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ABSTRACT 

 

Transient Receptor Potential Canonical 6 (TRPC6) form diacylglycerol (DAG)-

activated non-selective cation channels expressed in a variety of tissues and cells. They are for 

instance expressed in the cortex of embryonic (E13) mice. Cellular calcium imaging 

experiments show the existence of DAG-sensitive plasma membrane cation channels in 

cortical neurons kept in culture. These channels are permeable to Ca2+, Na+, Ba2+ and Mn2+. 

The Ca2+ entry, not controlled by protein kinase C, is blocked by Gd3+ and SKF-96365 but 

potentiated by flufenamic acid. Hyperforin, which activates TRPC6 channels without acting 

on the other TRPC isoforms, triggers an entry of Ca2+ via non-selective cation channels. 

Although the exact molecular identity of the DAG-sensitive channels in cortical neurons has 

not yet been established, we suggest that TRPC6 form these channels. 

Quantitative analyses with Inductively Coupled Plasma-Optical Emission 

Spectrometry, atomic absorption spectrometry and synchrotron microbeam X-ray 

fluorescence (µ-SXRF) show that over-expressing TRPC6 in HEK-293 cells elevates the 

intracellular contents of zinc, sulphur and manganese. Cellular iron and zinc imaging 

experiments indicate that TRPC6 channels, either over-expressed in HEK cells or 

endogenously present in cortical neurons, are permeable to iron and zinc when activated by 

DAG or hyperforin. The experiments with µ-SXRF further reveal that activating TRPC6 

channels in the presence of iron leads to an intracellular iron accumulation in both HEK cells 

and cortical neurons. 

In addition, during the time course of this study, we provided experimental evidence 

showing that flufenamic acid and hyperforin, two pharmacological tools used to manipulate 

the activity of TRPC6 channels, release Ca2+ and Zn2+ from mitochondria.  
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TRPC6 can form diacylglycerol (DAG)-activated non-selective cation channels. They 

are expressed in a variety of tissues and cells. Experiments performed in the laboratory 

showed their expression in the cortex of embryonic (E13) mice. Since in the neuronal cell line 

PC12 TRPC6 channels can permit the uptake of Fe via a mechanism independent of 

transferrin and its receptor, we thought to verify whether this property was shared by neurons 

of the central nervous system. 

During the first part of my thesis I checked for the presence of functional TRPC6 

channels in cortical neurons. The DAG analogues 1-oleoyl-2-acetyl-sn-glycerol (OAG) and 1-

stearoyl-2-arachidonoyl-sn-glycerol (SAG), as well as flufenamic acid and hyperforin were 

employed to characterize the properties of the channels. From a methodological point of view, 

the main techniques used were cellular calcium/sodium imaging with fluorescent probes and 

electrophysiology (whole-cell patch-clamp). The data obtained are summarized in the articles 

1 (Chapter 7), 2 (Chapter 10) and 3 (Chapter 11). 

After having established the existence of DAG-sensitive cation channels exhibiting 

TRPC6-like properties, I then determined if these channels could permit the transport of trace 

metal ions across the plasma membrane. To this aim, experiments were conducted on HEK-

293 cells stably expressing TRPC6 channels and on cultured cortical neurons. Quantitative 

analyses were done with Inductively Coupled Plasma-Optical Emission Spectrometry and 

atomic absorption spectroscopy. Cellular imaging experiments with fluorescent indicators 

(Fura-2, calcein, FluoZin-3) were also carried out to gain further insight into the dynamics of 

the transport processes. In addition, topographic and quantitative analyses of intracellular 

trace metals were obtained by using synchrotron microbeam X-ray fluorescence. These results 

are summarized in Chapter 9. 

In the Introduction (Chapters 1-4), I will give first a short overview of the different 

TRP channels. Then I will summarize the molecular mechanisms controlling iron and zinc 

entry into brain cells. Finally, I will present experimental data showing that distinct families 

of cation channels, including TRP channels, are involved in the transport of these elements 

across the plasma membrane. The Introduction part does not provide a complete and 

exhaustive discussion of these different topics but rather offers a short overview of our current 

knowledge.
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1 TRPC6 channels 

TRPC6, a non-selective cation channel (NSCC), is a member of the Canonical 

Transient Receptor Potential (TRPC) family. In the following Chapter 1, a short overview is 

given of the different families of TRP channels. 

1.1 TRP 

The TRP protein superfamily consists of a variety of cation channels that share 

structural similarities with Drosophila TRP. Drosophila carrying trp gene mutations exhibits 

a transient receptor potential instead of a sustained plateau-like receptor potential evoked in 

response to continuous light, which makes the trp flies behave as though blind (Cosens and 

Manning, 1969; Hardie and Minke, 1992). Accordingly, there came the name TRP. Unlike 

most ion channels, TRP channels are identified by their homology. They are involved in 

numerous biological processes. 

1.1.1 Classification  

TRP channels are expressed and functional in many organisms including flies, worms, 

fish, tunicates, mouse and human. Based on their amino acid sequence similarities, the TRP 

proteins fall into seven subfamilies: TRPC (‘Canonical’), TRPV (‘Vanilloid’), TRPM 

(‘Melastatin’), TRPA (‘Ankyrin’), TRPP (‘Polycystin’), TRPML (‘Mucolipin’) and TRPN 

(‘no mechanoreceptor potential C, NOMPC’) (Clapham et al., 2005; Venkatachalam and 

Montell, 2007). There are now at least 28 mammalian TRP proteins which fall into the first 

six of the seven subfamilies (Flockerzi, 2007; Venkatachalam and Montell, 2007) (see Table 

1-1). Figure 1-1 shows the phylogenetic tree of mammalian TRP.  

1.1.2 Structure and permeability 

To date, no structural information at the atomic level is available for any full-length 

TRP channel due to difficulties lying in overexpression, functional purification, and 

crystallization of eukaryotic transmembrane proteins. However, electron microscopy and X-

ray crystallography have revealed the entire protein structure and the cytosolic domains of 

some TRP, respectively (Moiseenkova-Bell and Wensel, 2009). All TRP proteins have six 

putative transmembrane domains (S1-S6) with a cation-permeable pore region formed by a 

short hydrophobic stretch between S5 and S6 (Owsianik et al., 2006a) and cytosolic amino 

(N) and carboxy (C) termini. As they resemble voltage-gated K+ channels (Clapham et al., 
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2001), TRP channels are thought to form homo- or heterotetrameric channels (Clapham et al., 

2001; Lepage and Boulay, 2007; Venkatachalam and Montell, 2007). Figure 1-2 shows the 

predicted protein structure and channel topology. 

The degree of amino acid sequence similarity among members of one subfamily 

approaches up to more than 90%, but is limited between subfamilies. Within the cytoplasmic 

domains, some structural motifs have been identified by sequence comparisons such as an 

ankyrin repeat domain, a coiled-coil domain (Schindl and Romanin, 2007), and the so-called 

‘TRP domain’, which is a highly conserved stretch of ~25 amino acids in the C-terminal 

region close to S6. It is found in all mammalian TRP subfamilies except TRPA and TRPP 

(Montell, 2005; Ramsey et al., 2006). In fact, amino acid sequences forming the pore are 

strongly conserved across different TRP subfamilies (Montell, 2005). S5, S6 and the TRP 

domain are similar even in distinct TRP channels (Ramsey et al., 2006). 

All TRP channels are permeable to cations, only two TRP channels are impermeable 

to Ca2+ (TRPM4, TRPM5), and two others are highly Ca2+ permeable (TRPV5, TRPV6). The 

permeability ratios PCa/PNa for these channels vary considerably, ranging from 0.1 to >100 

(Owsianik et al., 2006a). 

 

Table 1-1 The seven subfamilies of TRP channels 

 Fly Worm Mouse Human 

TRPC 3 3 7 6 

TRPV 2 5 6 6 

TRPM 1 4 8 8 

TRPA 4 2 1 1 

TRPP 4 1 3 3 

TRPML 1 1 3 3 

TRPN 1 1 - - 

Total 16 17 28 27 

Adapted from (Flockerzi, 2007). 
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Figure 1-1 Phylogenetic tree of the mammalian TRP 

The evolutionary distance is shown by the total branch lengths in point accepted mutations (PAM) units, which 

is the mean number of substitutions per 100 residues. Adapted from (Clapham, 2003). 

 

A                                                               B

Extracellular

Intracellular

 

Figure 1-2 Predicted structure of TRP and topology of TRP channels 

Panel A shows the putative structure of a TRP. It has 6 transmembrane helices (S1-S6) with a putative pore 

region between S5 and S6. Adapted from (Clapham et al., 2001). Panel B shows the proposed tetrameric channel 

structure. A TRP channel is composed of hetero or homo tetrameric TRP. Adapted from (Watanabe et al., 2009). 
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1.1.3 Activation and regulation 

Several activation mechanisms have been established for TRP channels, including 

receptor activation, ligand activation, direct activation (Ramsey et al., 2006) as well as 

activation by calcium store depletion.  

Receptor activation 

Receptor activation is mediated by the phospholipase C (PLC) signaling pathway. G-

protein-coupled-receptors (GPCR) or receptor tyrosine kinases (RTK) activate PLC, which 

catalyze the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) into diacylglycerol 

(DAG) and inositol 1,4,5-triphosphate (IP3). Downstream from receptor activation, TRP 

channels are activated by one of the following mechanisms: (1) the decreased level of PIP2; 

(2) the production of DAG; or (3) the release of Ca2+ from internal stores of the endoplasmic 

reticulum (ER) induced by IP3 binding to IP3 receptor (IP3R). Of note, for some TRP channels 

such as TRPC4 and TRPC5, their gating mechanisms are currently unclear.  

Ligand activation 

Ligands that activate TRP channels may be divided into four categories: (a) 

endogenous lipid and lipid metabolites such as phosphoinositides (Nilius et al., 2008), DAG 

and poly-unsaturated fatty acids (PUFA) (Chyb et al., 1999); (b) exogenous small organic 

molecules such as 2-aminoethyoxydiphenyl borane (2-APB) and some natural compounds 

(Vriens et al., 2008) like capsaicin, menthol and hyperforin; (c) purine nucleotides and their 

metabolites such as ADP-ribose (Kolisek et al., 2005) and βNAD+ (Hara et al., 2002); (d) 

inorganic molecules and ions such as Ca2+, La3+ (Schaefer et al., 2000), Zn2+ (Hu et al., 2009) 

and H2O2 (Hara et al., 2002). 

Direct activation   

Putative direct activators include temperature, mechanical stimuli, conformational 

coupling to IP3R, channel phosphorylation, osmolarity and pH.  

Activation by calcium store depletion  

There has been a long-time debate concerning the molecular identity of the store-

operated channels (SOC). Store-operated Ca2+ entry (SOCE), also called capacitative Ca2+ 

entry (CCE), refers to a phenomenon in which the depletion of intracellular Ca2+ stores 

(primarily the ER) leads to the activation of plasma membrane Ca2+-permeable channels. Ca2+ 

entering through SOC can then be pumped into the stores and thus permit their replenishment 
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(Putney, 1986; Parekh and Putney, 2005). Although some TRPC (see Section 1.1.5) may 

participate in SOCE, they exhibit biophysical properties distinct from SOC. For example, 

TRPC channels underline non selective cation currents which stands in contrast with the 

highly Ca2+-selective SOC currents like ICRAC (calcium release-activated current), (Putney, 

2007a). The exact contribution of TRPC in SOCE remains currently debated. 

It is worth mentioning that some TRP channels seem to have several modes of 

activation. Actually, many TRP channels function as polymodal sensors that integrate many 

of the signals mentioned above. 

Concerning the regulation of TRP channels, their cytoplasmic parts play important 

regulatory roles influencing their function and trafficking (Pedersen et al., 2005; Owsianik et 

al., 2006b). Regulation of TRP channels includes: (1) posttranslational modifications such as 

phosphorylation, glycosylation and nitrosylation; (2) protein-protein interactions implying 

actors like calmodulin (CaM), IP3R, stromal interacting molecule (STIM) and Orai proteins; 

(3) lipid interactions such as PIP2 and cholesterol; and (4) trafficking. 

1.1.4 TRP channels function as cellular sensors 

TRP channels participate in a diversity of functions in both excitable and non-

excitable cells. Something common and inherent shared by the superfamily of cation channels 

is that they function as cellular sensors integrating diverse signals, including intracellular and 

extracellular messengers, light, temperature, pain, pheromones, taste, touch, osmolarity. Thus, 

TRP channels play critical roles in sensory physiology (Clapham, 2003; Voets et al., 2005; 

Venkatachalam and Montell, 2007; Damann et al., 2008). 

Phototransduction  

Since the identification of the original Drosophila TRP channels (Montell and Rubin, 

1989), these proteins have long been described as important channels involved in sensory 

transduction mechanisms. Recent studies suggest that TRP channels may function in 

mammalian photosensitive retinal ganglion cells: light activation of melanopsin, a GPCR 

from the opsin group, activates TRPC3 channels (Panda et al., 2005; Qiu et al., 2005).  

Mechanosensation 

Members of TRP channels are implicated in a wide range of mechanical transduction 

processes including the basic osmoregulation, complex hearing and touch (Christensen and 

Corey, 2007). Several TRP channels are putative stretch-activated channels, for example 
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TRPC1 (Maroto et al., 2005), TRPC6 (Spassova et al., 2006), TRPM7 (Numata et al., 2007a, 

b). Whether other components participate in the activation of TRP in response to membrane 

stretch is unknown. TRPV4 mediates the transduction of osmotic stimuli in many cell types 

and TRPV4-/- mice displays defects in osmoregulation (Liedtke and Friedman, 2003), while 

TRPA1 is involved in the auditory transduction process (Corey et al., 2004) and pain 

mechanosensation (Bautista et al., 2006).  

Thermosensation  

Six mammalian temperature-sensitive TRP channels (thermoTRP) have been 

identified, and they are the principal molecular thermometers in the peripheral sensory system 

(Patapoutian et al., 2003; Voets et al., 2005; Dhaka et al., 2006; Talavera et al., 2008). These 

thermoTRP have the potential to detect changes in temperature from <10°C to >50°C: TRPV1 

and TRPV2 are sensors for uncomfortable warm (>43°C) (Caterina et al., 1997) and very hot 

(>52°C) (Caterina et al., 1999) temperatures, respectively; TRPV3 (>30-39°C) (Peier et al., 

2002b; Smith et al., 2002; Xu et al., 2002) and TRPV4 (~25-34°C) (Guler et al., 2002) 

contribute to the perception of moderate temperatures; TRPM8 (<25°C) (McKemy et al., 

2002; Peier et al., 2002a) and TRPA1 (<17°C) (Story et al., 2003) are activated upon cooling 

and function in sensing cold.  

Chemosensation 

TRPM5 is a candidate channel involved in taste sensation (Zhang et al., 2003). These 

channels expressed in taste receptor cells (Perez et al., 2002) are critical players in the signal 

transduction cascade downstream from the activation of sweet, bitter and umami tastes 

(Zhang et al., 2003; Damak et al., 2006). A recent study shows that TRPM5 and TRPV1 

channels are involved in the transduction of the taste of complex tasting divalent salts (Riera 

et al., 2009). trpc2 is a pseudogene in human, but murine TRPC2, expressed in the 

vomeronasal organ, is essential for the transmission of pheromone-mediated signals (Stowers 

et al., 2002; Lucas et al., 2003).  

In addition to TRPM5 and TRPC2, thermoTRP contribute to the perception of 

chemical stimuli. ThermoTRP seem to be the favourite targets for plant-derived chemicals 

(Voets et al., 2005). This finding explains why we interpret food ingredients as thermal 

sensation, such as ‘hot’ chilli pepper and ‘cool’ mint (Voets et al., 2005). 
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1.1.5 TRPC 

Among the TRP superfamily, the TRPC subfamily has the highest degree of homology 

to Drosophila TRP. Based on structural and functional similarities, the seven TRPC known to 

date can be subdivided into four groups: TRPC1, TRPC2, TRPC4/5 and TRPC3/6/7. TRPC 

channels are ubiquitously expressed, forming homomeric and heteromeric cation channels. 

TRPC channels can be activated downstream from the PLC pathway. They are 

receptor-operated channels (ROC) and function as cellular effectors of hormones, 

neurotransmitters and growth factors. Homomeric (Hofmann et al., 1999; Okada et al., 1999) 

and heteromeric (Thebault et al., 2005; Maruyama et al., 2006; Peppiatt-Wildman et al., 2007) 

TRPC3/6/7 channels can be activated by DAG.  In addition, homomeric TRPC1 (Lintschinger 

et al., 2000), TRPC2 (Lucas et al., 2003) and heteromeric TRPC1-TRPC3 (Lintschinger et al., 

2000; Liu et al., 2005), TRPC3-TRPC4 (Poteser et al., 2006), TRPC3-TRPC5 (Liu et al., 

2007) can also be activated by DAG. Although one group has reported that TRPC5 can be 

activated by DAG (Lee et al., 2003b), it is generally accepted that TRPC4 and TRPC5 are not 

DAG sensitive (Hofmann et al., 1999; Schaefer et al., 2000; Venkatachalam et al., 2003). The 

precise signal activating these channels remains unknown. Of note, direct binding of DAG to 

any TRPC channel has not yet been reported. 

Although not possessing important Ca2+ selectivity, all TRPC channels have been 

proposed to be candidates for SOC. Store-depletion activates TRPC1 (Zitt et al., 1996; Liu et 

al., 2000), TRPC2 (Vannier et al., 1999), TRPC3 (Vazquez et al., 2003; Yildirim et al., 2005), 

TRPC4 (Philipp et al., 2000; Freichel et al., 2001; Fatherazi et al., 2007), TRPC5 (Xu et al., 

2006; Ma et al., 2008), TRPC6 (Jardin et al., 2008; Jardin et al., 2009), TRPC7 (Riccio et al., 

2002b; Lievremont et al., 2004), as well as heteromeric TRPC channels (Wu et al., 2000; Wu 

et al., 2004b; Zagranichnaya et al., 2005; Brechard et al., 2008). The different modes of 

activation (ROC versus SOC) observed depend on the expression system used and also 

depend on the expression level of the channel studied. Recently, new molecular players of 

SOCE, STIM and Orai, have been discovered and their interactions with TRPC channels has 

been demonstrated (Birnbaumer, 2009; Cahalan, 2009; Salido et al., 2009). STIM (Roos et al., 

2005) is a transmembrane protein residing primarily in the ER and functions as a putative ER 

Ca2+ sensor. Orai proteins (Feske et al., 2006; Vig et al., 2006) are predicted to span the 

plasma membrane and form ion channels. The cytosolic C terminus of STIM interacts with 

Orai and TRPC channels. Indeed, all TRPC except TRPC7 are regulated directly or indirectly 

by STIM (Huang et al., 2006; Worley et al., 2007; Yuan et al., 2007). Concerning SOCE, one 
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hypothesis proposes that STIM senses the depletion of Ca2+ in the ER stores and activates 

SOC formed by Orai proteins (without TRPC channels) (Hewavitharana et al., 2007; Putney, 

2007b). According to the second hypothesis, Orai and TRPC work in concert in mediating 

SOCE (Liao et al., 2008). Figure 1-3 illustrates these two models.  

Besides the receptor-operated or store-operated modes of activation, TRPC channels 

can be modulated by lipids, covalent modifications and scaffolding proteins such as Homer 

and junctate (Kiselyov and Patterson, 2009).  

 

ROC

SOC

A

B

agonist

 

Figure 1-3 Proposed models of interaction among TRPC channels, STIM and Orai 

Panel A shows a model in which STIM functions as a ER Ca2+ sensor and Orai proteins form SOC. Adapted 

from (Putney, 2007b). In panel B, the receptor-coupled PLC signaling pathway rapidly activates TRPC leading 

to receptor-operated Ca2+ entry (ROCE). Depletion of Ca2+ stores then activates STIM, causing the redistribution 

of Orai and TRPC and the assemblage of SOC complex in lipid raft domains of the plasma membrane. This 

leads to Ca2+ entry. Adapted from (Birnbaumer, 2009). 
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1.2 TRPC6 

TRPC6 have been cloned from mouse brain (Boulay et al., 1997), human testis and 

placental (Hofmann et al., 1999). Full-length mouse and human TRPC6 proteins consist of 

930 and 931 amino acids, respectively (Dietrich and Gudermann, 2007). 

1.2.1 Structure of TRPC6 channels 

TRPC6 (Figure 1-4) displays common structural features of the TRP superfamily of 

cation channels: cytoplasmic N- and C-termini, six transmembrane helices (S1-S6) and a 

putative pore region located between S5 and S6 (Clapham et al., 2001). TRPC6 possesses 

features of the TRPC subfamily, for example, N-terminal ankyrin-like repeats 

(Venkatachalam and Montell, 2007), a N-terminal (adjacent to S1) caveolin-1 binding site 

(Vazquez et al., 2004), C-terminal (adjacent to S6) highly conserved regions of TRP domain 

including TRP box 1 (Glu-Trp-Lys-Phe-Ala-Arg or EWKFAR) and TRP box 2 (a proline-rich 

motif) (Venkatachalam and Montell, 2007) and the CaM and IP3R-binding (CIRB) site (Zhu, 

2005). 

 

Figure 1-4 Structure of TRPC6 channels 

The structural elements of TRPC6 channels include 

cytoplasmic N- and C-termini, six transmembrane helices 

(S1-S6), a putative pore region located between S5 and S6, 

the N-terminal ankyrin-like repeats and caveolin-1 binding 

site, and the C-terminal TRP domain CIRB domain. Two 

glycosylated sites in TRPC6 are indicated by covalently 

bound carbohydrates (in grey). Adapted from (Dietrich et 

al., 2005a). 

 

 

In both recombinant and native systems, TRPC6 can assemble into homo- and 

heterotetramers not only within the TRPC3/6/7 subfamily (Goel et al., 2002; Hofmann et al., 

2002; Bandyopadhyay et al., 2005), but also with combinations of TRPC1-TRPC4/5 

(Strubing et al., 2003). Two domains responsible for the oligomerization of TRPC channels 

have been identified (Lepage et al., 2006). 
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1.2.2 Biophysical properties of TRPC6 channels 

Currents through TRPC6 channels show a dual inward (at negative potentials) and 

outward (at positive potentials) rectification and the current-voltage relationship displays an 

S-shaped curve (Figure 1-5). The single-channel conductance is 28-37 pS (Hofmann et al., 

1999; Inoue et al., 2001; Pedersen et al., 2005). The relative ion permeability PCa/PNa of 

TRPC6 channels is around 5 (Hofmann et al., 1999; Inoue et al., 2001).  

 

Figure 1-5 Current-voltage relationship of TRPC6 channels 

The current-voltage relationship of the vasopressin-induced current 

via TRPC6-like channels in A7r5 smooth muscle cells is shown. It 

was obtained during a voltage ramp from -100 mV to + 100 mV. 

Adapted from (Jung et al., 2002). 

 

 

In some cell types, other players like voltage-gated Ca2+ channels (VGCC), the 

plasmalemmal Na+/Ca2+ exchanger (NCX) or ATPases participate in the entry of Ca2+ 

downstream from the activation of TRPC6 channels. For instance, in A7r5 smooth muscle 

cells, activation of endogenous TRPC6 channels by DAG increases cytosolic concentration of 

Ca2+ ([Ca2+]i). This response is blocked by the potent L-type Ca2+ channel inhibitor 

nimodipine. This indicates that the Na+ entry via TRPC6 induces a depolarization which in 

turn activates VGCC (Soboloff et al., 2005). The model is illustrated in Figure 1-6. In human 

embryonic kidney (HEK)-293 cells stably expressing TRPC6, Ca2+, in the presence of 

extracellular Na+, contributes poorly (~4%) to the whole-cell currents (Estacion et al., 2004). 

It is concluded that in cells with a high input resistance, the primary effect of TRPC6 

activation is to depolarize (due to the entry of Na+), limiting Ca2+ entry via TRPC6 but 

facilitating Ca2+ entry via VGCC. In cells with a large inward-rectifier current or expressing 

Ca2+-activated K+ channels to hold the membrane potential negative, receptor-mediated 

activation of TRPC6 permits a sustained Ca2+ influx pathway (Estacion et al., 2004). 

Another set of observations concerns the coupling between TRPC6 channels and the 

NCX. The NCX is an important Ca2+ extrusion mechanism requiring the energy of the 

transmembrane Na+ gradient produced by the Na+/K+-ATPase, with a stoichiometry of 3 Na+ : 

1 Ca2+. However, with elevated cytosolic concentration of Na+ ([Na+]i) and at depolarized 
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membrane potentials, the NCX-mediated Ca2+ efflux decreases and can even switch from the 

forward (Ca2+ exit) to the reverse (Ca2+ entry) mode (Blaustein and Lederer, 1999). Indeed, 

Na+ permeation through TRPC channels coupled with the reverse-mode of the NCX is an 

important event in Ca2+ signaling (Eder et al., 2005). Figure 1-7 is a model illustrating the 

putative link between TRPC channels and the NCX. Concerning TRPC6, the entry of Na+ 

through these channels is shown to elevate [Ca2+]i via the NCX operating in the reverse mode 

(Lemos et al., 2007; Poburko et al., 2007; Syyong et al., 2007; Fellner and Arendshorst, 2008; 

Meng et al., 2008).  

A proteomics study shows that TRPC6 interact with the plasmalemmal Na+/K+-

ATPase, in both kidney and brain, which indicates that they may form a functional complex 

involved in ion transport and homeostasis (Goel et al., 2005). 

 

IP
3 R

 

Figure 1-6 Model describing the activation of L-type Ca2+ channels via a TRPC6-mediated depolarization 

GPCR activates PLCβ via G protein (G) and results in the formation of DAG and IP3. IP3 induces the release of 

Ca2+ from stores by its interaction with IP3R, while DAG activates TRPC6 channels. The predominant entry of 

Na+ (in addition to Ca2+) depolarizes the membrane potential and activates voltage-sensitive L-type Ca2+ 

channels. Adapted from (Soboloff et al., 2005). 
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Figure 1-7 Hypothetical model of the relationship between TRPC channels and the NCX 

Panel A: The activation of the PLC pathway increases [Ca2+]i, which drives the activation of the forward-mode 

of the NCX that cooperates with TRPC to produce intracellular Na+ loading. VGCC is activated by depolarized 

membrane potentials but then inhibited by high local [Ca2+]i levels. Panel B: Low [Ca2+]i levels along with 

increasing [Na+]i promote the reverse-mode of the NCX, which results in a local rise in [Ca2+]i that may refill 

intracellular stores. Na+ entry via TRPC channels is essential for this process. PM: plasma membrane. ER: 

endoplasmic reticulum. Adapted from (Eder et al., 2005). 
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1.2.3 Activation of TRPC6 channels 

1.2.3.1 Activation by diacylglycerol and related lipids 

The members of the TRPC3/6/7 subfamily share 70-80% identity at the amino acid 

level. They all can be activated in response to the application of DAG or the DAG lipase 

inhibitor RHC80267 (Hofmann et al., 1999).  

DAG can be metabolized by the DAG lipase to yield PUFA such as arachidonic acid 

(AA) and linolenic acid, which can activate or modulate a wide range of ion channels (Meves, 

1994), like Drosophila TRP and TRPL (Chyb et al., 1999), TRPV4 (Watanabe et al., 2003), 

TRPM5 (Oike et al., 2006) and probably TRPC4 (Wu et al., 2002). TRPC6 has been reported 

to be activated by AA and 20-hydroxyeicosatetraenoic acid (20-HETE), the dominant AA 

metabolite (Basora et al., 2003). Epoxyeicosatrienoic acids (EET), another metabolite 

synthesized from AA by cytochrome P450 epoxygenases, stimulate the translocation of 

TRPC6 to the plasma membrane (Fleming et al., 2007; Keseru et al., 2008). 

Phosphatidylinositol phosphates (PIP) have long been recognized for their roles in the 

regulation of TRP channels. For example, the DAG precursor and PLC substrate PIP2, an 

essential modulator of various types of ion channels and transporters (reviewed by 

(Hilgemann et al., 2001; Suh and Hille, 2005, 2008)), positively or negatively regulates 

several TRP channels (Hardie, 2007; Qin, 2007; Rohacs and Nilius, 2007; Nilius et al., 2008; 

Large et al., 2009). The effects of PIP2 on TRPC6 channels are still unclear. It was first 

reported that PIP2 had no effect on TRPC6 activation (Hofmann et al., 1999), however recent 

observations show that PIP2 can directly activate members of the TRPC3/6/7 subfamily 

(Lemonnier et al., 2008). PIP2 may stimulate TRPC6 activity though the interactions with the 

CIRB site of TRPC6 (Kwon et al., 2007). Phosphatidylinositol 3,4,5-trisphosphate (PIP3), a 

lipid product of PIP2 catalyzed by phosphoinositide 3-kinase (PI3K), has positive effect on 

TRPC6 activation (Tseng et al., 2004). It disrupts the association of CaM with TRPC6, 

triggering the channel activation (Kwon et al., 2007). However, a recent study describes a 

powerful inhibitory action of PIP2 on native TRPC6 channels expressed in mesenteric artery 

myocytes (Albert et al., 2008). 

The regulation of TRPC6 channels by DAG and related lipids is summarized in Table 

1-2.  
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Table 1-2 Regulation of TRPC6 channels by DAG and related lipids 

Lipid 

Action on 

TRPC6 

channels 

Tissue/Cell type Techniques  References  

DAG Activation  CHO cells 

Ca2+ imaging, Mn2+ 

quenching, 

electrophysiology 

(Hofmann et al., 

1999) 

AA and its 

metabolites 

AA 

20-HETE 
Activation HEK-293 cells Electrophysiology 

(Basora et al., 

2003) 

EET Translocation  
Vein endothelial 

cells 

Ca2+ imaging, cell 

surface biotinylation 

and immunoblotting 

(Fleming et al., 

2007) 

PIP2 

Activation HEK-293 cells Electrophysiology  
(Lemonnier et al., 

2008) 

Inhibition Artery myocytes Electrophysiology 
(Albert et al., 

2008) 

PIP3 Activation  

HEK-293 cells Electrophysiology (Kwon et al., 2007) 

HEK-293 cells  

Jurkat T cells 

Ca2+ imaging, pull 

down-analysis 
(Tseng et al., 2004) 

 

1.2.3.2 Activation by receptor stimulation 

Many studies have proved that TRPC6 channels are activated in response to the 

stimulation of receptors including GPCR, RTK and cytokine receptor (Table 1-3). Activation 

of the first two groups of receptors activates the PLC signaling pathway leading to the 

production of DAG, while activation of interleukin-1 receptor, a cytokine receptor, also 

generates DAG (Beskina et al., 2007). Besides activation, stimulation of GPCR also induces 

the translocation of TRPC6 to the plasma membrane (Cayouette et al., 2004; Fleming et al., 

2007). 

Experiments with different cloned TRPC6 isoforms suggest that some amino acids 

present in the N terminus of TRPC6 are crucial for the activation by DAG but are not required 

for the activation by carbachol (Zhang and Saffen, 2001). Activation of muscarinic 

acetylcholine receptors stimulates the formation of a multiprotein complex containing 
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muscarinic acetylcholine receptors, TRPC6 channels, immunophilin FKBP12, calcineurin, 

CaM and protein kinase C (PKC) (Kim and Saffen, 2005). Accordingly, DAG alone may not 

fully account for the activation of TRPC6, and other receptor-mediated events may act 

synergistically with DAG to stimulate channel activity (Estacion et al., 2004). 

Even though the ROC (but not SOC) identity of TRPC6 is quite clear, the high affinity 

interaction between IP3R and TRPC6 has been proved biochemically (Tang et al., 2001). In 

fact, several studies have shown a direct interaction between the C-terminus of TRPC and the 

N-terminus of IP3R (Kiselyov et al., 1998; Boulay et al., 1999; Lockwich et al., 2000; Tang et 

al., 2001), which is involved in the regulation of Ca2+ entry. Moreover, exocytotic insertion of 

TRPC6 channels into the plasma membrane takes place upon the depletion of intracellular 

Ca2+ stores (Cayouette et al., 2004). The latter response may be due to the conformational 

coupling between TRPC6 and IP3R.  

1.2.3.3 Activation by store depletion 

Although TRPC6 is commonly described as a ROC, several authors have reported that 

it can function as a SOC. Expression of Orai in TRPC6-expressing HEK cells reconstitutes 

ICRAC (Liao et al., 2008), while TRPC6, together with TRPC1 and Orai proteins, forms SOC 

in neutrophil-like HL-60 cells (Brechard et al., 2008). Moreover, in human platelets, TRPC6 

plays a dual role, as a non capacitative Ca2+ entry (NCCE) channel regulated by DAG and as 

a component of SOC likely regulated by PIP2 (Jardin et al., 2008). These latter authors further 

show that it is through its interaction with the Orai-STIM complex or TRPC3 that TRPC6 

participates in SOCE or NCCE, respectively (Jardin et al., 2009). Interestingly, stimulation by 

thrombin or Ca2+ store depletion enhances the interaction between TRPC6 and Orai-STIM 

while DAG displaces TRPC6 from Orai and STIM and induces its association with TRPC3 

(Jardin et al., 2009).  
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Table 1-3 Activation of TRPC6 by receptor stimulation 

Receptor 

█ GPCR █ RTK █ cytokine receptor 
Tissue/Cell type References  

H1 histamine receptor  CHO cells (Hofmann et al., 1999) 

M1 muscarinic receptor 
Sympathetic neurons 

PC12 cells 

(Delmas et al., 2002) 

(Zhang et al., 2006) 

M3 muscarinic receptor HEK293 cells  (Estacion et al., 2004) 

M5 muscarinic receptor COS cells  
(Boulay et al., 1997; Zhang and 

Saffen, 2001) 

B2 bradykinin receptor Sympathetic neurons (Delmas et al., 2002) 

α1-adrenoceptor Vascular smooth muscle  (Inoue et al., 2001) 

V1 arginine vasopressin receptor  A7r5 smooth muscle cells 
(Jung et al., 2002; Soboloff et al., 

2005) 

Serotonin receptor  A7r5 smooth muscle cells (Jung et al., 2002) 

Angiotensin II receptor (AT1) 

HEK293 cells 

Mesenteric artery myocytes 

Cardiomyocytes  

(Winn et al., 2005) 

(Saleh et al., 2006) 

(Onohara et al., 2006) 

Protease activated receptor-1 Endothelial cells (Singh et al., 2007) 

Orexin type 1 receptor Neuroblastoma cells (Nasman et al., 2006) 

Purinergic receptors (P2Y) Aortic smooth muscle cells (Lemos et al., 2007) 

T-cell receptor Jurkat T cells (Tseng et al., 2004) 

TrkB receptor Cerebellar granule cells (Li et al., 2005) 

PDGF receptor A7r5 smooth muscle cells (Jung et al., 2002) 

EGF receptor COS cells (Hisatsune et al., 2004) 

VEGF receptor 2 HEK293 cells (Pocock et al., 2004) 

Interleukin-1 receptor Astrocytes  (Beskina et al., 2007) 

Abbreviations: TrkB: tyrosine kinase receptor B; PDGF: platelet-derived growth factor; EGF: epidermal growth 

factor; VEGF: vascular endothelial growth factor. Adapted from (Abramowitz and Birnbaumer, 2009) 
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1.2.3.4 Activation by mechanosensation 

TRPC6 can be activated by mechanical stimuli independently of PLC, functioning as a 

sensor of mechanically and osmotically induced membrane stretch (Spassova et al., 2006). By 

cooperating with TRPC1 and TRPV4, TRPC6 mediates mechanical hyperalgesia and 

nociceptor sensitization in dorsal root ganglion neurons, but its precise role in the transduction 

of mechanical stimuli is unknown (Alessandri-Haber et al., 2009). However, some studies 

indicated that TRPC6 would not be stretch-activated channels (Gottlieb et al., 2008). In 

addition, some GPCR can be mechanically activated (Mederos y Schnitzler et al., 2008; 

Yasuda et al., 2008). They are the essential mechanosensing components in vascular smooth 

muscle cells and function as sensors of membrane stretch leading to the activation of TRPC6 

(as well as TRPC3 and TRPC7) channels (Mederos y Schnitzler et al., 2008) (Figure 1-8). 

Moreover, a recent study shows that TRPC6 channels are not primarily activated by 

mechanical stimuli (Inoue et al., 2009). Instead, once receptor-activated, the channels become 

mechanosensitive via the production of 20-HETE (Inoue et al., 2009). 

 

Figure 1-8 Proposed mechanism for stretch-induced activation of TRPC6 channels 

In vascular smooth muscle cells, GPCR is mechanically activated, which induces the sequential activation of 

TRPC6 channels. Adapted from (Voets and Nilius, 2009). 

 

1.2.4 Regulation of TRPC6 channels 

1.2.4.1 Regulation by phosphorylation 

Protein kinase C 

Since DAG is the physiological activator of some PKC, the contribution of PKC to the 

effects of DAG on TRPC6 channels has been investigated. A PKC-independent effect of 
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DAG on TRPC6 has initially been shown: an acute challenge of TRPC6-expressing CHO 

cells with the PKC activators, phorbol-12,13-didecanoate (PDD) or phorbol-12-myristoyl-13-

acetate (PMA), fails to evoke a Ca2+ rise; while downregulation of PKC by a long pre-

treatment with these phorbol esters or inhibition with the PKC inhibitors, staurosporine, 

bisindolylmaleimide I or calphostin C does not affect TRPC6 activation by DAG (Hofmann et 

al., 1999). Although these results have been further confirmed (Inoue et al., 2001), some 

studies show the involvement of PKC in TRPC6 inactivation. By activating PKC, PMA 

blocks the activation of TRPC6 by DAG and carbachol (Zhang and Saffen, 2001). 

