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Abstract

This thesis proposes a novel image primitive — the diffusion curve. This primitive relies on the
principle that images can be defined via their discontinuities, and concentrates image features
along contours. The diffusion curve can be defined in vector graphics, as well as in raster
graphics, to increase user control during the process of art creation.

The vectorial diffusion curveprimitive augments the expressive powers of vector images by
capturing complex spatial appearance behaviors. Diffusion curves represent a simple and easy-
to-manipulate support for complex content representation and edition.

In raster images, diffusion curves define a higher level structural organization of the pixel
image. This structure is used to create simplified or exaggerated representations of photographs
in a way consistent with the original image content. Finally, a fully automatic vectorization
method is presented, that converts raster diffusion curve to vector diffusion curve.
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c h a p t e r 1
I n t r o d u c t i o n

The computer, as an art tool, has transformed traditional activities like painting, drawing and
design, and has made possible new forms of art creation, such as algorithmic art1 and net art2.
As Anne Morgan Spalter remarks in the opening of her book “The Computerin the Visual
Arts” [Spa98]:

“with the advent of personal computer and the commodification of interactivegraphics
software [...] the computer became a valuable Postmodern art tool.”

The computer has become a standard tool in many artistic processes because it introduces
extraordinary flexibility to the act of creation. Two examples of art imagery made possible
by the computer are shown in Figure 1.1. First is a creative photo-painting where the artist
has brought together three generations of women in a single photograph.In the second image
(Figure 1.1 (b)), the artist uses geometrically defined shapes to obtain exact lines and flawless
curves for his design of a fantasy heart. These two images also illustrate thetwo distinct
categories that can be used to represent a computer-generated artwork: raster graphics and
vector graphics.

1 Digital images

Vector graphicsis the creation of digital images through a sequence of geometrical primitives
such as points, lines, curves, and polygons, all based on mathematical equations.Raster graph-
ics provide an alternative representation for describing images. Rather thangeometry, raster

1For example, San Base’s dynamic painting uses computer algorithms to continuously “reinvent” itself:
http://www.sanbase.com/

2Net art uses the internet as its medium and cannot be experienced in anyother way. One example of net art is
“My boyfriend came back from the war” by Olia Lialina:
http://www.teleportacia.org/war/

http://www.sanbase.com/
http://www.teleportacia.org/war/
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Figure 1.1: (a) Michele Turre,“Me, My Mom & My Girl at Three”, 1992. This art work
showcases four distinct phases of image making history: The 1920s studio portrait of her
mother has the soft lighting, grainy film base, and soft printing style of that era. The picture
of herself has the sharp focus look typical of the 1950s. The picture of her daughter was
captured from video and still has scan lines running through it. She then combined these three
photographic technologies in an image that speaks clearly of the computerage. (b) Dhanank
Pambayun, “Living on a Heart Grunge”, 2008. Here, the artist used the abstract geometric
mark-making and the sharp, clean-cut look typical to vector graphics,to create a vintage
looking fantasy.

graphics use a grid of individual pixels to define images, where each pixel can store a different
color.

Both representations have advantages and limitations. One important benefitof vector graphics
is that images can be scaled to any size without any loss of quality, by simply multiplying their
analytic description by a constant factor. As shown in Figure 1.2, vector pictures retain sharp
features when magnified — a property calledresolution-independence. In contrast, raster
graphics are resolution dependent; they cannot scale to an arbitrary resolution without loss of
apparent quality. When magnified, a raster image becomes grainy, and the eye can pick out
individual pixels of uniform color (as shown in the zoomed-in version of the raster image in
Figure 1.2). From an artist point of view, this means that a raster art can only be created,
modified, and displayed at a single scale, while a vector art can be manipulated and exhibited
at any scale.

Vector graphics are also easilyeditable. A vector object is a continuous mathematical descrip-
tion, and changes are made by modifying the mathematical formulae. Intuitive tools can be
used to stretch, twist, and color objects in the picture. In raster images, on theother hand, there
is no inherent relationship between any parts of the image; they are all just pixel values. Editing
a raster image is not straightforward — changes of an object shape or color can only be made
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Figure 1.2: Raster graphics vs. Vector graphics:This image demonstrates how vector (bot-
tom row) and raster images (top row) behave when re-scaled (first column). It additionally
illustrates the difference in shape selection for the two image formats (last column).

by changing individual pixels. This is illustrated by the shape selection donein Figure 1.2.
While raster selection simply moves a rectangle of color samples, in the vector selection the
entire eye is dragged to a new location, and the face remains untouched.

Vector-based images are also more easilyanimated than raster images, through keyframe an-
imation of their underlying geometric primitives. Vector graphics thus provide the artists with
an infinitely malleable and flexible image making tool.

However, for all of their benefits, vector-based drawing tools offer only limited support for
representing complex image content. The complexity of object shapes and colors is limited to
the vocabulary available for describing them and precludes many paint-type touches, such as
creating complex shading by smudging colors. On the contrary, raster images can capture and
representcomplex images, and are typically used for the representation of photographs and
photo-realistic images.

Raster and vector are thus complementary representations. While vector graphics have thede-
scriptivepower to specify semantically important image features, they cannot represent com-
plex imagery. Raster graphics have theexpressivepower to depict photo-quality pictures, but
image manipulation is extremely difficult.
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2 Thesis

The thesis presented in this manuscript is that contour drawings are a useful tool for the de-
piction of image features, in particular color, shading and texture. This dissertation explains
how a contour-based representation can be used in vector and raster graphics, and provides
examples of powerful and intuitive user controls enabled by the use of contours. The proposed
approach is inspired by the art of contour drawing and its capacity of expressing a subject in a
few sketched lines.'

&

$

%
(a)

(b)

(c)

Figure 1.3: The expressive power of contour drawing: (a) Vincent van Gogh, “Cypresses”,
1889. Circular, energetic, emotionally charged lines are used to conveythe dramatic mood. (b)
Saul Steinberg, “The Discovery of America”, 1992 [Ste92]. The regular repetition of straight
lines emphasizes firmness of purpose and dynamic motion. (c) Henri Matisse, “Variation 1”,
1942. The curves in this drawing incorporate qualities like economy, sensuality, and elegance.

2.1 Contour drawing

Drawing is the starting point of all visual art creations (Encyclopædia Britannica [EB09]).
Painters, architects, sculptors, scientists, and film-makers alike rely on drawing to express their
initial thoughts and to explore new possibilities for their designs [Kov06]. Every painting is
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built essentially on its pre-sketched main contours, consolidated into coloredsurfaces [EB09].

� A contour drawing is composed of lines and the empty space between the lines.

The principal element of drawing is the line, appearing as a border setting ofbodies, colors and
planes. Within the line composition, the space left blank fulfills an essential role: it conveys the
uniform surface, the borders and nuances of which are indicated by the lines. The flat planes
of a building, the unlined appearance of a cheek, the smooth width of a garment, the glassy
surface of a lake, can all be encompassed by the empty spaces in the drawing [Kov06,EB09].

With the aid of this simple vocabulary, the viewer can be made to effortlessly identify the
object of a drawing. The angular meeting of two lines, for example, may be considered as
representing the borders of a plane; the addition of a third line can suggest the idea of a cubic
body. Vaulting lines stand for arches, convergent lines for depth. Theform of a line is enough
for the human mind to call forth associations and “read” a complete scene, because “the visual
world is made of contours, creases, scratches, marks, shadows, andshading” (Marr [Mar82]).
Lines, therefore, can represent the way we perceive and understand the surrounding world
[Mar82].

� Everything real or imaginary can be represented through linedrawing.

Line drawings, by their very simplicity, also offer a broad scope for the expression of artistic
intention. Anything in the visible or imagined universe may be the theme of a drawing; bodies,
space, depth, and even motion can be made visible through lines. In her book “Drawing for
Dummies”, Brenda Hoddinott [Hod03a] explains:

“You can draw any object when you see its edges as simple lines. [...] Even complex
subjects, such as people, can be rendered using only lines.”

Furthermore, because of the rapidity with which it can be created, drawingcaptures in the flow
of its line the personality of the artist, much as handwriting represents the writer’s individual
traits (Figure 1.3). Michael Craig-Martin [Kov06] describes the power of drawing thus:

“Its characteristics include spontaneity, creative speculation, experimentation, directness,
simplicity, abbreviation, expressiveness, immediacy, personal vision, technical diversity,
modesty of means, rawness, fragmentation, discontinuity, and open-endedness. These
have always been the characteristics of drawing.”

� Thesis: A digital image can be represented, created and edited via its contours.

Guided by the properties of line drawing and by the utilization of contours as asupport for
painting, this thesis exposes the possibility of using contour drawing to represent a colored
digital image. Considering the role played by empty spaces — that of the smooth mass of
a figure — we express the space between contours as smooth variations ofcolor, shading
and texture. Such a representation inherits the characteristics of drawing; it is effortlessly
comprehended and easily created, for example, and it preserves the individuality of the artist’s
line style.
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2.2 Contours as basic primitives for digital image creation

The following approach relies on the observation that traditional color painting starts with con-
tour lines and proceeds by filling the outlined spaces with color and texture. Our work reposes
on this classical framework to propose a general digital model, that is subsequently adapted
to raster and vector imagery. This representation, called thediffusion curve, usescontours
to define the shape of the depicted scene, and attachesattributes — arbitrary image features
— to the contours. The space between the lines is filled with smoothly varying attributes by
diffusingand mixing the values fixed along contours. To adapt this abstract model to the two
digital image formats, we rely on the inherent characteristics of each representation.

2.2.1 Vector graphics

Vector graphics have an extraordinarydescriptivepower, offering fine-tuned control over form,
color and placement. The diffusion curve vector primitives take advantageof this descriptive
capacity to experiment with possible image attributes and design methods of creating a vector
image from scratch. An important part of this dissertation is dedicated to the diffusion curve
vector primitive and throughout this manuscript the generic term “diffusioncurve” refers to the
vector diffusion curve.'

&

$

%
Figure 1.4: Parallel between traditional media creation and the proposed vector graphics
creation. (Top) Watercolor creation steps: contour drawing, color filling, and shadingc©Xia
Taptara. (Bottom) The diffusion curves steps: contour drawing, color setting, and finally
texture and shading definitionc©Laurence Boissieux.
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Creation with diffusion curves is easy to master by artists, because it allows for workflows
close to the traditional “on-paper” art creation process [Hod03a]. Diffusion curvesenable the
artist to start with a “blank paper”, define contours and use them to develop color variations,
shading effects and textured surfaces. A parallel between traditional media creation and the
proposed vector graphics representation is shown in Figure 1.4.

2.2.2 Raster graphics

Raster graphics are especially notable for their power to faithfully represent photographs. In
photographs, the entire scene is already “created”, but lacks semantic information. The raster
diffusion curve strives to represent raster images as a higher-level structure organization, that
the user can manipulate more easily than pixels. In this structure, contours are made by edges
— points in a raster image at which the image brightness changes sharply — with acolor
attribute.'

&

$

%
(a)

(b)

(c)

Figure 1.5: (a) Example of hand-made image abstraction: “Le Papillon” (The Butterfly),
watercolor by Eric Alibert. From “Leman, mon ile”,c© 2000 by Editions Slatkin. As seen
in the guidebook of scientific illustration [Hod03b]. It is clear that focus of the image is the
butterfly: it is depicted with many details, while plants around have little detail andtheir shape
is less precise. Our raster diffusion curves allow the user to obtain similar effects (b) from a
photograph (c).

One example of raster manipulation is given in Figure 1.5. Figure 1.5 (a) represents a hand-
made scientific illustration, from which it is clear that the main subject of the image isthe
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butterfly: it is depicted with many details, while plants around are only suggested. However,
while abstracted, secondary elements of the image retain their look and are easily identified;
in other words, their relevant structural components are preserved through the abstraction pro-
cess. Similarly, our diffusion curve structural information guides user image manipulations,
but preserves the relevant data (Figure 1.5 (b)).

2.3 Contributions

We propose a novel image primitive — the diffusion curve. This primitive relieson the princi-
ple that images can be defined via their discontinuities, and concentrates imagefeatures along
contours. The diffusion curve can be defined in vector graphics, as well as in raster graphics,
to increase user control during the process of art creation.

1. In particular, thevectorial diffusion curveprimitive augments the expressive powers of
vector images by capturing complex spatial appearance behaviors. Diffusion curves represent
a simple and easy-to-manipulate support for complex content representation and edition.

– First, the proposed vector primitive can depict complex color variations; represent light-
ing effects via user-defined normals; and natively handle textures.

– Second, we provide powerful, high-level tools to intuitively manipulate the vector pa-
rameters. Using the diffusion curve principle that attributes vary smoothly everywhere
except on contours, we allow the user to sparsely define image parameters, including
colors, normals and texture coordinates, along curves of discontinuity. We additionally
design editing methods that support common artistic workflows. Particularly, we de-
scribe methods for applying textures directly to a 2D image, without requiring full 3D
information, a process we calltexture-draping.

– Third, based on a GPU-accelerated rendering we provide instant visual feedback and
allow unhindered artistic manipulations.

2. In raster images, the present approach relies on edges to define diffusion curves as a higher-
level structural organization of the pixel image. This structure is used to create simplified or
exaggerated representations of photographs in a way consistent with theoriginal image content.

3. Finally, a fully automatic vectorization method is presented, that converts raster diffusion
curve to vector diffusion curve.
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2.4 Organization

This manuscript explores primarily the capabilities of diffusion curves for vector graphics.
Chapter 2 discusses the existent vector representations and their expressive capacity.

Chapter 3 introduces the diffusion curve vector primitive and describes how to efficiently ren-
der an image from such primitives.

Chapter 4 presents various options for creating and editing a vector diffusion curves image. It
explains the process of creating and manipulating three image features: colors, shading and
texture.

In Chapter 5, a raster-to-vector process is discussed, where image edges are transformed into
raster diffusion curves and used to vectorize the image.

Chapter 6 revisits the raster diffusion curve primitive and explores how thisstructure can be
used to enhance photographic representations.

Finally, the conclusion (Chapter 7) gathers our thoughts relative to the choices we have made
and discusses future work possibilities.
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c h a p t e r 2
Ve c t o r G r a p h i c s

This chapter presents a background on vector graphics, and details thedistinguishing charac-
teristics of different vector representations. Section 1 outlines the two vector system categories:
stacking and planar maps. Vector primitives that fall into the stacking category are organized in
Section 1.1. Each primitive is presented as a geometric shape onto which varied attributes can
be attached; the shape definition, the attribute placement on the shape, and the types of possible
attributes, are discussed in turn. Section 1.2 details the planar map representation and gives an
overview on what constitutes a shape in planar maps and how attributes can be attached to each
shape.

Possible attributes for vector primitives are color, shading and texture. Section 2 details each
attribute and explains how manipulating the geometric shape influences the attribute values and
positioning.

And finally, Section 3 considers automatic and semi-automatic methods of extracting vector
primitives from raster images.
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1 Representation

Vector primitives are geometric shapes with attached attributes ofcolor, shadingandtexture.
Depending on the way vector primitives interact with one another, vector illustrations fall in
two categories: stacking and planar maps. The following sections present,for stacking and pla-
nar maps in turn, the possible primitives. For each primitive, three elements arediscussed: the
shape the primitive can have, the accepted attributes, and how these attributes can be attached
to the shape.

1.1 Stacking

In a system that uses the stacking metaphor [Sut80], all shapes have a stacking order. A shape
higher in the stack occludes the objects below it in regions of overlap. Sincethe objects do not
interact other than to hide each other, each shape can be edited independently from the others.
A simple example of this behavior is illustrated in Figure 2.1 (a) and (b).

Paths and geometric objects

Classical shapes in a stacking metaphor are either free-formpathsor predefined geometricob-
jects. A path is a sequence of Bézier curves, and is mostly used to create freehand art. Objects,
on the other hand, rely on specific geometric definitions and can be createdand edited in ways
unique to their specified type. For example, in Adobe Illustratorc©CS4and Inkscapec©0.45,
the predefined objects are straight line segments, rectangles, ellipses, polygons and stars. An
object is less “free” than a path, but has the advantage of dedicated toolsbased on geometric
properties. An ellipse, for example, will thus be manipulated by increasing and decreasing its
major and minor radius, and not by deforming individual Bézier curves.

Complex shapes can be obtained by combining two or more shapes using boolean operations,
such as unions, intersections or differences. The Inkscape documentation [Ink08] presents a
very good description of the different possibilities of creating paths and objects.

For both paths and objects,attributescan be attached to closed regions or to borders (as in
Figure 2.1, where regions are filled with uniform color and borders are colored in a different
hue). Open shapes are usually “closed” automatically by an invisible line segment uniting
the extremities. The attributes defined for paths and objects are flat colors,linear and radial
gradients and texture.

Gradient meshes

Recently, a different vector primitive was proposed for stacking systems: the gradient mesh
(Adobe Illustratorc©, Corel CorelDrawc©).
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Figure 2.1: Vector shapes: (a) A vector illustration in classical stacking shapes; (b) shows
what happens when the foremost rectangle is modified. In (c), the samedrawing is done with
gradient meshes. The rectangle and the circle form each a gradient mesh object. (d) illustrates
how the rectangle deforms when performing the same operation as in (b). Note that the mesh
“knots” anchor the form, and thus only the top right patch deforms.

A gradient mesh can be seen as a net placed over the object, made up of intersecting horizontal
and vertical curves. Each ‘knot” in the net — that is each point where themesh intersects —
anchors the object in place.

Theseanchor pointscan be pulled or adjusted to control the shape of the mesh, and the two
intersecting curves are deformed accordingly. A comparison between theclassical stacked
shapes and gradient meshes is shown in Figure 2.1, where Figure 2.1 (c)illustrates the gradient
mesh structures corresponding to the stacked shapes in Image 2.1 (a). Figure 2.1 (d) is the
result of a gradient mesh deformation under the same user interaction as in Figure 2.1 (b).

Currently, the gradient mesh accepts only oneattribute type: a color value. But a different
value of color can be placed at each anchor point, and smoothly interpolated across mesh
faces. Complex color variations can be created this way (Figure 2.2).

3D shapes

Yet another stacking primitive is the 3D shape, that can be created automatically from 2D
artwork (Adobe IllustratorCS2). There are three ways to create a 3D object: extrude, bevel
and revolve. In addition, a 2D or 3D object can also be rotated in three dimensions. Figure 2.3
illustrates these options.
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Figure 2.2: Complex color variations with gradient mesh:(a) The mesh superposed onto the
color filling. (b) The final vector drawing, with mesh nodes having varying colors.'
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Figure 2.3: Possible 3D shapes from a 2D form:(a) The original 2D object. (b) Extruded
shape. (c) Beveled shape. (d) Revolved shape.

For this vector primitive,attributesare placed on the 3D shape, and are automatically deformed
by the 3D. Possible attributes areshadingandtexture(arbitrary 2D artwork). Note that in the
termshadingwe include all possible illumination effects.

1.2 Planar maps

In a system that uses the planar map metaphor [BG89], all shapes are treated as though they are
on the same flat surface. That is, none of the shapes is behind or in front of any other. Instead,
the outlines divide the drawing surface into areas, derived from the intersection points of a line
drawing.

For creating planar map drawings, the usual working process is to first create the line drawing.
A planar map graph — the subdivision of the plane into nonoverlapping regions bounded by
simple closed curves — is then automatically computed from the line drawing.

Attributes— of uniform colors, linear and radial color gradients, and texture — canbe attached
to any of the planar map regions, regardless of whether the area is bounded by a single shape
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outline or by segments of multiple shapes. The result is that object painting is likefilling in a
coloring book or using watercolors to paint a pencil sketch. This importantdifference between
planar maps and stacking is illustrated in Figure 2.4.'
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Figure 2.4: Color filling : Example of different color filling behaviors for a closed self-
intersecting path. (a) The stacking system in Adobe Illustratorc©fills the entire region bounded
by the path with a single primitive. (b) The Inkscapec©stacking system detects holes in the path,
and so removes them from region to be colored. (c) The planar map system proposed by Adobe
Illustrator c©can attribute one color primitive to each closed region, even if they are bounded
by a single path.

