Etats fondamentaux et excitations de systèmes magnétiques frustrés, du classique au quantique

Soutenance de thèse de Laura Messio Thèse dirigée par C. Lhuillier (LPTMC) et G. Misguich (IPhT) Collaborateurs : O. Cépas, J.-C. Domenge, B. Fåk, L. Pierre et P. Viot



14 Septembre 2010

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

I) Propriétés thermodynamiques de modèles de spins classiques non coplanaires

ション ふゆ くち くち くち くち

II) Les états classiques réguliers

III) Les états fondamentaux quantiques

Supraconducteurs à haute température critique (1986)  $\rightarrow$  intérêt pour les isolants de Mott.



・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

Supraconducteurs à haute température critique (1986)  $\rightarrow$  intérêt pour les isolants de Mott.



ション ふゆ くち くち くち くち

$$E = \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$$

Supraconducteurs à haute température critique (1986)  $\rightarrow$  intérêt pour les isolants de Mott.



ション ふゆ くち くち くち くち

$$E = \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$$

Supraconducteurs à haute température critique (1986)  $\rightarrow$  intérêt pour les isolants de Mott.



ション ふゆ くち くち くち くち

$$E = \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$$

Supraconducteurs à haute température critique (1986)  $\rightarrow$  intérêt pour les isolants de Mott.



・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ



Supraconducteurs à haute température critique (1986)  $\rightarrow$  intérêt pour les isolants de Mott.





Qu'est-ce que la frustration ?



Réseaux 2D formés de triangles





triangulaire

kagome



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Phases quantiques possibles

- ► Ordre de Néel (semi-classique),
- Cristal de liens de valence,
- ► Liquide de spins...



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Phases quantiques possibles

- ► Ordre de Néel (semi-classique),
- Cristal de liens de valence,
- Liquide de spins...



Cutitmb (Katsumata 2002),



Herbertsmithite (Nocera),



Kapellasite (Wills),



Volborthite (Hiroï)...

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

Réalisations expérimentales :

# <u>Partie I</u> Propriétés thermodynamiques de modèles classiques de spins non coplanaires

Etat fondamental classique sur kagome de :

$$E = J_1 \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + J_2 \sum_{\langle \langle ij \rangle \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Etat fondamental classique sur kagome de :

$$E = J_1 \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + J_2 \sum_{\langle \langle ij \rangle \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$$



▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

C'est un état de Néel à 12 sous-réseaux (Domenge et al., PRB 2005) pour J<sub>2</sub> > |J<sub>1</sub>|/3 et J<sub>1</sub> < 0.</li>



Etat fondamental classique sur kagome de :

$$E = J_1 \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + J_2 \sum_{\langle \langle ij \rangle \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$$



・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

- C'est un état de Néel à 12 sous-réseaux (Domenge et al., PRB 2005) pour J<sub>2</sub> > |J<sub>1</sub>|/3 et J<sub>1</sub> < 0.</li>
- Espace du paramètre d'ordre  $\sim O(3) \Rightarrow$  chiralité  $\pm 1$ .



Etat fondamental classique sur kagome de :

$$E = J_1 \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + J_2 \sum_{\langle \langle ij \rangle \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$$



・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

- C'est un état de Néel à 12 sous-réseaux (Domenge et al., PRB 2005) pour J<sub>2</sub> > |J<sub>1</sub>|/3 et J<sub>1</sub> < 0.</li>
- Espace du paramètre d'ordre  $\sim O(3) \Rightarrow$  chiralité  $\pm 1$ .
- Transition chirale à température finie avec prolifération des vortex.



• Les vortex  $\mathbb{Z}$  (spins XY)  $\rightarrow$  transition Kosterlitz-Thouless.

▲□▶ ▲課▶ ▲理▶ ★理▶ = 目 - の��



• Les vortex  $\mathbb{Z}$  (spins XY)  $\rightarrow$  transition Kosterlitz-Thouless.

▲□▶ ▲課▶ ▲理▶ ★理▶ = 目 - の��



• Les vortex  $\mathbb{Z}$  (spins XY)  $\rightarrow$  transition Kosterlitz-Thouless.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ



• Les vortex  $\mathbb{Z}$  (spins XY)  $\rightarrow$  transition Kosterlitz-Thouless.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ



• Les vortex  $\mathbb{Z}$  (spins XY)  $\rightarrow$  transition Kosterlitz-Thouless.



▲□▶ ▲課▶ ▲理▶ ★理▶ = 目 - の��

• Les vortex  $\mathbb{Z}$  (spins XY)  $\rightarrow$  transition Kosterlitz-Thouless.



▶ Kawamura-Miyashita (1984) : les vortex  $\mathbb{Z}_2$  (spins Heisenberg)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●



• Les vortex  $\mathbb{Z}$  (spins XY)  $\rightarrow$  transition Kosterlitz-Thouless.



