CONDENSAT DE BOSE-EINSTEIN DE SODIUM

DANS UN PIÈGE MÉSOSCOPIQUE

Thèse de doctorat de l'Université Pierre et Marie Curie - Paris VI

Mardi 28 septembre 2010

Emmanuel MIMOUN sous la direction de Jean Dalibard et Fabrice Gerbier

La condensation de Bose-Einstein

- Ensemble macroscopique de bosons dans l'état fondamental quantique du système
- Prédit en 1925 par Einstein d'après les travaux de Bose sur la statistique des photons
- Observée expérimentalement dans un gaz dilué en 1995
 M. H. Anderson et al., Science 269 5221 (1995) (NIST/JILA) K. B. Davis et al., Phys. Rev. Lett. 75 3969 (1995) (MIT)

ce

$$\begin{array}{c} & & & \\ & & &$$

Etats quantiques fortement corrélés

Etats corrélés

Paire de Bell Etat séparable \neq $| \diamondsuit + | \diamond \diamond \rangle \quad (| \diamondsuit + | \diamond \rangle) \otimes (| \diamondsuit + | \diamond \rangle)$

Etats corrélés macroscopiques

«Chat de Schrödinger» : superposition macroscopique d'états

Etats quantiques fortement corrélés

Pourquoi des états fortement corrélés ?

- Frontière classique/quantique
- Métrologie quantique : précision des mesures $1/\sqrt{N} \rightarrow 1/N$

M. J. Holland and K. Burnett, PRL 71 1355 (1993)

- A partir de quoi les former ?
 - Photons
 A. Ourjoumtsev et al., Nature 448 784 (2007)
 S. Deléglise et al., Nature 455 510 (2008)
 - lons piégés D. Leibfried et al., Nature **438** 639 (2005)
 - Atomes froids

Etats corrélés avec des atomes froids

Quelles observables corréler ?

 Variable externe : Double puits Corrélations en position

J. Esteve *et al.*, Nature **455** 1216 (2008) K. Maussang *et al.*, Phys. Rev. Lett. **105** 080403 (2010)

- Survivre à la décohérence
 - Petit nombre d'atomes
 - Eviter les pertes d'atomes
 - Contrôler les perturbations dues à l'environnement

• Etat interne : Condensat spinoriel Corrélations entre composantes de spin

C. Gross et al., Nature 464 1165 (2010)

Plan de l'exposé

- I. Motivations pour la création de l'expérience
- II. Travail expérimental
 - I. Laser solide à 589 nm pour le refroidissement du sodium
 - 2. Chargement d'un PMO par désorption induite par la lumière
 - 3. Condensation tout-optique dans un piège mésoscopique

Plan de l'exposé

- I. Motivations pour la création de l'expérience
- II. Travail expérimental
 - I. Laser solide à 589 nm pour le refroidissement du sodium
 - 2. Chargement d'un PMO par désorption induite par la lumière
 - 3. Condensation tout-optique dans un piège mésoscopique

- Ensemble de N atomes occupant 2 modes, notés $|a\rangle$ et $|b\rangle$
- Couplage non linéaire entre ces deux modes de la forme

$$H_{\rm int} = \hbar \chi (N_a - N_b)^2$$

B. Yurke and D. Stoler, Phys. Rev. Lett. 57 13 (1986)

- Ces deux modes peuvent par exemple représenter deux composantes de spin m=±1 d'un condensat d'atomes dans F=1
- Etant données les longueurs de diffusion mesurées pour le sodium :

Pour N=100 atomes et une densité de 10^{14} atomes/cm³ : $1/\chi \sim 300 \text{ ms}$

A. Black et al., Phys. Rev. Lett. 99 070403 (2007)

 Condensat à deux modes analogue à un ensemble de spin 1/2 :

$$S_z \leftrightarrow N_a - N_b$$

• Représentation d'un état cohérent de spin

$$|\theta,\phi\rangle = 2^{-N/2} \left[\cos(\theta/2) e^{-i\phi/2} |a\rangle + \sin(\theta/2) e^{i\phi/2} |b\rangle \right]^{\otimes N}$$

par un vecteur sur la sphère de Bloch

• Etat initial $(|a\rangle + |b\rangle)^{\otimes N}$, $\Delta^2 S_z = N/4$

• $\chi t \ll 1$: Compression de spin $\Delta^2 S_z < N/4$

- Etat initial $(|a\rangle + |b\rangle)^{\otimes N}$, $\Delta^2 S_z = N/4$
- $\chi t \ll 1$: Compression de spin $\Delta^2 S_z < N/4$
- $\chi t \gtrsim 1/\sqrt{N}$: Brouillage de la phase

