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Sens et Sébastien Tixeuil d’être venus pour ça, pour leurs questions et leurs retours, pour avoir fait
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Introduction

Solving scientific problems requires more and more computational resources. The amount of data to
be computed and the complexity of simulations in areas such as bioinformatics, high energy physics,
or cosmology, are still growing. To reduce the time needed for such computations, a first approach
consisted in using parallel machines, also known as supercomputers, composed of hundreds, or even
thousands of identical processors connected by high bandwidth I/O systems. However, this type of
infrastructures is very costly and scientists do not always have the means to acquire a supercomputer.

With the emergence of high performance networks, a cheaper alternative has consisted in connect-
ing standard computers through a network. When the computers are located in the same place like a
university or a company, we use the term cluster. If geographically distributed, these infrastructures
are called computational grids.

Problems to Be Solved

Interactions of ocean and atmosphere at the Earth’s surface and frictional forces at work where the air
and water interface, like the “El Niño” phenomenon, can result in ecological drastic changes and hu-
man disasters. Understanding the underlying mechanisms of climate changes produces a tremendous
amount of modeling and simulation requiring a proportional amount of computing power [93].

Setting the parameters of a nuclear reactor contains a lot of dangers and, as every one knows,
can result in great disasters if not properly done. That’s why numerical simulation is required
beforehand. As explained by Donald B. Batchelor in [27]: “In a magnetic fusion device, [the] plasma
is maintained in a largely self-organized state that far from equilibrium the mathematical description
of which is characterized by high dimensionality, nonlinearity, extreme range of time and space
scales, and sensitivity to geometric details. High-performance computing plays an essential role in
fusion research not just to understand the theory and make quantitative comparison to experiments,
but also to provide direct support to the experiments by interpreting measurements and designing
experiments.”

Understanding the formation of the structures (galaxies) of the universe is one great challenge
for which astrophysicists are today ready to engage a lot of energy. Among the means for solving
this issue, simulation seems today the most important. As explained by people of the Horizon
Project [144], the goal is, neither more nor less, the simulation of the formation of the universe.
As you can read on the site of the project, they have made “the largest N-body simulation ever
performed”. As a matter of fact, they have simulated a 13.7 Gigayear long evolution of 40963 dark
matter particles. This experiment, that would have taken more than a thousand years on a single
computer, required running the simulation code for a couple of month on the 6144 processors of the
new BULL supercomputer of the CEA (French atomic energy commission) supercomputing center.

The structure of biomolecular machines is the foundation of living systems. The difficulty for
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observing the underlying mechanisms of life at this scale and the need for molecular dynamics
simulations at this scale is well highlighted by Schulten et al. in [127]: “Genetic sequences stored as
DNA translate into chains of amino acids that fold spontaneously into proteins that catalyze chains
of reactions in the delicate balance of activity in living cells. Interactions with water, ions, and
ligands enable and disable functions with the twist of a helix or rotation of a side chain. The fine
machinery of life at the molecular scale is observed clearly only when frozen in crystals, leaving the
exact mechanisms in doubt. One can, however, employ molecular dynamics simulations to reveal the
molecular dance of life in full detail.” For a few years now, bioinformatics has become one of the
most common applications for grid computing.

The Grid Purpose and the Reality

Primary goals of Grid Computing are basically to connect any available computing resource (super-
computers, clusters of processors, desktop computers) at any place in the world and aggregate them
into a unique virtual entity called the grid. The ultimate purpose of Grid Computing, as expressed
by Foster and Kesselman at the very end of the twentieth century [62], is to offer this computing
power to anyone (scientists, but also end user at the edge of the Internet) plugged to the network
in a transparent way, just as easily as switching the light on after having plugged the jack into the
socket.

This ease and transparency are today far from being a reality. Many barriers hinder such a
transparency. One of the main concepts behind them is heterogeneity, both in terms of hardware
(computing power, network accessibility, or storage space) and software (operating system, commu-
nication protocols), making the problem quite delicate. Among the numerous other problems making
computational grid quite hard to maintain and use, we find the security issues, such platforms not
being spared by attacks, the scheduling, whose goal is to efficiently schedule computing jobs to avoid
starvation or unfairness in the distribution of resources to still growing number of users, the fault-
tolerance, whose goal is to keep the platform efficient when crash failures occur, the scalability, whose
goal is to allow the system to keep working even when highly distributed and when the number of
services and requests drastically increases.

Another fundamental issue, a preliminary process of any computing platform, is the connection
to be made between a user’s need (expressed through a request) and the different computing abilities
available on the platform, gathered under the term services.

Problematic

Service Discovery

A Basic Example. Any device in a computational grid, provide some computing abilities. They
are for instance able to multiply matrices. This ability, if offered to the community, can be called
a service. Now imagine that somewhere in the world, a user — application or human, needs to
multiply two matrices but is not able to do it, for instance because he/she/it does not have any
matrix multiplication program locally. As one can imagine, it would be interesting for the user to
use the service in a remote mode. But before to be able to do so, the user needs to discover the service
and learn how to connect to the service (protocol, address, ports) and how to use it (encoding of the
matrices, location of the result). What is missing is a directory of services the user could consult to
find what he/she/it needs.
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Service-Oriented Architecture (SOA). This notion of service was generalized by the SOA ref-
erence model [3], which is an attempt to define a standard architecture for using business computing
entities. SOA is introduced as a paradigm for organizing and utilizing distributed capabilities that
may be under the control of different ownership domains. The SOA standard describes a service
as a mechanism to enable access to one or more capabilities, where the service is accessed using a
prescribed interface and exercised consistent with constraints and policies as specified by the service
description. This description is what our user is looking for.

Emerging Platforms

Our problematic is to make possible such a service discovery in platforms emerging today which
are large (gathering a high number of geographically distributed nodes), heterogeneous (in terms
of hardware, operating systems, and network performance), and dynamic (processors are constantly
joining and leaving the system without notice). Moreover, in such large environments, the number of
services and requests are also constantly growing. Under these conditions, maintaining a view of the
available services and answering the requests becomes a far more challenging problem than creating
a simple directory. This is this challenge that we address in this dissertation.

The Contribution of the Peer-to-Peer Community

As we said, new infrastructures hosting computational grids become larger and more unstable. As a
consequence, they fail to provide a minimum stable set of components that could be able to maintain
a global view of the platform. Grid software, initially designed assuming such a stable infrastructure
needs to be redesigned, to be able to face the nature of new platforms. Software introduced by
the peer-to-peer community, offering purely decentralized techniques to share resources on highly
large and dynamic platforms has appeared to be of high interest for the grid community. Peer-
to-peer technologies offer more and more robust tools for large scale content distribution (content
being possibly information on available services), while addressing failures (leaving processors). As
a consequence, it has much to offer to the grid computing community, that addresses infrastructure,
but not the scale and the failures. This convergence were initially put in words by Iamnitichi and
Foster [83]. Our solution is an example of this convergence.

The Contribution of the Self-Stabilization Community

On platforms where processors are constantly undergoing departures or failures of processors, one
requirement is to be able to remain efficient, whatever the number of departures and/or crashes is.
Self-Stabilization is a general powerful technique to design a system tolerating arbitrary transient
faults. In other words, regardless of the number of crashes, failures (in one word, the arbitrary
state of the system), the system will be able to rebuild a consistent one. Our solution calls upon
self-stabilization for fault-tolerance.

Dissertation Organization

In Chapter 1, the information required to understand the issue tackled in this dissertation, and
how this problem has been approached on early grid computing platforms, is detailed. A concise
statement of the problem is provided, along with an overview of our solution and a detailed outline.
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In Chapter 2, we provide the background and related works in peer-to-peer systems and self-
stabilization allowing to understand our solution and compare it with similar works, on the rele-
vant points (complexities, scale, efficiency according to several parameters, load balancing, fault-
tolerance).

Chapters 3, 4, and 5 present the theoretical part of our contribution. In Chapter 3, the basic
design of our system is presented. Our solution is a two-layer peer-to-peer architecture. In this
first contribution chapter, we focus on the upper layer which is a logical prefix tree indexing the
information and built as some services join and leave the system. In Chapter 4, the lower layer
of our architecture is studied. The problem of efficiently mapping the upper logical layer indexing
the information on services, onto the lower physical one, representing the network is addressed.
Finally, our theoretical contributions ends with Chapter 5 where the fault-tolerance issue within our
architecture is addressed. Our solution strongly relies on the self-stabilization paradigm.

Chapter 6 presents the practical aspects of our contribution, namely (1) a preliminary peer-to-
peer extension of an existing grid software, and (2) the prototype implementation of our solution, its
early experimentation and its application to an important emerging problem: network reservation
and provisioning.
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Chapter 1

Preliminaries

In this chapter, we give the information required to understand the problem tackled in this disser-
tation and its context, namely Service Discovery in Grid Computing. In the next section, we briefly
recall the genesis of Grid Computing and the two main types of infrastructures it traditionally consid-
ers. We illustrate the tremendous amount of efforts in grid software development by some important
examples of leading grid middleware projects. In Section 1.2, we present the purpose of Service
Discovery, and illustrates it with few relevant traditional approaches for designing and implementing
a service discovery system. In Section 1.3, we give a statement of the problem we are dealing with.
Finally, in Section 1.4, we introduce the remainder of the dissertation by giving an overview of the
solution we have developed.

1.1 Grid Computing

In many areas, such as cosmology, bioinformatics, or high energy physics, new problems involve
a lot of simulations and modelling, requiring an exponentially increasing computing power. Local
aggregations of processors, called clusters, appear inadequate to solve these problems. At the very
end of the twentieth century, this need for a greater computing power, along with the explosion
of distributed computing resources connected by high-speed networks gave birth to a new field of
computer science, known as Grid Computing.

As early defined by Foster and Kesselman [62], the ultimate purpose of grid computing is to offer
an aggregation of these worldwide distributed connected computing resources to the scientific com-
munity, governmental institutions or users at the edge of the Internet. As achieved with the electrical
power grid, one hundred years earlier, this should be done in a transparent way. Nonetheless, due to
several factors, this aggregation is a very challenging issue. Heterogeneity — or even incompatibility,
both in terms of hardware (computing power, network accessibility, or storage space) and software
(operating system, communication protocols) makes this transparency problem quite delicate.

Within the grid computing area, we can distinct two main types of infrastructures, which ap-
peared in parallel, most of the time referred to as Remote Cluster Computing and Global Computing.
Software tools aiming at facilitating the exploitation of such infrastructures — aggregating the com-
puting power and making it available while hiding heterogeneity and volatility, are known under the
general term Grid Middleware. We now review important existing infrastructures along with widely
used middleware for both types of grids.
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1.1.1 Remote Cluster Computing.

Infrastructures. The Remote Cluster Computing paradigm aims at using the computing power
of federations of geographically distributed computer clusters of private, governmental or academic
institutions. The physical resources are virtualized and grouped within logical Virtual Organizations
(VOs). The purpose of this virtualization is to provide to users an access point to these resources
without requiring any modifications in their programs. These grids offer a good level of availability
and stability since most of the time dedicated to computing.

TeraGrid. TeraGrid [138] is a good example of such grids. It is an open infrastructure combining
leadership class resources at eleven partner sites to create an integrated, persistent computa-
tional resource for scientific computing. TeraGrid includes more than 250 teraflops of comput-
ing capability and more than 30 petabytes (quadrillions of bytes) of online and archival data
storage with rapid access and retrieval over high-performance networks.

LCG. CERN (European Organization for Nuclear Research) has recently chosen grid technology
to solve a huge data storage and analysis challenge brought by the LHC (Large Hadron Col-
lider) [4], the world’s largest and highest-energy particle accelerator, which will produce a
goldmine for finding traces of new fundamental particles of matter, which in turn will tell physi-
cists a lot more about how the Universe was formed and what its future might be. The data
production will be about 15 petabytes a year. The LHC Computing Grid project (LCG) [2],
which was launched in 2002, has a mission to integrate thousands of computers worldwide into
a global computing resource, which will be used to store and analyze the huge amounts of data
produced by the LHC.

EGEE. Launched in 2004 and funded by the European Commission, the EGEE project aimed to
build on recent advances in grid technology and develop a service grid infrastructure which is
available to scientists 24 hours-a-day. The project was primarily concentrated on three core
areas [141]: (1) Build a consistent, robust and secure grid network that will attract additional
computing resources. (2) Continuously improve and maintain the middleware in order to deliver
a reliable service to users. (3) Attract new users from industry as well as science and ensure
they receive the high standard of training and support they need. The EGEE project initially
focused on two well-defined application areas: High Energy Physics and Biomedical. Today,
EGEE is the largest multi-disciplinary grid infrastructure in the world, which brings together
more than 120 organizations to produce a reliable and scalable computing resource available to
the European and global research community. At present, it consists of 250 sites in 48 countries
and more than 68,000 CPUs available to some 8,000 users.

Grid’5000. Grid’5000 [33] is a french research effort to develop a large scale nation wide infrastruc-
ture for Grid research. 17 laboratories are involved, nation wide. As large scale distributed sys-
tems such as grids are difficult to study from theoretical models and simulators only, Grid’5000
aims at providing the community of grid researchers a testbed allowing experiments in all the
software layers between the network protocols up to the applications. Grid’5000 fills the need
for real large scale research grid and is currently one of the most advanced research grid. The
current plans are to assemble a physical platform featuring 9 local platform (at least one cluster
per site), each with 100 to a thousand PCs, connected by the Renater Education and Research
Network [149]. All clusters will be connected to Renater with a 10Gb/s link (or at least 1
Gb/s, when 10Gb/s is not available yet). The interconnection and interoperation of Grid’5000
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with other academic grid research infrastructures like DAS-3 [140] in The Netherlands, or
Naregi [143] in Japan are currently under study.

Middleware. We now briefly review two middleware systems to build such grids. They are among
the most important in terms of number of people involved and number of users and other middleware
projects using it as a building block.

Globus. Globus [61] is an open source project providing a set of tools intended to ease the construc-
tion and use of grids built on the model of virtual organizations. The Globus toolkit includes
software (software services and libraries) for security, information infrastructure, resource man-
agement, data management, communication, fault detection, and portability. It is packaged as
a set of components that can be used either independently or together to develop applications.
Since several years now, Globus has become a widely used solution to build large computing
systems. Today, as it intends to provide standard protocols and APIs for grid computing,
Globus also serves as a solid and common platform for implementing higher-level middleware
and programming tools, ensuring interoperability amongst such high level components.

gLite. Born from the collaborative efforts of more than 80 people in 12 different academic and
industrial research centers as part of the EGEE Project, gLite [142] provides a framework
for building grid applications tapping into the power of distributed computing and storage
resources across the Internet. The gLite grid services follow a Service Oriented Architecture
(SOA), meaning that it is intended to easily connect to other grid services. It currently aims
at facilitating compliance with upcoming grid services standards, for instance the Web Service
Resource Framework (WSRF) [151] from the OASIS consortium [147], a consortium working
for the convergence and adoption of standards in information technologies, or the Open Grid
Service Architecture (OGSA) [148] from the Open Grid Forum community [5], which gathers
a community of grid computing users and developers whose common purpose is the standard-
ization of grid computing tools.

1.1.2 Global Computing.

Infrastructures. The Global computing, or Desktop Computing, based on cycle stealing, aims at
collecting computing power of worldwide distributed desktop workstations connected to the web,
when unused by their owner. As the performance of desktop computers increases and the number
of volunteer grows, the amount of computing power collected allows to solve very large problems.
Main issues to deal with when building such platforms are related to heterogeneity and volatility.
Public-resource computing emerged in the mid-1990s with two projects, GIMPS and Distributed.net.
In 1999, SETI@home [15] was launched, which has attracted millions of volunteer worldwide to help
the SETI (Search for Extra-Terrestrial Intelligence) project.

Middleware.

Condor. The pioneering system Condor [139] is basically a user-friendly job queueing mechanism
for global computing infrastructures. Users submit their serial or parallel jobs to Condor which
chooses when and where to run them based upon a policy and monitors their progress until
informing the user upon completion. Condor offers a set of techniques to harness wasted
CPU power from idle desktop workstations. For instance, Condor can be configured to only
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use desktop machines where the keyboard and mouse are idle. Moreover, Condor provides
mechanisms to detect activity on workstations and may be able to produce a checkpoint and
migrate a job to a different workstation detected as idle.

BOINC. BOINC [14] (Berkeley Open Infrastructure for Network Computing), is a software suite
which generalizes the SETI@home approach to any public resource computing projects. Nu-
merous @home are emerging these days, using the BOINC software. These projects intend to
solve problems of different fields of science, like mathematics (ABC@home [7]), or medicine
(World Community Grid [73]).

Computing devices of a grid are featured with some resources (computing power, storage space,
files, computing software). If they are installed and ready to be used by other users, the become a
service. One key prerequisite to use these resources, independently from the type of infrastructure,
is to make these resources visible to potential users. This process of matching needs of users with
computing capabilities available on a platform is generally referred to as Service Discovery.

1.2 Service Discovery

This section deals with the concept of service discovery. In a first part, we define the notion of
service, and explain what is generally assumed when using the word service in a grid computing
context. The second part of this section details a bit further the service discovery process and the
traditional approaches developed within early grid middleware.

1.2.1 Service

Notion of Service. Very generally a service can be defined as a network-enabled entity that
provides some computing capability. That short definition points out two important facts. First, a
service is able to communicate with other entities via a network and second, it answers to a need
expressed by a potential user, or client. In other words, a service is provided by an entity - the
service provider, or server - for use by others, or clients. Note that the eventual consumers of the
service may not be known to the service provider and may demonstrate uses of the service beyond the
scope originally conceived by the provider. The Service-Oriented Architecture (SOA)[3] Reference
Model is an attempt to define a standard architecture for using business computing entities. SOA
is introduced as a paradigm for organizing and utilizing distributed capabilities that may be under
the control of different ownership domains. A SOA can thus be seen as a means to match needs
of clients with capabilities provided by servers, or services. The SOA standard describes a service
as a mechanism to enable access to one or more capabilities, where the access is provided using
a prescribed interface and is exercised consistent with constraints and policies as specified by the
service description.

Definition. As our context is grid computing, we restrict the notion of service to a remote com-
puting resource able to compute a result given a set of parameters (including data to be processed).
The client is not interested in pure computing power, but in computing power able to perform some
operation. Consider the astrophysicist trying to simulate the past of the universe. He obviously
needs computing power, but he mainly needs the software able to provide this simulation. Then,
pure computing power or storage space fall out of our definition. We define a service as a software
component (scientific libraries, binary code, scientific simulations) provided with some particular
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characteristics related to the operating system, hardware architecture, capacity (free CPU power,
free memory or storage space) and location of the service (cluster, administrative domain).

Examples. Scientific libraries like linear algebra packages are typical basic computational utilities
used in computational grids. BLAS [57], LaPACK [16], and ScaLAPACK [32], or the S3L library [6]
developed by SUN are well-known examples. Today’s computational grids aim to offer to scientists
a platform providing the computational abilities they require. More complex application are found.
We can cite as examples any scientific application related to simulation, or analysis and requiring
a very large computing power. Sparse Matrix solvers [13, 51] functions are also currently highly
studied for availability as a set of services on the grid, like within the GRID-TLSE project [12].
Among the numerous today’s scientific applications and tools already available on grids or candidate
for gridification, we can cite physics tools like Adaptive Mesh Refinements [99], cosmological grid-
based applications like Enzo [111] or Ramses [38], climate predictions applications [37, 58], or the
well known BLAST [11], which is one of the most gridified tool in bioinformatics [41, 124].

Visibility. Visibility refers to the capacity for those with needs and those with capabilities to be
able to see each other. This is typically done by providing descriptions for such aspects as functions
and technical requirements, related constraints and policies, and mechanisms for access or response.
The descriptions need to be in a form (or can be transformed to a form) in which their syntax and
semantics are widely accessible and understandable.

Three Actors. That definition lays the first stones of the relations between the three main types of
actors in our architecture, i.e., servers, clients, and service management entities, sometimes referred
to as agents. These agents are responsible for the mapping between clients’ needs and servers’ offers.
It also emphasizes the need for a service description necessary for clients to find and choose the
service that corresponds best to their needs among the pool of offers.

1.2.2 Discovery

As illustrated on Figure 1.1, Service Discovery is a process taking a query as a parameter and
returning a set of available servers satisfying the requirements enounced in the query, along with the
information allowing to use the service in a remote mode (basically the address of the server). As
also suggested on Figure 1.1, a service discovery systems provide two fundamental features:

1. Service Registration. When a resource or a service joins a network it has to register itself
in a registry. This is necessary for the service to be visible. Upon registration a description of
the new service is provided and written along with the service in the registry. That description
allows the system to match that specific service with a client request. Handled in the same
way, a server may decide to unregister one of its service. This part is illustrated on the right
part of Figure 1.1 and is most of the time initiated by the servers (except if the system decides
to remove a service from the registry in the case the service has an undesired behavior).

2. Service Location. Once a service is registered, the system considers it is available and thus
if any client issues a request that matches that specific service, it will be added to the list of
appropriate services that is to be returned to the client. The information returned to the client
contains the location of the service and how to access to it. (See the left part of Figure 1.1.)
The Location process is made in three phases. First, the client sends its request to the system.
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Then, the system collects the information of the services matching the request. Finally, the
information found is sent back to the client.

Several tools within several computational platforms paradigm tackles the service discovery issue.
To give a better illustration of this problem, we now briefly review two widely used approaches for
service discovery, namely MDS2, the Grid Information System of the Globus toolkit version 2, and
UDDI, used in the Web Services technology.

Figure 1.1: Service discovery conceptual architecture.

MDS2

Overview. MDS2 is the Grid Information System of Globus Toolkit version 2. An MDS4 version
based on Web Services (refer to next section) technology has been integrated in the Globus Toolkit
4. However, the differences between the versions are not related to the core design itself [86]. This
grid information service architecture (see Figure 1.2) comprises two fundamental entities: particular
information providers and specialized aggregate directory services.

• An information provider (IP) is a software device providing information on a particular
resource (designated by the provider of the resource). Together, information providers form a
common infrastructure providing access to detailed, dynamic information about grid entities,
independently from Virtual Organizations. (A Virtual Organization can be seen as a set of
computation abilities grouped to be used by a particular group of people sharing a particular
goal.) For example, a provider for a computing resource might provide information about
the number of nodes, amount of memory, operating system version number and load average;
a provider for a running application might provide information about its configuration and
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current status. In other words, an information provider gives the raw information about a
resource.

• aggregate directories (AD) provide often specialized, VO-specific views of federated re-
sources or services, each VO having its own scope. For example, a directory, intended to
support application monitoring, might keep track of running applications. Another directory
serving the scope of one VO whose scope is to optimize a particular parameter will provide an
aggregate directory on which resources will be sorted according to this parameter.

GRPP. Each IP informs ADs of the availability of the information it provides a resource using
the GRid Registration Protocol (GRRP). In other words, the GRRP protocol is used to update
information contained in AD. GRRP defines a notification mechanism that one server can use to
“push” simple information about the existence of a service to another element of the information
services architecture. It is a soft-state protocol, meaning in our context that state established at a
remote location by a notification (e.g., an index entry for an information provider) may eventually
be discarded unless refreshed by a stream of subsequent notifications.

GRIP and LDAP. Getting information from IPs is done through the GRid Information Protocol
(GRIP), which relies on the LDAP [80] protocol. LDAP defines a data model, query language,
and wire protocol. Aspects of the data model are illustrated in Figure 1.3. Within information
providers, information is structured according to the LDAP model. GRIP is used by client to access
informations contained in both AD and IP.

Scenario. When a client needs to discover a resource, it first sends a discovery request to a VO-
specific AD. This AD serves a given scope and references and presents resources according to this
scope. Once the client has received the reference of the service matching his request (and information
on how to contact the corresponding IP), it sends a new lookup request using the GRIP protocol to
retrieve the detailed information of the resource. See Figure 1.2.

Figure 1.2: MDS architecture overview. Using the GRid Information Protocol (GRIP), users can
query aggregate directory services (denoted D) to discover relevant entities, and/or query information
providers (P) to obtain information about individual entities. Description services are normally
hosted by a grid entity directly, or by a front-end gateway serving the entity.
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Figure 1.3: The LDAP data model represents information as a set of objects organized in a hier-
archical namespace. Each object is tagged with one or more named types. Each object contains
bindings of values to named attributes according to the object type(s).

UDDI, Web Services

Web Services Overview. Web Services, whose general architecture is provided by Figure 1.4 is a
system designed to support interoperable machine-to-machine interaction over a network [10]. Web
services are frequently just Web APIs, that can be accessed over a network, such as the Internet, and
executed on a remote system hosting the requested services. Clients and servers (often businesses
providing on-line services) communicate using XML messages that follow the SOAP standard. When
one want to make its services available through the web, the information is sent to a set of web-based
registries, called Universal Description, Discovery and Integration (UDDI) in which information
on web-services are stored. Clients, for discovery, and servers, for registration of their services,
communicate with UDDI registries using the Web Services Description Language (WSDL), a standard
XML-based language for describing such services.

Figure 1.4: Web Services architecture.
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UDDI Overview. UDDI is a group of Web-based registries that expose information about a
business or other entity and its technical interfaces (or API’s). These registries are run by multiple
operator sites, and can be used by anyone who wants to make information available about one or more
businesses or entities, as well as anyone that wants to find that information. By accessing any of the
public UDDI Operator Sites, anyone can search for information about Web Services that are made
available by or on behalf of a business. The benefit of having access to this information is to provide
a mechanism that allows others to discover what technical programming interfaces are provided for
interacting with a business for such purposes as electronic commerce. The benefit to the individual
business is increased exposure in an electronic commerce enabled world. The information that a
business can register includes several kinds of simple data that help others determine the answers to
the questions “who, what, where and how”. Simple information about a business, information such
as name, business identifiers and contact information answers the question “Who?”. The question
“What?” involves classification information that includes industry codes and product classifications,
as well as descriptive information about the services that the business makes available. Answering
the question “Where?” involves registering information about the URL or email address (or other
address) through which each type of service is accessed. Finally, the question “How?” is answered by
registering references to information about interfaces and other properties of a given service. These
service properties describe how a particular software package or technical interface works.

UDDI API and Architecture. A UDDI programmer’s API has been designed to provide a
simple request/response mechanism that allows discovery of businesses, services, and technical service
binding information. A set of Web Services supporting at least one part of the API is referred to
as a UDDI node. One or more UDDI nodes may be combined to form a UDDI registry. The nodes
in a UDDI registry collectively manage a particular set of UDDI data. The architecture of UDDI
is hierarchical. It is up to each of the entities to register themselves upon one or several registries.
There are mechanisms to replicate information concerning services or any other entity among nodes
attached to a same registry. All the nodes of a same registry share the same information, thus when
any modification occurs in one of these nodes, it has to be reflected on all the other nodes. Upon
modification the node will issue a change notification to all the nodes attached to the same registry
so that they reflect that change on their own copy of the shared data.

Until here, we have presented the context of the dissertation (service discovery in grid computing)
and have illustrated it with a few examples of service discovery systems picked within traditional
computational platforms. We now refine our study and state the problem we address.

1.3 Problem Statement

1.3.1 Infrastructure

Henceforth, we simply consider a set of geographically distributed computing devices, that we call
servers. Each of these servers provides a particular set of binaries, libraries, or software components,
brought together under the term service. As in any computational platform, the purpose is to make
these services available to clients, which are desktop or laptop computers of users who need to do
a computation ability missing on their own computer and/or requiring far more power than it is
able to offer. Then, users have to specify their requirements following a certain formalism in a query
request. As illustrated on Figure 1.1 and already described above, Service Discovery is a process
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taking a query as a parameter and returning a set of available servers satisfying the requirements
enounced in the query, along with the information allowing to use the service in a remote mode
(basically the address of the server). What is behind the cloud of Figure 1.1 can be on a central,
powerful computer, or a set of processors of a distributed platform.

1.3.2 User Requirements

Users can specify their needs, dealing with both software and hardware aspects. We now review the
main aspects of a service for which a client can request some particular values.

• The Service. Users are basically looking for a service and specify it with a name under which
this service is usually referred to as. For instance the DGEMM refers to a routine of the BLAS
library [57]. Users may also want to discover any routine of the SUN S3L library [6], whose all
names begin with “S3L ”.

• The Operating System. Users often need a particular operating system, compatible with
their data to be processed by the computation. Moreover, operating systems do not have the
same characteristics and functionalities, inducing performance variations. They also do not
offer the same security level. Examples are Linux Fedora, MAC OS X. A query from a user
may be “any Linux”, what can be specified with “Linux*”.

• The Processor. Users may specify a particular processor on which they want the service to
run, for instance to avoid to send miscoded data (endianess, 64/32 bits architectures) and loose
precious time. Examples are Power PC, x86.

• Performance Requirements. Users may require a minimum amount of memory, CPU or
storage load under which they will not be satisfied. For instance, a user knows the memory
amount needed by the service to complete the computation in a decent time. Examples of such
requirements are Memory > 2 Go and Free CPU > 50 %.

To sum up, we want the service discovery system to support multi-attribute queries, range queries,
and automatic completion of partial search strings.

1.3.3 Platform Characteristics

Recall that the service discovery service itself must be offered in the kind of platforms that are
emerging today. We consider three types of nodes: client nodes, server nodes, and nodes taking
part in the discovery process by maintaining the information on available services and answering to
clients’ requests. We call them service discovery agents, or simply agent nodes. We can consider
two types of computing architectures:

• A platform in which clients, servers and agents are three distinct sets of nodes.

• A pure peer-to-peer computational grids, in which each node can be client, server, and also
agent, at different times.

In both cases, agents are run on nodes of a platform having today’s platform characteristics, i.e.,
several properties that must be taken into account when designing a service discovery service. We
now recall these properties:
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1. The Scale. The number of servers and services, and of clients and requests, is very large. As a
consequence, the load generated by the service discovery process is as large. In addition, as we
already stated, no stable centralized powerful infrastructure is available. Thus this load must
be distributed as much as possible, i.e., among every node of the whole network. Algorithms
underlying the discovery process have to be totally decentralized.

2. The Heterogeneity. Moreover, to avoid some nodes to be overloaded and avoid bottlenecks,
one has to carefully and fairly distribute the load generated by the service discovery among all
nodes involved in the process by taking into account their particular amount of power in terms
of bandwidth, CPU and storage load.

3. The Dynamic Nature. In those platforms, nodes are constantly joining and leaving the
network without notice. The service discovery must remain efficient as nodes performing it can
leave at any time. In other words, the service discovery have to be fault-tolerant.

1.4 Solution Overview and Outline

This dissertation details the diverse aspects of a solution to the above-described problem. First note
that traditional approaches that we described above can not be efficient in such platforms since they
all require a stable set of powerful processors able to store the information and process requests.
Because the peer-to-peer community provides purely-decentralized and fault-tolerant algorithms to
retrieve information, peer-to-peer systems have been a new field of investigation for designers of
grid middleware. Our solution also calls upon some peer-to-peer concepts. More precisely, our
solution relies on the indexing of information on services available on the platform in a particular
tree structure, namely a trie, also known as Prefix Tree, or Lexicographic Tree.

Distributed Trie-Based Structure. We have first developed a set of algorithms able to maintain
such a structure and the information contained inside in a fully distributed environment, as
services of the platform appear and disappear. These algorithms, their complexities, their
performance measured by simulation and a first comparison of our solution with similar existing
architectures are exposed in Chapter 3.

Mapping the Trie on the Network. The second main point focuses on how to improve the initial
design presented in Chapter 3, in terms of throughput, i.e., the amount of requests satisfied
especially when this number becomes large. Chapter 4 presents a scheme to efficiently dis-
tribute the nodes and links of the tree structure on the processors, i.e., an efficient mapping
of the tree on the network. Chapter 4 also proposes some weighted load balancing techniques
to dynamically adapt this mapping as the tree grows and the load, i.e., the set of requests
processed by a node, fluctuates. An analytical and simulation-based comparison with similar
work is provided, establishing the relevance of our approach.

Fault-Tolerance and Self-Stabilization. The third main part of this dissertation is related to the
fault-tolerance. The question we deal with in Chapter 5 is how one can ensure the effectiveness
of the service discovery as nodes on which it runs are constantly joining and leaving the network.
A first replication-based solution is proposed, replicating data, links, and nodes of the tree.
Nevertheless, replication is costly and does not formally ensures the recovery of the system
after arbitrary failures. From this point on, it remains only to use a best-effort approach, i.e.,
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let the tree crash and recover a correct configuration with what remains in the network. To this
end, we propose three algorithms, two of which rely on the self-stabilization paradigm. The
concept of self-stabilization [54] is a general technique to design a system tolerating arbitrary
transient faults. A self-stabilizing system, regardless of the initial states of the processors and
initial messages in the links, is guaranteed to converge to the intended behavior in finite time.
Our three algorithms are designed using different models and making different assumptions,
and have different advantages and drawbacks in theory and practice. They are given with their
complete correctness proofs and some simulation results to better capture their efficiency.

Middleware Extension, Prototype Implementation and Application. Finally, we detail
our practical contributions in Chapter 6. First, we describe an early work connected to ser-
vice discovery, whose aim was to identify and break the barriers to the scalability in a grid
middleware. This work, partly independent from the architecture described throughout this
dissertation was conducted in 2004, and was the design, implementation, and experimentation
of a peer-to-peer extension of a particular grid middleware. Properly related to our architec-
ture, we then present a prototype implementation of it. We focus on the software architecture
we developed. Finally, we expose the use of such an architecture for the monitoring and pro-
visioning of network resources in a distributed fashion and presents preliminary deployment
results over the Grid’5000 platform.

The following chapter provides the background and related works for these problems, from the
origins of the file retrieval techniques to the most advanced solutions merging self-stabilization and
peer-to-peer systems via topology awareness and load balancing in distributed hash tables, and the
tremendous amount of papers addressing the expressiveness of queries on top of structured peer-to-
peer networks.
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Chapter 2

Background and Related Work

In this chapter, we give the background and related work of our solution. In a first Section, we briefly
expose the genesis of the convergence between grid computing and peer-to-peer systems and why peer-
to-peer has become a field of investigation for designers of grid systems. Then, in Section 2.2, we recall
the origins of the peer-to-peer systems and define some useful peer-to-peer concepts. In Section 2.3,
we give some example of pioneering peer-to-peer systems, which rely on flooding algorithms. In
Section 2.4, we detail the Distributed Hash Tables, their topology awareness mechanisms and the
studies of their load balancing properties. In Section 2.5, we describe an important part of our
related work, dealing with complex queries in structured peer-to-peer networks. In Section 2.6, we
introduce a few recent advances in software considerations for the peer-to-peer and grid computing
convergence. Finally, the background for self-stabilization and the recent studies for the use of such
a paradigm in peer-to-peer networks is given in Section 2.7.

