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avons fait ensemble, Barcelone et la Californie. L’ambiance qu’il sait faire r´egner au sein de l’´equipe est une
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C’est grâceà lui età Mark de Berg que sont n´ees les id´ees du chapitre 5. Leo m’a impressionn´e par l’élégance
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surprennent pas du tout. Merci a Rara d’avoir ´eté la maman de tous les th´esards. Pardon pour les retouches
d’image et pour le calimero. St´ephane et elle ont partag´e mes premi`eres publis dans un contexte pas toujours
facile. Merci a Fred Cazals pour son dynamisme, le confit de canard de sa m`ere, les discussions boulot, les
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Introduction

Des sciences d´emonstratives, la plus belle est celle
à laquelle participe la science physique et la sci-
ence géométrique, car de la science physique elle em-
prunte la perception, et de la science g´eométrique les
démonstrations g´eométriques. Je n’ai rien trouv´e où se
réunissent ces deux arts de plus beau ni de plus parfait
que la science des rayons...

Ibn LUQA (mathématicien arabe du IXe si`ecle)

isibility computations are central in many computer graphics methods. Some of the most com-
mon include the computation of the objects visible from a viewpoint, the computation of umbra
and penumbra. Recent techniques such as global illumination simulations require a more global
information, since the mutual visibility of all pairs of points of a scene must be determined. In

many cases, visibility is the bottleneck, requiring the development of efficient solutions.
Unfortunately, visibility is intricate to comprehend. It is by nature global; a far away object can be visible,

and spatially distant objects can have complex interactions. Previous approaches have tried to answer precise
queries, and have not really sought to understand the coherence and the globality of the visibility properties of
a 3D scene. This thesis first attempts to compensate for this lack of a framework permitting the description of
visibility. We will then try to exploit this better understanding to develop solutions which are new and efficient.

We start this introduction with a brief historical background to place this thesis in the context of visibility
computations. We then present our motivations and the points which make 3D visibility difficult. We out-
line our approach and our aims, before summarising our contributions. We conclude this introduction with a
presentation of the structure of this document.

Context

The evolution of computer graphics has been different from that of classic painting. In painting, perspective
projection was ignored for a long time, while visibility questions in fact never really arose: it is intuitive
and evident for a human-being to determine if an object is visible as well as which object occludes another,
especially if the scene lies in front of him. The qualitative aspect (what is visible?) is immediate, while the
quantitative aspect (where do points project) was not solved until the Renaissance.

In computer graphics, perspective was implemented very early on, while treating occlusions proved much
more problematic. The qualitative intuition is hard to translate into algorithms. The first images were displayed
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8 INTRODUCTION

in wireframe: all the edges of a polyhedron are rendered, even if they are behind another object1. During the
sixties and the seventies, hidden-part removal algorithms were developed. They were then namedvisibility
algorithms. The question today seems solved in practice. Thez-buffer, algorithm, which consists in storing and
comparing object depth for each pixel, has imposed itself. Efficient implementations in specialized hardware
allow personal computer to display thousands of polygons in real-time. We will however come back to the
issue of hidden-part removal.

Shadow computations were the following challenge. Hard shadows are simple: they are caused by point
light sources. They can be seen as the part of the scene visible from the source. Most of the methods were
developed in the seventies, but the problem of hard shadow computation does not seem completely solved.
Robustness and aliasing problems remain.

Extended light sources were first studied in the eighties. As opposed to point light sources, a point in the
scene can see all, part of, or no point of the source, defining the lit region, the penumbra and the umbra. Soft
shadow computation has often been reduced to blurring hard shadows or to sampling using point light sources.
The computation of the limits of umbra and penumbra requires the treatment of complex interactions between
obstacles. No method has really imposed itself, and soft shadows are rarely used outside research laboratories.

Ray-tracing was developed in the eighties and has had great success. This method reduces any visibility
problem to an atomic query: the intersection between a light ray and the scene. This method is simple, highly
flexible and versatile, at the price of a usually high cost.

Global illuminationmethods were introduced in the mid-eighties. They attempt to simulate all light inter-
actions within a scene, in particular the interreflections. Indeed, when light reaches a surfaces, it is reflected,
and the object acts as a light source, producing indirect lighting. Shading and shadowing then consist in con-
sidering any object as a light source. This requires the computation of visibility between any pair of points of
the scene!

The size of the databases to display has dramatically increased in the nineties. CAD models are very large,
for example the entire database of the latest Boeing B777 is composed of hundreds of millions of polygons.
Users desire to walk through very large virtual environments such as entire buildings or even cities. Despite the
ever increasing speed of 3D graphics cards, the direct display of the entire scene is impossible interactively (the
latest graphics workstation by Silicon Graphics, the Onyx2 Infinite Reality, can only display 100,000 polygons
at 30 frames per seconds).

Visibility computations also occur in other fields. Computer vision is often referred to as the inverse prob-
lem of computer graphics. An object recognition method can require the consideration of any possible view of
the object, that is, performing a visibility computation for any possible viewpoint. The placement of cameras
to monitor a task performed by a robot has to avoid occlusions caused by objects of the work cell. The visual
inspection of an environment requires that any point be visible by a robot during its path.

As can be seen with this brief overview, visibility problems have evolved from point-based problems – view
from a point, hard shadows – towards more global problems – visibility of an extended light source, mutual
visibility of any pair of points. Moreover, the size of the scenes to handle has dramatically increased.

Motivations

Our motivations in this thesis are twofold and complementary: practical and theoretical. Visibility is a crucial
practical problem for many methods. Its computation is often a bottleneck, impeding the performances of
the methods used. It concurrently offers fascinating geometrical problems, whose understanding is still very
limited. We nonetheless think that the vast amount of research dedicated on the subject makes a large overview
necessary.

Practical needs

As a motivation, we are particularly interested in two applications of visibility calculation. They are motives
and not restrictions. Our work is validated by these applications, but it remains a general study of visibility
which has implications in other fields such as computer vision or robotics.

1This representation, together with black and green displays, remains in many films the mark of a 3D model and the proof of an
intensive and high-technology computer activity.
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Lighting simulation is an exciting challenge for visibility calculation. Radiosity [SP94, CW93b] is a finite-
element method which simulates all light interreflections within a scene. The lighting function is defined on a
mesh which subdivides the polygons of the scene into patches. Light interaction must be simulated for each
pair of patches, which implies the determination of their quantitative mutual visibility. The calculation cost is
thus large, and is the bottleneck of the method [HSD94].

The precision of the computation is very important because it is used to determine the illumination value of
the points of the scene. Errors yield artifacts which are very noticeable to the human eye. Current methods use
sampling-based approximation which are inaccurate and costly.

The regular meshes usually used cause aliasing artifacts (jagged shadows) in penumbra. To obtain high
quality shadows, the scene polygons have to be subdivided along shadow boundaries. This task is intricate
even when only primary sources are considered, since many blockers can have complex interactions. This is
why previous methods are complicated and prone to robustness problems. They are thus rarely used in practice.
Indirect lighting further increases the complexity of the issue, since any polygon can be a secondary light source
and cast shadows. This explains why no method handles indirect shadow boundaries for lighting simulation.

Recent advances based on a hierarchical approach [HSA91] permit the concentration of computational re-
sources on “important” energy transfers. The criterion guiding the refinement is crucial for the efficiency of the
method, and intuitively visibility should be accounted for. Unfortunately, setting the tedious and impredictable
setting of the thresholds has impeded the use of these techniques in industry.

To summarize, lighting simulation requires intensive and accurate visibility calculations between any pair of
objects, together with the determination of shadow boundaries, with respect to potentially any object. Visibility
problems are global and complex.

We are also interested in the display of very large scenes. In many cases, only a small number of objects
are actually visible. Consider the example of a walk through a city. Nearby facades occlude most of the scene
which thus does not need to be taken into account for display.Occlusion cullingconsists in quickly rejecting
groups of invisible objects, the actual image is then computed using a z-buffer to resolve occlusion between the
remaining objects.

Computations have to be conservative: an object which is visible must not be identified invisible, but the
opposite may be true since a z-buffer will eventually be used. Too conservative calculations slow down the dis-
play (because too many objects are sent to the graphics hardware) but the image is correct. Numerous methods
have been proposed to perform occlusion culling for each frame including recent hardware implementations.

However, in the context of network transmission or if the scene database is too large to fit into main mem-
ory, it is desirable to load only the visible objects. The slow speed of disk or network access and low bandwidth
make it impossible to load the visible objects for each frame. More global visibility information on the neigh-
bourhood of the viewpoint is necessary.

Previous work on this subject is restricted to cases such as the interior of buildings or to handling only
the occlusion due to a single convex blocker at a time. The cumulative occlusion caused by multiple blockers
is nevertheless crucial for a better efficiency. The size of the databases makes it impossible to perform com-
plex geometrical computation for each object. The constraints are different compared to the case of global
illumination: accuracy is less important than efficiency and the ability to handle large scenes.

A need for understanding

Most authors have attempted tosolvevisibility problems. Analysis or descriptive studies have rarely been
proposed on the nature and on the properties involved in visibility problems. The search for direct solutions
to concrete and precise problems has led to the reduction of visibility issues to problems which are better
understood. This has led to efficient solutions, but the specificity of visibility issues has often been occluded.
We believe that it is useful to better understand visibility, leading to more efficient treatment.

The community of computational geometry has been very interested in planar visibility. Work such as the
visibility complex [PV96b] provide a powerful and elegant framework to apprehend visibility properties in the
plane. Visibility problems and coherence are naturally and intimately expressed.

Unfortunately, theoretical literature is poorer when 3D visibility is concerned. Authors usually study the
theoretical complexity of problems such as view computation or ray-shooting. The results available are of-
ten reductions of algorithms, and offer little enlightenment on the involved phenomena. Even in theory, the
approach is mostly constructive and not analytical.
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A need for a synthesis

Our research has led us to read many publications related to visibility in computer graphics, but also in computer
vision, robotics and computational geometry. Many similarities exist in the problems and in the approaches
but have noticed a lack of communication between these domains. This poor knowledge of the “neighbouring”
work – ours primarily – sometimes lead to re-development of techniques, or worse, to ignoring solutions which
could solve our problems.

The number of published papers and their spreading make it difficult not to miss entire fields of the issue,
or not to get drowned by a sheer number of references.

We think it fruitful to write a survey which includes all these domains and which permits a global overview
on visibility. In particular, we believe it is interesting to make the link between approaches and to interpret
methods in different contexts. Such a synthesis may be useful to those beginning work on visibility and to
those who search for information on problems and techniques studied in different communities.

Difficulty of visibility problems

Most previous work has considered visibility as a black box which gives answers when asked queries. They
have tried to optimize the treatment of queries, and have rarely attempted to understand the structural aspects
of visibility.

We borrow the metaphor of function or equation analysis from Koenderink and van Doorn [Kv76]. Most
visibility methods permit the calculation of the values of the function: What is the point visible along this ray?
Are these two points mutually visible? Nonetheless, these queries at a point do not provide more global or
structural information which would permit a better description of the function: is it monotonic, continuous, are
there inflexions, etc.?

In this section, we outline the conceptual obstacles which make the study of visibility a difficult topic. We
first explain why a direct three dimensional approach fails. We then give intuitions which show that there is
coherence in visibility. We describe the shortcomings of previous work which deal with visibility as if objects
were transparent. We finally discuss why aspect graphs, though they are a major contribution to visibility study,
offer a framework which is not completely satisfying.

Nature of visibility

Visibility has no spatial locality. From a point in space very distant objects may be visible while closer ones
may be completely hidden. This is one of the pitfalls which explain the difficulty of studying visibility, and
why spatial approaches do not treat the basis of the problem. Visibility issues have however often been reduced
to three-dimensional problems, usually to spatial localisation or to collision detection.

Consider the example of ray-shooting. Classical methods accelerate it by optimizing the intersection of a
ray with the scene. This is usually done using a spatial structure such as a regular grid or bounding boxes which
permit the determination of the objects which are spatially close to the ray. The “collision” between the ray and
the scene is sought. Such methods have proved useful at accelerating ray-tracing. However, no understanding
is achieved. The problem has been circumvented by reducing it to a conceptually simpler problem: do two
three-dimensional entities have an intersection?

Which is the nature of visibility properties? What is the framework which permits their study and the
description of their structure? Visibility is naturally expressed using light rays. The example of ray-tracing is
paradigmatic. An image corresponds to the set of rays going through the eye, the lit regions of a scene are those
accessible by rays leaving the light sources.

Rays permit the expression of visibility problems under the following atomic form: Which is the first point
hit by a ray going from a point in a given direction? Any visibility question can be reduced to this atomic
property.

What is then the problem with three-dimensional approaches? Some of them perform computations on rays,
such as ray-tracing. Rays are however not treated as proper entities, but as sets of 3D points. The intersection
is computed with thepointsalong the ray; the question of the objectseenby the ray is not directly answered.
An intermediate representation (set of points of 3D space) has been introduced.
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Such an approach localises visibility problems in 3D space: is a point inside an object? The only structure
or coherence which can be captured is purely spatial, related to spatial proximity. We have nonetheless seen
that it is difficult to relate visibility and spatial proximity.

Visibility coherence

By coherence we mean the idea that two queries which are “close” will most of the time receive a “similar”
answer. This is the mathematical notion of continuity.

Consider a simple example such as the view from a point. This view generally exhibits strong coherence.
Consider two points which are close in the image, it is very likely that they correspond to the same object of
the scene. To describe such coherence we say that the neighbourhood of a point usually sees the same object.

If the viewpoint is moved slightly, the view will certainly be very similar; There is also coherence. There
will be a discontinuity when an object appears or disappears. Another example of coherence is given by soft
shadows: the smooth variation from lit regions to umbra regions shows that the visible part of the extended
light source varies in acoherentmanner. This coherence of a view or of the visible part of a source has been
widely studied in computer vision and in computer graphics.

This is similar to spatial proximity, since the neighbourhood in the image corresponds to a neighbourhood
of three-dimensional points. However, proximity exists between the result of close queries, not between the
result of the query and the point of view.

Line space and transparent object

Some approaches [CEG+96, MO88, Pel97b, Pel90, Pel93, Tel92a] have studied visibility by considering lines
in space. Lines are considered as entities, and three-dimensional spatial technique are not used. A dualisation
scheme permits the simplification of calculation and conceptualisation.

However, visibility is defined by the intersection of a line with the objects of the scene. All intersections
of a line are taken into account. The notion of first object seen (of visible object in fact) cannot be expressed.
Objects are treated as transparent and occlusion is ignored.

The notion of the origin of a ray is crucial. The technique of ray-classification [AK87] offers this possibility,
since a ray is described by an origin (a 3D point) and a direction. The set of objects that a group of rays may
see is computed. However, this calculation is reduced to the intersection of the embedding of the rays in 3D
space. The aforementioned problem of spatial proximity prevents the extraction of structure or coherence.

Aspect graphs

Aspect graph constitute the most successful step towards an understanding of the visibility properties of a
3D scene. They permit the description of all the possible views of a scene, grouped by similarities. It is a
fundamental data-structure, and we will use many concepts developed in this context.

In particular, aspect graphs permit the description of the qualitative changes of a view: the appearance or
disappearance of a feature.

As an analysis tool, aspect graphs are limited to the study of the views of an object. For example, they do
not permit the description or determination of the mutual visibility of objects or points of space.

Approach and aims

We now describe the approach which we have followed to address these issues, and then the criteria which have
led our work and which illustrate our aims.

Approach

This document proposes principally a morphological and phenomenological study of visibility.
As can be guessed by reading this introduction, our study of visibility will be based on the notion of

light ray, and on the expression of coherence among these light-rays. To better qualify coherence, we will be
interested in the regions where coherence is lost.
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When studying a question or a system, information is not encoded in “uniform”, continuous regions where
by definition nothing occurs. The organisation or structure are defined by discontinuities, boundaries orcatas-
trophes(in the sense of Thom [Tho72]). Most previous approaches consist in discovering a country by consid-
ering some sample points. We believe that the knowledge of its borders affords a more global understanding,
with more detachment, which does however not obviate the need for a study of interior points.

We will attempt to understand for which sets of rays visibility properties remain invariant, and where they
change. That is, which rays see the same object.

Our approach istopological. Topology is based on the notion of neighbourhood. It is particularly well suited
to formally study the notion of coherence. It permits the description of the relationships between rays which
see different objects. We will however not use a strict mathematical formalism, even though the underlying
notions will be present. We have chosen a more descriptive and concrete language.

The visibility complex of Pocchiola and Vegter [PV96b] was our initial inspiration. Our aim is to extend
these concepts to the third dimension.

Criteria

Our aim is first to develop a framework which describes the visibility properties of a three dimensional scene.
Any query or visibility property has to be easily and naturally expressed, be it simple (point seen by a ray)

or more global (limits of shadows, parts of the scene visible from a volume, set of possible views of an object).
We want to explicit the notion of coherence. We have to account for the similarity between two close

queries, and to explain where and how a change occurs.
It is desirable that this theoretical understanding lead to practical improvements, under the form of a generic

data-structure. We want to avoid to focus on particular problems, even though our work is motivated by the
aforementioned applications.

Validation has to be performed by a confrontation with concrete practical problems. The elegance and the
theoretical complexity of an approach are not enough to conclude its actual efficiency.

Contributions

The contributions of this thesis can be organised into five points described below. The three first items are based
on a study in line-space. We first describe a study and a data-structure in line space which are more fundamental
and theoretical. This leads to the development of a practical generic visibility tool, which is then applied to
lighting simulation. We have also developed an efficient visibility preprocess with respect to volumetric cells
for the display of large databases, which reduces the problem to projections on planes. Finally, we have written
a vast survey of work related to visibility.

� We have developed the3D visibility complex, a data-structure which describes all the visibility relations
within a 3D scene composed of polygons and smooth objects. It is a structure in line-space, or as we
will see it is more precisely a structure in maximal free segment space. Intuitively, the visibility complex
groups light rays which “see” the same object. The boundaries of these groups correspond to visibility
changes. In particular, they describe the limits of shadows, the locus of the appearance and disappearance
of objects when an observer moves, the so-calledvisual events.

We analyse its complexity, both using classical theoretical bounds, and also with a probabilistic study
based on a simplified model of “normal” scenes. We describe an output-sensitive construction algorithm.
We present the interpretation of different queries with the visibility complex. We have moreover extended
this approach to dynamic scenes.

� The analysis of the visibility complex and the understanding afforded have allowed us to develop a
simpler data-structure which we call thevisibility skeleton. The visibility skeleton is a graph in line-
space which describes allvisibility eventsof a scene.

We present a construction algorithm which avoids the direct treatment of of visual events which is al-
gorithmically complicated and prone to robustness problems because they describe surfaces in 3D space
which are not always planar, and which have to be intersected with the scene. We computeextremal



INTRODUCTION 13

stabbing lineswhich are the extremities of visual events in line-space. Visual events are simply de-
duced using a catalogue which reports their adjacencies with extremal stabbing lines. The strength of
this method is that it requires only simple calculations on single lines. It is moreover very local, which
explains its robustness: an error can incur incoherences only in the neighbourhood of an event, the rest of
the process is not compromised. Our algorithm permits localised “on-demand” computations and does
not require the construction of the entire structure.

This method has been implemented for polygonal scenes, and tests have been performed on scenes up to
1500 polygons. We have also implemented different queries such as the computation of the parts visible
from a vertex, the limits of umbra and penumbra, blocker lists, and the limits of the occlusions caused
by a blocker. Once the structure is built, these queries are very fast, on the order of milliseconds.

A method to incrementally update this structure after the motion of an object is also described.

� We have applied the visibility skeleton to lighting simulation using hierarchical radiosity. This permits
the efficient and exact computation of the amount of light leaving a polygon which arrives at a point. We
also use it to subdivide the mesh used to represent the lighting function along shadow boundaries. Any
polygon can be considered as a source, which is crucial for scene mainly illuminated by indirect lighting.

As opposed to previous work, our multiresolution representation of the lighting function is not piecewise
constant but piecewise linear and continuous. For this purpose, we have developed the use of lazy
wavelets with hierarchical triangulations, to handle the irregular meshes due to the limits of umbra and
penumbra.

The information encoded in the visibility skeleton is also used to decide at which level of the triangle
hierarchy a light transfer should be simulated. We use a perceptual metric. The criteria which we use
directly translate how much an artifact due to an approximation would be noticeable by a human observer.
Previous methods require the setting of arbitrary and impredictable thresholds.

Comparisons on a series of test scenes show that our methods provides a higher quality in a shorter time,
compared to one of the most recent previous approaches. The price to pay is large memory consumption.
We however propose improvements to decrease it.

� We have developed a preprocess for the display of large databases. The region where the observer moves
is subdivided into cells. For each cell, we conservatively compute the set of potentially visible objects.

Our method relies on a projection onto planes. We defineextended projectionoperators which yield
conservative tests: an invisible object may be identified visible, but no visible object can be misclassified
as invisible. Our method is the first to handle the cumulative occlusion due to multiple blockers in general
scenes in the context of visibility with respect to a volume.

We also describe anocclusion sweepwhere the scene is swept by parallel planes leaving the cell, and
where the occlusion due to small objects such as leaves within a forest aggregates.

These methods have been implemented and optimized for today’s graphics hardware for improved effi-
ciency. We can for example walk through a city composed of more than two million polygons containing
moving cars at 25 frames per second on an Onyx2.

� We present a vast survey of work related to visibility in different domains. We expose the situations in
which visibility issues arise, before proposing a classification which permits a presentation of techniques
which is not based on the domain in which they have been developed.

We attempt to propose several references and to underline similarities. We propose details on the most
important techniques, to make this overview more concrete and to make it understandable by non-
specialists of each aspect.

Thesis structure

The vast amount of work related to visibility has led us to write a survey whose size is beyond what should
be reasonably dedicated to previous work in a thesis document. We have thus decided to include it as an
independent part, and to write a brief summary of the work which are the most relevant to our research.



14 INTRODUCTION

The first chapter presents a rapid overview of papers dealing with global visibility and with visibility in
complex scenes.We then develop the3D visibility complexin chapter 2, then its simplification thevisibility
skeletonin chapter 3. Chapter 4 deals with the application of the skeleton to lighting simulation. Finally, in
chapter 5 we describe our occlusion culling preprocess using extended projections.

Some of the material presented in this thesis has been published. In the introduction of each chapter, we
indicate the additions and differences with the published papers, to help the reader who is familiar with our
work focus on the most recent developments.

The structure of the survey proposed in the second part is described in chapter 6 and is not presented here.
We conclude with a summary of our contribution and a discussion of future work.
A French version of this thesis exists, but the survey of the second part has not been translated.
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Contributions
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CHAPTER 1

Previous work

1. Les lignes droites issues de l’œil franchissent des dis-
tances d’une grande longueur ; 2. La figure circonscrite
par les rayons visuels est un cˆone qui a son sommet dans
l’œil et sa base aux limites de ce qui est vu ; 3. On voit
ce sur quoi tombent les rayons visuels, on ne voit pas ce
sur quoi ils ne tombent pas.

EUCLIDE, Optique

ITERATURE related to visibility is too vast to be exhaustively presented here. The interested
reader will find a comprehensive survey of visibility problems and techniques in second part
of this thesis. In what follows, we outline some situations where visibility calculations are
involved in computer graphics, computer vision and robotics, and we present some important

techniques to solve them. The emphasis is put on recent solutions, large scenes andglobalvisibility computa-
tion.

By global problems or methods we mean those where visibility information is required with respect to a
feature larger than a point: visibility from a surface, from a volume, or with respect to the entire scene (as
opposed to classical hidden-surface removal which considers visibility with respect to a single point).

We only briefly outline the methods. The interested reader will find more details and a more comprehensive
survey in the second part of this thesis.

We first survey the contexts in which visibility problems arise. We survey occlusion culling methods which
reject parts of a large scene hidden from a point in section 2 while visibility with respect to volumes is covered
in section 3. Limits of umbra are treated in section 4. Section 5 presents theaspect graph, a structure which
encodes all possible views of an object. Methods in line space are surveyed in section 6, and section 7 deals
with the update of visibility information for dynamic scenes. We conclude with a discussion of shortcomings.

17
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1 Visibility problems

1.1 Computer graphics

An important great challenge of early computer graphics was the hidden surface removal problem, which was
then a synonym for visibility. Seee.g.[FvDFH90, Rog97, SSS74] for an overview of the classical techniques,
while more theoretical results can be found in [Dor94, Ber93].

However, despite efficient dedicated, hardware implementations, the ever increasing size of the databases to
display makes achieving real-time rendering problematic. Approaches have been developed which decrease the
amount of geometry sent to the graphics hardware [Cla76, HG94]. The last decade has been particularly rich
in such techniques. These include mesh simplification [HGar, Hop96, GH97a], image-based simplification
[SLSD96, SS96a, SDB97], andocclusion cullingwhich we will introduce in the next section. This latter
technique consists of quickly rejecting parts of the geometry which are “obviously” not visible, for example if
they are hidden by a nearby large wall.

Occlusion culling can also be exploited to cope with situations where the scene database is too large to fit
into main memory, or if it has to be loaded from the network [FST92, Fun96c, COZ98]. Only visible portions
of the model, or portions which may be visible in the next few frames are loaded.

The computation of shadows, and especially soft shadows which are caused by an extended light source
is still a critical issue [WPF90, Hec87]1. In the latter case, the source as seen from a point in the scene can
be classified as invisible, completely visible or partially visible. This defines the lit part, the umbra and the
penumbra. Fundamental issues are the determination of the limits of umbra and penumbra and the robust and
efficient determination of the portion of the source visible from a point in the penumbra region.

Global illumination [CW93b, SP94, Gla95] simulates the propagation of light within a scene. If indirect
lighting is considered, each surface of the scene is considered as a source and reflects a portion of its incoming
light. Radiositymethods [CW93b, SP94] assume the objects of the scene to bediffuse, i.e. light is reflected
equally in all directions. The scene polygons are subdivided into patches on which the illumination is assumed
constant. The interaction between two patches is modeled by aform factorwhich is the proportion of light
leaving one patch which arrives at the other. The computation of these form factors is the costliest part of
the method because of the intensive visibility calculations involved [HSD94]. Moreover, a regular subdivision
of the input scene induces artifacts such as jagged shadows. A subdivision along shadow boundaries is thus
desirable to improve the quality of the resulting images.

1.2 Computer Vision

In computer vision,model-based object recognition[Pop94] attempts to match features of an image to features
of objects. This requires an efficient representation of the visibility of an object from any viewpoint.

The position of sensors has a dramatic influence on many vision tasks.Active vision[AAA +92, RM97,
TAT95] adapts sensor placement to given tasks. Optimal visibility of a scene or feature is often sought, which
requires a complex optimization depending on visibility from many viewpoints.

1.3 Robotics

The deduction of the position of a robot from its current view [GMR95, SON96, TA96] is highly similar to
the object recognition problem. Given a map of its environment, the robot has to recognise the structure of the
visible walls.

Recently, the problem of finding an unpredictable intruder with a mobile robot has been raised, also referred
to asvisibility-based pursuit-evasion[GLLL98]. The path of the robot has to be planned such that it searches
each region of the scene, and such that the intruder can not go from an un-visited region to a visited one without
being seen.

1In a discussion with Dan Wexler from Pacific Data Images, he stated that hard shadows are still a critical issue in production rendering.
The problems of aliasing and numerical precision are still involved. Moreover, if tricks exist to obtain soft shadows, a method to efficiently
and robustly handle penumbra is desirable.
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Figure 1.1: Occlusion culling using occlusion maps.NodeA of the occludee hierarchy is tested against the
occlusion map. Since its projection lies in the projection of the occluders, it is hidden.

2 On-line occlusion culling

The idea ofocclusion cullinghas been proposed in the seventies [Jon71, Cla76], but it is only recently that the
size of the 3D databases has imposed its practical use.

We present hereon-line techniques, in which occlusion computations are performed for each frame with
respect to the current viewpoint. The scheme is similar for all these methods, inspired by the efficient algorithm
used for view-frustum culling [GBW90].

The scene is organised in a hierarchy of bounding volumes. Before rendering each node of the hierarchy, its
bounding box is tested for occlusion. If the test fails, all children are discarded. Otherwise, they are recursively
tested. Methods differ in the way the occlusion test is performed, and if occlusion caused by all objects are
taken into account or if a subset of special occluders first has to be chosen.

2.1 Hierarchical z-buffer and Hierarchical occlusion maps

Greeneet al. [GKM93, Gre96] proposed extension of z-buffer hardware to perform the occlusion test in image-
space and take all occlusions into account. As the image is generated, the bounding box of each node of the
hierarchy is sent to the hardware for depth-comparison with the current z-values (but no pixel is actually drawn).
This test is optimized through the use of a depth pyramid which avoids the depth comparison for each pixel
spanned by the bounding box. This explains the name of the method, theHierarchical Z-buffer.

Nodes of the hierarchy are rendered roughly from front to back, and the depth pyramid is maintained as
each object is rendered. This method providesoccluder fusion, that is, the cumulative occlusion caused by
multiple occluders is taken into account because of the natural aggregation in image-space.

Unfortunately, this requires a modification of the graphics hardware for efficient z-value queries and depth
pyramid maintenance. Zhanget al. [ZMHH97, Zha98b] propose theHierarchical Occlusion Mapwhich
alleviates these requirements (Fig. 1.1). A (large) subset of nearby occluders is first rendered, and an occlusion
map is read from the graphics buffer. Only one query is made to the hardware. This occlusion map is also
organised into a pyramid for efficient occlusion tests. (Note however that theoverlap testis differentiated
from thedepth test, i.e. it is first determined if a node projection overlaps the occluder projection, then if
the node is behind the occluders. This is particularly important to perform approximate computations. See
[ZMHH97, Zha98b] for details).

2.2 Convex occluders and visual events

Coorg and Teller [CT96, CT97b] have chosen an object-space approach where occlusion with respect to some
large convex occluders is handled. Each occluder defines ashadow volume[Cro77] or shadow frustum (infinite
truncated pyramid whose apex is the viewpoint) against which the nodes of the hierarchy can be classified as
visible, partially visible or occluded.
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Figure 1.2: Occlusion culling and visual events. NodeA of the occludee hierarchy will become completely
hidden ifever the viewpoint crosses the wedge of the visual event.

Temporal coherenceis used to maintain this classification. They note that for smooth observer motion,
visibility changes occur only in the neighbourhood of the partially visible nodes. Moreover, these changes
occur only when avisual eventis crossed (see Fig. 1.2). They consider visual events defined by supporting or
separating planes, that is, planes which are tangent to the occluder and a node.

They maintain a list of visual events, detect when the viewpoint crosses them, and consequently update the
visibility status and the list of events.

The main drawback of this approach is that occluder fusion is not handled since only objects completely
hidden by a single convex occluder are discarded. Related approaches can be found in [HMC+97, BHS98,
HZ81, HZ82].

2.3 Occluder shadow footprints

Recently Wonka and Schmalstieg [WS99] have proposed an efficient method for city-like scenes. They exploit
the fact that cities can be seen asheight fields, i.e. they can be modeled by a functionz= f (x;y). The occlusion
caused by a house occurs inside a shadow volume whose apex is the viewpoint. This shadow volume can also
be modeled as a functionz= f (x;y) because a house lies on the ground. An object is hidden if it is below the
shadow volumes of the houses.

They use the graphics hardware to represent and test those functions. An orthographic view from above the
scene is used, the z-buffer storing the functionsz= f (x;y). Wedges defining the shadow volumes are rasterized,
and nodes of the scene hierarchy are discarded if the z-test determines that they lie below the shadow volumes.

3 Shafts and portal sequences

As seen in the previous section, visibility with respect to points has often been characterized using frusta. We
now present the extension of this concept to visibility from an area or from a volume, where a single apex is no
longer sufficient to define portions of space where occlusion occurs.

3.1 Shaft culling

Haines and Wallace [HW91] have developed shaft-culling to speed-up form-factor visibility computation. They
note that the blockers likely to cause occlusion between two objects lie in the approximate convex hull of the
objects, calledshaftin this context (Fig. 1.4). They devised an efficient algorithms to rapidly determine objects
intersecting a shaft.

Zhao and Dobkin [ZD93] also proposed a shaft-method where triangles of a scene are preprocessed in
a multidimensional space for efficient shaft-triangle intersection. See also [TH93] where shafts are used to
maintain lists of blockers in a radiosity context.



3. SHAFTS AND PORTAL SEQUENCES 21

building

occluder shadow wedge

occluder shadow
footprint

hidden object

Figure 1.3: Occlusion culling using shadow footprints.
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Figure 1.4: Shaft culling. ObjectC intersects the shaft betweenA andB, it is thus considered for visibility computation.

3.2 Architectural environments and portals

Airey [Air90] and Teller [Tel92b, TS91, TH93] have performed conservative visibility preprocessing in archi-
tectural scenes. The principle is to determine the portion of the scene which is visible from each room (also
calledcells). Note that visibility is here defined with respect to any point in the room.

Theportals are exploited. A cell is visible from another cell only through a sequence of portals, that is,
if there exists a sightline whichstabsthe portals. Visibility is propagated in a depth-first traversal. Visibility
through a sequence of portals can be sampled using ray-casting or a s-buffer [Air90], computed using linear
programming if the 2D floorplan of the scene is considered [TS91], or for general 3D portals by maintaining a
list of separating and supporting planes [TH93].

This provides cell-to-cell visibility (which cells can a given cell see?). Teller [Tel92b, TS91] then refines
Cell-to-object visibility by testing objects inside a visible cell against a shaft-like structure defined by the
sequence of portals. Finally, at each cell, thepotentially visible set(PVS) is stored. It contains all the objects
which have been determined to be potentially visible from the cell.

During real-time rendering, the potentially visible sets are used to restrict the geometry sent to the graphics
hardware. This information can be refined using eye-to-object visibility with a computation similar to that
presented in section 2.2 which takes advantage of the precomputed sequence of portals. The PVS information
can be used for database pre-fetching [FST92, Fun96c], which is a key-feature of the method.

This preprocessing has also been applied to radiosity simulations [ARB90, TH93, TFFH94, Fun96b] where
it allows the computation of light interactions only for pairs of mutually visible polygons.

Luebke and George [LG95] also propose an on-line version where the screen-space bounding box of the
portals is used to cull the geometry of adjacent rooms.
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Figure 1.5: Visibility propagation through portals. The rooms visible from roomA are computed with a depth-
first traversal of their adjacencies. Visibility is propagated through portalspi .
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Figure 1.6: Off-line occlusion culling for convex occluders. If all rays between vertices of the viewing cell and
the occludee are blocked by the same convex occluder, then the occludee is hidden from any viewpoint within
the cell.

3.3 Off-line occlusion culling for convex occluders

Cohen-Oret al. [COFHZ98, COZ98] also propose an algorithm foroff-line occlusion culling. They are not
restricted to architectural scenes, but consider only occlusion caused by single convex objects. The region
attainable by the observer is subdivided into cells, and for each cell the visibility of the objects of the scene is
tested.

This is done by casting rays defined by pairs of vertices of the cell and the object bounding box. If all rays
are blocked by a single occluder, then by convexity the occluder hides the object from any point inside the
scene.

The obvious drawback of this approach is its inability to handle occlusion from multiple blockers. Moreover
ray-casting a huge number of rays induces a high computation time.

4 Umbra and penumbra boundaries

The computation of soft shadows also involves visibility with respect to an extended region. The methods we
expose here have first been developed as an extension of shadow volumes. The difference with the previous
section is that the expected result is here the exact boundary of soft shadows on the objects of the scene.
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Figure 1.7: Umbra and penumbra boundaries for a convex blocker. (a) Shadow volume from one vertex of the
source. (b) The umbra is the intersection of the shadow volumes, while the penumbra is their convex hull.

These boundaries are sought for two purposes: First to speed-up shadow computation by performing com-
plex calculations of the visible part of the extended light source only in the penumbra. Their second application
is the subdivision of the scene polygons along umbra boundaries for high-quality shadow rendering in lighting
simulations.

4.1 Umbra and penumbra caused by a convex blocker

The pioneering work by Nishita and Nakamae [NN85, NON85, NN83] studies the shadow caused by a convex
blocker with respect to a convex polygonal light source. They note that the umbra is the intersection of the
shadow volumes with respect to the vertices of the source. The penumbra is the convex hull of the union of
these shadow volumes (Fig. 1.7).

These volumes were used to speed up soft-shadow computations. More efficient construction algorithms
have later been proposed [Cam91, YKSC98].

4.2 Discontinuity meshing

Campbell and Fussell [CF90] were the first to subdivide a mesh along shadow boundaries. They approximate
an area light source using point-samples and then use BSPs.

Heckbert [Hec92b, Hec92a] has introduced the notion of discontinuity meshing. He proves that at a shadow
boundary aC2 discontinuity in the illumination function occurs.C1 discontinuities may also arise for de-
generate (but common) cases. He considers discontinuities generated by the interaction of edge-vertex pairs
belonging to the primary source and a blocker. These are calledEV discontinuities.

Similar approaches can be found in [LTG93, LTG92, Stu94]. Note that Hardt and Teller [HT96] also
consider some discontinuities in the indirect lighting.

4.3 Complete discontinuity meshing with backprojections

Teller [Tel92a], Drettakis and Fiume [DF94, DS96] and Stewart and Ghali [SG94] have extended discontinuity
meshing to handle all possibleC2 discontinuities. This requires the treatment of shadow boundaries generated
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Figure 1.8: EEE shadow boundary. The interaction betweenE1, E2 andE3 determines the limit between the
umbra and penumbra regions.

by the interaction of three edges, also calledEEE (see Fig. 1.8). As opposed toEV boundaries, these are not
line segments but conic curves.

Treating all discontinuities also permits a more precise classification of the penumbra region. Indeed, in
each region bounded by visibility events, the visible part of the source is qualitatively invariant. Thebackpro-
jectiondata-structure [DF94, DS96, SG94] encodes this structure of the visible part of the source. It allows fast
and precise illumination calculations.

5 The Aspect graph

The aspect graphhas been developed in computer vision for model-based object-recognition [Kv76, Kv79,
EBD92]. It is aviewer-centeredrepresentation, meaning that it encodes informations on the possible views of
the object rather than on its three dimensional structure. The principle is to partition the viewing space into
regions where the view is qualitatively invariant.

If orthographic projection is used, a view is determined by the direction of projection: the viewing space is
the direction sphereS2. In the case of perspective projection, the viewpoint can be any 3D point, the viewing
space is thus IR3.

The changes in visibility are namedvisual events. Consider the case of a polygonal object. The interaction
of an edge and a vertex is an example of visual event; A polyhedronA hidden behind another polyhedronB
will become visible when a vertex ofA is visually superimposed with a silhouette edge ofB (see Fig. 1.9).
Similarly, the conjunction of two edges can hide a third one, imposing the treatment ofEEE visual events.
Algorithms to compute the aspect graph of polyhedra include [GM90, GCS91, PD90].

These events are the same as those used in the discontinuity meshing literature. It is intuitive because they
describe where the visibility of the source changes (visual events were first developed for aspect graphs and
then adapted to shadow computation).

Curved objects can be handled as well. Visual events are described using singularity theory [Ker81, Rie92,
Rie93, PPK92, Pet92]. See the second part of this thesis for more details.

Methods similar to the aspect graph have been used for robot self-localisation [GMR95, SON96, TA96]
and for visibility based pursuit-evasion [LLG+97, GLL+97, GLLL98]
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Figure 1.10: 2D equivalent of ray-classification. Rayr is defined by its originOr and its direction~r . It is tested
only with the objects which intersect the beam defined by the intervals containingOr and~r .

6 Line space

Visibility can be elegantly expressed in terms of lines or rays. We present approaches which perform computa-
tion directly in line or ray space.

6.1 Discrete approaches

Ray classification [AK87] has been developed to speed up ray-tracing. Ray-space is defined as a five dimen-
sional space: three dimensions for the origin of a ray, and two for its direction. The space of rays is adaptively
subdivided. An interval in ray-space defines a sort of beam in object space (see Fig. 1.10 for a 2D equivalent).
Objects which potentially intersect the rays in the ray-interval are those which intersect the beam. When a ray
is cast, intersections are computed only for the objects corresponding to its interval in ray-space.

Other approaches using a discretization of line or ray-space can be found in [LMW90, CCOL98, WBP98].

6.2 Plücker space

Plücker parameterization is a powerful duality which maps lines into a five dimensional space. Note that lines
in space require only four dimensions, but no 4D parameterization is possible without singularities. The set of
lines intersecting a given line is a hyperplane in Pl¨ucker space, which allows efficient stabbing computations.
However, not all points in Pl¨ucker space correspond to a real line. Results obtained in Pl¨ucker space thus have
to be intersected with the Pl¨ucker hypersurface which is the 4D locus of real lines.
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Figure 1.11: 2D visibility complex. (a) Scene. (b) Representation in a dual space of the face of the 2D visibility
complex corresponding to segments betweenA andB.

Plücker coordinates have been used in computational geometry for example to compute lines stabbing a set
of polygons or for ray-shooting [Pel93, PS92, CEG+96]. See [Pel97b] for a survey.

Teller [Tel92a] has developed and implemented an algorithm to compute the part of space visible through
a sequence of polygonal openings. He builds the polytope in 5D space defined by the duals of the edges of the
openings, and then intersects this polytope with the Pl¨ucker hypersurface. He obtains the set ofEV andEEE
events bounding the visible region. He however later noted [TH93] that this method is prone to numerical and
degeneracy problems.

Teller and Hanrahan [TH93] also used Pl¨ucker coordinates to classify objects as visible, partially visible or
hidden through a sequence of portals. This computation is more robust because no construction is performed,
only predicates are evaluated.

6.3 The asp

The asp has been developed by Plantinga and Dyer [PD90] as an intermediate data-structure to build the aspect
graph of polyhedra. They define the asp of a polygon as the set of lines intersecting it. They note that occlusions
correspond to subtractions for the asp: if a polygonA occludes a polygonB, the asp ofA has to be subtracted
from the asp ofB.

Two definitions of the asp exist. In the orthographic case, 4 dimensional line space is considered, while if
perspective projection is used, 5 dimensional ray-space has to be considered.

The one-dimensional faces of the cellular decomposition in the orthographic case and the 2 dimensional
faces in the perspective case correspond to the visual events required to compute the aspect graph. No full
implementation is reported.

The use of the asp for view maintenance has also been proposed [PDS90, Pla93], but the implementation
reported is limited to the rotation around one axis.

6.4 The 2D visibility Complex

Pocchiola and Vegter [PV96b, PV96a] have proposed thevisibility complexof 2D scenes. It is based on the
notion ofmaximal free segmentswhich are segments whose extremities lie on objects of the scene and which do
not intersect the interior of any object. They can be seen as rays which “see” in both directions. The visibility
complex is a partition of the maximal free segments according to the objects at their extremities. The intuitive
idea is to group all rays which see the same objects.

Consider the example in Fig. 1.11(a) which shows a simple scene composed of three triangles. A duality
is used which maps lines to points (in our example, a liney= ax+b is mapped to the point(a;b)). A face of
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the 2D visibility complex corresponds to a set of segments which have two given objects at their extremities
(for example, trianglesA andB in Fig. 1.11(b)) Such a face is bounded by edges which correspond to segments
going through a vertex of a polygon (or tangent to an object in the case of smooth objects). These edges are
adjacent to vertices, which correspond to line going through two vertices of polygons.

Optimal constructions algorithms have been developed for curved [PV96b, PV96a] and polygonal objects
[Riv95, Riv97a]. The 2D visibility complex can be used to compute and maintain views [Riv97c], or for 2D
global illumination simulations [Ort97, ORDP96, DORP96].

7 Dynamic scenes

If objects in a scene move continuously, the visibility information will vary in a coherent manner. This is the
so-calledtemporal coherence. Visibility is localy constant. We review here some methods which treat this
coherence.

7.1 Shafts and motion volumes

A motion volumeis similar to a shaft: it is the volume of space swept by a moving object in a given interval
of time. Motion volumes have been used to limit the recomputation in radiosity updates [BWCG86, Sha97], in
walkthroughs [SG96] and in sensor planning in robotics [AA95].

Shaw [Sha97] and Drettakis and Sillion [DS97] detect light transfers which need recomputation by testing
the moving objects against the shafts joining the pairs of objects involved in the transfer.

7.2 BSP trees

Chrysanthou and Slater [CS92, CS95, CS97] update BSP trees by removing the dynamic objects, then re-
inserting them. They mostly apply their technique for shadow computation with point and area light sources.

7.3 4D ray-tracing

Some approaches [Gla88, MDC93, BS96, Qua96, GP91] have been proposed to speed-up the ray-tracing of
animated scenes where the motion of the objects is known in advance. Time is considered as a fourth dimension,
and a ray-object intersection is valid for a certain time-interval.

7.4 Aspect graph and discontinuity meshing

Eggertet al. [EB93] propose the extension of the aspect graph to objects with moving parts. They note that
the aspect graph changes when a temporal visual event is crossed, that is when the set of visual events of the
scene is modified because of anaccidental configurationof the object. Their analysis is however restricted to
a simple case and no implementation is reported.

Loscos and Drettakis [LD97] and Worallet al. [WWP95, WHP98] take advantage of coherence in the
update of discontinuity meshes. They note that the limits of penumbra and umbra move smoothly except at
some events where a new shadow is cast on an object or when a shadow moves off an object. The treatment of
these events forEV and certainEEE discontinuities is proposed.

8 Discussion

Despite the large amount of work dedicated to visibility, a number of questions remain without satisfactory
answers. We have identified six major issues impeding the treatment of visibility. These are namely the
understanding of visibility properties, the lack of general-purpose tools, the problem of visibility with respect
to volumes, scalability, robustness and the treatment of dynamic scenes. We develop them below with previous
work in mind.
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� 3D visibility is poorly understood since most of previous theoretical work is restricted to the 2D case.
Work in Plücker space, the aspect graph and the asp constitute first remarkable attempts to characterize
global visibility of 3D scenes as a whole. Unfortunately the aspect graph seems restricted to the enu-
meration of all possible views –it is for example not suited to the extraction of certain kinds of mutual
visibility information– and its storage complexity is large. The asp for orthographic projection does not
encode information from within the scene, while its perspective version has redundancy because visibil-
ity does not usually vary for colinear rays. Visibility coherence is moreover not really explicit in the asp
model. Plücker coordinates require five dimensions to parameterize a four dimensional space. Moreover,
occlusion is not actually handled since the methods we have surveyed consider all intersections of lines.

� Though powerful techniques have been developed for specific cases, no general purpose tool has been de-
veloped. Some (mainly theoretical) work have shown that techniques in Pl¨ucker space have applications
for different problems such as ray-shooting, mutual visibility or stabbing, but no implementation has
been presented except the work by Teller on antipenumbra [Tel92a] and blocker classification [TH93].

� Although visibility from a point has received much attention, the extension to areas and volumes is more
involved. While point-based occlusion culling techniques handle occluder fusion in general environ-
ments, cell-based methods are restricted to architectural scenes or to single convex occluders.

� The high cost of visibility calculations makes scalability issues critical. Quadratic or even linear growth
are not acceptable in regard to the explosion of the size of 3D scenes. The resort to approximate calcula-
tions seems unavoidable, which raises the crucial point of error control. Some ideas have been proposed
[SD95, SS96b, Sol98] but much remains to be done in this direction.

� Exact visibility computation such as the aspect graph or discontinuity meshing lead to involved geometric
constructions prone to robustness problems. A major issue is the treatment of visibility events, since they
define surfaces which can be ruled quadrics which have to be intersected with the scene. The issue
of robustness and numerical precision lies beyond the scope of visibility alone and is relevant to any
geometric method.

� Temporal coherence has received little attention compared to its potential benefits. Although everybody
agrees that computation could be saved, the practical methods which have been proposed have not really
capitalized on this evidence. They mainly consist in localizing a portion of space where computation has
to be re-performed in the case of the motion of one object, or using the result of the preceding frame as
an indication for the new calculation.

This thesis attempts to address these issues, focusing on the three first, even though the other points will also
be explored to a lesser extent. Chapter 2 proposes an interpretation of the visibility properties of a 3D scene.
A generic data-structure which encodes global visibility information is introduced in chapter 3 and applied
to lighting simulation in chapter 4. Chapter 5 presents an efficient method to perform occlusion culling from
a volume handling occluder fusion. The concluding chapter will propose a longer discussion of work which
remains to be done.



CHAPTER 2

The 3D Visibility Complex

L’air est plein d’une infinité de lignes rayonnantes qui
se coupent et se croisent sans se chasser l’une l’autre, et
qui reproduisent sur tout ce qu’elles rencontrent la vraie
forme de leur cause.

LéonardDE VINCI, Codex Urbinas

HIS CHAPTERstudies global visibility in line space. The most atomic visibility properties –
mutual visibility of two points, ray-shooting– are naturally expressed in line-space. We thus
explore the interpretation of line-object intersection in an appropriate dual space. Unlike stan-
dard ray-shooting acceleration techniques, our goal is not to study the fastest way to perform
computations for each ray, but to envision the incidences between a scene and the entire set of

rays in the scene to globally characterize visibilitycoherence.
Our general approach is to group the rays which “see” the same objects. This natural definition of coherence

in visibility leads to the problem of defining the boundaries of such coherent sets. Their careful study proves
fruitful for the understanding of many visibility properties. Particular attention will be given to the issue of line
vs. ray visibility: whether to take into account all intersections of a line, or characterize only the first object
intersected by a ray.

This discussion results in a new structure, which we call the3D visibility complex, which encodes all
visibility information contained in a three dimensional scene. The approach is inspired by the equivalent
2D structure [PV96b, PV96a, DP95b], although the new approach has been developed from scratch with the
specifically three-dimensional problem in mind. It will be used as a foundation for the practical tool we describe
in the next chapter and apply to lighting simulation in chapter 4.

This chapter gathers material from two papers [DDP96, DDP97b]. A more detailed discussion and com-
parison with related work has been added (section 6). The catalogue of adjacencies has been added in appendix
A as well as discussion of concave and smooth objects. In section 2.3 we have included a probabilistic study of
the complexity of our structure in “normal” scenes, and in section 3 we discuss extensions of the 3D visibility
complex to handle moving objects.

We first present the intuitions which have lead to the development of the structure. The definition is then
formalized for scenes of polygons and smooth objects, and extended in the case of moving objects. An output-
sensitive construction algorithm is presented as well as the interpretation of some visibility queries.

29
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1 Introduction to the 3D Visibility Complex

In this discussion we will first consider scenes of general convex objects. We then generalize our approach
to handle both smooth and polygonal objects. Visibility will be defined in terms of ray-object intersections.
If we consider the objects to be transparent, a ray passing through them is not blocked and all the objects a
line intersects must be considered. However, if we want to take occlusions into account, only the first object
intersected by a ray is relevant. Nevertheless, considering rays induces redundant information since many
colinear rays “see” the same object: Consider a rayr with origin A which intersects an object at pointB
(Fig. 2.1(a)). All the rays collinear tor with an originA0 betweenA andB “see” the same pointB. We can thus
group these rays into a segmentS(Fig. 2.1(b)).

A S
BA'

(a) (b)

S' S''r

Figure 2.1: Maximal free segment. (a) All the rays collinear tor whose origin is between the two spheres “see”
point B. (b) These rays are grouped into amaximal free segment S. Two other maximal free segmentsS0 and
S00 are collinear toS.

We will considermaximal free segmentswhich are segments having no intersection with the inside of the
objects and whose length is maximal (their two extremities lie on the boundary of two objects or are at infinity).
In what follows we will often refer to them simply assegments. Examples of maximal free segments are given
in Fig. 2.1(b). Segments can also be interpreted as rays which canseethe two objects at their extremities. A
3D line can be collinear to many segments, separated by the objects the line intersects (see Fig. 2.1(b)). In this
chapter, we will introduce concepts first in terms of line visibility (where all the objects intersected by a line
are considered) and then in terms of segment visibility (where the occlusions are taken into account).

We want to group the segments (or the lines) which see the same objects. A partition of the set of segments
into connected components according to their visibility is thus required. Since sets of segments are not intuitive
objects, we will try to represent them in a dual space which will afford a better understanding of intricate
visibility relationships. A suitable duality will be used for the purposes of illustration and presentation.

1.1 Duality

We use a duality which maps lines in 3D space onto points in a 4D space. We have chosen to decompose the
4 dimensions of line space into two dimensions of direction (the spherical coordinates(θ;ϕ) of the direction
vector of the lines) and a projection(u;v) onto the plane perpendicular to the line and going through the origin.
The axes of the planes are chosen such thatu is along~t^~y 1. The intersections of a line with two parallel planes
could also be used. Nonetheless, we believe that such an approach makes the interpretation of lines sharing one
coordinate harder, and as we will see, some visibility properties can not be easily described with this duality.
We call the point in 4D space associated with a line thedualof the line.

Visualising 4D space is very hard. One approach is to use slices or cross sections (in this chapter we will
fix ϕ = ct). Such a slice will be called aϕ-slice. Since each slice will be a 3D space(θ;u;v), it will sometimes
be useful to cut one more time and considerϕ andθ constant. We will obtain a 2D slice where onlyu andv
vary, composed of all the lines which are parallel and have the direction(θ;ϕ). Such a slice will be called a
θϕ-slice. These 2Dθϕ-slices are easier to handle and visualise. They justify in part the choice of the duality
because they can be interpreted as orthographic projections of the scene.

Note that this duality will be used for illustrative and presentation purposes mainly. The concepts exposed in
what follows are not inherent to any parameterization of lines (except when slices are involved). They could be
exposed using only topological notions, although we believe that a dual space greatly helps their understanding.

1Singularities occur atϕ = �
π
2 , but since we use this duality for the purpose of presentation and visualisation we can ignore them

without loss of generality.
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Figure 2.2: (a) Duality. (b) Tangency Volume of a sphere. Theθ axis (u= 0, v= 0) is shown for eachϕ-slice
providing a better 3D visualisation. In the left-handϕ-slice, which corresponds to the discontinuity in the
duality for ϕ = π

2, the “cylinder” just turns around theθ axis. The lineD intersects the object and has its dual
inside the tangency volume.

Figure 2.3: To remain tangent to an object, a line has three degrees of freedom. (a) Rotation along the contact
point. (b) Rotation backward or forward. (c) Side translation.

1.2 Tangency volumes

Line visibility

Visibility changes whenever a line becomes tangent to an object. That is, a line which is tangent to an object is
the limit between lines which intersect the object and lines which do not intersect it.

The set of lines tangent to one object is a 3-D set in the 4D dual space. This means, more intuitively, that a
line has 3 degrees of freedom while staying tangent to one object (see Fig. 2.3). We will call the dual of the set
of lines tangent to an object thetangency volumeof this object.

Fig. 2.2(b) shows a representation of the tangency volume of a sphere. For eachϕ-slice, the set of tangents
is a sort of 2D “tube”, forming a 3D structure in the 4D dual space. If we consider a 2Dθϕ-slice (horizontal in
Fig. 2.2(b)), the set of tangents sharing that direction is a circle in the dual space. This is general: because of
the definition ofu andv, the set of tangents to one object in one direction is the silhouette of the object in this
direction. It is also called itsfold.

If a line has its dual on the tangency volume, it is tangent to the object. If the dual is inside the 4D set
bounded by the tangency volume, it intersects the object, similarly to lineD on Fig. 2.2(b).
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do not intersect

intersect

do not intersect

front

back

front

back

scene

dual θϕ-slice

slice for v=ct of
the θϕ-slice

line visibility segment visibility

Figure 2.4: Visibility for θ = ct andϕ = ct. If we consider lines (on the left), visibility can be described
by a planar structure (below). But if we consider segments (on the right) we have different levels on this
plane depending on the side of the object. The set of segments which do not intersect and the sets of those that
intersect the front or the back of the object share the same boundary, the tangents to the object which correspond
to its silhouette. Recall that the Auxiliary Complex shown on the lower right is a 2D structure embedded into
3D, i.e. it is “empty”, since the points outside the surfaces have no meaning.

Segment visibility and auxiliary complex

Let us now consider visibility with occlusion. A line which intersects the object is collinear to at least two
segments, one before and one after the object.

Consider aθϕ-slice such as that on the lower left of Fig. 2.4. The sets of lines that intersect, and those
that do not intersect the object are bounded by the silhouette of the object. For segment visibility we have
to consider the segments that see the front of the object and those that see its back. Since such segments are
collinear to the same line, they are projected on the same point in the 4D line dual space. Consequently the set
of segments that see the front and the set of segments that see the back of the object are projected onto the same
position of the 4D dual space as shown in the right of Fig. 2.4. The silhouette, which is the set of tangents to
the object for the chosenθ andϕ, is incident to the three sets (front, back and no intersection). This means that
a segment tangent to the object has topological neighbours that do not intersect the objects, some that see the
front, and some that see the back.

To differentiate the segments, we add a pseudo-dimension. It is not a continuous dimension since we just
have to sort all the collinear segments. If we imposeθ = ct, ϕ = ct andv = ct, the sets of segments can be
represented by a graph shown on the lower right (it is in fact an embedding of a graph since the points on
the arcs also have a meaning). Each tangent corresponds to a vertex of the graph. This graph is a 1D structure
embedded in 2D. Similarly, for aθϕ-slice, the sets of segments are represented by a 2D structure embedded into
3D. We call the partition of the segments of direction(θ;ϕ) according to their visibility theauxiliary complex
for (θ;ϕ) (see also Fig. 2.6). It can be seen as a generalized orthographic view where all the objects, hidden or
visible, are organised into layers.

In a similar manner, aϕ-slice is in fact a 3D structure embedded into 4D, and the set of segments is a 4D
space embedded into 5D. It is a 4-manifold2 embedded in 5D .

2A n-manifold is a set for which the neighbourhood of each point is homeomorphic to IRn. The space of rays is actually non-manifold
because of the branchings of the tangency volumes. Non-manifolds are often also called manifolds for simplicity.
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Figure 2.5: Dual arrangement for two spheres.

1.3 Bitangents

Line visibility

Now consider two objects. If a line has its associated dual point inside the tangency volumes of both objects,
it intersects them both. The tangency volumes give us a partition of the dual space of the 3D lines according
to the objects they intersect. We call this partition thedual arrangement. Its topological facesare 4D sets of
lines which intersect the same objects. They are bounded by portions of the tangency volumes which are 3D.
The intersection of two tangency volumes is a 2D set corresponding to the lines tangent to the two objects
(bitangents). A bitangent corresponds to at-vertexin an image (that is, the visual intersection of two object
silhouettes).

For aϕ-slice the set of bitangents is a space curve (shown as a dashed line in Fig. 2.5 on the twoϕ-slices
on the right). It corresponds to the intersection of the two “cylinders” which are theϕ-slices of the tangency
volumes. The slice of a 4D face is a volume corresponding to the intersection of the inside of the two cylinders.

Segment visibility

An auxiliary complex for two objects is shown on Fig. 2.6 for a given direction. It is still delimited by the
silhouette of the objects, but for example the silhouette of the upper sphere has no influence on the setB of
segments that see the back of the lower sphere. Note that the two bitangents (shown in fat black lines) are
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Figure 2.6: Auxiliary Complex for two spheres. Recall that the auxiliary complex is a 2D structure embedded
in 3D. In the lower representation, only the points on the surfaces represented are associated with segments.
In the upper view, the faces of the auxiliary complex have been moved out to make their incidences easier to
understand. FaceF is infinite.

incident to all faces.
The3D visibility complexis the equivalent of the dual arrangement for segment visibility. It is the partition

of segments according to the objects at their extremities.
Fig. 2.7 is aϕ-slice forϕ = 0 of all the faces of the 3D visibility complex for the scene composed of two

spheres of Fig. 2.5. The view in a given direction is shown on the left of the cylinders, and we consider the
associated auxiliary complex shown six times on the top of the schema. Each time, a face is hatched and a
volume is drawn below which corresponds to theϕ-slice of the face of the visibility complex atϕ = 0. Note
that the union of these volumes is more than the entire 3D space, since aϕ-slice of the complex is a 3D structure
embedded into 4D which has branchings at the tangency volumes.

1.4 Tritangents

Consider now a scene of three objects. A line tangent to the three objects has its dual at the intersection of
the three tangency volumes. A set of connected tritangents is a 1D set in the 4D dual space. In aϕ -slice it
corresponds to a point. The set of tritangents can be also interpreted as the intersection of the three sets of
bitangents.

Fig. 2.8 shows part of the visibility complex of a scene of three spheres. On theϕ-sliceϕ = 0 two ortho-
graphic views of the scene forθ = 0 (View 0) and forθ = θ2 (View 2) are drawn next to the correspondingθ
in theϕ-slice. The setF of segments that see the spheresR andB is shown by its two slicesF0 andFϕ1. Note
that it is the intersection of the tangency volume ofR andB minus the tangency volume ofG. The tritangents
are the points in white. Note also that because of the occlusion by the sphereG, lines that are bitangents of
theR andB do not correspond to bitangent segments. This is shown in Fig. 2.9 which is a zoomed view of the
ϕ-sliceϕ = 0. The set of bitangentsB0 is cut because bitangent lines such asD intersectG and correspond to
no bitangent segment. We can thus see that the tritangentT0 andT 0

0 are the intersection of theϕ-slices of the
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Figure 2.7: ϕ-slice forϕ = 0 of the faces of the visibility complex of the previous scene.A is the set of segments
that see the front ofR, B is the set of segments that see the back ofL. C is the set of segments betweenL andR.
It can be interpreted as the intersection of set of lines that seeL and the set of lines that seeR, and in the dual
space it has the shape ofA\B. D is the set of segments that see the front ofL. Since the visibility is occluded
by R in this direction,D has the shape ofB�A. Similarly, E is the set of segments that see the back ofR.
Finally, F is the set of segments that see none of the two spheres. It is thecomplementof A[B.

three tangency volumes, and are also incident to the three sets of bitangentsB0, B00 andB000.
Tritangents are an example of the so calledvisual eventsor visibility events. Visual events describe the

qualitative(or topological) changes in visibility. Consider the example in Fig. 2.10. As the viewpoint moves
downwards, sphereA becomes hidden by the conjunction ofB andC. This occurs when the viewpoint lies on
a tritangent.

Note that a scene does not necessarily contain tritangents in the general case (this is for example the case
in Fig. 2.14(a) page 40).

1.5 Tangent crossing

There is another sort visual event called atangent crossing. It corresponds to planes tangent to two objects,
and to the lines going through the corresponding two points of tangency. Consider the case of a sphere hidden
behind another sphere. If the viewpoint is moved, the sphere will become visible when the two spheres are
visually tangent. The line going through the viewpoint and the point of visual tangency is contained in a plane
tangent to the two spheres.

How is this interpreted in our dual space? These tangent crossing critical lines are subsets of bitangents.
They correspond to minima or maxima with respect toθ in the ϕ-slices. To understand why, remember that
a (ϕ;θ)-slice of the complex corresponds to an orthographic view. Consider a rotation atϕ = ct starting
at a direction for which the two objects are distinct in the view. Bitangents (t-vertices) will appear in the
orthographic view at a tangent crossing. The tangent crossing thus corresponds to the firstθ at which a set of
bitangents starts.

The same reasoning can be applied to show that tangent crossings are also minima or maxima inθ-slices.
Note that if occlusion occurs because of a third object, the tangent crossing can be discarded and the minimum
or maximum of a bitangent set can be another event, as is the case in Fig. 2.9 where the tritangentT 0

0 is the
maximum of the setB0.

Tangent crossings, as all visual events, have dimension 1. These events are crucial for dynamic maintenance
of views, aspect graphs and discontinuity meshes.
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Figure 2.9: Zoomed view of theϕ-sliceϕ = 0.

1.6 The 3D Visibility Complex

We have defined the dual arrangement which is the partition of the lines of the 3D space into connected com-
ponents according to the objects they intersect. It is a 4D structure.

Similarly, the3D visibility complexis the partition of the maximal free segments of 3D space into connected
components according to the objects they touch. It is a 4D structure embedded into 5D. The dimensions and
incidences of the boundaries of the faces are summarised in table 1.6.

Note that the elements of the visibility complex and those of the dual arrangement are not the same. A line
can be tangent to two objects and correspond to no bitangent segment because of occlusions.

In the general case, a scene can have a visibility complex with no vertex and no tritangency arc.
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Figure 2.10: Tritangency visual event. At viewpoint 2, sphereA becomes hidden by sphereB andC. This occurs
as the viewpoint lies on a line tangent to the three spheres.

Dimension Scene configuration ϕ-slice in the dual space Name

4 face

3 tangency face

2 bitangency face

1 tritangency arc

1 tangent crossing

0 vertex

Table 2.1: Elements of the visibility complex

2 A definition for scenes of polygons and smooth objects

We now consider scenes of polygons and algebraic smooth convex objects. Concave objects and piecewise
smooth objects will be discussed in appendix A. The algebraic objects are assumed to have bounded degree. In
what follows,n represents the overall complexity of the scene which is the total number of objects, polygons,
edges and vertices. The objects are assumed to be in general position; degeneracy issues are not addressed
here.

We require the objects to be algebraic only to derive bounds on the complexity of our approach; The
concepts which we derive are valid for all classes of smooth convex objects.

2.1 Critical segments

We define a segment to be in general position if it touches objects only at its extremities. A segment that touches
objects in its interior will be calledcritical. At such an intersection there is alocal event. If a segment touches
more than one object in its interior, we call this amultilocal event. Critical segments are grouped intocritical
segment sets. We have seen that the dimension of such a set is the number of degrees of freedom of the set of
segments which verify the event. We can also refer to thecodimensionof such a set, which is the complement
to the dimension of the space (the number of fixed degrees of freedom)3. Codimensions are convenient because
as we will see they are additive.

For the class of scenes we consider, there are two kinds of local events: tangency events (Fig. 2.11(a)) and
vertex events (Fig. 2.11(b)). The object or the vertex are called thegeneratorsof the event. To stay tangent

3The codimension we exhibit are different from those found in aspect graph literature where the total space has a different dimension.
In the case of orthographic projection, viewpoint space has dimension 2. Tangents are thus stable (in any view there is a tangent), and have
codimension 0.
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Figure 2.11: Critical segments. (a) Tangency local event. (b) Vertex local event. (c) T+V multilocal event.

to a 3D object, a segment has three degrees of freedom. It is of codimension 1. It is of course the same when
a segment goes through the edge of a polygon. We call this aT event for tangency (referred to asE from
edge when only polygons are considered). A segment that goes through a vertex has two degrees of freedom
(rotation), and thus has codimension 2. We call it aV event.

The combination of many local events causes a multilocal event, and the codimensions are added. We use
the notation+ to describe such a combination. For example, a segment that is tangent to an object and that goes
through a vertex belongs to aT +V critical segment set of codimension 1+2= 3 (it is a 1D set) as illustrated
in Fig. 2.11(c).

