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Introduction

When the laser was invented 50 years ago, it was considered as "a solution looking for
a problem" [1]. Since then it has seen a remarkable success and is now indispensable in
science, industry and entertainment. There has been great progress in the development of
new laser types and modes of operations. One of the latter is the pulsed regime where the
energy of the laser is not anymore equally distributed in time but confined to short time
intervals leading to very high electromagnetic field strengths. During the last 30 years the
duration of these pulses has been decreased continuously. Nowadays pulses in the visible
and infrared have been compressed down to several femtoseconds, and in the ultraviolet
even attosecond pulses have been achieved by the generation of high-order harmonics [2].

The high energy densities in picosecond and femtosecond pulses have opened up the field
of nonlinear optics where the response of a medium ceases to be proportional to the incident
field but rather exhibits a higher-order dependency on it. These nonlinear processes can be
of a coherent nature like Second Harmonic Generation (SHG), Third Harmonic Generation
(THG) and Coherent anti-Stokes Raman Scattering (CARS), or they can be incoherent
like Two-Photon Fluorescence (TPF). First these techniques were used for spectroscopy
[3, 4, 5] but soon their potential for microscopy became evident [6, 7, 8, 9, 10]. Because
these nonlinear contrasts appear in different wavelength regions thus permitting to combine
them easily, and because many of them do not require a sample staining, they are by now
in many cases standard techniques in the imaging of biological media [11, 12, 13, 14, 15].

Ultrashort pulses in the femtosecond domain are characterized by broad spectra in the
frequency domain. The field of each wavelength present within the pulse is characterized
by its amplitude, its phase relative to the fields of the other pulse wavelengths, and its
polarization. Not only do these spectral characteristics influence the temporal shape of the
pulse, but they are also reflected in the nonlinear signals generated by it. Therefore the
knowledge of a pulse’s amplitude, phase and polarization is often required for the inter-
pretation of nonlinear optics experiments. While amplitude and polarization can be easily
measured by spectrometers, polarizers and wave plates, the determination of the phase is
more demanding. Yet, several methods like frequency-resolved optical gating (FROG) [16],
spectral phase interferometry for direct electric-field reconstruction (SPIDER) [17], single-
pulse reconstruction by interferometry [18, 19], and multiphoton intrapulse interference
phase scan (MIIPS) [20, 21] have been developed to achieve this.

For many applications just knowing what are the pulse characteristics is not sufficient,
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ways to actively control them are necessary. This is the domain of pulse shaping. Con-
trolling optical pulses can strongly affect the intrinsic behavior of matter. For instance,
the selectivity of photo-induced chemical reactions can be controlled by varying the delay
between several pulses [22]. Pulse shaping as the direct manipulation of a single pulse’s
amplitude, phase, polarization or a combination of any of these was started by Weiner
et al. in 1988 [23]. They spatially dispersed and recombined the pulse in a 4f -line (see
section 2.3) consisting of two gratings and two lenses where amplitude and phase masks
were inserted in the dispersed beam to control those two parameters. While the 4f -line
remains a central part in the majority of today’s pulse shapers, the fixed masks were soon
replaced by programmable ones so that a dynamic amplitude and phase shaping became
possible.

In the mid-nineties several device classes were proposed and implemented for this goal
(see section 2.4). They have in common that a refractive index pattern gets created in the
device which - in combinations with polarizers - leads to amplitude and/or phase control.
In acousto-optic modulators (AOM) this pattern is induced by a radio-frequency wave
[24, 25], in multiple quantum wells (MQW) it is written as a hologram by two continuous
wave (cw) laser beams [26], and in liquid crystal spatial light modulators (LC-SLM) it
arises from an externally applied voltage [27]. A different route for phase shaping has been
taken by the use of deformable mirrors as the shaping device in the 4f -line. Here, the
modulation of the optical path length is not achieved by a control of the refractive index,
but by an alteration of the physical distance the beam has to pass within the shaper [28].
These techniques have led to a large number of works on coherent control, which is the
way to drive atoms or molecules towards specific pathways by manipulating the excitation
field characteristics [27, 29, 30, 31, 32].

While these first studies mainly focussed on the mechanisms allowing pulse shaping in
amplitude and phase towards coherent control experiments, subsequent works attempted
to apply these new capabilities to nonlinear optical experiments, as their outcome depends
strongly on the characteristics of the incident pulse. Because nonlinear optics involves the
interaction of multiple fields, a nonlinear optical excitation is composed of several possible
pathways where the fields’ components combine. The phase profile of a large spectral pulse
has therefore a considerable influence on the interferences between the different excitation
pathways, which can be constructive or destructive depending on the phase combinations
of the different participating wavelengths. In particular, maximizing a nonlinear signal can
be achieved by compressing the pulses of a given laser in the temporal domain as much
as possible. This condition is reached when their spectral phase is flat (λ-independent),
which is usually not the case in a setup, as all optical elements in the beam path distort
the phase profile. The Gerber group developed evolutionary learning algorithms for this
purpose [33, 34, 35]. The SHG signal of a nonlinear crystal was measured for different phase
configurations in a SLM and the phase mask was changed in an intelligent way until an
optimal signal was obtained. Other phase control algorithms like MIIPS that also lead to
a flat phase have strongly improved the image quality in nonlinear microscopy of biological
samples such as HeLa cells and mouse kidney tissue [36].
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The applications of phase pulse shaping are much broader than realizing flat phases. By
shaping a sinusoidal phase into a laser pulse the Silberberg group could control two-photon
transitions in a caesium gas [29], and obtained a single pulse CARS spectrum as well as
depth-resolved CARS microscopy images [37, 38]. The latter was also possible when a
spectrally narrow phase jump was added to a flat phase [39]. As ever spectrally broader
laser sources become available, similar amplitude and phase shaped field profiles permit
the rapid acquisition of CARS spectra covering the whole fingerprint region of organic
molecules [40], and detection efficiencies of down to 300 molecules for CARS [41] and 50
molecules for near-degenerate four wave mixing processes [42] have been reached.

While single pulse amplitude and phase shaping was developed as soon as shaping
technologies became available, single pulse polarization shaping was neglected for a long
time. Only in 2001 was the first femtosecond polarization pulse shaping study published
by Brixner and Gerber [43]. They used an LC-SLM in a 4f -line to control the degree of
ellipticity as well as the orientation of the elliptical principal axes. Later they improved
their method to create arbitrary polarization-controlled pulses in the time domain [44, 45].
With such shaped pulses it was possible to control the photoisomerization of the cyanine
dye NK88 [46], increase the ionization yield of potassium dimer molecules [47] and to
influence the charges carried by iodine ions [48].

By then polarization shaping schemes based on a LC-SLM were also developed both in
the Silberberg and the Leone group for their investigation of single pulse CARS [49, 50]
to suppress the non-resonant background, and of multiphoton absorption processes [51] to
control the angular momentum distribution of molecules in their final state. Furthermore a
pulse shaping scheme based on two consecutive 4f -lines was realized to permit full control
over the polarization state of ultrashort pulses [52].

Polarization shaping schemes where the 4f -line forms part of an interferometer has
also been developed recently. Different polarization components of the incident beam pass
different regions of the shaping device, thus allowing for independent amplitude and phase
shaping. In this way polarization shaping can be achieved when the beam is recombined.
If they are operated in a transmissive setup [53, 54] interferometric stability issues come
into play that are avoided by an operation in a reflective setup [55], and of course by single
pulse shaping geometries.

The combination of femtosecond pulses shaped simultaneously in amplitude, phase
and polarization in combination with near-field microscopy has led to the emergence of
nanoscopic ultrafast space-time-resolved spectroscopy [56]. Moreover, polarization pulse
shaping allows controlling the electromagnetic near-field distribution in the vicinity of
nanostructures, in particular the creation and positioning of hot spots with nanometric di-
mensions [32, 57, 58]. This achievement is based on the ability of metallic nanostructures to
exhibit different plasmon resonance modes at different positions at nanometric distances,
and that are polarized differently. Similarly to coherent control, different interferences be-
tween excitation pathways therefore create localization at the nano-scale. With the help
of an evolutionary learning algorithm it is for example possible to locate the field at a
specific bow-tie nanostructure while excluding it from another bow-tie close-by [59]. Thus
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polarization pulse shaping has become an important tool in the quest to create nanometric
light sources.

The experiments presented in this manuscript cover different topics and the connection
between them may not always be evident at first glance. Yet they all contribute to ex-
plaining the capabilities of single pulse polarization pulse shaping for nonlinear microscopy.

In order to summarize the properties of the different nonlinear processes described
throughout this work, chapter 1 describes the context of nonlinear optical contrasts. The
basic formalism is introduced and all nonlinear processes relevant for this thesis are ex-
plained in detail.

Chapter 2 is devoted to pulse shaping as performed in this work. The experimental
setup is explained with particular emphasis on the pulse shaper and its calibration. For
the interpretation of nonlinear optical signals the knowledge of the phase profile of the
exciting pulse is indispensable. That is why the second half of the chapter deals with the
measurement of the spectral phase and the compensation of phase distortions to guarantee
a spectrally flat phase in the sample plane. We concentrated here on the specific configu-
ration of nonlinear microscopy which brings more stringent instrumental constraints. This
is why here mostly "single pulse" techniques have been explored.

Because polarization shaping experiments only show their full potential when the re-
lationship between the polarization state at the exit of the pulse shaper and the entrance
of the microscope is known, chapter 3 is dedicated to the characterization of polarization
distortions in a microscopy setup. And even though no pulse shaping is involved in this
chapter, the obtained results are a prerequisite for a meaningful interpretation of subse-
quent polarization shaping experiments.

Chapter 4 is a first instrumental application of polarization shaping for nonlinear mi-
croscopy imaging. It demonstrates the potential of combined amplitude, phase and polar-
ization shaping by simultaneously reading out the components of the second-order non-
linear susceptibility tensor χ(2). Applications are presented in imaging local order and
orientation of molecular and biomolecular samples.

In chapter 5 the performance of single pulse CARS is tested and a new method for the
measurement of the Raman depolarization ratio of vibrational molecular transitions based
on phase and polarization pulse shaping is proposed.

Finally, in chapter 6 the enhancement of nonlinear optical signals by photonic structures
- both nano-apertures within a metal film and dielectric microspheres - is assessed. This
last chapter, although of a different topic than the previous ones, describes first attempts
in specific structures that could potentially lead to future studies combining pulse shaping,
nonlinear contrasts and enhancements.
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Chapter 1

Nonlinear Optics

All experiments presented in this work rely on nonlinear optical processes. In this chapter
the nonlinear susceptibility will be introduced as a handy tool to describe and categorize
these processes. Those that are used later on will be explained in more detail. Since the
frame of this work is mostly dedicated to imaging, the specificity of nonlinear contrasts in
microscopy will be derived.

1.1 Introduction to Nonlinear Optics
All electromagnetic phenomena follow Maxwell’s equations for the electric and magnetic
fields E(r, t) and B(r, t) [60, 61]:

∇× E = −1

c

∂B

∂t
,

∇×B =
1

c

∂E

∂t
+

4π

c
J, (1.1)

∇ · E = 4πρ,

∇ ·B = 0

with J(r, t) and ρ(r, t) the current and charge densities, related to each other by the charge
conservation law:

∇ · J +
∂ρ

∂t
= 0 (1.2)

These source terms can be separated into

J = Jdc +
∂P

∂t
(1.3)
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1.1. Introduction to Nonlinear Optics

a dc current density Jdc and a time-dependent generalized polarization P. Maxwell’s
equations transform then to:

∇× E = −1

c

∂B

∂t
,

∇×B =
1

c

∂

∂t
(E + 4πP) +

4π

c
Jdc, (1.4)

∇ · (E + 4πP) = 0,

∇ ·B = 0

with P(r, t) as the only time-dependent source term. Taking the curl of ∇ × E leads to
the propagation equation:

∇× (∇× E) = −1

c

∂

∂t
(∇×B) = −1

c

∂

∂t

(
1

c

∂

∂t
(E + 4πP) +

4π

c
Jdc

)
(1.5)

As Jdc is time-independent Eq. (1.5) changes to:

∇× (∇× E) +
1

c2

∂2

∂t2
E = −4π

c2

∂2

∂t2
P (1.6)

In the case of an external field E which gets applied to a material not possessing any
electric field sources itself (∇ · E = 0), ∇× (∇× E) = ∇(∇ · E)−4E simplifies to:

4E− 1

c2

∂2

∂t2
E =

4π

c2

∂2

∂t2
P (1.7)

P describes the response of the medium to the external field and is thus a function of E.
For low field strengths the induced polarization follows the field in a linear way, so that

P(r, t) =

∫ ∞
−∞

χ(1)(r− r′, t− t′):E(r′, t′)dr′dt′ (1.8)

where χ(1) is the linear susceptibility, for which causality demands χ(1)(r, t) = 0 for t < 0
[61, 62]. In the case of a monochromatic plane wave E(r, t) = E(k, ω) = E0 e

i(k·r−ωt) a
Fourier transformation of Eq. (1.8) leads to

P(r, t) = P(k, ω) = χ(1)(k, ω):E(k, ω) (1.9)

with
χ(1)(k, ω) =

∫ ∞
−∞

χ(1)(r, t)e−i(k·r−ωt)drdt (1.10)

the familiar expression of linear optics. Under the electric dipole approximation that will be
used throughout this work, P becomes a local function of E, meaning that a polarization at
point r depends exclusively on the field E at that point. χ(1)(r−r′, t) and χ(1)(k−k′, ω) are
then independent of r′ and k′ respectively and P reduces to the electric dipole polarization
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1.1. Introduction to Nonlinear Optics

P(r, t). It should be noted that χ(1) can also be derived quantum mechanically as the
product of an annihilation and a creation operators that correspond to the product of two
transition dipole moments [61].

This linear relationship between P and E, however, does not hold anymore for strong
fields E. In general P(E(r, t)) can be a very complicated function. To approach this
dependence, P can be expanded in a power series of E, under the assumption that the
field is sufficiently weak so that magnetic dipoles and higher-order electric and magnetic
multipoles can still be neglected (Fig. 1.1). The formalism above then yields [62]:

P(r, t) =

∫ ∞
−∞

χ(1)(t− t′):E(r, t′)dt′

+

∫ ∞
−∞

χ(2)(t− t1, t− t2):E(r, t1)E(r, t2)dt1dt2 (1.11)

+

∫ ∞
−∞

χ(3)(t− t1, t− t2, t− t3):E(r, t1)E(r, t2)E(r, t3)dt1dt2dt3

+ ...

with the (n+ 1)th-rank tensor χ(n) as the n-th order nonlinear susceptibility. If the electric

P

E

E(t)

P(t)

t

t

P

E

E(t)

P(t)

t

t

(a) (b)

Figure 1.1: P(E)-dependence (solid line) and its linear approximation (dashed line) [63].
For small field amplitudes (a) P follows E in a linear way (linear optics) while this does
not hold for larger electric field amplitudes (b) when higher-order contributions appear in
the polarization P (nonlinear optics). Grey dotted lines as a guide to relate the incoming
field E(t) and the generated polarization P(t).

field can be expressed as a superposition of monochromatic plane waves

E(r, t) =
∑
i

E(ki, ωi) (1.12)
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1.1. Introduction to Nonlinear Optics

a Fourier transformation of Eq. (1.11) results in

P(k, ω) = P(1)(k, ω) + P(2)(k, ω) + P(3)(k, ω) + ... (1.13)

with

P(1)(k, ω) = χ(1)(ω):E(k, ω)

P(2)(k = ki + kj, ω = ωi + ωj) = χ(2)(ωi + ωj):E(ki, ωi)E(kj, ωj) (1.14)
P(3)(k = ki + kj + kl, ω = ωi + ωj + ωl) = χ(3)(ωi + ωj + ωl):E(ki, ωi)E(kj, ωj)E(kl, ωl)

and

χ(n)(ω = ω1 + ω2 + ...+ ωn) =

∫ ∞
−∞

χ(n)(t− t1, t− t2, ..., t− tn)

× ei[ω1(t−t1)+ω2(t−t2)+...+ωn(t−tn)]dt1dt2...dtn (1.15)

The physical origin of the polarization in dielectric materials is the displacement, in-
duced by an external field, of the electron charge density with respect to the nuclei charge
density. For small electric field strengths at optical frequencies, the electrons will oscillate
in the lower parts of the nucleus’ potential where it can be treated as a harmonic well.
Therefore only the linear part of the susceptibility is present in the polarization. If however
the field is strong enough not to be neglected anymore compared to the internal atomic
field Ea between the core and the electron shell, the harmonic approximation fails and
nonlinear terms of the susceptibility come into play. Ea is on the order of 3 · 1010 Vm−1

[63]. For fields of such magnitudes, intensities of about 1014 Wcm−2 have to be provided.
Normal sunlight shines with up to 0.07 Wcm−2 in Central European latitudes. Even fo-
cused standard continuous wave (cw) lasers do not reach such magnitudes. That is why
nonlinear optics depends on the use of picosecond or even shorter pulsed lasers, where
the laser energy is temporally confined into these tiny intervals, resulting in huge field
strengths. Upon further increase of the field strength the electric dipole approximation
breaks down due to several different effects like ionization or the oscillation of the nuclei
themselves in the external field as can be observed when using attosecond pulses.

The different contributions to the nonlinear polarization are best studied in the fre-
quency domain rather than in the time domain because they can be easily classified by
using Eqs. (1.13) and (1.14) not only according to their order of nonlinearity but also
according to the frequencies at which the corresponding fields radiate. In the following
will be presented in detail all nonlinear processes that constitute a part of the experi-
ments performed for this work while others will only be mentioned briefly to give a general
overview. In these sections χ(n)(ω;ω1, ω2, ..., ωn) will denote the susceptibility associated to
a process of n-th order that creates a field of frequency ω out of the generating frequencies
ω1 +ω2 + ...+ωn. At this stage we treat the problem as a scalar one, the tensorial analysis
follows in later chapters. Whenever the tensorial nature of χ(n) is considered in this chapter
it is stated explicitly.
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1.2. Second-order nonlinear processes

1.2 Second-order nonlinear processes

1.2.1 Second-Harmonic Generation (SHG)

The simplest of all nonlinear processes is the generation of the second harmonic, in which
two fields of frequency ω create a polarization field with twice their frequency in the
nonlinear medium χ2(2ω;ω, ω) (Fig. 1.2). Decomposition of the second-order susceptibility

2ù

ù
ù (2)÷

ù

ù

2ù

(a) (b)

Figure 1.2: Second-harmonic generation. (a) geometry of the process; (b) SHG energy-level
diagram (solid black line: energy ground level; dashed lines: virtual energy levels).

tensor in Eq. (1.14) results in (accounting for the tensorial nature of χ(2)):

PI(2ω) =
∑
JK

χ
(2)
IJK(2ω)EJ(ω)EK(ω) (1.16)

Each tensorial element χ(2)
IJK couples the fields polarized in directions J and K to generate

a SHG field in direction I ((I, J,K) = (X, Y, Z)). The final field PI is then the superposi-
tion of all these couplings.

SHG only occurs in non-centrosymmetric media. This is easily seen under spatial
inversion (r→ −r). Eq. (1.16) then transforms to:

P
(2)
I (−r) =

∑
JK

χ
(2)
IJK(−r)EJ(−r)EK(−r) (1.17)

= −P
(2)
I (r) =

∑
JK

χ
(2)
IJK(−r)(−EJ(r))(−EK(r)) =

∑
JK

χ
(2)
IJK(−r)EJ(r)EK(r)

Writing this for every single coupling (I, J,K) and comparing it with Eq. (1.16) leads to
χ

(2)
IJK(−r) = −χ(2)

IJK(r). In centrosymmetric media the material properties do not change
under room inversion, so that χ(2)

IJK(−r) = χ
(2)
IJK(r) from which follows χ(2)

IJK = 0 for all
(I, J,K). The same reasoning applies to all other even-ordered nonlinear processes.

SHG is a coherent process, based on the pure scattering of a harmonic photon, without
necessitating an absorption event such as in fluorescence (see section 1.4). The photons
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1.2. Second-order nonlinear processes

pass via virtual levels so that the SH generation occurs instantaneously. The created wave
therefore has a fixed phase relation to the generating field E. As E propagates through the
nonlinear material more and more nonlinear dipoles start to radiate the second harmonic
in a coherent way. Was the medium’s refractive index n a constant, all these radiated
SHG fields emitted in the propagation (forward) direction of the incident radiation would
be in phase or phase matched and the total signal would build up over the whole length
of the medium (Fig. 1.3b). In this way measurable signals could be detected even with
very small laser intensities provided the material was thick enough, and the SH generation
would occur over a sufficiently large distance. However, due to the fact that the refractive
index of a material is generally wavelength-dependent (n = n(ω)), a wave vector mismatch
between created and propagating harmonic waves ∆kfwd = k2ω−2kω occurs in the forward
direction (with kω = n(ω)2π

λ
the wave vector of the driving field E, and k2ω the one of

the generated field P, where λ denotes the wavelength). Consequently the radiation of the
dipoles at a certain sample thickness is not any longer in phase with the radiation of the
dipoles somewhat in front of or behind them (Fig. 1.3c). As long as the phase mismatch is

P (2ù,t)
fwd

E(ù,t) E(ù,t)

P (2ù,t)
fwdP (2ù,t)

back
P (2ù,t)

back

phase
matching
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P (2ù,t)
back

objective

sample
plane

(a)

Figure 1.3: Illustration of phase matching (the blue areas represent the wavefronts of the
dipole emission). (a) Microscopy setup with forward and backward scattered signal. (b)
Perfect phase matching. The emission of all nonlinear dipoles is in phase in the forward
direction and coherent buildup creates a huge field. (c) Slight phase mismatch. The
dipoles’ emission fields are slightly out of phase in the forward direction resulting in only
partial constructive interference and consequently a smaller field. In both cases the SHG
backward emission is strongly phase mismatched.

smaller than π, the signal can still be considered phase matched which leads to a coherence
length of

lc,fwd =
π

∆kfwd
=

λ

4(n(2ω)− n(ω))
(1.18)

Microscopy samples for example in biology contain a lot of water. At room temperature
its refractive index for light with λ = 800 nm is 1.329, while at the corresponding SHG
wavelength it increases to n(λSHG = 400 nm) = 1.344 [64]. Thus ∆kfwd = 0.24µm and
lc,fwd = 13µm.
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1.2. Second-order nonlinear processes

To obtain the high energy densities required for nonlinear optics it is necessary to
tightly focus the laser beam which is done by objectives with high numerical apertures
(NA). Under these conditions the beam acquires an additional phase, the Gouy phase shift
∆kφG [65, 66], over the focussing region. The wave vector mismatch increases to:

∆kfwd = |k2ω − 2(kω + ∆kφG)| (1.19)

For high NA focussing this Gouy phase shift amounts to around π over a distance of 2λ.
For λ = 800 nm this results in ∆kφG = 2µm−1, which is much larger than the mismatch due
to the wavelength dependence of the refractive index and the coherence length becomes:

lc,fwd =
π

∆kfwd
≈ π

2∆kφG
=

π

π/λ
= λ (1.20)

This means that the SHG signal generated in the forward direction by the nonlinear dipoles
in a sample will buildup coherently for a distance about the size of the wavelength. Because
the SHG signal is only generated in considerable quantities at the center of the laser focus
due to the quadratic dependence on the electric field, a region itself comparable in size to
λ in the propagation direction of the laser [67], the SHG emitted in the forward direction is
coherent over the whole generation length. The dipoles of course radiate in the backward
(epi) direction, too (see Fig. 1.3a), but then k2ω and kω are opposite and the wave vector
mismatch increases to:

∆kepi = |k2ω + 2(kω + ∆kφG)| ≈ |4kω + 2∆kφG| (1.21)

under the assumption that 2kω and k2ω are similar. Consequently the coherence length
reduces significantly to:

lc,epi =
π

∆kepi
=

π

4n2π
λ

+ π
λ

=
λ

8n+ 1
≈ λ

12
(1.22)

for an aqueous medium with n ≈ 1.33. Therefore only very thin samples radiate backwards.
In addition this mode can also be used to study interfaces of thick nonlinear samples as only
dipoles in immediate interface vicinity contribute to the backward emitted signal. The use
of high NA objectives for focussing facilitates the detection of the backscattered light, which
is extensively used in imaging of biological samples like cells or tissues where many different
small structures like collagen fibers lead to epi-detectable SHG signals [68, 14, 69]. Bulk
investigations, on the other hand, can only be performed with forward emitted SHG. The
cross sections for SHG are generally very small, typically four orders of magnitude smaller
than those for two-photon fluorescence (section 1.4). For example for the dye Di-6-ASPBS
σSHG ≈ 10−3 GM, while σTPF ≈ 30 GM with 1 GM (Goeppert-Mayer) = 10−50 cm4s [11] for
a driving wavelength of 880 nm. Despite these tiny cross sections of the individual dipoles
the coherent buildup especially in the forward direction allows for the creation of quite large
signal strengths. To understand this let us consider a focal volume with N emitters each
radiating a field Prad. In the case of an incoherent process like fluorescence the total signal
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1.2. Second-order nonlinear processes

will be the sum of the individual intensities Ifluo ∝ N |Prad|2 while in the case of SHG to to-
tal field is the sum of the individual fields and therefore ISHG ∝ |NPrad|2 = N2|Prad|2 (this
is only a rough calculation not accounting for phase retardation effects between dipoles as
will be discussed in section 6.2). The square dependence on the number of emitters within
the coherence length allows the detection of nonlinear signals even with lasers giving much
less field strengths than the internal atomic field Ea.

Not specifying the spatial extension of the object that can induce phase-retardation
effects related to phase-matching as described before, the SHG intensity analyzed along a
direction i is a coherent sum:

I2ω
i ∝

∣∣∣∣∣∣∣
∫ ∫ ∫ k×

(
k× p2ω(Ω, r)

)︸ ︷︷ ︸
E2ω
i (Ω,r)


i

dΩdrdk

∣∣∣∣∣∣∣
2

(1.23)

with
p2ω(Ω, r) = χ(2)(Ω, r):Eω(r)Eω(r) (1.24)

over the orientation Ω, position r and emission direction k of the nonlinear induced field. It
is therefore clear that the measured intensity will be dependent on the incident polarization
Eω and the χ(2) tensorial properties of the explored material. It is the basis of the "nonlin-
ear polarimetric" approach further developed in chapter 3. Note that since χ(2) = Nβ with
β the molecular-scale hyperpolarizability, the retrieved signal is indeed proportional to N2.

That was also the reason why Franken et al. were able to detect SHG [70] already in
1961 shortly after the invention of the laser which were still quite weak back then. It was the
first experimental observation of a nonlinear optical process. Since then second-harmonic
generation has found numerous applications. Early works of Chen et al. [71] and Roth et
al. [72] showed its potential as a analytical and structural measurement tool in molecular
and biomolecular media. Soon SHG microscopy was developed, applied both to crystals [7]
and tissues [8]. Because SHG arises exclusively from non-centrosymmetric media, it offers a
structural contrast by nature which has led to a wide use in bio-imaging with prospectives
for biomedical diagnostics. As other multiphoton imaging techniques SHG microscopy
also benefits from the use of excitation wavelengths in the near infrared. In this region
biological tissues are more transparent than in the visible spectrum. Consequently the laser
excitation is less subject to illumination scattering, allowing for deeper optical penetration.
Furthermore SHG offers a very good intrinsic resolution (typically 300 nm lateral) because
the signal only arises with exploitable intensities from the focal point due to the quadratic
dependence on the electric field.

Examples for SHG imaging range from labeled artificial and cell membranes [73, 74] and
molecular monolayers [75, 76] down to single micro- and nano-crystals [77, 78, 79]. Cur-
rently intrinsic SHG responses from biomolecular assemblies such as in collagen [80, 69, 81],
microtubules [82] and skeletal muscles [83] are exploited with the ultimate goal of develop-
ing diagnostics of pathological effects related to tissues and cell architecture. As opposed
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1.2. Second-order nonlinear processes

to fluorescence these techniques do not require a previous labeling of the desired structure
and thus biological material can be imaged in its natural unaltered state.

In this work we will concentrate essentially on the exploitation of the polarization
dependence of the SHG signal. By controlling the excitation polarization state in nonlinear
microscopy it is possible better understand the 3D light-matter SHG interactions [84, 85,
86]. Polarization resolved SHG imaging has allowed retrieving information on molecular
orientations in highly ordered materials such as crystals [77, 78, 79, 87, 88, 89], oriented
molecular systems [90, 76] and biological samples [91, 92, 93, 94, 95, 96]. This kind of
information can play an important role in nano-material engineering as well as in biological
imaging.

1.2.2 Sum Frequency Generation (SFG)

Very closely related to SHG is Sum Frequency Generation (SFG). It differs only in the fact
that both coupled fields may have different frequencies. Eq. (1.16) then changes to

PI(ω = ω1 + ω2) =
∑
JK

χ
(2)
IJK(ω)EJ(ω1)EK(ω2) (1.25)

This can for example be achieved by coupling two monochromatic lasers (Fig. 1.4a). In
this work we use SFG that is excited by ultra-short laser pulses with pulse durations up
to several tens of femtoseconds. These lasers are spectrally broad and consequently in
a medium exhibiting a χ(2) nonlinear susceptibility sum frequency generation will occur
instead of pure SHG, because all different frequencies present within the pulse will get
coupled. In general there will be many frequency combinations leading to the same SFG
frequency (Fig. 1.4b). Thus Eq. (1.25) expands to:

PI(2ω) =

∫ ∞
−∞

∑
JK

χ
(2)
IJK(ω,Ω)EJ(ω − Ω)EK(ω + Ω)dΩ (1.26)

where the integration accounts for all these frequency pairs. Having all these couplings
present simultaneously means that a large band of virtual energy levels is involved in the
SFG process. Therefore chances increase that some of them coincide or lie close by to real
atomic or molecular energy levels, either vibrational or electronic. Passage via these levels
will of course modify the SFG probabilities of these pathways. To account for this the
second frequency dependence (Ω) of χ(2) has been introduced in Eq. (1.26). In the absence
of all intermediate real energy levels, in other words when all two-photon pathways leading
to the same SFG frequency have the same probability, χ(2) is again independent of Ω.

An excitation pulse containing frequencies within the [ωmin, ωmax]-interval will generate
a sum frequency spectrum confined to [2ωmin, 2ωmax]. The shape of the SFG pulse will
depend on the spectral characteristics of the generating laser. Not only do the intensity
and polarization of each frequency therein influence the final SFG spectrum, also the phase
relationship of all spectral components with respect to each other plays an important role
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Figure 1.4: Sum Frequency Generation. (a) geometry of the process in the case of only
two discrete wavelengths; (b) SFG energy-level diagram for a spectrally broad excitation
pulse (solid black line: energy ground level; dashed lines: virtual energy levels).

because all pathways leading to the same SFG frequency will interfere, either constructively
or destructively (see sections 2.2 and 4.5) [30, 31]. The ability to control amplitude, phase
and polarization of the excitation laser pulse is therefore crucial to understand the SFG
signal.

Because SHG is just a particular case of SFG, the latter possesses the same kind of
applications as the former. In chapter 4 we present a new method to read out the second
order nonlinear susceptibility tensor χ(2) by combining SFG microscopy with amplitude,
phase and polarization pulse shaping (see section 2.4).

1.2.3 Further second-order nonlinear processes

There are several other processes that are governed by the second-order nonlinear suscep-
tibility χ(2). Quite similar to sum frequency generation is difference frequency generation
(χ(2)(ω3 = ω1 − ω2;ω1,−ω2)). Here the generated signal is the difference between the
two incident frequencies (Fig. 1.5a). This means a high-energy photon (ω1) gets split up
into one of the lower incident energy (ω2) and the remaining difference (ω3). The result
is a amplification of the laser at ω2, hence the alternative name for this process: optical
parametric amplification. This mechanism can also be used to create a tunable infrared
radiation when a frequency- tunable visible laser is combined with another visible laser of
a fixed frequency.

A special case of difference frequency generation arises, when there is only one frequency
available in the incident field (χ(2)(0;ω,−ω)). A static electric field is created in the
nonlinear medium, which is an optical rectification effect (Fig. 1.5b).

Also the opposite can occur: When sending an optical field through a nonlinear medium
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1.3. Third-order nonlinear processes

under the presence of a static electric field (χ(2)(ω;ω, 0)), a term following the optical field
and proportional to the static field appears in the nonlinear polarization, leading to a
dependence of the refractive index at the frequency ω of the optical field on the static
field. This is the Pockels effect, used in optical modulators that behave similarly to those
presented in section 2.4 (Fig. 1.5c).
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Figure 1.5: Further second-order nonlinear processes. (a) difference frequency generation,
geometry and energy-level diagram (solid black line: energy ground level; dashed lines:
virtual energy levels); (b) optical rectification: static electric field gets created under the
action of an incident field; (c) Pockels effect: field gets modified under the action of a static
electric field.

1.3 Third-order nonlinear processes
Because a third-order nonlinear susceptibility couples three electric fields, the number of
possible processes is greater than for the second-order case.

1.3.1 Basic third-order nonlinear processes

In analogy to SHG three photons of the same frequency can be combined in a medium
to create one photon thrice as energetic (χ(3)(3ω;ω, ω, ω)). This process is called third
harmonic generation (THG)(1.6a,b). Symmetry considerations as presented above for SHG
(page 15) show that THG is not restricted to non-centrosymmetric media. In fact, every
medium has a non-zero third-order nonlinear susceptibility and will therefore produce a
THG signal. However, phase matching is less favored for this process, because the wave
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vector mismatch in the propagation (forward) direction of the exciting beam amounts to
(in analogy to the argumentation in section 1.2.1):

∆kfwd = |k3ω − 3(kω + ∆kφG)| ≈ 3∆kφG = 3
π

2λ
(1.27)

resulting in a coherence length of

lc,fwd =
π

∆kfwd
≈ 2

3
λ (1.28)

which is less than for SHG. The signal emitted against the propagation direction (epi),
however, accumulates a phase mismatch of:

∆kepi = |k3ω + 3(kω + ∆kφG)| ≈ 6kω + 3∆kφG = 6
2πn

λ
+ 3

π

2λ
≈ 35π

2λ
(1.29)

for a typical refractive index n around 1.33, reducing the coherence length to:

lc,epi =
π

∆kepi
≈ 0.06λ (1.30)

Thus no signal arises from homogeneous media. A constructive interference between the
radiated fields from different nonlinear dipoles is only possible when the sample is het-
erogeneous within the focal volume, i.e. when there are interfaces or inclusions, which
will induce an additional index mismatch in the focal volume [97]. Consequently THG
microscopy is used mainly for surfaces and has been combined with SHG imaging of cells
for example, because both processes give spectrally separable signals arising from different
parts of the cell, SHG from non-centrosymmetric fibers, most commonly microtubules, and
THG from lipid body surfaces [98]. It is also suited to detect inhomogeneities in an oth-
erwise homogeneous medium [99]. A combination of polarization and phase pulse shaping
has recently allowed to improve the spatial resolution in THG microscopy [100, 101].

When an intense optical field traverses a medium in the presence of a static electric
field, the quadratic electrooptic Kerr effect arises. The refractive index of the medium gets
then modified proportional to the square of the static field (χ(3)(ω;ω, 0, 0)).

One of the most important nonlinear optical processes is the optical Kerr effect
(
χ(3)(ω;ω,−ω, ω)

)
,

producing a response of the medium of frequency ω to the incident field of that same fre-
quency. It is of the form

P = χ(1)E + 3χ(3)EE∗E = (χ(1) + 3χ(3)I)E (1.31)

containing a linear term and one of third order proportional to the field’s intensity I = EE∗

whose factor 3 is due to the possible permutations of the fields. The propagation equation
(Eq. 1.7) then transforms to:

4E− 1

c2
(1 + 4πχ(1) + 12πχ(3)I)

∂2

∂t2
E (1.32)
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Assuming a plane wave and solving the time derivative results in:

4E +
ω2

c2
(1 + 4πχ(1) + 12πχ(3)I(r, t))E (1.33)

where 1 + 4πχ(1) + 12πχ(3)I(r, t) plays the role of the squared refractive index consisting
of the ordinary part n2

0 = 1 + 4πχ(1) and an intensity-dependent nonlinear component. As
this term is usually small the refractive index can be approximated as n = n0 + n2I(r, t).
This effect has several consequences: Because the transverse beam profile of a typical
laser usually resembles more or less a Gaussian, there is more energy in its center than
at the edges. Different parts of the beam profile therefore see different refractive indices
with the maximum in the center. The result is the autofocussing of the beam within the
medium (1.6c). If the original beam profile is not smooth but contains several perturbations
(local maxima), every one of them suffers from the autofocussing process resulting in
a filamentation of the beam. The optical Kerr effect also modifies the temporal form
of the pulse envelope. The temporal center of the pulse experiences a higher refractive
index due to its higher intensity than the temporal edges. It thus propagates somewhat
slower through the medium. This leads to a pulse where the intensity increases slowly
in the beginning and drops rapidly after the maximum has been reached. Additionally
the spectral phase (see section 2.2) is affected (self phase modulation). For a plane wave
propagating along z it is expressed as:

φ(t, z) = kz − ωt = φ(t, 0) + 2πn
z

λ
= φ(t, 0) + 2πn0

z

λ
+ 2πn2

z

λ
I(t, 0) (1.34)

In analogy to the derivation of the arrival time of a certain frequency within a spectrally
broad pulse in section 2.2 the instantaneous frequency ωinst(t) of such a pulse is related to
its spectral phase via: ωinst(t) = −∂φ

∂t
. Thus follows:

ωinst(t) = ω0 −
2πn2L

λ

∂I(t)

∂t
(1.35)

where ω0 denotes the central frequency of the pulse before entering the nonlinear medium
of length L. Before the intensity maximum is reached ∂I(t)

∂t
is positive and therefore the

instantaneous frequency will be lower than ω0. But because the pulse envelope gets also
shifted as explained above the intensity rises only gradually and the effect is very small.
On the other hand once the maximum has been passed, the intensity falls abruptly thus
creating a large negative derivative ∂I(t)

∂t
and a great number of frequencies higher than

ω0 appear in the pulse. In this way the self phase modulation not only rearranges the
frequencies within the pulse putting the lower ones to the beginning and the higher ones
to the end, it also creates new frequencies on the high-frequency side of the pulse spectrum
that were not present before the passage of the nonlinear material (1.6d).

1.3.2 Coherent anti-Stokes Raman Scattering (CARS)

All processes presented so far do not take into account the energy level structure of mat-
ter. The medium’s role was to provide the nonlinear susceptibility that allows for photon
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Figure 1.6: Basic third-order nonlinear processes. (a,b) Third-harmonic generation (THG):
(a) geometry of the process; (b) energy-level diagram (solid black line: energy ground level;
dashed lines: virtual energy levels). (c,d) Optical Kerr effect. (c) autofocalisation; (d) self-
phase modulation: intensity maximum gets temporally delayed, and higher frequencies
appear in the spectrum (FT: Fourier transformation).

coupling and frequency rearrangements. But the medium itself was never affected, all
processes passed via virtual energy levels. This of course is a very incomplete picture,
because any material has a large number of energy levels describing electronic, vibrational
or rotational states of its constituents. Rotational transitions require only very small ener-
gies in the meV-range. Considering that room temperature corresponds already to about
25 meV, these rotational states are almost evenly populated and any rotational transitions
induced by external sources such as lasers would be completely masked by the thermal
motion. Thus these states can be neglected for the study of nonlinear optics. Transitions
that change the vibrational state of a molecule’s or crystal’s nuclei relative to one another
require energies in the 0.1 eV-range, less than contained in optical fields. They can however
be addressed by a combination of fields as explained further down. To cause an electronic
transition that changes the energy level of the valence electrons finally necessitates ener-
gies in the eV-range, about the same amount as provided by optical fields (for example
the photons in a laser with a wavelength of 800 nm carry 1.5 eV). Given this abundance
of vibrational and electronic levels it is clear that they cannot be discarded when dealing
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with nonlinear processes especially when the order of nonlinearity increases and more and
more fields get coupled giving access to more and more coupling frequencies. As the energy
levels are characteristic for a medium, using them in nonlinear experiments opens up paths
for material detection and identification.

One process that attempts to do exactly this is Coherent anti-Stokes Raman Scattering
(CARS). It is a combination of two Raman scattering processes. In this mechanism, first
discovered in 1928 independently by Landsberg and Mandelstam [102] in the Soviet Union
and by the Indians Raman and Krishnan [103], light undergoes a frequency change when
scattered in matter. This frequency change can be either positive or negative depending on
the state of the scatterer. If the scattering particle is in its ground state, the incident photon
can trigger a transition to an excited vibrational state and the energy of the scattered
photon will be that of the incident one, reduced by the transition energy, it will be red-
shifted. This regime is called Stokes scattering. If on the other hand the scatterer is
already in an excited vibrational state, the incoming photon can take up this energy in
the scattering process, leaving the particle in its ground state while the scattered photon
gets blue-shifted, the anti-Stokes scattering regime. As at room temperature almost all
particles are in their vibrational ground states, anti-Stokes scattering is extremely rare
compared to Stokes scattering. And in any case, both forms of Raman scattering are much
unfavored compared to elastic (or Rayleigh) scattering where neither the photon undergoes
a frequency change nor the scattering particle a vibrational transition (Fig. 1.7a).

The cross sections for Raman scattering can however be greatly increased by stimulating
these processes. When two optical fields with frequencies ωp and ωS are simultaneously
present in a nonlinear medium they will couple to generate a field with the difference
frequency Ω = ωp−ωS (see Fig. 1.5a). If Ω matches a vibrational transition, this transition
will be stimulated and the difference field gets absorbed, pumping a great number of
molecules into the excited state. The two incident fields are called pump and Stokes
fields because the first lifts the molecule to a virtual energy level from which the second,
lower energetic, field then triggers the transition as it would occur in a Stokes scattering
process. If then a third, the probe, field (at frequency ωpr) interacts with the medium,
the anti-Stokes process occurs, resulting in a signal field at ωas. Taken together this
is the CARS process (Fig. 1.7b). It is a third-order nonlinear process described by:
χ(3)(ωas = ωp − ωS + ωpr;ωp,−ωS, ωpr). Although it involves a transition of the molecule
through a real state, the process is nonetheless coherent because the anti-Stokes emission
is radiated in a coherent way by the probe field and not spontaneous.

As with all non-linear processes, cross sections for CARS are very small and high field
strengths are required to generate a detectable signal. These are only provided by pulsed
lasers with pulse durations in the picosecond or even femtosecond range. Immediately
the difficulty arises to synchronize the three exciting fields so that the pulses from all of
them overlap in time, a task far from being trivial given the extremely short pulse dura-
tions. This and the general effort to reduce experimental setup complexity have let to the
widespread use of the pump laser for the probe field as well (ωpr = ωp), so that only two
lasers need to be synchronized.
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Figure 1.7: Raman scattering and CARS. (a) Raman scattering. Upper left: Stokes scatter-
ing; upper right: anti-Stokes scattering (a double arrow designates the vibrational excited
state); below: frequency and intensity comparison of Rayleigh (ω0), Stokes (ωS) and anti-
Stokes (ωas) scattering signals. (b) CARS energy level diagram. |0 >: energy ground state;
|e >: excited vibrational state; Ω: vibrational energy; dashed lines: virtual energy levels;
incident fields: pump (ωp), Stokes (ωS) and probe (ωpr); anti-Stokes signal field ωas.

Beyond that another source of difficulties arises in the CARS process: the non-resonant
background. The frequency combination depicted in Fig. 1.7b is not the only one possible.
Even if ωp − ωS equals Ω, a coupling of ωp,ωS and ωpr = ωp does not have to pass via
the vibrationally excited level |e > as shown in Fig. 1.8a. This combination produces
a coherent field at the same anti-Stokes frequency ωas as in the resonant case. A non-
resonant process also occurs when ωp − ωS does not match the resonance frequency Ω
(Fig. 1.8b). Both processes constitute the commonly known non-resonant CARS signal,
through strictly speaking no anti-Stokes Raman scattering occurs because the scatterers
never change their vibrational states during the process. But because these signals always
accompany any resonant CARS signal they are treated and named as an ensemble. The
total CARS signal can therefore be written, based on Eq. (1.14), as:

ICARS = |χ(3)
R (ωas):EpEpE

∗
S + χ

(3)
NR(ωas):EpEpE

∗
S|2 (1.36)

with χ(3)
R and χ(3)

NR as the resonant and non-resonant nonlinear susceptibilities, and Ep and
ES the pump/probe and Stokes fields.

