N

N

Communication-aware scheduling on heterogeneous
master-worker platforms

Jean-Francois Pineau

» To cite this version:

Jean-Francois Pineau. Communication-aware scheduling on heterogeneous master-worker platforms.
Computer Science [cs]. Ecole normale supérieure de lyon - ENS LYON, 2008. English. NNT:
tel-00530131

HAL Id: tel-00530131
https://theses.hal.science/tel-00530131
Submitted on 27 Oct 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-00530131
https://hal.archives-ouvertes.fr

N° d’ordre : 475 N° attribué par la bibliothéque : 0TENSLO475

- ECOLE NORMALE SUPERIEURE DE LYON -
Laboratoire de I'Informatique du Parallélisme

THESE

en vue d’obtenir le grade de
Docteur de I’Université de Lyon - Ecole Normale Supérieure de Lyon
spécialité : Informatique

au titre de I” Ecole doctorale de Mathématiques et Informatique fondamentale

présentée et soutenue publiqguement le 25 septembre 2008 par

Monsieur Jean-Francois PINEAU

Communication-aware scheduling
on heterogeneous master-worker platforms

Directeur de theése : Monsieur Yves ROBERT

Co-encadrant de thése : Monsieur Frédéric VIVIEN

Aprés avis de : Monsieur Oliver SINNEN Membre/Rapporteur
Monsieur Denis TRYSTRAM Membre/Rapporteur

Devant la commission d’examen formée de :

Monsieur Emmanuel JEANNOT Membre

Monsieur Jean-Claude KONIG Membre
Monsieur Yves ROBERT Membre
Monsieur Oliver SINNEN Membre/Rapporteur
Monsieur Denis TRYSTRAM Membre/Rapporteur

Monsieur Frédéric VIVIEN Membre






iii

Merci !

Au cours de ces années de thése, passées au sein de I'équipe GRAAL, j’ai eu l'occasion,
malgré mon tempérament de grizzly ermite hibernant, de rencontrer de nombreuses personnes
incroyablement sympatiques et généreuses. Je profite donc de cette section pour montrer que
leurs actions ne sont pas passées inapercues.

Merci & toi, Yves, pour avoir toujours montré le cété fun de l'algorithmique et de 'ordon-
nancement, dés les premiers cours de L3. Merci donc pour m’avoir donné gotit & ces domaines,
pour m’avoir aiguillé vers Henri Casanova lors de mon stage de M1, pour avoir toujours été
a Iécoute de mes questionnements, pour ne pas avoir perdu espoir lorsque mes expériences de
produit de matrices piétinaient, et enfin pour toutes tes “jokes” tout au long de ces 3 (4 7) années.

Merci & toi, Fredo, pour ta grande empathie, pour avoir voulu revivre en méme temps que moi
les joies de la rédaction, en écrivant ton HDR peu de temps avant ma rédaction du manuscript.
Tu as méme voulu partager la pression que j’avais alors que je corrigeais le manuscrit & quelques
jours de devoir le rendre, en combinant la relecture de mon manuscript, la soumission de 2 ar-
ticles, et un déménagement & Hawaii. Pour tout cela, merci. Mais il ne faut pas que j'omette
non plus ta rigueur sans faille tout au long de ces années. Merci de ne pas avoir perdu espoir
de me transmettre un soupcon de ta “pointillosité”, et de ne pas avoir hésité a user tes précieux
stylos rouges a la tache. Mon principal regret est de ne pas avoir réussi a te présenter 'article
sur lequel il n’y aurait pas eu besoin de rouge (mais était-ce vraiment un réve accessible 7). Jai
cependant grande confiance que toutes tes remarques m’ont marquées, et qu’elles continueront
de m’influencer dans les années & venir.

Thank you, Oliver, to have accepted the duty of being one of my “rapporteur”. You gave me
excellent advices to improve my thesis, and our two-hour talk, which began with a coffee-break,
was very pleasant.

Merci aussi a toi, Denis, pour tes remarques plus critiques sur mon manuscript, ce qui m’a
permis de me rendre compte des points qu’il fallait mettre plus en avant.

Merci enfin & vous, Emmanuel et Jean-Claude, d’avoir accepté si chaleureusement d’étre
membres du jury.

A propos de 'ambiance de travail, je voudrais & présent remercier mes principaux co-bureau
le long de ces 3 années, Raphaél et Matthieu, pour n’avoir jamais été assourdissants de paroles
ou de questions, m’incitant toujours & persévérer en faisant la sourde oreille & mes questions
fugaces, plutdt que de me laisser tomber dans la facilité en écoutant simplement vos réponses.
Merci aussi d’avoir su rester stoiques devant mes déboires de mise & jour du systéme. Bien en-

tendu, ne prenez rien au sérieux de ce qui est au dessus, & part le merci.

Merci également a tous les autres membres de ’équipe, Loris, Véronika, Emmanuel, Cédric,
Anne, Clément, et tous les autres, qui donnent une ambiance magique & ces bureaux ;

Merci a Caroline, Sylvie, Corinne, et Isabelle, pour leur sourires constant, méme aprés que
je sois parti aux Etats-Unis sans billet d’avion (mais ce n’était pas 100% ma, faute) ;

Un grand merci & Marie, pour m’avoir permis de concilier une thése sur Lyon et une vie



iv

conjugale sur Montpellier. Merci également pour tous ces plats que tu m’as fait découvrir, je
n’ai jamais eu honte de me reservir (Miam!);

Merci & mes parents, pour m’avoir incité & venir découvrir le climat lyonnais; & mes beaux-
parents, pour m’avoir laissé emmener leur fille;

Merci enfin & Ln, pour avoir donné un sens nouveau & la vie aprés le boulot, et tant d’autres
choses encore. Et une petite pensée également au Nurson que tu portes, et qui va lui aussi
changer notre vie...



Contents

1 Introduction

2 Framework

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

3 The
3.1
3.2

3.3

Large scale platforms . . . . . . . .. .o
The Magter-Worker platform . . . . . . ... . . o0 oL
Computation models . . . . . . . . oL
2.3.1 The processors . . . . . . . ..o e
2.3.2  Fluid computation . . . . . . .. ...
2.3.3  Atomic computation . . . . ...
2.3.4 Synchronous start . . . . . ...
Communication models . . . . . . . ...
2.4.1 Communication time . . . . . . . . ... L
2.4.2  Communication behavior . . . . . .. .. ... ... ...
Applications . . . . . . . . e
2.5.1 Divisible Load applications . . . . . . .. .. ... .00
2.5.2 Bag-of-Tasks applications . . . . . . . . ... ... L.
Scheduling . . . . . . oL
2.6.1 Beforehand . . . . . . .. ...
2.6.2 Offline . . . . . . ..
2.6.3 Online . . . . . ... o
Objectives . . . . . . .
2.7.1 Metrics based on completion times . . . . .. ... Lo
2.7.2 Metrics based on flow times . . . . .. ..o
2.7.3 Max-based vs. sum-based metrics . . . . . ... ..o
2.7.4  FEnergy consumption . . . . . . .. . .o o o e
Notations . . . . . . . . e
difficulty of scheduling with communications

Framework . . . . . .o
Online theoretical results . . . . . . .. .. .. o
3.2.1 Fully homogeneous platforms . . . . . ... ... .. ... ... ...
3.2.2  Heterogeneous platforms . . . . . .. ... . oo oo
3.2.3  Overview and summary . . . . . . . . . ..o
3.2.4  Creating the worst platform . . . . . . . . ... .. ...
Heuristics . . . . . o . o e
3.3.1 Communication-homogeneous platforms . . . . .. ... ... ... ....
3.3.2 Computation-homogeneous platforms . . . . . . .. .. .. ... ... ...



vi CONTENTS
3.3.3 Fully heterogeneous platform . . . .. . ... ... ... ... 36

3.4 MPI experiments . . . . . . . . .. 44
3.4.1 Thealgorithms . . . . . . . . .. 44
3.4.2 The experimental platform . . . . .. .. ... 00000 44

3.4.3 Thetasks . . . . . . . 45
344 Results . . .. e 45

3.5 Related work . . . . . .. 46
3.6 Conclusion . . . . . . . ... e 47
4 DMatrix product 49
4.1 Introduction . . . . . . . . . L 49
4.2 Framework . . . ..o 51
4.2.1 Application . . . ... L 51
4.2.2 Platform . . . . . . .. 52

4.3 Combinatorial complexity of a simple version of the problem . . . . . . . .. ... 93
4.4  Minimization of the communication volume . . . . . .. .. ... ... ... ... o4
4.4.1 Lower bound on the communication volume . . . . . . . . . ... ... .. 55
442 The mazrimum re-use algorithm . . . .. ... ... ... ... .. ... o7

4.5  Algorithms for homogeneous platforms . . . . . .. ... ... ... ... ... 58
4.5.1 Principle of the algorithm . . . . . . . ... ... ... ... ... 59
4.5.2 Impact of the start-up overhead . . . . . . . ... ..o L 29
4.5.3 Dealing with “small” matrices or platforms . . . . . . ... ... ... ... 60

4.6 Algorithms for heterogeneous platforms . . . . ... ... ... ... ... ... 61
4.6.1 Bandwidth-centric resource selection . . . . .. .. ..o L. 61
4.6.2 Incremental resource selection . . . . . . . . .. ... 62

4.7 Extension to LU factorization . . . . . . . . . .. 0oL 66
4.7.1  Single Processor Case . . . . . . ... oo 66
4.7.2  Algorithm for homogeneous clusters . . . . .. .. ... ... ... ..., 68
4.7.3 Algorithm for heterogeneous platforms . . . . .. ... ... ... ... .. 68

4.8 MPI experiments . . . . . . . .. 70
4.8.1 Platforms . . . . . .. e 70
4.8.2 Algorithms . . . . . ... 71
4.8.3 Experiments on homogeneous platforms . . . . .. . ... ... ... ... 73
4.8.4 Experiments on heterogeneous platforms . . . . . . ... ... ... 0. 76

4.9 Related work . . . . . L 86
4.10 Conclusion . . . . . . . L L e 87
5 Steady-State scheduling 89
5.1 Introduction . . . . . . . . oL 89
5.2 Framework . . . .. L 90
5.3 Scheduling a single bag-of-tasks application . . . . ... ... ... ... ... 91
5.4 Scheduling multiple bag-of-tasks applications . . . . . .. . ... ... ... ... 93
5.4.1 Stretch. . . . . . e 93
5.4.2 Offline setting for the fluid model . . . . . . . ... ... 0oL 94
54.3 Online setting . . . . . . . . . L 104
5.4.4  MPI experiments and SimGrid simulations . . . . . .. .. ..o 105
5.4.5 Related work . . . . .. oo 116



CONTENTS vii
5.5 Minimizing power consumption . . . . . . ... Lo Lo 118
5.5.1 Models. . . . . e 118

5.5.2 At the processor level . . . . . ... Lo 120

5.5.3 At thesystemlevel . . . . . . . .. 127

5.5.4  More realistic consumption models . . . . . .. ..o o000 131

5.5.5 Related Work . . . . . . . . 137

5.6 Conclusion . . . . . . . .. 139

6 Conclusion 141
A Proofs of online competitiveness 143
B Matrix product detailed experimental results 155
C From theoretical throughput to realistic schedule 163
D Bibliography 173
E Publications 185
F Notations 187



viii CONTENTS




Chapter 1

Introduction

In 1978, a reviewer of the article of R.L. Rivest, A. Shamir, and L. Adleman “A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems.” [120] states:

Granted, we are seeing the appearance of so-called microcomputers, such as the
recently announced Apple II, but their limitations are so great that neither they nor
their descendants will have the power necessary to commaunicate through a network.'

Nowadays, not only microcomputers are communicating through the network, but they are
intensively used on grids composed of workstations located all around the world. These grids
represent a cheaper alternative to super-computers, which are composed of a reduced number
of identical powerful processors. As you may expect, the heterogeneity of such grids renders
scheduling problems much more difficult. Furthermore, one can understand the importance of
the communications between the machines on such platforms. If you are working in Lyon and are
planning to enroll more computers to execute some application, you want to know the differences
between using an additional computer from Knoxville or one from Grenoble, and so you need to
know how long it is going to take to send a message from one computer to the other, and what
may be the interferences.

That is why one needs to use realistic communication models when working on these grids,
and that is one of the reasons I mainly focused during these last three years on communication-
aware scheduling.

In this thesis, I will look at the scheduling of different applications on a master-worker
platform — which is one model of distributed heterogeneous platforms. The common point of
my work is to always use a realistic model to take into account the communications between the
machines of the platform.

Models

In Chapter 2, I will discuss platform models, applications, scheduling techniques, and also en-
vision the objectives that we may consider. I will introduce the master-worker platform, and
justify its use (Section 2.2). I will also detail the models that we have at our disposal to represent
computations (Section 2.3) and communication (Section 2.4) in large-scale architectures. Each
time, I will mainly focus on the models that we will use in the following chapters. Then I will
present two kind of applications, divisible load and bag-of-tasks applications (Section 2.5). I will

!published in [124]



2 CHAPTER 1. INTRODUCTION

point out the importance of scheduling identical independent tasks from the scheduler point of
view, and T will justify this hypothesis by giving real-life applications that involve such tasks.
Next, I will initiate a discussion about scheduling models (Section 2.6), i.e., on the information
related to the platform and to the applications that we suppose we have at our disposal when
trying to find a good schedule. Of course, the more information you have, the better algorithm
you can find, but it is not always realistic to assume that everything is known beforehand. 1
will present the three classes of scheduling models that we will see in detail in the next chapters.
Finally, I will give an overview of different objective functions that we will try to minimize, and
I will justify their importance (Section 2.7). The last section (Section 2.8) will introduce some
notations in order to quickly understand which model we use, and what is the problem we are
working on.

The difficulty of communication-aware scheduling

Scheduling problems are already difficult on traditional parallel machines, and homogeneous plat-
forms. They become extremely challenging on heterogeneous clusters, where computation speeds
and communication links are heterogeneous, where the network may suffer from contention prob-
lems, and where availability and performance of the machines are sometimes unpredictable. This
holds true even when embarrassingly parallel applications are considered.

In Chapter 3, I will try to underline the difficulty of scheduling identical independent tasks
on heterogeneous platforms while minimizing the total execution time. I will distinguish four
cases: (i) the platform is homogeneous (Section 3.2.1); (ii) the heterogeneity only comes from
the computations (Sections 3.2.2, 3.2.3, and 3.3.1); (ii) the heterogeneity only comes from the
communication links (Sections 3.2.3, and 3.3.2); or whether the platform is fully heterogeneous
(Sections 3.2.3, and 3.3.3). Not surprisingly, when both sources of heterogeneity add up, the
complexity goes beyond the worst scenario with a single source.

This work has been published in |B1, B2, A2|.

Matrix product

Despite the results of the previous chapter, or maybe “thanks to” them, we aim in Chapter 4
at optimizing the execution time of matrix multiplication. Thanks to the previous chapter, we
know that this is a difficult problem, but this is in fact good news! Because we know that it will
be challenging to do so, and we may find some improvements.

Once again, we will find that minimizing the execution time is a difficult problem (Sec-
tion 4.3). That is why we will stop trying to minimize it. If we forget that is our objective, what
is left 7 We want to perform a matrix multiplication on a grid, which means that the machines
can be far from each other. And as we focus on introducing realistic communication models, the
communication of elements of the matrices between the machines may be the bottleneck of the
application. Thus, we concentrate on minimizing the communication volume.

First we will proceed with the analysis of the total communication volume that is needed in
the presence of memory constraints (Section 4.4), and we develop an algorithm whose aim is to
minimize these communications (Section 4.4.2). In order to apprehend the solution for hetero-
geneous platforms, we first deal with homogeneous platforms (Section 4.5), and we propose a
scheduling algorithm that includes resource selection. Then we address the design of algorithms
for heterogeneous platforms (Section 4.6), which turns out to be a truly challenging algorithmic
task. And we briefly discuss how to extend previous approaches to LU factorization (Section 4.7)



before reporting several MPI experiments (Section 4.8).

This work has been published in [B3, A1, B4].

Steady-state

Even if the problem of minimizing the makespan is proved to be hard for heterogeneous platform,
the last chapter showed that there is still some hope. In Chapter 5 we present a new way to
bypass the difficulty.

Indeed, because of the time of deployment and of the difficulty of implementation on grid
platforms, one can assume that grid users will deploy larger applications, which are more cost-
effective. In this chapter we look at the case where applications composed of a huge number of
tasks are submitted to the platform.

For such applications and platforms, I will find a better objective than the minimization of
the makespan. In particular, when focusing not on the makespan but on steady-state (which
occurs necessarily when the number of tasks increases), problems become much easier to solve
and it is possible to find a schedule that is asymptotically optimal. The steady-state is computed
thanks to linear programming, which enables to cope with the heterogeneity of computations
and communications (Section 5.3), with the affinity of tasks with certain types of machines (Sec-
tion 5.4), and with energy consumption constraints (Section 5.5). We also give a description of
the polynomial scheduling that achieves the steady-state, and we show its asymptotic optimality.

Part of this work has been published in [B5]. All the work about energy minimization
(Section 5.5) is still in progress, and has not been published yet.



CHAPTER 1. INTRODUCTION




Chapter 2

Framework

The objective of this chapter is to give a broad survey of the objects that we deal with throughout
this thesis.

We start by describing the different platforms (Section 2.1), the computation models (Sec-
tion 2.3) and the communication models (Section 2.4). Then, we discuss the applications (Sec-
tion 2.5) and the scheduling models (Section 2.6). Finally, we present the different objectives
that we try to optimize (Section 2.7), and notations that summarize all the characteristics of a
problem (Section 2.8).

2.1 Large scale platforms:
from super-computers to desktop grids

Since the sixties, the first parallel machines, also called “super-computers”, have been created
by aggregating a large number of identical processors, connected by a powerful communication
network. Some super-computers, Cray, IBM or SGI, were built and had their moment of glory.
However, these machines were very expensive, and not everyone who needed computing power
could afford to book some hours on them. In the nineties, the collapse of companies marketing
the super-computers was caused by the development of the clusters of workstations.

Theses clusters came from the observation that is was cheaper to gather machines spread over
remote existing sites. This development was possible thanks to constant effort in terms of design
and software development (particularly with libraries such as ScaLAPACK [33], PVM [70]| and
MPT |73, 88], and the development of asynchronous programming and threads) and the presence
of technological advances in public machines (high-speed network, super-scalar processors, etc...).
Heterogeneous networks of workstations are now ubiquitous in university departments and com-
panies. They represent the typical poor man’s parallel computer: Running a large PVM or
MPI experiment (possibly all night long) is a cheap alternative to buying super-computer hours.
When implementing algorithms on such platforms, the idea is to make use of all available re-
sources, namely, slower machines in addition to more recent ones. But the heterogeneity of such
platforms makes the development of efficient programs harder, and hence their use is reserved
for relatively simple parallel applications, which do not require a strong synchronization between
the computation units.

The platform topology that we consider consists of network links with various characteristics
to clusters of heterogeneous processors, as depicted in Figure 2.1.

5



6 CHAPTER 2. FRAMEWORK

m \ [/
. cluster = @-— m
o m L
\ : backbone link / m
=\ <z
-~ @front end
<=

router

&

Figure 2.1: Computing platform model.

2.2 The Master-Worker platform

The master-worker platform is a centralized model to represent a grid of workers. In these
platforms, one machine, the master, plays a special role in the scheduling process; it is the
processor that holds the scheduling algorithm, and, most of the time, the tasks that the workers
have to process. For that reason, it also has a special place in the communication network.
We assume that the master has no processing capability, and is exclusively dedicated to the
scheduling and to communications.

In this thesis, we supposed that the master can communicate to each worker, but the
workers cannot communicate with each other. This lead to a special communication net-
work: the star network (see Figure 2.2), also called single-level tree. On such a platform
S ={P),P,D,,..., P} the master Py (also called Ppaster) is located at the root of the tree,
and is connected to its p workers P, ... P,. In practice, this star network can be a logical over-
lay built upon a different physical interconnection network. In a cluster where processors are
connected through an over-dimensioned switch, all pair-wise communications could happen in
parallel, without influencing each other, if the limiting factor is the communication capabilities
of each of the processors.

This model can be applied to distributed Grid platforms, that aggregate multiple parallel
computing platforms. These platforms can be easily modeled as single-level trees, where each
leaf is a worker and the root is the master holding the application’s input data.

One can also remark that parameter sweep applications [42] and BOINC-like computa-
tions [35] usually organize participating processors into a master/worker platform.

The main two components of the considered computing platforms are the computing re-
sources themselves, and the interconnection networks. We will discuss about models for both in
the next sections. The memory and data storage capacities are often ignored but they may also
play a great role in our algorithmic problems, as we will see in Chapter 4.



2.3. COMPUTATION MODELS 7

Workers

Figure 2.2: The master-worker platform.

2.3 Computation models

To design computation models, one needs to know what kind of resources we have (homogeneous,
with different speeds, unable to perform some kind of tasks, ...), and how the tasks are computed
on them (time-sharing, atomic computations, etc...).

2.3.1 The processors

Long time ago, the main platforms were exclusively composed of homogeneous processors. Even
if nowadays, most platforms are heterogeneous, working on homogeneous platforms helps to
design efficient algorithms. In this thesis, we will use such platforms as baseline references, or to
stress the impact of heterogeneity on the complexity of problems or on the design of solutions.
The landmark feature of the platforms that we consider is the heterogeneity of their computing
resources. Such a characteristic is obvious in Grid computing platforms. Scheduling theory is
proposing a classification of the heterogeneity of computing resources into three platform types:

1. The parallel and identical machines model refers to homogeneous platforms.

2. Uniform machines are platforms where the execution time of an application on a processor
is equal to a constant only depending on the machine, times a constant only depending
on the application. Basically, that means that once we know the relative speeds of the
processors for one application, then they will have the same relative speeds for all kinds
of applications.

3. The unrelated machines model is the general case. In particular, we have under this model
the case of restricted availabilities, where an application cannot run on some machine
(because, for instance, it needs some special libraries or operating system). We can also
file under this model the case of identical processors which do not all have the same amount
of available memory: depending on its memory requirements, an application execution will



8 CHAPTER 2. FRAMEWORK

or will not fit in the main memory of all the different processors, and thus will or will not
have the same running time on them.

Besides the potential consequences of the different hardware characteristics, there may be
software and operating system characteristics which may influence the way schedulers can deal
with computing resources, and thus which influence the way resources can be used. Especially,
there is the question of whether it is mandatory that, once started, a task is completed before any
other task can be executed on the same processor. We will see in the next section computation
models with different answers to that question.

2.3.2 Fluid computation

Under the fluid computation model, we assume that several tasks can be executed at the same
time on a given worker, with a time-sharing mechanism. Furthermore, we assume that the
computation rate for each task can be totally controlled. For example, suppose that two tasks
A and B are executed on the same worker at respective rates a and 8 (a+ < 1). During a
time period At, o - At units of work of task A and (- At units of work of task B are completed.
These computation rates may be changed at any time during the computation of a task.

2.3.3 Atomic computation

Another computation model, the atomic computation model, assumes that only a single task
can be computed on a worker at any given time, and this execution cannot be stopped before
its completion (no preemption).

2.3.4 Synchronous start

Under both previous computation models, a given worker cannot start execution before it has
terminated the reception of the message containing the task from the master; similarly, it can-
not start sending the results back to the master before finishing the computation. However,
there exists a variant to the fluid computation model, called synchronous start computation:
in this model, the computation on a worker can start at the same time as the reception of the
communication starts, provided that the computation rate is smaller than, or equal to, the com-
munication rate (the communication must complete before the computation). This models the
fact that, in several applications, only the first bytes of data are needed to start executing a task.

As a remark, it has been observed that initiating computations on Grid resources may incur
a latency, i.e., a constant occupation time, independent of the computation size.

2.4 Communication models

Traditional scheduling models enforce the rule that computations cannot progress faster than
processor speeds would allow: limitations of computation resources are well taken into account.
Curiously, these models do not make similar assumptions for communications: in the literature,
an arbitrary number of communications may take place at any time-step [146, 37]. In particular,
a given processor can send an unlimited number of messages in parallel, and each of these
messages is routed as if it was alone in the system (no sharing of resources). As surprising as it



2.4. COMMUNICATION MODELS 9

may now be, this historical position can be easily explained because “introducing communication
costs complicates matters a lot” (for instance, see Chapter 2 of [60]).

However, it can be truly difficult to define a model of communication cost on grid. Indeed, if
we consider an application on a grid, we are facing several problems. First, we cannot consider
that the network is dedicated to our particular application, and it is not possible to predict the
external load on the network. Second, we do not know, most of the time, the network topology.
And last, even when assuming an exact knowledge of the physical network topology and of the
external load, the traffic simulation of the packages according to network protocols is a very long
task, as shown by the work of NS [108], for which the simulation time of a data transfer was
far longer than the transfer itself. Overall, such a precision is not compatible with the design of
efficient scheduling algorithms.

2.4.1 Communication time

An important aspect of the model is network latency. It is well-known that a reasonable ap-
proximation of the time required to send x bytes of data over a network link is affine of the form
a + 5, where « is the time required for a zero byte message to travel from the source to the
destination, or latency, and B is the data transfer rate.

Even if some research proposed more sophisticated models as early as ten years ago, many
scheduling works in the divisible load scheduling area (Section 2.5.1), whose model allows for
sending tasks of arbitrary size, have assumed linear transfer times 5. Most of these works
assumed a linear transfer time in order to make it possible to derive elegant solutions to certain
scheduling problems. However, ignoring latencies may lead to flawed solutions, as there is no
prohibitive cost to sending large numbers of very small messages. For example, the work in [29]
developed a multi-round divisible load scheduling algorithm, and noted that the linear model
implies an infinite number of rounds, where an infinitesimal amount of work is sent out at
each round. However, it is true that taking latencies into account adds a significant amount of
complexity to the scheduling problem, and we can bypass the problem of sending infinitesimal
amounts of work by considering bag-of-tasks applications (Section 2.5.2), i.e., applications where
the size of each task is fixed.

Throughout this thesis, we will suppose to have a linear communication model, or we will

consider the communication time of the tasks, thus taking into account latency overheads.

2.4.2 Communication behavior

The communication behavior is supposed to clarify what happens in case of several sends. Some
models specify that a machine can communicate to only one other at any time, while other
models allow for an arbitrary large number of communications to take place at any time-step.

Macro-data-flow

One of the first model was the macro-data-flow model (for instance see the survey papers [51,
63, 109, 130] and the references therein). This model takes into account communication delays
as follows: let task T be a predecessor of task 7" in the task graph; if both tasks are assigned to
the same processor, no communication overhead is incurred and the execution of 7" can start
immediately at the end of the execution of T’; on the contrary, if T and T” are assigned to two
different processors, the computation of 7" cannot start earlier than the completion time of T'
plus a communication delay which is a function of the two tasks and the two processors involved.



10 CHAPTER 2. FRAMEWORK

The major flaw of this macro-data-flow model is that communication resources are not limited in
this model. The first problem is that a processor can send (or receive) any number of messages in
parallel, hence an unlimited number of communication ports is assumed (this explains the name
macro-dataflow for the model) and an unlimited total communication bandwidth. The second
problem is that the number of messages that can simultaneously circulate between processors
is not bounded, hence an unlimited number of communications can simultaneously occur on
a given link. In other words, the communication network is assumed to be contention-free,
which of course is not realistic in general case. These flaws are far from being only theoretical:
the execution times predicted using such a model can be unrelated to the actual execution
times [133, 95].

One-port model

The more restricted model is the one-port model [30, 31, 134, 132]. Combined with a master-
worker platform, this model implies that the master can only send data to, and receive data
from, a single worker at a given time-step, so that the sending operations have to be serialized.
Suppose for example that the master has a message of size x to send to worker P,. If the transfer
starts at time ¢, then the master cannot start another sending operation before time t +a+x/B
under affine communication times model, where « is the latency and B the bandwidth, or before
t + x/B under linear model.

This one-port model naturally comes in two flavors with return messages, depending upon
whether we allow the master to simultaneously send and receive messages or not. In the uni-
directional variant, a processor cannot be involved in more than one communication at a given
time-step, either a send or a receive. In the bidirectional model, a processor can send and receive
in parallel, but at most from a given neighbor in each direction. In both variants, if P, sends a
message to P,, both P, and P, are blocked throughout the communication. If we do allow for
simultaneous sends and receives, we have the two-port model. Usually, a processor is supposed
to be able to perform one send and one receive operation at the same time. But in this thesis
we mostly concentrate on the true one-port model, where the master cannot be enrolled in more
than one communication at any time-step.

This model is more realistic than the standard models from the literature, where the num-
ber of simultaneous messages involving a processor is not bounded. Bhat, Raghavendra, and
Prasanna [30, 31] advocate the use of the bidirectional one-port model because “current hardware
and software do not easily enable multiple messages to be transmitted simultaneously.” Even
if non-blocking multi-threaded communication libraries allow for initiating multiple send and
receive operations, they claim that all these operations “are eventually serialized by the single
hardware port to the network”. Experimental evidence of this fact has recently been reported by
Saif and Parashar [123], who report that asynchronous MPI sends get serialized as soon as mes-
sage sizes exceed a hundred kilobytes. Their result hold for two popular MPI implementations,
MPICH on Linux clusters and IBM MPI on the SP2.

The one-port model also fully accounts for the heterogeneity of the platform, as each link
has a different bandwidth. It generalizes a simpler model studied by Banikazemi, Moorthy, and
Panda [7], Liu [103], and Khuller and Kim [89]. In this simpler model, the communication time
only depends on the sender, not on the receiver. In other words, the communication speed from
a processor to all its neighbors is the same. This would restrict the study to bus platforms
instead of general star platforms.

Finally, we note that some papers [8, 11] depart from the one-port model as they allow a



2.5. APPLICATIONS 11

sending processor to initiate another communication while a previous one is still on-going on
the network. However, such models insist that there is an overhead time to pay before being
engaged in another operation, so there are not allowing for fully simultaneous communications.

Bounded multi-port

Some time after Saif and Parashar’s study [123], recent multi-threaded communication libraries
such as MPICH2 |73, 88] now allow for initiating multiple concurrent send and receive operations,
thereby providing practical realizations of the multiport model.

Under the bounded multiport communication model [79], the master can send/receive data
to/from all workers at a given time-step. However, there is a limit on the amount of data that
the master can send per time-unit, denoted as BW. In other words, the total amount of data
sent by the master to all workers each time-unit cannot exceed BW. Intuitively, the bound BW
corresponds to the bandwidth capacity of the master’s network card; the flow of data out of the
card can be either directed to a single link or split among several links indifferently, hence the
multiport hypothesis. The bounded multiport model fully accounts for the heterogeneity of the
platform, as each link has a different bandwidth. Simultaneous sends and receives are allowed
(all links are assumed bi-directional; or full-duplex).

Interferences

If a processor is communicating while it is computing, the computations may have a significant
and negative impact on the available bandwidth [91, 92]. Also, when several communications
happen simultaneously on the same physical link, the fact is that they may impact the perfor-
mance of each other. In other words, they may have to “share” the available bandwidths. And
“how” depends on the nature of the link [44].

However, in the rest of this thesis, we will suppose that no interference occurs during the
communications, because of the communications model (one-port), or of the network topology.
We also always assume that computations can be overlapped by independent communications,
without any interference.

2.5 Applications

In the introduction, we underlined the fact that scheduling on heterogeneous platform was
difficult. That is why we want to take advantage of the regularity of applications which are
executed on these platforms. Indeed, on unstable distributed platforms, the execution of a
parallel application requires complex checking that no failure occurs, and that no message gets
lost, in order to restart the tasks that have failed. That explains why the majority of applications
using these grids are simple and naturally robust. A typical application consists of a large number
of independent tasks: if a job is interrupted, or the transmission of the result fails, one can just
repeat this task later, on another processor, without any cost for the rest of the application.

Obviously, there does not exist an application model which would perfectly describe every
application one could ever encounter. On the contrary, there exist many different models, most
of them being specific to a certain type of applications. We focus here on two application models
of independent tasks. Of course there exist lots of other models.



12 CHAPTER 2. FRAMEWORK

2.5.1 Divisible Load applications

Divisible load applications consist of an amount of computation, or load, that can be divided
into any number of independent pieces, or parts. We can consider that the processing time of
each part is small compared to the total time to process the whole input. In that case, the
total input can be divided into chunks of arbitrary sizes, which may be processed in any order,
and each chunk can itself contain an arbitrary number of small parts. This corresponds to a
perfectly parallel job, because the application can be decomposed into sub-tasks, where every
sub-task can itself be processed in parallel, on any number of workers and in any order. Such
applications are amenable to the simple master-worker programming model, and can therefore
be easily implemented and deployed.

The divisible load model is a good approximation for applications that consist of a large
number of identical, low-granularity computations, and has thus been applied to many real-
world scientific applications. For examples, pattern searching applications in computational
biology [76], video compression applications [115], volume rendering applications that are used
for scientific computing and biomedicine [49, 143] and even Data mining applications [136] fit the
divisible load model. These applications have different characteristics, in term of total running
time, total data size, and computation-communication ratio. Experiments have been conducted
that highlight and quantify the diversity in application characteristics and we refer the reader
to [141, 19] for more details.

2.5.2 Bag-of-Tasks applications

Another application model is the bag-of-tasks application model, where we suppose that an
application is made of a given number of independent sub-tasks, and that each of these sub-
tasks is atomic. It can be seen as the discrete version of the divisible load model. Therefore,
in this model the size of the sub-tasks is fixed, contrarily to the divisible load model where the
scheduler can freely define the size of any sub-task.

Their study is motivated by problems that are addressed by collaborative computing efforts
such as SETI@home [126], factoring large numbers [57], the Mersenne prime search [117], and
those distributed computing problems organized by companies such as Entropia [64]. Bag-
of-tasks are well suited for computational grids, because communication can easily become a
bottleneck for tightly-coupled parallel applications.

Condor [102] and APST [27, 42] are among the first projects providing specific support
for such applications. Condor was initially conceived for campus-wide networks [102], but has
been extended to run on grids [67]. While APST is user-centric and does not handle multiple-
applications, Condor is system-centric. Those two projects are designed for standard grids
but more recent and active projects like OurGrid [54] or BOINC [35] target more distributed
architectures like desktop grids. BOINC [35] is a centralized scheduler that distributes tasks for
participating applications, such as SETI@home, ClimatePrediction.NET, and Einstein@Home.
The set of resources is thus very large while the set of applications is small and very controlled.
OurGrid is a Brazilian project that encourages people to donate their computing resources while
maintaining the symmetry between consumers and providers. All these projects generally focus
on designing and providing a working infrastructure, and they do not provide any analysis of
scheduling techniques suited to such environments.



2.6. SCHEDULING 13

Identical independent tasks

The divisible load and bag-of-tasks models correspond both to trivially parallel applications,
that is, to applications whose sub-tasks can be executed in any order or even concurrently.
There exists a more general scenario, where one of the application’s sub-tasks may produce an
intermediate result which will later be used as an input data by another sub-task (we then say
that the latter sub-task depends on the former).