Interestingly, a later study shows a differential effect of PKC activation on DAG- and 

carbachol-induced TRPC6 currents: PMA has no significant effect on DAG-activated currents 

whereas it essentially eliminates the regulation by receptor stimulation (Estacion et al., 2004). 

In addition, the inactivation time course of TRPC6 currents is significantly retarded through 

PKC inhibition by calpostin C (Shi et al., 2004). Indeed, PKC phosphorylation at an identified 

phorsphorylation site located near TRPC6 channel C-terminus (Ser768) is correlated with the 

channel inhibition (Kim and Saffen, 2005). The activity of TRPC6 can be fine-tuned through 

the phosphorylation/dephosphorylation cycles by the formation of a multiprotein complex 

centered on TRPC6 containing PKC and calcineurin, which respectively phosphorylate and 

dephosphorylate the channels (Kim and Saffen, 2005). 

The PKC pathway activated by DAG may signify a feedback regulation of TRPC 

channels following activation by DAG. In mesenteric artery myocytes, low levels of DAG 

activate the channels whereas high levels of DAG inhibit them via a PKC-dependent pathway 

(Saleh et al., 2006). This dual PKC-independent and dependent action of DAG has also been 

seen in TRPC3 channels (Venkatachalam et al., 2003; Trebak et al., 2005).  

Src family protein-tyrosine kinases 

Tyrosine phosphorylation by Src family protein-tyrosine kinases (PTK) is involved in 

the modulation of TRPC6 channel activity (Hisatsune et al., 2004). Fyn, a member of Src 

family PTK, physically interacts with TRPC6 and increases the channel activity by tyrosine 

phosphorylation (Hisatsune et al., 2004). In addition, growth factors known to stimulate RTK 

such as EGF (Hisatsune et al., 2004) and PDGF (Jung et al., 2002) activate TRPC6 channels 

(Table 1-3). The former finding shows that the action of EGF on TRPC6 occurs via the 

stimulation of EGF receptors which in turn activate Src family PTK (Hisatsune et al., 2004). 

Moreover, the specific inhibition of Scr family of PTK by PP2 or SU6656 abolishes the 

activation of TRPC6 channels (Hisatsune et al., 2004; Soboloff et al., 2005; Aires et al., 
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2007). Whether tyrosine phosphorylation directly affects the gating of TRPC6 channels 

remains unclear, since it is possible that DAG generated by PTK-activated PLCγ pathway 

activates the channels (Jung et al., 2002; Large et al., 2009). Indeed, mutation in the tyrosine 

phosphorylation site of TRPC6 does not impair the channel activation, and TRPC6 can still be 

activated in Src family PTK-deficient cells (Kawasaki et al., 2006). 

Other protein kinases 

In human platelets, TRPC6 can be phosphorylated by a cAMP-dependent and a 

cGMP-dependent protein kinase (respectively PKA and PKG), but the phosphorylation does 

not seem to affect the channel activity (Hassock et al., 2002). In both a heterologous 

expression system (HEK-293 cells) and A7r5 vascular myocytes, TRPC6 channels are 

negatively regulated by the NO–cGMP–PKG pathway, probably via a phosphorylation site 

(Thr69) of the N-terminal (Takahashi et al., 2008). In addition, a Ca2+-CaM dependent 

phosphorylation involving CaM kinase II is essential for the activation of TRPC6 (Shi et al., 

2004).  

1.2.4.2 Regulation by Ca2+ and Calmodulin 

Calcium 

The effect of the extracellular concentration of calcium ([Ca2+]o) on TRPC6 currents 

remains controversial. Currents via endogenous TRPC6 channels of A7r5 smooth muscle 

cells are partially inhibited by physiological [Ca2+]o, while the complete removal of external 

Ca2+ decreases the amplitude of inward currents (Jung et al., 2002). This stands in contrast 

with other studies showing that [Ca2+]o has a potentiating action on the TRPC6 currents in 

both HEK and vascular smooth muscle cells (Inoue et al., 2001). A later study reports 

biphasic effects of [Ca2+]o on TRPC6 currents in HEK cells. It potentiates the currents in a 

submillimolar range (EC50 ~0.4 mM) but inhibits them in a higher concentration range (IC50  

~4 mM) (Shi et al., 2004). 

Calmodulin  

Calcium is also known to influence the activity of TRPC channels through the action 

of CaM. CaM, a small soluble Ca2+-binding protein involved in the regulation of many 

cellular functions including channel activity (Saimi and Kung, 2002), binds directly to 

Drosophila TRP and TRPL (Phillips et al., 1992). Multiple CaM-binding sites are identified 

on different TRP proteins, for example, CaM binds to the C-terminus of all 7 TRPC (Tang et 
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al., 2001; Trost et al., 2001; Zhang et al., 2001; Boulay, 2002; Singh et al., 2002; Ordaz et al., 

2005), namely the C-terminal CaM-binding sites. Interestingly, the first C-terminal CaM-

binding site is also bound to an N-terminal region of IP3R and was therefore named CIRB site 

(Tang et al., 2001; Zhang et al., 2001). The CIRB site is conserved among all TRPC proteins 

and Drosophila TRP proteins (Zhu, 2005). CaM and IP3R compete with each other for the 

binding to the CIRB site of TRPC (Tang et al., 2001; Zhang et al., 2001). This competition is 

Ca2+-dependent since CaM only binds to the CIRB site in the presence of Ca2+. In some cases, 

CaM binding to the CIRB site can prevent TRPC channels from being activated, whereas the 

displacement of CaM by activated IP3R or the inhibition by CaM antagonists activate the 

channels. This inhibitory effect of CaM has been found on TRPC1 (Vaca and Sampieri, 

2002), TRPC3 (Zhang et al., 2001), TRPC4 (Tang et al., 2001), TRPC7 (Shi et al., 2004) as 

well as TRPC6 (Kwon et al., 2007). The latter study shows that mutations in TRPC6 that 

increase PIP3-mediated disruption of CaM binding result in an enhancement of TRPC6 

currents (Kwon et al., 2007). On the contrary, several studies show that CaM binding to 

TRPC6 is necessary for its activation. CaM inhibitors like calmidazolium and trifluoperazine, 

which dissociate CaM from TRPC6, inhibit TRPC6 activity in HEK-293 cells (Boulay, 2002; 

Shi et al., 2004).  

1.2.5 Pharmacology of TRPC6 channels 

1.2.5.1 Non-specific inhibitors  

Unfortunately, there are no specific TRPC6 inhibitors available. TRPC6 can be 

blocked by cadmium (Cd2+), lanthanum (La3+) and gadolinium (Gd3+) The 50% inhibitory 

concentration (IC50) values for Cd2+, La3+ and Gd3+ are 253µM, 4µM and 1.9µM, respectively 

(Inoue et al., 2001). TRPC6 can also be blocked by some organic blockers such as SKF-

96365 (Inoue et al., 2001), amiloride (Inoue et al., 2001) and 2-APB (Clapham, 2007). In 

addition, the stretch activation of TRPC6 is inhibited by the tarantula peptide, GsMTx-4 

(Spassova et al., 2006). 

1.2.5.2 Flufenamic acid 

Flufenamic acid (FFA), a non-steroidal anti-inflammatory drug belonging to the 

family of fenamates, is often used as a non-specific cation and anion channel blocker. In both 

HEK cells expressing TRPC6 and in rabbit portal vein smooth muscle cells, FFA reversibly 

enhances currents through TRPC6 whereas it dose-dependently inhibits currents through 
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TRPC3 and TRPC7 (Inoue et al., 2001). Since then, FFA represents a pharmacological tool to 

differentiate TRPC6 from TRPC3 and TRPC7 (Jung et al., 2002; Carter et al., 2006; Hill et 

al., 2006; Saleh et al., 2006; Fellner and Arendshorst, 2008). However, the potentiating effect 

of FFA on 20-HETE-triggered currents has not been found in TRPC6 expressing HEK cells 

(Basora et al., 2003). Although the use of FFA as a positive regulator of TRPC6 channels 

remains controversial (Chapter 10, article 2), a recent work has further confirmed that FFA is 

a tool for investigating TRPC6-mediated calcium signaling in human podocytes and HEK 

cells (Foster et al., 2009). 

1.2.5.3 Hyperforin 

Hyperforin, a bicyclic polyprenylated acylphloroglucionol derivative, is the major 

active constituent of Hypericum perforatum (St. John’s wort) extract. Hyperforin has 

antidepressant properties. It is a broad-band neurotransmitter reuptake inhibitor affecting the 

synaptosomal uptake of serotonin, dopamine, noradrenalin, glutamate and gamma-

aminobutyric acid (GABA) (Chatterjee et al., 1998; Beerhues, 2006). Other different cellular 

effects of hyperforin with potential pharmacological interest have been discovered, including 

its effects on β-amyloid precursor protein and on inflammation, as well as antibacterial, 

antitumoral and antiangiogenic effects (Medina et al., 2006). 

At nanomolar concentrations, hyperforin induces significant inhibition of various ion 

channels (Chatterjee et al., 1999; Krishtal et al., 2001), but can activate NSCC (Treiber et al., 

2005). The latter authors reveal that hyperforin activates TRPC6 channels in PC12 cells and 

HEK cells, without activating the other TRPC isoforms (Leuner et al., 2007). Hyperforin is 

now a potent pharmacological tool used to study TRPC6 channels (see Chapter 11, article 3).  

1.2.6 Distribution and functions of TRPC6  

TRPC6 is expressed in a wide variety of tissues including brain, kidney, lung, heart, 

ovary, testis … (Garcia and Schilling, 1997; Inoue et al., 2001; Hassock et al., 2002; Riccio et 

al., 2002a; Tseng et al., 2004). They participate in many biological processes ranging from 

cell proliferation to synaptogenesis. For a detailed description, see Table 1-4 and the 

following reviews: (Clapham, 2003; Schlondorff and Pollak, 2006; Dietrich and Gudermann, 

2007; Nilius et al., 2007; Venkatachalam and Montell, 2007; Abramowitz and Birnbaumer, 

2009). 
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Table 1-4 Functional roles of TRPC6 in different tissues 

Tissue/Cell type 

Physiological and 

pathophysiological 

responses 

Functional roles of TRPC6 References  

Vascular system  

Vascular smooth 

muscle cells 

Pressure-induced 

vasoconstriction (Bayliss 

effect a) and 

mechanosensitivity 

Down-regulation of TRPC6 attenuates arterial smooth muscle 

depolarization and constriction caused by elevated intravascular 

pressure [1]. This may involve the stretch-induced activation of 

TRPC6 channels [2, 3] (see Section 1.2.3.4 for details).  

(Welsh et al., 2002) [1] 

(Spassova et al., 2006) [2] 

(Mederos y Schnitzler et al., 

2008) [3] 

Proliferation  Enhanced expression of TRPC6 and TRPC3 may be partially 

responsible for increased proliferation of pulmonary artery smooth 

muscle cells in idiopathic pulmonary arterial hypertension patients. 

(Yu et al., 2004) [4] 

Vascular hypertension  Increased TRPC6 expression contributes to enhanced vascular 

smooth muscle cells reactivity and to vascular hypertension. 

(Bae et al., 2007) 

Vascular 

endothelial cells 

Permeability Ca2+ entry via TRPC6 activates RhoA and in turn regulates 

endothelial cell contraction and the increase in endothelial 

permeability. 

(Singh et al., 2007) 

Migration Lysophosphatidylcholine translocates TRPC6 and TRPC5 to the 

plasma membrane, resulting in the inhibition of endothelial cell 

migration. 

(Chaudhuri et al., 2008) 

a Bayliss effect: Increasing intraluminal pressure in small arteries causes vasoconstriction (Bayliss, 1902).   
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Heart  

Cardiac 

myocytes 

Cardiac hypertrophy Angiotensin II-induced cardiac hypertrophy is mediated by a Ca2+-

calcineuin-nuclear factor of activated T cells (NFAT) signaling 

pathway dependent on the activation of TRPC3 and TRPC6 [5]. 

Cardiac-specific overexpression of TRPC6 in transgenic mice 

results in cardiac hypertrophy [6]. 

(Onohara et al., 2006) [5] 

(Kuwahara et al., 2006) [6] 

Cardiac 

fibroblasts 

Cardiac fibrosis The endothelin-1-induced TRPC6 up-regulation in cardiac 

fibroblasts and the following NFAT activation negatively regulates 

endothelin-1-induced myofibroblast formation. 

(Nishida et al., 2007) 

Kidney 

Glomerular 

podocytes  

Glomerular filtration barrier 

dysfunction  

Several mutations in TRPC6 are associated with the development of 

familial focal segmental glomerulosclerosis (FSGS) [7, 8]. 

Increased TRPC6 expression leads to disruption of podocytes 

cytoskeletal integrity causing proteinuria [9].  

(Winn et al., 2005) [7] 

(Reiser et al., 2005) [8] 

(Moller et al., 2007) [9] 

Glomerular 

mesangial cells 

Renal hyperfiltration 

(hyperglycemia) 

High glucose incubation down-regulates TRPC6. Diabetic rats 

show a decrease in glomerular TRPC6 expression.  

(Graham et al., 2007) 

Lung 

Pulmonary artery 

smooth muscle 

cells 

Pulmonary hypertension TRPC1 and TRPC6 are up-regulated by hypoxia in pulmonary 

artery smooth muscles, and these channels are implicated in 

hypoxia-induced pulmonary hypertension [10, 11]. TRPC6 

expression is also enhanced in pulmonary artery smooth muscles 

from patients with idiopathic pulmonary arterial hypertension [4]. 

In addition, TRPC6 is essential for hypoxic pulmonary 

vasoconstriction and alveolar gas exchange [12]. 

(Lin et al., 2004) [10] 

(Wang et al., 2006) [11] 

(Weissmann et al., 2006) 

[12] 
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Blood 

Platelets  Hyperglycemia  High glucose increases TRPC6 channel protein expression on the 

platelet surface. Platelets from patients with type 2 diabetes mellitus 

show increased TRPC6 expression. 

(Liu et al., 2008) 

Erythrocytes  Eryptosis  TRPC6 contributes to the Ca2+ leak of human erythrocytes and 

participates in Ca2+-induced erythrocyte death.  

(Foller et al., 2008) 

Nervous system 

(see Section 

1.2.6.2) 

Cerebral granule 

neuron  

Neuronal survival Ca2+ influx through TRPC3 and TRPC6 promotes cerebellar 

granule neuron survival via CREB activation. 

(Jia et al., 2007) 

Axon guidance Growth-cone turning induced by BDNF is abolished when TRPC3 

and TRPC6 are inhibited by down-regulation or over-expression of 

their negative mutants. 

(Li et al., 2005) 

Hippocampal 

neurons 

Neuronal morphogenesis TRPC6 promotes dendritic growth through a CaMKIV-CREB 

pathway. 

(Tai et al., 2008) 

Synaptogenesis  TRPC6 is mainly localized to excitatory postsynaptic sites and is 

important for the development of dendritic spines and excitatory 

synapses. 

(Zhou et al., 2008) 

Dorsal ganglion 

neurons 

Mechanosensation  TRPC1 and TRPC6 channels cooperate with TRPV4 to mediate 

mechanical hyperalgesia and nociceptor sensitization. 

(Alessandri-Haber et al., 

2009) 

Malignant cells 

Prostate cancer 

epithelial cells 

Proliferation  Phenylephrine stimulates cells proliferation via increased TRPC6 

expression. 

(Thebault et al., 2006) 

Hepatoma cells  Over-expressing TRPC6 increases cell proliferation. (El Boustany et al., 2008) 

Breast 

adenocarcinoma 

TRPC6 channels are strongly expressed and functional in breast 

cancer epithelial cells. 

(Guilbert et al., 2008) 
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1.2.6.1 Distribution of TRPC6 in the brain 

Human 

All TRPC are widely expressed (Riccio et al., 2002a). Concerning TRPC6 (Figure 

1-9), it is homogeneously expressed throughout the CNS and peripheral tissues with the 

highest levels in placenta and lung (Riccio et al., 2002a).  

 

 

Figure 1-9 Expression of TRPC6 mRNA in human CNS and peripheral tissues 

Data are expressed as arbitrary units normalized to cyclophilin to correct for RNA quantity and integrity. 

Adapted from (Riccio et al., 2002a). 

 

Rat 

TRPC6 is expressed in the brain of embryonic (embryonic day 18) rat but not in the 

brain of adult (postnatal days 40-45) rats (Strubing et al., 2003). Along with this finding, 

TRPC6 expression is down-regulated in rat cerebellum during the first six weeks after birth 

(Huang et al., 2007). TRPC6 mRNA is detected in hippocampus, cortex, and more weakly in 

olfactory bulb, cerebellum and midbrain (Mizuno et al., 1999; Bonaventure et al., 2002). 

TRPC6 was detected by immunohistochemistry in rat substantia nigra, with a postsynaptic 
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localization and associated with metabotropic glutamate receptor 1 in midbrain dopamine 

neurons (Giampa et al., 2007). Moreover, TRPC6, co-immunoprecipitating with TRPC3 and 

TRPC7, is also found in cerebellum synaptosomes (Goel et al., 2002; Zhou et al., 2008). 

TRPC6 is also abundant in sensory neurons of dorsal root ganglia (Kress et al., 2008). 

Mouse 

TRPC6 is expressed in both mouse brain and lung (Boulay et al., 1997). In the brain, 

TRPC6 is found in dentate gyrus granule cells (Otsuka et al., 1998). Previous results from our 

laboratory have shown a heterogeneous distribution of TRPC proteins in mouse embryonic 

(E13) cortex by means of immuno-histochemistry (Boisseau et al., 2009). In the immature 

cortical wall, both the first post-mitotic neurons and the dividing non-neuronal cells express 

TRPC6 (Boisseau et al., 2009). Figure 1-10 shows quantitative analyses of TRPC mRNA in 

murine embryonic brain and cortex. Figure 1-11 shows the expression of TRPC6 in murine 

embryonic cortex. 

 

 

Figure 1-10 Expression and quantification of TRPC mRNAs in murine embryonic brain and cortex 

Expression of TRPC1-7 mRNA was performed in E13 brain and cortex tissue samples using real-time RT-PCR. 

The mRNA levels of TRPC channels are given in relation to 18S rRNA. Adapted from (Boisseau et al., 2009). 
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Figure 1-11 Expression of TRPC6 in murine embryonic cortex 

Panels A-B: double immunostaining with Tuj1 (green, staining post-mitotic neurons) in panel A and anti-TRPC6 

antibodies (red) in panel B. Panels E-F: double immunostaining with anti-RC2 (green, staining non-neuronal 

cells) in panel E and anti-TRPC6 antibodies (red) in panel F. Panels C and G: overlay of fluorescent confocal 

images. Adapted from (Boisseau et al., 2009). 

 

1.2.6.2 Functions of TRPC6 in the brain   

Role of TRPC6 in neurons 

Members of TRPC subfamily have been proposed to play an important role in nerve 

growth cone guidance and neurite growth, for example, TRPC1 (Shim et al., 2005; Wang and 

Poo, 2005), TRPC3 (Li et al., 2005), TRPC5 (Greka et al., 2003) as well as TRPC6 (Li et al., 

2005; Leuner et al., 2007; Tai et al., 2008). Growth cones, the hand-like structures at the tip of 

growing neurites, possess remarkable abilities to detect directional cues to help axons and 

dendrites to locate and recognize their appropriate synaptic partners, forming the appropriate 

connections between neurons and their target cells (Tessier-Lavigne and Goodman, 1996; 

Mueller, 1999; Dickson, 2002). The group of Wang first shows that the overexpression of a 

dominant-negative form or down-regulation of TRPC3 or TRPC6 inhibits brain-derived 

neurotrophic factor (BDNF) mediated growth-cone turning (Li et al., 2005). Then they find 

that TRPC3 and TRPC6 are required for BDNF-mediated neuronal protection, and promote 

cerebellar granule neuron survival via cAMP-response-element binding protein (CREB) 

activation (Jia et al., 2007). More recently, they prove that TRPC6 is highly expressed during 
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the period of maximal dendrite growth and stimulates dendritic growth through a Ca2+/CaM-

dependent kinase IV (CaMKIV)-CREB pathway (Tai et al., 2008), which is in line with the 

observation that hyperforin induces neurite outgrowth via TRPC6 activation (Leuner et al., 

2007). In addition, TRPC6 is mainly localized to excitatory postsynaptic sites and that TRPC6 

is important for the development of dendritic spines and excitatory synapses (Zhou et al., 

2008).  

In mouse cortical astrocytes, interleukin-1a cytokine acting in interleukin-1 

receptors, enhances ROCE via TRPC6 channels (Beskina et al., 2007). Chronic treatment 

with interleukin-1up-regulates the expression of TRPC6 (Beskina et al., 2007). This shows 

that TRPC6 channels are invovled in interleukin-1-induced dysregulation of Ca2+ 

homeostasis. 

Sections 1.2.6.1 and 1.2.6.2 present data describing the expression and the functions of 

TRPC6 in the brain. It is necessary to add that these channels are also present in the peripheral 

nervous system like in dorsal root ganglia (Elg et al., 2007). A recent work shows that TRPC1 

and TRPC6 channels cooperate with TRPV4 to mediate mechanical hyperalgesia and 

nociceptor sensitization in rat dorsal root ganglion neurons (Alessandri-Haber et al., 2009). 

The authors point out that TRPC6 is a putative component of signaling complexes including 

TRPV4, integrins and Src tyrosine kinases, serving to transduce mechanical stimuli in the 

setting of inflammation or nerve injury (Alessandri-Haber et al., 2009). 

Link between Alzheimer’s disease and TRPC6 

A major cause of the familial form of Alzheimer’s disease (AD) is a missense 

mutation in one of three genes coding for amyloid precursor protein, presenilin 1 or presenilin 

2 (Putney, 2000). In HEK-293 cells, presenilin 2 influences TRPC6-mediated Ca2+ entry 

(Lessard et al., 2005). Co-expression of wild-type presenilin 2 or AD-linked presenilin 2 

mutants and TRPC6 in HEK-293 cells abolishes agonist-induced TRPC6 activation, while co-

expression of a loss-of-function presenilin 2 mutant and TRPC6 in HEK-293 cells enhances 

TRPC6-mediated Ca2+ entry (Lessard et al., 2005). Thus, the crosstalk between TRPC6 and 

presenilin 2 may be linked to the onset and progression of AD. However, it remains unclear 

whether some intermediate proteins act between presenilin 2 and TRPC6. 
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2 Iron homeostasis in the brain 

Adult men normally have ~35-45 mg of iron per kilogram of body weight. Most of 

this iron (~70%) is incorporated into hemoglobin in erythroid cells. Approximately ~10-15% 

is present in muscle fibers (in myoglobin) and other tissues (in enzymes and cytochromes). 

Most of the remaining iron is stored in liver and macrophages where it is recycled. There are 

no specific mechanisms for the secretion of iron out of the body, and iron loss can only occur 

via bleeding or cell desquamation. This non-specific iron loss is compensated by dietary iron 

absorption (~1-2 mg/day). Dietary iron, both inorganic iron and heme iron, is absorbed by 

duodenal enterocytes and then circulates in the plasma bound to transferrin (Andrews, 1999). 

The chemical versatility of iron has made it one of the most commonly used metals in 

biological systems. It is required by all mammalian cells, executing its major roles in oxygen 

delivery and electron transport (Andrews, 2005). In neurons, iron is an essential cofactor for 

enzymes involved in energy metabolism, synthesis of neurotransmitters, mitochondrial 

electron transport chain, etc. Neurons seem to be more vulnerable to iron overload when 

compared to glial cells. In the brains of patients suffering from neurodegenerative diseases 

such as Parkinson’s disease (PD), AD and Huntington’s disease, neuronal iron accumulation 

is relatively higher than in the brain of age-matched controls (Moos and Morgan, 2004). 

Before going further into the mechanisms controlling brain iron homeostasis, 

intercellular and intracellular iron transports are first introduced. Two pathways have been 

described to participate in the cellular iron uptake. The first is the transferrin-mediated iron 

(TBI) transport. Transferrin (Tf) is a ~80 kDa serum glycoprotein that binds in a reversible 

manner two atoms of Fe3+ with a high affinity (Kd ~10−23 M) (Wessling-Resnick, 2000). 

Diferric Tf binds to a highly specific Tf receptor (TfR), allowing a cellular uptake via 

receptor-mediated endocytosis. The acidic pH of the endosomes favours the release of Fe3+ 

from Tf, which is then reduced to Fe2+ and exported out of the endosomes via the divalent 

metal transporter 1 (DMT1, also known as Nramp2 and DCT1) or TRPML1 (Dong et al., 

2008) (see Section 4.4.2). The Tf cycle is completed when the endosomes return to and fuse 

with the plasma membrane. Apo-Tf then returns to the circulation and TfR to the plasma 

membrane, and a new cycle of endocytosis/exocytosis can start again (Wessling-Resnick, 

2000; Donovan et al., 2006). The transferrin cycle is illustrated in Figure 2-1.  
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Figure 2-1 The transferrin cycle 

Diferric Tf binds to TfR. TfR is a membrane glycoprotein that functions as a homodimer with each subunit 

binding one molecule of Tf. The Tf-TfR complexes localize to clathrin-coated pits, which facilitate the formation 

of the endosomes. The endosomal Na+-H+-ATPase permits the accumulation of H+ in the lumen of these 

organelles. When the endosomal pH reaches ~5.5, iron dissociates from Tf. Fe3+ is reduced to Fe2+ by an 

endosomal reductase and Fe2+ is transported from the endosomes to cytoplasm by DMT1. The Tf cycle is 

completed when the endosomes return to and fuse with the plasma membrane. Apo-Tf returns to the circulation 

and TfR to the plasma membrane, allowing both molecules to start the cycle again. Adapted from (Andrews, 

1999). 

 

The second pathway is a non-transferrin-bound iron (NTBI) uptake. Candidates for 

NTBI uptake include DMT1 (Gunshin et al., 1997), the trivalent cation-specific transporter 

(TCT) (Attieh et al., 1999), Zip14 (Liuzzi et al., 2006), the Na+/Mg2+ antiport system (Stonell 

et al., 1996), melanotransferrin (also known as p97) (Kennard et al., 1995), lactoferrin 

(McAbee, 1995), lipocalin (Yang et al., 2002) as well as VGCC (Oudit et al., 2003).  

2.1 Brain iron homeostasis 

2.1.1 Iron transport into the brain 

To enter the brain, iron must cross the blood-brain barrier (BBB) or the blood-

cerebrospinal fluid (CSF) barrier. 
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2.1.1.1 Iron transport across the blood-brain barrier 

The BBB is a structure composed of brain capillary endothelial cells, a basal lamina, 

pericytes, and astrocytic end-feet processes. In the CNS, brain capillary endothelial cells are 

joined by tight junctions, protecting the brain from harmful substances circulating in the blood 

stream. By providing the required nutrients, brain capillary endothelial cells are necessary for 

a proper brain functioning. 

Although iron crosses the BBB, the molecular mechanisms participating in the 

transport have not yet been completely clarified. The Tf/TfR pathway seems to be the major 

route of iron transport across the luminal membrane of the capillary endothelium (Bradbury, 

1997; Moos and Morgan, 2000; Burdo et al., 2003). In addition, it has been suggested that 

pathways involving lactoferrin/lactoferrin receptor (Fillebeen et al., 1999), soluble 

melanotransferrin/glycosylphosphatidylinositol-anchored melanotransferrin (Rothenberger et 

al., 1996; Moroo et al., 2003) and ferritin/ferritin receptor (Fisher et al., 2007) might play a 

role in iron transport across the BBB. Moreover, low-molecular weight NTBI uptake, might 

be another pathway for iron to cross the BBB (Burdo et al., 2003; Deane et al., 2004).  

In order to be available for the neural cells, iron needs to cross the abluminal 

membrane of the BBB and enter the interstitial fluid of the brain. Based on the similarity 

between the transport of dietary iron from intestinal enterocytes into the circulatory system 

and the iron transport across the BBB, ferroportin (Wu et al., 2004a) together with 

ceruloplasmin or hephaestin (Hahn et al., 2004) have been suggested to be involved in the 

transport of iron across the abluminal membrane of the BBB (Ke and Qian, 2007). In 

addition, astrocytes have probably the ability to import iron from endothelial cells through 

their end-feet processes on the abluminal surface of the capillary (Moos et al., 2007).  

2.1.1.2 Iron transport across the blood-cerebrospinal fluid barrier 

Choroid plexus epithelial cells constitute another barrier: the blood-CSF barrier. The 

choroid plexus is composed of CSF producing-choroidal capillaries and ventricular 

ependyma. The CSF is found within the ventricles of the brain and in the subarachnoid space 

around the brain and spinal cord. Thus, the choroid plexus which separates the blood from the 

CSF, acts as a filtration system that removes metabolic wastes or foreign substances from the 

CSF, maintaining the delicate extracellular neural environment. 
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When considering the mechanisms of iron into the brain, the blood-CSF barrier and 

the BBB are thought to share some common features. However, a major difference is that the 

choroid plexus of the lateral and third ventricles synthesizes Tf, which may be of significance 

for iron transport across the choroid plexus. In addition, NTBI is present in the CSF (Moos 

and Morgan, 1998). Together with the fact that ferric reductase stromal cell-derived receptor 2 

(Vargas et al., 2003) and DMT1 are also present in the choroid plexus (Gunshin et al., 1997), 

NTBI uptake may be an alternative mechanism for iron transport across the blood-CSF barrier 

(Moos, 2002; Ke and Qian, 2007).  

2.1.2 Circulation and storage of iron inside the brain 

2.1.2.1 Iron circulation  

After its transport across the BBB or the blood-CSF barrier, iron may bind quickly to 

the Tf secreted by the oligodendrocytes (Espinosa de los Monteros et al., 1990; Bradbury, 

1997) and the choroid plexus (Dickson et al., 1985; Aldred et al., 1987; Bloch et al., 1987), 

two main Tf producing sites of the brain. However, brain Tf concentrations are about 10% of 

serum Tf concentrations, and measurements of interstitial iron concentrations imply that Tf 

may be highly saturated by iron. Thus, significant amount of NTBI may exist (Moos and 

Morgan, 1998), which is different from the serum where NTBI is rarely found due to the 

excess of Tf. NTBI in the brain includes iron complexed to smaller organic molecules like 

citrate, ascorbic acid, ATP or to proteins such as albumin, lactoferrin, soluble 

melanotransferrin and ferritin. Brain cells can acquire iron via pathways involving Tf/TfR 

(Dickinson and Connor, 1998), lactoferrin/lactoferrin receptor (Faucheux et al., 1995) and 

soluble melanotransferrin/glycosylphosphatidylinositol-anchored melanotransferrin (Qian and 

Wang, 1998), ferritin/ferritin receptor (Hulet et al., 1999; Hulet et al., 2000). Other low 

molecular-weight complexes of iron might enter the cells through channels (such as VGCC 

(Gaasch et al., 2007b)), via DMT1 or TCT (Attieh et al., 1999). A hypothetical scheme of 

brain iron homeostasis is shown in Figure 2-2. 

2.1.2.2 Iron storage 

One-third to three-fourths of the total iron of the brain is stored within glial cells 

(oligodendrocytes, astrocytes and microglia) (Morris et al., 1992). Molecularly, the main iron 

storage protein is ferritin which consists of an iron core and a shell of 24 subunits of two 

types, heavy (H) and light (L). The H and L subunits play complementary roles in iron 



INTRODUCTION 

37 

storage: the H subunit has a specific ferroxidase activity allowing rapid iron uptake while the 

L subunit is involved in the initiation and the stabilization of the ferritin-iron core. Ferritin is 

able to bind up to 4500 iron ions (Harrison and Arosio, 1996), indicating its important 

capacity in iron detoxification. Moreover, iron might be stored within the labile iron pool or 

within organelles. For example, iron can be sequestered by mitochondria in astrocytes 

(Schipper et al., 1999). Indeed, mitochondria are well-known sites for heme and iron-sulphur 

cluster synthesis, and ferritin is also expressed in these organelles (Levi et al., 2001).  

TBI

NTBI

choroid plexus

FPN

 

Figure 2-2 A hypothetical scheme of iron transport within the brain 

Both TBI and NTBI exist in the brain. Oligodendrocytes and the choroid plexus are two main Tf producing sites 

of the brain. TBI occurs in neurons and glial cells by TfR-mediated endocytosis (blue arrows). NTBI, including 

iron complexed to proteins or to smaller organic molecules, is taken up via mechanisms involving lactoferrin 

(Lf)/lactoferrin receptor (LfR) and soluble melanotransferrin (sMTf)/glycosylphosphatidylinositol-anchored 

melanotransferrin (GPI-MTf) pathways (black arrows), DMT1 or TCT (purple arrows). Ferric reductases stromal 

cell-derived receptor 2 (SDR2) and duodenal cytochrome b (Dcytb) may facilitate DMT1-mediated NTBI uptake. 

Ferroportin (FPN), together with ceruloplasmin (CP) or hephaestin (Hp), can participate in the export of iron. 

Adapted from (Ke and Qian, 2007). 

2.1.3 Iron transport out of the brain  

As there is a constant influx of iron into the brain, there must be some export systems 

for iron to leave the brain and to maintain the brain iron homeostasis. TBI may exit the brain 

via the venous system and return to the systemic circulation through the arachnoid granulation 

(Bradbury, 1997; Rouault, 2001).The CSF and endothelial cells of the BBB have the potential 
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role to export iron, although this is poorly documented (Ke and Qian, 2007; Moos et al., 

2007). 

2.2 Neuronal iron homeostasis 

2.2.1 Neuronal iron uptake 

The neuronal expression of TfR (Dickinson and Connor, 1998) indicates that neurons 

can acquire iron via the TBI pathway. The neuronal expression of DMT1 (Gunshin et al., 

1997) suggests that the iron-Tf complex undergoes dissociation in the endosomes and Fe3+ is 

then reduced to Fe2+ by a ferric reductase present within endosomes or at its membrane before 

being released into cytosol via the endosomal DMT1. The ferric reductase stromal cell-

derived receptor 2 has for instance been identified in the choroid plexus, ependymal cells 

(Vargas et al., 2003) and in neurons of the substantia nigra (Ponting, 2001).  

Beside the mechanism of TBI, neurons seem to take up iron via a NTBI uptake 

mechanism. This pathway may involve the following actors: DMT1, TCT, 

lactoferrin/lactoferrin receptor, ferritin/ferritin receptor (see Figure 2-2 and Figure 4-1). In 

addition, VGCC seem to participate in this NTBI uptake into neuronal cells (Gaasch et al., 

2007b) (see Section 4.1). The quantitative importance of the two uptake pathways (TBI and 

NTBI) under physiological conditions remains unknown.   

2.2.2 Neuronal iron storage 

Neurons express ferritin (Hansen et al., 1999). Although the expression level is rather 

limited (Moos and Morgan, 2004), ferritin is mainly found in the axons (Zhang et al., 2005) 

and would be involved in the transport of iron from the neuronal cell body to the synapses 

(Rouault and Cooperman, 2006). Iron can also be stored in organelles such as lysosomes and 

mitochondria. By using light and electron microscopic histochemistry, iron deposits are 

mainly observed in lysosomes and occasionally in the cytosol, mitochondria, nucleus and 

axon, while large motor neurons are intensely stained for iron throughout the cytoplasm 

(Meguro et al., 2008). Mitochondria could play a role in transporting iron from the cell body 

to the axon terminal (Meguro et al., 2008). 

2.2.3 Neuronal iron export 

The ubiquitous expression of ferroportin in the brain (Burdo et al., 2001; Jiang et al., 

2002; Wu et al., 2004a; Moos and Rosengren Nielsen, 2006) suggests that the ferroportin-
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dependent export of iron is an important mechanism. Ferroportin is present in the soma, axons 

and dendrites of neurons, thus it probably plays an important role in regulating the axonal 

transport and the neuronal export of iron (Moos and Rosengren Nielsen, 2006). This latter 

aspect has been shown in SH-SY5Y neuroblastoma cells and hippocampal neurons where 

ferroportin participates in the efflux of iron (Aguirre et al., 2005). Ferroportin exports Fe2+, 

which requires the presence of auxiliary ferroxidases like ceruloplasmin or hephaestin for 

oxidizing the toxic ferrous iron to ferric iron in the brain interstitial fluid. Indeed, 

ceruloplasmin is specifically expressed by astrocytes (Klomp et al., 1996; Patel and David, 

1997), and the glycosylphosphatidylinositol-anchored form of ceruloplasmin physically 

interacts with ferroportin to export iron (Jeong and David, 2003). Ceruloplasmin gene-

deficient mice have an increased iron deposition in the CNS (Patel et al., 2002). Hephaestin is 

expressed in different brain regions including cerebral cortex, hippocampus, striatum and 

substantia nigra (Qian et al., 2007). A recent study shows that ferroportin and hephaestin are 

co-localized in neurons and non-neuronal cells of the substantia nigra (Wang et al., 2007). 

The increased iron levels in this brain structure are correlated with a decreased expression 

level of the two proteins (Wang et al., 2007). Thus, it is possible that ferroportin, together 

with ceruloplasmin or hephaestin, is involved in the neuronal iron export. Ferroportin is also 

present in synaptic vesicles, suggesting that this metal could be released during exocytosis 

(Wu et al., 2004a), however, to our knowledge, the synaptic release of iron has never been 

documented. 