As the virtual energy levels in these non-resonant processes are usually far away from
real vibrational or electronic states of the nonlinear material, χ(3)

NR is frequency-independent.
Since it is not involved in any absorption of light, it does not contain an imaginary part.
That is of course not true for the resonant nonlinear susceptibility. Because the energy
levels in molecules are of a Lorentzian line shape, χ(3)

R will follow the same behavior,
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1.3. Third-order nonlinear processes
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Figure 1.8: Non-resonant CARS energy level diagrams. (a) ωp − ωS = Ω, but only virtual
energy levels (dashed lines) are involved in the creation of the signal at ωas; (b) ωp−ωS 6= Ω.
|0 >: energy ground state; |e >: excited vibrational state; Ω: vibrational energy; incident
fields: pump/probe (ωp), Stokes (ωS).

resulting in:
χ

(3)
R =

a

(ω − ΩR) + iΓ
(1.37)

where ω is the beating frequency ωp−ωS between the pump and the Stokes field. In the res-
onance case, when ω equals the vibrational transition frequency ΩR, χ

(3)
R gets maximized,

its finiteness assured by the absorption term described by the imaginary part of the expres-
sion, where Γ corresponds to the half width at half maximum (HWHM) of the Lorentzian
curve. a is the oscillator strength, specific for each vibrational transition. Inserting Eq.
(1.37) in Eq. (1.36) then gives:

ICARS ∝ |χ(3)
R + χ

(3)
NR|

2 = |χ(3)
R |

2 + 2|χ(3)
NR|Re{χ(3)

R }+ |χ(3)
NR|

2

=
a2

(ω − ΩR)2 + Γ2
+ 2|χ(3)

NR|
a(ω − ΩR)

(ω − ΩR)2 + Γ2
+ |χ(3)

NR|
2 (1.38)

The superposition of the fields arising from the resonant and the non-resonant coupling
leads to three terms contributing to the measured CARS intensity. The first term in Eq.
(1.38) contains the purely resonant term derived from the Lorentzian shape of the resonant
nonlinear susceptibility, corresponding thus to the signal in ordinary Raman spectroscopy.
It contains all information on the vibrational mode. The second term, proportional to the
real part of χ(3)

R , comprises the interference of the resonant and non-resonant contributions.
Because both signals are coherent, this term can be considered as heterodyning the reso-
nant contribution with a local oscillator created by the non-resonant field. As opposed to
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1.3. Third-order nonlinear processes

the resonant term in Eq. (1.38) which is symmetric to the resonance frequency ΩR, the het-
erodyne term shows an antisymmetric dependence. The third term, containing exclusively
the non-resonant contribution, acts only as a constant offset. The resulting CARS signal
from these three terms is depicted in Fig. 1.9a. Typically CARS spectra are obtained by
fixing either the pump or the Stokes laser at a certain frequency and tuning the frequency
of the other one, thus continuously changing the addressed beating frequency ω = ωp−ωS.
ω is usually expressed in wave numbers (cm−1), which is the inverse wavelength of the
molecular vibration. An example of a CARS spectrum is shown in Fig. 1.9b and com-
pared with the corresponding Raman spectrum (Fig. 1.9c). While the Raman spectrum
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Figure 1.9: CARS spectrum. (a) Different contributions to a CARS spectrum [104]; (b)
CARS spectrum of the lipid 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) between
1000 and 1200 cm−1 with three resonances; (c) Raman spectrum of DSPC in the same wave
number range [105].

only contains the resonant contribution, the typical peak-dip structure is clearly visible in
the CARS spectrum due to the influence of the non-resonant pathway.

Typical high energetic vibrations, like the C-H stretching mode around 3000 cm−1 or
the C=O stretching mode around 1750 cm−1 often appear as relatively isolated peaks in
Raman and CARS spectra. They are exhibited by many substances since they only involve
two atoms. To identify an organic compound one has to look into the fingerprint region
(< 1000 cm−1), where low-energetic vibrations can be found that involve more constituents
and are therefore characteristic for a certain molecule. Because the number of possible vi-
brations increases rapidly with the number of participating atoms, this fingerprint region
is usually very crowded in vibration bands. To obtain the Raman spectrum, the sample
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1.3. Third-order nonlinear processes

gets illuminated by a fixed frequency and the Raman scattered photons are detected. Since
there is no stimulated process in this case and the underlying cross sections are very tiny,
the whole procedure can take very long times, making it unsuitable for microscopy imaging
applications. CARS offers a much faster alternative. However, due to the complex signal
generation process, CARS spectra are much harder to interpret. Not only do they contain
the non-resonant background, the signal shows also a quadratic dependence to the pump
power and a linear one to the Stokes beam power. Adding the uncertainties arising for
example from unperfect focal volume superposition of the two lasers, it is very difficult to
extract quantitative information on scatterer concentrations from CARS measurements,
that are immediately accessible in classical Raman spectroscopy. Nevertheless, successful
experiments in CARS microscopy have opened up the way to new perspectives, based on
different schemes that will be described below an in chapter 5.

As is the case for the nonlinear processes presented so far, the intensity of the CARS
emission in a certain direction is strongly tied to phase matching considerations. In analogy
to Eq. (1.19) for SHG, the total wave vector mismatch for CARS emitted in the forward
direction reads as:

∆kfwd = |kas − 2(kp + ∆kφG,p) + (kS + ∆kφG,S)|

= |kas − 2kp + kS − 2
π

2λp
+

π

2λS
|

≈ π

λp
− π

2λS
(1.39)

with kp, kS, kas the wave vectors of pump, Stokes and anti-Stokes beams respectively. As
in the case of forward emitted SHG (see page 17) the wave vector mismatch due to the
frequency dependence of the refractive index (kas−2kp+kS) can be neglected compared to
the mismatch caused by the Gouy phase shift. Because kS is directed opposite to kp, the
total wave vector mismatch for forward emitted CARS is much smaller than for example
in the case of THG. The correspondent coherence length then becomes:

lc,fwd =
π

∆kfwd
=

1
1
λp
− 1

2λS

(1.40)

The concrete value of lc,fwd depends on the pump and Stokes frequencies used, but it will be
contained between λp (for λS � λp) and 2λp (for λS → λp). In any case this is larger than
the distance over which the CARS signal is generated due to the third-order nonlinearity
of the process. Therefore CARS is always phase matched in the forward direction. In the
epi direction the phase mismatch is stronger:

∆kepi = | − kas − 2kp + kS − 2
π

2λp
+

π

2λS
| ≈ |2(kS − 2kp)− 2

π

2λp
+

π

2λS
|

= |2(
2πn

λS
− 2

2πn

λp
)− 2

π

2λp
+

π

2λS
| = π(8n+ 1)

∣∣∣∣ 1

2λS
− 1

λp

∣∣∣∣ (1.41)
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1.3. Third-order nonlinear processes

and the coherence length is reduced to:

lc,epi =
π

∆kepi
=

1

(8n+ 1)
(

1
λp
− 1

2λS

) (1.42)

For a refractive index of n = 1.33 it ranges from lc,epi = 0.09λp (for λS � λp) to
lc,epi = 0.17λp (for λS → λp). This means that, as for THG, there is no CARS signal
in the epi direction for thick samples (except from backscattering) and only a small one
for extremely thin ones.

CARS was first presented by Maker and Terhune in 1965 [106] as a process resulting
from the third-order nonlinear susceptibility, though not yet under this name (which does
not lack a certain irony considering them working for the Ford Motor Company). In 1973
it was proposed as a concentration measurement tool in gas spectroscopy [107] and shortly
afterwards the first successful implementation in liquids was achieved by Begley et al.
[5]. They profited from the blue shift of the CARS signal relative to the exciting lasers.
This allowed them to neatly separate it from the fluorescence background in their samples
that is always red-shifted with respect to the excitation. Since the traditional Raman
signal appears in the same frequency range as the fluorescence, it would be masked by the
latter and thus the use of CARS instead of spontaneous Raman scattering allowed much
more precise concentration measurements. Soon, the interest also turned towards CARS
microscopy, first proposed in 1982 by Duncan et al. [108], but progress was slow due to
experimental difficulties. Only in 1999 was the field restarted when Zumbusch et al. [9]
could benefit from more stable femtosecond laser sources. Since then CARS microscopy
has experienced a remarkable growth. The ability of CARS to give an intrinsic contrast
in biological samples, especially of lipids, which is, moreover, chemically specific, without
the need of prior staining with fluorophores [109, 110] shows its potential for medical
diagnostics. It can also be easily combined with techniques like two-photon fluorescence
(see section 1.4) due to signal appearance in different spectral regions [111, 112, 113].

To extract quantitative information from a CARS image the resonant part of the signal
has to be discriminated against the non-resonant background. Only a selection of all the
different possibilities proposed so far will be presented here; for a more complete list the
reader can refer to the PhD thesis of D. Gachet [104]. Several approaches attempt to elim-
inate the non-resonant background altogether. One possibility is to polarize the pump and
Stokes beams in different directions (polarization CARS), resulting in differently polar-
ized resonant and non-resonant signal parts that can be selected by a subsequent analyzer
[114, 115]. One can also profit from the fact that the non-resonant pathway is instanta-
neous while in the resonant pathway the system rests for a certain time in the excited
vibrational level. By delaying the probe photon with respect to the first pair of pump
and Stokes photons the resonant contribution will be generated at a later time than the
non-resonant one, and a detector with good temporal resolution can discriminate between
these signals (temporal CARS) [116, 117]. Unfortunately these techniques result also in
a much weaker resonant signal, so that they are not suited for small concentrations of
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1.4. Incoherent nonlinear processes: Two-Photon Fluorescence (TPF)

scatterers or weak vibrational modes. Therefore it is often not desirable to suppress the
non-resonant signal. Instead the extraction of the resonant signal can also be performed
by a heterodyne detection, where the CARS signal is mixed with a local oscillator at the
same frequency. Modulating the phase of this oscillator allows retrieval of the resonant
component [118, 119, 120].

So far CARS was considered as a process, where two lasers at specific frequencies ωp and
ωS generated the anti-Stokes signal at one specific ωas. To obtain a whole CARS spectrum,
it is thus necessary to tune one or both of the incident laser frequencies so that many
ω = ωp−ωS can be probed. The process is therefore very time-consuming. The availability
of spectrally broad lasers in the femtosecond pulse range has offered new possibilities to
overcome this limitation. If a spectrally narrow pump pulse is combined with a broad
Stokes pulse - multiplex CARS -, the probed CARS region will have the same spectral
width as the Stokes pulse with a spectral resolution limited by the width of the pump pulse
[105, 121]. If two broadband pulses are used, problems with the spectral resolution of the
CARS signal arise, that can be addressed by shaping the pulses. In the easiest case, a linear
chirp (see section 2.2) in both pulses can recover some of the resolution because different
frequency differences ω = ωp − ωS will act on the sample at different times and thus the
CARS spectrum can be reconstructed from the signal time trace on the detector [122]. The
work of Knutsen et al. [123, 124] and Andresen et al. [125] followed the same idea. Since
femtosecond lasers provide broad spectra, just one single laser can serve simultaneously
as pump, Stokes and probe - single pulse CARS -, reducing greatly the experimental
complexity by removing the obligation for pulse synchronization and focal volume overlap.
On the other hand additional steps have to be taken to spectrally resolve the resonant
contribution. Via pulse shaping (see section 2.4) amplitude, phase or polarization features
have to be introduced into the excitation spectrum, leading to exploitable signatures in the
CARS signal. This approach was first taken by the group of Silberberg [126, 127, 38, 49, 39].
Others followed and developed data treatment algorithms to obtain Raman-like spectra
[50, 40]. We used this approach in combination with polarization pulse shaping to measure
the Raman depolarization ratio (see chapter 5, where these techniques are more thoroughly
described) and to investigate the enhancement of the CARS signal of a solvent in the
presence of micrometric dielectric spheres (see chapter 6).

1.4 Incoherent nonlinear processes: Two-Photon Fluo-
rescence (TPF)

While CARS passes via a real vibrational energy level of the nonlinear medium, it remains
a coherent process because the final transition again involves a virtual state and thus the
emitted signal is coherent to the exciting field. However, as soon as the last traversed level is
real, the corresponding process becomes incoherent. This is due to the fact that the system
stays for a stochastically distributed time in the real state and thus looses memory of the
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1.4. Incoherent nonlinear processes: Two-Photon Fluorescence (TPF)

exciting conditions, particularly of the phase state of the incident field. All luminescence
processes belong into this category. They exist in linear and nonlinear versions. A nonlin-
ear one playing an important role in this work is two-photon fluorescence (TPF). The name
is a bit misleading, because it involves a two-photon excitation, followed by an emission
of fluorescence. The two-photon absorption step is modeled by χ(3) and thus TPF can be
considered as a third-order nonlinear process as well, which will be explained further down.

But let us first focus on the one-photon excitation fluorescence. When a molecule ab-
sorbs a photon it can emit a red-shifted photon some time later, a process called lumines-
cence, encompassing both fluorescence and phosphorescence. Since at room temperature
almost all molecules are in their ground states |S0〉, the absorption lifts the molecule from
the ground state to the first excited electronic state |S1〉 [128]. In the excited state, how-
ever, the atom cores of the molecule have a slightly larger equilibrium distance R1 than
in the ground state (R0). Due to the much smaller mass of the electrons compared to
the cores, the electronic transition can be considered to be instantaneous compared to
the motion of the nuclei, the Franck-Condon principle [129, 130]. This means right after
the absorption the nuclei are closer than R1 and will consequently commence a vibration
around the new equilibrium distance. Thus an electronic transition is always accompanied
by a vibrational transition. In the case of liquid media, the molecule will relax very rapidly
into the lowest vibrational state of the excited electronic state, where the core distance will
be R1, via internal conversion, a radiationless process. From this state the molecule can
relax further to its ground state by emission of a photon: fluorescence. Now the transition
starts from the core distance R1, so after the emission the nuclei will vibrate around the
new equilibrium distance R0 which they reach again through internal conversion. Therefore
also the fluorescence emission is accompanied by a vibrational transition. The energy of
the emitted photon is thus the energy of the absorbed photon minus the energies of the vi-
brations triggered by the absorption and emission and that is the reason why fluorescence
is red-shifted compared to the excitation (Fig. 1.10). Because the internal conversion,
occurring on time scales in the picosecond range, is much faster than typical fluorescence
lifetimes that amount to tens of nanoseconds, the molecule will have relaxed to the lowest
vibrational state before fluorescence occurs. Therefore no matter which is the excitation
frequency, the fluorescence almost always originates from this lowest state, making the flu-
orescence spectrum more or less independent from the excitation frequency (Kasha’s rule
[131]). But still transitions to many different vibrational levels remain possible resulting
in a spectrally broad fluorescence signal.

Quantum mechanical selection rules require that the electron spin configuration of the
molecule does not change when absorbing or emitting photons. Because the ground state
|S0〉 is a singlet state, the various traversed excited states |S1〉 are singlet states as well.
However, due to strong spin-orbit interaction, transitions into an excited triplet |T1〉 state
are possible, though they occur very seldom compared to the fluorescence pathway remain-
ing in the singlet system. After this intersystem crossing the molecule will again relax via
internal conversion into the lowest vibrational mode of the excited electronic triplet state.
A subsequent radiative transition to the ground state requires once more an intersystem
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crossing. Because this process is unlikely the lifetimes of excited triplet states are much
longer (milliseconds to seconds) compared with those of singlet states. The photons emit-
ted from such a transition are referred to as phosphorescence. Fig. 1.10 gives an overview
over both fluorescence and phosphorescence.
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Figure 1.10: Luminescence. (a) energy level diagram. |S0〉: ground state; |S1〉: first elec-
tronic excited singlet state; |T1〉: first electronic excited triplet state (all with associated
vibrational levels); A: absorption, C: internal conversion, F: fluorescence, IC: intersys-
tem crossing, P: phosphorescence. (b) Illustration of the Franck-Condon principle with
potential well model (molecular states as in (a)). Electronic transitions (A,F,P) trigger
vibrational transitions due to different core distances for different states (R0 and R1: equi-
librium core distances for ground state and first excited singlet state respectively).

In one-photon excitation fluorescence a single photon is absorbed by the molecule. The
absorption probability A1ph can then be written as:

A1ph = |µ01Eω|2 (1.43)

where Eω is the incident field at frequency ω and µ01 the molecular absorption dipole
oriented in space, describing an electronic transition from the ground state |0〉 to the first
excited state |1〉. Expressing µ01 in terms of its components leads to:

A1ph = |
∑
i

µ01
i E

ω
i |2 =

∑
ij

µ01
i µ

01
j E

ω
i E
−ω
j = (µ01 ⊗ µ01) · (Eω ⊗ E−ω) (1.44)

The right part of this equation translates the process into a tensorial expression where ⊗
refers to a tensorial product. The product of the absorption dipoles (µ01⊗µ01) is a second-
rank tensor, the one-photon absorption cross section α, whose components are formed as
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αij = (µ01⊗µ01)ij = µ01
i µ

01
j . One-photon absorption is thus governed by the same kind of

tensor as the other linear optical processes (see Eq. (1.14)). α is therefore directly related
to the linear susceptibility χ(1). Consequently one-photon absorption is proportional to the
intensity of the exciting field, as is also evident from Eq. (1.43).

An electronic excitation can, however, also be achieved by absorbing two photons si-
multaneously whose combined energy corresponds to the transition energy. The system
will pass from the ground state |0〉 via a virtual state |v〉 to the excited state |1〉 (Fig.
1.11a). The two-photon absorption probability thus reads:

A2ph = |µ0vEω|2|µv1Eω|2 (1.45)

An analogous treatment as above results in [79]:

A2ph = (µ0v ⊗ µ0v ⊗ µv1 ⊗ µv1) · (Eω ⊗ E−ω ⊗ Eω ⊗ E−ω)

= γ · (Eω ⊗ E−ω ⊗ Eω ⊗ E−ω) (1.46)

with the fourth-rank tensor γ defined as the two-photon absorption cross section, showing
that two-photon absorption is a third-order nonlinear process (see again Eq. (1.14)). To
derive the relationship between γ and the third-order nonlinear susceptibility χ(3):

γ =
8π2

c2ε
Im{χ(3)} (1.47)

with the speed of light c and the dielectric constant ε, quantum theory and second-order
perturbation theory need to be used as demonstrated by Shen [61].

One and two-photon absorptions follow different selection rules due to the fact that
photons are bosons that therefore carry a spin of 1. In one-photon transitions the initial
and final state therefore need to show a difference in angular momentum of ±1, while in
two-photon transitions the difference has to be 0 or ±2. But no matter how the excitation
occurred, whether by a one-photon or a two-photon transition, the emission part of the
fluorescence process is the same in both cases. The emitted fluorescence field Eem in the
propagation direction k arises from the emission dipole µem (itself defined by the transition
dipole µ0F between the ground and the fluorescing state) and follows the dipole radiation
behavior:

Eem ∝ k× (k× µem) (1.48)

The complete TPF process is the combination of the two-photon absorption and the
one-photon emission parts (Fig. 1.11b and 1.11c), thus the TPF intensity is calculated as:

I ∝ |µabs · E|4|Eem|2 (1.49)

In a standard TPF measurement a great number of fluorophores is present within the
focal volume, each at a position r with an orientation of the absorption and emission
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Figure 1.11: Two-photon fluorescence. (a) energy level diagram. |0〉: ground state; |1〉:
first electronic excited state (both with associated vibrational levels); |v〉: virtual state; E:
excitation field, C: internal conversion, F: fluorescence. (b) absorption: absorption dipole
µabs oriented along Ω = (θ, φ) in space (X, Y, Z) interacting with excitation field E. (c)
emission pattern Eem ∝ k× (k× µem) from the emission dipole µem.

dipoles Ω = (θ, φ), described by the orientation distribution function f(Ω). The TPF
intensity in the analyzing direction i (expressed by the unit vector in that direction ui) is
the superposition of all individual intensity contributions:

Ii =

∫ ∫ ∫
|µabs(Ω, r) · E(r)|4|Eem(Ω, r,k) · ui|2f(Ω)dΩdrdk (1.50)

with E(r) the excitation field vector calculated at the position r. Because the signal gets
measured during a fixed time, the average absorption over this period (...) has been in-
cluded as well. Note that the summation is exclusively done over intensities, never over
fields. This is a consequence of the incoherent nature of the TPF process. The absorp-
tion and subsequent internal conversion plus the emission after a stochastically distributed
dwell time in the excited state lead to a complete memory loss of the excitation conditions
and the emission becomes completely uncorrelated from the state of the excitation field
and also the emission from one fluorophore will be uncorrelated from that of another. A
coherent buildup, as can occur in coherent nonlinear processes is thus not possible and the
TPF signal scales with the number of fluorophores N rather than with its square as in
SHG or its cube as in CARS.

The first demonstration of TPF was performed by Kaiser and Garrett in 1961 [132].
Soon afterwards it was used for spectroscopic measurements [3, 4]. In 1990 Denk et al.
showed the potential of TPF in microscopy imaging [10]. Since then it has become a
standard technique in imaging of biological samples [11, 12, 13, 14, 15]. Many of these
applications profit from the fact that TPF can be nicely combined with other nonlinear
contrast methods such as SHG. While a laser at frequency ω yields a SHG signal at 2ω,
the corresponding TPF signal is red-shifted due to the internal conversion processes within
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the fluorophore (Fig. 1.12). Both signals are thus easily separated spectrally. Furthermore
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Figure 1.12: SHG and TPF responses of a metallic nanoparticle with a size of 100 nm.
Laser illumination at λ = 800 nm. Strong SHG peak at λSHG = λ/2 = 400 nm and broad
TPF spectrum. The steep right part of the spectrum is due to a bandpass filter cutoff.

TPF active molecular species are often not the same as those radiating strong SHG fields,
providing molecular contrast in complex samples.

TPF imaging has also been combined with anisotropy measurements (see chapter 3).
In this way the width of the orientation distribution of lipids within the plasma membrane
could be determined [133] and it was possible to measure the chirality in collagen fibers
[134]. Finally, more complex polarimetric studies (see chapter 3 as well) have allowed
retrieving the orientation of molecular samples with complicated symmetries [90] where
traditional anisotropy methods fail.
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Chapter 2

Pulse shaping

2.1 Introduction
To reach the high energy densities needed to generate nonlinear signals in detectable in-
tensities, the samples are usually excited by pulsed lasers. As opposed to continuous wave
(cw) lasers which yield a temporally constant intensity output, in pulsed lasers all the
energy is confined into tiny intervals in the picosecond or femtosecond range. To achieve
this, thousands of spectral modes within the laser cavity have to be placed in a fixed phase
relationship to one another, they have to be mode-locked. Then for most of the time they
interfere destructively and the laser output is zero, but at regular intervals (given by the
laser repetition frequency) all these modes interfere constructively and produce a short but
very intensive burst. Therefore within that pulse all contributing frequencies are present.
They can be obtained by calculating the Fourier transform of the temporal pulse profile
Ẽ(t):

E(ν) =

∫ ∞
−∞

Ẽ(t)eiνtdt (2.1)

where E(ν) = |E(ν)|u(ν)eiφ(ν). Each frequency component ν = ω
2π

is described by an
amplitude |E|, its polarization direction u and its phase φ relative to the other frequencies.
In the same way the knowledge of the spectral profile leads directly to the temporal shape
of the pulse by an inverse Fourier transformation:

Ẽ(t) =
1

2π

∫ ∞
−∞

E(ν)e−iνtdν (2.2)

Temporal and spectral width are inversely proportional. In the case of a Gaussian temporal

profile Ẽ(t) = E0e
− t2

2σ2
t eiν0t around a central frequency ν0 and a temporal width σt the

frequency spectrum is a Gaussian as well with a width σν fulfilling the condition σν ≈
0.16
σt

(or for full width at half maximum intensity values: ∆νFWHM ≈ 0.44
∆tFWHM

, where
∆tFWHM = 2σt

√
ln2). For a pulse with a width of σt = 10 fs around λ0 = 800 nm this

corresponds to a spectral width of σν = 15 THz or ∆λFWHM ≈ 80 nm.
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2.2. Spectral phase

Pulse shaping consists in the control of either a pulse’s amplitude, its phase, its polar-
ization or a combination of any of these in the time or in the spectral domain. There exist
several passive ways to alter the pulse: in an interferometer the pulse can be split in two
and the delay between both after the recombination can be controlled. It is also possible
to insert an optically transparent material like glass into the beam path which leads to a
strong dispersion effect and therefore to the acquisition of a quadratic frequency-dependent
phase (see section 2.2) whose magnitude depends on the thickness of the material and its
refractive index. While this always leads to a positive quadratic phase (positive dispersion)
in a standard dielectric medium, the use of two prisms, two gratings or two chirped mirrors
(see section 2.7.1) also allows the introduction of negative dispersion [135]. But none of
these techniques allow a refined control of the pulse.

Though active shaping can also be achieved in an interferometric [136] or telescopic
[137] setup, most shaping geometries rely on a 4f -line (see section 2.3) in combination
with a spatial light modulator (SLM) based on the birefringence tuning of liquid crystal
elements [43, 44, 54, 53, 52, 138, 139] (see section 2.4). Pure phase shaping has also allowed
to develop a method for scanningless vertical sectioning in microscopy [137] by temporal
focussing of the exciting beam rather than traditional spatial focussing. Amplitude pulse
shaping of broadband pulses can be used to selectively excite dyes with different absorption
spectra without having to tune the laser emission [36]. Simultaneous phase and amplitude
shaping has led to chemical selectivity in single pulse CARS experiments [37, 40]. Polar-
ization shaping was first introduced in coherent control for the optimization of two-photon
excitation processes in gases [136, 47, 48], as the sharp spectral bands of anisotropic or
aligned atomic transitions are especially adapted to polarized coherent control operations.
Soon it was combined with amplitude and phase shaping [140]. But combined amplitude,
phase and polarization shaping is not limited to the study of two-photon processes. It has
also been used in the correction of polarization distortions in fiber propagation [141], CARS
non-resonant background rejection [49], field localization on plasmonic nanostructures [59]
and resolution enhancement of THG microscopy [101]. Specific works performed on polar-
ization pulse shaping and single-pulse shaped CARS will be more thoroughly developed in
chapters 4 and 6.

2.2 Spectral phase
Because the temporal and the spectral profile of the pulse are directly related by a Fourier
transformation, a change in one of them, e.g. in the spectral phase, will automatically
affect the other. To gain a better understanding of this relationship let us look at the
mean arrival time 〈t〉 of the pulse:

〈t〉 =

∫
t|ε(t)|2dt = −i

∫
ε∗(t)itε(t)dt (2.3)
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2.2. Spectral phase

where ε(t) is the normalized pulse so that
∫
|ε(t)|2dt = 1

2π

∫
|ε(ω)|2dω = 1. Using the

Parseval-Plancherel theorem∫ ∞
−∞

f ∗(t)g(t)dt =
1

2π

∫ ∞
−∞

f ∗(ω)g(ω)dω (2.4)

which relates the integrated product of two functions to the one of their Fourier transforms,
Eq. (2.3) becomes:

〈t〉 =
−i
2π

∫
ε∗(ω)itε(ω)dω =

−i
2π

∫
ε∗(ω)

dε(ω)

dω
dω (2.5)

Expressing ε(ω) as ε(ω) = |ε(ω)|eiφ(ω) - with φ(ω) being the spectral phase - leads to:

〈t〉 =
−i
2π

∫
|ε(ω)|d|ε(ω)|

dω
dω +

1

2π

∫
|ε(ω)|2 dφ(ω)

dω
dω (2.6)

The second term of this expression is real while the first one is purely imaginary. For the
mean arrival time of the pulse, which is a real quantity, we can therefore neglect the first
term and 〈t〉 becomes the mean of the spectral phase derivative:

〈t〉 =
1

2π

∫
|ε(ω)|2 dφ(ω)

dω
dω =

〈
dφ(ω)

dω

〉
(2.7)

This means that the arrival time of a specific frequency τ(ω) is the spectral phase derivative:

τ(ω) =
dφ(ω)

dω
(2.8)

Now it is easy to see how a specific spectral phase will change the temporal profile of
the pulse. Fig. 2.1 shows a number of phase profiles φ(ω), the associated arrival times
τ(ω) and the corresponding temporal pulse profile E(t). In the easiest case of a constant
phase, τ(ω) remains unchanged and the pulse envelope is not affected, only the oscillations
eiω0t within are shifted. If the spectral phase is linear (φ(ω) = a(ω−ω0)), τ(ω) = a and all
frequencies arrive at time a, so the whole pulse gets shifted in time but its form remains
unchanged. A quadratic phase φ(ω) = b(ω−ω0)2 results in a linear variation of the arrival
times for the different pulse frequencies τ(ω) = 2b(ω − ω0). As a consequence the pulse
gets stretched in time, meaning that the peak field strength diminishes. This can have
very detrimental effects on the efficiency of nonlinear processes as they depend on high
field strengths. Quadratic phases are referred to as linear chirp, inspired by birds’ songs
which also often exhibit fast frequency sweeps. A cubic phase φ(ω) = c(ω − ω0)3 has even
stronger effects on the temporal pulse shape. Let’s assume that c is positive; τ(ω) will be
a parabola. For t < 0 no part of the pulse arrives. Around t = 0 a large number of central
frequencies appear. Since they carry the largest spectral intensities, the field at that time
will be very strong. Later on the frequencies on both sides of the spectrum show up, but
they carry less and less energy and the field strength drops. Moreover there are always
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2.2. Spectral phase

two frequencies from different sides of the spectrum present simultaneously, resulting in an
interference that will be constructive or destructive depending on the spectral difference.
Thus the field’s decrease is modulated by the interference’s oscillation pattern. More com-
plex phase profiles can be investigated in the same way. It is worthwhile to note that all
temporal profiles presented in Fig. 2.1 are created by the same spectral intensity. Just
a difference in the spectral phase leads to the substantial modifications in the temporal
domain.

The most used of these phases is the quadratic phase. It is acquired by the beam when-
ever it passes through a dispersive material like glass. As the refractive index is in general
wavelength-dependent, different spectral components of the pulse traverse the material with
slightly different velocities resulting in a stretched pulse where the frequencies are ordered,
red light being faster than the blue, provided the material is normally dispersive. This is
nothing else than the acquisition of a quadratic phase. To calculate how strong the stretch-
ing will be for a specific quadratic phase let us first consider a Gaussian pulse spectrum

with a flat phase: E(ω) ∝ e−
(ω−ω0)2

2σ2 . A Fourier transformation gives the pulse in the time

domain, where it still has a Gaussian envelope of the form E(t) ∝ e
− t2

2τ2
0 = e−

σ2t2

2 . Thus

τ0 = 1
σ
. The temporal intensity profile of the pulse is consequently I0 = |E(t)|2 ∝ e

− t2

τ2
0 .

On the other hand, if the pulse possesses a purely quadratic phase:

E(ω) = |E(ω)|eiφ(ω) ∝ e−
(ω−ω0)2

2σ2 eib(ω−ω0)2

= e−
(ω−ω0)2

2 ( 1
σ2−2bi) (2.9)

its temporal envelope becomes:

Ep(t) ∝ e
− t2

2( 1
σ2−2bi) (2.10)

and its intensity profile in the time domain calculates as:

Ip = |Ep(t)|2 ∝ e
− t2

τ2
p = e

− t2

2( 1
σ2−2bi) e

− t2

2( 1
σ2 +2bi) = e

− t2

1
σ2 +(2bσ)2 (2.11)

from which follows:

τ 2
p =

1

σ2
+ (2bσ)2 = τ 2

0

(
1 +

(
2b

τ 2
0

)2
)

(2.12)

Replacing the Gaussian variances of the fields with full-width-half-maximum values of the
intensities (∆t = 2τ

√
ln 2) results in:

∆tp = ∆t0

√
1 +

(
8b ln 2

∆t20

)2

(2.13)

Figure 2.2 illustrates this relationship for a number of different quadratic phases b. It can
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Figure 2.1: Dependence of the temporal pulse profile on the spectral phase. Left column:
spectral phase φ(ω) (continuous line) and spectral intensity (dashed line); middle column:
frequency arrival time τ(ω) = dφ(ω)

dω
; right column: temporal pulse profile E(t) (only the

pulse envelope is shown, eiω0t oscillations are within). (a) flat phase (φ(ω) = 0); (b) linear
phase with positive slope (φ(ω) = a(ω−ω0)); (c) quadratic phase (φ(ω) = b(ω−ω0)2); (d)
cubic phase with positive coefficient (φ(ω) = c(ω − ω0)3).
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Figure 2.2: Effect of a quadratic phase b on the temporal pulse width ∆tp compared to a
the width ∆t0 of a pulse with the same spectral intensity but a flat phase (see Eq. (2.13)).

be seen that the effect is rather small for long pulses (∆t0 > 200 fs), but very severe for
extremely short ones even for small quadratic phase values. While for example a pulse of
∆t0 = 100 fs only experiences a minimal stretch to ∆tp = 104 fs when a quadratic phase
of b = 500 fs2 gets added to it, the same phase will elongate a pulse of ∆t0 = 15 fs to
∆t0 = 185 fs.

Combining phase shaping with polarization pulse shaping adds a new degree of com-
plexity. When the whole pulse spectrum contains both a polarization component along
one axis (X) and another one along a perpendicular axis (Y ), a phase can be shaped
independently for these two directions (φX(ω) and φY (ω)) and thus:

E(ω) =

(
|EX(ω)| eiφX(ω)

|EY (ω)| eiφY (ω)

)
(2.14)

In this way it is possible to encode an arbitrary temporal pulse, where both the polarization
and the instantaneous wavelength can be controlled for each instant during the pulse’s
duration which has been demonstrated by the Brixner group [44, 47, 142] (see Fig. 2.3).

2.3 4f-line
If one wishes to spectrally shape a broad laser pulse it is necessary to gain individual access
to each spectral component. This is most commonly done by separating them spatially in
a 4f -line [143]. Here, 4f designates the total distance a beam has to travel through the
shaper, namely four times the focal length f of a lens or curved mirror (Fig. 2.4). In one
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2.3. 4f-line

Figure 2.3: Arbitrary temporal pulse profile (c) created by phase and polarization shaping
[142]; at each instant during the pulse duration, the instantaneous polarization and fre-
quency (here represented by the color) are controlled. The spectral and temporal profiles
are shown in (a) and (b) for both polarization components.

of their foci a grating spatially diffracts the incoming beam and each spectral component
gets focused onto a different point in the plane of the opposite focal point, the Fourier
plane. Afterwards an identical arrangement recombines the beam again. The result is
the exact same beam as at the start; that is why such a configuration is also called a zero
dispersion line. Beam shaping devices can then be placed in the Fourier plane. The 4f -line
can either be set up with lenses [52] or with curved mirrors (spherical or cylindrical) [43].
A lens-based shaper requires a much longer space (4f) for its setup than a mirror-based
one (2f) making the former often impractical for experimentalists that have to deal with
limited space. On the other hand a mirror-based configuration often necessitates the use of
additional plane mirrors and leads to beam paths with non-right angles difficult to set up
(see Fig. 2.4b) and that can also influence the polarization state in a non-desired way. Due
to the large beam surface after the grating, a large collimating element is needed, which
favors the use of mirrors, as large mirrors are easier to fabricate and thus much cheaper
than lenses of the same size. Additionally, mirrors suffer less from aberrations.

In any case, however, the setup of a 4f -line is quite tricky because even slight asymme-
tries between the expanding and recombining parts of the line cause unwanted artifacts in
the exiting beam, e.g. different spectral content in different parts of the beam area. This
can be avoided by placing a mirror in the Fourier plane to thus using the same optical path
for both parts of the 4f -line [141]. Additionally the whole arrangement gets more compact
and less vulnerable to perturbations. On the downside, the reflective configuration is not
an option in every case. As will be shown later on, amplitude and phase shaping requires
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2.4. Amplitude, phase and polarization shaping

an exit polarizer while polarization shaping must avoid it. Shall all these properties be
controlled, the non-reflection configuration has to be employed.

f

ff
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diffraction
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cylindrical
or spherical
mirror

cylindrical
or spherical

mirror

Fourier
plane

grating grating

spherical
mirror

spherical
mirrorD-SLMS-SLM
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(b)

Figure 2.4: 4f -line. (a) sketch with diffraction gratings and curved mirrors; (b) photograph
of the experiment setup used in this work with a drawing of the beam path. For details to
the shaping device in the Fourier plane (D-SLM and S-SLM) see section 2.4.

2.4 Amplitude, phase and polarization shaping
Once the beam is spectrally dispersed, a shaping device can be placed in the Fourier plane
of the 4f -line. There exist many different types of shaping devices, Steinmeyer [144],
Weiner [145] and Monmayrant et al. [146] wrote extensive reviews of them. In the case
of a reflective 4f -line the shaping can be done by a deformable mirror [28] (Fig. 2.5a).
Different frequencies have then paths of different lengths resulting in a spectral phase shift.
Another option is to insert a phase plate, but this is only a static shaping as the phase
plate is fix. For a dynamic shaping it can be replaced with a programmable hologram [26]
(Fig. 2.5b). A more frequently used option are acousto-optic modulators. An arbitrary
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2.4. Amplitude, phase and polarization shaping

waveform, synchronized with the repetition rate of the laser is sent into an acousto-optical
crystal where it creates a refractive index pattern. This determines the amplitude and
phase of the part of the pulse diffracted into the first order of the acousto-optic deflector
[24, 25] (Fig. 2.5c). While in a standard acousto-optical device the acoustic wave propa-
gates perpendicular to the optical wave, both are collinear in a variant, the Dazzler [147],
that moreover does not need the Fourier plane as the shaping is done in the temporal
and not in the spectral domain. The optical wave entering along one of the axes of the
acousto-optical crystal is transferred by the acoustic wave to the perpendicular axis. The
efficiency of this transfer and thus the amplitude and the phase at the exit of the Dazzler
is again controlled by the profile of the acoustic wave.

The most frequently used shaping device are however liquid crystal (LC) spatial light
modulators (SLM) [145]. Though they exist in many variations they all function on the
same basis: an array or matrix of nematic LC elements. These are birefringent materials.
By applying a voltage at two electrodes - usually indium tin oxide (ITO) on a glass substrate
- at the sides of the pixel, the LCs alter their orientation and thus change the refractive
index along the extraordinary direction while the index along the ordinary direction is not
affected (Fig. 2.5d). These proper axes of the liquid crystals may be along the macroscopic
horizontal and vertical axes X and Y [52] or form an angle with them of ±45◦ depending on
the LC-SLM configuration used [44]. Light traversing the LC therefore acquires a voltage-
dependent phase. If a line SLM - consisting of a 1D array of LC elements - is placed at
the center of a 4f -line, each pixel will manipulate one specific spectral component of the
pulse. On this basis amplitude, phase and polarization can be controlled.

A problem encountered in LC-SLMs is the pixelation of the device. Usually between the
pixels there are small gaps where the light passes unshaped. In the temporal domain this
results in a residual peak a t = 0 [149] (Fig. 2.6a). Moreover some other undesired effects
arise from the pixelation. Even in the Fourier plane of the pulse shaper where the SLM is
located, each wavelength present with the pulse occupies a finitely small space so that it
happens that certain wavelengths pass more than just one pixel. This causes problems as
soon as the voltages applied to neighboring pixels vary considerably. In an amplitude mask
for example where one pixel is transparent and its neighbor is not, a frequency component
arriving at both of them is not anymore distributed everywhere throughout the beam
diameter after passage of the shaper. Thus several wavelengths within the pulse may
not spatially overlap anymore [150] (Fig. 2.6b). As a consequence each frequency might
be focused differently by an objective which could influence experiments that depend on
the absorption of both of these frequency components by the same dipole. At last, the
frequency sampling from the pixelation also results in the creation of time replicas of the
shaped pulse. These replicas are separated by an interval of T0 = 2π

δω
, where δω is the

frequency difference between the light traversing neighboring SLM pixels. The intensity
of the replicas follows a sinus cardinalis with a period of T0

1−r where r denotes the space
occupied by the SLM pixels relative to the total space (pixels plus gaps) [149, 151]. The
pixel gaps lead to time replicas of the residual pulse at t = 0, too, but all of these have
the same intensity (Fig. 2.6c). Whether these time replicas pose a problem or not in pulse
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Figure 2.5: Pulse shaping devices in a 4f -geometry. (a) Deformable mirror in a reflective
4f -line; (b) programmable holograms created in photorefractive multiple quantum wells
(MQW) [26]; (c) acousto-optic device addressed by a radio frequency (RF) generator [146];
(d) nematic liquid crystals (LC) between two electrodes: their orientation and thus the
refractive index in the extraordinary direction (ne) depends on the applied voltage while
the index in the ordinary direction (n0) remains unaltered [148].

shaping experiments depends on the time window T accessible by the shaper. As described
above, a linear phase moves the pulse in time, but only within limits due to spatial filtering
of the shaper. The width of this accessible window depends on the frequency dispersion in
the 4f -line and is given by [149]:

T =
∆xinλ0

cd cos |θi|
(2.15)

where θi is the incident angle of the beam with central wavelength λ0, and ∆xin is the
lateral dimension of the incident beam (fixed by the diaphragm placed at the entrance of
the shaper) on the first diffraction grating with line density 1/d. c denotes the speed of
light. T describes the FWHM of a Gaussian envelope around t = 0 that modulates the
intensity of shaped beams depending on their temporal shifts (Fig. 2.6d). In our shaper
T is smaller than T0 as calculated in section 2.5.1. Thus time replicas do not concern us
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2.4. Amplitude, phase and polarization shaping

in our shaping experiments.
A LC light valve [152, 153] allows profiting from the pulse shaping capability of liquid

crystals without the inconvenience of a pixelation [154]. Instead of a large number of
LC elements, only one big liquid crystal gets inserted between the optically transparent
electrodes together with a layer of photoconductive Bi12SiO20 (BSO) (Fig. 2.6e). The
latter changes its conductivity when illuminated with blue/green light, the magnitude of
this change depending on the light intensity. This modification alters the tension seen by
the LC when a voltage is applied to the electrodes. Thus a light intensity pattern on the
BSO induces a spectral phase pattern into the passing laser pulse.

2.4.1 Amplitude and phase shaping

Consider first two line-LC arrays one after the other between two horizontal polarizers
which form together a dual SLM (D-SLM). Assume further that the crystal axes of these
LC arrays are inclined ±45◦ to the polarizer’s direction, so that the ordinary axis of the
first array corresponds to the extraordinary axis of the second and vice versa (Fig. 2.7a).
In the frame of the optical axes of the liquid crystal the amplitude of the incident electric
field Ei can then be expressed as

Ei ∝
E0√

2

(
1
1

)
(2.16)

after having passed the entrance polarizer, where E0 denotes the magnitude of the hor-
izontally polarized field. In the LC arrays both field components see different refractive
indices n0 and ne(V ), depending on the applied voltage V that alters the refractive index
along the extraordinary axis, and consequently the field acquires a phase proportional to
the refractive index difference ∆n = ne − n0:

∆Φ′ =
2π

λ
l∆n(V ′)

∆Φ′′ =
2π

λ
l∆n(V ′′) (2.17)

Here, l is the depth of the LC pixel, ∆Φ′ and ∆Φ′′ refer to the phases acquired in the first,
respectively second LC array and V ′ and V ′′ denote the voltages applied to both arrays.
Thus the field after both arrays can be written as:

1. LC array
=⇒ E′ ∝ E0√

2

(
1

ei∆Φ′

)
2. LC array

=⇒ E′′ ∝ E0√
2

(
ei∆Φ′′

ei∆Φ′

)
(2.18)

The fact that the extraordinary axes of both LC array are perpendicular to each other
leads to phases ∆Φ′ and ∆Φ′′ along perpendicular axes as well. The exit polarizer, parallel
to the one at the input, projects the field again on the input polarizer direction, which
leads to the following expression for the final field Ef :

Ef ∝
E0

2
(ei∆Φ′′ + ei∆Φ′) (2.19)
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Figure 2.6: Pulse shaper pixelation effects. (a) Peak at t = 0 due to the gaps between
the SLM pixels (a strong quadratic phase (7 · 105 fs2) was shaped into the pulse) [149];
(b) frequency do not overlap anymore when they traverse neighboring pixels with strongly
varying conditions (here: amplitude mask) [150]; (c) time replicas (black lines) both of the
shaped pulse (linear phase to achieve a time shift of 12 ps), modulated by a sinus cardinalis
(grey line), and of the residual pulse at t = 0 due to the pixel gaps with constant intensity
(grey dotted line); T0 = 35.8 ps and r = 0.97 [149]; (d) Gaussian envelope (grey) with
FWHM T modulating the intensity of shaped pulses (black) shifted in time with respect
to the original pulse; here a number of linear phases were applied to realize the time shift
[149]; (e) light valve: non-pixelated LC pulse shaper device (explanation in the text).
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Figure 2.7: LC-SLM device sketch. (a) sketch of a D-SLM for amplitude and phase shaping:
between parallel polarizers, two LC arrays are placed, their axes being inclined 45◦ to the
polarizer direction; (b) sketch of a S-SLM for polarization shaping: behind a polarizer only
one LC array is placed, its axes as in (a). The different output polarizations mentioned in
the text are sketched at the exit.

that can also be written as:

Ef ∝ E0 cos

(
∆Φ′′ −∆Φ′

2

)
ei

∆Φ′′+∆Φ′
2 (2.20)

This last expression contains an amplitude term that depends on the difference of the
phases introduced in the D-SLM and a phase term containing their sum. Thus independent
amplitude and phase shaping is achieved.