But in this thesis, we will focus on the scheduling of independent tasks, and these tasks
will be of identical size. The hypothesis of having same-size tasks, in terms of communications
(volume of data sent by the master to the slave which the task is assigned to) and of compu-
tations (number of flops required for the execution), is a very important one if we expect to
find efficient algorithms. Indeed, minimizing the total execution time of different-size tasks on
a homogeneous platform reduced to a master and two identical slaves, without paying any cost
for the communications from the master, and supposing all tasks are available to the master at
the beginning, is already an NP-hard problem ' [68]. In other words, the simplest version is
NP-hard on the simplest (two-slave) homogeneous platform.

However, working under such model is still relevant, as we point out that many important
scheduling problems involve large collections of identical tasks [43, 1|. Furthermore, this kind
of framework is typical of a large class of problems, including parameter sweep applications |42]
and BOINC-like computations [35].

Release dates and due dates

In the contexts of scheduling multiple applications, it is reasonable to assume that all applications
will not be available at the same time, but on the contrary that they will arrive over time. In
such a case, each application will have its own arrival date, or release date, before which the
scheduler will not be able to schedule any task of the application.

Besides release dates, a task may also have a due date, before which it should be processed
or a penalty should be paid. Or it may have a hard deadline before which it must be completed.
Then it will be of the scheduler responsibility to take into account all these constraints.

2.6 Scheduling

In this section, we present the three classes of scheduling models that we will see in detail in the
next chapters. They detail the application-related information that we have (computation size,
number of tasks, release dates, etc...) when trying to find a good schedule.

We will always suppose that we have a clairvoyant model about the platform, which means
that we know the computation speed of each processor and the bandwidth of each communication
link. Such a model discards the problem of instability from sharing the resources with other
users, and supposes that we have the computing platform dedicated to our own usage for the
time of experiments.

2.6.1 Beforehand

In the simplest model, we know beforehand all the application characteristics and all the ap-
plications to be scheduled are available to the master (that means that the release dates of all

!reduction from 2-partition



14 CHAPTER 2. FRAMEWORK

applications are the same). This model will be used in Chapter 4 in the context of matrix
multiplication. Such assumption is realistic here, because we will focus on the minimization of
a single matrix product.

2.6.2 Offline

If all release dates and characteristics of the applications are known from the start, the model
is said to be offline; if application characteristics are not known by the scheduler before their
release dates (and theses release dates are unknown as well), we have an online model.

The offline case is mainly theoretical and is used as a baseline to study the complexity of
the scheduling problems and to assess the quality of online solutions. However, it can be used
on applications such as the decoding of a video stream, which is a rare example where we can
know beforehand each of the many release dates.

2.6.3 Online

The online scheduling is only relevant for problems with release dates, because mainly the
release times and sizes of incoming tasks are not known in advance. This model is interesting as
it brings uncertainties. Such dynamic scheduling problems are more difficult to deal with than
their static counterparts, the offline problems (for which all task characteristics are available
before the execution begins) but they encompass a broader spectrum of applications.

Variants

In-between we may have a semi-clairvoyant model, where one only knows partial information
about the future, like for example the total number of tasks, but not their release dates. Such
model will be used in Chapter 3.

2.7 Objectives

The very first question of a scheduling problem is: what is our objective? what do we want to
optimize? Here are presented many classical objective functions that we will work with in this
thesis.

2.7.1 Metrics based on completion times

The most common objective function in the (parallel) scheduling literature is the makespan: the
maximum of the task termination times. If all tasks are part of a same job, the makespan is
the total job execution time. Makespan minimization is conceptually a system-centric approach,
seeking to ensure efficient platform utilization. Makespan minimization is meaningful when there
is only one user, when all jobs are submitted simultaneously and have the same importance. If
jobs are independent or belong to several users, one may consider the average completion time,
also called sum completion time or total completion time.

When the number of independent tasks is large, we can relax the problem of minimizing the
total execution time into maximizing the throughput, i.e., the average (fractional) number of
tasks executed per time-unit. This objective function is used in Chapter 5, and will be proved
very useful in order to find efficient algorithms.



2.7. OBJECTIVES 15

2.7.2 Metrics based on flow times

When jobs are arriving over time, the makespan metric is meaningless. Indeed, consider a
parallel platform where at some time a bunch of jobs arrive simultaneously, and then a last
job arrives at a time when all previous jobs would have completed if all were scheduled on the
slowest processor. Then, as long as the schedule optimizes the execution of the last job, it has
an optimal makespan whatever its processing of the initial bunch of jobs. When jobs arrive over
time, the metric must take their release dates into account. The relevant parameter is no longer
the date at which all jobs are completed, but the time they spend in the system, from their
release dates to their completion times. This duration is called the job flow time or response
time. This flow time is equal to the time the job waited before starting being processed (the
so-called wait-time) plus its processing time. Flow-time based metrics are job-centric metrics.
One can then either optimize the maximum flow time or the average flow time (also called total
flow time or sum-flow time).

These flow-based metrics tend to favor long jobs to the detriment of short ones, as long jobs
are more constraining. To overcome this problem, one approach is to look at the stretch [24] or
slowdown [66]. The stretch of a task is the ratio of its flow time over its size, and so can then
be seen as the slowdown it experiences when the system is loaded. To take into account the
affinity of some tasks with some particular machines (e.g., unrelated machines of Section 2.3.1),
we adapt the stretch definition to deal with the unrelated machines context. We thus define the
slowdown as the runtime experienced on the loaded system divided by the runtime that would
have been achieved if the system had been dedicated (Chapter 5.4).

2.7.3 Max-based vs. sum-based metrics

Intuitively, algorithms targeting max-based metrics ensure that no job is left behind. Such an
algorithm is thus extremely “fair” in the sense that everybody’s cost is made as close to the other
ones as possible. Sum-based metrics tend to optimize instead the wutilization of the platform.
Unfortunately, sum-flow and max-flow cannot be optimized simultaneously (to obtain non-trivial
competitive ratios for online schedulers). This is also the case of the sum-stretch and max-stretch
metrics. As a consequence, it should be noted that any competitive algorithm optimizing the
sum-flow metric and having a non trivial competitive ratio has the particularly undesirable
property of potential starvation, i.e., that some jobs may be delayed to an unbounded extent.
By contrast, max-flow time minimization cannot suffer from this problem as starvation induces
indefinitely increasing (max-)flow. Furthermore, the starvation problem identified for sum-flow
minimization is inherent to all sum-based objectives. In a system where fairness matters, sum-
based metrics cannot be used.

2.7.4 Energy consumption

Energy consumption is obviously an important characteristic for battery-powered systems such
as laptops and sensors. For more classical computing systems, reducing the energy consumption
may also be important either because of heat-dissipation problems [139] or just to decrease the
huge energy bills of supercomputers [50]. Energy consumption is seldom used as the only ob-
jective; one usually attempts to reach a trade-off between energy consumption and some other
metrics like makespan. Energy consumption may be taken into account a priori when building
the schedule (for instance by using mechanisms such as dynamic voltage scaling [39]), or a pos-
teriori to assess which scheduling policy is the most energy-efficient [50].



16 CHAPTER 2. FRAMEWORK

In the second part of Chapter 5, we will try to incorporate the energy minimization to our
steady-state problem.

2.8 Notations

If we want to quickly summarize all the characteristics of a problem, from the platform model up
to the objective, we need to introduce some notations. Here are the notations for the platform
models:

BMP-FC-SS (Bounded Multiport with Fluid Computation and Synchronous Start).
This is the uttermost simple model: communication and computation start at the same
time, communication and computation rates can vary over time within the limits of link
and processor capabilities. We include this model in our study because it provides a good
and intuitive framework to understand the results presented in Chapter 5. This model
also provides an upper bound on the achievable performance, which we use as a reference
for other models.

BMP-FC (Bounded Multiport with Fluid Computation). This model is a step closer
to reality, as it allows computation and communication rates to vary over time, but it
imposes that a task input data is completely received before its execution can start.

BMP-AC (Bounded Multiport with Atomic Computation). In this model, two tasks
cannot be computed concurrently on a worker. This model takes into account the fact
that controlling precisely the computing rate of two concurrent applications is practically
challenging, and that it is sometimes impossible to run simultaneously two applications
because of memory constraints.

OP-AC (One-Port Model with Atomic Computation). This is the same model as the
BMP-AC, but with one-port communication constraint on the master. It represents sys-
tems where concurrent sends are not allowed.

There is a hierarchy among all the multiport models: intuitively, in terms of hardness,
BMP-FC-SS < BMP-FC < BMP-AC

Formally, a valid schedule for BMP-AC is valid for BMP-FC and a valid schedule for BMP-FC
is valid for BMP-FC-SS. This is why studying BMP-FC-SS is useful for deriving upper bounds
for all other models.

We will mainly use the realistic model OP-AC in Chapter 3 and 4, and discuss about all
models in Chapter 5.

Unfortunately, the other notations used in this thesis to describe the variables are not uni-
form from one chapter to another, because of our choice of model, and to be consistent with the
literature. For example, the release dates of an application k& will be denoted by r; (Chapter 3)
or (k) (Chapter 5) depending whether we deal with independent tasks or bag-of-tasks.

However, we can describe all our scheduling problems using the notation [98, 34| a | B | v :



2.8. NOTATIONS 17

e « denotes the platform, and the different type of processors (section 2.3.1). We use 1
when we are working on a single processor, P for platforms with identical processors, Q
for platforms with different-speed but uniform processors and R for unrelated processors.
We add MS to this field to indicate that we work on master-worker platforms, and note
()1 for platforms with at least two different-speed but uniform processors.

e (3 denotes all the platform and applications constraints. This is where we indicate if we
have a communication-homogeneous platform or a computation-homogeneous platform.
We can also precise whether or not we have tasks with release dates or deadlines. We
write online for online problems. If this field does not contain a constraint, for example
the presence of release dates, then the problem is supposed to be without release dates.

e 7 denotes the objective. Along this thesis, we deal with the following objective functions:

the makespan or total execution time;

the maximum flow (maz-flow);

— the sum-flow;

the maximum stretch;

the average stretch.

Please refer to Appendix F at any moment to remember the notations used in each chapter.



18

CHAPTER 2. FRAMEWORK




Chapter 3

The difficulty of scheduling with
communications

In this chapter, we will first start by studying a very simple problem. This problem is to compute
n independent identical tasks that will arrive at different time on a master-worker platform
composed of m workers Py, Py, ..., P, under the one-port model with atomic computation.
We target here both offline and online problems, with several objective functions (makespan,
maximum flow time, sum completion time).

In the literature, the hypothesis of independent identical tasks renders such a problem really
easy to solve, as each task has the same importance. However, we will show during this chap-
ter that, depending on the kind of platform (fully homogeneous, communication-homogeneous,
computation-homogeneous, or fully heterogeneous), the problem can either be solved optimally
by the most greedy algorithm, or be NP-Hard.

First we will consider the simplest platform model: a fully homogeneous platform (Sec-
tion 3.2.1). On such a platform, both network links and processors are identical, which means
that, as we have identical tasks, the time to send any task to any worker will be the same, and
the time to compute it on any processor will be the same. For this problem, we can prove the
optimality of a simple algorithm for the three chosen objective functions.

Then we will assess the impact of heterogeneity for both online and offline scheduling for the
other types of platforms:
e communication-homogeneous platforms, i.e., where communication links are identical. We
assume for such platforms that workers have different speeds.
e computation-homogeneous platforms, i.e., where computation speeds are identical, the
heterogeneity comes solely from the different-speed communication links.
e fully heterogeneous platforms.

For online scheduling, we establish lower bounds on the competitive ratio of any deterministic
algorithm. We prove one lower bound in Section 3.2.2. As three platform types and three
objective functions lead to nine theorems, all of them with similar proofs, we summarise all
results in Section 3.2.3, while the remaining proofs are located in Appendix A. Section 3.2.4 is
dedicated to the presentation of how we build such proofs.

For offline scheduling, we develop some heuristics for communication-homogeneous plat-
forms (Section 3.3.1) and computation-homogeneous platforms (Section 3.3.2). Section 3.3.3

19



20 CHAPTER 3. THE DIFFICULTY OF SCHEDULING WITH COMMUNICATIONS

is dedicated to the proof of the NP-completeness of the offline problem on fully heterogeneous
platforms.

Not surprisingly, when both sources of heterogeneity add up, the complexity goes beyond
the worst scenario with a single source. In other words, for the online problem on fully hetero-
geneous platforms, we derive competitive ratios that are higher than the maximum of the ratios
with a single source of heterogeneity, while we proved that the offline problem was NP-Hard.

The main contributions of this chapter are mostly theoretical. However, on the practical
side, we have implemented several heuristics, classical ones and new ones described in this work,
on a small but fully heterogeneous MPI platform ( Section 3.4). Our results show the superiority
of those heuristics which fully take into account the relative capacity of the communication links.

Section 3.5 is devoted to an overview of related work. Finally, we state some concluding
remarks in Section 3.6.

3.1 Framework

During this chapter, we only target sets of identical tasks. This means that we always fall under
the uniform processors framework (cf. Section 2.3.1). In other words, the execution time of
a task on a processor will only depend on the processor running it and not on the task itself.
Having identical independent tasks also means that their only differences are their release dates,
and of course their completion times.

The tasks are simply denoted 1,2,...,4,...n. We let r; be the release time of task i, i.e.,
the time at which task ¢ becomes available on the master. In online scheduling problems, the
r;’s are not known in advance. Let ¢; be the time needed by the master to send a task to F;,
and let p; be the time needed by P; to execute a task. Finally, we let C; denote the end of the
execution of task ¢ under the target schedule.

We will focus on three important objective functions:

e the minimization of the makespan (or total execution time) maz Cj;

e the minimization of the maz-flow (difference between completion time and release time)
maz (C; — 14);

e the minimization of the sum-flow > (C; — r;).

As we have identical tasks, the minimization of objective functions such as the stretch is equiv-
alent to the minimization of the flow.

3.2 Online theoretical results

This section will mainly be theoretical. We are not interested into building online algorithms
here (we will do so in Section 3.3).

The objective of this part is to point out the impact of the platform’s heterogeneity on the
difficulty of finding a close-to-optimal algorithm for one of our three objective functions under
the online model.



3.2. ONLINE THEORETICAL RESULTS 21

3.2.1 Fully homogeneous platforms

In this first section, we start with the simplest possible problem: scheduling same-size tasks
on fully homogeneous platforms. In fact, this problem is simple enough to find one single
optimal algorithin to minimize our three different objective functions, and also optimal for
online scheduling: the Round-Robin algorithm.

Round-Robin is a very simple algorithm, which processes the tasks in order of their arrivals,
and which assigns them in a cyclic fashion to all processors; as we have p processors, Round-
Robin will assign task ¢ to processor i modulo p and will send it as soon as possible, according
to the communication constraints. Here, as the platform is fully homogeneous, Round-Robin
works as a list-scheduling strategy: it processes tasks according to their release times, the first
task processed first, and sends the first unscheduled task to the processor whose ready-time is
minimum, the ready-time of a processor being the time at which it has completed the execution
of all the tasks that have already been assigned to it. We point out that the complexity of the
Round-Robin algorithm is linear in the number of tasks and does not depend upon the platform
size.

It is striking that this simple strategy is optimal for many classical objective functions. Our
first theorem is then:

Theorem 3.1. The Round-Robin algorithm is optimal for the problems
e P, MS | online, rj, pj = p, ¢; = ¢ | max C;,
e P, MS | online, rj, pj = p, ¢; = c| max (C;—r;),
e P, MS | online, rj, pj = p, ¢;j = c | Z (Ci —13),

Proof. To prove that the greedy algorithm Round-Robin is optimal for our problem, we show
that there is an optimal schedule under which the execution of each task starts at the exact
same date than under Round-Robin. To prove this, we first show two results stating that we can
focus on certain particular optimal schedules.

Lemma 3.1. There is an optimal schedule such that the master sends the tasks to the workers
in the order of their arrival.

We prove this result with permutation arguments. Let S be an optimal schedule not
verifying the desired property. Remember that the master uses its communication links
in a sequential fashion. Then we denote by r} the date at which the task 7 arrives on a
worker. By hypothesis on S, there are two tasks, j and k, such that j arrives on the master
before k, but is sent to a processor worker after k. So:

/ /
rj <rpand r, < T

We then define from S a new schedule S’ as follows:

o If the task j was nevertheless treated earlier than the task k (i.e., if C; < C},), then we
simply reverse the dispatch dates of tasks j and k, but do not change the processors
where they are computed. This is illustrated in Figure 3.1. In this case, the remainder
of the schedule is left unaffected, and the total flow remains the same (just as the
makespan, and the maximum flow).



22 CHAPTER 3. THE DIFFICULTY OF SCHEDULING WITH COMMUNICATIONS

e If the task j was processed later than the task k, i.e., if C; > C}, then we send the
task j to the processor that was receiving k under S, at the time task k was sent to
that processor, and conversely. This is illustrated in Figure 3.2. Since the tasks j and
k have the same size, the use of the processors will be the same, and the remainder of
the schedule will remain unchanged. One obtains a new schedule S’, having as total

flow:
Y (Ci—ri) |+ (Cu—r)+(Cj=—r) =D (Ci—r) (3.1)
i itk =

Therefore, this is also an optimal schedule. In the same way, the makespan is un-
changed and the maximum flow does not increase.

Comm Comm
Comm k Comm k
o T P T

(a) Before permutation (b) After permutation

Figure 3.1: Permutation on the optimal schedule S (case C; < Cj).

Comm Comm
P, Py

Comm Comm
; T ; ]

(a) Before permutation (b) After permutation

Figure 3.2: Permutation on the optimal schedule S (case C; > Cy).

By iterating this process, we obtain an optimal schedule where the master sends the tasks
according to their arrival dates, i.e., by increasing r;’s. Indeed, if one considers the set
of the couples {(j,k) | rj < rj and r; < )}, we notice that each iteration of the process
strictly increases the size of this set.

Lemma 3.2. There is an optimal schedule such that the master sends the tasks to the workers
in the order of their arrival, and such that the tasks are executed in the order of their arrival.



3.2. ONLINE THEORETICAL RESULTS 23

We will permute tasks to build an optimal schedule satisfying this property from a schedule
satisfying the property stated in Lemma 3.1. Let .S be an optimal schedule in which tasks
are sent by the master in the order of their arrival. From the above study, we know that
such a schedule exists. Let us suppose that S does not satisfy the desired property. Then,
there are two tasks j and k, such that

rj <rp, 1 <7rp,  and  Cj > Ch.

Then we define a new schedule S’ by just exchanging the processors to which the tasks j
and k were sent. Then, the task j is computed under S’ at the time when k was computed
under S, and conversely. This way, we obtain the same total flow ((Cj —ry) + (Cy —1;) =
(Cj —rj) + (Cr — rg)), the same makespan (since the working times of the processors
remains unchanged), whereas the maximum flow does not increase.

Among the optimal schedules which respect the property stated in Lemma 3.2, we now look
at the subset of the solutions computing the first task as soon as possible. Then, among this
subset, we look at the solutions computing the second task as soon as possible. And so on.
This way, we define from the set of all optimal schedules an optimal solution, denoted ASAP,
which processes the tasks in the order of their arrival, and which processes each of them as soon
as possible. We will now compare ASAP with the schedule Round-Robin, formally defined as
follows: under Round-Robin the task ¢ is sent to the processor ¢ mod m as soon as possible,
while respecting the order of arrival of the tasks.

Lemma 3.3. The computation of any task j starts at the same time under the schedules ASAP
and Round-Robin.

The proof is done by induction on the number of tasks. Round-Robin sends the first task
as soon as possible, just as ASAP does. Let us suppose now that the first j tasks satisfy
the property. Let us look at the behavior of Round-Robin on the arrival of the (j + 1)-th
task. The computation of the (j + 1)-th task starts at time:

RR(j + 1) = max {r}H,RR(j +1—m) —l—p} .

Indeed, either the processor is available at the time the task arrives on the worker, and
the task execution starts as soon as the task arrives, i.e., at time 7“3»+1, or the processor
is busy when the task arrives. In the latter case, the processor will be available when the
last task it previously received (i.e., the (j + 1 —m)-th task according to the Round-Robin

strategy) will be completed, at time RR(j + 1 — m) + p.

Therefore, if RR(j+1) = r}+1, Round-Robin remains optimal, since the task is processed
as soon as it is available on a worker, and since it was sent as soon as possible. Otherwise,
RR(j+1) = RR(j +1—m)+ p. But, by induction hypothesis, we know that YA,1 < X <
m, RR(j+1—X) = ASAP(j+1—\). Furthermore, thanks to the Round-Robin scheduling
policy, we know that Vi, RR(:) < RR(i + 1). Therefore:

VAL L<A<m RR(j+1-m)<RR(j+1-)) <RR(j+1—m)+p=RR(j+1)

This implies that, between RR(j+1—m) and RR(j), m tasks of size p were started, under
Round-Robin, and also under ASA P because of the induction hypothesis. Therefore, during



24 CHAPTER 3. THE DIFFICULTY OF SCHEDULING WITH COMMUNICATIONS

that time interval, m workers were selected. Then, until the date RR(j + 1 —m) + p, all
the workers are used and, thus, the task j + 1 is launched as soon as possible by Round-
Robin, knowing that ASAP could not have launched it earlier. Therefore, ASAP(j+1) =
RR(j 4+ 1). We can conclude.

We have already stated that the demonstrations of Lemma 3.1 and 3.2 are valid for schedules
minimizing either makespan, total flow, or maximum flow. The reasoning followed in the demon-
stration of Lemma 3.3 is independent from the objective function. Therefore, we demonstrated
the optimality of Round-Robin for these three objective functions. |

Remark (Resource selection). One can remark that if the time needed to send a task is greater
than the time needed to compute it, then we only need to enroll one machine. If ¢ > p, then the
worker will always be able to finish ils tasks before receiving new ones. Then sending tasks to
one worker will be the optimal scheduling. This remark is also true for heterogeneous platforms;
if the fastest communication link has this property (cj, = min {c;} and cj, > pj,), then sending
tasks to that worker will be the optimal scheduling.

On homogeneous platform, one can extend this to resource selection; Round-Robin does not
need to enroll all workers in order to be optimal. If m' = [2], then sending tasks to m’ workers in
a Round-Robin way will be optimal, as the first worker will always have finished its computation
before receiving its next task.

3.2.2 Heterogeneous platforms

As we may think, online scheduling of same-size tasks on heterogeneous platforms is much
more difficult. On such platforms, we show that there does not exist any optimal deterministic
algorithm for on-line scheduling. This holds true for the previous three objective functions
(makespan, maximum flow time, and sum of flow times).

To assess the performance of an online algorithm, one often considers the worst-case rela-
tive error between the quality of the computed solution for an instance and the quality of the
corresponding optimal solution. An upper bound for the worst-case relative error is called a
competitive ratio. Formally, let f(A,Z) denote the objective value, according to the studied
optimality criterion, of the schedule produced by algorithm A on instance Z. Then, algorithm A
is p-competitive if f(A,Z) < p- f(OPT,Z) for any instance Z, where OPT denotes the optimal
offline scheduling algorithm for our objective function.

Given a platform (say, with homogeneous communication links) and an objective function
(say, makespan minimization), how can we establish a bound on the competitive ratio on the
performance of any deterministic scheduling algorithm? Intuitively, the approach is the fol-
lowing. We assume a scheduling algorithm and we run it against a scenario elaborated by an
adversary. The adversary analyzes the decisions taken by the algorithm, and reacts against
them. For instance if the algorithm has scheduled a given task T on P; then the adversary will
send two more tasks, while if the algorithm schedules T" on Ps then the adversary terminates
the instance. At the end, we compute the relative performance ratio: we divide the makespan
achieved by the algorithm by the makespan of the optimal solution, which we determine offline,
i.e., with a complete knowledge of the problem instance (all tasks and their release dates). In
one execution (task 7" on Pj) this performance ratio will be, say, 1.1 while in another one (task
T on Ps) it will be, say, 1.2. Clearly, the minimum of the relative performance ratios over all
execution scenarios is the desired bound on the competitive ratio of the algorithm: no algorithm



3.2. ONLINE THEORETICAL RESULTS 25

can do better than this bound!

Let us prove here the bound for the competitive ratio of any algorithm when minimizing the
makespan on fully heterogeneous platforms.

Theorem 3.2. There is no scheduling algorithm for the problem
Q>2, MS | online, r;, pj, ¢; | max Cj

L\/g'

- . . . 1
whose competitive ratio p is strictly lower than =5

Proof. Assume that there exists a deterministic online algorithm A4 whose competitive ratio is
p= 1+—2‘/§ —¢, with 0 < e < 1+T‘/§ — 1. We will build a platform and an adversary to derive a
contradiction. The platform is made up with three processors P;, P>, and P3 such that p; =,
p2:p3:1+\/§, 01:1+\/§and02:c:3:1.

Initially, the adversary sends a single task ¢ at time 0. A executes task 4, either on P} with
a makespan greater than or equal to ' equal to ¢; +p1 = 1 + V3 +¢, or on Py or P3, with a
makespan at least equal to co +p2 =c3+p3 =2+ V3.

At time-step 1, we check whether A4 made a decision concerning the scheduling of i, and
which one:

1. If A scheduled the task ¢ on Py or Ps, the adversary does not send any other task. The
best possible makespan is then ¢ + ps = ¢3 + p3 = 2+ /3. The optimal scheduling being
of makespan ¢; +p1 = 1 + V3 + ¢, we have a competitive ratio of:

24++/3 1++3
p= > -6
1+V34¢ 2

because € > 0 by assumption. This contradicts the hypothesis on p. Thus the algorithm
A cannot schedule task 7 on P, or Ps.

2. If A did not begin to send the task 7 at time-step 1, the adversary does not send any other
task. The best makespan that can be achieved is then equal to 1+ ¢; +p1 = 2+ V3 + ¢,
which is even worse than the previous case. Consequently, the algorithm A does not have
any other choice than to schedule task ¢ on P;.

Then, at time-step 7 = 1, the adversary sends two tasks, j and k. We consider all the
scheduling possibilities:

e j and k are scheduled on P;. Then the best achievable makespan is equal to the time
needed to send three tasks to Py (as the j and k arrive during the communication of i),
plus the time of k’s computation (since 7 and j are computed before the reception of the
next task, as € < 1+2—‘/§)

3¢1+p1 =3(1+V3) +e.

e The first of the two jobs, j and k, to be scheduled is scheduled on P, (or P3) and the
other one on P;. Then, the best achievable makespan is equal to the maximum of the

Nothing forces A to send the task i as soon as possible.



26 CHAPTER 3. THE DIFFICULTY OF SCHEDULING WITH COMMUNICATIONS

completion time of j on P, and the completion time of k on P;:

max{ci +ca+p2; c1+ca+ci+pi}
=max{3+2V3; 3+2V3+¢}
=3+2V3+e

e The first of the two jobs j and k to be scheduled is scheduled on P; and the other one on
P, (or P3). Then, the best achievable makespan is:

max{2c; + p1, 2¢1 + c2 + p2}
=max{2+2V3+¢; 4+ 3V3}
=4+ 3V3.

e One of the jobs j and k is scheduled on P, and the other one on Ps.

max{ci +p1; c1+c2+p2; c1+ca+c3+p3}
—max{l+V3+e; 3+2V3; 4+2V3}
=4+2V3.

e The case where j and k are both executed on Ps, or both on P;, leads to an even worse
makespan than the previous case. Therefore, we do not need to study it.

Therefore, the best achievable makespan for A is: 3 4+ 2v/3 + ¢ (as € < 1). However, we could
have scheduled ¢ on Ps, j on P3, and then k on P, thus achieving a makespan of:

max{cy + p2 ; max{ce ; T} +c3+ps; max{cy; 7} +ec3+ec1+p1}
—max{2+V3; 14+2+V3; 14+2+V3+¢}

=3+V3+e
Therefore, we have a competitive ratio of:
3+2V3+e_ 1+3
p= > — €.
3+V3+e 2
This contradicts the hypothesis on p. |

3.2.3 Overview and summary

Because we have three platform types (communication-homogeneous, computation-homogeneous,
fully heterogeneous) and three objective functions (makespan, max-flow, sum-flow), there remain
eight bounds to be established for heterogeneous platforms. Table 3.1 summarizes the results,
and shows the influence on the platform type on the difficulty of the problem. As expected,
mixing both sources of heterogeneity (i.e., having both heterogeneous computations and com-
munications) renders the problem the most difficult.

All the results presented in Table 3.1 are obtained using the same techniques, used in the
previous section, and which will be described in the next section (section 3.2.4). It would thus



3.2. ONLINE THEORETICAL RESULTS 27

Objective function
Platform type Makespan Max-flow Sum-flow
Homogeneous 1 1 1
Communication homogeneous % = 1.250 5_2ﬁ ~ 1.177 2“";‘/5 ~ 1.093
Computation homogencous S = 1200 2 = 1250| 3 ~ 1045
Heterogeneous 1+2‘/§ ~ 1366 | V2 ~ 1414 \/%_1 ~ 1.302

Table 3.1: Lower bounds on the competitive ratio of online algorithms, depending on the plat-
form type and on the objective function.

be meaningless to detail each of the eight other proofs, but they can be found in detail in
Appendix A. Below, we just list the characteristics of the platforms and jobs used to prove all
the bounds of Table 3.1. As in the proof of Theorem 3.2, for a lower bound p on a competitive
ratio, we assume that there exists an algorithm whose competitive ration is p — € for a given
positive value of e. The potential jobs arrival times will be used by the adversary, depending
on the algorithm’s decisions; when one writes that the potential jobs arrival times include “X
times 77 means that, if needed, the adversary will send X tasks at time 7.

Communication homogeneous platforms

Makespan : The platform consists of two processors of computation times p; = 3 and
p2 = 7, and of communication time ¢ = 1. The potential job arrival times are: 0, 1,
and 2.

Max-flow : The platform consists of two processors of computation times p; = Q%ﬁ and

_ 142v7
P2 = 3\f
4-7

3 -

, and of communication time ¢ = 1; potential job arrival times: 0 and

Sum-flow : The platform consists of two processors of computation times p; = 2 and
p2 = 4v/2 — 2, and of communication time ¢ = 1. The potential job arrival times are:
0, 1, and 2.

Computation homogeneous platforms
Makespan : The platform consists of two processors of computation time p = max {5, 22—546 ,
and communication times ¢y = 1 and ¢y = g. The potential job arrival times are: 0,

and three times £.

Max-flow : The platform consists of two processors of computation time p = 2 — ¢, and
communication times ¢; = € and co = 1. The potential job arrival times are: 0, and
three times 1 — e.

Sum-flow : The platform consists of two processors of computation time p = 3, and
communication times ¢; = 1 and co = 2. The potential job arrival times are: 0, and
three times 2.

Fully heterogeneous platforms



28 CHAPTER 3. THE DIFFICULTY OF SCHEDULING WITH COMMUNICATIONS

Makespan : The platform consists of three processors of computation times p; = € and
p2 = p3 = 1 + /3, and of communication times ¢; = 1 + /3 and ¢ = ¢3 = 1. The
potential job arrival times are: 0, and two times 1.

Max-flow : The platform consists of three processors of computation times p; = €, and
p2 = p3 = 3+ 2v/2, and of communication times ¢; = 2(1 ++/2) and ¢y = c3 = 1.
The potential job arrival times are: 0, and two times 2.

Sum-flow : The platform consists of three processors of computation times p; = ¢, and
p2 = p3 =T+ ¢1 — 1, and of communication times ¢; (defined in Appendix A) and

\/52c24+12¢1+1—(6¢1+1)

cag =c3 =1, where 7 = T . The potential job arrival times are: 0,
and two times 7.

3.2.4 Creating the worst platform

Until now, we have proved some competitiveness lower bounds for online scheduling. Typically,
we have shown that for any online algorithm, there exists a platform and tasks distribution on
which they would have made a wrong decision. But you may wonder how do we create such
platforms and scenarii 7 And more important, how relevant are these platforms 7 Is it possible
to quickly “improve” one of those platforms and find a greater lower bound ?

Well, no! (or at least we hope so!)

In fact, these platforms were built in such a way that the worst competitive ratio could be
achieved according to these scenarii. Let us have a look on the problem Qs2, MS | online, r;, p;,
¢; | max (Cj—r;). The first thing to understand is where the competitive ratio comes from. What
platform can maximize the ratio between any algorithm and the optimal schedule? Basically,
the idea is to create a platform where the processor on which the optimal schedule sends the
only task to be scheduled is different from the processor on which the optimal schedule sends
the first task of a bunch of tasks. Here is the skeleton of our platform:

e two slow identical processors with fast communications;

e one fast processor with slow communication (¢; > co = ¢3);

e when scheduling only one task, send it to the fastest processor (¢ +p1 < ca+p2 = c3+p3);

e when scheduling more than one task, do not send the first task to the fastest processor.

As we are under an online model, the scheduler that receives one task cannot distinguish if
it will be the only task to be scheduled or if other tasks are coming. Of course, one scheduler
can decide to wait for some time between the reception of the first task and the scheduling of
it, but then it will have to pay this latency in its ratio. That is why we have to introduce
another parameter which will be used by the adversary: the time 7 at which the adversary
will look at the algorithm’s decision, and potentially send more tasks. Finally we will have to
maximize the difference between the offline scheduling and the online scheduling in order to find
our competitive ratio.

If we go back to our example, we can simulate our adversary. We send a first task at time
0. At time 7 > ¢ we look at the decision of any algorithm:

e cither the first task has been sent to the first worker, which means a max flow of p = ¢1+p;.

e cither the first task has not been sent yet, and then the best max flow achievable is
T + ¢1 + p1, which means a competitive ratio of:
0> Tratp
c1+p1



3.2. ONLINE THEORETICAL RESULTS 29

e cither the first has been sent to one slow worker, so the max flow is greater than co + po,

and the ratio is:
S €2 + p2

T+

The idea is to force any algorithm that wants to achieve a competitive ratio of p to send the
first task to P; before 7. So the problem is to choose 7, ¢1, ¢2, p1 and ps such as:

Zp

. {02+p2 T+C1+p1}
min ,
cp+p1 c+p1

Then, at time 7, the adversary will send two new tasks. We consider all possible schedulings.

e cither the three tasks are on P; (Figure 3.4(a)), and the max flow is then:

c1 + P1,
max ¢ max{max{cy, 7} +c1 +pi,c1 +2p1} — T,
max{max{ci,7} + ¢1 +p1 + max{ci,p1},c1 +3p1} — 7

e cither only the first and the last tasks are on P (Figure 3.4(b)), the other one is on another
processor. The max flow is:

C1 +p1,
max{ (max{cy1, T} + co + p2) — T,
max{max{c, 7} +ca+c1+pi,c1+2p1} — 7

e cither only the first two tasks are on Py (Figure 3.4(c)), the other is on one slow processor:

c1 +pi1,
max ¢ max{max{ci, 7} +c1+p1,c1 +2p1} — T,
(max{c1, 7} +c1+co+p2) — T

e or the two tasks are scheduled on P, and P3 (Figure 3.4(d)):

C1 +p17
max{ (max{ci,7}+ o+ p2) — T,
(max{c1, 7} +ca+co+p2) — 7T

We can simplify this max flow, as the flow of the second task will always be smaller than
the flow of the third task.

e we do not need to analyze the case where two tasks are allocated on the same slow pro-
cessor, because it is clearly even worse than the previous case.