• Kawamura-Miyashita (1984) : les vortex  $\mathbb{Z}_2$  (spins Heisenberg)



• Les vortex  $\mathbb{Z}$  (spins XY)  $\rightarrow$  transition Kosterlitz-Thouless.



▶ Kawamura-Miyashita (1984) : les vortex  $\mathbb{Z}_2$  (spins Heisenberg)



On a choisi un modèle simple :



 $E = -\sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + \mathbf{S}_i \cdot \mathbf{S}_j + \mathbf{S}_i \cdot \mathbf{S}_j$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Paramètre d'ordre : O(3)

On a choisi un modèle simple :



 $E = -\sum_{\langle ij\rangle} \mathbf{S}_i \cdot \mathbf{S}_j + \mathbf{S}_i \cdot \mathbf{S}_j + \mathbf{S}_i \cdot \mathbf{S}_j$ 

Paramètre d'ordre : O(3)

 Ondes de spins

Chiralité

 $S_i \cdot S_i \wedge S_i$ 



▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

On a choisi un modèle simple :



 $E = -\sum_{\langle ij\rangle} \mathbf{S}_i \cdot \mathbf{S}_j + \mathbf{S}_i \cdot \mathbf{S}_j + \mathbf{S}_i \cdot \mathbf{S}_j$ 

Paramètre d'ordre : O(3)

Vorticité  $\mathbb{Z}_2$ :



 Ondes de spins

Chiralité

<mark>S</mark>i∙Si∧Si



・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

On a choisi un modèle simple :



 $E = -\sum_{\langle ij\rangle} \mathbf{S}_i \cdot \mathbf{S}_j + \mathbf{S}_i \cdot \mathbf{S}_j + \mathbf{S}_i \cdot \mathbf{S}_j$ 

Paramètre d'ordre : O(3)

Vorticité  $\mathbb{Z}_2$ :



 Ondes de spins

Chiralité

<mark>S</mark>i∙Si∧Si



Simulations numériques (algorithme Wang-Landau)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Simulations numériques (algorithme Wang-Landau)

Chiralité fixée, paires de vortex :



$$T_{apparition} = 1.1$$

Simulations numériques (algorithme Wang-Landau)

Chiralité fixée, paires de vortex :



$$T_{apparition} = 1.1$$

Avec chiralité, vortex isolés près des murs de domaines :



 $T_{apparition} = 0.97$ 

Les vortex sont plus nombreux près des murs de domaines :



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の Q @

Les vortex sont plus nombreux près des murs de domaines :





On peut définir la vorticité d'un mur de domaine  $\Omega_{mur} = \Omega_{ext}\Omega_{int} = \pm 1$ :



▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

Les vortex sont plus nombreux près des murs de domaines :





On peut définir la vorticité d'un mur de domaine  $\Omega_{mur} = \Omega_{ext}\Omega_{int} = \pm 1$ :

Plusieurs paires sont possibles :

- vortex-vortex,
- mur-vortex,











・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

### Conclusion sur la transition chirale et les vortex





### Conclusion sur la transition chirale et les vortex



▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 …の�?
#### Conclusion sur la transition chirale et les vortex



Les murs de domaines peuvent porter une charge topologique. La création d'une paire vortex-mur coûte moins d'énergie que la création d'une paire vortex-vortex.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

#### Conclusion sur la transition chirale et les vortex



- Les murs de domaines peuvent porter une charge topologique. La création d'une paire vortex-mur coûte moins d'énergie que la création d'une paire vortex-vortex.
- Le modèle est proche d'un point tricritique : transition dans la classe d'universalité d'Ising ou du premier ordre.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

# Partie II Les états classiques réguliers



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Exemple :





Exemple : cet état de Néel n'est pas invariant par la translation  $T_1$ ,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで



<u>Exemple</u> : cet état de Néel n'est pas invariant par la translation  $T_1$ , mais il l'est par  $T_1$  suivie d'une rotation globale des spins  $R_s$ .



Exemple : cet état de Néel n'est pas invariant par la translation  $T_1$ , mais il l'est par  $T_1$  suivie d'une rotation globale des spins  $R_s$ .



On connaît le réseau et ses symétries  $S_R$ , l'espace des spins et ses symétries  $S_S$ .



#### <u>Définition</u> :

Un état classique est *régulier* pour la symétrie du réseau X si il existe une transformation globale des spins  $\phi_X$  telle que l'état soit invariant par  $\phi_X X$ .

#### Comment trouver tous les états réguliers ?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

Leur recherche se passe en deux étapes.

Exemple du réseau kagome avec spins Heisenberg



#### Comment trouver tous les états réguliers ?

Leur recherche se passe en deux étapes.

