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Abstract:
In this thesis, we investigate a principled approach for defining and discovering probabilistic in-
clusion mappings between two taxonomies, with a clear semantic, in a purpose of collaborative
exchange of documents. Firstly, we compare two ways of modeling probabilistic mappings which
are compatible with the logical constraints declared in each taxonomy according to a monotony
property, then we show that they are complementary for distinguishing relevant mappings. We
provide a way to estimate the probabilities associated to a mapping by a Bayesian estimation
technique based on classes extensions involved in the mapping, and using classifiers in order to
merge the instances of both taxonomies when they are disjoint. Then we describe a generate and
test algorithm called ProbaMap which minimizes the number of calls to the probability estima-
tor for determining those mappings whose probability exceeds a chosen threshold. A thorough
experimental analysis of ProbaMap is conducted. We introduce a generator that produce con-
trolled data that allows to analyse the quality and the complexity of ProbaMap in a large and
generic panel of situations. We present also two series of results for experiments conducted on
real-world data: an alignment of the Directory dataset of the Ontology Alignment Evaluation
Initiative (OAEI), and a comparative experiment on Web directories, on which ProbaMap out-
performs the state-of-the-art contribution SBI (IJCAI’03). The perspectives of this work are the
reuse of probabilistic mappings for a probabilistic query answering setting and a way to convert
similarities coefficients of existing matching methods into probabilities.
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RÉSUMÉ

Dans cette thèse, nous adoptons une approche formelle pour définir et découvrir des mappings
probabilistes entre deux taxonomies.

En dépit de la quantité de méthodes existantes pour l’alignement d’ontologies, un défi
d’envergure consiste à associer une sémantique formelle aux correspondances tout en prenant en
compte leur incertitude inhérente, à l’échelle du Web. De plus, les correspondances d’inclusions
(que nous appelons mappings) sont de première importance pour l’échange de données, et sont
plus susceptibles d’exister que des équivalences. A notre connaissance, peu de travaux se sont
concentrés sur ces correspondances d’inclusions jusqu’à présent.

Dans un premier temps, nous comparons deux façons de modéliser des mappings probabilistes
tout en étant compatible avec les contraintes logiques déclarées dans chaque taxonomie. Nous
présentons deux fonctions probabilistes qui associent à chaque mapping une valeur de confiance,
en modélisant les classes comme des évènements probabilistes dans un univers d’instances. La
première fonction probabiliste Pc associe au mapping A ⊑ B la probabilité conditionnelle de B
sachant A, et la seconde fonction Pi lui associe la probabilité de l’évènement A∪B, qui provient
de l’implication logique.

En analysant les propriétés de ces deux fonctions probabilistes, nous montrons qu’elles sont
complémentaires, en particulier pour reconnaître des mappings pertinents. Nous prouvons une
propriété de monotonie pour les deux fonctions probabilistes Pc et Pi par rapport à l’implication
logique: un mapping doit avoir une probabilité inférieure à celle de toutes ses conséquences. C’est
vrai directement pour Pi (propriété forte), et valable pour Pc si on restreint les conséquences
aux mappings qui ont la même classe à gauche (propriété faible).

De plus, nous montrons un résultat plus général: sous certaines hypothèses, toutes les fonctions
pour mesurer le degré de confiance des mappings qui respectent la propriété forte de monotonie
doivent être de la forme f(Pi(A ⊑ B)) avec f croissante.

Nous fournissons un moyen d’estimer les probabilités d’un mapping par une estimation bayési-
enne basée sur les statistiques des extensions des classes impliquées dans le mapping.

Pour le cas où les ensembles d’instances des deux taxonomies sont disjoints, nous expliquons
comment appliquer une méthode de classification supervisée pour les fusionner.

Nous présentons ensuite l’algorithme ProbaMap de type "générer et tester" qui utilise les deux
modèles de mappings probabilistes pour découvrir les plus probables entre deux taxonomies.
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Nous donnons tous les détails d’implémentation qui sont nécessaires pour obtenir le passage à
l’échelle de cet algorithme.

Nous menons une analyse expérimentale fouillée de ProbaMap. Premièrement, nous fournissons
les principes d’un générateur de données synthétiques. Ces données servent notamment d’entrées
contrôlées de ProbaMap: taxonomies, instances et mappings à découvrir. Ce générateur respecte
une bonne propriété qui justifie son utilisation pour évaluer ProbaMap. De telles données con-
trôlées permettent d’analyser la qualité et l’efficacité de ProbaMap sur de nombreuses situations,
variées et représentatives.

Deuxièmement, nous présentons deux séries de résultats d’expériences faites sur des données
réelles. La première partie concerne l’alignement du jeu de donnée "Directory" d’Ontology
Alignement Evaluation Initiative. La deuxième partie concerne l’alignement de Web Directories
provenant de Yahoo! et Google, sur lesquels une comparaison en terme de qualité avec SBI
[ITH03] (IJCAI 2003) montre que ProbaMap donne de meilleurs résultats.

Nous concluons en donnant deux perspectives pour ces travaux. La premìre consiste à utiliser
les probabilité des mappings dans un processus de raisonnement pour répondre à des requêtes
et associer des probabilités aux réponses, dans l’esprit des travaux actuels sur les bases de
données probabilistes. La seconde perspective concerne un algorithme de post-traitement pou-
vant s’appliquer à des méthodes de matching existantes, afin de transformer en probabilités les
coefficients de confiance associés à chaque mapping par ces méthodes.



ABSTRACT

In this thesis, we investigate a principled approach for defining and discovering probabilistic
correspondences between two taxonomies.

In spite of the numerous existing methods for ontology matching, an important remaining chal-
lenge consists in associating a clear and formal semantics for correspondences while handling
their inherent uncertainty at the Web scale. In addition, we claim that inclusion correspondences
(that we call mappings here) are very important in particular for enabling a collaborative ex-
change of document and are more likely to happen than equivalence correspondences. To the
best of our knowledge, only a few work have focused on inclusion corespondences until now.

Firstly, we compare two ways of modeling probabilistic mappings which are compatible with the
logical constraints declared in each taxonomy. Hence, we introduce two probabilistic functions
that associate a confidence value to each mapping A ⊑ B where A and B are ontology classes,
by modeling the classes as probabilistic events in an instance universe. The first probabilistic
function Pc associates A ⊑ B to the conditional probability of B given A, and the second
function Pi associates A ⊑ B to the probability of the event A∪B, that comes from the logical
implication.

By analyzing the properties of both probabilistic functions, we show that they are complementary
for distinguishing relevant mappings. We prove a property of monotony for the probabilistic
functions Pi and Pc with regard to the logical entailments: a mapping should have a probability
value lower than all its consequences. We have pointed out that this is true for Pi in any cases
(strong property), and true for Pc only if the class on the left-hand side of the mappings remains
the same (weak property).

We even show a more general result: under additional assumptions, all confidence functions
that respect the strong property of monotony should be of the form f(Pi(A ⊑ B)) with f a
monotonous increasing function in [0; 1]

We provide a way to estimate the probabilities associated to a mapping by a Bayesian estimation
technique based on statistics on classes extensions involved in the mapping. In the case where
the two sets of instances of both taxonomies are disjoint, we describe an optional classification
phase intended to merge the instances.

Then we describe a generate and test algorithm called ProbaMap which minimizes the number
of calls to the probability estimator for determining those mappings whose probability exceeds
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a particular threshold. We give all details on the implementation of ProbaMap that enable its
scalability.

A thorough experimental analysis of ProbaMap is conducted. Firstly, we introduce a generator
in order to produce synthetic data to be given to ProbaMap as a controlled input: taxonomies
and instances, with the reference mappings to be discovered. This generator respects a property
that justifies the evaluation of ProbaMap on the data it generates. Controlled data allows to
analyse the quality and the complexity of ProbaMap in a large and generic panel of situations.

Secondly, we present two series of results for experiments conducted on real-world data: an
alignment of the Directory dataset of the Ontology Alignment Evaluation Initiative (OAEI), and
an experiment on parts of Web directories Yahoo! and Google, on which ProbaMap outperforms
a state-of-the-art contribution SBI [ITH03] (IJCAI’03).

We conclude by giving two perspectives. The first one reuse probabilistic mappings by inte-
grating them in a reasoning process for query answering, in order to obtain a probability for
each answer to a query, in the spirit of the current works on probabilistic databases. A second
perspective is presented for the transformation of confidence coefficients usually associated with
mappings by many existings matching methods into mapping probabities.
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CHAPTER

ONE

INTRODUCTION

Following the exponential development of Internet and the amount of connected machines, data
able to be exchanged through the entire world has reached an incredible level raising more and
more challenging issues.

Figure I.1 shows that the World Wide Web has grown up to more than 100 million hosts,
corresponding to around 20 billion pages, and 1.7 billion users.

Figure I.1: Size evolution of the World Wide Web (hosts) - ISC estimation (Feb. 2010)

The Web is constituted by heterogeneous contents like HTML documents for the main part,
multimedia documents as music and video files, and other documents everybody stores on his
computer. Most people query the web via keyword search engines like Google, Yahoo!, Bing,
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Figure I.2: Web size and indexation coverage

Baidu....All of them index part of the Web by crawling it and parsing the text in the web docu-
ments. Then they are able to select and rank these documents according to a textual user query.
Documents containing the words in query are ranked by relevance computed both on textual
and popularity criteria. Figure I.2 illustrates the coverage by main search engines estimated
in 2005 [GS05]. Note that no indexation exceeds 70%, even if such coverages are impressive in
term of absolute figures. In the year 2010, Yahoo!, Google and Bing are independently indexing
more than several tens billion pages1.

It should be emphasized that there is a sharp contrast between the amount of available data
and the lack of expressive and qualitative ways to access to it. For instance, up to recently,
classical Web search engines have not taken into account synonyms or homonyms ; they ignore
the meaning of common words like “of”, “with”, “by” occurring between two words ; they do not
provide exact answers to a query, but a very large list of Web pages you are invited to read to
find your answer instead. A fortiori they do not allow to cross multiple source of information to
obtain an answer to a complex query like “In which town died the mother of J.S. Bach ?”. Due
to the current upper bound of 70% coverage, we can not expect any completeness of the answer
returned by search engine (while assuming the set of correct and complete answers to be small
and then human readable.) Finally, the context in which the user is querying the Web is not
taken into account, and this leads to a lot of incorrect answers.

Obviously, these drawbacks are currently tackled by the main search engine companies and a lot
of improvements have been made to guess the context of a query, to avoid bad interpretations
and to start handling synonyms and homonyms. But such solutions are based on the huge
amount of statistics gathered from users: they are ad-hoc solutions given a particular search
engine and they do not deeply change the core of the method, i.e. keyword search on textual
indexed documents.

Drawbacks of search engines are not imputable to their intrinsic quality but rather to the poor
expressive level of the data they manipulate. Indeed, current web documents are mainly consti-
tuted by text or multimedia content organized into HTML files. HTML can express the style
(with CSS), layout and behavior of a web pages, but nothing about the meaning of each con-

1http://www.worldwidewebsize.com

http://www.worldwidewebsize.com
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tent object. Therefore, although most web pages respect last HTML standards, their contents
remain not understandable by machines. This semantic gap between the syntactic content and
the meaning of a web page is at the origin of the emergence of a new Web of data: the Semantic
Web. The infrastructure capable of connecting billions of computers to the Web now appears
to be a mature and well-managed challenge, but the semantic management of this huge amount
of data constitutes a challenging second phase in the Web history.

I.1 The Semantic Web

Two main parts have to be distinguished in the construction of the Semantic Web: the semantic
description of data and the way to process data.

In order to allow documents components to provide an explicit meaning, they should be anno-
tated and completed by elements of special semantic languages. Figure I.3 shows an example of
two Web pages annotated by using labels declared in an ontology (at the top), expressed in the
RDF Schema languages [Hay04]. An ontology is a structured vocabulary composed of names of
classes (or concepts) and properties on these classes. They are defined in formal languages like
descriptions logic or conceptual graphs, for instance. In the setting of the Web, two standard
are provided by the W3C: RDFS [Hay04] and OWL 1 & 2 [DS04, MPP+08]. Like the first-order
logic, all these languages have their own defined semantics. In the example of Figure I.3, two
home pages of people of Karlsruhe University at the urls
http://www.aifb.uni-karlsruhe.de/WBS/sha and
http://www.aifb.uni-karlsruhe.de/WBS/sst

are annotated using respectively classes PhD Student and AssProf which are both subclasses
of AcademicStaff. Both urls are then respectively instances of PhD Student and AssProf.
The PhD Student Siegfried Handschuh is asserted to cooperate_with the assistant professor
Steffen Staab. This relationship is possible because the ontology asserts that an instance of PhD
Student can be linked to an instance of AssProf. (that is the meaning in RDFS of rdfs:domain
and rdfs:range). A triple like

(http://www.aifb.uni-karlsruhe.de/WBS/sha, rdf:type,PhD Student)

declares the url of Siegfried Handschuh to be an instance of the class PhD Student. It is called
a RDF triple and is the basic element constituting the Semantic Web.

Figure I.4 represents the most common generic view of the Semantic Web in term of levels, from
low-level of data, e.g. encoding language then structured language, to the richest abstractions
of data, i.e. logical language then inference rules.

For instance, data dictionaries, thesauri, XML schemas, database schemas, taxonomies are ex-
amples of ontologies (ordered by increasing expressive power), that can all be expressed in
OWL. Taxonomies are essential components of ontologies: they represent the skeleton hierarchy
of classes for every ontology. Taxonomies contains classes and subsumptions relations between
them, and are themselves a particular kind of ontologies.

Below are listed several kinds of ontologies. Their applications, their size and their expressivities
could be very different:

http://www.aifb.uni-karlsruhe.de/WBS/sha
http://www.aifb.uni-karlsruhe.de/WBS/sst
http://www.aifb.uni-karlsruhe.de/WBS/sha
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Figure I.3: Semantic annotation of Web pages

Figure I.4: Semantic Web Stack [BL00]



I.1–The Semantic Web 5

• Domain-specific ontologies are used to describe a particular domain of interest: for in-
stance: ontologies of diseases, classification of life in medical sciences and biology, classifi-
cation of musical genres and phylogenetic classification of life.

Most of the domain-specific ontologies are large (more than 100 classes or entities) and
engineered by specialists.

For example,

– the Foundational Model of Anatomy ontology2 is a “knowledge source for biomedical
informatics. It is concerned with the representation of classes or types and rela-
tionships necessary for the symbolic representation of the phenotypic structure of
the human body in a form that is understandable to humans and is also navigable,
parseable and interpretable by machine-based systems” (description extracted from
the web page).

– RAMEAU3 is an ontology about the indexation vocabulary designed for the French
National library.

– GTAA4 is the “Common Thesaurus for Audiovisual Archives” used at the Netherlands
Institute for Sound and Visio. It contents descriptions about the topics, people,
location, genre, makers/presentators, corporations names/music bands mentioned in
TV programs.

• Folksonomies are taxonomies independently created by people who want to organize or
express knowledge from an user point-of-view. They are often leight-weight ontologies
(small). Two examples of folksonomies which are taxonomies are given in Figure I.5. We
can see that these taxonomies in this example may be used to annotate and organize
musical documents in two different ways.

• Cyc [MCWD06] is an attempt to gather all usual knowledge everybody knows. It is not
domain-specific because of its large coverage of almost everything. Conversely, it is very
huge, and this project born more than 20 years ago has not managed to fit the initial goal.

Figures I.6 shows the index size of Swoogle [FDP+05] which indexes RDF statements. In 2010,
10,000 ontologies, 3.7 million Semantic Web documents and more than a billion RDF statements
are indexed by Swoogle. In November 2009, a lower bound was 13.1 billion RDF triples collected
in the Linking Open Data project5. This shows that the Semantic Web is still small compared to
the Web (magnitude of 1000). But such an amount of ontologies is already large and should grow
up in an exponential way. Therefore there is a real need of structured knowledge in specialized,
commercial and all-public fields. The standardization of ontologies languages and the fair degree
of maturity in ontology knowledge domain will facilitate the emergence of such a Semantic Web.

2sig.biostr.washington.edu/projects/fm/AboutFM.html
3http://www.cs.vu.nl/STITCH/rameau/
4http://oaei.ontologymatching.org/2009/vlcr/#gtaa
5http://esw.w3.org/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

sig.biostr.washington.edu/projects/fm/AboutFM.html
http://www.cs.vu.nl/STITCH/rameau/
http://oaei.ontologymatching.org/2009/vlcr/#gtaa
http://esw.w3.org/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
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(a) Taxonomy T1

(b) Taxonomy T2

Figure I.5: 2 small personalized taxonomies
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Figure I.6: Figures about the Swoogle index

I.2 The need of correspondences between ontologies

We describe here the reasons for which ontology matching is necessary to enable exchange of
annotated data through the Web.

I.2.1 Context and motivation

At the web scale, multiple users or organizations are likely to declare their own knowledge
ontology for describing and annotating their shared documents. In this setting, discovering
correspondences between ontologies is a major issue for the Semantic Web, for instance to
enable collaborative exchange of documents. Many domain-ontology describing the same domain
coexist as well as many folksonomies independently created by different users. Multiple (human-
specific or not) reasons explains heterogeneity while describing a common knowledge [ES07] :

1. terminological heterogeneity: this kind of heterogeneity arises when different terms are
used to describe exactly the same concepts, for instance when using multiple languages.

2. semiotic heterogeneity: concerns the way by which entities are interpreted by people,
depending of the context of usage. This is hardly handled by machines, because of the
poor knowledge of the real context of users.

3. difference on coverage: the covered domains are not the same, so the classes (concepts)
used in the ontologies do not represent the same things in two different ways. For example,
the taxonomy in Figure I.5(a) only deals with classical music whereas the second taxonomy
(Figure I.5(b) covers classical music and jazz. A parallel can be made with geographical
maps as represented in Figure I.7. Figure I.7(d) represent only a part of France that is
the Auvergne region, whereas Figures I.7(c) and I.7(a) represent the whole country.

4. difference on granularity: it occurs when the same domain is described by different levels
of details. In Figure I.5, the classes are more general in average in T2 than in T1, because
of the presence of a lot of classes by composers. Again, a parallel can me made with maps:
Figure I.7(b) is more specific than I.7(a) because administrative subdivisions of regions
are detailed.
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5. difference on perspective: the point of view of an ontology engineer let him to emphasize
some particularity leading to a particular hierarchy for concepts based on his own criteria.
This may result on multiple ways to create an ontology and conducts to a strong hetero-
geneity. For example, it can be pointed out that T1 has been created by a more systematic
way than T2 because there is a criteria used by level of class (period, vocal/instrumental,
and then composer), whereas in T2, Ravel is the only composer who corresponds to a class,
and the distinction criterion between Jazz and Recent classical is not a time distinction
like the one between the two subclasses of Opera. The difference between the Figures
I.7(c) and I.7(a) gives an illustration of multiple points of view of the same part of the
world: the first one is administrative, the second one is topological.

As a consequence these reasons represent a serious issue when attempting to give a machine-
understandable semantics to Web components at the Web scale. In this context, establishing
semantic correspondences is the key to enable the exchange of collaborative data in the Web.

I.2.2 A motivating example: the Somewhere project

A motivating example for this thesis is the Somewhere infrastructure for managing distributed
data [ACG+05, ACG+06, Adj06] in a peer-to-peer context. In such a setting, each peer user
annotates its documents with classes of his own simple and personalized taxonomy like these on
Figure I.5. The natural process and interest of is the possibility to exchange documents: each
peer can access to every document stored in another peer, depending on what he asks for via a
query expressed in its own vocabulary. For example, if the peer P1 annotates his resources with
T1, and the peer P2 annotates its ones with T2 he can submit the query XXth Instrumental1,
in order to find more songs of this class he has created. As the vocabularies are disjoint (here
by indexing each class label by an identifier of the peer which declares it), no other peer knows
nor uses the label XXth Instrumental. At this point, the system needs some correspondences
between the XXth Instrumental class and other classes asserted by other peers of the net-
work. Provided such correspondences (supposed given), the Somewhere distributed reasoning
algorithm (called DeCA) computes the answer to the query through all the network and collects
all the corresponding documents.

Somewhere illustrates a vision of the Semantic Web seen as a huge collaborative peer-to-peer
data management system based on simple ontologies and correspondences distributed at a large
scale.

In Somewhere, the correspondences are declared manually by users, which is a counter-intuitive
task for them: the interest of such a P2P setting is that each user defines its own personalized
taxonomy without knowing much about other peers. In addition to that, such a task may be
incomplete and the number of possible correspondences makes the problem hardly tractable
and strongly repetitive for humans at the Web Scale. Therefore the ontology matching domain
tackles the issue of discovering automatically such correspondences.
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(a) Physical map (b) Political map 2

(c) Political map 1 (d) Regional map (Auvergne region)

Figure I.7: Heterogeneity of ontologies: parallel with maps
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I.2.3 Ontology matching

In response to the generalized heterogeneity on the growing amount of available ontologies on
Internet, a specific domain has appeared since fifteen years: the so-called Ontology matching
domain. Ontology matching studies the ways to automatically discover some correspondences
between two (or more) ontology entities (classes, relations, properties, instances) belonging
to different ontologies [ES07]. Such correspondences may be of different kinds according the
discovered relation. For instance, an equivalence discovered between two classes imply that
one can replace the name of the first one by the name of the other everywhere. Ontology
matching is needed in different tasks like ontology, schema or data integration from multiple
sources, ontology engineering, evolving or merging, query rewriting between ontologies (using
correspondences as substitution relations), Web service composition,. . . Thus, ontology matching
enables the knowledge and data expressed in the matched ontologies to interoperate.

By nature, automatic discovery of correspondences between different ontologies is a very compli-
cated task. Deep reasons of heterogeneity between them are not explicitly known by machines
as explained before.

Since the last fifteen years plenty of work has been made on ontology matching (see [SE05, RB01]
for surveys). Existing methods are based on lexical or linguistic similarities on labels, comparison
on the graph structures of relations in ontologies. Some of them exploit characteristics of the
data declared as instances of the classes, while other ones exploit an external resource as an
additional knowledge. Many implemented methods are actually some combinations of these
atomic techniques [MBR01, WX09].

Since 2005 the yearly international contest Ontology Alignment Evaluation Initiative (OAEI
for short)6 [EFH+09] is organized in order to make a qualitative comparison between several
methods on a pool of very different benchmarks.
A current conclusion of all of these evaluations is the following: there is considerable progress
made since the beginnings of this research domain but there is not a clear winner yet. An
integrated solution which is robust enough to be the basis for future development and usable by
non expert users still lacks.

I.3 Issues addressed in this thesis

In this thesis, we focus on automatic discovering of correspondences between taxonomies, that
represent the essential component of the ontologies (i.e. the class hierarchy). Our first claim is
that inclusion correspondences between classes of two pre-existing taxonomies are more likely to
exist than equivalence correspondences. When taxonomies are used as query interfaces between
users and data, inclusion correspondences between taxonomies can be used for query reformu-
lation exactly like the subclass relationship within a taxonomy. For instance, a correspondence
Opera ⊑ V ocal between the class Opera of a taxonomy and the class V ocal of a second taxon-
omy may be used to find additional answers to a query asking data about V ocal by returning
data categorized in the class Opera in the first taxonomy. Since most of the approaches are
based on similarity functions that are symmetric, the correspondences that are returned with

6E.g., OAEI http://oaei.ontologymatching.org/2009/

http://oaei.ontologymatching.org/2009/
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high similarity scores are interpreted as equivalence correspondences. As far as we know, few
approaches (e.g., [BSZ03, HSNR09, SVV08, JK07]) with regard to the amount of existing ones
handle inclusion correspondences between classes. Except until very recently, only equivalence
correspondences have been considered in the OAEI campaigns.

Then we claim that uncertainty is intrinsic to correspondence discovery, due to the inherent het-
erogeneity of ontologies: it is very unlikely that two classes exactly overlap each other. Beside
the work done along the line of uncertainty handling in the ontology matching research domain
(e.g. [MGR+02], [MNJ05], [CFL+08]), there is still a need to better understand the foundations
of modeling uncertainty in order to improve detection of correspondences causing inconsisten-
cies, e.g., via probabilistic reasoning, or to identify where the user feedback is maximally useful
[SE08].
In particular, almost all existing matching systems return for every candidate pair of elements
a coefficient in the range [0;1] which denotes the strength of the semantic correspondence be-
tween those two elements. Once again, those coefficients are the basis for yearly international
comparative evaluation campaigns [EFH+09]. Those approaches usually consider each candi-
date correspondence in isolation. In particular, they do not take into account possible logical
implications between correspondences, which can be inferred from the logical inclusion axioms
declared between classes within each ontology. This raises a crucial issue: the similarity coeffi-
cients returned by the existing ontology or schema matching systems cannot be interpreted as
probabilities of the associated correspondences. Therefore, we advocate to consider inclusion
correspondences with a probabilistic semantics.

Finally, the last point that we take into account with in this work is the scalability issue. Manually
finding correspondences between ontologies is clearly not possible at the Web scale. Such a
purpose is a major concern for the future Semantic Web. Therefore, the automatic discovery of
semantic correspondences is the bottleneck for scalability purposes. Up to now, such an issue
has not been really taken into account. OAEI campaigns gave only some preliminary evidence
of the scalability characteristics of the ontology matching technology.

Contributions of the thesis

In this thesis, we propose an approach to discover automatically probabilistic inclusion corre-
spondences between taxonomies, that we denote mappings. First, we investigate and compare
two ways of modeling probabilistic mappings which are compatible with the logical constraints
declared in each taxonomy. In those two probabilistic models, the probability of a mapping
relies on the joint probability distribution of the involved classes. An additional result for char-
acterizing the models that are compatible with the logical constraints under some assumptions
is provided. In addition to that, we provide a way to estimate mapping probabilities based on
statistics on declared instances.

Second, based on the above probabilistic setting, we have designed, implemented and exper-
imented a generate and test algorithm called ProbaMap for discovering the mappings whose
probability is greater than a given threshold. A property of monotony of the probability func-
tion is exploited for avoiding the probability estimation of as many mappings as possible, leading
to a scalable algorithm.

In the perspective of experiments, we have designed a full generator of taxonomies, instances
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and mappings to discover, in order to be able to provide a controlled input to ProbaMap, while
providing the corresponding reference of mappings to discover. Experimental results about
quality and time efficiency of ProbaMap are thoroughly analysed thanks to this generator whose
parameters are crossed with thoses of ProbaMap.

We present two series of experiments that we have conducted on real-worl data. The first
series is done on the OAEI directory dataset. The second serie compares ProbaMap with the
state-of-the-art integration tool SBI [ITH03] in term of accuracy of the returned alignment
on collected directories from Yahoo! and Google. We show that ProbaMap outperforms this
existing contribution.

Finally, we sketch two perspectives. The first one is about the reuse of probabilitsitc mappings
for probabilistic reasoning in a probabilistic query setting. The second one introduces a way to
postprocess the set of confidence coefficients of discovered mappings returned by most of existing
matching method to enable them being interpreted as probabilities.

Outline

This thesis is organized as follows:

• The Chapter II presents the required formal background and the problem statement

• The Chapter III presents the state-of-the-art in the Ontology Matching domain

• The Part I provides two models of probabilistic mappings and an algorithm to find the
most probable.

– The Chapter IV presents and deeply compare the two models of probabilistic map-
pings that we introduce in this work and a way to estimate these probabilities using
a bayesian estimator and classifiers.

– The Chapter V introduces and explains the ProbaMap algorithm and its implemen-
tation.

• The Part II is devoted to the experiments with the ProbaMap algorithm

– The Chapter VI presents the experiments done on generated synthetic data and
details the principles of the generator

– The Chapter VII presents the experiments performed on real data

• The conclusion and some perspectives are given in Chapter VIII.



CHAPTER

TWO

PRELIMINARIES AND PROBLEM STATEMENT

We first define taxonomies as a graphical notation and its interpretation in the standard first-
order logical semantics, on which the inheritance of instances is grounded. Then, we define map-
pings between taxonomies as inclusion statements between classes of two different taxonomies.
We give some useful reminders about probabilities, random variables and bayesian estimation.
Finally, we precisely define the problem statement of matching taxonomies that we consider in
this work.

II.1 Taxonomies: classes and instances

Definition II.1 (Directed Acyclic Graph (DAG)):
A directed graph is a pair (V,E) where V is a finite collection of vertices and E ⊆ V 2 a finite
collection of directed edges (x, y) ∈ E that connects the vertex x to the vertex y.

If there is no way to start at some vertex v ∈ V and follow a sequence of edges that eventually
loops back to v again, the directed graph does not contain any cycle, and it is then called a
Directed Acyclic Graph.

Definition II.2 (Taxonomy):
Given a vocabulary V denoting a set of classes, a taxonomy TV is a Directed Acyclic Graph
(DAG) where each node is labelled with a distinct class name of V, and each arc between
a node labelled with C and a node labelled by D represents a specialization/generalization
relation between the classes C and D.
Each class in a taxonomy can be associated with a set of instances which have an identifier
and a content description modeled with an attribute-value language.

By a slight abuse of notation, we speak of the instance i to refer to the instance identified by i.
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(a) Taxonomy T1

(b) Taxonomy T2

Figure II.1: 2 Taxonomies and associated instances

Figure II.1 shows two samples of taxonomies related to the Music domain (there are already
pictured in the previous chapter). Bold arrows are used for representing specialization relations
between classes, and dashed arrows for membership relation between instances and classes. In
both taxonomies, some instances, with attribute-value description denoted between brackets,
are associated to classes. For example, #102 is an instance identifier and [Wagner, Tristan und
Isold, ...] its associated description for the attribute sequence [Composer, Title, ...].

The instances that are in the scope of our data model can be web pages (whose content descrip-
tion is a set of words) identified by their URL, RDF resources (whose content description is a set
of RDF triples) identified by a URI, or audio or video files identified by a signature and whose
content description may be attribute-value metadata that can be extracted from those files.

In this thesis, we consider only boolean attribute-value description. Such a description can be
obtained by discretization of attribute-value pairs given in a more complex language, like in
Figure 1 where textual values are used. We consider that, possibly after a preprocessing which
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is out of the scope of this work, the instances are described in function of a fixed set of boolean
attributes {At1, . . . , Atm}. Then, for an instance i, its description, denoted descr(i), is a vector
[a1, . . . , am] of size m such that for every j ∈ [1..m], aj = 1 if the attribute Atj belongs to the
content description of i, and aj = 0 otherwise.

Taxonomies have a logical semantics defined in section II.2 which provides the basis to define
formally the extension of a class as the set of instances that are declared or can be inferred for
that class.

II.2 Logical semantics

In addition of the graphical notation, there are several textual notations for expressing the
specialization relation between a class C and a class D in a taxonomy. For example, in RDF(S)
[Hay04] which is the first standard of the W3C concerning the Semantic Web, it is denoted by
(C rdfs:subclassOf D). It corresponds to the inclusion statement C ⊑ D in the description
logics notation.

Similarly, a membership statement denoted by an isa arc from an instance i to a class C
corresponds in the RDF(S) notation to (i rdf :type C), and to C(i) in the usual notation of
description logics.

All those notations have a standard model-theoretic logical semantics based on interpreting
classes as sets: an interpretation I consists of a non empty domain of interpretation ∆I and a
function .I that interprets each class as a non empty subset of ∆I , and each instance identifier
as an element of ∆I . According to the unique name assumption, two distinct identifiers a and
b have a distinct interpretation (aI 6= bI) in any interpretation I.

Definition II.3 (Model of a taxonomy):
I is a model of a taxonomy T if:

• for every inclusion statement E ⊑ F of T : EI ⊆ F I ,

• for every membership statement C(a) of T : aI ∈ CI .

An inclusion G ⊑ H is inferred by a taxonomy T (denoted by T |= G ⊑ H) iff in every model
I of T , GI ⊆ HI .

A membership C(e) is inferred by T (denoted by T |= C(e)) iff in every model I of T , eI ∈ CI .

Definition II.4 (Extension of a class):
Let D be the set of the instances associated to a taxonomy T . The extension of a class C in T ,
denoted by Ext(C,T ), is the set of instances for which it can be inferred from the membership
and inclusion statements declared in the taxonomy that they are instances of C:

Ext(C,T ) = {d ∈ D/ T |= C(d)}
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II.3 Correspondences, mappings and alignments

For sake of coherence, we adopt the formalism proposed by [ES07] for definition of a correspon-
dence and alignment between taxonomies. To avoid ambiguity and without loss of generality,
we consider that each taxonomy has its own vocabulary: by convention we index the names of
the classes by the index of the taxonomy to which they belong. For instance, when involved in
a mapping, the class XXth Opera of the taxonomy T2 of Figure 1 is denoted by XXth Opera2

while the class XXth V ocal of the taxonomy T1 is denoted by XXth V ocal1.

Definition II.5 (Correspondence):
Given two taxonomies T1 and T2 with their own respective disjoint set of classes V1 and V2,
a set of possible alignment relations Θ and an ordered set Ξ, a correspondence is a 5-tuple
(id, C1, C2, r, n) such that:

• id is a unique identifier of the given correspondence

• C1 ∈ V1 and C2 ∈ V2 are the two classes that are related

• r ∈ Θ is the kind of relation

• n ∈ Ξ is the confidence value associated to the correspondence, measuring the degree
of uncertainty: the higher the confidence value is, the less uncertain the correspon-
dence is.

For instance, possible alignment relations are binary relations between entities like inclusion,
equivalence, disjointness for logical and set point of view. It can also be less strict like “near
by”, “close to”, “related to”,. . . The definition in [ES07] is in fact more general since it does
not restrict itself to taxonomies and allows to declare correspondence between expressions of
classes, relations and other entities of ontologies. The mappings that we consider are inclusion
statements involving classes of two different taxonomies T1 and T2.

Definition II.6 (Mapping):
Given two taxonomies T1 and T2, a mapping between T1 and T2 is a correspondence
(id, C1, C2, r, n) between T1 and T2 such that:

• r ∈ {⊑,⊒}

• n ∈ [0, 1] represents the confidence value of the mapping

A mapping between C1 and C2 is denoted by C1 ⊑ C2 or C2 ⊑ C1, depending on the direction
of the entailment relation between them.

Definition II.7 (Mapping alignment):
Given two taxonomies T1 and T2, a mapping alignment is made up of a set of mappings between
pairs of classes belonging to V1 and V2 respectively.
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From now on, an alignment actually refers to a mapping alignment, exclusively made of mappings
of the form A1 ⊑ B2 or A2 ⊑ B1 where A1 and B1 denote classes of T1 and A2 and B2 denote
classes of T2. For a mapping m of the form Ai ⊑ Bj, its left-hand side Ai is denoted lhs(m) and
its right-hand side is denoted rhs(m).