We can now compare these max-flows with the offline optimal scheduling, that would have
sent the first task to %, the second on Ps, and the third on P, (Figure 3.4(e)), and obtained a
better max flow:

c2 + pa,
max{ (max{ca, T} + co + p2) — T,
(max{cy, 7} +co+ec1+p1)—7



30 CHAPTER 3. THE DIFFICULTY OF SCHEDULING WITH COMMUNICATIONS

Figure 3.3: Gantt charts for several scheduling.

Py(ca, p2)
Py(ca, p2)

Py(et,pr)

(a) All tasks on Py (b) Last task on Py (c) Second task on P;

Py(ca,pa)
Py(c2,p2)
Pi(er,pr)

T
0 T time

time

(d) No more task on P, (e) Optimal solution

If we sum up, the ratio of competitiveness is defined by:

T+ci1+p1
c1+p1
14+p2
c1+p1’
{ c1 + pi1,
max { max{max{ci,7}+c1 +p1,c1 +2p1} — T,
max{max{cy, 7} + c1 + p1 + max{eci,p1},c1 +3p1} — 7}
{ c1 +p1,
max ¢ (max{cy, 7} +co+ p2) — T,
p > min - max{max{ci, 7} +co +c1 +pi,c1 +2p1} — 7}
c1 +p1,
max { max{max{ci,7} +c1 +pi,c1+2p1} — T,
{ (max{ci, 7} +c1 +ca+p2) — T}
{ c1 + pi1,
max ¢ (max{ci,7}+ ca +p2) — T,
(max{c1, 7} +co+co+p2) — 7}
c2 + p2,
max (max{cz, T} +co + p2) - T,
(max{co, 7} +ca+c1 +p1) =7}

And our problem is to find 7, ¢1, c2, p1 and ps which maximize this lower bound, and such
as: c1 +p1 < co+ pa2.

In order to solve such problems, we proceed in two steps: first simplify the problem, by
scaling one parameter to 1 (for example ¢3 = 1). Then we perform a numerical resolution, in
order to characterize the optimal solution (here 7 < ¢1, p1 = 0, etc). Finally, using such data,



3.3. HEURISTICS 31

we can simplify our system:

T+c1
C1 ’
14+po T+cr
c1 c1
. . 1+
p > min 3¢1 — T, =min{ =,
1+ 1—7+p2,
min c1tl=T4ps,
2ci — 7+ 14D T+p2
caa+2+p—71
1+p2

This last system can easily be maximized analytically, and we obtain the platform and 7
that can be used by an adversary in order to achieve the lower bound. In this example, it get
back to the platform given in section 3.2.3: ¢; = 2(1+v2), ca = 1, p1 = €, po = V2¢1 — 1,
T=2p=12.

3.3 Heuristics

Now that we have established lower bounds for all the online problems considered, we will study
their offline counterparts, that is the situations where we know beforehand all the problem
characteristics, i.e., the release dates.

3.3.1 Communication-homogeneous platforms

In this section, we have ¢; = ¢ but different-speed processors. We order them so that P; is
the fastest processor (p; is the smallest computing time p;), while P, is the slowest processor.
We aim at designing an optimal algorithm for minimizing the total completion time max Cj.
Intuitively, to minimize the completion date of the task arriving last, it is necessary to allocate
this task to the fastest processor (which will finish it the most rapidly). However, the other
tasks should also be assigned so that this fastest processor will be available as soon as possible
for the task arriving last. We define the greedy algorithm SLJF (Scheduling Last Jobs First)
as follows:

Initialization— Take the last task which arrives in the system and allocate it to the fastest
processor (Figure 3.5(a)).

Scheduling backwards— Among the not-yet-allocated tasks, select the one which arrived lat-
est in the system. Assign it, without taking its arrival date into account, to the processor
which will begin its execution at the latest, but without exceeding the completion date of
the previously scheduled task (Figure 3.5(b)).

Memorization— Once all tasks are allocated, record the assignment of the tasks to the proces-
sors (Figure 3.5(c)).

Assignment— The master sends the tasks according to their arrival dates, as soon as possible,
to the processors which they have been assigned to in the previous step (Figure 3.5(d)).

This is the design of an optimal makespan minimization algorithm for the offline problem
with release dates. This algorithm generalizes, and, by posing ¢ = 0, provides a new proof of, a
result of Simons [131].



32 CHAPTER 3. THE DIFFICULTY OF SCHEDULING WITH COMMUNICATIONS

Figure 3.4: Different steps of the SLJF algorithm, with four tasks 4, j, k, and [.

Pgip:4
P:p=3

Plip:2 ’l—} Plip:

1

(a) Initialization (b) Scheduling backwards

Arrival: 4 j k,l

[ Comm

‘ i) [elt]
Pyip=4 | Pyip=4 | ] |

Pp= ’ i | l ; Pp=2 i

l

(c) Memorization (d) Assignment

Theorem 3.3. SLJF is an optimal algorithm for the problem
Q, MS | rj,pj,c; = c | max C;.

Proof. The first three phases of the SLJF algorithm are independent of the release dates, and
only depend on the number of tasks which will arrive in the system. The proof proceeds in three
steps. First we study the problem without communication costs, nor release dates. Next, we
take release dates into account. Finally, we extend the result to the case with communications.
The second step is the most difficult.

For the first step, we have to minimize the makespan during the scheduling of identical tasks
with heterogeneous processors, without release dates. Without communication costs, this is
a well-known load balancing, problem, which can be solved by a greedy algorithm [23]. The
“scheduling backwards” phase of SLJF solves this load balancing problem optimally. Since the
problem is without release dates and communication, the “assignment” phase does not increase
the makespan, which thus remains optimal.

Next we add the constraints of release dates.

We denote by M the makespan achieved with release dates. Let P; be a processor on
which the last processed task is completed at the makespan (Figure 3.5). Let ¢ be the last task
executed on P; whose processing started at its release date (in other words, we have C; = r;+p;).
Such a task exists as the processing of the first task executed on P; began at its release date,



3.3. HEURISTICS 33

Arrival:  r; M
P |
B[
= I |

! SLIF(n —i+1)
Figure 3.5: SLJF algorithm.

the scheduling, in the assignment phase, being done under the as-soon-as-possible policy. By
definition of task 7, processor P; is never idle between the release date r; and the makespan M,
and is thus used M —r; time units during that interval. Our original problem is more constrained
than the problem of scheduling n — i+ 1 tasks whose release dates are all equal to r;. (n—i+1
corresponds to task i plus the tasks released after it.) Therefore our original problem has an
optimal makespan greater than or equal to the makespan of this later and simpler problem.
The simpler problem is the well-known load-balancing problem we were referring above, and we
have seen that the first step of SLJF solves it optimally. Furthermore, SLJF solves it in an
incremental way: the optimal solution for k 4 1 tasks is built by optimally adding a task to the
optimal solution for k tasks. Therefore, SLJF optimally load-balanced the last n —i+1 tasks in
the first step. As in this step it uses processor P; during M — r; time units, the simpler problem
of scheduling n — i + 1 tasks whose release dates are all equal to r; has an optimal makespan of
M. From what precedes, our original problem has thus an optimal makespan greater than or
equal to M, which is exactly the makespan achieved by SLJF', hence its optimality.

Taking communications into account is now easy. Under the one-port model, with a uniform
communication time for all tasks and processors, the optimal policy of the master consists in
sending the tasks as soon as they arrive, using a First Come First Serve policy. Now, we consider
the date at which a task is available on a worker as its release date for our previous problem
with release dates and without communications. As a task cannot arrive sooner on any worker
than this available date, and as our policy is optimal with release dates, SLJF is optimal for
makespan minimization with release dates and homogeneous communications. |

Online adaptation. As it only needs to know in advance the total number of tasks, but not
their release dates, SLJF is also optimal to minimize the makespan for online problems where
only the total number of tasks is known beforehand.

3.3.2 Computation-homogeneous platforms

In this section, the processors are homogeneous, i.e., p; = p, but processor links have different
capacities. We order the processors so that Pj is the fastest communicating processor (¢ is the
smallest of the communication times).



34 CHAPTER 3. THE DIFFICULTY OF SCHEDULING WITH COMMUNICATIONS

We saw in section 3.2.1 that there exists an easy case where the communication links are
fast enough in comparison with the computation time, and so we do not need to enroll all the
workers. The same idea works here. When the time needed to send one task to all processors
is greater than the time p needed by one processor to compute it, i.e., Y " ¢ < p, we can
easily prove that a variant of the scheduling policy Round-Robin, which sends by non-increasing
communication time and sends the last task on the fastest communication link, is optimal for
offline makespan minimization with release dates, as well as for online makespan minimization
when the total number of tasks is known beforehand. This proof is very similar to the one of
SLJF. The idea is that as you have enough time to send one task to each worker, there is no
resource selection to do. And as you send the last task on the fastest communication link, the
makespan will be minimized.

In the general case, as we assume a one-port model, not all workers will be enrolled in the
computation. Intuitively, the idea is to use the fastest m’ links, where m’ is computed so that
the time p to execute a task lies between the time necessary to send a task on each of the fastest
m’ — 1 links and the time necessary to send a task on each of the fastest m’ links. Formally,

m'—1 m’
Z ¢ <p< Zci
=1 =1

With only m/ links selected in the platform, we aim at deriving an algorithm similar to
Round-Robin. But we did not succeed in proving the optimality of our approach. Hence the
algorithm below should rather be seen as a heuristic.

The difficulty lies in deciding when to use the m/-th processor. In addition to be the one
having the slowest communication link, its use can cause a moment of inactivity on another
processor, since EZ; ! ¢+ Cmy > p. Our greedy algorithm will simply compare the performance
of two strategies, the one sending tasks only to the m' — 1 first processors, and the other using
the m/-th processor “at the best possible moment”.

Let RRA be a Round-Robin algorithm, sending the tasks on the m’ — 1 fastest links, starting
with the fastest link, and scheduling the tasks in the reverse order of release times, from the last
one to the first one. In other words, RRA sends the last task on the fastest link, the previous
task on the second fastest link, and so on. Let RRB be the algorithm sending the last task to
processor P/, then following the RRA policy. We see that RRA seeks to continuously use the
processors, even though the communication links may sometimes be idle and processor P, is
always idle. On the other hand, RRB tries to reduce the idle time of the communication links
by using one more processor at the beginning.

The intuition underlying our algorithm is simple. We know that if we only had the m' —
1 processors with the fastest links, then RRA would be optimal to minimize the makespan.
However, the time necessary for sending a task to each of the first m’ — 1 processors is lower
than p. This means that sending the tasks takes less time than their execution.

This advance, which accumulates over tasks, can become sufficiently large to allow the send-
ing of a task to the m/-th processor, for “free”, i.e., without delaying the treatment of the following
tasks on the other processors.

For a problem without release dates, we can find a closed formula to compute the makespan
of each algorithm and so determine the number ¢ of sending to processor P, that will be
overlapped by computations. Therefore, there only remains a small number of tasks for which
the comparison between RRA and RRB is needed. Thus, our algorithm can be decomposed into
two steps:



3.3. HEURISTICS 35

RRA o
: : ; ; ‘ | Initialization
e i i e e =
Pyi:c=3 : : : : : }
Py:c=3 q ‘ ‘ Cn ‘ : k ‘ ;
‘ g ‘ ni :
Py:c=3 3,—‘]7 ‘ 3 T ‘ } 7 | . ‘
: n. | ; m. j
P:c=1 i : . [7] i
: L i) ] ! I \ i |
p=9 )
RRB P
‘ . | Initialization
B e i eSS S S e
P4 c=3 : : : I
. 3 Do L r ]
P;:c=3 Co ‘ [ k ‘ .
: Lo : o | A
Py:c=3 3,—‘(1 i ‘ T ‘ | [ | ‘
q. —7) g
P:c=1 @ f Im] 1 [i] i
I ) L [ ! m | i ]
p=9 n |

Figure 3.6: Algorithms RRA and RRB.

e determine ¢ and k, such that k(m’ — 1) + i < n, 7 being the maximum number of tasks
that can be sent to m’ whose communications can be overlapped by k tasks being sent to
every m’ — 1 first processors according to a RRA policy,

e determine the best policy among RRA and RRB to schedule the remaining n— (k(m’—1)+1)
tasks.

With release dates, the problem becomes of course more complicated, as the advance accu-
mulated over tasks can be reduced because of release dates. We have to update our algorithm
to take the release dates into account. We can compute the communication occupation under
RRA in presence of release dates. As we do not know the distribution of the release dates, we
have to look at the maximum of the release date of the i-th task plus the communication times
to the remaining tasks to the first (m’ — 1) processors in a cyclic way. Thus, one can know the
time needed to send n’ tasks according to RRA policy, taking into account release dates, and
with the constraint that the last task is sent to P;:

RRAcomm(n’) = I?Eahlx {Ti + kzo C(k[m’—l])-{—l} .

The completion time of RRA with n tasks is the completion time of the last task on P;. We know
that P receives during RRA L#J tasks, so the ready-time of Pj; is the maximum between
the time needed to send one of these tasks to Pj, plus the completion time of all following tasks:

n

RRA(n) = {%J {RRA omm(n — k(m’ — 1)) + (k+ 1)p} .



36 CHAPTER 3. THE DIFFICULTY OF SCHEDULING WITH COMMUNICATIONS

To express the communication time of n tasks according to RRB is more complicated, as we
have to send the tasks n — m’ + 1 to P,,. So the occupation of the communication is equal to
the maximum of the communication time of n — m’ tasks under RRA plus the sending times to
the first m’ processors, and the release dates of the last tasks plus the remaining communication
times:

m’ n—i+1
RRB n) = max { RRA n—m cy;  mA r; Chpop-
comm( ) X{ comm( )+kZ:1 k’z’n—w?-i—l{ i+ ; k}}
And the completion time of RRB is the maximum of the communication time of the last task
to P; and the completion time of task n — m/ on P, plus computation time of the task n:

RRB(n) = max {RRA(n — m'); RRBeomm (n) } + p1.

Our last parameter is the number of times we can send a task to processor m’. One can remark
that RRB always uses a faster communication links than RRA to send a task, or RRA has to
wait before using the fastest communication links. Thus, if RRB achieves a better completion
time than RRA for n’ tasks, then RRB will always have a smaller completion time than RRA
for any greater number of tasks. So we can perform our scheduling backward, while comparing
RRA and RRB. Every time that RRB achieves a lower completion time means that we can send
another task to P, and we continue the comparing of the two scheduling policies with the
remaining tasks.

We call the resulting greedy heuristic SLIFWC for (Scheduling the Last Job First With
Communication). Algorithm 1 presents its pseudo-code version. This heuristic has complexity
of O(n + mlogm).

Algorithm 1: Heuristic SLJFWC for problem Q, MS | r;, pj = p, ¢j | Ciax

ng «—n—m' +1; /* last task to consider */

ny < ng; /* first task to consider */

k «— 1; /* number of round */

while n; > 1 do

ny «— max{(nz — (k(m' — 1) +1));1};

Compare RRA and RRB with the tasks n; to ng;

if RRB best then
ng < ni;

k—1;
else
| k—Fk+1;

Send according to the best scheduling the first n — (m’ — 1) tasks;
Send the last m’ — 1 tasks on the m’ — 1 links from the slowest to the fastest;

3.3.3 Fully heterogeneous platform

On a fully heterogeneous platform, the problem becomes more difficult as expected. Whereas
the problem of minimizing the makespan without release dates can be solved in polynomial time,
the general problem with release dates can be proved to be NP-hard.



3.3. HEURISTICS 37

Without release dates

The problem without release dates can be solved in two ways. The first solution is due to
Beaumont, Legrand, and Robert [22] who present an algorithm which, given a platform and n
tasks, checks in polynomial time whether one can process the tasks on the platform in a given
time T'. Using this algorithm, one can find the minimum makespan by performing a binary
search on T'. As this binary search is over rational values, one could fear that it does not always
terminate. One can however show that not only does such a binary search always terminate,
but that it completes in a number of steps polynomial in the size of our problem (the proof is
identical to the one that will be used for Theorem 3.5). This approach leads to a polynomial
time algorithm but uses as a building block a complicated algorithm of complexity O(n?m?).

To obtain a solution of lower complexity, we propose to reduce our problem to a problem
with deadlines. Given a makespan M, we will still check whether there exists a schedule which
completes all the work in time. Then, using this as a basic block, we will find the optimal
makespan with a binary search. We will use Moore’s algorithm [105] whose aim is to minimize
the number of tardy tasks, i.e., which are not completed by their deadlines. This algorithm
gives a solution to the 1|p;,d;| Y U; problem where the maximum number of tasks, among n
candidate tasks, has to be processed in time on a single machine. Each task k£, 1 < k < n, has
a processing time p and a deadline d before which it has to be processed.

Moore’s algorithm —Algorithm 2—, is a classical algorithm in scheduling literature, and
works as follows. All tasks are ordered in non-decreasing order of their deadlines. Tasks are
added to the solution one by one in this order as long as their deadlines are satisfied. If a task
k is out of time, the task j in the actual solution with the largest processing time p; is deleted
from the solution. Moore’s algorithm runs in O(nlogn).

Algorithm 2: Moore’s algorithm
Data: a set of jobs with their deadlines and sizes: {(d;, pi) <i<n-
Order the jobs by non-decreasing deadlines: dy < ds < -+ < dy;
o« 0;t 0
for i :=1ton do
o—oU{i};
L —1+pi;
if ¢t > d; then
Find job j in o with largest p; value;
o —o\{j}h

t—1t—pj;

In order to use Moore’s algorithm, which is supposed to schedule tasks with deadlines on
one machine, we will need to create tasks with deadlines. Recall we assume a one-port model,
and that we only need to schedule the communications, i.e., the use of the communication link
by the master (on each worker the assigned tasks are scheduled as soon as possible). Therefore,
the communication link corresponds to the machine in Moore’s algorithm. For the targeted
makespan M, the deadlines and the computation times of the tasks will be defined as follows.
We compute for each worker of our platform the deadline of each of the tasks it can receive: d;
denotes the deadline of the i-th last task for the worker P;. Beginning at the makespan M, one
computes when the last task has to arrive on the worker so that it can still be processed in time.
The latest moment at which a task can arrive so that it can still be computed on worker P; is



38 CHAPTER 3. THE DIFFICULTY OF SCHEDULING WITH COMMUNICATIONS

M —p;. Then d]l = M — p;. The latest moment at which the task before the last one can arrive
so that it can still be computed in time on worker P; is M — 2 x p;. Then d? =M —2 x pj, and

so on. We denote by [; the maximum number of tasks that worker P; can receive: [; = L%J
See Figure 3.7 for an example. We denote by [ the total number of tasks the platform could
receive: | = Y ", ;. Obviously ! is an upper bound and can only be achieved if there is no
communication contention, which is unlikely to happen. In other words, with these deadlines
we have defined a set of | virtual tasks. We are going to effectively schedule as many of these
virtual tasks as possible. If the number we succeed to schedule is greater than or equal to the
number of tasks we actually have to schedule, n, we will have found a schedule whose makespan

is no greater than M. Otherwise we will have failed.

]\/I—ljxpj j\/j—Qij
! l M — (l] — 1) X p]' l M—1x p]' ‘
: oottt + oottt + 777777777 i
slave Py o | | |
ST
L) (1;-1) @) ) |
[ d] d]‘ d]' dJ [
0 M

Figure 3.7: Computation of the deadlines d;? for worker P;.

In our model, a virtual task j with a deadline d; = dfj has a processing time equal to the
communication time ¢;; to P;;. Then the master has to decide which virtual tasks have to be
sent to which workers and in which order. To solve this problem we use Moore’s algorithm.
Starting at time ¢ = 0, the master can start scheduling the tasks on the communication link.
For this purpose all the deadlines d; are ordered by non-decreasing values. In the same manner
as in Moore’s algorithm, an optimal schedule ¢ is computed by adding one by one the tasks
to the schedule: if we consider the deadline d; = d,i-“j, we add a task to processor Pj;. So if a
deadline is not met, the largest communication is suppressed from ¢ and we continue.

The adapted Moore’s algorithm is described by Algorithm 3.

Algorithm 3: Adapted Moore’s algorithm
Data: {(dj, Cij)}j
Order the jobs by non-decreasing deadlines: dy < do < -+ < dp;
o—0;t—0;
for j:=1to !l do
o —oU{(dj,ci;)};
t—1t+ciy;
if £ > d; then
Find job £ in o with largest c;, value;
o — \{(dys ca)}:

t—1t—cy;

return o;

One only needs to add a binary search to finalize our algorithm, which is described by



3.3. HEURISTICS 39

Algorithm 4. We bound the search of the minimal makespan with two values. As at least
one machine will have to compute no less than [%1 tasks, the lower bound is the minimum
time needed by one machine to compute {%] tasks sequentially. We will suppose for simplicity
of the proofs that - is an integer. Depending on the communication to computation ratio,
this time equals to either the time needed to make one communication with the worker and -
computations, or the time needed to make ;- communications and one computation. We will

call this value f.in, and we have:
. n .
Fnin = mjm {E max{c;,p;} + mln{cj,pj}} )

The upper bound, finaz, is the minimum time needed by one machine to compute all the tasks.
We have:

fmaz = mjm{n maX{Cjapj} + miH{Cj,pj}}.

The output of Algorithm 4 is a set ¢ of couples of deadlines and communication times. From
such a set one straightforwardly defines a schedule: the virtual tasks described by o are sent
by the master as soon as possible and by non decreasing deadlines, a virtual task (d;,c;;) being
sent to the processor P;;. This schedule has a makespan no greater than M by construction of
the deadlines and by the optimality of Moore’s algorithm.

Theorem 3.4. Algorithm 4 builds an optimal schedule o for the scheduling problem Q, MS | p;,
Cj ‘ Cmax~

Proof. Algorithm 4 is nothing but a binary search over the makespan M, the core of the al-
gorithm being a call to Algorithm 3 (Adapted Moore’s Algorithm) on a set of virtual tasks.
Therefore, to prove the optimality of Algorithm 4 we only have to show that Algorithm 3, when
called on a virtual set of tasks built for the objective makespan M, outputs a set o containing
at least n tasks if, and only if, M > M, where M is the optimal makespan.

Let us take any value M > M. From what precedes, if Algorithm 4 returns a set ¢ contain-
ing at least n elements, there exists a schedule whose makespan is less than, or equal to, M.
Conversely, by definition of the optimal makespan M, there exists a schedule ¢* of n tasks with
a makespan less than, or equal to, M. We will prove that in this case Algorithm 3 returns a set
o containing at least n elements.

Let N; denote the number of tasks received by P; under o*. So we have n =), N;. Let us
denote by D the set of virtual tasks computed by our algorithm for the scheduling problem for
makespan M:

D= (J U M —jxp,e)}

LSS |

We also define the set of virtual tasks corresponding to the NV; latest deadlines in D for each

worker P;:
D= ) U {M—jxpic)}

1<i<m 1<j<N;

Obviously D* C D. The set of tasks in ¢* is exactly a set of tasks that respects the deadlines
in D*. The application of Moore’s algorithm on the same problem returns a maximal solution.
With D* C D, we already know that there exists a solution with n = |D*| scheduled tasks. So
Moore’s algorithm will return a solution with |o| > |D*| > n tasks (as there may be more than
n possible deadlines in D), as we wanted. |



40 CHAPTER 3. THE DIFFICULTY OF SCHEDULING WITH COMMUNICATIONS

Algorithm 4: Algorithm for problem @, MS | pj, ¢j | Cmax
Data: p; = %,ai,ﬂi e Nx N* ¢ = g—j,%,&- € N x N*
A —lemi<i<m{Bi, 0i};
precision «— +:
lo — minj{% max{c;,p;} + min{cj, p;}};
hi «— min;{n max{c;, p;} + min{c;, p;} };

M «— hi;
repeat
for i :=1 to m do
l; LMJ,
Di

for £k :=1 to min{l;,n} do
| S —=SU{(M -k xpi,c)};

if > l; <n then

/* M is too small */;

lo— M;

else

o « Adapted Moore’s algorithm (S);
if |o| < n then

/* M is too small */;

lo — M;

else

/* M is maybe too big */;
hi — M,

| Oopt < O3

gap — [lo — hil;

M — (lo+ hi)/2;
until gap < precision ;
return oopt;

Theorem 3.5. Scheduling problem Q,MS | p;, ¢; | Cmax ts solvable in polynomial time by
Algorithm 4.

Proof. Thanks to Theorem 3.4, we only have to show that Algorithm 4 runs in polynomial time.

We perform a binary search for a solution in the interval [fiin, fmaz]- As we are in hetero-
geneous computation conditions, we have heterogeneous p;-values: for each ¢ € [1;m], p; € Q.
The communications are also heterogeneous, so we have ¢; € Q for each i € [1;m]. For each
i € [1;m], let the representation of the values be of the following form:

o |
pi=ghon S ENXN, and ;= g—w €N x N,
(3 (3

where a; and 3; are relatively prime, and also 7; and §; are relatively prime.
Let A be the least common multiple of the denominators 3; and ¢;:

A =lemi<i<m{Bi, di }-

As a consequence, for any ¢ in [1..m], A X p; € N and A x ¢; € N. Now we have to choose the
precision which allows us to stop our binary search. For this, we take a look at the possible finish



3.3. HEURISTICS 41

times of the workers: all of them are linear combinations of the different ¢; and p;-values. Some
optimal algorithms may have some idle times, but without any loss of generality, we only look
at the algorithms which send tasks and compute them as soon as possible. So if we multiply all
values with A we get integers for all values and the smallest gap between two finish times is at
least 1. So the precision p, i.e., the minimal gap between two feasible finish times, is p = %

The maximal number of different values M we have to try can be computed as follows: we
examine our algorithm in the interval [fin, fmaz]. The possible values have an increment of %
So there are

("= minfmax(er 1)) A

m

possible values for M. Hence, the total number of steps of the binary search is

@) <log (nm—n mjn{max{cj,pj}}> + log()\)> .
m J
Now we have to prove that this is polynomial in the size of our problem input.

Our platform parameters ¢; and p; are given under the form p; = %z and ¢; = g’ So it takes
log(a;) +log (i) to store a p; and log(~;) +log(d;) to store a ¢;. So our entry E can be bounded

as follows:
[E] > "log(a) + > log(Bi) + Y log(v:) + > log(4)

We can do the following estimation:

B> Zlog(ﬁi) + Zlog(5 = log <H Bi x H5> > log(A

So we already know that our complexity is bounded by

0 <]E\ +log <W mjin{max{cj,pj}}>> .

We can simplify this expression:

0 (111-+ 105 (0 minfmax(cspy}} — % minfmax{es. 71} ) )
0 (181-+ 10g (- min{mex(cs. 11 ) ).
It remains to upper-bound:
log(n - min{max{c;, p;}}) = log(n) + log(min{max{c;, p;}}).

n is a part of the input and hence its size can be upper-bounded by the size of the input
E. In the same manner we can upper-bound log(min;{max{c;,p;}}) by min;j{max{log(ca;) +

log(3;),log(v;) +log(d;)}} < E.
Assembling all these upper-bounds, we get

O ( [E] +log { n- min{max{c;j, p;}} | | < O(3|E])
(14108 (v )



42 CHAPTER 3. THE DIFFICULTY OF SCHEDULING WITH COMMUNICATIONS

and hence our proposed algorithm needs O(|E|) steps to perform the binary search. Furthermore,
the set S contains at most m-n elements and the complexity of each call to the Adapted Moore’s
algorithm is thus O(m - n - log(m - n)), which is polynomial in the size of our problem input?.
The total complexity finally is O(|E|-n-m-log(n-m)) which is polynomial in the input size. W

We can see here a new line between NP-hard problems and easier problems, because the
scheduling problem becomes NP-hard when the platform is a heterogeneous tree instead of a
star [62].

With release dates

We will prove that the problem Q, MS | 7 ; pj ; ¢ | Cnar is NP-hard in the strong sense. For
that purpose, we will study the following decision problem:

Definition 3.1. MS-hetero: Given a fully heterogeneous master-worker platform composed
of m workers, n identical tasks with release dates, and a deadline D, is it possible to schedule
those tasks onto this platform such that all tasks are completed before the deadline D ?

Those two problems are equivalent. If MS-hetero can be solved in polynomial time, then
our problem could also be solved in polynomial time using a binary search on D on the interval
[min; {7 x max{c;, p;} +min{c;, p;}}, rn + min;{n x max{c;, p;} + min{c;, p; } }]. Reciprocally,
if we can solve our problem and find the minimum makespan D, then for all D > Dy,
MS-hetero has a schedule, elsewhere it does not.

We practice here a reduction from the work of Dutot [62].

Definition 3.2 (MS-Dutot). We suppose a one-port model. Let T = (V, E) be a tree, but not a
fork graph. Let P_y in V be a special vertex called “Master node”. For each other vertex, let p;
be the computation cost. For all edges e; in E, let ¢; be the communication cost. Finally let n be
a number of tasks and D be a deadline.

The decision problem is: “Is it possible to schedule the n tasks before the deadline D”?

Theorem 3.6 ([62]). MS-Dutot is NP-complete in the strong-sense.
Theorem 3.7. MS-hetero is NP-complete in the strong-sense.

Proof. First, MS-hetero is in NP. If we have a schedule for n tasks and a given master-worker
platform, we can check in polynomial time that this schedule respects the deadline D.

Let S be an instance of MS-Dutot. S is made of a tree T" and of n tasks Ji, ..., J,. We suppose
that T' is a two-level tree as illustrated in Figure 3.8, with one master node P_1, one distribution
node Py, and m workers, P, ..., Py,. P_1 is only connected to Py, and P, is connected to all
other vertices (as the platform topology is a tree these are the only edges it contains). It takes a
time p for Py to compute a task, and p; for processor P;, 1 < i < m. It takes a time c for a task
to be sent over the edge (P_1, Pp) and, for i € [1,m], it takes a time ¢; on the edge (Py, P;). We
can assume without any loss of generality that any instance S has this shape as Dutot exactly
used this kind of tree to build his proof of NP-completeness.

2We make the usual assumption that our scheduling problem takes the tasks 1, 2, ..., n as input, and not
merely the number of identical tasks. This is a natural assumption which guarantees that basic certificates, such
as sets of task starting times, are of size polynomial in the size of the input, and thus that scheduling problems
are in NP.



3.3. HEURISTICS 43

Master node P_;

Master P’

D1 b Pm, p

Platform T used in MS-Dutot. Platform T’ used in MS-hetero.

Figure 3.8: The platforms used in the reduction of MS-Dutot to MS-hetero.

From instance S of MS-Dutot, we build an instance S’ of MS-Hetero, composed of a tree T”
and n tasks, Ji,...,J), with their respective release dates, 7, ...,7), (Figure 3.8). T" is a fork
tree, composed of one master P’ ; and m+1 leaves P, P, .., P}.. The communication cost of the
edge (P, Py) is 0 and, for each i € [1,m], the cost of the edge (P’, P/) is ¢;. The computation
cost of P} is p and, for each i € [1,m], the computation cost of P/ is p;. Finally, the release dates
of the tasks are uniformly spaced: V 1 < i < n,r; = ic. This reduction is obviously polynomial
in the size of the original instance.

We now prove the equivalence between problems S and S’

e We first suppose that problem MS-hetero on S’ has a solution, i.e., that there exists a
schedule o’ which executes the n tasks on the 1+ m processors, according to their release
dates, and in an overall time less than or equal to D. From o', we create a new schedule o
for S. Under o, the master node P_1 sends all the tasks as soon as possible, the i-th task
J;i being sent during the time interval [(i — 1)c, ic[. Therefore, under o a task J; arrives on
Py exactly at the release date of its corresponding task J;.

For any i € [1,n], J; is executed on P; under o if and only if J] is executed on P/ under
o'. Furthermore, J; is sent to P; under o at the date J; is sent to P} under o', and the
two corresponding tasks are executed at the same time. In particular, if J! was executed
on Pj, Py executes itself J; without forwarding it to one of its workers.

As o’ successfully schedules the n tasks with release dates Ji, ..., J/ on T' before the
deadline D, o schedules the n tasks Ji, ..., J, on T before D.

e We now suppose that instance S of MS-Dutot has a solution, i.e., that there exists a
schedule o which executes the n tasks Jp, ..., J, on T before the deadline D. As the time
needed by the master P_; to send tasks to the distribution node Py is ¢, task ¢ will arrive
on the distribution node at a time ¢; greater than, or equal to, ;.

Then, symmetrically to what we have done in the previous case, we define ¢’ from o as
follows: for any i € [1,n], J; is executed on P; under o’ if and only if J; is executed on
Pj under o, J; is sent to P; under o at the date J; is sent to P} under o', and the two
corresponding tasks are executed at the same time.



44 CHAPTER 3. THE DIFFICULTY OF SCHEDULING WITH COMMUNICATIONS

We have noticed that, for any i € [1,n], t; > r;, therefore schedule ¢’ respects the release
dates. As it has the same makespan than o, we can conclude.

In conclusion, MS-hetero is NP-complete in the strong sense. |

3.4 MPI experiments

To complement the previous theoretical results, we looked at some efficient online algorithms,
and we compared them experimentally on different kinds of platforms. In particular, we include
in the comparison our last two new heuristics, which were specifically designed to work well on
communication-homogeneous and on computation-homogeneous platforms respectively.

3.4.1 The algorithms

We describe here the different algorithms used in the practical tests:

1. DD (Demand Driven) is a well known algorithm: each time a processor is free of work, it
asks the master for a new task.

2. LS (List Scheduling) is an efficient algorithm on stable platforms. It uses its knowledge of
the system (estimated computation time and communication time) to send a task as soon
as possible to the worker that would finish it first, according to the current load estimation
(the number of tasks already waiting for execution on the worker).

3. RR (Round Robin) is the simplest algorithm. It sends a task to each worker one by one,
according to a cyclic fashion: it will send task ¢ to processor ¢ mod p and will send it as
soon as possible

4. RRC is a variant of RR performing some resource selection: it sends the tasks starting
from the worker with the smallest ¢; up to the worker with the largest one until the first
processor finishes its computation or until all processors receive one task, and then repeat
this procedure again.

5. RRP has a similar behavior as RRC, but looks into computation instead of communica-
tion: it sends the tasks starting from the worker with the smallest p; up to the worker
with the largest one, until the first processor finishes its task or until all processor receive
one task, and then repeat this procedure again.

