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Abstract

This thesis is devoted to investigation of “quantum graphs”, in other words, quan-
tum systems in which a nonrelativistic particle is confined to a graph. One of the
main questions addressed in this work concerns the physical meaning of wave func-
tion couplings in the graph vertices. We consider the standard form of boundary
conditions in a vertex of degree n, namely A¥(0) + BV'(0) = 0, where A and B
are matrices of the sizes n x n, ¥(0) and W'(0) signify vectors containing the values
of the wave function components on all the outgoing edges and of its derivatives,
rank(A|B) = n, AB* = BA*, and we propose a new way to represent the matri-
ces A, B. With the help of this result we solve the longstanding open problem of
approximating by regular graphs all singular vertex couplings in quantum graph
vertices. We present a construction in which the edges are disjunct and the pairs of
the so obtained endpoints are joined by additional connecting edges of lengths 2d.
Each connecting edge carries a 0 potential and a vector potential, and its endpoints
are coupled to the disjunct edges by d-couplings. It is shown that when the lengths
2d of the connecting edges shrink to zero and the added potentials properly depend
on d, the limit can yield any requested singular vertex coupling, and moreover that
the approximation converges in the norm-resolvent sense.

We discuss also a simpler approximation arrangement where the edges are not
disjunct. Instead of that, a d-coupling is imposed at the vertex, and additional -
interactions and vector potentials are placed on the n outgoing edges. We show that
this arrangement allows one to approximate a 3n-parameter subfamily of Schrédinger
operators provided the d-coupling and the d-interactions parameters, as well as the
vector potentials strengths, are properly chosen.

This type of boundary conditions is used to examine scattering properties of
singular vertices of degrees 2 and 3. We identify the § and ¢’ components of the
connection condition and show that the couplings between each pair of the outgoing
edges are individually tunable, which could enable the design of quantum spectral
junction filters.

We also study Schrédinger operators on an infinite quantum graph of a chain
form which consists of identical rings connected at the touching points by the J-
couplings with the coupling constant o € R. If the graph is straight, i.e. periodic,
the Hamiltonian has a band spectrum with infinite number of gaps whenever a # 0.
We consider a “bending” deformation of the chain consisting in changing the position
of the point of contact between two rings and we show that this deformation gives
rise to eigenvalues in the spectral gaps. We analyze dependence of these eigenvalues
on « and on the “bending angle” as well as resonances of the system created by this
bending.
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Shrnuti

Tato dizertacni prace se vénuje vyzkumu ,kvantovych grafi”, neboli kvantovych sys-
tému, v nich7 je nerelativistickd ¢astice vazana na graf. Jedna z hlavnich v préci
zkoumanych otazek se tyké fyzikdlniho vyznamu vazeb vlnovych funkci ve vrcholech
téchto grafi. Uvazime standardni formu okrajovych podminek ve vrcholu stupné n,
tedy AV(0) + BY'(0) = 0, kde A a B jsou matice o rozméru n x n, ¥(0) a ¥'(0)
oznacuji vektory obsahujici hodnoty komponent vinové funkce na vSech vychéaze-
jicich hranach vy¢islené v daném vrcholu a hodnoty jejich derivaci, rank(A|B) = n,
AB* = BA*, a navrhneme novy zpiusob, jak reprezentovat matice A, B. S po-
moci tohoto vysledku vyfesime po mnoho let otevienou tlohu, jak regularnimi grafy
aproximovat vSechny singularni vazby ve vrcholech kvantového grafu. Piedstavime
konstrukei, v niz jsou hrany ve vrcholu rozpojeny a dvojice takto ziskanych kon-
covych bodu spojeny piridavnymi tiseCkami o délce 2d. Kazda spojujici tisecka nese
d-potencial a vektorovy potencial a jeji koncové body jsou vazané ke koncovym
bodum rozpojenych hran pomoci d-vazeb. Ukézeme, ze kdyz se d blizi k nule a
pridané potencidly vhodné zaviseji na d, muze limita vést ke kazdé pozadované sin-
gularni vrcholové vazbé, a navic, Ze tato aproximace konverguje v norm-rezolventnim
smyslu.

Prozkouméame rovnéz jiné, jednodussi aproximujici uspoiradéni, v némz nejsou
hrany rozpojeny. Namisto toho je ve vrcholu pfedepsana d-vazba a na n hranach,
které z néj vychazeji, jsou rozmistény d-interakce a vektorové potencialy. Ukazeme,
ze toto uspofadani umoziuje aproximovat (3n)parametrickou podmnozinu Schrédin-
gerovych operatoriu, pokud jsou parametry d-vazby, d-interakci a vektorovych po-
tenciali vhodné zvoleny.

Néami odvozenou formu okrajovych podminek dale vyuzijeme k vySetieni rozpty-
lovych vlastnosti singularnich vrcholi o stupnich 2 a 3. Ve vazebné podmince iden-
tifikujeme slozky odpovidajici interakcim 6 a ¢ a ukéZeme, Ze vazby mezi vSemi
dvojicemi hran vychéazejicich z vrcholu jsou nastavitelné individualné, coz lze vyuzit
k navrhu kvantovych filtra typu ,spektralni vyhybky”.

Také se zabyvame Schrodingerovymi operatory na nekone¢ném kvantovém grafu
ve tvaru tetizku, ktery je tvoren shodnymi krouzky spojenymi v bodech dotyku
pomoci §-vazeb s parametrem vazby a € R. Je-li graf piimy a tedy periodicky,
hamiltonian ma pasové spektrum s nekoneénym poctem mezer pro vSechna o #
0. Uvéazime ,ohybovou” deformaci spocivajici ve zméné polohy bodu dotyku mezi
dvéma krouzky a ukédzeme, 7e tato deformace mé za nasledek vznik vlastnich hodnot
ve spektralnich mezerach. Podrobné prozkoumame zavislost téchto vlastnich hodnot
na « a na ,,ihlu ohybu”, stejné tak jako rezonance systému zpusobené ohybem.
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Résumé

Cette thése concerne I'étude des «graphes quantiques», c’est & dire, des systémes
quantiques dans lesquels une particule non relativiste est confiné sur un graphe.
Une des questions principales adressées dans ce travail concerne le choix et le sens
physique des couplages des fonctions d’ondes aux sommets (vertex) de ces graphes.
Nous considérons la forme standard des conditions aux limites dans un sommet de
degré n, a savoir AV(0) + BY'(0) = 0, o A et B sont matrices de taille n x n,
U(0) et ¥'(0) désignent les vecteurs contenant toutes les valeurs sur chaque aréte
de la fonction d’onde et de sa dérivée, et rang(A|B) = n, AB* = BA*, et nous
proposons une nouvelle voie pour représenter les matrices A, B. A l'aide de ce
résultat nous résolvons le probléme, resté longtemps ouvert, d’approximation par
des graphes réguliers de tous les couplages singuliers aux sommets dans un graphe
quantique. Nous présentons une construction dans laquelle les aréts sont disjointes
et les paires d’extrémités ainsi obtenues sont raccordés par des arétes additionnelles
de longueur 2d. Chaqune de ces arétes additionnelles porte un potentiel et un po-
tentiel vectoriel et ses extrémités sont couplés aux arétes disjointes par des couplages
0. Nous montrons que lorsque d tend vers zéro et les potentiels ajoutés dépendent
convenablement de d, la limite peut produire tout couplage singulier de sommets
requis, et en outre que l'approximation converge dans le sens de la résolvante en
norme.

Nous discutons aussi un autre type plus simple d’approximation otu les aréts ne
sont pas disjointes. On impose a la place un couplage § au sommet et des interactions
0 supplémentaires ainsi que des potentiels vectoriels placés sur les n arétes émanant
du sommet. Nous montrons que cet arrangement permet d’approximer une sous-
famille & 3n paramétres d’opérateurs de Schrodinger pour des interactions 0 et leurs
paramétres de couplage, ainsi que les forces des potentiels vectoriels, convenablement
choisis.

Ce type de conditions aux limites est utilisé pour examiner les propriétés de
diffusion par des sommets singuliers de degrés 2 et 3. Nous identifions les com-
posantes 0 et ¢’ dans la condition de connection et nous montrons que les couplages
entre chaque paire de lignes issues du sommet sont réglables individuellement ce qui
pourrait permettre la conception de filtre quantique de type «aiguillage spectraly.

Nous étudions aussi les operateurs de Schrodinger sur un graphe quantique infini
en forme de chaine composée de cercles identiques couplés aux points de contact
par les interactions ¢ avec constante de couplage o € R. Si le graphe est droit,
¢’est-a-dire périodique, I’hamiltonien a un spectre de bande avec le nombre infini
de lacunes si a # 0. Nous considérons une déformation «courbée» de la chaine qui
consiste en un changement de la position du point de contact entre deux cercles et
on montre que cette déformation a pour conséquence la naissance de valeurs propres
dans les lacunes spectrales. On analyse la dépendance de ces valeurs propres par
rapport & «a et a I’«angle de courbure», ainsi que celle des résonances du systéme
créées par cette courbure.
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Introduction

The concept of quantum mechanics on graphs was firstly used in the fifties of the
twentieth century in the paper [RS53| where it had been suggested as a model to
study the spectra of aromatic hydrocarbons. The basic idea is that the graph rep-
resents the configuration space of the system, in other words, motion of a quantum
particle is confined to the graph. However, the public acceptance was at that time
rather moderate; it was considered much more as a curiosity or an interesting text-
book example than as a widely useful and practical model. That is why the theory
was not significantly developed in the three following decades and the concept was
almost forgotten.

On the other hand, the technology progressed in the second half of the twentieth
century very fast. Over time a development of microfabrication techniques made
it possible to produce graph-shaped structures of submicron sizes in big quantities.
These structures, made of semiconductors, carbon and various other materials, were
considered as being highly technologically important, what gave rise to a new branch
of science, the nanotechnology.

It was in the eighties when it was realized that the thirty years old concept of
quantum graphs is an extremely useful, powerful and elegant tool to study properties
of nanostructures. There are two main aspects that make it so important, namely:

e a graph represents a natural model for a graph-like structure,
e these models are relatively simple from the mathematical point of view.

Let us briefly explain the second item. Since a graph may be considered as a quasi-
one-dimensional variety, its spectral and scattering analysis is reduced to solving
ordinary differential equations, and often simply to an algebraic problem. This is
a significant simplification with respect to the two- or three-dimensional situation,
where partial differential equations have to be solved.

With regard to the expansion of the nanotechnology expected for the near fu-
ture, the importance and application potential of quantum graphs is going to grow
rapidly, and their theory itself will probably widely develop. For now, despite of the
significant progress that has been made in the last two decades, the theory is still
far from being as complete as the theory of one-dimensional Schrédinger operators.
There remain many open problems, often of a fundamental character, that will have
to be solved.

In this thesis we address several of them. In particular, we are going to study

1. parametrization of vertex couplings,

1



2 INTRODUCTION

2. the problem of meaning of quantum graph vertices,
3. scattering properties and classification of vertex couplings,
4. spectral properties of a perturbed periodic graph.

The results are based for the most part on four papers listed at the beginning of
the Bibliography. Let us give an account how the thesis is organized.

In the first part we describe the results. We start with a summarization of basic
notions and facts about quantum graphs in Chapter 1 (Preliminaries). We will
accentuate the issue of vertex couplings and the formulation of boundary conditions,
which form the central subject of this thesis. Then, in Chapters 2-5, we provide
the reader with a brief, self-contained exposition of the work done. These chapters
include all the needed notions and important claims, we explain there the results
and the methods used. Each chapter is supplemented by notes which contextualize
the problem solved.

On the other hand, proofs and other technical aspects of the arguments are in
the first part mostly reduced to a presentation of their main steps, without going
to technical details. For their complete versions we refer to the second part of the
thesis, Appendices, where copies of the four papers on which the thesis is based are
attached.
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PRESENTATION OF THE
RESULTS






Chapter 1

Preliminaries

We will give here a precise definition of a quantum graph and describe how boundary
conditions at the vertices may be formulated. The chapter will be finished with
several important examplex of vertex couplings.

1.1 Graph

A graph T is an ordered pair I' = (V| E), where
e V is a finite or countable set of vertices,

e F is a set of edges. We suppose that there is an injective map of the set E to
the set (‘2/), the symbol (‘2/) stands here for the set of all two-element subsets
of V. Usually the set of edges is identified with the corresponding subset of

v
(5)-

If e = (v1,v9), we call v; and vy the endpoints of e.

Notice that the graphs we consider are undirected and our concept obviously ex-
cludes multiple edges and loops.

By a degree of a vertex v € V', denoted by deg(v), we mean the number of
outgoing edges, or in other words the number of edges containing v.

We say that I' is a metric graph, if there is a map ¢ : E' — (0, +-00]; the number
((e) is called the length of the edge e. An infinite length is allowed under the
additional condition that at least one endpoint of e is of degree 1. Edges in metric
graphs may be regarded not only as pairs of vertices, but also as linear varieties.

A star graph is a graph having n edges (n € N, n > 2) and n + 1 vertices, where
one vertex is of degree n and all the others of degree 1. It follows that all edges
stem from the vertex of degree n, cf. Fig. 1.1. As before, the edges may be finite or
infinite. The vertex of degree n is called center of the graph.

1.2 Quantum graph

We return now to the key idea of the quantum graph concept which has been men-
tioned already in the introduction, namely that the configuration space of the system
is a graph.
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Figure 1.1: A star graph

Let us consider a free spinless particle whose motion is confined to a graph I
having n edges ej,...,e, of the lengths f(e;),...,¢(e,). A wave function ¥ of
the system has then n components, ¥ = (1,1, ...,1%,)T, and the corresponding
Hilbert space H is given by }_, L*(l(e;)). The Hamiltonian, denoted by Hr, acts
as a minus second derivative on each wave function component, i.e.

(0 —Y
Hr : = :
Q'D _Q'D”

In this definition we neglect values of physical constants, i.e. we put h = 2m = 1,
because they will play no role in our considerations.

In the more general case when there are potentials Vi,...,V, and vector po-
tentials Aq,..., A, imposed on the graph edges, the Hamiltonian action is given
by

. 2

(0 (—1% - Al) 1+ Vit
Hr : = :
. 2

A quantum graph is a pair (I', Hr), where T is a graph and Hr a Hamiltonian on
I.

1.3 Boundary conditions in quantum graph vertices

In the previous section we introduced Hamiltonian of a particle on a quantum graph
and we described its action. In order to have the Hamiltonian fully defined, it is
necessary to specify also boundary conditions at the vertices. Consider a vertex
v € V of degree n, i.e. there are n edges going from v that may be without loss of
generality enumerated as eq,...,e,. Let us denote for all j € n the wave function
component on e; by 1, and suppose that its variable x; runs over the interval
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(0,£(e;)), where the value 0 corresponds to v and ¢(e;) to the other endpoint of the
edge. By boundary values of the wave function in the vertex v we understand the
two vectors W, and U/ (often denoted also as W(0) and ¥’(0)) defined by

1(04) $1(04)
v, = ) \Ili) = ’
Un(04) U (04)
ie.
e U, is a vector from C" which contains limits of the values of ¥4 (z), ..., ¥, (x)
in the vertex v,
e U/ is a vector from C" containing limits of the first derivatives of 11 (), ..., ¥ (x)

taken in the outgoing sense.

Since the Hamiltonian is a second-order linear operator, the boundary conditions
in the vertex v of degree n have the form

AU, + B,U, =0 (1.1)

for certain A,, B, € C™".

The boundary conditions have to be specified in such a way that the Hamiltonian
Hr is a self-adjoint operator, or in physical terms that the probability currents at all
the vertices are conserved. A standard form of the boundary conditions was derived
by Kostrykin and Schrader in 1999 [KS99|; they showed that Hry is self-adjoint if
and only if for every vertex v € V the matrices A, and B, satisfy the following two
conditions:

e rank(A,|B,) = deg(v),

1.2
e the product A,B; is a self-adjoint matrix, (1.2)

where the symbol (A,|B,) denotes the matrix deg(v) x 2deg(v) with A, and B,
forming first and second deg(v) columns, respectively. Boundary conditions (1.1)
which comply with (1.2) may be called admissible boundary conditions and the
corresponding vertex coupling admissible vertex coupling.

One can reformulate the statement in the following way.

(i) If the equality (1.1) represents boundary conditions in a vertex v of a quantum
graph, the pair (A,, B,) satisfies (1.2).

(i1) For any vertex v of a quantum graph there exists a pair (A,, B,) such that
(1.2) is satisfied.

It is obvious that also the statement
(i7i) The pair (A,, B,) from (ii) is not unique.

holds, to see its validity consider a pair (C'A,, C'B,), where C' is an arbitrary regular
matrix from C48(")-4°&(*)  This pair may obviously replace (A,, B,), because

o CAV, +CB,¥! =0 is equivalent to (1.1),
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e rank(CA,|CB,) = deg(v) iff rank(A,, B,) = deg(v),
o C'A,(CB,)* is self-adjoint iff AB* is.

In 2000, independently Harmer [Ha00] and Kostrykin & Schrader [KS00] have
published a form of vertex boundary conditions that is unique. They showed that
for any vertex coupling there is a unitary matrix U, € Cdee®):deg(®) yniquely given
by the formula U, = —(A, +iB,)"! - (A, — iB,), such that the matrices A, and B,
in Equation (1.1) may acquire the form A, =U, — I, B, =i(U, + I), where I is the
identity matrix deg(v) x deg(v). Conversely, for any U, € U(deg(v)), the boundary
conditions

(U, — 1)V, +i(U, + NV, =0 3)

(1.
determine an admissible vertex coupling, because the matrices A, = U, — I, B, =
i(U, + I) satisfy (1.2) in consequence of unitarity of U,,.

It is appropriate to notice, however, that the condition (1.3) was known before
in the general theory of self-adjoint extensions [GGI1|.

The formulation (1.3) of boundary conditions can be called a parametrization
of the family of vertex couplings, since for any boundary conditions in a vertex of
degree n there is exactly one matrix U, € U(n) complying with (1.3). Consequently,
the family of vertex couplings in a vertex of degree n has n? real parameters, because
the same is true for the group U(n). This fact is, however, well known already from
the analysis of quantum graphs in terms of self-adjoint extensions [ES89].

Remark 1.3.1. The subscript v at the matrices A,, B, in (1.1) and (1.2), as well as
at the matrix U, in (1.3), may be dropped if there is no need to precize the vertex.
In such a situation it is often more suitable to use the symbols ¥(0), ¥’(0) instead
of U, W,

1.4 Examples of vertex couplings

As we have seen in the previous section, the family of vertex couplings is very rich: if
deg(v) = n, it has n? real parameters. However, there are several types of couplings
that are for certain reasons significant and have got special appellations. Let us list
here the most important of them.

d-interaction

We start with the prominent example of the d-interaction (sometimes also called
0 potential) which is characterized by the continuity of the wave function. The
d-interaction in the point x = a is described by the relations

lay) =vla) = (@), ¥(ay) —¥/(a-) = avla), (1.4)

where o« € RU {400}. The special case a = 0 corresponds to a free motion and is
sometimes called Kirchhoff boundary conditions, the case a = +oco leads formally to
the Dirichlet boundary conditions, i.e. ¥(ay) = ¥(a_) = 0, in this case the vertex
may be regarded as n independent vertices of degree 1 with Dirichlet endpoints.



1.4 Examples of vertex couplings 9

0-coupling

The d-coupling is a generalization of the J-interaction for vertices of degree n > 2.
It is described by the relations

$;(0) = Pp(0) = (0), jken, Zw;<0> = a(0) (1.5)

for a € RU {4+00}; the derivatives are taken in the outgoing sense. Similarly as in
the case of the d-interaction, o = 0 corresponds to a free motion and a = +o0 to
Dirichlet boundary conditions, i.e. the vertex may be regarded as n independent
vertices of degree 1 with Dirichlet endpoints. We stress that it is the continuity of the
wave function in the vertex which characterizes the d-coupling and the J-interaction
and make them important. Both of them, the J-interaction and the d-coupling,
are sometimes called regular in order to be distinguished from the other, singular,
couplings that do not have this property of continuity.

We will show how (1.5) can be expressed in the form (1.1)&(1.2) and how the
corresponding matrix U from (1.3) looks like. The natural way is to rewrite (1.5) in
the following way:

1 -1 0 o --- 0 00 0O 0
1 0 -1 0 0 0000 0
1 0 0 -1 0 000O0 -- 0
: vO)+| . . . . . . |Y0) =0 (1.6)
1 0 0 0 -1 000O0--- 0
—a 0 0 0 0 1111 --- 1

The unitary matrix U needed for expressing the J-coupling in the form (1.3) has
the form ﬁJ — I, where J denotes the n X n matrix whose all entries are equal

to one. Hence A =U — 1 = —2_J —2I, B = —2_J; we observe that these matrices

n+ia n+ia
are not real and their elements, compared to those of (1.6), complicated.

¢'-interaction

While the d-interaction on a line is characterized by continuity of the wave function,
the ¢’-interaction requires continuity of the first derivative of the wave function,
namely

Wap) =d'(a) = ¢'(a),  Ylay) —la-) = B¢(a), (1.7)

where § € RU {+o0}. It is a counterpart of the J-iteraction in the sense that the
roles of values and derivatives in (1.7) are interchanged with respect to (1.4). The
notion ¢’ is rather historical and not accurate; it has been proven in [Se86| that this
interaction has little to do with the derivative of the d-interaction. That is why
some authors prefer the notion “c-interaction” instead.

The ¢’-interaction on the line has two possible analogues for n > 2, cf. [Ex95,
Ex96al, namely the d.-coupling and the ¢'-coupling:
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d!-coupling

The §’-coupling is an analogue of the §’-interaction in the sense that it is a counter-
part to (1.5) with the roles of ¥(0), W'(0) interchanged, i.e.

UH0) = ¥4 (0) = 9/(0), j.keEn, ijm):ﬁw’(m,

where 5 € RU {+00}; the special case § = +oo refers to full Neumann decoupling.
This coupling may be expressed in a simple matrix form analogous to (1.6), it suffices
to interchange ¥(0) and ¥'(0) and replace « by /3. The corresponding unitary matrix

needed for the form (1.3) is given by U = [ — 25J.

0’-coupling

The ¢’-coupling is an analogue of the §’-interaction in the sense that when putting
n = 2, one obtains exactly the ¢’-interaction on a line. It is expressed by the
conditions

U0 =0 0) - wk(0) =

S|

(Vi(0) —¥4(0)) ,  jken (L8

with § € RU {+o0}; the case § = 400 again refers to full Neumann decoupling. It
is easy to rewrite (1.8) into a matrix form analogous to (1.6), and as for the form
(1.3), the corresponding matrix U is equal to —Zfig[ + n_QiBJ.

Note that the special case § = 0 leads to the J-coupling with parameter 0.

d,-coupling

Sometimes also the d,-coupling (or “permuted §”) is introduced as the counterpart
to the ¢’-coupling, i.e.

D0 =0, w0) = vi(0) = ~((0) ~(0) . Gk

with @ € R U {+00}; the value o = +o0 corresponds to the decoupled case with
Dirichlet boundary conditions. It holds U = =21 — Z_J.

n—ia

The special case o = 0 is nothing but the d’-coupling with parameter 0.

Remark 1.4.1. We observe that in all the above examples the matrices U are
given as linear combinations of I and J. It can be easily shown, cf. [ET06|, that
this property is equivalent to the fact that the boundary conditions are invariant
with respect to permutations of the edges.

Scale invariant coupling

The scale invariant subfamily of vertex couplings, introduced by Fiilép and Tsutsui in
[FT00], comprises vertex couplings described by the boundary condition (1.1)&(1.2)
such that both matrices A and B are singular, i.e.

det(A) = det(B) =0.
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Equivalently speaking, the numbers -1 and 1 are eigenvalues of the matrix U arising
in the form (1.3). The boundary conditions can be in this case formulated as

AU, =0, BV, =0,
or
U-NV,=0, (U+NHV, =0,

i.e. the conditions for ¥, and for W/ are separable.
In the special case of the scale invariant interaction on the line the matrix U
needed for the form (1.3) is given by

U— cosf e%sinf
T\ e?sinf —cosf

for 6,¢ € R (cf. [HCO06]), and if the interaction is placed in the point = = 0, the
boundary conditions may be written as
e' / i
77D(O+) = _w(O*) ) w (0+) =e Oéw (O*) )

«

where o = —cotg %.
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Chapter 2

Parametrization of vertex couplings
in quantum graphs

In this chapter we present our results on parametrizations of vertex couplings in
quantum graph vertices, namely we introduce two alternative ways how to express
the boundary conditions. The essential part comes from the paper a copy of which
is attached as Appendix A.

We begin the exposition with recalling the two classical forms of boundary condi-
titons in a quantum graph vertex of degree n that we have introduced in Section 1.3,
namely

(i) the standard form of Kostrykin and Schrader (1999),

AV, + BV! =0, (2.1)
where
. rank(A|?) =n, . N (2.9)
e the matrix AB" is self-adjoint,
and

(1) its unique version of Harmer and Kostrykin & Schrader (2000),
(U — D)W, +i(U + )V, =0,

where

e UcU(n).

In what follows we will refer to (i) as to the AB-form, to (ii) as to the U-
form. Recall that the U-form may be considered as a parametrization of all vertex
couplings: any vertex coupling in a vertex of degree n corresponds, via the matrix
U, to certain n?-tuple of real parameters.

The natural question arising here is whether it is possible to find a direct para-
metrization, i.e. if one may write every element of A and B in terms of the n?
real numbers parametrizing the coupling. Let us illustrate the problem on a simple
example of n = 2:

13
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Example. A general unitary matrix U € U(2) can be parametrized by a four-tuple
(‘91, (92, ‘93, ‘94) c R4 as

U — ot ( el03+01) cog 6, el(%3=04) gin 9, )

—el0a=03) gin g, e 1(0s+04) o5 6,

When we substitute this expression into the U-form and divide both sides of the
equation by the factor ¢'%2, we obtain a direct parametrization of the family of vertex
couplings in a vertex of degree 2:

el0s+01) cos ) — e7102 e!(%3=01) gin 0, ”
_ei(94_03) Sin 91 6_1(93"‘04) CcoS 61 _ e—i@g U+
i(03+04) 0 —i6 i(03—04) gipy @
. e cost) +e e sin 04 ;o
+ 1 ( _61(04703) SiIl 01 671(934»94) CcOS 01 + 67192 ) \II,U - O .

Similarly as in the example one can proceed in the case of a general n € N,
but the result is not very convenient for further use because of the expressions
arising in the matrix elements which become long and complicated as n grows.
Practical applications, for example the problem of approximations discussed further
in Chapter 3, require rather a plain and transparent parametrization.

2.1 Motivation

In this work we suggest a different way how to parametrize matrices A and B. We
will explain the idea first on a special subfamily of vertex couplings.

Let boundary conditions in the AB-form be given, and assume that B is regular.
This assumption immediately implies that the condition rank(A|B) = n is satisfied,
and also allows us to multiply both sides of the boundary conditions by B~

B'AU, + W, =0.

The self-adjointness of AB* is then equivalent to the self-adjointness of B~1ATI*,
i.e. of B71A. If we denote the s.a. matrix —B~!A (note the minus sign) as S and
express W/ in terms of W,, we obtain the following form of boundary conditions:

v =5V,, S is self-adjoint .

The relation between the n2-tuple of real parameters and the coupling is now straigh-
forward: if we denote the parameters by 6;, j,k € f, and put

05 = Sjs»
ij = Re (S]k) = Re (Skj) fOI‘j < k,
0,1, = —Im (s;,) = Im (sy;) for j >k,
the (j, k)-th element of the matrix S is given by
0., it =k,

J
Sjk: ij—|—19kj 1fj<k3,

ij—ink 1f]€<]
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The just demonstrated way of parametrization is
e unique,
e simple,

e but not universal: it does not incorporate boundary conditions with a singular
matrix B.

In the next section we show how to deal with the general case rank(B) < n.

2.2 ST-form

Before stating the main theorem of this section, introducing the promised alternative
parametrization, we take note of one property which is common to both AB-form
and U-form, namely their insensitivity to a particular edge numbering (by “number-
ing” of edges in the graph vertex of degree n we mean exclusively numbering by the
elements of the set 7). If the edge numbering is permuted, one has just to replace
the matrices A, B and U by A, B and U, respectively, obtained by the appropriate
rearrangement of columns and rows. In the theorem we will observe that this does
not fully hold for our parametrization, cf. part (iii):

Theorem 2.2.1. Let us consider a quantum graph verter v of the degree n.

(i) If m < n, S € C™™ is a self-adjoint matriz and T € C™"~™ then the equation

Im S 0

expresses admissible boundary conditions. This statement holds true for any
numbering of the edges.

(ii) For any vertex coupling there exist a number m < n and a numbering of edges
such that the coupling is described by the boundary conditions (2.3) with the
uniquely given matrices T € C™"™™ and self-adjoint S € C™™.

(11i) Consider a quantum graph verter of the degree n with the numbering of the
edges explicitly given; then there is a permutation 11 € S,, such that the bound-
ary conditions may be written in the modified form

Im T =, S 0 ~
( 0 0 )\Ijv = ( _T* I(n—m) ) qjv (24)
for
¥ (0) U111 (0)
v, = : . = : :
Y1) (0) Uty (0)

where the self-adjoint matriz S € C™™ and the matriz T € C™"™™ depend
unambiguously on II. This formulation of boundary conditions is in general
not unique, since there may be different admissible permutations 11, but one
can make it unique by choosing the lexicographically smallest permutation 11.
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Proof. (A sketch; for the complete proof see Appendix A, Theorem 2.1.)
(i) It suffices to check that the matrices in (2.3) satisfy (2.2).
(ii) The key steps are the following:

1. Consider the boundary conditions in the AB-form and set m = rank(B).

2. Simultaneously permute the columns of A and B such that the first m
columns of B are linearly independent; change properly the numbering.

3. Simultaneously permute the rows of A and B so that the first m rows of
B are linearly independent.

4. From each of the last n —m rows of the AB-form of the b.c. subtract such
linear combination of the first m rows that all the last n — m rows of B
vanish.

5. Multiply the b. c¢. from left by appropriate regular matrix in order to
obtain the 7™ block in B and the ™™ and the zero blocks in —A.

6. Substitute the final matrices A, B into AB* and show that (2.2) is equiv-
alent to the fact that the lower left block of —A is the conjugate transpose
of the upper right block of B.

(iii) The statement is an immediate consequence of (ii).

In the following we will call the form of boundary conditions (2.3) ST'-form.

Remark 2.2.2. The expression (2.4) implies, in particular, that if B has not full
rank, the number of real numbers parametrizing the vertex coupling (2.1) is reduced
from n? to at most m(2n — m) = n? — (n — m)?, where m = rank(B). Another
reduction can come from a lower rank of the matrix A, as we will see in the following
section.

Remark 2.2.3. In the proof of Theorem 2.2.1, claim (ii), we permuted columns
and applied linear transformations to the rows of the system (2.1) with respect to
the matrix B, but one can start by same right from the matrix A as well. In this
way we would obtain similar boundary conditions as (2.3), only the vectors ¥, and
U’ would be interchanged. Theorem 2.2.1 can be thus formulated with Equation

(2.3) replaced by
™ T (S 0 ,
(1 D)o (50 )% »

which we call the reverse ST-form. We accent the involved matrices S, T, as well as
the number m, by tildas, since for a given vertex coupling they usually differ from
those occuring in the standard ST-form (2.3).

Obviously, analogous remark can be made for Equation (2.4).

Let us point out main advantages and disadvantages of the formulations (2.3)
and (2.4).
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Advantages:
e Simple relation between the parameters and the boundary conditions,
e the matrices involved are often sparse, i.e. many of the matrix elements vanish,
e uniqueness.

Disadvantages:

e Structure depends on rank(B),

e vertex numbering is not fully permutable.

Remark 2.2.4. Another formulation of boundary conditions with a matrix struc-
ture singling out the regular part as in (2.4) has been derived in a different way
by P. Kuchment in [Ku04]. Recall that in the setting analogous to ours he stated
existence of an orthogonal projector P in C" with the complementary projector
(Q = Id— P and a self-adjoint operator L in ()QC" such that the boundary conditions
may be written in the form

PV, =0
QU + LQVU, =0.

Although the basic idea of Kuchment’s formulation is close to the idea of the ST-
form, there are significant differences, predetermining both formulations for different
types of applications. We explain the main one. When the boundary conditions
(2.6) are transformed into a matrix form, they consist of 2n linearly dependent
equations. If a single group of n linearly indepent equations is extracted, one arrives
at boundary conditions having the following structure:

A A |\ & Bii Bz \ &
( Ay Ao v, + 0 0 v, =0. (2.7)
We see that in contrast to (2.4) where almost one half of the matrix elements van-
ished, there are generally no vanishing terms in (2.7) except the lower blocks of B,
and moreover, the values of the coupling parameters are in (2.7) not obvious. On
the other hand, the Kuchment’s formulation in its original projector version (2.6)

is probably more efficient in situations where the explicit values of the parameters
play no role.

(2.6)

In the rest of the section we will derive the transformation relations between our
matrices S and 7" and Kuchment’s operators P, ) and LQ).
In the first step we separate the last n — m conditions from the ST-form,

(0 0)¥,=(-1 I"™)VU,,

this set of conditions obviously corresponds to PV, = 0. Consequently, the basis
of the image of P is given as the linear span of the columns of the matrix Bp :=
(—T* [(”_m))* = (ﬂ;Tm)). Now we may employ the standard formula determining
the orthogonal projector on a space given as the linear span of matrix columns:

T + 7)1 =TI 4 T*T) >

* —1 4o%
P =Bp (BpBp) Bp = ( _([=m) L) ([em) )
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Since the projector @ is orthogonal to P and P + () = Id, the basis of () is given
by the columns of By = (I:(Fm)) (since obviously rank(Bp) = n — m, rank(Bg) = m

and all columns of B are orthogonal to the columns of Bp), hence

B e L [ (I TTHTE (I 4 TT*) T
Q = Bq (B,Fq) BQ_(T*(1<m>+TT>1 T*(I10 + TTH7T )

To compute the operator L() one has to realize that QV! + LQWV, = 0 corresponds
to

(I TYW, =(S—CT* C)u,

for some C' € C™"~™. Multiplying both sides of the equation by By (BaBQ)_l we

obtain
(m) -
QU = ( IT* ) (I™ +TT) " (S—CT* C)U,. (2.8)

It follows from the second condition of (2.6) that the matrix on the RHS is equal to
—LQ. We will find LQ in a block form L Ln
Loy Lo
sizes as those of P and @), see above. The blocks will be determined in the following
two steps:
At first, we substitute the block form of L into —L() and compare the result
with the matrix on the RHS of (2.8). This allowes one to eliminate C' and obtain
the equations

, the blocks are of the same

(I(m) + TT*) (L1 + L1oT*) =S and Loy + LooT* =T (L1 + L12T7) . (2.9)

Next, since the columns of Bp represent a basis of the image of P, and thus a basis
of ker(Q), we have LQBp = 0, i.e.

Ly Lo —T —0

Loy Loy [ ’
hence Lo = LT, Log = LoyT. We substitute these two equalities into (2.9), and
after a few manipulations we arrive at

LQ =
_ (I(m) + TT*)—ls(I(M) +TT*)! (I(m) + TT*)”S(I(’”) +TTHIT
= T*([(m) —|—TT*)—15([(m) —I—TT*)_I T*([(m) —|—TT*)_IS([("L) —|—TT*)_1T .

2.3 Examples

We will demonstrate the application of the ST-form and its reverse version on the
examplex of vertex couplings which have been introduced in Section 1.4. We con-
sider a vertex of degree n and specify how the value m and the matrices S and T’
characterizing the coupling look like.
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e J-coupling with parameter «

The ST-form expressing the d-coupling with parameter « is given by

111 1 a 00 0
00 0 0 ~1 10 0
000 0 |lw —| -101 0 |w,.
000 - 0 ~1 00 - 1

In other words, it is characterized by the following m, S and T"

m=1, S=(a)eC", T=(11---1)eC"™ "
e (’-coupling with parameter 3 # 0
m=n, S= %(n[ —J)e C™", the matrix T is not present due to m =n
e scale invariant vertex coupling
men, S=0eC™", T arbitrary

orm=0.

As for the couplings of the type d; and ¢, it is more efficient to express them in the
reverse ST-form:

e {/-coupling with parameter

m=1, S=(p)eC", T=(1---1)eC"!

e J,-coupling with parameter o # 0
& 1 n,n 2l
m=n, S=—(nl-J)eC" T isnot present
o

2.4 PQRS-form

In the previous section we have shown how the matrices A and B may be simulta-
neously decomposed into a 2 x 2 block form such that 3 of the 8 blocks were built of
zeros. The sizes of the blocks were determined by the number m = rank(B). Below
Theorem 2.2.1 there were two remarks that we are going to deal with now in more
detail, namely
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e Remark 2.2.2 saying that the number of real parameters of vertex couplings, be-
ing generally equal to n?, reduces on condition that rank(B) < n or rank(A) <
1,

e Remark 2.2.3 mentioning that the decomposition may be done either with
respect to B, or with respect to A.

Both the facts are related to the obvious asymmetry of the ST-form. In this section
we aim to derive a version which is symmetric, we will call it the PQ RS -form, and,
inter alia, we will obtain a formula for the number of parameters of a vertex coupling
in terms of the ranks rank(A) and rank(B).

Theorem 2.4.1. Let us consider a quantum graph vertex V' of a degree n.
(i) Let

o 74, rp be integers satisfying 0 <ry <n, 0 <rp <n,
e S be a self-adjoint matriz in CrATTB=MrAYTE=N

e P, Q, and R be arbitrary matrices in C"AT8=mn="5 () € C""A"TE gn
Re CnfrA,TAJrTBfn’ respectively.

Then the equation

Jratrs—n) 0 P S —SR* 0
R I(n—TA) Q -+ RP \I/;) = 0 0 0 \I/U
0 0 0 —pP* —Q* ITB)

(2.10)
expresses admissible boundary conditions. This statement holds true for any
numbering of the edges.

(i) For any vertex coupling there exist numbers 0 < rp < n, 0 <rg <n and a
numbering of edges such that the coupling is described by the boundary condi-
tions (2.3) with uniquely given matrices P € C'AT'B=m=TE () ¢ Ch a5,
R e Crraratrs=n gnd q regular self-adjoint matriz S € Cratre=nratre—n,

(11i) Consider a quantum graph vertex of degree n with the numbering of the edges
explicitly given. Then there is a permutation 11 € S, such that the boundary
conditions may be written in the modified form

[(ratre=—n) 0 P S —SR* 0
R I Q4+ RP |¥ = 0O 0 0 7,
0 0 0 —pr Q10
(2.11)
for
() (0) Y11y (0)
U, = : .= : :
77Z)H(n)(0) ¢h(n)(0>

where the regular self-adjoint matriz S € C™™ and the matrices
P e Cratrs—nn=—rs_ () ¢ Ctran~rs R ¢ C"rarat's=" depend unambigu-
ously on I1. This formulation of boundary conditions is in general not unique,
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since there may be different admissible permutations 11, but one can make it
unique by choosing the lexicographically smallest possible permutation 11.

Remark 2.4.2. The numbers 4 and rg in the theorem are in fact equal to rank(A)
and rank(B).

Proof. (Theorem 2.4.1)
We start with the claim (ii). Consider boundary conditions given in the form (2.3),

1.e.
s 7N ., (8 0
(7 T (5t )

where rg = rank(B) < n, § € C™™ is a self-adjoint matrix and 7 € C™" ™ is a
general matrix.
If we denote rg = rank(S) and r4 = rank(A), we see that r4 = rs +n — rp,
hence
rs=7rpqa+rgp—n.

