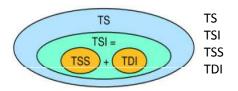
Méthode de conception rapide d'architecture massivement parallèle sur puce: de la modélisation à l'expérimentation sur FPGA

Mouna Baklouti Kammoun

18 Décembre 2010

Plan


- Introduction
- Système mppSoC proposé
- Méthode de conception/programmation de mppSoC
- Flot de génération de configurations mppSoC
- Étude de cas
- 6 Conclusions et perspectives

Plan

- Introduction
 - Domaine d'application
 - Problématique et positionnement
 - Contributions
- Système mppSoC proposé
- Méthode de conception/programmation de mppSoC
- 4 Flot de génération de configurations mppSoC
- Étude de cas
- 6 Conclusions et perspectives

Traitement du signal systématique (TSS)

- : Traitement de Signal
- : Traitement de Signal Intensif
- : Traitement de Signal Systématique
- : Traitement de Données Intensif

- Caractéristiques du TSS :
 - traitements très réguliers
 - indépendants de la valeur des données

Traitement du signal systématique (TSS)

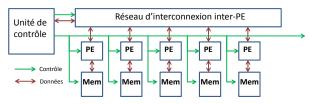
- Présence du TSS dans :
 - systèmes de détection
 - multimédia
 - télécommunications
 - Puissance de calcul

- Systèmes embarqués
 - SoC
 - ASIC
 - FPGA
 - Capacité d'intégration

Traitement du signal systématique (TSS)

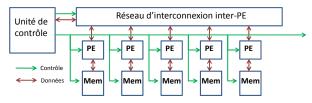
- Présence du TSS dans :
 - systèmes de détection
 - multimédia
 - télécommunications
 - Puissance de calcul

- Systèmes embarqués
 - SoC
 - ASIC
 - FPGA
 - Capacité d'intégration



- Architectures massivement parallèles sur puce
 - hautes performances
 - multiplicité des ressources de calcul
 - · Flynn: SIMD, MIMD...

Efficacité de SIMD pour le TSS


Modèle SIMD

- Avantages :
 - parallélisme de données
 - synchronisme parfait
 - intégration de simples unités d'exécution
 - consommation réduite pour les traitements réguliers

Efficacité de SIMD pour le TSS

Modèle SIMD

- Avantages :
 - parallélisme de données
 - synchronisme parfait
 - · intégration de simples unités d'exécution
 - consommation réduite pour les traitements réguliers

⇒ SIMD : adapté au TSS

- Déclin des architectures SIMD traditionnelles
 - MasPar, ILLIAC IV, Connection Machine...
 - complexité technologique
 - coût de conception

- Déclin des architectures SIMD traditionnelles
- Solutions SIMD existantes sur FPGA
 - Accélérations SIMD matérielles
 - R.L. Rosas et al. 2005 : SIMD pour la détection de contours
 - M. Sayed et al. 2008: VBSME pour le calcul de l'estimation de mouvement
 - coûts et délais de conception

- Déclin des architectures SIMD traditionnelles
- Solutions SIMD existantes sur FPGA
 - Accélérations SIMD matérielles
 - Extensions SIMD pour processeurs embarqués
 - spécifiques à un traitement
 - non génériques

- Déclin des architectures SIMD traditionnelles
- Solutions SIMD existantes sur FPGA
 - Accélérations SIMD matérielles
 - Extensions SIMD pour processeurs embarqués
 - Solutions SIMD programmables
 - F. Schurz and D. Fey. 2007 : architecture SIMD à base de l'IP PicoBlaze avec des PE 1bit très réduits
 - Ph. Bonnot et al. 2008 : Ter@Core avec une conception du PE à base des blocs DSP de l'FPGA utilisé + un seul mode de communication en anneau
 - . . .

