensi-

tive to the stress variation. In experiments F06 and F07, the second parts of experiments are

characterised by slower strain rates. For these two experiments strain rate slows down with

decreasing stress. Hence, the decrease in stress is more important in F07 and the decrease in

strain rate is also more important in F07 than in F06 (Figure 4.6). Conversely, the strain rate in

F02 increases with decreasing stress. In experiment F05, the strain rate increases after the sev-

entieth hour while stress is decreasing, and after the twenty-seventh hour no more deformation

is observed (Figure 4.6). In experiment F03, very little but constant deformation is observed.

Precipitated calcite was observed on crystal surfaces after all experiments. It is, however,

difficult to differentiate precipitation due to evaporation of the fluid from precipitation result-

ing from pressure solution. Quantification of the amount of calcite which precipitated due to

pressure solution was therefore not possible.
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Figure 4.6: Volume of calcite dissolved as a function of time. Vertical dashed lines represent
the time at which water was added after the initial water had evaporated in experiments F01,
F02, F06 and F07. Strain rates were calculated using data from the first Newton ring (ring 1).
Strain rates values are displayed next to each curve, and the grey lines correspond to the data
interval taken into account when calculating strain rates.
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Figure 4.7: Comparison of in situ and ex situ measurements. A) Ex situ penetration of the half–
ball lens as a function of the in situ measurements. B) Ex situ volume of calcite dissolved as a
function of the strain rates for the first part of the experiments.

4.4.2 Roughness of the interface and damage

Vertical displacements of the lens into the crystal as measured by white light interferometry

are always greater than those obtained from in situ measurements, i.e. Zfwli > Zf (Table

4.1, Figure 4.7). The load was not removed between the two measurements, therefore the

discrepancy between the two results is possibly related to the time gap between the end of

in situ measuring and taking the white light interferometry measurements and also to the fact

that dissolution started right after water was added to the system before the first picture was

taken. That is to say Zfwli > Zf may be attributed to the fact that dissolution under stress

starts before the first in situ measurements and continues in between the two measurements.

Overall Zfwli and Zf follow a similar trend, values for experiments F06 and F05 are, however,

rather dissimilar (Figure 4.7). To some extent the discrepancy can be attributed to the different

accuracy of the two measurement methods.

Two families of contact structure were differentiated from the vertical profiles of the contact

and the half-ball lens fitted on it, depending on the presence or absence of cracks crossing the

contact. Comparing the volume of dissolved calcite measured ex situ, Vfwli, with in situ strain

rates two trends appear corresponding to the two families of contact (Figure 4.7). Experiments

F02, F05 and, to some extent, F03, are examples of the first type of contact obtained during

pressure solution in the present study, where roughness develops within the contact and the

shape of the holes observed in vertical profiles closely resemble the shape of the half-ball lens

indenter (Figure 4.8). Observation by scanning electron microscopy of crystal surfaces after

experiments did not reveal any cracks. Therefore, in those experiments, dissolution and associ-

ated diffusion of matter outside the stressed surface area of contact most likely occurred along
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Figure 4.8: Observation by white light interferometry of the contact after experiments F02, F03
and F05. For each experiment the surface topography (colour scale bar in micrometres) and two
vertical profiles are shown. The grey line on the vertical profiles corresponds to the shape of the
equivalent half-ball lens. Note the difference of scale between the horizontal and vertical axes.

the calcite/indenter interface.

Experiments F01, F06 and F07 are examples of the second type of contact obtained during

pressure solution in the present study. In these experiments a hole developed below the inden-

ter (Figure 4.9). Associated with this feature, radial cracks emanating from the contact were

observed using scanning electron microscopy (Figure 4.10). The depth, h, of the hole below

the indenter tends to increase with time (Table 4.1), leading to the conclusion that the growth of

cracks below the indenter is also time dependent. In addition, crack propagation was observed

during in situ measurements of experiment F01.

The two types of contact geometry possess one common feature: the indenter does not reach

the bottom of the hole created by pressure solution during indentation of the crystal. Pressure

solution experiments were also conducted on halite. Halite was indented by glass in the presence

of water saturated with respect to halite; the diameter of the spherical indenter was about 100

µm (Figure 4.11). Experiments were conducted at various temperatures, and with load applied
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Figure 4.10: Scanning electron micrographs of the crystal surfaces after experiments F01, F02,
F06 and F07. Hatched areas represent approximate surface areas of contact during experiments,
since the vertical resolution of the scanning electron microscope is low the area were determined
by comparing these pictures with the white light interferometry data. The arrows point to cracks
which start at the contact and continue beyond the contact area. The white flacks on pictures of
F01 and F07 contacts corresponds to calcite precipitation.
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Figure 4.11: White light interferometry surface and topography profiles of a halite crystal in-
dented by glass, approximate shape of the indenter displayed on the profiles. Red circles on both
profiles indicate a hole that formed under the indenter. Note the difference of scale between the
horizontal and vertical axes.

over several days. In all the experiments on halite a hole was present under the indenter, as

observed in Figure 4.11.

Using information from both in situ and white light interferometry measurements, it is ob-

served that experiments in which a crack propagate under the indenter are characterized by

higher rates of dissolution (Figure 4.12).

4.5 Discussion

Topographic profiles taken using white light interferometry show that two different mechanisms

have controlled dissolution and diffusion in the present experiments. During the first phase of

the in situ measurements strain rates can also be split in the two same groups. Deformation

occurs either by dissolution and transport along the contact interface, i.e. pressure solution, or

by a combination of pressure solution and subcritical crack growth.

4.5.1 Deformation by pressure solution

Experiment F03 is characterised by very little deformation and a very flat lens/calcite interface.

Moreover, the shape of the hole is almost exactly the shape of the indenter, as should be the

case for purely plastic deformation. It is therefore questionable whether or not pressure solu-

tion was active in this experiment. However, for experiments F02 and F05, the combination of

the rate of indentation and the observation of the topography profiles of the contact at the end

of experiments strongly indicates that deformation by a pressure solution mechanism was ac-

tive. Indentation of calcite occurred by dissolution and diffusion along the lens/calcite interface

(Figure 4.8).

Even though this is at the limit of the data resolution, it is observed that the lens did not
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reach the bottom of the hole created by dissolution of calcite during experiments (Figure 4.8).

Two different hypotheses concerning the way the interface develops, may be drawn from this

observation. Firstly, the space between the indenter and the crystal may be attributed to the

roughness of the interface. Roughness develops at the stressed crystal/fluid interface due to

the thermodynamic instability of a flat solid/fluid interface (Srolovitz, 1989; Angheluta et al.,

2009). In this case the roughness amplitude would be equivalent to the measured value h, 0.20

and 0.45 µm for F02 and F05, respectively. Coarsening of a grain boundary structure is related

to the stress concentration in the grooves (Koehn et al., 2004); the same trend is observed in the

present experimental study where F05 is characterised by a higher applied stress and a rougher

interface. An islands–and–channels structure (Lehner, 1990; Dysthe et al., 2002; den Brok

et al., 2002) would then be the most appropriate model to explain the present results. However,

the amplitude of the observed roughness is quite large, which might be an indication that the

islands–and–channels structure roughened toward a grain–boundary structure as described by

Koehn et al. (2006), for which the amplitude of the roughness might be of the order of one

micrometre. The mean profile roughness under the indenter is of 0.11 µm for F02 and of 0.18

µm for F05. The slightly greater roughness correlates with higher strain rate for the first phase

in experiments F02 and F05 (Figure 4.6), which is in agreement with similar results on quartz

(Gratier et al., 2009).

Secondly, the space between the indenter and the crystal may be attributed to the develop-

ment of a hole in the crystal below the indenter. In this case dissolution of calcite under the

indenter must be attributed to the high strain energy stored in the crystal. Previous experimental

studies have shown dissolution of free surfaces driven by strain energy (den Brok and Morel,

2001; Koehn et al., 2004; Bisschop and Dysthe, 2006). The control experiments with inden-

tations in water, but with no load, shows that it is not the energy stored by defects, but strain

energy due to the load applied by the indenter that drives the dissolution. The observed hole

would then be a way for the crystal to lower the energy of the system. Similar observations

were made on halite crystals that were indented by glass half–ball lenses (Figure 4.11) using a

similar experimental set-up as for the calcite crystals.