2.3 Brain iron toxicity 

Iron is indispensable for a proper development and function of the brain. This metal is 

indeed necessary for a wide range of biological processes including embryonic neuronal 

development (iron is a cofactor for ribonucleotide reductase), myelin formation, 

neurotransmitter synthesis and metabolism, and oxidative phosphorylation/ATP synthesis 

(iron is a key component of cytochromes a, b, and c, cytochrome oxidase and of the iron-

sulphur complexes of the oxidative chain) (Gaasch et al., 2007a). The oxidation-reduction 

reactions of iron make it a significant cofactor; while free iron is highly toxic because of its 

ability to generate free radicals. 

Iron carries out its toxicity via the Fenton Reaction: 

  OHOHFeOHFe 3
22

2  (1) 
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Reduction of Fe3+ by cellular reducing agents (such as ascorbate, O2
•-…) regenerates 

the Fenton-active form of iron (Fe2+) which re-enters the oxidation-reduction cycle: 

2
2

2
3 OFeOFe    (2) 

When putting together the two reactions above, the net reaction acquired is called 

Haber-Weiss Reaction: 

  


OHOHOOOH 2
Fe/Fe

222

32

 (3) 

In this cycle (Haber-Weiss reaction), iron acts as a catalyst in the continuous 

conversion of reactive oxygen intermediates, hydrogen peroxide (H2O2) and superoxide (O2
•-) 

– both by-products of aerobic metabolism – to highly reactive free radical species such as 

hydroxyl radical (OH•) (Stohs and Bagchi, 1995; Gaasch et al., 2007a). 

As mentioned above, reactive oxygen species (ROS), including H2O2, O2
•-, OH•, etc., 

are produced under physiological conditions. They participate in the defense against infection 

and are coordinators of the inflammatory response (Halliwell, 2006). But excessive 

production of free radicals can induce severe oxidative cellular damages including lipid 

peroxidation, protein oxidation, and DNA/RNA oxidation. 

The brain is particularly vulnerable to oxidative stress because of its specific 

characteristics (Thompson et al., 2001; Molina-Holgado et al., 2007): 

- High oxygen consumption due to its high metabolic activities (20% of the basal 

body oxygen consumption);  

- Membranes containing a high proportion of polyunsaturated fatty acids;  

- High levels of Fenton-active metals such as iron and copper and the ability to 

accumulate these metals;  

- High levels of pro-oxidant agents such as ascorbate, but low levels of protective 

antioxidant agents such as glutathione and catalase. 

Iron progressively accumulates in the brain during life-span, and iron-induced 

oxidative stress can cause neurodegeneration (Thompson et al., 2001; Zecca et al., 2004). 

Iron-related neurodegenerative disorders are usually characterized by iron accumulation in 

specific brain regions or by defects in iron metabolism and/or homeostasis, although it 

remains unclear whether excessive iron in the brain is an initial event that causes neuronal 
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death or is a consequence of the disease process (Qian and Shen, 2001). Some iron-related 

neurological diseases are summarized in Table 2-1. 

 

Table 2-1 Some neurological diseases and their associated alterations in iron status 

Neurological disease  Involvement of iron 

Parkinson’s disease  Iron accumulation in substantia nigra, striatum, lateral globus pallidus and in 

neuromelanin-containing cells  

Decreased level of ferritin in substantia nigra, caudate, putamen 

Decreased level of TfR in substantia nigra 

Increased level DMT1 in substantia nigra 

Alzheimer’s disease  

 

Iron accumulation in brain regions associated with neurodegeneration 

Increased iron level in amyloid plaques 

Decreased level of ferritin in areas that accumulate iron 

Decreased level of TfR in hippocampus  

Changes in IRP distribution and activity 

Huntington’s disease  Increased iron in striatum, occurs presymptomatically 

Freidreich’s ataxia Increased mitochondrial iron in striatum and cerebellum 

Mutations in frataxin gene 

Neurodegeneration with 

brain iron accumulation  

Iron accumulation in globus pallidus and substantia nigra 

Mutations in pantothenate kinase 2 

Neuroferritinopathy Iron and ferritin accumulation in the basal ganglia 

Abnormal aggregates of ferritin and iron in globus pallidus and substantia nigra 

Low serum ferritin levels 

Aceruloplasminemia  Increased basal ganglia and CSF iron 

Hereditary 

hemochromatosis  

Increased iron in choroid plexus and pituitary, basal ganglia 

Mutations in HFE (hemochromatosis) gene 

Multiple sclerosis  High levels of iron and ferritin in oligodendrocytes  

Increase ferritin in CSF  

Loss of ferritin receptors in periplaque white matter 

Adapted from (Burdo and Connor, 2003; Sadrzadeh and Saffari, 2004; Zecca et al., 2004).
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3 Zinc homeostasis in the brain 

Zinc is the second most abundant transition element in the human body, essential for 

the development and the function of the brain, skin, reproductive and digestive systems. 

Compared with the other organs, the brain has the highest zinc content. Approximately 90% 

of the total brain zinc binds to proteins, functioning as regulatory, structural or enzymatic 

components (Frederickson, 1989), and much of the remaining 10% is found in presynaptic 

vesicles, either loosely bound or free (Takeda, 2001). Total intracellular zinc concentration in 

the brain may be as high as 150 µM, although zinc concentration in the extracellular fluid is 

estimated to be ~0.15 µM (Takeda, 2000). The cytosolic concentration of free Zn2+ ([Zn2+]i) in 

cultured neurons ranges from nM to pM (Frederickson and Bush, 2001; Eide, 2006), whereas 

the zinc content in the synaptic vesicles is in the mM range (Frederickson and Bush, 2001). 

3.1 Brain zinc homeostasis 

Similarly to iron, zinc must cross the BBB or the blood-CSF fluid barrier. Nearly all 

serum zinc (~15 µM) is bound to protein (~98%) or low molecular weight ligands (~1-2%) , 

and a very small proportion (~1%) remains free (Takeda, 2001). Serum zinc bound to albumin 

is not essential for zinc transport into the brain, whereas zinc bound to amino acids (histidine 

and cysteine) is. Indeed, L-histidine seems to be involved in zinc transport into the brain 

across the brain barrier system. However, it is not sure how the histidine-bound zinc crosses 

the plasma membrane of brain capillary endothelial cells and choroid plexus epithelial cells. 

Some transport systems like DMT1 and the Zip family transporters may also be involved in 

this process (Takeda, 2000, 2001). The mechanism of zinc secretion from brain capillary 

endothelial cells to brain extracellular fluid or from choroidal epithelial cells to the CSF 

remains unknown (Takeda, 2000, 2001). 

3.2 Neuronal zinc homeostasis 

3.2.1 Neuronal zinc uptake  

Although the entry routes participating in zinc uptake from extracellular fluids into 

neurons are not fully characterized, two types of pathways mainly account for Zn2+ entry: 

carriers and channels. The first includes the Zip family transporters (Colvin et al., 2003; 

Liuzzi and Cousins, 2004; Cousins et al., 2006), the main membrane zinc uptake transporters 

(Law et al., 2003) and DMT1 (Colvin et al., 2000a). The second zinc uptake pathway involves 
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voltage-gated L-type Ca2+ channels (Weiss et al., 1993; Freund and Reddig, 1994) and two 

types of glutamatergic receptors: the N-methyl-D-aspartate (NMDA) channels (Koh and Choi, 

1994) and the Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic-acid 

(AMPA) /kainate (Ca-A/K) channels (Yin and Weiss, 1995; Yin et al., 1998; Jia et al., 2002). 

Moreover, in cortical neurons, a Zn2+/H+ antiporter seems to participate in the transport of 

Zn2+ across the plasma membrane (Colvin et al., 2000b; Colvin, 2002). 

Besides these systems, the NCX can also transport zinc bidirectionally across the 

plasma membrane, mediating zinc influx and efflux (Sensi et al., 1997; Cheng and Reynolds, 

1998). In addition, zinc can enter via a Na+/Zn2+ exchanger distinct from the NCX (Ohana et 

al., 2004).  

Compared with the less understood transporters (Colvin et al., 2003), the uptake of 

zinc via ion channels has been more studied (see Chapter 4 for a description of the ion 

channels involved in the transport of trace metal ions across the membranes).   

3.2.2 Neuronal zinc storage 

Once neurons uptake zinc, it can be transported and stored into synaptic vesicles by 

ZnT-3, another member of the family of zinc transporter proteins, or incorporated into zinc-

binding proteins or sequestered by mitochondria 

3.2.2.1 Metallothioneins  

Metallothioneins (MT) form a family of ubiquitous low molecular weight (~7 kDa) 

metal-binding proteins with two cysteine-rich domains. They largely control zinc buffering 

within the cytoplasm (Hidalgo et al., 2001). MT display a high zinc binding affinity (Kd = 3.2 

× 1013 M-1 at pH 7.4) (Jacob et al., 1998). They have also high affinities for copper, cadmium 

and mercury. Three of four MT isoforms are found in the CNS: MT-1 and MT-2 are widely 

expressed in astrocytes and spinal glia; MT-3 is mainly found in neurons (Hidalgo et al., 

2001).  

The zinc binding to MT is reversible, as the cysteine residues of MT are sensitive to 

cellular oxidants, especially disulphides such as glutathione disulfide (GSSG) or 2, 2’-

dithiodipyridine (DTDP). Oxidants promote zinc release from MT, while a reduced 

intracellular environment facilitates zinc binding to MT (Maret and Vallee, 1998). For 

example, the glutathione redox state (i.e. the ratio between the reduced form [GSH] and 

oxidized form [GSSG]) regulates the zinc-MT interaction, as GSH binding to MT induces 
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GSSG-mediated zinc release (Maret, 1994). In addition, nitric oxide (NO) can also release 

zinc from MT (preferentially with MT-3), via s-nitrosylation (Chen et al., 2002; Spahl et al., 

2003). This process is involved in the crosstalk between NO signaling and zinc signaling 

(Bossy-Wetzel et al., 2004). Hence, MT can mobilize zinc in response to oxidative or 

nitrosative stress, modulating zinc availability for other zinc-binding proteins. 

3.2.2.2 Mitochondrial sequestration  

Not only do mitochondria buffer Ca2+, but they are important organelles involved in 

zinc buffering, exchange and trafficking. Mitochondria contain endogenous zinc (Sensi et al., 

2003). On strong cytosolic zinc loading, zinc is taken up into these organelles, from which it 

can be subsequently released in a Ca2+-dependent fashion (Sensi et al., 2000; Sensi et al., 

2002). This cation interferes with the function of mitochondria: a rapid increase in [Zn2+]i 

causes a loss of the neuronal mitochondrial membrane potential (Δψm), generates ROS (Sensi 

et al., 1999), induces permeability transition pore (PTP) opening as well as the release of 

cytochrome c and apoptosis-inducing factors (Jiang et al., 2001).  

Indeed, cytosolic zinc pool (zinc bound to cytosolic proteins, like MT) and 

mitochondrial zinc pool can be pharmacologically mobilized independently of each other, 

with zinc released from one resulting in apparent net zinc uptake in the other (Sensi et al., 

2003). A strong mobilization of the endogenous cytosolic protein-bound zinc appears to 

induce a partial loss of Δψm, suggesting a possible functional importance of  this zinc 

movement between cytosolic and mitochondrial pools (Sensi et al., 2003). 

Up to date, little is known about the pathways mediating zinc transport across 

mitochondrial membrane. Zinc may be uptaken by the mitochondrial calcium uniporter (Saris 

and Niva, 1994), via a non-identified ruthenium insensitive pathway (Malaiyandi et al., 2005) 

or it may also cross the mitochondrial membrane bound to MT (Ye et al., 2001). 

3.2.3 Neuronal zinc export 

Members of the ZnT family are responsible for the efflux of zinc from neurons as well 

as the vesicular zinc uptake (Liuzzi and Cousins, 2004; Cousins et al., 2006). Both ZnT-1 and 

ZnT-4 transport zinc out of the cells in order to avoid an increase in [Zn2+]i (Cousins and 

McMahon, 2000). ZnT-1 mediates zinc efflux in astrocytes (Nolte et al., 2004) and PC12 cells 

(Kim et al., 2000). ZnT-3 serves to pump zinc into the synaptic vesicles, and ZnT-3 gene 



Zinc homeostasis in the brain 

46 

knock-out mice have for instance no histochemically reactive zinc in their vesicles (Palmiter 

et al., 1996). Figure 3-1 depicts zinc homeostasis in neuron and at the synapse. 

 

Neuron Presynapitic cell Postsynaptic cell

Synaptic vesicle

Mitochondria

Channel/Carrier

Free Zn2+

Nucleus

Zn2+ movement

Zn2+ bound to MT

Transport protein

Membrane receptor

Channel protein
 

Figure 3-1 Neuronal zinc homeostasis 

Neuronal zinc uptake is mediated by channels and carriers at the plasma membrane. [Zn2+]i can be maintained at 

very low level since a large portion of zinc is incorporated into zinc-binding proteins such as MT, sequestered by 

mitochondria, or transported into synaptic vesicles. Some carriers can also mediate zinc efflux. At the synapse, 

presynaptic neurons release zinc during exocytosis, which can be reuptaken by presynaptic neurons, glia or 

postsynaptic neurons via carriers and channels. Excitotoxic stimulation induces the release of a large quantity of 

zinc into the synaptic cleft as well as the release of zinc from intracellular binding proteins. A high [Zn2+]i  causes 

toxicity to neurons. Adapted from (Colvin et al., 2003). 

 

3.3 Brain zinc toxicity 

Zinc seems to be less toxic when compared to other transition metals which have 

several oxidation states, but in fact it exerts lethal actions on neuronal cells. Adding 100-300 

µM zinc into the culture medium is neurotoxic (Choi et al., 1988; Weiss et al., 1993; Sensi et 

al., 1999), and excessive increase in intracellular zinc have been found in degenerating 

neurons (Koh et al., 1996), reaching several hundred nanomolar (Canzoniero et al., 1999; 

Sensi et al., 1999).  
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Zinc can induce an oxidative stress and is thus involved in both apoptotic and necrotic 

processes (Capasso et al., 2005). Zinc neurotoxicity can be mediated by mitochondrial and 

extramitochondrial pathways (Lynes et al., 2007). In the former set of mechanisms, as 

mentioned before, a rapid and massive increase in [Zn2+]i causes mitochondrial dysfunction 

displaying a loss of Δψm and an increased generation of ROS (Sensi et al., 1999). 

Submicromolar [Zn2+]i in cortical neurons opens mitochondrial PTP and induces the release of  

cytochrome c as well as apoptosis-inducing factors (Jiang et al., 2001). In the latter set of 

mechanisms, zinc overload stimulates cytosolic ROS generation via NADPH oxidase 

activated by PKC (Noh and Koh, 2000) or nitrosative stress by activating neuronal nitric 

oxide synthase (Kim and Koh, 2002).  

Not only does zinc trigger oxidative and nitrosative stress, but the stress can further 

increase [Zn2+]i, thus placing neurons in a lethal cycle, since ROS, NO or peroxynitrite 

(ONOO-) produced by neuronal nitric oxide synthase in the presence of superoxide can detach 

zinc from MT (Maret and Vallee, 1998; Chen et al., 2002; Spahl et al., 2003).  

Zinc is found to play an important role in the progression of several neurodegenerative 

diseases like AD, amyotrophic lateral sclerosis, cerebral ischemia, epilepsy and PD 

(Cuajungco and Lees, 1997; Frederickson et al., 2005; Mocchegiani et al., 2005). For example, 

in vitro experiments indicate that free zinc promotes the aggregation of the β-amyloid protein, 

a pathological hallmark of AD (Mantyh et al., 1993; Bush et al., 1994). 
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4 Cation channels are involved in the transport of metals  

A wide diversity of channels can transport alkali and alkaline earth metals. But some 

of them seem to be involved in the transport of other metal ions like iron or zinc. This is the 

topic of the following chapter. 

4.1 Roles of voltage-gated calcium channels in the transport of metals 

4.1.1 Iron uptake via voltage-gated calcium channels  

L-type VGCC can form a major pathway for ferrous iron (Fe2+) entry into 

cardiomyocytes during iron-overload cardiomyopathy (Oudit et al., 2003). Fe2+ uptake 

through these channels could also be crucial in other excitable cells such as pancreatic beta 

cells, anterior pituitary cells and neurons (Oudit et al., 2006). Indeed, these channels play an 

important role in the transport of iron into neuronal cells (PC12 cells and murine 

neuroblastoma cells) and this role may be exacerbated under pathophysiologic conditions of 

iron overload (Gaasch et al., 2007b). By using radioactive isotopes, uptake of both Ca2+ and 

Fe2+ are observed in nerve growth factor (NGF)-differentiated PC12 cells stimulated with 

KCl. Similarly to Ca2+ uptake, iron uptake into neuronal cells is inhibited in a dose-dependent 

manner by the specific L-type VGCC blocker nimodipine and enhanced by the L-type VGCC 

activator FPL 64176. Uptake of Ca2+ is also inhibited in the presence of Fe2+ suggesting that 

these two cations compete for entry into neurons via L-type VGCC (Gaasch et al., 2007b). 

Another L-type VGCC blocker nitrendipine inhibits the uptake of iron in NGF-treated PC12 

cells (Mwanjewe et al., 2001). 

It is not surprising that in addition to their cardioprotective actions, L-type VGCC 

blockers also possess neuroprotective roles. For example nimodipine and S-312-d attenuate 

apoptosis in models evaluating cell death in AD (Yagami et al., 2004). Nimodipine and 

another dihydropyridine derivative PCA50938 exert neuroprotective actions in cerebral 

ischemia (Zapater et al., 1997). The L-type VGCC blockers also show antioxidant properties 

(Goncalves et al., 1991; Takei et al., 1994), for example they inhibit mitochondrial swelling 

and lipid peroxidation induced by FeSO4 and ascorbic acid in the rat brain (Takei et al., 

1994). Moreover, flunarizine, an antagonist of L-, T- and N-type VGCC, attenuates the 

neurotoxic effects of iron (Bostanci et al., 2006). The neuroprotective roles of such calcium 

channel antagonists can be explained, at least partially, by the fact that L-type VGCC form 

another uptake pathway of NTBI in the case of iron overload (Figure 4-1). 
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Figure 4-1 Iron entry into neuronal cells in homeostatic and pathophysiologic conditions 

In homeostatic conditions (A), the primary routes for iron entry into neuronal cells are receptor-mediated 

endocytosis of TBI and lactoferrin-bound iron. Ferritin may be also involved in iron delivery. DMT-1 can 

actively transport iron into neuronal cells. In pathophysiological conditions (B) such as PD, AD and 

subarachnoid hemorrhage, the homeostatic iron uptake mechanisms are likely saturated and VGCC may play an 

important role in the transport of iron into neuronal cells. Adapted from (Gaasch et al., 2007b). 

4.1.2 Zinc uptake via voltage-gated calcium channels 

In cortical neurons AMPA-mediated depolarization facilitates Zn2+-induced 

neurotoxicity (Weiss et al., 1993). L-type calcium channels are involved in this process 

(Freund and Reddig, 1994). By using the ratiometric fluorescent dye mag-fura-5, an entry of 

Zn2+ is visualized in neurons exposed to extracellular Zn2+ upon depolarization with high K+ 

(Sensi et al., 1997). This increase in [Zn2+]i is attenuated by Gd3+, verapamil, ω-conotoxin 

GVIA, or nimodipine, indicating that Zn2+ enters through VGCC (Sensi et al., 1997). 

Compared to AMPA/Kainate channels, VGCC are less permeable to zinc (Sensi et al., 1999). 

4.2 Zinc uptake via NMDA receptor-gated channels 

Zn2+ is an effective blocker of NMDA receptors. In a concentration range of 10-100 

µM, Zn2+ attenuates the activation of NMDA receptors and decreases the toxicity caused by 

NMDA-receptor activation and intracellular Ca2+ accumulation (Peters et al., 1987; 

Westbrook and Mayer, 1987; Legendre and Westbrook, 1990; Rassendren et al., 1990; Choi 

and Lipton, 1999). However, NMDA receptor contribute to Zn2+ toxicity by providing a route 

of Zn2+ influx into neurons (Koh and Choi, 1994; Cheng and Reynolds, 1998). 

4.3 Zinc uptake via AMPA/Kainate channels  

Most AMPA and kainate receptors are Ca2+ impermeable channels, but some neurons 

such as cortical and hippocampal neurons possess Ca2+-permeable AMPA/kainate channels, 
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i.e. Ca-A/K-receptor channels (Yin et al., 1998; Jia et al., 2002). Ca-A/K-receptor channels 

produce rapid Ca2+ influx, resulting in mitochondrial Ca2+ overload and ROS generation 

(Carriedo et al., 1998). They are also highly permeable to Zn2+ (Yin and Weiss, 1995; Yin et 

al., 1998), displaying larger permeability than VGCC and NMDA-receptor channels (Jia et 

al., 2002). Thus, preferential zinc influx through Ca-A/K-receptor channels play an important 

role in triggering neuronal toxicity (Sensi et al., 1999).  

4.4 Involvement of TRP channels in iron and zinc transport 

4.4.1 TRPC6   

Treatment of PC12 cells with NGF increases iron uptake (both NTBI and TBI, but 

predominately NTBI) (Mwanjewe et al., 2001). Several pathways other than DMT1 have 

been proposed to explain  this NTBI uptake, like VGCC, ROC and/or SOC (Mwanjewe et al., 

2001). Interestingly, the expression of TRPC6 mRNA (Figure 4-2A) and protein increases 

significantly upon the NGF treatment of PC12 cells, whereas the other TRPC isoforms remain 

unaffected (Mwanjewe and Grover, 2004). These results are in line with a previous study on 

TRPC6 in PC12 cells (Tesfai et al., 2001). In NGF-treated PC12 cells, DAG stimulates the 

NTBI entry (Figure 4-2B) (Mwanjewe and Grover, 2004). In addition, HEK-293 cells over-

expressing TRPC6 have higher basal and DAG-dependent NTBI uptakes when compared to 

non transfected cells (Mwanjewe and Grover, 2004). 

BA

 

Figure 4-2 Role of TRPC6 in NTBI uptake in neuronal phenotype PC12 cells 

Panel A shows the RT-PCR products of TRPC1–6 and control G3PDH in NGF-treated and control PC12 cells. 

An increase in the expression of TRPC6 mRNA is found after the NGF treatment. Panel B: Calcein fluorescence 

quenching experiments show that DAG triggers NTBI uptake in NGF-treated PC12 cells. Adapted from 

(Mwanjewe and Grover, 2004). 
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4.4.2 TRPML1 

Release of iron from endosomes after TBI uptake (Hentze et al., 2004) or from 

lysosomes after lysosomal degradation of iron complexes (Kidane et al., 2006) are the main 

source of intracellular iron. In the former process, DMT1 was considered as the only 

endosomal Fe2+ transporter. However, a recent finding shows that TRPML1, primarily found 

in the late endosome and lysosome (Pryor et al., 2006; Venkatachalam et al., 2006; Nilius et 

al., 2007), functions as endolysosomal iron release channels (Dong et al., 2008). Indeed, 

TRPML1 and TRPML2 (but not TRPML3) are Fe2+ permeable. Moreover TRPML1 is also 

permeable to most other divalent trace metals with a permeability sequence of Ba2+ > Mn2+ > 

Fe2+ ≈ Ca2+ ≈ Mg2+ > Ni2+ ≈ Co2+ ≈ Cd2+ > Zn2+ >> Cu2+ (pH 4.6), but not to Fe3+ (Dong et 

al., 2008). Mucolipidosis type IV disease (ML4) is caused by mutations in the human trpml1 

gene (Bassi et al., 2000; Sun et al., 2000). These mutations impair the channel permeability to 

Fe2+, which is in line with the fact that ML4 cells (TRPML1-/-) have a lower cytosolic Fe2+ 

content associated with an intra-lysosomal iron overload (Dong et al., 2008). 

4.4.3 TRPM7 

TRPM7 is a Ca2+- and Mg2+-permeable cation channel. The activity of TRPM7 is 

regulated by intracellular Mg2+ and Mg2+-ATP. The TRPM7-mediated currents have thus 

been described as magnesium-nucleotide-regulated metal ion currents (Nadler et al., 2001). 

Interestingly, TRPM7 can conduct a variety of divalent cations with a permeability sequence 

of Zn2+ ≈ Ni2+ >> Ba2+ > Co2+ > Mg2+ ≥ Mn2+ ≥ Sr2+ ≥ Cd2+ ≥ Ca2+, even in the presence of 

physiological levels of Ca2+ and Mg2+ (Monteilh-Zoller et al., 2003). TRPM7 is a likely 

candidate participating in anoxic neuronal death. In cortical neurons, TRPM7 and TRPM2 

seem to form heteromeric channels modulated by intracellular reactive oxygen/nitrogen 

species (Aarts et al., 2003). The ROS sensitivity and the permeability to trace metals may 

explain the neurotoxic properties of TRPM7. 

4.4.4 TRPA1 

TRPA1 is expressed in nociceptive neurons where it functions as a receptor for 

noxious stimuli (Patapoutian et al., 2009) and in diverse sensory processes including cold 

nociception, hearing, and inflammatory pain (Story et al., 2003; Corey et al., 2004; Bautista et 

al., 2006). Recent studies show that zinc ionophores activate TRPA1 by increasing [Zn2+]i 

(Andersson et al., 2009). Moreover zinc can pass through and activate the channels (Hu et al., 
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2009). Their constitutive activity allows an influx of Zn2+ which, in turn, enhances the 

channel activity via its interaction with intracellular cysteine and histidine residues of TRPA1 

(Hu et al., 2009). TRPA1 is not only highly sensitive to intracellular Zn2+, as nanomolar 

concentrations activate the channels, but also sensitive to Cu2+ and Cd2+ but not to Fe2+ (Corey 

et al., 2004; Hu et al., 2009).  

The TRP channels that are permeable to trace metal ions are summarized in Table 4-1. 

 

Table 4-1 TRP channels permeable to trace metal ions 

TRP channels Cell types Permeation  Techniques  References  

TRPM7 HEK-TRPM7 cells Zn2+ ≈ Ni2+ >> 

Ba2+ > Co2+ > 

Mg2+ ≥ Mn2+ ≥ 

Sr2+ ≥ Cd2+ ≥ 

Ca2+ 

Patch-clamp 

Fura-2 quenching 

(Monteilh-Zoller et 

al., 2003) 

TRPC6 PC12 cells 

HEK-TRPC6 cells 

Fe2+, Fe3+ 55Fe uptake 

Calcein quenching 

(Mwanjewe and 

Grover, 2004) 

TRPML1 HEK-TRPML1 cells Ba2+ > Mn2+ > 

Fe2+ ≈ Ca2+ ≈ 

Mg2+ > Ni2+ ≈ 

Co2+ ≈ Cd2+ > 

Zn2+ >> Cu2+ 

(pH 4.6) 

Patch-clamp 

Fura-2 quenching 

55Fe uptake 

(Dong et al., 2008) 

TRPA1 Mouse dorsal root 

ganglia neurons 

HEK-TRPA1 

Zn2+, Cu2+, Cd2+ Zinc imaging with 

FluoZin-3  

(Hu et al., 2009) 
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5 Research objective and proposal 

The main research objective of my thesis was to determine (1) whether TRPC6 

channels were functional in cortical neurons and (2) whether they could permit the entry of 

trace metal ions. This is of particular interest since an intraneuronal accumulation of metals 

such as iron and zinc is often noted in the brains of patients with neurodegenerative diseases. 

A complete understanding of the pathways involved in the uptake of metal ions by neuronal 

cells under pathophysiological conditions is still lacking.  

Chapter 7 will present experimental data showing the existence of functional channels 

exhibiting TRPC6-like properties in cortical neurons (article 1). Chapter 9 addresses the 

second question of my thesis work: it is reported that TRPC6, endogenously present in 

cortical neurons or heterologously expressed in HEK-293 cells, could form metal-conducting 

channels. During the time course of my thesis we used flufenamic acid and hyperforin, two 

pharmacological tools currently employed to study native or heterogeneously expressed 

TRPC6 channels. We noticed that, besides their action of TRPC6 channels, flufenamic acid 

and hyperforin exerted also TRPC6-independent cellular responses that were not considered 

by the investigators working with these agents. We thus thought to further characterize the 

cellular responses induced by flufenamic acid and hyperforin. These results are summarized 

in Chapters 10 (article 2) and 11 (article 3). The data collected clearly show that these two 

TRPC6 modulators influence the cellular homeostasis of Zn2+ and Ca2+ by acting on 

mitochondria. 
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6 Materials 

The materials listed below are mainly those used in Section 8.3 and in Chapter 9. For 

those used in Sections 8.2, 10.2 and 11.2, please refer to the Materials and Methods section of 

the articles. 

6.1 Cell cultures 

6.1.1 Cortical neurons 

The cortical neurons were dissociated from cerebral cortices isolated from embryonic 

(E13) C57BL6/J mice (vaginal plug was designated E0) according to procedures approved by 

the Ethical Committee of Rhône-Alpes Region (France). The cells have been prepared and 

kept up to 6 days in culture in a Neurobasal medium supplemented with 2% B27, 1% 

penicillin/streptomycin, and 0.25% glutamine (Bouron et al., 2006). 

6.1.2 HEK and HEK-TRPC6 cells 

HEK-293 cells were purchased from ATCC, LGC Promochem (France). They were 

grown in a DMEM medium supplemented with 10% foetal bovine serum and 1% 

penicillin/streptomycin under 95% O2 and 5% CO2 at 37°C. HEK-293 cells stably over-

expressing TRPC6 (hereinafter designated HEK-TRPC6 cells) were a gift from Dr Guylain 

Boulay (Boulay et al., 1997). They were cultivated in the same medium as HEK cells, but 

supplemented with 0.8% Geneticin (G418) under 95% O2 and 5% CO2 at 37°C. 

6.2 Antibody 

The rabbit polyclonal anti-TRPC6 antibody (ACC-017) generated against the epitope 

RRNESQDYLLMDELG, corresponding to residues 24–38 of mouse TRPC6 was purchased 

from Alomone Labs (Jerusalem, Israel). The selectivity of this antibody has been shown 

previously (Strubing et al., 2003; Alessandri-Haber et al., 2009).  

6.3 Reagents and solutions 

6.3.1 Reagents 

Calcein/AM was from Molecular Probes (Interchim, France). Ascorbic acid was from 

Fluka (Interchim, France). Zinc acetate was from Prolabo (France). FeSO4 was from Aldrich 
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(France). Unless otherwise indicated, the other reagents (including ferric ammonium citrate, 

FAC) were from Sigma-Aldrich (France). 

6.3.2 Tyrode’s solutions 

Tyrode’s 

solutions 

NaCl 

(mM) 

KCl 

(mM) 

CaCl2 

(mM) 

MgCl2 

(mM) 

HEPES 

(mM) 

FeSO4 

(µM) 

Ascorbic 

acid 

(mM) 

FAC 

(µM) 

Zinc 

acetate 

(µM) 

Glucose 

(mM) 

Normal 136 5 2 1 10 - - - - 10 

Ca2+ free 136 5 - 1 10 - - - - 10 

Fe2+ rich 

Ca2+ free 
136 5 - 1 10 50 or 100 2.2 or 4.4 - - 10 

Fe3+ rich 

Ca2+ free 
136 5 - 1 10 - - 50 - 10 

Zn2+ rich 

Ca2+ free 
136 5 - 1 10 - - - 50 10 

Zn2+ rich 136 5 2 1 10 - - - 50 10 

pH is adjusted to 7.4 with NaOH.  

Deionized and bidistilled water was used for the preparation of the Ca2+-free Tyrode’s solutions.
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7 Methods 

The methods listed below are mainly those used in Section 8.3 and in Chapter 9. For 

those used in Sections 8.2, 10.2 and 11.2, please refer to the Materials and Methods section of 

the articles. 

7.1 Western Blot 

Western blot experiments of TRPC6 were performed according to the protocol 

provided by the supplier of the anti-TRPC6 antibody (Alomone Labs). Proteins were 

extracted from cells in 50-100 µl lysis buffer (HEPES 10 mM, MgCl2 3 mM, KCl 40 mM, 

glycerol 2.5%, Triton-X100 1%, pH 7.5 with KOH ) supplemented with 1% of the protease 

inhibitor cocktail (Sigma). The total protein concentration was measured with the Bio-Rad 

DC Protein Assay. Total protein extract (50 µg) was applied on an acrylamide gel (a 

concentration gel containing 4% acrylamide followed by a separation gel containing 8% 

acrylamide). The migration was run at 40 mA/gel for ~2 hours. The proteins were then 

transferred onto a nitrocellulose membrane (Bio-Rad) by using a semi dry system. The 

transfer was performed at 100 mA/gel for 3 hours. The membrane was blocked with a PBS 

solution containing 5% non-fat milk overnight at 4°C. It was then incubated with the anti-

TRPC6 antibody (1 : 200 in the blocking solution) overnight at 4°C and with the antibody 

goat anti-rabbit IgG (Sigma, 1 : 5000 in the blocking solution) for 1 hour at room temperature. 

Chemiluminescence detection was performed with the ECL kit (Pierce). 

7.2 Cellular fluorescence microscopy 

7.2.1 Iron and zinc imaging with Fura-2 

Cells (grown on 15 mm diameter glass coverslips) were incubated in a Tyrode’s 

solution supplemented with 2.5 µM Fura-2 for 15 minutes at 20-22°C. They were then 

washed twice and kept in a Fura-2-free Tyrode’s solution for 20 minutes at 20-22°C. Cover-

slips were transferred on a perfusion chamber (RC-25F, Warner Instruments; Phymep, Paris, 

France) and placed on the stage of an Axio Observer A1 microscope (Carl Zeiss, Sartrouville, 

France) equipped with a CoolSnap HQ2 camera (Princeton Instruments; Roper Scientific) and 

a Fluar 40× oil immersion objective lens (1.3 NA) (Carl Zeiss). Light was provided by the 

DG-4 wavelength switcher (Princeton Instruments). A dual excitation at 340 and 380 nm was 

used and emission was collected at 515 nm. The software MetaFluor (Universal Imaging) was 
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used to acquire the images at a frequency 0.5 Hz and to analyze off-line the data. Stock 

solutions of SAG, hyperforin and TPEN were prepared in dimethyl sulfoxide (DMSO) and 

diluted at least 1000-fold into the Tyrode’s solution immediately before use.  

7.2.2 Iron imaging with calcein 

Cells (grown on 15 mm diameter glass coverslips) were incubated in a Tyrode’s 

solution supplemented with 0.125 µM calcein for 5 minutes at 20-22°C. They were then 

washed twice and the cover-slips were settled on the microscope as indicated in Section 7.2.1. 

The cells were excitated at 495 nm and the emission was collected at 515 nm. 

7.2.3 Zinc imaging with FluoZin-3 

Cells (grown on 15 mm diameter glass coverslips) were incubated in a Tyrode’s 

solution supplemented with 5 µM FluoZin-3 for 30 minutes at 20-22°C. They were then 

washed twice and kept in a FluoZin-3-free Tyrode’s solution for 30 minutes at 20-22°C. The 

cover-slips were settled on the microscope as indicated in Section 7.2.1. The cells were 

excitated at 495 nm and the emission was collected at 515 nm. 

7.3 Quantification of intracellular zinc and sulphur by ICP-OES and copper 

and iron by atomic absorption spectroscopy 

HEK-293 cells or HEK-TRPC6 cells were harvested by gentle pipetting and washed 

twice with PBS and once with PBS supplemented with 5 mM EDTA to remove metals non-

specifically bound to membranes. In some cases, HEK and HEK-TRPC6 cells were pretreated 

with 50 µM FeSO4 supplemented with ascorbic acid in the presence or absence of 100 µM 

OAG for 1 hour under 95% O2 5% CO2 at 37°C. The total protein concentration of each 

sample was measured by the Bio-Rad DC Protein Assay.  

Pellets were dried by heating and vacuum and mineralized by incubating overnight in 

70% nitric acid at 50°C, before analysis with Inductively Coupled Plasma-Optical Emission 

Spectrometry (ICP-OES) with a Varian, Vista MPX instrument. The zinc and sulphur 

contents were normalized to the amount of protein in each analyzed pellet.  

Intracellular copper and iron were determined by atomic absorption spectroscopy. 

Dried pellets were homogenized by incubating overnight in tetramethylammonium hydroxide 

(Sigma) before analysis with electrothermal atomic absorption spectroscopy using external 

calibration curve and Zeeman background correction (Hitachi model 8270, Tokyo, Japan). 
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The copper and iron contents were normalized to the amount of protein in each analyzed 

pellet. 

Data are presented as mean values +/- SEM, with n being the number of 

measurements. 

7.4 Synchrotron microbeam X-ray fluorescence 

An introduction on synchrotron radiation and X-ray fluorescence as well as a 

presentation of synchrotron microbeam X-ray fluorescence (µ-SXRF) experimental set-up 

and data processing methods is found in the appendix. Below is shown how the samples were 

prepared. 

Cells were grown on a Si3N4 membrane (3 × 3 mm2, thickness 500 nm, Silson Ltd., 

England). For HEK and HEK-TRPC6 cells, the membrane was first coated with poly-L-lysine 

(0.0025% in H2O, 90 minutes at 37°C), while for primary culture of cortical neurons, it was 

first coated with poly-L-lysine (0.0033% in H2O, 30 minutes at 37°C) following by poly-L-

ornithine (0.0033% in H2O, 90 minutes at 37°C). After coating, the membrane was washed 

twice with sterile deionized water. The cell suspension was added to the membrane and 

incubated under 95% O2 5% CO2 at 37°C for 48 hours. In some cases, after 48 hours, HEK 

and HEK-TRPC6 cells were exposed to 50 µM FeSO4 supplemented with ascorbic acid in the 

presence or absence of 100 µM OAG for 1 hour, and cortical neurons were exposed to 10µM 

FeSO4 supplemented with ascorbic acid in the presence or absence of 100 µM OAG or 10µM 

hyperforin for 1 hour or 5 minutes. After the treatments, cells were rinsed with a metal-free 

(no added FeSO4) Neurobasal medium and then with PBS, cryofixed at -160°C by freezing 

into isopentane chilled with liquid nitrogen, freeze dried at -35°C in vacuum, and stored at 

room temperature in a desiccator. The protocol applied preserved the cellular morphology and 

the chemical element distribution integrity (Ortega et al., 1996). 