We have seen that at atangent crossinga segment is tangent to two objects and belong to one of their
common tangent planes. In this case, the common tangent plane adds one codimension and we use the notation
++ (following [Ker81, Pet92]). For exampleT ++T critical segment sets have codimension 1+ 1+ 1= 3
(1D set)4.

Each local event corresponds to an algebraic equation: a line tangent to an algebraic object or going through
a vertex. A set of critical segments can thus be associated with the connected set of lines verifying the corre-
sponding set of equations.

Events caused by faces are considered asT +T events since they involve two polygon edges. In the same
way, segments going through a polygonal edge areV +V events. The reason why the case of vertices (which
could be seen as two edge events) is distinguished is that they introduce “discontinuities” at the end of polygonal
edges and require a specific treatment as we shall see in section 4.4. They are in fact degeneracies of smooth
objects.

2.2 The 3D Visibility Complex for scenes of polygons and smooth objects

The 3D visibility complexis the partition of maximal free segments of 3-space into connected components
according to the objects they touch. Its faces of dimension 4 are maximal connected components of segments
in general position with the two same objects at their extremities.

The different faces of lower dimension correspond to critical segments as summarized in table 2.2.

Theorem 1 The size of the 3D visibility complex isΩ(n) and O(n4) where n is the complexity of the scene.

The Ω(n) bound is trivial since there exist at least one tangency volume for each 3D object. TheO(n4)

bound comes from the number ofT+T+T+T events. However, we have to prove that the size of the complex
is dominated by their number (for example, the size of a tetrahedralisation is not necessarily dominated by the
number of vertices, it can be quadratic [BY98], chapter 13). For this purpose, we first prove that the number of
faces of dimension 4, 3 and 2 is bounded by a constant factor of the number of faces of dimension 1.

Proof

The number of(k+1)-faces adjacent to ak-face is bounded. For example a 1-faceT1+T2+T3 is adjacent to
five 2-faces: two facesT1+T2 (there are two different faces because one extremity of the segments can lie on
the object tangent atT3 or not. See Fig. 2.12),T1+T3 and twoT2+T3. The other adjacencies are summarized
in appendix A.

4One may think of the example of two parallel cylinders and notice that lines contained in a bitangent plane have two degrees of
freedom. This case is not considered here because it is degenerate.



2. A DEFINITION FOR SCENES OF POLYGONS AND SMOOTH OBJECTS 39

Dimension Type Configuration

3 T

2 T+T

V

1 T+T+T

T++T

T+V

0 T+T+T+T

T++T+T

T+T+V

V+V

Table 2.2: Faces of the visibility complex of polygons and smooth objects.

T1 T2

T3

O3

S

S'

Figure 2.12: Adjacencies at aT1+T2+T3 face. Two differentT1+T2 bitangent are adjacent: one with extremity
O3 (such asS) and one lying aboveT3 (such asS0).

Each 4-face is adjacent to at least one 3-face, a 3-face to at least one 2-face, and a 2-face to at least one
1-face. However, a 1-face may not be adjacent to any 0-face. We sketch the demonstration. For a given face
F of the complex (composed of segments), we consider the associated critical line setS: that is, the set of
lines with the same tangency properties, aT1+T2 face is associated with the set of all lines tangent toT1 and
T2, whatever their other intersections. This set of lines contains a line setS0 with one more codimension (one
of the lines tangent to one object is also tangent to a second object, one of the lines tangent to two objects
belongs to one of their common tangent planes, and one line going through a vertex is tangent to an object).
Consider a continuous path from the line associated with a segments of F to one ofS0, and the corresponding
continuous path over the segments (the notion of corresponding path in segment space is not always properly
defined because of the branchings due to tangency. In our case however, if tangency occurs, one codimension is
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Figure 2.13: Construction of a segment of aT+T 2-face adjacent to aT 3-face.

(a) (b)

Figure 2.14: Lower and upper bound scenes for the visibility complex (a) Scene with anO(n) Visibility Com-
plex. (b) Scene with anO(n4) Visibility Complex (an example ofT +T +T +T critical segment is shown).

added and we have our adjacent face). If all the segments of this path have the same extremities,F is adjacent
to the face with one more codimension associated withS0, otherwise when the extremity changes there is a
tangency local event and one more codimension.

Consider for example aT 3-face and a maximal free segments of this face. s is supposed to have no
extremity lying at infinity. Consider a planeP containings. We definel to be the first line (in a polar order)
tangent to both the object atT and the objectO1 at one of the extremity ofs (see Fig. 2.13). Consider a
continuous pathl(t) in the line space from the line defined bys to l . A corresponding continuous path can be
defined over the segments by considering for eachl(t) the segments(t) tangent to the object atT. If s(t) has
always the two same objects at its extremities, it belongs to the sameT 3-face ass and this two face is thus
adjacent to aT +T 2-face (Fig. 2.13(a)), otherwise when the object at one extremity changes the segment is
tangent to two objects and there is also aT +T 2-face (Fig. 2.13(b)). The other cases can be demonstrated in a
similar manner.

Note that a 1-face may be adjacent to no 0-face (we give an example below of a scene without a 0-face).
The size of the complex is thus bounded by the number of 1-faces which are not adjacent to a 0-face plus

the number of 0-faces. For each event type, the number of possible systems of algebraic equations depends on
the number of objects implicated, theT +T +T +T critical line sets are thus the most numerous withO(n4).

We show in figure 2.14(a) an example of a scene with a visibility complex of sizeO(n): there is oneT++T
face for each pair of neighbour spheres. Note there is noT +T +T-face in this case because of the decreasing
radius of the spheres. There is no 0-face because there can be noT ++T +T nor T +T +T +T segment.
The scene in figure 2.14(b) is the same as in [PD90] and has anO(n4) visibility complex. There are two
“grids”, each one composed of two very slightly perturbed (to avoid degeneracies) orthogonal sets ofn

4 parallel
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rectangles (this is also valid with thin ellipsoids). Consider a rectangle in each of the four sets: there is always
a T +T +T +T critical segment.

2.3 Probabilistic complexity

In many cases, theoretical bounds unfortunately do not tell much about the practical complexity of a problem
or method in the case of “normal” scenes. Some probabilistic approaches using a model of “reasonable” scenes
in the spirit of de Berget al. [dBKvdSV97] should be made.

As a first step, we propose to study the practical number ofT +T +T line sets in a scene. TheO(n3)

bound is based on results on infinitly thin objects, and is not realistic as will be illustrated in the next chapter.
In typical scenes, the size of the object is bounded, and the complexity is increased by adding smaller details
or by placing many objects next to each other, not by adding many interleaved infinite lines! We propose here
a simplified probabilistic model for these “normal” scenes, and show that under our assumptions the number

of T +T +T events isO
�

n
7
3

�
. This bound gives a better intuition of the actual complexity of normal scenes.

We consider a scene model where objects of bounded extent are uniformly distributed inside a finite sphere.
R is the diameter of the scene, andr is the maximum diameter of an object. The density of objects is constant
as their number varies: Ifn is the number of objects we haveR= Θ( 3

p
n). We will study the mean number of

T +T +T events. For this we will first study the probability that, given two objects, a third object generates a
T +T +T event with them. We will show that this can be expressed as a volume ratio. We will then integrate
over all objects to get a bound on the mean total number ofT +T +T events. To simplify our calculation, we
use bounding spheres enclosing the objects.

Probability given two objects

Consider two objectsA andB separated by a distancex. We want to obtain a bound on the probabilityPAB;x

that a third objectC generates aT +T +T event withA andB. This will happen only if the sphere bounding
C lies inside the hourglass volume formed by two cones and a cylinder tangent to the two spheres enclosingA
andB (Fig. 2.15(a)). The probability that a sphere of radiusr intersects this volume is equal to the probability
that the center of the sphere intersects an hourglass volume dilated byr. Since we assume that the center are
uniformly distributed, this probability is equal to the ratio between the volume of the dilated hourglass and the
volume of the sphere bounding the scene.

A Br

x

R

D
C

A B

x

R

r'
r

α

(a) (b)

Figure 2.15: Probabilistic complexity ofT +T +T events. (a) Hourglass volume. (b) Construction of one cone
of the dilated hourglass.

We now compute the volume of the dilated hourglass. Recall thatx is the distance between the centers of
the bounding spheres ofA andB. We distinguish the case wherex� 2r and the case wherex> 2r. In the first
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case we trivially bound the volume by the volume of the scene sphere,i.e PAB;x�2r = 1. We will see that this
case is asymptotically neglectible.

In the latter case, we bound the volume of the dilated hourglass by the sum of a cylinder of lengthx
and diameter 2r and two cones of height R, defined as shown in Fig. 2.15(b). The volume of the cylinder is
volcylinder= πr2x.
Let us now bound the volume of one cone. Simple trigonometry gives:

r 0 = xtan(arcsin
r
x
)

r 0 is a decreasing function ofx, we will bound it by its value whenx= 2r, that is lower than 1:16r. The volume
of one cone is:

volcone=
πr 02x

3
�
�

R
x

�3

<
1:162πr2R3

3x2

The total volume of the dilated hourglass is then bounded by:

volhourglass � 2volcone+volcylinder

� 2
1:35πr2R3

3x2 +πr2x

We divide by the volume of the scene sphere to obtain a bound on the probability:

PAB;x � volhourglass
volsphere

� 5:4r2

x2 +
6r2x
R3

Probability for all the objects

We now have a bound on the probability, given a pair of objects at distancex that a third objectC generates a
T +T +T event with them. We have to compute the total mean number ofT +T +T, that is consider every
possibleC, and every possible pairA;B at every possible distancex.

We multiply byn to obtain the mean number ofT +T+T events generated by a given pairA, B and all the
other objects.

MAB;x(T +T +T) = nPAB;x

Until now, we have considered that the distancex betweenA andB is fixed. Consider now a random pair
A;B. We have to take into account the probability that they lie at distancex. Using a result of integral geometry
([San76] page 212) on the probability distribution of distances of pairs of points inside a sphere, we have

µ(x) = 12λ2(1�λ)2(2+λ)

whereλ = x
R (that is, the probability that two random points in a sphere lies at a distance betweenx andx+dx

is µ(x)dx).
The intuition behind this formula is that, once one point is fixed, the second point is at a distance between

x andx+ dx if it lies between the two corresponding spheres (Fig. 2.16). The surface of this sphere explain
the termλ2. However, this sphere has to be intersected with the sphere bounding the scene, which explains the
following polynomial term.

To obtain the total mean number ofT +T +T we integrate overx and multiply by the number of pairs of
objects,n2. Recall that we have distinguished the casex� 2r where the probability is bounded by 1 and the
casex> 2r where the probability is given by a ratio of volumes.

M(T +T +T)< n3

0
@

2rZ

x=0

1�µ(x)dx+

RZ

x=2r

�
5:4r2

x2 +
6r2x
R3

�
µ(x)dx

1
A (2.1)
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x+dx

Figure 2.16: Probability distribution of distances of pairs of points inside a sphere.

We now derive bounds on the two integrals in inequality 2.1. The first integral is:

2r
RZ

λ=0

12λ2(1�λ)2(2+λ)dλ = 2

�
2r
R

�6

�9

�
2r
R

�4

+8

�
2r
R

�3

= O

�
r3

R3

� (2.2)

The second integral in inequality 2.1 is bounded by:

RZ

x=2r

�
5:4r2

x2 +
6r2x
R3

�
µ(x)dx�

RZ

x=0

�
5:4r2

x2 +
6r2x
R3

�
µ(x)dx (2.3)

Expanding the first term inside the integral gives:

1Z

λ=0

12
5:4r2

R2 λ(1�λ)2(2+λ)dλ =
5:4r2

R2

1Z

λ=0

12(1�λ)2(2+λ)dλ

=
48:6r2

R2

= O

�
r2

R2

�
(2.4)

The second term in inequality 2.3 gives:

RZ

x=0

6r2x
R3 µ(x)dx =

1Z

λ=0

12
6r2

R2 λ3
(1�λ)2

(2+λ)dλ

=
108r2

35R2

= O

�
r2

R2

�
(2.5)
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Combining the results of equations 2.1, 2.2, 2.4 and 2.5 we obtain:

M(T +T +T) = O
�

n3
�

r3

R3 +
r2

R2 +
r2

R2

��
= O

�
n3

R2

�
= O

�
n3

3pn2

�
= O

�
n

7
3

�

The mean number ofT +T +T events is thusO
�

n
7
3

�
(that is,O

�
n2:33

�
)in our model instead ofO(n3)

when objects of unbounded extent are considered. We will see in the next chapter that on the scenes we have
tested, the number ofT +T +T events is about quadratic, confirming our probabilistic bound.

Similar arguments can be used to show that the number ofT+T +T+T 0-faces isO
�

n
8
3

�
(i.e., O

�
n2:67

�
)

instead ofO(n4).

3 Extension to temporal visibility

In this section we describe the extension of the Visibility Complex to dynamic scenes. We show that a similar
framework permits the description of all changes in visibility as objects move smoothly. We consider any
smooth movement of the objects (including deformations) , and all objects can be dynamic. The temporal
dimension is considered continuous, as opposed to the regular succession of frames usually used for animation
(even though a representation at certain time steps will be necessary for clarity).

3.1 Temporal visual event

We adopt the same approach as for the static case: we try to determine when visibility changes in a dynamic 3D
scene. We are interested in the topological changes of the visibility complex as the objects move. Consider the
situation depicted in Fig. 2.17(a). SphereA moves upward. At timet1, there is no segment with extremities on
A andC because of the occlusion byB. At time t3, some segments seeA andC becauseA has moved. The limit
configuration occurs at timet2 where a plane is tangent to the three spheres. SegmentA++B++C corresponds
to this tritangent plane. It is atemporal visual event. It is similar to the 0-faces of the static complex, with one
codimension added.

In Fig. 2.17(b) we represent the 0 and 1-dimensional faces of the static visibility complex for some timestep.
At time t1 the complex only has two 1-faces and no 0-face. At timet3 six T ++T +T 0-faces have appeared,
as well as some newT ++T andT +T +T 1-faces. There has been a topological change in the structure of
the 3D visibility complex.

3.2 The Temporal Visibility Complex

We add the temporal dimension to the space of maximal free segments. A temporal segment is defined as a
maximal free segment in space together with a time value. Temporal segment space is thus a 5D manifold
embedded in 6D.

We define theTemporal Visibility Complexas the partition of the temporal maximal free segments according
to the object that they touch.

The k-faces of the Temporal Visibility Complex correspond to the (k-1)-faces of the static Visibility Com-
plex. However, their codimensions are preserved (since temporal segment space has one more dimension, and
so have the faces). The static Visibility Complex is in fact a time-slice of the Temporal Visibility Complex.
The 0-faces of the Temporal Visibility Complex correspond to thetemporal visual events. These correspond
to changes in the topological structure of the visibility complex. Maintaining the Visibility Complex as objects
move is equivalent to a time-sweep of the Temporal Visibility Complex.

Fig. 2.17(c) shows the 0, 1 and 2-faces of the temporal complex for the scene in Fig. 2.17(a). At the
temporal visual event, the slice of the temporal complex is modified, newT +T ++T faces appear as well as
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Figure 2.17: Temporal visual event and Temporal Visibility Complex. (a) Situation in 3D space. AsA moves
upward, it becomes visible fromC at timet2 where a segment (A++B++C) lies in a plane tangent to the
three spheres. The envelope ofB++C is represented as a cone. Only twoT ++T+T 0-faces are represented,
but there are actually 6 of them. (b) 1 and 0-dimensional faces of the visibility complex for each timestep.
(Note that this is a projection, not a slice of the dual space. 1D sets are actually represented as 1D curves). At
time t3 we have not labeled all the 1-faces. Note that the graph of 1-faces is not planar (it is 4-dimensional), to
draw it we cannot avoid the crossings ofA++C. (c) Structure of a part of the Temporal Visibility Complex in
temporal segment space. Only 0, 1, and 2-dimensional faces are represented. The faces of the static complex
represented in (b) are slices of the temporal complex. The 1-faces of the temporal complex are represented as
thin cylinders. Note that they correspond to the 0-faces of the static complex and that they appear only att2.
Note also that due to the non-planarity of the slice, we cannot represent the 2-faces of the temporal complex
without some intersections in the middle.

some 1-faces of the static complex. Temporal visual events are summarized in table 2.3 for scenes of polygons
and smooth objects. They are very similar to the 0-faces of the static visibility complex.

Our definition is independent of the motion of the objects. Deformations can occur, and no rigidity or
linearity is required. The handling of the removal or addition of objects is however more involved. These
correspond to degenerate temporal events. Concave objects also induce a more complex catalogue of temporal
events. In particular, in the case of object deformation, the changes in the differential properties of the objects
must be taken into account.
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Type Configuration

T+T+T+T+T

T++T+T+T

T++T++T

T+T+T+V

T++T+V

T+V+V

Table 2.3: Vertices of the temporal visibility complex. These configuration can occur because of the movement
of any (or all) of the involved objects.

ϕ

θ

u

v

θ
ϕ

(a) (b (c)

Figure 2.18: (a) Parameterization of the directions. (b) Initialv sweep. (c)ϕ sweep.

4 Output-sensitive sweep

We now present an output-sensitive construction algorithm for the static Visibility Complex. Our algorithm is
a double sweep with a preprocessing phase. First the scene is swept by a horizontal plane and a 2D Visibility
Complex [PV96b] of theϕv-slice is maintained (figure 2.18(b)). We then sweepϕ (figure 2.18(c)), but some
0-faces can not be detected during this sweep and have to be preprocessed.

4.1 Sweeping the initial slice

To build the initialϕ-slice, we first maintain aϕv-slice of the 3D visibility complex which corresponds to the
2D visibility complex [PV96b] of the sweeping plane.

The 2D visibility complex

We first briefly review the 2D visibility complex [PV96b, PV96a, Riv97a, DP95b] introduced in the previous
chapter and its relations with the 3D visibility complex. The 2D visibility complex is the partition of the
segments of the plane according to the objects they touch. Its 2D faces are connected components of segments
touching the same objects (they areϕv-slices of the 4-faces of the 3D visibility complex). They are bounded
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Figure 2.19: When the first vertex of a polyhedron is swept, the 2D view is computed in the sweeping plane and
is restricted for each edge adjacent to the vertex by considering the angle formed by the direction of the two
adjacent polygons.

by edges which correspond to segments tangent to one object (ϕv-slices of the 3-facesT) and vertices which
are free bitangents of the 2D scene (ϕv-slices of 2-facesT +T).

Since a view around a point corresponds to the extremities of the segments going through this point, it
corresponds to the traversal of the 2D visibility complex along the 1D path of these segments. The object seen
changes when the path traverses a new face, which occurs at an edge of the 2D complex. In the case of a
polygon, the chain of edges of the 2D complex going through one of its vertices is the view around this vertex.

Sweep

The 2D visibility complex has to be updated when the sweeping plane is tangent to an object or contains a
vertex and when three 2D slices of objects share a tangent.

When the sweeping plane starts intersecting an object, we have to “insert” this object in our 2D complex.
This is done by computing a 2D view around the point of tangency or around the vertex using the current 2D
visibility complex. This can be done inO(vlogn) wherev is the size of the view using the techniques described
in [Riv97b]. When the path of this view crosses an edge of the 2D complex it corresponds to a newT +T or
V+T face of our 3D complex. In the case of the first vertex of a polygon, the view has to be restricted for each
edge of the polyhedron, corresponding to the view seen by a vertex of the 2D slice (see Fig. 2.19).

Symmetrically, when an object stops intersecting the sweeping plane, the corresponding faces of the 2D
visibility complex are collapsed. These faces are those along the chains of edges in the dual space corresponding
to segments tangent to this object. Their removal can be done inO(v) wherev is again the size of the view.

When a vertex in the middle of a polyhedron is encountered the 2D views around the points corresponding
to the edges under the vertex have to be merged, and then the view around this vertex has to be restricted for
each edge above the vertex, in the same manner as first vertex sweep-events, see figure 2.20. Each operation is
linear in the size of each view.

As the plane moves, three slices of objects can share a tangent (corresponding to aT +T +T face of the
3D complex), in which case the 2D visibility complex is updated using the technique of [Riv97b]. Basically,
for each bitangent we compute the value ofv where it will become tangent to a third object and store these
sweep-events in a queue which requires timeO(logn) whenever a bitangent is created.

Finally, a bitangent of the 2D complex can correspond to a common tangent plane. For each bitangent, we
compute the value ofv for which it will lie on a bitangent plane and insert this sweep-event in the queue. Of
course, these sweep-events have to be discarded if the bitangent is collapsed before.

4.2 Principle of the ϕ sweep

We now have computed aϕ-slice of the 3D visibility complex. It is the partition of the segments contained in
the set of horizontal planes. In thisϕ-slice, 1-faces of the complex have dimension 0, 2-faces have dimension
1, and so on.

During theϕ-sweep (Fig. 2.23(c)) we maintain thisϕ-slice as well as a priority queue of sweep-events. In
what follows, we will only describe the update of the 1-faces of the visibility complex, the update of the higher
dimensions is done at each sweep-event using a catalogue of adjacencies of the 1-faces which for reason of
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Figure 2.20: Fusion-restriction of a view around edges when a vertex is swept
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Figure 2.21: T+T +T critical line sets adjacent to aT +T+T +T critical line.

place is reported in appendix A. As stated before, the number of adjacent upper-dimensional faces is bounded;
their update does not affect the complexity.

This ϕ sweep can also be understood by projecting the 1-faces and the vertices of the visibility complex
onto the direction sphereS2 represented in Fig. 2.18. The sweep then corresponds to the rotation of a great
circle. Note that some intersection onS2 are not relevant for the skeleton (this is the same difference as a
t-vertex in a view and an actual vertex of the scene). This representation can be used as a educational tool
because it permits the parallel between our sweep and the panning of an orthographic view.

We first prove that some sweep-events are regular: a 1D component of theϕ-slice is collapsed as its two
extremities merge. These sweep-events can be detected by computing for each 1D component of theϕ-slice
the value ofϕ for which it will collapse. We will then study the case of irregular sweep-events.

4.3 Regular 0-faces

Consider aT1+T2+T3+T4 segments with extremitiesO0 andO5 and elevation angleϕ0 (Fig. 2.21). Consider
the 1D critical line setT1+T2+T3. We locally parameterize it byϕ and call itl(ϕ). The ruled surface described
by l(ϕ) cutsO4 atϕ0. Two 1-faces of the complex are associated withl(ϕ), one forϕ < ϕ0 and one forϕ > ϕ0;
one hasO5 at its extremity, the otherO4. It is the same forT2+T3+T4. Moreover the two 1-faces beforeϕ0

are adjacent to a 2-faceT2+T3. In theϕ-slice, this 2-face is a 1D set bounded by the slices ofT1+T2+T3 and
T2+T3+T4. This 1D set collapses atϕ0, it is thus a regular sweep-event. It can be detected by considering the
adjacentT +T +T faces in theϕ-slice and maintaining a priority queue.
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ϕ0V1

V2

O1

O2

Figure 2.22: None of theT +V critical segment sets adjacent to thisV +V critical segment exist beforeϕ0

TheT ++T +T faces can be handled the same way because they are adjacent to a pair ofT ++T and a
pair ofT +T +T 1-faces, and the faces of a pair are associated with the same line set.

The projection of regular events ontoS2 is similar to that illustrated in Fig. 2.23(a).

4.4 Irregular 0-faces

Unfortunately, all the 0-faces are not regular sweep-events. TheT +T +V andV +V events cannot always be
detected in this way. The main reason is that vertices represent discontinuities at the end of edges, and we have
no guarantee that a 1-face adjacent to such a 0-face exists forϕ < ϕ0. See Fig. 2.22 where the fourT +V faces
appear atϕ0; this corresponds to the situation (b) of Fig. 2.23 in dual space5.

These events thus have to be preprocessed by considering all theVV pairs and all the Object-Object-V
triples. This determines apotential0-face, which is a line with coordinates(θ0;ϕ0;u0;v0). ϕ0 is used to insert
it in a sweep event queue. Note that this is just apotential0-face which then has to be tested for occlusion
when the correspondingϕ0 is swept. If an object lies between the generators, the 0-face has to be discarded.

Fortunately, at least one slice of an adjacentV 2-face exists before such 0-faces appear (faceV1 in Fig. 2.22)
because lines going through a vertex span all directions. This 2-face permits an efficient occlusion test.

This face is found using a search structure over the 1DV components of theϕ-slice ordered by their
generators and the angleθ. The 0-face is then tested for occlusion: we test if the second generator of the 0-face
(V2 here) lies between the extremities (O1 andO2) of the 2-face (V1 in our case). The 0-face can then be inserted
if the test succeeds.

4.5 Non monotonic 1-faces

There is another kind of irregular sweep-event. A 1-face of the complex can appear during the sweep without
a 0-face event. This is obviously the case forT ++T events since they can be adjacent to no 0-face, but this
can also be the case forT +T+T events. Consider the associated line set; It is not necessarily monotonic with
respect toϕ (see Fig. 2.23(c)). These sweep-events also have to be preprocessed and inserted in theϕ-slice
with a search over the 1D components.

This search is however not as straightforward as in theV case, since the slices ofT +T faces are not as
intuitive to order. They also can be ordered by their generators, but for a given pair(T1;T2), the set of bitangent
segments of aϕ-slice is not a function ofθ, i.e., for a givenθ there can be more than one bitangent segment.
This number varies and it is thus hard to classify the different bitangents sharing the sameθ coordinate.

Since an ordering is hard to obtain alongθ, we use thev coordinate. For a givenv there are at most four
bitangent segments in aϕ-slice. This is true because aϕv-slice corresponds to a 2D visibility complex, and
because two convex objects in the plane have four common tangent lines. Moreover, since a 2D object lies
entirely on the positive or negative half-plane defined by such a line, we can classify these lines according to
the side of each of the objects. This defines four categories of bitangents. For each category, there is at most
one bitangent for each value ofv in a ϕ-slice.

We thus use a search tree on theT +T faces of the currentϕ-slice sorted by their generators, their category
among the 4 possible and theirv values.

5This also explains why cells of the aspect graph are not necessarily convex: these irregular events correspond to reflex vertices onS2

or to reflex edges in 3D space.
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Figure 2.23: Different sweep-events represented in the dual space. TheT +T +T +T event (a) is regular, but
theV +V event (b) has to be preprocessed as well as the null derivative with respect toϕ of the T +T +T
events (c).

4.6 Complexity of the algorithm

Theorem 2 The 3D visibility complex can be built in time O((k+n3) logn) where n is the complexity of the
scene, and k the number of0-faces of the complex.

During the initialv sweep, each view computation requires timeO(vlogn) wherev is the size of the view. A
view corresponds to the number of 3-faces of the 3d visibility complex adjacent to the appearing/disappearing
2 faces. The total cost is thus bounded byO(k logn). Each tritangent event requires timeO(logn), here again
the cost is bounded byO(k logn).

During theϕ sweep, each regular event requiresO(logn) to maintain the priority queue.
The preprocessing of the other 0-faces and non-monotonic 1-faces requires the enumeration of all the

triplets of objects and the insertion of the computed faces in the priority queue, it is thereforeO(n3 logn).
The output-sensitive nature of this algorithm is very important since experiments on a few polygonal scenes

have shown that the number ofT +T +T +T segments which is responsible of the theoreticalO(n4) is in fact
much lower than the number ofT +T +V segments.

5 Applications of the approach

5.1 View computation

A view around a point is defined by the extremities of the set of segments going through this point. The set
of segments going through a point is a 2D surface in the dual space (u andv can be expressed with sin(θ) and
sin(ϕ)). The view can be expressed as the intersection of the visibility complex with this surface. Each face
intersected corresponds to an object seen. An intersection with a tangency volume corresponds to a silhouette
in the image. The ray-tracing algorithm is equivalent to a sampling of such a surface.

In Fig. 2.24, the surface described by the lines going through viewpointV is represented by itsϕ-slices
which are curves. The intersections of these curves with the tangency volumes are the points of the view on
the silhouette of the objects, such asD1, D2, D3, D4 andD5. However,all the intersections do not necessarily
correspond to a silhouette since the objects are not transparent, and points such asD0 must not be taken into
account. Consider theϕ-sliceϕ = 0 and the sliceV0 of the lines going throughV with ϕ = 0. Fig. 2.25 shows
theϕ-slices of the faces of the visibility complex and their traversal. We traverse the visibility complex up and
down alongV0. Initially, the segments see nothing, since we are in the faceF (which is the set of segments
which have both extremities at infinity). AtD1, we leave faceF and have to chose between faceA andE. Since
V lies in the front of the sphereR, we now traverseA from D1 to D2. D0 lies on no boundary of faceA and is
thus not considered. We then traverse faceD and finally faceF again. Once theϕ-slice has been traversed, the
intersections with the boundaries of the faces are maintained whileϕ is swept. Visibility changes will appear
whenVϕ meets a bitangency edge or a new tangency volume.

For a walkthrough, the view can be maintained since the events where the visibility changes correspond to
intersections of the surface described byV with the 1-faces of the visibility complex. This approach is similar
to the one described in [CT96, CT97b] where conservative visibility events are lazily computed.
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Figure 2.24: The View around a point is the intersection of the visibility complex and the surface described by
the set of segments going through this point.

The recent technique ofmultiple center of projection images[RB98] in fact corresponds to the intersection
of the complex with other 2D manifolds.

5.2 Form-factors

The form factor6 Fi j involved in radiosity computation is the proportion of light that leaves patchi which
arrives at patchj. It can be expressed as the measure of lines which intersecti and j divided by the measure of
lines which intersecti. In the dual space, it is the measure of the faceFi j divided by the measure of the inside
of the tangency volume ofi. See [ORDP96, DORP96] for the equivalent interpretation of the form factors with
the 2D visibility complex.

Unfortunately, although a simple formula exists to compute exact form factors in 2D in the presence of
occluders, the only analytical result for the form factor between two 3D polygons holds only for full visibility
and is quite intricate [SH93]. Exact computations can however be performed for point-to-polygon form factors,
as will be shown in chapter 4. Stochastic approaches based on integral geometry [San76, Sbe93] could also be
explored, by sampling the 4D faces of the complex, or by globally sampling line-space.

5.3 Computer vision and robotics

Recall that the aspect graph [PD90, GM90, EBD92] (chapter 1 section 5) is a powerfulviewer-centereddata-
structure which encodes all possible views of an object. It is based on the notion of visual events, which
partition the space of all possible viewpoints into cells where views are qualitatively equivalent.

6The same notation is used for the form factor and for the face betweeni and j though the form factor is a scalar and the face is a set of
segments.
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Figure 2.25: Traversal of theϕ-sliceϕ = 0 of the complex to compute the view around pointV.

The 1-faces of the visibility complex correspond to the visual events of the aspect graph. The complex
can thus help in its construction. The complexity of the aspect graph isO(n6) though the visibility complex is
“only” O(n4) because the aspect graph is an arrangement of theO(n3) 1-faces of the complex (see the discussion
in section 6).

Visual events are also involved in the computation of thevisual hull[Lau94] or in the planning of visibility
based pursuit motions in robotics [GLLL98]. The complex could thus be used as an intermediate data-structure
for these problems for which mainly 2D results are known.

5.4 Umbra and penumbra

In the same way, the 1-faces inside the tangency volume of a light source correspond to thediscontinuity
surfacesof the discontinuity meshing methods (section 4.3 of chapter 1), that is, the limits of umbra and
penumbra. The visibility complex gives all the events to compute a discontinuity mesh where all the objects
are considered as sources.

In the context of hierarchical radiosity [HSA91], whenever a link between two objectsi and j is to be
refined the boundary of the faceFi j of the visibility complex provides all the visibility information pertinent to
this energy exchange. This information can be used to effect progressive discontinuity meshing and to improve
the quality of the form-factor calculation.

Chapter 4 will introduce an efficient method based on the visibility complex concepts which uses visibility
to guide the meshing and the refinement of a hierarchical lighting simulation, resulting in high quality images.

6 Related approaches

Global visibility structures have been proposed in the literature, some of them based on concepts similar to the
visibility complex. We review them and discuss similarities and differences.

6.1 The aspect graph

Visual events considered in the aspect graph literature correspond to the 1-faces of the visibility complex: the
topology of a view for example changes when a vertex and an edge are aligned from the viewpoint. The aspect
graph is in fact the arrangement of these events in the viewing space.
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This explains its larger size with respect to the complex. Consider the polygonal case. There can beO(n3)

T +T +T events. In the visibility complex, this induces a sizeO(n4) because these events are split only by
T +T +T +T vertices. In the case of the aspect graph for orthographic projection, the construction of the
2D arrangement onS2 can lead to as many asO(n6) intersections between pairs of events. In the perspective
case where the viewing space is IR3, the size isO(n9) . The visibility complex in fact implicitly contains the
information encoded in the aspect graph.

The aspect graph for orthographic projection in fact also deals with a 4 dimensional information: 2 for
the space of viewpoints, and 2 for each view. However, the separation of those 4 dimensions makes it hard to
express many visibility properties such as the mutual visibility of two objects.

6.2 The asp

The aspdata structure [PD90] (see section 6.3 of chapter 1) like the visibility complex is a line-space data-
structure. It has been developed as an intermediate data-structure to build the aspect graph.

Two different definitions are considered depending on whether orthographic or perspective projection is
considered. In the orthographic case oriented lines are considered and theaspis a 4D cellular decomposition
of line-space according to the first object intersected (starting from infinity). Information about visibility from
inside the convex-hull of the object is not encoded.

If perspective projection is used, theaspis a 5D cellular decomposition of ray-space according to the first
object a ray intersects. The same information is encoded as in the visibility complex, but the information is
redundant because many colinear rays “see” the same object.

The visibility complex can be seen as offering the advantages of the two versions of theasp. It encodes
the optimal amount of information, by considering maximal free segments. The fifth dimension is “used” only
where necessary, where the visibility of rays changes,i.e. along tangency volumes. It is thus a 4D structure
embedded in 5D. Moreover, no version of theaspfor curved object has been presented.

6.3 Plenoptic function, lumigraph and light-field

Theplenoptic function[AB91] is a function in 5D ray-space which describes the light traveling at a point in a
given direction. If light traveling in free-space is assumed invariant and if the observer is constrained outside
the scene, it can be simplified into a function in 4D line space calledlumigraph[GGSC96] orlight field [LH96].
They are in a sense very similar to the asp concept, except that color information is encoded and that a discrete
sampling is used instead of an analytic subdivision. However, the underlying multidimensional ray-spaces are
the same.

Langer and Zucker [LZ97] use similar topological concepts as ours to describe the light field of a scene in
a shape-from-shading context. As for the visibility complex, they note that the manifold of rays is 4 dimen-
sional with some branchings. They do not however propose the analysis of the changes in visibility, nor the
adjacencies between classes of rays.

6.4 Plücker space

Plücker parameterization is a powerful duality which represents lines in a five dimensional space where hyper-
planes can be used to characterize line-line intersections (see section 6.2 of chapter 1 and the second part of
this thesis). It has been extensively used to compute visibility in polygonal scenes.

Note that the fifth dimension in Pl¨ucker space does not correspond to the pseudo-dimension which we have
introduced in section 1.2. Not all points in Pl¨ucker space correspond to real lines: only those lying on the
so-calledPlücker hypersurface. The fifth dimension alleviates the problem of singularities which are always
present in a 4D parameterization of lines (as is also the case for any 2D parameterization of theS2 sphere). For
example our(ϕ;θ;u;v) parameterization has singularities at the poles of the direction sphere.

Arrangements have been described in Pl¨ucker space which are very similar to the dual arrangement which
we have presented,e.g. [Pel93, Tel92b, Tel92a]. An arrangement of hyperplanes is computed in 5D and
intersected with the Pl¨ucker hypersurface to obtain a 4D structure. This latter structure is in fact exactly the
dual arrangement expressed in a different parameterization. This illustrates our claim in the introduction: the
concepts described in this chapter do not rely on a particular parameterization of lines.
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However, approaches in Pl¨ucker space have considered only equivalents of the dual arrangement. They
consider only line visibility, occlusion is not really taken into account.

6.5 The 2D visibility complex

The 2D version of the visibility complex has been the first inspiration of this work. We now compare the 2D
and the 3D data-structures, which illustrates the large differences between 2D and 3D visibility.

First of all, the space of lines in 3D is 4 dimensional. The increase in the dimensionality of the problems
is 2 and not only 1. Similarly, the theoretical complexity isO(n4) instead ofO(n2) in 2D. In 2D, only tangent
and bitangent segments are considered, while in 3D the vertices of the complex are segments tangent to four
objects.

The property which explains the most why 3D visibility is much harder than in 2D, isseparability. In
2D, a line separates the plane into two half-planes. No such property holds in 3D because lines are no longer
hyperplanes.

The consequence is that some convexity or monotonicity properties which hold in 2D do not hold in 3D.
This is especially the case of the faces for the visibility complex. In 2D, depending on the duality, the faces
are at least monotonic with respect to direction. This has a number of useful consequences, including the
possibility to perform efficient optimal sweeps or walks along the complex.

In 3D, we have seen that some 0-faces are irregular for the sweep of the complex. The faces cannot be made
monotonic with respect to one parameter. They moreover can have a non 0-genus (they can have holes, like a
torus). This makes our algorithm far from optimal. This also explains the difficulty in designing an efficient
view extraction algorithm.

7 Conclusions

7.1 Summary

We have presented a new approach for visibility computation and described a powerful data-structure which
encapsulates all the visibility information in a 3D scene. The dual space used affords a better understanding of
the visibility events, which have been presented in detail. Moreover, this representation gives all the relations
of adjacency between these events.

We have introduced a unified data structure, the 3D visibility complex, which encodes the global visibility
information for 3D scenes of polygons and convex smooth objects. Its sizek is Ω(n) andO(n4) and we have
presented an output-sensitive algorithm to build the structure in timeO((n3+k) logn).

Using a probabilistic approach, we have shown that in scenes with reasonable assumptions, the number of
tri-tangency events isO(n2:33) instead ofO(n3).

We have also defined theTemporal Visibility Complexwhich encodes all the visibility of a time-varying 3D
scene.

The 3D visibility complex is a very promising data structure for numerous computer graphics applications:
we have briefly outlined its potential use for the visibility computation of a view, its use in form-factor compu-
tations and discontinuity meshing as well as the computation of aspects or backprojections. We will see in the
next chapter that it leads to practical solutions by adapting a simplified representation.

7.2 Discussion

The Visibility complex is a useful framework because it permits an efficient encoding of visibility information.
We believe it is a valuable tool for the interpretation of visibility problems. By providing different insights to
these questions, we hope it will permit a better understanding and the development of new methods, as shown
by the next chapter.

Its direct practical interest is however more questionable. The implementation of a 4D cellular subdivision
is an intricate task, and traversing the adjacencies of such a complex is not straightforward.

Moreover, sweep constructions, though efficient, are prone to numerical precision and robustness problems.
If an event of the sweep is not correctly handled, lost coherence will make the entire algorithm fail.
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Our thoughts on a possible implementation of the visibility complex led us to extract the most important
information and develop a much simpler data structure together with a more robust algorithm based on practical
scene properties and spatial acceleration structures, which we present in the next chapter.

7.3 Future work

The faces of the Visibility Complex directly translate the intricate nature of 3D visibility. They have no con-
vexity nor monotonicity property, as illustrated by the irregular events of our sweep algorithm. Enforcing such
properties could be achieved by appropriately subdividing the faces of the complex. The cylindrical partitions
of Mulmuley [Mul91] or the cylindrical algebraic decomposition of Collins [Col75] are two examples of such
approaches. Unfortunately, this would increase the complexity of the structure.

The separation between a directional(θ;ϕ) component and a spatial component(u;v) for maximal free
segments should be studied further. As we have seen, this permits the interpretation of theT ++T events in
our dual space. We moreover think that this will also help us to obtain some monotonicity properties, because
the tangency volumes have an infinite tube structure along the directional component. For every(θ;ϕ) pair
there exists a(u;v) belonging to the tangency volume of any object, while the opposite is not true.

The use of randomized localisation techniques [Cla87] could be studied to obtain efficient queries. This
requires the treatment of hyperplanes, which can be achieved for polygonal scenes using Pl¨ucker coordinates.
Such an approach is very similar to the work by Pellegrini [Pel93, Pel90, PS92, Pel94], except that he considers
line visibility. Encoding segment visibility in this context is however by no means a trivial matter, but it is the
only way to alleviate the fixedO(n4) cost.

The definition of an efficient view computation retrieval using the complex should be explored. We have
not obtain such result because of the aforementioned problems of non-monotonicity. View maintenance raises
the same issues.

The design of an efficient view-computation algorithm is highly related to the problem of an efficient con-
struction of the complex. For polygonal scenes, another approach would sweep the scene by planes rotating
around the edges of the polygons while maintaining a 2D visibility complex. The sweeps have to be synchro-
nised, and only the portion of the scene visible from each vertex has to be maintained in the corresponding 2D
complex. The definition of a topological order to sweep the 0-faces of the complex is yet another issue required
to reach an optimal output-sensitive algorithm.

In the case of algebraic scenes, the work of PetitJean [Pet95, Pet96] on enumerative geometry could be
used to obtain tight bounds on the size of the complex depending on the degree of the objects.
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CHAPTER 3

The Visibility Skeleton

Une ligne droite toute seule n’a pas de signification, il
en faut une seconde pour lui donner de l’expression.

Eugène DELACROIX

LTHOUGH it encodes all visibility information of a 3D scene, the Visibility Complex has many
shortcomings which prevent its direct implementation as a practical tool. The four dimensional
adjacencies of its faces are intricate to encode and to traverse. In addition, the sweep con-
struction algorithm proposed in the previous chapter is prone to degeneracy problems and has
a fixed cubic cost which is not acceptable in practice. Moreover, simple access to the visibility

information is not really provided by the visibility complex.
In this chapter we present a data-structure which has been developed to simplify the visibility complex and

turn the concepts presented previously into a practical tool. It can be seen as a simplification of the 3D visibility
complex. In particular, the visibility skeleton only requires the construction of the 0 and 1-dimensional faces
of the complex. It can also be seen as a new structure from first principles of visual events and critical lines.
We adopt the latter presentation because it results in a more self contained chapter and because it permits the
presentation of some of the notions of the visibility complex from a new angle.

The emphasis is in the development of a practical and easily implementable tool. The queries presented at
the end of this chapter, as well as the use of the skeleton for global illumination presented in the next chapter
show that the data-structure is versatile and efficient.

Part of the work developed in this chapter has been presented at Siggraph’97 [DDP97c]. Differences
with the original paper include improvement to the data structure presented in a later paper [DDP99] and a
presentation of the update for dynamic scenes in section 7.

1 Motivation

Previous algorithms have been unable to provide efficient and robust data structures which can answer global
visibility queries for typical graphics scenes. In what follows we present a new data structure which can
provideexactglobal visibility information. Our structure, called theVisibility Skeleton, is easy to build, since

57
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its construction is based exclusively on standard computer graphics algorithms,i.e., ray casting and line-plane
intersections. It can be used to solve numerous different problems which require global visibility information;
and finally it is well-adapted toon-demandor lazyconstruction, due to the locality of the construction algorithm
and the data structure itself. This is particularly important in the case of complex geometries.

The central component of the Visibility Skeleton arecritical linesandextremal stabbing lines, which, as will
be reviewed in what follows, are the foci of all visibility changes in a scene. All modifications of visibility in a
polygonal scene can be described by these critical lines, and a set ofline swathswhich are necessarily adjacent
to these lines. We present the construction of the Skeleton, and the implementations of several applications. As
an example, consider Fig. 3.1(a), which is a scene of 1500 polygons. After the construction of the skeleton,
many different queries can be answered efficiently. We show the view from the green selected point to the left
wall which only required 1.4 ms to compute; in Fig. 3.1(b), the complete discontinuity mesh on the right wall
is generated by considering the screen of the computer as an emitter which required 8.1 ms.

(a) (b)

Figure 3.1: (a) Exact computation of the part of the left wall as seen by the green vertex on the chair. (b)
Complete discontinuity mesh on the right wall when considering the computer screen as a source.

In what follows, we will provide a complete description of all possible extremal stabbing lines, and all
the adjacent line swaths in section 2. In section 3 the actual data structures are presented in detail while the
construction algorithm is described in section 4. The results of our implementation are presented in section 5,
giving the complete construction of the Visibility Skeleton for a suite of test scenes. We show how the Skeleton
is then used to provide exact point-to-surface visibility information for any vertex in the scene, to calculate the
complete discontinuity mesh between any two surfaces in the scene, extract exact blocker lists between two
objects, and compute all visibility interactions of one object with all other objects in a scene, which could be
used for dynamic illumination updates in scenes with moving objects. Section 6 addresses the issues arising
when treating more complex scenes, and in particular we present a first attempt at on-demand construction.
The results of the implementation show that this allows significant speedup compared to the construction of the
whole structure. In section 7 we sketch how the structure can be extended to environments in which objects
move.

2 The Visibility Skeleton

In what follows, we will consider only the case of polygonal scenes.

2.1 Visual events

We have seen in chapter 1 that in previous global visibility algorithms, in particular those relating to aspect
graph computations (e.g, [PD90, GM90, GCS91]), and to antipenumbra [Tel92a] or discontinuity meshing
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[DF94, SG94], visibility changes have been characterized bycritical lines setsor line swathsand byextremal
stabbing lineswhich are the loci ofvisual events

Following [Pel90] and [Tel92a], we define an extremal stabbing line to be incident on four polygon edges.
There are several types of extremal stabbing lines, including vertex-vertex (orVV) lines, vertex-edge-edge (or
VEE) lines, and quadruple edge (orE4) lines. As explained in Section 2.3, we will also consider here extremal
lines associated to faces of polyhedral objects. These correspond to the vertices of the 3D visibility complex.

A swathis the surface swept by extremal stabbing lines when they are moved after relaxing exactly one of
the four edge constraints defining the line. The swath can either be planar (if the line remains tight on a vertex)
or a regulus quadric (a hyperboloid of one sheet), whose three generator lines embed three polygon edges.

We call generator elementsthe vertices and edges participating in the definition of an extremal stabbing
line.
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Figure 3.2: (a) While the eye traverses the line swathVE, the vertexv passes over the edgee. (b) Two line
swaths meet at an extremal stabbing line (c) and induce a graph structure.

We start with an example: after traversing anEV line swath from left to right as shown in Fig. 3.2(a), the
vertex as seen from the observer will lie upon the polygon adjacent to the edge and no longer upon the floor.
This is a visibility change,i.e. a visibility event as we have seen in the previous chapter. The topology of the
view is modified whenever the vertex and the edge are aligned, that is, when there is a line from the eye going
through botheandv.

ThisEV line swath is a one dimensional (1D) set of lines, passing through the vertexv and the edgee, thus
it has one degree of freedom (for example a parameter varying over the edgee). When two suchEV surfaces
meet as in Fig. 3.2(b) a unique line is defined by the intersection of the two planes defined by theEV surfaces.
This line is an extremal stabbing line; it has zero degrees of freedom.

In what follows we will develop the concepts necessary to avoid any direct treatment of the line swaths
themselves since sets of lines or the surfaces described by these sets are difficult to handle, in part because they
can be ruled quadrics. All computations will be performed by line – or ray – casting in the scene.

We will be using the extremal stabbing lines to encode all visibility information, by storing a list of all
line swaths adjacent to each extremal stabbing line. In our first example of Figure 3.2(b), theVEE line ve1e2

is adjacent to the two 1D elementsve1 and ve2 described above;i.e., the swathsve1 and ve2. Additional
adjacencies for theVEE line ve1e2 are implied by the interaction ofve1 ande2 (Fig. 3.3(a)).

To complete the adjacencies of aVEE line, we need to consider theEEE line swaths related to the edges
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Figure 3.3: (a) An additionalEV line swath is adjacent to the extremal stabbing line, (b) (c) and twoEEE line swaths.

e1 ande2, and the two edgese4 ande3 which are adjacent to the vertexv (Fig. 3.3(b) and (c)).
The simple construction shown above introduces the fundamental idea of the Visibility Skeleton: by deter-

mining all the appropriate extremal stabbing lines in the scene, and by attaching all adjacent line swaths, we
can completely describe all possible visibility relationships in a 3D scene. They will be encoded in a graph
structure as shown on Fig. 3.3, to be explained in Section 2.3. Consider the example shown in Fig. 3.3(a): The
node associated to extremal stabbing lineve1e2 is adjacent in the graph structure to the arcs associated with
line swathsve1, ve10 andve2.

2.2 The 3D visibility complex, the asp and the visibility skeleton

TheVisibility Complexwhich we have introduced in the previous chapter is a structure which also contains all
relevant visibility information for a 3 dimensional scene. It is also based on the adjacencies between visibility
events and considers sets of maximal free segments of the scene (these are lines limited by intersections with
objects).

The zero and one-dimensional components of the visibility complex are in effect the same as those intro-
duced above, which we will be using for the construction of the Visibility Skeleton. Similar constructions
were presented (but not implemented to our knowledge for the complete perspective case) for theaspstructure
[PD90] for aspect graph construction.

In both cases, higher dimensional line sets are built. For the visibility complex in particular, faces of 2, 3
and 4 dimensions are considered. For example, the set of lines tangent to two objects has 2 degrees of freedom,
those tangent to one object 3 degrees of freedom, etc.

These sets and their adjacencies could theoretically be useful for some specific queries such as view compu-
tation or dynamic updates, for example in some specific worst cases such as scenes composed of grids aligned
and slightly rotated. In such cases, almost all objects occlude each other and the high number of line swaths
and extremal stabbing lines makes the grouping of lines into higher dimensional sets worthwhile.

TheVisibility Complexandaspare intricate data-structures with complicated construction algorithms since
they require the construction of a 4D or 5D subdivision. In addition they are difficult to traverse due to the
multiple levels of adjacencies. The approach we present here is different: we have developed a data structure
which is easy to implement and use.

These facts also explain the nameVisibility Skeleton, since our new structure can be thought of as the
skeleton of the complete Visibility Complex.

2.3 Catalogue of visual events and their adjacencies

The Visibility Skeleton is a graph structure. The nodes of the graph are the extremal stabbing lines and the arcs
correspond to line swaths (see Fig. 3.3). In this section (and in Appendix B) we present an exhaustive list of all
possible types of arcs and nodes of the Visibility Skeleton.
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Figure 3.4: (a) Same as Fig. 3.1(a):EV line swath. (b) As the eyepoint crosses theEEE line swath, the order
of the visual intersection ofe1, e2 ande3 is modified. When the eyepoint is on the swath, the three edges are
visually aligned. (c) In front of theFV swath we see the front side off , on the swath we see a line and behind
we see the other side off . (d) TheFE swath is similar to theFV case.

1D elements: Arcs of the visibility skeleton

In Fig. 3.4, we see the four possible types of 1D elements: anEV line swath (shown in blue), anEEE line
swath (shown in purple) and two line swaths relating a polygonal face (F) to one of its vertices (Fv) or an
edge of another polygon(FE) (both are shown in blue). In the upper part of the figure we show the view (with
changes in visibility), as seen from a viewpoint located above the scene. It moves from left to right and in front
of, on, or behind the line swath.

Note that the interaction of an edgeeand a vertexv can correspond to manyvearcs of the skeleton, because
they have different polygons at their extremities. These arcs are separated by nodes. Consider, for example,
arcsve1 andve10 adjacent to nodeve1e2 in Fig. 3.3(a).

0D elements: Nodes of the visibility skeleton

As explained in Section 2.1, two line swaths which meet define an extremal stabbing line, which in the Visibility
Skeleton is the node at which the arcs meet. This section presents a list of the configurations creating nodes
and their corresponding adjacencies. A figure is given in each case.

The simplest node corresponds to the interaction of two vertices shown in Fig. 3.5(a).
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Figure 3.5: (a) AVV nodev1v2 is adjacent to fourEV arcs defined by a vertex and an edges of the other vertex:
v1e3 andv1e4 ande1v2 ande2v2. (b) An EVE nodee1ve2: each edge defines twoEV arcs withv depending on
the polygon at the extremity, and to twoEEE are defined bye1, e2 and the two edges adjacent tov.
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Figure 3.6: An E4 node is adjacent to sixEEE arcs.

The interaction of a vertexv and two edgese1 ande2 can result in two configurations, depending on the
relative position of the vertex with respect to the edges. The first node was presented previously in Fig. 3.3 and
the second is shown in Fig. 3.5(b).

The interaction of four edges is presented in Figure 3.6, together with the six corresponding adjacentEEE
arcs. Face related nodes are given in detail in appendix B:EFE, FEE, FF , E andFvv (see Fig. B.3 to B.4).

3 Data structure

Given the catalogues of nodes and arcs presented in the previous section, we can present the details of a suitable
data structure to represent the Visibility Skeleton graph structure.

Preliminaries: Our scene model provides the adjacencies between vertices, edges and faces. Before pro-
cessing the scene, we traverse all vertices, edges and faces, and assign a unique number to each. This allows us
to index these elements easily. In addition, we consider all edges to be uniquely oriented (with astart and an
endvertex). This orientation is arbitrary (i.e., it does not depend on the normal of one of the two faces attached
to the edge), and facilitates consistency in the calculations we will be performing.

3.1 Initial data structure

The simplest element of the structure is the node. TheNodestructure contains a list of arcs, and pointers to the
polygonal facesFup andFdown (possibly void if the corresponding extremity of the node lies at infinity) which
block the corresponding extremal stabbing line at its endpointsPup andPdown (Fig. 3.7(a)).

The structure for anArc is visualized in the Fig. 3.7(a). The arc represented here (swath shown in blue) is an
EV line set. There are two adjacent nodesNstart, Nend, represented as red lines. All the adjacency information
is stored with the arc.

The lines of a swath are parameterized by a parametert, which is chosen along one of the generating edges
(we attach an arbitrary coordinate system to each edge). If there is ambiguity because the arc is generated
by more than one edge, the edge with the smallest identification number is chosen. This parameterization is
crucial for the insertion of nodes during the construction of the skeleton. Note that an extremal stabbing line
has diffferent parameters, depending on the arc which is considered. Each arc is characterized by the two values
tstart andtend of its two adjacent extremal stabbing lines.

Details of the structuresNodeandArc are given in Fig. 3.7(b).
To access the arc and node information, we maintain arrays of balanced binary search trees corresponding

to the different type of swaths considered. For example, we maintain an arrayevof trees ofEV arcs (see Fig.
3.7(b)). These arrays are indexed by the unique identifiers of the endpoints of the arcs. These can be faces,
vertices or edges (if the swath is “interior”, that is if the lines traverse the polyhedron adjacent to one of its
generators).

This array structure allows us to efficiently query the arc information when inserting new nodes and when
performing visibility queries. The balanced binary search tree used to implement the query structure is sorted
by the identifiers of the generators and by the value oftstart.
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Figure 3.7: Basic Visibility Skeleton Structure.
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Figure 3.8: (a) Summary of the initial visibility skeleton structure. A two-dimensional array indexed by the
polygons stores balanced binary search trees where the arcs of the skeleton are stored. (b) Summary of the
new visibility skeleton structure which reduces the memory requirements. Each polygon stores a search tree
indexed by the polygons it can see. For each pair of mutually visible polygons, a search tree of arcs of the
skeleton is stored.

3.2 Reducing memory requirements

The storage of the arcs of the Skeleton in a two dimensional array incurs anO(n2) cost in memory. In the
scenes we present in section 5 half of the memory is used for the array, in which more than 95% of the cells
are empty! It is even more problematic when the scene is highly occluded such as in the case of a building
where each room sees a only fixed number of other rooms: the number of arcs is onlyO(n). Moreover, for our
lighting simulation, we will need to subdivide the initial polygons into sub-patches and incrementally compute
visibility information between some pairs of sub-patches, but not all.
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For these reasons we propose to store the set of critical line swaths between two polygons on the polygons
themselves. Each polygonP stores a balanced binary tree; each node of this tree contains the set of arcs
betweenP and another polygonQ. This set is itself organized in a search tree (see Fig. 3.8(b)). Each set of arcs
is referenced twice, once onP and once onQ. In the same manner, each vertexV has a search tree containing
the sets of arcs betweenV and any polygonQ (which represents the view ofQ fromV). These sets of arcs are
closely related to the notion oflinks in hierarchical radiosity as we will see in chapter 4.

For the scenes tested, this approach results in an average memory saving of about 30%. Moreover, we ran
our modified version of the visibility skeleton on a set of scenes consisting of a room replicated 2, 4, and 8
times, showing roughly linear memory growth. Using a binary tree instead of an array incurs an additional
O(logn) time access cost, but this was not noticeable in our tests.

We will see in the next chapter that the Visibility Skeleton can be used for lighting simulation. To permit
the subdivision of surfaces required to represent visual detail (shadows etc.) on scene polygons, visibility
skeleton information must be calculated on the triangles created by the subdivision and the corresponding
interior vertices. The process is presented in detail in chapter 4.

Since the visibility information is now stored on polygons and vertices (instead of in a 2D array), the gen-
eralization to subdivided polygons is straightforward. On each sub-patch or sub-vertex, we store the visibility
information only for the patches it interacts with.

4 Construction algorithm

4.1 Finding nodes

Before presenting the actual construction of each type of node, we briefly discuss the issue of “local visibility”.
As has been presented in other work (e.g., [GM90]), for any edge adjacent to two faces of a polyhedron, the
intersection of the two negative half-spacse of the polygonal faces is locally invisible. Thus when considering
interactions of an edgee, we do not need to process any other edgee0 which is “behind” the faces adjacent to
e. This results in the culling of a large number of potential events.

The general principle of the node detection method is as follows: we first find a potential extremal stabbing
line generated by a given set of generators. That is, we find a line which intersects the generators. We then test
it for occlusion, because an object can lie between the generators, discarding the line. This is the difference
between line-visibility and segment-visibility discussed in the previous chapter.

Trivial nodes

The simplest nodes areVV, Fvv and Fe. For these, we simply loop over the appropriate scene elements
(vertices, edges and faces). The appropriate lines are then intersected with the scene using a traditional ray-
casting operation to determine if there is an occluding object between the related scene elements, in which
case no extremal stabbing line is reported. Otherwise the elements and points at the extremities of the lines are
returned as well as the appropriate location in the overall arc tree array.

VEE and EEEE nodes

We consider two edges of the sceneei andej . All the lines going through two segments are within an extended
tetrahedron (or double wedge) shown in Fig. 3.9, defined by four planes. Each one of these planes is defined
by one of the edges and an endpoint of the other.

To determine the vertices of the scene which can potentially generate aVEEor EVEstabbing line, we need
only consider vertices within the wedge. If a vertex of the scene is inside the double wedge, there is a potential
VEE or EVE event.

We next consider a third edgeek of the scene. Ifek cuts a plane of the wedge, a potentialVEE or EVE
node is created: If edgeek of the scene intersects the plane of the double wedge defined by edgeei and vertex
v of ej , there is aveiek or eivek event (Fig. 3.9(a)).

We call the intersection ofek with the extended tetrahedron itsrestriction. There are at most three parts for
a restriction of an edge which lie inside the double wedge (because there can be 4 intersections with the double
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wedge). Moreover, the computation of the limits of the restriction ofek inside the double wedge also give us
the potentialEVE andVEE lines going throughek, one of the edgesei or ej and a vertex of the other edge.

The restriction ofek also corresponds to the restriction of theeiejek line set, with respect to the line set
generated by the entire lines supportingei , ej andek.

ej

ei

ek

el

Lj Li

P
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Figure 3.9: (a) (b) VEE enumeration andEEE restriction. (c)E4 computation: find the root of the line going
throughejekel that also goes throughel ekei .

We next proceed with the definition of theE4 nodes. The intersections ofek and the planes of the double
wedge haverestrictedthe third edgeek (Fig. 3.9). To obtain a line going throughei , ej andek we need only
consider the restriction ofek to the double wedge. This process is re-applied to restrict a fourth edgeel by the
wedge ofei andej , by that ofei andek and by that ofej andek. This multiple restriction process eliminates a
large number of candidates.

Once the restriction is completed, we have twoEEE line sets, those passing throughel , ei andej and those
passing throughel , ei andek. A simple binary search is applied to find the point onel (if it exists) by which a
potentialE4 extremal stabbing lineeiejekel passes. We perform this search for a pointP of el by searching for
the root of the angle formed by the two linesLi andLj defined by the intersection of the plane(P;ei) with ej

and withek. This is shown on Fig. 3.9(c).
A more robust algorithm such as the one given in [TH91] could be used, but the simpler algorithm presented

here seems to perform well in practice. This is true mainly because we are not searching for infinite stabbing
lines, but for restricted edge line segments. The potentialVEE andE4 enumeration algorithm is given in Fig.
4.1.

Acceleration using space subdivision

We have developed an acceleration scheme to avoid the enumeration of all the triples of edges. For each pair
of edges, we quickly reject most of the third potential edges using a regular grid. Instead of checking if each
cell of the grid intersects the extended tetrahedron, we use the projection on the three axis-aligned planes. We
project the extended tetrahedron (which gives us an hourglass shape) onto each such plane.

To compute this 2D hourglass, we use the bounding boxes of the two edgesei andej (see Fig. 3.11). The 2D
hourglass is then defined by the separating and supporting lines of the projection of the bounding box. These
hourglasses are then conservatively rasterized at the resolution of the grid (each pixel containing a point of an
hourglass is marked valid).

We then perform the actual edge-tetrahedron intersection (the restriction) only for the edges contained in
the 3D cells whose three projections intersect the three pixelized hourglasses (see Fig. 3.11).
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potential VEE and EEEE enumeration
f
foreach edgeei from 1 ton

foreach edgeej from i+1 ton locally visible
foreach edgeek from j +1 ton locally visible

compute the EEE restrictionseiejek
foreach edgeek from j +1 ton locally visible

foreach segment of its restrictions
foreach edgeel from k+1 ton locally visible
foreach segment of its restrictions

search for E4
g

EEE restriction
f
foreach of the 4 planes

compute the intersectioninter
with the line of the edge

if it inter on the edge
propose a VEE
restrict the edge

foreach of the edge endpointssep

if sep is inside the double wedge
propose a VEE
restrict the edge

g

(a) (b)

Figure 3.10: Enumeration of Potential VEE and E4 Nodes.
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Figure 3.11: Acceleration using a regular grid and hourglasses. (a) Two edges and the corresponding extended
tetrahedron. (b) We use projections along the three axis of a regular grid. The projection of the bounding box
of the edges is used to compute an hourglass shape. The valid voxels are those projecting on a grey “pixel” on
each axis-aligned plane.

Non-trivial face nodes

To calculate the non-trivial face-related nodes (FvE, FEE and FF), we start by intersecting the plane of
each facef1 with every edge of the scene. For edges intersecting the face we attempt to create anFvE node
(Fig. B.3). That is, we perform the occlusion test (is there an object between the face and the edge?), and if no
occlusion occur we actually create the node.

For each pair of edges intersecting the plane of the face, we search for a potentialFEE node. To do this we
determine if the line joining the two intersections intersects the facef1. If this is the case, the potentialFEE
line is then tested for occlusion.

The last operation required is the verification of the existence of anFF node. This case occurs if the faces
adjacent to the edge of the intersection cause anFF (face f2 in Fig. 3.12 (b)). The construction for theFEE
andFF nodes is described in Fig. 3.12 (a).
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Find Face Nodesf
foreach face f1 of the scene

foreach edgee of the scene
compute the intersection of the edgee with the plane off1
foreach intersectionPi

create aFvE
foreach intersectionPj

if (PiPj ) intersectsf1
createFEE

foreach of the 2 facesf2 adjacent to the edge of Pi
find Pj the intersection of a second edge off2 with f1
if (PiPj) intersectsf1

createFF
g

f1

f2

ei

ej

e'i

f1f2eif1ej

(a) (b)

Figure 3.12: Finding Face Nodes.

4.2 Creating the arcs

Creation of a Visibility Skeleton Node
f

foreach adjacent arcn
computet
foreach arca with same extremities and same generators

if a! tstart < t < a! tend
AddNodeToArc(n, a)

if no arc found
create new Arc

g

AddNodeToArc(Noden, Arc a)
f

pos= decideStartOrEnd(n, a)
if posin a undefined

setposto n
else

split a into two parts
g

Figure 3.13: Node Creation.

The creation of the arcs of the Visibility Skeleton is performed while detecting the nodes. When inserting
a new node, we treat all the adjacent arcs from the corresponding catalogue presented in Section 2.3. If the arc
has already been created (because of a previous node) we just link it to the new node, otherwise we create the
arc and link it to the node (it has thus a null node at its extremity, waiting for the insertion of a new node).

For this purpose, for each of these arcsa we calculate the arc parametert corresponding to the node to be
inserted (as defined in Section 3.1), and proceed as explained in Fig. 4.2. We access the list of arcsa0 in the
Skeleton with the same extremities (thus in the same cell of the array or in the same search tree) and which
have the same generator elements (vertices and edges) as the arca. If the value oft indicates that the node
is contained in the arca0, this means thata had already been created, and is equal toa0. We then determine
whether this node is the start or the end node of the arc (according to the chosen arc parameterisation). This is
explained in more detail in the following paragraph. If this position is already occupied we split the arc, else
we assign the node to the corresponding extremity of the arc.

We have seen above that each time an arc adjacent to a node is considered, we have to know if it is itsstart
nodeor its end nodeaccording to the parameterization of the arc. That is, does this node terminate the arc in
the direction of the increasing or decreasingt? In some cases this operation is trivial, for example for av1v2

node and one if its adjacentv1e arcs, we simply determine ifv2 is the starting vertex ofe (recall that edges are
arbitrarily oriented, and that our parameterizationt is based on the intercept on the edges). In other cases, this
can be more involved, especially for theE4 case. This case and the necessary criteria for the other cases are
summarized in Table 2 of Appendix B.
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Figure 3.14: Example of node insertions: (a) Insertion nodevve. (b) Insertion of nodefve. Arc vehas now two
ending nodes. (c) Insertion of nodeve3e. Arc ve is split. (d) Insertion of nodeve4e, the two arcsvehave their
actual adjacent nodes.

In Fig. 3.14, we illustrate an example of the construction algorithm. Initially a trivialvve node is created.
The second node identified isv f e, which is adjacent the arcve. Thus the arcve is adjacent to bothvve andv f e.
The third node to be created isvee3. When this node is inserted, we realize that the start node forvealready
exists, and we thus split thevearc. This splitting operation will leave the end of thevearc connected tovve

undefined. The final insertion shown isve2ewhich will fill an undefined node previously generated.