Figure II.2: 2 mappings between T1 and T2

The logical entailment between classes extends to logical entailment between mappings as follows.

Definition II.8 (Logical entailment between mappings):
Let Ti and Tj be two taxonomies. Let m and m′ be two mappings between Ti and Tj: m
entails m′ (denoted m � m′) iff every model of Ti , Tj and m is also a model of m′, that can
be formally written as follows: Ti,Tj,m |= m′.

It is straightforward to show that � is a (partial) order relation on the setM(Ti,Tj) of mappings
between the two taxonomies Ti and Tj. If m � m′, we say that m is more specific than m′ (also
that m entails m′) and that m′ is more general than m (also that m′ is a consequence of m). Note
that we use either “entailment” or “implication” to denote an entailment between two mappings.
The following proposition characterizes the logical entailment between mappings in function of
the logical entailment between the classes of their left hand sides and right hand sides.

Proposition II.1:
Let m = E1 ⊑ F2 be a mapping between T1 and T2. Let m′ be a mapping between T1 and T2:
m � m′ (i. e. T1,T2,m |= m′) iff

(1) m′ is of the form E′
1 ⊑ F ′

2, and

(2) T1 |= E′
1 ⊑ E1 and T2 |= F2 ⊑ F ′

2
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Proof :

(⇐)
Let us assume (1) and (2), that correspond to:

1. Ti,Tj ,m |= E′
1 ⊑ E1

2. Ti,Tj ,m |= E1 ⊑ F2 (= m)

3. Ti,Tj ,m |= F2 ⊑ F ′
2

By transitivity of the specialization relation between classes, we obtain:

Ti,Tj,m |= E′
1 ⊑ F ′

2

and then
Ti,Tj,m |= m′

(⇒)
To prove (1), we show that for every mapping of the form F ′

2 ⊑ E′
1,

T1,T2, E1 ⊑ E2 6|= F ′
2 ⊑ E′

1 .

We start with an interpretation I1 of the classes of T1 such that all its classes are empty.

I1 is a model of T1 (since all the axioms E1 ⊑ E′
1 are satisfied in I1).

We extend it by an interpretation I2 of the classes of T2 which is a model of T2 such that
F ′I2

2 6= ∅. Such a model I2 of T2 exists by Lemma II.α.

Let I = I1 ∪ I2, i.e. the interpretation defined by taking as domain of interpretation
∆I = ∆I1 ∪∆I2 and by defining:

• CI
1 = CI1

1 for each class C1 of T1

• CI
2 = CI2

2 for each class C2 of T2

By construction, I is a model of T1 ∪ T2 ∪ E1 ⊑ F2 but I is not a model of F ′
2 ⊑ E′

1 (since
F ′I

2 6= ∅ and E′I
1 = ∅).

To prove (2), we now show that if T1 6|= E′
1 ⊑ E1 (resp. if T2 6|= F2 ⊑ F ′

2) then T1,T2, E1 ⊑
F2 6|= E′

1 ⊑ F ′
2 .

By Lemma II.α, there exists a model I1 of T1 such that E′I1
1 6= ∅.

By Lemma II.β, we can get it from I ′1 such that E
′I′

1

1 6= ∅ and E
I′
1

1 = ∅ (because T1 6|= E′
1 ⊑

E1).

Moreover, there exists a model I2 of T2 such that F ′I2
2 = ∅.

Let I = I1 ∪ I2. I is a model of T1,T2, E1 ⊑ F2 and is not a model of E′
1 ⊑ F ′

2 because
E′I

1 6= ∅ and F ′I
2 = ∅.

�
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Lemma II.α:
Let T be a taxonomy. For every class C of T , there exists a model I of T such that CI 6= ∅.

Proof :

We use the fact that the logical semantics of an inclusion axiom A ⊑ B is ∀xA(x) ⇒ B(x),
which corresponds to the binary clause ¬A(x) ∨B(x).

Let us suppose that there exists a class C such that for every model I of T : CI = ∅. This
would mean that : T |= ∀x¬C(x). By the completeness of the resolution for deriving prime
implicates of a set of clauses, this would mean that the clause ¬C(x) would be produced
by applying the resolution rule to the set of clauses ¬A(x) ∨B(x) corresponding the clausal
form of the inclusion axioms A ⊑ B of the taxonomy.

It can be shown by induction on the number of applications of the resolution rule that from a
set of binary clauses of the form ¬A(x)∨B(x) (i.e., with one postive literal and one negative
literal), we can produce by resolution prime implicates that are necessary binary clauses
having the same form (i.e., with one postive literal and one negative literal).

Therefore, the clause ¬C(x) cannot be derived, which contradicts our assumption, and thus
proves the Lemma.

�

Lemma II.β:
Let E′

1 a class of a taxonomy T1 and let I1 a model of T1 such that E′I1
1 6= ∅.

Let I ′1 obtained from I1 as follows:

• for each C such that T1 6|= E′
1 ⊑ C, CI′

1 = ∅

• for each C such that T1 |= E′
1 ⊑ C, CI′

1 = CI1

I ′1 is a model of T1

Proof :

For any C ⊑ D ∈ T1, let us show that CI′
1 ⊆ DI′

1

• If T1 |= E′
1 ⊑ C:

since C ⊑ D ∈ T1, T1 |= E′
1 ⊑ D,

and then as CI′
1 = CI1 and DI′

1 = DI1 , we obtain: CI′
1 ⊆ DI′

1.

• If T1 6|= E′
1 ⊑ C,

then CI′
1 = ∅ and therefore CI′

1 ⊆ DI′
1.

I ′1 is a model of T1

�
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For example, two mappings between taxonomies T1 and T2 of Figure II.1 are illustrated in Figure
II.2:

• the mapping XXth Opera2 ⊑ XXth V ocal1 is more specific than the mapping
XXth Opera2 ⊑ XXth Century1,

• and the mapping
RecentClassical2 ⊑ XXth Instrumental1 is more specific than the mapping Ravel2 ⊑
Classical Music1.

II.4 Probability measure

As we will provide a probabilistic model for mappings, we first recall some definitions about
probability measure based on Kolmogorov axioms (e.g. [Gut05]).

Definition II.9 (σ − algebra, event):
Given a set Ω called the universe set, a σ − algebra on Ω is a non-empty family F of subsets
of Ω which satisfies the following conditions:

1. Ω ∈ F

2. ∀A ∈ F ,Ω \ A ∈ F

3. F is closed under infinite union:
for every sequence (An)n∈N of elements of F ,

⋃
n∈N

An ∈ F

An elements of F is called an event.

Definition II.10 (Measurable space):
Given a set Ω and a σ − algebra F on Ω, the couple (Ω,F) is called a measurable space.

Definition II.11 (Probability measure):
Given a universe Ω, a probability measure on Ω is a function P : F −→ R which satisfies the
Kolmogorov axioms:

1. P (∅) = 0

2. ∀(An)n∈N sequence of events with An pairwise disjoint, P (
⋃

n∈N
An) =

∑
n∈N

P (An)

3. P (Ω) = 1

The triple (Ω,F , P ) is called a probability space.

In our context the σ−algebra on Ω is always the set P(Ω) of subsets of Ω. Therefore the domain
of introduced probability measures is constituted by all the subsets of a given set Ω.
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Definition II.12 (Random variable, distribution, expected value, variance):
Given a probability space (Ω,F , P ):

• a random variable X is a measurable1 function X : Ω −→ R. If X−1(R) is a countable set,
X is said to be discrete, otherwise it is said to be continuous.

• The discrete distribution µX followed by a discrete random variable X is the function
which associates to each element y of the image X(Ω) the probability of its inverse image
∀y ∈ X(Ω) ;µX(y) = P (X−1(y)) which is commonly denoted P (X = y)
The sum of the distribution values is 1:

∑
y∈E µX(y) = 1

• The distribution function FX followed by a random variable X is the function FX : R −→
[0; 1] where FX(y) = P (X−1(]−∞, y[)) commonly denoted P (X < y).
When there exists an integrable and positive or null function fX such that FX(y) =∫ y

−∞ fX(t)dt, fX is called the density function of X. Its integral on R equals 1.

• The expected value E(X) of X is defined as follows :

– E[X] =
∑

i∈R
yµX(y) if X is discrete of distribution µX .

– E[X] =
∫
y∈R

yfX(y) if X is continuous and has a density function

• The variance V ar(X) of X is defined as : V ar(X) = E[(X − E[X])2] = E[X2]− E[X]2.
The standard deviation σ(X) is then defined as σ(X) =

√
V ar(X).

Some examples are given below:

Example II.1 (Indicator function of an event)
Given a probability space (Ω,F , P ) and an event A, the indicator function 1A : Ω −→ {0; 1}
such that 1A(ω) = 1 when ω ∈ A and 0 otherwise, is a discrete random variable whose the
expected value is P (A).

Example II.2 (Bernouilli distribution)
Let p a real in [0; 1]. The Bernouilli distribution B(p) is the discrete probability distribution
of the success and failure in a single yes/no experiment, each experiment having a probability
success of p. Formally, a random variable X following B(p) has the following properties:

• the universe Ω is the set of the two possible issues of the experiment: yes and no.

• X associates to the yes experiment issue the image 1 and to the no issue the image 0

• P (X = 1) = µX(1) = p and P (X = 0) = µX(0) = 1− p

• expected value of X is the mean value we can expect from such an experiment : E[X] =
p.

Example II.3 (Binomial distribution)
Let n be a natural and p a real in [0; 1]. The binomial distribution B(n, p) is the discrete
probability distribution of the number of successes in a sequence of n independent yes/no
experiments, each of which yields success with probability p. Formally, a random variable X
following B(n, p) has the following properties:
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• the universe Ω is the set of all possible sequences of n independent yes/no experiments
(with a success probability p)

• X associates to each such a sequence of Ω the number of the yes results in the sequence,
which lies in N and a fortiori in R. Note that this number is bounded between 0 and n
and can only takes integer values. That is why X is called discrete, and the binomial
distribution is called a discrete distribution.

• Given k ∈ [0 . . . n], P (X = k) = µX(k) = P (X−1(y)) = Ck
npk(1− p)(n−k)

• The expected value of X: E[X] = np.

The Beta distribution is a family of continuous distributions extensively used to model the
distributions of the parameters p of Bernouilli and binomial distributions in Bayesian estimation
(section II.5):

Example II.4 (Beta distribution)
The Beta distribution is a family of continuous distribution defined on [0; 1] and parameterized
by two positive parameters denoted by α and β. The corresponding density function family is
the following :

f(x;α, β) =
xα−1(1− x)β−1

∫ 1
0 uα−1(1− u)β−1du

The denominator is a normalizing factor ensuring that
∫ 1
0 f(x;α, β)dx = 1.

The corresponding expected value is α
α+β

.

Definition II.13 (Conditional probability):
Given a probability space (Ω,F , P ) and (A,B) ∈ F2 the conditional probability of A given B
is denoted P (A|B) and when P (B) 6= 0:

P (A|B) =
P (A ∩B)

P (B)

P (A|B) is undefined when P (B) = 0.

Note that when P (A|B) = P (A), the events A and B are said to be independent, and P (A∩B) =
P (A)P (B).

Definition II.14 (Bayes rule):

Given a probability space (Ω,F , P ), ∀(A,B) ∈ F2, /P (B) 6= 0, P (A|B) = P (B|A)P (A)
P (B)

This rule is commonly used to reverse conditional probabilities and stands at the core of the
principle of Bayesian estimation in statistics.
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II.5 Bayesian estimation

Bayesian estimation [Deg04] aims at providing an estimate value for an unknown scalar θ
value (for instance a parameter of a probability distribution) based on linked observations
(for instance sample values of data following the corresponding probability distribution) by
considering it as a random variable following a prior distribution. A prior distribution expresses
the a priori knowledge and uncertainty on θ before the observation data. Bayesian estima-
tion represents a popular alternative to the classical maximum likelihood estimation in statistics.

Suppose we want to estimate an unknown scalar θ which follows a prior distribution Π (in-
formation we can know about θ before collecting any other data). Let X be the observations
considered as a random variable, for instance taking its values in Rm with m fixed, and following
any distribution. An estimator function of θ x −→ δ̂(x) provides a single estimate value for θ
given an observation x.

The Bayesian estimator of θ is the estimator function θ̂ which minimizes the Bayes risk for any
given observation x, i.e. :

θ̂(x) = argminδx E[L(θ, δx)|X = x]

where L : R2 −→ R is a given loss function. The expected value is taken over the distribution
of Π (the prior distribution of θ).

Usually the loss function is the squared error function and then the Bayes risk corresponding
to a particular observation x is the following: E[(δx − θ)2|X = x]. In this case, the Bayesian
estimator is given by the expression:

θ̂(x) = E[θ|X = x] (BE)

The Bayes rule is the main point of the proof of this theorem. Bayesian estimator is often
applied to an unknown parameter of a distribution d by making it a random variable following a
prior distribution Π. A convenient way to use this estimation, when we can choose it, is to take
for Π the conjugate distribution d′ of d. By doing this, the distributions of θ and θ|X = x are
of the same algebraic form, and often of the same family of function with different parameters.
That leads to make the calculus of the (BE) formula easier. In this thesis, we exploit the fact
that the conjugate of a Bernouilli distribution is a Beta distribution.

II.6 Problem statement

As mentioned in the introduction, uncertainty is intrinsic to mapping discovery, because of
the heterogeneity of taxonomies. We advocate that mappings need to be modeled using the
grounded probability theory, in order to associate them with some probability values measuring
their reliability. Proposing such models relies on defining how mappings and involved classes
are measured as events or conditionals within a measurable space.

Such a probabilistic model cannot be independent of the logical semantics. In particular, it is
expected that a mapping logically entailed by another mapping with a high probability (i.e.,
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whose probability exceed a threshold) also get a high probability. Therefore, the first problem
is to propose some models of probability for mappings, leading to probabilistic mappings. The
probabilities associated to a mapping should be provided a practical way to compute them.

The second problem addressed in this work is the design of a scalable algorithm discovering the
most probable mappings between two taxonomies.

Note that the problem of aligning n taxonomy can be reduced to a sequence of n− 1 problems
of aligning two taxonomies, each step allowing to group two aligned taxonomies in a single one.



CHAPTER

THREE

STATE-OF-THE-ART

As outlined in the introduction, semantic correspondences are the glue for data integration
systems. A wide range of methods of schema/ontology matching have been developed both in
the database [RB01] and the semantic web communities as shown in the book [ES07].

We start here by giving an overview of basis techniques, then we describe several methods which
combine them. We focus especially on methods close to our work: instance-based methods and
works about uncertainty handling for correspondences. Finally, we shall conclude by pointing
out the important remaining challenges in the ontology matching domain which are tackled by
this work.

Note that in many methods, the term “mapping” is used for denoting a correspondence. Other
methods call mapping an alignment.

III.1 Overview of existing methods for ontology matching

Most of the time, ontology matching methods are combinations of atomic techniques that can
be split in four categories: lexical or linguistic techniques, structural techniques, instance-based
techniques, and reasoning techniques. In the following we give details for each of these categories
and provide examples of actual methods using them.

III.1.1 String based and language-based techniques

Roughly speaking, string-based and linguistic-based techniques find correspondences between
textual entities descriptions and labels. Many existing methods use them such as TaxoMap
[HSNR09], H-MATCH [CFM03].

String-based techniques match entities labels or descriptions in a syntactic way. The underlying
idea for matching entities with their names is that the more similar are the names (according
to a chosen measure), the more there are likely to denote the same concepts.
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Similarities on two strings can be computed according to the size of the largest common prefix
or suffix. Edit distances like Levenshtein distance [Lev66] associate to two strings the minimum
number of elementar operations (e.g. char insertion, char deletion, char substitution) to change
the first string into the second one.

Another techniques based on string labels and entity descriptions use linguistic tools or resources.
For instance, before the string-based comparison, words can be normalized (process of digits,
punctuation, case, diacritics,...), lemmatized, stemmized using specific algorithms or dictionaries.

Linguistic resources like the WordNet thesaurus [C.98] allow to bridge the gap between a syn-
tactic information and its meaning by giving all the senses (called synsets) of a given word or a
phrase, and all the words for one given sense. In addition, it provides a directed relation graph
between the synsets that represents the semantic relations between synsets (e.g. “Hyponym”
for a subconcept relation, “Hypernym” for a superconcept relation, “Antonym” for an opposite
meaning). These graphs represent a language-based way for computing distances or similarities
between two given labels. A survey on using WordNet for ontology matching can be consulted
in [LS08].

The H-MATCH [CFM03] matching method exploits WordNet for computing similarities between
entities of two ontologies. In H-MATCH, the Linguistic Affinity (LA) between two labels of
entities is computed as the highest-strength path joining two synsets of the two entities in the
WordNet graph (restricted on a subset of the more classical semantic relations). The strength of
the path is computed by multiplying the weight of each kind of semantic relations, so the best
paths are the shortest or those involving the strongest relations.

But H-MATH uses another principle to compute the similarity between two entities: it uses the
context of the entities, i.e. the sets of entity labels that are connected to the matched entity
by a relation in the ontology. For instance, (c1, r1) is an element of the context of e1 if e1 is
related to c1 with r1 in its ontology, and (c2, r2) is an element of the context of e2 for similar
reasons. H-MATCH introduces an affinity measure between entities based on their context: the
Contextual Affinity between two entity contexts combines all Linguistic Affinity (LA) between
every possible elements pair of the context (e.g. ((c1, r1), (c2, r2)) is a pair). LA between c1

and c2 contributes to the Contextual Affinity of e1, e2 with a weight depending on the similarity
between the respective r1 and r2, and so on for all possible pairs ((c1, r1), (c2, r2)) of the contexts
of e1 and e2. This principle involves the structure of the ontologies for computing a similarity
between two entities. This is an example of the techniques based on external structural matching
that we are going to see in the next section.

III.1.2 Structural matching techniques

External structure matching is based on the fact that the similarity between two entities on
two respective graphs impact the similarities between the respective connected entities in each
graph.

The work in [MGR+02] called Similarity flooding is based on this principle and uses a fix-point
algorithm to affect to each pair of node a similarity, given two DAGs as input. The idea of
“two elements of two distinct models (ontologies) are similar when their adjacent elements are
similar” is applied by spreading similarities in the spirit of how IP packets flood the network
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in broadcast communication. The core of the method relies on a similarity propagation graph:
nodes are pairs of entities of the input ontologies, and directed edges between two nodes exist
if the two elements of the first pair are connected to the two elements of the second pair with
the same relation in the two respective ontologies. For each existing edge, a reverse (backward)
edge is added to this graph with the idea that the similarity should be influenced in the two
directions when there are relations between matched entities. Then, an initial similar value is
affected to each node of the similarity propagation graph, for instance by using a string-based
distance between the two labels in each node. After that, the fix-point computation is launched
and all similarities on each nodes is updated according to the similarities of their neighbours
and the weight fixed in the corresponding edges. A general form of the equation for a given pair
(x, y) of entities to match is the following:

σi+1(x, y) = σi(x, y) +
∑

(a,b) predecessors of (x,y)

σi(a, b).w((x, y), (a, b))

+
∑

(a,b) successors of (x,y)

σi(a, b).w((x, y), (a, b))

where σi(x, y) represents the similarity between x and y at the step i, and w((t, u), (v, z)) the
influence weight for the edge between the pair (t, u) and the pair (v, z).

When the fix-point is reached, filters are used for determining which are the best correspondences
to be returned, given all similarities between pairs of entities and given some enabled constraints
of cardinality (e.g. at least one correspondence from each class), and possibly other expressed
constraints coming from the specific application of the matching.

The OLA (OWL-Lite Alignment) [EV04] method explicitly fits the grammar of the standardized
ontology language OWL for defining similarities between entities. OLA establishes a family of
similarity measures, one per node category (class, property, instance). The mutual dependencies
between similarities reflects the OWL grammar: classes similarity involves the related properties
similarities, the related classes similarities, and the related instances similarities. Dependency
in equations of similarities can be approximatively solved by an iterative method, providing for
each pair of entities a similarity value. By applying a threshold and/or using some constraints,
these similarities can lead to an alignment.

The OMEN [MNJ05] method can be used for post-process the result of ontology matching
methods that associate a confidence coefficient to each correspondence. This method is based
on a Bayesian network where nodes are all possible 1-1 correspondences and where edges comes
from meta-rules induced by the ontologies knowledge. For example, a meta-rule is “if there exist
correspondences between all but one siblings of two superclasses that are also matched, then
the probability for the correspondence between the two remaning siblings is high”. Each node
(i.e. each pair of classes) is associated with a distribution over the set of relations {=,⊂,⊃
,∩,not related}. Distributions for root nodes are initialized by the output of another matching
method (it can be incomplete) and they are updated by reasoning on the Bayes Net. It is
underlain by the same idea than for similarity flooding.

At the opposite side of structural matching techniques, the internal structural matching tech-
niques exploit constraints and properties associated to entities like types, cardinalities or multi-
plicities and keys (for relational schemas). For example, the SemInt method [LC00] which was
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originally intended to match relational schema works with an utilization of metadata present in
database for each attribute (i.e. each class in an ontology framework): primary and external
keys, data type for each attribute, cardinality constraints, data content statistics.

III.1.3 Instance-based matching techniques

Instance-based matching techniques are based on the analysis of statistics or distributions of class
extensions. They can also rely on properties or descriptions of instances. Instances analysis can
be exploited to compute similarities score between classes or to train classifiers for machine
learning methods. As our work is instance-based, we provide a focus on such methods and
particularly detail three of them, because they consider the closest probabilistic framework.

We start by presenting the general work on instance-based methods in [IvdMSW07] titled “An
empirical study of instance-based ontology matching”. It proposes a systematic study of three
major dimensions involved when matching two classes:

1. how to measure the overlap

2. which thresholds are to be used

3. if hierarchy should been taken into account for calculating the extensions

A conclusion of this work is that the instance-based methods are reliable especially for practical
and critical applications. Authors underline the critical choice of the measure depending on
the application and on the kind of correspondences to discover. However they do not focus on
oriented correspondences. In particular, they show that using the hierarchy for computing class
extensions does not improve the quality of the alignment on the dataset used in this work. This
surprisingly negative result comes directly from the structure of the dataset and from the fact
that they always include equivalent correspondences in their evaluation.

We now describe representative and real-world instance-based methods. In contrast to the
previous sections on other elementary techniques, we directly consider real-world methods that
are mainly instance-based here. In particular we detail three of them:

1. the first one called GLUE [DMDH02] uses machine learning and standard similarities

2. the second one [DGGB06] is based on probabilities and logical constraints

3. the third one called SBI [ITH03] is based on probabilities and statistical test

Note that the experimental results of our work is compared to SBI in term of the accuracy of
the returned alignments on Web directories (see Section VII.2).

GLUE

The GLUE [DMDH02] system automatically discover 1-1 correspondences between the classes of
ontologies according to the assumption that there exists a moderate amount of available instances
associated to each class. The classes are modeled as the set of instances of their extension, taken
from a finite universe of instance. For two classes C1 and C2 of two ontologies O1 and O2, the
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whole distribution is given by the four probabilities P (C1∩C2), P (C1∩C2), P (C1, C2), P (C1, C2)
. GLUE is able to work on similarities that come from probabilistic interpretations. For example,
consider the two following similarities for each pair of classes C1, C2:

• the Jaccard similarity [TSK06] between two classes C1 and C2:

J(C1, C2) =
P (C1 ∩ C2)

P (C1 ∪ C2)

• the Most-specific-parent (MSP) similarity measure:

MSP (C1, C2) = P (C1|C2) if P (C2|C1) = 1 and 0 otherwise

The core of the GLUE system is divided into three steps:

1. Estimating the joint distribution of all pairs of classes and complementary classes

2. Computing the similarity matrix for the two ontologies from the joint distributions of
classes, i.e. computing the similarity for each pair of classes of the two respective ontologies
to be aligned

3. Affecting to the classes of O2 the class labels of O1 and conversely.

Now we detail the first step involving classification techniques. As the set of instances of the two
ontologies are likely to be disjoint or with a very small overlap, the joint distributions can not be
estimated directly by counting instances belonging to the corresponding intersections. Based on
the general assumption that all extensions of classes are representative of the respective classes
in the covered universe of instances, P (C1 ∩ C2) is estimated by the frequency-based formula :

NC1∩C2

1 + NC1∩C2

2

N1 + N2

where N1 and N2 are the respective number of instances in O1 and O2, and NC1∩C2

1 , NC1∩C2

2

are the cardinal of the sets of instances of O1 that belongs to both C1 and C2, in O1 and O2.

As C1 is not a class of O2 and C2 is not a class of O1, there is no instance of O2 that belongs
to C1 and no instance of O1 that belongs to C2.

In order to overcome that, GLUE makes use of classifiers like Naive Bayes that exploit the
textual data located in instances as features. A classifier is trained for C1 with the training
example the instances of C1 in O1 and as counter-examples all the other instances in O1. Then,
the instances of C2 are classified in C1 or in C1. The reverse process is done for classifying
instances of C2 into C1 or C1. After that, the joint probabilities can be estimated by the above
formula, and then the similarities.

Note that in GLUE, there is not a single classifier used but actually two classifiers combined by
a meta-learner for weighting their results. The content classifier uses the textual content of in-
stances (textual description considered as a set of normalized and stemmized tokens). The name
classifier uses the full name of instances, i.e. the concatenation of all the labels of all instances
it belongs to (including inferred) plus its proper name. The weights of the combination can be
learned automatically by using stacking techniques derived from cross-validation techniques.
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The third stage of GLUE is called a “relaxation labeling”, which consists to affect the labels
of the classes of O1 to all the classes of O2, given a set of constraints. This is based on the
same idea of similarity flooding, i.e. that the label of a node is influenced by the feature of the
node’s neighborhood in the graph: labels, percentage of nodes in the neighborhood that satisfy
a certain criterion, satisfaction of a constraint, etc. All probabilities that each class can labeled
by such label are updated with an iterative way involving complex equations depending on the
influence of all neighborhood’s features. Example constraints can be the fact that “two nodes
match if all their children match”, or “if all children of node X match node Y, then X match
node Y”, or domain-dependent constraints like “There can be at most one node that matches
DEPARTMENT CHAIR”. Experiments on directories show that the relaxation labeling step
improves results.

It should be pointed out that GLUE discovers symmetric correspondences that have no formal
semantic. In addition, the associated confidence value for each discovered correspondence are
not real probabilities as they are based on similarities like the Jaccard similarity. These two
points contrast to our work in which we define a formal semantic for inclusion correspondences
(denoted by mappings in this thesis) and we handle probabilities associated to each mappings.

A method based on Implication Intensity

The work presented in [DGGB06] is also based on extensions of classes. For a given set of
instances of size n, and two classes a and b of respective extension sizes na and nb, The implication
intensity associated to the implication rule a→ b is defined by:

φ(a→ b) = 1− P (Na∧b ≤ na∧b)

where na∧b is the number of instances that contradicts the implication rule and Na∧b denotes the
number of instances that contradicts a random implication rule constructed with two random
classes A and B of the same size than a and b. In this work, the underlying random variable for
Na∧b is modeled by a Poisson distribution of parameter λ = na(n−nb)

n
.

Actually the set of instances used for the computation of the implication intensity is not the
initial set of instances for each class, but the set of relevant terms for each class. Such a
transformation from the set of instances to the set of terms is done by using a threshold on
the implication intensity of rules of the form t → i between instances i and terms t for each
document.

Then, the extraction of mappings from the set of all possible rules with their associated impli-
cation intensity is done by:

• filtering the intensity of relevant rules by a threshold

• using a filter that transform a rule a → b into a mapping A ⊑ B only if all the logical
implicant correspondences correspond to a rule having an intensity lower or equal than
the intensity of the considered rule.

• using a top-down algorithm that exploits the above monotony-based filter to avoid com-
puting all the possible intensity implications corresponding to each possible mapping (and
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then for each possible rule), according to the fact that for each relevant mapping, every
mapping consequence of it should be relevant.

This monotony-based filter should be underlined here because such a property of monotony of
the strength of the correspondence according to the logical implication is at the core of the work
in this thesis: the probabilistic confidence functions that we analyse for measuring the strength
of mappings directly respect such a monotony property.

SBI

SBI [ITH03, IHT04] is intended to match internet directories (we see as taxonomies) by statistics
on instances. It uses the same probabilistic framework as GLUE for classes and instances, and is
based on the kappa-statistic Fleiss coefficient[KCRF+04] that measures the degree of agreement
between two raters (that give a score of 0 and 1), each of them corresponding to a matched
class. Each rater give the score 1 for each instance that belongs to the class, and 0 otherwise.
The more the raters agree, the more the classes can be considered as equivalent.

Given two matched classes C1 and C2, the formula for the corresponding Fleiss kappa coefficient
is the following:

κ =
P − P ′

1− P ′

where,

• P is their probability of coincidence of the two matched classes i.e.

P (C1 ∩ C2) + P (C1 ∩ C2)

estimated by
N

C1∩C2

1
+N

C1∩C2

2

N
with N representing the size of common instances of both

taxonomies. The estimation of P (by computing the intersection of C1 and C2 inside each
of both taxonomies) is processed without classification in the original SBI method.

• P ′ is the probability of coincidence of the two classes by chance (depending only of their
sizes and on the size of the common instances). This should be considered with regard
to the random variable Na∧b in the implication intensity definition (see previous section),
which is used as a reference quantity that the probability should exceed for making the
correspondence relevant.

For a tested correspondence between A and B, the Fleiss Kappa coefficient is statistically tested
to be different from 0, that is interpreted as a success.

Possible correspondences between two classes are tested from the top classes to the leaves in the
two taxonomies with a pruning principle. For instance, if the two top classes do not match, the
algorithm terminates with no correspondences.

Then, in an integration purpose, for each class of the source taxonomy, only the correspondence
with the highest kappa is stored. For classes that are not involved in a discovered correspondence,
correspondences involving its direct parent are considered instead, and so on.
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One should notice that the discovered correspondences are equivalences and the kappa coefficient
is symmetric. But because of the process that enforce a unique correspondence by source classes,
the results are not the same if one switches the two taxonomies given as input.

As the confidence of correspondences is measured with the kappa coefficient which is symmetric
and can not been interpreted as a probability, this work differs from ours. In addition, correspon-
dences discovered are not formally defined equivalence. Finally, due to the specific application
of directory integration, the fact that an unique correspondence is needed for each source class
make the returned alignment different if the two input taxonomies are switched, although the
considered correspondences are symmetric.

Now we quickly sketch other interesting and relevant methods of this category, respectively using
Formal Concept Analysis and Machine Learning on correspondences.

Formal Concept Analysis: FCA-merge [SM01]

FCA-merge considers two taxonomies that annotate two sets of textual documents. The two
respective sets of instances come from these documents. This method considers a formal context
indicating which document is about which class : the set of documents are objects, the set
of classes are attributes and the binary relations between objects and attributes is taken from
logical declarations in taxonomies or are discovered by linguistic techniques. The core of the
process uses a Formal Concept Analysis [GWW05] to create a (pruned) lattice of classes of both
taxonomies of the granularity degree of the two ontologies. Concepts that appears in this lattice
are at least as specific as one formal concept of both taxonomies. The final step that derives a
merged ontology from this concept lattice requires human interaction. Authors underline that
are documents are to be relevant and respect a good coverage of the ontologies to be merged.

The particular distinguishing points of this work with regard to ours is that it is intended to
merge two taxonomies and not to discover correspondences and that it is semi-automatic by
requesting a systematic human interaction.

Matching by learning correspondences

The three following methods are based on machine learning requiring a corpus of true corre-
spondences.

LSD [DDL00] is a semi-automatic method that takes as training data the textual features of
instances preprocessed by a set of correspondences provided by the user. A set of learners
(based on textual similarity measures and on word distribution (Naive Bayes)) are combined
with provided domain-constraint knowledge e.g., no more than one correspondence related to
this class, or “if a matches b, and a matches c, then b should match c” ). This process leads to
symmetric correspondences between classes of ontologies. A particularity of the LSD system if
that it can learn from a corpus of previous alignment of other ontologies.

The work introduced in [WES08] uses classifiers directly on correspondences, by representing
each correspondence in a vector space constructed from instances features. A training set of
true correspondences should be provided. Then, for a tested correspondence between two classes
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A and B, the similarities between (i) the instances of A, (ii) the instances of B, and (iii)
the instances of all examples correspondences allow to give to the tested correspondence a
position in the correspondence space. Hence the classifier can be used to determine if the tested
correspondence is relevant or not, according to its position in the correspondence space and the
learned examples.

In a similar way, CSR [SVV08] provides a classification-based learning of inclusion (and then
oriented) correspondences between classes of ontologies. CSR is based on the same machine
learning methods in the space of correspondences. The features used for classification are the
class properties, the terms extracted from labels, the comments, the instances of classes. The
training is done using for positive examples the pairs of classes (A,B) such that A entails B in
each of the two input ontologies considered in isolation. Then, given a pair of classes representing
a possible tested correspondence, the classifier determines if this pair belongs to the category of
entailment or in its complementary. Additionally, CSR adopts a pruning strategy of the search
space for avoiding to test each possible correspondence: if there is no correspondence between
A and B, then there is no correspondence between A and the descendants of B. This heuristic
corresponds to the weak property of monotony IV.1 that we introduce in the next chapter page
45. Authors notice that CSR is potentially improvable by exploiting more kinds of features.

III.1.4 Matching based on logical reasoning

A reasoning process can be used to perform ontology matching in several ways. Many methods
incorporates a logical reasoning step to check the logical consistency of the candidate corre-
spondences returned by a previous step, or to infer other correspondences from the previously
discovered ones.

Ctx-Match [SBMZ03] reduces the problem of ontology matching to the SAT problem. Each
class of taxonomy is encoded into a formula of description logic in which the class atoms are
WordNet synsets corresponding to the label of the class filtered to be relevant according to the
synsets of the labels of the context of the class in its taxonomy: i.e. its ancestors and its direct
descendants. Furthermore, the logical formula of a class is enriched with the conjunction of all
formula of its ancestors. For instance, a class labeled Arizona having a superclass labeled Snake

and no subclass is associated to the formula :

[Arizona(, genus Arizona (glossy snake) ⊓ snake, serpent, ophidian (limbless

scaly elongate reptile; some are venomous)]

For each class of both taxonomies, a reasoning can be processed according to the relevant part of
a background knowledge theory (for example WordNet) translated in the same description logic
language. For instance, inferred inclusion and disjointness formulas are respectively translated
into inclusion, equivalence or disjointness correspondences.