2.1 On the Convergence of Peer-to-Peer and Grid Computing

As new infrastructures hosting computational grids become larger and more unstable while failing to
provide central devices able to monitor the whole platform, grid middleware needs to be redesigned in
a fault-tolerant and fully decentralized fashion. Software introduced by the peer-to-peer community,
offering purely decentralized techniques to share resources on highly large and dynamic platforms
has appeared to be of high interest for grid middleware designers. Peer-to-peer technologies offer
more and more robust tools for content distribution, while addressing failures. As a consequence,
it has much to offer to the Grid Computing community. This convergence were put in words by
Iamnitichi and Foster [83].

2.2 Peer-to-peer: Definitions and Origins

We can find in literature a considerable number of definitions of the term peer-to-peer (P2P), each
one encompassing a more or less broad set of systems.

• In their strictest definition, pure P2P systems refer to totally decentralized systems in which
all basic entities, called peers, are equivalent and perform the same task. The KaZaA [146] net-
work, within which supernodes (mini-servers locally aggregating information) are dynamically
assigned, falls out of this definition.
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• In a broader and widely accepted definition, notably introduced by Shirky [131], P2P refers to
any applications that take advantage of resources — storage, cycles, content, human presence
— available at the edge of the Internet. This definition encompasses systems completely relying
on a central server for their operation, e.g., volunteer computing systems (@home projects) —
refer to Chapter 1, or pioneering file sharing networks like the well-known Napster [109].

File Sharing. The first generation of peer-to-peer file sharing networks relied on a centralized
server listing the files available on users’ computers. In this model, the user looking for a file sends
a search request to this server and the server sends a response containing a list of online computers
providing the requested file back to the user. The most known implementation of this model is
Napster, a music file sharing system, which operated between June 1999 and July 2001. Napster
encountered several problems.

• Architectural Problems. As the number of connected users increases, the central server
becomes unable to manage the amount of requests, what reduces the ability of the system to
scale well. The main weakness of the Napster system is that it relies on a central server. In
case of a single failure on this server, the whole sharing system becomes inoperative.

• Legal Problems. The free sharing of music files led to accusations of massive copyright
violation from the music industry. Although the original service was shut down by court order,
it paved the way for decentralized peer-to-peer file-sharing programs, which have been much
harder to control.

2.3 Unstructured P2P

The second generation of P2P file sharing systems, notably initiated among others by Gnutella [70],
relies on a purely decentralized logical network built on top of the physical network in which all
users participate in the forwarding of the search requests, each request flooding the network within
a given radius (number of hops) from the source. However, Gnutella does not take advantage of the
heterogeneous nature of file sharing networks in which some computers can be far more powerful than
others in terms of computing power, storage space, or proximity to network backbones. KaZaA [146]
improves this model by introducing a two-layer architecture. A set of supernodes, local servers
dynamically assigned considering their power and listing the set of files stored by standard nodes,
manages the listing and processes requests for other standard nodes, each standard nodes being
assigned to one given supernode.

Despite the KaZaA effort to improve the architecture of unstructured approaches, such networks
present several major drawbacks:

• Overhead. Flooding the network for each request generates a high traffic load that may be
hard to handle and create poor network conditions. As the number of users grows, the number
of messages can become unacceptable.

• Non-Exhaustiveness. The core operation of peer-to-peer systems is efficient location of data
items. Scanning the entire network for each request would lead to unacceptable latencies. As a
consequence, the search is limited by a given number of hops after which the packet is deleted.
This means that there may be a response to the request somewhere in the network that has
not been retrieved.
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Addressing both high cost and non-exhaustiveness of unstructured peer-to-peer approaches for
data item locations, a plethoric amount of work was initiated, by the famous Distributed Hash
Tables.

2.4 Distributed Hash Tables

2.4.1 Principles

Distributed Hash Tables (DHTs) are very attractive solutions to distribute and retrieve information
in a large and dynamic network. DHTs basically provide one single functionality to the client user,
namely the location of data items.

In a hash table, each resource declared is referenced as a (key, value) pair. For instance, one user
may declare the resource (musicFile1.ogg, 140.55.123.4) meaning that the computer at the address
140.55.123.4 provides the file musicFile1.ogg. These pairs are physically stored in m memory
cells by application of the hashing function h : X → {0, 1, . . . ,m − 1} on the key. In the case of
distributed systems, the goal is to uniformly distribute the set of pairs among the m nodes of the
network while globally optimizing the search for a key from any node in the network. As a result,
the hash function must be uniform random with values in a set of logical identifiers with a negligible
probability of collision. This is achieved by using cryptographic functions and large values for m.

Distributed Hash Tables maintain an overlay network, i.e., they build a virtual communication
network over a physical network, like the TCP/IP Internet protocol. Each processor of the physical
network becomes a node of the overlay network. The location of the node representing a processor in
the logical/overlay network is decided by applying the hash function on the unique physical address
of the processor. A processor joins the overlay network by first using a bootstrap mechanism giving
the way to access to a processor or a group of processors that are already in the overlay network.
Once the joining processor knows an entry point of the system, it can send a request to be inserted. A
new node is inserted using the distributed join procedure, finding its location in the overlay. Objects
((key, value) pairs) are then distributed among these nodes by finding the node whose identifier (in
the logical network) is the closest to the key of this object. The lookup function is a common feature
of any DHT and allows to retrieve the node responsible for storing the searched key. We now briefly
review the main pioneering implementations of such networks, developed around 2001.

2.4.2 Some DHTs

CAN. The overlay network maintained by the Content-Addressable Network [118] is arranged as
a virtual d-dimensional Cartesian coordinate space on a d-torus. In other words, the hash functions
returns values representing points in this space. When N nodes are in the network, the space is
partitioned into N zones, each zone being assigned to a node. Figure 2.1 illustrates such an overlay
for N = 5 nodes and d = 2. The first node to join owns the entire CAN space, its zone being the
complete virtual space. When the second node joins, the space is split in two and each node gets
one half of the space. Each node maintains a state of its neighbors i.e., nodes responsible of zones
adjacent to its own, allowing nodes to route messages to their destination node/zone. Consider a
new node p joining the network. By applying the hash function on its IP address (for instance), it
obtains a point hp in the space and contacts any node already in the network. An insertion request
for this node is then routed to the node responsible — let us denote it r — for the zone in which hp

falls. On receipt of this request, a node forward the request to the neighbor whose zone is the closest
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to h(p). Once found, the destination zone is split in two halves, one being assigned to p, the other
to r. Objects are then assigned to nodes using the same routing algorithm.

Figure 2.1: CAN, d = 2.

Chord. The Chord overlay network [135] builds a ring on identifiers ordered in an identifier circle
modulo 2m. A key k is assigned to the first node on the ring whose identifier is equal to or follows
k in the identifier space. This node is called successor of k (succ(k)). In other words, each node is
responsible for keys falling between itself and its predecessor on the ring. Such a logical ring is given
by Figure 2.2 with m = 3 and the number of nodes N = 4 (black-filled circles). The routing table of
a node identified by p is composed of references of nodes, called fingers, whose distance on the ring
to the node grows exponentially, the ith entry being succ(p + 2i). To route a request for the key k,
a node forwards the request to the highest finger lower than k.

Plaxton Trees, Tapestry and Pastry. The basic principle of routing methods used by Pastry
and Tapestry DHTs relies on the Plaxton, Rajaraman, and Richa (PRR) routing scheme [114]. Each
node receives a unique identifier of length d (let’s say 160 bit) in a circle identifier. A request for a
key k is routed on node p towards a node that shares at least one digit more with k than p does.
As a consequence, each node is the root of a spanning tree (consisting of the paths leading down to
this node). Pastry and Tapestry differ only in the method by which it handles network locality and
replication. The Bamboo DHT [120] follows the same overlay construction pattern as Pastry and
Tapestry but focuses on the churn problem. An open source DHT is based on this DHT [52].

Other DHTs. Many other DHTs have been introduced, based on other topologies and offering
different improvements and flexibility levels. Among them, we can cite Koorde [89] and D2B [63] re-
lying on De Bruijn graphs. Kademlia [105] proposes a routing scheme using the XOR metric between
two identifiers. Viceroy creates a DHT using a butterfly topology overlay [101], and Cycloid [130] a
cube-connected cycles overlay. Small Worlds [92] gives clues to build large overlay networks, based
on the small world principle and Symphony [103] applies their results to the case of ring-overlay
networks.

Complexities. Complexities of the previously mentioned DHTs are summarized in Table 2.1. The
Linkage column gives the number of nodes each node maintains a connection with, i.e., the size of the
routing table, the Update column exposes the cost of an update of the network, e.g., resulting from a
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Figure 2.2: Chord, m = 3.

join operation, the Lookup column represents the number of hops required to find the node responsible
for a key, and the Congestion column summarizes the expected load of one lookup operation on one
node in a search for a random key starting from a random point. n denotes the number of nodes. d
denotes both the dimension of the Cartesian space of CAN and the network dimension of Cycloid,
where n = d × 2d. k is the number of long links in Symphony.

Other Properties. By design, DHTs have several good properties.

• Load Balancing. Uniform random hash ensures with high probability the uniform distribu-
tion of keys among nodes, each node being responsible of the same amount of keys.

• Fault Tolerance. Several mechanisms ensure the consistency of the overlay and prevent from
data loss as nodes are leaving the network without notice. Periodic scanning allows to detect
that a node has left. By introducing a replication mechanism — each object being replicated k
times, the system ensures that k− 1 simultaneous will not lead to the loss of any data. Tuning
k should be the best tradeoff between storage space requirements and fault tolerance.

In the remainder of this section, we focus on two problems which are inherent to the DHT design,
but that may greatly limit their use on real platforms, namely topology awareness and load balancing.

2.4.3 Topology Awareness

As DHT overlays are built on random logical connections, they break the natural topology of the
physical network. It is important to recall that neighbors in the overlay network may be a very long
way from one another. As a consequence, it is possible to achieve a world tour even if the destination
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Linkage Update Lookup Congestion

CAN [118] O(d) O(d) O(dn1/d) O(dn1/d−1)
Chord [135] O(log n) O(log n) O(log n) O((log n)/n)
Pastry [121] O(log n) O(log n) O(log n) O((log n)/n)
Tapestry [159] O(log n) O(log n) O(log n) O((log n)/n)
D2B [63] O(1) O(1) O(log n) O((log n)/n)
Koorde [89] O(1) O(1) O(log n) O((log n)/n)
Kademlia [105] O(log n) O(log n) O(log n) O((log n)/n)
Small Worlds [92] O(1) O(1) O(log2 n) O((log2 n)/n)
Symphony [103] O(k) O(k) O((log2n)/k) O((log2n)/(nk))
Viceroy [101] 7 O(1) O(log n) O((log n)/n)
Cycloid [130] 7 O(1) O(d) O(d/n)

Table 2.1: Expected performance measures of DHTs.

node is in the same cluster as the initial node. As we will see now, this aspect of DHTs caused a lot
of work to be done to inject topology awareness in the way overlays are built.

In order to improve the performance of DHT overlays, many works proposed approaches to make
the logical connectivity congruent with the underlying (IP-level) topology. In other words, their goal
is to build a logical network in which neighbors are actually closed in terms of latency, administrative
domains, or according to any proximity metric, in the IP network. Most of approaches studied rely
on a hierarchical design, but we can classify the set of approaches in two distinct groups: supernodes-
based and landmarks-based.

Supernodes-Based Approaches. Brocade [158] is a two-layer DHT. Its key idea is to let each
administrative domain build its own DHT, in which one or several leaders are elected considering
characteristics like CPU power, bandwidth, proximity with a backbone or fanout. These leaders
then enter an interdomain DHT, connecting local DHTs by high-speed links. This concept has been
generalized to any levels [66], and adapted to the IP numbering [68]. The work presented in [152]
extends the flexibility of the supernodes approach. When a node joins the network, it chooses itself
to be a supernode or not and selects a few existing supernodes to be its neighbors according to some
globally known policies. Jelly [81] proposes an architecture in which each joining node either meets
the requirements to be a supernode or chooses to be a child of the supernode that minimizes a given
metric.

Landmarks-Based Approaches. Another kind of approach, introduced in CAN [118] consists in
using a set of stable nodes distributed on the physical network, called landmarks. These landmarks
are used to dispatch nodes in virtual bins considering a given metric, such as the latency. The
algorithm used to make the distribution is as follows: Let us consider m landmarks. m! orderings
on the set of landmarks are possible, each ordering corresponding to one bin. Each node computes
the latency between itself and each landmark, sorts them and thus finds its own bin. The intuition
behind doing this is that nodes that are close to each other have similar landmark measurements.
ECAN [155] extends this approach by building a hierarchy of bins, grouping two close bins at level
1 in the same bin of level 2, and so on. Finally, some papers, like HIERAS [153] adopt a hybrid
approach between landmark and supernodes. The Expressway network [152] elects supernodes to

30



2.4. DISTRIBUTED HASH TABLES

which ordinary nodes are connected. Each supernode also measures its network distance to a set of
m landmarks, what gives a vector of distances and a unique position in a m-dimension Cartesian
space. This space is finally reduced to a 1-dimension space using a preserving-locality scheme relying
on space filling curves.

Hierarchical DHTs call upon network management tools (autonomous systems, local administrative
domains, IP numbering) and strongly rely on the assumptions that local connections are always
quicker than long distance connections. Landmarks-based approaches assume a globally known set
of stable nodes that are distributed in a way making measurements relevant. To conclude, even
greatly improving the performance of the overlay network, these approaches still assume a minimum
stability of infrastructures.

2.4.4 Load Balancing

In pioneering DHTs we have described before, the attempt to balance the load fails in several ways.
First, the random assignment of items leads to an O(log n) unbalance factor in the number of object
stored at a node. In other words, some nodes receive more than their fair share, by as much as a
factor of O(log n) times the average. Second, many applications bypass the uniform assignment, for
instance to easily support range queries, using order-preserving hash functions. We now review the
tremendous amount of the work this issue produced.

Virtual Servers. First introduced by Chord [135] to reduce the load unbalance, the notion of
virtual server represents a node in the DHT, responsible for a contiguous region of the DHT’s
identifier space. Then, each processor can own multiple (O(log n)) non-contiguous regions of the
space by hosting multiple virtual servers. This allows a reduction of the unbalance factor from
O(log n) to O(log n/ log log n).

The Power of Two Choices. A lot of solutions to the load balancing problem relies on the
Power of Two Choices paradigm. The strength of this paradigm was established by Azar, Broder,
Karlin, and Upfal [24]. Let us consider the basic balls and bins problem, each of n balls choosing
one of n bins independently and uniformly at random. Then the maximum load, i.e., the largest
number of balls in any bin is approximately log n/ log log n. Now suppose instead that the balls are
placed sequentially, each ball being placed in the least loaded of d ≥ 2 randomly chosen bins. Then
the maximum load is log log n/ log d + Θ(1). This result implies two important things. The first
implication is the fact that d = 2 leads to an important reduction of the maximum load. The second
one is that any choice for d beyond 2 decreases this maximum load only by a constant factor. The
application of this result to the load balancing problem in DHT network is almost straightforward.
Bins are nodes, balls are items, d is the number of possible locations for a joining node. Byers,
Considine and Mitzenmacher [35] have built the first load balancing algorithm relying on the power
of two choices paradigm for DHT networks. Basically, in this algorithm, when a node joins, it chooses
the best location (the one locally providing the best load balance) among a set of locations given by
different hash functions.

Address-Space Balancing and Item Balancing. Independently, Karger and Ruhl proposed an
algorithm that improves the load balance of Chord-like networks by giving the possibility for each
node to choose dynamically (each time it is required) the best position among log n possible ones.
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The authors prove that using such a scheme requires O(log log n) address changes upon insertion or
deletion to reach an optimal state, i.e., each node stores an O(1/n) fraction of the entire key-space
with high probability. However, Address-Space balancing is not enough if the initial hash function
is not random but for instance preserves the order of keys. In this case, the authors propose item
balancing to be explicitly done, when nodes join and leave the network. Consider a node i with a
load li. Periodically, it contacts a random node j with load lj. Load balancing process is launched
if the ratio between li and lj is lower than a global constant ǫ / 0 ≤ ǫ < 1. Assume li > lj . We
distinguish two cases:

1. i = j+1: (i and j are neighbors) then j increases its address until each node is loaded (li+lj)/2.

2. i 6= j+1: If lj+1 > li, i becomes the new successor of j and the same process applies. Otherwise,
j moves between i and i − 1 to capture half of i’s items.

The authors prove that by repeatedly applying this process, for any node i, li is always within
a constant factor of the optimal. Naor and Wieder [108] introduced a similar technique in their
Continuous-Discrete approach, but their algorithm works only in their particular overlay.

Continuing the Work. Bienkowski et al. [31] propose a similar scheme applying to any overlay
— length of intervals assigned to nodes differ at most by a constant factor. Their scheme achieves
optimal load balancing in a constant number of rounds, each round having a complexity in Θ(D +
log n) where D is the diameter of a specific network (most of the time, D = Θ(log n) or D =
Θ(log n/ log log n)). While Karger and Ruhl [90] requires O(log log n) re-assignments of nodes for each
arrival/departure, their scheme achieves a number of re-assignments within a constant factor from
optimal centralized algorithm. Other algorithms established still more precise bounds for the ratio
between the largest and the smallest amount of items each node manages, denoted σ. Manku [102]
obtains σ ≤ 4 requiring a message cost of Θ(D log(n)). Giakkoupis and Hadzilacos [69] also obtains
σ = 4, requiring a cost in Θ(D + log n). Finally, Kenthapadi and Manku’s goal [91] is to find the
best tradeoff between local and random probes. Denoting v the number of local probes and r the
number of random probes, they establish that for any combination of r and v such that rv ≥ c log n,
σ ≤ 8. These results, partly summarized in [91] are presented in Table 2.2.

The Heterogeneity Problem. The uniform distribution of keys among nodes leads to a good load
balancing only if we assume the homogeneity of at least two parameters, namely (i) the capacity of
nodes, i.e., the number of requests each node is able to process, and (ii) the popularity of items,
i.e., the number of requests on each item the system receives. The paper of Saroiu et al. [123] presents
measurement studies highlighting this heterogeneity, in terms of bandwidth, storage and CPU. The
assignment of an even number of items to every node makes sense only if the capacity of nodes are
the same. If we assign more items to a node than it can handle, and/or give this same amount to
another one whose capacity is higher, the throughput is clearly lower than it could be. Moreover,
the assignment of the same number of keys to each node results in a uniform load balancing only if
the keys are also uniformly requested. This can not be ensured in any real system, which depends
on users’ requests. Godfrey et al. [71] present a load balancing mechanism in which heterogeneity of
nodes is taken into account by using virtual servers. At each load balancing round, some temporary
masters are elected to gather the load information and compute the best redistribution according
to a metric. The drawback of this approach is clearly its semi-centralized fashion, in the sense that
master nodes must remain active during the computation. Zhu and Hu [160] proposes an attempt
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σ Message Cost comments

Naor & Wieder [108] Θ(1) Θ(D log n) Works only for the Continuous-Discrete
Overlay

Karger & Ruhl [90] Θ(1) Θ(D log n) Θ(log log n) reassignments are required
Bienkowski et al. [31] Θ(1) Θ(D + log n) Cst factor to the optimal number of re-

assignments
Giakkoupis & Hadzilacos [69] 4 Θ(D log n) 1 reassignment is required
Manku [102] 4 Θ(D + log n) 1 reassignment is required
Kenthapadi & Manku [91] 8 Θ(rD + v) Tradeoff between r and v, rv ≥ c log n

Table 2.2: Algorithms for improving the load balancing in dynamic DHTs: σ is the unbalance factor
between the most and the least loaded nodes, the second column gives the total message complexity
of the schemes, and the third column recalls some important features. D denotes the diameter of
the underlying overlay network, v and r the sizes of local and random probes, respectively, and c is
a small constant.

at solving the issue of load balancing among heterogeneous DHTs while injecting some proximity
awareness to reduce the cost of reassignments of objects. To this end, they combine several existing
mechanisms. First, they use virtual servers that are dispatched among physical nodes. A k-ary
tree is built to gather load information and make decision for the next reassignment. Finally, the
reassignment is done by heavy loaded nodes giving some work to close light nodes. This closeness
is computed by using the landmark approach. Godfrey and Stoica [72] extends the Chord protocol
by adapting the virtual servers paradigm to the heterogeneous case and prove that their scheme
achieves a load unbalance factor arbitrarily small. Ledlie and Seltzer [95] extends the random choice
approaches to take into account heterogeneity of both nodes capacity and object load. In 2008, Fu
et al. [64] generalizes the initial power of two choices results. In particular, they establish that the
maximum load in a P2P environments with heterogeneous nodes capacity and node churn for d ≥ 2
random choices is c log n/ log d + O(1) where c is a constant.

DHTs allow to retrieve resources by only one attribute, used to generate the key. In other words,
DHTs only support exact-match queries, drastically reducing the expressiveness of requests and thus
offering very limited facilities for the user to specify (and retrieve) what he is looking for. For
instance, a user may want to discover any files whose filename begins with a given string or make
multi-attribute queries. As detailed in the next section, a lot of work has intended to make DHTs
querying possibilities more flexible and complex.

2.5 Complex Queries

2.5.1 First Improvements

Harren et al. [75] give first clues to support complex queries system on top of structured P2P systems
in terms of architecture, mainly by proposing to add a Query Processing layer aiming at supporting
more complex queries on top of the basic lookup. To build this upper layer, a series of work proposes
simple extensions of existing DHT lookup techniques. INS-Twine [100] allows the retrieval of objects
described by semi-structured descriptions, for instance using XML. Biersack et al. [67] describes a
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similar scheme but distributing the resolution of the request on several nodes for a better scalability.
In the paper by Triantafillou and Pitoura [113], this upper layer allows to plug traditional database
operations (select, join, etc.) on top of DHTs. One problem which generated a high number of papers
is the enhancement of DHTs with Multi-Attribute Range Queries. We now focus on this issue.

2.5.2 Range Queries

A user interested in certain resources issues a query that is a combination of desired attributes values
or their desired range. A typical example can be:

Binary == DGEMM && OS == Linux && Memory >= 512 && Storage >= 4096

In this case, the system will search for a DGEMM operation (matrix multiplication) to be run
on Linux and providing at least 512 MByte of memory and 4 GByte of storage space.

Composing Single Lookups. The first attempt at enabling range queries was based on simple
extensions of existing lookup mechanisms. Among them, MAAN [36] (Multi-Attribute Addressable
Network) extends Chord using a uniform locality-preserving hashing to map attribute values to the
Chord identifier space. Mercury [30] directly operates on an attribute space, with random sampling
to provide a more efficient query routing and load balancing. Though both MAAN and Mercury
provides range queries, they achieve it mainly through composing single-attribute query resolution.
XenoSearch [134] builds a similar system on top of the Pastry overlay. Finally, Sword [112], based
on the same principle, builds an information service able to locate a set of machines matching user-
specified constraints on both static and dynamic node characteristics, including both single-node and
inter-node characteristics.

Inverse Space Filling Curves - Andrzejak and Xu. Andrzejak and Xu [17] use the inverse
Hilbert mapping to map a single attribute domain onto CAN’s d-dimensional Cartesian space. A
Space Filling Curve (SFC) [20] is a continuous mapping from a d-dimensional space to a 1-dimensional
space. Imagine a d-dimensional cube with the SFC passing through each point in the cube volume,
and entering and exiting the cube only once. Given a point of a d-dimensional space, the SFC returns
a real value between 0 and 1, while preserving the locality, i.e., close points in the d-dimensional
space will have close values when projected on the unit vector. Inverse SFCs associate any value
in the interval [0,1] to a cell of a d-dimensional space. As illustrated on Figure 2.3 with the Hilbert
SFC, they can be refined recursively — here, the refinement level is 2. In the system proposed [17],
the refinement level is globally known allowing any node to locally find which cell is responsible for
a given value or a range of values. The last step of the process is illustrated by Figure 2.4. The
d-dimensional space is mapped on the d-torus maintained by CAN, each node storing the values that
falls in cells included in their zone.

Trie-structured Overlays. An alternative set of approaches for efficient support of range queries
were introduced, relying on another kind of overlay, namely, tries. A trie is a particular kind of
rooted tree for storing strings in which there is one node for every common prefix. For instance, each
node of a binary trie is labeled by a prefix that is defined recursively: given a node with label l, its
left and right child nodes are labeled l0 and l1, respectively.
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Figure 2.3: Inverse Hilbert Space Filling Curve refinements. The 2/3 value is in cell (.5, .75) at first
refinement and in cell (10

16 , 11
16) at second refinement.

Figure 2.4: Mapping the values (grey-filled points) on the nodes (black points) of the CAN network.

Skip Graphs. Skip Graphs [21] generalizes skip lists for distributed environments and is a sort of
probabilistic trie. Each node in skip graphs is a member of multiple doubly-liked lists at several
levels. As illustrated on Figure 2.5, the bottom-level consists of all nodes in increasing order of
keys. A membership vector, randomly generated for each node, of size in O(log n), determines
the lists to which a node belongs. For instance, a node is in the list Lw at level i if and only if
w is the prefix of length i of its membership vector. The process of seeking a key starts at the
top-most level. The request is processed along the same level without overshooting the key. If
no node was found on this level, the process continues at a lower level, possibly reaching level
0. Each node maintains an average of Θ(log n) neighbors and skip graphs support O(log n)
search time. Range queries are supported in O(log m) time and O(m log n) messages, where
m is the number of nodes pertained by the range. The authors provide an analysis of the load
balancing properties of such a structure. If one given key is constantly requested, the overload
on this node can not be avoided. However, this effect drops off rapidly with distance to this
node. More precisely, the probability of a node u to be passed through by a request for k is
inversely proportional to the distance between u and k. Brushwood [157] focuses on preserving
data locality and proposes a scheme linearizing tree-structured data and mapping it on a Skip
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Graph network.

Figure 2.5: A skip graph with 3 levels.

Prefix Hash Tree. Prefix Hash Tree (PHT) [117] basically builds a binary trie over the data
set. Figure 2.6 gives a sample of a PHT network. Each leaf node of the trie stores the keys
prefixed by their own identifier and maintains a pointer to the leaf node on its immediate left
and immediate right, respectively. PHT is a two-layer architecture in which each trie node
(internal nodes and leaf nodes) is mapped on the network through a DHT. A leaf node with
label l is thus assigned to the DHT node to which l is mapped by the DHT, i.e., the DHT
node whose identifier is the closest to h(l). The PHT lookup operation on one key k returns
the leaf node storing it, denoted leaf(k). The PHT lookup is basically a set of DHT lookups,
launched using a dichotomic search on the size of the key. For instance, to locate the leaf node
responsible for the key 001100, a first DHT lookup is launched on the key 001. As illustrated
on the trie of Figure 2.6, this trie node is not a leaf node, so another DHT lookup is performed
on the string 00110, which is still not a node. Finally, the DHT lookup on node 0011 finds
the corresponding leaf node, which sends responses back. A PHT lookup clearly requires log D
DHT lookups, where D is the maximum size of the keys, leading to a total complexity in
O(log D. log N), where N is the number of nodes of the DHT. Range queries between two
values L and H require two steps. First, a PHT lookup is performed to find the trie node
whose label is the greatest common prefix of L and H (or the smallest prefix range that covers
the query). On Figure 2.6, the sought trie node for the range [000110; 001100] is 00∗. Then,
the request is propagated in the subtree rooted at 00∗ in parallel, leading to a latency in O(D).
The load balancing relies on a global threshold above which leaf nodes are split into two child
nodes, keys being stored on the child with the corresponding prefix.

P-Grid P-Grid [48] is a similar trie-structured overlay in which each peer (i.e., a processor of the
physical network) p ∈ P is associated with a leaf node of a binary trie. Each leaf corresponds to
a string π ∈ Π, the entire key space partition. An example of a P-Grid is given on Figure 2.7.
Each P-Grid peer p, labeled π(p) maintains a set of pointers (solid lines on Figure 2.7) to
peers sharing a common prefix of different sizes with π(p). More formally, for each prefix
π(p, l) of π(p) of length l with 0 < l < |π(p)|, p maintains a pointer to a peer satisfying the
property π(p, l) = π(p, l), where π is π with the last bit inverted. Thus the cost for storing
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these pointers are bounded by the depth of the trie. The P-Grid structure is very similar to
the Kademlia overlay [105]. To route a request on k, a node finds among its references the
node that prefixes k at most. For fault-tolerance multiple peers may be associated with the
same key space partition. Consistency between replicas is maintained by epidemic protocols.
The authors of P-Grid have developed a set of algorithm to periodically check the load balance
in the tree, keys being split or exchanged to satisfy some global load balance properties [8]. A
software based on this overlay is available on the web [116].

Figure 2.6: Prefix Hash Tree.
Figure 2.7: P-Grid.

All these approaches are able to achieve multi-attribute queries by simple extensions. These ex-
tensions mainly consist in maintaining one overlay per type of attribute, or dimension, and launching
one query for each attribute. Basically, complexities are multiplied by the number of dimensions of
the system. When this number grows, the scalability issue becomes more significant. Dealing with
this point, other approaches propose native multi-dimensional solutions.

2.5.3 Multi-Dimensional Overlay

Space Filling Curves. Squid [125] natively supports multi-dimensional range queries and auto-
matic completion of partial search strings. Consider each object, or service to be described by a fixed
number of keywords. As a consequence, in the multi-dimensional keyword space, each dimension fol-
lowing the alphabetic order, each service is a precise point of the space, as illustrated by Figure 2.8.
By applying the SFC mapping to a point, they obtain a unique identifier, ready to be placed on the
underlying overlay — Chord in this particular paper. Queries consist of a combinations of keywords,
partial keywords and wildcards. A query corresponds to some clusters of the data space. The cluster
in light grey on Figure 2.8 identifies the zone of the data space pertained by the query (00∗, 01∗). By
applying the SFC mapping on the query, we find the identifiers corresponding to the request. (Here,
identifiers that shares the common prefix 0011∗.) The query is finally sent to the nodes of the Chord
ring responsible for these identifiers.

Similar approaches and some studies of their potential improvements have been proposed in [65,
97, 132]. The SCRAP system [132] is very similar to Squid. As both SCRAP and Squid partition
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Figure 2.8: Squid. On the left, the service is described by DGEMM and Linux. In the middle, the
object is described by keywords 101 and 011. On the right, the Hilbert SFC mapping associates the
coordinates (101, 011) to the value 110101 and the query (00∗, 01∗) to the cluster 0011∗.

the space statically (the partitioning level needs to be decided beforehand), ZNet [65] partitions the
space dynamically and focuses on improving query efficiency and load balancing of such approaches
and relies on a Skip Graphs overlay.

Nodewiz. Nodewiz [26] dynamically splits a multi-dimensional data space using a tree abstraction,
each subtree corresponding to a subspace of the multi-dimensional space, for instance (Mem > 2 &&

Load >= 0,6). The main drawback of Nodewiz is that it assumes a set of reliable static nodes to
host the system.

2.6 Computational Grids and Peer-to-Peer Concepts: Software

Considerations.

Several projects recently propose prototype of grid middleware using some peer-to-peer concepts.

Vigne [88] is a prototype, whose goal is to ease the use of computing resources in a grid for
executing distributed applications. Vigne is made up of a set of operating system services based on
a peer-to-peer infrastructure. This infrastructure currently implements a structured overlay network
inspired from the Pastry DHT. On top of the structured overlay network, a transparent data sharing
service based on the sequential consistency model has been implemented. It is able to handle an
arbitrary number of simultaneous reconfigurations. An application execution management service has
also been implemented including resource discovery, resource allocation and application monitoring
services.

Vishwa [119] provides a framework to execute distributed applications with synchronization de-
pendencies by using the concept of distributed pipes that requires the modification of the applications.

Zorilla [161] is prototype Peer-to-Peer(P2P) grid middleware system. It strives to implement all
functionality needed to run applications on a grid in a fully distributed manner, such as scheduling,
file transfer and security. It provides locality-aware co-allocation with a mechanism called flooding
scheduling. The resource discovery relies on gossiping [59].

The Arigatoni overlay network [96] aims at grouping a large set of individual computation abilities
in a global hierarchical unstructured overlay using the concept of colonies (individuals ruled by some
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imposed or elected leader) in a self-organizing manner. The project also focuses on resource discovery
inside such an overlay [44] using an unstructured fashion and on the bases for a programmable overlay.

2.7 Fault-tolerance and Self-Stabilization

2.7.1 P2P Traditional Approaches Limits

Although fault-tolerance is a mandatory feature of systems targeted for large scale platforms (to
avoid data loss and to ensure proper routing), trie-based overlays offer only a poor robustness in
dynamic environment. The crash of one or several nodes may lead to the loss of information stored,
and may split the trie into several subtries. These subtries may not be re-grouped correctly, making
the system unable to correctly process queries. In recent trie-based approaches, the fault-tolerance
is either ignored, or handled by preventive mechanisms, usually by replication, which can be very
costly in terms of computing and storage resources. Afterward, the purpose is to compute the right
trade-off between the replication cost and the robustness of the system. However, replication does
not ensure the recovery of the system from arbitrary failures and may propagate a wrongly initialized
variable, as it does not check the correctness of the variables replicated.

2.7.2 Self-Stabilization

Self-stabilization [53, 54] is a general technique to design a system tolerating arbitrary transient
faults. A self-stabilizing system, regardless of the initial states of the processors and initial messages
in the links, is guaranteed to converge to the intended behavior in finite time. Thus, a self-stabilizing
system does not need to be reinitialized and is able to recover from transient failures by itself. In
other words, imagine a program in which variables are set randomly. Self-stabilization claims that
there is no need for a proper reset of the variables, as a self-stabilizing algorithm is guaranteed
to recover automatically from an arbitrary initialization in a finite time. It appears an efficient
technique suitable for dynamic, failure prone systems like peer-to-peer systems. We now present the
background of any self-stabilizing work, assumptions traditionally made, different scheduling and
communication models. We illustrate them by explaining some self-stabilizing algorithms. We end
this chapter by describing some self-stabilization works especially conducted to address peer-to-peer
systems.