6. SLJF is described in a previous section. It is optimal for makespan minimization on
communication-homogeneous platform as soon as it knows the total number of tasks.

7. SLIJFWC is our heuristic meant to be used on computation-homogeneous platform.

3.4.2 The experimental platform

During the experiments, we built a small real heterogeneous master-worker platform with five
different laptops running the Linux operating system and connected to each other by a fast
Ethernet switch (100 MB/s). The five machines are all different, both in terms of the amount of
available memory and in terms of CPU speed (four have a CPU speed between 1.2 and 1.6 GHz,
the last and oldest one has a processor Mobile Pentium MMX 233 MHz). The heterogeneity of



3.4. MPI EXPERIMENTS 45

the communication links is mainly due to the differences between the network cards (the oldest
and slowest machine has a 10 MB/s network card, the four others have 100 MB/s ones). From
this platform, we selected one machine to be the master.

3.4.3 The tasks

Each task is composed of a matrix, and each worker has to calculate the determinant of the
matrices it receives. Whenever needed, we play with matrix sizes so as to achieve more hetero-
geneity or on the contrary some homogeneity in the CPU speeds or communication bandwidths.
We proceed as follows: in a first step, we send one single matrix to each worker one after the
other, and we calculate the time needed to send this matrix and to calculate its determinant on
each worker. Thus, we obtain an estimation of ¢; and p;, according to the matrix size. Then
we determine the number of times this matrix should be sent (n.,) and the number of times its
determinant should be calculated (n,,) on each worker in order to modify the platform charac-
teristics so as to reach the desired level of heterogeneity. Then, a task (matrix) assigned on P,
will actually be sent n,, times to P; (so that ¢; < ne,.c;), and its determinant will actually be
calculated n,, times by P; (so that p; < np,.p;).

Here are the original values of ¢; and p; for a small matrix (40 x 40):

e ¢; = 0.011423 and p; = 0.052190

e ¢o = 0.012052 and po = 0.019685

e c3 = 0.016808 and p3 = 0.101777

e ¢y, = 0.043482 and py = 0.288397

The experiments are as follows: for each diagram, we create ten random platforms, possibly
with one prescribed property (such as homogeneous links or processors) and we execute the
different algorithms on it. After modification of the parameters, our platforms were composed
of machines P; with ¢; between 0.01 s and 1 s, and p; between 0.1 s and 8 s. Once the platform is
created, we send one thousand tasks to it, their release dates following a Poisson’s distribution.
Then we calculate the makespan, sum-flow, and max-flow obtained by each algorithm. After
having executed all algorithms on the ten platforms, we calculate the average makespan, sum-
flow, and max-flow. The following section shows the different results that have been obtained.

3.4.4 Results

For each algorithm we plot its makespan (in blue), sum-flow (in orange), and max-flow (in
yellow), which are represented in this order, from left to right. We normalize everything to the
performance of DD, whose makespan, max-flow and sum-flow are therefore set equal to 1.
First of all, we consider fully homogeneous platforms. Figure 3.10(a) shows that all static
algorithms perform equally well on such platforms, and exhibit better performance than the
dynamic heuristic DD. On communication-homogeneous platforms (Figure 3.10(b)), we see that
RRC', which does not take processor heterogeneity into account, performs significantly worse
than the others; we also observe that SLJF is the best approach for makespan minimization. On
computation-homogeneous platforms (Figure 3.10(c)), we see that RRP and SLJF, which do
not take communication heterogeneity into account, perform significantly worse than the others;
we also observe that SLJFWC' is the best approach for makespan minimization. Finally, on
fully heterogeneous platforms (Figure 3.10(d)), the best algorithms are LS and SLJFWC.
Moreover, we see that algorithms taking communication delays into account actually perform
better. We underline here that taking into account the communication heterogeneity is more



46 CHAPTER 3. THE DIFFICULTY OF SCHEDULING WITH COMMUNICATIONS

important than the computation heterogeneity for a scheduler. This could be explained mainly
because of the one-port model.

Figure 3.9: Comparison of the seven algorithms on different platforms.

14 B Makespan 1.2 B Makespan
H Sum flow B Sum flow
1.2 O max flow 1 O max flow
1 0.8
0.8
0.6
0.6
0.4
0.4
0.2
0.2
o 0
Round-Robin SLUF  SLIFWC DD Round-Robin SLJF  SLJFWC
(a) Homogeneous platforms (b) Platforms with homogeneous com-

munication links

14 B Makespan 1.4 B Makespan
1.2 B Sum flow 12 B Sum flow
l O max flow ’ O max flow
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0
Round-Robin SLJF SLJIFWC DD LS Round-Robin SLJF SLJFWC

(c) Platforms with homogeneous proces- (d) Fully heterogeneous platforms

sSors

3.5 Related work

Task graph scheduling— Task graph scheduling is usually studied using the so-called macro-
dataflow model (Section 2.4.2). In other words, the communication network is assumed to
be contention-free, which of course is not realistic as soon as the processor number exceeds
a few units. More recent papers [138, 111, 121, 16, 22, 134] take communication resources
into account.

Hollermann et al. [77] and Hsu et al. [81] introduce the following model for task graph
scheduling: each processor can either send or receive a message at a given time-step (bidi-
rectional communication is not possible); also, there is a fixed latency between the initiation
of the communication by the sender and the beginning of the reception by the receiver.
Still, the model is rather close to the one-port model discussed here.

Online scheduling— A good survey of online scheduling can be found in [127, 118]. Two
papers focus on the problem of online scheduling for master-worker platforms. In [100],



3.6. CONCLUSION 47

Leung and Zhao proposed several competitive algorithms minimizing the total completion
time on a master-worker platform, with or without pre- and post-processing. In [99],
the same authors studied the complexity of minimizing the makespan or the total flow
time, and proposed some heuristics. However, none of these works take into consideration
communication costs. To the best of our knowledge, the first known results for online
problems with communication costs are those reported in our former work [113], and
in [B2] we dramatically improved several of the competitive ratios given in [113] and we
have added new ones.

Master-worker on a computational grid — Master-worker scheduling on a grid can be based
on a network-flow approach [129, 128] or on an adaptive strategy [75]. Note that the
network-flow approach of [129, 128] is possible only when using a full multiple-port model,
where the number of simultaneous communications for a given node is not bounded. This
approach has also been studied in [78]. Enabling frameworks to facilitate the implemen-
tation of master-worker tasking are described in |72, 144].

3.6 Conclusion

In this chapter, we have dealt with the problem of online scheduling independent, same-size
tasks on master-worker platforms. We enforce the one-port model, and we study the impact
of heterogeneity on the performance of online and offline scheduling algorithms as well as the
impact of the communications on the design and analysis of the proposed algorithms.

The major contribution of this work lies on the theoretical side, and is well summarized
by Table 3.1 for online scheduling. We have provided a comprehensive set of lower bounds
for the competitive ratio of any deterministic online scheduling algorithm, for each source of
heterogeneity and for each target objective function. We also have derived several new results
for offline scheduling with release dates, as an optimal makespan-minimization algorithm for
communication-homogeneous platform, and an NP-hard proof of the scheduling problem on
fully heterogeneous platform. Another important direction for future work would be to derive
an optimal algorithm or to prove the NP-hardness for offline scheduling with release dates on
computation-homogeneous platforms. On the practical side, we have to widen the scope of the
MPI experiments. So we hope to have demonstrated in this chapter the superiority of those
heuristics which fully take into account the relative capacity of the communication links.



48

CHAPTER 3. THE DIFFICULTY OF SCHEDULING WITH COMMUNICATIONS




Chapter 4

Matrix product

In this chapter, we expand our scheduling approach to the case of matrix’ multiplication. Our
goal is to minimize the total execution time, which remains a difficult problem considering our
framework. In order to bypass this difficulty, we will only concentrate into minimizing the total
communication volume, which we think is the bottleneck of this application.

4.1 Introduction

Matrix product is a key computational kernel in many scientific applications, and it has been
extensively studied on parallel architectures. Two well-known parallel versions are Cannon’s
algorithm [41] and the ScaLAPACK outer product algorithm [33]. Typically, parallel implemen-
tations work well on 2D processor grids, because the input matrices are sliced horizontally and
vertically into square blocks that are mapped one-to-one onto the physical resources; several
communications can take place in parallel, both horizontally and vertically. Even better, most
of these communications can be overlapped with (independent) computations. All these charac-
teristics render the matrix product kernel quite amenable to an efficient parallel implementation
on 2D processor grids.

As we target heterogeneous clusters, which are composed of heterogeneous computing re-
sources interconnected by a sparse network, we can no longer suppose there are direct links
between any pair of workers. That means that messages from one processor to another are
routed via several links, likely to have different capacities, and congestion will occur when two
messages, involving two different sender/receiver pairs, collide because a same physical link hap-
pens to belong to the two routing paths. Therefore, an accurate estimation of the communication
cost requires a precise knowledge of the underlying target platform.

There are two possible approaches to tackle the parallelization of matrix product on het-
erogeneous clusters when aiming at reusing the 2D processor grid strategy. The first (drastic)
approach is to tgnore communications. The objective is then to load-balance computations as
evenly as possible on a heterogeneous 2D processor grid. This corresponds to arranging the n
available resources as a (virtual) 2D grid of size p X ¢ (where p - ¢ < n) so that each processor
receives a share of the work, i.e., a rectangle, whose area is proportional to its relative computing
speed. There are many processor arrangements to consider, and determining the optimal one is
a highly combinatorial problem, which has been proven NP-complete in [12]. In fact, because of
the geometric constraints imposed by the 2D processor grid, a perfect load-balancing can only
be achieved in some very particular cases.

The second approach is to relax the geometric constraints imposed by a 2D processor grid.

49



50 CHAPTER 4. MATRIX PRODUCT

The idea is then to search for a 2D partitioning of the input matrices into rectangles that will
be mapped one-to-one onto the processors. Because the 2D partitioning now is irregular (it is
no longer constrained to a 2D grid), some processors may well have more than four neighbors.
The advantage of this approach is that a perfect load-balancing is always possible; for instance
partitioning the matrices into horizontal slices whose vertical dimension is proportional to the
computing speed of the processors always leads to a perfectly balanced distribution of the com-
putations. The objective is then to minimize the total cost of the communications. However,
it is very hard to accurately predict this cost. Indeed, the processor arrangement is virtual,
not physical: as explained above, the underlying interconnection network is not expected to
be a complete graph, and communications between neighbor processors in the arrangement are
likely to be realized via several physical links constituting the communication path. The actual
repartition of the physical links across all paths is hard to predict, but contention is almost
certain to occur. This is why a natural, although pessimistic assumption, to estimate the com-
munication cost, is to assume that all communications in the execution of the algorithm will
be implemented sequentially. With this hypothesis, minimizing the total communication cost
amounts to minimizing the total communication volume. Unfortunately, this problem has been
shown NP-complete as well [13]. Note that even under the optimistic assumption that all com-
munications at a given step of the algorithm can take place in parallel, the problem remains
NP-complete [15].

In this chapter, we are not interested in adapting 2D processor grid strategies to heteroge-
neous clusters, as proposed in [87, 12, 13]|. Instead, we adopt a realistic application scenario,
where input files are read from a fixed repository (such as a disk on a data server). Computations
will be delegated to available resources in the target architecture, and results will be returned
to the repository, which calls for a master-worker paradigm. In this centralized approach, all
matrix files originate from, and must be returned to, the master. The master distributes both
data and computations to the workers (while in ScaLAPACK, input and output matrices are
supposed to be equally distributed among participating resources beforehand). Typically, our
approach is useful in the context of speeding up MATLAB or SCILAB clients running on a
server (which acts as the master and initial repository of files).

In addition, it becomes necessary to include the cost of both the initial distribution of ma-
trices to processors and of collecting back results. These input/output operations have always
been neglected in the analysis of the conventional algorithms. This is because only ©(n?) co-
efficients need to be distributed in the beginning, and gathered at the end, as opposed to the
O(n?) computations' to be performed (where n is the problem size). The assumption that these
communications can be ignored could have made sense on dedicated processor grids like, say, the
Intel Paragon, but it is no longer reasonable on heterogeneous platforms. Furthermore, because
we investigate the parallelization of large problems, we cannot assume that full matrix panels
can be stored in worker memories and re-used for subsequent updates (as in ScaLAPACK). As
processors cannot store all the matrices in their memory, the total required volume of commu-
nication can be larger than ©(n?) as a same matrix element may have to be sent several times
to a same processor.

To summarize, the target platform is composed of several workers with different computing
powers, different bandwidth links to/from the master, and different, limited, memory capacities.
The first problem is resource selection. Which workers should be enrolled in the execution?

LOf course, there are ©(n®) computations if we only consider algorithms that use the standard way of multi-
plying matrices; this excludes Strassen’s and Winograd’s algorithms [56].



4.2. FRAMEWORK 51

All of them, or maybe only the faster computing ones, or else only the faster-communicating
ones? Once participating resources have been selected, there remain several scheduling decisions
to be taken: how to minimize the number of communications? in which order workers should
receive input data and return results? what amount of communications can be overlapped with
(independent) computations? The goal of this work is to design efficient algorithms for resource
selection and communication ordering. In addition, we report numerical experiments on vari-
ous heterogeneous platforms at the Ecole Normale Supérieure de Lyon and at the University of
Tennessee.

The main contributions are twofold:

o On the theoretical side, we have refined the existing bounds on the volume of communi-
cations needed to perform a matrix-product on a platform with insufficient memory to
simultaneously store the whole three matrices.

e On the practical side, we have designed an algorithm for heterogeneous platforms which is
quicker than the existing ones, and which uses less computational resources, according to
our MPI experiments.

The rest of this section is organized as follows. In Section 4.2, we state the scheduling problem
precisely, and we introduce some notations. Next, we show that minimizing the execution
time is still a difficult problem with more than one worker (Section 4.3). In Section 4.4, we
proceed with the analysis of the total communication volume that is needed in the presence of
memory constraints. We improve a well-known bound by Toledo et al. [140, 82| and we propose
an algorithm almost achieving this bound on platforms with a single worker (Section 4.4.2).
We deal with homogeneous platforms in Section 4.5, and we extend our algorithm to matrix
multiplication on heterogeneous platforms in Section 4.6, and to LU factorization in Section 4.7.
We report on some MPI experiments in Section 4.8. Finally, we give an overview of the related
work in Section 4.9, and we conclude in Section 4.10.

4.2 Framework

In this section we formally state our hypotheses on the application (Section 4.2.1) and on the
target platform (Section 4.2.2).

4.2.1 Application

We deal with the computational kernel C «+ C + A x B. We partition the three matrices A, B,
and C as illustrated in Figure 4.1. Formally:

e We use a block-oriented approach. The atomic elements that we manipulate are not matrix
coefficients but instead square blocks of size ¢ x ¢ (hence with ¢? coefficients). The size q of
these square blocks is chosen so as to harness the power of Level 3 BLAS routines [32, 33].
Typically, ¢ = 80 or 100 on most platforms when using ATLAS-generated routines [55, 145].

e The input matrix A is of size ny X nyz:
- we split A into r horizontal stripes A;, 1 < i < r, where r = n4/q;
- we split each stripe A; into ¢ square ¢ x ¢ blocks A; , 1 <k <t, where t = nygp/q.



52 CHAPTER 4. MATRIX PRODUCT

s stripes

T

Network
Links
t blocks
of size ¢gxq
ALAI C?ﬂ,j ws
. Memory '
o Il OO T O
{—’—’—} r«s blocks m;
Workers

Figure 4.1: Partition of the three matrices A,  Figure 4.2: A fully heterogeneous master-
B, and C. worker platform with limited memory.

e The input matrix B is of size n4z X ng:
- we split B into s vertical stripes Bj, 1 < j < s, where s = ng/q;
- we split stripe B; into ¢ square q X q blocks By j, 1 < k <t

e We compute C = C + A x B. Matrix C is accessed (both for input and output) by square
g x gblocks C;;, 1 <i<r,1<j<s. There are r x s such blocks.

We point out that with such a decomposition, all stripes and blocks have the same size. This
will greatly simplify the analysis of communication costs.

4.2.2 Platform

We still target a master-worker platform composed of p workers, connected by a star network
ruled by the one-port model (see Figure 4.2). Because we manipulate large data blocks, we
adopt a linear cost model, both for computations and communications (i.e., we neglect start-up
overheads). We have the following notations:

Computation speed: It takes X.w; time-units to execute a task of size X on P;;

Communication speed: It takes X.¢; time-units for the master Py to send a message of size
X to P; or to receive a message of size X from Pj;

Memory capacity: the amount of memory available in each worker is expressed as a given
number m; of buffers, where a buffer can store one block of size ¢ x ¢ (either from A, B,
or C).

For large problems, this memory limitation will considerably impact the design of the algo-
rithms, as data re-use will be greatly dependent on the amount of available buffers.



4.3. COMBINATORIAL COMPLEXITY OF A SIMPLE VERSION OF THE PROBLEM 53

During most part of this chapter, we will suppose that the master has no processing capabil-
ity. One can argue that if the master had processing capability, we could add a fictitious extra
worker paying no communication cost to simulate computation at the master.

4.3 Combinatorial complexity of a simple version of the problem

This section is almost a digression; it is devoted to the study of the simplest variant of the
problem. It is intended to show the intrinsic combinatorial difficulty of the problem. We make
the following simplifications:

e We consider only rank-one block updates; in other words, and with previous notations, we
focus on the case where t = 1 (so the matrices are of size r x 1,1 X s,7 X s).

e Results need not be returned to the master.

e Workers have no memory limitation; they receive each stripe only once and can re-use
them for other computations.

There are five parameters in the problem; three platform parameters (¢, w, and the number
of workers p) and two application parameters (r and s). The scheduling problem amounts to
deciding which files should be sent to which workers and in which order. A given file may well
be sent several times, to further distribute computations. For instance, a simple strategy is to
partition A and to duplicate B, i.e., send each block A; only once and each block B; p times; all
workers would then be able to fully work in parallel.

Figure 4.3: Dependence graph of the problem (with »r = 3 and s = 2).

The dependence graph of the problem is depicted in Figure 4.3. It suggests a natural strategy
for enabling workers to start computing as soon as possible. Indeed, the master should alternate
sending of A-blocks and B-blocks. Of course it must be decided how many workers to enroll and
in which order one needs to send the blocks to the enrolled workers. But with a single worker,
we can show that the alternating greedy algorithm is optimal:

Proposition 4.1. With o single worker, the alternating greedy algorithm is optimal.

Proof. In this algorithm, the master sends blocks as soon as possible, alternating a block of type
A and a block of type B (and proceeds with the remaining blocks when one type is exhausted).
This strategy maximizes at each step the total number of tasks that can be processed by the
worker. To see this, after x communication steps, with y files of type A sent, and z files of type
B sent, where y + z = z, the worker can process at most y x z tasks. The greedy algorithm
enforces y = [Z] and 2z = |Z] (as long as max(z,y) < min(r,s), and then sends the remaining

files), hence its optimality. [ |



54 CHAPTER 4. MATRIX PRODUCT

1 1 2 2 3 |
B | b
Thrlfty ‘ Cu ‘ Ci2 ‘ Co ‘ Co ‘ Cis ‘CZS ‘ !
b,

-CBI -C32 -CSS 3
BIA[B] L
Min-Min [CulCl[CulCn][Cs] i !
P,

[ Cor J[Can [ Cas | Cos H

Figure 4.4: Example showing that Thrifty is not optimal: with p = 2, ¢ = 4, w = 7, and
r = s = 3, Min-min has a lower makespan. For each algorithm, the first line presents the
communications for P, the second the computations of P;, the third the communications for
P, and the fourth the computations of Ps.

Unfortunately, for more than one worker, determining the next worker to enroll is a difficult
problem. We believe that this general problem is NP-complete but we were unable to prove it.
One can see the difficulty with the following example. There are (at least) two greedy algorithms
that can be devised for p workers:

Thrifty: This algorithm “spares” resources as it aims at keeping each enrolled worker fully
active. It works as follows:

e Send enough blocks to the first worker so that it is never idle,
e Send blocks to a second worker during spare communication slots, and

e Enroll a new worker (and send blocks to it) only if this does not delay previously
enrolled workers.

Min-min: This algorithm is based on the well-known min-min heuristic [104]. At each step, all
tasks are considered. For each of them, we compute their possible starting date on each
worker, given the files that have already been sent to this worker and all decisions taken
previously; we select the best worker, hence the first min in the heuristic. We take the
minimum of starting dates over all tasks, hence the second min.

It turns out that neither greedy algorithm is optimal. See Figure 4.4 for an example where
Min-min is better than Thrifty, and Figure 4.5 for an example of the opposite situation.
We now go back to our original model.

4.4 Minimization of the communication volume

Our underlying assumption is that communication costs dominate our problem. Therefore,
we do not directly target makespan minimization, but communication volume minimization.
Experiments, in Section 4.8, will show that our communication-volume minimization approach
effectively leads to algorithms with shorter makespans.

In this section, we derive a lower bound on the total number of communications (sent from,
or received by, the master) that are needed to execute any matrix multiplication algorithm



4.4. MINIMIZATION OF THE COMMUNICATION VOLUME 35

Bl [ Al B [ A [B] [ A] }P
Thrlfty [ Ci [ Co [ Cy [Co [ Cis [ Couy [Cou [ Cop | Cos | Cn | Cio [ Cag | 1
[ B ] [ A | [ B [ A [ Bs | : »
[ Ca | [ Coo [ Cou | Coo [Cos [ Css | 3 2
B Al B[ A p

I\’Iin—l\/ﬁn ‘ Cu ‘ Ciz ‘ Coy ‘ Coy ‘ ‘ Cis ‘ Cos ‘ ‘ Cs1 ‘ [ ‘C:m ‘(/’41 ‘ Cyo H
[ B[ A] [B [ 4] [ Bs ] [ A] '

‘ Ce1 ‘ ‘ [ ‘ Cs1 ‘ Csa ‘ Ce3 ‘ Cs3 ‘ Ci3 ‘ .

Figure 4.5: Example showing that Min-min is not optimal: with p =2, ¢c =8, w =9, r =6,
and s = 3, Thrifty has a lower makespan.

satisfying our hypotheses (centralized data and limited memory). Since we are under the one-
port model, one can simulate the total communication volume of any parallel algorithm with a
single worker, so we only need to consider the one-worker case.

Therefore, We deal with the following formulation of the problem:

e The master sends blocks A;x, Byj, and Cjj,
e The master retrieves final values of blocks C;j,

o We enforce limited memory on the worker; only m buffers are available, which means that
at most m blocks of A, B, and/or C can simultaneously be stored on the worker.

First, we improve the lower bound on the communication volume established by Toledo et
al. [82]. Then, we describe an algorithm that aims at re-using C blocks as much as possible after
they have been loaded, and we assess its performance.

4.4.1 Lower bound on the communication volume

To derive the lower bound, we refine an analysis due to Toledo [140]. The idea is to estimate
the number of computations made thanks to m (the memory size) consecutive communication
steps (once again, the unit here is a matrix block). We need some notations:

o We let aq, Boid, and 7yyq be the number of buffers used by blocks of A, B, and C right
before the beginning of the m communication steps;

o We let auecy, Orecy, and Yreey be the number of A, B, and C blocks sent by the master
during the m communication steps;

e Finally, we let Y4enq be the number of C blocks returned to the master during these m
steps.

Initially, the memory contains at most m blocks, and we consider a sequence of m communica-
tions. Therefore, the following equations must hold true:

{ Qotd + Bold + Yola <M
Qrecy + ﬁrecv + Yrecv + Vsend = ™M



56 CHAPTER 4. MATRIX PRODUCT

Toledo’s inequality

The following lemma is given in [140]: consider any algorithm that uses the standard way of
multiplying matrices (this excludes Strassen’s and Winograd’s algorithms [56], for instance). If
N4 elements of A, Np elements of B, and N¢ elements of C are accessed, then no more than K
computations can be done, where

K = min { (N4 + N5)v/Ne, (Na + Ne)y/Np, (No + Ne)y/Na |

To use this result here, we remark that no more than g+ auec blocks of A are accessed, hence
NA = (aold + arecv)qz- Simﬂaﬂy, NB = (ﬁold + ﬁrec’u)QQ and NC = (70ld + Vrecv)QQ (the C blocks
returned are already counted). We simplify notations by writing:

Qold + Qrecy = QM
ﬁold + ﬁrecv = fm
Yold + Yrecv = YM

Then we obtain
K =min {(a+8) 7, (8+7)va, (v+a) B} x my/imng®

Writing K = kmy/mq>, we obtain the following system of equations

MAXIMIZE k SUCH THAT
k< (a+0)y7
k<(B+7)Va
kE<(y+a)VvB
a+pB+vy<2

whose solution is easily found to be a = = v = %, and k = \/g’—g. This gives a lower bound

for the communication-to-computation ratio (in terms of blocks) of any algorithm:

m 27

CCRopt = km~/m ~Viom

Loomis-Whitney's inequality

In fact, it is possible to refine this bound. Instead of using the lemma given in [140], we use
Loomis-Whitney inequality [82]: in any algorithm that uses the standard way of multiplying
matrices, if N4 elements of A, Np elements of B, and N¢ elements of C are accessed, then no
more than K computations can be done, where K = /NANgN¢.
Here,

K =+/aBy x mvy/mg.

K is then maximized when o« = 0 = v = % and k = 1/%, so that the lower bound for the
communication-to-computation ratio becomes: CCRopt = \/%.

We point out that the bound CCRp¢ improves upon the best-known value 4/ % derived by
Ironya, Toledo, and Tiskin [82].



4.4. MINIMIZATION OF THE COMMUNICATION VOLUME 57

4.4.2 The maximum re-use algorithm

In the above study, the lower-bound on the communication volume is obtained when the three
matrices A, B, and C are equally accessed during a sequence of communications. This may sug-
gest to allocate one third of the memory to each of these matrices. In fact, Toledo [140] uses this
memory layout. He even proves that, in the context of multiplication of square matrices of size
r, his algorithm is “asymptotically optimal” as soon as the processor cannot store in its memory
more than one sixth of one of the matrices: such an algorithm must have a communication-per-

computation ratio which is €2 (\;—%) when his algorithm has a communication to computation

ratio of O (\;—%) We can, however, still significantly improve the performance of matrix multi-

plication in our context by reducing the constant hidden in the order of complexity of this ratio,
as our experiments will show in Section 4.8.

A closer look at our problem shows that the multiplied matrices A and B have the same
behavior, which differs from the behavior of the result matrix C. Indeed, if an element of C is
no longer used, it cannot be simply discarded from the memory as the elements of A and B are,
but it must be sent back to the master. Intuitively, sending an element of C to a worker also
costs the communication needed to retrieve it from the worker, and is thus twice as expensive
as sending an element of A or B.

Below we introduce and analyze the performance of the mazimum re-use algorithm, that
reuses as much as possible the elements of C. Cannon’s algorithm [41] and the ScaLAPACK
outer product algorithm [33] both distribute square blocks of C to the processors. Intuitively,
squares are better than elongated rectangles because their perimeter (which is proportional to
the data needed by a worker to compute the area) is smaller for the same area. We use the same
approach here.

1 [ I

< » <&
< >

\ 4
A
v

A B B B B c c c c C c c c c c c c c c C C

A
v

Figure 4.6: Memory layout for the mazimum re-use algorithm when m = 21: y = 4; 1 block is
used for A, p for B, and p? for C.

The mazimum re-use algorithm uses the memory layout illustrated in Figure 4.6. Four
consecutive execution steps are shown in Figure 4.7. Assume that there are m available buffers.
First we define u as the largest integer such that 14 g+ p? < m. The idea is to use one buffer
to store A blocks, u buffers to store B blocks, and u? buffers to store C blocks. In the outer
loop of the algorithm, a p x p square of C blocks is loaded. Once these p? blocks have been
loaded, they are repeatedly updated in the inner loop of the algorithm until their final value is
computed. Then the blocks are returned to the master, and u? new C blocks are sent by the
master and stored by the worker. As illustrated in Figure 4.6, we need p buffers to store a row
of B blocks, but only one buffer for A blocks: A blocks are sent in sequence, each of them is
used in combination with a row of p B blocks to update the corresponding row of C blocks. This
leads to the following sketch of the algorithm:

The performance of one iteration of the outer loop of the mazimum re-use algorithm can



58 CHAPTER 4. MATRIX PRODUCT

Bll BLZ BM BLL BU 812 Blli BH Bll Bli Blli Bl«l Bll Blz BliS BH

Cu Cip | Ci3 | Ciy

CQL CZZ CZ:% C24

Figure 4.7: Four steps of the mazimum re-use algorithm, with m = 21 and p = 4. Updated
elements of C are written white on black.

Algorithm 5: The mazrimum re-use algorithm

while there remain C blocks to be computed do
Receive p? blocks of C: {C;; | io <i <o+, jo <j <jo+p};
for k—1totdo
Receive a row of p elements of B {By; | jo < j < jo + p};
Sequentially receive p elements of one column of A {A; 1, | io <@ <o+ p};

for each A; ) do
| update p elements of C ;

| Return results to master;

readily be determined:

e We need 242 communications to send and retrieve C blocks.

e For each value of ¢:
- we need p elements of A and p elements of B;
- we update p? blocks.

In terms of block operations, the communication-to-computation ratio achieved by the algorithm

is thus 9
2 2ut 2 2
Ccor= T2, 2
p=t top
For large problems, i.e., large values of ¢, we see that the CCR is asymptotically close to the value
CCRy = % We point out that, in terms of data elements, the communication-to-computation

ratio is divided by a factor g. Indeed, a block consists of ¢? coefficients but an update requires
q> floating-point operations. Also, the ratio CCR,, achieved by the mazimum re-use algorithm
is lower by a factor v/3 than the ratio achieved by the blocked matriz-multiply algorithm of [140].

Finally, we remark that the performance of the mazimum re-use algorithm is quite close to

the lower bound derived earlier: CCRo = % = 8%.
4.5 Algorithms for homogeneous platforms

In this section, we adapt the mazimum re-use algorithm to fully homogeneous platforms. In this
framework, the memory capacities of processors are limited. So we must first decide which part



4.5. ALGORITHMS FOR HOMOGENEOUS PLATFORMS 59

of the memory will be used to stock which part of the original matrices, in order to maximize
the total number of computations completed per time unit.

4.5.1 Principle of the algorithm

We load into the memory of each worker 1 ¢ X ¢ blocks of A and p q X ¢ blocks of B to compute
1% q x q blocks of C. In addition, we need 2y extra buffers, split into p buffers for A and u for
B, in order to overlap computation and communication steps. In fact, p buffers for A and pu for
B would suffice for each update, but we need to prepare for the next update while computing.
Overall, the number of C blocks that we can simultaneously load into memory is defined by the
largest integer p such that

uz +4p < m.

We have to determine the number of participating workers, 3. For that purpose, we proceed
as follows. On the communication side, we know that in a round (computing a C block entirely),
the master exchanges with each worker 2u? blocks of C (u? sent and u? received), and sends put
blocks of A and ut blocks of B. Also during this round, on the computation side, each worker
computes 1t block updates.

If we enroll too many processors, the communication capacity of the master will be exceeded:
there is a limit on the number of blocks that it can send per time unit. On the contrary, if we
enroll too few processors, they may be overloaded. We can compute the number of processors
B so that the time needed to send blocks to B processors will be roughly equal to (or slightly
greater than) the time spent by one processor for its computations. B is the smallest integer
such that

2ute x P > pltw.

Indeed, this is the smallest value to saturate the communication capacity of the master required
to sustain the corresponding computations. We derive that

P ,u2tw _ [ uw“
| 2ute | 1 2e 1
In the context of matrix multiplication, we have ¢ = ¢*7. and w = ¢37,, where 7, and 7,

respectively represent the speed of the communication link and the speed of the processor. Hence

K9 Ta
2 Te

. Moreover, we need to enforce that 8 < p, hence we finally obtain the

B = min {p, P;q:z-‘ } .

For the sake of simplicity, we suppose that r is divisible by u, and s by Pu. We allocate
u block columns (i.e., gu consecutive columns of the original matrix) of C to each processor.
The algorithm is made of two parts. Algorithm 6 outlines the program of the master, while
Algorithm 7 is the program of each worker.

we have P =

formula

4.5.2 Impact of the start-up overhead

If we follow the execution of the homogeneous algorithm, we may wonder whether we can really
neglect the input/output of C blocks. We sequentialize the sending, computing, and receiving
of the C blocks, so that each worker loses 2¢ time-units per block, i.e., per tw time-units. As
there are P < 52 + 1 workers, the total loss would be of 2¢8 time-units every tw time-units,



60 CHAPTER 4. MATRIX PRODUCT

Algorithm 6: Homogeneous version, master program.
L L\/4+m—2J;
B < min {p, [%1 };
Split matrix C into squares Cy j of 1% q x q blocks :
Cij ={Cij | (' =Dp+1<i<i'p, (j'=Dp+1<5<j'pu};
for j” — 0 to % by Step P do
forz"<—1toﬁdo
for idyorker — 1 to P do
j/ — j” + idworkzer;
Send block Cy j» to worker idyorker;

for k— 1totdo

for idyorker — 1 to P do
j/ — j” + idwork’er;
for j — (/= 1)p+1 to j/u do Send By j;
for i — (' —1)u+1 to i’ do Send A;x;

for idyorier — 1 to P do

-/ 74 . .

J =J +Zdworkera

Receive Cy j from worker idy,orker;

Algorithm 7: Homogeneous version, worker program.
for all blocks do
Receive Cy ; from master;
for k — 1 to t do
for j — (/= 1)+ 1 to j/u do Receive By ;;
for i — (' —1)u+1 to i'p do
Receive A; i;
L for j — (/= 1)p+1to j/udo C;j «— Cij+ Air-Br;

Return Cy ; to master;

which is less than & + t% For example, with ¢ = 2, w = 4.5, p = 4 and ¢t = 100, we enroll
B = 5 workers, and the total loss is at most 4%, which is small enough to be neglected. Note
that it would technically be possible to design an algorithm where the sending of the next block
is overlapped with the last computations of the current block, but the whole procedure would
get much more complicated.

4.5.3 Dealing with “small”’ matrices or platforms

2 Te

We have shown that our algorithm should use ¥ = min {p, {MT—“—‘} processors, each of them
holding 2 blocks of matrix C. For this solution to be feasible, C must be large enough. In other

words, this solution can be implemented if and only if r X s > min {p, [% :—ﬂ } p?. If C is not



4.6. ALGORITHMS FOR HETEROGENEOUS PLATFORMS 61

large enough, we will only use Q < 98 processors, each of them holding 2 blocks of C, such that:

Q2 <rxs Q2 <rxs
V2w < 200 S <0 ’

following the same line of reasoning as previously. We obviously want v to be the largest possible
in order for the communications to be most beneficial. For a given value of v we want Q to be
the smallest to spare resources. Therefore, the best solution is given by the largest value of v

such that:
[ﬂ—‘ 2 < rXs
2¢ - ’

and then Q = {%W

If the platform does not contain the desired number of processors, i.e., if P8 > p in the case
of a “large” matrix C or if Q > p otherwise, then we enroll all the p processors and we give them

v? blocks of C with v = min { ”;S, % }, following the same line of reasoning as previously.