Planar map systems are especially useful in illustrations where the elements interact in a non-
stacked way, such as weaves, knotwork, or linked rings. Planar maps are equally needed in
illustrations that do not have any underlying structure, like hand-drawn cartoons (ToonBoomc©,
Adobe Flashc©), and in illustrations where the regions to be filled are bounded by several
unrelated paths.
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2 Creation and Manipulation

This section discusses in detail each vector attribute: color, shading and texture. For each at-
tribute type, the creation tools that allow the user to specify various effects are presented. Also
discussed is the influence shape manipulations have over the attribute valuesand positioning.

2.1 Shape and color

Stacking

The simplest way of coloring a vector drawing in stacking systems is by assigning one uniform
color per region. This createsflat-colored results like those in Figure 2.5.'
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Figure 2.5: Flat color in vector graphics: Two examples of vector graphics realized with flat
filling. (a) The impression of color variation around the nose is given by multiple superposed
objects of increasingly lighter color. Image taken from the Inkscapec©examples. (b) Flat colors
can be used to obtain a strong visual effect.c©Warner Bros. Entertainment, Inc.

While flat colors can create a very strong and suggestive effect in somecases (Figure 2.5 (b)),
they are generally not sufficient to depict more natural-looking images, withhighlights and
smooth varying shadows. Figure 2.5 (a) shows how flat color regions are used to imitate a
smooth varying color.
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Gradient color primitives allow an artist to directly fill a region with gradations of color that
blend smoothly into each other.'
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Figure 2.6: Simple gradients: (a) Linear gradient. (b) Radial gradient.

The most commonly used gradients are linear and radial (depicted in Figure 2.6). These gra-
dients are generally suitable for traditional illustration and design work. In Figure 2.7, for
example, a convincing effect of light coming from the upper right side is realized through the
use of linear and radial gradients.'
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Figure 2.7: Light effect with linear and radial gradients: (a) The final vector drawing. Image
fromwww.freevectors.net. (b) shows the outlines of shapes used.

But these simple gradients are limited from a creative standpoint, as it is difficult to create
realistic images, paint-like styles, or complicated optical effects using only these types of color
gradient. This is illustrated in Figure 2.8, an image taken from the Inkscape tutorial. Here,
complex color variations are realized by the use of radial gradients alone;but this necessitated
a great amount of primitives, making the result difficult and time consuming to create and edit.

Even with color variations inside closed regions, vector graphics are generally characterized
by sharp color transitions between one colored region and another. Thenumerous cases where

www.freevectors.net
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Figure 2.8: Complex color variations with simple gradients: (a) The final vector drawing.
(b) shows the outlines of shapes used. Note the complex arrangement and the numerosity of
the employed primitives.

region borders are not obvious — of which fog, smoke, and out of focus objects are just a few
examples — are difficult to represent just with in-region gradients alone.

The classical solution for stacking systems is to add atransparency value to color attributes.
The superposition of multiple regions of varying transparencies and different shapes can create
an effect similar to brush strokes on canvas. An exquisite example of this is shown in Fig-
ure 2.9. However creating such complex images by blending region colors necessitates a great
number of regions, and complicated, un-intuitive shapes.

Another solution to avoid sharp borders, adopted by the SVG format and modern tools (Adobe
Illustratorc©, Corel CorelDrawc©, Inkscapec©), is to reblur the image once vector primitives
have been rasterized. However, they only allow for a uniform blur for each given primitive,
which, similar to the limitations of flat colors or simple gradients, necessitates an impractically
large number of primitives to approximate complex image content.

Gradient mesheshave been specifically proposed to address these issues. However, manip-
ulating color with gradient meshes is tightly linked to manipulating the mesh shape, because
the only way of adding color variations is by introducing mesh anchor points.Creating a mesh
drawing from scratch thus requires much skill and patience, because theartist needs to ac-
curately anticipate the mesh resolution and topology necessary to embed the desired smooth
features. This is why most users rely on an example bitmap to drive the designof realistic
gradient meshes. The users first decompose an input photograph into several sub-objects and
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Figure 2.9: Transparency effects:Combining irregular shaped regions with gradients and
transparency can create complex shading effects, as in this drawing by Jory Dayne c©Jory
Dayne.

then draw meshes over each sub-object following their topology; finally, they sample colors in
the original photograph, assigning them to the mesh vertices. Many tutorials describing this
approach and the mesh creation from scratch are available on the Web1. Still, drawing effec-
tive meshes and performing accurate manual color sampling is very time consuming in practice
(several hours or even days for detailed images) and requires a goodappreciation of the image
complexity to adopt an adequate mesh resolution (Figure 2.10).

1Among gradient mesh tutorials available on the Web, these offer detailed descriptions for beginners:
http://www.learnit2.com/tutorial015/ ,
http://www.magicalbutterfly.com/tutorials/meshtutor ial/meshtutmain.htm ,
http://www.creativebush.com/tutorials/mesh_tutorial .php

http://www.learnit2.com/tutorial 015/
http://www.magicalbutterfly.com/tutorials/meshtutorial/meshtutmain.htm
http://www.creativebush.com/tutorials/mesh_tutorial.php
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Figure 2.10: Gradient meshes complex example: (a) An example of gradient mesh
( c©Adobe). (b) Zoom on the mesh, with all the color points marked. Note that tomodify
the color or the shape of the mesh, each point has to be individually edited.

Diffusion curves achieve the same level of visual complexity as that reached by gradient
meshes, but with a more direct workflow, better suited to artistic endeavors.

Planar maps
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Figure 2.11: Planar map behavior: (a) A vector illustration that looks the same instacking
andplanar mapsystems. But the behavior of these two vector categories is different. Thisis vis-
ible in figures (b) and (c); (b) shows what happens when the foremostrectangle is modified in a
stackingenvironment. Note that the background circle becomes more visible. (c)demonstrates
theplanar mapbehavior under the same operation. The red region, enclosed by the arc of a
circle and the sharp corner, has been broken; no color can be attached to the corresponding
area in the illustration.

In planar map systems, free-hand line drawings are easily colored by assigning to each region
in the planar map graph a separate color. As in stacking systems, planar map regions can be
colored with flat colors, or with linear and radial gradient. However, whilethe illustrations are
easy to color, they are difficult to edit. When lines are moved, planar maps are re-created, and
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regions appear, disappear, split up or merge. It is difficult to decide how to transfer the colors
from the previous planar map to the newly created planar map (Figure 2.11).Depending on the
system, planar map computation can also split shapes at intersections, making them no longer
editable as a whole (Figure 2.12 (a)).

Recently, Asente et al. [ASP07] proposed a new metaphor for planar-map editing that allows
the artist to easily modify a composition after applying color. This system, calledLivePaint,
was also included in Adobe Illustratorc©CS2. LivePaint proposes a set of editing rules that
users would in most cases consider to be the right answer. However, in some cases the fill
assignment is inherently ill posed and there is no obvious answer (an example is shown in
Figure 2.12 (b)). Figure 2.12 (a) illustrates the LivePaint behavior compared with several other
planar map systems.
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(1) (2) (3)

(4) (5) (6)

?

?

(a) (b)

Figure 2.12: Planar map editing systems: (a) Various results of editing. (1) Original il-
lustration (2) MapSketch (3) Adobe Flash (4) Adobe Flash - a different behavior (5) Adobe
Illustrator Pathfinder (6) Live Paint.(b) An ill-posed case for planar map systems. Images
taken from Asente et al. [ASP07].

The diffusion curve vector primitive we propose here is a planar map system in that there is
no stacking order in our objects. However, the diffusion curve coloringcapabilities surpass
the simple linear or radial gradients possible in systems such as Live Trace.As we describe
in Chapter 3, gradients in our representation can be arbitrary complex. Additionally, our color
attributes, rather than being attached to regions, are attached to lines, thus avoiding the problem
of color reassignment and making subsequent manipulation easier.
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2.2 Shading

Shading is a very important part of image depiction. Through shadows andhighlights, we
infer the intended 3D form of the 2D artwork [Hod03a]. Figure 2.13, forexample, shows how
a flat-colored circle is transformed into a sphere by the judicious positioning of shades.

'

&

$

%
Figure 2.13: Sphere with gradient shading and shadow: Top left: Completed sphere. Top
middle: Shadow. Bottom: The sphere with shading and highlight layers. Image taken from the
Inkscape tutorial [Ink08]

In vector graphics, lighting environments and shading effects are usuallysuggested by color
gradients and transparency (an “unwrapped”example is shown in Figure 2.13). As such, the
vector graphics capacity of creating shadows and highlights depends ofits power of represent-
ing color variations.

The 3D shapestacking primitive provides a different alternative to color gradients: shading
effects can then be automatically computed through classical 3D rendering algorithms. An
example of these effects is given in Figure 2.14.

For planar maps, Johnston [Joh02] proposed a shading method that retains the hand-drawn
aspect of the artwork. His approach approximates lighting in 2D drawings byinferring normals
from the original line drawing. The key observation was that for curvedsurfaces, lines form the
exterior silhouette and interior folds. Also, on silhouettes and folds, normalsare perpendicular
to the viewer. Normal vectors are therefore generated along the lines of the drawing by setting
the normal value equal to the 2D gradient of the line. Normal values are thendiffused in the
empty space between lines, to create a sphere-like surface. An approximated shading is then
automatically computed from the normals. The results obtained by this method are shown in
Figure 2.15.

Diffusion curves follow the inspiration of Johnston, but they allow a higherdegree of control
on the initial normal values.
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Figure 2.14: Shading effects for the 3D shape: (a) Original 2D drawing. (b) 3D shape
obtained by revolving the 2D artwork, with a plastic shading. (c) Plastic shading with different
light position and a blue shading color. (d) Diffuse shading with yellow shading color.'
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Figure 2.15: “Lumo” shading: Results obtained by the normal-inferring technique presented
in Johnston [Joh02]. From left to right: illumination obtained from the normals,original cat
drawing, cat with added illumination, and final drawing. Image taken from [Joh02].

2.3 Texture

Texture creation and manipulation tools originate from the need of controlling how texture is
perceived by the viewers. In 2D pictures, textures transmit two important visual cues. The
characteristics of a texture define the surface material of an object (wood, stone, etc.). And
perceived texture distortions can be used to infer properties of 3D layout of objects and object
shape [Jul62,BL91,RL93,LG04].

Considering these attributes of the texture, two different questions arise when creating textured
vector drawings:

– How to use vector primitives to generate a texture based on user-specified input?

– How to include that texture pattern inside a vector primitive region, and deform the
texture to suggest shape?
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Definitions: To facilitate the discussion in the remainder of the section, we make use of the
following definitions:

Texel - An atomic texture element, which is distributed repetitively over an image plane.

Texture-map - The planar image representation of a texture. This may be comprised of an
arrangement of texels or generated otherwise.

Texture-draping - The process of applying a texture-map to a 2D image. Note, that this is
not mere mechanical texture mapping, but rather the tools and techniques allowing the artist to
specify texture-coordinates manually, e.g. to direct texture flow or suggest shape.

2.3.1 Creating a vector texture map

While vector images possess semantic capabilities to describe and parameterizetextures, there
is little work that addresses vectorial textures. Texture support in popular vector formats, such
as SVG, CorelDrawc©, Flashc©, or Adobe Illustratorc©, is commonly limited to tiling or pre-
defined procedural textures.'
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Figure 2.16: Examples of texture maps produced with Inkscape. (top) Various symmetrical
arrangements. (bottom) Randomization of rotation, scale, position and color.

Tiling means that multiple copies of the sample are simply copied and pasted side by side.
The tiling method is generally appropriate for regular, highly repetitive patterns, but doesn’t
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perform well for irregular patterns or stochastic detail2. Adobe Illustratorc©proposes a regular
grid as the pattern arrangement method, and a special tile element for the corners of the texture.
Inkscapec©considers all possible two-dimensional repetitive pattern, based on the symmetries
in the pattern — the “wallpaper groups”. Examples of patterns obtained with Inkscape are
shown in the top row of Figure 2.16. For near-regular textures, Inkscape allows variations of
position, rotation, size and color on its symmetrical arrangements (see the Tilingchapter of
the Inkscape manual [Ink08]). The bottom row textures in Figure 2.16 use the randomization
capabilities of Inkscape.

For creating stochastic or near-stochastic textures,procedural algorithms are generally used
[PV95]. These algorithms generate random variations of a pre-definedtype of texture, and
rely on grammar definitions and function specifications to do so. Procedural textures create a
realistic representation of natural elements such as wood [LP00], marble,granite, metal, stone
and others. Unfortunately, they also require programming skills that make thecreation of new
procedural textures difficult. Procedural textures are also poorly adapted for creative endeavors,
because individual artistic styles are not easy to translate into algorithmic representations.

The system of Barla et al. [BBT+06] addresses the learning of user-defined strokes and ar-
rangements, to produce larger texture maps with qualitatively similar textures (Figure 2.17 (a).
The proposed method extracts meaningful pattern elements from the user input and imitates
their irregular distribution to synthesize new texture elements.

For creating a texture-map, we take advantage of the complex color gradients possible with
diffusion curves to propose support for regular and near-regulartextures with intricate designs.

2.3.2 Texture draping

In many vector graphics editors (such as Inkscapec©), texture maps are directly rendered onto
the image plane without much support to direct the arrangement of the texturein the image,
for example, to suggest shape.

Tools for2D scaling and rotationof individual texels where proposed by Ijiri et al. [IMIM08].
By extending the work of Barla et al., the proposed method is able to synthesize texels along
user-constrained paths and within user-defined regions, according tothe learned distribution
properties (Figure 2.17 (b)). In a similar way, Adobe Illustratorc©symbolismtool allows the 2D
placing of individual texels with the help of different spray tools (that cangather, scatter, shift,
and spin texels).

The floral ornament paper by Wong et al. [WZS98] (Figure 2.17 (c)),as well as the Escher-
ization system by Kaplan et al. [KS04a] (Figure 2.17 (d)), and Islamic pattern by Kaplan et
al. [KS04b, Kap05] (Figure 2.17 (e)), consider both the shape of texels and their placement as
a simultaneous problem.

2Structural definitions of textures are presented in Appendix B
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Figure 2.17: Vector texture synthesis: Results from several vector pattern synthesis pa-
pers: (a) “Stroke pattern analysis and synthesis” [BBT+06]; (b) “An Example-based Pro-
cedural System for Element Arrangement” [IMIM08]; (c) “Computer-generated floral orna-
ment” [WZS98]; (d) “Dihedral Escherization” [KS04a], (e) “Islamicstar patterns in absolute
geometry” [KS04b].

Such texture syntheses are well suited to simulate flat texel distributions, butthey do not ad-
dress the problem of planar distribution manipulation to suggest surface shape.

Mesh-based warpingcan represent perspective deformations, as in the manual texture align-
ment of Liu et al. [LLH04]. However, the mesh topology tends to be unintuitive (not aligned
with visual image features) and difficult to manipulate due to its complexity, despitepromising
results in partial automation [SLWS07].

The placement of 2D and 3D textures on the surfaces of3D modelshas been extensively
studied [Hec86, SKvW+92, Lév01, GDHZ06]. Much of the work addresses atlas construction
of 3D models or through-the-lens manipulation of texture coordinates on the projected models.
While Illustratorc©recently introduced 3D object creation from 2D shapes, a full 3D model that
would capture the artist intent remains difficult to create. Folds and asymmetricshapes would
be very problematic to create with the tools illustrated in Figure 2.18.

Diffusion curves enable draping texture maps directly onto images, without requiring full 3D
information, to suggest shape and flow. The artist can control preciselyhow texture folds,
ripples, and flows over an implied surface.
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Figure 2.18: Adobe Illustratorc© 3D texturing: (a) Original 2D drawing. (b) 3D shape
obtained by revolving the 2D artwork, with a plastic shading. (c) Artwork mapped on the
revolved 3D shape.

3 Vectorization

Aside from manually creating vector imagery, an interesting question is the extraction of vector
primitives from raster images. Works that transform a bitmap into a vector representation have
concentrated on representing color variations, and use for this either color flats, radial gradi-
ents, or gradient meshes. This section details the existing vectorization methods, organized
according to the vector color primitive they use.

Commercial tools such as Adobe Live Tracec©usually operate by segmenting an input image
into regions of constant or slowly varying color, and by fitting polygons onto these primitives.
Usually, an averagesolid color is assigned to each resulting vector primitive. Although this
class of methods produces convincing results in uniform areas, the segmentation typically gen-
erates a prohibitive number of primitives in smooth regions.

The ArDeco system of Lecot and Lévy [LL06] allows vectorization of more complex gradients
usinglinear or quadratic gradientprimitives. It is based on a segmentation of the input image
into regions of slowly varying color, and an approximation of color variations within each
region with linear or quadratic gradients. The resulting primitives are fully compatible with
the SVG standard, but the approximation tends to produce sharp color transitions between
segmented regions (Figure 2.19).

Recently, the paper of Sun et al [SLWS07] proposed to assist the userby automatically fitting an
inputgradient meshto an input image. The fitting is achieved by minimizing the reconstruction
error between the resulting image and an input photograph. Their semi-automatic method
greatly reduces the time required to draw a precise mesh and sampling colors,although the
user still has to manually specify the sub-objects of the picture and draw the initial meshes with
an adequate resolution. Price and Barrett [PB06] proposed a similar approach for creating a
vector graphic image from an raster object, using recursive subdivisions until the reconstruction
error falls below a fixed threshold. Their method produces faithful results but also generates
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Figure 2.19: Ardeco [LL06] results: (a) original image; (b) the vectorization result. Note
that, while the gradient inside regions is well approximated, sharp transitions between regions
are noticeable. Image taken from [LL06].

many small patches in smooth regions. Lai et al. [LHM09] propose a fully automatic method
of extracting gradient meshes from an image, that uses surface parametrization and fitting
techniques.'
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Figure 2.20: Price and Barrett [PB06] results: (a) Raster image. (b) Resolution mesh cre-
ated from (a). (c) Rendering of (b); colors indicate user-selected sub-objects. Images taken
from [PB06] .

Yet, with all three approaches, it remains unclear how to efficiently manipulatethe resulting
meshes for further editing. We believe this is due to the extra constraints imposed by the use
of a mesh: using a predefined topology, employing specific patch subdivision schemes, and
choosing a global orientation. In practice, this translates into a dense net of patches that are not
readily connected to the depicted content. Hence, the manipulation of such a set of primitives
quickly becomes prohibitive for the non-expert.

Diffusion curves allow a fully automatic extraction of color gradients that is comparable, in
quality, with the semi-automatic approach of Sun et al [SLWS07].
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D i f f u s i o n C u r v e s R e p r e s e n t a t i o n

This chapter concentrates on how torepresentan image using diffusion curves. Section 1
discusses the pertinence of representing images by their discontinuities. Influential models
of human vision, that identify discontinuities as an important part of the early-stage vision
process, are presented. Additionally, a brief overview is given of computer vision findings that
demonstrate that contours are relevant as an image representation.

Thediffusion curvevector primitive is introduced in Section 2. The diffusion curve is defined
by its geometric shape — a curve — and a set of attributes attached to the curve. Given a set
of diffusion curves, the final image is obtained by solving a Poisson equation. Section 3 first
defines the Poisson equation, and then describes the steps needed to transform the diffusion
curve structure into the final image. Two methods are proposed: (1) a GPU-based implemen-
tation for rendering images defined by a set of diffusion curves in realtime (Section 3.2); (2) a
mesh-based solution, that transforms the diffusion curves into sets of triangles, to integrate it
into classical vector display systems (Section 3.3).
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1 Representing images by their discontinuities

The human visual system is very sensitive to color and contrast variations[Pal99], and the
early stages of vision rely on significant changes in the intensity to make explicit the structure
of our surroundings [CR68,KD79].