The work in [SMS02] is originally intended for integrating spatio-temporal databases and uses
a logical reasoning process to check the discovered candidate correspondences, by encoding
the input schemas and these correspondences in a description logic language. Then, reasoning
services are used to check the consistency of the candidate correspondences. Description logic
allows to handle more expressive knowledge than propositional logic that is used in Ctx-match
(e.g., binary predicates).
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The work in [SMS02] outlines an integration methodology for databases schemas applied to
spatio-temporal data, in particular by using logical reasoning with a domain ontology dedicated
to spatio-temporal features (MADS). Specified constraints about theoretical properties of the
returned integrated schema (reversibility, kind of information loss (class/attribute, instance) are
at the core of the method and impact the result.

It should be noticed that semantic techniques described here can not find the alignment by
themselves, they need to start from an external resource or a predefined similarity. But there
are very helpful when the logical completeness of the results is needed, because the provided
result can be closed under logical implication.

III.1.5 Properties of matching methods

In addition to the use of (i) lexical or linguistic techniques, (ii) internal or external structural
techniques, and (iii) instance-based techniques, we can point out several criteria for distinguish-
ing ontology matching methods.

• Requirement of an external resource: for example, H-MATCH [CFM03], TaxoMap
[HSNR09], S-Match [GSY04], Ctx-Match [BSZ03] rely on the WordNet thesaurus. Simi-
larly, among logic-based knowledge descriptions, Cyc [MCWD06] and DOLCE [GGMO03]
are two examples of common knowledge ontologies that may be useful for techniques
based on semantic reasoning in the spirit of Ctx-Match [BSZ03] with WordNet. Up to our
knowledge, there are no existing work using directly such expressive ontologies.

Generally speaking, techniques using an external ontology (e.g. for a specific domain)
may first align the two ontologies to match to the external one, then they can make
some reasoning to return correspondences between the two initial ontologies by using the
external ontology as an intermediate knowledge.

• Alignment reuse: some methods may need some manually or previously found alignments
as a corpus of correspondences (like COMA [DR02], or the work in [MBDH05]), based on
the idea that there are patterns in the alignment task. Close to that, LSD [DDL00] and
the work in [WES08] are machine learning-based methods that train classifiers directly on
a corpus of provided correspondences.

• The language of correspondences to discover, i.e. what are the kinds of entities that are
matched (only classes, expression of classes, properties, relations), and what are the avail-
able logical connectors (negation, union, intersection, cardinality restriction). In particu-
lar, an important point is the possibility to handle directed correspondences: for example,
ASMOV [JK07], CSR [SVV08], Ctx-Match [BSZ03] and TaxoMap [HSNR09] handle in-
clusion correspondences (i.e. mappings).

• Use of machine learning techniques (e.g., GLUE [DMDH02]), SBI using classifiers [IHT04],
Enhanced-NB [AS01], LSD [DDL00], SemInt [LC00], the work in [WES08]). In addition,
requirement of a corpus for training (e.g., instances, correspondences).

• Ability to provide a confidence coefficient for each returned correspondence. Most of
existing methods do that by default, but Ctx-Match [BSZ03], FCA-merge [SM01] which
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are respectively based on pure logical reasoning and Formal Concept Analysis [GWW05]
can not, for example.

Other classifications of matching methods can be found in [BSZ03, DH05, Ehr07].

III.1.6 Illustrative examples of real methods

Almost of all real methods like those we present in this section combines several elementary
techniques we have explained at the beginning of this section.

SemInt [LC00] uses internal structure matching techniques. Features associated to each class
are properties of cardinality or any constraints, and string labels. For both ontology A,B to
align, a clustering of classes is done by a self-organizing map (neural network algorithm) in the
space of features. For each ontology, the returned clusters are characterized by their center
and they represent a partition of the set of classes. For ontology A, the classes and their
respective cluster centers are provided to a supervised classifier (back-propagation) as training
data (clusters centers represent the labels). The classes of B are classified into the clusters of A,
i.e. for each class of B, one can output a score for each possible corresponding class of A. After
having doing a similar process by switching the two ontologies, this result is post-processed to
obtain a set of correspondences between classes.

ASMOV [JK07] stands for “Automated Semantic correspondence of Ontologies with Valida-
tion”. It combines lexical similarity (using an external thesaurus, UMLS), internal structure
(properties, data types) features, external structure (ancestors and descendants), and similarity
on instances by a weighted sum. The entities related by the best similarity score are mapped.
Then ASMOV uses a process of semantic validation of this alignment, by checking the consis-
tency of discovered correspondences with regard to the ontologies.

Lily [WX09] is a complex tool combining textual and structural techniques. A preprocessing
step is firstly run in order to build a semantic description for all entities of the ontology. The
matching process itself works on these descriptions with lexical similarity and similarity flooding
on the structure. A distinguishing feature of this method is that it makes use of web search
engines to address the problem of semantic heterogeneity. Like in ASMOV, a post-processing
step is conducted to make the result more robust (detection inconsistency or redundancy, bad
or abnormal correspondences based on their features).

Clio [CHKP07] is a semi-automatic schema integration system. It merges different schemas by
discovering symmetric correspondences between classes (concepts) extracted from schemas. The
process of matching starts with a cast of the schemas into taxonomies of classes. Classes that are
matching are identified by correspondences between their attributes in the initial schema. Then
all possible ways of aligning the two taxonomies of classes are enumerated, that correspond to
an enumeration of all possible merged taxonomy. Each merged taxonomies an be recast-back
as an integrated schema. Thus, all induced correspondences between initial schemas and each
of enumerated integrated schema can be given. A refinement step and a user feed-back step are
then used in order to visualise and select the more relevant alignment according to the user.

Coma++ [ADMR05] is a customizable and generic tool for matching schemas and ontologies.
It combines several individual matchers and thresholds for several kind of similarities.
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Cupid [MBR01]: a schema-based approach combining linguistic (using a thesaurus) methods
with constraints (keys, data types, because it was firstly dedicated to schema matching). A
distinguishing point to notice is that Cupid makes a special care on different granularities and
nesting of the matched schema.

PRIOR [MP06] is a combination of linguistic and structural techniques by similarity flooding.
Each class is represented by its corresponding profile. Then profiles are modified inductively
by the profiles of the neighborhood. PRIOR correspondences based on the cosine similarity of
profiles. It address the scalability issue: for large ontologies, the PRIOR system makes use of
information retrieval techniques, by indexing the profiles of the first ontology, then generating
queries from profiles of the second input ontology, and ranking the answers.

TaxoMap [HSNR09]: This method combines linguistic techniques and textual similarity with
a complex system of thresholds to select correspondences. This process is based on similarity
between labels or multi-labels, inclusion between labels, and reasoning on structure. It discovers
oriented and symmetric correspondences between classes of taxonomies. In the case of large
taxonomies, TaxoMap uses a partitioning technique based on a specific partitioning algorithm
for ontologies. The main principle is to partition ontologies into blocks that are strongly related,
and to match only the more related blocks, i.e. those that share enough labels. The classes that
share the same labels are called anchors and are used in the process of partitioning.

Yet Another Matcher (YAM) [DCBM09] is a matcher factory that generates a dedicated
matcher given application constraints specified by the users. For example, such requirements
could be a preference for either Recall or Precision, a set of already matched schemas, or provided
correspondences. YAM learns how to apply a pool of tools in the best way, according to these
provided data and constraints, by meta-learning with the goal of maximizing the quality of the
output. This approach constitutes an extreme and application-driven view of how to combine
of a set of techniques.

Other interesting matching methods are presented in [GSY04, ST05, HQ08, LTLL08].

We should mention here the project Linking Open Data1 [Biz09] which aims at providing an
unified semantic dataset by publishing various connected open ontologies as RDF on the web.
The main point of the project is that the RDF cross links between the different sources are
correctly set to enable the connection between ontologies, and then it provides a large “Web of
data”. Ontologies from popular knowledge databases like FOAF2, Wikipedia3, WordNet [C.98]
are among the 120 sources datasets. These datasets represent 13.1 billion of triples and are
connected by 142 millions of triples (in November 2009). Data reconciliation and ontology
matching are at the core of the achievement of this huge project.

III.2 Remaining challenges

Such a large amount of implemented methods proves that the matching task is not easy at
all. Each of these methods fits with an application-specific use, a particular user-constraint

1http://esw.w3.org/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
2www.foaf-project.org
3wikipedia.com

http://esw.w3.org/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
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or requires a property on data. The properties of matching systems listed in Section III.1.5
confirm such an heterogeneity: there is still a lack of a global and generic method for ontology
matching. Based on this observation, ten challenges for ontology matching are presented in
[SE08] by taking into consideration the results of all the conducted OAEI contests.

III.2.1 Handling uncertainty of correspondences

The uncertainty is intrinsic to correspondences discovery because two classes or properties (for
example) independently created are unlikely to exactly match. As stated in the introduction,
there is still a need to better understand the foundations of modeling uncertainty that is primary
important for improving the detection of correspondences causing inconsistencies, e.g., via prob-
abilistic reasoning, or to identify where the user feedback is maximally useful, and for improving
the quality of the interpretation of correspondences. The defined notion of correspondence (see
Definition II.5) include a confidence coefficient to measure the uncertainty associated to each
correspondence.

For example, it should be useful for a method that verifies the output of matching process in
order to make it more robust, like the work presented in [CFL+08]. This work validates corre-
spondences by probabilistic reasoning, by associating to each correspondence its probability. All
correspondences that are consistent with the ontologies in the probabilistic logic are considered
valid, and the other ones are given up.

The work in [GATM05] introduces a framework for modeling and evaluating automatic semantic
reconciliation. It provides a formal model for semantic reconciliation and theoretically analyses
the factors that impact the effectiveness of matching algorithms. The proposed formal model
borrows from fuzzy set theory for handling uncertainty by combinations of similarity measures
and good properties. This work is not connected to probabilities but is complementary to the
approach in this thesis.

Another works on uncertainty handling by probabilities can be read in [NS07] .

A complementary work that considers ranking of several possible alignments to make the result-
ing alignment more robust and to reduce the need of human verification is presented in [Gal06]:
this work proposes an extension of existing matching methods by considering the k ranked best
alignments between two schemas discovered by a classical matching method, according to a
global score that can be computed from the output of many existing methods. The top-k align-
ment ranking is combined with the schema to match in order to generate the final alignment
that globally maximizes its score. The idea behind this work is that there exists a correlation
between patterns in the top-k alignments (i.e. set of correspondences) and the correctness of
a considered alignment. This method allows to improve correspondence precision at the cost
of recall with regard to existing methods, and to make a step further in making the process of
matching completely automatic.

III.2.2 Scalability

The scalability of ontology matching represents a major issue for the achievement of the future
Semantic Web, where ontologies sizes and numbers are expected to grow exponentially.
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But the main context (OAEI) does not primely focus on scalability up to now, except for larges
ontologies like anatomy 4 (2006) which involved a magnitude of 10,000 classes per ontologies to
match. Methods like PRIOR [MP06] and H-MATCH [CFM06] perform well on such a dataset.
Note that such a dataset does not contain any instances.

In the same time, the directory dataset is available from 2005 to now in two versions, one fully
connected of 6628 and 2857 classes, and the other one split into 4000 pairs of corresponding
branches to map. Since 2005, all participants use the split version that allows to match more
than 4,000 times two taxonomies of about ten classes, instead of matching the whole structures.
It can be concluded that the scope of scalability issue starts from ontologies of thousands of
instances and more.

For instance-based methods, the number of classes is not sufficient enough to judge of the
scalability: because the number of instances is likely to play a major role in the complexity of
matching algorithms. A similar remark holds for methods that want to be complete, i.e. to
consider Recall as important, because there are more likely to consider the entire search space.

For handling large taxonomy, a central idea is to significantly reduce the size of the possible
correspondences by partitioning large ontologies. See for example TaxoMap as explained above
and in [HSRZ09] by partitioning ontologies into blocks that are strongly related, and to match
only the more related blocks.

Synthesis

As a conclusion, our work stands among instance-based matching methods and deals with an
important theoretical aspect: modeling uncertainty for inclusion correspondences (i.e., map-
pings). Among the existing work in this category, and to the best of our knowledge, we can
notice there are no methods which is concerned by defining a formal semantic for discovered
correspondences. Moreover, the correspondences returned are often symmetric, standing for in-
formal equivalence or high-similarities between two entities. Finally, if most of methods return
an associated score measuring the confidence of each correspondence, no one can be interpreted
as a probability. Indeed, for that, a correspondence should respect a property of monotony
with regard the logical implication. The work in [DGGB06] enforces such a particular property
that we further call “strong property of monotony” according to the logical implication: “each
discovered correspondences should have a lower score than its logical consequences according to
the taxonomies”.

Finally our ambition in the setting of ontology matchingis is to bridge the gap between logic
and probabilities by providing probabilistic models that are consistent with the logical semantics
underlying ontology languages.

4http://oaei.ontologymatching.org/2006/anatomy/

http://oaei.ontologymatching.org/2006/anatomy/
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PROBABILISTIC MODELS OF MAPPINGS

The intrinsic uncertainty of mappings due to multiple heterogeneity factors like those seen in
introduction makes inevitable to take account into such uncertainty in semantics of mapping
and especially during the mapping discovery process.

In the same time, keeping a connection to the logical implications for mapping semantics is useful
for logical reasoning with them and for instance for query rewriting. For example, a realistic
situation is that after the discovery process, discovered mappings are interpreted as certain
mappings with classical logical semantic (i.e. certain means that the mapping is considered as
fully true).

An uncertainty model of mappings should take into account possible logical implications between
mappings, which can be inferred from the inclusion axioms declared between classes within each
ontology. A good property should be that a mapping logically entailed by another mapping
should be less uncertain that its entailer.

Theories that include uncertainty in logic exist and the most famous are probability logic and
fuzzy logic. These domains allow to handle imprecision in logical formulas and reasoning by
associating a real number between 0 and 1 to each formula.

Fuzzy logic [Zad65] represent vague and imprecise information, like the formula “this jean is
large”. The associated number correspond to the degree of which the jean is large and constitutes
is degree of truth. 0.7 indicates that the jean is near to be large, but not very large. So the truth
of a formula is gradual. In probability logic [FHM90, Nil86], the truth of formulas is binary like
in classical logic: it can be only True or False. The real number associated to each logical
formula measures the probability for this formula to be True.

Because of the fact that probability logic extends the classical logic more naturally and that
probability is the more grounded and studied way to express uncertainty, we aim at extending
the logical semantic via a probabilistic way, by associating to each mapping the probability
that it is logically true. Such an approach corresponds thoses used in probability logic and
probabilistic reasoning domains. Probability logic should be distinguished from the fuzzy logical
approach where the logical values themselves are degrees of truth. Here, we take given values
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as they are exact but unknown, so we only consider the two classical logical constants True and
False.

We also advocate to consider probabilistic models of mappings. It means that mappings and
their involved classes should be considered as measurable entities (like events for instance) in a
probabilistic setting, with regard to a fixed measurable space.

We have considered two probabilistic models for modeling uncertain mappings. Indeed, we
introduce here two confidence functions that associate to each mapping a confidence value n
(see Definition II.6 page 16) of a mapping. Given two taxonomies T1,T2 and their respective
vocabulary V1 and V2 we consider the following probabily space (definition II.11), (D,P(D), P )
where:

• The universe D is the set of possible instances of T1 and T2

• The set of events P(D) is the set of all subsets of possible instances of D

• P is a fixed probability measure on all subsets of instances

For every class E, we abusively denote E the event “a randomly chosen instance belongs to E”.
The Bernouilli (parameter pE) corresponding random variable is the characteristic function 1E

of E. P (E) is then the probability of the class E, and P (E) = pE = E[1E ].

This discrete random variable follows a Bernouilli distribution of parameter pE such that pE =
P (E) = E[XE ]

Logical formulas and events are linked: the negative class ¬E trivially corresponds to the event E
which is the complementary set of the event E in the universe D. Disjunction and intersection
of class corresponds to disjunction and intersection of events. The Venn diagram picture a

Figure IV.1: Venn diagrams of two class extensions

set interpretation of classes, or equivalently the events associated to them. In this work, we
constantly work with an underlying set interpretation of classes, which is coherent with both
logical and probabilistic theories.

IV.1 Conditional probabilistic model

The first model defines the probability of a mapping Ai ⊑ Bj as the conditional probability for
an instance of the sample space to be an instance of Bj knowing that it is an instance of Ai. It
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is the natural way to extend the logical semantics of entailment to probabilities.

Definition IV.1 (Conditional probability for a mapping):
Given a mapping m = Ai ⊑ Bj , the conditional probability of m is defined as:

Pc(m) = P (Bj |Ai) =
P (Ai ∩Bj)

P (Ai)

In the Venn diagram of Figure IV.1, that corresponds to restrict the D universe set to the Ai set.
The function measure PAi

(X) = P (X|Ai) is a probability measure associating for each subset of
D (each subset of instances) its probability given the knowledge that these instances all belongs
to Bj . The general case pictured in Figure IV.1 illustrates the conditional probability by a Venn
diagram, as the proportion of Ai ∩Bj in Ai. In that Venn diagram, there is drawn a darkened
region corresponding to Ai \Bj = Bj ∩Ai, in other words the region which lies in Bj but not in
Ai. This region is the set of instances that contradict the mapping Ai ⊑ Bj.

As P (Bj|Ai) = 1 −
P (Bj∩Ai)

P (Ai)
: the probability of this dark region make Pc decrease when it

increases, but its influence is weighted by the probability of Ai.

IV.2 Implication probabilistic model

The second model comes directly from viewing classes as subsets of the sample space and the
inclusion formula as the so-called “material” implication (i.e. denoting the classical logical im-
plication): the implication probability of Ai ⊑ Bj is the probability for an element of the sample
space to belong to the set Ai ∪Bj.

Definition IV.2 (Implication probability for a mapping):
Given a mapping m = Ai ⊑ Bj , the implication probability of m is defined as:

Pi(m) = P (Ai ∪Bj)

Note that Pi(Ai ⊑ Bj) = P (Ai ∪Bj) = 1− P (Ai ∩Bj).

For this model, the probability of the dark region representing the set of instances that contradict
the mapping in Figure IV.1 is a negative linear term in the probability Pi(Ai ⊑ Bj). Therefore
in this model, the probability of Bj \Ai is considered in an absolute respect.

A particular point to emphasize is that the implication is truth-functional, i.e. its truth value is
fully determined by the truth value of its operands. That is not the case of the value of P (Ai|Bj)
which is not depending of P (Ai) and P (Bj) only.

As both Pi and Pc provide probabilities as confidence values, there are called probabilistic confi-
dence functions in the following.
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IV.3 Comparative study of the two probabilistic models

We start by providing the main properties of the two probabilistic confidence functions in order to
compare them, especially about a property of monotony with regard to the logical implication.
Then, we introduce a result that characterizes the confidences functions which respect one
particular form of this monotony property.

Main properties of the two probabilistic confidence functions

The following proposition states the main (comparative) properties of those two probabilistic
models. In particular, they both meet the logical semantics for mappings that are certain.

They can both be equivalently expressed using the joint probabilities of the two mapped classes
and the probability of the class at the left of the mapping.

To give some statistical properties on both mapping probabilities we consider Pi and Pc as
random variable functions of two random class extensions (subsets of ∆).

Proposition IV.1 (Properties on confidence probabilistic functions):
Let m be a mapping between two taxonomies Ti and Tj. The following properties hold:

1. Pi(m) ≥ Pc(m).

2. m is a certain mapping (i.e., Ti Tj |= m): ⇔ Pc(m)⇔ Pi(m) = 1.

3. Pi(m) = 1 + P (lhs(m) ∩ rhs(m))− P (lhs(m))

4. P (lhs(m)) = 0 or P (rhs(m)) = 1 ⇒ Pi(m) = 1

The point (3) and the definition of the conditional probability for a mapping show that both prob-
abilities can be expressed with only P (lhs(m)) and the joint probability P (lhs(m)∩ rhs(m)).

Proof Proof of (3):

By definition of the implication probability:

Pi(m) = P (lhs(m) ∪ rhs(m))

Pi(m) = 1− P (lhs(m) ∩ rhs(m))

By disjunction we have P (lhs(m)) = P (lhs(m)∩ rhs(m)) + P (lhs(m)∩ rhs(m)). Therefore,
by combining this and the above expression of Pi(m):

Pi(m) = 1− [P (lhs(m)) − P (lhs(m) ∩ rhs(m))]

Pi(m) = 1− P (lhs(m)) + P (lhs(m) ∩ rhs(m))

�
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Proof Proof of (1) and (2):

Let m = Ai ⊑ Bj.

Pc(m)− Pi(m) =
P (Ai ∩Bj)

P (Ai)
− 1 + P (Ai)− P (Ai ∩Bj)

=
P (Ai ∩Bj)(1− P (Ai))− P (Ai)(1− P (Ai)))

P (Ai)

=
1− P (Ai)

P (Ai)︸ ︷︷ ︸
>0

(P (Ai ∩Bj)− P (Ai))︸ ︷︷ ︸
≤0

The above formula points out that Pc(m) = 1 if and only if Pi(m) = 1 and it arises if and
only if Ai ⊆ Bj (when P (Ai) > 0), or equivalently when Ai ⊑ Bj is certain.

�

Proof Proof of (4):

By application of the definition of Pi(m) = P (lhs(m)∪rhs(m)) therefore Pi(m) ≥ P (rhs(m))
and Pi(m) ≥ 1− P (lhs(m))).

So, P (rhs(m)) = 1 or P (lhs(m)) = 0 leads to Pi(m) = 1

�

The two probabilities differ on the monotony property with regard to the (partial) order �
corresponding to logical implication (cf. Definition II.8): Pi verifies a property of monotony
whereas Pc verifies a property of weak monotony as stated in the following theorem.

Theorem IV.1 (Property of monotony):
Let m and m′ two mappings.

1. If m � m′ then Pi(m) ≤ Pi(m
′) (strong monotony)

2. If m � m′ and lhs(m) = lhs(m′) then Pc(m) ≤ Pc(m
′) (weak monotony)

Proof Proof of the theorem IV.1:

Let E1, E
′
1, F2, F

′
2 be classes of two taxonomies T1 and T2. Let m = E1 ⊑ F2, m′ = E′

1 ⊑ F ′
2

be two mappings such that m � m′.

By the proposition II.1 page 17, we have that E1 and E′
1 belong to T1 and F2 and F ′

2 belong
to T2 and that T1 |= E′

1 ⊑ E1 and T2 |= F2 ⊑ F ′
2. Specialization relations are certain and
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correspond to proper set inclusions in the set interpretation of classes, therefore we have:

{
P (E′

1 ∩ E1) = 0

P (F2 ∩ F ′
2) = 0

By disjunction of E1 and E1 :

P (E′
1 ∩ F2) = P (E′

1 ∩ F2 ∩ E1)︸ ︷︷ ︸
≤P (E1∩F2)

+ P (E′
1 ∩ F2 ∩ E1︸ ︷︷ ︸

=P (E′

1
∩E1)=0

Therefore P (E′
1 ∩ F2) ≤ P (E1 ∩ F2).

In the same way:

P (E′
1 ∩ F ′

2) = P (E′
1 ∩ F ′

2 ∩ F2)︸ ︷︷ ︸
=P (F ′

2
∩F2)=0

+ P (E′
1 ∩ F ′

2 ∩ F2)︸ ︷︷ ︸
≤P (E′

1
∩F2)

Then P (E′
1 ∩ F ′

2) ≤ P (E′
1 ∩ F2) and finally, if we combine it with the previous inequality:

P (E′
1 ∩ F ′

2) ≤ P (E1 ∩ F2)

As P (A ∩B) = 1− P (A ∪B), it leads to :

P (E′
1 ∪ F ′

2) ≥ P (E1 ∪ F2)

and
Pi(E1 ⊑ F2) ≤ Pi(E

′
1 ⊑ F ′

2)

i.e.,
Pi(m) ≤ Pi(m

′)

Proof for monotony of Pc where lhs(m) = lhs(m′):

Let m = E1 ⊑ F2 and m′ = E′
1 ⊑ F ′

2 be two mappings such that m � m′. By the proposition
II.1 again, we have T2 |= F2 ⊑ F ′

2.

Pc(E1 ⊑ F2) = P (E1∩F2)
P (E1)

≤
P (E1)∩F ′

2
)

P (E1)
= Pc(E1 ⊑ F ′

2) because F2 ⊑ F ′
2.

Therefore Pc(m) ≤ Pc(m
′).

�

Example IV.1 (Counter-example for strong monotony of Pc)
The Figure IV.2 shows a representative case for the non-monotony of Pc.

Here, E1 ⊑ F2 entails E′
1 ⊑ F2 but Pc(E1 ⊑ F2) > Pc(E

′
1 ⊑ F2) = 0.

We can see here that Pc is not coherent with regard to the transitivity of the inclusion: Pc(E
′
1 ⊑

E1) and Pc(E1 ⊑ F2) can grow up to infinity whereas Pc(E
′
1 ⊑ F2) remains to 0.

A comparison of properties of the two probabilities is given below in order to provide an a priori
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Figure IV.2: Case where Pc(E
′
1 ⊑ F2) = 0 whereas Pc(E1 ⊑ F2) > 0 and E′

1 ⊑ E1

behaviour and show that they are complementary to distinguish the “best” mappings from the
other ones.

As we give here some statistical properties on both models, we consider Pi and Pc as random
variable functions of pair of subsets of D, assuming that for each random set S, each instance
of D belongs to S with a probability of 1

2 .By symmetry, it leads to P (A) = P (A) and to
P (A ∩B) = P (A ∩B) = P (A ∩B) = P (A ∩B).
Both these constraints conduct to:

1. E[Pi] = 3
4

2. E[Pc] = 1
2
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Figure IV.3: Distribution histograms for Pi and Pc

Thresholds for Pi and Pc can be used to distinguish between “good” mappings and “bad” map-
pings in the discovery process. It is the main approach considered here, rather than ranking or
other method.

The Figure IV.3 is generated by using a huge sample of randomly chosen set pairs (A,B) in
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a sample space of 500 instances, according to the assumption that a random set is constituted
by potentially all instances with a probability of 1

2 for each one. The distribution of obtained
values for Pc and Pi are pictured in the histogram of this figure.

The first conclusion is that the threshold for Pi should be larger than the threshold for Pc. This
is coherent with the property Pc(m) ≤ Pi(m) for every mapping m.

Secondly, as Pc(m) appears to be more distributed than Pi, the conditional probability may be
less sensitive to its corresponding threshold than the implication probability.

Thirdly, Pi is the model that fits the logic in the best way. It has also the same drawbacks
as the logical implication itself: a class Ai with a very small probability or a class Bj with a
probability close to 1 leads automatically to a implication probability Pi close to 1. In logic, this
corresponds to the following cases which are true in propositional logic, although their respective
truths are not sure actually in the common sense:

• “If Christophe Collomb did not discover America, I like him.” : false antecedent and
undetermined conclusion.

• “If I won the quizz , Christophe Collomb discovered America.” : undetermined antecedent
and true conclusion

Conversely, Pc has been defined as Pc(Ai ⊑ Bj) = 1−
P (Ai\Bj)

P (Ai)
which better handles such cases

because the probability P (Ai \Bj) of the set of instances that contradict the mapping is taken
into account with respect to the size of Ai. Conditional probability measure the Bj probability
inside the world in which Ai is true. So no matter that Bj is very probable and no matter
the size of Ai for Pc(Ai ⊑ Bj). Making a parallel with logical sentences of implication, it is
equivalent to consider their truth only in the cases where the antecedent is true.

But implication probability may be useful anyway. Figure IV.4 shows the Pi distribution values
histogram on all mappings m for which Pc(m) > 0.7 (with the same generating condition as the
Figure IV.3).

Note that 0.7 is an arbitrary but potentially realistic threshold for Pc that we use in our ex-
periment in Part II, and this figure might be on a similar global form for other thresholds.
Even if the distribution is not very wide, one can hope that setting a threshold for Pi like 0.86
may allow to discard some bad mappings, especially in this case where Ai is very probable:
P (Bj) = 0.75, P (Ai) = 0.75, P (Ai ∩Bj) = 0.6
This leads to : Pc(Ai ⊑ Bj) = 0.6

0.75 = 0.8 and Pi(Ai ⊑ Bj) = 1−P (Ai ∩Bj = 1− (0.75− 0.6) =
0.85.

A threshold of 0.7 for Pc does not exclude this mapping, but a threshold of 0.9 for Pi does. Here,
the ratio of instances in the darkened region that contradict the mapping Ai \Bj can be fairly
considered too large, and so only the Pi model takes that into account.

A noticeable property for Pi is that the set of all mappings for which Pi exceeds a threshold is
a closed set under logical implication according to the knowledge of taxonomies. This property
is equivalent to the strong property of monotony (see Proposition IV.1), and therefore it is not
the case for Pc.

Finally, another difference between the two models should be pointed out considering that both
can be applied to all dual clauses.
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Figure IV.4: Distribution histogram for Pi given Pc > 0.7

In particular, Pi give the same value for Ai ⊑ Bj as for its contrapositive ¬Bj ⊑ ¬Ai, because
they have both the same set interpretation. Conversely, Pc does not respect this property: as
shown in the following counter-example:
Continuing the previous example, we have:
P (Bj) = 0.75, P (Ai) = 0.75, P (Ai ∩Bj) = 0.6
P (Bj|Ai) = 0.6 and

P (Ai|Bj) =
P (Ai ∩Bj)

P (Bj)
=

1− P (Ai)− P (Bj) + P (Ai ∩Bj)

1− P (Bj)
=

0.1

0.25
= 0.4

Characterization of monotonous confidence functions

w.r.t. logical implication

In this section we want to characterize the functions FP (A,B) for measuring the confidence of
any inclusion formula A ⊑ B that are compatible with the logical entailments of the taxonomies
to be matched. More precisely, we show that FP respect the strong property of monotony only
if for each mapping A ⊑ B, FP (A,B) = f(Pi(A ⊑ B)) where f is a monotonous increasing
function. Thus, this theorem brings an additional justification to the relevance of the model Pi.

The general approach for doing this characterization consists in finding some necessary property
for FP according to the fact that FP respects the strong property of monotony w.r.t. the logical
implication. Given a probability space (D,P(D), P ) of instances, taxonomies correspond to sets
of annotated subsets of D. Given two taxonomies T1,T2, we denote F T1,T2

P the restriction of
FP to mappings between T1 and T2. This restriction is well defined by considering that FP
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is independent of the taxonomies to be matched. Then for every A,B subsets of D, for every
taxonomies T1,T2, FP (A ⊑ B) = F T1,T2

P (A ⊑ B).

The Lemma IV.α points out an intermediate result: a necessary condition for making FP re-
specting the strong property of monotony. The proof is given in Appendix A in Section A.1.1.

Lemma IV.α:
If for every pair T1,T2 of taxonomies over (D,P(D), P ), F T1,T2

P is monotonous w.r.t. set inclusion
(i.e. to logical implication since sets correspond to classes in logic), then
for every subsets A1, A2, B1, B2 of Ω (i.e. classes),
if A′ ⊆ A and B ⊑ B′ then FP (A,B) ≤ FP (A′, B′)

The following theorem starts by assuming that FP respect the necessary property of the Lemma
IV.α (that is implied by monotony property w.r.t. logical implication.), and characterizes
monotonous confidence functions FP , under some additional assumptions:

1. the probability space should be infinite and no countable

2. for every pair of mappings sharing one common class and for which the not shared classes
are related by an implication relation, the confidence function provides the same value for
both mappings if they have the same probability Pi. (assumption (ii))

3. FP (A,B) is a continuous compound function of the probability of A and B and of their
joint probability.

Theorem IV.2 (Characterization of probabilistic confidence functions):
Let (Ω,P(Ω), P ) be a probability space such that Ω is infinite and no countable.

Let FP be a function P(Ω)× P(Ω)→ [0; 1] such that:

(i) ∀(A1, A2, B1, B2) ∈ P(Ω)4, if B1 ⊆ A1 and A2 ⊆ B2 then FP (A1, A2) ≤ F (B1, B2)

(ii) ∀(A1, A2, B1, B2) ∈ P(Ω)4,
if (A1 ⊆ B1 and A2 = B2 or A2 ⊆ B2 and A1 = B1)
and Pi(A1 ⊑ A2) = Pi(B1 ⊑ B2),
then FP (A1, A2) = FP (B1, B2)

(iii) ∃G : [0; 1]3 → [0; 1] continuous such that:
∀(A,B) ∈ P(Ω)2, FP (A,B) = G(P (A), P (B), P (A ∩B))

Then:

(1) ∀(A1, A2, B1, B2) ∈ P(Ω)4 such that Pi(A1 ⊑ A2) ≤ Pi(B1 ⊑ B2),
FP (A1, A2) ≤ FP (B1, B2)

(2) ∀(A,B) ∈ P(Ω)2, FP (A,B) = f(Pi(A ⊑ B)) where f is a monotonous increasing function
w.r.t. its argument

The proof of this theorem is given in Appendix A.1.2.
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The probabilistic confidence function Pi uses the identity function for f . Therefore, Theorem
IV.2 shows that Pi is the simplest confidence function which is well connected with logic.

Synthesis

The two probabilistic models that we propose are derived from the conditional probability
theory and the material implication in logic. Both provide a probability measure for modeling
the uncertainty of any mapping and rely to the join distribution of the two class extensions.
They can be used to distinguish between good and bad mappings via respective thresholds, and
they appear to be complementary with regard to their respective special extreme cases.

In addition, we have provided a grounded justification for Pi as the simplest probabilistic function
which well connects to logic.

The initial underlying goal is to discover the best mappings with an efficient robustness. There-
fore we aim at combining both models in the algorithm to discover the most probable mappings
by thresholding the two probabilities Pi(m) and Pc(m) associated to each mapping m.

IV.4 Estimation of probabilities

As shown in point (4) of Proposition IV.1 page 44, the computation of Pi(m) and Pc(m) relies
on computing the set probability P (lhs(m)) and the joint set probability P (lhs(m) ∩ rhs(m)).
Those values are unknown and must be estimated. They are the unknown parameters of the
underlying Bernoulli distributions modeling the membership function to a set as a random
variable taking only two possible values: 0 or 1.

Following the Bayesian approach to statistics [Deg04], we model those unknown parameters as
continuous random variables, and we use observations to infer their posterior distribution from
their prior distribution.