4.3 Treating degenerate configurations

Computational geometry often makes the assumption that the scenes considered are in a “general configura-
tion”. Unfortunately, computer graphics scenes are very often highly degenerate: many points are aligned,
segments or faces are parallel or coplanar and objects touch each other.

This results in degenerate visibility events;e.g.,VVV extremal stabbing lines passing through three aligned
vertices, orE5 stabbing lines going through five edges (these degenerate events will also be discussed in the
context of dynamic scenes in section 7).

These degenerate configurations cause duplicate line swaths and result in numerical instabilities in the
occlusion test of a potential extremal stabbing line. This line may then be randomly discarded. Inconsistencies
can thus appear in the neighbourhood of the corresponding nodes of the graph. A consistent policy has to be
chosen to include these nodes and their adjacent arcs or not.

We first have to identify the occurrence of these problems. When a potential extremal stabbing line is
tested for occlusion, we also check for grazing objects (typically edges collinear to the line or coplanar faces).
This requires a simple modification to the point-in-polygon test used for the ray-casting occlusion test of the
potential extremal stabbing lines. We thus detect the intersection with a silhouette edge or vertex.

We also have to deal with the aforementioned degenerate extremal stabbing lines. A first possibility is to
explicitly create a catalogue of all these degeneracies. This approach however quickly makes the implementa-
tion intractable because of the large number of different cases. We have chosen to always consider the simplest
configuration, that is the one in which we have the smallest number of visual events. For example, if four edges
E1, E2, E3 andE4 are parallel in that order, we consider thatE2 occludesE1 and thenE3 occludesE2 etc. The
configurations to be treated are thus simpler and correspond to the standard Skeleton catalogue of events. The
problems of numerical precision are treated using a consistentε threshold for equality and zero tests.

We do not claim that the problem of numerical precision and robustness have received a definitive, gen-
eral and reliable treatment, as will be discussed in the conclusions chapter. Our implementation however has
permitted the computation of the visibility skeleton for scenes where the typical degenaracies encountered in
computer graphics occur.
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5 Implementation and first applications

We have completed a first implementation of the data structures and algorithm described. We have run the
system on a set of test scenes, with varying visibility properties. In its current form, we have successfully
computed the Visibility Skeleton for scenes up to 1500 polygons.

In what follows we first present Visibility Skeleton construction statistics for the different test scenes used.
We then proceed to demonstrate the flexible nature of our construction, by presenting the use of our data
structure to efficiently answer several different global visibility queries.

5.1 Implementation and construction statistics

Our current implementation requires convex polyhedra as input. However, this is not a limitation of the ap-
proach since we use polyhedral adjacencies simply for convenience when performing local visibility tests.

We treat touching objects by detecting this occurrence and slightly modifying the ray-casting operation
(to avoid ray-leaks through the contact between two objetcs). We also reject coplanar edge triples. Other
degeneracies such as intersecting edges are not yet treated by the current implementation.

We present statistics on the size of our initial structure and construction time in Table 5.1 and Fig. 3.15.
Evidently, these tests can only be taken as an indication of the asymptotic behavior of our algorithm. As such,
we see that our test suite indicates quadratic growth of the memory requirements and super-quadratic growth
of the running time. In particular, for the test suite used, the running time increases withn2:4 on average, where
n is the number of polygons.

TheVEE nodes are the most numerous. There are approximately a hundred times fewerE4 nodes, even
though theoretically there should be an order of magnitude more.

With the initial structure (i.e, with the 2D arrays), a large percentage of the memory required is used by
these arrays (e.g. for scene (d) of Table 5.1, the arrays need 53.7Mb out of a total 135Mb). Since these arrays
are very sparse (e.g. 99.3% empty for scene (d)), it is clear that storage requirements can be greatly reduced.
The memory requirements are greatly decreased by our improved data-structure which replaces of the arrays
with binary trees stored at the polygons. An average gain of 30% has been observed on our test scenes.

In the case of densely occluded scenes, the memory requirements grow at a slower rate, on average much
closer to linear than quadratic with respect to the number of polygons. As an example, we replicated scene (a)
2, 4 and 8 times, thus resulting in isolated rooms containing a single chair each. The memory requirements
(excluding the arrays) are 1.2Mb, 2.8Mb, 8.6Mb and 17.3Mb, for respectively 78, 150, 300 and 600 polygons.
The improved structure leads to a linear growth.

The theoretical upper bounds are very pessimistic,O(n4) in size because every edge quadruple can have
two lines going through it [TH91], andO(n5) in time because such potential extremal stabbing lines have to
be ray-cast with the whole scene. But such bounds occur only in uncommon (“exotic”) worst case scenes
such as grids aligned and rotated or infinite lines. It is clear that our construction algorithm would be very
inefficient for such cases. More efficient construction algorithms are possible (such as the construction of the
visibility complex presented in the previous chapter, which requires timeO(k+n3 logn) wherek is the size of
the complex, which is also teh size of the skeleton), but these approaches suffer from all the problems described
previously in Section 2.2 and in the conclusions of the previous chapter.

In what concerns the robustness of the computation, previous aspect graph and discontinuity meshing al-
gorithms depend heavily on the construction of the arrangement (of the mesh or aspect graph “cells”), as the
algorithm progresses. In the construction presented here, this is not the case since all operations are completely
local. Since we perform ray-casting and line-plane intersections, the number of potential numerical problems
is limited. Degeneracies can occasionally cause some problems, but due to the locality, this does not effect
the construction of the Skeleton elsewhere. More efficient sweep-based algorithms are particularly sensitive
to such instabilities, since an error in one position in space can render the rest of the construction completely
incorrect and inconsistent.

5.2 Point-to-area form-factor for vertices

The calculation of form factors has become central in many global illumination methods. The form factor
between two surfaces is the ratio of light leaving one surface which arrives at one other. In many radios-
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a b c d e f g

Scene
Polygons 84 168 312 432 756 1056 1488
Nodes (�103) 7 37 69 199 445 753 1266
Arcs (�103) 16 91 165 476 1074 1836 3087
Construction 1 s 71 12 s 74 37 s 07 1 min 39 s 5 min 36 s 14 min 36 s 31 min 59
Memory (Mb) 1.8 9 21 55 135 242 416

Table 3.1: Construction statistics (all times on a 195Mhz R10000 SGI Onyx 2). The storage is indicated for
our initial data structure (i.e. including the two-dimensional array). It is scene dependent and is greatly reduced
with our improved data-structure.
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Figure 3.15: (a) Logarithm-logarithm graph of the number of nodes. The slope of about 2 indicates a quadratic
growth. (b) Logarithm-logarithm graph of the computation time. The slope of about 2.4 indicates that the
growth is inn2:4.

ity lighting simulation systems, point-to-area calculations are used to approximate area-to-area calculations
[CG85, BRW89], and in others the actually point-to-area value is computed at the vertices [WEH89].

In both theoretical [LSG94] and experimental [DS96] studies, previous research has shown that error of
the visibility calculation is a predominant source of inaccuracies. This is typically the case when ray casting is
used. Lischinskiet al. [LSG94] have developed a very promising approach to bounding the error committed
during light transfer for hierarchical radiosity. For it to be useful for general environments, access is required
to the exact visibility information between a point on one element with respect to the polygon face it is linked
to. This information is inherently global,anytwo surface elements of the scene can interact.

The Visibility Skeleton in its initial form can answer this query exactly and efficiently for the original
vertices of the input scene.

To calculate the view of a polygonal face from a vertexv, with respect to a facef , we access all theEV
arcs of the skeleton related to the facef . This is simply the traversal of the line of our global two-dimensional
array of arcs, indexed byf (or the traversal of the search tree stored atf for the improved structure). For each
entry of this list (many of which are empty), we search for theEV arcs related tov. TheseEV arcs are exactly
the visible boundary off seen fromv. This is done efficiently because the arcs in the search trees are sorted
in a lexicographic order where the first key is the generators. In particular, we have chosen to use the vertex
identifier before the edge to orderEV arcs.

An example is shown in Fig. 3.16(a) and (b). For these scenes, containing 312 and 1488 polygons, the
extraction of the point-to-area boundary takes respectively 1.2 ms and 1.5 ms (all query times are given without
the cost of displaying the result).
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The next chapter will present a global illumination simulation algorithms which uses the visibility skeleton
to calculate exact point-to-area form factors.

(a) (b)

Figure 3.16: (a) Part of the floor visible from a vertex of the airplane. (b) Part of the floor seen by a vertex of
the right-hand light source.

(a) (b)

Figure 3.17: (a) The discontinuity mesh with respect to the right source. (b) Discontinuity mesh between the
lamp and the table.

5.3 Global and on-the-fly discontinuity meshing

In radiosity calculations, it is often very beneficial to subdivide the mesh of a surface by following some
[Hec92a, LTG93], or all [DS96] of the discontinuity surfaces between two surfaces which exchange energy.
The partial [Hec92a, LTG92] or complete [DF94, SG94] construction of such meshes has in the past been
restricted to the discontinuity mesh between a primary light source (which is typically a small polygon) and the
receivers (which are the larger polygons of the scene). For all other interactions between surfaces of scenes,
the algorithmic complexity and the inherent robustness problems related to the construction of these structures
has not permitted their use [Tam93].

For many secondary transfers in an environment, the construction of a global discontinuity mesh (i.e., from
any emitting/reflecting surface to any other receiving surface in a scene), can aid in the accuracy of the global
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(a) (b)

Figure 3.18: (a) List of occluding blockers between the left light source and the floor. Note that the objects on
the table that are invisible from the floor are not reported as blockers. (b) Limits of the occlusions caused by a
part of the plane between the computer screen and the right wall.

visibility computation. This was shown in the high-quality radiosity system by Hardt and Teller [HT96]. In
their case, the discontinuity surfaces are simply intersected with the scene polygons for subdivision, while the
visibility information encoded by the line swath is not considered. Moreover, they do not treatEEE swaths.
With the Visibility Skeleton, the complete global discontinuity mesh between two surfaces can be efficiently
computed.

Consider a polygonfi as a light source, and a polygonf j as a receiver. The discontinuity surfaces caused by
fi on f j correspond to the arcs of the visibility skeleton which have one generator onfi and one extremity onf j ,
together with the arcs which have one extremity onfi and one onf j . The latter category simply corresponds to
the arcs stored in the two dimensional array indexed byfi and f j (or in the node of the search tree corresponding
to fi and f j ). The former kind of arcs are stored in the row of the array indexed byf j , and can be found using
the search trees of arcs in a way similar to view extraction.

However, for view extraction only one type of generator is searched, a vertex, since an arc is never generated
by more than one vertex, as opposed toEEE which are generated by three edges. Enumerating the relevant
arcs no longer corresponds to a search on the first key in the search tree. Multidimensional search trees could
be used to cope with this. We have nevertheless chosen a simpler approach.

We add an additional two-dimensional arrayDM(i; j), storing all the arcs with one generator on facefi and
one extremity onf j . Insertion into this array of lists and well as subsequent access is performed in constant
time. To extract the discontinuity mesh between to surfacesfi and f j we simply access the entryDM(i; j), and
the cell of the original array storing the arcs with extremityfi and f j , and consider the corresponding arcs. In
Fig. 3.17(a), the complete discontinuity mesh between the source and the floor is extracted in 28.6 ms. The
mesh caused by the small lamp on the table in Fig. 3.17(b) was extracted in 1.3 ms (recall that the arrangement
is not built).

This additional array is replaced by a search tree stored at the polygons for the improved structure. It
will prove particularly useful for lighting simulation, because all the information related to the light transfer
betweenfi and f j is stored at the corresponding polygons (see the next chapter).

The resulting information is a set of arcs. These arcs can be used as in Hardt and Teller [HT96] to guide
subdivision, or to construct the arrangement of the discontinuity mesh on-the-fly, to be used as in [DS96] for
the construction of a subdivision which follows the discontinuities. The adjacency information available in the
Skeleton arcs and nodes should permit a robust construction of the mesh arrangement.
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5.4 Exact blocker lists, occlusion detection

When considering the interaction between two surfacesfi and f j , it is often the case that we require access to
the exact list of blocker surfaces hiding one surface from the other. This is useful in the context of blocker list
maintenance approaches such as that presented by Teller and Hanrahan [TH93].

The Visibility Skeleton can again answer this query exactly and efficiently. We use the cell of the initial
array of the arcs having one extremity onfi and one onf j , as well as the cellDM(i; j), and we traverse the
related arcs. All the polygons related to the intervening arcs are blockers. It is important to note that this
solution results in theexactblocker list, in contrast with all previous methods. Consider the example shown in
Fig. 3.18(a) where we compute the occluders between the left ceiling lamp and the floor in 4 ms.

Theshaftstructure [HW91] would report all objects on the table even though they are hidden by the table.
In this case the Visibility Skeleton reports the exact set of blockers.

When constructing the Visibility Skeleton, we in fact also compute all the mutually visible objects of the
scene: if two objects see each other, there will be at least one extremal stabbing line which touches them or their
edges and vertices. This is fundamental for hierarchical radiosity algorithms since it avoids the consideration
of the interaction of mutually invisible objects in the initial linking stage.

Similarly, the Skeleton allows for the detection of the occlusions caused by an object. This can be very
useful for the case of a moving objectmallowing the detection of the form factors to be recomputed. To detect
if the form factorFi j has to be recomputed we perform a query similar to the discontinuity mesh between two
polygons: we traverse the corresponding cell of the array andDM(i; j), and search for an arc caused by an
element (vertex, edge or face) ofm. This gives us the limits of occlusions ofm betweenfi and f j . Moreover,
by considering all the arcs of the skeleton, we report all the form factors to be recomputed, and not a superset.
Fig. 3.18(b) shows the occlusions caused by the body of the plane between the screen and the right wall. This
computation required 1.3 ms.

6 Dealing with spatial complexity: on-demand construction

We propose here an on-demand orlazyscheme to compute visibility information only where and when needed.
For example, if we want the discontinuity mesh between two surfaces, we just need to compute the arcs of the
skeleton related to these two faces, and for this we only need to detect the nodes between these two faces.

The key for this approach is the locality of the Visibility Skeleton construction algorithm. We only compute
the nodes of the skeleton where needed. The fact that some arcs might have missing nodes causes no problem
since no queries will be made on them. Later on, other queries can appropriately link the missing nodes with
these arcs.

Two problems must be solved: determination of what is to be computed, and determination of what has
already been computed.

We propose two approaches (but only the first one has been implemented): a source driven computation,
and an adaptive subdivision of ray-space in the spirit of [AK87].

In the context of global illumination, the information related to “sources” (emitters or reflectors) is crucial.
Thus the part of the visibility skeleton we compute in an on-demand construction is related to lines cutting the
sources. The node detection has to be modified: every time a double wedge or a face does not cut the source,
the pair of edges or the face is discarded, and if a potential node is detected, the ray-casting is performed only
if the corresponding critical line cuts the source.

We use our grid-acceleration scheme here too: for theEEE restriction, for an edgeei , we form an edge
paironly for the edgesej that lie inside the hourglass defined by the source and the first edge. A similar scheme
is aplied forVV detection.

When considering many sources one after the other, we also have to detect nodes already computed. If the
sources are small, it is not worth rejecting double wedges, and only the final ray-casting and node insertion
can be avoided (in our implementation they account for a third of the running time). If the potential extremal
stabbing line cuts one of the previous sources, we discard it. We can perform a “final computation” if we want
all the nodes that have not yet been computed: we just test before ray-casting if the critical line cuts one of the
sources, in which case we discard it.

For scene (g) of Table 5.1, the part of the Visibility Skeleton with respect to one of the sources is computed
in 4 min. 15 s. instead of 31 min. 59 s. for the entire scene.
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Figure 3.19: Dynamic update of the skeleton. Edgeemoving from right to left causes aVEV temporal visibility
event which is the meeting of twoEV with the the two same extremities and with a common generator (here
the edgee). Four nodes are created, theEV arcs are split into three parts and eight arcs are created. These
events and the topological visibility changes are local in the visibility skeleton.

When the number of sources becomes large, most of the time would be spent in checking if lines intersect
the sources or if they have already been computed. If we need visibility information only between two objects,
not between an object and the whole scene, we propose the use of ray classification [AK87] together with the
notions of dual space introduced in the previous chapter to build the visibility skeleton only where and when
needed. The idea (which is not currently implemented) is to parameterize the lines of the 3D space (which
is a set in 4D space), for example by their direction and projection on a plane or by their intersections with
two parallel planes. We then perform a subdivision of the space of lines with a simple scheme (e.g., grid,
hierarchical subdivision) and compute the nodes of the complex located inside a given cell of this subdivision.

7 Dynamic scenes

We present in this section issues concerning the handling of dynamic scenes. These are only sketches of algo-
rithms, no implementation actually exists. We believe that the importance of this topic justifies an exposition,
even in this preliminary form.

7.1 Temporal visual events

When an object moves, the topology of the visibility skeleton is modified only when atemporal visibility event
occurs, as presented in section 3 of the previous chapter.

We present here the example of aVEV event, and show how the Visibility Skeleton is modified. Next
section will show how the occurrence of such an event can be detected. Other kinds of visual events can occur
(EEEEE, EEEV, FFE, FEEE, FEV, : : :) and can be treated in a similar way.

On Fig. 3.19 the edgeemoves from right to left. The twoEV arcsv1eandev2 meet at the temporal visibility
eventv1ev2.

The twoEV arcs are split into three parts because of the occlusion caused by the other vertex. Four nodes
v1ee3, v1ee4, e1ev2 ande2ev2 are created as well as fourEEEarcse1ee3, e1ee4 eeee3 ande2ee4. The reciprocal
change can happen if the edge moves in the other direction.

These changes are local in the visibility skeleton, even if the corresponding edges, vertices and faces are far
away in the scene.
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7.2 Temporal visual event detection

Detection of aVEV event could be done as follows. The two meetingEV always share the two same polygons
at their extremities. This is always true, crossing arcs always have the extremities of the extremal stabbing line
corresponding to the temporal visibility event. They share a common generator, and of course at least one of
these arcs is related to the dynamic object. Thus a dynamic update of the Visibility Skeleton should, for each
arc related to the dynamic object, find the next potential temporal visibility event.

Consider the arcv1e related to the dynamic object. In order to meetv1e another arc should have the two
same extremities asv1e and should be related to eithere or v1. Such arcs can be found quickly by searching in
the same list of the array if it is organised as a search structure on both the edge and the vertex (for example as
a KD-tree). Then a potential temporal event is computed.

All the actual temporal events are then sorted, and processed in order. When an event occurs, the visibility
skeleton is locally updated. The temporal event list has to be updated too. The modified arcs are checked for
meeting with other arcs, and the temporal events related to destroyed arcs are removed.

If most of the objects in the scene move, we search for each list of the arrays of arcs if there are meeting
arcs in it. All arcs having a generator (face, edge, vertex) in common are checked for meeting.

7.3 Potential applications: form factor maintenance

As an example of a useful application, let us show how this can be applied in a context of global illumination of
dynamic scenes. In radiosity simulation with moving objects, some form-factors should be recomputed: those
ones related to the moving object, but also form-factors between patches partly occluded by the moving object.
Moreover, pairs of objects may become mutually visible or mutually invisible, requiring to set or discard a
representation of teh corresponding light transfert. The Visibility Skeleton proves to be an efficient tool for
detecting all these modifications.

The mutual visibility of two polygonsf1 and f2 is affected by an object, iff there is an arc of the skeleton
related to this object in the lists of arcs betweenf1 and f2. This gives an exact characterization of form factors
to be updated.

The need for form-factor recomputation will start and end a iff a temporal visibility event occurs which
has a generator or extremity on each face. For example, in Fig. 3.19, the form factor between the two faces
adjacent tov1 andv2 starts to need recomputation because of the occlusion caused bye. The recomputation can
be made locally in the corresponding view itself: consider for example the point-to-area form factor between
v1 and the down face. At any time the quantity to remove from the form-factor corresponds to the area that
becomes hidden bye.

See the work by Ortiet al. [ORDP96] for a development of the 2D equivalent.

8 Conclusions

8.1 Summary

We have presented a new data structure, called theVisibility Skeleton, which encodes all global visibility in-
formation for polygonal scenes. The data structure is a graph, whose nodes are the extremal stabbing lines
generated by the interaction of edges and vertices in the scene. These lines can be found using standard com-
puter graphics algorithms, notably ray-casting and line-plane intersections. The arcs of the graph are critical
line sets or swaths which are adjacent to nodes. The key idea for simplicity is to treat the nodes and deduce the
arcs using the full catalogue of all possible nodes and adjacent arcs we have presented for polygonal scenes. A
full construction algorithm was then given, detailing insertion of nodes and arcs into the Skeleton.

We have presented an implementation of the construction algorithm and several applications. In particular,
we have used the Skeleton to calculate the visible boundary of a polygonal face with respect to a scene vertex,
the discontinuity mesh between any two polygons of the scene, the exact list of blockers between any two
polygons, as well as the complete list of all interactions of a polygon with all other polygons of the scene.

The implementation shows that despite unfavorable asymptotic complexity bounds, the algorithm is man-
ageable for the test suite used, both in storage and in computation time. In addition, we have developed and
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implemented a first approach to on-demand or lazy construction which opens the way to hierarchical and pro-
gressive construction techniques for the Skeleton.

8.2 Discussion and future work

Robustness

Robustness and scalability are the two major issues of future work. The locality of our construction algorithm
limits the effect of errors, and our treatment of degeneracies permits the handling of most of the cases encoun-
tered in computer graphics scenes. Nevertheless, their implementation has been tedious and we can not claim
that all situations are handled.

We do not believe that robustness problems should be treated using exact arithmetic. Practical scenes exhibit
many degeneracies such surface contact or parallelism which should be taken into account and not treated as if
objects were in general position. If two object touch, we do not want to compute a visual event between them
because the last digits are slightly different. We want to detect that this is a degenerate case and conclude that
no visibility is possible through them. This does not prevent the use of precise (if not exact) arithmetic to detect
the degenerate cases. However, a specific treatment should then be applied.

Unfortunately this makes the implementation very tedious, since it dramatically increases the number of
different cases to handle. To cope with this, a general definition of extremal stabbing lines could be used.
Define an extremal stabbing line as a line going throughn edges (withn� 4) (see Fig. 3.20). The adjacent arcs
can be enumerated by considering all triples of its generating edges. The configuration of each triple of edges
can then be tested (including tests to detect degeneracies) to decide if the arc should be discarded or treated.
This permits the use of a single procedure where our implementation requires specific code for each sort of
extremal stabbing line. Specific code should however be written for each arc configuration (EV, EEE, FE, or
Fv).

E1
E2

E3 V2

V3

F1

F2

V1

Figure 3.20: General definition of extremal stabbing lines.

Consider the example in Fig. 3.20. The generators are first sorted along the line. The arcs generated byV1

are enumerated first. TwoV1E1 arcs are created, depending on the right extremity.V1E2 is discarded because
of the occlusion byE1. For triples or pairs of generators, the procedure simply consist in testing occlusion by
another generator in between, then finding the extremities (which is an extremity of the extremal stabbing line
or a face adjacent to one generator).

Another approach to improve the robustness of our construction is toa posteriorirepair the skeleton. As
we have seen, an error incurs only local incoherences in the skeleton. A post-process could be used which links
in a coherent (if not exact) way the pendant”hanging” arcs and nodes of the skeleton, or which removes the
unnecessary features. The next section will also discuss some aspects of the robustness issue.
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Scalability

Though the practical behaviour of our construction algorithm is much lower than its theoretical complexity,
a quadratic cost is not acceptable for practical use with large scenes. We think that a visibility data-structure
should be developed which allows a trade-off in precision as the objects get more distant from each other. A
hierarchical approach should be explored, computing an exact visibility skeleton for clusters of objects, and
another data-structure between different clusters. We have already studied such an approach in 2D [Dur95].

However, an approximate visibility structure between clusters of objects is hard to define because the defini-
tion of approximate visibility itself is far from straightforward. A cluster of objects is not opaque, transmittance
should be considered. The work by Soler [Sol98, SS96b] on approximate visibility is an interesting step to-
wards refinement in visibility computation.

The Visibility Skeleton is a graph structure. Graph literature has certainly a lot to tell us. What are the
properties of the skeleton as a graph? Graph compression techniques could be explored. Consider the example
of two triangles with full visibility. This situation could be detected and factorized to compress the visibility
information.

Simplifying the skeleton through vertex removal or collapse operations is an interesting issue. The effect
of such operations on the visibility information encoded should be carefully analyzed, especially their global
consequences. For example, when considering the umbra of a highly tessellated object, some events could be
collapsed. This however eliminates some visibility information at the vertices of the object.

Of course the application-specific restriction can help guide simplification as well as the definition of ap-
proximate visibility. Discontinuity meshing and visible part computation for lighting simulation provide a per-
fect context since hierarchical frameworks have been developed for global simulation [HSA91, SAG94, Sil95].

Moreover, we believe that scalability and robustness should be studied together, since a hierarchical ap-
proach naturally defines a notion of scale which can be used to set thresholds for degeneracy detection. The
sameε can be used to decide that a visibility information is not “noticeable” and that two features are in a
degenerate configuration.

Other issues

The Visibility Skeleton can be defined for scenes of curved objects as the one and zero-dimensional faces of the
corresponding 3D Visibility Complex. Visual events are described by the theory of the singularities of smooth
mappings (see appendix A). Unfortunately, the extension of our construction algorithm is not straightforward.
The major issue is the parameterization of arcs, which can no longer be based on intercepts along edges, making
it difficult to define an order for the search trees, especially in the case of concave objects.

The update of the skeleton after the addition or removal of objects is different from the maintenance in
the case of smooth motion. Because of its locality, our construction algorithm could be adapted to recompute
visibility only where relevant to the modified object.

The visibility skeleton permits in a sense to “emulate” the visibility complex thanks to the search trees. The
zero and one dimensional boundaries of a 4-face of the complex are encoded in one binary tree in the skeleton.
For a given pair of polygons, the related 4-faces are encoded in the corresponding cell of the array in the initial
structure or stored at the polygons in the second. This should be explored further.

In the next chapter, we apply the visibility skeleton to the concrete problem of global illumination using
a hierarchical radiosity method. We show that it permits efficient and accurate simulation, providing high
quality shadows even in hard configuration such as scenes lit by many sources or illuminated mainly by indirect
lighting.

The applications of the skeleton to other techniques should be developed. In particular in computer vision,
the aspect graph [Kv76, Kv79, EBD92], the visual hull [Lau94, Lau95, Lau97, Lau99] or the computation of
occlusion-free viewpoints [TTK96] could benefit from the visual events encoded by the skeleton. In robotics,
visibility based pursuit-evasion motion planning [LLG+97, GLL+97, GLLL98] also requires a partition of the
scene by visual events. However, the exponential cost of the graph-search algorithm implied by the existing
2D techniques makes their direct extension to 3D a challenge.
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CHAPTER 4

Visibility Driven Hierarchical Radiosity

Les reflets des parties ´eclairées rejaillissent sur les om-
bres en face d’elles, et all`egent plus ou moins leur ob-
scurité selon leur distance et leur degr´e de clarté.

LéonardDE VINCI, Codex Urbinas

HIS CHAPTERdescribes the use of the Visibility Skeleton to answer visibility queries encoun-
tered in lighting simulation. Recent advances in global illumination, such as hierarchical ra-
diosity [HSA91] and its combination with discontinuity meshing [LTG93, DS96] have resulted
in high quality lighting simulations. These lighting simulations areview independentand are
suitable for walkthroughs. The quality of the resulting illumination is important everywhere in

the scene, since the user can, for example, approach a shadow of an object and see its details.
Despite the high quality of existing techniques, certain aspects of these algorithms are still suboptimal. In

particular, deciding when a light-transfer isrefinedappropriately, and thus computed with higher precision is
a hard decision; current algorithms ([HSA91, LSG94, GH96] etc.) include methods based on error bounds
which in many cases prove insufficient. Creating ameshto represent lighting variations accurately (notably
for shadows) is hard; discontinuity meshing approaches [LTG93, DS96] have proposed some solutions for
these issues which are however often limited in their applicability. Recent approaches (e.g., [CSSD96, UT97])
avoid this problem by performing a view-dependent, ray-casting “final gather”; view-independence and the
capacity for interactive display and walkthroughs are thus sacrificed. Accuratevisibility calculation is also
fundamentally hard, since we have to consider the potential interaction between all polygons in the scene for
global illumination.

The above three problems,visibility, refinementandmeshingare accentuated in the following two lighting
configurations: scenes lit by multiple sources and scenes lit mainly by indirect illumination. In this chapter
we present a new algorithm which addresses the three shortcomings mentioned above. For all three problems,
previous approaches lack information on accurateglobal visibility relationships in the scene. This information
is provided by theVisibility Skeleton. The Skeleton allows the fast computation of exact point-to-polygon
form-factors for any point-polygon pair in the scene. In addition, all visibility information (blockers and all
discontinuity surfaces) is available for any polygon-polygon pair.

This global visibility information allows us to develop an intelligent refinement strategy, since we have

79
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knowledge of visibility information forall light transfers from the outset. We canrank discontinuity sur-
faces between any two hierarchical elements (polygons or patches resulting from their subdivision), using
perceptually-based techniques [GH97b]; thus only discontinuities which are visually important are considered.
An appropriate mesh is created using these discontinuities; illumination is represented very accurately resulting
in high-quality, view-independent meshes. To achieve this in the context of a hierarchical radiosity algorithm,
we have introduced a hierarchy of triangulations data structure. Radiosity is gathered and stored at vertices,
since the Skeleton provides us with the exact vertex-to-polygon form-factor. An appropriate multi-resolution
push-pull procedure is introduced. The high-quality mesh, the exact form-factor calculation and the hierarchi-
cal triangulation result in lighting simulation with accurate visibility.

Our approach is particularly well-suited for the case of multiple sources since the discontinuity ranking
operates simultaneously onall light energy arriving at a receiver. Indirect illumination is also handled very
well, since visibility information, and thus the refinement and meshing strategies as well as the form-factor
computation apply equally well to all interactions,i.e., both direct (from the sources) and indirect (reflected
light). Examples of these two cases are shown in Fig. 4.1. In Fig. 4.1(a) we see a scene lit by 10 separate
light sources, where the multiple shadows are visible but the mesh complexity is reasonable (see Table 4.2,
in Section 6.2). In Fig. 4.1(b) we see a room lit mainly by indirect lighting; notice the high quality shadows
created entirely by indirect light (e.g., on the far wall from the books and lamp).

(a) (b)
Figure 4.1: Images computed using our new hierarchical radiosity algorithm based on the Visibility Skeleton
and hierarchical triangulations. (a) A scene with multiple sources. The skeleton construction took 2min 23s
and the lighting simulation 8min. (b) A scene mainly lit by indirect light. The skeleton construction took 4min
12s and the lighting simulation 6min 58s. Note the shadows caused by indirect illumination, cast by the books
on the back wall.

The new algorithm we present here is in a certain sense an extension of hierarchical radiosity, using visibility
structures, advanced meshing techniques and perceptually-based subdivision. We briefly review hierarchical
radiosity methods, accurate visibility techniques and related visibility-based refinement for lighting algorithms
and finally perceptually-based refinement for illumination.

The work presented here has been accepted for publication inACM Transaction on Graphics[DDP99].
This chapter adds a description of possible improvements to decrease the memory consumption of our method
in section 7.

The chapter is organised as follows. After a presentation of previous work, the details of our multiresolution
structure, and the novel push-pull algorithm are presented in Section 2. In Section 3 we present the new
hierarchical radiosity algorithm using accurate global visibility and we present the new point-polygon and
polygon-polygon link data structures. In Section 4 we present the corresponding refinement processes and
the visibility updates required for their use. In Section 5 polygon subdivision and the perceptually-based
refinement criterion are described. We then present results of our implementation, as well as a discussion of
possible improvements. We conclude with a discussion of relative limitations and advantages of our approach.
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1 Motivation and previous work

1.1 Hierarchical radiosity

The hierarchical radiosity algorithm [HSA91] allows efficient calculation of global illumination. Lighting cal-
culations are limited to a user-specified level of accuracy, by means of hierarchically subdividing the polygons
in the scene into a quadtree, and creating light-transfer “links” at the appropriate levels of the hierarchy. In
the original hierarchical radiosity solution [HSA91], radiosity is considered constant over each quadtree ele-
ment. The rectangular nature of the quadtree, and the constant reconstruction result in the need for very fine
subdivision for high quality image generation (high quality shadows etc.).

Higher-order (non-constant) methods have also been introduced, notably in the context of wavelet-based
solutions [GSCH93]. The wavelet-based radiosity solutions presented to date typically operate on discontinu-
ous bases, resulting in visible discontinuities if the solution is displayed directly (e.g., [CSSD96]). Zatz [Zat93]
used a Galerkin-type method and shadow masks to improve the quality of the shadows generated. To avoid
the problem of discontinuous representations the “final gather” step was introduced by [Rei92] and used for
wavelet solutions (e.g., [CSSD96]). A final gather step consists of creating a ray-cast image, by querying the
object-space visibility and lighting information to calculate illumination at each pixel [UT97]. This approach
allows the generation of high quality images from a coarse lighting simulation, at an additional (frequently
high) cost. The solution thus becomes view-dependent, and interactive display and walkthrough capability are
lost.

More recently, Bekaertet al. have presented an efficient algorithm which combines hierarchical radiosity
and Monte-Carlo radiosity [BNN+98]. However, the stochastic nature of the algorithm makes it difficult to
refine along shadow boundaries.

1.2 Accurate visibility and image quality

The accurate calculation of visibility in a lighting simulation is essential: both the numerical quality of the
simulation and the visual quality of the resulting image depend on it. The exact computation of visibility
between two patches in a scene or between a patch and a point requires the treatment of the visual events
studied in the previous chapters. In the case of the view of a light source, these boundaries correspond to
the limits of umbra and penumbra. By choosing certain of these boundaries and using them to guide the
(irregular) mesh structure,discontinuity meshinglighting algorithms have been introduced resulting in more
visually accurate images (e.g., [Hec92a, LTG92]).

The determination of the visible part of an area light source in computer graphics is exactly the calculation
of the aspect of the light at a given point, in the sense of the aspect graph literature [PD90, GM90, EBD92].
Algorithms performing this operation by building the complete discontinuity mesh and thebackprojectiondata
structure (encoding the source aspect) have been presented (e.g., [Tel92a, DF94, SG94]). The full discontinuity
mesh and backprojection allows the computation of the exact point-to-area form-factor with respect to an area
light source. Nonetheless, these methods suffer from numerical problems due to the required intersections
between the discontinuity surfaces and the scene polygons, complicated data-structures to represent the highly
irregular meshes and excessive computational requirements.

We have chosen to use the Visibility Skeleton because of its flexibility, relative robustness (compared to
discontinuity meshing) and ease-of-use.

1.3 Visibility-based refinement strategies for radiosity

In the Hierarchical Radiosity algorithm, mesh subdivision is effected through link refinement. The original
algorithm used aBFV criterion (radiosity times form-factor modulated by a visibility factorV for partially
occluded links). The resulting meshes are often too fine in unoccluded regions, and do not always represent
fine shadow details well.

Refinement strategies based on error bounds [LSG94, GH96] have improved the quality of the meshes and
the simulation compared to theBFV criterion. Conservative visibility determination in architectural scenes
[TH93], accurately characterises links asvisible, invisibleor partially visible. This triage guides subdivision,
allowing finer subdivision in partially illuminated regions.
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Discontinuity meshing clearly improves the visual quality of images generated by lighting simulation
[LTG92, Hec92a, DF94], since the mesh used to represent illumination follows the actual shadow boundaries,
instead of finely subdividing a quadtree which attempts to approximate the boundary. One problem is the ex-
tremely large number of discontinuities. Tampieri [Tam93] attempted to limit the number of discontinuity lines
inserted, by sampling the illumination along the discontinuities and only inserting those with radiosity values
differing more than an predefined threshold. In the context of progressive refinement radiosity, Stuerzlinger
[Stu94] only inserted discontinuities at a second level of a regular quadrilateral adaptive subdivision, once a
ray-casting step has classified the region as important. The only discontinuities inserted were those due to the
blocker identified by the ray caster.

Several methods combining discontinuity meshing with hierarchical radiosity have been presented [LTG93,
DS96, HT96, BP95]. Hardt and Teller [HT96] present an approach in which potential discontinuities from
all surfaces are considered, without actually intersecting them with the blockers. Potential discontinuities
are ranked, and those deemed most important are inserted and the lowest level of the quadtree. In [DS96]
the backprojection information is used in the complete discontinuity mesh creating a large number of small
triangles. Exact form-factors of the primary source are then computed at the vertices of these triangles. The
triangles are then clustered into a hierarchy. Standard [HSA91] constant-element hierarchical radiosity follows.
The previously cited problems of discontinuity meshing, the expensive clustering step and the fact that the inner
nodes of the hierarchy often overlap, limit the applicability of this approach to small models. The only other
hierarchical radiosity method with gathering at vertices is that of Martinet al. [MPT97], which requires a
radiosity value at each vertex, and a complex push procedure.

The algorithm of Lischinskiet al. [LTG93] is much more complete and relevant to our work. The basis
of this approach is to separate the light simulation and rendering steps. This idea is similar in spirit to the use
of a “final gather” step, but in a view indpendent manner. They first compute a “global pass” by creating 2D
BSP trees on scene polygons subdivided by choosing important discontinuities exclusively due to the primary
sources. The 2D BSP tree often incurs long splits and consequently long or thin triangles, which are inappropri-
ate for high quality lighting simulation. The second, view independent, “local pass” recomputes illumination at
the vertices of a triangulated subdivision of the leaf elements of the BSP tree. To achieve high quality images,
the cost of triangulation and shading (light recomputation at vertices using “method D” [LTG93] ), is higher
than that of the actual lighting simulation (if we ignore the initial linking step).

1.4 Perceptually based refinement

Recently, perceptually-based error metrics have been used to reduce the number of elements required to accu-
rately represent illumination (e.g., [GH97b, HWP97]). Tone-reproduction approaches [TR93, War94] are used
to map calculated radiosity values to display values which convey a perceptual effect closer to that perceived
by a real world viewer. Since display devices have limited dynamic range compared to real world luminance
values, the choice of this mapping is very important. The tone reproduction mappings of [TR93, War94] de-
pend on two parameters: a world adaptation level which corresponds loosely to the brightness level at which
a hypothetical observer’s eye has adapted, and a display adaptation level which corresponds to the brightness
displayed on the screen. Choice of these parameters affects what will be displayed, and, more importantly,
which differences in radiosities will actually be perceptible in the final image. Most notably, one can define a
“just noticeable difference” using this mapping. In the context of lighting, a just noticeable difference would
correspond to the smallest difference in radiosity values, which once transformed via tone reproduction, will
be visible to the viewer of the display. Display adaptation is typically a fixed value (e.g., half the maximum
display luminance [War94]), while the world adaptation level can be chosen in a number of different ways.
Using static adaptation [GH97b], one uses an average which is independent of where the observer is looking,
while dynamic adaptation (which is closer to reality) changes depending on where the observer is looking.
Gibson and Hubbold [GH97b] use tone reproduction to guide subdivision in a progressive refinement radiosity
approach, thus allowing a subdivision only if the result will be “just noticeable”.

Hedleyet al. [HWP97], in a similar spirit, use a tone mapping operator to determine whether a discontinuity
should be inserted into a lighting simulation mesh. This is performed by sampling across the discontinuity (in
a manner similar to that of Tampieri [Tam93]), but also orthogonally across the discontinuities. This results in
an important reduction of discontinuities without loss of visual quality.
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1.5 Discussion

Previous radiosity methods (surveyed above) provide view-independent lighting simulations which are accept-
able for many situations. In particular, quadtree based hierarchical radiosity provides fast solutions of moderate
quality, even for scenes mainly lit indirectly. Nonetheless, in walkthroughs the observer often approaches re-
gions of shadow, and in these cases the lack of shadow precision is objectionable. Previous approaches based
on discontinuity meshing subdivide the mesh along shadow boundaries and alleviate this problem for direct
lighting, but rapidly become impractical for scenes with many lights, or for which indirect lighting is domi-
nant. Their limitations are due to the sheer number of discontinuity surfaces that need to be considered when
computing indirect illumination and the complexity of the meshes which result. These issues are discussed
in [LTG92] and [Tam93]. The solutions adopted to date have restricted the use of discontinuity information
to those from primary light sources [LTG93, DS96]; for subsequent light bounces (secondary, tertiary etc.),
approximate ray-casting approaches are used for visibility computations in light transfer.

The new algorithm presented in this chapter allows the generation of accurate shadows for a more general
class of scenes, including those with dominant indirect illumination. The Visibility Skeleton allows us to
select and insert discontinuity lines for all light transfers, and to calculate exact point-to-area form-factors
rapidly, using the visibility information provided. These choices required us to develop a new hierarchical
radiosity algorithm, with gathering at vertices, based on embeddedhierarchical triangulationsallowing the
mesh to follow discontinuity lines. We moreover describe a refinement criterion based on accurate visibility
information and a perceptual metric which obviates the setting of arbitrary and intricate thresholds.

2 Irregular hierarchical triangulations and lazy wavelets

In previous work (e.g., [Hec92a, LTG92]) it has been shown that the creation of a mesh well adapted to the
discontinuities in illumination results in images of high visual quality. Incorporating such irregular meshes into
a hierarchical radiosity algorithm presents an important challenge. As mentioned in chapter 1, most previous
algorithms [LTG93, DS96] addressing this issue have restricted the treatment of discontinuities to those due to
direct (primary) illumination.

The core of the problem is that two conflicting goals are being addressed: that of a simple regular hierar-
chy, permitting straightforward manipulations and neighbor finding and that of an essentially irregular mesh,
required to represent the discontinuity information. The first goal is typically achieved using a traditional
quadtree structure [HSA91] and the second typically by a BSP-type approach [LTG93].

In previous approaches, discontinuity information and accurate visibility were incorporated into constant-
element hierarchical radiosity algorithms. In the case of the Skeleton, this would be wasteful, since we have
all the necessary information to computeexactform-factor from any polygon in the scene to any vertex (see
Section 4 to see how this is also true for vertices resulting from subdivision). Gathering to vertices introduces
one important complication: contrary to elements whose level in the hierarchy is clearly defined, vertices are
shared between hierarchy levels.

As a solution to the above issues, we introduce hierarchical triangulations and lazy wavelets for hierarchical
radiosity. Our approach has two major advantages over previous hierarchical radiosity methods: (i) it adapts
well to completely irregular meshes and this in a local fashion (triangulations contained in triangulations),
avoiding the artifacts produced by splitting edges of a 2D BSP tree and (ii) it allows gathering to vertices by
a “lazy wavelets”-type (or sub-sampling) construction (see the book by Stollnitzet al. [SDS96] pp 102–104
and 152–154). It preserves a linear approximation to radiosity during the gather and the push process of the
solution.

Note however that the piecewise linear representation will be used only for lighting representation during
the “push” and display process. Gathering and “pull” will be performed on mean values on triangles. The
simulation will be improved compared to standard Haar pyramid used in classical hierarchical radiosity because
the values computed at a higher level will be linearly interpolated during the push process, resulting in a
smoother representation of the mean values at the lower levels.
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(a) (b) (c) (d)

Figure 4.2: Hierarchical Triangulation Construction. Notice how the triangles are overall well shaped but also
well adapted to local detail. (a) Scene geometry: the leftmost polygon is illuminated by the area source on the
right pointing leftwards. (b) First level of subdivision for the leftmost polygon (green). (c) Second level (blue).
(d) third level (red).

2.1 Hierarchical triangulation

Our hierarchical triangulation construction has been inspired by that of de Floriani and Puppo [DP95a]. The
principle is straightforward: it is a hierarchy of triangulations where each triangle of a level can be subdivided
into a triangulation.

We start with an initial triangulation, which is a constrained Delaunay triangulation. The constrained De-
launay triangulation allows the insertion of constrained edges into the triangulation, which are not modified to
satisfy the Delaunay property and thus remain “as is”. Each triangle of the initial triangulation can be subdi-
vided into a sub-triangulation by the addition of new vertices and constrained edges, and so on recursively. At
each level, a constrained Delaunay triangulation is maintained.

An example of such a construction is shown in Fig. 4.2, clearly showing the first advantage mentioned
above. As we can see, the triangulation maintains well-shaped triangles everywhere in the plane, while pro-
viding fine details in the regions where this is necessary. The representation of such detail induces irregular
subdivision at the finer levels.

Our hierarchical triangulation is “matching”, in the sense that edges split across two levels of a triangulation
are done so at the same point on the edge. At the end of each subdivision step an “anchoring” operation is per-
formed by adding the missing points in the neighboring triangles, thus resulting in a conforming triangulation
across levels required for the push phase of hierarchical radiosity.

(a) (b) (c)

"matching"

(d)

Figure 4.3: The “matching” constraint for the Hierarchical Triangulation. The sequence shows subsequent
segment insertions. The dashed lines show the insertions performed to enforce the “matching” constraint.

As mentioned above, vertices are shared between different levels of the triangulation. The initial level of
a triangulation is anHPolygon, which contains anHTriangulationchild once subdivided, where the prefixH
represents the hierarchical nature of the construction.

To transmit neighborhood information between levels (for the matching operation), we use a specialHEdge
structure. AnHEdgeis shared between hierarchy levels by all edges which correspond to the same segment. It
contains pointers to subHEdge’s when it is subdivided. To perform a matching operation we determine whether
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the edge on which we insert a pointp has already been split. We then add the new points corresponding to
the previously split vertices, and split theHEdgeat the pointp. The neighbouring triangle can thus identify
the newly inserted sub-HEdge’s from the sharedHEdge. For example, in Fig. 4.3, after the subdivision of the
lower left triangle in Fig. 4.3(a), theHEdgeshared between the two triangles notifies the upper right triangle
that the edge has been split, and facilitates the matching operation as shown in Fig. 4.3(b).

2.2 Piecewise linear multiresolution representation

The second advantage, that of linear reconstruction of illumination across irregular meshes, requires the use of
a “lazy-wavelet” or “sub-sampling” type construction. Lazy wavelets provide an elegant formalism for a simple
approach: a piecewise linear approximation is refined through the addition of new sampling points [SDS96].
The principle of lazy wavelets is illustrated in Fig. 4.4.

(a) (b)

Figure 4.4: Principle of our multiresolution representation. (a) Hierarchical triangulation (the base triangle is on
the top, and finer meshes are represented below) (b) Illumination function representation using lazy wavelets.
Details are added to the function at vertices resulting from the subdivision of the triangles.

As mentioned above, in our hierarchical triangulation representation of radiosity, vertices will be shared
between hierarchy levels. As a consequence, traditional push-pull procedures [HSA91] cannot be directly
applied.

To understand why, consider the 1D example shown in Fig. 4.5. Segmentvavb is illuminated by two light
sourcesS1 andS2. Assume that initially both light transfers are refined, and vertexv1 is added. This results in
the configuration of level 1 (Fig. 4.5). The light transfer withS2 is further refined with the addition ofv2 on the
right, thus splitting segmentv1vb. Finally, the light transfer fromS1 is refined on the left, with the addition of
v3.

To determine the light contribution ofS1 in the interval[v1;vb] we interpolate between the values transfered
by S1 ! v1 andS1 ! vb, which are “represented” at level 1. However, for lightS2, we must interpolate in the
subinterval[v1;v2] using the transfers determined byS2 ! v1 andS2 ! v2, and in the subinterval[v2;vb] using
the values determined byS2! v2;S2! vb, all of which are “represented” at level 2. Thusv1 is shared between
level 1 and level 2. As a consequence traditional push-pull procedures with gathering at elements rather than
vertices cannot work, since they require that an element clearly belong to a certain hierarchy level.

A naive solution would be to duplicate vertexv1 to differentiate exchanges simulated at different levels of
the hierarchy. This however is not sufficient, since it is unclear how to perform the push operation. In particular,
assume that we had one representation ofv1 for level 1 and one for level 2. It is unclear where the transfers
S1! v1 andS2! v1 should be stored. IfS1! v1 is stored at level 1, we can interpolate correctly in the interval
[v1;vb] to perform the push onto vertexv2. However the value will no longer be available at level 2 to enable
the interpolation betweenv3 andv1. In a symmetrical manner, we needS2 ! v1 to perform the interpolation
at level 1 for the interval[va;v1] and the push onv3, and at level 2 for the interpolation in the interval[v1;v2].
With gathering at vertices and linear interpolation, it no longer makes sense to speak of a transfer at a given
level of the hierarchy.
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Figure 4.5: Consistent multiresolution representation with lazy wavelets. Instead of storing radiosity values, we
store the difference of the radiosity values at refined vertices.

We use lazy wavelets to provide a solution to these problems. Instead of storing the actual radiosity value,
at refined vertices we store theradiosity differenceas shown in Fig. 4.5. This is the difference between
the radiosity value at the current level and the interpolated value of the immediate ancestor. This provides a
multi-resolution representation, since certain light transfers are refined more in the appropriate regions with the
addition of new links.

The push procedure is then straightforward: To compute the total radiosity at a vertex, we interpolate the
value of its ancestor, and add the radiosity difference. We obtain the total value at this vertex, which is thus
recursively pushed down the hierarchy in a breadth-first manner.

This construction is directly applicable to the 2D case, by using barycentric coordinates (or bilinear for
quadrilaterals) for the interpolation. We thus can simply perform a push operation on a hierarchical triangula-
tion with gathering at the vertices.

However that it is slightly more involved to compute the difference of a light transfer than the total light
transfer. Section 3.2 will deal with this problem through the use of “negative” links.

The pull computation is simpler, since we pull values to the triangles. At each triangle leaf, the value given
is simply the average of values at the vertices (after the push). An intermediate node receives as a value the
area-weighted average of its children triangles, as in standard hierarchical radiosity.

The advantages of this approach are that we can now create a consistent multi-resolution representation
of radiosity over the hierarchical triangulation, while gathering at vertices. In addition, the push operation
maintains a linear reconstruction of the radiosity function down to the leaf level.

The result is better than the smoothing post-process used by previous approaches, since in our case the
interpolation is performed at all levels of the hierarchy, not only at the leaves. A typical artifact induced by
classical smoothing is that the quadtree structure may be apparent with slightly smoothed discontinuities at the
central horizontal and vertical lines. This comes from the fact that a transfer from a sourceS is computed at the
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second level, while the wall is refined more finely for other transfers. The smoothing is performed only on the
leaf values, which means that the values of the contribution ofSare smoothed only for the leaf elements which
are adjacent to the central lines, while it should be performed on the entire polygon.

3 Visibility-driven hierarchical radiosity:
Algorithm and data structures

The hierarchical triangulation structure is one of the tools required to effect visibility-driven hierarchical radios-
ity. In particular, we can efficiently represent the irregular lighting discontinuities in a hierarchical structure. In
addition, the information contained in the Visibility Skeleton providesexactandglobalvisibility information.
As a consequence, we can compute exact (analytical) area-to-point form factors for any light transfer, direct
(primary) or indirect. The information contained in the Skeleton arcs (i.e. the visibility events affecting any
light transfer) also allows the development of intelligent refinement criteria, again for any exchange of light.

In what follows we present our new algorithm which uses the Skeleton and the hierarchical triangulations
for efficient refinement and accurate light transfer.

3.1 Algorithm outline

Our new algorithm is outlined in Fig. 4.6. It begins with the creation of the Visibility Skeleton for the given
scene, using the improved link-based approach (Section 3.2 of chapter 3). After this step, we have all the
information available to calculate form-factors from each polygon to each (initial model) vertex in the scene.
In addition, polygon-polygon visibility relationships are available directly from the skeleton, thus obviating the
need for initial linking (i.e. only necessary links are created). After computing the form-factors of the initial
polygons to the initial vertices, a “gather” step is performed to the vertices, followed by a “push-pull” process.
In practice we perform a fixed number of iterations; however it would be possible to iterate to convergence,
since these iterations are not computationally expensive.

Even at this very initial phase, the form-factors at the vertices of the scene are exact. To bootstrap sub-
division, we first insert the maxima of the light source illumination functions into large receiver polygons
(procedureinsertMaxima(), see also Section 5.2).

visibilityDrivenHierarchicalRadiosity
f

computeSkeleton() // compute the Visibility Skeleton
computeCoarseLighting()// 3 gather push-pull
insertMaxima() // insert the maxima of light sources into meshes
while( !converged() ) do

subdividePolygons() // Refine the polygons using visibility info
refineLinks() // Refine the links using visibility info
gatherAtVertices() // Gather at the vertices of the Hierarchical Triangulation
pushPull()

endwhile
g

Figure 4.6: Visibility driven hierarchical radiosity

Once the system has been initialized in this manner, we begin discontinuity based subdivision (subdivide-
Polygons()) and link refinement (refineLinks()). Using the global visibility information, we are capable of subdi-
viding surfaces by following “important” discontinuities. After the completion of each subdivision/refinement
step, a gather/push-pull operation is performed, resulting in a consistent multi-resolution representation of light
in the scene.

In the following discussion we use the terms “source” and “receiver” for clarity. A source is any polygon
in the scene which emits or reflects light. For secondary or tertiary illumination, for example, “sources” will be
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polygons other than the primary light sources (e.g., the walls, ceiling or floor of a room).
In the rest of this section, we present the link data structures and discuss issues related to form-factor calcu-

lation and multi-resolution link representation. In Section 4 we describe the refinement process for links, and
the details of visibility updates; in Section 5 we present the polygon subdivision strategy and the perceptually-
based refinement criterion used to effectively perform the subdivision.

3.2 Link data structures and form-factors

The central data structures used for our lighting solution are the links used to perform subdivision and light
transfers. In contrast to previous hierarchical radiosity methods, two distinct link types are defined: point-
polygon links which are used to gather illumination at vertices, and polygon-polygon links, which are used to
make refinement decisions and to maintain visibility information while subdividing.

P

source

receiver

blocker

EV swath

classLinkPtPolyf
List<Arcs> Arcs
PolygonSrc
float FF

g

(a) (b)
Figure 4.7: (a) A point-polygon link used to gather illumination at vertexP. All the arcs of the skeleton
betweenP and the polygonsourceare stored with the link,e.g., theEV swath shown. (b) The corresponding
data structure.

Point-polygon links

As mentioned above, the skeleton provides all the information required to calculate the exact area-to-point
form-factor from any polygon in the scene to any vertex. By updating the view information as shall be discussed
below (Section 4.3), we extend this capacity to new vertices created by subdivision.

There are numerous advantages to calculating illumination at vertices. When computing mean radiosity
on patches, the result can be displayed as flat shaded polygons. As we have seen, to provide a more visually
pleasing result, the radiosity values are usually firstextrapolatedto the patch vertices and then interpolated.
Inevitably, this introduces many artifacts in the approximation of the original radiosity function. In addition, it
is much cheaper and simpler to compute exact polygon-to-vertex form-factors than polygon-to-polygon form-
factors. Computing radiosity at vertices was first introduced by Wallaceet al. [WEH89] in the context of
progressive refinement radiosity. For hierarchical radiosity, the fact that vertices can be shared between different
levels renders gathering at vertices more complicated.

A point-polygon link and the corresponding data structure are shown in Fig. 4.7. The point-polygon
links are stored at each vertex of the hierarchical triangulations. A point-polygon link stores the form-factor
calculated, as well as the arcs of the visibility skeleton (visibility events of the view) between the point and the
polygon. An example is shown in Fig. 4.7, where theEV swath is stored with the link between pointP and the
source polygon.

The point-area form factor is computed analytically using the formula ine.g.[BRW89]. Consider Fig. 4.8.

FP;source=
1
2π

~N�∑γi

~Ri �~Ri+1

k ~Ri �~Ri+1 k
The sum is evaluated using the arcs of the skeleton stored in the point-polygon link.~Ri and~Ri+1 correspond

to the two nodes (extremal stabbing lines) of the arc.
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Figure 4.8: Geometry for the calculation of a form factor

Fig. 4.9 shows an example of form-factor computation with the Visibility Skeleton; the computation is
exact. For comparison, the average (relative) error is given using ray-casting and a jittered grid sampling on
the source (both the kernel and visibility are evaluated by Monte-Carlo). 36 rays are needed to have a mean
error of 10%; numerical error on the form-factor is being measured. As expected from stratified sampling the
convergence rate is aboutO(n�

3
4 ) [Mit96], since the function to be integrated is only piecewise continuous

because of the visibility term. In Section 6.2 we will show the effect of this accuracy on the image quality.

Skeleton 4 rays 16 rays 36 rays 64 rays 100 rays
time 0.07ms 0.5ms 1.7ms 3.8ms 6.7ms 10.4ms
error 0 50% 20 % 9.6% 7.6% 4.6 %

Figure 4.9: Example of Form-Factor computation from the white point on the floor to the area light source
using the visibility skeleton and ray-casting with jittered sampling. The hidden part of the source is hatched.
The Visibility skeleton timing does not include the visibility update (about 0.13ms per link on average for this
image). All timings on a 195Mhz R10k Onyx 2.

Multi-resolution link representation

To maintain the multi-resolution representation of radiosity in the hierarchical triangulation, we require the
representation of∆B as described in Section 2.2, for the push phase of the push-pull procedure.

When a new vertex is inserted into a receiver polygon, “negative links” are created, from the source to the
three vertices of the triangle containing the newly inserted vertex1. These links allow the direct computation
of ∆B as follows:

∆B = Bl � ∑
i=0::2

ci Bi
nl; (4.1)

whereBl is the radiosity gathered from the positive link,Bi
nl is the radiosity gathered from the negative links

andci are the barycentric coordinates of vertexPi . An example of negative links is shown in Fig. 4.10(b).
The entire gather/push-pull process is illustrated in Fig. 4.11. The fieldchild of an HPolygon is the

associated triangulation.

1In practice, these are simply pointers to the previously existing links.
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Figure 4.10: (a) A newly inserted point (in black) and the point-polygon link to the source; the vertex points to
the (b) three new negative links to the source used for the∆B representation.

Gather ()
f

for each vertexv
∆Bv = gather(positive linksv) - gather(negative linksv)

g
Push(HPolygon poly)
f

if child(poly) == NULL return
for each vertexv in triangulation child(poly)

Bv = ∆Bv+ interpolation (poly, v)
for each trianglet in triangulation child(poly)

Push(t)
g
Pull (HPolygon poly)
f

if child(poly) == NULL
Bpoly= average ofBv, for all v vertex of poly
return

for each trianglet in triangulation child(poly)
Pull(t)

Bpoly=average ofBt , for all t in child(poly)
g

Figure 4.11: Gather and push-pull

Polygon-polygon links

The polygon-polygon link is used mainly to determine how well the light transfer is represented, in a manner
similar to that of the links in previous hierarchical radiosity algorithms. This information is subsequently used
in the refinement process as described below. It also encodes information which is used for visibility updates.

A polygon-polygon link stores visibility information via pointers to the point-polygon links (two sets of
three links for a polygons pair) between each polygon and the vertices of the other polygon. A polygon-polygon
link also stores the set of visual events which have the two corresponding polygons at their extremities, and
those with one generating edge on one polygon and one extremity on the other. A polygon-polygon link is
illustrated in Fig. 4.12, with the corresponding point-polygon links from the source to the receiver.

In the case of a subdivided polygon, all the neighboring triangles of a vertexv share all the point-polygon
links related tov.
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Figure 4.12: (a) A polygon-polygon link used to estimate illumination transfer between two polygons (b) The
polygon-polygon links store pointers to the 6 corresponding point-polygon links: 3 of them (source! receiver)
are shown here (c) The corresponding data structure.

4 Link refinement

Now that the link data structures have been described in detail, we can present the link refinement algorithm.
The process is slightly more involved than in the case of standard hierarchical radiosity (e.g., [HSA91]), because
the subdivision is not regular and the existence of the two link types requires some care to ensure that all updates
are performed correctly. This section describes how the links are actually refined.

4.1 Refinement overview

Consider a light exchange from a source polygon to a receiver polygon. Because we gather radiosity from the
polygon at the vertices, two kinds of refinement can be necessary.

� Source-refinementif the radiosity variation over the source polygon is too high;

� Receiver-refinementif the sampling on the receiver is too coarse.

The link refinement algorithm is straightforward: for each polygon and each of its polygon-polygon links,
the link is tested for refinement. If the test succeeds, the link is refined and the new point-polygon and polygon-
polygon links are created. Finally, the visibility of the link is updated. The refinement test uses a perceptually-
based refinement criterion, based on the visibility information contained in the Visibility Skeleton (see Section
5.4). Note that since we compute exact point-to-area form factors, the source refinement cannot be caused by
the inaccuracy of the form-factor computation. It can only happen because the radiosity of the source is not
uniform, i.e., if a receiver-refinement has occured on the source in another exchange.

4.2 Source and receiver refinement

The first type of refinement is that of a source. If the representation of radiosity across the source is considered
insufficient for the given transfer (i.e., the variation of radiosity is too high across the source), the link will be
refined. The geometric subdivision of the source has occured at a previous iteration, typically due to shadowing.
New polygon-polygon links are created between the original receiver and the sub-triangles of the source. New
point-polygon links are created for each vertex and each source sub-triangle, and the corresponding visibility
data is correctly updated (see Section 4.3).

The second type of refinement is that of the receiver. For example, in Fig. 4.13, a point is added to the
receiver. As a consequence, the triangulation is updated and three new polygon-polygon links are added. One
of these is shown in Fig. 4.13(b). In addition, a new point-polygon link is created, from the point added on the
receiver to the source (Fig. 4.13(c)).
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Figure 4.13: Receiver refinement: (a) Original polygon-polygon link (b) Insertion of a point on the receiver and
one of the three new polygon-polygon links created. (c) The additional point-polygon link to the source.

4.3 Visibility updates

Each refinement operation requires an equivalent update in the visibility information contained in the point-
polygon links. We again distinguish the two main cases, source refinement and receiver refinement.

(a) (b)
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source
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Figure 4.14: Source visibility updates. The dashed arrows (lower part) represent the limits of the visible part
of the source used to compute the form-factors. (a) The point-polygon link before subdivision and below the
corresponding view of the source (b) One of the 4 new point-polygon links due to subdivision and the four new
views. The black circles correspond to new nodes of the Skeleton.

In the case of source refinement we need to update the existing visibility information contained in the new
point-polygon links. Since the visibility information of such a link can be represented by the view of the source
from the receiver point of the link, all that needs to be done is the update of the link with respect to the new
source sub-triangles. For example, in Fig. 4.14(a) the original view from pointP is shown in the lower part
of the figure. Once the polygon-polygon link is subdivided, four new views are computed, shown in the lower
part of Fig. 4.14(b). The new point-polygon links now contain the references to the skeleton arcs (swaths),
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corresponding to the parts of the view affected. For example the leftmost source sub-triangle is completely
unoccluded fromP and thus no arcs are stored. For the others, the intersections of the previously existing arcs
and the source sub-triangles result in new skeleton nodes (corresponding to the black circles in Fig. 4.14(b)).
The corresponding arcs are then subdivided. The new nodes are adjacent to these subdivided arcs. Note that all
visibility/view updates are performed in 2D.

Refining a receiver is more involved. When adding a point to a polygon, a new view needs to be computed.
We use the algorithm of the Skeleton construction which is robust. The only difference is that we use the
blocker lists defined by the arcs stored in the initial point-polygon links instead of the entire model. Since the
number of polygons in any given blocker list is relatively small, the cost of computing the new view is low.
An example is shown in Fig. 4.15(a)-(b), where the pointP is added to the receiver. In Fig. 4.15(b) we see the
point and the new point-polygon link, and in Fig. 4.15(c) the newly calculated view is illustrated. The black
circles correspond to newly created nodes of the skeleton.

The case of full visibility is detected using the information contained in the polygon-polygon links. The
visibility update is then optimized: no new arc is computed and the unoccluded form-factor is used, thus saving
time and memory.

(a) (c)
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Figure 4.15: Receiver visibility updates: (a) The initial configuration. Blocker information is contained in the
source-receiver link. (b) A point is added to the receiver, creating a new point-polygon link. (c) The new view
of the source computed atP. The blocker lists are updated using this computation.
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Figure 4.16: Receiver refinement with visibility events (this solution was not implemented). (a) We start with a
view at one of the initial vertices. (b) We walk across the receiver to the new vertex. Here we cross avseb event.
vs begins to be hidden by the blocker. (c) We obtain the view at the new vertex. (d) In the case of touching
objects, no information can be kept while crossing the interface between the two objects.
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4.4 Alternative visibility updates

Visibility updates could be performed using the information encoded in the Skeleton, starting from the view at
one of the initial vertices, then walking to the new vertex and updating the view each time a visibility event is
crossed (see Fig. 4.16). This method is however hard to implement, and suffers from robustness problems if
the visibility events are not crossed in a coherent (if not exact) order. Moreover, the case of touching objects
complicates the problem furthermore since no information can be kept while walking “under” a touching object.

vr

vb

vs

e

source

receiver

discontinuity

Figure 4.17: Degeneracy due to discontinuity meshing. The receiver is split along discontinuityvse, causing a
degeneratevsvbvr extremal stabbing line.

4.5 Treating degeneracies

Subdividing along discontinuities induces degenerate viewpoints. For example in Fig. 4.17, we subdivide the
receiver along the discontinuityvse. The view fromvr has a degeneratevsvbvr extremal stabbing line. To treat
it coherently, we store with each vertex of the triangulation the extremal stabbing line which caused it (which
is possibly null). This is a simpler and more robust alternative to the ray-casting modified for grazing objects
described in Section 4.3. The treatment of the degeneracy then proceeds in the same manner.

A different alternative would have been to slightly perturb the point position to avoid those degeneracies.
Two reasons have prevented us from doing so. First, discontinuity meshing allows us to delimit regions of
umbra (full occlusions), regions of full visibility, and regions of penumbra. The two first region types require
coarser subdivision than the latter. If we perturb the point position, some regions which should have been
totally in the umbra will have a very small part in the penumbra, and need more subdivision. Second, point
perturbation would cause numerical precision problems.

5 Polygon subdivision

We have now seen how link and visibility information is updated during the light propagation process. Evi-
dently, link updates are a consequence of arefinementdecision, based on an appropriate criterion. We have
chosen to use aperceptually-basedrefinement criterion. In what follows, we first review basic concepts of
perceptual mapping which we use for our refinement criteria. We next present the polygon subdivision process,
and then detail the perceptually based refinement criterion which we have used for our algorithm.