4.5.2 Deformation by a combination of pressure solution and subcritical

crack growth

In experiments F01, F06 and F07, the depth of the hole below the indenter is of the same

order or greater than the penetration depth of the indenter into the crystal (Figure 4.9, Table

4.1). This implies that the same amount, or more, of calcite was dissolved under the indenter
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than calcite that was replaced by the indenter. Since cracks are observed on both optical and

scanning electron microscope images (Figure 4.10), in these cases the hole present under the

indenter might be due to a combination of dissolution and crack propagation. In brittle material

subjected to high stresses, a zone of inelastic deformation immediately below the contact area

may develop, leading to the formation of what are called ’vent cracks’ (Lawn and Wilshaw,

1975). Dissolution of minerals occurs preferentially at active sites such as edges, dislocations

or microfractures (Lasaga, 1981; Schott et al., 1989). In the present experiments, the hole below

the lens may therefore be a result of the combination of crack development due to high stresses

associated with dislocation plasticity, and dissolution of material in the presence of a reactive

fluid. While cracks crossing contacts in experiments F06 and F07 remained stable throughout

experiments, in F01 crack propagation occurred during the experiment. This observation might

explain why strain rate is rather constant in experiment F01 while it diminishes in experiment

F06 and F07.

The presence or absence of cracks below the indenter cannot be explained from the present

experimental conditions. The two most important parameters controlling crack propagation are

the applied tensile stress and the size of the flaw (Anderson, 1995). Experiments in which a

crack propagates below the indenter are not characterised by higher applied stresses than in

the other experiments. Therefore, the propagation or not of a crack, in the present study, is

probably due to the presence or absence of a flaw in the crystal below the indenter. This hints

to the possibility that density of flaws is as important for strain rate as stress itself. However, it

must be taken into consideration that the loads and the contact stresses have been varied by less

than a factor 2. A systematic study of the development of contact fractures for a wide range of

stresses and flaw densities might be useful.

4.5.3 Rate–controlling step

Although too little data are available to draw any firm conclusion about the relationship between

dissolution and applied stress, it does appear that subcritical crack growth and pressure solution

are characterised by different strain rates. Strain rates in experiments in which crack propagation

occurred are two orders of magnitude higher than for experiments in which diffusion occurs

only through the rough lens/calcite interface (Figure 4.7 and 4.12).

Experiments in which evaporation occurred are characterised by two strain rates (Figure

4.6). For F01, F06 and F07 the rate of dissolution was either constant or decreased after evapo-

ration. The fast initial rate of deformation might indicate that at first crack propagation controls

the vertical displacement of the indenter, while continued vertical displacement of the lens be-
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comes increasingly controlled by the rate of dissolution of calcite at the contact points between

the lens and the crystal.

Conversely, the rate of dissolution in experiments F02 and F05 increases during the second

phase. In these experiments, no cracks crossed the contact, therefore diffusion must occur

through the thin film present at the interface. The thickness of the water film might be related

to the deviatoric stress at the grain-to-grain contact (Renard and Ortoleva, 1997), while in the

case of the islands–and–channel structure the decrease of stress might lead to an increase of

the water film thickness, which enables faster diffusion and therefore a greater strain rate. In

experiments in which crack propagation occurred, diffusion proceeded through the crack and

was not limited by the applied stress.

If the rate of pressure solution is controlled by diffusion, the displacement rate of the half-

ball lens, dZ/dt, as a function of the measured diameter, d, may be expressed as, dZ/dt = α/d2i

in cases where the applied stress is constant (Weyl, 1959). In the present study the applied force

is constant, but not the stress. Therefore the displacement rate of the half-ball lens as a function

of the diameter, d, may here be expressed as,

dZ

dt
≈ α

1

d4i
, (4.5)

in which α, in µm3/s, is mainly a function of the lens/calcite interface geometry and thickness,

∆, and of the diffusion coefficient, D, i.e. α ∼ D∆. For all experiments, the relationship

between diffusion path diameter and rate of deformation was tested. However, it was difficult

to firmly conclude on whether the diameter influence on the vertical displacement rate was of

the form 1/d2 or 1/d4. Therefore it is not possible to conclude whether or not diffusion was the

rate–limiting step for pressure solution in the present experiments.

4.5.4 Comparison with other studies

Strain rates obtained in this study are in agreement with those obtained in other studies, and

three different trends can be observed (Figure 4.12).

Numerous strain rate laws describing deformation of minerals or aggregates by pressure

solution have been derived (Weyl, 1959; Rutter, 1976; Lehner, 1990; Spiers et al., 1990), even

though they contain various dissimilarities they all describe the strain rate as positively cor-

related to the applied stress. However, strain rate data in Figure 4.12 do not display a strong

dependency on applied stress. Experiments in which pressure solution is assumed to be the

main process controlling deformation are characterized by a slight increase in the strain rate

as stress is increasing (Zhang and Spiers, 2005; Zubtsov et al., 2005). However, at the same
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applied stress the effect of grain size or pore fluid might have a much stronger effect than the

variations in applied stress on the strain rate.

Fracture development during slow sediment compaction increases the pressure solution

strain rate (Gratier et al., 1999). Published experiments on calcite in which crack propaga-

tion occurred (Liteanu and Spiers, 2009) are characterised by slightly higher strain rates than

experiments for which pressure solution was the main mechanism of compaction. This feature

was also observed within the present experimental results (Figure 4.12). From the wide range

of experimentally measured strain rates, it can be deduced that the variation of strain rates is

mostly a function of the processes active during chemical compaction, i.e. pressure solution or

subcritical crack growth, rather than of the applied stress.

As mentioned by Tada and Siever (1989) (and references therein), early cementation has an

inhibiting effect on intergranular pressure solution. This feature is clearly observed in Figure

4.12 where cemented rocks deforming by pressure solution (Le Guen et al., 2007) exhibit strain

rates that are 2 to 3 orders of magnitude lower than for aggregates. Faster strain rates observed

in aggregates or in the present study might in nature be associated with compaction of loose

carbonate sediments or compaction of fault gouges.

4.6 Conclusion

This is the first study that compares results of calcite slow deformation, from nanometer resolu-

tion techniques both in situ and ex situ. From these results it was possible to identify the relative

importance of pressure solution driven by normal load, and free surface dissolution driven by

strain energy, and how these mechanisms couple to mass transport in fluid films and fractures.

The present experimental study enabled the determination of two different processes occur-

ring during pressure solution of calcite crystals at the grain scale. In half of the experiments,

diffusion of the dissolved solid took place in the pore fluid present along a rough interface be-

tween calcite and the indenter. In the other half of the experiments, diffusion occurred through

cracks that propagated from the contact toward the less stressed part of the crystal. The occur-

rence of one or the other mechanism does not appear to be ruled by the applied stress but is

most likely dependent on the presence or not of a flaw in the crystal.

Strain rates are higher for experiments in which crack propagation occurred. The present

calculated strain rates are in agreement with the ones obtained in other studies. Overall it seems

strain rates are not really stress dependent but rather dependent on the grain size or whether

crack propagation occurs or not. The first main difference in strain rates is to be seen between

experiments conducted in rock, for which strain rates are three orders of magnitude lower than
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experiments conducted in aggregates. Within experiments conducted on aggregates or single

crystals, when crack propagation occurs strain rates increase by one to two orders of magnitude.
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Abstract

Uniaxial compression tests were conducted on bioclastic sand and crushed calcite crystals. Me-

chanical and chemical processes were investigated to better quantify carbonates petrophysical

properties and their evolution with burial or during fault zone processes. The grain size was in

the range 63–500 µm and the samples were saturated with water in equilibrium with carbonate,

glycol, decane or air. During loading, effective stress was increased to 32 MPa. Mechanical

compaction processes, i.e. grain rearrangement, crushing, could be separated from chemical

processes, i.e. pressure solution, subcritical crack growth. P- and S–waves monitored during

the tests showed low velocity in samples saturated with reactive fluids. This suggested that

chemical reactions at grain contacts reduced the grain framework stiffness. Creep tests were

also carried out on bioclastic sand at effective stress of 10, 20 and 30 MPa. No creep was ob-

served in samples saturated with non–reactive fluids. For all the samples saturated with reactive

fluids, strain as a function of time was described by a power law of time with a single exponent

close to 0.23. Parameters controlling creep rate were, in order of importance, grain size, effec-

tive stress and water saturation. Microstructural observations showed that compaction of bio-

clastic carbonate sand occurred both mechanically and chemically. Crack propagation probably

contributed to mechanical compaction and enhanced chemical compaction during creep. Exper-

imental compaction showed that compaction of carbonates should be modelled as a function of

both mechanical and chemical processes, also at relatively shallow depth and low temperature.