Based on this finding, Marr [MH80] conjectured that an image may be completely represented
by zero-crossing data (image edges) on multiple scales of the image. In his seminal book
“Vision” [Mar82], he proposed a model of the visual system where three consecutive stages
are used to transform the light falling on the retina into awareness of the visual world:

– The early stages of vision act like aprimal sketch, and extract fundamental components
of the scene (edges, regions, etc.), similarly to an artist quickly drawing a pencil sketch
as a first impression.

– A second stage — called a 2.5D sketch — makes explicit the surface orientations with
respect to the viewer and acknowledges textures. This stage is similar in concept to the
stage in drawing where an artist highlights or shades areas of a scene, toprovide depth
and pattern.

– And lastly, a 3D model stage moves away from the viewer-centered surface description
to construct a mental representation of shape and spatial organization in acontinuous,
3-dimensional map.

Following Marr’s insight, a number of subsequent mathematical models were proposed in or-
der to algorithmically extract a primal sketch from a bitmap image. Lindeberg [Lin91, Lin93,
Lin98] studied the notion of scale in image data, and considered image discontinuities at multi-
ple scales for automatic solving of visual tasks (such as computation of surface shape or object
recognition).

The works of Carlsson [Car88], Elder and Goldberg [Eld99] have demonstrated that image
edges, augmented by color and blur information, constitute a near-complete and natural prim-
itive for encoding images. Elder [EG01a] also suggested the possibility of using edges to
efficiently manipulate images with basic operations (edge delete, copy and paste).

Recently, the algorithm proposed by Guo et al. [GZW03, GZW07] automatically separates
textures (the “non-sketchable” part) from the “sketchable” part of a primal sketch (the struc-
tures). While structures are individually identified by a dictionary of “visual primitives” (such
as edges), textured regions are automatically generated from a descriptive model (Markov Ran-
dom Field model) [Jul62].

The diffusion curves representation is motivated by the primal sketch model,and by the rec-
ognized fact that most of the important features in the image are caused by,or can be modeled
with edges; and that (possibly open) regions or patches are implicitly defined in between. But
by a vector representationof edges and their attributes, diffusion curves greatly increase the
manipulation capabilities suggested by Elder [EG01a], to include shape, color, contrast, and
blur operations.
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The diffusion curves are also not limited to color and blur, but can be leveraged to represent
and edit other image properties as piece-wise-smooth data. Considering themodel of Marr’s
2.5D sketch, shading can be easily indicated through diffusion curves attributes, and textures
can be arranged and manipulated in 2D images.

This approach provides the user with more intuitive and precise editing tools,and also supports
resolution-independence, stylization and key-frame animation.

2 Data structure

The basic element of a diffusion curve is a geometric curve defined as a cubic Bézier spline
(Figure 3.1 (a)) specified by a set of control pointsP. The geometry is augmented with addi-
tional attributes:

1. Two sets of color control pointsCl andCr (Figure 3.1(b)), corresponding to color con-
straints on theright andleft half space of the curve;

2. A set ofblur control points (Σ) that defines the smoothness of the color transition be-
tween the two halves (Figure 3.1(c)).

3. Two sets ofnormal control pointsNl andNr (Figure 3.1(e)), corresponding to normal
constraints on each side of the curve;

4. Two sets of(u,v) texture coordinatescontrol pointsUl andUr (Figure 3.1(g)).
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Figure 3.1: A Diffusion curve: (a) A geometric curve described by a Bézier spline. (b) Arbi-
trary colors on either side, linearly interpolated along the curve. (c) A bluramount linearly
interpolated along the curve. The finalcolor image (d) is obtained by diffusion and reblurring.
Note the complex color distribution and blur variation defined with a handful ofcontrols. (e)
Arbitrary normal attributes on either side of the curve are diffused to obtaina completenormal
map(f). (g) Left- and right-side(u,v) coordinates create a(u,v) map.
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These attributes model three distinct steps of image creation. (1) The curves diffuse color on
each side with a soft transition across the curve given by its blur (Figure 3.1(d)) to create the
color image. (2) Normals are interpolated and diffused to create a normal map(Figure 3.1(f)),
used to integrate shading into the vector drawing. (3)(u,v) coordinates are equally diffused
to create a(u,v) map (Figure 3.1(g)); together with the normals, this map is used to drape the
texture-maps in the image.

Color and blur attributes can vary along a curve to create rich color transitions. This variation
is guided by an interpolation between the attribute control points in attribute space. In practice,
we use linear interpolation and consider colors in RGB space throughout therendering process
(Section 3), because they map more easily onto an efficient GPU implementation and proved
to be sufficient for the artists using our system.

Normal attributes also vary along the curve, but their variation can be eithera linear interpo-
lation, or it can rely on the curve geometry to provide thex andy values (see Section 2). The
(u,v) texture control points, just as all the other attributes, can independently beplaced on
either side of the curve, and their values are linearly interpolated along the curve.

Control points for geometry and attributes are stored independently, sincethey are generally
uncorrelated. This leads to eight independent arrays in which the control points (geometry and
attribute values) are stored together with their respective parametric positiont along the curve:

DiffusionCurve: P[npos] – array of (x,y, t);
Cl [ncl] – array of (r,g,b, t);
Cr [ncr] – array of (r,g,b, t);
Σ[nσ] – array of (σ, t);
Nl [nnl] – array of (x,y,z, t);
Nr [nnr] – array of (x,y,z, t);
Ul [nul] – array of (u,v, t);
Ur [nur] – array of (u,v, t);

The user can optionally decide to deactivate any of the diffusion curve parameters. This al-
lows for a variety of applications ranging from a full vector drawing created from scratch (all
parameters are active) to replacing textures in an existing bitmap image (only normals andu,v
coordinates are used), as shown in Chapters 4 and 5.

3 Rendering

Given a set of diffusion curves, the empty space between curves is filledin by solving a Poisson
equation whose constraints are specified by the attributes across all diffusion curves. This
section first defines the Poisson equation, and then describes the steps needed to pass from
the diffusion curve structure to the final image. Two methods are proposed: (1) a GPU-based
implementation for rendering images defined by a set of diffusion curves in realtime; (2) a



3 Rendering 33

mesh-based solution, that transforms the diffusion curves into sets of triangles, to integrate it
into classical vector systems.

3.1 Poisson equation

The mathematical tool at the heart of our approach is the Poisson partial differential equation
with Dirichlet boundary conditions:

∆ f = g over Ω ⊂ ℜn, with f (m) = d(m) ∀m∈ ∂Ω

where∆ is the Laplace operator,f is an unknown function defined over the closed domainΩ, g
is a known function defined overΩ, andd is a known function defined over the boundary∂Ω.
In image processing techniques,g is generally considered as the divergence of a vector field
divv [PGB03].

The Laplace operator measures the “smoothness” of a function and is defined as the divergence
of the gradient (∆ f = div∇f). The divergence of a vector field indicates “how fast” a flow
following the vector field expands or compresses. Intuitively, the Poissonequation computes
the functionf that smoothly interpolates the boundary conditionsd, while following the local
variations imposed by the vector fieldv as closely as possible.

In 2D, the Laplace and divergence operators are given by:

∆ f =
∂2 f
∂x2 +

∂2 f
∂y2 and divv =

∂vx

∂x
+

∂vy

∂y
,

for v = (vx,vy) and(x,y) the standard Cartesian coordinates of the plane.

Using diffusion curves, the attribute values at any point in the image domain are given by the
function f (x,y), obtained while the Dirichlet conditions are the attribute values stored along
the diffusion curves. This is slightly different from the classical approach, where the Dirichlet
boundaries are only the outlines of the image. If we consider the color attribute, for exam-
ple, and the domainΩ as the image domain, then the solution to the Poisson equation passes
through all color constraints along the curve and interpolates as smoothly aspossible between
them. Colors depart from this smooth interpolation only if the vector fieldv is not constant
(divv 6= 0). The question is then what variations should be imposed to the colors? Following
the diffusion curve principle, the image is represented by positioning diffusion curves at its
discontinuities, and is smooth everywhere else. Variations should only be expected across a
diffusion curve, between its left and right colors. The vector fieldv is zero everywhere except
on the curve, where it indicates the color derivative across the curve.For the diffusion curves,
therefore,v expresses the gradient of the attribute field, notedw.

For

DC ={(x,y) ∈ Ω | (x,y) on a curve from the diffusion curves set}
∂DC ={(x,y) ∈ Ω | (x,y) stores a left or right color constraint imposed

by the diffusion curves set} , and

C = the Dirichlet color constraints over∂DC,
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the Poisson equation used to compute the color imageI becomes:

∂2I
∂x2 +

∂2I
∂y2 =





0, if (x,y) /∈ DC
∂wx

∂x
+

∂wy

∂y
, otherwise.

I(x,y) = C(x,y) if (x,y) ∈ ∂DC,

(3.1)

where the gradientw = (wx,wy) indicates the direction and the magnitude of the greatest rate
of increase in color values across a curve. Blur, normals and(u,v) texture coordinates are
specified by equations similar to the color Poisson equation.

To compute the final attribute values for the entire image spaceΩ, we discretize and solve the
Poisson equation in two different ways: a raster-based grid and a mesh-based discretization. In
the interest of clarity, we describe the rasterization and the diffusion process for colors, because
it is more easily visualized. The normals and(u,v) attributes follow the same process as the
one necessary to obtain a sharp color image (Figure 3.2).

3.2 Raster-based diffusion

Three main steps are involved in our color raster-based rendering model(see Figure 3.2):
(1) rasterization of acolor sourcesimage, where color constraints are represented as colored
curves on both sides of each Bézier spline, and the rest of the pixels are uncolored; (2)dif-
fusionof the color sources — an iterative process that spreads the colors over the image; we
implement the diffusion on the GPU to maintain realtime performance; and (3)reblurring of
the resulting image with a spatially varying blur guided by the blur attributes. Technical details
about these three steps are explained in the following paragraphs.

'

&

$

%
Figure 3.2: Rendering diffusion curves requires (1) the rasterization of the color and blur
sources, along with the gradient fieldw = (wx,wy), (2) the diffusion of colors and blur, and (3)
the reblurring of the color image.
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3.2.1 Color sources

A diffusion curve has two sets of color control points, which are linearly interpolated along
the curve. Using the interpolated color values, the first rasterization step renders the left and
right color sourcescl (t),cr(t) for every pixel along the curve. Anα mask is computed along
with the rendering to indicate the exact location of color sources versus undefined areas (1 if
the pixel contains a color source, 0 otherwise).

For perfectly sharp curves, these color sources are theoretically infinitely close (Figure 3.3 (a)).
However, rasterizing pixels separated by too small a distance on a discretepixel grid leads to
overlapping pixels. In our case, this means that several color sourcesare drawn at the same
location, creating visual artifacts after the diffusion (Figure 3.3 (b)). Our solution is to distance
the color sources from the curve slightly, and to use a color gradient constraint directly on the
curve. The gradient maintains the sharp color transition, while the colors, placed at a small
distanced in the direction normal to the curve, remain separate (Figure 3.3 (c)).'
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Colors on the 2 sides

of the same curve

(a)

Aliasing artifacts Leaking

(b)

Color sources

+

Color gradient

(c)

Figure 3.3: From a vectorial curve to a pixel grid: (a) In a continuous space, colorsources
are infinitely close. (b) At rasterization time, considering the left and right color sources next to
one another leads to overlaps, and subsequently to leaking diffusion artifacts. (c) Distancing
to color constraints and using the gradient for sharp transitions creates thecorrect result.

More precisely, the gradient constraint is expressed by the gradient field w defined in Sec-
tion 3.1, which is zero everywhere except on the curve, where it is equal to the color derivative
across the curve. We decompose the gradient field in a gradient along thex directionwx and
a gradient along they directionwy. For each pixel on the curve, we use the finite difference
method to compute the color derivative across the curve from the curve normal N and the left
(cl ) and right (cr ) colors (we omit thet parameter for clarity):wx,y = (cl −cr)Nx,y.
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We rasterize the color and gradient constraints in 3 RGB images: an imageC containing col-
ored pixels on each side of the curves, and two imagesWx,Wy containing the gradient field
components (Figure 3.2, step (1)). In practice, the gradient field is rasterized along the curves
using lines of one pixel width. Color sources are rasterized using trianglestrips of width 2d
with a special pixel shader that only draws pixels that are at the correctdistanced. In our
implementationd is set at 3 pixels. Pixel overlap can still occur along a curve in regions of
high curvature (where the triangle strip overlaps itself) or when two curves are too close to
each other (as with thin structures or intersections). A simple stencil test allows us to discard
overlapping color sources before they are drawn, which implies that solely the gradient field
w dictates the color transitions in these areas. Figure 3.4 details the process and provides an
example where the thin geometry is accurately rendered.'
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(a) (b) (c)

(d) (e) (f )

Figure 3.4: Because colors are drawn at a distance from a curve, color constraintscan
superpose (b) when the actual curves do not intersect (a). To avoidartifacts, color intersections
are detected (c), and the constraints are removed (d). The color diffusion is still accurate,
because gradients positioned on the curves (e) guide the color variation.

3.2.2 Diffusion

Given the color sources and gradient fields computed in the previous step, we next compute the
color imageI as the solution to a Poisson equation (3.1) (Figure 3.2, step (2)). To discretize the
2D equation described in equation (3.1), we use the fact that the raster image is a square grid of
unit length. On such a grid, the required derivatives in the Poisson equation can be expressed
at each point(i, j) by using the finite difference numerical method.

Given that the second order partial derivatives defining the Laplace operator are

∂2I
∂x2 =

∂
∂x

(
∂I
∂x

)
and

∂2I
∂y2 =

∂
∂y

(
∂I
∂y

)

and that the first order derivatives can be expressed accurately bycentral differences in thex
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andy directions, the second derivatives in the context of a regular grid are

∂2I
∂x2 ≈

∂I
∂x

∣∣∣
(i+ 1

2), j
− ∂I

∂x

∣∣∣
(i− 1

2), j

∆x
and

∂2I
∂y2 ≈

∂I
∂y

∣∣∣
i,( j+ 1

2)
− ∂I

∂y

∣∣∣
i,( j− 1

2)

∆y
, (3.2)

where∆x and∆y are the distances between two neighboring grid point in thex,y directions
(Figure 3.5).

The first order derivatives with respect tox andy can be defined on either side of the grid pixel
(i, j) with the same central difference:

∂I
∂x

∣∣∣∣
(i− 1

2), j
≈ Ii, j − Ii−1, j

∆x
and

∂I
∂y

∣∣∣∣
i,( j− 1

2)

≈ Ii, j − Ii, j−1

∆y

∂I
∂x

∣∣∣∣
(i+ 1

2), j
≈ Ii+1, j − Ii, j

∆x
and

∂I
∂y

∣∣∣∣
i,( j+ 1

2)

≈ Ii, j+1− Ii, j
∆y

'
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Figure 3.5:

Inserting the first order derivative approximations in equation (3.2) yields the second order
derivative approximations:

∂2I
∂x2 ≈ Ii+1, j −2Ii, j + Ii−1, j

∆x2 and
∂2I
∂y2 ≈ Ii, j+1−2Ii, j + Ii, j−1

∆y2

In a pixel grid,∆x = ∆y = 1, and the discrete Poisson equation becomes

∆Ii, j = Ii+1, j + Ii−1, j + Ii, j+1 + Ii, j−1−4Ii, j = divwi,j ,

Adding the color constraints, this leads to:

Ii, j =

{
Ci, j if pixel (i, j) stores a color value(α-mask> 0
Ii+1, j+Ii−1, j+Ii, j+1+Ii, j−1−divwi,j

4 elsewhere.
(3.3)

The divergence of the gradient divw is numerically computed with the same finite difference
approximation:

divwi,j =
wx(i +1, j)−wx(i−1, j)+wy(i, j +1)−wy(i, j−1)

2
.
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The M ×N equations thus obtained (whereM ×N is the size of the raster image) can be
solved directly. But this requires solving a large, sparse, linear system, which can be very time
consuming asM×N grows large.

To offer interactive feedback to the artist, we solve the equation iterativelywith a GPU imple-
mentation of themultigrid algorithm [BHM00,GWL+03,MP08].

The idea behind multigrid methods is to use a coarse version of the domain to efficiently solve
for the low frequency components of the solution, and a fine version of thedomain to refine
the high frequency components (Figure 3.6). The algorithm works in a V-like manner; color
source imageC and the gradientsWx andWy are progressively downsampled (Figure 3.6 top).
The solution is computed first at the lowest resolution, and then upsampled and refined (Fig-
ure 3.6 bottom). Jacobi relaxations are used to solve for each level of themultigrid. The method
starts with the “initial guess” made by the coarser level. The finite differenceequations (3.3)
— with the corresponding local constraints — are applied again and again, updating the color
values, until a maximum number of iterations is reached. For a given iterationk and a fixed
resolution levell , the color valueIk

i, j(l) is:

Ik
i, j(l) =

Ik−1
i+1, j(l)+ Ik−1

i−1, j(l)+ Ik−1
i, j+1(l)+ Ik−1

i, j−1(l)−divwi,j (l)

4
.

The color constraints are re-imposed after each iteration:

Ik
i, j(l) = Ci, j(l) if the α mask for pixel(i, j) > 0.

To construct the image pyramid necessary for the multigrid solver, we downsample the gradient
using a 3×3 kernel:
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This filter is needed to capture all gradient directions from the finer scale and to preserve
the gradient magnitude; a color variation of 1 in thex direction, for example, will thus be
preserved as a variation of 1 in coarser scales, and summed to the neighboring variations. The
color constraints are downsampled with an average filter: a pixel at coarse scale receives the
average of the constraints of the four corresponding pixels in the finer scale. Note that the
gray colored pixels in Figure 3.6 top are non-constrained points, and theyare not considered
when downsampling the constraints. Color upsampling uses the nearest neighbor technique to
attribute to the four pixels in the finer scale the color value of the corresponding coarse-scale
pixel.

Typically, for a 512×512 image we use 5i Jacobi iterations per multigrid level, withi the level
number from fine to coarse. This number of iterations can then be increased when high quality
is required. Our GPU implementation provides realtime performance on a 512× 512 grid
with a reasonable number of curves (several thousands).
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Figure 3.6: The multigrid algorithm. Color and gradient constraints are repeatedly down-
sampled (top row). An initial solution is computed at the lowest level, by iteratively diffusing
the color constraints. The solution is then refined at a finer scale, by usingthe coarse-scale
solution and the finer-scale color constraints (bottom row).

3.2.3 Reblurring

The last step of our color rendering pipeline takes as input the color image containing sharp
edges, produced by the color diffusion, and reblurs it according to blur values stored along each
curve. However, because the blur values are only defined along curves, we lack blur values for
off-curve pixels. A simple solution, proposed by Elder [Eld99], diffuses the blur values over
the image similarly to the color diffusion described previously. We adopt the same strategy
and use our multigrid implementation to create a blur mapB from the blur values. The only
difference to the color diffusion process is that blur values are located exactly on the curve; no
gradient constraints are therefore necessary. This leads to the following equation:

∆B = 0

Bi, j = σi, j if pixel (i, j) is on a curve

Giving the resulting blur mapB, we apply a spatially varying blur on the sharp color image
(Figure 3.2(3)), where the size of the blur kernel at each pixel is defined by the required amount
of blur for this pixel. We use a routine implemented on the GPU [BFSC04], that iteratively
blurs the image. This method is based on the observation that runningn successive iterations
of the diffusion equation

Ik
i, j = Ik−1

i, j +0.25∆Ik−1
i, j

is equivalent (in the limit) to convolving the imageI with a Gaussian kernel of width
√

2n
√

2.
The step value 0.25 is chosen because it is the greatest value that ensures the stability of the
equation [Rom03, BFSC04]. To stop blurring of pixels that have already reached their maxi-
mum blur valueBi, j , a weighting factor is introduced in the Laplace operator. By expressing
the Laplacian with a finite difference, and including the weight, the explicit numerical equation
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for thek-iteration can be written as:

Ik
i, j = w· Ik−1

(i, j) +b(i+1, j) · Ik−1
(i+1, j) +b(i−1, j) · Ik−1

(i−1, j) +b(i, j+1) · Ik−1
(i, j+1) +b(i, j−1) · Ik−1

(i, j−1)

w = 1−b(i+1, j)−b(i−1, j)−b(i, j+1)−b(i, j−1)

bm,n =

{
0, if Bm,n >

√
2k
√

2
0.25, otherwise.
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Figure 3.7: The color image result after reblurring the sharp image with the inset blur map.