We may suppose without loss of generality that the first 74 +rp —n(= rg) rows of S
are linearly independent and the remaining n—r4 rows are their linear combinations.
If it is not the case, it obviously suffices to apply a simultaneous permutation on first
rg rows and columns of both matrices A and B and renumber the components of
U, U’ in the same manner. Now we decompose both matrices A, B in the following
way:

[(ratrz=n) 0 P S Sy 0
0 ](n_TA) Q \If; = 521 SQQ 0 v, (212)
0 0 0 —pr —Q ["TB)

where
P S Ss
=7, H)=8
( Q ) ( Sa1 Sao )
and the sizes of all submatrices are determined by the blocks I("at8=") [(n=ra) and
I™=8) " Since the rows of (Sy So) are linear combinations of those of (Si; S3;)
(which are linearly independent), there is a unique matrix —R € C" "4 AT"57" guch

that
(S91 S92) = —R (S11 55,) - (2.13)

In the next step we multiply the system (2.12) from the left by the matrix

[ratrs=n) 0
R I(=ra) 0
0 0 0
to obtain
[(ratrs—n) 0 P Sll S;l 0
R [ Q4+ RP |V = 0 0 0 U,. (2.14)

0 0 0 —p* —Q* I[7B)
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We notice that (2.13) gives an explicit relation between Sy and Si; via the matrix
R, namely
So1 = —RS1 .

We employ this fact to eliminate S3; from (2.14), then we rename Sy; as S, and
herewith we arrive at the sought final form of boundary conditions:

[ratre=n) P S —SR* 0
R ["=ra) Q+ RP |V, = 0 0 0 T,. (2.15)
0 0 0 —p* —Q* I

It follows from the construction that the matrix S € Cra*"s=mra+r5-" ig gelf-adjoint
and regular, and P € Cratrs=mn="s () ¢ C"~"ran~"s R € Ct raratTE™ are general
matrices of given sizes.

Thereby (ii) is proven. Since the claim (iii) can be obtained immediately from (ii)
using a simultaneous permutation of elements in the vectors ¥, and ¥/, it remains
to prove (i). We have to show that the vertex coupling (2.1) with the matrices

—-S SR* 0 J(ratrs—n) 0 P
A= 0 0 0 and B = R I"=r4) Q4+ RP
P* Q* _](nfrB) 0 0 0

conform with (1.2). We have

-S SR 0 [(ratre=n) 0 P
rank [ 0 0 0 R I(v=ra) Q4+ RP | =
P Q —Inrs) 0 0 0
[(ratre=n) 0 0 -S SR* P
= rank R J(=ra) 0 0 0 Q+RP |=n
0 0 —I0re) pr 0
and
-S SR* 0 I(TA+TB—n) 0 p *
0 0 0 : R I"=r4) Q4+ RP | =
P* Q* _I(nfrB) 0 0 0
-5 0 0
= 0 00 |;
0 00

the latter matrix is self-adjoint since S = S*, ie. (2.2) is satisfied and (2.10)
expresses admissible boundary conditions.
O

Remark 2.4.3. The assumption that S is regular can be dropped with the obvious
consequence that we lose the uniqueness of R, cf. (2.13).
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Remark 2.4.4. Similarly as in the case of the ST-form, there exists a projector
formulation close to the PQ) RS-form, which was introduced in the work of Fulling,
Kuchment and Wilson [FKWO07|. The authors proved a theorem saying that for
any vertex coupling in a vertex of degree n there are two orthogonal and mutually
orthogonal projectors P, () operating in C" and an invertible self-adjoint operator
A acting on the subspace CC", where C = 1 — P — (@, such that the boundary
conditions are equivalent to

PV, =0,
QV, =0,
CV = ACT,.

The relation between the PQRS-form and this decomposition is similar as the re-
lation between the ST-form and the P. Kuchment’s decomposition mentioned in
Remark 2.2.4, cf. the detailed discussion ibid.

Number of parameters of vertex couplings

The whole family of vertex couplings in a vertex of degree n may be decomposed
into disjoint subfamilies according to the pair (rank(A),rank(B)); the number of
the subfamilies equals W by virtue of the condition rank(A|B) = n. The
PQRS-form indicates that such a decomposition is well-founded, which will be
further confirmed in Chapter 4, where a classification of vertex couplings based on
the values rank(A), rank(B) will be provided.

As we have already shown in Remark 2.2.2, if rank(B) is fixed and equal to
m < n, the number of real parameters of the so obtained family of vertex couplings
is equal to n? — (n — m)?. The PQRS-form derived in this section allows us to
go a step further and determine the number of parameters if both values rank(A),
rank(B) are fixed. If we denote 74 := rank(A) and rp := rank(B) and sum up the
number of real parameters of the matrices P, @), R, S involved in the PQ)RS-form
(2.10), we arrive, after a simple manipulation, at the expression

n?—(n—ra)—(n—rp)?.

The formula shows in a very clear way how the number of parameters of the vertex
coupling decreases with decreasing ranks of A and B.
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Chapter 3

Approximations of singular vertex
couplings in quantum graphs

The wave function coupling in the vertices is an essential component of quantum
graph models. The most significant type, the d-coupling together with its special
case of free matching, is defined by the continuity of the wave function in the vertex.
Let us take note of an important fact, namely that the d-coupling has a simple
physical meaning:

Theorem 3.0.5 (Ex96b). Let H, (V) denote the Hamiltonian of a particle on a star
graph with n infinite edges supporting potentials Vi, ..., V, and with the d-coupling
with parameter « in the center. Suppose that V; € LL (RT) are below bounded and

W, € LY(RY) for j =1,...,n. Let us define the scaled potentials

Wej(x) = 1I/Vj <£> , j=1,...,n.

€ €

Then
Ho(V+W,) — H,(V) as € — 04

in the norm-resolvent sense, where =3\ | 0+OO W;(x)dz.

In other words, the d-coupling may be considered as a limit case of properly scaled
regular potentials in the norm-resolvent sense, similarly as the Dirac delta function
is a limit case of properly scaled regular functions in the sense of distributions. For
this reason we call the d-coupling a regular vertex coupling.

However, the subfamily of §-couplings, parametrized by the value of its parame-
ter, represents only a tiny subset of the whole family of vertex couplings. To a major
part of the couplings, although they have been mathematically well defined for a
decade, no simple explanation has been given for a long time, or even no explanation
at all. They were accepted as being physically admissible, but nobody knew how to
realize them. The question whether and in what sense one can approximate all the
singular couplings by regular ones depending on suitable parameters had become a
longstanding open problem.

In this work we present a solution. We propose such a construction, minimal in
a natural sense using n? real parameters, and show that the closeness is achieved

25
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in the norm-resolvent sense, so the convergence of all types of the spectra and the
corresponding eigenprojections is guaranteed.

This chapter is based on results obtained in the papers attached as Appendix A
and Appendix B.

3.1 Historical context

The key idea how to attempt the problem comes from a paper published by Cheon
and Shigehara eleven years ago [CS98|, in which the authors showed that a combina-
tion of regular point interactions on a line approaching each other with the coupling
parameters scaled in a particular way with respect to the interaction distance can
produce a singular point interaction. Three years later, in 2001, it was demonstrated
[ENZ01] that the convergence in this model is norm-resolvent and the scaling choice
is highly non-generic. The idea was then applied by Cheon and Exner to the sim-
plest singular coupling, namely to the ¢, one, in [CE04], and was demonstrated
to work; the question was how much it can be extended. We examined it [ET07]
and proved that with a larger number of regular interactions put on the edges one
can approximate families described by 2n parameters and not more, we designed a
concrete approximation arrangement and supported this construction by a proof of
norm-resolvent convergence. At the same time we showed that changing locally the
approximating graph topology one can deal with all the couplings invariant with re-
spect to the time reversal which form an (”;1)—parameter subset, but our argument
on this fact was formal, without a rigorous convergence proof.

It was clear that to proceed beyond the time-reversal symmetry one has to involve
vector potentials similarly as it was done in the simplest situation in [SMMC99].
Here, in this thesis, we present such a construction which contains parameters break-
ing the symmetry and which at the same time is more elegant than that of [ET07] in
the sense that the needed “ornamentation” of the graph is minimal: we disconnect
the n edges at the vertex and join each pair of the so obtained free ends by an
additional edge which shrinks to a point in the limit. The number of parameters
leans on the decomposition n? = n + 2(3), where the first summand, n, corresponds
to 0 couplings of the “outer” edge endpoints with those of the added shrinking ones.
The second summand can be considered as (g) times two parameters: one is a ¢
potential placed at the edge, the other is a vector potential supported by it. The
main theorem of this chapter will show that the convergence of the approximation
we propose is not only formal but it is valid also in the norm-resolvent sense.

3.2 The approximation arrangement

Our aim is to explain the meaning of vertex couplings using suitable approximations.
It suffices to consider a prototypical example of this situation, namely a star graph
with n semi-infinite edges and with a general vertex coupling in the center. We
express the matching conditions in the vertex in the ST-form,

Im S 0
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Figure 3.1: The scheme of the approximation. All inner links are of length 2d. Some
connection links may be missing if the conditions given in the text are not satisfied. The
quantities corresponding to the index pair {j, k} are marked, and the grey line symbolizes
the vector potential A; r)(d).

note that the sensitivity of this formulation to the edge numbering plays no role,
since one may rename the edges if necessary. As we will see below, the ST-form will
help us significantly to simplify the design of the approximation arrangement and
to achieve its minimality mentioned in the previous section.

It turns out that for notational purposes it is advantageous to adopt the following
convention on a shift of the column indices of 7"

Convention 3.2.1. The lines of the matriz T are indexed from 1 to m, the columns
are indezed from m + 1 to n.

We are going to show that the star graph with the singular vertex coupling given
by the boundary conditions (3.1) may be understood as a limit case of certain family
of graphs constructed only from edges connected by d-couplings, d-interactions, and
supporting constant vector potentials. The detailed description of our approximat-
ing model follows, cf. Fig. 3.2.

e We take n halflines, each parametrized by = € [0,+00), with the endpoints
denoted as V;, and put a d-coupling (to the edges specified below) with the
parameter v;(d) at the point V; for all j € n.

e Certain pairs V}, V}, of halfline endpoints will be joined by edges of the length
2d, and the center of each such joining segment will be denoted as Wy; 3. For
each pair {j, k}, the points V; and Vj, j # k, are joined if one of the following
three conditions is satisfied (keep in mind Convention 3.2.1):

(1) jem, k>m+1,and Tj, #0 (or j > m+ 1, k € m, and T}, # 0),
(2) 7,k € m and (E” > m+1)(Tﬂ #0ANTy 7&0),
(3) 4,k € m, Sjp # 0, and the previous condition is not satisfied.

We remark that in this step we take advantage of the structure of the ST-form.
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e At each point Wy 1y we place a d-interaction with a parameter wy; xy(d). From

now on we use the following convention: the connecting edges of the length
2d are considered as composed of two line segments of the length d, on each
of them the variable runs from 0 (corresponding to the point Wy;y) to d
(corresponding to the point V; or V;).

On each connecting segment described above we put a vector potential which
is constant on the whole line between the points V; and V. We denote the po-
tential strength between the points Wy, and V; as A(;r)(d), and between
the points Wy, and Vi as A jy(d). It follows from the continuity that
A jy(d) = —Ag ) (d) for any pair {7, k}.

The values of v;(d), wy;r(d) and A (d) in terms of the parameter d depend

on the vertex coupling we approximate. For deriving them we have applied the
method which was used for the first time in [CS98, SMMC99] for the case of a point
interaction on the line. We explain the main idea. We consider the approximating
system and perform the following steps.

1. Expand all the wave function components at the vertices V;, Wy, ;y into Taylor

polynomials.

. Write down the conditions expressing the d-couplings and J-interactions at all

vertices.

. Take into account the vector potentials on the connecting edges, using the

following Lemma (cf. Appendix A, Lemma 3.2 and its proof):

Lemma 3.2.2. Let us consider a line parametrized by the variable x € (0, L),
L € (0,400) U {+o0}, and let H denote a Hamiltonian of a particle on this
line interacting with a potential V,

H=—+V 3.2
SV, (3.2)

sufficiently reqular to make H self-adjoint. We denote by > the solution of
Hv = k*) with the boundary values 1**(0) = s, ¥>'(0) = t. Consider the
same system with a vector potential A added, again sufficiently reqular; the
Hamiltonian is consequently given by

d 2
Hy= (—i@ - A) +V. (3.3)

Let qﬁj’t denote the solution of Havp = k* with the same boundary values as
before, i.e. 15'(0) = s, wj’t,(O) = t. Then the function 15" can be expressed as

St(x) = elJo Az st () for all x€(0,L).

. Employ results of previous steps to relate the values and derivatives at the

points V; and Wy, 13-
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5. Using convenient elimination express the relation between

U(0) := (¥1(04),...,¢,(04)) and ¥'(0) := (¥1(04),...,¢,(04)), where 1);
(j € 1) denotes the wave function component on the j-th half line.

6. Require that ¥(0) and W'(0) satisfy in the limit d — 0, the boundary condi-
tions (3.1). This step gives a set of conditions on v;(d), wy;xy(d) and A x)(d).
Now it suffices to find expressions for these quantities such that the conditions
will be fulfilled at the same time, cf. below.

Detailed calculation can be found in Appendix A. Here we state only the final
expressions, obtained in the last step. They make use of the symbols N; and (c)
defined in the following way:

e N; C n stands for the set containing indices of all the edges that are joined to
the j-th one by a connecting segment, i.e.

N, ={kem|Sj #0}U{kem|(F>m+1)(T; #0ANTy #0)}
U{k>m+1|Ty £0}  for j €m,
e (-) denotes the map from C into R acting as follows: if ¢ € C, then

(c) = le|] if Rec>0,
© = —le] if Ree<O.

Now we proceed to the sought parameters of approximating system.
e v,(d) is given by

v;(d) = T2t (L HAT)) Ty i jem, (3.4)
G (L=#N; + 370 (Thy)) if j>m+1.

e Forall j, w;r(d) is given by

_1(9 1 — if ke N;Nn
(d) = d( +<d-sjk+z?mﬂﬂu>) PEEETT s

Wi k) 1 1 , A
L(-2+ ) it ke N;\im.

e Forall j, Ajr(d) is given by
( Larg (d- S+ Yy TiTw)
if ke N;nm ARe (d-Sjk+ > TnTu) =0,
sq (arg (d - Sjr+ 0,41 TjiTia) — 7]
if ke N;nim A Re (d-Sj+ Sy TiTw) <0,
Larg T, if ke N\ A Re Ty, >0,
| & (arg Ty —m)  if k€ N\ A Re Ty < 0.

A (d) = (3.6)
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If the parameters of the d-couplings and d-interactions v;(d), wy;xy(d) and the
strengths of the vector potentials A (d) are chosen according to the formulae
above, one may expect that the smaller the value d is, the closer the approximating
system to the approximated system is. In the following we are going to give a clear
meaning to this convergence.

3.3 The norm-resolvent convergence

In the previous section we have shown that any vertex coupling in the center of a star
graph may be regarded as a limit of a certain family of graphs supporting nothing
but d-couplings, d-interactions and constant vector potentials. The parameter values
of all the ¢’s and the vector potentials have been derived using a method devised
originally in [CS98, SMMC99] for the case of a generalized point interaction on the
line. In this section we are going to show that the Hamiltonian of the approximating
system converges to the Hamiltonian of the approximated system in the norm-
resolvent sense, with the natural consequences for the convergence of eigenvalues,
eigenfunctions, etc.

We denote the Hamiltonian of the star graph I' with the coupling (3.1) at the
vertex as HAY (referring to the approximated system), and Hﬁg will stand for the
approximating family of graphs that has been constructed in the previous section.

Our aim is to establish a convergence of H,® to HA for d — 0,. Both H*d
and H f & are unbounded operators, therefore we will examine and compare their
resolvents. Let the symbols RA(k?) and R}%(k?) denote the resolvents of HA4 and
Hﬁg at the points k? from the resolvent set. Needless to say, the operators act on
different spaces: R(k?) on L*(G), where G = (RT)" corresponds to the star graph
T, and RY5(k?) on L*(Gy), where

Ga= (RT)" @ (0,d)=i=1 7.

In order to be able to compare them, we need to identify RA4(k?) with the orthogonal
sum

R}M(K*) = RM(K?) 0,
where 0 is a zero operator acting on the space L? ((O, d)z?:1 Nj) which is removed
in the limit. Then both the operators R3(k%) and R}#(k?) are defined as acting on

functions from L?(G4) which are vector functions with n+37"_| N; components; we
will index the components by the set

I=nU{(l,h)]lenheN}.
Let us now use this setting to state the main theorem of this chapter.

Theorem 3.3.1. Let vj(d), wi;ry(d) and Ag(d), where j € 0, k € N;, depend on
d according to (3.4), (3.5) and (3.6), respectively. Then the family H>® converges
to H} in the norm-resolvent sense as d — 0., i.e.

lim ||RO5(k?) — RY4(K?)
d—04

=0

where || - || is the L*-norm in Gy.
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Proof. The proof is very long and is contained in Appendix A, cf. Theorem 4.1.
Here we briefly describe its main steps.

1. Computation of RA(k?) and RY%(k?):
i. Decompose both graphs, approximating and approximated, into individ-
ual edges, posing the Dirichlet boundary conditions at the endpoints,

ii. compute the resolvents of the both decomposed systems,

iii. employ Krein’s formula to obtain expressions for RA(k?) and RY%(k?);
this step gives the expressions for the resolvents up to certain coefficients,

iv. require that if RAY(k?) and R3%(k?) are applied to an arbitrary ¥ from
L*(G) and L*(Gy), respectively, the image lies in the domain of HA4 and
H (? & respectively; hence compute the unknown coefficients introduced in
the previous step.

2. Identification of RA4(k?) with R;(k?).

2
3. Computation of the difference HRc?g(kQ) — Rjg(kZ)H , where || - ||2 denotes the
2
Hilbert-Schmidt norm in L*(Gy).
A<l
U

Since for some applications it may be useful to know how quickly the term
| =) - m302)

’ approaches zero if d — 0, we add the following remark.

Remark 3.3.2. (The rate of convergence.)
If the assumptions of Theorem 3.3.1 are satisfied, there is a number K > 0 indepen-

dent of d such that
|Rye2) - R340 < 1 V.

3.4 Approximations without added edges

The approximation arrangement studied in the previous section was leaning on ad-
ditional connecting lines supporting d-interactions and vector potentials. One may,
however, wonder whether it is possible to construct an approximating graph without
added edges, i.e. where the J-interactions and vector potentials are supported by
the half lines of the star graph themselves. We refer in advance to Fig. 3.2 which
illustrates the idea.

When we were recalling the evolution of the problem of approximations, cf.
Section 3.1, we mentioned that the first constructions had been done just in this
way. In this section we will see that such simple approximations have a very limited
use and cannot approximate a general vertex coupling.

This sort of approximation arrangements is one of the topics which were studied
in my master thesis. I have investigated approximating graphs supporting the J-
coupling at the center and the d-interactions on the lines, but no vector potentials
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were considered. During my PhD study we have written and published a paper
[ET07] based on these results, its copy is attached in Appendix B. Later we realized,
however, that the results could be extended using the vector potentials placed on
the edges. The aim of this section is to present this generalized solution on the
background of Appendix B.

We begin with recalling the main results of the paper. We present them in the
form of basic steps, followed by brief expository comments.

1. At first we have explored limits of the considered approximation.

In Proposition 3.1 of Appendix B and its proof we found that the class of the
vertex couplings that can be approximated using the J-interactions placed on
the edges of the star graph and the d-coupling placed at the center depend
on at most 2n parameters (or less), no matter how large the number of the
0-interactions is. Moreover, we obtained a description of this class using the
U-form; we showed that the matrix U has to be of the type

U= 2 pWIDH _ pe) (37)
p+i(1+ 20, 2t
where
DY = diag (e, —— —— ..., ——)
co ity c3 +it3 ¢, + ity
D@ = diag (20, 2= ity ¢z —ity Cp — ity
762+it2763+it37'“7cn—|—itn

and J is a matrix n X n all of whose elements are equal to 1. The 2n real
parameters determining U are then 0, co,c3, ..., ¢y, to, t3,.. . 1y, p.

2. Secondly, we designed the approximating settlement.

Knowing that the maximum number of parameters which can be achieved in
this way is bounded by 2n, we were naturally lead to the idea of placing two
O-interactions at each of the n half lines. In our considerations we left out the
case n = 2 which had been discussed in the paper [SMMC99|.

The designed approximating graph has the following structure, cf. Fig. 3.2:

e There is a d-coupling with parameter u(d) in the star centre,

e on each half line there is a d-interaction with parameter v;(d), where j is
the half line index, at a distance D(d) from the centre,

e cach half line supports another d-interaction with parameter w;(d) at the
distance D(d) 4 d from the centre.

3. Thirdly, we determined the values of the parameters u(d), v;(d) and w;(d), as
well as the dependence of D(d) on d.

We employed the boundary conditions in the vertices where the d-coupling
and the J-interactions are placed, as well as asymptotic expansions of the wave
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Figure 3.2: Scheme of a 2n-parameter approximation

function components in their neighbourhoods. In this way (cf. Appendix B,
Section 3.2 for details) we obtained expressions for u(d), v;(d) and w;(d) and
found that D(d) could be chosen as d*. A heuristic argument showed that this
choice of the parameters realizes an approximation of the 2n-parameter family
which was found in the first step as maximal achievable.

4. Finally, we proved the norm-resolvent convergence.

Let the center of the graph I' support a coupling which fall within the family
that has been found in the first step; we denote the corresponding Hamiltonian
by H? where 6§ € R?" is the vector of parameters. Let H“%¥(d) denote the
Hamiltonian of the approximating family constructed above.

Theorem 3.4.1. Let u(d), v;(d) and wj(d), j € n properly depend on d. Then

H®%%3(d) converges to H? in the norm-resolvent sense as d — 0.

Vector potentials

Now we explain how this result can be extended if vector potentials are involved.
It immediately follows from Lemma 3.2.2 that a vector potential A supported by
the interval (0,a) shifts the phase of the wave function, as well as the phase of its
derivative, after the point = a by the factor e'/o A®4r Tt is an important fact
that only the integral of A is of significance, not the A itself. Therefore, a vector
potential placed on one edge can increase the number of parameters of approximable
couplings by 1, but cannot increase it by more; if vector potentials are placed on all
edges, then the number of so gainable parameters equals n.

Specifically, if we consider the approximating graph with two d-interactions on
the half lines which has been constructed above (cf. Fig. 3.2) and place a constant
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vector potential of the strength A;/d at the segment (d*,d® + d) on the j-th half
line for each j € @, the values of ¢;(d* + d) and ¢/ (d* + d,.) change to ¢ (d* +d) =
iy (d3+d) and Y (dP+dy) = ey (d*+d.), respectively. The choice of how the
vector potential depends on d ensures that the phase shift factors remain constant
when d approaches zero, therefore in the limit

Pit(04) et (04) (04) eyt (04)

$A(0,) e4nih, (0, G20, en g (0,,)

If we denote D, = diag (e, ...,e“"), we have

W4(0) = Da¥(0),  V,(0) = Da¥'(0).

Let f(d) denote the approximating graph without vector potentials that we have
described in the step 2 above, cf. Fig. 3.2. Suppose that the limiting case for d — 0,
corresponds to a star graph with the vertex coupling which is determined by the
boundary conditions

(U= DW(0) +i(U+ 1V'(0) =0,

where U is a unitary matrix belonging to the class described by (3.7).

Let now I'4(d) denote the approximating graph obtained from I'(d) by adding
the constant vector potential A;/d at (d®,d® 4+ d) on the j-th half line for all j € 7,
as described above. With regard to our discussion, the limiting case of I'4(d) for
d — 04 corresponds to the vertex coupling determined by the boundary conditions

(U—-1)DaV(0) +i(U+ I)DY'(0) =0.
When we multiply the last equation by D;ll from the left, we obtain
(D'UDA —1)W(0)+i(D,'UDA+1)W'(0) =0
and can make the conclusion:

Proposition 3.4.2. The most general verter coupling, approzimable with the help
of the d-interactions and vector potentials placed on the edges of the original star
graph, s described by the unitary matriz Uy which depend on 3n real parameters
0,c9,C3,...,Cp,ta,ts, ... 1y, p, A1,..., A, and is given by

21
. n 1
p+1<1+2€zgm>

where DM, D@ ] are matrices defined above (cf. Equation (3.7)),
Dy = diag (e,... ).

Uy = D;'DWJDWD, — D

One can also prove the norm-resolvent convergence of such approximation:
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Let

e H% denote the Hamiltonian of a star graph with a vertex coupling belonging to
the family described in Proposition 3.4.2 in the centre, the vector 0, represents
the corresponding coupling parameters, i.e.

04 = (0,c9,C5, ..., Castorts, .. o, p, A1, ..., Ay) € R,

° H”’U’w’g(d) denote the Hamiltonian of the approximating graph constructed
above.

Theorem 3.4.3. Letﬂ u(d), v;j(d) and wz(d) properly depend on d, A;(d) = %

(j € n). Then H“%%A(d) converges to H%A in the norm-resolvent sense as d — 0.

Proof. e The proof makes use of Krein’s formula,

e its structure is similar to the one of Theorem 4.1 from Appendix B, but slightly
more complicated due to the vector potentials,

e the effect of the vector potentials can be treated in the same way as in the
proof of Theorem 3.3.1 formulated in the last section, see its detailed version
in Appendix A, proof of Theorem 4.1.

O
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Chapter 4

Spectral filtering in quantum
Y-junction

The ST-form of boundary conditions, derived in Chapter 2, helped us in Chapter 3
to construct an approximation of a general singular vertex coupling. Now we will
take advantage of the ST-form once again. It turns out that it helps to classify
singular vertices and examine their scattering properties. The results presented in
this chapter come from the paper a copy of which is attached as Appendix C.!

4.1 Scattering matrix

Consider a quantum particle on a star graph with n half lines. We denote ¥ =
TyevesWn T the vector of wave function components. The system is specified b
y y
boundary conditions in the vertex,

AT(0) + BT (0) =0, (4.1)

where W(0) stands for (11(04),...,¢,(0.))" and ¥'(0) for (4 (0,),. .., (04))"
(the derivatives are taken in the outgoing sense). Let us recall that in the ST-form
(2.3), which is a special formulation of the boundary conditions (4.1), the matrices
A and B acquire the form

S 0 Its) T
A=— (_T* I(”"’B)) ) B = ( 0 O) ;

rg = rank(B). In Chapter 3 we have introduced also the reverse ST-form (2.5),
which is characterized by

104 T S 0
A‘( 0 0)’ B__(—T* I<n—m>>’

ra = rank(A). In this chapter we will use exclusively these two formulations.

'To be consistent with the other chapters we use here a notation that slightly differs from the one
employed in Appendix C.

37
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, . \T
Let UU) = (1/19), e ﬁj)> be the scattering solution for incoming wave entering

from j-th line with the wave number k. Then it holds
—ikx; ikx; ; ;
() et L Riett (1= ),
: ZT;) = ikx . .
%Uz( ) {’Ejekl (27&3)’
where R; represents the reflection amplitude for i-th line and 7;; the transmission
amplitude from j-th to i-th line.
The scattering matrix S(k) (which is not to be confused with the sub-matrix S
appearing in the ST-form) is given by

Ru(k) Tio(k) - Tin(k)
sty |0 Ral) oo Tl
T(k) To(k) - Rau(k)

and can be computed as
S(k) = —(A+ikB)'(A —ikB). (4.2)

It is easy to check that if the matrices A and B occurring in (4.1) interchange their
positions, the scattering matrix S;(k) corresponding to the so obtained “swapped”
boundary conditions (the “dual” scattering matrix) is given by Sy(k) = —S(—1/k).
It is useful for our next considerations to mention how the transmission ampli-
tudes look like for the d-interaction, ¢’-interaction and scale invariant interaction:

2k

e J-interaction with parameter az  7;;(k) = 575,

hence 7;;(0) =0, 7;(4+o00)=1

e ('-interaction with parameter 3:  7;;(k) = %,
hence  7;;(0)=—-1, 7;;(4+00)=0

Tra7®
The terms 7;;(0) and 7;;(+00) are here considered conventionally as limits, as well
as in the rest of the chapter.

9 — const.

e scale invariant interaction with parameters a, ¢:  7;;(k) =

4.2 Classification in the case n = 2. Transmission amplitudes

We present first the results for the known case of n = 2, namely, the point interaction
on a line, in order to see the effectiveness of the ST-form in identifying the physical
content of the singular vertex. The classification will be done with respect to rank(B)
and rank(A). It is useful to notice that if rank(B) is fixed, the value rank(A) is
uniquely related to rank(S) by the equality rank(A) = n — rank(B) + rank(5), and
has to be greater or equal to n — rank(B).

e rank(B)=0
The ST-form gives A = —1I, hence

0=9(0),
which obviously defines disjoint Dirichlet boundaries 11 (0,) = ¢»(0,) = 0.
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e rank(B)=1

(6 o) vo=(" {)vo

This case can be separated into two situations:

o s=0,ie rank(A)=1
It represents the scale invariant interaction, cf. Section 2.3.

o s#0,ie rank(A) =2
We note at first that the special case t = 1 corresponds to the d-interaction with
parameter s (cf. Sect. 2.3). For a general value of ¢, the substitution of the
matrices A and B into (4.2) leads to the following formula for the transmission
amplitude,

2kt
T =
() = T s

showing the low wave number blockade (712(0) = 0) and asymptotically con-

stant high wave number transparency (7i5(+00) = 143#)’ which becomes the

perfect transparency 7i5(+00) = 1 for ¢ = 1. We conclude that the coupling
corresponding to rank(B) = 1 can be viewed as a combination of J and scale
invariant interactions.

o rank(B) =2
The ST-form gives B =1, A= —5, hence
(0)= (21 712) (o).
0= (2 =)o)
We divide the explanation into three situations according to rank(A) (= rank(.5)).

o rank(A) =rank(S) =0, i.e. S=0
We get ¥/(0) = 0, which represents disjoint Neumann boundaries ¢ (0y) =
¥5(04) = 0.

o rank(A) = rank(S) = 1, i.e. S is a singular nonzero matrix.
In this case it is convenient to employ the reverse ST-form,

(55 1) vo=(p ).

whence we see immediately that £ = 1 represents the ¢’-interaction. Generally,
the transmission amplitude is given by

—2f
(14 [¢?) —iks”

712(]9) =

which shows both the high wave number blockade, 7j5(+00) = 0, and low

wave number pass filtering behavior, 775(0) = ﬁ

be viewed as the ¢’-interaction amended by the scale invariant interaction.

Therefore this case can
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o rank(A) = rank(S) = 2, i.e. S is regular.
The transmission amplitude is here given by

2k812
ik? — ktr[S] — idet[S]

7'12(743) =

and shows both low-wave number and high-wave number blockade: 715(0) = 0,
T12(4+00) = 0. This indicates a combinations of § and ¢ interactions.

In summary, the ranks of the matrices B and A are the determining factors of
physical contents of the point interactions.

4.3 The case n =3 (“Y-junction”)

We now examine the quantum Y-junction, namely, the singular vertex of degree
n = 3. We will again express the transmission amplitudes between each two lines
outgoing from the vertex in terms of the parameters involved in the ST-form or the
reverse ST-form.

We start with an explanation of “pure d-like” and “pure 0'-like” connection be-
tween two lines coupled in a vertex. In idealized limit, two lines ¢ and j are identified
as having “pure d-like” connections when we have

7:;(0) =0, and 7;(+o00) € C;
conversely, ¢ and j are identified as “pure §'-like” if we have
7,;(0) € C, and 7T;;(+00)=0.

However, since the quantum flux can circumvent direct blocking between ¢ and
j through indirect path i — k — j, strict conditions 7;;(0) = 0 for §-like and
7;j(+00) = 0 for §'-like connection are to be breached when other types of connec-
tions are present among other lines, and therefore, zeros for 7;; need to be replaced
by small numbers, 7;; =~ 0 in above conditions. General characterization of pure ¢-
like connection as high-pass frequency filter and pure §’-like connection as low-pass
filter is still valid.

As in the case of n = 2, the boundary conditions are classified according to the
values of rank(B) and rank(A). We will present the main results of Appendix C,
Section 4, where the full study can be found, i.e. the classification, expressions for
transmission and reflexion amplitudes, graphs illustrating squared absolute values
of the amplitudes in dependence on k, as well as expository remarks.

e rank(B)=0
In the ST-form we have A = —I, hence
0=U(0).

This case corresponds to disconnected Dirichlet boundaries 1;(04) = ¥5(04) =
¥3(04) = 0.



4.3 The case n = 3 (“Y-junction”) 41

e rank(B)=1
1 tQ tg S 0 0
00 0]WO0) =[-F 10]T0)
0 0 O —t3 0 1
It holds rank(A) = rank(S) + 2, thus there are two possible values of rank(A),

namely 2 and 3.

o rank(A) =2, i.e. rank(S) =0
Since S = 0, this case represents the scale invariant coupling (cf. Section 2.3).

o rank(A) =3, i.e. rank(S) =1

— The special situation 7' = (1 1) corresponds to the d-coupling.

— For a general T', the transmission coefficients, given by

2tk

T (k) =

a1(k) is + (1 + [to]? + [ts]2)k”
2tk

Tio(k) =

2k) = T P T 6Pk
Atotak

7—23(147) 203

Tis+ (L [t + [ts2)k
show the high wave number pass filtering behaviour

which is a hallmark of pure § connections between all branches (see Fig.
4.1).
2
1\ 5 /
55

3

Figure 4.1: Pure 0 type connection between all lines, obtained from the ST-form with
rank(B) = 1 and rank(A) = 3.

e rank(B) =2
We have rank(A) = rank(S) + 1 and three possible values of rank(A).

o rank(A) =1, i.e. rank(S) =0
This situation represents a scale invariant interaction between the lines 1-3
and a scale invariant interaction between the lines 2-3.
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o rank(A) =2, i.e. rank(S) =1
This case is of special interest. It can be shown, cf. Appendix C, Sect. 4.3.2,
that the proper choice of parameters enables one to construct the following
two types of junctions:

— a junction with pure J-like connections between the lines 3—1 and between
2 — 3, and a pure ¢-like connection between the lines 1 — 2 (see Fig. 4.2,
left),

— ajunction with pure ¢’-like connections between the lines 1 —2 and between
2 — 3, and a pure d-like connection between lines the 3 — 1 (see Fig. 4.2,
right).

H
o,

Figure 4.2: Mixed type vertex coupling obtained from the ST-form with rank(B) = 2 and
rank(A) = 2: connections 6—0—¢" (left) and §’—0'-§ (right).

We refer also to Appendix C, Figs. 4 and 5, where the transmission and
reflexion amplitudes are plotted in a concrete setting. The graphs clearly
illustrate the filtering behaviour of both the connections 6—6—0" and §'—0"—9.

Other facts concerning the case rank(B) = 2 = rank(A) = 2 can be found in
Appendix C. Generally speaking, it represents a mixture of 0 and ¢’ connec-
tions, and the two pure connections  — 0 — ¢’ and &' — 0’ — § described above
are its limiting cases.

o rank(A) =3, ie. rank(S) =2
This case corresponds to a general combination of § and ¢’ interactions between
each two half lines. If T = (¢; t3)7 denotes the matrix 7' € C*! occuring in
the S’T-form, it can be shown that

7;;(0) =0 forall i and j,
Tsi(+oo) o< ty,  Tia(+00) oc oty ,  Tp3(+00) o< ty.
We observe the zero energy blockade 7;;(0) = 0 for all  and j which guarantees
the presence of a d-like connection between all the lines. The high energy block-

ade 7;;(+00) = 0, determining the presence or absence of a ¢’-like component,
is controlled by the elements of 7.

e rank(B)=3

We have B =1, A= —S and the ST-form ¥'(0) = SU(0). There are four possible
values of rank(A) (= rank(S)):
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o rank(A) = rank(S) =0, ie. =0
This situation corresponds to disjoint Neumann condition ¢} (0) = ¢5(0,)
= ¢5(05) =0.

o rank(A) = rank(S) =1
It is useful to rewrite the boundary conditions in the reverse ST-form

s 00 1 iy i3
—é 1 0J9'0)=(0 0 0] (0);
—t3 0 1 0 0 O
the transmission amplitudes are then given by
2y
T51(k) = — —
A s T AR TAE)
—2ty
Tio(k) = — —,
) = S T 1l T 16
—21,f.

—isk + (1 + |22 + |£3]2)

and satisfy 7;;(+00) = 0 and 7;;(0) € C. The special choice T = (£ t3) = (1 1)
leads to the d0%-coupling (cf. Sect. 2.3), for a general T' we get the d’-coupling
mixed with the scale invariang coupling. See Fig. 4.3.

Figure 4.3: Pure ¢’ type connection between all lines, obtained from the ST-form with
rank(B) = 3 and rank(A) = 1.

o rank(A) = rank(S) =2
The calculation again simplifies when the reverse ST-form is used; we skip
technical details, since they are similar to the previous cases and can be found in
Section 4.4.3 of Appendix C. This situation is dual to the one of rank(B) = 2,
rank(A) = 3: the transmission amplitudes now satisfy

Tij(+00) =0 foralliand j,
Tor(0) o< by, Tin(0) o fofy,  To3(0) o< £,

where (f; t3)7 is the matrix 7' from the reverse ST-form. The transmission
amplitudes show the high energy blockade 7;;(4+00) = 0 for all i and j, guar-
anteeing the presence of ¢’-like connection between all lines. The zero energy
expressions 7;;(0) are proportional to t; and £,, i.e. the presence or absence of
the d-like component is controlled by the parameters of the coupling.
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o rank(A) = rank(S) =3
When the ranks of the matrices A and B are both equal to n = 3, we have
the generic connection condition for a quantum particle residing on joint three
lines, namely the combinations of § and ¢’ interactions.
The transmission amplitudes are given by

- —2i]€2$ij + 2k det [S(], ’l)]
BB 4 ik2te[S] — k320 det[S(4,7)] — idet[S]

T, (k) . L€ i,
hence 7;;(0) = 7;;(+00) = 0 for all i # j. This signifies the guaranteed presence
of both ¢-like and ¢’-like components in all connections.

This expression, along with the analogous expression for n = rank(A) =
rank(B) = 2 case, invites an easy straightforward extension to general n.

4.4 Summary

Our main finding is the fact that in a quantum Y-junction the couplings between
each pair of outgoing lines are individually tunable. The ST-form of vertex boundary
condition is found to be instrumental in identifying the type of coupling between
each two outgoing lines. The ranks of matrices A and B represent crucial quantities
to identify the physics of singular vertex.

Specifically, the pure d-type coupling is constructed from rank(B) = 1 boundary
condition, while the pure §’-type coupling is constructed from rank(A) = 1.

Boundary conditions corresponding to rank(A) = rank(B) = 2 include both j—
0—0" type and §'—0'—0 type singular connections as limiting cases for a proper choice
of parameter values. These types of singular vertices enable spectral filtering of
quantum waves.

The treatment can be extended to quantum singular vertex of degrees n > 4
once the need of detail analysis is required as a model of quantum single electron
devices. We hope that this work will become a stepping stone for such extensions.
Obviously, the experimental realization and demonstration with quantum wires and
quantum dots are highly desired. For that purpose, a construction of a real-world
approximation of singular vertices, which has been examined also in the previous
chapter, will become crucial.



Chapter 5

Spectrum of a bent chain graph

One of the frequent questions in the theory of quantum graphs concerns relations
between the geometry of a graph I" and spectral properties of a Schrédinger operator
supported by I'. Put like that, the question allows different interpretations. On one
hand, we can have in mind the intrinsic geometry of I" which enters the problem
through the adjacency matrix of the graph and the lengths of its edges. On the other
hand, quite often one thinks of I' as of a subset of R” with the geometry inherited
from the ambient space. In that case geometric perturbations can acquire a rather
illustrative meaning and one can ask in which way they influence spectral properties
of a quantum particle “living” on I'; in this context one can think of graphs which
are “bent”, locally “protruded” or “squeezed”, etc.