Usual prior distribution for the parameter p of a Bernouilli distribution is the Beta distribution,
because Beta and Bernouilli distribution are conjugate: it means that the distribution of p given
the observations has the same algebraic form than the distribution of p. Hence the computation
of the Bayesian estimation is easier.

Therefore we assume that for a class E, the associated Bernouilli variable XE has a parameter pE

which follows a Beta distribution Beta(αE , βE). As the expected value of this prior distribution
should correspond to the probability of a random instance to be in a class, we assume that
E[Beta(αE , βE)] = α

α+β
= 1

2 so that βE = 2αE .

In a similar way, for an intersection of class denoted E = F ∩ G, the expected value of the
corresponding Bernouilli variable is 1

4 (by the above symmetry argument when stating that
E[Pu] = 1

4). Then we assume in this case that βE = 4αE

From now on, we set the prior probability for any class E to 1
2 . It corresponds to the uniform

distribution for the parameter pE (Beta(1, 1) is equivalent to the uniform distribution). In a
similar way, we set the prior probability for any conjunction of class to 1

4 .
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Let Êxt(E,O) be the set of observed instances of O that are recognized to be instances of E.
According to a basic theorem in probability theory (Theorem 1, page 160, [Deg04]), if the prior
distribution of the random variable pE modeling P (E) is a Beta distribution of parameters αE

and βE , then its posterior distribution is also a Beta distribution the parameters of which are:
αE + |Êxt(E,O)| and βE + |O|.

According to the definition of the Bayesian estimator (in Section II.5, page 23), the estimator
that minimizes the mean-square error is then the expected value of the posterior distribution

p̂E = E[pE |Ob] =
αE + |Êxt(E,O)|

αE + βE + |O|

It should be noticed that there is a choice in αE and βE although they are linked variables.
The principle is the following : the higher the chosen value for αE (and so βE) is, the stronger
the weight of the a priori is in the estimation. Note that for αE = βE = 1, the corresponding
Beta distribution is equal to the uniform one of expected value 1

2 . αE and βE can be seen as
cardinals of positive and negative instance of a phantom observations set added to the real one.
This principle is known as the Laplacian way to smooth the estimator.

Finally, for a mapping we can compute its conditional and its implication probabilities by com-
bining their definition formula and estimations of their operands:

Theorem IV.3 (Estimation of mapping probabilities):
Let m : Ci ⊑ Dj be a mapping between two taxonomies Ti and Tj. Let O be the union of

instances observed in Ti and Tj. Let N = |O|, Ni = |Êxt(Ci,O)|, Nj = |Êxt(Dj ,O)| and

Nij = |Êxt(Ci ∩Dj ,O)| = |Êxt(Ci,O) ∩ Êxt(Dj ,O)|

• P (Ci) is estimated by 1+dExt(C,O)
2+Ni

= 1+Ni

2+N

• ̂P (Ci ∩Dj) is estimated by :
1+|dExt(Ci∩Dj ,O)|

4+N
=

1+Nij

4+N

that leads to:

• P̂i(m) = 1 +
1+Nij

4+N
− 1+Ni

2+N

• P̂c(m) =
1+Nij

4+N
× 2+N

1+Ni

It is worth comparing the (Bayesian) ratios 1+Ni

2+N
and

1+Nij

4+N
appearing in the formulas for

computing P̂i(m) and P̂c(m) in Theorem IV.3 with the corresponding ratios Ni

N
and

Nij

N
that

would have been obtained by following the standard (frequency-based) approach of statistics
(as it is the case for instance in [DMDH02]). The corresponding ratios converge to the same
expected value when there are many instances, but the Bayesian ratios are more robust to a
small number of instances. In contrast with the frequency-based approach, they are defined
even in the case where no instance is observed: their respective values (i.e., 1

2 and 1
4) in this

particular case correspond to the probability of random sets and the joint probability of two
random sets respectively for a uniform distribution of instances in the sample set.
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Exploiting classifiers to merge instances of different taxonomies

In our setting, the set O is the union of the two (possibly disjoint) sets Oi and Oj of instances
observed in two distinct taxonomies Ti and Tj. This raises the issue of computing the set

Êxt(E,Oi ∪ Oj), especially when E is the conjunction of a class Ci of the taxonomy Ti and a
class Dj of the other taxonomy Tj. The computation of the extension of the intersection can be
done as follows:
Êxt(Ci ∩Dj ,Oi ∪ Oj) = Êxt(Ci,Oi) ∩ Êxt(Dj ,Oj)

Since the two taxonomies have been created and populated independently by different users, the
only information that can be extracted from those two taxonomies are the extensions of each
class within each taxonomy: Ext(Ci,Ti) and Ext(Dj ,Tj).

By construction, it is likely that their intersection contains very few instances or even no instance
at all, that makes the extension of an intersection between two classes of a mapping to be empty
or almost empty, whatever the considered mapping.

Therefore, we use automatic classifiers to compute Êxt(E,O) inside both taxonomies. The
machine learning community has produced several types of classifiers that have been extensively
(theoretically and experimentally) studied (see [Mit97] for a survey) and have been made avail-
able through open source platforms like Weka [WF05]. They are based on different approaches
(e.g., Naive Bayes learning, decision trees, Support Vector Machines) but they all need a training
phase on two sets of positive and negative examples.

The general principle of a binary classifier learning a class C is to produce a function ClassifierC

for recognizing instances descriptions of C: ClassifierC associates each instance description to
a boolean target value. The allowed format for description depends on classifiers, but the time
the descriptions are numeric vectors.

Such a function ClassifierC is learned by a training step with examples and counter-examples
of the class C. According to minimizing a cost criterion on the prediction error, the training
phase provides a classifier function ClassifierC that can predict a boolean value to each possible
description, in particular on descriptions not already seen, in order to indicate if this instance
with such a description is likely to belong to the learned class or not.

Let Classifier be a classifier. Let Ci be a class of one of the two taxonomies that we denote by
Ti, the other one being denoted Tj. For computing Êxt(Ci,O), we follow the same approach as
the GLUE system [DMDH02], described in Section III.1.3 page 28:

1. Classifier is trained on the descriptions of the elements of Êxt(Ci,Oi) as positive exam-
ples, and of its complement set with regard to Oi as the negative examples.

2. Classifier is then applied to each instance of Tj to recognize whether it belongs to Ci or
not.

When an instance i is classified into a class Ci, the extensions of Ci and of all its ancestors are
updated in order to contain i.

After the process of classification for the classes Ai, an extension on Ti and on Tj is known, and
it is the same for Bj, as illustrated in Figure IV.5. Hence, the intersection extension of the two
classes can be computed.
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(a) Before classifications (b) After classifications

Figure IV.5: Classifications of instances

All the extensions of each class and their intersection obtained by classification can then be used
to replace the initial extensions in the estimation formulas for Pi and Pc.

More details on the integration of this classification technique are given in the following chapter
in section V.4 page V.4.

Finally, note that in the case for which there are enough common instances to statistically
represent each class of both taxonomies, the full set of considered instances O can be restricted
to the set of instances in common.



CHAPTER

FIVE

PROBAMAP: AN ALGORITHM FOR DISCOVERING MAPPINGS

We have proposed two probabistic models for mappings and a way to estimate these probabilities.
The practical purpose of these probabilities considered in this work is the discovery of reliable
mappings . An automatic method for discovering mapping have to differentiate mappings that
are likely to be valid from an user perspective from unlikely mappings.

Therefore we introduce the notion of valid mapping based on the probabilistic semantics seen in
Chapter I.

Definition V.1 (Valid mapping):
Given two taxonomies Ti,Tj and two thresholds Si, Sc ∈ [0; 1], a mapping m between Ti and
Tj is valid if:

• Pi(m) ≥ Si

• Pc(m) ≥ Sc

Both probabilities Pi and Pc are combined in that definition. As seen in Chapter I, Pi and Pc are
complentary when selecting mappings, in the two perspectives of robustness and tuning. Note
that by setting Si or Sc respectively to 0, the corresponding criterion Pi or Pc can be bypassed.

Given two taxonomies Ti and Tj and their associated instances, the purpose of the discovery
algorithm is to determine all possible mappings m between Ti and Tj that are valid.

Given two taxonomies Ti and Tj of respectively ni and nj classes, each pair of the Cartesian
product of the two sets of classes corresponds to two mappings, one from Ti to Tj, one from Tj
to Ti. Therfore there exists ninj mappings in each direction, so 2ninj mappings in total. In the
following we call these 2ninj mappings candidate mappings.

A naive strategy to find the mappings whose probabilities exceeds their respective thresholds
is a brute force algorithm: enumerate all candidate mappings and compute Pi and Pc for all of
them. But the distributions of Pc and Pi seen in Chapter I lead to a large amount of candidate
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mappings that are likely not to be valid. Indeed if for a mapping m we have Pi(m) < Si, then
none of its logical implicants has a corresponding Pi exceeding Si, thanks to the property IV.1
of monotony. Hence a lot of mappings can be directly seen as invalid, instead of being tested.

The estimation of probabilities Pc and Pi for each tested mapping is done by counting the size
of extensions of classes and computing intersection between the classes involved in the mapping.
As it is time-consuming and that it represents a large part of the full complexity of the discovery
process, we aims at minimizing the number of probability estimations.

That is why we introduce an optimized algorithm generating candidate mappings in a special or-
der to maximize such applications of monotony, and then minimizing the number of computation
of probabilities.

We start by introducing the ProbaMap core algorithm, without concern about implementation
issue. Then we give the detailed algorithms and implementations for the preprocessing, the
core algorithm and the optional classification phase. After that we give the algorithm for the
classification phase. Some complexity elements are given at the end of this chapter.

V.1 Candidate mapping generation

The principle of the ProbaMap algorithm is to generate mappings from the two sets of classes
in the two taxonomies according to a topological order [CLRS01] according to the entailment
relation �.

We denote M(T1,T2) the set of all possible mappings from T1 to T2: they constitute all the
candidate mappings.

Proposition V.1 (DAG of entailment relation for mappings from Ti to Tj):
The entailment relation m � m′ ⇔ T1,T2,m |= m′ defines a DAG denoted D(T1,T2) =
(M(Ti,Tj), E) in which:

• the vertices set is M(Ti,Tj)

• the edges set E is constituted by all pairs (m,m′) ∈ M(Ti,Tj) for which m � m′ and
there exists no m′′ ∈M(Ti,Tj) such that m � m′′ � m′.

In this DAG, the ancestors of a mapping correspond to its implicants, and the descendants of
a mapping correspond to its consequences.

Proof :

Such a graph exists because it is a transitive reduction of the graph of the existing transitive
closure graph of the relation �.
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It does not contain any cycle:
Let m = Ai ⊑ Bj, m′ = Ci ⊑ Dj be two mappings of M(Ti,Tj).
If m � m′ and m′ � m:
By Proposition II.1,
Ai ⊑ Bj � Ci ⊑ Dj and Ci ⊑ Dj � Ai ⊑ Bj leads to:

Ti |= Ai ⊑ Ci, Ci ⊑ Ai, and : Tj |= Bj ⊑ DJ ,Dj ⊑ Bj.

As Ti and Tj are acyclic, Ci = Ai and Dj = Bj, then Ai ⊑ Bj = Ci ⊑ Dj .

The correspondences between ancestors and implicants, and descendants and consequences
are obvious because this DAG is a just a particular graph among all directed graphs repre-
senting the relation �.

�

A topological order on a given DAG is a total order on the set of node compatible with the
partial order relation of the DAG. In other words, a topological order on the set of mappings
according to the entailment relation is a total order indexing mappings from 1 to nm such that
mi � mj ⇒ i ≤ j. In an enumeration following such an order, a mapping is seen before all its
consequences. Conversely, if the enumeration follows the reverse order, a mapping is seen before
all its implicants.

(a) Taxonomies (b) DAG of mappings

Figure V.1: Two taxonomies and associated DAG of mapping

Example V.1 (Topological order of mappings)
The Figure V.1(a) shows an example of two pictured taxonomies, with a mapping C1 ⊑ F2

and a consequence mappings C1 ⊑ E2. Figure V.1(b) shows the induced DAG of all mappings
from the left taxonomy to the right one and the entailments between them. For instance, there
is an edge that means an entailment from C1 ⊑ F2 to C1 ⊑ E2, and Ai ⊑ F2 is the most
specific mapping among them and it entails all of them.

The two following propositions shows that a topological order for mapping according to the
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entailment relation can be obtained directly from the two preprocessed topological orders of
classes within each taxonomies.

The following proposition is a corollary of Proposition II.1.

Proposition V.2:
Let Ti and Tj two taxonomies.
Let Topo(Ti) be the sequence of classes of Ti resulting from a topological sort of Ti. Let
Topo(Tj) be the sequence of classes of Tj resulting from a topological ordering of Tj. Let
m : Ci ⊑ Dj and m′ : C ′

i ⊑ D′
j two different mappings from Ti to Tj. If m′ is an implicant of

m then Ci is after C ′
i in Topo(Ti) or Ci = C ′

i and Dj is before D′
j in Topo(Tj).

Proof :

Let m = Ci ⊑ Dj and m′ = C ′
i ⊑ D′

j be two different mappings like those introduced
above, such that m′ � m, and that respect the following assumption (H), which denies the
Property V.2:

• C ′
i is before Ci (H1)

OR

• C ′
i = Ci ∧Dj is after D′

j (H2).

The application of Proposition V.2 leads to:
Ti |= Ci ⊑ C ′

i (a) and
Tj |= D′

j ⊑ Dj (b).

H1 is contradictory to (a) and the topological order in Topo(Ti).

H2 is contradictory to (b) and the topological order in Topo(Tj)

As a consequence, assuming that there exists a pair of mapping that respects (H) leads to
a contradiction. Therefore, for all pairs of mappings (H) is false, and then the Property V.2
is true.

�

Proposition V.3:
Let Ti and Tj two taxonomies.
Let Topo(Ti) be the sequence of classes of Ti resulting from a topological sort of Ti. Let
Topo(Tj) be the sequence of classes of Tj resulting from a topological sort of Ti.
Consider the sequence of mappings Ci ⊑ Dj constructed in the lexicographic order of the
reverse sequence Topo(Ti) and the sequence Topo(Tj): Ci ⊑ Dj is before C ′

i ⊑ D′
j in the

sequence if Ci is after C ′
i in Topo(Ti) or Ci = C ′

i and Dj is before D′
j in Topo(Tj) This

sequence is a topological order of the DAG of mappings directed from Ti to Tj .
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Proof :

From Proposition V.2, all pairs of mappings in the sequence respect the topological order of
the DAG of mappings.
As all candidate mappings from Ti to Tj are in the sequence, it constitutes a topological
order of the DAG of mappings.

�

Example V.2 (Application of the Propositions V.2 and V.3)
The goal of the property V.2 is to show that a topological order of Figure V.1 can be computed
from two topological orders of the taxonomies of Figure V.1(a). For instance, B1, C1, A1 is a
topological order for T1, and F2, E2 for T2.
The proposition V.2 leads to the following order for mappings from T1 to T2:
A1 ⊑ F2, A1 ⊑ E2,
B1 ⊑ F2, B1 ⊑ E2,
C1 ⊑ F2, C1 ⊑ E2

This order fits the DAG of entailments between mappings, it is a topological order according
to mapping entailment.

V.2 Pruning the candidate mappings to test

Based on the monotony property of the probabilistic confidence function Pi (Theorem IV.1),
every mapping m′ that entails a mapping m such that Pi(m) < Su verifies Pi(m

′) < Su.
Therefore, in the algorithm we prune the probability estimation of all mappings that entails
any mapping m such that P̂i(m) < Si. We shall use the notation Implicants(m) to denote the
set of all mappings that entails m.

Similarly, based on the property of weak monotony of the probabilistic confidence function Pc

(Theorem IV.1), when a tested candidate mapping m is such that P̂c(m) < Sc we prune the
probability estimation of all mappings that entail m having the same left-hand side as m.

Proposition V.2 has a convenient consequence:

Proposition V.4 (Topological order enumeration maximizes pruning):
Testing the validity of mappings following the reverse topological order according to the �
relation maximizes the pruning.

Proof Proof of the proposition V.4:

Let assume that there exists a currently enumerated mapping m that is not pruned but
that should have been so, according to the strong monotony property of Pi (resp. the weak
monotony property of Pc).

Then, there exists a mapping m′ which should have triggered the pruning, so such that
Pi(m

′) < Si and m � m′ (resp. Pc(m
′) < Sc, m � m′ and lhs(m) = lhs(m′)). If such a
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pruning has not be done, then m′ has not been examined yet. It means that m′ will be seen
after m.

This is contradictory with the fact that the mappings are enumerated according to the reverse
topological order according to � and that m � m′.

�

Based on the order in which the mappings are generated, Proposition V.2 shows that the order
of generation of mappings maximizes the number of pruning.

V.3 The ProbaMap algorithm

We have designed an algorithm which combines the generation and the pruning seen above for
discovering valid mappings. We firstly describe a simple generic version of it in Algorithm 1.
insti and instj are two maps that store the declared instances for each class of respectively
Ti and Tj. For instance, insti(Ai) is the set of declared instances for the class Ai. Nodes(T )
represent the set of classes for a taxonomy DAG T .

Algorithm 1 ProbaMap-Simple

Require: Taxonomies (DAG) Ti,Tj , thresholds Sc, Si, Instances maps insti, instj
Ensure: returns {m ∈M(Ti,Tj) such that P̂i(m) ≥ Si and P̂c(m) ≥ Sc}
1: MV al ← ∅
2: MNV al ← ∅
3: for all Ci ∈ reverse topological order of Ti do
4: for all Dj ∈ in direct topological order of Tj do
5: let m = Ci ⊑ Dj

6: if m 6∈MNV al then
7: if P̂i(m, insti, instj,Ti,Tj) ≥ Si then

8: if P̂c(m, insti, instj,Ti,Tj) ≥ Sc then
9: MV al ←MV al ∪ {m}

10: else
11: MNV al ←MNV al∪Implicants_lhs(m,Tj) // Pruning using the weak monotony

12: end if
13: else
14: MNV al ←MNV al∪Implicants(m,Ti,Tj) // Pruning using the strong monotony

15: end if
16: end if
17: end for
18: end for
19: return MV al

Algorithm 1 returns mappings directed from Ti to Tj. In order to obtain all valid mappings, it
must be applied again by swapping its inputs Ti and Tj.

The discovered valid mappings are stored in the set MNV al. Mappings that are pruned are stored
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in the set MNV al. The nested loops in Line 4 in Algorithm 1 generate all the mappings Ci ⊑ Dj

by enumerating the classes Ci of Ti following a reverse topological order and the classes Dj of
Tj following a direct topological order according to the class specialization relation. According
to the property V.2, it leads to generate mappings in the reverse topological order with regard
to the logical entailment, form the most general to the most specific mappings.

When a mapping is generated and if it is not already pruned, it is firstly tested with regard
to Pi(m) ≥ Si in Line 7, then if it is positive, it is tested with Pc(m) > Sc in Line 8. In the
case Pi(m) < Si, all the implicants of m are marked as pruned (Line 14), thanks to the strong
monotony property of Pi. This is done by the function Implicants (m,Ti,Tj) which returns all
the implicants of m according to Ti and Tj

If Pi(m) ≥ Si but Pc(m) < Sc, then the property of weak monotony conducts to prune all
the implicants of m with the same left-hand side. They are returned by the function call
Implicants_lhs(m,Tj) in Line 11 and added to MNV al.

This ordered generation of mappings make the DAG of mappings with the entailment relation
� be traversed without been constructed. Such a DAG is likely to be huge (NiNj vertices and
at most (NiNj)2 edges), and to be the largest structure in the algorithm. We save a lot of
memory space when avoiding constructing it.

In the case the generated mapping to consider is already pruned, it is skipped. In order to know
if a mapping is pruned or no, the MNV al set is kept up to date by containing all the pruning
mappings from the beginning. Storing pruned mappings in a single set is a simple and efficient
way to traverse this DAG in the required order while handling an implicit pruning on it in the
same time.

Proposition V.5 (Correctness and completeness of ProbaMap):
Given two taxonomies Ti,Tj and two thresholds Si, Sc, under the assumptions that P̂u = Pu

and P̂c = Pc, and that Implicants and Implicants_lhs are correct,
ProbaMap returns all the possible mappings m from Ti to Tj for which Pi(m) ≥ Si and
Pc(m) ≥ Sc.

Proof :

Correctness
Each mapping m added in MV al respects P̂i(m) ≥ Si and P̂c(m) ≥ Sc thanks to the two
tests in Lines 7 and 8 in Algorithm 1.
With the assumed confusion between P̂c and Pc, and P̂i and Pi, each mapping m that
constitutes the returned set MV al verify Pi(m) ≥ Si and Pc(m) ≥ Sc.

Completeness
The nested loops in Line 4 generates all the candidate mappings from Ti to Tj. The test
of a mapping m is skipped only if m is pruned (it belongs to MNV al). Assuming that the
Implicants and Implicants_lhs are correct, such a mapping m has been pruned from an
consequence mapping m′ for which P̂i(m

′) < Si or P̂c(m
′) < Sc. Either Pi(m) ≤ Pi(m

′) =

P̂i(m) < Si or Pc(m) ≤ Pc(m
′) = P̂c(m

′) < Si. Then m′ is invalid.
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All of skipped mappings are invalid. Therefore, all of the others are tested and so no valid
mapping is skipped. MV al finally contains all possible valid mappings.

�

V.3.1 Implementation of ProbaMap

An overview of the actual mapping discovery sequence is the following:

1. Preprocessing phase (mandatory) −→ factors the computation of some data structure used
several times in the ProbaMap algorithm

2. Classification phase (optional) −→ classifies the instances of Ti in classes of Tj and vice-
versa

3. The ProbaMap core algorithm −→ computes the mappings whose probabilities Pi and Pc

exceed their respective thresholds, with data from 1 and 2.

The implementation of ProbaMap is detailed in the following algorithm 2. The input differs
slightly from the input of the simple Algorithm 1: in addition it requires the two sets of instances
Ii and Ij of both taxonomies, and three parameters for the classification purpose:

1. desci is the map that associates its description to each instance of Ti

2. descj is the map that associates its description to each instance of Tj

3. ClassEnabled is the boolean variable used to switch on/off the classification step

The two taxonomies DAG Ti, Tj are basically assumed transitively reduced: if there exist an
edge between Ai and Ci in Ti, there is no another longer path from Ai to Ci.

Here are detailed the functions and variables used in the algorithm during the three parts:
Preprocessing

• Topoi and Topoj denote the respective sequences Topo(Ti) and Topo(Tj) , that are com-
puted by the function Order_Topo in Line 2 taking a DAG as input.

• TCloi, TCloj are the respective transitive closure of the DAG of Ti and Tj that are com-
puted by the function Closure in Line 4.

• exti, extj appearing in Lines 5,6 are the two maps (one for each taxonomy) associating to
each class its extension : ext(Ci) = Ext(CI ,Ti). They are computed from the instances
declared maps insti and instj and the transitive closure of the taxonomies DAG, by the
Infer function:
Infer(insti, TCloi) associates to each class Ci the set of instances:
Infer(Ci, TCloi) = insti(Ci) ∪

⋃
C∈Predecessors(Ci,TCloi)

insti(C)

The extension of each classes Ci is used several times, for example when estimating the proba-
bilities of mappings of the form Ci ⊑ Dj , and when training the classifier for Ci. That is why
all extensions are computed in the preprocessing phase of the algorithm.
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The best way to compute them is to perform a traverse of the DAG in the topological order, as
for computing the transitive closure of the taxonomies.

Classification
In Line 9 Classification(Ti, exti, desci, Ii, Ij , descj) is used to complete the extension of each
classes of Ti with instances of Tj by exploitation of classifiers trained on the descriptions of
instances of Ti , denoted in the map desci. A similar call of Classification happens in the
next line for classifying instances of Ti into classes of Tj.

Core algorithm

• Estimation_PClass(Ci, exti), Estimation_PJoint(Ai, Bj, exti, extj) in Lines
23,24,20,21 are the two functions that compute the Bayesian estimator probability
for a given class Ci or an intersection of two given classes Ai and Bj . When the classifi-
cation phase is enabled, the only difference is that the estimation of the joint and class
probabilities aez done on the classified extensions of classes (Lines 20, 21).

• Implicants_lhs(m,Ti) is the implemented function (described below) that returns the
implicants of the mapping m in Ti with the same left-hand side.

• Implicants_Optimized( m,Ti,Tj) is the implemented function (described below) that
returns the implicants of the mapping in argument but without a part of them already
pruned by that procedure.

V.3.2 Implementation of the computation of probabilities estimations

As the two probabilities Pi(m) and Pc(m) can be computed from P (lhs(m)) and P (lhs(m) ∩
rhs(m)))), the estimation of these probabilities are computed from the estimations of P (lhs(m))
and P (lhs(m) ∩ rhs(m)). Following formulas given in Theorem IV.3, and by considering that
the observed instances O are represented in the argument maps exti, extj ,

• the set of observed instances for A Êxt(Ai,O) is replaced by ext(Ai)

• the set of observed instances for A∩B is replaced by Êxt(Ai ∩Bj , ′) by ext(Ai)∩ ext(Bj)

It leads to the two functions:

• Estimation_PClass(Ai, exti, Ni)=
1+|exti(Ai)|

2+Ni

• Estimation_PClass(Ai, Bj , exti, extj , N)=
1+|exti(Ai)∩extj(Bj)|

4+N

V.3.3 Implementation of the pruning functions

A special attention should be given for the two pruning functions Implicants_lhs and Impli-
cants_Optimized. They rely on classical primitives on DAG, providing predecessors, succes-
sors, ancestors and descendants of a class node.



64 V–ProbaMap: an algorithm for discovering mappings

As the DAG are stored directly by adjacency lists, we assume that the primitive Predeces-
sors(C,T ), Successors(C,T ) that returns the predecessors and the successors of a class C in
a taxonomy T are executed in O(1).

The transitive closure of each taxonomies TCloi, TCloj are computed in the preprocessing of
ProbaMap, therefore the ancestors and descendants of a class Ci can be computed in O(1):

• Predecessors(Ci, TCloi) provides the ancestors of any class Ci in Ti

• Successors(Ci, TCloi) provides the descendants of any class Ci in Ti

If Pc(Ai ⊑ Bj) < Sc, all implicants mappings of Ai ⊑ Bj with the same left-hand side have to
be pruned. Due to the Proposition II.1, they are all the mappings of the form Ai ⊑ Dj such
that Tj |= Dj ⊑ Bj.

The naive approach for implementing Implicants_Optimized is to compute the Cartesian
product of all ancestors of lhs(m) and all descendants of rhs(m), but it leads to a lot of redundant
computation because many pruned subsets overlap during the execution of ProbaMap. In other
words, many mappings may be pruned twice or more times, and the fact that a lot of invalid
mapping are found contributes to redundant pruning of the same mappings, as illustrated in
Figure V.2.

Figure V.2: Example of redundant pruning

The goal is to avoid generating mappings already pruned. In addition, it should be avoided to
store in memory sets of mappings that are already pruned. Hence we are forbidden to explicitly
compute the whole set of implicants or consequences of a particular mapping in order to do any
intermediate optimization or computation.

Therefore, we adopt another approach based on an optimized partial traverse of the DAG of
mappings D(Ti,Tj) to prune all implicant of one mapping that are not already pruned. This
DAG is traversed without been explicitly constructed in order to limit memory usage, and
because its whole construction would compensate negatively any effort to avoid to consider and
store mappings twice.
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The generation of the implicit DAG of mappings is based on the following property, which give
a way to generates predecessors of a mapping m on the fly in the DAG of mappings, using the
DAGs of the two taxonomies.

Proposition V.6 (Predecessors in D(Ti, Tj) ):
Let two taxonomies Ti,Tj . Let D(Ti,Tj) be the DAG as defined in proposition V.1. reduced.
Let m = Ci ⊑ Dj be a mapping. Under the assumption that T1,T2 are transitively reduced,
the predecessors of m = Ci ⊑ Dj in D are all and only all the mappings of the form:

• Ai ⊑ Dj with an edge from Ci to Ai in Ti

• Ci ⊑ Bj with an edge from Bj to Dj in Tj

Proof :

Let m = Ci ⊑ Dj be a mapping between Ti and Tj. Let m′ = Ci ⊑ Bj be a mapping such
that Bj is connected to Dj with an edge in Tj.
It is clear that m′ � m because Tj,m

′ |= m. If there exists a mapping m′′ such that
m′ � m′′ � m, then m′′ = Ei ⊑ Fj is such that:
Ti |= Ci ⊑ Ei ∧ Ei ⊑ Ci

Tj |= Bj ⊑ Fj ∧ Fj ⊑ Dj

As there is no cycle in Ti, Ci = Ei. As Bj and Dj are connected by an edge and no other
path, either Fj = Bj or Fj = Dj .

Then the two possible mappings for m′′ are Ci ⊑ Bj and Ci ⊑ Dj , so they are m and m′.
There is no mapping m′′ distinct from m and m′ such that m′ � m′′ � m.

Therefore, m′ is a predecessor of m. Then, each mapping m′ = Ci ⊑ Bj is a mapping such
that Bj is connected to Dj with an edge in Tj is a predecessor of m in D(Ti,Tj) .

A similar reasoning can be done for each mapping m′ = Ai ⊑ Dj such that there exists an
edge between Ci and Ai in Ti.

Let us assume that m′ = Ai ⊑ Bj is a predecessor of m = Ci ⊑ Dj. A fortiori, m′ entails m
and by Proposition II.1, we have Ti |= Ci ⊑ Ai and Tj |= Bj ⊑ Dj .

There exist no class Ei in the path from Ci to Ai in Ti, and no class Fj in the path from Bj

to Dj in Tj.

Otherwise, if there exist a class Ei in the path between Ci and Ai, we have :
Ei ⊑ Bj � Ci ⊑ Bj, so Ei ⊑ Bj � Ci ⊑ Dj

Ai ⊑ Bj � Ei ⊑ Bj

Then m′′ = Ei ⊑ Bj is such that m′ � m′′ � m and that contradicts the fact that m′ is a
predecessor of m.

A similar reasoning can be done with assuming that a class Fj is in the path between Bj

and Dj .

�
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The principle of the Implicants_Optimized function is that the DAG D is traversed from
m by generating successively predecessors of m, and then their own predecessors, etc. It leads
to an implicit depth-first traverse of D(Ti,Tj) from m. This traverse is optimized by avoiding
traversing mappings that have already been traversed.

The algorithm 4 presents the implementation of the function Implicants_Optimized:

Thanks to the test Line 14, when a mapping has been generated but is already pruned thanks by
the function Implicants_Optimized (use of the static variable StrongPruned), its implicants
are not generated from it. This is done by not pushing its predecessors to the stack. That is
the point of the optimization.

But some of its implicants can be generated later because they are implicants of another mapping
not already pruned.

Proposition V.7 (Termination, correctness and completeness of Algorithm 4):
Given two taxonomies Ti,Tj transitively reduced, a mapping m and a set of mapping already
pruned, Implicants_Optimized returns at least all mappings that implies m that are not
already pruned by this function.

Proof :

Let D be the DAG of mappings from Ti to Tj.

Correctness
Let m = Ai ⊑ Bj be the mapping from which Implicants_Optimized is called. According
to the fact that there are predecessors of m or transitive predecessors of m that are pushed
in the stack, each mapping added to ToPrune is of the form Ci ⊑ Dj with Ti |= Ci ⊑ Ai

and Tj |= Bj ⊑ Dj . By application of Proposition II.1, each mapping added to ToPrune is
an implicant of m.

Therefore the returned set of mapping is only constituted of implicants of m.

Termination
All mappings that are pushed in the stack S are either predecessors of m (according to Propo-
sition V.6), or predecessor of mappings that are already in the stack. Then, by a recurrence
reasoning it is clear that S contains only ancestors of m in D, that are all implicants of m.

A mapping m can not appear in S more than its number of successors Succ(m) in D(Ti,Tj),
because each of successors used to generate m are added to StrongPruned and will not be
used again to generate m (because of the test in Line 14). |Succ(m)| is majored for all m of
D by the maximum outdegree Degout of D.

At the ith iteration of the while loop in Line 8, the size of S is majored by Degout − i that
corresponds to a strictly decreasing sequence minored by the size 0. Therefore, the number
of iteration is bounded because the stack becomes empty.

Completeness
We denote StrongPruned0 the set StrongPruned as its initial state when Impli-
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cants_Optimized is called. Therefore, StrongPruned0 contains all mappings already
pruned by a previous call of Implicants_Optimized.

Let Level(m,k) be the set of implicants m′ of m for which the minimal path from m′ to
m has a length of k in D(Ti,Tj) . If we denote K the longest path in D(Ti,Tj), the set
Level(m,k) for 0 ≤ k ≤ K constitutes a partition of the implicants of m.

Let H(k) be the predicate that the set of mappings returned by Implicants_Optimized
contains all mappings of Level(m,k) \ StrongPruned0.

H(0) is trivially true: Level(m, 0) = {m}. In the algorithm 4, the returned set contains m
is contained if it is not already in StrongPruned0.

Let us assume that H(k) is verified. Let us assume that there exist a mapping m′ of
Level(m,k + 1) which is neither in StrongPruned0 nor in ToPrune at the end of the exe-
cution.

As m′ belongs to Level(m,k +1), there exist a shortest path of length k +1 from m′ to m in
D(Ti,Tj) . It can be decomposed into a path of length 1 between m′ and a mapping mk, and
a path of length k between mk and m. We have mk ∈ Level(m,k), else the path between m′

and m is not the shortest path.

As H(k) is verified, all mappings of Level(m,k) are either in StrongPruned0, or pushed then
popped, and added to ToPrune during the algorithm. In addition, all of their predecessors
are pushed to the stack. This happens in Line 12 according to the Proposition V.6 and the
fact that taxonomies are transitively reduced.

If mk belongs to StrongPruned0, it means that it has been pushed in the stack then popped
in a previous call of Implicants_Optimized, then that all its predecessors are pruned,
including m′. That is not the case because m′ is assumed not to belong to StrongPruned0.
Then mk 6∈ StrongPruned0.

As m′ is a predecessor of mk which is not already pruned, m′ is pushed to the stack at a
time. (Note that it can be pushed multiple times from multiple successors mk).

As m′ does not belong to StrongPruned0, the first time it is pushed to the stack, it is added
to ToPrune and so is returned by the algorithm.

In conclusion, H(k + 1) is true because all mappings of Level(m,k + 1) that do not belong
to StrongPruned0 are returned by Implicants_Optimized.

By recurrence on the levels Level(m,k), we have proved that each mapping of each
Level(m,k) for k ∈ [0;K] is contained in the returned set to prune or in StrongPruned0.

