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Abstract

This thesis proposes a novel image primitive — the diffusion curve. This pveniglies on the
principle that images can be defined via their discontinuities, and concaniraige features
along contours. The diffusion curve can be defined in vector grapagsvell as in raster
graphics, to increase user control during the process of art creation

The vectorial diffusion curveprimitive augments the expressive powers of vector images by
capturing complex spatial appearance behaviors. Diffusion curpessent a simple and easy-
to-manipulate support for complex content representation and edition.

In raster images, diffusion curves define a higher level structural organizafigheopixel
image. This structure is used to create simplified or exaggerated reptisentd photographs
in a way consistent with the original image content. Finally, a fully automatic \ieetarn
method is presented, that converts raster diffusion curve to vectosidiffcurve.
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Infroduction

The computer, as an art tool, has transformed traditional activities like pgimtiawing and
design, and has made possible new forms of art creation, such as atgosiff and net art
As Anne Morgan Spalter remarks in the opening of her book “The Computire Visual
Arts” [Spa98]:

“with the advent of personal computer and the commodification of interagtsehics
software [...] the computer became a valuable Postmodern art tool.”

The computer has become a standard tool in many artistic processesebédatr®duces
extraordinary flexibility to the act of creation. Two examples of art imagergemaossible
by the computer are shown in Figure 1.1. First is a creative photo-paintiegenthe artist
has brought together three generations of women in a single photodnaible. second image
(Figure 1.1 (b)), the artist uses geometrically defined shapes to obtainlieres and flawless
curves for his design of a fantasy heart. These two images also illustratevdhdistinct
categories that can be used to represent a computer-generatedkanagier graphics and
vector graphics.

1 Digital images

Vector graphicgs the creation of digital images through a sequence of geometrical primitives
such as points, lines, curves, and polygons, all based on mathematiatibeg.Raster graph-
ics provide an alternative representation for describing images. Rathegé#uametry, raster

1For example, San Base’s dynamic painting uses computer algorithmattnumusly “reinvent” itself:
http://www.sanbase.com/

2Net art uses the internet as its medium and cannot be experiencedathanyvay. One example of net art is
“My boyfriend came back from the war” by Olia Lialina:
http://www.teleportacia.org/war/


http://www.sanbase.com/
http://www.teleportacia.org/war/
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(b)

Figure 1.1: (a) Michele Turre,"Me, My Mom & My Girl at Three”, 1992. This art wor
showcases four distinct phases of image making history: The 1920s stoidrait of her
mother has the soft lighting, grainy film base, and soft printing style of theat €he picture
of herself has the sharp focus look typical of the 1950s. The picturerofifughter was
captured from video and still has scan lines running through it. She thebioeahthese three
photographic technologies in an image that speaks clearly of the comageer(b) Dhanank
Pambayun, “Living on a Heart Grunge”, 2008. Here, the artist used #tostract geometric
mark-making and the sharp, clean-cut look typical to vector graphizreate a vintage
looking fantasy.

graphics use a grid of individual pixels to define images, where eachqairestore a different
color.

Both representations have advantages and limitations. One important béwetitor graphics
is that images can be scaled to any size without any loss of quality, by simply mini¢gjpheir
analytic description by a constant factor. As shown in Figure 1.2, veattrrps retain sharp
features when magnified — a property calledolution-independence In contrast, raster
graphics are resolution dependent; they cannot scale to an arbitsatytren without loss of
apparent quality. When magnified, a raster image becomes grainy, angeticare pick out
individual pixels of uniform color (as shown in the zoomed-in version efrdister image in
Figure 1.2). From an artist point of view, this means that a raster art gnbe created,
modified, and displayed at a single scale, while a vector art can be mangaladesxhibited
at any scale.

Vector graphics are also easéyitable. A vector object is a continuous mathematical descrip-
tion, and changes are made by modifying the mathematical formulae. Intuitigedaio be
used to stretch, twist, and color objects in the picture. In raster images, othdrehand, there

is no inherent relationship between any parts of the image; they are alijaktalues. Editing

a raster image is not straightforward — changes of an object shapéoican only be made



1 Digital images

4x Magnification Shape selection

Raster

Vector

Figure 1.2: Raster graphics vs. Vector graphichis image demonstrates how vector (bot-
tom row) and raster images (top row) behave when re-scaled (fitahug. It additionally
illustrates the difference in shape selection for the two image formats (last shlum

by changing individual pixels. This is illustrated by the shape selection doR&gure 1.2.
While raster selection simply moves a rectangle of color samples, in the velotice the
entire eye is dragged to a new location, and the face remains untouched.

Vector-based images are also more eaailynated than raster images, through keyframe an-
imation of their underlying geometric primitives. Vector graphics thus provideattists with
an infinitely malleable and flexible image making tool.

However, for all of their benefits, vector-based drawing tools offdy dimited support for
representing complex image content. The complexity of object shapes ksl isdimited to
the vocabulary available for describing them and precludes many pamtdyghes, such as
creating complex shading by smudging colors. On the contrary, raster sntagecapture and

3

representomplex images and are typically used for the representation of photographs and

photo-realistic images.

Raster and vector are thus complementary representations. While vexgibiagrhave thde-
scriptivepower to specify semantically important image features, they cannot espresm-
plex imagery. Raster graphics have theressivgpower to depict photo-quality pictures, but
image manipulation is extremely difficult.
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2 Thesis

The thesis presented in this manuscript is that contour drawings areld ws#ffor the de-
piction of image features, in particular color, shading and texture. Thisrtig®n explains
how a contour-based representation can be used in vector and nagibicg, and provides
examples of powerful and intuitive user controls enabled by the usentdais. The proposed
approach is inspired by the art of contour drawing and its capacity sésgmg a subjectin a
few sketched lines.

Figure 1.3: The expressive power of contour drawingg) Vincent van Gogh, “Cypresses”,
1889. Circular, energetic, emotionally charged lines are used to caimeegramatic mood. (b)
Saul Steinberg, “The Discovery of America”, 1992 [Ste92]. Theutagrepetition of straight
lines emphasizes firmness of purpose and dynamic motion. (c) Hatigsd, “Variation 1",
1942. The curves in this drawing incorporate qualities like economypsditis and elegance.

2.1 Contour drawing

Drawing is the starting point of all visual art creations (Encyclopaedia @it [EB09]).
Painters, architects, sculptors, scientists, and film-makers alike rely windrto express their
initial thoughts and to explore new possibilities for their designs [KovO6]erpainting is



built essentially on its pre-sketched main contours, consolidated into caarétes [EBO9].
A contour drawing is composed of lines and the empty space betwthe lines.

The principal element of drawing is the line, appearing as a border settbaylads, colors and
planes. Within the line composition, the space left blank fulfills an essentialitaenveys the

uniform surface, the borders and nuances of which are indicatededings. The flat planes
of a building, the unlined appearance of a cheek, the smooth width of a garthe glassy

surface of a lake, can all be encompassed by the empty spaces in tlegditeow06, EBO9].

With the aid of this simple vocabulary, the viewer can be made to effortlesslyifigé¢ine
object of a drawing. The angular meeting of two lines, for example, may bsidered as
representing the borders of a plane; the addition of a third line can sutgadea of a cubic
body. Vaulting lines stand for arches, convergent lines for depth fdre of a line is enough
for the human mind to call forth associations and “read” a complete sceced®"“the visual
world is made of contours, creases, scratches, marks, shadowshadidg” (Marr [Mar82]).
Lines, therefore, can represent the way we perceive and unaerdta surrounding world
[Mar82].

Everything real or imaginary can be represented through lideawing.

Line drawings, by their very simplicity, also offer a broad scope for theession of artistic
intention. Anything in the visible or imagined universe may be the theme of a dyabarlies,
space, depth, and even motion can be made visible through lines. In Hef@wving for
Dummies”, Brenda Hoddinott [Hod03a] explains:

“You can draw any object when you see its edges as simple lines. [...] Ewveplex
subjects, such as people, can be rendered using only lines.”

Furthermore, because of the rapidity with which it can be created, draajtgres in the flow
of its line the personality of the artist, much as handwriting represents the sviitdividual
traits (Figure 1.3). Michael Craig-Martin [Kov06] describes the powatrawing thus:

“Its characteristics include spontaneity, creative speculation, expeiiem directness,
simplicity, abbreviation, expressiveness, immediacy, personal visidmited diversity,
modesty of means, rawness, fragmentation, discontinuity, and opedrersde These
have always been the characteristics of drawing.”

Thesis: A digital image can be represented, created ande=tiitia its contours.

Guided by the properties of line drawing and by the utilization of contours agport for
painting, this thesis exposes the possibility of using contour drawing tosepire colored
digital image. Considering the role played by empty spaces — that of the smosthaha
a figure — we express the space between contours as smooth variatioo®mfshading
and texture. Such a representation inherits the characteristics of dratviageffortlessly
comprehended and easily created, for example, and it preservesithiéuatity of the artist’'s
line style.
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2.2 Contours as basic primitives for digital image creation

The following approach relies on the observation that traditional colotipgistarts with con-
tour lines and proceeds by filling the outlined spaces with color and texturew@k reposes
on this classical framework to propose a general digital model, that i®guestly adapted
to raster and vector imagery. This representation, calledlififigsion curve usescontours
to define the shape of the depicted scene, and attattrésites — arbitrary image features
— to the contours. The space between the lines is filled with smoothly varyinguéiby
diffusingand mixing the values fixed along contours. To adapt this abstract moded tavoh
digital image formats, we rely on the inherent characteristics of eachseptagion.

2.2.1 Vector graphics

Vector graphics have an extraordinagscriptivepower, offering fine-tuned control over form,
color and placement. The diffusion curve vector primitives take advamithes descriptive
capacity to experiment with possible image attributes and design methods of gleesgntor
image from scratch. An important part of this dissertation is dedicated to thusidifi curve
vector primitive and throughout this manuscript the generic term “diffusiome” refers to the
vector diffusion curve.

Figure 1.4: Parallel between traditional media creation and the proposed vector lgcap
creation. (Top) Watercolor creation steps: contour drawing, color filling, and shadi@ia
Taptara. (Bottom) The diffusion curves steps: contour drawing, color setting, and finally
texture and shading definitiog@Laurence Boissieux.



2 Thesis

Creation with diffusion curves is easy to master by artists, because it altovwgoirkflows
close to the traditional “on-paper” art creation process [Hod03aJfufin curvesenable the
artist to start with a “blank paper”, define contours and use them to deweelor variations,
shading effects and textured surfaces. A parallel between traditiorgihrogeation and the
proposed vector graphics representation is shown in Figure 1.4.

2.2.2 Raster graphics

Raster graphics are especially notable for their power to faithfully reptgghotographs. In
photographs, the entire scene is already “created”, but lacks semdatimation. The raster
diffusion curve strives to represent raster images as a higher-kevetige organization, that
the user can manipulate more easily than pixels. In this structure, conteursade by edges
— points in a raster image at which the image brightness changes sharply — wglbra
attribute.

Figure 1.5: (a) Example of hand-made image abstraction: “Le Papillon” (The Butygrfl
watercolor by Eric Alibert. From “Leman, mon ile"© 2000 by Editions Slatkin. As seen
in the guidebook of scientific illustration [Hod03b]. It is clear that focus @ tmage is the
butterfly: it is depicted with many details, while plants around have little detailthed shape
is less precise. Our raster diffusion curves allow the user to obtain simifactsf(b) from a
photograph (c).

One example of raster manipulation is given in Figure 1.5. Figure 1.5 (a@gepts a hand-
made scientific illustration, from which it is clear that the main subject of the imatfeeis

7



butterfly: it is depicted with many details, while plants around are only sugijektewever,
while abstracted, secondary elements of the image retain their look andséyeigentified;
in other words, their relevant structural components are presenaaptiithe abstraction pro-
cess. Similarly, our diffusion curve structural information guides user @magnipulations,
but preserves the relevant data (Figure 1.5 (b)).

2.3 Contributions

We propose a novel image primitive — the diffusion curve. This primitive rediethe princi-
ple that images can be defined via their discontinuities, and concentratesfeniges along
contours. The diffusion curve can be defined in vector graphicsedsaw in raster graphics,
to increase user control during the process of art creation.

1. In particular, thevectorial diffusion curveprimitive augments the expressive powers of
vector images by capturing complex spatial appearance behaviorssibiffaurves represent
a simple and easy-to-manipulate support for complex content represeragati@dition.

— First, the proposed vector primitive can depict complex color variati@psesent light-
ing effects via user-defined normals; and natively handle textures.

— Second, we provide powerful, high-level tools to intuitively manipulate #etor pa-
rameters. Using the diffusion curve principle that attributes vary smootlegyeiere
except on contours, we allow the user to sparsely define image paranetérding
colors, normals and texture coordinates, along curves of discontinugyadditionally
design editing methods that support common artistic workflows. Particulaeydew
scribe methods for applying textures directly to a 2D image, without requith@b
information, a process we caéxture-draping

— Third, based on a GPU-accelerated rendering we provide instard ¥erdback and
allow unhindered artistic manipulations.

2. Inrasterimages, the present approach relies on edges to define diffusiors @saehigher-
level structural organization of the pixel image. This structure is usedetteisimplified or
exaggerated representations of photographs in a way consistent watligfinal image content.

3. Finally, a fully automatic vectorization method is presented, that convestisr rdiffusion
curve to vector diffusion curve.



2.4 Organization

This manuscript explores primarily the capabilities of diffusion curves ftar graphics.
Chapter 2 discusses the existent vector representations and thessaxpeapacity.

Chapter 3 introduces the diffusion curve vector primitive and describes efficiently ren-
der an image from such primitives.

Chapter 4 presents various options for creating and editing a vectosidiffaurves image. It
explains the process of creating and manipulating three image featuress, @ading and
texture.

In Chapter 5, a raster-to-vector process is discussed, where imgge & transformed into
raster diffusion curves and used to vectorize the image.

Chapter 6 revisits the raster diffusion curve primitive and explores howsthisture can be
used to enhance photographic representations.

Finally, the conclusion (Chapter 7) gathers our thoughts relative to tHeeshwe have made
and discusses future work possibilities.
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Vector Graphics

This chapter presents a background on vector graphics, and detailistinguishing charac-
teristics of different vector representations. Section 1 outlines the ttonggestem categories:
stacking and planar maps. Vector primitives that fall into the stacking categeorganized in
Section 1.1. Each primitive is presented as a geometric shape onto whiah attrileutes can
be attached; the shape definition, the attribute placement on the shapes aypkthof possible
attributes, are discussed in turn. Section 1.2 details the planar map reatiesesind gives an
overview on what constitutes a shape in planar maps and how attributes attad¢hed to each
shape.

Possible attributes for vector primitives are color, shading and textuioBe details each
attribute and explains how manipulating the geometric shape influences thetattalues and
positioning.

And finally, Section 3 considers automatic and semi-automatic methods of exgraettor
primitives from raster images.
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1 Representation

Vector primitives are geometric shapes with attached attributeslof, shadingandtexture
Depending on the way vector primitives interact with one another, vectotrdtigns fall in
two categories: stacking and planar maps. The following sections présestgcking and pla-
nar maps in turn, the possible primitives. For each primitive, three elemenissatssed: the
shape the primitive can have, the accepted attributes, and how these attrénutee attached
to the shape.

1.1 Stacking

In a system that uses the stacking metaphor [Sut80], all shapes hackiagtader. A shape
higher in the stack occludes the objects below it in regions of overlap. 8irambjects do not
interact other than to hide each other, each shape can be edited inelethefrom the others.
A simple example of this behavior is illustrated in Figure 2.1 (a) and (b).

Paths and geometric objects

Classical shapes in a stacking metaphor are either freegathsor predefined geometriab-

jects A path is a sequence ofBier curves, and is mostly used to create freehand art. Objects,
on the other hand, rely on specific geometric definitions and can be ceradextliited in ways
unique to their specified type. For example, in Adobe lllustf@®s4and Inkscap®0.45,

the predefined objects are straight line segments, rectangles, ellipsgmnsoand stars. An
object is less “free” than a path, but has the advantage of dedicatecbms®d on geometric
properties. An ellipse, for example, will thus be manipulated by increasidglacreasing its
major and minor radius, and not by deforming individu&lzier curves.

Complex shapes can be obtained by combining two or more shapes usingrbopérations,
such as unions, intersections or differences. The Inkscape dotatinarilnk08] presents a
very good description of the different possibilities of creating paths &jetts.

For both paths and objectattributescan be attached to closed regions or to borders (as in
Figure 2.1, where regions are filled with uniform color and borders al@ed in a different
hue). Open shapes are usually “closed” automatically by an invisible linaesgguniting

the extremities. The attributes defined for paths and objects are flat dolei, and radial
gradients and texture.

Gradient meshes

Recently, a different vector primitive was proposed for stacking systénesgradient mesh
(Adobe lllustratof®, Corel CorelDraw?).
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(b)

© J (d)

Figure 2.1: Vector shapes(a) A vector illustration in classical stacking shapes; (b) shows
what happens when the foremost rectangle is modified. In (c), the di@weng is done with
gradient meshed he rectangle and the circle form each a gradient mesh object. (d) ilkestra
how the rectangle deforms when performing the same operation as in @bg.that the mesh
“knots” anchor the form, and thus only the top right patch deforms.

A gradient mesh can be seen as a net placed over the object, made upsefitg horizontal
and vertical curves. Each ‘knot” in the net — that is each point wherentheh intersects —
anchors the object in place.

Theseanchor pointscan be pulled or adjusted to control the shape of the mesh, and the two
intersecting curves are deformed accordingly. A comparison betweeciabsical stacked
shapes and gradient meshes is shown in Figure 2.1, where Figure iluls{c@tes the gradient
mesh structures corresponding to the stacked shapes in Image 2.1 (@e Eiyy (d) is the
result of a gradient mesh deformation under the same user interactionigsiia £.1 (b).

Currently, the gradient mesh accepts only atigibute type: a color value. But a different
value of color can be placed at each anchor point, and smoothly integb@atess mesh
faces. Complex color variations can be created this way (Figure 2.2).

3D shapes

Yet another stacking primitive is the 3D shape, that can be created autdipdtican 2D
artwork (Adobe lllustratoCS2). There are three ways to create a 3D object: extrude, bevel
and revolve. In addition, a 2D or 3D object can also be rotated in three dioren Figure 2.3
illustrates these options.
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(@) (b)

Figure 2.2: Complex color variations with gradient mesta) The mesh superposed onto the
color filling. (b) The final vector drawing, with mesh nodes having vayyiolors.

(@) (b) () (d)

Figure 2.3: Possible 3D shapes from a 2D forn(a) The original 2D object. (b) Extruded
shape. (c) Beveled shape. (d) Revolved shape.

For this vector primitiveattributesare placed on the 3D shape, and are automatically deformed
by the 3D. Possible attributes askadingandtexture(arbitrary 2D artwork). Note that in the
termshadingwe include all possible illumination effects.

1.2 Planar maps

In a system that uses the planar map metaphor [BG89], all shapes &ed tisdhough they are
on the same flat surface. That is, none of the shapes is behind or iroframy other. Instead,
the outlines divide the drawing surface into areas, derived from thesetgon points of a line
drawing.

For creating planar map drawings, the usual working process is toriatecthe line drawing.
A planar map graph — the subdivision of the plane into nonoverlappingrmediounded by
simple closed curves — is then automatically computed from the line drawing.

Attributes— of uniform colors, linear and radial color gradients, and texture —besaitached
to any of the planar map regions, regardless of whether the area is loboy@desingle shape
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outline or by segments of multiple shapes. The result is that object painting fllikgin a
coloring book or using watercolors to paint a pencil sketch. This impodiéietence between
planar maps and stacking is illustrated in Figure 2.4.