2.7.3 System Assumptions

Distributed System. Consider a graph G = (V,E) where V is a set of nodes (Vertices) and E is
a set of links (Edges) between nodes. A network is said static if its communication topology remains
fixed. A network is said dynamic if links and nodes can go down and recover later. Traditionally, it is
assumed that the topology always remains at least weakly-connected, since otherwise, we have several
independent networks. Algorithms are modeled as state machines performing a sequence of steps.
One step consists of reading input and local state, and, depending on both the input and local state,
performing some action. The state of a node is defined by the values of its variables. Performing an
action on one node or not depends on the state of a node and its input at the beginning of the step.
If the state of the node and its input triggers some action according to the protocol, the node is said
to be enabled. The action results in a state transition and writing output. Communication between
nodes can be done by several means, for instance by exchanging messages. In Dijkstra’s theoretical
model [53], in each computation step, each node can atomically read variables (or registers) owned
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by its neighboring nodes. More precisely, one commonly used model for communications is that of
shared memory [54], in which each pair of neighbors communicate by writing and reading dedicated
registers. The grain of atomicity may vary [55]. Composite atomicity allows one node to read all
input variables, make the state transition and write all its output variables in one atomic operation.
Read/write atomicity only allows to either read or write its communication variables in one single
atomic operation. Depending on the type of scheduler, or daemon, one step of the system may allow
only one node to perform a state transition (central daemon), or several enabled nodes concurrently
(distributed daemon). Finally, the scheduler can be of different levels of fairness. For instance, if the
scheduler is unfair, even if a node p is continuously enabled, then p may never execute its pending
action until p is the only remaining enabled node in the system.

Proving Self-Stabilization. The product of the states of all nodes is called the configuration of
the system. Among the set of possible configurations, some are defined as correct. When proving an
algorithm to be self-stabilizing, two parts are required.

1. Convergence. Starting from any configuration, by executing the algorithm, the system
reaches a correct configuration.

2. Closure. Starting from any correct configuration, by executing the algorithm, the system
remains in a correct configuration.

One point to have in mind is the fact that convergence refers to the time after the final failure
occurred, since no convergence can be proved if some failures constantly appear. In other words,
stabilization can only be guaranteed eventually, after the delay between two faults have become long
enough to allow convergence.

2.7.4 Self-Stabilizing Trees.

In the self-stabilizing area, many investigations take interest in maintaining distributed data struc-
tures, in particular trees. Solutions in [77, 78, 79] focus on binary heaps and 2-3 trees. Several ap-
proaches have also been considered for a distributed spanning tree maintenance, e.g., [18, 22, 46, 55].

A spanning tree of G = (V,E) is a new graph T = (V,E′) consisting of the set of nodes of G
connected by a set of edges E′ ⊆ E such that there exists exactly one path between each pair of
nodes. Note that |E′| = n − 1. In a network in which broadcast operations are frequent, finding a
spanning tree can significantly reduce the cost of using the tree, especially if |E| is much larger than
n − 1.

The algorithm presented by Dolev, Israeli, and Moran [55] is written in the shared memory model,
i.e., each node Pi has a set of ordered neighbors. Read and write operations are assumed atomic. Pi

communicates with its neighbor Pj using two shared registers rij, in which Pi writes and from which
Pj reads, and rji, in which Pj writes and from which Pi reads. Among the set of nodes, one node
is assumed to be special and is the root of the tree. Registers are made of two parts: one specifying
the distance of the writer to the root, and one containing a boolean specifying if the writer is the
parent of the reader in the spanning tree or not (1 if it is the case, 0 otherwise). The algorithm is
similar to a BFS (Breadth-First Search) and works as follows: the root writes 0 in the distance part
of each of its registers in which it writes. Each other node p periodically reads the registers in which
its neighbors write their distance to the root, and selects the neighbor with the minimum distance
d. If several neighbors have the same distance d to the root, it keeps the one (let’s say q) with the
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smallest ordering value and writes 1 in the parent part of the rpq register and d + 1 in the distance
part. In other registers in which p writes, p sets the distance part to d + 1 and the parent part to 0.
The spanning tree can be drawn reading the parent part of all registers.

A similar algorithm was published by Afek, Kutten and Yung [9], except that instead of assuming
a predetermined special node to be the root, all nodes are uniquely identified and can be totally
ordered. The root is the node with the largest identifier. They also use the same read/write atomicity
model. Arora and Gouda [18] also propose a similar BFS-based self-stabilizing spanning tree, but
using the composite atomicity model. Chen, Yu and Huang [46] also propose a self-stabilizing
spanning tree protocol but whose result is not necessarily a BFS tree, because they use the scheduler
to choose a new parent after breaking cycles, and so introduce a non-deterministic behavior.

2.7.5 Snap-Stabilization

The concept of Snap-stabilization was introduced in [34, 47]. A snap-stabilizing algorithm guarantees
that it always behaves according to its specification. In other words, a snap-stabilizing algorithm
is also a self-stabilizing algorithm which stabilizes in 0 steps. Note that the stabilization time is
no more related to the configuration of the system but to the execution of the algorithm. In [34],
authors propose a snap-stabilizing version of the Propagation of Information with Feedback (PIF)
which is a wave algorithm gathering information in tree networks. In [29], the authors present the
first snap-stabilizing distributed solution for the Binary Search Tree (BST) problem. Their solution
requires O(n) rounds to build the BST, which is proved to be asymptotically optimal for this problem
in the same paper.

Snap-stabilization has first been introduced for the traditional coarse-grained communication
model of Dijkstra [53]. The straightforward division of each high-atomicity action into a sequence
of low-atomicity actions (like message exchanges) does not suffice to make the protocol working
in a model with low-atomicity [110]. Until recently, it was impossible to prove snap-stabilization
in a message passing environment. Recent works have made further investigations for the snap-
stabilization in message passing [50], making it possible under specific constraints given by the
authors.

2.7.6 Self-Stabilization for Peer-to-Peer Networks

Limits of Traditional Self-Stabilization Models. All these solutions are designed for dis-
tributed systems defined by their topology, each node having a set of neighbors, communicating
with them through a finite number of links. In today’s emerging platforms, like the Internet, each
processor P1 can communicate with any other processor P2, provided that P1 knows the address
of P2. Similarly, in front of my computer, I can consult any webpage, provided I know its address.
The topology of P2P networks, or more globally of high-level protocols are logical, built on top of
the physical network. Details of the physical topology, and the underlying routing process are ab-
stracted. In other words, in a peer-to-peer overlay network, my neighbors are the peers I am aware
of, i.e., of which I know the address. As a consequence, traditional models can not be used to model
peer-to-peer networks.

New Models. Shaker and Reeves [129] gives an intuitive and simple formalization of the boot-
strapping problem. Recall that, to be inserted, a node first needs to discover any node already in
the system, by using an out-of-band mechanism. Shaker and Reeves [129] put in words the fact
that any peer-to-peer system needs a weakly-connected bootstrapping system, i.e., able to gather the
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addresses of all alive nodes inside the overlay to ensure its convergence to a connected consistent over-
lay starting from any possibly disconnected topology. In the same paper, they give a self-stabilizing
protocol to maintain an overlay network, assuming the presence of a continuous weakly-connected
bootstrapping service. Each node periodically initiates lookup to the bootstrap system. Dolev and
Kat [122] propose a similar bootstrap-dependent self-stabilizing overlay network based on their Hyper-
Tree structure. The HyperTree is a virtual tree structure built on the IP addresses in which in-degree
and out-degree of nodes are ensured to be b logb n where n is the actual number of machines and b, an
integer greater than 1. The maximum number of hops in a lookup in the HyperTree is bounded by
logb n. Following these two works, in [76], a model is proposed for the design of distributed algorithms
for large scale systems, opening doors for further systematic investigation of self-stabilization prob-
lems in peer-to-peer networks. A spanning tree maintenance protocol illustrates the model. Some
recent works focus on the publish/subscribe paradigm, often implemented by peer-to-peer networks.
Several papers, e.g., [49, 154] design such protocols, but enhancing them with the self-stabilizing
property.
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Chapter 3

A Dynamic Prefix Tree for Service

Discovery

This chapter1 initiates the description of our solution, whose core element is a distributed trie. We
call our approach DLPT for Distributed Lexicographic Placement Table or DPT for Dynamic Prefix
Tree as referred to as in several papers, see [43, 82]. We detail the maintenance and the use of
our particular compact trie, namely, a Greatest Common Prefix Tree, in a distributed environment.
We give the detailed algorithms allowing to maintain this structure as services are registered and
unregistered. We also give a first intuitive fault-tolerance mechanism based on replication. We
discuss how to achieve load-balancing and topology awareness based on the replication scheme. After
maintenance, we detail the querying process in such a structure and how to improve its performance
by a simple cache mechanism. The evaluation of our approach relies on complexity analysis and
intensive simulation.

In the following section, we state how we model services to be inserted in the indexing system. In
Section 3.2, we present the distributed structure we use. Then, the different parts of the maintenance
of such a tree in a message passing environment are detailed in Section 3.3. Query mechanisms are
provided in Section 3.4. Complexities are discussed in Section 3.5. We present and analyze a series of
simulation results in Section 3.6. Finally, we give a first comparison with related work and introduce
the remainder of the dissertation.

3.1 Modeling Services

As we already mentioned Page 22, users want to do multi-attribute and range searches. Let us
consider the example below describing the service S:

S = { DGEMM, Linux Debian 3, PowerPC G5, node1.cluster2.grid }

This represents a DGEMM routine, running under Linux on a PowerPC architecture provided on the
server whose address is node1.cluster2.grid. To allow the retrieval of S according to each of its
attributes, a (key, value) pair is created for each of them, the value being the information needed

1The work presented in this chapter has been published in an international journal [CDT07], an interna-
tional conference [CDT06] and a national conference [Ted06]. Publications and research reports are available at
http://graal.ens-lyon.fr/∼ctedesch/research.html.

43



CHAPTER 3. A DYNAMIC PREFIX TREE FOR SERVICE DISCOVERY

to connect the service, i.e., its address:

(DGEMM, node1.cluster2.grid)

(Linux Debian 3, node1.cluster2.grid)

(PowerPC G5, node1.cluster2.grid)

As one of the possibility we want to provide is automatic completion of partial strings, we need
an indexing structure reflecting the lexicography of keys. Tries provide a simple and efficient way to
store keys according to their lexicography or prefix relation. They have several good properties we
already briefly mentioned in the previous chapter (Page 34) and which we will detail further in our
particular case. We use a particular compact type of tries, called a greatest common prefix tree.

3.2 Distributed Structures

We now focus on the description of the structure we use to maintain the information of services
available in the platforms. As already described in Chapter 2, a trie is a particular kind of tree for
storing strings in which there is one node for every common prefix. For instance, each node of a
binary trie is labeled by a prefix that is defined recursively: given a node with label l, its left and
right child nodes are labeled l0 and l1, respectively. Figure 3.1 shows a trie built on some names
picked within the set of routines of the BLAS library (DGEMM, DGEMV, DTRSM, DTRMM, DSYRK and
DSYR2K). PATRICIA tries [106], also called radix trees when storing integers, are compact versions
of tries. The vertices (or edges between vertices, the lexicography being expressed the same way) of a
PATRICIA trie are labeled with sequences of characters rather than with single characters, keeping
a vertex only if necessary and also reducing depth and size of the structure. Figure 3.2 gives the
compact version of the trie in Figure 3.1 for the same set of keys.

Figure 3.1: A trie.

Figure 3.2: A compact PATRICIA trie.

The distributed structure we rely on is very similar to a PATRICIA Trie. But, for the sake of
clarity and to avoid misunderstandings, we now describe the very structure we use and which we call
a Proper Greatest Common Prefix Tree.
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Proper Greatest Common Prefix Tree. We now formally describe the distributed structure we
maintain. Let an ordered alphabet A be a finite set of letters. Denote ≺ an order on A. A non empty
word w over A is a finite sequence of letters a1, . . . , ai, . . . , al, l > 0. The concatenation of two words
u and v, denoted as u ◦ v, or simply as uv, is equal to the word a1, . . . , ai, . . . , ak, b1, . . . , bj , . . . , bl

such that u = a1, . . . , ai, . . . , ak and v = b1, . . . , bj , . . . , bl. Let ǫ be the empty word such that for
every word w, wǫ = ǫw = w. The length of a word w, denoted by |w|, is equal to the number
of letters of w—|ǫ| = 0. A word u is a prefix (respectively, proper prefix ) of a word v if there
exists a word w such that v = uw (resp., v = uw and u 6= v). The Greatest Common Prefix
(resp., Proper Greatest Common Prefix ) of a collection of words w1, w2, . . . , wi, . . . (i ≥ 2), denoted
GCP (w1, w2, . . . , wi, . . .) (resp. PGCP (w1, w2, . . . , wi, . . .)), is the longest prefix u shared by all of
them (resp., such that ∀i ≥ 1, u 6= wi).

Definition 1 (PGCP Tree). A Proper Greatest Common Prefix Tree is a labeled rooted tree such
that both following properties are true for every node of the tree:

1. The node label is a proper prefix of any label in its subtree;

2. The greatest common prefix of any pair of labels of children of a given node is the same and is
equal to the node label.

We now discuss a bit this definition with the following remark:

Remark 1. According to Definition 1, in a PGCP Tree, each node has a unique label.

Proof. Assume by contradiction that there exists two nodes p1 and p2 in the tree having the same
label l. It is important to use the adjective proper with care. Note that the second property of
Definition 1 does not use proper greatest common prefixes, in which case the remark could not be
ensured, but just greatest common prefix. There are two cases to consider:

1. p1 and p2 have the same parent, in which case, according to the second property, the label of
the parent must be labeled with this same label again, which can not be true because of the
first property.

2. p1 and p2 have two distinct parents but they have a common ancestor a, root of smallest subtree
containing them both. Remark that in the set of children of a we can find exactly two nodes
a1 and a2 also ancestors of p1 and p2 respectively. Then a1 and a2 both prefixes l and thus
either they are equal, and this is similar to Case 1 (p1, p2 being replaced by a1 and a2), or one
prefixes the other (let’s say a1 prefixes a2, without loss of generality), which is also impossible
between siblings because it would mean that the greatest common prefix of the labels of a1

and a2 is the label of both a1 and a, which is impossible because a properly prefixes all labels
in its subtree, according to the first property.

We now detail the distributed construction and maintenance of this structure as services are
registered and unregistered by servers, i.e., as strings are added to and removed from the tree.
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3.3 Maintaining a Logical PGCP Tree.

Each node is identified by one given key. We consider two types of keys.

Real Key. A node identified by a real key stores the reference of at least one service. For instance,
DGEMM is considered as a real key as soon as a server has declared a service under the DGEMM

name. Note that the leaves of the tree are always identified by real keys.

Virtual Key. A node identified by a virtual key is the root of a subtree in which nodes’ labels
share this virtual key as a common prefix. These nodes are created to reflect the common
prefixes shared by keys and in order for the tree to satisfy Definition 1.

Figure 3.3 shows the construction of such a tree, when three services are declared sequentially.

Figure 3.3: Construction of a proper greatest common prefix tree. Nodes storing some services’
references (labeled by real keys) are grey-filled, the others are labeled by virtual keys. (a) First a
DGEMM is declared. (b) A DTRSM is declared resulting in the creation of their parent, whose label is
their greatest common prefix, i.e., D. (c) Finally, a DTRMM is declared and the node DTR is created.

The Mapping Problem. Recall that the tree we maintain is a logical structure that needs to be
mapped on the physical network. A node of the tree is a logical node. A processor of the underlying
physical network is called a peer, and a logical node is called simply node, henceforth. A node is
an active process running on one peer. In other words, each peer of the physical network hosts a
part of the tree, i.e., runs some processes being nodes in the tree. The system behind the cloud in
Figure 1.1 of Chapter 1, Page 18 is now a bit less dark, as illustrated on Figure 3.4. How nodes of
the tree are mapped onto the peers of the network is here out of topic, we will focus on that issue and
detail how we handle the mapping procedure in the next chapter. In the remainder of this chapter,
we assume a GetNewProcess() primitive that starts a process (waiting for a proper initialization)
on a randomly picked peer among the set of available peers. This primitive relies on any system
able to return the address of an available peer, e.g., a DHT structuring the underlying network, or
a centralized repository of nodes.
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Figure 3.4: Behind the service discovery cloud: an indexing virtual tree (grey-filled and transparent
nodes) built as services are declared is mapped on the (black-filled) peers of the physical network.

3.3.1 The Insertion Algorithm

We now assume the initial (possibly empty) tree satisfies Definition 1. When registering a new
service, the server providing it contacts a random peer it knows by an out-of-band mechanism
(web page, name server, ...) and sends an insertion request for its service represented by the pair
(key = service name, value = server IP). It is important to note that this contact peer can be
any node in the tree, not necessarily the root. The contact peer hosts a set of nodes of the tree and
thus has at least one access point to the tree. The request is then routed according to the key.

We now provide the algorithm to insert a service in the PGCP tree using message passing. The
detailed distributed process is given by Algorithm 1, Page 61, on node p (p is the unique identifier of
the node). p has a label lp, a parent node denoted fp whose label is lfp

, a set of children Cp, which
is a set of pairs {(id, label)}, each pair representing one child. For the sake of clarity, we will use the
notation q ∈ Cp to refer only to the identifier of a node in Cp. Each node p stores a set of values
(IPs of servers) denoted δp whose common key (name of the service) is equal to lp. The algorithm
relies on three other primitives.

• Prefixes(k) returns the set of words properly prefixing k. For instance, Prefixes(10101)
returns {ǫ, 1, 10, 101, 1010}, where ǫ is the empty string.

• GCP(k1, k2) returns the greatest common prefix shared by k1 and k2. For instance,
GCP(101, 100) = 10.

• InitProcess(lbl, values, parent, parentlbl, children) initializes a new node in the tree. More
precisely, it sets the values on a process recently started by the GetNewProcess() primitive.
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Each node, on receipt of an insertion request on the service s = (k, v) pair applies the following
routing algorithm, considering four distinct cases:

k is equal to the local node identifier (Line 2.02). In this case, k is already in the tree. No
node needs to be added, and no other node is labeled k since each label is unique. p adds v
into its table of values.

k is prefixed by the local node identifier (Lines 2.03-2.10). In this case, p is the root of a
subtree that may contain a node labeled k. There are two cases to consider:

1. If p has a child also prefixing k, it is also the root of a refined tree in which k must be
inserted, so the request is forwarded to it (refer to Lines 2.04-2.05.)

2. Otherwise, no node in the tree prefixes k more than p itself and k must be inserted on a
child of p which does not exist yet. A new node labeled k is created and v inserted in its
table (refer to Lines 2.06-2.10.)

The local node identifier is prefixed by k (Lines 2.11-2.24). In this case, there are again two
cases to consider:

1. If p is the current root of the tree, a new node labeled k must be created, as the new root
of the tree and parent of p. This is done by Lines 2.12-2.15.

2. If p has a parent, either this parent is again prefixed by k and k must be moved upward
(see Lines 2.17-2.18), or it is not the case, and the only possible location of a node storing
the service s is between p and its parent. Such a logical node is created in Lines 2.19-2.24.

No prefix relation (Lines 2.25-2.38). Even if k and lp have no prefix relation, the process is
similar. If p is not the root of the tree and if the label of its parent node is equal to or prefixed
by the common prefix of k and lp, the request must be moved upward in the tree to be sure to
reach the root of the subtree potentially storing k. (see Lines 2.26-2.27). Otherwise (starting
from Line 2.28), k cannot be anywhere else in the tree, and s must be stored on a sibling of
p. Obviously, the common parent of the node labeled by k and the node p does not exist.
Remember the steps (b) and (c) of Figure 3.3: two nodes are created, one labeled k and one
labeled by the greatest common prefix of k and lp (possibly the empty string).

In order to initiate a node/process, we need to send the values of the newly created node to the
process previously obtained using the GetNewProcess() function, this is achieved using a couple
of synchronized messages: (i) a Host message is sent by the initiator of the creation of the node.
Upon receipt, a node initiates its variables (see Lines 3.01-3.03) and sends back an acknowledgment
through the HostDone message. When a new node is created, we need to inform its parent that
it has a new child. Also, in the last of the four previous cases, one child is removed and replaced
by a new node (this case is illustrated on Figure 3.3, Page 46, when the node D replaces its child
DTRSM by the newly created node DTR). This update is handled by a simple set of messages, namely
RemoveChild and AddChild whose receipt is detailed by Lines 4.01 and 4.02.
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3.3.2 Service Removal

If some server, for some reason, does not want to provide a given service s = (k, v) anymore, it
informs the system of this removal by sending a deletion request on s to any node in the tree. On
receipt, the request is routed according to k similarly as before and reaches the node labeled k,
storing the value v among other values for the service labeled k. On receipt of the request, this node
then removes v from its table.

In the case where v was the last remaining value of services labeled k, the node may not be
useful anymore and removed from the tree. Deleting a node is done if both following requirements
are reached:

1. no values is stored on the node anymore,

2. the node has no children.

If the case a node enters this configuration, it sends a message to its parent to inform it of its
imminent deletion and stop itself. If the node is the root of the tree, has no parent to inform, this
is the last remaining node and the tree ends.

A service can also be updated with new information. We do not detail the update process because
it is very similar to the insertion and removal processes, except that no node is created or deleted.
Once the node storing the information of the service to be updated is reached (the node always exists
since the service has been previously declared by the server), nothing is done except updating the
information.

3.3.3 Replication

To face the dynamic nature of the underlying network and ensure the consistency of the routing while
preventing data loss, we first proposed a replication scheme. Assume a global replication factor k,
which denotes the number of distinct peers on which each logical node must be present. Such a
replicated trie is shown in Figure 3.5 with k = 2. Obviously, k-replication assumes that less than k
crashes occur between two replication processes. Otherwise, only probabilistic results could be given
on the availability of the system.

Figure 3.5: Example of a replicated PGCP tree (2-replication).
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The replication mechanism, whose detailed pseudo-code is given by Algorithm 2, Page 62, is
started periodically on the top of the tree. As the nodes are replicated, each node maintains between
1 and k links for each of its neighbors, each neighbor being located on 1 to k distinct peers. As a
consequence, each node p should maintain a set of references of process Clbl, for each child’s label
lbl. Similarly, each node now maintains k connections to its parent (in the variable F ). Each node
finally may need to know its own replicas, denoted Rp throughout the process.

A simple leader election (Lines 6.02-6.04) prevents the replication process to be triggered concur-
rently by several roots (in the case the top of the tree was already replicated). Each node periodically
scans its replicas to have knowledge of the remaining alive roots. If p is the minimum identifier among
the replicas of the root, p triggers the replication, beginning by ensuring the k-replication of the root
(see Lines 6.05-6.10). The elected replica obtains new processes and launches new roots to reach
k roots, by sending them the information on p itself through the Host message. On receipt, as
detailed by Lines 9.01-9.06, the new process starts itself as a root. This replication is synchronous,
to avoid to communicate with non-initialized processes. Once the root is replicated, the replication
of the tree is started by the ReplicSubtree message sent by the elected root to itself (Line 6.11).
As we will detail, the replication is a protocol moving downward, each node replicating its children
and triggering the replication of the subtrees of its own children by the ReplicMessage. As only
one replica can replicate its children at a time, the chosen replica needs to inform its replicas of their
new children (newly created replicas of their child nodes). For this reason, the ReplicMessage
contains the set of other replicas of the chosen one to replicate its subtree.

On receipt of the ReplicNode message along with the set of references of its replicas R, a node
starts replicating its subtree, processing each child sequentially (Lines 7.01-7.14). For each child dc,
it scans the available replicas through the GetAliveReplicas() function to have the knowledge
of alive replicas for dc. It requests one alive child r (recall that at least one should be alive) to
replicate itself on new processes (obtained Lines 7.05-7.07) with a synchronous set of communications
(Lines 7.08-7.10 and 8.01-8.06). Finally, one replica b is chosen to continue the replication in the
subtree of dc. The GetBestReplica() function executes a set of measurements on the replicas to
know which one locally optimizes a given metric (typically the latency). The replication is launched
in the subtree of dc by delegation to b, and continues sequentially with other children of p.

We assume that no message is lost and that processes whose reference is returned by the
GetNewProcess(), GetRandomNode(), GetAliveRoots() or GetBestReplica() functions
remains alive until the replication job is done.

We now discuss two advantages coming along with this replication process and that can be used
to improve the performance of the prefix tree.

Load balancing

Since each node is replicated k times, each node has k choices to route a single request. A straight-
forward load balance mechanism can consist in a round robin selection of the replica to which the
request is forwarded, thus uniformly distributing requests for one node on its different replicas.

Topology Awareness

An example of the replication process is given in Figure 3.6. As highlighted on this figure, each
locally chosen best replica is part of a spanning tree, built by local measurements. By keeping this
replica for each child, we can use the best local connections to forward requests, thus easily taking
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into account the performance of the underlying network without need for any external tool and
without any extra cost.

Figure 3.6: Replication and topology awareness.

Note that these two optimizations are incompatible since in one case, we select only one peer to
route and in the other case, we try to send the requests uniformly between several peers. Afterward,
the purpose is to find the right trade-off between the two objectives.

3.4 Querying the PGCP Tree

We now describe the detail mechanisms allowing the service discovery itself. We distinct two general
kinds of queries: exact-match queries, on one particular key, and range queries.

3.4.1 Exact Match

Processing a basic exact-match query is based on an algorithm similar to the service insertion previ-
ously detailed. This process is illustrated by Figure 3.7(a). The client issues a request and sends it
to a node whose reference has been obtained by the out-of-band mechanism. The request is routed in
the tree by a simple top-down traversal similar to the previous insertion algorithm (moving upward
until finding the root of the subtree that may contain the node with the requested label and then
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moving downward). Finally, if such a node exists, it is eventually reached and it sends back the
values of the service wanted to the client.

a. Exact-match b. Automatic completion

Figure 3.7: Processing a discovery request. The client sends the request to a node it knows (1). The
request is routed (2,3,4). Responses are sent back to the client from the node storing the key or from
the nodes in the subtree whose root is the responsible node for this request (5).

3.4.2 Range Queries

Supporting automatic completion of partial search strings is achieved in a two phases distributed
process, as illustrated on Figure 3.7(b), where a client seeks services of the SUN S3L library [6] and
issues the query S3L*.

1. We first consider the explicit part of the search string, here S3L. The request is thus routed
according to S3L, similarly as with exact-match queries, except that the destination node is
the node whose identifier is the smallest key equal or prefixed by S3L. On Figure 3.7(b),
this node is labeled S3L . The requested keys are in the subtree rooted at this node.

2. Once the root of the subtree pertained by the partial string is found, it remains to traverse
every nodes of the subtree, in parallel. Each node sends its values to the client. The client can
stop the reception, if satisfied with the current set of received values.

Supporting range queries is based on the same process. The two extreme values of the range
share a common prefix. Based on that, it remains to execute the first of the two previous phases on
this prefix and launch the parallel scan of the subtree, propagating the request to the nodes of each
pertained subtree.

3.4.3 Cache Optimizations

We now describe some easy-to-implement cache mechanisms able to drastically reduce the cost of a
request.
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Cache During Exact-Match Queries

Popular keys result in bottlenecks on peers running processes storing popular keys. To avoid their
appearance, we propose to disseminate popular keys on several peers, by caching retrieved values
on the way back to the client, by reverse routing (the values are sent to the client and cached on
nodes on the way back to the contact node of the query). If a request reaches a peer caching values
corresponding to a recently requested key (and this is probable in the case of popular keys), the
routing ends and a response is immediately sent to the client, also distributing the work load.

Cache During Partial String Searches

The traversal of the subtree pertained by the range is as expensive as the subtree is large, since it
requires O(n) messages, n being the number of nodes in the subtree. A simple optimization consists
in caching the values on the root of the subtree, allowing future requests to be (at least partly)
satisfied without the need to wait for the results of the complete traversal.

3.4.4 Multi-Attribute Searches

As illustrated on Figure 3.8, supporting multi-attribute queries is achieved using a simple extension of
the previous algorithms to a multi-dimensional system in which each dimension (or type of attribute
is maintained by a distinct overlay. Then, the value/address of a service having several attributes
is stored in each overlay. For multi-attribute requests, like {DTRSM, Linux*, PowerPC*}, the client
sends three independent requests. The request on DTRSM will be sent to the services’ names tree,
Linux* to the system tree and PowerPC* to the processors tree. Requests are independently processed
within each tree and the client asynchronously receives the values and finally intersects the sets of
locations obtained to only keep answers matching the three values requested.

3.5 Complexity Discussion

We now discuss complexities of the distributed PGCP Tree. Most of these results are similar to
those of any trie complexity studies. Let us consider a non-replicated PGCP Tree T . Characters
composing the keys are part of an alphabet A. We assume the cost of the GetNewProcess() as
constant. Even if the implementation of this function is out of scope of this chapter, we can assume
the underlying system finding new processes to be coupled with a cache system making the start of
a new process available at any time by having some references of alive peers in cache, thus justifying
the constant time cost of getting a new process.

Routing Complexity. If we assume the length of keys in T bounded by L, then the routing
complexity is O(L). To show that, first note that, based on the fact that, according to Definition 1,
a child is properly prefixed by its parent, the path from any node up to the root can not exceed
L. Then remark that the routing in the tree always starts by moving upward in the tree and then
going downward until reaching the location of the insertion. It remains to see that the local routing
decision, i.e., the number of scans needed in the routing table to choose the next hop is constant (if
sending the request to a child, it suffices to look at the first character of the searched key not shared
by the label of the local node to find the right child).
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Figure 3.8: Processing a multi-attribute query.

Total Insertion Cost. Note that once the location is found, the insertion itself required a constant
number of operations, as we can easily verify looking for Algorithm 1.

Degree. The degree of a node is bounded by the number of characters in A plus 1. The number
of children is bounded by Card(A). To establish that, it suffices to remark that if a node has more
than Card(A) children, at least two children share a common prefix longer than their parent label,
thus breaking Definition 1. Finally, each node has at most one parent.

Note that, when the tree grows, L tends to be O(log N): Consider the tree containing all the

keys possibly built on A. The number of nodes in this tree is N = Card(A)L+1−1
Card(A)−1 = O(Card(A)L),

and L = O(logCard(A) N).

Range Queries. Based on the previous discussion, we easily find that the latency of a range query
is also bounded in time by 2L. As detailed previously, the range query process is based on two
phases, made of (i) routing, (ii) propagation in the subtree. As the second phase runs in parallel, its
time is bounded by the time to traverse the path leading to the deepest node of the subtree. The
number of messages required is clearly in the size of the subtree.
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Replication Complexity. A study of the replication mechanism detailed in Algorithm 2 is enough
to determine the complexity of the replication process. Dealing with the root’s replication Lines 6.02-
6.11, it appears that no loop exceeds k steps, Card(Rp) being by definition lower than k. Then, the
k-replication of the set of children of one node achieved by Lines 7.01-7.14 exhibits a complexity in
O(d × k) where d is the degree of the considered node. As this process is repeated for each node
in the tree, the total message complexity is in O(N2 × k). Dealing with time complexity, we need
to remark that each subtree rooted at one different child of one node is replicated in parallel, but
these replications are triggered sequentially by the parent of the roots. Without lost of generality,
assume that the set of children of a node is sorted. The replication of node p having a cost cp, the
time complexity to reach a leaf ln is ∑

p∈ExtPath(ln)

cp

where ExtPath(ln) is the set of children of the nodes on the way to the root from ln, which are
lower (in terms of labels) than the nodes on the path themselves. In other words, to reach ln, the
replication have first sequentially processed all nodes that are children of nodes on the path from the
root to ln and all their lower siblings.

3.6 Simulation

A simulator of the tree has been developed in Java. The dynamic creation of the tree, exact match
queries and range queries, as well as the caching mechanisms previously detailed, have been imple-
mented. The keys for the simulation are picked inside a set of keys we may find in computational
grids:

• 735 routines/functions of computing libraries,

• 129 processors,

• 189 operating systems,

• 3985 fictional addresses of servers (IPs, reverse notations addresses). A user which trusts a
given cluster, can specify it in the request. Then, we need one PGCP tree to be maintained
on the addresses in reverse notation, as for instance achieved in in-addr.arpa schemes. Such
a tree is illustrated on Figure 3.9. To automatically complete address keys, the address of a
service is reversed to become a key and another way to retrieve services,

• 20000 keys randomly created on the Latin alphabet of size up to 20, to investigate further the
scalability.

The random distribution used is the uniform one.

3.6.1 Building the Tree and Insertion Requests

We have first validated the logical algorithm of insertion of a newly declared service. Figure 3.10
shows the evolution of the size of the tree according to the number of insertion requests submitted
to the trie, with randomly picked keys. On the left, this evolution is given for the four data sets.
As expected, as soon as all keys have been registered, the trie does not grow anymore, all following
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Figure 3.9: A PGCP tree for storing addresses of servers.

insertion requests declaring already picked keys. On the right, we provide the same result but divided
by the number of requests. In the same way, this fraction tends towards 0, except for random words,
since the probability to randomly build a key already in the tree is very small (20000 keys among
2621−1

25 ≈ 2 · 1028 possibilities). In this last case, the tree size remains proportional to the number of
insertion requests processed (up to 1.5 times the number of requests.)
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Figure 3.10: Evolution of the tree size according to the number of insertion requests.

Then we have run experiments with insertion requests, to get information on the number of hops
needed in the tree to reach a given location in the tree. On the left part of Figure 3.11, we give the
number of hops in the case where all the requests enter the trie by the root, to allow an estimation
of the average depth of the tree (here, approximately 4 for grid-oriented keys). On the right part of
Figure 3.11, we show the number of logical hops required to process the request, choosing a random
contact node. For these last experiments, a set of 10000 random words has been used. The behavior
is close to the one described in Section 3.5: the curve quickly reaches an average depth and then
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follows a logarithmic behavior, even for big set of random words.
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Figure 3.11: Average number of hops (from the root, on the left, and from a randomly picked contact
node, on the right).

We have also studied how the tree grows according to the number of distinct declared keys. Each
key is now inserted only once. As we see on Figure 3.12, the total number of nodes in the tree (nodes
storing virtual keys and nodes storing real keys) is proportional to the number of inserted (real) keys.
The sizes of the trees are summarized in the Table 3.1. To sum up the results, the nodes storing
virtual keys represents 30% of the tree with a standard deviation of approximately 2.5%.