5.1 Introduction

Compaction of sediments, i.e. porosity loss and density increase, induces changes in petrophys-

ical properties of rocks. These petrophysical properties are crucial to for instance, model the

stability of slopes, or for the determination of the elastic properties of the medium to image

reservoirs using seismic waves or electromagnetic signals. Processes leading to porosity loss
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in sediments may be divided into mechanical compaction which is a function of stress, and

chemical compaction which is controlled by the thermodynamics and kinetics of fluid–rock in-

teractions (Bjørlykke, 2003). Pressure solution and subcritical crack growth (stress corrosion)

are two irreversible deformation processes responsible of sediments compaction that are occur-

ring in presence of reactive fluids (Weyl, 1959; Atkinson, 1982).Even though these deformation

mechanisms are driven by stress, they are here considered as chemical compaction processes

since their rate is controlled by chemical reactions such as fluid-rock reactions or diffusion in a

fluid phase. In carbonate sediments, unlike siliceous sediments, mechanical and chemical pro-

cesses occur simultaneously from the surface, affecting each other (Athy, 1930; Weller, 1959;

Fruth et al., 1966; Schmoker and Halley, 1982; Bassinot et al., 1993; Ehrenberg, 2006). In

carbonate sediments the interaction between the different mechanical and chemical compaction

processes, and the effect of the various initial conditions and their relation to diagenetic changes

make porosity prediction difficult.

The primary porosity of carbonates at the surface ranges from 50 to 70 % (Hamilton, 1976;

Schmoker and Halley, 1982; Fabricius, 2003), grain rearrangement may therefore be an impor-

tant process of compaction during the first hundreds of meters. Then, when sediments reach a

locked state, grain crushing becomes the main mechanism of mechanical compaction (Chuhan

et al., 2002; Karner et al., 2005). Stress independent dissolution of thermodynamically unstable

minerals, e.g. aragonite or magnesian calcite, followed by precipitation of calcite and dolomite

may also occur at shallow depth (Athy, 1930; Weller, 1959). When carbonate sediments contain

unstable minerals early diagenesis may produce a strong framework mechanically stable pre-

venting further mechanical compaction (McLimans and Videtich, 1989; Kopaska-Merkel et al.,

1994; Croizé et al., 2009). In such situation porosity loss will proceed by pressure solution

creep (Weyl, 1959) or a combination of subcritical crack growth and pressure solution (Atkin-

son, 1982).

Compaction curves, i.e. porosity or density versus depth curves, are used as an input for

basin modelling and prediction of reservoir properties (Sclater and Christie, 1980; Audet and

Fowler, 1992; Goldhammer, 1997; Giles, 1997). In these studies, porosity loss is often de-

scribed as an exponential function of stress. However, chemical processes during burial of

carbonate sediments make prediction of the relation between porosity and depth more chal-

lenging. Experimental compaction studies provide quantitative data by linking various initial

conditions to physical properties as a function of stress and fluid content and may simulate both

mechanical and chemical compaction.

To image reservoirs, inversion of seismic data needs to be done having a rather good under-

standing of the relation between elastic wave propagation velocity and rock properties (Chris-
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tensen and Szymanski, 1991). However, seismic wave propagation is strongly affected by poros-

ity (Rafavich et al., 1984) and the type of pore in presence (Anselmetti and Eberli, 1993). Seis-

mic properties of rocks also depend on microstructures (Wang, 1997), fractures and cracks es-

pecially affecting S-wave propagation (Dürrast and Siegesmund, 1999; Couvreur et al., 2001),

pore fluids (Assefa et al., 2003), and grain size, shape and sorting (Eberli et al., 2003). The

additional difficulty inherent to carbonate rocks is the influence of fluid–rock interactions on P-

and S–waves measurements (Vanorio et al., 2008).

The present study considers two type of carbonates. While calcite has been used in a number

of pressure solution studies, bioclastic carbonates sand have been less studied but may be more

representative of natural sediments. The purpose of the present study is to quantify both me-

chanical and chemical compaction of these two materials. To this end, bioclastic carbonates and

crushed calcite crystals were uniaxially compacted up to 32 MPa effective stress under drained

conditions. In addition creep tests were carried out at constant vertical stresses of 10, 20, and

30 MPa. The influence of pore fluid chemistry, grain size, mineralogy, applied uniaxial stress

and temperature was investigated. Ultrasonic P- and S-wave velocities were recorded during

experiments. This study made possible to separate the respective influence of mechanical and

chemical mechanisms in carbonate compaction, and to link them to the evolution of specific

petrophysical properties, as well as with P- and S–waves ultrasonic velocity.

5.2 Materials and methods

5.2.1 Samples and analyses

Two different materials were used. Firstly, Holocene shell fragments from beaches near Tromsø,

northern Norway, are primarily composed of magnesian calcite, i.e. high-magnesium calcite,

with minor siliceous impurities. Secondly, calcite crystals (Wards international) consisting of

more than 99 % calcite were used. The samples were crushed, sieved, and separated into three

grain–size fractions. The grain–size fractions used were very fine, 0.063 to 0.125 mm, fine,

0.125 to 0.250 mm, and medium, 0.250 to 0.500 mm. The main difference between the two

types of samples is that the bioclastic sand contains mostly microporous shells of moluscs,

while the calcite samples are constituted of rhomboedra with no microporosity. Magnesian

calcite being more reactive than calcite, chemical compaction is therefore easier to observe

in bioclastic carbonate sand under laboratory conditions. The samples were saturated with

various fluids having different reactivity with respect to calcite. Non–reactive fluids used were

air and N-decane. Reactive fluids were water saturated with carbonate, water with 5% NH4Cl
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saturated with carbonate, and mixtures of water and glycol (see Tables 5.1 and 5.2). Pore water

composition was analysed before and after some experiments. The cations were analysed using

an atomic absorption spectrometer from Varian Inc..

Table 5.1: Experimental conditions for the uniaxial compaction tests. The uniaxial stress was
increased from 0 to 32 MPa.

Temperature Mineralogy da Pore fluid Φi
b Noc

Room temperature Carbonate sand 250-500 5% NH4Cl solution saturated with respect to carbonate 52.1 T23
Water saturated with respect to carbonate 50.8 T30
Dry 61.0 T10

125-250 5% NH4Cl solution saturated with respect to carbonate 60.7, 61.7, 61.0, 55.7 T15, T16, T17, T35
Water saturated with respect to carbonate 61.8, 55.7 T18, T31
N-Decane 53.9, 54.9 T20, T22
Dry 61.2, 53.0 T19, T21

63-125 5% NH4Cl solution saturated with respect to carbonate 59.6 T34
Water saturated with respect to carbonate 59.1 T29
50% water saturated with respect to carbonate - 50% Glycol 59.49 T33
97% Glycol 51.1 T36
Dry 58.9, 59.33 T28, T32

Calcite 250-500 Water saturated with respect to calcite 43.0, 44.9 T24, T26
Dry 44.5 T25

125-250 Dry 47.6 T27
50◦C Carbonate sand 250-500 5% NH4Cl solution saturated with respect to carbonate 61.7, 61.6 T7, T8

N-Decane 53.1 T12
Dry 60.6 T11

Calcite 100-500 5% NH4Cl solution saturated with respect to carbonate 44.6 T13
a d: Grain size in µm
b Φi: Initial porosity in percent
c No: Experiment identification number

Table 5.2: Experimental conditions for the creep compaction tests. All the experiments were
conducted at constant stress on bioclastic carbonate sands.