2.4.2 Polarization shaping

For polarization shaping a single SLM (S-SLM) with only one LC array is needed whose
axes are again inclined 45◦ to the horizontal polarizer’s direction at the entrance, but
without an additional polarizer at the exit (Fig. 2.7b). Again a phase ∆Φ is acquired by
the incoming field Ein. In the frame of the optical axes of the liquid crystal, the output
field can be written as:

Eout ∝
Ein√

2

(
ei∆Φ

1

)
(2.21)

Achievable polarization states for the exiting field Eout range successively from linear along
the horizontal axis X for ∆Φ = 0◦, elliptical with a major axis along X (0◦ < ∆Φ < 90◦),
circular (∆Φ = 90◦), elliptical with a major axis along Y (90◦ < ∆Φ < 180◦), and finally
linear along the vertical axis Y (∆Φ = 180◦).
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This scheme allows in particular the creation of pulse profiles with regions of frequencies
that are linearly polarized perpendicular to one another. The combination of a D-SLM and
a S-SLM therefore permits to manipulate independently amplitude, phase and polarization
of the excitation field. A way to characterize the polarization state at the exit of the pulse
shaper will be presented on page 106.

As already mentioned polarization shaping can also be preformed in a different config-
uration. Polachek et al. use two consecutive 4f -line where in the first one amplitude and
phase shaping is performed with a D-SLM as described above, while in the second one for
polarization shaping the LC-mask is oriented parallel to the incident beam [52]. Together
with a waveplate after the shaper a fuller control over the spectral polarization is achieved.
In particular it allows achieving elliptical polarizations oriented in directions different from
only X or Y .

2.5 Experimental Setup

2.5.1 Excitation path

Our experimental setup is shown in Fig. 2.8a. To be able to perform spectral pulse shaping
for the applications described in the following chapters of this work, a laser bandwidth of
at least 50 nm is necessary. For this we employ a Ti:Sa laser (Micra, Coherent, Santa Clara,
CA) delivering pulses around λ = 800 nm with a FWHM of up to 100 nm (adjusted by a
pair of prisms in the cavity). The repetition rate of the laser is 80 MHz and its typical
averaged power 400 mW. A spectrum of this laser is shown in Fig. 2.8b. Note that regular
care of the Ti:Sa crystal was required to ensure a stable 80 nm bandwidth, which was our
standard working conditions. The spectral phase at the laser exit gets distorted by all
following elements in the beam path. This effect is partially compensated by a pair of
chirped mirrors (see section 2.7.1). A lens after the laser exit serves to minimize the beam
divergence at the entrance of the pulse shaper.

In a 4f geometry, a diffraction grating with n = 600 lines/mm spatially separates the
spectral components that are reflected by a planar mirror onto a spherical one, again
creating a parallel beam. The grating period chosen here is relatively low comparing to
other existing systems, however it allows a better balance of its polarization response, since
we necessitate polarization control in addition to a phase and amplitude one. Around the
Fourier plane of the shaper we insert two LC devices (CRI, Woburn, MA): a D-SLM for
phase and amplitude control and a S-SLM for polarization control. All three arrays contain
640 nematic LC pixel elements. Each pixel has a width of 98µm and they are separated
by a gap of 2µm. Their height is 5 mm. Afterwards the shaped beam gets recombined by
an identical arrangement of spherical mirror, planar mirror and diffraction grating. The
spherical mirrors possess focal lengths of f = 500 mm and have a diameter of 5 cm.

The dispersion angle of the diffraction grating is given by its line density n. For a
blazed grating as used here the sum of the sine of the angle of the incident beam (α) and
the angle of the reflected first order beam (β) relative to the grating normal equals nλ.
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Figure 2.8: Experimental setup. (a) Overview of the whole setup: excitation and detection
paths; (b) spectrum at the laser exit; (c) sketch of the spectrometer; a removable mirror
allows detecting the signal either with a CMOS camera for whole spectral detection or with
a PMT to only detect the central wavelengths around λ0; λ0 can be adjusted by slightly
rotating the diffraction grating.
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As α is the same for all incident wavelengths, only β changes with λ. Between 700 nm
and 900 nm, the limiting wavelengths of our pulse, ∆β amounts to 6.9◦. For a propagation
length of f = 500 mm until the spherical mirror this results in a lateral dispersion ∆x of
∆x = f ∆β ≈ 6 cm. Given the mirror diameter of 5 cm this means a portion of the pulse
spectrum gets lost and only the wavelength region between around 720 nm and 880 nm is
directed towards the SLMs. This loss is however not a problem, as in these spectral regions
there is hardly any energy present as can be seen in Fig. 2.8b. The lateral extension of
the remaining beam of 5 cm corresponds to 500 SLM pixels that get traversed out of the
total of 640. Thus the spectral resolution of our shaper is around 0.32 nm per SLM pixel
which corresponds to δω = 0.9 ps−1.

From this value the expected time period where pulse replicas are expected is T0 =
2π
δω

= 7 ps. On the other hand the time shift accessible by our shaper according to Eq.
(2.22) is:

T =
∆xinnλ0

c cos |θi|
≈ 3 ps (2.22)

as the beam hits the grating at an angle of 5◦ and has a diameter of about 2 mm. Therefore
T < T0, meaning that time replicas do not concern us in our shaping experiments.

Placing both a D-SLM and a S-SLM in this setup requires a considerable distance of
about 10 cm in the propagation direction. Therefore a large focal length of the spherical
mirrors is necessary to ensure a large Rayleigh distance around the Fourier plane. The
spatial resolution in the lateral and axial directions in this plane depends on the numerical
aperture (NA) [155]. With NA = sin θ ≈ θ = ∆xin

2f
(the approximation is valid for small

angles) and a focal length of f = 500 mm this results in NA = 0.002 and thus:

dlat =
λ

2NA
≈ 200µm = 2 SLM pixels

dax =
2λ

NA2 ≈ 40 cm (2.23)

calculated for the central wavelength of our pulses of λ = 800 nm. Therefore the large
focal length of the mirrors guarantees us enough space in the propagation direction to
place both shaping devices without compromising the spectral resolution of the 4f -line.
A consequence of the lateral resolution of almost three SLM pixels is that at least this
number of neighboring pixels needs to be addressed to assure a certain amplitude, phase
and polarization state of a certain pulse wavelength at the exit of the shaper. This is
demonstrated in Fig. 2.9 where it was attempted to eliminate a number of wavelengths
from the laser spectrum by amplitude shaping with a variable number of consecutive pixels.
At three pixels upward the extinction is seen to be quite good while for one and two pixels
there still remains a non-negligible portion of the intensity from the targeted wavelength.

As mentioned above, the relatively low line density of the gratings is chosen to ensure
a similar reflectivity for horizontally and vertically polarized light. We measure a 15% re-
flectivity difference between those components. On the downside this low line density also
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Figure 2.9: SLM resolution. Via amplitude shaping certain wavelengths are removed from
the spectrum; when only one or two neighboring SLM pixels are involved in the shaping,
the extinction is only partial, from three pixels upward the result is much better.

results in a lower reflectivity of the grating as a whole, we only reach 65%. But because
gratings with higher line densities have very different reflectivities for different polariza-
tions, which makes them unsuited for polarization shaping geometries, we opted against
them. As a consequence, the overall transmission of the pulse shaper for horizontally po-
larized light is only 15%, but which is still largely sufficient for many applications. The
calibration procedure of the pulse shaper is described in detail in section 2.6 where also
spatio-temporal coupling issues are addressed.

Before being sent through the objective to the sample a telescope of two lenses enlarges
the beam to completely fill the objective’s back aperture. As objectives we either use a
high numerical aperture water immersion objective (NA = 1.2, ×60) as in chapter 3 or one
with a lower NA of 0.5 (×20) as in chapter 5 (both Nikon, Tokyo, Japan). The incident
power, integrated over the whole spectrum can be varied to reach values of up to 20 mW in
the sample plane. The sample is placed on a piezoelectric stage (PI, Karlsruhe, Germany)
so that it can be scanned in all three dimensions. The dwell time per pixel is 20 ms which
translate to an acquisition time of 50 s for an image with 50× 50 pixel.

For several experiments in this work spectrally narrow wavelength-tunable laser pulses
are required, notably for the calibration measurements in chapter 3 and in the first half of
chapter 6. In these cases a different Ti:Sa laser is used (Chameleon by Coherent, Santa
Clara, CA). This mode-locked laser produces 150 fs pulses with a repetition rate of 80 MHz,
whose center wavelength can be tuned between 680 nm and 1050 nm. This pulse duration
corresponds to a spectral FWHM of about 20 nm if the emission is centered around 800 nm.
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2.6. Pulse shaper calibration

Additionally an achromatic half waveplate mounted on a step rotation motor serves to
rotate the incident polarization direction. See page 101 and Fig. 3.4 for details.

2.5.2 Detection path

For signal detection several contrasts were investigated:
SFG and TPF signals are generally collected in the backward direction through the

same objective. Due to their large spectral distance to the excitation beam they can be
easily separated from it by a dichroic beam splitter (FF720-SDi01, Semrock, Rochester,
NY) and subsequent filters. The dichroic beam splitter is chosen for its low group velocity
dispersion as well as its low polarization dichroism factor in the 720 − 880 nm spectral
region (see chapter 3). The signal gets then detected by avalanche photo diodes (APD,
PerkinElmer, Waltham, MA) after a polarizing beam splitter divides it into its two polariza-
tion components that correspond to the X- and Y - axes in the sample plane. Alternatively
the detection can also be performed by an imaging spectrometer (iHR320, Horiba Jobin
Yvon, Kyoto, Japan) where a Wollaston prism in front of the entrance performs the po-
larization splitting. Additional to the spectral detection on a CMOS camera chip, specific
wavelengths (∆λ ≤ 2 nm) can be detected by a photomultiplier tube (PMT - Hamamatsu
Photonics, Hamamatsu, Japan) placed after a mono-channel exit slit (Fig. 2.8c).

CARS signals, on the other hand, have to be collected in the forward direction for
two reasons: first, due to phase mismatching only for very small samples (≤ 100 nm)
a considerable portion of the generated signal is emitted backwards (see page 29). As
soon as the sample gets thicker backward emission is suppressed. Second, single-pulse
generated CARS is spectrally very close to the exciting beam and is difficult to separate
from it by the dichroic beam splitter (see chapter 5). A spectrally extremely sharp splitter
would be needed that at the same time does not affect the phase structure of the reflected
incoming laser light. An objective (NA = 0.5, ×40, Zeiss, Oberkochen, Germany) collects
the signal and transfers it via several sharp bandpass filters for laser light rejection to the
spectrometer entrance where again a Wollaston prism performs the polarization splitting.

Additionally in this microscope, white light illumination is used to identify and position
macroscopic objects in the sample plane.

2.6 Pulse shaper calibration
The above described pulse shaper only reaches its full potential when it is carefully cal-
ibrated. This consists of two major parts: first, the 4f -line needs to be well aligned to
assure a parallel beam at the shaper exit where all pulse wavelengths are homogenously
distributed within the beam diameter (and well recombined by the second grating), and
second it has to be established which wavelength traverses which pixel and which applied
voltage to this pixel leads to which acquired phase by the beam.

A perfect 4f -alignment is a challenging task. Not only both gratings need to be po-
sitioned exactly in the focal points of the spherical mirrors, but also both the expanding
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2.6. Pulse shaper calibration

and the recombining branches of the shaper must be perfectly symmetric. Considering the
numerous non right-angled reflections in the setup (see Fig. 2.4b), achieving this symmetry
is far from trivial. The joined diaphragm that the beam has to pass before entering and
after leaving the shaper facilitates the task. The low divergence of the beam is established
by measuring the beam diameter on the whole path from the pulse shaper exit to the
microscope and adjusting the positions of the gratings and mirrors in the 4f -line until the
beam diameter stays constant.

Even in a well collimated exiting beam there may be remaining inhomogeneities in that
different wavelengths show different spatial distributions within the beam diameter. This is
usually the effect of an imperfect positioning of the second diffraction grating. We checked
the beam homogeneity in several ways. First we sent the beam after the pulse shaper exit
to a screen several meters away and expanded it with lens with a high focal length. In this
way a spot with a diameter of more than 10 cm is seen. Then we continuously moved an
absorbing plate in the Fourier plane of the shaper, thus selectively cutting an increasing
wavelength region. A well aligned 4f -line is characterized in this case by a homogeneous
extinction of the spot on the screen over its whole area. Were the wavelengths distributed
differently relative to one another, the extinction would sweep over the spot from one side
to the other. The position of the second grating (and partially the alignment of the mirrors
in the recombining part of the shaper) was then adjusted to obtain the best homogeneity.

For a finer alignment we repeated the procedure, but this time not with a far away
screen, but at the focus of the microscope objective. There we put a thin glass slide and
sent the reflected laser light to a camera for detection. When the objective is focused on
the glass surface only a bright spot is seen. But as soon as the focal plane is a bit below or
above the glass slide a ring pattern appears. Now the extinction is observed again when an
absorbing plate gets moved into the Fourier plane of the objective. The grating’s position
is readjusted so that the extinction is uniform and not moving from one side of the pattern
to the other. After these steps the 4f -alignment should be sufficient.

In a last test we measured the point-spread functions (PSF) of our beam as a whole
and of various narrow spectral regions therein. The PSF of an imaging system describes
the response to a point source. It is thus the size of the focal volume that is governed
both by the numerical aperture (NA) of the objective and by the illumination profile of the
beam. For an ideal PSF the beam needs to overfill the objective’s back aperture. Should
it only fill a part of it, the PSF increases compared to the ideal case. By measuring the
PSF for different spectral regions within the pulse it is possible to obtain an information
on the spatial distribution of different wavelength regions within the beam diameter and
thus assess the quality of the alignment of the 4f -line.

To image a PSF one needs a point source compared to the size of the PSF itself. An
ideal PSF is diffraction limited and has therefore transverse dimensions of the size of half
the used wavelength which in our case are several hundred nanometers. Nanometric objects
below 50 nm can therefore considered to be point sources for our purpose. We use two-
photon fluorescent nanospheres with a diameter of 20 nm dispersed on a glass slide. The
emitted TPF signal is collected by the APDs mentioned above. We perform a XY - and
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2.6. Pulse shaper calibration

a XZ-scan of a single nanosphere (Z refers to the propagation direction of the beam and
X and Y are the transverse dimensions). The question arises how a single nanosphere
can be identified as their sizes are far below the diffraction limit. In the case of several
nanospheres that are close to one another the recorded signal does not resemble that of
a PSF which can be approximated by a 3D-Gaussian but often shows different forms in
one of several dimensions. Additionally, the more nanospheres are present within the focal
volume, the higher is the emitted TPF signal. Thus by singling out weaker isolated spots
it can be assumed with high certainty that only one nanosphere is present therein.

The scanning is done for different wavelength regions. They are selected by blocking
the unwanted wavelengths with black cardboard in the Fourier plane of the pulse shaper.
Fig. 2.10 shows both the XY - and the XZ-scans for an illumination with light between
790 nm and 810 nm. Additionally the sections through the center of the spot and the cor-
responding Gaussian fits are depicted for all three dimensions. Table 2.1 gives the widths
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Figure 2.10: Measurement of the PSF. (a) XY - and XZ-scanning images of a fluorescent
nanosphere with a diameter of 20µm. (b) Sections through the center of the spot in (a) in
all three dimensions (circles) and the corresponding Gaussian fit (solid line).

of the Gaussian fits of Fig. 2.10b as well as for those at all other tested wavelength regions.
The values between 770 nm and 830 nm are well in accordance with each other and also
correspond to the size of a ideal PSF for an objective with NA = 1.2 and an illumination
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λ [nm] σX [µm] σY [µm] σZ [µm]
770-790 0.29 0.33 0.89
790-810 0.28 0.29 0.86
810-830 0.27 0.32 0.88
830-850 0.27 0.43 1.10

Table 2.1: Gaussian widths σ of the PSF for several wavelength regions present within the
laser spectrum.

around 800 nm. This indicates that these wavelength are homogenously distributed within
the transverse beam profile. For larger wavelengths, σY and σZ increase, showing that at
this spectral side the spatial distribution is less perfect. But because in this region there
is only very little power remaining, it does not significantly influence the experiments that
will be described in this thesis.

After the 4f -line is well aligned the SLMs need to be calibrated. For this we only regard
the S-SLM in a first step. A polarizer is placed at its exit that has the same orientation
as the one at the entrance. In this way we transform the polarization shaping SLM into
an amplitude shaper as only those exit polarizations along X in Fig. 2.7b can pass. This
is expressed mathematically when the field in Eq. (2.21) gets multiplied with a projection
function u of the polarizer, which in the frame of the optical axes of the LC array (that

are inclined ±45◦ to the polarizer’s direction (X)) reads as u = 1√
2

(
1
1

)
. Consequently

the final field Ef becomes:

Ef = Eout · u ∝
Ein√

2

(
ei∆Φ

1

)
· 1√

2

(
1
1

)
=
Ein
2

(
1 + ei∆Φ

)
(2.24)

The corresponding field intensity If is expressed as:

If = |Ef |2 ∝
E2
in

4

(
1 + ei∆Φ

) (
1 + e−i∆Φ

)
=
E2
in

4

(
2 + ei∆Φ + e−i∆Φ

)
=

E2
in

2
(1 + cos i∆Φ) (2.25)

Thus induced phase shifts of 0, 2π, 4π, ... lead to maximal transmission while it is minimal
for phase shifts of π, 3π, 5π, .... Now we continuously change the applied voltage to all
pixels in the same way and record a spectrum of the transmitted beam. The voltage can be
varied between 0 and 10 V in discrete steps, the so-called drivecounts, with one drivecount
corresponding to 2.44 mV. Fig. 2.11a shows an exemplary response of a SLM pixel when
the drivecounts are varied between 0 and 4000. The graph has been normalized so that
it fills the interval [0 1] which corresponds to the division by the incident field intensity
|Ein|2. For each wavelength this curve looks slightly different because the refractive index n
is wavelength dependent and therefore the conditions when a certain phase shift is reached
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are different for each wavelength. The two maxima correspond to ∆Φ = 2π, 4π and the two
minima to ∆Φ = π, 3π. From this curve it is clear that ∆Φ does not follow the drivecounts
in a linear way. For example between 2000 and 4000 drivecounts there is no extrema, while
there are four of them between 500 and 2000 drivecounts.

The phase shifts can be extracted from these graphs by Eq. (2.25), setting Ein to 1:

∆Φ = arccos (2Inorm − 1) (2.26)

where Inorm is the normalized intensity as explained above. Fig. 2.11b depicts ∆Φ for the
same λ as in Fig. 2.11a. To obtain this curve ∆Φ in Eq. (2.26) still has to be unwrapped
as the arccos operation only gives values in the interval [0 π]. As mentioned before the
attainable values of ∆Φ differ slightly for each λ, but for all wavelengths within our laser
pulse the phase shift range [0.6π 4.3π] can be achieved.

So far we only looked at a certain spectrometer pixel to produce the curves in Fig. 2.11a
and 2.11b which give the λ-drivecount-∆Φ-relationship. Now it still needs to be related to
the pixels of the SLM. We achieve this by using again the amplitude shaping capabilities
of the S-SLM. All SLM pixels are put to the same drivecount value of 1300. In this region
most of the field can pass for all wavelengths (see 2.11a). Of course this does not mean
that there is maximal transmission for this value, but this is not necessary. Now we change
the drivecounts for a number of isolated pixels in such a way that the transmission drops
for these pixels. Fig. 2.11c shows the resulting spectral measurement. Again it is not
necessary that the transmission gets minimal, it suffices that a clear drop is seen in the
spectrum. From the knowledge of the spectral position of these drops and the SLM pixel
numbers where the drivecounts were changed, we calculate the pixel-λ-relationship of our
shaper as shown in Fig. 2.11d and fit it with a linear function. In the depicted case the fit
gives:

pixel = mλ+ n = −3.13 nm−1 λ+ 2841 (2.27)

from which follows that between two neighboring SLM pixels a wavelength difference ∆λ
of ∆λ = 1

m
= 0.32 nm exists as already deduced before.

Once the S-SLM is placed and calibrated the D-SLM has to be aligned. Because both
LC arrays therein are identical to the one in the S-SLM, the λ-drivecount-∆Φ-relationship
of the S-SLM applies as well for the D-SLM. To place the D-SLM correctly into the Fourier
plane a similar procedure is performed as the one that determines the pixel-λ-relationship.
For the same pixel position in the D-SLM and the S-SLM the drivecount value is varied
so that a drop in the laser spectrum can be seen. Then the lateral position of the D-SLM
in the Fourier plane is adjusted by a micrometer screw so that both drops coincide at the
same spectral position. Once this is done, the exit polarizer on the S-SLM is removed to
switch from amplitude shaping to polarization shaping mode and the pulse shaper is ready
for operation.

It should be noted that the pixel-λ-relationship may change during time. Each setup
has slight instabilities and the numerous optical elements from the laser up to the Fourier
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Figure 2.11: SLM calibration. (a) Transmission dependence for a wavelength in the spectral
center of the pulse on the applied voltage (drivecounts) on the SLM pixel. (b) Associated
phase shifts ∆Φ for the same case. (c) Laser spectrum when when the drivecounts for
certain SLM pixels are chosen such that a drop in transmission occurs. Note that even
while the transmission pattern above λ = 800 nm is far from optimal, these drops are still
easily visible. (d) pixel-λ-dependence for the spectrum in (c) (circles) and its linear fit
(solid line).
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plane of the 4f -line may minimally move resulting in a different beam path. Just a lateral
shift of 100µm leads to a change in the pixel-λ-relationship by one pixel. From one day
to another it was seen that the alignment changes, sometimes only slightly, sometimes
a beam displacement in front of the shaper entrance of up to several millimeters was
observed. Thus the SLM-calibration has to be established again before each experiment.
There are two possibilities to do so. Of course the procedure of Fig. 2.11c and 2.11d
could be repeated but this takes a not negligible amount of time. An easier way consists
in shaping an amplitude drop into the pulse for example in the way that one side of the
spectrum gets suppressed while the other one is maintained. Even if this is done with a
pixel-λ-relationship that does not completely reflect the actual passage of the shaper, the
amplitude shaping will still be nearly perfect as the drivecount-∆Φ-relationship as seen in
Fig. 2.11a does not change considerably for wavelengths in close proximity. The alignment
of the 4f -line is then adjusted so that the amplitude drop appears at the expected spectral
position.

2.7 Compensation of phase distortions

2.7.1 Pre-compensation by chirped mirrors

An optical pulse has its shortest duration and consequently its highest peak power if its
spectral phase is flat, the pulse is then said to be Fourier transform limited. When such
a pulse passes an optical material like glass in which the refractive index is wavelength-
dependent, its phase profile gets distorted, mostly by the acquisition of a quadratic phase,
leading to a stretched pulses (see section 2.2). Since all nonlinear optical processes we are
interested in depend quadratically or cubically on the electric field, a temporally stretched
pulse with corresponding lower field strengths is highly detrimental in the generation of
those phenomena and has to be avoided. In our setup the dominating source of this
phase distortion is the objective in which a large distance of glass has to be traversed by
the pulse; but of course all other optical elements in the path play a role as well. As a
first order compensation we use a parallel pair of chirped mirrors (Femtolasers, Vienna,
Austria) in a multiple reflection scheme (Fig. 2.12a). These are multilayer mirrors in
which each wavelength penetrates up to a different depth, red light farther than blue
light, thus creating an increasing time delay in longer wavelengths that counteracts the
delay accumulated by the shorter wavelengths in the passage through glass (Fig. 2.12b).
To find the best number of reflections on both mirrors it is sufficient to measure the
intensity of any nonlinear optical process since it will be highest if the spectral phase is
flat. We chose the two-photon fluorescence (TPF) of a Rhodamine 6G (Rh6G) solution.
Such a solution measurement has the advantage that it is insensitive to slight changes
of the focal spot position which can cause problems in surface signal measurements. We
found the signal maximum at 19 reflections on each mirror which - assuming an added
phase of −200 fs2 per reflection (Fig. 2.12c) - amounts to a total compensation of around
19 · 2 · (−200 fs2) = −7600 fs2 which corresponds to about 18 cm of BK7 glass, taking a
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value of 420 fs2/cm [156] which indicates that there are already some phase distortions at
the laser exit as the beam traverses less than 18 cm of glass between this point and the
sample plane. Because the added phase is wavelength dependent (Fig. 2.12c), the mirrors,

(a) (b) (c)

mirror 1

mirror 2

Figure 2.12: Chirped mirrors. (a) setup with multiple reflections; (b) sketch of the light
path within the mirror for different wavelengths [157]; (c) added quadratic phase (group
delay dispersion - GDD) per reflection [157].

while compensating the predominant phase distortions, add new ones on a smaller scale.
The effect of all remaining distortions can be seen in an autocorrelation measurement.

2.7.2 Characterization of the pre-compensated pulse by autocor-
relation

To determine the temporal shape of a phenomenon one needs a measurement process
of a least the same if not a much better temporal sensitivity. Femtosecond laser pulses
being about the shortest events man can produce, the only possibility to measure them
temporally is to employ the pulse itself or a reference pulse. The easiest way to do so is
by autocorrelating the pulse [158]. In an interferometer setup the beam gets split in two
paths, both beam parts travel along their respective branches before they get recombined
again (Fig. 2.13a). By varying the length of one of the branches the time delay τ between
both pulses can be controlled. For a visualization of this delay a nonlinear optical process
should be used. We excited again the TPF of a Rh6G solution, a process that depends
quadratically on the field intensity. In the frame of an autocorrelation it is expressed as
[159]:

ITPF (τ) ∝
∫ ∞
−∞
|E(t) + E(t− τ)|4 dt (2.28)

Let’s suppose that the interferometer splits the beam exactly in two so that in each
branch there is half of the intensity I0 of the original beam. If now both pulse halves arrive
one after the other at the sample, they excite the TPF independently and the measured
signal ITPF will be ITPF ∝ 2(I0/2)2 = I0

2/2. If on the other hand both pulses halves are
perfectly superposed, ITPF ∝ I0

2 will be the same as that of the unsplit pulse. In between
these two cases both pulses will interfere either constructively or destructively. The form
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and width of this interference pattern is therefore a measure of the pulse’s temporal shape
and width. After optimizing the number of reflections on the chirped mirrors we obtained
the autocorrelation trace shown in Fig. 2.13b. Its central maximum can be fitted nicely
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Figure 2.13: Autocorrelation. (a) interferometric setup; (b) blue: TPF autocorrelation
trace of the laser pulse with optimal dispersion compensation with chirped mirrors; red:
fit with the Gaussian envelope of a transform limited pulse with ∆τFWHM = 40 fs; (c)
theoretical autocorrelation function for a Fourier transform limited pulse: no side peaks
appear.

with the Gaussian envelope of a pulse with ∆τFWHM = 40 fs, which is to be expected from
a near infrared Fourier transform limited pulse with a bandwidth of about 25 nm. This is
much lower than the about 50 nm we disposed of for this experiment. Additionally there
remain some side peaks a transform limited pulse cannot produce (Fig. 2.13c). Together
they indicate the presence of remaining phase distortions and clearly show that chirped
mirrors alone are not sufficient to reestablish a flat phase throughout the pulse spectrum
and consequently a further compensation step is needed.

The success of an autocorrelation measurement depends to a large extent of the re-
combination quality of both interferometer paths. If there are slight misalignments both
beams will not perfectly overlap in space even for τ = 0. Here, we additionally use a mi-
croscopy setup with a high NA objective to focuss the beams in order to reach sufficiently
high energy densities in the focal volume for the generation of nonlinear optical signals.
Under these conditions a perfect alignment is even more crucial as slight imperfections are
enhanced by focussing and the nonlinear signal generation reacts very sensitive to them.
In particular the height of the autocorrelation peak relative to the baseline diminishes for
an imperfect spatial overlap thus making it harder to extract meaningful information from
such an measurement. In the case presented in Fig. 2.13b we estimate a spatial overlap of
45 %.

2.7.3 Correction of remaining phase distortions by an evolutionary
strategy

For the removal of all remaining phase distortions a pulse shaper is very suitable (see Eq.
2.20). If the distortions are known they can be directly eliminated. Unfortunately an
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autocorrelation measurement does not permit to deduce the actual spectral phase in the
focal plane of the objective, it only allows to visualize the possible presence of a non-flat
phase. In general it is quite tricky to determine the phase out of an intensity measurement,
in particular when it is a spectral phase. Nonetheless several methods have been proposed
to accomplish exactly this [30]:

Frequency-resolved optical gating (FROG), developed by Trebino [160], uses an inter-
ferometric setup, in which the time-delay τ of the pulses in both branches of the interfer-
ometer can be varied, to induce a nonlinear process in a material where both pulses are
recombined [16]. A spectrum of the nonlinear signal is then measured for each τ . A typical
two-dimensional FROG trace is shown in Fig. 2.14b. Via an iterative algorithm the spec-
tral phase of the pulse can be reconstructed out of this graph. By now a large number of
different FROG variants have been developed, for example SHG FROG [161] as depicted in
Fig. 2.14a. The SHG signal S generated by both pulse copies in the second-order nonlinear
medium calculates as:

S(τ, ω) ∝
∣∣∣∣∫ E(t)E(t− τ)eiωtdt

∣∣∣∣2 (2.29)

Other FROG variants include polarization gate FROG, self-diffraction FROG, third-harmonic
generation FROG and transient grating FROG [16]. Though the signal S(τ, ω) is calcu-
lated differently for each of these variants, the spectral phase is always retrieved by an
appropriate algorithm. Most of these variants are performed in a non-collinear geometry.
This limits their use for microscopy applications where both beams would have to pass the
same objective therefore accepting a reduced spatial resolution when both beams reach the
objective with an angle. We verified the proper functioning of our pulse shaper by setting
up a FROG experiment before the microscope entrance but did not use it to characterize
the pulse state at the focal spot of the objective due to the extra complexity brought by
the high NA focussing and the collinear geometry. Other groups avoided the collinear-
geometry issue by developing new collinear FROG variants [162, 163, 164].

In spectral phase interferometry for direct electric-field reconstruction (SPIDER) - in-
troduced by Iaconis and Walmsley [17] - two copies of the pulse with varying time delay
τ - again created in an interferometer - interact with a chirped longer pulse in a nonlinear
medium (Fig. 2.14c). The chirp is usually achieved by sending the pulse through a thick
plate of glass. Because in the chirped pulse the instantaneous frequency changes in time,
the nonlinear signals - most commonly SHG pulses - resulting from each of the two copies
of the original pulse with the chirped one also have different frequencies. Both signal pulses
interfere in a spectrometer to create a spectrogram of the form E∗ (ω − Ω1)E (ω − Ω2) eiωt

where Ω1 and Ω2 are the instantaneous frequencies of the chirped pulse at the times it in-
terferes with both copies of the original pulse. From the spectrogram the phase difference

φ (ω − Ω1)− φ (ω − Ω2) (2.30)

is obtained that is related to dφ
dω

which then allows reconstruction of the spectral phase of
the original pulse.
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Figure 2.14: Phase measurement techniques. (a) FROG (here SHG FROG): two pulse
copies pass an interferometer with variable delay τ and interact with a second-order non-
linear sample. From the spectrally resolved SHG signal for all τ the spectral phase is
recovered in an iterative algorithm [165]. (b) Typical FROG trace [166]. (c) SPIDER:
two pulse copies separated by τ interact with a stretched pulse in a second-order nonlinear
sample, and from the spectral interferogram the phase gets calculated [165].

Note that in microscopy both methods are difficult to implement. FROG requires an
interferometric setup with all related difficulties like interferometric stability and good spa-
tial overlap after recombination as well as considerable computational capacities. SPIDER,
though less demanding in computational power, depends on an even more advanced setup.
Some of the many SPIDER variants that have been developed will be described further
down in section 2.8.

Fortunately one does not depend on a a priori knowledge of the spectral phase to
compensate for its distortions with the help of a pulse shaper. It is for example possible
to develop the spectral phase in a Taylor series around a central frequency ω0:

φ(ω) = φ(ω0) +
dφ

dω
|ω0 (ω − ω0) +

d2φ

dω2
|ω0 (ω − ω0)2 +

d3φ

dω3
|ω0 (ω − ω0)3 + ... (2.31)

and write a series of quadratic and cubic phases in the pulse shaper (absolute and linear
phases do not alter the pulse envelope (see section 2.2)) to optimize a nonlinear signal. We
tried this but did not succeed because probably numerous phase distortions are present
which can not be adequately described by a combination of quadratic and cubic terms.
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Another way to reduce phase distortions with the help of a pulse shaper are evolution-
ary strategies (ES). They do not require any insertions into the beam path. Evolutionary
strategies were developed in 1965 by Rechenberg et al. to optimize the shape of a flex-
ible body in a wind channel to minimize its drag [167]. Further shape optimizations of
engineering problems followed [168, 169]. Evolutionary learning algorithms designed for
the phase shaping of ultrashort pulses were realized in the Gerber group [33, 34, 35] to
maximize nonlinear signals. They used LC-SLM phase masks as in this work. It is also
possible to employ evolutionary strategies to achieve certain experimental goals where the
a priori phase and polarization shape of the pulse is unknown. Aeschlimann et al. for ex-
ample succeeded in locating the electric field in a sub-diffraction limited area at a bow-tie
structure while excluding it from others close-by [59].

An ES draws its inspiration from evolutionary processes in biology that lead to optimal
adaptation to the surrounding environment. Standard evolutionary factors are mutation,
that creates new genes in a random manner, selection that keeps only those individuals
exhibiting an advantage or increased fitness compared to the rest of the population while
at the same time eliminating individuals with less perfect adaptation, and recombination,
the mixing of genes between individuals as occurs during sexual reproduction.

An analogous approach is possible in optimization problems in computation. First a
merit or fitness function has to be defined that describes the degree of adaptation and shall
be maximized. In our specific case we want to create a flat spectral phase in the focal plane
of the objective. This is characterized by maximal efficiency of nonlinear optical processes.
As in the earlier sections of this chapter we choose to optimize the TPF signal of a Rh6G
solution which serves as merit function. Individuals to be investigated are D-SLM config-
urations that show only phase modifications but don’t change the spectral amplitude (see
Eq. 2.20). Hundred of them form a population. A configuration is an array of voltage
values applied to the SLM pixels that translates into a certain induced phase profile. In the
first generation the whole population is created randomly (Fig. 2.15a). For each member
its TPF response is measured, the fifteen that give the highest signal are kept as parents
for the next generation while the 85 remaining configurations get discarded (selection).
In a second step hundred pairings are randomly formed out of the fifteen parents. Each
pairing creates a child by randomly taking the voltage value for each pixel either from
one or the other parent (recombination). All children form the next generation and the
parents are discarded. After that a normally distributed noise in form of small drivecount
values is added to each configuration (mutation). This is necessary to jump out of local
extrema that doubtlessly exist numerously in the 470-dimensional configuration space (the
D-SLM has 640 pixels of which around 470 are passed by spectral pulse components with
non-negligible intensity). For a good performance of the ES the width σ of this Gaussian
noise distribution needs to be self-adaptive. In the beginning of the algorithm it is de-
sirable to search over a very large region of the configuration space while later on, once
the presumable global minimum has been approached, the search should be narrowed. We
start with an initial mutation width of σ = 50 drivecounts which corresponds to a voltage
of 122 mV or 1% of the total available voltage region. After the mutation every member of
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the population is measured and the fifteen best form as basis for the next generation and
the process repeats itself till a stable value in the TPF intensity is reached.

It is clear that such a procedure contains a large number of free parameters like the
total number of individuals in the population, the fraction kept as parents, the modalities
of the recombination - whether it is performed pointwise or in larger sections, whether
the parents form part of the next generation or not -, the width of the Gaussian for the
creation of the mutation noise - especially its temporal variability -, whether additional
boundary conditions like continuity of the phase function are included or not, etc. The
choice of all these parameters will decide whether the ES succeeds or fails. We followed the
work of groups employing evolutionary strategies in similar fields [170, 33, 171] to make
these choices. Of particular importance is the self-adaptive mutation width. We reach
good results in accordance with the work of Zeidler [172] by decreasing the mutation width
for the next generation by 10% whenever 60% of the current population give a higher
signal than their parents and by increasing it by the same percentage otherwise. In a
typical ES experiment performed in this way σ increases rapidly in the beginning up to
200 drivecounts before slowly decreasing towards 0. Fig. 2.15b shows this development.

After about 300 generations a stable maximum in the TPF intensity is seen to be
reached (Fig. 2.15c). Writing a configuration into both masks of the D-SLM takes around
250 ms. Together with a measurement acquisition time of 100 ms this results in a total
of about 350 ms per configuration as the time for all calculations performed during the
ES can be neglected in comparison with these two limiting factors. Thus an ES over 300
generations with 100 configurations per generations takes about three hours. Therefore the
TPF measurement of an fluorescent solution is much more convenient than for example
the SHG detection from a nonlinear crystal where the positional stability - especially in Z
- would have to be maintained over the whole period. In a solution the sample position is
not crucial because the system behaves the same everywhere. The resulting configuration
after the ES can be considered to correct for the remaining phase distortions and to lead
to a spectrally flat phase (Fig. 2.15d). Though the corrected phase distortions are still
dominated by the quadratic term responsible for the linear chirp - its parabola seen here
folded up due to the restriction of the phase interval that can be reached by our SLM
(see page 58) - it can by no means adequately describe the complete rather complex shape
and demonstrates the insufficiency of simple compensation devices like chirped mirrors. At
both sides of the spectrum the shape of the phase function is naturally more noisy and less
reliable because of the lack of energy in these spectral regions, but on the other hand even
an imperfect phase compensation there does not considerably alter the pulse as a whole.

Fig. 2.16 shows the SHG spectrum obtained from a nonlinear crystal - KTiOPO4

(KTP) (for more information on it, see section 4.2.2) - placed with its main axis along
X and excited by the phase corrected laser field, also oriented along X. Also seen is
the expected SHG response from our excitation laser spectrum if the phase was really
flat. Though the overall form of the measured spectrum corresponds quite well with the
expected one, the signal bandwidth is somewhat reduced. This indicates that despite the
ES, there are still some phase distortions present in the pulse. For a more detailed analysis
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Figure 2.15: Evolutionary strategy. (a) procedure; (b) evolution of the self-adaptive mu-
tation width σ during the algorithm; (c) signal evolution: average of the TPF intensity of
the fifteen best configurations; (d) phase corrections; blue: final D-SLM phase that leads
to a flat phase at the focal plane of the objective, red: normalized laser spectrum.

on how the phase profile influences the SHG spectrum, see section 4.5.

2.7.4 Limitations of Evolutionary algorithms

So far we only attempted to compensate for phase distortions to obtain a flat phase at
the focal point of the objective by maximizing nonlinear processes. Though this is a
very important task, phase pulse shaping offers a much greater potential. The capability
to create arbitrary phase profiles allows actively controlling nonlinear processes. Certain
pathways can for example be suppressed while others remain unaffected. An example
of such a situation is presented in section 4.5. However, an ES is not able to create
or measure such profiles for lack of adequate merit functions. In the case of flat phase
recovery the choice of the merit function is trivial: the intensity of any nonlinear optical
process. Once it is maximized, the phase will be flat. But if the task is for example to
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Figure 2.16: SHG spectrum (black solid line) after the evolutionary strategy. Both the
nonlinear sample (KTP) and the incident field are oriented along X. The expected SHG
spectrum from our laser pulse with a flat phase is shown as a grey dashed line. The lower
bandwidth of the measured spectrum indicates the presence of some phase distortions.

create a sinusoidal phase profile, no merit functions springs to mind. Since a sinusoidal
phase results in a SHG pattern with minima and maxima depending on the position of
symmetric and antisymmetric phase points (see section 4.5), one could think of maximizing
the ratio between the SHG intensities at the maximum and minimum position. But there
are a number of other, non sinusoidal, phase profiles that would achieve the same. Thus,
such a merit function is ill fitted. Other choices are accompanied by similar difficulties.

In many cases it should not be necessary to measure an arbitrary phase, even if it is
applied on the SLM. One could start from the SLM configuration corresponding to a flat
phase at the sample plane as found by the ES described in the previous section, and then
add the desired phase. If the shaper is carefully calibrated, meaning it is known which
frequency traverses which SLM pixel and the relationship between the applied voltage and
its effect on the phase of that particular frequency has been established previously, writing
a certain phase in the shaper will yield exactly that phase at the end plus the initial phase
of the pulse. As this initial phase is just the phase corrected by the ES, any phase could be
created in a controlled way. The main question is therefore, how reliable is the flat phase
found by the ES?

As the ES maximizes the TPF response of a Rh6G solution it is safe to assume, that
even if the phase it not entirely flat at the end the remaining distortions would hardly affect
the overall signal intensity. This means that in spectral regions with high energy content,
i.e. in the central region, the found phase is very reliable. However, at both sides of the
spectrum where only a tiny portion of the pulse’s energy resides, the ES is less accurate,
because these regions contribute only a very small portion to the overall signal and thus
phase distortions there don’t affect the signal considerably. This is true for all nonlinear
processes that could be used for an ES, but the severity of the effect depends on the kind

68



2.8. Single-beam homodyne SPIDER

of nonlinearity measured. For TPF and SHG the signal intensity scales with the square of
the incident intensity, while for THG the relationship is cubic. As a result a THG-ES is
even less sensitive than TPF and SHG to distortions at the sides of the spectrum.

Another problem arises from the fact that the SLM has only a limited range of phases φ
that can be applied, in our case π/2 ≤ φ ≤ 3.5π (see section 2.6). However, the distortions
that have to be corrected for, exceed this limit and phase wrappings get introduced. These
wrappings pose a problem for the ES algorithm because it relies on a slow optimization of
the phase which works nice if the target function is smooth. Jumps in the phase function,
on the other hand, might result in trapping the algorithm at the jump frequency on one or
the other side of the gap. In most cases a manual post treatment can resolve these issues.
For a SLM pixel whose drivecounts value is very different from those of the neighboring
pixels, it gets set to the average of its neighbors. Fig. 2.17 shows an example of an ES
result before and after this post treatment. In the spectral center only little can be gained
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Figure 2.17: Post treatment of ES result. (a) final configuration found by the ES; (b)
configuration after manual post treatment (phase as blue dots and spectral intensity as red
line). Before treatment the phase is very noisy in regions with low spectral intensity while
relatively smooth in the center of the spectrum.

by post treating the configuration, the ES having already nicely converged. The more
one approaches the spectral borders the noisier the ES configuration gets and the bigger
the effects of the treatment. Consequently in those regions the actual phase is very ill
determined and has to be considered to be unknown. As already mentioned this does
hardly affect the overall signal intensity, but it prevents the creation of arbitrary phase
profiles in these regions.

2.8 Single-beam homodyne SPIDER
To prevent these problems one must have the possibility to reliably measure the phase in
regions with low spectral intensity in a configuration that can work in a collinear geometry.
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2.8. Single-beam homodyne SPIDER

The disadvantages of the conventional methods FROG and SPIDER have already been
mentioned earlier (section 2.7.3). It is however worthwhile to note that a few spectral
phase measurement techniques can be performed in a collinear geometry, among them
some new SPIDER variants. The time-domain homodyne optical technique (HOT) for
SPIDER [173, 174] does not require anymore a spectral readout as it works exclusively in
the time domain (Fig. 2.18a). The phase is recovered by varying the time delay τ between
both pulses in the interferometer. In the shaper-assisted collinear (SAC) SPIDER [175]
the pulse doublet is created in a pulse shaper. In a reference branch the original pulse gets
stretched and after recombination it interacts with the shaper output. Both beams are
focussed onto a nonlinear sample (a BBO crystal) and the spectrally resolved SHG signal
gets analyzed according to standard SPIDER algorithms (Fig. 2.18b). As both methods
work in a collinear way, they are suited for microscopy with high NA objectives, but they
still depend on interferometric setups.

This constraint is avoided in the multiphoton intrapulse interference phase scan (MIIPS)
method, developed by the Dantus group [20, 21]. Besides a pulse shaper and a spectrome-
ter it does not require any additional elements (Fig. 2.18c). To retrieve the spectral phase
φ(ω) of a broadband pulse, a known sinusoidal phase profile f(ω) = α cos(γω− δ) is added
to the unknown phase. α denotes the phase amplitude, γ its period (typically on the order
of the pulse duration in the time domain) and δ the relative position of the added phase
within the unknown phase of the pulse. A multiphoton signal (for example SHG) gets
generated by this pulse and is measured by a spectrometer for a whole range of values δ.
When the second derivative of both φ(ω) and f(ω) add up to zero, the SHG signal gets
maximized. Thus by scanning f(ω) for different δ the quadratic phase component of φ(ω)
can be determined. To compensate for the cubic component, the third derivative of f(ω)
has to be considered and so on for all higher orders. A typical MIIPS trace, combining the
SHG spectra for different δ is shown in Fig. 2.18d. A flat phase is characterized by paral-
lel features. Different inclinations and spacings indicate non-flat spectral phases. Several
variants of MIIPS have been developed, both in an iterative [176] and in a non-iterative
fashion [177].