As Level(m,k) constitutes a partition of the implicants of m, all implicants are either re-
turned by the algorithm or already pruned by it.

�

Note that we can only avoid to prune mappings that are already pruned by Impli-
cants_Optimized, because a mapping pruned by Implicants_lhs has only a subset
of its implicants that are already pruned. That is why we distinguish the static variable
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StrongPruned from the variable MNV al of the algorithm.

Proposition V.8 (Complexity of Implicants_Optimized):
The overall complexity of all the calls of Implicants_Optimized during the whole ProbaMap
execution can be asymptotically bounded by O(mi + mj).

Proof :

Indeed, Implicants_Optimized has a linear complexity with respect to the number of
mapping considered in all the Pred sets (Line 12 of algorithm 4).

As a predecessor is only generated when one of its seed successor is popped from the stack
without belonging to StrongPruned, the same mapping can not be used to generate its
predecessor more than one time. Therefore, a mapping can be generated and considered at
most the number of successor it has. As a consequence, each edge in Ti and in Tj is only
used one time for each generated mappings to consider in Pred.

The number of iterations considering the elements of Pred over all the calls of Impli-
cants_Optimized is therefore majored by the total number of edges in both Ti and Tj.

�

V.4 Classification phase

The set of observed instances that belongs to Ai and Bj is the intersection of the two set of
observed instances for Ai and Bj :

Êxt(Ai ∩Bj ,O) = Êxt(Ai,Oi) ∩ Êxt(Bj ,Oj)

When taxonomies are independently populated from disjoint and independent pool of instances,
classification on instances can be exploited to merge the instances of both taxonomies in order
to avoid to obtain empty intersections of extensions, as explained in Section IV.4.

The general principle of the classification phase of ProbaMap is to construct one classifier for
each class of both taxonomies, each classifier learning its corresponding class C provided the
descriptions of instances of C as examples, and all descriptions of other instances in the taxonomy
of C as counter-examples.

The classification phase is separated into two parts:

1. classification of instances of Tj in classes of Ti

2. classification of instances of Ti in classes of Tj.

Due to their symmetry we only describe the first part.
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In the algorithm 2 we have given the articulation of such a processing with regard to the
ProbaMap algorithm. We now give the detail of the Classification function.

We denote desci, descj the maps giving the description for every instance I of both Ti,Tj .
These descriptions are preprocessed by the Preprocess function in order to obtain a vector of
numerical values for each instances. The raw format of description as the detailed preprocessing
are detailed in the Part II. The function Train creates a classifier in function of some provided
examples and counter-examples descriptions, which are preprocessed according to the learned
class. This classifier make a decision according to the description in argument. It returns true
if it predicts that the corresponding instance belongs to the class and false otherwise.

The implementation of classifiers that we use are those of Weka 3.6.4, i.e. NaiveBayes, J48 for
C4.5 and SMO for the SVM. The formats of their input and their output are the same, but J48
and SMO have some different parameters to be tuned. A more detailed usage of classifiers is
exposed in part II.

V.5 Complexity

The practical implementation is done in Java 1.6 using the jdt-graph 1.6 library for repre-
senting DAG structures of taxonomies, computing the closure and the topological sort of DAGs.

We give here some complexity elements for the whole ProbaMap algorithm. We denote ni, nj the
number of classes of Ti,Tj, and mi,mj the number of edges in each of them, corresponding to the
specialization relation between classes. Ni, Nj denotes the number of instances in respectively
Ti,Tj , and N the total number of instances in both taxonomies. We measure the complexity
according to the classical elementary operations like accessing to/adding/removing an element
of a set or a list, algebraic operations or comparisons and affectations.

• The complexity of the preprocessing phase is majored by the complexity of a depth-first
traverse of a DAG which is in O(|vertices| + |edges|), because the transitive closure, the
computation of classes extensions and the topological order can all be computed in this
way. Indeed, the transitive closure can be done by aggregation of pushed nodes and sets
of instance during a depth-first traverse. Moreover, a topological order is provided by the
reverse sequence of nodes traversed by a postfix depth-first traverse of a DAG. Therefore
the preprocessing phase is in O(ni + nj + mi + mj).

• The classification phase is separated into the training step and the proper classification.
We assume that TClass the complexity of the classification of one instance by a trained
classifier is O(1). We denote TTraining(N) the complexity of the training step with a set
of examples and counter-examples of size N .

– As there is a training step for each class on N examples and counter-examples in the
worst case, the training is in
O((ni + nj)× TTraining(N))

– All instances of Ti which do not belongs to Tj are classified in all classes of Tj and
vice-versa, so the proper classification has a complexity of
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O((N −Ni)ni + (N −Nj)nj)) = O(N(ni + nj))

The classification phase has a whole complexity of
O((ni + nj)× TTraining(N) + N(ni + nj)).

• The core algorithm is constituted by the nested loops of ni × nj steps. Inside these loops,
all the operation are in O(1) except the pruning functions:

1. Implicants_lhs has a complexity of O(nj) in the worst case in which Tj is a linear
graph and the function is called from the top class.

2. Implicants_Optimized has an overall complexity of O(mi +mj) as seen in Propo-
sition V.8

Therefore the complexity of the core algorithm is in
O(ninj(1 + nj) + mi + mj) = O(nin

2
j + mi + mj).

The overall complexity of the ProbaMap algorithm is then :

• O(nin
2
j + mi + mj) without classification

• O(nin
2
j + mi + mj + (ni + nj)TTraining(N) + N.(ni + nj)) with classification
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Algorithm 2 ProbaMap

Require: Taxonomies (DAG) Ti,Tj, thresholds Sc, Si, Instances maps insti, instj, instances
sets Ii, Ij , instances features maps desci, descj , boolean ClassEnabled

Ensure: return {m = Ai ⊑ Bj ,Tj)/Ai ∈ Nodes(Ti), Bj ∈ Nodes(Tj), and

P̂i(m) ≥ Si and P̂c(m) ≥ Sc}
1: // ——Preprocessing——

2: Sequence Topoi ← Order_Topo(Ti)
3: Sequence Topoj ← Order_Topo(Tj)
4: DAG TCloj ← Closure(Tj)
5: Map exti ← Infer(insti, TCloi)
6: Map extj ← Infer(instj , TCloj)
7: // ——Classification——

8: if ClassEnabled then
9: extCLi ← Classification(Ti, exti, desci, Ii, Ij , descj)

10: extCLj ← Classification(Tj, extj , descj , Ij , Ii, desci)
11: end if
12: // ———–Core———-

13: Set MV al ← ∅
14: Set MNV al ← ∅
15: for all Ci ∈ reverse order of Topoi do
16: for all Dj ∈ direct order of Topoj do
17: let m = Ci ⊑ Dj

18: if m 6∈MNV al then
19: if ClassEnabled then
20: Plhs←Estimation_PClass( lhs(m), extCLi, |Ii ∪ Ij |)
21: Pjoint← Estimation_PJoint( lhs(m), rhs(m), extCLi, extCLj, |Ii ∪ Ij |)
22: else
23: Plhs←Estimation_PClass(lhs(m), exti, |Ii|)
24: Pjoint← Estimation_PJoint( lhs(m), rhs(m), exti, extj , |Ii ∩ Ij |)
25: end if
26: pi ← 1− Plhs + Pjoint
27: if pi ≥ Si then
28: pc ←

PJoint
P lhs

29: if pc ≥ Sc then
30: MV al ←MV al ∪ {m}
31: else
32: MNV al ←MNV al∪Implicants_lhs(m,TCloj)
33: end if
34: else
35: MNV al ←MNV al∪Implicants_Optimized(m,Ti,Tj)
36: end if
37: end if
38: end for
39: end for
40: return MV al
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Algorithm 3 Implicant_lhs

Require: Mapping m = Ai ⊑ Bj , TCloj

Ensure: return implicants of m with the same left-hand side
1: Set ToPrune← {m}
2: // For all Cj descendants of Bj

3: for all Class Cj in Successors(Bj, TCloj) do
4: ToPrune← ToPrune ∪ {Ai ⊑ Cj}
5: end for
6: Return ToPrune

Algorithm 4 Implicants_Optimized

Require: Mapping m = Ai ⊑ Bj Taxonomy (DAG) Ti,Tj
Ensure: return mappings to be pruned from m
1: static variable Set StrongPruned: mappings that are pruned in this procedure
2: Set ToPrune← ∅ // the result variable returned by this function

3: Stack S ← ∅
4: if m ∈ StrongPruned then
5: Return ∅
6: end if
7: Push(S,m)
8: while Size(S) 6= 0 do
9: Mapping mc = Ci ⊑ Cj ←Pop(S)

10: StrongPruned← StrongPruned ∪ {mc}
11: ToPrune← Pruned ∪ {mc}
12: Set Pred← (

⋃
A′

i∈Predecessors(Ci,Ti)
A′

i ⊑ Cj) ∪ (
⋃

B′

j∈Successors(Cj,Tj)
Ci ⊑ B′

j)

13: for all Mapping m′ ∈ Pred do
14: if m′ 6∈ StrongPruned and m′ 6∈ S then
15: Push(S,m′)
16: end if
17: end for
18: end while
19: return ToPrune
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Algorithm 5 Classification

Require: Ti,Tj , TCloi, exti, Ii, Ij , desci, descj (set of instances)
Ensure: returns classified extensions for class of Ti with instances of Tj
1: extCLi ← exti
2: for all Ci ∈ classes of Ti do
3: PreprocessedDesc←Preprocess(desci, descj , Ci)
4: Exemples←

⋃
I∈ext(Ci)

descriptions(I)
5: CounterEx← Instancesi \ Examples
6: Classifier←Train(Examples,CounterEx, PreprocessedDesc)
7: Set Instances_ToClassj ← Ij \ Ii

8: for all Instance J ∈ Instances_ToClassj do
9: if Classifier(PreprocessedDesc(J)) = True then

10: for all Di ∈Predecessors(Ci, TCloi) ∪Ci do
11: extCLi(Di)← extCLi(Di) ∪ {J} // For all ancestors of Ci

12: end for
13: end if
14: end for
15: end for
16: return extCLi
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CHAPTER

SIX

EXPERIMENTS ON CONTROLLED SYNTHETIC DATA

This part on experiments aims at evaluating the ProbaMap algorithm and the interest of the
probabilistic confidence functions Pi and Pc. Firstly, this chapter introduces a thorough analysis
of quantitative and qualitative results of ProbaMap conducted on synthetic data. Secondly, the
Chapter VII reports results on real-world datasets, allowing to evaluate the scalability and the
quality of the output in a real-world setting.

For evaluating the quality of our results, we use the standard criteria of Precision and Recall
[VR75]:

• Recall is the ratio of returned results that are expected w.r.t. all expected results.

• Precision is the ratio of returned results that are expected w.r.t. all returned results.

The measured features of ProbaMap during this analysis are mainly:

• the Precision and Recall of the returned results as qualitative measures

• the ratio of mappings that are pruned during the algorithm execution and the computation
time as quantitative measure.

For the purpose of systematic testing in various conditions, we have evaluated ProbaMap on
synthetic data on which important parameters can be tuned to guarantee structural or distribu-
tional properties: for example, we can control the sizes of the taxonomies and so the size of the
search space, the number of mappings to discover, the number of instances per class, the noise
in the annotated data.

We have crossed these input parameters with the ProbaMap paramaters in order to measure
the whole impact these parameters whatever the features of the input data. The ProbaMap
parameters are the thresholds Si and Sc and the kind of classifier used for the instance merging
phase.

We first describe the principles and the process of the data generator on which we have conducted
the different experiments. Then we describe the experimental protocol that we have followed,
before presenting all the corresponding results.
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VI.1 Synthetic data generation

The synthetic data generation is a central issue for many scientific challenges. In our case
it allows to control the input data and expected results in order to evaluate ProbaMap in a
systematic way that can be considered independent of the application domain or bias in data.

Data generation in our context represents quite challenging issue when compared to other
synthetic data generation, such as functional Armstrong relation for functional dependencies1

[BDFS84], or transactional databases for frequent itemsets [RMZ03].

We are faced with the following hard challenges: (1) generating both the structure and the
instances of taxonomies, and (2) generating the mappings to be discovered. Roughly speaking,
we borrow the same principles than those developed for Armstrong relations [Fag82]. Each
generated mapping should be satisfied by the generated data, and each mapping that is not
generated should be contradicted by the generated data.

With regard to the Armstrong relations, our generation tackles additional issues. Firstly, the
structure may be generated whereas Armstrong relations suppose the structure (schemas) given.
Secondly, for relational databases, it is enough to generates two tuples that contradict one
dependency for ensuring that the dependency is not satisfied. In our case where mapping
probabilities are estimated from statistics on class extensions, the amount of instances that
contradict a mapping has a strong impact on its validity, then we can not only generate one
instance for each mapping to be contradicted.

Synthetic data generation is divided into three steps: generation of taxonomies with fixed sizes,
generation of the expected mappings to discover, and population of each class by generating a
fixed number of instances and associated description.

For a fair evaluation of performance, it is important to control the distribution of the taxonomies
that are provided as inputs to ProbaMap. For doing so, we rely on an existing model for the
random generation of combinatorial structures which is mathematically grounded ([DFLS04]).

For evaluating Precision and Recall of the mappings returned by the ProbaMap, we have to
compare them to a reference, so the generation step should include the generation of mappings
to be discovered. Thus, we generate the expected mappings and we force the extensions of the
classes to respect all the consequences of the generated mappings according to the taxonomies,
and only them. In other words, the instance descriptions should be coherent with the generated
taxonomies and mappings by respecting these two properties:

(PC) - Positive Coherence: the instances and their descriptions respect all the logical entail-
ments between classes which can be logically inferred from the generated mappings and
taxonomies (so-called expected entailments)

(NC) - Negative Coherence: the instances and their descriptions contradict all the logical en-
tailments between classes which can not be inferred from the generated mappings and
taxonomies (so-called unexpected entailments)

Therefore, below are the required specifications for our synthetic generator:

1An Armstrong relation for a set of functional dependencies is a relation that satisfies each dependency implied
by the set and does not satisfy any dependency that is not implied by it.
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Specification VI.1 (Generation of populated taxonomies and mappings):
Given (n1, n2,mS , np) ∈ N∗4, the generation process should provide:

• Two taxonomies T1,T2 of respective size n1 and n2

• MS : a set of mS distinct most specific mappings between T1 and T2 (in both directions)

• For each class C of T1 and T2, a set inst(C) of np distinct instances only declared as
instances of C.

• For each instance I, a binary description vector desc(I). All description vector have the
same length q (not fixed a priori).

such that the descriptions of instances respect:

• the property of Positive Coherence (PC)

• the property of Negative Coherence (NC) except for a statistically small and controlled
set of entailments

We have designed a method for generating the attribute descriptions of the instances in the
taxonomies which guarantees that the only relations that can be inferred by those descriptions
are those entailed by the generated class inclusions and the generated mappings. This is achieved
by the generation of enough distinct attributes to characterize each class inclusion stated in the
generated taxonomies and mappings.

We now describe the different steps of the data generation before proving that this genera-
tion respect the two properties of coherence. Generation is a three steps process: taxonomies
generation, mapping generation, and instances generation with their descriptions.

(a) Taxonomies and mappings (b) Instances and attributes

Figure VI.1: Example of result provided by the generation process
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Generation of taxonomies

Given constraints on number of classes n1 and n2, the structure of the two taxonomies T1 and T2
is generated as a forest of general trees (unconstrained in-degrees) by using a Boltzmann sampler
for unlabelled trees as explained in [DFLS04]. We have instanciated the proposition made in
[DFLS04], from which the following algorithms have been designed. Algorithm 6 generates
random general trees with a random size n, with the particularity that each tree of size n has
the same probability to occur than other of the same size. In Algorithm 7, a reject method
is used to get random rooted trees with a given number of node. Each new node provided
by New_Node of generated tree is automatically labelled by a new label by the function
New_Label that generates a novel string label. The parameter x used in the generation is set
to the particular value 1

4 in order to better distribute the sizes of all possible generated trees, and
optimize the reject method. Hence for instance, in order to obtain a random general tree of size
n, the following call should be done: GenTreeOfSize( n, 1

4 ). A general tree T is represented
by a pair (Root, SubtreesSet) where Root is the root node of T and SubtreesSet the set of all
subtrees of T . As there is no labelling in this step, the order of subtrees does not matter.

Algorithm 6 GenTreeRec

Require: Generation parameter x ∈ [0; 1
4 ], max size m

Ensure: returns a random general tree of size ≤ m or interrupts itself
1: global integer count

2: real Ax ←
1−

√
1−4x
2

3: if count + 1 > m then
4: INTERRUPT;
5: end if
6: Node NewRoot←New_Node(New_Label()))
7: List SubTrees← ∅
8: while RandomUniform([0; 1]) ≤ Ax do
9: SubTrees ← SubTrees∪GenTreeRec(x,m) // add a new subtree to the set of subtrees of

the generated tree

10: end while
11: Return (NewRoot, SubTrees)

Algorithm 7 GenTreeOfSize

Require: Size S, Real x ∈ [0; 1
4 ]

Ensure: Returns a random general tree of size S with an uniform probability among all general
trees of size S

1: global integer count
2: repeat
3: TreeGenTree← EmptyTree
4: count← 0
5: GenTree ← GenTreeRec(x, S) // GenTreeRec can be interrupted, in this case GenTree

remains empty.

6: until Size(GenTree) = S
7: Return GenTree
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To obtain taxonomies as forests with n1 and n2 nodes, we call GenTreeOfSize(n1 + 1, 1
4) and

GenTreeOfSize( n2 + 1, 1
4) and we remove the root node in the two provided trees then we

label each node by a distinct class name. This method is simple and bounded in O(n2) where n
is the required size, while guaranteeing an uniform distribution among the trees with the same
number of nodes. In our experiments, we generally set n1 = n2 so the two taxonomies have the
same size, which is the unique parameter of the taxonomies generation.

Mapping generation

We initialize the generation of mappings to be discovered MG with a setMS of seed mappings
with a size of mS .

Each mapping m ∈MS is generated by a random choice for the two classes lhs(m) and rhs(m)
in T1 and T2, or in T2 and T1, depending on the mapping direction which is randomly chosen
too.

There are three constraints on generated mappings:

1. Seed mappings should not introduce any cycle in the graph constituted by the two tax-
onomies plus the mappings. Figure VI.2(a) illustrates such a situation.

2. Seed mappings which logically entails class inclusions that are not entailed within each
taxonomy are rejected. In other words, we forbid generated mappings to modify the
knowledge of each taxonomy. Figure VI.2(b) illustrates this situation: the dotted arrow
in T2 represents a specialization relation which is a consequence of initial taxonomies and
generated mappings.

3. Seed mappings do not entail each other according to the taxonomies. On Figure VI.2(c)
, the mapping J1 ⊑ B2 (dashed arrow) is entailed by the mapping C1 ⊑ D2 and can not
been generated as a seed mapping if C1 ⊑ D2 is already a seed mapping.

(a) Cycle (b) Internal consequence (c) Mappings entailment

Figure VI.2: Counter-examples on constraints applied to mappings generation

The set MG of all mappings to discover will then be the set of mappings that can be logically
entailed by MS and the two taxonomies. Note that mappings of MG and by construction MS

do not introduce any cycle nor modify the knowledge of taxonomies.

We added a logical specificity parameter for the generation of mappings, that indicates a re-
quested number of consequences for seed mappings:
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• a high level of specificity forces each seed mappings to have at least h consequences map-
pings, where h depends on the taxonomies depths. For generating each seed mapping
mapping A ⊑ B, it is achieved by taking A among the highest classes in the first taxon-
omy, and by taking B among the deepest classes in the second taxonomy.

• a middle level of specificity forces each seed mappings to have at least l consequences
mappings and at most h consequences mappings, where l, h depend on the taxonomies
depths. For generating each seed mapping mapping A ⊑ B, it is achieved by taking A
among the classes that have a middle-height in the first taxonomy, and by taking B among
the classes that have a middle-depth in the second taxonomy.

Again, the specialization generated in taxonomies, the generated mappings and all their conse-
quences are those called expected ones. All the possible entailment between two classes of all the
classes of the taxonomies that are not expected are those called unexpected ones.

Instances and description generation

For this step, we consider the two taxonomies and the mappings between them as a DAG of
classes. The absence of cycle in that graph is guaranteed by the constraints imposed in the
production of the set MG of generated mappings described above.

We first generate a set of boolean attributes sufficient to associate a minimal intentional descrip-
tion of each class C for which generated instances will conform to.

The core of the principle is that the intentional descriptions should respect the semantic partial
order � conveyed by the above DAG structure.

Then, we use this intentional knowledge to generate a given number of instances for each class
C according to the description C.

Generation of the intentional description of classes:
We traverse the DAG of classes according to a reverse topological order [CLRS01] starting from
the most general classes that constitute the level 0, and we iterate the following process for
generating the intention of classes as sets of attributes:

• For each class C0
i of level 0, we generate a disjoint set of distinct attributes At0i and we

set the intention of C0
i , denoted Int(C0

i ), to be At0i .

• For each class Cj
i of level j (according to the reverse topogical order), we generate a set

Atji of novel attributes (disjoint from the set of existing attributes) with a size fixed to

the out degree of Cj
i in the DAG of classes, and we set Int(Cj

i ) to be Atji ∪
⋃

Int(Cj−1
ik

),

where the Cj−1
ik

are the successors of Cj
i in the DAG.

A result for two taxonomies T1 and T2 is shown in Figure VI.3. The classes that have no
parents (A1 and B1) constitute the level 0 and their intentional description are initialized
respectively by the attributes a and b. Then the intentional description of C1 can be
generated because it has only A1 as parent, and A1 has just been processed. The intentional
description for C1 constitutes of the union of the attributes of its parents in the DAG of
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classes, that is A1 (attribute {a}) plus a number of novel attributes equal to its outgoing
edges, so one, we will call c. Therefore, the intentional description of C1 is {a, c}. Further
in the process, the intentional description of E1 should contain the intentional description
of its two parents B1 and H2, plus two novel attributes e, e′ because there are two outgoing
edges. It leads to the description {b, e, e′, g, h}.

Intuitively, a novel attribute for an entailment relation in the DAG should be considered
as a specialization: the more the intentional description is large, the lower the number of
possible total descriptions is, and so the less probable are these descriptions to happen.

As we adopt the idea that one class with two parents is specialized twice and so more
specific that one class with only one of both parents, the number of possible descriptions
for instances of a class should be reduced twice. This is achieved by adding two novel
attributes in its intentional description instead of one. This principle is generalized to n
parents (outgoing degree) in our generation process.

Figure VI.3: Example of generation of intentional descriptions for each class

Population of classes:
Let {At1, . . . , Atq} be the set of attributes generated at the previous step. We populate each
class with np instances, and we associate to them descriptions that respect the corresponding
intentional description, as follows: For each class C, each of its instances is described by a
boolean vector [a1, . . . , aq] obtained by:

• setting to 1 each ai such that the corresponding attribute Ati is in the intention of the
class C,

• randomly setting the other values aj to 0 or 1.

This way, by construction, all the instances in the extension of a class have in common that all
the attributes in Int(C) are present in their description.

The results of the data generation can be summarized into a table Tdata with nA + n1 + n2

attributes, where each tuple [a1, . . . aq, c1, . . . , cnc ] concatenates the description [a1, . . . aq] of an
instance in terms of attributes, and its categorization [c1, . . . , cnc ] with respect to the classes:
for each i ∈ [1..nC ] ci is equal to 1 if i ∈ Ext(C) and to 0 if it is not the case.
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Correctness of the generation w.r.t. the required Specification VI.1

We need a reference to characterize a correct generation of instances according to the Specifi-
cation VI.1. In particular the (PC) and (NC) constraints should be instantiated with a precise
meaning for the fact that instances and their descriptions should respect all the logical entailment
between classes which can be inferred from the generated DAG.

For doing that for (PC), we will say that the instances and their descriptions respect such a
constraint if some particular reference estimations for Pc and Pi are very close to 1 for each en-
tailment in the DAG. This reference estimation is based on an oracle classifier that we introduce
here:

Definition VI.1 (Oracle classifier):
Given two generated taxonomies (with the set of all classes denoted C), generated mappings,
and intentional descriptions of classes and their common length q, the oracle classifier is a
function O : [0; 1]q , C rightarrow[0; 1] for which:

• O([v1, . . . , vq], C) = 1 if [v1, . . . , vq] fits the intentional description of C.

• O([v1, . . . , vq], C) = 0 otherwise

For each entailment formula between classes A ⊑ B, the oracle classifier can be used to obtain

the respective extensions of A,B and then A ∩B on the two taxonomies. We denote P̂c

O
(A ⊑)

and P̂i
O
(A ⊑ B) the estimations of Pc(A ⊑ B) and Pi(A ⊑ B) using such classified extensions.

The oracle classifier will be the reference used to characterize a correct generation of instances
according to the specifications VI.1. Therefore, Positive and Negative coherence properties (PC)
and (NC) based on the oracle classifier become the following constraints:

(PO’) - the oracle estimations P̂c

O
and P̂i

O
should return a value very close to 1 when applied to

an expected entailment relation according to the generated taxonomies and mappings

(NO’) - Conversely, P̂c

O
and P̂i

O
should return a value distant from 1 for all entailments between

classes that are unexpected

More formally these constraints are expressed as follows:
There exist ǫ ∈ [0; 1] and a function np −→ f(np) with limnp→∞ f(np) = 1 (np denote the
number of generated :instances by class) such that:

(PO) - P̂c

O
(A ⊑ B) ≥ 1− ǫ for each A ⊑ B expected entailment,

(NO) - P (P̂i

O
(A ⊑ B) ≤ 1− 2ǫ) ≥ f(np) for each unexpected entailment

The Theorem VI.1 asserts that the generator respects the Specification VI.1 according to the
oracle, in particular that the generator respects the two above constraints (PO) and (NO).
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Theorem VI.1 (Correctness of the generation w.r.t. its specifications):
The output of the generation process is correct with regard to the Specification VI.1 and the
oracle classifier.

The proof can be found in Appendix A in Section A.2.2. It uses the following property which
extends the relation Pc(m) ≤ Pi(m) to their estimations with the oracle classifier. The proof for
this property is written in Appendix A, Section A.2.1.

Proposition VI.1:
Given any formula of the form A ⊑ B where A,B are two classes, the following inequality
holds:

P̂c

O
(A ⊑ B) ≤ P̂i

O
(A ⊑ B)

VI.2 Experimental protocol

We first recall the goals of the successive experiments we have performed on the synthetic data:
the first goal is to analyze the impact of the thresholds Sc, Si on the quality of the result. This
experiment permits to fix appropriate thresholds for the next experiments. The second goal
is to analyze the impact of multiple parameters on the pruning ratio of ProbaMap, in order
to determine what causes ProbaMap to be more or less efficient. In particular we study the
influence of taking only one probability Pc or Pi versus both of them for the validity criterion.
We will consider generation parameters as the balance between the two taxonomies in term of
their size, and the specificity level of the generated seed mappings (measuring their respective
amount of consequences).

The third goal is to analyse and compare the impact both on Precision/Recall and on total run-
ning time of three real classifiers (Naive Bayes, C4.5 and SVM) for estimating the probabilities.
The purpose is to determine the classifier offering the best trade-off between quality of results
and running time. Note that we do not take the learning time of classifiers into account because
we consider that this task can be precomputed for each taxononomy.

The last goal with synthetic data is to analyse the robustness of the approach to noisy data.

For all the experiments on synthetic data presented in this section, each point is obtained by
averaging the results of 100 runs of ProbaMap, each involving two runs of Algorithm 2 (page
71), one for each direction of mappings: for two taxonomies Ti,Tj the search space is first
M(Ti,Tj) then M(Tj ,Ti). For each of these 100 runs, a new synthetic dataset is generated
with the parameters set. Note that in our experiments we generate taxonomies with few dozens
of classes. The number of random taxonomies of such sizes can be counted in billions. Thus,
averaging over 100 runs for a point does not prevent from local variations, leading to curves that
are not smooth.

Our algorithm is written in Java and compiled using Sun Java version 1.6. We run all the tests
on a quad-core Intel Q6700 Xeon at 2.66 GHz with 4 GB of memory. The OS is Ubuntu Linux
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8.10. For all the experiments measuring run times, only one instance of our program and the
OS are running on the machine, to avoid memory contention effects with other programs that
would affect the results.

Reference used for computing Precision and Recall

Following [Euz07], the computation of precision and Recall will be based on MG, the set of
all consequences of the generated mappings MS according to T1,T2. Let R be the result of
ProbaMap. The Recall is the proportion of mappings of MG actually returned by ProbaMap:

Recall =
MG ∩R

MG

The Precision is the proportion of returned mappings that are actually in MG:

Precision =
MG ∩R

R

Summary of parameters

There are two kinds of parameters for these experiments: the parameters for the generation,
and the parameters for ProbaMap. There are summarized in tables below.

Parameter for generation description range default value

Size of the search space candidate mappings: 2n1n2 100 - 8000 -
Balance n1 = n2 or n1 = 10n2 balanced/unbalanced balanced

Specificity of seed mappings amount of consequences middle/high middle
Number of instances per class 10 - 200 50

Parameter for ProbaMap description range default value

Si threshold for Pi [0;1] (0 for bypass) 0.90
Sc threshold for Pc [0;1] (0 for bypass) 0.85

Classification Name of the classifier Oracle/NB/C4.5/SVM Oracle

Except for a few experiments, the main parameter in the x axis will be the size of the search
space, i.e. the number of candidate mappings. Therefore, all parameters for which we measure
the impact are crossed with the size of the search space which is a major point in our approach.

VI.3 Experimental results

Impact of thresholds on Precision

We compare the influence of the thresholds Sc and Si associated to probabilities P̂c and P̂i on
the quality of the results returned by ProbaMap.

In this experiment, the computation of probabilities is performed using the oracle classifier.
The parameters in the synthetic generator are defined such that |M(T1,T2)| = 320. We set the
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number of seed mappings |MS | = 4. Note that by logical entailment the total number |MG| of
mappings to be discover may be much greater. For each pair of threshold Sc, Si ∈ [0.78; 0.995],
we compute the Precision and the Recall of the results of ProbaMap. We observed that the
Recall remains constant at 1.0 independently of values of Sc and Si. This is because thanks to
the oracle classifier, estimated probabilities for the mappings of MG are very close to 1, and
superior to all experimented thresholds, leading to a perfect Recall. Thus, we only show the
results for Precision in Figure 3.
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Figure VI.4: Precision w.r.t. Sc and Si thresholds

Figure VI.4 shows the contours of the different Precision levels, from a precision of 0.93 to a
precision of 0.99. From the shape of these contours, it is clear that both Ŝc and Ŝi and then the
used probabilities have an influence on Precision. As the relation P̂i ≥ P̂c holds (Proposition
VI.1), under the diagonal P̂i has no influence on Precision.

The probability P̂c is more discriminant than P̂i. The figure shows that P̂c influences the
Precision for a large range of values of the threshold Sc, while P̂i only has an influence for very
high values of Si. We have observed that the distribution of values of P̂c for valid mappings
overlap less the distribution of values of P̂c for invalid mappings that those for P̂i. The statistic
gap between valid and invalid mappings is larger for Pc than for Pi.

P̂i gives higher probability values to invalid mappings, this explains why it can only have an
influence on Precision at very high Si values. In addition, it should be noted that Si should be
higher than Sc to have an influence on testing the candidate mappings, because Pc(m) ≤ Pi(m)
for any mapping m.

Based on all these observations, we can conclude that it is interesting for the quality of results
(Precision, here) to use a combination of both probabilistic confidence functions Pc and Pi.

Based on the curve of Figure VI.4, we set the thresholds at (Sc = 0.83, Si = 0.96) for experiments
where the classifier used to estimate the probabilities is the oracle. This gives a good Precision
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of 0.95, and maps to a region where P̂i has an influence on the quality of results.

For the experiments in which a real classifier is used to estimate the probabilities, we relax the
thresholds at (Sc = 0.85, Si = 0.90) to be tolerant to classification errors.

Parameters influencing the pruning factor

Here we expose an analysis of the behaviour of the ProbaMap optimization part according to
different parameters. Except for the influence of the classifier, all experiments here are done
with the oracle classifier in order to consider unbiased situations.

Impact of the used probability functions on pruning factor

We now study the impact of the choice of the probability functions that are involved for testing
the validity on the pruning factor. We denote by pruning factor the ratio of number of calls to
the estimation functions Estimation_PJoint and Estimation_PClass used for Pc and Pi

estimations, with regard to the number of calls with a disabled pruning. That corresponds to
consider all candidate mappings, i.e. 2|M(Ti,Tj)| calls.

Figure VI.5 shows the pruning factor obtained using either only one of each probability model
by setting the threshold of the other to 0, or both of them. The reference is the naive approach
that does no pruning by testing all candidate mappings.
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ProbaMap version using only P̂i (by setting Sc to 0) is the one that prunes the least mappings,

computing probabilities for about 40% of all candidate mappings. Both versions using P̂c and
(P̂c and P̂i) does more pruning and obtain a significant reduction of the search space. Combining

P̂i and P̂c obtains slightly better results than using P̂c alone, so for the remainder of this chapter,
we set Sc and Si to non-zero real numbers. This is a very positive result because the combination
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of Pi and Pc allows to prune more than 75% of the search space (for search space larger than
2500 mappings), that is very time-saving, while improving the Precision (as seen in the previous
experiment).

Impact of balance of taxonomies on pruning factor

Figure VI.6 shows the pruning factor with regard to the size of the search space, in a balanced
situation where the sizes of the two taxonomies are equal, and in an unbalanced situation
where the size of T1 is ten times the size of T2. In the unbalanced situation ProbaMap slightly
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Figure VI.6: Pruning factor for unbalanced and balanced taxonomies

outperforms itself in the balanced situation. It is useful to know that the balance does not affect
the optimization of ProbaMap.

Impact of specificity of seed mappings on pruning factor

Comparative results for high and middle specificity of mappings are provided in Figure VI.7.
When the mappings to find are more specific, the pruning is less important. It can be easily
seen while considering that ProbaMap generates mappings from the most general to the most
specific, and can only prune implicants of mappings evaluated mappings. If the mappings to
find are more specific, there are more valid consequences mappings, and so less pruning to do
before finding the most specific that are valid.