(1) Trouver les  $\phi_X$  de  $S_S$  qui respectent la structure algébrique de  $S_R$ ,

Exemple du réseau kagome avec spins Heisenberg



(1) Contraintes algébriques sur les  $\phi_X$  de  $O_3$  :

$$\begin{split} \phi_{T_1}\phi_{T_2} &= \phi_{T_2}\phi_{T_1} & \phi_{T_1}\phi_{R_6}\phi_{T_2} &= \phi_{R_6}\\ \phi_{R_6}\phi_{\sigma}\phi_{R_6} &= \phi_{\sigma} & \phi_{T_1}\phi_{\sigma} &= \phi_{\sigma}\phi_{T_2}\\ \phi_{R_6}^6 &= I & \phi_{\sigma^2} &= I\\ \phi_{R_6}\phi_{T_1}\phi_{T_2} &= \phi_{T_2}\phi_{R_6}. \end{split}$$

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

#### $\phi_{T_1}\phi_{T_2} = \phi_{T_2}\phi_{T_1} \qquad \phi_{T_1}\phi_{R_6}\phi_{T_2} = \phi_{R_6}$ $\phi_{R_e}\phi_{\sigma}\phi_{R_e} = \phi_{\sigma} \qquad \phi_{T_e}\phi_{\sigma} = \phi_{\sigma}\phi_{T_e}$

| ΓΛ6ΨσΨΛ6         | $\varphi \sigma$       | $\varphi I_{\underline{1}} \varphi \sigma$ | $\varphi \sigma \varphi$ |
|------------------|------------------------|--------------------------------------------|--------------------------|
| $\phi^6_{R_6}=I$ |                        | $\phi_{\sigma^{2}}$                        | = 1                      |
| $\phi_{R_6}$     | $\phi_{T_1}\phi_{T_2}$ | $=\phi_{T_2}\phi_{R_6}.$                   |                          |

(2) Contraintes sur les états de spins :

$$\phi_{\sigma} \mathbf{S}_{\nu} = \mathbf{S}_{\nu}, \qquad \phi_{T_{1}} \phi_{T_{2}} \phi_{R}^{3} \mathbf{S}_{\nu} = \mathbf{S}_{\nu}.$$

ション ふゆ くち くち くち くち

(1) Contraintes algébriques sur les  $\phi_X$  de  $O_3$ : Exemple du réseau kagome avec spins Heisenberg

Leur recherche se passe en deux étapes.

(1) Trouver les  $\phi_X$  de  $S_S$  qui respectent la structure algébrique de  $S_R$ ,

(2) Pour chaque ensemble de  $\phi_X$ , trouver les états compatibles.

Comment trouver tous les états réguliers ?





#### Tous les états réguliers sur le réseau kagome



#### Tous les états réguliers sur le réseau kagome



▲ロト ▲御 ▶ ▲臣 ▶ ▲臣 ▶ ○臣 ○の�(♡)

#### Intérêt des états réguliers

Tous les états réguliers (sauf parapluies) sont des extrema ou points selles de l'énergie dès qu'elle respecte S<sub>R</sub> et S<sub>S</sub>. Ils sont donc des candidats pour l'état fondamental.







#### Intérêt des états réguliers

Tous les états réguliers (sauf parapluies) sont des extrema ou points selles de l'énergie dès qu'elle respecte S<sub>R</sub> et S<sub>S</sub>. Ils sont donc des candidats pour l'état fondamental.

cuboc2

q = 0

2

ò

 $J_{2}$ 



 Les résultats expérimentaux peuvent être comparés aux facteurs de structure de ces états.



#### Intérêt des états réguliers

Tous les états réguliers (sauf parapluies) sont des extrema ou points selles de l'énergie dès qu'elle respecte S<sub>R</sub> et S<sub>S</sub>. Ils sont donc des candidats pour l'état fondamental.





 Les résultats expérimentaux peuvent être comparés aux facteurs de structure de ces états.



<u>Partie III</u> <u>Les états fondamentaux</u> quantiques

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$|0_i\rangle = \left| - - \right|_i - \left| - \right|_i$$

$$\hat{b}_{i}^{\dagger} \ket{0_{i}} = \left| \begin{array}{c} & \\ & \\ & \end{array} \right\rangle$$



$$\hat{a}_{i}^{\dagger} \hat{b}_{i}^{\dagger} |0_{i}\rangle = \left| - \frac{1}{1} \right\rangle$$