(@) (b) (©)

Figure 2.4: Color filling: Example of different color filling behaviors for a closed self-
intersecting path. (a) The stacking system in Adobe lllustf@filis the entire region bounded
by the path with a single primitive. (b) The Inkscé&jstacking system detects holes in the path,
and so removes them from region to be colored. (c) The planar maprspstposed by Adobe
lllustrator©can attribute one color primitive to each closed region, even if they are demlin
by a single path.

Planar map systems are especially useful in illustrations where the elemerdstiiiex non-
stacked way, such as weaves, knotwork, or linked rings. Planar mapsyaally needed in
illustrations that do not have any underlying structure, like hand-drantnens (ToonBooff,
Adobe FlasF¥), and in illustrations where the regions to be filled are bounded by several
unrelated paths.
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2 Creation and Manipulation

This section discusses in detail each vector attribute: color, shading»dnceteFor each at-
tribute type, the creation tools that allow the user to specify various effexfgasented. Also
discussed is the influence shape manipulations have over the attributearadigssitioning.

2.1 Shape and color
Stacking

The simplest way of coloring a vector drawing in stacking systems is by asgigne uniform
color per region. This creatdist-colored results like those in Figure 2.5.

~
‘,."Asc \NINIER
v DARKLY |

4 EVERYTHING IS NOT
4 GOING TO BE OK

:R

(b)

Figure 2.5: Flat color in vector graphics Two examples of vector graphics realized with flat
filling. (a) The impression of color variation around the nose is given blfiphel superposed
objects of increasingly lighter color. Image taken from the Inks&geamples. (b) Flat colors
can be used to obtain a strong visual efféCtWarner Bros. Entertainment, Inc.

While flat colors can create a very strong and suggestive effect in sagas (Figure 2.5 (b)),
they are generally not sufficient to depict more natural-looking images, higgflights and
smooth varying shadows. Figure 2.5 (a) shows how flat color regiansised to imitate a
smooth varying color.
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Gradient color primitives allow an artist to directly fill a region with gradations of color that
blend smoothly into each other.

(@) (b)

Figure 2.6: Simple gradients(a) Linear gradient. (b) Radial gradient.

The most commonly used gradients are linear and radial (depicted in Fig)reThese gra-
dients are generally suitable for traditional illustration and design work. igargé 2.7, for
example, a convincing effect of light coming from the upper right sideatzed through the
use of linear and radial gradients.
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Figure 2.7: Light effect with linear and radial gradients(a) The final vector drawing. Image
fromwww. f r eevect or s. net . (b) shows the outlines of shapes used.

But these simple gradients are limited from a creative standpoint, as it is Hiticareate
realistic images, paint-like styles, or complicated optical effects using onlg thipes of color
gradient. This is illustrated in Figure 2.8, an image taken from the Inkscapgatutblere,
complex color variations are realized by the use of radial gradients dlah#is necessitated
a great amount of primitives, making the result difficult and time consumingst@teand edit.

Even with color variations inside closed regions, vector graphics arergiyncharacterized
by sharp color transitions between one colored region and anothenuhferous cases where


www.freevectors.net

18 | chapter 2. Vector Graphics

Figure 2.8: Complex color variations with simple gradientga) The final vector drawing.
(b) shows the outlines of shapes used. Note the complex arrangentetiteanumerosity of
the employed primitives.

region borders are not obvious — of which fog, smoke, and out aff@bjects are just a few
examples — are difficult to represent just with in-region gradients alone.

The classical solution for stacking systems is to adidiasparency value to color attributes.
The superposition of multiple regions of varying transparencies andelifehapes can create
an effect similar to brush strokes on canvas. An exquisite example of thimisnsin Fig-
ure 2.9. However creating such complex images by blending region ca@oessitates a great
number of regions, and complicated, un-intuitive shapes.

Another solution to avoid sharp borders, adopted by the SVG format addméools (Adobe
lllustrator®, Corel CorelDraw?, Inkscap@), is to reblur the image once vector primitives
have been rasterized. However, they only allow for a uniform blur &mhegiven primitive,
which, similar to the limitations of flat colors or simple gradients, necessitates aadtigally
large number of primitives to approximate complex image content.

Gradient mesheshave been specifically proposed to address these issues. Howewngy; ma
ulating color with gradient meshes is tightly linked to manipulating the mesh shapes,dee
the only way of adding color variations is by introducing mesh anchor pddresating a mesh
drawing from scratch thus requires much skill and patience, becausatibieneeds to ac-
curately anticipate the mesh resolution and topology necessary to embedsitteel denooth
features. This is why most users rely on an example bitmap to drive the dafsigalistic
gradient meshes. The users first decompose an input photograplkevetalssub-objects and
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Figure 2.9: Transparency effectsCombining irregular shaped regions with gradients and
transparency can create complex shading effects, as in this drawingrigyDhyne(©Jory
Dayne.

then draw meshes over each sub-object following their topology; finadly,sample colors in
the original photograph, assigning them to the mesh vertices. Many tutoesdsiloing this
approach and the mesh creation from scratch are available on the B#dh drawing effec-
tive meshes and performing accurate manual color sampling is very timercmgsim practice
(several hours or even days for detailed images) and requires aagpoeciation of the image
complexity to adopt an adequate mesh resolution (Figure 2.10).

1Among gradient mesh tutorials available on the Web, these offer detailstiptions for beginners:
http://www.learnit2.com/tutorial015/ ,
http://www.magicalbutterfly.com/tutorials/meshtutor ial/meshtutmain.htm
http://www.creativebush.com/tutorials/mesh_tutorial .php
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Figure 2.10: Gradient meshes complex example(@) An example of gradient mesh
(©Adobe). (b) Zoom on the mesh, with all the color points marked. Note thathfy
the color or the shape of the mesh, each point has to be individually edited.

Diffusion curves achieve the same level of visual complexity as that eghably gradient
meshes, but with a more direct workflow, better suited to artistic endeavors.

Planar maps

@) (b) (©)

Figure 2.11: Planar map behavior. (a) A vector illustration that looks the same stacking
andplanar magsystems. But the behavior of these two vector categories is differents Viss
ible in figures (b) and (c); (b) shows what happens when the forematsingle is modified in a
stackingenvironment. Note that the background circle becomes more visibldel@ynstrates
the planar magbehavior under the same operation. The red region, enclosed by ¢hef ar
circle and the sharp corner, has been broken; no color can be atththéhe corresponding
area in the illustration.

In planar map systems, free-hand line drawings are easily colored igyiagsto each region
in the planar map graph a separate color. As in stacking systems, planaegiapsrcan be
colored with flat colors, or with linear and radial gradient. However, wititeillustrations are
easy to color, they are difficult to edit. When lines are moved, planar mepg-areated, and
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regions appear, disappear, split up or merge. It is difficult to decidetbidransfer the colors
from the previous planar map to the newly created planar map (Figure Régpgnding on the
system, planar map computation can also split shapes at intersections, makingahonger
editable as a whole (Figure 2.12 (a)).

Recently, Asente et al. [ASP07] proposed a new metaphor for planaedigng that allows
the artist to easily modify a composition after applying color. This system, chiledPaint
was also included in Adobe lllustraf8CS2 LivePaint proposes a set of editing rules that
users would in most cases consider to be the right answer. Howevemmia sases the fill
assignment is inherently ill posed and there is no obvious answer (an Ex@rghown in
Figure 2.12 (b)). Figure 2.12 (a) illustrates the LivePaint behavior cosapaith several other
planar map systems.

k& o
AZA

r Y &
@ A
L

()

(a) (b)

Figure 2.12: Planar map editing systems(a) Various results of editing. (1) Original il-
lustration (2) MapSketch (3) Adobe Flash (4) Adobe Flash - a differehtaior (5) Adobe
lllustrator Pathfinder (6) Live Paint.(b) An ill-posed case for planar map systems. Images
taken from Asente et al. [ASPO7].

The diffusion curve vector primitive we propose here is a planar maprayistéhat there is
no stacking order in our objects. However, the diffusion curve colocaygabilities surpass
the simple linear or radial gradients possible in systems such as Live TAgcee describe
in Chapter 3, gradients in our representation can be arbitrary compl@htidxlly, our color

attributes, rather than being attached to regions, are attached to lines/dgltlisgthe problem
of color reassignment and making subsequent manipulation easier.
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2.2 Shading

Shading is a very important part of image depiction. Through shadowsightights, we
infer the intended 3D form of the 2D artwork [Hod03a]. Figure 2.13 efkkample, shows how
a flat-colored circle is transformed into a sphere by the judicious positioffisigaales.

Figure 2.13: Sphere with gradient shading and shadowop left: Completed sphere. Top
middle: Shadow. Bottom: The sphere with shading and highlight layeeggdrtaken from the
Inkscape tutorial [INk08]

In vector graphics, lighting environments and shading effects are usiajlyested by color
gradients and transparency (an “unwrapped’example is shown ine=&yliB). As such, the
vector graphics capacity of creating shadows and highlights depeiitdgofver of represent-
ing color variations.

The 3D shapestacking primitive provides a different alternative to color gradientsdisigg
effects can then be automatically computed through classical 3D renddgittans. An
example of these effects is given in Figure 2.14.

For planar maps Johnston [Joh02] proposed a shading method that retains the heamd-dr
aspect of the artwork. His approach approximates lighting in 2D drawin@gdrying normals
from the original line drawing. The key observation was that for custgthces, lines form the
exterior silhouette and interior folds. Also, on silhouettes and folds, noranalgerpendicular
to the viewer. Normal vectors are therefore generated along the lines dfdtving by setting
the normal value equal to the 2D gradient of the line. Normal values aredifiesed in the
empty space between lines, to create a sphere-like surface. An appiexigimading is then
automatically computed from the normals. The results obtained by this methokdoava
Figure 2.15.

Diffusion curves follow the inspiration of Johnston, but they allow a higlegree of control
on the initial normal values.
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(@) (b) (€) (d)

Figure 2.14: Shading effects for the 3D shape(a) Original 2D drawing. (b) 3D shape
obtained by revolving the 2D artwork, with a plastic shading. (c) Plastic stgadith different
light position and a blue shading color. (d) Diffuse shading with yellow sigdator.

Figure 2.15: “Lumo” shading: Results obtained by the normal-inferring technique presented
in Johnston [Joh02]. From left to right: illumination obtained from the normalsginal cat
drawing, cat with added illumination, and final drawing. Image taken frdohp2].

2.3 Texture

Texture creation and manipulation tools originate from the need of controlimgtéxture is

perceived by the viewers. In 2D pictures, textures transmit two imporianglcues. The
characteristics of a texture define the surface material of an objecd(vetane, etc.). And
perceived texture distortions can be used to infer properties of 3Dtajalbjects and object
shape [Jul62,BL91,RL93, LG04].

Considering these attributes of the texture, two different questions anise gveating textured
vector drawings:

— How to use vector primitives to generate a texture based on user-sp&uifig?

— How to include that texture pattern inside a vector primitive region, andrialetoe
texture to suggest shape?
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Definitions: To facilitate the discussion in the remainder of the section, we make use of the
following definitions:

Texel- An atomic texture element, which is distributed repetitively over an image plane.

Texture-map - The planar image representation of a texture. This may be comprised of an
arrangement of texels or generated otherwise.

Texture-draping - The process of applying a texture-map to a 2D image. Note, that this is
not mere mechanical texture mapping, but rather the tools and techniqueisigltbe artist to
specify texture-coordinates manually, e.g. to direct texture flow or sighape.

2.3.1 Creating a vector texture map

While vector images possess semantic capabilities to describe and parantextuias, there
is little work that addresses vectorial textures. Texture support in popedaor formats, such
as SVG, CorelDraf®, Flasi®, or Adobe lllustratd®, is commonly limited to tiling or pre-
defined procedural textures.
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Figure 2.16: Examples of texture maps produced with Inkscape. (top) Various slyioah
arrangements. (bottom) Randomization of rotation, scale, position alod co

Tiling means that multiple copies of the sample are simply copied and pasted side by side.
The tiling method is generally appropriate for regular, highly repetitive patfdyut doesn'’t
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perform well for irregular patterns or stochastic détafdobe lllustrato proposes a regular
grid as the pattern arrangement method, and a special tile element forleescof the texture.
Inkscap& considers all possible two-dimensional repetitive pattern, based on rivaeatyies

in the pattern — the “wallpaper groups”. Examples of patterns obtained widtape are
shown in the top row of Figure 2.16. For near-regular textures, Impksaflows variations of
position, rotation, size and color on its symmetrical arrangements (see the dhlamger of

the Inkscape manual [Ink08]). The bottom row textures in Figure 2.&&hes randomization
capabilities of Inkscape.

For creating stochastic or near-stochastic textysescedural algorithms are generally used
[PV95]. These algorithms generate random variations of a pre-detiypedof texture, and
rely on grammar definitions and function specifications to do so. Prodddutares create a
realistic representation of natural elements such as wood [LP00], mgratéte, metal, stone
and others. Unfortunately, they also require programming skills that maleah@on of new
procedural textures difficult. Procedural textures are also poodptad for creative endeavors,
because individual artistic styles are not easy to translate into algorithmesergations.

The system of Barla et al. [BBT06] addresses the learning of user-defined strokes and ar-
rangements, to produce larger texture maps with qualitatively similar textugpesér2.17 (a).

The proposed method extracts meaningful pattern elements from the useaimpimitates
their irregular distribution to synthesize new texture elements.

For creating a texture-map, we take advantage of the complex color giagiessible with
diffusion curves to propose support for regular and near-re¢ggréurres with intricate designs.

2.3.2 Texture draping

In many vector graphics editors (such as Inks@peexture maps are directly rendered onto
the image plane without much support to direct the arrangement of the téxttime image,
for example, to suggest shape.

Tools for2D scaling and rotatiorof individual texels where proposed by ljiri et al. [IMIMO8].
By extending the work of Barla et al., the proposed method is able to syrghesiels along
user-constrained paths and within user-defined regions, accordihg tearned distribution
properties (Figure 2.17 (b)). In a similar way, Adobe lllustr&symbolisrtool allows the 2D
placing of individual texels with the help of different spray tools (that gather, scatter, shift,
and spin texels).

The floral ornament paper by Wong et al. [WZS98] (Figure 2.17 @3)well as the Escher-
ization system by Kaplan et al. [KS04a] (Figure 2.17 (d)), and Islamic paky Kaplan et
al. [KS04b, Kap05] (Figure 2.17 (e)), consider both the shape ofsex®l their placement as
a simultaneous problem.

2structural definitions of textures are presented in Appendix B
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Figure 2.17: Vector texture synthesisResults from several vector pattern synthesis pa-
pers: (a) “Stroke pattern analysis and synthesis” [BBJ6]; (b) “An Example-based Pro-
cedural System for Element Arrangement” [IMIMO08]; (c) “Computgnerated floral orna-
ment” [WZS98]; (d) “Dihedral Escherization” [KS04a], (e) “Islamistar patterns in absolute
geometry” [KS04b].

Such texture syntheses are well suited to simulate flat texel distributionydyutio not ad-
dress the problem of planar distribution manipulation to suggest surfape sh

Mesh-based warpingan represent perspective deformations, as in the manual texture align-
ment of Liu et al. [LLHO4]. However, the mesh topology tends to be uninwiithot aligned

with visual image features) and difficult to manipulate due to its complexity, dgsmiteising
results in partial automation [SLWSO07].

The placement of 2D and 3D textures on the surface8dimodelshas been extensively
studied [Hec86, SKvW92, Lev01, GDHZ06]. Much of the work addresses atlas construction
of 3D models or through-the-lens manipulation of texture coordinates omdfexed models.
While lllustratof©recently introduced 3D object creation from 2D shapes, a full 3D modél th
would capture the artist intent remains difficult to create. Folds and asymrak#jpes would

be very problematic to create with the tools illustrated in Figure 2.18.

Diffusion curves enable draping texture maps directly onto images, witlkequiring full 3D
information, to suggest shape and flow. The artist can control prediselytexture folds,
ripples, and flows over an implied surface.
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@ (b)

Figure 2.18: Adobe lllustratof® 3D texturing: (a) Original 2D drawing. (b) 3D shape
obtained by revolving the 2D artwork, with a plastic shading. (c) Artworlppeal on the
revolved 3D shape.

3 Vectorization

Aside from manually creating vector imagery, an interesting question is thecéwin of vector

primitives from raster images. Works that transform a bitmap into a vectogseptation have
concentrated on representing color variations, and use for this eitlgrfleds, radial gradi-

ents, or gradient meshes. This section details the existing vectorization metirgenized

according to the vector color primitive they use.

Commercial tools such as Adobe Live Tr&ugsually operate by segmenting an input image
into regions of constant or slowly varying color, and by fitting polygon®dhese primitives.
Usually, an averagsolid coloris assigned to each resulting vector primitive. Although this
class of methods produces convincing results in uniform areas, the stegioe typically gen-
erates a prohibitive number of primitives in smooth regions.

The ArDeco system of Lecot ancblzy [LLO6] allows vectorization of more complex gradients
usinglinear or quadratic gradienprimitives. It is based on a segmentation of the input image
into regions of slowly varying color, and an approximation of color variaiaithin each
region with linear or quadratic gradients. The resulting primitives are fulippatible with

the SVG standard, but the approximation tends to produce sharp coleititas between
segmented regions (Figure 2.19).

Recently, the paper of Sun et al [SLWSO07] proposed to assist thbyiaatomatically fitting an
inputgradient mesko an inputimage. The fitting is achieved by minimizing the reconstruction
error between the resulting image and an input photograph. Their sematitomethod
greatly reduces the time required to draw a precise mesh and sampling edtloosigh the
user still has to manually specify the sub-objects of the picture and drawitibénmeshes with

an adequate resolution. Price and Barrett [PB06] proposed a similewaggbpfor creating a
vector graphic image from an raster object, using recursive subdigisiatil the reconstruction
error falls below a fixed threshold. Their method produces faithfulltesut also generates
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(b)

Figure 2.19: Ardeco [LLO6] results (a) original image; (b) the vectorization result. Note
that, while the gradient inside regions is well approximated, sharp transiti@iween regions
are noticeable. Image taken from [LLOG6].

many small patches in smooth regions. Lai et al. [LHMO09] propose a fuligraatic method
of extracting gradient meshes from an image, that uses surface paratimirand fitting
techniques.

()

Figure 2.20: Price and Barrett [PB06] results (a) Raster image. (b) Resolution mesh cre-
ated from (a). (c) Rendering of (b); colors indicate user-selectedadjécts. Images taken
from [PBO6] .

Yet, with all three approaches, it remains unclear how to efficiently maniptiateesulting
meshes for further editing. We believe this is due to the extra constraints ithpgshe use
of a mesh: using a predefined topology, employing specific patch sulbdigshemes, and
choosing a global orientation. In practice, this translates into a densépetbes that are not
readily connected to the depicted content. Hence, the manipulation of setlfgpsimitives
quickly becomes prohibitive for the non-expert.

Diffusion curves allow a fully automatic extraction of color gradients that imgarable, in
quality, with the semi-automatic approach of Sun et al [SLWSO07].



Diffusion Curves Representation

This chapter concentrates on howrgpresentan image using diffusion curves. Section 1
discusses the pertinence of representing images by their discontinuitibsentral models
of human vision, that identify discontinuities as an important part of the esalye vision
process, are presented. Additionally, a brief overview is given of coenwision findings that
demonstrate that contours are relevant as an image representation.

Thediffusion curvevector primitive is introduced in Section 2. The diffusion curve is defined
by its geometric shape — a curve — and a set of attributes attached to the Givea a set

of diffusion curves, the final image is obtained by solving a Poisson equdiection 3 first
defines the Poisson equation, and then describes the steps neededftortrahe diffusion
curve structure into the final image. Two methods are proposed: (1) aliaBét implemen-
tation for rendering images defined by a set of diffusion curves in realt8eetion 3.2); (2) a
mesh-based solution, that transforms the diffusion curves into sets gflésro integrate it
into classical vector display systems (Section 3.3).