The aim of this chapter is to analyze the influence of a “bending” deformation on
a graph which exhibits a one-dimensional periodicity. Without striving for generality
we will discuss in detail a simple nontrivial example in which the unperturbed system
is a “chain graph” consisting of an array of rings of the same radius, cf. Fig. 5.1,
connected through their touching points. We suppose that there is J-coupling in the

Figure 5.1: The unperturbed chain graph

vertices, let us recall that it is characterized by the conditions

0;i(0) = (0) = 9(0), jken, Y ¢(0)=ap(0), (5.1)
j=1
cf. (1.5), where n = {1,2,...,n} is the index set numbering the edges emanating

from the vertex and a € R is the coupling constant which is supposed to be the
same at every vertex of the chain. In our case it holds n = 4.

45
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The geometric perturbation to consider is the simplest possible bending of such
a chain obtained by a shift of one of the contact points, as sketched in Fig. 5.2,
which is parametrized by the bending angle ¥ characterizing the ratio of the two
edges constituting the perturbed ring. Our aim is to show that the bending gives

Figure 5.2: A bent graph

rise to eigenvalues in the gaps of the unperturbed spectrum and to analyze how they
depend on 1. At the same time the bent chain will exhibit resonances and we will
discuss behaviour of the corresponding poles.

5.1 An infinite periodic chain

We begin with the analysis of the straight chain. Consider a periodic graph I'y as
sketched in Fig. 5.1; without loss of generality we may suppose that the circum-
ference of each ring is 2. The state Hilbert space of a nonrelativistic and spinless
particle living on Iy is L?(T'y). We suppose that the particle is free, i.e. its Hamilto-
nian, denoted by Hy, acts as the negative Laplacian on each graph link, ¢; — —7,

and its domain consists of all functions from I/Vli’f(FO) which satisfy the boundary
conditions (5.1) at the vertices of T'y.

W Ve

o, %
Figure 5.3: Elementary cell of the periodic system
In view of the periodicity of I'y (the elementary cell is depicted in the Fig. 5.3),

we find the spectral bands of Hy using Bloch-Floquet decomposition. The result is
formulated in the following theorem.
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Theorem 5.1.1. The spectrum of Hy consists of infinitely degenerate eigenvalues
equal to n? with n € N, and absolutely continuous spectral bands with the following
properties:

If a > 0, then every spectral band is contained in an interval (n?, (n + 1)%] with
n € N. [Its upper edge coincides with the value (n + 1)2, the lower one with the
squared solution of

o sinkmw
coskm + — -

4 k

=1 A ke(mn+l). (5.2)

If a <0, then in each interval [n?, (n + 1)?) with n € N there is ezactly one spectral
band the lower edge of which coincides with n?, the upper one with the squared
solution of (5.2). In addition, there is a spectral band with the lower edge (being the
overall spectral threshold) equal to —k?, where k is the largest solution of

« sinh k7
cosh k7 + 1

~1. (5.3)

K

The position of the upper edge of this band depends on «. If —8/7m < a < 0, then it
is equal to k?, where k is the solution of

o sinkw

k — = -1
COS KT + 1 3
contained in (0,1). On the other hand, for o < —8/m the upper edge is negative,
equal to —k?* with r being the smallest solution of (5.3). For a = —8/7 it equals
zero.

Finally, in the case o =0 it holds o(Hy) = [0, +00).

Proof. Cf. Appendix D, Theorem 2.4. O

We remark that the Bloch-Floquet decomposition does not work in the situation
k € N, but it is straightforward to check that k? is then an eigenvalue, and more-
over, that it has infinite multiplicity. One can construct an eigenfunction which is
supported by a single circle, namely ¢ (z) = sinkz with = € [0, 7] on the upper
semicircle and ¢(z) = —sin kz with « € [0, 7] on the lower one.

Remark 5.1.2. The condition (5.2) reminds us of the corresponding condition in
the Kronig-Penney model with the distance between the interaction sites equal to
7, cf. [AGHHO5|, the only difference being that the coupling constant is halved, §
instead of a. In contrast to that, the point spectrum of the KP model is empty.
These facts are easy to understand if we realize that our model has the up-down
mirror symmetry, and thus Hy, decomposes into a symmetric and antisymmetric
part. The former is unitarily equivalent to the KP model with modified coupling,
the latter corresponds to functions vanishing at the vertices, having thus a pure
point spectrum. Looking ahead, we remark that the bending perturbation breaks
this mirror symmetry.
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5.2 Perturbed system and its spectrum

In this section we will analyze the discrete spectrum due to a local perturbation.
Let us suppose that the straight chain of the previous section suffers a bending
perturbation as shown in Figure 5.2. We call the perturbed graph I'y; it differs from
I'y by replacing the arc lengths 7 of a fixed ring, conventionally numbered as zero,
by m £ 9. The bending angle ¥ is supposed to take values from (0, 7), regardless of
the fact that for ¥ > 27/3 it is not possible to consider I'y as embedded in the plane
as sketched — one can certainly realize such a “bending” in an alternative way, for
instance, by deforming the selected ring.

The state Hilbert space of the perturbed system is L?(I'y), and its Hamiltonian,
denoted by Hy, is obtained by a natural modification of Hy. To determine its
spectrum, we take advantage of the mirror symmetry of I'y — the axis of symmetry
is drawn in Fig. 5.2. It justifies one to reduce the operator Hy by parity subspaces
into a direct sum of an even part, H', and odd one, H™; for the sake of simplicity
we drop the subscript .

All the components of the wave function at energy k? # 0 are linear combinations
of e***  As we have said, we use the ring labelling with zero corresponding to the
perturbed one; the mirror symmetry allows us to study a half of the system only,
say, with non-negative indices. The wave function on each ring is a pair of functions
Y; and ¢;, where j is the circle index, 1; corresponds to the upper semicircle and
¢, to the lower one,

Y;(z) = C;Teikx + C;e’ikx, x € 0,7,

i . 5.4
;(z) = Djelkx + Dj_e_”’“”, x € [0, 7] (5:4)

for 7 € N. The situation is different in the case j = 0 where the variables run over
modified intervals,

: : —
@bo(l’) _ Cv(—)l—elk;v + Cvo—e—lk:v7 = |:7T > 77T:| ,

T4+ }
T

¢o(z) = Dfe™ + Dye ™z € { 5

There are d-couplings with the parameter « in the points of contact, i.e.

¥;(0) = 9;(0), (7)) = p;(m) (5.5)

and
¥;(0) = ¥ja(m), (5.6)
PH(0) + @3(0) =Yy (m) — @1 (7) = a - ;(0). (5.7)

Substituting (5.4) into (5.5) we obtain
Cf -sinkr = D} -sinkr and Cj -sinkr = Dj -sinkm,

thus for & ¢ N we have C = D; and C; = Dj. As for the case k € N, it is
easy to see that squares of integers are infinitely degenerate eigenvalues and the
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eigenfunctions can be supported by any ring with the exception of the zeroth one,
cf. also the previous section. From now on, we suppose k ¢ N.

Using the coupling conditions (5.6) and (5.7), we arrive at a “transfer matrix”
relation between coefficients of the neighbouring rings,

( c; ) (AR e ) ( C ) (5.8)
Cj _ﬁ_kelkﬂ' (1 . ﬁ) e—lk:7r ijl )

~
M

valid for all 7 > 2. Of course, the matrix M depends on « and k.

So far we have excluded k£ = 0. In this case the expressions for the wave function
components are of the type C’j+ -2+ C; -1, and in the same way as above we find
the matrix M corresponding to k = 0:

M= ( 1+ 9
For any k* ¢ N, we can express the coefficients C7, C} for every j € N:

(g;):Mj‘l-(gf> . (5.9)

It is an important fact that det(A) = 1 — it implies that the eigenvalues of M,
denoted by A\, Ay, conform to exactly one of the following three cases:

(Z) )\1,)\2€R, ‘)\1‘ >1> ’)\2’ (OI' ‘)\2‘ >1> ’)\1’),
(ZZ) )\1 :)\QIZEL
(ii)) M, do € C\R, M| = [Ao| = 1.

— R

Note that if pps(A) = 0 is the characteristic equation of M, the value of its discrim-
inant D, (k) (which depends on both « and k) distinguishes the situations (i)- (7ii):
(i) corresponds to D, (k) > 0, (ii) to D,(k) =0, (iii) to D, (k) < 0.

We bear in mind that the wave function components on the j-th ring for both
H*, as well as on the (-j)-th by the mirror symmetry, are determined by C;~ and
C;, and thus by C}", CT by virtue of (5.9).

Now the key idea comes. Suppose that (C}", C; )T is an eigenvector of M corre-
sponding to an eigenvalue A. Then:

lul<1 = ||(C,C;)"|| decays exponentially with respect to j,
p|>1 = H(C;“, CJ_)TH grows exponentially with respect to j,
=1 = CT,C)T] is independent of ;.
K i
Hence we immediately conclude:

e If (Cf",C7 )T has a non-vanishing component related to an eigenvalue of M of
modulus larger than one, it determines neither an eigenfunction, nor a gener-
alized eigenfunction of H=.
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o If (CF,C)T is an eigenvector of the matrix M with modulus less than one,
then this vector, together with (5.9) and (5.6), determines an eigenfunction

and the corresponding energy k2 belongs to the point spectrum of the operator
H*.

o If (Cf,C)7T is a linear combination of eigenvectors of M with moduli equal
to one, then this vector determines a generalized eigenfunction and the corre-
sponding energy k2 belongs to the continuous spectrum of H*.

Next steps are now obvious. To examine the eigenvalues of H* for a fixed «, we
1. use the boundary conditions determining H* and H~ to compute (C;",C; )%,
2. examine the range of k’s, for which it holds D, (k) > 0,

3. for such k compute v, (k) - the eigenvector of M corresponding to the eigenvalue
of modulus less than one,

4. find k for which the vectors v, (k) and (C;,C; )T are linearly dependent.

The study of continuous spectrum of H* is much simpler, it suffices to determine
k satisfying D, (k) < 0. Performing that, one find that the perturbation does not
affect the spectral bands, which is, of course, obvious from general principles: Using
the natural identification of L*(T'y) and L*(T'y) we see that Hy and Hy differ by
a shift of the point where a boundary condition is applied, hence their resolvent
difference has a finite rank (in fact, rank two). Consequently, their essential spectra
coincide and each spectral gap of Hy contains at most two eigenvalues of Hy, see
[We80, Sec. 8.3, Cor. 1].

Following the way described above, one arrives at the spectral conditions (k,
are positive numbers):

K eo,(H) &

92 k
cos ki) = — cos km + T - , (5.10)
f—ksinkﬂi\/(coskﬂ—kﬁsinkﬁ) —1

—-Kk’€oy(H") &

. h2
cosh k) = — cosh Kk — AT - ., (5.11)
ﬁ sinh k7 £ \/(cosh KT+ ﬁ sinh mr) -1

Feo,(H) &

. 2 k
— cos ki) = — cos km + T , (5.12)
i Sin km &+ \/(coslmr + 5 sinknr)2 —1
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—Kk’€oy(H) &
. h2
— cosh k) = — cosh kT — S AT (5.13)
ﬁ sinh k7 £ \/(cosh KT + ﬁ sinh mr)2 —1

with the signs in the denominators given by the signs of coskm + - sink7r and
cosh Kk 4 = sinh 7, respectively. Note that the conditions (5.11) and (5.13) are
obtained by substituting k& = ix into (5.10) and (5.12), respectively.

Conditions (5.10)—(5.13) provide a characterization of o,(H") and o,(H ~) which
we formulate in two theorems below. We use the symbol G,, denoting the spectral
gap adjacent to n?, n € N; the exceptional case is n = 1 if a > 0: since for o > 0
there are two gaps adjacent to 1, we specify that GG; denotes the gap above 1.

Proposition 5.2.1. e Letn € N. HT has at least one eigenvalue in G, except
for the case when ¥ satisfies cosnd = (—1)""1, or equivalently, except for the

angles ) = =2y ¢ =1 . |2

e Ifa>0, H" has no negative eigenvalues.

e Ifa< 0, H' has at least one negative eigenvalue which lies under the lowest
spectral band and above the number —k3, where kg is the (unique) solution of

K- tanh kT = —ar/2.
Proposition 5.2.2. e Letn € N. H™ has at least one eigenvalue in G, except
for the case when 9 = "_T%W, (=0,..., 5]

o I[fa>0, H™ has no negative eigenvalues.
Both statements are derived in Appendix D.

Remark 5.2.3. The eigenvalues of H™ and H~ may coincide and in this case they
become a single eigenvalue of multiplicity two. It happens for the eigenvalues k2
such that

k-tanlm:g.
2

5.3 Resonances and analyticity

The added eigenvalues are not the only consequence of the chain bending. If one in-
vestigates all solutions of (5.10) and (5.12), i.e. not only the real ones corresponding
to 0,(H") and 0,(H ™), one obtains imaginary solutions which describe resonances
of the system. More precisely speaking, this approach leads to the resolvent reso-
nances; the notion of resonances in the system can be introduced in several ways,
which are, however, mutually equivalent, cf. [ELO7].

We start with investigation of the analyticity of resonances and eigenvalues with
respect to the bending angle ¥. At first we rewrite the condition (5.10) as

% (14cos k1 cos k) (cos k4-cos kr) = sin k- (142 cos ki) cos km+cos® ki) ; (5.14)
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it can be checked (Appendix D, Proposition 4.1) that for non-integer values of k the
formulations are equivalent. Similarly, (5.12) may be rewriten as

g(1 — cos kv cos k) (— cos k) + cos km) = sin kr - (1 — 2 cos ki) cos km + cos? kv) .

2k
(5.15)
Now we can prove the analyticity of the solutions:

Proposition 5.3.1. e Curves given by the implicit equation (5.14) (correspond-
ing to HT) are analytic everywhere except at (9,k) = (%’Mﬂ,n), where

neN,/eN, (< L”THJ Moreover, the real solution in every G, is given by

a function 9 — k which is analytic, except at the points %_%W.

e Curves given by Equation (5.15) (corresponding to H™ ) are analytic everywhere
except at (0, k) = (”’T%W,n), where n € N, £ € Ny, £ < [%]. Moreover, the
real solution in every G, is given by a function ¥ — k which is analytic, except

at the points "’TMW.
Proof. Cf. Appendix D, Prop. 4.2. O

The numerical solution of the spectral condition for different signs of the coupling
constant and the real parts of the resonances of the system are illustrated in Figs. 4—
6 in Appendix D. We refer also to Fig. 7 ibidem visualizing the imaginary parts
corresponding to the situation of Fig. 4.

The above results raise naturally the question about the behaviour of the curves
at the singular points

n+1-—2¢
n

n—i—lJ

(19,1{;)2( W,n) with nEN,éEN,ES{

corresponding to H*, and

n — 20

(ﬁ,k)_< 7T,n> with nEN,EeNO,ES{gJ7

corresponding to H~, i.e. at the points where the curves touch the band edges
and where the eigenvalues and resonances may cross. We examine the asymptotic
behaviour at these points and look how many curves “stem” from them. Since the
results for H* and H~ are similar, we will concentrate mainly on the case of Ht.
The idea consists in taking kg € N and 9y := %‘MW for some ¢ € N, and
substituting
k:=ko+e, Y=g+ 06

into (5.14). The theory of algebroidal functions and Newton polygon here leads to
the result saying that there are exactly three types of solutions:

® = Q/g%é‘l/?’ (a real solution corresponding to the spectrum),

i2 . . . .
o ¢ =57 3/CR§4/3 (imaginary solutions corresponding to resonances).
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Let us remark that since (5.14) has a symmetry with respect to the complex
conjugation of k, the imaginary solutions come in pairs. This is why we find pairs
of curves outside from the real plane, conventionally just one of them is associated
with a resonance.

Combining this fact with the previous results, we infer that the complete graph
of solutions of (5.14) has the following structure:

e It consists of curves that are analytic and not intersecting, except at the points
(0, k) = (%ﬂw,n), where n € N, £ € N, ¢ < ["TH}, these are the only
ramification points.

n+1-20—2

e The real curves branches join the points ( —

the consecutive points on the lines k =n € N.

n+1-2¢
n

m,n) and ( m,n), ie.

e The curves branches outside the plane Im (k) = 0 join the points (=57m,n — ()

and (ngilﬁ,n — ¢ — 1), i.e. the consecutive points laying on the hyperbolas

(W+7m)-k=n-m keR, neN, nodd, cf. Fig. 7in Appendix D.
This characterization allows one to precize the description of the point spectrum
provided in Proposition 5.2.1.

Theorem 5.3.2. e Letn € N. If v = %’2%, C=1,...,["], then the
operator H™ has no eigenvalue in G,. Otherwise H™ has in G,, exactly one
eigenvalue of multiplicity 1.

e Ifa>0, H" has no negative eigenvalues.

e I[fa <0, H" has exactly one negative eigenvalue which lies under the lowest
spectral band and above the number —k3, where kg is the (unique) solution of
K- tanh kT = —ar/2.

The next theorem, based on Equation (5.3), characterizes the behaviour of eigen-
values in the vicinity of the singular points.

Theorem 5.3.3. If n € N and ¢ € N such that { < L”T“j, then the curve of
eigenvalues of H' behaves in the neighbourhood of the point (9,k) = (“=2t7 n)

asymptotically as
k
koa kg + ¢ S22 9 — 0|3
4

The statement is valid for the particular case g = 0, ky € N as well, provided the
band edge kg is odd.

However, H" has an eigenvalue near ¥y = 0 also in the gaps adjacent to even
numbers. In these cases the curve starts at the point (0, ko) for ko being the solution
of |coskm + fsinkw| = 1in (n,n + 1), n even, and its asymptotic behaviour of k
for ¥ close to zero is different, namely:

Theorem 5.3.4. Suppose that n € N is even and ko is as described above, i.e. k?
is the right endpoint of the spectral gap adjacent to n*. Then the behaviour of the
solution of (5.14) in the neighbourhood of (0, ko) is given by

k=ky— Chryo 0" +00°),

where C, o = g . (%)3 (kom + sin koﬂ)fl.
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Proof. Cf. Appendix D, Theorem 5.1. O

The analogous asymptotic behaviour applies to k2, the energy distance of the
eigenvalue from the band edge is again proportional to ¥* in the leading order.
Notice that this is true in any spectral gap, but of course, the error term depends
in general on the gap index.

We refrain from discussing in detail the odd part H~ of the Hamiltonian. The
corresponding results are practically the same, the only difference is that the roles
of the even and odd gaps are interchanged. Let us directly formulate the analogy to
5.3.2:

Theorem 5.3.5. o Letn e N. If = "’T%ﬂ, (=1,...,|%], then the operator
H~ has no eigenvalue in G,,. Otherwise H~ has in G,, exactly one eigenvalue
of multiplicity 1. These eigenvalues are positive except the one in Gy, which
may be negative if o« < —8/m and 0 is sufficiently small.

o I[fa>0, H™ has no negative eigenvalues.

Most of what we have discussed above modifies easily to the case of attractive
coupling with the obvious changes: for a@ < 0 the spectral gaps lay now below the
numbers n%, n € N. Of particular interest is the spectral gap adjacent to the value
one, because with the increase of || its lower edge moves towards zero and may
become negative for |a| large enough. The even part H' has similar properties
as before: the eigenvalue curve goes from (0, 1) to (m, ko), where ko € (0,1), and
there are two complex conjugated branches with Re (k) > 0 one of which describes
a resonance.

However, the odd part H~ requires a more detailed examination. We know that
there is an eigenvalue curve going to the point [r, 1]. If the entire spectral gap is
above zero, this curve joins it with [0, k3], where k2 is the lower edge of the gap.
On the other hand, if || is large enough, the eigenvalue curve starts from [0, —r]
where —k2 is again the lower gap edge; to show that even in this case the curve
joins the points [0, —x3] and [, 1] analytically, it suffices to show that the solutions
of (5.15) with the negative sign preserves analyticity when it crosses the line k? = 0.
This statement together with a proof can be found in Appendix D. Of course, the
claim can be obtained also by means of the analytic perturbation theory [Ka66].

Finally, note that by Proposition 5.3.1 the solutions of both (5.14) and (5.15)
are analytic in the whole open halfplane Re (k) < 0, and consequently, no resonance
curves can be found there.

Remarks

e The spectral and resonance properties due geometric perturbations hold prob-
ably much more generally.

e One may interpret the chain graph alternatively as a decoration of a simple
array-type graph. The results say that a local modification of the decoration
can produce a discrete spectrum in the gaps and also resonances.
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e There is an interesting parallel between the quantum graphs discussed here and

quantum waveguides. Although the nature of the two systems is very different,
in both there exist bound states below the essential spectrum threshold due
to a local bend. Moreover, in the case of Dirichlet quantum waveguides, the
binding energy for a gentle bend is proportional to the fourth power of the
bending angle [DE95|, i.e. has exactly the same behaviour as described by
Theorem 5.3.4.
For quantum waveguides with mixed boundary conditions it was shown [Ji06]
that the effect of binding through bending is present for any repulsive boundary.
In our case an eigenvalue below the lowest band exists whenever a # 0 which
inspires another look at the waveguide case. It appears that the argument of
[Ji06] works again and proves the existence of curvature-induced bound states
in all cases except the Neumann boundary which is an analogue of the case
a = 0 here.
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Conclusion and outlook

The main outcome of the present work is an extension of the knowledge of the
properties of quantum graph vertices. This was done in three areas, which we will
summarize now.

Parametrization of boundary conditions

We have introduced an alternative way how the boundary conditions in quan-
tum graph vertices may be expressed and parametrized, namely the S7T-form
with its reverse version, and the PQ RS-form. Their main advantages, namely
the clearness in which the parameters occur in the boundary conditions and
the large number of the vanishing matrix elements, makes our parametrizations
effective for many applications. The ST-form turned out to be an excellent
formulation for dealing with two problem listed below, and recently we real-
ized that the solution of another problem, namely the spectral analysis of an
infinite two-dimensional lattice, also simplifies when the ST-form is employed.

Meaning of vertex couplings

Another result of the thesis shows that any singular vertex coupling can be ap-
proximated by a graph in which the vertex is replaced by a local graph structure
in combination with local regular interactions and local magnetic fields. This
finding not only helps to understand the meaning of vertex couplings, but also
opens way to constructing “structured” vertices tailored to the desired conduc-
tivity properties, even tunable ones, if the interactions are controlled by gate
electrodes.

The problem of understanding vertex couplings has one more aspect. The
approximating object needs not to be a graph but can be another geometrical
structure. A lot of attention was paid in the physics community to the situation
of “fat graphs”, or networks of this tubes built around the graph skeleton. The
point is that the two approaches can be combined, for instance, by “lifting” the
graph results to fat graphs. In this way approximations to § and J couplings
by suitable families of Schrédinger operators on such manifolds with Neumann
boundaries were recently demonstrated in [EP08|. The results of this paper
can be similarly “lifted” to manifolds; that will be the subject of a subsequent
work.
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Properties of quantum branchings

We have studied the scattering at singular vertices of degree 2 (an interaction
on the line), and especially 3 (the Y-junction). The classification that we
have obtained using the ST-form helps to understand physical properties of
quantum graph vertices. We have also shown that the couplings between each
pair of outgoing lines of the Y-junction are individually tunable, which de
facto enables a design of quantum spectral branch-filters. In this work we were
concerned in the case n < 3 only, where n denotes the degree of the vertex,
however, our approach is applicable to vertices of higher degrees once the need
arises.

The last result is related to the theory of periodic graphs with locally compact
perturbations:

We have examined an example of a bent infinite chain and provided a detailed
description of its spectrum and resonances in dependence on the bending angle.
Among others we have found that the perturbation produces eigenvalues in a way
surprisingly similar to bent waveguides, which are systems of a very different na-
ture. This result supports the presumption that there are deep connections between
quantum graphs and more-dimensional systems, so far hidden and waiting for their
discovery. Quantum graphs might then become also an efficient “laboratory” in
which properties of other, more complex structures are investigated. This would yet
more raise their applicability.



List of symbols

set of real numbers

set of positive numbers, set of negative numbers

set of non-negative numbers

set of complex numbers

set of complex matrices with £ rows and [ columns
set of positive integers, set of non-negative integers
set {1,2,...,n}

real part of the number x, imaginary part of x

j-th component of the vector z

(1, 7)-th element of the matrix A

(i, 7)-th block of the matrix A or (i, j)-th element of A
1, j-minor of the square matrix A

transpose of the matrix A

conjugate transpose of the matrix A

i-th row of the matrix A, j-th column of A

rank of the matrix A

diagonal matrix with the diagonal elements a4, ..., a,
unitary group of the degree n

right-sided limit of the function f at the point x
(similarly f(z_) - left-sided limit)

a Hilbert space

scalar product of f, g in the space ‘H

Hilbert space of square-integrable functions on a set M
with respect to the Lebesgue measure on M

Hilbert space norm of f

Hilbert-Schmidt norm of f

resolvent of the operator H at the point &

spectrum of the operator H

point spectrum of the operator H
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Abstract

The longstanding open problem of approximating all singular vertex couplings in a quantum
graph is solved. We present a construction in which the edges are decoupled; an each pair of
their endpoints is joined by an edge carrying a ¢ potential and a vector potential coupled to the
“loose” edges by a ¢ coupling. It is shown that if the lengths of the connecting edges shrink
to zero and the potentials are properly scaled, the limit can yield any prescribed singular vertex
coupling, and moreover, that such an approximation converges in the norm-resolvent sense.

Key words: singular quantum interaction, solvable quantum model, quantum wires
PACS: 03.65.-w, 03.65.Db, 73.21.Hb

1. Introduction

While the origin of the idea to investigate quantum mechanics of particles confined to a
graph was conceived originally to address to a particular physical problem, namely the spectra
of aromatic hydrocarbons [RS53], the motivation was quickly lost and for a long time the prob-
lem remained rather an obscure textbook example. This changed in the last two decades when
the progress of microfabrication techniques made graph-shaped structures of submicron sizes
technologically important. This generated an intense interest to investigation of quantum graph
models which went beyond the needs of practical applications, since these models proved to be
an excellent laboratory to study various properties of quantum systems. The literature on quan-
tum graphs is nowadays huge; we limit ourselves to mentioning the recent volume [AKSTO8]
where many concepts are discussed and a rich bibliography can be found.

The essential component of quantum graph models is the wavefunction coupling in the ver-
tices. While often the most simple matching conditions (dubbed free, Kirchhoff, or Neumann)
or the slightly more general 6 coupling in which the functions are continuous in the vertex are

Email addresses: taksu.cheon@kochi-tech.ac.jp (Taksu Cheon), exner@ujf.cas.cz (Pavel Exner),
turekond@f jfi.cvut.cz (Ondiej Turek)
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used, these cases represent just a tiny subset of all admissible couplings. The family of the latter
is determined by the requirement that the corresponding Hamiltonian is a self-adjoint operator,
or in physical language, that the probability current is conserved at the vertices. It is not difficult
to find all the admissible conditions mathematically; if the vertex joins n edges they contain n?
free parameters, and with exception of the one-parameter subfamily mentioned above they are
all singular in the sense that the wavefunctions are discontinuous at the vertex.

What is much less clear is the physical meaning of such conditions. It is longstanding open
problem whether and in what sense one can approximate all the singular couplings by regular
ones depending on suitable parameters, and the aim of the present paper is to answer this question
by presenting such a construction, minimal in a natural sense using n” real parameters, and to
show that the closeness is achieved in the norm-resolvent sense, so the convergence of all types
of the spectra and the corresponding eigenprojections is guaranteed.

The key idea comes from a paper of one of us with Shigehara [CS98] which showed that
a combination of regular point interactions on a line approaching each other with the coupling
scaled in a particular way w.r.t. the interaction distance can produce a singular point interaction.
Later it was demonstrated [ENZ01] that the convergence in this model is norm-resolvent and the
scaling choice is highly non-generic. The idea was applied by two of us to the simplest singular
coupling, the so-called ¢¢, in [CEO4] and was demonstrated to work; the question was how much
it can be extended. Two other of us examined it [ET07] and found that with a larger number of
regular interactions one can deal with families described by 2n parameters, and changing locally
the approximating graph topology one can deal with all the couplings invariant with respect to
the time reversal which form an (”;1)—parameter subset.

It was clear that to proceed beyond the time-reversal symmetry one has to involve vector
potentials similarly as it is was done in the simplest situation in [SMMC99]. In this paper we
present such a construction which contains parameters breaking the symmetry and which at the
same time is more elegant than that of [ET07] in the sense that the needed “ornamentation” of the
graph is minimal: we disconnect the n edges at the vertex and join each pair of the so obtained
free ends by an additional edge which shrinks to a point in the limit. The number of parameters
leans on the decomposition n> = n+ 2(%), where the first summand, n, corresponds to ¢ couplings
of the “outer” edge endpoints with those of the added shrinking ones. The second summand can
be considered as (;) times two parameters: one is a ¢ potential placed at the edge, the other is a
vector potential supported by it.

Our result shows that any singular vertex coupling can be approximated by a graph in which
the vertex is replaced by a local graph structure in combination with local regular interactions and
local magnetic fields. This opens way to constructing “structured” vertices tailored to the desired
conductivity properties, even tunable ones, if the interactions are controlled by gate electrodes,
however, we are not going to elaborate such approximations further in this paper.

We have to note for completeness that the problem of understanding vertex couplings has also
other aspects. The approximating object needs not to be a graph but can be another geometrical
structure. A lot of attention was paid to the situation of “fat graphs”, or networks of this tubes
built around the graph skeleton. The two approaches can be combined, for instance, by “lifting”
the graph results to fat graphs. In this way approximations to § and ¢} couplings by suitable
families of Schrodinger operators on such manifolds with Neumann boundaries were recently
demonstrated in [EP08]. The results of this paper can be similarly “lifted” to manifolds; that will
be the subject of a subsequent work.

Let us review briefly the contents of the paper. In the next section we gather the needed
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preliminary information. We review the information about vertex couplings and derive a new
parametrization of a general coupling suitable for our purposes. In Section 3 we describe in
detail the approximation sketched briefly above and show that on a heuristic level it converges
to a chosen vertex coupling. Finally, in the last section we present and prove our main result
showing that the said convergence is not only formal but it is valid also in the norm-resolvent
sense.

2. Vertex coupling in quantum graphs

Let us first recall briefly a few basic notions; for a more detailed discussion we refer to the
literature given in the introduction. The object of our interest are Schrédinger operators on metric
graphs. A graph is conventionally identified with a family of vertices and edges; it is metric if
each edge can be equipped with a distance, i.e. to be identified with a finite or semi-infinite
interval.

We regard such a graph I' with edges Ey,..., E, as a configuration space of a quantum me-
chanical system, i.e. we identify the orthogonal sum H = EB;LI L*(E ;) with the state Hilbert
space and the wave function of a spinless particle “living” on I' can be written as the column
¥ = 1,0, ..., 0, withy j € LX(E ;). In the simplest case when no external fields are present
the system Hamiltonian acts as (Hr'¥); = —w_’].’, with the domain consisting of functions from
W22(T) := @'}zl W22(E}). Not all such functions are admissible, though, in order to make the
operator self-adjoint we have to require that appropriate boundary conditions are satisfied at the
vertices of the graph.

We restrict our attention to the physically most interesting case when the boundary conditions
are local, coupling values of the functions and derivatives is each vertex separately. Our aim
is explain the meaning of a general vertex coupling using suitable approximations; the local
character means that we can investigate how such a system behaves in the vicinity of a single
vertex. A prototypical example of this situation is a star graph with one vertex in which a finite
number of semi-infinite edges meet; this is the case we will mostly have in mind in the following.

Let us thus consider a graph vertex V of degree n, i.e. with n edges connected at V. We

denote these edges by Ej,..., E, and the components of the wave function values at them by
Yi1(x1),...,¥n(x,). We choose the coordinates at the edges in such a way that x; > 0 for all
Jj=1,...,n, and the value x; = 0 corresponds to the vertex V. For notational simplicity we put

Py = @1(0), ..., ¢,(0)" and ¥}, = (¢ (0), ..., ¥/,(0))". Since our Hamiltonian is a second-order
differential operator, the sought boundary conditions will couple the above boundary values, their
most general form being

A¥y + BY, =0, (1)

where A and B are complex n X n matrices.

To ensure self-adjointness of the Hamiltonian, which is in physical terms equivalent to con-
servation of the probability current at the vertex V, the matrices A and B cannot be arbitrary but
have to satisfy the following two conditions,

e rank(A|B) =n,
e the matrix AB" is self-adjoint,

2

where (A|B) denotes the n X 2n matrix with A, B forming the first and the second n columns,
respectively, as stated for the first time by Kostrykin and Schrader [KS99]. The relation (1)
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together with conditions (2) (for brevity, we will write (1)&(2)) describe all possible vertex
boundary conditions giving rise to a self-adjoint Hamiltonian; we will speak about admissible
boundary conditions.

On the other hand, it is obvious that the formulation (1)&(2) is non-unique in the sense that
different pairs (A, B), (A2, B;) may define the same vertex coupling, as A, B can be equiva-
lently replaced by CA, CB for any regular matrix C € C™*". To overcome this ambiguity, Harmer
[Ha00], and independently Kostrykin and Schrader [KSOO] proposed a unique form of the bound-
ary conditions (1), namely

(U-D¥Yy+i(U+DYy, =0, 3)

where U is a unitary n X n matrix. Note that in a more general context such conditions were
known before [GG9I1], see also [FT00].

The natural parametrization (3) of the family of vertex couplings has several advantages in
comparison to (1)&(2), besides its uniqueness it also makes obvious how “large” the family is:
since the unitary group U(n) has n® real parameters, the same is true for vertex couplings in
a quantum graph vertex of the degree n. Of course, this fact is also clear if one interprets the
couplings from the viewpoint of self-adjoint extensions [ES89].

On the other hand, among the disadvantages of the formulation (3) one can mention its com-
plexity: vertex couplings that are simple from the physical point of view may have a complicated
description when expressed in terms of the condition (3). As an example, let us mention in the
first place the ¢-coupling with a parameter « € R, characterized by relations

¥j(0) = n(0) = 4(0),  jik=1....n, Z ¥(0) = ay(0), “4)

=1

for which the matrix U used in (3) has entries given by

— Sk, ®)

0 jx being the Kronecker delta. When we substitute (5) into (3) and compare with (4) rewritten
into a matrix form (1), we observe that the first formulation is not only more complicated with
respect to the latter, but also contains complex values whereas the latter does not. This is a reason
why it is often better to work with simpler expressions of the type (1)&(2). Another aspect of this
parametrization difference concerns the meaning of the parameters. Since the #> ones mentioned
earlier are “encapsulated” in a unitary matrix, it is difficult to understand which role each of them
plays.

On the other hand, both formulations (1)&(2) and (3) have a common feature, namely that
they have a form insensitive to a particular edge numbering. If the edges are permuted one has
just to replace the matrices A, B and U by A, B and U, respectively, obtained by the appropriate
rearrangement of rows and columns. This may hide different ways in which the edges are cou-
pled; it is easy to see that a particular attention should be paid to “singular” situations when the
matrix U has eigenvalue(s) equal to +1.

Since the type of the coupling will be important for the approximation we are going to con-
struct, we will rewrite the vertex coupling conditions in another form which is again simple and
unique but requires an appropriate edge numbering. This will be done in Theorem 2.1, before



stating it we introduce several symbols that will be employed in the further text, namely

CK' —  the set of complex matrices with k rows and / columns,
n — theset{l,2,...,n},
I —  the identity matrix n X n.

To be precise, let us remark that the term “numbering” with respect to the edges connected in the
graph vertex of the degree n means strictly numbering by the elements of the set 7.

Theorem 2.1. Let us consider a quantum graph vertex V of the degree n.

(i)

(ii)

(iii)

Ifm<n, S € C"" is a self-adjoint matrix and T € C"™"™™, then the equation

“m T , S 0
( 0 0 )\PV = ( _T* I(n—m) )lPV (6)
expresses admissible boundary conditions. This statement holds true for any numbering

of the edges.

For any vertex coupling there exist a number m < n and a numbering of edges such that
the coupling is described by the boundary conditions (6) with the uniquely given matrices
T € C™" ™™ and self-adjoint S € C"™™,

Consider a quantum graph vertex of the degree n with the numbering of the edges explicitly
given; then there is a permutation I1 € S, such that the boundary conditions may be written

in the modified form
™ T\, N 0 \g
( 0 0 )‘PV = ( _T* I(n—m) )TV (7)

Uiy (0)

for

Yriy(0)
S R S B
‘/’H(n)(o) ll’i‘[(n)(o)

where the self-adjoint matrix S € C™" and the matrix T € C™" ™™ depend unambigu-
ously on I1. This formulation of boundary conditions is in general not unique, since there
may be different admissible permutations 11, but one can make it unique by choosing the
lexicographically smallest permutation I1.

¥y =

Proof. The claim (iii) is an immediate consequence of (ii) using a simultaneous permutation of
elements in the vectors W'y and ¥}, so we have to prove the first two. As for (i), we have to show
that the vertex coupling (1) with matrices

-S 0 m T
A_(T* —I(”"”)) and B—( 0 O)’

conform with (2). We have

=S 0 Ty (1™ 0 =S T _
ikl e oo g o )T o _jeem e )T
5



and
-s 0 ™ 7\ (-5 0).
(7” —ﬂ"m)‘(() 0) ‘( 0 0)’
the latter matrix is self-adjoint since S = S, thus (2) is satisfied.

Now we proceed to (ii). Consider a quantum graph vertex of the degree n with an arbitrary
fixed vertex coupling. Let Wy and ¥}, denote the vectors of values and derivatives of the wave
function components at the edge ends; the order of the components is arbitrary but fixed and the
same for both vectors. We know that the coupling can be described by boundary conditions (1)
with some A, B € C"" satisfying (2). Our aim is to find a number m < n, a certain numbering
of the edges and matrices S and T such that the boundary conditions (1) are equivalent to (6).
Moreover, we have to show that such a number m is the only possible and that S,7 depend
uniquely on the edge numbering.

When proceeding from (1) to (6), we may use exclusively manipulations that do not affect
the meaning of the coupling, namely

¢ simultaneous permutation of columns of the matrices A, B combined with corresponding
simultaneous permutation of components in ¥y and ‘P,
e multiplying the system from left by a regular matrix.

We see from (6) that m is equal to the rank of the matrix applied at ¥},. We observe that the
rank of this matrix, as well as of that applied at Wy, is not influences by any of the manipulations
mentioned above, hence it is obvious that m = rank(B) and that such a choice is the only possible,
i.e. m is unique.

Since rank(B) = m withm € {0, ..., n}, there is an m-tuple of linearly independent columns of
the matrix B; suppose that their indices are ji, ..., j,,. We permute simultaneously the columns
of B and A so that those with indices ji, ..., j, are now at the positions 1,...,m, and the same
we do with the components of the vectors Wy, ¥|,. Labelling the permuted matrices A, B and
vectors Wy, ¥}, with tildes, we get

A¥y + BY, =0. (8)
Since rank(B) = rank(B) = m, there are m rows of B that are linearly independent, let their
indices be iy, .. ., i,,, and n — m rows that are linear combinations of the preceding ones. First we
permute the rows in (8) so that those with indices i, . . ., i,, are put to the positions 1, ..., m; note

that it corresponds to a matrix multiplication of the whole system (8) by a permutation matrix
(which is regular) from the left, i.e. an authorized manipulation. In this way we pass from A
and B to matrices which we denote as A and B; it is obvious that this operation keeps the first m
columns of the matrix B linearly independent.