- Déclin des architectures SIMD traditionnelles
- Solutions SIMD existantes sur FPGA
 - Accélérations SIMD matérielles
 - Extensions SIMD pour processeurs embarqués
 - Solutions SIMD programmables
- Limites des solutions existantes :
 - conçues spécifiquement pour une application déterminée : coûts de conception élevés
 - peu évolutives : difficulté de satisfaire différents besoins

- Déclin des architectures SIMD traditionnelles
- Solutions SIMD existantes sur FPGA
 - Accélérations SIMD matérielles
 - Extensions SIMD pour processeurs embarqués
 - Solutions SIMD programmables
- Défis de conception
 - technologiques
 - · délais (commercial)

Objectifs

Rendre le système SIMD flexible et pouvant s'adapter aux besoins applicatifs

- choix d'une solution architecturale adéquate à l'application
- souplesse de l'architecture
- satisfaire les besoins applicatifs

Objectifs

Rendre le système SIMD flexible et pouvant s'adapter aux besoins applicatifs

- choix d'une solution architecturale adéquate à l'application
- souplesse de l'architecture
- satisfaire les besoins applicatifs

Proposer une méthode de conception simple et rapide

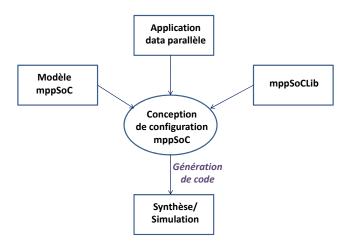
- accélérer le temps de conception
- réduire le temps de mise sur le marché

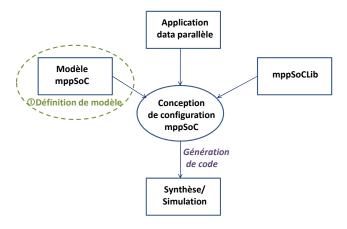
Contributions

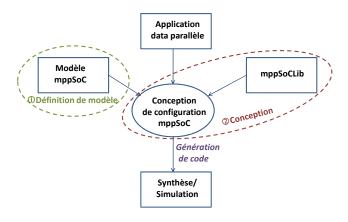
Définir un système massivement parallèle sur puce à architecture SIMD pouvant être adapté à l'application

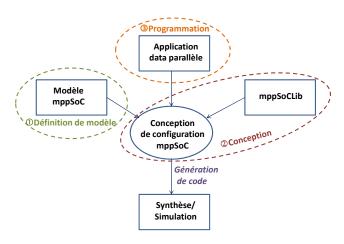
- paramétrique
- programmable

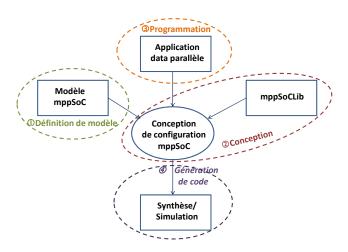
Proposer une méthode de conception par assemblage d'IP

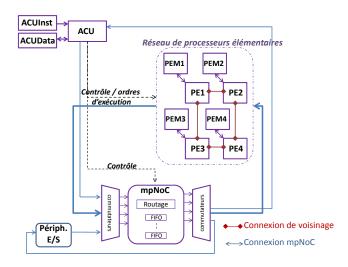

réduire le temps de conception


Accélérer la conception par génération automatique de configurations SIMD

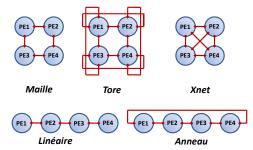

abstraire les détails d'implémentation


Réaliser une expérimentation sur FPGA

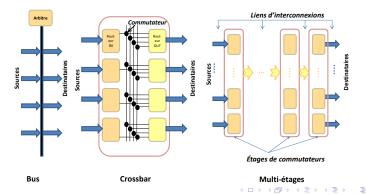

- tester différentes configurations mppSoC
- choisir la configuration la plus adéquate



Plan


- Introduction
- Système mppSoC proposé
 - Modèle mppSoC proposé
 - Caractéristiques du modèle mppSoC
- Méthode de conception/programmation de mppSoC
- 4 Flot de génération de configurations mppSoC
- Étude de cas
- 6 Conclusions et perspectives

Modèle mppSoC proposé


- Paramétrique et flexible
 - nombre de PEs variable : assurer l'extensibilité
 - taille mémoire variable : répondre aux besoins applicatifs
 - support de différents modèles d'interconnexions de voisinage : répondre à la variété des communications inter-PE

mpNoC : réseau de communication point à point

- Paramétrique et flexible
 - nombre de PEs variable : assurer l'extensibilité
 - taille mémoire variable : répondre aux besoins applicatifs
 - support de différents modèles d'interconnexions de voisinage : répondre à la variété des communications inter-PE
 - mpNoC : réseau de communication point à point
 - connecter tout PE avec un autre
 - connecter les PEs aux périphériques
 - connecter l'ACU avec les PEs