1 Representing images by their disconfinuities

The human visual system is very sensitive to color and contrast varigiat@9], and the
early stages of vision rely on significant changes in the intensity to make ixipécstructure
of our surroundings [CR68,KD79].

Based on this finding, Marr [MH80] conjectured that an image may be conptefaresented
by zero-crossing data (image edges) on multiple scales of the image. Innhisatédook
“Vision” [Mar82], he proposed a model of the visual system whereetlu@nsecutive stages
are used to transform the light falling on the retina into awareness of thal visuld:

— The early stages of vision act likgpaimal sketchand extract fundamental components
of the scene (edges, regions, etc.), similarly to an artist quickly drawirgeilketch
as a first impression.

— A second stage — called a 2.5D sketch — makes explicit the surface oriestaiith
respect to the viewer and acknowledges textures. This stage is similardaeptdn the
stage in drawing where an artist highlights or shades areas of a scemeyite depth
and pattern.

— And lastly, a 3D model stage moves away from the viewer-centeredcsuttéscription
to construct a mental representation of shape and spatial organizaticzoitiauous,
3-dimensional map.

Following Marr’s insight, a number of subsequent mathematical models wepesed in or-
der to algorithmically extract a primal sketch from a bitmap image. Lindeber®[Linin93,
Lin98] studied the notion of scale in image data, and considered image disgbesimt multi-
ple scales for automatic solving of visual tasks (such as computation atewshiape or object
recognition).

The works of Carlsson [Car88], Elder and Goldberg [EId99] havedalestrated that image
edges, augmented by color and blur information, constitute a near-comptetetural prim-

itive for encoding images. Elder [EG0la] also suggested the possibilitwiofledges to
efficiently manipulate images with basic operations (edge delete, copy ated. pas

Recently, the algorithm proposed by Guo et al. [GZWO03, GZWO07] autontigtisaparates
textures (the “non-sketchable” part) from the “sketchable” part ofimgl sketch (the struc-
tures). While structures are individually identified by a dictionary of “viguanitives” (such
as edges), textured regions are automatically generated from a desariptiel (Markov Ran-
dom Field model) [Jul62].

The diffusion curves representation is motivated by the primal sketch manlby the rec-
ognized fact that most of the important features in the image are causedday) be modeled
with edges; and that (possibly open) regions or patches are implicitly defirfetween. But

by avector representatioonf edges and their attributes, diffusion curves greatly increase the
manipulation capabilities suggested by Elder [EG01a], to include shape, cofdrast, and
blur operations.



2 Data structure | 31

The diffusion curves are also not limited to color and blur, but can bedgeer to represent
and edit other image properties as piece-wise-smooth data. Considerimpded of Marr’s
2.5D sketch, shading can be easily indicated through diffusion curvésugts, and textures
can be arranged and manipulated in 2D images.

This approach provides the user with more intuitive and precise editing sowslso supports
resolution-independence, stylization and key-frame animation.

2 Data structure

The basic element of a diffusion curve is a geometric curve defined asiaBezier spline
(Figure 3.1 (a)) specified by a set of control poiRtsThe geometry is augmented with addi-
tional attributes:

1. Two sets of color control pointg andC; (Figure 3.1(b)), corresponding to color con-
straints on theight andleft half space of the curve;

2. A set ofblur control points £) that defines the smoothness of the color transition be-
tween the two halves (Figure 3.1(c)).

3. Two sets ofhormal control pointsN; andN; (Figure 3.1(e)), corresponding to normal
constraints on each side of the curve;

4. Two sets ofu,v) texture coordinatesontrol pointdJ; andU, (Figure 3.1(g)).

AV N o ]
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(e) (9)

Figure 3.1: A Diffusion curve: (a) A geometric curve described byé&eigr spline. (b) Arbi-
trary colors on either side, linearly interpolated along the curve. (c) A falorount linearly
interpolated along the curve. The finadlorimage (d) is obtained by diffusion and reblurring.
Note the complex color distribution and blur variation defined with a handfabatrols. (e)
Arbitrary normal attributes on either side of the curve are diffused to otldaiompletenormal
map(f). (g) Left- and right-sid€u, v) coordinates create é&u,v) map



32

These attributes model three distinct steps of image creation. (1) Thesdalifftese color on
each side with a soft transition across the curve given by its blur (Figutéd)3 to create the
color image. (2) Normals are interpolated and diffused to create a normalRigape 3.1(f)),
used to integrate shading into the vector drawing. ((8y) coordinates are equally diffused

to create gu,v) map (Figure 3.1(g)); together with the normals, this map is used to drape the

texture-maps in the image.

Color and blur attributes can vary along a curve to create rich color tramsitithis variation
is guided by an interpolation between the attribute control points in attribute sjyegractice,
we use linear interpolation and consider colors in RGB space throughaetritiering process
(Section 3), because they map more easily onto an efficient GPU implementadigmaved
to be sufficient for the artists using our system.

Normal attributes also vary along the curve, but their variation can be eithieear interpo-
lation, or it can rely on the curve geometry to provide xrendy values (see Section 2). The
(u,v) texture control points, just as all the other attributes, can independentijabed on
either side of the curve, and their values are linearly interpolated alongithe.c

Control points for geometry and attributes are stored independently, thiegeare generally
uncorrelated. This leads to eight independent arrays in which the tpotrs (geometry and
attribute values) are stored together with their respective parametric pdsalimmg the curve:

DiffusionCurve: | P[nyed —array of &y, t);
Cilng] - array of ¢,g,b,t);
Ci[ner] —array of ¢,g,b,t);
Z[ng]  —array of @,t);
Ni[nn] —array of &y, zt);
N/ [nn] —array of &y, zt);
Ulna] —array of (,vt);
Urlnu] - array of ¢, vt);

The user can optionally decide to deactivate any of the diffusion cumaaeers. This al-
lows for a variety of applications ranging from a full vector drawing teddrom scratch (all
parameters are active) to replacing textures in an existing bitmap image (smglsandu, v
coordinates are used), as shown in Chapters 4 and 5.

3 Rendering

Given a set of diffusion curves, the empty space between curves idffiilbysolving a Poisson
equation whose constraints are specified by the attributes across adliatiffcurves. This
section first defines the Poisson equation, and then describes the sbtefesirio pass from
the diffusion curve structure to the final image. Two methods are prop¢sed GPU-based
implementation for rendering images defined by a set of diffusion curvesaitime; (2) a
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mesh-based solution, that transforms the diffusion curves into sets daflésro integrate it
into classical vector systems.

3.1 Poisson equation

The mathematical tool at the heart of our approach is the Poisson paffigsbdifal equation
with Dirichlet boundary conditions:

Af =g over Q c 0", with f(m)=d(m) Vme oQ

whereA is the Laplace operatof,is an unknown function defined over the closed donfaig

is a known function defined ovél, andd is a known function defined over the boundagy.

In image processing techniquesgis generally considered as the divergence of a vector field
divv [PGBO03].

The Laplace operator measures the “smoothness” of a function andrisdias the divergence
of the gradient&f = divdf). The divergence of a vector field indicates “how fast” a flow
following the vector field expands or compresses. Intuitively, the Poisgaation computes
the functionf that smoothly interpolates the boundary conditidnghile following the local
variations imposed by the vector fieldhs closely as possible.

In 2D, the Laplace and divergence operators are given by:
9%t 9°f . vy  Ovy
_WJFOT/Z and dlw_a—X+W,

for v = (vyx,vy) and(x,y) the standard Cartesian coordinates of the plane.

Af

Using diffusion curves, the attribute values at any point in the image domaigiaen by the
function f(x,y), obtained while the Dirichlet conditions are the attribute values stored along
the diffusion curves. This is slightly different from the classical apphoahere the Dirichlet
boundaries are only the outlines of the image. If we consider the color agrifmr exam-

ple, and the domaif as the image domain, then the solution to the Poisson equation passes
through all color constraints along the curve and interpolates as smoothbsaible between
them. Colors depart from this smooth interpolation only if the vector fielsl not constant
(divv # 0). The question is then what variations should be imposed to the colors®vifgjlo
the diffusion curve principle, the image is represented by positioning @fiusurves at its
discontinuities, and is smooth everywhere else. Variations should onlygdezted across a
diffusion curve, between its left and right colors. The vector fieidl zero everywhere except

on the curve, where it indicates the color derivative across the chkorehe diffusion curves,
thereforey expresses the gradient of the attribute field, neted

For
DC ={(x,y) € Q| (x,y) on a curve from the diffusion curves $et
dDC ={(x,y) € Q| (x,y) stores a left or right color constraint imposed
by the diffusion curves sg¢t and
C = the Dirichlet color constraints ovedDC,
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the Poisson equation used to compute the color inhdigEomes:

62| 62| 0, if (X y) ¢ DC
—+=—5=1< 0wy 0w
> oy o 4 6yy , otherwise. (3.1)

[(x,y) =C(x,y) if (x,y) e dDC,

where the gradienw = (wy, wy) indicates the direction and the magnitude of the greatest rate
of increase in color values across a curve. Blur, normals(amng texture coordinates are
specified by equations similar to the color Poisson equation.

To compute the final attribute values for the entire image sphage discretize and solve the
Poisson equation in two different ways: a raster-based grid and a lpassld- discretization. In
the interest of clarity, we describe the rasterization and the diffusiorepsdor colors, because
it is more easily visualized. The normals afdv) attributes follow the same process as the
one necessary to obtain a sharp color image (Figure 3.2).

3.2 Raster-based diffusion

Three main steps are involved in our color raster-based rendering r(smelFigure 3.2):

(1) rasterization of &olor sourcesmage, where color constraints are represented as colored
curves on both sides of eacteBer spline, and the rest of the pixels are uncoloreddif)
fusionof the color sources — an iterative process that spreads the colarthevienage; we
implement the diffusion on the GPU to maintain realtime performance; ane§8)rring of

the resulting image with a spatially varying blur guided by the blur attributes.nlegldetails
about these three steps are explained in the following paragraphs.

Color sources (cl,cr)

=l O\
%
\ Sharp color image (I)
50O —
Diffusion curve Final image
2
_— —————————-

Blur sources Blur map (B)

Figure 3.2: Rendering diffusion curves requires (1) the rasterization of the colar Zar
sources, along with the gradient field= (wx, wy), (2) the diffusion of colors and blur, and (3)
the reblurring of the color image.
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3.2.1 Color sources

A diffusion curve has two sets of color control points, which are lineargrolated along
the curve. Using the interpolated color values, the first rasterization atgjers the left and
right color sources; (t),c(t) for every pixel along the curve. Aa mask is computed along
with the rendering to indicate the exact location of color sources verslefined areas (1 if
the pixel contains a color source, 0 otherwise).

For perfectly sharp curves, these color sources are theoreticalligahficlose (Figure 3.3 (a)).
However, rasterizing pixels separated by too small a distance on a dipoteltgrid leads to
overlapping pixels. In our case, this means that several color soareesrawn at the same
location, creating visual artifacts after the diffusion (Figure 3.3 (b)). dlution is to distance
the color sources from the curve slightly, and to use a color gradiestreamt directly on the
curve. The gradient maintains the sharp color transition, while the collzrseghat a small
distanced in the direction normal to the curve, remain separate (Figure 3.3 (c)).

m -

Colors on the 2 sides
of the same curve

N

Aliasing artifacts Leaking
-
= + - & 7
Color sources Color gradient

Figure 3.3: From a vectorial curve to a pixel grid: (a) In a continuous space, calources
are infinitely close. (b) At rasterization time, considering the left and righdrcsources next to
one another leads to overlaps, and subsequently to leaking diffusion #stif@g¢ Distancing
to color constraints and using the gradient for sharp transitions createsdiect result.

More precisely, the gradient constraint is expressed by the gradeddtfidefined in Sec-
tion 3.1, which is zero everywhere except on the curve, where it id égjttee color derivative
across the curve. We decompose the gradient field in a gradient alorgliteetionw, and

a gradient along thg directionwy. For each pixel on the curve, we use the finite difference
method to compute the color derivative across the curve from the curagahd and the left
(c) and right €;) colors (we omit theé parameter for clarity)wyy = (¢ — - )Nyy.
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We rasterize the color and gradient constraints in 3 RGB images: an ithaegetaining col-
ored pixels on each side of the curves, and two ima§le¥\, containing the gradient field
components (Figure 3.2, step (1)). In practice, the gradient field isimesiealong the curves
using lines of one pixel width. Color sources are rasterized using triatgtes of width 21
with a special pixel shader that only draws pixels that are at the caligtetnced. In our
implementationd is set at 3 pixels. Pixel overlap can still occur along a curve in regions of
high curvature (where the triangle strip overlaps itself) or when two suave too close to
each other (as with thin structures or intersections). A simple stencil testsaliswo discard
overlapping color sources before they are drawn, which implies thdysbke gradient field
w dictates the color transitions in these areas. Figure 3.4 details the prodegsogitles an
example where the thin geometry is accurately rendered.

Figure 3.4: Because colors are drawn at a distance from a curve, color constra@us
superpose (b) when the actual curves do not intersect (a). To aviifiacts, color intersections
are detected (c), and the constraints are removed (d). The color idiffus still accurate,
because gradients positioned on the curves (e) guide the color variation.

3.2.2 Diffusion

Given the color sources and gradient fields computed in the previoysxseext compute the
colorimage as the solution to a Poisson equation (3.1) (Figure 3.2, step (2)). Totdisdtee
2D equation described in equation (3.1), we use the fact that the raster isagquare grid of
unit length. On such a grid, the required derivatives in the Poissortiequzan be expressed
at each pointi, j) by using the finite difference numerical method.

Given that the second order partial derivatives defining the Laplpestor are

@—2 ai andﬂ—g al
ox2  ox \ ox dy2 oy \ dy

and that the first order derivatives can be expressed accuratelgnral differences in the



andy directions, the second derivatives in the context of a regular grid are

al dl ll al

ﬁ N ox (i+3),] ox (i-3).j and ﬁ B oy i,(j+%)_ dy i(1-1)

a2 AX a2~ Ay ;
whereAx andAy are the distances between two neighboring grid point inxtlyedirections
(Figure 3.5).

(3.2)

The first order derivatives with respecbt@andy can be defined on either side of the grid pixel
(i, j) with the same central difference:

ol lii—liz ol lii—lij—
% ~ 'JT'M and ~ IJTIJI
X[(i-1),] X Yli(-3) Y

a PR BLE PN el a LT
x|y AX Wiy B

i-1, j+1 i, j+1 i+, j+1

Ty_,
x i1, ] i i1, j
A
Ax Y
i-1, j-1 i, -1 i1, j-1
Figure 3.5:

Inserting the first order derivative approximations in equation (3.2) yidieé second order
derivative approximations:

ﬁ N |i+1,j —2|i,j + |i71,j and ﬁ N Ii,j+1_2|i,j + Ii,jfl
ox? Ax? oy? Ay?
In a pixel grid,Ax = Ay = 1, and the discrete Poisson equation becomes

Alijj=liggj+licej+lijer+1ij-1—4lj =divwj,

Adding the color constraints, this leads to:

(3.3)

I { Gi; if pixel (i, j) stores a color valugx-mask> 0
i,j =

|i+l,j+|ifl,j+|i,jzl+|i,j—1*diVWi.j elsewhere
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The divergence of the gradient daivis numerically computed with the same finite difference

approximation:

W (i 4+ 1,1) —wi(i —1,)) +wy(i,j +1) —wy(i,j— 1)
5 :

diVWiTj =



The M x N equations thus obtained (whek& x N is the size of the raster image) can be
solved directly. But this requires solving a large, sparse, linear systhiohwan be very time
consuming ad/1 x N grows large.

To offer interactive feedback to the artist, we solve the equation iterativigtlya GPU imple-
mentation of themultigrid algorithm [BHMO00, GWL"03, MP08].

The idea behind multigrid methods is to use a coarse version of the domain ierglffisolve

for the low frequency components of the solution, and a fine version aldh®in to refine
the high frequency components (Figure 3.6). The algorithm works in aéiknner; color
source imag€ and the gradientd andW, are progressively downsampled (Figure 3.6 top).
The solution is computed first at the lowest resolution, and then upsamplegfamed (Fig-
ure 3.6 bottom). Jacobi relaxations are used to solve for each levelmoidtigrid. The method
starts with the “initial guess” made by the coarser level. The finite differeqcations (3.3)
— with the corresponding local constraints — are applied again and ageilating the color
values, until a maximum number of iterations is reached. For a given itetatoid a fixed
resolution level, the color valudi'fj (1) is:

1¥5(1) = RESORSIEN(D +|i|fj_+12(|) 10 _diVWi.j(D.

The color constraints are re-imposed after each iteration:
IX;(1) =Cij(1) if the a mask for pixel(i, j) > 0.

To construct the image pyramid necessary for the multigrid solver, we cGowpie the gradient
using a 3x 3 kernel:

BIENIERAE
NI = NI
BIENIERAE

This filter is needed to capture all gradient directions from the finer scalet@ preserve

the gradient magnitude; a color variation of 1 in theélirection, for example, will thus be
preserved as a variation of 1 in coarser scales, and summed to the m#ighlamiations. The

color constraints are downsampled with an average filter: a pixel ateceaade receives the
average of the constraints of the four corresponding pixels in the faae.s Note that the
gray colored pixels in Figure 3.6 top are non-constrained points, andatieeyot considered
when downsampling the constraints. Color upsampling uses the neardsioreigchnique to

attribute to the four pixels in the finer scale the color value of the correspgprdarse-scale
pixel.

Typically, for a 512x 512 image we usei Jacobi iterations per multigrid level, wittihe level
number from fine to coarse. This number of iterations can then be indredsn high quality
is required. Our GPU implementation provides realtime performance on ax5522 grid
with a reasonable number of curves (several thousands).
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Figure 3.6: The multigrid algorithm. Color and gradient constraints are repeatedly mow
sampled (top row). An initial solution is computed at the lowest level, by itetgtoiffusing
the color constraints. The solution is then refined at a finer scale, by tkagoarse-scale
solution and the finer-scale color constraints (bottom row).

3.2.3 Reblurring

The last step of our color rendering pipeline takes as input the color in@gaicing sharp
edges, produced by the color diffusion, and reblurs it according tovblues stored along each
curve. However, because the blur values are only defined alongs;wwe lack blur values for
off-curve pixels. A simple solution, proposed by Elder [EId99], diffusiee blur values over
the image similarly to the color diffusion described previously. We adopt thee sdrategy
and use our multigrid implementation to create a blur rBefpom the blur values. The only
difference to the color diffusion process is that blur values are locaiactlg on the curve; no
gradient constraints are therefore necessary. This leads to the fajlegiration:

AB=0
Bij =0 if pixel (i, ) is onacurve

Giving the resulting blur maB, we apply a spatially varying blur on the sharp color image
(Figure 3.2(3)), where the size of the blur kernel at each pixel is elétay the required amount
of blur for this pixel. We use a routine implemented on the GPU [BFSCO04], thattiitely
blurs the image. This method is based on the observation that runisingcessive iterations
of the diffusion equation

I =115 +0.25011

is equivalent (in the limit) to convolving the imageavith a Gaussian kernel of widtky 2nv/2.

The step value @5 is chosen because it is the greatest value that ensures the stability of the
equation [Rom03, BFSCO04]. To stop blurring of pixels that have alreadgtred their maxi-

mum blur valueB; j, a weighting factor is introduced in the Laplace operator. By expressing
the Laplacian with a finite difference, and including the weight, the explicit misaleequation
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for thek-iteration can be written as:

k-1

K k1
Iy = w15y +bsaj) - (I+lj)+b(| 1)

1
1j) T b+ - I(Ij+l)+b(|l -1ty

|k
(i—
W= 1—biaj) —Bii1,j) =B j+1) — b j-1)

o _{ 0, if Bmn > V/2kv/2
mn =

0.25, otherwise.