Recently the group of Lim [178] introduced a single-beam homodyne SPIDER method
in which two narrow polarization jumps close to one another - of which one is additionally
phase shifted with respect to the other - are shaped into a broadband pulse. This is done
in a pulse shaper based on a LC-SLM as in this work. In the SPIDER variants mentioned
so far two copies of the pulse interact with different parts of a stretched pulse. Here the
non-polarization shifted pulse serves as both pulse copies at the same time, while the two
almost monochromatic polarization jumps mirror two different wavelengths of the stretched
pulse. The field from the polarization jump regions interferes in a second-order nonlinear
medium with the field of the whole pulse thus creating two different SHG signals as in the
SPIDER variants mentioned so far. From the interferences produced by these two signals
a phase difference θ(ω) in analogy to Eq. (2.30) is obtained:

θ(ω) = φ(ω)− φ(ω − δω) (2.32)
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Figure 2.18: Collinear phase characterization methods. (a) time domain HOT SPIDER
consisting of an interferometer and a stretcher whose outputs interfere in a nonlinear
medium and the signal analysis leads to the spectral phase [174]. (b) SAC SPIDER consist-
ing of a stretcher and a pulse shaper where the pulse doublet gets created. Both branches
interfere in a nonlinear medium and the spectrally resolved SHG signal leads to the spectral
phase [175]. (c) MIIPS setup [176]. (d) Typical MIIPS trace for a non-flat spectral phase
[20].

where δω is the spectral distance between both polarization jumps. From this result the
spectral phase of the original pulse is recovered by the recursive formula:

φ(ω0 + nδω) = φ(ω0) +
n∑
k=1

θ(ω0 + kδω) (2.33)

where n is a positive integer. The spectral resolution of this method is δω. All these
collinear techniques require a double shaping, either polarization/phase or amplitude/phase.

A subsequent development has led to the proposal of the single-beam homodyne SPI-
DER [179] where only a narrow phase jump gets inserted into the pulse without the need
of shaping neither amplitude nor polarization.

2.8.1 Principle of single-beam homodyne SPIDER

When a narrow phase jump gets inserted into the spectral profile of the pulse, the electric
field can be written as [179]:

E0(ω) = Eh(ω) + Epr(ω) (2.34)
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where Epr is the probe field at the phase jump position ωpr and Eh the remaining pulse
with a hole at the probe frequency (Fig. 2.19a). Under the assumption of a very narrow
jump it is possible to write Epr(ω) = E0(ωpr)δ(ω − ωpr). The applied phase at ωpr is
denoted φpr. An SHG field created by such a pulse can then be expressed as (see section
1.2.2):

ESHG(ω) ∝
∫

dΩE0(ω − Ω)E0(Ω)

=

∫
dΩ[Eh(ω − Ω) + Epr(ω − Ω)][Eh(Ω) + Epr(Ω)] (2.35)

=

∫
dΩ[Eh(ω − Ω) + E0(ωpr)δ(ω − Ω− ωpr)][Eh(Ω) + E0(ωpr)δ(Ω− ωpr)]

=

∫
Eh(ω − Ω)Eh(Ω)dΩ + 2E0(ωpr)Eh(ω − ωpr) + (E0(ωpr))

2δ(ω − 2ωpr)

The first term
∫

dΩEh(ω−Ω)Eh(Ω) ≡ ELO
SHG(ω) couples Eh with itself and is independent

of the probe phase φpr. It acts as a local oscillator. The second term 2E0(ωpr)Eh(ω−ωpr) ≡
E

(1)
SHG(ω) contains the interference between Eh and Epr and has the same spectral phase as

Eh(ω) with an offset φpr due to the narrow bandwidth of Epr. In the original SPIDER this
term corresponds to the interaction of one copy of the pulse (here: Eh(ω)) with a certain
part of the stretched pulse (here: Epr). The third term (E0(ωpr))

2δ(ω − 2ωpr) = Epr
SHG(ω)

only influences the SHG spectrum at ω = 2ωpr and can therefore be neglected (Fig. 2.19b).
The corresponding SHG intensity ISHG(ω) is then:

ISHG(ω) = |ELO
SHG(ω) + E

(1)
SHG(ω)|2

= |ELO
SHG(ω)|2 + |E(1)

SHG(ω)|2 (2.36)

+2|ELO
SHG(ω)E

(1)
SHG(ω)|cos(φLO(ω)− φpr − φ(ω − ωpr))

with φ(ω) the phase of Eh(ω) and φLO(ω) that of ELO
SHG(ω). This is the implementation

of the double quadrature spectral interferometry [180] applied to a single pulse. The first
two intensity terms as well as the factor in front of the cosine are independent of the probe
phase φpr. An operation of the form

ISHG(ω, φpr1)− ISHG(ω, φpr2)

ISHG(ω, φpr3)− ISHG(ω, φpr4)
(2.37)

eliminates all these summands and factors and keeps exclusively the cosines. Choosing
(φpr1 , φpr2 , φpr3 , φpr4) = (π/2,−π/2, 0, π)) in expression 2.37 results in a sine in the numer-
ator while keeping the cosine in the denominator and the phase φLO(ω)− φ(ω − ωpr) can
be extracted by:

φLO(ω)− φ(ω − ωpr) = tan−1

[
I

(1)
SHG(ω, φpr = π/2)− I(1)

SHG(ω, φpr = −π/2)

I
(1)
SHG(ω, φpr = 0)− I(1)

SHG(ω, φpr = π)

]
(2.38)
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Figure 2.19: Single-beam homodyne SPIDER: principle. (a) incident electric field com-
posed of probe field Epr at ωpr with the phase φpr and the rest of the field minus the probe
field Eh(ω); (b) contributions to the SHG field ESHG(ω): local oscillator field ELO

SHG(ω) cou-
pling of Eh with itself; interference field E(1)

SHG(ω) coupling Eh with Epr; and pure probe
field contribution Epr

SHG(ω).

To recover the original spectral phase φ(ω) the remaining unknown phase φLO(ω) must
still be removed. This can be done by another series of measurements with phase jumps
at a slightly different frequency ωpr + δω. The same procedure as above leads to:

φLO(ω)− φ(ω − ωpr − δω) = tan−1

[
I

(2)
SHG(ω, φpr = π/2)− I(2)

SHG(ω, φpr = −π/2)

I
(2)
SHG(ω, φpr = 0)− I(2)

SHG(ω, φpr = π)

]
(2.39)

φLO(ω) in Eqs. (2.38) and (2.39) can be considered to be identical due to the narrow
bandwidth of the probe. Thus subtracting one equation from the other gives, following the
algorithm of the HOT SPIDER method [181]:

φ(ω − ωpr)− φ(ω − ωpr − δω)

= tan−1

[
I

(2)
SHG(ω, φpr = π/2)− I(2)

SHG(ω, φpr = −π/2)

I
(2)
SHG(ω, φpr = 0)− I(2)

SHG(ω, φpr = π)

]
(2.40)

− tan−1

[
I

(1)
SHG(ω, φpr = π/2)− I(1)

SHG(ω, φpr = −π/2)

I
(1)
SHG(ω, φpr = 0)− I(1)

SHG(ω, φpr = π)

]
≡ θ(ω − ωpr)
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θ(ω−ωpr) is the phase difference between the two frequencies ω and ω+ δω of the incident
pulse. The offset ωpr translates this difference in the pulse frequency range to the range
of the measured SHG frequencies. Starting from the construction phase θ(ω − ωpr) the
original phase is recovered by the recursive formula:

φ(ω0 + nδω) = φ(ω0) +
n∑
k=1

θ(ω0 + kδω) (2.41)

with n as a positive integer.
The single-beam homodyne SPIDER method requires therefore eight measurements:

four different phase jumps at two different spectral positions. Thus it is much faster than
a FROG measurement and avoids the complicated interferometry setup of a traditional
SPIDER scheme. Forget et al. recently demonstrated the convergence of single-beam
homodyne SPIDER results with those of other SPIDER variants [182]. As a disadvantage
single-beam homodyne SPIDER does not offer the same spectral resolution as these other
methods. FROG and SPIDER are only limited by the resolution of the spectrometer while
the single-beam homodyne SPIDER resolution is given by the difference in phase jump
positions δω. Still, this is usually enough. In our case each SLM pixel contains a spectral
width of about 0.3 nm. As a particular pulse frequency will also have a finite width in
the Fourier plane where the SLM is located, it may pass several neighboring pixels. To
assure that the whole of a pulse frequency can be phase shifted, the phase jump region
has to encompass several pixels, we chose four, corresponding to a spectral width of about
1.2 nm. δω should then be chosen to be large enough, so that both phase jump positions
are clearly distinct. This leads to a spectral resolution of this method of a few nm. As it
is not expected that major phase distortions occur on such small scales, this resolution is
sufficient for many purposes.

It should be noted, however, that the method requires spectra with very good signal
to noise ratios, because it relies on quotients of differences of SHG spectra. As we will see
below, even moderate noise levels would be detrimental for the phase recovery.

2.8.2 Correction of phase distortions using single-beam homodyne
SPIDER

Before using the single-beam homodyne SPIDER method to create and measure arbitrary
phase profiles, a first test should assess its capability to correct for phase distortions.
As it relies on SHG we chose KTiOPO4 (KTP) as a sample because of its high SHG
cross section. The SHG spectra are measured as explained above (section 2.5.2). The
phase steps were centered at 778 nm and 782 nm, resulting in a spectral resolution of our
phase characterization of 4 nm. To obtain good signal to noise ratios of about 150, we
averaged each spectrum over ten measurements of 2 s exposure time each. The opposite
of the calculated phase is then applied to the D-SLM which should result in a flat phase
at the sample plane. To test the performance of the method, the phase measurement is
carried out again for this new found phase. Such an iterative approach (we went up to
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the fourth iteration) should not only show the success of the phase compensation in the
previous step, but also successively eliminate the remaining phase distortions. In Fig.
2.20 the results of such a measurement are presented. For each of the four iterations
the construction phase θ(ω) (Fig. 2.20a) and the calculated phase φ(ω) (Fig. 2.20b) are
displayed. Furthermore the SLM configuration is shown after the calculated phase has been
subtracted from the previous configuration (Fig. 2.20c) and the SHG spectrum resulting
from this SLM configuration (Fig. 2.20d).

It can be seen that a flat phase is not obtained after just one run of the procedure, as
is especially clear from the shape of the SHG spectrum in Fig. 2.20d (blue curve) obtained
after subtracting the calculated phase of the first run in the D-SLM (see section 4.5 on how
the phase influences the SHG spectrum). During the next few iterations the SHG spectrum
increases in bandwidth and exhibits a more Gaussian-like shape without local minima. The
single-beam homodyne SPIDER theory does not require any iterations. The fact that the
experimental implementation relies on them shows the sensitivity of the method on error
sources. The importance of high signal to noise ratios was already stated, additionally
the laser source has to be stable throughout the whole process that takes around a few
minutes. Also the finite SLM resolution as well as the imperfect frequency separation in
the SLM’s plane affect the result quality since they lead to imperfect phase jumps that
don’t have the form of a δ-function as assumed in the theoretical derivation.

Caution has to be taken concerning another uncertainty of the method. Because it
depends of the form of SHG spectra, single-beam homodyne SPIDER is only sensitive to
phases that alter the SHG signal, which is also the case for all other SHG-based phase
retrieval methods like SHG-FROG and the other SPIDER variants. As already explained
in section 2.2 a constant phase only shifts the oscillations within the pulse envelope and
a linear phase shifts the whole pulse in time, but both do not change the form of the
pulse, thus they do not influence the SH generation and the method is consequently blind
to these phases. A linear spectral phase would however result in a constant term in the
construction phase θ(ω) which is shown in Fig. 2.20a. The heavy fluctuations on both sides
are generated by noise because almost no SHG intensity is present in these regions, but
in the central portion of the SHG spectrum where θ(ω) is more or less flat each iteration
exhibits a different offset. One might argue that the presence of a linear phase does not
pose a problem for nonlinear optical experiments as the results are unaffected by it, but
this is not true when working with a pulse shaper with finite resolution. Because with
a SLM it is only possible to apply phases within a certain range (in our case between
0.5π and 3.5π), a strong linear phase leads to phase wrappings in the SLM. As already
mentioned in section 2.7.4 these phase jumps are detrimental to the control of the spectral
phase, because the same frequency will pass the SLM on both sides of the jump leading
to an ill-defined phase and being accompanied by an amplitude drop as well. The number
of phase wrappings should therefore be reduced to a minimum which corresponds to the
substraction of a suitable linear phase. If this phase is estimated by fitting a constant
function to θ(ω) in Fig. 2.20a or a linear function to φ(ω) in Fig. 2.20b, the fit will be
dominated by the huge phase values at the spectral fringes created by noise, thus leading

75



2.8. Single-beam homodyne SPIDER

740 760 780 800 820 840
1.5

2

2.5

3

3.5

λ [nm]

φ  
[m

ul
tip

le
s 

of
 π

]

0

0.5

1

In
te

ns
ity

 (n
or

m
al

iz
ed

)

360 380 400 420 440
-40

-20

0

20

40

λ [nm]

θ  
[°

]

 

 

1
2
3
4

0

0.5

1

S
H

G
 in

te
ns

ity
 (n

or
m

al
iz

ed
)

750 800 850
-3000

-2000

-1000

0

1000

λ [nm]

φ  
[°

]
 

 

1
2
3
4

380 390 400 410 420
0

0.2

0.4

0.6

0.8

1

λ [nm]

S
H

G
 in

te
ns

ity
 [a

.u
.]

 

 

1
2
3
4

(a) (b)

(c) (d)

760 790 820

-100

0

100

λ [nm]

φ 
[ °

]

Figure 2.20: Single-beam homodyne SPIDER: Creating a flat phase. (a) construction phase
θ(ω) as defined in Eq. (2.41) for all four iterations, SHG spectrum after last iteration in
black; (b) calculated phase φ(ω) of the incident pulse (see Eq. (2.41)) for all four iterations
(inset shows a zoom of the central region); (c) D-SLM configuration (blue dots) resulting
from subtracting φ(ω) from the previous D-SLM configuration (applied phase shifts are
restricted between 1.5π and 3.5π, only the configuration after the fourth iteration is shown),
and pulse spectrum (red line); (d) SHG spectrum of KTP when the D-SLM configuration
is applied that compensates for phase distortions as seen in (b), for all four iterations.
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to erroneous results. A better assessment of the linear phase is achieved when weighting
the fit according to the spectral intensity of each contributing frequency (see appendix A).
The results in Fig. 2.20 were obtained by following this procedure. Without the linear
phase estimation, no convergence towards a flat phase was observed, on the contrary the
spectral phase and the corresponding SHG spectrum became increasingly more distant
from a flat phase configuration due to the ever increasing number of phase wrappings
(data not shown).

2.8.3 Limitations of this technique

The experiments presented above demonstrate that it is possible to correct for distortions
in the phase profile of a pulse which means the original phase can be measured. But the
procedure requires a certain number of iterations, indicating that the phase measurement
is not perfect. The question arises whether this is only due to experimental insufficiencies
or whether there are also method-inherent limitations as to which kinds of phase profiles
can be correctly determined and when the procedure starts to fail. We addressed this
problem by a number of simulations. These were designed to correspond closely to our
experimental conditions. The phase steps are centered at 778 nm and 782 nm with a width
of 1.2 nm each and a Gaussian laser spectrum is assumed with a similar bandwidth to those
provided by our laser. A certain phase is applied and from the SHG spectra we attempt
to retrieve it according to the theory presented in section 2.8.1. From the obtained phase
its linear component, weighted by the spectral importance of each frequency, is removed.
The quality of the phase retrieval is then assessed by a mean square error calculation of
the form:

χ2 =

∫
Ω

(φ0(ω)− φr(ω))2dω (2.42)

where φ0(ω) and φr(ω) are the applied and the retrieved phase, respectively, and the
integration is performed over the spectral support Ω of the laser pulse.

We can now explore the phase profiles for which the single-beam homodyne SPIDER
method leads to a correct phase measurement and those regions where it fails to do so.
As phase distortions in a typical pulse shaping microscopy setup usually contain a large
quadratic phase contribution caused by the glass in the objective and many other smaller
perturbations created by all the optical elements in the beam path, we represent them by a
quadratic phase profile in which a sinusoidal phase is embedded: φ0 = a(ω−ω0)2+A sin(bω)
[183]. Fig. 2.21a shows the performance of the single-beam homodyne SPIDER for such
phase profiles where a = 300 fs2, b = 1

4π
ps and the amplitude A of the sinus is tuned

between and 0 and 4π. Low χ2 values correspond to a successful phase retrieval as seen in
Fig. 2.21b, taken for A = π. But already relatively small deviations from this χ2-baseline,
as the one at A = 1.7π indicate considerable errors in the phase retrieval process (Fig.
2.21c). The higher the values χ2 (as for A = 3.8π for example - Fig. 2.21d), the worse
becomes the mismatch between original and applied phase.
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Figure 2.21: single-beam homodyne SPIDER: limitations. (a) phase retrieval mismatch χ2

for the phase profile φ0 = 300fs2(ω−ω0)2 +A sin(ω[ps−1]
4π

) with sinus amplitude 0 < A < 4π.
(b-d) retrieved phase for A = 1, A = 1.7 and A = 3.8 as indicated in (a); black solid line:
applied phase φ0, blue dotted line: retrieved phase φr; laser spectrum as dashed red line for
orientation. Note the different vertical phase scales in (b-d) due to the increasing degree
of phase mismatch; the quadratic part of φ0 is the same in all three cases.

It can be clearly seen that the single-beam homodyne SPIDER is not universally suc-
cessful. In order to gain a better understanding of when the method starts to fail we
investigated a number of different types of phase profiles that are presented in Fig. 2.22
(the varied parameters will always be denoted as x). For a purely quadratic phase profile
φ0 = x(ω − ω0)2 (Fig. 2.22a) the retrieval works fine even for very large quadratic phases
such as a = 5000 fs2. Even though a rise is visible in the χ2-graph, the mismatch values
remain small, all the more as the phase values reach huge numbers at the sides of the spec-
trum. However, as soon as random perturbations are added, the method encounters huge
difficulties. Fig. 2.22b contains profiles of the form φ0 = 300 fs2(ω−ω0)2 + xNG where NG

is a normally distributed noise with zero mean and a standard deviation of 1. A quadratic
phase of 300 fs2 corresponds to a point far to the left in the χ2-graph in Fig. 2.22a, where
the phase measurement works perfectly. But already small perturbations of x = σ = π

10

lead to a break-down of the retrieval. Curiously for a number of larger perturbations, the
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measurement gives again the correct result, but once σ > 0.3π there are no more matches.
To gain further insight into the effect of small scale changes, we used a sinusoidal

profile that offers more control parameters than normally distributed noise. We find that
the method depends strongly on the amplitude of the phase variations (Fig. 2.22c - φ0 =

x sin(ω[ps−1]
4π

)). As soon as these surpass around x = π
3
the retrieval fails while it works

for all lower values. Based on this finding we fixed the amplitude at π
3
and varied the

period: φ0 = π
3

sin(xω) (Fig. 2.22d). While the method works quite stable under these
conditions for shortening periods up to the resolution limit (the distance δω between the
two phase step frequency positions), there are some isolated cases where difficulties are
encountered. As soon as the sine amplitude is slightly increased, for example to 0.4π, a
very different situation arises and only for some specific sine periods the retrieval leads
to the correct result (data not shown). If the sine is overlaid by even moderate noise
(φ0 = 0.3π sin(ω[ps−1]

4π
) + xNG - Fig. 2.22e), the phase measurement only succeeds for

values up to x = σ = 0.07π and for the some isolated cases above. Even the spectral
position of the sine’s minima and maxima plays a role in the phase retrieval performance,
though not an important one (Fig. 2.22f). For φ0 = π

3
sin(ω/(ω[ps−1]

4π
+ x) retrieval fails

only in two isolated cases while it works, although with slightly different accuracies, in all
other cases.

Finally we looked at the behavior of a combined quadratic and sinusoidal phase. Fig.
2.22g investigates the retrieval performance influence on the sine amplitude within the
quadratic profile, as already seen and analyzed in Fig. 2.21 (φ0 = 300 fs2(ω − ω0)2 +

x sin(ω[ps−1]
4π

)). Note that while in the case of a pure sine the retrieval only works up to
amplitudes of x = π

3
, the addition of a quadratic phase allows the correct measurement

of sine phases with ten times the amplitude, though not over the whole range. On the
other hand the addition of a quadratic phase imposes severe restrictions on the period of
the sine (φ0 = 300 fs2(ω − ω0)2 + π sin(xω) - Fig. 2.22h). Over the whole range between 0
and 4 sine periods within a spectral interval of 50 nm, regions where the retrieval succeeds
alternate with those where it fails.

In summary we deduce that single-beam homodyne SPIDER is able to measure phases
that do not exhibit large oscillations on small scales. That explains its success with
quadratic phases, even though they may contain strong slopes at the spectral edges, but
the phase remains monotonous is these regions. As soon as strong phase variations occur
on small scales, the method quickly starts to fail as demonstrated by the sinusoidal phase
profiles. In these cases the method has probably difficulties to differentiate the induced
phase step from the rapid phase variations close-by. However, if these variations are added
to a dominant slowly varying phase they can be better retrieved. In any case, the retrieval
only works when it is done as an iterative process, something the theory does not predict.
The reason for this lies most probably in the need for very noiseless spectra and the fact
that the phase jump regions do not have the form of a δ-function as in the theoretical
derivation thus blurring the SHG response and leading to difficulties in the phase retrieval.
All in all it is very difficult if not impossible to predict the success or failure of single-beam
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Figure 2.22: Single-beam homodyne SPIDER: phase retrieval simulations. (a) varying
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3
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homodyne SPIDER without a proper simulation or a measurement. The elegant simplic-
ity of the setup compared to the standard methods FROG and SPIDER clearly finds its
trade-off in the strongly reduced number of phase profiles for which it is suited.

2.8.4 Control of arbitrary phase profiles at the focal point of the
objective using single-beam homodyne SPIDER

Now that we know which kinds of phase profiles are accessible for single-beam homodyne
SPIDER, the question arises whether we can also measure such phases with this method.
To create a certain spectral phase at the focal point of the objective, first a flat phase is
realized by compensating for phase distortions and then the desired phase is encoded in
the SLM which is easily done, once the SLM is well calibrated (see section 2.6).

In practice there arises, however, the problem of the phase wrappings. As phase dis-
tortions can be quite large they can easily surpass the phases accessible by a SLM and
therefore phase wrappings modulo 2π have to be introduced. If the desired phase profile
gets then added to this phase the number of wrappings tends to increase. Each wrap
presents a source of error due to imperfect frequency separation in the SLM plane of the
pulse shaper. The actual spectral phase is thus ill defined at these positions and the spec-
tral amplitude drops as well. It would therefore be desirable to create a specific phase
profile directly without having to pass by the configuration that compensates for phase
distortions. If these distortions would be due almost exclusively to a quadratic phase, they
could be compensated quite successfully with chirped mirrors, but because they contain
also higher-order contributions - including those introduced by the chirped mirrors them-
selves (see section 2.7.1) -, a pre-compensation by these mirrors is not always possible.

To measure an arbitrary phase in a first try we encoded this phase in the SLM after the
phase distortions had been compensated. We used the single-beam homodyne SPIDER
procedure to measure the so created phase. This was done in a non-iterative fashion.
We tested it for sinusoidal and quadratic phases. Unfortunately this attempt failed. We
attribute this to imperfections in the phase retrieval process. As in the case of a flat phase
creation, where a good result only arrives after some iterations of the procedure, we expect
that the same is true when other phase profiles are to be realized.

That is why to create a flat phase we need an iterative approach of the single-beam
homodyne SPIDER. We start by measuring our phase without applying a specific profile in
the SLM. The measurement result contains all the phase distortions. The retrieved phase
is then subtracted in the SLM leading to a supposedly flat phase at the sample plane. A
second phase measurement gives then all the remaining phase distortions that were not
corrected for in the first measurement. The new phase is subtracted from the previously
found SLM configuration and so on. This procedure can easily be adapted to create not
a flat phase but an arbitrary phase profile (Fig. 2.23). For this we begin by writing the
target phase in the SLM ignoring all knowledge about other phase distortions. A phase
measurement thus gives the desired phase plus all distortions that are often much bigger
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Figure 2.23: Algorithm to create arbitrary phase profiles with the single-beam homodyne
SPIDER. In a first step the target phase gets applied to the SLM and the resulting phase
φ1
r - containing all phase distortions - is measured. In a second step φ(1)

r is subtracted from
the previous SLM configuration and the target phase is added again, resulting in a new
SLM phase φ(2)

SLM . Once this phase is measured only very few distortions from the target
phase remain. After several iterations the target phase is established in the SLM.

than the target phase itself. In a second step we subtract the measurement result from
the previous SLM configuration - supposedly leading to a flat phase at the sample plane -
and add again the target phase. A second phase measurement should now be dominated
by the target phase but will most likely still contain various small perturbations. After a
few more cycles of this iterative process the target phase should be firmly established.

Fig. 2.24 shows a number of phases created in this way. This study aims at testing the
robustness of the phase measurement technique described here. All profiles shown follow
the form φ0 = x1π sin(x2

2π
∆ω

(ω − ω0)). The antisymmetric point of the phase is fixed at
λ0 = 2πc

ω0
= 800 nm. The actual position of λ0 is of minor importance as can be seen from

Fig. 2.22f. Within an interval of ∆λ = 50 nm around this point (which corresponds to
∆ω) the phase contains x2 periods and it reaches a maximal value of x1π. The shown
phases thus correspond to the situation of Fig. 2.22c and 2.22d. As long as the phase
amplitudes are small (0.3π) the phase creation and measurement works nicely (Fig. 2.24a-
c). The quality of the measured phase is independent of the period of φ0. As soon as the
amplitude reaches values around 0.45π...0.5π the procedure starts to fail (Fig. 2.24d-e).
Though the sinusoidal oscillations are still somewhat present, they are overlaid by strong
linear or quadratic terms. For even higher amplitudes (0.6π) the method fails completely
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(Fig. 2.24f). This is in very good agreement with the simulations presented in Fig. 2.22c
and 2.22d. As the simulations also show a strong dependence of the quality of the phase
measurement from the phase amplitude while the period of the phase profile plays only a
very minor role. Even the amplitude value at which the procedure starts to fail is very
similar in simulation and experiment.

This first result shows that even after four iterations the method is not robust for phase
profile measurements. One might argue that with a longer iterative process it should in
principle be possible to measure phases correctly whatever the phase profile complexity be-
cause even if the measured phase is wrong after the first try, subsequent iterations should
sooner or later bring the phase to the desired form. We tested this by mimicking in our
simulations some critical phase profiles that failed in the experiment. As before we tested
sinusoidal profiles of the form φ0 = x1π sin(x2

2π
∆ω

(ω − ω0)) and chose pairs of (x1, x2)
where the experimental phase creation starts to fail, but where the desired phase shape
can still be guessed by eye in the final measured phase. Fig. 2.25 shows two such cases
((x1, x2) = (0.3, 4) and (x1, x2) = (0.45, 2)). For both of them the experimentally mea-
sured phase and the calculated phase of the simulation after each iteration are displayed.
For both phase profiles neither experiment nor simulation converge on the desired phase.
Although after certain iterations the main characteristics of the target phase were found,
subsequent iterations show less good agreements. This might be due to the fact that each
iteration introduces phase fluctuations on small scales. As the target phase is continuous
while the calculated phase only has a spectral resolution of δω, the spectral difference
between the two phase step positions, the disagreement between φ0 and φr will show per-
turbations on the scale of δω. This is demonstrated in Fig. 2.26. The iterative single-beam
homodyne SPIDER process is simulated for the target phase φ0 = x1π sin(x2

2π
∆ω

(ω − ω0))
with (x1, x2) = (0.3, 2), a condition, where both the experiment and the simulation lead to
a correct phase measurement. However, as can be seen in Fig. 2.26a, φ0 and the calculated
phase φr are not identical due to the finite spectral resolution of φr. The disagreement
between both is the strongest where φ0 quickly changes its slope, i.e. in the region of the
minima and maxima. Because the procedure subtracts φr in the SLM and adds again
φ0 to obtain the phase for the next iteration φn, this mismatch is preserved. With each
subsequent iteration it gets accumulated (Fig. 2.26b). For phase profiles in regions where
the method works reliably, this effect does not pose a problem as long as the number of
iteration remains reasonably small, but it can be quite severe for phase profiles where the
method has some trouble to measure the phase correctly. These additional perturbations
will then considerably reduce the chances for success.

Another serious problem for single-beam homodyne SPIDERmeasurements is the signal
to noise ratio in the spectral measurements. We dealt with a noise level of only about 0.6%
which was reached by choosing long integration times (ten measurements of 2 s each per
phase step value). The same amount was also included in our simulations depicted in Fig.
2.25. But even these minute values influence the outcome of our simulations considerably.
For a number of phase profiles where both the experiment and the noiseless simulation lead
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Figure 2.24: Single-beam homodyne SPIDER for phase creation. Desired phase profiles as
solid black lines; retrieved phases after the fourth iteration (see text for details) as blue
dotted lines; laser spectrum as dashed red curve for orientation. Sinusoidal phase profiles
of the form φ0 = x1π sin(x2

2π
∆ω

(ω − ω0)) (where ∆ω corresponds to an interval of ∆λ =
50 nm around λ0 = 2πc

ω0
= 800 nm) differ in amplitude (x1) and periods per ∆λ (x2). (a)

(x1, x2) = (0.3, 1.5); (b) (x1, x2) = (0.3, 2); (c) (x1, x2) = (0.3, 3); (d) (x1, x2) = (0.45, 1.5);
(e) (x1, x2) = (0.5, 2); (f) (x1, x2) = (0.6, 1.5).
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Figure 2.25: Single-beam homodyne SPIDER experiment and simulation for critical
phase profiles. Sinusoidal phases of the form φ0 = x1π sin(x2

2π
∆ω

(ω − ω0)). Left col-
umn: experiment, right column: simulation. Upper row: (x1, x2) = (0.3, 4); lower row:
(x1, x2) = (0.45, 2). φ0: target phase; φrn : measured resp. calculated phase after the nth
iteration.

to a correct phase determination, a simulation including noise may easily fail. That is also
why we did not include any noise in the graphs in Fig. 2.26 to be able to show the effect just
due to the finite φr-resolution. The extreme sensitivity to noise of single-beam homodyne
SPIDER has its origin in the phase retrieval calculations (Eq. (2.38)) where the quotient
of a difference of spectra is taken to exploit tiny changes in the SHG spectra created by
slightly different excitation conditions. Therefore maximum care has to be taken to reduce
the noise level as much as possible.

Finally we tested quadratic phase profiles experimentally (φ0 = x(ω − ω0)2). Fig. 2.27
shows two such profiles. Surprisingly, the single-beam homodyne SPIDER method has
huge difficulties to create these phases even for very moderate quadratic phase coefficients
(x = 20 fs2 and x = 100 fs2). At x = 20 fs2 the correct phase is more or less found over most
of the pulse’s spectral range after some iterations while the method fails for x = 100 fs2.
However, in our simulations we always obtain the correct result (see Fig. 2.22a). One
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Figure 2.26: Effect of the finite spectral resolution δω on single-beam homodyne SPIDER.
Phase profile: φ0 = x1π sin(x2

2π
∆ω

(ω − ω0)) with (x1, x2) = (0.3, 2). Black solid line: target
phase φ0; blue dotted line: calculated phase φr; red dashed line: new SLM phase for
the next iteration φn. (a) situation after the first iteration; (b) situation after the fourth
iteration.

reason for this discrepancy might lie in the fact that the center of the quadratic phase ω0

cannot be fixed by our method. Any quadratic phase centered at ω0 can be expressed as
a superposition of a quadratic phase around a different center ω′0 and a linear phase:

φ = x(ω − ω0)2

= x(ω − ω′0)2 + x(ω2
0 − ω′20 ) + 2xω(ω′0 − ω0) (2.43)

Because single-beam homodyne SPIDER has no possibility to access absolute linear phases
as detailed above, the phase center ω0 is completely undetermined in a quadratic profile.
As soon as ω′0 lies on one side of the laser spectrum the phases on the opposite side can
assume large values resulting in multiple phase wrappings for the SLM to handle them.
Once these perturbations are inserted a correct phase retrieval becomes much more difficult
if not impossible.

In summary we showed that single-beam homodyne SPIDER is a priori a very elegant
method to measure spectral phases. However, the range of accessible phase profiles is
limited, though it is difficult to judge a priori whether a certain phase profile can be
measured correctly [183]. As a general rule, on smaller scales phases should only contain
moderate changes. Single-beam homodyne SPIDER is very successful in correcting for
phase distortions and establishing a flat spectral phase. This confirms the results obtained
in the Lim group [179]. Going beyond this, it is also possible to control certain well defined
phase profiles by this method, but this procedure is very prone to errors resulting from
even small levels of noise in the SHG spectra and from the iterative process, which is
nonetheless mandatory to reliably measure a phase. As furthermore this technique is also
limited in spectral resolution to the distance between the two phase jump positions, it is
not applicable for a large number of phase profiles. Thus there is an interest to develop
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Figure 2.27: Creation of quadratic phase profiles (φ0 = x(ω − ω0)2) with single-beam
homodyne SPIDER. (a) x = 20 fs2; (b) x = 100 fs2. φ0: target phase; φrn : measured
phase after the nth iteration. See Fig. 2.24 for the spectral intensities of the pulse over
the whole wavelength range.

new spectral phase retrieval methods or improve existing ones to be able to use them
in microscopy. The next option could be to realize a collinear version of FROG. This
would lead to a larger experimental complexity but would also be accompanied by a higher
robustness in the phase retrieval.
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Chapter 3

Polarization distortion effects in
polarimetric two-photon microscopy

3.1 Introduction to polarization-resolved microscopy
In fluorescence and coherent nonlinear microscopy there exists a significant interest in the
manipulation of the optical polarization through a microscope objective. This manipula-
tion is a key ingredient in anisotropy imaging which attempts to gather information on
the molecular order and organization in molecular and biomolecular media. Traditionally
those studies are performed by using two states of incident polarization: s-polarized light
where the electric field vector is directed perpendicular (s from the German senkrecht)
to the plane of incidence and p-polarized light with the electric field vector in (or parallel
to) the plane of incidence. They are sometimes also denoted H and V for horizontally
and vertically polarized light with respect to a reference direction. The signal detection
is as well performed according to two orthogonal directions, giving access to the param-
eters I‖ and I⊥, depending on the parallel or perpendicular configuration of the incident
versus analyzed directions. But this scheme - because of its limited amount of accessi-
ble measurements - is only successful in cases where signal-emitting molecules possess an
angular distribution of orientations with cylindrical symmetry, which reduces the amount
of unknown parameters [184]. These are either the mean orientation or the width of the
orientation distribution. Moreover, redundancies arise because of the impossibility to dif-
ferentiate the case of an isotropic distribution from that of a molecular distribution at 45◦

relative to the s and p directions (see appendix B). However, despite these limitations fluo-
rescence anisotropy imaging has led to functional contrasts in isotropic intracellular media
[185, 186] and to the determination of the width of angular distributions of actin filaments
[187] or lipids within the plasma membrane [188, 189, 133], both of which have a cylin-
drical symmetry. Also the mean molecular orientation angles of muscle fibers [190] and
septin filaments [191] were measured in this way. But in general molecular and biomolec-
ular media exhibit much more complex angular distributions that can differ strongly from
pure cylindrical symmetries [192], and thus more refined polarimetric analyses are required.
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3.1. Introduction to polarization-resolved microscopy

In a complete polarimetric analysis, an incident linear polarization gets turned in the
sample plane around an angle α relative to the X-axis, by rotating a half waveplate at the
entrance of the microscope (Fig. 3.1a), and for each field orientation E(α) the signal is
recorded. Often it is additionally separated according to its components along the X- and
the Y -axes, easily achieved by a polarization beam splitter. The resulting curve is usually
displayed in a polar graph, where the radius corresponds to the signal intensity and the
circumference to α (Fig. 3.1a). To get a better impression what kind of information gets
communicated by this design let us consider several typical cases, exploring for instance
the TPF contrast:

Fluorophores in an aqueous solution move and rotate quickly, so that in the time be-
tween the absorption and the subsequent fluorescence emission they completely changed
their orientation and consequently the direction of the emission dipole moment becomes
decorrelated from that of the absorption dipole and the emission pattern is isotropic. This
is shown by a circle in the polar graph (Fig. 3.1b). Should the polarimetric response
of such a fluorescent solution show other features as reduced signal intensities at certain
angles α, it is an indication of distortions in the excitation field at those angles (this issue
is discussed later in this chapter).

A very different kind of response is expected from samples made of fixed dipoles, where
the emission dipoles cannot change their orientations with time. In a 1D crystal for ex-
ample, all these dipoles are oriented parallel to each other along a certain direction φdip.
The signal will be strongest when the field has the same orientation, that is α = φdip, and
weakest when it is oriented perpendicular to the dipoles. Thus a two-lobe pattern can be
seen (Fig. 3.1c). On the other hand for a sample of fixed dipoles but with random orien-
tations such as a dried solution of fluorophores on a surface, there are always dipoles that
get excited no matter which value α assumes and the total emitted signal will be constant.
Contrary to the case of a solution, here the dipole positions are fixed and the signals IX
and IY are very different because of the polarized photoselection. Dipoles best excited by
EX = E(α = 0◦) emit along X but not along Y and vice versa for dipoles best excited by
EY = E(α = 90◦). Therefore the polar graph shows two crossed two-lobe patterns (Fig.
3.1d), whose sum is still a circle as expected from isotropy.

Samples with fixed dipole positions but exhibiting a certain disorder, meaning that the
individual dipole orientations do not coincide, but lie within a cone of possible orientations,
show TPF polarimetric responses that reflect both the opening angle v of this cone and its
orientation ρ within the sample plane. Thus these two parameters can be obtained from an
analysis of the polarimetric data. Fig. 3.2 shows a number of TPF polarimetric responses
for different (v, ρ)-pairs, where it is seen that polarimetric responses are quite sensitive to
both the orientation and the degree of disorder of the molecular ensemble. For a more
complete description of the model see appendix B.

The retrieval of orientational information from a polarimetric measurement is more
accurate for nonlinear optical processes than for linear ones. Let us demonstrate this for
fluorescence. As one-photon absorption is proportional to the square of the incident electric
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Figure 3.1: Typical polarimetric responses. (a) sketch of excitation conditions: the polar-
ization of the incident field gets rotated in the (X, Y )-plane and the signal is recorded as a
polar graph. (b) Polarimetric fluorescence response of a fluorophore solution: red line: no
distortions of the incident field; blue line: typical response when distortions are present (see
section 3.2). (c) Polarimetric fluorescence response of a sample with fixed dipoles oriented
parallel to each other, for example a crystal: signal maximum at the orientation angle
φdip. (d) Polarimetric fluorescence response of an assembly of fixed dipoles with random
orientations. The total signal is α-independent, but its two components IX and IY are
strongly influenced by the field vector direction.
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Figure 3.2: TPF polarimetric responses for a sample consisting of fixed nonlinear dipoles
oriented along an angle ρ within the sample plane, exhibiting a certain disorder v (theo-
retical calculations) [184]. See appendix B for more information on the model.

field, the fluorescence of a fixed absorption dipole (at the angle φdip) will be proportional
to the square of the cosine of the angle between this dipole and the polarization of the
incident field α (as follows from Eq. (1.43)):

I1ph(α) ∝ cos2(α− φdip) (3.1)

A two-photon absorption on the other hand is proportional to the fourth power of the
incident field and thus the TPF response becomes:

I2ph(α) ∝ cos4(α− φdip) (3.2)

The TPF polarimetric response is therefore more directional than that in the one-photon
case as seen in Fig. 3.3, because of a more refined photoselection. A similar reasoning also
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Figure 3.3: Polarimetric response of one and two-photon fluorescence. (a) sketch of ex-
citation conditions: fixed absorption dipole µabs at angle φdip and turning electric field
polarization E(α). (b) fluorescence intensity (radius) as a function of α (φdip = 30◦):
dashed line: one-photon absorption (∝ cos2); solid line: two-photon absorption (∝ cos4).

holds for SHG and other nonlinear processes, where the directionality of the emitted signal
becomes stronger with a higher order of the nonlinearity.

Nonlinear polarimetric studies also give access to more orientational information than
standard anisotropy measurements [90, 76, 79, 89]. By controlling the polarization, THG
signals emitted by birefringent crystals allow the determination of their orientation [99],
and polarized CARS microscopy is capable to visualize the order of neuronal myelin [110].
With TPF and SHG it is possible to measure the chirality in collagen [134], determine the
orientation of crystalline molecular systems [90] and of biological fibrils [95], and image the
molecular order in lipid and cell membranes [184]. SHG polarimetry characteristics will be
explained in more detail in chapter 4.

Apart from the measurement of molecular orientations polarimetric studies have also
been used to improve imaging contrasts. When applied to scattering media such as bio-
logical tissues, the interpretation of the nonlinear signals will lead to techniques derived
from ellipsometry such as the Mueller matrix formalism [193] or scattered light analysis
based on Monte Carlo simulations [194], where the polarization analysis can potentially
improve the image quality and resolution. For example, the auto-fluorescent background
from biomolecules can be removed. Contrast enhancement of nonlinear microscopy has
also been achieved by polarization pulse shaping [44, 49], however shaping techniques have
not yet been applied (apart from the present work) to a full exploration of polarimetric
responses.

All these polarization resolved microscopy techniques require that the excitation polar-
ization state at the focal spot of the objective can be controlled, which is far from trivial.
The polarization can be fixed without problems at a certain position within the excitation
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3.2. Polarization distortion from optics probed by two-photon
fluorescence

beam path - for example by a linear polarizer -, but from there to the sample it may
suffer from several perturbations that can significantly alter its state which in turn may
lead to serious misinterpretations of the detected signals. This is particularly relevant for
polarization shaping, where complex polarization states (see Fig. 2.3) have to be brought
to the focal spot. In inverted microscopy, where the polarization gets fixed at the entrance
of the microscope, there are two sources of these distortions: reflection optics - first and
foremost the dichroic beam splitter that separates the excitation from the emitted signal
(see Fig. 2.8) - and high numerical aperture (NA) focusing.

Here, we describe the effect of reflection optics and high NA focusing on the TPF
polarization response in model samples. We present a simple and robust technique to re-
trieve the degree of dichroism and ellipticity in the sample plane of a nonlinear microscope.
Additionally, the spatial distortions of the polarization induced by high NA focusing are
assessed by numerical calculations (see appendix C).

3.2 Polarization distortion from optics probed by two-
photon fluorescence

The effect of the beam splitter on the polarization state is described by a dichroism factor
and an ellipticity. Both parameters can be measured by a direct analysis of the polarization
state at the entrance of the objective [90]. Recently, an in situ characterization method has
been developed using the direct measurement of the fluorescence from an isotropic sample
made of fixed molecules of random orientations in a polymer film. This approach relied on
the same type of polarimetric measurements as usually performed on a sample. While it is
an in situ technique that does not require complete ellipsometric measurements, it suffered
however from the possible contribution of partial depolarization in the signal, occurring
from the homo-excitation energy transfer between molecules and their neighbors. The
homo-FRET contribution furthermore depends on the molecular concentration. Another
problem of this method is the possible angle between the excitation and emission dipoles
of the fluorophores which depend on the employed molecules and on their concentration.
Because this information is difficult to obtain, the method is not always suited. Here we
will rely on the complete depolarization by a solution of fluorophores to circumvent these
problems.

In standard polarimetry an incident linear polarization is rotated at the entrance of
the microscope. The electric field in the sample plane can be decomposed on the (X, Y, Z)
macroscopic frame (Fig. 3.4). As introduced in section 1.4, the TPF intensity analyzed
along a given polarization direction i is proportional to the two-photon absorption prob-
ability multiplied by the one-photon emission probability in that direction which, in a
molecular ensemble, can be written as (see Eq. (1.50)):

Ii(α) ∝
∫ ∫ ∫

|µabs(Ω, r) · E(α, r)|4|Eem(Ω, r,k) · ui|2f(Ω)dΩdrdk (3.3)
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where ... represents the time average, f(Ω) denotes the normalized molecular orientation
distribution function with the angle set Ω = (θ, φ) (Fig. 3.4), and i = (X, Y ) is the
analyzed direction for a field propagating along Z. The proportionality sign in Eq. (3.3)
allows omitting efficiency and collection factors that do not come into play in a relative
polarization measurement which is the case in our studies. The incident electric field
E(α, r), polarized in the direction α (with respect to the X-axis) interacts at location r
with the absorption dipole µabs(Ω, r) whose orientation is given by the angle set Ω. The far
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Figure 3.4: Geometry of the polarimetric two-photon fluorescence microscopy setup. O: ob-
jective (NA 1.2, x 60, Water Immersion); D: Dichroic mirror; M: mirror; APD1,2: avalanche
photodiodes detecting respectively theX and Y components of the signal; P: polarizer; λ/2:
rotatable half waveplate to turn the linear polarization within the (X, Y )-plane around the
angle α; µ: fluorescence excitation dipole vector at position r and orientation Ω = (θ, φ).

field Eem(Ω, r,k) is radiated by the emission dipole µem(Ω, r) in the propagation direction
k, with Eem(Ω, r,k) ∝ k × (k × µem(Ω, r)). ui is a normalized vector in the analysis
direction i. The incoherent summation of the fluorescence signal from individual molecules
over all their positions and orientations is denoted by dΩdr. dk on the other hand describes
the integration over the emission propagation angles within the collection aperture. In a
polarimetric measurement α is the tuning parameter, its continuous variation defining the
polarization response from the sample from which information on the distribution function
f(Ω) can be gained. This confirms that contrary to anisotropy measurements which rely
on two excitation states

(
α = 0, π

2

)
and two analysis directions (i = X, Y ), the tunability

in α allows providing more complete measurements of the orientation and symmetry of this
distribution [87]. The incoherent nature of the fluorescence is reflected in the fact that the
final integration over all possible molecular orientations (Ω), dipole positions within the
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excitation volume (r), and emission angles within the collection aperture (k) is performed
over the intensities of both the absorption and the emission part of the process. Coherent
nonlinear processes such as SHG can also be derived from this approach, but then fields
radiated from the induced nonlinear dipoles rather than intensities have to be summed up
[87, 90] (see section 1.4).