In the next step we add to each of the last n — m rows of A¥(0) + BY(0) = 0 such a linear
combination of the first m rows that all the last n — m rows of B vanish. This is possible, because
the last n — m lines of B are linearly dependent on the first m lines. It is easy to see that it
is an authorized operation, not changing the meaning of the boundary conditions; the resulting
matrices at the LHS will be denoted as B and A, i.e.

APy + BY, =0. ©)
From the construction described above we know that the matrix B has a block form,

5 _ @11 @12
p=( ).
6



where B;; € C™" and B, € C™"; the square matrix By, € Cm™m s regular, because its
columns are linearly independent. We proceed by multiplying the system (9) from the left by the

matrix R
B! 0
0 [ )
arriving at boundary conditions
An An g 1 By \g, _
( Ay Ao )‘I’V+( 0 0 Y, =0, (10)
where B, = ‘@IIIBD

Boundary conditions (10) are equivalent to (1), therefore they have to be admissible. In other
(m)
ﬂn ﬂlz and I 812
A Ax 0 0
which we are now going to verify. Let us begin with the second one. We have

( An A )( 1 0 )_( An+AnB;, 0 )
.7{21 ﬂzz BTZ 0 ﬂzl +ﬂ22872 0

words, the matrices ( ) have to satisfy both the conditions (2),

and this matrix is self-adjoint if and only if Ay + A28y, is self adjoint and Ay + AnBj}, = 0.
We infer that Ay = — A B),, hence condition (10) acquires the form

A A \g 1™ By \s,
(_ﬂzzg;2 . )‘I’V+( o o )E =o. an

The first one of the conditions (2) says that

rank( Au - A 1 812)zn,

—ﬂzzBTz A 0 0

hence rank (~FAxn B, Az ) = n - m. Since (~AnB;,|Arn) = Az - (B],/["™™) we obtain the
condition rank(Ay,) = n — m, i.e. Ay must be a regular matrix. It allows us to multiply the
equation (11) from the left by the matrix

Jm —ﬂlzﬂizl
0 -A;) ’

which is obviously well-defined and regular; this operation leads to the condition

( A +ﬂ12872 0 )~V ( 7 B

B’{Z _[(n—m) O 0 ) \PV = 0 .

If follows from our previous considerations that the square matrix A1 + A B, is self-adjoint.
If we denote it as —§, rename the block 81, as T and transfer the term containing ‘|, to the right
hand side, we arrive at boundary conditions

o T\ S 0 <
( 0 O)sz(_T* o )l}fv. (12)

7



The order of components in Py and ‘i’;/ determines just the appropriate numbering, in other
words, the vectors ¥y and ¥, represent exactly what we understood by ¥y and ¥}, in the for-
mulation of the theorem.

Finally, the uniqueness of the matrices S and T with respect to the choice of the permutation
IT is a consequence of the presence of the blocks 1™ and 1", First of all, the block 17"~
implies that there is only one possible T', otherwise the conditions for Jr;n REEE Jr;, would change,
and next, the block ™ together with the uniqueness of T implies that there is only one possible

S, otherwise the conditions for lﬁl, cee zﬁm would change. O

Remark 2.2. The expression (7) implies, in particular, that if B has not full rank, the number of
real numbers parametrizing the vertex coupling (1) is reduced from n? to at most m(2n — m) =
n* — (n — m)?, where m = rank(B). Another reduction can come from a lower rank of the matrix
A.

Remark 2.3. The procedure of permuting columns and applying linear transformations to the
rows of the system (1) has been done with respect to the matrix B, but one can start by same
right from the matrix A as well. In this way we would obtain similar boundary conditions as (6),
only the vectors ¥y and ¥}, would be interchanged. Theorem 2.1 can be thus formulated with

Equation (6) replaced by
1 T S 0 ,
( 0 0 )‘PV =( e oem) )Tv-

For completeness’ sake we add that another possible forms of Equation (6) in Theorem 2.1 are

N 0 ™ T\
( _T* I(n—m) )LPV"'( 0 0 )\PVZO

o T S 0 ,
(S L (g e

having the standardized form A%y + B'Y|, = 0, last two formulations may be sometimes more
convenient than (6).
Obviously, an analogous remark can be made for Equation (7).

and

Remark 2.4. A formulation of boundary conditions with a matrix structure singling out the
regular part as in (7) has been derived in a different way by P. Kuchment [Ku04]. Recall that
in the setting analogous to ours he stated existence of an orthogonal projector P in C" with the
complementary projector Q = Id — P and a self-adjoint operator L in QC" such that the boundary
conditions may be written in the form

P \PV = O
oY, + LO¥y = 0. (13)
Let us briefly explain how P. Kuchment’s form differs from (7). When transformed into a matrix
form, (13) consists of two groups of 7 linearly dependent equations. If we then naturally extract
a single group of n linearly indepent ones, we arrive at a condition with a structure similar to
(11), i. e. the upper right submatrix standing at 'V}, is generally a nonzero matrix m X (n — m).
In other words, whilst P. Kuchment aimed to decompose the boundary conditions with respect to
8



two complementary orthogonal projectors, our aim was to obtain a unique matrix form with as
many vanishing terms as possible; the form (6) turned out to have a highly suitable structure for
solving the problem of approximations that we are going to analyze in the rest of the paper.

To conclude this introductory section, let us summarize main advantages and disadvantages
of the conditions (6) and (7). They are unique and exhibit a simple and clear correspondence
between the parameters of the coupling and the entries of matrices in (6), furthermore, the matri-
ces in (6) are relatively sparse. On the negative side, the structure of matrices in (6) depends on
rank(B) and the vertex numbering is not fully permutable.

3. The approximation arrangement

We have argued above that due to a local character one can consider a single-vertex situation,
i.e. star graph, when asking about the meaning of the vertex coupling. In this section we consider
such a quantum graph with general matching conditions and show that the singular coupling may
be understood as a limit case of certain family of graphs constructed only from edges connected
by d-couplings, é-interactions, and supporting constant vector potentials.

Following the above discussion, one may consider the boundary conditions of the form (6),
renaming the edges if necessary. It turns out that for notational purposes it is advantageous to
adopt the following convention on a shift of the column indices of T':

Convention 3.1. The lines of the matrix T are indexed from I to m, the columns are indexed
fromm + 1 to n.

Now we can proceed to the description of our approximating model. Consider a star graph
with n outgoing edges coupled in a general way given by the condition (7). The approximation
in question looks as follows (cf. Fig.1):

e We take n halflines, each parametrized by x € [0, +o0), with the endpoints denoted as V;,
and put a ¢-coupling (to the edges specified below) with the parameter v;(d) at the point
V;forall j € n.

e Certain pairs V;, V; of halfline endpoints will be joined by edges of the length 2d, and
the center of each such joining segment will be denoted as W, ;. For each pair {j, k}, the
points V; and Vi, j # k, are joined if one of the following three conditions is satisfied (keep
in mind Convention 3.1):

(1) jemk>m+1,and Ty #0(or j>m+ 1,k €, and Ty; # 0),
(2) jjkemand (Al >m+ 1)(Tj; #0A Ty #0),
(3) j kem,S j # 0, and the previous condition is not satisfied.

e At each point Wy, we place a ¢ interaction with a parameter w;(d). From now on we
use the following convention: the connecting edges of the length 2d are considered as
composed of two line segments of the length d, on each of them the variable runs from 0
(corresponding to the point W(;) to d (corresponding to the point V; or V;).

¢ On each connecting segment described above we put a vector potential which is constant
on the whole line between the points V; and V.. We denote the potential strength between
the points Wy and V; as A(;x)(d), and between the points W and V; as Ay j(d). It
follows from the continuity that Ay j(d) = —A(jx)(d) for any pair {j, k}.
9



Figure 1: The scheme of the approximation. All inner links are of length 2d. Some connection links may be missing if
the conditions given in the text are not satisfied. The quantities corresponding to the index pair {j, k} are marked, and the
grey line symbolizes the vector potential A ;) (d).

The choice of the dependence of v ;(d), wy;x(d) and A(;x)(d) on the parameter d is crucial for the
approximation and will be specified later.

It is useful to introduce the set N; C 7 containing indices of all the edges that are joined to
the j-th one by a connecting segment, i.e.

Nj=tkem|Sj #0yUtkem @l =m+1)Tj#0ATy +0)}
Ulk>m+1|Ty # 0} for jem (14)
Nj =tk € m|Ty; # 0} for j>m+ 1

The definition of N; has these two trivial consequences, namely

keN; o je N 15)
jzm+1=N;cm (16)

For the wave function components on the edges we use the following symbols:
e the wave function on the j-th half line is denoted by i,

e the wave function on the line connecting points V; and V; has two components: the one on
the line between W and V; is denoted by ¢, 1), the one on the half between the middle
and the endpoint of the k-th half line is denoted by ¢ ;. We remind once more the way in
which the variable x of ¢(;x) and ¢ ;) is considered: it grows from 0 at the point W, to
d at the point V; or Vj, respectively.

Next we describe how the ¢ couplings involved look like; for simplicity we will refrain from in-
dicating in the boundary conditions the dependence of the parameters u, v;, wy; on the distance
d.

The ¢ interaction at the edge connecting the j-th and k-th half line (of course, for j, k € 71
such that k € N; only) is expressed through the conditions

©k(0) = 0w, jH(0) =t ¢(;x(0),
0100 + @1 1 (04) = Wiy (0), a7
10



the ¢ coupling at the endpoint of the j-th half line (j € /1) means

¥ ;(0) = ¢(jx(d) forall k e N,
¥0) = Xken; (1 (d) = vty ;(0). (18)

Further relations which will help us to find the parameter dependence on d come from Taylor
expansion. Consider first the case without any added potential,

P(in(d) = ¢1jx(0) + d ¢;,,(0) + Od)
Pl = @0 +0Wd), jken.

To take the effect of added vector potentials into account, the following lemma will prove
useful:

19)

Lemma 3.2. Let us consider a line parametrized by the variable x € (0, L), L € (0, +00) U {+00},
and let H denote a Hamiltonian of a particle on this line interacting with a potential V,

d2
-— 4

dx?
sufficiently regular to make H self-adjoint. We denote by ' the solution of Hy = k> with the

boundary values **(0) = s, y*''(0) = t. Consider the same system with a vector potential A
added, again sufficiently regular; the Hamiltonian is consequently given by

H = v, (20)

d 2
HAz(—i——A) +V. (21)
dx

Let d/i"t denote the solution of Hay = k> with the same boundary values as before, i.e. z,bf"'(O) =
s, ¥5"(0) = t. Then the function W' can be expressed as

Yl = e h A% ysi()  forall xe(0,L).
Proof. The aim is to prove that
VP =Yt A g0 =s A gt 0) =1
implies
(_i % ) A)z (ei JFA@dz | ws,t) LV elhA@d: U = i JF ARz Wy
and wj;’(O) =, Wf{t ’(0) = t. The last part is obvious, since the exponential factor involved is equal

to one, hence it suffices to prove the displayed relation. It is straightforward that the Hamiltonian

H, acts generally as
Hy = & idd ity
ST dx '

We substitute el b 405 . Y for y, obtaining

[HA (ei fox AQdz | II’M)] (x) = _dd_; (Ci fOXA(Z)dZ . l!/s,t) (x)+

+ 21A(x)d% (e h 4@ ) () + (1A () + A + V() € b A% sty
11



Now we express the derivatives applying the formula %C fox A(z)dz = A(x). Most of the terms
then cancel, it remains only

[Fa (e h 40 o) () = b A= (gt (0 + Vi) - g (x)
Due to the assumption —y*""” + V' = k2", we have
[Ha (6 40%  y)] () = e b A% (),
what we have set out to prove. O

The lemma says that adding a vector potential on an edge of a quantum graph has a very
simple effect of changing the phase of the wave function by the value fOX A(z)dz. We will work in
this paper with the special case of constant vector potentials on the connecting segments of the
lengths 2d, hence the phase shift will be given here as a product of the value A and the length in
question.

Lemma 3.2 has the following very useful consequence.

Corollary 3.3. Consider a quantum graph vertex with n outgoing edges indexed by 1, . ..,n and
parametrized by x € (0, L;). Suppose that there is a 6 coupling with the parameter « at the vertex,
and moreover, that there is a constant vector potential A; on the j-th edge for all j € n. Let y;
denote the wave function component on the j-the edge. Then the boundary conditions acquire
the form

¥ i(0) = Y (0) =: ¢(0) forall jken, (22)
D wi0) = (a +iy) A,-] w(0), (23)
j=1 j=1

where s (0), w;.(O), etc., stand for the one-sided (right) limits at x = Q.

In other words the effect of the vector potentials on the boundary conditions corresponding to a
“pure” ¢ coupling is the following:

¢ the continuity is not affected,
o the coupling parameter is changed from a to a + i Z?zl Aj

Proof. Consider first the situation without any vector potentials. If l//(])., J € 7, denote the wave
function components corresponding to this case, the boundary conditions expressing the 6 cou-
pling have the form (4), i.e.

YO(0) = (0) = y%(0)  forall jken,
i 99(0) = ay(0).

If there are vector potentials on the edges, A; on the j-th edge, one has in view of the previous
lemma, ¥ ;(x) = e‘Af"wg(x), ie.

(24)

W) = ey ()
, d . . .
v = o (€7 wi) = ey () -4, ey ().
12



Thence we express z,//?(O) and l//?'(O): they are equal to

¥9(0) = y;(0),
WY'(0) = v/ (0) —i4,u(0) ;
substituting them to (24) we obtain

W (0) = r(0) =: ¥(0) forall jken,
D7 (W)(0) = iA; - (0)) = ay(©).

J=1

The first line expresses the continuity of the wavefunction in the vertex supporting the ¢ coupling
in the same way as in the absence of vector potentials, whereas the second line shows how the
condition for the sum of the derivatives is changed. With the continuity in mind, we may replace

¥ ;(0) by ¥(0) obtaining
Z%@=&+Q}qwm
j=1 j=1

which finishes the proof. O

Recall that approximating we are constructing supposes that constant vector potentials are
added on the joining edges. If an edge of the length 2d joins the endpoints of the j-th and k-th
half line, there is a constant vector potential of the value A;)(d) on the part of the length d closer
to the j-th half line and a constant vector potential of the value A j(d) = —A(jx(d) on the part
of the length d closer to the k-th half line. With regard to Lemma 3.2, the impact of the added
potentials consists in phase shifts by d - A¢jx(d) and d - A j(d). Let us include this effect into
the corresponding equations, i.e. into (19):

@i (d) = €0 (@149 (0) + d ¢4, (0) + Od)

4 idAGp ! . . (25)
Pjp(d) =g (0)+Od),  jiken.

The system of equations (17), (18), and (25) describes the relations between values of wave
functions and their derivatives at all the vertices. Next we will eliminate the terms with the
“auxiliary” functions ¢y ;4 and express the relations between 2n terms i ;(0), 1//}(0), jEn.
We begin with the first one of the relations (25) together with the continuity requirement (18),
which yields A
d ¢{;,(0) = €40y (0) = @41(0) + O(d). (26)

The same relation holds with j replaced by k, summing them together and using the second of
the relations (17) we get

(2+ d wiin) @1 (0) = ey (0) + €44 y(0) + O

We express ¢y;1;(0) from here and substitute into the first of the equations (25); using at the same
time the first relation of (18) we get

e Gy (0) + e Ay (0) + O(d?)

2+d- Wik
13
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and considering the second of the equations (25), we have

U5(0) + 444y (0) + O(?)
2+d- W{jk)

¥ i(0) = +d ¢ ;(d) + Od).

Since the values of vector potentials are supposed to have the “antisymmetry” property, A, j(d) =

—A(jx(d), we may simplify the above equation to

¥;(0) + eXAamy,(0) + O(d?)
2+d- Wik}

¥;(0) = +d ¢lj(d) + Od). 27

Summing the last equation over k € N; yields

21dA(jk) 0
BN 00) = 40)- ) S o Z 0y D g+

e, 2+d- Wyjik)

(#N; denotes the cardinality of V;), and with the help of the second of the relations (18) we arrive
at the final expression,

id(Agj—Ak.j) 0
Ui0) - Z e—)w"()

2+d'W{j,k}

dy/(0) = |dv; +#N; - >

ien, 2+d Wik}

o
+ Z 2# +O0d?). (28)

Our objective is to choose v;(d), wyjx(d) and A (d) in such a way that in the limitd — 0
the system of relations (28) with j € 7 tends to the system of n boundary conditions (7). The
lines of (7) are of two types, let us recall:

W) + Z Tiw(0) = ZS,M(O) jem (29

l=m+1 =
== > Tiun(0) + v/;(0) j=m+l...n.  (30)
k=1

We point out here with reference to (14) that these relations may be written also with the sum-
mation indices running through the restricted sets, namely

WO+ D T = Y S () jem (31
[N\ k=1
= > Tgw(0) + 41,(0) jEm+l.n, ()
keN;
since for any pair j € 71, [ € {m + 1,--- ,n} the implication Tj; # 0 = [ € N; holds, see also

Egs. (15), (16).
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When looking for a suitable dependence of v;(d), wy;x(d) and A(;(d) on d, we start with
Eq. (28) in the case when j > m + 1. Our aim is to find conditions under which (28) tends to (32)
as d — 0. It is obvious that the sufficient conditions are

1

hm dvi+#N;— —— | € R\{0}, (33)
]; 2+d-w
1
lim ——— e R\{0} VkeN; 34
dl—r>%2+d'W(j’k]€ \O} €N (34)
QA
2+d-w“-'k,

=Ty VYkeN;. (33)
de+#Nj_ZhEN/m : j

Now we proceed to the case j € /m. Our approach is based on substitution of (28) into the
left-hand side of (31) and a subsequent comparison of the right-hand sides. The substitution is
straightforward,

’ O T ’ O 0 ZidA(j'k)wk(O)
¢'i()+Z€NZ_\,;1 j1~¢1()— Vit —— dZZ-i-dW W]() d m
1 e21dA(['k) lﬁk(o)
+1€NZ\,¢1T (VH- d22+d wy ]WZ(O)__I;NI 24d-wypy
O(d) C O(d)
+0d)+ ) ————+ Tilod)+ Y —— |, (36)
I;N,'z-{_d.w{j’k] l:;l 'ﬂ[ 2+d {lh]

then we apply two identities, which can be easily proven, namely

ZidA( Jik) 0 ZidA( Jik) 0 ZidA(,;,) O
e l!fk()zze v e ¥1(0)

(@) ,
keN, 2+d- Wik} kN 2+d- Wik} 1N 2+d- Wil
2idA

.. ey (0)
DI I s
IEN\i kel Witk

2idAq Q2idA

e2idAw) aw
=1 2 Tﬂ—]w,w) + > [ > Tis—— ]wk(m
[leNj\m 2+d-wy keN ;nin \IeN; \ii 2+d-
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and obtain

WO+ > Ty y(0)

IeN;\in

#N 21dA(,,)
ity d22+d wom ; L a o, |9

2idA jx 2idAqp

1 es4%u elaiux
- - A Toy—eor
d Z [2+d-W{j,k} i Z 112+d'W{l,k}

keN ;N [N \in

1 eZidA(jJ) #N ]
+ —— 5 —+T + — v 0
IENj\m[ d 2+d- Wil Jjl [Vl d d Z 24 d- Wi ]] ¥1(0)

Y Y- c)
keN;

d- Wik kEN v IEN; AN\ 2+d-wyp

] ¥ (0)

As we have announced above, the goal is to determine terms v;(d), wy;x(d) and Ajx(d) such
that if d — 0, the right-hand side of (37) tends to the eight-hand side of (31) for all j € M. We
observe that this will be the case provided

AR d22+d Wi dz f’%zsﬁ’ %)
—é% dg;m 112:?1:;% =S VKeN;nm, (39)
_é%+rﬂ Al d22+d S| =0 Ve N, (40)
lin s g €8 VKN, @1)

lim 5y €R VK€ N; N, L€ N N 42)

It is easy to see that the set of equations (40) for j € 1, [ € N;\i is equivalent to the set (35) for
j=m+ 1,k e N;. Similarly, Eq. (42) for j € /1, k € N; N7, [ € Ny N N;j\in is a weaker set of
conditions than (34) with j > m + 1, k € N;. Finally, Eq. (41) reduces for k € N;\/& to (34), thus
it suffices to consider (41) with k € N; N 7.

The procedure of determination of v;(d), wy;x(d) and A (d) will proceed in three steps,
at the end we add the fourth step involving the verification of the limit conditions (33), (34),
and (41) restricted to k € N; N 7.

Step I. We use Eq. (40) to find an expression for wy;;(d) and A(j;(d) when j € /iz and [ € N;\i.
We begin with rearranging Eq. (35) into the form

1
2+d'W{jJ]

. 1

— —2ldA( ) . _ \ 45

=e i Tayldvy + #N; E — | VleN)\m. 43)
J e, 2+d- W(Lh} J
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Since all the terms except e~2940» and T are real, we can obtain immediately a condition for
Agjp: We put

“Tu/llTull if ReT;<0;

—2idAjy)

Q2dAGy _ { Ty/ITyll if ReTy=0,

it is easy to see that such a choice ensures that the expression e
vector potential strength may be then chosen as follows,

- Tj is always real. The

i arg Tﬂ if Re le >0,

] ) (44)
3 (arg T; - 7r) if ReT;<0

Aipld) = {

for all j € m, I € N;j\ihi. We remark that this choice is obviously not the only one possible.
Note that in this situation, namely if j € /2 and [ € N;\/, the potentials do not depend on d.
Taking (44) into account, Eq. (43) simplifies to

1 1
=Ty |dvi+ #N = Y s———— | Vizm+1,j €N 45
2+d'W{j,Z] <jl> [VI ! 2+d'W{l,h]] =m JEM ( )

heN,;

note that j e mAl € Nj\in & [ > m+1A j € N,. The symbol (-) here has the following meaning:
if ¢ € C, then
_ e if Rec=>0,
<C>‘{ —le| if Rec<O0.

Summing (45) over j € N; we get

1 1
— = Tj)-|dvi+#N;— —_—,
Z2+d~w{m Z< i [ Vi ! Z 2+d'WU,h;]

JEN; JEN; heN;

{1 + Z<Th[>] Z ﬁ = Z(le> ~(dvi+#N)) .

heN, jeN, UV e

We have to distinguish here two situations:
(i) If 1 + X pen, (T # 0, one obtains

T
Z 1 2onenSThi) (dv + #ND).

'2+d-wun 1+ Ypen(Tu)
and the substitution of the left-hand side into the right-hand side of (45) leads to the formula for
1/(2 + d - wjy), namely

1 dv; + #N,
— =Ty ———
2+d-wyy 1+ Ypen(Tw)

We observe that the sum in the denominator may be computed over the whole set 7z as well, since
h ¢ N; = Ty = 0, which slightly simplifies the formula,

Vjem, l€Nj\in.

1 dvl + #Nl

Ty T e, e N
2+d-wyy 4 1+ZhT17<Thl> / /



From here one can easily express wy;y, if v; is known. However, it turns out that v(d), [ > m + 1
can be chosen almost arbitrarily, the only requirements are to keep the expression dv; + #N;
nonzero and to satisfy (33), (34) and (41). The simplest choice possible is to define v; by the
expression
dv; + #N; _
1+ Zzl: 1<Thl> ’

which simplifies the expressions for other parameters. Here we obtain already expressions for v;
and wp if [ > m+ 1, viz

1 —#N;+ X5 (T

vi(d) = p

Vi>m+1, (46)

1 1
W{j,[](d) = E (—2 + (T_J]>) V] (S ﬁ’l, le Nj\ﬁ’l. (47)
(ii) If 1 + 3 pen, Ty = 0, it holds necessarily dv; + #N; = 0, and consequently, v; = —%. Note
that this equation may be obtained from Eq. (46) by putting formally 1 + >;" (T = 0. It is
easy to check that wy;; given by Eq. (47) satisfies (43) in the case 1 + 3 jen(Tw) = 0 as well.
Summing these facts up, we conclude that Eqgs. (46), (47) hold universally regardless whether
1 + X pen,{Tw) equals zero or not.

We would like to stress that the freedom in the choice of v,(d) is a consequence of the fact
mentioned in Remark 2.2, namely that the number of parameters of a vertex coupling decreases
with the decreasing value of rank(B).

Step 1I. Equation (39) together with the results of Step I will be used to determine wy;(d) and
A(jw(d) in the case when j € /i and k € N; N /. From (39) we have

Q2dA Gk , 2idAu
J: J ’
2+d- W{jk) IENT 2+d- Wik}

the pairs ([, k) appearing in the sum are of the type examined in Step L, i.e. k € 71, [ € Ni\mv).
Thus one may substitute from (46) and (47) to obtain

e2idAjn —
=d-Sjk+ Z Tj]Tkl.

2+d- Wik} IEN\

We observe that the summation index may run through the whole set 71\, because [ > m+ 1Al ¢
Ny = Ty = 0. This allows one to obtain a more elegant formula. In a similar way as above, we
find the expression for Az,

1 R oo
A(jyk)(d) = ﬁ arg (d . Sjk + Z Tj[Tkl) for Re (d . Sjk + Z leTkl] >0 (48a)

I=m+1 l=m+1

and

1 oo noo
Agjp(d) = Zi[arg [d-s =y TﬂTkl]—ﬂ} for Re (d-S =y Tj/Tkl)<0, (48b)

I=m+1 I=m+1
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and for § ,
1 - _
—— =—(d-Si+ T‘[Tk[> . (49)
2+d- Wik} < ! l=mZ+1 !

Step 111. Substitution of the results of Steps I and II into Eq. (38) provides an expression for v;(d)
in the case when j € /1. A simple calculation gives

H#N m 1 n
Vj(d) = Sjj - 71 - Z <Sjk + a Z leTkl> + = Z (1 + <le>)<Tj/> (50)
k=1

I=m+1 l m+1

Since § is a self-adjoint matrix, the term S ;; is real, thus the whole right-hand side is a real
expression.

Step IV. Finally, we verify conditions (33), (34), and (41), the last one being restricted to k €
N; N . This step consists in trivial substitutions:

1 . .
. ———— = = >
(33) : hm{dvj+#N Zz+dw ] limi=1€R\(0) Vjzm+l,
keN;
1
G4 lim o = im(Ty;) = (Tyy) €R\O} Vj2m+1 keN,,

d—02+d- Wik}

. 1 _
(41) : }Zlil(l) m = - hm <d Sjk + Z Tj[Tk[> < Z Tj[Tk[> eR

I=m+1 I=m+1

Vjem, ke NjNni.

4. The norm-resolvent convergence

In the previous section we have shown that any vertex coupling in the center point of a star
graph may be regarded as a limit of a certain family of graphs supporting nothing but § couplings,
¢ interactions and constant vector potentials. The parameter values of all the ¢’s and vector
potentials have been derived using a method devised originally in [CS98, SMMC99] for the case
of a generalized point interaction on the line. The aim of this section is to give a clear meaning to
this convergence. Specifically, we are going to show that the Hamiltonian of the approximating
system converges to the Hamiltonian of the approximated system in the norm-resolvent sense,
with the natural consequences for the convergence of eigenvalues, eigenfunctions, etc.

We denote the Hamiltonian of the star graph I with the coupling (6) at the vertex as HAY
(referring to the approximated system), and H:;g will stand for the approximating family of

graphs that has been constructed in the previous section. Symbols RA4(k?) and R?g(kz) will then
denote the resolvents of HA! and H,* at the points k* from the resolvent set. Needless to say,

the operators act on different spaces: RA4(k%) on L2(G), where G = (R*)" corresponds to the star
graph I, and R?g (k%) on L*(Gy), where

G,= R & 0,d)X= N (51)

Our goal is to compare these resolvents. In order to do that, we need to identify RA4(k?) with the
orthogonal sum
RY(K*) = RM(H) @0, (52)
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where 0 is a zero operator acting on the space L? ((0, d)Z=Ni ) which is removed in the limit.

Then both the operators RdAd(kz) and R‘:g(k2) are defined as acting on functions from the set G,
which are vector functions with n + Z’}:I N; components; we will index the components by the

set
T=aU{(Lh)lehheN). (53)

In this setting we are able to state now the main theorem of this section and the whole paper.

Theorem 4.1. Letv;, j€n, ,wix j€ n,k € Njand AYR(d) depend on d according to (50),
(46), (49), (47), (48) and (44), respectively. Then the family H*$(d) converges to Hﬁ‘d in the
norm-resolvent sense as d — 0,.

Proof. We have to compare the resolvents Rﬁd(kz) and Rﬁg(kz). It is obviously sufficient to check
the convergence in the Hilbert-Schmidt norm,

|Ri2a) - Ry, > 0, as @ — 0.,

in other words, to show that the difference of the corresponding resolvent kernels denoted as

QkAg’d and gkAd’d, respectively, tends to zero in L*(G4 @ Gy). Recall that these kernels, or Green’s

functions, are in our case matrix functions with (n + Z’}z N j) X (n + Z’}: N j) entries. We will
index the entries by pairs of indices taken from the set 7 (cf. (53)).

The proof is divided into three parts. In the first and the second part we will derive the
resolvent kernels g,’jg*“’ and g;jd’d, respectively, in the last part we compare them and demonstrate
the norm-resolvent convergence.

L. Resolvent of the approximated Hamiltonian

Let us construct first g,/jd for the star-graph Hamiltonian with the condition (1) at the vertex. We
begin with n independent halflines with Dirichlet condition at its endpoints; Green’s function for
each of them is well-known to be

sinh kx. e **

Gi(x,y) = ——,
K

where x. := min{x, y}, x.» := max{x,y}, and we put ik = k assuming conventionally Re«x > 0.
The sought Green’s function is then given by Krein’s formula [AGHHOS, App. A],

RM(®) = R7(I%) + Z ik (1 (%))

=1

2
S i) (54)

where R!(k?) acts on each half line as an integral operator with the kernel Gj,, and for ¢ j(k2)
one can choose any elements of the deficiency subspaces of the largest common restriction; we
will work with (¢ j(kz)(f))l = ¢, where the symbol ¥ stands here for the vector (xi, ..., x,) €
(R*)". Then we have

0
i \( b G ywnondn |, :
RAME> = +Z /lﬂ(kZ) (e—/?yz’ ‘/”(yl))Lz(R+> e |,
w” Xn j(‘)+°° gik(xn’ yn)'pn(yn)dyn =
0
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which should be satisfied for any (i, ..., wn)T € EB;’.:] L*(R*). We observe that for all j € 7,
the j-th component on the right hand side depends only on the variable x;. That is why one can
consider the components as functions of one variable; we denote them as g;(x;), j € 7, in other
words,

Y\ x gi(x1)

RAd (kZ) ; : :
l/’n xn gﬂ (xl'l)

The functions g; are therefore given explicitly by

gj(xj) = fo Qik(x,-,y)w,-(y)dwzﬁﬂ(kz) fo ey - e
=1

Since the resolvent maps the whole Hilbert space into the domain of the operator, these functions
have to satisfy the boundary conditions at the vertex,

D AugnO) + ) Bug(0)=0 forall jen, (55)
h=1 h=1
where o
S 0 " T
() o= o)
Using the explicit form of G;,(xy, y) and the equality dga(—;”) 0= e, we find
g Xp=

@0 = Y ) [ e Py
=1 0

and )
8,(0) = j; e yn(y)dy — « Z (k) f(; e yYy(y)dy.
=

Substituting from these two relations into (55) we get a system of equations,

n too [ N n
> f [Z Apdu(K) + By =k Y B jm(k%] e Yi(ydy = 0
=1 Y0 h=1 h=1
with j € 7. We require that the left-hand side vanishes for any ¢, ¥»,...,¥,; this yields the
condition AA + B — kBA = 0. From here it is easy to find the matrix A(K?): we have (A —kB)A =
—B, and therefore

A(k*) = (A - «B)"'(-B).

Substituting the explicit forms of A and —B into the expression for A, we obtain

S+k™ KT \ (1™ T
A(kz) = ( _T* I(n—m) ) ( O O ) )

or explicitly

A(kz) _ (S +kI™ + kTT*)™! (S +«I™ + kTT*)"'T
T\ THS A kI + kTTH THS + kI™ + kTTH'T
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provided that (S + kI + «TT*)" is well defined. To check that the matrix § + «I"™ + kT T* is
regular, we notice that
S +kI™ +kTT* =8 +«x(I™ +TT"), (56)

where the matrix 1™ + TT* is positive definite and thus regular, and the value x may be chosen
arbitrarily with the only restriction Re x > 0. Consequently, it suffices to choose Re x big enough
to make the matrix k(" +T T*) dominate over S, which ensures the regularity of S +k(I1"+TT*).
Having found the coefficients 1 jl(kz), we have fully determined the Green’s function g;id of
the approximated system. Recall that it is an n X n matrix-valued function the (j, /)-th element of
which is given by
sinh kx. e™* ex—x
Guj6,y) = S + Ak e e (57)
we use the convention that x is from the j-th halfline and y from the /-th one. The kernel of the
operator Rgd(kz) is according to (52) given simply by

add [ G20
giK _( 0 0)’ (58)

i.e. all entries of G/ %

- except for those indexed by j, [ € 7 vanish.

II. Resolvents of the approximating family of Hamiltonians

Next we will pass to resolvent construction for the approximating family of operators Hj‘g. Asa
starting point we consider n independent halflines and }7_; N; lines of the length d with constant
vector potentials A(;;(d), both halflines and lines of the finite length are supposed to have Dirich-
let endpoints. We know that the Green’s function is G;(x,y) = «~! sinhkx.e™ in the case of
the halflines. The Green’s function in the case of the lines of the length d will be found in two
steps. We begin with a line without vector potential and with Dirichlet endpoints; the Green’s
function can be easily derived being equal to

sinh kx. sinh x(d — x-)
k sinh xd

Gik(x’ y) =

The Hamiltonian of a free particle on a line segment acts as —%, if a vector potential A is added

2
it changes to (—i% - A) . Using Lemma 3.3 it is easy to check that

d : d?
—-i—-A| =U|-—|U*, 59
[ 4) =v(-5e) &
where U is the unitary operator acting as
(U)x) = e y(x).
&2 - d 2
If we denote Hy = -3z and Hy = (_lﬁ - A) , we see that

(Hy =)' = (UHU* =)' = (UHy - DU = U Hy- ) U,
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so the corresponding resolvents are related by the relation analogous to (59). This yields

((Ha = 07'9) (0 = (UHA = D7 U"y) (x) = €4 f Gie(x,y) ey (y)dy

iax Sinh kx. sinh k(d — x5) —idy
= dy,
j: ¢ k sinh kd e YO)dy

thus the sought integral kernel is equal to

A _ iaxsinhkxcsinhk(d — x5) _jy,
Gilxy) = e xsinh kd °

Now we can proceed to the derivation of the complete resolvent Rgg(kz) which will be done
again by means of the Krein’s formula. The situation here is more complicated than in the case
of the approximated system; recall that Rs‘g(kz), as well as Hﬁ‘d(kz), acts on the larger Hilbert
space L2(G4), where G, has been defined in (51). Moreover, the application of Krein’s formula
means that we have to connect all the line segments using the appropriate boundary conditions,
i.e. we must change boundary conditions at n + 2 Z’}Zl N endpoints, specifically n belonging to
n half lines and 2 37_; N; belonging to 37_; N; segments of the length d. Thus the index set for
the indices in the sum on the right hand side of the formula has n + 2 Z_’,l-: | N; elements; we will
index them by the set

~

I=av{an’|teaheNju{an’|icinheNy.

The elements of 71 correspond to changed boundary conditions at the endpoints of the half lines,
and the elements of the type (I, h)° and (I, h)? (h € N;) correspond to changed boundary conditions
at the endpoints of the segments of the length d which are connected to the endpoint of the /-th
half line. If we denote by the symbol R';C(kz) the resolvent of the system of the n + Z’}: I N;
decomposed edges with Dirichlet boundary conditions at the endpoints, Krein’s formula for this
pair of operators has the form

RyEG) = RGN + ) 25,6 (67 (k) ) o g, 990K (60)

JLel

The role of the superscript d in the lambda symbols is to distinguish them from A that have been
used in Eq. (54) for the resolvent of the approximated system. The functions (/)31 (Jel may be
chosen, as before in the case of the approximated system, as any elements of the corresponding
deficiency subspaces of the largest common restriction. Note that each function ¢5‘Jl hasn+3/ | N;
components indexed by elements of the set 7 = 72 U {(l,h)| [ € n,h € N;}. It turns out that a
suitable choice is

(¢ (®), = 6™ for jen,Lel,
(¢?l»h)0 (kz)()?))z = eiA(’v“)x(’J”é(l’h)L sinh KX(1.h) for len, he Ny, LeT 61)
(‘?ﬁ h)d(k2)(f))1 = eAwwng,, ;sinhk(d — xqp) for len, heN,LeT,

where the symbol ¥ denotes the vector from G, with the components indexed by 7. We remark
thatif J € 71, gb‘ll is independent of d and equal to the corresponding function chosen above in the
case of the approximated system.
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If we apply the operator (60) to an arbitrary ¥ € @;:1 L*(G,), we obtain a vector function
with n+ Z;f:l N; components indexed by 7, we denote them by g; (j € 71) and g ) withl € A, h €
N,. As in the case of the approximated system, a component g; depends on x; only, thus each g,
can be considered as a function of a single variable. A calculation leads to the following explicit
expressions for g;, j € 7 and gu ), € 1,h € Ny; for better clarity we distinguish the integral
variables on R* and on (0, d) by a tilde, i.e. y € R*, § € (0, d).

8(x)) = fo Gulxydy+ Y a0 (k) fo e () dy - e
=1

1 d
+ Z Z (A;{([rh/)o(kz)fo e_lA“"I")y sinh Kj'l . {//(]r,h/)(j')) dj')

=1 l’eNy

+ A k) f e M7 sinh k(d = 3) - Y ) (5) dy)-e‘“f. (62a)
0

d
gan(Xam) = f Q;A:I'h)(x(l,h),f’)lﬁ(z,h)@) dy
0

n +00
+ eldamwXun . ginh KX lz /l(dl oy (kZ)f e k. ¥ (y)dy
=1 0
n
d 2 —A@ )T b o <\ 4~
+ Z Z (/l(l,h)o(l’h’)(’(k ) f; e Y sinh kY - Y g (F) dF
=T

d
+ A o ) f e A sinh k(d ~ 3) - Y ) dy)]
0

n +00
+elentun - sinh k(d ~ xqn) - lz Ay ) f e -y (y)dy
=1 0

+Ijz

=1 "Ny

(/lzll.h)d(l’h’)”(kz) fd e AT sinh k§ - Y ) (5) A
0

d
+ A e ) f e ¥ sinh k(d = 3) - Y iy ) dy)}. (62b)
0

By definition the function (g;)cr belongs to the domain of the operator H 22 in particular, it has
to satisfy the boundary conditions at the points where the edges are connected by ¢ interactions
and ¢ couplings. Step by step we will write down now all these boundary conditions; this will
lead to the explicit expressions for the coefficients /l‘}'L(kz).

Step 1. The continuity at the points W/, means

8um(0) = gun(0) (63)
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forall [ € A, h € N,. Since gﬁ:"”) (0,%) = 0 for all ¥ € (0, d), it holds

+00
Za(,h)d @ [ e
d . ~
* Z 2 (”E’zmw("z) fo e Y sinh ) (5) dF

I'=1 leNy

8, h)(O) = sinh«d -

+ 24

d
(lh)d(l/h/)d(kz)f e 407 sinh k(d — )y (F) df’)] ;
0

the expression for g(,,(0) is similar, just the positions of / and /4 are interchanged. Since Eq. (63)
must be satisfied for any choice of the function ¥ = (¥;),cr, the following equalities obviously
hold for VI € i1, h € N;:

(%) = (%) Vjeh,

K  YI'€nh €Ny, (64)
k%) YI'en,h' € Ny.