- Etat initial $(|a\rangle + |b\rangle)^{\otimes N}$, $\Delta^2 S_z = N/4$
- $\chi t \ll 1$: Compression de spin $\Delta^2 S_z < N/4$
- $\chi t \gtrsim 1/\sqrt{N}$: Brouillage de la phase
- *χt* = π/p, N = 0[p] : Résurgences partielles
 ▷ superposition de p états cohérents

- Etat initial $(|a\rangle + |b\rangle)^{\otimes N}$, $\Delta^2 S_z = N/4$
- $\chi t \ll 1$: Compression de spin $\Delta^2 S_z < N/4$
- $\chi t \gtrsim 1/\sqrt{N}$: Brouillage de la phase
- *χt* = π/p, N = 0[p] : Résurgences partielles
 ⇒ superposition de p états cohérents
- $\chi t = \pi/2$: Superposition $\pm S_x$

- Etat initial $(|a\rangle + |b\rangle)^{\otimes N}$, $\Delta^2 S_z = N/4$
- $\chi t \ll 1$: Compression de spin $\Delta^2 S_z < N/4$
- $\chi t \gtrsim 1/\sqrt{N}$: Brouillage de la phase
- *χt* = π/p, N = 0[p] : Résurgences partielles
 ⇒ superposition de p états cohérents
- $\chi t = \pi/2$: Superposition $\pm S_x$
- Après un pulse $\pi/2$: état NOON $|a:\mathbf{N},b:\mathbf{0}
 angle+|a:\mathbf{0},b:\mathbf{N}
 angle$
 - Chat de Schrödinger spinoriel

- Etat initial $(|a\rangle + |b\rangle)^{\otimes N}$, $\Delta^2 S_z = N/4$
- $\chi t \ll 1$: Compression de spin $\Delta^2 S_z < N/4$
- $\chi t \gtrsim 1/\sqrt{N}$: Brouillage de la phase
- *χt* = π/p, N = 0[p] : Résurgences partielles
 ▷ superposition de p états cohérents

• Après un pulse $\pi/2$: état NOON $|a:\mathbf{N},b:\mathbf{0}
angle+|a:\mathbf{0},b:\mathbf{N}
angle$

• $\chi t = \pi/2$ Superposition $\pm S_x$

Limiter la décohérence

• Faible champ magnétique, dont les fluctuations sont source de décohérence

Environnement amagnétique

- Moins d'un atome perdu (en moyenne) pendant la durée de l'évolution
 - Maximiser les interactions entre espèces de spin
 - Utiliser une espèce atomique avec de faibles coefficients de pertes

Atome de sodium

• Limiter le nombre d'atomes de l'échantillon pour mieux le contrôler

Piège mésoscopique

Un piège optique mésoscopique

- Piège optique gaussien V(x) d'extension w_0 et de profondeur V_0 finie
- · Le nombre d'atomes dans le piège est limité par les interactions répulsives
- Avec l'augmentation du nombre d'atomes, un unique état lié demeure
 pas d'interaction avec la fraction non condensée

C.-S. Chuu et al., PRL **95** 260403 (2005) A.M. Dudarev et al., PRL **98** 063001 (2007)

Etats excités du piège mésoscopique

 Résolution numérique de l'équation de Gross-Pitaevskii ID pour trouver l'état fondamental du système :

$$\left[-\frac{\hbar^2}{2m}\Delta + V(x) + g_{1\mathrm{D}}N|\varphi_0(x)|^2\right]\varphi_0(x) = \mu\varphi_0(x)$$

- Seuil «d'explosion» de la taille du fondamental $N_{
 m sat} \propto rac{V_0 w_0}{g_{
 m 1D}}$
- Stabilité accrue du condensat face aux perturbations du piège

Plan de l'exposé

- I. Motivations pour la création de l'expérience
- II. Travail expérimental
 - I. Laser solide à 589 nm pour le refroidissement du sodium
 - 2. Chargement d'un PMO par désorption induite par la lumière
 - 3. Condensation tout-optique dans un piège mésoscopique