Data are presented as mean values +/- SEM, with n being the number of cells tested. 
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8 Cortical neurons express channels exhibiting TRPC6-like 

properties  

8.1 Introduction 

The protein TRPC6 is widely expressed in the brain. Together with its close homolog 

TRPC3, it plays an essential role in BDNF mediated growth-cone turning (Li et al., 2005) and 

BDNF-mediated neuronal protection (Jia et al., 2007). In addition, TRPC6 promotes neurite 

outgrowth (Leuner et al., 2007; Tai et al., 2008) and is important for the development of 

dendritic spines and excitatory synapses (Zhou et al., 2008). Whether TRPC6 channels exert 

additional roles in neuronal cells is unknown. 

Unless otherwise indicated, the results described below were obtained on cultured 

cortical cells dissociated from cerebral cortices of embryonic (E13) mice. During 

corticogenesis, cortical neurons appear at E11-12 (Kriegstein and Noctor, 2004). The neurons 

found at E13 are thus the first post-mitotic neurons. They possess a large repertoire of 

functional plasma membrane Ca2+ channels including NMDA receptors (Platel et al., 2005), 

VGCC (Bouron et al., 2006), and SOC (Bouron et al., 2005). These neurons also express all 

TRPC isoforms including TRPC6 (Boisseau et al., 2009). The properties of native DAG-

sensitive channels of cortical neurons were compared to those of TRPC6 channels over-

expressed in HEK-293 cells.  

As already mentioned, a previous work shows the presence of TRPC6 in the cortex at 

E13 (Boisseau et al., 2009). When I initiated this study, no data were yet available on the 

functional properties of these channels in this tissue. During the time course of my PhD 

thesis, a report showed the existence of DAG-sensitive channels of TRPC6 type in cortical 

astrocytes prepared from embryonic mice (Beskina et al., 2007). 

8.2 Article 1: Diacylglycerol analogues activate second messenger-operated 

calcium channels exhibiting TRPC-like properties in cortical neurons
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Abstract

The lipid diacylglycerol (DAG) analogue 1-oleoyl-2-acetyl-sn-

glycerol (OAG) was used to verify the existence of DAG-

sensitive channels in cortical neurons dissociated from E13

mouse embryos. Calcium imaging experiments showed that

OAG increased the cytosolic concentration of Ca2+ ([Ca2+]i)

in nearly 35% of the KCl-responsive cells. These Ca2+ re-

sponses disappeared in a Ca2+-free medium supplemented

with EGTA. Mn2+ quench experiments showed that OAG

activated Ca2+-conducting channels that were also permeant

to Ba2+. The OAG-induced Ca2+ responses were unaffected

by nifedipine or omega-conotoxin GVIA (Sigma-Aldrich,

Saint-Quentin Fallavier, France) but blocked by 1-[b-(3-(4-

Methoxyphenyl)propoxy)-4-methoxyphenethyl]-1H-imidazole

hydrochloride (SKF)-96365 and Gd3+. Replacing Na+

ions with N-methyl-D-glucamine diminished the amplitude of

the OAG-induced Ca2+ responses showing that the Ca2+

entry was mediated via Na+-dependent and Na+-independent

mechanisms. Experiments carried out with the fluorescent

Na+ indicator CoroNa Green showed that OAG elevated

[Na+]i. Like OAG, the DAG lipase inhibitor RHC80267

increased [Ca2+]i but not the protein kinase C activator

phorbol 12-myristate 13-acetate. Moreover, the OAG-

induced Ca2+ responses were not regulated by protein

kinase C activation or inhibition but they were augmented by

flufenamic acid which increases currents through C-type

transient receptor potential protein family (TRPC) 6 chan-

nels. In addition, application of hyperforin, a specific activator

of TRPC6 channels, elevated [Ca2+]i. Whole-cell patch-

clamp recordings showed that hyperforin activated non-

selective cation channels. They were blocked by SKF-96365

but potentiated by flufenamic acid. Altogether, our data show

the presence of hyperforin- and OAG-sensitive Ca2+-per-

meable channels displaying TRPC6-like properties. This is

the first report revealing the existence of second messenger-

operated channels in cortical neurons.

Keywords: brain, calcium channels, cortex, neurons, tran-

sient receptor potential canonical.
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allowing an entry of Ca2+ into the cell (Hofmann et al. 1999;
Lintschinger et al. 2000; Liu et al. 2005; Poteser et al.
2006). This DAG-dependent activation of TRPC channels
occurs in a PKC-independent manner.

Several studies reported the existence of DAG-sensitive
channels in neural cells. For instance, DAG activates Ca2+-
conducting channels in the neuronal cell lines PC12
(Mwanjewe and Grover 2004) and IMR-32 (Nasman et al.
2006), as well as in cortical astrocytes (Grimaldi et al. 2003;
Beskina et al. 2007), vomeronasal neurons (Lucas et al.
2003), hippocampal neurons (Tai et al. 2008) and neural
stem cells (Pla et al. 2005). In astrocytes from embryonic rat
brains, TRPC3 channels mediate the DAG-induced cytosolic
Ca2+ changes (Grimaldi et al. 2003) whereas in astrocytes
prepared from embryonic murine brains TRPC6 forms the
DAG-sensitive channels (Beskina et al. 2007). On the other
hand, the Ca2+ responses are due to TRPC2 in vomeronasal
neurons (Lucas et al. 2003) and to TRPC6 in the hippocam-
pus (Tai et al. 2008). These latter findings suggest that the
molecular identity of the DAG-sensitive channels seems
species- and tissue-dependent. At E13, the immature cortex
expresses all TRPC isoforms (Boisseau, Kunert-Keil, Lucke
and Bouron; unpublished data). We thus tried to determine
whether the first cortical neurons, which are generated at
E11–12 (Kriegstein and Noctor 2004), express functional
DAG-sensitive channels. By recording cytosolic Ca2+

changes we observed that the DAG analogues 1-oleoyl-2-
acetyl-sn-glycerol (OAG) or 1-stearoyl-2-arachidonoyl-sn-
glycerol (SAG) caused a Ca2+ influx via channels sensitive to
Gd3+ and SKF-96365 but insensitive to nifedipine and
omega-conotoxin GVIA (x-CTx), (Sigma-Aldrich). The
OAG-induced Ca2+ responses were observed in KCl-
responding and KCl-insensitive cells. Similarly to OAG or
SAG, the DAG lipase inhibitor RHC80267, used to prevent
the degradation of DAG, elevated [Ca2+]i but not the PKC
activator phorbol 12-myristate 13-acetate (PMA). Moreover,
the OAG-induced responses were not altered by PKC
activation or inhibition. This shows that OAG recruited
SKF-96365-sensitive Ca2+-conducting channels in a PKC-
independent manner. Flufenamic acid (FFA) was used to
further characterize the identity of the OAG-sensitive
channels. FFA increases the amplitude of currents through
TRPC6 channels but blocks TRPC3 and TRPC7 channels
(Inoue et al. 2001). In cultured cortical neurons, FFA
potentiated the OAG-induced Ca2+ responses suggesting
that TRPC6 are key constituents of the OAG-sensitive
channels. In situ hybridization experiments confirmed the
presence of TRPC6, distributed throughout the cortical wall
(preplate and ventricular zone) including in cortical neurons.
Furthermore, Ca2+ imaging experiments and whole-cell
patch-clamp recordings showed that hyperforin, a specific
activator of TRPC6 channels (Leuner et al. 2007), activated
non-selective cation channels blocked by SKF-96365. Cur-
rents through hyperforin-activated channels were increased

by FFA. Altogether, these data suggest that OAG activated
TRPC6 channels or channels exhibiting TRPC6-like proper-
ties. This is the first description of functional second
messenger-operated channels in cortical neurons.

Materials and methods

Primary cell cultures
The cortical cells were dissociated from cerebral cortices isolated

from embryonic (E13) C57BL6/J mice (vaginal plug was designated

E0) according to procedures approved by the Ethical Committee of

Rhône-Alpes Region (France). The cells have been prepared and

kept up to 6 days in culture according to Bouron et al. (2006).

Calcium imaging experiments with Fluo-4
Cells were bathed in a Tyrode solution containing (in mM) 136

NaCl, 5 KCl, 2 CaCl2, 1 MgCl2, 10 HEPES, 10 glucose, pH 7.4

(NaOH) and 1.8 lM Fluo-4/AM for 10 min at 20–22�C. They were

then washed twice with a Fluo-4/AM-free Tyrode solution, stored

20 min at 20–22�C and then placed on the stage of an upright

Olympus BX51WI microscope equipped with a water immersion

20· objective lens (Olympus, 0.95 NA, Sartrouville, France). The

emitted light, provided by a 100 W mercury lamp, was attenuated

by a neutral density filter (U-25ND6, Olympus). Fluorescent images

were captured by a cooled digital CCD MicroMax Princetown

camera (Roper Scientific, Evry, France). The software MetaFluor

(Universal Imaging; Roper Scientific) was used to acquire the

images at a frequency of 0.2 or 0.5 Hz and to analyse off-line the

data. The shutter was controlled by the shutter driver Uniblitz

VMM-D1 (Vincent Associates; Roper Scientific). The excitation

light for Fluo-4 was filtered through a 460–495 nm excitation filter

and the emitted light was collected through a 510–550 nm filter. The

Ca2+ imaging experiments were performed 2–5 h after the plating of

the cells and on cells kept up to 6 days in culture. When indicated,

cells were maintained in a nominally Ca2+-free medium having the

same composition as the Tyrode solution (see above) supplemented

with 0.4 mM EGTA. The pH of the EGTA-containing solution was

adjusted to pH 7.4 with NaOH. In some experiments, cells were

stimulated with a K+-rich solution containing 50 mM (instead of

5 mM) KCl. Under these conditions, the concentration of NaCl was

reduced to 91 mM. All solutions were applied through a gravity-

driven system perfusing the entire recording chamber. The fluores-

cence was collected from 10–40 cells simultaneously monitored.

Only one field of view was used per dish. Data are presented as

mean ± SEM, with n being the number of cell bodies tested. The

experiments reported below were carried out at 20–22�C.

Calcium imaging experiments with fura-2
The uneven distribution of Fluo-4 and its photo-bleaching can limit

the use of this Ca2+ indicator. To avoid these problems we used the

ratiometric dye fura-2. Cells grown on 15 mm diameter glass cover-

slips were incubated in a Tyrode solution supplemented with

2.5 lM fura-2 for 15 min at 20–22�C. They were then washed twice
and kept in a fura-2-free Tyrode solution for 20 min at 20–22�C.
Cover-slips were transferred on a perfusion chamber (RC-25F,

Warner Instruments; Phymep, Paris, France) and placed on the stage

of an Axio Observer A1 microscope (Carl Zeiss, Sartrouville,
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France) equipped with a CoolSnap HQ2 camera (Princeton

Instruments; Roper Scientific) and a Fluar 40· oil immersion

objective lens (1.3 NA) (Carl Zeiss). Light was provided by the DG-

4 wavelength switcher (Princeton Instruments). A dual excitation at

340 and 380 nm was used and emission was collected at 515 nm.

The software MetaFluor (Universal Imaging) was used to acquire

the images at a frequency 0.5 Hz and to analyse off-line the data.

Stock solutions of OAG, SAG, nifedipine, hyperforin, cytochalasin

D, PP2, RHC80267, GF 109203X and genistein were prepared in

dimethyl sulfoxide (DMSO) and diluted at least 1000-fold into the

Tyrode solution immediately before use so that the final concentra-

tion of DMSO never exceeded 0.1%. Control experiments were

performed with DMSO alone (0.1%). At this concentration, the

solvent never induced any cytosolic Ca2+ signal (not shown). All

other stock solutions (SKF-96365, x-CTx, Gd3+, bethanechol,

phenylephrine, histamine hydrochloride and a-methyl-5-hydroxy-

tryptamine) were prepared in water and also diluted at least 1000-

fold into the Tyrode solution immediately before use.

Sodium imaging experiments with CoroNa Green
The effect of OAG on the cytosolic concentration of Na+ was

assayed with the fluorescent Na+ indicator CoroNa Green. Cells

were incubated with 5 lM CoroNa Green/AM for 30 min at 20–

22�C. They were rinsed and placed on the stage of an Axio Observer
A1 microscope (Carl Zeiss). These experiments were carried out

with the fura-2 Ca2+ imaging setup described above, except that a

single excitation at 495 nm was used and emission was collected at

525 nm.

Electrophysiological recordings
The whole-cell configuration of the patch-clamp technique (Hamill

et al. 1981) was used to record currents activated by hyperforin. The

experiments were conducted according to protocols and recording

solutions already described (Hill et al. 2006). The external medium

contained (in mM): 140 NaCl, 4 KCl, 10 TEACl, 1 CaCl2, 1 MgCl2,

10 HEPES, 5 D-glucose, pH 7.4 (NaOH). The patch pipettes were

fabricated by means of the DMZ Universal pipette puller (Zeitz

Instruments, München, Germany) from thick wall borosilicate glass

capillaries (1.5 mm o.d. · 0.86 mm i.d., Clark Electromedical

Instruments; Phymep). When filled with the following intracellular

solution (in mM): 140 CsCl, 1 MgCl2, 5 D-glucose, 10 HEPES, 0.1

EGTA, 4 ATP, 0.2 GTP, pH 7.2 (CsOH), pipettes had a resistance of

2.5–3.8 MW. Currents were measured with an Axoclamp 200B

amplifier (Axon Instruments, Dipsi, Chatillon, France), filtered at

1 kHz, and analysed off-line using the pClamp software (version

9.0, Axon Instruments). Unless otherwise indicated, the holding

membrane potential was set at 0 mV to inactivate voltage-gated Na+

and Ca2+ channels. Whole-cell currents, recorded at 20–22�C
1–3 days after the plating of the cells, were triggered at a frequency

of 0.2 Hz by 2 s voltage ramps from )100 to +40 mV. Capacitive

transients were cancelled and the cell capacitance value was read

from the amplifier dials.

Standard RT-PCR
Total RNA was isolated using guanidinium-isothiocyanate (RNeasy

Mini Kit; Qiagen, Hilden, Germany) and RNA concentration was

determined by UV absorbance measurements. An amount of 200 ng

total RNA was reverse transcribed using random hexamer primers

and the TaqMan Reverse Transcription Reagents (PE Applied

Biosystems, Weiterstadt, Germany). PCR was performed with Taq

Polymerase for 40 cycles as described previously (Kunert-Keil et al.
2006). Amplification of a TRPC6 cDNA fragment was done with

murine specific TRPC6 primers (Assay-on-Demand Mm00443441_

m1; PE Applied Biosystems).

In situ hybridization
Non-radioactive in situ hybridization was performed with cryo

sections (4 lm) which had been fixed in 4% paraformaldehyde.

Sections were rehydrated and permeabilized with 0.2 M HCl. Post-

fixation (paraformaldehyde 4%, 20 min, 4�C) was followed by

acetylation using 0.4% acetic anhydride in triethanolamine (0.1 M,

pH 8.0, 15 min). After washing with 50% formamide in 1.5%

sodium-sodium phosphate-EDTA buffer (20x sodium-sodium

phosphate-EDTA buffer: 3.6 M NaCl, 0.2 M NaH2PO4, 0.2 M

EDTA, pH 7.4) the sections were pre-hybridized for 1 h at 56�C in a

solution containing 50% formamide and 50% solution D (4 M

guanidine thiocyanate, 25 mM sodium citrate, pH 7.0), 0.5%

blocking reagent (Roche Biochemicals, Mannheim, Germany) and

210 lg/mL t-RNA. For TRPC6, a cDNA fragment (GenBank:

NM_013838; position nt +2181 to + 2507) was cloned into the

pGEM-T-Easy cloning vector (Promega, Mannheim, Germany)

(Kunert-Keil et al. 2006). After hybridization for 12–16 h with pre-

hybridization solution containing 125 ng digoxigenin (DIG)-

labelled cRNA probe (Kunert-Keil et al. 2006) and washing with

2x saline sodium citrate buffer (20x saline sodium citrate buffer:

3 M NaCl, 0.3 M sodium citrate; pH 7.4) sections were incubated

with blocking reagent (Roche Biochemicals). Bound riboprobe was

visualized by incubation with alkaline phosphatase-conjugated anti-

DIG antibody (Roche Biochemicals) and subsequent substrate

reaction containing 5-bromo-4-chloro-3-indolyl phosphate/nitro-

blue-tetrazolium chloride.

Materials
GF 109203X (bisindolylmaleimide I (2-[1-[3-(dimethylamino)pro-

pyl]-1H-indol-3-yl]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione, or Go

6850) and PP2 were purchased from Calbiochem (VWR, Fontenay

sous Bois, France). The fluorescent Ca2+ and Na+ indicators Fluo-4,

fura-2, CoroNa Green were from Molecular Probes (Interchim,

France). The alkaline phosphatase-conjugated anti-DIG antibody

and the blocking reagent were from Roche Biochemicals. All other

chemicals including PMA, OAG, SAG, FFA, RHC80267 and N-
methyl-D-glucamine (NMDG), genistein, methyl-b-cyclodextrin
(MbCD), cytochalasin D, bethanechol, phenylephrine, serotonin,

a-methyl-5-hydroxytryptamine were from Sigma-Aldrich. Hyper-

forin is a kind gift from Dr Willmar Schwabe GmbH & Co

(Karlsruhe, Germany).

Results

OAG evoked Ca2+ responses
Most of the freshly dissociated or cultured E13 cortical cells
express bIII-tubulin, a marker of early post-mitotic neurons
(Bouron et al. 2005) and possess functional voltage-gated
Ca2+ channels (Bouron et al. 2006). The external application
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of OAG (100 lM) evoked Ca2+ responses in some KCl-
responding and KCl-insensitive cells as shown in Fig. 1. In
this report, we only analysed the properties of cells where a
KCl-induced depolarization evoked a transient Ca2+ rise.
These KCl-responsive cells were considered as neurons
(Bouron et al. 2006). In contrast to the KCl responses, the
OAG-induced Ca2+ responses were asynchronous and
displayed a diversity of shapes as illustrated in Fig. 2(a).
Similar experiments were carried out after 1, 2, 4, 5 and
6 days in vitro (DIV). OAG evoked Ca2+ responses in freshly
dissociated cells (Fig. 2a) as well as in cells kept up to 6 days
in primary culture (data not shown). These Ca2+ responses
had roughly the same amplitude regardless of the age of the
cells, at least up to six DIV. The total number of KCl-
responsive cells used in the present study was 1129. Only
389 of them (35%) displayed OAG-induced Ca2+ responses.
Schematically, based on their time course three types of
OAG-induced Ca2+ responses were identified: (i) cells with
transient Fluo-4 responses (15%), (ii) cells exhibiting a
sustained elevation of Ca2+ (23%) and (iii) cells with

oscillatory Ca2+ responses (62%, total 100%). These three
phenotypes could be seen in distinct cells from the same dish,
whether freshly dissociated cells or cells kept several days in
culture.

OAG controlled an entry of Ca2+ and Na+

The OAG-induced Ca2+ responses were not observed when
the cells were bathed in a Ca2+-free medium (supplemented
with 0.4 mM EGTA) (n = 65 cells) (Fig. 2b). Thus, OAG
did not release Ca2+ from stores but rather promoted an entry
of Ca2+. Furthermore, the OAG-induced Ca2+ responses were
unaffected by the voltage-gated Ca2+ channel inhibitors
nifedipine (5 lM, n = 40) or x-CTx (1 lM, n = 37) but they
were strongly attenuated in the presence of Gd3+ (5 lM,
n = 106) and SKF-96365 (20 lM, n = 82) (Fig. 2b). A
recent study showed that DAG can promote an entry of Na+

through TRPC6 channels which, in turn, elevates the
cytosolic concentration of Ca2+ via the Na+/Ca2+ exchanger
operating in the reverse mode (Lemos et al. 2007). As Gd3+

blocks the Na+/Ca2+ exchanger (Zhang and Hancox 2000),

Fig. 1 1-oleoyl-2-acetyl-sn-glycerol (OAG) induced Fluo-4 signals in

KCl-responsive and KCl-unresponsive cells. Fluo-4 loaded cells are

shown before (a-i) and after (a-ii) the application of a depolarizing

medium containing 50 mM KCl (instead of 5 mM for the control

medium). In this example, KCl triggered a Fluo-4 increase in cells 1

and 3 whereas cells 2 and 4 failed to respond to KCl. (b) Shows the

time course of the Fluo-4 signals (F/F0) as a function of time, with F

being the Fluo-4 fluorescence and F0 the baseline Fluo-4 fluores-

cence. In these experiments, KCl was applied, washed away and then

OAG was added after the Fluo-4 fluorescence had returned to the

baseline. The same Fluo-4 loaded cells as in (a) are shown before (c-i)

and after (c-ii) the addition of OAG (100 lM). OAG-induced Ca2+

responses were noted in cells 1 and 2. The horizontal bars in (b) and

(d) indicate when KCl and OAG were present in the bath respectively.

Unless noted otherwise, throughout this study, for each experiment, a

KCl challenge was applied before adding OAG. We only studied the

properties of the KCl responsive cells.
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experiments were performed with a Na+-free Tyrode solution
where Na+ was replaced with the large organic cation
NMDG+. Under these conditions, OAG-induced Ca2+

responses were still observed but, on average, their ampli-
tudes were reduced by nearly 50% (n = 192) (Fig. 2b). This
latter result thus suggests that two mechanisms contributed to

Fig. 2 1-oleoyl-2-acetyl-sn-glycerol (OAG) triggered an entry of Ca2+

via Gd3+- and SKF-96365-sensitive channels. (a) Shows representa-

tive Fluo-4 signals from three KCl-responsive cells. It illustrates the

diversity of the OAG responses: transient, long-lasting and oscillatory.

In (b) is shown the normalized increase in Fluo-4 fluorescence

(mean ± SEM) induced by OAG (100 lM) under different conditions.

Control: maximal amplitudes (normalized data) of the Fluo-4 responses

observed during an acute application of OAG (100 lM) (n = 389 cells).

Experiments were also performed when the cells were kept in a Ca2+-

free medium supplemented with 0.4 mM EGTA (0Ca + EGTA) (n = 65

cells) or in a normal (2 mM Ca2+) recording medium containing either

5 lM Gd3+ (n = 106 cells), 20 lM SKF-96365 (n = 82 cells), 5 lM

nifedipine (n = 40 cells), 1 lM x-conotoxin GVIA (x-CTx, n = 37 cells)

or 140 mM N-methyl-D-glucamine (NMDG, n = 192 cells) (in this latter

case NaCl was omitted). *p < 0.001 versus control (one-way ANOVA

followed by a Tukey test). The fluorescent Na+ indicator CoroNa Green

was used to verify whether OAG increased [Na+]i. (c) Shows repre-

sentative CoroNa Green responses. The application of OAG (100 lM)

induced a time-dependent increase in CoroNa Green fluorescence (F/

F0) (control) which was not observed in the presence of Gd3+ (5 lM) or

when Na+ was replaced with NMDG+. These experiments are sum-

marized in (d) with the number of cells tested indicated above each bar.

***p < 0.001 (Student’s t-test). For each cell, the maximum change in

fluorescence (F/F0) was determined and compared with the normalized

CoroNa Green responses obtained in control conditions. The horizontal

bar in (c) indicates when OAG was present. (e) Shows fura-2 record-

ings from two different cells. The Tyrode solution contained 2 mM Ca2+

or Ba2+ and the cells were stimulated when indicated by the horizontal

black bar with 50 lM SAG. The graph shows the changes in fura-2

fluorescence (ratio F340 nm/F380 nm) as a function of time. In the

presence of Ba2+ the responses are sustained. In (f) are shown rep-

resentative fura-2 responses at 340 and 380 nm from a cortical neuron

kept in a Ca2+-free medium. The addition of 100 lM Mn2+ had almost

no effect. But the subsequent application of 50 lM SAG (still in the

presence of 100 lM Mn2+ and no added Ca2+) provokes a clear quench

of the fura-2 fluorescence at both wavelengths.
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the OAG-induced Ca2+ entry: OAG triggers a Gd3+- and
SKF-96365-sensitive Ca2+ rise via Na+-dependent and Na+-
independent mechanisms. The effects of OAG on [Na+]i was
assayed by means of the fluorescent Na+ indicator CoroNa
Green (Poburko et al. 2007). Figure 2(c) shows representa-
tive CoroNa Green responses obtained in three different
experimental conditions. OAG induced a time-dependent
increase in CoroNa Green fluorescence, an effect that was not
observed in the presence of Gd3+ or when Na+ was replaced
with NMDG+ (Fig. 2c and d). Thus, OAG elevated [Na+]i via
a Gd3+-sensitive process. This response depends on the
extracellular concentration of Na+.

Some experiments were performed with the ratiometric
Ca2+ indicator fura-2 and with SAG, another DAG analogue.
SAG induced Ca2+ transients (Fig. 2e). Similar fura-2 signals
were obtained with OAG (not shown). When replacing
2 mM CaCl2 with 2 mM BaCl2, SAG elevated the cytosolic
concentration of Ba2+ (Fig. 2e). These Ba2+ signals were
sustained, not transient as seen with Ca2+ because Ba2+ is
weakly pumped out of the cells or into the organelles
(Yamaguchi et al. 1989). To further verify the presence of
DAG-activated Ca2+ channels, we checked whether Mn2+

could quench the fura-2 fluorescence. Mn2+ ions readily enter
cells through Ca2+-conducting channels. The results of these
experiments are summarized in Fig. 2(f). Cells were kept in a
Ca2+-free medium. The addition of Mn2+ (100 lM) weakly
diminished the fura-2 fluorescence at 340 and 380 nm.
However, a subsequent addition of SAG was accompanied
by a clear quench of the fura-2 fluorescence at both
wavelengths (Fig. 2f). Altogether, these experiments showed
that DAG analogues like OAG or SAG activated SKF-
96365-sensitive channels permeable to Ca2+, Ba2+ and Mn2+.
Based on our data, it is proposed that in embryonic cortical
neurons OAG activates SKF-96365-sensitive cation channels
allowing an entry of Ca2+ and Na+. This OAG-induced Na+

entry thus stimulates the Na+/Ca2+ exchanger which, when
operating in the reverse mode, allows an entry of Ca2+.
According to this hypothesis, OAG elevates the cytosolic
concentrations of Ca2+ by activating OAG-sensitive Ca2+-
conducting channels and also by promoting an entry of Ca2+

via the Na+/Ca2+ exchanger. These results are in agreement
with recent data obtained on smooth muscle cells (Poburko
et al. 2007; Syyong et al. 2007). It is important to note that
the Na+/Ca2+ exchanger is already functional at E13 and
mediates a Na+-dependent Ca2+ entry (Platel et al. 2005).
Both responses, namely the Na+ and Ca2+ entries, disap-
peared in the presence of Gd3+, a potent blocker of calcium
channels and of the Na+/Ca2+ exchanger (Zhang and Hancox
2000).

The DAG lipase inhibitor RHC80267 induced Ca2+ responses
The DAG lipase inhibitor RHC80267 (50 lM), used to
prevent the degradation of DAG, can elevate [Ca2+]i
(Hofmann et al. 1999). When acutely applied, RHC80267

elicited a weak Fluo-4 increase (8%, n = 133 cells) (Fig. 3a).
However, this RHC80267 treatment, done at 20–22�C,
was probably too short to significantly alter the intracellular
concentration of DAG and therefore to promote robust Ca2+

responses. Experiments were then realized after a longer
RHC80267 treatment during which the cells were maintained
at 37�C. This was performed as follows: Fluo-4-loaded cells
were kept in a Ca2+-free medium containing 0.4 mM
EGTA + 50 lM RHC80267 for 20 min at 37�C. They were
then placed on the stage of the microscope and superfused
with a recording medium containing 2 mM Ca2+. The
readmission of Ca2+ was accompanied by large Fluo-4
signals (Fig. 3b). When similar experiments were conducted
with RHC80267-untreated cells, the Ca2+ challenge was
followed by much smaller Fluo-4 signals (Fig. 3b) which
most likely reflect an entry of Ca2+ through store-operated
channels. Thus, an entry of Ca2+ can be triggered by either
inhibiting the DAG lipase with RHC80267 or by applying
OAG (or SAG).

Protein kinase C neither mimicked nor affected OAG
responses
Many cellular effects of DAG have been attributed to PKC,
its major downstream effector. Among other responses, PKC
can lead to cytosolic Ca2+ changes (Khoyi et al. 1999;
Murthy et al. 2000; Rosado and Sage 2000; Albert and Large
2002). In order to determine whether OAG acted via a PKC-
dependent mechanism, the phorbol ester PMA, a potent PKC
activator, was used. The external application of PMA (1 lM)
did not elevate [Ca2+]i (Fig. 3c). We next tried to verify
whether PKC regulated the OAG-induced Ca2+ entry.
Figure 3(d) shows that PKC activation (with PMA), or
PKC inhibition (with the PKC antagonist GF 109203X, also
named bisindolylmaleimide I or Gö 6850) did not alter the
OAG-induced Ca2+ entry. Thus, OAG promoted a PKC-
independent entry of Ca2+.

Flufenamic acid potentiated the OAG responses
In neural cells, the presence of a PKC-independent but
OAG-sensitive entry of Ca2+ has been described in astro-
cytes (Grimaldi et al. 2003; Beskina et al. 2007), vomero-
nasal neurons (Lucas et al. 2003), hippocampal neurons (Tai
et al. 2008) and neural stem cells (Pla et al. 2005).
Depending on the tissue and the species (rat vs. mouse),
TRPC2 (Lucas et al. 2003), TRPC3 (Grimaldi et al. 2003)
or TRPC6 (Beskina et al. 2007; Tai et al. 2008) are the key
elements of these OAG-sensitive channels but whatever
their exact molecular identity, TRPC appear as likely
candidates controlling OAG-sensitive channels (Hofmann
et al. 1999; Lintschinger et al. 2000; Liu et al. 2005). FFA
is an anti-inflammatory agent which, among other cellular
actions, inhibits currents through TRPC3 and TRPC7
channels but increases currents through TRPC6 channels
(Inoue et al. 2001; Jung et al. 2002). We thus took
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advantage of this property to further characterize the OAG-
sensitive channels. Applied alone (without OAG), FFA
produced a modest but long-lasting elevation of the
cytosolic concentration of Ca2+. The Fluo-4 fluorescence
increased by nearly 25% in the presence of FFA (n = 14
cells, p < 0.05, Student’s t-test) (Fig. 4). When compared
with OAG, FFA gave rise to weak Ca2+ responses having
distinct kinetics properties. The FFA-induced Ca2+ rise also
occurred when the cells were bathed in a Ca2+-free medium
(not shown) indicating that FFA promoted the release of
Ca2+ from internal stores as already shown in non-neuronal
(Poronnik et al. 1992; Cruickshank et al. 2003) and in
neuronal cells (Lee et al. 1996). When added in the presence
of FFA, OAG triggered larger Fluo-4 responses when

compared with OAG alone (Fig. 4a). The amplitude of the
Fluo-4 signals seen in the presence of FFA + OAG was
larger than the sum of the two signals (the FFA-induced
Ca2+ release + the OAG-induced Ca2+ entry). In addition,
with FFA, the number of OAG responsive cells was > 60%
instead of �30% without FFA. Instead of blocking the
OAG-induced Ca2+ entry, the channel blocker FFA
increased the number of OAG responsive cells and poten-
tiated the OAG-induced Ca2+ entry. As TRPC6 is the only
known TRPC channel of which activity is up-regulated by
FFA (Inoue et al. 2001; Jung et al. 2002), it seems that
OAG activates TRPC6 channels or channels exhibiting
TRPC6-like properties. We then addressed the question of
the presence of TRPC6 in the cortex at E13.

Fig. 3 In contrast to the PKC activator PMA, the DAG lipase inhibitor

RHC80267 induced Fluo-4 responses. In this set of experiments, the

DAG lipase inhibitor was used to determine whether DAG mediated the

effects of OAG. (a) Shows a representative Fluo-4 recording from a

cortical neuron illustrating that an acute application of RHC80276

(50 lM) induced a weak Ca2+ signal. In another set of experiments (b),

Fluo-4-loaded cells were kept in a Ca2+-free medium supplemented

with 0.4 mM EGTA + 50 lM RHC80276 for 20 min at 37�C. They were

then placed on the stage of the microscope and Fluo-4 signals were

recorded (at 20–22�C). The re-introduction of 2 mM external Ca2+ was

accompanied by large increases in fluorescence (open symbols)

whereas RHC80276-untreated cells (filled symbols) poorly responded

to the Ca2+ challenge. The arrow indicates when Ca2+ was added. C

The phorbol ester PMA was used to verify whether the OAG-induced

Ca2+ entry was under the control of PKC. The application of PMA

(1 lM) did not induce any change in Fluo-4 fluorescence (c). When

added after PMA, OAG was still able to promote an entry of Ca2+. The

horizontal bars indicate when PMA and OAG were present. Some

experiments were carried out on cells pre-treated with the PKC inhibitor

GF 109203X (5 lM) for 20 min at 20–22�C. (d) is a summary bar graph

showing that the amplitude of the OAG-induced Fluo-4 responses

(normalized data) was not affected by PMA and GF 109203X. For each

cell, the maximal Fluo-4 signal induced by OAG was determined and

compared with the normalized control values. The number of cells

tested is indicated above each bar. PMA and GF 109203X were still

present during the application of OAG.
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TRPC6 was found in the cortex of E13 mice
Using standard PCR, TRPC6 transcripts of expected size
(153 bp) were detected in the brain and cortex from
embryonic (E13) mice as shown in Fig. 4(c). The PCR
products were exemplary sequenced and revealed the
expected DNA sequence. In situ hybridization experiments
with the antisense TRPC6 cRNA probe were carried out to
better describe the expression of TRPC6 mRNA. It was
found throughout the cortex, both in the preplate and in the
ventricular zone (Fig. 4c). Sense probes applied as controls
did not show positive results.

Hyperforin triggered an entry of Ca2+

Cortical neurons express TRPC6 channels and OAG activates
a Ca2+ entry pathway exhibiting TRPC6-like properties (up-
regulation by FFA). If TRPC6 channels mediate these OAG-
sensitive Ca2+ responses, hyperforin should mimic the effect
of OAG. Indeed, hyperforin, the main active principle of St
John’s wort extract, specifically activates TRPC6 channels

without activating TRPC1, TRPC3, TRPC4 and TRPC5
channels (Leuner et al. 2007). Like OAG, hyperforin triggers
a massive entry of Ca2+ blocked by Gd3+ (Fig. 4d and e).

Hyperforin activated a non-selective cation current
When held at a holding potential of )50 mV, the external
application of hyperforin elicited an inward current that
transiently increased and then declined to baseline (Fig. 5a).
On average, when measured at )50 mV, the maximal
amplitude of the current induced by 5 lM hyperforin was
125 ± 17 pA (n = 14). In HEK293 cells over-expressing
TRPC6 channels (Leuner et al. 2007) like in cortical
neurons, hyperforin triggers a transient inward current. In
neurons, this current was reduced by �80% in the presence
of 20 lM SKF-96365 (n = 4, p < 0.01) (Fig. 5a) or 10 lM
Gd3+ (n = 5) (not shown). Figure 5(b) shows representative
current–voltage relationships obtained before and after the
addition of 5 lM hyperforin. When recorded with a caesium-
rich pipette solution, this antidepressant elicited an inward

Fig. 4 Properties of the OAG-induced Ca2+

responses. (a) Three representative Fluo-4

responses from cells stimulated with OAG

(100 lM), OAG + flufenamic acid (FFA,

85 lM) or with FFA (85 lM) alone are

shown. The horizontal black bar indicates

when these drugs were present in the bath.

By itself, FFA increased the Fluo-4 fluo-

rescence but when OAG was added to-

gether with FFA, the Fluo-4 responses were

larger than without FFA. In (b) are shown

normalized Fluo-4 signals under various

experimental conditions. The number of

cells tested is shown above each bar.

*p < 0.05 and ***p < 0.001, Student’s t-test.

(c) Reverse transcribed RNA (8 ng) from

brain and cortex of E13 mice was added to

the reaction mixtures and PCR products

amplified in 40 cycles. The products were

separated on agarose gels and stained with

ethidium bromide. (b) In situ hybridization of

TRPC6 was performed with tissue sections

from brain of E13 mice. They were incu-

bated with the antisense probe (upper pa-

nel) and the sense probe (lower panel)

respectively. (d) The selective TRPC6 acti-

vator was used to better characterize the

OAG-induced Ca2+ signals. Representative

Fluo-4 signals elicited in response to the

application of 10 lM hyperforin and 10 lM

hyperforin + 5 lM Gd3+. (e) Summary graph

showing the Fluo-4 responses (F/F0)

recorded for each of the above experimental

condition. The number of cells tested is

indicated. **p < 0.001, Student’s t-test.
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and outward current having a reversal potential near 0 mV,
indicating that hyperforin recruited non-selective cation
channels. In addition, when added after hyperforin, FFA
potentiated the current (n = 5/5 cells tested) (Fig. 5c). This
enhancement was specific as its vehicle never affected the
hyperforin-activated current (n = 5 cells tested). Thus,
hyperforin activated SKF-96365- and Gd3+-sensitive cation
channels that were positively regulated by FFA.