(1 hyd jr (h I jr

d —
/1([ /1)"(1’ h’)O(k ) g1 l)d(l’ V% )U(
a

(l h)d(l /4 )d(k ) = (h ])d(l’ h’)"(

In other words, all the coefficients /lf] iyl J(kz) with J € 7(k?) are symmetric with respect to an
interchange of / and 4.

Step 2. The sum of derivatives in points Wy is

80 + 84,0(0) = wiip - 81w (0) (65)
for all [ € 71, h € N;. We substitute
G (x,9) _ sinhk(d —5) _isg

Ox sinh kd ’

x=

iAx : ’ _
e sinh kx =k

x=0

and A ,
(e sinhk(d - x)) | = coshd - iA sinhxd

into Eq. (65) and require the equality to be satisfied for any ¥ = (¥;)jcr. In the course of the
calculation the outcome of the Step 1 is also used. As a result, we find how the coefficients

(k*) (J € T) can be expressed in terms of A4 (k?) and 24 k)

(z hydJ Lh°J (h, 1)01(

K

A () = (A o, ) + A8, 10 (D) V) €, (66a)

2k cosh kd + wy; ) sinh kd

d 2y _ K 2 2 POy
Awnya sy ®) = 5ot Wi sinh kd (A i O + 4G, oy () VI € 1 € Ny
(66b)
d 2 K d 2 2y, Suhwi)
A ®) = e Shed v w 1. sinh kd (/l(’v”)o(" i)+ Aoy K + K sinh kd )

YI' e i,k € Ny (66¢)
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for the indices [ € /i, h € Nj.

Step 3. The continuity at the points V; requires
8;(0) = gm(d) (67)

forall j € A, h € N;. Since Gix(0,y) = 0 for all x € R* and GiAK(I.h)(d) _ 0 forall § € (0.d). it holds
- +00
8100) = D, ) f () dy- e
= 0

n d
+ Z Z (/lf(,,h,)o(kz) f e A sinh k5 i) (F) dF
/ 0

=1 h'eNy
d

2,00 [T il = S )5 (69
0

and

gGim(d) = €4i? . sinh xd -

n +00
2 A ) fo ey (ndy
=

n d

d 2 AT i o -

+;hz (/l(j,h)o(l’h’)‘](k ) fo e Y sinh k5 () dY
'=1 h'eNy

d
A ) f & 407 sinh k(d — ) 1)) dy)]. (69)
0

The relation (67) should be satisfied for any choice of ¥ = ({;) cr, hence we obtain the coeffi-
cients 2. (k?) with J € T expressed in terms of /l‘; J(kz) in the following way

0T
1 Yy
Ao, (&) = e Wan 1K) Vi en, (70a)
| ;o
Azij,h)oa/’h/)o(kz) = m € A . /l[;(l,’h,)o(kz) Yl e n, h e Nl/ N (70b)
1 —1 . ’ A 77
Wi gy ) = o @7 2, () VI el €Ny (70¢)

for j € #,h € N;. We also return to the result of Step 2 — we substitute there for /l(dj h)oj(kZ) the
expressions that we have just obtained arriving thus at

K 1 : :
A4 (k) = : (e Aan 28 (k) + e A4 (kD)) V) e,
i K = S coshkd + wi sinhxd * sinh kd ( ) 0) Vi en
(71a)
K 1 . .
/ld . k2 — . . e_]dA(l'h)/ld, , k2 + e_ldA(h'/)/ld . k2
avae &) 2k cosh kd + wy;y sinhkd ~ sinh kd ( &) i ))

VI en,h’ € Ny, (71b)
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K 1

i . .
2k cosh kd + wy;py sinhkd ~ sinh kd

2y
(lh)d(l hr)rl(k ) -

i 1
—id. d 2 —id. d 2
( idAu | /1/(/ h/)a(k )+et Am . ﬂh([',h’)t’(k )+ ;5(”,)(1,’”)

VI el €Ny (T1c)

forlen,h €N,

Step 4. In this step we examine the sum of derivatives at the points V;, i.e. at the junctions
of the halflines and connecting segments. Since the connecting lines support constant vector
potentials, one has to rewrite the original condition into the form derived in Corollary 3.3. Note
that the variable on the connecting segments is considered in the ingoing sense, thus the sign of
the potentials A¢;) (h € N;) has to be taken with the minus sign. The resulting condition is

8(0) - Z 8n(d) = (Vj —1i Z A(j,h)] -8;(0) (72)

heN; heN;

forall j € 7.
The way how to proceed in this step is essentially the same as in previous steps, only the
calculus is slightly longer. With the aid of the formule

agik(-x7 )’) — e
Ox x=0 ’
G (x,5) edd
Ox “sinhkd sinh k3 e w

and

= (kcosh kd + iA sinh kd) - €"4¢

x=d

. ’
(e‘A" sinh Kx)

(e sinhi(d - x))/L:d = kel

used in Eq. (72), we arrive at an expression containing ¢ ..., y, that should be satisfied for any
choice of ¥ = (¥;)er. This yields the following three groups of conditions:

8 — kA%, (k%) = )" (kcoshkd +iAjy sinh kd) - €4 2l (1)
heN;

+KZ ( ldA(/h)/lzijh)d (k2 — (vj ZA(jh)]/l (k2 (733)

heN; heN

eldAqi d 2 . . iAo 2d 2
Ot o = K ) = hz (kcoshkd +iA sinhkd) - e¥4ond, ()
€N
idAin yd 25\ . d 2
i Z (eom AL, e ) = [vj —i Z A(,,h)] A ), (T3b)
heN; heN;
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KA i () = Z (kcoshd + i sinh kd) - é4omad o (2)
heN;

+K Z (922, o KD)) = [Vj i Z A(j’h)] &) . (730)

heN; heN;

We use the equalities (70) and (71) to eliminate all terms of the type A4 o J(k2) and /l( iy ](kz),

J € 7. In this way we obtain three independent systems of equation for ’l?j' k> (j,j € n),

K2 (oI € Al € N)yand A4 (K?) (j,I' € A, I’ € N)):

J(/ N J Y

5o K/ld (kz) ~ K#N cosh Kd/ld (kz) Z K2 . /17], (k2) + ezidA(jw)/le’(kZ) . ﬂd (kz)
M i inhkd "7 L sinhkd 2« coshkd + wyjp sinhkd 7
J
(74a)
elddwan 5 y coshwd 5
6jl' m ](l h/)()(k ) h d ](Z h/)O (k )

)o(kz) + GZ‘dA“’”/ld )o(kz)

K (1 I
" 205
i sinhkd ~ 2xcoshd + Wi smh kd

= v K, (74b)

d 2 2idAjn yd 2
2 =k N COSth @)+ Z ) ' Aj(l,h,)d(k ) +ePan g h)d(k )
L) inh kd J(lh ) =y sinh xd 2k cosh kd + wy;py sinh kd
e]dA(/h)
" Sinhxd OO = (k). (74
smth ; 2k cosh kd + wyjpy sinh kd Jr Chir J(Zh)d( ). (740)

Let us focus, e.g., on Eq. (74a), which can be rewritten in the form

n

D T LT o : +v;
£\ Vsinhkd  sinhkd &4 2xcoshkd +wy;j sinhad
= 1EN ’

Q2dA )

—xw, () - }A;jj,(kz) =6 (75

sinhkd 2« cosh kd + wy; sinh kd
for all j, j € f; the symbol yy,(h) is equal to one if 4 € N; holds and zero otherwise. As we will

see within a short time, it is convenient to introduce a matrix M, the (j, h)-th element of which is
defined by

(M, 5 N cosh kd Z K +
ih —O0jh|KTK j - Vi
dljh = Cih ’sinhkd  sinhxd £ 2xcoshkd + wyj sinhkd !
&N |
2idA
K e (joh)
—xn, () - = . . . (76)

sinhkd 2k cosh kd + wy;p sinh kd
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We also rewrite the set 7 as a union,
I=aug'vuyg?,
where J° = { } and J9¢ = {(l, h)d| lenhe N;}, and define the symbols
Ag d(kz) for X,Y € {n J°, Jd} by the relation

AR = (25,6

JeX,Ley ’
e.g. AAg d(kz) = ( ](z J")O(kz))jef,,(p,h')oejo' Obviously, the matrix A*2“(k?) has the block structure
sl | AR | A )
INAGE :g Y0 [ A 2% k) | AL
AT | AJET G2 | ATE.0)

We observe that the system of equations (75) is nothing but
MALE (12) =

nn

and therefore AA? (k%) = (My)™", or in the components
d 2 -1
A0 = (Mo, - (77a)

The matrices A:ﬁf (k?) and AA:ng(kz) can be found in a similar way. We start from Eqs. (74b)
and (74c¢) and arrive at

. L eldAa L
By = —— [(Ma)'], (77b)
and ”
K eldaaw i
e . : . My 77
/(’ ok 0= sinhkd 2k coshkd + wy yy sinh kd [( 2 ]ﬂ’ (77¢)

To obtain expressions for Ag%’;(kz) and A% d(kz) X = 9° 9% we substitute (77a), (77b) and
(77¢) into Equations (70) and (71) which gives

. emidAun B
([ o (k) = sinh xd : [(Md) ]lj’ s (77d)
—idA idA gy
4 5 e7dAan  eidAva) o

Ky *) = sinhkd  sinh kd Ma) ]U’ ’ (77¢)

—idA idA g g

e wh K - eldAw i)
Ao K = : My, 77f
GO )d( ) sinh2 Kkd 2k cosh kd + Wi sinh kd [( d) ]H’ ( )

K 1 : .
kz —_ . ‘( —ldA(/v/l) M -1 + —1dA(/,V/) M -1 )’
(1 ey (K= 2k coshkd + wy sinhkd  sinh kd ¢ [( a) ]Ij’ © [( a) ]hj'
(772)
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p eidA )

’ldlhdl'h'o(kz)= : : .
(GO 2k cosh kd + wy py sinhkd  sinh? kd

, (e—idA(I_,,) _ [( Md)’l]”, + e-idAu . [(Md)*l]hl,) , (77h)

K 1

Ay jon ) = s
LRy 2k coshkd + wy sinhkd  sinh kd

idA g
K eldaaw i) . B
(e74en - [ (M) ]

4 _ 1
+e idA | [(Md) l]hl') + ;6(/,;1)([/’/,/)] .

(771)

sinhkd 2k coshkd + wy jy sinh kd w

Once we compute the elements of (M,)~! explicitly, we will have fully explicit formulae for
A*24(k?) we need. We start from the matrix M, itself. We take the formula (76), substitute
there the expressions for v;(d), wjy(d) and A (d) that have been obtained heuristically in
the previous section and apply Taylor expansions to appropriate orders. A slightly laborious
calculation leads to the formulae written below; note that the structure of the expression for the
(j, h)-th element of the matrix M; depends on whether j, 4 belong to 7 or to 71\:

1 < = 1 < —_— . .
[Md]jh:6j/1[K+Sjj+E > T,»,T,,-)+th+3 D TiTu+0@) for jher, (78)

I=m+1 I=m+1
1
[Md]jh = _c_l' jht O(d) for ] emh>m+1, (78b)
1—
[Md]jh = _L_Z'Thj + O(d) for ] >m+1,hem, (78¢)
1
[Md]jh = 6jh (K + E) + O(d) for ],h >m+1. (78d)
The matrix M, has thus the form
S +kI™ + 1TT* -ir
Md = 1= 1\ 7(n—-m) + O(d) ’
_(_IT . (K + Z) I

where O(d) on the eight-hand side represents a matrix n X n the all entries of which are of order
of O(d) asd — 0.

Our aim is to find the inverse of M,. For this purpose, we denote the first term on the right-
hand side, the principal one, as M, p and notice that if M, p is regular, then

(M = (Map + OW) ™" = [Mypll + [Myp1"O@)] " =

=1 - Map)'O@)| (Map]™ = [Myp]™ = Map] " O@[Mapl™ . (79)
Moreover, if [M, Pl =00)it obviously holds (M, = [Md,p]‘1 +O(d); in other words, under

certain assumptions it suffices to find the inverse of M, p.
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Since the matrix M, p has a block structure, one can find M, p in the same block structure.

Ny | M
N3 | Ny

Ny | Ny S +kI™ + LTT* -ir ™| 0
N3 | N. ' —éT* ‘ (K + cli) Jn-m | T 0 Jm

holds true. It turns out that

This in other words means that we are looking for a matrix ( ) such that the relation

[Mapl™ =
#\—1 1 s\—1
( 1 s *+ f -(’-mﬁi ZLT ) sy—1 1 *W(S -(’,-nfl(m): ﬁ*T—Tl ) Td (n—m) )
1+KdT (S + «l +WTT) _(1+Kd)2T(S + kI +mTT) T+m]
rovided the matrix § + « + 1s regular. Since =K+ , wWe may proceed 1n
provided th ix $ + kI™ + - TT* is regular. Since %~ O(d) y proceed i

the same way as in (79), and we obtain

-1
f dTT*) = (S +kI™ + KTT* + O)™" = (S +kI™ + KTT*Y" +O(d).
K

(S + k™ + 1

if the matrix S + I +«TT* is regular. However, the regularity of this matrix has been discussed
and proven for an appropriate « at the end of the part devoted to the approximated system, see
Eq. (56) and the paragraph following it. It follows that M, p is regular as well, i.e. the condition
on the regularity of M, p in (79) is satisfied. Hence

o S &M 4+ kTT*)™! S +«kI™ + kTTH'T
[Mapl™ = ( T*(S + kI + kTT*) TS + k™ + «TT*)'T | * o),

and together with (79) we have

a0 S HKI™ 4 kTT)! S +&kI™ + kTTH'T
(Mol = ( T*(S +kI™ + kTT*™" T*(S +«kI™ +kTT*'T +0(d).

It is important to notice that

M,17' =0(1) ford — 0, . (80)
Combining the above result with Eq. (77a), we can conclude that
Azd, o [ (S +&I™ + kTT*)™! (S +«I™ + kTT*)'T
A~ (k) = ( TS + kI + kTT*)™ TS + k™ +kTT*)'T +0@),
hence
242y = AN + 0(d) . (81)

Having the coefficient matrix we can determine the resolvent kernel. First we introduce
symbol J = {(l,h)|len,he N} (i.e. T =nUJ), then we employ a notation similar to the
case of the matrix A*&“(k?) and its submatrices. We introduce symbols QQ% for any pair X, Y €

{f, T} to denote the blocks Q,ﬁi’i = (Q;:id)kx,my; then the integral kernel gkAg’d of R?g(kz) has
the structure o o
Grar (6)) | G ig(x.)
Gy = [k Gy (82)

LG5y | 655 ()
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for x,y € G,4. Using (58) we can write the difference in question as

Ag,d Ad Ag.d
Ag.d _ pAdd _ giK A gv( ‘ giK ng

G G = AT AL

ikng K JT

(83)

II. Comparison of the resolvents

To make use of the above results we compute first explicit expressions for all the entries of
QkAg’d(x, y), up to the error term in the lambda coefficients indicated in (81). They may be derived
from Eqgs (62) together with (61):

Agd sinh kx. e™* KX Ky VA
gmgu( XjYjp) =0y ,: * /l,?j/(kz) ee™r for jjen, (84a)

Gy (X Y ) = €€ AN 20, o) sinh Ky + 006 simb(d =y )]
for jen,l,h)e T, (84b)

.d i . _
Qﬁikh) j,(x(z,h), yji) = glAanTin . [ w0 j (k%) sinh KX(1) + /1(1 I j (k%) sinh k(d — x(l’h))] LN
for (Lhe9J.,jen, (B4c)

sinh kx. sinh k(d — x-)

Ag.d — 1A (1,0 X1 —iAw )Y i)
Gy Xy Y )) = Sy wye sinh kd e
+ eldenan . ginh kg - e Acwin Q4 sinh k + 29 sinh k(d — )
(L,h) LAWY )’(l’ n) (L)) Y(l’,h’)

+ e sinh K(d = xa) - € P 4G g0 SRRV )+ AG iy SRR = Vi)
for (Lh),(I',kK)eT. (84d)

Now we are able to compare the entries of Q?g’d(x, y) given by (82) and gﬁd’d(x, y) as speci-
fied in (58)). We begin with the upper left submatrix n x n of (83). From the expressions for Qﬁd

and G*&7, cf. (57) and (84a), we have

ik, an’

(G — G0, G

sinh kx. e ™%

e _ sinh kx. e™**
=6y ————— + A%, (K*) e e — [5,-1—<
K

+ A (k) e *5ie™ 7
= (A5, () = 4 () €™ e™™r = [AZHED) = AMED)| e e = O(d) e Ve
(85)

where the last equality holds by virtue of (81). Since such estimate is valid for all j, j € 71, there
is a constant K; independent of j, j/ and d such that

gigjj(x,, Vi) = Gt (v )| < Kid e e (86)
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holds for all j, j € 71, xj,y; € R* and any d sufficiently small.

Then we proceed to the upper right submatrix of (83). To find a bound for the entries of
ing(x, y), cf. (84b), we substitute values of /l?(l, -~ (k%) and /l?(l, oy (k%) that we have obtained in
(77b) and (77¢): ’ ’

Ag.d _
gix,j(l’,h’)(xj’y(l’,h’)) =

e XY . eTHAwi Y w) | gidAwr) sinh Ky ) k. sinh«(d = ya ) . [(Md)fl] .
sinh kd sinhkd 2« cosh kd + wyp jyy sinh kd v
It holds [(M,) '] = O(1) by virtue of (80) and obviously [ wen| = |eiddei| = 1, thus it
j
suffices to estimate the terms in the brackets. When d is sufficiently small, it holds qmsinkhy i ‘ <1,

sinh k(d—y n .
W' < 1. As for the denominator of the second term,

we substitute for w5y from (49) or (47), depending on whether both /', 4’ belong to 7z or not,
and we easily obtain the estimate

because 0 < y »y < d; similarly

1
2k cosh kd + wyp jyy sinh kd

=0(1).

Summing all this up, we get
Gl 1oy (XisYaran) = € (O(1) + O(1)) = e™*40(1)

independently of j, (', h’") and x, y, thus there is a constant K, independent of d such that
Ag.d ks
Gty X V)| < Kae™ (87)

forall jen, (I',h) e J, x; € RY, yow) € (0,d) and d sufficiently small.

Similarly we proceed in the case of the left and right bottom submatrices of (83), i.e. when es-
timating the entries of QkA?Z(x, y) and gﬁé’i/_(x, y). As for QkAii‘rfl(x, y), we substitute for /lfl .y (D)
and /I?I iyt (k?) from (77d) and (77g) into (84c) and obtain

—idA(“,)

Ag.d Ky, A ' -1 .
Gty Camsyy) = €77 - elhmtn [ '[(Md) ] _ sinh kx( )

sinh xkd lj
K

+ . . sinh k(d — .
2xcoshxd + wyp sinhxd sinhxg S = Xan)

. —idA(/‘h) -1 —idA(h.I) -1
(e [(Md) ]lj’ te [(Md) ]hj’ )] :
Using analogous estimates as in the case of gﬁgjfé, h,)(x, y) above, we obtain

G (s yy) = €™ (O(1) +0(1) = 7 0(1),

thus there is a constant K3 independent of d such that

Gott s ()| < Kze™7 (88)
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forall (Lh) € J, j € i, xyn € (0,d), y € R and d sufficiently small.
Finally, we substitute from (77¢), (77f), (77h) and (77i) for /lfl - (Z,h,)o(kz), ’1?1 - (Z,h,)d(kz),

/lfl,h)d @y (k%) and /lzll,h)d p h,)d(kz), respectively, into Eq. (84d) and obtain

sinh kx. sinh k(d — x-) :

LA @ X1y —iAw )Y i)

Ag.d _
G ik,(l,h)(l’,h’)(x(l»h)’y(l’sh')) = Oumw e « sinh kd

sinh KX(1,1)

+ elAanxan e_iA(I’,h’).V(l',h’) . e idAun | eidAu’,h’) .
sinh xd

) sinh Ky .n K ) sinh K(d - Y(l’,h')) ) [(M )71]
sinhkd  sinhkd 2k coshd + wy ) sinh kd <
K 1
2k cosh kd + wy;py sinhkd  sinh kd
. |:eidA(,r_,lr) _sinhkya )

Sinh xd (e‘idAth) . [(Md)—l] + emidAu . [( Md)_l]m')

idAg K sinh k(d - y@ i) .
sinhkd 2k cosh kd + wyy yy sinh kd

+ elAuw¥an . ginh k(d - x (l,h)) ey

w

+e

(o],

—idAn, - 1
+e dAwm . [(Md) ]:Ihl’) + zé(l,h)(l’,h’)] . (89)
It obviously holds

G Gy = = O(d) +O(1) - [0(1) + O(D)] + O(1) - [O(1) + O()] = O(1),

thus there is a constant K4 independent of d such that

Ag,d
gilf(l,h)(l’,h’)(x(l*h)’ Y(l’,h’)) < K4 (90)

forall (I, h),(I',h") € T, Xy, Y.y € (0,d) and any d sufficiently small.

With the help of (86), (87), (88) and (90), we may now estimate all the entries of (83), which
will allows us to assess the Hilbert-Schmidt norm of the resolvent difference for the operators
de and Hﬁ‘g. This norm can be written explicitly as follows,

R - ] = 3 fo - fo TG0 ) - 68 || dxdy,
Ji=1

n +00 d )
Ag,d
+Z Z j(; fo‘ ’gik,j(l/,h/)(xjs.V(I',h’))' dx;dye )

J=1 (".)el

n +00 2
Ag.d
+ Z Z jj j(; ‘giK,(l,h)j/(x(l,h),Yj’)) dxgpmdy;

(Lhel j=1

d 2
Ag.d
+ Z Z fo f: 'gik’(l’h)(ph/)(x(l,h)aY(l,h’)) dxqmdyw ) -

(Lhyer (I'.\h")el
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Now we employ the estimates derived above obtaining
2
[R)20e) - Ri4) | <

n ) 0 d
Z f+ f |K| de g™ | dx]dy, + Z Z er jo‘ |K2 ein-"|2 d.dey(p’hf)

Jij=1 j=1 (' .h)el
n d
2
DI f f [Ks e [ dxamdyy + D5 f f |Kal™ doxamdyar i)
(Liel j=1 (el I iner v Y0

—+00 +00
< Z Kz & f o 2Rex)x; dxj f o~ 2Rex)yy dyj/
0

JiJj'=1
+00 d
i Z Z K; f o 2Rek)x; dx; - f 1 dye
J=1 (el 0 0
n +00
+ Z Z K% fd 1 dx(l,h) . f efz(ReK)yj' dyj’
(Lhyel j=1 0 0

d
DIDIR f Ldxap - fd Ldya )
(Liel ('hel 0 0

1
B Z (ZRGK)Z Z Z K§2RCK Z ZKZ 2ReK Z Z Kidz

j=1 ('.n)er (Lh)eI j= (LhyeI (I'\h)el

=0®d).

Hence
”Rﬁg(kz) - RQ‘J‘(/&)H2 =0(Vd)  ford—0,,

and consequently, the Hilbert-Schmidt norm of the difference R’:g(kz) - Rﬁd(kz) tends to zero as
d — 0, with the explicit convergence rate. Since the HS norm dominates the operator one, it
follows immediately

s e -] =

therefore the resolvent difference tends to zero in L*(G4) as d — 0, which we set out to prove.
O
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We discuss approximations of the vertex coupling on a star-shaped quantum graph of
n edges in the singular case when the wave functions are not continuous at the vertex
and no edge-permutation symmetry is present. It is shown that the Cheon—Shigehara
technique using § interactions with nonlinearly scaled couplings yields a 2n-parameter
family of boundary conditions in the sense of norm resolvent topology. Moreover, using
graphs with additional edges, one can approximate the (n';l)—parameter family of all
time-reversal invariant couplings.

Keywords: Quantum graph; vertex conditions; approximations; point interactions.
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1. Introduction

The concept of quantum mechanics on a graph is more than half a century old hav-
ing roots in modeling of aromatic hydrocarbons [1]. For many years, however, it was
rather a curiosity, or maybe an interesting textbook example. The situation changed
two decades ago with the advent of microfabrication techniques which allow us to
produce tiny graph-shaped structures of semiconductor and other materials which
became a useful and versatile model. This motivated a new theoretical attention to
the subject — see, e.g., [2,3]. Since then the literature on quantum graphs grew to
a formidable volume, and we restrict ourselves here to mentioning recent reviews
in [4-6] where an extensive bibliography can be found.

From the mathematical point of view the attractive feature of the model is that
it deals with families of ordinary differential equations, the solutions of which have
to be properly matched at the graph edge endpoints. Since the solutions are often
explicitly known, the spectral analysis can be reduced to an algebraic problem.
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572 P. Exner & O. Turek

The key point here are the boundary conditions through which the wave
functions are matched. The Hamiltonian is typically a second-order differential
operator, for instance, in the simplest case of a free spinless particle it acts on the
jth edge as Hy; = —?,Z)}’ . Thus the boundary conditions are linear relations coupling
the values of the functions and their first derivatives at graph vertices; from the
physical point of view it is usually sufficient to consider only local couplings which
involve values at a single vertex only. Another general physical restriction is the
self-adjointness of the Hamiltonian; it implies that a vertex joining n graph edges
may be characterized by boundary conditions involving n? real parameters [3].

This leaves a considerable freedom in the choice of a model to describe particular
physical systems, and an understanding of the physical meaning of vertex coupling is
needed to pick the appropriate operator from the class of admissible Hamiltonians.
A natural way to approach this problem is through approximation, i.e. regarding
the quantum graph in question as a limit of a family of more “realistic” systems
with a less number of free parameters. One possibility is to approximate a graph
by a family of “fat graphs” or similar manifolds equipped with the corresponding
Laplace—Beltrami operators. The best studied case is the one where the approx-
imated manifolds have Neumann boundary, or no boundary at all [7—12], where
unfortunately the limit yields — of the multitude of available boundary conditions
— only the most simple ones. There are also fresh results [13,14] on the case with
Dirichlet boundary but in general the approach based on squeezed manifolds did
not yield so far a satisfactory answer to the question.

Another, maybe less ambitious approach is to model vertex boundary conditions
through families of interactions on the graph itself. Here two cases have to be
distinguished. In the n?-parameter family mentioned above the boundary conditions
with wave functions continuous at the vertex form just one-parameter subfamily.
These boundary conditions can be approximated by families of scaled potentials in
analogy is analogy with one-dimensional § interactions [15]. The remaining, more
singular cases require a different approach. An inspiration may be derived from the
approximation of one-dimensional ¢’ interactions suggested, somewhat surprisingly,
by Cheon and Shigehara in [16] and elaborated in a mathematically consistent way
in [17,18]. It is based on a family of § interactions which approach each other being
scaled in a particular nonlinear way. An analogous procedure for vertices of degree
n > 2 was proposed in [19] in the case of the so-called §, coupling; the key element
here was the symmetry with respect to permutation of the edges which allowed
to reduce the analysis to a one-dimensional halfline problem. The same technique
was afterwards in [20] applied to the class of all permutation-symmetric boundary
conditions which form a two-parameter subfamily in the n?-parameter set.

The main goal of the present paper is to explore whether the idea of [16] can
be adapted to situations without a permutation symmetry and how wide class of
boundary conditions can be in this way described. As in the work mentioned above
we will consider a star graph with a single vertex and n semi-infinite edges. For
simplicity we will also assume that the motion on graphs edges is free; the obtained
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approximations extend easily to Schrodinger operators on the graph provided the
potentials involved are sufficiently regular around the vertex. We are going to show
that the Cheon—Shigehara technique can produce for n > 2 at most a 2n-parameter
family of boundary conditions at the vertex. Furthermore, we will demonstrate that
such approximations, with two ¢ interactions at each edge, do indeed exist and that
they converge in the norm resolvent topology.

The next question is how to extend the approximation to a wider class of cou-
plings. A natural possibility is to amend the star by extra edges supporting ¢
interactions which shrink to the “main” vertex with the parameter controlling the
approximation. We devise such a scheme to show that it yields an ("J{l)—parameter
family, generically all couplings which are time-reversal invariant. In this case,
however, we restrict ourselves to deriving the boundary condition formally. We are
convinced that the norm resolvent convergence could be verified as in the case
mentioned but the argument would be extremely cumbersome. Notice that the idea
of using additional edges to model singular couplings appeared already in [21]. In
contrast to that paper, however, we keep here the number of added edges fixed.

Let us review briefly the contents of the paper. In the next section we gather
the needed preliminary information. We review the quantum graph concept, recall
different vertex couplings and review briefly the known approximations. In Sec. 3
we analyze a CS-type approximation to the vertex in a star graph based on adding
¢ interactions on star edges, the following section is devoted to the proof of norm-
resolvent convergence. Finally, in Sec. 5 we will describe the afore-mentioned more

general approximation with extra edges added to the star graph.

2. Preliminaries
2.1. Quantum graphs

Let us first recall a few basic notions. A graph I is an ordered pair I' = (V, E'), where
V and E are finite or countably infinite sets of wvertices and edges, respectively.
Without loss of generality we may identify F with a family of two-element subsets
in V, excluding thus loops and multiple edges, since in the opposite case we can
simply add extra vertices. The vertex degree of v € V' is the number of edges which
have v as its endpoint. I' is a metric graph if each of its edges can be equipped with
a distance, i.e. identified with a finite or semi-infinite interval of length ¢ € (0, +oc];
the endpoints “at infinity” are conventionally not counted as vertices. In particular
a star graph has a finite number n > 2 of edges and a single center which is the
only vertex where all the edges (called also arms in this case) meet.

The subject of our interest is quantum mechanics on graphs. Given a metric
graph I'" with edges Ji,...,.J, we identify the orthogonal sum H = @?:1 L3(J;)
with the state Hilbert space, i.e. the wave function of a spinless particle “liv-
ing” on I' can be written as the column W= (¢1,2,...,1%,)T with ;€ L2(J;).

"
70
where as usual we put A=2m=1. Its domain consists of functions from

In the absence of external fields the Hamiltonian H acts as (HrV); =—
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W2A(T) := D W22(J;); since H is required to be a self-adjoint operator they
must satisfy appropriate boundary conditions at the vertices which we will recall
below.

The meaning of these boundary condition is our main concern in this paper,
therefore we restrict ourselves to graphs with a single vertex, namely star graphs
with n semi-infinite edges J; ~ R, j =1,...,n; we denote them as I" or T,,.

2.2. Vertex couplings

Since the Hamiltonian mentioned above is a second-order operator, the matching
conditions involve boundary values of the functions in the vertex and of their first
derivatives. Both regarded as one-sided limits, the derivatives are taken in the
outward direction. We arrange them into column vectors W(0) and ¥/(0). The self-
adjointness of H, which in the physical language means conservation of probability
current at the vertex, is expressed through a linear relation between these vectors,

A¥(0) + BY¥'(0) =0, (2.1)
by [22] the operator H is self-adjoint if and only if A, B € C™" satisfy the conditions
rank(A, B) =n, AB”" is self-adjoint, (2.2)

where (A, B) denotes the n x 2n matrix with A, B forming the first and the second
n columns, respectively. This parametrization is obviously non-unique, since A, B
can be replaced by CA, CB with any regular n x n matrix C. This defect can be
corrected by choosing the matrices in the standard form [23,24],

(U = DT(0) +i(U + I)T'(0) =0, (2.3)

where U is an n X n unitary matrix; the Hamiltonian corresponding to this condition
will be labeled as Hy. Elements of this family are labeled by n? real parameters
which is, of course, the right number because all the Hy; are self-adjoint extensions
of a common symmetric restriction with deficiency indices (n,n), refer to [3].

Let us next recall a few examples of the boundary conditions (2.3). As men-
tioned in the introduction, the requirement of continuity at the vertex selects a
one-parameter subfamily corresponding to the so-called § coupling,

$;(0) = ¥p(0) = (0), jken, Zw3<0> = a(0), (2.4)

where a € R and for brevity we have introduced the symbol 7 := {1,2,...,n}. We
can add the case corresponding formally to a = oo, when the system decomposes
into n halflines with Dirichlet endpoints, however, it is not interesting as long as
we are concerned with nontrivial vertex couplings. In the particular case a = 0
we speak about free boundary conditions since for the ¢ function on line, n = 2,
this corresponds to a free motion (sometimes the term Kirchhoff b.c., not very
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appropriate is used). In terms of (2.3) the 0 coupling corresponds to the matrix

U —
n+1a
The §’ interaction on the line has two possible analogues for n > 2 [25,26]. One

is a counterpart to (2.4) called ¢, coupling with the role of ¥(0), ¥'(0) interchanged,

J — I, where J denotes the n x n matrix where all entries equal one.

W5(0) = ¥, (0) = ¥'(0), j. ke, ij<0> = By'(0), (2.5)

where 5 € R U {+oc}. It corresponds to U = I — n_2—iﬁj, in particular, the case
(3 = oo refers to full Neumann decoupling. The other one, called 6’ coupling, is

Zw;«n =0, ;(0) —(0) =

S|

(W5(0) =94 (0)) Gk e, (2.6)

with 8 € RU {+o00} which corresponds to U = _ng] + n—215‘7'

All the above examples have a common property, namely that the corresponding
operators are invariant with respect to permutation of the edges, which is clear from
the fact that matrices U are not changed by a simultaneous permutations of the rows
and columns. The most general family of Hy with this property is characterized by
two parameters, U = al+bJ with |a| = 1 and |a+nb| = 1, cf. [20], the corresponding

boundary conditions being
(@ —1) (1;(0) = ¥x(0) +i(a+1) (v5(0) - -0 ) =0, jken,

(a — 1+ nb) Zwk +i(a+ 14 nb) Z;/Jk (2.7)

2.3. Approximation of 6 couplings

Let us next recall briefly known results about approximations of vertex couplings
starting from the § coupling. The idea is the same as for  interactions on the line.

Let Us(a) := nfiaj — I be the corresponding matrix of the condition (2.3).
Given a family of real-valued functions W = {W; : j € n}, for simplicity assumed

to be compactly supported, we define scaled potentials at graph edges by
1 T .
Wei = W, (Z) . jen. (2.8)

Starting from the free boundary conditions and choosing the family (2.8) we can
approximate any nontrivial § coupling as the following result shows.

Theorem 2.1. Suppose that W; € L1(0,1) for j € f, then
HU(;(O) +We — HU(;(a) as € — 0+ (29)

no1
in the norm resolvent sense, where o := Z/ W;(z) dx.
— Jo

Proof. See [15] where a more general result of this type is derived, together with
other extensions of the standard Sturm—Liouville theory to star graphs. O
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2.4. Approximation of singular permutation-invariant couplings

Consider further permutation-invariant couplings with wave functions discontinu-
ous at the vertex. Denote the operator Hy corresponding to U = al + bJ with
a, b satisfying the stated conditions as H*?. The approximating family can be con-
structed as follows: we start from the operator H, o := Hy,(,) and pass to Hy ,
obtained by adding a J interaction of strength v on each edge at a distance d from
the center. We will let the §’s approach the centre scaling properly u, v.

Theorem 2.2. Fix a pair of complex numbers a # —1 and b # 0 such that |a| =1
and |a +nb| =1, and set

u(d) : '"(“_1+"b+“_1>_, v(d);:_l_i“_l (2.10)

:lﬁ a+1+nb a+1 d a+1°

Suppose that a+1+nb # 0 and a(a+nb) # 1, then the operators H,(qy ,(a) converge
to H*® in the norm resolvent topology as d — 0. Moreover, the claim remains true
in the two excluded cases, provided we replace the above u(d) by —nd~1 and {d™"
with R > ( # 0 and v > 2, respectively.

Proof. This can be found in [20], the particular case of 0, coupling (2.5) in which
u(d) = —3d=? and v(d) = —d~! was discussed in [19]. O

3. CS-type Approximation of Singular Couplings

After the preliminaries let us turn to our proper task, namely approximations of
singular couplings a la Cheon and Shigehara, i.e. by means of additional § inter-
actions, properly scaled, on edges of our star graph, without the requirement of
permutation invariance.

3.1. The class of approximable couplings

The first question is how large is the class of operators Hy which can be treated
in this way. We are going to answer it using the technique of [16], i.e. looking into
convergence of the corresponding boundary conditions.

Proposition 3.1. Let I' be a star graph with n semi-infinite edges and I'(d) be a
graph obtained from T' by adding a finite number of vertices at each edge. Consider
a family {T'(d) : d € RT} of such graphs with the properties that the number of the
added vertices at each edge is independent of d and their distances from the center
are O(d) as d — 04. Suppose that a family of functions ¥, € W22 (I'\({c} U Vy)),
where c is the center of I' and Vy is the set of added vertices, satisfies the conditions
(2.4) with d-dependent parameters, and that it converges to ¥ € W22 (I'\{c}) which
obeys the condition (2.1) with some A, B satisfying the requirements (2.2). The
family of the conditions (2.1) which can be obtained in this way depends on 2n
parameters if n > 2, and on three parameters for n = 2.



Approximations of Vertexr Couplings in Quantum Graphs 577

Proof. The § coupling in the center of I' is expressed by the condition (2.4).
Consider first ¢ interactions on a halfline and look how the boundary values change
when we pass between different sites. Suppose that at a point x the function and
its derivative have the right limits, and that x + € is the site of a § interaction, then
the Taylor expansion gives

Yz +e ) =)+ e (zp) +0(€@), ¢V(te)=1¢'(z1)+0(e),

and the § interaction is according to (2.4) described by

PEt+e)=v@te)=P+e), P(rter)—¢P(r+e)=alyr+e),

where a(e) is the coupling parameter. The may be e-dependent but we suppose
such a dependence that the error terms can be neglected as e — 04 ; then we have

Y(x+e€) =v(xy) + e/ (zy) + O(?),
V(@4 eq) =P (@4) + O(€) + afe) ((a4) + et (w4) + O(€?))
= (1+ a(e)e)y (z1) + ale)ip(z4) + O(e) + a(e)O(e?)

so that 1 (x + €) and ¥'(z + €4) depend on 1(x4) and ¢’(z4) linearly up to error
terms. In case of a finite number of ¢ interactions on a halfline one can show in a
similar way recursively that the function value and the right limit of the derivative
at the site of the last 6 depends, up to error terms, linearly on the function value
and the right limit of the derivative for the first § interaction.

Let us apply this conclusion to the edges of our star graph. We denote by d;
the distance of the last ¢ interaction on the jth halfline family of edges in I'(d); by
assumption we have d; = O(d). Then we have

F () (dy) = 357 (d)(0) + A (d)w) (0) + 71 (d),
F@yl(d; ) = 38 (d)p(0) + P (@) (0) + 7 (d)

for some f(l) g\ h(l)yf@) §\?) h(2) R* — R. The functions 7:](-1) and r(z)(d)

are error terms and we suppose that they can be neglected in the limit. We are

interested in the situation when the last relations can be inverted and 1(0), 1}(0)

can be expressed by means of 1;(d;) and ¢ (d; ),

$(0) = f (D) () + o ( @iy ,) +R(d), jen, (3.1)
YH0) = F2(d)y(dy) + 32 (dl(d; ) +R(d), jen, (3.2)

where we have introduced R(d) as the symbol for a generic remainder; we still
assume that it can be neglected with respect to the other terms as d — 0. The
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Eq. (3.1) yield for j, k € n the conditions

157 (s (ds) = £ @pon(de) + 5 (@05 (d; ) = 0, (@) = R(d)
jken  (3.3)

and from (3.2) together with the second one of the conditions (2.4) we get

n

ap(0) = Y (F () (dr) + 912 () (diy)) + R(d). (3.4)

k=1
We substitute for ¢(0) from (3.1) and perform a repeated summation of (3.4) over
j. After an easy rearrangement we get

n

S (af(d) - nf?(d)) zy@” — g2 () (d; ) =R(d). (3.5)

J=1

Now we pass to the limit d — 04 in the Egs. (3.3) and (3.5). Before that we multiply
both sides by a power of d such that the right-hand side tends to zero as d — 04,
while at least one coefficient at the left-hand side remains nonzero, in other words,
we use the assumed existence of the limit in which the error terms can be neglected
with respect to the leading ones. Equation (3.3) acquires then the form

¢;;(0) = extor(0) + £545(04) — trp(04) =0, jk€n (3.6)

while (3.5) gives

Z%% ) + ZTJ (3.7)

where ¢, tj, 74, 7; are the appropriate limiting values of the functions involved.
The obtained conditions can also be written in a matrix form,

cit —c 0 --- 0 th =t 0 --- 0
ci 0 —c3--- 0 t1 0 —t3--- 0
: : vO)+ | : v'(0) =0 (3.8)
cic 0 0 -+ —c, ty 0 O ---—t,
Y172 Y3t Tn TL T2 T3 - Tp
N ~ _ N - _

It is clear already now — from the fact that the coefficients c;,t;,v;,7j,j € 1 are
real-valued — that the achievable number of parameters cannot exceed 4n.