◆□ > < 個 > < E > < E > E のQ @

$$\hat{b}_{i}^{\dagger} \,\, \hat{a}_{i}^{\dagger} \,\, \hat{b}_{i}^{\dagger} \,\, |0_{i}\rangle = \left| - \frac{1}{1 + 1} \right\rangle$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$$\hat{b}_{i}^{\dagger} \,\, \hat{a}_{i}^{\dagger} \,\, \hat{b}_{i}^{\dagger} \,\, |0_{i}
angle = \left| - \downarrow \uparrow \downarrow \right\rangle$$

$$2\widehat{S}_{i}^{z} = \widehat{a}_{i}^{\dagger}\widehat{a}_{i} - \widehat{b}_{i}^{\dagger}\widehat{b}_{i}$$
$$\widehat{S}_{i}^{+} = \widehat{a}_{i}^{\dagger}\widehat{b}_{i}$$
$$2S = \widehat{a}_{i}^{\dagger}\widehat{a}_{i} + \widehat{b}_{i}^{\dagger}\widehat{b}_{i}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\hat{b}_{i}^{\dagger} \,\, \hat{a}_{i}^{\dagger} \,\, \hat{b}_{i}^{\dagger} \,\, |0_{i}
angle = \left| \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

$$2\widehat{S}_{i}^{z} = \widehat{a}_{i}^{\dagger}\widehat{a}_{i} - \widehat{b}_{i}^{\dagger}\widehat{b}_{i}$$
$$\widehat{S}_{i}^{+} = \widehat{a}_{i}^{\dagger}\widehat{b}_{i}$$
$$2S = \widehat{a}_{i}^{\dagger}\widehat{a}_{i} + \widehat{b}_{i}^{\dagger}\widehat{b}_{i}$$

Excitations=spinons

▲□▶ ▲課▶ ▲理▶ ★理▶ = 目 - の��

$$\hat{b}_{i}^{\dagger} \hat{a}_{i}^{\dagger} \hat{b}_{i}^{\dagger} |0_{i}\rangle = \left| \begin{array}{c} & & \\ & & \\ \hline & & \\ \hline & & \\ \hat{A}_{ij} = \frac{1}{2} \left( \hat{a}_{i} \hat{b}_{j} - \hat{a}_{j} \hat{b}_{i} \right) \end{array}$$

$$\begin{split} &2\widehat{S}_{i}^{z}=\widehat{a}_{i}^{\dagger}\widehat{a}_{i}-\widehat{b}_{i}^{\dagger}\widehat{b}_{i}\\ &\widehat{S}_{i}^{+}=\widehat{a}_{i}^{\dagger}\widehat{b}_{i}\\ &2S=\widehat{a}_{i}^{\dagger}\widehat{a}_{i}+\widehat{b}_{i}^{\dagger}\widehat{b}_{i} \end{split}$$

Excitations=spinons

▲□▶ ▲課▶ ▲理▶ ★理▶ = 目 - の��

$$\hat{b}_{i}^{\dagger} \ \hat{a}_{i}^{\dagger} \ \hat{b}_{i}^{\dagger} \ |0_{i}\rangle = \left| \downarrow \downarrow \downarrow \right\rangle$$

$$\hat{A}_{ij} = \frac{1}{2} \left( \hat{a}_{i} \hat{b}_{j} - \hat{a}_{j} \hat{b}_{i} \right)$$

$$\hat{A}_{ij}^{\dagger} |0_{ij}\rangle = \frac{1}{2} \left( \left| \downarrow \downarrow \downarrow \downarrow \right\rangle - \left| \downarrow \downarrow \downarrow \downarrow \downarrow \right\rangle \right)$$

$$\begin{split} &2\widehat{S}_{i}^{z}=\hat{a}_{i}^{\dagger}\hat{a}_{i}-\hat{b}_{i}^{\dagger}\hat{b}_{i}\\ &\widehat{S}_{i}^{+}=\hat{a}_{i}^{\dagger}\hat{b}_{i}\\ &2S=\hat{a}_{i}^{\dagger}\hat{a}_{i}+\hat{b}_{i}^{\dagger}\hat{b}_{i} \end{split}$$

Excitations=spinons

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\hat{b}_{i}^{\dagger} \hat{a}_{i}^{\dagger} \hat{b}_{i}^{\dagger} |0_{i}\rangle = \left| \begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \\ \end{array} \right\rangle$$

$$\hat{A}_{ij} = \frac{1}{2} \left( \hat{a}_{i} \hat{b}_{j} - \hat{a}_{j} \hat{b}_{i} \right)$$

$$\hat{A}_{ij}^{\dagger} |0_{ij}\rangle = \frac{1}{2} \left( \left| \begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \\ \end{array} \right\rangle - \left| \begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \end{array} \right\rangle \right)$$

$$2\widehat{S}_{i}^{z} = \widehat{a}_{i}^{\dagger}\widehat{a}_{i} - \widehat{b}_{i}^{\dagger}\widehat{b}_{i}$$
$$\widehat{S}_{i}^{+} = \widehat{a}_{i}^{\dagger}\widehat{b}_{i}$$
$$2S = \widehat{a}_{i}^{\dagger}\widehat{a}_{i} + \widehat{b}_{i}^{\dagger}\widehat{b}_{i}$$