Properties of the OAG-sensitive channels
The characterization of these cation channels was further
investigated by comparing their properties to those of TRPC6
channels (Dietrich and Gudermann 2007). The activity of
TRPC6 channels is under the control of PP2-sensitive src
protein tyrosine kinases (Hisatsune et al. 2004; Aires et al.
2006). For instance, treating HEK293 cells over-expressing

TRPC6 channels with the tyrosine kinase inhibitor PP2
attenuates the DAG-activated Ca2+ entry (Aires et al. 2006).
It is however worth adding that TRPC6 channels
over-expressed in HEK293 cells are insensitive to genistein,
another tyrosine kinase inhibitor (Kawasaki et al. 2006).
Cortical cells were incubated with PP2 (n = 29 cells) or
genistein (n = 43) before adding OAG. Neither of these
tyrosine kinase inhibitors affected the OAG-induced Ca2+

responses (Fig. 5d). Several studies have highlighted the
importance of caveolae in Ca2+ homeostasis (Isshiki and
Anderson 2003). The entry of Ca2+ through TRPC6 channels
over-expressed in HEK293 cells is regulated by an exocy-
totic mechanism with TRPC6 channels present in caveolae-
related microdomains (Cayouette et al. 2004). The
application of OAG promotes the insertion of TRPC6
channels into the plasma membrane (Cayouette et al.

Fig. 5 Hyperforin activated SKF-96365- and FFA-sensitive cation

channels. Whole-cell patch-clamp recordings were done to analyse

the hyperforin-activated current. (a) Shows currents elicited from a

holding potential of )50 mV. Hyperforin (5 lM) was bathed applied

(horizontal black bar) either alone or in the presence of 20 lM

SKF-96365. (b) Current–voltages (I–V) relationships. The cell was

stimulated every 5 s by a 2 s ramp protocol from )100 to +40 mV

applied from a holding potential of 0 mV. The I–V curves were

obtained before and after the addition of 5 lM hyperforin. (c) Same

experiments as in (a) except FFA (85 lM) or DMSO (0.1%) was added

after hyperforin (5 lM). The horizontal bars indicate when hyperforin

and FFA (or DMSO) were present. (d) In some experiments, cells

were pre-treated with one of the following agent: PP2 (10 lM, 20 min

at 20–22�C), genistein (50 lM, 20–30 min at 20–22�C), cytochalasin

D (5 lM, 90 min at 37�C), methyl-b-cyclodextrin (MbCD, 10 lM,

20 min at 37 �C) before adding OAG (100 lM). (d) Shows the Ca2+

responses induced by OAG (normalized Fluo-4 responses). None

of the agents used significantly altered the OAG-induced Ca2+

responses. The number of cells tested in indicated for each experi-

mental condition.
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2004). Treating HEK293 cells over-expressing TRPC6
channels with MbCD, which disrupts lipid rafts, causes a
complete suppression of the DAG-activated Ca2+ entry
(Aires et al. 2006). Similar experiments were conducted
with cortical neurons. MbCD did not affect the OAG-
induced Ca2+ responses (n = 98 cells) (Fig. 5d). In another
series of experiments, we verified whether the OAG-induced
Ca2+ responses were controlled by an actin-dependent
trafficking step. Cortical neurons were treated with cytocha-
lasin D, a membrane-permeant inhibitor of actin polymeri-
zation. Here again, the OAG-induced Ca2+ responses were
unaffected by cytochalasin D (n = 41 cells) (Fig. 5d). In a
final set of experiments, cells were stimulated with one of the
following neurotransmitter receptor agonists to gain further
insight into the physiological relevance of these OAG-
induced Ca2+ responses: bethanechol (10–100 lM, n = 50
cells), a-methyl-5-hydroxytryptamine (10 lM, n = 47 cells),
phenylephrine (10 lM, n = 63 cells) and histamine (10 lM,
n = 52 cells). These agonists recruit, respectively, muscarinic
acetylcholine, serotonin 5-HT2, a1-adrenergic, and histamine
receptors and promote the production of DAG. None of these
agonists tested induced Ca2+ responses (not shown).
Although the identity of the signalling pathway controlling
the DAG-activated cationic channels remains unclear, this
report clearly shows the existence of functional second
messenger-operated cationic channels in cortical neurons
from E13 mouse embryos.

Discussion

By performing Ca2+ imaging and electrophysiological
experiments we have shown that in cortical cells from
E13 mouse embryos OAG (or SAG) and hyperforin activate
plasma membrane cation channels. These OAG-induced
Ca2+ responses were observed in KCl-responsive and in
KCl-unresponsive cells. This latter cell population, consid-
ered as non-neuronal cells, was not further analysed as
recent studies already demonstrated that OAG triggers an
entry of Ca2+ in cortical astrocytes. It develops via TRPC3
channels in cortical astrocytes prepared from E17 rat
embryos (Grimaldi et al. 2003) and via TRPC6 channels
in cortical astrocytes prepared from E17 mouse embryos
(Beskina et al. 2007). In addition, an OAG-induced Ca2+

entry is found in neural stem cells prepared from E13 rat
embryos (Pla et al. 2005). Thus, our data, showing a OAG-
induced Ca2+ entry in KCl-unresponsive cells (e.g. cell 2 in
Fig. 1) is in line with reports describing OAG-induced Ca2+

signals in non-neuronal cortical cells (Grimaldi et al. 2003;
Beskina et al. 2007). Therefore, we focused our analysis on
the KCl-responsive cells. To our knowledge, this is the first
report showing second messenger-operated channels in
cortical neurons.

Nearly 35% of the KCl-responsive cells responded to
OAG. In most cases, OAG induced Ca2+ oscillations even in

cells treated with caffeine to deplete the caffeine-sensitive
Ca2+ pool of the endoplasmic reticulum (not shown). The
OAG-induced Ca2+ signals, seen in freshly dissociated cells
as well as in cultured isolated cells kept up to six DIV,
disappeared when Ca2+ was omitted from the extracellular
milieu. The entry of Ca2+ could be triggered by OAG, SAG
or in the presence of the DAG lipase inhibitor RHC80267.
This Ca2+ route was unaffected by the voltage-gated Ca2+

channel antagonists nifedipine and x-CTx but it was strongly
blocked by Gd3+ and SKF-96365. Replacing Na+ ions with
NMDG+ did not suppress but attenuated the OAG-induced
Ca2+ rise. Analysis of cytosolic Na+ changes with the
fluorescent Na+ indicator CoroNa Green revealed that OAG
caused an entry of Na+. A similar observation was made in
vascular smooth muscle cells (Poburko et al. 2007). Based
on these findings it is proposed that DAG controls the
activity of SKF-96365-sensitive channels allowing a Ca2+

entry via Na+-dependent and Na+-independent mechanisms.
As the cytosolic Ca2+ rise partially depends on the extracel-
lular concentration of Na+, OAG controls the activity of Na+-
and Ca2+-conducting channels. The intracellular load of Na+

thus activates the Na+/Ca2+ exchanger which, in turn, permits
an entry of Ca2+ (Platel et al. 2005). This DAG-induced Ca2+

entry was blocked by Gd3+. However, the broad spectrum
Ca2+ channel antagonist Gd3+ also inhibits the Na+/Ca2+

exchanger (Zhang and Hancox 2000) and the OAG-induced
elevation of Na+. PKC, a major downstream DAG effector,
can increase the cytosolic concentration of Ca2+ in some cell
types (Albert et al. 1987; Khoyi et al. 1999; Murthy et al.
2000; Rosado and Sage 2000; Albert and Large 2002). In
contrast to OAG or SAG, the PKC activator PMA failed to
trigger any Ca2+ response. Furthermore, stimulating or
inhibiting PKC activity had no effect on the DAG-induced
Ca2+ entry. Taken together, these results favour the existence
of cation channels activated by DAG in a PKC-independent
manner.

TRPC are Gd3+- or SKF-96365-sensitive plasma mem-
brane proteins forming voltage-independent cation channels.
Some isoforms constitute DAG-sensitive Ca2+-conducting
channels. When heterogeneously expressed, homomeric
TRPC3, TRPC6 or TRPC7 channels and heteromeric
TRPC1–TRPC3, TRPC3–TRPC4 channels function as
DAG-sensitive Ca2+-conducting channels (Hofmann et al.
1999; Lintschinger et al. 2000; Liu et al. 2005; Poteser et al.
2006). Such DAG-sensitive channels have been described in
the neuronal cell lines PC12 and IMR-32 (Mwanjewe and
Grover 2004; Nasman et al. 2006) as well as in neural cells
like cortical astrocytes (Grimaldi et al. 2003; Beskina et al.
2007), vomeronasal neurons (Lucas et al. 2003), hippocam-
pal neurons (Tai et al. 2008) and neural stem cells (Pla et al.
2005). TRPC3 (in rats) (Grimaldi et al. 2003) or TRPC6
channels (in mice) (Beskina et al. 2007) participate in the
DAG-induced cytosolic Ca2+ changes in astrocytes but the
Ca2+ entry occurs through TRPC2 channels in vomeronasal
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neurons (Lucas et al. 2003) and through TRPC6 channels in
hippocampal neurons (Tai et al. 2008). Based on these
findings, we suggest that TRPC channels or channels
exhibiting TRPC-like properties are involved in the DAG-
dependent Ca2+ entry of cortical neurons. Among the various
TRPC isoforms described so far, only currents through
TRPC6 channels are increased by FFA. This anti-inflamma-
tory drug is a potent blocker of anion and cation channels
including TRPC (Inoue et al. 2001). But heterogeneously
expressed TRPC6 channels (in HEK cells) and native
TRPC6 channels (in vascular smooth muscle cells) are up-
regulated by FFA (Inoue et al. 2001; Jung et al. 2002). In
smooth muscle cells, FFA inhibits native Ca2+-conducting
channels having TRPC3- and TRPC7-like properties with an
IC50 value of 2.45 lM (Peppiatt-Wildman et al. 2007) but
increases currents through native TRPC6-like channels (Hill
et al. 2006). On the other hand, based on their electrophys-
iological and pharmacological studies, Carter et al. (2006)
concluded that TRPC6 was involved in the ADP-dependent
cation influx of murine megakaryocytes (Carter et al. 2006).
Interestingly, this response was strongly enhanced by FFA
(Carter et al. 2006). Therefore, TRPC6 (Inoue et al. 2001;
Jung et al. 2002) and TRPC6-like channels (Carter et al.
2006; Hill et al. 2006) appear as the only TRPC channels up-
regulated by FFA. In E13 cortical neurons, the OAG-induced
Ca2+ entry was enhanced by FFA. Furthermore, hyperforin
which selectively activates TRPC6 channels without activat-
ing TRPC1, TRPC3, TRPC4 and TRPC5 (Leuner et al.
2007) mimics the action of OAG. Electrophysiological
measurements showed that this antidepressant activated
non-selective cation channels blocked by Gd3+ (not shown)
and SKF-96365. This in line with a recent study showing that
hyperforin selectively activates non-selective cation TRPC6
channels (Leuner et al. 2007). In addition, hyperforin-
activated currents were increased by FFA.

On the other hand, if the DAG-sensitive channels of
cortical neurons exhibit TRPC6-like characteristics, they
however display properties that are not found in other cells
expressing TRPC6 channels. For instance, in HEK cells
over-expressing TRPC6 channels, disruption of lipids rafts
abolishes Ca2+ entry through TRPC6 channels (Aires et al.
2006) whereas the same treatment has no effect in cortical
neurons. It is however possible that native and over-
expressed TRPC6 channels exhibit distinct properties as
already shown for TRPC3 where the mode of regulation of
this TRPC isoform critically depends on its level of
expression (Putney 2004). Another property of the DAG-
sensitive channels of cortical neurons is their insensitivity to
the tyrosine kinase inhibitors PP2 and genistein. Indeed, the
src tyrosine kinase inhibitor PP2 abolishes endogenous
TRPC6-dependent Ca2+ entry in cardiac myocytes (Nishida
et al. 2007) and in HEK cells over-expressing TRPC6
channels (Aires et al. 2006) but has no effect on cortical
neurons. Of note, Kawasaki et al. (2006) also reported that

TRPC6 channels were unaffected by the tyrosine kinase
inhibitor genistein.

Although the molecular identity of the DAG-sensitive
channels of cortical neurons is not firmly established we
exclude TRPC3 as the main candidate. This is based on the
experiments carried out with PMA and showing that, after a
PMA treatment, OAG was still able to promote an entry of
Ca2+. Indeed, PKC activation totally blocks TRPC3 in
response to OAG (Trebak et al. 2003; Venkatachalam et al.
2003; Kwan et al. 2006). A key issue concerns the
characterization of the physiological activator(s) of these
channels. None of the neurotransmitter receptor agonist
tested (bethanechol, a-methyl-5-hydroxytryptamine, phenyl-
ephrine and histamine) had an effect. Although a clear
understanding of the signalling pathway controlling the
DAG-activated cation channels remains unclear as well as
their exact molecular identity, we provide experimental
evidence for the existence of functional second messenger-
operated cationic channels in cortical neurons from E13
mouse embryos. Inositol 1,4,5-trisphosphate and DAG are
second messengers playing important roles in cell signalling.
Inositol 1,4,5-trisphosphate links cell surface receptors and
Ca2+ signalling whereas DAG is the physiological activator
of protein kinase C and thus controls protein phosphoryla-
tion. This latter process is regarded as one of the most
important molecular mechanisms by which extracellular
signals produce their biological responses (Walaas and
Greengard 1991). As already shown, DAG also regulates
in a PKC independent manner the activity of some plasma
membrane ion channels (Hofmann et al. 1999; Lintschinger
et al. 2000; Poteser et al. 2006). By controlling the activity
of various ion channels and the phosphorylation of a
plethora of proteins, DAG is as a second messenger with a
widespread biological importance.
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8.3 Unpublished results 

8.3.1 Cortical cells of E13 mice express TRPC6 

Western blot experiments showed the expression of TRPC6 proteins in cultured 

cortical neurons from E13 mice (Figure 8-1). HEK and HEK-TRPC6 cells were used as 

negative and positive controls, respectively. Both HEK-TRPC6 cells and cortical neurons 

showed bands corresponding to TRPC6 (~100 kDa). A weak TRPC6 expression was found in 

HEK cells which is in agreement with previous reports showing the presence of endogenous 

TRPC channels (including TRPC6) in HEK cells (Garcia and Schilling, 1997; Wu et al., 

2000; Zagranichnaya et al., 2005).  

 

Figure 8-1 TRPC6 was found in cortical neurons 

Expression of TRPC6 was analyzed by western blot in HEK 

cells, HEK-TRPC6 cells and E13 cortical neurons. Both 

HEK-TRPC6 cells and cortical neurons show bands 

corresponding to TRPC6 (~100 kDa). A weak TRPC6 

expression is found in HEK cells.  

 

8.3.2 OAG evokes Ca2+ responses regardless of the age of the cells 

Calcium imaging experiments with Fluo-4 were carried out on freshly dissociated 

cortical cells as well as on cells kept 1, 2, 4, 5 and 6 days in vitro (DIV). OAG evoked Ca2+ 

responses regardless of the age of the cells, and these Ca2+ responses had roughly the same 

amplitude (Figure 8-2).  

 

Figure 8-2 OAG evoked Ca2+ responses regardless of the age of 

neurons 

OAG-induced Fluo-4 responses were observed in both freshly 

dissociated neurons (0 DIV) and neurons kept 1, 2, 4, 5 and 6 DIV. 

The maximal amplitude of the Fluo-4 response recorded during the 

application of OAG (100 µM) was measured for each cell. The 

number of neurons tested is indicated above each bar.  
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8.3.3 Cortical neurons display OAG- and RHC80267-induced Ca2+ responses 

An acute application of RHC80267 (50 µM) at 20-22°C weakly increased [Ca2+]i. 

Such treatment was probably not efficient enough to significantly elevate the intracellular 

concentration of DAG. Therefore, experiments were performed after a longer RHC80267 

treatment (50 µM, 20 minutes) at 37°C. Cells were kept in a Ca2+-free medium. A subsequent 

admission of Ca2+ was accompanied by large Fluo-4 signals (see article 1, Section 8.2, Fig. 

3(b), open circles). Similar experiments were conducted on RHC80267-untreated cells: the 

Ca2+ challenge was followed by much smaller Fluo-4 signals, which reflect most likely an 

entry of Ca2+ through SOC (see article 1, Section 8.2, Fig. 3(b), filled circles). The averaged 

maximal amplitudes of the Fluo-4 responses are shown in Figure 8-3. Interestingly, 35% of 

the neurons (59 out of 169) treated with RHC80267 produced large Fluo-4 signals after the 

readmission of Ca2+, whereas 65% of them poorly responded to this protocol and presented 

Fluo-4 signals similar to those seen in RHC80267-untreated neurons. It is worth mentioning 

that this percentage of RHC80267-responsive neurons (35%) is similar to the percentage of 

OAG-sensitive neurons (see article 1, Section 8.2, Results section, part ‘OAG evoked Ca2+ 

responses’).  
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Figure 8-3 Treatment of cortical neurons with RHC80267 for 20 minutes at 37°C elicited a large Ca2+ 

signal on Ca2+ readmission 

Fluo-4-loaded cells were kept in a Ca2+-free medium supplemented with 0.4 mM EGTA in the absence or 

presence of 50 µM RHC80276 for 20 minutes at 37°C. They were then placed on the stage of the microscope 

and Fluo-4 signals were recorded (at 20-22 °C). The re-introduction of 2 mM external Ca2+ was accompanied by 

an increase of the Fluo-4 fluorescence. The maximal amplitudes (normalized data) of these Fluo-4 responses are 

shown. The number of neurons tested is indicated above each bar. * p < 0.001 (Student’s t-test).  
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8.3.4 Properties of TRPC6 channels in HEK-TRPC6 cells 

In HEK-TRPC6 cells, the addition of OAG (100 µM) evoked an entry of Ca2+. These 

Ca2+ responses were asynchronous and displayed diverse kinetic patterns (transient or 

oscillatory Fluo-4 responses, Figure 8-4A). The OAG-induced Fluo-4 signals were not seen in 

the absence of extracellular Ca2+ or in HEK cells (results not shown). FFA was then used to 

verify whether this anti-inflammatory agent known to increase the amplitude of the currents 

through TRPC6 channels (Inoue et al., 2001) could enhance the OAG-induced Ca2+ entry in 

HEK-TRPC6 cells. Similarly to neurons (article 1, Fig. 4), FFA (85 µM) alone gave rise to a 

Fluo-4 response and the fluorescence augmented by 17% in HEK-TRPC6 cells (Figure 8-4A). 

This modest but long-lasting elevation of [Ca2+]i was independent of [Ca2+]o, indicating that 

FFA promoted the release of Ca2+ from internal stores (see Chapter 10). It is worth 

mentioning that these FFA-induced Ca2+ responses were also present in HEK cells (results not 

shown). When OAG (100 µM) and FFA (85 µM) were added together, larger Fluo-4 

responses were recorded (Figure 8-4A). Figure 8-4B shows that in the presence of OAG + 

FFA, the Fluo-4 signals were larger than the sum of the two signals (OAG-induced Fluo-4 

signals + FFA-induced signals). This is in agreement with the data obtained on cortical 

neurons. Of note, the Fluo-4 signals elicited by OAG + FFA were synchronous and long-

lasting (Figure 8-4A). This is clearly different from the Fluo-4 signals recorded without FFA 

(which are mainly oscillatory). Another way to analyze the data is to measure for each cell the 

area under the curve (Figure 8-4C). The results obtained clearly confirm that FFA enhances 

the OAG-sensitive Ca2+ responses (Figure 8-4D). In Chapter 10, we show that FFA alters the 

mitochondrial Ca2+ homeostasis. We suggest that these distinct Fluo-4 responses (long-lasting 

versus oscillatory) reflect the ability of mitochondria to buffer the entry of Ca2+ through 

DAG-sensitive channels (see Chapter 10 for further details). 
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Figure 8-4 FFA increased the OAG-dependent Fluo-4 responses in HEK-TRPC6 cells 

Panel A shows representative Fluo-4 responses from HEK-TRPC6 cells stimulated with OAG (100 µM) (● and 

○), OAG (100 µM) + FFA (85 µM) (▼ and ) or FFA (85 µM) alone (◆). The horizontal black bar indicates 

when OAG, OAG + FFA or FFA was added in the bath. Panel B shows the maximal amplitudes (normalized 

data) of the Fluo-4 signals under various experimental conditions. Panel C shows the area under the curve for 

each cell. Panel D is a summary graph showing the area under the curves (normalized data). In these 

experiments, only the first 250 s of the recordings were analyzed. The number of cells tested is indicated above 

each bar. * p < 0.001 (Student’s t-test). 

8.4 Discussion 

Calcium imaging and electrophysiological experiments show the existence of DAG 

(OAG or SAG)- and hyperforin-sensitive plasma membrane cation channels in cortical 

neurons. These channels are permeable to Ca2+, Na+, Ba2+ and Mn2+. The Ca2+ entry is 

controlled by extracellular Na+-independent and Na+-dependent mechanisms. The latter one 

implies most likely the NCX. OAG-sensitive responses are blocked by Gd3+ and SKF-96365 
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but potentiated by FFA. The entry of Ca2+ can also be elicited by the DAG lipase inhibitor 

RHC80267. However, the OAG-induced responses are not affected by either PKC activation 

or inhibition. Although the exact molecular identity of these DAG-sensitive channels has not 

yet been established, we suggest that TRPC6 form the DAG-sensitive channels in E13 cortical 

neurons. Indeed, the DAG responses are mimicked by hyperforin, an activator of TRPC6 

channels (Leuner et al., 2007). Furthermore, TRPC6 channels are the only TRPC channels of 

which activity is up-regulated by FFA (Inoue et al., 2001). RT-PCR, in situ hybridization and 

western blot experiments confirm the expression of TRPC6 in E13 cortex. Altogether, these 

data strongly support the idea that TRPC6 channels mediate the DAG-sensitive responses of 

cortical neurons.   

FFA upregulates the OAG-induced Ca2+ entry in both cortical neurons and 

HEK-TRPC6 cells 

FFA was used to characterize the DAG-activated cation channels. This non-specific 

anion and cation channel blocker has the property to enhance the amplitude of currents 

through TRPC6 channels (Inoue et al., 2001). It is a convenient pharmacological tool to 

characterize endogenous or heterogeneously expressed TRPC6 channels (Jung et al., 2002; 

Carter et al., 2006; Hill et al., 2006; Saleh et al., 2006; Fellner and Arendshorst, 2008; Foster 

et al., 2009). The OAG-induced Ca2+ entry is enhanced by FFA in both cortical neurons and 

HEK-TRPC6 cells. In electrophysiological experiments on cortical neurons, the current 

activated by hyperforin is potentiated by FFA. But, as already mentioned, during the time 

course of this study we noticed that FFA alone is able to increase [Ca2+]i. This latter result is 

the topic of the article 2 and will be discussed in Chapter 10.  

Hyperforin activates non-selective cation channels in cortical neurons 

Hyperforin was used to examine whether TRPC6 channels mediate the OAG-activated 

Ca2+ entry in cortical neurons. Calcium imaging experiments reveal that hyperforin triggers an 

entry of Ca2+ that is partially blocked by Gd3+. Electrophysiological experiments show that 

hyperforin activates a non-selective cation current of which amplitude is strongly reduced in 

the presence of SKF-96365 but potentiated in the presence of FFA. Interestingly, the Ca2+ 

responses controlled by hyperforin and OAG exhibit distinct kinetic patterns. The OAG-

activated Fluo-4 responses are asynchronous and either transient, oscillatory, or long-lasting. 

On the other hand, the hyperforin-activated Fluo-4 responses are synchronous (all the cells 

respond and all at the same time) characterized by a biphasic signal with a large transient peak 
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accompanied by a plateau-like phase of smaller amplitude. In fact, the transient peak reflects 

an entry of Ca2+, whereas the plateau-like phase is insensitive to [Ca2+]o
 and unaffected by the 

channel blocker Gd3+. These latter observations are summarized in the article 3 and discussed 

in details in Chapter 11. 

Perspectives  

Pyr3, a pyrazole compound, has a selective inhibitory action on both recombinant and 

native TRPC3 channels without blocking the other TRPC isoforms (Kiyonaka et al., 2009). 

We have tested this TRPC3 blocker on cortical neurons. It fails to affect the OAG-sensitive 

Fluo-4 responses (unpublished data) further indicating that TRPC6 may mediate this entry of 

cations. 

Besides pharmacological approaches, knocking out/down the expression of TRPC6 is 

another strategy that could be used to study the functions of TRPC6 channels. TRPC6-

deficient (TRPC6-/-) mice (Dietrich et al., 2005b) and transgenic mice overexpressing TRPC6 

(Zhou et al., 2008) have been generated. They could be useful for the molecular identification 

of the OAG-sensitive channels of cortical neurons. It is however important to keep in mind 

that in TRPC6-/- mice, there is an up-regulation of TRPC3 (Dietrich et al., 2005b). This 

compensatory mechanism highlights the difficulty in identifying the physiological roles of a 

given TRPC. Of note, TRPC6-/- mice are viable and have no sign of neurologic dysfunction.  

TRPC6 RNA interference (RNAi) can be achieved in cultured cells without significant 

compensation by other TRPC (Soboloff et al., 2005). However, after knocking down the 

expression of TRPC6, the DAG-induced non-selective cation current is effectively reduced 

(Soboloff et al., 2005) but not the DAG-induced Ca2+ entry (measured with fluorescent Ca2+ 

probes) (Soboloff et al., 2005; Godin and Rousseau, 2007). The latter observation may be due 

to the fact that the OAG-dependent Ca2+ entry occurs mainly via L-type VGCC or the NCX 

(the depolarization caused by the entry of Na+  through TRPC6 channels in turn activates the 

entry of Ca2+ via L-type VGCC (Soboloff et al., 2005) or via the NCX working in the reverse 

mode (Poburko et al., 2007) (see Section 1.2.2)). But this mechanism does not seem to be 

universal since suppressing the expression of TRPC6 in keratinocytes diminishes the 

hyperforin-activated Ca2+ entry (Muller et al., 2008). It is also worth mentioning that RNAi 

constructs designed against TRPC6 are used in primary neuronal cultures such as rat 

cerebellar granule neurons (Jia et al., 2007) and hippocampal neurons (Tai et al., 2008; Zhou 

et al., 2008). These constructs could be used in cortical neurons. 
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9 TRPC6 channels form iron- and zinc-conducting channels 

9.1 Introduction 

Some cation channels including several TRP channels can transport metal ions across 

the plasma membrane (see Chapter 4). In Chapter 1, we showed the existence of DAG- and 

hyperforin-sensitive TRPC6-like channels (hereinafter designated TRPC6 channels) in E13 

cortical neurons. These channels are permeable to Ca2+, Na+, Ba2+ and Mn2+. Since in the 

neuronal cell line PC12 TRPC6 channels can mediate NTBI uptake (Mwanjewe and Grover, 

2004), we thought to verify whether this property was also found in neurons of the CNS.  

We first verified the consequences of the over-expression of TRPC6 channels on the 

intracellular contents of Fe and of a few selected elements (Zn, Cu, Mn, S). Quantitative 

analyses were performed with ICP-OES and atomic absorption spectroscopy. Cellular iron 

and zinc imaging were then carried out with various fluorescent indicators (Fura-2, calcein, 

FluoZin-3). Finally, topographic and quantitative analyses of intracellular trace metals were 

obtained by using µ-SXRF. 

9.2 Results 

9.2.1 HEK-TRPC6 cells have a higher zinc content than HEK cells  

The intracellular contents of zinc and sulphur were determined by ICP-OES whereas 

the intracellular contents of copper and iron were determined by atomic absorption 

spectroscopy (but not by ICP-OES due to detection limits). It appears that over-expressing 

TRPC6 channels in HEK-293 cells increases the intracellular contents of zinc and sulphur but 

not of iron or copper (Table 9-1).  

The intracellular content of iron of cells pretreated for 1 hour at 37°C with 50 µM Fe2+ 

(FeSO4 supplemented with ascorbic acid) was quantified with atomic absorption 

spectrometry. FeSO4 was added alone or in the presence of 100 µM OAG. Adding iron in the 

external medium increased the intracellular iron content. Activating TRPC6 channels with 

OAG (in the presence of iron) did not further increase the iron content (Figure 9-1A). 

Similarly, the intracellular content of zinc of cells pretreated for 1 hour at 37°C with 50 µM 

zinc acetate was quantified with ICP-OES. Adding zinc in the external medium or activating 

TRPC6 channels with OAG (in the presence of zinc) failed to increase the zinc content 

(Figure 9-1B). 



TRPC6 channels form iron- and zinc-conducting channels 

90 

Table 9-1 Quantification of some elements with ICP-OES and atomic absorption spectroscopy in HEK 

and HEK-TRPC6 cells 

 HEK HEK-TRPC6 

Fe (µg/g protein) 127.4 ± 5.3 (4) 101.6 ± 15.0 (4) 

Zn (µg/g protein) 301.6 ± 22.7 (10) 429.4 ± 24.6 (11)* 

Cu (µg/g protein) 11.9 ± 1.8 (4) 7.8 ± 0.2 (5) 

S (µg/g protein) 6989.5 ± 517.2 (10) 13215.4 ± 700.9 (11)* 

The numbers in the brackets indicate the numbers of measurements. * P ≤ 0.001 Student’s t test. 

 

 

Figure 9-1 Quantification of iron with atomic absorption spectrometry and zinc with ICP-OES  

Panel A: Intracellular iron was quantified in HEK (black) and HEK-TRPC6 (grey) cells by atomic absorption 

spectrometry after a 1-hour treatment at 37°C  with 50 µM Fe2+ (Fe) in the presence or absence of 100 µM OAG. 

Panel B: Intracellular zinc was quantified in HEK (black) and HEK-TRPC6 (grey) cells by ICP-OES after a 1-

hour treatment at 37°C  with 50 µM Zn2+ (Zn) in the presence or absence of 100 µM OAG. * p ≤ 0.05 and ** p ≤ 

0.01 (Student’s t-test).  

9.2.2 TRPC6 over-expressed in HEK cells form iron- and zinc-conducting 

channels 

The calcium indicator Fura-2 is sensitive to transition metals (Grynkiewicz et al., 

1985), like Zn2+ (Table 9-2). It has been used to monitor the changes in the intracellular 

concentration of free zinc ([Zn2+]i) in neurons (Cheng and Reynolds, 1998). Like Ca2+, Zn2+ 

alters the excitation spectrum of Fura-2 and shifts the peak excitation wavelength from ~365 
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to ~340 nm, which provides the basis for ratiometric imaging approaches (Grynkiewicz et al., 

1985; Kress et al., 2002). On the other hand, some metals produce a concentration-dependent 

quenching of the Fura-2 signal without altering the position of the excitation spectrum, such 

as Mn2+, Fe2+ and Fe3+ (Grynkiewicz et al., 1985; Kress et al., 2002). Fura-2 has been used to 

detect cytosolic free iron in neurons, astrocytes, and oligodendrocytes kept in primary culture 

(Kress et al., 2002). Compared with Ca2+, Zn2+ and Fe2+ have higher affinities for Fura-2 

(Grynkiewicz et al., 1985; Atar et al., 1995; Kress et al., 2002). The calculated EC50 values of 

Fura-2 for Zn2+, Fe2+ and Fe3+ are ~15.5 nM, ~5.03 nM and  ~7.34 µM, respectively (Kress et 

al., 2002). 

Iron imaging experiments with Fura-2 were first carried out on HEK and HEK-TRPC6 

cells. In this set of experiments, cells were bathed in a Ca2+-free Tyrode’s solution 

supplemented with 100 µM Fe2+. Fe2+ was chosen, since Fura-2 has a higher affinity to Fe2+ 

than to Fe3+ (Kress et al., 2002).  

Figure 9-2 shows representative Fura-2 responses at 340 nm and 380 nm from a HEK-

TRPC6 cell. When Fe2+ was added to the Ca2+-free Tyrode’s solution, no change was seen in 

the fluorescence. However, upon the addition of 50 µM SAG, a quenching of the fluorescence 

was noted at both wavelengths, showing the ability of TRPC6 channels to conduct Fe2+. It is 

worth mentioning that the fluorescence quenching upon the addition of SAG (in the presence 

of Fe2+) was only seen in 31% of HEK-TRPC6 cells tested (12 out of 39).  

 

 

Figure 9-2 Iron imaging with Fura-2 in a HEK-TRPC6 cell 

Fura-2 responses at 340 nm (●) and 380 nm () from a HEK-

TRPC6 cell bathed in a Ca2+-free medium are shown. The 

fluorescence quenching upon the addition of SAG (in the 

presence of Fe2+) was only seen in 31% of HEK-TRPC6 cells 

tested (12 out of 39). The arrows indicate when Fe2+ or SAG 

was added. 

 

Similar experiments were carried out with 50 µM Zn2+ (zinc acetate). Figure 9-3A 

shows representative Fura-2 responses at 340 nm and 380 nm from a HEK-TRPC6 cell. When 

Zn2+ was added to the Ca2+-free Tyrode’s solution, the fluorescence remained unaffected. 

However, when 50 µM SAG was added in the Zn2+-rich medium, a clear increase of the Fura-
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2 fluorescence at 340 nm and a quenching at 380 nm were noted. The ratio of the fluorescence 

at 340 nm to that at 380 nm is shown in Figure 9-3B (open circles, n = 30). Of note, the 

responses upon the addition of SAG (in the presence of Zn2+) were seen in practically all 

HEK-TRPC6 cells. These results show that TRPC6 channels over-expressed in HEK cells can 

form Zn2+-conducting channels. Indeed, when compared with HEK cells (Figure 9-3B, filled 

circles, n = 52), HEK-TRPC6 cells showed a larger Zn2+ uptake. The weak Zn2+ entry seen in 

HEK cells may reflect the presence of endogenous TRPC6 channels. In conclusion, TRPC6 

channels over-expressed in HEK cells can transport iron or zinc across the plasma membrane. 
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Figure 9-3 Zinc imaging with Fura-2 in HEK and HEK-TRPC6 cells 

Panel A shows representative Fura-2 responses at 340 nm (●) and 380 nm () from a HEK-TRPC6 cell bathed 

in a Ca2+-free medium. The responses upon the addition of SAG (in the presence of Zn2+) were seen in 

practically all HEK-TRPC6 cells. Panel B shows the changes in Fura-2 fluorescence (ratio F340 nm/F380 nm) in 

HEK cells (●, n = 52) and HEK-TRPC6 cells (○, n = 30) bathed in a Ca2+-free medium. The arrows indicate 

when Zn2+ or SAG was added. 

9.2.3 In cortical neurons TRPC6 channels form iron- and zinc-conducting 

channels 

Iron and zinc imaging experiments were performed on cortical neurons loaded with 

Fura-2. By using the protocols illustrated in Figure 9-2 and Figure 9-3, we found that cortical 

neurons could permit the entry of iron or zinc after the activation of OAG-sensitive channels 

(Figure 9-4 and Figure 9-5).  
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Figure 9-4 Iron imaging with Fura-2 in cortical neurons 

Fura-2 responses at 340 nm () and 380 nm (●) from a cortical neuron bathed in a Ca2+-free medium are shown. 

The fluorescence quenching upon the addition of SAG (in the presence of Fe2+) was seen in 24% of the neurons 

tested (10 out of 41). The arrows indicate when Fe2+ or SAG was added.  
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Figure 9-5 Zinc imaging with Fura-2 in cortical neurons 

Fura-2 responses at 340 nm (●) and 380 nm () from a cortical neuron bathed in a Ca2+-free medium are shown. 

The responses upon the addition of SAG (in the presence of Zn2+) were seen in practically all the neurons tested. 

The arrows indicate when Fe2+ or SAG was added. 

 

Calcein is a derivative of fluorescein. Its fluorescence is quenched upon binding to 

iron. The affinities of calcein for Fe2+ and Fe3+ are identical to those of EDTA (affinity 

constants of ~10-14 and 10-24 M, respectively) (Breuer et al., 1995). It is thus described as an 

iron probe. Since the fluorescence of calcein increases as [Ca2+]i increases, external Ca2+ was 

omitted in order to monitor iron entry. Both Fe2+ and Fe3+ were tested. In Figure 9-6A, the 

addition of 50 µM Fe3+ (ferric ammonium citrate, FAC) to cortical neurons bathed in a Ca2+-

free Tyrode’s solution caused no change in the calcein fluorescence, whereas the subsequent 

application of 50 µM SAG provoked a sudden decrease. In Figure 9-6B, a clear quench was 

seen upon the addition of 50 µM Fe2+ + SAG but not with Fe2+ alone. Here again, and 
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similarly to the experiments conducted with HEK-TRPC6 cells, the quenching of the calcein 

fluorescence was seen only in some cortical neurons. 
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Figure 9-6 Iron imaging with calcein in cortical neurons 

In panel A is shown the calcein fluorescence in a cortical neuron bathed in a Ca2+-free Tyrode’s solution. The 

fluorescence quenching upon the addition of SAG (in the presence of Fe3+) was seen in 38% of the neurons 

tested (8 out of 21). The arrows indicate when Fe2+ or SAG was added. In panel B, 50 µM Fe2+ was added 

without (●) or with () 50 µM SAG in a Ca2+-free Tyrode’s solution. The fluorescence quenching upon the 

addition of Fe2+ + SAG was seen in 27% of the neurons tested (7 out of 26). The arrow indicates when Fe2+ or 

Fe2+ + SAG were added. 

 

New Zn2+-selective fluorescent indicators have been synthesized (Gee et al., 2002b). 