So far we have not brought the self-adjointness into the game. To find the true
number of parameters we pass from A, B to the unitary matrix U of standard
boundary conditions (2.3). This is achieved by multiplying the relation (3.8) from
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the left by a regular matrix M such that U — I = MA and i(U + I) = MB. This
determines U since the last relations imply

1
U= M(A~iB), I:—%M(AJriB);

notice that A + iB is regular because A and B are real and the matrix (A|B) has
the full rank by assumption. Hence we have M = —2(A + iB)~!, which further
gives

U=—(A+iB)"'-(A—iB).
We shall apply the Gauss elimination method to get the chain of equivalences

(—~(A+iB)|(A—iB)) ~ -+~ (I]:(A+1B)_1 (A - iBZ) :

U

the explicit form of A + iB is obtained from (3.8). We notice that the regularity
of A 4 iB implies the following facts: (i) there is at most one j € n such that
¢; +it; = 0 (and for such a j it holds that ~; +ir; # 0), (ii) there is at least one
j € such that v; + ir; # 0. The matrix (—(A4 +iB)|(4 —iB)) equals to

—(Cl + 1151) C2 + itg e 0 C1 — itl —(Cg — 1t2) cee 0
—(Cl +it1) 0 0 c1 — 1ty 0 0
—(Cl + itl) 0 ce Cn + itn C1 — itl 0 tee —(Cn - itn)
—(m +in) —(2+in) - —(wmtim)|m —in  p-in - o —in

Suppose first that c; +it; # 0 for all j € n, then by equivalent row manipulations
we pass to the matrix (D|V'), where

n .
. Ye + 1Ty
— | +im + (c1+1) - 0 0 0
ce + 1ty
=1
D 0 co + ito 0 <o 0
N 0 0 c3 + itg ce 0 ’
0 0 0 ceeocp ity
_ t - t nTn — Ynitn
(er — it1)S — 2 AT _g; 02Tz ~ 72t i CnTn = Intn
c1 + ity co + it2 Cn + ity
_1017'1 .'Yl 1 o+ ity + _1027'2 .’yz 2 _1c T, 'y
S ¢ +ity S co + ity S cn tity
V= ,
2icimi —mti 2i caT2 — Y2l2 2i cpTn — Yntn

[ et coe —Cp it, -
S Cl+it1 S 02+it2 nt1 + S C7L—|—it7L
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where we have denoted S = "), % Since we used only equivalent manipula-
tions, the diagonal matrix D should have the same rank as A+iB, hence it must be
regular because none of its diagonal elements is zero. Consequently, we can divide
each row of (D|V') by the corresponding diagobal element of D. This yields (I|U),
where U is the sought unitary matrix and its diagonal and off-diagonal elements

are given by

_ 2Ty — ty) ¢j — it;
Ujj = i e Eity
. J J
(c; +it;)? Yy Lt
= ce + ity
2i( B Fee) (3.9)
UNCETE —
Ui, = K R ik
. . + 17,
(cj +ity) (e +it) S 2t
= cet 1ty

The right-hand sides make sense due to the first of the conditions (2.2) and our
assumptions about non-vanishing of all the expressions c¢; + it;.

So far we have not employed the second one of the requirements (2.2), namely
the self-adjointness of the matrix AB*. This is equivalent to unitarity of U, however,
it is easier to check it in its original version. By a straightforward computation we
find that the product AB* = AB” equals

Cltl + CQtQ Cltl Cltl cee Cltl C1T1 — C2T2
c1tq ci1t1 + csts c1tq e c1ty C1T1 — C3T3
city city cit1 + ¢4ty - city C1T] — C4T4
)
c1tq c1ty c1tq w1ty + ety C1T1 — CnTn
Titr — y2le vity —y3tz ity —yata -0 ity — Yoln N1+ Y2T2 o+ YTy

hence AB* is self-adjoint if and only if ci71 — ¢j7; = v1t1 — 7;t; holds for all
j=2,...,n, and therefore

c1T1 — Yit1 = caTe — Yata = €373 — Y3ty = -+ = CpTp — Yntn - (3.10)

We denote the common value c;7; — v;t; as k and recall that we have denoted
S =37, 2H7 then the matrix U given by (3.9) can be simplified,

co+ity?
2ik c1 — ity 2ik 2ik
(Cl + it1)2S C1 + itl (Cl + itl)(CQ + itz)S (Cl —+ itl)(cn —+ itn)S
2ik 2ik co — itg 2ik
U - (C2 + itg)(cl —+ itl)S (62 =+ it2)2S co + its (C2 —+ itg)(cn —+ itn)S
2ik 2ik 2ik Cp — ity

(Cn + it'n)(cl + itl)S (Cn + itn)(CQ + itQ)S o (Cn + it'n)(cn + itn)s B Cn + ity
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Let us show that the matrix (3.9) can be parametrized by 2n real numbers. We
rewrite the quantity S introduced above in the following way,

’)/g + ng itg) Cg’}fg + thg
S = = )
Z +t£ ; g+t Z 2+t2

and make first several observations: (i) regarding (3.8) as a system of linear equa-
tions its solvability is not affected if the last one is multiplied by a nonzero number.
At the same time, the value of & is directly proportional to ;, 7;, and consequently,
one can suppose without loss of generality that x = 1 (the case k = 0 gives rise
to the same situation as ¢; + it = 0 which we shall discuss below), (ii) if K = 1
the imaginary part of S is determined only by the values of ¢;, t;, j € n, (iii) and
finally, one can also suppose without loss of generality that |c; + it;| = 1, since in
the opposite case we can divide all but the last of the equations in the system (3.8)
by |c1 + it1| which is nonzero by assumption.

With the above convention we can denote ¢q + it; =: ' and Re S =: p so that

S—p+1<1+z 2+t>
¢

= Ct

and U can be written explicitly as

2i ,—2i0 _ ,—2i60 2i —if L 2i —if
5€ € (62—|—1t2)5’e (en+ity)S ¢
2 __o—if 2i _ co—ity o 2i
U o (Cg-i-itg)s (02+it2)2s Cg—l—itg (Cg+it2)(cn+itn)s
21 ,—if 2i L 2i _ Cp—ity
(en+ity)S (en+itn)(c2+ita)S (en+itn)(en+itn)S Ccntitn
(3.11)
being dependent on 2n real parameters 0, ca, c3, ..., Cp,ta,t3, ..., ty, p.

The above argument applies to any n > 2. In the case n = 2 the situation is
somewhat different, because we have n? = 2n = 4 but (3.11) does not give the whole
family of unitary 2 x 2 matrices; notice that the off-diagonal elements coincide. It
is easy to show that the admissible U can be for n = 2 characterized by three real
parameters. Indeed, writing U = (Z g) the unitarity requirement reads

a2+ b2 =1, [p2+|c>=1, ab+be=0.

Knowing the modulus and phase of a, the modulus of b is determined so one has
to choose its phase. Furthermore, since we assume b # 0 the element c¢ is uniquely
determined. Hence the matrix U of (3.11) is described by three parameters which
can be chosen, e.g., as the real parts of U;; and the phase of Uy».

Returning to the general case one can also write the conditions (2.1) explicitly
in terms of the parameters. A straightforward way is to put A=U-1I, B= (U+1)
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with U given by (3.11). To get a simpler expression one can pass from the system
AY(0)+ BY¥Y'(0) = 0 to an equivalent one multiplying it from the left by the matrix

—el? ¢y + ity 0 e 0
—e119 0 c3 + it3 te 0

1 .
—el? 0 0 - ep +ity,

el? co + ity c3 +its -+ ¢, + ity

this yields an explicit parametrization of the conditions (2.1) with

cos 6 —C2 0 0
cosf 0 —C3 0
A= : ’
cosf 0 0 n —Cn
Scost) — 5 Sca — g S — o3 0 O — cn—ii-itn
(3.12)
sin 6 —t2 0 0
sin 6 0 —t3 0
B = ;
sin 0 0 0 i —tn
Ssinf+ 5 Sta+ 5z Sts+ 63+1t © Stn+

and concludes the argument in the generic case when ¢; +it; # 0 for all j € n.

It remains to deal with the case when the last mentioned requirement is violated;
without loss of generality we may suppose that ¢; 4+ ity = 0. The corresponding
matrix (—(A +iB)|(A —iB)) has the form

0 Cz+it2 0 0 —(Cz—itz) 0
0 0 Cn + ity 0 0 —(en — itn)
—(nm+in) —(e+in) - —(mt+im)n—in e -in Yn = iTn

Using the Gauss elimination scheme we arrive at (D|V) with a diagonal D and
upper-triangular V', and from here in the same way as above to (I|U) with

_mi—in 21 coTe—7aot2 21  c3T3—"3t3
y1+iT1  yi+iTi co+tits y1+iT1  c3+its
__co—ito
0 co+ito 0
_ Cg—itg
U - 0 0 c3+titg
0 0 0

2i CnTn—Yn tn
Yi+iT1  centity
0
0
_ Cn—ity

CTL +it’lb
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Furthermore, it follows from the condition (3.10) with ¢; = ¢; = 0 that

CaTy — Yala = €373 — Y3l3 = -+ = Ty — Yntn =0

hence all the off-diagonal elements in the above matrix U vanish which means that
it is characterized by n real parameters,

U = diag{e'’,... e}

It is easy to rewrite the boundary conditions in the form (2.1) and check that they
correspond to the fully separated case,

0, 0,
siné~wj(0)+cos§‘7~w9(0)zo, jEN, (3.13)
which is, of course, trivial for the viewpoint of quantum mechanics on I. O

3.2. A concrete 2n-parameter approximation

Knowing the maximum number of parameters in the boundary conditions (2.1)
which can be achieved in this way, we are naturally led to the idea of placing two
0 interactions at each of the n halflines. In this section we are going to concretize
this proposal. We will concentrate at the matrix (3.11) in the generic case leaving
out the trivial situation (3.13) mentioned at the end of the previous proof. We will
also leave out the case n = 2 which was discussed in the paper [27].

Let us specify the approximation arrangement. The d’s are placed as sketched
in Fig. 1, all dependent on a parameter d in terms of which the limit is performed:

e there is a d coupling with parameter u(d) in the star center;

e on each halfline there is a ¢ interaction with parameter v;(d), where j is the
halfline index, at a distance D(d) from the center (it will turn out in the following
that we may choose D(d) = d?);

e furthermore, each halfline supports another ¢ interaction with parameter w;(d)
at the distance D(d) + d from the center.

For the sake of brevity we will not indicate the d-dependence of the parameters
u, vj, w; and the distance D unless necessary. The boundary conditions which the
functions 1, ...,1, on I' have to satisfy are

$1(0) = 9ha(0) = -+ =1 (0) = 9(0), > Wj(01) =ugp(0),  (3.14)

j=1
VYi(Dy) =vi(D-) =:;(D), Yi(Dy) —v3(D-) =v;9;(D),  (3.15)
Vi(D+ds) = ¢;(D+d), ¥(D+dy)—Pi(D+d-)=wjh;(D+d). (3.16)
Further relations which will in the following serve to determine the parameter
dependence on d are obtained from Taylor expansion of the respective wave func-
tions,
(D) = ;(0) + Dy(04) + O(D?), ¥i(D-) =45(04) + O(D),  (3.17)
(D +d) = 9;(D) + dipy(D4) + O(d®),  ¢3(D +d-) = ¢;(Dy) + O(d) (3.18)
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Fig. 1. Scheme of a 2n-parameter approximation.

for j € n. We need to find relations between the values 11 (D + d), ..., ¥, (D + d)
and Y1 (D +dy),..., ¥, (D + d4). To this aim we express them first in terms of
¥(0) and ¢%(04). Using the relations (3.15) and (3.17) we get

V(D) = 95(04+) + O(D) + v;(1;(0) + Dyj(04) + O(D?))
— 00(0) + (1 + v, D)} (04) + O(D) + v;0(D?) .
Substituting into the first one of the relations (3.18) and using (3.15) again we find
(D +d) = (1 +dv;)(0) + (D + d(1 +v; D)) ¢5(04)
+ O(D?) + dO(D) + dv; O(D?) + O(d?). (3.19)

The already obtained expression for % (D) together with the second one of the
relations (3.18) give

WD+ d_) = v;1(0) + (1 + v; D) (04) + O(D) + v;0(D?) + O(d).
Substituting from here and (3.19) into the second one of the relations (3.16) we get
after a simple rearrangement

Vi(D +dy) = (vj +wi(1 + dvj))y(0) + (1 +v;D + w;(D + d(1 + v;D)))¢;(0+)
+O(D) + v;0(D?) + O(d) + w;(O(D?) + dO(D)
+dv;O(D?) + O(d?)). (3.20)
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Next we eliminate ¢%(0,) (for simplicity we write ¢;(0)) from the obtained rela-
tions (3.19) and (3.20), multiplying them by 1+ v;D + w;(D + d(1 + v;D)) and
D + d(1 + v;D), respectively, and subtracting. In the resulting expression the
coefficient at ¢(0) equals one,

(1 + UjD + wj (D + d(l + UjD)))Q/Jj (D -+ d)
=(0) + (D +d(1 4 v;D))Y;(D +dy) + Ry, (3.21)

with the remainder term

R; = (1 +v;D +wj(D + d(1+v;D)))(O(D?) + dO(D) + dv;O(D?) + O(d?))
— (D +d(1 +v;D))(O(D) + v;0(D?) + O(d)
+w; (O(D?) 4+ dO(D) + dv;O(D?) + O(d?))).

So far the edge index has been kept fixed. Subtracting mutually the relations (3.21)
for different values of j, k € N, we can eliminate 1(0),

(1 + UjD + wj(D + d(l + UjD)))?,ZJj(D + d)
— (1 4+ vgD + wi(D 4 d(1 + vg D)) (D + d)
— (D +d(1 + v, D), (D +dy) — (D +d(1 + v D)(D + dy) + R, — Ry
(3.22)

Returning to the relations (3.19) and (3.20) we can eliminate from them (0) in a
similar way as above arriving at the relation

(14 dvy) ¥} (D + dy.) — (vj 4 w; (1 + dvj)) b (D + d) = }(0) — R, (3.23)

with the remainder term

R; = (v; +w; (1 + dv;))(O(D?) + dO(D) + dv;O(D?) + O(d?))
— (1 4+ dvj)((O(D) + v;0(D?) + O(d) + w;(O(D?)
+ dO(D) + dv;O(D?) 4+ O(d?))) .

Summing the above relations over j € N and using (3.14) we get

n

zn:(1+dvj)¢}(D+d+)—Z (vj + w; (1 + dv;)) ¥ (D+d) = ug(0 Zn: Rj. (324)

J=1 J=1 Jj=1

The right-hand side can rewritten using the continuity condition (3.14) in combi-
nation with the relation (3.21),

n

Zw] = Z(<1+v]D+w]<D+d<1+v] ))¥; (D + d)

—(D+d(1+v;D)i(D+dy) +R;) .
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This allows us to cast (3.24) into a form which contains neither ¢(0) nor ¢}(0),

n

Z (vj +w; (1 + dvj) + % (14 v;D+w; (D+d(1+v,;D))) )%(D +d)

j=1

> (1 +dv; + = (D +d(1 +ij>)>w;<D+d+> +> (R - =R,
j=1 j=1

(3.25)

The Egs. (3.22) and (3.25) are the sought relations between the function values and
derivatives at the sites of the “outer” ¢’s with (0) and 1}(0) eliminated.

In the next step we are going to choose the dependences D= D(d),
u = u(d), v; = vj(d) and w; = w;(d) for j € n in such a way that the limit
d — 04 will yield the (2n-parameter family of) boundary conditions (2.1) satisfy-
ing the requirement (2.2). It appears that a suitable choice is the following one,

D(d) := a3
. 1 o
1+v;D = a;d, ie. vj(d):= _E—Fﬁ’
i 1 (3.26)
1+ U)jd = ﬁjd, 1.e. 'lUj(d) e _E _|_ﬂj’
w
U(d) = E'

Indeed, in such a case the coefficients in (3.22) acquire the form

(1 + UjD)(l + ’LUjd) + ij = (Ozjﬁj — 1)d2 + ﬁjd?’ ,
(3.27)
D + d(l + UjD) = Oéjd2 + d3

and a straightforward computation shows that the remainders are R; = d*O(d),
hence dividing (3.22) by d* we arrive at

(Oéjﬂj -1+ Bjd)wg (d3 + d) — (akﬁk -1+ 5kd>'¢k<d3 + d)
= (aj + d)pj(d® +dy) — (e + d)ipp(d® + dy) + O(d) .

Taking the limit d — 0, we have to realize that the condition ¢; € W22(R™), j € 7,
requires that 1/, (d) = o(d~'/2) holds at the halfline endpoint, hence we have

(085 — 1)1 (0) — (kB — Db (0) = o25(0) — antf (0),  joken.  (3.28)

In a similar way we proceed with Eq. (3.25). We employ (3.27), then a straight-
forward computation gives for the coefficients at v;(D + d) and ¥ (D + d) the
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following expressions

1@+wﬂ1+d%)+%(L%%D+uyﬂ)+ﬂ1+wDD)

( B; + (Oéjﬁ] ))%‘F (O‘jﬁj 1+ 5J> + B;

U 1 w1
1+dvj+E(D+d(1+ij)):<—1+ Oéj)dz (()éj—i-E)g‘{‘ly

and the remainder terms 733- and “R; are both d=20(d). We substitute from here
o (3.25), multiply the result by d? and pass to the limit d — 0, ; this yields

n

Z(—ﬁj+%<ajﬁj—1>>wj(0>=z(—H%aj)w;m), jen. (329

j=1 j=1

The relations (3.28) and (3.29) are the sought boundary conditions. It remains
to express them as (2.1) and to find relations between the parameters contained in
them to those of (3.11). The matrix forms of (3.28) and (3.29) looks as follows,

a1y —1 —(agfa—1) --- 0
alﬁl -1 0 e _(anﬁn - 1)
71 Yo Tn
_al a2 o« o o 0
+| v(0) = 0, (3.30)
—oy 0 -
FL O Fy e A

where 7, := “(a;3; — 1) — 3; and 7; := 1 — “a;. We know that the corresponding
matrix of (2.3) is given by U = —(A +1iB)~! - (A — iB), its matrix element being

o;
Ujj = 1 o
. Bi(ai By — 1) +al . 1
a;fB; — 1 —ia, —w+1
(236 i) (z « (uf —1)? ;(azﬁz—l)hra%
B Oéjﬁj —1 —|—104J
O[jﬂj — 1 — iaj
and
o;
Uji = : -
(ojB; — 1 —iaj) (o fr — 1 —iag)

Bi(aufy —1) +Oéz = 1
(Z (B —1)2 +af _w+1z(azﬁl—1)2+a%>

=1 =1
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for j # k. If the latter should correspond to (3.11), it is sufficient to require
|041ﬁ1 —1- iOél‘ =1 (331)

and to set

Bi(oufr —1) +Oéz
—w=p, 3.32
Z (B 1)+ a2 p (3.32)

=1

Oéjﬁj —1= ¢, —Q; = tj . (333)

For a; = 0 the condition (3.31) is satified trivially, while for a nonzero value it is
equivalent to a; (a1 (8% + 1) — 261) = 0, in other words we have to put

a1 = 261 .
ff+1
In this way we have eliminated the parameter ai, and just 2n of them is left.
The correspondence between the 2n-tuples (1, 82, 33, . .., On, @2, Q3, ..., 0y, w and
0,co,C3,...,Cn,ta,ts, ... 1, plooks as follows:
(i < 0: they are related by 3 51 L — elf

l

o o, ¢yt je{2,. n} see (3.33),
e w > p:see (3.32).

In what follows we will work with 31, B2, O3, ..., Bn, 2, a3, ..., an,w, for simplicity
we will use also a7 remembering that it is determined by ; and the relation (3.31).

4. Norm-Resolvent Convergence

The approximation worked out in the previous section was in the spirit of [16,27]
being expressed in terms of boundary conditions. One asks naturally what can
be said about the relation between the corresponding operators. We denote the
Hamiltonian with the coupling (3.30) in center of the star as H*88  and H®%9(d)
will be the approximating family constructed above, with a pair of ¢ interactions
added at each halfline. Our aim here is to demonstrate the following claim.

Theorem 4.1. Let u,v;,w;,j € 0, depend on d according to (3.26), i.e
w 1 Q; 1
a0 vld=—og oy, wild) =2+ 0.

Then H™“%%(d) converges to H*%8 in the norm-resolvent sense as d — 0.

u(d) =

Proof. We have to compare the resolvents Rpu.v.w(q)(k*) and Ry, « 5(k?) of the
two operators for k2 in the resolvent set. It is clearly sufficient to check the conver-
gence in the Hilbert—Schmidt norm,

||RHu,17,w’(d)<k2) - RHw,&,E(kQ)”z — 0+ as d — 0+ 5
in other words, to show that the difference of the corresponding resolvent kernels

denoted as ;""" and G @B , respectively, tends to zero in L?((R*)?"). Recall that
these jernels, or Green functions, are in our case n x n matrix functions.
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Let us construct first g,jvd’ﬁ for the star-graph Hamiltonian referring to the
condition (2.1) in the center. We begin with n independent halflines with Dirichlet
condition at its endpoints; Green’s function for each of them is well known to be

sinh kx . e~ "*>
giﬁ (.ZL', y) = = )
K
where - := min{z, y}, > := max{z,y}, and we put ix = k assuming Rex > 0.

The sought Green’s function is then given by Krein’s formula [4, App. A],

Rygas (k) = Ru(k*) + Y M(F*)(@u(k?), ) 2 (aeym b5 (k) (4.1)
jl=1
where Ry (k?) acts on each halfline as an integral operator with the kernel G, and
for ¢j(k?) one can choose any elements of the deficiency subspaces of the largest
common restriction; we will work with (¢;(k*)(z)) == djme
To find the coefficients \j; (k*) we apply (4.1) to an arbitrary ¥ € @7_; L*(R")
and denote the components of the resulting vector as h;; it yields

—RT

+o0 n +o00
hoteg) = [ Gunr )y + oA [ ey e

1=1
These functions have to satisfy the boundary conditions in the center,

> Ajmhm(0)+ Y Bjmhi,(0) =0 forallj€n. (4.2)
m=1 m=1

Using the explicit form of Gi,(x,y) and %ﬁ’:y"ﬂ\xm:o = e "m we find

+00
e (0) =) A (k%) /0 e iy (1) dy; (4.3)
and
B (0) = / " e () — 1> At (R) / T e gy (44)
" 0 =1 0

Substituting from these relations into (4.2) we get a system of equations,
n +00 n n

Z/ (Z Ajm At (k%) + Bj = 1) Bjm/\mz(k2)>e_“ylwz(yz)dyz =0,

1=10 m=1 m=1
with j € n. We require that the left-hand side vanishes for any 1,19, ..., ¥,; this
yields the condition AA + B —kBA = 0. From here it is easy to find the coefficients
Aji(k?): we have (A — kB)A = —B, and therefore

Ni(k?) =~ [(A=kB)™'B] .

Notice that the matrix A — kB is regular in view of the first conditions in (2.2);
since A, B are real and Im k # 0, the requirement rank(A, B) = n implies that we
have also rank(A — kB) = n.
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Let us now concentrate on the class of couplings for which we established in the
previous section the boundary condition convergence. In this case A — kB equals

a1(B1+ k) —1 —(a2(B2 + k) —1) 0
a1(B1 + k) — 1 0 o —(anBntr) -1 |
(51+/€)<%041—1)—% (ﬁ2+ﬁ)(%a2—1>—% (ﬁnJrH)(%an—l)—%

and a tedious by straightforward computation yields an explicit form of the matrix
—(A — kB)~ !B, namely
[~(A—~xB)™' Bl
1 1
= - . for j #1,
bin B rm D@0 7
— (B + k) — 1

w —

[~(A—&B)~"'B]y;
— 1 . 1 + Oéj
- - B + K (aj(Bj +r) =12 a;(Bj+r)—1"
w_mz_:lam(ﬁm‘f‘/i)—l

In this way we get the Green function Qi“;’&’ﬁ . As we have mentioned above, it is an
n X n matrix-valued function the (j,[)th element of which is given by

G5 (w, y)
5, (sinh KT e "> L er(aty) a; )
! K a;(0; +r) =1
1 1
+ . e e,

(o (Bj + k) = D)(cu (B + k) — 1)

" En: Bm + K
m—1 am(ﬁm + H) -1
we use the convention that z is from the jth halfline and y from the [th one.
Next we will pass to resolvent construction for the approximating family of
operators H“%%(d). As a starting point we consider n independent halflines
with Dirichlet endpoints; we know that the appropriate Green’s function is

#*>_ The sought resolvent kernel will be then found in

Gir(z,y) =K Lsinh ke e
several steps. Each of them represents an application of Krein’s formula. First we
add the § interaction with the parameter v at the distance d® from the endpoint,
then another one with the parameter w at the distance d + d°, again from the
endpoint. This is done on each halfline separately. In the final step we find Green’s

function for the star in which the Dirichlet ends are replaced by the ¢ coupling with
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the parameter u. That will require, of course, to distinguish the halflines by their
indices.
The first step is rather standard [19] and resulting Green function is

givn(xvy) = gifﬁ(x7y) -

v
14+v- gin(d37 d3)
Adding another ¢ interaction at the distance d from the previous one we seek the

kernel in the form R"*(k*) = R"(k?) + A(k?)(¢(k?),-)p(k?) where the first term
is RV(k?) := G2, and the deficiency-subspace element ¢(k?) is chosen as

o(k*)(2) := Gz, d + d°).

We apply this Ansatz to any ¢ € L?(R™) and denote h := RV (k?)1. It is easy to

check that GY (z,y) = G{.(x,y), hence we can write h explicitly as

Gix(y,d®) Gix(z,d?). (4.5)

+o0 +oo
h(x) = / GI. (2. y)(y) dy + A(K?) / GL(y,d + d*)py) dy - Ghu(r,d + d)

By definition this function this function belongs to the domain of the operator with
two ¢ interactions, in particular, it has to satisfy the boundary conditions

h(d+d®y) =h(d+d*_) = h(d+d*), (4.6)
W(d+d*y) —h(d+d_) = w-h(d+d°).

Green’s function continuity implies (4.6). Furthermore, we have

o0 9GY (2,y too oGy (z,d + d?
e = [ Dy apeai) [ G arau)ay e D
0 € 0 €
which allows us to express h'(d + d3) — h/(d + d* ). The first term obviously does
not contribute to the difference, while the contribution of the second one simplifies

foley)| 99y — 1 to the form

11 vView O Oz Dz ”

400

R(d+dy)—h'(d+d>) = —A(kQ)/O GY (y,d + d*)y(y) dy.

To satisfy (4.7) the coefficient A\(k?) must obey the condition
+oo
| )+ wk wd )G+ P d )]G d + ) 0) dy = O
0

for any ¢ € L?(R™), where we have taken Green’s function symmetry with respect
to the argument interchange into account. Consequently, the square bracket has to
vanish and we get the formula for the kernel with two § interactions,

gl/uﬁzw ('737 y) = givfe(xa y)_

w
14+w-GY(d+d3, d+d3)

The remaining step will be more complicated because we are going to introduce

Go.(y, d+d*)Gl (z, d+d°) . (4.8)

a coupling between different halflines working this with matrix-valued functions.
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Our tool will be again Krein’s formula which now takes the form

Ry (k®) = Ryeoo (k%) + Z Nt (K2)(@1(k?), ) L2 (@erym) - 65 (k)
7,l=1
where the functions ¢;(k?) will be chosen as
0GI™ " (3, y)
0;(k*)(x)), = 6jm - —=
( ]( )( ))m J ay y=0

We apply this Ansatz to an arbitrary ¥ = {11,...,%,}" and denote the elements
of the resulting vector as h;, explicitly

+oo
hj(z) = Gl (z, y);(y) dy
0
n Vi Wi 49)
+oo 8g7}z,wz (x y> ag. j,Wj (x y> (
e o) [ gy S 0]

; ’ 0 O =0 ay y=0
where we have used Green’s function symmetry and the fact that its complex conju-
gation is equivalent to switching from x to k. As before the functions hy, hs, ..., hy,
have to satisfy the boundary conditions expressing the § coupling in the star centre,

hi1(0) = h2(0) = -+ = hn(0) =: 2(0), (4.10)
R1(0) + h5(0) + - -+ Kl (0) = u - h(0), (4.11)

for any 1, ...,¢, € L*(R™). Let us first express h;(0). The first term in the above
expression does not contribute since G;7*7(0,y) = G2 (0,y) = 0. The second one
contains the value of Green’s function derivative which can be expressed using (4.8),
06" (@ y) | _ 0Gi(x.y)

dy Oy

w

1+ w-Gy(d+d3,d+d3)

y=0 y=0

v (y,d+ d®
0w D) gy (gt ).
dy =0
The first term is obtained from (4.5) together with the explicit form of the “free”
kernel Gi.(z,y): we have

agp (l’, y) — v —rd?® 3
ik _ KT K - Gin ,Cl ’
Wy o 140G, &) © Gin(2, &%)
in particular, ML@ y=0 = 1. This further implies
9G;, " (z,y) - vj —rd® 3
iK — o HT _ e F gin z, d
% |y 150, - Gun (@, &) @)
_ Wi
1+w; -G (d+d3 d+d3)
—n(d—i—d?’ Uj —kd® . (d d3 d3
( 1—|—Uj'gm(d3,d3)e gm( +a-, )

-Gl (v, d + dP), (4.12)
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VLW
in particular, 8%“87%/(%3/) |z=y=0 = 1. Putting these results together, we can simplify
the expression for the boundary values h;(0) as follows,

Yi(y)dy .
=0

n +o00 ag}n,wz z,y
hi(0) =Y Aa(k?) /0 i 893( )
=1

Now we can find what is required to fulfill the conditions (4.10), i.e. h;(0) = hy,(0)
for all j,m € n. This is true provided

n +oo vy, Wy .
> (k%) = At (%)) / S

=1 0

holds for any n-tuple of functions 1, ...,v, € L?(R") which is possible if
Nji(k?) = A\ (E?) forall jmen, I €,

thus we can simplify notation writing A; := \j;(k?) for a fixed [ € f.

Values of the coefficients A{,..., A, can be found from the remaining condi-
tion (4.11). To this aim we have to find explicit form of A’ (0). It follows from the
expression (4.9) for h;(x) that

g™ (a,)
/ o ik 9
1 (0) = /0 -

V;i(y)dy
0

r=

- 0G0 (a,y) d (96, (z,y)
+Z)\l/0 B Ui(y) dy - @\ o
=1

The boundary condition (4.11) then requires that the expression
n +o0 n d a ‘vj,wj
Z/ 1+)\lzd_< gma(w,y) >
=170 =1 Y y=0

0GI (z,)
ox

=0

)

—u- )\l
=0

vanishes for any 1, ...,%,, and this in turn yields

)

— d (96" (x,y) X
A= u_;£<3—y foralll en

=0



594 P. Exner & O. Turek

showing, in particular, that )\; does not depend on [, which means that all the
coefficients \j;(k?) are the same and equal to the right-hand side of the last relation.

Before specifying the expression in the square bracket let us write down the
formula for the (j,1)th component of the sought Green function: we have

giun’g"lw(x7y)
G, (x,y) | 9G" (x,y)
s 0 _ ox o
=05 Gi " (2,) + . ! = = (413
T - (e )
— dx Jy v=0/|._q

The first derivative in the numerator was found in (4.12) and by Green’s function

symmetry the other one is given by the same expression, with y replaced by x. The
. d 0G;m ™ (z,y) : :
same relation allows us to compute @(a—y |y=0), in particular, to evaluate

the quantity appearing in the square bracket above,

)

Um —kd® —kd® Wm

" ¢ Tt wn G (dt A, dt d)

d [ 9Gm "  (w,y)
dx oy

x=0

B 1 + Um * gif@(dgv d3)

2
| —r(dH+d®) Um —kd® o d d3 d3 4.14
(e e G ) L (4g)

The relations (4.13) and (4.14) together with (4.12) and its mirror counterpart

describe completely Green’s function G;""

After deriving explicit expressions for the resolvent we can pass to our proper
w.d,f

converges to G, as

of the approximating operators.

goal which is to prove that the matrix-valued kernel Q’f;’ﬁ’w

d — 04 which in terms of their components can be written as

gu,a,w w,a&,3 _
L2(R+ xRT)

in,jl  — “ik,jl

lim )
d—0+

Depending on the values x, y the difference g};?ﬁ(x? ) —Qi‘z’il”g (x,y) takes different
forms. Notice that one can suppose without loss of generality that x < y, and

therefore there are six different situations to inspect, namely

o d+d<z<uy,
o d<z<d+d® <y,
o O<a<d® d+d® <y,
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o d®<x<y<d+dd,
o << d®<y<d+d®,
o < <y<d.

To express the kernel difference we employ Taylor expansion of g;fﬁﬁ(x, y). Let us

start with expressions which appear in the formulae repeatedly. The first one is

1 O
14 vy - Gi(d3, d3) . 1 )\ sinhxd®e rd’
\TEte ) p

Using sinh(z) =  + O(2?) and e* = 1 + O(x) we get

sinh /-edlj e—rd’ _ (kd® + O(dGL)(l + O(d?)) — P+ O(d)),

and this in turn allows us to express (*) as follows,

1 1 —apd 1 1
W=mE y = (—+0@)]) .
P (mrR) waroay (@ o)

The next frequent expression is w, (1 + Wy, - G (d + dP,d + dP )) 1 We employ
relation (4.5) with v = v,,, and the expansion e = 1+ z + O(z?) together with the
explicit form of G;,; this yields after a straightforward computation

2
G (d+d*, d+d*) = d(l — kd — & + 0(d2)) = Gin(d+d*, d+d*)— d—+(’)(d3) ,

Qm Om

and therefore

w 1 1

i =——| ——— +0(d)
. GYm 3 3 2 1

L+ wy, -G (d+d3,d+ d?) d B + K —

Om

w,v,

Now we can expand the first term in G; 75" (z,y). Using (4.8) for the parameters

v = vj, w = w; together with the previous result we get

v W sinh kx e™"Y 1 1
gin (.’L‘,y): - — + ﬁ <—B +/{_L +O(d)>

y sinh s (d + d3)e™"Y sinh k(d + d3)e™"®
K K

sinh kxe™"Y 1

- + —e e (1 + O(d)).
8 B+~ —

m
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As for the second term in ((4.13)), we first expand the derivative in the denominator
using Gi.(d + d3,d3) = d*(1 + O(d)) and (4.14). A direct computation yields

¢ (e

+ O(d)) ,

:i.( Bm + K

dz dy (B + ) — 1

and therefore

+0O(d)

n

B + K
am(ﬁm‘f’/ﬁ)_l

w JE—
m=1
Next we expand the derivatives which appear in the numerator using the relation
Gz, d + d®) = d(1+ O(d)) e "*; it gives

G, " (z,y) - Um —rd? 3
ik — KT K o ,d
6y y=0 ¢ 1 + Um * gi/{ (d37 dS) ¢ g (x )
W,

1t wy, -G (d+ d3,d + dB)

= d_12 <am(5m 1+ -1 O(d)> e

. agym wm (g
and the analogous expression for gma—(xy))
* =0

mines the behavior of the second term at the right-hand side of (4.13) as d — 0.,

and for the full kernel gﬁ;j’};ﬁ (x,y) we consequently have

with x replaced by y. This deter-

5B sinh kze™"Y 1+0d) .. _
gi’lLK/,'U‘,w x’ — . + e fi:re RY
,Jl( y) ]l< - ﬁj‘f’ff_o%
1 1
+ - :
Bm + K (B +K) —1
w= 2.
— (B + ) — 1
1
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On the other hand, for x < y we have

w.d g sinhkw e™™ ) a; )
x — te
Ginji (1:4) = ( K o;(B; + k) —1
1
+ o En
K
w J—
mzzl am(ﬁm + “) -1
1 — KT —KY
. e s
(aj(Bj +K) = D(au(B + k) —1)
hence the Green function difference satisfies
Qf:z’lw(.r, y) — gi‘*;”f;ﬁ(a:,y) =0O(d)e "e ™™ asd— 04.

The same estimate is obviously valid also for d < y < z, hence there is a constant
K independent of d, x and y such that

Gl (2, y) — G5 (w,y)| < Kde™"e™" (4.15)

holds for all d < 1,z > d + d® and y > d + d*. Now we are in position to estimate
the Hilbert-Schmidt norm of the resolvent difference for the operators H*%# and
H™%%(d) which can be written explicitly as follows,

| R (ay (k) — RHwaaHi

E:[m/m

jl].

LT (ey) — 625 )| dedy

o o= 2
(/W /Ms 5 ) 025 |
d+d? 2
/d [ 6 - 025
+

d+d?
/d+d3 /d
/ /d+d3
/cl+d3

u v, w
m,]l

uvw
15]1

d+d>
u
/ /d m jl 7y) -

U’U’UJ

2
m gl x y) - gs}chxlﬂ(l‘ y)‘ dl’dy

w,a E 2
(z,y) = Gii (:v,y)’ dady
)~ 625 )| dudy

o= 2
Q-“”q’ﬁ(%y)’ dady

ik,jl
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d+d?
[
d+d®  pd®
ANAL
/d3 /d3
The inequality (4.15) makes it possible to estimate the first one of the integrals,

/d+d3 /d+d3
2

+o0 —2(Re k) (d+d? 2
SK%F(/ e_Z(Re””)mdx) Y S )s R g
dids 2Rer 2Rer

’LLU'LU

o o= 2
Gt (xy) — G (ﬂc,y)’ dady

BT ) — 625 )| dedy

L2 2
i?zw Y )—gﬁ”?l”g(x,y)‘ dxdy) .

’LL’U’LU

o o= 2
WO (@,y) — Gl (%y)) dady

and it is obvious from this inequality that for d — 04 the integral tends to zero for

any 7,l € n. In a similar way one can estimate each of the remaining eight integrals:
”U’w

iKk,jl

that the integral vanishes as d — 04. Since the argument repeats the procedure

described above, we skip the details. Putting all this together, we conclude that

A | R puv(ay(K?) — R

using Taylor expansions of G’ we get a bound for the integrand which shows

Hwﬂﬁuz -

and therefore the resolvent difference tends to zero in Hilbert—Schmidt norm as

d — 04 which is what we set up to demonstrate. O

5. Approximations with Added Edges

We have seen that a CS-type scheme can produce a 2n-parameter family of (self-
adjoint) couplings out of the whole set depending on n? real numbers. To get a
wider class we have to add to the star graph I' not only vertices but edges as well.

5.1. Admissible couplings

The first question naturally is how many parameters can be achieved in this way.
An upper bound on this number is given by the following statement.