For an isotropic liquid under two-photon excitation (f(Ω) = 1) the rotational diffusion
time of the molecules is shorter than their typical fluorescence lifetimes and consequently
the orientations of the emission dipoles are decorrelated from those of the absorption
dipoles. Eq. (3.3) can then be written as:

Ii(α) ∝
∫ ∫

|µabs(Ω, r) · E(α, r)|4dΩdr

∫ ∫ ∫
|Eem(Ω′, r′,k) · ui|2dΩ′dr′dk (3.4)

where the integration is performed over independent variables Ω and Ω′ for the absorption
and emission dipoles µabs(Ω, r) and µem(Ω′, r′). Thus absorption and emission become
independent and separable processes. Since the emission probability does not depend on
the incident polarization angle α it contributes only as an multiplicative constant when the
polarization gets turned. Therefore the collection aperture has no effect on the polarimetric
response of the emitted signal and effects only its global efficiency. Eq. (3.4) therefore
simplifies to:

Ii(α) ∝ Ci

∫ ∫
|µabs(Ω, r) · E(α, r)|4dΩdr (3.5)

where the i-independent factor Ci, containing the emitted field radiation factor, may vary
for different analyzing directions due to different efficiencies along X and Y . (IX and IY
measurements give therefore a direct access to this unbalanced collection factor.) For an
isotropic solution µabs of each dipole is expressed by a radial unit vector (see Fig. 3.4):

µabs =

 sin θ cosφ
sin θ sinφ

cos θ

 (3.6)

This decoupling of excitation and emission does not occur in materials of fixed molecules
such as a polymer matrix [90]. Consequently, the polarimetric response can then be af-
fected by correlation-related issues such as fluorescence energy transfer (FRET) or non-zero
angles between the absorption and emission dipoles in the used molecules. By choosing an
isotropic solution of fluorophores instead, we ensure that our results do not depend on the
molecules and their concentration. Eq. (3.5) thus shows that measuring the fluorescence
from a solution is an interesting way to provide information on the polarization distortion
of an electric field independently from the used molecules.

As mentioned above, an incoming beam that originates from the rotation of a linear
polarization is very likely to be affected by a degree of ellipticity and dichroism. Both
effects arise from the reflections of the beam at mirrors and dichroic beam splitters, which
are made of multilayer dielectric thin films usually not well controlled for field phases. In

96



3.2. Polarization distortion from optics probed by two-photon
fluorescence

the latter they can be strongly frequency dependent, especially as one approaches the cutoff
frequency that separates the reflective and transmissive spectral regions of the dichroic.
The incident amplitude of the field at the entrance of the objective can be written as [195]:

E(α, δ, γ) ∝

 cosα
(1− γ) sinα eiδ

0

 (3.7)

with δ being the phase difference (ellipticity) and γ the amplitude factor (dichroism) be-
tween the two perpendicular polarization states s and p (defined by α = 0, α = π

2
cor-

responding to the X and Y directions in the sample plane) that arises from different
reflectivities for these two states. Fig. 3.5 illustrates the effect of δ on the electric field.
The two fundamental polarizations α =

(
0, π

2

)
are kept linear whatever the value of the
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Figure 3.5: Effect of the ellipticity δ on the electric field E for different polarization angles
α. Left: α = 0 - the field is unaffected by δ and remains polarized along X. Middle: α = π

4

- the field’s polarization is strongly influenced by δ. Right: α = π
2
- the field is unaffected

again by δ and remains polarized along Y .

ellipticity. However, for intermediate polarizations, especially around α = π
4
and α = 3π

4
,

the polarization state of the field strongly depends on the ellipticity. While for δ = 0 it still
remains linearly polarized along α, it becomes more and more elliptical around α when δ
increases up to π

2
. At this value the field can even become circularly polarized when α = π

4
.

For higher values of δ up to π the ellipticity decreases, but the ellipse switches side and is
oriented along π − α. At δ = π the field is linear again, but along π − α. The effect of
γ is easier seen: for γ > 0 the field gets reduced in Y relative to X, while for γ < 0 the
opposite holds.

An extra Z-axial component of the field will also be present in the focal plane of the
objective, however the distortion by the high NA is not taken into account at this stage due
to their invariance with respect to α. Section 3.4 addresses this issue in ordered samples.
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3.2. Polarization distortion from optics probed by two-photon
fluorescence

As the fluorescence emission of an isotropic solution does not depend on the analysis
direction, polarization state distortions brought by the reflection optics can be modeled by
plane wave illumination based on Eqs. (3.5) and (3.7).

Figure 3.6 shows the effect of the ellipticity δ and the dichroism γ in a polar represen-
tation of the fluorescence intensity as a function of the incident polarization angle α in a
fluorescent solution. In the case of a perfect system, where no ellipticity and dichroism
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Figure 3.6: Effect of the dichroic mirror parameters δ (in rad) and γ on the TPF polar-
ization response for a solution of Rh6G. (a) influence of the ellipticity δ for an amplitude
factor γ = 0; (b) influence of γ for δ = 0. Such polar plots are expected to be identical for
the IX and IY analysis directions.

factors arise, the TPF response is α-independent, as expected from an isotropic solution.
Since the two principal polarizations (α = 0 and α = π

2
) remain linear no matter which

value δ assumes, the ellipticity cannot change the TPF signal at these positions. However,
at intermediate polarization directions (especially around α = π

4
modulo π

2
) a non-zero

δ leads to a more or less elliptic electric field (see Fig. 3.5) which in turn reduces the
excitation efficiency at these angles. This is due to the fact that the two-photon excitation
scales with the fourth power of the electric field (see Eq. (3.3)) and the field’s amplitude
reaches its maximum for a linear polarization while it gets more evenly distributed in time
for elliptical polarizations, thus decreasing its peak value and consequently the efficiency
of two-photon fluorescence excitation and nonlinear optical processes in general. On the
other hand γ affects mainly the intensities in the X and Y polarization directions. A γ > 0
describes a system of reflection optics where the reflectivity in the Y direction is smaller
than for X-polarized light, leading to a smaller electric field EY compared with EX at the
sample location and thus to a smaller TPF signal as well when the field is Y -polarized.
The opposite situation is described by γ < 0. In general, mirrors and dichroic mirrors are
made polarization independent in the sense that s (X) and p (Y ) reflection efficiencies are
almost identical. We will see later that the γ-values found experimentally are close to zero.

It should be noted that for an isotropic solution of fluorophores at γ ≈ 0 the dependence
of the polarimetric response on δ is π

2
-periodic (see Fig. 3.6), therefore the deduction of δ is

ambiguous. The TPF intensity is only affected by the amount of ellipticity present in the
electric field but not on the orientation of the ellipse. For δ = 0 for example a continuous
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fluorescence

variation of α from 0 to 2π leads to a counterclockwise rotation of the polarization in the
(X, Y )-plane. On the other hand for δ = π Eq. (3.7) transforms to:

E(α, δ, γ) ∝

 cosα
(1− γ) sinα eiπ

0

 =

 cosα
−(1− γ) sinα

0

 (3.8)

and thus to a clockwise rotation of a linear polarization under the increase of α (Fig. 3.7a).
In both cases, however, the polarization remains linear and the TPF signal is identical. The
same argument is true for all pairs of δ centered around π

2
. This effect, due to the isotropic

nature of the emitted fluorescence from a solution will however disappear in anisotropic
media. Therefore only polarization responses from non-isotropic molecular angular distri-
butions are able to remove the ambiguity of the

[
0 π

2

]
versus the

[
π
2
π
]
range for δ. This

is illustrated in Fig. 3.7b where a fixed 1D fluorescent sample (such as a crystal made of
parallel dipole molecules) is modeled with an intermediate orientation of 2π

9
(40◦) relative

to X. In this case we used f(Ω) = δ(Ω−Ω0) in Eq. (3.3) and fixed all dipoles within the
excitation volume along the direction Ω0 = (θ0, φ0) =

(
π
2
, 2π

9

)
. The resulting TPF polar-
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Figure 3.7: Ambiguity of dichroic parameter measurements. (a) actual rotation of the
electric field under increase of α for δ = 0 (red) and δ = π (blue). (b) removing the
ambiguity: 1D fluorescent sample oriented at (θ0, φ0) =

(
π
2
, 2π

9

)
in the sample plane (see

Fig. 3.4 for angle definitions), γ = 0. Continuous lines: IX , dashed lines: IY .

ization response is seen to be strongly dependent on the polarization parameters. When
δ = 0, the polarization response is anisotropic in the 2π

9
(40◦) direction as expected from the

1D symmetry of the sample. As the ellipticity increases, the polarization response changes
its direction until reaching another quadrant for δ > π

2
. Thus an easy discrimination of

the range of the ellipticity is possible: a polarization response stays in the quadrant of the
sample orientation for 0 < δ < π

2
, whereas it reaches the next quadrant for π

2
< δ < π,

due to polarization rotation. This example also emphasizes the detrimental influence of
in-plane polarization ellipticity when performing polarimetric measurements, the response
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being strongly distorted for high ellipticities.

Due to the different angular regions of the polarization response in which the dichroic
parameters γ and δ manifest themselves, a continuous rotation of the incident polarization
allows the extraction of these parameters induced by the dichroic beam splitter with an
ellipticity wrapped in the

[
0 π

2

]
range, whose ambiguity can eventually be removed with

an anisotropic sample. The (γ, δ) determination requires in fact only three measurements
I(α = 0), I

(
π
4

)
, I
(
π
2

)
leading to a unique solution. Fig. 3.8 shows the cartographies of the

ratios
I(π2 )
I(0)

and
I(π4 )
I(0)

in a (γ, δ) coordinate map. A given value of the ratio
I(π2 )
I(0)

corresponds
to a vertical line in the respective (γ, δ)-map (Fig. 3.8a), since these two polarization an-

gles are not influenced by δ. On the other hand a given value of the ratio
I(π4 )
I(0)

produces a
(γ, δ)-dependent curve (Fig. 3.8b). The point of intersection between both of these traces
then gives the only set of dichroic parameters to satisfy both ratios simultaneously, thus
determining both δ and γ. However, taking into account experimental noise, the solution
space for each ratio will no longer be a single line but rather a band with a certain margin
of error, leading to a range of solution sets for the dichroic parameters (Fig. 3.8c). For a

(a) (c)

(b)

Figure 3.8: (γ, δ) coordinate maps. (a) ratio
I(π2 )
I(0)

; (b) ratio
I(π4 )
I(0)

; (c) solution (red space)
including experimental error margins for a three-point fit based on a series of six measure-

ments with λ = 900 nm;
I(π2 )
I(0)

= 0.89,
I(π4 )
I(0)

= 0.76; the margin of error for both ratios was
calculated to be 5.5%.

better experimental estimation a fit of the whole polarization dependent TPF-signal should
be considered (see section 3.3) and not only one of three points.
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3.3. Measurement of dichroic parameters

Note that while the beam reflection on the dichroic mirror can lead to crucial effects,
the backward detection of the emitted signal (either fluorescence or SHG) is not affected
by the transmission of this signal through the dichroic mirror. Since its optical axes s and
p also correspond to the analysis X and Y detection of the signal, any phase shift imposed
to the detected field along these directions is invisible in the measured intensities which are
the squares of the absolute field values and thus phase-insensitive. In addition, a dichroism
factor in transmission only induces a difference in the magnitude of the X and Y responses
that can be measured and later corrected for.

At last, note that this measurement is made in the same configuration as the other stud-
ies undertaken in this work; it therefore serves as a calibration step before any polarization
shaping measurements are performed.

3.3 Measurement of dichroic parameters
As the performance of all reflection optics and in particular the dichroic mirror is wavelength-
dependent, the calibration procedure described above has to be carried out at various λ.
This is particularly relevant in the context of polarization shaping experiments, since a
wavelength range of up to 100 nm can be explored in a single pulse made of complex po-
larization encoding. That is why we chose to measure γ(λ) and δ(λ) with the help of a
spectrally more narrow wavelength tunable laser (see page 54). The beam is propagated
through the two-photon microscopy inverted set-up shown in Fig. 3.4. After the passage
of a horizontal polarizer the field’s polarization can be rotated by an achromatic half wave-
plate mounted in a step rotation motor. The incident beam is reflected by a dichroic beam
splitter (650DCXP Chroma, Rockingham, VT) before being focused by a high NA (x 60,
NA = 1.2) water immersion objective into a solution of free Rhodamine 6G (Rh6G) diluted
in water (at a concentration of about 10−4 mol

l
). The generated TPF signal gets collected

by the same objective, traverses the dichroic beam splitter and is finally divided by a po-
larization beam splitter according to its principal polarization axes and detected by two
avalanche photodiodes (APD). For polarimetric measurements the APD signal integration
time per orientation α of the half waveplate is 20 ms.

To determine the dichroic parameters γ and δ we opted against the three-point-fit
explained in section 3.2 due to its rather large error margin but chose instead to fit the
whole polarization dependent TPF signal. In a first step, theoretical polarimetric responses
were calculated for a large variety of (γ, δ)-pairs and compared with our experimental data,
the sum of mean squares

χ2(γ, δ) =
∑
α

(Iexp(α)− Itheo(α, γ, δ))2 (3.9)

being an indication of the concordance.
Fig. 3.9a shows the dependence of χ2 on γ and δ for a measurement at λ = 900 nm.

Only one minimum exists. The same is true for all other tested cases. This allows the use of
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3.3. Measurement of dichroic parameters

a fitting procedure starting at an arbitrary point within the (γ, δ)-space that minimizes χ2

by alternately varying both parameters until a stable minimum is found. There is no need
for more advanced searching algorithms that for example include some addition of noise to
allow jumping out of local minima or that work with multiple starting points to increase
the chances to reach the global minimum [196], because in the (γ, δ) configuration space
such local minima do not exist. The best fit for the presented case is depicted in Fig. 3.9b.
Note that a slight asymmetry is observed in the experimental polarization response, which

(a) (b)

Figure 3.9: Experimental measurement of a polarimetric response from a Rh6G solution
excited at λ = 900 nm using a 650DCXP (Omega Optical, Brattleboro, VT) dichroic
mirror. (a) χ2 parameter represented for a range of (γ, δ); (b) experimental points (dots)
and corresponding best fit (continuous line).

is due to a slight misalignment of the beam path. The consequence is a slight increase in
the ellipticity’s error margin which still only amounts to 10−2 rad.

The results of this approach for a large variety of wavelengths are shown in Fig. 3.10
together with some examples of the corresponding TPF signals. As stated above, the
determination of δ is made within the

[
0 π

2

]
range. The obtained values for the dichroic

parameters exhibit remarkably small error margins. δ can be determined with a precision
of about 1◦ which is a great improvement to the three-point-fit presented above where the
uncertainty was of the order of 10◦ (see Fig. 3.8). For γ, which describes the variation of
the field strength compared to 1 (Eq. (3.7)), both fitting methods lead to error margins of
less than 2%.

In order to confirm the retrieved parameters, we determined the expected γ and δ values
from the dichroic mirror at 45◦ incidence by ellipsometry (GESP5, Sopralab, Courbevoie,
France). This was done at the ENS Cachan, France. In ellipsometry measurements the
reflection coefficients r for p- and s-polarized light (Ep and Es) are measured. They are
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3.3. Measurement of dichroic parameters

 l=780nm  l=900nm  l=990nm

Figure 3.10: γ (a) and δ (b) parameters deduced from the TPF polarization responses
(dots) and ellipsometry data (continuous line) of the dichroic mirror used for two-photon
fluorescence (650DCXP), at various incident wavelengths. Each experimental point results
from a series of 6 measurements. The green line in (b) corresponds to the δ ellipsometry
data while the red one is wrapped in the

[
0 π

2

]
range for comparison with polarimetric

measurements. (c-e) TPF polarization responses and fits (red curves) at three different
wavelengths: (c) 780 nm; (d) 900 nm; (e) 990 nm.
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3.3. Measurement of dichroic parameters

defined as:

rp =
Epr
Epi

= |rp|eiϕp

rs =
Esr
Esi

= |rs|eiϕs (3.10)

with Ei as the incident and Er the reflected fields. In practice the quotient:

rp
rs

= tanψei∆ (3.11)

is determined from which the two parameters tanψ and cos ∆ can be retrieved [197]. They
are directly related to γ and δ via:

γ = 1− tanψ (3.12)
δ = arccos(cos ∆) (3.13)

Because ∆ is accessed directly it does not suffer from any ambiguities. As can be seen
in Fig. 3.10, the measured parameters in the two-photon fluorescence microscope are in
very good agreement with the ellipsometry measurement for the whole wavelength range
explored. The data comparison necessitated a phase wrapping of the ellipsometric data in
the

[
0 π

2

]
range. This agreement confirms that γ and δ are almost exclusively caused by

the dichroic itself. The slight overestimation of γ in Fig. 3.8a compared to the ellipsometry
method probably arises from two effects: On the one hand, there may be small contribu-
tions of other optical components in the beam path other than the dichroic. And on the
other hand the generated TPF signal has to pass the dichroic as well. While this has no
effect on the measured δ as mentioned above, the signal is subject again to a dichroism fac-
tor as different polarizations may have different transmission efficiencies in the wavelength
range of the signal. Because the form of the TPF emission spectrum is nearly independent
of the excitation wavelength (Kasha’s rule - see page 32) one would expect a constant
offset over the whole excitation wavelength range, which is indeed observed. In any case
the deviations between the accurate γ-values obtained by ellipsometry and those measured
by our approach are nonetheless in very good agreement, as γ describes variations from 1,
and thus the error remains below 5% even if this second interaction with the dichroic and
the contributions of all other optical elements are neglected. Note that while the dichroic
factor γ is seen to lie close to 0 (compared to 1), ensuring only small deviations of the
amplitude p

s
from 1, the ellipticity caused by the dichroic mirror can reach high values far

above π
2
. This causes an intermediate incoming polarization to become elliptic and poten-

tially rotated which strongly affects polarization responses (Fig. 3.7b). Other two-photon
excitation dichroic mirrors studied with the same technique showed similar behaviors, es-
pecially close to their cut-off wavelength. To illustrate the dramatic changes brought by
in-plane ellipticity on experimental polarization responses in anisotropic samples, we mea-
sured a 1D sample made of oriented fluorescent molecules along a macroscopic crystal
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3.3. Measurement of dichroic parameters

axis, whose orientation can be identified visually. This Perhydrotriphenylene (PHTP)-4-
Dimethylamino-40-nitrostilbene (DANS) co-crystal, characterized in a previous work [89],
was oriented in the (X, Y )-plane (θ0 = 90◦) at an angle φ0 close to 30◦ in the sample
plane (Fig. 3.11). As these crystals have sizes in the millimeter range, their orientation
angle can be determined without ambiguity. The fitting of the polarization responses with
the 1D crystalline model using the previously determined parameters γ and δ leads to a
crystal orientation of (θ0, φ0) = (90◦, 29◦), which is in close agreement to the initially set
orientation as seen in Fig. 3.11a. While at an excitation wavelength of λ = 825 nm the po-

(b) (c)
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Figure 3.11: TPF polarization response of a 1D crystalline fluorescence sample made of
DANS molecules in a PHTP crystalline host. (a) 2D scan (by a piezoelectric stage) of the
sample showing the macroscopic crystal orientation (scale bar: 10µm); the heterogeneity
of the intensity observed in the image is due to an imperfect surface quality. (b,c) Experi-
mental data (dots), and corresponding fits (continuous line) at (b) 825 nm excitation and
(c) 975 nm excitation wavelengths. The fits account for the measured dichroic parameters
and for the molecular orientation (θ0, φ0) = (90◦, 29◦).

larization response is oriented in the same direction as the crystal, this is not anymore true
for an excitation at λ = 975 nm where δ far exceeds π

2
(see Fig. 3.10b). However in both

cases the same crystal orientation is found if the correct dichroic parameters are used. This
example not only highlights the considerable influence of these parameters on polarimetric
measurements but also demonstrates that reliable information can be extracted from these
measurements even under the presence of strong dichroic perturbations provided that they
have been characterized previously.

As the used dichroic (650DCXP, Omega Optical) induces strong and strongly varying
ellipticities into the wavelength range we are interested in around 800 nm, it is not suited for
polarimetric studies as almost no orientational information can be read out from the areas
around α = 45◦ and α = 135◦. Therefore we switched to a different dichroic (FF720-SDi01,
Semrock, Rochester, NY) that induces much less polarization distortions (Fig. 3.12). This
dichroic is used for pulse shaping experiments because of its low dispersion properties.
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Figure 3.12: Polarization distortions for the dichroic mirror FF720-SDi01. (a) Ellipticity
δ; (b) dichroism factor γ.

To characterize other optical elements in the beam path besides the dichroic mirror, it
suffices to place the half waveplate (that turns the polarization) within the beam path at
the right position for investigation. Of course the recorded TPF polarimetric response is
then affected by all optical elements between the position of the waveplate and the focal
spot of the microscope. But if the dichroic parameters of all but one element are already
known, the contribution of the unknown one can be deduced.

To prepare our polarization shaping experiments we therefore characterized the beam
path distortion components between the shaper and the microscope. For this we switched
to the spectrally broad laser (see section 2.5.1) passing our pulse shaper. As a reminder
Fig. 3.13a shows again the excitation path from Fig. 2.8. The five positions where we
placed the rotatable half waveplate are denoted with A through E. Additionally all mirrors
within the path that are required for space considerations and that offer additional degrees
of freedom for the beam alignment - but which were excluded from Fig. 2.8 for clarity
reasons - are indicated as well, because they also influence considerably the polarization
state of the pulse.

It was already seen before that the dichroic parameters can be strongly wavelength-
dependent. A pulse with a spectral bandwidth of 60 nm could therefore easily mask the
true behavior of γ and δ. That is why we only chose spectral windows with a width of
20 nm that were controlled by blocking the unwanted spectral regions in the Fourier plane
of the pulse shaper. For each of these regions and for each of the five positions A through
E in the beam path (after the SLM, at the shaper exit, before the telescope, after the
telescope, and at the microscope entrance) a polarimetric measurement was performed as
described above and the corresponding dichroic parameters were retrieved. Fig. 3.13b
and 3.13c present the results, the measurement at point A showing the global distortion
undergone by the polarization through the whole setup.

It can be seen that different spectral regions of the pulse experience different polar-
ization distortions which confirms their wavelength dependence. After the pulse shaper
the dichroism factor remains very small and almost constant throughout the beam path.
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Figure 3.13: Characterization of polarization distortions throughout the beam path, part
one. (a) Portion of the excitation path for pulse shaping described in section 2.5.1 with in-
dication of all mirrors and the positions where the half waveplate was placed (A through E).
(b) Ellipticity δ for all waveplate placements for different spectral regions of the ultrashort
pulse. (c) Dichroism factor γ for all waveplate placements for these spectral regions.

The pulse shaper exit itself, however, influences it to a certain degree as is evident from
a comparison between the values obtained a A and at B. This is the effect of the slightly
different reflectivities of the second grating for s- and p-polarized light. But in any case γ
stays small compared to 1.

A very different situation is found for the ellipticity. It changes dramatically during
the beam propagation through the setup. While it is hardly changed by the recombing
part of the pulse shaper (between A and B), a huge shift is induced by the three mirrors
between the pulse shaper exit and the telescope. The telescope itself has a negligible effect
(between C and D), but the three mirrors after it lead again to an equally large change in
the opposite direction, therefore compensating for the previous distortions.

The overall distortion in the whole beam path is therefore rather weak. However,
another issue occurs: the fluorescence polarimetric curves show a rotation of about 20◦

relative to X (Fig. 3.14), which is the signature of a rotation of one of the optical axes
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3.4. Polarization distortion by high NA focussing

in the path (probably due to a mirror reflection which is not perfectly at 45◦). One
might argue that once all polarization distortions are known they can be corrected for by
the polarization pulse shaper. However, in our configuration this only works when the
principal polarization axes do not change throughout the beam path, since the principal
axes of the SLM have a fixed orientation. Without a polarization pulse shaper that can
control the direction of the principal polarization axes [52], a correction is therefore not
possible.
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Figure 3.14: Characterization of polarization distortions throughout the beam path, part
two. TPF polarimetric response for a polarization turned at point A in the pulse shaper
after the SLM exit. The tilt of 20◦ indicates a rotation of the principal polarization axes
by the second grating in the 4f -line.

While these distortions do hardly influence a linear polarization, their effect is much
more severe on elliptical or spherical ones. We illustrate this by creating a spherical po-
larization at the SLM exit (by shaping a phase of π

2
with the S-SLM, see Eq. (2.21)),

placing a rotatable polarizer in the beam path either at position B or E and measuring
the transmitted laser power. Instead of the expected circle the polar plots show a strong
deformation. Since we restrict ourselves for the remainder of this work to polarization
pulse shapes consisting of spectral regions with linear polarizations along the principal
axes, this is not a detrimental issue here. Future implementations will require simplifying
the excitation beam path and possibly using an extra polarization correction step, using a
polarization shaper for arbitrary polarization generation [52].

3.4 Polarization distortion by high NA focussing
All calculations presented above were performed for a plane wave illumination which is
justified when studying isotropic depolarized media since both 3D and 2D projections are
isotropic. This is however not adapted for nonlinear microscopy experiments which require
sub-wavelength resolution and very high field strengths, that use high NA objectives to
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3.4. Polarization distortion by high NA focussing

strongly focuss the incoming laser beam. This focussing results in a redistribution of the
polarization components along the coordinate axes which can be assessed by the formalism
presented in appendix C (see also Fig. 3.15). These polarization distortions come into
play when the molecular excitation dipoles possess orientation components along the laser
propagation direction. They couple with the axial component of the excitation field, an
effect already been explained in detail by Yew et al. [198] for the case of SH generation
from objects with known symmetries. In particular a field component along the propaga-
tion direction Z is created which can amount to up to 40% of the maximal field strength
in the case of high NA objectives (Fig. 3.15). It can be seen that the polarization state

(a) (b)

Figure 3.15: Map of the focalized incident electric field amplitude components along X
and Z at the sample plane at Z = 0, for an incident polarization along X and focussed by
an objective with NA = 1.2. (a) EX ; (b) EZ (electric field normalized to the maximum of
EX).

of the incident beam now depends as well on the spatial coordinates within the excitation
volume (E(α, δ, γ, r)). To account for this in the calculation of the radiation from non-
linear materials, we filled the excitation volume with 300 evenly spaced dipoles at whose
locations the vectorial excitation field is calculated. Eq. (3.3) then gives the TPF response
of each of those dipoles. The radiating field then gets expressed for all angles encompassed
by the collection aperture and is passed through the objective (see appendix C.2). In the
present model, all dipole intensities are summed up due to the incoherent character of the
fluorescence emission. We find that in a solution where the excitation process is random-
ized, the fluorescence polarimetric response is independent on the objective’s numerical
aperture both in the excitation and the collection modes (Fig. 3.16) which was expected
as mentioned above. The calculations for the case of strong focalization (NA = 1.2) were
carried out for a volume of 0.8µm in the lateral directions (X and Y ) and 1.6µm in the
axial direction (Z), homogeneously filled with 160 x 160 x 320 dipoles. The weaker focaliza-
tion case (NA = 0.9) is based on a focal volume of 1 x 1 x 2µm3 with 200 x 200 x 400 dipoles.
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3.4. Polarization distortion by high NA focussing
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Figure 3.16: Dependence of the TPF response of fluorophores in a solution on the numer-
ical aperture of the objective that is traversed both by the excitation beam and by the
fluorescence signal detected afterwards. Three cases were simulated: very strong focaliza-
tion (NA = 1.2 - green squares), medium focalization (NA = 0.9 - blue crosses) and plane
wave illumination (NA = 0 - red line); γ = 0.1 and δ = π

2
. All calculations were performed

for an excitation wavelength of 800 nm [199].

However, in the case of an anisotropic medium presenting out-of-plane orientation di-
rections, a coupling in the Z direction cannot be neglected. To illustrate the role of the
high NA used in two-photon microscopy, a model system of 1D symmetry was used in the
calculations of Eq. (3.3) accounting for the complete vectorial form of the spatial excitation
field. Fig. 3.17 depicts the polarization TPF response of a 1D sample made of fixed dipoles
with small

(
θ = π

3

)
and strong

(
θ = π

6

)
orientation components along Z (see Fig. 3.4 for

angle definitions). At low numerical aperture (NA = 0.1) the polarization response is only
slightly deformed by an off-plane tilt. For high numerical apertures (NA = 1.2), however,
strong deformations in the polarization response appear. Such a signal could easily be
misinterpreted as originating from a non-1D sample in the (X, Y )-plane because some ap-
parent perpendicular coupling occurs. Therefore great care has to be taken when dealing
with polarization responses of non-anisotropic samples. (For more on sample symmetry
and orientation investigation see chapter 4). Note that while the observed deformation
exists even for (γ, δ) = 0, it is enhanced with increasing ellipticities δ. In practice it is
therefore crucial to account for high NA focussing in order to model the whole 3D picture
of the distribution function of fluorescent molecules.

110



3.4. Polarization distortion by high NA focussing
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Figure 3.17: TPF polarization responses of a 1D fluorescence sample accounting for both
reflection optics (using the parameters δ = π

4
, γ = 0.01) and high numerical aperture

focussing. (a,c) NA = 0.1; (b,d) NA = 1.2. Sample orientation: (a,b) (θ, φ) =
(
π
3
, π

6

)
; (c,d)

(θ, φ) =
(
π
6
, π

6

)
- see drawings on the right. Continuous lines: IX ; dashed lines: IY . The

polarization responses are normalized to a maximum value of 1.
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Chapter 4

Amplitude, phase and polarization
pulse shaping for structural
investigations of (bio-)molecular media
in SFG microscopy

4.1 Introduction
As seen in section 1.2.1, polarimetry can also be adapted to the SHG contrast. In this case,
the retrieved information is directly related to the macroscopic χ(2) tensor of the sample,
probed within the excitation volume of a microscope. As we will see later, χ(2) possesses
orientation and symmetry information, contained in its tensorial components χ(2)

IJK .
In this chapter we develop a new method to read out these individual components. We

use an excitation profile shaped in amplitude and polarization to generate a sum frequency
signal where the contributions of different tensorial components get spectrally separated
and subsequently detected by a spectrometer, allowing for a faster and more robust read-
out than performed so far for example by polarimetry measurements. In a first step we
test our approach on a well known nonlinear crystal (KTP). Afterwards it gets applied
to microscopy to image both local order and disorder in a molecular crystalline sample,
and local orientations in a collagen fiber on a sub-micrometric scale. Finally, we propose
a related excitation scheme involving phase pulse shaping to avoid the spectral readout.

Sum Frequency Generation (SFG) is described, as explained in section 1.2.2, by the
nonlinear induced dipole:

PI(2ω) =

∫ ∞
−∞

∑
JK

χ
(2)
IJK(ω,Ω)EJ(ω − Ω)EK(ω + Ω)dΩ (4.1)

where the fields E, polarized in directions J and K are coupled by the second-order non-
linear susceptibility χ

(2)
IJK of a nonlinear material to give a SHG polarization field P in
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4.1. Introduction

direction I. χ(2) is in general a frequency dependent tensor. This dependence has its origin
in vibrational or electronic energy levels in proximity to the virtual ones passed in the
excitation process which alter the efficiencies or these pathways. When no one-photon res-
onances are involved in the excitation process, all two-photon excitation pathways leading
to a certain SFG frequency ω have the same probability and χ(2)

IJK(ω,Ω) reduces to χ(2)
IJK(ω)

[200, 201, 202]. Any resonant one-photon situation would also lead to a perturbation of the
SHG spectrum due to the introduction of additional phase terms in the competitive two-
photon pathways leading to the two-photon excitation; this has been observed in atoms
and other molecular systems investigated by TPF [201]. In addition, excitation conditions
far from two-photon resonances lead to a ω-independent tensor χ(2)

IJK where permutation of
its three indices is allowed (Kleinman conditions) [203, 204]. We limit the present study to
these cases. In the usual configuration of a two-photon excitation microscope, the sample
lies in the (X, Y )-plane which contains the excitation polarization components.

For a crystal the χ(2)
IJK coefficients depend on both its orientation in space defined by

the set of Euler angles (φ, θ, ψ) (Fig. 4.1a) and its symmetry specified by the whole of its
microscopic χ(2)

ijk components expressed in the unit-cell coordinate frame x, y, z:

χ
(2)
IJK(φ, θ, ψ) =

∑
ijk=(x,y,z)

(
−→
I · −→i )(

−→
J · −→j )(

−→
K ·
−→
k )(φ, θ, ψ)χ

(2)
ijk (4.2)

where the (
−→
I · −→i ), (

−→
J · −→j ), (

−→
K ·
−→
k ) factors are the (φ, θ, ψ)-dependent cosine directors of

the microscopic frame relative to the macroscopic one. They are formed as follows: (X.x) (X.y) (X.z)
(Y.x) (Y.y) (Y.z)
(Z.x) (Z.y) (Z.z)

 (4.3)

=

 cosφ cos θ cosψ − sinφ sinψ sinφ cos θ cosψ + cosφ sinψ − cosψ sin θ
− cosφ cos θ sinψ − sinφ cosψ − sinφ cos θ sinψ + cosφ cosψ sinψ sin θ

cosφ sin θ sinφ sin θ cos θ


The measurement of individual χ(2)

IJK components therefore allows deducing the crystal’s
orientation in space if its nonlinear tensorial components are known in the microscopic
frame. Several studies, undertaken in nanocrystals SHG using polarimetry, have allowed
to deduce their orientation and crystalline quality, assuming that their nonlinear optical
crystal coefficients were known from bulk crystals [79, 205]. In the reverse case, for an
unknown crystal the retrieval of its macroscopic χ(2)

IJK components under several known
(φ, θ, ψ)-sets leads to the knowledge of its microscopic frame and thus to crystal symmetry
identification. These polarimetric studies require long acquisition times and an a posteriori
extensive data treatment [87, 88, 89].

Note that in a microscopy measurement, the efficient coupling fields lie along the X
and Y -directions, therefore only six coefficients χ(2)

IJK come into play. This reduces the re-
trieval of microscopic coefficients (knowing (φ, θ, ψ)) to only six independent ones (see Fig.
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4.1b). In many crystal symmetries, the tensor actually contains less than six independent
components [204].
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(a) (b)

Figure 4.1: (a) Euler angles (φ, θ, ψ) for the transformation of the microscopic frame
(x, y, z) for the nonlinear crystal or molecules into the macroscopic laboratory frame
(X, Y, Z); (b) illustration of the second order nonlinear susceptibility tensor χ(2) and its
accessible components (orange) under low NA illumination.

The signal in a typical microscopy measurement arises from a very large number of
nonlinear dipoles within the excitation volume. In a crystal they will all be perfectly
aligned, but in more complex molecular media as encountered for example in biology
this is not expected to be the case. There will rather be a preferential direction around
which the individual nonlinear dipoles are oriented. This can be expressed as the coherent
superposition of nonlinear dipoles within a distribution of orientations (φ, θ, ψ) leading to
new macroscopic tensorial coefficients:

χ
(2)
IJK = N

∫ ∫ ∫
(φ,θ,ψ)

βIJK(φ, θ, ψ)f(φ, θ, ψ) sin θdφdθdψ (4.4)

with f(φ, θ, ψ) as the normalized orientational distribution probability function of the
molecular unit cells in the sample, N the molecular density of the sample, and βIJK the
molecular second-order nonlinear susceptibility tensor projected in the macroscopic frame.
This formulation shows that in the case of a purely 1D crystalline sample (with only one
non-vanishing coefficient χ(2)

zzz in the microscopic frame) oriented along a macroscopic axis,
the presence of orientational disorder can lead to significant non-diagonal macroscopic coef-
ficients (such as I = J 6=K) [89]. From the measurement of the individual χ(2)

IJK components
the amount of disorder can then be deduced in a similar way as for TPF (see Fig. 3.2), but
nevertheless complementary since SHG is additionally sensitive to asymmetry as it does
not arise from centrosymmetric structures.

In this chapter we explore new ways of measuring macroscopic nonlinear optical co-
efficients using a simpler and faster scheme than previous polarimetry analysis. While
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4.2. Single χ(2) component readout

for a complete polarimetric study an intensity measurement has to be performed at each
excitation angle α and only a subsequent fit of the polarization response leads to the knowl-
edge of the nonlinear tensorial coefficients, our pulse shaping based scheme obtains these
coefficients in a single-shot measurement without the need of a fit.

4.2 Single χ(2) component readout

4.2.1 Principle

Let us first consider a monochromatic laser E(ω) = E0δ(ω−ω0) with a linear polarization
along a direction forming an angle α with the X-axis (Fig. 4.2a). For a measurement of
the tensorial components χ(2)

IJJ it suffices to polarize the laser in direction J = (X, Y ) and
to measure the SFG intensity Î in direction I = (X, Y ). For example a linear polarization

along X
(

E0◦ = E0

(
1
0

))
leads to a SHG intensity of ÎI,0◦ =

(
χ

(2)
IXXE

2
0

)2

and allows

the retrieval of χ(2)
IXX by:

χ
(2)
IXX ∝

√
ÎI,0◦ (4.5)

The proportionality reflects the fact that in these measurements we are interested in χ(2)
IJK-

values relative to one another rather than in absolute values. A pure Y -polarization (90◦)
leads to the knowledge of χ(2)

IY Y in the same way.
The measurement of the mixed tensorial terms χ(2)

IJK with J 6= K, i.e. χ(2)
XXY = χ

(2)
XYX

and χ(2)
Y XY = χ

(2)
Y Y X , on the other hand causes substantial difficulties. To get a signal from

them the excitation field needs both a X- and a Y -component, so a polarization along
α = 45◦ seems the obvious choice, but additionally to the SFG field arising from the mixed
components χ(2)

IXY = χ
(2)
IY X also the components χ(2)

IXX and χ(2)
IY Y will contribute (Fig. 4.2a).

In particular E45◦ = E0√
2

(
1
1

)
generates a SH intensity of

ÎI,45◦ =

(
E2

0

2
χ

(2)
IXX + 2

E2
0

2
χ

(2)
IXY +

E2
0

2
χ

(2)
IY Y

)2

=

(
E2

0χ
(2)
IXY +

1

2

(√
ÎI,0◦ +

√
ÎI,90◦

))2

(4.6)

From this it is possible to obtain the value of the mixed component by:

χ
(2)
IXY ∝

√
ÎI,45◦ −

1

2

(√
ÎI,0◦ +

√
ÎI,90◦

)
(4.7)

but the error margin increases due to the fact that three measurements are required com-
pared to the components χ(2)

IJJ that can be determined by a single one. The additional noise
induced by successive discrete measurements is also a reason why a complete polarimetric
analysis with subsequent fit is preferred to this measurement scheme.
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4.2. Single χ(2) component readout

Alternatively two lasers with different wavelengths can be used, one polarized along X
and the other along Y . Three couplings are possible in such a scheme (Fig. 4.2b): Both
lasers can couple with themselves giving rise to signals with frequencies 2ωx and 2ωy (ωx
and ωy being the frequencies of the lasers polarized along the corresponding directions).
Both depend solely on the tensorial components χ(2)

IXX and χ(2)
IY Y respectively. Additionally

a third signal arises from the coupling of one laser with the other at ωx + ωy, exclusively
generated by χ(2)

IXY = χ
(2)
IY X . Therefore the contributions of all six tensorial components

(three for each detection direction) are not only spectrally well separated from one an-
other, but they can all be obtained in a single measurement. However, to reliably compare
the intensities of the mixed terms with those of the others and determine the magnitude
of the underlying χ(2)-components, one depends on a perfect or at least perfectly known
overlap of the focal volumes of both lasers, a challenge in practice. More importantly, such
measurements would require perfectly coherent lasers, synchronized in order to produce a
coherent buildup of the crossed nonlinear signal.

To avoid both the need for multiple measurements as well as necessity to superpose
focal volumes of several lasers, we propose a solution based on pulse shaping. Amplitude
shaping selects only two narrow regions out of a spectrally broad pulse, the rest being
suppressed. Polarization shaping polarizes one of these regions along X, the other along
Y (Fig. 4.2c) [206]. Thus two lasers get simulated whose focal volumes overlap perfectly,

X

Y

EY(ù )0

á

ù

Î

2ù0
ù0

(2)all ÷
components

ù

|E|

ùy
ùx

EX EY

ù

Î

2ùy
2ùx

(2) 2|÷ |IYY

(ù +x ù )y

(2) 24|÷ |IXY

(2) 2|÷ |IXX

X
Y

Z

focal volume
mismatch

ù

|E|

ùy
ùx

EX
EY

ù

Î

2ùy
2ùx

(2) 2|÷ |IYY

(ù +x ù )y

(2) 24|÷ |IXY

(2) 2|÷ |IXX

X
Y

Z

focal volume
matching

(a) (c)(b)

EX(ù )0

E(ù )0

Figure 4.2: χ(2)-component read-out schemes. (a) one laser with linear polarization: sig-
nals from different components get mixed; (b) two synchronized lasers at ωx and ωy with
perpendicular polarizations: for each detection direction I, components χ(2)

IJK get spec-
trally separated, but mismatch of the focal volumes of both lasers is very probable ; (c)
two amplitude windows with perpendicular polarizations shaped out of spectrally broad
pulse: χ(2)-components get separated without focal volume mismatch.

provided that the spatial dispersion in ω is perfectly controlled after the shaper (which
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4.2. Single χ(2) component readout

has been verified as explained in section 2.6). Since SFG depends quadratically on the
incoming intensity it is not desirable to narrow the amplitude windows too much wasting
the majority of the laser energy. Instead the maximal width should be chosen that still
gives completely spectrally separated SFG peaks (see Fig. 4.2c).

4.2.2 Experimental realization on known crystals

To demonstrate the capabilities of a single χ(2)-component read-out by amplitude and
polarization pulse shaping we use a crystal with a size of several millimeters in all three
dimensions, KTiOPO4 (KTP), of known symmetry and orientation. In the epi-microscopy
geometry only the signal from above the surface is imaged, as explained in chapter 1.
There aren’t any resonances within the incident wavelength range, and in this regime
KTP has three independent tensorial components, that in the crystal frame (x, y, z) are
χ

(2)
zzz = 33.8 pm/V, χ(2)

zxx = 5.08 pm/V and χ
(2)
zyy = 8.7 pm/V [207]. It is placed with the

(x, z) crystallographic plane in the microscope’s (X, Y ) sample plane and can be rotated
around its y-axis which corresponds to the propagation direction Z of the incident laser,
therefore allowing a variation of the macroscopic nonlinear coefficient as detailed in Eq.
4.2 (with θ = 90◦, ψ = 90◦ and φ variable, φ being defined as the angle between the crystal
axis z and the X axis of the laboratory frame).

Two laser profiles are tested: in the first case the whole spectral width of the pulse is
sent to the sample with a flat spectral phase and polarized either along X or Y , which
corresponds to the case of Figure 4.2a only with a broad pulse instead of a monochromatic
one. In the second case both spectral amplitude and polarization are shaped according to
Figure 4.2c where the two spectral windows with a width of 10 nm each are centered on
λX = 780 nm and λY = 820 nm for X- and Y -polarized light. The SFG spectra for these
profiles are taken for different crystal orientations, which are measured independently using
white light illumination imaging (see Fig. 2.8). Fig. 4.3 shows a sketch of the correspond-
ing signals on the CMOS chip in the spectrometer. The X- and Y -polarized signals appear
as thin lines on the chip. In the case of the two-peak excitation these lines consist only of
three separated regions. By just reading out one of them the strength of the corresponding
coupling component χ(2)

IJK can be determined.

Figure 4.4 displays the experimental results normalized to the maximal value of χ(2)
XXX ,

compared with calculations based on Eqs. (4.1) and (4.2). An excitation dichroism factor
f is introduced to account for the different amplitudes of the incoming field in its two
polarizations states so that EY = fEX . This factor, mainly caused by the polarization
dependent reflection efficiency of the diffraction grating at the exit of the pulse shaper,
is estimated at f = 1 in Figure 4.4a and f = 0.7 in Figure 4.4b. Moreover, a detection
dichroism factor is introduced to account for the detection efficiency difference between
the two channels of the spectrometer, 0.8 in the present case. Both factors only affect
the overall intensities but not the shape of the orientation dependence curves depicted
in Figure 4.4. A good agreement between the measured and expected dependence of the
SFG tensorial coefficients with respect to the φ macroscopic in-plane crystal orientation
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Figure 4.3: Sketch of the spectral detection on the CMOS chip in the spectrometer (see Fig.
2.8). (a) No amplitude shaping is performed, only one signal peak gets detected, separated
into its X- and Y -component, which appear as thin horizontal lines on the CMOS chip. (b)
SFG excitation with the two-peak profile detailed in the text. Three signal peaks appear,
separated along X and Y aligned in horizontal lines on the CMOS chip. The responsible
χ(2)-components for each signal part are indicated.

is reached. The excitation laser profile employed in Figure 4.4b shows in particular that
six individual coefficients of the crystal nonlinear susceptibility can be retrieved from a
spectral filtering, which is based on a single pulse measurement. In contrast the more
traditional scheme of Figure 4.4a requires two different measurements involving separate X
and Y excitation polarizations. Whatever its direction, this single polarization excitation
is unable to retrieve more than two crystalline SFG tensorial components at the same
time. The four tensorial components that are accessed in total can also be obtained from
a polarimetric measurement as indicated in the polar graphs in Fig. 4.4a.