FluoZin-3 is one of the most Zn2+-sensitive and Zn2+-specific probes. It exhibits a several 

hundred-fold increase in fluorescence upon saturation with Zn2+ occurring at ~100 nM Zn2+ in 

vitro with a Kd of 15 nM (Gee et al., 2002a; Gee et al., 2002b), and a >50-fold fluorescence 

increase upon saturation (~100 nM Zn2+) in cells with an intracellular Kd of 3-4 nM (Gee et al., 

2002b). It is important that Ca2+ ions do not interfere with Zn2+ measurements. Hence, the low 

Kd value for Zn2+ without detectable Ca2+ sensitivity (Table 9-2) makes FluoZin-3 an ideal 

Zn2+ probe (Gee et al., 2002b).  

FluoZin-3 experiments were carried out on cortical neurons kept in a Ca2+-free 

Tyrode’s solution. Figure 9-7A shows that 50 µM Zn2+ elicited a weak FluoZin-3 response but 

a subsequent addition of 50 µM SAG provoked a strong elevation of the FluoZin-3 

fluorescence. A different protocol was used to further compare the entry of Zn2+ induced by 

50 µM Zn2+ , 50 µM Zn2+ + 50 µM SAG and 50 µM Zn2+ + 10 µM hyperforin (Figure 9-7B, C, 

red). The increase in FluoZin-3 fluorescence under these conditions is summarized in Figure 
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9-7D (red). The same set of experiments was carried out in a normal Tyrode’s solution where 

2 mM Ca2+ was present (Figure 9-7B, C, black) and the increase in FluoZin-3 fluorescence is 

shown in Figure 9-7D (black). The entry of Zn2+ in the absence of extracellular Ca2+ was 

larger than that in the presence of Ca2+, showing Zn2+ and Ca2+ competed with each other. It is 

worth mentioning that for all the experiments performed, 50 µM N, N, N′, N′-tetrakis (2-

pyridylmethyl) ethylenediamine (TPEN) was bath-applied at the end of the recording as 

illustrated in Figure 9-7A. This chelator with a strong affinity for Zn2+ (Kd = 0.26 fM, (Arslan 

et al., 1985)) fully reversed the Zn2+ responses and returned the FluoZin-3 fluorescence to the 

baseline (Figure 9-7A), which is in agreement with previous results (Gee et al., 2002b).   

In conclusion, endogenous TRPC6 channels of cortical neurons form iron- and zinc-

conducting channels. 

 

Table 9-2 Comparison between Fura-2 and FluoZin-3 

Probe λex (nm) λem (nm) 

Kd 

Reference 
Zn2+ Ca2+ 

Fura-2 340/380 510 1.6-3 nM 135-310 nM 
(Grynkiewicz et al., 1985; 

Atar et al., 1995) 

FluoZin-3 491 520 15 nM NAa (Gee et al., 2002b) 

a No fluorescence response to ≤ 10mM Ca2+ was observed. 
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Figure 9-7 Zinc imaging with FluoZin-3 in cortical neurons 

In panel A, cortical neurons (n = 59) were kept in a Ca2+-free Tyrode’s solution. The arrows indicate when Zn2+, 

SAG or TPEN was added. In panel B are shown FluoZin-3 responses induced by 50 µM Zn2+, 50 µM Zn2+ + 50 

µM SAG and in panel C 50 µM Zn2+ + 10µM hyperforin (Hyp), in the presence (black) or absence (red) of Ca2+ 

in the medium. The arrows indicate when Zn2+, Zn2+ + SAG or Zn2+ + hyperforin were added.  Panel D is a 

summary graph with the black bars showing the experiments done in the presence of Ca2+ and the red bars in the 

absence of Ca2+. For each cell, the maximal increase in FluoZin-3 fluorescence during the application (400 s) of 

Zn2+, Zn2+ + SAG or Zn2+ + hyperforin was measured. The number of the cells tested is indicated above each 

bar. * p ≤ 0.001 (Student’s t-test followed by Mann-Whitney Rank Sum Test). There is a statistically significant 

difference among the black bars or the red bars with p ≤ 0.001 (one-way ANOVA). 

 

9.2.4 Topographic and quantitative analyses of metals in cortical neurons, HEK 

and HEK-TRPC6 cells  

Synchrotron microbeam X-ray fluorescence (µ-SXRF) was applied for topographic 

and quantitative analyses of selected elements in HEK cells, HEK-TRPC6 cells and E13 
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cortical neurons. The aim of these experiments was to analyze the intracellular content and 

distribution of selected trace metals (Fe, Zn, Cu, Mn) without or with activating TRPC6 

channels.  

9.2.4.1 Quantitative analyses of selected trace metals in HEK and HEK-TRPC6 cells 

Intracellular trace metals (Fe, Zn, Cu, Mn) were quantified and compared between 

HEK and HEK-TRPC6 cells. HEK-TRPC6 cells are enriched in zinc and manganese, while 

the contents of iron and copper are the same in HEK and HEK-TRPC6 cells (Table 9-3). The 

high manganese content of HEK-TRPC6 cells was not detected before with ICP-OES because 

of the detection limits (Section 9.2.1). The results of zinc, iron and copper are in line with 

those obtained with ICP-OES and with atomic absorption spectrometry (Table 9-1).    

 

Table 9-3 Quantification of some trace metals by X-ray fluorescence in HEK and HEK-TRPC6 cells 

 HEK HEK-TRPC6 

Fe (ng/cm2) 93.1 ± 18.4 120.4 ± 25.4  

Zn (ng/cm2) 379.2 ± 61.0 560.7 ± 45.5 * 

Cu (ng/cm2) 8.5 ± 1.2 9.0 ± 1.3 

Mn (ng/cm2) 28.3 ± 2.9 93.0 ± 11.6 ** 

4 HEK cells and 5 HEK-TRPC6 cells were analyzed. * P ≤ 0.05 Student’s t-test, ** P ≤ 0.05 Student’s t-test 

followed by Mann-Whitney Rank Sum Test. 

 

Figure 9-8 shows representative two-dimensional (2D) mappings of intracellular iron 

and zinc in HEK (A-B) and HEK-TRPC6 (C-D) cells. The iron distribution is heterogenous 

with numerous punctae while zinc is rather homogenously distributed all over the cell with a 

strong density in the nucleus.  
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Figure 9-8 2D mappings of intracellular iron and zinc in HEK and HEK-TRPC6 cell 

Representative 2D mappings of iron and zinc in a HEK cell (A: iron; B: zinc) and in a HEK-TRPC6 cell (C: 

iron; D: zinc) were obtained with µ-SXRF. The ladders on the right of the panels show the iron/ zinc intensity 

(counts).  

 

9.2.4.2 Activation of TRPC6 channels in the presence of iron leads to an intracellular 

accumulation of iron in HEK-TRPC6 cells 

HEK-TRPC6 cells were exposed to 50 µM Fe2+ in the presence or absence of 100 µM 

OAG for 1 hour at 37°C. After this treatment, the cells were washed, cryofixed and analyzed 

with µ-SXRF. The intracellular content of iron was quantified (Figure 9-9A). The iron content 

was not greatly affected after a 1-hour treatment with Fe. However, in the presence of OAG + 

Fe, the iron content was increased by 110% when compared to the control (OAG and Fe-

untreated) cells and by 45% when compared to the Fe-treated cells. These results are different 

from those obtained with atomic absorption spectroscopy. In the latter case, activating TRPC6 

channels with OAG (in the presence of Fe) did not further increase the iron content (Figure 

9-1). This difference may be due to the limited number of experiments carried out and/or the 

detection limits of each methodology. 



RESULTS AND DISCUSSIONS 

99 

The intracellular contents of zinc, copper and manganese were also compared (Figure 

9-9B, C, D). Interestingly, incubating HEK-TRPC6 cells in an iron-rich medium (without or 

with OAG) diminished the intracellular contents of zinc and manganese (for copper, the 

decrease is not statistically significant). 
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Figure 9-9 Activation of TRPC6 channels in an iron-rich extracellular medium induced an intracellular 

accumulation of iron in HEK-TRPC6 cells 

HEK-TRPC6 cells were maintained for 1 hour (at 37°C) in a medium containing 50 µM Fe2+ (Fe) in the 

presence or absence of 100 µM OAG. After the treatment, the cells were washed, cryofixed and analyzed with µ-

SXRF. Panels A, B, C and D show the intracellular contents of iron, zinc, copper and manganese, respectively. 

The number of cells analyzed for each condition (control, + Fe and + Fe + OAG) is 5, 3 and 4, respectively. * P 

≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.005, Student’s t-test. 
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9.2.4.3 OAG and hyperforin have distinct effects on the intracellular iron content of 

cortical neurons 

µ-SXRF experiments were also carried out on cortical neurons. Figure 9-10 shows the 

2D mapping of intracellular iron and zinc in a cortical neuron. 
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Figure 9-10 2D mappings of intracellular iron and zinc in a cortical neuron 

Representative 2D mappings of iron (A) and zinc (B) in a cortical neuron were obtained with µ-SXRF. The 

ladders on the right of the panels show the iron/zinc intensity (counts).  

 

The same experiments as the ones illustrated in Figure 9-9 were carried out on cortical 

neurons to verify whether activating TRPC6 channels in an iron-rich medium caused an 

intraneuronal accumulation of this metal. Cortical neurons were treated for 5 minutes or 1 

hour (at 37°C) with 10 µM Fe2+ in the presence or absence of 100 µM OAG (or 10 µM 

hyperforin). The concentration of Fe used (10 µM) was smaller than with HEK-cells (50 µM) 

in order to avoid neurotoxic effects. The intracellular contents of iron, zinc, copper and 

manganese are shown in Figure 9-11. A short treatment (5 minutes) with Fe + OAG increased 

the intracellular iron content, which was accompanied by an augmentation of the intracellular 

zinc, copper and manganese contents. The contents of these metals after a 5-minute treatment 

with Fe + OAG were of the same levels as those after 1-hour treatment with Fe alone. 

However, a longer treatment (1 hour) with Fe + OAG failed to further increase the 

intracellular iron content. Surprisingly, the cellular contents of all metals (except copper) after 

this 1-hour treatment returned to their corresponding control levels. In the case of hyperforin, 

the cellular contents of all four metals were increased after the treatment with Fe + hyperforin. 
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Unlike OAG, the intracellular contents of the metals (especially iron) were positively 

correlated to the duration of the treatment: a 1-hour treatment causes a stronger accumulation 

than a 5-minute treatment. 
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Figure 9-11 The intracellular contents of Fe, Zn, Cu and Mn of cortical neurons after a 5-minute or 1-

hour treatment with iron 

Cortical neurons were maintained for 5 minutes (min) or 1 hour (h) (at 37°C) in a culture medium supplemented 

with 10 µM Fe2+ (Fe) in the absence or presence of 100 µM OAG (or 10 µM hyperforin (Hyp)). After the 

treatment, neurons were washed, cryofixed and analyzed with µ-SXRF. Panels A, B, C and D show the 

intracellular contents of iron, zinc, copper and manganese respectively. The number of cells analyzed for each 

condition (control, + Fe 1 h, + Fe + OAG 5 min, + Fe + OAG 1 h, + Fe + Hyp 5 min and + Fe + Hyp 1 h) is 7, 4, 

5, 5, 4 and 8,  respectively.  
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9.3 Discussion 

Our results reveal that TRPC6 channels can permit the entry of iron and zinc. 

Quantitative analyses with ICP-OES and atomic absorption spectrometry show that over-

expressing TRPC6 in HEK cells is accompanied by an enhancement of the intracellular 

contents of zinc and sulphur whereas the contents of iron and copper remain unaffected. Iron 

and zinc imaging experiments indicate that TRPC6 channels, either overexpressed in HEK 

cells or endogenously present in cortical neurons, are permeable to iron and zinc when 

activated by SAG or hyperforin. The state-of-art technique µ-SXRF was used for topographic 

and quantitative analyses of selected elements (iron, zinc, copper and manganese) in HEK 

cells, HEK-TRPC6 cells and cortical neurons. These experiments further show that activating 

TRPC6 channels in the presence of iron leads to an intracellular iron accumulation in both 

HEK-TRPC6 cells and cortical neurons.  

HEK-TRPC6 cells are enriched in zinc, sulphur and manganese 

By using different quantitative analysis techniques (ICP-OES, atomic absorption 

spectrometry and µ-SXRF), we show that overexpressing TRPC6 channels in HEK cells  

increases the intracellular contents of some elements such as zinc, sulphur and manganese 

(Table 9-1 and Table 9-3) without altering the iron and copper status (Table 9-1 and Table 

9-3). Zinc imaging experiments carried out on HEK-TRPC6 cells show that TRPC6 form 

zinc-conducting channels (Figure 9-3B), which can explain why HEK-TRPC6 cells are 

enriched in zinc. The enhancement of the sulphur content probably reflects an increased 

expression of sulphur-containing proteins, like MT. MT are the main zinc-binding proteins. 

They are rich in cysteine and their expression level is up-regulated by high [Zn2+]i via a 

posttranscriptional regulation system (Langmade et al., 2000; Andrews, 2001). Indeed, a zinc 

finger domain containing metal-response element-binding factor-1 (MTF-1) has been 

identified as a cellular sensor of zinc status, controlling the expression of MT by binding their 

specific gene promoters, termed metal-response element (MRE) (Langmade et al., 2000; 

Andrews, 2001). We are planning to compare the expression level of MT in HEK and HEK-

TRPC6 cells. Finally, it is not surprising to see a manganese overload in HEK-TRPC6 cells, 

since TRPC6 channels form Mn2+-conducting channels (Hofmann et al., 1999; Boulay, 2002). 

The DAG-sensitive channels of cortical neurons are permeable to Mn2+
 (article 1, Section 8.2). 

However, no change is observed for iron in HEK-TRPC6 cells, although TRPC6 channels are 

permeable to iron. This may indicate that cells control more tightly the content of this redox 

metal than their zinc content. 
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TRPC6 channels form iron-conducting channels 

Although quantitative analyses show that the intracellular iron content of HEK and 

HEK-TRPC6 cells are of the same level (Table 9-1 and Table 9-3), iron imaging experiments 

demonstrate that TRPC6 channels over-expressed in HEK cells are permeable to iron (Figure 

9-2). This finding is in agreement with a previous report (Mwanjewe and Grover, 2004). In 

the presence of Fe2+ + OAG, HEK-TRPC6 cells are enriched in iron. Their intracellular iron 

content is increases by 110 % when compared to control (untreated) cells and by 45 % when 

compared to cells treated with Fe2+
 alone (Figure 9-9A). These results obtained with µ-SXRF 

are different from those obtained with atomic absorption spectrometry (Figure 9-1), where 

OAG did not further enhance the iron content (when compared to OAG-untreated cells). It is 

important to know that some intrinsic differences exist among these techniques. The 

measurements with atomic absorption spectroscopy are based on a large quantity of cells, and 

the intracellular content of iron is normalized to the total protein quantity; while µ-SXRF 

carries out quantifications at the cellular level, and the intracellular content of iron is 

normalized to the surface of the cell analyzed. These two techniques quantify all the iron 

existing in the cells including cytosolic free iron, iron bound to proteins or ligands as well as 

iron stored in the organelles, while iron imaging shows the cytosolic variations of free iron. 

Another factor that may account for the discrepancies found between the results of µ-SXRF 

and of atomic absorption spectrometry is that the number of the measurements with atomic 

absorption spectrometry is limited (Figure 9-1). It is important to mention that the data 

collected by means of the synchrotron technique originate from 3 series of experiments 

(February, June and November 2008). The access to the European Synchrotron Radiation 

Facility (ESRF) is limited. The scientific project was submitted to the ESRF scientific 

committee in March 2007 and the decision allowing us some beam time in 2008 was taken 

(and announced) in June 2007. Obtaining new sessions would necessitate the resubmission of 

another proposal. Under these conditions, the additional experiments could not be performed 

before several months... 

Taken together, it is concluded that TRPC6 channels form iron-conducting channels. 

Effects of DAG on the intracellular iron content  

Cellular iron imaging and µ-SXRF experiments were also carried out on cortical 

neurons. Iron imaging was performed with either Fura-2 (Figure 9-4) or calcein (Figure 9-6) 

in a calcium-free medium. The quenching of the fluorescence in the presence of Fe2+/Fe3+ + 
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SAG indicates that TRPC6 channels of cortical neurons are permeable to iron. It is worth 

mentioning that in both HEK-TRPC6 cells and cortical neurons, the quenching of the 

fluorescence is only seen in some cells (31%). Quantitative analyses with µ-SXRF (Figure 

9-11A) after a short treatment (5 minutes) with Fe2+ + OAG show a higher intracellular iron 

content: it reaches the same level as that seen after a 1-hour treatment with Fe2+ alone. 

However, a 1-hour treatment with Fe2+ + OAG fails to further increase the intracellular iron 

content but rather brings it back to the level seen in the control (untreated) neurons. This 

likely reflects the existence of regulatory mechanisms that protect the cells from iron overload. 

Several putative protective mechanisms have so far been reported. One is a posttranscriptional 

regulation implying two cytoplasmic iron regulatory proteins (IRP), IRP1 and IRP2. They 

interact with iron responsive elements (IRE) found in untranslated regions of mRNA 

encoding key proteins involved in the regulation of iron storage and metabolism. The cellular 

labile iron pool regulates the binding of IRP to IRE and affect either mRNA translation or 

mRNA stability, thus regulating the synthesis of specific proteins (Hentze et al., 2004; 

Pantopoulos, 2004; Andrews and Schmidt, 2007). When there is an iron overload, IRP are 

inactivated for IRE-binding, which up-regulates the expression of proteins involved in iron 

storage (ferritin) and export (ferroportin) but down-regulates the expression of those involved 

in iron uptake (TfR, DMT1) (Hentze et al., 2004). Another one is concerns a posttranslational 

regulatory mechanism involving hepcidin. Iron regulates the secretion of hepcidin, which in 

turn controls the concentration of ferroportin on the cell surface (Nemeth et al., 2004). In 

addtion, iron exposure to brain cells is known to produce pro-inflammatory cytokins such as 

interleukin-1(Molina-Holgado et al., 2007)Interleukin-1up-regulates the expressions of 

ceruloplasmin and ferroportin in astrocytes (di Patti et al., 2004). Of note, interleukin-

1enhances ROCE via TRPC6 channels in astrocytes and chronic treatment with interleukin-

1up-regulates the expression of TRPC6  (Beskina et al., 2007). Since TRPC6 can mediate 

the entry of iron and is up-regulated by interleukin-1which, on its side influences iron 

efflux systems), it would be interesting to determine more precisely how these actors regulate 

the neuronal homeostasis of iron 

In our experiments, the augmentation of the intracellular iron content seen after a 5-

minute treatment with Fe2+ + OAG reflects the iron entry via TRPC6 channels. But after a 

longer (1 hour) treatment, the iron content is similar to the one measured in control (untreated) 

cells. This indicates that during this 1 hour treatment, neuronal cells respond positively to an 

iron overload by decreasing the entry and/or (most likely) by promoting the efflux of the trace 
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metal. Interestingly, the existence of regulatory mechanisms intended to diminish the 

intracellular iron content has been suggested for SH-SY5Y neuroblastoma cells and 

hippocampal neurons (Aguirre et al., 2005). In this study, the authors show that iron 

accumulation kills some cells but that a sub-population respond to the iron exposure 

positively by decreasing the expression of DMT1 and increasing the expression of ferritin and 

ferroportin (Aguirre et al., 2005).  

However, in our experiments, the intracellular iron content measured after a 1-hour 

incubation with Fe2+ alone is clearly larger than the control iron level. Moreover, when OAG 

is replaced by hyperforin, the intracellular iron content is positively correlated to the duration 

of the treatment (Figure 9-11A). These two observations seem to indicate that the mechanisms 

participating in neuronal regulation of iron homeostasis are rather DAG-dependent. Some 

PKC are activated by DAG, and PKC activation is known to directly phosphorylate IRP1 and 

to increase the binding of IRP1 to IRE resulting in an up-regulation of the expression of 

ferritin and TfR (Eisenstein et al., 1993; Schalinske and Eisenstein, 1996; Schalinske et al., 

1997). In addition, the down-regulation of the expression of ferroportin induced by hepcidin 

is mediated by Janus Kinase 2 (JAK2), a nonreceptor tyrosine kinase (De Domenico et al., 

2009). The binding of hepcidin to ferroportin triggers the binding of JAK2 to ferroportin and 

JAK2 phosphorylation, which in turn phosphorylates ferroportin and permits the 

internalization of ferroportin (De Domenico et al., 2009). Interestingly, JAK2 is also 

phosphorylated downstream from DAG/PKC (Rodriguez-Linares and Watson, 1994), and 

PKC is suggested to negatively regulate JAK2 (Kovanen et al., 2000; Rui et al., 2000). Thus, 

PKC activation induced by DAG might abolish the hepcidin-induced internalization of 

ferroportin, which could favour the iron export. The exact mechanism accounting for the 

DAG-dependent regulation of iron homeostasis seen in cortical neurons is unknown. But 

based on the experimental data published so far, it can be suggested that the low level of iron 

noted after a 1-hour treatment with Fe2+ + OAG indicates the existence of a DAG/PKC-

dependent signaling pathway participating in the regulation of iron homeostasis in cortical 

neurons. 

Interaction among iron, zinc, copper and manganese 

In cortical neurons, the intracellular contents of iron, zinc, copper and manganese after 

different treatments are positively correlated (except copper after a 1 hour-treatment with 

FeSO4 + OAG) (Figure 9-11). When the iron content increases, the contents of other metals 

increase, and vice versa. These results indicate that trace metals are present in the salt of 
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FeSO4. On the contrary, in HEK-TRPC6 cells, the increase in iron is accompanied by 

decreases in the other metals (Figure 9-9). The reason accounting for the different results from 

these two types of cells remains unclear at present; whereas it is certain that the cellular iron 

status influences the other metals and this influence is cell type-dependent. 

There exist some overlaps in the transport systems of metals. For example, the metals 

analyzed in the present study all share DMT1 for entering the cells. Iron and manganese 

compete for transferrin, DMT1, VGCC (Roth and Garrick, 2003) and maybe ferroportin (Wu 

et al., 2004a). Ceruloplasmin or hephaestin, responsible for iron export, are both copper-

binding proteins that are involved in copper homeostasis. Iron and zinc share as well VGCC 

and Zip14 (Liuzzi et al., 2006) for entering the cells. As iron regulates the expression of a 

number of key proteins involved in divalent metal transport, the iron status may influence on 

the transport of other metals (Roth and Garrick, 2003). The covariance among these metals 

has been shown in several studies (Jones et al., 2008; Zhang et al., 2009). 

TRPC6 channels form zinc-conducting channels 

Cellular zinc imaging experiments with Fura-2 and FluoZin-3 show that TRPC6 

channels form zinc-conducting channels in both HEK-TRPC6 cells (Figure 9-3) and cortical 

neurons (Figure 9-5 and Figure 9-7), even in the presence of physiological concentrations of 

Ca2+. Zinc entry in the absence of extracellular Ca2+ is larger than in the presence of Ca2+, 

indicating that Zn2+ and Ca2+ compete with each other. Of note, the zinc entry induced by 

OAG or hyperforin was observed in practically all the cells analyzed. 

Perspectives  

Here we show that native or overexpressed TRPC6 channels form iron- and zinc-

conducting channels. However, the physiological and pathophysiological roles of the metal 

entry via these channels need to be further elucidated. In addition, whether exchangers like 

the NCX participate cooperatively in mediating this entry of iron or zinc remains unknown. 

Since we have found that a 1-hour treatment with Fe2+ + OAG fails to further increase the 

intracellular iron content but rather brings it back to the control level, analyses of the 

expression levels of the proteins involved in iron transport such as DMT1 and ferroportin 

after these treatments (Fe, Fe + OAG for 5 minutes or 1 hour) may provide new information. 

Moreover, quantitative analyses of the intracellular zinc content after various treatments (Zn, 

Zn + OAG or Zn + hyperforin for 5 minutes or 1 hour) may help understand more profoundly 

the cellular regulatory mechanisms of zinc homeostasis.  
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10 Flufenamic acid modulates store-operated and TRPC6 

channels by altering mitochondrial calcium homeostasis 

10.1 Introduction 

FFA is a non-steroidal anti-inflammatory drug belonging to the family of fenamates. It 

is often used as a non-specific channel blocker but, a few reports have revealed that it also 

increases the amplitude of some currents. Table 10-1 provides an overview of its inhibitory 

and excitatory actions on ion channel currents. Interestingly, FFA reversibly enhances 

currents through TRPC6 channels, whereas it inhibits currents through TRPC3 and TRPC7 

channels in a dose-dependent manner (Inoue et al., 2001; Jung et al., 2002; Carter et al., 2006; 

Hill et al., 2006; Saleh et al., 2006; Fellner and Arendshorst, 2008).  

In addition, FFA is known to induce the release of Ca2+ from organelles (McDougall et 

al., 1988; Poronnik et al., 1992; Shaw et al., 1995; Jordani et al., 2000). Indeed, in our 

experiments we found that FFA could increase [Ca2+]i in HEK cells and in cortical neurons. 

Since FFA is now commonly used to characterize TRPC6 channels, we decided to further 

analyze its effects on the Ca2+ homeostasis. It turned out that FFA acted intracellularly by 

releasing Ca2+ from mitochondria. We suggest that it indirectly regulates TRPC6 channels via 

its action on these organelles.   

10.2 Article 2: The anti-inflammatory agent flufenamic acid depresses store-

operated channels by altering mitochondrial calcium homeostasis 
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Table 10-1 The inhibitory and excitatory actions of flufenamic acid on ion channel currents 

Action  Channels Tissue/cell type References  

Inhibition of 

currents 

Calcium-activated non-

selective (CAN) cation 

channels  

Exocrine pancreas cells (Gogelein et al., 1990) 

Molluscan neuons (Shaw et al., 1995) 

Sensory neurons (Cho et al., 2003) 

SOC Neutrophils (Kankaanranta and Moilanen, 1995; 

Sandoval et al., 2007) 

Lymphocytes (Kankaanranta et al., 1996) 

Voltage-gated Ca2+ channels Smooth muscle cells (Shimamura et al., 2002) 

Voltage-gated Na+ channels  Dorsal root ganglion 

neurons 

(Lee et al., 2003a) 

Voltage-gated K+ channels Oocytes (Wang et al., 1997) 

Ca2+-activated Cl- channels Oocytes  (White and Aylwin, 1990) 

Small-conductance Cl- 

channels 

T lymphocytes (Schumacher et al., 1995) 

CFTR Cl- channels Oocytes (McCarty et al., 1993) 

NMDA receptors Spinal cord neurons (Lerma and Martin del Rio, 1992) 

TRPC3 HEK cells  (Inoue et al., 2001) 

TRPC7 HEK cells  (Inoue et al., 2001) 

TRPC5 Myocytes and HEK cells (Lee et al., 2003b) 

TRPM2 Insulinoma cell line (Hill et al., 2004) 

TRPM4 HEK cells (Ullrich et al., 2005) 

TRPM5 HEK cells (Ullrich et al., 2005) 

TRPM7 Breast cancer cells (Guilbert et al., 2009) 

Augmentation 

of currents 

Ca2+-activated K+ channels smooth muscle cells (Ottolia and Toro, 1994) 

K+ channels Smooth muscle and 

epithelial Cells 

(Rae and Farrugia, 1992; Farrugia et 

al., 1993b; Farrugia et al., 1993a) 

TRPC6 HEK and smooth muscle 

cells 

(Inoue et al., 2001) 
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Fenamates like flufenamic acid (FFA) are anti-inflammatory drugs known to alter ion fluxes through the
plasma membrane. They are for instance potent blockers of cation and anion channels, and FFA is now
commonly used to block currents through TRP channels and receptor-operated channels. However, FFA
exerts complex and multifaceted actions on ion transport systems and, in most instances, a molecular
understanding of these FFA-dependent modulations is lacking. In addition, FFA is also to known to
perturb the homeostasis of Ca2þ. In the present report, we investigated whether the FFA-induced
alterations of the Ca2þ homeostasis could play a role in the FFA-dependent modulation of trans-
membrane ion fluxes. Experiments performed with the Ca2þ indicator Fluo-4 on cultured cortical
neurons and HEK-293 cells showed that FFA increased the cytosolic concentration of Ca2þ even in cells
kept in a Ca2þ-free medium or when the endoplasmic reticulum was depleted with thapsigargin. The
FFA-dependent Ca2þ responses were, however, strongly reduced by bongkrekic acid, a specific ligand of
the mitochondrial ADP/ATP carrier which, in addition, inhibits the permeability transition pore. Like
FCCP, FFA released Ca2þ from isolated brain mitochondria and indirectly modulates store-operated Ca2þ

channels. We suggest that some of the effects of FFA on plasma membrane ion channels could be
explained, at least partially, by its ability to modulate the mitochondrial Ca2þ homeostasis.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Flufenamic acid (FFA) is a non-steroidal anti-inflammatory
agent altering the activity of some ion transport systems. FFA is for
instance a potent blocker of anion and cation channels (Cho et al.,
2003; Cousin and Motais, 1979; Gogelein et al., 1990; Lee et al.,
1996; Shaw et al., 1995). More recently, FFA is becoming a useful
pharmacological tool used to block currents through transient
receptor potential (TRP) channels, a superfamily of cation channels
(Hill et al., 2004; Inoue et al., 2001; Naziroglu et al., 2007). But its
actions of C-type TRP channels (TRPC) appear complex since FFA
blocks currents through TRPC3 and TRPC7 channels whereas it
increases currents through native and heterogeneously expressed
TRPC6 channels (Inoue et al., 2001; Jung et al., 2002). Interestingly,
some TRPC-independent conductances can also be potentiated by
Biologie des Métaux, UMR
, France. Tel.: þ33 4 38 78 44

n).

All rights reserved.
FFA (Ottolia and Toro, 1994; Rae and Farrugia, 1992; Wehner et al.,
2006; Yamada et al., 1996). On the other hand, FFA has no effect on
the Na/K pump activity (Cousin and Motais, 1979). Taken together,
these data show that FFA differentially regulates ion transport
systems.

Store-operated channels (SOC) are plasma membrane Ca2þ-
conducting channels activated by emptying the endoplasmic retic-
ulum (ER) Ca2þpool. This store-dependent Ca2þ entry not only refills
the depleted ER Ca2þ stores but is also involved in many cellular
processes (Parekh and Putney, 2005). SOC are regulated by Ca2þ

ions: Ca2þ entry through SOC causes a sub-plasma membrane Ca2þ

accumulation depressing SOC activity (Duszynski et al., 2006). As
a consequence, drugs inhibiting the mitochondrial Ca2þ uptake or
the protonophore carbonyl cyanide 4-(trifluoromethoxy)phenyl-
hydrazone (FCCP) are potent blockers of SOC (Duszynski et al., 2006;
Hoth et al., 1997). Therefore, by buffering Ca2þ ions near SOC,
mitochondria critically control this Ca2þ-dependent inactivation
process and appear as important physiological regulators of SOC. In
the present study we provide experimental evidence showing that
FFA (i) releases Ca2þ from mitochondria, and (ii) strongly reduces
Ca2þ entry through SOC.

mailto:alexandre.bouron@cea.fr
www.sciencedirect.com/science/journal/00283908
http://www.elsevier.com/locate/neuropharm
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Fig. 1. FFA elicits intracellular Ca2þ responses. Representative Fluo-4 signals observed
in response to the application of FFA (85 mM) on a neuron kept 1 DIV (A) and a HEK-
293 cell (B). These cells were bathed in a normal (2 mM Ca2þ) Tyrode solution. The
graph shows the time course of the changes of the Fluo-4 fluorescence (F/F0) as
a function of time, with F being the Fluo-4 fluorescence and F0 the baseline Fluo-4
fluorescence. FFA was added when indicated by the horizontal black bars (A, B) and
washed away (A). (C) is a summary graph of experiments performed on cortical
neurons kept 1 DIV and 2 weeks in vitro (WIV). The FFA-induced Ca2þ signals were
quantified by determining, for each cell, the area under the curve. Unless otherwise
indicated, only the first 300 s of the recordings were analyzed. FFA was added in
a nominally Ca2þ-free medium (open bar) or in the presence of 2 mM Ca2þ (solid bar).
The number of cells tested is indicated for each experimental condition. This graph
shows that the FFA-induced Fluo-4 signals were present in immature neurons (i.e. with
short and thin processes) as well as in fully morphologically differentiated neurons,
regardless of the external concentration of Ca2þ.
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2. Experimental

2.1. Embryonic cortical cells in primary cultures

Cortical cells were dissociated from cerebral cortices isolated from C57BL6/J
mice embryos (vaginal plug was designated E0). Brains were collected in an ice-cold
Ca2þ- and Mg2þ-free Hanks solution supplemented with gentamycin (10 mg/ml)
and glucose (6 g/l). Cells were prepared and kept in culture according to a protocol
already described (Bouron et al., 2006). All procedures have been approved by the
Ethical Committee of Rhône-Alpes Region (France).

2.2. HEK-293 cell lines

Some experiments were carried out on HEK-293 cells (purchased from ATCC,
LGC Promochem, France). They were grown in a DMEM medium supplemented with
10% foetal bovine serum and 1% penicillin/streptomycin. The Ca2þ imaging experi-
ments (see below) were performed 2 or 3 days after the plating of the HEK-293 cells.

2.3. Calcium imaging experiments on cultured cells with Fluo-4

Cells (HEK-293 cells, neurons) were bathed in a Tyrode solution containing (in
mM) NaCl 136, KCl 5, CaCl2 2, MgCl2 1, HEPES 10, glucose 10, pH 7.4 (NaOH) and
1.25 mM Fluo-4/AM for 10 min at room temperature. They were washed two times
with a Fluo-4/AM-free Tyrode solution, stored 20 min at room temperature and then
placed on the stage of an upright Olympus BX51WI microscope equipped with
a water immersion 20� objective lens (Olympus, 0.95 NA). The emitted light,
provided by a 100 W mercury lamp, was attenuated by a neutral density filter (U-
25ND6, Olympus). Fluorescent images were captured by a cooled digital CCD
MicroMax Princetown camera (782 � 582 pixels). The software MetaFluor (v4.5,
Universal Imaging) was used to acquire the images at a frequency of 0.2 or 0.5 Hz
and to analyze off-line the data. The shutter was controlled by the shutter driver
Uniblitz VMM-D1 (Vincent Associates). The excitation light for Fluo-4 was filtered
through a 460–495 nm excitation filter and the emitted light was collected through
a 510–550 nm filter. Solutions were applied via a gravity-driven perfusing system
(w2 ml/min). Mean values of Fluo-4 measurements are reported as means � S.E.M.,
with n being the number of cell bodies tested. All the experiments were performed
at room temperature. Throughout this study the amplitude of the FFA-induced Fluo-
4 responses were analysed on soma and quantified 300 s after the application of the
anti-inflammatory agent.

2.4. Mn2þ quench experiments with Fura-2

HEK-293 cells were grown on 16 mm diameter glass cover-slips and incubated
in a Tyrode solution supplemented with 2.5 mM Fura-2 for 15 min, washed twice and
kept in a Fura-2-free Tyrode solution for 20 min. Coverslips were placed on the stage
of an Axio Observer A1 microscope equipped with a Fluar 40� oil immersion
objective lens (1.3 NA) (Carl Zeiss, France). Light was provided by the DG-4 wave-
length switcher (Princeton Instruments, Roper Scientific, France). Fura-2 loaded cells
were excited at 360 nm and emission was collected at 515 nm. The software Met-
aFluor (Universal Imaging, Roper Scientific, France) was used to acquire the images
at a frequency of 0.2 Hz by means of a CoolSnap HQ2 camera (Princeton Instruments,
Roper Scientific, France) and to analyze the data off-line. The Fura-2 loading protocol
as well as the Mn2þ quench experiments were carried out at room temperature.

2.5. Preparation of mouse brain mitochondria

Mitochondria were isolated from brains of 1-day-old neonatal mice according
to Chinopoulos et al. (2003). They were collected in an ice-cold Ca2þ- and Mg2þ-
free Hanks solution supplemented with gentamycin (10 mg/ml) and glucose (6 g/l).
The brains were transferred to a medium containing (in mM): 75 sucrose, 225
mannitol, 1 EGTA, 10 HEPES, pH 7.4 (KOH). They were homogenized with a Potter
homogenizer. The brain tissue homogenate was centrifuged at 1500 � g for 5 min
at 4 �C. The supernatant was then centrifuged at 12,000 � g for 10 min at 4 �C and
the pellet was resuspended in the same medium as above but without EGTA. The
homogenate was centrifuged at 1500 � g for 3 min at 4 �C. The supernatant was
then collected and centrifuged at 12,000 � g for 10 min at 4 �C. The pellet con-
taining the mitochondria was resuspended in a medium containing (in mM): 5 DL-
malic acid, 5 L-glutamic acid, 270 sucrose, 1 KH2PO4/K2HPO4 (pH 7.4), 10 Tris, pH
7.35 (KOH).

2.6. Calcium flux measurements from isolated mitochondria

Mitochondria were kept at 20–30 mg protein/ml. The protein content was
determined by the BCA method using BSA as a standard. The calcium measurement
experiments were carried out at 25 �C 1–6 h after the isolation of the organelles.
Mitochondrial Ca2þ signals were recorded with the membrane impermeant fluo-
rescent Ca2þ indicator Fluo-4 by means of a Fluoromax spectrofluorometer (Spex).
2.7. Assessment of mitochondrial membrane potential

The fluorescent cyanine dye 3,30-dipropylthiodicarbocyanine (diS-C3-(5)) was
used to follow the mitochondrial membrane potential (DJ) changes induced upon
addition of FFA. Isolated brain mitochondria were incubated in the presence of
10 mM diS-C3-(5). The experiments were carried out on a Fluoromax spectrofluo-
rometer with excitation at 622 nm and emission at 670 nm.

