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THÈSE

Présentée

devant l’Université de Rennes 1
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modèles segmentaux

Soutenue le 23 octobre 2006 devant la commission d’examen

M. : Patrick Bouthemy Président
MM. : Petros Maragos Rapporteurs

Régine André-Obrecht
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A.3 Définitions de base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A/6
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CHAPITRE A

Synthèse en français

A.1 Introduction

L’annotation automatique de documents vidéos est un outil puissant pour gérer des
grandes bases de données vidéos ou, plus récemment, pour le développement de produits
grand public sophistiqués qui satisfont les besoins de haut niveau de l’utilisateur, comme
l’extraction de moments clés d’une vidéo. On peut accomplir cette tâche en utilisant
des modèles explicites faits à la main, et ainsi dépendants du domaine, qui donnent de
bons résultats dans quelques cas [16]. Mais il a vite été clair que nous avons besoin de
façons plus efficaces de rapprocher les besoins de haut niveau de l’utilisateur d’un coté
et les caractéristiques vidéo de bas niveau que nous avons de l’autre coté, comme les
histogrammes d’image ou l’excitation sonore. Pout atteindre ce but, un point clé est
la mise au point d’une manière efficace de représenter le contenu des vidéos [95]. Les
Modèles de Markov Cachés [81] (HMMs) constituent une approche statistique puissante
pour modéliser le contenu d’une vidéo et peuvent être utilisés comme un analyseur
syntaxique statistique de la vidéo [108], comme cela est fait dans le domaine de la
reconnaissance de la parole.

Les modèles markoviens ont été utilisés pour l’analyse de structure d’émissions de
tennis. Dans ce type de vidéo, les règles de jeu aussi bien que les règles de production
aboutissent à un document structuré. Dans un travail précédent, des HMMs ergodiques
ou hiérarchiques [49] ont été utilisés pour faire l’analyse syntaxique de cette structure et
segmenter les données vidéo brutes en scènes reconnaissables par des humains. La table
des matières d’une vidéo peut alors être construite automatiquement.

A/1



A/2 A. Synthèse en français

La fusion multimodale avec des HMMs est généralement effectuée par fusion con-
caténative d’observations qui fait l’hypothèse de caractéristiques homogènes et syn-
chrones. Cependant, les deux modalités image et son sont échantillonnées à des fréquences
différentes. En outre, le contenu visuel suit les règles de production tandis que le contenu
sonore contient des sons bruts du court, mélangés avec le discours du commentateur. Il
y a ainsi, premièrement, un certain degré d’asynchronisme entre des caractéristiques
auditives et visuelles et, deuxièmement, des modèles temporels différents. Dans cette
étude, nous présentons l’indexation des vidéo avec des Modèles Segmentaux [72] (SMs),
comme modèles qui permettent une fusion multimodale plus efficace et nous fournissons
une comparaison expérimentale avec la fusion basée sur les HMMs. Avec les SMs, les
contraintes de synchronisation entre les modalités peuvent être repoussées aux frontières
des scènes. Nous sommes alors libres de traiter, au sein de chaque scène, chaque modalité
avec son modèle et sa fréquence d’échantillonnage natifs.

Par ailleurs, des ressources textuelles comme les indications de score et les statis-
tiques du jeu transmettent une information importante sur l’évolution de jeu qui doit
être exploitée au mieux. Les difficultés entrent du fait que ces informations peuvent ap-
parâıtre longtemps après l’événement de jeu correspondant, à l’extérieur des frontières
de la scène, ou peuvent être absentes. L’utilisation des indications de score comme une
caractéristique supplémentaire peut être ainsi de contribution limitée. Nous avons pro-
posé au lieu de cela une variante originale du décodage de Viterbi, appelée recherche de
Viterbi guidée par le score, qui utilise les indications de score pour piloter le décodage
de Viterbi. L’alignement des étiquettes aux événements de jeu correspondants est laissé
comme partie du problème d’optimisation, tandis que la cohérence avec l’évolution de
jeu est satisfaite lors du décodage.

Cette thèse est organisée comme suit. Le travail relatif à la fusion multimodale basée
sur les HMMs est expliqué dans la section A.2. Des définitions de base sur le problème
abordé sont dans la section A.3. L’extraction des caractéristiques est discutée dans la
section A.4. Dans la section A.5 nous voyons comment le contenu visuel est modelisé
par les HMMs et les SMs, avec une topologie ergodique ou hiérarchique. L’intégration
audiovisuelle avec ces modèles est discutée dans la section A.6. On donne l’intégration
de l’affichage du score dans la section A.7. On fournit des détails sur l’estimation des
paramètres des modèles dans la section A.8 et les résultats expérimentaux dans la section
A.9. Finalement, la section A.10 conclut cette étude.

A.2 Travail précédent

Pour une revue détaillée des aspects divers du problème de l’indexation multimodale de
la vidéo, le lecteur intéressé pourra se référer aux état de l’art paru dans [16, 106, 95, 17].
Dans cette section nous nous concentrerons sur les HMMs, qui sont largement utilisés
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pour exploiter l’aspect temporel des données vidéo. En effet, selon le genre de la vidéo
et les règles de production, les événements vidéo arrivent avec un ordre temporel qui
permettra de trouver finalement l’étiquette sémantique. Les HMMs fournissent une
structure statistique puissante pour traiter des données séquentielles et sont ainsi un
candidat naturel pour modéliser des dépendances temporelles dans la vidéo.

Wolf [108] a présenté les HMMs comme un analyseur statistique de la syntaxe d’un
document vidéo. On considère les caractéristiques vidéo de bas niveau comme les ob-
servations d’un processus caché Markovien stochastique qui représente la syntaxe de la
vidéo. L’algorithme de Viterbi est alors employé pour récupérer la syntaxe, étant donné
le modèle vidéo (c’est-à-dire, les probabilités de transition et d’observation). Dans ce
contexte, on peut considérer le problème d’extraction de syntaxe vidéo comme sem-
blable à celui de la reconnaissance de la parole, où nous essayons d’extraire la tran-
scription (la syntaxe de la vidéo, dans le cas d’indexation de vidéo) d’un texte parlé (le
fichier vidéo, respectivement). Comme quelques genres de vidéos présentent une struc-
ture hiérarchique inhérente, le HMM Hiérarchique (HHMM) [28] peut être utilisé pour
récupérer la hiérarchie. Les HHMMs ont été utilisé pour l’analyse des vidéos des sports
[110] ou éducatives [78].

Un scénario simple d’intégration multimodale avec les HMMs est d’exécuter la clas-
sification ou l’indexation basée sur chaque modalité indépendamment et ensuite de fu-
sionner les probabilités pour prendre la décision finale. On a proposé cet type de fusion,
appelée fusion tardive, dans [42] entre autres.

Une deuxième approche de l’intégration multimodale basée sur les HMMs est la fusion
précoce, i.e., la concaténation des caractéristiques de toutes les modalités rassemblées
dans un super-vecteur d’observations. Ce type de fusion, étant un choix populaire dans
la communauté d’indexation de vidéo en raison de sa simplicité, a été utilisé pour la
segmentation vidéo [12, 7], la détection de dialogues humains [2] et la classification
d’émissions [42, 106, 24, 26, 44] en utilisant des caractéristiques visuelles et sonores.
La fusion précoce a aussi été largement étudiée dans le domaine de la reconnaissance
audiovisuelle de la parole [79]. Une tâche nécessaire avant la fusion précoce est la con-
version des fréquences d’échantillonnage, qui sont toujours dépendants des données. La
concaténation des caractéristiques visuelles (d’habitude échantillonnées à 25 images par
seconde) aux auditives (d’habitude échantillonnées à 100 Hz) peut être faite par interpo-
lation [79], tandis que la conversion opposée peut se faire par moyennage [7]. Néanmoins,
dans beaucoup d’approches de l’indexation vidéo, les caractéristiques de grands segments
vidéo (comme un plan) sont rassemblées et puis pré-classifiées pour former des descrip-
teurs. Ainsi, on contourne artificiellement le problème de la conversion des fréquences
d’échantillonnage.

L’hypothèse sous-jacente cependant à ce type de fusion est que toutes les modalités
doivent être synchrones et suivre la même topologie, ce qui n’est pas vrai en général.
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Pour remédier à ce problème de synchronisation forcée entre les modalités et augmenter
les capacités de modélisation, on a proposé un certain nombre de variantes HMM dans
les communautés de la reconnaissance audiovisuelle de la parole et de l’indexation vidéo.
Dans les HMMs multiflux [13], chaque modalité (ou flux) est modélisée par des HMMs
indépendants qui sont synchronisés en des points fixes. Dans les HMMs multiflux syn-
chrones, les états eux-mêmes sont ces points. En pratique, ces modèles ne diffèrent pas
des HMMs synchrones d’état, en dehors de l’hypothèse explicite d’indépendance des
observations. Ce schéma tient compte de l’inclusion d’une pondération dépendante de
l’état ou des mesures de fiabilité sur chaque modalité [33].

Dans les HMMs Multiflux asynchrones, les points de synchronisation sont étendus
au-delà des états cachés, comme la fin des phonèmes en reconnaissance audiovisuelle de
la parole. Entre ces points, on considère les flux indépendants on les modélise chacun
par des HMMs unimodaux. L’idée clef est que les HMMs unimodaux peuvent suivre
une topologie différente et aussi fonctionner sur une fréquence d’échantillonnage propre.
Les probabilités produites par les HMMs unimodaux sont recombinées aux points de
synchronisation par des produits de probabilité ou avec une autre fonction de recombi-
naison. Cependant, pour des raisons de convenance, pendant le décodage, les HMMs
multiflux asynchrones ont été utilisés sous la forme d’un HMM produit en reconnaissance
audiovisuelle de la parole [79]. Dans la pratique, les HMMs produit peuvent gérer un
asynchronisme limité entre les modalités mais l’exigence d’une topologie unique et d’une
seule fréquence d’échantillonnage persiste. En outre, quand plus de deux modalités sont
fusionnées, la complexité globale du modèle devient intraitable.

Le HMM asynchrone (AHMM) [8] est une architecture HMM spécialement conçue
pour modéliser des paires de flux légèrement désynchronisés, échantillonnés à des fréquences
différentes. Les AHMMs traitent les deux flux en laissant le plus court être dilaté tem-
porellement pour l’aligner au mieux avec le premier flux. La séquence la plus longue
est produite classiquement comme dans tous les modèles Markoviens en entrant dans un
état caché, en émettant un symbole d’observation, en passant ensuite dans un nouvel
état caché, etc. La nouveauté des AHMMs est qu’à certains instants, l’état caché émet
deux symboles d’observation, un de la séquence longue, comme normalement, et aussi le
symbole d’observation correspondant de la séquence courte. Les instants des émissions
doubles, c’est-à-dire l’alignement des deux flux, sont contrôlés par une nouvelle variable
cachée. L’interprétation physique de cette variable cachée est qu’elle donne à chaque
instant l’index temporel du flux court. Pendant le décodage Viterbi, la recherche est
exécutée non seulement par tous les chemins possibles d’état cachés, mais aussi par
tous les alignements possibles entre les deux flux. Les AHMMs ont été introduits en
reconnaissance audiovisuelle de la parole, afin de représenter la désynchronisation due
au bruit des deux flux. Ils ont été aussi utilisés par McCowan et al. [63] dans une tâche
d’identification des actions de groupe dans des réunions sur des caractéristiques audio-
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visuelles, comme la parole, l’intensité du discours, la position des têtes, etc. Les HMMs
état-synchrones ont mieux fonctionné dans les expériences conduites que d’autres vari-
antes d’HMMs comme les HMMs produits. Les résultats étaient encore améliorés par les
AHMMs, qui peuvent facilement gérer des désynchronisations naturelles qui introduisent
de la confusion aux HMMs état-synchrones.

En partageant avec les HMMs multiflux l’idée de points de synchronisation et l’utili-
sation interne de modèles indépendants, des architectures superposées de HMMs peu-
vent être construites. La vidéo est segmentée selon quelques points de synchronisation
fixés a priori, par exemple à chaque fin de seconde ou aux frontières des plans. Les
diverses modalités de chaque portion de vidéo sont alors traitées indépendamment,
ce qui permet de respecter leur fréquences d’échantillonnage natif et des topologies
différentes. Les résultats des HMMs ainsi obtenus sont enchâınés et donnés en entrée
au processus Markovien de la couche suivante. Des architectures multicouches, appelées
HMM Multicouche (LHMM), ont été utilisées par Olivier et al. [70] dans une tâche
d’inférence d’activité de bureau. Des caractéristiques auditives et visuelles sont traitées
et préclassifiées séparément par un ensemble de HMMs. Le résultat de ces classificateurs,
rassemblés chaque seconde, sont donnés en entrée, avec des caractéristiques d’activité
de clavier à la seconde (et dernière) couche de la hiérarchie, où l’activité est déduite en
utilisant un autre ensemble de HMMs. Les auteurs ont comparé la fusion état-synchrone
concaténative des HMMs à l’approche du LHMM sur un corpus de 60 minutes d’activité
de bureau, démontrant la supériorité de leur approche. En plus de la fusion de flux
asynchrones, les HMMs du plus haut niveau peuvent capturer des interactions et une
sémantique de plus haut niveau, d’une manière semblable aux HHMMs. Dans [117], une
approche HMM à deux couches a été utilisée pour attaquer un problème d’identification
d’actions de groups similaire au problème abordé dans [63]. Le rôle de la première
couche de HMMs est de modéliser les actions individuelles (c’est-à-dire, spécifiques aux
personnes) sur des données audiovisuelles brutes, conjointement traitées par des AH-
MMs audiovisuels. On donne les sorties de la première couche, avec quelques autres
caractéristiques spécifiques au groupe, à la deuxième couche, qui modélise la vidéo au
niveau du groupe. L’utilisation d’une deuxième couche pour capturer des dynamiques
de plus haut niveau a été aussi adoptée dans [111] pour la structuration des vidéos de
football.

Nous verrons dans cette étude comment les problèmes mentionnés ci-dessus peuvent
être résolus en utilisant des Modèles Segmentaux [72] qui unifient les HMMs multiflux
et les HMMs Multicouches dans une nouvelle structure pour l’intégration multimodale.
Premièrement, un modèle de durée est ajouté aux HMMs multiflux. Les points de
synchronisation entre les modalités ne sont plus fixés, mais sont maintenant des variables
du problème d’optimisation. Chaque modalité peut être échantillonnée à des fréquences
différentes et modélisée par sa topologie native. Deuxièmement, les observations de
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toutes les modalités entre les frontières de synchronisation sont associées à un état caché
¿multimodalÀ commun. Cet état caché correspond à un plus haut niveau sémantique
et modélise la vidéo comme la deuxième couche des HMMs multicouches.

A.3 Définitions de base

Un certain nombre de caractéristiques arrivent invariablement dans chaque vidéo de
tennis suite aux règles de jeu et au travail du producteur, avant la diffusion. Quand
une action de jeu va commencer, par exemple, la caméra passe à une vue du court.
Il est extrêmement rare, bien que toujours possible, de présenter l’action de jeu par
une vue différente, comme une vue de côté. D’autre part, l’inactivité de jeu corre-
spond d’habitude aux vues de non-court. Les rediffusions sont présentées avec un effet
spécial, comme un fondu enchainé. Des rediffusions multiples aboutissent à un effet
de ¿sandwichÀ des successions des fondus enchainés et des rediffusions. Finalement,
les temps morts (i.e., quand le jeu est en pause) correspondent à la publicité, à de
présentation des statistiques de jeu ou à des interviews.

Basé sur les caractéristiques de la vidéo de tennis, quatre types de scènes sont iden-
tifiées et servent comme composantes sémantiques de base du vidéo. Ils sont définis au
dessus de la segmentation vidéo en plans, i.e., chaque scène est en fait une collection de
plans successifs qui partagent un contenu sémantique homogène. Les scènes sont définies
comme suit :

1. Premier service manqué et échange. Ce type de scène commence par un plan de
jeu où un service manqué s’est produit. Un certain nombre des plans de non-
jeu suivent jusqu’à ce qu’un échange normal ait lieu. Finalement, un nombre de
nouveaux plans de non-jeu peuvent apparaitre (facultativement), jusqu’à ce qu’une
nouvelle scène commence. Il y a aussi la possibilité d’une répétition de plusieurs
services manqués avant l’échange.

2. Échange. La scène commence par un plan de jeu correspondant à un échange,
suivi par un certain nombre de plans de non-jeu qui remplissent la scène, jusqu’à
ce qu’une nouvelle scène commence.

3. Rediffusion. Les scènes de rediffusion commencent par un plan de fondu enchâıné
et contiennent ensuite un certain nombre de successions de vues différentes du court
et de fondus enchainés. Ils finissent avec des plans de non-jeu qui remplissent la
scène jusqu’à ce qu’une nouvelle scène commence.

4. Pause. Les pauses peuvent être des publicités ou un temps mort de longue durée
où une interview peut avoir lieu, ou bien les statistiques du jeu sont affichées.
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Les pauses commencent au plan où les joueurs quittent le court. La publicité ou
les interviews ont lieu et, finalement, des plans qui remplissent la scène peuvent
apparâıtre à la fin.

Les deux premières scènes correspondent, en pratique, au même événement de jeu de
base : l’échange. On leur a assigné des étiquettes différentes pour rendre le problème plus
difficile. La définition de la scène de pause exige un raisonnement humain de haut-niveau
pour être proprement détectée. Néanmoins, la trace temporelle d’une pause est unique
et facilement détectée : la publicité est une longue succession de plan courts tandis que
les interviews et les temps d’inactivité sont une collection de plans, mais d’extrêmement
longue durée.

La structuration de la vidéo est définie comme le problème de la classification de
chaque plan comme appartenant à une des quatre scènes définies ci-dessus, et aussi de
la détection des frontières des scènes. Chaque frontière de plan dans la vidéo peut être
une frontière de scène.

L’utilisation des informations issues des modalités multiples est un atout majeur
pour mener cette tâche à bien. Typiquement un observateur humain peut résoudre
le problème d’étiquetage et de segmentation de la vidéo en scènes en observant juste
le contenu visuel, même si cela comporte un certain degré de difficulté. Cependant,
l’inférence automatique basée uniquement sur des caractéristiques visuelles peut poser
des problèmes. Aussi, des caractéristiques auditives et textuelles sont utilisées pour
améliorer la performance en fournissant des indices supplémentaires.

A.4 Extraction des caractéristiques

Nous avons utilisé un corpus de 6 vidéos complètes de tennis, enregistrées entre 1999
et 2001 et aimablement fournies par l’INA1. Tous les matchs ont lieu sur un court
d’intérieur, sauf un. Les parties des émissions précédant et suivant le match de tennis ont
été manuellement enlevées des vidéos. Néanmoins, les programmes contiennent toujours
des publicités et des interviews qui apparaissent de temps en temps pendant le match. La
durée totale des vidéos est d’environ 15 heures. Les images des vidéos ont été extraites
au flux MPEG brut, dans l’espace de couleurs RGB et avec une taille de 288×352 pixels.
L’audio a été sous-échantillonné à 16 kHz. La moitié des vidéos (n’incluant pas le
match d’extérieur) a été réservée dans cette thèse pour tester les systèmes. Un schéma
approximatif du processus d’extraction des caractéristiques est montré à la figure A.1.
Les flux visuel et auditif ont été traités séparément pour l’extraction de descripteurs
visuels et auditifs. Les caractéristiques textuelles ont été extraites en utilisant comme
base la segmentation vidéo.

1Institut national de l’audiovisuel, France. http://www.ina.fr
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Figure A.1

Plan du processus d’extraction des caractéristiques.

A.4.1 Caractéristiques visuelles

Le flux visuel a été premièrement segmenté en plans, qui sont des grands segments
vidéo de contenu visuel homogène. La segmentation vidéo implique premièrement la
détection des coupures, puis les fondus enchainés sont détectées à l’intérieur de chaque
plan individuellement. Les fondus enchainés sont des transitions progressives entre deux
plans où le premier disparâıt en fondu tandis que le deuxième apparâıt progressivement.
Dans les vidéos de tennis, comme dans d’autres émissions sportives, ils sont largement
utilisés pour signaler le début et la fin des rediffusions. Les coupures et les fondus
enchainés ont été détectés avec la méthode de [101] (méthode de choix adaptatif de
seuil) en inspectant localement l’évolution des caractéristiques d’image pendant un fondu
enchainé. Au final, 10775 coupures ont été détectées avec un nombre négligeable de
fausses alarmes ou détections manquées. Les fondus enchainés, étant des transitions
progressives, ont été laissées intactes par la détection des coupures parce qu’on utilise
un seuil adaptatif. La détection des fondus enchainés a abouti à 1196 vraies détections
dans les séquences d’apprentissage et de test ensemble. Sur le corps d’apprentissage
(resp., de test), nous avons observé 3 (resp., 8) fausses alarmes et 10 (resp., 22) non
détections. Étant donné le début et la fin des fondus enchainés, un nouveau type de
plans est défini, appelés plans spéciaux.

La classe la plus intéressante de plans dans les vidéos de tennis est ceux qui montrent
une vue globale du court (appelée vue globale). La plupart du temps et selon le style
du producteur, la caméra est fixée sur une vue globale quand le jeu se déroule. Les
vues globales sont ainsi des points de repère importants dans une vidéo de tennis. Dans
[22] les vues globales sont détectées par de l’information de bord et la transformée de
Hough. Une solution plus simple est d’utiliser des caractéristiques à base de couleur
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car la couleur du court domine les vues globales. Un désavantage de l’utilisation de
la couleur résulte du fait que cette couleur du court change de vidéo en vidéo ou peut
même subir des modifications légères au sein même d’une vidéo en raison des conditions
environnementales. Dans [119], une procédure semi-adaptative est suivie pour détecter
les vues globales, avec la contrainte que la vue à reconnâıtre doit être proche des modèles
initiaux.

Nous avons utilisé, par contre, une procédure entièrement automatique pour détecter
les vues globales sans exiger une quelconque approximation antérieure de la couleur du
court, telle que décrit dans [49]. La procédure est appliquée à chaque fichier vidéo in-
dividuellement, puisque chaque vidéo est caractérisée par sa propre couleur du court.
Premièrement, chaque plan de la vidéo est représenté par une image clef, prise arbi-
trairement comme son image médiane. L’extraction des couleurs dominantes est alors
appliquée à chaque image clef et les images dont la couleur dominante occupe moins de
70% de l’image entière sont étiquetées sans risque comme des vues non-globales. La vue
globale de référence est définie comme l’image clef qui est la plus proche possible du
centre d’inertie des images clefs restantes, dans un espace défini par une distance entre
images (par exemple, à base d’histogrammes). Pourtant, dans l’ensemble des images
clefs restantes il reste un certain nombre de vues non-globales qui ont passé l’étape de
prefiltrage. En les considérant comme images aberrantes, la méthode des moindres carrés
médians [84] a été utilisée pour extraire la vue globale de référence. À l’étape finale,
chaque image clef de la vidéo est comparée à la vue globale de référence pour calculer
le descripteur de la similarité visuelle. La distance à base d’histogramme utilisée inclut
non seulement la couleur mais prend aussi les contours en compte pour être plus robuste
aux légers changements de lumière/couleur dans la vidéo entière.

En plus de la similarité visuelle, l’ensemble des descripteurs visuels à base de plans
est complété par la longueur de chaque plan et un indice binaire qui indique si le plan
est un fondu enchainé ou non.

A.4.2 Caractéristiques sonores

Dans une vidéo de tennis, il peut être intéressant de détecter la présence des classes
sonores comme les bruits de balle et les applaudissements. Les bruits de balle sont
enregistrés pendant les échanges ou services et devraient compléter les caractéristiques
visuelles pour une bonne discrimination entre vues globales d’action réelle de jeu et vues
globales de non-jeu. Comme les applaudissements arrivent d’habitude après un échange,
leur présence peut être utilisée pour détecter de tels événements. Finalement, la classe
sonore ¿musiqueÀ peut transmettre de l’information utile puisqu’elle est caractéristique
pendant des publicités. Ces classes sonores ont été automatiquement détectées dans la
bande sonore comme décrit en détail dans [10]. Les Mel Frequency Cepstral Coefficients
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(MFCCs) sont classiquement extraits de la bande sonore en utilisant une fenêtre glis-
sante. Un vecteur de caractéristiques qui représente le signal est ainsi formé, comprenant
des coefficients d’énergie et des dérivées du premier et seconde ordres. Le processus de
détection est séparé en deux phases distinctes : segmentation de bande sonore en seg-
ments acoustiquement homogènes et classification de ces segments. Pendant la première
phase, une segmentation brute avec une fenêtre de taille croissante est raffinée en fusion-
nant ou pas les segments avoisinants avec le Bayesian Information Criterion [100]. La
détection de chaque classe sonore est effectuée indépendamment dans chaque segment et
indépendamment pour chaque classe, comme on les a considérées indépendantes. Un test
d’hypothèse binaire est exécuté dans chaque segment et pour chaque classe pour vérifier
sa présence dans le segment. Ce test implique l’examen des probabilités produites par
le modèle de la classe et celui de l’anti-classe, exprimés par des modèles de mélange de
gaussiennes, appris sur des données étiquetées.

A.4.3 Caractéristiques textuelles

Les scores affichés à l’écran ont été manuellement extraits et reconnus. Néanmoins, ces
données simulées sont une bonne approximation de ce qui pourrait avoir été automa-
tiquement extrait par un outil de reconnaissance optique de caractères moderne (voir par
exemple [109]). De plus, beaucoup de connaissances a priori spécifiques aux émissions
de tennis peuvent être exploitées, plutôt que d’essayer de résoudre le problème dans sa
généralité. Le score affiché apparâıt à des positions fixes et est, d’habitude, encadré et
bien distingué du fond pour être facilement visible. Les fausses alarmes peuvent ainsi être
en grande partie éliminées. Finalement, il y a un ensemble fini d’étiquettes possibles, im-
pliquant des chiffres (comme ¿0-30À, ¿40-15À, etc) ou quelques mots-clés prédéterminés
(comme ¿breakÀ ou ¿avantageÀ), ce qui peut énormément faciliter l’identification des
étiquettes.

A.5 Les modèles de vidéo

Nous décrivons en détails, dans cette section, comment les HMMs et les SMs sont
appliqués au problème de la structuration de la vidéo. Nous considérons d’abord un
scénario unimodal (flux visuel seul) pour mettre en évidence les différences conceptuelles
entre ces deux modèles. L’intégration de l’audio et de l’affichage des scores affichés sont
discutés dans les sections suivantes.

Des approches diverses du problème de modélisation du contenu visuel d’une émission
de tennis sont présentées. Nous commençons par les transitions ergodiques entre les
scènes. Avec la méthodologie des HMMs, chaque scène est modélisée à l’aide des
HMMs sous-modèles, qui sont connectés pour fournir un HMM ergodique unique qui
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Les états cachés du HMM. Les flèches dénotent les transitions principales à l’intérieur de chaque

scène. Les probabilités de transition d’état sont évaluées à l’aide des données d’apprentissage.

modélise la vidéo comme une succession de plans. Avec la méthodologie des SMs, on
considère chaque scène comme un segment et un SM ergodique est utilisé. Il modélise
la vidéo comme une succession de scènes. Finalement, nous examinons l’incorporation
d’informations structurelles sur les règles de tennis en utilisant des transitions hiéra-
rchiques entre les scènes, tant pour le HMM que pour le SM.

A.5.1 Modèles de Markov cachés

Étant donné les définitions des scènes dans la section A.3, il est facile de déterminer
le nombre d’états cachés et leur signification sémantique pour les sous-modèles HMMs.
Le HMM pour la scène ¿Premier service manqué et échangeÀ est illustré sur la figure
A.2. L’état 1 représente la vue globale du service manqué. Quelques plans de vues non-
globales suivent (état 2), jusqu’à ce que le joueur serve de nouveau. Si ce nouveau service
est de nouveau manqué, une transition en arrière vers l’état 1 arrive. La transition pour
l’état 3 représente qu’un échange normal a lieu. Les sous-modèles HMMs pour le trois
scènes restantes sont définis de la même manière. Notez que les deux dernières scènes
contiennent des vues globales sans jeu (états 9 et 12) que nous souhaitons séparer des
vues globales de jeu (états 1, 3 et 5). Cela est presque impossible avec des caractéristiques
visuelles seules car toutes les vues globales sont visuellement identiques. L’introduction
de caractéristiques sonores dans la section suivante pourra aider à résoudre le conflit.

Finalement, les quatre sous-modèles HMMs sont connectés pour former un HMM
unique avec 12 états cachés (comme représenté dans la figure A.2). Il modélise le contenu
entier de la vidéo comme une succession de plans.

Le vecteur d’observations associé au HMM est simplement défini par l’ensemble des
descripteurs visuels décrits dans la section A.4 :

Ov
t =

[
oc
t ol

t od
t

]
(A.1)
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où oc
t , ol

t, od
t correspondent respectivement à la similarité visuelle, la durée du plan

et le descripteur pour les plans spéciaux. On considère les caractéristiques comme
indépendantes. La probabilité d’observation conditionnelle est alors :

P (Ov
t |Sj) = P (oc

t |Sj)P (ol
t|Sj)P (od

t |Sj) (A.2)

pour un état donné Sj , 1 ≤ j ≤ 12.
Le décodage de Viterbi [81] implique la découverte de l’étiquette de l’état caché

le plus probable pour chaque plan, étant donnés une séquence d’observations Ov
1:T =

Ov
1Ov

2 . . . Ov
T de longueur T (c’est-à-dire, une séquence vidéo de T plans) et les paramètres

du modèle. Dans le domaine logarithmique, ce problème se traduit par :

Q∗
1:T = arg max

Q1:T

{ ln P (Q1:T ) +
∑

r∈{c,l,d}
lnP (or

1:T |Q1:T )} (A.3)

où Q1:T est la séquence des états cachés et où r se réfère aux caractéristiques de l’équation
A.1. Q∗

1:T est la séquence des états cachés optimale qui associe à chaque plan une des
12 étiquettes de la figure A.2. Il est facile ensuite de trouver les correspondances entre
chaque étiquette de plan et une étiquette de scène et trouver les frontières des scènes,
selon la définition du problème dans la section A.3.

A.5.2 Modèles segmentaux

La différence fondamentale entre SMs et HMMs est que, pour les SMs, un état caché
est associé à une séquence complète d’observations O1:l, appelée segment, au lieu d’une
unique observation Ot. Chaque état caché i, dans les SMs, définit donc premièrement
un modèle de durée p(l|i) qui représente la longueur l du segment. De même que pour
les valeurs des états cachés, l est stochastique. Deuxièmement, une distribution de
probabilités d’émission sur un segment p(O1:l|l, i) est définie, conditionnée à la longueur
du segment et à l’état caché. D’un point de vue génératif, on peut voir les SMs comme un
processus markovien où un état caché émet une séquence d’observations dont la longueur
est dirigée par un modèle de durée avant la transition à un autre état. La différence
entre HMMs et SMs est illustrée par la figure A.3. À gauche, nous voyons ce qui se passe
conceptuellement dans le cas des HMMs : à un moment donné le processus est dans un
état donné et produit un symbole d’observation avant de passer ensuite à un autre état.
À droite, nous voyons comment une séquence est produite par les modèles segmentaux.
À un moment donné, le processus stochastique entre dans un état et reste là selon
une probabilité définie par le modèle de durée de l’état. Une séquence d’observations
est produite, au lieu d’une seule observation, selon une distribution conditionnée sur
l’étiquette du segment. Le processus passe alors à un nouvel état avec une probabilité de
transition, comme dans les HMMs, et ainsi de suite jusqu’à ce que la séquence complète
des observations soit produite.
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Modèles de Markov Cachés Modèles Segmentaux

Figure A.3

La génération d’observations selon les modèles de Markov cachés (gauche) et les modèles seg-

mentaux (droite). L’état caché dans les SMs produit L symboles d’observations, au lieu d’un

seul.

Premier Service
Manqué et Échange Échange

PauseRediffusion

Figure A.4

Modélisation du contenu visuel comme une succession de scènes par les SMs.

Dans le cas des vidéos de tennis, nous pouvons concevoir le contenu d’une scène
comme un segment. Le SM définit ainsi quatre états cachés, chacun correspondant à
une des quatre scènes de la section A.3. On donne une illustration de la génération de la
vidéo avec le SM sur la figure A.4. Le processus stochastique entre dans un état caché (ou,
autrement dit, dans une scène) et émet plusieurs observations chacune correspondant à
un plan. Il passe alors dans une nouvelle scène et ainsi de suite, jusqu’à ce que la vidéo
complète soit produite. Il y a une structure ergodique complète, sauf en ce qui concerne
les boucles pour les scènes de pause et la rediffusion qui ne sont pas permises. Ceci est
dû au fait que, par définition, des rediffusions ou pauses répétées consécutives donnent
en fait une seule rediffusion ou pause plus grande et unique. En outre, on ne permet pas
de rediffusion après une pause et vice versa.

La longueur l du segment Ov
1:l est facilement définie comme le nombre de plans qu’il

contient. Il reste à définir la distribution d’observations P (Ov
1:l|l, Si) du segment, ce qui

est plus compliqué qu’avec les HMMs car ce sont des séquences de caractéristiques qui
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sont maintenant modélisées. Ce score de probabilité peut être fourni par un HMM λi,
spécialisé dans la modélisation des observations de la scène i :

P (Ov
1:l|l, Si) ≡ P (Ov

1:l|λi) =
∑

Q1:l

P (Ov
1:l, Q1:l|λi) (A.4)

Le dernier terme est une somme sur tous les chemins d’états cachés du HMM et est
calculé par la passe en avant de l’algorithme de Baum-Welch [81]. Le HMM λi fonc-
tionne essentiellement comme un calculateur des scores d’observations et ne doit pas être
confondu avec le HMM de la figure A.2.

Le décodage de Viterbi pour les SMs [72] implique la découverte des étiquettes et
des frontières de scène les plus probables dans un problème d’optimisation étendu. Ce
problème d’optimisation est défini dans le domaine logarithmique comme :

(L∗1:N∗ , Q∗
1:N∗) = arg max

L1:N ,Q1:N

{ln p(Q1:N ) + ln p(L1:N |Q1:N )

+ ln p(Ov
1:T |L1:N , Q1:N )} (A.5)

où T est le nombre total des plans de la vidéo, N∗ est le nombre de scènes trouvées,
L∗1:N∗ donne la segmentation en scènes et Q∗

1:N∗ est la séquence trouvée d’états cachés
la plus probable. Le terme p(Ov

1:T |L1:N , Q1:N ) est défini par l’équation A.4.
Ce problème est résolu via une extension directe de l’algorithme Viterbi pour les

HMMs afin de prendre en compte la durée explicite des états, décrite en détail dans
[81]. De manière intuitive, pendant le décodage de Viterbi pour les HMMs avec N états
cachés, nous appliquons la maximisation suivante pour chaque instant t et pour chaque
état i :

δt(i) = max
1≤j≤N

δt−1(j)ajibi(Ot) (A.6)

où δi(t) est le score du meilleur chemin finissant à l’instant t dans l’état i, aji dénote
la probabilité de transition de l’état j à i et bi(Ot) dénote la probabilité d’observation.
Pour les SMs, nous étendons la recherche aux instants précédents k pour prendre en
compte des possibilités de segmentation multiples :

δt(i) = max
1≤j≤N,1≤k≤Lmax

δt−k(j)p(Ot−k+1:t|k, i)p(k|i)aji (A.7)

où p(k|i) dénote la probabilité de durée. Pour éviter du calcul non nécessaire, nous
avons limité notre recherche des segmentations possibles à une fenêtre de Lmax instants
de temps (ou plans). Nous avons fixé cette valeur à 80 parce qu’aucune scène ne con-
tient plus de 80 plans. En supposant que le calcul de p(Ot−k+1:t|k, i) puisse être exécuté
dans un temps O(1), le décodage de Viterbi pour le SM donnera un coût approximatif
de calcul Lmax fois supérieur à celui des HMMs. Il augmente par conséquence d’un
facteur constant. L’hypothèse, cependant, que le score du segment peut être calculé
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immédiatement est généralement fausse. Pour le cas des HMMs par exemple, ce coût
de ce calcul augmente avec la longueur du segment. Cependant, ce coût supplémentaire
peut être évité en éliminant les calculs superflus. En effet, pendant la maximisation de
l’équation A.7, les scores des séquences Ot:t, Ot−1:t . . . Ot−k+1:t se sont évalués successive-
ment. Le début de ces séquences est différent mais leur fin est commune. L’utilisation de
la passe arrière de l’algorithme de Baum-Welch pour évaluer la probabilité de l’équation
A.7, au lieu de la passe avant, permet la réutilisation du calcul du score de Ot−k+1:t

durant le calcul du score de Ot−k:t, etc. En mettant en oeuvre une telle réutilisation des
calculs, l’hypothèse que les SMs sont approximativement de Lmax fois plus coûteux que
les HMMs tient toujours.