(@) (b)

Figure 3.7: The color image result after reblurring the sharp image with the inset blys.ma

A reblurring example is shown in Figure 3.7. Despite the GPU implementation, liheniag
step is not adapted for multigrid approximation, and remains computationallynsxpeor
large blur kernels (around one second per frame in our implementationye&etime inter-
action, we bypass it during curve drawing and manipulations and refctivance the user
interaction is complete.

3.2.4 Panning and zooming

Solving a Poisson equation leads to a global solution, which means thatlanyaloie can in-

fluence any pixel of the final image. Even though the local constraintsiuntes by the color
sources reduce such global impact, this raises an issue when zoominguftepart of an im-
age, because curves outside the current viewport should still inBubecviewport’s content.
To address this problem without requiring a full Poisson solution at a higtsslution, we
first compute a low-resolution diffusion on the unzoomed image domain (F&8r&)), and
use the obtained solution to define Dirichlet boundary conditions arourmbtivaing window

(Figure 3.8 (b)). This gives us a sufficiently good approximation to comautitdl-resolution

diffusion only within the viewport (Figure 3.8 (c)).

3.2.5 Rendering of the normals and (u,v) coordinates

Normals andu, v) coordinates are diffused similarly to the color attribute, to obtain a smoothly
varying interpolation between diffusion curves and a sharp transitimssathe curves. In the
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(a) (b) (c)

Figure 3.8: The processing steps needed to zoom in: (a) the Poisson equation i abtiie
low resolution. (b) The zoom-in window boundaries are fixed. (c) aP®&gson solution is
computed inside the high resolution zoom-in window.

special case of the normals, we re-normalize the normal-vectors aftedaeabi iteration in
the multigrid, to ensure unit-length.

Even with the added computation of normal and, on top of color diffusion, the system per-
forms in real-time for a 512x512 resolution (about 50 frames per secand)interactive (10
fps) for 1024x1024, on a GeForce-GTX260 graphics card. Thigssiple on one hand be-
cause graphics cards have increased texturing capabilities, but magalydsewe only update
the diffusion result where needed. The color diffusion output, forrgta, is independent of
the normal diffusion, and the user only edits one property at a time. Bitmap sydag the
role of a caching system for all diffusion computations.

3.3 Mesh-based diffusion

The raster-based rendering, while ensuring a smoothly-varying solnidmeal-time interac-
tion, requires a specialized renderer, and is difficult to integrate in cis&ctor systems. The
mesh-based diffusion represents an alternative rendering solutiomelies on the classical
vectorial rendering of triangle meshes. This approach is a work in @ssgthat we are cur-
rently testing for sharp-color diffusion. We nevertheless consideiitthampletes this thesis,
by showing that diffusion curves have the potential of “becoming” a stahdector primitive.

Mesh-based color diffusion consists of two steps:tfiBngulation of the image, that uses the
diffusion curves geometry to divide the image into a set of triangles anddi#uaionprocess
that associates to each triangle vertex a corresponding color value.

41



42 \ chapter 3. Diffusion Curves Representation

3.3.1 Triangulation

The triangulation process divides the image surfaces into triangles, atuwtesathe discon-
tinuities imposed by the diffusion curves by placing triangle edges alongeaeh. To this
purpose, we use a constrained Delaunay triangula@®@T( [Che87]. Given a set af vertices
in the plane together with a set of noncrossing edgesCIE is the triangulation of the ver-
tices with the following properties: (1) the prespecified edges are includée tniangulation,
and (2) it is as close as possible to the Delaunay triangulation. The truerlgl#&iangula-
tion imposes that no vertex in the vertex set falls in the interior of the circumdriide that
passes through all three vertices) of any triangle in the triangulation. Thiegy ensures a
“nice” triangulation that maximizes the minimum angle for all triangles and avoidsgiri-
angles, making it suitable for diffusion. TRDT enforces the presence of user-defined edges
in the generated mesh, with the result that the triangulation reflects the speeifimetry, but
accepts some edges which are not Delaunay.

The constraints we impose for the mesh generation are given by (a) the boagdaries
and (b) the tesselated polylines that approximate the diffusion curve et désired resolu-
tion. Because edges should not cross each other, diffusion cimteesectionsare included
in the polylines prior to triangulation. In practice, we use CGAL libfaiy detect polyline
intersections and Jonathan Shewchuk’s triangular mesh generatayl&iancreate th€DT
(Figure 3.9 (b)).

(@)

Figure 3.9: Mesh triangulation: (a) The result with a raster-based diffusion. (b) ffia@gu-
lation. (c) The mesh-based diffusion result.

3.3.2 Diffusion

The diffusion process is based on a discretization of the Poisson eq(&tjaation 3.1), as
was the case for the raster-based diffusion (Section 3.2). Howevtire iregular pixel grid,

1CGAL, Computational Geometry Algorithms Libratyttp://www.cgal.org
2Triangle, A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator,
http://www.cs.cmu.edu/ ~ quakef/triangle.html
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each point influenced equally all its neighbors. This is no longer the caslked mesh, where
the vertex distribution is non-uniform. To obtain a good approximation of tHesditl values,
weights are considered in the discretization of the Laplace operator dotrisfe varying length
of the edges in the mesh, and the corresponding shape and size of thkesian

For a mestM = (V,T), with V then vertices andr the set of trianglesi, j, k), the result of
applying the discrete Laplacian to the color attribliie equation (3.1) for each vertexcan
be expressed as:

I1 diVWl

I» diVWz
d pu—

In divwy

A% is then x n matrix that defines the discrete Laplacian and expresses the equilibriutia con
tions for connected vertices:

Ad 3(cotajj + cotpij)
d

Aicij:_;Aua
|A

whereaq;; andf;j; are the two angles opposite to the edge in the two triangles having the edge
(i, ) in common, andA is the sum of the areas of the triangles haviireg a common vertex
([PJIP93,DMSB99]). The mathematical deduction of these coefficientgéa @ the Bruno
Lévy’s HdR Habilitation thesis [&v08] (Section 2.5, page 42).

, if (i, ]) is a triangle edge

(@) (b)

Figure 3.10: To depict the color constraints, the diffusion curve edges in the triangutshm
(a) are doubled (b). Each side is then assigned a color (red and gresm), while at ending
points the color is averaged.

Constraints are imposed on the valud @flong diffusion curves edges. Given that for colors
we have two sets of constraints (left- and right-side), the edges thasesgra diffusion curve
need to be double edges. For this, a diffusion curve correspondsaseai¢hole” in the mesh,
with left color constraints on one side, right color constraints on the oitiey and an average
color at the endings (see Figure 3.10). Thus, connections betweeandeftriangles and right-
side constraints are broken (and vice versa). Because constraini®weabe represented one
“on top” of the other via two superposed edges, gradient insertion isngetmnecessary, and
we can consider the divergence div= 0, for each vertexin the mesh.
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With the insertion of constraints, the Poisson equation becomes:

Ci, if vertexi is on a diffusion curve
li =

—1 dp. .
of <Z(i,j) edge inTAij Ij) , overwise

We solve this linear system by the Jacobi iteration method, similar to Section 3.&2lifip
nary result of this work is shown in Figure 3.9 (c).

3.4 Discussion

In the diffusion curves representation, the Poisson equation is used asetins to obtain a
smooth interpolation between constraints. In this context, other smoothmes®fis can be
considered that will lead to different types of variations in the attribute galue

For example, our diffusion is expressed as a minimization function for thefider Laplacian,
that creates a membrane-like variation (Figure 3.11 (a)). Minimizing some otterk of
the Laplacian will interpolate differently between boundary conditions, astiited for 3D
surfaces in Figure 3.11 (b) and (c).

(@) (b) (©)

Figure 3.11: The order k of the energy functional defines the stiffness of the surfdahe in
support region and the maximum smoothne$s'@f the boundary conditions. From left to
right: membrane surface ( 1), thin-plate surface (k= 2), minimal curvature variation (k=
3). Image taken from Botsch and Kobbelt [BK04]

By considering such different piece-wise smoothing techniques andropiaing them after
the model of Botsch and Kobbelt [BK04], one might achieve a greatdraan how attributes
vary in the empty space between diffusion curves.

On the other hand, the Poisson equation is a tool extensively used in in@Empsging appli-
cations, because it moves image manipulations from color space to coldioraigpace. The
gradient represents the image variations independently of the originascalal the solution
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of the Poisson equation reconstructs an imlafyfem a modified gradient field by minimizing
color discontinuities [PGB03, FLWO02]. Nothing prevents the transfeiuchsitmap editing
techniques to the vector-based representation of diffusion curvelstaimdools such as seam-
less copy and paste [PGBO03] or image fusion [ATDA, RIYO04].
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Creation and Manipulation

This chapter takes a more in-depth look at how a diffusion curves vectgeioan be manually
created and manipulated by an user.

Section 1 shows how shapes and colors can be defined to create aivegerwith complex
color variations. Additionally, Section 1.3 presents shape manipulationsetlyatm the fact
that diffusion curves are positioned at image discontinuities.

Section 2 discusses the possibility of decoupling shading variations frion\@riations ob-
served in a material. This separation of shading allows the artist to intetgatinvalify the
illumination in the image without having to change the defined material colors.

Section 3 provides a way of enriching the diffusion curves vector gecaphith textures. We
discuss how a texture pattern can be created using diffusion curveficsg@®n, and how this
pattern can be included in a diffusion curves image to create a textured geaphics image.

To conclude, the proposed creation framework is evaluated in Sectioirst, the artist ex-
perience when creating vector art with diffusion curves is discussstbrisl, diffusion curves
are compared with existing representations.
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1 Shape and Color

This section details the process of creating smooth-shaded vector fmesijeg the diffusion
curve primitive. Only the geometryj, color (Cl andCr) and blur §) attributes are used.

The process of creating vector illustrations varies among artists. One majreta scratch
and give free rein to his imagination while another may prefer to use an existange as a
reference. We provide the user with both options to create diffusioreswgivapes and colors.
For manualcreation, the artist can create an image with our tool by sketching the lines of th
drawing and then filling in the color. When using an image as a template, the artisace
manually over parts of an image and we recover the colors of the undedgirtgnt.

1.1 Manual creation

When creating a diffusion curves drawing from scratch, the artist eragilay same intuitive
process as in traditional drawing: a sketch followed by color filling.

To facilitate content creation for the artist, we offer several standactbvgraphics tools:
editing of curve geometry, curve splitting, copy/paste, zooming, color gicleic. We also
developed specific tools: copy/paste of color and blur attributes froncone to another,
editing of attributes control points (add, delete, and modify), etc. The céengésscription of

our prototype user interface is found in Appendix A. A different systémat follows the in-
dications in our paper [OBWO08], but proposes new interface features, has been implemented
by Henry Korol fttp://www.henrykorol.com/DiffusionCurves.rar ).

To illustrate how an artist can use our diffusion curves, we show in Figurehe different
stages of an image being drawn with our tool.

1.2 Tracing animage

In many situations an artist will not create an artwork entirely from scrdiahjnstead use
existing images for guidance. For this, we offer the possibility of extractiegcttors of an
underlying bitmap along a drawn curve.

The challenge here is to correctly extract and vectorize colors on é@elosa curve. We
also need to consider that color outliers might occur due to noise in thelyindebitmap
or because the curve positioning was suboptimal. We first uniformly samptlbies along
the curve at a distanakin the direction of the curve’s normal. The sampling distance is the
same as the one used in the rasterization step of rendering (Section 3.2.1theMidentify

1The creation, manipulation and vectorization of smooth-shaded vectgesnaas presented in our paper
[OBW™T08] at SIGGRAPH 2008. It was a work done in collaboration with Adrieni&eau, Holger Winnetler,
Pascal Barla, Jle Thollot and David Salesin.
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Figure 4.1: Example steps for manual creation: (a) sketching the curves, (b) adjuthe
curve’s position, (c) setting colors and blur along the diffusion curve @)dhe final result.
The image was created by an artist at first contact with the tool and it tob&uts to cre-
ate (©) Laurence Boissieux.

color outliers by measuring a standard deviation in a neighborhood of trentgample along
the curve. To this end, we work in CIE L*a*b* color space (considgretteptually uniform
for just-noticeable-differences), and tag a color as an outlier if it devi@@ much from the
mean in either the L*, a* or b* channel. We then convert back colors to RGBe end of the
vectorization process for compatibility with our rendering system.

To obtain a linear color interpolation similar to that used for rendering, we gitlgline to
the color points using the Douglas-Peucker algorithm [DP73]. The itergtiocedure starts
with a line connecting the first and last point and repeatedly subdividdmthento smaller
and smaller segments until the maximum distance (still in CIE L*a*b*) between ¢heak
values and the current polyline is smaller than the error tolerancehe end points of the
final polyline yield the color control points that we attach to the curve. Ther eectorization
process is illustrated in Figure 4.2.

A creative example that uses color sampling is illustrated in Figure 4.3(b)-tayeinadere an
artist has drawn very stylistic shapes, while using the color sampling femtueproduce the

49
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Edge pixel Edge pixel Edge pixel
L*a*b* distance L*a*b* distance L*a*b* distance
to black to black to black

Edge pixel Edge pixel Edge pixel

Figure 4.2: Color sampling using the Douglas-Peucker algorithm [DP73]: (a) Oridioalor
sampled along a diffusion curvefrom an input bitmap; (b)—(d) sucaegxilyline subdivi-
sions; (e) final set of extracted color control points; (f) the rasterieeldr variation, obtained
by linear interpolation between color control points.

global tone of the original image, similarly to an in-painting process [BSCBO00]

When tracing over a template, one would normally want to position the curvesooor
discontinuities in the underlying image. Since it is not always easy to dravesuyarecisely
at edge locations in a given image, we provide some help by offering a &seldborActive
Contours|[KWT87]. An active contour is attracted to the highest gradient valugeefnput
bitmap and allows the artist to iteratively snap the curve to the closest edge.cofitour
can also be easily corrected when it falls into local minima, or when a less oqiirhatore
stylistic curve is desired. Figure 4.3(b)-bottom shows the image of a ladgteaged using
geometric snapping and color extraction. While the artist opted for a muchstydized and
smoothed look compared to the original, the image still conveys diffuse andygidfects,
defocus blur, and translucency. The actual interface tools we implemémtéchcing the
image are described in Appendix A.

1.3 Shape manipulation

Because a diffusion curve position marks a discontinuity (until now, a atigmontinuity),
geometric deformations of the diffusion curve shape reflect in coheefotmations of the
drawing. An example of such global stylization is shown in Figure 4.4 (b).

The nature of diffusion curves also means that they only represent tampdeatures of the
image, and that they are independent from one another. We can tekstagl of these prop-
erties to attach aimmportancevalue to each curve. This notion of importance can be used
to adjust the amount of detail present in the final image, and to create mtagsoromplex
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(b)

Figure 4.3: Tracing with diffusion curves: (a) Original bitmaps; ()p: Result of a stylis-
tic tracing using color sampling (drawing time: less than a ming@ Philippe Chaubaroux;
bottom Result of a tracing using active contours and color sampling (drawing:t@®emin-
utes)(© Adrien Bousseau. (c) The corresponding diffusion curves (colorces have been
thickened for illustration).

(b)

Figure 4.4. Example of shape manipulation: (a) Original diffusion curves drawing
© Philippe Chaubaroux. (b) Global shape stylization applied to (a);
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appearances. Detail removal is especially useful for maintaining theb#iag of images at
different resolutions; details appear as we zoom in, but are discédsdall scale versions
(see Figure 4.5).

The importance of a curve is initially the level of zoom at which that curve fivaisdrawn,
and can subsequently be changed by the user.

(b)

Figure 4.5: Example of detail removal: (a) Original diffusion curves drawi@yLaurence

Boissieux, with a simplified version in the upper right corner. Note how tlis fand hair

retain their readability because less important diffusion curves have eoved. (b) The
same simplified version, shown at a larger scale.

Diffusion curves, as vector-based primitives, benefit from the editiivgatages of traditional
vector graphics: curve shapes and colors can be directly modified€gl), and keyframing
animation is easily performed via linear interpolation of geometry and attribuigsré4.6).

Figure 4.6: Keyframing with diffusion curves: Three keyframes of an anima@obaurence
Boissieux.
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2 Shading

In the creation process described up to now, shading and material vesiatéye inextricably
tied together in a single attribute — color — that the artist used to manually creatalsmo
color gradients. This is evident in our example images; Figure 4.5 showsdiowvariations
can depict color gradation in fabrics, while in Figure 4.1 (d) the same typeadiients depict
shadows in the curtain folds.

However, in this setup, changing the illumination implies manipulating the entire cblor a
tribute; this can prove cumbersome in some cases, and hinders the flexibilitg sjstem.
This is especially the case when considering animations, where chamacegunder a fixed
light, making the material color constant and the shading variable [PFW®&0Q2]1

We therefore proposed to decouple shading manipulation from material\vaiations. In
this section, we will show how shading can be defined and manipulated by wainother
attributes of our vector primitive: the transparency value of the color, and ti@mals these
attributes increase ttappearanceossibilities for the depiction of lighting effects.

Normals

Surface normals are commonly used in shading models for 3D renderinygicilty-based
reflectance models — such as the Lambertian, Phong [Pho75] or Orar-[eN95] models
— take into account light direction and surface normals to create photdi@approximations
of illuminated 3D scenes. Non-photorealistic lighting models also rely on normalseéde
stylized shaded scenes. Toon shading, for example, uses surfacalsito create shadows
and highlights that mimic the style of comic books and cartoons [AWB06, BTMAB|Q7].

Shadows and highlights can thus be automatically computed from normalsgieeralight
position and using a predefined reflectance model. With normal informatiangenumber
of material properties can be imitated, in varied rendering styles, by simply yuglithe
reflectance model, and not the original image. @oammalattribute increases the flexibility of
the diffusion curve vector primitive, and simplifies the user task.

Just as with colors, normals can be specified on both left and right sithe aliffusion curve
geometry. Values are then interpolated in the free space between ths.cliovepecify the
normals along diffusion curves, we follow the inspiration of previous planaface inflation
methods [Joh02,JCO08]. These approaches rely on the fact that lioestour drawing appear
mostly as aborder settingbetween objects, or delineate the essential shape changes of an
object interior. Changes in normals are then depicted by these contodrs, ia common

to assume that the surface normal implied by the contour lines is orthogona tetiming
curve’s instantaneous tangent.

We make use of this contour property to allow users to conveniently spemifyer, flat, or
concave surfaces. Indepth-slopenode, we fix normals to be oriented along the instantaneous
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(@) (b) (©)

Figure 4.7: Shading effects (a) An artistic shading, realized with manual color controls.
(b) A realistic shading effect based on the normals.(c) Toon shadiig tilse same normal
information as (b).

normal to the diffusion curve. The starting shape is given by the haagrdcurve, and all the
user has to specify is the slope orthogonal to this curve. Real-time feddallaws direct
control of the amount of inflation and deflation, and control points canléeed anywhere
along the curve to impose slope values. Screen captures illustrating thespiae presented
in Figure 4.8.

Figure 4.8: The normal widget Screen captures of the normal values being defined along a
diffusion curve.

In addition to this high-level control, the user can also choofeenormalmode. In this
mode, the user specifies for each control point the complete unit vector). Values are
then linearly interpolated along the curve.