A reblurring example is shown in Figure 3.7. Despite the GPU implementation, the reblurring
step is not adapted for multigrid approximation, and remains computationally expensive for
large blur kernels (around one second per frame in our implementation). For real-time inter-
action, we bypass it during curve drawing and manipulations and reactivate it once the user
interaction is complete.

3.2.4 Panning and zooming

Solving a Poisson equation leads to a global solution, which means that any color value can in-
fluence any pixel of the final image. Even though the local constraints introduced by the color
sources reduce such global impact, this raises an issue when zooming into asub-part of an im-
age, because curves outside the current viewport should still influence the viewport’s content.
To address this problem without requiring a full Poisson solution at a higher resolution, we
first compute a low-resolution diffusion on the unzoomed image domain (Figure3.8 (a)), and
use the obtained solution to define Dirichlet boundary conditions around thezooming window
(Figure 3.8 (b)). This gives us a sufficiently good approximation to computea full-resolution
diffusion only within the viewport (Figure 3.8 (c)).

3.2.5 Rendering of the normals and (u,v) coordinates

Normals and(u,v) coordinates are diffused similarly to the color attribute, to obtain a smoothly
varying interpolation between diffusion curves and a sharp transition across the curves. In the
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Figure 3.8: The processing steps needed to zoom in: (a) the Poisson equation is solved at the
low resolution. (b) The zoom-in window boundaries are fixed. (c) a newPoisson solution is
computed inside the high resolution zoom-in window.

special case of the normals, we re-normalize the normal-vectors after each Jacobi iteration in
the multigrid, to ensure unit-length.

Even with the added computation of normal andu,v, on top of color diffusion, the system per-
forms in real-time for a 512x512 resolution (about 50 frames per second), and interactive (10
fps) for 1024x1024, on a GeForce-GTX260 graphics card. This is possible on one hand be-
cause graphics cards have increased texturing capabilities, but mainly because we only update
the diffusion result where needed. The color diffusion output, for example, is independent of
the normal diffusion, and the user only edits one property at a time. Bitmap images play the
role of a caching system for all diffusion computations.

3.3 Mesh-based diffusion

The raster-based rendering, while ensuring a smoothly-varying solutionand real-time interac-
tion, requires a specialized renderer, and is difficult to integrate in classical vector systems. The
mesh-based diffusion represents an alternative rendering solution, that relies on the classical
vectorial rendering of triangle meshes. This approach is a work in progress, that we are cur-
rently testing for sharp-color diffusion. We nevertheless consider thatit completes this thesis,
by showing that diffusion curves have the potential of “becoming” a standard vector primitive.

Mesh-based color diffusion consists of two steps: (1)triangulationof the image, that uses the
diffusion curves geometry to divide the image into a set of triangles and (2) adiffusionprocess
that associates to each triangle vertex a corresponding color value.
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3.3.1 Triangulation

The triangulation process divides the image surfaces into triangles, and captures the discon-
tinuities imposed by the diffusion curves by placing triangle edges along eachcurve. To this
purpose, we use a constrained Delaunay triangulation (CDT) [Che87]. Given a set ofn vertices
in the plane together with a set of noncrossing edges, theCDT is the triangulation of the ver-
tices with the following properties: (1) the prespecified edges are included inthe triangulation,
and (2) it is as close as possible to the Delaunay triangulation. The true Delaunay triangula-
tion imposes that no vertex in the vertex set falls in the interior of the circumcircle(circle that
passes through all three vertices) of any triangle in the triangulation. This property ensures a
“nice” triangulation that maximizes the minimum angle for all triangles and avoids skinny tri-
angles, making it suitable for diffusion. TheCDT enforces the presence of user-defined edges
in the generated mesh, with the result that the triangulation reflects the specified geometry, but
accepts some edges which are not Delaunay.

The constraints we impose for the mesh generation are given by (a) the imageboundaries
and (b) the tesselated polylines that approximate the diffusion curve set atthe desired resolu-
tion. Because edges should not cross each other, diffusion curvesintersectionsare included
in the polylines prior to triangulation. In practice, we use CGAL library1 to detect polyline
intersections and Jonathan Shewchuk’s triangular mesh generator Triangle2 to create theCDT
(Figure 3.9 (b)).'
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Figure 3.9: Mesh triangulation: (a) The result with a raster-based diffusion. (b) Thetriangu-
lation. (c) The mesh-based diffusion result.

3.3.2 Diffusion

The diffusion process is based on a discretization of the Poisson equation(Equation 3.1), as
was the case for the raster-based diffusion (Section 3.2). However, inthe regular pixel grid,

1CGAL , Computational Geometry Algorithms Library,http://www.cgal.org
2Triangle, A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator,
http://www.cs.cmu.edu/ ˜ quake/triangle.html

http://www.cgal.org
http://www.cs.cmu.edu/~quake/triangle.html
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each point influenced equally all its neighbors. This is no longer the case for the mesh, where
the vertex distribution is non-uniform. To obtain a good approximation of the diffused values,
weights are considered in the discretization of the Laplace operator, to reflect the varying length
of the edges in the mesh, and the corresponding shape and size of the triangles.

For a meshM = (V,T), with V then vertices andT the set of triangles(i, j,k), the result of
applying the discrete Laplacian to the color attributeI in equation (3.1) for each vertexi can
be expressed as:

∆d




I1
I2
...
In


 =




divw1

divw2
...

divwn




∆d is then×n matrix that defines the discrete Laplacian and expresses the equilibrium condi-
tions for connected vertices:

∆d
i j =

3(cotαi j +cotβi j )

2A
, if (i, j) is a triangle edge

∆d
ii = −∑

j 6=i

∆d
i j ,

whereαi j andβi j are the two angles opposite to the edge in the two triangles having the edge
(i, j) in common, andA is the sum of the areas of the triangles havingi as a common vertex
( [PJP93, DMSB99]). The mathematical deduction of these coefficients is given in the Bruno
Lévy’s HdR Habilitation thesis [Ĺev08] (Section 3.2.5, page 42).'
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Figure 3.10: To depict the color constraints, the diffusion curve edges in the triangular mesh
(a) are doubled (b). Each side is then assigned a color (red and green, here), while at ending
points the color is averaged.

Constraints are imposed on the value ofI along diffusion curves edges. Given that for colors
we have two sets of constraints (left- and right-side), the edges that represent a diffusion curve
need to be double edges. For this, a diffusion curve corresponds to a closed “hole” in the mesh,
with left color constraints on one side, right color constraints on the other side, and an average
color at the endings (see Figure 3.10). Thus, connections between left-side triangles and right-
side constraints are broken (and vice versa). Because constraints can now be represented one
“on top” of the other via two superposed edges, gradient insertion is no longer necessary, and
we can consider the divergence divwi = 0, for each vertexi in the mesh.
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With the insertion of constraints, the Poisson equation becomes:

Ii =

{
Ci , if vertex i is on a diffusion curve
−1
∆d

ii

(
∑(i, j) edge in T ∆d

i j I j

)
, overwise.

We solve this linear system by the Jacobi iteration method, similar to Section 3.2. A prelimi-
nary result of this work is shown in Figure 3.9 (c).

3.4 Discussion

In the diffusion curves representation, the Poisson equation is used as the means to obtain a
smooth interpolation between constraints. In this context, other smoothness functions can be
considered that will lead to different types of variations in the attribute values.

For example, our diffusion is expressed as a minimization function for the first-order Laplacian,
that creates a membrane-like variation (Figure 3.11 (a)). Minimizing some otherorderk of
the Laplacian will interpolate differently between boundary conditions, as illustrated for 3D
surfaces in Figure 3.11 (b) and (c).'
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Figure 3.11: The order k of the energy functional defines the stiffness of the surface inthe
support region and the maximum smoothness Ck−1 of the boundary conditions. From left to
right: membrane surface (k= 1), thin-plate surface (k= 2), minimal curvature variation (k=
3). Image taken from Botsch and Kobbelt [BK04]

By considering such different piece-wise smoothing techniques and by combining them after
the model of Botsch and Kobbelt [BK04], one might achieve a greater control on how attributes
vary in the empty space between diffusion curves.

On the other hand, the Poisson equation is a tool extensively used in image processing appli-
cations, because it moves image manipulations from color space to color variations space. The
gradient represents the image variations independently of the original colors, and the solution
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of the Poisson equation reconstructs an imageI from a modified gradient field by minimizing
color discontinuities [PGB03, FLW02]. Nothing prevents the transfer of such bitmap editing
techniques to the vector-based representation of diffusion curves, to obtain tools such as seam-
less copy and paste [PGB03] or image fusion [ADA+04,RIY04].
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c h a p t e r 4
C r e a t i o n a n d M a n i p u l a t i o n

This chapter takes a more in-depth look at how a diffusion curves vector image can be manually
created and manipulated by an user.

Section 1 shows how shapes and colors can be defined to create a vectorimage with complex
color variations. Additionally, Section 1.3 presents shape manipulations that rely on the fact
that diffusion curves are positioned at image discontinuities.

Section 2 discusses the possibility of decoupling shading variations from color variations ob-
served in a material. This separation of shading allows the artist to interactively modify the
illumination in the image without having to change the defined material colors.

Section 3 provides a way of enriching the diffusion curves vector graphics with textures. We
discuss how a texture pattern can be created using diffusion curves specification, and how this
pattern can be included in a diffusion curves image to create a textured vector graphics image.

To conclude, the proposed creation framework is evaluated in Section 4. First, the artist ex-
perience when creating vector art with diffusion curves is discussed. Second, diffusion curves
are compared with existing representations.
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1 Shape and Color

This section details the process of creating smooth-shaded vector images1 using the diffusion
curve primitive. Only the geometry (P), color (Cl andCr) and blur (Σ) attributes are used.

The process of creating vector illustrations varies among artists. One may start from scratch
and give free rein to his imagination while another may prefer to use an existingimage as a
reference. We provide the user with both options to create diffusion curves shapes and colors.
For manualcreation, the artist can create an image with our tool by sketching the lines of the
drawing and then filling in the color. When using an image as a template, the artist can trace
manually over parts of an image and we recover the colors of the underlyingcontent.

1.1 Manual creation

When creating a diffusion curves drawing from scratch, the artist employs the same intuitive
process as in traditional drawing: a sketch followed by color filling.

To facilitate content creation for the artist, we offer several standard vector graphics tools:
editing of curve geometry, curve splitting, copy/paste, zooming, color picking, etc. We also
developed specific tools: copy/paste of color and blur attributes from onecurve to another,
editing of attributes control points (add, delete, and modify), etc. The complete description of
our prototype user interface is found in Appendix A. A different system,that follows the in-
dications in our paper [OBW+08], but proposes new interface features, has been implemented
by Henry Korol (http://www.henrykorol.com/DiffusionCurves.rar ).

To illustrate how an artist can use our diffusion curves, we show in Figure4.1 the different
stages of an image being drawn with our tool.

1.2 Tracing an image

In many situations an artist will not create an artwork entirely from scratch,but instead use
existing images for guidance. For this, we offer the possibility of extracting the colors of an
underlying bitmap along a drawn curve.

The challenge here is to correctly extract and vectorize colors on each side of a curve. We
also need to consider that color outliers might occur due to noise in the underlying bitmap
or because the curve positioning was suboptimal. We first uniformly sample thecolors along
the curve at a distanced in the direction of the curve’s normal. The sampling distance is the
same as the one used in the rasterization step of rendering (Section 3.2.1). We then identify

1The creation, manipulation and vectorization of smooth-shaded vector images was presented in our paper
[OBW+08] at SIGGRAPH 2008. It was a work done in collaboration with Adrien Bousseau, Holger Winnem̈oller,
Pascal Barla, Jöelle Thollot and David Salesin.

http://www.henrykorol.com/DiffusionCurves.rar
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Figure 4.1: Example steps for manual creation: (a) sketching the curves, (b) adjusting the
curve’s position, (c) setting colors and blur along the diffusion curve and(d) the final result.
The image was created by an artist at first contact with the tool and it took 4hours to cre-
ate c© Laurence Boissieux.

color outliers by measuring a standard deviation in a neighborhood of the current sample along
the curve. To this end, we work in CIE L*a*b* color space (consideredperceptually uniform
for just-noticeable-differences), and tag a color as an outlier if it deviates too much from the
mean in either the L*, a* or b* channel. We then convert back colors to RGBat the end of the
vectorization process for compatibility with our rendering system.

To obtain a linear color interpolation similar to that used for rendering, we fit apolyline to
the color points using the Douglas-Peucker algorithm [DP73]. The iterative procedure starts
with a line connecting the first and last point and repeatedly subdivides theline into smaller
and smaller segments until the maximum distance (still in CIE L*a*b*) between the actual
values and the current polyline is smaller than the error toleranceε. The end points of the
final polyline yield the color control points that we attach to the curve. The color vectorization
process is illustrated in Figure 4.2.

A creative example that uses color sampling is illustrated in Figure 4.3(b)-top image, where an
artist has drawn very stylistic shapes, while using the color sampling featureto reproduce the
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Figure 4.2: Color sampling using the Douglas-Peucker algorithm [DP73]: (a) Original color
sampled along a diffusion curvefrom an input bitmap; (b)—(d) successive polyline subdivi-
sions; (e) final set of extracted color control points; (f) the rasterizedcolor variation, obtained
by linear interpolation between color control points.

global tone of the original image, similarly to an in-painting process [BSCB00].

When tracing over a template, one would normally want to position the curves over color
discontinuities in the underlying image. Since it is not always easy to draw curves precisely
at edge locations in a given image, we provide some help by offering a tool based onActive
Contours[KWT87]. An active contour is attracted to the highest gradient values ofthe input
bitmap and allows the artist to iteratively snap the curve to the closest edge. The contour
can also be easily corrected when it falls into local minima, or when a less optimalbut more
stylistic curve is desired. Figure 4.3(b)-bottom shows the image of a lady bugcreated using
geometric snapping and color extraction. While the artist opted for a much morestylized and
smoothed look compared to the original, the image still conveys diffuse and glossy effects,
defocus blur, and translucency. The actual interface tools we implementedfor tracing the
image are described in Appendix A.

1.3 Shape manipulation

Because a diffusion curve position marks a discontinuity (until now, a colordiscontinuity),
geometric deformations of the diffusion curve shape reflect in coherentdeformations of the
drawing. An example of such global stylization is shown in Figure 4.4 (b).

The nature of diffusion curves also means that they only represent important features of the
image, and that they are independent from one another. We can take advantage of these prop-
erties to attach animportancevalue to each curve. This notion of importance can be used
to adjust the amount of detail present in the final image, and to create more orless complex
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Figure 4.3: Tracing with diffusion curves: (a) Original bitmaps; (b)top: Result of a stylis-
tic tracing using color sampling (drawing time: less than a minute)c© Philippe Chaubaroux;
bottom: Result of a tracing using active contours and color sampling (drawing time: 90 min-
utes) c© Adrien Bousseau. (c) The corresponding diffusion curves (color sources have been
thickened for illustration).'
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Figure 4.4: Example of shape manipulation: (a) Original diffusion curves drawing
c© Philippe Chaubaroux. (b) Global shape stylization applied to (a);
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appearances. Detail removal is especially useful for maintaining the readability of images at
different resolutions; details appear as we zoom in, but are discardedfor small scale versions
(see Figure 4.5).

The importance of a curve is initially the level of zoom at which that curve wasfirst drawn,
and can subsequently be changed by the user.'
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Figure 4.5: Example of detail removal: (a) Original diffusion curves drawingc© Laurence
Boissieux, with a simplified version in the upper right corner. Note how the folds and hair
retain their readability because less important diffusion curves have beenremoved. (b) The
same simplified version, shown at a larger scale.

Diffusion curves, as vector-based primitives, benefit from the editing advantages of traditional
vector graphics: curve shapes and colors can be directly modified (Figure 4.1), and keyframing
animation is easily performed via linear interpolation of geometry and attributes (Figure 4.6).'
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Figure 4.6: Keyframing with diffusion curves: Three keyframes of an animationc© Laurence
Boissieux.
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2 Shading

In the creation process described up to now, shading and material variations were inextricably
tied together in a single attribute — color — that the artist used to manually create smooth
color gradients. This is evident in our example images; Figure 4.5 shows howcolor variations
can depict color gradation in fabrics, while in Figure 4.1 (d) the same type ofgradients depict
shadows in the curtain folds.

However, in this setup, changing the illumination implies manipulating the entire color at-
tribute; this can prove cumbersome in some cases, and hinders the flexibility ofthe system.
This is especially the case when considering animations, where charactersmove under a fixed
light, making the material color constant and the shading variable [PFWF00,Joh02].

We therefore proposed to decouple shading manipulation from material color variations. In
this section, we will show how shading can be defined and manipulated by using two other
attributes of our vector primitive: theα transparency value of the color, and thenormals; these
attributes increase theappearancepossibilities for the depiction of lighting effects.

Normals

Surface normals are commonly used in shading models for 3D rendering. Physically-based
reflectance models — such as the Lambertian, Phong [Pho75] or Oren-Nayar [ON95] models
— take into account light direction and surface normals to create photorealistic approximations
of illuminated 3D scenes. Non-photorealistic lighting models also rely on normals tocreate
stylized shaded scenes. Toon shading, for example, uses surface normals to create shadows
and highlights that mimic the style of comic books and cartoons [AWB06,BTM06,TABI07].

Shadows and highlights can thus be automatically computed from normals, for agiven light
position and using a predefined reflectance model. With normal information, alarge number
of material properties can be imitated, in varied rendering styles, by simply modifying the
reflectance model, and not the original image. Ournormalattribute increases the flexibility of
the diffusion curve vector primitive, and simplifies the user task.

Just as with colors, normals can be specified on both left and right side ofthe diffusion curve
geometry. Values are then interpolated in the free space between the curves. To specify the
normals along diffusion curves, we follow the inspiration of previous planar surface inflation
methods [Joh02,JC08]. These approaches rely on the fact that lines incontour drawing appear
mostly as aborder settingbetween objects, or delineate the essential shape changes of an
object interior. Changes in normals are then depicted by these contours, and it is common
to assume that the surface normal implied by the contour lines is orthogonal to the defining
curve’s instantaneous tangent.

We make use of this contour property to allow users to conveniently specify convex, flat, or
concave surfaces. In adepth-slopemode, we fix normals to be oriented along the instantaneous
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Figure 4.7: Shading effects: (a) An artistic shading, realized with manual color controls.
(b) A realistic shading effect based on the normals.(c) Toon shading, using the same normal
information as (b).

normal to the diffusion curve. The starting shape is given by the hand-drawn curve, and all the
user has to specify is the slope orthogonal to this curve. Real-time feed-back allows direct
control of the amount of inflation and deflation, and control points can be placed anywhere
along the curve to impose slope values. Screen captures illustrating this process are presented
in Figure 4.8.'
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Figure 4.8: The normal widget: Screen captures of the normal values being defined along a
diffusion curve.

In addition to this high-level control, the user can also choose afree normalmode. In this
mode, the user specifies for each control point the complete unit vector(x,y,z). Values are
then linearly interpolated along the curve.

Once the normal values are defined, shading can be automatically computed and stylized using
various lighting models (Figure 4.7 (b) and (c)). Shadows and highlights can be interactively
updated by simply changing thelight position (Figure 4.9). The tools used for specifying
normals are described in Appendix A.
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Diffusion curves Corresponding color image Diffused normal data

Resulting shading Resulting illumination Change of light position

Figure 4.9: Example of shading creation. Cat inspired by “Lumo” [Joh02].
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3 Texture

Textures add detail and interest to an artwork, but are equally significant for inferring scenic
depth, surface orientation and other 3D shape properties from a 2D image. This section dis-
cusses how artists using diffusion curves can define and deform complex textures directly in
2D images, without requiring a 3D model of the depicted scene2. Three steps are proposed
for creating a textured design. (1) The artist starts by creating a texture with motifs of variable
color and shape. (2) A line drawing is created with diffusion curves, andis used as a sup-
port drawing for the textures. (3) The textures are positioned inside the support drawing and
deformed to reflect the artist’s intention.