A.5.3 Transitions hiérarchiques des scènes

Les matchs de tennis possèdent une structure fortement hiérarchique avec des transi-
tions entre les points, les jeux et les sets, structure qui peut être directement codés
dans la topologie des modèles. Des états cachés internes sont ainsi introduits pour
guider la structure hiérarchique du processus Markovien. D’un point de vue génératif,
cette topologie est proche du HMM Hiérarchique [28], qui est généralement employé
pour capturer des statistiques en multi-échelles. Dans notre cas cependant, la structure
hiérarchique code la structure du match et sert comme source de contraintes.

La topologie proposée est illustrée sur la figure A.5. Au niveau supérieur, il existe
l’état racine du modèle, représentant le match complet. Ce match est modélisé au niveau
suivant comme succession des sets, de temps en temps interrompue par des pauses.
Chaque set est encore analysé comme une succession de jeux et de pauses. Les règles
du tennis proclament qu’il y a une pause après le premier jeu du set ou, plus tard,
après deux jeux consécutifs de sorte que les joueurs changent leurs positions. Chaque
jeu est alors analysé comme succession de points au niveau suivant, avec 4 points au
minimum dans chaque jeu. Chaque point est analysé au dernier niveau des états internes
comme contenant une scène ¿Premier service manqué et échangeÀ ou ¿ÉchangeÀ, suivie
facultativement d’une rediffusion.

Dans le cas du HMM, ces trois derniers états et les états correspondant à une pause
sont les états internes (états cerclés dans la figure A.5) de la topologie hiérarchique.
Ils sont analysés par les sous-modèle HMMs respectifs de la figure A.2. La topologie
hiérarchique contient de ce fait 67 états internes et 141 états de production (i.e., les états
feuilles déclenchent la production des observations). Dans le cas du SM, la hiérarchie
a besoin d’un niveau de moins parce que les états internes mentionnés ci-dessus sont
maintenant des états de production, représentant les scènes elles-mêmes. La topologie
hiérarchique contient alors 20 états internes et 47 états de production.
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Figure A.5

Illustration de la topologie hiérarchique. Pour simplifier la représentation, seulement un noeud est

déplié à chaque niveau. Les états cerclés dénotent des états de production pour le SM.

A.6 Intégration audiovisuelle

La bande sonore de la vidéo est une source importante d’information qui devrait être
prise en compte dans notre modélisation. Par exemple, les états 1, 3, et 5 de la figure A.2
correspondent tous à des vues globales, qui sont visuellement très semblables aux états
9 et 12, qui correspondent eux à des vues globales sans jeu. La détection des bruits de
balle dans la bande sonore peut considérablement aider dans la désambigüısation entre
les vues globales avec ou sans jeu.

A.6.1 Fusion avec les modèles de Markov cachés

L’intégration audiovisuelle avec les HMMs n’a aucune autre option que l’approche stan-
dard de la fusion synchrone par concaténation à chaque état : les deux flux doivent être
artificiellement synchronisés avant la fusion. Le procédé est illustré sur la figure A.6(a).
Le flux d’événements sonores est premièrement segmenté selon les frontières des plans.
Lors des étapes suivantes, trois descripteurs binaires sonores sont ajoutés au vecteur
Ov

t des descripteurs visuels. Le vecteur des observations Ov
t de l’équation A.1 est ainsi

redéfini comme :
Oav

t =
[
oc
t ol

t od
t ob

t oa
t om

t

]
(A.8)

où ob
t , oa

t , and om
t sont des descripteurs binaires qui capturent la présence ou l’absence

des trois classes sonores principales (tennis, applaudissements, et musique) sur la bande
sonore et à l’intérieur de la fenêtre temporelle définie par les frontières du plan respectif.
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Figure A.6

Illustration de l’intégration audiovisuelle avec (a) HMMs et (b) SMs. Dans le premier modèle,

un certain nombre de descripteurs binaires auditifs sont rassemblés à l’intérieur de chaque plan et

concaténés au vecteur de caractéristiques visuelles. Avec les SMs, la bande sonore est échantillonnée

et modélisée indépendamment et puis est fusionnée avec le contenu visuel au niveau de scène. Le

‘T’ représente le bruit de tennis (coups de balle) et le ‘A’ les applaudissements.



A/18 A. Synthèse en français

Les observations sont considérées ici encore comme indépendantes. Afin d’inclure les
caractéristiques auditives pendant le décodage, l’équation A.3 est modifiée de sorte que
r ∈ {c, l, d, b, a, m}.

A.6.2 Fusion avec les modèles segmentaux

L’utilisation de caractéristiques au niveau de segment, plutôt qu’à celles des plans comme
cela était fait avec les HMMs, peut être bénéfique pour l’intégration audiovisuelle. L’idée
principale est de séparer le contenu audiovisuel d’une scène en un segment ¿visuelÀ et un
segment ¿sonoreÀ. Le segment sonore peut alors être échantillonné à sa fréquence native
et aussi peut être modélisé par une distribution d’observations au niveau de segment
différente. La contrainte de synchronisation entre les deux flux est alors repoussée aux
frontières de la scène. Ceci est une hypothèse valide parce que toutes les caractéristiques
visuelles et sonores relatives se trouvent à l’intérieur de la scène. Formellement, le
contenu audiovisuel Oav

1:l d’une partie de la vidéo correspondant à l plans successifs est
factorisé comme :

P (Oav
1:l|l, Si) = P (Ov

1:l|l, Si)P (Oa
1:la |l, Si) (A.9)

où la est la longueur du segment sonore, i.e., le nombre d’échantillons qu’il contient.
Les SMs permettent à la d’être différent de l. Cette factorisation et la fusion des deux
flux asynchrones est illustrée sur la figure A.6(b). Dans le restant de cette section,
différentes possibilités de modélisation pour P (Oa

1:la
|l, Si) sont explorées.

Caractéristiques sonores au niveau de la scène

Ayant une série de caractéristiques sonore rassemblées au niveau de la scène, la manière
de faire la plus simple est juste de capturer la présence de chaque événement sonore à
l’intérieur d’une scène. C’est un prolongement direct des descripteurs sonores basés sur
les plans utilisés dans les HMMs. Cependant, la différence principale est qu’on permet
maintenant aux caractéristiques sonores d’être asynchrones avec les visuelles. Les scores
de segments sont simplement définis comme :

P (Oa
1:la |l, Si) =

la∏

k=1

P (Oa
k|Si) (A.10)

où P (Oa
k|Si) est la probabilité de la présence dans la scène des trois événements audio.

La longueur la du segment sonore est définie par le nombre d’événements auditifs que la
scène contient.

Succession d’événements sonores

La simple détection de la présence des événements dans les scènes est peut-être insuff-
isante. En effet, le contenu audio de la scène ¿Premier service manqué et échangeÀ
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est normalement une succession {tennis, tennis, applaudissement} alors celui de la scène
¿ÉchangeÀ est {tennis, applaudissement}. La présence des événements sonores résultera
à un modèle identique pour les deux scènes. Pour remédier à ce problème, des proba-
bilités pour capturer la succession des événements audio peuvent être employées :

P (Oa
1:la |l, Si) =

la∏

k=2

P (Oa
k|Oa

k−1, Si) (A.11)

Sans compter les trois événements audio de base, deux événements plus spéciaux sont
introduits ici : le ¿débutÀ et ¿finÀ du segment. Le contenu sonore de la figure A.6(b),
par exemple, sera {début, tennis, tennis, applaudissement, fin}.

Caractéristiques sonores cepstrales

Jusqu’ici, le flux sonore est intégré sous forme d’événements audio qui sont pré-détectés
et pré-classifiés. Dans une approche tout à fait différente, les segments sonores sont
modélisés directement sur les coefficients cepstraux. La raison de faire ceci est double :
premièrement, la pré-segmentation probablement incorrecte du flux sonore dans des
segments homogènes est évitée. Il est difficile de détecter les frontières de ces segments
qui sont généralement plus vagues que les coupures du flux visuel. Deuxièmement, le
contenu de ces segments peut contenir plus d’une classe sonore comme des bruits de
balle superposés à de la parole. Ceci peut transformer la pré-classification en classes
sonores incorrectes, comme par ailleurs l’extraction des descripteurs sonores à partir de
ces segments.

Afin de modéliser le contenu sonore à partir des caractéristiques cepstrales génériques,
des HMMs avec des densités continues sont utilisés. Leurs scores probabilistes sont
calculés par la passe avant, comme pour les HMMs qui modélisent les segments visuels
(équation A.4). Le flux audio est échantillonné maintenant à la fréquence de 100 trames
par seconde. La longueur la du segment sonore est maintenant égale au nombre de
trames audio de la scène entière.

Intégration audiovisuelle synchrone

Enfin, rien n’interdit l’utilisation d’un schéma de fusion par concaténation, exactement
comme avec les HMMs standards. Le vecteur de caractéristiques visuelles du HMM
est augmenté avec des descripteurs sonores (synchronisés), comme montré sur la figure
A.6(a). Le modèle sonore P (Oa

1:la
|l, Si) est alors rejeté.
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A.7 Integration du score affiché

Dans cette section, nous discutons de l’intégration de l’information donnée par le score
affiché avec les HMMs et les SMs.

On peut penser à deux manières possibles d’intégrer l’information du score affiché :
intégration a posteriori et intégration au niveau des caractéristiques. Avec l’intégration
a posteriori, un décodage N-best de Viterbi est premièrement exécuté et puis la solution
la plus conforme aux scores affichés est choisie. Un nombre très grand de candidats,
cependant, devrait être stocké pendant le décodage N-best afin de trouver une solu-
tion qui est réellement conforme aux scores affichés. Ceci aurait pour conséquence des
contraintes de stockage et de durées de décodage prohibitives.

L’intégration au niveau des caractéristiques traite le score affiché comme un descrip-
teur supplémentaire à ajouter aux vecteurs de caractéristiques qui sont associés aux
plans. Comme alternative à l’utilisation de la caractéristique du score au niveau des
plans, les SMs offrent également la possibilité d’utiliser cette caractéristique au niveau
des scènes. Ceci tient compte d’un certain degré d’asynchronisme entre l’événement
relatif de jeu et l’affichage du score correspondant. Généralement, l’affichage du score
peut être une caractéristique utile et peut améliorer ainsi la performance du système.
Le contenu sémantique du score (i.e., le nombre d’événements de jeu existants dans la
vidéo), au contraire, ne peut pas être explicitement exploité.

Un troisième type d’intégration, la recherche de Viterbi guidée par le score, est
présenté dans cette étude. Elle se situe entre les deux approches ci-dessus puisqu’elle ex-
ploite l’affichage précis du score et aussi son contenu sémantique pour piloter le décodage
de Viterbi et pour garantir que la solution obtenue est conforme à l’évolution réelle du
match. L’intégration au niveau des caractéristiques et la recherche de Viterbi guidée par
le score sont le sujet du reste de cette section.

A.7.1 Les scores affichés comme caractéristique

Dans le cadre des HMMs, le vecteur des descripteurs audiovisuels basés sur les plans de
l’équation A.8 est redéfini comme :

Oavs
t =

[
oc
t ol

t od
t ob

t oa
t om

t os
t

]
(A.12)

où os
t est binaire et fixé à 1 pour les plans où un affichage du score est apparu à l’écran et

à 0 autrement. Les caractéristiques sont de nouveau considérées comme indépendantes.
L’hypothèse fondamentale sous-jacente à cette manière d’intégration est qu’après un
échange s’est produit, le producteur de la diffusion le reconnâıt en montrant une étiquette
et cela à l’intérieur même du plan. La caractéristique supplémentaire introduite est ainsi
employée pour marquer les plans d’échange, i.e., les états 3 et 5 de la figure A.2.
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Un décalage limité entre l’événement de jeu et sa reconnaissance par le producteur
peut être supporté dans le cadre des SMs. La présence d’un score affiché peut être capturé
au niveau de scène, au lieu du niveau de plan. Le score du segment de l’équation A.9
est alors défini comme :

P (O1:l|l, Si) = P (Ov
1:l|l, Si)P (Oa

1:la |l, Si)P l(os|l, Si) (A.13)

où P (os|l, Si) dénote la probabilité de la présence d’un score affiché à l’intérieur de la
scène Si. Ce terme est élevé à la puissance l afin de fournir des scores qui montent
exponentiellement avec la longueur de segment l, comme les deux autres termes de
l’équation A.13. L’hypothèse fondamentale est maintenant que quand un échange s’est
produit, le producteur en rend compte en affichant le score quelques plans après, et dans
la même scène. La caractéristique de score est alors employée pour marquer les scènes
¿Premier service manqué et échangeÀ et ¿ÉchangeÀ.

Le décalage entre l’événement de jeu et l’affichage du score peut être prolongé cepen-
dant au delà des frontières de scène. Par exemple, l’affichage peut apparâıtre pendant
une scène de rediffusion qui se situe de temps en temps après une scène d’échange. En
outre, il peut exister des événements de jeu qui ne sont pas pris en compte par le pro-
ducteur. Nous avons noté, dans nos séquences vidéos, que 9% à 32% des échanges, selon
les choix du producteur, n’ont pas été pris en compte par un affichage. Dans une des
vidéos en particulier, 4 échanges consécutifs ont été laissés sans affichage. Une utilisa-
tion efficace de l’affichage du score ne devrait faire aucune supposition sur le style du
producteur et devrait tolérer un décalage important et aussi des événements non pris en
compte. Ceci peut être réalisé avec la recherche de Viterbi guidée par le score.

A.7.2 La recherche de Viterbi guidée par le score

Avant de procéder à la description de l’algorithme lui même, on rappelle que l’affichage
du score apparait après l’événement de jeu correspondant et également avant le prochain
événement de jeu. Un schéma typique est montré sur la figure A.7 où nous voyons trois
étiquettes et leurs échanges correspondants. Il est clair que l’événement de jeu reconnu
par l’étiquette dans le plan t2 se situe dans l’intervalle t ∈ [t1, t2]. La scène complète qui
contient cet échange, quant à elle, finira quelque part dans l’intervalle t ∈ [t1, t3].

L’idée principale est d’exécuter une passe vers l’avant de Viterbi entre t1 et t3 avec
un décodage N-best. Tous les chemins de cet intervalle qui ne sont pas conformes aux
indications du score sont alors pénalisés. Dans le schéma de la figure A.7, un événement
de point de jeu a dû être gagné entre les étiquettes ¿15-0À et ¿15-15À. Les chemins
ainsi de l’intervalle t ∈ [t1, t3] qui ne contiennent aucun événement de point gagné ou qui
en contiennent plus d’un seront pénalisés. L’action de la passe avant locale de Viterbi et
la pénalisation des chemins locaux non conformes est désignée sous le nom du recherche
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15-0 15-15 30-15

t
1

t
2

t
3

Vérité

de Terrain

de la Vidéo

3 5 6 5 6 64 4 4 6 6 6 6

Figure A.7

Événements de jeu et apparition des étiquettes du score. La vérité de terrain de la vidéo se réfère

aux conventions de la figure A.2

locale dans ce texte. Après la recherche locale pour l’étiquette ¿15-15À, l’algorithme
procède de la même manière pour l’étiquette ¿30-15À. La nouvelle recherche locale
partage cependant avec la précédente l’ensemble des chemins possibles dans l’espace
[t2, t3]. L’algorithme procède ainsi en une cascade des recherches locales où les chemins
restants à une étape sont encore développés jusqu’à la fin de la vidéo. La passe arrière
du décodage de Viterbi est exécutée à la fin et la solution obtenue ainsi est conforme
à tous les scores affichés. L’algorithme garantit l’optimalité parce que l’ensemble des
chemins établis par les recherches locales ne contient pas les N meilleurs chemins, mais
le meilleur chemin pour chaque nombre possible de points marqués entre deux étiquettes.
Le nombre maximum de points marqués entre deux affichages a été fixé à 5, puisque le
nombre maximum d’échanges consécutifs laissés sans affichage était de 4 dans le corpus
utilisé dans cette étude.

Définition de l’algorithme

L’algorithme s’applique tant aux HMMs qu’aux SMs. Aucun paramètre supplémentaire
n’est nécessaire pour les modèles, seul le décodage change. L’algorithme est décrit ici
dans le cas des HMMs dont le décodage est plus simple. L’extension pour les SMs est
facile et est ici omise.

Étant donnée une séquence vidéo O1:T de T plans, M étiquettes de score l1, l2 . . . lM ,
apparaissant dans les plans t(l1), t(l2) . . . t(lM ), sont détectées et identifiées. Le nom-
bre de points marqués entre une étiquette et celle qui la précède (par exemple quand
l’étiquette est ‘30-30’ et la précédente est ‘15-15’, deux points ont alors été marqués) sont
donnés comme s(l1), s(l2) . . . s(lM ). Pour chaque instant 1 . . . T et pour chaque état caché
1 . . . N , deux files Qt,i et Q′

t,i sont définies. La taille de chacune d’elles est S = 5, qui est
le nombre maximum des points permis entre deux étiquettes. La première file contient
les résultats de la recherche locale courante, alors que la seconde stocke les résultats de
la recherche locale précédente et agit comme un pont entre les recherches locales succes-
sives. Chaque file stocke d’abord la vraisemblance δt,s(i) du meilleur chemin aboutissant
à l’état caché i au temps t et avec un nombre de points s. Cette dernière quantité est
simplement le nombre d’instances des états cachés 3 et 5 dans le chemin. La file Q définit
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δt,s,Q(i) et la file Q′ définit δt,s,Q′(i). Chaque file doit également stocker l’information
convenable pour la passe arrière de Viterbi qui, dans notre cas, est l’étiquette de l’état
caché précédent dans le chemin et également sa position correspondante dans la file.

L’algorithme procède en 3 étapes :
1) Initialisation. Pour chaque t ∈ [1, T ], i ∈ [1, N ], s ∈ [1, S], q ∈ Q: δt,s,q(i) = −∞
2) Enchainement de recherches locales. Pour chaque étiquette lk, k ∈ [1,M ], trois

étapes sont exécutées (voir figure A.8 pour une illustration) :

• une passe avant de Viterbi est exécuté dans l’espace t ∈ [t(lk−1), t(lk+1)] :

δt,s,Q(i) = max
j,q,σ|s=σ(q)+nji

δt−1,σ,q(j)ajibi(Ot) (A.14)

où q ∈ Q ∪ Q′ quand t ∈ [t(lk−1), t(lk)] et q ∈ Q quand t ∈ [t(lk), t(lk+1)], où
j ∈ [1, N ] et σ ∈ [1, S]. Les résultats de la recherche locale sont stockés dans la file
Q. Puisque chaque élément dans la file contient le meilleur chemin qui aboutit à
un score donné s, les valeurs de j, q, et σ sont contraintes de sorte que le chemin
obtenu corresponde à s points marqués. Si q ∈ Q′, puis σ(q) = 0 car des points
développés précédemment ne sont pas pris en compte par l’étiquette courante de
points. Si q ∈ Q, σ(q) = σ, comme prévu. Le terme nji est un indicateur binaire
dénotant la transition qui correspond à un échange. Il est 1 quand i est 3 ou 5
et zéro autrement. Enfin, les termes aji et bi(Ot) dénotent des probabilités de
transition et d’observation, comme dans le décodage standard de Viterbi.

• Tous les chemins qui aboutissent un score différent de s(lk) sont pénalisés :

δt,s,Q(i) = δt,s,Q(i) + P (s, s(lk)) (A.15)

où t ∈ [t(lk−1), t(lk+1)], s ∈ [1, S], P (s, s(lk)) = −∞ si s 6= s(lk) ou est égal à zéro,
autrement.

• Le contenu de la file Q est transféré à Q′ pour les besoins de la prochaine recherche
locale. Le contenu de Q alors est remis à zéro comme dans l’étape d’initialisation.

Il est à noter que l’information nécessaire pour la passe arrière de Viterbi doit être
convenablement gardée, particulièrement quand le contenu de la file Q est transféré.

3) La passe arrière. Ayant exécuté les recherches locales pour toutes les score affichés,
la passe arrière est alors exécutée comme dans le décodage standard de Viterbi. La
séquence des états cachés récupérée Q∗

1:T est la plus probable selon les paramètres du
HMM et aussi entièrement compatible avec les scores affichés.

Il est assez intéressant de noter que quand P (s, s(lk)) = 0 pour chaque s (c’est-à-dire,
quand aucun chemin n’est pénalisé), la recherche de Viterbi guidée par le score fournit
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Figure A.8

Les étapes de l’exécution d’une recherche locale. En (a), une passe avant de Viterbi est exécutée

en utilisant les files Q et le Q′ pour rechercher des résultats et les stocker dans Q. Des chemins

non conformes sont pénalisés en (b). En (c), les résultats de la recherche locale sont transférés à

Q′ pour les besoins de la prochaine recherche locale, exécutée en (d).
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exactement la même solution que la version standard du décodage de Viterbi. Le coût
de la recherche de Viterbi guidée par le score pour les HMMs est estimé comme suit. Le
coût de calcul du décodage N-best avec des files de taille de 2S est O(2SN2T ) (le coût
de la passe arrière est négligeable). Puisque l’algorithme parcourt les intervalles entre
chaque paire d’étiquettes deux fois, son coût global sera simplement O(4SN2T ), qui est
à comparer au O(N2T ) du décodage standard de Viterbi.

Prise en compte de l’incertitude

Le nombre de points marqués entre deux étiquettes lk−1 et lk a été précédemment con-
sidéré comme bien défini, étant donné que les listes ont été extraites manuellement.
Cependant, les particularités du décompte des points au tennis (qui emploie des mar-
ques comme ¿breakÀ, ¿avantageÀ, etc.) et encore le non-affichage de certains scores
provoquent un degré d’incertitude sur le nombre de points marqué entre deux étiquettes.
En raison de cela, nous avons employé une pénalité P (s, lk−1, lk) variable, au lieu de la
constante utilisée à l’équation A.15. Elle est estimée par des données de sorte que les
transitions peu fréquentes obtiennent des pénalités plus élevées. Formellement, on la
définit en fonction de la probabilité que la transition de l’étiquette l1 à l2 contienne s

points marqués :

P (s, l1, l2) = A
(
1− N(s, l1, l2)∑S

s=1 N(s, l1, l2)

)
(A.16)

où N(s, l1, l2) est le nombre de fois que s points sont marqués entre les étiquettes l1
et l2. Cette estimation est réalisée sur l’ensemble d’apprentissage. La valeur de la
constante A, qui prend généralement de grandes valeurs négatives, a été fixée à -10
après expérimentation.

Utilisation de topologies hiérarchiques

La recherche de Viterbi guidée par le score possède d’autres avantages lorsqu’elle est
utilisée avec une topologie hiérarchique. En effet, la topologie hiérarchique garantit une
solution conforme aux règles de tennis, mais pas nécessairement au nombre de set ou
de jeux par set réellement marqués. La recherche de Viterbi guidée par le score peut
alors être facilement modifiée pour incorporer la topologie hiérarchique en ajoutant deux
variables supplémentaires dans les files Q et Q′ pour tenir en compte le nombre de sets
ou jeux traversés. Selon les transitions de la topologie hiérarchique nous mettons à jour
ces deux variables à chaque instant. Quand des informations sur l’évolution du match
sont fournies par une étiquette de points (elles apparaissent habituellement à la fin de
chaque jeu), les chemins non conformes peuvent être sans risque supprimés. De cette
façon, nous pouvons obtenir une solution qui convient non seulement au nombre de
points marqués, mais également à la structure réelle du jeu.



A/26 A. Synthèse en français

A.8 Estimation des paramètres

Nous avons manuellement étiqueté les séquences vidéo, une fois la segmentation en plans
automatique réalisée, avec les étiquettes des états cachés de la figure A.2. Les séquences
d’apprentissage contiennent 807 scènes au total et celles de test en contiennent 979.
Afin d’obtenir des distributions discrètes des observations, les caractéristiques visuelles
de similarité visuelle et de longueur de plan ont été discrétisées de manière homogène
en dix intervalles, choisis après expérimentation. Il est alors simple d’estimer tous les
paramètres du modèle HMM (i.e., probabilités de transition et d’observation) comme
la fréquence relative de l’occurence des événements correspondant. Le même procédé
convient aussi pour les probabilités de transition et de durée pour le SM. En particulier,
le modèle de durée du SM, a été mesuré par la durée absolue de la scène en secondes,
plutôt par le nombre des plans que la scène contient. Nous avons constaté que la durée
absolue fournit une mesure plus fiable et plus robuste.

Les paramètres des HMMs visuels et audiovisuels qui servent à calculer les vraisem-
blances d’observation du SM ont été estimées par l’algorithme de Baum-Welch. Les
probabilités de transition ont été initialisées à partir des transitions observées sur la fig-
ure A.2 pour les scènes ¿Premier service manqué et échangeÀ et ¿ÉchangeÀ, alors que
l’initialisation aléatoire a été utilisée pour les scènes restantes (les résultats finaux ont
été peu affectés par ce schéma d’initialisation). Un schéma simple de back-off a été em-
ployé pour l’évaluation des probabilités audio de bigrammes afin d’éviter des probabilités
nulles pour les séquences inconnues.

Pour estimer les paramètres des CDHMMs (composants des GMMs et probabilités
de transition), l’outil HTK2 a été utilisé. Parmi les diverses topologies examinées, les
meilleurs résultats ont été obtenus avec des HMMs de gauche à droite sans un saut
de plus de deux états, i.e., avec les probabilités aij = 0 de transition quand il est
j > i+1. Le nombre des états cachés pour les quatre CDHMMs a été fixé à 20 et chacun
d’eux définit 32 composantes gaussiennes, initialisées de façon uniforme. Les HMMs ont
été entrâınés avec l’algorithme de Baum-Welch jusqu’à convergence. Les trames audio
se composent de 12 coefficients cepstraux et de l’énergie, plus les dérivées du premier
ordre. Les CDHMMs produisent en fait des vraisemblances et non des probabilités,
dont l’intervalle des valeurs possibles est beaucoup plus grand que celui obtenus avec des
HMMs discrets. Pour moduler leur impact pendant le décodage, les vraisemblances ont
été transformées linéairement dans un intervalle approprié des valeurs.

Concernant les topologies hiérarchiques, l’évaluation des probabilités de transition
entre les états internes mènerait à un sur-apprentissage étant donné la taille limitée de
notre corpus d’apprentissage. Par conséquent, ces probabilités ont été arbitrairement

2HTK toolkit : http://htk.eng.cam.ac.uk
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fixées à 1 dans les expériences rapportées ici.

A.9 Résultats expérimentaux

Tout d’abord, on rappelle que la moitié des vidéos a été réservée strictement pour les
tests. Puisque la vérité terrain des vidéos a été établie à partir de la segmentation
automatique du flux visuel, les erreurs de coupures ou de fondus enchâınés ne sont pas
prises en considération dans cette analyse.

Les mesures de performance comportent premièrement le pourcentage C des plans
classifiés avec l’étiquette de scène correcte, moyenné sur l’ensemble des séquences de
test. Elle est une mesure de la qualité de la classification. En outre, nous avons besoin
d’une mesure concernant la qualité de la segmentation en scènes. Par exemple, si deux
ou plusieurs scènes successives de la même étiquette sont correctement classifiées mais
si leurs frontières ne sont pas correctes, la mesure C indique une bonne performance
de manière non réelle. La qualité de segmentation peut être mesurée par les taux de
rappel R et de précision P sur la détection des frontières des scènes, pris en moyenne
sur les séquences de test. Afin de faciliter la comparaison entre deux approches, au lieu
de comparer 3 statistiques, une seule mesure de performance est définie comme :

F̂ =
3CPR

C + P + R
(A.17)

qui ressemble à la F-mesure standard, connue en statistique. Évidement, l’utilisation de
F̂ est purement suggestive et tous les taux C, P , R sont indiqués.

Nous présentons en premier les résultats sur la fusion audiovisuelle avec les modèles
ergodiques, puisque les modèles hiérarchiques ne changent pas la manière dont l’audio est
intégré. Ensuite, nous analysons l’intégration du score affiché, avec ou sans les modèles
hiérarchiques.

A.9.1 Fusion audiovisuelle

Modèles de Markov cachés

Les résultats sur l’ensemble de test sont indiqués dans le tableau A.1 pour les HMMs et
les SMs et pour des hypothèses et des caractéristiques variables. Nous voyons dans les
premières lignes la performance des HMMs avec des caractéristiques visuelles (¿HMMs-
VÀ) et audiovisuelles (¿HMMs-VAÀ). Tandis que la majeure partie de la contribu-
tion vient des caractéristiques visuelles, une amélioration claire de la performance est
remarquée avec l’addition des descripteurs sonores aux vecteurs de caractéristiques vi-
suelles, calculés au niveau des plans.
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Table A.1

Comparaison des performances des HMMs et des SMs pour des ensembles de caractéristiques et

des hypothèses de modélisation variés. Les pourcentages moyens C, P , et R sont calculés sur les

trois vidéos de test et puis F̂ est calculé.

C P R F̂

Modèles de Markov cachés

HMMs-V 76.30 81.99 73.44 59.48
HMMs-VA 80.23 84.69 79.70 66.42

Modèles segmentaux

SMs-Vhmm 79.69 83.54 74.82 62.78

SMs-VhmmA1gram 80.07 83.86 75.27 63.39
SMs-VhmmA2gram 81.77 84.10 79.45 66.81
SMs-VhmmAcep 79.86 84.64 75.20 63.62

SMs-(AV)hmm 84.39 86.25 79.32 69.29

SMs-VhmmAhmm 81.52 87.83 77.55 67.47
SMs-(LD)hmmChmmAhmm 78.96 86.33 75.02 63.84
SMs-(AV)hmmA2gram 84.73 84.13 81.67 69.71

Modèles segmentaux

La performance des SMs est donnée sur les lignes suivants de la table A.1, en com-
mençant avec l’utilisation des caractéristiques visuelles seulement (¿SMs-VhmmÀ). La
comparaison avec les HMMs visuels indique quelques premiers résultats intéressants :
le SM donne une meilleure performance par rapport au HMM (62.78% contre 59.48%,
pour les scores F̂ ), bien qu’ils fonctionnent dans un espace augmenté de recherche des
chemins et des segmentations possibles. Dans le scénario unimodal des caractéristiques
visuelles, la différence entre SMs et HMMs s’explique principalement par l’inclusion dans
le SM du modèle de durée au niveau de la scène. Ce modèle de durée s’avère ainsi être
utile au SM, alors qu’il est impossible de l’ajouter au HMM.

Sur les trois lignes suivantes, la performance des SMs audiovisuels avec des car-
actéristiques auditives asynchrones est indiquée. Les scores des événements sonores au
niveau de scène (¿SMs-VhmmA1gramÀ) peuvent améliorer la performance, mais à un
niveau peu satisfaisant. La raison en est simple : ce modèle capture juste la présence des
bruits de tennis dans la scène, ce qui finalement ne peut pas aider dans la discrimination
des scènes ¿Premier Service Manqué et ÉchangeÀ et ¿ÉchangeÀ. La différence entre
les deux scènes est liée à la bande sonore : la première scène contient une succession de
deux bruits de tennis (le service manqué et puis l’échange) contrairement à la seconde.
Ceci peut être plus efficacement capturé en utilisant les modèles bigrammes (¿SMs-
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VhmmA2gramÀ). En effet, un gain clair de performance est noté (+4.03% comparés à
+0.61% obtenu par le ¿SMs-VhmmA1gramÀ, pour les scores F̂ ) avec l’intégration de
l’audio selon ce modèle.

La performance obtenue avec l’intégration de l’audio sous forme de caractéristiques
cepstrales est donnée à la ligne suivante (¿SMs-VhmmAcepÀ), où un gain de perfor-
mance peu important est noté. Il est clair que les HMMs à densités continues apportent
une mauvaise performance, à cause des trop nombreux degrés de liberté qu’a main-
tenant le problème. En effet, ils sont chargés de modéliser la bande sonore d’une scène
entière sans a priori et ils reçoivent alors en entrée un grand nombre de vecteurs de car-
actéristiques de grande dimension. Dans les approches ¿SMs-VhmmA1gramÀ et ¿SMs-
VhmmA2gramÀ par contre, beaucoup de connaissance a priori est intégrée, puisque les
événements sonores intéressants de la bande sonore sont définis a priori. Néanmoins,
cette approche démontre que les SMs fournissent beaucoup de liberté pour la fusion
multimodale. Dans ce scénario spécifique, l’information visuelle échantillonnée en plans
est fusionnée avec des catactéristiques auditives échantillonnées à 100 fps, ne faisant
aucune hypothèse forte de synchronisation.

La performance des HMMs audiovisuels synchronisés est indiquée à la ligne ¿SMs-
(AV)hmmÀ de la table A.1. Les résultats obtenus avec ce modèle sont meilleurs par
rapport aux modèles de fusion asynchrone mentionnés ci-dessus. Le gain de performance
obtenu après avoir pris en compte de l’information sonore est, sans surprise, de +6.51%,
niveau proche de celle obtenue avec les HMMs : +6.94%.

Integration audiovisuelle précoce ou tardive

En comparant les modèles ¿SMs-VhmmA2gramÀ et ¿SMs-(AV)hmmÀ, il s’avère que
la fusion asynchrone d’information sonore provoque une légère dégradation de perfor-
mance. Ceci semble étrange puisque les deux modèles utilisent la même information
(visuelle et sonore), seule la méthode d’intégration change. Dans un premier temps,
on peut supposer que le modèle bigramme (dans ¿SMs-VhmmA2gramÀ) est un modèle
pauvre et, au résultat final, les descripteurs sonores au niveau des plans pourraient
être plus instructifs. Pour vérifier ceci, le calcul des scores pour le HMM audiovisuel
du ¿SMs-(AV)hmmÀ a été scindé en deux HMMs indépendants avec le même nombre
d’états cachés. Le premier HMM reçoit les caractéristiques visuelles et le deuxième les
descripteurs sonores au niveau des plans3. Cette approche utilise exactement le même
ensemble de caractéristiques au niveau des plans que le ¿SMs-(AV)hmmÀ mais elle
modélise le segment sonore et visuel indépendamment. Elle remplace ainsi le modèle bi-
gramme ¿SMs-VhmmA2gramÀ par les descripteurs au niveau des plans sonores utilisés
dans le ¿SMs-(AV)hmmÀ. Sa performance est indiquée comme ¿SMs-VhmmAhmmÀ

3Ceci donne un modèle semblable aux HMMs multibandes, proposés en reconnaissance de la parole.
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dans la table A.1. Une performance très proche de celle du ¿SMs-VhmmA2gramÀ est
obtenue, ce qui implique que les modèles bigrammes sont à peu près aussi informatifs
que les descripteurs sonores au niveau des plans.

Les chiffres ci-dessus montrent que, en modélisant les segments auditifs et visuels
indépendamment, la performance chute. Ceci est bien plus clair encore avec le ¿SMs-
(LD)hmmChmmAhmmÀ, où l’ensemble des caractéristiques du segment visuel est scindé
en deux, similarité visuelle d’un coté et longueur et descripteur des plans spéciaux, de
l’autre. Ce dernier modèle utilise trois calculs des scores HMM indépendants, un pour
le segment auditif et deux pour le segment visuel. La performance chute maintenant
beaucoup plus. On peut en conclure que des corrélations importantes entre les différentes
modalités ne sont pas prises en compte quand on commence par calculer les scores des
segments des HMMs avant de les fusionner, alors que les ¿SMs-(AV)hmmÀ procèdent
d’abord à l’intégration des modalités avant de calculer un score unique pour chaque
segment.

Quand des caractéristiques sont associées directement à la sémantique et l’intégration
est effectuée ensuite, nous parlons de fusion tardive, alors que quand l’intégration précède
la décision sur la sémantique, nous parlons de fusion précoce. L’analyse ci-dessus suggère
ainsi que, pour le problème actuel, une intégration précoce est préférable. Cependant,
d’une manière générale pour l’indexation audiovisuelle, la question de savoir si une fusion
tardive ou précoce est la meilleure option reste entière. Deux études [42, 96], par exemple,
ont conclu favorablement pour la fusion tardive avec cependant peu de différence entre les
performances. Dans la première, Huang et al. comparent la fusion concaténative avec
des HMMs et les produits des vraisemblances des HMMs, dans un schéma semblable
à celui de cette étude (en ce qui concerne l’intégration). Dans la seconde, Snoek et
al. comparent l’intégration tardive et précoce avec des classifieurs SVMs.

Une solution possible pour surmonter le problème de la fusion tardive est d’intégrer
l’audio par fusions tardive et précoce, simultanément. Cette approche utilise pour les
segments visuels et sonores leurs fréquences d’échantillonnage et topologies natives et, en
même temps, fournissent des astuces en ce qui se passe dans les autres modalités avant
l’intégration tardive. Ce double schéma de fusion est donné comme ¿SMs-(AV)hmm-
A2gramÀ dans la table A.1, où une légère amélioration est notée par rapport au ¿SMs-
(AV)hmmÀ.

Matrices de confusion

Les matrices de confusion concernant la classification des plans sont données par la table
A.2 pour les ¿SMs-VhmmÀ et ¿SMs-(AV)hmmÀ. Il est clair que la majeure partie de la
confusion vient entre les deux premières scènes (¿Premier service manqué et échangeÀ

at ¿ÉchangeÀ, marqués en tant que 1 et 2 dans la table), tandis que les rediffusions et
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Table A.2

Les matrices de confusion pour la classification des plans avec les étiquettes de scène. Chaque ligne

1-4 se réfère à une scène et chaque colonne donne le pourcentage des plans qui sont classifiés avec

l’étiquette respective 1-4 de classe.