Impact of the classifiers on time and quality of the results

In this subsection, we replace the oracle classifier with a real classifier. We compare the results
given by three well-known classifiers: Naive Bayes [Mit97], C4.5 [Qui93] and SVM [FL02]. We
use the Weka [WF05] implementation of these classifiers and have interfaced it with our code.
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Impact of the choice of real classifiers on pruning factor

Figure VI.8 shows that the used real classifier does not affect significantly the pruning factor,
whatever the size of search space. It is a good point related to the robustness of our optimization.
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Figure VI.8: Pruning factor for different classifiers

Impact of the choice of real classifiers on time

The comparisons of running times are shown in Figure VI.9 and in log scale in Figure VI.10.
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A first conclusion is that the running times are polynomial in the number of mappings. But in
our generator, the size of taxonomies is correlated to both total number of instances and length
of the attribute description q. Thus by increasing the size of the search space and so of the
taxonomies, there are three parameters that are changing in Figures VI.9 and VI.10. Thus, we
can not derive from them a complexity formula which would be only dependent of the search
space.

A second conclusion is that changing classifier does not have a significant effect. Naive Bayes is
slightly slower than C4.5 and SVM.

Impact of the choice of real classifiers on quality

Comparisons for Precision and Recall are respectively shown in Figures VI.11 and VI.12. What-
ever the classifier, Precision is not impacted by the number of candidate mappings, i.e. the size
of search space. This is also the case for the Recall, except when the classifier is Naive Bayes.
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Figure VI.11: Precision for different classifiers

Naive Bayes has both the worst Recall and the worst Precision, the choice is thus between C4.5
and SVM. They seem to have similar results. We thus choose C4.5 for further experiments
because it has a training time shorter than SVM (not taken into account in Figure VI.9).

We vary the number of instances per class np between 10 and 450. The results for computation
time, Precision and Recall are shown in Figures VI.13, VI.14 and VI.15.

In this experiment, the number of classes and of mappings is constant, hence the number of
classifications to perform is linear in the number of instances. The C4.5 algorithm takes linear
time in the number of instances. As expected, this is also the case for Algorithm 1, as shown
by Figure VI.13. Increasing the number of instances per class only increases slightly Precision,
whereas it strongly improves Recall. The most important point to note is that excellent values
of Precision and Recall are obtained with as few as 50 instances per class, as expected, with a
use of a Bayesian approach of statistics.
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Robustness to noisy data

In order to test the robustness to noise of our algorithm, we define a new parameter θ corre-
sponding to the quantity of noise to inject in the synthetic data. Each dataset produced by the
synthetic data generator goes through a step of noise application in attributes. Each boolean
corresponding to the value of an attribute for an instance can be reversed with a probability θ.
This is applied for all attributes of all instances. The new dataset is then processed as usual by
ProbaMap.

The variations of Precision and Recall for values of θ ∈ [0; 0.3] are show in Figure VI.16.
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The figure shows that Recall gracefully degrades when noise increases. At 10% noise, the Recall
is nearly unaffected, at a value of 0.95. Values of noise superior to 15% have a more significant
impact and lead to poor Recall.

Precision, however, exhibits a different behavior. It first increases with noise, before abruptly
decreasing for more than 24% of noise.

In order to understand this phenomenon, we have investigated in details the classifier results
and the values of probabilities given to mappings. We found that for 0% noise, there are
invalid mappings that are incorrectly given too high probabilities, and that appear as valid.
This explains the non-perfect 0.88 Precision value. The probability values for these mappings
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are close to the threshold. Increasing noise makes the classifiers more selective, and tends to
decrease the values of all probabilities. So the probabilities of these invalid mappings go below
the threshold for a moderate amount of noise, whereas the probabilities of valid mappings remain
above the threshold. Thus the Precision increases. This is an interesting result, that we might
study further in a future work in order to better discriminate valid and invalid mappings. For
example we could compare the mappings obtained by the original dataset and these obtained
on the same dataset but with an additional noise, in order to determine which mappings resist
to the noise.

In this chapter, we have introduced a synthetic data generator with good properties according to
the distribution of generated taxonomies and the coherence between instances descriptions and
the produced logical knowledge. We have exploited this generator for analysing the behaviour of
ProbaMap with regard to the parameters available in generation: size and balance of taxonomies,
degree of specificity of generated mappings, number of instances declared in each class, attribute
noise. We have shown that combining the two probability models is useful to improve qualitative
result, and allowing to do more pruning. The more the mappings to find are general, the more the
optimization of ProbaMap is efficient. The choice of classifier does not influence the Precision of
results, but C4.5 and SVM have significantly better Recall than Naive Bayes. Finally, ProbaMap
is robust w.r.t. a large proportion of noise in instance description, and is not influenced by size
variation of population in classes. Note that other matching systems could be used over our
synthetic data.
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CHAPTER

SEVEN

EXPERIMENTS ON REAL-WORLD DATA

After the detailed experimental analysis on synthetic data of Chapter VI, we confront ProbaMap
with real-world data in this chapter.

For doing this, we Recall the vision about the future Semantic Web where each user or or-
ganization annotates their documents with taxonomies. This have led us to apply ProbaMap
on taxonomies about large and popular domains, instead of attempting to align some expert-
designed or specific domain taxonomies. Thus the two series of experiment that we present here
are based on aligning parts of the Yahoo! and Google web directories.

Firstly we describe an experiment and some preliminar results on the OAEI Directory bench-
mark. As this benchmark containing no instances, we have made use of an external resource
(WordNet) to compensate the lack of instances that ProbaMap needs.

Secondly we present a comparative experiment with the SBI [ITH03] method on aligning Yahoo!
and Google subdirectories.

VII.1 OAEI directory benchmark

VII.1.1 Dataset and experimental settings

We have made experiments on the directory set of the Ontology Alignment Evaluation Initiative
(OAEI) [EFH+09] contest. This benchmark for the 2009 edition has been created by the TaxMe
2.0 method presented in [GYAS09], by combining an automatic collection of data with a human
process of discovery. This dataset is constituted by two large taxonomies of respectively 2857
and 6628 classes, extracted from the Yahoo!1, Google2 and Looksmart3 directories. Google
directory is based on the Dmoz OpenDirectory project4. The top levels for Yahoo! and Google

1http://dir.yahoo.com
2directory.google.com
3http://www.looksmart.com
4http//www.dmoz.org
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directories are pictured in Figure VII.1. A sample of these taxonomies is illustrated in Figure
VII.2.

(a) Sample directory
from Yahoo!

(b) Sample directory from Google

Figure VII.1: Top levels of Yahoo! and Google directories

In addition to the two provided taxonomies of classes, the Directory benchmark comes with the
reference set of correspondences to be discovered by alignment methods. This set is constituted
of equivalences between classes. We will detail below three ways to compare our result against
this reference to measure Precision and Recall.

For the OAEI contest, due to scalability issues, the two initial taxonomies of the Directory
benchmark are split into the set of their branches. A subset of more than 4,000 pairs of branches
is also provided to participants as a modified dataset. Participants are invited to discover
mappings between all pairs of branches: thus they have to match very small taxonomies but
4,000 times. Up to now, all participants have used this split version of the dataset whereas
the full version has also been provided. In contrast, our algorithm is able to handle the two
whole taxonomies, thus taking advantage of the complete structure of the taxonomies. It is
important to note that without pruning, this would lead to a search space of more than 30
million mappings.

Evaluation method

The output of ProbaMap is constituted by inclusion mappings. We use three ways for evaluating
this output against the reference set of equivalence correspondences:
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(a) Sample directory 1 (b) Sample directory 2

Figure VII.2: Samples of the OAEI Directory benchmark extracted the two respective tax-
onomies to match

1. Standard Precision and Recall: Precision and Recall are computed with the classical for-
mula, and the set of discovered correspondences is computed from the set of discovered
mappings by these two options:

(a) a correspondence A ≡ B is discovered if and only if the two inclusion mappings A ⊑ B
and B ⊑ A are discovered, i.e. iff
min(P̂c(A ⊑ B), P̂c(B ⊑ A)) > Sc and min(P̂i(A ⊑ B), P̂i(B ⊑ A)) > Si

(b) a correspondence A ≡ B is discovered if and only if the respective arithmetic means

of the probability estimations P̂c and P̂i in both directions exceeds their respective
thresholds Sc and Si,i.e. iff
mean(P̂c(A ⊑ B), P̂c(B ⊑ A)) > Sc and mean(P̂i(A ⊑ B), P̂i(B ⊑ A)) > Si

2. Semantic Precision and Recall (inspired on [Euz07]) are computed based on a modified
reference, that includes all inclusion mappings corresponding to the original reference plus
the union of the consequences of each of them according to the taxonomies.

The semantic Precision and Recall seem to be more relevant for our approach focused on inclusion
mappings and logical coherence. Indeed, including the logical consequences of the original
reference mappings in the evaluation is fair and justified by the fact that any inclusion mapping
discovered and entailed by the correct reference set should impact positively the Recall and the
Precision.
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Population of classes using WordNet

The OAEI Directory dataset does not contain any instance. For compensating the absence of
available instances for these taxonomies, we use a method inspired by [SBMZ03] to automatically
populate the classes with WordNet [C.98] synsets.

WordNet is an english thesaurus constituted by a set of synsets. Each synset represent a meaning
of a word (or everal words). Synsets are connected to each other by a large set of semantic
relations, like HYPONYM (which means “is a”) or MERONYM_PART which means “part of”.
In addition, WordNet provides a way to find all possible synsets corresponding to a (possibly
compound) word.

The principle of this population is based on associating with each class C a set of WordNet
synsets that reflect the right meaning of the label of C in the context where it appears, i.e. the
labels of the ancestor classes of C in its taxonomy. This help to disambiguate the meaning of
a word: for instance, the label “Arizona” can correspond to a state of the U.S.A. or to a snake.
If the Arizona class is a child class of “Animals”, the label “Animals” can be used to guess that
“Arizona” means the snake species.

More precisely for populating the class C, our population algorithm follows these principles:

1. To find all the possible meanings of the label of C

(a) to find the main component of the label of C which has at least a corresponding
synset in WordNet, for example:

• “car” → car

• “Rock’n roll” → Rock’n roll

• “Software engineering” → Software

(b) to query WordNet for all synsets of this main component and store it in the Kernel
set
→ at this step all senses of the word are found, so it appears to be not sufficient to
correctly populate C

(c) to query WordNet and to store in the Kernel_Ext set all synsets connected to
the synsets of Kernel with a path of length bounded by a max_depth param-
eter, with relations is a or part of (more precisely, in WordNet : HYPONYM,
HYPONYM_INSTANCE, MERONYM_PART, MERONYM_MEMBER, MER-
OBYM_SUBSTANCE ).

2. To find the synsets related to the context of the label of C

(a) to create the context set of synsets for C: constituted by all synsets CS1, . . . , CSn

corresponding to all the words of the labels of the ancestors classes of C in its tax-
onomy, plus the words of the label of C that are not in the main component (e.g.
“engineering” for “Software engineering”).

(b) to query WordNet to obtain for each context synset CS1, . . . , CSn all the connected
synsets CS_Ext1, . . . , CS_Extn by semantic relations (”is a” and “part of”) with a
path of max length max_depth.
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3. Select synsets of Kernel_Ext that are closest to all the synsets in CS1, . . . CSn in term
of the shortest relation path in WordNet.

Note that for a compound label with a connector like “&, and, or”, the label is split into all its
parts leading to a population for each part. The population of the compound label is obtained
by doing the union of the population of each part. Indeed, the semantics of a class labeled “Pop
& Rock” should be the union of Pop music and Rock music.

The population phase can be tuned by two parameters:

1. the maximum depth of related synsets for each query of synsets related to a word

2. the size of the context (up to which ancestor to take the labels into account ?). May be
set to 0 in order to ignore the context. Taking all the context correspond to unbound this
parameter.

3. the selection level for the step 3 of the process.

maxdepth and selection level have been tuned on multiple couple of branches, for example by
trying to match the branch from the first taxonomy containing the class Hip_Hop with the
branch of the second taxonomy containing the class Rap_&_Hip-Hop.

All classes can not be populated by this processing phase. For instance, a class labelled “Alpha-
betical_Order” can not be populated by our system, because there is no corresponding entry
for the main word that constitutes it.

For tuning the population phase, we do some preliminary tests on small taxonomies for which
we could compute the Precision (by hand).

Input characteristics and results are summarized in the following table:

|T1| 50 (total) - 49 (populated)
|T2| 102 (total) - 98 (populated)

Search space 9604 mappings

si 0.9
Sc 0.8

max_depth 12
Precision without context 64%

Precision with all the context 90%

We could not compute Recall for this preliminary test.

Using the context to populate the classes significantly increases the Precision, whatever the size
of the context above three (included). Therefore the population process seems to be relevant
and capture the real meaning of classes.

VII.1.2 Results

Data characteristics for this experiment (input data and algorithm run) on the whole directories
are summarized in the Table VII.1 below.
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Classes of T1 2857 (total) - 2608 (populated)
Classes of T2 6628 (total) - 5988 (in WordNet)

Classes not populated by WordNet 887 (9,3%)
Total instances number 31724

Threshold Si 0.9
Threshold Sc 0.75

Size of the search space 31 233 408 mappings
Pruning ratio 4.2%
Pruned mappings 29 891 577
Valid mappings 117 553 (0.2%)

Population time 5h
ProbaMap time 11’

Table VII.1: Measures for the run of ProbaMap on OAEI directory dataset

As the references with which OAEI organizers computes Recall and Precision are only available
for the split dataset, we add a postprocessing phase: for all pair of branches of the split dataset,
we return mappings that are found by ProbaMap between respective classes of these branches.
We noticed that more than 90% of mappings discovered by ProbaMap are lost during this step
(for the partial reference, see below) and so they can not be evaluated.

Scalability result

On the two whole taxonomies, the population phase produces about 30000 instances and takes
5 hours while the mapping discovery algorithm itself only takes 11 minutes. These are very
reasonable computational times for handling 30 million possible mappings.

Evaluation on the partial reference

For evaluating the quality of the set of mappings discovered by our algorithm, we were provided
a partial reference by OAEI, which covers a subsets of the pairs of branches provided to partic-
ipants. Based on this, we could compute an estimated Recall over the restriction involved by
this partial reference, and we could only compute a lower bound of Precision. This is due to the
fact that this partial reference contains only a subset of the mappings to discover, but is not
complete.

The table in Figure VII.3 gives semantic Precision and Recall, and standard Precision and Recall
computed with both “min” and “mean” versions, crossed with three values for the Sc threshold.

The line with the value “wordnet/regular” for Recall corresponds to the fact whether the evalu-
ation takes into account the mappings of the partial reference that involves classes which could
not been populated by WordNet. These mappings can not be discovered by ProbaMap in this
setting. We can notice that the difference between the two evaluations (in respective both
columns of Recall) can be neglected.

The first conclusion is that the Recall is very low for each parameter, and that the evaluation
for the semantic measures are better than those for the standard measures.
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Figure VII.3: Results based on the partial reference

The second conclusion is that increasing Sc leads to a very better standard and semantic Pre-
cision whereas the Recall slightly decrease. Selecting a threshold of 0.8 for Sc appears to be a
better choice.

The third conclusion is that the evaluation with the equivalence correspondences computed from
the mean or the min of probabilities does not differ significantly.

Finally, these results seem quite promising, for the thresholds Si and Sc respectively set to 0.9
and 0.8 we obtained a lower bound of Precision of 67%1.

Evaluation on the complete reference

Our results have been evaluated against the complete reference by one of the OAEI organizer
(Juan Pane) out of the contest. With this complete reference, the Recall is 1.4% and the
Precision is 43.4%. Semantic Recall is 17.5% and Semantic Precision is 48.3%.

Note that others methods results are around 60% for Precision and 50% for Recall1. But we
could not compare us to others in term of Semantic Precision and Recall, then the comparison is
not totally fair, especially for our approach which connects to the logical semantics of mappings.

There are two reasons that explain such bad qualitative results:

1. the overfitting of the population phase on subsets of the whole dataset.

2. the lack of robustness of the population phase with regard to the changes in the dataset
in input

3. WordNet is a linguistic-oriented resource based on a relation graph. This characteristic
makes it hard to do an adequation with the principle of probability estimations based on
extensions of populated classes and their ratios. A good perspective may be to analyse it in
the spirit of methods proposed in the survey about using WordNet for Ontology Matching
[LS08], especially of methods like [Res99] that proposes an uniform and independent of
the corpus link distance between two labelled concepts.

The second experiment shows that providing non-artificial instances of classes makes ProbaMap
give better result.

1Fore more details, see http://disi.unitn.it/~pane/OAEI/2009/directory/result/

http://disi.unitn.it/~pane/OAEI/2009/directory/result/
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Yahoo! Google shared
classes instances classes instances instances

Autos 947 4406 967 6425 837

Outdoors 2428 5511 1441 13863 623

Software 323 2390 2395 30140 572

Photography 168 1851 321 3852 286

Table VII.2: Statistics on data collected from subdirectories on Yahoo! and Google

VII.2 Comparative analysis on collected Web Directories

In this section, we test ProbaMap on part of Internet directories from Yahoo! and Google (actu-
ally based on Dmoz) that are rooted with similar or very close label. These sub-directories are
considered as taxonomies, and URLs referenced inside each class of the taxonomy as instances.

The main difference with the sequence of experiments in the previous section is that the dataset
contains original instances that are collected with their taxonomies, avoiding to process an
artificial population.

We compare our approach to the SBI algorithm of Ichise et al. [ITH03, IHT04], which is
dedicated to the discovery of mappings between Internet directories, and the integration of such
directories.

Internet directories are trees of categories, which can be seen as taxonomies, categories being
the classes. Each category contains a set of links (i.e. URLs to web sites), which can be seen
as the instances of the class. Each link comes with a small text summary, whose words can be
seen as instance attributes for classification.

Our datasets are corresponding locations in the Yahoo! and Google directories, that have also
been used in the experiments of [ITH03, IHT04]:

• Yahoo! : Recreation / Automotive & Google : Recreation / Autos

• Yahoo! : Recreation / Outdoors & Google : Recreation / Outdoors

• Yahoo! : Computers_and_Internet/Software & Google : Computers/Software

• Yahoo! : Arts / Visual_Arts / Photography & Google : Arts / Photography

The data from the directories was collected in June 2010, so is different from the data of [IHT04]
and [ITH03] which was collected in Fall 2001.
Table VII.2 shows for each dataset the number of classes and instances in each class, and the
number of instances shared between the Yahoo! and the Google directories. Two instances are
considered shared if they correspond to the same URL in both directories. For a fair comparison,
we have implemented both ProbaMap and the SBI algorithm in Java.
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VII.2.1 Experimental protocol

Adaptation of ProbaMap to fit the SBI framework

As detailed in Chapter III, SBI takes as input one source taxonomy, one target taxonomy,
and the instances declared for each class of both taxonomies. For each class Cs of the source
taxonomy, SBI returns a rule Cs → Cpredicted

t associating Cs to a target class Cpredicted
t in the

target taxonomy.

In order to fit the evaluation framework of SBI, we added a postprocessing to ProbaMap to
obtain a similar form of results, i.e. a set of unique rules for each class of the source taxonomy.

The complete process is the following:

1. Application of ProbaMap on T1 and T2

2. For each class C1 of T1,
among all C2 for which the two mappings C1 ⊑ C2 and C2 ⊑ C1 have been discovered,
select the class C2 for which min(P̂c(C1 ⊑ C2), P̂c(C2 ⊑ C1)) has the highest value.

3. For each class C1 of T1, if there is no rule for C1, associate to C1 the rule of its closest
ancestor in T1

In this way we obtain an unique rule C1 → C2 for each class of T1, like the SBI system.

Evaluation measure for quality

The goal of our experiments is to compare the quality of Internet directories alignement for
ProbaMap and SBI.

For the discovery of mappings, ProbaMap and SBI receive a “training” set of instances which
is a subset of the shared and annotated instances. The test set used for evaluation of the
discovered mappings is constituted by the remaining instances among the shared ones. In the
case where ProbaMap is set to use classification, the training set is extended with all the non
shared instances.

The classification is performed using the SVM implementation SMO [FL02] in Weka [WF05],
where the classification attributes for an instance are the words of its summary. The previous
experiments shows that SVM and C4.5 have the better quality and that C4.5 is quicker than
SVM. Nevertheless we conduct the experiment with SVM which is expected to performs better
with the preprocessed data which is quite sparse.

The evaluation is done by using the test set of instances. Each instance of this set belongs to a
class Cs of the source taxonomy. Hence, we can compare:

• the class Cpredicted
t of the instance, predicted by the output rule Cs → Cpredicted

t

• the class Ct in which the instance is declared in the target taxonomy (each instance of the
test set is common to the two taxonomies)
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The accuracy measures the ratio of the instances in the test set for which Cpredicted
t = Ct .

Accuracy is a standard micro-averaged evaluation measure which is based on instances, whereas
Precision and Recall used above are macro-averaged measures based on mappings themselves. As
there is no reference of mappings provided for the considered Yahoo! and Google subdirectories,
but a sufficient ratio of instances are shared by them. Therefore we use accuracy to evaluate
ProbaMap in this experiment, and to fit the evaluation framework of SBI (used in [IHT04]).

VII.2.2 Results

Impact of the threshold Sc

A preliminary experiment was conducted to choose the best threshold Sc and si. As si has
a lower impact for these experiments when being below 0.9, we set it to 0.9, in order not to
over-tune our algorithm to the dataset.

Here we focus on the variation of Sc, in Figure VII.4.
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Figure VII.4: Accuracy w.r.t. the threshold Sc

The best value for Sc is around 0.6 and we choose this value for the rest of the experiments.
Remember that the rules are constituted by the more specific valid mapping, if it exists. Oth-
erwise, it is the mapping for the parent class that is used (and so on). Therefore tuning the
threshold corresponds to handle the trade-off between the risk of bad validated mappings (when
Sc is too small) and the bad case where there is too many rules derived from the parent classes,
when Sc is too high. For Sc very close to 1, all rules associate the class of the source taxonomy
to the root class of the target taxonomy.
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VII.2.2.1 Main comparative results

We computed the accuracy of mapping prediction on the test set, and conducted a ten-fold cross
validation. The results when varying the size of the training set are shown in Figures VII.5,
VII.6, VII.7, VII.8 for the fours dataset.
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Figure VII.5: Autos: Comparative accuracy for SBI and ProbaMap
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Figure VII.6: Outdoors: Comparative accuracy for SBI and ProbaMap
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Figure VII.7: Software: Comparative accuracy for SBI and ProbaMap
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Figure VII.8: Photography: Comparative accuracy for SBI and ProbaMap
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From these results, we can conclude that ProbaMap outperforms SBI in average, with a .

SBI performs better for Outdoors and Software in the direction Google into Yahoo!, but it is
distant of less than 5% in accuracy. Conversely ProbaMap significantly improves SBI results for
Autos and Photography (about +10% better). In addition, ProbaMap is more robust than SBI
against the quantity of instances used for discovering mappings and rules.

Now we shortly analyse these results with regard to he statistics for number of instances per
class that are given in Table VII.3.

Subdirectory Declared Inferred Classified Classified + Inferred

Yahoo! - Autos 0.86 3.24 34.12 70.31
Google - Autos 0.84 3.18 23.93 65.25

Yahoo! - Outdoors 0.39 1.16 9.40 31.93
Google - Outdoors 0.66 1.96 15.83 53.80

Yahoo! - Software 1.70 6.00 107.41 402.62
Google - Software 0.23 0.81 14.48 54.29

Yahoo! - Photography 1.75 4.28 54.23 77.06
Google - Photography 0.91 2.22 28.21 40.99

Table VII.3: Number of instances by class

First, SBI and ProbaMap have better results when the number of instances per class is larger.
The cases where ProbaMap does not outperform SBI correspond to the cases where the tax-
onomies has very few instances per class (less than 2 inferred): for Outdoors and Software.
Therefore, we can deduce that a very low population of classes leads to bad results with
ProbaMap.

It seems to contradict the robustness of ProbaMap against the decrease of instances amount in
the x-axis of the accuracy figures. But in this robustness experiment, the decrease of instances
number is equally distributed in each class, so the instances distribution remains roughly sim-
ilar to the distribution in the initial directory. In contrast, Outdoors and Google/Software

should have unbalanced distribution of instances in classes leading to a lot of (almost) empty
classes. In fact, this situation is the worst case for ProbaMap because the Bayesian estimation
of probabilities is based on ratios of the sizes of class extensions.

Impact of the classification

We have conducted some preliminary tests for determining the best classifier between SVM
and C4.5 (as Naive Bayes has been discarded by the tests on synthetic data). We also wanted
to determine the best preprocessing and parameters for it. The evaluation is based on cross-
validation of classifiers. We found that SVM was the best and that the best preprocessing was a
bag-of-words preprocessing on text abstract of instances pages that keep about 500 words, with
a TF-IDF weighting and a stemmization step for words.

For the use of classification, we should underline the following points:

• There is a few instances added directly by the classification with regard to the number of
total instances, but these instances are correctly classified according to the cross-validation
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tests computed. Therefore, there is a good Precision on instances classification, but we do
not know the Recall.

• As the number of total instances is very higher than the instances of classes, almost all
probabilities Pc are close to 0 and Pi are close to 1. Then Sc is set to 0, and Si is considering
as very hard to set without doing overfitting or experiments on a large amount of different
dataset, so it is set to 0 here. (Further experiments should be conducted to determine a
good value for Si.)

• Because of the very low values for all probabilities Pc, we adapted the post-processing phase
allowing to obtain rules from mappings. We include the computation of probabilities for
mappings in both directions, and for each source class A, we associate the target class B
such that min(Pc(A ⊑ B), Pc(B ⊑ A)) is the highest among all possible target classes.

ProbaMap with classification outperforms both ProbaMap and SBI, with a better accuracy (at
least 10%) in average for ProbaMap with classification. Note that when using classification, the
average accuracy of ProbaMap with a limited training set size (50% of shared instances) is better
in average than the accuracy of SBI with a training set containing 90% of shared instances. In
particular, ProbaMap with classification significantly outperforms ProbaMap without Classifi-
cation (about 10% better) and SBI (about 20% better) for the datasets Autos and Photography,
whatever the size of the training set. Additionally we can see that ProbaMap with classification
outperforms SBI on the Software directory up to 60% of instances for the training set, whereas
ProbaMap without classification does not. For the Outdoors results pictured in Figure VII.10(a),
ProbaMap with classification is better for a small training set (≤ 20% of the shared instances).
Thus, in the case where there are initially few instances by class and where ProbaMap without
classification provides the lowest results, the classification allows to improve the results. But this
improvement becomes slight if there are a small quantity of classified instances. For example,
the dataset Outdoors is in this case, and the results for Outdoors performed by ProbaMap with
classification might be explained by the very few amount of declared and inferred instances, that
are not enough to train correctly the classifiers.

We have also check that all these results both for ProbaMap and ProbaMap with classififcation
are rougly better in average than the results of a modified version of SBI using Naive Bayes
classification so-called SBI-NB [IHT04]. More exactly, both versions of Probamap perform
better for 6 of the 8 tested directories. (Note that we are provided results for SBI-NB with an
old dataset collected in 2004, so the comparison is roughly done.)

The experiments conducted on collected Web directories show that the probabilistic mapping dis-
covery method that we propose gives good results on real-world datasets, and can take advantage
of classification techniques to compensate small training set sizes. This is an important quality
for real world taxonomies built by different people, that are unlikely to have many instances in
common. The worst case for ProbaMap is the lack of instances or the lack of descriptions for
classifying them when classification is needed to merge instances between taxonomies.
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Figure VII.9: Comparative accuracy results using classification (1)
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Figure VII.10: Comparative accuracy results using classification (2)



CHAPTER

EIGHT

CONCLUSION

The general problem addressed in this thesis is ontology matching. This problem turns out to
be one of the main bottlenecks in the future Semantic Web, for example to enable collaborative
exchange of data between multiple sources. In particular, we have focused on tackling the issue
of handling uncertainty for inclusion mappings while defining a formal logical semantics for
them.

In this perspective, we have presented two probabilistic functions that can be used and estimated
to associate a confidence value to each discovered mapping of the form A ⊑ B where A and B
are ontology classes:

• Pi(A ⊑ B) = P (A ∪B)

• Pc(A ⊑ B) = P (B|A)

where P is a probability measure on a probability space of instances, and classes are subsets
(i.e. events) in this space. By analyzing the properties of both probabilistic functions, we have
shown that a combination of them leads to better quality and better algorithm time complexity.

We have proved a property of monotony for the probabilistic functions Pi and Pc with regard
to the logical entailments: a mapping can not have a probability value lower than all its conse-
quences. We have pointed out that this is true for Pi in any cases, and true for Pc only if the
class on the left-hand side of the mappings remains the same.

We have even shown a more general result: under additional assumptions, all probabilistic
functions that respect the strong property of monotony should be of the form f(Pi(A ⊑ B))
with f a continous increasing function in [0; 1] (see Theorem IV.2 page 50). Therefore Pi is the
simplest function that respect this property. This theorem brings a grounded justification to
the use of the probabilistic function Pi for measuring the probability of mappings.

For estimating probabilities values, we have presented a Bayesian method based on instances,
i.e. extensions of classes and classes intersections. In the cases where the taxonomies are
populated with disjoint pools of instances, we have adapted and tuned a common way for merging
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instances of both taxonomies by exploiting classifiers trained with instances of taxonomies taken
in isolation. Features used as data for classifiers are the preprocessed textual descriptions of the
respective instances.

Then we have devised a generate-and-test algorithm called ProbaMap that discovers all possible
inclusion mappings between two taxonomies for which Pi and Pc respectively exceed two given
thresholds Si and Sc. In order to be scalable, ProbaMap exploits the monotony property to prune
its search space. It is important to note that the structure of the search space is not explicitly
stored in memory, thus the pruning function is a sore point of the ProbaMap implementation.

Finally, we have conducted two kinds of experiments to validate our approach. The first phase
was constituted by a thorough analysis of the behaviour of ProbaMap on controlled synthetic
data. We have designed a full generator for synthetic taxonomies, mappings and instances.
Different parameters allow to set the size of the taxonomies and then of the search space such
that the size of the mappings to find out and the number of instances in each class. This
generator has been used to conduct a thorough systematic analysis of the behaviour of ProbaMap
by crossing input parameters with ProbaMap parameters. The results of this analysis confirmed
that the combination of both probabilistic functions is better for quality and efficiency. They
showed that ProbaMap is robust with regard to noise in data and that it requires a limited
number of instances per class.

The second sequence of experiments has been conducted on real-world Web directories (Ya-
hoo! and Google), and results are promising in term of scalability and quality. In particular,
ProbaMap has been shown to outperform SBI [ITH03], a state-of-the-art algorithm for aligning
and integrating taxonomies with instances, in term of quality.

We envision two main perspectives. The first one takes place in the setting of probabilistic
reasoning by reusing probabilities associated with discovered mappings. The second one is
intended to make the confidence values returned by standard matching method correspond to
real probabilities. We give the detail of both perspectives below.

For the first perspective, we will study a setting for probabilistic query answering, in the spirit
of probabilistic databases [DHY07]. In such a setting, probabilities associated to mappings
are reused by the query answering algorithm to give some probability values for each answer.
In particular, it should be interesting to focus on reasoning-based query algorithm like in the
Somewhere [ACG+05] setting. There are existing works on introducing probabilities in logic and
inference process. Probability logic [Ada98], or probabilistic descriptions logic like P-CLASSIC
[KLP97] or P-SHIQ [CFL+08] define some probabilistic extensions of existing logics. For
instance, in [Ada98], each formula of propositional logic F is associated with a probability
value P (F ), and an additional kind of formula is added: the conditional A|B where A and B are
propositional formulas. Such a conditional has for associated probability value the conditional
probability P (A|B). In this theory, the uncertainty of a formula F denoted u(F ) is defined by
u(F ) = 1 − P (F ): it corresponds to the one’s complement of the propability of the formula,
which can be provided by the probabilistic functions we have defined. Then, an inference rule
in such a language is said to be p-valid if the uncertainty of the conclusion is lower than the
uncertainty sum of the premisses. A series of methods is given for deciding the p-validity of an
inference rule, without computing the probabilities of each formula (that can vary anyway).

This work fits our proposed model in the way that the classical implication and the conditional
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are both presents in the language. Works for probabilistic description logics generally introduces
the conditionals formulas too. Based on inference rules and their properties about probabilities,
such probabilistic and logical framework can be used to do probabilistic reasoning and to obtain
probabilistic answers to queries involving probabilistic mappings.

Our second pespective tackles a central issue in ontology matching (see [SE08]), that is how to
provide a formal probabilistic semantics to discovered mappings. Such a probabilistic semantics
is necessary if one wants to reuse and interpret mappings correctly: for instance, probabilistic
mappings are needed for probabilistic reasoning using mappings, in particular in a probabilistic
query answering setting.

Most of the existing matching methods return a similarity value with each mapping. Such
values can not directly be interpreted as probabilities, because they do not respect the monotony
properties (see Proposition IV.1). These properties state that for two mappings m and m′ such
that m entails m′ according to the matched taxonomies, the associated value for m′ should be
higher than the value for m, under some additional assumptions.

Thus, the key point of our second perspective is how to take advantage of the quality and
efficiency of existing methods while guaranteeing such monotony properties in order to be able
to interpret the returned alignment in a probabilistic framework. This perspective also consists
in formulating and implementing a post-processing step to such matching methods in order to
transform the returned coefficients into coefficients that can be interpreted as probabilities, i.e.
that respect the above property of monotony. For this purpose, we plan to use the similarity
flooding principle [MGR+02] between mappings probabilities, in the spirit of N2R [SPR09] and
OLA [EV04]. Coefficients for mappings are initialized by thoses returned by the existing method
to postprocess. The properties of monotony are interpreted as influence between coefficients of
mappings connected by an entailment relation. Theses influences between mappings coefficients
are modeled by non-linear equations, involving particularly the max function.

Then the equation system may be solved by an iterative fix-point algorithm. A fix-point should
be reached because of properties of the equation system, in particular its non-linearity. There-
fore, this algorithm is expected to converge to a set of updated mappings coefficients that respect
the properties of monotony, and that can be also considered as probabilities.
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APPENDIX

A

PROOFS

A.1 Proofs for the characterization of monotonous confidence

functions

A.1.1 Proof of the Lemma IV.α

Proof Proof of the Lemma IV.α:

For every four classes A,A′, B,B′, two taxonomies T and T ′ can be constructed for which:

• A′, B′ belong to T ′ and A,B belong to T ,

• A′ ⊑ A is a specialization relation in T (possible because A′ ⊆ A)

• B ⊑ B′ is a specialization relation in T ′ (possible because B ⊆ B′)

As T ,T ′, A ⊑ B |= A′ ⊑ B′ (by Proposition II.1 page 17), respecting the strong monotony
property for this mapping means that F T1,T2

P (A,B) ≤ F T1,T2

P (A′, B′) should hold. As

F T1,T2

P (A,B) = FP (A,B) and F T1,T2

P (A′, B′) = FP (A′, B′), FP (A,B) ≤ FP (A′, B′) should
hold.