5.1 Perceptual just noticeable difference

The work in the field of perception provides us with two important features. First, it permits the conversion of
radiometric quantities into displayable colors while preserving the subjective impression a viewer would have
when observing the real scene. Second, it allows us to use error thresholds related to the error an observer is
able to perceive, which are thus easy to set.
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The human eye can deal with a very high dynamic range, while computer displays are usually limited to
a 1 to 100cd=m2 range [GH97b]. The eye adapts itself according to the luminosity of the scene being looked
at. This explains why we are able to see dark night scenes as well as very luminous sunny scenes. The tone
mapping operation deals with the transformation of high range radiometric quantities into low range display
colors, while trying to provide the viewer with the same impression as the real scene. One obvious and simple
method is to divide all quantities by the maximum radiosity of the scene. The problem with this approach is
that if the light source intensity is halved, the scene will look exactly the same, though we would expect it to
seem darker.

Figure 4.18: Effect of Ward’s tone-mapping on the same scene with different light source intensities. Note how
details remain perceptible while the impression of darkness or luminosity is preserved.

Ward’s contrast preserving tone mapping operator [War94] deals with this problem. A simple scaling factor
s f is used for the whole scene which depends on the maximal displayable luminanceLdmax and the world
adaptation levelLwa which is usually the logarithmic average of the scene luminosity without primary light
sources. In what follows, all intensities are expressed incandelas=meter2 (a candelais a lumen=steradian
[War94]). The scaling factors f is then given by

s f =
1

Ldmax

�
1:219+(Ldmax=2)0:4

1:219+L0:4
wa

�2:5

Fig. 4.18 demonstrates the effect of this operator on a given scene with different source intensities.
We use a technique similar to that of Gibsonet al. to compute the adaptation level [GH97b]. We use a

static adaptation level which is the average radiosity of the scene. However, since we use hierarchical radiosity
as opposed to progressive radiosity, we do not have to rely on an estimate involving the average luminance and
reflectance. Instead, at any step we use the average radiosity value of the polygons of the scene. This is why we
start the radiosity computation with several gather steps to compute a coarse estimate of the light distribution.

The use of a global static adaptation level is only a coarse approximation of the human visual system
adaptation. As shown by Gibsonet al. it gives a fairly good estimate of the dynamic adaptation level [GH97b].
More elaborate solutions could be explored, such as the use of local adaptation levels computed using the
average radiosity in the neighbourhood of an object, and more involved tone-mapping operators could also be
used [TR93, FPSG96] but this is beyond the scope of this thesis.

Once the tone mapping operation has been applied, the admissible error can be set as a given percentage of
the maximum displayable intensityLdmax. Psychovisual studies [GH97b, Mur87] have shown that the human
eye is able to distinguish a difference of 2%: this is thejust noticeable difference. We will call the allowed error
εpercep, and in practice we will useεpercep= 2% for all our refinement criteria.

5.2 Polygon subdivision

Our experiments have shown that subdividing along the discontinuities during the first few subdivisions results
in the creation of triangles with poor aspect ratios, inducing very visible artifacts. For this reason, subdivision
of the polygons is performed using a two step strategy:

� During the first two subdivisions:The polygons are subdivided in a regular grid-like manner. In particu-
lar, a regular grid is created as a function of size of the polygon being subdivided.

� During the third and subsequent subdivisions:Insert shadow discontinuities or other illumination detail.
Discontinuities are added as constrained edges, and result in a modified triangulation.
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subdividePolygons()f
for each polygonr and each poly-poly links to r

if shouldRefineLink(s; r)
refine source

for each polygonr and each poly-poly links to r
if shouldRefineLink(s; r)

if iteration< 3
regularSubdivision( r )// perform grid-like subdivision

else
find and insert discontinuities inr

complete subdivision at this level// create sub-triangles in meshes
g

Figure 4.19: Polygon subdivision

This approach is similar in spirit to the approaches of Stuerzlinger [Stu94] and Hardt and Teller [HT96]
where the discontinuity meshing is, however, used for display purposes only. The polygon subdivision algo-
rithm is outlined in Fig. 4.19. In contrast to standard hierarchical radiosity, we cannot subdivide the polygons
on-the-fly when a link needs subdivision, because polygon subdivision is not uniform and has to be performed
along discontinuity curves. For this reason, we first consider all the polygon-polygon links for a given polygon
to decide if it requires subdivision, and to determine which discontinuities will be inserted. After all disconti-
nuities for a given receiver have been inserted, the constrained Delaunay triangulation is completed.

5.3 Maxima insertion

If we consider the radiosity gathered from a light source as a function defined over a receiver, it has been
shown that subdividing a mesh used to represent illumination at the maximum of the function can increase
the accuracy of the radiosity solution [DF93]. We thus first compute the maxima of the unoccluded radiosity
functions of the light sources before the first refinement.

The maxima are computed only for important light-transfers (estimated using the disk-disk formula [HSA91]
and the perceptual metric). Given a receiver and a polygon considered as a source, we use a gradient-descent
algorithm to locate the maximum. Once the maximum is found, we compute the contribution of the source at
this point; if it is aboveεpercep the maximum is stored to be subsequently inserted in the mesh. The radiosity
of the receiver polygon is updated to take this maximum into account. That is, a gather is performed at the
maximum (before a link is created from it) to obtain a better estimate of the light distribution that will be used
for the first refinement.

The maxima are inserted as a separate initial step during the first subdivision. The points of the regular
subdivision which are too close to a maximum are not inserted. An example was shown in Fig. 4.2(b), where
the maximum corresponds to the point on the lower left which is not exactly on the grid. We thus obtain nearly
regular meshes with well shaped triangles.

The maxima-search process is applied iteratively to take indirect illumination into account. The insertion
of maxima of indirect sources is very important for example in Fig. 4.24, where the table (illuminated by the
lamp) is the most important light source for the upper part of the left wall.

5.4 Refinement criterion

We distinguish two refinement criteria (ororacles): a radiometric criterion which accounts for the variation of
the unoccluded radiosity, and a visibility (discontinuity) criterion. Moreover, the discontinuity criterion also
guides the choice of the discontinuity curves to be inserted.

The radiometric oracle estimates if the linear interpolation of the light transfer is “accurate enough”. We
sample the unoccluded form-factor (see [BRW89] and Section 3.2) at the center of the patch and at the edge
mid-points, and compare this to the linearly interpolated value. If the perceptually transformed difference is
larger thanεpercep, we proceed with subdivision.
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Figure 4.20: Refinement criterion geometry

The principle of our visibility oracle is to estimate (as a percentage of the maximum displayable intensity)
the “shadow amount” cast by the blockers, that is the radiosity that would be transfered without the blocker.
Our refinement criterion thus has three steps: unoccluded estimate, “shadow amount” estimate and “shadow
sharpness” estimate.

Consider a receiver and a source. Recall that a source is any polygon in the scene, considered as a source
at this step of the refinement process. In what follows we refer to Fig. 4.20, for the definition of all geometric
quantities.

First, we compute an estimate of the unoccluded light transferBunoc using the disk-disk formula [HSA91].
As above, if the estimate is less thanεpercep, the link will not be subdivided.

Second, we consider each visibility event between the source and the receiver, and estimate the “shadow
amount”. To do this, we estimate the part of the source potentially hidden by the blocker by using the projected
diameter of the blocker on the source to estimate its projected umbra:

Dpro j(b) = D(b)� l2
l1

The estimated percentage of occlusion is then:

occlu=
π
4Dpro j(b)2

Areasource

(clamped to 1). The “shadow amount” is:

shadow= Bunoc�occlu

If shadowis belowεpercep, the visibility event is ignored.
Third, we estimate the sharpness of the shadow. The extent of the zone of penumbra is approximated by

projecting the diameter of the source onto the receiver:

D(penumbra) = D(s)� l1
l2

If the size of the receiver is bigger than the zone of penumbra, then the receiver may contain regions where
the source is completely visible, and regions where the blocker projects entirely on the source. In the latter case,
the fraction of occlusion is maximal and approximated byocclu. The variation of radiosity on the receiver is
thus approximated byshadow. Otherwise, we make the approximation that the radiosity varies linearly in the
penumbra, and the variation of radiosity on the receiver is then:

∆(B) =
�

shadow i f D(penumbra)> D(r)
shadow�D(r)=D(penumbra) otherwise

All the links containing visibility events with∆(B)> εpercepwill be subdivided. As explained above, in the
first two iterations subdivision will be regular. During the third and later iterations, subdivision is performed by
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inserting the discontinuities with the highest∆(B). This is therankingphase of our algorithm, similar in spirit
to that of [HT96].

∆(B) is computed usingl1 andl2 at the two node extremities of the visibility event, and taking the maximum.
The evaluation of these oracles is very rapid since the links and events are pruned as soon as we can decide that
they will not cause subdivision.

6 Implementation and results

6.1 Implementation

We have used the C++ Visibility Skeleton implementation of the previous chapter, with the extensions and
changes for the storage of visibility information resulting from subdivision. The scene polyhedra are repre-
sented using a winged-edge data-structure and a pre-processing step is performed to detect touching objects,
which is a necessary step for the treatment of degeneracies.

The hierarchical triangulation has been incorporated into the same system. We use the public domain imple-
mentation of [GS85] by Dani Lischinski [Lis94] for the constrained Delaunay triangulation. Each subdivided
polygon contains a triangulationQuadMesh.

On our test scenes, the algorithm spends most of its time on the visibility update, especially the calculation
of the views at new vertices for the receiver refinement. For example, for the Desk scene of Fig. 4.21, for the
last iteration, the computation of the criterion and the refinement of the mesh took 15 seconds, updating the
visibility took 64 seconds, and the gather/push-pull took 2.5 seconds.

We have chosen not to use textures in our examples since they usually hide the accuracy of the lighting
simulation.

6.2 Results

We present results for four different scenes. The first scene is a simple “Desk” scene, containing 438 polygons
and two large, powerful light sources (see Fig. 4.21). This scene is used to illustrate the general functionality
of our algorithm. The second scene contains the same geometry, but with 8 additional small, powerful light
sources. The two large light sources have been turned down in intensity; we call this scene “Many Lights”
(see Fig. 4.22). This scene shows how our approach treats the case of multiple light sources effectively. The
third scene has been chosen to demonstrate the performance of our algorithm for mainly indirect lighting. We
chose a common example of a bedroom lit exclusively by a small downwards-pointing, bed-side lamp. Most of
the room is lit indirectly; this scene is called “Bed” (see Fig. 4.24). Finally, simply in the interest of showing
a completely different type of scene, we show the result of our approach on a “Village” scene, containing
buildings and cars. The scene is lit overhead by a rectangular light (see Fig. 4.27). In what follows we present
various performance statistics as well as an informal comparison with hierarchical radiosity using quadtree
subdivision, but with improved refinement and error bound strategies ([GH96, LSG94]).

All times presented are in seconds on an R10000 195 MHz Silicon Graphics Onyx 2 workstation.
Before presenting the results for the complete algorithm, we present some interesting statistics concerning

the importance of accurate visibility for form-factor computation.

Importance of accurate visibility

We have run some tests with approximate visibility to judge the importance of the exact computation of the
form-factors on the quality of the images. We have slightly modified our implementation to compute the form-
factors using ray-casting on a jittered grid sampling of the source. In Table 4.1, the same method is used for
discontinuity-based mesh subdivision for all cases shown. It is performed using the Skeleton, and the cost of
the skeleton construction and update is not included in the ray-casting timings, which report exclusively the
cost of form-factor computation. As mentioned before (Fig. 4.9), inexact form-factor computation introduces
significant error. The visual consequences of this can be seen in Table 4.1. Moreover, the computation overhead
is significant if high quality is required because at least 64 rays are needed per form-factor.
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Image
Method exact (Skeleton) 16 rays
Total time 1min 19 1min 17

Image
Method 36 rays 64 rays
Total time 2min 02 3min 04

Table 4.1: Importance of the form-factor accuracy on a small scene of 246 polygons. The number of rays for
the indirect illumination is set to 4, while only the number used for direct illumination varies. In inset we show
in false color the difference with the skeleton solution in the perceptually uniformCIE L*a*b* color space.

Note that the effect on the images is particularly dramatic, because the subdivision induced by the discon-
tinuity meshing is not uniform. The thin triangles introduce very visible artifacts. These results confirm those
observed in [DS96].

Scene Pol Skel 1st 2nd 3rd Total Mem(ini/tot) links tris
Desk 444 2min 08 22s 16s 1min 14 4min 40/200MB 378K 46K
Many 492 2min 23 2min 38 55s 4min 27 10min 23 47/365MB 1546K 104K
Bed 534 4min 12 1min 25 58s 4min 35 11min 10 56/400MB 383K 43K
Village 312 45s 12s 7s 24s 1min 28 15/43MB 134K 28K

Table 4.2: Timing and memory results for the test scenes. The memory statistics shown are the initial memory
usage for the skeletonbeforeany subdivision, and the total memory used after the subdivision for lighting.
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General solution

The images of Fig. 4.21 show the initial steps of the algorithm as described previously. Fig. 4.21(a) is the
result of three gather steps on the initial unsubdivided scene. Note that at this point we already have a very
crude approximation of the global distribution of illumination in the scene. In Fig. 4.21(b) we see the first step
which is a regular grid together with the maxima of the light sources inserted into the mesh. Fig. 4.21(c) and
(d) show the evolution of the algorithm after two iterations. The shaded images without the meshes are shown
in (d). In (e) we show the discontinuities actually inserted. These include discontinuities for all light transfers
(direct and indirect) and that their number is much lower than that for a discontinuity meshing type approach
(about 40% of the discontinuities caused by direct sources have been inserted).

In Table 4.2 we show the statistics of scenes computed using our method. For the “Desk” scene, we see
that the total solution, including illumination, requires 4 minutes of computation. The quality of the solution
is very high, including well-defined shadows on all surfaces. Note high quality shadows on the chairs and the
table. The total number of point-polygon links is 378,746, and the number of leaf triangles is 46,058.

Treating many lights

One scene type for which our approach performs particularly well is that of multiple sources. This is demon-
strated by our second test scene containing 10 lights and the same geometry as “Desk”. Fig. 4.22(a) shows an
overview of the scene as rendered by our new approach, and Fig. 4.22(c) shows a closeup of the floor. The
shadows due to the multiple sources are well represented in the areas when appropriate. The perceptually based
ranking algorithm has correctly chosen the discontinuities that are of importance, since the combined influence
of all sources is taken into account. This is shown by the small number of discontinuities present on the floor
in Fig. 4.22(d). From Table 4.2 we see that 1.5 million links were used in this scene and the total computation
time was 10 minutes 23 seconds. Only 10% of the direct discontinuity segments have been inserted.

As an informal comparison, we have compared to an implementation of hierarchical radiosity with clus-
tering with the refinement proposed by Gibson and Hubbold [GH96] using the error bound propagation of
Lischinskiet al. [LSG94]. For the Many lights scene computation with 1 million links, the computation time is
almost 2 hours (Table 4.3). In addition, the quality of the results is lower, since the multiple shadows are much
less sharp, or even missing (see Fig. 4.23). A much larger number of links would be necessary to compute an
image of similar quality to Fig. 4.22 using hierarchical radiosity. Despite the fact that this method uses approx-
imately the same number of elements (110Kvs. 104K for our method), the quality of the resulting images is
much lower.

Scene Poly 1st 2nd 3rd 4th Total Mem links elems
Many 492 1 hr 25 22 min 10 min - 1 hr 57 147 MB 1098K 110K
Bed 534 11 min 37 min 6 min 25s. 54 min 94 MB 903K 32K

Table 4.3: Comparative Timing and memory results for the test scenes using Hierarchical Radiosity with error
bounds [LSG94, GH96].

Indirect illumination

Accurate and efficient computation for indirect lighting is another challenge for our approach. It is for this
type of scene that we see the power of our accurate form-factor and discontinuity ranking method. Previ-
ous approaches require significantly longer computation time to achieve this level of precision for secondary
illumination.

This is illustrated with our third test scene (Fig. 4.24 and 4.25), in which light arrives from the bedside
lamp which is pointing downwards only (no light leaves from the sides or the top of the lamp). Thus everything
in the room above the level of the lamp is lit indirectly.

The algorithm uses a relatively small number of point-polygon links (383,715), and manages to represent
shadows generated by secondary illumination. Notice for example the shadows of the right hand lamp or the
books on the far wall in Fig. 4.24(d); these are caused by illumination of light bouncing off the bedside table
and the bed.
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Another informal comparison is presented, using the same algorithm as described above (based on [GH96,
LSG94]). Using almost a million links, hierarchical radiosity takes a slightly less than one hour, and produces
lower quality results (see Fig. 4.26(a) and (b)).

Moreover, the advantages of our linear lazy-wavelet representation are well illustrated on the overall view
of the hierarchical radiosity solution. The left part of the back wall is much lighter than the right part, with
a strong discontinuity in-between revealing the quadtree nature of the mesh. This is because interpolation is
applied as a post-process at the finest level of subdivision; exchanges simulated at higher level are thus not
correctly interpolated.

Village scene

A final scene of a village is shown in Fig. 4.27, to show that the algorithm can be used for different scene types.
Here the scene is lit overhead by a rectangle and also by the head and rear lights of the cars.
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2min08 (skeleton calculation) 22s (1st iteration) 16s (2nd iteration)
(a) (b) (c)

1min 14s (3rd iteration with discontinuities)
(d) (e)

(f) (g)
Figure 4.21: Initial Desk Scene. In (a) we show the initial, unsubdivided scene. In (b) we show the first step
which includes the grid and the maxima, in (c) we show the second iteration and (d) show the results of the
third iteration which includes the discontinuity meshing. (e) shows the discontinuities actually inserted. (f) and
(g) show the hierarchical triangular mesh (first level in green, second in blue, and third in red).
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(a) (b)

(c) (d)
Figure 4.22: Many Lights scene: (a) the final image, (b) the discontinuities actually inserted. (c) and (d) a
closeup view of the floor.

(a) (b) (c)
Figure 4.23: Hierarchical Radiosity comparative results for Many Lights scene: (a) the final mesh, (b) a general
view of the rendered scene (c) a closeup view of the floor.
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(a) (b) (c)

(d)

(e) (f)
Figure 4.24: Indirect lighting scene: (a) Initial solution, (b) first iteration (c) second iteration (d) final image
(e) discontinuities inserted (the discontinuities inserted on the front wall are represented though this wall is
backface-culled) (f) hierarchical triangulation.
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(a) (b)

(c) (d)
Figure 4.25: Indirect lighting scene: (a) and (b) closeup of the right wall (c) and (d) closeup of the back wall.
The lower part of the wall is directly illuminated by the left lamp (which is not visible on this image), while the
upper part is indirectly illuminated by the left table. Note the indirect shadows cast by the books and the right
lamp.
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(a)

(b) (c)
Figure 4.26: Hierarchical Radiosity comparative results for Indirect Lighting scene: (a) the final image, (b) and
(c) a closeup view of the right-hand wall.
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(a) (b)
Figure 4.27: Village scene (a) final image (b) discontinuities actually inserted.
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7 Improvements

The large memory consumption of our method mainly comes from the visibility information resulting from
subdivision of the initial polygons2. In this section we propose some improvements to decrease these require-
ments. They have not yet been implemented, but we believe that the practical importance of the issue makes
their presentation valuable. We first present a scheme which saves time and memory for certain link refine-
ments. We then propose a method which is a tradeoff between time and memory.

7.1 Taking advantage of invariant backprojections

As observed in section 4.3, when receiver refinement is performed on a link with full visibility, no visibility
information has to be recomputed. In this section we extend this to any link refinement where visibility is
qualitatively invariant.

This is based on the work on complete discontinuity meshing with backprojections [DF94, SG94]. Recall
that a complete discontinuity mesh subdivides the polygons of the scene into cells where the visible part of the
source is qualitatively invariant. The backprojection encodes the structure of this visible part (i.e., the chain(s)
of edges and vertices bounding it). Inside the cell of such a mesh, visibility needs no update. These cells are
bounded by the same visual events encoded by the visibility skeleton since they are the locus of the changes in
visibility.

S

RP P'

B

E

S

RP P'

B

E

Figure 4.28: Taking advantage of invariant backprojections. The link between triangleR and sourceScontains
no visual event. The view ofS from P is qualitatively equivalent to the view fromP0.

The visibility skeleton implicitly contains the information of a complete discontinuity mesh. Moreover,
the information is available for any pair of polygons. Consider a polygon-polygon link where one polygonS
is considered as a source whileR is the receiver. The visible part ofS is invariant from the points ofR if no
visual event related toS lies insideR; this is exactly the information encoded in the polygon-polygon link (see
Fig. 4.28).

Testing if the visibility is invariant between two (sub)-polygons thus simply consists in checking if the
corresponding polygon-polygon link contains a visual event.

If no event is found, visibility is invariant and we just need to compute the numerical value of the form-
factor for points inserted by subdivision. We use the information encoded at the vertices of the higher level (P
in Fig. 4.28) to compute the form factor at the new vertices (P0 for example). We use the formula of section 3.2
and Fig. 4.8. The values of the angles subtended by the edges are different from the initial vertices and need
recomputation.

This reduces both the computation of the new visual events generated by the new points and their storage.

7.2 Time-memory tradeoff

We now show how to decrease memory requirements even if the visibility of a source varies over a receiver. We
start from a simple observation: Consider Fig. 4.29 where a link between two polygonsRandS is represented.

2In addition, in our implementation the mesh information is very costly in memory because we have used code from different sources
requiring different data-structures, resulting in a highly redundant mesh data-structure.



7. IMPROVEMENTS 109

A first receiver refinement results in the subdivision ofR. One of these trianglesRi is then further subdivided.
In our original method presented in section 4.2, the visibility between eachRj andSor from any new pointP is
deduced from the visibility information betweenRi andS. However,Rj can also be considered as a sub-element
of R, andP is also a point insideR. Visibility can be computed from the polygon-polygon link betweenR and
S, as if the first refinement had directly resulted in the smaller sub-elements.

R
Ri

Rj

hierarchy of R

B

P

S

Figure 4.29: Time-memory tradeoff. Information betweenRj andS can be deduced from the link between
Ri andS, or from the link betweenR andS. The latter solution is more time consuming, since blockerB is
unnecessarily considered. However it consumes less memory since the information betweenRi andSneed not
be stored.

This latter method has the disadvantage that more blockers usually lie betweenR andS than betweenRi

andS(blockerB in our example). The visibility update will thus be more costly. However, it avoids the storage
of the visibility information betweenRi andS. We have a typical timevs.memory tradeoff.

In the scene we have tested, we estimate that it is for example useful to store this information in the first
refinement of a link related to a wall or to the floor since many blockers are involved. In the subsequent
refinements however, the number of blockers is usually low and the information of the upper level of the
hierarchy could be used without incurring a time-penalty which is too large.

A simple criterion to decide whether to store visibility information or not is to consider the difference of
the number of blockers between the parent link and the child link. Note that this criterion is very similar to the
method proposed in the previous section: if the visibility is invariant, the number of blockers is constant and no
information needs to be stored. A memory budget could also be assigned for the visibility information. Once
it is filled, no more information is stored.

The issue of the refinement criteria proposed in section 5.4 then has to be handled with care since visibility
information is no longer available in its entirety. Visual events are still encoded, but they are stored at a higher
level of the link hierarchy, and there is no guarantee that they lie in the correct sub-polygon. The criteria can
be computed with all visual events stored at the higher level, if one of them should cause refinement, we test if
it actually lies inside the sub-polygon.

We believe that these two improvements will decrease the memory consumption of our method. The first
solution will also lower computation time, and we believe that the second scheme will not incur a large time
penalty.
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8 Discussion

8.1 Summary

We have presented a new hierarchical radiosity algorithm using the Visibility Skeleton. We have also intro-
duced update algorithms permitting the maintenance of consistent views at vertices added to a polygon due to
subdivision, as well as the resulting sub-faces.

The visibility skeleton permits the computation of exact point-to-polygon form-factors for any vertex/polygon
pair in the scene. It also provides detailed visibility information between any (sub)polygon-(sub)polygon pair.

We have introduced a novel hierarchical radiosity algorithm based on a “lazy wavelet” or “sub-sampling”
type multi-resolution representation. The basic data structure used is a non-uniform hierarchical triangula-
tion, which consists of a hierarchy of embedded constrained Delaunay triangulations. By maintaining radiosity
differences at subdivided vertices, we introduce a linear “push” step, resulting in higher quality radiosity re-
construction at the leaves. A new, perceptually-based, discontinuity driven refinement criterion has also been
introduced, resulting in hierarchical subdivision of surfaces well adapted to shadow variations. The results of
our implementation show that we can generate accurate high-quality, view-independent solutions efficiently.
The results also show that our approach is particularly well suited to previously hard-to-handle cases such as
multiple light sources and scenes lit almost entirely by indirect illumination.

Memory consumption is the major drawback of our approach, but solutions based on a time-memory trade-
off have been proposed. They are based on the detection of refinements where visibility is invariant or where it
varies little.

8.2 Limitations

Two major limitations of this work can be identified, the first is high memory consumption (even with the
proposed improvements) and the second is numerical robustness problems of the algorithms used.

The memory usage of the initial skeleton data structure is high, and can often have quadratic storage growth
in the number of input polygons, depending on the how complex the visibility relations are between polygons.
Even for simple environments, our method uses very large amounts of memory (see Table 4.2). To make our
approach practical for large scenes, it is evident that we need to adopt one or a combination of the following
strategies: lazy or on-demand skeleton construction, divide-and-conquer strategies (similar toe.g., [HT96]) or
a clustering approach allowing a multi-resolution representation. Some ideas in these directions can be found
in the section 8.4 on future work.

Numerical robustness and the treatment of degenerate cases are important issues. As discussed in the
previous chapter, despite the simplicity of the construction algorithm degenerate cases can cause problems with
the skeleton construction. Moreover, in the case of subdivision, many visual events coincide, causing problems
of coherence both for the ray-tracing step (for node creation) and the adjacency determination. These problems
are particularly evident in the case of view updates. A coherent and consistent treatment of degeneracies is
planned, but is a research topic in itself and beyond the scope of this thesis. Insertion of points in the mesh also
causes problems, especially during subdivision due to numerical imprecision. Symbolic calculations instead of
numerical intersections could potentially resolve most of these problems.

8.3 Advantages

The visibility-driven hierarchical radiosity algorithm introduced here has many advantages. First we achieve
visually accurate shadows using discontinuities and exact point-to-polygon form-factors, for both direct and
indirect illumination. The new hierarchy of triangulations data-structure, the novel two link types and the
multi-resolution point-area link representation allow accurate linear reconstruction of radiosity over irregular
meshes. The global treatment of visibility and discontinuities permits the definition of an efficient refinement
oracle. Using a perceptually based method to estimate shadow importance, our refinement algorithm has proven
to be very efficient for previously hard-to-handle scenes such as scenes lit with multiple light sources and scenes
lit mainly by indirect light. As part of an informal comparison, we have seen that Hierarchical Radiosity uses
more computation time to produce much lower quality results, as would be expected.

Approaches such as that of [LTG93] based on discontinuity meshing have difficulty with large numbers of
light sources, since the number of discontinuities becomes unmanageable very quickly. This has consequences
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both on computation time and on robustness in the construction of the discontinuity mesh. For similar reasons,
no discontinuity-basedhierarchical lighting algorithm has been proposed previously in which discontinuities
are treated for indirect light transfers.

8.4 Future work

Scalability

The improvements we have proposed to decrease memory consumption should be implemented and tested.
The advantage of the skeleton construction is that it is local, and thus can be built in a “lazy” or even

“on-demand” fashion. Using to-be-defined criteria, we could compute only the parts of the visibility skeleton
related to “important” light transfers. This information could be deleted once used, thus dramatically reducing
the memory requirements.

The hierarchical visibility structure discussed in the future work section of the previous chapter could be
directly applied to global illumination simulation. The framework of radiosity with clustering [SAG94, Sil95]
is the natural extension of hierarchical radiosity. It could benefit from a multiresolution yet accurate visibility
data-structure.

Error control

The information encoded in the skeleton also permits the computation of the gradient or higher order derivatives
of the lighting function[Arv94, HS95, HS99]. Such an information could be useful to derive more efficient
refinement criteria, or to interpolate the lighting function.

Error control techniques for radiosity [ATS94, LSG94, HS99] have often neglected the error due to visibility
because it is very intricate and also because exact visibility information is hard to obtain. The visibility skeleton
provides the necessary information, making it possible to accurately control the precision of the simulation.

A complete error control of the simulation is however rarely necessary. Nonetheless, this kind of approach
can be simplified and approximated to obtain some criteria which are more global. The oracles we have
implemented perform an estimate on the direct interaction between two patches. The influence is nonetheless
more global, since this light energy is then reflected to all the scene.

Meshing

The quality of a mesh is crucial for finite element methods. Thin triangles should be especially avoided.
Delaunay triangulation, particularly constrained Delaunay triangulation, does not ensure such a property. Some
standard meshing techniques (seee.g.[She96]) should be used to further improve our meshes, by first inserting
some new points on constrained edges which do not verify the Delaunay property.

Moreover, a Delaunay triangulation does not provide the best interpolation of a function. Consider the
example in Fig. 4.30 which represents a function defined on a square sampled at the corners. Two triangulations
are possible, depending on the diagonal which is chosen. The criterion should not be based on a Delaunay
property (both are equivalent) but should take the gradient of the function into account [ARB90, Sch93]. Such
a scheme could improve the quality of our lighting representation.

Perceptual criteria

The criteria we have developed can also be adapted for standard radiosity systems where the skeleton informa-
tion is not available. In particular, the separation between a pure radiometric oracle (variation of unoccluded
radiosity) and a visibility oracle (“amount of shadow” and variation in penumbra) is a promising approach for
efficient refinement. The use of the perceptual metric moreover permits an intuitive and predictable setting of
the simulation.

More involved metrics could be used [Mys98, BM98, RPG99, FPSG97, PFFG98]. In particular, the spatial
frequential component should be taken into account, since the human eye is less sensitive to error in quickly
varying regions, for example a carpet with a very noisy texture.

We believe that the use of perceptual metrics is a powerful technique to optimize computation in computer
graphics. Animation techniques could also benefit from these efficient criteria, spending more computation
resources in part of the scene/movement which are most noticeable by a human observer.
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(a) (b) (c)

Figure 4.30: Optimizing a triangulation. (a) Exact function. (b) Bad triangulation. (c) Good triangulation.

Other issues

The skeleton could also be used for Monte-Carlo methods. In the case of standard Monte-Carlo techniques,
the inherent random nature of the sampling makes it hard to take coherence into account. However, more
recent approaches such as Metropolis light transport [VG97] could be coupled with the skeleton for a better
exploration of the path space. It could also be used to find some good initial samples in path space.

Extending the skeleton and the resulting illumination algorithm to dynamic scenes is another promising
research direction.



CHAPTER 5

General Occlusion Culling using
Extended Projections

La pesrpective n’est rien d’autre que la vision d’une
scène derrière une vitre plane et bien transparente, sur
laquelle on marque tous les objets qui sont de l’autre
côté de cette vitre.

LéonardDE VINCI, Codex Urbinas

ISUALIZATION of very complex geometric environments is a major goal of interactive render-
ing systems. Despite the impressive improvement in processor power and graphics hardware
speed of modern workstations, it is still currently difficult or even impossible to visualize very
complex models (millions of polygons) in real time, on mid- or even high-range graphics work-

stations. We have identified three important restrictions which often impede visualization of complex scenes:
(i) the limited speed of the graphics display (i.e., the number of primitives the hardware can render per frame),
(ii) the fact that different classes of models (e.g., architectural scenes, scenes with concave objects, etc.) often
have very different visibility properties, making solutions which work for all cases hard to develop and (iii)
the fact that the model of the entire scene often is too large to fit in main memory or to be transmitted over a
network.

The new approach we present here is apreprocessof a complex scene, which generates a decomposition
of space into cells. A novel algorithm is introduced, usingextended projectionsto compute an extended depth
map with respect to all viewpoints in a cell. The new approach incorporates the combined effect of multiple
occluders (occluder fusion) and can handle concave objects. The extended depth maps are used to conserva-
tively1 calculate the potentially visible geometry for each cell. The visibility cell structure is built adaptively,
using recursive subdivision and hierarchical testing for potentially hidden objects; it is then used by an in-
teractive viewer of complex scenes. Our algorithm opens the way to overcoming the restrictions mentioned
above, permitting highly interactive display of very complex, general (not application-specific) models on mid-

1Note that throughout this chapter we employ the termconservativeto the limit of the resolution of the image to which we rasterize the
projections.
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and high-range graphics workstations. Potential applications for our new approach include video-games and
network rendering, for which the reduction of the size of the geometry sent to the pipeline is paramount.

This chapter starts with a presentation of our general method. We then present some methods for the
actual computation of extended projections in section 2, before we propose an important improvement for
some special cases of occluders in section 3. We then introduce a reprojection operator and the occlusion
sweep in section 4. Section 5 presents our adaptive preprocessing, while section 6 presents the results of our
implementation. Finally section 7 proposes a discussion and some future work issues.

1 Extended projections

We present a preprocessing method which subdivides the regions where an observer can move into viewing
cells. For each viewing cell we compute a set of objects which are potentially visible from all the points inside
the cell (the so-calledPVS, potentially visible set). For this, we perform a conservative occlusion test for each
object of the scene. Our occlusion test uses a representation of the occlusion caused by occluders which is
based onextended projectionsonto a plane.

1.1 Principle

Our method can be seen as an extension to volumes of on-line occlusion culling with respect to a single
viewpoint. In image-space point-based occlusion culling [GKM93, ZMHH97], occluders and occludees are
projected onto the image plane. Occlusion is detected by testing if the projection of the occludee is contained
in the projection of the occluders (overlap test) and if the occludee is behind (depth test). In some methods
[GKM93] both tests are performed in a single pass using the depth-buffer.

We extend these single viewpoint methods to volumetric viewing cells.Extended projection operatorsare
defined for occludees and occluders in the next section. An occludee is hidden with respect to all viewpoints
within the viewing cell if: (i) the extended projection of the occludee is contained in the extended projection of
the occluders and (ii) if the occludee is behind the occluders. The extended projection operators are different
for occluders and occludees.

The intuition behind our extended projection operators is to underestimate the projection for the occluder,
and to overestimate them for occludees. The extended projection of for the entire cell is an underestimate with
respect to each individual viewpoint for the occluder, and an overestimate for the occludee.

Even though we describe our method for a single plane, six planes will actually be necessary to test oc-
clusion in all directions. The important issue of the position of the projection plane(s) is deferred until section
5.2.

We define a view as a perspective projection from a point onto a projection plane. However, in what follows,
the projection plane will be shared by all viewpoints inside a given cell, resulting in sheared perspective, as
if one were moving inside a room and describing what is seen through a fixed window. Note that visibility is
equivalent to the case in which a plane perpendicular to the optical axis is used and that these projections can
be handled by a standard perspective projection matrix.

1.2 Extended projections

Definition 1 We define the extended projection (orProjection) of anoccluderonto a plane with respect to a
cell to be theintersectionof the views from any point within the cell.

Definition 2 The extended projection (orProjection) of anoccludeeis defined as theunionof all views from
any point of the cell.

Fig. 5.1 illustrates the principle of our extended projection.
In what follows, we will simply useProjectionto refer to an extended projection. The standard projection

from a point will still be namedview.
This definition of Projection yields conservative occlusion tests. To show this consider first the case of

a single occluder. Assume that an occludee is behind the occluders. It is declared hidden if its Projection is
contained in the Projection of the occluder. This means that the union of its views is contained in the intersection



1. EXTENDED PROJECTIONS 115

cell

occluder

projectionplane

occludee

extended
projection
of the
occluder

extended
projection
of the
occludee

V

Figure 5.1: Extended projection of an occluder and an occludee. The view from pointV is shown in bold. A
view from another viewpoint is also shown with thiner lines. The extended projection of an occluder on a plane
is theintersectionof its views. For an occludee, it is theunionof the views.

of the views of the occluder. From any viewpointV inside the cell, the view of the occludee is contained inside
the view of the occluder. To summarize, for any viewpointV in the cell we have:
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viewoccluder
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V

The occludee is thus hidden (if the depth test is satisfied). See Fig. 5.1 for an illustration.
Consider now the case of an occludee whose Projection is contained in the cumulative Projection of two

(or more) occluders. This means that from any viewpointV in the cell, the view of the occludee is contained in
the cumulative view of the occluders. We have:
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viewoccludee
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The occludee is thus also hidden (Fig. 5.2). Our Projection operators handleoccluder fusion, that is, occlusion
caused by the joint effect of multiple occluders.

Unfortunately there is no one-to-one correspondence between a point in a Projection and a projected point
of an object, as with standard perspective view. Consider the situation depicted in Fig. 5.3(a). Depending on
the viewpointV, a pointP in the Projection of the occluder corresponds to the view of different points of the
occluder.

Note that convexity is not required in any of our definitions, just as for point-based occlusion-culling.
Nonetheless, we will see that it is easier to compute a Projection in the convex case, and in section 3 we show
that the efficiency of Projections can be improved if occluders are convex or planar.

Let us give another interpretation of these operators in the special case where the projection plane is behind
the objects. The Projection of an occluder is in fact itsumbraif the cell is considered as a light source. A point
P in the Projection of an occluderA is in the view ofA from any viewpointV in the cell (see Fig. 5.3(a)). Thus,
for any pointV in the cell, the ray originating fromV going throughP intersectsA. P is in the umbra ofA on
the projection plane. Similarly, the Projection of an occludee can be seen as itspenumbra.

1.3 Depth

The overlap of Projections is not sufficient to conclude that an occludee is hidden; A depth comparison has to
be performed. It is however more involved than in the single viewpoint case since a simple distance between
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Figure 5.2:
Extended projections handleoccluder fusionof two occludersA andB. We show the example of a view from
pointV. The view of the occludee is contained in the cumulative view of the two occluders, as determined by
the extended projection occlusion test. Note that a single occluder does not hide the occludee.

the viewpoint and a projected point cannot be defined. This is because a set of viewpoints are considered, and
also because a point in a Projection does not correspond to the view of a unique point of an object as seen in
Fig. 5.3(a).

Our definition of depth must be consistent with the properties of occlusion; For each ray emanating from
a viewpoint inside the cell and going through the projection plane, depth must be a monotonic function of
the distance to the viewpoint. The most obvious definition of depth is along the direction orthogonal to the
projection plane. We chose the positive direction leaving the cell and we place the zero at the projection plane.
Objects between the projection plane and the cell thus have negative depth. Occluding objects will have smaller
depth values than hidden objects.

We now have a unique depth function which is coherent for all viewpoints in the cell. Consider a pointP
in the Projection of an occluder as illustrated in Fig. 5.3(b). It corresponds to many points of the occluder (e.g.,
A1 andA2) as defined by the intersection of all lines going through this point and the cell.

Definition 3 We define the extended depth (orDepth) of a point in the Projection of anoccluderas themaxi-
mumof the depth of all the corresponding projected points.
Similarly, we define the extended depth (Depth) of a point in the Projection of anoccludeeas theminimum
depth of its projected points.

In what follows, we will refer to this quantity simply asDepth. If the Depth of a point in the Projection
of an occluder is smaller than the Depth in the Projection of an occludee, all the corresponding points of the
occludee are behind the occluder from any viewpoint inside the cell. Our definition thus yields conservative
depth tests.

Consider now the case of multiple occluders. We want to consider the occlusion caused by the occluder
closest to the cell. To perform the depth test, we thus consider the occluder with theminimumDepths. Recall
that for each occluder the Depth of a pointP is themaximumdepth of the corresponding projected points. The
Depth of a point in the cumulative Projection of multiple occluders is thus theminimum of the maximaof the
depth of the projected points.
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Figure 5.3: (a) Inverse of a pointP in a Projection. We show the point of the occluder corresponding toP in
the view fromV. For the second viewpointV 0, P corresponds to the view of another point of the occluder. The
light region of the occluder corresponds to the set of points which project onP. (b) We consider depth along
the direction orthogonal to the projection plane (Note that the depth in this figure are all negative since zero is
defined on the projection plane). The Depth of a pointP in the Projection of an occluderA is the maximum of
the depth of the corresponding points (zA2 here). In the case of multiple occluders, the occluder closest to the
cell is considered (A here).

For this purpose we define the extended depth map orDepth Map. For each point of the projection plane,
the value of the Depth Map is the Depth of the occluder closest to the cell which projects on it. If no occluder
projects on a point, an “infinite” value is used.

A simplified version of the depth test can be used. If the occluders are all in front of the projection plane
and the occludees are all behind, then the overlap test is enough to determine occlusion. This will prove useful
for occluder reprojection. We will not use this simple case until section 4. Until then, we consider the use of a
Depth value for each point of an occluder Projection.

1.4 Overview

We now present an overview of our method. We first compute the Projections of the occluders on a projection
plane. Then, for each occludee we test if its Projection overlaps the Projection of the occluders, and whether it
lies behind, that is, whether it has larger Depth values. For each point inside the Projection of an occludee we
have to test if its Depth is larger than the Depth of an occluder Projection.

This permits a simple algorithmic description of our occlusion test: For each point of the Projection of the
occludee, test if the Depth is larger than the corresponding value of the Depth Map.

If we use the simplified depth test (if the projection plane is between the occludees and occluders), we
similarly define the extended occlusion map orOcclusion Map. Each point of the projection plane is assigned
a boolean value which is true only if this point belongs to the Projection of at least one occluder.

1.5 Implementation choices

Until now, our definitions have been quite general, and do not depend on the cell, plane, occludee nor on the
way the overlap or depth test are performed. We now present the choices we have made for our implementation.

The viewing cells are non-axis-aligned bounding boxes. The projection planes will be restricted to the
three directions of the cell (note that these three directions depend on the cell). The occludees are organised in
a hierarchy of axis-aligned bounding boxes.

We will use a bitmap representation of the Depth Map. This is our only concession to conservatism (it can
be alleviated as will be discussed later). It allows the use of the graphics hardware which simplifies most of the
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computation, and it avoids the robustness issues inherent to geometrical computations.
We store a Depth value for each pixel. As described above, we consider the minimum of the Depths of

this pixel. Occluder fusion is handled by the natural aggregation in the Depth Map. Following [GKM93] we
organize the Depth Map into a pyramid for efficient testing. We call it the Hierarchical Depth Map. Similarly,
we will also use a Hierarchical Occlusion Map in the spirit of Zhanget al. [ZMHH97].

2 Computation of the extended projections

We have definedextended projection operators(Projection) as well asextended depth(Depth) which permit
conservative 3D occlusion tests on a projection plane. These tests takeoccluder fusioninto account. We
represent the occlusion on the plane using aHierarchical Depth Map. We now describe how to actually compute
the Projections of the occludees and occluders.

We first present an approximate yet conservative way to compute the Projection of occludees. We then give
a method for the Projection of convex occluders, and a method to handle concave occluders.

2.1 Occludee Projection

Recall that the Projection of an occludee is the union of its views. Our cells are convex as is also the bounding
box of an occludee. The Projection of such a box reduces by convexity to the 2D convex hull of its views from
the vertices of the cell.

This computation could be implemented using standard geometric algorithms, by computing the views,
their 2D convex hull and rasterizing it for depth test. We however use a conservative approximation which
simplifies the computation and the rasterization phase.

We use the bounding rectangle of the Projection on the projection plane as shown in Fig. 5.4. The goal
is to overestimate the Projection of the occludee. To do this, we split the problem into two simpler 2D cases.
We project onto two planes orthogonal to the projection plane and parallel to the sides of the cell. The 2D
projection of the cell is a rectangle, while the 2D projection of the occludee bounding box is a hexagon in
general (Fig. 5.4 shows a special case for simplicity).

projectionplane

cell

bounding
rectangle

bounding
segment

Figure 5.4: Occludee Projection is reduced to two 2D problems.
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We then compute the separating and supporting lines of the rectangle and hexagon. The intersections
of these lines with the projection plane define a 2D bounding segment. A bounding rectangle is defined by
the cartesian product of the two 2D segments as illustrated in Fig. 5.4. We use this bounding rectangle as
an overestimated approximation of the occludee Projection. Separating lines are used when the occludee is
between the cell and the projection plane, while supporting lines have to be used if the occludee lies behind the
plane.

This method to compute an occludee Projection is general and always valid, but can be overly conservative
in certain cases. In section 3 we will present an improvement of this Projection for some particular configura-
tions.

2.2 Convex occluders Projection using intersections

The Projection of convex occluders has properties which are similar to the occludee bounding box projection.
By convexity of the cell and occluder, the intersection of all possible views from inside the cell is the intersec-
tion of the views from the vertices of the cell (see Fig. 5.5(a)). This Projection can be computed using standard
geometric intersection computation.
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Figure 5.5: Convex occluder Projection. (a) The Projection of an occluder is the intersection of the views from
the vertices of the cell (we have represented a square cell for simplicity). (b) Computation using the stencil
buffer. The values of the stencil buffer indicate the number of views projecting onto a pixel.

We have nevertheless developed an efficient method which takes advantage of the graphics hardware. It
is amultipassmethod using thestencil buffer. The stencil buffer can be written, and compared to a test value
for conditional rendering. Its original use was to prevent the rendering of 3D scenes on pixels representing a
cockpit [MBGN98].

The basic idea of our method is to project the occluder from each vertex of the cell, and increment the
stencil buffer of the projected pixels without writing to the frame-buffer. The pixels in the intersection are then
those with a stencil value equal to the number of vertices, as illustrated in Fig. 5.5(b).

The consistent treatment of Depth values (as described in section 1.3) in the context of such an approach
requires some care and is described in appendix C.

2.3 Concave occluder slicing

Concave polygonal meshes can be treated with the previous method, by Projecting each individual triangle.
However, some gaps will appear between the Projections, losing the connectivity of occluders. We now present
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a first method to treat concave occluders as single entities. Other approaches will be discussed in section 7.3.
Our method is based on this simple observation: the Projection of an object lying in the projection plane is

the object itself. We thus consider the intersection of concave objects with the projection, which we call aslice
of the object.

Slicing concave objects is straightforward: projection plane(s) are placed in such a way that they cut the
object. The object is then intersected with the projection plane and a 2D contour found. It is important to
slice the object at a point where the resulting contour is closed. The contour is then scan-converted onto the
projection plane with a null Depth value to compute a Depth Map, or in Black to compute an Occlusion Map.

Evidently, a complex object can be sliced at a number of positions. Combining the results of the sliced
occlusion maps requires conservativereprojectiononto a different plane, as will be introduced in section 4.

3 Improved Projection of occludees

The Projection operators we have presented areconservative, meaning that they never erroneously identify an
object which is actually visible as invisible. However, the opposite can occur, some objects may be declared
potentially visible while they are not visible from any point inside the viewing cell.

In this section we present an improvement in the case of convex or planar occluders for configurations in
which our initial Projection yields too conservative results. We first present some occlusion properties which
allow the improvement of our Projection. We discuss improved Projection in 2D which is simpler. We then
explain why the 2D results cannot be trivially extended to 3D and explain how these 2D results can nevertheless
be used to improve 3D computation.

3.1 Some properties of umbra

In Fig. 5.6(a) we show in 2D a situation in which our Projection is too restrictive. The Projection of the
occludee is not contained in the Projection of the occluder, even though the occludee is evidently hidden from
any viewpoint in the cell. This configuration occurs because the occludee is between the occluder and the
projection plane and because the occluder is convex. In what follows we discuss only the case where the
occludee is between the projection plane and the cell. If the occludee is behind the plane, the Projection which
we have presented in section 1.2 yields satisfying results.
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Figure 5.6: (a) Configuration where initial Projections is too restrictive. The Projection of the occludee is not
contained in the Projection of the occluder, even though it is obviously hidden. (b) Any pointP0 inside the cone
defined byP and the cell and behind the occluder is hidden.

Intuitively, testing the occludee penumbra against the occluder umbra is not sufficiently restrictive. As
we shall see, substituting the penumbra with the occludee umbra for this configuration results in the required
answer.

To cope with this case, we will define an improved Projection for occludees. It will be valid only in the
case of convex or planar occluders, but occluder fusion will be handled. Note that the restriction is on the type
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of occludersbut that the improved Projection is defined for theoccludees. We base our improved Projection on
some properties of shadows of convex objects.

In what follows we use the termconeto name a general cone defined by an apex and a set of points (the
term “pyramid” could also be used). We also use “cone” to mean a 2D wedge, which makes terminology
more coherent with the 3D case. Similarly we will still use “projection plane” even though a line is actually
considered in 2D.

Before defining the actual improved Projection we introduce two important properties which we will use to
demonstrate that our improved Projection provides valid occlusion results.

Property 1 For a given point P in the occluder umbra region with respect to a cell, all points P0 in space
behind the occluder, which are also contained in the cone defined by P and the cell, are hidden with respect to
the cell.

This property is illustrated in Fig. 5.6(b). The proof is evident for convex occluders since the cone defined
by P0 and the cell is contained in the cone defined byP. The section of the occluder which occludesP is a
superset of the section which occludesP0. Note that this property is not valid for general concave occluders.

projectionplane

P

occluderplane

occluder

occluder
Projection

P'

cell

Figure 5.7: Case of a concave planar occluder. The intersection of the occluder and cone (defined by pointP
and the cell) is shown in dark grey. It is convex and equal to the intersection with the plane of the occluder.

However, the 3D case of concave planar occluders is similar to the convex case. Consider Fig. 5.7. If a
pointP is in the umbra of such an occluder, then the intersection of the occluder and the cone defined byP and
the cell must be equal to the intersection of the cone and the plane of the occluder (otherwise there is a “hole”
andP is not in umbra). This intersection is thus convex. The intersection of the cone defined byP0 and the cell
is a subset of this plane-cone intersection.P0 is thus also hidden. The plane of the occluder need not be parallel
to the projection plane, and the occluder can be concave and have holes.

Property 2 To yield valid occlusion tests, theimproved Projectionof the occludee being tested must have the
following property: The union of cones defined by each point of the improved Projection of the occludee and
the visibility cell must contain the occludee.

Consider the situation in Fig. 5.6(b). The points of the occludee contained in the cone defined byP and the
cell are occluded by property 1. Thus, if the occludee is contained in the union of cones defined by the cell
and points in the improved extended projection, any point of the occludee is in one of these cones and can be
identified as hidden by property 1.

Note that occluder fusion is still taken into account: all pointsP defining the cones need not be hidden by
the same convex or planar occluder.
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Figure 5.8: Improved Projection in 2D. (a) The 2D improved Projection is defined by the intersections of the
projection plane with the supporting lines of the cell and the occludee. (b) When the vanishing point of the
umbra of the occludee is in front of the projection plane, any point between the intersections of the supporting
lines can be used.

3.2 2D improved Projection

An improved Projection respecting property 2 can be defined in 2D by considering the supporting lines of the
cell and the occludee as illustrated in Fig. 5.8(a). The intersection of these lines with the projection plane define
the limits of the improved Projection of the occludee.

However, if the occludee is too small, the two supporting lines intersect in front of the projection plane
at thevanishing point. In this case, any pointP between the intersections of the two supporting lines and the
projection plane satisfies property 2, as illustrated in Fig. 5.8(b). Any cone defined by such a point and the cell
contains the vanishing point and thus the object. In practice, we use the mid-point in our calculations.

Note that this computation using supporting lines is the same for objects behind the projection plane, since
the supporting lines then define the limits of the union of the views of the occludee. As opposed to standard
Projection presented in section 1.2 , we no longer consider separating lines. In the case where the occludee is
in front of the projection plane, we have substituted the penumbra by the umbra.

We now summarize our 2Dimproved Projectionfor any occludee (in front or behind the projection plane):
We compute the intersection with the projection plane of the upper and lower supporting lines defined by the
cell and the occludee. If the plane is beyond the vanishing point (i.e., if the intersection of the lower line is
above the intersection of the upper line), we consider the mid-point of the two intersections, otherwise we
consider the entire segment. The point or segment are then used in the occlusion test. This is illustrated in Fig.
5.8. The 2D improved Projection of an occludee is a segment or a point, depending on whether the projection
plane is behind the vanishing point.

3.3 3D improved Projection

Unfortunately, in 3D supporting planes cannot be used as simply as supporting lines, and the vanishing point is
ill-defined. Even if the umbra volume of an occludee intersects the projection plane, the union of cones defined
by the cell and points of the plane in umbra are not guaranteed to contain the occludee.

We thus project on two planes orthogonal to the projection plane and parallel to faces of the cell, as illus-
trated in Fig. 5.9. On each plane we use our 2D improved Projection. The cartesian product of these two 2D
improved Projections defines our 3D improved Projection.

This improved Projection verifies property 2. Consider a pointP0 of the occludee. Its projectionP0i onto
each of the two planes is inside a cone defined by a pointPi of the 2D improved Projection and the projection
of the cell. The 3D pointP0 is thus in the cone defined by the cell and the cartesian productP of P1 andP2 (see
Fig. 5.9).

This is true because the cell is the cartesian product of its 2D projections since it is a box and the 2D planes
are parallel to the cell faces. Thus a cone defined by a pointP and the cell is the cartesian product of the cones
defined by the 2D projections of the cell and the 2D projection ofP.
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Figure 5.9: The 3D improved Projection is the cartesian product of two 2D improved projections. Any pointP0

of the occludee is contained in a cone defined by one pointP of the 3D improved projection and the cell. This
cone can be constructed by considering the two corresponding 2D projections.

The 3D improved Projection is the cartesian product of 2D improved projections which are points or seg-
ments. It is a rectangle (segment� segment), a segment (segment� point) or a point (point� point).

Our 3D improved Projection thus yields conservative occlusion tests in the case of convex or planar block-
ers. As mentioned previously in the 2D case, occluder fusion is still handled since all cones containing the
occludee need not be hidden by the same occluder.

4 Occluder reprojection and occlusion sweep

The choice of the projection plane has a great influence on the efficiency of occlusion testing using Projection,
and especially on the handling of occluder fusion (as will be discussed in section 5.2). Contradictory plane
locations can be required to handle the fusion of different groups of occluders as illustrated in Fig. 5.10. To
cope with this, we use a first projection plane, compute a, Occlusion Map where occluder Projections aggregate,
then re-Project this Occlusion Map on a new projection plane. The natural aggregation in the first Occlusion
Mapresults in a largerequivalent occluderwhose occlusion can be tested on the second projection plane. The
same applies when slices of concave objects are used. In a certain sense, our scheme can be seen as an image-
based simplification and aggregation of occluders.

We first justify why and to what extent re-projection is valid. We then explain how Occlusion-Maps can
be efficiently reprojected onto another parallel projection plane. We finally extend this concept to anocclusion
sweepwhere a plane is swept from the cell while aggregating occlusion.
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Figure 5.10: (a) If projection plane 2 is used, the occlusion of group 1 of occluders is not taken into account.
The shadow cone of one cube shows that its Projection would be void since it vanishes in front of plane 2.
The same constraints apply for group 2 and plane 1. It is thus desirable to Project group 1 onto plane 1, and
re-Projectthe aggregate equivalent occluder onto plane 2. (b) Occluder reprojection. The extended occlusion
map of plane 1 is projected on plane 2 from the center of the equivalent cell. It is then convolved with the
inverse image of the equivalent cell.

4.1 Validity

We now show that the Projection of several occluders can be used as a single conservative equivalent occluder,
i.e., an occludee hidden by this Projection is also hidden by the occluders. We prove the following more general
property.

Property 3 Consider an extended light source, any object A (convex or concave) and U the umbra cone of A.
Then the shadow of any subset U0 of U lies inside U.

U

U'

P

P'

r

A

Figure 5.11: Umbra of the subset of an umbra. PointP is in the umbra ofU 0 which is a subset of the umbraU
of A. It is thus also in the umbra ofA.

To prove this, consider a pointP in the umbra ofU 0 (Fig. 5.11). Any rayr going throughP and the source
intersectsU 0. Consider an intersection pointP0. SinceP0 2U 0 �U , thenP0 is in the umbra ofA. Thus any ray
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(r for example) going throughP0 and the source intersectsA. We have shown that any ray going throughP and
the source intersectsA. P is thus in the umbra ofA.

Note that property 3 presupposes neither convexity nor planarity of the objectA.
If the cell is considered as a light source, this proves that any subset of the umbra of a set of occluders is a

conservative version of these occluders. As we have seen, the Projection of an occluder which lies in front of
the projection plane is its umbra on the plane. This Projection can thus be re-Projected as a new occluder. If
the occluder lies behind the projection plane, its Projection does not lie inside its umbra because the projection
plane is closer to the viewing cell than the occluder. Thus property 3 does not apply.

We thus only consider occluders behind the projection plane, which is why we do not consider their Depth
and use Occlusion Maps instead of Depth Maps in the initial projection plane. An Occlusion Map defines a
planar occluder which is well suited for our improved Projection. Reprojection will be performed only onto
planes which are behind the initial plane. However the depth of the initial projection plane can be used for the
Depth Map of the final projection plane.

The reprojection scheme we are about to present is in fact an extended projection operator for the special
case of planar blockers parallel to the projection plane.

4.2 Reprojection

We base our reprojection technique on the work by Soler and Sillion [SS98a, Sol98] on soft shadow computa-
tion. They show that in the case of planar blockers parallel to the source and to the receiver, the computation
of soft shadows is equivalent to the convolution of the projection of the blockers with the inverse image of the
source. This convolution can be computed efficiently using Fast-Fourier-Transform. They extend this scheme
to the general case by projecting the actual geometry onto three parallel planes, computing the soft shadow
using convolution, then re-projecting it on the actual receiver. This computation is approximate but yields
impressive results.

We are nearly in the ideal case for the Soler and Sillion algorithm: our blocker (the occlusion map of the
initial projection plane) and the receiver (the new projection plane) are parallel. However our light source (the
cell) is a volume. We define an equivalent cell which is parallel to the projection planes and which yields
conservative Projection on the new projection plane. Its construction is simple and illustrated in Fig. 5.10(b).
We use the fact that our projection planes are actually bounded. Our equivalent cell is the rectangle defined by
the face of the cell closest to the plane and the supporting planes of the cell and the final projection plane (the
projection rectangle in fact).

Any ray going through the cell and the projection plane also intersects our equivalent cell. Thus if an object
is hidden from the equivalent cell, it is also hidden from the cell.

The convolution method computes continuous grey levels. To obtain a binary Occlusion Map, thresholding
is performed. In practice, since we use hardware convolution on integers, we use as scaling factor together with
clamping (multiplying by 255 corresponds to setting to 255 all values which are not null).

Fig. 5.10 shows that the re-Projection of the extended projection from plane 1 to plane 2 allows us to handle
the cumulative occlusion of both group 1 and 2 and their occluder fusion. Recall that a Depth map can be used
on the final plane. The Depth of the re-Projected equivalent occluder is the depth of the initial plane.

4.3 Occlusion sweep

To handle the case where multiple concave or small occluders have to be considered, we generalize re-
Projection to theocclusion sweep. It is a sweep2 of the scene by parallel projection planes leaving the cell
on which occlusion is aggregated due to re-Projection.

The principle is simple as illustrated in Fig. 5.12. We Project the convex occluders which lie in front of the
current projection planeP ontoP. We also compute the slices of the concave objects which intersect the plane.
This results in an Occlusion Map against which the occludees are tested.

We then advance to the following projection plane. We re-Project the Occlusion Map of the previous plane
using the convolution technique described in the previous section. We compute the new slices of concave

2Our use of the term “sweep” is different from that defined in computational geometry or used in chapter 2. We compute no sweep
events, and the location of the planes are independent of the scene.
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Figure 5.12: Occlusion sweep. The scene is swept by a set of parallel planes leaving the cell. Occluders are
not represented to simplify the figure. On each projection plane we show in light grey the re-Projection of the
previous plane (the re-Projection before convolution is indicated with a thin line). New Projections are shown
in dark grey.

objects, and Project the convex occluders which lie between the two planes. This defines the Occlusion Map
of the new projection plane. We again test the occludees and the sweep proceeds.

The distance∆D between two projection planes is chosen to make optimal use of the discrete convolution.
We want the size of the convolution kernel to be an integer numberK of pixels. This means that we want the
inverse projection of the equivalent cell onto the new projection plane to have sizeK (Fig. 5.12). LetD be
the distance between the initial plane and the equivalent cell, andC the size of the equivalent cell.N is the
resolution of the Occlusion Map, andP is the size of the projection plane. Applying Thales theorem gives:

∆D =
D(K�1)P

CN

(K�1) is used because a discrete kernel of sizeK actually “removes”K�1
2 pixels around each pixel. In

practice we useK = 5 pixels. Note that this formula results in planes which are not equidistant. This naturally
translates the fact that occlusion varies more quickly near the viewing cell.

The occludees need not be tested against each projection plane. We tests only the closest occludees for each
projection plane. Occludees which are farther away are tested less frequently (e.g., every 5 or 3 planes).

This sweep process however remains more costly than our standard Projection method using a single plane,
because several re-Projections have to be performed, and because the occludees have to be tested many times.
Nevertheless, it permits the treatment of very hard configurations such as the occlusion caused by the aggrega-
tion of the leaves in a forest.

5 System

Some aspects of our method have remained vague. In what follows we describe which objects are chosen
as occluders and how the projections planes are set. We then present our adaptive cell preprocessing, before
treating the case of moving occludees. We finally describe how the visibility information computed during the
preprocess is used for interactive rendering.
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5.1 Occluder selection

For each viewing cell we choose the set of relevant occluders using a heuristic similar to those presented by
Coorg and Teller [CT97b], Zhanget al. [ZMHH97, Zha98b] and Hudsonet al [HMC+97]. The importance
of an occluder is judged based on its approximate solid angle. In practice, it is computed at the center of the
viewing cell.

To optimize this selection, we use a preprocess similar to the one proposed in previous approaches [HMC+97,
ZMHH97, Zha98b]. For each occluder, we precompute the region of the scene for which it may be relevant.
We store this information in a kd-tree. Then, for each cell, we use the occluders stored at the nodes of the
kd-tree that the cell spans.

To improve the efficiency of occlusion tests, we have also implemented an adaptive scheme which selects
more occluders in the direction where many occludees are still identified visible. As the occludees are tested,
we store together with the Depth Map afailure mapwhich indicates which regions of the projection plane need
be filled by occluder Projections. Each time the occlusion test of an occludee fails, we update the failure map.
For each pixel of the Projection of the occludee, we add the number of polygons of the occludee in the failure
map. We then use this information to decrease the solid-angle threshold for occluder selection in this direction.

This scheme requires a two pass occlusion test: During the first pass, the failure map is built, which is used
during the second pass to improve the occluder selection. The Depth Map is updated with the Projection of the
new occluders, and only occludees which have not been identified hidden are tested in the second pass.

The Depth Map itself could also be used directly to improve occluder selection without performing a first
occludee test. Following an idea in [ZMHH97, Zha98b], holes in the Depth Map could be detected and used to
indicate directions where occluders should be searched for. This solution has not yet been implemented.

5.2 Choice of the projection plane

Until now, we have discussed our method for an arbitrary projection plane. However, the efficiency of the
method highly depends on the choice of this plane. We first try to understand which constraints govern the
selection of this plane, before proposing the simple heuristic we have implemented. Recall that our projection
planes are constrained to the three directions of the viewing cell. We base our discussion on a 2D example for
simplicity, the properties we discuss are similar in 3D.

cell
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plane 1
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Figure 5.13: Choice of the projection plane. We do not show the supporting and separating lines for clarity.
In grey we show the Projection volume, which is the locus of all the Projections of an occluder for all the
possible placements of the projection plane. (a) We also show the volume of Projection of an occludee. (b) The
intersection of the volumes of Projection ofA andB (in dark grey) delimits the projection planes which handle
the fusion ofA andB.

We have to understand what the set of Projections of an occluder is, depending on the chosen projection
plane. We define thevolume of Projectionas the set Projection onto all possible projection planes. Fig. 5.13(a)
illustrates this for two occludersA andB. Recall that the Projection of an occluder in 2D is defined by its
separating and supporting lines with the cell. The part of the volume of Projection of an occluder behind it is
its umbra cone. The volume of Projection can be finite or infinite, just like an umbra volume. Similarly, Fig.
5.13(a) shows the volume of (improved) Projection of an occludee. It is a cone with its apex at the vanishing
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Figure 5.14: An example of projection planes for a cell of the city model. The yellow bounding boxes corre-
spond to the nodes of the hierarchy of occludees which are culled.

point, prolongated by a line. The intersection of this volume of Projection with a plane gives the Projection
onto this projection plane.

Consider the influence of the choice of the projection plane on the occlusion test of an occludee by a single
occluderA. In Fig. 5.13, projection plane 1 will not detect occlusion, while plane 2 will. This is general: If
the projection plane is behind the occluder, the test will always be correct in 2D. The test is less effective if the
plane lies in front of the occluder, because of the use of the separating lines as shown in Fig 5.13(a).

We also want to take into accountoccluder fusion. Consider Fig. 5.13(b).A andB will aggregate only in
the region defined by the intersection of their volume of Projection. Projection plane 1 will handle occluder
fusion, plane 2 will not.

The heuristic we use is very simple, based on the optimization of a simple function. We want to maximize
the number of pixels filled in our Depth Map. We place a candidate plane just behind each occluder. We evaluate
the size of the Projection on each such plane for each occluder. This method is brute force, but remains very
fast due to the low number of occluders considered. It however does not directly tries to maximize the handling
of occluder fusion. A heuristic based on the observation of Fig. 5.13(b) should be developed.

Six projection planes are used to cover all directions. Unlike the hemicube [CG85] or light buffer [HG86]
methods, our six planes do not define a box. The planes are extended (e.g., by a factor 1.5 as we use in our tests)
to avoid problems with severely oblique Projections, as illustrated in Fig. 5.14. This improves the detection of
occlusion in gazing directions.

5.3 Adaptive preprocess

We organise the viewing cells into a spatial hierarchical data-structure. Note that it is separate from the hi-
erarchy of bounding boxes used to enclose the occludees. Any hierarchical spatial subdivision, can be used,
potentially related to the specific application. Our algorithm starts with an initial subdivision of the space of
possible observer viewpoint positions. It can be the bounding box of the entire scene if noa priori knowledge
is assumed, but any “natural” subdivision can be exploited (the bounding boxes of the streets of a city model
for example).
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For each viewing cell we perform an occlusion computation. We choose the appropriate occluders and
projection planes. We then Project the occluders and build the Hierarchical Depth Map. Finally, the occludees
are tested recursively. If a node is identified as hidden or fully visible, the recursion stops. By fully visible, we
mean that its Projection intersects no occluder Projection, in which case no child of this node can be identified
as hidden. The occludees declared visible are inserted in the Potentially Visible Set (PVS) of the cell.

If we are satisfied with the size of the PVS of a cell, we proceed to the next cell. Otherwise, the cell is
subdivided and we recurse on the sub-cells. Nonetheless, occlusion culling is only performed on the remaining
visible objects,i.e., those contained in the PVS of the parent.