4.6 Algorithms for heterogeneous platforms

We now consider the general problem, i.e., when processors are heterogeneous in terms of memory
size as well as computation and/or communication times. As in the previous section, m; is the
number of g X ¢ blocks that fit in the memory of worker P;, and we need to load into the memory
of P; 2u; blocks of A, 2u,; blocks of B, and u? blocks of C. This number of blocks loaded into
memory changes from worker to worker, as it depends on their memory capacities: u; is the
largest integer such that p? + 4p; < m;.

We first try to adapt our mazimum re-use algorithm to heterogeneous platforms using a
steady-state-like approach. But because of our model, we can easily discuss its limitations. We
then introduce our final algorithm for heterogeneous platforms in Section 4.6.2.

4.6.1 Bandwidth-centric resource selection

Fach worker P; has parameters ¢;, w;, and p;, and each participating P; needs a time 2u;tc; to
receive &; = 2yu;tc; blocks to perform ¢; = tu?w; computations. Once again, we neglect I/O for C
blocks. Let us consider the steady-state of a schedule. During one time-unit, P; receives a certain
amount y; of blocks, both of A and B, and computes x; C blocks. We express the constraints, in
terms of communications —the master has limited bandwidth— and of computations —a worker
cannot perform more work than it receives. The objective is to maximize the amount of work
performed per time-unit. Altogether, we gather the following linear program:

MAXIMIZE ), x;
SUBJECT TO

d>ovici <1
Vi, T W; S 1
Vi, o< Ui

uZ = 2p;



62 CHAPTER 4. MATRIX PRODUCT

PP
Ci 1 T
wW; 2 | 2z
pi | 2| 2
7¢; I T
piw; | 2 2

Table 4.1: Platform for which the bandwidth-centric solution is not feasible.

Obviously, the best solution for y; is y; = 2;?, so the problem can be reduced to :

MAXIMIZE ), x;
SUBJECT TO
Vi, x; < L

— w;

> 2ig. <1

o Tt =

The optimal solution for this system is a bandwidth-centric strategy [17, 9]: we sort workers

by non-decreasing values of % and we enroll them as long as ) #2% < 1. In this way, we can

achieve the throughput p~ >, .. oiled %

This solution seems to be close to the optimal. However, the problem is that workers may
not have enough memory to execute it! Consider the example described by Table 4.1.
Using the bandwidth-centric strategy, every 8z seconds:

e P receives 4x blocks (x py X p1 chunks) in 4z seconds, and computes 4z blocks in 8x
seconds;

e P, receives 4 blocks (1 pg X ug chunk) in 4z seconds, and computes 4 blocks in 8z seconds.

But P computes too quickly: during the time z needed to send a block to P, P updates 3
blocks, which requires at least x blocks and as many buffers. And z can be arbitrary large ! For
example, if z = 20, P; would need buffers to store as many as 20 blocks to stay busy while one

block is sent to Ps:

Communications 11111111111111111111 20 11111111111111111111 20 111111111...
Processor P Py P Py P...

Therefore, the bandwidth-centric solution cannot always be realized in practice, and we
turn to another algorithm, described below. To avoid the previous buffer problems, resource
selection will be performed through a step-by-step simulation. However, we point out that the
steady-state solution is an upper bound on the performance that can be achieved.

4.6.2 Incremental resource selection

The different memory capacities of the workers imply that we assign them chunks of different
sizes. This requirement complicates the global partitioning of the C matrix among the workers.
To take this into account and simplify the implementation, we decide to assign only full matrix
column blocks in the algorithm. This is done in a two-phase approach.

In the first phase we pre-compute the allocation of blocks to processors, using a processor
selection algorithm we will describe later. We start as if we had a huge matrix of size cox Y1 | ;.



4.6. ALGORITHMS FOR HETEROGENEOUS PLATFORMS 63

Each time a processor P; is chosen by the processor selection algorithm it is assigned a square
chunk of u? C blocks. As soon as some processor P; has enough blocks to fill up p; block
columns of the initial matrix, we decide that P; will indeed execute these columns during the
parallel execution. Therefore we maintain a panel of > % ; p; block columns and fill them out
by assigning blocks to processors. We stop this phase as soon as all the r x s blocks of the initial
matrix have been allocated columnwise by this process. Note that worker P; will be assigned a
block column after it has been selected [.=] times by the algorithm.

In the second phase we perform the actual execution. Messages will be sent to workers
according to the previous selection process. The first time a processor P; is selected, it receives
a square chunk of u? C blocks, which initializes its repeated pattern of operation: the following
t times, P; receives u; A and p; B blocks, which requires 2u;¢; time-units.

It remains to decide which processor to select at each step. We have no closed-form formula
for the allocation of blocks to processors. Instead, we use an incremental algorithm to compute
which worker the next blocks will be assigned to. We have two variants of the incremental
algorithm, a global one that aims at optimizing the overall communication-to-computation ratio,
and a local one that selects the best processor for the next stage. Both variants are described
below.

Global selection algorithm

The intuitive idea, here, is to select the processor that maximizes the ratio of the total work
achieved so far (in terms of block updates) over the completion time of the last communication.
The latter represents the time spent by the master so far, either sending data to workers or
staying idle, waiting for the workers to finish their current computations. We have:

total work achieved

ratio «— . : T
completion time of last communication

Estimating computations is easy: P; executes u? block updates per assignment. Communi-
cations are slightly more complicated to deal with; we cannot just use the communication time
2u;¢; of P; for the A and B blocks because we need to take its ready time into account. Indeed,
if P; is currently busy executing work, it cannot receive additional data too much in advance
because its memory is limited. Algorithm 8 presented in this section presents this selection
process, which we iterate until all blocks of the initial matrix are assigned and computed. We
illustrate it on an example.

Running the global selection algorithm on an example. Consider the example described in

Table 4.2 with three workers Py, P> and Ps3. For the first step, we have ratio; « % for all i. We
compute ratio; = 1.5, ratiog = 3, and ratioz3 = 1 and select P,: next «— 2. We update variables as
total-work < 0+324 = 324, completion-time < max(0+108,0) = 108, ready, < 108+972 = 1080
and nb-blocky + 36.

At the second step we compute ratio; < ?ggi;’i = 2.71, ratiog «— % = 0.6 and ratiog «—
i’géﬂgg = 2.04 and we select P;. We point out that P, is busy until time £ = 1080 because
of the first assignment, which we correctly took into account when computing ready,. For P
and P3 the communication could take place immediately after the first one. It remains to
update the variables: total-work «— 324 4+ 36 = 360, completion-time «— max (108 4 24,0) = 132,
ready, < 132 + 72 = 204 and nb-block; « 12.




64 CHAPTER 4. MATRIX PRODUCT

Algorithm 8: Global selection algorithm.
Data:
completion-time: completion time of the last communication
ready;: ready time of processor P;
nb-block;: number of A and B blocks sent to processor P;
total-work: total work assigned so far (in terms of block updates)
nb-column: number of fully processed C block columns

INITIALIZATION

completion-time « 0;

total-work « 0;

for i — 1 to p do
ready, < 0;

L nb-block; « 0;

SIMULATION

repeat

. P total-work-2 )
next «— worker that realizes max;_; max(completion-time—+2;¢; ready, ) ’

total-work « total-work + p2.;

completion-time «— max{completion-time + 2/inext Cnext, r€adYpext 13
ready ey < completion-time + ,u%extwnext;

nb-blocknext < nb-blocknext + 2ftnext;

nb-block; .
il 1 | H

nb-column «— 7P ,

until nb-column > s ;

At the third step the algorithm selects P3. Going forward, we have a cyclic pattern repeating,
with 13 consecutive communications, one to P followed by 12 ones alternating between P; and
Ps, and then some idle time before the next pattern (see Figure 4.8). The asymptotic value
of ratio is 1.17 while the steady-state approach of Section 4.6.1 would achieve a ratio of 1.39
without taking memory limitations into account.

OB T T T 0T 7T

A A EEEN |
P
Py [ =

Figure 4.8: Global selection algorithm on the example of Table 4.2.

Finally, we point out that it is easy to further refine the algorithm to get closer to the
performance of the steady-state. For instance, instead of selecting the best processor greedily,
we could look two-steps ahead and search for the best pair of workers to select for the next two
communications (the only price to pay is an increase in the cost of the selection algorithm). For
the example, the two-block look-ahead strategy achieves an asymptotic ratio up to 1.30.



4.6. ALGORITHMS FOR HETEROGENEOUS PLATFORMS 65

P | P | B
C; 2 3
w; 2 3 1
m | 6 | 18 | 10
p2 |36 | 324 | 100

2uic; | 24 | 108 | 100

Table 4.2: Platform used to demonstrate the processor selection algorithms.

Local selection algorithm

The global selection algorithm picks, as the next processor, the one that maximizes the ratio
of the total amount of work assigned over the time needed to send all the required data. On
the other hand, the local selection algorithm chooses, as destination of the i-th communication,
the processor that maximizes the ratio of the amount of work assigned by this communication
over the time during which the communication link is used to performed this communication
(i.e., the elapsed time between the end of (¢ — 1)-th communication and the end of the i-th
communication). As previously, if processor P; is the target of the i-th communication, the
i-th communication is the sending of u; blocks of A and p; blocks of B to processor P;, which
enables it to perform ,u? updates.

More formally, the local selection algorithm picks the worker P; that maximizes:

2
i
max{2u;c;, ready, — completion-time}

Once again we consider the example described in Table 4.2. For the first three steps, the
global and local selection algorithms make the same decisions. In fact, they take the same first
13 decisions. However, for the 14-th selection, the global algorithm picks processor P» when the
local selection selects processor P; and then processor P, for the 15-th decision, as illustrated
in Figure 4.9. Under both selection processes, its second chunk of work is sent to processor P
at the same time but the local algorithm inserts an extra communication. For this example,
the local selection algorithm achieves an asymptotic ratio of computation per communication of
1.21. This is better than what is achieved by the global selection algorithm but, obviously, there
are examples where the global selection will beat the local one.

OBl T T T T T T O

A THANEEENEN N
P
Py [ =

Figure 4.9: Local selection algorithm on the example of Table 4.2.



66 CHAPTER 4. MATRIX PRODUCT

Variants

We have just presented a global and a local selection process. Each process can either take a
decision only looking at the next communication, or can consider the next two communications,
in a look-ahead approach. Furthermore, in the above selection processes we have not taken
into account the cost of initially sending u? blocks of matrix C to processor P; the first time
it receives blocks (or the cost of sending back ,u? blocks of C to the master after t iterations,
and then receiving ,u? brand new blocks). We can take these costs into account in a variant:
this would seem more realistic, but this may wrongly forbid to enroll an additional processor
due to a huge initialization cost. Hence, we end up with 8 different selection algorithms (global
or local, look-ahead or not, u? C costs or not). There is no reason that one of these heuristics
always dominate the others. We will thus consider the eight of them in our experiments.

4.7 Extension to LU factorization

In this section, we show how our techniques can be extended to LU factorization. We first
consider the case of a single worker (Section 4.7.1), in order to study how we can minimize the
communication volume. Then we present algorithms for homogeneous clusters (Section 4.7.2)
and for heterogeneous platforms (Section 4.7.3).

We consider the right-looking version of the LU factorization as it is more amenable to
parallelism. As previously, we use a block-oriented approach. The atomic elements that we
manipulate are not matrix coefficients but instead square blocks of size ¢ x ¢ (hence with ¢?
coefficients). The size of the matrix is then r x r blocks. Furthermore, we consider a second
level of blocking of size p. As previously, p is the largest integer such that pu? 4+ 4 < m. The
main kernel is then a rank-py update C «— C + A.B of blocks. Hence the similarity between
matrix multiplication and LU decomposition.

4.7.1 Single processor case

The different steps of LU factorization are presented in Figure 4.10. Step k of the factorization
consists of the following:

1. Factor pivot matrix (Figure 4.11(a)). We compute at each step a pivot matrix of size y?
(which thus contains u? x g2 coefficients). This factorization has a communication cost of
21%¢ (to bring the matrix and send it back after the update) and a computation cost of

3
urw.

2. Update the p columns below the pivot matrix (vertical panel) (Figure 4.11(b)). Each row
x of this vertical panel is of size y and must be replaced by U~ for a computation cost
of %,uzw.

The most communication-efficient policy to implement this update is to keep the pivot
matrix in place and to move around the rows of the vertical panel. Each row must be

brought and sent back after update, for a total communication cost of 2uc.

At the k-th step, this update has then an overall communication cost of 2u(r — ku)e and
an overall computation cost of %/ﬂ(r — kp)w.

3. Update the p rows at the right of the pivot matrix (horizontal panel) (Figure 4.11(c)).
Each column y of this horizontal panel is of size ;1 and must be replaced by L~y for a
computation cost of %,qu.



4.7. EXTENSION TO LU FACTORIZATION

67

Figure 4.10: Scheme for LU factorization at step k.

N\

|

(a) The pivot matrix
is factored.

N\

|| I

(b) Update of verti-
cal panel. A row z is

AN

|||

(c) Update of hori-
zontal panel. A col-

\DI:I
an

(d) p columns of the
core matrix are up-

replaced by zU . umn y is replaced by

L1y,

dated using the ver-
tical panel and pu
columns of the hor-
izontal panel.

This case is symmetrical to the previous one. Therefore, we follow the same policy and at
the k-th step, this update has an overall communication cost of 2u(r — ku)c and an overall
computation cost of %,u2(7“ — kp)w.

. Update the core matrix (square matrix of the last (r — ku) rows and columns) (Fig-

ure 4.11(d)). This is a rank-p update. Contrary to matrix multiplication, the most
communication-efficient policy is to not keep the result matrix in memory, but either
a p x g square block of the vertical panel or of the horizontal panel (both solutions are
symmetrical). Arbitrarily, we then decide to keep in memory a chunk of the horizontal
panel. Then to update a row vector x of the core matrix, we need to bring to that vector
the corresponding row of the vertical panel, and then to send back the updated value of
x. This has a communication cost of 3uc and a computation cost of 2.

At the k-th step, this update for u columns of the core matrix has an overall communication
cost of (u? + 3(r — kp)p)c (counting the communications necessary to initially bring the
©? elements of the horizontal panel) and an overall computation cost of (r — ku)u?w.

Therefore, at the k-th step, this update has an overall communication cost of (ﬁ —k)(p?+
3(r — kp)p)c and an overall computation cost of (ﬁ — k) (r — kp)plw.

Using the above scheme, the overall communication cost of the LU factorization is

r

m

> (2;3 + dp(r — kp) + (; - k> (1 +3(r — ku)u)) c= (i —r? 4 2w“> ¢,

k=1

while the overall computation cost is

=3

1
<,u3 + p2(r — kp) + <; — k) (r— ku);ﬁ) w=g (T3 + 2u2r) w.
k=1



68 CHAPTER 4. MATRIX PRODUCT

4.7.2 Algorithm for homogeneous clusters

The most time-consuming part of the factorization is the update of the core matrix, as it has
an overall cost of (%r?’ — %/1,7“2 + %,uQT) w. Therefore, we want to parallelize this update by
allocating blocks of p columns of the core matrix to different processors. Just as for matrix
multiplication, we would like to determine the optimal number of participating workers . For
that purpose, we proceed as previously. On the communication side, we know that in a round
(each worker updating p columns entirely), the master sends to each worker u? blocks of the
horizontal panel, then sends to each worker the pu(r — ku) blocks of the vertical panel, and
exchanges with each of them 2u(r — ku) blocks of the core matrix (pu(r — ku) received and later
sent back after update). Also during this round, on the computation side, each worker computes
w2 (r — kp) block updates.

If we enroll too many processors, the communication capacity of the master will be exceeded.
There is a limit on the number of blocks sent per time unit, hence on the maximal processor
number ‘B, which we compute as follows: 3 is the smallest integer such that

(1® + 3p(r — kp))eB > 1 (r — kp)w.

-],

while neglecting the term 2 in the communication cost, as we assume - to be large.

We obtain that

Once the resource selection is performed, we propose a straightforward algorithm: a single
processor is responsible for the factorization of the pivot matrix and of the update of the vertical
and horizontal panels, and then 3 processors work in parallel at the update of the core matrix.

4.7.3 Algorithm for heterogeneous platforms

In this section, we simply sketch the algorithm for heterogeneous platforms. When targeting
heterogeneous platforms, there is a big difference between LU factorization and matrix multi-
plication. Indeed, for LU once the size p of the pivot matrix is fixed, all processors have to deal
with it, whatever their memory capacities. There was no such fixed common constant for matrix
multiplication. Therefore, a crucial step for heterogeneous platforms is to determine the size p
of the pivot matrix. Note that two pivot matrices at two different steps of the factorization may
have different sizes, the constraint is that all workers must use the same size at any given step
of the elimination.

In theory, the memory size of the workers can be arbitrary. In practice however, memory
size usually is an integral number of Gigabytes, and at most a few tens of Gigabytes. So it is
feasible to exhaustively study all the possible values of y, estimate the processing time for each
value, and then pick the best one. Therefore, in the following we assume the value of y has been
chosen, i.e., the pivot matrix is of a known size p X p.

The memory layout used by each worker P; follows the same policy than for the homogeneous
case:

e a chunk of the horizontal panel is kept in memory,
e rows of the horizontal panel are sent to F;,

e and rows of the core matrix are sent to P; and are returned to the master after update.



4.7. EXTENSION TO LU FACTORIZATION 69

If u; = p, processor P; operates exactly as for the homogeneous case. But if the memory
capacity of P; does not perfectly correspond to the size chosen for the pivot matrix, we still have
to decide the shape of the chunk of the horizontal panel that processor F; is going to keep in its
memory. We have two cases to consider:

1w <

. In other words, P; has not enough memory. Then we can imagine two different

shapes for the horizontal panel chunk:

(a)

Square chunk, i.e., the chunk is of size u; x ;. Then, for each update the master
must send to P; a row of size u; of the horizontal panel and a row of size u; of
the core matrix, and P; sends back after update the row of the core matrix. Hence a
communication cost of 3u;c for u? computations. The computation-to-communication
cost induced by this chunk shape is then:

M?w _ Hw
3uic 3¢’

2
Set of whole columns of the horizontal panel, i.e., the chunk is of size u x (%) Then,
for each update the master must send to P; a row of size p of the horizontal panel

2
and a row of size % of the core matrix, and P; sends back after update the row of

2
the core matrix. Hence a communication cost of <p + 2%) c for p? computations.
The computation to communication cost induced by this chunk shape is then:

piw
—
(u + 2%) c

The choice of the policy depends on the ratio %’ Indeed,

2 2 2
Rl ad ) & <u+2/jj>c<3uic
c

3iC L«?
H (,u+2u
& (2‘”—1) (‘”—1><0
1 p

Therefore, the square chunk approach is more efficient if and only if p; < % b

2. p; > p. In other words, P; has more memory than necessary to hold a square matrix like
the pivot matrix, that is a matrix of size u x p. In that case, we propose to divide the

e

memory of P; into LLQJ square chunks of size y, and to use this processor as if there were

2
in fact L%J processors with a memory of size 2.

So far, we have assumed we knew the value of g and we have proposed memory layout for
the workers. We still have to decide which processor to enroll in the computation. We perform
the resource selection as for matrix multiplication: we decide to assign only full matrix column
blocks of the core matrix and of the horizontal panel to workers, and we actually perform resource
selection using the same selection algorithms than for matrix-multiplication.

The overall process to define a solution is then:



70 CHAPTER 4. MATRIX PRODUCT

1. For each possible value of y do

(a) Find the processor which will be the fastest to factor the pivot matrix, and to update
the horizontal and vertical panels.

(b) Perform resource selection and then estimate the running time of the update of the
core-matrix.

2. Retain the solution leading to the best (estimated) overall running time.

4.8 MPI experiments

In this section, we aim at validating the previous theoretical results and algorithms. We con-
duct a variety of MPI experiments to compare our new schemes with several algorithms from
the literature. We first restrict our study to homogeneous platforms. Even in this simpler
framework, using a sophisticated memory management turns out to be very important. For het-
erogeneous platforms, we assess the impact of the degree of heterogeneity (in processor speed,
link bandwidth, and memory capacity) on the performance of the various algorithms.

We start with a description of the platforms (Section 4.8.1), and of the algorithms (Sec-
tion 4.8.2). Then we describe the experiments, justify their purpose, and discuss the results,
first for homogeneous platforms (Section 4.8.3), then for heterogeneous platforms (Section 4.8.4).

The code and the experimental results can be downloaded from:

http://graal.ens-1lyon.fr/~jfpineau/Downloads/matrix_product.tgz.

4.8.1 Platforms

For our homogeneous experiments we used a cluster of 64 Xeon 3.2GHz dual-processor nodes,
located at the University of Tennessee in Knoxville. Each cluster node runs the Linux operating
system and has 4 GB of memory, but we only use 512 MB of memory to further stress the impact
of limited memories. The nodes are connected with a switched 100 Mbps Fast Ethernet network.
In order to build a master-worker platform, we arbitrarily choose one processor as the master,
and the other ones as workers. Finally we used MPI WTime as timer in all experiments.

For our heterogeneous experiments we used a heterogeneous cluster composed of twenty-seven
processors located at the Ecole Normale Supérieure of Lyon. It is composed of four different
homogeneous sets of machines. The different sets are:

e 8 SuperMicro servers 5013-GM, with processors P4 2.4 GHz;

e 5 SuperMicro servers 6013P1, with processors P4 Xeon 2.4 GHz;

e 7 SuperMicro servers 5013SI, with processors P4 Xeon 2.6 GHz;

e 7 SuperMicro servers IDE250W, with processors P4 2.8 GHz.

All nodes have 1 GB of memory and are running the Linux operating system. The nodes are
connected with a switched 10 Mbps Fast Ethernet network.

Like in Chapter 3, this platform may not be as heterogeneous as we would like, so we some-
times artificially modify its heterogeneity. In order to artificially slow down a communication
link, we send the same message several times to one worker. The same idea works for processor
speeds: we ask a worker to compute a given matrix-product several times in order to slow down
its computation capability. One can note that all MPI experiments implement the one-port
model.


http://graal.ens-lyon.fr/~jfpineau/Downloads/matrix_product.tgz

4.8. MPI EXPERIMENTS 71

In all experiments, except the last batch, we used nine processors: one master and eight
workers. We restricted the number of workers to eight after an initial experiment using the
whole platform. This experiment showed that, because of platform parameters and of memory
limitations, if the master serves five processors or more, on average one processor is idle at any
time. In all experiments we compare the execution time needed by the algorithms using our
memory allocation to the execution time of the other algorithms. We also point out the number
of processors used by each algorithm, an important parameter when comparing execution times.

4.8.2 Algorithms

The algorithms we developed in section 4.5 and 4.6 define both a memory allocation and a
resource selection. During the experiments, we want to test both.

We choose four different algorithms from the literature. The closest work addressing our
problem is Toledo’s out-of-core algorithm [140]. Hence, this work will serve as the baseline
reference, and will be used to compare the performance of our memory allocation. In order to
test the performance of our resource selection, we will launch hybrid algorithms, i.e., algorithms
which use our memory layout and are based on classical principles such as round-robin, min-
min [104], or a dynamic demand-driven approach. They will use our memory layout to divide
matrices into chunks and to determine in which order chunks have to be sent to participating
workers, but these participating workers and the order in which the master serves them will
differ.

To summarize, here are the description of all algorithms launched during the MPI experiments.
First, our algorithms:

Homogeneous algorithm (Hom) is our homogeneous algorithm. It makes resource selection
and sends blocks to the selected workers in a round-robin fashion. When run on a hetero-
geneous platform, it tries to build a very simple homogeneous platform. As the algorithm’s
only constraint is to send same size blocks to all participating workers, for a given memory
size, we consider the homogeneous virtual platform composed of those workers having at
least that amount of memory, and we estimate the total execution time of our homoge-
neous algorithm, for the targeted matrix-product, on that virtual platform (the apparent
processor speed is the minimum of the processor speeds, the apparent communication
bandwidth is the minimum of the communication bandwidths). We do this process for all
the different memory sizes present in the actual platform, and we pick the virtual platform
that minimizes the total estimated execution time.

Homogeneous algorithm, Improved (Homl) is our homogeneous algorithm running on a
more carefully chosen homogeneous platform. For each memory size, communication speed,
and computation speed present in an heterogeneous platform, we consider the homogeneous
virtual platform composed of those workers having at least that performance. Then, we
compute the total execution time of our homogeneous algorithm, for the targeted matrix-
product, on that virtual platform (the apparent processor speed is the current processor
speed, the apparent communication bandwidth is the current communication bandwidth).
We do this process for all the existing values, and we pick the virtual platform that
minimizes the total execution time.

Heterogeneous algorithm (Het) is our heterogeneous algorithm, described in Section 4.6.

The other algorithms use our memory layout, and can overlapp one update of C and the reception
of the next column of A and the next row of B:



72 CHAPTER 4. MATRIX PRODUCT

Overlapped Round-Robin, Optimized Memory Layout (ORROML) sends tasks to all
available workers in a round-robin fashion. It does not make any resource selection.

Overlapped Min-Min, Optimized Memory Layout (OMMOML) is a static scheduling
heuristic, which sends the next block to the first worker that will finish it. As it is looking
for potential workers in a given order, this algorithm performs some resource selection too.
Theoretically, as our homogeneous resource selection ensures that the first worker is free
to compute when we finish to send blocks to the others, OMMOML and Hom should
have a similar behavior on homogeneous platforms.

Overlapped Demand-Driven, Optimized Memory Layout (ODDOML) is a demand-
driven algorithm. In our memory layout, two buffers of size u; are reserved for matrix
A, and two for matrix B. In order to use the two available extra buffers (the second for A
and the second for B), one sends the next block to the first worker which can receive it.
This would be a dynamic version of our algorithm, if it took worker selection into account.

Then, we have Toledo’s:

Block Matrix Multiply (BMM) is Toledo’s algorithm [140]. It splits each worker memory
equally into three parts, and allocates one slot for a square block of A, another for a square
block of B, and the last one for a square block of C, with the square block having the same
size. It sends blocks to the workers in a demand-driven fashion, when a worker is free for
computation. First a worker receives a block of C, then it receives corresponding blocks of
A and B in order to update C, until C is fully computed.

The last two remaining algorithms are variants of the previous ones. We only test them on
homogeneous platforms because of their bad performance:

Demand-Driven, Optimized Memory Layout (DDOML) is another demand-driven algo-
rithm, close to ODDOML. It sends the next block to the first worker which is free for
computation. As workers will never have to receive and compute at the same time, the
algorithm has no extra buffer, so the memory available to store A, B, and C is slightly
greater. This may change the value of the u;’s and so the behavior of the algorithm.

Overlapped Block Matrix Multiply (OBMM) is our attempt to improve the Toledo’s al-
gorithm. We try to overlap the communications and the computations of the workers. To
that purpose, we split each worker memory into five parts, to receive one block of A and
one block of B while the previously received blocks are used to update C.

Note that all algorithms using our optimized memory layout are considering matrices as
composed of square blocks of size ¢ x ¢ = 80 x 80, while BMM loads three panels, each of size
one third of the available memory, for A, B and C.

ODDOML will be particularly interesting to analyze, because it uses our memory allocation,
but has the same resource selection than Toledo’s. It is then the perfect algorithm to see the
impact of our resource selection (by comparing it with Het) and our memory allocation (by
comparison with BMM).

When launching an algorithm on the platform, the very first step we do is to determine
the platform’s parameters. For that purpose, we launch a benchmark on it, in order to get the
memory size, the communication speed, and the computation speed. The different speeds are
determined by sending and computing a square block of size ¢ X ¢ ten times on each worker, and



4.8. MPI EXPERIMENTS 73

computing the median of the times obtained. This step takes between twenty and eighty seconds,
depending on the speed of the workers, and is made before each algorithm, even ORROML,
ODDOML and BMM, which only need the memory size. This step represents at most two
percent of the total time of execution.

In the following section, the times given takes into account the decision process of the algo-
rithms, i.e., the simulation of the eight different versions of the resource selection for Het, the
construction of an homogeneous platform for Hom and Homl, etc.

4.8.3 Experiments on homogeneous platforms

In this section we validate the superiority of our homogeneous algorithm on homogeneous plat-
forms. We consider all algorithms except the heterogeneous one, and HomlI. We have built
several experimental protocols in order to assess the performance of the various algorithms.

25000
20000
M Hom
B BVM
f\1amo 0 OBMM
K2) & oDDOML
Gé 10000 O pboML
= B OMMOML
B ORROML
5000
) ﬂ]]]

rxsxt rx s xt rxsxt
100x800x100  200x1600x200  100x800x800

Figure 4.11: Performance of the algorithms on different matrices.

Experiments with different matrix sizes

In the first set of experiments, we test the different algorithms on matrices of different sizes and
shapes. The matrices we are multiplying are of actual size

1. 8000 x 8000 for A and 8000 x 64000 for B;
2. 16000 x 16000 for A and 16000 x 128000 for B;
3. 8000 x 64000 for A and 64000 x 64000 for B.

Figure 4.11 presents the results of this first set of experiments. We first remark that the
shape of the results of the three experiments is the same for all matrix sizes. We also underline
the superiority of most of the algorithms which use our memory allocation against BMM: Hom,



74 CHAPTER 4. MATRIX PRODUCT

4500
4000 ]
3500 B Hom
H BVM
3000
UJ OBMM
2500 E obDOML
£ @ ppoML
© 2000
= B OMMOML
1500 B orRROML
1000
500
0

q=40 q=80

Figure 4.12: Impact of block size g on algorithm performance.

ORROML, ODDOML, and DDOML are the best algorithms and have similar performance.
Only OMMODML needs more time to complete its execution. This delay comes from its re-
source selection: it only uses three workers. For instance, Hom uses four workers, and is as
competitive as the other algorithms which all use the eight available workers. This difference can
be explained by the resource selection process. The times of communications and computations
are computed before the scheduling by sending a task to each slave. Then OMMOML will use
those values, which may not be as accurate as needed, whereas Hom will use the worst time for
communications and computations in order to consider a homogeneous platform.

Impact of the block size ¢

In the second set of experiments we check whether the choice of ¢ was wise. For that purpose,
we launch the algorithms on matrices of size 8000 x 8000 and 8000 x 64000, changing from one
experiment to another the size of the elementary square blocks. Then ¢ will be respectively
equal to 40 and 80. As the global matrix size is the same in both experiments, we expect both
results to be the same.

The results are displayed in Figure 4.12. BMM and OBMM have same execution times in
both experiments as these algorithms do not split matrices into elementary square blocks of size
g X q but, instead, call the Level 3 BLAS routines directly on the whole \/? X \/? matrices.
In the two cases we see that the time of the algorithms are similar. We point out that this
experiment shows that the choice of ¢ has little impact on the algorithms’ performance.

Impact of the memory size of workers

In the third set of experiments we investigate the impact of the worker memory size onto the
performance of the algorithms. In order to have reasonable execution times, we use matrices of
size 16000 x 16000 and 16000 x 64000, and the memory size will be either 132MB or 512MB.



4.8. MPI EXPERIMENTS 75

16000
14000
12000
® Hom
10000 B BV
< 8000 -/ oBMM
g B obDOML
= 6000 © ppomL
B OMMOML
4000 H ORROML
2000
0

memory=132 memory=512

Figure 4.13: Impact of memory size on algorithm performance.

We choose these values to reduce side effects due to the partition of the matrices into blocks of
size uq X [q.

Figure 4.13 presents the experimental results. As expected, the performance increases with
the amount of memory available. It is interesting to underline that our resource selection is
efficient. Hom will use respectively two and four workers when the available memory increases,
compared to the other algorithms which will use all eight available workers on each test. OM-
MOML also makes some resource selection, but performs worse.

Stability of execution times

In the fourth and last set of those experiments we check the stability of the previous results. To
that purpose we launch the same execution five times, in order to determine the maximum gap
between two runs.

Figure 4.14 shows that the maximum difference between two runs of the same experiment is
around 6%. Thus if two algorithms have no more than 6% of difference in execution times, they
should be considered as similar.

Conclusion

These experiments stress the superiority of our memory allocation on homogeneous platforms.
Furthermore, our homogeneous algorithm is as competitive as the others but uses fewer resources.

We are now going to consider heterogeneous platforms. As OBMM always has signifi-
cantly worse performance than BMM, we will no longer consider this algorithm. As algorithms
DDOML and ODDOML are very close and have comparable execution times, the latter hav-
ing slightly (but not significantly) better performance, there is no need to consider both, and
we drop the former from our study.



76 CHAPTER 4. MATRIX PRODUCT

4500

4000 -
3500
3000
2500

2000

1500

Time (s)

1000
500

Figure 4.14: Variation of algorithm execution times.

4.8.4 Experiments on heterogeneous platforms

In this section we compare the algorithms on heterogeneous platforms. All the algorithms using
our optimized memory layout are still considering matrices as composed of square blocks of size
q x q = 80 x 80.

In the first three sets of experiments, we only have one parameter of heterogeneity, either the
amount of memory, the communication speed, or the computation speed. We test the algorithms
on such platforms with five matrices of increasing size. As we do not want to change several
parameters at a time, we only change the value of parameter s (rather than, for instance, always
consider square matrices). The matrix A is of size 8000 x 8000 whereas B is of increasing sizes
8000 x 64000, 8000 x 80000, 8000 x 96000, 8000 x 112000, and 8000 x 128000. For all other
experiments, A is of size 8000 x 8000 and B is of size 8000 x 80000.

The heterogeneous workers have different memory capacities, which implies that each al-
gorithm, even BMM, assigns them chunks of different sizes. In order to simplify the global
partitioning of matrix C, we decide to only assign workers full matrix column blocks.

As we want to assess whether the performance of any studied algorithm depends on the
matrix size, we look at the relative cost of the algorithms rather that at their absolute execution
times (absolute execution times are listed in Appendix B). The relative cost of a given algorithm
on a particular instance is equal to the makespan achieved on that instance by the algorithm,
divided by the minimum makespan achieved on that instance. Using relative costs also enables
us to build statistics on the performance of algorithms.

Beside makespan or relative cost, we take into account a second parameter: the number of
processors used. To assess the efficiency of a given algorithm, we look at the utilization of the
platform, i.e., the percentage of enrolled processors.



4.8. MPI EXPERIMENTS 77

Figure 4.15: Heterogeneous memory.

2.4

2.2
2.0 |
& Hom
1.8 » Homl
© Het
1.6 V- BMM
14l A ODDOML
: >
M vy g OMMOML
10— ,;;;%fﬁffﬂ ) K| < ORROML
oM & g 2R
0.8 T T
Increasing matrix size
(a) Cost of algorithms.
100%% b4 b4 -4 X
o —
80%
[0/ u u X
& Hom
60% 2 > M X Homl
© Het
¥ BMM
40% A ODDOML
> > OMMOML
————b>———— b ————— b
20% < ORROML
0% T T T

Increasing matrix size

(b) Platform’s utilization.