SMs-Vhmm

1 2 3 4
1 77.1 20.3 2.4 0.2
2 22.6 75.5 1.3 0.6
3 10.9 4.4 84.7 0.0
4 2.9 7.8 6.9 82.4

SMs-(AV)hmm

1 2 3 4
1 86.1 11.8 1.7 0.4
2 18.8 79.2 1.3 0.7
3 7.5 4.5 87.4 0.5
4 2.8 7.7 5.3 84.2

les temps morts sont bien détectés (marqués en tant que 3 et 4 dans la table). L’addition
des caractéristiques auditives enlève une partie de la confusion, particulièrement pour
les deux premières scènes.

A.9.2 Intégration du score affiché

Systèmes de base

Les résultats sont indiqués dans la table A.3. Sur la première ligne de la table, les
performances du ¿HMMs-VAÀ et du ¿SMs-VhmmA2gramÀ sont recopiées de la table
A.1. Elles servent de référence pour la comparaison avec les systèmes de cette section.
Des résultats pour les topologies hiérarchiques sont indiqués dans la deuxième ligne
de la table. Une légère dégradation de performance est notée pour les HMMs et SMs
en passant des topologies ergodiques aux hiérarchiques. Une explication possible pour
ceci est que les probabilités des transitions hiérarchiques permises ont été manuellement
fixées à de valeurs arbitraires. Les probabilités intra-scènes sont ainsi perdues, alors que
les modèles ergodiques les apprennent à partir des données d’apprentissage.

Sur la troisième ligne de la table A.3, nous voyons la performance des systèmes
ergodiques quand les étiquettes de score sont employées en tant que caractéristiques
additionnelles. Une légère amélioration de performance est remarquée, principalement
pour les HMMs. Les désynchronisations prolongées qui existent entre l’événement de jeu
et l’étiquette de score et l’absence de l’affichage pour quelques événements sont la cause
d’une distribution presqu’aléatoire de la caractéristique de score entre les plans (pour les
HMMs) ou les scènes (pour les SMs). Ceci a pour conséquence des distributions presque
uniformes de la caractéristique de score et sa contribution pendant le décodage est ainsi
neutralisée.
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Table A.3

Les résultats expérimentaux pour les topologies hiérarchiques et l’intégration des scores affichés.

Pour chaque approche, la performance du HMM et du SM est indiquée. Les trois nombres à la

ligne supérieure correspondent aux mesures C, P , R et celui à la ligne inférieure à F̂ .

HMM SM

Systèmes de base
Ergodique 80.23 84.69 79.70 81.77 84.10 79.45

66.42 66.81
Hiérarchique 79.28 84.96 77.96 81.25 85.63 77.24

65.04 66.04
Score comme 80.81 85.75 80.37 81.96 84.19 79.70
caractéristique 67.66 67.11

Recherche de Viterbi guidée par le score
Ergodique 82.17 83.40 82.39 85.97 84.90 83.43

68.31 71.84
Hiérarchique 82.67 84.30 80.54 85.80 85.15 82.89

68.03 71.57

Niveau d’incertitude
Pas d’Incertitude 82.03 83.63 82.65 85.99 85.19 83.30

68.50 71.94
90% de 81.59 83.88 82.22 85.60 85.53 82.75

bruit simulé 68.16 71.59
50% de 81.15 84.37 80.67 84.15 87.02 80.16

bruit simulé 67.31 70.07
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Recherche de Viterbi guidée par le score

Les résultats pour l’algorithme proposé de la recherche de Viterbi guidée par le score
sont indiqués sur les deux lignes suivants de la table A.3. Clairement, dans les HMMs
et les SMs et avec des topologies ergodiques ou hiérarchiques, les contraintes apportées
par les scores affichés ont aidé le système et ont amélioré la performance. La topologie
hiérarchique une fois de plus n’arrive pas à surpasser la topologie ergodique. Mais la
différence entre les deux est clairement réduite, grace aux contraintes additionnelles
sur la structure du match imposées par les scores affichés. On peut également noter
que le gain pour les SMs est beaucoup plus fort que celui pour les HMMs (+5.03%
contre +1.89% dans les mesures F̂ ). Ceci peut être expliqué par le fait que les instants
même d’affichage indiquent approximativement les frontières des scènes, fournissant de
l’information valable supplémentaire pour le décodage Viterbi pour les SMs. Quand
aucune pénalité n’est employée, la recherche de Viterbi guidée par le score donne comme
résultat C = 81.71, P = 85.15, R = 79.16, F̂ = 67.16 (tandis que pour les HMMs elle
ne change pas, comme expliqué dans la description de l’algorithme).

Variation du niveau d’incertitude

Jusqu’ici, les pénalités de la recherche de Viterbi guidée par le score ont été calculées
selon l’équation A.16 et sur des étiquettes extraites et identifiées manuellement. La
seule source d’incertitude est due au schéma de décompte du tennis, combiné avec le
non-affichage de certains scores. Sur les trois dernières lignes, nous avons indiqué la
performance de la recherche de Viterbi guidée par le score avec les modèles ergodiques
et avec un niveau varié d’incertitude pour le calcul des pénalités. Tout d’abord, nous
avons indiqué, à titre de référence, les performances obtenues lorsqu’aucune incertitude
n’existe. Dans ce scénario, le nombre de points marqués entre deux affichages de score est
manuellement fourni par la vérité terrain. Les pénalités sont ainsi −∞ ou 0. Le décodage
contraint de Viterbi fourni donc un chemin qui contient exactement le même nombre
d’échanges que la vérité de terrain et pour toutes les vidéos. Quand il y a incertitude,
le nombre d’échanges récupéré est toujours proche de ce qui s’est vraiment produit sur
le court. Plus précisément, les vidéos de test contiennent au total 731 échanges. La
recherche de Viterbi guidée par le score (avec de l’incertitude) en a récupéré 727, alors
que le Viterbi standard (¿SMs-VhmmA2gramÀ) en découvrait 794, un bien moins bon
résultat.

Sur les deux dernières lignes de la table A.3, nous voyons la dégradation de perfor-
mance de la recherche de Viterbi guidée par le score (structure ergodique) quand un
pourcentage indiqué des scores affichés est artificiellement mal-reconnu (substitué avec
une autre marque au hasard) et après avoir ré-estimé les pénalités de l’équation A.16.
Le bruit simulé a pour conséquence des pénalités plus uniformes et finalement les per-
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formances se dégradent et s’approchent à celle du décodage de Viterbi standard. Le
système démontre ainsi un excellent degré de robustesse aux erreurs de reconnaissance
des scores affichés.

Notes sur les performances

Les performances avec le ¿SMs-VhmmA2gramÀ ergodique, décodé avec la recherche de
Viterbi guidée par le score, est la meilleure obtenue sur l’ensemble de caractéristiques
extraites automatiquement. Quand l’approche du ¿SMs-(AV)hmmA2gramÀ (qui a mené
aux meilleures performances dans les expériences pour l’intégration audiovisuelle) est
employée à sa place, la performance respective est F̂ = 71.57, ce qui est très proche.
Nous concluons qu’une saturation de performance est rencontrée dans ces expériences,
qui rend les deux methodes équivalents sur le plan de leurs performances.

Enfin, on peut trouver étrange que même lorsque la solution de Viterbi est entièrement
conforme au nombre d’échanges effectuées et à l’évolution réelle de jeu, les mesures de
performance continuent toujours à enregistrer une quantité considérable d’erreur. Ceci
est expliqué par le fait que les scores affichés ne peuvent résoudre aucun des cas de con-
fusion entre les scènes ¿Premier service manqué et échangeÀ et ¿ÉchangeÀ, car toutes
les deux contiennent un échange et sont alors équivalents en termes de score.

A.10 Conclusions

Dans cette étude, le cadre des SMs a été introduit pour l’indexation des vidéos dans le
but d’effectuer une intégration audiovisuelle avec des contraintes synchronisation moins
fortes. Les systèmes HMMs de base souffrent du fait que la contrainte de synchroni-
sation s’applique à chaque état et donc pour toutes les observations. L’utilisation de
caractéristiques au niveau des segments peut par contre prolonger les points de synchro-
nisation entre les modalités aux frontières des segments. En modélisant chaque modalité
à l’intérieur de son propre segment, des fréquences d’échantillonnage et des topologies
natives peuvent être employés. Les SMs ont été appliqués sur une tâche de segmen-
tation de retransmissions de tennis en scènes reconnaissables par les humains, chaque
scène étant un segment. Sur des données visuelles seulement ou avec une fusion au-
diovisuelle synchrone au niveau des plans, les SMs ont démontré une amélioration de
performance par rapport aux HMMs, avec un coût de calcul supplémentaire négligeable.
Des possibilités de fusion asynchrone des modèles sonores avec les SMs ont été également
examinées mais les performances n’ont pas été améliorées.

La deuxième contribution de cette étude est un algorithme spécialisé de décodage
de Viterbi, la recherche de Viterbi guidée par le score. L’algorithme découvre le chemin
le plus probable qui est conforme aux scores affichés, avec un calcul d’un coût peu



A.10. Conclusions A/35

supérieur à celui du décodage de Viterbi standard. La fusion de l’information due au
score affiché en tant que tel, par opposition à la fusion par caractéristique supplémentaire,
a apporté une nette amélioration de performance des HMMs et SMs et avec des topologies
ergodiques ou hiérarchiques. L’algorithme a également montré une tolérance naturelle
aux caractéristiques bruitées et se rapproche avec élégance du Viterbi standard quand
le niveau de bruit augmente significativement.

Les perspectives ouvertes par ces travaux comportent premièrement l’addition d’info-
rmations utiles dans la liste des caractéristiques, comme les résultats d’un procédé de
suivi des joueurs. Les règles de tennis dictent que les joueurs doivent changer de position
entre des échanges successifs. Le suivi des joueurs entre les échanges successifs peut
ainsi fournir un indice utile. Nous planifions également de prolonger le cadre des SMs à
d’autres genres de vidéos où l’analyse de structure est exigée. Les journaux télévisés en
sont un exemple. On peut définir un segment comme une unité de nouvelles. Les sources
d’informations par des modalités multiples, comme l’image, le son et le texte peuvent être
asynchrones entre eux mais, par définition, ils sont synchrones à l’intérieur des frontières
de l’unité de nouvelles. Enfin, la recherche de Viterbi guidée par le score pourrait être
employée dans d’autres genres de vidéo où les événements de jeu se produisent plutôt
fréquemment et sont comptés, comme dans le basket-ball, par exemple. L’algorithme
peut garantir que la solution obtenue par le décodage de Viterbi en termes de points
marqués est conforme à l’évolution réelle du jeu.
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CHAPTER 1

Introduction

Human observers can watch, understand and interact with video documents effortlessly,
making these tasks part of their every day life. They pay attention to important game
events in a sport broadcast, gather useful information from news, decide to store inter-
esting or amusing videos, and, more generally, they interpret the video content according
to their needs. In the last few years, with the advances in the technology of commu-
nication, capturing and storage devices, video data collections have become extremely
voluminous. There exists thus an increasing need for automated processing of video
that will replace or aid humans in the time consuming task of searching and browsing
through these collections. Modern pattern recognition provides us with a variety of tools
for extracting low level image, audio and text features from raw video data. This study
is about jointly exploiting all these possible information sources with temporal stochas-
tic models, the Segment Models. Taking as case study tennis broadcasts, the table of
contents of the video is automatically constructed, providing thus human-meaningful
interpretation of the video.

1.1 The Video Indexing Problem

Video indexing is formally defined as the problem of “[automatically] attaching content-
based labels to video” [16]. The role of these labels or indexes is to capture the semantic
meaning of the video and to provide descriptors that meet the needs of the documentalist
or, more generally, of the end-user. Once the video is annotated with these labels, it
can be stored and then easily and quickly accessed. The question of what to index

1
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is strongly dependent not only on the target application, but also on the video genre.
Indexing soccer games usually involves the detection of goals and other highlights by
filtering out less interesting game action. For news broadcasts, on the contrary, we often
need to segment it into topics and then to index all of them with appropriate keywords.

Given a target application, the first task in video indexing is usually to automatically
detect and extract salient features from raw video data. Fortunately, modern video and
audio processing techniques provide a great deal of tools for automatic feature extrac-
tion. Considering, at first, video frames as still images, we can build visual indices based
on color, texture, shape, etc. On top of these features, we can detect image similarities
with one of the numerous techniques developed in the field of Image Indexing [93]. Fur-
thermore, face detection or optical character recognition tools can extract some higher-
level information from the still images. Moving from still images to video frames, we
can perform motion analysis, detect hard cuts or other relative image sequence tasks.
Regarding the audio track, there are automatic techniques for music, speech or other
prominent sound classes detection. Audio information at a higher level can be extracted
with word spotting or speech recognition techniques [61]. Finally, superimposed text
or closed captions provide useful textual features. The particular choices of features is,
once again, genre-dependent. For example, speech transcription may be important for
news broadcast analysis but, at the same time, redundant for sports broadcasts.

In some simplified scenarios, one can attempt a direct mapping of the above low-level
features to human-meaningful labels. But generally speaking, there is a distance in how
humans perceive video and what we can actually extract from it with computational
methods. For example, detected faces in news broadcast can have different semantic
meaning as they can be the anchor person, a journalist or an interviewed person. Crowd
excitation in soccer video may appear after a goal but also after a serious fault. For
humans, these two events are not the same. This problem is widely referred to in the
relative literature as the semantic gap, defined as “the lack of coincidence between the
information that one can extract from the [audio]visual data and the interpretation that
the same data have for a user in a given situation” [93]. This problem is largely unsolved
in image/audio indexing and, thus, naturally inherited to video indexing.

Bridging the semantic gap requires a high-level reasoning that only humans can
do and thus this problem is in practice unsolvable with the existing audio and visual
pattern recognition methods. There are however ways to effectively narrow it in video
indexing. The use of video content can be decisive at this point. The concept of content
analysis is not new: it has been used in image indexing exactly for the same reason but
in video indexing it can play a more prominent role. Indeed, as video is not just still
images, we can use multiple concurrent or successive features in order to extract high-
level semantics. In addition, and with the exception of surveillance video, audiovisual
raw data are usually perplexed before transmission with production effects and rules, like
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The table of contents of a tennis broadcast.

the superimposed text, that can always give useful hints. In a generalized view, video1

can be conceived as the result of an authoring process that gives a certain content and
layout [95]. Video analysis attempts to reverse this process by recovering the underlying
content and layout.

1.1.1 Tennis Broadcasts Structure Analysis

This study considers the problem of video structure parsing, which is defined as the
problem of segmenting the video into individual scenes that contain a unique semantic or
narrative entity [91]. Structure parsing usually operates on top of the video shot or sound
boundaries detection. For these two last problems, local signal inspection is performed
in order to detect homogeneous segments at the signal level. Scene segmentation, on
the contrary, requires the examination of the video content at a higher level in order to
group multiple shots or sound segments under the same semantic label. Having detected
and classified the scenes of a video, we can construct its table of contents. This process
has an analogy in text document analysis, where we use its physical blocks, which are
the words and the sentences, to detect thematic units and finally construct its table of
contents.

Tennis broadcasts are examined as a case study. There is an underlying structure in

1With the exception of surveillance video.
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this type of video as a result of the production rules and the game rules as well. The
detection of this structure will allow the segmentation of raw video data into human-
meaningful scenes that constitute its semantic building blocks. In tennis broadcasts
we are interested in detecting and recognizing the scenes of game exchanges, replays,
and commercials (for filtering them out). On top of these building blocks, we are also
interested in recovering the hierarchy in games and sets that tennis videos naturally
contain. It is then straightforward to construct the table of content of the video, as it
is illustrated in Fig. 1.1. The user can unfold the hierarchy in order to reach the leaf
nodes that point to the corresponding timestamps of the video. Instant access is thereby
provided, instead of having to patiently fast-forward and search until the desired point
is found out.

1.2 Motivation

As video documents are inherently multimodal, an efficient content representation scheme
should take into consideration all the modalities of the video, namely the visual, audi-
tory, and textual modalities [95]. There are three main reasons that call for multimodal
representations:

• Multimodal semantics. Some semantics are based naturally on multiple media.
Unimodal representations provide thus a partial view and are naturally incapable
of carrying out the task. The detection of a goal in soccer video, for instance,
requires joint processing from multiple information sources like soundtrack, motion
fields, etc. Unimodal processing would lead to a lot of false alarms.

• Richer semantics. High-level labeling of raw audiovisual material can be achieved
when using suitable modalities like text. Superimposed text in news video, for
instance, can provide high-level keywords on the news category or on the depicted
personality. This is the key idea of the Name-It project [90].

• Robustness and efficiency. Features automatically extracted from one modality
are often erroneous. To enhance robustness, further support can be found from
features from the other modalities. For example, it is hard to tell if a person is a
male or a female subject using image-only data. The addition of the soundtrack
can provide further evidence.

Regarding tennis video, multimodal processing can play an important role as features
extracted from various modalities may be erroneous and also provide a partial picture
of what actually happens in the court. For example, we can detect court views using
color information but some of them may not contain game action at all. The presence
of ball hits sounds in the soundtrack can further support the detection of the interesting
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court views. The fusion of audio and visual features is a challenging task as sampling
rates are different. In addition, the visual content follows the production rules (court
views, close-ups, etc) while the audio content captures raw sounds from the court, in-
terlaced with commentary speech. There is thus, firstly, a certain degree of asynchrony
between auditory and visual features and, secondly, they follow different temporal mod-
els. Finally, textual resources like score indications and game statistics convey important
information on the game evolution that has to be fully exploited. Difficulties rise from
the fact that they may appear long after the relative game event or can be missing.

There are numerous approaches to multimodal fusion in the relative literature, re-
viewed in [106, 95]. Hidden Markov Models [81] (HMMs) is a powerful statistical ap-
proach that can model temporal patterns and are widely used as statistical parser of a
video sequence [108], sharing notions from the field of speech recognition. A first solu-
tion for multimodal integration in video indexing is to process each modality separately
and then to a-posteriori combine outputs of unimodal HMMs (e.g., [42]). Another ap-
proach, referred to in the literature as early integration, is to concatenate features from
all the modalities into a super-vector of observations and to use a single HMM to model
the content (e.g., [42, 48]). However, explicit state synchrony between the modalities is
thus assumed and, in addition, different modalities are forced to follow the same HMM
topology. The problem of state asynchrony has been addressed in audiovisual speech
recognition by the use of product HMMs [79] or Asynchronous HMMs [8], but still the
auditory and visual streams are generated by the same stochastic process (the speech
production) and there exists thus only a limited asynchrony caused by natural noise.
Layered HMMs [70] use the outputs of HMMs operating at low levels to feed HMMs of
the next level in a cascade fashion. They provide a number of advantages like fusion at
different frame rates and with independent models for each modality, but they require
synchronization at a-priori fixed time intervals.

1.3 Approach

The framework of Segment Models (SMs) is proposed in this study in order to perform
audiovisual integration with relaxed synchrony constraints. SMs have been introduced
by Ostendorf et al. [72] in the speech recognition literature as a generalization of HMMs
to account for a more accurate modeling of the speech production process. In SMs, each
hidden state is associated to a sequence of observations, called a segment, instead of
using a single feature vector as in HMMs. Therefore, each hidden state in SMs defines
a duration model that accounts for the segment length and an emission probability
distribution of a sequence. The extension from the frame-based features of HMMs to
segmental ones can be beneficial for audiovisual integration by processing each modality
in its own segment. The synchrony constraint between the modalities is thus relaxed
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Figure 1.2

Audiovisual integration with (a) Hidden Markov Models and (b) Segment Models.

to the segment boundaries, while different sampling rates and models can be used. The
Viterbi decoding for SMs involves the most likely classification of the hidden states, as
in HMMs, and also the detection of the segment boundaries.

In tennis video, the content of a complete scene is represented by two distinctive
segments, a visual and an auditory one. The difference between HMMs and SMs is illus-
trated in Fig. 1.2. In the HMM framework, a reference modality is chosen and modeled
on top of its native segmentation. This role is given to the visual modality in Fig. 1.2(a)
and it is modeled according to the production rules. Regarding the audiotrack, tennis
sounds and applause are detected. These audio features have to be artificially aligned
to the model of the reference modality. In SMs (Fig. 1.2(b)), on the contrary, individual
models can be built for each modality using their native segmentation. The asynchrony
is extended to the scene boundaries, which is the elementary semantic unit of the video.

Textual resources present further difficulties as their asynchrony may be extended
beyond the scene boundaries. In addition, they convey important semantic information
on the game evolution that the final Viterbi solution should be consistent with. An a-
posteriori rescoring of the best paths with techniques like N-best decoding would require
infinite storage capabilities. Instead, a novel search algorithm is proposed, called Score-
Oriented Viterbi Search, that uses the score indications to pilot Viterbi decoding. The
alignment of the labels to the corresponding game events is left as part of the optimization
problem, while the consistency with the game evolution is satisfied on the fly, during
decoding.
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1.4 Methodology

The video track is segmented with automatic hard cut and dissolve transition detection
techniques. On top of this segmentation, four scenes are identified: first missed serve
and exchange, exchange, rediffusion and break. From each shot, three features are
extracted. The first one is a color-based distance to a reference court view, which is
unique for every video and is automatically selected with some statistical optimality
criteria. The remaining two shot-based features are the length of the shot and a binary
indicator of presence/absence of a dissolve. The processing of the soundtrack involves the
detection of key sound classes, which are ball hits, applause and music. They are detected
automatically using Gaussian Mixtures Models that are built on manually labeled data.
Finally, the soundtrack is converted to a stream of audio events.

Following the production rules, the video content of each scene is modeled by an
HMM. The baseline HMM system is formed by interconnecting these HMMs into a large
ergodic HMM, modeling the game as a succession of shots. This HMM may have also a
hierarchical structure that reflects the tennis match structure. Audiovisual integration
is performed by concatenative fusion of binary descriptors of the presence/absence of
the respective sound classes in the shot. Regarding SMs, the visual segment is modeled
again with HMMs that serve as probabilistic scorers of a segment. The audio content
is modeled with bigrams models on succession of audio events. As SMs offer a great
deal of freedom in segmental modeling, two more possibilities are examined. Firstly,
continuous density HMMs are employed to model the audio content of a scene directly
on top of cepstral features and without any pre-segmentation and pre-classification to
sound classes. Secondly, the use of a recurrent neural network architecture, called Long
Short-Term Memory [39], is also examined as a segmental scorer, leading to a Segment
Model-Recurrent Neural Network hybrid. Both ergodic and hierarchic structures are
considered for SMs, too. The enhanced optimization problem for SMs is solved via a
straightforward extension of the Viterbi decoding for HMMs with explicit state duration
[81].

Three tennis videos were used for parameter estimation and three were reserved for
testing purposes. Model parameters were estimated straightforwardly using the ground
truth of the videos. The parameters of the HMM scorers were estimated with the Baum-
Welch algorithm. Performance measurements consider the quality of the classification
and the quality of the segmentation into scenes, as well.

For the needs of the Score-Oriented Viterbi Search, score and statistics labels were
manually extracted and recognized. The algorithm, however, can take into account
feature uncertainty due to erroneous label recognition. Its robustness to noise is demon-
strated experimentally by introducing artificial noise to the features.
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1.5 Outline

This study is organized as follows: chapter 2 provides a literature survey on multimodal
integration. Emphasis is given to statistical approaches and to HMMs variants. Feature
extraction is discussed in chapter 3. Approaches to tennis video processing (whether
multimodal or not) are also given at the end of this chapter. Video parsing and au-
diovisual integration with both HMMs and SMs is detailed in chapter 4. Hierarchical
topologies and the integration of the information conveyed by the score announcements
is discussed in chapter 5. In chapter 6, the use of Long-Short Term Memory for video
structure analysis is presented. Finally, chapter 7 concludes this study and gives possible
directions for further work.



CHAPTER 2

Literature Survey

This chapter provides a brief survey on the integration of the three (visual, auditory,
and textual) video modalities. Typically, audiovisual raw data are firstly pre-processed
in order to extract low or mid-level features such as image histograms or motion vectors,
which in turn are integrated into a multimodal framework for the extraction of the
needed semantics. The focus of this chapter is on the integration stage. The interested
reader is referred to [16] for technical information regarding video feature extraction,
and to the image indexing [93] and audio indexing [61] literature as well.

Reviews on multimodal video indexing can be found in [106, 82, 1, 17, 54], while a
balanced overall picture is given in [95]. In this last study, multimodal techniques are
divided according to the way content segmentation of the three modalities is performed
(simultaneous or ordered processing), the processing cycle of the use of context (incre-
mental or not), and finally by the classification method (statistical or knowledge-based).
As the authors remark, most of the approaches use simultaneous and non incremental
processing.

Generally speaking, it is common sense to classify multimodal integration methods
as decision fusion (or late fusion) or as early fusion. In the former category, independent
unimodal hard decisions are taken and then fused in a second time. Incremental and or-
dered processing may be used, while the fusion can be performed by knowledge-based or
probabilistic approaches. In early fusion, multiple low or mid-level features are extracted
with soft decisions and fused in a unique multimodal space where the solution is sought
usually with statistical methods. Incremental and ordered processing is, by definition,
not possible. Audiovisual speech recognition is probably the most prominent example

9
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of early fusion, where raw low-level features are directly fused. A number of indexing
methods, on the other hand, use actually high-level features (like detected faces) which
are fused nevertheless in a multimodal space, before any decision on the target semantics
is taken.

As the focus of this study is on HMMs, they are treated separately in section 2.3.
HMMs are an early fusion approach that exploits also the temporal dimension of a video.

2.1 Decision Fusion

In this approach, video is considered as a pool of features that are fused with explicit
reasoning about the domain at hand. While some features like faces or transcribed speech
are hard to extract and require sophisticated statistical methods, little or no machine
learning is involved at the fusion stage. The question of conversion of the modalities is
not answered in a uniform manner, being always data driven.

2.1.1 Knowledge-based

Of the first and straightforward attempts for multimodal integration is to combine fea-
tures with hand-crafted domain-specific rules derived from careful inspection of the video.

Nepal et al. [69] detect scoring video segments in basketball broadcasts based on
evidence from multiple modalities. They use as features audience excitation, motion
analysis and text score appearance, which are fused with rules like “loud cheer should
appear within 3 seconds after the goal” or “scoreboard should appear within 10 seconds
after the goal”. In [29], classification of video segments as commercials, sports, newscasts,
etc., is performed on top of a series of auditory and visual low and mid-level features, like
motion analysis and waveform statistics. The features are combined by rules that exploit
domain knowledge and heuristics. For instance, commercials usually start and end with
monochrome frames of short duration. The authors of [65] use concurrent analysis of
both video and audio features for detection of violent scenes in movies. Guided by
domain knowledge and carefull video inspection, they use features like fast motion,
blood, gunfire, that coincide with interesting features in the soundtrack, like abrupt
energy changes.

Successive Analysis

Many approaches use successive analysis of the video content, where interesting segments
are detected in one modality and then the other modalities are successively analyzed to
refine the results or to enrich the semantics. As there is no need to examine the whole
video content across all modalities, successive analysis is a straightforward and fast
way of integration. But there is always the risk of false rejection at an early stage or
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propagation of errors at later stages. In [43], the authors segment and classify video as
news or commercials by using audio features at a first level. Video features are then used
to refine the segmentation. Finally, text features (transcribed speech or closed captions)
are integrated to further refine the segmentation and attach a semantic label. Sports
video can provide further ground for successive analysis, as game events are usually
followed by cheering sounds, which are quickly and easily detected in the soundtrack.
Results are further refined by processing information from the videotrack. High-level
game semantics are then recovered, for instance in football [19] or in basketball [50].
Reversing the ordering, visual features are firstly processed by a Controlled Markov
Chain in [53] and then the hypotheses are rescored with the help of audio loudness
detection.

Finally, successive analysis is considered as intermodal collaboration in [5]. The
authors search for pre-defined keywords corresponding to selected events in the closed
caption stream of american football video. To detect the corresponding video shot that
actually contains the game event, a search is performed in a time window around the
appearance of the closed caption. Color-based features were used in order to calculate
the distance of a given shot to a model distribution throughout this search. In [4],
the same philosophy is used to detect and name events using the superimposed score
indications and their transitions. In [6], audio information is added.

Clustering

One can easily notice in some kinds of video like news, that the scenes consist of a
succession of shots of similar content. For example, in a dialog of two persons, we usually
see the succession of two camera plans depicting these two persons. When entering into a
new scene, the new thematic content is not usually related to that of the previous scene.
In light of this remark, we can segment a video into scenes by detecting shots of similar
content and grouping them into clusters that represent the scenes. The disadvantage of
this approach is that it cannot be used in some domains where all the scenes share more
or less the same content, like sports.

The use of audio or text information can provide robustness, compared to visual-only
approaches [115, 86, 36]. In [102] for instance, dialog scenes in news can be identified
by the frequent alternation of faces in the videotrack and of the same speakers in the
soundtrack. In [59], major anchor persons are extracted from video. Face images are
extracted and tracked in the videotrack and speech segment detection and speaker seg-
mentation is performed in the soundtrack. Faces and speech segments are firstly grouped
and then associated based on temporal correlation, or they are grouped based on audio-
visual features. In [80], the authors parse in a successive manner and categorize news
broadcasts using audio, video and text features. Video shots are firstly grouped based
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Illustration of a multinet [66]. Positive or negative signs indicate positive or negative interaction,

respectively.

on color information. This grouping is further refined to form news stories with audio
information (speaker change). Finally, textual resources from superimposed text or the
closed captions is used to attach high-level labels to the stories. The exact label is given
by an SVM classifier on top of natural text data. Ausiovisual clustering can be used
also in movies video [89, 77], where a series of visual and audio features are extracted
from each shot and then knowledge-based distance measurements are used to decide if
two shots belong to the same scene.

2.1.2 Bayesian Networks

Baysian Networks offer the possibility to perform decision fusion without using any ex-
plicit rules regarding the context but, instead, to infer them through learning. Further-
more, prior knowledge is easily infused, making them a convenient tool for multimodal
content representation.

Naphade and Huang [66] extract semantic concepts from movies using a novel Baye-
sian-based multimodal framework. They define the multiject, a probabilistic multimedia
object that represents low and mid-level features like “sky”, “beach”, “human face”,
etc. More complex semantics are represented in a Bayesian probabilistic network, the
multinet, which contains a series of multijects connected according to their semantic
relations (Fig. 2.1). The multinet encodes thereby in a straightforward way the relative
context of the semantics. Apart from modeling complex semantics, the multinet can
also help the inference of the detection of certain multijects through the relations of
the graph, making it context-dependent. A question is raised for the conversion into
the graph of multiple video features, as they are generally heterogeneous. Image-based
features were collected in a frame basis, while temporal features such as motion and
tracking in a shot basis. The soundtrack can be processed separately or the detection
of certain sound classes can be further supported by the connections of the multinet,
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Example of an early fusion scheme. Given a video segment (corresponding to an audio clip or video

shot for instance), data from the three modalities are optionally pre-processed and/or pre-classified

independently. The features are then gathered in a multimodal space where the final classification

is performed.

exploiting the relative context.
Information from video, audio and text is jointly modeled with a Bayesian Network

of three layers, according to the semantic level of the features in [45]. Explicit synchro-
nization is assumed at the video frame level. The system firstly filters out commercials
and then classifies video segments as financial news or talk shows. Bayesian Belief Net-
works were also used in [27] for video classification on top of image and motion features,
which are preprocessed with HMMs.

2.2 Early Fusion

In early fusion, a multimodal space is created by pre-processing data from various modal-
ities independently and then concatenating features, as illustrated in Fig. 2.2. Supposing
that the dimensionality of the visual (image and motion-based), textual and auditory
features is V , T , and A, respectively, the dimensionality of the created multimodal space
will simply be V + T + A. A first problem one has to face in early fusion is the conver-
sion of these features into a common time scale due to the fact that the three modalities
are generally sampled at very different rates. There can also be a limited or more ex-
tended asynchrony between the modalities. These two problems are particularly true for
schemes that fuse low-level features as in audiovisual speech recognition. On the con-
trary, the problem of conversion can be bypassed when the features are also pre-classified
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Figure 2.3

Illustration of the separation hyperplane in SVMs for the classification between two classes, marked

with squares and circles. The support vectors are the examples that lie close to the boundaries of

the two class. In SVMs, an optimal hyperplane is sought, in the sense of maximizing the separation

margin.

to yield a series of unimodal but synchronized and homogenized descriptors, collected in
a video shot basis, for instance. The drawback is then that this pre-classification stage
may take actually hard decisions that affect the final classification.

Statistical methods are largely employed in the classification stage. Depending on
the nature of data, decision trees [20] can be used, or more advanced techniques like
Support Vector Machines or the Maximum Entropy Model. These techniques are used
to automatically detect from a series of multimodal features the relevant ones to the
target class.

2.2.1 Support Vector Machines

Support Vector Machines [103] (SVMs) are a popular choice among other classification
methods like Multilayer Perceptrons, Bayesian methods, etc. First of all, SVMs provide
an appealing theoretical framework where the optimal separation hyperplane is con-
structed using the most discriminating examples (the support vectors), as illustrated in
Fig. 2.3. This guarantees optimal generalization especially when few training patterns
are used, which is essential in video indexing as video data collection and annotation are
always expensive. Furthermore, when few training data exist, the optimization prob-
lem of the SVMs becomes faster and more tractable to solve, compared to large scale
problems like face detection [73].

In [58], early fusion is performed for detection of news segments in broadcasts. Au-
ditory features at the clip level are further assisted by visual information (color and
motion), to form a supervector of observations. Statistical techniques including GMMs
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and SVMs were used for the classification. The addition of visual information improved
the results in all cases, while SVMs performed better. In [55], news segments are classi-
fied into 5 categories like politics, social or sports. Auditory, visual and textual features
are treated separately, on a news story basis. SVMs are used to pre-classify features from
each modality. Then, the results of pre-classification are concatenated to a supervector
and a Bayesian fusion rule was used for the final classification. SVMs were also used in
[57] for the detection of weather reports inside news broadcasts.

In [88] the authors address the problem of event detection in field sports (like soccer,
american football, etc) in its generality and without making game-specific assumptions.
From a carefull examination of several sport videos from various genres, they found a
series of (more or less) common features that occur after a major game event, like crowd
excitation, close-up, on-screen graphics appearance, etc. After the extraction of these
features (which is the main focus of the paper) in a shot-based manner, they classify
them as interesting or not event using SVMs.

In [96], a comparison is provided of an early and a late fusion scheme of multimodal
integration for learning semantic concepts such as “people walking” or “beach” in video.
Visual features include descriptors of concepts like sand, sky, etc. Textual features ob-
tained from the transcribed speech are fused in a shot-based way. In the early integration
approach, the features are integrated in a multimodal space and then classification is
performed with SVMs. For late fusion, unimodal SVMs pre-classify the features directly
to the target semantic concepts, followed by a next-level SVM that arbitrates the final
decision. For most of the concepts, late fusion performed better, but as the performances
were close, it is difficult to draw safe conclusions.

2.2.2 Maximum Entropy Model

Another classification method that is widely employed is the Maximum Entropy Model
(MEM) [9]. Given a set of descriptors fi(x) for the video data x, the likelihood of class
ω is given by an exponential model:

p(ω|x) =
1

Z(x)
exp(

∑

i

λifi(x)) (2.1)

where Z(x) is a normalization term and λi are the free parameters of the model, usually
estimated via the Generalized Iterative Scaling algorithm [23]. The parameters λi weigh
the contribution of each descriptor, allowing thus for human explanation of the solution
provided by the algorithm.

The authors of [34, 35] used the Maximum Entropy Model (MEM) to detect and
classify seven predefined categories of highlights in baseball games. Firstly, the video
was segmented into shots. Then, features from the image (color and edge distributions,
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motion, and player detection), sound (detection of applause, speech, etc.), and text
(detection of words in closed captions) modalitities were collected to form a super-vector
of features of dimensionality of 186. In addition, as features are generally asynchronous,
all the features of 4 consecutive shots were fused into a 744-dimensional vector. As
a result of the training process, the 30 most informative features were selected and,
regarding the performance of the system, 70% and 60% average recall and precision rates
were achieved, respectively. As training corpus, 10 games were collected of total duration
of 32 hours and 3 games were reserved for testing purposes. The system demonstrated
significant performance degradation when only image features were used. The authors
also compared favorably the MEM framework to HMMs, having them operating in small
sets of consecutive shots and with input features that of a single shot (186-dimensional).

2.2.3 Advanced Feature Wrapping

Some studies also address the problem of conversion of multimodal features to account
for feature asynchrony and different sampling rates.

In [40], a large series of auditory, visual and textual features are fused to one super-
vector using a specialized feature wrapper. During this conversion, features are processed
taking into account feature derivatives, multiple thresholds for binarization and multiple
time windows. This results into a high-dimensional multimodal feature vector, which is
classified by a statistical classifier. To this end, the Maximum Entopy Model, Boosting
approaches, and SVMs are compared in [41]. SVMs performed slightly better. The
system was used to classify video segments as news or non-news.