Performing computation on smaller viewing cells improves occlusion detection because the viewpoints are
closer to each other. The views from all these viewpoints are thus more similar, resulting in larger occluder
Projections, and smaller occludee Projections.

The termination criterion we have implemented is simply a polygon budget: if the PVS has more than a
certain number of polygons, we subdivide the cell (up to a minimum size threshold). A more elaborate criterion
would be to compare the PVS to sample views from within the cell.

PVS data can become overwhelmingly large in the memory required. To avoid this we use adelta-PVS
storage mechanism. We store the entire PVS for a single arbitrary initial cell. Adjacencies are stored with each
cell; a neighboring cell simply contains thedifferencewith respect to the PVS of the previous cell. We have
observed that storage requirements become reasonable as a result (see Section 6.2)

5.4 Dynamic scenes

Dynamic objects with static occluders can be treated using our extended projection approach. However, dy-
namic occluders cannot be handled.

A hierarchy of bounding boxes is constructed in the regions of space for which dynamic objects can move
[SG96]. During preprocess, the bounding boxes for dynamic motion are tested for occlusion against the ex-
tended occlusion maps of each cell. During the viewing process, each dynamic object is displayed if its con-
taining bounding box is visible.

In the urban driving simulator example, the roads are the dynamic object bounding box hierarchy. During
the interactive walkthrough, a car is displayed only if the street in which it lies is visible from the current street
of the observer.

5.5 On-line rendering

Once the preprocess has been completed and the PVS data stored to disk, a viewer process can use the data to
rapidly display very complex models. We use a standard scene-graph structure [RH94] to represent the scene.
A simple flag for each node determines whether it is active for display.

Each time the observer enters a new cell, the visibility status of the nodes of the scene graph are updated.
This is very efficient thanks to our delta-PVS encoding. Nodes which where previously hidden are restored as
visible, while newly hidden ones are marked as inactive.

The viewer process adds very low CPU overhead, since it only performs simple scene graph node updates.
An extension handling disk or network prefetching will be discussed in section 7.3.

6 Implementation and results

6.1 Implementation

We have implemented two independent systems for the preprocessor and the viewer. The preprocessor uses
graphics hardware acceleration wherever possible, notably for the Projection and convolution operations. The
Depth Maps are read from graphics memory, and the occludee test is performed in software. This could be
improved with modern graphics cards which permit efficient depth-test query [Sgi99]. The PVS’s computed
are stored to disk and made available to the interactive viewer. A typical projection plane configuration is
shown in Figure 5.14.

Our current implementation of the viewer is based on SGI Performer [RH94]. Performer implements a
powerful scene-graph and view-frustum culling, providing a fair basis for comparison.
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6.2 Results

Extended projection onto single projection plane

The test scenes we have used for the single plane method are the following: (a) the model of a city district
which contains a total number of about 150,000 polygons; (b) the city replicated 4 times, with 2,000 cars (of
1,000 polygons each) moving around the streets (2.6 million polygons total).

We use the convex occluder Projection using the stencil buffer and the improved Projection of occludees.
All Projections were performed at 256x256 resolution. We did not notice artifacts in the tests we performed,
but a comparison with higher resolution Depth Maps should be performed.

The preprocessing for a single city was about 1 hour, while the replicated 4 city model required around 4
hours on an Onyx 2 Infinite Reality using a single 195Mhz R10000 processor. 3479 final cells were used for
the city replicated 4 times. Our preprocess thus spends 4.1 seconds per cell. In the latter scene, the storage for
the PVS was around 25 Mbytes for a model size of 60 Mbytes (not including the cars). We removed around
95% of the geometry on average.

We have performed tests of the viewer with two hardware configurations. The first is a mid-range SGIO2

R5000 graphics workstation and the second an Onyx 2 Infinite Reality 2xR10000 high-end graphics worksta-
tion. A speed-up of around 5-6 times was observed. This may seem small when compared to 95% culling,
but our method is compared to Performer which performs a powerful view-frustum culling [GBW90] which
eliminates a large part of the geometry (about 80%). Fig. 5.15 illustrates the results of our method.

As an informal comparison, we have implemented the algorithm of Cohen-Oret al. [COFHZ98, COZ98]
(see Figure 5.16). For the city model, their algorithm declares four times more visible objects on average and
the nominal computation time in our implementation is 150 times higher than for extended projection. A more
optimized version may decrease this gap, but our 4.1seconds per cell seems hard to beat using ray-casting on
such large models.

Occlusion sweep

We have ran some preliminary tests for the occlusion sweep. A model of a forest containing around 1200 trees
with 1000 leaves each was used. The Projection of the leaves close to the projection plane were computed
using the convex occluder Projection using the stencil buffer. The size of the convolution kernel was fixed to 5
pixels, and we used 15 planes for the sweep. The occlusion sweep took around 12 seconds per cell and about
75% of the trees were culled. Fig. 5.17 shows our sweeping process. Observe how the leaves aggregate on the
Occlusion Map.

7 Discussion

7.1 Summary

We have presentedextended projectionoperators which permit conservative occlusion tests with respect to
volumetric viewing cells. The extended projection of an occluder is the intersection of its views with respect
to any point within the cell, while for the occludee, it is the union of the views. We have also defined an
extended depthpermitting the definition of theextended depth mapwhich is a generalization of the z-buffer for
volumetric viewing cells.

Our operators yield conservative occlusion tests and can handleoccluder fusion, that is, the occlusion
caused by the cumulative effect of multiple occluders. We have proposed an efficient implementation of both
operators, as well as an improvement in the case of convex or planar blockers.

We have defined a reprojection operator which allows us to reproject the Projections computed on a given
projection plane onto another one, allowing us to define anocclusion sweep. This consists in sweeping the
scene with a set of parallel planes leaving a viewing cell. The occlusion caused by small objects are aggregated
as the planes are swept.

We have presented an efficient implementation which takes advantage of hardware acceleration wherever
possible. Our preprocess adaptively subdivides the viewing space into cells for whichpotentially visible sets
are computed using our extended projection method. The results we obtain show a significant speed-up of 5
to 6 times compared to a high-end interactive rendering library on a 2.6 million polygon model. Some initial
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(a) (b)
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Figure 5.15: An illustration of the results of our algorithm (a) The scene viewed from the observer position.
(b) The scene from a bird’s-eye view with no culling; the scene contains 600,000 building polygons and 2,000
moving cars containing 1,000 polygons each. (c) The same view using the result of our visibility culling
algorithm. (d) Visualization of the occlusion culling approach, where yellow boxes represent the elements of
the scene-graph hierarchy which have been occluded.

results have also been presented showing that our occlusion sweep makes it possible to compute occlusion
caused by leaves in a forest, with respect to a volumetric viewing cell .

7.2 Discussion

We first have to note that the occlusions that our method identifies are a subset of the occlusions detected by
a point-based online method such as the hierarchical z-buffer [GKM93] or the hierarchical occlusion maps
[ZMHH97, Zha98b]. Advantages of these methods also include their ability to treat dynamic occluders (since
everything is recomputed for each frame) and the absence of preprocess or PVS storage.

However, our method incurs no cost at display time, while in the massive rendering framework implemented
at UNC [ACW+99] two processors are sometimes used just to perform occlusion culling. Moreover, for some
applications (games, network-based virtual tourism, etc.), the preprocess is not really a problem since it is
performed once by the designer of the application. Our PVS data then permits an efficient predictive approach
to database pre-fetching which is crucial when displaying scenes over a network or which cannot fit into main
memory.
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Figure 5.16: Comparative visualization of the occlusion culling of Cohen-Or et al. [COFHZ98, COZ98] and
extended projection. For a cell at the lower left, we show all the buildings which their algorithm finds as visible
which are culled by our extended projection approach.

Figure 5.17: The sweeping process: (a) the forest model, (b)-(d) three positions for the sweep projection planes.
The yellow bounding boxes are the culled occludees.

As opposed to exact visibility (as studied in the three previous chapter), extended projection operators may
fail to identify some occlusions caused by the cumulative effect of multiple blockers. As we have seen in
section 5.2, the handling of occluder fusion depends on the placement of the projection plane.

Our Projection reduces the 4D problem of occlusion to a 2D representation on a plane. The visibility
information with respect to all rays going through one point of the plane and all the viewpoints inside the
viewing cell is conservatively approximated by a single value (binary in the case of the Occlusion Map, real in
the case of a Depth Map). This consists in projecting the visibility information inside the tangency volume of
the viewing cell onto a 2D manifold.

Another important issue is the approximation induced by the rasterization phase. We believe that our
method is less sensitive to artifact induced by low-resolution Depth Maps than the hierarchical z-buffer for
which a low resolution depth map would result in artifacts at the silhouette of objects. Indeed, the depth map
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Figure 5.18: (a) The extended projection of a wall with a portal is the intersection of its views. A conservative
estimate is the complement of the union of the views of the portal. (b) Concave occluder Projection using a
union of convex shapes (spheres in our example).

used in the hierarchical z-buffer directly corresponds to the occlusions from the viewpoint, while in our case
it is used together with the corresponding conservative Projections. Our estimate of occludee Projection is
completely conservative, and slightly overestimates the exact occludee Projection (because of integer round-
ing). Moreover, occluder Projection is an underestimate of the view from any point inside the cell, reducing
the probability to identify false occlusion because of rasterization error. The resolution of our Depth Maps
is however rather low (256�256), and further analysis should be carried out, as well as a more conservative
estimate.

There are situations in which even a perfect occlusion culling method (i.e., an exact hidden-part removal)
cannot cull enough geometry to achieve real-time rendering. For example, if the observer is at the top of a hill
or on the roof of a building, the entire city may be visible. Other display acceleration techniques should thus
be used together with our occlusion culling, as will be discussed in the next section.

7.3 Future work

Extended projection of concave occluders

The slicing process we have proposed to handle concave occluders is not completely satisfying. It is restricted
to manifolds with closed intersection and which actually have an intersection with the projection plane. We
propose here some techniques to handle certain classes of occluders.

The specificities of architectural environments have been exploited for visibility computations (e.g.[ARB90,
Tel92b, TS91]). Different rooms are visible only throughportals(doors, windows). Convex portals are in fact
the complement of convex occluders. Their Projection can be computed by considering the complement of the
union of the views of the portal (see Fig 5.18(a)).

Some specific convex Projections can also be implemented, which will prove useful in the next paragraph
for concave Projection. Consider the case of spheres. If a bounding sphere is placed around the viewing cell,
the Projection of a sphere is an ellipse which can be efficiently computed,

We propose the use of unions of convex shapes (for example unions of spheres,e.g., [RF95]) to approximate
concave occluders (see Fig. 5.18(b)). The overlap of these convex shapes is crucial, since occluder fusion
should then permit the computation of an efficient estimate of the Projection of the concave occluder. This
method would alleviate the flaw of the Projection of each individual triangle of a concave mesh, where gaps
appear between the Projections of connected triangles.
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Figure 5.19: Concave occluder mesh Projection. The mesh is projected from the center of the cell, then shrinked.
The silhouette edges (triangleT1) are translated towards the center of the mesh. If a triangle is too small (T2),
the edge translation must be propagated to the neighbouring triangles.

Finally, we propose another way to cope with the connectivity problem of the Projection of concave polyhe-
dral meshes. The connected mesh could be projected from the centerpoint of the viewing cell, then “shrinked”
to compute the Projection. Our idea is illustrated in Fig. 5.19. The silhouette edges are translated towards the
center of the object. Computing the translation vector is in a way similar to the computation of the convolution
kernel for reprojection, the technical details are beyond the scope of this future work section.A priori, triangles
in the center of the object need not be shrinked. However, if silhouette triangles are too small (for example
triangleT2), the translation of their edges should be propagated to the neighbouring triangles.

Real-time rendering

Our method dramatically decreases rendering time, but it does not guarantee a given framerate. We now
propose its use in existing real-time rendering frameworks. They are all based on levels of details (LOD)
[Cla76]: simplified representations are used for distant objects.

The Performerlibrary [RH94] uses a simple framerate regulation scheme. A globalstressvalue is used
to scale a simple distance criterion for LOD switching. A target framerate is set, and if the display of the
scene takes more than a given value, say 95%, of the time devoted to one frame, the stress value is increased,
coarser LODs are used, and the framerate is regulated. However, if the number of displayed primitives varies
too quickly, a couple of frames will be necessary to adapt the stress value.

Our preprocess can be used to predict these sudden increases, since the number of primitives potentially
visible from the current and cell and its neighbours had been precomputed. We can predict the variation and
adapt more smoothly.

Funkhouseret al. [FS93] achieve real-time rendering by solving a knapsack problem for each frame: a
budget of polygons has to be optimally used, by choosing the right level of detail for each objects. Maciel and
Shirley [MS95] have extended this approach to hierarchies of level of details. Funkhouseret al. [FS93] have
shown that a visibility preprocess can focus the optimization on objects which are actually visible.

For better LOD selection, we propose the use of a semi-quantitative visibility information. By counting the
number of occluded pixels in the extended Projection of an occludee, we can estimate apercentage of visibility
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of the occludee from the viewing cell. This can be used as a weight during the LOD optimization, using coarser
versions for highly occluded objects. This scheme can also be used for stress-based regulation.

Consider however the case of the same occludee half hidden by a house, or half hidden by a bush. In the
first case, a large connected part of the object is visible, it thus requires a high quality display. In the latter,
the leaves of the bush cause the occlusion of small regions spread all over the occludee. This induces high
frequencies which lower the sensitivity of the human eye to object simplification [FPSG97, PFFG98]. The
frequential distribution of the occluded pixels in the Projections must be taken into account, and not only their
mean value.

Disk and network pre-fetching

The main advantage of our preprocess is that it can be used for scenes which are too big to fit into main memory,
or to be completely loaded from the network. The techniques developed by Funkhouseret al. [Fun96c] can
easily be adapted. A separate process is in charge of the database management. Using the PVS of the neigh-
bouring viewing cells, the priority of the objects which are not yet loaded is evaluated. The PVS information
for all cells itself should not reside in main memory and should be loaded on-demand because of its memory
cost. Similarly, a priority order is computed to delete invisible objects from memory. The prediction offered by
our method cannot be achieved by previous online occlusion culling methods.

Online occlusion culling

The approach we have presented can be adapted for online or on-demand visibility computation. Online image-
based occlusion culling [GKM93, ZMHH97, Zha98b] could be extended to include some prediction. Convo-
lution (or erosion [SD95]) can be used to approximate occluder Projection with respect to the neighbourhood
of the current viewpoint. Similarly, occludee Projection can be approximated by simply growing the screen
bounding rectangle of their projection from the current viewpoint.

This would permit the online computation of visibility information which is valid for more than one frame.
It would thus be more suited to stress management or database pre-fetching.

Our method could also be used in an on-demand fashion. The computation time for one cell is around
4 seconds for the city model. If the observer moves slowly, this permits the computation of the visibility
information for the neighbouring cells on-demand, especially in a parallel-processing context.

Other issues

The resolution of the Depth or Occlusion Map remains an important issue. The edge-translation method of
Wonkaet al. [WS99] should be implemented to obtain truly conservative computations.

Our occlusion sweep could be adapted for soft shadow computation. However, performing two convolutions
is not equivalent to a convolution with a doubled kernel. The size of the zones of penumbra and umbra are
preserved, but the values in the penumbra region are modified. A remapping should thus be performed after
each convolution (Fig. 5.20). However, remapping is not sufficient in the case of more than two successive
convolutions.

Our preprocess could also be used in the context of lighting simulation, following the work of Telleret al.
[TH93, TFFH94, Fun96b].

Visibility information is also very useful for levels of details in animation [CH97, CF97] which are still
in their beginning. The precision of physically based simulation or generative animation can be coarsened in
occluded regions.

Finally, the issue of PVS compression remains critical. Possible approaches include entropy coding, hier-
archical encoding or conservative vector quantization.
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Figure 5.20: Successive convolutions and remapping. Note that convolving twice with the same kernel is not
equivalent to the convolution by a double size kernel.
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CHAPTER 6

Introduction

Il déduisit que la biblioth`eque est totale, et que ses
étagères consignent toutes les combinaisons possibles
des vingt et quelques symboles orthographiques (nom-
bre quoique tr`es vaste, non infini), c’est `a dire tout ce
qu’il est possible d’exprimer dans toutes les langues.

Jorge Luis BORGES, La bibliothèque de Babel

VAST AMOUNT OF WORK has been published about visibility in many different domains. In-
spiration has sometimes traveled from one community to another, but work and publications
have mainly remained restricted to their specific field. The differences of terminology and in-
terest together with the obvious difficulty of reading and remaining informed of the cumulative
literature of different fields have obstructed the transmission of knowledge between communi-

ties. This is unfortunate because the different points of view adopted by different domains offer a wide range
of solutions to visibility problems. Though some surveys exist about certain specific aspects of visibility, no
global overview has gathered and compared the answers found in those domains. The second part of this thesis
is an attempt to fill this vacuum. We hope that it will be useful to students beginning work on visibility, as well
as to researchers in one field who are interested in solutions offered by other domains. We also hope that this
survey will be an opportunity to consider visibility questions under a new perspective.

1 Spirit of the survey

This survey is more a “horizontal” survey than a “vertical” survey. Our purpose is not to precisely compare the
methods developed in a very specific field; our aim is to give an overview which is as wide as possible.

We also want to avoid a catalogue of visibility methods developed in each domain: Synthesis and compar-
ison are sought. However, we believe that it is important to understand the specificities of visibility problems
as encountered in each field. This is why we begin this survey with an overview of the visibility questions as
they arise field by field. We will then present the solutions proposed, using a classification which is not based
on the field in which they have been published.
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Our classification is only an analysis and organisation tool; as any classification, it does not offer infallible
nor strict categories. A method can gather techniques from different categories, requiring the presentation of a
single paper in several chapters. We however attempt to avoid this, but when necessary it will be indicated with
cross-references.

We have chosen to develop certain techniques with more details not to remain too abstract. A section in
general presents a paradigmatic method which illustrates a category. It is then followed by a shorter description
of related methods, focusing on their differences with the first one.

We have chosen to mix low-level visibility acceleration schemes as well as high-level methods which make
use of visibility. We have also chosen not to separate exact and approximate methods, because in many cases
approximate methods are “degraded” or simplified versions of exact algorithms.

In the footnotes, we propose some thoughts or references which are slightly beyond the scope of this survey.
They can be skipped without missing crucial information.

2 Flaws and bias

This survey is obviously far from complete. A strong bias towards computer graphics is clearly apparent, both
in the terminology and number of references.

Computational geometry is insufficiently treated. In particular, the relations between visibility queries and
range-searching would deserve a large exposition. 2D visibility graph construction is also treated very briefly.

Similarly, few complexity bounds are given in this survey. One reason is that theoretical bounds are not
always relevant to the analysis of the practical behaviour of algorithms with “typical” scenes. Practical timings
and memory storage would be an interesting information to complete theoretical bounds. This is however
tedious and involved since different machines and scenes or objects are used, making the comparison intricate,
and practical results are not always given. Nevertheless, this survey could undoubtedly be augmented with
some theoretical bounds and statistics.

Terrain (or height field) visibility is nearly absent of our overview, even though it is an important topic,
especially for Geographical Information Systems (GIS) where visibility is used for display, but also to optimize
the placement of fire towers. We refer the interested reader to the survey by de Florianiet al. [FPM98].

The work in computer vision dedicated to the acquisition or recognition of shapes from shadows is also
absent from this survey. Seee.g.[Wal75, KB98].

The problem of aliasing is crucial in many computer graphics situations. It is a large subject by itself, and
would deserve an entire survey. It is however not strictly a visibility problem, but we attempt to give some
references.

Neither practical answers nor advice are directly provided. The reader who reads this survey with the
question “what should I use to solve my problem” in mind will not find a direct answer. A practical guide
to visibility calculation would unquestionably be a very valuable contribution. We nonetheless hope that the
reader will find some hints and introductions to relevant techniques.

3 Structure

This survey is organised as follows. Chapter 7 introduces the problems in which visibility computations occur,
field by field. In chapter 8 we introduce some preliminary notions which will we use to analyze and classify the
methods in the following chapters. In chapter 9 we survey the classics of hidden-part removal. The following
chapters present visibility methods according to the space in which the computations are performed: chapter 10
deals with object space, chapter 11 with image-space, chapter 12 with viewpoint-space and finally chapter 13
treats line-space methods. Chapter 14 presents advanced issues: managing precision and dealing with moving
objects. Chapter 15 concludes with a discussion..

In appendix E we also give a short list of resources related to visibility which are available on the web. An
index of the important terms used in this survey can be found at the end of this thesis. Finally, the references
are annotated with the pages at which they are cited.



CHAPTER 7

Visibility problems

S’il n’y a pas de solution, c’est qu’il n’y a pas de
problème

LES SHADOKS

ISIBILITY PROBLEMS arise in many different contexts in various fields. In this section we
review the situations in which visibility computations are involved. The algorithms and data-
structures which have been developed will be surveyed later to distinguish the classification
of the methods from the context in which they have been developed. We review visibility in

computer graphics, then computer vision, robotics and computational geometry. We conclude this chapter with
a summary of the visibility queries involved.

1 Computer Graphics

For a good introduction on standard computer graphics techniques, we refer the reader to the excellent book by
Foleyet al. [FvDFH90] or the one by Rogers [Rog97]. More advanced topics are covered in [WW92].

1.1 Hidden surface removal

View computation has been the major focus of early computer graphics research. Visibility was a synonym for
the determination of the parts/polygons/lines of the scene visible from a viewpoint. It is beyond the scope of
this survey to review the huge number of techniques which have been developed over the years. We however
review the great classics in section 9. The interested reader will find a comprehensive introduction to most of
the algorithms in [FvDFH90, Rog97]. The classical survey by Sutherlandet al. [SSS74] still provides a good
classification of the techniques of the mid seventies, a more modern version being the thesis of Grant [Gra92].
More theoretical and computational geometry methods are surveyed in [Dor94, Ber93]. Some aspects are also
covered in section 4.1. For the specific topic of real time display for flight simulators, see the overview by
Mueller [Mue95].

The interest in hidden-part removal algorithms has been renewed by the recent domain ofnon-photorealistic
rendering, that is the generation of images which do not attempt to mimic reality, such as cartoons, technical
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illustrations or paintings [MKT+97, WS94]. Some information which are more topological are required such
as the visible silhouette of the objects or its connected visible areas.

View computation will be covered in chapter 9 and section 1.4 of chapter 10.

1.2 Shadow computation

The efficient and robust computation of shadows is still one of the challenges of computer graphics. Shadows
are essential for any realistic rendering of a 3D scene and provide important clues about the relative positions
of objects1. The drawings by da Vinci in his project of atreatise on paintingor the construction by Lambert
in Freye Perspectivegive evidence of the old interest in shadow computation (Fig. 7.1). See also the book
by Baxandall [Bax95] which presents very interesting insights on shadows in painting, physics and computer
science.

Figure 7.1: (a) Study of shadows by Leonardo da Vinci (ManuscriptCodex Urbinas). (a) Shadow construction
by Johann Heinrich Lambert (Freye Perspective).

Hard shadowsare caused by point or directional light sources. They are easier to compute because a point
of the scene is either in full light or is completely hidden from the source. The computation of hard shadows
is conceptually similar to the computation of a view from the light source, followed by a reprojection. It is
however both simpler and much more involved. Simpler because a point is in shadow if it is hidden from the
source by any object of the scene, no matter which is the closest. Much more involved because if reprojection
is actually used, it is not trivial by itself, and intricate sampling or field of view problems appear.

Soft shadowsare caused by line or area light sources. A point can see all, part, or nothing of such a source,
defining the regions of total lighting, penumbra and umbra. The size of the zone of penumbra varies depending
on the relative distances between the source, the blocker and the receiver (see Fig. 7.2). A single view from the
light is not sufficient for their computation, explaining its difficulty.

An extensive article exists [WPF90] which surveys all the standard shadows computation techniques up to
1990.

Shadow computations will be treated in chapter 10 (section 4.1, 4.2, 4.4 and 5), chapter 11 (section 2.1 , 6
and 7) and chapter 12 (section 2.3 and 2.4).

The inverse problem has received little attention: a user imposes a shadow location, and a light position
is deduced. It will be treated in section 5.6 of chapter 10. This problem can be thought as the dual of sensor
placement or good viewpoint computation that we will introduce in section 2.3.

1.3 Occlusion culling

The complexity of 3D scenes to display becomes larger and larger, and can not be rendered at interactive
rates, even on high-end workstations. This is particularly true for applications such as CAD/CAM where the

1 The influence of the quality of shadows on the perception of the spatial relationships is however still a controversial topic. seee.g.
[Wan92, KKMB96]
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Figure 7.2: (a) Example of a soft shadow. Notice that the size of the zone of penumbra depends on the mutual
distances (the penumbra is wider on the left). (b) Part of the source seen from a point in penumbra.

databases are often composed of millions of primitives, and also in driving/flight simulators, and in walk-
throughs where a users want to walk through virtual buildings or even cities.

Occlusion culling(also calledvisibility culling) attempts to quickly discard the hidden geometry, by com-
puting a superset of the visible geometry which will be sent to the graphics hardware. For example, in a city,
the objects behind the nearby facades can be “obviously” rejected.

An occlusion culling algorithm has to beconservative. It may declare potentially visible an object which
is in fact actually hidden, since a standard view computation method will be used to finally display the image
(typically a z-buffer [FvDFH90]).

A distinction can be made betweenonlineandoffline techniques. In an online occlusion culling method,
for each frame the objects which are obviously hidden are rejected on the fly. While offline Occlusion culling
precomputations consist in subdividing the scene into cells and computing for each cell the objects which may
be visible from inside the cell. This set of visible object is often called thepotentially visible setsof the cell. At
display time, only the objects in the potentially visible set of the current cell are sent to the graphics hardware2.

The landmark paper on the subject is by Clark in 1976 [Cla76] where he introduces most of the concepts
for efficient rendering. The more recent paper by Heckbert and Garland [HG94] gives a good introduction to
the different approaches for fast rendering. Occlusion culling techniques are treated in chapter 10 (section 4.4,
6.3 and 7), chapter 11 (section 3 and 4), chapter 12 (section 4) and chapter 13 (section 1.5).

1.4 Global Illumination

Global illumination deals with the simulation of light based on the laws of physics, and particularly with the
interactions between objects. Light may be blocked by objects causing shadows. Mirrors reflect light along the
symmetric direction with respect to the surface normal (Fig. 7.3(a)). Light arriving at adiffuse(or lambertian)
object is reflected equally in all directions (Fig. 7.3(b)). More generally, a function calledBRDF(Bidirectional
Reflection Distribution Function) models the way light arriving at a surface is reflected (Fig. 7.3(c)). Fig 7.4
illustrates some bounces of light through a scene.

Kajiya has formalised global illumination with therendering equation[Kaj86]. Light traveling through a
point in a given direction depends on all the incident light, that is, it depends on the light coming from all the
points which are visible. Its solution thus involves massive visibility computations which can be seen as the
equivalent of computing a view from each point of the scene with respect to every other.

The interested reader will find a complete presentation in the books on the subject [CW93b, SP94, Gla95].
Global illumination method can also be applied to the simulation of sound propagation. See the book by

Kutruff [Kut91] or [Dal96, FCE+98]. See section 4.3 of chapter 10. Sound however differs from light because

2Occlusion-culling techniques are also used to decrease the amount of communication in multi-user virtual environments: messages
and updates are sent between users only if they can see each other [Fun95, Fun96a, CT97a, MGBY99]. If the scene is too big to fit in
memory, or if it is downloaded from the network, occlusion culling can be used to load into memory (or from the network) only the part of
the geometry which may be visible [Fun96c, COZ98].



144 CHAPTER 7. VISIBILITY PROBLEMS

incoming
light

incoming
lightoutgoing

light
outgoing
light

incoming
light outgoing

light

(a) (b) (c)

Figure 7.3: Light reflection for a given incidence angle. (a) Perfect mirror reflection. (b) Diffuse reflection. (c)
General bidirectional reflectance distribution function (BRDF).

Figure 7.4: Global illumination. We show some paths of light: light emanating from light sources bounces on
the surfaces of the scene (We show only one outgoing ray at each bounce, but light is generally reflected in all
direction as modeled by a BRDF).

the involved wavelength are longer. Diffraction effects have to be taken into account and binary straight-line
visibility is a too simplistic model. This topic will be covered in section 2.4 of chapter 11.

In the two sections below we introduce the global illumination methods based on ray-tracing and finite
elements.

1.5 Ray-tracing and Monte-Carlo techniques

Whitted [Whi80] has extended the ray-casting developed by Appel [App68] and introduced recursiveray-
tracing to compute the effect of reflecting and refracting objects as well as shadows. A ray is simulated from
the viewpoint to each of the pixels of the image. It is intersected with the objects of the scene to compute
the closest point. From this point,shadow rayscan be sent to the sources to detect shadows, and reflecting
or refracting rays can be sent in the appropriate direction in a recursive manner (see Fig. 7.5). A complete
presentation of ray-tracing can be found on the book by Glassner [Gla89] and an electronic publication is
dedicated to the subject [Hai]. A comprehensive index of related paper has been written by Speer [Spe92a]

More complete global illumination simulations have been developed based on the Monte-Carlo integration
framework and the aforementioned rendering equation. They are based on a probabilistic sampling of the
illumination, requiring to send even more rays. At each intersection point some rays are stochastically sent to
sample the illumination, not only in the mirror and refraction directions. The process then continues recursively.
It can model any BRDF and any lighting effect, but may be noisy because of the sampling.

Those techniques are calledview dependentbecause the computations are done for a unique viewpoint.
Veach’s thesis [Vea97] presents a very good introduction to Monte-Carlo techniques.

The atomic and most costly operation in ray-tracing and Monte-Carlo techniques consists in computing the
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Figure 7.5: Principle of recursive ray-tracing. Primary rays are sent from the viewpoint to detect the visible
object. Shadow rays are sent to the source to detect occlusion (shadow). Reflection rays can be sent in the
mirror direction.

first object hit by a ray, or in the case of rays cast for shadows, to determine if the ray intersects an object. Many
acceleration schemes have thus been developed over the two last decades. A very good introduction to most of
these techniques has been written by Arvo and Kirk [AK89].

Ray-shooting will be treated in chapter 10 (section 1 and 4.3), chapter 11 (section 2.2), chapter 13 (section
1.4 and 3) and chapter 14 (section 2.2).

1.6 Radiosity

Radiosity methods have first been developed in the heat transfer community (seee.g.[Bre92]) and then adapted
and extended for light simulation purposes. They assume that the objects of the scene are completely diffuse
(incoming light is reflected equally in all directions of the hemisphere), which may be reasonable for archi-
tectural scene. The geometry of the scene is subdivided into patches, over which radiosity is usually assumed
constant (Fig. 7.6). The light exchanges between all pairs of patches are simulated. Theform factorbetween
patchesA andB is the proportion of light leavingA which reachesB, taking occlusions into account. The
radiosity problem then resumes to a huge system of linear equations, which can be solved iteratively. Formally,
radiosity is a finite element method. Since lighting is assumed directionally invariant, radiosity methods pro-
vide view independentsolutions, and a user can interactively walk through a scene with global illumination
effects. A couple of books are dedicated to radiosity methods [SP94, CW93b, Ash94].

Figure 7.6: Radiosity methods simulate diffuse interreflexions. Note how the subdivision of the geometry is
apparent. Smoothing is usually used to alleviate most of these artifacts.

Form factor computation is the costliest part of radiosity methods, because of the intensive visibility com-
putations they require [HSD94]. An intricate formula has been derived by Schroeder and Hanrahan [SH93]
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for the form factor between two polygons in full visibility, but no analytical solution is known for the partially
occluded case.

Form factor computation will be treated in chapter 9 (section 2.2), chapter 10 (section 6.1 and 7), in chapter
11 (section 2.3), chapter 12 (section 2.3), chapter 13 (section 2.1) and chapter 14 (section 2.1).

Radiosity needs a subdivision of the scene, which is usually grid-like: a quadtree is adaptively refined in the
regions where lighting varies, typically the limits of shadows. To obtain a better representation,discontinuity
meshinghas been introduced. It tries to subdivides the geometry of the scene along the discontinuities of the
lighting function, that is, the limits of shadows.

Discontinuity meshing methods are presented in chapter 10 (section 5.3), chapter 12 (section 2.3 and 2.4),
chapter 13 (section 2.1) and chapter 14 (section 1.3, 1.5 and 2.4)3.

1.7 Image-based modeling and rendering

3D models are hard and slow to produce, and if realism is sought the number of required primitives is so huge
that the models become very costly to render. The recent domain ofimage-based rendering and modelingcopes
with this through the use of image complexity which replaces geometric complexity. It uses some techniques
from computer vision and computer graphics. Texture-mapping can be seen as a precursor of image-based
techniques, since it improves the appearance of 3D scenes by projecting some images on the objects.

View warping [CW93a] permits the reprojection of an image with depth values from a given viewpoint to a
new one. Each pixel of the image is reprojected using its depth and the two camera geometries as shown in Fig.
7.7. It permits re-rendering of images at a cost which is independent of the 3D scene complexity. However,
sampling questions arise, and above all, gaps appear where objects which were hidden in the original view
become visible. The use of multiple base images can help solve this problem, but imposes a decision on how
to combine the images, and especially to detect where visibility problems occur.

initial image
pixels with depth

reprojected image

new viewpoint

?

?
?
?
?

?

Figure 7.7: View warping. The pixels from the initial image are reprojected using the depth information.
However, some gaps due to indeterminate visibility may appear (represented as “?” in the reprojected image)

Image-based modeling techniques take as input a set of photographs, and allow the scene to be seen from
new viewpoints. Some authors use the photographs to help the construction of a textured 3D model [DTM96].

3Recent approaches have improved radiosity methods through the use of non constant bases and hierarchical representations, but the
cost of form factor computation and the meshing artifact remain. Some non-diffuse radiosity computations have also been proposed at a
usually very high cost. For a short discussion of the usability of radiosity, see the talk by Sillion [Sil99].
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Other try to recover the depth or disparity using stereo vision [LF94, MB95]. Image warping then allows the
computation of images from new viewpoints. The quality of the new images depends on the relevance of the
base images. A good set of cameras should be chosen to sample the scene accurately, and especially to avoid
that some parts of the scene are not acquired because of occlusion.

Some image-based rendering methods have also been proposed to speedup rendering. They do not require
the whole 3D scene to be redrawn for each frame. Instead, the 2D images of some parts of the scene are cached
and reused for a number of frames with simple transformation (2D rotation and translation [LS97], or texture
mapping on flat [SLSD96, SS96a] or simplified [SDB97] geometry). These image-caches can be organised
as layers, and for proper occlusion and parallax effects, these layers have to be wisely organised, which has
reintroduced the problem of depth ordering.

These topics will be covered in chapter 9 (section 4.3), chapter 10 (section 4.5), chapter 11 (section 5) and
chapter 13 (section 1.5).

1.8 Good viewpoint selection

In production animation, the camera is placed by skilled artists. For others applications such as games, tele-
conference or 3D manipulation, its position is also very important to permit a good view of the scene and the
understanding of the spatial positions of the objects.

This requires the development of methods which automatically optimize the viewpoint. Visibility is one
of the criteria, but one can also devise other requirements to convey a particular ambiance [PBG92, DZ95,
HCS96].

The visual representation of a graph (graph drawing) in 3D raises similar issues, the number of visual
alignments should be minimized. See section 1.5 of chapter 12.

We will see in section 2.3 that the placement of computer vision offers similar problems. The corresponding
techniques are surveyed in chapter 10 (section 4.5 and 5.5) and chapter 12 (section 3).

2 Computer Vision

An introduction and case study of many computer vision topics can be found in the book by Faugeras [Fau93]
or the survey by Guerra [Gue98]. The classic by Ballard and Brown [BB82] is more oriented towards image
processing techniques for vision.

2.1 Model-based object recognition

The task of object recognition assumes a database of objects is known, and given an image, it reports if the
objects are present and in which position. We are interested in model-based recognition of 3D objects, where
the knowledge of the object is composed of an explicit model of its shape. It first involves low-level computer
vision techniques for the extraction of features such as edges. Then these features have to be compared with
corresponding features of the objects. The most convenient representations of the objects for this task represent
the possible views of the object (viewer centeredrepresentation) rather than its 3D shape (object-centered
representation). These views can be compared with the image more easily (2D to 2D matching as opposed to
3D to 2D matching). Fig. 7.8 illustrates a model-based recognition process.

One thus needs a data-structure which is able to efficiently represent all the possible views of an object.
Occlusion has to be taken into account, and views have to be grouped according to their similarities. A class
of similar views is usually called anaspect. A good viewer-centered representation should be able toa priori
identify all the possible different views of an object, detecting “where” the similarity between nearby views is
broken.

Psychological studies have shown evidences that the human visual system possesses such a viewer-centered
representation, since objects are more easily recognised when viewed under specific viewpoints [Ull89, EB92].

A recent survey exists [Pop94] which reviews results on all the aspects of object recognition. See also the
book by Jain and Flynn [JF93] and the survey by Crevier and Lepage [CL97]
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viewer-centered representation

input image

extracted features

Figure 7.8: Model-based object recognition. Features are extracted from the input image and matched against
the viewer-centered representation of an L-shaped object.

Object recognition has led to the development of one of the major visibility data structures, theaspect
graph4 which will be treated in sections 1 of chapter 12 and section 1.4 and 2.4 of chapter 14.

2.2 Object reconstruction by contour intersection

Object reconstruction takes as input a set of images to compute a 3D model. We do not treat here the recon-
struction of volumetric data from slices obtained with medical equipment since it does not involve visibility.

We are interested in the reconstruction process based on contour intersection. Consider a view, from which
the contour of the object has been extracted. The object is constrained to lie inside the cone defined by the
viewpoint and this contour. If many images are considered, the cones can be intersected and a model of the
object is estimated [SLH89]. The process is illustrated in Fig. 7.9. This method is very robust and easy to
implement especially if the intersections are computed using a volumetric model by removing voxels in an
octree [Pot87].

(a) (b)

Figure 7.9: Object reconstruction by contour intersection. The contour in each view defines a general cone in
which the object is constrained. A model of the object is built using the intersection of the cones. (a) Cone
resulting from one image. (b) Intersection of cones from two images.

However, how close is this model to the actual object? Which class of objects can be reconstructed using
this technique? If an object can be reconstructed, how many views are needed? This of course depends on
self-occlusion. For example, the cavity in a bowl can never be reconstructed using this technique if the camera
is constrained outside the object. The analysis of these questions imposes involved visibility considerations, as
will be shown in section 3 of chapter 10.

4However viewer centered representation now seem superseded by the use of geometric properties which are invariant by some geo-
metric transformation (affine or perspective). These geometricinvariantscan be used to guide the recognition of objects [MZ92, Wei93].
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2.3 Sensor placement for known geometry

Computer vision tasks imply the acquisition of data using any sort of sensor. The position of the sensor can
have dramatic effects on the quality and efficiency of the vision task which is then processed.Active vision
deals with the computation of efficient placement of the sensors. It is also referred to asviewpoint planning.

In some cases, the geometry of the environment is known and the sensor position(s) can be preprocessed.
It is particularly the case for robotics applications where the same task has to be performed on many avatars of
the same object for which a CAD geometrical model is known.

The sensor(s) can be mobile, for example placed on a robot arm, it is the so called “camera in hand”. One
can also want to design a fixed system which will be used to inspect a lot of similar objects.

An example of sensor planning is the monitoring of a robot task like assembly. Precise absolute positioning
is rarely possible, because registration can not always be performed, the controllers used drift over time and the
object on which the task is performed may not be accurately modeled or may be slightly misplaced [HKL98,
MI98]. Uncertainties and tolerances impose the use of sensors to monitor the robot Fig. 7.10 and 7.11 show
examples of sensor controlled task. It has to be placed such that the task to be performed is visible. This
principally requires the computation of the regions of space from which a particular region is not hidden. The
tutorial by Hutchinsonet al. [HH96] gives a comprehensive introduction to the visual control of robots.

Figure 7.10: The screwdriver must be placed very precisely in front of the screw. The task is thus controlled by a camera.

Figure 7.11: The insertion of this peg into the hole has to be performed very precisely, under the control of a
sensor which has to be carefully placed.

Another example is the inspection of a manufactured part for quality verification. Measurements can for
example be performed by triangulation using multiple sensors. If the geometry of the sensors is known, the
position of a feature projecting on a point in the image from a given sensor is constrained on the line going
through the sensor center and the point in the image. With multiple images, the 3D position of the feature
is computed by intersecting the corresponding lines. Better precision is obtained for 3 views with orthogonal
directions. The sensors have to be placed such that each feature to be measured is visible in at least two images.
Visibility is a crucial criterion, but surface orientation and image resolution are also very important.

The illumination of the object can also be optimized. One can require that the part to be inspected be well
illuminated. One can maximize the contrast to make important features easily recognisable. The optimization
of viewpoint and illumination together of course leads to the best results but has a higher complexity.
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See the survey by Roberts and Marshall [RM97] and by Tarabaniset al. [TAT95]. Section 5.5 of chapter
10 and section 3 of chapter 12 deal with the computation of good viewpoints for known environment.

2.4 Good viewpoints for object exploration

Computer vision methods have been developed to acquire a 3D model of an unknown object. The choice of
the sequence of sensing operations greatly affects the quality of the results, and active vision techniques are
required.

We have already reviewed the contour intersection method. We have evoked only the theoretical limits of
the method, but an infinite number of views can not be used! The choice of the views to be used thus has to be
carefully performed as function of the already acquired data.

Another model acquisition technique uses a laser plane and a camera. The laser illuminates the object along
a plane (the laser beam is quickly rotated over time to generate a plane). A camera placed at a certain distance
of the laser records the image of the object, where the illumination by the laser is visible as a slice (see Fig.
7.12). If the geometry of the plane and camera is known, triangulation can be used to infer the coordinates of
the illuminated slice of the object. Translating the laser plane permits the acquisition of the whole model. The
data acquired with such a system are calledrange images, that is, an image from the camera location which
provides the depth of the points.

Two kinds of occlusion occur with these system: some part of an illuminated slice may not be visible to the
camera, and some part of the object can be hidden to the laser, as shown in Fig. 7.12.

shadow of
the camera

laser
camera

laser plane

shadow
of the laser illuminated

slice

Figure 7.12: Object acquisition using a laser plane. The laser emits a plane, and the intersection between this
plane and the object is acquired by a camera. The geometry of the slice can then be easily deduced. The laser
and camera translate to acquire the whole object. Occlusion with respect to the laser plane (in black) and to the
camera (in grey) have to be taken into account.

These problems are referred to asbest-next-viewor purposive viewpoint adjustment. The next viewpoint has
to be computed and optimized using the data already acquired. Previously occluded parts have to be explored.

The general problems of active vision are discussed in the report written after the1991 Active Vision Work-
shop[AAA +92]. An overview of the corresponding visibility techniques is given in [RM97, TAT95] and they
will be discussed in section 4.5 of chapter 10.

3 Robotics

A comprehensive overview of the problems and specificities of robotics research can be found in [HKL98]. A
more geometrical point of view is exposed in [HKL97]. The book by Latombe [Lat91] gives a complete and
comprehensive presentation of motion planning techniques.
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A lot of the robotics techniques that we will discuss treat only 2D scenes. This restriction is quite under-
standable because a lot of mobile robots are only allowed to move on a 2D floorplan.

As we have seen, robotics and computer vision share a lot of topics and our classification to one or the other
specialty is sometimes arbitrary.

3.1 Motion planning

A robot has a certain number of degrees of freedom. A variable can be assigned to each degree of freedom,
defining a (usually multidimensional)configuration space. For example a two joint robot has 4 degrees of
freedom, 2 for each joint orientation. A circular robot allowed to move on a plane has two degrees of freedom
if its orientation does not have to be taken into account. Motion planning [Lat91] consists in finding a path
from a start position of the robot to a goal position, while avoiding collision with obstacles and respecting
some optional additional constraints. The optimality of this path can also be required.

The case of articulated robots is particularly involved because they move in high dimensional configuration
spaces. We are interested here in robots allowed to translate in 2D euclidean space, for which orientation is not
considered. In this case the motion planning problem resumes to the motion planning for a point, by “growing”
the obstacles using the Minkovski sum between the robot shape and the obstacles, as illustrated in Fig. 7.13.

goal

grown
obstacle

start

2D shape
of the robot

obstacle

Figure 7.13: Motion planning on a floorplan. The obstacles are grown using the Minkovski sum with the shape
of the robot. The motion planning of the robot in the non-grown scene resumes to that of its centerpoint in the
grown scene.

The relation between euclidean motion planning and visibility comes from this simple fact: A point robot
can move in straight line only to the points of the scene which are visible from it.

We will see in Section 2 of chapter 10 that one of the first global visibility data structure, thevisibility graph
was developed for motion planning purposes.5

3.2 Visibility based pursuit-evasion

Recently motion planning has been extended to the case where a robot searches for an intruder with arbitrary
motion in a known 2D environment. A mobile robot with 360� field of view explores the scene, “cleaning”
zones. A zone is cleaned when the robot sees it and can verify that no intruder is in it. It remains clean if no
intruder can go there from an uncleaned region without being seen. If all the scene is cleaned, no intruder can
have been missed. Fig. 7.14 shows an example of a robot strategy to clean a simple 2D polygon.

If the environment contains a “column” (that is topologically a hole), it can not be cleaned by a single robot
since the intruder can always hide behind the column.

Extensions to this problem include the optimization of the path of the robot, the coordination of multiple
robots, and the treatment of sensor limitations such as limited range or field of view.

5 Assembly planning is another thematic of robotics where the ways to assemble or de-assemble an object are searched [HKL98]. The
relationship between these problems and visibility would deserve exploration, especially the relation between the possibility to translate a
part and the visibility of the hole in which it has to be placed.
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(a) (b) (c)

(e) (f)(d)

Figure 7.14: The robot has to search for an unknown intruder. The part of the scene visible from the robot is in
dark grey, while the “cleaned” zone is in light grey. At no moment can an intruder go from the unknown region
to the cleaned region without being seen by the robot.

Pursuit evasion is somehow related to the art-gallery problem which we will present in section 4.3. A
technique to solve this pursuit-evasion problem will be treated in section 2.2 of chapter 12.

A related problem is the tracking of a mobile target while maintaining visibility. A target is moving in a
known 2D environment, and its motion can have different degrees of predictability (completely known motion,
bound on the velocity). A strategy is required for a mobile tracking robot such that visibility with the target is
never lost. A perfect strategy can not always be designed, and one can require that the probability to lose the
target be minimal. See section 3.3 of chapter 12.

3.3 Self-localisation

A mobile robot often has to be localised in its environment. The robot can therefore be equipped with sensor
to help it determine its position if the environment is known. Once data have been acquired, for example in the
form of a range image, the robot has to infer its position from the view of the environment as shown in Fig.
7.15. See the work by Drumheller [Dru87] for a classic method.

(a) (b)

Figure 7.15: 2D Robot localisation. (a) View from the robot. (b) Deduced location of the robot.

This problem is in fact very similar to the recognition problem studied in computer vision. The robot has to
“recognise” its view of the environment. We will see in section 2.1 of chapter 12 that the approaches developed
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are very similar.

4 Computational Geometry

The book by de Berget al. [dBvKOS97] is a very comprehensive introduction to computational geometry.
The one by O’Rourke [O’R94] is more oriented towards implementation. More advanced topics are treated in
various books on the subject [Ede87, BY98]. Computational geometry often borrows themes from robotics.

Traditional computational geometry deals with the theoretical complexity of problems. Implementation is
not necessarily sought. Indeed some of the algorithms proposed in the literature are not implementable because
they are based on too intricate data-structures. Moreover, very good theoretical complexity sometimes hides
a very high constant, which means that the algorithm is not efficient unless the size of the input is very large.
However, recent reports [Cha96, TAA+96, LM98] and the CGAL project [FGK+96] (a robust computational
geometry library) show that the community is moving towards more applied subjects and robust and efficient
implementations.

4.1 Hidden surface removal

The problem of hidden surface removal has also been widely treated in computational geometry, for the case
of object-precisionmethods and polygonal scenes. It has been shown that a view can haveO(n2) complexity,
wheren is the number of edges (for example if the scene is composed of rectangles which project like a grid
as shown in Fig. 7.16). OptimalO(n2) algorithms have been described [McK87], and research now focuses on
output-sensitivealgorithms, where the cost of the method also depends on the complexity of the view: a hidden
surface algorithms should not spendO(n2) time if one object hides all the others.

} n
2

n
2 }

Figure 7.16: Scene composed ofn rectangles which exhibits a view with complexityO(n2): the planar map
describing the view hasO(n2) segments because of theO(n2) visual intersections.

The question has been studied in various context: computation of a single view, preprocessing for multiple
view computation, and update of a view along a predetermined path.

Constraints are often imposed on the entry. Many papers deal with axis aligned rectangles, terrains or
c-oriented polygons (the number of directions of the planes of the polygons is limited).

See the thesis by de Berg [Ber93] and the survey by Dorward [Dor94] for an overview. We will survey some
computational geometry hidden-part removal methods in chapter 9 (section 2.3 and 8), chapter 10 (section 1.5)
and chapter 13 (section 2.2).

4.2 Ray-shooting and lines in space

The properties and algorithms related to lines in 3D space have received a lot of attention in computational
geometry.

Many algorithms have been proposed to reduced the complexity of ray-shooting (that is, the determination
of the first object hit by a ray). Ray-shooting is often an atomic query used in computational geometry for
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hidden surface removal. Some algorithms need to compute what is the object seen behind a vertex, or behind
the visual intersection of two edges.

Work somehow related to motion planning concerns theclassificationof lines in space: Given a scene
composed of a set of lines, do two query lines, have the same class,i.e. can we continuously move the first
one to the other without crossing a line of the scene? This problem is related to the partition of rays or lines
according to the object they see, as will be shown in section 2.2.

Figure 7.17: Line stabbing a set of convex polygons in 3D space

Given a set of convex objects, thestabbing problemssearches for a line which intersects all the objects.
Such a line is called astabbing lineor stabberor transversal(see Fig. 7.17). Stabbing is for example useful to
decide if a line of sight is possible through a sequence of doors6.

We will not survey all the results related to lines in space; we will consider only those where the data-
structures and algorithms are of a particular interest for the comprehension of visibility problems. See chapter
13. The paper by Pellegrini [Pel97b] reviews the major results about lines in space and gives the corresponding
references.

4.3 Art galleries

In 1973, Klee raised this simple question: how many cameras are needed to guard an art gallery? Assume the
gallery is modeled by a 2D polygonal floorplan, and the camera have infinite range and 360� field of view. This
problem is known as theart galleryproblem. Since then, this question has received considerable attention, and
many variants have been studied, as shown by the book by O’Rourke [O’R87] and the surveys on the domain
[She92, Urr98]. The problem has been shown to be NP-hard.

Variation on the problem include mobile guards, limited field of view, rectilinear polygons and illumination
of convex sets. The results are too numerous and most often more combinatorial than geometrical (the actual
geometry of the scene is not taken into account, only its adjacencies are) so we refer the interested reader to the
aforementioned references. We will just give a quick overview of the major results in section 3.1 of chapter 12.

The art gallery problem is related to many questions raised in vision and robotics as presented in section 2
and 3, and recently in computer graphics where the acquisition of models from photographs requires the choice
of good viewpoints as seen in section 1.7.

4.4 2D visibility graphs

Another important visibility topic in computational geometry is the computation ofvisibility graphswhich we
will introduce in section 2. The characterisation of such graphs (given an abstract graph, is it the visibility
graph of any scene?) is also explored, but the subject is mainly combinatorial and will not be addressed in this
survey. Seee.g.[Gho97, Eve90, OS97].

6Stabbing can also have an interpretation in statistics to find a linear approximation to data with imprecisions. Each data point together
with its precision interval defines a box in a multidimensional space. A stabber for these boxes is a valid linear approximation.
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5 Astronomy

5.1 Eclipses

Solar and lunar eclipse prediction can be considered as the first occlusion related techniques. However, the
main issue was focused on planet motion prediction rather than occlusion.

(a) (b)

Figure 7.18: Eclipses. (a) Lunar and Solar eclipse by Purbach. (b) Prediction of the 1715 eclipse by Halley.

Figure 7.19: 1994 solar eclipse and 1993 lunar eclipse. Photograph Copyright 1998 by Fred Espenak
(NASA/Goddard Space Flight Center).

Seee.g.
http://sunearth.gsfc.nasa.gov/eclipse/eclipse.html
http://www.bdl.fr/Eclipse99

5.2 Sundials

Sundials are another example of shadow related techniques.

seee.g.
http://www.astro.indiana.edu/personnel/rberring/sundial.html
http://www.sundials.co.uk/2sundial.htm
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Figure 7.20: (a) Project of a sundial on the Place de la Concorde in Paris. (b) Complete sundial with analemmas
in front of the CICG in Grenoble.

6 Summary

Following Grant [Gra92], visibility problems can be classified according to their increasing dimensionality:
The most atomic query is ray-shooting. View and hard shadow computation are two dimensional problems.
Occlusion culling with respect to a point belong to the same category which we can refer to as classical visibility
problems. Then comes what we callglobalvisibility issues7. These include visibility with respect to extended
regions such as extended light sources or volumes, or the computation of the region of space from which a
feature is visible. The mutual visibility of objects (required for example for global illumination simulation) is
a four dimensional problem defined on the pairs of points on surfaces of the scene. Finally the enumeration
of all possible views of an object or the optimization of a viewpoint impose the treatment of two dimensional
view computation problems for all possible viewpoints.

7Some author also define occlusion by other objects as global visibility effects as opposed to backface culling and silhouette computa-
tion.



CHAPTER 8

Preliminaries

On apprend `a reconnaˆıtre les forces sous-jacentes ; on
apprends la pr´ehistoire du visible. On apprend `a fouiller
les profondeurs, on apprend `a mettreà nu. On apprend
à démontrer, on apprend `a analyser

Paul KLEE, Théorie de l’art moderne

EFORE presenting visibility techniques, we introduce a few notions which will be useful for
the understanding and comparison of the methods we survey. We first introduce the different
spaces which are related to visibility and which induce the classification that we will use. We
then introduce the notion ofvisual event, which describes “where” visibility changes in a scene

and which is central to many methods. Finally we discuss some of the differences which explain why 3D
visibility is much more involved than its 2D counterpart.

1 Spaces and algorithm classification

In their early survey Sutherland, Sproull and Schumacker [SSS74] classified hidden-part removal algorithms
into object spaceand image-spacemethods. Our terminology is however slightly different from theirs, since
they designated theprecisionat which the computations are performed (at the resolution of the image or exact),
while we have chosen to classify the methods we survey according to the space in which the computations are
performed.

Furthermore we introduce two new spaces: the space of all viewpoints and the space of lines. We will give
a few simple examples to illustrate what we mean by all these spaces.

1.1 Image-space

In what follow, we have classified asimage-spaceall the methods which perform their operations in 2D pro-
jection planes (or other manifolds). As opposed to Sutherlandet al.’s classification [SSS74], this plane is not
restricted to the plane of the actual image. It can be an intermediate plane. Consider the example of hard
shadow computation: an intermediate image from the point light source can be computed.

157



158 CHAPTER 8. PRELIMINARIES

Of course if the scene is two dimensional, image space has only one dimension: the angle around the
viewpoint.

Image-space methods often deal with a discrete orrasterizedversion of this plane, sometimes with a depth
information for each point. Image-space methods will be treated in chapter 11.

1.2 Object-space

In contrast, object space is the 3 or 2 dimensional space in which the scene is defined. For example, some hard
shadow computation methods useshadow volumes[FvDFH90, WPF90]. These volumes are truncated frusta
defined by the point light source and the occluding objects. A portion of space is in shadow if it lies inside a
shadow volume. Object-space methods will be treated in chapter 10.

1.3 Viewpoint-space

We define theviewpoint spaceas the set of all possible viewpoints. This space depends on the projection used.
If perspective projection is used, the viewpoint space is equivalent to the object space. However, if orthographic
(also called parallel) projection is considered, then a view is defined by a direction, and the viewpoint space
is the setS2 of directions, often calledviewing sphereas illustrated in Fig. 8.1. Its projection on a cube is
sometimes used for simpler computations.

direction of
projection

(a) (b) (c)

Figure 8.1: (a) Orthographic view. (b) Corresponding point on the viewing sphere and (c) on the viewing cube.

An example of viewpoint space method would be to discretize the viewpoint space and precompute a view
for each sample viewpoint. One could then render views very quickly with a simple look-up scheme. The
viewer-centered representation which we have introduced in section 2.1 of the previous chapter is typically a
viewpoint space approach since each possible view should be represented.

Viewpoint-space can be limited. For example, the viewer can be constrained to lie at eye level, defining a
2D viewpoint space (the planez= heye) in 3D for perspective projection. Similarly, the distance to a point can
be fixed, inducing a spherical viewpoint-space for perspective projection.

It is important to note that even if perspective projection is used, there is a strong difference between
viewpoint space methods and object-space methods. In a viewpoint space, the properties of points are defined
by their view. An orthographic viewpoint-space could be substituted in the method.

Shadow computation methods are hard to classify: the problem can be seen as the intersection of scene
objects with shadow volume, but it can also be seen as the classification of viewpoint lying on the objects
according to their view of the source. Some of our choices can be perceived arbitrary.

In 2D, viewpoint-space has 2 dimensions for perspective projection and has 1 dimension if orthographic
projection is considered.

Viewpoint space methods will be treated in chapter 12.

1.4 Line-space

Visibility can intuitively be defined in terms of lines: two pointA and B are mutually visible if no object
intersects line(AB) between them. It is thus natural to describe visibility problems in line space.
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For example, one can precompute the list of objects which intersect each line of a discretization of line-
space to speed-up ray-casting queries.

In 2D, lines have 2 dimensions: for example its directionθ and distance to the originρ. In 3D however, lines
have 4 dimensions. They can for example be parameterized by their direction(θ;ϕ) and by the intersection
(u;v) on an orthogonal plane (Fig. 8.2(a)). They can also be parameterized by their intersection with two planes
(Fig. 8.2(b)). These two parameterizations have some singularities (at the pole for the first one, and for lines
parallel to the two planes in the second). Lines in 3D space can not be parameterized without a singularity. In
section 3 of chapter 13 we will study a way to cope with this, embedding lines in a 5 dimensional space.
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(a) (b)

Figure 8.2: Line parameterisation. (a) Using two angles and the intersection on an orthogonal plane. (b) Using
the intersection with two planes.

The set of lines going through a point describe the view from this point, as in the ray-tracing technique (see
Fig. 7.5). In 2D the set of lines going through a point has one dimension: for example their angle. In 3D, 2
parameters are necessary to describe a line going through a point, for example two angles.

Many visibility queries are expressed in terms of rays and not lines. The ray-shooting query computes
the first object seen from a point in a given direction. Mathematically, a ray is a half line. Ray-space has 5
dimensions (3 for the origin and two for the direction).

The mutual visibility query can be better expressed in terms of segments.A andB are mutually visible only
if segment[AB] intersects no object. Segment space has 6 dimensions: 3 for each endpoint.

The information expressed in terms of rays or segments is very redundant: many colinear rays “see” the
same object, many colinear segments are intersected by the same object. We will see that the notion ofmaximal
free segmentshandles this. Maximal free segments are segments of maximal length which do not touch the
objects of the scene in their interior. Intuitively these are segments which touch objects only at their extremities.

We have decided to group the methods which deal with these spaces in chapter 13. The interested reader
will find some important notions about line space reviewed in appendix D.

1.5 Discussion

Some of the methods we survey do not perform all their computations in a single space. An intermediate
data-structure can be used, and then projected in the space in which the final result is required.

Even though each method is easier to describe in a given space, it can often be described in a different space.
Expressing a problem or a method in different spaces is particularly interesting because it allows different
insights and can yield alternative methods. We particularly invite the reader to transpose visibility questions to
line space or ray space. We will show throughout this survey that visibility has a very natural interpretation in
line space.

However this is not an incitation to actually perform complex calculations in 4D line space. We just suggest
a different way to understand problems and develop methods, even if calculations are eventually performed in
image or object space.
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2 Visual events, singularities

We now introduce a notion which is central to most of the algorithms, and which expresses “how” and “where”
visibility changes. We then present the mathematical framework which formalizes this notion, the theory of
singularities. The reader may be surprised by the space devoted in this survey to singularity theory compared
to its use in the literature. We however believe that singularity theory permits a better insight on visibility
problems, and allows one to generalize some results on polygonal scenes to smooth objects.

2.1 Visual events

Consider the example represented in Fig. 8.3. A polygonal scene is represented, and the views from three
eyepoints are shown on the right. As the eyepoint moves downwards, pyramidP becomes completely hidden
by polygonQ. The limit eyepoint is eyepoint 2, for which vertexV projects exactly on edgeE. There is a
topological change in visibility: it is called avisual eventor avisibility event.

V

E 1

2

3
P

Q

E

V

Figure 8.3: EV visual event. The views from the three eyepoints are represented on the right. As the eyepoint
moves downwards, vertexV becomes hidden. Viewpoint 2 is the limit eyepoint, it lies on avisual event.

Visual events are fundamental to understand many visibility problems and techniques. For example when
an observer moves through a scene, objects appear and disappear at such events (Fig. 8.3). If pyramidP emits
light, then eyepoint 1 is in penumbra while eyepoint 3 is in umbra: the visual event is a shadow boundary. If a
viewpoint is sought from which pyramidP is visible, then the visual event is a limit of the possible solutions.
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Figure 8.4: Locus an EV visual event. (a) In object space or perspective viewpoint space it is a wedge. (b) In
orthographic viewpoint space it is an arc of a great circle. (c) In line space it is the 1D set of lines going through
V andE

Fig. 8.4 shows the locus of this visual event in the spaces we have presented in the previous section. In
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object space or in perspective viewpoint space, it is the wedge defined by vertexV and edgeE. We say that
V andE are the generatorsof the event. In orthographic viewpoint space it is an arc of a great circle of the
viewing sphere. Finally, in line-space it is the set of lines going throughV andE. Thesecritical lineshave one
degree of freedom since they can be parameterized by their intercept onE, we say that it is a 1D set of lines.

TheEV events generated by a vertexV are caused by the edges which are visible fromV. The set of events
generated byV thus describe the view fromV. Reciprocally, a line drawing of a view from an arbitrary pointP
can be seen as the set ofEV events which would be generated if an imaginary vertex was place atP.
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Figure 8.5: A EEE visual event. The views from the three eyepoints are represented on the right. As the
eyepoint moves downwards, polygonR becomes hidden by the conjunction of polygonP andQ. From the
limit viewpoint 2, the three edges have a visual intersection.

There is also a slightly more complex kind of visual event in polygonal scenes. It involves the interaction of
3 edges which project on the same point (Fig. 8.5). When the eyepoint moves downwards, polygonP becomes
hidden by the conjunction ofQ andR. From the limit eyepoint 2, edgesEP, EQ andER are aligned.
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Figure 8.6: Locus of a EEE visual event. (a) In object-space or perspective viewpoint space it is a ruled quadrics.
(b) In orthographic viewpoint space it is a quadric on the viewing sphere. (c) In line space it is the set of lines
stabbing the three edges.

The locus of such events in line space is the set of lines going through the three edges (we also say that
theystabthe three edges) as shown on Fig. 8.6(c). In object space or perspective viewpoint space, this defines
a ruled quadric often calledswath(Fig. 8.6(a)). (It is in fact doubly ruled: the three edges define one family of
lines, the stabber defining the second.) In orthographic viewpoint space it is a quadric on the viewing sphere
(see Fig. 8.6(b)).

Finally, a simpler class of visual events are caused by a viewpoint lying in the plane of faces of the scene.
The face becomes visible or hidden at such an event.

Visual events are simpler in 2D: they are simply thebitangentsandinflexion pointsof the scene.
A deeper understanding of visual events and their generalisation to smooth objects requires a strong for-

malism: it is provided by the singularity theory.
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2.2 Singularity theory

The singularity theory studies the emergence of discrete structures from smooth continuous ones. The branch
we are interested in has been developed mainly by Whitney [Whi55], Thom [Tho56, Tho72] and Arnold
[Arn69]. It permits the study of sudden events (calledcatastrophes) in systems governed by smooth con-
tinuous laws. An introduction to singularity theory for visibility can be found in the masters thesis by PetitJean
[Pet92] and an educational comics has been written by Ian Stewart [Ste82]. See also the book by Koenderink
[Koe90] or his papers with van Doorn [Kv76, KvD82, Kø84, Koe87].

We are interested in the singularities of smooth mappings. For example a view projection is a smooth
mapping which associate each point of 3D space to a point on a projection plane. First of all, singularity theory
permits the description the structure of the visible parts of a smooth object.

cusp t-vertex

fold

(a) (b)

cusp t-vertex

fold

(c)

Figure 8.7: View of a torus. (a) Shaded view. (b) Line drawing with singularities indicated (b) Opaque and
transparent contour.

Consider the example of a smooth 3D object such as the torus represented in Fig. 8.7(a). Its projection
on a viewing plane is continuous nearly everywhere. However, some abrupt changes appear at the so called
silhouette. Consider the number of point of the surface of the object projecting on a given point on the projection
plane (counting the backfacing points). On the exterior of the silhouette no point is projected. In the interior
two points (or more) project on the same point. These two regions are separated by the silhouette of the object
at which the number of projected point changes abruptly.

This abrupt change in the smooth mapping is called asingularityor catastropheor bifurcation. The singu-
larity corresponding to the silhouette was namedfold (or alsooccluding contouror limb). The fold is usually
used to make a line drawing of the object as in Fig. 8.7(b). It corresponds to the set of points which are tangent
to the viewing direction1.

The fold is the only stable curve singularity for generic surfaces: if we move the viewpoint, there will
always be a similar fold.

The projection in Fig. 8.7 also exhibits two point singularities: at-vertexand acusp. T-vertices results from
the intersection of two folds. Fig. 8.7(c) shows that a fourth fold branch is hidden behind the surface. Cusps
represent the visual end of folds. In fact, a cusp corresponds to a point where the fold has an inflexion in 3D
space. A second tangent fold is hidden behind the surface as illustrated in Fig. 8.7(c).

These are the only three stable singularities: all other singularities disappear after a small perturbation of
the viewpoint (if the object is generic, which is not the case of polyhedral objects). These stable singularities
describe the limits of the visible parts of the object. Malik [Mal87] has established a catalogue of the features
of line drawings of curved objects.