There is still a disadvantage of the two-peak excitation profile: the generated SFG
signal is considerably lower compared to the single-peak excitation. In the latter case the
whole pulse energy is used while in the former only a part of it reaches the sample due
to the amplitude shaping. Consequently much less coupling possibilities between different
wavelengths are available and the signal intensity drops. As a result the spectra get noisier,
making a reliable component readout more difficult. This concern can be reduced by
employing laser sources that provide more power and those that possess larger bandwidths
as then broader amplitude windows can be shaped into the pulse so that the available
energy gets used better.

Although it is not visible in the present case where index permutations are valid since

118



4.2. Single χ(2) component readout
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Figure 4.4: Dependence of the measured relative tensorial components of a KTP crystal
with respect to its in-plane orientation angle φ. Dashed lines: experimental data; solid
lines: expected behavior according to the calculations detailed in the text. (a) Whole
spectrum polarized in one direction. For various orientation angles φ the polarimetric
SHG response is given as well, where a linear incident polarization gets turned (theoretical
calculations). (b) Two spectral windows with perpendicular polarizations to each other;
right hand pictures: incident laser spectrum and corresponding measured SFG spectrum
for both cases (the lower SFG spectrum is obtained for a KTP orientation of φ = 90◦, with
dotted (resp. continuous) lines corresponding to a Y (resp. X) analysis direction.
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4.3. Effect of the Z-direction coupling under high NA focussing

Kleinman conditions are applicable, this approach shows furthermore that polarization
pulse shaping allows the investigation of possible deviations from index permutation con-
ditions since six coefficients are determined independently, which is not the case with a
single polarization excitation.

4.3 Effect of the Z-direction coupling under high NA
focussing

So far only a planar wave excitation was assumed to retrieve the macroscopic coefficients
from the measured data. However, in our work, we aim at applying polarization control
schemes to imaging, therefore high NA objectives are used. To collect as much as possible
of the so generated nonlinear signal, these objectives are used as well in the detection
paths as detailed in section 2.5.2. The strong focussing leads to a substantial change in
the polarization state of the field. Not only is a new Z-component introduced but also
the lateral components get redistributed for points within the focal volume not lying on
the optical axis [208]. While a NA = 0.5 objective hardly modifies the field, an objective
with NA = 1.2 leads to a field component in Z that amounts to up to 40% of the in-plane
(X, Y ) amplitude (see Fig. 3.15). For samples exhibiting strong susceptibility components
with Z-indices this contribution may be non-negligible [198, 209]. The actual effect of
the Z-coupling is dependent on the symmetry and orientation of the sample under inves-
tigation and therefore each case needs to be studied specifically. Appendix C describes
our approach that accounts both for excitation effects as well as for those of the collec-
tion of the propagated SHG from an assembly of dipoles in the focal volume. Thus the
sample rotation dependence as shown in Fig. 4.4 can be modeled including all tensorial
components.

Different crystal symmetries are reflected by different χ(2) structures which makes it
difficult to get a general overview of the Z-coupling effect in polarization sensitive mea-
surements. To facilitate this task we introduce the ratio between all tensorial components
containing at least one Z-component:

χ
(2)
out =

√∑
I′J ′K′

(χ
(2)
I′J ′K′)

2 , with I ′ ∨ J ′ ∨K ′ = Z (4.8)

and the full norm χ(2) =
√∑

(I,J,K)=(X,Y,Z)(χ
(2)
IJK)2. (For the calculation of these values

we do not include index permutations.) This allows the quantification of the out-of-plane
nonlinear coupling in any sample symmetry and orientation. χ

(2)
out

χ(2) can range from 0 (no
Z-coupling) to 1 (maximum Z-coupling effect). For the above case of KTP with its (1, 3) =

(x, z) axes lying in the (X, Y ) sample plane χ
(2)
out

χ(2) = 0.25. Turning its main axis z along the
Z direction increases this ratio to 0.96.

Fig. 4.5 shows the effect of the Z-coupling contributions on the crystal rotation ex-
periment detailed above (Fig. 4.4). In Fig. 4.5a the theoretical root mean squared error
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4.3. Effect of the Z-direction coupling under high NA focussing

between the situations of NA = 1.2 and the planar wave approximation in such an exper-
iment is shown as a function of the ratio χ

(2)
out

χ(2) . This error is seen to lie in a reasonable

range (below 4%) for χ
(2)
out

χ(2) < 0.8. For larger out-of-plane contributions the error grows
rapidly which makes the determination of in-plane tensorial components not reliable any-
more. The maximum value reached by this error in the sample rotation dependence for
a certain angle φ is represented in Fig. 4.5b. In both figures small dots at χ

(2)
out

χ(2) = 0.25
indicate the corresponding values for the KTP experiment above. The effect of a high
out-of-plane coupling on the sample rotation dependence is exemplified for a case with
KTP-like symmetry (crystal class C2v) in Fig. 4.5c and 4.5d, assuming χ

(2)
out

χ(2) = 0.8. Strong
modifications of the angular dependence are induced by the Z-coupling contribution for
high numerical aperture focussing (Fig. 4.5c, NA = 1.2). However, using a lower numerical
aperture (NA = 0.5, which still provides reasonable micrometric resolution) is shown to be
highly reliable even for samples containing significant Z-coupling contributions (Fig. 4.5d).
The use of a high NA objective without taking the Z-coupling into account is therefore
justified in the present experiment (assuming that a 4% error margin is acceptable) as long
as the Z-coupling contribution to the tensor does not surpass 0.8. In the general case of
an unknown Z-contribution, the use of a lower numerical aperture is recommended. Note
that similar conclusions could be drawn for any other crystal or sample symmetry by using
the χ(2)

out/χ
(2) ratio as a quantification of the Z-components contribution to the nonlinear

coupling.
Finally, the Z-coupling in KTP involves only its χ(2)

zyy susceptibility component, which
amounts to 30% of the main component χ(2)

zzz. Consequently, the Z-coupling efficiency does
not significantly affect the results of Fig. 4.4. The maximum error margins are in this
situation: 1.8% for χ(2)

XXX (measured at φ = 45◦), 3% for χ(2)
XYX (at φ = 45◦) and 13% for

χ
(2)
XY Y (at φ = 90◦). The high NA focussing is thus seen to have a minor effect on the po-

larization responses. This estimated error range corresponds to the maximum discrepancy
range obtained between the experimental and theoretical SHG angle dependencies shown
in Fig. 4.4.

To complete this study, we investigated furthermore the effect of the off-plane tilt angle
θ of the sample to determine its possible influence on the retrieved 2D information. As
mentioned above, these measurements are essentially 2D projection measurements. θ is
defined as the angle between the Z direction and the symmetry axis z of the sample.
Numerical simulations performed on KTP show that an off-plane rotation of the crystal
can induce deviations to the expected coefficients at high tilt angles (typically θ below π

8
)

using a NA of 1.2 (Fig. 4.6a), whereas the use of a lower numerical aperture (NA = 0.5)
does not alter the measured data significantly (Fig. 4.6b). This is essentially due to the fact
that the projection of the sample in the (X, Y )-plane still keeps an important part of the
symmetry information. The same is observed in the simulation of a polarization shaping
experiment where 2D coefficients are retrieved for a tilted KTP crystal (Fig. 4.6c): the
influence of the tilt angle in this case is seen to be negligible.
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Figure 4.5: Effect of the out-of-plane Z-contribution to the nonlinear coupling on the po-
larization shaping experiment (numerical simulations). (a) Theoretical root mean squared
error between the situation NA = 1.2 and the plane wave approximation, estimated on
the crystal rotation dependence (Fig. 4.4) of individual nonlinear tensorial components,
as a function of the ratio χ

(2)
out

χ(2) which quantifies the amount of the Z-coupling contribution.
The points correspond to the situation of a KTP crystal with its (x, z) axes in the sample
plane. Components undergoing a similar dependence are joined in one curve. (b) maxi-
mum value reached by the error defined in (a). (c) Calculated crystal rotation dependence
of the individual tensorial components in the case of χ

(2)
out

χ(2) = 0.8 for NA = 1.2 (continuous
line) and a planar wave approximation (dashed line). (d) Same dependencies for NA = 0.5
(continuous line) and a planar wave approximation (dashed line).
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Figure 4.6: Effect of the out-of-plane tilt angle θ of KTP on the polarization shaping
experiment (numerical simulations). Components undergoing a similar dependence are
joined in one curve such as in Fig. 4.5. All coefficients are normalized to χ(2)

XXX measured at(
φ = 0, θ = π

2

)
. (a) θ-dependence of the individual KTP macroscopic nonlinear coefficients

at φ = π
4
, for NA = 1.2 (dashed line) and in the plane wave approximation (continuous line).

(b) same dependence for NA = 0.5 (dashed line) compared to the plane wave approximation
(continuous line). (c) φ rotation dependence of the KTP individual nonlinear tensorial
components (such as measured in Fig. 4.4), for θ = π

2
(dashed line) and θ = π

4
(continuous

line) in plane wave approximation.

To further illustrate the power and sensitivity of our tensorial component read-out
method, we simulated the SFG response of several other typical crystals. Fig. 4.7a shows
again the KTP graphs already seen in Fig. 4.6c together with Ba2NaNb5O15 (Fig. 4.7b),
appertaining to the same crystal class C2v. Fig. 4.7c and 4.7d depict two examples of the
crystal class C6v, CdS and CdSe, and finally BaTiO3 (C4v) and Ag3AsS3 (C3v) are seen in
Fig. 4.7e and 4.7f. The corresponding symmetries and values of the nonlinear tensorial
components in the microscopic frame are given in Table 4.1. As before, the individual
nonlinear in-plane components are shown as a function of the φ angle defining the rotation
of the crystals within the sample plane. All crystals are placed with their (x, z)-axes in the
(X, Y ) macroscopic plane (θ = ψ = 90◦). Dashed lines correspond to focussing and detec-
tion with an NA = 0.5 objective while solid lines refer to a plane wave illumination. It can
be seen that the Z−coupling of the electric field can be neglected for all shown crystals
under these weak focussing conditions. Moreover, the tensorial components of different
crystal classes show a very diverse dependencies on φ and even within the same crystal
class the behavior may change a lot. This confirms that our method can easily distinguish
not only between different orientations of a given crystal but also between different crystals.

To summarize the results so far, we have shown that it is possible to directly measure
the components of the second-order nonlinear susceptibility tensor χ(2)

IJK in a single-pulse
measurement using amplitude and polarization shaping. This method is much faster than
standard polarimetry (even if only three linear incident polarizations were used at α =
(0◦, 45◦, 90◦)) and furthermore avoids the subsequent fitting procedure. Currently there
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Figure 4.7: Dependence of tensorial components with respect to the in-plane orientation
angle φ of the crystals. Dashed lines: focussed illumination with NA = 0.5; solid lines:
plane wave approximation. (a) KTP; (b) Ba2NaNb5O15; (c) CdS; (d) CdSe; (e) BaTiO3;
(f) Ag3AsS3. For clarity, only the X-detected components are shown. The Y -detected
dependencies can be deduced from the observed curves by a shift of φ = 90◦ so that
χ

(2)
XXX corresponds to χ(2)

Y Y Y , χ
(2)
XXY to χ(2)

Y XY and χ
(2)
XY Y to χ(2)

Y XX . See Table 4.1 for the
second-order nonlinear tensors χ(2)

ijk in the crystal frame.
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4.4. Molecular order imaging using polarization pulse shaping

crystal crystal class symmetries and χ(2)
ijk [10−9 esu]

Ba2NaNb5O15 C2v χ
(2)
zzz = −48

χ
(2)
zxx = −35

χ
(2)
zyy = −35

CdS C6v χ
(2)
zzz = 86

χ
(2)
zxx = χ

(2)
zyy = 90

χ
(2)
zxy = 100

CdSe C6v χ
(2)
zzz = 74

χ
(2)
zxx = χ

(2)
zyy = 68

χ
(2)
zxy = 130

BaTiO3 C4v χ
(2)
zzz = −16

χ
(2)
zxx = χ

(2)
zyy = −43

χ
(2)
xxz = χ

(2)
yyz = −41

Ag3AsS3 C3v χ
(2)
yyy = −χ(2)

yxx = −χ(2)
xxy = −χ(2)

xyx = 68

χ
(2)
zxx = χ

(2)
zyy = 36

Table 4.1: Second-order nonlinear tensors χ(2)
ijk in the crystal frame for the different crystals

shown in Fig. 4.7 [204].

are still some noise issues to solve, but as more intense lasers become available, this should
only be a minor problem. Eventually, our method may even be more robust to noise, as
the same noise level acts on all SFG signal peaks. This may not be the case in polarimetry
where experimental conditions can change during the acquisition of a polarimetric curve.
As will be seen later (section 4.5) this amplitude and polarization shaping approach can
also be combined with phase shaping to lead to a better contrast in imaging.

4.4 Molecular order imaging using polarization pulse
shaping

So far we focussed on the experimental principle by applying it to a crystalline calibra-
tion sample. In more complex samples valuable structural information on the nanometric
scale is contained in its individual SFG tensorial components. Based on the χ(2) single
component read-out detailed above we propose a single SFG-components imaging as an
alternative to retrieve information on molecular order. Due to polarization shaping we do
not rely anymore on a variable input polarization but rather employ a single-pulse input
excitation. The same scheme as in the previous section can easily be extended to imaging
to extract individual SFG tensorial components. Imaging requires fast acquisition times
which usually are not reached by spectrometers. In the standard mode of our spectrometer
a grating spatially separates the different signal frequencies that are then measured by a
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4.4. Molecular order imaging using polarization pulse shaping

CMOS camera. Its read-out process limits the time resolution of the instrument which
is of the order of a few Hertz and consequently ill suited for any imaging purposes. To
improve the time resolution an alternative would be to either change to a sensitive EM-
CCD camera or to strongly disperse the emission spectrum and measure the corresponding
intensities on different sensitive detectors. We chose to show here the demonstration of
principle using the capabilities of our spectrometer. The signal is sent after the diffraction
grating to a narrow side exit behind which we placed a PMT (see Fig. 2.8c). Due to
the spatial separation of frequencies this slit is only passed by a up to ∆λ ≈ 3 nm broad
spectral region whose center wavelength can be tuned by rotating the diffraction grating.
The PMT does not only have a much better time resolution so that the limiting factor
for imaging speed is now the scanning speed of the sample stage, it also benefits from a
much greater sensitivity than the CMOS camera (around one to two orders of magnitude).
Single χ(2) components imaging can now be performed by extracting the corresponding
regions of the SFG spectrum. By setting the detected wavelength on ωJ + ωK , an image
is obtained for the corresponding I(J,K) = ÎXJK + ÎY JK intensity defined above, leading to
the measurement of (4 − 3δJK)

(
| χ(2)

XJK |2 + | χ(2)
Y JK |2

)
. The factor (4 − 3δJK) accounts

for the XY permutation in the field coupling. This means we sum over both polarization
directions of the SFG signal. This is a choice for the validation of the technique, individual
separated intensities could also have been measured by placing an analyzer in front of the
spectrometer entrance or by blocking one of the beams after the passage of the Wollaston
prism (see Fig. 2.8a).

The imaging of independent components is demonstrated on a crystal with 1D symme-
try studied previously [89], and already described on page 105. It is placed with its main
z-axis along the X direction, as verified by white light illumination imaging and additional
polarimetric measurements (as described in section 3.1). Note that in this symmetry case
the Z-contribution discussed in Section 4.3 is of minor influence. This situation allows
the identification of possible crystalline disorder as discussed in section 4.1. (X,X)- and
(X, Y )-coupling SFG images, depicted respectively in Fig. 4.8a and Fig. 4.8b, show that
the main tensorial component present in the crystal involves the (X,X) coupling evidenced
by the dominant I(X,X) intensity, as expected from the sample symmetry. The presence of
a weak but existing I(X,Y ) contribution in several crystal regions is a signature of imperfect
1D alignment along the X-axis at those locations. However note, as described before, that
this can be due to an imperfect alignment of the molecules along X (as discussed later).
In order to quantify the local orientational disorder present in the crystal, we define the
anisotropy factor

A =
I(X,X) − I(X,Y )

I(X,X) + I(X,Y )
(4.9)

which does not depend on the incident intensity (Fig. 4.8c). A can be evaluated theo-
retically using a model where the crystal is made of a collection of microscopic molecular
dipoles which are not strictly parallel to the direction of the crystal axis (see Eq. (4.4)).
The angular distribution of these dipoles f(φ, θ, ψ) is defined as a cone of angular aperture
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Ψ lying in the (X, Y ) plane, tilted by an angle Φ0 relative to X (Fig. 4.8d). This distri-
bution is used to calculate an effective macroscopic nonlinear susceptibility χ(2) according
to Eq. (4.4) which is then inserted in Eq.(4.1) to deduce the SFG intensities I(X,X) and
I(X,Y ). A quantifies the order in the sample, with in the present case A = 1 for a pure 1D
crystalline orientation along X (high order) and A = 0 for a high disorder. For a known
cone orientation, the measurement of A leads to an estimation of the degree of disorder (Ψ)
of the molecular orientations within the crystal. When Φ0 increases, the dependence of A
relative to the cone aperture is shifted to lower values of A (Fig. 4.8d). Even the lack of
knowledge of a possible tilt angle Φ0 of the orientation cone does not prevent a qualitative
estimation of the disorder. The maximum A = 0.97 value measured in the present crystal
leads to Φ0 < 4◦, and Ψ < 50◦, meaning that in the "high order" regions, the measured
molecular cone aperture angle cannot surpass 50◦. As the general crystal orientation Φ0

is easily seen by white light illumination, we can safely confirm that Φ0 lies below 10◦

throughout the whole investigated region. This finding in combination with the minimum
A value measured (A = 0.76) restricts the "highly disordered" crystal regions to a disorder
of 60◦ < Ψ < 85◦. Such a behavior in the measured crystal has been previously observed in
a complete polarimetric analysis [89]. Note that as in the case of crystals discussed above,
this indetermination between "disorder" (cone aperture) and "orientation" is due to the
fact that we use only A as a reporter of structural information, thus one measurement for
two unknown parameters. A measurement of the X- and Y -projections would remove this
indetermination.

The example above demonstrates the power of single tensorial component imaging on
a molecular crystal. It can also be applied to complex biological media and ultimately be
used for dynamic measurements of disorder, which is not accessible using polarimetry. In
this work, we apply our technique to collagen, in particular collagen fibers extracted from
rat-tail tendons and stretched on a surface with a NaCl containing surrounding medium
(sample fabricated at the Exeter University, P. Winlove group). Collagen is the currently
most studied bio-molecule in SHG imaging. First, because of the high SHG efficiencies that
it provides due to its highly packed intrinsic non-centrosymmetric helix structure; second,
because it is the most important constituent of the extra-cellular matrix; and third, because
its microscopic structure is strongly related to tissue pathologies [91, 94, 210].

The measurement of the individual tensorial χ(2) components within a collagen type
I fiber laying in the (X, Y )-plane was performed with the two-peak excitation profile ex-
plained above. In addition to the situation in Fig. 4.8 we additionally separated the SHG
signal along its two polarization directions. This was done by blocking either the X- or the
Y -polarized signal after the passage of the Wollaston prism to only detect the non-blocked
signal with the PMT (see Fig. 2.8). Thus by blocking one path at a time and centering
the spectrum alternately on each of the three peaks, six images of the same collagen region
were taken, each corresponding to the signal generated by one specific χ(2) component. The
values of these components are then obtained by forming the square root of the intensity
image

(
χ

(2)
IJJ =

√
ÎIJJ

)
for those peaks coupling the field’s polarization with itself, or by
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Figure 4.8: Imaging of tensorial components of a 1D symmetry DANS-PHTP crystal. (a)
I(X,X) intensity component; (b) I(X,Y ) intensity component (both in counts

s
); (c) anisotropy

A as described in the text; (d) calculation of the dependence of A on the angular aperture
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molecule is seen as well [89].
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taking half of the square root of the intensity image
(
χ

(2)
IXY =

√
ÎIXY
2

)
in the case of the

crossed terms due to the fact that χ(2)
IXY = χ

(2)
IY X . To eliminate the influence on the total

SHG intensity created at each point (m,n) within the XY -plane, we normalized the signal
at each pixel so that: √∑

IJK

χ
(2)
IJK,mn = 1 , ∀ m,n (4.10)

The result of this procedure is depicted in the left column of Fig. 4.9. The ensemble of all
six images gives the XY -part of the nonlinear χ(2) for each point within the image.

Additionally we also estimated the tensorial components with a more standard excita-
tion scheme. For this no pulse shaping was performed and the linear polarization of the
excitation beam was turned to 0◦, 45◦ and 90◦ with the help of a λ

2
-waveplate. The gener-

ated signals were separated according to their main polarization components and detected
by two APDs (see Fig. 2.8). From this procedure we deduced the individual tensorial
components with Eqs. (4.5) and (4.7)

The right column of Fig. 4.9 shows the tensorial components of the same collagen
sample obtained by this method. The normalization is the same as for the left column.
The images show a section within the collagen fiber where the fibrils exhibit a different

predominant orientation on the left than on the right. Within the central region differ-
ent orientations are present. This finding is also confirmed by the polarimetric responses
depicted in Fig. 4.10, which are unique for each of these regions. Each region possesses
a unique polarimetric response. They can also be simulated by employing a sixth-order
symmetry for the microscopic χ(2)

ijk-tensor, since many works assigned collagen to a C6 crys-
talline point group structure [8, 210, 211]. In region 1 the fiber is oriented close to 45◦

relative to the X-axis, which is seen in the polar graph (Fig. 4.10b) in the very similar
magnitudes of the X- and Y -coupling. In region 2 the fiber is oriented close to 0◦, evi-
denced by the strong X-coupling in Fig. 4.10c. The observed polar graph shows a certain
resemblance to the expected one from a C6 symmetry (small graph). The differences being
assigned to signal backscattering within the thick collagen fiber. The fiber in region 3
on the other hand is oriented around 135◦ with similar IX and IY intensities again (Fig.
4.10d), but a rotated polar graph as compared to region 1.

The χ(2)-values extracted from both methods presented in Fig. 4.9 do not always
coincide though they frequently lie within the same value range. Both methods encounter
its particular difficulties. The extraction by different angles of the incident polarization
(right column in Fig. 4.9) profits from a high signal to noise ratio as the whole pulse
spectrum is involved in the signal creation and very sensitive detectors (APDs) are used.
On the downside the crossed tensorial components χ(2)

XXY and χ(2)
Y XY cannot be determined

directly, as one has to take into account several incident polarizations (Eq. (4.7)) and
consequently the relative error increases. In this case it is also absolutely necessary that
the observation conditions do not change between different polarization measurements. All
images shown in Fig. 4.9 consist of 60 × 60 pixel. For the linear polarization excitation

129



4.4. Molecular order imaging using polarization pulse shaping

0

0.2

0.4

0.6

5µm

(a)

(b)

(c)

X

Y

Χ(2)
XXX

X

Y

Χ(2)
XXX

X

Y

Χ(2)
XXY

X

Y

Χ(2)
XXY

X

Y

Χ(2)
XYY

X

Y

Χ(2)
XYY

130



4.4. Molecular order imaging using polarization pulse shaping

5µm

(d)

(e)

(f)

X

Y
Χ(2)

YXX

X
Y

Χ(2)
YXX

X

Y

Χ(2)
YXY

X

Y
Χ(2)

YXY

X

Y

Χ(2)
YYY

X

Y

Χ(2)
YYY

0

0.2

0.4

0.6
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Figure 4.10: Polarimetric SFG response of collagen type I. (a) 2D overview of the investi-
gated region as in Fig. 4.9; (b-d) polar plots of the SFG intensity ([a.u.]) with respect to
the incident polarization angle (see Fig. 4.2a) at the points specified in (a). For the graph
in (b) the expected polarimetric response based on a C6 symmetry model is shown as a
small graph.

scheme the pixel dwell time was 20 ms, resulting in an image acquisition time of about
70 s. For the two-peak excitation profile on the other hand, a longer pixel dwell time
of 50 ms was chosen due to the lower excitation field strength caused by the amplitude
shaping, and the less sensitive detector (PMT) (as compared to APDs), both of which
reduce the signal. The corresponding image acquisition time was therefore around three
minutes, which is clearly limited by the quality of the detection. Within these periods we
additionally encountered changes in the vertical sample position of up to a micrometer. In
a very thin sample this is easily corrected for as only one sample layer will give the maximal
signal and even minimal shifts are immediately noticed. But a collagen fiber is a very thick
sample with numerous signal-generating layers that each have their proper orientations.
Under these conditions it is much harder to maintain a stable vertical position over a long
time. Because collagen fibers are birefringent materials, a vertical shift is prone to alter
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the polarimetric SHG response [211] as well as the signal peak heights detected with our
two-peak excitation profile.

The consequences of this effect can be observed in the right part of the right column
in Fig. 4.9b and Fig. 4.9e where in an extended region the χ(2)

XXY and χ(2)
Y XY coefficients

were found to be negative - they were set to 0 in the images - which is an inconsistent
result. (It should be noted that χ(2) can very well possess negative elements, these describe
a polarization response opposite to the driving fields (see Eq. (1.16), but we only have
access to their absolute values with the methods presented here, because they both rely on
intensity measurements where no information on the sign is kept.) A consequence of these
black or near-black regions is that the associated χ(2)-values for the other four components
get increased due to the normalization condition in Eq. (4.10). This leads to less contrasted
images in the right column of Fig. 4.9 compared to the left one, even though the signal to
noise ratio is much better.

Of course also the χ(2) extraction method based on a shaped pulse (left column in Fig.
4.9) suffers from sample instabilities, but as each tensorial component depends exclusively
on one measurement, within this measurement the values of that particular component
can be compared relative to each other. On the other hand the shaped pulse excitation
provides a worse signal to noise ratio, for the reasons detailed above. This difference in
signal-to-noise ratios is evident in Fig. 4.9 between the left and the right columns. The use
of more powerful laser sources and a temporally stable sample should however lead to very
reliable results with this method. Another possible solution to circumvent this problem
will be discussed in the conclusion of this chapter.

4.5 Single SFG tensorial component contrast by phase
and polarization pulse shaping

The possibility to manipulate intra-pulse interferences by the design of specific spectral
phase profiles has been exploited in molecular media to enhance nonlinear pathway effi-
ciencies [29] and improve the contrast in two-photon coherent effects [212]. In addition to
the polarization control detailed above, phase shaping could therefore provide an additional
degree of control to target specific nonlinear processes related to a given symmetry inside
a sample. Here we explore the possibility to annihilate polarization coupling pathways by
phase shaping, with the perspective of a structural contrast imaging that would avoid the
use of the spectral filtering described above. A phase shaping scheme involving the control
of the parity of the phase profile in a given spectral window is applied [29, 212, 31]. Let us
consider a spectrally broad incident field that has a phase of φ0 at a given frequency ω0.
If we now assume that the phase profile is antisymmetric around that point it follows that
φ(ω0 − Ω) = −φ(ω0 + Ω). An evaluation of the SFG signal at 2ω0 according to Eq. (4.1)
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gives:

P SFG(2ω0) ∝
∫
E(ω0 − Ω)E(ω0 + Ω)dΩ

=

∫
|E(ω0 − Ω)||E(ω0 + Ω)|eiφ(ω0−Ω)eiφ(ω0+Ω)dΩ

=

∫
|E(ω0 − Ω)||E(ω0 + Ω)|ei(φ(ω0−Ω)−φ(ω0−Ω))dΩ

=

∫
|E(ω0 − Ω)||E(ω0 + Ω)|dΩ (4.11)

All possible frequency combinations leading to a SFG signal at 2ω0 therefore have the same
phase and thus interfere constructively. If we assume on the other hand a symmetric phase
profile around ω0, meaning φ(ω0 − Ω) = φ(ω0 + Ω), an analogous calculation leads to:

P SFG(2ω0) ∝
∫
|E(ω0 − Ω)||E(ω0 + Ω)|e2iφ(ω0−Ω)dΩ (4.12)

Each frequency pair contributing to the SFG signal at 2ω0 has a different phase which
amounts to a mostly destructive interference depending on the amount of phase mismatch
between each frequency coupling pair and the spectral weight of every one of them. By a
controlled distribution of symmetric and antisymmetric phase points it is therefore possible
to selectively suppress certain SFG pathways while maintaining others. This is most con-
veniently done by applying sinusoidal phase profiles, as they possess both symmetric and
antisymmetric points and at the same time do not take on huge phase values, qualifying
them for use with SLMs (see page 75).

Fig. 4.11 depicts several simulated sinusoidal phase profiles for the same laser spectrum
and the corresponding SFG spectra compared to one obtained for a flat phase. For an an-
tisymmetric point at λ0 the SFG spectrum at λ0

2
has a maximum, while it gets suppressed

when the phase profile has a symmetric point at λ0. At other wavelengths the interferences
between the different SFG pathways lead to a signal with a more or less destructive inter-
ference. For a better contrast between the signal at λ0

2
and the surrounding wavelengths,

some schemes have been developed based on a "binary" phase shape [31].

Here we use spectrally narrow windows that considerably reduce the second-order cou-
pling possibilities compared to a non-amplitude shaped pulse. Over the remaining coupling
subset the control of constructive and destructive interferences for frequencies other than
2ω0 is easily established with a convincing quality by setting an appropriate period of the
sine. The amplitude windows are centered respectively on ω1 and ω2 (Fig. 4.2c). The
resulting SFG efficiency at the coupling polarization component ω1 + ω2 is therefore de-
pendent on the spectral phase φ1(ω) + φ2(ω), with φ1(ω) and φ2(ω) being the spectral
phase dependencies of both incident field components. By setting the phase dependence so
that it presents a symmetric point at both positions ω1 and ω2 but with opposite extrema
(Fig. 4.12a), the intrapulse interference will be constructive at the SFG position ω1 + ω2,
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Figure 4.11: SFG response for pulses with sinusoidal phase profiles (simulation). Upper
row: sinusoidal phase profiles (solid lines) for the same laser spectrum (dashed lines).
Lower row: corresponding SFG signals (solid lines) compared to the SFG response for the
same excitation spectrum but with a flat phase (dashed lines). Dotted grey lines connect
the antisymmetric phase points at λ0 to the SFG maxima at λ0

2
.

while being destructive at 2ω1 and 2ω2 (Fig. 4.12c). Contrariwise, by setting antisymmet-
ric frequency dependencies with opposing slopes at ω1 and ω2 (Fig. 4.12b), constructive
interference is reached at 2ω1 and 2ω2 while at ω1 + ω2 the signal gets suppressed (Fig.
4.12d). This effect has been observed experimentally on a KTP crystal (Fig. 4.12) with
a good agreement with the expected response. Because both spectral windows still have
a width of 10 nm there remains a small signal in the SFG peaks with destructive inter-
ference, but the contribution of these peaks is nonetheless strongly suppressed compared
to the constructive peak. The same reasoning also explain the spectral narrowing of the
central peak in Fig. 4.12c where constructive interference is only reached for ω1 + ω2 but
not for neighboring frequencies. This approach nevertheless gives a possibility to manip-
ulate two-photon excitation pathways, which could be specifically polarized. It allows in
particular working with a complete spectral integration by a detector without the need
of spectral filtering, leading to an enhanced structural contrast imaging by accentuating
specific tensorial components of the SFG response relative to other ones.

4.6 Conclusion
We demonstrated the possibilities of combined amplitude, phase and polarization shaping
of single pulses to obtain information on the second-order nonlinear susceptibility tensor
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Figure 4.12: Phase control of the different polarization coupling schemes following the
design of odd versus even dependencies of the spectral phase in two spectral windows. (a,b)
laser field with intensity (continuous line) and phase (dashed line); (c,d) their corresponding
SFG spectra with the measured signal (black line), the expected one (light grey line) and
the expected signal for a flat spectral phase (dashed line) for comparison; symmetric phases
in the spectral windows attenuate the side peaks leaving the one in the center (a,c) while
antisymmetric phases in the spectral windows leave the side peaks and attenuate the central
peak (b,d).
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χ(2). By shaping two amplitude windows into a broadband pulse that get perpendicularly
polarized to each other, the sum frequency signals arising from the different χ(2) compo-
nents are spectrally separated. In combination with a polarized detection, all six tensorial
components present in the (X, Y )-plane where the sample is located can be read out simul-
taneously from a single measurement. Thus our scheme is much faster than for example a
complete polarimetric study or one consisting of three subsequent measurements with dif-
ferent linear polarizations. For known crystalline samples our method offers the possibility
to determine their orientations. And for molecular and biomolecular assemblies the order
and disorder can be quantified.

This scheme is particularly adapted to microscopy. The use of high NA objectives in
combination with a nonlinear signal generation process leads to high resolutions in imaging.
The potential to visualize order and disorder on sub-micrometric length scales is especially
interesting for biological applications as the proper functioning of biomolecular assemblies
is often closely connected with their spatial configuration. For such investigations a con-
trast method as we have presented, that does not depend neither on prior sample staining
nor on the spatial repartition of different molecular species nor on their concentration,
should be of great promise.

Yet there are still a number of issues to be resolved. Due to the high NA focussing
tensorial components containing a Z-dependence come into play and may disturb the signal.
However, if the symmetry of the studied molecules is known, this Z-contribution can be
theoretically quantified and thus removed from the results. Furthermore its effect is only
non-negligible when the nonlinear dipoles are preferentially oriented along the propagation
direction. And in imaging, where relative measurements between different (X, Y )-positions
are performed, this Z-coupling does hardly influence the contrast. In any case, working
with lower NA objectives provides an interesting alternative.

A more serious concern is the low signal intensity generated by our method especially
in biological media. It is mainly due to two reasons: first, the amplitude shaping reduces
considerably the excitation power which has very negative effects especially for nonlinear
optical processes like SFG as the signal intensity depends on the square of the incident
intensity. Second, a spectral readout is required to separate the contributions of the dif-
ferent tensorial components. Spectrometer cameras are in general much less sensitive than
for example avalanche photodiodes. Moreover these cameras are way too slow for imaging
purposes.

While this problem could be solved by changing the detection capabilities, we tried to
solve it in two different ways. First, we avoided the spectrometer camera and directed a por-
tion of the spectrally dispersed signal to a photomultiplier tube, that offers a much higher
sensitivity than the spectrometer camera and a much better time resolution. However,
while single tensorial component imaging was possible for crystalline samples it got very
challenging for biological media such as collagen because the detected signal was still very
weak. An even more sensitive detector like an APD could lead to a further improvement.

A second path taken to obtain more satisfactory results was the addition of phase pulse
shaping to the amplitude and polarization shaping. By using a combination of symmetric
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and antisymmetric points it is possible to suppress certain SFG pathways while maintain-
ing others. The idea is to maintain only one of the three signal peaks that can then be
detected by an APD without the need of a spectral readout leading to a simpler setup and
a higher signal. And while it is possible to fix a constructive interference at a certain signal
wavelength, it is however not trivial to completely suppress another one. Moreover, even if
one succeeds in doing so, signals at neighboring wavelengths are less well controlled. The
same is true for the spectral neighborhood of constructive interferences. These residues
reduce the possible attainable contrast between the signals from different components.

To really render our method useful for the study of a wide range of materials, especially
biological ones, the generated signal needs to be optimized. Unless more intense laser
sources are employed the only way to do so is by avoiding the amplitude shaping that
reduces the pulse energy. However, the method presented here relies on this shaping to
obtain a spectral separation of the signals originating from different tensorial components.
It would be worthwhile to study whether a pure combination of phase and polarization
shaping could yield a similar contrast.

Fig. 4.13 shows such a possibility. Throughout the excitation spectrum both polar-
izations are present, but with different phase dependencies, for example sinusoidal profiles
(Fig. 4.13a). This scheme would fully exploit the independent tuning of the phase profiles
of both polarizations, accessible using a polarization and phase shaper. The corresponding
SFG fields then exhibit maxima and minima at different positions. It can be assured that
at certain spectral positions only one of the three fundamental polarization couplings is
maintained while the other two get suppressed (Fig. 4.13b). In this case a spectral readout
or a readout of only a narrow region of the spectrum with a more sensible detector can
again provide a single tensorial component contrast. Because in such a phase and polar-
ization shaped pulse the whole pulse energy is used, the obtained signal is much larger
than for an amplitude shaped pulse. In Fig. 4.13c we compare the excitation pulse shaped
as in Fig. 4.13a with the two-peak excitation profile as used in this chapter, where both
amplitude windows are polarized perpendicular to one another and possess a flat phase.
The corresponding SHG signals (Fig. 4.13d) reveal the large signal loss due to amplitude
shaping. But more work needs to be done to optimize the excitation phase profiles and
explore the potential and the limitations of this approach.
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Figure 4.13: Possible pulse shaping scheme for the readout of individual tensorial compo-
nents without amplitude shaping. (a) Excitation profile: both polarizations are present in
the whole pulse but with different phase dependencies (here: sinusoidal phases). (b) Cor-
responding fields generated by the sum frequency coupling (only shown for X-polarized
fields): at certain signal wavelengths (indicated with arrows) one of the three possible
polarization couplings is clearly dominant, permitting a single component readout. (c)
Comparison of the excitation spectra for the case in (a) (dashed line) and the two-peak
profile with a flat phase used in this chapter (solid line). (d) SHG spectra for those two
profiles, line styles as in (c).
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Chapter 5

Single pulse Coherent anti-Stokes
Raman Spectroscopy (CARS)

5.1 Introduction
Coherent anti-Stokes Raman scattering (CARS) is a coherent third-order nonlinear process
as already explained in section 1.3.2. It is usually performed by focussing two lasers (the
pump at frequency ωp and the Stokes at frequency ωS) onto the sample with a frequency
difference ωp−ωS corresponding to the frequency Ω of a molecular vibration of the sample.
Thus a coherence is induced in the medium which is further read out by a probe beam (at
the same frequency as the pump) to finally radiate an anti-Stokes signal (Fig. 5.1a). CARS
is an interesting process to analyze and image vibrational bands in a medium, as the signal
generation is much more efficient than in spontaneous Raman scattering [9]. Controlling
this process experimentally is however far from trivial. For a maximal signal generation
is it mandatory that both laser pulses overlap perfectly in time and space. Due to the
third-order nonlinearity of the process even small deviations from these conditions lead to
huge signal losses. Furthermore, two fixed laser frequencies ωp and ωS only allow to probe
one specific anti-Stokes frequency ωas = 2ωp − ωS. To obtain a whole CARS spectrum at
least one of the laser sources must be frequency-tuneable (Fig. 5.1a). For each frequency
pair a CARS measurement has to be performed. Therefore it takes a relatively long time
to obtain a spectrum.

These restrictions can be removed by using spectrally broad femtosecond lasers. They
can replace one of the picosecond lasers in the standard CARS setup (multiplex CARS),
allowing for the acquisition of a whole spectrum in a single measurement [105, 121], whose
spectral resolution is determined by the bandwidth of the spectrally narrow pulse (Fig.
5.1b). Note that the Raman spectral bands information can then be retrieved accounting
for the effect of the non-resonant signal (see section 1.3.2) using maximum entropy meth-
ods (MEMS)[213]. It is also possible to employ two broadband lasers. But this leads to
numerous resonant coupling possibilities and even more non-resonant combinations, both
of which completely blur the CARS spectrum. Additional measures have to be taken
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to regain an acceptable spectral resolution. This can be done by linearly chirping both
pulses (see section 2.2), as the probed frequency ω(t) = ωp(t)− ωS(t) then becomes time-
dependent and thus the CARS spectrum is obtained from the time trace on the detector
[122, 123, 124, 125].

These schemes still rely on the use of two separate lasers. However, it is also possible to
just use one single broadband laser where the same pulse acts as pump, Stokes and probe
field simultaneously (Fig. 5.1c), which was pioneered by the Silberberg group. In this
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Figure 5.1: CARS schemes. (a) standard configuration with two narrow-band lasers; (b)
multiplex CARS with a narrow-band and a broadband laser; (c) single pulse CARS with
a broadband laser. Upper row: energy level diagrams; real states are represented by solid
lines, virtual states by dashed lines, for (b) and (c) only the boundaries of the traversed
virtual state regions are drawn. Lower row: sketches of the spectral positions of the
participating lasers and the signal. Ω: energy of the probed vibrational transition; ωp:
pump/probe frequency; ωS: Stokes frequency. In (c) all four-wave-mixing (FWM) processes
occur, only a portion of the total signal can be attributed to CARS as indicated in the lower
right corner. For all three cases a typical CARS spectrum is shown as well [214, 105, 39].

case all resonant and non-resonant third-order nonlinear processes occur, that are usually
called four-wave-mixing (FWM) - referring to the three generating fields and the signal -,
of which CARS is only one example that can be found at the high frequency edge of the
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FWM spectrum. The complexity of such a setup is much reduced compared to a two-laser
configuration as there is no need anymore for pulse synchronization and beam recombining.
Also the focal volume overlap of all fields is perfect. Not surprisingly, these advantages are
accompanied by challenges of a different nature, namely assuring the spectral resolution of
the resonant signal. For this, pulse shaping has been used to introduce amplitude, phase
or polarization features within the excitation spectrum that help to recover the resonant
CARS spectrum. By shaping a sinusoidal phase with a short period into the pulse it is
possible to selectively excite only certain vibrational transitions [38]. Another scheme is
based on setting the high-frequency edge of the excitation pulse to a different polarization
(Y - for example) than the rest (X) and introducing additionally a phase jump within the
Y -polarized region. The time profile of the Y -polarized pulse is then split in two with no
intensity at t = 0 when the X-polarized pulse arrives. As a result the Y -polarized resonant
CARS signal is almost background-free and has a nanometer spectral resolution [49]. At
last, the approach by Oron et al. [39] introduces a narrow phase jump into the pulse.
This scheme, detailed in the following section, has been chosen in this work. We explored
in particular its potential towards polarization-CARS readout, applying the polarization
shaping setup developed in chapter 2.

5.2 Principle
For the moment let us assume that the generating fields are all polarized in the same
direction. According to Eq. (1.36) the CARS field is then given by:

P = χ
(3)
R (Ω)EpEpE

∗
S + χ

(3)
NREpEpE

∗
S (5.1)

where χ(3)
R and χ(3)

NR are the resonant and non-resonant third-order nonlinear susceptibilities
(see Fig. 1.8). χ(3)

NR describes the pathways that only involve virtual energy levels, usually
far away from any vibrational or electronic molecular energy levels, and can therefore
be considered to be frequency independent. χ(3)

R on the other hand is responsible for the
interaction of the fields with the molecular vibrations and thus contains the same frequency
dependence as these energy levels themselves:

χ
(3)
R =

a

(Ω− ΩR) + iΓ
(5.2)

Here, Ω is the beating frequency ωp − ωS between the pump and the Stokes field, ΩR the
frequency of the vibrational transition, and Γ the HWHM of the Lorentzian shape of the
vibrational band. In the case of single pulse CARS, Ep = ES = E(ω) = |E(ω)|eiφ(ω). The
first part of the CARS process - the generation of the beating frequency Ω - thus becomes
[39]:

A(Ω) ∝
∫ ∞

0

dωE∗(ω − Ω)E(ω) (5.3)
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where A(Ω) is a second-order driving polarization. The resonant and non-resonant CARS
polarizations PR and PNR are then calculated through:

PNR(ω) ∝
∫ ∞
−∞

dΩE(ω − Ω)A(Ω) (5.4)

PR(ω) ∝
∫ ∞
−∞

dΩ
E(ω − Ω)

Ω− ΩR + iΓ
A(Ω) (5.5)

PR and PNR contain all four-wave-mixing possibilities. For the CARS signal it suffices to
perform the integration in Eqs. (5.4) and (5.5) only from 0 to infinity, which corresponds
to the case where the Stokes field is of lower frequency than the pump field.

Consider the case where A only has a contribution at ΩR, meaning that A(Ω) =
A(ΩR)δ(Ω−ΩR) which corresponds to standard CARS with two narrow-band lasers when
only one beating frequency gets selected. If this was possible in single pulse CARS the
resulting resonant field would be:

PR(ω) ∝
∫ ∞

0

dΩ
E(ω − Ω)

Ω− ΩR + iΓ
A(ΩR)δ(Ω− ΩR)

=
E(ω − ΩR)

iΓ
A(ΩR) (5.6)

The signal thus has the same form as the exciting laser spectrum E(ω) and consequently
the information from the vibrational transition with ΩR is spectrally spread. Because in
single pulse CARS A(Ω) is itself a spectrally broad function and by no means a narrow
peak, all these different Ω will result in a broad resonant CARS spectrum. Additionally,
the numerous non-resonant coupling mechanisms surpass by far the resonant ones. As a
result, no information on the molecular vibration can be obtained from such a measure-
ment unless further steps are taken to regain the spectral resolution.