Heterogeneous memory sizes

In the first set of experiments we assess the cost of our algorithms with respect to memory
heterogeneity. We launch the algorithms on a homogeneous platform in terms of communication
and computation capabilities, but where workers have different memory capacities. We suppose
that two workers only have 256 MB of memory, four of them 512 MB, and the last two ones
1024 MB.

Figure 4.16(a) presents the relative cost of the algorithms, whose general shape is very
similar for all five matrix sizes. ODDOML and our heterogeneous algorithm Het have the
best makespans. At the other end of the spectrum, OMMOML is twice worse. In between,
Hom, Homl, ORROML, and BMM are roughly twenty percent slower. To give an idea of
the execution times, we report that Het needs about 2000 seconds to compute the product of
the smallest matrices, and about 3500 seconds for the largest.

The variations in the cost of BMM can easily be justified. The memory layout used in



78 CHAPTER 4. MATRIX PRODUCT

BMM is different from the other algorithms. Therefore the size of the matrix chunks used by
BMM are different. The matrices are rather small (to be able to evaluate a significant number
of algorithms on a significant number of platforms). Hence we observe some non negligible side
effects (matrix size divided by chunk size not being a multiple of number of processors used).
Therefore, for a given platform, some memory sizes are more favorable for BMM than for the
algorithms using our memory layout. We will see throughout our experiments on heterogeneous
platforms that even if sometimes these side effects help BMM achieve reasonable cost, they do
not prevent it to sometimes achieve very bad cost.

If we look at the utilization of the platform (Figure 4.16(b)), one can remark that OM-
MOML only uses two workers, and is thus very thrifty, at the expense of its absolute cost.
Hom is performing some resource selection contrarily to ODDOML which always uses all the
processors. One can note that Homl is not better than Hom, despite its improved platform
selection.

Heterogeneous communication links

In the second set of experiments, we assess the cost of our algorithms when communication links
have heterogeneous capabilities. The target platform is composed of two workers with a 10Mbps
communication link, four workers with a 5Mbps communication link, and the last two ones have
a 1Mbps communication link.

Figure 4.17(a) shows the relative cost. The superiority of our heterogeneous algorithm over
BMM is clear.

Het, HomlI, and OMMOML have excellent makespans, and make a good resource selec-
tion, as seen in Figure 4.17(b)). The first figure also shows the gap between HomI and Hom:
Hom performs close to ODDOML, while Homl achieves a close to best makespan. This figure
underlines the importance of carefully choosing the processors on which launching the algorithm:
Hom only uses two processors because of the platform parameters and the way it extracts a
homogeneous platform.

BMM has the worst makespan, which is 70 to 90 percent worse than the best one, and
makes no resource selection, On the contrary, our heterogeneous algorithm, as well as Homl
make excellent resource selection.

Concerning execution times, Het needs about 2500 seconds to compute the product of the
smallest matrices, and about 5000 seconds for the largest.

Heterogeneous computation capabilities

In the third set of experiments, we assess the cost of our algorithms when computation capa-
bilities are heterogeneous. Workers have homogeneous communications and memory capacities,
but different computation speeds. The platform is composed of two fast workers of speed s, four
workers of speed s/2 and two workers of speed s/4.

In Figure 4.18(a), we see the relative cost obtained during this set of experiments. BMM
performs well, but its makespan is larger than that of Het. Among the other algorithms, we
also see that ODDOML has good performance.

Moreover, looking at the platform’s utilization in Figure 4.18(b), we see that our algorithms
enroll fewer resources during execution. One can also remark that Het uses more and more
processors as matrix size increases.

During these experiments, Het needs about 2000 seconds to compute the product of the
smallest matrices, and about 4000 seconds for the largest one.



4.8. MPI EXPERIMENTS 79

Figure 4.16: Heterogeneous communication links.

& Hom

X Homl

@ Het

V- BMM

A ODDOML
» OMMOML
< ORROML

Increasing matrix size

(a) Cost of algorithms.

100% g 4| b 24 X

80% —

& Hom
X Homl
o, I » » » »
60% < Het
M o M M |-¥BMM
40% - A ODDOML
> OMMOML

[ | | | i I | <ORROML
20%

0% T T T

Increasing matrix size

(b) Platform’s utilization.

Platforms with two homogeneous subsets

In the fourth set of experiments, we split the platform into two homogeneous sets containing
four workers each.

In the first setting, we have four workers with fast computation speeds but slow communi-
cation links, and four workers with slow computation speed but fast communication links. In
the first experiment (Figure 4.19(a)), the ratio between slow and fast communication speeds is
equal to the ratio between slow and fast computation speeds, and is set to two. In the second
experiment (Figure 4.19(b)), both ratios are set to four.

Figure 4.19(a) and Figure 4.19(b) are similar, as the two platforms have the same shape.
On the first platform, Het and ODDOML have the best makespan. In Figure 4.19(b), we see
that ODDOML slightly outperforms our heterogeneous algorithm (by roughly 12%). However,
looking at the platform’s utilization, we remark that the makespan achieved by Het is in fact
obtained with two fewer workers than for ODDOML.



80 CHAPTER 4. MATRIX PRODUCT

Figure 4.17: Heterogeneous computations.

& Hom

M Homl

@ Het
“¥-BMM

A ODDOML
> OMMOML
< ORROML

Increasing matrix size

(a) Cost of algorithms.

100% [ 1« B B &

Rl I M M v

& Hom

» Homl

9 Het

V- BMM
40% A ODDOML
> OMMOML
> ——— p ——  p —— p P |<ORROML

60%

20%

0%

Increasing matrix size

(b) Platform’s utilization.

In the second setting, one half of the processors have slow communication links and small
memories, and the other half has both fast communication links and large memories. In the
first experiment (Figure 4.19(c)), the ratio between slow and fast communication speeds is equal
to the ration between small and large memories, and is set to two. In the second experiment
(Figure 4.19(d)), both ratios are set to four. On these platforms, our homogeneous algorithms
extract an excellent homogeneous platform, composed of the four powerful workers, i.e., with
large memories and fast communication links, and achieve a good makespan. Our heterogeneous
algorithm achieves the best makespan, but need two more workers than Hom.

The second experiment (Figure 4.19(d)) having more drastic characteristics, its conclusions
are more obvious. All algorithms that do not perform resource selections achieve bad rela-

tive performance as they enroll inefficient processors. This is particularly true for BMM and
ODDOML.



4.8. MPI EXPERIMENTS 81

Figure 4.18: Platforms with two homogeneous subsets.

200% 200%

150% 150%

100% | 100% |

50% | 50% |

0% - 0% -
Relative Platform Relative Platform

cost utilization cost utilization

200% 250%

200%
150%

150% —

100% —
100% —

50% —
50% —

0% - 0% -
Relative Platform Relative Platform
cost utilization cost utilization

(c) (d)

Bl Hom O Homl B Het B BMM
0 ODDOML H OMMOML [ ORROML

Fully heterogeneous platforms

In the fifth set of experiments we have a fully heterogeneous platform. Communication links,
computation capabilities, and memory capacities can take two different values, which leads to
eight possibilities, one per worker. We build that way two different platforms by fixing the
ratio between the small and large values for each characteristics to 2 in the first setting and
4 in the second one (first two columns in Figures 4.20(a) and 4.20(b)). In order to show that
our heterogeneous algorithm works on any heterogeneous platform, we also randomly create ten
different platforms (last ten columns in the same figures). The ratio between minimum and
maximum values of communication links, computation capacities and memory size is up to four.
Matrix A is of size 8000 x 8000 and B of size 8000 x 80000.

The results of these experiments are summarized in Figures 4.20(a) and 4.20(b). We see that
Het achieves the best makespan for all but two of the 12 platforms, and in the remaining cases



82

CHAPTER 4. MATRIX PRODUCT

Figure 4.19: Fully heterogeneous platforms.

3.5

‘B Hom
M Homl
©® Het
“V-BMM
A ODDOML
> OMMOML
< ORROML
0.5+ I \ \ T T
(a) Cost of algorithms.
10 8 & & & & Z 8B & & & T
90% ’
80%
70% ‘B Hom
M Homl
60%
% Het
50% “V-BMM
A
40% ODDOML
> OMMOML
30% < ORROML
20%
10%
0%

(b) Platform’s utilization.



4.8. MPI EXPERIMENTS 83

is never more than 9% and 2% away from the best studied algorithm. All the other algorithms
are, at least once, more than 41% away from the best solution. For example, ORROML can
be up to 88% worse than the best achieved makespan. Only ODDOML achieves reasonable
makespan on average but it does not perform any resource selection.

The platform’s utilization of Het is efficient, as it spares resources while achieving a good
makespan. The other algorithms which make resources selection are our homogeneous algorithms
(Hom and Homl), and the unusable OMMOML, whose makespan can be 215% away from
the best solution. But even if our improved homogeneous algorithm performs a good resources
selection, the makespan it achieves can be up to 80% larger than the best makespan, and is 34%
larger on average.

Depending on the experiments, Het needs between 2700 seconds and 6000 seconds.

Real platform

In this set of experiments, we use almost all the processors of our platform. We do not modify
the communication speeds nor the computation speeds of the workers. We take five processors
of each of the four sets of machines, which gives us a rather homogeneous platform. We either
use this platform “as is” (August 2007 configuration of Figure 4.21(a)) or we limit the amount
of memory available on each processor to its value before the last memory upgrade (November
2006 configuration of Figure 4.21(b)). The actual platform was then:

e 5 SuperMicro servers 5013-GM, with processors P4 2.4 GHz with 256 MB of memory;

e 5 SuperMicro servers 6013P1, with processors P4 Xeon 2.4 GHz with 1 GB of memory;
e 5 SuperMicro servers 5013SI, with processors P4 Xeon 2.6 GHz with 1 GB of memory;
e 5 SuperMicro servers IDE250W, with processors P4 2.8 GHz with 256 MB of memory.

We use an extra processor as the master. The matrix are of size 8000 x 8000 for A and 8000 x
320000 for B.

Figure 4.20: Real platform.

200% 200%
] B Hom
150% Hom 150% -
O Homl Homl
H Het HE Het
H BVMM B gMMm
100% ~ EoppomL | 100% @ obbomL
H OMMOML H OMMOML
B oORROML B ORROML
50% — 50% |
0% — 0% -1
Relative cost Platform utilization Relative cost Platform utilization

(a) Real memory (b) Limited memory



84 CHAPTER 4. MATRIX PRODUCT

The results of these experiments are summarized in Figure 4.20. The results on the actual
platform are similar to those obtained on homogeneous platforms. All the algorithms but BMM
have similar makespan. All algorithms making resource selection use eleven workers among the
twenty available.

The results of the experiment on the older version of the platform are very similar to the
ones previously obtained on memory heterogeneous platforms. ODDOML and our heteroge-
neous algorithm Het achieve the best makespans. Then we have ORROML, our homogeneous
algorithms, BMM, and finally OMMOML which is 60% worse than Het. The execution time
is around 7800 seconds for Het. If we look at resource selection, Het uses only the ten workers
which have 1 GB of memory, and achieves a makespan close to ODDOMUL’s which uses the
whole platform. On another side, Hom, Homl, and OMMOML use six workers with small
memories. All other algorithms use the whole platform.

Summary

We summarize here all our MPI experiments. Figures 4.22(a) and 4.22(b) respectively present
the relative cost and the platform’s utilization obtained for each experiment by our heterogeneous
algorithm (Het), by Toledo’s algorithm (BMM), and the dynamic heuristic using our memory
layout (ODDOML).

The results show the superiority of our memory allocation. Over the thirty-three experi-
ments, ODDOML performs worse than BMM only once, on the computation heterogeneous
platform, and with a small size matrix. This can be considered as a side effect of the split of the
matrix, as for small size matrices it is better to split it into small square size blocks as BMM
does.

Furthermore, if we add the resource selection of Het, not only we achieve, most of the time,
the best makespan, but we achieve this makespan while sparing resources.

Finally, Table 4.3 displays the average and worst relative performance obtained over all
experiments by these three algorithms. Using our memory layout (ODDOML) rather than
Toledo’s (BMM) enables us to gain 18% of execution time on average. When this is combined
with resource selection, this enables us to gain additionally 11%, that is 27% against Toledo’s
running time. We achieve this significant gain while sparing 22% of the resources.

Our Het algorithm is on average 1% away from the best achieved makespan. At worst Het
is 10% away from the best makespan, ODDOML 61%, and BMM 128%. Moreover, we have
seen that 80% of the time, the cost of Het was in fact obtained thanks to a global resource
selection.

The steady-state approach described in Section 4.6.1 gives us an upper-bound on the best
achievable throughput. This upper-bound is very optimistic as it assumes unbounded memories
and does not take into account the communication costs due to the elements of matrix C. This
upper bound is nevertheless on average only 2.29 times greater than the throughput achieved
by Het (and at worst is 3.42 times greater). Therefore, considering this upper-bound tells us
that our Het algorithm not only has good relative cost when compared to the other algorithms,
but also has very good absolute performance.

Altogether, we have thus been able to design an efficient, thrifty, and reliable algorithm.



4.8. MPI EXPERIMENTS

85

Figure 4.21: Summary of experiments.

2.5+
\ 4
2.0
Vv D
¢ Het
VVV ¥ BMM
A A A ODDOML
1-57 w—
Ay "v
Wy a2y vY X,
Avm A
I: AYYY oY A A: :
1.0
(a) Relative cost.
1oovohmmm
90%
00 2 o o0
¢ Het
80% VBMM
® o o 0 & ¢ ¢ | 4 ODDOML
70% —
90000 ® o L
60% —
50% T T T T T T T T T T T T O T T T T

(b) Platform’s utilization.



86 CHAPTER 4. MATRIX PRODUCT

Average cost  Worst cost
Het 1.01 1.10
BMM 1.39 2.28
ODDOML 1.13 1.61

Table 4.3: Average and worst relative cost.

4.9 Related work

In this section, we provide a brief overview of related papers, which we classify along the following
five main lines:

Load balancing on heterogeneous platforms — Load balancing strategies for heterogeneous
platforms have been widely studied. Distributing the computations (together with the
associated data) can be performed either dynamically or statically, or a mixture of both.
Some simple schedulers are available, but they use naive mapping strategies such as master-
worker techniques or paradigms based upon the idea “use the past to predict the future”,
i.e., use the currently observed speed of computation of each machine to decide for the next
distribution of work [52, 53, 26]. Dynamic strategies such as self-guided scheduling [116]
could be useful too. There is a challenge in determining a trade-off between the data distri-
bution parameters and the process spawning and possible migration policies. Redundant
computations might also be necessary to use a heterogeneous cluster at its best capabilities.
However, dynamic strategies are outside the scope of this work (but mentioned here for the
sake of completeness). Because we have a library designer’s perspective, we concentrate on
static allocation schemes that are less general and more difficult to design than dynamic
approaches, but which are better suited for the implementation of fixed algorithms such
as linear algebra kernels from the ScaLAPACK library [33].

Out-of-core linear algebra routines — As already mentioned, the design of parallel algo-
rithms for limited memory processors is very similar to the design of out-of-core routines
for classical parallel machines. On the theoretical side, Hong and Kung [80] investigate the
I/O complexity of several computational kernels in their pioneering paper. Toledo [140]
proposes a nice survey on the design of out-of-core algorithms for linear algebra, including
dense and sparse computations. We refer to [140] for a complete list of implementations.
The design principles followed by most implementations are introduced and analyzed by
Dongarra et al. [61].

Matrix product on reconfigurable architectures— A similar thread of work, although in a
different context, deals with reconfigurable architectures, either pipelined bus systems [101],
or FPGAs [149]. In the latter approach, tradeoffs must be found to optimize the size of the
on-chip memory and the available memory bandwidth, leading to partitioned algorithms
that re-use data intensively.

Linear algebra algorithms on heterogeneous clusters — Several authors have dealt with
the static implementation of matrix-multiplication algorithms on heterogeneous platforms.
One simple approach is given by Kalinov and Lastovetsky [86]. Their idea is to achieve
a perfect load-balance as follows: first they take a fixed layout of processors arranged as
a collection of processor columns; then the load is evenly balanced within each processor



4.10. CONCLUSION 87

column independently; next the load is balanced between columns; this is the “heteroge-
neous block cyclic distribution” of [86]. Another approach is proposed by Crandall and
Quinn [58], who propose a recursive partitioning algorithm, and by Kaddoura, Ranka, and
Wang [85], who refine the latter algorithm and provide several variations. They report
several numerical simulations. As pointed out in the introduction, theoretical results for
matrix multiplication and LU decomposition on 2D-grids of heterogeneous processors are
reported in [12], while extensions to general 2D partitioning are considered in [13]. See
also Lastovetsky and Reddy [93] for another partitioning approach.

Recent papers aim at making easier the process of tuning linear algebra kernels on hetero-
geneous systems. Self-optimization methodologies are described by Cuenca et al. [59] and
by Chen et al. [48]. Along the same line, Chakravarti et al. [45] describe an implementation
of Cannon’s algorithm using self-organizing agents on a peer-to-peer network.

Mixed approach for matrix multiplication — Some authors have shown that it is possible
to automatically derive an efficient poly-algorithm to compute the product of two large
dense square matrices. The selection of the right algorithm among all possible algorithms
of the poly-algorithms is expressed as a combinatorial optimization problem. Nasri and
Trystram have proposed a new parallel poly-algorithm which uses both advantages of
standard and fast algorithms for multiplying two dense square matrices on conventional
homogeneous clusters of PCs [107], while Jeddi and Nasri have proposed a mixed approach
for matrix multiplication on both homogeneous and heterogeneous hierarchical clusters of
SMPs [84].

4.10 Conclusion

The main contributions of this work are the following:

1. On the theoretical side, we have derived a new, tighter, bound on the minimal volume
of communications needed to multiply two matrices. From this lower bound, we have
defined an efficient memory layout, i.e., an algorithm to share among the three matrices
the memory available on the workers.

2. On the practical side, starting from our memory layout, we have designed an algorithm
for homogeneous platforms whose performance is quite close to the communication volume
lower bound. We have extended this algorithm to deal with heterogeneous platforms, and
discussed how to adapt the approach for LU factorization.

3. Through MPI experiments, we have shown that both our algorithms for homogeneous and
heterogeneous platforms have far better performance than solutions using the memory lay-
out proposed in [140]. Furthermore, this static homogeneous algorithm has similar perfor-
mance than dynamic algorithms using the same memory layout, but uses fewer processors.
It is therefore a very good candidate for deploying applications on regular, homogeneous
platforms. Our heterogeneous algorithm also proves itself a very good candidate for de-
ploying applications on heterogeneous platforms, providing better performance than any
other solution, even the dynamic algorithms using the same memory layout. Furthermore,
it uses fewer processors, and has a far better worst case.

As future work, it would be interesting to assess whether our memory layout could prove
useful in the context of out-of-core algorithms executed on heterogeneous platforms.



88 CHAPTER 4. MATRIX PRODUCT

If we change the model...

In this work, we supposed that the master had no processing capability. The main reason of
this assumption was that if the master had processing capability, we could simulate it by an
additional worker of same processing capability and a communication time equal to 0.

Unfortunately, this assumption is not always true, mainly because there is a strong hidden
hypothesis. Making this reduction supposes that the master can be seen as any other worker,
which it is not, because of its special role in the communication network, and the fact that it is
the machine that holds all the data at the beginning.

Here, our goal is to perform the operation C = C + A x B. If we suppose that the master
has no processing capability (for example if the master is just a data server), then all updates
of the matrix C have to be made on a worker. Which means that the master has to send the
whole matrix C. But if, instead of sending the old values of C, the master only ask the slaves
the results of A x B, and performs itself the update of C, then, depending of the communication
to computation ratio, the results could be obtained faster. Of course, if we do not want any
interference between the updates of C and the communications [91, 92|, the master has to delay
the next communication of elements of A and B while updating.

The key argument of our mazimum re-use algorithm is that C is more important than A
or B, because it costs twice as many communications, and this argument vanishes under such
a model. If we change our context, then there is a whole new problem that has to be studied.
How the matrices have to be split? What matrix blocks should be reused? Those of A, B, or C?

This small parenthesis has not being studied during this thesis, but could be a direction of
future work.

Remark. We would like to thank Jean-Yves L’Excellent for his remark about this special case.



Chapter 5

Steady-State scheduling

We have shown in Chapter 3 that scheduling problems were difficult on heterogeneous clusters.
In Chapter 4, however, we were able to design efficient algorithms for matrix multiplication,
while not focusing on makespan minimization.

In this chapter, we will underline another method to bypass the difficulty of minimizing
makespan: the steady-state approach.

5.1 Introduction

We are now dealing with the problem of scheduling collections of independent and identical tasks
on a heterogeneous master-worker platform.

If the master-worker platform is homogeneous, i.e., if all workers have identical CPUs and
same communication bandwidths to/from the master, then elementary greedy strategies, such
as purely demand-driven approaches, will achieve an optimal throughput. On the contrary, if
the platform gathers heterogeneous processors, connected to the master via different-speed links,
then the previous strategies are likely to fail dramatically. This is because it is crucial to select
which resources to enroll before initiating the work distribution [9, 114].

In a first part, we still target fully parallel applications, but we introduce a much more
complex (and more realistic) framework than scheduling a single application. We envision a
situation where users, or clients, submit several bag-of-tasks applications to a heterogeneous
master-worker platform, using a classical client-server model. Applications are submitted on-
line, which means that we do not know beforehand when applications will be submitted and
what their characteristics will be. When several applications are executed simultaneously, they
compete for hardware (network and CPU) resources. What is the scheduling objective in such a
framework? A greedy approach would execute the applications sequentially in the order of their
arrival, thereby optimizing the execution of each application onto the target platform. Such a
simple approach is not likely to be satisfactory for the clients. For example, the greedy approach
may delay the execution of the second application for a very long time, while it might have
taken only a small fraction of the resources and few time-steps to execute it concurrently with
the first one. More strikingly, both applications might have used completely different platform
resources (being assigned to different workers) and would have run concurrently at the same
speed as if in an exclusive mode on the platform. Sharing resources to execute several appli-
cations concurrently has two key advantages: (i) from the clients’ point of view, the average
flow time (the delay between the arrival of an application and the completion of its last task) is

89



90 CHAPTER 5. STEADY-STATE SCHEDULING

expected to be much smaller; (ii) from the resource usage perspective, different applications will
have different characteristics, and are likely to be assigned different resources by the scheduler.
Overall, the global utilization of the platform will increase. The traditional measure to quantify
the benefits of concurrent scheduling on shared resources is the maximum stretch (Section 2.7).
The objective is then to minimize the maximum stretch of any application, thereby enforcing a
fair trade-off between all applications.

In a second part, we go back to a single fully parallel application, but we introduce a much
more complex (and more realistic) framework than scheduling on a platform where each pro-
cessor has a unique speed. We suppose here that all processors have several speeds (or modes)
of computation. In this context, we would like to maximize the throughput while minimizing
the energy consumed. Unfortunately, throughput can be maximized by using more energy to
speed up processors, while energy can be minimized by reducing the speed of processors and
so the total throughput. So the goals of low power consumption and high schedule quality are
contradictory. Thus, power-aware scheduling is a bicriteria optimization problem and our goal
becomes finding non-dominated schedules, i.e., those such that no schedule can both have higher
throughput and use less energy. A common approach to bicriteria problems is to fix one of the
parameters. This gives two interesting special cases. If we fix energy, we get the laptop prob-
lem, which asks “What is the best schedule achievable using a particular energy budget, before
the battery becomes critically low?”. Fixing schedule quality gives the server problem, which
asks “What is the least energy required to achieve a desired level of performance?”. We study
these two problems first at processor’s level, then at the platform’s level. The first theoretical
results obtained was an optimal greedy algorithms for both problems when the power consump-
tion model is simple. If we introduce a more realistic model, then the problems become NP-hard.

The organization of this chapter is the following. Section 5.2 describes the platform and
application models. Section 5.3 is an introduction to steady-state scheduling, and explain how
to schedule a single bag-of-tasks application, and retrieve a asymptotically optimal solution.

Section 5.4 is devoted to the scheduling of multiple bag-of-tasks applications. We present
the optimal solution for the offline case (Section 5.4.2) and heuristics for the online case (Sec-
tion 5.4.3). In Section 5.4.4 we report an extensive set of simulations and MPI experiments,
and we compare the optimal solution against several classical heuristics from the literature.
Section 5.4.5 is devoted to an overview of related work.

Then Section 5.5 is devoted to the power consumption minimization problem. We present
different power consumption models in Section 5.5.1. We study our problem at the processor
level in Section 5.5.2 before extending it to the system level in Section 5.5.3. We introduce
realistic power consumption models in Section 5.5.4. At last, Section 5.5.5 is devoted to an
overview of related work.

Finally, we state some concluding remarks in Section 5.6.

5.2 Framework

In this chapter, we target a heterogeneous master-worker platform, under the bounded multi-port
model. The link between Ppaster and P, has a bandwidth b,, and the bound on the amount of
data that the master can send per time-unit is denoted by BW. We assume a linear cost model,
hence it takes X/b, time-units to send (resp. receive) a message of size X to (resp. from) P,.
The computational speed of worker P, is s,, meaning that it takes X /s, time-units to execute



5.3. SCHEDULING A SINGLE BAG-OF-TASKS APPLICATION 91

X floating point operations. We suppose we are under the BMP-FC-SS computation model
(cf. Section 2.8), which provides an upper bound on the achievable performance for any other
model, and is not too far from reality when considering small-size tasks.

Application model

We consider bag-of-tasks applications Ag, 1 < k < n. The master Pyaster holds the input data
of each application Ay upon its release time r*). Application Ay is composed of a set of II(*)
independent, same-size tasks. In order to completely execute an application, all its constitutive
tasks must be computed (in any order).

We let w®) be the amount of computations (expressed in flops) required to process a task
of Ag. The speed of a worker P, may well be different for each application, depending upon the
characteristics of the processor and upon the type of computations needed by each application.
To take this into account, we refine the platform model and denote by sﬁﬁ) the speed of worker
P, when processing application Ag. In other words, we suppose we are dealing with unrelated
machines (cf. Section 2.3.1). The time required to process one task of Ay on processor P, is

thus w(k)/sgk). Each task of Ay has a size §) (expressed in bytes), which means that it takes a
time 6 /b, to send a task of A, to processor P, (when there are no other ongoing transfers).
For simplicity we do not consider any return message: either we assume that the results of the
tasks are stored on the workers, or we merge the return message of the current task with the
input message of the next one (and update the communication volume accordingly).

5.3 Scheduling a single bag-of-tasks application

Assume for a while that a unique bag-of-tasks application Ay is executed on the platform. One
can remark that this problem is similar to scheduling independent tasks without release dates,
as studied in Section 3.3.3, and proved polynomial. Here we use the steady-state approach to
solve this problem.

If II%®) | the number of independent tasks composing the application, is large (otherwise, why
would we deploy A on a parallel platform?), we can relax the problem of minimizing the total
execution time. Instead, we aim at maximizing the throughput, i.e., the average (fractional)
number of tasks executed per time-unit. We design a cyclic schedule, that reproduces the
same schedule every period, except possibly for the very first periods (initialization) and the
last ones (clean-up). It is shown in [14, 9] how to derive an optimal schedule for throughput
maximization. The idea is to characterize the optimal throughput as the solution of a linear
program over rational numbers, which is a problem with polynomial time complexity.

Throughout this chapter, we denote by p&k) the throughput of worker P, for application Ay,
i.e., the average number of tasks of Ay that P, executes per time-unit. We write the following
linear program (see Equation (5.1)), which enables us to compute an asymptotically optimal
schedule. The maximization of the throughput is bounded by three types of constraints:

e The first set of constraints states that the processing capacity of P, is not exceeded.

e The second set of constraints states that the bandwidth of the link from Ppaster to Py, i
not exceeded.

e The last constraint states that the total outgoing capacity of the master is not exceeded.



92 CHAPTER 5. STEADY-STATE SCHEDULING

®

MAXIMIZE p*) = SP_ SUBJECT TO
p u=1 p

vi<u<p plfug <1

Su

vi<u<p, p'%” <1 (5.1)
LTS

qu(f“)L <1

2./ Bw

The formulation in terms of a linear program is simple when considering a single application.
In this case, a closed-form expression can even be derived. First, the first two sets of constraints
can be transformed into:

(k) . Svgk) by,
Vi<u<p py’ <min w5 (-

Then, the last constraint can be rewritten:
P
BW
k
> o) < -
u=1

So that the total optimal throughput is

BW & st
k) _ o) BW ) sul bu
p —mln{é(k)j;mln{w(k),(s(k) .

It can be shown [14, 9] that any feasible schedule under one of the multiport models has to
enforce the previous constraints. Hence the optimal value p(k) is an upper bound of the achievable
throughput. Moreover, we can construct an actual schedule, based on an optimal solution
of the linear program, and which approaches the optimal throughput. The reconstruction is
particularly easy. For example the following procedure builds an asymptotic optimal schedule
for the BMP-AC model (bounded multiport communications with atomic computations). As
this is the most constrained multiport model, this schedule is feasible in any multiport model:

e While there are tasks to be processed on the master, send tasks to processor P, with rate

o).

e As soon as processor P, receives a task it processes it at the rate pq(f).

Due to the constraints of the linear program, this schedule is always feasible and it is asymp-
totically optimal, not only among periodic schedules, but more generally among any possible
schedules. More precisely, its execution time differs from the minimum execution time by a
constant factor, independent of the total number of tasks II*) to process [9]. This allows us to
accurately approximate the total execution time by:

g = 1
ek



5.4. SCHEDULING MULTIPLE BAG-OF-TASKS APPLICATIONS 93

We will often use MS™®) as a comparison basis to approximate the real makespan of an

)

application when it is alone on the computing platform. If MSg;t is the optimal makespan for
this single application, then we have

— M, < MS® < g™

k
MSs™) o

opt

where Mj, is a fixed constant [9], independent of TI(*),

However, as our fluid model requires a total control of the rate of computation and com-
munication, it is quite hard to implement. In practice, the master uses the 1-D load balancing
algorithm (please refer to Appendix C for more details about 1-D load balancing): when each

participating worker P, has already received n, tasks, the next worker to receive a task is chosen
Ny + 1

p(k)

u

as the one minimizing

5.4 Scheduling multiple bag-of-tasks applications

In this first part, we suppose that several applications are executed concurrently. Because they
compete for resources, their throughputs will be lower. Equivalently, their executions rate will
be slowed down. Informally, the stretch of an application is its slowdown factor.

5.4.1 Stretch

We denote by pz(k) the value of throughput of the application A when executed alone on the
platform, and MS**) its makespan.

In our multiple bag-of-tasks applications context, the completion time of Ay, is C*) = (%) 4
MS(k), where r(¥) is the release date of Ay, and MSW¥) is the time to execute all II(®) tasks of Ay
Because there might be other applications running concurrently to Ay during part or whole of
its execution, we expect that MS*) > MS k) We define the average throughput p*) achieved
by Ay during its (concurrent) execution using the same equation as before:

g = 1Y
ek

In order to process all applications fairly, we would like to ensure that their actual (con-
current) execution is as close as possible to their execution in dedicated mode. The stretch of
application Ay, is its slowdown factor

MS®) )

k=Yg = pF)

Our objective function is defined as the maz-stretch S, which is the maximum of the stretches
of all applications:

S = max §;.
1<k<n

Minimizing the maz-stretch S ensures that the slowdown factor is kept as low as possible for
each application, and that none of them is unduly favored by the scheduler.



94 CHAPTER 5. STEADY-STATE SCHEDULING

5.4.2 Offline setting for the fluid model

In this section we present an asymptotically optimal polynomial algorithm to schedule several
bag-of-tasks applications, while minimizing the maximum stretch, in the offline case. We assume
that the release dates and characteristics of the n applications, A, 1 < k < n, are known in
advance.

Set of possible schedules

Given a candidate value for the max-stretch, we have a procedure to determine whether there
exists a solution that can achieve this value. The optimal value will then be found using a binary
search on possible values.

Consider a candidate value S for the max-stretch. If this objective is feasible, all applications
will have a max-stretch no greater than S, hence:

MN)<Z
Ms k) —
e V1i<k<n, C®=r® 4 ysk <,® 4 s psk)

V1<k<n,

Thus, given a candidate value S', we have for each application Ay, 1 < k < n a deadline:
d®) = r®) 4 St Mgk, (5.2)

This means that the application must complete no later than this deadline in order to ensure
the expected max-stretch. If this is not possible, no solution is found, and a larger max-stretch
should be tried by the binary search.

Once a candidate stretch value & has been chosen, we divide the total execution time into
time-intervals whose bounds are epochal times, that is, applications’ release dates or deadlines.
Epochal times are denoted t; € {r() ... r™M}u{dM, . .. d™} such that t; < tj11, 1 <j <
2n—1. Our algorithm consists in running each application Ay during its whole execution window
[r®), d®)], but with a different throughput on each time-interval [t;, ;1] such that r*) < ¢; and
tiy1 < d®). Some release dates and deadlines may be equal, leading to empty time-intervals, for
example if there exists j such that ¢; = t;41. We do not try to remove these empty time-intervals
so as to keep simple indices.

Note that contrarily to the steady-state operation with only one application, in the different
time-intervals, the communication throughput may differ from the computation throughput:
when the communication rate is larger than the computation rate, extra tasks are stored in
buffers. On the contrary, when the computation rate is larger, tasks are extracted from the
buffers and processed. We introduce new notations to take both rates, as well as buffer sizes,
into account:

° p&k[)ﬁu(tj, tj+1) denotes the communication throughput from the master to the worker P,

during time-interval [t;,¢;41] for application Ay, i.e., the average number of tasks of Ay
sent to P, per time-units.

° pq(lk) (tj,tj+1) denotes the computation throughput of worker P, during time-interval [t;, ;1]
for application Ay, i.e., the average number of tasks of A computed by P, per time-units.

° Bq(tk) (tj) denotes the (fractional) number of tasks of application Ay stored in a buffer on

P, at time t;.



5.4. SCHEDULING MULTIPLE BAG-OF-TASKS APPLICATIONS 95

We write the linear constraints that must be satisfied by the previous variables. Our aim is
to find a schedule with minimum stretch satisfying those constraints.