- Paramétrique et flexible
 - nombre de PEs variable : assurer l'extensibilité
 - taille mémoire variable : répondre aux besoins applicatifs
 - support de différents modèles d'interconnexions de voisinage : répondre à la variété des communications inter-PE
 - mpNoC : réseau de communication point à point

- Paramétrique et flexible
 - nombre de PEs variable : assurer l'extensibilité
 - taille mémoire variable : répondre aux besoins applicatifs
 - support de différents modèles d'interconnexions de voisinage : répondre à la variété des communications inter-PE
 - mpNoC : réseau de communication point à point

Avantages du réseau mpNoC proposé

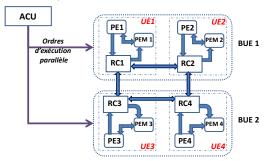
- Divers modes de communication
 - tous-vers-un
 - un-vers-tous
 - un-vers-un
- Entrées/Sorties parallèles

- Paramétrique et flexible
- Modulaire
 - assembler les composants nécessaires
 - choisir la configuration optimale
 - maîtriser la complexité
 - réduire le temps de conception

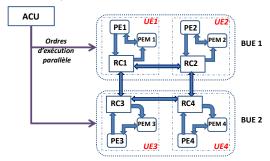
- Paramétrique et flexible
- Modulaire
- Programmable
 - s'adapter aux évolutions applicatives
 - langage data parallèle ⇒ adapté au modèle d'exécution SIMD

- Paramétrique et flexible
- Modulaire
- Programmable

Mise en place de configurations (instances) mppSoC


- définir les paramètres
- choisir les composants nécessaires
- adapter selon les besoins
- M. Baklouti et al. IP based configurable SIMD massively parallel SoC . FPL, PhD Forum. Italy. 2010

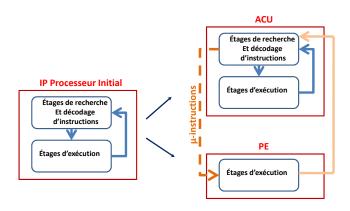
Plan


- Introduction
- Système mppSoC proposé
- Méthode de conception/programmation de mppSoC
 - Conception de mppSoC
 - mppSoCLib
 - Programmation de mppSoC
- 4 Flot de génération de configurations mppSoC
- Étude de cas
- Conclusions et perspectives

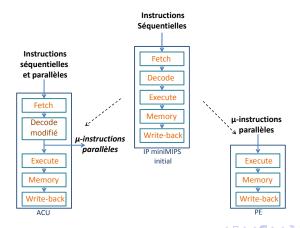
- Assemblage d'IPs
 - processeurs, mémoires, réseaux...
 - méthodologie de réutilisation

- Assemblage d'IPs
- Conception hiérarchique

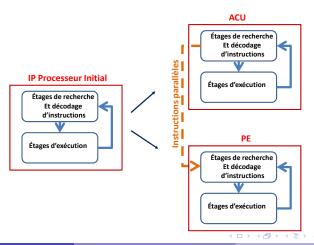
- Assemblage d'IPs
- Conception hiérarchique


- Avantages
 - Alléger les coûts de conception
 - Permettre une implémentation générique 2D/1D
 - Faciliter le placement du réseau de PEs sur la puce

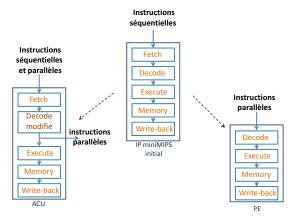
- Assemblage d'IPs
- Conception hiérarchique
- Conception des processeurs
 - ACU + PE : même IP processeur
 - minimiser les développements matériels et logiciels
 - réduire le haut coût de conception lié aux machines SIMD


Réduction

- utiliser un IP open-source
- réduire le processeur ⇒ PE simple et réduit


Réduction

- utiliser un IP open-source
- réduire le processeur ⇒ PE simple et réduit


Réplication

- concevoir le PE par le même IP processeur
- répliquer le PE

Réplication

- concevoir le PE par le même IP processeur
- répliquer le PE

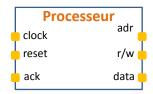
Réduction/Réplication

FPGA	Conception	Nbre max de PE	taille mém/PE
	(miniMIPS)		
Stratix	réduction	96	0.5 Ko
2S180	réplication	64	0.5 Ko