3.1 Creating the texture-map

Our texture-map creation tool lets users designregular andnear-regularvector textures from
scratch (Figure 4.12). The user starts by drawing a texel that is automatically replicated
throughout a grid. The texel is in itself a complete diffusion curve drawing.

Normal information is used to model textures with a physical macro-structure [LM99], for
which the shading would be cumbersome to depict with manual appearance variations alone.
An example of texture with normal variations is the flower texture in Figure 4.10.

When including textures with normals in the support drawing, our model placesa texture “on
top” of the suggested shape. The final normal vector used for shadingis the normalized sum of
the texture and shape normals (Figure 4.11 (a)). While the use of normals allows for automatic
shading effects based on pre-defined lighting models, artistic lighting often involves physically
unrealizable shading. In such cases the user can still manually define colored shading gradients
via the color attribute, and use theα values of each color to indicate how much of the original
color is mixed with the texture (Figures 4.11 (b)). Note, how this effect is used in Figure 4.17
to separate texture (gray) from manual shading (color), to achieve a morecomplex combined
result.

Once the example texel has been drawn, the user can define the spacing between neighboring
texels by interactively adjusting the grid spacing. For a more varied appearance, several exam-
ple texels can be defined. In the spirit of [BA06], our system automatically creates new texel
instances by interpolating the shape, normal, color and blur parameters of these examples. We
use a simple point-to-point correspondence, where we assume that the i-thcontrol point (for
geometry, color, or blur) matches the i-th point on the corresponding curve in all texels. We
enforce this in our interface by automatically adding corresponding controls to all texels when
the user edits one texel instance. We then perform a linear interpolation between instances.
This straightforward approach works well in practice, gives real-time feedback, and creates
satisfactory texel variations. Figure 4.10 uses such random interpolationfor shape and colors.

2This system for designing and manipulating regular or near-regular textures in 2D images is a work done in
collaboration with Holger Winnem̈oller, Jöelle Thollot and Laurence Boissieux. It has been published at EGSR
2009 [WOBT09].
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Figure 4.10: Near-regular texture: An example of automatic creation of texels from 2 user-
defined exemplars. (a) The user input of color and normal variation (artist time: 25 minutes).
(b) The near-regular color texture map. (c) The generated normal map. (d) A lighting effect
shown on the macro-structurec© Laurence Boissieux.'
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Figure 4.11: Shading effects: (a) A realistic shading effect based on the normals, for a
drawing with texture. (b) A manual shading, withα transparency colors layered on top of a
textured regionc© Laurence Boissieux.
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Figure 4.12: Texture examples: Examples of textures designed with our texture-map creation
tool: from realistic (a) to artistic (d). Artist time varies from 5 to 30 minutesc© Laurence
Boissieux

Using the method we described in our rendering approach (Section 3.2), the texel attributes are
diffused to obtain texture-maps with smoothly varying attribute values. Color and normals are
computed independently and stored in two separate bitmap images. However, our system still
preserves the resolution independence of vector graphics as the rasterization is recomputed for
any given zoom level. During draping, we represent and apply the texture maps as bitmaps, and
only recompute them for zooming actions. This allows us to obtain real-time visualfeedback,
which would otherwise be intractable. Additionally, this decouples the drapingsystem from
the texture-map representation, allowing our system to handle virtually any texture generation
method (bitmap samples, procedural, etc.) that produces raster output. Theinterface is detailed
in Appendix A.

3.2 Creating the support drawing

The support drawing is a vector drawing created with our diffusion curve primitives. The
vector curves (B́ezier splines) aresupportingthe control points containing all the parameters
— color, blur, normals and(u,v). The user can optionally decide which parameters are used
and which are deactivated. This allows for a variety of applications ranging from a full drawing
created from scratch (Figure 4.14) to draping textures over an existing bitmap image, as shown
in Figure 4.13.

Contrary to color and texture-draping parameters, which vary anywhere in the image, there
is only one texture-map associated with a given texture region. We therefore automatically
compute a planar map from the supporting drawing, separating the drawing into closed regions
(Figure 4.14). And we allow the user to attach a texture to a planar map region.In practice,
we compute a planar map arrangement from the diffusion curves geometry with the help of the
CGAL3 library.

3http://www.cgal.org/



3 Texture 59

3.3 Draping Textures

In this section, we focus on how to position, flow and distort a texture-map within the sup-
porting diffusion curves drawing. By taking inspiration from garment andfurniture design
(Figure 4.13) we identify the following prevalent types of draping features:

– Shape contours - delineate the extent of textured regions

– Creases & folds - exhibit sudden change of normals

– Occlusions - where one piece of material overlaps another

– Seams - where one piece of material abuts another

All of these features describe discontinuities of one type or other, i.e. features are assumed to
be mostly smooth except for a few distinct lines and curves. The proposeddraping parame-
ters, attached to diffusion curves, mark these discontinuities and model theirvariations. Two
of the diffusion curve attributes are particularly used for texture draping: normalsand(u,v)
coordinates direct manipulation. Artists design normal fields to indicate shape-based distor-
tions of the texture. In addition, artists can locally manipulate 2D texture-coordinates using a
rubber-sheet technique based on(u,v) controls.'
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Shape contour

(a) (b)

Figure 4.13: (a) Our texture draping approach supports editing operations that allow for
precise placement of textures in an image. Note that all of the demonstrated edits are specified
along discontinuity curves. (b) Given a set of texture-edit curves, we can apply any number of
vectorial textures (here, composited over a photograph). The inset vectorial texture swatches
are also designed using our system, except for the rightmost swatch, which is a bitmap texture.

3.3.1 Draping parameters

Given a texture-map, high-level parameters are provided for its inclusion inthe supporting
vector drawing.Global affine transformations(scale, translation, rotation) permit the artist to
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quickly place the texture in the desired area. The other important role of thenormalsattribute,
aside from shading, is to suggest surface shape for texture draping.This has the additional ad-
vantage of directly correlating the two shape cues (shading and texture);plausible deformations
of both cues are automatically computed when the normal values are modified.

Finally, for a finer control over how the texture folds and ripples, the artist can use a direct
(u,v) coordinate adjustment (Figure 4.14).
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Support drawing Planar map Normal map

u,v Texture-maps Drawn shading map

Final image with Final image with
automatic shading manual shading

Figure 4.14: In this figure the first lines show the set of inputs used to create a complete
drawing. The last line shows the resulting image with an automatic shading (based on the
normal map), or a manual shading (based on a drawn shading map)c© Laurence Boissieux.
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3.3.2 Texture attachment

A texture is included in the support drawing by attaching it to a region in the planar map (as
illustrated in Figure 4.14). For this, the artist specifies a point inside the region, and thus
also defines the texture’s center. When the drawing is modified and the planar map updated,
the attachment point’s image-space coordinate dictates which new region corresponds to the
texture. If several texture attachment points fall within the same region, the user simply selects
the active texture or re-distributes other textures to different regions.

3.3.3 Parallax mapping

Given the normal map computed from the normal parameters, we provide the user with a
warp parameter that scales the inflation-amount of the surface implied by the normals. We
use the parallax mapping technique [Wel04], which warps the texture to givethe impression
of parallax foreshortening. Given a texture applied to a flat polygon (in our case the image
rectangle), parallax mapping offsets each texture coordinate to suggestcomplex surface shape.

In practice, a height-field needs to be computed from the normal-map. As in other parts of
our system, we solve a Poisson equation for this purpose [WSTS08]. Thegradient field is
given by the expected difference in height between neighboring pixels,considering how the
corresponding normals vary.

When a texture map is applied to a plane surface (the image rectangle), the final appearance
is flat-looking, and very different from what a textured uneven surface would look. Fig-
ure 4.15 (a) shows that, when looking at the flat surface along the depicted eye vector, the
textured pointA is visible. However, should the actual uneven surface be seen, pointB would
be visible. The idea of parallax mapping is to use the textured flat surface, but to correct the
texture coordinate corresponding to pointA, so the texture of pointB is displayed instead. The
scheme in Figure 4.15 (b) illustrates how one can modulate the eye vector by thesurface height
to obtain a texture coordinate offset.

Three components are required to warp the texture map according to the parallax: the starting
“flat” (u,v) texture coordinate at a pointP in the polygon (T0), the surface heighth at pointP,
and the normalized eye vectorV pointing from the pixel. An offset is then computed by tracing
a vector parallel to the planar surface fromA, the point on the uneven surface directly above
P to the eye vector. This new vector is the offset and can be added toT0 to produce the new
texture coordinateTn.

Tn = T0 +(h·Vx,y/Vz)

However, this equation assumes that the surface point corresponding toTn has the same height
as the point atT0. For small offsets, heights are likely to be very close, so this approximation
will yield good results. For shallow viewing angles, however, the proposed equation will lead
to increasingly large offsets. This greatly reduces the possibility of the point at Tn actually
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being close toB, the observed point in the real surface. A simple solution is to limit the offset,
so that it is never longer thanh (as illustrated in Figure 4.15 (c)). For an initial image pixelP
with texture coordinatesT0, the final texture coordinates become:

Tn = T0 +(h·Vx,y)'
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Figure 4.15: Parallax mapping:(a) The observed texture does not depict the uneven surface,
because the texture map has been flattened onto the polygon. (b) Calculating the correcting
offset. (c) Calculating the bounded offset. Images taken from Welsh’s tutorial [Wel04].

Because positive heights make the texture appear closer to the viewer, thusupsampling it, we
ensure that texture deformation artifacts are minimized by rendering the texture at the maxi-
mum height, and considering the image plane at height 0.

3.3.4 Direct texture coordinate control

For design distortions, and shape distortions that cannot be modeled with a normal field (Fig-
ure 4.17), the user can locally offset(u,v) coordinates (Figure 4.14). Our implementation is
inspired by rubber-sheet techniques, where the user can specify and pin exact texture coordi-
nates at chosen control-points along a curve, and the remaining texture stretches in-between
to fit the constraints. As elsewhere, this is achieved with linear constraint interpolation and
Poisson diffusion.
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Figure 4.16: Example of parallax mapping:(a) Checkerboard texture is placed in the image,
but no parallax mapping is performed. (b) Parallax mapping is used to deform the texture, but
no shading is applied. (c) Manual shading is added. (d) The final texture is shown, with no
parallax mapping. (e) The final shaded texturec© Laurence Boissieux.

To initialize the(u,v) coordinates, the artist can use a sampling option. Default positions and
values are automatically computed to create the least possible distortion in the texture, while
adding as few control points as possible along the chosen curve. To do so, we use the Douglas-
Peucker algorithm [DP73] to find a set of points that approximate the selected Bézier curve and
place(u,v) coordinates on them, so that the texture lies flat in the image space. The Douglas-
Peucker sampling strategy is described for color sampling in Section 1.2. In the current case,
we approximate the geometry of the Bézier curve: the initial input is the tessellated polyline
approximation of the B́ezier curve drawn on the screen. We progressively simplify the polyline
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until the distance from the original tessellation exceeds 0.1; the point coordinates are between
-1 and 1.

Parallax mapping and(u,v) mapping can be combined easily for complex folds and rippling
results (Figure 4.14). In that case, the(u,v) coordinates are used as initial coordinates for the
parallax warping. Both normals and(u,v) coordinates react to curve deformations by following
their respective control points and thus creating smooth adjustments in texturedeformation.'
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Figure 4.17: Example of direct texture control: Here, an artist managed to skillfully drape
the texture to suggest curly hair, flow the scales texture along the mermaid’s tail, and apply fins
to the tail’s tip - all by direct manipulation of u,v coordinates. (a) Textures only. (b) Manual
shading applied to texturesc© Laurence Boissieux.
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Figure 4.18: Diffusion curves: Our vector design system allows the creation of complexcolor gradient, shading, and textures. A drawing
typically starts with the creation of asupport drawingand texels. Texels are combined intotexture-maps. The texture-map isdrapedover the
image using eithernormal controls,u,vcontrols, or a combination of both. The final image can be optionallyshadedautomatically using normals,
or manually using the supporting drawing’s diffusion curve colors.
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4 Discussion

The complete diffusion curves system is summarized in Figure 4.18. Using oursystem, an
artist can manipulate shape and color, define shading, and integrate texture into the vector
drawing. Artist validation for our approach, as well as comparisons with previous methods,
are discussed in the next sections. Color (Section 4.1) and texture (Section 4.2) are treated
separately.

4.1 Shape and color

To validate our approach and to collect valuable practical feedback, wehad several artists use
our diffusion curves prototype for shape and color. Most figures in Section 1 were generated
in these sessions.

All artists using our system were well versed in digital content creation tools, with no techni-
cal background. They were given a brief paper tutorial (similar to the interface description in
Appendix A), amounting to approximately 10 minutes of instructions. The artists were able to
create many varied and intricate examples from the very first session and found the manipula-
tion of diffusion curves intuitive after a short accommodation phase. Manual image creation
took anywhere from several minutes (Figure 4.3(b)) to a few hours (Figure 4.1).

Comparison with Gradient Meshes

In the previous sections, we have discussed the shape and color attributes of our vector rep-
resentation, and explained the various options at an artist’s disposal to create smooth-shaded
images thanks to this intuitive representation. We now compare our approachwith the most
commonly used vector tool for creating images with similarly complex color gradients: Gradi-
ent Meshes.

Representational efficiency: In terms of sparsity of encoding, both gradient meshes and dif-
fusion curves are very efficient image representations. A direct comparison between both rep-
resentations is difficult, as much depends on the chosen image content (forexample, gradient
meshes require heavy subdivision to depict sharp edges and it can be difficult to conform the
mesh topology to complex geometric shapes). Furthermore, Price and Barret [PB06] pre-
sented a more compact sub-division gradient mesh, yet all available tools employ a regular
mesh. While the diffusion curves representation appears more compact atfirst glance (see Fig-
ure 4.19), it should be noted that each geometric curve can hold an arbitrary amount of color
and blur control points (see Table 4.1). So, while the sparsity of encodingof both representa-
tions can be considered comparable, we would argue the flexibility of diffusion curves to be
a significant benefit, as it allows us any degree of control on a curve, without a topologically-
imposed upper or lower bound on the number of control points.
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Figure Curves P Cl Cr Σ
Roses, Fig. 4.3 left 20 851 581 579 40

Lady bug, Fig. 4.3 right 71 521 293 291 144
Curtain, Fig. 4.1 131 884 318 304 264

Table 4.1: Number of curves, geometric control points (P), left and right color control points
(Cl, respectively Cr) and blur control points (Σ) for the images presented in Section 1.

Usability: We believe that diffusion curves are a more natural drawing tool than gradient
meshes. As mentioned previously, artists commonly use strokes to delineate boundaries in an
image. Diffusion curves also allow an artist to evolve an artwork gradually and naturally. Gra-
dient meshes, on the other hand, require careful planning and a good understanding of the final
composition of the intended art piece. Most gradient mesh images are complexcombinations
of several individual — rectangular or radial — gradient meshes, often overlapping. All these
decisions have to be made before the relevant image content can be created and visualized.

Topology: In some situations, the topology constraints of gradient meshes can be rather useful,
for example when moving a gradient mesh to a different part of an image, or when warping the
entire mesh. Such manipulations are also possible in our representation, butnot as straightfor-
ward. For moving part of an image, the relevant edges have to be selectedand moved as a unit.
More importantly, without support for layering and transparency, it is difficult to ascertain how
the colors of outer edges should interact with their new surroundings. A mesh warp could be
implemented as a space warp around a group of edges.

Limitations

Diffusion curves attach color (and all other attributes) to lines. While this allows great flexibil-
ity, it can also pose a problem atintersections.

Currently, diffusion curves present a specific (although predictable and meaningful) behavior:
the colors attached to the two intersecting curves essentially compete with each other, which
creates a smooth color gradient after diffusion (Figure 4.20(a)). If thisdefault behavior is
undesirable, the user can correct it by either adding controls on each side of the intersection, or
by splitting the curves in several parts with different colors (Figure 4.20(b)). Automating such
behaviors would represent a powerful tool for easing user interactions.

Note however that this behavior is less of a problem than intersections in classical planar maps,
because diffusion curves do not attach colors to regions. Therefore, colors are not “lost” when
a region is not followed in the new configuration; when a line moves, the colorfollows.
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Figure 4.19: Gradient Mesh comparison: (a) Original photograph; (b,c) Manually created
gradient mesh (c© Brooke Nũnez Fetissoff http://lifeinvector.com/), with 340 vertices (and as
many color control points); (d,e) Our drawing created by manually tracing over the image;
there are 38 diffusion curves, with 365 geometric, 176 left-color, and 156right-color control
points.
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Figure 4.20: The default behavior of diffusion curves at intersections (a) can be corrected by
curve splitting and color editing (b).
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4.2 Texture

To evaluate the feasibility and utility of our system to create textured 2D images, we assigned
a professional digital artist, proficient with modern 2D and 3D art creationtools, the task of
creating a number of different texture types and designs, and of reporting on his experience
with our system. The figures in Sections 3 and 2 represent some of this artist’s work with our
system.

Usability

Table 4.2 lists detailed timings for several textured artworks in this manuscript. Durations
are listed separately for the creation of the support drawing, the texture draping, and the texel
generation for that figure.'
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Figure Support Draping Texels

Dress, Fig. 4.13 10 min(G) 30 min 5-30 min
Overview, Fig. 4.18 5 min (G) 20 min 40 min (G+C+N)

for 2 texels
Sari, Fig. 4.14 1 h (G+C) 65 min 20 min (G+C)
Sari, Fig. 4.16b 1 h (G+C) 1h (N) 7 min (G+C)

Mermaid, Fig. 4.17 1 h (G+C) 45 min (UV) 5 min each (G+C)

Table 4.2: Timings for selected Figures. Notations:G–Geometry;C–Color; N–Normals;
UV–Tex. Coords.

After using our system, we asked the artist to give us feedback about hisexperiences, both
positive and negative. On the positive side, he noted that he found theinteractionsto be very
intuitive. First, he would sketch out the texels and support drawings like hewould design on
paper. Then, he would fill in colors, as if painting them into the drawing. Adding normals
was easy, especially in the automatic-inflation mode. He also liked the ability to tweakthe
texture placement by adjusting(u,v) coordinates. On the negative side, he complained about
various interfaceaspects. For example, controls for settings normals and(u,v) coordinates
were displayed in separate dialog boxes, and he would have preferredto adjust the parameters
in-place. Initially, he found it too time-consuming to adjust(u,v) coordinates to realize his
intentions. After we implemented the automatic(u,v) initialization (Sec. 3.3.4), he found the
system much easier to use.

Comparisons

Alternative 2D Draping To compare our system against 2D warping approaches, we gave
the artist the following task. He was to design two simple 3D reference shapesin a 3D mod-
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eling package and texture them with a checkerboard texture (Figure 4.21 (a)). He then had to
replicate the 3D rendering output as closely as possible with our system (Figure 4.21 (c)), and
PHOTOSHOP’s Liquefytool (Figure 4.21 (b). Note, that this required not merely giving a good
impression of shape, but to match each texel – a much more difficult task.

The two 3D shapes he designed were a simpleS-shape, and a more complexSeat-shape. Using
our system for theS-Shape, he spent 1′29′′ on the support drawing, 2′27′′ on setting normals,
4′25′′ on adjusting automatically placed(u,v) points, and 1′25′′ on adding and setting addi-
tional (u,v) points, for a total of just under ten minutes. Figure 4.21 (d) shows the normal
control points (diamonds) and(u,v) control points (circles) the artist specified. He commented
that much of the time spent on(u,v) adjustments was due to difficulties with not visualiz-
ing the texture-map in our texture-coordinate editor. Timings for the Seat-shapewere similar,
but added up to only 9′31′′, indicating that labor is proportional to the 2D complexity of the
suggested shape, not its 3D complexity.