Services Systems Processors Machines

Number of real keys 735 189 129 3985
Number of nodes of the trie 1006 255 173 5250
Percentage of virtual keys 29,32% 34,38% 30.93% 27,94%

Table 3.1: Percentage of virtual keys created for each set of keys.

3.6.2 Interrogation Requests and Cache

Then we have studied the number of hops required to route search queries. The results illustrated
on Figure 3.13 are similar to those observed previously with insertion requests.

Finally, we studied the gain involved by the cache mechanisms initially developed to avoid the
bottlenecks on nodes storing popular keys. Figure 3.14 shows the number of hops for a set of
randomly-picked keys among all keys stored in the tree both with and without the caching mechanism.
It shows that the number of hops can be significantly reduced. Even with a small cache size (here,
50 values, using a FIFO policy) the number of hops to find values for the requested key significantly
decreases, going approximatively from 8 to 5, after a few number of search queries.
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Figure 3.12: Proportionality between the tree size and the number of real keys.
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Figure 3.13: Number of logical hops for exact-match queries, according to the tree size.
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Figure 3.14: Number of hops for exact-match queries with and without the cache mechanism.

3.7 Discussion

3.7.1 PGCP Tree Advantages

As the PGCP tree structure is a compact version of tries, the depth of the tree will be most of the
time lower than the worst case L, where L is the maximum length of keys. This behavior has been
highlighted by simulation, for instance on Figure 3.11, where in spite of the maximum length of the
keys, which is 20, and the average length, which is 10, starting from the root, the average number
of hops required is just above 2. Obviously, the lexicographic fashion of tries allow to efficiently
and easily support automatic-completion and range queries, by knowing exactly where to search.
Searches appear to be less costly and more localized, than searches in binary search trees (BST) for
instance. Moreover, BST and the well known B-tree [28] always require to start the search at the
root. Even if the root can be reached starting from any node in BST or B-trees, using our approach
allow to reduce the load on the root and to reduce the average number of hops, by moving up to the
root only if it is necessary.

3.7.2 Advantages and Drawbacks Relative to P-Grid and PHT

To the best of our knowledge, P-Grid and PHT are our closest related work (trie-based overlay
network mapped onto a peer-to-peer network). See Chapter 2, page 36.

First, let us notice that complexities are similar, complexities being bounded by length of keys
and the number of possible characters.

P-Grid [48] and PHT [117] does not provide any topology awareness. Our approach proposes
hints, as an extension of the replication process to easily take it into account in a greedy fashion.

PHT naturally offers a good fault-tolerance in the sense that one fault does not affect a subtree
but only one node. But this is possible only because they have an underlying DHT supporting
exact-match queries whatever the state of their trie is. DHT is used as a fallback mechanism if the
trie becomes inconsistent.

P-Grid offers a better load-balancing by avoiding the root bottleneck, by building shortcuts, in
a way very similar to the Kademlia overlay network [105]. However, the P-Grid good load balance
property holds only for homogeneous popularity of keys and homogeneous capacity of underlying
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processors, or peers. In a more general point of view, assuming heterogeneity of these two parameters
requires new algorithms to be designed to take it into account. Moreover, we should take it into
account in a dynamic way, since popularity of keys may vary in time. Chapter 4 focuses on the
solutions we developed to solve this problem.

Finally, neither P-Grid nor PHT is able to recover from arbitrary failures. These systems com-
pletely rely on replication for their fault-tolerance. The replication is costly and never ensure to be
sufficient to keep the system safe facing failures, especially if an incorrect configuration (for instance
if information about my neighbors was wrongly initialized) is replicated, in which case, the problem
may spread over the network. As a direct consequence, the discovery process can not work prop-
erly anymore. When the replication becomes inefficient (in case of incorrect configuration, or if the
replication failed or had a too small factor), we need to rely on alternative best-effort policies able to
recover starting after an arbitrary number of failures/errors. Similarly, the algorithms presented in
this chapter are not self-stabilizing, i.e., able to recover if transient failures occur. As we explained
in the previous chapter, self-stabilization is a promising alternative to address fault-tolerance in P2P
systems. In Chapter 5, we investigate the power of self-stabilization for fault-tolerant peer-to-peer
trie-structured systems by presenting the self-stabilizing algorithms we developed, able to repair our
architecture after crashes.

3.8 Conclusion

In this Chapter, we have presented the initial design of our system for service discovery in computa-
tional grids. Our architecture is based on a PGCP tree, dynamically constructed as servers register
their services. We focused on the logical part of the architecture, leaving mapping considerations
aside. We provided the complete message passing algorithms to maintain such an architecture. A
first attempt at injecting fault-tolerance into our architecture has been given, based on a complete
replication of the tree. We gave some hints on the possibilities raised related to topology awareness
and load balancing in this kind of trees. Some simple cache mechanisms were described, allowing
another way to balance load and improve the response time. We discussed the complexities of the
construction and the use of the tree and gave some simulation results showing the relevance and
the efficiency of using such a tree for the service discovery in this context. We finally discussed the
advantages and drawbacks of our tree relative to the similar architectures and our closest related
work. As discussed above, Chapter 4 presents a self-contained approach for the problem of mapping
the tree efficiently on the network without the need for an underlying system. Chapter 5 presents
the self-stabilizing approaches able to repair our tree after arbitrary transient failures.
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Algorithm 1 Service insertion, on node p

1.01 Variables: lp, the label of p; δp, set of service values stored on p
fp, the parent of p; lfp

, the label of the parent of p
Cp, set of pairs (identifier, label) of children of p

2.01 upon receipt of <ServiceInsertion, s = (k, v)> do
2.02 if k = lp then δp := δp ∪ {v}
2.03 elseif lp ∈ Prefixes (k) then
2.04 if ∃q ∈ Cp : | GCP(k, lq)| > |GCP(k, lp)| then
2.05 send <ServiceInsertion, s> to q
2.06 else
2.07 n :=GetNewProcess()
2.08 send <Host, (k, {v}, p, lp, ∅)> to n
2.09 receive <HostDone> from n
2.10 Cp := Cp ∪ {(n, k)}
2.11 elseif k ∈ Prefixes (lp) then
2.12 if (fp = ⊥) then
2.13 n :=GetNewProcess()
2.14 send <Host, (k, {v},⊥,⊥, {(p, lp)})> to n
2.15 receive <HostDone> from n; fp := n; lfp

:= k
2.16 else
2.17 if k ∈ Prefixes(lfp

) then
2.18 send <ServiceInsertion, s> to fp

2.19 else
2.20 n :=GetNewProcess()
2.21 send <Host, (k, {v}, fp, lfp

, {(p, lp)}> to n
2.22 receive <HostDone> from n
2.23 send <RemoveChild, (p, lp)> to fp

2.24 send <AddChild, (n, k)> to fp; fp := n; lfp
:= k

2.25 else
2.26 if (fp 6= ⊥) ∧ (|GCP(k, lp)| = |GCP(k, lfp

)|) then
2.27 send <ServiceInsertion, s> to fp

2.28 else
2.29 np :=GetNewProcess()
2.30 send <Host, (GCP(k, lp), ∅, fp, lfp

, {(p, lp)})> to np
2.31 receive <HostDone> from np
2.32 if (fp 6= ⊥) then
2.33 send <RemoveChild, (p, lp)> to fp

2.34 send <AddChild, (np, GCP(lp, k))> to fp

2.35 nc :=GetNewProcess()
2.36 send <Host, (k, {v}, np,GCP(k, lp), ∅, ∅)> to nc
2.37 receive <HostDone> from nc
2.38 send <AddChild, (nc, k)> to np; fp := np; lfp

:=GCP(k, lp)

3.01 upon receipt of <Host, (lbl, values, parent, parent lbl, children)> from q do
3.02 InitProcess (lp := lbl, δp := values, fp := parent, lfp

:= parent lbl, Cp := children)
3.03 send <HostDone> to q

4.01 upon receipt of <RemoveChild, q> do Cp := Cp \ {q}
4.02 upon receipt of <AddChild, q> do Cp := Cp ∪ {q}
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Algorithm 2 Replication, on node p

5.01 Variables: lp, the label of p δp, set of service values stored on p
Fp, the set of parents of p
lFp

, the label of the parent of p
Cp, set of pairs (lbl, Clbl) of children of p where Clbl is the set of children labeled lbl
Rp, set of my replicas

6.01 Periodically:
6.02 if Fp = ∅ then
6.03 Rp :=GetAliveReplicas(Rp)
6.04 if min(Rp ∪ {p}) = p then
6.05 while Card(Rp ∪ {p}) < k do
6.06 n := GetNewProcess()
6.07 Rp := Rp ∪ {n}
6.08 for all q ∈ Rp do
6.09 send <Host, (lp, δp, Fp, lFp

, Cp, Rp ∪ {p} \ {q})> to q
6.10 receive <HostDone> from q
6.11 send <ReplicSubtree, (Rp)> to p

7.01 upon receipt of <ReplicSubtree, (R)> do
7.02 Rp := R
7.03 for dc = (lbl, Clbl) ∈ Cp do
7.04 Clbl tmp := GetAliveReplicas(Clbl)
7.05 while Card(Clbl) < k do
7.06 n := GetNewProcess()
7.07 Clbl := Clbl ∪ {n}
7.08 r := GetRandomReplica(Clbl tmp)
7.09 send <ReplicNode, (Rp, Clbl \ {r})> to r
7.10 receive <ReplicDone> from r
7.11 for q ∈ Rp do
7.12 send <UpdateChildren, (lbl, Clbl)> to q
7.13 b := GetBestReplica(Clbl)
7.14 send <ReplicSubtree, Clbl \ {b}> to b

8.01 upon receipt of <ReplicNode, (F, R)> from f do
8.02 Fp := F
8.03 for q ∈ R do
8.04 send <Host, (lp, δp, lFp

, Fp, Cp, ∅)> to q
8.05 receive <HostDone> from q
8.06 send <ReplicDone> to f

9.01 upon receipt of <Host, (l, δ, lF , F, C, R)> from f do
9.02 if already running
9.03 UpdateProcess(lp := l, δp := δ, lFp

:= lF , Fp := F, Cp := C, Rp := R)
9.04 else
9.05 InitProcess(lp := l, δp := δ, lFp

:= lF , Fp := F, Cp := C, Rp := R)
9.06 send <HostDone> to f
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Chapter 4

Mapping and Load Balancing

In the previous chapter, we introduced the logical part of our architecture. The problem of mapping
the logical entities on the physical processors (peers) was left aside, assuming the presence of a device
(decentralized, like a DHT or centralized, for instance a central server) able to return the reference
of a random chosen peer of the network on which a new process was created.

In this chapter1, we tackle the problem of mapping a logical PGCP tree on a set of peers.
Precisely, we address two drawbacks of the design of the system presented in the previous chapter:

1. The presence of an underlying system like a DHT, leads to the need to maintain two layers (one
DHT, and one tree over the DHT), making the maintenance cost of this two-layer architecture
extremely high.

2. The routing scheme presented in the previous chapter, as well as the heterogeneity on both
popularity of keys and capacity of peers could lead to an unbalanced distribution of the load
and thus create bottlenecks on different peers.

Tackling these two drawbacks, we here provide two main contributions:

• the first contribution of this chapter is the avoidance of the DHT: we present a self-contained
tree overlay network able to maintain a tree storing the information on services available and
mapping it on the peers.

• The second contribution is the design of a new load balancing heuristic based on local max-
imization of the throughput i.e., the number of requests processed by the service discovery
system. This heuristic is inspired from existing approaches for the load balancing within dis-
tributed hash tables (see details in Chapter 2). We enhanced our overlay with this heuristic
and another heuristic for DHTs based on the K-choices paradigm, which is, to the best of our
knowledge, the only purely-decentralized one that also assumes heterogeneity on both capacity
of peers and popularity of keys, in a dynamic fashion.

The rest of the chapter is organized as follow. In Section 4.1, we give the preliminaries of our
architecture. In Section 4.2, the detailed algorithms to build, use, and perform some efficient load
balancing within our overlay are presented. Section 4.3 provides the results of our simulations, show-
ing the liveness of the architecture and the performance of our heuristic. Finally, before concluding,
we give clues for a fair comparison with our related work in Section 4.4.

1The work presented in this chapter has been published in [CDT08].
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4.1 Preliminaries

4.1.1 System Model

We assume a P2P network made of a set of asynchronous physical nodes with distinct IDs. Recall
that we use the term peer to refer to this kind of nodes. The peers communicate by exchanging
messages. Any peer P1 can communicate with another peer P2 provided P1 knows the ID of P2.
Each peer maintains one or more logical nodes of a distributed logical PGCP tree, each node of the
tree being uniquely labeled. As before, we use the term node to refer to the nodes of the tree.

4.1.2 Architecture

In the previous chapter, the mapping was achieved through a DHT, in which each peer had a unique
identifier, result of the hashing function on the IP address of the peer. The nodes were randomly
mapped by hashing their labels. From now on, we consider that IP addresses of peers are still hashed,
but, the hash function to find the peer hosting one node is locality-preserving. Seen differently, we
can consider that nodes’ labels are not hashed but nodes just placed on the peer whose ID is the
smallest higher than the label of the node, assuming that we hash IP addresses of peers by using
a hash function which has values within the set of possible labels of nodes. As a simple example,
consider the binary PGCP tree in Figure 4.1(a). The mapping achieved is similar to Chord in the
sense that each node is run by the successor peer of the node’s label.

Have a look at Figure 4.1(b): The tree nodes (transparent and grey-filled on the internal dashed
circle) and the peers (big and black filled on the external circle) are in the same circle identifier
space. Now, each peer is supposed to run nodes whose labels fall in the range between itself and
its predecessor peer. For instance, peer 011000 runs nodes 01 and ǫ. If nodes are again connected
through tree links (that do not appear on the figure 4.1(b) for clarity), peers are also connected, on
a basic ring.

Another view of this locality preserving Chord-like placement of nodes on peers is given by Fig-
ure 4.1(c). Peers (pseudo-ellipses in dashed lines) are connected in a ring (bold arrowed lines), each
peer running the set of nodes inside its ellipse. For the sake of clarity, we give another examples with
BLAS routines’ names, in Figure 4.2.

a. Binary PGCP Tree b. Mapping result (ring view) c. Mapping result (tree view)

Figure 4.1: Example of mapping - binary identifiers.

We now expose the details of the protocol.
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a. Latin BLAS PGCP Tree b. Mapping result (ring view) c. Mapping result (tree view)

Figure 4.2: Example of mapping - BLAS routines.

4.2 Protocol

We consider a set of digits A and a circular identifier space I of all distinct possible identifiers i such
that i is a finite sequence of digits of A. The protocol is made of two distinct parts.

A Ring Overlay for Peers. The first part of the protocol maintains the physical network. The
overlay built with peers of the physical network is a bidirectional ring over the peers, dynamically
constructed as peers join and leave the network. Denote P ⊆ I the set of peer identifiers in the ring
at a given time. Peers are ordered in a bidirectional ring. Each peer P ∈ P has the knowledge of
its immediate predecessor predP and immediate successor succP i.e., peers whose identifier is the
highest lower than P and the lowest higher than P , respectively. Let Pmax ∈ P and Pmin ∈ P be
the two peers whose ids are the highest and lowest in the ring, respectively. As we will see, even if
the process of inserting or removing a peer aims at maintaining the physical network, the routing of
the insertion request itself is mainly achieved within the logical connections of the tree.

A Logical PGCP Tree to Index Information. The other part maintains a Greatest Common
Prefix Tree over services’ keys as services are declared by their server providers. Denote N ⊆ I the
set of node identifiers currently in the tree. The registration of the service s = (k, v) leads to the
creation of one node if ¬(∃n ∈ N : n = k). The protocol maps the tree onto the peers as it is
growing. The mapping scheme ensures that the peer P chosen to run a given node n always satisfies
the condition that P is the successor peer of n, i.e., whose identifier is the lowest higher than n.
We denote succ(n) the peer running n. Note that the identifier space is a circle. As a consequence,
∀n ∈ N such that n > Pmax, succ(n) = Pmin. Each node n maintains a father fn, a set of children
Cn and the set of all values δn associated with its label, the key ln. Finally, we assume that the
number of nodes is greater than the number of peers and that each peer runs at least one node (we
explain how we maintain such a property in the following).

We now have a clearer idea of what we find on one peer, which is illustrated on Figure 4.3: The
whole ellipse represents a processor which takes part in the system. Inside, we find at least one
peer (P ) connected on the ring to its successor and predecessor. Each peer runs a set of processes
being nodes in the tree (here n1, n2 and n3), each one being connected to its respective parent and
children.
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Figure 4.3: Internal architecture of a processor taking part of the system.

As before, we assume two basic functions.

• Prefixes(k) returns the set of ids properly prefixing k. For instance, Prefixes(10101) returns
{ǫ, 1, 10, 101, 1010}

• GCP(k1, k2) returns the greatest common prefix shared by k1 and k2. For instance,
GCP(101, 100) = 10.

4.2.1 Peer insertion

When a peer Q joins the system, the routing of the join request sent by Q is first received by the
contact peer and is then handled by the nodes, starting from one node chosen (the closest to the
identifier of the joining peer) by the contact peer among the set of nodes it runs. The routing process
is then similar to those of the previous chapter. The request reaches a node run on a peer close to
the final destination of Q. Then the effective insertion is performed. This protocol is detailed by
algorithms 3 and 4. The sought peer is the one with the highest identifier lower than Q. To reach
this peer, we first route the request to the node with the highest id lower than Q.

In details, the path of a PeerJoin request is made of three steps. During a first step (Lines 2.02
to 2.09), the request is marked 0, moves upward and eventually reaches a node that is either a prefix
of Q or the root of the tree, what updates the state of the request to 1. During a second step, the
request is thus marked 1 (lines 2.11 to 2.13) and moves downward until reaching the target node t
whose label is the highest lower than Q (Line 2.11 repeatedly finds the greatest child lower than Q).
t then sends the request to the peer on which it runs (and successor on the identifier circle, and the
request is delegated to the peer layer (Line 2.15). This communication between layers is illustrated
in Figure 4.3 by double-arrowed lines between the nodes and the peer.

The final step consists in deciding whether Q shall be a predecessor of T , or a predecessor of
succT (what is tested Line 4.02). Only these two cases are possible since predT < Q ≤ succT .
predT < Q comes from the facts predT ≤ t and t ≤ Q. This Q can not be a predecessor of predT .
Now, by contradiction, let’s assume Q > succT . Since νT , the set of nodes run on Q is assumed not
empty, ∃n ∈ νT such that n > t, which means that the first part of the algorithm (finding the target
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node) did not give the proper t. This is impossible as we easily showed that the algorithm did. A
contradiction.

Once decided whether succQ is T or succT , it remains to effectively insert Q and dispatch the
set of services νsuccQ

until now stored at succQ, among Q and succQ, according to their keys, as
detailed lines 4.05-4.09. The YourInformation message contains the information required for Q
to run i.e., (pred, succ, nodes). The UpdateSuccessor message informs predQ that its successor
has changed (from T ) to Q (see the receipt of these messages in Lines 5.01-5.04 and Lines 6.01-6.02.

Algorithm 3 Peer insertion, on node n

1.07 Variables: ln, label of n
fn, identifier of the father of n
Cn, set of pairs (identifier, label) of children of n

2.01 upon receipt of <PeerJoin, (Q, s)> do
2.02 if s = 0 then
2.03 if Q /∈ Prefixes (ln) then
2.04 if (fn = ⊥) then
2.05 send <PeerJoin, Q, 1> to n
2.06 else
2.07 send <PeerJoin, Q, 0> to fn

2.08 else
2.09 send <PeerJoin, Q, 1> to n
2.10 else
2.11 q =Max ({c ∈ Cn : c ≤ Q})
2.12 if (q 6= ⊥) then
2.13 send <PeerJoin, Q, 1> to q
2.14 else
2.15 send to host<NewPredecessor, Q>

Peer removal. When a peer wants to leave the network, the nodes that were running on it are
just handled by its successor, and the successor’s and predecessor’s variables are easily updated, as
the leaving peer gives them the information needed. In the case a peer leaves without notice, some
periodic scanning mechanisms from the successor and predecessor similar to those used in Chord [135]
can easily detect it. As done in Chord, maintaining links to their k successors on the ring allow to
handle multiple peers leaving at the same time.

4.2.2 Service registration

This part is similar to the one described in Section 3.3, except that now we do not rely on any
subsystem able to return peers. In other words, our overlay maps nodes itself.

To declare the availability of a service s = (k, v) identified by k, a peer (or server) sends a
ServiceInsertion request to a random node of the tree. The protocol routes the request to the
node with the identifier closest to k. If 6 ∃n ∈ N such that ln = k, such a node is created, inserted
in the tree and run on a peer. In any case, v is eventually added to the set of data δn of the
node n with ln = k. This process is detailed in Algorithm 5, Page 75. Similarly as in the previous
chapter, on receipt of the request, the node p proceeds according one of the four following cases (as
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Algorithm 4 Peer Insertion, on peer P

3.01 Variables: succP , successor of P
predP , predecessor of P
νP , set of nodes running on P

4.01 upon receipt of <NewPredecessor, Q> do
4.02 if Q > P then
4.03 send <NewPredecessor, Q> to succP

4.04 else
4.05 νQ = {n ∈ νp : n ≤ Q}
4.06 νP = {n ∈ νp : n > Q}
4.07 send <YourInformation, (predP , P, νQ)> to Q
4.08 send <UpdateSuccessor, Q> to predP

4.09 predP := Q

5.01 upon receipt of <YourInformation, (pred, succ, nodes)> do
5.02 predP := pred
5.03 succP := succ
5.04 νp := nodes

6.01 upon receipt of <UpdateSuccessor, Q> do
6.02 succP := Q

the maintenance of the tree has already been detailed in the previous chapter, we briefly recall the
registration algorithm and then emphasize the mapping part of the protocol):

• If ln = k (Line 8.02), n is the sought node. v is added to δn (no node needs to be created.)

• If ln ∈ Prefixes (k) (lines 8.03 to 8.08), the sought node is in the subtree of n. If ∃q ∈ Cn such
that the label of q shares a longer prefix with k than lp does, the sought node is in the subtree
rooted at q and the request is forwarded to q. Otherwise, the sought node does not exist and is
created as a child of p. To find a host for the new node, the complete information for this node
(label, values, parent, set of children) is sent to p itself using the SearchingHost message.
This part of this protocol is detailed later.

• If k ∈ Prefixes (ln) (lines 8.09 to 8.20), the sought node is upward. If k is also a prefix of lfn
,

then the request is forwarded to fn. Otherwise, the sought node does not exist and is created
between n and fn (the new node become the root of the tree if fn = ⊥). Details of receipt of
AddChild and RemoveChild messages are not detailed because trivial, following the details
of the previous chapter.

• Finally, if none of the previous cases is satisfied, the algorithm behaves similarly than for the
previous case. If lfn

shares the same prefix with k as ln, the request is again forwarded to lfp
.

Otherwise, the sought node does not exist. n and the node labeled k are siblings, but their
common parent also does not exist. Two nodes are created, one to store k and one to preserve
the prefix patterns inside the tree, common parent of n and k, labeled by GCP(ln, k).
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New nodes are created at different lines of Algorithm 5. When created, a new node, say nn,
labelled lnn, must find the peer on which it will run. As mentioned earlier, the

SearchingHost(key, values, parent, parent label, set of children)

message initiates the search for a peer to host nn. This part is detailed by lines 9.01 to 9.09. The
algorithm is designed such as the first recipient of the SearchingHost message always prefixes lnn.
Sometimes the search starts at n, sometimes at its parent fn. For instance, on Line 8.28, the new
node is labeled GCP(ln, k) and is lower than ln but greater than lfn

. Then, we are sure that the peer
we want already runs some nodes which is in the subtree of fn (the process to find the successor of
a peer is very similar to the one to find the successor peer of a node). Once the request is initiated
close enough to the root, it suffices to move the request downward until reaching the highest node
lower than lnn. With Line 9.09, the right peer receives the complete information required to host
nn and starts a new process for this node. Once the new process is launched, the lower layer sends
back an acknowledgement to the upper layer with the identifier of the new process (the address of
the process — typically, the address of the peer and the port of the new process). The node, on
receipt of the acknowledgement from its lower layer, sends an acknowledgement to the node which
initiates the search for a host by synchronously following the reverse path to the initiator. The initial
nodes can then finish the insertion by informing all nodes pertained by the insertion, i.e., sends the
AddChild and RemoveChild messages and update its own variables.

4.2.3 Load Balancing

Each peer runs a set of nodes. As detailed before, the routing follows a top-down traversal. Therefore,
the upper a node is, the more times it will be visited by some request. Moreover, due to the
sudden popularity of some service, the nodes storing the corresponding keys, independently from
their depth in the tree, may become overloaded. The heuristic we present now deals with this issue
by maximizing the aggregated throughput of two consecutive peers, i.e., the number of requests
these two heterogeneous peers will be able to process. This is achieved by periodically redistributing
the nodes on the peers, based on recent history.

For the sake of clarity, we consider a discrete time and choose one particular peer S to illustrate
the process. The load balancing process is triggered on S at the end of each unit of time. Let
P = predS be the predecessor of S. Refer to Figure 4.4(a). CS and CP refer to their respective
capacities, i.e., the number of requests they are respectively able to process during one unit of time.
Note that the peers capacity does not change over time. At the end of a time unit, some peers send
the number of requests they received during this time unit, for each node it runs, to its successor.
Here, S has information on the loads of the nodes run by P , and obviously its own load information.
Assume that, during last time unit τ , the set of nodes run by S and P were respectively ντ

S and ντ
P

and that each n ∈ ντ
S ∪ ντ

P has received a different number of requests ln. Then, the load, denoted
Lτ

S of S during the period τ was the sum of the loads of the nodes it runs, i.e.,

Lτ
S =

∑

n∈ντ
S

ln. (4.1)

We easily see that, during this time unit τ , the number of satisfied requests (or throughput T ), i.e.,
requests that were effectively processed until reaching its destination (or finding the service sought
does not exist) is:

T τ
S,P = min(Lτ

S , CS) + min(Lτ
P , CP ). (4.2)
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Figure 4.4: One local load balancing step.

Starting from this knowledge, i.e., the load of every nodes n ∈ ντ
S ∪ ντ

P , we want to maximize the
throughput of the next unit of time τ + 1. To do so, we need to find the new distribution (ντ+1

S ,
ντ+1

P ) that maximizes the throughput i.e., such that

T τ+1
S,P = min(

∑

n∈ντ+1
S

ln, CS) + min(
∑

m∈ντ+1
P

lm, CP ) (4.3)

is maximum, assuming the load distribution will be similar in times τ + 1 and τ . The number
of possible distributions of nodes on peers is bounded by the fact that nodes identifiers can not
be changed, in order to ensure the routing consistency and a way to retrieve services. The only
parameter that we can change is the identifiers of peers. Then, as illustrated on Figure 4.4, finding
the best distribution is equivalent to find the best position of P moving along the ring, as illustrated
by arrows on Figure 4.4(b). The number of candidate positions for P is |νS ∪ νP | − 1. Thus, the
time and extra space complexity of the redistribution algorithm is clearly in O(|ντ

S ∪ ντ
P |). In other

words, even if periodically performed, the MLT heuristic has, locally, a constant communication cost
and a time complexity linear in the number of nodes between the two local peers. An example of
the result of this process is given by Figure 4.4(c), where, according to the previous metric, the
best distribution is three (weighted) nodes on S, and 5 (weighted) nodes on P . This heuristic is
henceforth referred to as MLT (Max Local Throughput).

4.3 Simulation

To validate our approach, we developed a simulator of this architecture, into which we integrated
two load balancing heuristics: MLT and an adaptation of a recent load balancing algorithm initially
designed for DHTs known as the k-choices algorithm [95] and, to our knowledge, the most related
existing heuristic. We denote KC this adaptation. More precisely, when used, KC is run each time
a peer joins the system. Because some regions of the ring are more densely populated than others,
KC finds, among k potential locations for the new peer, the one that leads to the best local load
balance. Please refer to [95] for more details.

We used a discrete time in the simulations. One simulation was made of a fixed number of time
units. Each simulation were repeated 30, 50 or 100 times, to have some relevant results. Recall that
the capacity of a peer refers to the maximum number of requests processed by it during one time
unit. All requests received on a peer after it has reached this number are ignored and considered as
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unsatisfied. The ratio between the most and the least powerful peer is 4. A request is said to be
satisfied if it reaches its final destination. The number of peers is approximately 100, and the number
of nodes around 1000. We set KC with k = 4 (which we believe is relevant, since, as established by
Azar, Broder, Karlin and Upfal [24], beyond k = 2, the gain on the load balance is just a constant
factor). As in the previous chapter, the prefix trees are built with identifiers commonly encountered
in a grid computing context such as names of linear algebra routines.

We first estimated the global throughput of the system when using MLT, KC, and no explicit
load balancing at all. Each time unit is composed of several steps. (1) In experiments where MLT is
enabled, a fixed fraction of the peers executes the MLT load balancing. (2) A fixed fraction of peers
join the system (applying the KC algorithm in experiments where it is enabled, or simply the basic
protocol detailed in Section 4.2, otherwise.) (3) A fixed fraction of peers leaves the system. (4) A
fixed fraction of new services are added in the tree (possibly resulting in the creation of new nodes).
(5) Discovery requests are sent to the tree (and results on the number of satisfied discovery requests
are collected).

During first experiments, services requested were randomly picked among the set of available
services. Figure 4.5 gives the percentage of satisfied requests using MLT, KC and no load balancing,
for 50 time units. The first 10 units correspond to the period where the prefix tree is growing. After,
it remains the same. The obtained curves show that using heuristics, and more particularly MLT,
leads to a non negligible gain. Figure 4.6 shows the results of the same experiment, but with a
very high number of requests, in order to stress the system. We observe similar results, even if the
satisfaction percentage is obviously globally lower.
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Figure 4.5: Stable network, low load.
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Figure 4.6: Stable network, high load.

Until now, experiments were conducted in a relatively stable network. The number of peers
joining and leaving the system was intentionally low. The efficiency of the KC algorithm relies on
the dynamic nature of the system since load balancing is done each time a peer joins the system.
Now, 10% of the nodes are replaced at each time unit. This is why we repeated these experiments
with an increased fraction of peers joining and leaving the network. Figures 4.7 and 4.8 give the
results of the same experiments than before but conducted over a dynamic platform. We see that
KC performs a bit better than previously, and gives results similar to MLT.

We conducted these experiments for different loads. The results are summarized in Table 4.1. The
percentages in the left column express the ratio between the number of requests and the aggregated
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Figure 4.7: Dynamic network, low load.
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Figure 4.8: Dynamic network, high load.

Load Stable network Dynamic network
MLT KC MLT KC

5% 39,62% 38,58% 18.25% 32,47%
10% 103,41% 58,95% 46,16% 51,00%
16% 147,07% 64,97% 65,90% 59,11%
24% 165,25% 59,27% 71,26% 60,01%
40% 206,90% 68,16% 97,71% 67,18%
80% 230,51% 76,99% 90,59% 71,93%

Table 4.1: Summary of gains of KC and MLT heuristics.

capacity of all peers in the system. The table gives the gain on the number of satisfied requests of
each heuristic compared to the architecture with no load balancing. As we can see reading the table,
the gain can be really important, and the MLT gain is globally higher than the KC gain.

Our last series of simulations, whose result is illustrated by Figure 4.9, consisted in creating hot
spots in the tree, by temporarily launching many discovery requests on some keys stored in the same
region of the tree, i.e., on lexicographically closed keys, in bursts. The experiment is divided in time
as follows: during the first 40 time units, services are again randomly picked. Then, between 40
and 80, a hot spot is created on the particular S3L library. Most of S3L routines are named by a
string beginning by “S3L”. We thus overloaded the subtree containing the keys prefixed by “S3L”.
The network was previously balanced for random requests, and as a consequence, the number of
satisfied requests suddenly falls. However, the MLT -enabled architecture adapts to the situation
and increases the satisfaction ratio to a reasonable point, by moving more peers in the region of
the “S3L*” nodes. A second change arises at time 80, when simulating the arrival of many requests
on the ScaLAPACK library whose functions begin with “P”. The system reacts again and provide
an improved throughput again. The random way to pick services is chosen for the 40 last time
units, leading to a behavior similar to the one of the beginning. As less hotspots are created, the
throughput quickly improves to reach the performance level of the beginning of the simulation.

72



4.4. COMPARISON TO RELATED WORK

Functionality P-Grid PHT DLPT

Tree Routing O(log|Π|) O(D log P ) O(D)

Local State O(log|Π|) |N |
|P | |A| |N |

|P | |A|

Table 4.2: Complexities of close trie-structured approaches.

Avoiding Physical Communications by Lexicographic Clustering. Finally, as previously
said, the mapping scheme is better in several ways than a random DHT-based mapping, since a
random mapping results in breaking the locality of keys. Connected nodes in the tree are randomly
dispatched in random locations of the physical network. With our mapping scheme, the set of nodes
stored on one peer are highly connected. This fact brings about a reduction of the communications
between peers, since a high amount of routing steps in the tree involves two nodes running on the
same peer. Figure 4.10 gives, for each time unit, and following the same experimental scheme as
in simulation with hot-spots, the average number of hops in the tree required to reach their final
destination. The total number of hops is provided (between 8 and 10 for each request). We see that
our self-contained mapping featured with MLT significantly reduces the amount of communications
within the physical network (from approximately 9 to approximately 3), while the random DHT-
based mapping reduces it only by approximately 1.
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4.4 Comparison to Related Work

A fair comparison of the complexities of our architecture with PHT and P-Grid can now be achieved
(see Table 4.2.) The complexities of our self-contained approach and the two previously mentioned
approaches are quite similar. |Π| refers to the number of partitions of the key-space, D to the
maximal length of the identifiers, A to the set of digits used, N to the set of nodes of the tree and
P to the set of peers.

In regard of this chapter, One of our contribution over PHT and P-Grid is in the load balancing
process. The PHT load balancing assumes the peers homogeneous. (They have a fixed capacity).
It relies on a global threshold on the number of keys each node maintains. P-Grid relies on a set
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of algorithms periodically checking the load balance. In these two approaches, the heterogeneous
capacities of the peers and the popularity of services/resources are ignored. We believe that the
number of keys maintained on a node does not accurately reflects its load, since it depends on what
users request. Moreover, the capacities of the peers can not be supposed homogeneous in a grid
computing context. For these reasons and because our architecture maintains a ring over the peers,
we studied the works on the load balancing issue within DHTs.