Excitations=spinons

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$H = \sum_{\langle ij \rangle} J_{ij} \widehat{\mathbf{S}}_i \cdot \widehat{\mathbf{S}}_j = \sum_{\langle ij \rangle} J_{ij} (S^2 - 2\widehat{A}_{ij}^{\dagger} \widehat{A}_{ij})$$

$$\hat{b}_{i}^{\dagger} \hat{a}_{i}^{\dagger} \hat{b}_{i}^{\dagger} |0_{i}\rangle = \left| \begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \\ \end{array} \right\rangle$$

$$\hat{A}_{ij} = \frac{1}{2} \left( \hat{a}_{i} \hat{b}_{j} - \hat{a}_{j} \hat{b}_{i} \right)$$

$$\hat{A}_{ij}^{\dagger} |0_{ij}\rangle = \frac{1}{2} \left( \left| \begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \\ \end{array} \right\rangle - \left| \begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \\ \end{array} \right\rangle \right)$$

$$\begin{split} &2\widehat{S}_{i}^{z}=\hat{a}_{i}^{\dagger}\hat{a}_{i}-\hat{b}_{i}^{\dagger}\hat{b}_{i}\\ &\widehat{S}_{i}^{+}=\hat{a}_{i}^{\dagger}\hat{b}_{i}\\ &2S=\hat{a}_{i}^{\dagger}\hat{a}_{i}+\hat{b}_{i}^{\dagger}\hat{b}_{i} \end{split}$$

Excitations=spinons

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$$\begin{aligned} H &= \sum_{\langle ij \rangle} J_{ij} \widehat{\mathbf{S}}_{i} \cdot \widehat{\mathbf{S}}_{j} = \sum_{\langle ij \rangle} J_{ij} (S^{2} - 2\widehat{A}_{ij}^{\dagger} \widehat{A}_{ij}) \\ & \xrightarrow{\mathsf{MF}} \sum_{\langle ij \rangle} J_{ij} (S^{2} - 2\widehat{A}_{ij}^{\dagger} \mathcal{A}_{ij} - 2\mathcal{A}_{ij}^{*} \widehat{A}_{ij} + 2|\mathcal{A}_{ij}|^{2}) + \sum_{i} \lambda_{i} (2S - \widehat{n}_{i}) \end{aligned}$$

$$\hat{b}_{i}^{\dagger} \hat{a}_{i}^{\dagger} \hat{b}_{i}^{\dagger} |0_{i}\rangle = \left| \begin{array}{c} \downarrow \downarrow \downarrow \\ \hline \downarrow \downarrow \\ \hat{A}_{ij} = \frac{1}{2} \left( \hat{a}_{i} \hat{b}_{j} - \hat{a}_{j} \hat{b}_{i} \right) \\ \hat{A}_{ij}^{\dagger} |0_{ij}\rangle = \frac{1}{2} \left( \left| \begin{array}{c} \downarrow \downarrow \\ \downarrow \downarrow \\ \hline \downarrow \\ \hline \downarrow \\ \hline \end{array} \right\rangle - \left| \begin{array}{c} \downarrow \downarrow \\ \downarrow \\ \hline \downarrow \\ \hline \end{array} \right\rangle \right)$$

$$2\widehat{S}_{i}^{z} = \widehat{a}_{i}^{\dagger} \widehat{a}_{i} - \widehat{b}_{i}^{\dagger} \widehat{b}_{i}$$
$$\widehat{S}_{i}^{+} = \widehat{a}_{i}^{\dagger} \widehat{b}_{i}$$
$$2S = \widehat{a}_{i}^{\dagger} \widehat{a}_{i} + \widehat{b}_{i}^{\dagger} \widehat{b}_{i}$$

Excitations=spinons

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\begin{aligned} H &= \sum_{\langle ij \rangle} J_{ij} \widehat{\mathbf{S}}_i \cdot \widehat{\mathbf{S}}_j = \sum_{\langle ij \rangle} J_{ij} (S^2 - 2 \widehat{A}_{ij}^{\dagger} \widehat{A}_{ij}) \\ & \xrightarrow{\mathsf{MF}} \sum_{\langle ij \rangle} J_{ij} (S^2 - 2 \widehat{A}_{ij}^{\dagger} \mathcal{A}_{ij} - 2 \mathcal{A}_{ij}^{*} \widehat{A}_{ij} + 2 |\mathcal{A}_{ij}|^2) + \sum_i \lambda_i (2 S - \widehat{n}_i) \end{aligned}$$

Un ensemble de paramètres complexes  $\{A_{ij}\}$  est appelé un Ansatz.