Using theLiquefy tool, the artist started with a rectangular checkerboard texture and spent
10′57′′ deforming it on theS-Shape, and 32′22′′ on theSeat-Shape. As evident in Figure 4.21 (b),
the artist did not manage to control the exact contours of the shape. He commented that the
warping approach was tedious due to the requirement of frequent and careful masking, and
constantly changing the radius of the distortion tool.
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Figure 4.21: Comparison withLiquefy Tool. Top row: S-Shape. Bottom row: Seat-Shape.
(a) 3D result. (b) Liquefy Tool. (c) Our system. (d) Control Points & normal-map.
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3D Texturing We also asked the artist to compare our system with standard 3D texturing.
As reference, the time to model and texture the above 3DS-Shapewas about half that for
replicating it using our system. The timings for theSeat-shapewere comparable. As these
numbers favor our system for complex 3D shapes, and since we envisionour system being
used in design workflows that are conceptualized in 2D, we performed a second test with the
artist, complementary to the one above. Here, we replaced the sari texture inFigure 4.22 (a)
with a checkerboard texture and asked the artist to create a 3D model to achieve the same
image.

The artist took 3h45′ to generate a 3D model of the draping. As Figure 4.22 (c) shows, this
included only the sari but no background elements. He worked for an additional hour to adjust
(u,v) coordinates using a professional skinning tool. This is compared to two hours total for
our system, including geometry and color for background elements. When asked about his
experience, he said that he favored 3D modeling for simple geometric shapes, but preferred the
natural 2D design approach of our system for the complex shapes of drapings and folds that he
created. He also pointed out that he was unaware of a straightforward 3D method to create the
artistic design of the mermaid’s hair in Figure 4.17.'
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Figure 4.22: Comparison with 3D Modeling. (a) Draping template. (b) as (a) with checkered
texture. (c) 3D model with checkered texture. (d) 3D model with texture from (a).

Limitations

We acknowledge several limitations of our implementation. For very simple shapes, a 3D
modeling system is quicker to use. In general, our system is not intended to replace accurate 3D
systems, but rather to allow for quick and convenient prototyping of complex texture draping
designs. Additionally, some aspect of our interface design proved to be cumbersome. While we
hope to streamline the interface in the future, we feel this does not detract from the fundamental
interactions, which an artist using our system quickly learned and mastered.

Currently, our system only supports regular or near-regular textures. In Section 3.3, we note
that any texture-generation approach which outputs bitmaps can be used inour draping system.
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We want to investigate several such approaches, and determine what additional user-parameters
are necessary to control different types of textures.

In summary, we have designed a system with which an user can design a complex vector
drawing, complete with color gradients, shading and macro-structure. Moreover, the user can
employ the same interaction paradigm for the support-drawing design, as well as for texture
definition and texture draping.



c h a p t e r 5
Ve c t o r i z a t i o n o f C o l o r a n d

S h a p e

Vector graphics, by their geometric definition, have some advantages overraster graphics.
Most notably, they are resolution independent. Their content can be seen and printed at any
desired size, without the upsampling artifacts visible in raster graphics. Also, vector graphics
are more easily editable, and thus preferred for applications such as animation. But digital pho-
tographs are always recorded in raster format. Vectorization — the process of converting raster
into vector graphics — is therefore a very useful process. This chapter studies the automatic
vectorization of bitmaps into the diffusion curve vector representation.

To transform a bitmap image into a diffusion curve representation, we rely onbitmap edges.
Edges are points in a digital image at which the image brightness changes sharply, and are as
such the natural counterpart of diffusion curves in bitmaps. Edges alsocontain most of the vi-
sually important information present in an image [Lin98,Pal99] and can be leveraged to create
a nearly complete representation of the image [Eld99]. The first vectorization step is therefore
to extract edges from an image, along with their color and blur information (Section 1). The
second step is to vectorize edge positions, colors and blur values, to obtaina diffusion curves
set (Section 2). Limitations and comparisons with other vectorization methods are discussed
in Section 3.
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1 Data extraction

Many approaches exist to find edges and determine their blur and color attributes. We rely on a
Gaussian-scale space approach, because this theory has been developed by the computer vision
community for images where no a priori information is available, to extract perceptually im-
portant features. Using the scale-space analysis, we can create anedge structurethat captures
the degree of blur at each image discontinuity. Additionally, the Gaussian scale space can be
used to derive the edge importance, automatically providing a hierarchial organization of the
edge structure. This hierarchy can be transferred to the diffusion curves set and, as mentioned
in Section 1.3, be used to simplify or modify a vector image, in accordance to the importance
of each diffusion curve element.

In the following, we give a quick overview of the Gaussian-scale space,and describe how this
theory is used to extract edges, their importance, and their profile (color and blur attributes),
from a given image.

1.1 Gaussian scale space

Scale space methods base their approach on representing the image at multiplescales, ensuring
that fine-scale structures are successively suppressed and no newelement is added (the so-
called “causality property” [Koe84]).

The motivation for constructing scale-space representations originates from the basic fact that
real-world objects are composed of different structures at differentscales of observation. Hence,
if no prior information is available about the image content, the state-of-the-art approach for
deriving the image structure is to use the successive disappearance of scale features to create a
hierarchy of structures [Rom03].

Gaussian scale space is the result of two different research directions: one looking for a scale-
space that would fit the axiomatic basis stating that “we know nothing about theimage” and
the other searching for a model for the front-end human vision [Mar82,FF87,Wan95,Rom03].
Since our purpose is to define a human-vision-like representation of an image content we have
no a priori on, this scale-space fits our needs.

A scale-space is a stack of images of increasing scales. The basic Gaussian scale space is
thus a stack of images convolved by Gaussian kernels of increasing variance1. In the general
case, Gaussian derivatives of any order can be used to build the stack, allowing one to create
scale-spaces of edges, ridges, corners, laplacians, curvatures,etc.

To obtain a diffusion curves representation, the important feature is the edge. We thus settle on
studying the image structures represented by a hierarchy of edges in the Gaussian scale space.
As edges are defined by gradient information, we only need to convolve the original image with
Gaussian derivatives of order 1, one for each image dimension. TheseGaussian derivativesGx

1For numerical stability, one usually starts with a varianceσ0 = 1
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andGy are computed as follows:

Gx(x,y;σ) = g(y) ·g′(x) and

Gy(x,y;σ) = g(x) ·g′(y)

with

g(i) =
e−

i2

2σ2

√
2πσ

and g′(i) = − e−
i2

2σ2 i√
2πσ3

where the widthσ of the kernel corresponds to scale andi ∈ {x,y}. Given an input imageI , we
thus build two different scale spaces: an horizontal gradientIx = I ⊗Gx and a vertical gradient
Iy = I ⊗Gy.

Contrary to classical approaches, which define the gradient in the luminance channel, we use
the multi-channel color gradient method described in Di Zenzo [Zen86]. This means that
gradients are computed for each color channel, and then combined to obtaina single magnitude
value in each pixel. This allows us to detect sharp color variations in iso-luminant regions of
the image, where a luminance gradient would fail.

1.2 Structure extraction

Starting from the multi-scale gradient values, we extract the edge-based image structureS
corresponding to the edges, their importance and profile (color on each side and blur).

Edge extraction

From the first-order Gaussian derivative scale space, we want to builda hierarchy of edges
holding structural importance. We first extract edges at all the available scales in order to get
the richest possible information. For this task we use a Canny edge detector[Can86] on the
multi-channel color gradient image: it is a state-of-the-art edge detection method that processes
the Gaussian derivative information at each scale to give thin, binary edges. Its main quality
resides in using hysteresis thresholding that results in long connected paths and avoids small
noisy edges (see Figure 5.1).'
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Figure 5.1: Edge importance. (a) The input image. (b-d) Canny edges at increasing scales.
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After applying the Canny detector, we are left with a multi-scale binary maskCσ that indicates
at each scale the edges locations. Figure 5.2 illustrates such a typical edgescale-space for a
simple 1D example. Due to the nature of Gaussian scale-space, three different cases can occur:
(a) an edge exists and suddenly drops off at a higher scale; (b) two edges are coming toward
each other and collapse at a higher scale; (c) some “blurry” edges onlyappear at a higher
scale. To simplify further computations, we “drag” edges correspondingto case (c) down to
the minimum scale and noteC∗

σ the resulting multiscale edge mask.'
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Figure 5.2: Three different events in a 1D Gaussian scale-space: (a) an edge drops off at a
high scale; (b) two edges collapse ; (c) a blurry edge is created. In the last case, we drag the
edge down to the finest scale for convenience.

Edge importance

As shown in Figure 5.2, there is a great deal of coherence along the scale dimension in the
multi-scale edge representation. The main idea behind scale-space techniques is to try to ex-
tract this coherentdeep structure, by linking edges at different scales. In particular, because of
the causality property of Gaussian scale-space, an edge that disappears at a given scale will not
reappear at a higher scale; hence an important measure of structure along scale islifetime, as
edges that live longer will correspond to more stable structures.

Unfortunately, extracting an edge lifetime is not trivial, since edges move in Gaussian scale-
space (this corresponds to Figure 5.2 case (b)). This motivated edge focusing techniques, that
track edges at increasing scales [Gos94]. In this manuscript, we take analternative approach
which revealed simpler to implement: instead of considering each pixelp belonging to an
edge, we consider its projected pointPσ(p) onto the closest edge at scaleσ (we use a distance
field for this purpose). We can then define the membership of any pixelmσ(p) as the binary
function that indicates whetherp can be considered to belong to an edge at scaleσ:

mσ(p) =

{
1 if ||Pσ(p)− p|| < Tσ
0 otherwise

The choice of the threshold distanceTσ is essential to get a good approximation for our mem-
bership function. Bergholm [Ber87] proved that the edge shifting is lessthan a pixel when the
scaleσ varies by less than 0.5. Therefore, we increase ourσ values by∆σ = 0.4 at each scale
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Figure 5.3: Edge importance. (a) The input image. (b) The lifetime measure reflects the
importance of edges: “older” edges correspond to more stable and important structures.

and useTσ = σ/∆σ. This approach is similar in spirit to the morphological linking method of
Papari et al. [PCPN07].

Finally, using membership for linking purpose, we compute the lifetimeL(p) at each edge
pixel p in the finest scale by summing up membership values (Figure 5.3). Consideringthe
successive scale valuesσi , i ∈ 1..N, whereN is the size of our scale-space stack, we write
lifetime as:

L(p) = argmin
i
{σi |mσi (p) = 0}

This can be seen as a simpler, easier-to-manipulate version of Lindeberg edge strength measure
[Lin98]. Lifetime is thus considered as a measure of structural importance, and can supply the
diffusion curve representation with itsimportancevalue (Section 1.3).

Edge profile

In the previous section, we mainly relied on edge locations and their persistence along scale.
Another concern is to deal with theirprofile (color values and degree of blur). In this work,
as in previous work [Lin98, EG01b], we rely on a simple assumption: the profile of an edge
gradient is modeled as the convolution of a Dirac (its location and color difference between
the two sides of an edge) with a spatially varying Gaussian kernel (its blur).For instance,
in a photograph with depth-of-field, out-of-focus edges are blurry (with a wide profile) while
in-focus edges are sharp (with a thin profile).

Our second measure of structure then consists, for each edge, in findingthe best scalethat
locally corresponds to its blur.

The best scale search is another form ofdeep structurethat has been studied by Lindeberg [Lin98].
Following his approach, we first compute a normalized gradient magnitude scale-space by

||∇I ||=
√

σ(I2
x + I2

y ). The best scaleB(p) at an edge pixelp is then identified as the one which

gives the first local maxima along the scale axis in this normalized gradient magnitude stack.
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Figure 5.4: Best scale estimation. Top: 1D edges blurred with{σi} = {5,10,15}. Bottom:
normalized gradient magnitude scale space proposed by Lindeberg. The best-scale measures
(the local maxima) are at the blur scale{σi}, hence representing well each edge profile.

But as with lifetime computation, we need to link “moving edges” at different scales using the
projection operatorPσ again:||∇I(p)|| = ||∇I(Pσ(p))||. Figure 5.4 shows how best scales can
be well estimated for edges of increasing blur.

We are now able to ”re-blur” the edges using the best scale. Moreover,we use this ideal scale
also to localize edges, because it is at that scale that the edge shape is closest to the shape
perceived by the human vision. It should be noted that very blurry edges are difficult to detect
and parameterize accurately. In our system we find that very large gradients are sometimes
approximated with a number of smaller ones.

After the best scale search, we are left with an edge map, which contains the edge locations
and the blur values for the edge pixels. One last processing step is needed to obtain the full
edge profile: colors on both sides of the edge must be extracted explicitly. To this end, we
rely on the blur values to know how far from the edge position the unblurredcolors are. We
connect pixel-chains from the edge map and proceed to sample colors in theoriginal image on
each side of the edge in the direction of the edge normal. In practice, the gradient normal to the
edge is difficult to estimate for blurry edges, so we use the direction given by the normal of a
polyline fitted to each edge. For an estimated blurσ, we pick the colors at a distance 3·σ from
the edge location, which covers 99% of the edge’s contrast, assuming a Gaussian-shaped blur
kernel [Eld99]. While the 3·σ distance ensures a good color extraction for the general case, it
poses numerical problems for structures thinner than 3 pixels (σ < 1); in this particular case,
color cannot be measured accurately.

At the end of the data extraction, the bitmap image is represented by edges organized in pixel
chains, and with values of blur, left- and right-side colors, and importance, attached to all pixels
belonging to an edge.
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2 Conversion to diffusion curves

This pixel-based data is transformed into diffusion curves by a vectorization process. For vec-
torization of edge positions, we take inspiration from the approach used in the open source
Potracec©software [Sel03]. The method first approximates a pixel chain with a polylinethat
has a minimal number of segments and the least approximation error, and then transforms the
polyline into a smooth poly curve made from end-to-end connected Bézier curves. The conver-
sion from polylines to curves is performed with classical least square Bézier fitting based on a
maximum user-specified fitting error and degree of smoothness. For attribute vectorization, we
use the same method as the one described for extracting colors in image tracing(Section 1.2).'

&

$

%

(a) (b) (c)

(d) (e) (f)

Figure 5.5: Vectorization results with different fitting errors for the edge positions. (a) Orig-
inal image. (b) The image reconstruction using only the extracted data (Section 1). (c)–(f)
Result after conversion to diffusion curves, using different fitting errorsfor the edges: (c) 1;
(d) 5; (f) 25; (e) 50;
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Several parameters determine the complexity and quality of our vectorized image representa-
tion. For the edge geometry, the Canny threshold determines how many of the image edges are
to be considered for vectorization; a despeckling parameter sets the minimum length of a pixel
chain to be considered for vectorization; and finally, two more parameters set the smoothness
of the curve fitting and the fitting error. For the blur and color values, two parameters are con-
sidered: the size of the neighborhood for eliminating outliers, and the maximum error accepted
when fitting the polyline. For most images in this manuscript, we use a Canny high threshold
of 0.82 and low threshold of 0.328, we discard pixel chains with less than 5 pixels, we use
a smoothness parameter of 1 (Potrace default) and we set the fitting error to1, so the curve
closely approximates the original edges (Figure 5.5 shows results with different fitting errors).
For attributes, we consider a neighborhood of 9 samples, and the maximum error accepted is 2
blur scales for the blur and 30 CIE L*a*b* units for colors. Figure 5.6 gives an example of
image vectorization using the proposed method.
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Figure 5.6: Example of our reconstruction: (a) original image; (b) result after conversion into
our representation; (c) automatically extracted diffusion curves; (d) RGB difference between
original and reconstructed image (amplified by 4); note that the most visible error occurs along
edges, most probably because, through vectorization, we change their localization.
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Figure 5.7: Stylization effects: (a) Original bitmap; (b) Automatic reconstruction; (c) Recon-
struction simplified by removing edges with low lifetime; (d) Global shape stylization applied
to (c); (e) Enlargement of (b).

3 Discussion

A diffusion curve vectorized image benefits from the advantages of traditional vector graphics:
zooming-in preserves sharp transitions (Figure 5.7 (e)); curve shapes and attributes can be eas-
ily modified to obtain effects such as that presented in Figure 5.7 (d); the importance measure
can be used to adjust preservation of detail (Figure 5.7 (c)).

Compared to region-based vectorization approaches — such as the vectorization methods pro-
posed by Adobe Live Tracec©and Lecot and Ĺevy [LL06] — our contours need not be closed
boundaries. This in turn results in smooth color variations between two curves, and avoids the
posterization effect typical to region-based methods (see Figure 5.8).

Gradient meshes [SLWS07, PB06, LHM09] can represent objects with complex variations of
smooth colors. Diffusion curves achieve similar vectorization results (see Figure 5.9 for a com-
parison). But we believe that diffusion curves are a “lighter” representation, better equipped
for subsequent manipulation of the vectorized result.

One limitation of our vectorization approach comes from the approximations madeduring the
process of extracting diffusion curves from a bitmap. Canny edge detection, blur detection, and
data vectorization can all introduce sampling errors. Especially the blur detection is known to
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Figure 5.8: Comparison with Ardeco [LL06]: (a) original image; (b) the vectorization result.
Note that, while the gradient inside regions is well approximated, sharp transitions between
regions are noticeable. Image taken from [LL06]. (c) Our result. Note that the smooth color
transition is preserved both along and across the geometric curves.
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Figure 5.9: Comparison with Gradient Meshes [SLWS07]: (left) Original bitmap; (middle)
Gradient Meshes; (right) Diffusion curves.

be a hard problem, and prone to error.

Another limitation, common to all vector graphics, occurs in images or image regions that con-
tain many small color or luminance variations, such as textures. In practice, most of the visual
information of highly textured regions is captured by the automatic conversion, but imprecision
occur when the texture is composed of many small structures (small comparedto the distance
d defined in Section 3.2.1). Moreover, the large amount of curves required to represent textures
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makes a vector representation inefficient and difficult to manipulate (Figure5.10.'
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Figure 5.10: Limitation: diffusion curves have precision issues with thin structures (suchas
textures). (a) Original bitmap; (b) Converted result; (c) Diffusion curves.

One possible solution for texture vectorization could be to rely on recent compute vision ad-
vancements [GZW07] or user input to separate detail from important structure. Texture could
then be synthesized at the required magnification level and reapplied overthe smoothly varying
color of the vectorized structure.
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c h a p t e r 6
P h o t o g r a p h M a n i p u l a t i o n s v i a

R a s t e r D i f f u s i o n C u r v e s

By vectorizing a bitmap, new manipulation options are made available, especially because
each discontinuity can now be individually edited, and fine tuning is possible for colors and
blur. However, the vectorization process is inextricably linked to simplificationof shape, color
gradient and blur variations. It is thus interesting to study the image manipulationcapabilities
of the bitmap version of the diffusion curve1.

Our approach is to rely on the hierarchial structure provided by the bitmap edges together with
their importance (Section 5.1), and to guide user manipulations by consideringthe relevance
of each structure edge when simplifying or enhancing the content (Figure 6.1).'
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Figure 6.1: Our approach takes as input a bitmap image (left), and allows a user to manip-
ulate its structure in order to create abstracted or enhanced output images. Here we show
a line drawing with line thickness proportional to their structural importance (middle), and
a reconstruction of color information that focuses on the bee and removesdetail around it
(right).

1The bitmap structure manipulation was presented in our paper [OBBT07] at NPAR 2007. It was a work done
in collaboration with Adrien Bousseau, Pascal Barla and Joëlle Thollot.
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One important difference with the vectorization process is that the edge color constraints are
not used for bitmap manipulations; instead, gradient values are placed on the edge. Two main
reasons are behind this:

– First, without the support of edge poly-lines, color extraction needs to use discrete gradi-
ent normals, and these could prove unreliable. While inconsistencies in color sampling is
not detectable if colors conserve their original pixel position, color errors are problematic
when displacing edges (and therefore colors).