Temperature σ1
a db Pore fluid Φ0

c Nod

Room temperature 30 250-500 5% NH4Cl solution saturated with respect to carbonate 27.87 T23
Anisole 48.23 T6
Dry 43.57 T10

125-250 5% NH4Cl solution saturated with respect to carbonate 29.39 T35
63-125 5% NH4Cl solution saturated with respect to carbonate 33.26 T34

50% water saturated with respect to carbonate - 50% Glycol 32.87 T33
97% Glycol 29.22 T36
Dry 39.46 T32

10 63-125 5% NH4Cl solution saturated with respect to carbonate 35.22 T37
20 63-125 5% NH4Cl solution saturated with respect to carbonate 31.15 T38

50◦C 30 250-500 5% NH4Cl solution saturated with respect to carbonate 37.49, 36.37 T7, T8
N-Decane 36.17 T12
Dry 43.41 T11

80◦C 30 250-500 5% NH4Cl solution saturated with respect to carbonate 26.22 T39
a σ1: constant applied stress in MPa
b d: grain size in µm
c Φ0: Porosity at the beginning of the creep test in percent
d No: Experiment identification number

5.2.2 Uniaxial compression tests

Drained uniaxial compression tests were carried out to study the compaction of carbonate sand.

The samples were cylindrical with a radius of 2.5 cm and a height up to 3.1 cm. Two œdometers
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were used (Fig. 5.1), one of them was equipped with P- and S–waves receivers and senders,

which were glued onto the top and bottom filters.

LVDT Holder

Top Cap

specimenFilters

Fluid
outlets

Pore pressure sensor

LVDT
sensor

Load
Sensor

P- S- Waves 
receivers 
and senders

Figure 5.1: Schematic view of an œdometer cell. The top cap is made of titanium grade 5, the
rest of the cell is made of stainless steel.

The volume of sand, Vs, poured into the œdometer cell was determined from the known

mass of the sample and the assumed grain density, ρ = 2.7 g/cm3. The initial height allowed to

determine the initial volume of the samples, Vti. Values of initial porosities, Φi = (Vti−Vs)/Vti,
are given in Table 5.1.

The load was controlled by a computer so that the vertical stress, σ1, could be applied au-

tomatically at a given loading rate. A pore pressure sensor fixed at the bottom outlet of the

œdometer allowed to control the pore pressure, Pp, in the samples. This enabled the determi-

nation of the applied effective stress σ′1 = σ1 − Pp. The pore pressure was always equal to

atmospheric pressure, i.e. drained conditions. For mechanical compaction tests, the vertical

stress was increased from 0 to 32 MPa at a rate of 2 MPa per hour.

In addition, creep tests were carried out at constant vertical stresses of 10, 20 or 30 MPa

for about one month. All creep tests were preceded by a mechanical compaction phase where

the applied stress was increased to 2 MPa higher than the creep stress. This over–consolidation

made the samples mechanically stable. Therefore time dependent deformation observed during

creep was mostly due to chemical effects.

Since the samples were confined into a cylindrical steel cell no lateral strain was allowed,

therefore the vertical strain, ε1, was equivalent to the volumetric strain, εv. Strain values were

obtained from the vertical displacement values, Def1 and Def2, measured by two high resolu-

tion displacement sensors (LVDT). Strain values were calculated as follows: ε1 = (((Def1 +

Def2)/2)/(hi))∗100, where hi was the initial sample’s height. For all the measured values, σ1,

Def1, Def2 and Pp, one data point per minute was recorded.

Intragranular porosity, Φg, was determined from available thin–sections of the compacted
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samples, the mean value was found to be Φg = 0.27.

The reproducibility of the stress–strain curves obtained was controlled for few experiments.

0.1 % difference in initial porosity for tests T7 and T8 lead to 1 % difference in final strain at

32 MPa stress. The 3 % difference in final strain obtained for T15 and T16 may be related to

the 1 % difference in initial porosity. From these observations it was concluded that the results

obtained were reproducible and representative of the compaction behaviour of the material used.

5.2.3 Ultrasonic velocity measurements

Compressional and shear wave velocities were measured throughout the tests at regular time

intervals using the pulse transmission technique (Birch, 1960). P- and S-wave piezoelectric

transducers were mounted inside the base and top plates of the triaxial cell to measure P- and

S-wave velocities along the plug axis. Resonant frequency of the crystals was 500 kHz. Com-

pressional and shear wave velocities were measured in the range 1000 - 2500 and 500 - 1250

m/s, respectively. Although the resonant frequency of the glued crystals may deviate somewhat

from the one of the pure crystal, the wavelength of the ultrasonic pulse is assumed to range from

1 to 5 mm, which is less than the plugs radius. This arrangement is most likely sufficient to avoid

diffraction phenomena and unwanted shape mode. The signals were recorded on a computer,

and first arrival times were picked manually. Correction for equipment was applied to the P-

and S-wave velocities. First arrival times, t0, were measured when no sample was present in the

œdometer. This zero time was then subtracted from the picked traveltime, tp/s, measured with a

plug present. The plug’s compressional or shear wave velocity was then calculated as follows:

Vp/s = hs/(tp/s − t0), where hs is the height of the sample.

5.2.4 Microstructures observation

After completion of the compaction tests some of the samples were impregnated with epoxy to

make thin–sections of the compacted material. The central part of the sample was used for thin–

sections, that were then imaged in a JEOL JSM 6460LV scanning electron microscope (SEM).

About 30 scanning electron micrographs were taken per samples. Cracks were outlined manu-

ally and measured with the help of an image processing software (ImageJ). The median length

value and the length distribution of the cracks were then graphically depicted using boxplot

display (Velleman and Hoaglin, 1981).
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5.3 Results

5.3.1 Porosity loss under increasing stress

The effects of pore fluid composition (Figure 5.2A), grain size and mineralogy on the stress–

strain relationships were investigated. At effective stress of 32 MPa bioclastic carbonate sand

samples were more compressible than crushed calcite samples (Table 5.3). Final strains, ε32,

obtained in bioclastic carbonate sand ranged from 27.09 to 39.67 %. For crushed calcite samples

the range of final strains was narrower with ε32 between 26.41 and 28.55 %.

Table 5.3: Results of mechanical compaction: values of porosity (Φ in %), strain (ε in %) and
P- and S–wave velocities (Vp and Vs in m/s) are given for vertical effective stress values of 5,
10 and 32 MPa (subscripts design the effective stress at which the value was taken).

Noa Φ0
b Φ5 Φ10 Φ32 ε5 ε10 ε32 Vp5 Vp10 Vp32 Vs5 Vs10 Vs32

T23 52.1 43.91 38.45 28.12 14.53 22.02 32.85 1306 1670 2400 713 924 1249
T30 50.8 44.3 39.09 28.63 11.53 19 30.52 1337 1694 2402 699 898 1251
T10 61 55.8 52.14 43.58 11.55 18.22 30.29
T15 60.7 51.47 46.13 37.05 18.96 27 37.24 1329 1680 2439 670 826 1191
T16 61.7 51.82 46.47 37.2 20.28 28.15 38.42 1267 1598 2356 680 829 1179
T17 61 49.93 44.21 34.85 21.97 29.89 39.67 1282 1620 2309 662 824 1140
T35 55.5 45.34 39.79 29.4 18.4 25.82 36.37 1241 1560 2233 668 840 1174
T18 61.8 51.83 46.48 37.39 20.61 28.45 38.5 1235 1596 2329 682 834 1180
T31 55.7 46.39 41.14 31.4 17.26 24.54 34.92 1232 1555 2250 674 836 1187
T20 53.9 48.48 44.35 34.29 10.39 16.93 29.23 1161 1424 2020 603 759 1068
T22 54.9 48.79 44.54 34.71 11.66 18.33 30.23 1076 1359 1976 593 749 1063
T19 61.2 55.69 51.58 42.25 12.39 19.73 32.35 1229 1531 2126 650 806 1108
T21 53 48.38 44.75 34.97 8.8 14.67 27.09 1208 1506 2125 655 809 1145
T34 59.5 48.48 43.09 33.27 21.38 28.74 38.9 1178 1484 2194 646 799 1142
T29 59 48.29 42.95 33.49 20.86 28.23 38.17 1121 1432 2067 613 773 1085
T33 59.4 47.65 42.27 32.88 22.56 29.69 39.24 1167 1488 2188 632 789 1128
T36 51.1 39.24 35.87 29.21 19.41 23.55 30.36 1080 1396 2065 590 748 1101
T28 58.8 52.93 48.98 39.74 12.51 19.2 31.27 1113 1382 1958 596 747 1046
T32 59.2 52.86 48.83 39.61 13.64 20.37 32.24 1094 1364 1938 606 760 1062
T24 43 35.5 30.21 20.97 11.52 18.12 27.34 1545 1935 2659 835 1026 1403
T26 44.9 37.13 31.91 22.36 12.26 18.9 28.55 1573 1936 2621 809 988 1359
T25 44.5 37.7 33.01 24.03 10.78 16.93 26.41 1579 1937 2609 900 1064 1419
T27 47.5 40.47 35.77 26.71 11.79 18.14 27.88 1498 1861 2530 834 1015 1377
T7 61.5 51.75 46.45 37.52 20.4 28.3 38.6
T8 60.9 50.9 45.41 36.4 20.98 28.93 39
T12 54.1 49.63 45.94 36.16 8.8 14.91 27.56 1266 1566 2202 820 1110
T11 60.5 56.31 52.45 43.41 9.74 17 29.99 1297 1614 2209 692 870 1154
T13 44.1 36.25 31.77 23.05 12.29 18.04 27.33
a No: Experiment identification number
b Φ0: Initial porosity