In [94], the problem of context dependencies and the lack of synchronization between
the different video modalities was addressed in a statistical framework to detect and
classify soccer and news broadcast events. The authors started from the remark that
a given video event often consists of a series of low-level indices from each modality,
defining thus with their relations in time a suitable context. For example, a soccer goal
event could start with a camera motion (image modality) which is followed by speaker
excitement (audio modality) and finally, a few seconds after, by a goal keyword (textual
modality). They proposed the use of the TIME framework to capture this context, where
13 relationships of type of precedes, overlaps, meets, etc and their inverses are showed
to be sufficient enough to capture any relation and contextual dependency between two
features. The image modality was chosen as a reference modality, it was segmented into
shots and then, for each shot, all the relevant TIME relations between the features from
various modalities were gathered into a super-vector with binary elements. Standard
statistical techniques like C4.5, Maximum Entropy, and SVMs were compared to a soccer
video benchmark, where the last one clearly outperformed.
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2.3 Hidden Markov Models

An important aspect of video data is their temporal dimension. Indeed, depending on
the video genre and the production rules, video events occur with a temporal order that
will finally give the semantic label. In the previous approaches, a unique video segment
like a video shot was analyzed individually by collecting features from it and, optionally,
from its neighboring segments. The temporal dimension of the video was thus ignored
or modeled explicitly by hand-crafted rules. Hidden Markov Models (HMMs) provide
a powerful statistical framework for handling temporal data and it is thus a natural
candidate for learning temporal dependencies in video.

HMMs were originally developed some decades ago and still are the dominant tech-
nology in the field of speech recognition [81]. They have found application in many other
fields too, including recognition of the human sign language [97], gesture recognition [25],
video surveillance [46], DNA analysis [74], character recognition [62], and face detection
and recognition [67].

2.3.1 Video Indexing with HMMs

W. Wolf [108] introduced HMMs as a statistical parser of the syntax of a video doc-
ument. Low-level video features are considered as the observations O1:T of a hidden
Markovian stochastic process s1:T of length T that represents the video syntax. The
Viterbi algorithm is then employed to recover the syntax, i.e., the most likely hidden
state sequence S∗:

S∗ = arg max
s1:T

p(O1:T |s1:T )p(s1:T ) (2.2)

given the observation sequence O1:T and the model parameters, which are the hidden
state transition probabilities and the state-conditional observation probabilities p(Ot|s).
In this context, the problem of video syntax extraction can be considered as similar
to the one of speech recognition, where we attempt to extract the transcription (video
syntax, in the case of video indexing) of a spoken text (video file, respectively). The
use of HMMs for video segmentation into shots [12, 7] follows the same philosophy. The
difference here is that the hidden states represent low-level video syntax, like being in a
hard cut, dissolve, etc.

Some video genres exhibit in their syntax an inherent hierarchical structure that it
is also meaningful to be recovered along with their base (flat) syntax. In a lot of sports
video for instance, the game is naturally divided into sets, points, etc. This structure
is easily encoded in the transition probabilities of the HMM resulting to a Hierarchical
Hidden Markov Model (HHMM) [28]. The hidden states are now divided into internal
states that guide the hierarchical Markovian process and into emitting states, which are
associated with the observations as in flat HMMs. The Viterbi optimization is always
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provided by eq. 2.2 with some minor modifications to account for non-emitting states.
HHMMs have been used for sports [110, 113] or educational [78] video analysis.

In addition to structure parsing, HMMs can also be used to classify video segments
to one or more classes, considering video indexing as a problem of temporal pattern
recognition. Indeed, given an HMM λi that models class i, one can compute the likeli-
hood p(O1:T |λi) that the model has generated the sequence O1:T . The class label ω∗ of
the video segment is then simply given by the model that maximizes this likelihood:

ω∗ = arg max
i=1...M

p(O1:T |λi) (2.3)

among M candidate classes. This approach was followed for baseball [18] or soccer [3]
highlight detection and classification, for sport genres classification [32] or TV programs
classification [60] on top of video-only features.

2.3.2 State Synchronous Multimodal Fusion

The first and direct approach to multimodal fusion with HMMs is to simply concatenate
features collected from all the modalitities in a multimodal space, much the same way as
in Fig. 2.2 for the early fusion approaches. A state synchrony is then assumed, forcing
the modalities to follow the same sampling rate and also the same model topology. The
exact way the sampling rate conversion if performed is always task-dependent. When
image-based features (sampled usually at 25 fps) are to be converted to the audio frame
rate (usually 100 fps), like in audiovisual speech recognition [79], interpolation can be
used. For the opposite conversion, audio features can be averaged [7]. Nevertheless, in
many video indexing approaches, features from large video segments (like a video shot)
are collected and then pre-classified to yield descriptors. In so doing, the problem of the
sampling rate conversion is artificially bypassed.

In a formal definition, the state-conditional observation probabilities for two con-
verted and synchronized modalities O(1) and O(2) is given by:

p(O(1), O(2)|s) = p(O|s) (2.4)

where O = [O(1)O(2)] represents multimodal features after concatenative fusion. An
example of a concatenative HMM is given in Fig. 2.4.

This fusion scheme has become a popular choice in the video indexing community
due to its simplicity. Of the first studies, Boreczky et al. [12] use image and motion-based
histograms sampled at the video frame rate, which are further supported by concate-
native fusion of audio-based features. Considering the task of video shot segmentation,
this pure statistical HMM-based method was proposed in contrast to the tedious manual
thresholding, yielding good experimental results. A similar approach was followed in [7],
where separate HMMs were used to represent each shot transition type.
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Fusion of two streams sampled at different rates with state synchronous HMMs. Observations from

the second stream are suitably averaged and then synchronized with the ones of the first stream.

In [42, 106], HMMs are used to classify different video sequences as belonging to
a predefined class like commercials, news broadcasts, basketball games, etc. For the
integration of audiovisual information, the concatenative fusion was compared to some
other fusion schemes of unimodal HMMs, namely product of HMM likelihoods, successive
HMM-based analysis and MLP-based fusion. The addition of video features to the audio
ones generally improved the performance, while the direct concatenation and the product
of HMM likelihoods performed better, regarding the fusion scheme.

In [2], an HMM-based framework for human dialog detection is proposed. The video
track is segmented into shots and location change and face presence/absence information
is extracted. In parallel, the authors used as audio features sound classes like speech,
silence, etc that are collected according to the video track segmentation. The authors
modeled the temporal evolution of these features using HMMs. Different HMM topolo-
gies were compared on simulation data.

In [26, 44], the authors try to segment TV news broadcasts into topics using HMMs.
A number of image features is extracted from each video frame. On top of these features,
the authors build an HMM that models the broadcast scene transitions and editing
effects. The segmentation provided by this model is further refined by some rules. This
pure video-only method is compared to an audio-only segmentation, based on BIC.
Finally, the authors proposed an audiovisual approach, where the existence or not of an
audio cut is added to the image features of the HMM. This last approach yielded the
best result in a set of 9 broadcasts of 2:15 hours duration.

In [24], HMMs are used to classify TV broadcasts as news, commercials, sitcom, and
soap. Superimposed text and faces are detected and tracked in the video. Each shot
is then pre-classified into one of 15 classes, such as “Anchor person with text”. The
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The Coupled HMM models concurrently two streams 1 and 2. Arrows denote dependencies through

time.

evolution of these features is modeled with four discrete HMMs and TV segments are
classified according to the produced likelihoods.

Coupled HMMs

Apart from concatenative fusion of the observations to jointly model two streams, an-
other approach consists of using two (or more) concurrent unimodal HMMs. An illus-
tration of this model, called Coupled HMM [15], is given in Fig. 2.5. In this model,
the transition probabilities are conditioned not only on the previous state of the same
stream, but also on the previous state of the other stream. Formally, supposing that the
hidden state variables of the two HMMs are st and qt, then the transition distributions
are expressed as p(st = i|st−1 = k, qt−1 = j) and p(qt = i|st−1 = k, qt−1 = j). The two
streams O(1) and O(2) are again supposed to be synchronous and the observation distri-
bution are modeled independently as p(O(1)

t = o|st = i) and p(O(2)
t = o|qt = i). Coupled

HMMs have been used in audiovisual speech recognition [79] or for sports highlight
detection [112].

2.3.3 Asynchronous Multimodal Fusion

The underlying assumption of the HMM-based multimodal fusion that all the modalities
are synchronous does not hold generally. In order to remedy for the forced synchrony
between the modalities and to increase modeling capabilities, HMM variants have been
proposed in the audiovisual speech recognition and video indexing communities. They
are the subject of this section.
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Figure 2.6

Example of a Multistream HMM with fixed synchronization points, marked with dotted circles.

The two unimodal HMMs share the same number of states, although they could have different

topologies. Different sampling rates are allowed too.

Multistream HMMs

In Multistream HMMs [13], each modality (or stream) is modeled by independent HMMs
which are forced to synchronize in some fixed points. In synchronous Multistream
HMMs, the states themselves are these points. In practice, these models do not differ
with the state synchronous HMMs, except for the explicit assumption of independence
of conditional observations, optionally fused with a weighting scheme:

p(O(1), O(2)|s) = p(O(1)|s)w1p(O(2)|s)w2 (2.5)

where usually (but not necessarily) w1 + w2 = 1. Instead of using fixed global weights,
state-dependent weights or reliability measurements on each modality can also incorpo-
rated in this fusion scheme [33].

In asynchronous Multistream HMMs, the synchronization points are extended be-
yond the hidden states, like the end of phones in audiovisual speech recognition. Between
these points, the streams are considered independent and are modeled by individual uni-
modal HMMs as shown in Fig. 2.6. The key idea is that the unimodal HMMs can follow
different topologies and also operate at the native sampling rate of their modality. The
likelihoods (or scores) produced by the unimodal HMMs are recombined at the synchro-
nization points with probability products as in eq. 2.5 or with any other combination
function like Neural Networks.

For convenience reasons during decoding, asynchronous Multistream HMMs have
been used with the form of a product HMM in audiovisual speech recognition. In this
model, the unimodal HMMs of Fig. 2.6 follow the same number of states and sampling
rates. Then, product states can be introduced that encode every possible combination
between the unimodal states, as depicted in Fig. 2.7. In this way, the product HMM is in
fact an equivalent HMM to the asynchronous Multistream model, but where the streams
are (product) state-synchronous. The observation distributions follow the scheme eq. 2.5,
with the only difference that the hidden states are the product ones. As the product
HMM contains much more hidden states compared to the unimodal HMMs, parameter
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The resulting product HMM of Fig. 2.6.

tying is largely used to drastically reduce the number of free parameters. More precisely,
the vertical states of Fig. 2.7 share the same distributions with the unimodal HMM of
stream 1, as do the horizontal ones with the HMM of stream 2. The extra parameters
to be estimated in the product HMM are thus the product transition probabilities. The
Viterbi decoding (eq. 2.2) for the product HMMs is formally defined as:

S∗ = arg max
s
(1)
1:T ,s

(2)
1:T

p(O(1)
1:T |s(1)

1:T )w1p(O(2)
1:T |s(2)

1:T )w2p(s(1)
1:T , s

(2)
1:T ) (2.6)

Coupled HMMs (section 2.3.2) are also usually transformed to an equivalent product
HMM.

The Asynchronous HMM

The Asynchronous Hidden Markov Model (AHMM) [8] is a special HMM architecture
designed to jointly model pairs of lightly de-synchronized sequences, sampled at different
frame rates. We want to jointly model two streams O

(1)
1:T and O

(2)
1:S of length T and S

respectively, with T > S. AHMMs process the two streams by letting the smaller
one be stretched in time in order to meet a better match with the first stream. The
longer sequence is generated classically as in all Markovian models by entering into a
hidden state, emitting an observation symbol, then switching into a new hidden state,
and so on. The novelty in AHMMs is that at some time instants, we allow the hidden
state to emit two observation symbols, one from the longer sequence, as normally, and
also the next observation symbol of the shorter sequence. The time instants of the
doubled emissions, i.e., the alignment of the two streams is expressed via a new hidden
variable τ1:T . The physical interpretation of this hidden variable is that it gives at each
time instant the corresponding (matched) time index of the shorter stream, as depicted
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Illustration of the alignment of two streams offered by the AHMM. The dotted lines give the

matched observations of stream 1 to stream 2. The corresponding sequence of the hidden variable

τ1:T is (1 1 1 2 2 2 2 2 2 3 3 3 3 4 . . . ).

in Fig. 2.8. The distributions to be modeled are firstly the transition and emission
p(O(1)

t |qt = i) distributions, as in normal HMMs. Furthermore, AHMMs define the joint
emission distribution p(O(1)

t , O
(2)
s |qt = i) of the two streams being in time instants t

ans s, respectively. Finally, the alignment distribution ε(i, t) is defined. It provides the
probability of emitting the symbol s of O(2), while being at state i and time instant t

in stream O(1). During Viterbi decoding, the search is performed not only through all
the possible hidden state paths but also through all the possible alignments between the
two streams. The solution of the maximization problem will provide also the most likely
alignment:

(s, τ)∗ = arg max
s1:T ,τ1:T

p(O(1)
1:T , O

(2)
1:S |s1:T , τ1:T )p(τ1:T |s1:T )p(s1:T ) (2.7)

where p(O(1)
1:T , O

(2)
1:S |s1:T , τ1:T ) translates to joint or not emission probabilities according

to τ1:T . AHHMs were introduced in audiovisual speech recognition, in order to account
for noisy desynchronization of the two streams.

In [63], AHMMs were used and compared to other HMM-based alternatives in a task
of analysis of group actions in meetings. The goal is to segment and classify audiovisual
material from group meetings in actions like monologue, presentation, etc. Visual fea-
tures like detection of head/hands blobs were extracted from the visual stream at a frame
rate of 5 Hz. Audio features like ‘speech activity’ at different locations/microphones,
pitch, etc, were extracted from the audio track and finally downsampled to 5 Hz, as
with the video features. For the case of AHMMs, the audio track was sampled at 10
Hz as AHMMs naturally operate on streams sampled at different rates. Various base-
line HMM approaches were tested like state-synchronous HMMs, coupled HMMs, and
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product HMMs. The last model allows for action-synchronous modeling, similar to
phoneme-synchronous modeling with product HMMs in audiovisual speech recognition.
State-synchrony performed better than product HMMs. Results were further improved
by AHHMs, as they can easily handle natural desynchronizations that introduce confu-
sion to state-synchronous HMMs.

Cascade of HMMs

Sharing with Multistream HMMs the idea of synchronization points and the use of inde-
pendent models inside them, architectures of cascade of HMMs can be built (Fig. 2.9). A
video is segmented according to some a-priori fixed synchronization points, like at every
1 second or at the shot boundaries. The respective video portion of each modality is
then processed independently, which allows for native sampling rate and varying HMM
topologies. The outcomes from the HMMs thus obtained are concatenated and given
as input to a Markovian process of the next layer. This scheme has the advantage of
firstly fusing asynchronous unimodal HMMs, and secondly, the higher-level HMMs can
capture interaction and semantics of a higher order, in a way similar to HHMMs. The
HMMs of each layer are trained independently, which provides an interesting degree of
modularity in the modeling.

Oliver et al. [70] presented an interesting approach to infer office activity based on
a cascade of HMMs, called Layered HMM (LHMM). A portion of the input sequence is
sampled at fixed time intervals and is classified as belonging to one class. This classifi-
cation is performed with a bank of HMMs, each of them modeling one class, by choosing
the class label corresponding to the higher HMM output. This portion of input sequence
will provide one observation symbol for the HMMs of the next layer, and so on until the
highest layer is reached. This topology was used for inferring office activity like “Phone
conversation”, “Face to Face conversation”, etc from low-level features like Zero Cross-
ing Rate (audio), Motion Density (images), recorded keyboard activity, etc. At the first
layer, HMMs are trained to classify the audio features as “Human speech”, “Music”, etc,
and the visual ones as “Nobody present”, etc. The input signals (both video and audio)
was processed at fixed manually-chosen time intervals of 1 second. The output of these
classifiers are given as input features along with keyboard activity features to the second
(and last) layer of the hierarchy, where the activity is inferred by using another bank
of HMMs. The authors compared the standard state-synchronous concatenative HMM
to the LHMM approach in a corpus of 60 minutes of office activity, demonstrating the
superiority of the latter.

In [117], a two-layer HMM approach was used to attack the same problem of group
action recognition with AHMMs, as in [63]. The role of the first layer HMMs is to
model individual actions (i.e., person-specific) from the raw audiovisual data. The out-
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Illustration of a cascaded structure of HMMs. The HMMs for the streams 2 and 3 operate at

constant time steps, using their own topologies and sampling rates. Their results are then fused to

feed the HMM of the second layer. The features of stream 1 are fused directly with the outputs of

the other streams. For instance, stream 1 could be a modality (like text) that captures higher-order

semantics and with its sampling rate being rather sparse compared to the other streams.
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puts of these HMMs are given as input to the second layer, as long as with some other
group-specific features extracted from raw data. The role of the second layer is to model
interaction between individuals and finally to give the desired structure analysis of the
video. The first layer performs thus a low-level audiovisual fusion, while the second
layer integrates some higher-order information. The state-synchronous early integration
approach, the late fusion of unimodal HMMs and the AHMMs were used in the first
layer. As input to the next layer the authors provided directly the likelihoods of the
HMMs of the first layer (soft decision) or they performed a preclassification (hard de-
cision) before feeding it. Regarding audiovisual integration, the AHMM and the early
integration performed the best, verifying the conclusions of [63]. An observable perfor-
mance improvement was noticed when using the two-layer HMM as opposed to the flat
(single-layer) one. Finally, soft decisions performed slightly better than hard decisions.

Some form of a two-layered HMM was also used in [111] for structure analysis of
soccer video using image and motion features. The second layer was used here to capture
high-order dynamics, rather than performing multimodal integration.

2.3.4 Dynamic Bayesian Networks

In section 2.1.2, Bayesian Networks were presented as directed graphical models aiming
to capture dependencies between random variables. The presence (absence) of an edge
denotes dependency (independency) between the nodes of the graph that represent the
random variables. Each edge in the graph thus defines a conditional distribution prob-
ability, to be estimated from data. Dynamic Bayesian Networks (DBNs) extend this
framework in order to model stochastic processes that extend through time. Each node
in the graph represents the realization of the random variables at each time instant,
while the edges can represent dependencies not only through variables but also through
time. DBNs offer in fact a generalization of HMMs in the sense that the Markovian
assumption and state-conditional observations can be a small subset of all possible de-
pendencies in the graphical model. A DBN representation of an HMM is depicted in
Fig. 2.10. DBNs offer the possibility to discover and model dependencies like p(Qt|Ot−1)
that is impossible with HMMs.

A first challenge in DBNs is to provide efficient algorithms to automatically infer
the graph topology through learning from data. Alternatively, the topology can be
determined manually. Given the topology of the DBN θ, the inference p(O1:T |θ) for a
sequence O1:T is factored as:

p(O1:T |θ) =
∏

i

P (Xi|Φi, O1:T ) (2.8)

where Xi is a node in the graph and Φi denotes its parents. The exploration of fast
and efficient algorithms to estimate this quantity (analog to Forward propagation in
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A DBN representation of an HMM. Arrows denote dependencies between the random variables

Q1, Q2, Q3 . . . (hidden states) and O,O2, O3 . . . (observations).

HMMs) constitutes the second challenge in DBNs. The interested reader is referred to
[64] for algorithms for topology and fast likelihood inference with DBNs. The DBN
representation of numerous HMM variants is also presented.

Regarding multimodal integration, DBNs offer the possibility to represent complex
dependencies between the modalities or to discover new ones through learning. In [75],
audio, video and text features are sampled at a unique frame rate, as in state-synchronous
HMMs. DBNs are then used to explore time synchronous or asynchronous dependencies
between the features and concept classes. In [71], Oliver et al. compare DBNs and HMMs
in the framework of Layered HMMs analyzed in section 2.3.3. The first layer was left
intact and the comparison was held in the second layer, where DBNs replaced HMMs.
DBNs performed better by exploring relations between hidden states that HMMs were
unable to capture.

DBNs have been also used as generic framework from which can be derived variants
of HMMs, like product HMMs [68] for audiovisual speech recognition or Hierarchical
product HMMs [104] for sports highlight extraction.

2.4 Discussion

Decision fusion is a simple and straightforward approach to multimodal integration. By
hard-wiring domain knowledge, one can accomplish a given task easily and effectively,
but the drawback is that handling large-scale problems can become quickly intractable.
In addition, experience acquired in one task is not transferrable to other tasks or envi-
ronments as the domain rules may completely change.

On the other hand, the use of statistical approaches is more promising for solving
large-scale and complex problems, for both unimodal and multimodal scenarios. In the
last case, a unique multimodal space is created where features from various modalities
are projected and treated homogeneously. As we have seen in section 2.2, concatenative
fusion of the unimodal features is widely used. The issues of good generalization in the
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high-dimensional multimodal space and of the human-interpretable feature selection is
efficiently adressed by using SVMs or MEM as the statistical classifier. On the other
hand, questions regarding sampling at different frame rates or feature asynchrony are not
addressed in a uniform manner. Most of the studies use mid-level descriptors, acquired
after a pre-classification stage. The unimodal features are thus artificially converted and
synchronized. The use of advanced feature wrappers [40, 94] has been proposed as an
alternative, where features at all possible time scales or time correlations are fused, in
order to select through learning the most appropriate ones.

HMMs provide a powerful framework for capturing the temporal dynamics of a video.
This is important because in a lot of tasks the ordering of the video events (i.e., the video
syntax) alone can reveal semantics. Most of the HMM-based approaches use again con-
catenative fusion of unimodal features, assuming state-synchrony of the observations.
This assumption imposes however a lot of constraints during modeling: features should
be sampled at (or converted to) the same frame rate, observation should be synchronous,
and finally, all modalities should follow the same model topology. AHMMs [8] can ad-
dress the first two constraints by attempting to re-synchronize streams that are sampled
at different frames rates and exhibit a certain degree of asynchrony. Multistream HMMs
can further allow for different topologies for every modality. For practical reasons how-
ever, they usually take the form of product HMMs, where the same topologies and frame
rates are used in order to reduce the model complexity. An additional problem with prod-
uct HMMs, which holds for AHMMs too, is that fusing more than two modalities will
explode the complexity of the models and of the Viterbi decoding. In the framework of
Layered HMMs [70], different topologies and frame rates can be used for every modality,
but hard synchronization points, fixed a-priori, are assumed.

We will see in this study how the above-mentioned problems can be solved using Seg-
ment Models [72], which unify Multistream and Layered HMMs into a novel framework
for multimodal integration. Firstly, a duration model is added to Multistream HMMs.
The synchronization points between the modalities are not fixed but are now left as part
of the optimization problem. Each modality can be sampled at different frame rates
and modeled by its native topology. Second, observations from all the modalities and
within the synchronization boundaries are assigned to a common “multimodal” hidden
state. This hidden state belongs to a higher semantic level and models the video like
the second layer of a Layered HMM does.



CHAPTER 3

Feature Extraction

The automatic extraction of the relative video features is described in detail in this
chapter, along with a brief literature survey on tennis video processing in section 3.6.
The videotrack and the soundtrack are processed separately, as shown in Fig. 3.1. The
video is segmented into shots by hard cut detection. Dissolves are then detected in each
shot. Given the starting and ending points of the dissolves, a new type of shots is defined,
called dissolve shots. A reference court view, unique for every video, is automatically
extracted using color and edge information. The key frame of each shot (defined as the
middle one) is then compared to it, to provide a visual similarity measurement. This
descriptor, along with the shot duration and a binary indicator for dissolves shots form
the set of visual features. The audiotrack is segmented into homogeneous segments and
then three key sound classes are detected, namely ball hits, applause and music. The
soundtrack is thus transformed into a stream of binary indicators, one for each sound
class.

3.1 Description of the Corpus

Before proceeding to feature extraction details, a brief description of the corpus used in
this study is given in this section. 6 tennis broadcasts were recorded and kindly provided
by INA1. They correspond to the following tennis matches:

• Agassi - Safin, Open Paris 1999, 7-6, 6-2, 4-6, 6-4

1Institut National de l’Audiovisuel, France. http://www.ina.fr

29
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Outline of the feature extraction process.

• Pioline - Hewitt, Davis Cup 1999, 7-6, 7-6, 7-5

• Pioline - Philippoussis, Davis Cup 1999, 3-6, 7-5, 1-6, 2-6

• Sampras - Rusedski, Open Paris 1998, 4-6, 6-7, 3-6

• Grosjean - Philippoussis, Davis Cup 1999, 4-6, 2-6, 4-6

• Capriati - Clijsters, Roland Garros 2001, 1-6, 6-4, 12-10

The last tennis match was held outdoors. The parts of the broadcasts before and after
the actual tennis match were manually removed from the videos. Nevertheless, the
programs still contain commercials and interviews that occasionally appear during the
match. Video frames were extracted from raw MPEG data in the RGB colorspace and
in the size of 288×352 pixels. The audiotrack was sampled at 46 kHz, except for the last
match which was downsampled at 41 kHz.

The first three broadcasts were reserved for testing purposes throughout this chapther
and the subsequent ones.
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Frame # k Frame # k+1Frame # k-1 Frame # k+2

Hard cut

Figure 3.2

An example of a video hard cut. A visual discontinuity appears between two successive frames.

3.2 Video Hard Cut Detection

Problem Definition and Relative Literature

Video hard cuts are defined as points where an abrupt change occurs in the visual content
of the video frames (Fig. 3.2). Typically, they are results of the editing effect of switching
camera view in order to stress the viewer’s attention to a new storyboard or to present
another (visual) aspect of the displayed scene. Hard cuts segment the video into shots,
which are video segments of homogeneous visual content. As it is hard to imagine any
produced video without hard cuts, their detection has attracted the interest of the video
indexing community and numerous approaches have appeared in the relative literature
[56, 30]. Hard cuts are detected with pure signal processing techniques, in contrast to
scene (thematic units) cuts, which require high-level reasoning. Due to this reason, shots
usually form the basis of the vast majority of video abstraction techniques.

The detection of hard cuts involves the examination of the visual (dis)continuity
between frame pairs or inside local neighbors in the video track. One has firstly to make
a choice regarding the image features to be used. Many techniques (e.g., [114]) rely
on compressed-domain video data like the MPEG DCT coefficients, if fast processing is
required. In the uncompressed domain, histograms collected from the pixel intensities
have been used, like color [30] or edge histograms [116], for instance. Motion features
have also been proposed (e.g., [14, 30]), where usually a large motion discontinuity is
sought. As in this study performance issues are not adressed, feautures were collected
from uncompressed video data. Grayscale histograms were used as the simplest and yet
effective choice.

A second choice regards the detection method. In many approaches, image pairs are
examined and when the two histograms are found to be distant enough, a hard cut is
detected. A number of distance metrics between image histograms have been borrowed
from the field of image indexing, like the Euclidean distance or the χ2 test [85]. Having
decided about the metric to be used, a global threshold T is needed to be set by manual
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The use of a sliding window for hard cut detection. The discontinuity in the middle of this window

far exceeds the remaning ones.

inspection or by some statistical optimality criterion. However, this use of a global
threshold was found to be sensitive to video noise and also to the changing of statistics
from video to video. The appearance of a fast camera motion, for instance, would require
high thresholds, which in turn can result in a lot of misses in the same or other videos.

This shortcoming of the global threshold is efficiently addressed if using a time-
varying threshold T (t) [114], which is adaptive to the local variations of the histogram
statistics. The key idea is to use a sliding window, where the last N histogram discon-
tinuities are computed (Fig. 3.3). A hard cut is detected if a much larger discontinuity
appears in the middle of this window, compared to the remaining ones. In this way, the
threshold T (t) is in fact a function of the local discontinuities appearing in the window.
The presence of strong motion fields will result in strong but uniform discontinuities, so
it will leave the hard cut detection unaffected.

Description of the Method

The adaptive threshold selection framework of [101] was used in this study. Given the
grayscale image histogram Ht of the frame t and a window of size 2w + 1, the hard cut
detection proceeds as follows:

1. The histogram distance D(Hk,Hk−1) of the frames k and k − 1 is computed:

D(Hk,Hk−1) =
1
L

M∑

i=1

|Hk[i]−Hk−1[i]| (3.1)
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where k = 1 . . . 2w + 1, L is the total number of pixels of the frames, and M is the
number of bins of the histograms.

2. In true hard cut, the distances attain their maximum value at the middle frame
w + 1 of the window, i.e., D(Hw+1,Hw) ≥ D(Hj ,Hj−1), j = 2 . . . 2w + 1.

3. The distance D(Hw+1,Hw) should be greater by a factor of α to the mean of the
distances within the window, excluding D(Hw+1,Hw). To handle situations where
the distances are very close to zero yielding thus noisy close-to-zero estimations of
the adaptive threshold, an additive term c is added to every distance D(Hj ,Hj−1).
Finally, a hard cut is detected at the frame w + 1 if:

D(Hw+1,Hw) + c ≥ α

2w

2w+1∑

j=2,j 6=w+1

(D(j, j − 1) + c) (3.2)

The values of the parameters were set to M = 256, w = 3, α = 1.7 and c = 0.25.
The values of the last two parameters were determined after manual inspection of the
training sequences. An example of the evolution of the values of the adaptive threshold
against the ones of the histogram discontinuity is given in Fig. 3.4.

A very good performance was noticed in both training and test videos. In total,
10,775 hard cuts were detected with a negligible number of false detections and misses.

3.3 Dissolve Detection

Problem Definition and Relative Literature

Dissolves are defined as progressive transitions between shots where the first one fades
out while the second one fades in [56]. An example of such a transition is given in
Fig. 3.5. In tennis video, as in other sports broadcasts, they are widely used to signal
the start and the end of replays and highlights. Indeed, it was noticed in the tennis
corpus of this study that almost all replays start and end with dissolves and with no
other production effect. In addition, they separate shots inside (multiple) replays, in a
way that a replay shot is always surrounded by two dissolves.

As it was generally reported in the relative literature [56, 30], the detection of pro-
gressive transition is far more challenging compared to hard cut detection. Indeed,
when comparing two successive frames, the discontinuity will take small values inside a
shot due to the visual homogeneity, while it will form some large picks upon hard cuts.
But when comparing two frames that are distant in time, large discontinuity values are
expected whether a dissolve intervenes or not. For example, there could be also a pro-
gressive appearance of an object or a light motion field that would drastically change
the statistics of the histograms in a cumulative fashion.
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The evolution of the adaptive threshold (right side of eq. 3.2) and of the image discontinuity

(eq. 3.1) in a video portion of 1000 frames. In frames around 76400, the discontinuity takes high

values which are rejected by the adaptive threshold, which takes a higher pick. These frames

correspond actually to a progressive smoothed transition (dissolve). On the contrary, in frames

around 76600, some smaller discontinuity values are not rejected, corresponding to true hard cuts.

The use of a constant and acceptive (lower than the value of the false pick, around 80) threshold

in this setting would produce a false alarm. An over-rejective (greater than 80) threshold, on the

other hand, would result in 4 misses.
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Figure 3.5

Example of a dissolve transition. The dissolve lasts for a number of frames where the first shot

progressively disappears, while the second one fades in.

Of the first attempts to detect dissolves, Zhang et al. [118] proposed the method of
the twin comparison to exploit the fact that, during a dissolve, the visual discontinuity
takes some consecutive moderate values. To detect this behavior, they used multiple
thresholds, while motion characteristics should be modeled and detected for false alarms
removal. Other approaches include the modeling of the evolution of some image features
during a dissolve [101]. The intensity variance, for instance, is expected to yield some
local parabolic-like minima at the frames of a dissolve, as they are essentially a linear
combination of two images. Nevertheless, complicated and error-prone image features
have to be used to detect this shape, like temporal derivatives of the variance.

Proposed Method

A novel dissolve detection scheme is proposed in this study. It is based on the coupling
of two key facts that are expected to happen in a dissolve:

• As it was noticed above, during a dissolve a large cumulative histogram distance
is expected, as a result of a progressive transition between two shots.

• During a dissolve, the pixel-wise distances between consecutive frames are expected
to take small or moderate values due to the spatiotemporal smoothness that ap-
pears. Cases like strong motion fields normally will explode the values of pixel-wise
distances.

One may object that both conditions can be violated in cases of global or local gradual
changing of luminance. To handle such situations, the histogram distances should be
computed after lighting compensation. Nevertheless, this effect was not noticed in the
tennis sequences used and was not taken into consideration.



36 3. Feature Extraction

The algorithm for dissolve detection operates after hard cut detection has taken
place. This does not raise any problem because the adaptive threshold is insensitive
to progressive transitions (Fig. 3.4). Each video segment between hard cuts is futher
analyzed as follows.

1. For each frame i = 1 . . . S between two hard cuts, the following quantities are
computed:

• The cumulative distance of the current frame to the preceding K ones:

Mc(i) =
1
K

i∑

j=i−K

D(
Hi + Hi−1

2
, Hj) (3.3)

where D is as defined in eq. 3.1.

• Given the histogram HP
i,i−1 of the absolute pixel-wise differences between the

frames i and i− 1, the metric:

Mp(i) =
M∑

k=τ+1

(
HP

i,i−1[k]− τ
)2

(3.4)

will provide a measurement of the spatiotemporal smoothness between the
two frames. M is the number of bins of HP

i,i−1 and is equal to 256, as in hard
cut detection. The threshold τ rejects small and noisy differences. In was
manually set to 70. The rationale for this metric is simple: during a dissolve,
most edges are faded out, resulting to small Mp(i). Image motion, on the
contrary, will displace (some of) the edges of the image and will result in high
Mp(i).

• Immediately after a dissolve there are a number of frozen frames where Mc(i)
still takes high values and Mp(i) small ones. In order thus to signify in a
better way the end of the dissolve, the histogram distance is also taken into
account:

Mh(i) = D(Hi,Hi−1) (3.5)

• Finally, some oversmoothed frames may confuse Mp(i). Generally, the ab-
sence of texture in the frames makes unreliable the detection of dissolves. To
account for such situations, the frame i is passed through the simple edge de-
tection filter [−1 1] in both columns and rows, and then the result is summed
up to a new metric Me(i).

2. The quantities Mc(i), Mp(i), Mh(i) are smoothed over time. An example of the
temporal evolution of these quantities is given in Fig. 3.6. Regions where the
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activity is far distant than the expected one are filtered out by using some soft
approximate thresholds. For the remaining regions, the three above quantities
along with Me(i) are averaged in order to form candidates for further examination.

3. A multilayer Perceptron2, which is trained on positive and negative examples of
candidates, gives the final answer if a candidate region is a dissolve or not. Both
positive and negative examples were collected from the training sequences. Post-
processing involves the rejection of very small regions (less than 4 frames).

During early experimentation, it was found that game statistics that appear and
disappear progressively at the bottom half of the images introduce a lot of false alarms.
To reject them, the quantities Mc(i), Mp(i), Mh(i) were calculated at the top and bottom
halves of the image frames separately. Then, in step 2, both halves must follow the same
statistics for not being filtered out. Step 3 remains unchanged. At the expense of an
increased false negative risk, the vast majority of the false alarms due to the statistics
were rejected.

As a final result, 1,196 true dissolves were detected in both training and test se-
quences. The algorithm also yielded 3 false alarms and 10 losses in the training and
18/22, respectively, in the test sequences. This evaluation does not consider dissolves
that occasionally appear inside commercials, as a lot of them are special effects that are
hard to label as actually dissolves or not. Furthermore, the detection of these dissolves
does not affect the performance of the models of the next chapters.

3.4 Visual Similarity

The most interesting class of shots in tennis videos is the ones that depict a global view
of the court (Fig. 3.7). According to the production rules, when the actual game takes
place, then the camera view is switched to the court view so that we are able to watch the
game action in a convenient way. Court views are thus important landmarks in a tennis
video. Fortunately, their automatic detection is extremely facilitated by the fact that
they are dominated by the court color. However, a global color model for every tennis
broadcast cannot be built as it significantly differs from tournament to tournament. A
unique for every individual broadcast color model is thus needed.

In this study, the framework of [48, 47] was followed to this end, with some minor
implementation optimizations regarding the features and the metrics used. A reference
court view frame is automatically extracted from every video that is optimal in some
statistical sense. Each video shot is then compared to this reference court view with
standard histogram-based distances to yield a similarity measurement.

2See section 6.1.1.
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Example of the temporal evolution of the metrics Mc(i), Mp(i), Mh(i). Two dissolves that surround

a replay as seen in the images are detected. Mc(i) takes high values during the dissolves, which

are coupled with small values of Mp(i). Mh(i) decreases immediately after the dissolve. Finally,

it is noticable that Mp(i) follows an “up and down” curve inside the rediffusion. This is explained

by the transformed and slowed-down rates that image frames are displayed in rediffusions. The

strong motion fields (zoom that follows the motion of the player) at the beginning of the rediffusion

resulted in high Mp(i) values.
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Figure 3.7

Some typical court (first row) and non court (second row) views. Court views are mainly charac-

terized by the domination of the court view color, which is however different for every broadcast.

Typical non court views one can see in a tennis video include close ups, crowd views, or commercials.

Examples of them are given in the second row.