– Second, using only gradient constraints has the advantage of seamlesseditions [PGB03],
even though with the downside of unexpected color results (Figure 6.2).
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(a) (b) (c) (d)

(e) (f) (g)

Figure 6.2: Color constraints vs. gradient constraints: (a) Original image; (b) Corresponding
edges, with color constraints on each side; (c) An edge is removed; (d)Diffusing the remaining
color constraints creates a color gradient; (e) Gradient constraints retain transitionsof color,
rather than the color itself; (f) A gradient constraint is removed; (g) The diffusion fills the empty
space with an uniform color, but the remaining gradient variations can create an unpredictable
color.

In such case, the bitmap diffusion curves manipulation system consists of three steps: (1)
extraction of the edge structureS, as described in Section 1; (2) the use ofS as a high-level
control for user-defined image manipulations, and output a manipulated bitmapstructureS∗;
(3) reconstruction of an imageO from the manipulated edge set using the Poisson equation.
Figure 6.3 sums up our approach for bitmap manipulations.

In the following, we mainly present the gradient reconstruction step, because it is specific to
the bitmap approach. Several edge manipulation techniques are presentedin Section 2.
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Figure 6.3: Overview of our method.'
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Figure 6.4: Gradient reconstruction with different profiles.f(σ) is our contrast value com-
pensation function, that depends of the detected blur value.

1 Poisson reconstruction using only gradients

Using our manipulated set of edgesS∗, we wish to reconstruct the corresponding image by
solving a Poisson equation. Considering only gradient constraints, this translates into building
a vector fieldw that corresponds to our new edges.

We propose to use the scale space information to estimate the original gradientprofiles and
correctly reproduce the contrast and blur of the input image (Figure 6.4). However, taking
only original gradient values at edge locations as suggested by Perez et al. [PGB03] results in
a gradient field that does not capture the whole original contrast, nor theoriginal blur (Figure
6.5, (a) and (b)). This is because we only consider the central value ofthe profile, loosing all
its surrounding information.

A simple solution to the contrast problem would be to apply a histogram equalization on the
reconstructed image to match the original contrast. However the very low dynamic range of
the reconstructed image leads to strong quantization artifacts (Figure 6.5(c)).
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We thus need to take into account our knowledge of edge profiles to computethe correct con-
trast (Figure 6.4). Our model of an edge represents blurry edges thatappear in the input image
I as the convolution of a step functionH by a 2D Gaussian kernelGB, whereB is the local
best scale. When we measureIx (resp. Iy) at scaleB on edge locations, we get the following
contrast values:

Ix = H ⊗GB⊗
∂GB

∂x
= H ⊗ ∂GB2

∂x
=

∂H
∂x

⊗GB2

with B2 =
√

2B2. However, to recover the original contrast value of the profile, we areprecisely
interested in the value of∂H

∂x . This corresponds to the deconvolution ofIx (resp. Iy) by GB2.
Unfortunately, deconvolution is known as an ill-posed problem, particularlysensitive to noise
and quantization [Rom03]. To avoid this problem, we propose to simplify our model for the
sake of contrast correction: we replace the 2D Gaussian derivative by a 1D Gaussian derivative
G̃x = g′(x). This way, we can derive an analytical solution for the correction problem.

We model a directional edge gradientI{x,y} as the 1D convolution of a step functionH of
amplitudeA by a Gaussian kernelgσ and a Gaussian derivativeg′σ, resulting in:

Ix(0) =
(
H ⊗gσ ⊗g′σ

)
(0) =

(
H ⊗g′√

2σ2

)
(0)

=
R +∞
−∞ H(t) ·g′√

2σ2(−t)dt =
R +∞

0 A·g′√
2σ2(−t)dt

= A·g√2σ2(0) = A
2σ

√
π

For each edge pixelp, we only need to multiply the gradient value found inIx (resp. Iy) by
2B(p)

√
π. This correction gives a final contrast close to the original one, and wefind that our

approximation works well in practice, with no visible artefacts (see Figure 6.5(d)).

Finally, even if using edge locations and correcting their contrast does give a convincing result,
blurry edges become sharp in the reconstructed image. Therefore, we also re-blur the edges, as
seen in Figure 6.5(e). This process remains optional as the sharp resultprovides an interesting
cartoon style.

2 Applications

The edge structureS= {C∗
σ,L,B} — whereC∗

σ are multi-scale Canny edges together with their
lifetime L and best scaleB — can be manipulated in various ways. The main idea is to select
a subsetE of the multi-scale Canny edgesC∗

σ according to lifetimeL. After manipulation, we
are thus left with a new, simpler structureS∗ = {E,B}. Based on this schema, we propose three
image manipulations, that can be seen as variations of recently proposed methods of editing in
the gradient domain. Our contribution is to use the high-level structural information provided
by our approach to guide these gradient manipulations.
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(a) (b) (c)

(d) (e)

Figure 6.5: Gradient reconstruction. (a) Input image. (b) Reconstructed image using only the
original gradient values at edge positions. (c) Reconstructed image withhistogram equaliza-
tion. Note the quantization artefacts. (d) Reconstructed image using contrast correction. Note
that blurry edges become sharp if the profile is not taken into account. (e) Full reconstruction
using contrast correction and re-blurring.

2.1 Detail removal

We use the lifetime information as a threshold value to seamlessly remove details whilekeeping
important structures. Such image editing operations are similar to the seamless cut and paste
operations proposed by Perez et al. [PGB03] and Elder et al. [EG01b], except that we provide
a high level control to the user, who has only to select the desired level ofdetail (Figure 6.6).

2.2 Multi-scale shape abstraction

We propose a shape abstraction method that adapts the level of abstractionto the scale of
the features in order to preserve the informative content of the picture. In practice, we select
for each edge its last available version in the scale space using lifetime. As shapes become
more and more smoothed along scales due to the Gaussian filter, relevant structures will have
increasingly rounded shapes while details will keep their original silhouettes.

In opposition to previous approaches [DS02] that remove texture details and abstract shapes at
the same time, our approach selects for each edge (including edges belonging to texture details
or other small elements) the shape of its last scale. Hence, our approach still keeps most of the
meaningful structural information, while simplifying its shape, as seen in Figure 6.7.
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(a) (b)

(c) (d)

Figure 6.6: Detail removal: (a) original image, and (b-d) several levels-of-detailautomati-
cally generated by our method.

This application can be seen as a fusion of multi-scale images, similar in spirit to other image
fusion methods like the ones of Agarwala et al. [ADA+04] and Raskar et al. [RIY04].

2.3 Line drawing

The edge lifetime information offers a powerful high-level parameter for any line drawing
algorithm. Figure 6.8 presents the rendering of vectorized edges with a different width to
enhance important structures from details. Figure 6.1 (middle) also shows an example of this
application.

2.4 Local control

In order to offer a local control to the user, each image manipulation can beweighted by a
gray-level map indicating the desired amount of abstraction (Figure 6.9). This mechanism
is essential to be able to focus on a given zone of the input image, and efficiently grabs vi-
sual attention. We take advantage of the Poisson reconstruction to obtain seamless transitions
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Figure 6.7: Shape abstraction: (a) original image, and (b) our shape abstraction result.
Notice how the thin details are kept, while shapes of bigger objects are abstracted (e.g. the
poles).

'

&

$

%
Figure 6.8: Vectorized edges, with a larger width for relevant structures (i.e. those having
greater lifetime).

between regions of different weights.
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Figure 6.9: Local control: original image of DeCarlo et al. [DS02] and our results for two
different user-specified control maps.

3 Discussion on bitmap diffusion curves

A number of previous techniques focused on creating enhanced or abstracted renderings from
arbitrary photographs.

Generally the previous methods manipulate an image globally without using the imagestruc-
ture [WOG06], or rely on the user to define what is important [WXSC04, KCC06, WLL+06].
As a result, the content either cannot be controlled, or its control involvestedious user inter-
actions. We propose a method that automatically extracts the relevant structural information,
and can be subsequently used to enrich automatic stylization systems or to assist the user in
her task.

The interest of expressing the image content with an automatically created structure is well
illustrated in Figure 6.10. Here we show a failure case of Winnemöller et al.’s abstraction ap-
proach [WOG06]. Although their method gives convincing results in many cases, this specific
example shows how they cannot get rid of high-contrast texture lines without abstracting the
cat too far. Manual approaches would, in this case, require the user topaint over the entire
textured region. In contrast, our approach allows us to simply remove detailedges regardless
of their contrast.

Previous work made use of Gaussian scale space [Her98] or saliency maps [CH05, CH03]
in order to guide painterly stylizations. However, saliency maps identify image regions that
already grab visual attention in the original image, and using them to guide stylization will only
preserve these attention-grabbing regions. In contrast, our approach extracts a structure that
allows the user tointentionallymanipulate the image, possibly modifying its attention focus
(i.e. changing its subject, see Figure 6.9 middle and right), and hence conveying a particular
message.

DeCarlo and Santella [DS02,SD04] were the first to use a meaningful visual structure in photo
abstraction. They use color regions as structural units and create their hierarchy of regions
from a pyramid of down-sampled versions of the image. But for coarser-level regions the
shape simplifies and the borders move slightly. Therefore, there is no perfect overlap between
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Figure 6.10: Comparison with the failure case of Winnemöller et al. [WOG06]. (a) Original
picture. (b) Winnem̈oller et al. abstraction failure: note how the carpet details are preserved
while the fur is abstracted away. (c) Our lifetime map. (d) Our detail removalabstraction
preserves the cat structure and abstract the carpet. (e) We apply histogram equalization as a
post-process to fine tune contrast.
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Figure 6.11: Comparison with the DeCarlo et al. [DS02]. (a) Original picture. (b) DeCarlo
et al. results exhibit flat color regions with shape simplification (c) Our result simplifies the
image while keeping smooth color variations and original shapes.

finer and coarser regions. When mixing different levels of detail in the same image, this be-
comes problematic because the information at different scales has to be unified in a single
image. Moreover, while DeCarlo et al.’s method couples simplification of shape with detail
suppression, ours allows to remove detailswithoutnecessarily simplifying shapes (as shown in
Figure 6.11).
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Bangham et al. [BGH03] extend DeCarlo and Santella’s work by improvingthe region segmen-
tation. Their region hierarchy is based on a morphological scale-space and has the advantage
of preserving region shapes. But since only the region size is considered, and not its contrast,
they tend to eliminate visually important cues that have a high contrast but small size.

The use of Poisson reconstruction is also an important advantage for ourediting methods.
While other diffusion methods will try to blur unwanted details, a Poisson approach will simply
ignore it in the reconstruction (by not considering the color variations forthat detail). This is
again well illustrated by the example in Figure 6.10, since the texture lines do notappear in
our image.

Future work We see our approach as a starting point for any subsequent stylization.As
such, one possible venue for future work resides in developing such stylized renditions that
take advantage of structural information. As an example, we created two preliminary results,
shown in Figure 6.12: a drawing, and a watercolor. There are many connections to establish
between style parameters and structure information, and we hope this work will motivate future
research along this direction.'
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Figure 6.12: Different stylizations obtained from our abstracted images, in a drawing and
watercolor style.

Finally, Poisson image editing is a powerful tool for raster image manipulations [PGB03].
However, as we have discussed in the course of this chapter, relying ongradients alone to
perform manipulations can lead to unexpected color results (for example, pasting a yellow on
black circle onto a blue background might lead to the circle becoming white). Onthe other
hand, using color constraints everywhere will have the undesirable result of preserving colors
of deleted elements; in the circle example, it will preserve the black border ofthe circle. It is
therefore interesting to combine these two methods, and explore methods of locally choosing
whether to use gradient or color during the editing process (to obtain an yellow circle on a
blue background). We believe that the diffusion curve bitmap structure, by its localized nature,
could support such editing tools.



c h a p t e r 7
C o n c l u s i o n

This manuscript proposes contours as a means to represent, create andmanipulate digital im-
ages. The distinguishing characteristic of this novel image representation —called diffusion
curves — is that it uses line drawings as a base. Line drawings record thediscontinuities
observed in a scene, and in a similar way diffusion curves correspond tothe discontinuities
present in an image. This thesis demonstrated that the diffusion curve principle (editing an
image via its discontinuities) can be leveraged to represent and edit varied image properties as
piece-wise-smooth data, and that such a representation is powerful, simpleand intuitive.

1 Summary of contributions

The main contribution of this dissertation is thevector primitiveof diffusion curve. With a
single core element — a geometric curve with attributes attached on either side — vector
diffusion curves can depict smooth color gradients, shading variations and complex texture de-
formations. This representation offers most of the benefits usually foundin vector approaches,
such as resolution independence, exact editability, and compactness. Atthe same time it allows
to depict highly complex image content.

– In representing color gradients, vector diffusion curve images are comparable both in
quality and coding efficiency with the state-of-the-art vector primitive (thegradient
mesh), but are considerably simpler to create (according to several artists who have used
both tools).

– For texture definition, this novel vector representation caters both for texture creation,
and for texturedraping. In the first case, intricate textures can be designed using a
traditional sketching paradigm, that combines user-given vector drawings into regular
and near-regular texture-maps. In the process of texture draping, theartist can deform
the texture to suggest folds, ripples, or any other deformation that suits theartist’s intent.
The proposed model achieves compelling results without requiring the building of a 3D
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model. As before, diffusion curves only represent image discontinuities,and this makes
them a “lighter representation” to use in the creation process.

– Shading in vector graphics is generally represented through color variations. While dif-
fusion curves can represent complex shading via color variations, a method to decouple
shading from color is also proposed in the course of this thesis. This allowsthe artist to
change the illumination in the drawing, without altering the underlying material color.
Additionally, such a shading can be applied to mixed textured and non-textured elements
to obtain a unified-looking illumination for the entire scene.

– Finally, the prototype system designed for creating and editing vector diffusion curves
is real-time. This is due to a GPU-accelerated rendering proposed in this manuscript.
As demonstrated by the resulting drawings, this allows artists to interactively design and
manipulate color, shading and textures in 2D vector images.

A second contribution is avectorizationmethod that captures the complex color variations
present in a raster image and transforms them into vector diffusion curves. The proposed
approach relies on detecting discontinuities in a bitmap, and extracting color and blur along
these discontinuities, to approach in vector graphics the realistic aspect ofraster photographs.

And lastly, a contour-basedraster representationis proved a powerful tool for creating en-
hanced representations of photographs. Image discontinuities, augmented with an importance
value, are used to guide user manipulations and to preserve relevant imagecontent.

2 Perspective

The use of contours as the basic image element has been shown to be a powerful tool for rep-
resenting complex imagery, while still preserving a simplified and easy-to manipulate struc-
ture. Coupled with the descriptive power of vector graphics, contour-based representations can
achieve an extraordinary level of control over the creation process.By using such an approach,
a number of aspects of image creation can be explored.

2.1 Vector textures

Considering textures, the work described in this manuscript concentrateson how to allow users
to drape a fabric-like texture map in a 2D image, via texture deformation and positioning.
However, textures have a complicated nature, and it will be interesting to profit from the vector
capacity of describing and parameterizing textures to further study variedtexture behaviors.

For example, our current implementation supports a single texture per planarmap region.
While this proved useful and convenient for the regular and near-regular textures that are the
focus of this manuscript, this approach does not extend easily to mixed texture approaches
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[MZD05]. An interesting area of research would be to attach texture synthesis attributes to
diffusion curves directly, diffuse these outwards and have textures grown dynamically.

Also, given the resolution independence of a vector-based representation it will be interesting to
investigate level-of-detail considerations and hierarchical textures, akin to Han et al. [HRRG08].

Another very interesting question is the animation of texture, for example for mixed 2D and
3D cartoon animations. Offering an user the possibility of manipulating and animating textures
raises interesting and novel questions; it can also help enrich the visual effects that are currently
possible in cartoon animations. To exemplify the need for such research, the “Gankutsuou: The
Count of Monte Cristo” animation (Figure 7.1(a)) was acclaimed for its rich, textured appear-
ance, that set it apart from classical cartoon drawings. But unfortunately the flat and static
aspect of the texture materials is very visible and visually disturbing, especially in movement.
The research challenge here will be to create and animate texture effects like the ones in the
static hand-drawing shown in Figure 7.1(b).'
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(a) image from the “Gankutsuou” anima-
tion

(b) hand drawing by Shigenori Soejima

Figure 7.1: Examples of cartoon drawings with texture. (a) Flat texture applied to a cartoon
animation. (b) Texture patterns that deform to suggest shape, in a hand-made static drawing.

2.2 Vectorization of shading and texture

Vectorizing a bitmap image entails, in some sense, finding the semantic meaning comprised in
the pixel grid. This is not easy, because a single point of color encodesall the characteristics
of the captured scene at that point.

To the best of our knowledge, vectorization techniques (including our proposed method) only
aim at capturing color and color gradients. No distinction is made between a surface material
and a cast shadow, and textures are not treated differently from uniformly painted surfaces.
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Texture vectorization is, indeed, a standing limitation for all vectorization techniques. The
reason for this is that separating shading from reflectance and delimiting texture from object
boundaries are still open challenges in image processing.

However, recent research has made advancements in these two domains.While methods
that aim at fully estimating theshadingin a bitmap image [Wei01, TFA05] remain imprac-
tical for vectorization purposes (Weiss et al. [Wei01] demands severalimages of the same
scene, and Tappen et al. [TFA05] relies on classifiers and cannot disambiguate previously un-
encountered shading configurations), the related problem of shadow removal imposes more
constraints on the input, and thus has better results. Shadow removal methods focus on cast
shadows with clearly defined boundaries, and separate them from the lit image either auto-
matically [FHD02,FDL04] or by user interaction [MTC07,WTBS07,SL08]. Such knowledge
of shadowed regions can help the vectorization process by creating a separate layer for the
shadow, and preserving the uniformly-painted object in a single region.

Texturespresent in natural images are warped by scene geometry and perspective projection.
Several papers in the last years have employed user interactions to delimitatethe textured re-
gions and locally describe the geometry supporting the textures [LLH04,PSK06,ELS08]). For
regular textures, feature matching algorithms can be used to automatically discover the defor-
mations imposed on the texture by the underlying geometry [LT05, HLEL06]. Similar user
interactions could be utilized to infuse semantic meaning into the vectorization process. Tex-
tures, for example, could be represented as a warped grid of vectorized texels, over a vectorized
version of the supporting object.'
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(a) Ouidah Woman (b) detail (c) detail
c© Alicia St. Rose

Figure 7.2: Example of hyperrealism art. Pastel on paperc© Alicia St. Rose.

On a more general level, expressing the real world through mathematical models has been
extensively studied and used in 3D applications, and realistic “illusion worlds” can now be
created. This knowledge of “how the real world can be designed” couldbe incorporated into
2D contour-based vector graphics, to allow the creation of ever-more complex 2D artworks,
both in a realistic and expressive manner.
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Another source of inspiration for creating a “convincing illusion” could also be the technique of
the hyperrealism (Figure 7.2), where a very realistic look is used to transmitthe artist’s personal
view and message [Ros06]. As is the case with many other painting styles, the hyperrealist art
usually starts with a line drawing1.

1Seehttp://www.aliciastrose.com/ for a “making of” example of hyperrealism

http://www.aliciastrose.com/
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a p p e n d i x A
D i f f u s i o n C u r v e s I n t e r f a c e

This appendix describes the graphics interface used by artists to create and manipulate diffusion
curves in the manner presented in Chapter 4. The screenshot in Figure A.1 shows the two
principal windows used in our GUI:

1 2

Figure A.1: Diffusion curves main window.
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(1) The Main Toolboxprovides access to all the proposed interaction tools. It contains the
highest level menu, a set of icon buttons that can be used to select tools, and various
toggles.

(2) The Diffusion Curveswindow is the canvas inside which diffusion curves are drawn and
manipulated.

With the proposed GUI, an user can create diffusion curves images in two steps. (1) The
starting point is drawing a curve inside theThe Diffusion Curveswindow, as described in
Section 1. (2) Each attribute of the created curve is afterwards independently edited to fit
the user’s intent. The tools allowing these manipulations are presented in Sections 2, 3 and
4. The sections dedicated to editing reproduce the organization in Chapter 4; this way, each
manipulation from the “Creation and Manipulation” chapter has a counterpart in the current
appendix, that describes the interface tools developed for the specifiededition.