This is right for every classes A,A′, B,B′, then FP should respect the property of the lemma.

�

A.1.2 Proof of the Theorem IV.2

We start by giving an intuitive interpretation of the assumption (ii) of the theorem, because it
is invoked multiple times in the proof.
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Considering the above figure and that two classes are mapped to subsets of the segment [0; 1].
Let A1 and A2 be classes corresponding to the corresponding labelled subsets. The region which
contradicts the mapping A1 ⊑ A2 appears at the left of A1 and measures rA = 1−Pi(A1 ⊑ A2).
The assumption (ii) asserts in particular that for every class B1 contained in A1 and such that
the region that contradicts B1 ⊑ A2 is the same as the one for A1 ⊑ A2,
FP (B1, A2) is equal to FP (A1, A2).

A similar equality FP (A1, B2) = FP (A1, A2) is asserted with B2 containing A2 and the region
that constradicts both mappings A1 ⊑ A2 and A1 ⊑ B2 are the same.

Actually, the assumption (ii) asserts that when Pi is constant between pairs of mappings for
which either the left-hand side or the right-hand side are related by an inclusion, the confidence
function FP should keep constant.

We now give the proof of the theorem.

Proof :

Given four classes A1, B1, A2, B2 such that Pi(A1 ⊑ A2) ≤ Pi(B1 ⊑ B2), we will exhibit two
classes C1, C2 such that:

• FP (B1, B2) = FP (C1, C2)

• C1 ⊆ A1

• A2 ⊆ C2

It will leed to FP (A1, A2) ≤ FP (C1, C2) by hypothesis, and then to

FP (A1, A2) ≤ FP (B1, B2)

It will demonstrate the point (1) of the theorem.

Let us introduce :

• ra = 1− Pi(A1 ⊑ A2) = P (A1 \ A2)

• rb = 1− Pi(B1 ⊑ B2) = P (B1 \B2)



A.1–Proofs for the characterization of monotonous confidence functions 121

By hypothesis on Pi, ra ≥ rb.

There always exist a bijection B : Ω → [0; 1] such that B(A1) = [0;P (A1)] and B(A2) =
[b; b + P (A2)], as illustrated in the figure below.

• First case: P (A2) ≤ P (B2)

We introduce :

– C2 = B−1([ra, ra + P (B2)]) of probability P (B2), if ra + P (2) ≤ 1 or C2 =
B−1([ra; 1] ∪ [0;P (B2)− 1 + ra]) else.

– C ′
1 = B−1([ra − rb; ra − rb + P (B1)]) of probability P (B1).

In the case where ra−rb+P (B1) > 1, then C ′
1 = B−1([ra−rb, 1])∪B−1([0;P (B2)−

1 + ra − rb]) . Note that all the elements that belong to C ′
1 ∩C2 are contained in

B−1(ra − rb; rb) by construction. (remember that rb ≤ ra by hypothesis).

FP (B1, B2) = FP (C ′
1, C2) because

FP (B1, B2) = G(P (B1), P (B2), P (B1∩B2)) = G(P (C ′
1), P (C2), P (C ′

1∩C2)) = FP (C ′
1, C2)

Let us introduce C1 = A1 ∩ C ′
1. As C ′

1 \ C2 ⊆ A1 (there are in B−1(rb − ra, ra)),

we have Pi(C1 ⊑ C2) = Pi(C
′
1 ⊑ C2)

and then, thanks to the assumption (ii): FP (C1, C2) = FP (C ′
1, C2). So:

FP (C1, C2) = FP (B1, B2), and by construction:

C1 ⊑ A1 and A2 ⊑ C2.

• Second case: P (A2) ≥ P (B2)
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We introduce :

– C ′
2 = B−1([ra, rA + P (B2)]) of probability P (B2)

– C ′
1 = B−1([ra − rb; ra − rb + P (B1)]) of probability P (B1).

By construction, we have: FP (B1, B2) = G(P (B1), P (B2), P (B1 ∩ B2)) =
G(P (C ′

1), P (C ′
2), P (C ′

1 ∩ C ′
2)) = FP (C ′

1, C
′
2)

– FP (A1 ∩ C ′
1, A2) = FP (A1 ∩ C ′

1, C
′
2) thanks to the assumption (ii) and:

∗ C ′
2 ⊆ A2 by construction (remember that P (C ′

2) ≤ P (A2))

∗ Pi(A1 ∩ C ′
1 ⊑ A2) = Pi(A1 ∩ C ′

1 ⊑ C ′
2):

actually, elements that belongs to A1 ∩ C ′
1 and not to C ′

2 are only at the left
of C ′

2, i.e. those that are in B−1([rb; ra]). This is due to the fact that the right
bound of C ′

1 is at the left of the right bound of C ′
2, by construction. Then the

right bound corresponding to A1 ∩C ′
1 does not exceed the right bound of C ′

2.

– FP (A1 ∩ C ′
1, C

′
2) = FP (C ′

1, C
′
2) because the application of (ii) again because A1 ∩

C ′
1 ⊆ A1 and Pi is the same for A1 ∩ C ′

1 ⊑ C ′
2 and C ′

1 ⊑ C ′
2.

This is due to the fact that the elements that belong to C ′
1 but not to C ′

2 are all
in A1, by construction: they are in B−1(ra − rb; ra) which is contained in A1.

So we have, FP (A1 ∩ C ′
1, A2) = FP (C ′

1, C
′
2),

and by denoting C1 = A1 ∩ C ′
1, and C2 = A2, it becomes:

FP (C1, C2) = FP (B1, B2) and

C1 ⊑ A1 and A2 ⊑ C2.

The point (1) of the theorem is now proved.

Let us prove the point (2).

As FP (A,B) = G(P (A), P (B), P (A ∩ B)) and Pi(A ⊑ B) = 1 − P (A) + P (A ∩ B), there
exist G′ such that FP (A,B) = G′(Pi(A ⊑ B), P (A), P (B))
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Then G′ is an increasing function of Pi, we have:

X ≤ X ′ ⇒ 0 ≤ G′(X, y)− FP (X ′, y′)

whatever y, y′ representing all other arguments.

As G is continuous, G′ is also continuous with regard to its first argument when X ′ → X,
G′(X ′, y′)→ G′(X, y′). The inequality above becomes then:

O ≤ G′(X, y)−G′(X, y′)

By swapping y and y′ in the previous reasoning, we obtain:

O ≤ G′(X, y′)−G′(X, y)

That leads to G′(X, y) = G′(X, y′) for all X and all pair y, y′.

Then G′ is only dependent of its first argument and it leads to the form:

FP (A ⊑ B) = G′(Pi(A ⊑ B))

where G′ is an increasing function.

�

A.2 Proof of the correctness of the generator

A.2.1 Proof of the proposition VI.1

Proof :

By following the proof of Proposition IV.1 page 45, by replacing each Pi, Pc and probability
by its estimation (we can do it because only used pure arithmetic is used), we obtain:

P̂c

O
(m)− P̂i

O
(m) =

1− P̂ (A)
O

P̂ (A)
O

( ̂P (A ∩B)
O
− P̂ (A)

O
)

Given the fact that:

• P̂ (A)
O

= 1+dExt
O

(A,O1∪O2)
2+N

• ̂P (A ∩B)
O

= 1+dExt
O

(A∩B,O1∪O2)
2+N

• Êxt
O
(A ∩B,O1 ∪ O2) ⊆ Êxt

O
(A,O1 ∪ O2) as A ∩B ⊆ A,

we have:
̂P (A ∩B)

O
− P̂ (A)

O
≤ 0
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and then
P̂c

O
(m) ≤ P̂i

O
(m)

�

A.2.2 Proof of the Theorem VI.1

Proof :

It is obvious that the required sizes n1 and n2 of the two taxonomies are respected. As they
are directed graph that do not contain any cycle (there are forest of general trees) they fit the
definition of taxonomies. Due to constraints during the mappings generation, MS are the
most specific mappings among all the mappings they entails according to the taxonomies.

In fact, the core of the correctness property is the proof that the generated data respect the
properties (PO) and (NO) (page 84). Below are the estimation formulas used with oracle
classification. Note that the two sets of instances are disjoints (distinct URIs), and denoted
O1 and O2. Remember that the number of instances by class is denoted np.

• P̂i
O
(A ⊑ B) = 1− |dExt

O
(A,O1∪O2)|

2+(n1+n2)np
− |dExt

O
(A∩B,O1∪O2)|

4+(n1+n2)np

• P̂c

O
(A ⊑ B) =

|dExt
O

(A∩B,O1∪O2)|×(2+(n1+n2)np)

|dExt
O

(A,O1∪O2)|×(4+(n1+n2)np)

with the following formula for the estimated extension of intersection A ∩B:

Êxt
O
(A ∩B,O1 ∪ T2) = Êxt

O
(A,O1 ∪ O2) ∩ Êxt

O
(B,O1 ∪ O2)

Now we show that there exist ǫ ∈ [0; 1] and a function np −→ f(np) with limnp→∞ f(np) = 1
such that

• (PO) P̂c

O
(A ⊑ B) ≥ 1− ǫ for A ⊑ B expected mappings or specialization,

• (NO)] P (P̂i
O
(A ⊑ B) ≤ 1 − 2ǫ) ≥ fnp for the unexpected possible mappings or

specializations

Then, setting the two thresholds Sc and Si to 1− 3
2ǫ leads to consider valid all the expected

implication between classes, and invalid all the others, except for a small proportion of them.

• For all implication formula A ⊑ B such that T1,T2,MS |= A ⊑ B:

P̂c

O
(A ⊑ B) =

dExt
O

(A∩B,T1∪T2)×(2+(n1+n2)np)

dExt
O

(A,O1∪O2)×(4+(n1+n2)np)
and

Êxt
O
(A ∩B,O1 ∪ O2) = Êxt

O
(A,O1 ∪ O2) because A ⊑ B is expected, then:

P̂c

O
(A ⊑ B) =

2+(n1+n2)np

4+(n1+n2)np

By fixing ǫ = 2
4+(n1+n2)np

, both estimations of Pc and Pi are higher than 1− ǫ.
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• For all A ⊑ B such that T1,O2,MS 6|= A ⊑ B:

P̂i
O
(A ⊑ B) = 1−

dExt
O

(A,O1∪O2)
2+(n1+n2)np

−
dExt

O
(A∩B,O1∪O2)

4+(n1+n2)np
then

P̂i
O
(A ⊑ B) ≤ 1− |dExt

O
(A,O1∪O2)\dExt

O
(B,O1∪O2)|

4+(n1+n2)np

P (PO
i (A ⊑ B) < 1− 2ǫ) = P ( |

dExt
O

(A,O1∪O2)\dExt
O

(B,O1∪O2)|
4+(n1+n2)np

> 2ǫ)

As there is no path between A and B in the generated DAG of classes , there is at
least one attribute in Int(B) which is not in Int(A). Then, each generated instance of
inst(A) generated especially for A is also an instance of B with a probability of 1

2 . The
random set of instances of A that are not in B is denoted GenA\B and its size follows

a binomial law β(1
2 , np).

As GenA\B ⊆ Êxt
O
(A,O1 ∪ O2) \ Êxt

O
(B,O1 ∪ O2),

P (Pi(A ⊑ B) < 1− 2ǫ) ≥ P (|GenA\B | > 2ǫ(4 + (n1 + n2)np))

and then,

P (Pi(A ⊑ B) < 1− 2ǫ) ≥ 1− 2−np
∑2ǫ(4+(n1+n2)np

k=0 Ck
np

By taking ǫ = 2
4+(n1+n2)np

as done for the (PO) property, it conducts to

P (Pi(A ⊑ B) < 1− 2ǫ) ≥ 1− 2−np
∑4

k=0 Ck
np

Thus, f(np) = 1− 2−np
∑4

k=0 Ck
np

is a relevant lower bound:

As
∑np

k=0 Ck
np

= 2np , f(np) is of the form

1−
a

a +
∑np

k=5 Ck
np

−→ 1 when np → +∞

The constraint (NO) is respected too.

�
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APPENDIX

B

RÉSUMÉ LONG EN FRANÇAIS

B.1 Introduction

La quantité de données échangées à travers ce réseau a aussi considérablement augmenté, ce qui
pose de nombreux défis. Le Web est constitué de plusieurs dizaines de milliard de documents,
le plus souvent écrits en HTML, et sans structure commune. La plupart des requêtes au Web se
font par l’intermédiaire de moteurs de recherches (Google, Yahoo!, Bing) qui indexent chacun
un sous-ensemble du Web par mot-clefs.

La quantité d’informations disponible contraste fortement avec les moyens d’y accéder et de les
traiter : le pouvoir expressif des requêtes par mot-clefs est limité et le traitement des requêtes est
initialement purement syntaxique. En réaction à ce problème, l’émergence du Web Sémantique
(parfois appelé Web 3.0) a pour objectif un accès et un traitement sémantique de l’information
disponible à travers le Web.

Web sémantique, ontologies, et nécessité de découvrir des correspondances

Dans le Web Sémantique, les documents sont tous exprimés dans un langage logique (RDF,
RDFS, OWL) associé à une sémantique formelle. Ils possèdent donc une structure qui leur
donne un sens. Les entités de base pour décrire des informations au sein du Web Sémantique sont
des triplets RDF du type (entité sujet, relation, entité objet). Les composants de haut niveau
sont eux appelés ontologies. Parmi les exemples d’ontologies, les ontologies de domaines sont
utilisées pour décrire un domaine particulier : une ontologies des maladies humaines, ou bien la
classification phylogénétique des êtres vivants. A un autre bout du spectre, les folksonomies sont
de petites ontologies créées d’un point de vue utilisateur par des individus qui désirent organiser
leurs documents (leur musique par exemple). Les taxonomies sont les composants essentiels des
ontologies : ils représentent leur squelette par une hiérarchie de classes (ou concepts). Le Web
Sémantique n’est encore qu’une petite part du Web, mais sa croissance est très rapide. En mai
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2010, on estime sa taille à plus de 13 milliards de triplets RDF 1.

A l’échelle du Web (sémantique), les organisations ou utilisateurs fournissant des données sont
susceptibles de décrire leurs propres ontologies pour organiser et annoter leurs documents. Dans
cette configuration, découvrir des correspondances entre ontologies propres est une nécessité
pour échanger des documents ou des informations entre acteurs du Web. Plusieurs facteurs sont
à l’origine de l’hététérogénité entre différentes ontologies : des différences terminologiques entre
les noms des entités (synonymes par ex.), des différences sémiotiques propres à l’interprétation
des entités par les utilisateurs, des différences de couverture lorsque les domaines décrits ne
coincident pas, des différences de granularité lorsque les niveaux de détails retenus pour la
description ne sont pas les mêmes, et enfin des différences de perspective, lorsque les points
de vues et les aspects décrits ne sont pas les mêmes (par exemple différence entre une carte
topographique et une carte politique de la France).
Afin de permettre une communication automatisée entre différentes ontologies, il est nécessaire
d’établir des correspondances sémantiques entre ontologies. Dans cette perspective, le projet
Somewhere [ACG+05] a servi de motivation à cette thèse. Il décrit une configuration organisée
en réseau pair-à-pair dans laquelle chaque pair annote ses documents à l’aide d’une taxonomie
(et donc d’un vocabulaire de classes) qui lui est propre. Le but d’une telle configuration est
de permettre de répondre à des requêtes de la part de chaque pair grâce à un algorithme de
raisonnement distribué . Les requêtes d’un pair sont effectuées dans son vocabulaire. Il faut
donc fournir au système des correspondances sémantiques entre certains pairs pour permettre
la propagation des requêtes en vue d’obtenir des réponses.

A grande échelle, l’établissement de correspondances entre ontologies est un problème impossible
à résoudre manuellement, à cause du nombre et de la taille des ontologies existantes. C’est
pourquoi d’importants travaux sont menés depuis une vintaine d’année pour l’automatisation
de cette tâche, et forment le domaine de l’ontology matching [ES07] ou alignement d’ontologies
en Français. La plupart combinent des techniques utilisant des similarités sur les noms, les
structures ou les documents décrits. Depuis 2004, une compétition internationale appelée OAEI2

[EFH+09] est organisée tous les ans dans ce domaine. D’importants progrès ont été réalisés
en terme de qualité des correspondances découvertes automatiquement. Cependant, aucun net
gagnant ne ressort de ces concours. Il manque encore une solution intégrée suffisamment robuste
et utilisable par des non-experts.

Problèmes traités dans cette thèse

Premièrement, cette thèse s’intéresse exclusivement à la découverte automatique de correspon-
dances entre taxonomies, qui représentent la partie la plus importante des ontologies. Nous
prétendons que les correspondances d’inclusions sont d’une importance majeure pour l’échange
collaboratif de documents, notamment pour la reformulation de requêtes. En outre, elles ont
plus de chance d’exister entre deux taxonomies que des correspondances d’équivalence. Jusqu’à
présent, peu de méthodes[BSZ03, HSNR09, SVV08, JK07] se sont concentrées sur les correspon-
dances d’inclusions.

Deuxièmement, l’incertitude est intrinsèque à la découverte de mappings. La plupart des méth-

1http://esw.w3.org/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
2http://oaei.ontologymatching.org

http://esw.w3.org/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://oaei.ontologymatching.org
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odes d’alignement associent un coefficient de confiance à chaque correspondance découverte.
Ces approches considèrent souvent les correspondances de façon isolée les unes par rapport
aux autres, et ne tiennent pas comptent des possible relations d’implications logiques entre
correspondances induites par les taxonomies. Ce manque de cohérence interdit de considérer
les coefficients de confiance comme de vraies probabilités. A l’inverse, nous considérerons des
mappings d’inclusions avec une sémantique probabiliste.

Enfin, le dernier point traité consiste à tenir compte du passage à l’échelle pour la découverte
de mappings, qui représente un réel défi pour l’avènement du Web Sémantique, étant donné sa
taille et son expansion.

Contributions

Dans cette thèse, nous proposons une approche pour découvrir automatiquement des corre-
spondances d’inclusion probabilistes entre taxonomies, que nous appelerons mappings. Tout
d’abord, nous analysons et comparons deux moyens de modéliser des mappings probabilistes
compatibles avec les contraintes logiques déclarées dans chaque taxonomie à aligner. Dans ces
deux modèles, la probabilité d’un mapping entre deux classes est basée sur la probabilité jointe
des deux classes. Un résultat additionnel permettant de caractériser les modèles de mappings
probabilistes compatibles avec la logique est donné. Nous fournissons également un moyen
d’estimer les probabilités de mappings à partir des statistiques sur les instances déclarées. En-
suite, nous proposons un algorithme appelé ProbaMap, de type “génerer et tester” ainsi que
son implémentation. Fondé sur les deux modèles de mappings probabilistes, ProbaMap décou-
vre automatiquement les mappings dont la probabilité est supérieure à un certain seuil. Une
propriété de monotonie des probabilités utilisées est à la base de l’optimisation de ProbaMap,
évitant d’inspecter tous les mappings possible entre deux taxonomies.
Dans le but de réaliser des expérimentations fouillées et contrôlées, nous avons conçu un généra-
teur complet de taxonomies, d’instances et de mappings. Les résultats expérimentaux en terme
de qualité et de temps de calcul sont analysés en croisant les paramètres propres à ProbaMap
et ceux contrôlant les données en entrée.
Nous présentons aussi deux séries d’expérimentations effectuées sur des données réelles : le
benchmark OAEI directory et les web directories Yahoo! et Google collectés. Sur ces derniers
nous avons mené une expérimentation comparée avec SBI [ITH03], une autre méthode de l’état
de l’art.

Enfin, nous esquissons deux perspectives : la première consiste à réutiliser les mappings proba-
bilistes pour répondre à des requêtes de façon probabilistes, par du raisonnement probabiliste.
La deuxième introduit un moyen de post-traiter les coefficients de confiance retournés par la
plupart des méthodes d’alignement pour les transformer en coefficients interprétables comme de
vraies probabilités.

Plan

Cette thèse est organisée de la fçon suivante :

• Le Chapitre II (section B.2 de ce résum’e) présente les prérequis nécessaires et la position
du problème;
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• Le Chapitre III(section B.3 de ce résum’e) présente l’état de l’art dans le domaine de
l’alignement; d’ontologies

• La Partie I fournit deux modèles de mappings probabilistes et un algorithme pour décou-
vrir les plus probables entre deux taxonomies

– Le Chapitre IV (section B.4 de ce résum’e) présente et compare en profondeur
les deux modèles des mappings probabilistes que nous introduisons dans ce travail,
ainsi qu’un moyen d’estimer les probabilités associées en utilisant une estimation
bayésienne et optionnellement des classifieurs

– Le Chapitre V (section B.5 de ce résum’e) introduit l’algorithme de découverte
automatique de mappings ProbaMap et son implémentation.

• La Partie II est consacrée aux expérimentations sur ProbaMap

– Le Chapitre VI (section B.6 de ce résum’e) présente les expérimentations conduites
sur les données générées ainsi que le principe du générateur utilisé

– Le ChapitreVII (section B.7 de ce résum’e) présente les expérimentations conduites
sur des données réelles.

• La conclusion et les perspectives figurent au Chapitre VIII (section B.8 de ce résum’e).

B.2 Préliminaires et position du problème

Des prérequis classiques de théorie des probabilités sont donnés dans la thèse à propos des
notions suivantes : espace probabilisé, variable aléatoire réelle, espérance et variance.

Taxonomies et correspondances: définitions et sémantique

Définition B.1 (Taxonomie):
Etant donné un vocabulaire V représentant un ensemble de classes, une taxonomie TV est un
graphe orienté sans cycles (DAG) dans lequel chaque noeud est étiqueté par un nom d’une
classe distincte dans V, et chaque arc entre deux noeuds étiquetés respectivement C et D
représentent une spécialisation entre les classes C et D.

Chaque classe d’une taxonomie peut être associée avec un ensemble d’instances possédant un
identifiant et une description exprimée dans un langage attribut-valeur.

Pour éviter toute ambiguïté et sans perte de généralité, nous considérons que chaque taxonomie
a son vocabulaire propre, par convention nous indiçons le nom des classes par l’indice de la
taxonomie à laquelle elles appartiennent.

En plus de la notation graphique, il existe plusieurs notations textuelles pour exprimer la relation
de spécialisation entre classes et l’appartenance d’une instance à une classe, respectivement :
C ⊑ D et C(i) en logique de description.
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Ces notations possèdent une sémantique logique standard fondée sur l’interprétation de
classes comme des ensembles d’un domaine. Une interprétation I consiste en un domaine
d’interpretation ∆I et en une fonction .I qui interprète chaque classe comme un sous-ensemble
non-vide de ∆I , et chaque instance comme élément de ∆I . Selon l’hypothèse du nom unique,
deux identifiants d’instances différents ont une interprétation différente.

Définition B.2 (Modèle d’une taxonomie):
I est un modèle pour la taxonomie T si:

• pour chaque spécialisation E ⊑ F de T : EI ⊆ F I ,

• pour chaque déclaration d’appartenance C(a) de T : aI ∈ CI .

Une inclusion G ⊑ H est inferée par une taxonomie T (noté par T |= G ⊑ H) si et seulement si
dans chaque modèle I de T , GI ⊆ HI . Une appartenance C(e) est inferrée par une taxonomie
T (noté par T |= C(e)) si et seulement si dans chaque modèle I de T , eI ∈ CI .

Définition B.3 (Extension d’une classe):
Etant donné un ensemble d’instance D associé à une taxonomie T . L’extension de la classe C
dans T , notée Ext(C,T ), est : Ext(C,T ) = {d ∈ D/ T |= C(d)}

Les mappings que l’on considère sont des inclusions entre classes de taxonomies différentes :

Définition B.4 (Mapping):
Etant donné deux taxonomies T1 and T2, un mapping entre T1 and T2 est un quintuplet
(id, C1, C2, r, n) tel que:

• C1, C2 sont deux classes respectives de T1 et T2

• r ∈ {⊑,⊒} est la relation d’inclusion entre C1 et C2

• n ∈ [0, 1] représente le coefficient de confiance associé au mapping

Un mapping entre C1 and C2 est noté C1 ⊑ C2 ou C2 ⊑ C1, en fonction de sa direction.

Un alignement (de mappings) entre deux taxonomies est un ensemble de mappings entre ces
deux taxonomies. L’implication logique entre classes s’étend à l’implication entre mappings
comme défini ci-dessous:

Définition B.5 (Implication logique entre mappings):
Soient Ti et Tj deux taxonomies. Soient m et m′ deux mappings entre Ti et Tj: m implique
m′ (noté m � m′) ssi chaque modèle de Ti , Tj et m est un modèle de m′, ce qui peut s’écrire
formellement: Ti,Tj,m |= m′.
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� est une relation d’ordre (partiel) sur l’ensemble M(Ti,Tj) des mappings possibles entre les
deux taxonomies Ti and Tj. Si m � m′, on dit que m est plus spécifique que m′ et que m′ est
plus général que m. La proposition suivante caractérise l’implication logique entre mappings
en fonction de l’implication logique entre les classes impliquées au sein de leurs taxonomies
respectives:

Proposition B.1:
Soit m = E1 ⊑ F2 et m′ deux mappings entre T1 et T2:
m � m′ (i. e. T1,T2,m |= m′) ssi:

(1) m′ est de la forme E′
1 ⊑ F ′

2, et

(2) T1 |= E′
1 ⊑ E1 et T2 |= F2 ⊑ F ′

2

Probabilités et estimation bayésienne

Dans la thèse il est procédé à plusieurs rappels classiques de théorie des probabilités : tribu,
évènement, espace mesurable, variable aléatoire réelle, espérance, variance, distributions
([Gut05]). Nous noterons (Ω,F , P ) l’espace probabiliste où l’univers est Ω, l’ensemble des
évènements (tribu) F et P la mesure de probabilité définies sur ces évènements.

Estimation bayésienne
Un estimateur bayésien [Deg04] fournit une valeur estimée pour un scalaire θ fondé à la fois sur
un ensemble d’observations et sur une distribution a priori suivie par θ. L’estimateur bayésien
de θ est une fonction θ̂ qui minimise un certain risque (usuellement les moindres carrés) pour
une séries d’observation données x. Usuellement l’estimateur bayesien est donné par l’expression

θ̂(x) = E[θ|X = x] (BE)

Cette espérance fait intervenir la distribution a priori de θ. L’estimation bayésienne est souvent
appliquée à un paramètre inconnu d’une distribution d en le modélisant par une variable aléatoire
suivant une distribution a priori fixée. Lorsqu’on peut choisir cette distribution a priori, prendre
la distribution conjuguée de d permet de simplifier grandement les calculs pour la formule (BE),
car les distributions de θ et de θ|X = x appartiennent alors à la même famille algébrique de
fonctions. Par exemple, dans cette thèse, nous exploitons le fait que la distribution conjuguée
de celle de Bernouilli est une distribution Beta.

Position du problème

Comme mentionné dans l’introduction, l’incertitude est intrinsèque à la découverte de map-
pings. Nous prônons le fait que les mappings doivent être modélisés en utilisant la théorie des
probabilités, afin de les associer à des valeurs de probabilités mesurant leur degré de confiance.
Proposer de tels modèles revient à définir comment les mappings et les classes impliquées sont
mesurés en temps qu’événements ou probabilités conditionnelles au sein d’un espace mesurable.

Un tel modèle probabiliste ne peut pas être indépendant de la sémantique logique. En par-
ticulier, un mapping en impliquant un autre doit avoir une probabilité supérieure à celui-ci.
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En conséquence, le premier problème est de proposer des modèles de mappings probabilistes.
On doit également fournir un moyen pratique de calculer les probabilités associées à chaque
mapping.

Le second problème dans cette thèse est de concevoir un algorithme de découverte des mappings
les plus probables entre deux taxonomies, de telle sorte que cet algorithme passe à l’échelle.

B.3 Etat de l’art

Comme le souligne l’introduction, les mappings sont primordiaux pour les systèmes d’intégration
de données et l’avènement du Web Sémantique. Un grand nombre de méthodes d’alignement
d’ontologies ou de schémas on été développées au sein des communautés des bases de données
et du Web Sémantique. La plupart des méthodes existantes sont fondées sur des combinaisons :

1. de similarités textuelles entre labels des entités des ontologies (par exemple TaxoMap
[HSNR09], H-MATCH [CFM03]), à l’aide de string-distances par exemple. D’autres tech-
niques utilisent des ressources linguistiques (comme WordNet [C.98]) pour calculer une
similarité basée sur le sens des mots.

2. de similarités structurelles entre graphes représentant les taxonomies, issus du principe
de “similarity flooding” [MGR+02], qui permet d’affecter une similarité à chaque paire
d’entités de deux ontologies considérés comme des DAGs. L’idée sous-jacente consiste à
dire que deux éléments de deux ontologies sont similaires lorsque leurs éléments adjacents
sont similaires. Cette idée est modélisée par un système d’équations où les similarités
entre paires s’influencent les unes les autres, en fonction des structures des ontologies. Les
similarités sont calculées par un algorithme de point fixe. Le travail présenté dans OLA
[EV04] illustre cette approche.

3. de raisonnement logique : Ctx-Match [SBMZ03] est représentatif de cette technique. Cette
technique réduit le problème d’alignement à un problème SAT. Chaque classe est encodée
dans une formule logique dans laquelle les atomes sont des synsets WordNet correspondant
aux labels de la classe et de tous ses ancêtres, filtrés pour représenter uniquement les sens
cohérents en fonction du contexte. Ainsi, on peut effectuer un raisonnement à partir de
chaque classe en utilisant les connaissances de fond pertinente (par exemple WordNet),
pour inférer des inclusions, des équivalences ou des disjonctions entre classes.

4. de similarités à base d’instances : elles sont fondées sur les statistiques ou les distribu-
tions des extensions des classes, et peuvent aussi utiliser les descriptions des instances si
disponibles. Ces techniques permettent de calculer des similarités entre classes à partir de
leurs instances. Elles peuvent exploiter des classifieurs, par exemple pour apprendre des
classes à partir de leurs instances et étendre leurs extensions. Notre travail se situe au sein
de cette catégorie de méthodes, dites “extensionnelles” (GLUE [DMDH02], Implication
intensity [DGGB06], [ITH03]).

En particulier, dans la méthode GLUE qui découvre automatiquement des correspondances
1-1 entre classes, les classes sont modélisées à partir de leurs extensions, dans un univers
fini d’instances. Une étape de classification permet d’associer à chaque classe une extension
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dans l’ensemble des instances des deux taxonomies. Pour chaque couple de classe (C1, C2),
une similarité (par exemple Jaccard) est calculée à partir des distributions de C1, C2 et
C1 ∩C2. Enfin une phase de relaxation initialisée par les similarités calculées, et qui tient
compte de contraintes de structure et de domaines fournies par les utilisateurs, permet
d’associer à chaque classe de la première taxonomie une et une seule classe de la seconde.

D’autres approches utilisant des techniques d’apprentissage artificiel ont été étudiées. Certaines
utilisent un corpus d’alignements (e.g., [MBDH05]) ou d’instances (LSD [DDL00], SemInt
[LC00], GLUE [DMDH02], FCA-merge [SM01]). En particulier, le travail introduit dans
[WES08] utilise des classifieurs directement dans l’espace des mappings, en représentant ces
derniers dans un espace vectoriel construit à partir des propriétés des instances associées aux
mappings.

En fait, la plupart des méthodes d’alignement existantes combinent ces approches élémen-
taires de différentes façons (par exemple, COMA++ [ADMR05] et COMA [DR02], Cupid
[MBR01], H-MATCH [CFM03], Lily [WX09], S-Match [GSY04], Clio [CHKP07]). Les méth-
odes d’alignement peuvent être catégorisées selon plusieurs critères : leur technique élémen-
taire dominante (ci-dessus), l’utilisation ou non de ressources externes, semi-automatique ou
automatique, ré-utilisation d’alignements antérieurs, usage d’apprentissage artificiel, langage de
mappings découverts et langage d’ontologie accepté en entrée...

Les méthodes d’alignement associent couramment des coefficients à chaque mapping découvert,
indiquant le degré de confiance qu’elles leur associent. L’incertitude est intrinsèque à la décou-
verte de mappings, en raison du fait que deux classes ou entités créées indépendamment sont peu
susceptibles de se correspondre parfaitement. Comme indiqué dans [SE08], un défi important
est de mieux comprendre les fondations permettant de modéliser l’incertitude, notamment pour
améliorer la qualité d’interprétation des mappings.

Cependant, les coefficients associés aux mappings n’ont pas de signification probabiliste et sont
souvent utilisés pour du ranking. Au contraire, notre approche promeut une sémantique prob-
abiliste pour les mappings et fournit une méthode pour calculer ces probabilités à partir des
extensions des classes dans les taxonomies à aligner. Calculer des probabilités et non pas des
coefficients de similarités à partir des extensions constitue la différence majeure avec GLUE.

Le travail présenté ici se distingue des autres approches en essayant d’établir un pont entre
probabilité et logique, en fournissant des modèles probabilistes de mappings qui sont consistants
avec la sémantique logique des taxonomies. Ainsi, notre approche généralise des travaux ex-
istants fondés sur la représentation algébrique ou logique de mappings (Ctx-Match [SBMZ03],
Clio [CHKP07]). Le travail présenté dans [GATM05] fournit un modèle formel pour les réconcil-
iations sémantiques à base d’ensemble flous et analyse théoriquement les facteurs qui influencent
l’efficacité des algorithmes d’alignement. Ce travail se fonde sur la logique floue, contrairement
au nôtre qui se fonde sur les probabilités.

Notre travail peut s’inscrire de façon théorique dans le cadre général établit dans [DHY07], qui
permet pour gérer l’incertitude en intégration de données.

De façon plus générale, notre approche est complémentaire de travaux récents sur les bases de
données probabilistes [BSHW06, DS05].
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B.4 Modèles probabilistes de mappings

La découverte de mappings rend ces derniers incertains de façon intrinsèques, à cause des multi-
ples facteurs d’hétérogénéité entre taxonomies différentes vus en introduction. En même temps,
il est essentiel de conserver un lien avec l’implication logique, surtout lorsque les mappings sont
utilisés pour du raisonnement ou de la réécriture de requêtes. C’est pourquoi nous proposons des
modèles de mappings probabilistes dont la sémantique est cohérente avec l’implication logique
entre mappings. Les théories les plus connues qui introduisent de l’incertitude en logique sont
la logique probabiliste et la logique floue. Cette dernière permet de représenter de l’information
vague et imprécise, en associant un degré de vérité à chaque formule, alors que la logique proba-
biliste associe la valeur binaire VRAI ou FAUX à une formule, et fournit un degré de probabilité
que cette formule ait cette valeur. Les deux modèles que nous proposons sont issus de la logique
probabiliste, car elle étend la logique standard de façon plus naturelle et conserve deux valeurs
de vérité.