Given the segmentation of the video by the hard cuts and the dissolves, the middle
frame of each shot is arbitrarily selected as the key frame of the shot, i.e., the frame that
represents the best the visual content of the entire shot. This choice is sound regarding
the court view shots as their visual content changes only slightly during the exchange.
For the non-court view shots, the middle frame may not be the most representative one,
but still the interest in these shots is to be characterized as non-court views. To this
end, every frame of the shot could be used, as long as all of them are visually distant to
the court view.

Dominant Colors Extraction and Prefiltering

Before proceeding to the actual algorithm for reference court view detection, extraction
of the dominant colors of each key frame is performed. The majority of the non-court
view frames are then easily filtered out as they are not dominated by a single color,
as is the case of the court view frames. Dominant color extraction was performed by
clustering to a small number of clusters the distributions of the pixel intensities. A
straightforward implementation of the K-means algorithm was used as clustering tech-
nique, with uniform initial distributions and random presentation of the patterns. The
number of the wanted clusters was set to 4 after experimentation. Clustering was per-
formed in the LUV colorspace, after transformation3 of the pixel intensities from the

3The interested reader is referred to

http://staff.science.uva.nl/ horus/dox/horus1.1/refcpp/html/HxColConvert 8h.html

and to

http://www.neuro.sfc.keio.ac.jp/ aly/polygon/info/color-space-faq.html

for more details on color conversion.
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u′ = 4X
X+15Y +3Z u′n = 4Xn

Xn+15Yn+3Zn

v′ = 9Y
X+15Y +3Z v′n = 9Yn

Xn+15Yn+3Zn

U = 13L(u′ − u′n)

V = 13L(v′ − v′n)

Table 3.1

Color conversion from RGB to LUV colorspaces. The (R G B) triplet is firstly converted to the

XYZ colorspace to finally provide the (L U V ) values. (Xn Yn Zn) is a reference white color,

taken simply by converting the RGB white color in XYZ.

Figure 3.8

Result of the dominant color extraction for two images. The court in the second image contains in

fact two colors, not very distant to human perception. Clustering in the RGB colorspace yielded in

a lot of cases two dominant colors for the court. In the LUV colorspace, court is characterized by

a single dominant color, as expected.

RGB colorspace, as given in Table 3.1. The LUV colorspace approximates human per-
ception and is considered to be optimal for color-based comparisons [85]. Indeed, the
quality of the clusters was significantly improved when switching from RGB to LUV col-
orspaces and also a much more stable behavior of the K-means clustering was noticed.
Some examples of the dominant colors extraction are given in Fig. 3.8.

Finally, all the key frames whose dominant color occupies less the 70% of the pixels
were a-priori labeled as not being a reference court view and were excluded from further
analysis. Around 60% to 80% of the key frames were thus discarded, depending on the
video.
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Automatic Extraction of a Reference Court View

The reference court view is defined as the key frame image Kref that is the nearest
possible to the mass center of the court view key frames, in a space defined by the image
distance d(Ki,Kj) between two key frames Ki and Kj :

Kref = arg min
j∈I

∑

i∈I

d2(Ki, Kj) (3.6)

where I denotes the set of the (true) court view key frames. This problem could be
solved by standard least-squares optimization in I. However, this set is not known a-
priori as still, after the pre-rejection stage described above, a number of the remaining
key frames do not correspond to court views. They can be considered as outliers, which
can be discarded by a least-squares technique with outliers rejection capabilities. To this
end, the Least Median of Squares method [84] was used.

The method proceeds as follows:

1. Random selection of p key frames Kj ∈ Ω, where Ω is the set of all candidate key
frames, including outliers.

2. Selection of the key frame Km that satisfies:

Km = arg min
j∈[1...p]

Median
i∈Ω

d2(Ki,Kj) (3.7)

The use of the median operator, instead of summation, allows for outlier rejection.

3. Selection of the key frames that satisfy:

d2(Kj ,Km) < Median
i∈Ω

d2(Ki,Km) (3.8)

where the right part is simply the minimum median found in eq. 3.7. Supposing
that the key frames Kj form a set I ′, then it is expected that I ′ ⊆ I, i.e., I ′ does
not contain any outliers. If I ′ is empty, then simply Kref = Km.

4. Kref is provided by a final optimization in the set I ′:

Kref = arg min
j∈I′

Median
i∈I′

d2(Ki,Kj) (3.9)

The pre-selection of candidates in step 1 allows for a speed-up of the computation.
Given that p is sufficiently large while the percentage of outliers is small, the probability
of selecting an outlier as Km is close to zero [84]. After experimentation, p was set to 30,
as the safest and smallest value allowed. Note also that, whatever the initial selection
in step 1, Kref will take its unique optimal value in step 4.
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The distance d(Ki,Kj) was calculated as a weighted sum of edge and color histogram-
based distances:

d2(Ki,Kj) = 0.9D(He
i ,He

j ) + 0.1D(Hc
i ,H

c
j ) (3.10)

where Hc
i is the histogram of the color distibution of the frame i as computed in the

LUV space, and He
i is the one for the distribution of the edges. Edge features were

introduced as they were found to be more stable through time. In some videos, small
luminance variations were noticed due to the large extend in time (each video is at least
2 hours). Furthermore, in the Roland Garros match that was held in open air, weather
conditions greatly affected the court luminance at some points.

Computation of the Visual Similarity

The computation of the visual similarity Dvs of every key frame Kj of a video to its
reference court view Kref is given simply by:

Dvs(Kj) = d2(Kj ,Kref) (3.11)

where d2(Kj , Kref) is as defined in eq. 3.10. It was noticed that the range of values of Dvs
is generally different for every match, influenced by the individual video characteristics.
To compensate for this and yield homogenized statistics for every video, the similiraty
measurements were passed through whitening:

D′
vs(Kj) =

Dvs(Kj)− µ

σ
(3.12)

where µ and σ are the mean and standard deviation of Dvs, computed in every video
individually.

To provide an experimental analysis, firstly the court views of all videos were man-
ually labeled. The training videos contain 901 in total and the test ones 1194. The
histogram of the values of D′

vs(Kj) for the two classes, court views or not, is given
in Fig. 3.9. We notice a good behavior as, in their vast majority, court views yield a
visual similarity of around -1.5, while most of the non-court views correspond to values
of around 0. Selecting a threshold of Tvs = −0.95, for instance, the two classes are well
separated. Precision and recall rates on the detection of court views are defined as:

precision = 100 #correct
#correct + #false

recall = 100 #correct
#correct + #lost

(3.13)

where #correct is the number of true positives, #false that of false positives and #lost
that of false negatives. The above value of Tvs resulted in 94.03% precision and 96.12%
recall rates on the training sequences, while in the test ones 93.46% and 98.07%, respec-
tively.
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Figure 3.9

The histograms of the responses for the two classes in (a) test sequences and (b) training ones. In

both cases, the two classes are nicely separated.

3.5 Auditory Features

In tennis video, there is the need to track the presence of the ball hits and applause
sound classes. Ball hits are recorded during exchanges or serves and are expected to
support the visual features at the discrimination between court views of actual game
action and idle court views. As applause usually occurs after an exchange, its presence
can be used to spot such events. Finally, the music sound class can convey useful
information as it occurs on commercials. On the contrary, the sound class of speech that
dominates the soundtrack cannot be informative and its presence was ignored. Indeed,
the superimposed speech of the commentator may occur invariantly at every time instant
on the video, including commercials.

Outcomes of the automatic detection of these sound classes were kindly provided by
the research group METISS4 of IRISA. Methodology is described in detail in [11, 10].
A summary is provided in this section.

Mel Frequency Cepstral Coefficients (MFCCs) are classically extracted from the
soundtrack using a sliding window. A feature vector that represents the signal is thus
formed, along with energy coefficients and first and second order derivatives. The pro-
cess of the detection is separated into two distinct steps: soundtrack segmentation into
acoustically homogeneous segments and segment classification. At the first step, a rough
segmentation with a growing window was further refined with the Bayesian Information

4http://www.irisa.fr/metiss/
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Criterion (BIC) [100]. It expresses, for a given segment y, a compromise between the
produced log-likelihood of a model and its number of parameters |Λ| and segment length
T :

BIC(Λ) = ln(p(y|Λ))− 1
2
λ|Λ| ln T (3.14)

where λ is a weighting factor, experimentally set. For every pair of adjacent segments,
it is decided if it is more optimal in terms of BIC to fuse the adjacent segments or not.
Let us suppose that the two segments are modeled by two Gaussian distributions Λ1 and
Λ2 respectively and the fused segment by Λ0. If then BIC(Λ0) > BIC(Λ1) + BIC(Λ2),
the two segments are fused.

The detection of each key sound class is carried out independently in each segment.
Firstly, note that when two (or more) sound events Ci and Cj occur simultaneously in
a segment y, they are considered as independent:

p(Ci, Cj |y) = p(Ci|y)p(Cj |y) (3.15)

A binary hypothesis test is performed in every segment and for every class Ci to verify
its presence in the segment. It is based on the MAP criterion which dictates that the
class Ci (presence) or its anti-class Ci (absence) should be chosen according to the ratio:

1
T

T∑

t=1

ln
p(Ci|yt)
p(Ci|yt)

=
1
T

T∑

t=1

ln
p(Ci)p(yt|Ci)
p(Ci)p(yt|Ci)

(3.16)

When it is greater than 1, class Ci is chosen. The distributions p(yt|Ci) and p(yt|Ci)
are modeled by Gaussian mixture models. Their parameters, along with the class priors
P (Ci) and P (Ci) were estimated on manually annotated data. The use of class priors in
[10] yielded a performance improvement compared to uniform priors [11]. This two-step
approach also slightly outperformed a Viterbi-based system where segmentation and
classification are jointly carried out.

3.6 Relative Literature on Tennis Video Processing

To complete the picture of what has been accomplished in terms of automatic processing
and salient feature extraction from tennis video, a review of the relative studies that
appeared, to the author’s knowledge, in the video indexing literature is given here.
While none of these studies attempts to provide a dense structure analysis, it is usefull
to see the state of the art for the feature extraction stage itself. For this reason, the
review of these studies was reserved in this chapter instead of presenting them in the
relative literature of chapter 2.

The first, probably, study on tennis games appeared in [98]. The authors attempt
to extract high-level information from tennis clips fully exploiting domain knowledge.
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Firstly, tennis court clips are detected from raw footage using the tennis court color and
some heuristics. Prototype court colors were manually hard coded by the authors. Then,
using projective geometry and line detection algorithms, they reconstructed the tennis
court. In this new geometry space, player tracking is carried out using some standard
frame-by-frame matching technique and heuristics. Finally, using the relative positions
and hand-crafted rules, they annotate the video clips with labels like “baseline rallies”
etc. No quantitave experimental analysis is provided.

In [119] an automatic unimodal adaptive procedure was proposed to detect serve
shots in tennis video based on domain-specific rules. The video is first segmented into
shots by hard cut detection. Color filtering is firstly applied to each key frame in order
to detect court views. This is performed by using a training set of color histograms of
serves where K-means is performed to form a number of histogram models. It is assumed
that every new (not seen) color histogram should be close enough to any of these models.
The actual color filtering proceeds by selecting the first L frames of the test video, which
are matched with the models. The frames of the test video of the winning model are
then used to build a new model, which is specific to the test video in hand. The color
filtering is then followed by some domain-specific rules for further processing, i.e., false
alarms removal. The key frames are segmented into homogeneous regions with respect
to color and motion. Frames that do not contain a large enough region (the court view)
are discarded. These regions will hopefully provide the players’ positions. If a player is
not detected in the lower half part of the court, this frame is considered again as false
alarm. Finally, using the Hough transform, two vertical and horizontal lines should be
detected. The system was tested in a 1-hour tennis video. As it operates on compressed
raw video data, real-time performance is achieved.

In [22] tennis exchanges between the two players were detected by a combination of
image and sound (ball hits) information as none of them alone can sufficiently charac-
terize tennis exchanges. Image features used were based on edge information and the
Hough transform. Ball hits in the soundtrack were detected by a PCA-based distance.
Having segmented the video into shots, an average likelihood over all the image and
sound frames were computed to finally form the classical product of probabilities as the
resulting likelihood. The system was tested on a small corpus containing 18 shots and 5
exchanges.

In [21], a method for tennis video abstraction is proposed on a large corpus of 7
tennis programs. After segmentation of the video track into shots, motion-based fea-
tures are extracted. A method for player detection is also proposed, where residual
motion of small objects (the players) is detected and then vertically projected to form
horizontal cumulative histograms. Using K-means clustering, the video track is thus
divided to non-interesting and interesting segments, which are further analyzed with
audio information. The presence of ball hits and applause sound classes is tracked in
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the soundtrack. According to their duration percentages on the preselected segments,
tennis abstraction classes are formed, such as aces, rallies, etc.

Some studies attempt to extract from tennis clips high-level information like game
tactics. In [105] tennis exchanges are classified into two classes, namely “Net Game” and
“Baseline Game”. The authors extract motion features that characterize the players’
trajectories, after projecting them to the true tennis court space. The evolution of these
features over time is then used as input to HMMs that, finally, provide the wanted class
labels.

In [76] the authors attempt to recognize different types of tennis strokes (servings)
using HMMs. Given a tennis court view (provided rather manually), the authors de-
tect the player at the lower part of the tennis court using color-based morphological
operations. They also construct a court 3D model to aid the player segmentation. The
second step is to extract a number of 16 points around the player. The temporal evo-
lution of these features through 45 frames will be classified by HMMs as a given type
of stroke. The authors used 120 clips for training and 240 clips for testing the system.
They provide some experimentation as to which feature points are the most informative
ones.



CHAPTER 4

Structure Parsing and Audiovisual

Integration

This chapter details video structure parsing and audiovisual integration with Hidden
Markov Models and Segment Models on top of the features presented in the previous
chapter. First, basic concepts of these two modeling alternatives are reviewed. Next,
the tennis scenes are defined. With the HMM framework, each scene is modeled by
sub-model HMMs, which are interconnected to provide a unique ergodic HMM that
models the video as succession of shots. The state-synchronous concatenative fusion is
used for audiovisual integration. With the SM framework, each scene is considered as a
segment and an ergodic SM is used to model the video as succession of scenes. Various
possibilities of audiovisual integration are presented. Finally, a comparative exprimental
analysis is provided.

4.1 Basic Concepts of Stochastic Temporal Models

This section summarizes notions and basic definitions for the HMMs and SMs. For a
more detailed analysis, see the classical tutorial of Rabiner [81] on HMMs and Ostendorf
et al. [72] for SMs.

47
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4.1.1 Hidden Markov Models

Definitions

HMMs model a stochastic process that evolves in discrete time steps. At each time
instant t, the process is assumed to being in a state qt, chosen between a finite set of
N states S1S2 . . . SN . The process evolves by switching between the states with a given
probability. In a first order Markov chain model, this probability is considered to be
constant through time and dependent to only the previous state qt−1:

P (qt = Sj |qt−1 = Si, qt−2 = Sk, . . .) = P (qt = Sj |qt−1 = Si) (4.1)

The term P (qt = Sj |qt−1 = Si), often abbreviated as aij , denotes the probability from
switching from state Si to state Sj . The model is thus defined by the row-stochastic
state transition matrix A = {aij}, 1 ≤ i, j ≤ N . In addition, the initial state distribution
π = {πi}, 1 ≤ i ≤ N , defines the probabilities according to which the states are drawn
at the first time instant, i.e.:

πi = P (q1 = Si) (4.2)

In this simple Markov chain model, the states are observable, i.e., the state sequence
itself is the result of the stochastic process. HMMs generalize this model by introducing
an observation sequence O1:T = O1O2 . . . OT , which is generated according to a proba-
bilistic function from the state sequence. The observations are thus the actual output
of the stochastic process and usually correspond to physical events, a set of features, or
more generally, to something measurable. The states of HMMs are not measurable and
have to be inferred, hence the term hidden states. They correspond to the underlying
dynamics that guide the stochastic process. In the classical example of speech produc-
tion, the hidden states correspond to the phonemes uttered, while the observations to
the produced auditory signal.

Given a set of M observation symbols v1v2 . . . vM , the probability of emitting a
symbol Ot = vk while in hidden state j is given as:

bj(k) = P (Ot = vk|qt = Sj) 1 ≤ j ≤ N, 1 ≤ k ≤ M (4.3)

As with transition probabilities, bj(k) are independent of time t. Note also that as bj(k)
is conditioned only to the hidden state label, a conditional independence of observations
is assumed. HMMs define thus also the row-stochastic N ×M matrix B = {bj(k)}. To
handle cases of non-discrete observations, Continuous Density HMMs (CDHMMs) use
Gaussian Mixture Models to model observation densities. They provide an observation
likelihood instead of a probability. Overall, the complete parameter set of an HMM is
defined by the triplet:

λ = (A,B, π) (4.4)



4.1. Basic Concepts of Stochastic Temporal Models 49

As classically described in [81], three problems related to HMMs have to be solved:

• Inference. How one can efficiently compute the probability P (O1:T |λ) that the
HMM λ has produced the sequence O1:T ?

• Decoding. Given an observation sequence O1:T and an HMM, which is the corre-
sponding most likely hidden state sequence Q1:T = q0q1 . . . qT ? When the hidden
states have a physical meaning, this sequence provides an “explanation” of O1:T .

• Parameter Estimation. Given one or multiple observation sequences O1:T , how one
can estimate the model parameters λ = (A,B, π) in order to maximize P (O1:T |λ)?
The Baum-Welch algorithm [81] is usually employed to this end. This problem
will not be analyzed further here.

Inference

To solve the first problem, let us consider a fixed hidden state sequence Q1:T . The
probability of the observations given Q1:T and the HMM λ is factored as:

P (O1:T |Q1:T , λ) =
T∏

t=1

bqt(Ot) (4.5)

due to the conditional independence of the observations. In addition, the probability for
drawing Q1:T is simply given by:

P (Q1:T |λ) = πq1

T∏

t=2

aqt−1qt (4.6)

while the joint probability of generating P (O1:T |Q1:T , λ) and P (Q1:T |λ) is:

P (O1:T , Q1:T |λ) = P (O1:T |Q1:T , λ)P (Q1:T |λ) (4.7)

Finally, the wanted probability P (O1:T |λ) is given as a sum of the joint probabilities
over all possible hidden state sequences:

P (O1:T |λ) =
∑

Q1:T

P (O1:T |Q1:T , λ)P (Q1:T |λ) (4.8)

=
∑

Q1:T

πq1bq1(O1)
T∏

t=2

aqt−1qtbqt(Ot) (4.9)

As there exist NT possible hidden state sequences and, for each of them, 2T compu-
tations are required, the straightforward computation of eq. 4.8 is of order O(2TNT ),
which is clearly prohibitive. For this reason, the forward-backward procedure [81] can be
used instead, whose computation cost is O(TN2).
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Decoding

Decoding involves finding the most likely single hidden state sequence Q∗
1:T . In terms of

the Maximum A-posteriori Criterion (MAP), this translates to:

Q∗
1:T = arg max

Q1:T

P (Q1:T |O1:T ) (4.10)

= arg max
Q1:T

P (O1:T |Q1:T )P (Q1:T )
P (O1:T )

(4.11)

= arg max
Q1:T

P (O1:T |Q1:T )P (Q1:T ) (4.12)

The denominator P (O1:T ) of eq. 4.11 is constant for every hidden state sequence and thus
discarded. In pattern recognition terminology and intuitively speaking, this problem is
equivalent to classification of a series of T features O1:T to a set of N classes corre-
sponding to the hidden state labels. When considering only the term P (O1:T |Q1:T ),
then eq. 4.12 reduces to a series of MAP classifications of the patterns, individually. The
addition of the term P (Q1:T ) adds the temporal dimension to the problem and dictates
that the order of the class labels obtained should satisfy some optimality with respect to
the state transition matrix A of the HMM. This term can help in cases of noisy features
by adding built-in robustness or of ambiguity between the classes. When for example,
in speech recognition, the model provides two possible transcriptions of an utterance of
more or less the same probability, then the one that matches an actual word is selected.

Decoding is solved via the Viterbi algorithm, a general dynamic programming tech-
nique that finds out the most likely hidden state sequence (or path) in a trellis of nodes.
The algorithm defines the probability score δt(i) of the best path ending at time t in
hidden state i and proceeds as follows:

1. Initialization.
δ1(i) = πibi(O1) 1 ≤ i ≤ N (4.13)

2. Recursion for 1 ≤ i ≤ N and 2 ≤ t ≤ T , where T is the sequence length.

δt(i) = max
j

δt−1(j)ajibi(Ot) (4.14)

ψt(i) = arg max
j

δt−1(j)ajibi(Ot) 1 ≤ j ≤ N (4.15)

The variable ψt(i) (to be used in step 3) keeps track of the paths obtained.

3. Backtracking.

q∗T = arg max
j

δT (j) (4.16)

q∗t = ψt+1(q∗t+1) t = T − 1, T − 2 . . . 1 (4.17)

The computational cost of the Viterbi algoritm is O(TN2).
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4.1.2 Limitations of HMMs

In the speech recognition literature a number of the HMM modeling assumptions like the
conditional independence of the obervations have been found too strong leading thus to
poor modeling of the speech production process. Various alternatives to standard HMMs
have been proposed in order to build more accurate models. As concisely summarized
by Ostendorf et al. [72], the limitations and their possible solutions are:

• Weak duration modeling. In standard HMMs, the probability of remaining at the
same hidden state Si for d consecutive time instants (in other words, after making
d− 1 self-transitions) is:

pi(d) = aiiaii . . . aii︸ ︷︷ ︸
d−1 times

(1− aii) = ad−1
ii (1− aii) (4.18)

where (1− aii) is the probability of leaving Si. This expression is equivalent to a
geometric duration model, which is a modeling assumption that may not hold al-
ways. The Explicit State Duration HMMs [81] (or semi-Markov models) have been
introduced as an alternative. In these models, self-transition probabilities aii are
set to zero while an arbitrary distribution pi(d) is used in their place to model the
state duration. Explicit duration models require however an extra computational
cost during Viterbi decoding as all the possible segmentation hypotheses have to
be evaluated.

• Conditional independence of observations. This assumption implies that there is no
correlation between successive observations. This may not be true, especially when
simulating continuous-time media like speech waveforms. Features from adjacent
observations can be used for more effective observation distributions. In speech
recognition, feature derivatives are widely used to capture the time-varying spectral
dynamics of speech.

• Frame-based observations. Extending the skepticism on the above-mentioned as-
sumption, one may be tempted to use segmental features (i.e., sequences of fea-
tures) rather than frame-based observations. This greatly advances the freedom for
modeling inter-segmental and local in nature correlations between them, leaving
the intra-segmental ones to be modeled by the HMM itself. The use of segmental
features in speech recognition can be beneficial also during the sampling stage, al-
lowing for adapted sampling strategies [72]. Segmental HMMs have been proposed
to this end.

Gathering all these modeling alternatives into a unified framework, Ostendorf et al. [72]
defined Segment Models.
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Figure 4.1

The generation of observations according to Hidden Markov Models (left) and to Segment Models

(right). The hidden state in SMs generates L observation symbols, instead of one.

4.1.3 Segment Models

The fundamental difference between SMs and HMMs is that in SMs a hidden state
is associated to a complete sequence of observations O1:l, called segment, instead to a
unique feature vector Ot. Therefore, each hidden state i in SMs defines firstly a duration
model p(l|i) that accounts for the segment length l. Like the hidden state labels, l is
stochastic. Secondly, an emission probability distribution over a segment p(O1:l|l, i) is
defined, conditioned on the segment length and the hidden state. A SM is thus defined
by the parameter set:

λ = (A,B, D, π) (4.19)

where D denotes the state duration distributions.

From a generative point of view, SMs can be seen as a Markovian process where a
hidden state emits a sequence of observations whose length is governed by a duration
model before transiting to another state. The difference between HMMs and SMs is
illustrated in Fig. 4.1. On the left, we see what happens conceptually in the case of
HMMs: at a given time instant the process is in a given state and generates one obser-
vation symbol and then transits to another state. On the right, we see how a sequence is
generated according to Segment Models. At a given time instant, the stochastic process
enters into a state and remains there according to a probability given by the state dura-
tion model. A sequence of observations is generated, instead of a single one, according
to a distribution conditioned on the segment label. Then the process transits to a new
state with a transition probability, as in HMMs, and so on until the complete sequence
of observations is generated.

SMs provide a generalized framework that can take several HMM variants as a special
case. Indeed, conventional HMMs is simply the special case of a SM whose duration
model is fixed and equal to 1. An Explicit State Duration HMM, as another example,
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is a SM where the conditional independence of observation inside a segment still holds:

p(O1:l|l, i) =
l∏

k=1

bi(Ok) (4.20)

In [72], the EM-based estimation of the parameters for SMs is formulated under
various segmental distributions assumptions and models specific to speech recognition.
The derivation of these formulas is beyond the scope of this study.

Viterbi decoding for SMs, quite similar to that for Explicit State Duration HMMs,
involves finding not only the most likely hidden state sequence, but also the most likely
segmentation, or, in other words, the most likely duration of each segment:

(L∗1:N∗ , Q∗
1:N∗) = arg max

L1:N ,Q1:N

p(O1:T |L1:N , Q1:N )p(L1:N |Q1:N )p(Q1:N ) (4.21)

where N∗ is the number of segments found, L∗1:N∗ is the most likely segmentation,
Q∗

1:N∗ is the most likely hidden state sequence, and T is the length of the observation
sequence. The term L1:N denotes both a segmentation hypothesis of N segments and
their respective hypothesized durations. It is expected generally that N < T (N is fixed
to T in the case of standard HMMs).

In a straightforward extension of the Viterbi decoding described in section 4.1.1, the
term δt(i) denotes now the best segmentation and hidden state sequence ending at time
t in state i and the modified algorithm proceeds as follows:

1. Initialization.
δ1(i) = πip(O1|1, i) 1 ≤ i ≤ N (4.22)

2. Recursion for 1 ≤ i ≤ N and 2 ≤ t ≤ T , where T is the sequence length.

δt(i) = max
j,k

δt−k(j)p(Ot−k+1:t|k, i)p(k|i)aji (4.23)

(ψt(i), ψl
t(i)) = arg max

j,k
δt−k(j)p(Ot−k+1:t|k, i)p(k|i)aji (4.24)

1 ≤ j ≤ N, 1 ≤ k ≤ Lmax

The added variable ψl
t(i) keeps track of the best segmentation obtained. Lmax

puts a constraint on the maximum allowed length of the segment to keep the
computation tractable.

3. Backtracking.
q∗N∗ = arg max

j
δT (j) (4.25)

Set t′ = T and iterate until t′ > 0

(q∗n, l∗n) = (ψt′(q∗n+1), ψ
l
t′(q

∗
n+1)) (4.26)

t′ = t′ − l∗n (4.27)
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The effect of searching through multiple segmentation hypotheses for a sequence O1:8. The prob-

ability scores of the two displayed paths are

δ8(x) = p(O1|1, x)p(1|x)p(O2:4|3, x)p(3|x)p(O5:8|4, x)p(4|x) and

δ8(x) = p(O1:3|3, x)p(3|x)p(O2:8|5, x)p(5|x), respectively. For sake of simplicity, initial distribu-

tions and transition probabilities terms are omitted, while x is a generic state label.

An illustration of searching through different segmentation hypotheses is given in Fig. 4.2.
Compared to standard Viterbi decoding, the version for SMs is clearly more computa-
tionally expensive due to the enhanced search through segmentations and hidden states
of eq. 4.23. Supposing that the segmental scores p(O1:l|l, i) can be evaluated in O(1)
time, the cost is now of order O(TN2Lmax), i.e., Lmax times more costly compared to
HMMs. This is a satisfying result as it does not explode with time. Of course, the
assumption of the instant evaluation of the segmental scores does not hold generally,
being in the best scenarios of order of O(l). Still, a lot of segmental scorers can support
caching of the outcomes during successive evaluations so that the overall cost approaches
again O(TN2Lmax).

4.2 Tennis Scenes and Problem Definition

4.2.1 Tennis Video Characteristics

Tennis video exhibits a certain type of characteristics as result of the tennis rules and
the work of the producer before broadcasting it, as well. Some interesting tennis rules
or commonalities that occur in the tennis court are1:

• When a player serves and during the exchange, absolute silence is required from the
crowd. This is a strict tennis rule, guaranteed by the referee. The player cannot
serve if there is no silence and an exchange is annulled in case of unexpected noises.

• After a missed serve, the player repeats the serve in a short time period.

• After an exchange, the crowd applauds. Of course, nothing can ensure this but it
is true in the vast majority of the exchanges. False applauds, on the other hand,
also appear some times after a missed serve.

1A complete description of the tennis rules are outside the scope of this study.
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The production rules (or commonalities) in a tennis broadcast are:

• When game action occurs, then the camera is switched to the court view. It is
extremely rare, although still possible, to present game action by a non-court view,
like a side view. On the other hand, game idleness usually corresponds to non-court
views.

• After a missed serve, a number of non-court views interfere before the repeated
serve.

• Rediffusions are surrounded by dissolve transitions. Multiple rediffusions result in
a “sandwich” effect of successions of dissolve transitions and rediffusions.

• Dead time (i.e., when the game is paused) corresponds to commercials or presen-
tation of game statistics or interviews.

4.2.2 Scenes Definition

Based on the tennis video characteristics, four types of scenes are identified and serve
as the basic semantic building blocks of the video. They are defined on top of the video
segmentation into shots, i.e., each scene is in fact a collection of successive shots that
share a unique semantic content. The scenes are defined as follows:

1. First Missed Serve and Exchange. This type of scene starts with a game action
shot where a missed serve occurs. A number of non-game action shots follow until
a normal exchange takes place. Finally, a number again of non-game action shots
(optionally) appears, until a new scene begins. There is also the possibility of
repetitive missed serves before the exchange.

2. Exchange. The scene starts with a game action of an exchange, followed by a
number of filling-up non-game action shots, until a new scene starts.

3. Rediffusion. Rediffusion scenes start with a dissolve shot and then contain a num-
ber of successions of non-court views and dissolve shots. They finish with filling-up
non-game action shots until a new scene begins.

4. Break. Breaks can be either commercials or dead time of long duration where an
interview may take place or game statistics are displayed. Breaks start at the shot
where the players leave the court. The commercials or interviews take place and,
finally, filling-up non-game action shots may appear at the end.

The first two scenes correspond in practice to the same basic game event: the exchange.
They are assigned different labels to make the problem more challenging. Note also that
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the term “game action shot” is used, instead of court view. This is because some court
views can be idle in terms of game action. It is up to the system to decide which court
views actually contain game action. Regarding the break scenes, their exact starting
point can be precisely defined by a human observer, which is able to figure out when
the players leave the court and sit on the desks. In terms of the extracted audiovisual
features, however, it is troublesome to imagine a feature (or feature combination) that is
generally able to signal the start of a break. Nevertheless, their temporal trace is easily
detected, as commercials are a long succession of short shots that may contain music
while interviews and idle time are a collection of a few but extremely lengthy shots.

4.2.3 Problem Definition

Video structure parsing is defined as the problem of the classification of each shot as be-
longing to one of the four scenes defined above, plus the detection of the scene boundaries.
Every shot boundary in the video should be examined as a potential scene boundary.

The frameworks of HMMs and SMs fit perfectly well to this problem, as its temporal
aspect is evident by definition. For example, the decision if an exchange belongs to
the first or to the second scene can be taken only after inspection of the recent past
in order to detect the presence (absence) of missed serves. Given a video sequence and
the model parameters, Viterbi decoding will provide the wanted semantic labels and the
segmentation of the scenes.

Audiovisual integration can greatly benefit carrying out the task at hand. Typically,
a human observer can solve the problem of labeling and segmenting the video into scenes
by just watching the videotrack, even with a certain degree of difficulty. The inference
however on top of the automatically extracted visual features can be troublesome and
thus auditory features are introduced to boost the performance by providing further
evidence.

4.2.4 Ground Truth

For the needs of evaluation, each shot of the video was manually labeled in order to
provide the ground truth. Errors from the automatic hard cut and dissolve detection
(though rare) were treated as follows: insertions or deletions of hard cuts do not alter
the definition of the scenes; they were thus ignored. Inserted dissolves were treated as
noisy segmentation/features and marked with their real scene label. On the contrary,
the entire rediffusion was ignored if one of its two dissolves is missed. The reason for
doing this is three-fold: firstly, in terms of audiovisual features, there is no way to recover
this error of the low-level videotrack segmentation. Second, in some cases the producer
himself omits to surround a rediffusion with two dissolves. Thirdly, they do not affect
comparative results between different models.
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Training Sequences

% of scenes % of shots
1 30.48 34.04
2 44.11 29.59
3 19.70 14.20
4 5.70 22.17

Test Sequences

% of scenes % of shots
1 36.98 42.23
2 37.39 24.00
3 20.22 15.07
4 5.41 18.70

Table 4.1

Ground truth statistics for both training and test sequences. The scene labels 1 to 4 are as defined

in the text. The second column of each table gives the percentage of occurrence and the third one

the percentage of shots occupied.

The training sequences contain 807 scenes in total and the test ones 979. The per-
centage of occurrence of each scene is given in table 4.1 along with the percentage of shots
that each scene occupies. Especially for the distributions of shots, they are more or less
evenly distributed among the scenes and thus no bias towards a specific scene is present
(i.e., a classifier biased to prefer the majority class cannot achieve good performance).

4.3 Content Modeling with Hidden Markov Models

With the HMM framework, the observations Ot are modeled at the shot level and the
feature vectors correspond to the extracted shot-based audiovisual measurements and
descriptors. The visual content of the four scenes is analyzed firstly by four sub-model
HMMs, which are finally interconnected to a unique HMM that models the complete
video as a succession of shots. Audiovisual integration is then discussed and, finally,
parameter estimation is detailed.

4.3.1 Visual Content Modeling

Given the definitions of the scenes in section 4.2.2, it is straightforward to determine
the number of hidden states and their semantic meaning for the sub-model HMMs. The
HMM for the ‘First Missed Serve and Exchange’ scene is depicted in Fig. 4.3(a). State 1
represents the court view of the missed serve. Some non-court view shots follow (state 2),
until the player serves again. If this new serve is again missed, then a transition back
to state 1 occurs. The transition to state 3 represents that a normal exchange takes
place. Finally, state 4 represents the trailing non-court view shots after the exchange.
The definition of the ‘Exchange’ scene sub-model, given in Fig. 4.3(b) is straightforward,
being a part of the above-mentioned sub-model.

The two remaining scenes require 3 hidden states each, as shown in Fig. 4.3(b).
Regarding rediffusion, state 8 represents both a rediffusion shot and the trailing non-
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Figure 4.3

The sub-model HMM for the first missed serve and exchange scene (a), the four sub-model HMMs

(b), and the HMM that models the complete video (c). “GV” stands for global view and “DT”

for dissolve transition. The semantic meaning of each hidden state is easily deduced. Note that

arrows represent actually major transitions and are given for illustrative purposes. The HMMs are

in fact ergodic. The interconnection arrows in (c) are not exhaustive.



4.3. Content Modeling with Hidden Markov Models 59

court views after the rediffusion. The distinction between the two cases after decoding
is easily done given a hidden state sequence as rediffusion shots are always surrounded
by the hidden state 7 (i.e., dissolve transitions). Hidden state 9 represents global views
of non game action that may occur between the trailing non-court views, as does the
hidden state 12 for the break scene. Such idle global views were found to be far more
rare between the trailing non-court views of the first two scenes and thus they were
not assigned a special hidden state. Finally, state 11 represents dissolve transitions
corresponding to special effects that signal the start or the end of the commercials or
other special effects inside them.

As illustrated in Fig. 4.3(c), the four sub-model HMMs are fused into a unique HMM
that models the entire video content and whose hidden states set is simply the union of
the respective sets of Fig. 4.3(b).

The feature set extracted from a shot includes the descriptors of the visual similarity,
shot length and the absence/presence of a dissolve, as described in chapter 3. The shot-
based feature vector is thus defined as follows:

Ov
t =




visual similarity

shot length

dissolve shot


 =




oc
t

ol
t

od
t


 (4.28)

where Ov
t denotes explicitly visual features. To make parameter estimation and subse-

quent computations easier, the features were discretized. More precisely, the values of oc
t

and ol
t were homogeneously quantized into 10 bins each2. od

t is naturally discrete being
a binary descriptor. Furthermore, features were considered to be independent so that
the conditional observation probability is:

P (Ov
t |Sj) = P (oc

t |Sj)P (ol
t|Sj)P (od

t |Sj) (4.29)

for a given state Sj .