$$\hat{b}_{i}^{\dagger} \hat{a}_{i}^{\dagger} \hat{b}_{i}^{\dagger} |0_{i}\rangle = \left| \begin{array}{c} \downarrow \downarrow \downarrow \\ \hline \downarrow \downarrow \\ \widehat{A}_{ij} = \frac{1}{2} \left( \hat{a}_{i} \hat{b}_{j} - \hat{a}_{j} \hat{b}_{i} \right) \\ \widehat{A}_{ij}^{\dagger} |0_{ij}\rangle = \frac{1}{2} \left( \left| \begin{array}{c} \downarrow \downarrow \\ \downarrow \downarrow \\ \hline \downarrow \\ \hline \end{matrix} \right) - \left| \begin{array}{c} \downarrow \downarrow \\ \downarrow \\ \hline \downarrow \\ \hline \end{matrix} \right) \right)$$

$$2\widehat{S}_{i}^{z} = \widehat{a}_{i}^{\dagger}\widehat{a}_{i} - \widehat{b}_{i}^{\dagger}\widehat{b}_{i}$$
$$\widehat{S}_{i}^{+} = \widehat{a}_{i}^{\dagger}\widehat{b}_{i}$$
$$2S = \widehat{a}_{i}^{\dagger}\widehat{a}_{i} + \widehat{b}_{i}^{\dagger}\widehat{b}_{i}$$

Excitations=spinons

$$\begin{aligned} H &= \sum_{\langle ij \rangle} J_{ij} \widehat{\mathbf{S}}_i \cdot \widehat{\mathbf{S}}_j = \sum_{\langle ij \rangle} J_{ij} (S^2 - 2 \widehat{A}_{ij}^{\dagger} \widehat{A}_{ij}) \\ & \xrightarrow{\mathsf{MF}} \sum_{\langle ij \rangle} J_{ij} (S^2 - 2 \widehat{A}_{ij}^{\dagger} \mathcal{A}_{ij} - 2 \mathcal{A}_{ij}^{*} \widehat{A}_{ij} + 2 |\mathcal{A}_{ij}|^2) + \sum_i \lambda_i (2 S - \widehat{n}_i) \end{aligned}$$

Un ensemble de paramètres complexes  $\{A_{ij}\}$  est appelé un Ansatz.

On cherche un Ansatz tel que  $\mathcal{A}_{ij} = \langle \widehat{\mathcal{A}}_{ij} 
angle_{GS}$  .

# L'ordre à longue portée (LRO) en SBMFT

A la limite thermodynamique pour T = 0, deux possibilités

1. le gap tend vers 0  $\rightarrow$  phase Néel. Exemple : kagome,  $S = 0.5 > S_c$ 





2. le gap tend vers une limite finie, Exemple : kagome,  $S = 0.2 < S_c$ 







# L'ordre à longue portée (LRO) en SBMFT

A la limite thermodynamique pour T = 0, deux possibilités

1. le gap tend vers  $0 \rightarrow$  phase Néel. Exemple : kagome,  $S = 0.5 > S_c$ 





2. le gap tend vers une limite finie, Exemple : kagome,  $S = 0.2 < S_c$ 







#### Les groupes de symétries projectives

Invariance de jauge locale 
$$\psi : \begin{pmatrix} a_i \\ b_i \end{pmatrix} \mapsto \begin{pmatrix} e^{i\alpha_i} a_i \\ e^{i\alpha_i} b_i \end{pmatrix}$$
 n'affecte pas les

quantités physiques.



#### Les groupes de symétries projectives

Invariance de jauge locale 
$$\psi$$
:  $\begin{pmatrix} a_i \\ b_i \end{pmatrix} \mapsto \begin{pmatrix} e^{i\alpha_i}a_i \\ e^{i\alpha_i}b_i \end{pmatrix}$  n'affecte pas les

quantités physiques.



 $\{\psi_X X\}$  = groupe de symétries projectives (Wen PRB 2002)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ⊙

#### Les groupes de symétries projectives

Invariance de jauge locale 
$$\psi$$
:  $\begin{pmatrix} a_i \\ b_i \end{pmatrix} \mapsto \begin{pmatrix} e^{i\alpha_i}a_i \\ e^{i\alpha_i}b_i \end{pmatrix}$  n'affecte pas les

quantités physiques.