Among the numerous papers about the load-balancing in DHTs, Karger and Ruhl [90] and similar
approaches from which you can find the details in Chapter 2, propose some local heuristics based
on item balancing, but assume homogeneous peers. Even if Godfrey et al. [71] tackle the weighted
problem, they use a set of elected nodes gathering the load information and redistributing items
with partial knowledge of loads and capacities. The drawback of this approach is clearly its semi-
centralized fashion, which assumes some peers to be reliable, at least in the period during which
they compute the redistribution of items on peers. A load balancing strategy for Chord proposed
in [35] uses multiple hash function to select a number of candidate peers, based on the well-known
power of two choices paradigm. Ledlie and Seltzer [95] proposed the similar k-choices approach, but
assuming heterogeneity of both peers and items. We showed by simulation that our heuristic, based
on the local maximization of the throughput can outperform this last algorithm.

4.5 Conclusion

In this chapter, we focused on improving two aspects of DLPT: mapping and load balancing. The
first contribution is a complete protocol for a self-contained version of this architecture and the
avoidance of the use of an underlying DHT. Our overlay only needs tree connections and a degree 2
to build a ring over the peers. We provided the detailed message passing algorithms along with all
information to prove their correctness. This mapping requires only an extra-cost of two connections
by peer, in addition to the tree connections themselves. Such a lexicographic mapping allow to
cluster many tree links inside one peer, thus drastically reducing the communication cost.

The second contribution is a novel heuristic for the load balancing inside this architecture and
the adaptation to our case of recent techniques initially designed for the same purpose within DHTs.
Different simulations show the important gain obtained by using these heuristics. We have finally
proposed a comparison of close approaches, in terms of cost and load balancing.
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Algorithm 5 Service insertion, on node n

7.01 Variables: ln, the label of n, δn, set of values stored on n
fn, identifier of the parent of n, lfn

, label of the parent of n
Cn, set of pairs (identifier, label) of children of n

8.01 upon receipt of <ServiceInsertion, s = (k, v)> do
8.02 if k = ln then δn := δn ∪ {v}
8.03 elseif ln ∈ Prefixes (k) then
8.04 if ∃q ∈ Cn : | GCP(k, lq)| > |GCP(k, ln)| then send <ServiceInsertion, s> to q
8.05 else
8.06 send <SearchingHost, (k, {v}, n, ln, ∅)> to n
8.07 receive <SearchingHostDone, newID> from n
8.08 Cn := Cn ∪ {(newID, k)}
8.09 elseif k ∈ Prefixes (ln) then
8.10 if (fn = ⊥) then
8.11 send <SearchingHost, (k, {v},⊥,⊥, {(n, ln)})> to n
8.12 receive <SearchingHostDone, newID> from n; fn := newID; lfn

:= k
8.13 else
8.14 if k ∈ Prefixes(lfn

) then send <ServiceInsertion, s> to fn

8.15 else
8.16 send <SearchingHost, (k, {v}, fn, lfn

, {(n, ln)}> to fn

8.17 receive <SearchingHostDone, newID> from fn

8.18 send <RemoveChild, (n, ln)> to fn

8.19 send <AddChild, (newID, k)> to fn

8.20 fn := newID; lfn
:= k

8.21 else
8.22 if (fn 6= ⊥) ∧ (|GCP(k, ln)| = |GCP(k, lfn

)|) then send <ServiceInsertion, s> to fn

8.23 else
8.24 if (fn = ⊥) then
8.25 send <SearchingHost, (GCP(ln, k), ∅, ⊥, ⊥, {(n, ln)})> to n
8.26 receive <SearchingHostDone, newID1> from n
8.27 else
8.28 send <SearchingHost, (GCP(ln, k), ∅, fn, lfn

, {(n, ln)})> to fn

8.29 receive <SearchingHostDone, newID1> from fn

8.30 send <RemoveChild, (n, ln)> to fn

8.31 send <AddChild, (newID1, GCP(ln, k))> to fn

8.32 send <SearchingHost, (k, {v}, newID1, GCP(ln, k), ∅)> to fn

8.33 receive <SearchingHostDone, newID2> from fn

8.34 send <AddChild, (newID2, k)> to newID1
8.35 fn := newID1; lfn

:= GCP(ln, k)

9.01 upon receipt of <SearchingHost, (l, δ, f, lf , C)> from r do
9.02 q =Max{c ∈ Cn : c ≤ l}
9.03 if (q 6= ⊥) then
9.04 send <SearchingHost, (l, δ, f, lf , C)> to q
9.05 receive <SearchingHostDone, newID> from q
9.06 else
9.07 send to host<Host, (l, δ, f, C, δ)>
9.08 receive from host<HostDone, newID>
9.09 send <SearchingHostDone, newID> to r
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Chapter 5

Fault-Tolerance and Self-Stabilization

In this chapter1, we present the best-effort alternatives we developed to allow to recover a consistent
service discovery service after a number of crashes higher than the replication can handle. The con-
sequence of a too high number of crashes is the impossibility to route requests, due to an inconsistent
topology. Even if the information on services have been possibly partly lost, here, we want to provide
users with a discovery systems available and able to process requests on the information remaining,
even if the system is continuously undergoing an important number of failures/crashes, without the
need of a complete reset of the system. Three approaches are presented:

1. Reconnecting and Reordering Valid Disconnected Subtrees. Our first goal is to be
able to recover a valid tree after physical node crashes. Our first attempt was to develop an
algorithm repairing a tree after an arbitrary set of crashes leading to the loss of nodes and the
split of the tree into a forest. However, the remaining disconnected subtrees are assumed valid.
Our first algorithm, written as a message-passing protocol, is detailed in Section 5.1.

2. Snap-Stabilizing Rooted Connected Prefix Tree. Our first approach is not self-stabilizing
in the sense that the subtrees to be reconnected are assumed to be valid. In other words, if
subtrees about to be reconnected are not valid, or if, for some reason, some variables, e.g.,
neighbors’ references, on the nodes are not correct, the protocol is unable to systematically
rebuild a valid tree. We have thus designed a snap-stabilizing protocol to maintain a PGCP
tree. Recall that snap-stabilizing means that the protocol always behaves according to its
specification. Only a constant number of initializations of the protocol is required to have
a consistent tree again. This protocol, written in the theoretical state model, is detailed in
Section 5.2.

3. Self-Stabilizing Message Passing Prefix Tree Starting from an Arbitrary Configu-
ration. Although the previous protocol is optimal in stabilization time, it suffers of several
drawbacks in terms of applications on a real platforms. First, the previous protocol being
written in the restricted theoretical state model, we know that the correctness of the algorithm
can not be proved straightforwardly in a message-passing environment [110, 50]. Moreover,
this protocol assumes that the topology is always a rooted connected tree, what can be ensured
only if a first mechanism glued the subtrees together. To address these drawbacks, we devel-
oped a third protocol, that only need a message passing environment and that we proved to

1The work presented in this chapter has been published in international conferences [CDFPT06,CDPT07,CDPT08]
and national conferences [CFPT06,Ted08].
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be self-stabilizing. In this last work, detailed in Section 5.3, we studied the pragmatic impact
of this self-stabilizing protocol on the fault-tolerance of such architectures.

5.1 Reconnecting and reordering valid subtrees

In this section, we present a message passing protocol reconnecting and reordering distributed PGCP
subtrees after the crashes on some peers, and, as a consequence, the loss of nodes in the tree and the
split of the logical indexing system in a forest.

5.1.1 Preliminaries

The definition of a valid tree is given by Definition 1, Page 45.

The distributed system considered in this section consists of a set of asynchronous physical nodes
(processors, or peers) organized in a Distributed Hash Tables (DHT). The mapping scheme of Chap-
ter 4 is not taken into account. Each peer maintains one or more nodes of a logical PGCP Tree.
Note that, as in Chapter 3, a DHT is used, but can be replaced by any system, distributed or not,
allowing the retrieval of a peer’s reference. In the same vein, we also consider that the potentially
existing fault-tolerance mechanisms provided by this layer are not used, since our algorithm provides
the fault-tolerance at the tree layer. The DHT is just a mean to obtain peers’ references, as in
Chapter 3.

Nodes of the logical layer (trees) communicate by message passing. We assume two sending
functions. The former, simply referred to as send, is used by any node to send a message to another
node asynchronously, i.e., without waiting any acknowledgement. The latter, called send-sync,
waits for an acknowledgement for each message sent. We assume that each physical node may crash.
When a physical node crashes, one or more logical nodes are lost.

As discussed earlier and addressed by several theoretical papers, like the paper of Shaker and
Reeves [129], we need a weakly-connected bootstrap mechanism. In other words, disconnected sub-
trees have no knowledge of each others. The only way to ensure to have a connected logical network
again is to rely on a subsystem able to gather all remaining nodes in the system. Optimizing the
average number of calls made to this system is here out of topic. That’s why, for the bootstrap
problem, we just use the DHT to collect peers (and nodes running on peers), broadcasting the entire
DHT if required.

5.1.2 Protocol

In this section, we give a detailed explanation of how the protocol works. We divide the algorithm
code in two parts. The former shows the first phase developed with our technique during which a
unique tree is recovered without considering any lexicographic property. During the second phase,
the trie is reorganized to eventually form a distributed greatest common prefix tree.

Tree Reconnection

After a node p detects the loss of its parent (fp), it searches for a new parent to link on. Making a
traversal of the DHT, Node p collects, in the variable P , the addresses of all remaining peer. Starting
from the addresses in P , p collects the set of logical nodes N stored by the peers in P . Next, using
a PIF (Propagation of Information with Feedback) Protocol [45, 128], a wave algorithm gathering
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information from a whole tree starting from the root, p computes T , the set of logical nodes in its
own subtree.

This first step of the reconnection protocol, detailed in Algorithm 6, Page 6, ends when p chooses
a temporary parent (tfp) in the subset N \L. When a node q is linked to a node p, then p considers
q as a temporary child—stored in Tp. Note that nodes in the variable Tp are taken into account to
compute L using a PIF in the subtree of p. If N \L = ∅, i.e., there is no node which p may connect
to), then p is considered as the “real” root of the tree.

The above technique suffers of a drawback. Several nodes without parent may make a choice
which could become a “bad” choice. In particular, they can choose as a temporary parent a node
belonging to the subtree of another node being in the same situation. By doing this in parallel,
cycles may appear. Our strategy is to detect and to break a posteriori such cycles following a simple
mechanism. (Again, our purpose is not performance but functionality.)

After the choice of its temporary parent tf , a node p sends a message Hello with its ID (p) to
tf . In the next step, tf transmits the message to its own parent, and so on. Step by step, one of the
two following situations eventually arises:

1. The real root of the tree receives the message Hello. In this case, the root notifies p that it
is not involved in a cycle.

2. The message is received by a false root, i.e., a node having also lost its own parent. The false
root propagates the message to its temporary parent.

Note that, in the above latter case, due to asynchrony of the network, it is possible that the false
root receives the message Hello sent by p before it executed its own reconnection phase. In that
case, a false root is still without a temporary parent. The message Hello is then delayed until the
false root chooses its own temporary parent.

Therefore, the message Hello sent by p keeps circulating among its ancestors, carrying the list
of false roots’ identifiers which were met during its traversal. Upon receipt of a message Hello, if
the first item of the list carried by the message is equal to the identifier of the receiver, then a cycle is
detected. In that case, a leader election is computed among the IDs of the list, e.g., by choosing the
smallest ID. The leader becomes the root of the subtree, breaks its link to its parent, and restarts
the reconnection phase (the other false roots involved in the cycle remain connected to the subtree
rooted by the leader). Note that a cycle may be created again. However, in the worst case, each
time the reconnection phase is launched, at least one subtree becomes part of the subtree of one
false root. In other words, the number of cycles is periodically divided by at least 2. Therefore, the
system eventually contains one (rooted) tree only.

Tree Reorganization

The tree reorganization, detailed in Algorithm 7, Page 103 is initiated by the message Move, sent by
a false root which found a temporary parent and then launches its part of the reorganization phase,
which consists in finding its real parent. Each node p receiving a Move message from a temporary
child q, i.e., q is a false root of a subtree, initiates a routing mechanism closed to the original key
insertion described in Chapter 3. Let us consider the following cases (the notation is again similar
to previous chapters):

1. lp, the label of p, is a prefix of lq, the label of q–see Figure 5.1, Case (i). In that case, q (and
its subtree) is placed in the subtree of p following one of the four cases shown in Figure 5.1,
Cases (a) to (d).
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Figure 5.1: A false root q is linked to a node p such that lp ∈ Prefixes(lq).

2. lp is not a prefix of lq. Then, p moves q to its parent which now takes the responsibility to
place q (and its subtree).

Note that new services may be registered during the tree reconstruction. As a consequence, a
new subtree may have been created at the same place where the false root initially was. Thus, our
method requires to take into account that any false root being placed in the tree can meet a node
having the same label. In that case, the two trees must be merged. That is the aim of the merging
protocol, initiated by the sending of a message Merge. Upon receipt of this message, a node p
executes the procedure Gluing(q), which moves the children of q to p before withdrawing q from
the tree (including the children of q’s parent). Then, if necessary, p restarts recursively merging and
placements among its children, in order to merge the whole subtrees eventually.

5.1.3 Correctness Proof

In this section, we discuss the correctness of our first fault-tolerant protocol. In order to do this,
we first need to make the assumption that in the considered context, the crash frequency is low
enough to make the tree fully built sometime. Even if this assumption may appear unrealistic in
a peer-to-peer context, it is impossible to prove the termination of the protocol without it, since
we would never have the time to rebuild if new failures constantly arise. In other words, we fairly
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assume that no crash occurs after an arbitrarily long period of crashes, in order to let enough time
for the tree to completely rebuild. (We will study the problem of the pragmatic efficiency of the
protocol in a network that is too dynamic to converge in the last section of this chapter.)

Assumption 1. If a node crashes at time t, then for every t′ > t, no crash occurs.

Lemma 1. Under Assumption 1, the reconnection protocol (Algorithm 6) terminates, and when this
occurs, the system contains one tree only.

Proof. The validation mainly consists in showing that the protocol terminates and that the reorga-
nization of the tree is eventually initiated (by sending a message NoCycle).

Assume by contradiction that under Assumption 1, no node eventually sends a message NoCy-
cle. (We now refer to Algorithm 6.) So, Line 4.17 is never executed. The height of the tree being
finite, this means that every Message Hello traverses only cycles and thus eventually reaches its
initiator. When a message Hello is received by its initiator, the cycle is broken by the node which
is elected among the false roots participating in the cycle, Lines 4.02 to 4.05. Therefore, cycles are
created infinitely often. Let C be the number of created cycles. In the worst case, a cycle is made of
at least two nodes. So, C is initially bounded by F/2, where F is the number of false roots created
by the crashes. When a cycle is broken, at most one leader is elected. So, at most C/2 leaders are
able to link another node again. In the next phase, the number of cycles is less than or equal to C/2.
Since under Assumption 1, cycles may be created only when false roots are linked to other nodes
(executing Lines 3.06 and 3.07), C never grows and is eventually equal to 0. This contradicts that
cycles are created infinitely often.

We now consider the phase of tree reorganization detailed by Algorithm 7.

Lemma 2. Under Assumption 1 and assuming that the system contains one tree only, the reorgani-
zation protocol (Algorithm 7) terminates, and when this occurs, the tree is a PGCP tree.

Proof. Clearly, each tree of the forest following the crash of a node is a PGCP tree (disconnected
trees are assumed valid because, in this first part we only consider crashes, i.e., machines leaving
the system). So, it remains to show that executing Algorithm 7, the whole tree eventually satisfies
the condition to be a PGCP tree.

From the algorithm, it is easy to observe that, in the absence of merging, there are only two cases
to consider depending on the value of the label lp of node p and the label lfs of its false child fs :

1. lp is a prefix of lfs—Line 9.04. In that case, following the four cases described in Figure 5.1,
fs is eventually placed at the right place in the subtree of p—refer to Lines 9.05 to 9.17. The
resulting tree is a PGCP tree.

2. The value of p is not a prefix of fs. Again, there are two cases to consider:

(a) Node p has no parent (fp = ⊥)—Lines 9.21 to 9.26. In that case, if lfs is a prefix of lp, then
p (and its subtree) becomes the node to be placed by fs—Line 9.24. Otherwise, p and fs
become the two children of a new root node q such that lq = PGCP (lp, lfs)—Line 9.26.
The tree is then clearly a PGCP tree.

(b) Node p has a parent. Then, fs is moved to the parent of p—Line 9.20. By induction of
the above discussion, either fs eventually reaches a node q such that lq ∈ Prefixes(lfs)
or fs eventually reaches the root of the tree. The former case is equivalent to case 1, the
latter to case 2a.
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If p and fs merge, then there are four cases to consider after p and fs glued together into p and
p sorted its new set of children:

1. There exists a pair of children si, sj of p such that lsi
is a prefix of lsj

. Then, sj is moved
towards si—Lines 10.08 to 10.11. This case is similar to the directly above case 1 (cases (a)
or (b) in Figure 5.1).

2. There exists a pair of children si, sj of p such that |PGCP (lsi
, lsj

)| > |lp|. Then, si and sj

become the two children of a new child q of p such that lq = PGCP (lp, lfs)—Lines 10.12
to 10.15. This case is also similar to the above case 1 (case (c) in Figure 5.1).

3. There exists a pair of children si, sj of p such that lsi
= lsj

. This case is solved by initiating
a recursive merging between si and sj—Lines 10.05 to 10.07. This case is solved by induction
on si and sj .

4. There exists no pair of children si, sj of p satisfying either case 1, case 2, or case 3. In that
case, the subtree of p clearly satisfies the definition of a PGCP tree.

From Lemmas 1 and 2 follows:

Theorem 1. Under Assumption 1, Algorithm 6 and Algorithm 7 provide a PGCP tree reconstruction
after the crash of a peer.

A First Step Towards Self-Stabilization. The protocol we have detailed in this section is a first
attempt at proposing protocols for best-effort policies in prefix-tree structured peer-to-peer systems.
More precisely, it allows to recover and reorganize valid subtrees to build a consistent tree again after
crashes of peers. As we already mentioned, this protocol is not self-stabilizing in the sense that it
is unable to systematically rebuild a consistent PGCP tree starting from an arbitrary configuration
(with messages in links and variables on nodes in an arbitrary state). However, this first protocol
paved the way for further investigation for a self-stabilizing solution. In the next section, we present
our first self-stabilizing approach to this problem, namely, a snap-stabilizing prefix tree maintenance
protocol.

5.2 Snap-stabilizing Prefix Tree Maintenance

This section presents a snap-stabilizing protocol for the maintenance of a prefix tree in a distributed
environment. This section is divided as follows: we first recall, in Section 5.2.1, the definition of
PGCP tree and introduce a weaker version of this structure (an intermediate state between any tree
and a PGCP tree). In the same subsection, we define the theoretical model of the protocol and
formally introduce snap-stabilization, i.e., the property, for a defined protocol, to always behave as
specified. Then, in Section 5.2.2 we present the repair algorithm we designed and give its correctness
proof and discuss its worst case complexities. We also show some simulation results allowing to have
a better idea of its average performance, in Section 5.2.3.
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5.2.1 Preliminaries

In this section, we first present the distributed system model used in the design of our algorithm.
Then, we recall the concept of snap-stabilization and specify the distributed data structures consid-
ered.

Distributed System

The distributed algorithm presented in this section assumes, similarly as in the previous section, an
underlying physical network with a set of asynchronous physical nodes (processors, referred to as
peers) with distinct IDs, communicating by message passing. Any peer P1 can communicate with
any peer P2, provided P1 knows the ID of P2 (ignoring physical routing details). Each peer maintains
one or more logical nodes of a distributed logical PGCP tree. In other words, each logical node (or
simply node) of the tree is a process running on a peer. Our algorithm is run inside all these (logical)
nodes. Recall that the tree topology is susceptible to changes during its reconstruction.

In order to simplify the design, proofs, and complexity analysis of our algorithm, we use the
theoretical formal state model introduced in [53]. We apply this model to logical nodes (or simply,
nodes) only. The message exchanges are modeled by the ability of a node to read the variables of
some other nodes, henceforth referred to as its neighbors. A node can only write to its own variables.
Each action is of the following form: < label >:: < guard > → < statement >. The guard of an
action in the program of p is a boolean expression involving the variables of p and its neighbors.
The statement of an action of p updates one or more variables of p. An action can be executed only
if its guard evaluates to true. We assume that the actions are atomically executed, meaning the
evaluation of a guard and the execution of the corresponding statement of an action, if executed, are
done in one atomic step.

The state of a node is defined by the values of its variables. The state of a system is a product
of the states of all nodes. In the sequel, we refer to the state of a node and of the system as a
state and a configuration, respectively. Let 7→ be a relation on C, the set of all possible config-
urations of the system. A computation of a protocol P is a maximal sequence of configurations
e = (γ0, γ1, ..., γi, γi+1, ...), such that for i ≥ 0, γi 7→ γi+1 (a single computation step) if γi+1 exists,
or γi is a terminal configuration.

A process p is said to be enabled in γ (γ ∈ C) if there exists at least an action A such that the
guard of A is true in γ. We consider that any enabled node p is neutralized in the computation step
γi 7→ γi+1 if p is enabled in γi and not enabled in γi+1, but does not execute any action between
these two configurations (the neutralization of a node represents the following situation: At least one
neighbor of p changes its state between γi and γi+1, and this change effectively made the guard of all
actions of p false.) We assume an unfair and distributed daemon. The unfairness means that even if
a process p is continuously enabled, then p may never be chosen by the daemon unless p is the only
enabled node. The distributed daemon implies that during a computation step, if one or more nodes
are enabled, then the daemon chooses at least one (possibly more) of these enabled nodes to execute
an action.

In order to compute the time complexity, we use the definition of round. This definition captures
the execution rate of the slowest node in any computation. The set of all possible computations
of P is denoted as E . The set of possible computations of P starting with a given configuration
α ∈ C is denoted as Eα. Given a computation e (e ∈ E), the first round of e (let us call it e′) is the
minimal prefix of e containing the execution of one action of the protocol or the neutralization of
every enabled node from the first configuration. Let e′′ be the suffix of e, i.e., e = e′e′′. Then second
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round of e is the first round of e′′, and so on.

Snap-Stabilization

Let X be a set. x ⊢ P means that an element x ∈ X satisfies the predicate P defined on the set X .

Definition 2 (Snap-stabilization). The protocol P is snap-stabilizing for the specification SPP on
E if and only if the following condition holds: ∀α ∈ C : ∀e ∈ Eα :: e ⊢ SPP .

A Relaxed Form of PGCP Tree: the Prefix Heap

Recall Definition 1, Page 45, of a PGCP tree. In the design of our protocol, we need a relaxed form
of the PGCP Tree. We call it a Prefix Heap and define it as follows:

Definition 3 (PrefixHeap). A PrefixHeap is a labeled rooted tree such that each node label is the
proper greatest common prefix of all its children labels.

The following proposition is a link between a Prefix heap and a PGCP tree and directly follows
from definitions 1 and 3:

Proposition 1. Let T be a PrefixHeap. If for any node x of T (lx denotes the label of x) which is
not a leaf node, the three following conditions are true for every pair of x’s children (y, z) (y 6= z and
ly, lz denote the respective labels), then ∀p,∀c1, c2 ∈ Cp, lp = PGCP (lc1, lc2) and T is a PGCP tree:





(1) ly 6= lz
(2) ly(resp. lz) is not a prefix of lz(resp. ly)
(3) |GCP (ly, lz)| = |lx|

The difference between the two structures is illustrated in Figures 5.2 and 5.3. On Figure 5.2,
one of the possible “heaps on the prefix” starting from the DGEMM, DTRSM, and DTRMM keys is shown.
Figure 5.3 gives the unique PGCP tree built with these three keys.

Figure 5.2: A Prefix Heap.
Figure 5.3: The PGCP Tree.
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5.2.2 Snap-Stabilizing PGCP Tree

In this subsection, we present the snap-stabilizing PGCP tree maintenance. We provide a detailed
explanation of how the algorithm works from initialization until the labels are arranged in the tree
such that it becomes a PGCP tree. Next, the proof of correctness and snap-stabilization, and a
discussion about the complexities are given.

The algorithm

The code of our snap-stabilizing solution is shown in algorithms 8 and 9, Page 104. We assume that
initially, there exists a labeled rooted tree spanning the network. Every node p maintains a finite set
of children Cp = {c1, . . . , ck}, which contains the addresses of its children in the tree. Each node p is
able to know the address of its parent using fp, fp being the node q such that q considers p as a child.
2 Initially, this relationship is well established. So, each node p can locally determine if it is either
(1) the single root of the spanning tree (fp is unspecified), (2) an internal node (fp is specified and
Cp 6= ∅), or (3) a leaf node (Cp = ∅). In the sequel, we denote the set of nodes in the tree rooted at
p as Tp (hereafter, also called the tree Tp) and the height of the tree rooted at p as h(Tp).

Each node p holds a label lp and a state Sp in {I,B,H}3—stand for Idle, Broadcast, and
Heapified, respectively. The algorithm uses two basic functions to create and delete nodes from
the tree. The NEWNODE(lbl, st, chldn) function is a process that creates a new node labeled by lbl,
whose initial state is st and with a set of children initialized with chldn4. Once the new node created
by this function is integrated to a set of children, the fp macro will ensure its parent to be correctly
set. Finally, the same fp macro will set the parent variable of nodes in chldn5. The DESTROY(p)
function is called to stop the process of a given node, (its reference should have been previously
deleted from any other node).

The basic idea of the algorithm is derived from the fast version of the snap-stabilizing PIF in [34]
and runs in three phases: The root initiates the first phase, called the Broadcast phase, by executing
Action InitBroadcast. All the internal nodes in the tree participate in this phase by forwarding the
broadcast message to their descendants — Action ForwardBroadcast. Once the broadcast phase
reaches the leaves, they initiate the second phase of our scheme, called the heapify phase, by executing
Action InitHeap.

During the heapify phase, a PrefixHeap is built — refer to Definition 3. We also ensure in
this phase that for every node p, p is a single node in Tp with a value equal to lp. The heapify
phase is computed using Procedure HEAPIFY(), executed by all the internal nodes — Actions
BackwardHeap. The heapify phase eventually reaches the root which also executes Procedure
HEAPIFY() and initiates the third and last phase of our scheme, called the Repair phase — Action
InitRepair. The aim of the Repair phase is to correct the two following problems that can occur
in the PrefixHeap. First, even if no node in Tp has the same label as p, the same label may exist in
other branches of the tree; Second, if each node is the greatest common prefix of its children labels,
it is not necessarily the greatest common prefix of any pairs of its children labels.

2In a real P2P network, the relationship child/parent is easily preserved by exchanging messages between a child
node and its parent.

3To ease the reading of the algorithm, we assume that Sp ∈ {I, B} (respectively, {I, H}) if p is the root (resp., p is
a leaf). We could easily avoid this assumption by adding the following guarded action for the root (resp. leaf) node:
Sp = H (resp. Sp = B) −→ Sp := I . Note that this correction could occur only once.

4See previous chapters for its implementation
5Again, the implementation of such a process in message passing can simply rely on one message sent by the newly

created node to its set of children.

85



CHAPTER 5. FAULT-TOLERANCE AND SELF-STABILIZATION

The Repair phase works similarly as the Broadcast phase but has its own semantic. The root

and internal nodes execute Procedure REPAIR() starting from the root toward the leaves — Actions
InitRepair and ForwardRepair. During this phase, for each node p, four cases can happen (refer
to Algorithm 9):

1. Several children of p have the same label. Then, all the children with the same label are merged
into a single child — Lines 11.02 to 11.07;

2. The labels of some children of p are prefixed with the label of some of its siblings. In that case,
the addresses of the prefixed children are moved into the corresponding sibling — Lines 11.08
to 11.12;

3. The labels of some children of p are prefixed with a label which does not exist among their
siblings and which are longer than the label of p. Then, for each set of children with the same
prefix, p builds a new node with the corresponding prefix label and the corresponding subset
of nodes as children — Lines 11.13 to 11.16.

4. If none of the previous three cases appear, nothing is done.

Finally, the Repair phase ends at leaf nodes by executing Action EndRepair. This indicates the
end of the PGCP tree construction. Note that since we are considering self-stabilizing systems, the
internal nodes need to correct abnormal situations due to the unpredictable initial configuration. The
unique abnormal situation which could avoid the normal progress of the three phases of our scheme
is the following: An internal node p is in state B (done with its broadcast phase) but its parent fp

is in state H or I, indicating that it is done executing its heapify phase or it is Idle, respectively. In
that case, p executes the action ErrorCorrection, in the worst case, pushing down Tp the abnormal
broadcast phase until reaching the leaf nodes of Tp. This guarantees the liveness of the protocol
despite unpredictable initial configurations of the system.

Correctness proof

In this section we show that the algorithm described is a snap-stabilizing PGCP tree algorithm. The
complexities are also discussed.

Remark 2. To prove that an algorithm provides a snap-stabilizing PGCP tree algorithm, we need
to show that the algorithm satisfies the following two properties: (1) starting from any configuration,
the root eventually executes an initialization action; (2) Any execution, starting from this action,
builds a PGCP tree.

Let us first consider the algorithm by ignoring the two procedures HEAPIFY() and REPAIR().
In that case, the algorithm is very similar to the snap-stabilizing PIF in [34]. The only difference
between both algorithms is in the third phase. In Algorithm 8, the third phase is initiated by
the root only, after the heapify phase terminated only, whereas in [34], the third phase can be
initiated by any node once itself and its parent are done with the second phase. That means
that with the solution in [34], both the second and the third phase can run concurrently. That
would be the case with Algorithm 8 if the guard of Action ForwardRepair has been as follows:
Sp = H ∧ Sfp

∈ {H, I} ∧ (∀c ∈ Cp : Sc ∈ {H, I}).
However, it follows from the proofs in [34] that the behavior imposed by our solution is a particular

behavior of the snap-stabilizing PIF algorithm. This behavior happens when all the nodes are slow
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to execute the action corresponding to the third phase. Since the algorithm in [34] works with an
unfair daemon, the algorithm ensures that, eventually, the root initiates the third phase, leading the
system to behave as Algorithm 8. Therefore, ignoring the effects of the two procedures HEAPIFY()

and REPAIR() on the tree topology, the proof of snap-stabilization in [34] is also valid with our
algorithm.

Considering the two procedures HEAPIFY() and REPAIR() again, since ∀p, the set Cp is finite,
it directly follows from the code of the two procedures in Algorithm 9 that every execution of the
procedures HEAPIFY() or REPAIR() is finite.

It follows from the above discussion:

Lemma 3. Starting from any configuration, the root node can execute Action InitBroadcost in a
finite time even if the daemon is unfair.

As a corollary of Lemma 3, the first condition of Remark 2 holds. Also, this shows that ev-
ery computation initiated by the root eventually terminates. It remains to show that the second
condition of Remark 2 also holds for any node p.

Lemma 4. After the execution of procedure HEAPIFY() by a node p, Tp is a PrefixHeap.

Proof. We prove this by induction on h(Tp). Since procedure HEAPIFY() cannot be executed by a
leaf node, we consider h(Tp) ≥ 1. Note that the code of the function HEAPIFY() is triggered only
for nodes whose label is not the PGCP of its children’ labels. In other words, the function executes
something after the test of Line 10.02 only if it is required.

1. Let h(Tp) be equal to 1. So, all the children of p are leaves. Executing Lines 10.03 to 10.04,
p is as a new child, itself a leaf node, labeled with lp, while lp contains the greatest common
prefix (GCP) of all its children. After the execution of Lines 10.05 to 10.08, p contains no child
c such that lc = lp. Thus, lp is a PGCP of all its children labels.

2. Assume that the lemma statement is true for any p such that h(Tp) ≤ k where k ≥ 1. We will
now show that the statement is also true for any p such that h(Tp) = k + 1. By assumption,
the lemma statement is true for all the children of p, i.e., ∀c ∈ Cp, lc is a proper prefix of any
label in Tc, and lc is the PGCP of all nodes in Cc. So, after executing procedure HEAPIFY(),
following the same reasoning as in Case 1, lp is a PGCP of all its children, and since themselves
are the root of a PrefixHeap, for every c ∈ Cp, lp is also a proper prefix of any label in Tc.
Hence, the lemma statement is also true for p.

Corollary 1. After the system executed a complete Heapify phase, the whole tree (i.e., Troot) is a
PrefixHeap.

Lemma 5. If Troot is a PrefixHeap, then after the execution of Procedure REPAIR() by any node p
such that h(Tp) ≥ 1, for every pair (c1, c2) ∈ Cp, lp = PGCP (c1, c2).

Proof. Consider first that p is the root. By executing Lines 11.02 to 11.07, if there exists a pair
(c1, c2) ∈ Cp such that lc1 = lc2, then p replaces all the nodes with the same label c1 by a unique node
gathering all their child sets together. So, after the execution of Lines 11.02 to 11.07, for every pair
(c1, c2) ∈ Cp (c1 6= c2), lc1 6= lc2. Following the same reasoning, after the execution of Lines 11.08

87



CHAPTER 5. FAULT-TOLERANCE AND SELF-STABILIZATION

to 11.16, for every pair (c1, c2) ∈ Cp (c1 6= c2), lc1 (resp. lc2) is not a prefix of lc2 (resp. lc1), and
|GCP (lc1 , lc2)| = |lp|. Thus, by Proposition 1, if p is the root, the lemma holds.

Consider now that p is not the root. Since Procedure REPAIR() modifies the set Cp only, follow-
ing the same reasoning as for the root, after the execution of Lines 11.02 to 11.16, by Proposition 1
again, the lemma holds for p.

Corollary 2. If Troot is a PrefixHeap, then after the system executed a complete Repair phase, the
whole tree is a PGCP tree.

Proof. By induction of Lemma 5 on every node of the path from the root to each leaf node.

From Corollaries 1 and 2, and the fact that after the root executed Action InitBroadcast, the
three phases Broadcast, Heapify, and Repair proceed one after another, we can claim the following
result:

Theorem 2. Running under any daemon, Algorithm 8 and Algorithm 9 provide a snap-stabilizing
Proper Greatest Common Prefix Tree construction.