1 Drawing a diffusion curve

The tool used for draw a diffusion curve is theDraw tool from the Main Toolbox.

Draw tool: Draw a curve in free hand style.

The Draw tool lets the user trace a curve inside the Diffusion curves window, as if drawing
with pencil on paper. This gives the shape of the curve, while the other attributes described in
Chapter 3(left and right color, blur, normals and(u,v) texture coordinates) are automatically
added to the curve extremities. Initial color and blur values can be given before drawing, as
described in Table A.1.

In the editing step, the curve’s shape and the other attached attributes can each be modified
separately. To ensure independent manipulations, the user has at his disposal a different set
of tools for each attribute. But all sets share a similar editing pipeline, and have a consistent
behavior:

– First, the user selects a tool from theMain Toolboxto indicate what attribute is being
modified.

– Left Click is used to change the attribute values of existing control points.

– To adjust the placement of control points, theRight Clickis employed. On right clicking,
a pop-up menu permits the addition and the deletion of control points. Other operations,
specific to the selected attribute, are also shown in the pop-up menu.
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Example of a diffusion curve.

A diffusion curve has a differentcolor on each side. Prior
to drawing, the pen colors can be chosen by clicking on
the Left color and Right color buttons.

Blur values can be defined for a curve. An initial blur can
be chosen before drawing, with the spline blur slider.

A curve hasnormalattributes on both sides. The default
normal values point toward the viewer ( the drawing is
seen from the front).

A diffusion curve has(u,v) texture coordinates defined
on either side. The initial values are set to the geometric
position of the curve, so the texture will lie flat inside a
drawing region.

Table A.1: Diffusion curve attributes:A description of all the attributes attached to the the
diffusion curve’s shape, and their default behavior. Some of the attributes can be set prior to
drawing using the tools in the left column.

2 Editing the shape and color

This section describes the tools developed in our GUI to enable the editing operations from
Section 4.1.

2.1 Manual creation

The shape and color attributes are independently edited, and different tools are available for
each of two attributes. Ashape, given by a B́ezier spline, can be modified by using theModify
Shapetool from the Main Toolbox.

Modify Shapetool: Select a curve in order to modify its shape.

To deform a diffusion curve, the following steps are needed:
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(1) Select theModify Shapetool.

(2) Select the curve. At this point, the Bézier controls are made visible, as shown in Ta-
ble A.2 (a). The control points are drawn in red, while the correspondingtangents are
colored in grey.

(3) Position the mouse point on a control point and select it with aleft click. Holding the
left button pressed while moving the mouse moves the control point inside the canvas
(Table A.2 (b)).

The same select-and-drag action can be used to move the entire curve, if themouse left click
is inside the curve selection box (Table A.2 (c)), but not on the control points.

(a)

(b) Click Left oncontrol points: mod-
ify their position.

(c) Click Left inside the curveselec-
tion box: move the curve.

Table A.2: TheLeft Click options for shape editing:The shape controls shown in (a) can be
repositioned by dragging-and-dropping them (b). The entire curve can be moved in the same
way (c).

To modify the number of B́ezier control points, theRight Click is used. For a curve selected
with theModify Shapetool, right clicking pops up a specific menu, illustrated in Table A.3 (a).
This menu allows the user to add a control point at the mouse position (Table A.3(b)), or to
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delete the closest control point (Table A.3 (c)). A third possibility is to split thecurve in two at
the mouse position, as in Table A.3 (d).

(a)

(b) Add control point.

(c) Delete control point.

(d) Split the curve.

Table A.3: TheRight Click options: (a) Screen capture of the menu choices when the ’Modify
Shape’ mode is active. (b)-(d) The result after applying each menu option on the initial curve.
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The diffusion curve’scolors and blur are edited with theModify Color tool from the Main
Toolbox.

Modify Color tool: Select a curve and edit its colors and blur.

To change the value of color and blur control points, the user has to:

(1) Select theModify Color tool.

(2) Select the curve. This displays the curve’s color and blur control points. As illustrated
in Table A.4 (a), the curve has two sets of color control points, one for each side; these
controls are indicated by colored dots on the left and right of the curve. Blur control points
are indicated by grey-level dots placed on the curve.

(3) Select a control point byleft clicking on it. To change the color of a selected control,
several options are possible, illustrated in Table A.4. When a blur control isselected, a
slider dialog pops up and allows the user to modify the blur value.

By default, a drawn curve has color and blur controls only at the end-points. To manage the
number of controls for a curve selected with the Modify Color tool, the user has toright click
on the curve. This displays a menu with add and delete options for the left colors, the right
colors, and for the blur (Figure A.2).

Figure A.2: Right Click menu. Screen capture of the menu options for the ’Modify Color’
tool. Color and blur controls can be added or deleted this way.
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(a)
Select a curve with theMod-
ify Color tool.

(b)

Click Left on color controls
to select them. Change col-
ors using the color setting
dialog:

(c)
Paste a color bucket color on color points touched by a
left click.

(d)
Pick a color in the drawing and fill in the color bucket.
Another way of defining the color in the color bucket is
by using the color dialog.

(e) Switch colors for the selected curve (Left↔ Right).

Table A.4: Color changing options:The colors of a selected curve are changed by usingLeft
Click and a number of other tools. The ’Modify Color’ tool is activated.
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2.2 Tracing an image

The “Manual creation” section focussed on the tools needed by users when creating an image
completely from scratch. Another possibility is to rely on an existing image for guidance
(Section 4.1.2). For this, our GUI proposes a new set of tools that lets the user utilize a bitmap
image as a starting point, and manuallytraceover parts of the image. The colors are recovered
automatically from the underlying image.

The steps necessary to trace over a bitmap image are explained below, in Table A.5. The table
gives the steps in order, by illustrating the interface tools used (in the left column) and by
showing the effect of each tool (the right column).

(a) File→Load bitmap Load a bitmap

(b) Toggle the bitmap display.

(c) Draw a curve over a bitmap.

(d) Snap the curve to the bitmap contours.
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(e)
Read the colors in the bitmap and transfer
them to the curve.

(f) Final result.

Table A.5: Steps to trace over an image:(a) First, load the support image by using the File
menu from the Main Toolbox. (b) In the Diffusion curves window, show the bitmap image
instead of the current diffusion curves drawing by checking the ‘Show bitmap button’. (c)
Draw a curve over an image feature. (d) Position the curve over the exact image disconti-
nuity by repeatedly pressing the Magnet button. This automatically attracts thecurve to the
closest discontinuity. (e) When the curve is correctly placed over the image, sample the colors
by pressing the ‘Pick colors’ button. (f) Repeating the process for all the interesting image
features, a diffusion curves drawing with compelling coloring is obtained.
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2.3 Global manipulation

As diffusion curves are mark the drawing discontinuities, global deformations applied to their
shape reflect in coherent stylization effects for the drawing (Section 4.1.3). Global modifica-
tions of diffusion curves color and blur attributes are also seamlessly integrated in the drawing.

Our GUI includes tools that allow the user to select multiple curves and to apply various editing
operations on the entire selection. The multiple curve selection is done by usingMulti-selection
tool.

Multi-selection tool: Select multiple curves that will undergo the same
transformations.

– Shift+ Left Clickadds the chosen curve to the multi-selection.

– Ctrl + Left Click lets the user scribble over the image. Every curve
touched by the scribble is selected.

To add a curve to the multi-selection, two ways are proposed. One is to directlyclick on the
curve; the other is to scribble over an area in the drawing, and all curvesthat are scribbled over
are added to the selection. This second type of selection is illustrated in FigureA.3.

Figure A.3: Multi-selection using scribbles:When the Multi-selection tool is active, holding
Ctrl +Le f tClick lets the user scribble over the curves he wishes to select.

Several global editions are available in our GUI for a multiple curve selection. Delete and
Copy/Paste operations can be applied globally by using theEdit menu from the Main Toolbox,
or by typing the corresponding keyboard shortcuts (see Figure A.4 fora screen capture).

Other global operators in our GUI modify either theshapeof the selected curves – by smooth-
ing or sharpening them – or thecolor – by globally changing the contrast. These effects are
demonstrated on a single curve in Table A.6.
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Figure A.4: The Edit menu: Screen capture of the Main Toolbox, with the Edit menu dis-
played. This menu allows the copy, cut, paste and delete operations for oneor multiple selected
curves.
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Shape smoothing or sharpening:

Initial drawing Sharpening

Contrast modification:

Increased contrast Lowered constrast

Table A.6: Global manipulations:These operations can be applied to multiple curves at once.



3 Manipulating the shading 115

3 Manipulating the shading

To define and manipulate the shading, the diffusion curves system relies onnormals, as is
explained in Section 4.2. Normals are positioned the same way the colors are, on the left- and
right-side of a curve, and they are edited using tools similar to the color tools described in
Section 2.1. When theModify Normalstool is activated, selecting a curve shows the attached
normal values.

Modify Normalstool: Select a curve in order to manipulate its normal val-
ues.

Left Click on a normal control point selects the control point and lets the user definea new
value via a normal widget (Figure A.5).

Figure A.5: The normal widget: Screen captures of the normal values being defined along a
diffusion curve.

Adding and deleting normal control points can be done byright clicking on the selected curve
(Figure A.6). New control points can thus be added at the mouse position, either to the left or
to the right of the curve. When deleting points, the point closest to the mouse position on the
chosen side (left or right) is marked for deletion.

The menu displayed when using the right click also allows an user to specify how normal
values are defined and interpolated along the curve. When the ‘Convex’or ‘Concave’ setting
is selected, the normals are oriented along the instantaneous normal to the curve, in such a way
that the surface implied by the normals is convex, respectively concave. In this set-up, only the
slope orthogonal to the diffusion curve is given by the user. When the third option – the ‘Free
mode’ – is selected, the user can specify the complete normal vector, and is not restricted to a
fully convex or an entirely concave side.

Using the normal values, the shading of an image from a givenlight positionis automatically
computed. The light can be interactively positioned by the user through the use of various
interface tools, shown in Figure A.7. The shading tools from the Main Toolbox allow an user
to define:

– the light and shadow coloring;

– the light position;

– the desired material properties (the diffuse and specular term).
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Figure A.6: The Right Click menu: Screen capture of the menu choices when the ‘Modify
Normals’ tool is active.

The light (x,y) position can equally be changed by using theMove Lightdialog. This allows
the user to place the light at the desired positioned with a simple drag-and-drop action. The
re-lighting results, exemplified in Figure A.8, are updated in real time.

(a) (b)

Figure A.7: The shading interface tools: (a) The shading tools from the Main Toolbox.
(b) The ‘Move Light’ dialog, that allows the user to change the light position by drag-and-
dropping.
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(a) (b) (c)

Figure A.8: The re-lighting results:(a) Unshaded drawing. (b) and (c) Shading results for
two different light positions.

4 Adding textures

To create a textured design, three steps are proposed in Section 4. 3. (1) First, the user creates
a texture with motifs of variable color and shape. (2) A line drawing is designed with diffusion
curves, and is used as a support drawing for the textures. (3) The textures are positioned inside
the support drawing and deformed to reflect the user’s intention. Step (2) can be accomplished
using the tools described in Sections 2 and 3. For the first and third steps, new interface tools
are included in our GUI.

4.1 Creating the texture-map

The texture-map creation tools allow users to createregular and near-regular textures. To
draw new textures, theCreate texturesmode has to be activated by clicking on the ‘Create
texture’ button in the Main Toolbox menu. In texture mode, any drawing done by the user
is replicated throughout a grid, as in Figure A.9 (a). The highlighted grid square is the user-
defined texture element, whereas all the surrounding elements are automatically generated. The
grid spacing can be modified by the user (Figure A.9 (b)) by dragging the grid lines horizontally
or vertically; the texture is automatically recreated after each grid modification.

To create near-regular textures, the user has the option of defining multiple texture elements
(or texels). The remaining, automatically generated texture instances interpolate between the
user-defined patterns to create the texture. A new user defined element iscreated byright
clicking in a grid square, and choosing ‘Add new texel’ from the displayed menu. The user can
subsequently edit the colors, shapes and normal values of the newly created texture element, as
illustrated in Figure A.9 (c). When the user adds or deletes a control point (for gemetry, color
or normals), the corresponding controls in all user-defined texels are added or deleted. This is
done to preserve the point-to-point correspondence needed for the automatic texel generation.
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(a) (b) (c)

Figure A.9: The regular and near-regular textures:(a) A user drawing (highlighted square)
is replicated in a grid, to form a regular texture. (b) Grid spacing is modified and pattern
is automatically regenerated. (c) Two user-defined texture elements (highlighted) are used to
create a near-regular texture.

4.2 Draping textures

Texture attachment The created texture maps or, optionally, an arbitrary bitmap, can be
added to the support drawing. Managing the texture inclusion is done by selecting theInclude
texturesmode.

Include texturestool: Manage the textures attached to the support drawing:
add, delete, and reposition textures.

Once this mode is activated, the user can assign a texture to any region enclosed by the draw-
ing’s lines byright clicking inside the region. A menu is then displayed that, aside from adding
a texture, allows the deletion or the reusing of already defined textures (Figure A.10 (a)).

(a) (b)

Figure A.10: The Right Click menu: (a) Screen capture of the menu choices when the
‘Include textures’ mode is active. (b) The added texture, with its attachment point.
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When attaching new textures to the drawing, the clicked point becomes the attachment point
and defines the place where the texture center is found (Figure A.10 (b)). The texture can
afterwards be re-positioned by dragging-and-dropping its attachment point to the new location.

Texture warping To complete the texture integration into the diffusion curves drawing, de-
formations can be applied to the texture maps, to suggest scenic depth, surface orientation or
other artistic intentions. These distortions rely on two attributes – normals and(u,v) coordi-
nates – attached to curves in the supporting drawing.

The interface tools for defining the normals have been detailed in Section 3. The (u,v) manip-
ulation tools rely on similar interaction techniques. First, to access the(u,v) values, theModify
(u,v)smode has to be selected.

Modify (u,v)s tool: View the(u,v) control points when a curve is selected
and activate the tools used for manipulating the(u,v) attribute.

In this mode, the(u,v) control points are shown when a curve is selected. To modify the
corresponding(u,v) value, a control point has to first be selected by aleft click; a dialog
window (Figure A.11 (a)) allows to user to specify a new value.

(a) (b)

Figure A.11: The (u,v) manipulation tools: (a) The dialog window used to define new(u,v)
values. (b) Screen capture of TheRight Click menu.

Control points can be added or deleted byright clickingon the curve. As for the other diffusion
curves attributes, this displays a menu with several options. In the case of(u,v)s, the proposed
actions, shown in Figure A.11 (b), allow the user to manage the control pointon either side of
the curve, but also let him choose whether the curve in its entirety diffuses(u,v) coordinates
or not (the ‘USE as texture coordinates’ option). Another option specificto the(u,v) attribute
is ‘Pick texture coordinates’, which automatically generates control points that create the least
possible distortion in the texture.
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5 Assistance tools

Up until now, we have focussed on describing the tools and menus that allowan user to define
diffusion curves. The proposed GUI also contains other interface toolsthat do not directly
enable users to manage diffusion curves, but are there to aid in the creative process.

Image navigationtools, for example, allow the user to easily navigate through the artwork, to
set zoom levels and to move the visible parts of the image (Table A.7 (a)). Additional interface
toolstoggledifferent image views, such as the image of normals or planar map (Table A.7 (b)).
And finally, drawings and textures can be saved and opened withFile menu (Table A.7 (c)).

(a)

Zoom forward Zoom backward Pan

(b)

Toggle splines display.
Toggle blur computa-
tion.

Toggle normal map
display.

(c)

Table A.7: Assistance tools: (a) Image navigation tools. (b) Various toggles. (c) Screen
capture of the ‘File’ menu options
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T e x t u r e S t r u c t u r a l D e f i n i t i o n

The term “visual textures” describes the perceived appearance of materials and support sur-
faces in the real or depicted world. The vastness of the visual texture types and their often
contradictory properties make a unified description of textures difficult. The usual practice is
then to define textures from a certain perspective of their nature. Categories of texture def-
inition include statistical models, models based on spatial frequency filtering, and structural
approaches.

In the context of vector graphics, texture representation models tend to bestructural techniques.
This is because vector graphics systems are strongly user-oriented, and the structural definition
comes directly from the human interpretation of perceived patterns. Thisstructural approach,
originally proposed by Haralick in 1973 ( [HSD73]), considers a textureas an “organized area
phenomenon” which can be decomposed into “primitives” having specific spatial distributions.
For instance, each texture in Figure B.1 is composed of particular texture elements, e.g. objects
(bricks), shapes (jigsaw pieces), or simply color patterns. These primitives are organized in a
particular spatial structure indicating certain underlying placement rules.

Yanxi Liu et al. [LLH04,LT05] and Wen-Chieh Lin et al. [LHW+04] have recently proposed a
structural characterization that classify textures as:

1. Regular textures. This refers to periodic patterns where the color and shape of all texture
primitives are repeating in equal intervals.

2. Near-regular textures. These textures, while having recognizable primitives and struc-
ture periodicity, depart slightly from regular tiling along different axes ofappearance,
and thus could have:

• A regular structural layout but irregular color appearance in individual tiles (like
the brick texture in Figure B.1).

• A distorted spatial layout but topologically regular alterations in color (the bottom
right image in the near-regular textures set in Figure B.1).
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• Small deviations from regularity in both structural placement and color (the weave
examples in Figure B.1).

3. Irregular textures. Here, the texture elements have individually discernable shapes, but
they vary in appearance. The distribution, while irregular, follows coherent rules.

4. Near-stochastic textures. In near-stochastic textures, individual elements are less distin-
guishable. The general aspect is that of patches of color randomly distributed.

5. Stochastic textures. These are noise textures.

'

&

$

%
Figure B.1: Texture structural organization: Texture types, considering the texture elements
appearance and their planar distribution. Image taken from the “Near-regular texture analysis
and manipulation” paper [LLH04]

.



B i b l i o g r a p h y

[ADA +04] Aseem Agarwala, Mira Dontcheva, Maneesh Agrawala, Steven Drucker, Alex
Colburn, Brian Curless, David Salesin, and Michael Cohen. Interactive digital
photomontage.ACM TOG (Proceedings of SIGGRAPH 2004), pages 294–302,
2004.

[ASP07] Paul Asente, Mike Schuster, and Teri Pettit. Dynamic planar map illustration.
ACM Transactions on Graphics (Proceedings of SIGGRAPH 2007), 26(3), 2007.

[AWB06] Ken-ichi Anjyo, Shuhei Wemler, and William Baxter. Tweakable light and shade
for cartoon animation. InNPAR ’06: Proceedings of the 4th international sympo-
sium on Non-photorealistic animation and rendering, pages 133–139, New York,
NY, USA, 2006. ACM.

[BA06] W. Baxter and K. Anjyo. Latent Doodle Space. InComputer Graphics Forum,
volume 25, pages 477–485. Blackwell Synergy, 2006.
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Thollot, and David Salesin. Diffusion curves: A vector representation for
smooth-shaded images. InACM Transactions on Graphics (Proceedings of SIG-
GRAPH 2008), volume 27, 2008.

[ON95] Michael Oren and Shree K. Nayar. Generalization of the lambertian model
and implications for machine vision.International Journal of Computer Vision,
14(3):227–251, 1995.

[Pal99] S. Palmer.Vision Science : Photons to Phenomenology.MIT Press, 1999.

[PB06] Brian Price and William Barrett. Object-based vectorization for interactive image
editing. InVisual Computer (Proceedings of Pacific Graphics ’06), volume 22,
pages 661–670, September 2006.

[PCPN07] Giuseppe Papari, Patrizio Campisi, Nicolai Petkov, and Alessandro Neri. A bi-
ologically motivated multiresolution approach to contour detection.EURASIP
Journal on Advances in Signal Processing, 2007, 2007.
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