Limiter la décohérence

• Faible champ magnétique, dont les fluctuations sont sources de décohérence

Environnement amagnétique

- Moins d'un atome perdu (en moyenne) pendant la durée de l'évolution
 - Maximiser les interactions entre espèces de spin
 - Utiliser une espèce atomique avec de faibles coefficients de pertes

Atome de sodium

• Limiter le nombre d'atomes de l'échantillon pour mieux le contrôler

Piège mésoscopique

Environnement amagnétique

Atome de sodium

Piège mésoscopique

- Blindage magnétique Matériaux amagnétiques
- Pas de ralentisseur Zeeman
- Compacité du dispositif
 Temps de vie élevée ➡ enceinte unique

- Refroidissement laser à 589 nm
- Chargement d'un PMO flux atomique élevé
- pour le gaz piégé

Environnement amagnétique

Atome de sodium

Piège mésoscopique

- Blindage magnétique
 Refroidissement laser à Matériaux amagnétiques
 S89 nm
 - Chargement d'un PMO

flux atomique élevé

Pas de ralentisseur Zeeman

 Compacité du dispositif
 Temps de vie élevée pour le gaz piégé

Environnement amagnétique

Atome de sodium

Piège mésoscopique

- Blindage magnétique Matériaux amagnétiques
- Pas de ralentisseur
 Zeeman

- Refroidissement laser à 589 nm
- Chargement d'un PMO
 flux atomique élevé

Compacité du dispositif

 Temps de vie élevée pour le gaz piégé

Environnement amagnétique

Atome de sodium

Piège mésoscopique

- Blindage magnétique Matériaux amagnétiques
- Pas de ralentisseur Zeeman
- Chargement d'un PMO flux atomique élevé

Refroidissement laser à

589 nm

- Compacité du dispositif
 Temps de vie élevée ➡ enceinte unique
- pour le gaz piégé

Alternance rapide nécessaire entre deux régimes de pression

Environnement amagnétique

Atome de sodium

Piège mésoscopique

- Blindage magnétique Matériaux amagnétiques
- Pas de ralentisseur
 Zeeman
- Compacité du dispositif
 c> enceinte unique

- Refroidissement laser à 589 nm
- Chargement d'un PMO
 flux atomique élevé
- Temps de vie élevée pour le gaz piégé

- Focalisation à la limite de diffraction (1-2 µm)
- Imagerie haute résolution

 optique dédiée à deux longueurs d'onde
 ouverture numérique élevée

Alternance rapide nécessaire entre deux régimes de pression

Plan de l'exposé

- I. Motivations pour la création de l'expérience
- II. Travail expérimental
 - I. Laser solide à 589 nm pour le refroidissement du sodium
 - 2. Chargement d'un PMO par désorption induite par la lumière
 - 3. Condensation tout-optique dans un piège mésoscopique

Somme de fréquence

$$P_3 = \alpha P_1 P_2$$

 $\alpha \propto d^2 L^2, \ P_3 \ll P_1 P_2$

d: coefficient non-linéaire L: longueur du cristal Condition d'accord de phase
 cristal de ppKTP

• Coefficient de conversion non-linéaire typique assez faible $\alpha \simeq 0.02 \ {\rm W/W}^2$

to utilisation d'une cavité optique

Collaboration avec Jean-Jacques Zondy, LNE-INM-Cnam

¹⁰⁶⁴ 589 Somme de fréquence en cavité

• A résonance les puissances intra-cavité P_{cav} et réfléchies P_{ref} sont:

$$\frac{P_{cav}}{P_0} = \frac{1-R}{(1-\sqrt{RC})^2} \qquad \frac{P_{ref}}{P_0} = \left(\frac{\sqrt{C}-\sqrt{R}}{1-\sqrt{RC}}\right)^2$$

2

• Question : trouver la valeur R en fonction de C telle que tous les photons soient absorbés, i.e. $P_{ref} = 0$? R = C

¹⁰⁶⁴ 589 Somme de fréquence en cavité

¹⁰⁶⁴ 589 Somme de fréquence en cavité

- Conversion totale : 100% de la source laser la plus faible, ici le laser 2
- Problème non linéaire : C₂ dépend de P_{cav,1} et inv., via $P_3 = \alpha P_1 P_2$
- Sans pertes : une famille de couple (R₁,R₂) permet une conversion totale
- Pertes passives : il existe un optimum avec une conversion > 90%

 $R_1 = 0.93, \quad P_{\text{cav},1}/P_{0,1} = 16$ $R_2 = 0.75, \quad P_{\text{cav},2}/P_{0,2} = 2.5$

¹⁰⁶⁴ ⁵⁸⁹ Somme de fréquence en cavité

Lorsqu'un seul laser est allumé, la conversion n'a pas lieu. La condition d'adaptation d'impédance n'est pas réalisée.