 $\{\psi_X X\}$  = groupe de symétries projectives (Wen PRB 2002)  $\rightarrow$  Familles d'Ansätze caractérisées par leurs flux autour de boucles

$$\phi_{12...2n} = \text{phase de } \mathcal{A}_{12}(-\mathcal{A}_{23}^*) \cdots (-\mathcal{A}_{2n,1}^*)$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

#### Résultats sur le réseau triangulaire




▲□▶▲□▶▲□▶▲□▶ ▲□▼ ろくぐ





▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

### La chiralité et les flux

Flux  $\phi_{1234}$  = phase de  $\mathcal{A}_{12}(-\mathcal{A}_{23}^*)\mathcal{A}_{34}(-\mathcal{A}_{41}^*)$  : invariant de jauge.

$$\begin{split} &8\widehat{A}_{12}\widehat{A}_{24}^{\dagger}\widehat{A}_{34}\widehat{A}_{41}^{\dagger} = \\ &(\mathbf{S}_{1}\cdot\mathbf{S}_{2})(\mathbf{S}_{3}\cdot\mathbf{S}_{4}) + (\mathbf{S}_{2}\cdot\mathbf{S}_{3})(\mathbf{S}_{4}\cdot\mathbf{S}_{1}) - (\mathbf{S}_{1}\cdot\mathbf{S}_{3})(\mathbf{S}_{2}\cdot\mathbf{S}_{4}) + S^{4} \\ &+ S^{2}(\mathbf{S}_{1}\cdot\mathbf{S}_{3} + \mathbf{S}_{2}\cdot\mathbf{S}_{4} - \mathbf{S}_{1}\cdot\mathbf{S}_{2} - \mathbf{S}_{2}\cdot\mathbf{S}_{3} - \mathbf{S}_{3}\cdot\mathbf{S}_{4} - \mathbf{S}_{4}\cdot\mathbf{S}_{1}) \\ &+ iS\underbrace{(\mathbf{S}_{1}\cdot(\mathbf{S}_{2}\wedge\mathbf{S}_{3}) - \mathbf{S}_{2}\cdot(\mathbf{S}_{3}\wedge\mathbf{S}_{4}) + \mathbf{S}_{3}\cdot(\mathbf{S}_{4}\wedge\mathbf{S}_{1}) - \mathbf{S}_{4}\cdot(\mathbf{S}_{1}\wedge\mathbf{S}_{2}))}_{\mathbf{S}^{2}\cdot(\mathbf{S}_{4}\cdot\mathbf{S}_{4}) + \mathbf{S}_{3}\cdot(\mathbf{S}_{4}\wedge\mathbf{S}_{1}) - \mathbf{S}_{4}\cdot(\mathbf{S}_{1}\wedge\mathbf{S}_{2}))}. \end{split}$$

Si ≠0, état chiral

▲□▶ ▲課▶ ▲理▶ ★理▶ = 目 - の��

### La chiralité et les flux

Flux  $\phi_{1234} =$  phase de  $\mathcal{A}_{12}(-\mathcal{A}^*_{23})\mathcal{A}_{34}(-\mathcal{A}^*_{41})$  : invariant de jauge.

$$\begin{split} &8\widehat{A}_{12}\widehat{A}_{24}^{\dagger}\widehat{A}_{34}\widehat{A}_{41}^{\dagger} = \\ &(\mathbf{S}_{1}\cdot\mathbf{S}_{2})(\mathbf{S}_{3}\cdot\mathbf{S}_{4}) + (\mathbf{S}_{2}\cdot\mathbf{S}_{3})(\mathbf{S}_{4}\cdot\mathbf{S}_{1}) - (\mathbf{S}_{1}\cdot\mathbf{S}_{3})(\mathbf{S}_{2}\cdot\mathbf{S}_{4}) + S^{4} \\ &+ S^{2}(\mathbf{S}_{1}\cdot\mathbf{S}_{3} + \mathbf{S}_{2}\cdot\mathbf{S}_{4} - \mathbf{S}_{1}\cdot\mathbf{S}_{2} - \mathbf{S}_{2}\cdot\mathbf{S}_{3} - \mathbf{S}_{3}\cdot\mathbf{S}_{4} - \mathbf{S}_{4}\cdot\mathbf{S}_{1}) \\ &+ iS\underbrace{(\mathbf{S}_{1}\cdot(\mathbf{S}_{2}\wedge\mathbf{S}_{3}) - \mathbf{S}_{2}\cdot(\mathbf{S}_{3}\wedge\mathbf{S}_{4}) + \mathbf{S}_{3}\cdot(\mathbf{S}_{4}\wedge\mathbf{S}_{1}) - \mathbf{S}_{4}\cdot(\mathbf{S}_{1}\wedge\mathbf{S}_{2}))}_{\mathbf{S}}. \end{split}$$

Si  $\neq 0$ , état chiral

・ロット 全部 マート・ キョン

э

 $\phi_{1234} = \pm \pi/3, \neq 0, \neq \pi.$ Chiralité  $\chi_{123} \neq 0.$ 

### La chiralité et les flux

Flux  $\phi_{1234}$  = phase de  $\mathcal{A}_{12}(-\mathcal{A}^*_{23})\mathcal{A}_{34}(-\mathcal{A}^*_{41})$  : invariant de jauge.