All tasks sent by the master. The first set of constraints ensures that all the tasks of a given
application Ay are actually sent by the master:

p
VI<k<n Y 3 pW.(ttien) x (b —t) =10, (5.3)
1<j<2n—1 u=1
tj > r(k)
tip1 < d®

Non-negative buffers. Each buffer should always have a non-negative size:

V1<k<nVl<u<pVl<j<2n BF()>o0. (5.4)

Buffer initialization. At the beginning of the computation of application Ay, all corresponding
buffers are empty:
Vi<k<nVli<u<p, BWE®)=o, (5.5)

Emptying Buffer. After the deadline of application Ag, no tasks of this application should
remain on any node:

Vi<k<nVi<u<p, B®@®)=o. (5.6)

Task conservation. During time-interval [t;,t;41], some tasks of application Aj, are received
and some are consumed (computed), which impacts the size of the buffer:

V1<k<nVli<j<2n—-1,Vl <u <p,

BW(t;11) = BP(t;) + (Pﬁ)ﬁu(tjijﬂ) — pk) (tj, tjr1)) X (tjp1 —t;). (5.7)

Bounded computing capacity. The computing capacity of a node should not be exceeded
on any time-interval:

n (k)
VI<j<oam- 1V <u<p ot g <1 (5.8)
k=1 Su
Bounded link capacity. The bandwidth of each link should not be exceeded:
. ~ (k) 5
VI<j<2n—1LVL<u<p, Y phl,(ttin)5— < 1 (5.9)

k=1

Limited sending capacity of master. The total outgoing bandwidth of the master should
not be exceeded:

P n (k)
) (k) 1)
Vi<j<2n-—1 E E ti, t; — < 1. 1
> ] > zn ) ~ k:1pM—>u( 71 ]+1)BVV — (5 0)



96 CHAPTER 5. STEADY-STATE SCHEDULING

Non-negative throughputs.

Vi<u<pVli<k<nVi<j<2n-1, pg\]f[)_)u(tj,tjﬂ) >0 and pq(f)(tj,tj+1) > 0.

(5.11)

We obtain a convex polyhedron (K') defined by the previous constraints. The problem turns
now into checking whether the polyhedron is empty and, if not, into finding a point in the
polyhedron.

P%@Lu(tjvtj+1)w0£¢k)(tj7tj+1>v Vk,u,jsuchthat 1 <k<n,1<u<pl<j<2n-1 (K)
under the constraints (5.3), (5.7), (5.5), (5.6), (5.4), (5.8), (5.9), (5.10) and (5.11)

Number of tasks processed

At first sight, it may seem surprising that in this set of linear constraints, we do not have an
equation establishing that all tasks of a given application are eventually processed. Indeed, such
a constraint can be derived from the constraints related to the number of tasks sent from the
master and the size of buffers. Consider the constraints on task conservation (Equation (5.7))
on a given processor P,, and for a given application Ag; these equations can be written:

Vi<j<2n—-1, BW(t;41) - BW(t) = (PE\ZLU(%QH) — P (t5,t551)) X (tje1 — t;).

If we sum all these constraints for all time-interval bounds between tgar = r*) and tstop = d(k),

we obtain:
k
BM (tstop) — B (tstart) = D <P§\4)_,u(tj, tiv1) — P (25, tj+1)) X (tjr1 —t5).
[t5; tj+1]
tj > r(k)
tiv1 < d®

Thanks to constraints (5.5) and (5.6), we know that B (tstart) = 0 and B (tstop) = 0. So the
overall number of tasks sent to a processor P, is equal to the total number of tasks computed:

k
S o ) x (e =) = > Pt tia) X (G — 1)
[t5, tj+1] [t5, tj+1]
tj > k) t; > vk
ti1 < d® tiv1 < d)

This is true for all processors, and constraints (5.3) tells us that the total number of tasks sent
for application Ay, is II®), so:

p
Z Z P (1) X (L1 — t;) = TI®)

u=1[t;, tj41]
tj Z T'(k>
tjy1 < d®

Therefore in any solution in Polyhedron (K), all tasks of each application are processed.



5.4. SCHEDULING MULTIPLE BAG-OF-TASKS APPLICATIONS 97

Bounding the buffer size

The size of the buffers could also be bounded by adding constraints:

Vi<u<pVi<j<on, Y BP()® <M,
k=1

where M, is the size of the memory available on node P,. We bound the needed memory only
at time-interval bounds, but the above argument can be used to prove that the buffer size on
P, never exceeds M,. We choose not to include this constraint in our basic set of constraints,
as this buffer size limitation only applies to the fluid model. Indeed, it has been proved that
limiting the buffer size for independent tasks scheduling leads to NP-complete problems [20)].

Equivalence between non-emptiness of Polyhedron (K) and achievable stretch

Finding a point in Polyhedron (K) allows to determine whether the candidate value for the
stretch is feasible. Depending on whether Polyhedron (K) is empty, the binary search will be
continued with a larger or smaller stretch value:

e If the polyhedron is not empty, then there exists a schedule achieving stretch S. S becomes
the upper bound of the binary search interval and the search proceeds.

e On the contrary, if the polyhedron is empty, then it is not possible to achieve S. S becomes
the lower bound of the binary search.

This binary search and its proof are described below. For now, we concentrate on proving
that the polyhedron is not empty if and only if the stretch S is achievable.

Note that the previous study assumes a fluid framework, with flexible computing and com-
municating rates. This is particularly convenient for the totally fluid model (BMP-FC-SS) and
we prove below that the algorithm computes the optimal stretch under this model. The strength
of our method is that this study is also valid for the other models. The results are slightly dif-
ferent, leading to asymptotic optimality results and the proofs detailed below are slightly more
involved. However, this technique allows to approach optimality. One can find in Appendix C
how to construct a schedule achieving the corresponding stretch based on rates satisfying the
totally fluid model for all other platform models.

Theorem 5.1. Under the totally fluid model, Polyhedron (K) is not empty if and only if there
exists a schedule with stretch S.

Proof. Assume that the polyhedron is not empty, and consider a point in (K), given by
the values of the pg\]f[Lu(tj, tj+1) and pq(tk) (tj,tj+1). We construct a schedule which obeys exactly
these values. During time-interval [t;, t; 1], the master sends tasks of application Ay, to processor
P, with rate pg\’;)ﬂu(tj, tj+1), and this processor computes these tasks at a rate pq(f) (tj,tj41)-
To prove that this schedule is valid under the fluid model, and that it has the expected stretch,

we define pg\’f[)_m(t) as the instantaneous communication rate, and p&k) (t) as the instantaneous

computation rate. Then the (fractional) number of tasks of Ay sent to P, in interval [0, 7] is

T W
/0 Paf—u(D)dt



98 CHAPTER 5. STEADY-STATE SCHEDULING

With the same argument as in the previous remark, applied on interval [0, 7], we have

T T
BIM(T) = / P ()t — / P (1) .
0 0

Since the buffer size is positive for all ¢; and evolves linearly in each interval [t;,¢;41], it is not
possible that a buffer has a negative size, so

T W
| o< [l o

Hence data is always received before being processed.

With the constraints of Polyhedron (K), it is easy to check that no processor or no link
is over-utilized and the outgoing capacity of the master is never exceeded. All the deadlines
computed for stretch S are satisfied by construction, so this schedule achieves stretch S.

Now we prove that if there exists a schedule S} with stretch S, Polyhedron (K) is not
empty. We consider such a schedule, and we call pg\]f[Lu(t) (and p&k) (t)) the communication (and
computation) rate in this schedule for tasks of application Ay on processor P, at time t. We
compute as follows the average values for communication and computation rates during time

interval [t;,tj41]:

ti+1 tjr1
[ A | o

i |
RYANCRII B and p(F)(tj,t41) =~

ti+1 — 1 ti+1 — 1

Of course, if tj11 = t;, we just set pg\ZLu(tj,th) = p&k) (tj,tj+1) = 0. In this schedule, all tasks
of application Ay are sent by the master, so

dk)

/ P (Dt =TIH),

r(k)

With the previous definitions, Equation (5.3) is satisfied. Along the same line, we can prove
that the task conservation constraints (Equation (5.7)) are satisfied. Constraints on buffers
(Equations 5.4, 5.5, and 5.6) are necessarily satisfied by the size of the buffer in schedule S;
since it is feasible. Similarly, we can check that the constraints on capacities are verified. |

In practice, to know if the polyhedron is empty or to obtain a point in (K), we can use
clagsical tools for linear programs, just by adding a fictitious linear objective function to our set
of constraints. Some solvers allow the user to limit the number of refinement steps once a point
is found in the polyhedron; this could be helpful to reduce the running time of the scheduler.

Binary search

To find the optimal stretch, we perform a binary search. We first present a simple approximated
search using the emptiness of Polyhedron (K) to determine whether it is possible to achieve the
current stretch. Then we present an optimal but more involved search.

The lower bound on the achievable stretch is 1. The initial upper bound for this binary search
is also quite naive. For the sake of simplicity, we consider that all applications are released at
time 0 and terminate simultaneously. This is clearly a worst case scenario. Recall that the
optimal throughput for a single application on the whole platform can be computed as:



5.4. SCHEDULING MULTIPLE BAG-OF-TASKS APPLICATIONS 99

BW & st
sy _ o) BW ) su” bu
p —mln{é(k)7;m1n{w(k),5(k)

Then the execution time for application Ay is simply underestimated by II(%) / ok We
consider that all applications terminate at time ), 1) /p*(k) 50 that the worst stretch is

11k / p*k)
Smax = m’?X —Zj H(j)/p*(j) .

Determining the termination criterion of the binary search, that is the minimum gap e
between two possible stretches, is quite involved, and not very useful in practice. We focus
here on the case where this precision € is given by the user. We will later see a low-complexity
technique (a binary search among stretch-intervals) to compute the optimal maximum stretch.

Suppose that we are given € > 0. The binary search is conducted using Algorithm 9. This
algorithm allows us to approach the optimal stretch, as stated by the following theorem.

Algorithm 9: Binary search

begin
Sint — 1
Ssup <~ Omax
while Sgp — Sipr > € do

S — (Ssup + Sinf)/2

if Polyhedron (K) is empty then

inf <
else
| Ssup = S

return Sgyp,
end

Theorem 5.2. For any e > 0, Algorithm 9 computes a stretch S such that there exists a schedule
achieving S and S < Sopt + €, where Sopy is the optimal stretch. The complexity of Algorithm 9
is O (log %)

Proof. We prove that at each step, the optimal stretch is contained in the interval [Sinf, Ssup]
and Sgyp is achievable. This is obvious at the beginning. At each step, we consider the set of
constraints for a stretch S in the interval. If the corresponding polyhedron is empty, Theorem 5.1
tells us that stretch S is not achievable, so the optimal stretch is greater than S. If the polyhedron
is not empty, there exists a schedule achieving this stretch, thus the optimal stretch is smaller
than S.

The size of the work interval is divided by 2 at each step, and we stop when this size is
smaller than e. Thus the number of steps is O (log S’"—E‘”) At the end, Sopt € [Sins Ssup) With
Ssup — Sint < €, s0 that Sgup < Sopt + €, and Sgyp is achievable. [ |

Binary search with stretch-intervals

In this section, we present another method which computes the optimal stretch in the offline case.
This method is based on a linear program built from the constraints of the convex polyhedron (K)



100 CHAPTER 5. STEADY-STATE SCHEDULING

with the minimization of the stretch as objective. To do this, we need that other parameters
(especially the deadlines) are functions of the stretch. We recall that the deadlines of the
applications are computed from their release date and the targeted stretch S:

d® =) 1§ x pms®).,

S T1 T T
A
ds
(12
E o EREETTE IETPPPRTRPPPPCTRPPRPTRPPREY IEPPTTRPPPRTTRPPPPERPPRPES Y EPPPR
(11
Sarrereprree o T e T
K P A R et O~ s
Sodoo b
51 =1 L

Figure 5.1: Relation between stretch and deadlines

Figure 5.1 represents the evolution of the deadlines d*) over the targeted stretch S: each
deadline is an affine function in §. For the sake of readability, the time is represented on the x
axis, and the stretch on the y axis. Special values of stretches Sy, So, ..., S, are represented in
the figure. These critical values of the stretch are points where the ordering of the applications’
release dates and deadlines is modified:

e When S is such a critical value, some release dates and deadlines have the same value;

e When S varies between two such critical values, i.e., when S, < § < 8,41, then the
ordering of the release dates and the deadlines is preserved.

To simplify our notations, we add two artificial critical values corresponding to the natural
bound of the stretch: S; =1 and §,,, = .

Our goal is to find the optimal stretch by slicing the stretch space into a number of intervals.
Within each interval defined by the critical values, the deadlines are affine functions of the
stretch. We first show how to find the best stretch within a given interval using a single linear
program, and then how to explore the set of intervals with a binary search, so as to find the one
containing the optimal stretch.

Within a stretch-interval

In the following, we work on one stretch-interval, called [S,,Sp]. For all values of S in this
interval, the release dates r*) and deadlines d®) are in a given order, independent of the value
of S. As previously, we note {t;}j—1._ o, = {r(k), d(k)}k, with t; < t;j41. As the values of the t;
may change when § varies, we write ¢; = ;S + 3;. This notation is general enough for all r(k)g
and d*)’s:

o Ift; = ) then aj =0and §; = k),

o Ift; = d®) | then aj = MS**) and B = k),



5.4. SCHEDULING MULTIPLE BAG-OF-TASKS APPLICATIONS 101

Note that like previously, some ¢; might be equal, and especially when the stretch reaches
a bound of the stretch-interval (S = S, or S = &), that is a critical value. For the sake of
simplicity, we do not try to discard the empty time-intervals, to avoid renumbering the epochal
times.

When we rewrite the constraints defining the convex polyhedron (K) with these new nota-
tions, we obtain quadratic constraints instead of linear constraints. To avoid this, we introduce
new notations. Instead of considering the instantaneous communication and computation rates,
we use the total amount of tasks sent or computed during a given time-interval. Formally we

define A%Lu(tj, tj+1) to be the fractional number of tasks of application Ay sent by the master

to processor P, during the time-interval [t;,¢;41]. Similarly, we denote by AP (tj,tj41) the
fractional number of tasks of application Ay computed by processor P, during the time-interval
[tj,tjt1]. Of course, these quantities are linked to our previous variables. Indeed, we have:

k k
Ag\d)—nL(t]’ tj+1) = pg\/f)—nL(tJ’ tj+1) x (tj+1 - t])
AP, t0) = Pt t41) X (tis1 — t;)

with £j11 = tj = (a1 — 05)S + (Bj41 — 55).
All constraints can be rewritten with these new notations:

Total number of tasks. We make sure that all tasks of application Ay are sent by the master:

p
Visk<n Y DAY te) = 1%, (5.12)
1<j<2n—1 u=1
tj > r(k)
tiyr < d®

Non-negative buffer. Each buffer should always have a non-negative size:

V1<k<nVli<u<pVli<j<2n, B¥()>o0. (5.13)

Buffer initialization. At the beginning of the computation of application Ay, all corresponding
buffers are empty:

Vi<k<nVi<u<p, for tj:r(k), B(k)(tj)zo. (5.14)

u

Emptying Buffer. After the deadline of application A, no tasks of this application should
remain on any node:

VI<k<nVi<u<p, fort;=d*®, BW¥(@)=o0. (5.15)

Task conservation. During time-interval [t;,t;41], some tasks of application Aj, are received
and some are consumed (computed), which impacts the size of the buffer:

V1<k<nVli<j<2n-1,Vl <u<p,
B® (t541) = BO () + AL (15, t501) — AP (t5,8551). (5.16)



102 CHAPTER 5. STEADY-STATE SCHEDULING

Bounded computing capacity. The computing capacity of a node should not be exceeded in
any time-interval:

VI<j<2n—-1,Vl<u<p,

n ) w®)
Y AP ) gy < (a1 —ag)S + (B = By). (5.17)
k=1 Su

Bounded link capacity. The bandwidth of each link should not be exceeded:

. (k) 5k
Vi<j<2n—-1,V1<u< p,ZAMﬁu(tjath)bf < (ajp1—0;)S+(Bj1—065) (5.18)
k=1 w

Limited sending capacity of master. The total outgoing bandwidth of the master should
not be exceeded:

P n
VI<j<2n-1,3 3 AG (4, t541)0%) < BW x (41— a))S + (Bj11— ;). (5.19)
u=1 k=1

We finally add a constraint to force the objective stretch to be in the targeted stretch-interval:
Sa <8< S (5.20)

We thus rewrite as above all the constraints defining Polyhedron (K) and then we add the new
constraint (5.20). This way, we obtain a linear program enabling us to check what is the minimal
achievable stretch in the interval [S,, Sp], if any.

Even if the bounds of the sum on the time-intervals in Equation (5.12) seem to depend on
S, the set of intervals involved in the sum does not vary as the order of the ¢; values is fixed for
So <8 <85, With the objective of minimizing the stretch, we get the following linear program.

MINIMIZE S,
(LP) { UNDER THE CONSTRAINTS
(5.12), (5.13), (5.14), (5.15), (5.16), (5.17), (5.18), (5.19), (5.20)

Solving this linear program allows to find the minimum possible stretch in the stretch-interval
[Sa, Sp). If the minimum stretch computed by the linear program is Sopy > Sg, this means that
there is not better possible stretch in [S,, Sp], and thus there is no better stretch for all possible
values. On the contrary, if Sopt = Su, Sq may be the optimal stretch, or the optimal stretch may
be smaller than S,. In this case, the binary search is continued with smaller stretch values. At
last, if there is no solution to the linear program, then there exists no possible stretch smaller
or equal to S, and the binary search is continued with larger stretch values. This binary search
and its proof are described below.

When &, < Sopt < Sp, we can prove that Sgpt is the optimal stretch.

Theorem 5.3. The linear program (LP) finds the optimal stretch provided that the optimal
stretch is in |Sg, Sp).



5.4. SCHEDULING MULTIPLE BAG-OF-TASKS APPLICATIONS 103

Proof. The proof highly depends on Theorem 5.1. First, consider an optimal solution of the
linear program (LP). We compute, for all u, k, j

P (tistinn) = Aulls-152)
(11 — )8 + (Bj+1 — B5)
AP (), t501)
(jp1 — o)+ (Bjr1 — B5)

and ) (t,1;41)

These variables constitute a valid solution of the set of constraints of Theorem 5.1 for S = Sop.
Therefore there exists a schedule achieving stretch Sop.

Assume now that there exists a schedule with stretch S such that S; < § < Sp. Due to
Theorem 5.1, there exist values for pgf[)ﬁu(tj, tj+1) and p&k) (tj,tj+1) satisfying the corresponding
set of constraints for S. Then we compute

AE@Lu(?ﬁj,tﬁl) = P%C[)_)u(tjatjﬂ) X ((ajq1 — )8 + (Bj+1 — 55))

and AP (t;,t51) = pF (5, t01) x ((ajs1 — ;)S + (Bj41 — 6;)),

A%’;Lu(tj, tj+1) and AP (tj,tj4+1) constitute a solution of the linear program (LP) with objective
value §. As the objective value Sypt found by the linear program is minimal among all possible
solutions, we have Sopy < S. |

Binary search among stretch intervals

The linear program we just described is used as a building brick for our exact binary search
between the critical values. As the number of critical values is at worst quadratic in the number
of applications, the overall binary search runs in time polynomial in the size of the problem.

We assume that we have computed the critical values of the stretch intervals: Si,...,Sn.
Algorithm 10 describes the binary search to reach the optimal stretch.

Theorem 5.4. Algorithm 10 finds the optimal stretch value in a polynomial number of steps.

Proof. This algorithm performs a binary search among the m stretch-intervals. Thus, the num-
ber of steps of this search is O(logm) and each step consists in solving a linear program with
rational variables, which can be done in polynomial time.

We prove that the optimal stretch is always contained in the interval [Sp,Sy|. This is
obviously true in the beginning. On a stretch-interval [Sas, Sar+1], the minimum possible stretch
Sopt is computed. If Sopy > Spr, thanks to Theorem 5.3, we know that Sep¢ is the optimal
stretch. If there is no solution, no stretch values in the stretch-interval [Sas, Spr41] is feasible, so
the optimal stretch is in [Spr41,Su]. If Sopt = S, then the optimal stretch is smaller than or
equal to Sys. Thus, the optimal stretch is still contained in [Sy, Sy] after one iteration. If we exit
while loop without having return the optimal stretch, then U = L 41 and the optimal stretch is
contained in the stretch-interval [Sy,Sy]. We compute this value with the linear program and
return it. |



104 CHAPTER 5. STEADY-STATE SCHEDULING

Algorithm 10: Binary search among stretch-intervals

begin
L+ 1and U «+ max
while U — L > 1 do
e L —|2— U
Solve the linear program (LP) for interval [Sas, Shr41]
if there is a solution with objective value Sypy then
if Sopt > Sy then
| return Sy
else
LU+— M
else
| L LM
Solve the linear program (LP) for interval [Sr,, Sy]
return the objective value Sypy of the solution
end

5.4.3 Online setting

In this section we move to study the online setting, and we develop a polynomial time heuristic
to schedule several bag-of-tasks applications arriving online, while minimizing the maximum
stretch. Because we target an online framework, the scheduling policy needs to be modified
upon the completion of an application, or upon the arrival of a new one. Resources will be re-
assigned to the various applications in order to optimize the objective function. The scheduler
is making best use of its partial knowledge of the whole process (we know beforehand neither
the release dates, nor the number of tasks, nor the characteristics of the next application to
arrive into the system). The idea is to make use of our study of the offline case. When a
new application is released, we recompute the achievable max-stretch using the binary search
described in the offline case. However, we cannot pretend to optimality any longer as we now
have only limited information on the applications.

When a new application Ay, arrives at time Thew = r(knew) we consider the applications
Ao, ..., Ag,.—1, released before Tjey.
We call Hﬁ’gﬁn the (fractional) number of tasks of application Aj remaining at the master at
time Thew. For the sake of simplicity, we do not consider the applications that are totally
processed, and we thus have H§’§2n # 0 for all applications. For the new application, we have
TI{Enew) — T10knew) . We also consider as parameters the state B (tkpen ) Of the buffers at time
Thew- We also have B&kneW)(tk =0

As previously, we compute the optimal achievable max-stretch using Algorithm 9, the only
slight modification being that we take past decisions into account. For a given objective S, we
have a convex polyhedron defined by the linear constraints, which is non empty if and only if
stretch S is achievable. The constraints are slightly modified in order to fit the online context.
First, we recompute the deadlines of the applications: d*) = r*) 48 x MS**) Note that now,
all release dates are smaller than Tyey, and all deadlines are larger than Ty -

We sort the deadlines by increasing order, and denote by ¢; the set of orderer deadlines:
{t;} = {d®™} U {Tpew} such that t; < t;11. In other words, the constraints are the same as the

new )



5.4. SCHEDULING MULTIPLE BAG-OF-TASKS APPLICATIONS 105

ones used for Polyhedron (K'), except the constraint on the number of task processed, which is
updated to account for the remaining number of tasks to be processed.

As described for the offline setting, a binary search allows to find the optimal max-stretch.
Note that this “optimality” concerns only the time interval [They, +00], assuming that no other
application will be released after Tyew. This assumption will not hold true in general, hence our
schedule will be suboptimal (which is the price to pay without information about future released
applications). The stretch achieved for the whole application set is bounded by the maximum
of the stretches obtained by the binary search each time a new application is released.

5.4.4 MPI experiments and SimGrid simulations

We have conducted several experiments in order to compare different scheduling strategies, and
to show the benefits of the heuristics presented in this section. We first present the heuristics
compared. Then we detail the platforms and applications used for the experiments. Finally, we
expose and comment the numerical results.

As our fluid model requires a total control of the rate of computation and communication, it
is quite hard to implement in practice. During the experiments we used the One-Port, Atomic
Computation model, which serializes sending from the master, and we assume that a worker
has to completely receive a task before starting its computation, and that it cannot perform
several computations simultaneously.

The code and the experimental results can be downloaded from:

http://graal.ens-1lyon.fr/~jfpineau/Downloads/cbs3m/.

Heuristics

In this section, we present strategies that are able to schedule bag-of-tasks applications in an
online setting. Most of these strategies are simple and wait for an application to terminate
before scheduling another application. Although far from the optimal in a number of cases, such
strategies are representative of existing Grid schedulers.

FIFO (First In First Out)— Applications are computed in the order of their release dates.

NPSPT (Non Preemptive Shortest Processing Time)— When an application terminates
(or the first application is released), the application with the smallest processing time is
scheduled (the processing time is approximated by MS*, see Section 5.3).

SRPT (Shortest Remaining Processing Time)— At each release date or termination date,
the application with the smallest remaining processing time is scheduled. The remaining
processing time is the time needed to process the remaining tasks of the application (and
is approximated as previously).

SWRPT (Shortest Weighted Remaining Processing Time)— This strategy is very sim-
ilar to SRPT, but the remaining processing time of the released applications are weighted
with MS*, that is the application with the smallest product between the remaining pro-
cessing time and the total processing time is scheduled first. In practice, it gives small
applications a priority against large applications which are almost finished, which is better
in order to minimize the stretch.


http://graal.ens-lyon.fr/~jfpineau/Downloads/cbs3m/

106 CHAPTER 5. STEADY-STATE SCHEDULING

The importance and relevance of the above heuristics are outlined in the related work section
(Section 5.4.5). Once an application is selected, several policies exist for scheduling its tasks
onto the platform:

RR (Round-Robin)— All workers are selected in a cyclic way.

MCT (Minimum Completion Time)— Given the task, we select the worker that will finish
this task the earliest, given the current load of the platform.

DD (Demand-Driven)— Workers are themselves asking for a task to compute as soon as they
become idle.

The four application selection policies and the three resource selection rules lead to twelve
different greedy algorithms. We also test a more sophisticated algorithm:

MWMA (Master Worker for Multiple Applications)— This algorithm computes on each
time interval a steady-state strategy to schedule the available applications, as presented
in [17] and [18]. All available applications are running at the same time, and each appli-
cation is given a different fraction of the platform according to its weight. This weight
can be derived from (i) the remaining number of tasks of the application (variant called
MWMA NBT), or (ii) the remaining time of computation of the application (variant
called MWMA MS). Both variants are studied in the experiments.

In addition to the previous scheduling strategies, we have implemented several heuristics based
on our static algorithm, called CBS3M (for Clever Burst Steady-State Stretch Minimization)
in the following. However, the use of MPI to perform communications during the experiments
leads us to serialize the communications, and to abandon the multiport model in favor of the
one-port model. Thus, the fluid solution of the CBS3M algorithm needs to be adapted to cope
with the one-port model. Rather than literally implementing the transformations of Appendix C,
which are best suited to compute theoretical bounds, we first implement a one-dimensional load-
balancing algorithm for the master’s sending operations, and then we test two variants for the
workers to choose the next task to compute among those they have received: FIFO and Earliest
Deadline First (EDF). That gives two heuristics for the online version of the algorithm (based
on Section 5.4.3): CBS3M _EDF_ONLINE and CBS3M _FIFO_ONLINE). As a comparison
basis, we also add two strategies, CBS3M _EDF ROFF and CBS3M _FIFO_ ROFF, with
all information about future submissions: these strategies run the CBS3M algorithm under
a rounded offline model: the algorithms have a complete information and compute the whole
schedule at the beginning (based on Section 5.4.2), but are then adapted (rounded) to the
one-port model.

Both the CBS3M and the MWMA strategies make use of linear programs to compute
their schedules. These linear programs are solved using glpk, the Gnu Linear Programming
Kit [71].

Experimental settings

In order to test and compare our heuristics, we perform both simulations and real experiments.
Simulations are conducted using the SimGrid [94] simulator, while experiments make use of the
MPICH-2 communication library [74].



5.4. SCHEDULING MULTIPLE BAG-OF-TASKS APPLICATIONS 107

Communication and computation times are realized by transmitting random data, or by
computing random matrix products, as described below; no real application is used. In particu-
lar, this allows us to emulate a heterogeneous platform: we have full freedom to slow down some
communications by transmitting the same data several times, and slow down some computations
by performing several times the same task.

Our theoretical study is fully general, allowing computing times to be unrelated: a pro-
cessor can process different applications with different speeds. However, for sake of simplicity,
we consider in the experiments and in the simulations that we have uniform processors, and
all applications are of the same kind: the processing time of a task depends only on its size
(depending on the application) and the speed of the processor, not on the application. As we
target a heterogeneous master-worker platform, we generate several platform scenarios. The
computing speeds are uniformly distributed in interval [o, 10- «], where « is the reference speed.
Similarly, the link bandwidths are uniformly distributed in interval [3,10 - 5], where ( is the
reference bandwidth.

The experiments are conducted on a cluster composed of nine processors. The master is a
SuperMicro server 6013P1, with a P4 Xeon 2.4 GHz processor, and the workers are all SuperMicro
servers 5013-GM, with P4 2.4 GHz processors. All nodes have 1 GB of memory and are running
Linux. They are connected with a switched 10 Mbps Fast Ethernet network.

Even if we totally control the platform parameters (computing speeds and bandwidths),
when these characteristics are needed by a heuristic to take scheduling decisions, the parameters
are measured within the program by sending a small message, or performing a small task. This
is true both in the MPI implementation and in the simulations.

The time needed to measure the platform characteristics and take scheduling decisions is
taken into account in the experiments (but not in the simulations). This phase usually takes
a few seconds in the experiments (up to one minute) for scenarios of a few hours, and thus
represents less than 1% of the total running time.

Applications

A bag-of-tasks application is described by its release date, its number of tasks, and the commu-
nication and computation sizes of one task. For our experiments and simulations, we randomly
generated the applications, with the following constraints in order to be realistic:

o the release dates of the applications follow a log-normal distribution as suggested in [65];

e the total amount of communications and computations for an application is randomly
chosen with a log-normal distribution between realistic bounds, and then split into tasks;
the parameters used in the generation of the applications for the experiments and the
simulations are described in Table 5.1.

The number of tasks for one application is upper-bounded by the minimum amount of commu-
nication and computation allowed for one task.

Results

In this section we describe the results obtained on all different platforms, experimental or sim-
ulated.



108 CHAPTER 5. STEADY-STATE SCHEDULING

parameter experiments simulations
general number of workers.......... ... .o o 8 10
number of applications........... ... .. ... 12 20
arrival dates mean of the distribution in the log space................... 4.0 4.0
standard deviation in the log space......................... 1.2 1.2
computations maximum amount of work application (Gflops)............. 76.8 409
minimum amount of work per task (Gflops)................ 3.1 3.1
communications | maximum amount of communication per application (MB) . 800 6,000
minimum amount of communication per task (MB) ........ 40 40
number of tasks | minimum number of tasks per application.................. 10 20

Table 5.1: Parameters for the MPI experiments and for the SimGrid simulations.

Algorithm minimum average (+ stddev) maximum (fraction of best result)
FIFO_RR 4.550 16.689 (£ 7.897) 62.6 (the best in 0.0 %)
FIFO MCT 1.857 6.912 (& 2.404) 17.9 (the best in 0.0 %)
FIFO_DD 4.550 16.689 (£ 7.897) 62.6 (the best in 0.0 %)
NPSPT_RR 1.348 4.274 (£ 1.771) 13.8 (the best in 0.0 %)
NPSPT MCT 1.007 1.928 (& 0.610) 5.99 (the best in 1.3 %)
NPSPT_ DD 1.348 4.274 (£ 1.771) 13.8 (the best in 0.0 %)
SRPT_ RR 1.348 4.121 (£ 1.737) 13.8 (the best in 0.0 %)
SRPT_MCT 1.007 1.861 (£ 0.601) 6.87 (the best in 2.2 %)
SRPT DD 1.348 4.121 (£ 1.737) 13.8 (the best in 0.0 %)
SWRPT RR 1.344 4119 (& 1.739) 13.8 (the best in 0.0 %)
SWRPT MCT 1.007 1.857 (% 0.601) 6.87 (the best in 1.9 %)
SWRPT_DD 1.344 4119 (& 1.739) 13.8 (the best in 0.0 %)
MWMA NBT 1.477 3.433 (£ 1.044) 8.49 (the best in 0.0 %)
MWMA MS 2.435 8.619 (£ 2.420) 20.4 (the best in 0.0 %)
CBS3M_FIFO_ONLINE 1.003 1.322 (& 0.208) 2.83 (the best in 6.9 %)

CBS3M _EDF_ ONLINE 1.003 1.163 (£ 0.118) 1.93 (the best in 64.0 %)
CBS3M_FIFO_ROFF 1.022 1.379 (£ 0.276) 3.74 (the best in 3.8 %)

CBS3M_ EDF_ ROFF 1.011 1.213 (£ 0.125) 2.06 (the best in 26.2 %)

Table 5.2: Simulation results: Relative max-stretch of all heuristics in the simulations.

Simulation results

In this section, we detail the results of the simulations. We run 1000 simulations based on the
parameters described in Table 5.1. Table 5.2 presents the results of all heuristics for the max-
stretch metric, whereas Figure 5.2 shows the evolution of some heuristics (the best ones) over
the load of the scenario. Here the load is characterized with the optimal theoretical achievable
max-stretch in the fluid model: we consider that a scenario where the optimal max-stretch is
6 is twice as loaded as a scenario with an optimal max-stretch of 3. All results are relative to
the optimal max-stretch, which is computed in the offline case. A relative max-stretch of 1.5
means that the corresponding strategies achieves a max-stretch which is 1.5 times the optimal
one, thus with a degradation of 50%.

The CBS3M heuristics perform very well for the max-stretch: CBS3M _EDF ONLINE
achieves the best max-stretch between all heuristics in 64% of the simulations. This heuristic
performs significantly better than all other heuristics: it has an average max-stretch of 1.163
times the optimal max-stretch, the lowest standard deviation (0.118) and the minimum worst
case (1.93) among all heuristics.

The good results of the CBS3M heuristics can be explained by the fact that they make very
good use of the platform, by scheduling simultaneously several applications when it is possible,



5.4. SCHEDULING MULTIPLE BAG-OF-TASKS APPLICATIONS 109

§ 4 T T T | | T T

&

.l 3.5 F ]

<

g

RN

E MWMA _NBT —+—

& SWRPT_MCT -

— 25 F  x SRPT MCT --+-- 4

5 AN CBS3M_EDF_ROFF &

IS /¥ F-x_,  CBS3M_EDF_ONLINE o

4; 2 - / K~ - - - - - ]
| ki i .

E’é ‘E" * T K= e —- K

5 15 —g .

20 ::Z@' 3 @ &

[s T AR NEBPL U ol © A b s ¢ P o= I

: R TR N

% 1 | | | | | |

load (optimal stretch)

Figure 5.2: Simulation results: Evolution of the relative max-stretch of best heuristics in the
simulations under different load conditions.

for example when the communication medium has still some free bandwidth after scheduling
the most critical application. All other heuristics (except MWMA) are limited to scheduling
only one application at a time, leading to an overall bad utilization of the computing platform.
One can also note that the CBS3M heuristics also have very small standard deviations.

Another comment is the relative bad result of the involved strategies MWMA NBT and
MWMA MS: although they schedule several applications concurrently on the platforms, they
use a somewhat wrong computation of the priorities, leading to poor results.