This protocol is snap-stabilizing seen from the root of the tree, as the root needs to launch
the protocol only once to ensure that the tree will be a consistent PGCP tree at the end of the
computation. It is not the case seen from the client, who, if sending a request to the tree, may
connect the tree when it is faulty, and within which the repair protocol is still running, or even was
not launched. In other words, we consider here that the discovery process and maintenance process
are distinct and run concurrently.

Complexities Discussion

Theorem 3. The time complexity for the PGCP tree construction is O(h + h′) rounds. In the
worst case, the construction requires an O(n) extra space complexity, O(n) rounds and O(n2 × E)
operations, where n is the number of nodes of the tree and E the cost of the underlying system
returning reference of processes.

Proof. By similarity with the PIF, we can easily establish that the broadcast phase reaches all leaf
nodes in O(h) rounds, where h is the height of the tree when Action InitBroadcast is triggered. We
also easily see that the heapify phase reaches the root in O(h). Note that the time complexity of the
DESTROY() procedure can be assumed constant as no other node has to be destroyed (its children
have all been adopted by another node before it is destroyed.) During the repair phase, the number
of rounds required to reach all leaf nodes of the repaired tree is clearly O(h′), where h′ is the height
of the final tree (one execution of the REPAIR() procedure increases the depth by 0 or 1).

The extra space required on a node p depends directly on the number of children of p, which can
clearly not be higher than n − 1 = O(n). This happens when the tree is a star graph, every node
except the root being a child of the root.

Dealing with the time complexity, the highest value for h and h′ is n (in the case the tree is
a chain), what establishes that the worst case requires O(n) rounds. It remains to give the worst
complexity of one round. The cost of the NEWNODE function is mainly the cost of getting the
reference through the underlying system, which we denote E. The remainder of the NEWNODE

function is assumed atomic (see below for a discussion). Then, independently of this function, as we
easily see from the code, the time complexity of Procedure REPAIR() on a node p depends on |Cp|.
Recall that, once this procedure has been executed on a node p, it is executed in parallel on each
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c ∈ Cp. After the execution of REPAIR() on p, we easily see that ∀c ∈ Cp, |Cc| ≤ |Cp| − 1. This
bound is reached when REPAIR() on p moves |Cp| − 1 children of p under one single node in Cp.
If this scenario repeats at each level of the tree, no parallelism is achieved during the whole repair
phase and the ith round is made of a × (|Croot| − i) operations where a is a constant factor. As we
previously established, |Croot| ≤ n − 1. Finally, the number of operations in the worst case is:

[a × (n − 1) + a × (n − 2) + . . . + a] × E = O(n2 × E)

As in Chapter 3, we have here assumed the presence of a cache system in the underlying system
providing peers’ references, what can lead to E = O(1). In addition, implementing the fp macro in
the case where some nodes need to update their parent after the creation of a new node can be done
through a message sent by the new node to all its children in parallel, justifying a constant time on
this part.

In the following section, we expose simulation results showing that, in real settings, the worst
case is far to be reached, both in terms of latency and extra space.

5.2.3 Simulation Results

To better capture what we can expect from the behavior of the snap-stabilizing PGCP tree, we
simulated the algorithm again using data sets which reflect the use of computational platforms. The
simulator is written in Python and contains the three following parts:

1. It creates the tree with a set of labels of basic computational services commonly used in com-
putation grids such as the names of routines of linear algebra libraries, the names of operating
systems, the processors used in today’s clusters and the nodes’ addresses. The number of keys
is up to 5200, creating trees up to 6228 nodes. For instance, inserting two labels DTRSM and
DTRMM results in a tree whose root (common parent of DTRSM and DTRMM) is labeled by DTR.

2. It destroys the tree by moving subtrees, randomly. This is achieved by modifying the parent
of another randomly picked node, moving it from the set of children of its parent to the set of
children of a randomly chosen node. This operation is repeated on up to n/2 nodes (meaning
that approximately n/2 nodes are connected to a wrong parent). Nodes are initialized in State
I. (However, nodes could have been initialized in any state, since the algorithm would have
immediately changed their State to I.)

3. It executes the algorithm by testing for every node if its state and those of its neighbors
satisfy the guard of some action in the algorithm, in which case the statement of the action
is executed on the node. This whole process is a round (see Section 5.2.1) within which all
nodes are synchronized (any enabled node triggers the action corresponding to its state) and
is repeated until the tree is in a configuration where all nodes are in state I again.

Recall that the protocol always behaves according to its specification, i.e., executions are always
valid. Here, we focus on the configurations of the system and in the number of rounds required
to have a tree in which all nodes are in state I again, and thus to have a valid PGCP tree.

We have first collected results on the latency of the algorithm. Figure 5.4(a) gives the average
number of rounds required to have a valid PGCP tree, starting from 40 different arbitrary settings of
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Figure 5.4: Snap-stabilizing protocol: latency results.
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Figure 5.5: Snap-stabilizing protocol: extra space results.

the tree. The tree size ranges between 2 and 6228. We observe that the number of rounds required by
the algorithm has a logarithmic behavior (far from the linear worst case). It clearly scales according
to the height of the tree, thus confirming the average complexity of the algorithm and its good
scalability under more actual settings. Figure 5.4(b) gives similar results, but with a tree whose size
is up to more than 100000, built with randomly generated keys of length between 1 and 25.

We have also collected results on the extra space required on each node. Since the tree topology
undergoes changes during the reconstruction, degrees of nodes also dynamically change as nodes are
created, destroyed, merged or moved. Figure 5.5(a) and (b) shows the highest degree of nodes, i.e.,
the real extra space required on each node, including those of nodes created and/or destroyed during
the reconstruction. Using grid keys, the final tree size is 6228; the total number of nodes, including
temporary nodes (created and destroyed later), is 9120. We compute the maximum temporary extra
space required on one node (the maximum number of neighbors it had to manage at a given time).
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The experiment shows that the highest of maximum degree of all nodes is 2540, and most of maximum
degrees are very low (less than 50). This can be partly explained by the fact that the deeper a node
is, the smaller is its degree. In other terms, during a breadth-first traversal of the tree, the topology
quickly enlarges close to the root and then its breadth grows slowly on the way to the leaf nodes.
Using randomly generated keys leads to a similar result. More generally, this simulation shows that
the worst case is far to be reached and that only few nodes will require a large extra space.

Snap-Stabilization Enabled in Peer-to-Peer Prefix Trees. This second protocol is snap-
stabilizing and thus optimal in terms of convergence time. But, to be able to prove this property,
we modeled our system in the state model. As a consequence, the correctness of the algorithm has
been established only in this model, and can not be applied on a real message-passing platform in
a straightforward manner. Moreover, this protocol assumes the logical topology is always a rooted
connected tree.

Addressing the issue of practicability, our last protocol is a complete message-passing self-
stabilizing protocol to maintain a prefix tree on a real platform. Beyond the proof of self-stabilization
of this protocol, we study further the actual effectiveness of self-stabilization in our particular context.

5.3 Self-stabilizing Message-Passing Prefix Tree Maintenance

In this section, we propose a self-stabilizing protocol to maintain a prefix tree in a message passing
model designed for P2P architectures. Our algorithm does not require a fixed root node and works
with any arbitrary initial configuration (possibly disconnected) of the tree topology. As before, we
need a service to keep a knowledge of the physical network (weakly-connected continuously bootstrap
mechanism). To this end, we use a model similar to the one proposed in [76]. Being written
in a realistic model, the proposed protocol can be implemented on any platform that supports
message passing and basic services available in most peer-to-peer systems. We give a formal proof
of correctness of our protocol and some simulation results to study the scalability of the protocol
as well as its efficiency in keeping the architecture available for clients even under high failure rate.
In Section 5.3.1, we give the model in which our protocol is designed, and the data structures it
maintains. The protocol is given in Section 5.3.2, followed by its proof in Section 5.3.3. Simulation
results are given in Section 5.3.4.

5.3.1 Preliminaries

The Network. As previously, we assume A P2P network consisting of a set of asynchronous
processors with distinct ids. The processors communicate by exchanging messages. Any processor
P1 can communicate with another processor P2 provided P1 knows the id of P2. We abstract the
details of the actual routing. Henceforth, we use the word peer to refer to a processor.

The Logical Tree. Each peer maintains a part of our indexing system i.e., some logical nodes
(that we want to group into a proper greatest prefix tree). Keep in mind that a (logical) node is
implemented as a process, which runs on a peer. In other words, a process implements the notion of
node.

We now go a bit further in the description of our system, trying to avoid any misunderstandings.
As we said, each node has a label. In a correct configuration (that we have defined in Definition 1,
Page 45), each node label is unique. (Only one node is responsible for all services may share a
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common label.) However, initially, when the system is not yet stabilized, the structure may contain
errors and, as an example, multiple nodes sharing the same label. Thus, we cannot use labels to
identify the nodes. We chose to identify nodes by the process implementing it. A process is identified
by a unique combination of the peer running it and a port number. Our protocol maintaining the
prefix tree is run on every process. Nodes and Processes are basically two different views of the
same thing. In the remainder, we use these terms interchangeably. If our point is more related to
the tree structure, we will use the word node. If our point is more related to basic entities running
on the network, we will use the word process. Recall that the tree topology is again susceptible
to changes during its reconstruction. We assume the presence of a service able to return process
references. This process discovery service is similar to the one we used before and similar to the
one described in [76]. Any process of the system can obtain any other process identifier by calling
this service. To prove the correctness of the algorithm, we assume that a finite number of queries to
this service is enough to collect the identifiers of all processes in the system. The service provides
the following two primitives: GetRunningProcess() returns the identifier of a randomly chosen
process, and GetNewProcess() creates a new process (without setting its parameters yet, see
later the InitProcess() function for this purpose) and returns its identifier. The communication
between processes is carried out by exchanging messages. A process p is able to communicate with
a process q, if and only if p knows the id of q. We assume that a copy of every message sent by p to
q is eventually received by q, unless q terminated (crash, kill). The message delay is finite but not
bounded. Messages arrive in the order in which they were sent (FIFO), and as long as a message is
not processed by the receiving process, we assume that it is in transit.

Self-Stabilization. Define a transition system as a triple S = (C, 7→,I), where C is a set of
configurations, 7→ is a binary transition relation on C, and I ⊂ C is the set of initial configurations.
A configuration is a vector with n + 1 components, where the first n components are the state of n
processes and the last one is a multi-set of messages in transit in m links. We define an execution
of S as a maximal sequence E = (γ0, γ1, γ2, ..., γi, γi+1, ...), where γ0 ∈ I and for i ≥ 0, γi 7→ γi+1. A
predicate Π on C, the set of system configurations, is closed for a transition system S if and only if
every configuration of an execution e that starts in a configuration satisfying Π also satisfies Π. A
transition system S is self-stabilizing with respect to a predicate Π if and only if Π is closed for S
and for every execution e of S, there exists a configuration of e for which Π is true.

5.3.2 Protocol

The proposed algorithm builds a PGCP tree starting from an arbitrary logical network where each
node is labeled.

Communications. The protocol assumes the existence of an underlying self-stabilizing end-to-
end communication (SSEE) protocol. Both layers communicate using send/receive primitives over
FIFO message queues. The “send(<m>, q)” primitive sends the message m to the node q. It
always terminates and, either the recipient q is alive and the message m is queued on q, and will be
processed later, or q crashed and is no longer available and the message is lost. The implementation
of Protocol SSEE is beyond our scope. Please refer to [23, 56].

Notations. Every process p (we use p to denote the id of p and the address used by other processes
to communicate with p) has a label lp. Denote by p̂, the pair (p, lp). Recall that, p̂ = p̂′ is equivalent
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to (p = p′) ∧ (lp = lp′). Node p also maintains the id and label of its parent into f̂p and its children

into the finite set Ĉp. Note that Ĉp, p̂ and f̂p are variables, Cp is the result of a macro that extracts

the first element of every pairs in Ĉp.

Heartbeat. To deal with crash failures, to maintain the topological information, and to maintain
the status of processes (they terminated or not) in our protocol, we assume the presence of an
underlying heartbeat protocol. We assume that any node that does not receive news from one
child or parent during a bounded time (implemented by using a TimeOut action in the algorithm),
removes the node from its neighborhood set. Note that when deleting a given child q ∈ Cp, all the
data associated with q is deleted.

Processes Discovery. The function GetEpsilon() returns the identifier of a random node la-
beled by the empty word ǫ. It relies on the process discovery service previously described. Basically,
it calls GetNewProcess() and checks if the id returned is an ǫ-process, i.e., a process labeled by
ǫ. Since we assume that a finite number of calls to the process discovery service is enough to get
all identifiers of alive processes, the GetEpsilon() function also returns every ǫ-process in a finite
time. The InitProcess(lbl, f, C) function initializes a process on the local node and sets the label
with lbl, the parent with f and the set of children with C.

The Algorithm

The rules of the protocol, i.e., the periodic rule, periodically runs on each node as detailed in
Algorithm 10, Page 105, and the upon receipt rules, detailed in Algorithm 11, Page 106, triggered
on the receipt of a message, are atomic.

Each node p periodically initiates the action described by Algorithm 10. Process p begins by
eliminating the cases where p is either a parent or a child of itself, what could lead in configurations
with cycles, that are hard to systematically eliminate — see Lines 12.02-12.03.

Lines 12.04-12.13 deal with parent maintenance. These lines ensure that eventually, there will be
one and only one root, i.e., only one node p eventually satisfies fp = ⊥. To achieve this, the possible
root nodes merge. Let us consider a root node p to detail this part of the algorithm. There are two
possible situations:

1. If the label of p is ǫ, p tries to connect to another node q, also labeled ǫ. q then becomes a child
of p (Line 12.08). p informs q that its parent changed using UpdateParent message. Upon
receipt of that message, q updates its parent variable (Lines 16.01-16.03 of Algorithm 11). Since
p and q are labeled identially, they will merge (the merging is explained below), thus reducing
the number of roots by one.

2. If p is not labeled by ǫ, a new node labeled ǫ is artificially created as the parent of p. This new
node executes the periodic rule satisfying the previous case.

Lines 12.15-12.26 deal with children maintenance to make sure that eventually, every set of
children satisfies Definition 1. This phase consists of three parts.

1. We eliminate cases where the set of children of p contains a node q whose label is the label
of p by initiating the merging of p and q. p sends a Merge message to q (Lines 12.15-12.16).
First, upon receipt of the Merge message, q informs its children that their new parent is

93



CHAPTER 5. FAULT-TOLERANCE AND SELF-STABILIZATION

their current grandparent through GrandParent messages. Upon receipt of this message,
the children of q change their parent from q to p. To ensure a good synchronization, q waits
until all its children have been accepted by p as children, i.e., waits for the GFDone message.
q finally informs p that the merging process has finished by sending the MDone message, and
terminates (Lines 18.01-21.03).

2. We eliminate cases where a child q1 prefixes another child q2. So, the proper greatest common
prefix of the labels of q1 and q2 is equal to the label of q1. But, the greatest common prefix, by
Definition 1 must be the label of p. A contradiction (Line 12.17). q2 then becomes the child of
q1 (Lines 12.17-12.19).

3. We check that there is no pair (q1, q2) in its set of children such that the greatest common
prefix g of their labels is greater than its own label (Lines 12.20-12.26). In this case, a new
node must be created. This node, labeled by g, will be the child of p and the common parent
of q1 and q2.

The purpose of Lines 12.27-12.28 is for p to check the validity of its parent. Upon receipt of
the Parent message, the parent of p decides whether p is its child depending on their labels, and
informs p of the result (Lines 13.01-13.06). It uses a Child message to indicate that it considers p
as its child. Otherwise, it sends an Orphan message. Lines 14.01-15.03 detail the receipt of these
messages. Upon receipt of Child, p updates the label of its parent. Upon receipt of Orphan, it
becomes a root and will execute the periodic rule as we discussed before.

5.3.3 Proof of Stabilization

In many distributed systems where failures (or topology changes) can occur — e.g., peer-to-peer
networks—, the failure frequency must be assumed to be “low enough” to have “enough time” to
achieve the intended goal of a given protocol. For instance, no one could reasonably claim that a
peer-to-peer protocol, like a Distributed Hash Table, works under the assumption that peers can
crash “so fast” that none of them has time to send even one message. Since the property of self-
stabilization guarantees the convergence of the system to its intended behavior in finite time, it can
model the ability for the system to recover from transient failures, and also, to tolerate changes of
its topology brought about failures or repairs of its components [126]. Stabilization is usually proven
under the assumption that no failure occurs from the beginning. In other words, if failures occur,
then they occur before the first considered system configuration. Therefore, the above ability makes
sense assuming similar reasonable assumption as above, i.e., (i) the frequency of fault occurrence is
not too high, and (ii) the time between two occurrences of faults is higher than the time required to
recover from a fault.

In light of the above assumptions, while proving the correctness of stabilizing algorithms (espe-
cially, their convergence property), we assume that no fault occurs during the convergence period.
In other words, we only need to show the convergence of the protocol after the last fault occurs.

Following the above discussion, to prove the correctness of the proposed protocol, we consider
a suffix of an execution starting after all crashes have taken place, i.e., in this particular execution
segment, no crashes occur. Let P be the set of alive processes. Every “send(<m>, q)” executed by
a process p ∈ P terminates and when this happens, either m is received by q or q /∈ P .

A configuration γ satisfies Predicate Π1 if and only if, assuming that a process p ∈ P infinitely
often sends a message to a process q ∈ P (q 6= p), both conditions are true in every execution e
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starting from γ: (1). Safety: the sequence of messages received by q is a prefix of the sequence of
messages sent by p; (2). Liveness: q receives a message infinitely often.

The following lemma directly follows from the fact that we assume an underlying self-stabilizing
end-to-end communication protocol:

Lemma 6. The system is self-stabilizing with respect to Π1.

Corollary 3. Every message received by a process in P in a configuration satisfying Π1 has been
sent by another process in P .

Lemma 7. Starting from a configuration satisfying Π1, every process in P executes Lines 12.01-12.28
infinitely often.

Proof. The set Ĉp is finite and the loop is executed atomically (no message receipt can interrupt the
execution of the loop). Moreover, each execution of send terminates. So, none of the three “while
loop” (Lines 12.15-12.26) may loop forever. The lemma follows.

Corollary 4. Starting from a configuration satisfying Π1, the system eventually contains no process
p such that fp = p or p ∈ Cp.

Proof. Process p executes Lines 12.02 and 12.03 infinitely often. Moreover, the algorithm contains
no line in which fp := p or Ĉp := Ĉp ∪ {p̂}.

We will now show that, starting from a configuration satisfying Π1, the child set (Cp) of each
process p ∈ P eventually contains no child Id q such that q /∈ P — i.e., q is alive.

Lemma 8. Let p be a process in P . In every execution starting from a configuration γ satisfying
Π1, if there exists q ∈ Cp such that q /∈ P , then, eventually, q /∈ Cp.

Proof. It follows the assumption of the presence of an underlying heartbeat protocol between neigh-
bors.

Let Π2 be the predicate over C such that γ ∈ C satisfies Π2 iff ∀p ∈ P , ∀q ∈ Cp, q ∈ P .

Lemma 9. The system is self-stabilizing with respect to Π2.

Proof. From Corollary 3, no process p ∈ P can receive a message from a process q /∈ P . So, in any
execution starting from a configuration γ satisfying Π1, no process p can add a process Id q such
that q /∈ P . p can add a process q in Cp using Lines 12.08 and 12.26 in which case q was returned
by a Get*() function assumed to return ids in P . It can also add q using Line 13.03, in which case
q was sent by q itself, and is thus alive. By Lemma 8, if there exists some process p ∈ P such that
Cp contains ids not in P , then each of these ids is eventually removed from Cp. Thus, eventually,
∀p ∈ P , ∀q ∈ Cp, q ∈ P .

From now on, we do not mention P because all process references are assumed to be in P . Let Π3

be the predicate over C such that γ ∈ C satisfies Π3 iff in every execution starting from γ satisfying
Π2, for each process p: (1) p executed Lines 12.01-12.28 at least once, and (2) if p sent a message
“Parent?” to q, then p received the corresponding answer (a message <Child> or <Orphan>)
from q. The following lemma is straightforward: from Lemma 7 and the fact that every message
receipt terminates:
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Lemma 10. The system is self-stabilizing with respect to Π3.

Lemma 10 ensures that for every process p, each label in Ĉp is correct, i.e., is equal to the actual
label of q. p adds or updates the child labels in three ways. First, using Line 13.03 in which case
the label was sent by q itself and is thus correct. Second, by using Line 12.08 in which case q was
returned by GetEpsilon() and the label is set to ǫ. Third, by using Line 12.26 in which case
the label was computed by p itself and then sent to new. We will now show that, starting from a
configuration satisfying Π2, the child set (Cp) of each process p eventually contains no child Id q such
that lp /∈ Prefixes(lq).

Lemma 11. Let p and q be two processes. If there exists an execution starting from a configuration
satisfying Π3 containing a system transition γt 7→ γt+1 such that q /∈ Cp in γt and q ∈ Cp in γt+1,
then lp ∈ Prefixes(lq).

Proof. To add q to Cp, p executes one of the following lines:

1. Line 12.08. In this case, lp = lq = ǫ.

2. Line 12.26. In this case, q = new, and lq = GCP (lq1, lq2), where both lq1 and lq2 are prefixed
by lp.

3. Line 13.03. This line is executed only if lp ∈ Prefixes(q) — see Line 13.02.

Lemma 12. Let γ be a configuration satisfying Π3. Let p and q be a pair of processes such that,
in γ, q ∈ Cp. If there exists an execution e starting from γ such that q ∈ Cp forever, then lp ∈
Prefixes(lq).

Proof. Assume by contradiction that there exists e starting from γ such that q ∈ Cp forever, and
lp /∈ Prefixes(lq). There are two cases to consider:

1. There exists a configuration γ′ ∈ e such that fq 6= p forever (fq 6= p in every execution starting
from γ′). In that case, assuming the presence of an underlying heartbeat protocol between
neighbors, p will not receive heartbeats from q and eventually remove it from the set of its
children. A contradiction.

2. fq = p infinitely often. So, q sends Parent? to p infinitely often. Upon receipt of such a
message, p removes q from Cp—Line 13.06. A contradiction.

Let Π4 be the predicate over C such that γ ∈ C satisfies Π4 iff given two processes p, q, if q ∈ Cp

in γ, then lp ∈ Prefixes(lq).

Lemma 13. The system is self-stabilizing with respect to Π4.

Proof. By Lemma 12, for every process p, if Cp contains q such that lp /∈ Prefixes(lq), then q
is eventually removed from Cp. By Lemma 11, for every p, q can be added to Cp only if lp ∈
Prefixes(lq). So, eventually, if q ∈ Cp, then lp ∈ Prefixes(lq).
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It follows from Lemma 13 that, in every configuration γ satisfying Π4, if there exists a process p
and no q such that lp ∈ Prefixes(lq), then Cp is an empty set. In other words, the leaf nodes are
without child forever. We will now show that there is eventually only one tree.

Lemma 14. In every execution starting from a configuration γ satisfying Π4, the number of times
a process p sets fp to ⊥ is less than or equal to 1.

Proof. Assume by contradiction that there exists an execution e starting from γ and a process p
setting fp to ⊥ more than once. In a configuration satisfying Π4, by Corollary 4 and Lemma 9, p can
set fp to ⊥ upon receipt of a message Orphan only. So, p receives Orphan at least twice. After
the first receipt, p executes the loop Lines 12.01-12.28. There are two cases to consider:

1. lp = ǫ. In that case, p obtains an existing “ǫ-process” q′ as its parent — refer to Lines 12.05-
12.09. Then, p sends UpdateParent to q′ that will never sends Orphan to p since lq ∈
Prefixes(lp).

2. lp 6= ǫ. In that case, p creates and chooses as a parent a new “ǫ-process” q. This case is similar
to the first one.

Let ̺ be the number of processes p such that fp = ⊥.

Lemma 15. In every configuration γ satisfying Π4, if ̺ = 0 in γ, then ̺ is eventually greater than
0 and remains greater than 0 thereafter.

Proof. Assume by contradiction that ̺ = 0 in γ and there exists an execution e starting from γ such
that ̺ is equal to 0 infinitely often. There are two cases to consider:

1. ̺ = 0 in every configuration of e, i.e., ∀p, fp 6= ⊥ in every configuration. So, no process ever
receives Orphan. Let p be a process such that ∀q 6= p, lq /∈ Prefixes(lp)—i.e., lp is minimum.
(Note that in every configuration satisfying Π4, ∀q 6= p, p /∈ Cq.) Upon the first receipt of
Parent? sent by p to its parent, say p′, p′ sends Orphan to p. A contradiction.

2. ̺ = 0 infinitely often. From Lemma 14, ∀p ∈ P , p sets fp at most once. So, ̺ increases from
0 to a value x ≤ |P |. Then, since we assume that ̺ = 0 infinitely often, it means that ̺ will
then be equal to 0, eventually. And since ̺ can not increase anymore, it will remains equal to
0, which is the first case.

Lemma 16. In every execution starting from a configuration γ satisfying Π4, ̺ is eventually equal
to 1.

Proof. By Lemmas 14 and 15, in every execution from γ, there exists a configuration γt such that
̺ is equal to a maximum value x ∈ [1, |P |]. Assume by contradiction that there exists an execution
e, a value y ∈ [2, x], and a configuration γ′

t in e with t′ ≥ t such that ̺ = y and remains equal to y
thereafter. There are two cases to consider:

1. Among the y nodes, there exists p such that lp 6= ǫ. Then, p eventually executes Lines 12.11-
12.13 a new ǫ-process is created, taking p as its child. The number of roots is unchanged but,
eventually, every root is labeled by ǫ.
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2. The label of the y nodes is equal to ǫ. Let p be the ǫ-processes having the maximum identifier.
By executing Line 12.06, p eventually chooses an ǫ-process q such that q sets fq to p upon
receipt of the message UpdateParent sent by p, and the number of roots is decremented. A
contradiction.

Let Π5 be the predicate over C such that ̺ = 1.

Lemma 17. The system is self-stabilizing with respect to Π5.

Proof. Follows from Lemmas 14, 15, and 16.

In every configuration satisfying Π5, there exists a single process r such that lr = ǫ and fr = ⊥.
In the next and last step of the proof, we show that if the parent of a process p changes, then p
moves toward the leaves such that the tree eventually forms a PGCP tree.

Lemma 18. In every execution starting from a configuration γ satisfying Π5, if a process p sets fp

to q, then lq ∈ Prefixes(lp).

Proof. In every configuration γ satisfying Π5, a process can change fp by executing the receipt of
either a message GrandParent or UpdateParent, in both cases, sent by its parent. In both
cases, fp is set to q such that lq ∈ Prefixes(lp).

Lemma 19. In every execution starting from a configuration γ satisfying Π5, the number of pair
p, q such that lp = lq is eventually equal to 0.

Proof. Note that in every configuration γ satisfying Π5, one among {p, q} is the parent of the other.
Without loss of generality, we assume that p is the parent of q. By the repeated executions of
Lines 12.15-12.16 and 18.01-21.03 on each pair p, q, all the children of q eventually become the
children p and q eventually disappears.

Let Π6 be the predicate over C such that γ ∈ C satisfies Π6 iff the distributed data structure
maintained by the variables of Algorithm 10-11 forms a Proper Greatest Common Prefix Tree. We
want ∀p,∀q1, q2 ∈ Cp, lp =GCP(lq1 , lq2). Starting from Lemmas 6, 9, 10, 13, 17, 18, and 19, it remains
to eliminate problematic cases expressed by conditions of Line 12.17 and Line 12.20. By the repeated
executions of Lines 12.17-12.26, we can claim:

Theorem 4. The system is self-stabilizing with respect to Π6.

5.3.4 Simulation Results

To capture what we can expect in terms of scalability, we simulated the protocol. In particular, we
investigated the convergence time and the number of messages exchanged both w.r.t. the number of
nodes.

The simulator is written as a Python script. The script randomly creates an initial faulty con-
figuration of the network. By randomly, we mean that each node is created independently from the
others. To create one node, it picks a randomly created label (on the Latin alphabet) of size between
1 and 20. It also chooses some nodes randomly from the set of already created nodes, to become
the parent and the children of the node currently created. Thus, the initial graph is inconsistent
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— prefix relationship may be wrong (e.g., a node label may be prefixed by the label of its child),
and the information about the neighbors may be incorrect. For example, p may consider its parent
label is l although q is labeled l′ 6= l, or p may assume q as its parent while p does not consider q
is its child. We created the tree totally randomly to test the power of the proposed self-stabilizing
protocol.

The protocol is launched at each node of the graph. We assume a discrete time. Each period
of time is a processing sample. In other words, we decided that one period would begin when the
first node starts the execution of the periodic rule, and would end when every node has triggered
the periodic rule once and only once, and the set of actions resulting from it, i.e., sending messages,
processing messages, updating variables on any pertained node; have been executed. As we detailed
in the proof, this set is finite, since the maximum set of messages generated by one execution of
the periodic rule is finite. To implement the discrete sampling, processes are synchronized. But, the
discrete time reflects the slowest processor rate. In other words, the scheduler simulated is fair.
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Figure 5.6: Message passing protocol simulation: convergence time.

Figure 5.6 shows the number of periods required in the average to converge, in function of the
number of the final number of nodes in the tree. Recall that this number is equal to the initial number
of distinct labels in the graph plus the number of labels created for the validity of the tree. The curve
on Figure 5.6 shows that the number of periods required to converge increases very slowly when the
size of the tree ranges from a couple of nodes to more than 3000. This suggests the convergence time
grows at worst linearly, and with a very low slope (approximately 1/50). Figure 5.7 gives an average
estimation for the number of messages each node exchanges during one period in function of the
final number of nodes. Again, the curve suggests at worst a linear behavior. These two results show
that, when the tree grows, both the amount of processing and the number of messages exchanged by
the nodes (and thus the utilization of CPU and network resources) grows slowly, what indicates the
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Figure 5.7: Self-stabilizing message passing protocol simulation: amount of messages.

scalability of the protocol.

Finally, we simulated clients’ requests, i.e., discovery requests looking up for services. In a regular
use, discovery requests on a given service (or label) are encapsulated in a message sent to a randomly
picked node. Then the message is routed until reaching the node labeled by the requested service.

We investigated if a prefix tree overlay enhanced with our self-stabilizing protocol, independently
from its convergence time, allows the system to guarantee a certain level of availability. To this end,
we simulated a prefix tree continuously undergoing failures, in a faster rate than the convergence
time, under the same discrete-time conditions than for the previous experiments. On Figure 5.8, the
X-axis expresses the number of nodes undergoing failures in percentage (0-10) of the total number
nodes of the tree (about 500 in this experiment), at each period. The Y-axis gives the percentage
of client’s requests satisfied. A request is said to be satisfied if it reached its destination in the tree
starting from a random entry node. The curve shows that this number is greatly improved when the
self-stabilizing algorithm is performed — approximately from 5% to 40% and in spite of very bad
conditions, i.e., 10% of nodes failing at each period. The basic tree includes no other fault-tolerance
mechanism, like replication.

Self-stabilization for tree-structured peer-to-peer systems. This last section presented a
practical self-stabilizing protocol for the maintenance of a tree-structured P2P indexing system.
While previous similar works mainly rely on theoretical coarse grain models, this protocol simply
relies on message passing and is easily implemented on P2P platforms. We provided a comprehensive
and formal correctness proof of the proposed protocol. We demonstrated that the convergence time
and the amount of communications produced by the protocol increases slowly when the tree grows,
indicating a good scalability. Moreover, we showed the ability of the protocol to greatly improve
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Figure 5.8: Simulation of the protocol: satisfaction rate of clients’ requests.

fault tolerance in such architectures and thus increase the availability of service discovery systems.