$$\begin{split} &8\widehat{A}_{12}\widehat{A}_{24}^{\dagger}\widehat{A}_{34}\widehat{A}_{41}^{\dagger} = \\ &(\mathbf{S}_{1}\cdot\mathbf{S}_{2})(\mathbf{S}_{3}\cdot\mathbf{S}_{4}) + (\mathbf{S}_{2}\cdot\mathbf{S}_{3})(\mathbf{S}_{4}\cdot\mathbf{S}_{1}) - (\mathbf{S}_{1}\cdot\mathbf{S}_{3})(\mathbf{S}_{2}\cdot\mathbf{S}_{4}) + S^{4} \\ &+ S^{2}(\mathbf{S}_{1}\cdot\mathbf{S}_{3} + \mathbf{S}_{2}\cdot\mathbf{S}_{4} - \mathbf{S}_{1}\cdot\mathbf{S}_{2} - \mathbf{S}_{2}\cdot\mathbf{S}_{3} - \mathbf{S}_{3}\cdot\mathbf{S}_{4} - \mathbf{S}_{4}\cdot\mathbf{S}_{1}) \\ &+ iS\underbrace{(\mathbf{S}_{1}\cdot(\mathbf{S}_{2}\wedge\mathbf{S}_{3}) - \mathbf{S}_{2}\cdot(\mathbf{S}_{3}\wedge\mathbf{S}_{4}) + \mathbf{S}_{3}\cdot(\mathbf{S}_{4}\wedge\mathbf{S}_{1}) - \mathbf{S}_{4}\cdot(\mathbf{S}_{1}\wedge\mathbf{S}_{2}))}_{\bullet}. \end{split}$$

Si  $\neq 0$ , état chiral

 $\phi_{1234} = \pm \pi/3, \neq 0, \neq \pi.$ Chiralité  $\chi_{123} \neq 0.$ 

 $\begin{array}{ll} \phi_{1234} \stackrel{\sigma}{\mapsto} -\phi_{1234} & \Rightarrow & \mathsf{pas} \; \mathsf{d'Ansatz} \; \mathsf{sym\acute{e}trique} \; \mathsf{associ\acute{e}}. \\ \chi_{123} \stackrel{\sigma}{\mapsto} -\chi_{123} \end{array}$ 

## Les groupes élargis de symétries projectives

 $\{(T)\psi_X X\} =$  groupe de symétries projectives élargis

<ロ> (四) (四) (三) (三) (三)



## Les groupes élargis de symétries projectives

 $\{(T)\psi_X X\} =$  groupe de symétries projectives élargis



 $\rightarrow$  Ansätze de liquides de spins chiraux.

## Les groupes élargis de symétries projectives

 $\{(T)\psi_X X\} =$  groupe de symétries projectives élargis



 $\rightarrow$  Ansätze de liquides de spins chiraux.

ション ふゆ くち くち くち くち

4 Ansätze sur le réseau triangulaire : (0), ( $\pi$ ), ( $\pm 2\pi/3$ ) et ( $\pm \pi/3$ ).



## Liquide de spins chiral : état fondamental ?

Aucun liquide de spins chiral n'a encore été observé.

Un état fondamental classique chiral peut donner naissance à un liquide de spins chiral par ajout des fluctuations quantiques.

 réseau triangulaire avec échange cyclique : état tétraédrique (Kubo-Momoï 1997, Misguich 1998)



 J<sub>1</sub>J<sub>2</sub> sur kagome : état cuboctaédrique (Domenge, 2005), réalisation expérimentale : kapellasite.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の Q @

#### La SBMFT

Ansätze minimalistes,

#### La SBMFT

- Ansätze minimalistes,
- $\blacktriangleright$  PSG de Wen  $\rightarrow$  classification des liquides de spins, mais limite classique incomprise,

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

#### La SBMFT

- Ansätze minimalistes,
- PSG de Wen → classification des liquides de spins, mais limite classique incomprise,

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

► PSG élargi → états chiraux (Néel ou liquides) : nouvelles possibilités pour la SBMFT.

#### La SBMFT

- Ansätze minimalistes,
- $\blacktriangleright$  PSG de Wen  $\rightarrow$  classification des liquides de spins, mais limite classique incomprise,

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

- ► PSG élargi → états chiraux (Néel ou liquides) : nouvelles possibilités pour la SBMFT.
- Etats classiques réguliers : parents de liquides de spins

#### La SBMFT

- Ansätze minimalistes,
- $\blacktriangleright$  PSG de Wen  $\rightarrow$  classification des liquides de spins, mais limite classique incomprise,

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

- ► PSG élargi → états chiraux (Néel ou liquides) : nouvelles possibilités pour la SBMFT.
- ► Etats classiques réguliers : parents de liquides de spins → intérêt renouvelé pour les modèles classiques de spins non coplanaires (transition chirale).