A possibility to do so is the insertion of a change in either amplitude, phase, polariza-
tion or any combination of these within a narrow spectral interval, which will therefore
"singularize" one resonant coupling among others. We opt, in accordance with Oron et al.
[39], for a phase jump of π at a certain probe frequency ωpr. This change hardly affects
A(Ω) as the energy contained within this narrow spectral region is negligible compared
to that of the whole pulse. It will however affect PR(ω) differently from PNR(ω). The
resonant signal of a vibration with ΩR only arises from a small region Ω around ΩR. Thus
the phase of the resonant signal PR(ω) in Eq. (5.5) follows the phase of the probing field
E(ω − ΩR). A phase jump in E(ω) at ω = ωpr therefore results in a phase jump in PR(ω)
around ω = ωpr + ΩR as well. The non-resonant signal on the other hand arises from all
frequency couplings and not only from those where Ω ≈ ΩR and consequently the phase
jump within PNR will occur at a different position for each frequency coupling. In the
coherent sum of all of these, it cannot be seen anymore and the final phase is almost flat.

The total CARS signal comes from the sum of the resonant and the non-resonant
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contribution (Eq. (1.38)):

ICARS = |PR + PNR|2 ∝ |PNR|2 + 2Re{PNRPR}+ |PR|2

≈ |PNR|2 + 2|PNR|Re{PR} (5.7)

Here we took into account that the non-resonant contribution is a real quantity as only
pathways via virtual levels are involved and no absorption occurs. Furthermore the non-
resonant signal surpasses by far the resonant one, as much more coupling possibilities
exist. Therefore the pure resonant term has been omitted in Eq. (5.7). The first of the
two-remaining terms contains the pure non-resonant contribution, but contrary to CARS
with two narrow-band lasers, it is not anymore a constant function but follows the form of
the pulse spectrum, as the number of coupling possibilities and their spectral weight dif-
fers from frequency to frequency. The second term describes the interference between the
resonant and the non-resonant signal. Both contributions are coherent with the probe field
E(ω−Ω) and PNR thus acts as a local oscillator for PR. As stated earlier the non-resonant
signal nearly shows a constant phase while the resonant one exhibits a phase jump around
ωpr + ΩR. In this region the phase relationship between PR and PNR quickly changes re-
sulting in successive constructive and destructive interference. Consequently a peak-dip
structure, as characteristic for CARS is seen on top of the strong non-resonant background
(Fig. 5.2). It should be noted, that contrary to CARS with two narrow-band lasers where

I

ù

ùlaser

ùCARS

Ö
ÙR

Figure 5.2: Single pulse CARS. A phase step within the laser spectrum leads to a peak-dip
structure at a spectral position shifted by ΩR within the CARS spectrum.

a lot of effort is put into the suppression of the non-resonant background (see page 30),
here it is precisely this background that permits the detection of the resonant signal. In
itself |PR|2 is way to weak to be detected because the probe field - the narrow phase jump
region within the broad pulse - does not contain much energy. Only the heterodyning
with the strong non-resonant field that amplifies the resonant one leads to sufficiently high
intensities for spectral detection.
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5.2. Principle

Our laser provides pulses around 800 nm with a FWHM of 60 nm (approximated in Fig.
5.3a, solid line, by a Gaussian with this width). This provides us with a driving polarization
A according to Eq. (5.3) with a bandwidth of 55 THz (Fig. 5.3b, solid line) of which only
the positive half can lead to a CARS process. As A is centered around 0 it follows that low
energetic vibrations are best excited. The frequency values ν are related to wave numbers
wn by: wn = ν

c
with c the speed of light. Thus for A(ν1/2 ≈ 28 THz) = 1

2
Amax, ν1/2

corresponds to wn ≈ 930 cm−1. Vibrations with much higher wave numbers are hardly
excited by our single pulse CARS laser. Therefore this technique is not suited for the
detection of classic CARS bands like the C-H stretching mode (3000 cm−1) or the C=O
stretching mode (1750 cm−1). It rather addresses the fingerprint region (500-1500 cm−1),
where each organic compound has its unique vibrations.

Let us suppose we place the phase step at the center of the laser spectrum around
λph = 800 nm. The heterodyning term is then visible at a frequency νCARS = c

λCARS
=

ΩR + νph = ΩR + c
λph

, from which follows:

λCARS =
1

wn+ 1
λph

(5.8)

A vibration with wn = 930 cm−1 therefore appears around λ = 744 nm, a spectral region
where the laser is still present. For vibrations with lower wave numbers the signal is even
closer to the phase step position. Due to the extremely small third-order nonlinear cross
sections no CARS signal can be extracted as it is many orders of magnitude smaller than
the laser intensity at these positions.

It is therefore indispensable to separate the generated signal from the incident light.
For this a spectral cut-off is inserted into the beam path to chop all high laser frequencies.
This can be done by a high-pass (in the wavelength domain) filter. An even better option
is to block high frequencies in the Fourier plane of the 4f -line (see section 2.3), as it only
necessitates a black screen. Furthermore the phase jump has to be placed close to the
cut-off frequency to ensure that the signal of low wave numbers appears outside the laser
region. Of course this filtering reduces the spectral width of the laser and thus also the
accessible wave numbers. The dashed lines in Fig. 5.3 illustrate this change when the
spectrum of Fig. 5.3a gets cut at λcut = 770 nm. Under these conditions the width of A(Ω)
is reduced to 40 THz and ν1/2 only corresponds to wn ≈ 670 cm−1. For the detection of
vibrations with small wave numbers it is necessary that the phase step is placed close to
the cut-off wavelength λcut. Even if this high frequency filtering is perfect, which can be
assumed using a thick absorbing material as a stopper in the 4f -line, the excitation light
at lower frequencies that reaches the spectrometer quickly saturates the whole detector,
because long integration times are needed to detect the small CARS signal. Therefore it
is also indispensable to eliminate the laser wavelengths with low-pass or bandpass filters
in the detection path (see Fig. 2.8). These filters have to be of very high quality, meaning
they have to attenuate the signal in the non-passing spectral regions by at least six orders
of magnitude and the cut has to be as sharp as possible to not affect the CARS signal as
well.
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Figure 5.3: Driving polarization A(Ω) for single pulse CARS. (a) Excitation spectrum:
Solid line: Gaussian spectrum; dashed line: high frequencies are chopped (hatched area)
to separate the excitation from the emission. (b) A(Ω) for both cases presented in (a).
The high pass filtering reduces the accessible wave numbers.

Thus one can summarize the necessary conditions for single pulse CARS measurements
as follows: In a broadband laser pulse the high frequencies must be chopped. Close the this
cutting wavelength, a phase step has to be shaped into the pulse (of course other shaping
schemes involving amplitude or polarization can be employed as well, but still have to be
applied in the same spectral region). Nevertheless the spectral energy within the phase
jump region that acts as the probe field needs to be high to generate a sufficiently strong
resonant signal. Consequently one has to find a compromise between on the one hand
cutting only the very highest pulse frequencies (thus ensuring access to many vibrations
but suffering from a low probe field), and on the other hand cutting a more considerable
portion of the high-frequency pulse half limiting the maximally attainable vibrations (but
probing them with a strong field). The ideal laser spectrum would therefore not be of a
Gaussian shape but rather possesses a broad plateau with a steep descent at the high-
frequency side. Furthermore low-pass filters need to be placed in the detection path that
have a cut-off frequency only slightly below the laser cut-off to detect a maximum of the
CARS spectrum while eliminating the excitation light. The spectral difference between
both cut-offs determines the lowest accessible wave numbers. Fig. 5.4 illustrates these
conditions. Finally, vibrations between 300 cm−1 and 900 cm−1 can be measured with our
laser.

5.3 Measurement of basic resonance characteristics
Our experimental setup for single pulse CARS detection is shown in Fig. 5.5. As excita-
tion high-pass we use black cardboard at the SLM exit. The phase distortions introduced
by the objective are compensated by a pair of chirped mirrors (see section 2.7.1) and an
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Figure 5.4: Accessible wave number range for single pulse CARS. wnmax is limited by the
band width of the laser spectrum and wnmin depends on the difference between the cut-off
wavelengths of the excitation high pass and the detection low pass. It is only achieved
when the phase step is located in close spectral proximity to the excitation cut-off.

evolutionary strategy (see section 2.7.3) performed in the SLM in the 4f -line (see section
2.3). As samples we use the isotropic solvents chloroform (CHCl3) and Dimethyl sulfoxide
(DMSO). In solutions the CARS signal is almost exclusively emitted in the forward direc-
tion due to phase matching conditions (see page 29). Therefore we use a pair of NA = 0.5
objectives (×20, Nikon, Tokyo, Japan and ×40, Zeiss, Oberkochen, Germany) to focus the
incident beam on the sample and to optimally detect the forward generated signal. The
relatively low NA is founded on several considerations. First, there are working distance
constraints. Higher NA objectives around NA = 1.2 possess reduced working distances
that impede to place a sample between two of them that are conjugated (which means
that their foci coincide). Replacing only the excitation path objective with a high NA
one would allow the positioning of the sample between both objectives and create higher
field strengths in the reduced focal volume, but a considerable portion of the generated
signal could not be collected because it is created over an angle range that surpasses the
collection aperture. Furthermore as forward emitted CARS is phase matched (see section
1.3.2), a long generating length is beneficial for the total signal intensity. This is easily
achieved by lower and medium NA objectives that focuss only weakly along the propaga-
tion direction while still possessing a quite good lateral focussing capability. On top of the
sample another glass slide is placed to provide a planar surface and avoid a lens effect by
the sample drop. The detection low pass consists of two FF01-775/SP-25 bandpass filters
(Semrock, Rochester, NY) that cut wavelengths above 761 nm. Detection is performed by
a spectrometer as detailed in section 2.5.2.

Figure 5.6 shows our excitation laser spectrum and the CARS spectra of CHCl3 and
DMSO for several phase step positions λph. The laser cut-off is inserted at around 770 nm.
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Figure 5.5: Setup for single pulse CARS. The excitation high pass is placed at the exit
of the SLM, the detection low pass at the exit of the collecting objective. For details
concerning the chirped mirrors, the pulse shaper and the spectrometer see sections 2.3 to
2.7.1.

Under these conditions the incident power amounts to 13 mW. The width of the π phase
step is set to 1.5 nm. This choice is based on two considerations: First, for this width
five SLM pixel contribute which assures that the π step is indeed reached. For smaller
widths the finite SLM resolution would result in a less accurate phase shaping as the
affected wavelengths would pass phase-shifted and non-phase-shifted pixels at the same
due to the spatial resolution of about three pixels in the Fourier plane of the shaper (see
section 2.5.1), leading to a less controlled phase jump. Second, the strongest heterodyne
modification of the CARS spectrum is to be expected when the width of the phase jump
region corresponds to the width of the resonance that is described by Γ in Eq. (5.2). 1.5 nm
around λ = 780 nm roughly correspond to 25 cm−1, which is in the same region as many
resonances of organic solvents. In both cases depicted in Fig. 5.6c and 5.6d a resonance is
clearly visible that shifts its position within the CARS spectrum when λph changes. The
resonances are indicated in the Raman spectra depicted in Fig. 5.6b. Because the resonant
signal is much weaker than the non-resonant one, even the heterodyne term only appears
as a small modification within the strong non-resonant background. Due to an imperfect
alignment along both the excitation and the detection paths and the experimental noise
always encountered, it is very difficult to identify a certain resonance within the single
pulse CARS spectrum. Only a shift of λph reveals its presence as the signal of a particular
vibration shifts within the spectrum while other spectral features remain unchanged. Thus
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Figure 5.6: Single pulse CARS. (a) Laser spectrum after the application of the excitation
high pass; (b) Raman spectra for CHCl3 (top) and DMSO (bottom) [215]; (c) single pulse
CARS spectrum of CHCl3, the resonance at 669 cm−1 can be seen at different positions
within the CARS spectrum depending on the position of the phase step λph as indicated
in (a) by solid vertical lines; the cut-off at high wavelengths is due to the detection low
pass; (d) single pulse CARS spectrum of DMSO, the resonance at 670 cm−1 is seen, but
less pronounced than the one of CHCl3. The corresponding λph are shown in (a) by dotted
vertical lines.
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5.3. Measurement of basic resonance characteristics

it is for example possible to differentiate the resonance at 670 cm−1 in the DMSO single
pulse CARS spectrum (Fig. 5.6) from the non-resonance dips at 752 nm and 757 nm. These
latter are static and do not move when the phase step position is changed. They probably
arise from interferences of multiple reflections within the detection path.

Now that individual vibrations can be seen in the single pulse CARS spectra, the
question arises whether they can be quantified as well. A resonance is described according
to Eq. (5.2) by its resonance frequency ΩR, its spectral width Γ and its strength a. ΩR can
be approximately determined from the spectra in Fig. 5.6 by Eq. (5.8), but its width and
its strength are less easily seen, especially because the strength of the modulation in the
CARS background depends on the strength of the non-resonant field as the local oscillator
at this spectral position that is not constant with respect to λ. To better visualize the
resonance we divide the derivative of the spectrum with respect to λ by the spectrum itself
(in accordance with the work at the Weizmann Institute of Science, Rehovot, Israel):

dI(λ)/dλ

I(λ)
(5.9)

The division eliminates the scaling dependence on the non-resonant field in the heterodyne
term 2|PNR|Re{PR} in the CARS intensity in Eq. (5.7), and the derivative enhances
the modification of ICARS by this heterodyne term. Figure 5.7a shows the results of this
treatment for a large number of DMSO CARS spectra with varying phase step positions
obtained under the same conditions as in Fig. 5.6d. The resonance is characterized by
a dip in the spectrum that moves to higher wavelengths as λph gets shifted in the same
way. We fitted these results by simulated CARS spectra obtained from Eqs. (5.2) to (5.7)
on which the same treatment as in expression (5.9) was performed, with ΩR, Γ and the

ratio between the resonant and non-resonant contribution χ
(3)
R

χ
(3)
NR

= a

χ
(3)
NRΓ

as fit parameters.
Fig. 5.7b and 5.7c depict two fit examples out of all the spectra in Fig. 5.7a. The fit is
performed by minimizing the mean square difference χ2 between the simulated curve f(λ)

for the triple
(

ΩR,Γ,
a

χ
(3)
NRΓ

)
and the measured data g(λ):

χ2 =

∫ (
g(λ)− f

(
λ,ΩR,Γ,

a

χ
(3)
NRΓ

))2

dλ (5.10)

For this, first the resonance position is varied while the other two parameters are kept
constant. Then the same procedure is performed for Γ and a

χ
(3)
NRΓ

. The whole cycle is

repeated until no further decrease in χ2 is achieved. From Fig. 5.7b and 5.7c it can be
seen that ΩR gets fitted very nicely, while the other two parameters are expected to show
much larger error margins due to the considerable noise in the experimental data.

This fit procedure was applied to all DMSO curves presented in Fig. 5.7a as well as
to a similar number of them for a chloroform sample. Table 5.1 summarizes the results.
Additionally the values for ΩR and Γ obtained by Raman spectroscopy are given in paren-
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Figure 5.7: Qualitative analysis of single pulse CARS spectra. (a) Treated CARS spectra(
dI(λ)/dλ
I(λ)

)
of DMSO for various phase step positions (see legend, values in nm) of DMSO

under the same experimental conditions as in Fig. 5.6d; (b,c) examples of the fit as detailed
in the text for two of these curves with λph at 777 nm and 781 nm.

theses. As there is no non-resonant background in Raman scattering, this method cannot
provide an independent estimation of a

χ
(3)
NRΓ

. It can be seen that the chloroform resonance
position is retrieved very accurately by our fit. In the case of DMSO there is a slight offset
that is probably due to a second resonance at 700 cm−1 (see Fig. 5.6b). Both resonances
are too close to be resolved by our method considering that our probe field has a width
of about 25 cm−1, which limits our spectral resolution to this value. As a consequence our
fitted resonance lies somewhere in the middle between both DMSO resonances, but still
closer to the one at 670 cm−1 as it is the stronger one of the two. Concerning the resonance
width we systematically overestimate Γ by a factor of about 2.5. For DMSO this might
as well be an effect of the neighboring second resonance, however for chloroform an influ-
ence of the closest other resonance at around 760 cm−1 seems unlikely as this resonance
is relatively far away and not very strong. The Γ-overestimation most likely arises from
several causes: the high noise level as evidenced in Fig. 5.7b and 5.7c hinders an accurate
fitting and the spectrally large probe field of 25 cm−1 probably smears the effect of the
heterodyne term in the CARS spectrum leading to a less pronounced modification that is
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5.4. Determination of the Raman depolarization ratio ρR

Sample ΩR [cm−1] Γ [cm−1] a

χ
(3)
NRΓ

CHCl3 667.5± 3.6 (669) 10.5± 1.6 (4.3) 3.9± 0.6
DMSO 679.1± 3.0 (670) 17.6± 5.5 (7.3) 4.6± 0.86

Table 5.1: Fit values of the resonances for CHCl3 and DMSO. The error margins correspond
to the standard deviation of the values obtained for all different phase step positions λph.
Numbers in parentheses correspond to the values obtained by Raman spectroscopy.

more difficult to fit.

5.4 Determination of the Raman depolarization ratio ρR
So far we did not take the tensorial nature of the third-order nonlinear susceptibility χ(3)

into account. This is, however, an additional information that provides interesting ways
to quantify - in isotropic media - the depolarization nature of a vibrational band (in other
words, its capacity to respond in a more or less directional way to an excitation) [216, 217].
As soon as different polarizations are present in the exciting field or a polarized detection
is performed, the different components of the 81-element tensor χ(3) come into play. In an
isotropic solution it possesses only two independent components [218]:

χ
(3)
IJKL = χ

(3)
XXY Y (δIJδKL + δIKδJL) + χ

(3)
XY Y XδILδJK (5.11)

Here, δ is the Kronecker delta function and I, ..., K stand for the cartesian coordinates X,
Y and Z. Both χ(3)

XXY Y and χ(3)
XY Y X define the CARS depolarization ratio ρCARS via [216]:

ρCARS =
χ

(3)
XY Y X

χ
(3)
XXXX

=
χ

(3)
XY Y X

2χ
(3)
XXY Y + χ

(3)
XY Y X

(5.12)

In analogy to Raman scattering ρCARS quantifies to which extent linear polarizations in
one direction lead to a signal polarized in the orthogonal direction. Decomposition into
the resonant and non-resonant susceptibilities

(
χ(3) = χ

(3)
R + χ

(3)
NR

)
results in [217]:

χ
(3)
IJKL = χ

(3)
NR (δIJδKL + δIKδJL + δILδJK) + χ

(3)
R

(
δIJδKL + δIKδJL +

2ρR
1− ρR

δILδJK

)
(5.13)

χ
(3)
NR and χ

(3)
R stand for χ(3)NR

XXY Y and χ
(3)R
XXY Y respectively. In the non-resonant pathways

no real vibrational levels are involved and thus Kleinman conditions (see page 113) apply
and χ

(3)NR
XXY Y = χ

(3)NR
XY Y X , so there remains only one independent non-resonant component.

Once the non-resonant contribution is removed from the CARS depolarization ratio, ρCARS
transforms into the Raman depolarization ratio ρR. It assumes values between 0 for a
perfectly polarized vibration and 3

4
for a completely depolarized one [216]. ρR can be
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obtained from a polarimetric study of the CARS spectrum [217]. Here we attempt to
retrieve it with the help of polarization and phase pulse shaping of broadband pulses.

The excitation profile used so far with a high-frequency cut-off and a phase step at a
spectral position close to the cut-off is not sufficient to determine ρR. As the whole pulse
is polarized in the same direction - for sake of simplicity X - the only tensorial components
χ

(3)
IJKL that can be accessed in a polarized detection are χ(3)

XXXX and χ(3)
Y XXX . (In χ

(3)
IJKL, I

refers to the polarization direction of the signal, J to the one of the pump field, K to the
probe field and L to the Stokes field.) According to Eq. (5.13) these components are:

χ
(3)
XXXX = 3χ

(3)
NR +

(
2 +

2ρR
1− ρR

)
χ

(3)
R ∝ 3 +

(
2 +

2ρR
1− ρR

)
χ

(3)
R

χ
(3)
NR

(5.14)

χ
(3)
Y XXX = 0

Thus ρR acts as an amplitude factor of the resonant part just in the same way as χ
(3)
R

χ
(3)
NR

.
Consequently, as only one tensorial component leads to a signal, ρR cannot be determined

because an infinite number of
(
ρR,

χ
(3)
R

χ
(3)
NR

)
-pairs leads to the same spectral result.

Let us now extend the previous excitation profile by polarizing the high-frequency
side of the spectrum along one direction - for example X - and the low-frequency side
perpendicular to it (Y ) (Fig. 5.8a). In this case the probe field (at the phase step position)
is polarized along X, while pump and Stokes fields are formed by the spectrum as a whole.
Out of the four fundamental couplings χ(3)

IXXX , χ
(3)
IXXY , χ

(3)
IY XX , χ

(3)
IY XY (with I = (X, Y ))

only χ
(3)
IY XX cannot lead to a CARS signal as in this case the Stokes field has a higher

frequency than the pump field and the corresponding signal would not appear in the
CARS range but rather at wavelengths above the phase step position λph. The resonant
contributions to the signal of all remaining components are again determined by Eq. (5.13):

χ
(3)R
XXXX =

(
2 +

2ρR
1− ρR

)
χ

(3)
R (5.15)

χ
(3)R
YXXX = 0

χ
(3)R
XXXY = 0

χ
(3)R
YXXY =

2ρR
1− ρR

χ
(3)
R (5.16)

χ
(3)R
XYXY = χ

(3)
R

χ
(3)R
Y Y XY = 0

In a polarized detection the resonant fields in the X- and Y -channels are therefore:

PX = cXXχ
(3)R
XXXX + cY Y χ

(3)R
XYXY ∝ cXX

(
2 +

2ρR
1− ρR

)
+ cY Y

PY = cXY χ
(3)R
YXXY ∝ cXY

2ρR
1− ρR

(5.17)
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The proportionality constants cXX , cY Y and cXY reflect the fact that each pump-Stokes
polarization coupling results in a different driving polarization A(Ω) (Fig. 5.8c). Thus
by measuring the CARS intensities IX = |PX |2 and IY = |PY |2 it should be possible to
retrieve the Raman depolarization ratio ρR.

We assess the potential of the method by calculating a single pulse CARS signal based
on the excitation profile detailed above as depicted in Fig. 5.8b. This is the actual profile of
our laser. We assume a resonance with the parameters specified in Table 5.2. Experimen-
tal conditions are simulated by the addition of a normally distributed noise. Afterwards a
fitting as described above is performed for the ensemble of all four parameters. Table 5.2
shows the results and Fig. 5.8d the corresponding curve. It can be seen that it is possible
to correctly retrieve the CARS depolarization ratio.

resonance parameters original values retrieved values
ΩR [cm−1] 670 670
Γ [cm−1] 15 15.5

χ
(3)
R

χ
(3)
NR

4 3.8

ρR 0.5 0.5

Table 5.2: Retrieval of resonance parameters ΩR, Γ, χ
(3)
R

χ
(3)
NR

and ρR by a fit of the CARS
intensities IX and IY . Middle column: starting values used in the simulation of a single
pulse CARS response (chosen to give a visible band within the CARS spectrum); right
column: values retrieved from the fit of said response (see Fig. 5.8d).

Even without a simultaneous fit of all four parameters it is possible to estimate ρR. If
the resonance position and width are already known - which is the case for many solvents
as Raman spectra are readily available [215] - ρR can be accessed without having to pass
by a simulation of the whole single pulse CARS spectrum. As already stated in Eq. (5.17)
the resonance strength R of the CARS signal is expressed by:

RX ∝ cXXχ
(3)R
XXXX + cY Y χ

(3)R
XYXY

RY ∝ cXY χ
(3)R
YXXY (5.18)

The factors cXX , cY Y and cXY correspond to the strength of the driving polarization
A(Ω) at the resonance position ΩR. Therefore cJL = AJL(Ω = ΩR) with AJL(Ω) ∝∫∞

0
dωE∗L(ω − Ω)EJ(ω) (see Eq. 5.3). These values are easily obtained once the exciting

laser spectrum is known. There remains the question how the resonance strengths RX and
RY can be determined from a single pulse CARS spectrum. According to Eq. (5.7) the
real part of the resonant CARS signal is expressed as:

Re{PR} =
ICARS − |PNR|2

2
√
|PNR|2

(5.19)
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Figure 5.8: Polarized single pulse CARS for the determination of ρR. (a) Sketch of the
excitation scheme; (b) experimental realization with indication of the phase step position
λph; (c) driving polarization A(Ω) for all polarization coupling possibilities for the laser
spectrum of (b), with indication of the position of a resonance with ΩR = 670 cm−1. Note
that AY X(Ω) does not lead to a resonant CARS signal because λStokes < λpump. (d)
Calculated single pulse CARS spectrum plus added Gaussian noise for the excitation with
the spectrum in (b) and the best fit of these curves that led to the resonance parameters
in Table 5.2 (right column).
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The non-resonant contribution |PNR|2 is estimated by a monotonous fit (e.g. an exponential
function) of the ascending portion of the CARS spectrum. Re{PR} is maximal around the
position where the resonance appears in the spectrum and therefore its maximal value is
a measure for the resonance strength R. By forming the quotient:

RX

RY

=
cXXχ

(3)R
XXXX + cY Y χ

(3)R
XYXY

cXY χ
(3)R
YXXY

=
cXX

(
2 + 2ρR

1−ρR

)
+ cY Y

cXY
2ρR

1−ρR

(5.20)

ρR is retrieved via:

ρR =
RY (cY Y + 2cXX)

2RXcXY +RY cY Y
(5.21)

For the same set of starting parameters as in Table 5.2 this rather crude calculation leads
to ρR = 0.51, in very good agreement with the original value of 0.5.

In a next step we tested our method experimentally. The splitting wavelength that
separates the X-polarized region from the Y -polarized one was set at 800 nm with a width
of 1.5 nm. We targeted again the 670 cm−1 vibration of chloroform and the DMSO vibration
at 669 cm−1. Each spectrum was obtained over a signal integration time of 5 s. In both
cases the modulation of the single-pulse CARS signal by the resonant contribution was
only seen in the X-polarized signal but not in the Y -polarized one. This result might be
explained by ρR = 0 for both vibrations. The only tensorial component contributing to the
resonant Y -signal (χ(3)R

YXXY ) is proportional to
2ρR

1−ρR
(see Eq. (5.17)) and does not contain

any non-ρR-dependent terms.
To obtain an independent determination of ρR we performed polarized Raman spec-

troscopy measurements [219] on both samples. For these the sample is excited with a
continuous wave laser at λ = 633 nm with a linear polarization. The generated Raman
scattering signal is analyzed along the polarization direction of the incident beam (I‖) and
perpendicular to it (I⊥). The ratio:

ρR =
I⊥
I‖

(5.22)

then gives the Raman depolarization ratio. We obtained the values:

ρR,CHCl3 = 0.20

ρR,DMSO = 0.21 (5.23)

ρR = 0 refers to a completely polarized vibration while a completely depolarized one is
described by ρR = 0.75. This means that both vibrations that we observe are strongly
polarized and the resonant signal is mainly expected to be in the detection channel that
corresponds to the polarization of the phase step region (X in our case). Though there
should be a small resonant contribution in the other detection channel as well, it might
easily be covered by noise as the overall signal intensity is small due to the polarization
splitting.
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5.4. Determination of the Raman depolarization ratio ρR

To avoid this problem of small resonant contributions that might be overlaid by noise
we propose a slightly different excitation scheme: Now we also polarize the probe field (the
spectral region of the phase jump) in the same direction as the second part of the spectrum
- Y in our case - while the first part remains polarized along X as shown in Fig. 5.9a.
As above the pump and Stokes fields are formed by the whole of the pulse. Again only
three out of the four pump-Stokes polarization couplings can lead to a CARS signal for
a vibration around 670 cm−1, namely AXX(Ω), AY Y (Ω) and AXY (Ω). Even though with
this excitation profile there are certain couplings where the Y -polarized field in the phase
jump region has a higher frequency than a portion of the X-polarized one, this frequency
difference is too small to excite our vibrations in chloroform and DMSO and consequently
the driving polarization AY X(Ω) can be neglected (Fig. 5.9c). Thus remain the following
resonant contributions, evaluated with Eq. (5.13):

χ
(3)R
XXYX = 0

χ
(3)R
YXYX = χ

(3)
R

χ
(3)R
XXY Y = χ

(3)
R

χ
(3)R
YXY Y = 0 (5.24)

χ
(3)R
XY Y Y = 0

χ
(3)R
Y Y Y Y =

(
2 +

2ρR
1− ρR

)
χ

(3)
R

The corresponding fields in a polarized detection setup are:

PX = cXY χ
(3)R
XXY Y ∝ cXY

PY = cXXχ
(3)R
YXYX + cY Y χ

(3)R
Y Y Y Y ∝ cXX + cY Y

(
2 +

2ρR
1− ρR

)
(5.25)

The proportionality constants cXX , cY Y and cXY again reflect the different strengths of
the corresponding driving polarizations A(Ω) (Fig. 5.9c). With this excitation scheme
only the detection channel for the polarization of the phase step region measures a ρR-
dependent signal, but both channels also have a contribution that is independent of the
depolarization ratio. Thus the resonance should be seen in both channels no matter which
value ρR assumes.

As for the previous excitation profile we first test its performance numerically based
on the measured laser profile (Fig. 5.9b). The same resonance is tested: ΩR = 670 cm−1,
Γ = 15 cm−1. We calculate the single pulse CARS spectrum, add a normally distributed
noise to mirror experimental conditions and attempt to retrieve the Raman depolarization
ratio and the ratio between the resonant and non-resonant contributions χ

(3)
R

χ
(3)
NR

by fitting
these two parameters. The results of this procedure are presented in Table 5.3 and Fig.
5.9d. Both parameters are determined correctly. ΩR and Γ are considered to be known.
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Figure 5.9: Polarized single pulse CARS for the determination of ρR. (a) sketch of the mod-
ified excitation scheme; (b) experimental realization with indication of the phase step posi-
tion λph; (c) driving polarization A(Ω) for all polarization coupling possibilities within the
laser spectrum of (b), with indication of the position of a resonance with ΩR = 670 cm−1.
Note that AY X(Ω) does not lead to a resonant CARS signal because the necessary fre-
quency differences are not available. (d) Calculated single pulse CARS spectrum plus
added Gaussian noise for the excitation with the spectrum in (b) and the best fit of these
curves that led to the resonance parameters in Table 5.3 (right column).
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5.4. Determination of the Raman depolarization ratio ρR

resonance parameters original values retrieved values
χ

(3)
R

χ
(3)
NR

4 3.86

ρR 0.5 0.51

Table 5.3: Retrieval of resonance parameters χ
(3)
R

χ
(3)
NR

and ρR by a fit of the CARS intensities
IX and IY . Middle column: starting values used in the simulation of a single pulse CARS
response; right column: values retrieved from the fit of said response (see Fig. 5.9d).

In a second step we attempt to obtain ρR by a direct calculation based on the single
pulse CARS spectrum without the need for a multidimensional fit.

The resonance strength R is expressed in analogy to Eqs. (5.18) and (5.25) as:

RX ∝ cXY

RY ∝ cXX + cY Y

(
2 +

2ρR
1− ρR

)
(5.26)

from which ρR is obtained by:

ρR = 1− 2cY Y
RY
RX
cXY − cXX

(5.27)

The factors cJL are again calculated by cJL = AJL(Ω = ΩR) with AJL(Ω) ∝
∫∞

0
dωE∗L(ω−

Ω)EJ(ω) (see Eq. 5.3), and the resonance strength R is estimated according to the proce-
dure detailed on page 154. This leads us to a value of ρR = 0.93 for the starting parameters
of Table 5.3. This is not only far away from the original value of 0.5, but even outside
the interval for possible Raman depolarization ratios

(
ρR ε

[
0 3

4

])
. The reason lies most

likely in an insufficient determination of the resonance strength R which we only crudely
extracted from the amplitude of the resonant feature within the single pulse CARS spec-
trum. Thus the complete two-dimensional fit over χ

(3)
R

χ
(3)
NR

and ρR has to be performed to
reliably extract the Raman depolarization ratio in this case.

We tested this excitation profile experimentally for both chloroform and DMSO to
detect the two resonances mentioned above. The excitation high pass was placed at 770 nm
and the splitting wavelength separating the X- and Y -polarized parts was fixed at 800 nm.
To see the resonance feature within the CARS spectrum we varied the phase step position
λph from 771 nm to 791 nm, the step region always having a width of 1.5 nm. All CARS
spectra were integrated over a time of 5 s. However, the resonance could not be identified
neither in the resulting raw spectra (Fig. 5.10a), nor in the ones treated according to
the procedure

(
dI/dλ
I

)
explained on page 150. A more refined treatment is necessary to

visualize a shifting feature within the spectra when λph changes. To separate this very weak
resonant feature from other constant spectral fluctuations a singular value decomposition
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5.5. Conclusion

(SVD) is useful. For this the spectra for all λph are joined in one matrix (T ) of dimension
(nph, nλ) where nph denotes the number of phase step positions and nλ the size of one
spectrum. The SVD then computes T = USV , where U and V are unitary matrices of
dimension (nph, nph) and (nλ, nλ) respectively, and S a matrix of singular values. While
S(1, 1) contains the information that is shared by all spectra contained in T the other
singular values S(2, 2), S(3, 3), ... describe the differences between them. Therefore Tref =
US0V - with S0 as a matrix of the size of S but only containing the first singular value
S(1, 1) - is a matrix of reference spectra Iref (λ) that ideally contains all spectral features
independent of the resonance. I(λ)− Iref (λ) thus enhances the resonant feature compared
to all other ones. A division by the non-resonant part has still to be performed to eliminate
this contribution from the heterodyne term. The non-resonant signal is approximated by
a fit (Ifit) of the CARS spectrum with a monotonous curve like an exponential function.
The modified signal M(λ) thus calculates as:

M(λ) =
I(λ)− Iref (λ)

Ifit(λ)
(5.28)

Fig. 5.10b and Fig. 5.10c show M(λ) of DMSO for a number of phase step positions λph.
Though they are still very noisy, there clearly is one feature that shifts when λph changes.
The resonance can thus be recovered. However, due to the manifold oscillations within
M(λ) it is not possible to retrieve the resonance’s parameters, in particular ρR, by a fitting
procedure similar to the one explained above.

5.5 Conclusion
Single pulse CARS allows the measurement of CARS spectra with a much simpler setup
than in standard CARS with two narrow-band lasers. But this advantage is accompanied
by problems in the spectral resolution of the signal. It can however be reestablished to
a certain degree by the insertion of spectral features into the excitation beam. A narrow
phase step that acts as a probe field is such a means. The range of wave numbers that
can be explored by single pulse CARS are limited on the upper side by the spectral width
of the pulse and on the lower one by the difference of the cut-off wavelengths between the
excitation high pass and the detection low pass that are essential to separate the CARS
signal from the incident light. An analysis of the CARS spectra allows determining the
spectral position of a resonance, its width and the ratio between the resonant and non-
resonant CARS contributions. We have implemented such a technique and showed some of
its limitations. The next step of our study was to extend this "simple pulse" information
readout to polarization-resolved excitation and detection, since the depolarization ratio is
an important structural parameter in CARS imaging [216, 217]. To measure the Raman
depolarization ratio of the resonance, polarization shaping of the incident beam has to be
performed and a polarized readout is necessary. Several excitation profiles are proposed for
this purpose of which numerical calculations demonstrate the potential. However, there are
problems encountered in the experimental realization that for the moment do not permit
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Figure 5.10: Experimental realization of the excitation scheme of Fig. 5.9. (a) single
pulse CARS spectra of DMSO for λph = 782 nm and a polarization splitting wavelength
of 800 nm (X- and Y -polarized light). It is not possible to identify the resonant feature
within the spectrum. (b) Modified signal M(λ) (see text for details) of the X-polarized
spectrum in (a) and several others with different λph (see legend, values in nanometer).
A shifting resonant feature is clearly visible. (c) M(λ) as in (b), but for the Y -polarized
signal. Again the resonance can be seen.
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5.5. Conclusion

a measurement of the Raman depolarization ratio. In particular, polarization shaped
excitation fields couple with all the components of the third-order nonlinear susceptibility
of the sample. As a consequence the generated resonant signal of a single component is
much smaller than in the case of only one exciting polarization. This problem should
however be easy to overcome by the use of lasers with greater bandwidth and power as
much more resonant pathways become available and the different resonant couplings as
indicated in Fig. 5.9 are more efficiently excited.
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Chapter 6

Enhancement of nonlinear signals by
photonic structures

6.1 Introduction
All effects described so far were based on the interaction of a focussed laser beam with
a sample. But the focussing itself was considered to be independent of the investigated
sample, which were of dielectric nature and quite homogeneous within the focal volume.
We assumed indeed a fixed electric field distribution within the focal volume that is only
determined by the objective, as well as a collection and detection process of the nonlinear
optical signal, not any longer influenced by the medium itself. The only exception to this
rule considered so far are phase matching constraints which require that CARS signals are
detected in the forward direction, and that backward emitted SHG can only be used in
the investigation of interfaces and thin objects (see chapter 1). This is a valid description
when extended samples like fluorescent solutions, macroscopic crystals or biological fibers
are observed. But as soon as objects with sizes from the nanometric up to the low micro-
metric range are concerned, additional effects arise. In particular the distribution of the
incident field depends on the object itself. This capability to influence the state of the
electric field in their vicinity has led to the name of photonic structures for these objects.
Here, we investigate two different classes of them: metallic nanostructures and dielectric
microspheres. This chapter is a description of attempts to investigate photonic structures
for future applications including phase, amplitude and polarization pulse shaping.

Metallic nanostructures encounter an increasing interest in the research community.
Since metallic structures reduced to nanometric sizes are known to considerably confine
electromagnetic fields, significant enhancements in the linear regime are expected, which
can be even stronger in the nonlinear regime due to their higher-power dependence. The
understanding and optimization of their nonlinear optical properties is a major issue for
future applications in nanophotonics. Quadratic nonlinear effects arising from interfaces
between a metal and the outer medium have already been described by Guyot-Sionnest et
al. in 1986 [220], and were later on experimentally quantified [221]. This led to a wide range
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of studies on nonlinear responses from metallic nanoparticles. Applied to metal spherical
particles this has led to large hyper-Rayleigh scattering signals [222, 223] which can be
explained by quadrupolar-type SHG (dipolar SHG being canceled from centrosymmetry
reasons), enhanced by plasmon resonances [224]. Plasmons - which are at the origin of
field enhancements - are collective oscillations of the free electron density in metals against
the fixed ions [225]. Metal nanostructures cannot only enhance their nonlinear intrinsic
responses, but also signals from molecules placed in their vicinity. Two-photon fluorescence
enhancement has been observed on surfaces (when the effect is confined in a 2D environ-
ment, the collective electron oscillations are called surface plasmon polaritons) in a TIRF
(total internal reflection fluorescence) setup [226, 227]. The characteristics of the plasmons
strongly depends on the shape and the physical environment of the nanoparticles [228].

Many structures have been proposed for nanoplasmonics. Nanometric metal tips have
been successfully employed to perform near-field TPF imaging due to the spatial con-
finement of very strong fields at the tip [229]. Other geometries to profit from plasmon
resonances are fractal shaped periodic metal nanostructures where the exact location of
the field’s hot spots depends on the incident wavelength and polarization [230]. Thus one
can fabricate nano-antennas that are resonant at certain optical frequencies [231]. Under
broadband ultrashort excitation, the appearance of hot spots in metal nanostructures is
a dynamic process, since specific localizations will enhance electromagnetic fields only at
specific wavelength combination conditions. In an array of gold nanoparticles with increas-
ing sizes on top of a silica substrate Lévêque et al. created a hot spot sweeping across the
structure at femtosecond time scales [232].

Another possibility are nano-apertures within a metal film [233] which are able to
significantly enhance the electric field in the nano-volume they define [234, 235]. The actual
form of the electric field strongly depends on the shape and size of the nano-apertures. In
triangular ones the hot spots position is controlled by the polarization of the incident field
[236, 237]. For simple photonic structures like isolated spherical nano-apertures in a metal
film the field distribution within and around the aperture can be theoretically calculated by
a rigorous differential theory of diffraction [238] while this is not anymore the case for more
complicated shapes. Nano-apertures have been exploited to detect the fluorescence of single
molecules with high sensitivity in very dilute systems [239, 240, 241]. This enhancement
effect has been explained by an increase of the state density of the electromagnetic field
around the cut-off of the fundamental propagative mode within the aperture [242].

Other groups focussed more on both regular and disordered arrays of nanoparticles
[243, 244] or nano-apertures [245, 246] where the transmission coefficient and the generated
nonlinear signals not only depend on the shape of the photonic structures but also on the
incident angle of the electric field due to surface plasmon resonances. Onuta et al. probed
the field enhancement of bow-tie structures larger than the diffraction limit by an analysis
of the SHG signal arising from them [247]. Because the structures itself could be resolved
by light microscopy, a field map over the whole structure was retrieved so that hot spots -
very confined areas with huge field strengths - could be identified. For bow-tie structures
below the diffraction limit and for closely related double holes an enhancement in the
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6.2. SHG enhancement from metallic nano-apertures

two-photon photoluminescence and the SHG signal was observed as well [248, 249]. Apart
from this general enhancement no in-depth studies have been performed to understand the
characteristics of nonlinear signals emitted by single metal nano-apertures with sizes below
the diffraction limit.

In the first part of this chapter we attempt to close this gap. We will explore the ability
of metallic nano-apertures with sizes below the diffraction limit to enhance SHG signals.
SHG is an interesting probe for interface effects. As all other nonlinear optical effects it can
probe field enhancements due to the square dependence on the field intensity. Moreover,
its dependence on the symmetry of the nonlinear medium (see section 1.2.1) predestines
it as a morphology probe. Furthermore, SHG can also be used as a sensor for optical field
characteristics such as the spectral and temporal pulse profile. Unlike linear signals it arises
in a spectral region far away from the excitation and therefore contains a surface-specific
response over a dark background. It is a unique contrast to both investigate nanostructures
- as shown in this chapter -, and to manipulate and control optical fields at the nano-scale,
which is a future perspective of our work.

Dielectric microspheres are a different class of photonic structures. As opposed to
metallic nanostructures they do not alter the distribution of the electric field in their vicinity
by the interaction with surface plasmons but by the refractive index change between the
sphere and its surrounding. Under a plane wave illumination such a sphere focusses the
beam on the sphere’s shadow side into what is called a photonic nanojet [250, 251]. Therein
the field attains high intensities. The nanojet is moreover characterized by sub-wavelength
transverse dimensions and a low divergence, which recently has been observed directly
using fluorescence from a surrounding solution [252]. These microspheres offer a low-cost
alternative to complex objectives commonly used in microscopy [253]. In combination
with high NA objectives an even better confinement is reached well below the diffraction
limit [254, 255]. Nanoparticles placed within the photonic nanojet experience an enhanced
backscattering of light [256]. Such microspheres were also used in nonlinear optics to
enhance the TPF signal of a Rhodamine B dye solution [257].

In the second part of this chapter we investigate the use of dielectric microspheres to
increase CARS signals. The choice of this different kind of photonic structures is due to
conclusions coming from a first try on CARS-enhancement in nano-apertures, which was
unsuccessful, because CARS detection has to be performed in the forward direction due to
phase matching considerations (see section 1.3.2), but the electric field enhancement only
occurs on the excitation side of the aperture, as shown in the next section. Only very little
intensity gets transmitted through the nano-aperture where the CARS-active medium is
located.

6.2 SHG enhancement from metallic nano-apertures
In the case of a nano-aperture in a metallic film all nonlinear signals arise from the metal
itself. Second-order nonlinear effects like SHG only occur in non-centrosymmetric media
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(see page 15). Thus - except in nanoparticles of sizes below 40 nm, when quadrupolar
decompositions play a role in the SHG induced effect [223] - the bulk of the metal does not
contribute and SHG is created at the interface between the metal and the outer medium.
In our geometry two different interfaces exist: The circumference of the aperture itself and
the plane between the metal layer and the outer medium (Fig. 6.1a). In both cases the
nonlinear dipole is characterized by a strong diagonal coefficient χ(2)

nnn - with n designating
the normal direction to the interface - and off-diagonal contributions χ(2)

ntt, χ
(2)
tnt and χ

(2)
ttn - t

refers to the tangential direction relative to the interface - that are typically smaller by a
factor of ten [221]. The generated SHG field P 2ω

I polarized along the direction I = (X, Y, Z)
is expressed as (see Eq. (1.16)):

P 2ω
I =

∑
r

p2ω
I (r) =

∑
r

∑
JK

χ
(2)
IJK(r)Eω

J (r)Eω
K(r) (6.1)

It arises from the coupling of a field E polarized along direction J with another one
polarized along K, summed over all dipole positions r. Contrary to the previous sections
dealing with bulk media, we account here for the spatial repartition of the nonlinear induced
dipoles, since it plays a key role in the global SHG response (see below). It can be split
into the two contributions P 2ω

a,I from the aperture circumference and P 2ω
s,I from the surface

of the metal layer.
We excite and detect the SHG signal with the same setup as already used in chapter

3 (see Fig. 3.4). A tunable Ti:Sapphire laser providing pulses of 150 fs with a repetition
rate of 80 MHz is operated at a wavelength of 800 nm with a typical averaged power of
a few mWs. The axis of the beam’s linear polarization is controlled by an achromatic
half waveplate mounted on a step rotation motor at the entrance of the microscope. A
high NA objective (×60, NA = 1.2) focusses the beam on the sample. The backward
emitted SHG signal is collected by the same objective and is separated from the incident
laser by a dichroic beam splitter. After the subsequent passage of a polarization beam
splitter the signal is detected by two avalanche photodiodes. As samples we use circular
and triangular nano-apertures that are formed by focussed ion beams in a 200 nm thick
gold film which adheres to a glass coverslip by an intermediate chromium layer with a
thickness of 20 nm. Their diameters, respectively side lengths, vary between 140 nm and
470 nm. These structures have been fabricated in the T. Ebbesen group (ISIS, Université
de Strasbourg, France). A piezoelectric stage on which the sample is fixed allows a 3D
scan of the nano-apertures.