2.8. Materials

Fluo-4/AM, 3,30-dipropylthiodicarbocyanine (diS-C3-(5)) and Fluo-4 were from
Molecular Probes (Interchim, France). Flufenamic acid, 3-(4,5-dimethyl thiazol-2-
yl)-2,5-diphenyl tetrazolium bromide (MTT), carbonyl cyanide 4-(tri-
fluoromethoxy)phenylhydrazone (FCCP), dantrolene and thapsigargin were from
Sigma–Aldrich (France). All tissue culture media and reagents were obtained from
Invitrogen (France).

3. Results

3.1. FFA induces Fluo-4 responses in neurons and HEK-293 cells

The effects of FFA on Ca2þ signalling were first tested on Fluo-4-
loaded cortical neurons kept 1 day in vitro (DIV). In the presence of
a Tyrode solution containing 2 mM Ca2þ, the external application of
85 mM FFA provoked a modest but clear increase of the Fluo-4
fluorescence, as illustrated in Fig. 1A. The FFA-induced Fluo-4
response had a slow onset and was observed in all cortical cells
tested (n ¼ 394). This FFA-induced Fluo-4 response was sustained
(for at least up to 300 s) and perfectly reversible upon washout of
the drug (Fig. 1A). Similar responses were observed on HEK-293
cells (Fig. 1B) showing that FFA could affect the Ca2þ homeostasis of
murine (cortical neurons) and human (HEK-293 cells) cells.
Experiments were carried out with a nominally Ca2þ-free medium
(instead of the normal Tyrode medium containing 2 mM Ca2þ).
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Under these conditions, FFA was still able to elicit a Fluo-4 response
(Fig. 1C), even when the Ca2þ-free medium was supplemented with
0.4 mM EGTA (not shown). Cortical neurons kept 2 weeks in vitro
also exhibited FFA-dependent Fluo-4 responses not influenced by
the external concentration of Ca2þ (Fig. 1C). On average, 85 mM FFA
produced a 20–30% increase of the Fluo-4 fluorescence. The FFA-
induced Ca2þ signals were quantified by determining, for each cell,
the area under the curve. Unless otherwise indicated, only the first
300 s of the recording were analyzed. Under these conditions, the
FFA-induced Ca2þ signals were of similar amplitude, regardless of
the age of the cortical neurons (i.e. after 1 day or 2 weeks in vitro)
(Fig. 2C). When compared to neurons, HEK 293 cells displayed
weaker FFA-induced Ca2þ signals (Fig. 2C). Thus, the FFA-induced
Ca2þ rise, which occurred either with or without external Ca2þ, is
most likely due to the release of stored Ca2þ. It was observed in
HEK-293 cells and in neurons, regardless of their differentiation
state (immature or fully morphologically differentiated neurons).

3.2. FFA releases Ca2þ from internal stores

The results reported above indicated that FFA did not trigger an
entry of Ca2þ but rather favoured the release of Ca2þ from stores. To
gain further insight into the FFA-sensitive Ca2þ pool, the following
experiments were performed. Cortical neurons were treated with
thapsigargin (Tg, 1 mM), a blocker of some intracellular Ca2þ pumps
before adding FFA (85 mM). Tg-untreated and Tg-treated cells had
FFA-induced Fluo-4 responses of similar amplitude (Fig. 2A). In
another set of experiments we determined whether ryanodine
receptors (RyR), a family of intracellular Ca2þ release channels
mainly located in the ER, could play a role in the FFA-dependent
Fluo-4 responses. At E13, cortical cells express three RyR isoforms
with RyR2 being the predominant isoform whereas RyR1 and RyR3
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Fig. 2. FFA releases Ca2þ from stores. The identity of the FFA-sensitive Ca2þ pool was
determined according to the protocol illustrated in Fig. 1A. (A) shows representative
Fluo-4 signals from two different cortical cells. The external application of thapsigargin
(Tg, 1 mM) induced a transient Fluo-4 response due to the passive leakage of Ca2þ from
Tg-sensitive Ca2þ pools. A subsequent application of FFA evoked a Ca2þ rise (solid line)
as in Tg-untreated cells (dotted line). (B) shows Fluo-4 responses from three cortical
cells. FFA (85 mM) was added either alone or on cells pre-treated with dantrolene
(30 mM, 20 min at room temperature) or with bongkrekic acid (BA, 48 mM, 40 min at
room temperature). (C) is a summary bar graph showing the amplitude of the Fluo-4
responses (normalized data) induced by FFA alone (85 mM) or after one of the
following agents: thapsigargin (Tg), bongkrekic acid (BA), and dantrolene (Dantr). The
number of cells tested is indicated above each bar. *P < 0.001 (one-way ANOVA fol-
lowed by a Tukey test). The horizontal bars in A and B indicate when Tg and FFA were
present.
are only weakly expressed (Faure et al., 2001). Surprisingly, when
cells were incubated with the RyR inhibitor dantrolene (30 mM), the
FFA-induced Fluo-4 responses were of larger amplitude (Fig. 2B).
Thus, preventing the release of Ca2þ from RyR potentiated the FFA-
induced Ca2þ responses. Altogether, these experiments showed
that depleting (with Tg) or preventing (with dantrolene) the release
of Ca2þ from the ER did not inhibit the FFA-induced Ca2þ signals.
This implied that FFA (85 mM) mobilized Ca2þ from non ER Ca2þ

pools. In order to assess the contribution of mitochondria, cells
were pre-treated with bongkrekic acid before applying FFA.
Bongkrekic acid is a well-known and highly specific ligand of the
ADP/ATP carrier which also blocks the mitochondrial permeability
transition pore (Kroemer et al., 2007). On average, the maximal
amplitude of the FFA-induced Ca2þ signal was attenuated by
bongkrekic acid by w50% (Fig. 2B). In another set of experiments,
bongkrekic acid was applied when the cells were bathed in
a Tyrode solution with a pH of 6.8 because the inhibition of the
mitochondrial ADP/ATP carrier is pH dependent (Kemp et al., 1971).
Reducing the pH of the bathing solution is known to facilitate the
entry of bongkrekic acid (Lauquin and Vignais, 1976). Bongkrekic
acid was applied at pH 6.8 and then washed away with the normal
Tyrode solution (pH 7.4). A subsequent addition of FFA also elicited
Fluo-4 responses but, like at pH 7.4, they were attenuated by only
50% (n ¼ 62, P < 0.05) (not shown). These latter results indicate
that FFA perturbs the mitochondrial Ca2þ homeostasis. Fig. 2C is
a summary graph showing that thapsigargin and dantrolene failed
to inhibit the FFA-induced Ca2þ signals whereas they were
depressed by bongkrekic acid.

3.3. FFA releases Ca2þ from mitochondria

To further analyze the actions of FFA, we checked whether it
altered the mitochondrial Ca2þ handling of isolated brain mito-
chondria. Previously, we first verified their ability to sequester Ca2þ,
a sign of functional integrity. The addition of 25 mM Ca2þ into the
medium provoked a transient fluorescence increase which declined
to the basal value (Fig. 3A). This decrease in fluorescence reflected
the mitochondrial Ca2þ uptake. The addition of the protonophore
FCCP, which collapses the mitochondrial Ca2þ gradient, produced
a large increase in fluorescence reflecting the release of mito-
chondrial Ca2þ which can no longer be taken up by these organ-
elles. Thus, this protonophore gives rise to a sustained extra-
mitochondrial Ca2þ response (Ichas et al., 1997). FCCP was also able
to release Ca2þ from mitochondria even if added without a pre-
pulse of Ca2þ (not shown). When applied on cultured cortical
neurons, FCCP evoked a robust and long-lasting Ca2þ rise (Fig. 3B).
This was observed on all cells tested (n > 50) showing that mito-
chondria of embryonic cortical neurons contain FCCP-sensitive
Ca2þ pools.

We next addressed the question of the action of FFA on mito-
chondrial Ca2þ homeostasis. Experiments similar to that described
in Fig. 3A were carried out with FFA. Like FCCP, FFA released Ca2þ in
a concentration dependent manner from isolated brain mitochon-
dria when added either without (Fig. 3C) or with a prior Ca2þ pre-
pulse (not shown). FCCP (1 mM) was applied at the end of each
experiment and the FFA-induced mitochondrial Ca2þ release was
compared to the FCCP-induced Ca2þ signal. Fig. 3D is a dose–
response curve showing that FFA triggers the release of Ca2þ from
isolated mitochondria with an EC50 of 18 mM. This FFA-induced
mitochondrial Ca2þ release was reduced by bongkrekic acid and
cyclosporin A by w20% (n ¼ 3) and w50% (n ¼ 4), respectively
(Fig. 3E) but was potentiated by dantrolene (1 mM) (n ¼ 3). The
fluorescent cyanine dye diS-C3-(5) was used to determine the effect
of FFA on the mitochondrial membrane potential. Similarly to FCCP,
FFA (17 mM) elicited a rapid increase in diS-C3-(5) fluorescence,
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showing that it caused a collapse of the mitochondrial membrane
potential (DJ) (Fig. 3F). Collectively, our experiments show that
FFA, like FCCP, causes a collapse of DJ and releases Ca2þ from
embryonic cortical neurons as well as from isolated brain
mitochondria.

3.4. FFA indirectly blocks store-operated channels

Mitochondria play important roles in regulating Ca2þ signalling.
Due to their close proximity with the ER, they influence ER Ca2þ
signals and function as efficient Ca2þ buffers (Pizzo and Pozzan,
2007). In addition, mitochondria can shape plasma membrane Ca2þ

signals. By buffering Ca2þ ions near SOC, mitochondria regulate SOC
activity and are therefore physiological regulators of these channels
(Duszynski et al., 2006; Hoth et al., 1997). To further characterize
the action of FFA on Ca2þ signalling, we verified whether it could
influence SOC responses. This was performed on HEK-293 cells. To
this aim, thapsigargin (Tg, 1 mM), applied in the presence of
a nominally Ca2þ-free medium, was used to empty the ER. The re-
admission of Ca2þ was followed by a large Ca2þ influx through SOC
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(n ¼ 120 cells) (Fig. 4A). The same experiments were carried out
with the protonophore FCCP (0.5 mM) which disrupts the mito-
chondrial membrane potential. The Tg-activated Ca2þ release was
reduced by nearly 50% (n ¼ 66 cells, P < 0.05) when compared to
FCCP-untreated cells (Fig. 4B). In addition, FCCP-treated cells had
a smaller depletion-activated Ca2þ entry (Fig. 4C). This is in
agreement with previous studies showing that FCCP depresses SOC
by altering mitochondrial functions (Glitsch et al., 2002; Hoth et al.,
1997). Similar experiments were then performed with FFA. Under
these conditions, the amplitude of the Tg-activated Ca2þ release
was also diminished by w55% (n ¼ 54 cells, P < 0.05) when
compared to FFA-untreated cells (Fig. 4B). Like FCCP, FFA reduced
the amplitude of the Fluo-4 signals observed in response to the re-
admission of Ca2þ by 70–80% (n ¼ 54 cells, P < 0.05) (Fig. 4C). To
look for a direct effect of FFA on SOC, Mn2þ quench experiments
were carried out. Cells were loaded with the fluorescent dye Fura-2
and treated as described in Fig. 4A. Mn2þ(100 mM) was used as
a surrogate of Ca2þ. Its entry into cells via plasma membrane Ca2þ

channels causes a quench of the Fura-2 fluorescence. If FFA exerts
a direct inhibitory action on SOC, it should prevent the quenching of
the Fura-2 fluorescence by Mn2þ. The results of these experiments
are shown in Fig. 4D. Thisindicates that FFA weakly blocked SOC.
Similar experiments were repeated with La3þ, instead of FFA. La3þ

ions are potent blockers of SOC and, in contrast to FFA, completely
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Fig. 4. FFA indirectly blocks store-operated Ca2þ channels. (A) shows a representative recor
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Ca2þ from Tg-sensitive Ca2þ pools. A second Ca2þ rise (due to the Ca2þ entry through SOC) w
cells were pre-treated with FFA (85 mM, 5 min at room temperature) or FCCP (0.5 mM, 5 min a
activated release (B) and entry (C) of Ca2þ. FFA or FCCP were maintained in the milieu durin
(C) are summary bar graphs showing the normalized Tg-dependent release of Ca2þ and the
treated cells and FCCP-treated cells. The total number of HEK-293 cells used is indicated ab
Ca2þ-free medium and treated with 1 mM Tg for 5 min to deplete the internal Ca2þ stores. Tg
was followed by a quench of the Fura-2 fluorescence (excitation at 360 nm). The arrow indi
medium (Mean � S.E.M.). In contrast to the SOC inhibitor La3þ, which completely prevente
prevented the entry of Mn2þ. These results indicate that the
inhibitory action exerted by FFA on the Tg-activated Ca2þ entry
cannot be explained by a direct blockade of the SOC. In conclusion,
these data show that, like FCCP, FFA exerts a negative regulation on
SOC. We propose that the FFA-induced inhibition of SOC most likely
reflects its ability to alter the mitochondrial Ca2þ homeostasis.

4. Discussion

Fenamates like FFA, niflumic acid or meclofenamic acid are non-
steroidal anti-inflammatory agents known to potently block plasma
membrane ion channels and gap junctions. However, they cannot
be described as unspecific blockers of ion fluxes because they exert
a wide diversity of actions on ion transport systems. For instance,
niflumic acid or FFA potentiates currents through some anion
(Picollo et al., 2007) and cation (Ottolia and Toro, 1994; Rae and
Farrugia, 1992; Yamada et al., 1996) channels. In fact, the effects of
these anti-inflammatory agents on channel-mediated ion transport
systems appear rather complex, which can be further illustrated by
their actions on the hypertonicity-induced cation channels (HICC)
and on the Ca2þ-conducting TRPC channels. Two major groups of
HICC have been identified. The first one, blocked by amiloride,
comprises FFA-insensitive channels whereas the second group
contains FFA-sensitive and amiloride-insensitive HICC (Wehner
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ding illustrating the change in fluorescence (F/F0) from a Fluo-4 loaded HEK-293 cell as
apsigargin (Tg, 2 mM) was followed by a transient Ca2þ rise due to the passive release of
as seen upon the re-admission of 2 mM Ca2þ in the external medium (control). Some

t room temperature) before the beginning of the recording. Both drugs reduced the Tg-
g the recording. The horizontal bars indicated when Tg and Ca2þ were present. (B) and
normalized SOC responses from control cells (FFA-untreated and FCCP-untreated), FFA-
ove each bar. *P < 0.01, Student’s t-test. (D). Fura-2 loaded HEK-293 cells were kept in
was washed away prior to the beginning of the recording. The addition of 100 mM Mn2þ

cates when FFA (85 mM, n ¼ 22) or La3þ (100 mM, n ¼ 24) was added into the recording
d the Mn2þ quench, FFA poorly affected the entry of Mn2þ.
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et al., 2006). FFA blocks current through TRPC3 and TRPC7 but
increases currents through native and heterogeneously expressed
TRPC6 channels (Inoue et al., 2001; Jung et al., 2002). Moreover, FFA
can even differentially regulate distinct cation channels expressed
within the same cell type. For instance, in rat cerebellar neurons, it
produces a bidirectional modulation of the transient outward
potassium currents (IA): at 0.1–10 mM, FFA increases IA whereas it
reversibly decreases it at 50–1000 mM but augments the amplitude
of the current through delayed rectifier potassium channels (IK)
(Shimamura et al., 2002; Zhao et al., 2007). On the other hand,
kainate receptors (White and Aylwin, 1990) and the Na/K pump
(Cousin and Motais, 1979) are not affected by FFA. Taken together,
these results show the complex and multifaceted action of fena-
mates on transmembrane ion fluxes. In most instances, a molecular
understanding of these distinct FFA-dependent modulations of ion
transport systems is lacking.

The FFA-induced cellular responses are far from being limited to
the plasma membrane. In addition to their well-known inhibition
of cyclo-oxygenases, fenamates can alter calcium signalling. The
present report clearly shows that, in neurons and HEK-293 cells,
FFA elevates the cytosolic free Ca2þ concentration by releasing Ca2þ

from Tg-insensitive internal Ca2þ stores. This effect is fully revers-
ible upon washout of the drug. Based on the experiments per-
formed on isolated brain mitochondria we conclude that FFA
promotes the release of Ca2þ from these organelles and not from
the ER. Previous works showed that FFA or related compounds
release stored Ca2þ in many cell types like the mandibular cell line
ST885, parotid secretory cells, mandibular secretory cells, para-
thyroid cells, unfertilized oocytes, cultured insulinoma (RINm5F),
cardiac myocytes (Poronnik et al., 1992) and smooth muscle cells
(Cruickshank et al., 2003). In neurons, fenamates influence the
homeostasis of Ca2þ by releasing Ca2þ from Tg-sensitive compart-
ments in molluscan neurons (Lee et al., 1996; Shaw et al., 1995) and
from Tg-insensitive Ca2þ compartments in hippocampal (Partridge
and Valenzuela, 1999) and cortical neurons (present study).

We provide experimental evidence for a FFA-induced alteration
of the mitochondrial Ca2þ homeostasis in neurons of the central
nervous system. This response is highly relevant since it occurs at
a concentration (85 mM) lower than that commonly used to inhibit
TRPM2, TRPC and receptor-operated channels (�100 mM). The
release of Ca2þ triggered by FFA was attenuated by bongkrekic acid,
a specific inhibitor of the ADP/ATP carrier known to block the
mitochondrial permeability transition pore (Kroemer et al., 2007).
Moreover, in isolated mitochondria the FFA-induced Ca2þ release
was partially reduced by cyclosporin A, which acts on cyclophylin
D, another putative key element of the mitochondrial permeability
transition pore (Kroemer et al., 2007). The effect of cyclosporin A
appears modest but is in line with a previous study showing that
the mitochondrial permeability transition is poorly affected by
cyclosporine A in brain mitochondria (Chinopoulos et al., 2003).
Our data suggest that FFA promotes the release of Ca2þ by altering
the function and/or the integrity of the mitochondrial permeability
transition pore complex. The mitochondrial permeability transition
is defined as a sudden increase of the permeability of the inner
mitochondrial membrane. By allowing the release of small solutes
and molecules having a molecular mass of <1.5 kDa it can exert
a pro-apoptotic action (Kroemer et al., 2007). Our results on central
nervous system neurons support the view that the main effect of
FFA on cellular Ca2þ homeostasis resides in its ability to uncouple
mitochondria and to alter mitochondrial Ca2þ fluxes (Jordani et al.,
2000; McDougall et al., 1988).

In cultured cells like in isolated mitochondria, the ryanodine
receptor antagonist dantrolene enhances the release of Ca2þ

induced by FFA. Several authors have reported the existence of
mitochondrial ryanodine receptors (Altschafl et al., 2007; Brookes
et al., 2004). Although we do not have any evidence for the pres-
ence of mitochondrial ryanodine receptors in cortical neurons from
mice, our data could support the presence of these Ca2þchannels in
brain tissue.

Mitochondria can buffer Ca2þ entering through the plasma
membrane whether this entry occurs via the Naþ/Ca2þ exchanger
(Poburko et al., 2006) or via channels like voltage-gated Ca2þ

channels (Greenwood et al., 1997) or SOC (Hoth et al., 1997).
Therefore, by controlling transmembrane Ca2þ fluxes mitochondria
are physiological regulators shaping Ca2þ signals (Pizzo and Pozzan,
2007). Like many, if not all, Ca2þ-channels, SOC exhibit a Ca2þ-
inactivation process: the accumulation of Ca2þ in the close vicinity
of the pore exerts a negative feedback regulatory control on
channel activity. Inhibiting the Ca2þ buffering capacity of mito-
chondria depresses Ca2þ entry through SOC (Duszynski et al.,
2006). For instance, the protonophore FCCP indirectly inhibits Ca2þ

entry through SOC by altering the mitochondrial Ca2þ handling
(Glitsch et al., 2002; Hoth et al., 1997). Like FCCP, FFA is a potent
inhibitor of SOC in HEK-293 cells (present report) and in human
polymorphonuclear leukocytes (Kankaanranta and Moilanen,
1995). Due to their ability to accumulate Ca2þ at restricted micro-
domains exhibiting a high spatio-temporal free Ca2þ concentration
(like near Ca2þ release sites or Ca2þ-conducting channels), mito-
chondria critically shape in size and duration intracellular Ca2þ

signals (Pizzo and Pozzan, 2007). FFA reduces the size of the Tg-
sensitive Ca2þ pool (Fig. 4). Although a direct inhibitory effect of FFA
on the ‘‘leak’’ Ca2þ channels of the ER cannot be excluded, the
reduced Ca2þ pool resulting from the inhibition of the mitochon-
drial Ca2þ handling with FFA underscores the role of these organ-
elles in maintaining the filling state of the ER. Indeed, part of the
Ca2þ captured by mitochondria is recycled back to the ER (Arnau-
deau et al., 2001). Mitochondria are thus essential for the mainte-
nance of Ca2þ entry through SOC (Duszynski et al., 2006; Pizzo and
Pozzan, 2007) and for the Ca2þ refilling of the ER (Malli et al., 2005).

In summary, our data shed new light on the cellular actions of
fenamates. FFA, commonly used to block TRPM, TRPC and receptor-
operated channels, alters Ca2þ homeostasis by releasing Ca2þ from
Tg-insensitive internal stores. The experiments carried out on iso-
lated brain mitochondria showed that FFA triggers the release of
Ca2þ from these organelles and not from the ER. Furthermore, our
data indicate that the FFA-induced inhibition of SOC is due to its
ability to perturb the mitochondrial Ca2þ homeostasis. Previous
studies reported that FFA differentially regulates TRPC channels
since it blocks currents through TRPC3 or TRPC7 and potentiates
currents through TRPC6 channels (Inoue et al., 2001; Jung et al.,
2002). Although FFA can directly act on some plasma membrane
channels as shown with electrophysiological experiments per-
formed with the cell-excised membrane patch method (Gogelein
et al., 1990), we propose that the FFA-induced alteration of the
mitochondrial Ca2þ homeostasis could explain, at least partially,
some of the effects of this anti-inflammatory agent on plasma
membrane channels.
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10.3 Discussion 

Our results show that FFA increases [Ca2+]i in both HEK cells and cortical neurons. 

These Ca2+ responses are unaffected by depleting the ER or by preventing the Ca2+ release 

from the ER. However, they are strongly reduced by bongkrekic acid, a specific ligand of the 

mitochondrial ADP/ATP carrier known to inhibit mitochondrial PTP. Experiments on isolated 

mouse brain mitochondria indicate that FFA promotes the release of Ca2+ from mitochondria 

in a dose-dependent manner and that it collapses Δψm. Furthermore, incubation with FFA but 

not acute application of FFA inhibits SOC. This latter result raises the possibility that the 

modulation of plasma membrane ion channels by FFA is partially due to its action on 

mitochondrial Ca2+ homeostasis.  

FFA releases Ca2+ from mitochondria  

FFA has various actions on mitochondria. It is an inhibitor of the mitochondrial 

ATPase (Chatterjee and Stefanovich, 1976), an uncoupler of the mitochondrial oxidative 

phosphorylation (McDougall et al., 1983), an inducer of the mitochondrial permeability 

transition (Jordani et al., 2000), and it releases Ca2+ from these organelles (McDougall et al., 

1988; Jordani et al., 2000). Along the same line, we confirm that FFA promotes the release of 

Ca2+ from isolated brain mitochondria. 

On the other hand, the FFA-induced Fluo-4 responses are sustained even when the 

cells maintained in a Ca2+-free Tyrode’s solution. The amplitude of the FFA-induced Fluo-4 

responses are unaffected by the external concentration of Ca2+ (article 2, Section 10.2, Fig. 

1C), suggesting that FFA may also prevent the efflux of Ca2+ as reported by previous authors 

(Poronnik et al., 1992; Shaw et al., 1995).  

Taken together, FFA collapses Δψm, promotes mitochondrial Ca2+ release and inhibits 

mitochondrial Ca2+ uptake. Meanwhile it may also block the efflux of Ca2+ at the plasma 

membrane. These actions account for the sustained [Ca2+]i increase in the presence of FFA. 

The FFA-dependent modulation of plasma membrane ion channels may reflect 

its actions on mitochondria 

 Mitochondria are in close proximity to the plasma membrane and internal Ca2+ 

channels. They play an important role in buffering cytosolic Ca2+ (Rizzuto et al., 2000; 

Carafoli, 2003). Plasma membrane ion channels including SOC, VGCC, TRP channels, Ca2+-

activated K+ and Cl- channels are regulated by mitochondria (Poburko et al., 2004; Chalmers 
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et al., 2007; Demaurex et al., 2009). For example, Ca2+ buffering by mitochondria reduces 

Ca2+-dependent inactivation of SOC (Duszynski et al., 2006) and VGCC (Sanchez et al., 

2001); mitochondrial buffering of Ca2+ that enters via VGCC regulates negatively the 

activation of Ca2+-sensitive K+ (Cheranov and Jaggar, 2004) and Cl- channels (Greenwood et 

al., 1997). Since FFA has various actions on mitochondria, its inhibitory and excitatory 

actions on ion channel currents (Table 10-1) may be exerted, at least partially, via 

mitochondria. In article 2 (Section 10.2) we show that FFA inhibits SOC. The inhibition is 

probably not due to a direct interaction between the drug and the channels. Similarly the 

protonophore carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) inhibits Ca2+ 

entry through SOC by altering mitochondrial handling (Hoth et al., 1997; Glitsch et al., 2002). 

The activation of some TRP channels can induce mitochondrial Na+ and Ca2+ overload 

(Yang et al., 2006; Hacker and Medler, 2008; Medvedeva et al., 2008), meanwhile, some TRP 

channels are regulated by mitochondria (Agam et al., 2000; Perraud et al., 2005; Kim et al., 

2007). For instance, depleting ATP from mitochondria with mitochondrial uncouplers 

activates Drosophila TRP and TRPL channels (Agam et al., 2000); accumulation of cytosolic 

ADP-ribose released from mitochondria is required for oxidative- and nitrosative-stress-

induced gating of TRPM2 channels(Perraud et al., 2005); Δψm and the F1/F0-ATP synthase of 

mitochondria play an important role in regulating the activity of TRPM7 channels (Kim et al., 

2007). As mentioned above (Section 8.3.4), the modulation of TRPC6 channels by FFA are 

noted in HEK-TRPC6 cells. The presence of FFA not only potentiates the OAG-induced 

Fluo-4 signals but also changes their kinetic patterns (Figure 8-4). Indeed, the Fluo-4 signals 

in the presence of OAG + FFA (Figure 8-4A, ▼ and ) are long-lasting, whereas OAG alone 

triggers oscillatory Ca2+ responses (Figure 8-4A, ● and ○). The suppression of the Ca2+ 

oscillations by FFA suggests that mitochondria are involved in these responses. It could also 

be envisaged that the suppression is due to the FFA-dependent inhibition of the Ca2+ efflux 

mechanisms (Poronnik et al., 1992; Shaw et al., 1995). In order to gain more information on 

the role played by mitochondria in DAG-sensitive Ca2+ responses, it would be interesting to 

carry out simultaneous measurements of [Ca2+]i/whole cell currents and mitochondrial 

concentration of calcium ([Ca2+]m) as done previously by different authors (Collins et al., 

2001; Gerasimenko and Tepikin, 2005; Young et al., 2008). These latter studies reveal a 

crosstalk between [Ca2+]i and [Ca2+]m. 

Thus, the fact that FFA acts on mitochondria needs to be kept in mind when 

interpreting its actions on channels. 
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11 The TRPC6 channel activator hyperforin releases zinc and 

calcium from mitochondria 

11.1 Introduction 

As hyperforin, the major active constituent of Hypericum perforatum (St. John’s wort) 

extract, can activate TRPC6 channels without activating the other TRPC isoforms (Leuner et 

al., 2007), we have used this agent to characterize the DAG-sensitive calcium channels of 

cortical neurons (article 1, section 8.2). Besides its effect on TRPC6 channels (Treiber et al., 

2005; Leuner et al., 2007), hyperforin blocks a wide range of ion channels, including voltage-

gated (Ca2+, Na+ and K+) (Chatterjee et al., 1999; Fisunov et al., 2000) and ligand-gated 

(GABA, NMDA, AMPA) channels (Chatterjee et al., 1999; Kumar et al., 2006). 

Interestingly, hyperforin increases [Ca2+]i by mobilizing Ca2+ from internal stores 

(Koch and Chatterjee, 2001; Feisst and Werz, 2004). It can also abolish the GPCR activation-

induced liberation of Ca2+ from the ER (Feisst and Werz, 2004). Along the same line, we 

found that in cortical neurons, the addition of Gd3+, a potent blocker of TRPC channels, 

reduced but did not abolish the hyperforin-induced Ca2+ rise (article 1, Section 8.2), 

suggesting that it could release Ca2+ from internal stores. We thus decided to further 

characterize the cellular actions of this TRPC6 channel activator. Our data revealed that 

hyperforin displays protonophore-like properties, triggering the release of Ca2+ and Zn2+ from 

mitochondria.  

11.2 Article 3: The TRPC6 channel activator hyperforin induces the release of 

zinc and calcium from mitochondria 
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Abstract 

Hyperforin, an extract of the medicinal plant hypericum perforatum (also named St John’s 

wort), possesses antidepressant properties. Recent data showed that it elevates the intracellular 

concentration of Ca2+ by activating diacylglycerol-sensitive TRPC6 channels without 

activating the other isoforms (TRPC1, TRPC3, TRPC4, TRPC5, and TRPC7). So far, the 

mechanisms by which hyperforin exerts its antidepressant action are largely unknown. The 

present study was undertaken to further characterize the cellular neuronal responses induced 

by hyperforin. Experiments conducted on cortical neurons in primary culture and loaded with 

fluorescent probes for Ca2+ (Fluo-4) and Zn2+ (FluoZin-3) showed that it not only controls the 

activity of plasma membrane channels but it mobilizes these two cations from internal pools. 

Experiments conducted on isolated brain mitochondria indicated that hyperforin, like the 

inhibitor of oxidative phosphorylation, carbonylcyanide-4-(trifluoromethoxy)-

phenylhydrazone (FCCP), collapses the mitochondrial membrane potential. Furthermore, it 

promotes a massive release of Ca2+ and Zn2+ from these organelles via a ruthenium red-

sensitive transporter. In addition, chronically applied, hyperforin decreases the intracellular 

pools of Ca2+ and Zn2+. In fact, this antidepressant exerts complex actions on central nervous 

system neurons. Hyperforin not only triggers the entry of cations via plasma membrane 

TRPC6 channels but it displays protonophore-like properties. Since this antidepressant is now 

use to probe the functions of native TRPC6 channels, our data indicate that caution is required 

when interpreting results obtained with hyperforin. 
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1. Introduction 

 

Hyperforin, an extract of the medicinal plant hypericum perforatum (also named St John’s 

wort) exhibits antidepressant properties [1]. Indeed, hyperforin alleviates symptoms of mild to 

moderate depression and is now commonly prescribed worldwide [2-4].  In vitro experiments 

showed that hyperforin inhibits the synaptic uptake of various neurotransmitters, including 

serotonin and noradrenaline [5]. However, the mechanisms by which it exerts its 

antidepressive actions remain elusive [2]. 

 

Hyperforin, known to change membrane fluidity [6], influences cell functions by altering the 

activity of some plasma membrane channels. For instance, it is a potent blocker of many 

voltage-gated (Ca, Na and K) channels [7, 8] and ligand-gated (GABA, NMDA, AMPA) 

channels [8, 9]. Besides inhibiting proteins involved in the transport of ions through the 

plasma membrane, hyperforin activates an inward cationic current in a dose-dependent 

manner [8, 10]. TRPC6, a member of the C-class of transient receptor potential (TRPC) 

proteins, is the key molecular component of these hyperforin-activated channels [11]. TRPC6 

is activated by hyperforin but the other TRPC isoforms (TRPC1, TRPC3, TRPC4, TRPC5 

and TRPC7) are insensitive to the antidepressant [11]. 

 

Several authors took advantage of this property to study the functions and properties of native 

TRPC6 channels [11-13]. In cortical neurons, whole cell patch-clamp recordings showed that 

hyperforin elicits an inward current displaying TRPC6-like properties. Additional imaging 

experiments carried out with the Ca2+ sensitive probe Fluo-4 confirmed that hyperforin gave 

rise to an entry of cations [13]. However, the addition of Gd3+, a potent blocker of TRPC 
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channels, reduced but did not abolish the hyperforin-induced Ca2+ rise [13], suggesting that it 

could release Ca2+ from internal stores. 

 

The present study was undertaken to further characterize the effects of hyperforin on neurons 

from the central nervous system. Our data show that this antidepressant exerts complex 

actions on cortical neurons. Hyperforin not only triggers an entry of cations via plasma 

membrane TRPC6 channels [11] but displays protonophore-like properties, triggering the 

release of Ca2+ and Zn2+ from mitochondria.  
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2. Materials and methods 

 

2.1 Primary cultures of embryonic cortical cells  

Cortical cells were prepared from isolated cerebral cortices of C57BL6/J mice embryos 

(vaginal plug was designated E0). Brains were removed and kept in an ice-cold Ca2+- and 

Mg2+-free Hank’s solution containing gentamycin (10 mg/ml) and glucose (6 g/l). Cells were 

mechanically isolated by means of successive aspirations through a fire-polished sterile 

Pasteur pipette. They were plated on 16 mm diameter glass cover-slips and kept up to 4 days 

in a 5% CO2/95% O2 atmosphere at 37°C [14]. The procedures used have been approved by 

the Ethical Committee of Rhône-Alpes Region (France). 

 

2.2 Calcium imaging experiments with Fluo-4 

The culture medium was removed and the cortical cells were washed twice with a Tyrode 

solution containing (in mM): 136 NaCl, 5 KCl, 2 CaCl2, 1 MgCl2, 10 HEPES, 10 glucose, pH 

7.4 (NaOH). After a 10 min incubation period (at room temperature) in a Tyrode solution 

supplemented with 1.25 µM Fluo-4/AM, cells were washed twice with a Fluo-4/AM-free 

Tyrode solution and kept at room temperature ≥20 min to allow the de-esterification of the 

dye. Glass cover-slips, inserted into a perfusion chamber (RC-25F, Warner Instruments, 

Phymep, France), were placed on the stage of an Axio Observer A1 microscope (Carl Zeiss, 

France) equipped with a Fluar 40x oil immersion objective lens (1.3 NA) (Carl Zeiss, France). 

Light was provided by the DG-4 wavelength switcher (Princeton Instruments, Roper 

Scientific, France). The excitation light for Fluo-4 was filtered through a 470-495 nm 

excitation filter and the emitted light was collected through a 525 nm filter.  Images, acquired 

by means of a high speed cooled CCD camera (CoolSnap HQ2, Princeton Instruments, Roper 

Scientific, France) were analyzed using the software MetaFluor (Universal Imaging, Roper 
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Scientific, France). Mean Fluo-4 values are reported as means ± SEM, with n indicating the 

number of cell bodies analyzed. All the experiments were performed at room temperature.  

 

2.3 Zinc imaging experiments with FluoZin-3 

Changes in the intracellular concentration of Zn2+ were recorded with the specific fluorescent 

Zn2+ indicator FluoZin-3 [15]. The experimental conditions were as described above except 

that the cells were incubated with 5 µM FluoZin-3/AM for 30 min at room temperature. 

Afterwards, they were washed twice and kept for 30 min in a FluoZin-3-free Tyrode solution 

before starting the recordings. The Fluo-4 and FluoZin-3 recordings were performed as 

follows: images were captured every 5 s. The baseline Fluo-4 (or FluoZin-3) fluorescence was 

recorded for ≥1 min before adding hyperforin and averaged (F0). Unless otherwise indicated, 

the changes in Fluo-4 (or FluoZin-3) fluorescence as a function of time were expressed as 

F/F0, with F being the Fluo-4 (or FluoZin-3) fluorescence. 

 

2.4 Calcium fluxes measurements from isolated brain mitochondria 

Some experimented were conducted on isolated brain mitochondria. These organelles were 

prepared from brains of 1-day-old neonatal mice according to [16]. The experimental 

procedures used in the present study were described previously [17].  

 

2.5 Changes of the mitochondrial membrane potential 

The changes of the mitochondrial membrane potential (∆Ψ) induced by hyperforin were 

assayed using the fluorescent cyanine dye 3,3'-dipropylthiodicarbocyanine (diS-C3-(5)) [18] 

according to experimental conditions already described [17]. 
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2.6 Materials 

FluoZin-3/AM, Fluo-4, Fluo-4/AM, and 3,3'-dipropylthiodicarbocyanine (diS-C3-(5)) were 

from Molecular Probes (Interchim, France). Glycyl-phenylalanine-2-naphthylamide (GPN), 

carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), ruthenium red, N,N,N’,N’-

tetrakis(2-pyridylmethyl)ethylene-diamine (TPEN), and thapsigargin were from Sigma-

Aldrich (France). Bafilomycin A was from Tocris (Lucerna Chem AG, Switzerland). 