Réduction/Réplication

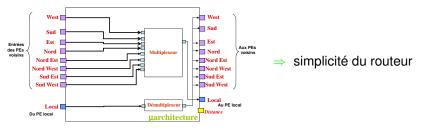
	réduction	réplication
Temps de conception	long	réduit
Intégration de PE	+++	+
Efficacité performance/surface	++	+

Réduction/Réplication

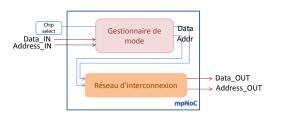

	réduction	réplication
Temps de conception	long	réduit
Intégration de PE	+++	+
Efficacité performance/surface	++	+

Solution pour accélérer la conception des processeurs

- Utiliser un IP processeur
 - réduire le temps de conception
 - faciliter la programmation
- Choisir entre deux méthodes de conception : réduction/réplication
 - satisfaire les besoins


M. Baklouti et al. A design and an implementation of a parallel based SIMD architecture for SoC on FPGA. DASIP. France, 2008

- Ensemble d'IPs dédiés à mppSoC
- Interface propriétaire
 - Processeurs
 - miniMIPS : réduction + réplication
 - OpenRisc 1200 : réduction + réplication
 - NIOS II : réplication


- Ensemble d'IPs dédiés à mppSoC
- Interface propriétaire
 - Processeurs
 - Mémoires

- Ensemble d'IPs dédiés à mppSoC
- Interface propriétaire
 - Processeurs
 - Mémoires
 - Routeur de voisinage

 M. Baklouti et al. Study and Integration of a Parametric Neighbouring Interconnection Network in a Massively Parallel Architecture on FPGA, AICCSA, Morocco, 2009

- Ensemble d'IPs dédiés à mppSoC
- Interface propriétaire
 - Processeurs
 - Mémoires
 - Routeur de voisinage
 - Réseau mpNoC

- mode configurable : PE-PE, PE-ACU, PE-périphérique
- IP réseau d'interconnexion paramétrique

- M. Baklouti et al. Reconfigurable Communication Networks in a Parametric SIMD Parallel System on Chip. International Symposium on Applied reconfigurable Computing. Thailand. 2010
- M. Baklouti et al. Scalable mpNoC for Massively Parallel Systems Design and Implementation on FPGA. Journal of Systems Architecture. 2010

Programmation de mppSoC

- dépend du processeur utilisé : Assembleur/C
- dépend de la méthodologie de conception des processeurs

Méthode de programmation proposée

- jeu d'instructions dérivé de celui du processeur utilisé
- macros définies pour les instructions spécifiques
 - Instructions de contrôle
 - Instructions de communications
 - codées à base des instructions d'accès mémoire : Load/Store

Programmation de mppSoC

- dépend du processeur utilisé : Assembleur/C
- dépend de la méthodologie de conception des processeurs

Méthode de programmation proposée

- jeu d'instructions dérivé de celui du processeur utilisé
- macros définies pour les instructions spécifiques
 - Instructions de contrôle
 - Instructions de communications
 - codées à base des instructions d'accès mémoire : Load/Store

TABLE: Codage du macro de lecture d'identité

Macro	Définition		Codage	
		miniMIPS	OpenRisc	NIOS II
P_GET_IDENT	lire l'identité	p_lui r1,0x2	I.movhi r1,0x2	NIOS2_READ_
(reg)		p_ori r1,r1,0	I.lwz reg,0x0(r1)	CPUID(id)
		p_LW reg,0(r1)		

Programmation de mppSoC

- dépend du processeur utilisé : Assembleur/C
- dépend de la méthodologie de conception des processeurs

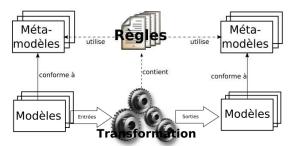
Méthode de programmation proposée

- jeu d'instructions dérivé de celui du processeur utilisé
- macros définies pour les instructions spécifiques

Conception/programmation proposée pour mppSoC

- Utiliser l'existant
- Accélérer la conception
- Faciliter la programmation

Plan

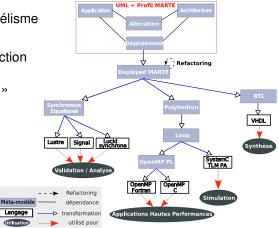

- Introduction
- Système mppSoC proposé
- Méthode de conception/programmation de mppSoC
- Flot de génération de configurations mppSoC
 - IDM
 - Gaspard
 - Flot de conception
- Étude de cas
- Conclusions et perspectives