Once the normal values are defined, shading can be automatically compdtstyl&zed using
various lighting models (Figure 4.7 (b) and (c)). Shadows and highligim$eanteractively
updated by simply changing tHight position (Figure 4.9). The tools used for specifying
normals are described in Appendix A.
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Diffusion curves Corresponding color image Diffused normal data

Resulting shading Resulting illumination Change of light position

Figure 4.9: Example of shading creation. Cat inspired by “Lumo” [Joh02].
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3 Texture

Textures add detail and interest to an artwork, but are equally sigrtificamferring scenic
depth, surface orientation and other 3D shape properties from a 2D .ifiagesection dis-
cusses how artists using diffusion curves can define and deform comegleres directly in
2D images, without requiring a 3D model of the depicted stefdree steps are proposed
for creating a textured design. (1) The artist starts by creating a texitivenstifs of variable
color and shape. (2) A line drawing is created with diffusion curves,isnted as a sup-
port drawing for the textures. (3) The textures are positioned insideuthy@ost drawing and
deformed to reflect the artist’s intention.

3.1 Creating the texture-map

Our texture-map creation tool lets users desigular andnear-regularvector textures from
scratch (Figure 4.12). The user starts by drawing a texel that is autoliyatieplicated
throughout a grid. The texel is in itself a complete diffusion curve drawing.

Normal information is used to model textures with a physical macro-structiv®9], for
which the shading would be cumbersome to depict with manual appearametons alone.
An example of texture with normal variations is the flower texture in Figure 4.10.

When including textures with normals in the support drawing, our model pat@gure “on
top” of the suggested shape. The final normal vector used for shidimg normalized sum of
the texture and shape normals (Figure 4.11 (a)). While the use of normais &loautomatic
shading effects based on pre-defined lighting models, artistic lighting oftelves physically
unrealizable shading. In such cases the user can still manually defimeashading gradients
via the color attribute, and use thevalues of each color to indicate how much of the original
color is mixed with the texture (Figures 4.11 (b)). Note, how this effect id us&igure 4.17

to separate texture (gray) from manual shading (color), to achieve acoorglex combined
result.

Once the example texel has been drawn, the user can define the speteiergribneighboring
texels by interactively adjusting the grid spacing. For a more varied agpearseveral exam-
ple texels can be defined. In the spirit of [BAO6], our system automaticedigtes new texel
instances by interpolating the shape, normal, color and blur parameteesefékamples. We
use a simple point-to-point correspondence, where we assume that therittbl point (for
geometry, color, or blur) matches the i-th point on the correspondingeduorall texels. We
enforce this in our interface by automatically adding corresponding dertrall texels when
the user edits one texel instance. We then perform a linear interpolatioedieiwstances.
This straightforward approach works well in practice, gives real-tinegllfack, and creates
satisfactory texel variations. Figure 4.10 uses such random interpolatishape and colors.

2This system for designing and manipulating regular or near-regularésin 2D images is a work done in
collaboration with Holger Winnediler, Jelle Thollot and Laurence Boissieux. It has been published at EGSR
2009 [WOBTO09)].
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Figure 4.10: Near-regular texture An example of automatic creation of texels from 2 user-
defined exemplars. (a) The user input of color and normal variatiotist time: 25 minutes).
(b) The near-regular color texture map. (c) The generated nornagl.nfd) A lighting effect
shown on the macro-structu@ Laurence Boissieux.

(b)

Figure 4.11: Shading effects (a) A realistic shading effect based on the normals, for a
drawing with texture. (b) A manual shading, withtransparency colors layered on top of a
textured region© Laurence Boissieux.
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Figure 4.12: Texture examplesExamples of textures designed with our texture-map creation
tool: from realistic (a) to artistic (d). Artist time varies from 5 to 30 minut€sLaurence
Boissieux

Using the method we described in our rendering approach (Section & 2¢xe attributes are
diffused to obtain texture-maps with smoothly varying attribute values. Cotbnarmals are
computed independently and stored in two separate bitmap images. Howev&ystem still
preserves the resolution independence of vector graphics as thezediir is recomputed for
any given zoom level. During draping, we represent and apply theréextaps as bitmaps, and
only recompute them for zooming actions. This allows us to obtain real-time \feseiback,
which would otherwise be intractable. Additionally, this decouples the dragpiatem from
the texture-map representation, allowing our system to handle virtually atuyeegeneration
method (bitmap samples, procedural, etc.) that produces raster outpunitdrfece is detailed
in Appendix A.

3.2 Creating the support drawing

The support drawing is a vector drawing created with our diffusion eymmitives. The
vector curves (Bzier splines) arsupportingthe control points containing all the parameters
— color, blur, normals andu,v). The user can optionally decide which parameters are used
and which are deactivated. This allows for a variety of applications rgrigim a full drawing
created from scratch (Figure 4.14) to draping textures over an existmggimage, as shown

in Figure 4.13.

Contrary to color and texture-draping parameters, which vary anwninethe image, there
is only one texture-map associated with a given texture region. We theraftomatically
compute a planar map from the supporting drawing, separating the drawongased regions
(Figure 4.14). And we allow the user to attach a texture to a planar map regigmactice,
we compute a planar map arrangement from the diffusion curves geomittrheshelp of the
CGALS library.

Shttp://www.cgal.org/
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3.3 Draping Textures

In this section, we focus on how to position, flow and distort a texture-mapnniile sup-
porting diffusion curves drawing. By taking inspiration from garment &mditure design
(Figure 4.13) we identify the following prevalent types of draping feature

Shape contours - delineate the extent of textured regions

Creases & folds - exhibit sudden change of normals

Occlusions - where one piece of material overlaps another

Seams - where one piece of material abuts another

All of these features describe discontinuities of one type or other, i.turtsaare assumed to
be mostly smooth except for a few distinct lines and curves. The propbs@thg parame-
ters, attached to diffusion curves, mark these discontinuities and modeVahigitions. Two
of the diffusion curve attributes are particularly used for texture drapiegmalsand (u, V)
coordinates direct manipulation. Artists design normal fields to indicate dbesged distor-
tions of the texture. In addition, artists can locally manipulate 2D texture-owaigs using a
rubber-sheet technique based(arv) controls.

Creases & Folds

(@) (b)

Figure 4.13: (a) Our texture draping approach supports editing operations that allow fo
precise placement of textures in an image. Note that all of the demornb&dits are specified
along discontinuity curves. (b) Given a set of texture-edit curves aneapply any number of
vectorial textures (here, composited over a photograph). The irstbnal texture swatches
are also designed using our system, except for the rightmost swatidh, iwla bitmap texture.

3.3.1 Draping parameters

Given a texture-map, high-level parameters are provided for its inclusidmeisupporting
vector drawing.Global affine transformationéscale, translation, rotation) permit the artist to
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quickly place the texture in the desired area. The other important role abtinealsattribute,
aside from shading, is to suggest surface shape for texture dragirghas the additional ad-
vantage of directly correlating the two shape cues (shading and texlae$jble deformations
of both cues are automatically computed when the normal values are modified.

Finally, for a finer control over how the texture folds and ripples, thetacts use a direct
(u,v) coordinate adjustment (Figure 4.14).

" g

Support drawing Normal map

0 0 v . Y
0 o '
Y v v Y
() & S
Y v ;
v Y
) 0 S
Texture-maps Drawn shading map

"' DYy
Final image with Final image with
automatic shading manual shading

Figure 4.14: In this figure the first lines show the set of inputs used to create a complete
drawing. The last line shows the resulting image with an automatic shadireegban the
normal map), or a manual shading (based on a drawn shading r@@paurence Boissieux.



3.3.2 Texture atffachment

A texture is included in the support drawing by attaching it to a region in theaplarap (as
illustrated in Figure 4.14). For this, the artist specifies a point inside the regimh thus
also defines the texture’s center. When the drawing is modified and the plapaupdated,
the attachment point’s image-space coordinate dictates which new regiesmands to the
texture. If several texture attachment points fall within the same regionstresimply selects
the active texture or re-distributes other textures to different regions.

3.3.3 Parallax mapping

Given the normal map computed from the normal parameters, we providesénemith a
warp parameter that scales the inflation-amount of the surface implied bytheals. We
use the parallax mapping technique [Wel04], which warps the texture talggvienpression
of parallax foreshortening. Given a texture applied to a flat polygon {mcase the image
rectangle), parallax mapping offsets each texture coordinate to suggegtex surface shape.

In practice, a height-field needs to be computed from the normal-map. Asen ants of
our system, we solve a Poisson equation for this purpose [WSTSO08].grBlakéent field is
given by the expected difference in height between neighboring pigeisidering how the
corresponding normals vary.

When a texture map is applied to a plane surface (the image rectangle), trepfiearance
is flat-looking, and very different from what a textured uneven swfaould look. Fig-
ure 4.15 (a) shows that, when looking at the flat surface along the demgtevector, the
textured pointA is visible. However, should the actual uneven surface be seen,puoiauld
be visible. The idea of parallax mapping is to use the textured flat surfat& borrect the
texture coordinate corresponding to poftso the texture of poirB is displayed instead. The
scheme in Figure 4.15 (b) illustrates how one can modulate the eye vectorqythee height
to obtain a texture coordinate offset.

Three components are required to warp the texture map according to #ilexathe starting
“flat” (u,v) texture coordinate at a poiRtin the polygon o), the surface height at pointP,

and the normalized eye vectémpointing from the pixel. An offset is then computed by tracing
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a vector parallel to the planar surface frémthe point on the uneven surface directly above

P to the eye vector. This new vector is the offset and can be add&gttoproduce the new
texture coordinaté,.

Tn - T0+ (thy/Vz)

However, this equation assumes that the surface point correspondinfds the same height

as the point afp. For small offsets, heights are likely to be very close, so this approximation

will yield good results. For shallow viewing angles, however, the proppesgiation will lead
to increasingly large offsets. This greatly reduces the possibility of thet pbify, actually
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being close td, the observed point in the real surface. A simple solution is to limit the offset,
so that it is never longer than(as illustrated in Figure 4.15 (c)). For an initial image pikel
with texture coordinate%, the final texture coordinates become:

real surface

A eye vector
polygon B
(@ \ ! .

: o /

T(actual) T(corrected)

\

height map
A i eye vector
(b) polygon | |
\ I I
pl
N/
/ T, T,
offset
height map
é eye vector
(c) polygon N
\ ol ,

|
& N4
/ T R

Figure 4.15: Parallax mapping: (a) The observed texture does not depict the uneven surface,
because the texture map has been flattened onto the polygon. (b) Calgukeicorrecting
offset. (c) Calculating the bounded offset. Images taken from Welsh'sdlitel04].

Because positive heights make the texture appear closer to the viewaupgampling it, we
ensure that texture deformation artifacts are minimized by rendering thedeadttine maxi-
mum height, and considering the image plane at height O.

3.3.4 Direct texture coordinate conftrol

For design distortions, and shape distortions that cannot be modeled wgtimalrield (Fig-
ure 4.17), the user can locally offs@t v) coordinates (Figure 4.14). Our implementation is
inspired by rubber-sheet techniques, where the user can spedifyimexact texture coordi-
nates at chosen control-points along a curve, and the remaining texetehsl in-between
to fit the constraints. As elsewhere, this is achieved with linear constraimpatétion and
Poisson diffusion.
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Figure 4.16: Example of parallax mappingi(a) Checkerboard texture is placed in the image,
but no parallax mapping is performed. (b) Parallax mapping is used torgefioe texture, but
no shading is applied. (c) Manual shading is added. (d) The final textushown, with no
parallax mapping. (e) The final shaded text@elaurence Boissieux.

To initialize the(u,Vv) coordinates, the artist can use a sampling option. Default positions and
values are automatically computed to create the least possible distortion in the textile
adding as few control points as possible along the chosen curve. T) de sise the Douglas-
Peucker algorithm [DP73] to find a set of points that approximate the sélBéetaer curve and
place(u,v) coordinates on them, so that the texture lies flat in the image space. The Douglas
Peucker sampling strategy is described for color sampling in Section 1.2e buthent case,

we approximate the geometry of thé&Ber curve: the initial input is the tessellated polyline
approximation of the Bzier curve drawn on the screen. We progressively simplify the polyline
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until the distance from the original tessellation exceeds 0.1; the pointicated are between
-1 and 1.

Parallax mapping an¢l,v) mapping can be combined easily for complex folds and rippling
results (Figure 4.14). In that case, thev) coordinates are used as initial coordinates for the
parallax warping. Both normals arid, v) coordinates react to curve deformations by following
their respective control points and thus creating smooth adjustments in tdgforenation.

Figure 4.17: Example of direct texture controlHere, an artist managed to skillfully drape
the texture to suggest curly hair, flow the scales texture along the mesnailg'and apply fins
to the tail’s tip - all by direct manipulation of ,w coordinates. (a) Textures only. (b) Manual
shading applied to texturg®) Laurence Boissieux.
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4 Discussion

The complete diffusion curves system is summarized in Figure 4.18. Usingystem, an
artist can manipulate shape and color, define shading, and integratee textuthe vector
drawing. Artist validation for our approach, as well as comparisons witkipus methods,
are discussed in the next sections. Color (Section 4.1) and texture (5éQjoare treated
separately.

4.1 Shape and color

To validate our approach and to collect valuable practical feedbackadeseveral artists use
our diffusion curves prototype for shape and color. Most figureseicti8n 1 were generated
in these sessions.

All artists using our system were well versed in digital content creation,taals no techni-
cal background. They were given a brief paper tutorial (similar to thefage description in
Appendix A), amounting to approximately 10 minutes of instructions. The artists able to
create many varied and intricate examples from the very first sessiomand the manipula-
tion of diffusion curves intuitive after a short accommodation phase. lslamage creation
took anywhere from several minutes (Figure 4.3(b)) to a few hoursi(€ig.1).

Comparison with Gradient Meshes

In the previous sections, we have discussed the shape and color adtobwter vector rep-
resentation, and explained the various options at an artist’s disposaate @mooth-shaded
images thanks to this intuitive representation. We now compare our appnacthe most
commonly used vector tool for creating images with similarly complex color gr&ésdi&radi-
ent Meshes.

Representational efficiency In terms of sparsity of encoding, both gradient meshes and dif-
fusion curves are very efficient image representations. A direct cosopebetween both rep-
resentations is difficult, as much depends on the chosen image contesxdfople, gradient
meshes require heavy subdivision to depict sharp edges and it caffitadtdo conform the
mesh topology to complex geometric shapes). Furthermore, Price and BB@S] pre-
sented a more compact sub-division gradient mesh, yet all available topleya regular
mesh. While the diffusion curves representation appears more compiest giance (see Fig-
ure 4.19), it should be noted that each geometric curve can hold an arlitn@unt of color
and blur control points (see Table 4.1). So, while the sparsity of encadibgth representa-
tions can be considered comparable, we would argue the flexibility of @iffuzurves to be
a significant benefit, as it allows us any degree of control on a curitieout a topologically-
imposed upper or lower bound on the number of control points.
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Figure | Curves| P | Cl | Cr| =
Roses, Fig. 4.3 left 20 851|581 579 40

Lady bug, Fig. 4.3right 71 521 293 | 291 | 144
Curtain, Fig. 4.1 131 | 884 | 318 | 304 | 264

Table 4.1: Number of curves, geometric control points (P), left and right colartad points
(Cl, respectively Cr) and blur control point&) for the images presented in Section 1.

Usability: We believe that diffusion curves are a more natural drawing tool thadigmt
meshes. As mentioned previously, artists commonly use strokes to delineatiabies in an
image. Diffusion curves also allow an artist to evolve an artwork graduatiynaturally. Gra-
dient meshes, on the other hand, require careful planning and a gdedstanding of the final
composition of the intended art piece. Most gradient mesh images are cotophsinations
of several individual — rectangular or radial — gradient meshesnafterlapping. All these
decisions have to be made before the relevant image content can be enedtgsualized.

Topology: In some situations, the topology constraints of gradient meshes can eeusdful,
for example when moving a gradient mesh to a different part of an imagehem warping the
entire mesh. Such manipulations are also possible in our representationt bststraightfor-
ward. For moving part of an image, the relevant edges have to be sedect@doved as a unit.
More importantly, without support for layering and transparency, it igcdift to ascertain how
the colors of outer edges should interact with their new surroundings. $h mvarp could be
implemented as a space warp around a group of edges.

Limitations

Diffusion curves attach color (and all other attributes) to lines. While this aligneat flexibil-
ity, it can also pose a problem iatersections

Currently, diffusion curves present a specific (although predictatder@aningful) behavior:
the colors attached to the two intersecting curves essentially compete withteachwhich
creates a smooth color gradient after diffusion (Figure 4.20(a)). Ifdafault behavior is
undesirable, the user can correct it by either adding controls on &bcbfghe intersection, or
by splitting the curves in several parts with different colors (Figure &#)20Automating such
behaviors would represent a powerful tool for easing user interestio

Note however that this behavior is less of a problem than intersections sicelglanar maps,
because diffusion curves do not attach colors to regions. Therefams are not “lost” when
a region is not followed in the new configuration; when a line moves, the éalows.
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Figure 4.19: Gradient Mesh comparison: (a) Original photograph; (b,c) Manualgated
gradient mesh(@© Brooke Nuiez Fetissoff http://lifeinvector.com/), with 340 vertices (and as
many color control points); (d,e) Our drawing created by manually trgoiver the image;
there are 38 diffusion curves, with 365 geometric, 176 left-color, andrifb-color control

points.
-
/
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Figure 4.20: The default behavior of diffusion curves at intersections (a) can becid by
curve splitting and color editing (b).




69

4.2 Texture

To evaluate the feasibility and utility of our system to create textured 2D imageassigned
a professional digital artist, proficient with modern 2D and 3D art credtiots, the task of
creating a number of different texture types and designs, and oftiegpan his experience
with our system. The figures in Sections 3 and 2 represent some of thissamisk with our
system.

Usability

Table 4.2 lists detailed timings for several textured artworks in this manuscriptatibns
are listed separately for the creation of the support drawing, the textapend, and the texel
generation for that figure.

Figure | Support | Draping | Texels
Dress, Fig. 4.13 | 10 min(G) 30 min 5-30 min
Overview, Fig. 4.18| 5 min (G) 20 min 40 min (G+C+N)
for 2 texels
Sari, Fig. 4.14 1 h (G+C) 65 min 20 min (G+C)
Sari, Fig. 4.16b | 1 h (G+C) 1h (N) 7 min (G+C)
Mermaid, Fig. 4.17| 1 h (G+C) | 45 min (UV) | 5 min each (G+C)

Table 4.2: Timings for selected Figures. Notation€—Geometry;C—Color; N-Normals;
UV-Tex. Coords.

After using our system, we asked the artist to give us feedback aboekpe&iences, both
positive and negative. On the positive side, he noted that he fouridtdractionsto be very
intuitive. First, he would sketch out the texels and support drawings likedwud design on
paper. Then, he would fill in colors, as if painting them into the drawing. idgichormals
was easy, especially in the automatic-inflation mode. He also liked the ability to tiheak
texture placement by adjustirig, v) coordinates. On the negative side, he complained about
variousinterfaceaspects. For example, controls for settings normals(ang coordinates
were displayed in separate dialog boxes, and he would have preferadiust the parameters
in-place. Initially, he found it too time-consuming to adjustv) coordinates to realize his
intentions. After we implemented the automaticv) initialization (Sec. 3.3.4), he found the
system much easier to use.

Comparisons

Alternative 2D Draping To compare our system against 2D warping approaches, we gave
the artist the following task. He was to design two simple 3D reference siape3D mod-
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eling package and texture them with a checkerboard texture (Figurea)2Hg then had to
replicate the 3D rendering output as closely as possible with our systearéFd1 (c)), and
PHoTOSHOPs Liquefytool (Figure 4.21 (b). Note, that this required not merely giving a good
impression of shape, but to match each texel — a much more difficult task.