¹⁰⁶⁴ ⁵⁸⁹ Somme de fréquence en cavité

Adaptation d'impédance réalisée : 92 % des photons du laser à 1319 nm sont convertis.

Electronique de verrouillage

• Compensation de la déplétion de la puissance intra-cavité à 1319 nm

La combinaison électronique de l'onde consommée avec l'onde produite permet le verrouillage de la cavité.

- Système «auto-relock»
 - Lors d'une perturbation importante, l'intégrateur est neutralisé et la valeur de correction de l'asservissement est figée.
 - Lorsque la perturbation prend fin, l'intégrateur de la boucle est réactivé et le système retourne à son état initial.

Caractéristiques du laser

EM et al., Opt. Express **16** 18684 (2008) EM et al., Appl. Phys. B **99** 31 (2010)

- 800 mW, 92% des photons couplés dans la cavité convertis
- Bonne qualité de faisceau : $M^2 = 1.01$
- Très faible maintenance
- Stable thermiquement, mise en route rapide

Plan de l'exposé

- I. Motivations pour la création de l'expérience
- II. Travail expérimental
 - I. Laser solide à 589 nm pour le refroidissement du sodium
 - 2. Chargement d'un PMO par désorption induite par la lumière
 - 3. Condensation tout-optique dans un piège mésoscopique

Une enceinte à vide amagnétique

- Accès optique maximisé
- Réalisé en titane (amagnétique)

Une enceinte à vide amagnétique

- Accès optique maximisé
- Réalisé en titane (amagnétique)

Une enceinte à vide amagnétique

- Accès optique maximisé
- Réalisé en titane (amagnétique)

- Grande ouverture numérique sur 2 ports (NA ~ 0.33)
 Piège dipolaire focalisé
 - Imagerie haute résolution

Désorption induite par la lumière

- Les atomes sont désorbés de la surface en absorbant un photon (effet analogue à l'effet photo-électrique)
- Les atomes désorbés forment une vapeur qui sert de source atomique pour le PMO (piège magnéto-optique)

I.N. Abramova et al., JETP Lett. 39, 203 (1984) A. Gozzini et al, Nuovo Cimento 15, 709 (1993)

• Le courant dans les dispensers vaporise du sodium dans l'enceinte

- · Le courant dans les dispensers vaporise du sodium dans l'enceinte
- A l'allumage des LEDs UV, le sodium est désorbé pour charger le PMO

$$\dot{N}_{\rm PMO} = R_{\rm PMO} - N_{\rm PMO}/\tau_{\rm PMO}$$

 $R_{\rm PMO} \propto P_{\rm Na}$
 $1/\tau_{\rm PMO} \propto P_{\rm Na} + 1/\tau_0$
 \uparrow χ
Pression partielle Durée de vie due aux impuretés du

vide résidue

$$\dot{N}_{\rm PMO} = R_{\rm PMO} - N_{\rm PMO}/\tau_{\rm PMO}$$

 $R_{\rm PMO} \propto P_{\rm Na}$
 $1/\tau_{\rm PMO} \propto P_{\rm Na} + 1/\tau_0$

Pression partielle de sodium

e Durée de vie due aux impuretés du vide résiduel

- R_{PMO} augmente linéairement avec l'intensité lumineuse, jusqu'à saturation
- La pression de sodium est alors multipliée par un facteur ~40
- Le nombre stationnaire d'atomes atteint jusqu'à 2×10⁷ atomes

Retour à la pression de base

- L'extinction des LEDs permet de passer d'un régime de chargement rapide à une pression de base faible pour un temps de vie élevé
- Le taux de chargement baisse d'un facteur 40 en moins de 100 ms.
 Le retour à basse pression est rapide devant le chargement du piège conservatif