Singularity theory also permits the description of how the line drawing changes as the viewpoint is moved.
Consider the example represented in Fig. 8.8. As the viewpoint moves downwards, the back sphere becomes
hidden by the front one. From viewpoint (b) where this visual event occurs, the folds of the two spheres are
superimposed and tangent. This unstable singularity is called atangent crossing. It is very similar to theEV
visual event shown in Fig. 8.3. It is unstable in the sense that any small change in the viewpoint will make it
disappear. The viewpoint is notgeneric, it is accidental.

1What is the relationship between the view of a torus and the occurrence of a sudden catastrophe? Imagine the projection plane is the
command space of a physical system with two parametersx andy. The torus is the response surface: for a pair of parameters(x;y) the
depthz represents the state of the system. Note that for a pair of parameters, there may be many possible states, depending on the history of
the system. When the command parameters vary smoothly, the corresponding state varies smoothly on the surface of the torus. However,
when a fold is met, there is an abrupt change in the state of the system, this is acatastrophe. Seee.g. [Ste82].



3. 2DVERSUS 3D VISIBILITY 163

(a) (b) (c)

Figure 8.8: Tangent crossing singularity. As the viewpoint moves downwards, the back sphere becomes hidden
by the frontmost one. At viewpoint (b) a singularity occurs (highlighted with a point): the two spheres are
visually tangent.
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Figure 8.9: Disappearance of a cusp at a swallowtail singularity at viewpoint (b). (in fact two swallowtails occur
because of the symmetry of the torus)

Another unstable singularity is shown in Fig. 8.9. As the viewpoints moves upward, the t-vertex and the
cusp disappear. In Fig. 8.9(a) the points of the plane below the cusp result from the projection of 4 points of
the torus, while in Fig. 8.9(c) all points result from the projection of 2 or 0 points. This unstable singularity is
calledswallowtail.

Unstable singularities are the events at which the organisation of the view of a smooth object (or scene) is
changed. These singularities are related to the differential properties of the surface. For example swallowtails
occur only in hyperbolic regions of the surface, that is, regions where the surface is locally nor concave nor
convex.

Singularity theory originally does not consider opaqueness. Objects are assumed transparent. As we have
seen, at cusps and t-vertices, some fold branches are hidden. Moreover a singularity like a tangent crossing is
considered even if some objects lie between the two sphere causing occlusion. The visible singularity are only
a subset but all the changes observed in views of opaque objects can be described by singularity theory. Some
catalogues now exist which describe singularities of opaque objects2. See Fig. 8.10.

The catalogue of singularities for views of smooth objects has been proposed by Kergosien [Ker81] and
Rieger [Rie87, Rie90] who has also proposed a classification for piecewise smooth objects [Rie87]3.

3 2D versus 3D Visibility

We enumerate here some points which make that the difference between 2D and 3D visibility can not be
summarized by a simple increment of one to the dimension of the problem.

This can be more easily envisioned in line space. Recall that the atomic queries in visibility are expressed
in line-space (first point seen along a ray, are two points mutually visible?).

2Williams [WH96, Wil96] tries to fill in the gap between opaque and transparent singularities. Given the view of an object, he proposes
to deduce the invisible singularities from the visible ones. For example at a t-vertex, two folds intersect but only three branches are visible;
the fourth one which is occluded can be deduced. See Fig. 8.10.

3Those interested in the problems of robustness and degeneracies for geometric computations may also notice that a degenerate config-
uration can be seen as a singularity of the space of scenes. The exploration of the relations between singularities and degeneracies could
help formalize and systemize the treatment of the latter. See also section 2 of chapter 14.
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Figure 8.10: Opaque (bold lines) and semi-transparent (grey) singularities. After [Wil96].

First of all, the increase in dimension of line-space is two, not one (in 2D line-space is 2D, while in 3D it is
4D). This makes things much more intricate and hard to apprehend.

A line is a hyperplane in 2D, which is no more the case in 3D. Thus the separability property is lost: a 3D
line does not separate two half-space as in 2D.

A 4D parameterization of 3D lines is not possible without singularities (the one presented in Fig. 8.2(a) has
two singularities at the pole, while the one in Fig. 8.2(b) can not represent lines parallel to the two planes). See
section 3 of chapter 13 for a partial solution to this problem.

Visual events are simple in 2D: bitangent lines or tangent to inflection points. In 3D their locus are surfaces
which are rarely planar (EEE or visual events for curved objects).

All these arguments make the sentence “the generalization to 3D is straightforward” a doubtful statement
in any visibility paper.



CHAPTER 9

The classics of hidden part removal

Il convient encore de noter que c’est parce que quelque
chose des objets ext´erieurs pénétre en nous que nous
voyons les formes et que nous pensons

ÉPICURE, Doctrines et Maximes

E FIRST BRIEFLYreview the classical algorithms to solve the hidden surface removal prob-
lem. It is important to have these techniques in mind for a wider insight of visibility tech-
niques. We will however remain brief, since it is beyond the scope of this survey to dis-
cuss all the technical details and variations of these algorithms. For a longer survey see

[SSS74, Gra92], and for a longer and more educational introduction see [FvDFH90, Rog97].

The view computation problem is often reduced to the case where the viewpoint lies on thezaxis at infinity,
andx andy are the coordinates of the image plane;y is the vertical axis of the image. This can be done using
a perspective transform matrix (see [FvDFH90, Rog97]). The objects closer to the viewpoint can thus be said
to lie “above” (because of thez axis) as well as “in front” of the others. Most of the methods treat polygonal
scenes.

Two categories of approaches have been distinguished by Sutherlandet al. Image-precisionalgorithms
solve the problem for a discrete (rasterized) image, visibility being sampled only at pixels; whileobject-
precisionalgorithm solve the exact problem. The output of the latter category is often avisibility map, which
is the planar map describing the view. The order in which we present the methods is not chronological and has
been chosen for easier comparison.

Solutions to hidden surface removal have other applications that the strict determination of the objects
visible from the viewpoint. As evoked earlier, hard shadows can be computed using a view from a point light
source. Inversely, the amount of light arriving at a point in penumbra corresponds to the visible part of the
source from this point as shown in Fig. 7.2(b). Interest for the application of exact view computation has thus
recently been revived.

165
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1 Hidden-Line Removal

The first visibility techniques have were developed forhidden line removalin the sixties. These algorithms
provide information only on the visibility of edges. Nothing is known on the interior of visible faces, preventing
shading of the objects.

1.1 Robert

Robert [Rob63] developed the first solution to the hidden line problem. He tests all the edges of the scene
polygons for occlusion. He then computes the intersection of the wedge defined by the viewpoint and the edge
and all objects in the scene using a parametric approach.

1.2 Appel

Appel [App67] has developed the notion ofquantitative invisibilitywhich is the number of objects which
occlude a given point. This is the notion which we used to present singularity theory: the number of points of
the object which project on a given point in the image. Visible points are those with 0 quantitative invisibility.
The quantitative invisibility of an edge of a view changes only when it crosses the projection of another edge
(it corresponds to at-vertex). Appel thus computes the quantitative invisibility number of a vertex, and updates
the quantitative invisibility at each visual edge-edge intersection.

Markosianet al. [MKT+97] have used this algorithm to render the silhouette of objects in a non-photorealistic
manner. When the viewpoint is moved, they use a probabilistic approach to detect new silhouettes which could
appear because an unstable singularity is crossed.

1.3 Curved objects

Curved objects are harder to handle because their silhouette (orfold) first has to be computed (see section 2.2 of
chapter 8). Elber and Cohen [EC90] compute the silhouette using adaptive subdivision of parametric surfaces.
The surface is recursively subdivided as long as it may contain parts of the silhouette. An algorithm similar
to Appel’s method is then used. Snyder [Sny92] proposes the use of interval arithmetic for robust silhouette
computation.

2 Exact area-subdivision

2.1 Weiler-Atherton

Weiler and Atherton [WA77] developed the first object-precision method to compute a visibility map. Objects
are preferably sorted according to their depth (but cycles do not have to be handled). The frontmost polygons
are then used to clip the polygons behind them.

This method can also be very simply used for hard shadow generation, as shown by Athertonet al.
[AWG78]. A view is computed from the point light source, and the clipped polygons are added to the scene
database as lit polygon parts.

The problem with Weiler and Atherton’s method, as for most of the object-precision methods, is that it
requires robust geometric calculations. It is thus prone to numerical precision and degeneracy problems.

2.2 Application to form factors

Nishita and Nakamae [NN85] and Baumet al. [BRW89] compute an accurate form factor between a polygon
and a point (the portion of light leaving the polygon which arrives at the point) using Weiler and Atherton’s
clipping. Once the source polygon is clipped, an analytical formula can be used. Using Stoke’s theorem, the
integral over the polygon is computed by an integration over the contour of the visible part. The jacobian of
the lighting function can be computed in a similar manner [Arv94].

Vedel [Ved93] has proposed an approximation for the case of curved objects.
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2.3 Mulmuley

Mulmuley [Mul89] has proposed an improvement of exact area-subdivision methods. He inserts polygons
in a randomizedorder (as in quick-sort) and maintains the visibility map. Since visibility maps can have
complex boundaries (concave, with holes), he uses a trapezoidal decomposition [dBvKOS97]. Each trapezoid
corresponds to a part of one (possibly temporary) visible face.

Each trapezoid of the map maintains a list ofconflictpolygons, that is, polygons which have not yet been
projected and which are above the face of the trapezoid. As a face is chosen for projection, all trapezoids with
which it is in conflict are updated. If a face is below the temporary visible scene, no computation has to be
performed.

The complexity of this algorithm is very good, since the probability of a feature (vertex, part of edge) to
induce computation is inversely proportional to its quantitative invisibility (the number of objects above it). It
should be easy to implement and robust due to its randomized nature. However, no implementation has been
reported to our knowledge.

2.4 Curved objects

Krishnan and Manocha [KM94] propose an adaptation of Weiler and Atherton’s method for curved objects
modeled with NURBS surfaces. They perform their computation in the parameter space of the surface. The
silhouette corresponds to the points where the normal is orthogonal to the view-line, which defines a polynomial
system. They use an algebraic marching method to solve it. These silhouettes are approximated by piecewise-
linear curves and then projected on the parts of the surface below, which gives a partition of the surface where
the quantitative invisibility is constant.

3 Adaptive subdivision

The method developed by Warnock [War69] can be seen as an approximation of Weiler and Atherton’s exact
method, even though it was developed earlier. It recursively subdivides the image until each region (called a
window) is declared homogeneous. A window is declared homogeneous if one face completely covers it and
is in front of all other faces. Faces are classified against a window as intersecting or disjoint or surrounding
(covering). This classification is passed to the subwindows during the recursion. The recursion is also stopped
when pixel-size is reached.

The classical method considers quadtree subdivision. Variations however exist which use the vertices of
the scene to guide the subdivision and which stop the recursion when only one edge covers the window.

Markset al. [MWCF90] presents an analysis of the cost of adaptive subdivision and proposes a heuristic to
switch between adaptive methods and brute-force z-buffer.

4 Depth order and the painter’s algorithm

The painter’s algorithm is a class of methods which consist in simply drawing the objects of the scene from
back to front. This way, visible objects overwrite the hidden ones. This is similar to a painter who first draws
a background then paints the foreground onto it. However, ordering objects according to their occlusion is not
straightforward. Cycles may appear, as illustrated in Fig. 9.1(a).

The inverse order (Front to Back) can also be used, but a flag has to be indicate whether a pixel has been
written or not. This order allows shading computations only for the visible pixels.

4.1 Newell Newell and Sancha

In the method by Newell, Newell and Sancha [NNS72] polygons are first sorted according to their minimumz
value. However this order may not be the occlusion order. A bubble sort like scheme is thus applied. Polygons
with overlappingz intervals are first compared in the image forxyoverlap. If it is the case, their plane equation
is used to test which occlude which. Cycles in occlusion are tested, in which case one of the polygons is split
as shown in Fig. 9.1(b).
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(a) (b)
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Figure 9.1: (a) Classic example of a cycle in depth order. (b) Newell, Newell and Sancha split one of the
polygons to break the cycle.

For new theoretical results on the problem of depth order, see the thesis by de Berg [Ber93].

4.2 Priority list preprocessing

Schumacker [SBGS69] developed the concept ofa priori depth order. An object is preprocessed and an order
may be found which is valid from any viewpoint (if the backfacing faces are removed). See the example of Fig.
9.2.
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Figure 9.2: A priori depth order. (a) Lower number indicate higher priorities. (b) Graph of possible occlusions
from any viewpoint. An arrow means that a face can occlude another one from a viewpoint. (c) Example of
a view. Backfacing polygons are eliminated and other faces are drawn in thea priori order (faces with higher
numbers are drawn first).

These objects are then organised in clusters which are themselves depth-ordered. This technique is funda-
mental for flight simulators where real-time display is crucial and where cluttered scenes are rare. Moreover,
antialiasing is easier with list-priority methods because the coverage of a pixel can be maintained more consis-
tently. The survey by Yan [Yan85] states that in 1985, all simulators were using depth order. It is only very
recent that z-buffer has started to be used for flight simulators (see section below).

However, few objects can bea priori ordered, and the design of a suitable database had to be performed
mainly by hand. Nevertheless, this work has led to the development of the BSP tree which we will present in
section 1.4 of chapter 10

4.3 Layer ordering for image-based rendering

Recently, the organisation of scenes into layers for image-based rendering has revived the interest in depth-
orderingà la Newellet al. Snyder and Lengyel [SL98] proposed the merging of layers which form an occlusion
cycle, while Decoretal. [DSSD99] try to group layers which cannot have occlusion relations to obtain better
parallax effects.
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5 The z-buffer

5.1 Z-buffer

The z-buffer was developed by Catmull [Cat74, Cat75]. It is now the most widespread view computation
method.

A depth (or z-value) is stored for each pixel of the image. As each object is scan-converted (or rasterized),
the depth of each pixel it covers in the image is computed and compared against the corresponding current
z-value. The pixel is drawn only if it is closer to the viewpoint.

Z-buffer was developed to handle curved surfaces, which are recursively subdivided until a sub-patch covers
only one pixel. See also [CLR80] for improvements.

The z-buffer is simple, general and robust. The availability of cheap and fast memory has permitted very
efficient hardware implementations at low costs, allowing today’s low-end computer to render thousands of
shaded polygons in real-time. However, due to the rasterized nature of the produced image, aliasing artifacts
occur.

5.2 A-buffer

TheA-buffer(antialiased averaged area accumulation buffer) is a high quality antialiased version of the z-buffer.
A similar rasterization scheme is used. However, if a pixel is not completely covered by an object (typically
at edges) a different treatment is performed. The list of object fragments which project on these non-simple
pixels is stored instead of a color value (see Fig. 9.3). A pixel can be first classified non simple because an edge
projects on it, then simple because a closer object completely covers it. Once all objects have been projected,
sub-pixel visibility is evaluated for non-simple pixels. 4*8 subpixels are usually used. Another advantage of
the A-buffer is its treatment of transparency; Subpixel fragments can be sorted in front-to-back order for correct
transparency computations.

(e)

(b)

(a)

(c)

(d)

Figure 9.3: A buffer. (a) The objects are scan-converted. The projection of the objects is dashed and non-simple
pixels are represented in bold. (b) Close-up of a non-simple pixel with the depth sorted fragments (i.e., the
polygons clipped to the pixel boundary). (c) The pixel is subsampled. (d) The resulting color is the average of
the subsamples. (e) Resulting antialiased image.

The A-buffer can be credited to Carpenter [Car84], and Fiumeet al. [FFR83]. It is a simplification of
the “ultimate” algorithm by Catmull [Cat78] which used exact sub-pixel visibility (with a Weiler-Atherton
clipping) instead of sub-sampling. A comprehensive introduction to the A-buffer and a discussion of imple-
mentation is given in the book by Watt and Watt [WW92].
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The A-buffer is, with ray-tracing, the most popular high-quality rendering techniques. It is for example
implemented in the commercial products Alias Wavefront Maya and Pixar Renderman [CCC87]. Similar
techniques are apparently present in the hardware of some recent flight simulator systems [Mue95].

Most of the image space methods we present in chapter 11 are based on the z-buffer. A-buffer-like schemes
could be explored when aliasing is too undesirable.

6 Scan-line

6.1 Scan-line rendering

Scan-line approaches produce rasterized images and consider one line of the image at a time. Their memory re-
quirements are low, which explains why they have long been very popular. Wylie and his coauthors [WREE67]
proposed the first scan-line algorithms, and Bouknight [Bou70] and Watkins [Wat70] then proposed very simi-
lar methods.

The objects are sorted according toy. For each scan-line, the objects are then sorted according tox. Then
for eachspan(x interval on which the same objects project) the depths of the polygons are compared. See
[WC91] for a discussion of efficient implementation. Another approach is to use a z-buffer for the current
scan-line. The A-buffer [Car84] was in fact originally developed in a scan-line system.

Crocker [Cro84] has improved this method to take better advantage of coherence.
Scan-line algorithms have been extended to handle curved objects. Some methods [Cla79, LC79, LCWB80]

use a subdivision scheme similar to Catmull’s algorithm presented in the previous section while others [Bli78,
Whi78, SZ89] actually compute the intersection of the surface with the current scan-line. See also [Rog97]
page 417.

Sechrest and Greenberg [SG82] have extended the scanline method to computeobject precision(exact)
views. They place scan-lines at each vertex or edge-edge intersection in the image.

Tanaka and Takahashi [TT90] have proposed an antialiased version of the scan-line method where the
image is scanned both inx andy. An adaptive scan is used in-between twoy scan-lines. They have applied this
scheme to soft shadow computation [TT97] (see also section 1.4 of chapter 13).

6.2 Shadows

The first shadowing methods were incorporated in a scan-line process as suggested by Appel [App68]. For
each span (segment where the same polygon is visible) of the scan-line, its shadowing has to be computed.
The wedge defined by the span and a point light-source is intersected with the other polygons of the scene to
determine the shadowed part of the span.

In section 1.1 of chapter 11 we will see an improvement to this method. Other shadowing techniques for
scan-line rendering will be covered in section 4.1 of chapter 10.

7 Ray-casting

The computation of visible objects using ray-casting was pioneered by Appel [App68], the Mathematical Ap-
plication Group Inc. [MAG68] and Goldstein and Nagel [GN71] in the late sixties. The object visible at one
pixel is determined by casting a ray through the scene. The ray is intersected with all objects. The closest
intersection gives the visible object. Shadow rays are used to shade the objects. As for the z-buffer, Sutherland
et al. [SSS74] considered this approach brute force and thought it was not scalable. They are now the two most
popular methods.

As evoked in section 1.5 of chapter 7 Whitted [Whi80] and Kay [KG79] have extended ray-casting to
ray-tracing which treats transparency and reflection by recursively sending secondary rays from the visible
points.

Ray tracing can handle any type of geometry (as soon as an intersection can be computed). Various methods
have been developed to compute ray-surface intersections,e.g., [Kaj82, Han89].

Ray-tracing is the most versatile rendering technique since it can also render any shading effect. Antialias-
ing can be performed with subsampling: many rays are sent through a pixel (seee.g.[DW85, Mit87]).
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Ray-casting and ray-tracing send rays from the eye to the scene, which is the opposite of actual physical
light propagation. However, this corresponds to the theory of scientists such as Aristote who think that “visual
rays” go from the eye to the visible objects.

As observed by Hofmann [Hof92] and illustrated in Fig. 9.4 ideas similar to ray-casting were exposed by
Dürer [Dür38] while he was presenting perspective.

Figure 9.4: Drawing by Dürer in 1538 to illustrate his setting to compute perspective. It can be thought of as
an ancestor of ray-casting. The artist’s assistant is holding a stick linked to a string fixed at an eyebolt in the
wall which represents the viewpoint. He points to part of the object. The position of the string in the frames is
marked by the artist using the intersection of two strings fixed to the frame. He then rotates the painting and
draws the point.

8 Sweep of the visibility map

Most of the algorithms developed in computational geometry to solve the hidden part removal problem are
based on a sweep of the visibility map for polygonal scenes. The idea is illustrated in Fig. 9.5. The view is
swept by a vertical (not necessarily straight) line, and computations are performed only at discrete steps often
called events. A list of active edges (those crossing the sweep line) is maintained and updated at each events.
Possible events are the appearance the vertex of a new polygon, or at-vertex, that is, the visual intersection of
an active edge and another edge (possibly not active).

The problem then reduces to the efficient detection of these events and the maintenance of the active edges.
As evoked in the introduction this often involves some ray shooting queries (to detect which face becomes
visible at a t-vertex for example). More complex queries are required to detect some t-vertices.

The literature on this subject is vast and well surveyed in the paper by Dorward [Dor94]. See also the thesis
by de Berg [Ber93]. Other recent results on the subject include [Mul91, Pel96] (see section 1.5 of chapter 10).
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Figure 9.5: Sweep of a visibility map. Active edges are in bold. Already processed events are black points,
while white points indicate the event queue.
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BJECT-SPACE methods exhibit the widest range of approaches. We first introduce methods
which optimize visibility computation by using a well-behaved subdivision of space. We then
present two important data-structures based on the object-space locus of visual events, the 2D
visibility graph (section 2) and visual hull (section 3). We then survey the large class of methods

which characterize visibility using pyramid-like shapes. We review methods using beams for visibility with
respect to a point in section 4. We then present the extensions of these methods to compute limits of umbra
and penumbra in section 5, while section 6 discusses methods using shafts with respect to volumes. Finally
section 7 surveys methods developed for visibility in architectural environments where visibility information is
propagated through sequences of openings.

1 Space partitioning

If all objects are convex, simple, well structured and aligned, visibility computations are much easier. This
is why some methods attempt to fit the scene into simple enclosing volumes or regular spatial-subdivisions.
Computations are simpler, occlusion cycles can no longer occur and depth ordering is easy.

173
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1.1 Ray-tracing acceleration using a hierarchy of bounding volumes

Intersecting a ray with all objects is very costly. Whitted [Whi80] enclosed objects inbounding volumesfor
which the intersection can be efficiently computed (spheres in his paper). If the ray does not intersect the
bounding volume, it cannot intersect the object.

Rubin and Whitted [RW80] then extended this idea with hierarchies of bounding volumes, enclosing bound-
ing volumes in a hierarchy of successive bounding volumes. The trade-off between how the bounding volumes
fits the object and the cost of the intersection has been studied by Weghorstet al. [WHG84] using a probabilis-
tic approach based on surface ratios (see also section 4 of chapter 13). Kay and Kajiya [KK86] built tight-fitting
bounding volumes which approximate the convex hull of the object by the intersection of parallel slabs.

The drawback of standard bounding volume methods, is that all objects intersecting the rays have to be
tested. Kay and Kajiya [KK86] thus propose an efficient method for a traversal of the hierarchy which first tests
the closest bounding volumes and terminates when an intersection is found which is closer than the remaining
bounding volumes.

Many other methods were proposed to improve bounding volume methods for ray-tracing, seee.g.[Bou85,
AK89, FvDFH90, Rog97, WW92]. See also [Smi99] for efficiency issues.

1.2 Ray-tracing acceleration using a spatial subdivision

The alternative to bounding volumes for ray-tracing is the use of a structured spatial subdivision. Objects
of the scene are classified againstvoxels(boxes), and shooting a ray consists in traversing the voxels of the
subdivision and performing intersections only for the objects inside the encountered voxels. An object can lie
inside many voxels, so this has to be taken into account.

The trade-off here is between the simplicity of the subdivision traversal, the size of the structure and the
number of objects per voxel.

Regular grids have been proposed by Fujimotoet al. [FTI86] and Amanatides and Woo [AW87]. The
drawback of regular grids is that regions of high object density are “sampled” at the same rate as regions with
many objects, resulting in a high cost for the latter because one voxel may contain many objects. However the
traversal of the grid is very fast, similar to the rasterization of a line on a bitmap image. To avoid the time spent
in traversing empty regions of the grid, the distance to the closest object can be stored at each voxel (seee.g.
[CS94, SK97]).

Glassner [Gla84] introduced the use of octrees which result in smaller voxels in regions of high object
density. Unfortunately the traversal of the structure becomes more costly because of the cost induced by the
hierarchy of the octree. See [ES94] for a comparison between octrees and regular grids.

Recursive grids [JW89, KS97] are similar to octrees, except that the branching factor may be higher, which
reduces the depth of the hierarchy (see Fig. 10.1(a)). The size of the voxel in a grid or sub-grid should be
proportional to the cubic root of the number of objects to obtain a uniform density.

Snyder and Bar [SB87] use tight fitting regular grids for complex tessellated objects which they insert in a
bounding box hierarchy.

Finally Cazalset al. [CDP95, CP97] propose the Hierarchy of Uniform Grids, where grids are not nested.
Objects are sorted according to their size. Objects which are close and have the same size are clustered, and
a grid is used for each cluster and inserted in a higher level grid (see Fig. 10.1(b)). An in-depth analysis of
the performance of spatial subdivision methods is presented. Recursive grids and the hierarchy of uniform grid
seem to be the best trade-off at the moment (see also [KWCH97, Woo97] for a discussion on this subject).

1.3 Volumetric visibility

The methods in the previous sections still require an intersection calculations for each object inside a voxel.
In the context of radiosity lighting simulation, Sillion [Sil95] approximates visibility inside a voxel by an
attenuation factor (transparency ortransmittance) as is done for volume rendering. A multiresolution extension
was presented [SD95] and will be discussed in section 1.2 of chapter 14.

The transmittance is evaluated using the area of the objects inside a voxel. These voxels (orclusters) are
organised in a hierarchy. Choosing the level of the hierarchy used to compute the attenuation along a ray allows
a trade-off between accuracy and time. The problem of refinement criteria will be discussed in section 1.1 of
chapter 14.
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(a) (b)

Figure 10.1: A 2D analogy of ray-tracing acceleration. An intersection test is performed for objects which are
in bold type. (a) Recursive grid. (b) Hierarchy of uniform grids. Note that fewer intersections are computed
with the latter because the grids fit more tightly to the geometry.

Christensenet al. [CLSS97] propose another application of volumetric visibility for radiosity.
Chamberlainet al[CDL+96] perform real-time rendering by replacing distant geometry by semi-transparent

regular voxels averaging the color and occlusion of their content. Neyret [Ney96, Ney98] presents similar ideas
to model and render complex scenes with hierarchical volumetric representations calledtexels.

1.4 BSP trees

We have seen in section 4.2 of chapter 9 that ana priori depth order can be found for some objects. Unfortu-
nately, this is quite rare. Fuchs and his co authors [FKN80, FAG83] have developed theBSPtree (Binary Space
Partitioning tree) to overcome this limitation.

The principle is simple: if the scene can be separated by a plane, the objects lying on the same side of the
plane as the viewer are closer than the others in a depth order. BSP trees recursively subdivide the scene along
planes, resulting in a binary tree where each node corresponds to a splitting plane. The computation of a depth
order is then a straightforward tree traversal: at each node the order in which the subtrees have to be drawn is
determined by the side of the plane of the viewer. Unfortunately, since a scene is rarely separable by a plane,
objects have to be split. Standard BSP approaches perform subdivision along the polygons of the scene. See
Fig. 10.2 for an example1.

It has been shown [PY90] that the split in BSP trees can cause the number of sub-polygons to be as high as
O(n3) for a scene composed ofn entry polygons. However, the choice of the order of the polygons with which
subdivision is performed is very important. Paterson and Yao [PY90] give a method which builds a BSP tree
with sizeO(n2). Unfortunately, it requiresO(n3) time. However these bounds do not say much on the practical
behaviour of BSPs.

Seee.g.[NR95] for the treatment of curved objects.
Agarwal et al. [AGMV97, AEG98] do not perform subdivision along polygons. They buildcylindrical

BSP trees, by performing the subdivision along vertical planes going through edges of the scene (in a way
similar to the method presented in the next section). They give algorithms which build a quadratic size BSP in
roughly quadratic time.

Chen and Wang [CW96] have proposed thefeudal priority algorithm which limits the number of splits
compared to BSP. They first treat polygons which are back or front-facing from any other polygon, and then
chose the polygons which cause the smallest number of splits.

1 BSP trees have also been applied as a modeling representation tool and powerfulConstructive Solid Geometryoperations have been
adapted by Nayloret al. [NAT90].
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Figure 10.2: 2D BSP tree. (a) The scene is recursively subdivided along the polygons. Note that polygon D has
to be split. (b) Corresponding binary tree. The traversal order for the viewpoint in (a) is depicted using arrows.
The order is thus, from back to front:FCGAD1BHED2

Naylor [Nay92] also uses a BSP tree to encode the image to perform occlusion-culling; nodes of the object-
space BSP tree projecting on a covered node of the image BSP are discarded in a manner similar to the hierar-
chical z-buffer which we will present in section 3 of the next chapter.

BSP trees are for example in the gameQuakefor the hidden-surface removal of the static part if the model
[Abr96] (moving objects are treated using a z-buffer).

1.5 Cylindrical decomposition

Mulmuley [Mul91] has devised an efficient preprocessing algorithm to perform object-precision view compu-
tations using a sweep of the view map as presented in section 8 of chapter 9. However this work is theoretical
and is unlikely to be implemented. He builds a cylindrical partition of 3D space which is similar to the BSPs
that Agarwallet al. [AGMV97, AEG98] have later described. Nonetheless, he does not use whole planes.
Each cell of his partition is bounded by parts of the input polygons and by vertical walls going through edges
or vertices of the scene. His paper also contains an interesting discussion of sweep algorithms.

2 Path planning using the visibility graph

2.1 Path planning

Nilsson [Nil69] developed the first path planning algorithms. Consider a 2D polygonal scene. Thevisibility
graph is defined as follows: The nodes are the vertices of the scene, and an arc joins two verticesA andB if
they are mutually visible,i.e. if the segment[AB] intersects no obstacle. As noted in the introduction, it is
possible to go in straight line fromA to B only if B is visible fromA. The start and goal points are added to the
set of initial vertices, and so are the corresponding arcs (see Fig. 10.3). Only arcs which are tangent to a pair
of polygons are necessary.

It can be easily shown that the shortest path between the start point and the goal goes through arcs of the
visibility graph. The rest of the method is thus a classical graph problem. See also [LPW79].

This method can be extended to non-polygonal scenes by considering bitangents and portions of curved
objects.

The method unfortunately does not generalize simply to 3D where the problem has been shown to be
NP-complete by Canny [Can88].
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goal
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Figure 10.3: Path planning using the visibility graph.

2.2 Visibility graph construction

The 2D visibility graph has size which is between linear and quadratic in the number of polygon edges. The
construction of visibility graphs is a rich subject of research in computational geometry. OptimalO(n2) algo-
rithms have been proposed [EG86] as well asoutput-sensitiveapproaches (their running time depends on the
size of the output,i.e. the size of the visibility graph) [OW88, GM91].

The2D visibility complexwhich we will review in section 1.2 of chapter 13 is also a powerful tool to build
visibility graphs.

In 3D, the term “visibility graph” often refers to the abstract graph where each object is a node, and where
arcs join mutually visible objects. This is however not the direct equivalent of the 2D visibility graph.

2.3 Extensions to non-holonomic visibility

In this section we present some motion planning works which are hard to classify since they deal with exten-
sions of visibility to curved lines of sight. They have been developed by Vendittelliet al. [VLN96] to plan
the motion of a car-like robot. Car trajectories have a minimum radius of curvature, which constraints their
motion. They are submitted tonon-holonomicconstraints: the tangent of the trajectory must be colinear to
the velocity. Dubins [Dub57] and Reeds and Shepp [RS90] have shown that minimal-length trajectories of
bounded curvature are composed of arcs of circles of minimum radius and line segments.

For example if a car lies at the origin of the plane and is oriented horizontally, the shortest path to the points
of the upper quadrant are represented in Fig. 10.4(a). The rightmost paths are composed of a small arc of circle
forward followed by a line segment. To go to the points on the left, a backward circle arc is first necessary, then
a forward arc, then a line segment.

Now consider an obstacle such as the line segment represented in Fig. 10.4(a). It forbids certain paths. The
points which cannot be reached are said to be in shadow, by analogy to the case where optimal paths are simple
line segments2.

The shape of such a shadow can be much more complex than in the line-visibility case, as illustrated in Fig.
10.4(b).

This analogy between visibility and reachability is further exploited in the paper by Nissouxet al. [NSL99]
where they plan the motion of robots with arbitrary numbers of degrees of freedom.

3 The Visual Hull

The reconstruction of objects from silhouettes (see section 2.2 of chapter 7) is very popular because it is robust
and simple. Remember that only exterior silhouettes are considered, folds caused by self occlusion of the object
are not considered because they are harder to extract from images. Not all objects can be reconstructed with

2What we describe here are in fact shadows in a Riemannian geometry. Our curved lines of sight are in factgeodesics, i.e.c the shortest
path from one point to another.
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(a) (b)

Figure 10.4: Shadow for non-holonomic path-planning (adapted from [VLN96]). (a) Simple (yet curved)
shadow. (b) Complex shadows. Some parts of the convex blocker do not lie on the shadow boundary. The
small disconnected shadow is caused by the impossibility to perform an initial backward circle arc.

this method; The cavity of a bowl can not be reconstructed because it is not present on an external silhouette.
The best reconstruction of a bowl one can expect is a “full” version of the initial object.

However the reconstructed object is not necessarily the convex hull of the object: the hole of a torus can be
reconstructed because it is present on the exterior silhouette of some images.

Laurentini [Lau94, Lau95, Lau97, Lau99] has introduced thevisual hullconcept to study this problem. A
pointP of space is inside the visual hull of an objectA, if from any viewpointP projects inside the projection of
A. To give a line-space formulation, each line going through a pointP of the visual hull intersects objectA. The
visual hull is the smallest object which can be reconstructed from silhouettes. See Fig. 10.5 for an example.

E1

E2

(a) (b) (c)

E3

Figure 10.5: Visual hull (adapted from [Lau94]). (a) Initial object. AEEEevent is shown. (b) Visual hull of the
object (the viewer is not allowed inside the convex hull of the object). It is delimited by polygons and a portion
of the ruled quadric of theE1E2E3 event. (c) A different object with the same visual hull. The two objects can
not be distinguished from their exterior silhouette and have the same occlusion properties.

The exact definition of the visual hull in fact depends on the viewing region authorized. The visual hull is
different if the viewer is allowed to go inside the convex hull of the object. (Half lines have to be considered
instead of lines in our line-space definition)

The visual hull is delimited by visual events. The visual hull of a polyhedron is thus not necessarily a
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polyhedron, as shown in Fig. 10.5 where aEEE event is involved.
Laurentini has proposed a construction algorithms in 2D [Lau94] and for objects of revolution in 3D

[Lau99]. Petitjean [Pet98] has developed an efficient construction algorithm for 2D visual hulls using the
visibility graph.

The visual hull also represents the maximal solid with the same occlusion properties as the initial object.
This concept thus completely applies to the simplification of occluders for occlusion culling. The simplified
occluder does not need to lie inside the initial occluder, but inside its visual hull. See the work by Law and Tan
[LT99] on occluder simplification.

4 Shadows volumes and beams

In this section we present the rich category of methods which perform visibility computation using pyramids
or cones. The apex can be defined by the viewpoint or by a point light source. It can be seen as the volume
occupied by the set of rays emanating from the apex and going through a particular object. The intersection of
such a volume with the scene accounts for the occlusion effects.

4.1 Shadow volumes

Shadow volumeshave been developed by Crow [Cro77] to compute hard shadows. They are pyramids defined
by a point light source and a blocker polygon. They are then used in a scan-line renderer as illustrated in Fig.
10.6.

scan-line

point light source

shadow volume

A
P

blocker

Figure 10.6: Shadow volume. As objectA is scan converted on the current scan-line, the shadowing of each
pixel is computed by counting the number of back-facing and front-facing shadow volume polygons on the line
joining it to the viewpoint. For point P, there is one front-facing intersection, it is thus in shadow.

The wedges delimiting shadow volumes are in fact visual events generated by the point light source and
the edges of the blockers. In the case of a polyhedron light source, only silhouette edges (with respect to the
source) need to be considered to build the shadow volume polygons.

Bergeron [Ber86] has proposed a more general version of Crow’s shadow volumes. His method has long
been very popular for production rendering.

Shadow volumes have also been used with ray-tracing [EK89]. Brotman and Badler [BB84] have presented
a z-buffer based use of shadow volumes. They first render the scene in a z-buffer, then they build the shadow
volumes and scan convert them. Instead of displaying them, for each pixel they keep the number of frontfacing
and backfacing shadow volume polygons. This method is hybrid object-space and image space, the advantage
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over the shadow map is that only one sampling is performed. They also sample an area light source with points
and add the contributions computed using their method to obtain soft shadow effects. An implementation
using current graphics hardware is described in [MBGN98] section 9.4.2. A hardware implementation has also
been developed onpixel-planearchitecture [FGH+85], except that shadow volumes are simply described as
plane-intersections.

Shadow volumes can also be used inversely as light-volumes to simulate the scattering of light in dusty air
(e.g., [NMN87, Hai91]).

Albrecht Dürer [Dür38] describes similar constructions, as shown in Fig. 10.7

Figure 10.7: Construction of the shadow of a cube by D¨urer.

4.2 Shadow volume BSP

Chin and Feiner [CF89] compute hard shadows using BSP trees. Their method can be compared to Atherton
et al.’s technique presented in section 2.1 of chapter 9 where the same algorithm is used to compute the view
and to compute the illuminated parts of the scene. Two BSP are however used: one for depth ordering, and one
calledshadow BSP treeto classify the lit and unlit regions of space.

The polygons are traversed from front to back from the light source (using the first BSP) to build a shadow
BSP tree. The shadow BSP tree is split along the planes of the shadow volumes. As a polygon is considered, it
is first classified against the current shadow BSP tree (Fig. 10.8(a)). It is split into lit and unlit parts. Then the
edges of the lit part are used to generate new splitting planes for the shadow BSP tree (Fig. 10.8 (b)).

The scene augmented with shadowing information can then be rendered using the standard BSP.
Chrysanthou and Slater [CS95] propose a method which avoids the use of the scene BSP to build the shadow

BSP, resulting in fewer splits.
Campbell and Fussel [CF90] were the first to subdivide a radiosity mesh along shadow boundaries using

BSPs. A good discussion and some improvements can be found in Campbell’s thesis [Cam91].

4.3 Beam-tracing and bundles of rays

Heckbert and Hanrahan [HH84] developedbeam tracing. It can be seen as a hybrid method between Weiler
and Atherton’s algorithm [WA77], Whitted’s ray-tracing [Whi80] and shadow volumes.

Beams are traced from the viewpoint into the scene. One initial beam is cast and clipped against the
scene polygons using Weiler and Atherton’s exact method, thus defining smaller beams intersecting only one
polygon (see Fig. 10.9(a)). If the a polygon is a mirror, a reflection beam is recursively generated. Its apex is
the symmetric to the viewpoint with respect to the light source (Fig. 10.9(b)). It is clipped against the scene,
and the computation proceeds.

Shadow beams are sent from the light source in a preprocess step similar to Athertonet al’s shadowing
[AWG78]. Refraction can be approximated by sending refraction beams. Unfortunately, since refraction is not
linear, this computation is not exact.

Dadoonet al. [DKW85] propose an efficient version optimized using BSP trees.
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Figure 10.8: 2D equivalent of shadow BSP. The splitting planes of the shadow BSP are represented with dashed
lines. (a) PolygonC is tested against the current shadow BSP. (b) It is split into a part in shadowC1 and a lit
partC2. The boundary of the lit part generates a new splitting plane.
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Figure 10.9: Beam tracing. (a) A beam is traced from the eye to the scene polygons. It is clipped against the
other polygons. (b) Since polygonA is a mirror, a reflected beam is recursively traced and clipped.

Amanatides [Ama84] and Kirk [Kir87] use cones instead of beams.Cone-tracingallows antialiasing as well
as depth-of-field and soft shadow effects. The practical use of this method is however questionable because
secondary cones are hard to handle and because object-cone intersections are difficult to perform. Shinyaet al.
[STN87] have formalized these concepts under the name ofpencil tracing.

Beam tracing has been used for efficient specular sound propagation by Funkhouser and his co-author.
[FCE+98]. A bidirectional version has also been proposed where beams are propagated both from the sound
source and from the receiver [FMC99].They moreoveramortizethe cost of beam propagation as listeners and
sources move smoothly.

Speer [SDB85] has tried to take advantage of the coherence of bundles of rays by building cylinders in free-
space around a ray. If subsequent rays are within the cylinder, they will intersect the same object. Unfortunately
his method did not procure the expected speed-up because the construction of the cylinders was more costly
than a brute-force computation.

Beams defined by rectangular windows of the image can allow high-quality antialiasing with general scenes.
Ghazanfarpour and Hasenfratz [GH98, Has98] classify non-simple pixels in a manner similar to the A-buffer
or to the ZZ-buffer, but they take shadows, reflection and refraction into account.

Teller and Alex [TA98] propose the use of beam-casting (without reflection) in a real-time context. Beams
are adaptively subdivided according to a time budget, permitting a trade-off between time and image quality.
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Finally Watt [Wat90] traces beams from the light source to simulate caustic effects which can for example
be caused by the refraction of light in water.

4.4 Occlusion culling from a point

Sometimes, nearby large objects occlude most of the scene. This is the case in a city where nearby facades
hide most of the buildings. Coorg and Teller [CT96, CT97b] quickly reject the objects hidden by some con-
vex polygonal occluders. The scene is organised into an octree. A Shadow volume is generated for each
occluder, and the cells of the octree are recursively classified against it as occluded, visible or partially visible,
as illustrated in Fig. 10.10.

scene octree

big convex
occluder

Figure 10.10: Occlusion culling with large occluders. The cells of the scene octree are classified against the
shadow volumes. In dark grey we show the hidden cells, while those partially occluded are in light grey.

The occlusion by a conjunction of occluders in not taken into account, as opposed to the hierarchical z-
buffer method exposed in section 3 of chapter 11. However we will see in section 4.2 of chapter 12 that they
treat frame-to-frame coherence very efficiently.

Similar approaches have been developed by Hudsonet al. [HMC+97]. Bittneret al. [BHS98] use shadow
volume BSP tree to take into account the occlusion caused by multiple occluders.

Woo and Amanatides [WA90] propose a similar scheme to speed-up hard shadow computation in ray-
tracing. They partition the scene in a regular grid and classify each voxel against shadow volumes as completely
lit, completely in umbra or complicated. Shadow rays are then sent only from complicated voxels.

Indoor architectural scenes present the dual characteristic feature to occlusion by large blockers: one can see
outside a room only through doors or windows. These opening are namedportals. Luebke and George [LG95]
following ideas by Jones [Jon71] and Clark [Cla76] use the portals to reject invisible objects in adjacent rooms.
The geometry of the current room is completely rendered, then the geometry of adjacent rooms is tested against
the screen bounding box of the portals as shown in Fig. 10.11. They also apply their technique to the geometry
reflected by mirrors.

This technique was also used for a walk through a virtual colon for the inspection of acquired medical data
[HMK+97] and has been implemented in a 3D game engine [BEW+98].

4.5 Best-next-view

Best-next-viewmethods are used in model reconstruction to infer the position of the next view from the data
already acquired. The goal is to maximize the visibility of parts of the scene which were occluded in the
previous view. They are delimited by thevolume of occlusionas represented in Fig. 10.12. These volumes are
in fact theshadow volumeswhere the camera is considered as a light source.

Reed and Allen [RA96] construct a BSP model of the object as well as the boundaries of the occlusion
volume. They then attempt to maximize the visibility of the latter. This usually results roughly in a 90� rotation
of the camera since the new viewpoint is likely to be perpendicular to the view volume.

Similar approaches have been developed by Maver and Bajcsy [MB93] and Bantaet al. [BZW+95].
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Figure 10.11: Occlusion culling using image-space portals. The geometry of the adjacent rooms is tested against
the screen bounding boxes of the portals
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Figure 10.12: Acquisition of the model of a 3D object using a range image. The volume of occlusion is the
unknown part of space.

This problem is very similar to the problem of gaps in image-based view warping (see section 1.7 of chapter
7 and Fig. 7.7 page 146). When a view is reprojected, the regions of indeterminate visibility lie on the boundary
of the volumes of occlusion.

5 Area light sources

5.1 Limits of umbra and penumbra

Nishita and Nakamae [NN85, NON85, NN83] have computed the regions of umbra and penumbra caused by
convex blockers. They show that the umbra from a polygonal light source of a convex object is the intersection
of the umbra volumes from the vertices of the source (see Fig. 10.13). The penumbra is the convex hull of the
union of the umbra volumes. They use Crow’s shadow volumes to compute these regions.

The umbra is bounded by portions ofEV events generated by one vertex of the source and one edge of the
blocker, while the penumbra is boundedEV events generated by edges and vertices of both the source and the
blocker.

Their method fails to compute the exact umbra caused by multiple blockers, since it is no longer the inter-
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Figure 10.13:Umbra (dark grey) and penumbra (light grey) of a convex blocker (adapted from [NN85]).

section of their umbras. The penumbra boundary is however valid, but some parts of the umbra are incorrectly
classified as penumbra. This is not a problem in their method because a shadow computation is performed in
the penumbra region (using an exact hidden line removal method). The umbra of a concave object is bounded
by EV visual events and also byEEE events (for example in Fig. 8.5 page 161 if polygon R is a source, the
EEE event exhibited is an umbra boundary). Penumbra regions are bounded only byEV events.

Drawings by da Vinci exhibit the first description of the limits of umbra and penumbra (Fig. 10.14).

5.2 BSP shadow volumes for area light sources

Chin and Feiner [CF92] have extended their BSP method to handle area light sources. They build two shadow
BSP, one for the umbra and one for the penumbra.

As in Nishita and Nakamae’s case, their algorithm does not compute the exact umbra volume due to the
occlusion by multiple blockers.

5.3 Discontinuity meshing

Heckbert [Hec92b, Hec92a] has introduced the notion of discontinuity meshing for radiosity computations.
At a visual event, aC2 discontinuity occurs in the illumination function (see [Arv94] for the computation of
illumination gradients). Heckbert usesEV discontinuity surfaces with one generator on the source.

Other authors [LTG93, LTG92, Stu94, Cam91, CF91a, GH94] have used similar techniques. See Fig. 10.15
for an example. Hardt and Teller [HT96] also consider discontinuities which are caused by indirect lighting.
Other discontinuity meshing techniques will be treated in section 2.3 of chapter 12 and 2.1 of chapter 13.

However, discontinuity meshing approaches have not yet been widely adopted because they are prone to
robustness problems and also because the irregular meshes induced are hard to handle.

5.4 Linear time construction of umbra volumes

Yoo et al. [YKSC98] perform the same umbra/penumbra classification as Nishita and Nakamae, but they avoid
the construction and intersection/union of all the shadow volumes from the vertices of the source.

They note that onlyEV events on separating and supporting planes have to be considered. Their algorithm
walks along the chain of edges and vertices simultaneously on the source and on the blocker as illustrated in
Fig. 10.16.
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Figure 10.14: Penumbra by Leonardo da Vinci (Manuscript). Light is coming from the lower window, and the
sphere causes soft shadows.

This can be interpreted in line space as a walk along the chain of 1 dimensional sets of lines defined by
visual events.

Related methods can be found in [Cam91, TTK96].

5.5 Viewpoint constraints

As we have seen, viewpoint optimisation is often performed for the monitoring of robotics tasks. In this
setting, the visibility of a particular feature of object has to be enforced. This is very similar to the computation
of shadows considering that the feature is an extended light source.

Cowan and Kovesi [CK88] use an approach similar to Nishita and Nakamae. They compute the penumbra
region caused by a convex blocker as the intersection of the half spaces defined by the separating planes of
the feature and blockers (i.e. planes tangent to both objects such that each object lies on a different side of the
plane). The union of the penumbra of all the blockers is taken and constraints related to the sensor are then
included: resolution of the image, focus, depth of field and view angle. The admissible region is the intersection
of these constraints.

Briggs and Donald [BD98] propose a 2D method which uses the intersection of half-planes defined by
bitangents. They also reject viewpoints from which the observation can be ambiguous because of similarities
in the workspace or in the object to be manipulated.

Tarabanis and Tsai [TTK96] compute occlusion free viewpoints for a general polyhedral scene and a general
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(a) (b)

Figure 10.15: Global illumination simulation. (a) Without discontinuity meshing. Note the jagged shadows. (b)
Using discontinuity meshing, shadows are finer (images courtesy of Dani Lischinski, Program of Computer
Graphics, Cornell University).

(a) (b)

(c) (d)

Figure 10.16:Linear time construction of a penumbra volume.

polygonal feature. They enumerate possibleEV wedges and compute their intersection.

Kim et al. [KYCS98] also present an efficient algorithm which computes the complete visibility region of
a convex object.
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5.6 Light from shadows

Poulinet al. [PF92, PRJ97] have developed inverse techniques which allow a user to sketch the positions of
shadows. The position of the light source is then automatically deduced.

The principle of shadow volumes is reversed: A pointP lies in shadow if the point light source is in a
shadow volume emanating from pointP. The sketches of the user thus define constraints under the form of an
intersection of shadow volumes (see Fig. 10.17).

Figure 10.17: Sketching shadows. The user specifies the shadows of the ellipsoid on the floor with the thick
strokes. This generates constraint cones (dashed). The position of the light source is then deduced (adapted
from [PRJ97]).

Their method can also handle soft shadows, and additional constraints such as the position of highlights.

6 Shafts

Shaft method are based on the fact that occlusion between two objects can be caused only by objects inside
their convex hull. Shafts can be considered as finite beams for which the apex is not a point. They can also be
seen as the volume of space defined by the set of rays between two objects.

6.1 Shaft culling

Haines and Wallace [HW91] have developed shaft culling in a global illumination context to speed up form
factor computation using ray-casting. They define a shaft between two objects (or patches of the scene) as the
convex hull of their bounding box (see Fig. 10.18).

A

B

C

Figure 10.18: Shaft culling. The shaft betweenA andB is defined as the convex hull of the union of their
bounding boxes. ObjectC intersects the shaft, it may thus cause occlusion betweenA andB.
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They have developed an efficient construction of approximate shafts which takes advantage of the axis
aligned bounding boxes. The test of an object against a shaft is also optimized for bounding boxes.

Similar methods have been independently devised by Zhang [Zha91] and Campbell [Cam91].
Marks et al [MWCF90], Campbell [Cam91] and Drettakis and Sillion [DS97] have derived hierarchical

versions of shaft culling. The hierarchy of shafts is implicitly defined by a hierarchy on the objects. This
hierarchy of shaft can also be seen as a hierarchy in line-space [DS97]. Bri`ere and Poulin [BP96] also use a
hierarchy of shafts or tubes to accelerate incremental updates in ray tracing.

6.2 Use of a dual space

Zao and Dobkin [ZD93] use shaft culling between pairs of triangles. They speed up the computation by the
use of a multidimensional dual space. They decompose the shaft between a pair of triangles into tetrahedra
and derive the conditions for another triangle to intersect a tetrahedron. These conditions are linear inequalities
depending on the coordinates of the triangle.

They use multidimensional spaces depending on the coordinates of the triangles to speed up these tests.
The queries in these spaces are optimized using binary trees (kd-trees in practice).

6.3 Occlusion culling from a volume

Cohen-Or and his co-authors [COFHZ98, COZ98] computepotentially visible setsfrom viewing cells. That
is, the part of the scene where the viewer is allowed (the viewing space in short) is subdivided into cells from
which the set of objects which may be visible is computed. This method can thus be seen as a viewpoint space
method, but the core of the computation is based on the shaft philosophy.

Their method detects if a convex occluder occludes an object from a given cell. If convex polygonal objects
are considered, it is sufficient to test if all rays between pairs of vertices are blocked by the occluder. The test
is early terminated as soon as a non-blocked ray is found. It is in fact sufficient to test only silhouette rays (a
ray between two point is a silhouette ray if each point is on the silhouette as seen from the other).

The drawback of this method is that it can not treat the occlusion caused by many blockers. The amount
of storage required by the potentially visible set information is also a critical issue, as well as the cost of
ray-casting.

7 Visibility propagation through portals

As already introduced, architectural scenes are organized into rooms, and inter-room visibility occurs only
along openings namedportals. This makes them particularly suitable for visibility preprocessing. Airey [Air90]
and Teller [Tel92b, TS91] decompose a building into cells (roughly representing rooms) and precomputePo-
tentially Visible Setsfor each set. These are superset of objects visible from the cell which will then typically
be sent to a z-buffer in a walkthrough application (see below).

7.1 Visibility computation

We describe here the methods proposed by Teller [Tel92b]. An adjacency graph is built connecting cells sharing
a portal. Visibility is then propagated from a cell to neighbouring cells through portal sequences in a depth-first
manner. Consider the situation illustrated in Fig. 10.19(a). CellB is visible from cellA through the sequence
of portalsp1p2. CellC is neighbour ofB in the adjacency graph, its visibility from A is thus tested. A sightline
stabbing the portalsp1, p2 and p3 is searched (see Fig. 10.19(b)). Astab-treeis built which encodes the
sequences of portals.

If the scene is projected on a floorplan, this stabbing problem reduces to find a stabber for a set of segments
and can be solved using linear programming (see [Tel92b, TS91]).

If rectangular axis-aligned portals are considered in 3D, Teller [Tel92b] shows that the problem can be
solved by projecting it in 2D along the three axis directions.

If arbitrary oriented portals are computed, he proposes to compute a conservative approximation to the
visible region [Tel92b, TH93]. As each portal is added to the sequence, theEV events bounding the visibility
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(a) (b)
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Figure 10.19: Visibility computations in architectural environments. (a) In grey: part of the scene visible from
the black cell. (b) A stabbing line (or sightline) through a sequence of portals.

region are updated. TheseEV events correspond to separating planes between the portals. For each edge of
the sequence of portals, only the extremal event is considered. The process is illustrated Fig. 10.20. It is a
conservative approximation becauseEEE boundaries are not considered.
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p3 p4
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(a) (b)

Figure 10.20: Conservative visibility propagation through arbitrary portals. (a) The separating plane considered
for e is generated byv3 because it lies below the one generated byv2. (b) As a new portal is added to the
sequence, the separating plane is updated with the same criterion.

If the visibility region is found to be empty, the new cell is not visible from the current cell. Otherwise,
objects inside the cell are tested for visibility against the boundary of the visibility region as in a shaft method.

Airey [Air90] also proposes an approximate scheme where visibility between portals is approximated by
casting a certain number of rays (see section 4 of chapter 13 for the approaches involving sampling with rays).
See also the work by Yagel and Ray [YR96] who describe similar ideas in 2D.

The portal sequence can be seen as a sort of infinite shaft. We will also study it as the set of lines going
through the portals in section 3.3 of chapter 13.

7.2 Applications

The primary focus of these potentially visible sets methods was the use in walkthrough systems. Examples
can be found in both Airey [ARB90] and Teller’s thesis [TS91, Tel92b]. Teller also uses an online visibility
computation which restricts the visible region to the current viewpoint. The stab-tree is used to speed up a
beam-like computation.

Funkhouseret al. [FS93] have extended Teller’s system to use other rendering acceleration techniques such
as mesh simplification in a real time context to obtain a constant framerate. He and his co-authors [FST92,
Fun96c] have also used the information provided by the potentially visible sets to efficiently load from the disk
or from the network only the parts of the geometry which may become visible in the subsequent frames. It can
also be used in a distributed virtual environment context to limit the network bandwidth to messages between
clients who can see each other [Fun95].

These computations have also been applied to speed-up radiosity computations by limiting the calculation
of light interactions between mutually visible objects [TH93, ARB90]. It also permits lighting simulations for
scenes which cannot fit into memory [TFFH94, Fun96b].
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CHAPTER 11

Image-Space

L’art de peindre n’est que l’art d’exprimer l’invisible
par le visible

Eugène FROMENTIN

OST OF the image-space methods we present are based on a discretisation of an image.
They often take advantage of the specialised hardware present in most of today’s computers,
which makes them simple to implement and very robust. Sampling rate and aliasing are
however often the critical issues. We first present some methods which detect occlusions

using projections on a sphere or on planes. Section 1 deals with the use of the z-buffer hardware to speed-
up visibility computation. We then survey extensions of the z-buffer to perform occlusion-culling. Section
4 presents the use of a z-buffer orthogonal to the view for occlusion-culling for terrain-like scenes. Section 5
presents epipolar geometry and its use to perform view-warping without depth comparison. Section 6 discusses
the computation of soft shadow using convolution, while section 7 deals with shadow-coherence in image-
space.

1 Projection methods

1.1 Shadow projection on a sphere

Bouknight and Kelly [BK70] propose an optimization to compute shadows during a scan-line process as pre-
sented in section 6 of chapter 9. Their method avoids the need to intersect the wedge defined by the current
span and the light source with all polygons of the scene.

As a preprocess, the polygons of the scene are projected onto a sphere centered at the point light source. A
polygon can cast shadows on another polygon only if their projections overlap. They use bounding-box tests
to speed-up the process.

Slater [Sla92] proposes a similar scheme to optimize the classification of polygons in shadow volume BSPs.
He uses a discretized version of a cube centered on the source. Eachtile (pixel) of the cube stores the polygon
which project on it. This speeds up the determination of overlapping polygons on the cube. This shadow tiling
is very similar to the light-buffer and to the hemicube which we will present in section 2.

191
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1.2 Area light sources

Chrysanthou and Slater [CS97] have extended this technique to handle area light sources. In the methods
presented above, the size of the sphere or cube does not matter. This is not the case of the extended method: a
cube is taken which encloses the scene.

For each polygon, the projection used for point light sources becomes the intersection of itspenumbra
volumewith the cube. The polygons with which it interacts are those which project on the same tiles.

1.3 Extended projections

The extended projection method proposed in chapter 5 of this thesis can be seen as an extension of the latter
technique to perform offline occlusion culling from a volumetric cell (it can also be seen as an extension
of Greene’s hierarchical z-buffer surveyed in section 3). The occluders and occludees are projected onto a
projection plane usingextended projection operators. The extended projection of an occluder is the intersection
of its views from all the viewpoints inside the cell. The extended projection of an occludee is the union of its
views (similar to the penumbra used by Chrysanthouet al.).

If the extended projection of an occludee is in the cumulative extended projection of some occluders (and
if it lies behind them), then it is ensured that it is hidden from any point inside the cell. This method handles
occluder fusion.

2 Advanced z-buffer techniques

The versatility and robustness of the z-buffer together with efficient hardware implementations have inspired
many visibility computation and acceleration schemes1. The use of the frame-buffer as a computational model
has been formalized by Fournier and Fussel [FF88].

2.1 Shadow maps

As evoked in section 1.2 of chapter 7, hard shadow computation can be seen as the computation of the points
which are visible from a point-light source. It is no surprise then that the z-buffer was used in this context.

Figure 11.1: Shadow map principle. A shadow map is computed from the point of view of the light source
(z-values are represented as grey levels). Then each point in the final image is tested for shadow occlusion by
projecting it back in the shadow map (gallion model courtesy of Viewpoint Datalab).

A two pass method is used. An image is first computed from the source using a z-buffer. Thez values of
the closest points are stored in a depth map calledshadow map. Then, as the final image is rendered, deciding

1Unexpected applications of the z-buffer have also been proposed such as 3D motion planning [LRDG90], Voronoi diagram computa-
tion [Hae90, ICK+99] or collision detection [MOK95].
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if a point is in shadow or not consists in projecting it back to the shadow map and comparing its distance to
the stored z value (similarly to shadow rays, using the depth map as a query data-structure). The shadow map
process is illustrated in Fig 11.1. Shadow maps were developed by Williams [Wil78] and have the advantage
of being able to treat any geometry which can be handled by a z-buffer. Discussions of improvements can be
found in [Gra92, Woo92].

The main drawback of shadow masks is aliasing. Standard filtering can not be applied, because averaging
depth values makes no sense in this context. This problem was addressed by Reeveset al. [RSC87]. Averaging
the depth values of the neighbouring pixels in the shadow map before performing the depth comparison would
make no sense. They thus first compare the depth value with that of the neighbouring pixels, then they compute
the average of the binary results. Had-oc soft shadows are obtained with this filtering, but the size of the
penumbra is arbitrary and constant. See also section 6 for soft computation using an image-space shadow-map.

Soft shadow effects can be also achieved by sampling an extended light source with point light sources and
averaging the contributions [HA90, HH97, Kel97]. See also [Zat93] for a use of shadow maps for high quality
shadows in radiosity lighting simulation.

Shadow maps now seem to predominate in production. Ray tracing and shadow rays are used only when the
artifacts caused by shadow maps are too noticeable. A hardware implementation of shadow maps is now avail-
able on some machines which allow the comparison of a texture value with a texture coordinate [SKvW+92]2.

Zhang [Zha98a] has proposed an inverse scheme in which the pixels of the shadow map are projected in
the image. His approach consists in warping the view from the light source into the final view using the view
warping technique presented in section 1.7 of chapter 7. This is similar in spirit to Atherton and Weiler’s
method presented in section 2.1 of chapter 9: the view from the source is added to the scene database.

2.2 Ray-tracing optimization using item buffers

A z-buffer can be used to speed up ray-tracing computations. Weghorstet al. [WHG84] use a z-buffer from
the viewpoint to speed up the computation of primary rays. An identifier of the objects is stored for each pixel
(for example each object is assigned a unique color) in a so calleditem buffer. Then for each pixel, the primary
ray is intersected only with the corresponding object. See also [Sun92].

Haines and Greenberg [HG86] propose a similar scheme for shadow rays. They place alight buffercentered
on each point light source. It consists of 6 item buffers forming a cube (Fig. 11.2(a)). The objects of the scene
are projected onto this buffer, but no depth test is performed, all objects projecting on a pixel are stored. Object
lists are sorted according to their distance to the point light source. Shadow rays are then intersected only with
the corresponding objects, starting with the closest to the source.

Poulin and Amanatides [PA91] have extended the light-buffer to linear light sources. This latter method
is a first step towards line-space acceleration techniques that we present in section 1.4 of chapter 13, since it
precomputes all objects intersected by the rays emanating from the light source.

Salesin and Stolfi [SS89, SS90] have extended the item buffer concept for ray-tracing acceleration. Their
ZZ-bufferperforms anti-aliasing through the use of an A-buffer like scheme. They detect completely covered
pixels, avoiding the need for a subsampling of that pixel. They also sort the objects projecting on a non -
simple pixel by their depth intervals. The ray-object intersection can thus be terminated earlier as soon as an
intersection is found.

ZZ buffers can be used for primary rays and shadow rays. Depth of field and penumbra effects can also be
obtained with a slightly modified ZZ-buffer.

In a commercial products such as Maya from Alias Wavefront [May99], an A-buffer and a ray-tracer are
combined. The A-buffer is used to determine the visible objects, and ray-tracing is used only for pixels where
high quality refraction or reflection is required, or if the shadow maps cause too many artifacts.

2A shadow map is computed from the point light source and copied into texture memory. The texture coordinate matrix is set to the
perspective matrix from the light source. The initialu;v;w texture coordinate of a vertex are set to its 3D coordinates. After transformation,
w represents the distance to the light source. It is compared against the texture value atu;v, which encodes the depth of the closest object.
The key feature is the possibility to draw a pixel only if the value ofw is smaller than the texture value atu;v.See [MBGN98] section 9.4.3.
for implementation details.
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Figure 11.2: (a) Light buffer. (b) Form factor computation using the hemicube. Five z-buffers are placed around
the center of patchA. All form factors betweenA and the other patches are evaluated simultaneously, and
occlusion ofC by B is taken into account.

2.3 The hemicube

Recall thatform factorsare used in radiosity lighting simulations to model the proportion of light leaving a
patch which arrives at another. The first method developed to estimate visibility for form factor computations
was thehemicubewhich uses five item-buffer images from the center of a patch as shown in Fig. 11.2(b). The
form factor between one patch and all the others is evaluated simultaneously by counting the number of pixels
covered by each patch.

The hemicube was introduced by Cohenet al. [CG85] and has long been the standard method for radiosity
computations. However, as for all item buffer methods, sampling and aliasing problems are its main drawbacks.
In section 2.2 of chapter 9 and section 4 of chapter 13 we present some solutions to these problems.

Sillion and Puech [SP89] have proposed an alternative to the hemicube which uses only one plane parallel
the patch (the plane is however not uniformly sampled: A Warnock subdivision scheme is used.

Pietrek [Pie93] describe an anti-aliased version of the hemicube using a heuristic based on the variation
between a pixel and its neighbours. See also [Mey90, BRW89]. Alonso and Holzschuch [AH97] present
similar ideas as well as a deep discussion of the efficient access to the graphics hardware resources.

2.4 Sound occlusion and non-binary visibility

The wavelengths involved in sound propagation make it unrealistic to neglect diffraction phenomena. Simple
binary visibility computed using ray-object intersection is far from accurate.

Tsingos and Gascuel [TG97a] useFresnel ellipsoidsand the graphics hardware to compute semi-quantitative
visibility values between a sound source and a microphone. Sound does not propagate through lines; Fresnel
ellipsoids describe the region of space in which most of the sound propagation occurs. Their size depends on
the sound frequency considered. Sound attenuation can be modeled as the amount of occluders present in the
Fresnel ellipsoid. They use the graphics hardware to compute a view from the microphone in the direction of
the source, and count the number of occluded pixels.

They also use such a view to compute diffraction patterns on an extended receiver such as a plane [TG97b].
One view is computed from the source, and then for each point on the receiver, and integral is computed using
the z values of the view. The contribution of each pixel to diffraction is then evaluated (see Fig. 11.3 for an
example).
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Figure 11.3: Non binary visibility for sound propagation. The diffraction by the spheres of the sound emitted by
the source causes the diffraction pattern on the plane. (a) Geometry of the scene. (b) z-buffer from the source.
(c) Close up of the diffraction pattern of the plane. (Courtesy of Nicolas Tsingos, iMAGIS-GRAVIR).

3 Hierarchical z-buffer

The z-buffer is simple and robust, however it has linear cost in the number of objects. With the ever increasing
size of scenes to display,occlusion cullingtechniques have been developed to avoid the cost incurred by objects
which are not visible.

Greeneet al. [GKM93, Gre96] propose a hierarchical version of the z-buffer to quickly reject parts of the
scene which are hidden. The scene is partitioned to an octree, and cells of the octree are rendered from front to
back (the reverse of the originalpainter algorithm, seee.g.[FvDFH90, Rog97] or section 4 of chapter 9) to be
able to detect the occlusion of back objects by frontmost ones. Before it is rendered, each cell of the octree is
tested for occlusion against the current z values. If the cell is occluded, it is rejected, otherwise its children are
treated recursively.

The z-buffer is organised in a pyramid to avoid to test all the pixels of the cell projection. Fig. 11.4 shows
the principle of the hierarchical z-buffer.

scene octreehierarchical z-buffer

Figure 11.4: Hierarchical z-buffer.