The two 3D shapes he designed were a sirBpthapeand a more compleReat-shapelsing

our system for thé&-Shapehe spent 29’ on the support drawing,’27’ on setting normals,
4’25’ on adjusting automatically placed,v) points, and 25’ on adding and setting addi-
tional (u,v) points, for a total of just under ten minutes. Figure 4.21 (d) shows the horma
control points diamond$ and(u, v) control points ¢ircles) the artist specified. He commented
that much of the time spent ofu,v) adjustments was due to difficulties with not visualiz-
ing the texture-map in our texture-coordinate editor. Timings for the-Stesghewere similar,

but added up to only’81”, indicating that labor is proportional to the 2D complexity of the
suggested shape, not its 3D complexity.

Using theLiquefytool, the artist started with a rectangular checkerboard texture and spent
1057 deforming it on theéS-Shapgand 3222 on theSeat-ShapeAs evident in Figure 4.21 (b),

the artist did not manage to control the exact contours of the shape. riimauted that the
warping approach was tedious due to the requirement of frequentamatlicmasking, and
constantly changing the radius of the distortion tool.
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Figure 4.21: Comparison withLiquefy Tool. Top row: S-Shape. Bottom row: Seat-Shape.
(a) 3D result. (b) Liquefy Tool. (c) Our system. (d) Control Points &mal-map.
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3D Texturing We also asked the artist to compare our system with standard 3D texturing.
As reference, the time to model and texture the aboveS3Bhapewvas about half that for
replicating it using our system. The timings for tBeat-shapevere comparable. As these
numbers favor our system for complex 3D shapes, and since we enwisiagystem being
used in design workflows that are conceptualized in 2D, we performedand test with the
artist, complementary to the one above. Here, we replaced the sari texttiguie 4.22 (a)

with a checkerboard texture and asked the artist to create a 3D modelitveatie same
image.

The artist took B45' to generate a 3D model of the draping. As Figure 4.22 (c) shows, this
included only the sari but no background elements. He worked for diti@tal hour to adjust
(u,v) coordinates using a professional skinning tool. This is compared to twe hatal for

our system, including geometry and color for background elements. Wiexd about his
experience, he said that he favored 3D modeling for simple geometricshmpereferred the
natural 2D design approach of our system for the complex shapeamihds and folds that he
created. He also pointed out that he was unaware of a straightforn®amkhod to create the
artistic design of the mermaid’s hair in Figure 4.17.

Figure 4.22: Comparison with 3D Modeling. (a) Draping template. (b) as (a) with chextke
texture. (c) 3D model with checkered texture. (d) 3D model with textone €a).

Limitations

We acknowledge several limitations of our implementation. For very simple shap&D
modeling system is quicker to use. In general, our system is not intendepléce accurate 3D
systems, but rather to allow for quick and convenient prototyping of contpldure draping
designs. Additionally, some aspect of our interface design proved torbbarsome. While we
hope to streamline the interface in the future, we feel this does not detacttie fundamental
interactions, which an artist using our system quickly learned and mastered

Currently, our system only supports regular or near-regular textlineSection 3.3, we note
that any texture-generation approach which outputs bitmaps can be wmediaping system.
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chapter 4. Creation and Manipulation

We want to investigate several such approaches, and determine wftairead user-parameters
are necessary to control different types of textures.

In summary, we have designed a system with which an user can design dexoraptor
drawing, complete with color gradients, shading and macro-structureedver, the user can
employ the same interaction paradigm for the support-drawing design,|lbasifer texture
definition and texture draping.



Vectorization of Color and
Shape

Vector graphics, by their geometric definition, have some advantagesaster graphics.
Most notably, they are resolution independent. Their content can Ineasekprinted at any
desired size, without the upsampling artifacts visible in raster graphics, yéstor graphics
are more easily editable, and thus preferred for applications such agianiniut digital pho-
tographs are always recorded in raster format. Vectorization — thegsaf converting raster
into vector graphics — is therefore a very useful process. This chsjigies the automatic
vectorization of bitmaps into the diffusion curve vector representation.

To transform a bitmap image into a diffusion curve representation, we rebitorap edges.
Edges are points in a digital image at which the image brightness changplyshad are as
such the natural counterpart of diffusion curves in bitmaps. Edgesafgain most of the vi-
sually important information present in an image [Lin98, Pal99] and can keedged to create
a nearly complete representation of the image [EId99]. The first vectorzstiep is therefore
to extract edges from an image, along with their color and blur informatioctit®el). The

second step is to vectorize edge positions, colors and blur values, to alutdinsion curves
set (Section 2). Limitations and comparisons with other vectorization methedtismussed
in Section 3.
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1 Data extraction

Many approaches exist to find edges and determine their blur and colbutss: We rely on a
Gaussian-scale space approach, because this theory has bdepeatblg the computer vision
community for images where no a priori information is available, to extractepdually im-
portant features. Using the scale-space analysis, we can creadigestructurehat captures
the degree of blur at each image discontinuity. Additionally, the Gaussi&m sgace can be
used to derive the edge importance, automatically providing a hierarcig@hiaation of the
edge structure. This hierarchy can be transferred to the diffusisesget and, as mentioned
in Section 1.3, be used to simplify or modify a vector image, in accordance to thetanpe
of each diffusion curve element.

In the following, we give a quick overview of the Gaussian-scale sgawtdescribe how this
theory is used to extract edges, their importance, and their profile (aodbblar attributes),
from a given image.

1.1  Gaussian scale space

Scale space methods base their approach on representing the image at sualtgdeensuring
that fine-scale structures are successively suppressed and nelereent is added (the so-
called “causality property” [Koe84]).

The motivation for constructing scale-space representations origimategte basic fact that
real-world objects are composed of different structures at diffegles of observation. Hence,
if no prior information is available about the image content, the state-of-tregparoach for
deriving the image structure is to use the successive disappearamedediemtures to create a
hierarchy of structures [Rom03].

Gaussian scale space is the result of two different research direatioe$ooking for a scale-
space that would fit the axiomatic basis stating that “we know nothing abolurntmge” and
the other searching for a model for the front-end human vision [Mal8Z7PWan95, RomO03].
Since our purpose is to define a human-vision-like representation of ae iooagent we have
no a priori on, this scale-space fits our needs.

A scale-space is a stack of images of increasing scales. The basiddbasisse space is
thus a stack of images convolved by Gaussian kernels of increasingegrign the general
case, Gaussian derivatives of any order can be used to build the allagkng one to create
scale-spaces of edges, ridges, corners, laplacians, curvataes,

To obtain a diffusion curves representation, the important feature is gee ¥dée thus settle on
studying the image structures represented by a hierarchy of edges iatissi@ scale space.
As edges are defined by gradient information, we only need to convahaitjinal image with
Gaussian derivatives of order 1, one for each image dimension. Gasssian derivativeSy

1For numerical stability, one usually starts with a variagge= 1
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andGy are computed as follows:

Gx(x,y;0) =9(y)-d'(x) and
Gy(x,y;0) =9(x)-d'(y)
with
i2 i2
2 e 202

g(i) = N and ¢'(i) = T /208

where the widtto of the kernel corresponds to scale amd{x,y}. Given an inputimagg, we
thus build two different scale spaces: an horizontal gradjeatl ® Gy and a vertical gradient

20°

Contrary to classical approaches, which define the gradient in the lucgird@annel, we use
the multi-channel color gradient method described in Di Zenzo [Zen8#&iis eans that
gradients are computed for each color channel, and then combined to@btagile magnitude
value in each pixel. This allows us to detect sharp color variations in iso-lurniegions of
the image, where a luminance gradient would fail.

1.2 Structure extraction

Starting from the multi-scale gradient values, we extract the edge-base@ istraictureS
corresponding to the edges, their importance and profile (color on &kechrsd blur).

Edge extraction

From the first-order Gaussian derivative scale space, we want to dtildrarchy of edges
holding structural importance. We first extract edges at all the availablessin order to get
the richest possible information. For this task we use a Canny edge ddtéat@6] on the
multi-channel color gradientimage: it is a state-of-the-art edge detectithrochthat processes
the Gaussian derivative information at each scale to give thin, binagsedts main quality
resides in using hysteresis thresholding that results in long connectedgrattavoids small

noisy edges (see Figure 5.1).
A
N
n 1 /
(d)

Figure 5.1: Edge importance. (a) The input image. (b-d) Canny edges at inagasales.
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After applying the Canny detector, we are left with a multi-scale binary rGgtkat indicates

at each scale the edges locations. Figure 5.2 illustrates such a typicacdgepace for a
simple 1D example. Due to the nature of Gaussian scale-space, threerdiffases can occur:
(a) an edge exists and suddenly drops off at a higher scale; (b) tyesente coming toward
each other and collapse at a higher scale; (c) some “blurry” edgesapplyar at a higher
scale. To simplify further computations, we “drag” edges correspongirngse (c) down to
the minimum scale and no@ the resulting multiscale edge mask.

Figure 5.2: Three different events in a 1D Gaussian scale-space: (a) an edgs dfbat a
high scale; (b) two edges collapse ; (c) a blurry edge is created. In thieckase, we drag the
edge down to the finest scale for convenience.

Edge importance

As shown in Figure 5.2, there is a great deal of coherence along tleedioegension in the
multi-scale edge representation. The main idea behind scale-space teshisitutry to ex-
tract this cohererdeep structurgby linking edges at different scales. In particular, because of
the causality property of Gaussian scale-space, an edge that disagipegiven scale will not
reappear at a higher scale; hence an important measure of structugeseéde idifetime, as
edges that live longer will correspond to more stable structures.

Unfortunately, extracting an edge lifetime is not trivial, since edges move us&an scale-

space (this corresponds to Figure 5.2 case (b)). This motivated eclggirfg techniques, that
track edges at increasing scales [G0os94]. In this manuscript, we tekecamative approach
which revealed simpler to implement: instead of considering each pixmlonging to an

edge, we consider its projected poffi(p) onto the closest edge at scal¢we use a distance
field for this purpose). We can then define the membership of any pixg) as the binary

function that indicates whethg@rcan be considered to belong to an edge at szale

_ [ Lif]|Zs(p) —pll <To
Mo )_{ 0 otherwise

The choice of the threshold distantgis essential to get a good approximation for our mem-
bership function. Bergholm [Ber87] proved that the edge shifting isthess a pixel when the
scaleo varies by less than.B. Therefore, we increase oarvalues byAc = 0.4 at each scale
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Figure 5.3: Edge importance. (a) The input image. (b) The lifetime measure reflexts th
importance of edges: “older” edges correspond to more stable anaitapt structures.

and us€l; = o/Ac. This approach is similar in spirit to the morphological linking method of
Papari et al. [PCPNO7].

Finally, using membership for linking purpose, we compute the lifetirfie) at each edge
pixel p in the finest scale by summing up membership values (Figure 5.3). Consideging
successive scale values,i € 1..N, whereN is the size of our scale-space stack, we write
lifetime as:

L(p) = argmin{ci|ms, (p) = O}

This can be seen as a simpler, easier-to-manipulate version of Lindelgergteength measure
[Lin98]. Lifetime is thus considered as a measure of structural importandegan supply the
diffusion curve representation with itsiportancevalue (Section 1.3).

Edge profile

In the previous section, we mainly relied on edge locations and their persisadong scale.
Another concern is to deal with thearofile (color values and degree of blur). In this work,
as in previous work [Lin98, EG01b], we rely on a simple assumption: thile an edge
gradient is modeled as the convolution of a Dirac (its location and color elifter between
the two sides of an edge) with a spatially varying Gaussian kernel (its bkaj.instance,
in a photograph with depth-of-field, out-of-focus edges are bluriiyh(a wide profile) while
in-focus edges are sharp (with a thin profile).

Our second measure of structure then consists, for each edge, in fthdibgst scaleghat
locally corresponds to its blur.

The best scale search is another forrdeép structuréhat has been studied by Lindeberg [Lin98].
Following his approach, we first compute a normalized gradient magnitwade-space by

|O1]| = \/o(IZ+13). The best scalB(p) at an edge pixep is then identified as the one which
gives the first local maxima along the scale axis in this normalized gradientitmagstack.
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Figure 5.4: Best scale estimation. Top: 1D edges blurred with} = {5,10,15}. Bottom:
normalized gradient magnitude scale space proposed by Lindebbagbdst-scale measures
(the local maxima) are at the blur sca{e; }, hence representing well each edge profile.

But as with lifetime computation, we need to link “moving edges” at differentescasing the
projection operatof; again:||dl (p)|| = |0l (Zs(p))||- Figure 5.4 shows how best scales can
be well estimated for edges of increasing blur.

We are now able to "re-blur” the edges using the best scale. Morasgarse this ideal scale
also to localize edges, because it is at that scale that the edge shapes wahe shape
perceived by the human vision. It should be noted that very blurrysedigedifficult to detect
and parameterize accurately. In our system we find that very largéegtadgire sometimes
approximated with a number of smaller ones.

After the best scale search, we are left with an edge map, which contairsi¢fe locations
and the blur values for the edge pixels. One last processing step isdnteedistain the full
edge profile: colors on both sides of the edge must be extracted explicitiyhidS end, we
rely on the blur values to know how far from the edge position the unblwoéats are. We
connect pixel-chains from the edge map and proceed to sample colorsarigimal image on
each side of the edge in the direction of the edge normal. In practice, ttheigraormal to the
edge is difficult to estimate for blurry edges, so we use the direction giy¢negonormal of a
polyline fitted to each edge. For an estimated biuwe pick the colors at a distance@from
the edge location, which covers 99% of the edge’s contrast, assumingsai@ashaped blur
kernel [EId99]. While the 3o distance ensures a good color extraction for the general case, it
poses numerical problems for structures thinner than 3 pigels 1); in this particular case,
color cannot be measured accurately.

At the end of the data extraction, the bitmap image is represented by edge&zedyin pixel
chains, and with values of blur, left- and right-side colors, and importattached to all pixels
belonging to an edge.
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2 Conversion to diffusion curves

This pixel-based data is transformed into diffusion curves by a vectonizptimcess. For vec-
torization of edge positions, we take inspiration from the approach usec iopén source
Potrac&®software [Sel03]. The method first approximates a pixel chain with a politiae
has a minimal number of segments and the least approximation error, andahsfiotms the
polyline into a smooth poly curve made from end-to-end connecézieBcurves. The conver-
sion from polylines to curves is performed with classical least squaréeBfitting based on a
maximum user-specified fitting error and degree of smoothness. For ttviattorization, we
use the same method as the one described for extracting colors in image (Bewstign 1.2).

(b)

(d) (e) (f)

Figure 5.5: Vectorization results with different fitting errors for the edge positions. (@-O
inal image. (b) The image reconstruction using only the extracted dati¢8el). (c)—(f)
Result after conversion to diffusion curves, using different fitting efiarshe edges: (c) 1,
(d) 5; () 25; (e) 50;
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Several parameters determine the complexity and quality of our vectorizee irpgesenta-
tion. For the edge geometry, the Canny threshold determines how many of the éages are
to be considered for vectorization; a despeckling parameter sets the minimgitin & a pixel
chain to be considered for vectorization; and finally, two more parametetbessmoothness
of the curve fitting and the fitting error. For the blur and color values, twarpaters are con-
sidered: the size of the neighborhood for eliminating outliers, and the maxinromeecepted
when fitting the polyline. For most images in this manuscript, we use a Canny hmaghtid
of 0.82 and low threshold of 0.328, we discard pixel chains with less tharelspwe use
a smoothness parameter of 1 (Potrace default) and we set the fitting elrosdahe curve
closely approximates the original edges (Figure 5.5 shows results withediffiétting errors).
For attributes, we consider a neighborhood of 9 samples, and the maximumaerepted is 2
blur scales for the blur and 30 CIE L*a*b* units for colors. Figure 5.6egian example of
image vectorization using the proposed method.

Figure 5.6: Example of our reconstruction: (a) original image; (b) result aftereersion into
our representation; (c) automatically extracted diffusion curves; (dBRIference between
original and reconstructed image (amplified by 4); note that the mostiisiioor occurs along
edges, most probably because, through vectorization, we charigéotiaization.
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stlaklsk
e[

(d) (e)

Figure 5.7: Stylization effects: (a) Original bitmap; (b) Automatic reconstruction; (egé&n-
struction simplified by removing edges with low lifetime; (d) Global shape stiglivapplied
to (c); (e) Enlargement of (b).

3 Discussion

A diffusion curve vectorized image benefits from the advantages of traditi@ctor graphics:
zooming-in preserves sharp transitions (Figure 5.7 (e)); curve slaaqukattributes can be eas-
ily modified to obtain effects such as that presented in Figure 5.7 (d); the tamgermeasure
can be used to adjust preservation of detail (Figure 5.7 (c)).

Compared to region-based vectorization approaches — such as theaatizio methods pro-
posed by Adobe Live Traand Lecot and vy [LLO6] — our contours need not be closed
boundaries. This in turn results in smooth color variations between twos;ware avoids the
posterization effect typical to region-based methods (see Figure 5.8).

Gradient meshes [SLWSO07, PB06, LHMQ9] can represent objects witiplex variations of
smooth colors. Diffusion curves achieve similar vectorization results (geed>.9 for a com-
parison). But we believe that diffusion curves are a “lighter” repnesgtéon, better equipped
for subsequent manipulation of the vectorized result.

One limitation of our vectorization approach comes from the approximations chailtey the
process of extracting diffusion curves from a bitmap. Canny edgeta®teblur detection, and
data vectorization can all introduce sampling errors. Especially the bluctaetés known to

81
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chapter 5. Vectorization of Color and Shape

Figure 5.8: Comparison with Ardeco [LLO6]: (a) original image; (b) the vectorizati@sult.
Note that, while the gradient inside regions is well approximated, sharsitians between
regions are noticeable. Image taken from [LLO6]. (c) Our result. No& the smooth color
transition is preserved both along and across the geometric curves.

Figure 5.9: Comparison with Gradient Meshes [SLWSO07]: (left) Original bitmap; (f&yid
Gradient Meshes; (right) Diffusion curves.

be a hard problem, and prone to error.

Another limitation, common to all vector graphics, occurs in images or image etfiahcon-
tain many small color or luminance variations, such as textures. In practice ofnibe visual
information of highly textured regions is captured by the automatic convelsithimprecision
occur when the texture is composed of many small structures (small conmpateddistance
d defined in Section 3.2.1). Moreover, the large amount of curves rebfoirepresent textures
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makes a vector representation inefficient and difficult to manipulate (Figaite

Figure 5.10: Limitation: diffusion curves have precision issues with thin structures (asch
textures). (a) Original bitmap; (b) Converted result; (c) Diffusion asyv

One possible solution for texture vectorization could be to rely on recenpate vision ad-
vancements [GZWO07] or user input to separate detail from importantsteuclexture could
then be synthesized at the required magnification level and reappliethev@noothly varying
color of the vectorized structure.
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chapter

Photograph Manipulations via
Raster Diffusion Curves

By vectorizing a bitmap, new manipulation options are made available, especaiiyuse
each discontinuity can now be individually edited, and fine tuning is possiblediors and
blur. However, the vectorization process is inextricably linked to simplificaif@hape, color
gradient and blur variations. It is thus interesting to study the image maniputatpmabilities
of the bitmap version of the diffusion curke

Our approach is to rely on the hierarchial structure provided by the bitehggsgogether with
their importance (Section 5.1), and to guide user manipulations by consideenglevance
of each structure edge when simplifying or enhancing the content (Figlixe 6

Figure 6.1: Our approach takes as input a bitmap image (left), and allows a user to manip
ulate its structure in order to create abstracted or enhanced output imagese we show
a line drawing with line thickness proportional to their structural importanoaddle), and
a reconstruction of color information that focuses on the bee and remuetad around it

(right).

1The bitmap structure manipulation was presented in our paper [OBBTOIRAR 2007. It was a work done
in collaboration with Adrien Bousseau, Pascal Barla araldd hollot.
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One important difference with the vectorization process is that the edgeamistraints are
not used for bitmap manipulations; instead, gradient values are placed eddgk. Two main
reasons are behind this:

— First, without the support of edge poly-lines, color extraction needsdaaliscrete gradi-
ent normals, and these could prove unreliable. While inconsistencies irsanhpling is
not detectable if colors conserve their original pixel position, colorsece problematic
when displacing edges (and therefore colors).