Cyclosporin A was purchased from Calbiochem (France). Tissue culture media were obtained 

from Invitrogen (VWR, France). Hyperforin was a kind gift from Dr. Willmar Schwabe 

GmbH & Co (Karlsruhe, Germany). 
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3. Results 

 

Hyperforin releases Ca2+ from internal compartments 

The antidepressant hyperforin promotes the entry of cations (including Ca2+) through TRPC6 

channels [11] or channels exhibiting TRPC6-like properties [13]. The hyperforin-induced 

Fluo-4 signals were biphasic with a large and transient response followed by a plateau phase 

(Figure 1A, filled circles). Even in the presence of a high concentration of Gd3+ (50 µM), a 

potent blocker of TRPC channels, hyperforin was still able to increase the cytosolic 

concentration of Ca2+ ([Ca2+]i) as illustrated in Figure 1A (open circles). In this case, Gd3+ 

specifically suppressed the transient phase leaving the plateau unaffected. The latter result 

suggested that hyperforin elicited a transient influx of Ca2+ followed by a release of Ca2+ from 

internal stores. In the following experiments, the hyperforin-induced Ca2+ responses were 

recorded when the cells were kept either in a 2 mM Ca2+ Tyrode solution (Figures 1B) or in a 

Ca2+-free solution (Figures 1C), thus excluding a Ca2+ entry via Gd3+-insensitive channels. In 

both instances, hyperforin increased [Ca2+]i in a dose-dependent manner (Figure 1D). The 

half-maximal effective concentrations were 3.3 and 3.5 µM when measured in Ca2+-free and 

in normal (2 mM Ca2+) Tyrode solutions, respectively. Thus, hyperforin not only triggers the 

entry of Ca2+ through plasma membrane channels but it causes the release of Ca2+ from 

internal compartments. The blocker of TRPC channels Gd3+ prevents the entry of cations 

through the hyperforin-activated channels without altering the hyperforin-induced release of 

Ca2+.      

 

Hyperforin elevates the cytoplasmic concentration of Zn2+  

Fluo-4 is a well-known fluorescent Ca2+ indicator [19] but it can not be regarded as a specific 

sensitive Ca2+ probe because a plethora of metals like Zn, Cu, or Cd interfere with the 
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fluorescence of Ca2+ sensitive dyes [20-22]. Cations of metals like Fe or Mn quench the 

fluorescence of Ca2+ probes whereas the binding of Zn2+ gives rise to prominent fluorescent 

signals. An easy way to check for the contribution of Ca2+ in the Fluo-4 response is to use 

TPEN. Indeed, TPEN is a membrane permeant heavy metal chelator having a low affinity for 

cations like Ca2+ and Mg2+ but a very high affinity for transition, mainly Zn2+, metals ions 

[23]. Since Fe2+and Mn 2+ do not increase but rather quench the Fluo-4 fluorescence we 

hypothesized that the hyperforin-induced Fluo-4 signals could reflect cytosolic changes in the 

concentration of chelatable Zn2+ and/or Ca2+. To check whether hyperforin elevated [Zn2+]i, 

the experiments illustrated in Figure 1C were repeated but this time in the presence of TPEN. 

When extracellular Ca2+ was omitted, hyperforin increased the Fluo-4 fluorescence as already 

shown (Figure 1C) but this hyperforin-induced Fluo-4 signal was markedly attenuated by 

TPEN (Figure 2A). On average, the maximal increases in Fluo-4 fluorescence induced by a 

250 s application of 10 µM hyperforin (added in a Ca2+-free Tyrode solution) were  63 +/- 1 

% (n= 285) and 20 +/- 1 % (n= 278), without and with TPEN (10 µM), respectively (p<0.001, 

Student’ t test). Thus, the antidepressant mobilizes Ca2+ and Zn2+ from internal pools. To 

further verify the effect of hyperforin on the chelatable Zn2+, we used the specific fluorescent 

Zn2+ indicator FluoZin-3 [15]. To prevent any hyperforin-induced Zn2+ entry, cortical neurons 

were maintained in a Tyrode medium supplemented with Ca-EDTA in order to chelate 

extracellular Zn2+ [24]. The addition of hyperforin gave rise to a robust elevation of the 

FluoZin-3 fluorescence (Figure 2B). A subsequent addition of TPEN (10 µM) totally 

eliminated the hyperforin-induced FluoZin-3 response (Figure 2B), providing further support 

to the idea that the antidepressant alters the homeostasis of Zn2+. Taken together, these 

experiments show that hyperforin increases the cytosolic concentrations of free Ca2+ and Zn2+.  
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Characterisation of the intracellular pools of Ca2+ and Zn2+ 

We next addressed the question of the intracellular sources of Ca2+ and Zn2+. To this aim, we 

first check the involvement of the endoplasmic reticulum (ER). Any release of Zn2+ from the 

ER could contribute to the hyperforin-induced Fluo-4 (or FluoZin-3) signals observed in 

Figure 2. The application of thapsigargin (Tg), an inhibitor of the ER Ca2+ pumps, elicited a 

transient Fluo-4 signal (Figure 3A, n= 47 cells). However, FluoZin-3 loaded cells failed to 

respond to Tg (Figure 3B, n= 75 cells) showing that the Tg-dependent depletion of the ER did 

not cause the release of Zn2+ but specifically reflected the leakage of Ca2+ out of this store. 

The contribution of additional intracellular stores was verified by using glycyl-phenylalanine-

2-naphthylamide (GPN). It provokes the osmotic lysis of lysosomes or lysosome-related 

organelles [25]. These acidic compartments are known to store cations like Ca2+ [26, 27] 

including in neural cells [28, 29]. Similar to Tg, GPN (200 µM) caused a transient Fluo-4 

response (Figure 3C) (n=81 cells) but did not induce any FluoZin-3 signal (Figure 3D) (n= 65 

cells). The vacuolar ATPase inhibitor bafilomycin A [30, 31] was also used. It blocks proton 

pumps located in endosomes and lysosomes [31] and thus promotes the release of cations out 

of these compartments [32, 33]. Regardless of the probe used, Fluo-4 (n=33 cells) or FluoZin-

3 (n=109 cells), 0.5 µM bafilomycin A never elicited any fluorescent signal (Figures 3 E-F). 

In a last series of experiments, the protonophore carbonyl cyanide 4-

(trifluoromethoxy)phenylhydrazone (FCCP) was tested to further characterize the intracellular 

pools of Zn2+ and Ca2+. FCCP alters the Ca2+ homeostasis by collapsing the mitochondrial 

membrane potential and it triggers the release of Ca2+ from these organelles [17, 34]. The 

addition of FCCP (2 µM) produced strong Fluo-4 (Figure 3G) and FluoZin-3 signals (Figure 

3H) in all cells tested (n>100 for Fluo-4 and n=64 cells for FluoZin-3). Altogether, the results 

depicted in Figure 3 indicate that cortical neurons possess i) Tg-, GPN- and FCCP-sensitive 

Ca2+ stores and ii) FCCP-sensitive Zn2+ stores. Since FCCP is a potent mitochondrial 
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uncoupler, hyperforin was applied on isolated brain mitochondria to verify whether it 

effectively releases Zn2+ from these organelles. 

 

Hyperforin releases Zn2+ from isolated brain mitochondria 

The application of FCCP to isolated brain mitochondria preincubated with the non-permeant 

form of Fluo-4 gave rise to a strong Fluo-4 signal (Figure 4A) as already shown [17]. A 

subsequent addition of hyperforin (1 µM) had no additional effect (Figure 4A). However, if 

hyperforin was added without FCCP, it produced a strong elevation of the Fluo-4 

fluorescence (Figure 4B). The hyperforin-induced Fluo-4 signals were strongly reduced in the 

presence of the Zn2+ chelator TPEN (2.5 µM, n= 4) (Figure 4B) confirming that the 

antidepressant releases this metal from mitochondria. It is worth noting that hyperforin 

elicited a TPEN-resistant Fluo-4 signal which most likely reflected the release of Ca2+ from 

mitochondria. Cyclosporin A (CsA), acting on cyclophylin D, a putative component of the 

mitochondrial permeability transition pore [35], and ruthenium red, a blocker of the 

mitochondrial Ca2+ uniporter [36], were used. CsA (5 µM, n=4) had no effect but ruthenium 

red (3 µM, n=4) completely blocked the hyperforin-induced Fluo-4 signal (Figure 4B). 

Previous reports showed that hyperforin has protonophore-like properties [37]. Its action on 

the mitochondrial membrane potential was assessed by using the fluorescent cyanine dye 3,3'-

dipropylthiodicarbocyanine (diS-C3-(5)) [17, 18]. The addition of hyperforin (2 µM) to 

isolated brain mitochondria enhanced the diS-C3-(5) fluorescence (Figure 4C), showing that it 

collapsed the mitochondrial membrane potential [18]. A subsequent addition of FCCP had no 

additional effect. In summary, these experiments show that hyperforin probably exerts an 

uncoupling action on isolated mitochondria by collapsing the membrane potential. This is 

accompanied by the release of Ca2+ and Zn2+ via a ruthenium red-sensitive mechanism. 
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Chronically applied, hyperforin alters the intracellular pools of Ca2+ and Zn2+ 

Hyperforin is used to assess the functions of native TRPC6 channels [12]. However, since it is 

a potent protonophore altering the homeostasis of zinc and calcium, we determined whether a 

chronic application of this antidepressant could modify the intracellular pools of Ca2+ and 

Zn2+. Cortical neurons were incubated for 48 h with 1 µM hyperforin. The antidepressant was 

washed away and the cells were loaded with Fluo-4 (or FluoZin-3) as described (see Materials 

and Methods). To specifically analyse the hyperforin-induced Ca2+ release, Fluo-4 loaded 

cells were maintained in a Ca2+-free Tyrode solution supplemented with TPEN (10 µM). 

Under these conditions, the hyperforin-induced Fluo-4 signals from hyperforin-treated cells 

were significantly smaller when compared to the hyperforin-untreated (control) cells (Figures 

5A-B). Similar experiments were conducted with FluoZin-3 loaded cells. Here again, the 

application of hyperforin elicited smaller FluoZin-3 signals in hyperforin-treated cells when 

compared to the control cells (untreated) (Figures 5C-D). On average, after a 48 h treatment, 

the amplitude of the Fluo-4 and of FluoZin-3 signals were reduced, respectively by 31 % 

(p<0.001) and 28 % (p<0.001). It shows that maintaining cells in a culture medium 

supplemented with a low concentration of hyperforin (1 µM) alters the intracellular pools in 

Ca2+ and Zn2+.  
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4. Discussion  

 

The antidepressant hyperforin exerts multiple cellular actions but it is now currently used to 

explore the properties and functions of TRPC6 channels. Indeed, hyperforin activates TRPC6, 

giving rise to a non selective cation current [11]. Experiments conducted on cultured cortical 

neurons loaded with the sensitive Ca2+ probe Fluo-4 showed that hyperforin induced cytosolic 

Ca2+ changes [13]. However, the hyperforin-induced Fluo-4 signals were incompletely 

eliminated by Gd3+, a potent blocker of TRPC channels, even when present at very high 

concentrations (e.g. 50 µM). Based on this observation we hypothesised that the Gd3+-

resistant Fluo-4 responses triggered by hyperforin could reflect the release of Ca2+ from 

internal stores. But, as pointed out by other authors [38], caution is required when interpreting 

data obtained with fluorescent Ca2+ probes because they are sensitive to metals like Zn or Fe 

endogenously present in all living cells. This difficulty has for instance been recently 

illustrated in lymphocytes where thymerosal, described as a Ca2+ mobilising agent, releases 

Zn2+ but no Ca2+ from internal compartments [39]. These data prompted us to determine 

whether hyperforin could alter the intracellular homeostasis of cations like Ca2+ and Zn2+. 

 

FluoZin-3 is a specific fluorescent Zn2+ indicator [15], insensitive to Ca2+ and Mg2+ [40]. It 

has become a very useful tool for studying Zn2+ homeostasis. Our data clearly show that 

hyperforin enhanced the FluoZin-3 fluorescence in living neurons. This hyperforin-dependent 

FluoZin-3 signal could reflect an uptake of Zn2+ because this cation is a common contaminant 

present in physiological solutions but a chelator like Ca-EDTA minimizes this drawback [24]. 

However, even when the cells were kept in a Tyrode solution supplemented with Ca-EDTA, 

hyperforin was still able to elevate the FluoZin-3 fluorescence. Moreover, the amplitudes of 

the hyperforin-induced FluoZin-3 signals were not affected by Ca-EDTA (not shown). This 
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demonstrates that hyperforin did not promote the entry of Zn2+ but rather mobilized this 

cation from intracellular pools. 

 

In neurons, the main likely sources of intracellular Zn2+ are metallothioneins, an important 

family of Zn2+-binding proteins which reversibly bind this metal [41], mitochondria [42, 43], 

and synaptic vesicles [44, 45]. It is however important to mention that all the data reported in 

the present study were obtained on immature cortical neurons kept for only 2 to 4 days in 

culture, before synaptogenesis and the establishment of a mature synaptically connected 

neuronal network. Experiments conducted with bafilomycin A and GPN, known to act on 

acidic compartments (including synaptic vesicles), suggested that these stores did not 

contribute to the mobilization of Zn2+ observed in response to the addition of hyperforin. 

Besides synaptic vesicles, various intracellular membrane-delimited compartments can store 

cations (e.g the ER, lysosomes and lysosomes-like organelles, peroxisomes, mitochondria). 

Inhibiting the Ca2+ pumps of the ER with Tg released Ca2+ but not Zn2+. A similar observation 

was recently made on lymphocytes [39]. Except for FCCP, none of the agents used (Tg, GPN 

and bafilomycin A) elevated the FluoZin-3 fluorescence, pointing to mitochondria as the 

putative hyperforin-sensitive Zn2+ pool. This was confirmed by experiments carried out on 

isolated brain mitochondria. Hyperforin caused a robust Fluo-4 signal that was strongly 

attenuated by TPEN. These results are in agreement with previous studies showing the 

presence of a mitochondrial pool of Zn2+ in cortical neurons [42, 43]. The mitochondrial Zn2+ 

uptake occurs via the Ca2+ uniporter (in a ruthenium-sensitive manner) and via a non 

identified ruthenium red-insensitive pathway [42]. On the other hand, the mechanisms 

controlling the mitochondrial Zn2+ efflux are still not characterized [42]. In isolated murine 

brain mitochondria, ruthenium red, a blocker of the mitochondrial Ca2+ uniporter [36, 46], 

strongly attenuated the hyperforin-induced release of Zn2+. Ruthenium red can however 
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influence the activity of other intracellular targets like ryanodine receptors (RyRs), the 

voltage-dependent anion channels VDAC [47] and the so-called “rapid-mode” uptake (or 

RaM) [48]. Interestingly, under certain conditions, RyRs can mediate a release of Ca2+ from 

mitochondria [36]. But, to our knowledge, the presence of these Ca2+ channels in brain 

mitochondria has never been documented. Whatever the exact molecular identity of the 

hyperforin-sensitive mitochondrial target allowing the efflux of cations, our data show that 

this antidepressant releases Zn2+ and Ca2+ from mitochondria via a ruthenium red-sensitive 

process. Hyperforin collapses the mitochondrial membrane potential which is in agreement 

with a previous report demonstrating that, similarly to FCCP, the antidepressant has 

protonophore properties [37]. The hyperforin-induced loss of the mitochondrial potential 

permits the passive release of Ca2+ and Zn2+ out of these organelles.  

 

Hyperforin is a potent uptake inhibitor of various neurotransmitters [1, 3]. However, this latter 

characteristic does not seem to explain its antidepressant action. So far, the molecular 

mechanisms by which hyperforin alleviates mild depressions are unknown. Interestingly, it 

alters the neuronal homeostasis of zinc. Of note, clinical data show that subjects suffering 

from depression exhibit lower zinc serum levels than non-depressed control subjects [49]. As 

importantly, zinc has antidepressant properties [50]. Synthetic antidepressants like imipramine 

and citalopram affect zinc concentration in the blood serum and in the brain [50]. Moreover, 

zinc supplementation exerts an antidepressant-like activity and enhances the effects of 

synthetic antidepressants [50]. In vitro experiments, data collected from animal studies as well 

as clinical and post-mortem studies point to a role of zinc in the physiopathology of 

depression and in its treatment. Whether the hyperforin-induced alteration of the neuronal 

homeostasis of Zn2+ is involved in its antidepressant action remains to be shown. 
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In conclusion, this report reveals that hyperforin collapses the mitochondrial membrane 

potential and releases Ca2+ and Zn2+ from these organelles via a ruthenium red-sensitive 

mechanism. Hyperforin is now commonly used to understand the functions and properties of 

native TRPC6 channels. However, when considering its large number of targets located either 

in the plasma membrane or intracellularly, caution is needed when interpreting data obtained 

with this protonophore-like agent disturbing Ca2+ and Zn2+ homeostasis.  
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Figure legends 

 

FIGURE 1 : Hyperforin releases Ca2+ from internal compartments  

A Fluo-4 recordings from isolated cortical neurons kept 2 days in culture. The graph shows 

that the external application of 10 µM hyperforin causes a strong enhancement of the Fluo-4 

fluorescence. This response was never totally abolished by the TRPC channel blocker Gd3+ 

used at 50 µM (n= 53 cells).  

B-C shown representative Fluo-4 recordings from distinct cultured cortical neurons. Cells 

were kept in a normal (2 mM Ca2+) Tyrode (B) or in a Ca2+-free Tyrode solution (C). The 

external application of hyperforin (0.2, 1, 10 µM) (indicated by the horizontal black bars) 

triggered a Fluo-4 response in a concentration-dependent manner. In these experiments, cells 

experienced only one application of hyperforin.  

D Dose-response curves obtained when hyperforin was added in the absence (open circles) or 

presence (filled circles) of external Ca2+ (2 mM). The number of cells tested is given for each 

concentration. Mean +/- SEM.  

 

FIGURE 2 : Hyperforin increases the cytosolic concentration of free Ca2+ and Zn2+ 

Representative Fluo-4 recordings from cortical neurons kept in a Ca-free Tyrode solution 

without (filled circles) or with 10 µM TPEN (open circles) (A). Similar experiments were 

performed with FluoZin-3-loaded cells (B). In both instances, hyperforin (10 µM) was added 

when indicated (horizontal black bar). The hyperforin-induced FluoZin-3 response was 

observed in all cortical cells tested and was totally abolished by TPEN (10 µM) (n=491 cells). 
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FIGURE 3 : Intracellular pools of Ca2+ and Zn2+  

Cortical neurons were loaded with Fluo-4 (A, C, E, G) or FluoZin-3 (B, D, F, H). The 

horizontal black bars indicated when the following agents were added: thapsigargin (Tg, 2 

µM A: n= 45 cells, B: n= 75) ; glycyl-phenylalanine-2-naphthylamide (GPN, 200 µM, C: n= 

81, D: n= 65) ; bafilomycin A (Baf A, 0.5 µM, E: n= 33, F: n= 109) ; and carbonyl cyanide 4-

(trifluoromethoxy)phenylhydrazone (FCCP, 2 µM, G: n>100, H: n=64).  

 

FIGURE 4 : Hyperforin releases Zn2+ from isolated brain mitochondria 

To assess the functional state of the isolated mitochondria, Ca2+ (1 µM) was added to the 

medium. This provoked a rapid increase in Fluo-4 fluorescence followed by a delayed decline 

reflecting the mitochondrial Ca2+ uptake [17]. Panel A shows that FCCP (2 µM) produced a 

strong elevation of the Fluo-4 fluorescence. A subsequent addition of hyperforin (2.5 µM) had 

no effect. (B) Without FCCP, hyperforin (1 µM) caused a robust Fluo-4 signal insensitive to 

CsA (5 µM) but strongly blocked by ruthenium red (3 µM) (B). In the presence of TPEN (2.5 

µM), hyperforin caused a smaller Fluo-4 response (B). In these experiments, CsA, ruthenium 

red or TPEN were added to the recording medium (containing the isolated mitochondria) at 

least 2 min before hyperforin. C shows the effect of hyperforin on the mitochondrial 

membrane potential. The addition of the antidepressant on isolated brain mitochondria 

strongly enhanced the diS-C3-(5) fluorescence (C). A subsequent application of FCCP (2 µM) 

had no additional effect, indicating that the mitochondrial membrane was completely 

depolarised. Representative traces from 4 independent experiments are shown. 
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FIGURE 5 : A chronic hyperforin treatment diminishes the intracellular pools of Ca2+ and 

Zn2+ 

Cortical neurons were kept for 48 h in a Neurobasal medium supplemented with 1 µM 

hyperforin. After this treatment, hyperforin was washed away and the cells were loaded with 

either Fluo-4 (A-B) or FluoZin-3 (C-D) and kept in a Ca2+-free Tyrode solution to specifically 

monitor intracellular responses without the contamination of any hyperforin-dependent Ca2+ 

entry. Of note, Fluo-4 signals were recorded in the presence of TPEN (10 µM) to eliminate 

the contribution of Zn2+. These Fluo-4 signals were then considered as reflecting the 

hyperforin-dependent release of Ca2+. Representative recordings showing that the external 

application of 10 µM hyperforin (horizontal black bars in A and C) elicited Fluo-4 (A) and 

FluoZin-3 (C) signals. Figures B and D are bar graphs summarizing these experiments. The 

averaged maximal amplitudes of the Fluo-4 (B) and FluoZin-3 (D) responses from control 

cells (not treated for 48 h with 1µM hyperforin) and hyperforin-treated cells (1 µM for 48 h) 

are also shown with the number of cells tested indicated above each bar. ** p<0.001 

(Student’s t test). 
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11.3 Discussion 

Hyperforin, a pharmacological tool used to activate TRPC6 channels, displays 

protonophore-like properties. It collapses Δψm and releases Ca2+ and Zn2+ from these 

organelles via a ruthenium red-sensitive mechanism. When chronically applied, hyperforin 

decreases the intracellular pools of Ca2+ and Zn2+. Since hyperforin is now commonly used as 

an activator of TRPC6 channels, caution is required when interpreting the data obtained with 

this drug. 

The results described above clearly show that hyperforin acts, among other targets, on 

mitochondria and causes the release of cations from these organelles. This finding incited us 

to reconsider the effects of FFA. Like hyperforin, this anti-inflammatory agent perturbs 

mitochondrial Ca2+ homeostasis. We thus thought to verify whether it could release Zn2+.  

This was achieved by realizing cellular imaging experiments with the specific zinc 

fluorescent probe FluoZin-3. The cells were bathed in a Ca2+-free and Zn2+-free Tyrode’s 

solution. The addition of FFA increased the FluoZin-3 fluorescence (Figure 11-1), showing 

FFA elevated [Zn2+]i, probably due to a release of Zn2+ from mitochondria. Taken together, 

these results indicate that FFA (like FCCP and hyperforin) mobilizes mitochondrial Ca2+ and 

Zn2+. However, it is important to note that both the FFA-dependent Fluo-4 and FluoZin-3 

signals are much smaller than the ones observed with hyperforin (see Section 11.2). Of note, 

the concentration of FFA chosen (85 µM) provoks the maximal responses because increasing 

the concentration of FFA does not further increase the amplitude of the fluorescent responses. 

Although both FFA and hyperforin have the property to collapse Δψm, the magnitudes of 

release of Ca2+ (or Zn2+) associated to this effect are different (small with FFA, large with 

hyperforin). Another difference between the two agents is the fact that FFA acts in a 

reversible manner in contrast to hyperforin, the actions of which on [Ca2+]i and [Zn2+]i has 

never been reversed even during a continuous washing of this antidepressant. Whether FFA 

and hyperforin act on the same mitochondrial targets is unknown. 

It is interesting to note that the pharmacological tools that are now commonly used to 

manipulate the activity of TRPC6 channels (FFA and hyperforin) have also the property to 

alter the mitochondrial homeostasis, triggering the release of cations from these organelles. 

The exact relationship between these organelles and this family of plasma membrane cation 

channels needs to be further clarified. 
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Figure 11-1 FFA mobilized intracellular zinc in cortical neurons 

Cortical neurons (n = 52) were kept in a normal Tyrode’s solution. The addition of 85 µM FFA increased the 

FluoZin-3 fluorescence. 50 µM TPEN was added to the bath in the end. It fully reversed the FluoZin-3 

responses. The arrows indicate when FFA or TPEN was added. 
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A previous study carried out in the laboratory showed the presence of TRPC6 in the 

E13 cortex. Calcium imaging experiments indicate the existence of functional DAG-sensitive 

plasma membrane cation channels in cortical neurons. These channels, displaying TRPC6-

like properties, are permeable to Ca2+, Na+, Ba2+ and Mn2+. The Ca2+ entry is controlled by a 

Na+-independent mechanism and a Na+-dependent mechanism involving the NCX. The Ca2+ 

entry is blocked by Gd3+ and SKF-96365 but is potentiated by FFA. It can be stimulated by 

the DAG lipase inhibitor RHC80267. However, the OAG-induced responses are not affected 

by either PKC activation or inhibition. Hyperforin, an activator of TRPC6 channels, triggers 

an entry of Ca2+ via non-selective cation channels. Of note, the OAG-induced responses are 

insensitive to the TRPC3 channel blocker Pyr3 (unpublished data). Although the exact 

molecular identity of the DAG-sensitive channels in cortical neurons has not yet been 

established, we suggest that TRPC6 form these channels. RNAi constructs designed against 

TRPC6 could be used in cortical neurons in order to gain new information on the precise 

identity and functions of these channels. 

Quantitative analyses with ICP-OES, atomic absorption spectrometry and µ-SXRF 

show that the over-expression of TRPC6 in HEK cells is accompanied by the elevation of the 

intracellular contents of zinc, sulphur and manganese, while the contents of iron and copper 

remain unaffected. Iron and zinc imaging experiments indicate that TRPC6 channels, either 

over-expressed in HEK cells or endogenously present in cortical neurons, are permeable to 

iron and zinc (and manganese) when activated by DAG or hyperforin. The experiments with 

the state-of-art technique µ-SXRF further reveal that activating TRPC6 channels in the 

presence of iron leads to an intracellular iron accumulation in both HEK-TRPC6 cells and 

cortical neurons. Thus, in both HEK cells and cortical neurons, TRPC6 channels form iron- 

and zinc-conducting channels. Analyses of the expression levels of the proteins involved in 

iron and zinc homeostasis such as DMT1, ferroportin and MT after activating the metal entry 

via TRPC6 channels may provide further insights into the neuronal regulatory processes 

participating in iron and zinc homeostasis. 

FFA, a pharmacological tool used for distinguishing TRPC6 channels from the other 

members of the TRPC3/6/7 subgroup, increases [Ca2+]i in both HEK cells and cortical 

neurons. These Ca2+ responses are unaffected by depleting the ER or by preventing the Ca2+ 

release from the ER. However, they are strongly reduced by bongkrekic acid, a specific ligand 

of mitochondrial ADP/ATP carrier which inhibits mitochondrial PTP. Experiments with 

isolated mouse brain mitochondria show that FFA promotes the release of Ca2+ from these 
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organelles and that it causes a collapse of Δψm. Furthermore, an incubation with FFA but not 

an acute application of FFA inhibits SOC. Meanwhile, FFA suppresses the DAG-induced 

Fluo-4 oscillations in HEK-TRPC6 cells. These latter results raise the possibility that the 

modulation of plasma membrane ion channels by FFA reflects, at least partially, its actions on 

mitochondrial Ca2+ homeostasis. It would be interesting to carry out simultaneous 

measurements of [Ca2+]i and [Ca2+]m . This may help us to understand the role played by 

mitochondria in buffering Ca2+ entering the cells via SOC or TRPC6 channels as well as the 

relationship between the FFA-induced perturbation of mitochondria and the FFA-dependent 

modulation of plasma membrane channels. Of note, recent experiments reveal that FFA also 

releases Zn2+ from mitochondria. 

Hyperforin, which activates TRPC6 channels without activating the other isoforms 

(TRPC1, TRPC3, TRPC4, TRPC5 and TRPC7), mobilizes the intracellular Ca2+ and Zn2+. 

Like the protonophore FCCP, hyperforin causes a collapse of Δψm and promotes a massive 

release of Ca2+ and Zn2+ from these organelles via a ruthenium red-sensitive transporter. In 

addition, chronically applied, hyperforin decreases the intracellular pools of Ca2+ and Zn2+. 

Thus, hyperforin not only triggers the entry of cations via plasma membrane TRPC6 channels 

but displays protonophore-like properties.  

In conclusion, TRPC6 is the putative protein that forms the DAG- and hyperforin-

sensitive channels in cortical neurons. TRPC6 channels, both heterologously or endogenously 

expressed, form cation channels allowing the entry of iron, zinc or manganese. Although the 

molecular mechanisms favouring the intraneuronal accumulation of metals are far from being 

understood, this thesis shows that TRPC6 channels can be a candidate pathway allowing the 

neuronal uptake of trace metal ions. The pathophysiological significance of this TRPC6-

dependent entry of metals remains to be clarified. FFA and hyperforin, two pharmacological 

tools used to, respectively, enhance the activity and trigger the opening of TRPC6 channels, 

release Ca2+ and Zn2+ from mitochondria. Caution is thus required when interpreting results 

obtained with these drugs.  
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1. Synchrotron Radiation 

In a number of specialized cases, X-ray analysis experiments make use of synchrotron 

sources. Synchrotron radiation (SR) is produced by high-energy (GeV) relativistic electrons 

or positrons circulating in a storage ring (Figure APPX 1). This is a very large, quasi-circular 

vacuum chamber where strong magnets force the particles on closed trajectories. X-ray is 

produced during the continuous acceleration of the particles. SR sources are several orders of 

magnitude brighter than X-ray tubes, have a natural collimation in the vertical plane and are 

linearly polarized in the plane of the orbit. The spectral distribution is continuous when the 

emission of radiation is induced by bending magnets (Figure APPX 2A). When more 

sophisticated magnetic arrays called undulators are used to produce the radiation, much 

intenser X-ray beams can be generated. The photons are emitted in specific energy bands 

called harmonics (Figure APPX 2B). This type of insertion device is used at ESRF ID22 

beamline where our experiments were carried out. By changing undulator parameters such as 

the gap width and the magnetic field strength, the energy of the harmonics can be adjusted so 

that the output flux of an undulator in a specific energy range can be optimized. In view of 

their quasi-monochromatic nature, undulator sources therefore are more suitable for 

performing µXRF experiments involving monochromatic primary micro-beams, of which the 

energy can optionally be tuned. An additional advantage is the high degree of polarization of 

synchrotron radiation, which greatly reduces the scatter-induced spectral backgrounds when 

the detector is placed at 90 degree to the primary beam and in the storage ring plane. 
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Figure APPX 1 Scheme of synchrotron radiation facility and a synchrotron beamline 
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Figure APPX 2 Synchrotron radiation generated by the bending magnets (A) or by an undulator (B) 

 

2. X-ray fluorescence  

X-ray fluorescence analysis (XRF) is a powerful analytical tool for the 

spectrochemical determination of almost all the elements present in a sample. When a sample 

is irradiated with X-rays, the source X-rays may undergo either scattering or absorption by 

sample atoms. The latter phenomenon is known as the photoelectric effect. When an atom 

absorbs the source X-rays, the incident radiation dislodges electrons from the innermost shells 

of the atom, creating vacancies. The electron vacancies are filled by electrons cascading in 

from the outer shells. The outer shells electrons have higher energy than the inner shell 

electrons, and they give off energy as they cascade down into the inner shell vacancies 

(Figure APPX 3). This rearrangement of electrons results in the emission of characteristic X-

rays of a given atom. The emission of X-rays, in this manner, is termed X-ray fluorescence. 

An X-ray source can excite characteristic X-rays from an element only if the source energy is 

greater than the absorption edge energy for the particular line group of the element, that is, the 

K absorption edge, L absorption edge or M absorption edge energy. 

A typical emission pattern, also called an emission spectrum, for a given metal has 

multiple intensity peaks generated from the emission of K, L or M shell electrons. Each 

characteristic X-ray line is defined with the letter K, L or M, which signifies which shell has 

the original vacancy, and with a subscript alpha () or beta (), which indicates the higher 

shell from which electrons fall to fill the vacancy and produce the X-ray. For example, a K 

line is produced by a vacancy in the K shell filled by an L shell electron, whereas a K line is 

produced by a vacancy in the K shell filled by an M shell electron. The K transition is on 

average 6 to 7 times more probable than the K transition; therefore, the K line is 

approximately 7 times intenser than the K line for a given element, making the K line the 

choice for quantitation purposes. The relationship between emission wavelength and atomic 
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number is known, thus isolation of individual characteristic lines allows the identification of 

an element and give estimates on the elemental concentrations from characteristic line 

intensities. Therefore, XRF is a powerful technique for determining the chemical composition 

of a sample. 

Incident photon

E

Photoelectron
Ephot = E - K

Auger electron
Eauger = K - L - M

EX-ray = K - L

or

 

Figure APPX 3 Photoelectric ionization and emission of X-ray fluorescence  

Photoelectric ionization can be followed by either radiative relaxation, causing the emission of characteristic 

fluorescent X-rays or non-radiative relaxation, involving the emission of Auger electrons. 

 

3. Experimental set-up  

In the XRF nanoprobe, the brilliant X-ray beam is focused to a small spot size down to 

100 nm, and the sample (see Section 7.4) placed onto a piezoelectric stage with displacement 

accuracy in the nanometer range is then scanned. At each pixel, the fluorescence of each 

element is measured by an energy resolving detector (Figure APPX 4). The incident beam 
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intensity is varying with time and intensity normalization is required and achieved using a 

silicium-based PIN-diode as counter which is put just in front of the sample. A schematic 

view of the XRF nanoprobe beamline at ESRF is shown in Figure APPX 5. 

Worldwide, only one similar nanoprobe end-station exists, which is situated at the 

Argonne Synchrotron in the USA. There are only few spatially resolved techniques available 

to map trace elements within samples of varying origins, among which the XRF synchrotron 

nanoprobe is the most sensitive muti-elemental technique with limit of detection in the order 

of the attogram in a 100 × 100 nm spot within a single cell.  
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Figure APPX 4 A schematic view of data collection for obtaining 2D XRF maps or X-ray absorption 

spectroscopy (XAS) 

In X-ray fluorescence mapping mode, only a small fraction of the isotropic fluorescence emission is collected by 

the detector solid angle  The energy range of ID22 microprobe or nanoprobe (ID22NI) allows the detection of 

all elements of Z > 23 by using their K- or L- emission spectrum. The XRF maps are generated by continuous 

scanning of sample through the focused beam which is fixed. 
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Figure APPX 5 A schematic view of the XRF nanoprobe beamline at ESRF 

 

4. Data processing  

The process to convert experimental XRF data into analytically useful information (i.e 

concentration values of elemental constituents) relies first on the evaluation of the spectral data, 

whereby the net intensities of the X-ray peaks are determined (essentially the background 

contribution is carefully subtracted from the spectrum followed by individual peaks deconvolution 

using fitting algorithm), peak overlap (if any) between X-ray lines of different elements are 

corrected and the X-ray intensities are converted into concentration data, i.e. the quantification. In 

our case some assumptions can be made to simplify the quantification process: parallel beam 

approximation, homogeneous sample and the absence of matrix effects (absorption-enhancement 

effects). This is justified when working with very thin samples like cells containing trace metals 

(e.g. diluted high Z elements in a thin low-Z matrix mainly carbon), resulting in simplified 

equation for concentration calculation (Bohic et al., 2001). XRF data can be normalized against a 

standard having similar matrix and elemental concentration. For this, we used a thin disc of a 

NIST SRM 1577 bovine liver with certified concentration to calibrate the experimental data. The 

data processing is performed using the free software PyMca developed at ESRF (Solé et al., 

2007). 
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RESUME 

 

Les canaux TRPC6 sont des canaux cationiques non sélectifs qui peuvent être activés 

par le diacylglycérol (DAG). Ils sont présents dans de nombreux tissus et types cellulaires, 

notamment dans le cortex de souris embryonnaire (à E13). Des expériences d'imagerie 

calcique réalisées sur des neurones de cortex de souris en culture ont révélé la présence de 

canaux cationiques activés par le DAG. Ils sont perméables aux ions Ca2+, Na+, Ba2+ et Mn2+. 

L’entrée de Ca2+ via ces canaux est indépendante de la protéine kinase C et elle est bloquée 

par le SKF-96365 et le Gd3+. Par ailleurs, l'acide flufénamique augmente l’amplitude des 

réponses calciques induites par le DAG. Des expériences d’électrophysiologie réalisées avec 

la technique du patch-clamp en configuration cellule entière ont montré que l'hyperforine, un 

activateur des canaux TRPC6, donne naissance à un courant cationique non sélectif, 

confirmant ainsi l’existence de canaux de type TRPC6 dans les neurones corticaux. 

Des analyses quantitatives en spectrométrie d'émission atomique à plasma couplé 

inductif, en spectrométrie d'absorption atomique et en fluorescence X avec la nanosonde 

synchrotron (µ-SXRF) révèlent que la surexpression de TRPC6 dans les cellules HEK-293 

s’accompagne d’une augmentation du contenu intracellulaire en zinc, en soufre et en 

manganèse. Les résultats obtenus avec des sondes fluorescentes sensibles au zinc et au fer 

indiquent que les canaux TRPC6 peuvent transporter ces cations. Par ailleurs, les expériences 

en µ-SXRF montrent que l’activation des canaux TRPC6 en présence de fer induit une 

accumulation de ce métal dans les cellules HEK et les neurones. 

Au cours de notre étude, nous avons également mis en évidence l’action de deux 

agents (l’acide flufénamique et l'hyperforine), couramment utilisés pour modifier l’activité 

des canaux TRPC6, sur la physiologie mitochondriale et l’homéostasie des métaux. En effet, 

l’acide flufénamique et l'hyperforine non seulement modifient le fonctionnement des canaux 

TRPC6 mais ils exercent aussi une action de type découplante sur les mitochondries, 

provoquant une libération de Ca2+ et de Zn2+ à partir de ces organelles.  

 

Mots clés : neurones de cortex, cellules HEK-293, TRPC6, diacylglycérol, acide 

flufénamique, hyperforine, rayonnement synchrotron, fluorescence X, fer, zinc, cuivre, 

manganèse 
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