The hierarchical z-buffer however requires many z-value queries to test the projection of cells and the
maintenance of the z-pyramid; this can not be performed efficiently on today’s graphics hardware. Zhanget
al. [ZMHH97, Zha98b] have presented a two pass version of the hierarchical z-buffer which they have suc-
cessfully implemented using available graphics hardware. They first render a subset of close and big objects
called occluders, then read the frame buffer and build a so-calledhierarchical occlusion mapagainst which they
test the bounding boxes of the objects of the scene. This method has been integrated in a massive model ren-
dering system system [ACW+99] in combination with geometric simplification and image-based acceleration
techniques.

The strength of these methods is that they consider general occluders and handleoccluder fusion, i.e. the
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occlusion by a combination of different objects.
The library Open GL Optimizer from Silicon Graphics proposes a form of screen space occlusion culling

which seems similar to that described by Zhanget al. Some authors [BMT98] also propose a modification to
the current graphics hardware to have access to z-test information for efficient occlusion culling.

4 Occluder shadow footprints

Many 3D scenes have in fact only two and a half dimensions. Such a scene is called aterrain, i.e., a function
z= f (x;y). Wonka and Schmalstieg [WS99] exploit this characteristic to compute occlusions with respect to a
point using a z-buffer with a top view of a scene.

occluder shadow
footprint

occluder

occluder
shadow
wedge

occludee

viewpoint

side view top view

occluder shadow
footprint

occludee

occluder

Figure 11.5: Occluder shadow footprints. A projection from above is used to detect occlusion. Objects are hid-
den if they are below the occluder shadows. The footprints (with height) of the occluded regions are rasterized
using a z-buffer. Depth is represented as grey levels. Note the gradient in the footprint due to the slope of the
wedge.

Consider the situation depicted in Fig. 11.5 (side view). They call the part of the scene hidden by the
occluder from the viewpoint theoccluder shadow(as if the viewpoint were a light source). This occluder
shadow is delimited by wedges. The projection of such a wedge on the floor is called the footprint, and an
occludee is hidden by the occluder if it lies on the shadow footprint and if it is below the edge.

The z-buffer is used to scan-convert and store the height of the shadow footprints, using an orthographic
top view (see Fig. 11.5). An object is hidden if its projection from above is on a shadow footprint and if it is
belowthe shadow wedgesi.e, if it is occluded by the footprints in the top view.

5 Epipolar rendering

Epipolar geometry has been developed in computer vision for stereo matching (seee.g.[Fau93]). Assume that
the geometry of two cameras is known. Consider a pointA in the first image (see Fig. 11.6). The possible point
of the 3D scene must lie on the lineLA going throughA and viewpoint 1. The projection of the corresponding
point of the scene on the second image is constrained by the epipolar geometry: it must be on lineL0A which is
the projection ofLA on image 2. The search for a correspondence can thus be restricted from a 2D search over
the entire image to a 1D search on theepipolar line.

Mc Millan and Bishop [MB95] have taken advantage of the epipolar geometry for view warping. Consider
the warping from image 2 to image 1 (image 2 is the initial image, and we want to obtain image 1 by reprojecting
the points of image 2). We want to decide which point(s) is reprojected onA. These are necessarily points on
the epipolar lineL0A. However, many points may project onA; only the closest has to be displayed. This can be
achieved without actual depth comparison, by warping the points of the epipolar lineL0A in the order shown by
the thick arrow, that is, from the farthest to the closest. If more than one point projects onA, the closest will
overwrite the others. See also section 1.5 of chapter 13 for a line-space use of epipolar geometry.
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Figure 11.6: Epipolar geometry.LA is the set of all points of the scene possibly projecting onA. L0A is the
projection on image 2. For a warping from image 2 to image 1, points of image 2 have to be reprojected to
image 1 in the order depicted by the arrows for correct occlusion.

6 Soft shadows using convolution

Soler and Sillion [SS98a, Sol98] have developed efficient soft shadow computations based on the use of con-
volutions. Some of the ideas are also present in a paper by Max [Max91]. A simplification could be to see their
method as a “wise” blurring of shadow maps depending on the shape of the light source.

source

blocker

convolution
kernel

(a) (b) (c)

Figure 11.7: Soft shadows computation using convolution. (a) Geometry of the scene. (b) Projection on a
parallel approximate geometry. (c) The shadow is the convolution of the projection of the blockers with the
inverse image of the source.

Consider an extended light source, a receiver and some blockers as shown in Fig. 11.7(a). This geometry is
first projected onto three parallel planes (Fig. 11.7(b)). The shadow computation for this approximate geometry
is equivalent to a convolution: the projection of the blocker(s) is convolved with the inverse projection of the
light source (see Fig. 11.7(c)). The shadow map obtained is then projected onto the receiver (this is not
necessary in our figures since the receiver is parallel to the approximate geometry).

In the general case, the shadows obtained are not exact: the relative sizes of umbra and penumbra are not
correct. They are however not constant if the receiver is not parallel to the approximate geometry. The results
are very convincing (see Fig. 11.8).

For higher quality, the blockers can be grouped according to their distance to the source. A convolution
is performed for each group of blockers. The results then have to be combined; Unfortunately the correlation
between the occlusions of blockers belonging to different groups is lost (see also [Gra92] for a discussion of
correlation problems for visibility and antialiasing).

This method has also been used in a global simulation system based on radiosity [SS98b].

7 Shadow coherence in image-space

Haines and Greenberg [HG86] propose a simple scheme to accelerate shadow computation in ray-tracing. Their
shadow cachesimply stores a pointer to the object which caused a shadow on the previous pixel. Because of
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Figure 11.8: Soft shadows computed using convolutions (image courtesy of Cyril Soler, iMAGIS-GRAVIR)

coherence, it is very likely that this object will continue to cast a shadow on the following pixels.
Pearce and Jevans [PJ91] extend this idea to secondary shadow rays. Because of reflection and refrac-

tion, many shadow rays can be cast for each pixel. They thus store a tree of pointers to shadowing objects
corresponding to the secondary ray-tree.

Worley [Wor97] pushes the idea a bit further for efficient soft shadow computation. He first computes
simple hard shadows using one shadow-ray per pixel. He notes that pixels where shadow status changes are
certainly in penumbra, and so are their neighbours. He thus “spreads” soft shadows, using more shadow rays
for these pixels. The spreading operation stops when pixels in umbra or completely lit are encountered.

Hart et al [HDG99] perform a similar image-space floodfill to compute a blocker map: for each pixel,
the objects casting shadows on the visible point are stored. They are determined using a low number of rays
per pixel, but due to the image-space flood-fill the probability to miss blockers is very low. They then use an
analytic clipping of the source by the blockers to compute the illumination of each pixel.



CHAPTER 12

Viewpoint-Space

On ne voit bien qu’avec le cœur. L’essentiel est invisible
pour les yeux.

Antoine de Saint-EXUPERY, Le Petit Prince

IEWPOINT-SPACE methods characterize viewpoints with respect to some visibility property.
We first present the aspect graph which partitions viewpoint space according to the qualitative
aspect of views. It is a fundamental visibility data-structure since it encodes all possible views
of a scene. Section 2 presents some methods which are very similar to the aspect graph. Section

3 deals with the optimization of a viewpoint or set of viewpoints to satisfy some visibility criterion. Finally
section 4 presents two methods which use visual events to determine the viewpoints at which visibility changes
occur.

1 Aspect graph

As we have seen in section 2 of chapter 7 and Fig. 7.8 page 148, model-based object recognition requires a
viewer-centered representation which encodes all the possible views of an object. This has led Koenderink
and Van Doorn [Kv76, Kv79] to develop thevisual potentialof an object which is now more widely known
as theaspect graph(other terminology are also used in the literature such asview graph, characteristic views,
principal views, viewing data, view classesor stable views).

Aspect graph approaches consist in partitioning viewpoint space into cells where the view of an object are
qualitatively invariant. The aspect graph is defined as follows:

� Each node represents ageneral viewor aspectas seen form a connected cell of viewpoint space.

� Each arc represents avisual event, that is, a transition between two neighbouring general views.

The aspect graph is the dual graph of the partition of viewpoint space into cells of constant aspect. This
partition is often namedviewing dataorviewpoint space partition. The terminology aspect graph and viewpoint
space partition are often used interchangeably although they refer to dual concepts.
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Even though all authors agree on the general definition, the actual meaning ofgeneral viewandvisual event
varies. First approximate approaches have considered the set of visible features as defining a view. However for
exact approaches theimage structure graphhas rapidly imposed itself. It is the graph formed by the occluding
contour or visible edges of the object. This graph may be labeled with the features of the object.

It is important to understand that the definition of the aspect graph is very general and that any definition of
the viewing space and aspect can be exchanged. This makes the aspect graph concept a very versatile tool as
we will see in section 2.

Aspect graphs have inspired a vast amount of work and it is beyond the scope of this survey to review all
the literature in this field. We refer the reader to the survey by Eggertet al. [EBD92] or to the articles we
cite and the references therein. Approaches have usually been classified according to the viewpoint space used
(perspective or orthographic) and by the class of objects considered. We will follow the latter, reviewing the
methods devoted to polyhedra before those related to smooth objects. But first of all, we survey the approximate
method which use a discretization of viewpoint space.

1.1 Approximate aspect graph

Early aspect graph approaches have used a quasi uniform tessellation of the viewing sphere for orthographic
projection. It can be obtained through the subdivision of an initial icosahedron as shown by Fig. 12.1. Sample
views are computed from the vertices of this tessellation (the typical number of sample views is 2000). They
are then compared, and similar views are merged. Very often, the definition of the aspect is the set of visible
features (face, edge, vertex) and not their adjacencies as it is usually the case for exact aspect graphs This
approach is very popular because of its simplicity and robustness, which explains that it has been followed by
many researcherse.g. [Goa83, FD84, HK85]. We will see that most of the recognition systems using aspect
graphs which have been implemented use approximate aspect graphs.

Figure 12.1: Quasi uniform subdivision of the viewing sphere starting with an icosahedron.

We will see in section 3.2 that this quasi uniform sampling scheme has also been applied for viewpoint
optimization problems.

A similar approach has been developed for perspective viewpoint space using voxels [WF90].
The drawback of approximate approaches is that the sampling density is hard to set, and approximate

approach may miss some important views, which has led some researchers to develop exact methods.

1.2 Convex polyhedra

In the case of convex polyhedra, the only visual events are caused by viewpoints tangent to faces. See Fig.
12.2 where the viewpoint partition and aspect graph of a cube are represented. For orthographic projection, the
directions of faces generate 8 regions on the viewing sphere, while for perspective viewpoint space, the 6 faces
of the cube induce 26 regions.

The computation of the visual events only is not sufficient. Theirarrangementmust be computed, that is,
the decomposition of viewpoint space into cells, which implies the computation of the intersections between
the events to obtain the segments of events which form the boundaries of the cells. Recall that the arrangement
of n lines (or well-behaved curves) in 2D hasO(n2) cells. In 3D the arrangement ofn planes has complexity
O(n3) in size [dBvKOS97, O’R94, Ede87, BY98].

The first algorithms to build the aspect graph of 3D objects have dealt with convex polyhedra under ortho-
graphic [PD86] and perspective [SB90, Wat88] projection.



1. ASPECT GRAPH 201

(b) (c)(a)

1

2
3

1

2
3

4

2 3

1

2
6

4

26

1

2
31

2

2

2 3

4

2

1
6

26

4

2 36 2

2

4

(d) (e)

1

2
6

4

2 3

4

53

1

5
3

1

5
6

4

5 6

4

26

1

2
3

1

2
3

1

2

2 3

4

2 3

2

4

26

4

6 2

2

1
6

2

Figure 12.2: Aspect graph of a convex cube. (a) Initial cube with numbered faces. (b) and (c) Partition of
the viewpoint space for perspective and orthographic projection with some representative aspects. (d) and
(e) Corresponding aspect graphs. Some aspects are present in perspective projection but not in orthographic
projection, for example when only two faces are visible. Note also that the cells of the perspective viewpoint
space partition have infinite extent.

1.3 General polyhedra

General polyhedra are more involved because they generate edge-vertex and triple-edge events that we have
presented in chapter 8. Since the number of triple-edge events can be as high asO(n3), the size of the aspect
graph of a general polygon isO(n6) for orthographic projection (since the viewing sphere is two dimensional),
andO(n9) for perspective projection for which viewpoint space is three-dimensional. However these bounds
may be very pessimistic. Unfortunately the lack of available data impede a realistic analysis of the actual
complexity. Note also that we do not count here the size of the representative views of aspects, which can be
O(n2) each, inducing a sizeO(n8) for the orthographic case andO(n11) for the perspective case.

The cells of the aspect graph of a general polyhedron are not necessary convex. Partly because of theEEE
events, but also because of theEV events. This is different from the 2D case where all cells are convex because
in 2D visual events are line segments.

We detail here the algorithms proposed by Gigus and his co-authors [GM90, GCS91] to build the aspect
graph of general polyhedra under orthographic projection.

In the first method [GM90], potential visual events are considered for each face, edge-vertex pair and triple
of edges. At this step, occlusion is not taken into account: objects lying between the generators of the events
are considered transparent. These potential events are projected on the viewing sphere, and the arrangement is
built using a plane sweep.

However, some boundaries of the resulting partition may correspond to false visual event because of occlu-
sion. For example, an object may lie between the edge and vertex of an EV event as shown in Fig. 12.3. Each
segment of cell boundary (that is, each portion of visual event) has to be tested for occlusion. False segment
are discarded, and the cells are merged.

Gigus Canny and Seidel [GCS91] propose to cope with the problem of false events before the arrangement
is constructed. They compute the intersection of all the event with the object in object space as shown in Fig.
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Figure 12.3: False event (“transparent” event). ObjectR occludes vertexV from edgeE, thus only a portion
of the potential visual event corresponds to an actual visual event. (a) In object space. (b) In orthographic
viewpoint space.

12.3(a), and only the unoccluded portion is used for the construction of the arrangement.

They also propose to store and compute the representative view efficiently. They store only one aspect for
an arbitrary seed cell. Then all other views can be retrieved by walking along the aspect graph and updating
this initial view at each visual event.

(a) (b)

Figure 12.4: Aspect graph of a L-shaped polyhedron under orthographic projection (adapted from [GM90]). (a)
Partition of the viewing sphere and representative views. (b) Aspect graph.

These algorithms have however not been implemented to our knowledge. Fig. 12.4 shows the partition of
the viewing sphere and the aspect graph of a L-shaped polyhedron under orthographic transform.

Similar construction algorithms have been proposed by Stewman and Bowyer [SB88] and Stewman [Ste91]
who also deals with perspective projection.

We will see in section 1.1 of chapter 13 that Plantinga and Dyer [PD90] have proposed a method to build the
aspect graph of general polyhedra which uses an intermediate line space data-structure to compute the visual
events.
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1.4 Curved objects

Methods to deal with curved objects were not developed till later. Seales and Dyer [SD92] have proposed the
use of a polygonal approximation of curved objects with polyhedra, and have restricted the visual events to
those involving the silhouette edges. For example, an edge-vertex eventEV will be considered only ifE is a
silhouette edge fromV (as this is the case in Fig. 8.3 page 160). This is one example of the versatility of the
aspect graph definition: here the definition of the aspect depends only on the silhouette.

Kriegman and Ponce [KP90] and Eggert and Bowyer [EB90] have developed methods to compute aspect
graphs of solids of revolution under orthographic projection, while Eggert [Egg91] also deals with perspective
viewpoint space. Objects of revolution are easier to handle because of their rotational symmetry. The problem
reduces to a great circle on the viewing sphere or to one plane going through the axis of rotation in perspective
viewpoint space. The rest of the viewing data can then be deduced by rotational symmetry. Eggertet al.
[EB90, Egg91] report an implementation of their method.

The case of general curved object requires the use of the catalogue of singularities as proposed by Callahan
and Weiss [CW85]; they however developed no algorithm.

Petitjean and his co-authors [PPK92, Pet92] have presented an algorithm to compute the aspect graph of
smooth objects bounded by arbitrary smooth algebraic surface under orthographic projection. They use the
catalogue of singularities of Kergosien [Ker81]. There approach is similar to that of Gigus and Malik [GM90].
They first trace the visual events of the “transparent” object (occlusion is not taken into account) to build a
partition of the viewing sphere. They then have to discard the false (also called occluded) events and merge
the corresponding cells. Occlusion is tested using ray-casting at the center of the boundary. To trace the visual
event, they derive their equation using a computer algebra system and powerful numerical techniques. The
degree of the involved algebraic systems is very large, reaching millions for an object described by an equation
of degree 10. This algorithm has nevertheless been implemented and an example of result is shown in Fig.
12.5.

Figure 12.5: Partition of orthographic viewpoint space for a dimple object with representative aspects. (adapted
from [PPK92]).

Similar methods have been developed by Sripradisvarakul and Jain [SJ89], Ponce and Kriegman [PK90]
while Rieger [Rie92, Rie93] proposes the use of symbolic computation and cylindrical algebraic decomposition
[Col75] (for a good introduction to algebraic decomposition see the book by Latombe [Lat91] p. 226).

Chen and Freeman [CF91b] have proposed a method to handle quadric surfaces under perspective projec-
tion. They use a sequence of growing concentric spheres centered on the object. They trace the visual events
on each sphere and compute for which radius the aspects change.

Finally PetitJean has studied the enumerative properties of aspect graphs of smooth and piecewise smooth
objects [Pet95, Pet96]. In particular, he gives bounds on the number of topologically distinct views of an object
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using involved mathematical tools.

1.5 Use of the aspect graph

The motivation of aspect graph research was model-based object recognition. The aspect graph provides infor-
mations on all the possible views of an object. The use of this information to recognise an object and its pose
are however far from straightforward, one reason being the huge number of views. Once the view of an object
has been acquired from a camera and its features extracted, those features can not be compared to all possible
views of all objects in a database: indexing schemes are required. A popular criterion is the number of visible
features (face, edge, vertex) [ESB95].

The aspect graph is then often used to build offline astrategy tree[HH89]or aninterpretation tree[Mun95].
At each node of an interpretation tree corresponds a choice of correspondence, which then recursively leads to
a restricted set of possible interpretation. For example if at a node of the tree we suppose that a feature of the
image corresponds to a given featureA of a model, this may exclude the possibility of another featureB to be
present because featureA andB are never visible together.

The information of the viewing space partition can then be used during pose estimation to restrict the
possible set of viewpoint [Ike87, ESB95]. If the observation is ambiguous, Hutchinson and Kak [HK89] and
Gremban and Ikeuchi [GI87] also use the information encoded in the aspect graph to derive a new relevant
viewpoint from which the object and pose can be discriminated.

Dickinsonet al. [DPR92] have used the aspect for object composed of elementary objects which they call
geons. They use an aspect graph for each geon and then use structural information on the assembly of geons to
recognise the object.

However the aspect graph has not yet really imposed itself for object recognition. The reasons seem to
be the difficulty of robust implementation of exact methods, huge size of the data-structure and the lack of
obvious and efficient indexing scheme. One major drawback of the exact aspect graphs is that they capture all
the possible views, whatever their likelihood or significance. The need of a notion “importance” orscaleof the
features is critical, which we will discuss in section 1 of chapter 14.

For a good discussion of the pros and cons of the aspect graph, see the report by Faugeraset al. [FMA+92].
Applications of the aspect graph for rapid view computation have also been proposed since all possible

views have been precomputed [PDS90, Pla93]. However, the only implementation reported restricted the
viewpoint movement to a rotation around one axis.

More recently Gu and his coauthors [GGH+99] have developed a data-structure which they call asilhouette
treewhich is in fact an aspect graph for which the aspect is defined only by the exterior silhouette. It is built
using a sampling and merging approach on the viewing sphere. It is used to obtain images with a very fine
silhouette even if a very simplified version of the object is rendered.

Pellegrini [Pel99] has also used a decomposition of the space of direction similar to the aspect graph to
compute the form factor between two unoccluded triangles. The sphereS2 is decomposed into regions where
the projection of the two triangles has the same topology. This allows an efficient integration because no
discontinuity of the integration kernel occur in these regions.

A somehow related issue is the choice of a good viewpoint for the view of a 3D graph. Visual intersections
should be avoided. These in fact correspond toEV or EEE events. Some authors [BGRT95, HW98, EHW97]
thus propose some methods which avoid points of the viewing sphere where such events project.

2 Other viewpoint-space partitioning methods

The following methods exhibit a typical aspect graph philosophy even though they use a different terminology.
They subdivide the space of viewpoints into cells where a view is qualitatively invariant.

2.1 Robot Localisation

Deducing the position of a mobile robot from a view is exactly the same problem as determining the pose of an
object. The differences being that a range sensor is usually used and that the problem is mostly two dimensional
since mobile robots are usually naturally constrained on a plane.



2. OTHER VIEWPOINT-SPACE PARTITIONING METHODS 205

Methods have thus been proposed which subdivide the plane into cells where the set of visible walls is
constant [GMR95, SON96, TA96]. See Fig. 12.6. Visual events occur when the viewpoint is aligned with a
wall segments or along a line going through two vertices. Indexing is usually done using the number of visible
walls.

Figure 12.6: Robot self-localization. Partition of a scene into cells of structurally invariant views by visual
events (dashed).

Guibas and his co-authors [GMR95] also propose to index the aspects in a multidimensional space. To
summarize, they associate to a view withm visible vertices a vector of 2m dimensions depending on the
coordinates of the vertices. They then use standard multidimensional search methods [dBvKOS97].

2.2 Visibility based pursuit-evasion

The problem of pursuit-evasion presented in section 3 and Fig. 7.14 page 152 can also be solved using an
aspect-graph-like structure. Remember that the robot has to “clean” a scene by checking if an intruder is
present. “Contaminated” regions are those where the intruder can hide. We present here the solution developed
by LaValleet al. [LLG+97, GLL+97, GLLL98].
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Figure 12.7: Pursuit-Evasion strategy. (a) The contaminated region can be cleaned only if the visual event is
crossed. The status of the neighbouring regions is coded on the gap edges. (b) The robot has moved to a second
cell, cleaning a region. (c) Part of the graph of possible states (upper node correspond to cell in (a) while lower
nodes correspond to the cell in (b)). In thick we represent the goal states and the move from (a) to (b).

Consider the situation in Fig. 12.7(a). The view from the robot is in dark grey. The contaminated region
can be cleaned only when the indicated visual event is crossed as in Fig. 12.7(b).

The scene is partitioned by the visibility event with the same partition as for robot localization (see Fig.
12.6). For each cell of the partition, the structure of the view polygon is invariant, and in particular thegap
edges(edges of the view which are not on the boundary of the scene). The status of the neighbouring regions
is coded on these gap edges: 0 indicates a contaminated region while 1 indicates a cleaned one.

The state of the robot is thus coded by its current cell and the status of the corresponding gap edges. In
Fig 12.7(a) the robot status is(1;0), while in (b) it is (1). Solving the pursuit problem consists in finding the
succession of states of the robot which end at a state where all gap edges are at 1. A graph is created with one
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node for each state (that means 2m states for a cell withm edges). Edges of the graph correspond to possible
transition. A transition is possible only to neighbouring cells, but not to all corresponding states. Fig. 12.7
represents a portion of this graph.

The solution is then computed using a standard Dijkstra search. See Fig. 7.14 page 152 for an example.
Similar methods have also been proposed for curved environments [LH99].

2.3 Discontinuity meshing with backprojections

We now turn to the problem of soft shadow computation in polygonal environments. Recall that the penumbra
region corresponds to zones where only a part of an extended light source is visible. Complete discontinuity
meshing subdivides the scene polygons into regions where the topology of the visible part of the source is
constant. In this regions the illumination varies smoothly, and at the region boundary there is aC2 discontinuity.

Moreover a data-structure calledbackprojectionencodes the topology of the visible part of the source as
represented in Fig. 12.8(b) and 12.9(b). Discontinuity meshing is an aspect graph method where the aspect is
defined by the visible part of the source, and where viewpoint space is the polygons of the scene.
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Figure 12.8: Complete discontinuity meshing with backprojections. (a) Example of anEV event intersecting
the source. (b) In thick backprojection fromV (structure of the visible part of the source)
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Figure 12.9: Discontinuity meshing. (a) Example of anEEE event intersecting the source. (b) In thick back-
projection from a point onEP (structure of the visible part of the source)

Indeed the method developed and implemented by Drettakis and Fiume [DF94] is the equivalent of Gigus
Canny and Seidel’s algorithm [GCS91] presented in the previous section. Visual events are theEV andEEE
event with one generator on the source or which intersect the source (Fig. 12.8(a) and 12.9(a)). An efficient
space subdivision acceleration is used to speed up the enumeration of potential visual events. For each vertex
generatorV an extended pyramid is build with the light source, and only the generators lying inside this volume
are considered. Space subdivision is used to accelerate this test. A similar scheme is used for edges. Space
subdivision is also used to speed-up the discontinuity surface-object intersections. See Fig. 12.10 for an
example of shadows and discontinuity mesh.
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Figure 12.10: Complete discontinuity mesh of a 1000 polygons scene computed with Drettakis and Fiume’s
algorithm [DF94].

This method has been used for global illumination simulation using radiosity [DS96]. Both the mesh and
form-factor problem are alleviated by this approach, since the backprojection allows for efficient point-to-area
form factor computation (portion of the light leaving the light source arriving at a point). The experiments

exhibited show that both the quality of the induced mesh and the precision of the form-factor computation are
crucial for high quality shadow rendering.

2.4 Output-sensitive discontinuity meshing

Stewart and Ghali [SG94] have proposed an output-sensitive method to build a complete discontinuity mesh.
They use a similar discontinuity surface-object intersection, but their enumeration of the discontinuity surfaces
is different.

It is based on the fact that a vertexV can generate a visual event with an edgeE only if E lies on the
boundary of the visible part of the source as seen fromV (see Fig. 12.8). A similar condition arises forEEE
events: the two edges closest to the source must belong to the backprojection of some part of the third edge,
and must be adjacent in this backprojection as shown in Fig. 12.9.

They use an update of the backprojections at visual events. They note that a visual event has effect only
on the parts of scene which are farther from the source than its generators. They thus use a sweep with planes
parallel to the source. Backprojections are propagated along the edges and vertices of the scene, with an update
at each edge-visual event intersection.

Backprojection have however to be computed for scratch at eachpeak vertex, that is, for each polyhedron,
the vertex which is closest to the source. Standard hidden surface removal is used.

The algorithm can be summarized as follows:

� Sort the vertices of the scene according to the distance to the source.

� At peak vertices compute a backprojection and propagate it to the beginning of the edges below.

� At each edge-visual event intersection update the backprojection.

� For each new backprojection cast (intersect) the generated visual event through the scene.

This algorithm has been implemented [SG94] and extended to handle degenerate configuration [GS96]
which cause someC1 discontinuities in the illumination function.
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3 Viewpoint optimization

In this section we present methods which attempt to chose a viewpoint or a set of viewpoints to optimize the
visibility of all or some of the features of a scene. The search is here exhaustive, all viewpoints (or a sampling)
are tested. The following section will present some methods which alleviate the need to search the whole space
of viewpoints. Some related results have already been presented in section 4.5 and 5.5 of chapter 10.

3.1 Art galleries

We present the most classical results on art gallery problems. The classic art gallery theorem is due to Chv´atal
[Chv75] but he exhibited a complex proof. We here present the proof by Fisk [Fis78] which is much simpler.
We are given an art-gallery modeled by a simple (with no holes) 2D polygons.

Theorem: bn
3c stationary guards are always sufficient and occasionally necessary to guard a polygonal

art gallery with n vertices.
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Figure 12.11: Art gallery. (a) The triangulation of a simple polygon is 3-colored with colors 1, 2 and 3. Color
3 is the less frequent color. Placing a guard at each vertex with color 3 permits to guard the polygon with
less thanbn

3c guards. (b) Worst-case scene. To guard the second spike, a camera is needed in the grey region.
Similar constraints for all the spikes thus impose the need of at leastbn

3c guards

The proof relies on the triangulation of the polygon with diagonals (see Fig. 12.11(a)). The vertices of such
a triangulation can always be colored with 3 colors such that no two adjacent vertices share the same color
(Fig. 12.11(a)). This implies that any triangle has one vertex of each color. Moreover, each vertex can guard
its adjacent triangles.

Consider the color which colors the minimum number of vertices. The number of corresponding vertices is
lower thanbn

3c, and each triangle has such a vertex. Thus all triangles are guarded by this set of vertices. The
lower bound can be shown with a scene like the one presented in Fig. 12.11(b).

Such a set of guards can be found inO(n) time using a linear time triangulation algorithm by Chazelle
[dBvKOS97]. The problem of finding the minimum number of guards has however been shown NP-hard by
Aggarwal [Aga84] and Lee and Lin [LL86].

For other results see the surveys on the domain [O’R87, She92, Urr98].

3.2 Viewpoint optimization

The methods which have been developed to optimize the placement of sensors or lights are all based on a
sampling approach similar to the approximate aspect graph.

We present here the methods developed by Tarbox and Gottschlich [TG95]. Their aim is to optimize the
placement of a laser and a camera (as presented in Fig. 7.12 page 150) to be able to inspect an object whose
pose and geometry are known. The distance of the camera and laser to the object is fixed, viewpoint space is
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thus a viewing sphere even if perspective projection is used. The viewing sphere is tessellated starting with
an icosahedron (Fig. 12.1 page 200). Sample points are distributed over the object. For each viewpoint, the
visibility of each sample point is tested using ray-casting. It is recorded in a two dimensional array called the
viewability matrixindexed by the viewpoint and sample point. (In fact two matrices are used since the visibility
constraints are not the same for the camera and for the laser.)

The viewability matrix can be seen as a structure in segment space: each entry encodes if the segment
joining a given viewpoint and a given sample point intersects the object.

The set of viewpoints which can see a given feature is called theviewpoint set. For more robustness,
especially in case of uncertainties in the pose of the object, the viewpoints of the boundary of a viewpoint set
are discarded, that is, the corresponding entry in the viewability matrix is set to 0. For each sample point, a
difficulty-to-view is computed which depends on the number of viewpoints from which it is visible.

A set of pairs of positions for the laser and the camera are then searched which resumes to a set-cover
problem. The first strategy they propose is greedy. The objective to maximize is the number of visible sample
points weighted by their difficulty-to-view. Then each new viewpoint tries to optimize the same function
without considering the already seen points until all points are visible from at least one viewpoint.

The second method uses simulated annealing (which is similar to a gradient descend which can “jump”
over local minima). An arbitrary number of viewpoints are randomly placed on the viewing sphere, and their
positions are then perturbated to maximize the number of visible sample points. If no solution is found forn, a
new viewpoint is added and the optimization proceeds. This method provides results with fewer viewpoints.

Similar methods have been proposed for sensor placement [MG95, TUWR97], data acquisition for mobile
robot on a 2D floorplan [GL99] and image-based representation [HLW96]. See Fig. 12.12 for an example of
sensor planning.

Figure 12.12:Planning of a stereo-sensor to inspect an object (adapted from [TUWR97])

Stuerzlinger [Stu99] also proposes a similar method for the image-based representation of scenes. His view-
point space is a horizontal plane at human height. Both objects and viewpoint space are adaptively subdivided
for more efficient results. He then uses simulated annealing to optimize the set of viewpoints.

3.3 Local optimization and target tracking

Yi, Haralick and Shapiro [YHS95] optimize the position of both a camera and a light source. The position of
the light should be such that features have maximal contrast in the image observed by the camera. Occlusion
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is not really handled in their approach since they performed their experiments only on a convex box. However
their problem is in spirit very similar to that of viewpoint optimization for visibility constraints, so we include
it in this survey because occlusion could be very easily included in their optimization metric.

They use no initial global computation such as the viewability matrix studied in the previous paragraph, but
instead perform a local search. They perform a gradient descent successively on the light and camera positions.
This method does not necessarily converge to a global maximum for both positions, but they claim that in their
experiments the function to optimize is well behaved and convex and that satisfactory results are obtained.

Local optimization has also been proposed [LGBL97, FL98] for the computation of the motion of a mobile
robot which has to keep a moving target in view. Assume the motion of the target is only partially predictable
(by bound on the velocity for example). A local optimization is performed in the neighbourhood of the pursuer
position in a game theoretic fashion: the pursuer has to take into account all the possible movements of the
target to decide its position at the next timestep. For a possible pursuer position in free space, all the possible
movements of the target are enumerated and the probability of its being visible is computed. The pursuer
position with the maximum probability of future visibility is chosen. See Fig. 12.13 for an example of pursuit.
The range of the sensor is taken into account.

Figure 12.13: Tracking of a mobile target by an observer. The region in which the target is visible is in light
grey (adapted from [LGBL97]).

They also propose another strategy for a better prediction [LGBL97]. The aim is here to maximize the
escape time of the target. For each possible position of the pursuer, its visibility region is computed (the inverse
of a shadow volume). The distance of the target to the boundary of this visibility region defines the minimum
distance it has to cover to escape the pursuer (see Fig. 12.14).

The extension of these methods to the prediction of many timesteps is unfortunately exponential.

4 Frame-to-frame coherence

In section 1.5 we have presented applications of the aspect graph to updating a view as the observer continu-
ously moves. The cost induced by the aspect graph has prevented the use of these methods. We now present
methods which use the information encoded by visual events to update views, but which consider only a subset
of them.

4.1 Coherence constraints

Hubschman and Zucker [HZ81, HZ82] have studied the so-calledframe-to-frame coherencefor static scenes.
This approach is based on the fact that if the viewpoint moves continuously, two successive images are usually
very similar. They study the occlusions between pairs of convex polyhedra.
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Figure 12.14: Tracking of a mobile target by an observer. The region in light grey is the region in which the
target is visible from the observer. The thick arrow is the shortest path for the target to escape.

They note that a polyhedron will start (or stop) occluding another one only if the viewpoint crosses one of
their separating planes. This corresponds toEV visual events. Moreover this can happen only for silhouette
edges.

Each edge stores all the separating planes with all other polyhedra. These planes become active only when
the edge is on the silhouette in the current view. As the viewpoint crosses one of the active planes, the occlusion
between the two corresponding polyhedra is updated.

This approach however fails to detect occlusions caused by multiple polyhedra (EEEevents are not consid-
ered). Furthermore, a plane is active even if both polyhedra are hidden by a closer one, in which case the new
occlusion has no actual effect on the visibility of the scene; Transparent as well as opaque events are consid-
ered. These limitations however simplify the approach and make it tractable. Unfortunately, no implementation
is reported.

4.2 Occlusion culling with visual events

Coorg and Teller [CT96] have extended their shadow-volume based occlusion culling presented in section 4.4
of chapter 10 to take advantage of frame-to-frame coherence.

The visibility of a cell of the scene subdivision can change only when a visual event is crossed. For each
large occluder visibility changes can occur only for the neighbourhood of partially visible parts of the scene
(see Fig. 12.15). They thus dynamically maintain the visual events of each occluders and test the viewpoint
against them.

visibility event

Figure 12.15:Occlusion culling and visual events

They explain that this can be seen as a local linearized version of the aspect graph. Indeed they maintain a
superset of theEV boundaries of the current cell of the perspective aspect graph of the scene.
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CHAPTER 13

Line-Space

Car il ne sera fait que de pure lumi`ere
Puisée au foyer saint des rayons primitifs

Charles BAUDELAIRE, Les Fleurs du Mal

INE-SPACEmethods characterize visibility with respect to line-object intersections. The meth-
ods we present in section 1 partition lines according to the objects they intersect. Section 2
introduces graphs in line-space, while section 3 discusses Pl¨ucker coordinates, a powerful pa-
rameterization which allows the characterization of visibility using hyperplanes in 5D. Finally

section 4 presents stochastic and probabilistic approaches in line-space.

1 Line-space partition

1.1 The Asp

Plantinga and Dyer [PD87, PD90, Pla88] devised theaspas an auxiliary data-structure to compute the aspect
graph of polygonal objects. The definition of theaspdepends on the viewing space considered. We present the
aspfor orthographic projection.

A duality is used which maps oriented lines into a 4 dimensional space. Lines are parameterized as pre-
sented in section 1.4 of chapter 8 and Fig. 8.2(a) (page 159) by their direction, denoted by two angles(θ;ϕ)
and the coordinates(u;v) on an orthogonal plane. Theaspfor θ andϕ constant is thus an orthographic view
of the scene from direction(θ;ϕ). Theaspof an object corresponds to the set of lines intersecting this object.
See Fig. 13.1(a) and (b).

Occlusion in a view corresponds to subtraction in theasp: if objectA is occluded by objectB, then theasp
of B has to be subtracted from theaspof A as shown in Fig. 13.1(c). In fact the intersection of theaspof two
objects is the set of lines going through them. Thus if objectB is in front of objectA, and these lines no longer
“see” A, they have to be removed from theaspof A.

The 1 dimensional boundaries of theaspcorrespond to the visual events necessary to build the aspect graph.
See Fig. 13.1(c) where anEV event is represented. Since it is only a slice of theasp, only one line of the event
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Figure 13.1: Slice of theaspfor ϕ = 0 (adapted from [PD90]). (a) and (b)Aspfor one triangle. Theθ slices
in white correspond to orthographic views of the triangle. Whenθ = 90� the view of the triangle is a segment.
(c) Occlusion corresponds to subtraction inaspspace. We show theaspof triangleA which is occluded byB.
Note the occlusion in theθ slices in white. We also show the outline of theaspof B. The visual eventEV is a
point in aspasp space.

is present under the form of a point. Since occlusion has been taken into account with subtraction, theasp
contains only the opaque events, transparent events do not have to be detected and discarded as in Gigus and
Malik’s method [GM90] presented in section 1.3. Unfortunately no full implementation is reported. The size
of theaspcan be as high asO(n4), but as already noted, this does not give useful information about its practical
behaviour with standard scenes.

In the case of perspective projection, theasp is defined in the 5 dimensional space of rays. Occlusion is
also handled with subtractions. Visual events are thus the 2 dimensional boundaries of theasp.

1.2 The 2D Visibility Complex

Pocchiola and Vegter [PV96b, PV96a] have developed the 2Dvisibility complexwhich is a topological structure
encoding the visibility of a 2D scene. The idea is in a way similar to theasp to group rays which “see” the
same objects. See [DP95b] for a simple video presentation.

The central concept is that ofmaximal free segments. These are segments of maximal length that do not
intersect the interior of the objects of the scene. More intuitively, a maximal free segment has its extremities
on the boundary of objects, it may be tangent to objects but does not cross them. A line is divided in many
maximal free segment by the objects it intersects. A maximal free segment represents a group of colinear rays
which see the same objects. The manifold of 2D maximal free segments is two-dimensional nearly everywhere,
except at certain branchings corresponding to tangents of the scene. A tangent segment has neighbours on both
sides of the object and below the object (see Fig. 13.2).

The visibility complex is the partition of maximal free segments according to the objects at their extremities.
A face of the visibility complex is bounded by chains of segments tangent to one object (see Fig. 13.3).

Pocchiola and Vegter [PV96b, PV96a] propose optimal output sensitive construction algorithms for the
visibility complex of scenes of smooth objects. Rivi`ere [Riv95, Riv97a] has developed an optimal construction
algorithm for polygonal scenes.

The visibility complex implicitly encodes the visibility graph (see section 2 of chapter 10) of the scene: its
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Figure 13.2: Topology of maximal free segments. (a) In the scene. (b) In a dual space where lines are mapped
into points (the polar parameterization of line is used).
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Figure 13.3: A face of the visibility complex. (a) In the scene. (b) In a dual space.

vertices are the bitangents forming the visibility graph.
The 2D visibility complex has been applied to the 2D equivalent of lighting simulation by Ortiet al.

[ORDP96, DORP96]. The form factor between two objects corresponds to the face of the complex grouping
the segments between these two objects. The limits of umbra and penumbra are the vertices (bitangents) of the
visibility complex.

1.3 The 3D Visibility Complex

Durandet al. [DDP96, DDP97b] have proposed a generalization of the visibility complex for 3D scenes of
smooth objects and polygons. The space of maximal free segments is then a 4D manifold embedded in 5D
because of the branchings. Faces of the complex are bounded by tangent segments (which have 3 dimensions),
bitangent segments (2 dimension), tritangent segments (1D) and finally vertices are segments tangent to four
objects. If polygons are considered, the 1-faces are theEV andEEE critical lines.

The visibility complex is similar to theasp, but the same structure encodes the information for both per-
spective and orthographic projection. It moreover provides adjacencies between sets of segments.

Langer and Zucker [LZ97] have developed similar topological concepts (particularly the branchings) to
describe the manifold of rays of a 3D scene in a shape-from-shading context.

See also section 4 where the difference between lines and maximal free segments is exploited.

1.4 Ray-classification

Ray classificationis due to Arvo and Kirk [AK87]. The 5 dimensional space of rays is subdivided to accelerate
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ray-tracing computation. A ray is parameterized by its 3D origin and its direction which is encoded on a cube
for simpler calculations. Beams in ray-space are defined by an XYZ interval (an axis aligned box) and an
interval on the cube of directions (see Fig. 13.4).

(b)

(a)

(c)

Figure 13.4: Ray classification. (a) interval in origin space. (b) interval in direction space. (c) Corresponding
beam of rays.

The objects lying in the beam are computed using a cone approximation of the beam. They are also sorted
by depth to the origin box. Each ray belonging to the beam then needs only be intersected with the objects
inside the beam. The ray-intervals are lazily and recursively constructed. See Fig. 13.5 for an example of
result.

Figure 13.5: Image computed using ray classification (courtesy of Jim Arvo and David Kirk, Apollo Computer Inc.)

Speer [Spe92b] describes similar ideas and Kwonet al [KKCS98] improve the memory requirements of
ray-classification, basically by using 4D line space instead of 5D ray-space. This method is however still
memory intensive, and it is not clear that it is much more efficient that 3D regular grids.

The concept of the light buffer presented in section 2.2 of chapter 11 has been adapted for linear and area
light source by Poulin and Amanatides [PA91] and by Tanaka and Takahashi [TT95, TT97]. The rays going
through the source are also classified into beams. The latter paper uses an analytical computation of the visible
part of the light source using the cross-scanline method reviewed in section 6 of chapter 9.
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Lamparteret al. [LMW90] discretize the space of rays (using adaptive quadtrees) and rasterize the objects
of the scene using a z-buffer like method. Hinkenjann and M¨uller [HM96] propose a similar scheme to classify
segments using a 6 dimensional space (3 for each extremity of a segment).

1.5 Multidimensional image-based approaches

Recently there has been great interest in both computer vision and computer graphics for the study of the de-
scription of a scene through the use of a multidimensional function in ray-space. A 3D scene can be completely
described by the light traveling through each point of 3D space in each direction. This defines a 5D function
named theplenoptic functionby Adelson and Bergen [AB91].

The plenoptic function describes light transport in a scene, similar data-structures have thus been applied
for global illumination simulation [LF96, LW95, GSHG98].

Gortleret al. [GGSC96] and Levoy and Hanrahan [LH96] have simplified the plenoptic function by as-
suming that the viewer is outside the convex hull of the scene and that light is not modified while traveling in
free-space. This defines a function in the 4 dimensional space of lines calledlumigraphor light-field. This
space is discretized, and a color is kept for each ray. A view can then be extracted very efficiently from any
viewpoint by querying rays in the data structure. This data structure is more compact than the storage of one
view for each 3D point (which defines a 5D function) for the same reason exposed before: a ray is relevant for
all the viewpoints lying on it. There is thus redundancy if light does not vary in free-space.

A two plane parameterization is used both in the light-field [LH96] and lumigraph [GGSC96] approaches
(see Fig 8.2(b) page 159). Xuet al. [GGC97] have studied the form of some image features in this dual
space, obtaining results similar to those obtained in the aspect graph literature [PD90, GCS91]. Camahortet
al. [CLF98] have studied the (non) uniformity of this parameterization and proposed alternatives based on
tessellations of the direction sphere. Their first parameterization is similar to the one depicted in Fig. 8.2(a)
using a direction and an orthogonal plane, while the second uses parameterization line using two points on
a sphere bounding the scene. See section 4 and the book by Santalo [San76] for the problems of measure
and probability on sets of lines. See also the paper by Halle [Hal98] where images from multiple viewpoints
(organised on a grid) are rendered simultaneously using epipolar geometry.

Chrysanthouet al. [CCOL98] have adapted the lumigraph methods to handle ray occlusion query. They
re-introduce a fifth dimension to handle colinear rays, and their scheme can be seen as a discretization of the
3D visibility complex.

Wanget al. [WBP98] perform an occlusion culling preprocessing which uses concepts from shaft culling,
ray classification and lumigraph. Using a two-plane parameterization of rays leaving a given cell of space, they
recursively subdivide the set of rays until each beam can be classified as blocked by a single object or too small
to be subdivided.

2 Graphs in line-space

In this section we present some methods which build a graph in line space which encodes the visual events of
a scene. As opposed to the previous section, only one and zero dimensional sets of lines are considered.

2.1 The Visibility Skeleton

Durandet al[DDP97c, DDP97a] have defined thevisibility skeletonwhich can be seen either as a simplification
of the 3D visibility complex or as a graph in line space defined by the visual events.

Consider the situation represented in Fig. 13.6(a). A visual eventV1V2 and the corresponding critical line
set are represented. Recall that it is a one dimensional set of lines. It is bounded by twoextremal stabbing lines
V1V2 andV1V3. Fig. 13.6(b) shows another visual eventV2E2 which is adjacent to the same extremal stabbing
line. This defines a graph structure in line space represented in Fig. 13.6(c). The arcs are the 1D critical line
sets and the nodes are the extremal stabbing lines. Other extremal stabbing lines include lines going through
one vertex and two edges and lines going through four edges (see Fig. 13.7).

Efficient access to the arcs of this graph is achieved through a two dimensional array indexed by the poly-
gons at the extremity of each visual event. The visibility skeleton is built by detecting the extremal stabbing
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Figure 13.6: (a) An EV critical line set. It is bounded by two extremal stabbing linesV1V2 andV1V3. (b) Other
EV critical line sets are adjacent toV1V2. (c) Corresponding graph structure in line space.

Figure 13.7: Four lines in general position are stabbed by two lines (adapted from [Tel92b])

lines. The adjacent arcs are topologically deduced thanks to a catalogue of adjacencies. This avoids explicit
geometric calculations on the visual events.

The visibility skeleton has been implemented and used to perform global illumination simulation [DDP99].
Point-to-area form factors can be evaluated analytically, and the limits of umbra and penumbra can be quickly
computed considering any polygon as a light source (as opposed to standard discontinuity meshing where only
a small number of primary light sources are considered).

2.2 Skewed projection

McKenna et O’Rourke [MO88] consider a scene which is composed of lines in 3D space. Their aim is to
study the class of another line in a sense similar to the previous section if the original lines are the edges of
polyhedron, or to compute the mutually visible faces of polyhedra.

They use askewed projectionto reduce the problem to 2D computations. Consider a pair of linesL1 andL2

as depicted in Fig. 13.8. Consider the segment joining the two closest points of the lines (shown dashed) and
the planeP orthogonal to this segment and going through its mid-point. Each point onP defines a unique line
going throughL1 andL2. Consider a third lineL3. It generatesEEE critical lines. The intersections of these
critical lines with planeP lie on an hyperbolaH.

The intersections of the hyperbolae defined by all other lines of the scene allow the computation of the
extremal stabbing lines stabbingL1 andL2. The computation of course has to be performed in theO(n2) planes
defined by all pairs of lines. A graph similar to the visibility skeleton is proposed (but for sets of lines). No
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Figure 13.8: Skewed projection.

implementation is reported.

The skewed projection duality has also been used by Jaromczyk and Kowaluk [JK88] in a stabbing context
and by Bernet al. [BDEG90] to update a view along a linear path (the projection is used to compute the visual
events at which the view has to be updated).

3 Plücker coordinates

3.1 Introduction to Pl ¨ ucker coordinates

Lines in 3D space can not be parameterized continuously. The parameterizations which we have introduced
in section 1.4 of chapter 8 both have singularities. In fact there cannot be a smooth parameterization of lines
in 4D without singularity. One intuitive way to see this is to note that it is not possible to parameterize theS2

sphere of directions with two parameters without a singularity. Nevertheless, ifS2 is embedded in 3D, there is
a trivial parameterization,i.e. x;y;z. However not all triples of coordinates correspond to a point onS2.

Similarly, oriented lines in space can be parameterized in a 5D space with the so-calledPlücker coordinates
[Plü65]. The equations are given in appendix D, here we just outline the principles. One nice property of
Plücker coordinates is that the set of lines which intersect a given linea is a hyperplane in Pl¨ucker space (its
dualΠa; The same notation is usually used for the dual of a line and the corresponding hyperplane). It separates
Plücker space into oriented lines which turn around` clockwise or counterclockwise (see Fig. 13.9).

As for the embedding ofS2 which we have presented, not all 5-uples of coordinates in Pl¨ucker space cor-
respond to a real line. The set of lines in this parameterization lie on a quadric called thePlücker hypersurface
or Grassman manifoldor Klein quadric.

Now consider a triangle in 3D space. All the lines intersecting it have the same orientation with respect
to the three lines going through its edges (see Fig. 13.10). This makes stabbing computations very elegant
in Plücker space. Linear calculations are performed using the hyperplanes corresponding to the edges of the
scene, and the intersection of the result with the Pl¨ucker hypersurface is then computed to obtain real lines.

Let us give a last example of the power of Pl¨ucker duality. Consider three lines in 3D space. The lines
stabbing each line lie on its (4D) hyperplanes in Pl¨ucker space. The intersection of the three hyperplane is a
2D plane in Pl¨ucker space which can be computed easily. Once intersected with the Pl¨ucker hypersurface, we
obtain theEEE critical line set as illustrated Fig. 13.11.

More detailed introductions to Pl¨ucker coordinates can be found in the books by Sommerville [Som51] or
Stolfi [Sto91] and in the thesis by Teller [Tel92b]1. See also Appendix D.

1Plücker coordinates can also be extended to use the 6 coordinates to describe forces and motion. Seee.g.[MS85, PPR99]
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Figure 13.9: In Plücker space the hyperplane corresponding to a linea separates lines which turn clockwise and
counterclockwise arounda. (The hyperplane is represented as a plane because a five-dimensional space is hard
to illustrate, but note that the hyperplane is actually 4D).
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Figure 13.10: Lines stabbing a triangle. In 3D space, if the edges are well oriented, all stabbers rotate around
the edges counterclockwise. In Pl¨ucker space this corresponds to the intersection of half spaces. To obtain real
lines, the intersection with the Pl¨ucker hypersurface must be considered. (In fact the hyperplanes are tangent
to the Plücker hypersurface)

3.2 Use in computational geometry

Plücker coordinates have been used in computational geometry mainly to find stabbers of sets of polygons, for
ray-shooting and to classify lines with respect to sets of lines (given a set of lines composing the scene and two
query lines, can we continuously move the first to the second without intersecting the lines of the scene).

We give an overview of a paper by Pellegrini [Pel93] which deals with ray-shooting in a scene composed
of triangles. He builds the arrangement of hyperplanes in Pl¨ucker space corresponding to the scene edges. He
shows that each cell of the arrangement corresponds to lines which intersect the same set of triangles. The
whole 5D arrangement has to be constructed, but then only cells intersecting the Pl¨ucker hypersurface are
considered. He uses results by Clarkson [Cla87] on point location using random sampling to build a point-
location data-structure on this arrangement. Shooting a ray then consists in locating the corresponding line in
Plücker space. Other results on ray shooting can be found in [Pel90, PS92, Pel94].

This method is different in spirit from ray-classification where the object-beam classification is calculated
in object space. Here the edges of the scene are transformed into hyperplanes in Pl¨ucker space.
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Figure 13.11: Three lines define aEEE critical line set in 3D space. This corresponds to the intersection of
hyperplanes (not halfspaces) in Pl¨ucker space. Note that hyperplanes are 4D while their intersection is 2D.
Unfortunately they are represented similarly because of the lack of dimensions of this sheet of paper.(adapted
from [Tel92b]).

The first use of Pl¨ucker space in computational geometry can be found. in a paper by Chazelleet al.
[CEG+96]. The orientation of lines in space also has implications on the study of cycles in depth order as
studied by Chazelleet al. [CEG+92] who estimate the possible number of cycles in a scene . Other references
on lines in space and the use of Pl¨ucker coordinates can be found in the survey by Pellegrini [Pel97b].

3.3 Implementations in computer graphics

Teller [Tel92a] has implemented the computation of theantipenumbracast by a polygonal source through a
sequence of polygonal openingsportals (i.e. the part of space which may be visible from the source). He
computes the polytope defined by the edges of all the openings, then intersects this polytope with the Pl¨ucker
hypersurface, obtaining the critical line sets and extremal stabbing lines bounding the antipenumbra (see Fig.
13.12 for an example).

Figure 13.12: Antipenumbra cast by a triangular light source through a sequence of three polygonal openings.
EEE boundaries are in red (image courtesy of Seth J. Teller, University of Berkeley).

He however later noted [TH93] that this algorithm is not robust enough for practical use.
Nevertheless, in this same paper he and Hanrahan [TH93] actually used Pl¨ucker coordinates to classify the

visibility of objects with respect to parts of the scene in a global illumination context for architectural scenes
(see section 7 of chapter 10). They avoid robustness issues because nogeometric constructionis performed
in 5D space (like computing the intersection between two hyperplanes), onlypredicatesare evaluated (“is this
point above this hyperplane?”).
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4 Stochastic approaches

This section surveys methods which perform visibility calculation using a probabilistic sampling in line-space.

4.1 Integral geometry

The most relevant tool to study probability over sets of lines isintegral geometryintroduced by Santalo [San76].
Defining probabilities and measure in line-space is not straightforward. The most natural constraint is to impose
that this measure be invariant under rigid motion. This defines a unique measure in line-space, up to a scaling
factor.

Probabilities can then be computed on lines, which is a valuable tool to understand ray-casting. For exam-
ple, the probability that a line intersects a convex object is proportional to its surface.

An unexpected result of integral geometry is that a uniform sampling of the lines intersecting a sphere can
be obtained by joining pairs of points uniformly distributed on the surface of the sphere (note that this is not
true in 2D).

The classic parameterization of linesx= az+ p, y = bz+q (similar to the two plane parameterization of
Fig. 8.2(b) page 159) has densitydadbdpdq

(1+a2+b2)2
. If a;b; p;q are uniformly and randomly sampled, this formula

expresses the probability that a line is picked. It also expresses the variation of sampling density for light-
field approaches described in section 1.5. Regions of line space with large values ofa;b will be more finely
sampled. Intuitively, sampling is higher for lines that have a gazing angle with the two planes used for the
parameterization.

Geometric probability is also covered in the book by Solomon [Sol78].

4.2 Computation of form factors using ray-casting

Most radiosity implementations now use ray-casting to estimate the visibility between two patches, as intro-
duced by Wallaceet al. [WEH89]. A number of rays (typically 4 to 16) are cast between a pair of patches. The
number of rays can vary, depending on theimportanceof the given light transfer. Such issues will be treated in
section 1.1 of chapter 14.

The integral geometry interpretation of form factors has been studied by Sbert [Sbe93] and Pellegrini
[Pel97a]. They show that the form factor between two patches is proportional the probability that a line in-
tersecting the first one intersects the second. This is the measure of lines intersecting the two patches divided
by the measure of lines intersecting the first one. Sbert [Sbe93] proposes some estimators and derives expres-
sions for the variance depending on the number of rays used.

4.3 Global Monte-Carlo radiosity

Buckalew and Fussel [BF89] optimize the intersection calculation performed on each ray. Indeed, in global
illumination computation, all intersections of a line with the scene are relevant for light transfer. As shown
in Fig. 13.13, the intersections can be sorted and the contribution computed for the interaction between each
consecutive pair of objects. They however used a fixed number of directions and a deterministic approach.

Sbert [Sbe93] introducedglobal Monte-Carlo radiosity. As in the previous approach all intersections of a
line are taken into account, but a uniform random sampling of lines is used, using pairs of points on a sphere.

Related results can be found in [Neu95, SPP95, NNB97]. Efficient hierarchical approaches have also been
proposed [TWFP97, BNN+98].

4.4 Transillumination plane

Lines sharing the same direction can be treated simultaneously in the previous methods. This results in a sort
of orthographic view where light transfers are computed between consecutive pairs of objects overlapping in
the view, as shown in Fig. 13.14.

The plane orthogonal to the projection direction is called thetransillumination plane. An adapted hidden-
surface removal method has to be used. The z-buffer can be extended to record the z values of all objects
projecting on a pixel [SKFNC97], or an analytical method can be used [Pel99, Pel97a].



4. STOCHASTIC APPROACHES 223

Figure 13.13: Global Monte-Carlo radiosity. The intersection of the line in bold with the scene allows the
simulation of light exchanges between the floor and the table, between the table and the cupboard and between
the cupboard and the ceiling.

Figure 13.14: Transillumination plane. The exchanges for one direction (here vertical) are all evaluated simul-
taneously using an extended hidden surface removal algorithm.
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CHAPTER 14

Advanced issues

Au reste, il n’est pas inutile de remarquer que tout
ce qu’on démontre, soit dans l’optique, soit dans la
perspective sur les ombres des corps, est exact `a la
vérité du côté mathématique, mais que si on traite cette
matière physiquement, elle devient alors fort diff´erente.
L’explication des effets de la nature d´epend presque tou-
jours d’une géométrie si compliqu´ee qu’il est rare que
ces effets s’accordent avec ce que nous en aurions at-
tendu par nos calculs.

FORMEY, article sur l’ombre de l’Encyclopédie.

E NOW TREAT two issues which we believe crucial for visibility computations and which
unfortunately have not received much attention. Section 1 deals with the control of the
precision of computations either to ensure that a required precision is satisfied, or to simplify
visibility information to make it manageable. Section 2 treats methods which attempt to take

advantage of temporal coherence in scenes with moving objects.

1 Scale and precision

Visibility computations are often involved and costly. We have surveyed some approximate methods which may
induce artifacts, and some exact methods which are usually resource-intensive. It is thus desirable to control
the error in the former, and trade-off time versus accuracy in the latter. Moreover, all visibility information is
not always relevant, and it can be necessary to extract what is useful.

1.1 Hierarchical radiosity: a paradigm for refinement

Hierarchical radiosity [HSA91] is an excellent paradigm of refinement approaches. Computational resources
are spent for “important” light exchanges. We briefly review the method and focus on the visibility problems
involved.
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In hierarchical radiosity the scene polygons are adaptively subdivided into patches organised in a pyramid.
The radiosity is stored using Haar wavelets [SDS96]: each quadtree node stores the average of its children.
The light exchanges are simulated at different levels of precision: exchanges will be simulated between smaller
elements of the quadtree to increase precision as shown in Fig. 14.1.Clusteringimproves hierarchical radiosity
by using a full hierarchy which groupsclustersof objects [SAG94, Sil95].

A

B

C

hierarchy
of C

Figure 14.1: Hierarchical radiosity. The hierarchy and the exchanges arriving atC are represented. Exchanges
with A are simulated at a coarser level, while those withB are refined.

The crucial component of a hierarchical radiosity system is therefinement criterion(or oracle) which
decides at which level a light transfer will be simulated. Originally, Hanrahanet al. [HSA91] used a radiometric
criterion (amount of energy exchanged) and a visibility criterion (transfers with partial visibility are refined
more). This results in devoting more computational resources for light transfers which are important and in
shadow boundary regions. See also [GH96].

For a deeper analysis and treatment of the error in hierarchical radiosity, seee.g., [ATS94, LSG94, GH96,
Sol98, HS99].

1.2 Other shadow refinement approaches

The volumetric visibility method presented in section 1.3 of chapter 10 is also well suited for a progressive
refinement scheme. An oracle has to decide at which level of the volumetric hierarchy the transmittance has to
be considered. Sillion and Drettakis [SD95] use the size of thefeaturesof the shadows.

The key observation is that larger object which are closer to the receiver cast more significant shadows, as
illustrated by Fig. 14.2. They moreover take thecorrelationof multiple blockers into account using an image-
based approach. The objects inside a cluster are projected in a given direction onto a plane. Bitmap erosion
operators are then used to estimate the size of the connected portions of the blocker projection. This can be
seen as a first approximation of the convolution method covered in section 6 of chapter 11 [SS98a].

Soler and Sillion [SS96b, Sol98] propose a more complete treatment of this refinement with accurate error
bounds. Unfortunately, the bounds are harder to derive in 3D and provide looser estimates.

The refinement of shadow computation depending on the relative distances of blockers and source has also
been studied by Asensio [Ase92] in a ray-tracing context.

Telea and van Overveld [Tv97] efficiently improve shadows in radiosity methods by performing costly
visibility computations only for blockers which are close to the receiver.

1.3 Perception

The goal of most image synthesis methods is to produce images which will be seen by human observers. Gibson
and Hubbold [GH97b] thus perform additional computation in a radiosity method only if they may induce a
change which will be noticeable. Related approaches can be found in [Mys98, BM98, DDP99, RPG99].
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source

Figure 14.2: Objects which are larger and closer to the receiver cast more significant shadows. Note that the left
hand sphere casts no umbra, only penumbra.

Perceptual metrics have also been applied to the selection of discontinuities in the illumination function
[HWP97, DDP99].

1.4 Explicitly modeling scale

One of the major drawbacks of aspect graphs [FMA+92] is that they have been defined for perfect views: all
features are taken into account, no matter the size of their projection.

The Scale-space aspect graphhas been developed by Eggertet al. [EBD+93] to cope with this. They
discuss different possible definitions of the concept of “scale”. They consider that two features are not distin-
guishable when their subtended angle is less than a given threshold. This defines a new sort of visual event,
which corresponds to the visual merging of two features. These are circles in 2D (the set of points which form
a given angle with a segment is a circle). See Fig. 14.3.

Figure 14.3: Scale-space aspect graph in 2D using perspective projection for the small object in grey. Features
which subtend an angle of less than 4� are considered indistinguishable. The circles which subdivide the plane
are the visual events where features of the object visually merge.

Scale (the angle threshold) defines a new dimension of the viewpoint space. Fig. 14.3 in fact represents
a slicescale= 4� of the scale-space aspect graph. Cells of this aspect graph have a scale extent, and their
boundaries change with the scale parameter. This approach allows an explicit model of the resolution of
features, at the cost of an increases complexity.



228 CHAPTER 14. ADVANCED ISSUES

Shimshoni and Ponce [SP97] developed thefinite resolution aspect graphin 3D. They consider ortho-
graphic projection and a single threshold. When resolution is taken into account, someaccidentalviews are
likely to be observed: An edge and a vertex seem superimposed in the neighbourhood of the exact visual event.
Visual events are thus doubled as illustrated in Fig. 14.4.

V

E

P

Q

(a) (b)

1

2

3

4

Figure 14.4: Finite resolution aspect graph. (a) TheEV event is doubled. Between the two events (viewpoint 2
and 3),E andV are visually superimposed. (b) The doubled event on the viewing sphere.

For the objects they test, the resulting finite resolution aspect graph is larger. The number events discarded
because the generators are merged does not compensate the doubling of the other events. However, tests on
larger objects could exhibit different results.

See also the work by Weinshall and Werman on the likelihood and stability of views [WW97].

1.5 Image-space simplification for discontinuity meshing

Stewart and Karkanis [SK98] propose a finite resolution construction of discontinuity meshes using an image-
space approach. They compute views from the vertices of the polygonal source using a z-buffer. The image is
segmented to obtain a visibility map. The features present in the images are used as visual event generators.

This naturally eliminates small objects or features since they aggregate in the image. Robustness problems
are also avoided because of the image-space computations. Unfortunately, only partial approximate disconti-
nuity meshes are obtained, no backprojection computation is proposed yet.

2 Dynamic scenes

We have already evokedtemporal coherencein the case of a moving viewpoint in a static scene (section 4.2
of chapter 12). In this section we treat the more general case of a scene where objects move. If the motions
are continuous, and especially if few objects move, there is evidence that computation time can be saved by
exploiting the similarity between consecutive timesteps.

In most cases, the majority of the objects are assumed static while a subset of objects actually move. We can
distinguish cases where the motion of the objects is known in advance, and those where noa priori information
is known, and thus updates must be computed on a per frame basis.

Different approaches can be chosen to take advantage of coherence:

� The computation is completely re-performed for a sub-region of space;

� The dynamic objects are deleted (and the visibility information related to them is discarded) then re-
inserted at their new position;

� A validity time-interval is computed for each piece of information;
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� The visibility information is “smoothly updated”.

2.1 Swept and motion volumes

A swept volumeis the volume swept by an object during a time interval. Swept volumes can also be used to
bound the possible motion of an object, especially in robotics where the degrees of freedom are well defined
[AA95]. These swept volumes are used as static blockers.

A motion volumeis a simplified version of swept volumes similar to the shafts defined in section 6.1 of
chapter 10. They are simple volume which enclose the motion of an object. Motion volumes were first used in
radiosity by Baumet al. [BWCG86] to handle the motion of one object. A hemicube is used for form-factor
computation. Pixels where the motion volume project are those which need recomputation.

Shaw [Sha97] and Drettakis and Sillion [DS97] determine form factors which require recomputation using
a motion volume-shaft intersection technique.

Sudarsky and Gotsman [SG96] use motion volumes (which they calltemporal bounding volumes) to per-
form occlusion culling with moving objects. They alleviate the need to update the spatial data-structure (BSP
or octree) for each frame, because these volumes are used in place of the objects, making computations valid
for more than one frame.

2.2 4D methods

Some methods have been proposed to speed-up ray-tracing animations using a four dimensional space-time
framework developed by Glassner [Gla88]. The temporal extent of ray-object intersections is determined,
which avoids recomputation when a ray does not intersect a moving object. See also [MDC93, CCD91] for
similar approaches.

Ray-classification has also been extended to 6D (3 for the origin of a ray, 2for its direction, and 1 for time)
[Qua96, GP91].

Global Monte-Carlo radiosity presented in section 4.3 of chapter 13 naturally extends to 4D as demonstrated
by Besuievskyet al [BS96]. Each ray-static object intersection is used for the whole length of the animation.
Only intersections with moving objects require recomputation.

2.3 BSP

BSP trees have been developed for rapid view computation in static scenes. Unfortunately, their construction
is a preprocessing which cannot be performed for each frame.

Fuchset al. [FAG83] consider pre-determined paths and place bounding planes around the paths. Torres
[Tor90] builds a multi-level BSP tree, trying to separate objects with different motion without splitting them.