5.4 Conclusion

In this chapter, we have presented three protocols proposing best-effort alternatives to the replication
in prefix-tree peer-to-peer systems. The fault-tolerance provided by these algorithms outperforms
replication algorithms in the sense that they allow to have an available consistent service discovery
system after crashes, failures or wrong initializations of some variables of the nodes, in a finite time.
Our first protocol is a message-passing algorithm allowing to reconnect and reorder disconnected
subtrees in a system which underwent some peer crashes. The two following protocols are self-
stabilizing but offer different and complementary contributions. The first protocol is written in a
restricted model and assumes the logical topology to always be a rooted connected tree, but have the
nice property to be snap-stabilizing, i.e., is optimal in terms of stabilization time. The last protocol
addresses the practical side of the problem, is written in a peer-to-peer oriented model, and is ready
to be implemented on some actual platforms. A comprehensive correctness proof of the protocol is
provided, but also simulation results highlighting the scalability of this protocol.
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Algorithm 6 Reconnection Protocol for each node p

1.01 Variables: lp, the label of p
fp, the parent of p
lfp

, the label of the parent of p
tfp, temporary father of p
Cp, set of pairs (identifier, label) of children of p
Tp, set of pairs (identifier, label) of temporary children of p

2.01 upon receipt of <Disconnected> do
2.02 P := Set of peers in the DHT (collected by a DHT traversal)
2.03 N := Set of logical nodes run on peers in P (collected by scanning the nodes in P )
2.04 L := Set of logical nodes in my subtree (collected using a PIF wave) using Cp ∪ Tp

3.01 if tfp 6= ⊥ then
3.02 send <Unlink, (p, lp)> to tfp

3.03 if N \ L = ∅ then //I am the root
3.04 fp := ⊥; tfp := ⊥
3.05 else
3.06 tfp := random choice among N \ L
3.07 send-sync <Link, (p, lp)> to tfp

3.08 send <Hello, p> to tfp

4.01 upon receipt of <Hello, list> from q do
4.02 if First(list) = p then //A cycle is detected
4.03 leader := LeaderElection(list)
4.04 if p = leader then
4.05 Executes “upon receipt of <Disconnected> do”,
4.06 elseif fp 6= ⊥ then
4.07 send <Hello, list> to fp

4.08 elseif tfp 6= ⊥ then
4.09 list := list + p
4.10 send <Hello, list> to tfp

4.11 else // I am a false root still not linked or the real root
4.12 Executes “upon receipt of <Disconnected> from ’ do’
4.13 if tfp 6= ⊥ then
4.14 list := list + p
4.15 send <Hello, list> to tfp

4.16 else // I am the real root, so there is no cycle.
4.17 send <NoCycle> to First(list)

5.01 upon receipt of <NoCycle> from q do
5.02 send <Move, (p, lp)> to tfp

5.03 send-sync <Unlink, (p, lp)> to tfp

5.04 tfp := ⊥

6.01 upon receipt of <Link, (q, lq)> from q do
6.02 Tp := Tp ∪ {(q, lq)}

7.01 upon receipt of <Unlink, (q, lq)> from q do
7.02 Tp := Tp \ {(q, lq)}
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Algorithm 7 Reorganization Protocol for each node p

8.01 Variables: lp, the label of p
fp, the parent of p
lfp

, the label of the parent of p
Cp, set of pairs (identifier, label) of children of p

9.01 upon receipt of <Move, fs> from q do
9.02 if lfs = lp then // I send to myself that a fusion is needed.
9.03 send <Merge, fs> to p
9.04 elseif lp ∈Prefixes(lfs) then
9.05 if ∃s ∈ Cp| ls ∈ Prefixes(lfs) then
9.06 // fs is in the subtree of s, Case (a) in Figure 5.1
9.07 send <Move,fs> to s
9.08 elseif ∃s ∈ Cp| lfs ∈ Prefixes(ls) then
9.09 // s is in the subtree of fs, Case (b) in Figure 5.1
9.10 Cp := Cp ∪ {fs} \ {s}
9.11 send <Move,s> to fs
9.12 elseif ∃s ∈ Cp | |lp| < |PGCP (ls, lfs)| then
9.13 // fs and s have a PGCP which is greater than lp
9.14 // Case (c) in Figure 5.1
9.15 Newnode(PGCP (lfs, ls), s, fs); Cp := Cp \ {s}
9.16 else // fs is one of my children, Case (d) in Figure 5.1
9.17 Cp := Cp ∪ {fs}
9.18 else
9.19 if fp 6= ⊥ then
9.20 send <Move,fs> to fp

9.21 else
9.22 if lfs ∈ Prefixes(lp) then
9.23 // I am in the subtree of fs
9.24 send <Move,p> to fs
9.25 else // p and fs are siblings
9.26 Cp := Cp ∪ Newnode(PGCP (lfs, lf), fs, p)

10.01 upon receipt of <Merge,fs> from q do
10.02 Gluing(q)
10.03 Sorting of Cp in the lexicographic order in Table ts
10.04 for i = 0 do ts.length() − 2
10.05 if lts[i] = lts[i+1] then
10.06 send <Merge, ts[i + 1]> to ts[i]
10.07 i := i + 1
10.08 elseif lts[i] ∈Prefixes (lts[i+1]) then
10.09 send <Move,ts[i + 1]> to ts[i]
10.10 Cp := Cp \ {ts[i + 1]}
10.11 i := i + 1
10.12 elseif lp < PGCP (lts[i], lts[i+1]) then
10.13 Cp := Cp ∪ Newnode(PGCP (lts[i], lts[i+1]), ts[i], ts[i + 1])
10.14 Cp := Cp \ {ts[i], ts[i + 1]}
10.15 i := i + 1

103



CHAPTER 5. FAULT-TOLERANCE AND SELF-STABILIZATION

Algorithm 8 Snap-Stabilizing PGCP Tree — Variables, Macros, and Actions.

Variables: lp, the label of p
Cp = {c1, . . . , ck}
Sp = {I, B} if p is the root, {I, H} if p is a leaf node, {I, B, H} otherwise

Macros: fp ≡ {q : p ∈ Cq}
SameLabelp(L) ≡ {c ∈ Cp : (lc = L)}
SameGCPp(L) ≡ {c1, c2, . . . , ck ∈ Cp : GCP (c1, c2, . . . , ck) = L}
SamePGCPp(L) ≡ SameGCPp(L) \ {c ∈ SameGCPp(L) : lc = L}

Actions:
{For the root node}

InitBroadcast :: Sp = I ∧ (∀c ∈ Cp : Sc = I) −→ Sp := B;
InitRepair :: Sp = B ∧ (∀c ∈ Cp : Sc = H) −→ HEAPIFY();REPAIR();

Sp := I;
{For the internal nodes}

ForwardBroadcast :: Sp = I ∧ Sfp
= B ∧ (∀c ∈ Cp : Sc = I) −→ Sp := B;

BackwardHeap :: Sp = B ∧ Sfp
= B ∧ (∀c ∈ Cp : Sc = H) −→ HEAPIFY(); Sp := H ;

ForwardRepair :: Sp = H ∧ Sfp
= I ∧ (∀c ∈ Cp : Sc ∈ {H, I}) −→ REPAIR(); Sp := I;

ErrorCorrection :: Sp = B ∧ Sfp
∈ {H, I} −→ Sp := I;

{For the leaf nodes}
InitHeap :: Sp = I ∧ Sfp

= B −→ Sp := H
EndRepair :: Sp = H ∧ Sfp

= I −→ Sp := I;

Algorithm 9 Snap-Stabilizing PGCP Tree — Procedures.

10.01 Procedure HEAPIFY()
10.02 if lp 6= PGCP ({lc | c ∈ Cp}) then
10.03 Cp := Cp ∪ {NEWNODE (lp, H, {})}
10.04 lp := GCP({lc : c ∈ Cp})
10.05 for all c ∈ Cp : lc = lp do
10.06 Cp := Cp ∪ Cc \ {c}
10.07 DESTROY(c)
10.08 done

11.01 Procedure REPAIR()
11.02 while ∃(c1, c2) ∈ Cp : lc1

= lc2
do

11.03 Cp := Cp ∪ {NEWNODE(lc1
, H, Cs: s∈SameLabel(lc1 ))}

11.04 for all c ∈ SameLabelp(lc1
) do

11.05 DESTROY(c)
11.06 done
11.07 done
11.08 while ∃c ∈ Cp : SamePGCPp(lc) 6= ∅ do
11.09 Cp := Cp ∪ {NEWNODE(lc, H, Cc ∪ SamePGCPp(lc)}
11.10 Cp := Cp \ SamePGCPp(lc)
11.11 DESTROY(c)
11.12 done
11.13 while ∃(c1, c2) ∈ Cp : |GCP (lc1

, lc2
)| > |lp| do

11.14 Cp := Cp ∪ {NEWNODE(GCP (lc1
, lc2

), H, SameGCPp(GCP (lc1
, lc2

))}
11.15 Cp := Cp \ SameGCPp(GCP (lc1

, lc2
))

11.16 done
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Algorithm 10 Periodic rule, on process p

11.01 Variables: p̂ = (p, lp), id and label of p

f̂p = (fp, lfp
), id and label of the parent of p

Ĉp = {q̂1 = (q1, lq1
), . . . , q̂k = (qk, lqk

)}, a finite set of pairs (ids,labels), children of p
Tq, ∀q ∈ Cp time before considering q as not its child anymore

11.02 Macros: Cp ≡ {q | (q, lq) ∈ Ĉp}, set of totally ordered ids of children of p

12.01 Upon TimeOut do
12.02 if fp = p then fp := ⊥

12.03 if p ∈ Cp then Ĉp := Ĉp \ {p̂}
12.04 if fp = ⊥ then
12.05 if lp = ǫ then
12.06 q := GetEpsilon()
12.07 if q < p then

12.08 Ĉp := Ĉp ∪ {(q, ǫ)}
12.09 send(<UpdateParent, p̂>, q)
12.10 else
12.11 new := GetNewProcess()
12.12 send(<Host, (ǫ,⊥, {p̂})>, new)

12.13 f̂p := (new, ǫ)
12.14

12.15 while ∃q ∈ Cp | lq = lp do
12.16 send(<Merge, p̂>, q)
12.17 while ∃(q1, q2) ∈ C2

p : lp ∈ Prefixes(lq1
) ∧ lq1

∈ Prefixes(lq2
)) do

12.18 send(<UpdateParent, q̂1>, q2)

12.19 Ĉp := Ĉp \ {q̂2}
12.20 while ∃(q1, q2) ∈ C2

p : lp ∈ Prefixes(lq1
) ∧ lp ∈ Prefixes(lq2

) ∧ |GCP (lq1
, lq2

)| > |lp| do
12.21 lnew := GCP(lq1

, lq2
)

12.22 new := GetNewProcess()
12.23 send(<Host, (lnew, p, {q1, q2})>, new)
12.24 send(<UpdateParent, n̂ew>, q1)
12.25 send(<UpdateParent, n̂ew>, q2)

12.26 Ĉp := Ĉp \ {q̂1, q̂2} ∪ {n̂ew}
12.27 if fp 6= ⊥ then
12.28 send(<Parent?, p̂>, fp)
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Algorithm 11 Upon receipt rules, on process p

13.01 upon receipt of <Parent?, q̂> do
13.02 if lp ∈ Prefixes(lq)∧ send(<Child, p̂>, q) then

13.03 Ĉp := Ĉp ∪ {q̂}
13.04 else
13.05 send(<Orphan, p̂>, q)

13.06 Ĉp := Ĉp \ {q̂}

14.01 upon receipt of <Child, q̂> do
14.02 if fp = q then
14.03 lfp

:= lq

15.01 upon receipt of <Orphan, q̂> do
15.02 if fp = q then
15.03 fp := ⊥

16.01 upon receipt of <UpdateParent, q̂> do
16.02 if (lq ∈ Prefixes(lp))∧ send(<Parent?, p̂>, q) then

16.03 f̂p := q̂

17.01 upon receipt of <Host, l, f, Ĉ> do

17.02 StartProcess (l, f, Ĉ)

18.01 upon receipt of <Merge, q̂> do
18.02 if (fp = q) ∧ (lq ∈ Prefixes(lp)) then

18.03 ∀q′ ∈ Cp, send(<GrandParent, f̂p, q̂>, q′)

19.01 upon receipt of <GrandParent, n̂ewf , q̂> do
19.02 if (fp = q) ∧ (lq ∈ Prefixes(lp)) then

19.03 f̂p := n̂ewf
19.04 send(<GFDone, p̂>, q)

20.01 upon receipt of <GFDone, q̂> do
20.02 if (q ∈ Cp) ∧ (lp ∈ Prefixes(lq)) then

20.03 Ĉp := Ĉp \ {q̂}

20.04 if Ĉp = ∅ then
20.05 send(<MDone, p̂>, fp)
20.06 Kill(p)

21.01 upon receipt of <MDone, q̂> do
21.02 if (q ∈ Cp) ∧ (lp ∈ Prefixes(lq)) then

21.03 Ĉp := Ĉp \ {q̂}
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Chapter 6

Prototype Implementation and

Applications

The purpose of this last chapter1 is threefold:

1. Our first point is to present our early development works around the service discovery prob-
lem. This preliminary work has focused on improving the scalability of one particular grid
middleware following the GridRPC standard [137], and whose one of the main features is
service discovery, called DIET [40]. Our architecture extends DIET by connecting its main
service discovery components in a peer-to-peer network in which the propagation of requests
has been implemented following several approaches and calls upon the JXTA toolbox [145].
Experimental results show the viability and scalability of this extension.

2. Our second concern is to better capture the viability that we can expect of our architecture, in
terms of deployment over a real platform. Although the scalability, load-balancing, and fault-
tolerance has been showed by analysis and simulation, the concepts must now be confronted to
real settings. In a second section, we present our prototype, based on the JXTA toolbox [145],
that implements the design of our architecture described in Chapter 3. Early experimentation
results are given.

3. Our third concern is to give an insight in the use of our concept to solve a particular problem
related to large scale resource discovery. We present the use of our concepts for the control
of a network resources reservation service. More generally, our application is the reservation
of resources with network-awareness, i.e., be able to make a relevant selection according to
the network characteristics, for instance if the amount of data to be transferred between the
client and the server is large. We discuss the motivation for this problem, the adaptation,
combination of our algorithms and structures and the results of our first deployments on the
Grid’5000 platform [33], a nation-wide infrastructure gathering about 5000 CPUs dedicated to
research purposes.

1Part of the work presented in this chapter has been published in [CDPT05], the second and third sections are the
result of a collaboration with the RESO team from INRIA (http://www.ens-lyon.fr/LIP/RESO/)
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6.1 A Peer-to-Peer Extension of Network-Enabled Servers.

In this first section, we present our first software contribution, a preliminary work conducted from
2004 to 2005 whose goal was to identify and break the limitations of the service discovery in a grid
middleware. This architecture relies on the DIET middleware [40], propagation algorithms and the
JXTA toolbox.

6.1.1 The GridRPC Model

Among existing grid middleware approaches, one simple, powerful, and flexible approach consists
in using servers available in different administrative domains through the classical Client/Server or
Remote Procedure Call (RPC) paradigm. Network Enabled Servers environments implement this
model, also called GridRPC. Clients submit computation requests to a scheduler whose goal is to
find a server available on the grid. In the next section, we focus on the GridRPC paradigm.

Remote Procedure Call. The Remote Procedure Call (RPC) paradigm is one of the most used
in the programmers’ community. In its object-oriented version, methods are implemented by server
objects that clients can access through an interface describing the set of methods the object provides.
In a distributed environment, i.e., where objects are distant, the invocation of a method by a client
triggers the sending of a request to the server object. However, the set of communications generated
is hidden to the user inside simple method invocations. To this end, the client has an object — the
stub, representing the server and the server is encapsulated in an object in charged of the reception of
communications, called the skeleton. Many implementations of RPC exists. Among the most known
are Java RMI [84] and the CORBA standard [133].

Network-Enabled Servers RPC. Since the end of the nineties, the RPC paradigm has appeared
to be a good candidate to build Problem Solving Environments (PSE) for numerical applications
on the Grid. Built upon the RPC paradigm, the Network-Enabled Servers model [104] basically
aims at providing access to computational facilities via potential servers to end users wishing to
solve their problems that cannot be solved using a single machine and require multiple potential
servers for request computation, so as to find the result in appropriate time. They usually have five
different components. Clients that submit problems they have to solve to Servers, a Database
that contains information about software and hardware resources, a Scheduler that chooses an
appropriate server depending on the problem sent and the information contained in the database,
and finally Monitors that acquire information about the status of the computational resources.

A GridRPC API. Under the umbrella of the Open Grid Forum [5], the early NES model gave
birth to the GridRPC paradigm, a grid-enabled version of the RPC, which intends to ease the
programming of applications over the grids for programmers already familiar with the RPC paradigm.
The GridRPC working group of the Open Grid Forum intends in particular to define a standard
GridRPC API. This API aims to offer to non-grid specialist users a high-level API to gridify their
application. According to the guide for testing the interoperability of a given middleware with the
GridRPC API specifications [137], current GridRPC compliant middleware are Ninf-G, GridSolve,
and Diet.

108



6.1. A PEER-TO-PEER EXTENSION OF NETWORK-ENABLED SERVERS.

GridRPC Middleware. Ninf-G [136]2 provides the GridRPC API on top of the Globus Toolkit,
which, as previously noted, provides a reference implementation of standard protocols and APIs
for Grid computing. Ninf-G is maintained by the Ninf project in National Institute of Advanced
Industrial Science and Technology (AIST), and several universities in Japan. GridSolve [156]3 is a
Client/Server system which provides remote access to computational resource, both hardware and
software. It is built upon standard Internet protocols, like TCP/IP sockets. GridSolve provides
the GridRPC API as C interface, and another API as Matlab interface. GridSolve is maintained
by the University of Tennessee Knoxville in the United States. In GridSolve, the processing of
requests submitted by clients and the scheduling of jobs is achieved by a central device, which is
a bottleneck and a single point of failure of the system. Having this in mind, The Distributed
Interactive Engineering Toolbox (DIET) project [40] originally focused on the scalability issue in
GridRPC environments. In the following section, we briefly review DIET features, describe its
architecture and elements and highlight its scalability limits.

6.1.2 DIET

The DIET middleware is focused on the development of scalable middleware by distributing the
scheduling task across multiple agents. DIET consists of a set of elements that can be used together
to build applications using the GridRPC paradigm. DIET is able to find an appropriate server
according to the information given in the client’s request (problem to be solved, size of the data
involved), the performance of the target platform (server load, available memory, communication
performance) and the local availability of data stored during previous computations. The scheduler
is distributed in a hierarchy of scheduling agents. In order to avoid unnecessary communication when
dependences exist between different requests, DIET data management allows persistent data to stay
within the system for future re-use.

DIET Architecture

The DIET architecture follows a hierarchical approach and is based upon several elements. First a
Client is an application that uses DIET to solve problems in a RPC mode. Different kinds of clients
should be able to connect to DIET from a web page, a Problem Solving Environment such as Scilab,
or from a program written in C/C++, Fortran or Java. Traditionally a centralized device in other
NES systems such as NetSolve or Ninf, the DIET scheduler is scattered across a hierarchy of Agents.
Figure 6.1 shows such a hierarchy.

Scheduling Agents

A Master Agent (MA) is the entry point of the DIET environment and thus receives computation
requests from clients. These requests refer to some problems that can be solved by registered servers.
These problems can be listed on a reference web page. A client can be connected to a MA by a specific
name server or a web page which stores the various MA locations. Then the MA collects computation
abilities from the servers and chooses the best one according to some scheduling heuristics (dead-
line scheduling, shortest completion time first, maximization of the requests throughput, . . . ). A
reference to the server chosen is sent back to the client.

2http://ninf.apgrid.org/
3http://icl.cs.utk.edu/gridsolve/
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Figure 6.1: DIET hierarchical organization.

A Master Agent relies on a hierarchy of agents to gather information and scheduling decisions. An
Agent aims at transmitting requests and information between MAs and LAs. A Local Agent (LA)
aims at transmitting requests and information between Agents and several servers. The information
stored on an Agent is the list of servers registered on Local Agents of its subtree, the problems
they are able to solve and information about the data distributed in this subtree. Depending on the
underlying network topology, Agents may be deployed between the MA and the LAs. The scheduling
and the gathering of information is thus distributed in the tree.

Server Daemons

Computations are done by servers (both sequential and parallel) in front of which we have Server
Daemons (SeD). A SeD encapsulates a computational server, typically on the entry point of a
parallel supercomputer or cluster. The information stored on a SeD is a list of data available on its
server (with their distribution and the way to access them), the list of problems that can be solved
on it, and all information concerning its load (memory and/or number of resources available, . . . ).
A SeD registers to a Local Agent that becomes its parent and declares the problems it can solve to
it. A SeD can give performance predictions for a given problem using the performance evaluation
module (CoRI).

DIET Scalability Limits

We can identify three drawbacks of DIET related to scalability.
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1. Static Nature. Such static hierarchies do not cope with the dynamicity of nodes at large
scale, resulting in difficulties to deploy such hierarchies on large grids. As a consequence, most
of those hierarchies are not deployed among more than one administrative domain. Moreover,
the clients are given an entry point statically. One need for the client is to dynamically choose
its best MA considering metrics such as latency.

2. Bottleneck. The hierarchy has a unique entry point (the MA) for every clients. This involves
a probability of creating a bottleneck growing with the number of requests submitted by clients.

3. Unreachable Services. Real life use cases show that services are quite often deployed among
only one hierarchy for many reasons (for instance data locality or security). One key purpose
of computational grids is to make services available for clients anywhere in wide area networks.
So there is a strong need for making services available for clients, who does not necessarily
know the entry point of the hierarchy providing the requested service.

6.1.3 DIETJ : A P2P extension of DIET

In this section, we present DIETJ , a peer-to-peer extension of DIET addressing the different scal-
ability issues previously mentioned. After a presentation of the DIETJ architecture and its goals,
we accurately describe the propagation of the clients’ requests inside the platform, using several
algorithm and discuss their properties. Finally, we give experimental results of this architecture
conducted on several clusters connected by a high-speed network.

DIETJ Overview

The aim of DIETJ is to dynamically connect together geographically distributed DIET hierarchies
to gather services on-demand and improve the scalability of service discovery. This new architec-
ture addresses the drawbacks described at the end of the previous section and have the following
properties:

1. Dynamic Connection of Hierarchies. To increase the scalability of DIET over the grid, we
dynamically build a multi-hierarchy by connecting the entry points of the hierarchies (Master
Agents) together. The multi-hierarchy is built on-demand by a Master Agent after it failed to
find the service requested by a client inside its own hierarchy. The clients have now the ability
to discover and connect the MA with the best latency/locality according to them.

2. Distribution of the MA Load. The entry point for each client being dynamically chosen,
the bottleneck on the unique Master Agent is avoided. Master Agents are connected in an
unstructured Peer-to-Peer fashion (without any maintenance of the neighborhood/ routing
information.)

3. An Access to Remote Domain Services. Whereas DIET hierarchies were unable to
communicate together, services are here gathered between hierarchies thus providing to clients
a front door to resources put in common at large scale in a transparent way.

Our extension is based on JXTA [145]. JXTA defines a set of protocols for building Peer-
to-Peer (P2P) applications on top of the physical network. The basic logic entity of the JXTA
virtual network is the peer. Each JXTA entity (peers, pipes, services) is uniquely identified by an
advertisement. JXTA provides dynamic mechanisms of discovery of JXTA entities, thus allowing
any peer to dynamically address any other peer on the network.
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DIETJ Architecture

The DIETJ architecture, shown in Figure 6.2, connects several DIET hierarchies by their root (i.e.,
Master Agents), using JXTA communication protocols.
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Figure 6.2: DIETJ architecture.

As illustrated on Figure 6.3, the Master Agent’s internal architecture is divided into three parts.

• The JXTA Part. The JXTA part of the Master Agent is a peer on the JXTA virtual network.
This is the connection point of this Master Agent to other ones. This part is a java bytecode.

• The DIET Part. The DIET part is the traditional DIET Master Agent, root of a DIET
hierarchy of Agents and Local Agents, allowing the discovery of servers that registered to this
hierarchy. This part is a C program relying on libraries generated from the DIET C code.

• The Interface. To cooperate, Java (JXTA native language) and C (DIET native language)
need an interface. We use the JNI technology [85] allowing to call C functions from a Java
program, and the data conversion between the two environments.

The Multi Master Agent System. The set of alive MAs that a first MA is able to discover using
JXTA discovery mechanism and thus able to connect using some JXTA connection facilities can put
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Figure 6.3: Master Agent Internal Architecture.

their resource in common to build a JXTA network of MAs, refer to as a Multi-MA, henceforth. As
we mentioned before, a MA is a JXTA peer. As a consequence, it can be discovered by other peers
on the JXTA network by an advertisement containing a particular name, common to all of them,
e.g., DIET MA. In order for one MA to be discovered, this advertisement is published at the beginning
of one MA’s life and then republished periodically with a short lifetime to avoid other peers to try to
bind a dead MA, and thus easily take into account the dynamic nature of the platform. At load time,
the Java part of the MA launches the DIET part via JNI, and waits for requests. When receiving a
client’s request, the DIET part is called that submits the request to the hierarchy. If the submission
to the DIET hierarchy retrieves no servers providing the requested service, the JXTA part starts the
construction of a multi-MA. First, it launches a discovery process to have knowledge of other MAs
in the network (thanks to their JXTA advertisements). Second, it propagates the request to them,
triggering the search for the service within these hierarchies. When the JXTA part has received
responses from all other MAs (or when a timeout is reached), the responses are merged and sent
back to the client, who has not been aware that a multi-hierarchy has been temporarily built.

Dynamic Connections. Connections between the MAs are created when needed (if the service
was not found). Dynamic connections between the MAs allow to transparently perform the service
discovery in a dynamic multi-hierarchy, using JXTA advertisements. The communication between
the agents inside one hierarchy are still static as we believe that small hierarchies are installed within
each administrative domain. At this level, performance are not much variable, new elements are not
frequently added, and the whole hierarchy will remain stable during its lifetime.

6.1.4 Traversing the DIETJ multi-hierarchy

Discussion

We now discuss approaches and algorithms implemented for propagating the clients’ requests in the
JXTA network of Master Agents and gather information about servers of several hierarchies.

Discovering the MAs, then Discovering the Servers. It is important to note that the multi-
hierarchy construction is divided into two parts. The first step is the MA discovery and aims at
discovering MAs reachable on the network, thanks to the JXTA discovery process (we discuss this
process in the next paragraph). Once a peer has been discovered, i.e., if its advertisement (containing
its name and information required to bind it, e.g., an input pipe advertisement), the connection still
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needs to be established. The second step is the service discovery and consists in exploring the
multi-hierarchy composed of the MAs discovered in the first step, looking for the service requested
within each DIET hierarchy.

JXTA Discovery Mechanisms. JXTA 2.x provides a hybrid mechanism combining DHT-like
mechanisms and random walks [150] to achieve the discovery of advertisements, e.g., advertisement
named DIET MA. Again, we choose not to use the hybrid DHT mechanism to avoid its maintenance
overhead, its lack of exhaustiveness (when it fails to retrieve the advertisement by the hash function,
it uses a less-efficient random walk method) and cope with the on-demand fashion of the multi-
hierarchy designed. Thus, we use the JXTA discovery mechanism based on flooding among the peers.
Once the MA’s references obtained, an algorithm optimizing the traversal of the multi-hierarchy (the
graph of MA connections) is used to connect MAs together and propagate the request through the
multi-hierarchy.

Implementation

The propagation of the request in the graph of Master Agents has been implemented with two
algorithms.

Propagation as an Asynchronous Star Graph Traversal. The propagation of a request has
first been implemented as an intuitive asynchronous star graph traversal. This scheme is illustrated
by Figure 6.4. One MA r found no server providing the service requested by a client in its own
hierarchy — Figure 6.4 (a). It discovers other MAs with the JXTA discovery process and forwards
the request asynchronously to all MAs previously discovered, using a simple JXTA multicast pipe
instruction (b). On receipt of the forwarded request, each MA collects the servers able to solve the
problem in its own hierarchy. On the figure, some finds it (in deep grey) and some do not find it
(in light grey) (c). Once the DIET hierarchy interrogated, they send the response back to r (d)
that collects and merges responses to create the final response message sent back to the client (e).
Using this first algorithm, the propagation systematically builds a star graph, the MA initiating the
propagation being the root of the star. This scheme is referred to as STARasync algorithm henceforth.

Propagation as an Asynchronous PIF Scheme. The request propagation has also been imple-
mented following a modified version of the asynchronous Propagation of Information with Feedback
(PIF) scheme, in order to obtain an unstructured and adaptive multi-hierarchy traversal. A com-
plete description of the basic PIF algorithm can be found in [45, 128]. Our version is detailed by
Algorithm 12. Figure 6.5 describes a scenario of propagation in a DIET multi-hierarchy, applying
the two following phases:

1. The Broadcast phase: The MA that received the request, from the client (and is unable to
find a server providing the requested service within its own hierarchy) initiates the wave —
refer to Lines 1.05-1.09 and so is the root, denoted r. Similarly as done using the STARasync

algorithm, it forwards the request to the set of other MAs it has previously discovered (IDs
in the set denoted agentList). r then waits for responses of MAs in agentList. Then, a MA
m receiving a forwarded request checks if it has already received it. If not, the MA that sent
the request becomes its parent (Lines 1.10-1.14). m immediately propagates the request on its
turn to the MAs in agentList, except those that were on the path from r to m, contributing to

114



6.1. A PEER-TO-PEER EXTENSION OF NETWORK-ENABLED SERVERS.

MA

MAMA

J

JJ

MAJ

Client

JMA

MAJ

(a) (b) (c)

(d) (e)

Figure 6.4: Scenario of a STARasync traversal.

build a time optimal spanning tree on the set of MA, rooted at r. m also calls its own DIET
hierarchy to collect the servers able to solve the problem specified by the client and sends the
DIET response to its parent.

2. The Feedback phase: r waits for the responses of MAs in agentList during a finite time
using a timeout. Each MA in the tree built during the broadcast phase receives responses
from nodes in their subtree containing sets of servers, denoted SL, and forwards them to their
parent, along with the servers found in their own DIET hierarchy — refer to Lines 1.17-1.18.

Let us call this algorithm PIFasync. The PIFasync algorithm builds an on-demand optimal tree
for a given root for each request, thus balancing the load among the MAs graph as the number of
requests increases and also avoiding overloaded links. It was shown in [128] that in asynchronous
environments, the PIF scheme is the fastest possible to reach every network nodes, messages following
the fastest links during the broadcast phase. In other words, the dynamic tree built during the
propagation is time optimal at time of its creation, and the feedback phase follows the links of this
optimal tree. The number of messages required is O(n2) in the worst case. Note that the STARasync

algorithm also provides a particular PIF scheme, in which messages always follow the same links,
ignoring their heterogeneity and communication load.

6.1.5 Experimenting DIETJ .

In this section, we discuss experimental results of the implementation of DIETJ with the algorithms
previously described.
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Algorithm 12 Asynchronous PIF-based request propagation, on node (MA) p.

1.04 Variables: fp: father of p
servList: list of servers satisfying req

1.05 upon receipt of <req, agentList> from Application Layer do
1.06 Father := ⊥
1.07 servList := ∅
1.08 for q ∈ agentList do
1.09 send <req, agentList \ {p}> to q

1.10 upon receipt of <req, agentList> from q do
1.11 if fp 6= ⊥ then
1.12 fp := q
1.13 for q ∈ agentList do
1.14 send <req, agentList \ {p}> to q
1.15 servList :=DietCall()
1.16 send <req, servList> to fp

1.17 upon receipt of <req, SL> from q do
1.18 send <req, SL> to fp

Experimental Platform. Our experimental platform relies on several clusters connected through
the 2.5 Gb/s VTHD network in France (see Figure 6.6). In 2005, part of the VTHD clusters have been
integrated to the Grid’5000 platform. The clusters used are equipped with Intel quadri-processors
Xeon 2.4 GHz and Intel bi-processors Xeon 2.8 GHz. One MA runs on each node and one client sends
one or multiple requests to MAs. Based on previous experiments inside one unique hierarchy [42],
where it was shown that a unique DIET Master Agent is able to have hundreds of servers in its hier-
archy and remain efficient with a very high number of simultaneous requests, we here experimented
connections of the MAs graph without underlying hierarchies.

Experiments with Homogeneous Network Performance. We started our experiments with
a low and homogeneous traffic load, by varying the number of MAs in order to estimate the response
time of both algorithms. Figures 6.7 and 6.8 shows the time to initiate the propagation and receive
all responses, using both algorithms on several clusters, up to 32 Master Agents running at the same
time. On a homogeneous network, our architecture shows good results, with regards to the JXTA
overhead, aggregating references of servers collected among 32 Master Agents in less than one second.
Note that, under these conditions, most of the trees obtained with the PIFasync scheme are stars,
the initial propagation from the root reaching other nodes first. In addition, using the PIFasync

algorithm involves quite few time overhead, in regard of the higher number of messages it generates.

Requests Flooding. We then experimented both algorithms by varying the requests frequency
with 15 Master Agents. Figure 6.9 shows the impact of processing multiple requests at the same time
inside the graph of MAs, with the same root for every requests. As expected, much better results
are obtained by propagating requests with the PIFasync algorithm. Using the STARasync algorithm,
physical routes used by the JXTA pipes are mostly the same for every requests, strongly increasing
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(a) (b) (c)

(d) (e) (f)

Figure 6.5: PIF-inspired propagation scenario in a DIET multi-hierarchy. The MA that failed to
retrieve the requested service in its hierarchy initiates the wave. (a) Some MAs have received the
propagated request. They forward it on their turn, and initiate the asynchronous feedback phase
(b). All MAs have received the request. A spanning tree has been built (c-d). The feedback phase
goes on and ends, responses being on their way to the root and following the links of tree built in
the broadcast phase, in a complete asynchronous manner (e). Responses are finally aggregated and
sent back to the client (f)

the load on these links. We believe the STARasync algorithm performs so poorly because of the high
cost of resolving JXTA pipes, especially when always the same links are stressed. Using the PIFasync

scheme, logical path and physical routes underneath used during the feedback phase depends on the
load of the links during the broadcast phase. Each propagation builds during the broadcast phase
a spanning tree used during the feedback phase. The traffic is more distributed and bottlenecks are
avoided. The response time remains stable when the frequency of sending becomes high.

Experiments on Overloaded Links. Finally, we simulated a loaded network with loops of scp
commands (running 13 MAs). Figure 6.10 shows results, varying the number of saturated links
around the initiating MA. The STARasync algorithm always uses the saturated links, increasing
again the load on the links. The PIFasync algorithm allows to avoid most of the traffic around the
root by building optimal trees for each request. The response time given by the PIFasync scheme is
more stable than the STARasync one when the number of overloaded links increases, offering response
time similar to those obtained under homogeneous conditions.
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Figure 6.6: The VTHD network.

In this section, we have presented our first application of peer-to-peer concepts in a grid comput-
ing service discovery context. By connecting several local hierarchies of service discovery agents, we
have greatly improve the scalability of the middleware (removing bottlenecks, increasing the number
of services retrieved transparently for clients). Several P2P-fashioned algorithms have been imple-
mented for traversing the architecture presented. Experiments have been conducted showing the
efficiency of the middleware built.

6.2 DLPT Prototype Implementation

We here describe the software prototype we developed based on our design presented in Chapter 3.
It is written in Java and relies on the JXTA toolbox for low level communications.

The Physical Network. Each physical node of the physical network runs the minimal JXTA
peer features to be part of the system. The physical network is a set of JXTA peers grouped in a
common JXTA group, known under the name DLPT. This name is required for each peer to join
the system, to be accepted in the group. This name, along with JXTA discovery protocols able to
retrieve reachable running peers of this group from a particular JXTA peer given this name, serves
as the out-of-band mechanism. Once started, any JXTA peer of the DLPT group has a unique ID
within the group and can thus receive messages sent by other peers from this group and participate in
the management of the tree. A JXTA group is systematically provided with a set of facilities offered
by JXTA that the developer needs to overload for his particular scope. For instance primitives for
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Figure 6.7: Evaluating the cost of using the PIFasync compared to the STARasync on one cluster.

sending and receive messages are already written, the developer is just required to write the actions
triggered on reception.

The Logical Tree. Each node is implemented as a Java object having fields required from Algo-
rithm 1 from Chapter 3 (on Page 61). Each JXTA peer maintains a list of its own logical nodes.
Each logical node also contains the ID of the JXTA peers of its parent and children in the tree, to
be able to maintain the tree and make the routing process possible.

The Mapping. The implementation of GetNewProcess() function (refer to Chapter 3, Page 46)
calls upon JXTA discovery protocols able to return a random JXTA peer of a given group. Then,
the random mapping relies on the randomness provided by the JXTA discovery process.