— Second, using only gradient constraints has the advantage of seaditess [PGB03],
even though with the downside of unexpected color results (Figure 6.2).

(e) (9)

Figure 6.2: Color constraints vs. gradient constraints: (a) Original image; (b) @sponding
edges, with color constraints on each side; (c) An edge is removeBjffdsing the remaining
color constraints creates a color gradient; (e) Gradient constraintsiretaansitionsof color,
rather than the color itself; (f) A gradient constraint is removed; (g) Tiigion fills the empty
space with an uniform color, but the remaining gradient variations caateran unpredictable
color.

In such case, the bitmap diffusion curves manipulation system consistseef skeps: (1)
extraction of the edge structu& as described in Section 1; (2) the useSas a high-level
control for user-defined image manipulations, and output a manipulated b#imeyureS';

(3) reconstruction of an imag® from the manipulated edge set using the Poisson equation.
Figure 6.3 sums up our approach for bitmap manipulations.

In the following, we mainly present the gradient reconstruction step,useciais specific to
the bitmap approach. Several edge manipulation techniques are presepgetion 2.
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Scale space Structure-preserving Poisson
1 analysis (IxTy)s ! manipulation (wx,wy) reconstruction o
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Figure 6.3: Overview of our method.
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Figure 6.4: Gradient reconstruction with different profile§(o) is our contrast value com-
pensation function, that depends of the detected blur value.

1 Poisson reconstruction using only gradients

Using our manipulated set of edg8s5 we wish to reconstruct the corresponding image by
solving a Poisson equation. Considering only gradient constraints, thidatas into building
a vector fieldw that corresponds to our new edges.

We propose to use the scale space information to estimate the original gnadifiets and
correctly reproduce the contrast and blur of the input image (Figure &idjvever, taking
only original gradient values at edge locations as suggested by RerefRGB03] results in
a gradient field that does not capture the whole original contrast, naridieal blur (Figure
6.5, (a) and (b)). This is because we only consider the central valire girofile, loosing all
its surrounding information.

A simple solution to the contrast problem would be to apply a histogram equatizatithe
reconstructed image to match the original contrast. However the very loamagrrange of
the reconstructed image leads to strong quantization artifacts (Figure)6.5(c)
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We thus need to take into account our knowledge of edge profiles to commeuterrect con-
trast (Figure 6.4). Our model of an edge represents blurry edgeagpaar in the input image
| as the convolution of a step functidth by a 2D Gaussian kern@€g, whereB is the local
best scale. When we measuggresp. ly) at scaleB on edge locations, we get the following
contrast values:

B 0Gs 0Gs,  OH
IX - H®GB®W = H® ox = &@GBZ

with B, = v/2B2. However, to recover the original contrast value of the profile, wpeeeisely
interested in the value d}; This corresponds to the deconvolutionlpfresp. ly) by Gg,.
Unfortunately, deconvolution is known as an ill-posed problem, particutsamhgitive to noise
and quantization [Rom03]. To avoid this problem, we propose to simplify our hiodéhe
sake of contrast correction: we replace the 2D Gaussian derivatad b Gaussian derivative
Gy = d(x). This way, we can derive an analytical solution for the correction proble

We model a directional edge gradielpgy, as the 1D convolution of a step functidh of
amplitudeA by a Gaussian kernel; and a Gaussian derivatigg, resulting in:

0) = (H®g®gy)(0) = (Hog ;) (0)
= [HO) G (-0t = [ 7Aoo (bt
= A052(0) = 5

For each edge pixgd, we only need to multiply the gradient value foundijn(resp. ly) by
2B(p)+/Tt This correction gives a final contrast close to the original one, anfindehat our
approximation works well in practice, with no visible artefacts (see Figur@y.5

Finally, even if using edge locations and correcting their contrast deesgionvincing result,

blurry edges become sharp in the reconstructed image. Thereforésonre-dlur the edges, as
seen in Figure 6.5(e). This process remains optional as the sharporesidtes an interesting
cartoon style.

2 Applications

The edge structur8= {C}, L, B} — whereC} are multi-scale Canny edges together with their
lifetime L and best scalB — can be manipulated in various ways. The main idea is to select
a subset of the multi-scale Canny edg€&;3 according to lifetime.. After manipulation, we
are thus left with a new, simpler structuse= {E,B}. Based on this schema, we propose three
image manipulations, that can be seen as variations of recently proposextimetiediting in
the gradient domain. Our contribution is to use the high-level structurainveftion provided

by our approach to guide these gradient manipulations.
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Figure 6.5: Gradient reconstruction. (a) Inputimage. (b) Reconstructed imagegwonly the
original gradient values at edge positions. (c) Reconstructed imagehigthgram equaliza-
tion. Note the quantization artefacts. (d) Reconstructed image using cbotrasction. Note
that blurry edges become sharp if the profile is not taken into accounEulereconstruction
using contrast correction and re-blurring.

2.1 Detail removal

We use the lifetime information as a threshold value to seamlessly remove detailkednplag
important structures. Such image editing operations are similar to the seantless! paste
operations proposed by Perez et al. [PGB03] and Elder et al. [G&4d®pt that we provide
a high level control to the user, who has only to select the desired ledettail (Figure 6.6).

2.2 Multi-scale shape abstraction

We propose a shape abstraction method that adapts the level of absttadiienscale of
the features in order to preserve the informative content of the pictarpraktice, we select
for each edge its last available version in the scale space using lifetime. apssbecome
more and more smoothed along scales due to the Gaussian filter, releventregwill have

increasingly rounded shapes while details will keep their original silhouettes

In opposition to previous approaches [DS02] that remove texture detdilalestract shapes at
the same time, our approach selects for each edge (including edgesibglangxture details
or other small elements) the shape of its last scale. Hence, our apptitldaeps most of the
meaningful structural information, while simplifying its shape, as seen in Ei§LH.
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Figure 6.6: Detail removal: (a) original image, and (b-d) several levels-of-detaitomati-
cally generated by our method.

This application can be seen as a fusion of multi-scale images, similar in spiriteaoiotage
fusion methods like the ones of Agarwala et al. [AD®] and Raskar et al. [RIY04].

2.3 Line drawing

The edge lifetime information offers a powerful high-level parameter for lane drawing
algorithm. Figure 6.8 presents the rendering of vectorized edges witheaeditfwidth to
enhance important structures from details. Figure 6.1 (middle) also shoessample of this
application.

2.4 Local control

In order to offer a local control to the user, each image manipulation camefghted by a
gray-level map indicating the desired amount of abstraction (Figure 6.8)s miechanism
is essential to be able to focus on a given zone of the input image, anérdffiagrabs vi-

sual attention. We take advantage of the Poisson reconstruction to olaaitese transitions
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Figure 6.7: Shape abstraction: (a) original image, and (b) our shape abstractasult.
Notice how the thin details are kept, while shapes of bigger objects are atedrée.g. the
poles).

Figure 6.8: \ectorized edges, with a larger width for relevant structures (i.e. thoseba
greater lifetime).

between regions of different weights.
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Figure 6.9: Local control: original image of DeCarlo et al. [DS02] and our results fao
different user-specified control maps.

3 Discussion on bitmap diffusion curves

A number of previous techniques focused on creating enhancedtoa@bsd renderings from
arbitrary photographs.

Generally the previous methods manipulate an image globally without using the §tmage
ture [WOGO06], or rely on the user to define what is important [WXSCO04CRE, WLL'06].
As a result, the content either cannot be controlled, or its control invoddieus user inter-
actions. We propose a method that automatically extracts the relevant sttuctormation,
and can be subsequently used to enrich automatic stylization systems or tdhessiser in
her task.

The interest of expressing the image content with an automatically createtustris well
illustrated in Figure 6.10. Here we show a failure case of Winsllanet al.’s abstraction ap-
proach [WOGO06]. Although their method gives convincing results in masgs;ahis specific
example shows how they cannot get rid of high-contrast texture lines wtitliwstracting the
cat too far. Manual approaches would, in this case, require the ugairibover the entire
textured region. In contrast, our approach allows us to simply remove ddtggls regardless
of their contrast.

Previous work made use of Gaussian scale space [Her98] or saliensy [@E 05, CHO3]

in order to guide painterly stylizations. However, saliency maps identify imagems that
already grab visual attention in the original image, and using them to guideasityfizvill only
preserve these attention-grabbing regions. In contrast, our apesé@acts a structure that
allows the user tantentionallymanipulate the image, possibly modifying its attention focus
(i.e. changing its subject, see Figure 6.9 middle and right), and henceyaumeparticular
message.

DeCarlo and Santella [DS02,SD04] were the first to use a meaningfal\wsucture in photo
abstraction. They use color regions as structural units and create itirchy of regions
from a pyramid of down-sampled versions of the image. But for codeset-regions the
shape simplifies and the borders move slightly. Therefore, there is recpexferlap between
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(d) (e)

Figure 6.10: Comparison with the failure case of Winn@lfer et al. [WOGO06]. (a) Original
picture. (b) Winnerdller et al. abstraction failure: note how the carpet details are preserved
while the fur is abstracted away. (c) Our lifetime map. (d) Our detail remabsitraction
preserves the cat structure and abstract the carpet. (e) We apphghastoequalization as a
post-process to fine tune contrast.

Figure 6.11: Comparison with the DeCarlo et al. [DS02]. (a) Original picture. (b) Da®
et al. results exhibit flat color regions with shape simplification (c) Ouultesimplifies the
image while keeping smooth color variations and original shapes.

finer and coarser regions. When mixing different levels of detail in theesanage, this be-
comes problematic because the information at different scales has to kel unit single
image. Moreover, while DeCarlo et al.'s method couples simplification ofeskhafh detail
suppression, ours allows to remove detaithoutnecessarily simplifying shapes (as shown in
Figure 6.11).
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Bangham et al. [BGHO03] extend DeCarlo and Santella’s work by impraviegegion segmen-
tation. Their region hierarchy is based on a morphological scale-spaickas the advantage
of preserving region shapes. But since only the region size is cordidand not its contrast,
they tend to eliminate visually important cues that have a high contrast but $reall s

The use of Poisson reconstruction is also an important advantage f@dding methods.
While other diffusion methods will try to blur unwanted details, a Poisson agpravill simply
ignore it in the reconstruction (by not considering the color variationshfatr detail). This is
again well illustrated by the example in Figure 6.10, since the texture lines dappetr in
our image.

Future work We see our approach as a starting point for any subsequent stylizdtgon.
such, one possible venue for future work resides in developing sulibes renditions that
take advantage of structural information. As an example, we created eAimjrary results,
shown in Figure 6.12: a drawing, and a watercolor. There are manyections to establish
between style parameters and structure information, and we hope this lgriotivate future
research along this direction.

Figure 6.12: Different stylizations obtained from our abstracted images, in a drawing and

watercolor style.

Finally, Poisson image editing is a powerful tool for raster image manipulati®e@803].

However, as we have discussed in the course of this chapter, relyiggadients alone to
perform manipulations can lead to unexpected color results (for exangstng a yellow on
black circle onto a blue background might lead to the circle becoming white)th®nther

hand, using color constraints everywhere will have the undesirahlé céreserving colors
of deleted elements; in the circle example, it will preserve the black bordeedfircle. It is

therefore interesting to combine these two methods, and explore methodsliyf ¢ébomsing

whether to use gradient or color during the editing process (to obtain lEwyercle on a

blue background). We believe that the diffusion curve bitmap structyriés bbcalized nature,
could support such editing tools.



Conclusion

This manuscript proposes contours as a means to represent, creatarapdlate digital im-

ages. The distinguishing characteristic of this novel image representaticalled diffusion

curves — is that it uses line drawings as a base. Line drawings recomigtentinuities

observed in a scene, and in a similar way diffusion curves correspoti tdiscontinuities
present in an image. This thesis demonstrated that the diffusion curveéppeifediting an

image via its discontinuities) can be leveraged to represent and edit varigd praperties as
piece-wise-smooth data, and that such a representation is powerful, sintpiletuitive.

1 Summary of contributions

The main contribution of this dissertation is thiector primitiveof diffusion curve. With a
single core element — a geometric curve with attributes attached on either sidecter v
diffusion curves can depict smooth color gradients, shading variatiahs@nplex texture de-
formations. This representation offers most of the benefits usually flowettor approaches,
such as resolution independence, exact editability, and compactndhe.s&ime time it allows
to depict highly complex image content.

— In representing color gradients, vector diffusion curve images argamble both in
quality and coding efficiency with the state-of-the-art vector primitive @hadient
mesH), but are considerably simpler to create (according to several artisthawe used
both tools).

— For texture definition, this novel vector representation caters bothxturéscreation
and for texturedraping In the first case, intricate textures can be designed using a
traditional sketching paradigm, that combines user-given vector draviimg regular
and near-regular texture-maps. In the process of texture drapingrttbiecan deform
the texture to suggest folds, ripples, or any other deformation that suistibigs intent.
The proposed model achieves compelling results without requiring the titdia 3D
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model. As before, diffusion curves only represent image discontinuitiesthis makes
them a “lighter representation” to use in the creation process.

— Shading in vector graphics is generally represented through colatigas. While dif-
fusion curves can represent complex shading via color variations, adtllecouple
shading from color is also proposed in the course of this thesis. This al@artist to
change the illumination in the drawing, without altering the underlying materiak.colo
Additionally, such a shading can be applied to mixed textured and non-texdlmments
to obtain a unified-looking illumination for the entire scene.

— Finally, the prototype system designed for creating and editing vectaosidiff curves
is real-time. This is due to a GPU-accelerated rendering proposed in thisangutu
As demonstrated by the resulting drawings, this allows artists to interactiveiyrdand
manipulate color, shading and textures in 2D vector images.

A second contribution is &ectorizationmethod that captures the complex color variations
present in a raster image and transforms them into vector diffusion cuiMes proposed
approach relies on detecting discontinuities in a bitmap, and extracting caldslanalong
these discontinuities, to approach in vector graphics the realistic aspastef photographs.

And lastly, a contour-baseister representatioms proved a powerful tool for creating en-
hanced representations of photographs. Image discontinuities, augmeétitein importance
value, are used to guide user manipulations and to preserve relevantdordaget.

2 Perspective

The use of contours as the basic image element has been shown to berfalpgooekfor rep-
resenting complex imagery, while still preserving a simplified and easy-to matepstruc-
ture. Coupled with the descriptive power of vector graphics, contased representations can
achieve an extraordinary level of control over the creation pro&ssasing such an approach,
a number of aspects of image creation can be explored.

2.1 Vector textures

Considering textures, the work described in this manuscript concentratesy to allow users
to drape a fabric-like texture map in a 2D image, via texture deformation aritiopasy.
However, textures have a complicated nature, and it will be interesting fib fpoo the vector
capacity of describing and parameterizing textures to further study asieate behaviors.

For example, our current implementation supports a single texture per plfagaregion.
While this proved useful and convenient for the regular and neataetgxtures that are the
focus of this manuscript, this approach does not extend easily to mixeddegpproaches



[MZDO05]. An interesting area of research would be to attach texture sgigthattributes to
diffusion curves directly, diffuse these outwards and have textumgrgdynamically.

Also, given the resolution independence of a vector-based repatiserit will be interesting to
investigate level-of-detail considerations and hierarchical texturest@klan et al. [HRRGO08].

Another very interesting question is the animation of texture, for example feed2® and
3D cartoon animations. Offering an user the possibility of manipulating and &ngneaxtures
raises interesting and novel questions; it can also help enrich the vilrabdhat are currently
possible in cartoon animations. To exemplify the need for such reseaeciGaimkutsuou: The
Count of Monte Cristo” animation (Figure 7.1(a)) was acclaimed for its rictiuted appear-
ance, that set it apart from classical cartoon drawings. But umfatély the flat and static
aspect of the texture materials is very visible and visually disturbing, edlyanianovement.
The research challenge here will be to create and animate texture effectsdikbnes in the
static hand-drawing shown in Figure 7.1(b).

(a) image from the “Gankutsuou” animab) hand drawing by Shigenori Soejima
tion

Figure 7.1: Examples of cartoon drawings with texture. (a) Flat texture applied to tocar
animation. (b) Texture patterns that deform to suggest shape, in a imalgd- static drawing.

2.2 \Vectorization of shading and texture

Vectorizing a bitmap image entails, in some sense, finding the semantic meaningsezhipr
the pixel grid. This is not easy, because a single point of color enatidee characteristics
of the captured scene at that point.

To the best of our knowledge, vectorization techniques (including apgsed method) only
aim at capturing color and color gradients. No distinction is made betweetfiegsumaterial
and a cast shadow, and textures are not treated differently fromronyfpainted surfaces.
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chapter 7. Conclusion

Texture vectorization is, indeed, a standing limitation for all vectorization igoles. The
reason for this is that separating shading from reflectance and delimitingddrom object
boundaries are still open challenges in image processing.

However, recent research has made advancements in these two dordiilse. methods
that aim at fully estimating thehadingin a bitmap image [Wei01, TFA05] remain imprac-
tical for vectorization purposes (Weiss et al. [Wei01] demands sewmedes of the same
scene, and Tappen et al. [TFAO05] relies on classifiers and canramhliguate previously un-
encountered shading configurations), the related problem of shaoaval imposes more
constraints on the input, and thus has better results. Shadow removal s&hos on cast
shadows with clearly defined boundaries, and separate them from the djé iether auto-
matically [FHDO2, FDLO4] or by user interaction [MTCO07, WTBS07, SLO8lich knowledge
of shadowed regions can help the vectorization process by creatinmpeate layer for the
shadow, and preserving the uniformly-painted object in a single region.

Texturespresent in natural images are warped by scene geometry and pesspeojection.
Several papers in the last years have employed user interactions to deltimtéeatured re-
gions and locally describe the geometry supporting the textures [LLHED®,ELSO08]). For
regular textures, feature matching algorithms can be used to automaticallyetitice defor-
mations imposed on the texture by the underlying geometry [LTO5, HLELOGil& user
interactions could be utilized to infuse semantic meaning into the vectorizatioags.otex-
tures, for example, could be represented as a warped grid of vectteizds, over a vectorized
version of the supporting object.

(a) Ouidah Woman (b) detail
© Alicia St. Rose

Figure 7.2: Example of hyperrealism art. Pastel on pag@rAlicia St. Rose.

On a more general level, expressing the real world through mathematicalsriuas been
extensively studied and used in 3D applications, and realistic “illusion woclkais now be
created. This knowledge of “how the real world can be designed” deailthcorporated into
2D contour-based vector graphics, to allow the creation of ever-manplea 2D artworks,
both in a realistic and expressive manner.



Another source of inspiration for creating a “convincing illusion” couladie the technique of
the hyperrealism (Figure 7.2), where a very realistic look is used to tratisattist's personal
view and message [Ros06]. As is the case with many other painting styleybedalist art

usually starts with a line drawirg

1Seehttp://www.aliciastrose.com/ for a “making of” example of hyperrealism
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Diffusion Curves Interface

This appendix describes the graphics interface used by artists to andateaipulate diffusion
curves in the manner presented in Chapter 4. The screenshot in Figusshéws the two
principal windows used in our GUI:
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Figure A.1: Diffusion curves main window.
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(1) The Main Toolboxprovides access to all the proposed interaction tools. It contains the
highest level menu, a set of icon buttons that can be used to select todlsagaous
toggles.

(2) The Diffusion Curvesvindow is the canvas inside which diffusion curves are drawn and
manipulated.