To further investigate the mechanisms leading to porosity loss, the present data were first

fitted with the exponential law proposed by Athy (1930). This law, often used to describe

porosity loss in sedimentary basins, can be expressed as follows,
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Φ(σ′) = Φ0 · exp(Fσ′), (5.1)

with Φ the porosity, Φ0 the initial porosity, and F a compaction factor which value depends upon

the sediments compositions (Royden and Keen, 1980) and acts as a fitting parameter. Granu-

lar media compaction can alternatively be viewed as a progress of the grains from an initial

perturbed configuration toward an equilibrium state involving a number of different relaxation

phenomena (Knight et al., 1995). Therefore the present data were also fitted by a stretched

exponential law, which best describes relaxation in disordered systems (Philippe and Bideau,

2002),

Φ(σ′)

Φ0

= exp

(
−
(
σ′

τ

)β)
, (5.2)

with τ and β two free parameters related to the relaxation phenomena involved. These two

existing compaction models were fitted to the present set of data. The root mean square errors,

i.e. measurement of the differences between values predicted by the models and the actual

values, are displayed in Figure 5.2B. The fits of the data are about twenty times better when

using the stretched exponential law.

All the experimental data were collapsed onto a single stretched exponential curve using the

relation described in equation 5.2 (Figure 5.2C, D, E). The model fits well the bioclastic sand

saturated with non-reactive fluids data. For bioclastic carbonate sand saturated with reactive

fluids and crushed calcite the model initially deviates from the observed data, indicating that

several mechanisms may be responsible for porosity loss at short time scale. However, the

model fits well all the data after this initial stage. Different values of τ and β were attributed to

each experiment in order to obtain the best fit possible. Values of τ range between 61–96 MPa

for experiments in which the samples were saturated with reactive fluids, between 87–147 MPa

for samples saturated with non reactive fluids, and between 47–68 MPa for calcite samples.

Values of β range between 0.58–0.74 for samples saturated with reactive fluids, between 0.68–

0.80 for samples saturated with non-reactive fluids, and between 0.64–0.72 for calcite.

Effect of the pore fluid chemistry

For all the grain sizes tested, bioclastic sand was more compressible when saturated with reac-

tive fluids (e.g. fine bioclastic carbonate sand in Figure 5.2A). The difference between strain,

ε, obtained in samples saturated with reactive fluids and strain in samples saturated with non–

reactive fluids increased up to a vertical stress of 2 to 3 MPa. At effective stress greater than 2–3
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MPa εreactivefluid − εnon−reactivefluid is rather constant. Bioclastic carbonate samples tested sat-

urated with reactive or non–reactive fluids could be discriminated from each other using values

of β and τ obtained by fitting the data with equation 5.2 (grey dashed line in Figure 5.2F).

In crushed calcite samples, unlike bioclastic carbonate sand, very little increase of com-

paction was observed in tests carried out with water saturated with respect to calcite compared

to those conducted dry. 2 % more strain at 32 MPa occured in T26 (water saturated with re-

spect to calcite) compared to T25 (dry) (Table 5.3). No definite difference between reactive and

non-reactive fluids was found for the β and τ values (Figure 5.2F).

Another feature was that samples saturated with glycol compacted more than samples satu-

rated with decane (Table 5.3).

Effect of grain size

In dry tests, grain size does not have a significant effect on the stress–strain relationship (Figure

5.3A). In bioclastic carbonate sand saturated with reactive fluids, compressibility is greater in

finer samples (Figure 5.3A, B). The effect of grain size on crushed calcite samples was not

tested.

The initial grain rearrangement process in samples having an initial porosity greater than

60% is most likely greater than in samples starting with lower porosity. This influenced their

overall compaction curve. Samples with initial porosity Φ0 <60% show a good correlation

between strain and grain size (Figure 5.3B). This correlation could be expressed as:

ε = C
1

dn
, (5.3)

with ε the strain in percent, d the mean grain size in micrometer, and C a constant. The grain

size exponent, n, slightly decreased with increasing stress, n = 0.35, 0.24, 0.14, at effective

stresses of 5, 10 and 32 MPa respectively (Figure 5.3B).

While no correlation was found between grain size and β (eq. 5.2) for samples saturated

with non–reactive fluids, β increased with grain size in samples saturated with reactive fluids

(Figure 5.3C).

Microstructures in the bioclastic carbonate sand

Grain crushing or collapse of the internal grain structure on the edge of bioclastic carbonate

grains was observed in thin–sections (Figure 5.4C, D). The internal porosity remained un-

changed in the centre of each grain, while at the grain–to–grain contact internal porosity was

drastically reduced. This edge deformation mechanism seems to be mainly mechanical since
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samples compacted dry and samples saturated with reactive fluids show about the same defor-

mation pattern. The crushed rims appear, however, slightly thicker in samples saturated with

reactive fluids (Figure 5.4C, D). In crushed calcite samples the crack density is higher compared

to the bioclastic carbonate samples (Figure 5.4B).

Thin–sections also showed that crack propagation occurred during experiments (Figure

5.4E). Crack length correlated positively with carbonate solubility in the different fluids used

(Figure 5.4F), which might be an indication that subcritical crack growth was active (Anderson

and Grew, 1977).

Ultrasonic velocity measurements under increasing stress

P- and S-wave velocities increased with increasing stress and decreasing porosity, for all grain

sizes and pore fluid compositions tested (Table 5.3). The incerase of P- and S–waves with

decreasing porosity was linear. Vp ranged from 705 to 2440 m/s and Vs from 535 to 1250 m/s.

In Figure 5.5 (A, B, C), Vp, Vs and bulk moduli are displayed as a function of porosity for ten

samples. The samples can be split in two groups characterised by different initial porosities.

Even though the initial sample porosities were different, the initial velocity measurements are

similar indicating a strong effect of the applied vertical effective stress on the ultrasonic velocity

measurements.

At a given vertical effective stress, bulk moduli of samples saturated with reactive fluids are

greater than bulk moduli of samples saturated with non–reactive fluids (Figure 5.5C). The two

different initial porosity groups show the same bulk modulus–porosity relationship.

To investigate further the effect of effective stress, pore fluid composition, and porosity on

the propagation of ultrasonic waves in the present bioclastic carbonate sand, data were com-

pared to a rock–physics porous–grain soft–sand model (PGSO) similar to the model described

by Ruiz and Dvorkin (2009) (Figure 5.5D). This model considers the samples as a pack of elas-

tic porous grains. The effective bulk and shear moduli of the dry granular frame, Kdry and µdry,

were obtained from equations 3–5 in Ruiz and Dvorkin (2009). The Hertz-Mindlin moduli at

the critical porosity, Φc = 0.4, were calculated using a coordination number of 5 (see eq. 4 in

Ruiz and Dvorkin (2009)). Effective bulk and shear moduli of the porous grains, Kg and µg,

were determined using the differential effective medium model (Norris, 1985; Mavko et al.,

2009). In the present study, the inclusion were considered as spherical and the coupled sys-

tem of differential equations was solved using spheres inclusion shape coefficients (Berryman,

1995; Mavko et al., 2009). The inclusions volumetric concentration was set equal to the inter-

nal porosity of the grain, Φg, and were filled with water. Saturated bulk moduli, Ksat, were
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calculated following Gassmann (1951) fluid substitution theory.
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At effective stress greater than 10 MPa, it was possible to compare the present data to the

PGSO model (Figure 5.5D). P–wave velocities at 32 MPa effective stress were plotted against

porosities for samples saturated with reactive fluids and dry samples (Figure 5.5D). The plot

shown in Figure 5.5D separates data into two groups. The first group (tests T19, T15, T16 and

T18) have initial porosities greater than 60%, while the second group (tests T20, T21, T22,

T31 and T35) have porosities lower than 60% (Table 5.1). The PGSO model was used to fit

the data varying values of differential pressures, P , acting on the grains from 5 Pa to 50 MPa.