Etant donnés deux taxonomies T1,T2, nous considérons un univers probabiliste D constitué de
l’ensemble des instances possibles entre T1 et T2. Les évènements de cet univers sont tous les
sous-ensembles de D, dont la probabilité est mesuré par une mesure de probabilité P fixée.
La classe E est associée à l’évènement aussi noté E “une instance tirée au hasard appartient
à E”, qui suit une loi de Bernouilli de paramètre égal à P (E). Les formules logiques et les
évènements sont en correspondance : la classe ¬E correspond à l’ensemble complémentaire de E
dans D, les disjonction et intersections de classes correspondent aux disjonctions et intersections
d’évènements. Dans ce travail, nous adoptons une interprétation ensembliste des classes, qui est
simultanément cohérente avec les théories logiques et probabilistes.

Modèles probabilistes des mappings

Le premier modèle définit la probabilité d’un mapping Ai ⊑ Bj comme la probabilité condition-
nelle de Bj sachant Ai:

Définition B.6 (Probabilité conditionnelle d’un mapping):
Etant donné un mapping m = Ai ⊑ Bj , la probabilité conditionnelle de m est définie par :

Pc(m) = P (Bj |Ai) =
P (Ai ∩Bj)

P (Ai)

Le second modèle vient directement de l’implication logique entre Ai et Bj équivalent à “non Ai

ou Bj”.

Définition B.7 (Probabilité implicative d’un mapping):
Etant donné un mapping m = Ai ⊑ Bj , la probabilité implicative de m est définie par :

Pi(m) = P (Ai ∪Bj) = 1− P (Ai ∩Bj)
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Pi and Pc sont appelées fonctions de confiance probabilistes par la suite.

Etude comparative des deux modèles probabilistes

Afin de comparer les deux modèles, on énumère d’abord leurs propriétés :

Proposition B.2 (Propriétés des fonctions de confiance probabilistes):
Etant donné un mapping m entre deux taxonomies Ti et Tj. Les propriétés suivantes sont
valables :

1. Pi(m) ≥ Pc(m).

2. m est un mapping certain (i.e., Ti Tj |= m, m est déclaré): ⇔ Pc(m)⇔ Pi(m) = 1

3. Pi(m) = 1 + P (lhs(m) ∩ rhs(m))− P (lhs(m))

4. P (lhs(m)) = 0 or P (rhs(m)) = 1 ⇒ Pi(m) = 1

Les deux fonctions de probabilités diffèrent en regard de la propriété de monotonie par rapport
à l’implication logique (cf. Definition B.5).

Théorème B.1 (Propriété de monotonie):
Soient m et m′ deux mappings.

1. Si m � m′ alors Pi(m) ≤ Pi(m
′) (monotonie forte)

2. Si m � m′ et lhs(m) = lhs(m′) (mêmes classes de gauche) alors Pc(m) ≤ Pc(m
′) (motonie

faible)

Pour étudier de façon statistique Pc et Pi, on les considère comme des variables aléatoires
fonctions de paires de classes aléatoires formant des mappings, avec comme hypothèse que
chaque instance de l’univers a une probabilité 1

2 d’appartenir à une classe aléatoire. On constate
alors que l’espérance de Pc est de 1

2 et que celle de Pi est de 3
4 .

Nous comparons maintenant les propriétés et montrons que Pi et Pc peuvent être utilisées en
combinaison pour découvrir des mappings. L’objectif principal étant de déterminer les “bons”
mappings, les probabilités Pi et Pc seront utilisées avec des seuils respectifs Si et Sc. Les
mappings dont les probabilités dépassent leurs seuils seront considérés comme découverts et
valides.

• Etant données les distributions de Pi et Pc considérés comme variables aléatoires, le seuil
pour Pc devrait logiquement être fixé à une valeur inférieure au seuil pour Pi. Cette
dernière est distribuée de fao̧n plus resserrée que Pc, son comportement sera donc plus
sensible au seuil fixé que pour Pc.

• Pi correspond au modèle le plus proche de la logique. Il donne la même valeur pour un
mapping Ai ⊑ Bj et son contraposé ¬Ai ⊑ Bj (on peut étendre les fonctions de probabilités
à toutes formules d’inclusions, i.e. avec un ⊑ comme connecteur principal.)
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• Pc(m) donne une valeur proche de 1 indépendamment du mapping m si la classe de gauche
d’un mapping m est très peu probable ou que sa classe de droite est très probable, Pm

est très proche de 1, indépendamment du mapping m, ce qui n’est pas le comportement
voulu. Pc gère mieux ces cas, et permet de les filtrer en fonction du mapping.

• Pi et Pc sont complémentaires : chacun permet de distinguer des mappings que l’autre ne
distingue pas (on peut le voir en traçant la distribution de Pi sachant que Pc > Sc à Sc

fixé.

Enfin, nous avons montré un théorème qui caractérise l’ensemble des fonctions associant une
valeur de confiance à un mapping qui sont monotones (fortes) par rapport à l’implication logique.

Sous certaines hypothèses, ces fonctions sont l’ensemble des fonctions de la forme m −→
f(Pi(m)) avec f croissante. Comme pour Pi, f est la fonction identité, Pi est le modèle co-
hérent avec la logique le plus simple.

Estimation des probabilités

Le calcul de Pi(m) et Pc(m) revient au calcul des probabilités de P (lhs(m)) et la probabilité
jointe P (lhs(m) ∩ rhs(m)). Ces valeurs sont inconnues et doivent être estimées. Elles peuvent
être modélisées comme des paramètres de variables aléatoires de loi de Bernouilli associé aux
évènements lhs(m) et lhs(m) ∩ rhs(m). En suivant l’approche statistique bayésienne [Deg04],
on modélise ces paramètres comme des variables aléatoires continues de distribution Bêta, et on
utilise des observations pour inférer leur distribution a posteriori à partir de leur distribution a
priori.

Theorem B.2 (Estimation des probabiités des mapping):
Soit m : Ci ⊑ Dj un mapping entre deux taxonomies Ti et Tj. Soit O l’union des instances

observées dans Ti et Tj. Soient N = |O|, Ni = |Êxt(Ci,O)|, Nj = |Êxt(Dj ,O)| et

Nij = |Êxt(Ci ∩Dj ,O)| = |Êxt(Ci,O) ∩ Êxt(Dj ,O)|

• P (Ci) est estimé par 1+dExt(C,O)
2+Ni

= 1+Ni

2+N

• ̂P (Ci ∩Dj) est estimé par :
1+|dExt(Ci∩Dj ,O)|

4+N
=

1+Nij

4+N

ce qui conduit à :

• P̂i(m) = 1 +
1+Nij

4+N
− 1+Ni

2+N

• P̂c(m) =
1+Nij

4+N
× 2+N

1+Ni

L’estimation bayésienne est robuste en particulier pour un nombre réduit d’instance, pour lequel
la distribution a priori pèse plus dans la formule. (termes 1 au numérateur, et 2 ou 4 au
dénominateur).
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Exploitation de classifieurs pour fusionner les instances des deux taxonomies

Comme les deux taxonomies sont créées indépendamment et annotent des ensembles d’instances
potentiellement disjoints ou avec une intersection trop petite pour être significative, le calcul de
l’extension Êxt(Ci ∩Dj ,Oi ∪Oj) qui représente l’extension de l’intersection de deux classes au
sein de l’union des instances des deux taxonomies pose problème.

Pour résoudre ce problème, nous utilisons une approche communément utilisée à base de classi-
fieurs (qui peuvent être Naive Bayes, des arbres de décisions, SVM). Un classifieur par classe est
entraîné pour apprendre cette classe au sein de la taxonomie qui la déclare. Les exemples pour
cette classe est l’extension de cette classe dans cette taxonomie, et les contre-exemples l’ensemble
complémentaire de l’extension dans cette taxonomie. Les attributs de données utilisés sont issus
des descriptions des instances qui sont disponibles : méta-données, résumé sous forme de texte,
etc. prétraités pour devenir des attributs numériques.

Une fois entraîné, chaque classifieur d’une classe d’une taxonomie est appliqué aux instances de
l’autre taxonomie, permettant de déterminer pour chacune si elle fait partie ou non de la classe.
Ceci permet d’étendre l’extension de chaque classe d’une taxonomie aux instances d’une autre
taxonomie.

Les extensions calculées par classification peuvent ainsi être utilisée à la place des extensions
initiales dans les formules d’estimation. En particulier, l’intersection de deux extensions de
classes obtenues par classification est mécaniquement plus grande qu’initialement.

B.5 ProbaMap: un algorithme de découverte de mappings

Etant données deux taxonomies Ti and Tj (et leurs instances associées), soitM(Ti,Tj) l’ensemble
de tous les mappings de Ti à Tj (de la forme Ci ⊑ Dj). L’algorithme ProbaMap détermine tous les

mappings m deM(Ti,Tj) P̂u(m) ≥ Su et P̂c(m) ≥ Sc, où Su et Sc sont deux seuils appartenant
à [0, 1].

Génération des mappings candidats

Le principe de ProbaMap consiste à générer les mappings à partir des deux ensembles des classes
des deux taxonomies à aligner selon un ordre topologique par rapport à la relation d’implication
logique. Concrètement, il génère ces mappings à partir de deux boucles imbriquées parcourant
les séquences ordonnées des classes dans chacune des taxonomies, l’une selon l’ordre topologique
selon la relation d’implication logique, l’autre suivant l’ordre topologique inverse.

Elagage de l’espace des mappings à tester

Grâce à la propriété de monotonie de la fonction de confiance Pi (Theorem B.1), chaque mapping
m′ qui implique un mapping m tel que Pi(m) < Su vérifie Pi(m

′) < Su. Ainsi, ProbaMap élague
tous ces mappings en les stockant dans un ensemble. Lorsqu’ils seront généré, ils seront ignorés.
De façon similaire, si un mapping m′ est testé et qu’on calcule que Pc(m

′) < Sc, on peut
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ignorer l’ensemble des mappings qui impliquent m′ possédant la même classe à gauche, grâce à
la propriété faible de monotonie.

La génération des mappings selon l’ordre induit par l’implication logique garantit que l’élagage
est maximum.

L’algorithme ProbaMap

ProbaMap est décrit dans l’Algorithme 8, où

• Implicants and Implicants_c sont des fonctions primitives prenant en argument un
mapping et retournant respectivement ses implicants ou bien ses implicants qui ont la
même classe à gauche.

• ReverseTopo et Topo retournent les séquences de classes pour chaque taxonomie en
argument en respectant l’ordre de l’implication logique

• exti and extj sont deux structures associatives (maps) qui associent chaque classe de Ti et
Tj à leur extension (obtenue par classification ou non, selon qu’elle soit activée ou non).

Cet algorithme retourne uniquement les mappings de Ti à Tj. Pour découvrir l’ensemble des
mappings entre ces deux taxonomies, on doit l’appliquer en inversant ses entrées Ti et Tj.

Algorithm 8 ProbaMap

Require: Taxonomies (DAG) Ti,Tj , thresholds Sc, Si, Instances maps exti, extj
Ensure: return {m ∈M(Ti,Tj) such that P̂i(m) ≥ Si and P̂c(m) ≥ Sc}
1: MV al ← ∅
2: MNV al ← ∅
3: for all Ci ∈ ReverseTopo(Ti) do
4: for all Dj ∈ Topo(Tj) do
5: let m = Ci ⊑ Dj

6: if m 6∈MNV al then
7: if P̂i(m, exti, extj ,Ti,Tj) ≥ Si then

8: if P̂c(m, exti, extj ,Ti,Tj) ≥ Sc then
9: MV al ←MV al ∪ {m}

10: else
11: MNV al ←MNV al∪Implicants_c(m,Tj) // Pruning using the weak monotony

12: end if
13: else
14: MNV al ←MNV al∪Implicants(m,Ti,Tj) // Pruning using the strong monotony

15: end if
16: end if
17: end for
18: end for
19: return MV al

Les mappings découverts sont stockés dans l’ensemble MNV al, ceux qui sont élagués sont stockés
dans MNV al.
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Concernant l’implémentation, les points qui ont retenu une attention particulière sont les suiv-
ants :

1. Calcul en amont de l’algorithme de la fermeture transitive des taxonomies et des extensions
des classes

2. L’espace des mappings candidats n’est pas explicite, la structure des mappings candidats
n’est pas stockée en mémoire. Ainsi, on ne peut pas l’élaguer directement. L’élagage
consiste donc à générer des mappings “à ignorer” dans un ensemble (MNV al). Durant les
phases d’élagage, l’implémentation de ProbaMap permet d’éviter d’élaguer des mappings
qui l’ont déjà été, permettant ainsi d’éviter d’élaguer de façon redondante des parties de
l’ensemble des mappings candidats qui se recouvriraient.

B.6 Expérimentations sur données synthétiques

Nous avons évalué de façon qualitative et quantitative notre algorithme de découverte de map-
pings ProbaMap présenté dans le chapitre précédent, à la fois sur des données synthétiques et
réelles.

Ce chapitre présente les évaluations sur les données synthétiques ainsi que les principes du
générateur utilisé. L’évaluation qualitative concerne les critères standard de précision et de
rappel : la précision est la proportion de mappings attendus (dans une référence) parmi ceux
qui sont retournés par l’algorithme. Le rappel est la proportion de mappings retournés parmi
ceux qui sont attendus. L’évaluation quantitative concerne le temps et le gain issu de l’élagage
de l’espace de recherche, en vue d’un passage à l’échelle lorsque l’espace de recherche en terme
de nombre de mappings possible est de l’ordre de plusieurs millions ou dizaines de millions.

Une évaluation systématique sur des données générées permet de tester ProbaMap sur un large
spectre de conditions représentatives, en faisant par exemple varier la taille, le déséquilibre de
taille entre taxonomies, le nombre d’instances par classe, ou bien le bruit dans l’annotation des
instances. Tous ces paramètres de génération peuvent ainsi être croisés avec les paramètres de
ProbaMap, afin d’analyser le comportement de ProbaMap de façon systématique.

Générateur de données synthétiques

La génération de données synthétique est un défi majeur pour nombre de domaines, y compris
le nôtre. Elle est décomposée en trois étapes :

1. génération de deux taxonomies de tailles spécifiées comme des forêts d’arbres aléatoires,
grâce à une approche existante de génération aléatoire de structures récursives ([DFLS04])
et une méthode de rejet pour filtrer les tailles

2. génération des mappings à découvrir les plus spécifiques. Leur nombre est un paramètre,
mais on ne contrôle qu’indirectement le nombre total de mappings à découvrir (ensemble
des conséquences de ces mappings générés), par un paramètre

3. génération des instances et de leurs descriptions vectorielles binaires. Le nombre d’instance
par classe est un paramètre.
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La cohérence entre les descriptions des instances d’une part, et les structures de taxonomies et
les mappings d’autre part est primordiale lors du processus de génération. On impose en fait
aux instances d’avoir leurs descriptions qui soient cohérentes avec toutes les implications entre
classes qu’on peut déduire des taxonomies et des mappings, et seulement celles-là. Concrètement,
chaque classe possède une description intensionnelle dépendante de la structure de taxonomie
et des mappings générés. Pour garantir la cohérence, chaque instance générée pour une classe
particulière C doit avoir une description vectorielle binaire qui se conforme à la description
intensionnelle de C.

Une propriété fondamentale du générateur assure que dans le cas “idéal” où ProbaMap utilise
un classifieur qui connaît la description intensionnelle de chaque classe (classifieur oracle), alors
Pi et Pc sont très proches de 1 pour les mappings générés ou leurs conséquences, et distants de 1
pour tous les autres mappings, sauf une proportion d’entre eux qui décroît statistiquement vers
0 lorsque le nombre d’instances par classe tend vers l’infini.

Ce générateur possède des points de connexion avec la génération de bases de données
d’Armstrong pour les dépendances fonctionnelles : en effet dans celles-ci les tuples doivent
vérifier toutes les dépendances, et seulement elles. Cependant, dans notre cas nous devons
générer à la fois le schéma et les données. De plus, étant donné que Pc et Pi sont des probabilités,
une seule instance ne suffit pas pour contredire un mapping qui n’est pas généré, alors que deux
tuples suffisent à contredire une dépendance fonctionnelle. Ces deux différences rendent notre
problème de génération plus complexe que celui des bases de données d’Armstrong.

Résultats sur données synthétiques

Nous présentons ci-dessous les principales conclusions des tests systématiques. Tous les tests ont
procédé à 100 générations pour chaque instanciation de variables, afin de moyenner les variables
“libres” (comme les structures des taxonomies par exemple). ProbaMap a été programmé en
Java et testé sur une station de travail Linux Ubuntu 8.10 avec un processeur Intel Xeon Q6700
à 2.66 GHz et 4 Go de RAM.

Les deux premiers points étudient comment combiner de façon optimale les deux modèles de
probabilités Pi et Pc. Ensuite, on compare l’efficacité en temps et la qualité de ProbaMap pour
trois classifieurs (implémentés dans Weka) appartenant à des familles différentes et représenta-
tives. Enfin, on étudie la robustesse de ProbaMap au bruit dans les données, en particulier dans
la description des instances ici.

Impact des seuils Sc et Si sur la précision

• les deux seuils ont une influence sur la précision → il faut combiner les deux

• Pc est plus discriminant que Pi

• Pi a un pouvoir discrimant pour les grandes valeurs, donc Si doit être assez haut (proche
de 0.9)

Paramètres influençant le gain dû au pruning
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• l’élagage est plus important lorsque l’on combine Pc et Pi que lorsqu’on en utilise seulement
un des deux (autre seuil correspondant fixé à 0). Plus des trois quarts des mappings
candidats sont élagués lorsque l’espace de recherche dépasse les 2000 mappings.

• à tailles égales de l’espace de recherche, l’élagage est plus important lorsque les taxonomies
sont de taille très différentes (déséquilibrées) que lorsqu’elles sont de même taille

• plus les mappings à découvrir qui ont été générés sont “spécifiques” (donc ont un grand
nombre de conséquences), moins il y a d’élagage.

Influence du classifieur choisi sur le temps et la qualité des résultats

• le choix du classifieur n’affecte pas l’importance de l’élagage

• ProbaMap avec C4.5 et SVM (SMO) fournit un rappel bien meilleur qu’avec Naive Bayes

• ProbaMap avec C4.5 et Naive Bayes va plus vite qu’avec un SVM

• Avec C4.5 (meilleur compromis), le rappel augmente fortement avec le nombre d’instances
par classe entre 10 et 60, et est haut à partir de 50 instances par classes. La précision
n’est pas vraiment influencée par ce paramètre.

Robustesse au bruit dans la description des instances
On introduit un certain pourcentage de bruit dans les descriptions des instances (proportions
de bits inversés dans l’ensemble des descriptions des instances des deux taxonomies).

• le rappel n’est vraiment affecté que par une proportion de bruit supérieure à 15%

• la précision est affectée négativement à partir de 24% de bruit

ProbaMap est donc robuste car ces proportions de bruit sont élevées.

En conclusion, les expérimentations sur données synthétiques montrent que combiner Pc et Pi

pour sélectionner les mappings à renvoyer permet d’optimiser la précision et l’élagage de l’espace
de recherche (et donc le temps). ProbaMap utilisé avec C4.5 et SVM permet d’avoir un rappel
supérieur à celui obtenu avec Naive Bayes, et une précision équivalente.

B.7 Expérimentations sur données réelles

Nous avons confronté ProbaMap à des taxonomies réelles issues de directories web (Yahoo!,
Google, Looksmart). Tout d’abord, ceux-ci ont l’avantage de représenter des domaines pop-
ulaires et généraux, ce qui est cohérent avec la vision du web sémantique que nous avons
présenté en introduction, dans lequel les utilisateurs annotent leurs documents eux-mêmes avec
des folksonomies. De plus, comme ces directories comportent plusieurs centaines voire milliers
de classes, ils permettent de tester le passage à l’échelle de ProbaMap. Enfin, aligner des di-
rectories web aussi populaires est directement utile pour l’avènement du Web Sémantique, car
il permet d’intégrer de façon cohérente tout le contenu web initialement référencé par plusieurs



B.7–Expérimentations sur données réelles 143

organisations. Ainsi, il suffit d’une seule requête pour accéder à toutes les pages concernées et
référencées à la fois par Yahoo, Google et Looksmart.

Nous avons effectué deux séries de tests : l’une sur un jeu de donnée de la compétition annuelle
OAEI, l’autre sur des directories web collectés, en comparaison avec une autre méthode de l’état
de l’art appelée SBI [ITH03].

Tests sur le jeu de donnée directory d’OAEI

Le jeu de données directory d’OAEI a été construit de façon semi-automatique à partir des
directories web Looksmart, Yahoo! et Google. Voici les points clefs du contexte expérimental :

• Les taxonomies contiennent respectivement 6628 et 2857 classes, mais ne contiennent au-
cune instances. L’espace de recherche est plus grand que 30 millions de mappings.

• Les taxonomies sont disponibles sous leur forme complète, ou bien décomposées en paires
de branches (environ 4000) à aligner. Tous les participants ne fournissent leurs résultats
qu’à partir de ce jeu modifié, alors que nous utilisons directement les structures brutes, ce
qui permet de ne pas perdre d’information.

• Comme il n’y a pas d’instances et que notre méthode en nécessite, nous peuplons les classes
par des unités linguistiques (synsets) à partir du thésaurus WordNet avec une approche
similaire à celle utilisée dans Ctx-Match [SBMZ03]. Pour chaque classe, on tient compte à
la fois de son label et du contexte dans lequel elle apparaît (sa hiérarchie) afin de capturer
au mieux son sens. Pour certaines classes, ce processus échoue et elles restent non peuplées.
Lors de l’évaluation, on peut restreindre le calcul du rappel et de la précision aux seuls
mappings faisant intervenir des classes peuplées (cf. ligne wordnet/regular dans la figure
B.1).

• Comme ProbaMap découvre des mappings d’inclusions et que la référence pour l’évaluation
est constituée d’équivalences, on considère qu’une équivalence est trouvée (1, méthode
“min”) si les deux inclusions sont trouvées, ou bien (2, méthode “moy”) si les deux inclusions
sont trouvées avec des seuils plutôt bas et que la moyenne des scores respectifs de Pc et Pi

pour les deux inclusions dépasse un certain seuil.

• L’évaluation qualitative se fait en terme de précision et de rappel par rapport à la référence
fournie par OAEI. Cependant, on utilise aussi une précision et un rappel sémantiques
pour lequel la référence est l’ensemble des mappings d’inclusions impliqués par ceux de
la référence modulo les taxonomies, et l’ensemble de mapping évalué est simplement les
mappings retournés par ProbaMap. Ces critères semblent plus adaptés a priori car ils
tiennent comptent de l’implication logique.

Résultats

Dans ces expériences, Su est fixé à 0.9, et Sc à 0.8 (sauf si autre valeur indiquée).
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Figure B.1: Résultats sur une référence partielle

Yahoo! Google shared
classes instances classes instances instances

Autos 947 4406 967 6425 837

Outdoors 2428 5511 1441 13863 623

Software 323 2390 2395 30140 572

Photography 168 1851 321 3852 286

Table B.1: Statistiques sur subdirectories collectés depuis Yahoo! et Google (Juin 2010)

• Une première expérience (cf. figure B.1) sur une référence partielle fournie par OAEI a
permis de fixer Sc à 0.8 pour optimiser le compromis rappel-précision, et de constater que
le rappel est bas.

• Les résultats sur la référence complète sont de 1,4% pour le rappel et de 43,4% pour la
précision, de 17,5% pour le rappel sémantique et de 48,3% pour la précision sémantique.
Les autres méthodes ont une précision autour de 60% et un rappel autour de 50%, mais
nous ne connaissons pas leurs résultats en terme de précision et rappel sémantique.

• Ces résultats peuvent être expliqués par un sur-apprentissage des paramètres de la popu-
lation sur le sous-ensemble retenu pour l’optimiser. Cette phase est capitale étant donné
qu’aucune instance n’est fournie. Cette phase est difficile car WordNet est une ressource
linguistique fondée un graphe de relations entre entités linguistiques, alors que l’estimation
de Pi et Pc est basée sur les tailles des extensions des classes.

• En ce qui concerne l’aspect complexité, ProbaMap admet sans problème l’espace de
recherche de 30 millions de mappings.

Evaluation comparative avec SBI sur Yahoo! et Google directories

La seconde série d’expériences porte sur l’alignement de directories collectés depuis Yahoo!
et Google. Les données collectées sont directement peuplées d’instances, étant donnés que
les catégories des directories sont les classes, et les liens référencés pour chaque catégories les
intances. De plus, un résumé de chaque page constitue une description qui est utilisé lors de la
phase de classification (si activée).
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Proportion d’instances en
commun fournies

SBI ProbaMap ProbaMap + classif

0.5 0.23 0.28 0.36

0.9 0.29 0.33 0.40

Table B.2: Averaged accuracy for SBI and ProbaMap

Dans cette expérimentation, ProbaMap est comparé à SBI [ITH03, IHT04] un outil d’alignement
conçu d’abord pour aligner des directories web. Nous avons programmé et lancé SBI sur les
mêmes données que ProbaMap, et comparé les deux en terme d’accuracy, mesure de qualité
utilisée par les auteurs de SBI. L’accuracy est une mesure de qualité standard qui ne nécessite
pas de mappings de référence. A partir d’un ensemble d’instances appartenant à la fois aux
deux taxonomies conservé pour l’évaluation (et non utilisé pour la découverte de mapping), elle
indique la proportion de ces instances qui sont cohérentes avec les mappings trouvés.

Afin de mener une comparaison fiable, nous avons ajouté un post-traitement à ProbaMap pour
qu’un et un seul mapping A1 ⊑ B2 soit retourné pour chaque classe A1 de la première taxonomie,
car SBI renvoie ses résultats sous cette forme.

Les variables dans les expériences conduites sont :

• l’activation ou non de la phase de classification

• la proportion d’instances en commun fournie pour la découverte (ce qui reste est utilisé
pour calculer l’accuracy).

Résultats

• En moyenne, ProbaMap obtient de meilleurs résultats que SBI, et la version avec classifi-
cation de meilleurs résultats que les deux autres.

• Lorsqu’il y a peu d’instances par classe, SBI et ProbaMap sont défavorisés, mais la classi-
fication permet d’améliorer les résultats dans certains cas.

• ProbaMap est plus robuste que SBI à la diminution du nombre d’instance (lorsqu’elle est
uniformément répartie entre les classes), et la version avec classification l’est encore plus.

Ces expériences sont concluantes et montrent que ProbaMap donne de bons résultats sur les
directories web, qui représentent de nombreux cas réels. La phase de classification permet
d’améliorer les résultats, notamment lorsqu’il n’y a pas assez d’instances en commun.

B.8 Conclusion

Le problème général traité dans cette thèse est l’alignement d’ontologies, qui est une des pierres
angulaires pour l’avènement du futur Web Sémantique, par exemple pour permettre un échange
de documents collaboratifs entre plusieurs sources. En particulier, nous nous sommes concentrés
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sur comment définir une sémantique formelle probabiliste gérant l’incertitude pour des mappings
d’inclusions.

Dans cette optique, nous avons présenté deux fonctions probabilistes qui peuvent être utilisées
et estimées pour associer un degré de confiance à chaque mapping.

• Pi(A ⊑ B) = P (A ∪B)

• Pc(A ⊑ B) = P (B|A)

En analysant les propriétés théoriques de ces deux modèles, nous avons suggéré qu’une combi-
naison des deux était la meilleure solution. Nous avons montré une propriété de monotonie de Pi

et de Pc par rapport à l’ordre induit par l’implication logique, qui permet de relier directement
la sémantique logique avec les probabilités des mappings.

De plus, nous avons montré que sous certaines hypothèses, les seules fonctions de confiance
probabilistes monotones étaient de la forme m −→ f(Pi(m)), indiquant que Pi est donc la
fonction monotone la plus simple (f = identité).

Les probabilités Pi et Pc pour un mapping peuvent être estimées par une technique bayésienne à
partir des extensions des classes mises en jeu dans le mapping. Dans le cas où les deux taxonomies
sont peuplées par des ensembles d’instances disjoints et que les instances sont annotées par des
descriptions, on utilise des classifieurs pour fusionner les instances des deux taxonomies.

Nous avons conçu et implémenté un algorithme de découverte de mapping basé sur Pi et Pc.
Cet algorithme est de type “générer et tester” et renvoie tous les mappings possibles entre deux
taxonomies pour lesquels Pc et Pi dépassent deux seuils fournis en entrée. ProbaMap exploite
la propriété de monotonie de Pc et de Pi pour élaguer son espace de recherche constitué de
l’ensemble des mappings possibles entre les deux taxonomies en entrée.

Nous avons effectué deux séries d’expérimentations pour valider notre approche. La première
consiste en une analyse quantitative et qualitative approfondie du comportement de ProbaMap
sur des données synthétiques contrôlées. Nous avons conçu un générateur complet de tax-
onomies, mappings et instances, pour lequel différents paramètres peuvent être réglés : taille
des taxonomies, nombre d’instances par classe, etc. En croisant les paramètres du générateur et
ceux de ProbaMap, nous avons confirmé que Pc et Pi doivent être combinés pour obtenir à la fois
de meilleurs résultats en terme de précision et aussi en terme de temps. Nous avons aussi montré
que ProbaMap est robuste lorsqu’il y a du bruit dans les descriptions des instances, et qu’il néces-
sitait un nombre minimal mais limité d’instances par classe. La seconde série d’expérimentations
a été conduite sur des taxonomies issues de directories Web (Yahoo!, Google). Les résultats sont
prometteurs en terme de passage à l’échelle et de qualité. En particulier, ProbaMap a montré
de meilleurs résultats que SBI [ITH03], un algorithme de l’état de l’art dédié à l’alignement de
directories Web.

Perspectives

Nous avons deux perspectives principales. La première consiste à étudier et concevoir un système
pour répondre de façon probabiliste à des requêtes par réécriture en ré-utilisant les probabilités
associées aux mappings découverts, dans l’esprit des bases de données probabilistes. Nous envis-
ageons une approche fondée sur du raisonnement probabiliste. Plusieurs travaux introduisent les
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probabilités dans la logique et le raisonnement (Probability Logic - Introduction dans [Ada98],
P-CLASSIC [KLP97] P-SHIQ [CFL+08]), et nous comptons nous en inspirer.

La seconde perspective étudie le moyen de tirer parti de la qualité et de l’efficacité des méthodes
d’alignement existantes, tout en garantissant que les coefficients associés aux mappings qu’elle
renvoient respectent une propriété de monotonie (cf. Définition B.1), afin de pouvoir être in-
terprétés comme des probabilités. Cette perspective consiste ainsi à formuler et implémenter
un post-traitement à ces méthodes pour transformer leurs coefficients, à l’aide du principe de
similarity flooding [MGR+02] dans l’esprit de N2R [SPR09] et d’OLA [EV04].
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Mots-clefs :
alignement d’ontologies, Web sémantique, correspondance, probabilités, logique, instances, tax-
onomie, passage á l’échelle, Web Sémantique

Résumé :
Dans cette thèse, nous adoptons une approche formelle pour définir et découvrir des map-
pings d’inclusion probabilistes entre deux taxonomies avec une sémantique claire, dans l’optique
d’échange collaboratif de documents. Nous comparons deux façons de modéliser des mappings
probabiliste tout en étant compatible avec les contraintes logiques déclarées dans chaque tax-
onomie selon une propriété de monotonie, puis nous montrons que ces modèles sont complé-
mentaires pour distinguer les mappings pertinents. Nous fournissons un moyen d’estimer les
probabilités d’un mapping par une technique bayésienne basée sur les statistiques des extensions
des classes impliquées dans le mapping. Si les ensembles d’instances sont disjoints, on utilise
des classifieurs pour les fusionner. Nous présentons ensuite un algorithme de type "générer et
tester" qui utilise les deux modèles de mappings pour découvrir les plus probables entre deux
taxonomies. Nous menons une analyse expérimentale fouillée de ProbaMap. Nous présentons
un générateur de données synthétiques qui produit une entrée contrôlée pour une analyse quan-
titative et qualitative sur un large spectre de situations. Nous présentons aussi deux séries
de résultats d’expériences sur des données réelles : l’alignement du jeu de donnée "Directory"
d’OAEI, et une comparaison pour l’alignement de Web Directories sur lesquels ProbaMap ob-
tient de meilleurs résultats que SBI (IJCAI 2003). Les perspectives pour ces travaux consistent
à concevoir un système de réponse à des requêtes probabilistes en réutilisant des mappings prob-
abilites, et la conversion des coefficients retournés par les méthodes de matching existantes en
probabilités.

Keywords:
ontology matching, semantic web, mapping, probability, logic, instances, taxonomy, scalability,
taxonomy, Semantic Web

Abstract:
In this thesis, we investigate a principled approach for defining and discovering probabilistic in-
clusion mappings between two taxonomies, with a clear semantic, in a purpose of collaborative
exchange of documents. Firstly, we compare two ways of modeling probabilistic mappings which
are compatible with the logical constraints declared in each taxonomy according to a monotony
property, then we show that they are complementary for distinguishing relevant mappings. We
provide a way to estimate the probabilities associated to a mapping by a Bayesian estimation
technique based on classes extensions involved in the mapping, and using classifiers in order to
merge the instances of both taxonomies when they are disjoint. Then we describe a generate and
test algorithm called ProbaMap which minimizes the number of calls to the probability estima-
tor for determining those mappings whose probability exceeds a chosen threshold. A thorough
experimental analysis of ProbaMap is conducted. We introduce a generator that produce con-
trolled data that allows to analyse the quality and the complexity of ProbaMap in a large and
generic panel of situations. We present also two series of results for experiments conducted on
real-world data: an alignment of the Directory dataset of the Ontology Alignment Evaluation
Initiative (OAEI), and a comparative experiment on Web directories, on which ProbaMap out-
performs the state-of-the-art contribution SBI (IJCAI’03). The perspectives of this work are the
reuse of probabilistic mappings for a probabilistic query answering setting and a way to convert
similarities coefficients of existing matching methods into probabilities.
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