With the proposed GUI, an user can create diffusion curves images inteps.s(1) The
starting point is drawing a curve inside thide Diffusion Curvesvindow, as described in
Section 1. (2) Each attribute of the created curve is afterwards indepgyckdited to fit
the user’s intent. The tools allowing these manipulations are presented inrSe2ti8 and
4. The sections dedicated to editing reproduce the organization in Chajltes #vay, each
manipulation from the “Creation and Manipulation” chapter has a counterpéne current
appendix, that describes the interface tools developed for the spesmiitanh.

1 Drawing a diffusion curve

The tool used for draw a diffusion curve is tbeaw tool from the Main Toolbox.

ﬁZ Draw tool: Draw a curve in free hand style.

The Draw tool lets the user trace a curve inside the Diffusion curves winae if drawing
with pencil on paper. This gives the shape of the curve, while the othdneaés described in
Chapter 3(left and right color, blur, normals afudv) texture coordinates) are automatically
added to the curve extremities. Initial color and blur values can be giviemebérawing, as
described in Table A.1.

In the editing step, the curve’s shape and the other attached attributes can each bednodifi
separately. To ensure independent manipulations, the user has atploisadlia different set

of tools for each attribute. But all sets share a similar editing pipeline, arel d@onsistent
behavior:

— First, the user selects a tool from th&in Toolboxto indicate what attribute is being
modified.

— Left Clickis used to change the attribute values of existing control points.

— To adjust the placement of control points, Right Clickis employed. On right clicking,
a pop-up menu permits the addition and the deletion of control points. Othextiomes,
specific to the selected attribute, are also shown in the pop-up menu.
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Example of a diffusion curve.

A diffusion curve has a differemiolor on each side. Prior
M Left Color ¥ [/ Right Color [¥]  to drawing, the pen colors can be chosen by clicking on
the Left color and Right color buttons.

Alur: = . Blurvalues can be defined for a curve. An initial blur can
' be chosen before drawing, with the spline blur slider.

A curve hasnormalattributes on both sides. The default
normal values point toward the viewer ( the drawing is
seen from the front).

A diffusion curve haqu,v) texture coordinates defined
on either side. The initial values are set to the geometric
position of the curve, so the texture will lie flat inside a
drawing region.

Table A.1: Diffusion curve attributes: A description of all the attributes attached to the the
diffusion curve’s shape, and their default behavior. Some of the attgtmae be set prior to
drawing using the tools in the left column.

2 Editing the shape and color

This section describes the tools developed in our GUI to enable the editingtiops from
Section 4.1.

2.1 Manual creation

The shape and color attributes are independently edited, and diffesstare available for
each of two attributes. Ahape given by a Ezier spline, can be modified by using tedify
Shapeool from the Main Toolbox.

Modify Shapédool: Select a curve in order to modify its shape.

To deform a diffusion curve, the following steps are needed:
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(1) Select theModify Shapeool.

(2) Select the curve. At this point, theéBier controls are made visible, as shown in Ta-
ble A.2 (a). The control points are drawn in red, while the correspontdingents are
colored in grey.

(3) Position the mouse point on a control point and select it witbftaclick. Holding the
left button pressed while moving the mouse moves the control point inside tivasca
(Table A.2 (b)).

The same select-and-drag action can be used to move the entire curvanifuke left click
is inside the curve selection box (Table A.2 (c)), but not on the contiotgo

@)

(b) Click Left oncontrol points mod-
ify their position.

(c) Click Left inside the curveselec-
tion box move the curve.

Table A.2: The Left Click options for shape editingThe shape controls shown in (a) can be
repositioned by dragging-and-dropping them (b). The entire curvebamoved in the same
way (c).

To modify the number of Bzier control points, th&ight Clickis used. For a curve selected
with the Modify Shapeool, right clicking pops up a specific menu, illustrated in Table A.3 (a).
This menu allows the user to add a control point at the mouse position (Tabi@))\.®r to
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delete the closest control point (Table A.3 (c)). A third possibility is to splitilinee in two at
the mouse position, as in Table A.3 (d).

(@)

Add contral paint
Delete contral paink
Split the curve

(b) Add control point.

(d) Split the curve.

Table A.3: TheRight Click options (a) Screen capture of the menu choices when the 'Modify
Shape’ mode is active. (b)-(d) The result after applying each menuroptidhe initial curve.
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The diffusion curve’scolors and blur are edited with théviodify Color tool from the Main
Toolbox.

Modify Colortool: Select a curve and edit its colors and blur.

To change the value of color and blur control points, the user has to:

(1) Select theModify Colortool.

(2) Select the curve. This displays the curve’s color and blur continitg. As illustrated
in Table A.4 (a), the curve has two sets of color control points, one fcin sale; these
controls are indicated by colored dots on the left and right of the curive.cBntrol points
are indicated by grey-level dots placed on the curve.

(3) Select a control point bieft clickingon it. To change the color of a selected control,
several options are possible, illustrated in Table A.4. When a blur conteallésted, a
slider dialog pops up and allows the user to modify the blur value.

By default, a drawn curve has color and blur controls only at the efmiigooTo manage the
number of controls for a curve selected with the Modify Color tool, the uasrtdright click
on the curve. This displays a menu with add and delete options for the lefscthe right
colors, and for the blur (Figure A.2).

) ndd Left Color
Delete Left Color

@ Add right Color
Delete Right Colar

Add Blur
Delete Blur

Figure A.2: Right Click menu Screen capture of the menu options for the "Modify Color’
tool. Color and blur controls can be added or deleted this way.
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Select a curve with thislod-

(@) ify Color tool.

Click Lefton color controls
to select them. Change col-
ors using the color setting
dialog:

Set Calor [x]

(b)

Basic colors

HEEEEEENC
NN
]
I (]
I (]
HEEEEENCOO]

-

Custam color:

-------EI
OEEEEENT]

Define Custom Celors >3

[ Add to Custom Color:

Paste a color bucket color on color points touched by a

© left click.

Pick a color in the drawing and fill in the color bucket.
Another way of defining the color in the color bucket is
by using the color dialog.

(d)

™ M

(e) :}{ Switch colors for the selected curve (Left Right).

Table A.4: Color changing options:The colors of a selected curve are changed by uk#ft
Click and a number of other tools. The 'Modify Color’ tool is activated.
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appendix A. Diffusion Curves Interface
2.2 Tracing animage

The “Manual creation” section focussed on the tools needed by usens gveating an image
completely from scratch. Another possibility is to rely on an existing image fatamece
(Section 4.1.2). For this, our GUI proposes a new set of tools that lets#rautilize a bitmap
image as a starting point, and manuaibce over parts of the image. The colors are recovered
automatically from the underlying image.

The steps necessary to trace over a bitmap image are explained belowgiabThe table
gives the steps in order, by illustrating the interface tools used (in the Iefincd and by
showing the effect of each tool (the right column).

(@) File—Load bitmap Load a bitmap

(b) Show Bitmap Toggle the bitmap display.

(© Draw a curve over a bitmap.
ﬁz -
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Read the colors in the bitmap and transfer

(e) them to the curve.

® Final result.

Table A.5: Steps to trace over an imagda) First, load the support image by using the File
menu from the Main Toolbox. (b) In the Diffusion curves window, show itheap image
instead of the current diffusion curves drawing by checking the ‘Showap button’. (c)
Draw a curve over an image feature. (d) Position the curve over thetéxege disconti-
nuity by repeatedly pressing the Magnet button. This automatically attractsuiive to the
closest discontinuity. (e) When the curve is correctly placed over thesinsagple the colors
by pressing the ‘Pick colors’ button. (f) Repeating the process for all thexdsting image
features, a diffusion curves drawing with compelling coloring is obtained.
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appendix A. Diffusion Curves Interface
2.3 Global manipulation

As diffusion curves are mark the drawing discontinuities, global deformgipplied to their
shape reflect in coherent stylization effects for the drawing (SectiaB)4.Global modifica-
tions of diffusion curves color and blur attributes are also seamlessly aéebjin the drawing.

Our GUI includes tools that allow the user to select multiple curves and to appbus editing
operations on the entire selection. The multiple curve selection is done byMsitiggelection
tool.

Multi-selectiontool: Select multiple curves that will undergo the same
transformations.

— Shift+ Left Clickadds the chosen curve to the multi-selection.

— Ctrl + Left Clicklets the user scribble over the image. Every curve
touched by the scribble is selected.

To add a curve to the multi-selection, two ways are proposed. One is to dictickyon the
curve; the other is to scribble over an area in the drawing, and all ctivaeare scribbled over
are added to the selection. This second type of selection is illustrated in Ridlre

Figure A.3: Multi-selection using scribblesWhen the Multi-selection tool is active, holding
Ctrl - LeftClick lets the user scribble over the curves he wishes to select.

Several global editions are available in our GUI for a multiple curve selectidelete and
Copy/Paste operations can be applied globally by usingtliemenu from the Main Toolbox,
or by typing the corresponding keyboard shortcuts (see Figure Aatdoreen capture).

Other global operators in our GUI modify either thlgapeof the selected curves — by smooth-
ing or sharpening them — or tfmlor — by globally changing the contrast. These effects are
demonstrated on a single curve in Table A.6.
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Figure A.4: The Edit menu: Screen capture of the Main Toolbox, with the Edit menu dis-

played. This menu allows the copy, cut, paste and delete operations for onétiple selected
curves.
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Shape smoothing or sharpening:
N p g p g
N

Initial drawing Sharpening

Contrast modification:

Increased contrast Lowered constrast

Table A.6: Global manipulations: These operations can be applied to multiple curves at once.
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3 Manipulating the shading

To define and manipulate the shading, the diffusion curves system relinerorals as is
explained in Section 4.2. Normals are positioned the same way the colors dhe, left- and
right-side of a curve, and they are edited using tools similar to the color tostgided in
Section 2.1. When th®lodify Normalstool is activated, selecting a curve shows the attached
normal values.

Modify Normalstool: Select a curve in order to manipulate its normal val-
ues.

Left Click on a normal control point selects the control point and lets the user defiresy
value via a normal widget (Figure A.5).

Figure A.5: The normal widget Screen captures of the normal values being defined along a
diffusion curve.

Adding and deleting normal control points can be doneidlyt clicking on the selected curve
(Figure A.6). New control points can thus be added at the mouse positiloer;, ® the left or
to the right of the curve. When deleting points, the point closest to the masstgop on the
chosen side (left or right) is marked for deletion.

The menu displayed when using the right click also allows an user to spemifynbrmal
values are defined and interpolated along the curve. When the ‘Coowé&bncave’ setting
is selected, the normals are oriented along the instantaneous normal toviadrcsuch a way
that the surface implied by the normals is convex, respectively conaatigisiset-up, only the
slope orthogonal to the diffusion curve is given by the user. When the dlpition — the ‘Free
mode’ — is selected, the user can specify the complete normal vector, antdréstricted to a
fully convex or an entirely concave side.

Using the normal values, the shading of an image from a digh positionis automatically
computed. The light can be interactively positioned by the user throughsta@fuvarious
interface tools, shown in Figure A.7. The shading tools from the Main Toc#low an user
to define:

— the light and shadow coloring;

— the light position;

— the desired material properties (the diffuse and specular term).



116 | appendix A. Diffusion Curves Interface

) addLeft Normal
Delete Left Narmal

o Left side: COMWER

Lefr side: COMCAYE
Left side: FREE

. add Right: Mormal
Delete Right Narmal

W Right side: CORVER
Right side; CONCAYE
Right side: FREE

Figure A.6: The Right Click menu Screen capture of the menu choices when the ‘Modify
Normals’ tool is active.

The light(x,y) position can equally be changed by using lheve Lightdialog. This allows
the user to place the light at the desired positioned with a simple drag-apdxdiion. The
re-lighting results, exemplified in Figure A.8, are updated in real time.

arp Fackor J

[ Light Color ] [.Shaduw Colar ] Move Light ®

(0,0 u 1,00
Light Position: ¥ ———
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Figure A.7: The shading interface toots (a) The shading tools from the Main Toolbox.
(b) The ‘Move Light’ dialog, that allows the user to change the light positiprdiag-and-

dropping.
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Figure A.8: The re-lighting results(a) Unshaded drawing. (b) and (c) Shading results for
two different light positions.

4 Adding textures

To create a textured design, three steps are proposed in Section #F8s{1the user creates
a texture with motifs of variable color and shape. (2) A line drawing is dedigyritn diffusion
curves, and is used as a support drawing for the textures. (3) Ttuedsxare positioned inside
the support drawing and deformed to reflect the user’s intention. Stepiidbe accomplished
using the tools described in Sections 2 and 3. For the first and third sepsnterface tools
are included in our GUI.

4.1 Creating the texture-map

The texture-map creation tools allow users to creatgilar and near-regulartextures. To
draw new textures, th€reate texturesnode has to be activated by clicking on the ‘Create
texture’ button in the Main Toolbox menu. In texture mode, any drawing dgnéhé user

is replicated throughout a grid, as in Figure A.9 (a). The highlighted gudusgis the user-
defined texture element, whereas all the surrounding elements are autdyngéicarated. The
grid spacing can be modified by the user (Figure A.9 (b)) by draggingitiéiges horizontally

or vertically; the texture is automatically recreated after each grid modification.

To create near-regular textures, the user has the option of defining mulkipleetelements
(or texels). The remaining, automatically generated texture instances iaterpetween the
user-defined patterns to create the texture. A new user defined elenueaaisd byright
clickingin a grid square, and choosing ‘Add new texel’ from the displayed mene usar can
subsequently edit the colors, shapes and normal values of the neadgattexture element, as
illustrated in Figure A.9 (c). When the user adds or deletes a control goirgémetry, color
or normals), the corresponding controls in all user-defined texeldaedzor deleted. This is
done to preserve the point-to-point correspondence needed fantthreatic texel generation.
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Figure A.9: The regular and near-regular texturega) A user drawing (highlighted square)
is replicated in a grid, to form a regular texture. (b) Grid spacing is modified pattern
is automatically regenerated. (c) Two user-defined texture elementdidited) are used to
create a near-regular texture.

4.2 Draping textures

Texture attachment The created texture maps or, optionally, an arbitrary bitmap, can be
added to the support drawing. Managing the texture inclusion is donddmxtiag thelnclude
texturesmode.

Include texturesool: Manage the textures attached to the support drawing:
add, delete, and reposition textures.

Once this mode is activated, the user can assign a texture to any regioseghisiothe draw-
ing’s lines byright clickinginside the region. A menu is then displayed that, aside from adding
a texture, allows the deletion or the reusing of already defined texturag¢Mg10 (a)).

Add a texture

Delete a texture
Use texture 1
Use texture 2
Use texture 3

@) (b)

Figure A.10: The Right Click menu (a) Screen capture of the menu choices when the
‘Include textures’ mode is active. (b) The added texture, with its attachpoant.
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When attaching new textures to the drawing, the clicked point becomes thienad¢tacpoint
and defines the place where the texture center is found (Figure A.10 Thp texture can
afterwards be re-positioned by dragging-and-dropping its attachroarittp the new location.

Texture warping To complete the texture integration into the diffusion curves drawing, de-
formations can be applied to the texture maps, to suggest scenic depdtesoiientation or
other artistic intentions. These distortions rely on two attributes — normalguamdcoordi-
nates — attached to curves in the supporting drawing.

The interface tools for defining the normals have been detailed in Sectiore3u;M) manip-
ulation tools rely on similar interaction techniques. First, to acces@the values, theviodify
(u,v)smode has to be selected.

Modify (u,v)stool: View the (u,v) control points when a curve is selected
\ and activate the tools used for manipulating thev) attribute.

In this mode, the(u,v) control points are shown when a curve is selected. To modify the
correspondingu,v) value, a control point has to first be selected blefa click; a dialog
window (Figure A.11 (a)) allows to user to specify a new value.

Specify Texture Euurdlnate 3]
0,0

* 0 Add Left Texture Coordinate

Delete Left Texture Coordinate

. Add Right Texture Coordinate
Delete Right Texture Coordinate

USE as texture coordinates

Pick kexcture coordinates

TATaTaTaTa
0,13 {u=0.43,v=0.37) (1,13

(@) (b)

Figure A.11: The (u,v) manipulation tools (a) The dialog window used to define néwyv)
values. (b) Screen capture of TReght Click menu.

Control points can be added or deletedigit clickingon the curve. As for the other diffusion
curves attributes, this displays a menu with several options. In the césgsid, the proposed
actions, shown in Figure A.11 (b), allow the user to manage the control @oieither side of
the curve, but also let him choose whether the curve in its entirety diffuses coordinates
or not (the ‘USE as texture coordinates’ option). Another option speoifice (u,Vv) attribute
is ‘Pick texture coordinates’, which automatically generates control poiatsthate the least
possible distortion in the texture.
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5 Assistance tools

Up until now, we have focussed on describing the tools and menus thatailoser to define
diffusion curves. The proposed GUI also contains other interface thatsdo not directly
enable users to manage diffusion curves, but are there to aid in theveneaicess.

Image navigatioriools, for example, allow the user to easily navigate through the artwork, to
set zoom levels and to move the visible parts of the image (Table A.7 (a)). Autlifiderface
toolstoggledifferent image views, such as the image of normals or planar map (Tabl&®..7 (
And finally, drawings and textures can be saved and openedFilétimenu (Table A.7 (c)).

@

Zoom forward Zoom backward Pan
) Shiowe Splines ActivateBlur [ show Marmals
. . Toggle blur computa- Toggle normal map
Toggle splines display. tion. display.
M MainWindow M=
File [
Load XL
Save as xML
Save asPng
(© Keyfrarning
Load Bitmap

Load Texture
Save Texture

B
@] (7]
3

Table A.7: Assistance toots (a) Image navigation tools. (b) Various toggles. (c) Screen
capture of the ‘File’ menu options



Texture Structural Definition

The term “visual textures” describes the perceived appearancetefiaia and support sur-
faces in the real or depicted world. The vastness of the visual textues gpd their often
contradictory properties make a unified description of textures difficule dsual practice is
then to define textures from a certain perspective of their nature. Cetegd texture def-

inition include statistical models, models based on spatial frequency filtengstauctural

approaches.

In the context of vector graphics, texture representation models tendtaiotural techniques.
This is because vector graphics systems are strongly user-orientigtieastructural definition
comes directly from the human interpretation of perceived patterns.stristural approach
originally proposed by Haralick in 1973 ([HSD73]), considers a texagran “organized area
phenomenon” which can be decomposed into “primitives” having speciitasjglistributions.
For instance, each texture in Figure B.1 is composed of particular textuneelg, e.g. objects
(bricks), shapes (jigsaw pieces), or simply color patterns. These pmsidite organized in a
particular spatial structure indicating certain underlying placement rules.

Yanxi Liu et al. [LLHO4,LT05] and Wen-Chieh Lin et al. [LHW04] have recently proposed a
structural characterization that classify textures as:

1. Regular texturesThis refers to periodic patterns where the color and shape of all texture

primitives are repeating in equal intervals.

2. Near-regular textures These textures, while having recognizable primitives and struc-

ture periodicity, depart slightly from regular tiling along different axesappearance,
and thus could have:

e A regular structural layout but irregular color appearance in indadidiles (like
the brick texture in Figure B.1).

o A distorted spatial layout but topologically regular alterations in color (tHeobo
right image in the near-regular textures set in Figure B.1).
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e Small deviations from regularity in both structural placement and color (fever
examples in Figure B.1).

3. Irregular textures Here, the texture elements have individually discernable shapes, but
they vary in appearance. The distribution, while irregular, follows cerienules.

4. Near-stochastic texture$n near-stochastic textures, individual elements are less distin-
guishable. The general aspect is that of patches of color randomiipdistt.

5. Stochastic textureS hese are noise textures.

- 5 3 ~x

regular near-regular irregula near-stochastic stochastic

Figure B.1: Texture structural organization Texture types, considering the texture elements
appearance and their planar distribution. Image taken from the “Negufar texture analysis
and manipulation” paper [LLHO04]
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