Viterbi decoding involves finding the hidden state label of each shot, given an ob-
servation sequence Ov

1:T and the model parameters. In light of eq. 4.29 and in the log
domain, eq. 4.12 translates to:

Q∗
1:T = arg max

Q1:T

{ ln P (Q1:T ) +
∑

r∈{c,l,d}
lnP (or

1:T |Q1:T )} (4.30)

As show in Fig. 4.4, decoding classifies each shot with one of the 12 class labels of
Fig. 4.3(c). It is straightforward then to map each shot label to a scene label and find
the scene boundaries in order to meet the problem definition of section 4.2.3.
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Figure 4.4

Viterbi-based classification of the shots and the final map to scene labels and scene boundary

determination. HMM parameter estimation is discussed later in this chapter.
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Audiovisual integration with HMMs. The stream of audio events has to be synchronized firstly to

the visual one. It is segmented thus using the time stamps of the video shot boundaries. Inside

each shot, a number of auditory binary descriptors are collected and concatenated to the visual

feature vector. ‘T’ stands for tennis sound (ball hits) and ‘A’ for applause.
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4.3.2 Audiovisual Integration

Besides the visual features, which are represented as a stream of visual shot-based de-
scriptors, there are also features from the soundtrack that should be used. They come
in the form of a stream of audio events, as described in section 3.5. The two streams
are thus sampled at different (and variable) frame rates exhibiting a natural asynchrony.
However, audiovisual integration with HMMs has no other option than the standard
approach of state synchronous concatenative fusion (section 2.3.2): the two stream have
to be artificially synchronized before fusion. The procedure is illustrated in Fig. 4.5.
The stream of audio events is firstly segmented according to the shot boundaries of the
video track. As a second and final step, three auditory binary descriptors are added
to the vector Ov

t of the visual ones. They capture the presence/absence of the three
key sound classes (tennis, applause, and music) on the soundtrack and inside the time
window defined by the respective shot boundaries. As it is captured just the presence,
multiple instances or different orderings will yield the same set of auditory descriptors.

The vector of observations Ov
t of eq. 4.28 is thus redefined as:

Oav
t =




visual similarity

shot length

dissolve shot

tennis sound

applause sound

music sound




=




oc
t

ol
t

od
t

ob
t

oa
t

om
t




(4.31)

The observations are considered again as independent. Viterbi decoding changes only in
the inclusion of the new features. Eq. 4.30 is thus modified so as r ∈ {c, l, d, b, a, m}.

4.3.3 Parameter Estimation

The parameters of HMMs were estimated from labeled training sequences instead of
using the Baum-Welch algorithm. Although this algorithm can provide a good solution,
especially when a good initial condition is given a-priori, the estimation of the parame-
ters via labeled sequences is straightforward and results to the true, and thus optimal,
parameter set as the hidden state sequence is manually uncovered.

Each shot of the training sequences was labeled according to Fig. 4.3(b). The pa-
rameters (A,B, π) are learned as relative frequency of occurrence:

πi =
number of occurrences of Si at time t = 1

number of sequences
(4.32)

aij =
number of transitions from Si to Sj

number of occurrences of Si
(4.33)

2Set after experimentation.
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P (or|Si) =
number of occurrences of Si with or

t = or

number of occurrences of Si
(4.34)

1 ≤ i ≤ 12, 1 ≤ j ≤ 12, r ∈ {c, l, d, b, a, m}

The observation distributions P (or|Si) are estimated thus as probability histograms.
Especially for the distributions of visual similarity and the shot length features, smooth-
ing of the histograms with a mask [1 1 1] was applied after estimation to avoid overfitting
to the training data.

Qualitative Analysis of the Features

In order to provide some qualitative analysis of the features, the observation probability
histograms are given in Fig. 4.6 and for the states 1, 3, 4, 9, and 10 (missed serve,
exchange, shot after exchange, idle court view and non-court view shot of commercials
or dead time, respectively). For the first state, we notice a high probability for low
visual similarity (i.e., low distance to the reference court view) and low shot length, as
expected for a missed serve shot. The probability of capturing a tennis sound is however
mitigated. The reason is that tennis sound is difficult to detect and in missed serves
only one ball hit occurs (the serve), which makes its detection even harder. Note also
that tennis sounds are detected with some small probability in all the last 3 states in
the figure, which do not contain game action. The difference between states 1 and 3
lies mainly on the fact that states 3 can be more lengthy being normal exchanges and
also the detection of the tennis sounds is more reliable. In Fig. 4.6(c), we see that state
4 produces greater distances of visual similarity and also a great deal of applause is
detected. State 9 corresponds to idle court views. Compared to states 1 and 3, the
absence of ball hits and the presence of applause is more probable. Finally, in state 10
music is detected in contrast to the above 5 states in the figure, where music occurs
with zero probability. Furthermore, we notice shots lengths of the full spectrum. Most
of them are short commercials shots, but there exist also some number of lengthy dead
time shots.

Overall, visual similarity seems to provide good discriminative capabilities, in accor-
dance to Fig. 3.9. The importance of the dissolve transition features is evident, while
shot duration provides also its contribution. Regarding the auditory features, music and
applause are detected reliably, but tennis sounds are clearly harder to detect, producing
a lot of misses or false alarms.

4.4 Content Modeling with Segment Models

SMs extend the shot-based features of HMMs to scene-based ones. The observation
distributions thus model the entire audiovisual content of a scene. The video is modeled
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Figure 4.6

The observation probability histograms for the states 1, 3, 4, 9, and 10. For each state and for

the last 4 histograms, which correspond to binary descriptors, the first bar gives the probability of

absence of the feature and the second one the probability of presence.
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Missed Serve
and Exchange Exchange

BreakRediffusion

Figure 4.7

Modeling of the visual content as a succession of scenes with SMs.

then by an ergodic SM as a succession of scenes (as opposed to a succession of shots, with
HMMs). A formal description of the SM is firstly given based only on the videotrack. The
integration of the audiotrack and the various possibilities that SMs offer for segmental
feature modeling are then discussed. The section concludes with parameter estimation
details.

4.4.1 Modeling of the Visual Content

The SM will contain 4 hidden states, each one corresponding to the scenes defined in
section 4.2.2. An illustration of the generation of the video with the SM is given in
Fig. 4.7. The stochastic process enters into a hidden state (or, in other words, into a
scene) and emits several observations in the form of shot-based observations. It then
switches into a new scene and so on, until the complete video is generated. There is
a full ergodic structure, except the non-allowed self-transitions for the rediffusion and
break scenes. This is because, by definition, multiple repeated rediffusions or breaks
result into a larger and unique rediffusion or break, respectively. Furthermore, it is not
allowed a rediffusion after a break and vice versa.

The segment length l normally would be defined as the number of shots that the scene
contains. It was found though in early experimentation that it is better to be defined as
the real time duration of the scenes. The rational behind this is that, real time duration
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captures what really happens in the tennis court. On the other side, the number of
shots depends on the producer’s choices: if the producer chooses frequent alternations
of non-court views after an exchange or, on the contrary, some few lengthy shots, this
results in great variability of the number of shots for a scene and for a given real time
duration. In addition, commercials and dead time last approximately the same real time
(defined by the duration of a game pause) but commercials contain a great number of
(short) shots and dead time just a few (long ones). The term l in the expression of
the duration distribution P (l|i) will refer thus to the real time duration of the scene i.
Outside this context, it continues to represent the length of a segment Ov

1:l, i.e., the total
number of shots it contains.

It remains to define the segmental observation distribution P (Ov
1:l|l, Si), which is

more complicated compared to HMMs because sequences of features are now mod-
eled. The simplest approach is to assume the observations of a segment as independent
(eq. 4.20), reducing the SM to an Explicit State Duration HMM. Of course, in this way
the inter-segmental dependecies are discarded, which would result to a poor modeling as
there exists a strong temporal context inside each scene. A more efficient way to com-
pute a probability score over a sequence is given by an HMM λi, specialized to model
the observations of the scene i:

P (Ov
1:l|l, Si) ≡ P (Ov

1:l|λi) =
∑

Q1:l

P (Ov
1:l, Q1:l|λi) (4.35)

The last term is a sum over all the hidden state paths of the HMM and is calculated by
the forward pass (see section 4.1.1). The HMM λi operates essentially as an observation
scorer and should not be confused with the HMMs of Fig. 4.3. For instance, the ob-
servation scorer HMMs can have different topologies to the ones of Fig. 4.3(b). Strictly
speaking, the SM thus defined differs to the full-model HMM of Fig. 4.3(c) firstly by the
inclusion of the duration model. Secondly the segmental scores are calculated over all
hidden state paths Q1:l, while in HMMs over the best ones Q∗

1:l as part of the Viterbi
decoding. Finally, the probabilities of the scene transitions are spread over all the hidden
states of the full-model HMM and are calculated as probabilities of shots transitions. In
the SM, they are the true scene transition probabilities.

Viterbi decoding for SMs, as explained in section 4.1.3, involves finding the most
likely scene labels and the scene boundaries in an enhanced optimization problem. In
the tennis video context, equation 4.21 (in the log domain) translates to:

(L∗1:N∗ , Q∗
1:N∗) = arg max

L1:N ,Q1:N

{ln p(Q1:N ) + ln p(L1:N |Q1:N ) + ln p(Ov
1:T |L1:N , Q1:N )}

(4.36)
where T is the total number of shots of the video, L∗1:N∗ gives the segmentation into scenes
and Q∗

1:N∗ is the most likely hidden state sequence found. The term p(Ov
1:T |L1:N , Q1:N )
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is defined by eq. 4.35. An illustration of the decoding procedure is given Fig. 4.8. It
provides at once the most likely scene label for each shot and the most likely segmentation
into scenes.

4.4.2 Audiovisual Integration

Transferring the discussion of section 4.1.2 on the limitations of HMMs to the video
indexing context, the use of segmental features, rather than frame-based ones, can be
beneficial for the audiovisual integration. The key idea is to separate the audiovisual
content of a scene into a “visual” segment and an “auditory” one. The auditory segment
can then be sampled at its native sampling rate and can be modeled by a different
segmental observation distribution. The synchrony constraint between the two streams
is relaxed to the scene boundaries. This is a valid assumption because, according to
the definition of section 4.2.2, all the relative visual and auditory features lie inside the
scene.

Formally, the audiovisual content Oav
1:l of a video portion corresponding to l successive

shots is factored as:

P (Oav
1:l|l, Si) = P (Ov

1:l|l, Si)P (Oa
1:la |l, Si) (4.37)

where la is the length of the auditory segment, i.e., the number of samples it contains.
SMs allow la to be different than l. This factorization and the fusion of two asynchronous
streams is depicted in Fig. 4.9. In the remaining of this section, different modeling
possibilities for P (Oa

1:la
|l, Si) are explored.

Scene-Based Auditory Features

Having a series of auditory features collected at the scene level, the simplest case is just
to capture the presence of each sound event inside a scene. It is a direct extension of
the shot-based auditory descriptors used in HMMs to scene-based ones. However, the
key difference is that the auditory features are allowed now to be asynchronous to the
visual ones. The segmental score is merely defined as:

P (Oa
1:la |l, Si) =

la∏

k=1

P (Oa
k|Si) (4.38)

where P (Oa
k|Si) is the probability of presence in the scene of the three audio events.

The length la of the auditory segment is defined by the number of audio events that the
scene contains.
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Asynchronous audiovisual integration at the scene level with SMs. The visual stream is sampled at

the rate of shots while the auditory one at the rate of sound events. Different models are employed

for each stream. The segmental distributions are fused at the scene level.
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Succession of Sound Events

Capturing just the presence of the events in the scenes could be insufficient. Indeed, the
audio content of the ‘First Missed Serve and Exchange’ scene is normally a succession
{tennis, tennis, applause}, while for the ‘Exchange’ scene is {tennis, applause}. The
presence of audio events will result to an identical model for the two scenes. To account
for this inconveniency, capturing probabilities of succession of audio events can be used
instead:

P (Oa
1:la |l, Si) =

la∏

k=2

P (Oa
k|Oa

k−1, Si) (4.39)

Besides the three basic sound events, two more special events are introduced here: the
“start” and “end” of segment. The audio content of Fig. 4.9, for instance, will be {start,
tennis, tennis, applause, end}.

HMM Scorers with Cepstral Features

So far, the audio stream is integrated in the form of pre-detected and pre-classified audio
events. In a quite different approach, auditory segments are modeled directly on top of
the audio cepstral coefficients. The reason for doing this is twofold: firstly, the erroneous
pre-segmentation of the audio track into homogeneous segments is avoided. The bounds
of these segments are hard to detect and generally more vague that the hard cuts of the
video track. Secondly, the content of these segments can contain more than one audio
class like ball hits superimposed by speech. This may make the pre-classification into
sound classes and the extraction of audio descriptors from these segments erroneous.

In order to model the audio content on top of generic cepstral features, Continuous
Density HMMs are employed. Their probabilistic score is calculated via the forward
pass, as for the HMMs that model the visual segments (eq. 4.35). The audio stream is
sampled now at the rate of 100 frames per second. The length la of the auditory segment
is now equal to the total number of audio frames of the scene.

State-Synchronous Audiovisual HMM Scorers

Finally, nothing prohibits the use of a concatenative shot-based fusion scheme, exactly
as with standard HMMs. The feature vector of the visual HMM scorer is enhanced with
the (synchronized) auditory descriptors, as shown in Fig. 4.5, while the audio model
P (Oa

1:la
|l, Si) is discarded.

4.4.3 Computational Cost

At the end of section 4.1.3, the computational cost of Viterbi decoding for SMs was
estimated as O(LmaxTN2), where T is the sequence length (i.e., the number of shots of



4.4. Content Modeling with Segment Models 69

a video, typically around 2000, heavily depending on the game duration) and N is the
number of hidden states of the SM (N = 4, in our case). The term Lmax is the maximum
segment length, i.e., the maximum number of shots that a scene can contain. It was set
to 80, after inspection of both test and training sequences (a greater value can be safely
used as it does not alter the results).

However, these estimations are done with the premise that the computation of a
segmental score p(O1:l) can be performed in O(1) time, which is generally false. Indeed,
for all of the models previously described, their computational cost scales linearly with
the segment length. Especially for the Continuous Density HMMs (operating at 100
fps), the overall computational cost explodes. This extra overhead can be avoided by
eliminating redundant computation. Indeed, at the maximization step of eq. 4.23, the
scores for the sequences Ot:t, Ot−1:t . . . Ot−k+1:t are needed to be evaluated successively.
These sequences start at different points but their end is common. The use of the
backward pass to evaluate the likelihood of eq. 4.23, instead of the forward pass, will
permit to reuse the computation of the score for Ot−k+1:t when computing the score
for Ot−k:t, and so on. Using such a computation caching, the argument that segment
models are approximately Lmax times slower than HMMs still holds.

The implementation of Viterbi decoding for standard HMMs yielded a computational
cost of less than a second for a full broadcast. Viterbi decoding for SMs with discrete
observation scorers require around half a minute. The use of CDHMMs without caching
explodes decoding time to several hours. This is reduced to some minutes when caching
is employed. Note also that, in addition to score caching between successive segmental
evaluations, the GMM likelihoods of the continuous densities were in fact pre-computed
for all the video before decoding. The disadvantage of this scheme is that extensive
memories capabilities are required (of around 500 MB), which is nevertheless inside the
capabilities of a modern workstation.

4.4.4 Parameter Estimation

Having the ground truth of the sequences, the transition probabilities of the model were
estimated as relative frequency, as in eq. 4.33 for HMMs. The initial distributions πi

were set uniform. The duration models P (l|Si) were estimated as probability histograms,
after their quantization into 30 bins each3. Finally, the histograms were smoothed with a
[1 1 1] mask. The four histograms are given in Fig. 4.10. We notice distinctive behaviors
for the four scenes, especially for the breaks that are much more lengthy than the other
scenes. Rediffusions are most of the times the shortest scene, as expected.

Regarding the audio unigram and bigram models, the probabilities were again esti-
mated based on the relative frequency. For the bigram model especially, a backing-off

3Set after experimentation.
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Probability histograms for the four duration models.

scheme was used to smooth the distributions and thus to improve generalization. More
precisely, the probability of the succession of the sound events i to j was calculated as:

P (j|i) = w
Cij

Ci
+ (1− w)

Cj∑
k Ck

(4.40)

where Cij is the number of times that the transition i to j occurs, Ci is the number
of times the event i occurs, and w = 0.75, set after experimentation on the training
sequences. This formula is essentially a ponderation between the estimated probability
of succession and the probability of presence of the event j.

The parameters of the discrete HMM probability scorers were estimated via the
Baum-Welch algorithm. The topologies of the HMMs for the scenes “First Missed Serve
and Exchange” and “Exchange” were defined as in Fig. 4.3(b). In the initialization phase
of the algorithm, the non-allowed transitions in these figures were set to zero, letting
a small and appropriate set of the transition probabilities be learned. The quality of
the solution thus obtained is better. The HMMs for the rediffusion and break scenes
contain 3 and 2 hidden states, respectively. No special initialization was used for these
two scenes as it was not found to improve performance. As a final note, the final solution
obtained by the EM-algorithm is generally affected by the random initialization of the
parameters. Multiple runs of the algorithm were tested, giving a similar performance on
the experiments and without affecting the comparative study that follows in the next
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section.
To estimate the parameters of the CDHMM scorers (GMM components and transi-

tion probabilities), the HTK toolkit4 was employed. Among various topologies tested,
the best results were obtained with left-to-right HMMs with no jump of more than two
states, i.e., with transition probabilities aij = 0 when j > i + 1. The number of hidden
states for all the four HMM scorers was fixed to 20 and each of them defined 32 Gaus-
sian components, initialized in a uniform manner. The HMMs were trained with the
Baum-Welch algorithm until convergence was noticed. Regarding the cesptral features,
they were extracted from the audio waveforms with the Spro toolkit5 and with standard
choices for the extraction parameters. The audio frames consist of 12 cepstral coefficients
and the energy, plus the first order derivatives.

The CDHMMs produce in fact likelihoods and not probability scores, whose range of
values is much greater than the ones of discrete HMMs. To balance their impact during
decoding, the likelihoods were linearly rescaled in an appropriate range of values.

4.5 Experimental Results

Firstly, let be reminded that half of the videos were reserved for testing purposes. Also,
as the ground truth of the videos was collected on top of the automatic videotrack
segmentation, errors of the hard cut and dissolve detection are not taken into account
in this analysis (see section 4.2.4 for more details).

Performance measurements include firstly the percentage C of shots classified with
the correct scene label, averaged over the test sequences. This is a measurement for
the quality of the classification. In addition, we need a measurement regarding the
quality of the segmentation into scenes. For example, if two or more successive scenes
of the same label are correctly classified but the retrieved boundaries are not correct,
the measurement C will give a (false) good performance. Segmentation quality can
be quantified by the recall R and precision P rates on the scene boundary detection
(see eq. 3.13 for the exact definition of these measurements), averaged over the test
sequences. To make the comparison between two approaches easier than having to
compare 3 statistics, a single performance measurement is defined as:

F̂ =
3CPR

C + P + R
(4.41)

which is reminiscent of the standard F-measurement6, widely used in statistics. Of
course, the use of F̂ is purely suggestive and all of the C, P , R rates are provided.

4HTK toolkit Homepage: http://htk.eng.cam.ac.uk
5Spro toolkit Homepage: http://www.irisa.fr/metiss/gravier/spro/index.html
6The F-measurement on the precision and recall rates is F = 2PR

P+R
.
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Results on the test set are reported in table 4.2 for HMMs and SMs and with varying
assumptions and feature sets.

4.5.1 Hidden Markov Models

We see in the first rows the performance of HMMs. In the first row (‘HMMs-V/A=1’),
visual features are used only and the hidden state sequence probabilities were set uniform
(p(Q1:T ) = 1 in eq. 4.12). This results into classifying each shot individually, completely
ignoring the temporal dimension of the problem. As expected, the performance is very
poor. Video syntax thus plays an important role and must be taken into consideration.
Next we see the performance with video-only (‘HMMs-V’) and audiovisual (‘HMMs-
VA’) features. While most of the contribution comes from the visual features, a clear
performance improvement is noticed with the addition of the auditory descriptors to
shot-based feature vectors.

Let recall from Fig. 4.6 that tennis sound appears hard to detect and thus the tennis
sound feature is a considerable source of error. At the same time, it is a crucial auditory
feature as it helps to discriminate between court views that are idle or contain game
action. To verify the impact of this feature, it was manually set to its perfect values,
i.e., 1 for the shots of the hidden states 1, 3, and 5 and 0 otherwise. The remaining
two auditory descriptors keep their automatically-obtained values. After retraining the
HMM, the obtained results are given in the fourth column (‘HMMs-VA∗’). We notice
so that a perfect tennis sound detection would greatly improve performance.

4.5.2 Segment Models

Video-Only Segment Models

The performance of SMs is given at the next rows of table 4.2. Using video only features
modeled by an HMM scorer and firstly setting the transition probabilities and durations
scores as uniform (‘SMs-Vhmm/A=1, D=1’), a poor performance is achieved. However,
it is better compared to ‘HMMs-V/A=1’ as the HMM scores still contain the inter-scene
transition probabilities. At the next two rows, the transition probabilities scores (‘SMs-
Vhmm/D=1’) and the duration scores are added, to give the performance of the full SM
on video only data (‘SMs-Vhmm’). We see thus that the addition of the duration model
to SMs results finally to a better performance compared to HMMs (compare ‘HMM-
V’ and ‘SMs-Vhmm’). This is a first interesting outcome: SMs perform better than
HMMs, despite the fact that they operate in an enhanced search space of possible paths
and segmentations.
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C P R F̂

Hidden Markov Models

HMMs-V/A=1 41.54 89.92 18.51 13.10
HMMs-V 76.30 81.99 73.44 59.48
HMMs-VA 80.23 84.69 79.70 66.42
HMMs-VA∗ 84.75 92.20 88.78 78.32

Segment Models

SMs-Vhmm/A=1, D=1 51.52 96.88 32.25 26.73
SMs-Vhmm/D=1 64.48 88.90 64.62 50.98
SMs-Vhmm 79.69 83.54 74.82 62.78

SMs-VhmmA1gram 80.07 83.86 75.27 63.39
SMs-VhmmA2gram 81.77 84.10 79.45 66.81
SMs-VhmmAcep 79.86 84.64 75.20 63.62
SMs-VhmmA∗2gram 82.58 89.15 80.56 70.53

SMs-(AV)hmm 84.39 86.25 79.32 69.29
SMs-(A∗V)hmm 89.60 93.07 89.19 82.07

SMs-VhmmAhmm 81.52 87.83 77.55 67.47
SMs-(LD)hmmChmmAhmm 78.96 86.33 75.02 63.84
SMs-(AV)hmmA2gram 84.73 84.13 81.67 69.71

Table 4.2

Performance comparison of HMMs and SMs with varying feature sets and modeling assumptions.

The C, P , and R rates are averaged over the three test videos and then F̂ is calculated.
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Asynchronous Audiovisual Integration

At the next three rows, the performance of SMs with added asynchronous auditory fea-
tures is reported. Scene-based probabilities of sound events (‘SMs-VhmmA1gram’) can
improve performance, though not in a satisfactory level. The reason is simple: this model
captures for instance the presence of tennis sounds in the scene, which finally cannot help
in the discrimination of the scenes ‘First Missed Serve and Exchange’ and ‘Exchange’.
The difference between them and with respect to the soundtrack is that the first one
contains a succession of two tennis sounds (the missed serve and then the exchange).
This can be more efficiently captured using the bigram models (‘SMs-VhmmA2gram’).
Indeed, a clear performance gain is noticed (+4.03% compared to +0.61% of ‘SMs-
VhmmA1gram’, in the F̂ scores) with the integration of audio with this model. However,
the performance gain of the HMM-based audiovisual integration (+6.94%, moving from
‘HMMs-V’ to ‘HMMs-VA’) is still larger. An analysis why this happens is given later
in this section, after reporting the performance of state-synchronous audiovisual HMM
scorers.

The performance of the integration of audio in the form of cepstral features is given
at the next row (‘SMs-VhmmAcep’), where again a poor performance gain is noticed. It
is clear that the Continuous Density HMM scorers yield a poor performance, affected by
the many degrees of freedom that the problem has. Indeed, they are charged to model
a target semantic (i.e., a scene) from scratch and receive as input a large number of
high-dimensional feature vectors. In the ‘SMs-VhmmA1gram’ and ‘SMs-VhmmA2gram’
approaches instead, a great deal of prior knowledge exists as the interesting sound events
that the soundtrack contains are defined a-priori. Nevertheless, this approach demon-
strates that SMs provide a great deal of freedom for multimodal fusion. In this specific
scenario, visual information sampled at the rate of shots is fused with auditory features
sampled at 100 fps, making no hard synchrony assumptions.

Finally, we see in row ‘SMs-VhmmA∗2gram’ what could be achieved with a perfect
tennis sound detection. Again, the asynchronous fusion seems not to perform well, even
with perfect tennis sound features.

Synchronous Fusion

The performance of the state-synchronous audiovisual HMM scorers is reported at the
row ‘SMs-(AV)hmm’ of table 4.2. The results obtained with this model are better
compared to the above-mentioned asynchronous fusion models. Not surprisingly, the
performance gain of adding audio information in this way is +6.51%, almost the same
to the +6,94% obtained with HMMs. At the next row (‘SMs-(A∗V)hmm’), we see the
performance of this model when the tennis sound descriptors are manually set to their
optimal values, as in the case of ‘HMMs-VA∗’. It is again an indication of what could
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be achieved with a perfect tennis sound detection method.

Early Versus Late Audiovisual Integration

By comparing the models ‘SMs-VhmmA2gram’ and ‘SMs-(AV)hmm’, it appears that
the asynchronous fusion of auditory information results to a small performance degra-
dation. This seems to be awkward as the two models use the same information (visual
and auditory), only the integration method changes. In a first look, one may assume
that the bigram model (in ‘SMs-VhmmA2gram’) is a poor model and, at the bottom
line, the shot-based auditory descriptors could be more informative. To verify this,
the audiovisual HMM scorer of ‘SMs-(AV)hmm’ was split into two independent HMMs
with the same number of hidden states. The first HMM receives the visual features
and the second one the shot-based auditory features7. This approach uses exactly the
same shot-based feature set of ‘SMs-(AV)hmm’ but models the auditory and the vi-
sual segments independently. It replaces thus the bigram model of ‘SMs-VhmmA2gram’
with the auditory shot-based descriptors used in ‘SMs-(AV)hmm’. Its performance is
given as ‘SMs-VhmmAhmm’ in table 4.2. A close performance is noticed with ‘SMs-
VhmmA2gram’, which implies that the bigram models are more or less as informative
as the auditory shot-based descriptors.

What is noticable in the above figures is that, when modeling the auditory and
the visual segments independently, the performance drops. This is even more clear
with the ‘SMs-(LD)hmmChmmAhmm’, where the feature set of the visual segment is
splitted to the visual similarity feature and to the shot length and dissolve features. This
last model uses three independent HMM scorers, one for the auditory and two for the
visual segment. The performance now drops much more. It appears thus that important
correlations between the multimodal features are not efficiently captured when the HMM
scorers first compute the segmental scores and then integrate them, as opposed to ‘SMs-
(AV)hmm’ which firstly integrates and then computes the segmental score.

Let us recall from chapter 2 that, when features are mapped directly to the semantics
and then integration is performed, we talk about late fusion, while when integration
precedes the decision on the semantics, we talk about early fusion. The above analysis
thus suggests that, for the problem at hand, an early integration is preferable. However,
generally speaking of video indexing, the question whether a late or an early fusion is best
remains open. Two studies [42, 96] for instance have concluded favorably to late fusion,
though with little difference in performance. In the first one, Huang et al. compare
concatenative fusion with HMMs and product of HMM likelihoods, in a similar setting
to this study (with respect to the integration). In the latter one, Snoek et al. compare
late and early integration with SVM classifiers.

7This results into something similar to the multi-band HMMs, proposed in speech recognition.
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SMs-Vhmm

1 2 3 4
1 77.1 20.3 2.4 0.2
2 22.6 75.5 1.3 0.6
3 10.9 4.4 84.7 0.0
4 2.9 7.8 6.9 82.4

SMs-(AV)hmm

1 2 3 4
1 86.1 11.8 1.7 0.4
2 18.8 79.2 1.3 0.7
3 7.5 4.5 87.4 0.5
4 2.8 7.7 5.3 84.2

SMs-(A∗V)hmm

1 2 3 4
1 83.1 14.3 2.2 0.5
2 7.2 91.2 1.3 0.3
3 0.2 0.4 98.4 1.0
4 2.0 4.0 2.6 91.4

Table 4.3

Confusion matrices on the classification of shots with scene labels. Each row 1-4 refers to a scene

and each column gives the percentage of the shots that are classified with the respective class label

1-4.

A possible solution to overcome the problem of late fusion could be to integrate audio
with both late and early fusion. Techically, this approach uses for both the visual and
the auditory segments their native sampling rates and topologies and, at the same time,
give hints on what happens in the other modalities before the late integration. This
double fusion scheme is given as ‘SMs-(AV)hmmA2gram’ in the table 4.2, where a slight
performance improvement is noticed over ‘SMs-(AV)hmm’.

4.5.3 Confusion Matrices

The confusion matrices regarding the classification of the shots are given in table 4.3 for
the ‘SMs-Vhmm’, ‘SMs-(AV)hmm’, and ‘SMs-(A∗V)hmm’ models. It is clear that most
of the confusion comes between the first two scenes (‘First Missed Serve and Exchange’
and ‘Exchange’, labeled as 1 and 2 in the table), while rediffusions and breaks are well-
detected (labeled as 3 and 4 in the table). The addition of auditory features and of
perfect tennis sound detection gradually removes the confusion, especially for the first
two scenes.



CHAPTER 5

Hierarchical Topologies and Integration of

the Score Labels

The succession of the scenes followed a flat and ergodic structure in the previous chapter.
A tennis match however contains an inherent hierarchical structure as a result of the
match organization and rules. The incorporation of this structure to the model topolo-
gies, for both HMMs and SMs, is discussed in this chapter. The use of hierarchically
structured topologies allows the detection and labeling of higher-level structures in the
video.

Besides the hierarchical topologies, the integration of the score labels is also discussed
in detail in this chapter. The score labels, which can be viewed as the textual modality of
a tennis video, possess important high-level information on the game events that is useful
to be incorporated during decoding. A novel decoding scheme was developed, called
Score-Oriented Viterbi Search, which uses the positions and the contents of the labels to
pilot the Viterbi algorithm and to ensures that the solution obtained is consistent with
the actual game evolution.

The common point between hierarchical topologies and Score-Oriented Viterbi Search
is that they both impose a set of meaningful constraints that reduce the initial Viterbi
search space.

77
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5.1 Hierarchical Topologies

We will briefly review the hierarchical decomposition of a tennis match and then present
the Hierarchical HMM, which provide usefull notions for modeling hierarchical processes.
The application of the Hierarchical HMM in tennis will result to models where the ergodic
scenes transitions are replaced by hierarchical ones. Some implementation details of
decoding with this complicated models are provided at the end.

5.1.1 Tennis Match Organization and Rules

We know that each tennis match contains a hierarchical structure of sets, games and
points that reflects the match organization and rules1. The elementary unit of this
structure is a point, which is the outcome of an exchange. In the rather awkward tennis
naming scheme, the first three point are named as ‘15’, ‘30’, and ‘40’. When a player
has reached the third point and has also scored two more points than the opponent,
then he or she wins a game. In their turn, games are organized into sets. Usually, the
first player that wins 6 games takes the set. A tennis match can contain at maximum 3
or 5 sets, depending on the tournament. The match stops when a player has taken the
sufficient majority of the sets (i.e., 3 sets in a match of 5 sets or 2 sets in a match of 3
sets). Finally, we know that after the first game of the set and then after two successive
games, a break occurs. An example of this hierarchical decomposition of a tennis match
is given in Fig. 5.1.

5.1.2 Hierarchical Hidden Markov Models

The Hierarchical Hidden Markov Model (HHMM), originally introduced by Fine et al. in
[28], models a Markovian process that is analyzed hierarchically in a multi-level struc-
ture. The hidden states of this model are split into two categories, the internal and the
production states. The internal states specify the hierarchy of the model and do not
emit observation symbols. In a recursive definition, each internal state serves as the
root node of a sub-HHMM. The recursion ends to the production states, which are the
emitting states of the model and share all the properties of the hidden states of standard
HMMs. An internal state is formally defined by the transition probabilities A between
its child nodes and their initial state distribution π.

From a generative point of view, the sequence of the observation symbols is generated
as follows. The root internal state is activated and then it activates according to its
initial state distribution one of its child internal states. This repeats recursively until
a production state is reached and an observation symbol is emitted according to its

1Tennis rules change over time and it is out of scope of this study to fully comply with them. For

more details, see the Homepage of International Tennis Federation, http://www.itftennis.com
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Tennis Match
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1-0
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Game
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Figure 5.1

The hierarchical structure of an example tennis match into sets, games and points. For the con-

venience of the presentation, all the nodes are not expanded. The match consists of 3 sets. The

first one is decomposed to 8 games. Finally, the second game contains 5 points. A break appears

between the first and second game.

observation distribution. The stochastic process can then remain at the same level and
transit according to the transition probabilities of the last internal state or it can jump
one level up, meaning that an internal state has completed its activation. These jumps
are triggered when a special internal state is reached, the final state. The generative
process continues in this recursive manner until the root node of the HHMM is reached
again.

The adapted versions of the EM algorithm and of the Viterbi decoding for HHMMs is
formulated in [28]. HHMMs were used by Fine et al. to capture the inherent multi-level
statistics that appears in handwritten text. In this study, however, HHMMs serve in
fact, firstly, as a source of constraints that the Markovian process follows the hierarchical
decomposition of the tennis match, and secondly, to recover during decoding high-level
game semantics. Therefore, in order not to abuse the original definition of HHMMs, the
term Hierarchical Topology is used instead.

5.1.3 Hierarchical Scene Transitions

The hierarchical structure of a tennis match can be easily incorporated in the models by
extending the flat and ergodic scene transitions of Fig. 4.7 to hierarchical ones, sharing
notions with HHMMs. The new model topology (applied to both the HMMs and SMs
of the previous chapter) is given in Fig. 5.2.
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Figure 5.2

The hierarcical topology that encodes tennis game organization and rules. At each level, only one

node is fully expanded. The arrows depict allowed transitions according to tennis rules. The dotted

internal states are production states for the SM. For the HMM, they are further analyzed as in

Fig. 4.3(b).
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• Level 1: Tennis Match. At the first level of the hierarchy we see the root internal
state, which represents the whole tennis match. It has two child internal states,
one representing a tennis set and one representing a break that occurs between two
sets. Normally, it should contain 2 or more sets, according to the minimum number
of sets the match can contain. But this number changes with the tournament and
thereby a new topology should be constructed for every new match. Furthermore,
it was found that during decoding, there is no performance change if two or more
internal states of sets are defined. And, needless to say, adding more internal states
multiplies model complexity and decoding time, especially when these internal
states are close to the root.

• Level 2: Sets. The internal hidden state representing a set is analyzed as a succes-
sion of games and breaks, as shown in Fig. 5.2. Strictly applying tennis rules, it
should contain at least 6 game internal states but they were rejected as redundant
like in the case of extra sets explained above. The transition matrix of this state
encodes the rule that after the first game and after two successive games, a break
appears. The hidden state that represents a break is in SMs a production state
and corresponds to a break scene. For the HMMs, it is still an internal state and
is further analyzed as in Fig. 4.3(b).

• Level 3: Games. The internal state of games is analyzed as a series of points. Its
transition matrix and its final state distribution encode the fact that a game must
contain at least 4 points and that a player must have two more points than the
opponent to win the game.

• Level 4: Points. Each point is analyzed as containing an exchange (that is, either
‘First Missed Serve and Exchange’ or ‘Exchange’), optionally followed by a redif-
fusion. Its child nodes are production states in SMs or internal states in HMMs,
in which case they are analyzed as in Fig. 4.3(b).

For the case of SMs, this topology contains in total 20 internal states (15 in level 4, 3 in
level 3, and 1 in levels 2 and 1) and 47 production states (45 in level 5, and 1 in levels 2
and 3). As the production states of SMs are still internal ones in the HMM model, the
topology then contains 67 internal states and also a number of 141 production states.
Note that each internal state defines a N ×N transition matrix for its children, a N × 1
initial state distribution and a N × 1 final state distribution2, where N is the number of
its children.

2A final state distribution, similar to the initial one, is used instead of defining a final internal hidden

state as in the original definition of HHMMs.
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5.1.4 Parameter Estimation

Regarding firstly the internal states, their transition, initial, and final state distribution
probabilities were manually set according to Fig. 5.2. More precisely, non-allowed tran-
sitions were penalized with zero probability and then the remaining ones were arbitrarily
set to 1. The option to estimate them through labeled data was rejected as their number
is still large, leading to situations of overfitting.

Regarding the observation distribution of the production states, their parameters
were tied according to which type of leaf node they belong to. So, the frame-based
(for the HMM) and the segmental distributions (for the SM) of sections 4.3.3 and 4.4.4,
respectively, are shared across the production states of the hierarchical topology and
no further learning is required. Finally, and especially for the HMM, the inter-scene
transition probabilities were also tied and shared across the dotted internal states of
Fig. 5.2.

5.1.5 Decoding

Viterbi decoding with the hierarchical topology involves labeling each shot (in the case
of HMMs) or each scene (in the case of SMs) with the correct production state label.
Having these labels, it is straightforward to fully reconstruct the hierarchical structure
of the tennis match. The decoding algorithm itself does not change but it can become
intractable as the number of hidden paths to explore is much larger than with the flat
models. A number of implementation precautions have to be taken in order to keep the
computational cost in a acceptable level.