Samples with greater initial porosities display higher P-wave velocities and could be fitted by

a PGSO model with P = 50 MPa, while a P equal to 5 Mpa fitted the samples having initial

porosities lower than 60%. The dry samples had less porosity and lower P-wave velocity but
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could be fitted the same way than the saturated samples having velocity lower than expected by

the theory.

P- and S–wave velocities increased with increasing grain size in both bioclastic carbonate

sand and crushed calcite samples (Figure 5.6 A, B, C, D). A positive correlation exists between

the P–wave acoustic impedance, Ip = Vp · ρ, and grain size,

Ip(σ) = A+BLog(d); (5.4)

where Ip(σ) is the P–wave acoustic impedance at a given stress and d the mean grain size.

Good correlation was obtained for samples saturated with reactive fluids (Figure 5.6E). No

satisfactory relation between acoustic impedance and grain size was found for the dry samples.

5.3.2 Creep

Table 5.4: Creep results: values of strain and P- and S-wave velocity after 40, 100 and 250
hours of creep. Values of the fitting parameters α and p

No ε40h ε100h ε250h αa pb Vp40h Vp100h Vp150h Vs40h Vs100h Vs150h
T23 0.19 0.28 0.40 0.11 0.65 2521 2545 2575 1304 1317 1330
T6 0.09 0.15 0.05
T35 0.46 0.59 0.72 0.21 0.90 2347 2395 2423 1323 1244 1256
T34 0.62 0.80 0.98 0.27 0.92 2307 2343 2395 1197 1228 1244
T33 0.47 0.59 0.73 0.20 0.89 2301 2338 2372 1170 1197 1223
T36 0.34 0.42 0.50 0.14 0.95 2162 2174 2222 1136 1163 1175
T37 0.12 0.16 0.21 0.06 0.83 1693 1707 1713 867 875 888
T38 0.27 0.35 0.47 0.12 0.87 2084 2109 2156 1094 1100 1116
T7 0.43 0.65 0.91 0.25 0.75
T8 0.47 0.68 0.92 0.25 0.75
T39 0.31 0.42 0.52 0.14 0.87 2493 2552 2617 1276 1296 1309
a αj in equation 5
b p in equation 7

Effect of pore fluid composition, grain size, temperature, and stress

No deformation was observed during creep of samples saturated with non–reactive fluids, i.e.

air or decane. Significant deformation was, however, observed in samples saturated with a

solution of 5% NH4Cl water in equilibrium with carbonates or in samples saturated with glycol

or anisole. The amount of strain found in samples saturated with reactive fluids increased

with water saturation (Figure 5.7A, B), applied stress (Figure 5.7C), and decreasing grain size

(Figure 5.7D). Only a minor temperature effect was observed on samples saturated with reactive
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fluids (Figure 5.7E), and no effect was observed on the dry samples (Figure 5.7F), the range of

temperatures used in the various experiments was small, however.

Both magnesium and calcium concentration increased in the pore water during the water

saturated tests (Table 5.5). The [Mg2+]/[Ca2+] ratio in the pore water also increased resulting

in a relative build–up of magnesium concentration in the pore water.

Table 5.5: Water Analyses. Concentration are given in ppm.

No Mg2+ Ca2+ Na+ K+ Alk.c

T7 before tests 60 161 35 3.3 14.40
T7 after tests 244 243 250 15
T8 before tests 28 150 8 0.73 15.16
T8 after tests 208 208 197 11.6
T35 before tests 81 213 280 12.7
T35 after tests 211 165 1300 63
T38 before tests 67 353 132 9
T38 after tests 261 540 790 57
c Alkalinity in meq/L

In glycol or anisole saturated samples, the measured strain values were intermediate between

dry samples and samples saturated with a solution of 5% NH4Cl water in equilibrium with

carbonate (Figure 5.7, Table 5.4). Increasing the water/glycol ratio also enhanced compaction.

To better understand the parameters controlling creep in the present study the entire dataset

was fitted with a power law of time, t, (Figure 5.8A),

εj(t) = αjt
θ, (5.5)

with j comprised between 1 and 11, the number of creep experiments taken into consideration.

In the present study the time exponent θ is close to 0.23 for all experiments. The compaction

parameter, αj , was used as a scaling parameter to collapse all the data on the theoretical curve

(black line Figure 5.8A) for which α = 1. Since α is a time independent factor, it is possible to

quantify the respective influence of the tested parameters alone (Renard et al., 2001).

Grain size, d, vertical effective stress, σ, and water saturation, w, affected creep of bioclastic

carbonate sand in various ways (Figure 5.8, Table 5.4). The compaction parameter, α, could be

expressed as a function of the above mentioned parameters as follows,

α = c1 · exp(c2 · d+ c3 · σ) + c4w + c5, (5.6)

with c1, c2, c3, c4, and c5 material dependant constants. Creep deformation was mostly affected

by grain size, then by the applied vertical effective stress and to a lesser extent by the water
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concentration resulting in the following ranking of equation 5.6 parameters: c2 >> c3 >> c4

(Figure 5.8B, C, D).

The samples compacted at 50 and 70 ◦C both showed more creep than the sample compacted

at room temperature (Figure 5.7E and Table 5.4). More deformation was observed in samples at

50 ◦C than the one at 70 ◦C probably related to higher initial porosities in tests T7 and T8. Tests

T23 and T39 with similar starting porosity also showed a similar creep development. However,

the temperature effect was rather small, with α increasing from 0.11 to 0.14 for T increasing

from 22 ◦C to 70 ◦C.

For power law creep, with a low value of the exponent, there is for some materials a possi-

bility that the creep does not behave as a power law, but rather like a logarithm in time. To test

this hypothesis, the strain rates (with a slope of -1 in the case of logarithmic creep) rather than

the strain should be fitted. This hypothesis was tested. The strain rates, ∂ε/∂t = ε̇, decreased

from 1.26 10−3 - 1.97 10−4 to 1.71 10−4 - 1.69 10−6 min−1.

In the present study, a linear strain rate decrease in the log-log space as a function of time

was observed after 200 minutes of creep (Figure 5.8E), and could be expressed as a power law,

ε̇ = Et−p, (5.7)

with p the strain rate decay exponent and E a constant. The strain rate decay exponent p was

somewhat affected by the different parameters tested (Figure 5.8F), but was always significantly

smaller than 1 (Table 5.4), indicating that the power law in time best represent the best fit.

Ultrasonic velocity measurements during creep

During creep tests, P- and S-wave velocities increased linearly with strain, Vp/s = aε + b. The

Vp to Vs ratio stayed constant during creep tests and was comprised between 1.9 and 2.0 for all

the tests. The effects of pore fluid, grain size, and applied uniaxial stress on velocity is shown in

Figure 5.9. S–wave velocity was not affected by the pore fluid composition, and was influenced

in a similar way as P–wave velocity by grain size and applied stress. Samples saturated with

water or with a mixture of 50% water and 50% glycol had the same P–wave velocity while the

samples saturated with 97% glycol showed lower velocities (Figure 5.9A). Vp increased of 8%

in water saturated samples (T34, T33) from the end of the loading phase until 250 hours of

creep. For the same period of time, a smaller velocity increase was observed when the sample

was saturated with 97% glycol, i.e. 7% increase in test T36 (Table 5.4).

As observed during the initial mechanical phase of the tests, P- and S-wave velocities in-

creased with increasing grain size and stress (Figure 5.9B, C). However, compaction being
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faster in finer grained samples, velocity also increased faster, i.e. 8.4% increase from the end of

the loading phase to 250 hours of creep in T34 against 6.8% in T23 (Table 5.4).