Chrysanthou and Slater [CS92, CS95, CS97] remove the moving objects from the database, update the BSP
tree, and then re-introduce the object at its new location. The most difficult part of this method is the update of
the BSP tree when removing the object, especially when the polygons of the object are used at a high level of
the tree as splitting planes. In this case, all polygons which are below it in the BSP-tree have to be updated in
the tree. This approach was also used to update limits of umbra and penumbra [CS97].

Agarwalet al. [AEG98] propose an algorithm to maintain the cylindrical BSP tree which we have presented
in section 1.4 of chapter 10. They compute the events at which their BSP actually needs a structural change.
This happens when a triangle becomes vertical, when an edge becomes parallel to theyz plane, or when a
triangle enters or leaves a cell defined by the BSP tree.

2.4 Aspect graph for objects with moving parts

Bowyeret al. [EB93] discuss the extension of aspect graphs for articulated assemblies. The degrees of freedom
of the assembly increase the dimensionality of viewpoint space (which they call aspect space). For example, if
the assembly has only one translational degree of freedom and if 3D perspective is used, the aspect graph has
to be computed in 4D, 3 dimensions for the viewpoint and one for translation. This is similar to the scale-space
aspect graph presented in section 1.4 where scale increases dimensionality.
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Accidental configurationscorrespond to values of the parameters of the assembly where the aspect graph
changes. They occur at a generalization of visual events in the higher dimensional aspect space. For example
when two faces become parallel.

Two extensions of the aspect graph are proposed, depending on the way accidental configurations are
handled. They can be used to partition aspect space like in the standard aspect graph definition. They can also
be used to partition first the configuration space (in our example, it would result in intervals of the translational
parameter), then a different aspect graph is computed for each cell of the configuration space partition. This
latter approach is more memory demanding since cells of different aspect graphs are shared in the first approach.
Construction algorithms are just sketched, and no implementation is reported.

2.5 Discontinuity mesh update

Loscos and Drettakis [LD97] and Worallet al. [WWP95, WHP98] maintain a discontinuity mesh while one
of the blockers moves. Limits of umbra and penumbra move smoothly except when an object starts or stops
casting shadows on another one. Detecting when a shadow limit goes off an object is easy.

To detect when a new discontinuity appears on one object, the discontinuities cast on other objects can be
used as illustrated in Fig. 14.5.

v
e

(a) (b)

Figure 14.5: Dynamic update of limits of shadow. The situation where shadows appear on the moving object
can be determined by checking the shadows on the floor. This can be generalized to discontinuity meshes (after
[LD97]).

2.6 Temporal visual events and the visibility skeleton

In chapter 2 and 3 of this thesis, we have presented the notion of atemporal visual event. Temporal visual events
permit the generalization of the results presented in the previous section. They correspond to the accidental
configurations studied for the aspect graph of an assembly.

Temporal visual events permit the update of the visibility skeleton while objects move in the scene. This is
very similar to the static visibility skeleton, since temporal visual events describe adjacencies which determine
which nodes and arcs of the skeleton should be modified.

Similarly, a catalogue of singularities has been developed for moving objects, defining atemporal visibility
complex.



CHAPTER 15

Conclusions of the survey

Ils ont tous gagn´e !

Jacques MARTIN

URVEYING work related to visibility reveals a great wealth of solutions and techniques. The
organisation of the second part of this thesis has attempted to structure this vast field. We hope
that this survey will be an opportunity to derive new methods or improvements from techniques
developed in other fields. Considering a problem under different angles is a powerful way to

open one’s mind and find creative solutions. We again invite the reader not to consider our classification as
restrictive; on the contrary, we suggest that methods which have been presented in one space be interpreted in
another space. In what follows, we give a summary of the methods which we have surveyed, before presenting
a short discussion.

1 Summary

In chapter 7 we have presented visibility problems in various domains: computer graphics, computer vision,
robotics and computational geometry.

In chapter 8 we have propose a classification of these methods according to the space in which the com-
putations are performed: object space, image space, viewpoint space and line-space. We have described the
visual eventsand thesingularities of smooth mappingswhich explain “how” visibility changes in a scene: the
appearance or disappearance of objects when an observer moves, the limits of shadows, etc.

We have briefly surveyed the classic hidden-part removal methods in chapter 9.
In chapter 10 we have dealt with object-space methods. The two main categories of methods are those which

use a “regular” spatial decomposition (grid, hierarchy of bounding volumes, BSP trees), and those which use
frusta or shafts to characterize visibility. Among the latter class of methods, the main distinction is between
those which are interested in determining if a point (or an object) lies inside the frustum or shaft, and those
which compute the boundaries of the frustum (e.g., shadow boundaries). Fundamental data-structures have also
been presented: The 2D visibility graph used in motion planning links all pairs of mutually visible vertices of a
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planar polygonal scene, and the visual hull of an objectA represents the largest object with the same occlusion
properties asA.

Images-space methods, surveyed in chapter 11 perform computation directly in the plane of the final image,
or use an intermediate plane. Most of them are based on the z-buffer algorithm.

Chapter 12 has presented methods which consider viewpoints and the the visibility properties of the corre-
sponding views. The aspect graph encodes all the possible views of an object. The viewpoints are partitioned
into cells where a view is qualitatively invariant, that is, the set of visible features remains constant. The
boundaries of such cells are the visual events. This structure has important implications and applications in
computer vision, robotics, and computer graphics. We have also presented methods which optimize the view-
point according to the visibility of a feature, as well as methods based on visual events which take advantage
of temporal coherenceby predicting when a view changes.

In chapter 13 we have surveyed work in line or ray space. We have presented methods which partition the
rays according to the object they see. We have seen that visual events can be encoded by lines in line-space. A
powerful dualisation has been studied which maps lines into five dimensional points, allowing for efficient and
elegant visibility characterization. We have presented some elements of probability over sets of lines, and their
applications to lighting simulation.

Finally, in the previous chapter we have discussed two important issues: precision and moving objects. We
have studied techniques which refine their computations where appropriate, as well as techniques which attempt
to cope with intensive and intricate visibility information by culling too fine and unnecessary information.
Techniques developed to deal with dynamic scenes include swept or motion volumes, 4D method (where time
is the fourth dimension), and smooth updates of BSP trees or shadow boundaries.

Table 15.1 summarizes the techniques which we have presented, by domain and space.

2 Discussion

A large gap exists between exact and approximate methods. Exact methods are often costly and prone to
robustness problems, while approximate methods suffer from aliasing artifacts. Smooth trade-off and efficient
adaptive approximate solutions should be developed. This requires both to be able to refine a computation and
to efficiently determine the required accuracy.

Visibility with moving objects and temporal coherence have received little attention. Dynamic scenes are
mostly treated as successions of static timesteps for which everything is recomputed from scratch. Solutions
should be found to efficiently identify the calculations which actually need to be performed after the movement
of objects.

As evoked in the introduction of this survey, no practical guide to visibility techniques really exists. Some
libraries or programs are available (see for example appendix E) but the implementation of reusable visibility
code in the spirit ofC-GAL [FGK+96] would be a major contribution, especially in the case of 3D visibility.
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Object space Image space Viewpoint space Line space
view computation BSP
Hard shadow shadow volume shadow map

shadow BSP shadow cache
Soft shadows limits of penumbra sampling complete discontinuity mesh antipenumbra

convolution
Occlusion culling use of frusta hierarchical z-buffer temporal coherence line-space subdivision

architectural scenes shadow footprints use of the aspect graph
from a volume

Ray-tracing bounding volumes item and light buffer ray classification
space subdivision ZZ-buffer
beam-tracing

Radiosity discontinuity mesh hemicube complete discontinuity mesh visibility skeleton
shaft culling convolution global Monte Carlo
volumetric visibility Plücker for blockers
architectural scenes

Image-based epipolar rendering silhouette tree lumigraph, light-field
Object recognition aspect graph asp
Contour intersection visual hull
Sensor placement viewpoint constraint viewpoint optimization

best-next view art gallery
Motion planning visibility graph use of the z-buffer pursuit-evasion

self localisation
target tracking
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Conclusions

Étudie d’abord la science, puis apprends la pratique n´ee
de cette science.

LéonardDE VINCI, Codex Urbinas

HIS DOCUMENT describes theoretical and practical work on visibility. Thanks to a study in
line-space, we have been able to better understand the visibility properties of a 3D scene and
their coherence. This allowed us to develop a data-structure which has proved useful for light-
ing simulation, an application which is very demanding in visibility calculation. We have
presented an efficient preprocess for the display of complex scenes, which reduces 3D visibil-

ity properties to simple tests on planes. Finally, we have proposed a vast survey of work related to visibility. In
what follows we first summarize our contributions, we then present issues of future work, and conclude.

Contributions

The 3D visibility complex

The 3D visibility complexpresents new insights into visibility issues. Since it is based on the atomic notion
of ray, any visibility problem finds a natural expression in the visibility complex. The notion of maximal free
segments permits the simplification of ray-space into a 4-manifold, which facilitates the description of visibility
properties and better accounts for the dimensionality of problems. The visibility complex makes the notion of
coherenceexplicit; each cell contains a set of segments which see the same objects, and the adjacencies between
the boundary faces represent the structure of the limits of visibility of a scene (limits of umbra and penumbra,
appearance or disappearance of objects as seen from a moving observer, etc.) The visibility complex describes
in a unified framework all the visibility properties of a scene composed of polygons and curved objects, as well
as their modification when objects move.

The theoretical complexity of the visibility complex is between linear andO(n4) in the number of input
objects, which provides little information on its practical behaviour. We have described a simplified model of
“normal” scenes, and a probabilistic calculation has allowed us to show that under these assumptions, the size
of the complex isO(n2:67).

235



236 CONCLUSIONS

The visibility skeleton

To avoid the treatment of a four dimensional cellular complex, we have simplified the visibility complex into
a graph in line-space, thevisibility skeleton. Our construction algorithm is topological and local: compute the
nodes of the graph and deduce the arcs using a catalogue of adjacencies. Previous methods based on visual
events required the intricate treatment of (non-planar) surfaces in 3D space or curves on the sphere of directions.
We only consider single lines, which makes our construction more robust and flexible. Visual events, which
are geometrically complex, are deduced using simple topological adjacencies.

Thanks to this algorithm, we have been able to show that it is possible to implement a global visibility
structure which is generic. Once the structure is built, very efficient queries are possible (e.g., milliseconds
for the retrieval of umbra and penumbra boundaries). The visibility skeleton is simpler and more robust than
previous approaches such as discontinuity meshing, even though those methods are more restrictive, since they
handle visibility with respect to primary light sources only.

The potential applications of the skeleton are beyond lighting simulation. The flexibility offered by the “on-
demand” construction should permit its adaptation to several problems, including aspect graphs and occlusion-
free viewpoints in computer vision, or visibility-based motion planning in robotics.

Visibility driven hierarchical radiosity

The application of the visibility skeleton to lighting simulation permits higher quality images together with
improved computation time. Previous methods compute visibility by sampling, which is costly and inaccurate,
while the visibility skeleton affords an efficient exact computation of the amount of light leaving one polygon
arriving at a point (form factor).

It also allows us to subdivide the mesh used to represent the lighting function along the limits of umbra and
penumbra, with respect to any polygon while previous methods where limited to a small number of primary
light sources. In particular, we handle the discontinuities of the lighting function caused by the limits of visibil-
ity of indirect lighting. This technique together with the introduction of lazy wavelets defined on hierarchical
triangulations provide a high-quality representation of illumination which is well suited to walkthroughs.

Our refinement criteria are based on the visibility information encoded in the skeleton and on a perceptual
metric. This allows us to refine the simulation only if the additional precision may be noticeable by a human
observer. We avoid the tedious setting of impredictable and arbitrary criteria which have impeded the usability
of hierarchical simulations.

The tests we have performed show that our method is efficient. It handles efficiently traditionally difficult
configurations such as multiple light sources or scenes lit mainly by indirect lighting. The comparison with a
recent method has shown that our approach provides higher quality with shorter computation time.

General occlusion-culling using extended projections

Our occlusion-culling preprocess is the first method to compute visibility with respect to a volumetric cell
which handles the cumulative occlusion due to multiple occluders. The visibility tests are performed in planes
usingextended projectionoperators which underestimate the projection of the occluders with respect to any
viewpoint of the scene, while the projection of an occludee is overestimated. Our technique is conservative
(no visible object is identified as invisible), simple to implement and efficient thanks to the use of graphics
hardware.

We have also developed anocclusion sweepwhich permits the handling of particularly difficult configura-
tions, such as visibility from a cell within a forest. During the sweep by a set of parallel planes leaving the cell,
occlusion due to leaves of the trees aggregates using a reprojection operator.

To prove the validity of the approach, we have demonstrated some original properties of shadows, in par-
ticular on the possible implications of the inclusion of the shadows of two objects.

A multidisciplinary survey of visibility

In the second part of this document, we propose an overview of the visibility techniques developed in different
domains. We have proposed a classification according to the space in which computations are performed. This
has allowed us to review a large number of methods without proposing a catalogue per field.
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This part may be useful to anyone starting to work on visibility, as well as to anyone who searches inspira-
tion and solutions in other communities. It can also be useful to rapidly find a reference to a given technique.
Even though it was not organized with this purpose in mind, we hope that it will help those looking for practical
answers to concrete problems.

Future work

Direct extensions of our work have been proposed throughout this document. We refer the interested reader to
the conclusions sections of each chapter. In what follows, we describe more general issues for future research.

The visibility complex and the visibility skeleton do not h scale well, as opposed to approximate approaches.
Even though the theoreticalO(n4) does not correspond to the practical behaviour, the quadratic cost predicted
by our probabilistic study and confirmed by our experiments is still not acceptable for a practical use on large
scenes. The utility of such information is moreover questionable. Is it useful to determine that the edge of a tile
and the gap between two bricks of a second distant house generate a visual event? The amount of information
is not only costly to compute and store, it is also intricate and unusable.

Multiscale approaches have to be explored. The simplification of the information encoded in the visibility
skeleton or in the complex would be a first step to cope with this. Two major issues must be addressed. First,
the inherently global nature of visibility makes it difficult to perform a simplification based purely on proximity
in line space, since the corresponding spatial influence may be infinite. A first way to address this problem is
to study the simplification of visibility information for use outside a group of objects.

The second problem is the definition of approximate or simplified visibility information. Interesting work
has been published which address this issue in the context of discontinuity meshing [SK98] or aspect graphs
[EBD+93, SP97]. The latter approaches define the notion of scale by the visual size of a feature and offers good
insights on the topic, even though their applications have at the moment only led to a more complex visibility
information.

Robustness issues require efficient treatment, which can be studied together with the issue of scalability
using the definition of relevant thresholds. We repeat that we believe that degenerate configurations should not
be reduced to general configuration using exact arithmetic. We want to avoid the treatment of infinitely small
events which may then generate many problems. The scene encountered in practice contain many degeneracies;
these should be exploited and not only avoided.

Another possibility to cope both with scalability and robustness consists in the use of purely approximate
computation, based on volumetric [SD95] or rasterized [SK98] approaches. Difficulties include the error con-
trol and the possibility to refine calculations [SS96b, Sol98].

As was said before, theoretical bounds sometimes tell little about the practical complexity of methods or
problems with “normal” scenes. Probabilistic approaches and a theoretical model of “normal scenes” (in the
spirit of de Berget al. [dBKvdSV97] or our probabilistic approach for triple-tangency events in chapter 2)
should permit a better understanding of the actual complexity of visibility properties and methods. Such an
approach should be accompanied by statistical experiments. This issue is not only relevant to visibility, but
also to any geometric problem.

Finally, the treatment of scenes with moving objects deserves more attention. Temporal visual events permit
better insights of the underlying phenomena. However, practical and efficient algorithms have to be developed,
to avoid the redundancy of computation, since most of the methods recompute everything from scratch for each
frame.

To conclude

This thesis has proposed theoretical and practical work on visibility. It is certainly exposed to the criticisms of
theoreticians who will regret that it is not rigorous enough and too applied, while applied computer graphics
researchers may disapprove of the abstract and multidimensional parts.

We however hope that it shows that practical problems raise difficult and fascinating theoretical issues. 3D
visibility is interesting, both from the geometrical and algorithmic point of view. Beyond visibility itself, the
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analysis of problems and algorithms in “normal” scenes requires careful and appropriate attention and provides
an exciting theoretical field.

We also hope that it shows that an analytical study can have concrete contributions to the efficient resolution
of practical problems. Our theoretical work has allowed us to develop new efficient solutions, which are rather
simpler than existing methods, even though they are based on a complex multidimensional framework. We
believe that the understanding offered by a theoretical study permits the development of solutions under a
different angle.



APPENDIX A

The 3D Visibility Complex

1 Catalogue of adjacencies

Table A.1 presents the adjacencies between all types of faces of the 3D Visibility Complex and their higher
dimensional faces. Recall that two faces can have the same generators but different extremities.

We explain here how the number of adjacent 4-faces is obtained. Consider a face withk generators (lying
on objectsOi , i 2 f1: : :kg) and with extremities(O0;Ok+1). Its adjacent 4 faces are the faces with extremities
(OiOj) with i > j. The number of adjacent 4-faces with right extremityOi is i. The total number of adjacent
4-faces is thus:

k+1

∑
i=1

i =
(k+1)(k+2)

2

2 Concave objects

Critical line set and visual events for concave smooth objects are described by the singularities of smooth
mappings as introduced in chapter 8. The catalogues have been established by Rieger [Rie87, Rie90] and
Kergosien [Ker81]. We give here a short overview inspired by [Pet92, Ker81, Rie90]. We refer the interested
reader to these references where he will find a more comprehensive presentation.

Local events are related to the differential properties of the surface, in particular to theorderof its tangent
vectors (intuitively, the codimension of a segment depends on its “contact” with the surface).

Consider a surfaceF defined by the implicit equationF(x) = 0 (such a representation always exist), and
a pointx on the surface. Denote~t a vector.~t has ordern at x if the (n� 1) first derivatives ofF are null in
direction~t. Tangent vectors are for example of order 2.

The points of a generic smooth surface can be separated into the following 8 classes according to the order
of their tangents (see also Fig. A.1 and Fig. A.2):

1. In theelliptic domain all tangents have order 2;

2. In thehyperbolic domain points where each point has two tangents of order higher than 2 (called the
asymptotic tangents);
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k k-face (k+1)-faces (k+2)-faces (k+3)-faces (k+4)-faces
3 T 3 4-faces
2 T1+T2 2 T1 6 4-faces

2 T2

V at least 2Ti 3 4-faces
1 T1+T2+T3 2 T1+T2 3 T1 10-faces

1 T1+T3 4 T2

2 T2+T3 3 T3

T1++T2 1 T1+T2 2 T1 6 4-faces
2 T2

T1+V2 2 V2 2 T1 6 4-faces
2 T1+Ti

2 2 Ti
2 per edge

0 T1+T2+T3+T4 2 T1+T2+T3 3 T1+T2 4 T1 15 4-faces
1 T1+T2+T4 4 T2+T3 6 T2

1 T1+T3+T4 3 T3+T4 6 T3

2 T2+T3+T4 2 T1+T3 4 T4

2 T2+T3+T4 2 T2+T4

2 T2+T3+T4 1 T1+T4

T1++T2+T3 2 T1++T2 2 T1+T2 3 T1 10 4-faces
1 T1+T2+T3 2 T2+T3 4 T2

3 T3

T1+V2+T3 2 T1+V2 2 T1+Ti
2 per edge 3 T1 10 4-faces

2 T3+V2 1 T1+T3 4 Ti
2 per edge

2 T1+Ti
2 +T3 2 Ti

2 +T3 per edge 3 T3

4 V2

T1+T2+V3 1 T1+V3 2 T1+T2 3 T1 10 4-faces
2 T2+V3 1 T1+Ti

3 per edge 4 T2

1 T1+T2+Ti
3 per edge 2 T2+Ti

3 per edge 3 Ti
3 per edge

V1+V2 1 Ti
1 +V2 per edge 1 Ti

1 +T j
2 per edge pair 2 Ti

1 per edge 6 4-faces
1 T j

2 +V1 per edge 2 T j
2 per edge

Table A.1: Adjacencies of the faces of the visibility complex of polygons and smooth objects. A vertexVk is
adjacent to edgesTi

k .

3. Thecurve of parabolic pointsseparates the two previous domains. Each point has one tangent of order
higher than 2 (called the asymptotic tangent);

4. Theflecnodal curvelies inside the hyperbolic domain and corresponds to the inflection of one asymptotic
tangent, which has order at least 4;

5. Thebiflecnodeshave a tangent of order 5.

6. The points ofinflexion of both asymptotic lineswhich correspond to the self-crossing of the flecnodal
curve: both asymptotic tangents have order 4.

7. Thegodronsare the points of tangency of the flecnodal curve and the parabolic curve.

8. Thegutterpoints are stationary points of the asymptotic tangents on the parabolic curve.

Cuspsingularities occur for segments colinear to an asymptotic tangent in the hyperbolic domain (Fig. A.1).
They have codimension 2, they thus generate 2-faces of the visibility complex.

Codimension 3 singularities correspond to the appearance or disappearance of a pair of cusps. They are
thus adjacent to two cusp 2-faces of the complex.Swallowtail singularities occur for segments colinear to the
asymptotic tangent at a point of the flecnodal curve.lip andbeak-to-beakoccur on the parabolic curve.

Codimension 4 singularities are more involved. They are also adjacent to multilocal events such astangent
crossingsor cusp crossings(where a segment of a cusp is also tangent to an object).Gulls occur at godrons,
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beak-to-beak  (parabolic curve) lip (parabolic curve)

(elliptic domain)

elliptic
domain

hyperbolic
domain

parabolic
curve

flecnodal
curve

swallowtail (flecnodal curve)cusp (hyperbolic domain)

Figure A.1: Singularities of a general smooth surface (adapted from [Pet92]). We represent the views both for
segment-visibility (black frames) and line visibility (grey-frames, hidden-lines are in light-grey).

geeseat gutterpoints, andbutterflies at biflecnodes. The adjacencies of the corresponding 0-faces of the
visibility complex with 1-faces are represented in Fig. A.2.
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Figure A.2: Singularities of concave surfaces. Codimension 4 singularities (adapted from [Pet92]).

3 Discontinuity meshing for curved objects

A direct application of the concepts developed for the visibility complex is the implementation of the compu-
tation of the limits of umbra and penumbra for smooth curved objects illuminated by an area polygonal light
source. Fig. A.3 illustrates the case of a single sphere and a triangle source.

The limits of umbra and penumbra are:

� theT+V events, which correspond to the views of the object from the vertices of the source (Fig. A.3(a));

� theT ++T events corresponding to planes going through an edge of the scheme

These kind of events can both be computed easily. If multiple objects are considered, these limits have to
be intersected with the other objects, in a way similar to discontinuity meshing for polygonal scenes [DF94].
However, if the limits of umbra are sought, complexT +T +T events should be handled.
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S

(a) (b) (c)

S S

Figure A.3: Discontinuity mesh of a curved object. (a)T +V events. (b) AT ++T event. (c) Complete
discontinuity mesh.
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APPENDIX B

The Visibility Skeleton

1 Complete Catalogue of Face Adjacencies

Face related events are adjacent toFE elementsFv elements as well asEEEarcs when two non-coplanar edges
are involved.

The interaction of a face with two edges is shown in Fig. B.1, the interaction of a face a vertex and an edge
is shown in Fig. B.3 and finally the interaction of two faces is shown in Fig. B.2.
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e1

e2

f ef2
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e2

fe1

e2

ef1

ef2
f e1fe2

fe2 fe1

fe2'
fe1'

e1ef2e2

e1ef1e2

fe1e2

fe2

fe1fe1'

e1ef2e2

e1ef1e2

e1ef2e2'

(a) (b)

Figure B.1: An EFE node.

2 Details of the Construction to find the Orientation of Arcs

Finding the correct extremity of an arc when inserting a node is crucial for the construction algorithm to
function correctly. We present here the most complex case, which is the insertion of anE4 node.

Consider the nodee1e2e3e4 shown in Fig. B.4, and the adjacent arce1e2e3. The question that needs to be
answered is whether the nodee1e2e3e4 is the start or the end node of this arc. To answer this query, we examine
the movement of the linel going throughe1, e2 ande3, when moving one1. The side ofe4 to which we move
will determine whether we are a start or an end node.
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Figure B.2: (a) A FF node, (b) anFe node and (c) andFvv node.
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fe fe'

Figure B.3: A FvE node.

Consider the infinitesimal motiond~ε1 on e1. The corresponding point ofe3 on theEEE will lie on the
intersection of the plane defined bye2 and the defining point one1. The motion ofd~ε1 on e1 corresponds to a
rotation ofα =

~ε1:~n
d1

of the plane arounde2. Symmetrically, this rotation corresponds to the motiond~ε3 on e3

and we haveα =
d~ε3:~n

d3
, by angle equality. Thus,d~ε3 = ~e3

d3 ~dε1:~n
d1~e3:~n

.
Now we want to obtaind~ε4, the infinitesimal motion of the line going through the three edges around

e4. We consider the line as being defined by its origin one1 and by its unnormalized direction vector~dir
from e1 to e3. For the motiond~ε1 of the origin, the direction vector of moves byd~ε3�d~ε1, and thusd~ε4 =

d~ε1+
d4

d3�d1
(d~ε3�~e1).

The sign of(~ε4�~e4): ~nodedetermines on which side ofe4 the linel will move.
The adjacencies also depend on the face related to the edges which are visible from the other edges. The

other cases are simpler and summarized in Table 2 (Some errors present in the Siggraph version [DDP97c] for
the criteria for thee1ve2 node were corrected).

e4

e3

e2

e1

ε1

ε3

ε4

d3-d1

d4

e3

e2

e1

ε1

n

ε3

d1

d3

α
dir

node

Figure B.4: Determining the direction of an E4 node insertion.
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Node Adjacent arc Start or End Criterion
v1v2 v1e3 v1 == startV(e)
ve1e2 ve2 (~e2�~e1): ~node> 0

e3e1e2 v== startV(e3)

e2e1e3 ~n= ~normal(v; ~e2)

~e3:~n�~e1:~n> 0
e1ve2 ve2 (~e1�~e2): ~node> 0

e1e3e2 ~n= ~normal(v; ~e2)

~e3:~n�~e1:~n> 0
e1e2e3e4 e1e2e3 ~n= ~normal(~e2; ~node);

~ε3 = ~e3
d3~e1:~n
d1~e3:~n

~ε4 = ~e1+
d4

d3�d1
(~ε3�~e1)

(~ε4�~e4): ~node> 0

e1 f e2 f e1 ~e2: ~normal( f )> 0
e1ef 1e2 ~e1: ~normal( f )> 0

f e1e2 f e2 ~e1: ~normal( f )> 0
e2e1ef 1 ~n= ~normal( ~node; ~e1)

~n:~e2�~n: ~ef 1 > 0
f ve f v ~e: ~normal( f ) > 0

ve ~e: ~normal( f ) > 0

Table B.1: For each arc adjacent to a created node, there is a criterion that tells if it is a start node or an ending node.
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APPENDIX C

Efficient extended projection using
Open GL

Recall that in Section 2.2 of chapter 5, we described how to project convex occluders onto a projection plane.
The general ideas were presented there: the Projection is the intersection of the views from the vertices of the
viewing cell. Here we present the details of an efficient OpenGL implementation.

One of the problems is that during the projection of convex occluders we need to write consistent z-values
and also treat the case of multiple blockers. An efficient way to do this in OpenGL is to use the stencil buffer,
and a slightly involved z-buffer.

Recall that depth is defined orthogonal to the projection plane, and that theDepthof a point in the Projection
of an occluder is the maximum of the depth of the corresponding projected points. To efficiently handle multiple
occluders, theminimumof their Depths must be used.

For a perspective projection, depth is considered from the viewpoint. Mapping thezvalue to our definition
of depth requires an addition to set the zero on the projection plane. Unfortunatetely,OpenGLstores1

z in the
z-buffer, preventing a simple addition.

For a given occluder and a given cell, we project (in software) the blocker onto the projection plane, includ-
ing the calculation ofz values. The resulting 2D polygons are then rendered orthographically using a stencil
buffer. Z-testing is performed with respect to z-values potentially written by a previously projected blocker, but
depth values are not written. The stencil buffer is incremented by one. After all the polygons corresponding
to each cell vertex have been rendered, the umbra region is defined by the region of the stencil buffer with the
value 8 (i.e., blocked with respect to all cell vertices).

The eight 2D polygons are rendered again, using the stencil buffer to restrict writing to the umbra region
only. The first polygon is rendered and z-values are written to the z-buffer. The 7 other polygons are then
rendered but the z-test is inverted. This results in themaximumz-value being written to the z-buffer.

The result of these operations is the creation of the required umbra zone, including appropriately consistent
z-values.

This process is summarized in the pseudo-code of Figure C.1.
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ProjectBlocker ( occluder A, cell C, projection plane P )
for each vertexvi of C

project A onto P in software
create 2D polygonspi ; i = 1::8

endfor
enable stencil buffer, increment by one
// do z-test in case previous blocker
// mapped to same pixels
enable z-test
disable z-write
for each 2D polygonpi ; i = 1::8

renderpi orthographically
endfor
// initialize for max calculation
enable z-write
render polygonp1
// use inverted z for max calculation
enable invert z-mode
for each 2D polygonpi ; i = 2::8

render polygonpi

endfor

Figure C.1: Efficient OpenGL implementation of blocker projection.



APPENDIX D

Some Notions in Line Space

Plücker coordinates

Consider adirectedline ` in 3D defined by two pointsP(xP;yP;zP) andQ(xQ;yQ;zQ). ThePlücker coordinates
[Plü65] of ` are: 0

BBBBBB@

π`0

π`1

π`2

π`3

π`4

π`5

1
CCCCCCA

=

0
BBBBBB@

xPyQ�yPxQ

xPzQ�zPxQ

xP�xQ

yPzQ�zPyQ

zP�zQ

yQ�yP

1
CCCCCCA

(The signs and order may vary with the authors). These coordinates are homogenous, any choice ofP andQ
will give the same Pl¨ucker coordinates up to a scaling factor (Pl¨ucker space is thus a 5D projective space).

The dot product between two linesa andb with Plücker dualsΠa andΠb is defined by

Πa�Πb = πa0πb4+πa1πb5+πa2πb3+πa4πb0+πa5πb1+πa3πb2

The sign of the dot products indicates the relative orientation of the two lines. If the dot product is null, the
two lines intersect. The equationΠa�Π` = 0 defines the hyperplane associated witha.

ThePlücker hypersurfaceor Grassman manifoldor Klein quadricis defined by

Π`�Π` = 0
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APPENDIX E

Online Ressources

1 General ressources

An index of computer graphics web pages can be found at
http://www-imagis.imag.fr/˜Fredo.Durand/book.html

A lot of computer vision ressources are listed at
http://www.cs.cmu.edu/ cil/vision.html
A commented and sorted vision bibliography:
http://iris.usc.edu/Vision-Notes/bibliography/contents.html
An excellent Compendium of Computer Vision:
http://www.dai.ed.ac.uk/CVonline/

For robotics related pages, see
http://www-robotics.cs.umass.edu/robotics.html
http://www.robohoo.com/

Many sites are dedicated to computational geometry,e.g.:
http://www.ics.uci.edu/˜eppstein/geom.html
http://compgeom.cs.uiuc.edu/˜jeffe/compgeom/

Those interested in human and animal vision will find several links at:
http://www.visionscience.com/.

An introduction to perception is provided under the form of an excellent web book at:
http://www.yorku.ca/eye/

2 Available code.

CGAL is a robust and flexible computational geometry librairy
http://www.cs.ruu.nl/CGAL
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Nina Amenta maintains some links to geometrical softwares:
http://www.geom.umn.edu/software/cglist/welcome.html

The implementation of Luebke and George’s online portal occlusion-culling technique is available at:
http://www.cs.virginia.edu/˜luebke/visibility.html

Electronic articles on shadows, portals, etc.:
http://www.flipcode.com/features.htm

Information on Open GL, including shadow computation:
http://reality.sgi.com/opengl/

Visibility graph programs can be found at:
http://www.cs.uleth.ca/˜wismath/vis.html
http://cs.smith.edu/˜halef/research.html
http://willkuere.informatik.uni-wuerzburg.de/ lupinho/java.html

Many ray-tracer are availablee.g.:
http://www.povray.org/
http://www-graphics.stanford.edu/- cek/rayshade/rayshade.html
http://www.rz.tu-ilmenau.de/˜juhu/GX/intro.html (with different acceleration schemes, including ray-
classification)

A radiosity implementation:
http://www.ledalite.com/software/software.htm

RenderPark provides many global illumination methods, such as radiosity or Monte-Carlo path-tracing:
http://www.cs.kuleuven.ac.be/cwis/research-/graphics/RENDERPARK/

Aspect graphs:
http://www.dai.ed.ac.uk/staff/-personalpages/eggertd/software.html

BSP trees:
http://www.cs.utexas.edu/users/atc/

A list of info and links about BSP:
http://www.ce.unipr.it/ marchini/jaluit.html

Mel Slater’s shadow volume BSP:
ftp://ftp.dcs.qmw.ac.uk/people/mel/BSP/
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3 Plücker coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
3.1 Introduction to Pl¨ucker coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
3.2 Use in computational geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
3.3 Implementations in computer graphics . . . . . . . . . . . . . . . . . . . . . . . . . . 221

4 Stochastic approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
4.1 Integral geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
4.2 Computation of form factors using ray-casting . . . . . . . . . . . . . . . . . . . . . 222
4.3 Global Monte-Carlo radiosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
4.4 Transillumination plane . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

14 Advanced issues 225
1 Scale and precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

1.1 Hierarchical radiosity: a paradigm for refinement . . . . . . . . . . . . . . . . . . . . 225
1.2 Other shadow refinement approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 226
1.3 Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
1.4 Explicitly modeling scale . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
1.5 Image-space simplification for discontinuity meshing . . . . . . . . . . . . . . . . . . 228

2 Dynamic scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
2.1 Swept and motion volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
2.2 4D methods . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
2.3 BSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
2.4 Aspect graph for objects with moving parts . . . . . . . . . . . . . . . . . . . . . . . 229
2.5 Discontinuity mesh update .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
2.6 Temporal visual events and the visibility skeleton. . . . . . . . . . . . . . . . . . . . 230

15 Conclusions of the survey 231
1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232



262 CONTENTS

Conclusions 235
Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
To conclude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

A The 3D Visibility Complex 239
1 Catalogue of adjacencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
2 Concave objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
3 Discontinuity meshing for curved objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

B The Visibility Skeleton 245
1 Complete Catalogue of Face Adjacencies . .. . . . . . . . . . . . . . . . . . . . . . . . . . 245
2 Details of the Construction to find the Orientation of Arcs . . . . . . . . . . . . . . . . . . . . 245

C Efficient extended projection using Open GL 249

D Some Notions in Line Space 251

E Online Ressources 253
1 General ressources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
2 Available code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Contents 255

List of Figures 263

Index 269

References 275



LIST OF FIGURES

1.1 Occlusion culling using occlusion maps . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2 Occlusion culling and visual events .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3 Occlusion culling using shadow footprints .. . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4 Shaft culling . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5 Visibility propagation through portals . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.6 Off-line occlusion culling for convex occluders . . . . .. . . . . . . . . . . . . . . . . . . . 22
1.7 Umbra and penumbra boundaries . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.8 EEE shadow boundary . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.9 EV visual event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.10 2D equivalent of ray-classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.11 2D visibility complex . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1 Maximal free segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 Duality and tangency volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Degrees of freedom of a tangent line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Line and segment visibility .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5 Dual arrangement for two spheres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6 Auxiliary Complex for two spheres.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.7 ϕ-slice of the faces of the visibility complex. . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.8 Visibility Complex of a scene of three spheres. . . . . .. . . . . . . . . . . . . . . . . . . . 36
2.9 Zoomed view of theϕ-sliceϕ = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.10 Tritangency visual event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.11 Critical segments: local and multilocal events . . . . . .. . . . . . . . . . . . . . . . . . . . 38
2.12 Bitangents adjacent to a tritangent face . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.13 Construction of a segment of aT +T 2-face adjacent to aT 3-face. . . . . . . . . . . . . . . . 40
2.14 Lower and upper bound scenes for the visibility complex. . . . . . . . . . . . . . . . . . . . 40
2.15 Probabilistic complexity ofT +T +T events . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.16 Probability distribution of distances of pairs of points inside a sphere . .. . . . . . . . . . . . 43
2.17 Temporal visual event and Temporal Visibility Complex. . . . . . . . . . . . . . . . . . . . 45
2.18 Sketch of sweep direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.19 Sweep of the first vertex of a polyhedron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.20 Fusion-restriction of a view around edges when a vertex is swept. . . . . . . . . . . . . . . . 48
2.21 T +T +T critical line sets adjacent to aT +T +T +T critical line. . . . . . . . . . . . . . . 48
2.22 IrregularV +V critical segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.23 Different sweep-events represented in the dual space . . . . . . . . . . . . . . . . . . . . . . 50

263



264 LIST OF FIGURES

2.24 View around a point with the visibility complex . . .. . . . . . . . . . . . . . . . . . . . . . 51
2.25 Traversal of aϕ-slice to compute the view around a point . . . . .. . . . . . . . . . . . . . . 52

3.1 Example of queries using the skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2 EV visual event and graph structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3 adjacencies of aVEE extremal stabbing line . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 Visual events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5 VV andEVE extremal stabbing lines and their adjacencies . . . .. . . . . . . . . . . . . . . 61
3.6 E4 extremal stabbing lines and its adjacencies. . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.7 Basic Visibility Skeleton Structure. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.8 Summary of the visibility skeleton structures. . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.9 VEE andE4 computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.10 Enumeration of Potential VEE and E4 Nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.11 Acceleration using a regular grid and hourglasses . .. . . . . . . . . . . . . . . . . . . . . . 66
3.12 Finding Face Nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.13 Node Creation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.14 Example of node insertions . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.15 Graphic of the growth in memory and computation time . . . . . . . . . . . . . . . . . . . . . 70
3.16 View queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.17 Discontinuity mesh queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.18 Occluder queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.19 Dynamic update of the skeleton . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.20 General definition of extremal stabbing lines .. . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1 Images computed using our new hierarchical radiosity algorithm . . . . . . . . . . . . . . . . 80
4.2 Hierarchical Triangulation Construction . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3 The “matching” constraint for the Hierarchical Triangulation . . .. . . . . . . . . . . . . . . 84
4.4 Principle of our multiresolution representation. . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.5 Consistent multiresolution representation with lazy wavelets . . .. . . . . . . . . . . . . . . 86
4.6 Visibility driven hierarchical radiosity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.7 Point-polygon link . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.8 Geometry for the calculation of a form factor . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.9 Example of Form-Factor computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.10 Negative links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.11 Gather and push-pull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.12 Polygon-polygon link . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.13 Receiver refinement . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.14 Source visibility updates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.15 Receiver visibility updates . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.16 Receiver refinement with visibility events . .. . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.17 Degeneracy due to discontinuity meshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.18 Effect of Ward’s tone-mapping on the same scene with different light source intensities . . . . 95
4.19 Polygon subdivision . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.20 Refinement criterion geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.21 Initial Desk Scene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.22 Many Lights scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.23 Hierarchical Radiosity comparative results for Many Lights scene . . . . . . . . . . . . . . . 103
4.24 Indirect lighting scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.25 Indirect lighting scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.26 Hierarchical Radiosity comparative results for Indirect Lighting scene . . . . . . . . . . . . . 106
4.27 Village scene . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.28 Taking advantage of invariant backprojections . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.29 Time-memory tradeoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.30 Optimizing a triangulation . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



LIST OF FIGURES 265

5.1 Extended projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2 Occluder fusion with extended projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.3 Inverse of a point in an extended projection and conservative depth definition . . . .. . . . . 117
5.4 Occludee extended projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.5 Convex occluder extended projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.6 Configuration where initial extended projections is too restrictive. . . . . . . . . . . . . . . . 120
5.7 Case of a concave planar occluder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.8 Improved extended projection in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.9 Improved extended projection in 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.10 Extended occlusion map reprojection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.11 Umbra of the subset of an umbra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.12 Occlusion sweep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.13 Choice of the projection plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.14 Example of projection planes for a cell of the city model . . . . . . . . . . . . . . . . . . . . 128
5.15 Results of our algorithm for a city scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.16 Comparative results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.17 The sweeping process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.18 Portal extended projection and concave occluder Projection using a union of convex . . . . . . 133
5.19 Concave occluder mesh Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.20 Successive convolutions and remapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.1 Study of shadows by Leonardo da Vinci and Johann Heinrich Lambert . . . . . . . . . . . . . 142
7.2 Soft shadow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.3 BRDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.4 Global illumination . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.5 Principle of recursive ray-tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.6 Radiosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.7 View warping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
7.8 Model-based object recognition . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.9 Object reconstruction by contour intersection . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.10 Viewpoint optimization for a screwdriver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.11 Viewpoint optimization for a peg insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.12 Object acquisition using a laser plane . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.13 Motion planning on a floorplan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.14 Visibility based pursuit-evasion . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.15 2D Robot localisation . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.16 View with sizeO(n2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.17 Line stabbing a set of convex polygons in 3D space . . .. . . . . . . . . . . . . . . . . . . . 154
7.18 Eclipse by Purbach and Halley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.19 Solar and lunar eclipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.20 Sundials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.1 orthographic viewpoint space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
8.2 Line parameterisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.3 EV visual event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
8.4 Locus an EV visual event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
8.5 A EEE visual event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.6 Locus of a EEE visual event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.7 Line drawing of the view of a torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
8.8 Tangent crossing singularity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
8.9 Disappearance of a cusp at a swallowtail singularity . . .. . . . . . . . . . . . . . . . . . . . 163
8.10 Opaque and semi-transparent visual singularities . . . .. . . . . . . . . . . . . . . . . . . . 164

9.1 Classic example of a cycle in depth order . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
9.2 A priori depth order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168



266 LIST OF FIGURES

9.3 A buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
9.4 Ray-casting by D¨urer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
9.5 Sweep of a visibility map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

10.1 A 2D analogy of ray-tracing acceleration . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 175
10.2 2D BSP tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
10.3 Path planning using the visibility graph. . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 177
10.4 Shadow for non-holonomic path-planning . .. . . . . . . . . . . . . . . . . . . . . . . . . . 178
10.5 Visual hull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
10.6 Shadow volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
10.7 Construction of a shadow by D¨urer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
10.8 2D equivalent of shadow BSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
10.9 Beam tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
10.10Occlusion culling with large occluders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
10.11Occlusion culling using image-space portals .. . . . . . . . . . . . . . . . . . . . . . . . . . 183
10.12Volume of occlusion for model acquisition . .. . . . . . . . . . . . . . . . . . . . . . . . . . 183
10.13Umbra and penumbra of a convex blocker . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
10.14Penumbra by da Vinci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
10.15Global illumination simulation with discontinuity meshing . . . .. . . . . . . . . . . . . . . 186
10.16Linear time construction of a penumbra volume. . . . . . . . . . . . . . . . . . . . . . . . . . 186
10.17Sketching shadows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
10.18Shaft culling . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
10.19Visibility computations in architectural environments. . . . . . . . . . . . . . . . . . . . . . 189
10.20Conservative visibility propagation through arbitrary portals . . .. . . . . . . . . . . . . . . 189

11.1 Shadow map principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
11.2 Light buffer and hemicube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
11.3 Non binary visibility for sound propagation .. . . . . . . . . . . . . . . . . . . . . . . . . . 195
11.4 Hierarchical z-buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
11.5 Occluder shadow footprints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
11.6 Epipolar geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
11.7 Soft shadows computation using convolution . . . . . . . . . . . . . . . . . . . . . . . . . . 197
11.8 Soft shadows computed using convolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

12.1 Quasi uniform subdivision of the viewing sphere starting with an icosahedron. . .. . . . . . . 200
12.2 Aspect graph of a convex cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
12.3 False event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
12.4 Aspect graph of a L-shaped polyhedron under orthographic projection . .. . . . . . . . . . . 202
12.5 Partition of orthographic viewpoint space for a dimple object . . .. . . . . . . . . . . . . . . 203
12.6 Scene partition for robot self-localisation . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 205
12.7 Pursuit-Evasion strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
12.8 Complete discontinuity meshing: example of anEV . . . . . . . . . . . . . . . . . . . . . . . 206
12.9 Complete discontinuity meshing: example of aEEE . . . . . . . . . . . . . . . . . . . . . . 206
12.10Complete discontinuity mesh of a scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
12.11Art gallery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
12.12Planning of a stereo-sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
12.13Tracking of a mobile target by an observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
12.14Shortest path for the target to escape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
12.15Occlusion culling and visual events . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

13.1 Slice of theaspfor ϕ = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
13.2 Topology of maximal free segments .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
13.3 A face of the visibility complex . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
13.4 Ray classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
13.5 Image computed using ray classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216



LIST OF FIGURES 267

13.6 Adjacencies of critical lines and extremal stabbing lines .. . . . . . . . . . . . . . . . . . . . 218
13.7 Four lines in general position are stabbed by two lines . .. . . . . . . . . . . . . . . . . . . . 218
13.8 Skewed projection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
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silhouette tree 204
singularity 162–163, 203

catalogue 163
cusp 162
fold (see silhouette), 162, 166
stability 162
swallowtail 163
t-vertex 162, 166, 171
tangent crossing 162
view update 162, 166

sketching shadow 142, 187
skewed projection 218
soft shadow 142, 166, 216, 226

boundary 183–185
convolution 197, 226
radiosity 146, 194
ray-tracing 181, 193, 198
shadow-map 193, 197
supersampling 179
visible part of the source 142, 158, 165, 166,

198
sound propagation 143, 194

beam-tracing 181
space partition 174, 182, 195
space-time 229
span 170
spatial subdivision(see space partition), 174
stab-tree 188
stabbing line 154, 188, 217, 219
stable views(see aspect graph), 199
strategy tree 204
sub-sampling 169, 170, 193
supporting plane 184
swallowtail 163
swath 161
swept volume 229

T

target tracking 152, 210
temporal bounding volume 229
temporal coherence 210–211, 219, 228
temporal visibility complex 230
temporal visual event 230
terrain 140, 196
texel 175
tiling 191
tracking(see target tracking), 152
transillumination plane 222
transmittance 174
transparency 169, 170
transparentvs. opaque(see opaque vs. transpar-

ent), 162

transversal(see stabbing line), 154
trapezoidal decomposition 167

U

umbra(see shadow), 142

V

view classes(see aspect graph), 199
view computation 141, 153
view graph(see aspect graph), 199
view warping 146, 182, 193, 196
view-dependent 144
view-independent 145
viewability matrix 209
viewer-centered representation 147, 199
viewing data 199,(see aspect graph), 199
viewing sphere 158
viewing sphere tessellation 200, 209, 217
viewpoint constraint 185
viewpoint planning(see sensor placement), 149
viewpoint set 209
viewpoint space partition 199
visibility complex 214, 215

dynamic update 230
visibility culling 143
visibility event(see visual event), 160
visibility graph 151, 154, 176, 179

construction 177, 214
visibility map 165, 171
visibility skeleton 217

dynamic update 230
vision 147–150
visual event 160–162

2D 161, 164
aspect graph 199
discontinuity meshing 184, 206, 207
EEE 161, 178, 184, 201, 206, 218, 219
EV 160, 183–185, 206, 210, 217
face 161
generator 161
line-space 217, 221
moving object 229
occlusion-free viewpoint 160, 185
shadow boundary 160, 179, 184, 206, 207
temporal 229, 230
view update 160, 210, 211
visual hull 178

visual hull 148, 178
visual potential(see aspect graph), 199
volume of occlusion 182
volumetric visibility 174, 226
voxel 174
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W

walkthrough 143, 145, 189
volumetric visibility 175

warping 146, 182, 193, 196
window (Warnock) 167

Z

z-buffer 169, 192–196
ZZ-buffer 193
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tion systems. In J¨org-Rüdiger Sack and Jorge Urrutia, editors,Handbook on Computational Geometry. El-
sevier Science, 1998. Preliminary version available as: Technical Report DISI-TR-97-08, Department of
Computer and Information Sciences, University of Genova, http://www.disi.unige.it/person/DeflorianiL/.
(cited on page 140)

[FPSG96] James A. Ferwerda, Sumant Pattanaik, Peter Shirley, and Donald P. Greenberg. A model of visual adap-
tation for realistic image synthesis. In Holly Rushmeier, editor,SIGGRAPH 96 Conference Proceedings,
Annual Conference Series, pages 249–258. ACM SIGGRAPH, Addison Wesley, August 1996. held in
New Orleans, Louisiana, 04-09 August 1996. (cited on page 95)

[FPSG97] James A. Ferwerda, Sumanta N. Pattanaik, Peter Shirley, and Donald P. Greenberg. A model of visual
masking for computer graphics. In Turner Whitted, editor,SIGGRAPH 97 Conference Proceedings,
Annual Conference Series, pages 143–152. ACM SIGGRAPH, Addison Wesley, August 1997. ISBN
0-89791-896-7. (cited on pages 111, 135)

[FS93] Thomas A. Funkhouser and Carlo H. S´equin. Adaptive display algorithm for interactive frame
rates during visualization of complex virtual environments. In James T. Kajiya, editor,Computer
Graphics (SIGGRAPH ’93 Proceedings), volume 27, pages 247–254, August 1993. http://www.bell-
labs.com/user/funk/. (cited on pages 134, 189)

[FST92] Thomas A. Funkhouser, Carlo H. Sequin, and Seth J. Teller. Management of large amounts of data in
interactive building walkthroughs. In David Zeltzer, editor,Computer Graphics (1992 Symposium on
Interactive 3D Graphics), volume 25-2, pages 11–20, March 1992. http://www.bell-labs.com/user/funk/.
(cited on pages 18, 21, 189)

[FTI86] Akira Fujimoto, Takayuki Tanaka, and Kansei Iwata. ARTS: Accelerated ray tracing system.IEEE
Computer Graphics and Applications, 6(4):16–26, 1986. (cited on page 174)

[Fun95] T. Funkhouser. RING - A client-server system for multi-user virtual environments.SIGGRAPH Sympo-
sium on Interactive 3D Graphics, pages 85–92, 1995. (cited on pages 143, 189)

[Fun96a] T. Funkhouser. Network topologies for scalable multi-user virtual environments.Proceedings of
VRAIS’96, Santa Clara CA, pages 222–229, 1996. (cited on page 143)

[Fun96b] Thomas A. Funkhouser. Coarse-grained parallelism for hierarchical radiosity using group iterative meth-
ods. In Holly Rushmeier, editor,SIGGRAPH 96 Conference Proceedings, Annual Conference Series,
pages 343–352. ACM SIGGRAPH, Addison Wesley, August 1996. held in New Orleans, Louisiana,
04-09 August 1996. (cited on pages 21, 135, 189)

[Fun96c] Thomas A. Funkhouser. Database management for interactive display of large architectural models. In
Wayne A. Davis and Richard Bartels, editors,Graphics Interface ’96, pages 1–8. Canadian Information
Processing Society, Canadian Human-Computer Communications Society, May 1996. ISBN 0-9695338-
5-3, http://www.bell-labs.com/user/funk. (cited on pages 18, 21, 135, 143, 189)

[FvDFH90] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes.Computer Graphics: Principles
and Practice. Addison-Wesley Publishing Co., Reading, MA, 2nd edition, 1990. T 385.C587. (cited on
pages 18, 141, 143, 158, 165, 174, 195)

[GBW90] B. Garlick, D. Baum, and J. Winget. Interactive viewing of large geometric data bases using multipro-
cessor graphics workstations. InParallel Algorithms and Architectures for 3D Image Generation, pages
239–245. ACM SIGGRAPH, 1990. Siggraph ’90 Course Notes, Vol. 28. (cited on pages 19, 130)

[GCS91] Ziv Gigus, John Canny, and Raimund Seidel. Efficiently computing and representing aspect graphs of
polyhedral objects.IEEE Trans. on Pat. Matching & Mach. Intelligence, 13(6), June 1991. (cited on
pages 24, 58, 201, 206, 217)



REFERENCES 285

[GGC97] X. Gu, S. J. Gortler, and M. Cohen. Polyhedral geometry and the two-plane parameterization. In Julie
Dorsey and Philipp Slusallek, editors,Eurographics Rendering Workshop 1997, New York City, NY, June
1997. Eurographics, Springer Wein. ISBN 3-211-83001-4, http://hillbilly.deas.harvard.edu/˜sjg/. (cited
on page 217)

[GGH+99] X. Gu, S.J. Gortler, H. Hoppe, L. Mcmillan, B. Brown, and A. Stone. Silhou-
ette mapping. Technical Report TR-1-99, Harvard Computer Science, March 1999.
http://cs.harvard.edu/˜xgu/paper/SilhouetteMap/. (cited on page 204)

[GGSC96] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. The lumigraph. In Holly
Rushmeier, editor,SIGGRAPH 96 Conference Proceedings, Annual Conference Series, pages 43–54.
ACM SIGGRAPH, Addison Wesley, August 1996. held in New Orleans, Louisiana, 04-09 August 1996,
http://hillbilly.deas.harvard.edu/˜sjg/. (cited on pages 53, 217)

[GH94] Neil Gatenby and W. T. Hewitt. Optimizing Discontinuity Meshing Radiosity. InFifth Eurographics
Workshop on Rendering, pages 249–258, Darmstadt, Germany, June 1994. (cited on page 184)

[GH96] S. Gibson and R. J. Hubbold. Efficient hierarchical refinement and clustering for radiosity in com-
plex environments.Computer Graphics Forum, 15(5):297–310, 1996. ISSN 0167-7055. (cited on
pages 79, 81, 98, 100, 101, 226)

[GH97a] Michael Garland and Paul S. Heckbert. Surface simplification using quadric error metrics.
In Turner Whitted, editor, SIGGRAPH 97 Conference Proceedings, Annual Conference Se-
ries, pages 209–216. ACM SIGGRAPH, Addison Wesley, August 1997. ISBN 0-89791-896-7,
http://www.cs.cmu.edu/˜garland/multires/my-work.html. (cited on page 18)

[GH97b] S. Gibson and R. J. Hubbold. Perceptually-driven radiosity.Computer Graphics Forum, 16(2):129–141,
1997. ISSN 0167-7055. (cited on pages 80, 82, 95, 226)

[GH98] Djamchid Ghazanfarpour and Jean-Marc Hasenfratz. A beam tracing with precise antialiasing for poly-
hedral scenes.Computer & Graphics, 22(1):103–115, 1998. (cited on page 181)

[Gho97] Ghosh. On recognizing and characterizing visibility graphs of simple polygons.GEOMETRY: Discrete
& Computational Geometry, 17, 1997. (cited on page 154)

[GI87] Keith D. Gremban and Katsushi Ikeuchi. Planning multiple observation for object recognition.Interna-
tional Journal of Computer Vision, 1(2):145–65, 1987. (cited on page 204)

[GKM93] Ned Greene, Michael Kass, and G.avin Miller. Hierarchical Z-buffer visibility. InCom-
puter Graphics Proceedings, Annual Conference Series, 1993, pages 231–240, 1993. (cited on
pages 19, 114, 118, 131, 135, 195)
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Jorge Urrutia, editors, Handbook on Computational Geometry. Elsevier Science, 1998.
http://www.csi.uottawa.ca:80/˜jorge/onlinepapers. (cited on pages 154, 208)

[UT97] Carlos Ure˜na and Juan C. Torres. Improved irradiance computation by importance sampling. In Julie
Dorsey and Philipp Slusallek, editors,Eurographics Rendering Workshop 1997, pages 275–284, New
York City, NY, June 1997. Eurographics, Springer Wien. ISBN 3-211-83001-4. (cited on pages 79, 81)

[Vea97] Eric Veach.Robust Monte Carlo Methods for Light Transport Simulation. Ph.d. thesis, Stanford Univer-
sity, December 1997. http://www-graphics.stanford.edu/˜ericv/. (cited on page 144)

[Ved93] Christophe Vedel. Computing Illumination from Area Light Sources by Approximate Contour Integra-
tion. In Proceedings of Graphics Interface ’93, pages 237–244, San Francisco, CA, May 1993. Morgan
Kaufmann. (cited on page 166)

[VG97] Eric Veach and Leonidas J. Guibas. Metropolis light transport. In Turner Whitted, editor,SIGGRAPH 97
Conference Proceedings, Annual Conference Series, pages 65–76. ACM SIGGRAPH, Addison Wesley,
August 1997. ISBN 0-89791-896-7. (cited on page 112)

[VLN96] M. Venditelli, J.P. Laumond, and C. Nissoux. Obstacle distances and visibility in the car-like robot
metrics. Technical Report 96437, LAAS, November 1996. doc@laas.fr. (cited on pages 177, 178)

[WA77] K. Weiler and K. Atherton. Hidden surface removal using polygon area sorting.Computer Graphics,
11(2):214–222, July 1977. Proceedings of SIGGRAPH’77, held in San Jose, California; 20–22 July
1977. (cited on pages 166, 180)



REFERENCES 303

[WA90] Andrew Woo and John Amanatides. Voxel occlusion testing: a shadow accelerator for ray tracing. In
Proceedings of Graphics Interface ’90, pages 213–220, June 1990. (cited on page 182)

[Wal75] David Waltz. Understanding lines drawings of scenes with shadows. In Patrick H. Winston, editor,The
Psychology of Computer Vision, Computer Science Series, pages 19–91. McGraw-Hill, 1975. (cited on
page 140)

[Wan92] Leonard Wanger. The effect of shadow quality on the perception of spatial relationships in computer
generated imagery. In David Zeltzer, editor,Computer Graphics (1992 Symposium on Interactive 3D
Graphics), volume 25(2), pages 39–42, March 1992. (cited on page 142)

[War69] J. Warnock. A hidden-surface algorithm for computer generated half-tone pictures. Technical Report TR
4–15, NTIS AD-733 671, University of Utah, Computer Science Department, 1969. (cited on page 167)

[War94] Greg Ward. A contrast-based scalefactor for luminance display. In Paul Heckbert, editor,Graphics Gems
IV, pages 415–421. Academic Press, Boston, 1994. (cited on pages 82, 95)

[Wat70] G.S. Watkins.A Real Time Visible Surface Algorithm. Ph.d. thesis, University of Utah, June 1970. (cited
on page 170)

[Wat88] N. A. Watts. Calculating the principal views of a polyhedron. InNinth International Conference on
Pattern Recognition (Rome, Italy, November 14–17, 1988), pages 316–322, Washington, DC, 1988. Com-
puter Society Press. (cited on page 200)

[Wat90] Mark Watt. Light-water interaction using backward beam tracing. In Forest Baskett, editor,Com-
puter Graphics (SIGGRAPH ’90 Proceedings), volume 24(4), pages 377–385, August 1990. (cited
on page 182)

[WBP98] Y. Wang, H Bao, and Q. Peng. Accelerated walkthroughs of virtual environments based on visibility
processing and simplification. InComputer Graphics Forum (Proc. of Eurographics ’98), volume 17-3,
pages C–187–C195, Lisbon, Portugal, September 1998. (cited on pages 25, 217)

[WC91] Andrew Woo and Steve Chall. An efficient scanline visibility implementation. InProceedings of Graphics
Interface ’91, pages 135–142, June 1991. (cited on page 170)

[WEH89] John R. Wallace, Kells A. Elmquist, and Eric A. Haines. A ray tracing algorithm for progressive radiosity.
In Jeffrey Lane, editor,Computer Graphics (SIGGRAPH ’89 Proceedings), volume 23(3), pages 315–324,
July 1989. (cited on pages 70, 88, 222)

[Wei93] I. Weiss. Geometric invariant and object recognition.Internat. J. Comput. Vision, 10(3):207–231, 1993.
(cited on page 148)

[WF90] R. Wang and H. Freeman. Object recognition based on characteristic view classes. InProceedings10th
International Conference on Pattern Recognition, Atlantic City, NJ, 17-21 June 1990. (cited on page 200)

[WH96] L. R. Williams and A. R. Hanson. Perceptual completion of occluded surfaces.Computer Vision and
Image Understanding: CVIU, 64(1), 1996. (cited on page 163)

[WHG84] Hank Weghorst, Gary Hooper, and Donald P. Greenberg. Improved computational methods for ray tracing.
ACM Transactions on Graphics, 3(1):52–69, January 1984. (cited on pages 174, 193)

[Whi55] H. Whitney. On singularities of mappings of euclidean spaces. i. mappings of the plane into the plane.
Annals of Mathematica, 62(3):374–410, 1955. (cited on page 162)

[Whi78] T. Whitted. A scan line algorithm for computer display of curved surfaces. InComputer Graphics (Special
SIGGRAPH ’78 Issue, preliminary papers), pages 8–13, August 1978. (cited on page 170)

[Whi80] Turner Whitted. An improved illumination model for shaded display.CACM, 1980, 23(6):343–349, 1980.
(cited on pages 144, 170, 174, 180)

[WHP98] Adam Worrall, David Hedley, and Derek Paddon. Interactive animation of soft shadows. In
Proceedings of Computer Animation 1998, pages 88–94. IEEE Computer Society, June 1998.
http://www.cs.bris.ac.uk/˜worrall/scope/port95.html. (cited on pages 27, 230)



304 REFERENCES

[Wil78] Lance Williams. Casting curved shadows on curved surfaces. InComputer Graphics (SIGGRAPH ’78
Proceedings), volume 12(3), pages 270–274, August 1978. (cited on page 193)

[Wil96] L. R. Williams. Topological reconstruction of a smooth manifold-solid from its oclluding contour.Com-
puter Vision and Image Understanding: CVIU, 64(2), 1996. (cited on pages 163, 164)

[Woo92] Andrew Woo. The shadow depth map revisited. In David Kirk, editor,Graphics Gems III, pages 338–342,
582. Academic Press, Boston, MA, 1992. (cited on page 193)

[Woo97] Andrew Woo. Recursive grids and ray bounding box comments and timings.Ray Tracing News, 10(3),
December 1997. http://www.povray.org/rtn/. (cited on page 174)

[Wor97] Steve Worley. Fast soft shadows.Ray Tracing News, 10(1), January 1997. http://www.povray.org/rtn/.
(cited on page 198)

[WPF90] Andrew Woo, Pierre Poulin, and Alain Fournier. A survey of shadow algo-
rithms. IEEE Computer Graphics and Applications, 10(6):13–32, November 1990.
http://www.iro.umontreal.ca/labs/infographie/papers/. (cited on pages 18, 142, 158)

[WREE67] C. Wylie, G.W. Romney, D.C. Evans, and A.C. Erdahl. Halftone perspective drawings by computer. In
FJCC, pages 49–58, 1967. (cited on page 170)

[WS94] G. Winkenbach and D. H. Salesin. Computer-generated pen-and-ink illustration.Computer Graphics,
28(Annual Conference Series):91–100, July 1994. http://www.cs.washington.edu/research/graphics/pub/.
(cited on page 142)

[WS99] Peter Wonka and Dieter Schmalstieg. Occluder shadows for fast walkthroughs ofurban environments. In
Eurographics’99, August 1999. (cited on pages 20, 135, 196)

[WW92] Alan Watt and Mark Watt. Advanced Animation and Rendering Techniques: Theory and Practice.
Addison-Wesley, 1992. (cited on pages 141, 169, 174)

[WW97] Daphna Weinshall and Michael Werman. On view likelihood and stability.T-PAMI, 19-2:97–108, 1997.
(cited on page 228)

[WWP95] Adam Worrall, Claire Willis, and Derek Paddon. Dynamic discontinuities for radiosity. In
Edugraphics + Compugraphics Proceedings, pages 367–375, P.O. Box 4076, Massama, 2745
Queluz, Portugal, December 1995. GRASP- Graphic Science Promotions and Publications.
http://www.cs.bris.ac.uk/˜worrall/scope/port95.html. (cited on pages 27, 230)

[Yan85] Johnson K. Yan. Advances in computer-generated imagery for flight simulation.IEEE Computer Graph-
ics and Applications, 5(8):37–51, August 1985. (cited on page 168)

[YHS95] Seungku Yi, Robert M. Haralick, and Linda G. Shapiro. Optimal sensor and light source positioning
for machine vision.Computer Vision and Image Understanding: CVIU, 61(1):122–137, January 1995.
(cited on page 209)

[YKSC98] Kwan-Hee Yoo, Dae Seoung Kim, Sung Yong Shin, and Kyung-Yong Chwa. Linear-time algorithms for
finding the shadow volumes from a convex area light source.Algorithmica, 20(3):227–241, March 1998.
(cited on pages 23, 184)

[YR96] R. Yagel and W. Ray. Visibility computation for efficient walkthrough complex environments.PRES-
ENCE, 5(1):1–16, 1996. http://www.cis.ohio-state.edu/volviz/Papers/1995/presence.ps.gz. (cited on
page 189)

[Zat93] Harold R. Zatz. Galerkin radiosity: A higher order solution method for global illumination. InComputer
Graphics Proceedings, Annual Conference Series, 1993, pages 213–220, 1993. (cited on pages 81, 193)

[ZD93] Ze Hong (Jenny) Zhao and David Dobkin. Continuous Algorithms for Visibility: the Space Searching
Approach. InFourth Eurographics Workshop on Rendering, pages 115–126, Paris, France, June 1993.
(cited on pages 20, 188)

[Zha91] Ning Zhang. Two Methods for Speeding up Form-factor Calculation. InSecond Eurographics Workshop
on Rendering, Barcelona, Spain, May 1991. (cited on page 188)



REFERENCES 305

[Zha98a] Hanson Zhang. Forward shadow mapping. In George Drettakis and Nelson Max, editors,Eurographics
Rendering Workshop 1998, New York City, NY, June 1998. Eurographics, Springer Wien. SBN 3-211-
83213-0, http://www.cs.unc.edu/ zhangh/shadow.html. (cited on page 193)

[Zha98b] Hansong Zhang.Effective Occlusion Culling for the Interactive Display of Arbitrary Models. PhD thesis,
University of North Carolina, Chapel Hill, 1998. http://www.cs.unc.edu/ zhangh/research.html. (cited on
pages 19, 127, 131, 135, 195)

[ZMHH97] Hansong Zhang, Dinesh Manocha, Thomas Hudson, and Kenneth E. Hoff III. Visibility culling using
hierarchical occlusion maps. In Turner Whitted, editor,SIGGRAPH 97 Conference Proceedings, Annual
Conference Series, pages 77–88. ACM SIGGRAPH, Addison Wesley, August 1997. ISBN 0-89791-896-
7, http://www.cs.unc.edu/˜zhangh/hom.html. (cited on pages 19, 114, 118, 127, 131, 135, 195)