Starting with the HMM, a great deal of the N2T possible paths (with N = 141
the number of the production states, much greater to the number of states of the flat
model) can be a-priori rejected as most of the transition probabilities of the hierarchical
topology are in fact zero. To do so and using the graph of Fig. 5.2, all the possible
incoming transitions for each production state are detected, as illustrated in Fig. 5.3.
This results to only a small number of production states, on average 4.54. This number
is clearly negligible compared to 141. Decoding thus can be achieved in O(NT ) time.

The same technique of a-priori pruning is applied for the hierarchical SM topology.
Furthermore, as the segmental distributions are largely tied, caching techniques can be
used to avoid redundant computation. Once, for instance, a segmental score is computed
for a production state of type break, then all the others production states of the same
type can share this score.
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P P

Figure 5.3

Detail of the topology graph for the HMM. The black circles denote the hidden production states

from which a transition comes to the boldly circled production state. The detected incoming

transitions are summarized with the dotted arrows. They are detected by traversing the graph from

each leaf node until a new leaf node is reached. Their probability score is simply the product of the

probability scores of each transition traversed. Note that certain traversing rules have to be applied

for the transitions to be valid in the sense of HHMMs. Moving from a child to its parent and then

again to any of its children is not permitted, unless the parent has a self-transition edge. When

reaching a parent not from its children, on the other hand, only its children have to be traversed.

5.2 Integration of the Score Labels

In a tennis broadcast the producer usually announces the changes in the tennis score after
an exchange has taken place or a game or set has finished. These announcements take
the form of superimposed text on the image frames, as shown in Fig. 5.4. Undoubtedly,
these score labels carry on important high-level information that it is interesting to
integrate to the models. Firstly, it is a quite reliable source of information on the actual
game evolution. When a label appears then it is certain3 that a game event has occurred.
In fact, this source of information is equivalent to consulting a human expert on what
happens in the court. Secondly, they provide high-level labeling of the scenes that it is
useful to be integrated in the Table of Contents of the video. An end-user, for instance,
could be interested in viewing games or sets where a player loses at the beginning and
finally succeeds to take the game or the set. This information cannot be extracted from
the audiovisual information of the video unless an automatic high-level reasoning module
on which player wins each exchange is built. This is extremely difficult with the current
computer vision techniques.

3The probability of error of the producer is really small. Such an error was not noticed in any of the

sequences used in this study.
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0-30 break
Match evolution: so far 2 sets and
4 games in the second one

Figure 5.4

Examples of score announcements in a tennis broadcast. Except the score changes after an exchange

(‘0-30’ and ‘break’ in the first two images), the scoring over games and sets is also provided after

the end of a game. These last announcements give important information on the overall match

evolution, up to the appearance of the announcement.

The score labels were manually extracted and recognized from the video sequences.
Nevertheless, these simulated data are a good approximation of what could have been
automatically extracted by a modern Optical Character Recognition tool. Indeed, the
relative literature on image/video text extraction is mature enough and there exist nu-
merous approaches with a very good performance (see e.g., [109]). In addition, a great
deal of prior knowledge specific to tennis broadcasts can be exploited, rather than at-
tempting to solve the problem in its generality. The score labels appear at fixed positions
and are usually framed and well-distinguished from the background to be explicitly vis-
ible. False alarms can thus be largely eliminated. Finally, there is a finite set of possible
labels, involving digits (like ‘0-30’, ‘40-15’, etc) or some predefined keywords (like ‘break’
or ‘advantage’), which can greatly facilitate the recognition of the labels.

One can think of two possible ways to integrate score label information: posterior
integration and integration at the feature level. In a simplified scenario of posterior
integration, the score labels are integrated after decoding has taken place and for just
labeling the game events. A scene is then labeled according to the score label that is
detected inside the scene boundaries. Using a hierarchical topology, the bounds between
games or sets can be detected and labeled with the match evolution label that may
appear inside these bounds. The problem with this approach is that score labels refer to
what actually happened in the tennis court, while the Viterbi solution may (and usually
does) fail to recover all the game events with perfect accuracy. This could introduce a
certain degree of inconsistency between the labels and the Viterbi solution that would
make posterior labeling appearing as illogical to the end-user. In an attempt to overcome
this problem of inconsistency, another way of posterior integration could be to perform
N-best decoding and then to select the solution that agrees with the score labels. Still,
a very large number of candidates should be stored during N-best decoding in order to
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find a solution that is actually consistent with the score labels. This would result in
prohibiting storage requirements and decoding time.

The integration at the feature level considers the appearance of a score label as an
extra descriptor to be added to the feature vectors associated with the shots. As an
alternative to the shot-based sampling of this feature, the framework of SMs offers also
the possibility of collecting this feature at the scene level. This allows for a certain
degree of asynchrony between the relative game event and the actual appearance of the
score label. Generally, the score labels can be a useful feature and can improve thus the
performance of the system. The semantic content of the labels (i.e., number of game
events existing in the video), on the contrary, cannot be explicitly exploited.

A third way of integration, the Score-Oriented Viterbi Search is introduced in this
study. It lies in the middle of the above two approaches as it exploits both the appearance
of the labels and their semantic content to pilot Viterbi decoding and to ensure that the
solution obtained is consistent with the actual match evolution.

Integration at the feature level and the Score-Oriented Viterbi Search are the subject
of the remainder of this section.

5.2.1 Score Labels as a Feature

With the HMM framework, the integration of the score labels is straightforward. The
vector of the audio-visual shot based descriptors of eq. 4.31 is redefined as:

Ot =




visual similarity

shot length

dissolve shot

tennis sound

applause sound

music sound

score appear.




(5.1)

where the last descriptor is binary and set to 1 for shots where a score label appeared
and to 0 otherwise. Note that a single descriptor is added instead of adding one binary
descriptor for each possible label. This last would result to a multitude of descriptors
and to noisy measurements. The underlying assumption of this mode of integration
is that after an exchange has happened, the producer acknowledges it by displaying a
score label and inside the same game action shot. The added feature is thus used to
spot exchange shots, i.e., the states 3 and 5 of Fig. 4.3.

A limited asynchrony between the game event and its acknowledgement by the pro-
ducer can be handled with the SM framework. The presence of a score label can be
captured at the scene level, instead of at the shot level. The segmental score of eq. 4.37
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is extended as:

P (O1:l|l, Si) = P (Ov
1:l|l, Si)P (Oa

1:la |l, Si)P l(oscore|l, Si) (5.2)

where P (oscore|l, Si) denotes the probability of presence of a score label inside the scene
Si. This term is raised on the l power in order to provide a segmental score that
scales exponentially with the segment length l, as do the other two terms of eq. 5.2. The
underlying assumption is now that when an exchange occurs, the producer acknowledges
it by displaying a score label some shots after, and within the same scene. The score
feature is thus used to spot the ‘First Missed Serve and Exchange’ and ‘Exchange’ scenes.

Analysis of the Score Label Feature

The probability histograms for the extra feature and for each hidden state of the HMM
are given in Fig. 5.5(a). One firstly notice that it is rather rare for a score label to
appear within a shot that contains an exchange (states 3 and 5). The producer thus
acknowledges a game event some shots after it has taken place. Still, these histograms
convey useful information as long as they are not uniform across the states. Indeed,
the states 4 and 6 (representing shots that immediatelly follow an exchange) can be
somehow spotted with this feature as a score label usually appears in them, even with a
small probability. The same holds for states 8 and 9 that lie inside a rediffusion scene.
This is logical as score labels appear after the relative exchange and before the next one
begins. If a rediffusion occurs in this space, then the score label will finally appear inside
the non-court views of the rediffusion.

The corresponding probability histograms for SMs, calculated at the scene level this
time, are given in Fig. 5.5(b). The appearance of a score label in the first two scenes
is visibly more probable than its absence, as expected. These two scenes can thus be
spotted by this feature. Score labels, however, also appear in the next two scenes, with
more or less equal probability of absence or presence. Note that the histograms of states
8 and 9 in Fig. 5.5(a) are not uniform while the histogram of scene 3 in Fig. 5.5(b) is.
The reason for this is simple: a score label appears (or not) in a rediffusion with uniform
probability but it is distributed in the shots that lie inside not uniformly. A score label
never appears in a dissolve shot (state 7).

Overall, what teach us the histograms of Fig. 5.5(b), is that the producer may display
the score labels much after the relative exchange. This asynchrony can be extended
beyond the scene boundaries. Another fact about the producer style, which cannot be
easily seen in the histograms, is that there exist game events which are not acknowledged
at all by the producer. In table 5.1 we see how many exchanges occurred in each video
and how many score labels appeared. Depending on the producer’s choices, they cover
from 68% to 91% of the exchanges. In the match Agassi - Safin, in particular, 4 exchanges
in a row were not acknowledged.
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Figure 5.5

The distributions of appearances of score labels according to (a) shots and (b) scenes, as estimated

in the training set. The first bar in each histogram gives the probability (as calculated in the

training sequences) of absence of a score label, and the second one the probablity of presence. The

state numbers refer to Fig. 4.3 and the scene numbers are as defined in section 4.2.2.
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Video # of exchanges # of labels percentage

Agassi - Safin 248 168 67.74%
Pioline - Hewitt 270 247 91.48%
Pioline - Philippoussis 213 192 90.14%
Grosjean - Philippoussis 169 150 88.76%
Sampras - Rusedski 178 145 81.46%
Capriati - Clijsters 259 229 88.42%

Table 5.1

Scoring statistics for each video. The number of exchanges refers to the total number of scoring

scenes (i.e., ‘First Missed Serve and Exchange’ and ‘Exchange’) of the video. In the next two

columns, the total number of score labels appeared and the percentage of the exchanges they cover

are reported.

An effective use of the score labels should not make any assumptions on the producer’s
style and should tolerate extensive asynchrony and undisplayed labels.

5.2.2 Score-Oriented Viterbi Search

The optimal use of the score labels is to constrain the Viterbi search space to the paths
that are consistent with the labels and thus with the actual game evolution. Instead of
posterior use of the labels after an N-best decoding, Score-Oriented Viterbi Search uses
score information during decoding.

Game Events and Score Labels Ordering

Before proceeding to the description of the algorithm, it is reminded that a score label
appears after the corresponding game event has happened and also before the next game
event. A typical setting is given in Fig. 5.6, where we see three score labels and their
corresponding exchanges. The score label at the shot t2 acknowledges an exchange that
occurred at a time t ≤ t2. This exchange however cannot precede also the previous score
label at time t1 because this would imply that the score label at t2 refers to no game
event. At the very limits, the exchange may occur at time t1, having in the same shot
firstly the appearance of a label and then a new exchange. The relative exchange of the
score label ‘15-15’ must lie thus inside the space t ∈ [t1, t2]. The complete scene that
contains this exchange, in its turn, will end somewhere in the space t ∈ [t1, t3]. Note that
it can finish before t2 as a rediffusion or a break may appear before the next exchange.

The key idea is to perform a local Viterbi forward pass between t1 and t3 with an
N-best-like scheme. Then all the paths in this space that are inconsistent with the score
indication are penalized and will not be preferred by the final Viterbi solution. In the
setting of Fig. 5.6, one scoring event must have happened between the labels ‘15-0’ and
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Figure 5.6

Game events and appearance of the score labels. The scoring game events are the exchanges,

which correspond to hidden states 3 and 5 for the HMM or to the scenes ‘First Missed Serve and

Exchange’ and ‘Exchange’ for the SM. The scene to which label ‘15-15’ refers generally starts after

the previous label and ends before the next one.

‘15-15’. The paths thus in the space t ∈ [t1, t3] that contain no scoring event or more
than one will be penalized. The action of the local forward pass and the penalization of
the inconsistent local paths will be referred to as a local search througout this text. After
the local search for the label ‘15-15’, the algorithm proceeds similarly for the next label
‘30-15’. The new local search shares however the queues of the previous local search
in the space [t2, t3]. The algorithm proceeds thus as a pipeline of local searches where
remaining paths are further developed until the end of the video. The backtracking of
the Viterbi decoding is then performed and the solution thus obtained is consistent with
all of the score labels.

The algorithm guaranties optimality as the queues of the local searches do not store in
fact the N-best paths but the best path for each possible number of scored points between
two score labels. The maximum number of scored points was set to 5 as in the corpus
of this study a maximum number of 4 consecutive exchanges was left unacknowledged.

Algorithm Definition

The algorithm applies to both HMMs and SMs. No extra parameters for the models are
needed, only decoding changes. The algorithm is firstly described for the case of HMMs
whose decoding is simpler and then differences for SMs are discussed.

Given a video sequence O1:T of T shots, M score labels l1, l2 . . . lM appearing at shots
t(l1), t(l2) . . . t(lM ) are extracted and recognized. The number of points scored between
a label and its predecessor (for example when the label is ‘30-30’ and the previous one
is ‘15-15’, then two points have been scored) are given as s(l1), s(l2) . . . s(lM ). For each
time step 1 . . . T and for each hidden state 1 . . . N , two queues Qt,i and Q′

t,i are defined.
The size of each of them is S = 5, the maximum number of points allowed between
two labels. The first queue holds results of the current local search, while the second
one stores results of the previous local search and acts like a bridge between successive
local searches. Each queue stores at first the likelihood δt,s(i) of the best path ending in
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hidden state i at time t and with number of points s. This last quantity is simply given
as the number of instances of the hidden states 3 and 5 in the path. The queue Q defines
δt,s,Q(i) and the queue Q′ defines δt,s,Q′(i). Each queue needs also to store backtracking
information, which in our case is the label of the previous hidden state in the path and
also its corresponding queue entry.

The algorithm proceeds as follows:

1. Initialization. For each t ∈ [1, T ], i ∈ [1, N ], s ∈ [1, S], q ∈ Q ∪Q′:

δt,s,q(i) = −∞ (5.3)

2. Pipeline of local searches. For each label lk, k ∈ [1,M ], three steps are executed
(see Fig. 5.7 for an illustration):

• a Viterbi forward pass is performed in the space t ∈ [t(lk−1), t(lk+1)]:

δt,s,Q(i) = max
j,q,σ|s=σ(q)+nji

δt−1,σ,q(j)ajibi(Ot) (5.4)

where q ∈ Q ∪Q′ when t ∈ [t(lk−1), t(lk)] and q ∈ Q when t ∈ [t(lk), t(lk+1)],
j ∈ [1, N ] and σ ∈ [1, S]. The results of the local search are stored in the
queue Q. As each entry in the queue holds the best path that results to a given
score s, the values of j, q, and σ are constrained so that the path obtained
will result to the score s. If q ∈ Q′, then σ(q) = 0 as scores developed
previously are not taken into consideration by the current score label. If
q ∈ Q, then σ(q) = σ, as expected. The term nji is a binary indicator
denoting transition that corresponds to an exchange. It is 1 when i is 3 or 5
and zero otherwise. Finally, the terms aji and bi(Ot) denote transition and
observation probabilities, as in standard Viterbi decoding.

• All the paths that result to a score which is not equal to s(lk) are penalized:

δt,s,Q(i) = δt,s,Q(i) + P (s, s(lk)), t ∈ [t(lk−1), t(lk+1)], s ∈ [1, S] (5.5)

where P (s, s(lk)) = −∞ if s 6= s(lk) and zero otherwise.

• The contents of the queue Q are transfered to Q′ for the needs of the upcoming
local search:

δt,s,Q′(i) = δt,s,Q(i), t ∈ [t(lk), t(lk+1)], s ∈ [1, S] (5.6)

The contents of Q for the above time instants are reset as in the initialization
stage.
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Figure 5.7

Execution steps involved in a local search. In (a), a Viterbi forward pass is performed using both

queues Q and Q′ for looking up and storing results in Q. Inconsistent paths are penalized in (b).

In (c), the results of the local search are transferred to Q′ for the needs of the next local search,

performed in (d).



92 5. Hierarchical Topologies and Integration of the Score Labels

Note that backtracking information has to be appropriately kept, especially when
queue contents are transfered.

3. Backtracking. Having performed the local searches for all the score labels, back-
tracking is then performed much like in standard Viterbi (eq. 4.16 and 4.17). The
recovered hidden state sequence Q∗

1:T is the most likely one according to the HMM
parameters and also fully consistent with the score labels. In addition to recovering
the most likely hidden state sequence one may also need to find out the correspon-
dences between the hidden states and the labels. These correspondences can then
be used in the construction of the table of contents of the video. They are simply
provided by the backtracked position of the hidden state in the queues: if it is
found to belong in the queue Q, then it corresponds to the following score label in
the video. If it is found to be in the queue Q′, then it corresponds to the previous
in time score label.

Interestingly enough, when P (s, s(lk)) = 0 for every s (i.e., when no path is penal-
ized), then the Score-Oriented Viterbi Search will provide exactly the same solution as
the standard version of Viterbi decoding.

The computational cost of the Score-Oriented Viterbi Search for HMMs is estimated
as follows. The computational cost of a local search (similar to a Viterbi operating with
queues of 2S size) is roughly (2SN) × (N) × (Tlk) = 2SN2Tlk , where Tlk = t(lk+1) −
t(lk−1) is the length of the time window of the local search for the label lk. The total
computational cost is the sum over all labels:

M∑

k=1

2SN2Tlk = 2SN2
M∑

k=1

Tlk = 4SN2T (5.7)

where the total length of all time windows is simply two times the length T (in shots) of
the video. The cost is thus of order of O(4SN2T ), which means that it scales the cost
of standard Viterbi decoding by a constant factor 4S. As generally S receives moderate
values, the Score-Oriented Viterbi Search does not require a prohibitive computational
load.

The scheme of the algorithm is the same for SMs. As Viterbi decoding for SMs
involves searching through different segmentation hypotheses, the local searches and the
backtracking have to be modified accordingly, as explained in the discussion for SMs
(section 4.1.3). More precisely, the local search of eq. 5.4 changes to:

δt,s,Q(i) = max
j,τ,q,σ|s=σ(q)+nji

δt−τ,σ,q(j)ajip(Ot−τ+1:t|τ, i)p(τ |i) (5.8)

t(lk−1) ≤ t ≤ t(lk+1) (5.9)

t(lk−1) ≤ τ ≤ t− 1 (5.10)
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and nji now detects score changes between scenes (and not shots, as in HMMs). It is
set to 1 if i equals to 1 or 2 and zero otherwise. Looking at the range of values that τ

can take in eq. 5.10, we notice an interesting side effect of the Score-Oriented Viterbi
Search on SMs: the set of possible segmentation hypotheses is drastically reduced. In
the standard Viterbi decoding for SMs, every possible scene with at most Lmax = 80
shots must be evaluated. With this new decoding algorithm, every segmentation inside
the time windows Tlk must be evaluated, instead. So, the Score-Oriented Viterbi Search
may provide a different solution to the one of the standard Viterbi due to the fact that
the seach space is modified, even when no path is penalized. It is expected to be already
a better solution as the score labels give in fact some better approximations on the scene
boundaries than blind search.

The computational cost of Score-Oriented Viterbi Search for SMs is approximated
as follows. Supposing that the average length of each time window is T̂l, the cost of each
local search is O(2ST̂lN

2Tl), analogous to the cost of the standard Viterbi O(LmaxN
2T ),

but with using queues of size 2S. The overall cost will thus be O(4ST̂lN
2T ). T̂l generally

differs from video to video, being smaller the more score labels the video contains. In
the videos used in this study, its value is around 20.

Handling of Uncertainty

The number of scored points between two labels lk−1 and lk was previously considered
to be well-defined given the content of the labels. This can be true when the score labels
use an incremental scoring scheme, like when switching from ‘15-0’ to ‘15-15’ (1 point)
or from ‘15-0’ to ‘40-30’ (3 points). This scoring scheme however changes by using some
labels like ‘break’, ‘advantage’, or ‘ball of set’ to follow the peculiarities of the tennis
terminology. This scoring scheme in combination with the fact that some labels may
not be displayed results in some cases to uncertainty on the number of scored points
between two labels. When switching for example from the label ‘break’ again to label
‘break’, this could imply 2 points (with one label ‘advantage’ left undisplayed), 4 points
(with 3 labels ‘advantage’, ‘break’, ‘advantage’ left undisplayed in a row), 6 points, and
so on. An odd number of points however can never appear. The idea is thus to learn the
possible number of points scored for each label transition and to use a varying penalty
P (s, lk−1, lk) defined accordingly or learned from data.

Another source of uncertainty is errors that may occur during the recognition of the
score labels. The use of a penalty learned from data can also handle this situation. When
a lot of errors occur, the penalties will then learn to be more uniform between the values
of s and not penalize with high penalties. In the extreme case, when all the labels are
wrongly recognized, the penalties will be perfectly uniform so that the Score-Oriented
Viterbi Search is reduced to the standard Viterbi decoding. Errors during the extraction



94 5. Hierarchical Topologies and Integration of the Score Labels

(or detection) itself of the labels were not taken into consideration as score labels appear
in fixed positions and are well-framed that a false detection is practically impossible.

In order to account for uncertainty, the penalties P (s, l1, l2) were estimated as a
function of the probability that the label transition l1 to l2 contains s scored points:

P (s, l1, l2) = A
(
1− N(s, l1, l2)∑S

s=1 N(s, l1, l2)

)
(5.11)

where N(s, l1, l2) is the number of times that s points are scored between the labels
l1 and l2, estimated on the training set. The value of the constant A, which should
generally take large negative values, was experimentally set to -10. According thus to
eq. 5.11, the penalty P (s, l1, l2) will be close to zero when the labels l1 and l2 usually
correspond to s points, while it will take large negative values on the contrary. If the
recognition of the labels introduce a lot of errors then N(s, l1, l2) will tend to take the
same value for all s and in the end the penalties will take values around A(1 − 1/S),
independent of s.

Using Hierarchical Topologies

So far the labels that convey the overall match score in sets and games (third image in
Fig. 5.4) were considered as a generic label ‘end of game’, leaving in fact unexploited
the information on the number of games and sets. The reason is that the flat models
used so far can keep track of the number of exchanges traversed but not of the number
of games or sets. To do so, the hierarchical topology discussed in section 5.1 should be
used. In fact, the Score-Oriented Viterbi Search comes as a further and decisive support
for the kinds of constraints that the hierarchical topology imposes to Viterbi decoding.
This topology ensures that the solution obtained is consistent with the tennis rules on
the hierarchical decomposition of the match but quite likely will not provide a solution
which agrees on the number of sets or games per set actually scored. Combining the
Score-Oriented Viterbi Search with a hierarchical topology has the unique advantage
of finding a solution that is consistent with both the tennis rules and the actual game
evolution.

The Score-Oriented Viterbi Search changes only when a match score label lk ap-
pears. Firstly, what was described for flat models applies exactly the same also with
the hierarchical topology. The match score label continues to be considered as an ‘end
of game’ label and the paths are penalized with respect to the number of scored points
they contain. In addition to this, all the paths in the space [t(lk−1), t(lk+1)] are penalized
according to the number of games and sets they contain in total. These are calculated
as decoding evolves by using the incoming transitions of each production state (section
5.1.5). These connections can carry information whether switching from a given produc-
tion state to another one is equivalent of advancing one game or one set. So, for each
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path, in addition to its cumulative likelihood and backtracking information, the number
of games and sets that it contains are stored.

5.3 Experimental Results

For the experimental evaluation of the various models and algorithms discussed in this
chapter, the same measurements C, P , R, and F̂ as in section 4.5 were used. Results
are reported in table 5.2.

In the first line of the table, the performance of the systems ‘HMMs-VA’ and ‘SMs-
VhmmA2gram’ is copied from table 4.2. They serve as a frame of reference for the
comparison with the systems of this chapter. Results for the hierarchic topologies are
reported in the second row of the table. A light performance degradation is noticed
for both HMMs and SMs when switching from flat to hierarchic topologies. A possible
explanation for this is that the probability scores of the allowed hierarchic transitions
were manually set to arbitrary values. The intra-scene probability scores are thus lost,
while the flat models learn them from data. Consider for simplicity the case of SMs,
where the hierarchy ends to the scenes. When removing the inter-scene transition prob-
abilities during Viterbi decoding (but keeping the duration ones), the results are then:
C = 81.55, P = 85.54, R = 75.90, F̂ = 65.37. They are thus a little inferior to what the
hierarchic SM yields.

In the third entry of table 5.2, we see the performance of the ergodic systems when
the score labels are used as additional features. HMMs demonstrate a small performance
improvement, mainly due to spotting of some hidden states where a score label is likely
to appear. A performance improvement is also noticed for SMs, although being marginal.
This can be explained by the fact that the probability histograms of the score feature,
given in Fig. 5.5, are more uniform at the scene level than at the shot level. The extended
asynchrony that exists between the game event and the score label causes a more or less
random distribution of the score feature across the scenes and thus it is harder to exploit
it in terms of performance.

Results for the proposed Score-Oriented Viterbi Search algorithm are reported in the
next two rows of table 5.2. Clearly, in both HMMs and SMS and with both ergodic or
hierarchical topologies, the constraints of the scores helped the system and improved
the performance. The hierarchical topology still cannot outperform the ergodic topol-
ogy. But the gap between them is clearly reduced due to the additional game structure
constraints imposed by the score labels. It can also be noted that SMs gain a lot more
than HMMs (+5.03% versus +1.89% in F̂ measurements). This may be explained by
the fact that the positions themselves of the score labels provide some rough approxi-
mations of the scene boundaries, giving some extra valuable information for the Viterbi
decoding in SMs. When no penalties are used, the Score-Oriented Viterbi Search gives
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HMM SM

Baseline systems
Ergodic 80.23 84.69 79.70 81.77 84.10 79.45

66.42 66.81
Hierarchic 79.28 84.96 77.96 81.25 85.63 77.24

65.04 66.04
Score label 80.81 85.75 80.37 81.96 84.19 79.70
as feature 67.66 67.11

Score-Oriented Viterbi Search
Ergodic 82.17 83.40 82.39 85.97 84.90 83.43

68.31 71.84
Hierarchic 82.67 84.30 80.54 85.80 85.15 82.89

68.03 71.57

Level of Uncertainty
No uncertainty 82.03 83.63 82.65 85.99 85.19 83.30

68.50 71.94
90% 81.59 83.88 82.22 85.60 85.53 82.75

simulated noise 68.16 71.59
50% 81.15 84.37 80.67 84.15 87.02 80.16

simulated noise 67.31 70.07

Table 5.2

Experimental results for hierarchical topologies and score label integration. For each approach,

the performances of the HMM and of the SM are reported. The three numbers at the top row

correspond to the measurements C, P , R, and the one at the bottom row is F̂ .
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Video SMs-VhmmA2gram Score-Oriented No uncertainty

Agassi - Safin 231 245 248
Pioline - Hewitt 323 269 270
Pioline - Philippoussis 240 213 213
Grosjean - Philippoussis 181 169 169
Sampras - Rusedski 163 176 178
Capriati - Clijsters 250 256 259

Table 5.3

The number of exchanges that exist in the hidden state sequence after decoding each video se-

quence. The second column reports outcomes of the standard Viterbi decoding and for the ‘SMs-

VhmmA2gram’. The next two columns report results of the Score-Oriented Viterbi Search, with

or without uncertainty due to the tennis scoring scheme. The difference between these last two is

negligible, while the last column is in total conistency with table 5.1.

a performance of C = 81.71, P = 85.15, R = 79.16, F̂ = 67.16 (while for HMMs does
not change, as explained in the description of the algorithm).

So far, the penalties of the Score-Oriented Viterbi Search were calculated according to
eq. 5.11 and on manually extracted and recognized labels. The only source of uncertainty
is thus due to the scoring scheme of tennis combined with undisplayed labels. In the last
three rows, we see the performance of Score-Oriented Viterbi Search with ergodic models
and with varying level of uncertainty for the calculation of the penalties. Firstly we see
the performance when no uncertainty exists for purely demonstrating purposes. In this
scenario the number of scored points between each score label is manually provided by
the ground truth. The penalties are thus either −∞ or 0. The constrained Viterbi
decoding resulted into a hidden state sequence that contains exactly the same number
of exchanges as the ground truth and for all the videos. When the ground truth is not
used and there exists uncertainty, the number of exchanges recovered is still close to
what the ground truth reports, however. The number of recovered exchanges for every
video is summarized in table 5.3. Generally, a small difference in the number of recovered
exchanges and also in terms of performance is noticed when no uncertainty is simulated.
The system thus demonstrates an excellent degree of robustness to undisplayed labels.

In the last two rows of 5.2, we see the performance degradation of the Score-Oriented
Viterbi Search (ergodic structure) when a given percentage of the score indications is
artificially misrecognized and after re-estimating the penalties of eq. 5.11. Simulated
noise will thereby result into more uniform penalties and finally the performance nicely
degrades to the one of the standard Viterbi decoding.

The performance obtained with the ergodic ‘SMs-VhmmA2gram’, decoded with the
Score-Oriented Viterbi Search, is the best achieved on automatically extracted feature
set. When the ‘SMs-(AV)hmmA2gram’ approach (which yielded the best performance in
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SMs-VhmmA2gram

1 2 3 4
1 81.8 15.5 2.5 0.2
2 23.0 75.0 1.0 1.1
3 8.0 5.6 85.9 0.4
4 2.2 5.6 4.9 87.2

Score-Oriented

1 2 3 4
1 86.2 10.1 2.7 1.0
2 21.1 77.4 1.0 0.5
3 7.1 1.2 91.3 0.4
4 2.5 2.2 3.3 92.1

Table 5.4

Confusion matrices on the classification of shots with/without the Score-Oriented Viterbi Search.

section 4.5) is used instead, the respective performance results in F̂ = 71.95 (C = 88.62,
P = 85.01, R = 82.90), which is very close.

Finally, one may find awkward that even when the Viterbi solution is fully consistent
with the number of exchanges scored and the actual game evolution, still the performance
measurements continue to record a considerable amount of error. This is explained by
the fact that the score labels cannot resolve any confusion between the scenes ‘First
Missed Serve and Exchange’ and ‘Exchange’, as both of them contain an exchange and
are equivalent in terms of tennis score. This is clear in table 5.4 where the confusion
matrices with and without the Score-Oriented Viterbi Search are reported. We see that
the confusion between the above mentioned scenes (scenes 1 and 2) is not reduced as
much as in table 4.3. There, the inclusion of the auditory features (and especially of the
tennis sound) helped a lot in disctriminating between these two scenes.



CHAPTER 6

A Segment Model-Recurrent Neural

Network Hybrid

In chapter 4 the segmental scores were computed by HMMs or bigram models. In this
chapter, the idea of using Recurrent Neural Networks (RNNs) to compute a segmental
score is explored. The idea of fusing HMMs and neural networks, resulting to HMM-NN
hybrids, is not new. Neural networks are discriminative models and are expected to
provide better performance compared to Gaussian Mixtures or discrete densities that
are widely used in HMMs. The SM-RNN hybrid that we will examine in this chapter is
the direct extension of the HMM-NN hybrid on segmental features.

The disadvantage of RNNs is that the Back-Propagation Through Time (BPTT)
and Real-Time Recurrent Learning algorithms that are developed to train them cannot
efficiently propagate the gradient through long time lags and thus cannot process effec-
tively input sequences of moderate or large size. A newly created recurrent connectionist
model, called Long Short-Term Memory, which is especially designed to overcome this
problem is explored and compared to BPTT.

The focus of this chapter is the comparison between different approaches and hybrids
and not the multimodal integration itself. As feature set, the synchronous audiovisual
shot-based descriptors is used. Before proceeding to the details of the hybrids, basic
concepts of multilayer Perceptrons, of the BPTT algorithm and of the Long Short-Term
Memory are provided.
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Figure 6.1

A typical multilayer feed-forward neural topology.

6.1 Feedforward and Recurrent Multilayer Perceptrons

6.1.1 Backpropagation on Feedforward Networks

The error back-propagation algorithm (or simply backpropagation) is a gradient-based
learning rule that operates on multilayer feed-forward neural topologies. An example
of such a topology is given in Fig. 6.1. The network is organised in multiple layers,
each of them having a certain number of nodes or neurons. The input of the network is
provided by the input layer. Then, the signal is propagated through the connections of
the network and processed by the hidden layers until reaching the output layer, where
the actual response of the network to the input is calculated. There is no recursion in
the network, i.e., the signal is propagated strictly from bottom to top. Having a set of
pairs of input-output mappings, we train the network in a supervised manner in order
to interpolate between these input-output mappings. The training procedure consists of
adjusting the free parameters of the network to produce the desired behavior. These
free parameters are the weights of the network, which are scalars that characterize the
strength of every connection of it.

The backpropagation algorithm is an extension of the Perceptron Rule [83], developed
to train single-layer perceptrons, to multilayer topologies (hence the alternative name
“MultiLayer Perceptrons”, or MLPs). An MLP can learn arbitrarily complex class
separation boundaries due to the computational power of its hidden layers, provided
that a sufficient number of training patterns is used. Backpropagation was originally
introduced by Rumelhart et al. [87] and was also discovered independently and from a
different perspective by LeCun [52]. For a more detailed and comprehensive coverage of
the algorithm, the reader is referred to [37].
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Figure 6.2

A typical node in an MLP network. After the calculation of the dot product of its weights with

the input, the signal is passed through a sigmoid and finally is propagated to the nodes of the next

layer.

The operation of the backpropagation algorithm is seperated into two phases, the
forward and the backward pass. In the former, the signal is propagated bottom to top to
produce the output of the network. It is equivalent to a pure stimulation of the network.
The operation of a neuron j that receives an input vector x from the previous layer or
from the input layer is described by the following equations (see Fig. 6.2):

uj =
∑

i

wjixi (6.1)

yj = f(uj) (6.2)

f(x) =





(1 + exp(−αx))−1

or
tanh(−αx)

(6.3)

where wji notates the connection between the i node of the previous layer and the j

node, xo = +1 constant and wjo is the bias of this neuron. Having computed the dot
product between the input and weight vector, the outcome is passed through a sigmoid
function f , usually being one of the two alternatives of equation 6.3. The parameter
α controls their slope. Finally, the output yj is propagated to the next layer and the
procedure goes on until reaching the output layer.

The operation of the backward pass is to adjust the weights of the network according
to the gradient descent formula:

∆w = −ρ
∂E

∂w
(6.4)

where ρ is the learning rate and E is the error function over the training set. The
equations that describe the backward phase are defined as follows:

E =
1
2

∑
o

(do − yo)
2 (6.5)

eo = do − yo (6.6)

δo = − ∂E

∂uo
= f ′(uo)eo (6.7)

∆woi = ρδoyi (6.8)
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δj = − ∂E

∂uj
= f ′(uj)

∑

k

δkwkj (6.9)

∆wji = ρδjyi (6.10)

where the index o denotes output node, do is the desired response of this output node
and the wkj is the connection strength between the hidden node j and the node k of
the following layer. Following [37], the quantity δk will be called local gradient for the
neuron k. The algorithm proceeds with the presentation of every training pattern to the
network, followed by the adjustment ∆w until the error E is minimized to a satisfactory
level, i.e., convergence is achieved. A necessary condition for backpropagation to work
is the random initialization of all the weights of the network. This creates asymetry in
the hidden layer that, as the algorithm goes on, will finally allow for the extraction of
different and useful features from the input.

6.1.2 Backpropagation Through Time

The backpropagation algorithm as described previously raises the question of how can
we process data of sequential nature with an MLP. The input then would be a complete
sequence of vectors x1:T instead of a single one x, as it was supposed in the previous
section. Of the first approaches to apply MLPs to such problems was the use of time
delays at the input layer [92, 51]: the input window of the MLP receives more than one
consecutive input vectors at once. The network is thus enhanced with some short-term
memory capabilities, defined by the (fixed) length of the window. The advantage of this
approach is that the MLP structure and learning algorithm do not change, making its
application straightforward. When however the relative features in the input sequence
do not lie inside the input window of the MLP or, in other words, long-term memory
capabilities are required, then time-delaying the input will clearly fail.

The idea or recurrent topologies is to use time delays inside the network. A node
then receives as input not only the output of the previous layers of the network as in
feedforward topologies, but also the output of the same or above layers, delayed in time
as shown in Fig. 6.3. Through these recurrent connections the network has to learn to
extract and store relative features of the input sequence and to release them in a later
time, when the output nodes need them. To account for the complicated dynamics of
recurrent MLPs, two algorithms have been proposed in the relative literature, namely the
BackPropagation Through Time (BPTT) and Real-Time Recurrent Learning (RTRL)
[107, 37]. The two algorithms have been experimentally proved to be equivalent in terms
of learning capacities and in this study we will focus on BPTT due to its simplicity.

Let us suppose that an input sequence x1:T is to be processed by a recurrent net-
work. The operation of BPTT starts by unfolding the network through time in order to
construct a multilayer topology of T layers with the connections between them defined
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Figure 6.3

A simple recurrent topology. Dotted lines represent time delayed connections. The exact nodes

and layers that are connected with recurrent connections are left as an engineering choice, as much

the topology of the recurrent MLP. Recurrent connections may be present between different layers

too, for instance.

t1 t2 t3 tT-2 tT-1 tT

...