Early Experiments. The tree is built dynamically as some services are declared. This is simulated
by JXTA peers when they insert, each of them declaring a set of dummy services. To register a
service, a JXTA peer, after having joined the group, contacts a random peer (whose reference is
again obtained using the underlying JXTA discovery protocol) and sends a message to it through
the underlying JXTA communication protocol. Upon receipt, the JXTA peer decides which of its
nodes will initiate the routing in the tree. The routing then follows Algorithm 1, Page 61. The
discovery requests are also simulated by a JXTA peer playing the client’s role. A first experiment
has been conducted on the cluster capricorne in Lyon (56 AMD Opteron connected by Gigabit
Ethernet through Myrinet-2000 cards). We deployed from 2 up to 25 JXTA peers. Each peer is run
on a distinct node of the cluster. Up to 125 services has then been registered. The tree, distributedly
constructed by the JXTA peers receiving service registration requests, had a size up to approximately
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Figure 6.8: Evaluating the cost of using the PIFasync compared to the STARasync on two clusters
(located in different cities) connected through the VTHD network.

200 nodes. Each peer was running approximately 8 nodes, 5 of which storing information of real
services (nodes labeled by real keys). We then launched a series of requests to the tree and computed
the average time to receive each response once the request transmitted to one peer of the tree. The
results are given by Figure 6.11. We see that, when the tree contains 125 services, and thus has
a size which is approximately 200 and is distributed among 25 peers, the average response time
for a request is approximately 100 milliseconds (ms). Another experiment conducted on the Grelon

cluster in Nancy (47 AMD Opteron 246 connected by Gigabit Ethernet through Broadcom BCM5721
cards) shows similar performance (see Table 6.1). Again, with a system composed of 47 peers which
maintain a tree storing 151 services (and thus has an approximative size of 220), the average response
time when requesting the tree is 61 ms. Such preliminary results are very encouraging, as it already
shows the capacity of the system to answer to requests very quickly, in spite of an already significant
size.

Number of Peers Number of services Response time

2 10 21
47 151 61

Table 6.1: DLPT experiment on the Grelon cluster, in Nancy.

As we will see in the following section, other experiments have been conducted on 70 nodes
reserved beforehand, 14 nodes on 5 different clusters of the Grid’5000 platform.
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Figure 6.9: Sending 10 requests at various frequencies.

6.3 Using DLPT for Dynamic Virtual Grid Composition

We now present the use of the DLPT and its prototype in the particular context of network-awareness
in resource discovery. In Section 6.3, we introduce the reasons of the need of a network-awareness fully
decentralized resource discovery system in the context of grid computing, and thus for a decentralized
mean to keep information on the performance of the network. In Section 6.3.1, we present the
mechanisms added to the DLPT in order to support a network-aware service discovery, the particular
way to combine and use DLPT, tackling this new problem. We finally give some preliminary results
of our prototype in this particular case in Section 6.3.2.

Context and Motivations

As we highlighted in Chapter 1, in which our aim was the scalability of a grid middleware, the initial
context and application environment of our peer-to-peer solution is the grid. Here, we concentrate
on enabling the network-awareness of the service discovery process. In other words, we study how
to take into account the (dynamic) network performance in the service discovery process, or, more
generally, how to be able to monitor the network characteristics in a dynamic and decentralized way.

Conceptually, a grid environment (or distributed execution infrastructure) provides the same
three fundamental functionalities of a computer: computation, storage, and communication. While
the communication services is a kind of “add-on” to the typical stand-alone computer, it is important
to understand that the situation is far different with a distributed system like a grid: the communi-
cation channels constitute the backbone of the grid and they have a prominent impact on the global
and individual performance. Geographically distributed computation and storage units can collab-
orate efficiently only if they are able to communicate efficiently between each others. Consequently
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Figure 6.10: Experimenting the PIFasync and the STARasync scheme on a network with overloaded
links.

monitored or even controlled (end-to-end) communication channels appears to be the required foun-
dation onto which an efficient and viable on-demand dynamic distributed execution infrastructures
can be built and used. Services enabling the on-demand or in-advance such aggregation of vir-
tual computing environment meeting the users expectations are envisioned, as for example, in the
HIPerNET [94] solution. In classical grid resource discovery systems, the problem of the associated
inter-node properties discovery has not been much studied.

With the growing size of distributed network, a flexible and scalable resource discovery approach
is still a challenge in service oriented networks. Until here in this dissertation and, as in most papers
related to decentralized resource discovery in computational grids– refer to Chapter 2, we focused
on computing entities. However, it is increasingly important to consider network attributes such as
topology, latency and bandwidth as attributes for resource discovery.

Distributed Applications and Communication Constraints

High-level, structured descriptions of some well-understood Grid network services use cases such as
multi-site interactive visualization session or WAN spread High Performance Computing (HPC) are
proposed in [60]. They facilitate the identification of network services critical to the Grid middleware
and user applications. These scenarios vary in the amount of data that needs to be transfered
between nodes, the necessary computing power on each nodes, the latency limitations on inter-nodes
communications and the amount of data that needs to be stored (input data as well as output data).
They show the various requirements that users can have on resources they reserve.
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Figure 6.11: Results of DLPT prototype experiment on the Capricorne cluster, in Lyon.

Interconnection Network Properties and Services

Given the communication constraints of the demanding applications, one has to consider the avail-
able network services that can be combined with the application level services to better select end
resources. The abstraction level at which the network properties and services are exposed to the
application corresponds to the IP layer (network layer). To consider the properties of the communi-
cation channels between the computing resources, the available network service providing them has
to be taken into account. Indeed, an end-to-end network service can be with or without quality of
service guarantees. Today, IP networks, offering only a best effort packet forwarding service, are
exposed to the application through the API socket or through communication libraries via transport
protocols that insure reliability and control the sending rates. The applications cannot deal with
advanced reservations of bandwidth. So if such feature is not proposed explicitly by the network
provider, the resource discovery service has to manage implicitly the network, e.g., by selecting end
resources that are close or well connected. If there is no possibility to define a virtual topology and
a dedicated routing, the user will have to use the physical underlying topology and the default rout-
ing. The selection will be made on an estimation or a prediction of end-to-end latency or available
bandwidth and has to be transparent to the transport protocol. The transport protocol and its con-
figuration parameters (socket buffer size, number of parallel streams, protocol variant....) may indeed
influence the end to end performance, but they are selected and configured by the application (even
if a default setting is chosen) so as to adapt to the provided network services (i.e., communication
resource).

We consider that a generic network-aware resource discovery service has to be able to deal with
explicit bandwidth management service, virtual topology definition service and explicit routing ser-
vice in order to exploit them when they will be available in future networks. All these services
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are network-layer services. By default the current best effort service with default routing and non
controlled traffic will be considered. Path characteristics estimation capabilities will be integrated in
the discovery service. Consequently there will be three level of network information to expose and
make available:

1. characteristics of end-resource communication hardware (number of network interfaces with
their type and capacity),

2. characteristics of end-to-end path (end-to-end latency, theoretical capacity of the bottleneck
between the two end nodes, end-to-end available bandwidth (can be estimated or predicted),

3. end-to-end QoS guarantee services, e.g., MPLS VPN, diffserv.

Depending on the type of application, there are different kinds of end resources that might
have to be tracked in such ”capacities” oriented network. Some applications might be compute-
intensive; others might require more storage capacities or available bandwidth to transfer the data.
There might also be applications whose resource requirements vary during execution (for example
a workflow comprising a data transfer phase requiring high bandwidth followed by an intensive
computing phase requiring high computing power). Though, such a network might have a lot of
resources. Discovering all of them so as to serve the user applications requires special mechanisms.

That’s why we need a database containing information about the shared resources that have to
be distributed throughout the network on a set of peers, which communicate with each other in
a purely-decentralized way to collect, disseminate, index, archive all the resource information and
make it visible to as many clients as possible. In that sense, our extension of the DLPT for this
purpose presents some analogies with the GMPLS (based on OSPF, RSVP) network layer.

As we will see, this network information are composed of static and of dynamic elements. Some
elements can be collected off-line while others are better discovered in-line.

6.3.1 Network-Awareness Using DLPT

The goal of the “network-awareness” is to integrate path characteristics feature discovery in a struc-
tured P2P grid resource discovery system. The key idea of this extension can be seen as adaptive
combination active probes with multi-attributes queries. Network path characteristics are identified
by source and destination locations, end-to-end path delay metrics and end-to-end path throughput
metrics as detailed in [98]. In addition, the network information required by application or middle-
ware for resource selection must be simple and coarse grained. Specifying the network topology in
detail is very complex and still an open issue [74]. Here, we just want to provide a generic access to
network path characteristics comprising classical metrics as well as activable network services. When
a new path is established (or modified) by dynamic provisioning, the topology is modified. There are
two problems to solve: maintaining the structure dynamically and storing the topology and enabling
the access to dynamic information. We now discuss the algorithms themselves.

Building the DLPT Tree

The first type of prefix tree that we will need to maintain is made of strings that are
the addresses of grid resources, as shown in Figure 6.12 (DLPT for clustering). The
pseudo-code in Algorithm 13 is a simpler version of the general algorithm of construc-
tion of the DLPT presented in Chapter 3. We assume several basic functions. Ex-
tractCluster(addr) returns the cluster address of a node, by removing the last part
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of the address. For instance ExtractCluster(fr.grid5000.lyon.capricorne.node1)
returns fr.grid5000.lyon.capricorne. Prefixes(addr) returns the set of sub-
domains of addr. For instance Prefixes(fr.grid5000.lyon.capricorne.node27)
returns {fr, fr.grid5000, fr.grid5000.lyon, fr.grid5000.lyon.capricorne}.
CommonSubDomain(addr1, addr2) returns the greatest common prefix shared by two
addresses. For instance, CommonSubDomain( fr.grid5000.lyon.capricorne.node27,
fr.grid5000.lyon.sagittaire.node31) returns fr.grid5000.lyon. The UpdateChild
message informs a node that it has a new child. On receipt of this message, a node just adds the
child provided in the message in its set of children.

We assume that each node is declared once and the addresses are in reverse notation. In the
set of possible addresses, given an address a1, no address a2 prefixes a1. When a grid resource
registers itself, it sends its address in reverse notation to one tree node (some entry points of the
structure may be kept on a webpage, or stored on a server, etc). The address addr is packed in a
DeviceRegistration message. Upon receipt, a node p computes the cluster part of the address
and then processes it according to three cases. First, if the cluster address is the same as the string
labeling p, the new device address must be a child of p — refer to Lines 3.03-3.05. Second, if the
cluster address is prefixed by the label of p, the new address must be inserted downward in the
tree. If we can find a child of p also prefixing addr, the request moves to this child. Otherwise, the
cluster and the device are inserted as a subtree of p — refer to Lines 3.06-3.12. Finally, if none of
the previous case are satisfied, we must study the greatest common subdomain of p and addr. If the
parent of p shares the same common subdomain with addr as p, the request moves to fp. Otherwise,
we must create an intermediary node reflecting this relation i.e., the father of both the cluster of
addr and p — refer to Lines 3.13-3.23.

Retrieving addresses of all nodes of a particular cluster relies on algorithms of Chapter 3.

Storing Numerical Characteristics

Dealing with numerical range queries is useful when dealing with for instance CPU, bandwidth or
latency. A numerical tree may look like the example on Figure 6.12 (e.g., DLPT for CPU power).
The numbers declared have a constant size, possibly padded with zeros. For instance, if we assume
a length of 3, the number 53 will be processed as 053. Then, to retrieve objects corresponding to a
value between 130 and 350, the range query can start on the root node of the example tree. Then
the root decides to which of their children it will send the query depending on whether they are
susceptible to have some nodes in their subtree pertained by the range. Repeating this test at every
level, the request is sent to nodes 1, 15, 153, 155, 158, 2, 207, 245, 3, and 321. Then, the leaf nodes
send the information they store e.g., addresses of nodes satisfying this range back to the initiator of
the request.

Requests Definition

We saw previously a few Grid services use cases that allow us to describe the type of requests our
system processes:

• Computing clusters are defined by the computing power they can offer and the interconnection
between their nodes. The 3 attributes needed to modelize the computing power are the amount
of nodes in the cluster the computing power of a node itself (in flops) and the maximal CPU
load on all of the these nodes. The required bandwidth and latency between the nodes are
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Algorithm 13 Routing and inserting a device registration, on node p

2.01 Variables: p, identifier of p
fp, identifier of the father of p
Cp, finite set of children identifiers of p

3.01 upon receipt of <DeviceRegistration, addr> from
3.02 do clus =ExtractCluster(addr)
3.03 if clus = p then
3.04 NewNode(addr, p, ∅))
3.05 Cp = Cp ∪ {addr}
3.06 elseif p ∈ Prefixes (clus) then
3.07 if ∃q ∈ Cp : | CommonSubDomain(clus, q)| > |CommonSubDomain(clus, p)| then
3.08 send(<DeviceRegistration, addr>, q)
3.09 else
3.10 NewNode(clus, p, {addr})
3.11 NewNode(addr, clus, ∅))
3.12 Cp = Cp ∪ {clus}
3.13 else
3.14 common = CommonSubDomain(addr, p)
3.15 if (fp 6= ⊥) ∧ (common =CommonSubDomain(addr, fp)) then
3.16 send(<DeviceRegistration, addr>, fp)
3.17 else
3.18 NewNode(common, fp, {clus, p})
3.19 if (fp 6= ⊥) then
3.20 send(<UpdateChild, (p, common)>, fp)
3.21 NewNode(clus, common, {addr})
3.22 NewNode(addr, clus, ∅)
3.23 fp := common
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Figure 6.12: Example of an architecture using multi-DLPT approach for network-aware service
discovery.
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used to define the interconnection. A typical query would be a cluster of 15 nodes with a CPU
load inferior to 10 percent, where all the nodes are interconnected with links of at least 1Gb
bandwidth and at most 0.1ms latency.

• Storage spaces are defined by the storage space they offer. A query can be as simple as a
total storage space expressed in gigabytes, terabytes, in this case the user is not interested
in the amount of nodes on which the data may be spread. It can also be more elaborate and
specify a maximum amount of nodes on which the data is shared, as well as the interconnection
(bandwidth and latency) between these nodes.

• Interconnection links are defined by a bandwidth and a latency. They are used to describe links
between different clusters or storage spaces. For example if a user wants to reserve a storage
space on one hand and a computing cluster on the other hand, he will as well describe the link
interconnecting these 2 entities.

Furthermore, our system is locality-aware thanks to its internal DNS-like structure and thus a
user can reserve resources located at a certain spot. This can be useful if he wants to co-locate
certain resources such as in the visualization session case where the rendering cluster needs to be
located at the display site.

Note that if a user requests a cluster of n nodes it does not matter whether the nodes are actually
on the same physical cluster as long as the nodes forming it and their interconnection match the
user’s requirements.

Resources Description

Extremity Resource Description. The extremity resource description has to be designed so
that the system is able to answer queries formulated as described above. The minimal amount of
information needed in this purpose for each node is (i) Name: a unique name inside the cluster. Note
that it will also be unique in the whole system given the cluster, site and all other hierarchically
higher entity names are also unique. (ii) Locator: IP address of the node, used to communicate with
it. (iii) Computing power, measured in flops. (iv) Load: current load of the CPU. This is a dynamic
parameter that varies over time between 0 and 100 percents. It has to be monitored. (v) Storage
space: amount of space locally available for storage. This is also a dynamic parameter that has to
be monitored. (vi) capacity of the network interface. This can give a higher bound on the rate at
which this node can exchange data. In intra-cluster communication this can be considered as the
actual rate.

Network Resource Description. The two main parameters to describe the network resources
are latency and bandwidth of the links. Storing the whole topology is far from being possible.
Indeed a N-node network would yield O(N2) pairs of node and twice as many measures, which is
totally not scalable. To lower the amount of data that needs to be stored we will consider that a
link connecting a node nA in a physical cluster A with a node nB in a physical cluster B will have
the same characteristics for all nA and nB. We thus randomly elect one cluster representative node
per cluster that takes care of measuring and monitoring the link characteristics between its own
cluster and others. The latency can be measured with a simple ping while the available bandwidth
requires more elaborate tools such as pathload [87, 115]. The cluster representative will store a
table with one entry for each other cluster filled with actual values for bandwidth and latency of the
link interconnecting the two for them.
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Processing the Requests

We end the description of the system by giving some examples of how the previously specified
queries can be processed by DLPT trees. We assume we have the address-tree, whose construction
was detailed previously and illustrated in Figure 6.12. We refer to this tree as the topology DLPT.
The topology tree is built, in the classical way, as resources are registered.

We also assume that we have numerical DLPT trees as the one illustrated in available band-
width DLPT (for instance), see Figure 6.12. We use the multi-DLPT to store the following infor-
mation:

• CPU. Expressed for instance by BogoMips, a client may specify a minimum value of the
resource it seeks. The information stored on the node 10 is the set of addresses whose cor-
responding node’s CPU is 10 BogoMips. This DLPT tree is also built as resources register,
giving their CPUs.

• Latency. A user may want to use a network link whose latency is less than a given value.
We assume the latency is computed between two clusters. Then the information stored on the
node 5 is the set of clusters pairs whose link latency is 5 ms.

• Available Bandwidth. In a best-effort policy, a user may want to reserve a network link
whose bandwidth is higher than a given value. The information stored is similar to the one
stored on the nodes of the latency DLPT tree.

• Provisionnable Bandwidth. An operator may want to sell some network resources, in which
case, clients may want to dynamically know what they can buy. So we use another DLPT tree
storing dynamically the provisionnable bandwidth.

The last three trees are built when clusters exchange messages. It happens when clusters discover
each other by using the topology tree. This allows them to store the network information and to
remain efficient in terms of delay of request processing. Indeed, all the dynamic information of the
network could be stored in the topology tree, but it would lead to flood the entire tree to retrieve
links satisfying a requested property. So as to accelerate the processing of such queries we keep these
last three numerical trees updated. Hence the good properties of lexicographic trees are maintained.

We now give an example of processing a complex query. A client wants to discover 20 nodes on
the network where CPU power is greater than 100 BogoMips, the available bandwidth of the link
between two clusters of these nodes is superior to 1 Gbps and the latency of this link is less than 1
ms.

The client interface sends a first request to a random node in each of the available bandwidth and
latency trees, which returns to the client a set of clusters pairs satisfying the requested values.

In parallel, a second request is sent to the CPU tree to get registered nodes whose CPU is greater
than 100.

Finally, a request to the topology tree returns several sets of 20 nodes chosen among pair of
clusters returned by the first request. The final results can be obtained by performing a simple
join operation to keep only the sets of nodes that contain nodes whose CPU power is greater than
100. Note that this request would actually yield a very large amount of results in a real case, they
may though be limited to the n first values by simply decrementing a counter as the request travels
through the DLPTs and responses are appended.
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6.3.2 Results

We have developed a prototype of the solution we proposed for a network-aware resource discovery
infrastructure to evaluate its feasibility and the technical issues it can raise. This prototype has
been tested on Grid’5000 [33], a nation-wide infrastructure gathering about 5000 CPUs dedicated
to research purposes. Grid’5000 provides a deep reconfiguration mechanism allowing researchers
to deploy, install, boot and run their specific software images, possibly including all the layers of
the software stack. In a typical usage sequence, a user reserves a partition of Grid’5000, deploys
its software image on it, runs the experiment, collects results and relieves the machines. This
reconfiguration capability allows all users to run their applications in the software environment
exactly corresponding to their needs.

The experimentation is based on the implementation of the concepts presented in this section
and integrated to the prototype described in Section 6.2. Experimentations rely on a single DLPT
tree where a node is defined by its name (used for indexing it in the tree), its IP address, its network
interfaces and its cluster id being part of the information contained in the value of the service when
registerd. To evaluate the proposed solution, we have elaborated a scenario that allows a user to
reserve a cluster. It can define the same parameters in his requests as the ones used to describe
a resource stored in the implemented DLPT. The experiment has been conducted on a total of 70
nodes reserved beforehand, 14 nodes on 5 different clusters (capricorne in Lyon, grillon in Nancy,
bordeplage in Bordeaux, parasol in Rennes and gdx in Orsay).

Recall that resources simply have to send a registration request containing a description of itself
to a DLPT peer to register. Once enough resources are registered, a client can reserve them. We can
for example request nodes in a same cluster to ensure a lower latency between them. Tests shown
that by specifying a cluster name we can achieve an average latency of 0.096ms whereas it was equal
to 7.021ms for nodes dispatched in several different clusters. This can thus be a useful feature for
users in need of a tight bag of nodes i.e., a set of nodes interconnected with low latency links. Below
are displayed results of a ping test from one machine (172.28.54.29) to other machines reserved in
the same cluster.

PING 172 . 28 . 54 . 36 ( 17 2 . 2 8 . 54 . 36 ) 56(84) bytes o f data .
r t t min/avg/max/mdev = 0.088/0 . 096/0 . 102/0 . 014 ms
PING 172 . 28 . 54 . 38 ( 17 2 . 2 8 . 54 . 38 ) 56(84) bytes o f data .
r t t min/avg/max/mdev = 0.089/0 . 093/0 . 103/0 . 011 ms
PING 172 . 28 . 54 . 42 ( 17 2 . 2 8 . 54 . 42 ) 56(84) bytes o f data .
r t t min/avg/max/mdev = 0.090/0 . 097/0 . 109/0 . 011 ms
PING 172 . 28 . 54 . 44 ( 17 2 . 2 8 . 54 . 44 ) 56(84) bytes o f data .
r t t min/avg/max/mdev = 0.091/0 . 097/0 . 106/0 . 009 ms
PING 172 . 28 . 54 . 45 ( 17 2 . 2 8 . 54 . 45 ) 56(84) bytes o f data .
r t t min/avg/max/mdev = 0.089/0 . 095/0 . 102/0 . 009 ms

Below are results of a ping test from one machine (172.28.54.29) to other machines reserved in
different clusters.

PING 131 . 254 . 202 . 112 (131 . 254 . 202 . 112 ) 56(84) bytes o f data .
r t t min/avg/max/mdev = 11 . 641/11 . 653/11 . 671/0 . 012 ms
PING 131 . 254 . 202 . 115 (131 . 254 . 202 . 115 ) 56(84) bytes o f data .
r t t min/avg/max/mdev = 11 . 627/11 . 630/11 . 634/0 . 136 ms
PING 131 . 254 . 202 . 116 (131 . 254 . 202 . 116 ) 56(84) bytes o f data .
r t t min/avg/max/mdev = 11 . 624/11 . 628/11 . 642/0 . 118 ms
PING 172 . 28 . 54 . 42 ( 17 2 . 2 8 . 54 . 42 ) 56(84) bytes o f data .
r t t min/avg/max/mdev = 0.089/0 . 098/0 . 117/0 . 012 ms
PING 172 . 28 . 54 . 44 ( 17 2 . 2 8 . 54 . 44 ) 56(84) bytes o f data .
r t t min/avg/max/mdev = 0.090/0 . 098/0 . 103/0 . 013 ms

Tests using iperf have also shown that intra-cluster bandwidth is much higher than inter-cluster
bandwidth. Tests were conducted with default buffer and window size configured in the Linux kernel
and without any TCP tuning. If all the nodes are requested in a same cluster the average bandwidth
between all of them can be as high as 940Mbit/s (for nodes with a 1Gbps interface), while inter-
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cluster bandwidth will be limited to less than a hundred Mbit/s between certain clusters even with
nodes carrying a 1Gbps interface. We conducted the test with the same reservations as previous
test. First part of the test from the same machine (172.28.54.29) to machines in a same cluster using
iperf with 1000 MBytes file to transmit. Results show a very high intra-cluster bandwidth:

[ 4 ] l o c a l 172 . 28 . 54 . 29 port 5001 connected with 172 . 28 . 54 . 42 port 45485
[ 4 ] 0.0− 8 . 9 sec 1000 MBytes 941 Mbits/ sec
[ 4 ] l o c a l 172 . 28 . 54 . 29 port 5001 connected with 172 . 28 . 54 . 41 port 33802
[ 4 ] 0.0− 8 . 9 sec 1000 MBytes 941 Mbits/ sec
[ 4 ] l o c a l 172 . 28 . 54 . 29 port 5001 connected with 172 . 28 . 54 . 44 port 59204
[ 4 ] 0.0− 8 . 9 sec 1000 MBytes 941 Mbits/ sec
[ 4 ] l o c a l 172 . 28 . 54 . 29 port 5001 connected with 172 . 28 . 54 . 40 port 46698
[ 4 ] 0.0− 8 . 9 sec 1000 MBytes 941 Mbits/ sec

Second part of the test was conducted from the same machine (172.28.54.29) to machines reserved
in different clusters with same conditions (iperf with a 1000 Mbytes file). Results show very low
bandwidth in inter-cluster connection:

[ 4 ] l o c a l 172 . 28 . 54 . 29 port 5001 connected with 172 . 28 . 54 . 44 port 54726
[ 4 ] 0.0− 8 . 9 sec 1000 MBytes 941 Mbits/ sec
[ 4 ] l o c a l 172 . 28 . 54 . 29 port 5001 connected with 172 . 28 . 54 . 42 port 34750
[ 4 ] 0.0− 8 . 9 sec 1000 MBytes 941 Mbits/ sec
[ 4 ] l o c a l 172 . 28 . 54 . 29 port 5001 connected with 131 . 254 . 202 . 112 port 59197
[ 5 ] l o c a l 172 . 28 . 54 . 29 port 5001 connected with 131 . 254 . 202 . 115 port 44866
[ 6 ] l o c a l 172 . 28 . 54 . 29 port 5001 connected with 131 . 254 . 202 . 116 port 36177
[ 4 ] 0.0 −124.9 sec 1000 MBytes 67.2 Mbits/ sec
[ 5 ] 0.0 −124.9 sec 1000 MBytes 67.2 Mbits/ sec
[ 6 ] 0.0 −125.1 sec 1000 MBytes 67.0 Mbits/ sec

Further results show that specifying the capacity of the nodes’ network interface is not enough
to guarantee an intra-cluster bandwidth except if the nodes are reserved on a same physical cluster.
Although most of the sites in Grid’5000 are interconnected with 10Gb links, the capacity of these
links is shared between many users at a time. By only specifying the capacity of the nodes’ network
interface we actually rely on the best effort service. Grid’5000 does not offer any link provisioning
capability. If one was to be implemented, further works may interact with it to provision links on
demand and thus create virtual clusters spanning multiple sites totally transparently to the user
with bandwidth and latency comparable with the ones measured between nodes of a same physical
cluster.

6.4 Conclusion

In this chapter, we have first presented the peer-to-peer extension of DIET, the algorithms im-
plemented inside, and experimentation results, showing a first efficient step to the integration of
peer-to-peer technologies into grid middleware. Then, we have presented the prototype implemen-
tation of the DLPT architecture. This software is again based on the JXTA toolbox for low level
communications. Early experimental results, conducted on clusters of the Grid’5000 platform shows
very small latencies to receive responses to a discovery request as the tree and underlying network
grow. This results are very promising and open the door for a deeper experimentation. As a use-case
and application, and with the goal to provide an infrastructure offering network-aware resource dis-
covery in a very widely distributed way, we extended the DLPT and our prototype. It was shaped
according to the user needs drafted from the most common use cases encountered in grid environ-
ments. It was furthermore designed in regards of the latest technologies that are to emerge in the
following years such as bandwidth provisioning and network virtualization features. The prototype
developed to attest the most basic functionalities of this infrastructure gave encouraging results.
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Conclusion and Future Works

Conclusion

Grid computing aims at gathering geographically heterogeneous computing resources. Within such
platforms, servers provide computing services to some clients. A client looking for a particular
type of service needs to discover the services available on the platform to find a service matching
its requirements. The process matching clients’ needs and server’s offers is the Service Discovery.
Among the barriers still hindering the deployment of computational grids over large scale platforms,
we find several problems related to service discovery. These problems are mainly related to its
scale, its efficiency over heterogeneous platforms, and its ability to face the dynamic nature of the
platform. Peer-to-peer technologies traditionally address these aspects. The peer-to-peer systems
became a new field of investigation for designers of grid middleware.

In this dissertation, we have presented different aspects of a peer-to-peer fashioned solution for
the service discovery issue in computational grids. The purpose of the first Chapter was to ease the
understanding of the basic components of the problem and to propose a clear statement of it. In
the same chapter, we have presented the environment of our work, namely computational grids, the
traditional approaches to service discovery within them, and put our problem in more precise words.

As our solution belongs to a series of works relying on peer-to-peer principles, a first important
part of our background and related works come from the peer-to-peer area. Also, as our solution
for fault-tolerance uses self-stabilization concepts, the second main part of our background comes
from the self-stabilization area. In Chapter 2, we have given the required background allowing to
understand our solution and compare it with similar works, on relevant points (complexities, scale,
efficiency according to several parameters, load balancing, fault-tolerance.)

In Chapter 3, we have presented the basic design of a solution (called DLPT ) to the service
discovery problem. We have justified the choice of the structure used and we have given a set of
algorithms ready to be implemented, based on the message passing paradigm, for the construction
and maintenance of such an architecture. A study of its complexities and advantages relative to very
similar approaches have been discussed, and simulation results presented to assert its relevance and
performance.

In Chapter 4, we have focused on mapping and load balancing issues, which were remaining draw-
backs of the initial solution, as discussed at the end of Chapter 3. The contribution in Chapter 4 are
twofold. First, we reduce the global cost of our architecture (in terms of maintenance and amount of
effective communications required) by a self-contained mapping scheme, naturally clustering entities
of our logical system on processors of the network. Second, we provide a load balancing heuristic
whose objective function (maximizing the throughput) is slightly different from other approaches in
literature, making it more efficient for practical systems. Finally, by simulations, both the architec-
ture and the heuristic are validated. As detailed at the end of the chapter, this last step allows to
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better see how our solution outperforms related works.

Chapter 5 deals with alternative solutions to the fault-tolerance issue of this kind of systems.
We provide mechanisms based on self-stabilization. Our point was to provide mechanisms able
to maintain (or automatically rebuild) a consistent system after traditional proactive approaches,
based on costly replication, have failed. The contribution are here threefold. First, we provide a
protocol able to reconnect disconnected subparts of the system after an arbitrary number of crashes.
In the way to a fully self-stabilizing protocol, we have then proposed a snap-stabilizing algorithm,
which, as provided by the self-stabilization paradigm, maintains our architecture after crashes, wrong
initializations, or any transient fault affecting the system. This second protocol, although optimal
in stabilization time, has been written in a coarse-grained model, abstracting details of message
exchanges. As a last contribution, we have written a self-stabilizing protocol able to constantly
automatically rebuild our architecture starting from any arbitrary configurations. Relying on the
message-passing paradigm, this last protocol is ready to be implemented on real platforms. Again,
complexities and simulation results allow to give a good idea of the performance of our algorithms.

Finally, in Chapter 6, we discuss our practical contributions. In a first work related to service
discovery in a grid computing environment, and conducted in 2004 as a preliminary of this thesis,
we have extended an existing middleware, DIET, in a peer-to-peer fashion for its scalability. Real
experiments conducted over several connected clusters have shown the efficiency of the approach.
This extension is part of the DIET software package, available on the web4. Our second practical
work deals with the development of a prototype implementation of our DLPT solution and the study
of its use in a practical context of the reservation and provisioning of network resources. Early
experiments have been conducted on the Grid’5000 platform. Very promising results have been
obtained, which already shows the viability of our implementation.

Future Work

On our solution itself, several improvements can be undertaken.

• The replication process and its implications on the performance, dealing with load balancing
and topology awareness have only been mentioned in Chapter 3 (Page 50). A deeper study
is here required to see the real impact of the replication solution, both in terms of topology
awareness and load balancing and how to implement the right trade-off between these two
objectives.

• Still in Chapter 3, we describe potential cache mechanisms (Page 52) in order to optimize and
balance load for hot-spots. Even if a complete solution for the load-balancing issue is given
in Chapter 4, a simulation study of the impact of this cache mechanisms has been conducted
only on the reduction of lookup length but not on the load balancing itself. Further simulation
investigations could help to see the relevance of such caching schemes.

• The design of our load balancing heuristic presented in Chapter 4 differs from other approaches
by its objective function, which focuses on the maximization of the throughput. However, it
could be interesting to improve it by coupling it to a random choice approach. The load
balancing process is only locally executed, between two neighbors. Randomly choosing several
potential partners for load balancing could be a new way to improve the complete process.

4http://graal.ens-lyon.fr/DIET
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Finally, the next step is also to implement these features inside the prototype and experiment
them.

• At the end of Chapter 5, we measure by simulation the efficiency of our last self-stabilizing
protocol, from the client’s point of view. We study the gain on the amount of discovery requests
that were satisfied by using the self-stabilizing protocol (even when it is not able to completely
rebuild the structure in the case of a too high failure rate). This study can be completed, for
instance by opening investigations on the level of graceful degradation that can be ensured in
the system, when varying the frequency of failures, in particular from the client’s point of view.
In the same order of ideas, the optimality for the client would be that all requests are satisfied.
The schemes that we presented does not ensure it, since maintenance and discovery are two
distinct processes. Another interesting point could be to reach this optimality, and study its
cost. (It will inevitably requires mixing the two processes, and delaying the responses to the
clients.)

• Still dealing with self-stabilization, another interesting work would be to make a snap-stabilizing
version of our message-passing self-stabilizing protocol. Recent works [50], provide new tools to
achieve snap-stabilization in such environments. Finally, an implementation of all the provided
fault-tolerance mechanisms in the prototype is planned.

In a more global vision, such service discovery systems are only a part of future grid middleware.
The service discovery, as a part of the whole middleware, will need, for instance, to communicate
with the scheduling part of the middleware. Here, the scheduling scope is to refine the set of
services matching the client’s requirements, by choosing the service which satisfies the scheduling
policy when an important number of services are requested by several clients at the same time. The
scheduling problem in a P2P environment relies on decentralized scheduling and involve for instance
task migration [19].

Moreover, in emerging grid platforms, resources are made available through a batch scheduler
system, like OAR [39] and reserved through a given policy, most of the time first-come-first-served
(FCFS). The batch reservation introduces a new kind of volatility. A node can become unusable not
because it crashed, but simply because the reservation has ended. Integrating these three components
(service discovery, batch reservation, scheduling) will require to define protocols between these entities
for putting it all together. This will be a step to the global integrated middleware.

Finally, with the emergence of increasingly powerful infrastructures, like Petascale computers [25],
the interconnection of large research grids [1, 140, 143] or incredibly large desktop grids [107], re-
searchers are thinking to the next step: interconnecting these highly heterogeneous platforms in a
single environment. Providing services inside such an environment to users is a very challenging
issue, in which Service Discovery will be a fundamental component.
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