Under this configuration the normal direction n of the nonlinear dipoles along the
circumference of the aperture lies in the (X, Y )-plane of the macroscopic frame while the
dipoles of the layer surface are aligned along Z (Fig. 6.1a). Due to the high NA focussing
(see section 4.3 and appendix C) the latter can still couple with the incident electric field,
but the weight of their contribution is expected to be lower than of those dipoles formed
by the aperture itself, as even for strong focussing the field components within the (X, Y )-
plane surpass the one along Z (Fig. 6.1c).

Because the aperture size is below or at the diffraction limit a typical SHG scanning
image of theses structures only shows a feature resembling a diffraction-limited spot (Fig.
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6.1b). The effect of the surrounding metal layer is evidenced in a weak non-vanishing
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Figure 6.1: (a) Schematic representation of the nonlinear dipoles in a metal nano-aperture
at the aperture circumference (P2ω

a ) and and at the metal surface (P2ω
s ), and sketch of

the experimental scheme for nonlinear microscopy imaging; (b) SHG image of a circular
nano-aperture with a diameter of 195 nm; (c) intensity maps of the Eω

X and Eω
Z excitation

fields in the focal plane under strong focussing conditions (NA = 1.2). At the objective’s
back aperture, Eω is polarized along X (see Fig. 3.15). A schematic nano-aperture is
superimposed as a white disk.

background signal. A spectral analysis of the total blue-shifted signal as shown in Fig.
6.2 reveals the presence of a dominant SHG peak and of a spectrally broad two-photon
luminescence signal which originates from interband excitations within the gold layer. To
reject the luminescence we use a bandpass filter around 400 nm (HQ400/40m-2p, Chroma
Technology, Bellows Falls, VT) that only keeps the SHG signal. Overall, both image (Fig.
6.1b) and spectrum (Fig. 6.2) show a significant response of the nano-aperture compared
to the bare metal surrounding surface.

In order to quantify the SHG enhancement from the nano-aperture as well as its size
dependence, the polarization dependence of the SHG signal needs to be understood since it
plays an important role in the nonlinear coupling process. Moreover, polarization responses
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Figure 6.2: Spectra of the blue shifted signals emitted by the nano-aperture (grey) and the
metal film (black). A strong SHG peak (here at 425 nm, because the excitation was fixed
at 850 nm) is accompanied by a spectrally broad but smaller luminescence peak red-shifted
compared to the SHG signal.

are an interesting way to extract information on the shape and size of metal nanostructures,
as we will see in the following part. For this we rotate the linear polarization of the
excitation field E in the (X, Y )-plane and measure the signal generated for each of these
orientations α of the incident field as depicted in Fig. 6.3. This approach is identical to the
one used previously to study structural information in crystals and molecular samples (see
section 3.1). The SHG trace is recorded for both fundamental polarization directions of
the signal. These polarimetric responses are compared with numerical calculations based
on Eq. (6.1), where the high NA focussing is taken into account both for the excitation
field in the focal volume and the collection by the same objective following the formalism
detailed in appendix C. The total calculated signal arises from an assembly of dipoles
around the aperture’s circumference. In circular apertures they are placed every 10π

3
nm

and in triangular ones every 10 nm. In this calculation, for each nonlinear induced dipole
the nonlinear radiated field is calculated in all wave vector directions and integrated over
the angular aperture of the collection objective. A further rotation of the wave vectors
is required to compute the response after the objective (see appendix C). Fig. 6.3 shows
the measured and calculated polarimetric responses of several circular and triangular nano-
apertures together with the corresponding transmission electron microscopy (TEM) images
[258].

In the case of a triangular aperture a SHG signal is generated - whatever the size of
the structure - due to the non-centrosymmetry of the structure. For an equilateral triangle
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Figure 6.3: Polarimetric responses of nano-apertures. The exciting polarization E(α) turns
around the angle α in the (X, Y )-plane. SHG signal (radius) as a function of α for a
triangular aperture with a side length of 170 nm (a), for a triangular aperture with a side
length of 320 nm (b), and for two circular apertures with a diameter of 230 nm (c). In all
cases the expected polarimetric response (small polar graph) and the corresponding TEM
image are depicted (measured in the ISIS lab, Université de Strasbourg, France). Red
curves correspond to a X-polarized signal and blue curves to a Y -polarized one.

where one side is parallel to the Y -axis the X-polarized signal IX = |P 2ω
X |

2 is expected to
exhibit four lobes at α = (0◦, 90◦, 180◦, 270◦) while the Y -polarized one shows a similar
four-lobe pattern but shifted by 45◦ [259]. The larger the triangular aperture gets, the more
dissimilar these two pattern become (small theoretical polar graphs in Fig. 6.3a and 6.3b).
This is primarily due to the occurrence of phase retardation effects between dipoles at
different positions of the interface, whose emission can enter in constructive or destructive
interference. This feature is only visible in structures above sizes of about 50-100 nm [223].
To a certain extent this pattern is seen in the experimental polar graph in Fig. 6.3b
though there also is a strong background masking it partially. But for smaller apertures
the SHG response is found to be more dipole-shaped. Partially this can be explained by
the imperfect form of these triangular apertures that arise from the impossibility to mill
accurate shapes with focussed ion beams which is evidenced by the TEM image in Fig.
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6.2. SHG enhancement from metallic nano-apertures

6.3a.
Circular apertures on the other hand are centrosymmetric structures which is highly

unfavorable for SHG. That there arises any SHG signal at all is due to phase retardation
effects between the nonlinear emitters at the perimeter of the aperture [222, 223]. This
means that the signals of two dipoles with opposing orientations do not cancel each other
completely because a phase shift is acquired linked to the spatial separation between them.
Our calculations predict a polarimetric response with two lobes around α = (0◦, 180◦) for
IX and the same pattern turned by 90◦ for IY . However this is not seen in our experiments.
Moreover the polarimetric response of different circular apertures with the same diameter
may differ strongly (Fig. 6.3c). We attribute this to the fact that the SHG response
of such apertures is extremely sensitive to defects breaking the intrinsic centrosymmetry
of the object, as was already observed in metallic nanospheres [223]. Phase retardation
effects can lead to a SHG signal of centrosymmetric structures but it will still be small
compared to non-centrosymmetric ones. Thus the phase retardation signal as predicted in
our calculations can quickly be completely overlaid by small defects in the aperture that
are much more favorable for SH generation.

Although our model is only a crude simplification because we do not account for the
scattered contribution from the aperture that leads to a field enhancement at certain re-
gions around the photonic structure (which could also probably explain the deviations
observed in the polarimetric data), we are nonetheless able to recover some of the features
of the SHG signal especially for SHG favorable symmetries like triangular apertures.

For a better comparison of the SHG efficiency from different structure shapes and sizes
we sum the signals over all incident polarization angles α and over both detection direc-
tions. We define an enhancement factor by the ratio between this averaged SHG signal
and the averaged SHG response of the metal layer without an aperture. Fig. 6.4 combines
the results for both circular and triangular nano-apertures as a function of their size. As
expected the enhancement for triangular apertures is much larger than for circular ones
due to symmetry considerations. Moreover while a strong enhancement is observed for all
studied sizes of triangular apertures, circular ones only show an enhancement for diame-
ters between 170 nm and 250 nm. For larger diameters the field intensities at the aperture
perimeter are most likely too small to generate a considerable SH field as most of the en-
ergy is focused inside the aperture where there are no nonlinear dipoles, and additionally
for larger sizes the enhancement of the incident field caused by the photonic structure itself
only plays a minor role. On the other hand for smaller sizes where there is considerable
energy focussed on the nonlinear dipoles at the circumference the phase retardation effects
are very small because of the proximity of the dipoles and the whole structure behaves
more and more as a purely centrosymmetric object not generating any SH signal.

We also calculated in collaboration with N. Bonod (CLARTE group at Institut Fresnel)
the field inside circular apertures by a rigorous differential method that solves Maxwell’s
equations in single sub-wavelength apertures drilled in real metals [242]. The field is devel-
oped in a Fourier-Bessel basis reducing the Maxwell equations to a new set of differential
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Figure 6.4: SHG enhancement factor relative to the signal from the aperture-free metal
layer of circular (grey) and triangular (black) nano-apertures, averaged over all incident
polarizations α. For circular apertures the size refers to the diameter and for triangular ones
to the side length. Error bars correspond to the standard deviation of the enhancement
factors obtained from several apertures of the same type and size. Circular apertures with
diameters of 290 nm and more could not be identified anymore within the gold layer.

equations. The nano-aperture is illuminated at normal incidence by a linearly polarized
plane wave (Fig. 6.5a). The electromagnetic field in the substrate and the superstrate
is obtained by a first integration and a second one leads to the knowledge of the field
components at the interface of the aperture (Fig. 6.5b). This field is introduced at two
levels into our calculations: First, the normal components Eω

n (rn) at the field’s frequency
ω and the dipole positions rn is directly inserted into Eq. 6.1 to determine the induced
dipoles. Second, the enhancement of the field at frequency 2ω is taken into account as a
scaling factor for the radiated nonlinear field. The nano-apertures behave very differently
at these two frequencies: at the excitation wavelength of 800 nm they are metal like with a
cut-off diameter of about 280 nm. Apertures with larger sizes transmit some of the incident
light while no propagative modes exist for smaller diameters. But at the emission wave-
length of 400 nm they behave like a lossy dielectric-like waveguide. This model still only
approximates our experimental conditions because it is based on a plane wave illumination
rather than on a focussed field, and moreover the enhancement of the 2ω field is treated
in a linear diffraction regime that does not account for higher order-couplings between the
fields at ω and 2ω. Nonetheless it provides already a good agreement with the observed
size dependence of the SHG emission as seen in Fig. 6.5c.
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Figure 6.5: (a) Geometry used for the calculation of the scattered electric field. (b) Map
of the calculated radial component |Eω

n | of the field normal to the aperture surface as a
function of the angle θ around the surface and the height Z relative to the glass substrate.
(c) Size dependence of the emitted SHG signal (normalized to the maximal value). Contin-
uous line: experimental signal as in Fig. 6.4; dotted line: simple dipole model taking only
the phase retardation effects into account but not the contribution of the scattered field
by the aperture itself; dashed line: calculated SHG signal including the field enhancement
factors.

This indicates that the SHG enhancement observed from nano-apertures originates
mainly from their interface, which acts advantageously for both the generation of nonlinear
dipoles, and the enhancement of the exciting and the radiated optical fields. For triangular
nano-apertures a similar approach could be used which would, however, have to include a
more complex spatial distribution of the diffracted fields [237]. Since this structure is not
of cylindrical symmetry anymore, Fourier-Bessel decompositions cannot be used, so we did
not pursue this calculation.

SHG was used here to probe the two-photon enhancement effects originating from the
metal-air interface in nano-apertures. This approach has also been developed in metallic
nanoparticles isolated on a glass substrate, in collaboration with the Université Tech-
nologique de Troyes (UTT). This study is not described here since the understanding of
SHG responses is still under work, nevertheless we have shown the interesting potential of

172



6.3. CARS enhancement from dielectric microspheres

both metal nanostructure approaches to monitor and ultimately manipulate SHG responses
by an adequate optimization of phase, polarization and amplitude profiles of the excitation
field as described in this thesis. Indeed, any resonance in the structure can strongly affect
the phase profile of a diffracted field, which could advantageously be measured using the
SHG from the structure itself.

6.3 CARS enhancement from dielectric microspheres
The nanostructures described above could serve as interesting enhancement substrates for
any kind of nonlinear optical contrast. Their application to CARS was therefore envisioned.
The apertures and the metallic layer were covered with a solution of neocyanine dye.
Unfortunately, in a forward detection setup, no CARS signal was seen. This is most likely
due to the fact, that the field enhancement occurs almost exclusively on the excitation
side of the nano-aperture (see Fig. 6.5b), and only very little of the incident intensity gets
transmitted to the other side of the aperture. Moreover, due to the fact that the aperture
is filled with a liquid, the refractive index jump between the metal and the surrounding
medium is smaller than compared with an air-filled aperture. Because this refractive index
jump is a key factor in the field enhancement process, it is to be expected that for a liquid-
filled aperture this enhancement is less pronounced than for an air-filled one studied so
far.

Consequently, we switched to a different class of photonic structures: dielectric micro-
spheres. As opposed to metallic nanostructures in which the nonlinear signal arises from
the metal itself, dielectric microspheres only serve to enhance a signal from a nonlinear
material in their vicinity. The underlying mechanism is the creation of a photonic jet on
the shadow side of the microsphere [254]. In this region the incident field assumes higher
strengths in a smaller volume than under normal focussing conditions without the presence
of the microsphere (Fig. 6.6). Because processes like SHG or CARS depend quadratically
or cubically on the incident field, their generation within the photonic jet is highly favored
and even though the generating volume is reduced the total signal can surpass that of a
bead-less focussing.

We tested the enhancing capability of dielectric microspheres by measuring the single
pulse CARS signals generated in their vicinity. The setup is the same as in Fig. 5.5.
Additionally we use the detection by a photomultiplier tube (PMT) as depicted in Fig.
2.8c to only detect a narrow region of the whole CARS spectrum in order to transpose this
experiment to imaging. As a sample we use polystyrene beads with a diameter of 5µm
dispersed onto a glass cover slip. The beads are easily seen by white light illumination
and we verify that only a single one is present within the focal region of the excitation
beam. The spatial resolution of our microscope when using an objective with NA = 0.5
is 800 nm in the lateral dimensions (X, Y ) and 6.4µm in the axial direction Z according
to Eq. 2.23. The microspheres are surrounded by dimethyl sulfoxide (DMSO) whose reso-
nance at ΩR = 670 cm−1 has already been characterized in chapter 5. On top another glass
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X

Z

Figure 6.6: Electric field intensity of the nanojet forming on the shadow side of the micro-
sphere, when it gets illuminated by a strongly focussed Gaussian beam (here from below)
[260]. The actual form of the nanojet depends on the incident wavelength, the focussing
conditions, the microsphere size and the diffractive index difference between the micro-
sphere and the surrounding medium.

slide is placed to provide a planar surface and avoid a lens effect of the DMSO drop. When
no narrow spectral features like phase steps or polarization switches are inserted into the
excitation profile, the CARS spectrum does not show any spectral resolution and only the
non-resonant contribution is seen (Fig. 6.7b). The various oscillation in the spectrum are
not caused by vibrational resonances, because they do change in position when a phase step
is shaped into the excitation spectrum at different λ. They are stable and would therefore
not hinder the retrieval of a resonance. They probably arise from interferences between
signal fields reflected multiple times within the detection path. The overall strength of this
non-resonant signal is a measure of the strength of the electric fields involved in the non-
linear optical coupling. Thus by scanning the microsphere on a piezoelectric stage through
the focal volume of the objective the CARS enhancement due to the presence of the sphere
can in principle be assessed. Because a complete spectral measurement for each scanning
point would take an enormous amount of time, we select a narrow spectral region where
the non-resonant CARS signal is very high. Fig. 6.7c shows the XY - and the XZ-scan
of such a sphere. The signal is normalized to the one arising from DMSO without the
presence of the microsphere.

One might argue that the stronger CARS signal under the presence of the microsphere
is not caused by an increased emission of the DMSO but by the non-resonant CARS signal
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Figure 6.7: CARS enhancement of polystyrene microspheres. (a) Scheme of the experiment.
(b) Typical DMSO CARS spectrum when no spectrally narrow feature is inserted into the
excitation profile. The drop at 760 nm is due to the detection low pass (see page 145).
(c) XY - and XZ-scans of the CARS signal under the presence of the microsphere, with
a drawing of the sphere’s position. The signal is normalized by the signal in pure DMSO
without the presence of the microsphere. An arrow in the XZ-scan denotes the Z-position
at which the XY -scan was taken. The detected signal comes from the spectral region
indicated in (b).
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of the sphere itself. And indeed, as all media possess a third-order nonlinear susceptibility
χ(3) a contribution of the bead to the total signal is expected. Thus the question arises
how to quantify the contribution of the different media. The non-resonant contributions
of both DMSO and polystyrene have the same spectral shape, because the non-resonant
part of the susceptibility χ(3)

NR is nearly wavelength independent and therefore the spectral
behavior of the corresponding CARS signal is governed by the excitation spectrum which
is identical for both materials.

As a consequence only the resonant contribution to the total signal can permit a sepa-
ration between polystyrene and DMSO. While DMSO possesses the well-known resonance
at ΩR = 670 cm−1, polystyrene is resonance-free in the whole wave number range observ-
able with single pulse CARS. As explained in chapter 5 a spectrally narrow phase jump at
position ωph leads to a peak-dip structure in the CARS spectrum at frequency ωph + ΩR.
The amplitude of this structure is a measure for the strength of the resonance at ΩR which
is expressed by the ratio between the resonant and non-resonant third-order nonlinear sus-
ceptibilities χ

(3)
R

χ
(3)
NR

. In the case of a mixture of two media A and B where only medium A

has a resonance this ratio is written as:

χ
(3)
R

χ
(3)
NR

=
xχ

(3)
R,A

xχ
(3)
NR,A + (1− x)χ

(3)
NR,B

(6.2)

where x is the fraction of medium A within the CARS generating volume and 1− x that
of medium B. Thus once the resonance strength of medium A is known, its fraction can
be obtained from the resonance feature in a CARS spectrum.

We use this approach to estimate the contribution of the polystyrene to the signals in
Fig. 6.7c. We insert a phase jump at λph = 782 nm which results in a resonance feature
around 744 nm. From this we deduce the resonance strength by calculating the ratio:

r =
Ipeak
Idip

(6.3)

where Ipeak and Idip are the intensity values at the peak and the dip of the resonance
feature. Fig. 6.8a shows the spectra of the two limiting cases where either only DMSO or
polystyrene is present. In a theoretical calculation we verify that r varies monotonously
- almost linearly - when the resonant contribution increases relative to the non-resonant
one (Fig. 6.8b). We thus perform a spectral measurement of the CARS signal at different
positions Z in the XZ-scan in Fig. 6.7c and determine r. The result is shown in Fig.
6.8c where the two limiting cases of only DMSO (resonant) or polystyrene (non-resonant)
are indicated as well. For the whole Z-range observed in Fig. 6.7c, r stays between both
limiting cases confirming that a portion of the CARS signal is indeed due to the polystyrene
microsphere. As Z increases the focal volume is more and more leaving the microsphere
and the signal comes predominantly from the DMSO. But because there is not any photonic
jet being formed anymore, no CARS enhancement can be seen. In the region of Z ≈ 12µm
where the highest CARS signal is observed, r reaches about three quarters of the DMSO-
only value (compared to the polystyrene-only case). As the relationship between r and
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χ
(3)
R

χ
(3)
NR

is almost linear it is safe to assume that at these Z about three quarters of the
whole signal originate in the DMSO and one quarter in the microsphere. Thus the CARS
DMSO-normalized factor drops from around 2 to 1.5.

This low value is quite surprising because the electric field in the photonic jet region is
expected to be around a factor two times stronger than the field under bead-free focussing
conditions. For CARS as a third-order nonlinear process enhancement factors around
23 = 8 are therefore expected. The reason for this discrepancy probably lies in the fact that
CARS as a coherent process depends on a coherent build-up over a certain signal-generating
propagation length to lead to measurable intensities (for more on phase matching rules see
chapter 1). The photonic jet behind the microsphere, however, is very localized in all three
dimensions and thus the build-up distance gets reduced and with it the generated signal.
This unsuccessful attempt exposes nevertheless the crucial parameters to access CARS-
enhancement signatures in nanostructures. Other works have shown other difficulties in
metallic nanostructures [261].

6.4 Conclusions
Photonic structures are a possible means to enhance nonlinear signals. Metallic nanos-
tructures like nano-apertures locally enhance electric fields in the vicinity of the structure.
These hot spots are ideally suited for the generation of nonlinear optical fields as they
depend on large field strengths. The actual enhancement is however strongly dependent
on the shape and size of the nanostructure and on the used wavelength and polarization
direction. This chapter has shown the delicate monitoring and interpretation of the data
in this field, since nonlinear optical signals are coherent processes, where the spatial ex-
pansion of the structures can be an issue (either from apparition of new phase-retardation
effects, or from changes in propagation rules in reduced excitation volumes).

We presented a formalism that can predict the best size-wavelength combinations for
second harmonic generation in circular nano-apertures. For triangular and other shapes
that are much more efficient in the SH generation due to their non-centrosymmetry a model
has still to be developed that takes the field enhancement by the aperture into account. In
principle it should be possible to use the polarimetric response of the SHG signal from a
nano-aperture to deduce the aperture’s size and shape in a sort of "diagnostic" measure-
ment at the nano-scale. However, this is quite a challenge because tiny defects can strongly
alter the SHG response, especially in circular apertures as their intrinsic signal is relatively
low due to symmetry considerations. Thus SHG polarimetry might be used to assess the
quality of such nano-apertures, but before that more work has to be done to characterize
the responses for different sizes, shapes and defects.

Dielectric microspheres have also been proposed to enhance nonlinear signals due to
the photonic nanojet that is formed on their shadow side when they get illuminated. For
CARS they only lead to a minimal gain because the strong light confinement impedes the
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full use of the long coherence length for an efficient coherent buildup of the CARS signal.
For other nonlinear processes that possess shorter coherence lengths, these microspheres
might prove to be more useful. The use of dielectric microspheres is also accompanied by
experimental difficulties as the positioning of the laser focus on the microsphere is very
crucial for an optimal enhancement.

At last, we applied dielectric microspheres to enhance the two-photon fluorescence from
single molecules in a fluorescence correlation spectroscopy (FCS) setup, which appeared to
be successful [262]. The easier implementation in fluorescence is again probably due to the
incoherent nature of this signal.
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Figure 6.8: Peak-dip ratio of the resonant feature in single pulse CARS spectra. (a) CARS
spectra for DMSO and polystyrene generated from an excitation profile with a phase jump
inserted at λph = 782 nm (on the left side is a close-up of the spectrum on the right). The
peak-dip is visible for DMSO while polystyrene does not possess a resonance there, its
spectrum being like that of DMSO when no phase jump is inserted in the excitation beam.
(b) Dependence of the peak-dip ratio r on the resonance strength χ
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(calculation). (c)
r for different Z-positions in Fig. 6.7c; horizontal lines refer to the limiting cases of only
DMSO or only polystyrene.
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In this thesis we assessed the potential of the shaping of femtosecond pulses for the readout
of structural information in nonlinear microscopy. A pulse shaper was set up consisting
of a 4f -line in which three liquid crystal masks are placed to allow independent control of
amplitude, phase and polarization for each spectral component within the broadband pulse.

Before this device can be employed for nonlinear microscopy applications, the distor-
tions - both in phase and amplitude - to which the pulse is subject, between the Fourier
plane of the pulse shaper (where its spectral state can be controlled) and the focal spot of
the objective (where the nonlinear signal is generated) need to be quantified and possibly
corrected for. While phase distortions arise predominantly from the objective, polarization
distortions have their origin mostly in reflection optics.

For the measurement and correction of phase distortions we presented two approaches
in detail: evolutionary strategies and single-beam homodyne SPIDER. Evolutionary strate-
gies can remove most of the phase distortions and are well suited when the general nonlinear
signal output of an experiment needs to be maximized. They reach their limits when a
more accurate control of the spectral phase is needed, especially when the found pulse
shaper configuration - presumably leading to a flat phase - forms the basis on top of which
specific phase profiles need to be created. Single-beam homodyne SPIDER can directly
measure these phase profiles, even in a much shorter time than needed for an evolutionary
strategy and with a simple setup. However, the spectral resolution is limited as well as the
accessible phase profiles. For a better control of the evolution of the phase state between
the pulse shaper and the focal spot of the objective, a collinear FROG method should be
implemented, even though this will result in a more complicated setup as an interferometer
is needed.

We have shown that polarization distortions can be reliably characterized by two-photon
fluorescence polarimetry measurements in a dye solution. In our setup their correction is
not possible at the current stage, because the main polarization axes turn within the beam
path. Nevertheless in this work we limited ourselves to linear polarizations perpendicular
to one another that are well controlled. To fully profit from our polarization shaping capa-
bilities, for example in creating circular polarizations at specific spectral positions, further
control of the direction of the main polarization axes has to be obtained.

We demonstrated the potential of combined amplitude and polarization shaping by
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reading out the individual components of the second-order nonlinear susceptibility tensor
simultaneously. This information is a key component in the understanding of structural
properties in molecular and bio-molecular samples. Our scheme works much faster than
those used previously based on more traditional polarimetry measurements. In particular
it allows single-component tensorial imaging with sub-micrometric resolution. From the
obtained images local order and disorder can be deduced. This contrast mechanism does
neither require prior sample staining, nor the presence of different molecular species, nor
concentration variations. It should therefore be of great interest to the biological commu-
nity for the imaging of order and disorder of cellular and extracellular components whose
functionality depends on their organization.

Before this stage is reached further improvements are needed, especially an increase in
signal intensity. We suggested a possible path towards this goal by replacing the amplitude
pulse shaping with phase shaping to profit from the complete pulse energy provided by the
laser source.

Polarization pulse shaping, in combination with phase shaping, also allowed measuring
vibrational signatures of solvents by CARS microscopy, in the fingerprint region with a
single pulse. Beyond the simple determination of the spectral position of a vibrational
resonance, also the Raman depolarization ratio can be retrieved, at least theoretically. In
practice, there are still some difficulties to resolve, in particular the insufficient addressing
of the resonance, but this should be more accessible as soon as laser sources providing a
broader spectrum are employed.

Finally we assessed the enhancement of nonlinear signals by photonic structures. Nano-
apertures in a metallic film seem especially promising to provide molecular signature en-
hancements, as they enhance the incident electric field in their vicinity. The SHG polari-
metric signature of such an aperture is characteristic of its size and shape and should thus
allow in principle a structure identification even when its size is below the diffraction limit.
Because SHG is very sensitive to surface defects, this might however be difficult to achieve
unless the fabrication techniques improve, which is nowadays progressively the case. We
have nevertheless shown that such polarimetric responses can provide a diagnostic tool for
the quality of nanostructures, be they apertures or particles.

Furthermore these structures (and more specifically nanoparticles-based metallic sub-
strates) can serve as nanometric light sources which could be used in high resolution imag-
ing applications. Together with polarization pulse shaping it should be possible to control
the exact position and polarization characteristics of these sources, an interesting per-
spective that theoretical works and only a few experimental demonstrations have recently
investigated.

Dielectric microspheres can serve to enhance nonlinear signals emitted by materials in
their vicinity by better focussing the incident beam in a photonic nanojet. We demon-
strated however, that this is not beneficial for all nonlinear contrasts. In the case of CARS
almost no enhancement is achieved, while for an incoherent process like two-photon fluo-
rescence, their potential is much greater.
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Overall, this PhD was mostly dedicated to the construction of an instrument and its ap-
plication to original nonlinear imaging approaches. More work will definitely be required to
take a complete advantage of its capabilities and circumvent the limitations that have been
identified. Future investigations have already started, on one side in bio-imaging for fibril-
based structures investigations, on another side in nanophotonics applied to the coherent
control of the localization of optical fields at the nano-scale on metallic nanostructures.
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Appendix A

Weighted linear fit

To assure a proper functioning of the single-beam homodyne SPIDER (see section 2.8)
the linear component of the retrieved phase φ(ω) has to be removed as the method is
not sensitive to it. However, subtracting a simple linear fit does not succeed as the fit
would be dominated by the huge values of φ on the spectral fringes that are caused by the
small signal-to-noise ratios in these regions. This problem can be avoided by subtracting
a weighted linear fit.

If one wants to fit a function f(ω) by another function g(ω, p1, p2, ..., pn), containing n
fit parameters p1, p2, ..., pn, the difference between both functions, for example expressed
by the mean squared error χ2

χ2 =

∫
(f(ω)− g(ω, p1, p2, ..., pn))2 dω (A.1)

needs to be minimized. Thus follows the set of conditions:
∂χ2

∂pi
= 0 , for i = 1, ..., n (A.2)

A weighted fit is achieved by multiplying the mean squares with a weighting function
h(ω), that can for example be a Gaussian distribution around a central frequency ω0. Eq.
(A.1) then becomes:

χ2 =

∫
(f(ω)− g(ω, p1, p2, ..., pn))2 h(ω)dω (A.3)

For a linear fit g(ω,m, n) = mω + n Eqs. (A.2) resolve to:
∂χ2(m,n)

∂m
=

∂

∂m

(∫
(f(ω)−mω − n)2 h(ω)dω

)
= −2

∫
(f(ω)−mω − n)h(ω)ωdω

= 2

[
m

∫
ω2h(ω)dω + n

∫
ωh(ω)dω −

∫
ωf(ω)h(ω)dω

]
= 0 (A.4)

∂χ2(m,n)

∂n
=

∂

∂n

(∫
(f(ω)−mω − n)2 h(ω)dω

)
= −2

∫
(f(ω)−mω − n)h(ω)dω

= 2

[
m

∫
ωh(ω)dω + n

∫
h(ω)dω −

∫
f(ω)h(ω)dω

]
= 0 (A.5)
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This is a system of linear equations that can be easily solved for m and n, resulting in:

m =

(∫
ωh(ω)dω

) (∫
f(ω)h(ω)dω

)
−
(∫

h(ω)dω
) (∫

ωf(ω)h(ω)dω
)(∫

ωh(ω)dω
)2 −

(∫
ω2h(ω)dω

) (∫
h(ω)dω

) (A.6)

n =

(∫
ωh(ω)dω

) (∫
ωf(ω)h(ω)dω

)
−
(∫

ω2h(ω)dω
) (∫

f(ω)h(ω)dω
)(∫

ωh(ω)dω
)2 −

(∫
ω2h(ω)dω

) (∫
h(ω)dω

) (A.7)

By adapting the center and the width of the weighting function h(ω) it can be assured
that the fitting function g(ω) = mω + n fits well in the frequency regions of highest
reliability. See Fig. A.1 for an illustration of this effect.

ω

0

ω

(a) (b)

f(ω)

h(ω) h(ω)

g1(ω)

g2(ω)

f(ω)-g1(ω)

f(ω)-g2(ω)

Figure A.1: Weighted fit. (a) Two linear fits of a function f(ω) (black solid line); one
without a weighting function (g1(ω) - dashed line) and another one (g2(ω) - dotted line)
with the weighting function h(ω) (grey line). (b) Effect of the substraction of these fits
from f(ω): while for the weighted fit f(ω) − g2(ω) (dotted line) lies close to the baseline
(solid black line) in the region where the weighting function (grey line) is not negligible,
this is not achieved with the non-weighted fit (dashed line).
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Appendix B

Orientation measurement with
fluorescence anisotropy

To better understand the limits of fluorescence anisotropy for measuring molecular orienta-
tions let us consider the following situation: Suppose we have an ensemble of fluorescence
dipoles with fixed orientations. If the are embedded in an ordered structure their dipole
moments µ will be oriented around a preferential direction ρ (Fig. B.1). For the sake
of simplicity we restrict this study to the case where ρ lies in the (X, Y )-plane. In the
molecular coordinate system (x′, y′, z′) the dipole moment µ′ is expressed as a radial unit
vector:

µ′ =

 µx′
µy′
µz′

 =

 sin θ cosφ
sin θ sinφ

cos θ

 (B.1)

where θ designates the angle between µ′ and the z′-axis and φ the one between the x′-axis
and the projection of µ′ in the (x′, y′)-plane. Within the macroscopic frame (X, Y, Z) a
rotation of the coordinate system has to be performed so that [184]:

µ =

 µX
µY
µZ

 =

 cos ρ 0 sin ρ
− sin ρ 0 cos ρ

0 1 0

 sin θ cosφ
sin θ sinφ

cos θ

 (B.2)

But as long as the embedding structure is not a perfect crystal the individual dipoles may
take on orientations somewhat different from ρ. We model this with a Heavyside function
of the form:

f(θ) =

{
1 if θ ≤ v
0 if θ > v

(B.3)

resulting in a cone around ρ with an opening angle 2v wherein all orientations are equiprob-
able. A small v then corresponds to a sample where the dipole moments are strongly aligned
as would be expected in a crystal. A large v on the other hand indicates a much higher
degree of disorder.
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Figure B.1: Geometry of the dipole ensemble. (a) Within a cone of aperture v the orienta-
tion of the dipole moments µ is given by (θ, φ), defined in the molecular frame (x′, y′, z′);
(b) orientation of the cone within the macroscopic frame (X, Y, Z).

Further assuming that absorption and emission dipole moments are identical, and that
no focussing of the incident field E is performed, it follows from Eq. (1.50) that the TPF
intensity emitted along the direction j can be written as:

Ij(ρ, v) =

∫ 2π

0

∫ π

0

|µ(θ, φ, ρ) · E|4|µj(θ, φ, ρ)|2f(θ, v) sin θdθdφ (B.4)

To assure that the total TPF response does not depend on the orientation ρ of the
dipoles we choose a circular polarized laser:

E =
1√
2

(
1
i

)
(B.5)

From the evaluation of Eq. (B.4) it is possible to calculate the anisotropy A of the
fluorescence signal via:

A =
IY − IX
IY + IX

(B.6)

Fig. B.2 shows the anisotropy with respect to v for several cone orientations ρ. It can
be seen that from a standard anisotropy measurement it is possible to deduce the cone
aperture v and thus determine the degree of order within the sample as long as the dipoles
are oriented around one of the major axes and this orientation ρ is known. But as soon as
ρ lies around 45◦, no such information can be obtained from this scheme.
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Figure B.2: Dependence of the anisotropy A on the cone aperture v for different cone
orientations ρ.

187



Appendix C

Field propagation in high NA optics

For nonlinear optical microscopy high spatial resolutions are required in imaging. This has
led to the widespread use of objectives with high numerical apertures (NA) that strongly
focus the excitation laser beam. But this is paid for by an alteration of the polarization and
phase profile of the exciting laser which is unique for each point within the focal volume.
Consequently the generated nonlinear signals are influenced by this change and if they are
collected by the same objective - which is the case for backward detection setups - they
suffer as well from this focussing effect. This may lead to serious data misinterpretations
if the effect has not been taken into account.

In this appendix we consider the objective as a perfect lens. This is justified even though
in reality an objective is a highly sophisticated lens array, because all elements therein serve
to reduce the numerous aberrations present in each lens to approach a perfect lens as much
as possible. The goal of this appendix is to provide the field expression to be used in an
development of a rigorous model for nonlinear optical excitation and radiation.

C.1 Focussing of the exciting field
Before passing an objective the incident beam is most frequently a collimated parallel beam
with a 2D Gaussian profile:

Ep(ρ) ∝ e−( ρσ )
2

(C.1)

with width σ. ρ denotes the radial coordinate normal to the propagation direction. It is
related to the focal length f via ρ = f sin θ (Fig. C.1a). f in turn can be expressed by the
numerical aperture:

NA = n sin θmax =
nd

2f
(C.2)

where θmax is the maximal collection angle that is given by the diameter of the lens d. By
introducing the objective’s coverage parameter β = d

2σ
Eq.(C.1) transforms to:

Ep(θ) ∝ e−(nβ sin θ
NA )

2

(C.3)
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C.1. Focussing of the exciting field

When an unfocussed laser beam traverses an objective it passes from a plane p to a
sphere s whose center is the focal point F . During this process the energy is conserved.
The power P transported by a field E is the mean time value of its Poynting vector,
thus P = 1

2

√
ε0ε
µ0µ
|E|2 [263]. Here ε0 and µ0 are the vacuum permittivity and magnetic

permeability and ε and µ those of the medium. As at optical frequencies almost all media
have µ = 1 the refractive index n =

√
εµ becomes n =

√
ε. Assuming that there is no

absorption involved when the beam passes from p to s it follows that [208, 264, 209]:

PpdSp = PsdSs (C.4)

where Pp and Ps is the energy of the field at p and s and dSp and dSs are infinitesimal
area elements of p and s. As these are related via dSp = dSs cos θ the fields on both sides
of a focussing objective are related via:

Es = Ep

√
np
ns

√
cos θ (C.5)

Usually there will be air at the entrance of the objective (np = 1) while at the exit there
might be an immersion liquid with a refractive n. Eq. (C.5) then becomes:

Es = Ep

√
cos θ

n
(C.6)

Before the objective the incident field Ep has components along the radial and azimuthal
directions of a cylindrical coordinate system, denoted by the unit vectors nρ and nφ. Ep

can then be decomposed along these two directions:

Ep = (Ep · nφ) nφ + (Ep · nρ) nρ (C.7)

After the passage of the objective Es is best described in spherical coordinates where its
components are along the azimuthal and polar directions (nφ and nθ) while it propagates
along the radial direction. The azimuthal component is thus not affected by the objective
while the radial component gets mapped into nθ. Thus the field after the objective Es

becomes:

Es = [(Ep · nφ) nφ + (Ep · nρ) nθ]

√
cos θ

n
(C.8)

Here we assume that both field components have the same transmission coefficients when
passing the objective. In cases where this is not true, each summand has to be multiplied
with the corresponding factor. The unit vectors nρ, nφ and nθ can be decomposed in terms
of the conventional Cartesian unit vectors nx, ny and nz, using the spherical coordinates
θ and φ as shown in Fig. C.1b:

nρ = cosφnx + sinφny

nφ = − sinφnx + cosφny (C.9)
nθ = cos θ cosφnx + cos θ sinφny − sin θ nz
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C.1. Focussing of the exciting field
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Figure C.1: Focussing of an incident collimated beam. (a) 2D Gaussian beam with variance
σ2 traverses an objective of size d, getting focused by it onto point F , separated from from
the reference sphere by the focal distance f ; (b) coordinate definitions: Before the objective
Ep has components along nρ and nφ while after the objective Es lies along nθ and nφ and
propagates against nr, all of which can be expressed in terms of a Cartesian system centered
on F by the spherical coordinates θ and φ.

Thus:

Es(θ, φ) =

Ep(θ, φ) ·

 − sinφ
cosφ

0

 − sinφ
cosφ

0

√cos θ

n

+

Ep(θ, φ) ·

 cosφ
sinφ

0

 cos θ cosφ
cos θ sinφ
− sin θ

√cos θ

n
(C.10)

Under the assumption that the beam propagates in a homogeneous medium from the
exit of the objective to the focal point F - which is justified because this space will be
either occupied by air or by a homogeneous immersion liquid - we can decompose the field
in plane waves:

E(x, y, z) =

∫ ∫ ∞
−∞

Ê(kx, ky, 0) ei(kxx+kyy±kzz)dkxdky (C.11)

with the wave vector

k = knr =
2π

λ

 sin θ cosφ
sin θ sinφ

cos θ

 (C.12)

along the propagation direction nr. Ê is related to Es via:

Ê(kx, ky, 0) =
ire−ikr

2πkz
Es(kx, ky) (C.13)

when placing the coordinate origin at F and r being the distance from this point. Replacing
the differentials by 1

kz
dkxdky = k sin θ dθdφ and performing the integration only over the
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C.2. Collection of the generated signal

numerical aperture of the objective Eq. (C.11) then transforms to:

E(x, y, z) ∝
∫ 2π

0

∫ θmax

0

Es(θ, φ)ei(k·r) sin θdθdφ (C.14)

with
k · r =

2π

λ
[sin θ(x cosφ+ y sinφ) + z cos θ] (C.15)

C.2 Collection of the generated signal
Each nonlinear dipole in the vicinity of the focus r = (x, y, z) radiates a field P dependent
on the incident field E at its location, calculated with Eq. (C.14). In the case of epi-
detected signals, only those parts of the radiation are collected that fall within the numerical
aperture of the objective, that is only those k(θ, φ) for which θ ≤ θmax. The radiation
follows the normal dipole radiation pattern:

Ps(θ, φ, r) ∝ −k
2

rd
eiknrd [nrd(nrd ·P(r))−P(r)] (C.16)

Here, rd is the distance from the location of a dipole at r to a certain point fnr on the
reference sphere at the entrance of the objective and nrd the unit vector in that direction.

nrd =
fnr − r

|fnr − r|
=
fnr − r

rd
(C.17)

k = 2π
λsignal

may be different from the wave vector of the excitation as in nonlinear optics
the generated signal often has a different wavelength than the generating field.

If the nonlinear process is a coherent one all these fields originating from the different
dipole positions r have to be propagated independently towards the reference sphere. From
there the field traverses again the objectives and the unit vector nθ gets mapped into the
unit vector nρ and in analogy to Eq. (C.8) one obtains:

Pp(θ, φ, r) = [(Ps · nφ) nφ + (Ps · nθ) nρ]

√
n

cos θ
(C.18)

resulting in:

Pp(θ, φ, r) =

Ps(θ, φ, r) ·

 − sinφ
cosφ

0

 − sinφ
cosφ

0

√ n

cos θ

+

Ps(θ, φ, r) ·

 cos θ cosφ
cos θ sinφ
− sin θ

 cosφ
sinφ

0

√ n

cos θ
(C.19)

This can present a considerable computational effort especially when a large number of
radiating dipoles are considered. In many cases, however, this is not necessary. The focal
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C.2. Collection of the generated signal

volume when using high NA objectives is of the order of 0.3 × 0.3 × 1µm3. Dipoles far
outside this region do not radiate, especially not in a nonlinear way as the field strengths
are too small there. On the other hand the focal length of such objectives is of the order
of 0.5 cm, thus |ri|

f
< 10−4. Thus rd ≈ f , which means that all dipoles are considered to be

located at the same position. This allows the summation of all the fields P(ri) before the
total field gets radiated according to Eqn. (C.16) and (C.18).
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Abstract

The amplitude, spectral phase and polarization shape of ultrashort laser pulses in the femtosec-
ond regime can strongly influence the outcome of nonlinear optical experiments. In this PhD thesis
we present a pulse shaping setup based on two spatial light modulators (SLM) to control these
three properties simultaneously for all frequencies present in the pulse. A method is developed to
read out the individual components of the second-order nonlinear susceptibility of crystalline and
biomolecular media based on second-harmonic generation (SHG). A similar approach is devel-
oped for coherent anti-Stokes Raman scattering (CARS). On this basis local orientational order
of molecules can be determined by single pulse measurements. A polarimetric approach based on
two-photon fluorescence (TPEF) is presented to quantify the polarization distortions that are in-
troduced by all optical elements in the beam path. Spectral phase distortions are determined and
corrected either by an evolutionary strategy or a single-beam homodyne SPIDER (spectral phase
interferometry for direct-electric field reconstruction) method. Furthermore, nonlinear signal en-
hancements by photonic structures are characterized by SHG for nano-apertures in a metallic film
and by single pulse CARS with amplitude, phase and polarization shaping for dielectric micro-
spheres.

Keywords : pulse shaping, polarization, nonlinear optics, SHG, CARS, microscopy, photonic
structures.

Résumé

La mise en forme en amplitude, phase spectrale et polarisation des impulsions laser ultracour-
tes dans le régime femtoseconde peut fortement influencer le résultat d’une expérience d’optique
non-linéaire. Dans cette thèse nous présentons un dispositif de façonnage d’impulsions basé sur
l’utilisation de deux modulateurs spatiaux de lumière (SLM) pour contrôler ces trois propriétés si-
multanément et ce pour toutes les fréquences présentes dans l’impulsion. Une méthode basée sur la
génération de second harmonique (SHG) est développée pour lire individuellement les composantes
de la susceptibilité non-linéaire du deuxième ordre dans les milieux cristallins et biomoléculaires.
Une approche similaire a été utilisée pour la diffusion Raman anti-Stokes cohérente (CARS). Pour
cette étude, l’ordre d’orientation des molécules peut être déterminé par des mesures d’impulsion
unique. Une approche polarimétrique basée sur la fluorescence à deux photons (TPEF) est présen-
tée pour quantifier les distorsions introduites par tous les éléments optiques dans le trajet du
faisceau. Des distorsions de la phase spectrale sont déterminées et corrigées soit par une stratégie
évolutive ou par une méthode SPIDER (interférométrie de phase spectrale pour la reconstruction
directe du champ électrique) homodyne d’impulsion unique. De plus, l’exaltation des signaux
non-linéaires par des structures photoniques est caractérisée par SHG pour des nano-ouvertures
dans un film métallique et par impulsion unique CARS pour des microsphères diélectriques avec
un façonnage en amplitude, phase et polarisation.

Mots clefs : mise en forme d’impulsions, polarisation, optique non-linéaire, SHG, CARS, micro-
scopie, structures photoniques
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