Proposition 5.1. Let I' be a star graph with n semi-infinite edges and denote by
{T'(d) : d € R} a family of graphs obtained from T by adding finite edges connecting
pairwise the halflines; their number may be arbitrary finite but independent of d.
Suppose that f‘(d) supports only § couplings and § interactions, their number again
independent of d, and that the distances between all their sites are O(d) as d — 0.
Suppose that a family of functions ¥, € W22(T\({c} U Vy)), where c is the center
of ', and Vy is the set of the vertices added on the halflines, satisfies the conditions
(2.4) with d-dependent parameters, and that it converges to W € W22(I'\{c}) which
obeys the condition (2.1) with some A, B satisfying the requirements (2.2). The
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family of the conditions (2.1) which can be obtained in this way has real-valued

coefficients, A, B € R™", depending thus on at most ("'QH) parameters.

Proof. The ¢ coupling in the center of I'(d), identified with center of I', is expressed
by the conditions (2.4). For any j € n we denote by d; the coordinate of the most
distant point on the jth halfline which supports either a ¢ interaction or a  coupling
at the endpoint of an added edge. We arrange the function values at these points
into the n-tuple ¥(d), and similarly ¥’(d) is the n-tuple of right derivatives.
Let us stress that this a symbolic notation; the elements are v;(d;) and ¢} (d;4 ),
respectively.

As in the proof of Proposition 3.1 we can use (2.4) to express these quantities
through the common value 9 (0) and the right derivatives ¥/(0) at the origin

Mi(d)¥(d) = 4(0) - ma(d) + M3(d)¥'(0) + R(d),
Ni(d)W'(dy) = 9(0) - na(d) + N3(d)¥'(0) + R(d)
for some Mi, Ms, Ny, N3 : Rt — R™" my ny : Rt — R™ and error terms R, R :

R* — R"™ supposed to be negligible as d — 04 ; we may assume that R, R = o(1).
The above system can be also written in a matrix form,

i) 0 —mad) 2@\ (i) (o)
0  Ni(d) —ng(d) —Ns(d) 1/1(0+ = | o(1)
0 0 —a 11 -1 ¥(0) 0

To find an approximation in the described sense one has to find a relation between
U(d) and ¥'(d;) eliminating ¥ (0), ¥'(0). Since the former are determined by the
latter we may suppose that the matrices M (d) a N1(d) are regular; the elimination
then leads to a system

A(d)¥(d) + B(d)¥'(d1) = R(d),

where the matrices A(d), B(d) are real for all d € RT and the right-hand side
consists of an error term R : RT — R”. We multiply the last equation by a power
of d such that the right-hand side is o(1) as d — 04 while the left-hand side one has
a nontrivial limit. It is clear that we can get in this way the condition (2.3) with
real-valued coefficients, A, B € R™". O

5.2. A concrete approxrimation arrangement

The above discussion leaves open the question how such an approximation can be
constructed to cover the mentioned (”gl)-parameter family. Our aim here is to
demonstrate a specific way to do that. We consider the coupling (2.3) with real

A, B, and for simplicity we restrict our attention only to the generic case assuming
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that B is regular so that the boundary conditions acquire the form
T'(0) = —B~1A¥(0)
with a symmetric matrix —B~'A. We can also write them as
U'(0) = (D + 8)¥(0), (5.1)

where the real matrix D is diagonal while S is real symmetric with a vanishing
diagonal; it is clear that D and S depend on n and (g) real parameters, respectively.
To construct approximation of the corresponding operator H4'# we have find

suitable family of graphs I'(d). The decomposition of the matrix in (5.1) into the
diagonal and off-diagonal part inspires the following scheme:

e the center of I" supports a § coupling with the parameter u(d) the dependence of
which on d will be specified below;

e at each edge of I' we place a  coupling at the distance d from the center; the cor-
responding parameter v;(d), to be again specified, will be related to the diagonal
element D;; of the matrix D;

e the pairs of edges whose indices j, k correspond to nonzero elements of the matrix
S we join by an additional edge, whose endpoints are the § coupling sites men-
tioned above, and in the middle of this edge we place the § interaction with a
parameter wy; iy (d) related to the value of Sjy.

The metric on T' and T'(d) is intrinsic, nevertheless, it is useful to think of it as
of induced by embedding of the graphs into a Euclidean space. Without loss of
generality we may consider the original star I as a planar graph and to construct
as embedded into R3. In such a case, of course, we have to make sure that the
added edges do not intersect. This can be achieved in the way sketched in Fig. 2.
A possible way is to employ the bijection b from the family of two-element subsets
of {1,2,...,n} to the set {1,2,..., n(nT_l)} The edge connecting the jth and kth
halfline is formed by two segments connected in a V-shape. Its endpoints are at
the jth and kth halfline, both at the distance d from the center. The tip of this
V-graph is placed on the halfline starting from the center of I' in the perpendicular
direction to its plane — see Fig. 3 — at the distance b, - d?, so that the length of
the connecting V-graph is dv/1 + (b, d)?.

As before we denote by 1; the wave function on the jth halfline assuming that
all the coordinates have zero in the center of I'. Furthermore, we denote by cp}j kY
and gpl{cj *} the wave function on the line segment part of the connection between
the jth and kth halfline which is attached by one of its endpoints to the jth and
kth halfline, respectively; notice that the order of the upper indices is irrelevant.
Such a connecting link is regarded as a star with two edges of the same length. For
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Fig. 2. Approximating graph: A star amended by connections of the edges, with a § coupling in
the center, one ¢ coupling at each edge and one ¢ interaction at each (broken) connection segment.

0 {i.k}

bysyd

Fig. 3. The connecting edge between the jth and kth halfline.
the sake of brevity we introduce also the set N; defined as
N; ={ken: Sj, #0};

its cardinality #N; tells us how many nonzero elements are in the jth row of the
matrix S, in other words, how many V-shaped connecting edges sprout from the
point z; = d on the jth halfline.
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Next we will write down the boundary conditions describing the involved §
couplings; for simplicity we will not indicate the dependence of the parameters
u,vj, Wy on the distance d. The ¢ coupling in the centre of I' means

¥1(0) = $2(0) = - = 1 (0) = 9(0), > (04) = uth(0), (5.2)

Jj=1

the d interaction at the “tip” of the broken edge connecting the jth and kth halfline
between the vertices added at the distance d from the center (of course, for j, k € n
such that S;, # 0 only) is expressed through the conditions

@M (0) = g (0) = M (0),
(PUH);04) + (PP (04) = wizay ) (0),

and finally, the d coupling at the mentioned added vertices added requires
Uy(dy) = 0i(d-) = M dy/T+ Bpd)?) = 95(d), jen, keN,
A 5.4
W) — ) — (@§”’k})'(d\/1 Fopd? ) = vpyld), jen. O

kGNj

(5.3)

Further relations which will help us to find the parameter dependence on d come
from Taylor expansion,

;(d) = ¥3(0) + dyj(0) + O)(d*),  ¥j(d-) =v;(04) +O(d), jen, (55)

G (A1 4 (bd)?) = 018 (0) + dy/1+ (bd)? (DY (04) + OWP),

(5.6)
(e ™) @y 1+ (b ) = (DY 01) +00), Gken,

where we have used the fact that /1 + (bjpd)? = 1+ O(d?). Now we employ the
first of the relations (5.6) together with the continuity (5.4), which yields

d\/1+ (bjed)? (3 Y(04) = ¥;(d) — 1FH(0) + O(d?) . (5.7)

The same relation holds with j replaced by k, summing them together and using
the second of the relations (5.3) we get

(2+ dy/1+ (brd)? wjry) ¥ (0) = ¥5(d) + ¢r(d) + O(d®).

We express %} (0) from here and substitute into (5.7) obtaining

Ut G (17 00) = () — AT EREIETE o). 5
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The relations (5.5) and (5.2) give

d;(04) = 1;(d) — 9(0) + O(d?), (5.9)

and summing this over j € n we arrive at the identity
n
dy _ v5(04) Z% —np(0) + O(d?).
j=1

The right-hand side of it can be rewritten using (5.2). This makes it possible to
express 1(0); substituting it into (5.9) we get

Z¢k + O(d?)

— + O(d?). (5.10)

dip; (04) = v;(d) —

Next we use consecutively the second relations of (5.4), (5.5) and (5.6) to infer

Vi(dy) = vpi(d) + Y () (dy/1+ (bjed)? ) +¥f(d-)

kEN;

= vjthi(d) + Y (PH)(04) +95(04) + O(d).

kENj

Substituting into the last relation from (5.8) and (5.10) we get

_}Z ¥;(d) + Yr(d)
dkeN \/ﬁ 24+ d\/1+ (bjrd)? - wij i

n+du (Zwk +Od2>+0(d)’

where we have also employed the fact that O(d) [1 + (bjrd)?]~*/? = O(d) holds as
d— 04 for all j #k, j,k €n.

Now we can finally ask about the parameter dependence on d. Since the last
relation is supposed to yield in the limit d — 04 the jth row of the matrix condition
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(5.1), it would be sufficient to have the following requirements satisfied:

lim | v;+ > > . +1- > L =D
JT g N - -
=0 \keR, 1+ (bjra)? keN; 2+ dy/1+ (bjrd)?w
(5.11)
for all j € n,
1 1 —1
lim = - : = Sk (5.12)
d—04 d 7/ 14+ (b]k;d)2 24+d\/1+ (bjkd)Qw{j’k}
for all j # k, 7,k € n, and finally
1
—_ = 0O(d 1
d(n + du) o) (5.13)
as d — 04. To fulfil (5.12) one can choose
1 1 2
)= —— = = 5.14
’LU{],k:}( ) S]k d2 d7 ( )

which makes sense because Sj, # 0 by assumption, since then the limit equals

1 -1
lim : = Sjk .

=0 RO oy (1t o)) (—Si - 2d>

With the choice (5.14) taken into account the condition (5.11) will be satisfied
provided Uj + %(#NJ + 1) - ZkENJ— Sjk; = Dj, ie.

#N; + 1
’Uj(d) = Dj — ]T — Z Sjk . (515)
kENj

Finally, the last requirement will be satisfied, e.g., if the expression equals d which
is true if

u(d) = % - d_nz . (5.16)

Summarizing the argument we conclude that choosing the parameters in the
described approximation according to (5.14)—(5.16) we get in the limit the generic
boundary conditions (5.1). We conjecture that such an approximation would again
converge in the norm-resolvent topology.
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Spectral filtering in quantum Y-junction
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We examine scattering properties of singular vertex of degree n = 2 and n = 3, taking
advantage of a new form of representing the vertex boundary condition, which has been
devised to approximate a singular vertex with finite potentials. We show that proper identi-
fication of § and ¢’ components in the connection condition between outgoing lines enables

the designing of quantum spectral branch-filters.

KEYWORDS: quantum graph, singular vertex, quantum wire, spectral filtering

1. Introduction

The quantum graph is an abstract mathematical model of single-electron quantum device
made up of interconnected one-dimensional lines, in which quantum particles propagate.®)
Fundamental element of quantum graph is the star graph, or the singular vertex of degree
n, which is a single node where n outgoing half-lines are connected. Although the general
mathematical characterization of a singular vertex in terms of parameter space of unitary
group U(n) has been there for some time,2%) the analysis of its physical contents other
than the simplest case of n = 2 is still missing. In this article, we address the problem of
making sense of U(n) parameter space by examining the basic and simplest example of n = 3
singular vertex, or Y-junction, in detail. We show that the recent work on the approximation of
singular vertex by finite potentials supplies the basis for our analysis. Central to the physical
understanding of singular vertex is the realization that a connection between each pair of
outgoing lines can be classified by its § and ¢’ contents supplemented by “magnetic” phase

7 We show that this classification leads directly to the spectral filtering property

change.
between the pair of lines, enabling us to design the spectral branching filter using quantum

Y-junction.

*Email address: taksu.cheon@kochi-tech.ac.jp
tEmail address: exner@ujf.cas.cz
tEmail address: turekond@fjfi.cvut.cz
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2. Reduction of boundary matrices

Consider a quantum particle on a star graph with a single node and n half lines. The

system is specified by boundary conditions that have in general the following structure,
AU + BY' =0, (2.1)

where A and B are matrices n x n which must satisfy certain conditions, and ¥, ¥’ are the

state vectors given by

v=1| 1], ¥=1|:]. (2.2)

©n Pn
For simplicity of the notation, we have dropped the x location when it is x = 0, i.e. we use ¢,
. in place of ¢;(0), ¢%(0). In this paper we start from the form of A, B that we have devised
in our previous work” and where the crucial numbers are the ranks of the matrices A and B

which we denote here 74 = rank(A) and rp = rank(B). We can transform the n x n matrices

A and B to the following ST form;

a5 0 L, (1T 03
~o\=rt 1) 7 \o o)’ '

with rp X rp Hermitian matrix S and rp x (n—rp) complex matrix T'. The identity submatrix
I is understood as having proper dimensions, namely rg x rp in B and (n —rg) X (n — rp)

in A. If we denote the rank of S as rg, we obviously have 0 < rg < rg, and moreover,
rTA+TB=mn+Tg, (2.4)

which comes in handy to us later on.
Let us consider the scattering solution for incoming wave entering from j-th line with the

wave number k;
cpgj)(xi) = e i L RiehTi (4 = j),
= T;j e (1 # 7). (2.5)

where R; represents the reflection amplitude for i-th line, and 7;; the transmission amplitude
(9) 1(4)

from j-th to i-th line. From the vectors ¥ and ¥'(9) made from ;" and ;" respectively,
we can construct matrices

(@M. oMy = S(k) + 1,

(W'D )y = ik(S(k) — ). (2.6)

where the scattering matrix S(k) (which is not to be confused with the sub-matrix S appearing

2/16
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in (2.3)) is given by

Ra(k) Totk) - Tinlh)
s | Rl T | .
7%1.(’?) Tna(k) Rn.(k)
From (2.1), we obtain
S(k) = —AinkB(A _ikB), (2.8)

where ﬁ represents the inverse matrix of M.

A vertex coupling can be also described by boundary conditions formulated as AU+ BW¥’ =

0 for
_ I T _ S
0 0 —Tt T

this will be called a reverse ST form. It is obvious that for a given vertex coupling the matrices
A and A differ, as well as B, B. And conversely, a simple interchange of A and B in (2.2),
namely BY + AU’ = 0, leads to boundary conditions that correspond to a different system;
this system may be considered as a counterpart of the original one. Let us examine how the

scattering matrices are related in this case:
1

B +ikA
B 1

A+ =B

Sa(k) = (B —ikA)

(A— _LkB) = —S(~1/k). (2.10)
This formula signifies a high-low wave number duality k <> —1/k between the scattering matrix
S(k) of system described by the ST form and Sy(k) of its counterpart.

We now consider a single system and two its characterizations: one by the ST form AV +
BU' = 0 with (2.3), one by the reverse ST form AW + BY’' = 0 with (2.9). Although the
matrices A and A are very different, as well as B, B, it naturally holds rank(A) = rank(A)
and rank(B) = rank(B), which, because of (2.4), further leads to rank(S) = rank(S). In
other words, the quantity rg = 74 + rg — n is a characteristic number of a system, that is

independent of the representation.

3. Scattering matrices and boundary conditions: n=2 case

We start by examining the known case of n = 2, namely, the point interaction on a line, in
order to see the effectiveness of our ST form in identifying the physical content of the singular

vertex.
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3.1 rank(B)=0, rank(A4)=2
For this case, the first condition rank(B) = 0 automatically guarantees the second condi-

tion rank(A) = 2. We have the equation
U =0, (3.11)

which determines disjoint Dirichlet boundaries ¢; = @2 = 0.

3.2 rank(B)=1
Suppose we now have rank(B) = 1. The relation (2.4) reads rank(A) = rank(S)+ 1. There

are two possibilities.

3.2.1 rank(B)=1, rank(4)=1
This corresponds to rank(S) = 0. We have the equation

L t\ (¥} _ [0 0) (¥ (3.12)
0 0\ —t* 1) \g2) '

which is the pure Fillop-Tsutsui scale invariant boundary condition,” t*¢; = ¢y and 0] =

—tph.

3.2.2 rank(B)=1, rank(A)=2

This corresponds to rank(S) = 1. We have, in this case, the form

1 t)\ (¢ s 0\ (1 (3.13)
0 0\ —t 1) \¢2) '

with a non-zero real number s and a complex number ¢. With ¢ = 1, we have ¢} + ¢}
= sp1 = S¢a, which is nothing but the ¢ interaction with strength s. (Note the outgoing
directions for all x;s.)

In general, the case rank(B) = 1 is understood as the combination of § and Fiilop-Tsutsui

interactions. This is evident from the transmission amplitude

2kt
Tio(k) = ——— 3.14
12(k) k(L +tt) + is’ (3:-14)
whose characteristic length scale is (1 + t*t)/s. Inverse of this length scale divides the wave

number into two regions. We find the low wave number blockade 772(0) = 0 and high wave

2t
1+t*

number transparency 712(0c0) =
t=1.

which becomes the perfect transparency 772(o0) = 1 for

3.3 rank(B)=2
We have the form

/
90/1 S11 S12 ¥1 . (3.15)
2 8?2 522 P2
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From the relation (2.4), we obtain rank(A) = rank(S), which leaves us with three possibilities
rank(A) =0, 1 and 2.
3.3.1 rank(B)=2, rank(A4)=0
This corresponds to rank(S) = 0, and we have the equation
v =0, (3.16)
representing disjoint Neumann boundaries ¢} = ¢}, = 0.

3.3.2 rank(B)=2, rank(A4)=1

When the rank of the matrix A is one, we can re-parametrize the above equation as

(2)- (0 2)) o
Py c*s c*es) \p2

with a real number s and a complex number c¢. Multiplying the both sides by

1/s 0
/ ) (3.18)
—c 1
we obtain the reverse ST form,

5 0\ (¥ _ (! t\ (1 (3.19)
—t 1) \¢h 0 0) \¢2) '

with § = 1/s and ¢ = ¢, signifying the pure ¢’ interaction amended by the Fiilop-Tsutsui
scaling. The transmission amplitude,
—2t

Tia(k) = T+ 00 —iks’ (3.20)
shows both the high-wave number blockade, 772(00) = 0, and low-wave number pass filtering
behavior, 712(0) = % Obviously, this is a dual partner of previous example of pure ¢
connection.

3.3.3 rank(B)=2, rank(A4)=2
When the rank of the matrix A is two, we have the generic connection condition for a
quantum particle residing on two joint lines, namely the combinations of § and ¢’ interactions.

This can be seen from the low-wave number and high-wave number blockade behavior
2/€812
ik? — ktr[S] — idet[S]

In summary, for the case of n = 2, the rank of the matrices A and B, and resultantly, that

Tia(k) = (3.21)

of S, are the determining factors of physical contents of point interactions.

4. Scattering matrices and boundary conditions: n=3 case
We now examine the quantum Y-junction, namely, the singular vertex of n = 3. We shall

show that the concept of “d-like” and “¢’-like” couplings can be established between each pair
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of lines outgoing from the singular vertex.
In idealized limit, two lines ¢ and j are identified as having “pure J-like” connections when
we have
7;;(0) =0, and 7;;(k) = Const. (k — 00). (4.22)

“ pure ¢’-like” if we have

Conversely, ¢ and j are identified as
7:;(0) = Const. (k—0), and 7;;(c0)=0. (4.23)

Since the quantum flux can circumvent direct blocking between i and j through indirect path
i — k — j, strict conditions 7;;(0) = 0 for é-like and 7;;(c0) = 0 for ¢’-like connection are
to be breached when other types of connections are present among other lines, and therefore,
zeros for 7;; need to be replaced by small number, 7;; ~ 0 in above conditions. General char-
acterization of pure d-like connection as high-pass frequency filter, and pure §’-like connection
low-pass filter is still valid.

As in the case of n = 2, we classify the boundary condition according to the ranks of

matrices A and B.

4.1 rank(B)=0, rank(A)=3
The first condition automatically ensures the second. We again have disjoint condition
v =0, (4.24)
which is disconnected Dirichlet boundaries 1 = w2 = @3 = 0.
4.2 rank(B)=1

With this condition, the relation (2.4) now reads rank(A) = rank(S) + 2. There are two
possibilities, rank(A) = 2 and 3.

4.2.1 rank(B)=1, rank(A)=2

This corresponds to rank(S) = 0, and we have the equation

1 ta ts3\ [¢} 0 0 0) [¥1
00 ollal=1-6 10|l (4.25)
0 0 0/ \¢ 0 1) \gs

which is n = 3 version of pure scale invariant Fulop-Tsutsui boundary condition, given by

t5t5p1 = t3pa = thos and @) + tagy + tapy = 0.
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4.2.2 rank(B)=1, rank(A)=3

This case corresponds to rank(S) = 1. We have

1 tQ t3 (pll S 0 0 ©1
00 oflehl=)-t 1 o], (4.26)
0 0 0/ \¢h —t5 0 1) \ys3

with non-zero real number s. With to = t3 = 1, we have ¢} + ¢}, + 5 = sp1 = sp2 = sp3,
which is the n = 3 generalization of pure § potential connection conditions® between all half
lines. With general to and t3, Flilop-Tsutsui scalings ¢3, t5 and t4/t5 are introduced on @2 /1,

v3/p1 and on /3, respectively. The transmission amplitudes for this case are given by

2

S

\

5 Y 6

Fig. 1. Pure ¢ type connection between all lines, obtained from ST form with rank(B) = 1 and
rank(A4) = 3.

10— F—+——+—+ 1.04
oot | T35 R()I?
...... 3-1 3
0.51 051

0.0+

Fig. 2. Transmission and reflection probabilities for Y-junction with pure § type connection between
all lines. In the left side, solid line represents |712(k)|?, dashed line |Z23(k)|?, and dotted line
|731(k)|2. In the right, solid line represents |R1(k)|?, dashed line |R2(k)|?, and dotted lin |R3(k)|>.
Parameter values t; = t3 = 1/y/2, s = 2 are used in (4.27). Two identical lines are drawn with

slight offsets for better viewing.

25k
T3 (k) = 3
(k) is + (1 + t3ly + tita)k’
2ok
Tia(k) =
12(k) is + (14 t3t0 + t5ta)k’
25tk
Tas(k) = 273 (4.27)

is + (14 thty + t3t3)k
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which has the length scale (1 + t5to + t3t3)/s. Below this length scale, the transmission coef-

ficients show the high-wave number pass filtering behavior
7;;(0) =0, 7;j(k) =Const. ask — 0, (4.28)
which is a hallmark of pure § connections between all branches (See Figs. 1 and 2).

4.8 rank(B)=2
The ST form BY' = — AV now reads

I 0t ©1 s;i1 s12 0\ [¢1
0 1 t <P/2 = sy s2 0 w2 |- (4.29)
00 0/ \gs -7 —t3 1) \¢s3

The relation (2.4) becomes rank(A) = 1 + rank(S). We have three possibilities:

4.3.1 rank(B)=2, rank(A)=1
This corresponds to rank(S) = 0. We have s11 = s12 = s92 = 0 in (4.29). This situation
represents a scale invariant interaction between lines 1-3, described by ¢} = —t3¢%, and a

scale invariant interaction between lines 2-3, described by ¢, = —t3¢5.

4.3.2 rank(B)=2, rank(A)=2
Suppose that the rank of the sub-matrix S is one, namely top two raws of the RHS are

linearly dependent to each other. We can write (4.29) in the form

1 0 t A s es 0\ (o1
0 1 ¢t oh | =1cs ces 0 |p2]- (4.30)
00 0 @3 -t —ty 1) \e3

Interestingly, we can reverse the role of A and B in the following manner. We now write (4.30)

in the form

1 ¢t 0 A s 0 s o1
00 ofllel=1-t 1 —&||es]- (4.31)
0 ty 1 v c*s 0 c*cs 2

Multiplying the both sides by

1/s 0 0
/s 1 0], (4.32)
—c* 0 1
we obtain a reverse ST form —BV' = AV as
5 s 0 A 1 0 t 01
¢'s ces Ol |eh| =10 1 3 3 | (4.33)
- 1) \w) \o o0 o) \w
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with § =1/s, ¢ = t1, t1 = ¢, and t3 = ¢t} — t5. Note that two forms (4.30) and (4.33) are dual

to each other, and that this case can be also viewed as having rank(A) = 2 and rank(S) =1,
as well as rank(B) = 2 and rank(S) = 1.

It is instructive to look at the transmission amplitudes, which, for this case, are given by
_ 2t7k + 2ic*s(ct] — t5)

T31(k) =
31 (k) Dik +isDy
—2t5t1k — 2ics
To(k) = =22 =77
12(k) D1k + isDy
2tk — Qis(c*tl — tQ)
Tos(k) = . 4.34
23(k) D1k +isDy (4.34)
where we set
Dy =1+ c*c+ (ct] — t5)(c"t1 — t2),
Dy =1+ t]ty + t5ts. (4.35)

Two special cases are noteworthy, at which we shall look in detail.

s N s

Fig. 3. Mixed type vertex coupling obtained from ST form with rank(B) = 2 and rank(A4) = 2. The
0—6—0" (left) and §'—0'—9 (right) type connection are obtained from conditions 3 = 0 and ¢3 = 0,

respectively.

4.3.2.1 6-6-0" type
Let us suppose for now, that we have ¢t} —t5(= ¢5) = 0. This results in 731 (0) = T23(0) = 0,
indicating the presence of two pure d-like connections between lines 3 — 1, and between 2 — 3.
When further condition s > tit; and ¢ # 0 are met, we have Ti2(k) = Const. as k — 0 and
T12(00) = 0, signifying the pure §’-like connection between lines 1 — 2. The same conclusion
is drawn from the consideration of connection conditions which reads
S h =t gh = s
t1 to t1t1

P3 = t1p1 + thp2
1 1
t*@ﬁ = LT‘P/2~ (4.36)
1 2
The last equation, which is not independent of the first three, is shown to display the pure

¢’-like interaction between the half lines 1 and 2, ammended by the Fiilop-Tsutsui scaling by
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factor t1/ts. The first two equations clearly show the fact that the connections between the

half lines 2 and 3, and between 3 and 1 are pure é-like (See Fig. 3, left, and Fig. 4).

4.3.2.2 §'-6'-6 type

Let us now suppose, in place of previous conditions, that we have to = 0 and t; # O.
We then have T12(00) = Ta3(00) = 0, Ti2(k) = Const. # 0 and Toz(k) = Const. # 0 as we
let k¥ — 0, indicating the presence of two pure §'-like connections between lines 1 — 2 and
between 2 — 3. With further assumption ¢ < 1, we have 731(0) =~ 0, signifying the pure é-like
connection between lines 3 — 1 (See Fig. 3, right, and Fig. 5). These facts are again clearly

visible in the following expressions for the boundary condition;

1 1
—p1+ 2= —Sp3+ 2= — o,
c cty sc*c
@y = " + s,
i1 = 3. (4.37)

Thus we have shown that this case corresponds to a mixture of § and ¢’ connections

including two pure connections § —§ — ¢’ and 6’ — &’ — ¢ as two limiting cases.

1.0 4

1.04
Tk

IR(K)I?

0.5+ 051 %

00 L rg=2, r,=2, t;=0

0O 2 4 6 8 0 2 4 6 8
k k

Fig. 4. Transmission and reflection probabilities for Y-junction with 6—6—9’ type connection. In the
left side, solid line represents |712(k)|?, dashed line |Za3(k)|?, and dotted line |731(k)|?. In the
right, solid line represents |Ri(k)|?, dashed line |Ra(k)[?, and dotted lin |R3(k)|>. Parameter
values t; =ty = 1/4/2, 511 = 812 = 593 = 1 are used in (4.29). Two identical lines are drawn with

slight offsets for better viewing.

4.5.8 rank(B)=2, rank(A)=3
When the rank of the matrix A is three (thus giving rank(S) = 2), we have rather gen-
eral combination of § and ¢’ interactions between each pair of half lines. Let us look at the
transmission amplitudes, which are given by
2t k? + 2i(s90tt — s5ot5)k
731(]{) _ %1 5 ( ‘22 1 12 2) :
k*Ey +ikEq + Ey
. —215;251]{32 — 21812]{3
N k2Ey +1ikEq + EO’

Tia(k)
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1.0+ i i i & 1.0+
AP | =2 Ta=2 e IR(Kk)I?

0.51 =1 0.51

0.0 %

Fig. 5. Transmission and reflection probabilities for Y-junction with §—¢’—d’ type connection. Param-

eter values t1 = 1/3,t2 =0, 511 = 6, $12 = 2, $20 = 2/3 are used in (4.29).

2tok? — 2i(siyty — siut2)k

Ts(k) = k2Ey +ikE| + Ey (4.38)
where we set
Ey = — det[S],
Eq = tr[S] + saatit1 — si2tite — siotsts + s11tste
By =1+t + thto. (4.39)

The guaranteed presence of §-like connection between all lines can be seen from the zero
energy blockade 7;;(0) = 0 for all ¢ and j. The presence or absence of ¢’-like component is
controlled by t; since we have 731(c0) o t], Ti2(0c0) o tht; and Taz(00) o< ta. A numerical

example of this case is shown in Fig. 6.

10— +——+—+— 1.04
TP -- 23| RKP

051 :. ERCITICRI | 0.5+

-

0.0+

Fig. 6. Transmission and reflection probabilities for Y-junction with rank(B) = 2, rank(A) = 3.

Parameter values t; = t9 = 1/\/§, $11 = S12 = 1, S99 = —2 are used in (4.29).

4.4 rank(B)=38
We have the ST form

/

#1 S11  S12 S13 ®1

! —

Yo | = | s12 S22 sas | | w2 ]- (4.40)
! * *

¥3 S13 S23 533 ¥3

From (2.3), we have A = S, and thus rank(A) = rank(S). We have four possibilities:
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4.4.1 rank(B)=3, rank(A)=0
This corresponds to rank(S) = 0, and the boundary condition becomes
=0 (4.41)

which is the disjoint Neumann condition ¢} = ¢h = ¢4 = 0.

4.4.2 rank(B)=3, rank(A)=1

When the rank of the matrix A is one, namely three rows of the RHS are linearly dependent

on each other, we have

o} s cs ds 01
oy | = | c's ces crds| |2 (4.42)
©h d*s d*cs d*ds 03

Multiplying the both sides by

1/s 0 0
1 0], (4.43)
—d* 0 1

we arrive at a reverse ST form as

5 0 0\ (¥ 1 ¢ d\ (¥
—t 1 of|esl=10 0 0], (4.44)
—d* 0 1 Wl 0 0 0 ©3

with § = 1/s. We have c*d*¢| = d*¢h, = c*¢h, and @1 + cps + dps = 5¢], signifying the
generalized pure &' interaction® ammended by the Fiilop-Tsutsui scaling. This is also evident

from the transmission amplitudes, which are given by

—2d*s
T51(k) =
n(k) —ik + s(1+ c*c+d*d)’
—2cs
Tio(k) =
12(k) —ik + s(1 4 c*c + d*d)’
—2c*ds
Tas(k) = (4.45)

—ik + s(1 4 c*c + d*d)’
The formulae imply 7;;(co0) = 0 and 7;;(k) = Const. as k — 0 (See Figs. 7 and 8).

4.4.3 rank(B)=3, rank(A)=2

When the rank of the matrix A is two, and thus that of S is two, the last row of RHS of

(4.40) is equal to some combination of the first two. We then have

©4 s g cs+dg\ (¢
oy | = q* gt +dr| | 2 (4.46)
0 c's+diqt cfq+d'r f ©3
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Fig. 7. Pure &' type connection between all lines, obtained from ST form with rank(B) = 3 and
rank(A) = 1.

1.0+ + + + 4 1.0+
Tk IR(K)I®
0.5+ 0.5+
0.0+% o,o-,'
0o 2 6 8 0 2 4 6 8
k k

Fig. 8. Transmission and reflection probabilities for Y-junction with pure ¢’ type connection between

all lines. Parameter values s11 = s12 = $13 = S92 = S23 = s33 = 1 are used in (4.40).

with f = c¢*ecs 4 ¢*dq + d*cq* + d*dr. Multiplying both sides by

r/(sr—q*q)  —q/(sr—q'q) O
—q*/(sr —q*q) s/(sr—q*q) 0], (4.47)
1

—c* —d*

we obtain a reverse ST form

5 g 0\ (¢ 1 0 t) (e
e 7 0|l =10 1 B ]|e2], (4.48)
17—t 1) \¢} 0 0 0/ \y3

with identification § = r/(sr — ¢*q), ¢ = —q/(sr — q*q), 7 = s/(sr — ¢*q), t1 = ¢, and {2 = d.
This is obviously dual to the case of rank(B) = 2, rank(A) = 3, given by (4.29). Now the
presence of ¢’-like connection between all lines are guaranteed, and the presence or absence

of d-like component is controlled by ¢ and d. The transmission amplitudes, given by
_ 2ik(c*s 4+ d*q*) — 2¢*(sr — q*q)

7T =
2ikq + 2cd*(sr — q*q)
Tio(k) =
12(k) k2 +ikF + Fy
2ik(cq* + dr) — 2d(sr — ¢*

k?2—|—i]{}F1—|—FO ’
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where we set

Fy=—(sr —q*q)(1 4+ c*c+ d*d),

Fy =s+r+ces+ c'dg+ deq” + d*dr, (4.50)

corroborate this assertion with high energy blockade 7;;(co) = 0 for all ¢ and j, and also with
the zero energy expressions 731(0) o< ¢*, 7T12(0) < d*c and 723(0) o< d. A numerical example of

this case is shown in Fig. 9.

1.0

1.04;
ITk)I? E

IR(K)I?

0.5+ 05t i

0.0+

Fig. 9. Transmission and reflection probabilities for Y-junction with rank(B) = 3, rank(A) = 2.

Parameter values s11 = $13 = S22 = $33 = 1, 813 = s23 = 2 are used in (4.40).

4.4.4 rank(B)=3, rank(A)=3
When the ranks of the matrices A and B are both equal to n = 3, we have the generic
connection condition for a quantum particle residing on a joint three lines, namely the combi-

nations of 0 and ¢’ interactions. Let us look at the transmission amplitudes, which are given

1.04—F—+—+—+ 1.0 4
Tk R(K)I?

0.57 0.57

0.0+ 0.04

Fig. 10. Transmission and reflection probabilities for Y-junction with rank(B) = 3, rank(A4) = 3,
the generic condition. In the left side, solid line represents |712(k)|?, dashed line |753(k)|?, and
dotted line |73;(k)|?. In the right, solid line represents |R1(k)|?, dashed line |R2(k)|?, and dotted
lin |R3(k)|?. Parameter values s;3 = —1/3, s12 = —1, 8513 = 1, 890 = 1, 593 = —3, 533 = —4 are
used in (4.40).
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by
B —2ik?si; + 2k det[S;;]
k3 4 ik2tr[S] — kY, det[Syi] — idet[S]

We have 7;;(0) = 7;j(c0) = 0 for all ¢ # j signifying the guaranteed presence of both d-like

Tij (k)

(4.51)

and ¢’-like components in the connections between all lines.

This expression, along with the analogous expression for n = r4 = rg = 2 case, invites
an easy straightforward extension to general n. A numerical example of this case is shown in
Fig. 10.

5. Conclusion

Our main finding in this article on quantum Y-junction is the fact that the couplings
between each pair of outgoing lines are individually tunable. The ST form of vertex boundary
condition, which gives the prescription for minimal construction of singular vertex as a limit
of finite potentials, is also found to be instrumental in identifying the type of coupling between
all pairs of outgoing lines. Crucial quantity to identify the physics of singular vertex is to be
found in the rank of matrices A and B appearing in the ST form.

Specifically, the pure §-type coupling is constructed from rank(B) = 1 boundary condition,
while the pure §’-type coupling is constructed from rank(A) = 1.

Boundary condition corresponding to ST form for n = 3 with rank(A) = rank(B) = 2 is
identified as containing Y-junction with both §—6—¢’ type and §’—4'-9 type singular verteces as
limiting cases of parameter values t; = 0 and t; = 0, respectively. Spectral filtering of quantum
waves is achieved by these types of singular vertices.

The extension of our treatment to quantum singular vertex of degree n = 4, or "X-
junction”, and then to that with higher n appears tedious, but is within reach once the need
of detail analysis is required as a model of quantum single electron devices. We hope that this
work becomes a stepping stone for such extensions. Obviously, the experimental realization
and demonstration with quantum wires and quantum dots are highly desired. Designing

real-world approximation for singular vertex of quantum graph then becomes crucial.”-911)
We acknowledge the financial support by the Ministry of Education, Culture, Sports,

Science and Technology, Japan (Grant number 21540402), and also by the Czech Ministry of
Education, Youth and Sports (Project LC06002).
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Abstract

We study Schrédinger operators on an infinite quantum graph of a chain form
which consists of identical rings connected at the touching points by §-couplings
with a parameter « € R. If the graph is ‘straight’, i.e. periodic with respect
to ring shifts, its Hamiltonian has a band spectrum with all the gaps open
whenever « # 0. We consider a ‘bending’ deformation of the chain consisting
of changing one position at a single ring and show that it gives rise to eigenvalues
in the open spectral gaps. We analyze dependence of these eigenvalues on the
coupling o and the ‘bending angle’ as well as resonances of the system coming
from the bending. We also discuss the behaviour of the eigenvalues and
resonances at the edges of the spectral bands.

PACS numbers: 03.65.Db, 03.65.Ge

1. Introduction

Quantum graphs, i.e. Schrodinger operators with graph configuration spaces, were introduced
in the middle of the last century [RuS53] and rediscovered three decades later [GP8S, E§89].
Since then they have attracted a lot of attention; they became both a useful tool in numerous
applications and a means of making it easy to study fundamental properties such as quantum
chaos. We refrain from giving an extensive bibliography and refer to the recent proceedings
volume [AGA] which the reader can use to check the state of art in this area.

One of the frequent questions concerns relations between the geometry of a graph I" and
spectral properties of a Schrodinger operator supported by I'. Put like that, the question is a bit
vague and allows different interpretation. On the one hand, we can have in mind the intrinsic
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Figure 1. The unperturbed chain graph.

geometry of I' which enters the problem through the adjacency matrix of the graph and the
lengths of its edges. On the other hand, quite often one thinks of I" as a subset of R" with the
geometry inherited from the ambient space. In that case geometric perturbations can acquire
a rather illustrative meaning and one can ask in which way they influence spectral properties
of a quantum particle ‘living’ on I'; in such a context one can think of graphs with various
local deformations as ‘bent’, locally ‘protruded’ or ‘squeezed’, etc.

This is particularly interesting if the ‘unperturbed’ system is explicitly solvable being, for
instance, an infinite periodic graph. An influence of local spectral perturbations mentioned
above is in this setting a rich subject which deserves to be investigated. So far it has been
considered only episodically but even such a brief look shows that it may have properties
uncommon in the usual theory of Schrédinger operators [KVO06]. With this motivation we find
it useful to start such a programme by discussing the influence of a ‘bending’ deformation on
a graph which exhibits a one-dimensional periodicity.

To make things as simple as possible at the beginning we will not strive in this paper
for generality and we will discuss in detail a simple nontrivial example, allowing for a fully
explicit solution, in which the unperturbed system is a ‘chain graph’ consisting of an array
of rings of unit radius, cf figure 1, connected through their touching points. We suppose
that there are no external fields. Since values of physical constants are not important in our
considerations we put i = 2m = 1 and identify the particle Hamiltonian with the (negative)
Laplacian acting as ¥; — —1//1’.’ on each edge of the graph. It is well known that in order to
get a self-adjoint operator one has to impose appropriate boundary conditions on the graph
vertices. In our model we employ the so-called é-coupling characterized by the conditions

n
¥ (0) = ¥ (0) =: ¥ (0), J ke, ZW}(O) =ay(0), (1.D
j=1

where 1 = {1, 2, ..., n} is the index set numbering the edges emanating from the vertex—in
our case n = 4—and o € RU {+o0} is the coupling constant supposed to be the same at every
vertex of the chain. It is important that the ‘straight’ graph has spectral gaps’, thus we exclude
the free boundary conditions (sometimes called, not quite appropriately, Kirchhoff), i.e. we
assume o # 0.