Ingénierie Dirigée par les Modèles (IDM)

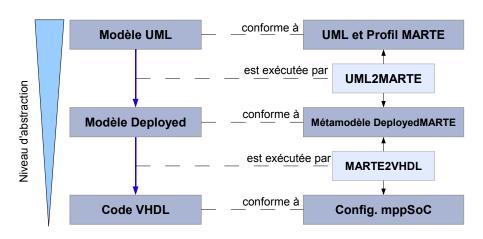
- Apports de l'IDM
 - répondre à la complexité croissante des systèmes
 - abstraire les détails et techniques d'implémentation
 - réduire le temps de conception

Ingénierie Dirigée par les Modèles (IDM)

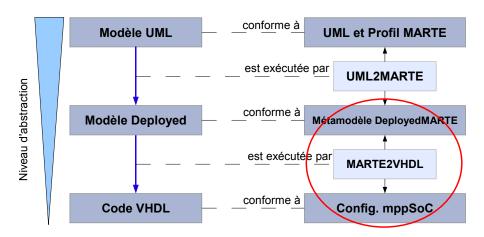
- Apports de l'IDM
- Concepts de l'IDM
 - modèle : abstraction de la réalité
 - méta-modèle : ensemble de concepts et de relations permettant de spécifier des modèles
 - transformation de modèles : passage d'un modèle source décrit à un niveau d'abstraction à un autre modèle destination décrit à un autre niveau d'abstraction


Gaspard: environnement basé sur l'IDM

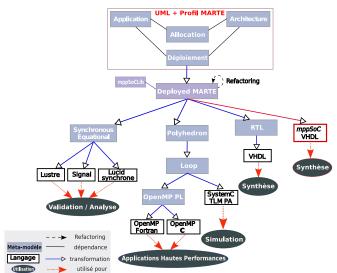
Environnement de co-conception pour SoC


TSS

Expression du parallélisme

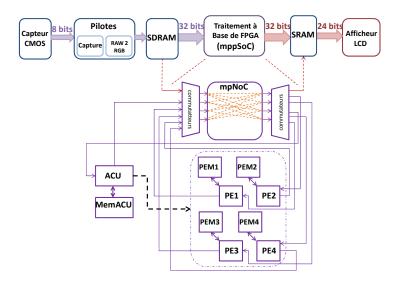

- Spécification
 - haut niveau d'abstraction
 - UML
 - « MARTE compliant »
 - standard
- Cibles
 - simulation
 - exécution
 - vérification
 - . . .

Flot de conception pour la génération de configurations mppSoC


Flot de conception pour la génération de configurations mppSoC

Intégration dans Gaspard

Intégration dans Gaspard



Plan

- Introduction
- Système mppSoC proposé
- Méthode de conception/programmation de mppSoC
- 4 Flot de génération de configurations mppSoC
- 5 Étude de cas
 - Chaîne de traitement vidéo à base de mppSoC
 - Choix de configuration mppSoC
- 6 Conclusions et perspectives

Configuration mppSoC

MPPS•C

Étapes de conception

- Modélisation
 - composants
 - communications
- Déploiement
 - Choisir les IPs à utiliser ⇒ notion de "codeFile"
- Génération de code
 - Transformation modèle vers texte
 - modèle Deployed ⇒ code VHDL
 - Déduire les paramètres à partir des modèles
 - Déduire les IPs à partir du déploiement

Demo ./config1.avi

M. Ammar, M. Baklouti et al. A Model Driven Engineering design approach to generate VHDL for MPPSoC . RAPIDO workshop at HIPEAC. Greece. 2011 (Accepted)

Flot de conception

- Spécifier une configuration mppSoC à un haut niveau d'abstraction
- Faciliter/accélérer la conception d'une configuration mppSoC

Flot de conception

- Spécifier une configuration mppSoC à un haut niveau d'abstraction
- Faciliter/accélérer la conception d'une configuration mppSoC

Chaîne mppSoC à base d'IDM

- réduire la complexité de conception de mppSoC
- modèle UML-MARTE ⇒ code VHDL ⇒ simulation/synthèse