EM et al., Phys. Rev. A 81 023631 (2010)

Plan de l'exposé

- I. Motivations pour la création de l'expérience
- II. Travail expérimental
 - I. Laser solide à 589 nm pour le refroidissement du sodium
 - 2. Chargement d'un PMO par désorption induite par la lumière
 - 3. Condensation tout-optique dans un piège mésoscopique

Piège dipolaire optique croisé

- Laser de 40 W à 1070 nm, 2 bras formant un angle de 45°
- Le laser est renvoyé vers la chambre après le premier passage, assurant la totalité de la puissance sur les 2 bras

Piège dipolaire optique croisé

Contours isopotentiels

Puissance	36 W - 0.2 W
Profondeur	I.2 mK - 7 μK
Taille du faisceau	42 µm
Fréquence au centre	4 kHz
Fréquence axiale	20 Hz

Chargement du piège dipolaire

- Chargement du piège croisé à partir du PMO
- Diminution de la puissance du faisceau repompeur pour limiter les collisions assistées par la lumière
- Décalage en fréquence des faisceaux de refroidissement pour obtenir un PMO plus froid

Chargement du piège dipolaire

 Déplacement lumineux dû au piège trop important à haute puissance

Chargement du piège dipolaire

 Déplacement lumineux dû au piège trop important à haute puissance

Ax10⁵ atomes à ~100 µK

Micro-piège	
λ	1070 nm
Col	8 µm
Fréq. Radiale	7 kHz

 Condensation en deux temps, en jouant sur l'intensité des deux pièges

- Condensation en deux temps, en jouant sur l'intensité des deux pièges
- Tout d'abord, chargement du piège dimple

Evaporation dans le piège croisé

 Le nombre d'atomes initial est insuffisant pour atteindre la condensation avec le piège croisé seul

Chargement du dimple

 La quasi-totalité des atomes est transférée, sans chauffage, avec une densité dans l'espace des phases 100 fois plus grande

Evaporation dans le dimple

Evaporation dans le dimple

- Modèle original d'évaporation
 - Nette divergence avec les modèles plus simples (en vert) Ex. K. M. O'Hara et al., PRA 64 051403 (2001)

Evaporation dans le dimple

- Modèle original d'évaporation
 - Nette divergence avec les modèles plus simples (en vert) Ex. K. M. O'Hara et al., PRA 64 051403 (2001)
 - Terme de déversement important pour les rampes rapides (piège optique)

Evaporation dans le dimple

- Modèle original d'évaporation
 - Nette divergence avec les modèles plus simples (en vert) Ex. K. M. O'Hara et al., PRA 64 051403 (2001)
 - Terme de déversement important pour les rampes rapides (piège optique)
 - Anharmonicité du piège importante pour ce terme prise en compte (en rouge)

Mesure de la fraction condensée

• Double structure, avec purification du condensat au cours de l'évaporation

- La fraction condensée et la température sont déduites de ces profils
- Bien décrit par un modèle semi-idéal M. Naraschewski et al., PRA **58** 2423 (1998)

L'effet des interactions demeure bien visible à petit nombre d'atomes grâce au piège mésoscopique

Conclusion

- Conception d'un dispositif expérimental pour l'étude de systèmes quantiques mésoscopiques fortement corrélés
- Laser solide à 589 nm pour le refroidissement du sodium
- Formation d'un condensat de Bose-Einstein de sodium dans une enceinte unique en utilisant la désorption
- Condensation tout optique en deux temps en utilisant un piège optique mésoscopique fortement focalisé

Condensat de sodium et piège mésoscopique

- Formation d'un piège plus focalisé, $w_0 \sim 1.5 \ \mu m$
- Configuration état lié unique

Observation d'une réduction des fluctuations du nombre d'atomes dans le piège ?

Etude de condensats spinoriels

- Comptage des atomes par fluorescence à l'unité près
- Observation d'états de spin comprimés
- Anti-ferromagnétisme : état fondamental corrélé

Remerciements

Un grand merci à toute l'équipe !

David FabriceLingxuanJeanLuigiJacob GerbierShaoDalibard de Sarlo

Merci au groupe atomes froids, et aux membres du secrétariat, de la bibliothèque, des ateliers, des services généraux...