The geometric perturbation to consider is the simplest possible bending of such a chain
obtained by a shift of one of the contact points, as sketched in figure 2, which is parametrized
by the bending angle ¥ characterizing the ratio of the two edges constituting the perturbed ring.
Our aim is to show that the bending gives rise to eigenvalues in the gaps of the unperturbed
spectrum and to analyze how they depend on ©¥. At the same time the bent chain will exhibit
resonances and we will discuss behaviour of the corresponding poles.

The contents of the paper are as follows. In the following section we analyze the straight
chain. Using the Bloch—Floquet decomposition we will show that the spectrum consists of an
5 A nontrivial vertex coupling is also related to the problem of approximation of quantum graphs by ‘fat graphs’
of which the reader can learn more, e.g., in [CE07] or [EPO8], references therein, and a paper in preparation by the

authors of [EP08].
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Figure 2. A bent graph.
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Figure 3. Elementary cell of the periodic system.

infinite number of absolutely continuous spectral bands separated by open gaps, plus a family
of infinitely degenerate eigenvalues at band edges. In section 3 we will analyze the discrete
spectrum due to the bending showing that in each gap it gives rise to at most two eigenvalues.
Section 4 describes their dependence on the bending angle as well as complex solutions to
the spectral condition corresponding to resonances in the bent chain. In section 5 we discuss
further the angular dependence with attention to singular points where the solutions coincide
with the band edges. Finally, in the concluding remarks we draw a parallel of our results with
properties of quantum waveguides.

2. An infinite periodic chain

First we consider a ‘straight’ chain I'y as sketched in figure 1; without loss of generality
we may suppose that the circumference of each ring is 2. The state Hilbert space of a
nonrelativistic and spinless particle living on Ty is L?(Ig). We suppose that the particle is
free, not interacting with an external potentials on the edges, and denote by Hy its Hamiltonian,
i.e. it acts as the negative Laplacian on each graph link and its domain consists of all functions
from Wli’f(r‘o) which satisfy the § boundary conditions (1.1) at the vertices of I'y; we suppose
that the coupling constant « is the same at each vertex®.

In view of the periodicity of I'y, the spectrum of H, can be computed using the Bloch—
Floquet decomposition. Let us consider an elementary cell with the wavefunction components

being denoted according to figure 3 and ask about the spectrum of the Floquet components

6 The coupling constant « is kept fixed and for the sake of simplicity we will not use it to label the Hamiltonian
neither in the straight nor in the bent case.
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of Hy. Since the operator acts as a negative second derivative, each component of the
eigenfunction with energy E = k> # 0 is a linear combination of the functions e***, The
momentum k is conventionally chosen positive for £ > 0, while for E negative we put
k = ik with k > 0 (the case E = 0 will be mentioned separately). For a given E # 0, the
wavefunction components on the elementary cell are therefore given by

Y (x) = Cre* + e, x € [—m/2,0]
Yr(x) = Che*™ + Cype™™, x € [0, /2]
g1 (x) = D} % + D e7*, x € [-7/2,0] @D
@r(x) = DL e + Dy e™*, x € [0, /2].
As we have said, at the contact point the §-coupling (1.1) is assumed, i.e.
YL(0) = Yr(0) = 9. (0) = 9r(0)  —¥;(0) + Y (0) — 9, (0) + ¢ (0) = & - Y1.(0).
On the other hand, at the ‘free’ ends of the cell the Floquet conditions are imposed,
Yr(r/2) =Y (=m/2)  Yr(r/2) =Y (—7/2) 23)

or(/2) = % (—7/2) or(T/2) = €9, (—7/2)

with 6 running through [—, ); alternatively we may say that the quasimomentum %9 runs
through [—1/2, 1/2), the Brillouin zone of the problem.
Substituting (2.1) into (2.2) and (2.3), one obtains after simple manipulations

C% - sinkw = D - sinkm, Cy -sinkm = Dy - sinkm, (2.4)

where X stands for L or R, hence C} = Cy, and D}, = Dy provided k ¢ Ny := {0, 1,2, ...}.
We will treat the special case k € N later, now we will suppose k does not belong to N, the
set of natural numbers. Furthermore, from (2.2) and (2.3) we obtain an equation for the phase

factor e’

20 _ 6 ol _
e’ —e 2coskn+ﬂsmkn +1=0, (2.5)
which has real coefficients for any k € R U iR\{0} and the discriminant equal to
o 2
D =|2coskmr + —sinkn | —4.
2k

We have to determine values of k2 for which there is a6 € [—, ) such that (2.5) is satisfied,
in other words, for which k2 it has, as an equation in the unknown el at least one root of
modulus 1. Note that a pair of solutions of (2.5) always gives 1 when multiplied, regardless
of the value of k; hence either both roots are complex conjugates of modulus 1, or one is
of modulus greater than 1 and the other has modulus smaller than 1. Obviously, the latter
situation corresponds to a positive discriminant, and the former one to the discriminant less or
equal to zero. We summarize this discussion as follows:

Proposition 2.1. If k> € R\{0} and k ¢ N, then k* € o (Hy) if and only if the condition

o sinkmw
coskm + i

<1 (2.6)
is satisfied.

In particular, the negative spectrum is obtained by putting k = ix for « > 0 and rewriting
the inequality (2.6) in terms of this variable. Note that since sinh x # 0 for all x > 0, it never

4



J. Phys. A: Math. Theor. 41 (2008) 415206 P Duclos et al

occurs that sin ks = 0 for k € iR", the positive imaginary axis, thus there is no need to treat
this case separately like for k € R*, cf (2.4) above.
Corollary 2.2. Ifk > 0, then —«? € o (Hy) if and only if

o sinhkm
coshkm + — -

<. 2.7
K

Let us finally mention the case k € N left out above. It is straightforward to check that
k? is then an eigenvalue, and moreover, that it has an infinite multiplicity. One can construct
an eigenfunction which is supported by a single circle, which is given by ¥ (x) = sin kx with
x € [0, 7] on the upper semicircle and ¢(x) = —sinkx with x € [0, 7] on the lower one.

Remark 2.3. The condition (2.6) reminds us of the corresponding condition in the Kronig—
Penney model with the distance between the interaction sites equal to 7, cf [AGHH], the only
difference being that the coupling constant is halved, %a instead of «. In contrast to that, the
point spectrum of the KP model is empty. These facts are easy to understand if we realize
that our model has the up-down mirror symmetry, and thus Hy decomposes into a symmetric
and antisymmetric part. The former is unitarily equivalent to the KP model with modified
coupling, the latter corresponds to functions vanishing at the vertices, having thus a pure
point spectrum. Looking ahead, we remark that the bending perturbation breaks this mirror
symmetry.

Finally, in the case £ = 0 we get in the similar way the equation
e — e (24 %) +1=0, 2.8)
replacing (2.5), whence we infer that 0 € o (Hp) if and only if
1+ % <1, 2.9)

hence zero can belong to the continuous part of the spectrum only and it happens iff
o € [—8/m, 0]. In conclusion, we can make the following claim about o (Hp).

Theorem 2.4. The spectrum of Hy consists of infinitely degenerate eigenvalues equal to n>
with n € N, and absolutely continuous spectral bands with the following properties:

If « > 0, then every spectral band is contained in an interval (n®, (n + 1)*] with
n € Ny := N U {0}, and its upper edge coincides with the value (n + 1).

Ifa < 0, then in each interval [n?, (n + 1)?) with n € N there is exactly one spectral band the
lower edge of which coincides with n*. In addition, there is a spectral band with the lower
edge (being the overall spectral threshold) equal to —k?>, where « is the largest solution of

o sinhkm
coshkm + i

=1 (2.10)

K

The position of the upper edge of this band depends on «. If —8/m < a < 0, then it is equal
to k* where k is the solution of

coskm + 2. sinkw _ —1
4 k
contained in (0, 1). On the other hand, for o < —8/m the upper edge is negative, —«> with
being the smallest solution of (2.10), and for « = —8/m it equals zero.

Finally, o (Hp) = [0, +00) holds if « = 0.
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Proof. The degenerate bands, in other words, the eigenvalues of infinite multiplicity, were
found already and it is straightforward to check that no other eigenvalues exist. The continuous
spectrum can be in view of remark 2.3 treated as in [AGHH], nevertheless, we sketch the
argument not only to make the paper self-contained, but also in view of following sections
where some ideas and formula of the present proof will be used again.

Consider first the positive part of the continuous spectrum. The condition (2.6) clearly
determines bands with one endpoint at n?, n € N, where the sign of « decides whether it is
the upper or lower one. If @ < 0, the presence of a band in (0,1) depends on |«|. Denoting
glx) = cosxn+%-§“‘% we want to show that B := {x € (0, 1) : |g(x)| < 1} is either empty
or an interval with zero as its edge. It is obvious that g maps (0, 1) continuously into (—oo, 1);

we will check that g(xo) = —1 implies g'(x0) < 0. We first note that the premise implies

cosxom = —1—73- S'“X%; taking the square of this relation we find after simple manipulations
. —1 -1 .

that sin xor = —2(4%0 + %) and cos xoTr = (& — “aﬁ)(& + “aﬂ) . Evaluating g’ (x¢)

and substituting these expressions we get

, am sin 7 x
g(x0)=—<1— )<0.
4xg T X0

These properties together with the continuity of g imply that if B is not empty, then it is an
interval with the left endpoint zero. It is also clear that B is nonempty iff g(0+) > —1 which
gives the condition « > —8/m. In contrast, B is empty if « < —8/7 and the borderline case
o = —8/m was mentioned above.

Let us next focus on the negative part using g(x) := coshxm + 7 - sinhxx

X

and ask about

B :={x € (0,00) : |g(x)| < 1}. Itis easy to check that §(x) = —1 iff tanh F = I% and
g(x) = liff coth - = I%xl‘ It implies that there is exactly one x; such that §(x;) = 1, and that
the equation g(x) = —1 has one solution x_; in the case « < —8/7 and no solution in the

case o € [—8/m, 0). Since obviously 0 < x_; < x; and g(0+) := lim,_,o, g(x) = 1 + an /4,
we infer that B is a bounded interval. Its closure contains zero iff « € [—8/m, 0) because then
g(0+) € [—1, 1). In such a case the lowest spectral band is the closure of B U B, otherwise it
is the closure of B only. O

3. The perturbed system

3.1. General considerations

Let us suppose now that the straight chain of the previous section suffers a bending perturbation
as shown in figure 2. We call the perturbed graph I'y; it differs from I'y by replacing the arc
lengths 7 of a fixed ring, conventionally numbered as zero, by w + ¢. The bending angle ¥ is
supposed to take values from (0, 1), regardless of the fact that for ¢ > 2m/3 it is not possible
to consider I'y embedded in the plane as sketched—one can certainly realize such a ‘bending’
in an alternative way, for instance, by deforming the selected ring.

The state Hilbert space of the perturbed system is L>(I'y) and the Hamiltonian is Hy
obtained by a natural modification of Hp; our aim is to determine its spectrum. Since I'y has
the mirror symmetry w.r.t. the axis of the zeroth ring passing through the points x = %(n +9),
the operator Hy can be reduced by parity subspaces into a direct sum of an even part, H*, and
odd one, H ~; for the sake of simplicity we drop mostly the subscript ¢ in the following.

All the components of the wavefunction at energy k? are linear combinations of e
As we have said we use the ring labelling with zero corresponding to the perturbed one; the
mirror symmetry allows us to study a half of the system only, say, with non-negative indices.

+ikx

6
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The wavefunction on each ring will be a pair of functions v; and ¢;, where j is the circle

index, v¥; corresponds to the upper semicircle and ¢; to the lower one,
Yi(x) =Cre™ +Cye™™, x € [0, 7]
gj(x) = Dj ™ + Dy e, x €0, 7],

3.1

for j € N. The situation is different in the case j = 0, where the variables run over modified
intervals,

. . —
Yo(x) = Cy elr 4 Cy g ikx X € |:71 7 ,ni|
(3.2)
+ ikx — —ikx T +0
wo(x) = Dye™ + Dy e, xe|: > ,ni|.
There are 6-couplings with the parameter « in the points of contact, i.e.
¥ (0) = ¢;(0) V() =¢;(m) (3.3)
and
V;i(0) = ¢;_1(m) 3.4
YH0) +¢(0) — ¥ (1) — ¢_y () = & - ¥, (0). (3.5)
Substituting (3.1) into (3.3) we obtain
C;T -sinkw = D}' -sinkmw and Cj -sinkm = D} -sinkm,

thus for £ ¢ Ny we have C;.' = D;T and Cj_ = Dj. The case k € Ny can be treated
analogously with the ‘straight’ case: it is easy to see that squares of integers are infinitely
degenerate eigenvalues and the eigenfunctions can be supported by any ring, now with the
exception of the zeroth one. From now on, we suppose k ¢ Ny.

Using the coupling conditions (3.4) and (3.5), we arrive at a ‘transfer matrix’ relation
between coefficients of the neighbouring rings,

C;F _ (1 + é%k) el i e ikm C;-Ll 3.6
c7) _ o kT (1 _ i) e—ikm ) c- .|’ .
J 4ik 4ik Jj—1

M

valid for all j > 2, which yields

Cct i CIF
(&) (€)

It is clear that the asymptotical behaviour of the norms of (C;F, Cj_)T is determined by spectral

properties of the matrix M. Specifically, let (C T.C )T be an eigenvector of M corresponding

to an eigenvalue u, then [u| < 1 (ju| > 1, |u|] = 1) means that ||(C;', CJ_)TH decays
exponentially with respect to j (respectively, it is exponentially growing, or independent
of j).

The wavefunction components on the jth ring for both H* (as well as on the (—j)th
by the mirror symmetry) are determined by C;F and Cj_, and thus by (C ;', Ccr )T by virtue of
(3.7). If (C, Cf)T has a non-vanishing component related to an eigenvalue of M of modulus
larger than 1, it determines neither an eigenfunction nor a generalized eigenfunction of H=.
On the other hand, if (C f, Ccr )T is an eigenvector, or a linear combination of eigenvectors,

7
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of the matrix M with modulus less than 1 (respectively, equal to 1), then the coefficients C ji
determine an eigenfunction (respectively, a generalized eigenfunction) and the corresponding
energy E belongs to the point (respectively, continuous) spectrum of the operator H*. To
perform the spectral analysis of M, we employ its characteristic polynomial at energy k2,

22— 2| coskm + ad sinkw | + 1, (3.8)
4k

which we have encountered already in the relation (2.5); it shows that M has an eigenvalue of
modulus less than 1 ff the discriminant of (3.8) is positive, i.e.

‘coskn + % sinkn‘ > 1,

and a pair of complex conjugated eigenvalues of modulus 1 iff the above quantity is < 1. In
the former case the eigenvalues of M are given by

2
Al =coskn+isinkn ﬂ:\/<coskn+ﬁsinkn) -1,
2 4k 4k

satisfying A, = )\fl, hence A, < 1 holds if coskm + g sinkw > 1and A, < 1 if this quantity
is < —1. Moreover, the corresponding eigenvectors of M are

o —ikm
Viy = ik ©
’ )\1,2— (1+ﬁ)e‘k”

Remark 3.1. Comparing to (2.6) we see that the perturbation does not affect the spectral bands,
and also, that new eigenvalues coming from the perturbation can appear only in the gaps. These
facts are obvious, of course, from general principles. Using the natural identification of L?(T'y)
and L*(T'y) we see that Hy and Hy differ by a shift of the point where a boundary condition
is applied, hence their resolvent difference has a finite rank (in fact, rank two). Consequently,
their essential spectra coincide and each spectral gap of H, contains at most two eigenvalues
of Hy, see [We, sec. 8.3, cor. 1].

3.2. Spectrum of H*

The operator H* corresponds to the wavefunctions even w.r.t. the symmetry axis, hence we
may consider a half of the graph with the Neumann conditions at the boundary (i.e., the points
A, B in figure 2),

(T =0 , T+
Yo - =0, Yo\ 5 =0.

At the contact point of the zeroth and the first ring (denoted by C) there is a §-coupling with
the parameter «,

Yo () = @o() = ¥1(0) (3.9
¥1(0) + 91 (0) — Yo () — @y () = o - Yo (7). (3.10)

Substituting to these conditions from (3.1) and (3.2) and using the equality ¢;(0) = ¥ (0),
we obtain (CF, C7)" up to a multiplicative constant,

+ cos krr+cos ki . __ a(coskm+coski})
Cry _ e il i)
le coskmw+cosk® 1(1 __ a(coskm+cos kl?))

sin km 2k sin km
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The right-hand side is well defined except for sinkmr = 0, but this case has already been
excluded from our considerations; we know that for k € N the number k2 is an eigenvalue of
infinite multiplicity.

Following the above discussion k2 € ,(H") requires that the vector (CF, Cy)" is an
eigenvector of M corresponding to the eigenvalue A of the modulus less than 1. Using the
above explicit form of the eigenvectors and solving the equation

coskm+coskd , :(1 _ a(coskm+coski}) o —ikw
e +i(1 i) ik © _
coskm+cosk® (1 _ a(coskm+cosk®) . o \aikm|
sinkn i(1 anie ) A= (L+gg)e

we arrive at the condition

2
(cos kv + coskm) - ad sinkw £ \/(cos km + ad sin kn) — 1) =sin®kx,
4k 4k

with the sign given by the sign of cos kx + % sinks. Since sinkm # 0, the second factor at
the /hs is also nonzero and the last equation is equivalent to
sin® kr
cos k¥ = —coskm + ; 3.11)
& sinkw + \/(coskn + & sinkyr)2 -1
for the sake of brevity we denote the expression at the rhs by f (k).

The relation (3.11) is our main tool to analyze the discrete spectrum and we are going to
discuss now its solutions. We start with an auxiliary result noting that, as a consequence of
theorem 2.4, the set of positive & for which the inequality | cos krr + g sinkm| > 1 is satisfied
is an infinite disjoint union of closed intervals. We denote them /,, with n € N and recall that
n € I,. If « > 0 we denote by I, the interval with the edge at zero corresponding to the
non-negative part of the lowest spectral gap of Hy.

Proposition 3.2. The function f introduced above maps each I,\{n} into the interval
(=1, HU{(=D)"}. Moreover, f(x) = (—1)" holds for x € I,\{n} iff |cos x7 + ;- sinxw| = 1,
and limxel,l,x~>n f(-x) = (_1)n+l.

Proof. According to (3.11), the function f is continuous in each interval I,,\{n}, thus it
maps the interval I,\{n} again to an interval. The claim then follows from the following
easy observations. First, f(x) = (—1)" iff x is the non-integer boundary point of I, (if
o < 0 and || is sufficiently large, the left edge of I; is moved to zero and one checks that
lim,_¢ f(x) = —1). Furthermore, for all x € I,\{n} we have f(x) # (—1)""!, and finally,
limx%n,xel,l f()C) = (_1)}171- O

Proposition 3.2 guarantees the existence of at least one solution of (3.11) in each interval
I,\{n}, except for the case when ¥ satisfies cosn®¥ = (—1)""!, or equivalently, except for
the angles ¥ = “=2t7 ¢ =1, ... [%!']. Later we will show that for these angles there is
indeed no solution of the equation (3.11) in 7, \{n}, while for the other angles in (0, 7r) there
is exactly one.

In a similar way one can proceed with the negative part of the spectrum. If k = ik where
k > 0, the condition (3.11) acquires the form

sinh? kv
coshk?® = —coshkmr — (3.12)

. . 2 ’
£ sinhkr + \/(cosh Kk + L sinhkm)” — 1
K 4k

where the upper sign in the denominator refers to coshkm + 7 sinhkm > 1, and the lower
one to coshxm + % sinhkmw < —1. Let us denote the rhs of (3.12) by f(/c), then we have the
following counterpart to proposition 3.2.
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Proposition 3.3. Ifa > 0, then f(k) < —coshk® holds for all k > 0 and ¥ € (0, ). On
the other hand, for « < 0 we have

If lim, (cosh K70 + ;- sinh KJT) < —1, then there is a right neighbourhood of zero where

f(x) = —1 — C(a)x? + o(x?) with the constant explicitly given by C(a) := (% + (O% +

(%)2 + "‘7”)_1)712. Moreover, f(k) = —1 holds for k > 0 iff coshkm + & sinhxmr = —1.

The interval {k : coshkm + (= sinhkmw > 1 Ak -tanhkmw < —a/2} is mapped by the function
f onto [1, +00).

Ifk tanhkw > —at/2, then f(k) < —coshk® holds for all k > 0 and ¥ € (0, 7).

Proof. The statement for ¢ > 0 is obvious, assume further that « < 0. The first claim
follows from the Taylor expansions of the functions involved in f, the last uses the equality
cosh’k — sinh’kx = 1. The set determined by the conditions coshxm + 4o sinhkm > 1
and « - tanhkw < —a/2 is obviously an interval and f is continuous on it. ~Since
coshkm + z-sinhkwr = 1 implies f(k) = 1 and for ko - tanhkor = —a/2 it holds

lim, - f = +00, the second claim follows immediately. Finally, if « - tanhk7w > —a/2,

then coshkm + % sinhkwr > 1 and % sinhkm + \/(cosh KT + % sinhmr)2 —1 > 0, thus
f(/c) < —coshxm < —cosh« ¥ holds for all «k > 0 and ¥ € (0, 7). O

In particular, the first claim concerning @ < 0 together with the continuity of £ implies
that if the set {K : coshkm + g-sinhkmw > 1} is nonempty (and thus an interval), the graph
of f on this set lies below the value —1 touching it exactly at the endpoints of this interval.

Corollary 3.4. If « > 0, then H* has no negative eigenvalues. On the other hand, for a < 0
the operator H* has at least one negative eigenvalue which lies under the lowest spectral
band and above the number —Kg, where kg is the (unique) solution of k - tanhkm = —a/2.

Proof. The eigenvalues are squares of solutions to the equation cosh k' = f (k). The absence
of negative eigenvalues for o« > 0 follows directly from the first claim in proposition 3.3. The
same proposition implies that there is exactly one interval mapped by f onto [1, +00), hence
there is at least one solution of coshk? = f () in this interval. O

3.3. Spectrum of H™ and a summary

The operator H~ which corresponds to the odd part of the wavefunction can be treated in an
analogous way. The boundary conditions on the zero circle are now Dirichlet ones,

-0 %
1p0<ﬂ2 )ZO, QO()(T[; >=0.

One can easily find the spectral condition,

. 2 k
—cosk® = —coskm + SR ; (3.13)

f—k sinkm + \/(cos km + % sinkJT)2 —1

in comparison with (3.11) corresponding to H™ there is a difference in the sign of the cosine
on the left-hand side. Since we already know the behaviour of the right-hand side, cf
proposition 3.2, we can infer, similarly as for H*, that there is at least one solution
of (3.13) in each interval I, except for the case when —cosn® = (—1)""!, ie. when

o="2r e=1,...,[%]

10
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Following the analogy with the symmetric case further we can employ proposition 3.2 to
conclude that in each interval I, there is at least one solution of —cos k¥ = f(x). The only
exception is the interval I; for @ < O: for |«| sufficiently small it holds —cos k¥ < f (k) in the
whole I;; we will comment on this situation in more detail in the following section devoted to
resonances. The negative part of the point spectrum of H ~ is determined by the condition

-}
—coshk® = —coshkm — sinh” , (3.14)
£ sinhkmw £+ \/(cosh KT+ 3¢ sinhlcrr)2 -1

4k

where we set k = i« for k € R*. It follows from proposition 3.3 that (3.14) has a solution for
negative « only, and it happens if (i) the positive spectral gap touching zero extends to negative
values, and (ii) the bending angle ¥ is small enough. In other words, if there is a number &
solving cosh k7 + ;- sinh k7w = —1, the energy plot w.r.t. ¢ obtained as the implicit solutions
of (3.14) is a curve departing from (9, E) = (0, —«); in the following section we will show
that it is analytic and following it one arrives at the point (¥, E) = (m, 1).

Let us summarize the discussion of the discrete spectrum. We have demonstrated that for
each of the operators H* there generally arises at least one eigenvalue in every spectral gap
closure. We have also explained that such an eigenvalue can lapse into a band edge equal to
n?,n € N, and thus be in fact absent. The eigenvalues of H* and H~ may also coincide, in
this case they become a single eigenvalue of multiplicity two. One can check directly that it
happens only if

k -tankm = g.
2

The study of the resonances, performed in the following section, will help us to find more
precise results concerning the number of eigenvalues. We will show that there are at most
two of them in each spectral gap. However, to make the explanation clearer, we refer already
at this moment to figures 4—6 illustrating the numerical solution of the spectral condition for
different signs of the coupling constant, as well as the resonances of the system.

4. Resonances and analyticity

Proceeding further with the discussion we want to learn more about the angle dependence of
the perturbation effects. First we note, however, that the added eigenvalues are not the only
consequence of the chain bending. One has to investigate all solutions of (4.1), not only the
real ones which correspond to o,(H*), but also complex solutions describing resonances’
of H*.

Proposition 4.1. Given a non-integer k > 0, the conditions (3.11) and (3.12) for H¥,
respectively, are equivalent to

;—k(l + cos k¥ cos k) (cos k® + cos k) = sinkzw - (1 & 2 cosk® cos krr + cos® k).
4.1)

Proof. First we note that changing the square root sign in denominator of (3.11) does not
give rise to a real solution. Indeed, if the sign of the right-hand side of (3.11) is changed, the
obtained expression is of modulus greater than 1, hence it cannot be equal to cos k. This

7 The notion of resonance in the chain—graph system can be introduced in different, mutually equivalent, ways
similarly as in [ELO7].
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Figure 4. The spectrum of H* as a function of ¢ for repulsive coupling, @ = 3. The shaded regions
are spectral bands, the dashed lines show real parts of the resonance pole positions discussed in
section 4.
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Figure 5. The spectrum of H ™ in the same setting as in figure 4.
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Figure 6. The spectrum of H as a function of ¢ for attractive coupling, « = —3.

further implies that one need not specify the sign in the denominator of (3.11) by the sign of
cos km + g7 sinkx, and therefore we can express the square root and subsequently square both
sides of the obtained relation. After simple manipulations, we arrive at (4.1); note that for
all k € R*\N, the denominator of (3.11) is nonzero. The equivalence of (3.11) and (4.1) for
k € C\Nis obvious for (4.1) considered with the complex square root, i.e. without restrictions

on the sign in the denominator. The argument for H~ is analogous. |

Now we are ready to state and prove the analyticity properties. Since the cases of different
symmetries are almost the same, apart from the position of the points where the analyticity
fails, we will mention the operator H* only.

Proposition 4.2. Curves given by the implicit equation (4.1) for H* are analytic everywhere
except at (U, k) = (””n—_zen, n), wheren € N, £ € Ny, £ < [%] Moreover, the real solution
in the nth spectral gap is given by a function v — k which is analytic, except at the points
n+l1=2¢
=,

n

Proof. First we will demonstrate the analyticity of the curves ¢ +— k € C. This is easily
done using equation (3.11); we have to prove that at each point (9, k) solving the equation
G (¥, k) = 0 with

sin? kx

G(9, k) = —cosky — coskm +
& sinkm £ \/(cos kr + & sinkyr)2 -1
3 G

the derivative 57 is nonzero. We have 57 = k -sin(k?) = 0 iff sinkd = 0, ie.

k9 = mm,m € Z. This implies G(&, k) = (—1)"*! — coskm, and since G(8, k) = 0

)

13
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Figure 7. The imaginary parts of resonance pole positions in the same setting as in the previous
picture; for the sake of lucidity only the curves corresponding to H* are plotted.

should be satisfied, & is an integer of the same parity as m + 1. For k € N, G is not defined and
we use (4.1); it is easy to check that any solution (23, k) of (4.1) with k € N corresponds to

9 k+1—-2¢ (eN ¢< k+1
= JT, ’ ~ .
k 2

To prove that real solutions are analytic functions, it suffices to check that, except at the points
(¢, k) = (=27, n), for each (9, k) solving F (9, k) = 0 with

F (0, k) := a(l + cos kv cos kmr)(cos k) + cos k)
— 2k sink7w - (1 +2cosk® coskm + cos® ki)

it holds %—i # 0. Computing the derivative one obtains an expression which can be cast in the
form

2sin’ k7 - (1 +2cosk® coskm + cos? sz‘)2 +a - [r(cosk® + coskm)*
+ sin? k7 - (cos k¥ + cos kmr)? + ¥ sin® kx sin® k9 (1 + cos k(7w — )
+ (r — ©) sin® k7 sin® k9 (1 + cos k¥ cos kxr)].

This is always non-negative, and vanishes iff
(coskmr =1 Acoskd? = —1) vV (coskmr = —1 Acoskt = 1),

ie. iffk € Z and km = kv + (2¢ — 1)7, £ € Z, proving this the sought claim. ]

The resonance dependence on the bending angle ¥ is again visualized in figures 46
where the real parts are shown; the imaginary parts corresponding to the situation of figure 4
are plotted on figure 7.
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5. More on the angle dependence

The above results raise naturally the question about the behaviour of the curves at the singular
points [¢, k] = [22=2t7 n] withn € N, € € N, £ < [£!], where they touch the band edges
and where the eigenvalues and resonances may cross. Now we are going to examine the
asymptotic expansion at these points and to look how many curves ‘stem’ from them.
Consider again first the part H*. Let kp € N and 9y := ””n—_un for some £ € N, and put

k:=koy+e, D=0y +34.

After substituting into (4.1) with the plus signs and employing Taylor expansions of the cos
and sin functions we arrive at the relation

% (kg8* + 4k 08 + 6k;058%6%) — ko’ e = O(8€”) + O(e") + O(8e).

Using the theory of algebroidal functions and Newton polygon, we find that in the
neighbourhood of (¥, ko), the asymptotical behaviour of solutions is given by the terms
of the order 8 and &*. In other words, up to a higher-order term we have $kj8* = kom’e?,

and therefore
& ’ — ga“
ko 4

Note that € R, kp > 0,5 € R, i.e. only ¢ may be complex here, hence the last equation
admits exactly three types of solutions:

&= \3/% % 8*/3 (a real solution corresponding to the spectrum)
22 . . . .
o & = eF37 Y/TL§4/3 (imaginary solutions corresponding to resonances).

Let us remark that since (4.1) has a symmetry with respect to the complex conjugation of &,
the imaginary solution comes in pairs. This is why we find pairs of curves outside the real
plane, conventionally just one of them is associated with a resonance.

Returning to properties of eigenvalues in a fixed spectral gap, we have so far demonstrated
that each real curve describing a solution of (4.1) is a graph of a function analytic except at
the singular points, cf proposition 4.2. Furthermore, at each singular point only one pair of
branches meets (with respect to the variable #); it follows that there is exactly one solution
in each spectral gap closure. Assuming for definiteness o > 0 we can say that the complete
graph of solutions of (4.1) has the following structure:

e It consists of curves that are analytic and not intersecting, except at the points
(@, k) = (=27, n), where n € N, £ € N, £ < [%!]; these are the only ramification
points.

e The real curves branches join the points (””n—_zen, n) and (
consecutive points on the lines k =n € N.

"”_nin, n) i.e. the

e The curves branches outside the plane J(k) = O join the points (nl%e”’ n — 6) and
(%7[, n—~{— 1), i.e. the consecutive points laying on the hyperbolas (¢ + ) - k =

n-m,keR,neN,nodd,cf figure 7.

Furthermore, we have seen that the behaviour of eigenvalues in the vicinity of the singular
points is as follows,

k
k ~ k0+\%§—0|19 — 0o|*7,
4

and this is valid for in the particular case ¥y = 0, kg € N, as well provided the band edge ko
is odd.

15
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However, H* has an eigenvalue near %y = 0 also in the gaps adjacent to even
numbers. In these cases the curve starts at the point (0, ky) for ko being the solution of
coskm + % sin krr| = lin (n,n + 1), n even. The asymptotic behaviour of k for ¥ close to
zero is then different, namely:

Theorem 5.1. Suppose that n € N is even and kg is as described above, i.e. k(z) is the right
endpoint of the spectral gap adjacent to n®. Then the behaviour of the solution of (4.1) in the
neighbourhood of (0, ko) is given by

k =ko— Cpyo - 9 +O@),

kg

where Cy, o = .

. (%)3 (ko + sinkom) ™.
Proof. The argument is straightforward, it suffices to use Taylor expansions in (4.1). ]

The analogous asymptotic behaviour applies to k2, the energy distance of the eigenvalue
from the band edge is again proportional to 9#* in the leading order. Note that this is true in
any spectral gap, but of course, the error term depends in general on the gap index.

We refrain from discussing in detail the odd part H~ of the Hamiltonian. The
corresponding results are practically the same, the only difference is that the roles of the
even and odd gaps are interchanged.

Most of what we have discussed above modifies easily to the case of attractive coupling
with the obvious changes: for o < 0 the spectral gaps lay now below the numbers n?, n € N.
Of particular interest is the spectral gap adjacent to the value one, because with the increase
of || its lower edge moves towards zero and may become negative for |«| large enough. The
even part H* has similar properties as before: the eigenvalue curve goes from (0, 1) to (7, ko),
where ko € (0, 1), and there two complex conjugated branches with %i(k) > 0 one of which
describes a resonance.

However, the odd part H~ requires a more detailed examination. We know that there is
an eigenvalue curve going to the point [, 1]. If the entire spectral gap is above zero, this
curve joins it with [O, ké], where k3 is the lower edge of the gap. On the other hand, if |o|
is large enough the eigenvalue curve starts from [0, —«], where —«{ is again the lower gap
edge; to show that even in this case the curve joins the points [0, —k(] and [, 1] analytically,
it suffices to prove that the solutions of (4.1) with the negative sign preserves analyticity when
it crosses the line k> = 0.

The spectral condition (3.13) for H ™ is valid for k # 0. If we put all terms to the left-hand
side denoting it as G~ (9, k), i.e.

. 2k
G (¥, k) = —coskd +coskmr — S

% sinkm + \/(COSkﬂ + f—k sinkn)2 -1

with the sign in the denominator properly chosen, we have lim; .o G~ (&, k)k™' = Oforl = 0, 1
while for [ = 2 the limit is real-valued and non-vanishing. It follows that to find the behaviour
at the crossing point one has to examine the function given implicitly by G (¢, k) = 0, where

-0k
% for k0
G®, k) = _
im &0 oo
k—0 k2

This is continuous and it can be easily checked that it has continuous partial derivatives with
respect to ¢ and k in the neighbourhood of any solution of G(#, k) = 0 with k = 0. In
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particular, the derivative w.r.t. © equals k' sin k2 for all k # 0, thus at a point [%, 0] solving
G (9, k) = 0 we have

0G(,0) . sinkdg
— 7 — lim
a9 =0 Kk

in other words, the solution of G (%, k) = 0 is analytic also at the point [, 0]. Needless to
say, this claim which we have checked directly here can also be obtained by means of the
analytic perturbation theory [Ka66].

Finally, note that by proposition 4.2 the solutions of (4.1) with both the positive and
negative signs are analytic in the whole open half-plane ) (k) < 0, and consequently, no
resonance curves can be found there.

=19 #0,

6. Concluding remarks

We have reasons to believe that the spectral and resonance properties due to geometric
perturbations of the considered type hold much more generally. In this paper we have decided,
however, to treat the present simple example because it allowed us to find a rather explicit
solution to the problem.

The problem can be viewed from different perspectives. As an alternative one may
interpret the chain graph as a decoration of a simple array-type graph, or if you wish, the
Kronig—Penney model, in the sense of [AIO0, KuO5]. The results of the paper then say that a
local modification of the decoration can produce a discrete spectrum in the gaps and the other
effects discussed here.

It is also interesting to draw a parallel between the quantum graphs discussed here and
quantum waveguides, i.e. Laplacians in tubular domains. Although the nature of the two
systems is very different, they nevertheless share some properties, in particular, the existence
of bound states below the essential spectrum threshold due to a local bend. This effect is well
studied for Dirichlet quantum waveguides where it is known for a gentle bend the binding
energy is proportional to the fourth power of the bending angle [DE95], i.e. it has exactly the
same behaviour as described by theorem 5.1.

Bent quantum waveguides with mixed (or Robin) boundary conditions were also studied
[Ji06] and it was shown that the effect of binding through bending is present for any repulsive
boundary. In our case an eigenvalue below the lowest band exists whenever o # 0 which
inspires another look at the waveguide case. It appears that the argument of [Ji06] works again
and proves the existence of curvature-induced bound states in all cases except the Neumann
boundary which is an analogue of the case o = 0 here.

Acknowledgments

The research was supported in part by the Czech Ministry of Education, Youth and Sports
within the project LC06002. One of the authors (OT) enjoyed support of the French
Government (Bourse du Gouvernement Francais, Dossier No. 2006 2165) during his stay
in the Centre de Physique Théorique, Marseille, where the major part of the work has been
done.

References

[AIOO] Aizenman M and Schenker J H 2000 The creation of spectral gaps by graph decorations Lett. Math. Phys.
53253-62

17



J. Phys. A: Math. Theor. 41 (2008) 415206 P Duclos et al

[AGHH] Albeverio S, Gesztesy F, Hoegh-Krohn R and Holden H 2005 Solvable Models in Quantum Mechanics 2nd

[CEO07]
[DE95]
[AGA]
[EL07]
[EPO8]
[ES89]
[GPS88]

[Ji06]

[Ka66]
[Ku05]

[KV06]
[RuS53]

[Wel

18

edn (New York: AMS Chelsea)

Cacciapuoti C and Exner P 2007 Nontrivial edge coupling from a Dirichlet network squeezing: the case of
a bent waveguide J. Phys. A: Math. Theor. 40 F511-23

Duclos P and Exner P 1995 Curvature-induced bound states in quantum waveguides in two and three
dimensions Rev. Math. Phys. 7 73—102

Exner P, Keating J P, Kuchment P, Sunada T and Teplyaev A (ed) 2008 On Graphs and its Applications
(AMS ‘Contemporary Mathematics’ Series) (Providence, RI: American Mathematical Society)

Exner P and Lipovsky J 2007 Equivalence of Resolvent and Scattering Resonances on Quantum Graphs
(AMS ‘Contemporary Math’ Series vol 447) (Providence, RI: American Mathematical Society) pp 73-81

Exner P and Post O 2008 Quantum networks modelled by graphs Proc. Joint Physics /Mathematics Workshop
on ‘Few-Body Quantum System’ (Aarhus, 2007) vol 998 (Melville, NY: AIP) pp 1-17

Exner P and Seba P 1989 Free quantum motion on a branching graph Rep. Math. Phys. 28 7-26

Gerasimenko N I and Pavlov B S 1988 Scattering problem on noncompact graphs Teor. Mat. Fiz. 74 345-59

Jilek M 2006 Quantum waveguide with Robin boundary conditions BSc Thesis Czech Technical University,
Prague

Kato T 1966 Perturbation Theory for Linear Operators (Berlin: Springer)

Kuchment P 2005 Quantum graphs: II. Some spectral properties of quantum and combinatorial graphs
J. Phys. A: Math. Gen. 38 4887-900

Kuchment P and Vainberg B 2006 On the structure of eigenfunctions corresponding to embedded eigenvalues
of locally perturbed periodic graphs operators Commun. Math. Phys. 268 673-86

Ruedenberg K and Scherr C W 1953 Free electron network model for conjugated systems: I. Theory
J. Chem. Phys. 21 1565-81

Weidmann J 1980 Linear Operators in Hilbert Space (New York: Springer)