5.4 Discussion

5.4.1 Porosity loss with increasing stress

Effect of carbonate dissolution

The amount of chemical compaction is given by the difference between the strain in samples

saturated with reactive fluids and the lower strain in samples saturated with non–reactive flu-

ids. Chemical compaction rate being controlled by diffusion or reaction kinetics, its observed

amount is therefore related to the loading rate used (2 MPa/h), i.e. slower loading rate would

produce greater difference between compressibility of samples saturated with reactive and non–

reactive fluids. More chemical compaction was observed in bioclastic samples than in crushed

calcite samples. This is probably related to the fact that calcite is both thermodynamically

more stable and less soluble than magnesian calcite (Morse and Mackenzie, 1990; Stumm and

Morgan, 1996), and that the surface area available for chemical reaction was higher in the bio-

clastic carbonate sand. This suggests that at least part of the chemical compaction observed in

bioclastic carbonate samples is related to carbonate dissolution. An other indication for active

dissolution in the present study is that in samples saturated with reactive fluids the compress-

ibility increased with decreasing grain size (Figure 5.3B, C). In finer grain–sized samples the

mean coordination number is higher than in coarser samples (Lange, 1984), resulting in the ob-

served increased dissolution in fine-grained samples saturated with a reactive fluid, i.e. pressure

solution.

Effect of stress corrosion

Cracks propagated parallel to the main stress axis and the length of the cracks correlated posi-

tively with grain solubility and was therefore depending on the nature of the fluid (Figure 5.4C,

D). Crack propagation occurred faster in water saturated samples. In addition, compressibility

of bioclastic sand was higher in the presence of glycol than decane (Table 5.3). Subcritical crack

growth occurs in brittle material at stresses lower than the critical fracture stress, and is sensitive

to the fluid present (Atkinson, 1982). The material resistance to crack, G, is a function of the

surface energy, γ such that G = 2γ. Therefore, lowering the surface energy facilitates crack

propagation (Olagnon et al., 2006). The surface energy of carbonates is lowered by adsorption
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of water onto the mineral surface and creation of chemical bounds between Ca in carbonate

and O in water (Cygan et al., 2002). Glycol contains two hydroxyls groups probably resulting

in formation of a similar Ca−O bound as in water, which lower the surface energy. Formation

of similar bounds is not possible between decane or air and calcite surfaces and explains why

the cracks length was smaller in these fluids.

Effects at the grain contacts

For the bioclastic sand material, the internal grain porosity collapsed at the rim of the grain–

to–grain contacts (Figure 5.4). This mechanism was active in all bioclastic carbonate sand

experiments and independent of the pore fluid composition. The amount of grain crushing

related to this mechanism seems, however, to be greater in samples saturated with reactive fluids

(Figure 5.4A, B). Note that collapse of porous shell structures was described as a compaction

mechanism in naturally occurring limestones (Meyers, 1980).

Compaction laws

All the compaction curves were fitted by a stretched exponential law (eq. 5.2), also named the

Kohlraush–Williams–Watts (KWW) law. Even though this law has been widely used to describe

compaction in material science, it has traditionally not been used in rock physics. The KWW

law fitted well the tests carried out on bioclastic carbonate samples saturated with non–reactive

fluids (Figure 5.2C), i.e. the purely mechanical part of the compaction. This is in agreement

with the fact that the KWW law is also used to describe relaxation in non–cohesive granular

media (Richard et al., 2005). Relaxation can be described as a set of processes driving the

grains from an initial low density state toward a more stable higher density packing (Philippe

and Bideau, 2002). During compaction of sand, relaxation occurs mainly by collective particle

motion and grain sliding, i.e. grain rearrangement (Ben-Naim et al., 1998; Philippe and Bideau,

2002), those are therefore most likely dominant mechanisms of deformation during mechanical

compaction of the present bioclastic carbonate sand.

The onset of grain crushing is assumed to start at the intersection between the two linear

parts of the ε = f(log(σ)) curve (Figure 5.2A), that is around 2 to 3 MPa effective stress. Early

initiation of grain crushing during compaction of carbonate sand was also observed by Chuhan

et al. (2003). Grain crushing was most likely the process explaining deviation of the present

experimental compaction curves from the KWW law.

An important result is that initial porosity is an important parameter controlling further

compaction (Figures 5.2C, D, E and 5.3B). The initial geometrical configuration of the grains

149



determines the amplitude of the large scale grain rearrangements (Caglioti et al., 1997) and thus

the amount of final relaxation. This result supports suggestion from earlier studies that initial

porosity needs to be taken into account to predict subsequent compaction (Royden and Keen,

1980; Sclater and Christie, 1980).

Since both calcite and bioclastic carbonate sand could be fitted by the same law, this suggests

that compaction of other type of sediments could also be fitted by the KWW law. Also to be

mentioned, the range of values for the β parameter is rather narrow, 0.6-0.7, for bioclastic sand

saturated with reactive fluids. To fit larger carbonate compaction datasets with the KWW law, a

mean value of β could be used. As a result, only one free parameter, τ , would be necessary to

describe carbonate compaction using the KWW law.

5.4.2 Creep

Chemical effects

The absence of observable creep in samples saturated with non–reactive fluids, while strain

was observed in samples saturated with reactive fluids, indicate that creep was due to chemical

reactions (Figure 5.7). The significant increase in both Mg2+ and Ca2+ concentrations in the

fluid after tests also shows that dissolution of magnesian calcite occurred during experiments

(Table 5.5). In addition the Mg2+ concentration increased about 2 times more than the Ca2+

concentration during the tests (Table 5.5). Taking into account the stoichiometric dissolution

of the bioclastic carbonates, about 5 times more Ca2+ than measured should be present in

the pore fluid. This significant build–up of Mg2+ relative to Ca2+ indicates active calcite

precipitation/cementation in the bioclastic system during creep.

Chemical compaction rheology: interplay between pressure solution creep and stress cor-

rosion

All the data could be fitted by a power law (eq. 5.5) with a single exponent (Figure 5.8A), in a

similar way as done by Renard et al. (2001) for salt aggregates compacting by pressure solution.

The time exponent θ = 0.23 is different than the traditional exponent of 1/3 expected for An-

drade creep. However, this Andrade exponent may depend on the active deformation process

(Vishnevskii et al., 1989). Several studies in material science, where sample were deformed

under compression in a creep regime showed similar power-law, with an exponent varying be-

tween 0.18 and 0.5 (Chari, 1967; Greener et al., 1980; Vishnevskii et al., 1989).

The time independent compaction parameter (αj in eq. 5.5) increased with decreasing grain
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size (Figure 5.8B). The increase of strain rate as a function of decreasing grain size is char-

acteristic of various creep processes, among them pressure solution (Weyl, 1959). The strong

influence of the grain size on α is in agreement with pressure solution models in which the

relaxation time constant is strongly dependent on the mean grain diameter (Revil, 1999; Re-

vil et al., 2006). As opposed to pressure solution, the rate of aggregate compaction resulting

from subcritical crack growth should be proportional to the grain size (Cruden, 1970; Chantikul

et al., 1990). The compaction parameter, α, was found to increase with both stress and water

concentration (Figure 5.8C, D). Pressure solution and subcritical crack growth are sensitive to

stress in a similar way (Charles, 1958; Lehner, 1990). Both processes were most likely active

in the present study since significant creep was observed not only in samples saturated with

fluids where calcite is soluble, like water, but also in samples saturated with glycol or anisole

in which calcite is hardly soluble. The comparison between the 50/50 mixed water/glycol T33

test and the 3/97 mixed water/glycol T36 test (Figure 5.7B) indicates that pressure solution is a

more effective deformation process than subcritical crack growth in water based systems. While

subcritical crack growth will dominate when samples are saturated with either anisole or glycol.

In the present study final strain rates range from 2.82·10−8 to 2.85·10−6 sec−1. Earlier

experimental studies of carbonate creep found strain rates comprised between 1.24·10−9 and

3.49·10−8 sec−1 when pressure solution is responsible for the compaction (Zhang and Spiers,

2005; Zubtsov et al., 2005) and between 2.29·10−8 and 1.86·10−6 sec−1 when compaction is

due to interactions between pressure solution and subcritical crack growth (Liteanu and Spiers,

2009; Croizé et al., 2010). Based on these previous studies, the rates found in the present study

indicate that both pressure solution and subcritical crack growth were active during creep.