(a) (b)

Figure 6.4

The operation of unfolding through time a recurrent MLP. In (a), a recurrent network is depicted

with one or more hidden layers represented by the square and with its input and output nodes

represented by two circles. The activation of this network with the input sequence is equivalent to

the activation of the unfolded network in (b).

by the recurrent connections of the initial network. The operation of network unfolding
is depicted in Fig. 6.4. The unfolded network is then a legitimate feedforward MLP that
contains exactly the same weights as the recurrent network and, in effect, shares them
across its T layers. During the activation of the unfolded network, incoming inputs and
activation outputs for each node and for each time instant have to be stored.

The objective function to be minimized by BPTT is the sum of squared differences
between the target response and the network’s output

Etotal =
T∑

t=1

1
2

∑
o

(do(t)− yo(t))2 (6.11)

over all time steps 1 . . . T or whenever a desired response is defined. The backward pass



104 6. A Segment Model-Recurrent Neural Network Hybrid

of BPTT starts at time t = T and ends at t = 1, just as in feedforward MLPs the back-
ward pass starts from the output until the input layer. In fact, BPTT follows literally
the equations of backpropagation; only some special care must be taken regarding the
unfolded structure of the network. The local gradients δj(t) (given in eq. 6.9 for standard
MLPs) of all the nodes j and for each time instant t are calculated recursively as:

δj(t) = f ′(uj(t))


 ∑

k∈Fj

δk(t)wkj +
∑

k∈Rj

δk(t + 1)wkj


 (6.12)

where Fj denotes feedforward connections from node j to any node k and Rj denotes
recurrent connections from node j to any node k, with k defined by the network topology.
Finally, after the end of the backward pass, the weights are adjusted in a batch mode:

∆wji = ρ
T∑

t=1

δj(t)xi(t) (6.13)

where xi(t) = yi(t) is the activation of the node i at time t if the weight wji belongs
to a feedforward connection, or xi(t) = yi(t − 1) if the connection is delayed (included
recursion). This formula for ∆wji makes explicit the fact that the weight wji is shared
across multiple instances through time of the same recurrent MLP.

Limitations of Backpropagation Through Time

Let us suppose that an error signal is inflicted at the end of sequence in Fig. 6.4 and
that the relative feature to be extracted from the input sequence lies at the beginning.
It is easily noticed that the strength of the propagated signal will decay exponentially
before reaching the beginning of the sequence due to the multiplication with the weights
and the sigmoid derivatives in eq. 6.12. This exponential decay can be avoided only by
using weights initialized with values greater than 1.0, which would, however, easily lead
the algorithm to instability.

The fact of the exponential decay of the gradient means that it is extremely difficult
to learn long-term dependencies with BPTT. In fact, BPTT is in practice equivalent to
time delayed MLPs in terms of learning capacity. For a more concise analysis of this
intuitive outcome, the interested reader is referred to [38].

6.2 Long Short-Term Memory

The Long Short-Term Memory (LSTM) recurrent MLP architecture was introduced by
Schmidhuber et al. [39, 31] in order to provide remedies for the problem of error signal
decay of BPTT. Key architectural ideas of LSTM are firstly discussed and then a formal
description of the method is given.
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wij

wjj

wjk

Figure 6.5

A simple node j connected to a node k from the previous layer, to a node i from the above layer

and recurrently to itself.

6.2.1 Key Ideas

Consider a node j in a recurrent MLP that, for reasons of simplicity, receives input from
just one node k and has only one recurrent connection wjj , as illustreated in Fig. 6.5.
The activation of j is then:

uj(t) = wjjfj(uj(t− 1)) + wjkfk(uk(t)) (6.14)

where the index in fj and fk gives the freedom to use different activation functions for
each node. According to eq. 6.12 and in order of the propagated error signal not to
decay or to explode through time, the following must hold:

f ′j(uj(t))wjj = 1 (6.15)

Solving this equation with respect to fj , we have:

fj(uj(t)) = uj(t)/wjj (6.16)

i.e., fj must be linear. By setting wjj = 1, the activation of this node is summarized as:

uj(t) = uj(t− 1) + wjkfk(uk(t)) (6.17)

This equation defines the Constant Error Carousel (CEC), a special node that allows for
constant error signal propagation through time. This is the first key architectural idea
of LSTM.

The second one is the use of gates to protect the contents of the CEC. As the
activation of the CEC follows an additive law, there is the need to protect the CEC
from irrelevant or noisy activations of node k. Furthermore, looking back to eq. 6.13 we
see that if δj(t) is constant through time (like in a CEC), then the final weight update
is guided by the input xi(t) and thus can be conflicting as xi(t) varies. To solve these
two problems, a multiplicative input gate can be used to scale appropriately the term
wjkfk(uk(t)) of eq. 6.17. Following the same thinking, an output gate can be used to
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Figure 6.6

A typical Memory Cell j with one CEC sj(t).

protect the CEC from conflicting overwritings of δj(t) arriving from nodes k of the above
hidden layer (or the output layer). This is particularly useful when error is inflicted at
every time step, causing the nodes k to send an error signal back to the CEC each
time. The operation of the output gate is to scale the CEC activation before it reaches
another node. Finally, in [31], a forget gate is introduced to account for problems arising
in tasks of continuous prediction or classification. In these tasks, the sequence length
can be infinitely large leading the CEC into saturation. In addition, the CEC must be
explicitly reset when the past history of the sequence is not useful anymore or can be
conflicting. The role of the forget gate it to scale the term uj(t− 1) before its addition
at each time instant.

Intuitively speaking, the CEC gathers relative features from the whole input sequence
and presents them to the output nodes. In this way, the temporal dimension of the
problem is somehow removed. The gates have to break symmetries in the input sequence
and to distribute the credit assignement problem throughout the sequence, like the
random initialization of an MLP breaks symmetries in the hidden layers.

6.2.2 Definition of the LSTM

In a LSTM network, the elementary units are the Memory Cells, as in an MLP are
the neurons. A memory cell contains one or more CECs in its heart and is controlled
by an input, an output and a forget gate, as illustrated in Fig. 6.6. Each gate is in
fact a sigmoid neuron whose outcomes are fused in a multiplicative fashion in the cell.
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As with BPTT, the operations of the LSTM network are divided to the forward pass
(stimulation) and to the backward pass (learning).

Forward Pass

The operation of the input gate is:

uin
j (t) =

∑

k

win
jkxk(t) (6.18)

yin
j (t) = fin(uin

j (t)) (6.19)

where index j refers to the cell the gate belongs to, k refers to the nodes that are
connected to the input gate and xk(t) = yk(t) if the connection is feedforward or xk(t) =
yk(t − 1) is the connection is delayed. Similarly, the operations of the output and the
forget gates are respectively:

uout
j (t) =

∑

k

wout
jk xk(t) (6.20)

yout
j (t) = fout(uout

j (t)) (6.21)

ufg
j (t) =

∑

k

wfg
jkxk(t) (6.22)

yfg
j (t) = ffg(u

fg
j (t)) (6.23)

As there may exist more than one CECs inside each cell, we will use the index c for each
of them. The operation for each CEC inside the cell j are as follows:

uc
j(t) =

∑

k

wc
jkxk(t) (6.24)

sc
j(t) = yfg

j (t)sc
j(t− 1) + yin

j (t)g(uc
j(t)) (6.25)

yc
j(t) = yout

j (t)h(sc
j(t)) (6.26)

The outputs of the cell yc
j(t) can be used as the output of the network or they can be used

to feed standard sigmoid neurons that serve as the output nodes of the network. The cell
outputs can also be used to feed recursively the cells themselves. The inputs of the gates
can be identical to that of the CECs or less connectivity may be used. Generally, full
connectivity is allowed and it is up to the engineer to decide if some of the connections
are redundant. A typical LSTM network is given in Fig. 6.7 with two memory cells
having 2 CECs each. The output nodes of the network are sigmoid. Standard neurons
can also be used in the hidden layer of the network, along with the memory cells. They
should not however carry any recurrent connection.
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Input Node

Output Node

Mem Cell

Figure 6.7

A typical LSTM network with 2×2 memory cells. Full connectivity is used between the hidden

layer and the input and output layers. The hidden layer is also recurrently connected to itself. The

incoming connections of the hidden layer are defined by the inputs of the CECs wc
j , and the of

the gates win
j , wfg

j , wout
j . The outgoing connections include the memory cell outputs yc

j and the

outputs of the gates.

Finally, following [39, 31], the functions used in a memory cell are defined as:

g(x) =
4

1 + exp(−x)
− 2 (6.27)

h(x) =
2

1 + exp(−x)
− 1 (6.28)

while the gate unit functions fin, fout and ffg are the standard logistic sigmoid with
range [0, 1] (eq. 6.3 with α = 1).

Backward Pass

When an error signal is inflicted at the output gates of an LSTM network, standard
backpropagation is used for its propagation until it reaches a memory cell. The weights of
the output gates or of other sigmoid neurons in the hidden layer are updated according to
the standard backpropagation formula as they are not allowed to participate to recurrent
connections.

When an error E is inflicted at the output of a cell, the weights of the cell are
updated with the classical gradient-based formula ∆w = −ρ∂E/∂w where w belongs to
the cell’s and gates’ weights. Errors are not inflicted directly to the gates of the cell, even
when they are connected to other nodes of the network except the cell they belong to.
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The calculation of the partial derivatives is done with almost standard backpropagation,
mixed with some notions of RTRL learning.

According to eq. 6.26 and 6.9, the local gradient for the output gate will be:

δout
j (t) = f ′out(u

out
j (t))

∑
c

(
h(sc

j(t))
∑

k

δk(t)wksc
j

)
(6.29)

where c denotes summation over all the CECs of the memory cell, k summation over all
the nodes of the above layer, and wksc

j
is the weight of the connection between the node

k and the c output of the memory cell j. The weight update for the output gate is then
simply:

∆wout
jk (t) = ρδout

j (t)xk(t) (6.30)

Let us define the internal local gradient for every CEC of the memory cell as:
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The partial derivative of E(t) with respect to the weights wc
jk of the CEC is:
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The last derivative of the above equation is defined recursively by differentiating eq. 6.25:
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The derivative is initialized abritrarily
∂sc

j(t=0)
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= 0. Finally, the weight update is:
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The formulas for updating the weights of the input and forget gates are derived
similarly. The partial derivatives of E(t) with respect to a weight l of the input or forget
gate is now:
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The last derivative is defined for the input and forget gate respectively as:
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The update for the weight l is:

∆wlk(t) = ρ
∑

c

esc
j
(t)

∂sc
j(t)

∂wlk
(6.38)

Following [39] and for reasons of simplicity, the propagation of the error signal stops
to the incoming connections of the memory cell.

To sum up, the learning phase for a memory cell starts by stimulating it with a
complete sequence O1:T via the equations 6.18 to 6.26. In parallel, the partial derivatives
of equations 6.33, 6.36 and 6.37 are calculated recursively. When an error is inflicted
(this can be at every time instant when we have a prediction problem or at the end of
the sequence when we have a classification problem), the equations 6.29, 6.30, 6.31, 6.34
and 6.38 are executed.

6.3 Application to Tennis Video Analysis

Connectionist approaches can be used to model observation at the state (i.e., shot)
level or at the segmental (i.e., scene) level, leading to HMM-NN or SM-LSTM hybrids,
respectively. In addition, LSTM can be used by its own to detect the scene boundaries
and label the scenes, without employing any of the HMM or SM models and without
performing Viterbi decoding at all. The problem of video structure parsing is then
translated to a problem of continuous classification of an input sequence by the LSTM.

6.3.1 HMM-NN Hybrid

There are numerous approaches to fusing neuronal and hidden Markov models, including
using Learning Vector Quantization for a discriminative quantization of the input or the
use of hybrid backpropagation and EM-based training algorithms. A review for various
HMM-NN hybrids applied to speech recognition can be found in [99].

Perhaps, the most straightforward approach is to use the output of an MLP as a
score that can replace the observation probability P (Ot|S). Supposing that we can
assign to the neural network output (being positive and less than 1, as it is when logistic
sigmoids are used) a probabilistic interpretation, it approximates then the state posterior
P (S|Ot) that a given observation Ot belongs to the class S. Observation probabilities
can be obtained by dividing the state posterior by the state priors P (S). In an other
way of viewing HMM/NN hybrids, hypotheses generated by the MLPs are refined in
the global optimization framework of Viterbi decoding. The path that cumulates the
best score from the MLP outputs and the best score according to the HMM transition
probabilities is the one selected. In this case, the probability P (Ot|S) is replaced be the
score:

log P (Ot|S) ≡ log fS(Ot) (6.39)
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where fS(Ot) is the activation outcome to the input Ot of an MLP trained to respond
to class S.

In both scenarios, an MLP was trained to map each observation vector Ot to one of
the 12 classes of Fig. 4.3(b). It has 1 hidden layer with 10 nodes1 and an output layer
with 12 nodes. Each node of the network uses the logistic activation function. The input
nodes of the network receive the 6 audiovisual descriptors of eq. 4.31. Descriptors that
receive real values were linearly scaled in [0, 1] while the binary ones took the values 0 or
1. The network receives input from 5 successive vectors of the input sequence, instead
of 1, in an attempt to add more context. It has thus 30 input nodes. The coding scheme
for the output nodes is all zero except the node that corresponds to the target class,
which is set to 1.

6.3.2 SM-RNN Hybrid

An SM-RNN hybrid can be built by using a recurrent MLP network as a segmental
scorer in the same sense as using an MLP as observation scorer in HMM-NN hybrid.
The segmental score is then defined as:

log P (O1:l|l, S) ≡ l log fS(O1:l) (6.40)

where fS is an LSTM or a BPTT network trained to respond to the class (scene) S. The
multiplication with l of the log-output of the network is necessary for Viterbi decoding
to work as it requires scores that scale log-linearly with the segment length. The fun-
damental difference between the HMM-NN hybrid and the SM-RNN one is that in the
second case the neuronal scorer is fed with the complete context of a scene and is able to
model inter-scene dependencies. In the HMM-NN hybrid, it is difficult to capture local
context as the MLP is fed with frame-wise input. The local context (as long as the global
context of the inter-scene dependencies) is left to the HMM transition probabilities.

Four recurrent networks, each for the four scenes, are used as scorers. Their input
is encoded as with the MLP scorer in the HMM-NN hybrid (but the input sequence is
sampled with a window of length 1 this time). The networks have one output node,
trained to turn on when the input segment belongs to the class.

6.3.3 Continuous Classification with LSTM

In this approach, a single LSTM network is fed with the complete observation sequence
of the video and is trained to classify in a continuous manner all the shots as belonging
to one of the 4 scenes. It contains 5 output nodes, 4 for the scenes plus one, which is

1Set after experimentation. Generally speaking, the network topologies, learning rates, etc., used in

this chapter were set after experimentation.
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trained to turn on whenever a scene boundary appears2. The shots are labeled according
to the output node that exhibits the highest activation. It was found however in early
experimentation that when a new scene begins it is difficult for the network to give the
right answer at the first shots of the scenes. For example, both the ‘First Missed Serve
and Exchange’ and ‘Exchange’ scenes start with a court view and thus it is difficult to
discriminate between them based only on the first shot. The appearance of more court
views (or not) in the upcoming shots will disambiguate the situation. For this reason,
the shots are labeled as follows: when the scene boundary node is turned on, the node
with the highest activation at this time instant labels all the shots down to the previous
activation of the scene boundary node.

6.4 Experimental Results

Performance analysis of the LSTM and the various hybrids is provided in this section.
Firstly, we will examine training and performance of the segmental scorers. A comparison
between the LSTM and BPTT scorers with respect to their learning behavior is given.
Finally, the hybrids and the continuous classification with the LSTM are compared to
the models of chapter 4.

6.4.1 The Connectionist Segmental Scorers

Training an RNN-based segmental scorer has the particularity that, besides the positive
examples, negative examples of the other scenes are needed and also of wrong segmenta-
tions. As the number of all possible wrong segmentation is quite large, the complete set
of negative examples will then be too large to be used to train network due to the limited
storage capacities. In order to collect a small and, at the same time, informative set of
negative examples, a bootstrapping procedure is followed: the network is firstly trained
with an initial set of randomly chosen negative examples. Strong false alarms are then
gathered by running the network on the training sequences. The newly produced false
alarms are added to the set of negative examples and learning goes on. When the num-
ber of false alarms produced of the network is drastically reduced or stability is noticed,
the bootstrapping stops. In the experiments described below, false alarms are collected
when being higher to a threshold which begins with 0.8 and linearly reduces to 0.5 in
each bootstrapping iteration, and then remains constant.

Regarding the set of positive examples, it was enhanced with newly created examples
by adding white noise to the original ones as a means to avoid overfitting. For each
original training example, 100 artificial examples were added to the training set. In each

2A scene boundary may appear between two scenes of the same label. In this case, it is impossible

to tell the presence of a boundary without using a fifth output node charged with this task.
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training epoch, an equal number of randomly chosen positive and negative examples is
presented to the network.

The details of the BPTT networks (identical topologies were used for each scene)
are as follows. The hidden layer contains 5 neurons. Each neuron is fully connected to
the input layer with no delay and, recurrently, to all the neurons of the hidden layer.
The recurrent connections were doubled to include time delays of two time steps beside
the usual one time step delay. This doubled recurrent connection scheme was found to
improve performance during experimentation. The output nodes are fully connected to
the hidden layer with no delay. This topology carries 91 adjustable weights. The weights
were randomly initialized with maximum absolute value unity divided by the number of
the weights of the neuron. Learning rates were kept constant and set to 0.0001. Errors
are inflicted only once, at the end of the sequence.

The LSTM networks (having identical topologies for each scene) were built as follows.
First of all, the forget gates were deactivated because the problem at hand is not a
continuous prediction or classification problem and there is no need to “forget” the
sequence. Each LSTM network has 4×2 memory cells in its hidden layer (i.e., 4 memory
cells with 2 CECs each). Each memory cell exports as output the outputs of the CECs
but not the ones of the gates. The gates and the CECs receive exactly the same input,
originating from the input nodes without delay and, recurrently, from the memory cell
outputs with delay 1. The output node is fully connected to the memory cells. This
LSTM topology contains 249 weights in total. The weights were randomly initialized
with maximum absolute value 0.2. The learning rate was fixed to 0.01. Errors are
inflicted only once, at the end of the sequence.

Results of the bootstrapped training of the networks are reported in Fig. 6.8 and for
the scene ‘First Missed Serve and Exchange’, which is the more challenging to model
and detect. We see the produced true and false positives after running the network in
the test set. A true positive is defined as an activation greater than 0.5 on an input that
is a valid ‘First Missed Serve and Exchange’ scene3. If the input cannot be characterized
as such, then a false positive is encountered. While BPTT produce slightly more true
positives, LSTM quickly learns not to produce a lot of false alarms. Indeed, as we can
see in Fig. 6.8(b), BPTT produce in fact 5 to 10 times more false alarms. This behavior
for both of LSTM and BPTT was verified in several runs of the bootstrapping with
different initializations of the networks.

Generally, it appears that BPTT is not able to learn the class. It has to remember,
for instance, that at the first input vector of the sequence must be a global view of a
missed serve. This requires a memory of something like 5 time steps or more, which
seems to be difficult for BPTT. LSTM on the contrary demonstrated some success on

3Due to the trailing non-court views at the end of the scene, a unique scene in the test set can generate

multiple true positives.
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Figure 6.8

Learning Behavior of LSTM and BPTT during bootstrapping. Results are collected in the test set

and for the scene ‘First Missed Serve and Exchange’.

carrying out the task and cleary performed better than BPTT. For this reason BPTT
is excluded from any further analysis in the subsequent of this section.

6.4.2 Tennis Structure Analysis

Before proceeding to reporting the results, let us remind that in training with backprop-
agation one usually uses a validation set to determine the time instant where learning
should stop. Unfortunately, in our case there are not a lot of data that would permit to
reserve from the training set a sufficient number of examples to build a validation set.
To account for this lack of validation set, the experimental protocol is defined as follows.
The networks are trained until the best generalization is noticed in the test set. This
training is performed just to determine an approximate number of training epochs, as a
hint to achieve good generalization, i.e., for neither undertraining nor overtraining the
network. The networks are then trained again from scratch in multiple runs, with fixed
learning rates but also with varying random initialization of the weights. Learning is
stopped strictly after reaching the above-mentioned number of training epochs. As the
initialization of the network is changed, this stopping criterion does not generally results
into the best performance in the test set but still it gives a reliable hint of what could be
achieved with a legitimate validation set. The results reported below are the averages
of the multiple runs.

Results are reported in table 6.1. The performance measurement C, P , R, and F̂

are as defined in section 4.5. The feature set used in all approaches is the audiovisual
shot-based descriptors.
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C P R F̂

HMMs

HMM-NN 80.99 84.53 77.96 65.76
HMM 80.23 84.69 79.70 66.42

SMs

SM-LSTM/A=1, D=1 77.13 83.85 72.85 60.45
SM-LSTM 81.31 84.14 77.07 65.23
SM/A=1, D=1 61.16 95.73 39.69 35.47
SM 84.39 86.25 79.32 69.29
SM-no init 80.17 81.80 76.93 63.35

LSTM

78.87 85.72 80.61 66.68

Table 6.1

Experimental results of various approaches.

In the first line, we see the performance of the HMM-NN hybrid. The reported results
were obtained after division of the NN scores with the state priors. If not doing so, the
results lie in the same range but with worse average. Comparing the HMM-NN hybrid
with the HMM model of chapter 4, we see that more or less they perform the same. The
inclusion of a neuronal scorer thereby does not improve significantly the results.

In the next two lines of the table 6.1, results regarding the SM-LSTM hybrid are
given. Firstly (‘SM-LSTM/A=1, D=1’) we see its performance discarding the transition
and duration probabilities of the SM. In fact, this is not a “hybrid”: it uses only the
LSTM scorers in a Viterbi optimization for decoding. A relatively good performance
is achieved, which is improved with the addition of the transition and duration terms
that the hybrid adds (‘SM-LSTM’). In the next two lines, the performance of the SM
of chapter 4 is given for comparison. In the line ‘SM/A=1, D=1’, the transition and
duration terms of the SM are removed. We notice by comparing this to ‘SM-LSTM/A=1,
D=1’ that the LSTM scorers alone can perform much better than the HMM scorers alone.
However, this image is reversed when comparing the full SM (‘SM’) with the full SM-
LSTM hybrid. The last one cannot outperform the SM and, in fact, cannot outperform
even HMMs. A possible explanation to this is that the HMM scorers compute in fact a
smoothed distance of a sequence to a model. This can be easily refined by the transition
and duration scores. The LSTM scorers, on the other hand, are trained to give a 0
output even when the input sequence differs slightly to the prototype class. Most of the
time thus their scores are 0 and little space of improvement is left to the transition and
duration scores.
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Finally, let us remind that the HMM scorers are especially initialized according to
Fig. 4.3(b). This is equivalent to infusing prior knowledge to them, while the LSTM
scorers were built from scratch. In line ‘SM-no init’, we see the performance of the SM
when the HMM scorers are initialized randomly. This comparison reveals that the prior
knowledge infused in the HMM scorers is really usefull to their performance. Without
it, the SM-RNN hybrid can outperform the SM with HMM scorers.

Finally, in the last line of the table 6.1 we see the performance of the LSTM network
of continuous classification, trained to label and segment an input sequence without em-
ploying Viterbi decoding at all. The network is trained with just the training sequences
(without the need of using positive/negative examples), artificially corrupted with white
noise to avoid overfitting. It has 10×2 memory cells in its hidden layer and receives
input as the LSTM segmental scorers. It contains 1455 weights in total, estimated with
a fixed learning rate of 0.001.

This approach does not use any form of prior knowledge, except of course from the
fact that the addition of white noise does not alter the labeling of the sequences. Despite
this straightforward use of LSTM to the problem, a good performance is achieved, in
comparison to the hybrids analyzed above. Finally, this approach has the disadvantage
that no Viterbi-based specialities can be applied to it, like the Score-Oriented Viterbi
Search.



CHAPTER 7

Conclusions

7.1 Review of the Findings

In this study, the framework of SMs has been introduced in video indexing as a means of
performing audiovisual integration with relaxed synchrony constraints. Baseline HMM
systems suffer from the state-synchrony constraint imposed by the frame-based obser-
vations. The use of segmental features instead can extend the synchronization points
between the modalities at the segment boundaries. By modeling each modality inside
its own segment, native sampling rates and model topologies can be used. SMs were
applied in a task of segmenting tennis broadcasts into human-meaningful scenes, each
scene being a segment. Their experimental analysis and their comparison to HMMs, as
summarized in table 4.2, revealed the following.

First of all, using video-only data (i.e., only one modality), SMs demonstrated a
performance improvement over HMMs. The inclusion of an appropriate scene-based
duration model, which was impossible with HMMs, gave finally to SMs a performance
superiority. And this despite the fact that Viterbi decoding for SMs operates in an en-
hanced search space of possible state sequence and segmentation hypotheses. Regarding
computational cost, SMs add an extra overhead to Viterbi decoding, exactly due to this
enhanced search space. But, as analyzed in section 4.4.3, decoding time scales linearly
to the maximum number of shots that a scene can contain (or more generally, to the
maximum number of samples that a segment can contain). This number is defined a
priori and was set to 80 in this study. Overall, SMs offer more modeling power than
HMMs and can thus provide better performance while keeping computational cost at
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reasonable levels.
Second, synchronous audiovisual integration with the form of shot-based audiovisual

descriptors yielded a clear performance improvement in both HMMs and SMs. The
auditory features helped the system mainly to discriminate between idle court views and
court views of actual game exchanges, where tennis sound is expected to be detected in
the soundtrack. SMs continue to perform better than HMMs.

The results regarding asynchronous audiovisual integration with SMs are however
less optimistic. The problem is not that the auditory models that are asynchronous to
the visual ones are less powerful and thus mitigate the results. But in order to fuse
information from asynchronous models, they have to be assumed independent. This
independency assumption in our case causes a loss of important (as it seems to be)
correlations between auditory and visual features. The segmental scorers are based thus
in less information and this makes their task harder. The problem detected here brings
the discussion to whether a late fusion (decision on the semantics and then fusion) or an
early fusion scheme (fusion before the decision on the semantics) is preferable, which is
still open in the video indexing literature. Finally, nothing prohibits the simultaneous
synchronous and asynchronous fusion in SMs, as a handy engineering for performance
improvement.

Beside the audiovisual integration, this study was also concerned in chapter 5 with the
fusion of high-level information coming from the game structure and rules and from the
score announcements. The first dictates that the solution provided by Viterbi decoding
should be consistent with the tennis rules and the second one that it must be consistent
with the actual game evolution.

The incorporation of the tennis rules constraints is easily performed by extending
the flat topologies of both HMMs and SMs to hierarchical ones, in order to follow the
hierarchical decomposition of a tennis game. Hierarchical topologies also allow for the
detection of high-level segments in the video, like a set or a game. Unfortunately, the
number of transition probabilities in a hierarchical topology is very high and thus they
have been manually set to arbitrary values. For this reason, the hierarchical topologies
did not outperform the flat ones.

Regarding the score announcements, their fusion as an extra feature (or observation)
at the shot level (HMMs) or at the scene level (SMs) was firstly considered. In both
case, a marginal performance improvement was noticed. The reason is that score an-
nouncement may appear a lot delayed or may not appear at all after a game event. The
probability distributions of this feature become thus almost uniform, i.e., they carry no
useful information.

The use of the Score-Oriented Viterbi Search was proposed instead in order to fully
exploit the semantic content of the score announcements and their positions as well.
The algorithm finds out the most likely path that is consistent with the score announce-
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ments in the expense of a computation overhead a little superior to the standard Viterbi
decoding for both HMMs and SMs. The fusion of the score announcements as such
yielded a clear performance improvement in both HMMs and SMs and with both flat or
hierarchical topologies. The algorithm also naturally exhibits tolerance to noisy features
and gracefully degrades to the standard Viterbi when a lot of noise exists.

Finally, a SM-RNN hybrid was presented in chapter 6. As connectionist segmental
scorer, the newly introduced LSTM topology was favorably compared to BPTT-trained
RNNs. The hybrid performed visibly inferior to the standard SM but still with a promis-
ing performance. In fact, what makes the difference is that the HMM-based segmental
scorers can use prior knowledge on the task directly into their topology, while the LSTM
scorers can be built only from scratch. An LSTM network was also proposed to solve on
its own the problem of video structure analysis, viewing it as a problem of continuous
classification. This straightforward application of the LSTM, which does not use prior
knowledge on the task at all, yielded some promising results but still cannot outperform
SMs.

7.2 Domains of Application

The framework developed in this study for tennis structure analysis can find practical
application to the automatic management of large video databases. The typical scenario
is that the documentalist stores a tennis video and then uses an automatic tool for the
generation of the table of contents of the video. This can be done in a few minutes while
the manual generation would require a considerable amount of time, which can overcome
the total duration of the video.

The emergence of sophisticated consumer products like personal video recorders1

(PVRs) gives to automatic video structure analysis another interesting area of applica-
tion. These devices can store broadcasted video and then process it according to the user
needs. Simple features currently supported like detection of commercials or of explicit
content can be generalized to the automatic construction of the table of contents of a
broadcast like a tennis match. Consumers will be able to personalize what they want
to watch in a much more advanced way than patiently wait. This kind of automatic
interaction with video can be achieved only by devices that are equipped with intelligent
video understanding capabilities.

1See for example http://www.tivo.com
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7.3 Limitations

A possible source of limitation of the system in its practical application could be the
production style. It is not expected however to see in the future broadcasts that do not
display a court view during an exchange because this is the easiest and most standard
way for humans to watch the game action. In addition, rediffusions are always signaled
with some special effect, otherwise they can be confusing to the persons that watch the
broadcast. What can change is the special effect itself. A special image could be used,
for instance, instead of a dissolve transition. In that case, feature extractor needs to be
changed, but not the model. Generally, the feature extractors may need to be adapted
to new conditions or new and improved methods may appear in the future and thus
the input of the models can change. What might be needed then, in the worst case, is
simply to re-estimate the parameters of the models.

It was found that the production style of displaying score announcements varies
significantly from broadcast to broadcast. Fortunately, Score-Oriented Viterbi Search
takes into consideration the worst case scenario, that is undisplayed announcements and
extended asynchrony. More optimistic scenarios of instant (synchronous) and secured
announcement of the score after a game event are easily handled.

7.4 Future Work and Extensions

The performance of the system can always be improved by adding useful information
in the feature set. A kind of information that was not exploited in this study is the
position of the players: players have to change position between successive exchanges as
tennis rules dictate. Hence, after a missed serve the player must serve from the same
position. Tracking of the player’s changing position can help thus in the detection of
missed serves. In some early experimentation and using some basic image processing
operations, the detection of a changed position was found to be relatively easy and
stable. Unfortunately, this tracking presumes that the court views with game action
of the video should be already detected and without any mistakes. An idle court view
for instance is equivalent to a mistake in the tracking, as in terms of changing position
produces the same effect with a missed serve. A possible solution to this problem could
be tracking the player’s movement inside each court view shot. It is expected that the
behavior of the player during an exchange or during an idle court view would be much
different.

Extensions of the dissolve detection method described in chapter 3 could be inter-
esting too. A key point of this method was that a single metric or feature alone cannot
tackle the problem efficiently. An idea thus could be to use more information, like ex-
ploiting motion fields along with the pure image-based metrics. Information can be fused
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using statistical methods, trained on a large set of examples to achieve a good degree
of generalization. The framework of SMs can perfectly fit to this task, and it would
be interesting a comparison with the pure HMM-based approaches of [12, 7]. Indeed,
SMs offer at first a more advanced duration model. In addition, and more important,
each feature has its own dynamics and behavior during a dissolve. With SMs, different
models can be used for every feature stream, which is impossible with HMMs.

A possible future extension of the SM framework as applied to tennis structure
analysis could be the inclusion of weight terms for each modality, like in eq. 2.5. These
weights will balance the contribution of the respective modality so that a noisy modality
will not affect the overall performance of the system. The value of the weights can
be adaptive according to some reliability measurements. As there exist some studies
on this topic for HMMs (e.g., [33]), it could be interesting to extend them for SMs.
Unfortunately, it is believed that a much larger training corpus than the one used in this
study should be used to avoid any overfitting.

SMs could also be applied to other genres of video where structure analysis is re-
quired, like news broadcasts. The segment could be defined as a news story unit, com-
prising a number of successive shots. The detection of the boundaries between the stories
units is then left as part of the Viterbi optimization problem. Information sources from
multiple modalities, like image, sound and text could be asynchronous between them
but, by definition, they are synchronous inside the story unit boundaries.

Apart from video indexing, SMs could find application to audiovisual speech recog-
nition as a generalization of the product and other HMM variants. A phoneme could be
defined as a segment, which contains both auditory (speech waveform) and visual (face
image) data.

A major drawback of the asynchronous fusion is that it implies a more or less late
integration scheme. In this study, unimodal models made decisions directly on the
semantics (the scenes) that are fused during Viterbi for SMs, following a pure late in-
tegration scheme. This resulted into light performance degradation. A question that
naturally arises is how one can perform asynchronous and early fusion simultaneously.
DBNs, which are in rapid development, may offer such solutions in the future. Their use
as a segmental scorer in a SM-DBN hybrid can simplify their modeling/decoding com-
plexity as modeling segments rather than whole data sequences may be easier. Another
solution for asynchronous early fusion may be sought in the direction of LSTM segmen-
tal scorers. A multistream architecture may be built where each stream is sampled at
its own frame rate. The nodes from different streams can be connected, resulting with
this straightforward way into an asynchronous early fusion.

Finally, Score-Oriented Viterbi Search could be used in other video genres where
game events occur rather frequently, like in basketball. Let us suppose that an automatic
Viterbi-based system attempts to segment the video into attacks and label them as
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scoring or not. The proposed algorithm can ensure that the solution obtained is in
consistency with the actual game score.
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Automatic video content analysis is an emerging research subject with numerous practical appli-

cations to large video databases or personal video recording systems. The focus of this study is the

automatic construction of the table of contents of a tennis broadcast using Markovian models and dy-

namic programming. Motivated by the need for more efficient multimodal representations, the use of

segmental features in the framework of Segment Models is proposed, instead of the frame-based features

of Hidden Markov Models. Considering each scene of the video as a segment, the synchronization points

between different modalities are extended to the scene boundaries, which is the basic thematic unit of the

video. Visual features coming from the produced broadcasted video and auditory features recorded in

the court are processed before fusion in their own segments, with their own sampling rates and models.

Various techniques for modeling the segments are examined, including discrete or continuous density

Hidden Markov Models, bigram models or connectionist scorers, operating on automatically extracted

audiovisual features. Segment Models and Hidden Markov Models, with hierarchical or ergodic topolo-

gies, are built and compared in a corpus of 15 hours tennis video. The model parameters are estimated on

labeled data. Depending on the segmental scorer employed, asynchronous fusion with Segment Models

can achieve the same level of performance as Hidden Markov Models. The fusion of the textual resources

of the video, namely the score announcements, is also considered. To fully exploit their semantic content

on the actual game evolution and to account for unacknowledged game events, a novel Viterbi decoding

scheme is developed. It produces solutions that are consistent with the score announcements and thus

yields a clear performance improvement of the system.

Keywords: Hidden Markov models, Segment models, Video summarization, Multimodal fusion

L’analyse automatique du contenu de la vidéo est un sujet de recherche émergent avec de nombreuses

applications pratiques sur de grandes bases de données de vidéo ou sur les enregistreurs vidéo personnels.

Le centre de cette étude est la construction automatique de la table des matières d’une émission de

tennis en utilisant les modèles markoviens et la programmation dynamique. Motivés par le besoin de

représentations multimodales plus efficaces, nous proposons l’utilisation des caractéristiques segmentales

dans le cadre des modèles de segment, au lieu des caractéristiques en trames des modèles de Markov

cachés. En considérant chaque scène de la vidéo comme un segment, les points de synchronisation entre

différentes modalités sont étendus aux frontières de la scène, qui est l’unité thématique de base de la vidéo.

Les caractéristiques visuelles venant de la vidéo diffusée et les caractéristiques auditives enregistrées

dans le court sont traitées avant fusion dans leurs propres segments, avec leurs propres modèles et

fréquences d’échantillonnage. Diverses techniques pour modéliser les segments sont examinées, y compris

les modèles de Markov cachés de densité discrète ou continue, les modèles bigrames ou des approches

connexionnistes, fonctionnant sur les caractéristiques audiovisuelles automatiquement extraites. Des

modèles de segments et des modèles de Markov cachés, avec des topologies hiérarchiques ou ergodiques,

sont établis et comparés sur un corpus de 15 heures de vidéos de tennis. Les paramètres des modèles

sont estimés sur des données étiquetées. Selon le modèle segmentale utilisé, la fusion asynchrone avec

des modèles de segments peut atteindre le même niveau de performance que les modèles de Markov

cachés. La fusion des ressources textuelles de la vidéo, c’est-à-dire les annonces de points, est également

considérée. Pour exploiter entièrement leur contenu sémantique sur l’évolution réelle du jeu et tenir

compte des événements non reconnus, un arrangement original du décodage de Viterbi a été développé.

Il produit des solutions qui sont conformes aux annonces de points et apporte ainsi une nette amélioration

de la performance du système.

Mots-clés: Modèles de Markov cachés, Modèles segmentaux, Structuration des vidéos, Fusion

multimodale
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