Simulation/Synthèse sur l'FPGA Cyclone II EP2C70F896C6

Méth.	Ressources logiques			Mémoire totale			Conso.	Tpixel
conception	Fonctions	Registres	%	ACU	PE	%	de puiss.	(Ns)
	combinatoires			(bytes)	(bytes)		(mWatts)	
réplication	21971	9243	37	4096	1024	11	1207.98	44.95

Simulation/Synthèse sur l'FPGA Cyclone II EP2C70F896C6

Méth.	Ressources logiques			Mémoire totale			Conso.	Tpixel
conception	Fonctions	Registres	%	ACU	PE	%	de puiss.	(Ns)
	combinatoires			(bytes)	(bytes)		(mWatts)	
réplication	21971	9243	37	4096	1024	11	1207.98	44.95

Exécution

Demo ./Exec-config1.AVI

• Simulation/Synthèse sur l'FPGA Cyclone II EP2C70F896C6

Méth.	Ressources logiques			Mémoire totale			Conso.	Tpixel
conception	Fonctions	Registres	%	ACU	PE	%	de puiss.	(Ns)
	combinatoires			(bytes)	(bytes)		(mWatts)	
réplication	21971	9243	37	4096	1024	11	1207.98	44.95

- Modification du modèle
- Exécution

Demo ./Model2.m3u

Simulation/Synthèse sur l'FPGA Cyclone II EP2C70F896C6

Méth.	Ressources logiques			Mémoire totale			Conso.	Tpixel
conception	Fonctions	Registres	%	ACU	PE	%	de puiss.	(Ns)
	combinatoires			(bytes)	(bytes)		(mWatts)	
réplication	21971	9243	37	4096	1024	11	1207.98	44.95
réduction	14176	4762	23	4096	1024	11	852.65	30

Simulation/Synthèse sur l'FPGA Cyclone II EP2C70F896C6

Méth.	Ressources logiques			Mémoire totale			Conso.	Tpixel
conception	Fonctions	Registres	%	ACU	PE	%	de puiss.	(Ns)
	combinatoires			(bytes)	(bytes)		(mWatts)	
réplication	21971	9243	37	4096	1024	11	1207.98	44.95
réduction	14176	4762	23	4096	1024	11	852.65	30

- ⇒ Choisir la configuration adéquate
- ⇒ Adapter le modèle à l'application

Autres expérimentations

- Benchmarks de traitements d'image (EEMBC)
 - RGB to YIQ
 - Convolution
- Génération de configurations mppSoC
- Simulation et synthèse
 - · fonctionnalité du système
 - performances : temps d'exécution, surface, consommation de puissance...
- ⇒ Choisir la configuration la plus adéquate
- ⇒ Faciliter l'exploration

Plan

- Introduction
- Système mppSoC proposé
- Méthode de conception/programmation de mppSoC
- 4 Flot de génération de configurations mppSoC
- **5** Étude de cas
- 6 Conclusions et perspectives
 - Conclusions
 - Perspectives

Conclusions

- mppSoC adapté pour le TSS
 - paramétrique
 - programmable
 - · conçu à base d'IPs

- Flot de conception UML vers VHDL pour mppSoC
 - modélisation haut niveau à base de MARTE
 - · génération automatique de code
 - intégration dans Gaspard

Validation expérimentale à base d'FPGA

Perspectives

- Exploration de configurations mppSoC
 - intégration d'une phase d'exploration
 - génération automatique de la meilleure configuration

- Extension du profil MARTE
 - Application data parallèle
 - Architecture SIMD :
 - interface d'envoie d'instructions
 - raffinement d'un IP processeur
 - spécificités SIMD (OR Tree, identité...)

- Modèle d'exécution multi-SIMD/SPMD
 - étendre le modèle d'exécution de mppSoC
 - viser un large spectre d'applications de TS

Publications

13 publications durant la thèse :

- 1 chapitre d'ouvrage (2^{eme} auteur) (*IGI-Global*)
- 1 journal (JSA, Elsevier)
- 9 conférences et workshops internationaux (IDT'08, AICCSA'09, ARC'10, RAPIDO'11...)
- 1 PhD Forum (à FPL'10)
- 1 participation aux journées doctorales (*EuroDoc-Info'10*)

MERCI