Comparison with relaxation processes in fault zones

Strain rate decay as a function of time during primary creep can be described by different power

laws, e.g. Omori’s law for earthquakes (Omori, 1894) or Andrade’s law for metals (Andrade,

1910) and many industrial materials (Chari, 1967; Greener et al., 1980; Vishnevskii et al., 1989).

The value of the time exponent p is usually lower than one. In the present experiments, the strain

rate decay can be expressed as a power law (eq. 5.7, Figure 5.8E), with p ranging from 0.65

to 0.95, having a mean value of p = 0.85. This value is comparable to the one found in models

of primary creep in brittle rocks (Amitrano and Helmstetter, 2006). Similar variations of the p

exponent are also observed when fitting afterslip and aftershock data with the Omori law (Schaff

et al., 1998; Helmstetter and Shaw, 2009). These studies showed that post-seismic relaxation,

i.e. fault afterslip, can be described with a p exponent similar to the one describing relaxation of
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bioclastic carbonate sand or various granular material during creep in compression. However,

it is difficult to conclude if the mechanisms are the same in such various and different systems.

5.4.3 Ultrasonic velocities

At low stresses, Vp measurements lower than 1500 m/s may be partly explained by a small

under–saturation (Knight et al., 1998), in the present case the skeletal grains internal porosity

may not have been completely filled with water. However, this is not sufficient to explain

the low velocity obtained. It is also difficult to understand the fact that velocities of samples

saturated with reactive fluids are lower than velocity of dry samples. A possible explanation

can be related to the dissolution at grain contacts of carbonates saturated with reactive fluids.

At the same effective stress, samples saturated with reactive fluids were more compressible

than samples saturated with non-reactive fluids. The link between compressibility and chemical

processes made in the previous section must therefore be taken into account while interpreting

the present ultrasonic velocity measurements. Crack propagation may also lower elastic wave

velocity (Couvreur et al., 2001), and reactive surface areas lower grain contact stiffness (Vanorio

et al., 2010), which might also explain lower velocity measurements in samples saturated with

reactive fluids (Figure 5.5A, B).

The measured ultrasonic velocities were dependent on the actual effective stress values (Fig-

ure 5.5A, B). This known effect (Hughes and Kelly, 1953) is outlined by the fact that several

samples of the present study having different porosities show similar velocities when subjected

to the same effective stress (Figure 5.5A, B). This effect is even more clear when looking at the

bulk modulus (Figure 5.5 C). P-wave velocities at specific stresses where plotted against poros-

ity (Figure 5.5D) to better investigate the velocity-porosity relation. Fitting the experimental

data to the existing PGSO rock–physics model shows that the initial porosity should also be

taken into account to predict the P-wave velocity–porosity relation (Figure 5.5D).

The velocity increase observed in coarser grained samples (Figure 5.6) can be explained by

the presence of larger contact areas in coarser samples (Sutton et al., 1957). In samples saturated

with reactive fluids, the positive correlation found between P–wave acoustic impedance and

grain size (Figure 5.6D) might be linked to the positive correlation between β and grain size

(Figure 5.3C). No such correlation was found in dry samples (Figures 5.6D and 5.3C).

During creep tests the Vp to Vs ratio remained constant, in the range between 1.9 and 2.0.

This is in agreement with other studies and allows differentiation between limestones and sand-

stones having lower velocity ratio (Assefa et al., 2003). Both during loading and creep phases

velocity increased linearly with decreasing porosity, a feature in agreement with other studies
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of carbonate (Nolen-Hoeksema et al., 1995; Wang, 1997).

5.4.4 Implications for porosity prediction in sedimentary basins

In the present study, chemical compaction was active during the loading phase enabling the sep-

aration between mechanical and chemical compaction. Since chemical compaction is strongly

time dependent, its amount depends upon the loading rate resulting in more chemical com-

paction with lower loading rate. This agrees with field observations where mechanical com-

paction patterns correlate positively with the sedimentation rate (Scholle and Halley, 1985).

The compressibility of bioclastic carbonate sand was significantly higher when saturated

with reactive fluids than when saturated with non-reactive fluids. This difference was not as

marked for the crushed calcite samples. This illustrates that initial compaction of carbonates

is highly dependent on the primary mineralogy. If the sediments are initially composed of un-

stable minerals, aragonite dissolution and precipitation of calcite will occur independently of

stress (Morse and Mackenzie, 1990). This is also true for magnesian calcite ifMg2+ is removed

or precipitated as dolomite. If such cementation occurs a mechanically stable framework may

be produced preventing further mechanical compaction (Kopaska-Merkel et al., 1994; Croizé

et al., 2009). However, in the case of thermodynamically stable low–magnesium calcite sedi-

ments like planktonic forams or coccolithophores, compaction will be driven by stress and the

subsequent compaction can most likely be explained by processes described in this study.

Magnesium is a known inhibitor of both calcite dissolution (Arvidson et al., 2006) and cal-

cite precipitation (Berner, 1975). If the sediments are composed of magnesian calcite, as in

this study, the potential build–up of Mg2+ in the pore space might either reduce or prevent the

porosity loss by slowing down the rate of pressure solution (Zhang and Spiers, 2005), precipita-

tion of dolomite in the pore space might also occur. The inhibiting effect of Mg2+ on pressure

solution was also observed in shallow-water carbonates of South-Florida (Schmoker and Halley,

1982).

The present experimental data show that only minor amounts of water is sufficient for chem-

ical compaction to occur. This explains why field observations show that cementation can occur

even if oil migrates through a reservoir (McLimans and Videtich, 1989). Based on these obser-

vations oil emplacement in carbonate reservoirs may not stop compaction but rather result in

a different compaction mechanism than in carbonate sediments saturated with water. This was

observed in bioclastic carbonate samples saturated with glycol. Glycol was shown to have the

same effect than oil on chalk compaction (Risnes et al., 2003). The results from the present

study suggest that subcritical crack growth will be the main mechanism responsible for com-
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paction in oil filled carbonate sediments.

5.5 Conclusion

Uniaxial compression tests were carried out on bioclastic carbonate sands and crushed calcite

samples with grain size in the range 63–500 µm. In samples saturated with reactive fluids, e.g.

glycol/water mixture or water in equilibrium with carbonate, significant chemical compaction

was documented during the loading phase. Samples saturated with non–reactive fluids, e.g.

air or decane, showed less strain at the same effective stress since the compaction was only

mechanical. When saturated with reactive fluids, finer grained samples were more compressible

than coarser grained samples due to chemical compaction. Chemical compaction occurred by

pressure solution which was enhanced by the presence of cracks at the grain–to–grain contacts.

Compaction related microstructures identified in thin–sections support these findings.

During creep tests carried out on bioclastic carbonate sand the deformation was mostly

due to chemical reactions. Furthermore pore water analysis, and especially the evolution of

the Mg2+/Ca2+ ratio, showed that magnesian calcite dissolved during experiments. In all

the creep experiments, the strain versus time relation followed a power law in time, with a

single exponent equal to 0.23. From this observation, it was inferred that the same deformation

mechanisms were active in all the creep experiments. Overall it was found that a combination

of pressure solution creep and subcritical crack growth (stress corrosion) was responsible for

strain, and strain rates were in the range 2.88·10−8–2.82·10−6 s−1.

The compressibility of the samples was controlled by, in order of importance, grain size,

stress, and water saturation. Pressure solution was most likely the dominant mechanism of

compaction in samples saturated with water. Conversely, in samples saturated with glycol or

anisole, subcritical crack growth was most likely the main mechanism of deformation.

Ultrasonic velocity measurements showed that P- and S–waves velocities were in the range

of 705 to 2440 m/s and 535 to 1250 m/s, respectively. Low velocities were especially observed

in samples saturated with reactive fluids. Dissolution and transport affecting the grain–to–grain

contacts geometry and crack propagation are likely to be the reason for such velocity alteration.

All these observations indicate that relaxation processes at work in a granular material can

have universal behaviours in systems as different as sedimentary layers during burial or fault

zones during the interseismic period. In all cases, the nature of the fluid, the initial grain pack-

ing, and the grain size represent important control parameters of the final strain and the strain

rates for a given stress.
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