In Figure 5.2, one can notice that, surprisingly, the rounded offline version of CBS3M
is not always better than the online version. The offline version knows the future and thus
should achieve better performance. However, it suffers from discrepancies between the actual
characteristics of the platform and those of the platform model. The online version is able to
circumvent this problem as it takes into account the work effectively processed to recompute
the schedule at each new application arrival. This gain of reactivity compensates for the loss
due to the lack of knowledge of the future. We also observe that resource selection is important
on heterogeneous platforms, as the strategies which have the worst relative max-stretch are the
ones using round-robin or demand-driven policies.

We also plot the results of the best heuristics for other objectives: sum-stretch (Table 5.3
and Figure 5.3), makespan (Table 5.4 and Figure 5.4), max-flow (Table 5.5 and Figure 5.5), and
sum-flow(Table 5.6 and Figure 5.6). Quite surprisingly, CBS3M also gives the best average
results for the makespan and the max-flow objectives. With respect to sum-flow, CBS3M gives
the best results for light-loaded scenarios, whereas SRPT and SWRPT give better results for
high-loaded scenarios. Finally, CBS3M is outperformed by SRPT and SWRPT for sum-
stretch.



110

CHAPTER 5. STEADY-STATE SCHEDULING

Algorithm minimum average (% stddev) maximum (fraction of best result)
FIFO_RR 2.064 6.783 (% 3.210) 30.7 (the best in 0.0 %)
FIFO_MCT 1.322 2.754 (& 0.670) 6.45 (the best in 0.0 %)
FIFO_DD 2.064 6.783 (& 3.210) 30.7 (the best in 0.0 %)
NPSPT_RR 1.019 2.942 (& 1.221) 10.1 (the best in 0.0 %)
NPSPT_MCT 1.000 1.182 (4 0.183) 2.53 (the best in 2.4 %)
NPSPT_DD 1.019 2942 (4 1.221) 10.1 (the best in 0.0 %)
SRPT_RR 1.007 2.607 (& 1.071) 8.93 (the best in 0.0 %)
SRPT MCT 1.000 1.045 (£ 0.098) 1.92 (the best in 25.5 %)
SRPT_DD 1.007 2.607 (& 1.071) 8.93 (the best in 0.0 %)
SWRPT_RR 1.000 2.596 (& 1.068) 8.96 (the best in 0.1 %)
SWRPT MCT 1.000 1.038 (£ 0.098) 1.92 (the best in 60.1 %)
SWRPT_DD 1.000 2.596 (& 1.068) 8.96 (the best in 0.1 %)
MWMA NBT 1.051 2.013 (& 0.644) 5.41 (the best in 0.0 %)
MWMA _MS 1.663 4183  (+ 1.269) 11.5 (the best in 0.0 %)
CBS3M_FIFO_ONLINE 1.000 1.294 (4 0.208) 2.16 (the best in 0.4 %)
CBS3M EDF ONLINE | 1.000 1.201  (+ 0.190) 2.08 (the best in 20.2 %)
CBS3M_FIFO_ROFF 1.000 1.332 (4 0.227) 2.57 (the best in 0.1 %)
CBS3M_EDF_ROFF 1.000 1.272 (4 0.214) 2.49 (the best in 3.8 %)

Table 5.3: Simulation results: Sum-stretch of all heuristics in the simulations.

22 | | | |
/x\\
X ’ %
* . % .
f») 2 ‘X\ ’I \\x x of X//x B
“”| Y o/ ¥
e 18r T SRPT MCT —— -
2 SWRPT_MCT --%--
@ MWMA_NBT - -%--
2 16F CBS3M_EDF ROFF - T - _
~ ' CBS3M_EDF_ONLINE — ¢ -
5
8 —

average sum

0.8 ! !

load (optimal stretch)
Figure 5.3: Simulation results: Evolution of the sum-stretch of best heuristics in the simulations
under different load conditions.

10 11 12



5.4. SCHEDULING MULTIPLE BAG-OF-TASKS APPLICATIONS 111

Algorithm minimum average (& stddev) maximum (fraction of best result)
FIFO_RR 1.343 2716 (£ 0.684) 5.31 (the best in 0.0 %)
FIFO_MCT 1.000 1.329 (& 0.202) 2.11 (the best in 0.1 %)
FIFO_DD 1.343 2.716 (£ 0.684) 5.31 (the best in 0.0 %)
NPSPT_RR 1.325 2.714 (£ 0.685) 5.33 (the best in 0.0 %)
NPSPT_MCT 1.000 1.329 (& 0.202) 2.1 (the best in 0.0 %)
NPSPT_DD 1.325 2.714 (£ 0.685) 5.33 (the best in 0.0 %)
SRPT_RR 1.325 2.714 (£ 0.686) 5.32 (the best in 0.0 %)
SRPT_MCT 1.000 1.328 (& 0.202) 2.1 (the best in 0.0 %)
SRPT_DD 1.325 2.714 (£ 0.686) 5.32 (the best in 0.0 %)
SWRPT_RR 1.322 2715 (+ 0.686) 5.32 (the best in 0.0 %)
SWRPT_MCT 1.000 1.328 (& 0.202) 2.1 (the best in 0.0 %)
SWRPT_DD 1.322 2.715 (£ 0.686) 5.32 (the best in 0.0 %)
MWMA_NBT 1.000 1079 (& 0.070) 1.45 (the best in 4.6 %)
MWMA_MS 1.000 1.078 (% 0.067) 1.42 (the best in 2.1 %)
CBS3M_FIFO_ONLINE 1.000 1.029 (& 0.029) 1.17 (the best in 7.5 %)
CBS3SM_EDF_ONLINE | 1.000  1.004 (% 0.006) 1.05 (the best in 35.0 %)
CBS3M_FIFO_ROFF 1.000  1.018 (£ 0.023) 1.22 (the best in 17.6 %)
CBS3M _EDF ROFF 1.000  1.003 (& 0.006) 1.07 (the best in 53.0 %)

Table 5.4: Simulation results: Makespan of all heuristics in the simulations.

1.4 T T T T T T T T T

135 -

1.25 _
SRPT MCT —+—
SWRPT_MCT --X--
1.2 F MWMA_NBT --X-- +
CBS3M_EDF_ROFF - I -
CBS3M_EDF_ONLINE — ¢ -
1.15 _

average makespan / best makespan

1.05 -

- M= -Sl-g—- - 5 - L- | | |
4 5 6 7 8 9 10 11 12
load (optimal stretch)
Figure 5.4: Simulation results: Evolution of the makespan of best heuristics in the simulations
under different load conditions.




112 CHAPTER 5. STEADY-STATE SCHEDULING

Algorithm minimum average (% stddev) maximum (fraction of best result)
FIFO_RR 1.146 3.097 (£ 1.135) 10.2 (the best in 0.0 %)
FIFO_MCT 1.000  1.281 (& 0.258) 2.83 (the best in 14.4 %)
FIFO_DD 1.146 3.097 (£ 1.135) 10.2 (the best in 0.0 %)
NPSPT_RR 1.386 3.282 (£ 1.222) 10.9 (the best in 0.0 %)
NPSPT MCT 1.002 1.460 (% 0.287) 3.09 (the best in 0.0 %)
NPSPT_ DD 1.386 3.282 (£ 1.222) 10.9 (the best in 0.0 %)
SRPT_ RR 1.386 3.289 (£ 1.225) 10.9 (the best in 0.0 %)
SRPT_MCT 1.003 1.473 (£ 0.306) 4.28 (the best in 0.0 %)
SRPT_ DD 1.386 3.289 (£ 1.225) 10.9 (the best in 0.0 %)
SWRPT RR 1.382 3291 (& 1.225) 10.9 (the best in 0.0 %)
SWRPT MCT 1.000 1477 (% 0.309) 4.8 (the best in 0.1 %)
SWRPT DD 1.382 3.291 (£ 1.225) 10.9 (the best in 0.0 %)
MWMA NBT 1.000 1.181 (£ 0.153) 1.99 (the best in 7.0 %)
MWMA MS 1.000 1.261 (£ 0.189) 2.32 (the best in 1.1 %)
CBS3M_FIFO_ONLINE 1.000 1.054 (£ 0.061) 1.52 (the best in 5.8 %)
CBS3M _EDF_ ONLINE 1.000 1.031 (£ 0.057) 1.48 (the best in 23.2 %)
CBS3M_FIFO _ROFF 1.000  1.037 (& 0.058) 1.48 (the best in 21.6 %)
CBS3M_EDF ROFF 1.000  1.023 (& 0.055) 1.48 (the best in 48.7 %)

Table 5.5: Simulation results: Max-flow of all heuristics in the simulations.

1.9 T T T T
X SRPT MCT —+—
AN SWRPT_MCT --%-- |
1.8 MWMA_NBT - % --
2 CBS3M_EDF ROFF - & -
2 17F CBS3M_EDE_ONLINE — ¢ - |
él
g 16 _
1]
2 15F |
2
o
& 1.4 % -
§ \\\ )K/ \\
g 13F % \ a
5 x\*—x
5 12 - . i
=K
N - Ko K-y - X ]
1.1 o o B
‘T T
1 % ‘Eil'@—ﬁ -8 Rre s |l =, o I | | !
4 5 6 7 8 9 10 11 12

load (optimal stretch)
Figure 5.5: Simulation results: Evolution of the max-flow of best heuristics in the simulations
under different load conditions.



5.4. SCHEDULING MULTIPLE BAG-OF-TASKS APPLICATIONS

113

Algorithm minimum average (% stddev) maximum (fraction of best result)
FIFO_RR 1.644 4.020 (£ 1.567) 16.3 (the best in 0.0 %)
FIFO_MCT 1.134 1.652 (4 0.264) 3.33 (the best in 0.0 %)
FIFO_DD 1.644 4.020 (&£ 1.567) 16.3 (the best in 0.0 %)
NPSPT_RR 1.196 2.811 (& 1.081) 9.21 (the best in 0.0 %)
NPSPT_MCT 1.000 1.149 (4 0.171) 2.32 (the best in 3.5 %)
NPSPT_DD 1.196 2811 (4 1.081) 9.21 (the best in 0.0 %)
SRPT_RR 1.079 2.704 (& 1.048) 9.03 (the best in 0.0 %)
SRPT MCT 1.000 1.105 (£ 0.151) 2.23 (the best in 32.1 %)
SRPT_DD 1.079 2.704 (& 1.048) 9.03 (the best in 0.0 %)
SWRPT_RR 1.079 2.706 (& 1.049) 9.03 (the best in 0.0 %)
SWRPT MCT 1.000 1.108 (£ 0.152) 2.23 (the best in 15.4 %)
SWRPT_DD 1.079 2.706 (& 1.049) 9.03 (the best in 0.0 %)
MWMA NBT 1.000 1.404 (£ 0.217) 2.29 (the best in 0.1 %)
MWMA _MS 1.359 2.333 (& 0.355) 3.7 (the best in 0.0 %)
CBS3M_FIFO_ONLINE 1.000 1.122 (4 0.101) 1.62 (the best in 1.4 %)
CBS3M EDF ONLINE | 1.000 1.065 (& 0.090) 1.53 (the best in 35.6 %)
CBS3M_FIFO_ROFF 1.000 1.120 (£ 0.103) 1.67 (the best in 0.3 %)
CBS3M EDF ROFF 1.000 1.087 (& 0.101) 1.66 (the best in 18.7 %)

flow / best sum_flow

average sum

Table 5.6: Simulation results: Sum-flow of all heuristics in the simulations.

1.5
1.45 |- X, =
B e SROSESALIN
L4 X XX U i
1.35 K 1
13+ SRPT_MCT —+— -
SWRPT_MCT -~ -
125 L MWMA_NBT - -%-- |
: CBS3M_EDF_ROFF - @ -
. CBS3M_EDE_ONLINE — ¢ -
1.15 -
11+ -
105 ./ -
1 | | |

7

8

load (optimal stretch)
Figure 5.6: Simulation results: Evolution of the sum-flow of best heuristics in the simulations
under different load conditions.

10 11

12



114 CHAPTER 5. STEADY-STATE SCHEDULING

Experimental results

We now move to the real experiments with MPI communications. The experiments were per-
formed on 50 different platform and application settings. As several heuristics performed very
poorly in the simulations, especially the heuristics based on round-robin and demand-driven
policies, and thus would have lead to huge computation times, we discarded them and restricted
ourselves to a smaller set of heuristics in order to get reasonable running times. Once again, the
performance of a given strategy is measured through its relative max-stretch, that is the ratio
between the obtained max-stretch and the theoretical optimal max-stretch in the fluid model.

Algorithm minimum average (+ stddev) maximum (fraction of best result)
CBS3M EDF ROFF 1.04 1.30 (£ 0.13) 1.63 (the best in 38.0%)
CBS3M_EDF_ONLINE 1.02 1.41 (£ 0.30) 2.09 (the best in 30.0%)
CBS3M_FIFO_ROFF 1.04 1.38 (£ 0.28) 2.97 (the best in 12.0%)

CBS3M_FIFO_ONLINE 1.02 1.46 (£ 0.26) 1.96 (the best in 6.0%)

FIFO_MCT 1.10 1.81 (£ 0.60) 4.15 (the best in 4.0%)
FIFO_RR 1.35 4.99 (£ 3.46) 19.50 (the best in 0.0%)
MWMA_MS 1.22 2.29 (£ 0.56) 4.05 (the best in 0.0%)
MWMA NBT 1.13 1.50 (£ 0.17) 2.06 (the best in 4.0%)
NPSPT DD 1.33 4.87 (£ 3.10) 18.75 (the best in 0.0%)
NPSPT _MCT 1.08 1.84 (£ 0.61) 3.43 (the best in 4.0%)
SRPT_ MCT 1.09 1.87 (£ 0.59) 3.38 (the best in 0.0%)
SWRPT _ MCT 1.08 1.88 (£ 0.59) 3.38 (the best in 2.0%)

Table 5.7: MPI experiment results: Relative max-stretch of selected heuristics in the experi-
ments.

3.5 T T T T T T T |
N A CBSSM_EDF ROFF B
CBS3M_EDF ONLINE X
5L A MWMA_NBT + |
A SWRPT MCT A
A
S A A
—
© L A A i
A
I} 2+ A X AX A Q X _
2 A X X
= A X X(& « + A
= % QfA Ay A X g an ]
15w My AgRxXt ke x|+ -
. ] ? =] #‘;i + m -+ éi} v + + +
A><>-< i ii + EM < H « & !- + o+ X
#7085 x ¢ W om X =s B m 2
1 | X i | | | Q | = |
1 2 3 4 5 6 7 8 9 10

load (optimal max-stretch)

Figure 5.7: MPI experiment results: Evolution of the relative max-stretch of best heuristics in
the simulations under different load conditions.



5.4. SCHEDULING MULTIPLE BAG-OF-TASKS APPLICATIONS 115

The results of the experiments are summarized in Table 5.7; Figure 5.7 presents the results
for the best four strategies: CBS3M using EDF policy, in both the offline and online versions,
MWMA NBT and SWRPT.

These results are quite similar to the simulation results. We can see in Table 5.7 that the
four versions of CBS3M achieve a better relative max-stretch than most other strategies. In
fact, they all achieve far better performance than any other strategy in 86% of the experiments.
Once again the online version performs generally better than the offline version, as explained
earlier.

The major difference concerns the MWMA strategies, which perform much better than in
the simulations. The MWMA NBT algorithm lies in between our algorithms and the greedy
strategies, even if sometimes they achieve a very bad relative max-stretch (up to 2.06). This
can be explained by the different scenarios used in experiments and simulations: in order to
avoid huge running times in the experiments, we concentrate on simpler scenarios, with smaller
applications, whereas in the simulations, we consider larger applications as simulations run for
a short time even with long simulated running times. To fully assess the adequacy of the
simulations and the experiments, we decided to re-run the experimental scenarios within our
simulator, and to compare both results.

Simulations of experimental settings

0.14

0I2

frequency (%)

0 10 20 30 40 50 60 70
relative deviation (%)

Figure 5.8: Distribution of relative deviation between simulations and experiments.

In this section we check the accuracy of our simulations by “simulating the experiments”: we
run simulations on the same scenarios (platforms and application parameters) that have been
used for real experiments. Obviously, the executions will differ, and we do not expect the results
to be strictly identical: the simulations do not account for the dynamic nature of the platform
used in real experiments. Simulations do not take scheduling times into account and rely on
exact application/platform parameters, while experiments can only rely on inaccurate predicted
values.



116 CHAPTER 5. STEADY-STATE SCHEDULING

In Figure 5.8, we plot the distribution of the relative deviation between the max-stretch ob-
tained in the experiments and the max-stretch obtained in the simulations, for all strategies. The
maximum deviation is 60.1%, but the average deviation is only 8.9%, with a standard deviation
of 9.5% (the median value is 5.5%). Overall, the accuracy of the simulations is satisfactory, and
even good if we keep in mind all possible sources of differences between simulations and exper-
iments. Furthermore, the difference between the CBS3M heuristics and the other algorithms
were most of the time above 20%.

5.4.5 Related work

Related literature can be classified into two main categories: steady-state scheduling and flow-
type objective functions.

Steady-State Scheduling

Minimizing the makespan, i.e., the total execution time, is an NP-hard problem in most practical
situations [68, 130, 51|, while it turns out that the optimal steady-state schedule can often be
characterized very efficiently, with low-degree polynomial complexity.

The steady-state approach has been pioneered by Bertsimas and Gamarnik [28]. It has been
used successfully in many situations [21]. In particular, steady-state scheduling has been used to
schedule independent tasks on heterogeneous tree-overlay networks [14, 9]. Bandwidth-centric
scheduling is introduced in [14], and extensive experiments are reported in [90]. The steady-state
approach has also been used by Hong et al. [79] who extend the work of [14] to deploy a divisible
workload on a heterogeneous platform. However, and to the best of our knowledge, the only
reference dealing with steady-state scheduling for several applications is [17].

Flow-type objective functions and online scheduling

Most of the existing work on stretch minimization deals with the mono-processor case. In fact,
there has been a lot of work on the performance of simple list scheduling heuristics for the
optimization of flow-like metrics with preemption. We will therefore first consider this work.

Flow optimization. On a single processor, the max-flow is optimized by First-Come First-
Serve (FCFS) (see Bender et al. [24] for example), and the sum-flow is optimized by shortest
remaining processing time first (SRPT) [6].

Things are more difficult for stretch minimization. First, any online algorithm which has
a better competitive ratio for sum-stretch minimization than FCFS is subject to starvation,
and is thus not a competitive algorithm for max-stretch minimization [97]. In other words, the
two objective functions cannot be optimized simultaneously to obtain a non trivial competitive
factor (FCF'S is not taking into account the weight of tasks in the objective).

Sum-stretch minimization. The complexity of the offline minimization of the sum-stretch with
preemption is still an open problem. At the very least, this is a hint at the difficulty of this prob-
lem. Bender, Muthukrishnan, and Rajaraman [25] designed a Polynomial Time Approximation
Scheme (PTAS) for minimizing the sum-stretch with preemption. Chekuri and Khanna [47| pro-
posed an approximation scheme for the more general sum weighted flow minimization problem.
On the online side, no online algorithm has a competitive ratio less than or equal to 1.19484 for
the minimization of sum-stretch [96, 97].



5.4. SCHEDULING MULTIPLE BAG-OF-TASKS APPLICATIONS 117

As we recalled, on one processor, SRPT is optimal for minimizing the sum-flow. When SRPT
takes a scheduling decision, it only considers the remaining processing time of a task, and not
its original processing time, i.e., the weight of the task in the objective function. Nevertheless,
Muthukrishnan, Rajaraman, Shaheen, and Gehrke have shown [106] that SRPT is 2-competitive
for sum-stretch. Another well studied algorithm is the Smith’s ratio rule [137] also known as
shortest weighted processing time (SWPT'). Whatever the weights, SWPT is 2-competitive [125]
for the minimization of the sum of weighted completion times. However, SWPT is not an
approximation algorithm for minimizing the sum-stretch. Indeed, both SPT (shortest processing
time) and SWPT are not competitive algorithms for minimizing the sum-stretch [96, 97]. To
address the weaknesses of both SRPT and SWPT, one might consider a heuristic that takes into
account both the original and the remaining processing times of the jobs, which leads to the
shortest weighted remaining processing time heuristic (SWRPT). Muthukrishnan, Rajaraman,
Shaheen, and Gehrke [106] proved that SWRPT is actually optimal when there are only two job
sizes. However, in the general case, the worst case for SWRPT for sum-stretch minimization is
at least 2, and thus is no better than that of SRPT [96, 97].

Max-stretch minimization. Max-stretch can be optimally minimized in the offline case [96, 97|,
even on unrelated machines (either with preemption or in the divisible load framework). The
online case is far more difficult. With only two task sizes, SWRPT is optimal, as we have already
recalled. However, as soon as there are at least three task sizes, no algorithm has a competitive
ratio lower than %Aﬁfl, where A is the ratio of the largest to the smallest size of tasks [96, 97].

In fact, this latter work is the only one targeting max stretch minimization in a multi-
processor environment. This work is done in the divisible load framework, meaning that appli-
cations can be arbitrarily divided in sub-tasks when, in the context of the current paper, the
granularity of the tasks of each application is fixed independently of the scheduler. Further-
more, communications can be neglected for the applications targeted in [96, 97], when they play
a major role in our case.

General online scheduling. More generally, we refer the reader to surveys on online scheduling
algorithms [118], on randomized online scheduling algorithms [2], or even more generally on
online algorithms [3].



118 CHAPTER 5. STEADY-STATE SCHEDULING

5.5 Minimizing power consumption

In this second part, we only consider a single fully parallel application A but we suppose that
each processor has several possible speeds of computation (or modes). This context introduces
some new problems related to power consumption. For example, one may want to decrease the
operating cost of clusters. The Earth Simulator requires about 12 megawatts of peak power, and
Petaflop systems may require 100 MegaWatts of power, nearly the output of a small power plant
(300 MegaWatts). At $100 per MegaWatt, peak operation of this petaflop machine is $10,000
per hour [69]. And these estimates ignore the additional cost of dedicated cooling. Even without
considering battery-powered systems such as laptops and embedded systems, the consumption
is a critical factor as most of the power consumed is released as heat by the processors. And the
heat generated in supercomputers becomes harder and harder to dissipate. Current estimations
state that cooling solutions are rising at $1 to $3 per watt of heat dissipated [135].

Under such assumptions, one can understand the need to focus on minimizing power con-
sumption. We first present different power consumption models before the study of our problem
at the processor level, and its extension to the system level. At the end, we introduce a more
accurate (but also more intricate) power consumption model.

5.5.1 Models

Two main system-level energy-saving techniques are Dynamic Voltage Scaling (DVS) —which
enables to select a processor’s supply voltage according to task requirements— and Power Man-
agement —which enables to shut down a processor when idle. Among them, DVS is recognized as
one of the most effective power-reduction techniques, and it is now present on mobile platforms
and even on high-performance microprocessors.

Dynamic Voltage Scaling

For processors based on CMOS technology, the power consumption is dominated by the dynamic
power dissipation Pj, which is given as a function of the operating frequency:

Pd:Ceff-VZ'S

where Ceg is the average switched capacitance per cycle, V is the operating voltage, and s is the
operating frequency.

DVS works on a very simple principle: decreasing the supply voltage to the CPU consumes
less power. But s and V' are not independent; there is a minimum voltage required to drive the
microprocessor at the desired frequency. In fact, there is a linear relation between the frequency
and the minimum voltage of the processor. So DVS reduces the power consumption by changing
the clock frequency-voltage settings. For this reason, DVS is also called frequency-scaling or
speed scaling.

Most authors use as power consumption law the expression Py = s, where a« > 1. During
this work, we will take a more general approach, as our results do not assume a specific rela-
tionship between speed and power. We will denote by I3, the power consumption per time unit
of the processor P,. We only assume that power consumption is a continuous, strictly-convex
function of the processor’s speed. Basically, our assumption is that the slower a task is executed,
the less energy is used to complete the task, which is clearly a realistic hypothesis. Formally,



5.5. MINIMIZING POWER CONSUMPTION 119

that means that the line segment between any two points on the power/speed curve lies above
the curve, or that the power increases super-linearly with speed.

Definition 5.1. (super-linearity) F' is a function super-linear if F' is increasing and convex.

So the function Py(s), which gives the power consumption according to the speed s of the
processor, has the following property (one can note that Py may only be defined between the
extremum values of the processor speeds):

V0 <5<Smax; 0 <A1 < Smax — 5, 0 < A2 < Smax — 85— Ap,
Pd(s + )\1) — Pd(s) < Pd(s + A+ )\2) — Pd(s + )\1)
A - A2 '

Multi-mode processors

In order to be more realistic, we suppose that we have a discrete voltage-scaling model. The
computational speed of worker P, has to be picked among a limited number of m, modes. We
denote the computational speeds s, ;, meaning that the processor P, running in the i¢th mode
takes X/s,; time-units to execute X floating point operations. We introduce a new virtual
processor P, ; that represents the processor P, running in the ith mode. The power consumption
per time-unit of P, ; is denoted by B, ;. We will suppose that the processing speeds are listed
in increasing order on each processor (sy,1 < Sy2 < -+ < Sym,). One can note that the time
required to process one task of A of size w on virtual processor P, ; is thus w/s, ;. Of course,
the modes are exclusive; one processor can only run at a single mode at any given time.

Under an ideal model, we suppose that switching among the modes does not cost any penalty.
In real life, it costs a penalty depending on the modes. There exist two kinds of overhead that
have to be considered when changing the processor speed: the time overhead and the power
overhead.

Timing overhead can be represented as
Toverhead = O + KT‘SI - 52‘7

where C'r and Kp are constants, and s; and s being respectively the processor speeds
before and after the adjustment. Most of the time, the authors suppose that T,yerhead = 0,
since processors can still execute instructions during transitions [40] and timing overhead
is linear to the speed of the processor.

Power overhead is VEry similar:
P =C + K |V 2 _ % 2|
overhead P PlV1 2 b

where Cp and Kp are still constants, and V; and V5 being respectively the processor
voltages before and after the adjustment. This overhead is more important, as it depends
on the square of the voltages. If Kp ~ 0, we suppose a constant consumption overhead.

Of course, the variables C7 and C'p depend on the processor, so we need to introduce the

notations Cfu) and C'I(DU).

We may also wonder what happens when the utilization of a processor tends to zero. There
also exist two policies:



120 CHAPTER 5. STEADY-STATE SCHEDULING

e ideal model: in this model an idle processor does not consume any power, so the power
consumption is super-linear from 0 to the power consumption at frequency s,1;

e idle consumption model: once a processor is on, it will always be above a minimal
power consumption defined by its idle frequency/speed s, 1.

Bicriteria

As defined in the introduction, our goal is bi-criteria. The first objective is to minimize the power
consumption, while assuming an ideal model, and the second objective is the maximization of
the throughput.

We denote by p,,; the throughput of worker P, under mode m,,; for application A, i.e., the
average number of tasks of A that P, ; executes each time-unit. Of course, there is a limit to the
number of tasks that each virtual processor can perform per time-unit. First of all, as P, ; runs
at speed s, it can not have a throughput greater than w/s, ; tasks per time-unit. Second, as
all modes of P, are exclusive, if P,; is at its maximal throughput, no other virtual processor
can be computing. So their is a strong relationship between the throughput of one mode and
the maximum throughput available for all remaining modes. As 2 “: represents the fraction of
time spent under mode m,; per time-unit, this constraint can be expressed by:

Zpuz

Su,i

As we are in the ideal model and for simplicity of the proofs in the next section, we will add an
additional idle mode P, o whose speed is s, = 0.

The power consumption per time-unit of P, ;, when fully used, is 9,; (to be coherent,

we have P, 0 = 0). Its power consumption per time-unit with a throughput of p,; is then
Puyg W

Su,i

We still denote by py the throughput of worker P,, i.e., the sum of the throughput of each
virtual processor of P, (except the throughput of the idle mode), so the total throughput is
denoted by:

PBu,i = pu,ifu,i- Thanks to the super-linearity of P, &, ; is increasing with 7 and convex.

P my
p= Zpu—zzpuz
u=1 =1

We assume in the next sections (Section 5.5.2 and 5.5.3) that the power consumption is

without power and timing overhead and ideal (a processor can be turned off without any cost).
We will extend the work to a more realistic framework in section 5.5.4.

5.5.2 At the processor level

In this section, we look at both problems at the processor level: maximizing the throughput
given an upper bound on power consumption and minimizing the power consumption given a
lower bound on throughput. We no longer consider the master, and the communication links,
but focus on the processor version of the problems. Building on previous works, we will find
the best way to choose between the processor modes and to determine the minimum power
consumption achievable. This will lead us to closed formulas linking the power consumption
of processors to their throughput. These formulas will be very useful when dealing with the



5.5. MINIMIZING POWER CONSUMPTION 121

multi-processor problem in Section 5.5.3.

The processor-level simpler problems have often been visited by previous works. For a single
processor, [83] already proved that the voltages minimizing power consumption on discrete
models are the immediate neighbors of the optimal voltage in the continuous model (where the
voltage of a processor can take any arbitrary value) [83], however, gave neither the percentage
of utilization of each mode, nor the power consumed according to the optimal voltage. The
authors of [83] also proved these results for a specific relationship between the modes and the
power consumption, whereas we show that it can be generalized. At last, these authors did not
look at the problem of maximizing the throughput given a power consumption bound.

Power consumption minimization

The minimization of the power consumption is bounded by two types of constraints:
e The first constraint states that the processor has to ensure a given throughput,

e The second constraint states that the processing capacity of P, ; can not be exceeded, and
that the different modes are exclusive.

So our optimization problem is:

Moy
MINIMIZE B, = prﬁw SUBJECT TO
=1

> ui = pu (5.21)
=1

My ]
@wgl

=1 St

A first remark is that the throughput that the processor has to achieve must be lower than
its maximum throughput (p, < S"%), otherwise the system has no solution.

Linear program (5.21) can easily be solved over the rationals, and the throughput of the
modes of the processor depend on the total throughput that has to be achieved.

Lemma 5.1. If p, > 0 and 3 ig, 0 < ig < my, Sz;% < pu < SL”T““, then an optimal solution
for power consumption minimization is:

Su,io+1(wpu - Su,io)
W(Suig+1 — Sujio)

Su,ig (Su,io—&-l — Wpy)

w(3u7i0+1 - Suvio)

ﬁu7i0 = ﬁu,io—l—l = ﬁu7z‘ =01f1 ¢ {i(), 10 + 1}

Otherwise, the processor cannot achieve the given throughput.

Proof. We first show that S is feasible:

My
 Suig(Suigr1 — wWpu) F Suiort(WPu — Suge)
§ Pui = = Pus
i—1 w(3u7i0+1 - Su,io)
My ~
Z PuiW (Su,io-i-l - U)Pu) T (wpu - Su,io) -1
i1 Su,i Su,ig+1 — Su,ig Su,ig+1 — Su,ig



122 CHAPTER 5. STEADY-STATE SCHEDULING

Let &' be an optimal solution, 8" = {p/,;,- - }. As &' is a solution, it respects all the

constraints of Linear program (5.21). So:

!
) pu,mu

Moy My,

ZP;J‘ = pu and Z i
i=1

Su,i

Let imin be the slowest mode used by &', and 4.y the fastest. Then we can distinguish three
cases:

o If imin > 49 O imin = 39 and p, o < Puyio: In both cases, ol io < Pusigs SO there exists
€ > 0, such that p), io = Puip — €. Then we can look at the power consumption of S

Moy Moy

/ / /
Zpu,iﬁu,i 2 PujigRusio T ( Z pu,i) Rujig+1
i=1

i=ig+1
—_ /
= Pu,z‘oﬁwio + (pu — pu,io)ﬁu,i0+1
= (Puio — ) Rusio + (Pu — Pusio + €)Rujigt+1
= puioRuio + Puio+1Ruio+1 + € (Ruip+1 — Kusip)
> PujioRusio + Pujio+1Rusio+1-
And so our solution does not consume more power, and is thus also optimal.

o Ifi,.,x <19+ 1o0r tpx = 70+ 1 and pu Jjio+1 < Puyio+1: In both cases, p/, o1 < Puio+1
so there exists € > 0, such that pl, ; 1 = puio+1 — €. Then, we have:

Z P;,z‘ = Pu— P;“'OH > Pu— Pujip+l T €= Pujig + €

Tmax

/ i / /
And Z P W _ ZO P W + Pujig+1W

i—1 Su,i i—1 Su,i Su,ig+1
/
wZz 1puz + pu,i0+1w
- Su,ig Su,ig+1
Ou.in + € Owiotl — € 1 1
> wPio + w it > 14 we — > 1.
Su,io 8u,i0+1 Su,io Su,i0+1

which is in contradiction with the second constraint.

o Otherwise we know that either imin < i0, 50 py,; > Puipg, = 0, OF imin = 40 and pj,; >
Puimin- 11 bOth cases py, ; > Py, and, for the same reasons, pj, ; > pyjy.,. We also
know that (at least) one virtual processor among P, ;, and P, ;,+1 has a throughput in S’
strictly smaller than in S (otherwise the power consumption of &’ is greater). Let call that
processor P,. The idea of the proof is to give an amount €pin of the work of F; , to P,.
As P, is faster than P;_, , it takes less time to P, to process e€min than to P; . . During
the spared time, P, has time to do an amount €y, of the work of P; Basically, emin
and emax are defined such as the throughput in the new scheduling S” of either P

tmax *
Tmin’

P; .. is set to its throughput in S:
p'/ulfyimin = p;/qimin ~ €min
Pu,a = Puya T €min T €max
%

puyinlax pu7ilnax - emax
o = pl,, otherwise.

)



5.5. MINIMIZING POWER CONSUMPTION 123

(pu yimax puvimax) € — e )\ )\ o SU7imax (SU,OL - Su,ilnill)
s €Cmax — €min\y A —

3 : )\ Suvimin (suvimax - Su,a)

A gives the relation between the amount of work taken from P; . and the amount of work

of P; .. that can be performed by P, during its spared time.

— i /
€min = I pu,imin pu llnln’

S" still respects the given constraints:

Moy Lz

" / .
E :pu,i = § Pu,i = Pus
i=1 i=1

My Z m / 1/ Z //
E puvi _ § puvi + pu7i11)in + pu,a + puyimax
i=1 S’U,,Z' i=1 Suvi Suaimin Suya S“yimax

i#iminyayimax

My /
_ (j :pu,z> + €min + €max _ €min  €max

i=1 Su,i Su,a Styimin Su,imax

m /
B ~ Pui 1+ 1 A
= E + €min - -

i=1 S“’i s“’a Su)imin Suyimax

p— S —
S'Uqlmax - SU,Q) o (Su,imax - Su,a)

6m1n Su 'Lmax (Su a Suyimin) Su,a(su,a — Suzimin)
Su Zmln

Su me
1
w

ey

S
i=1 "Wt

And the power consumed by the new solution is not greater than the original optimal one:

Moy Lz
/ 1/
E pu,iﬁu,i - E pu,iﬁu,i = 6minﬁu,imin + 6maxﬁu,imax - (fmin + 6max)ﬁu,a

=  €min (-ﬁu,imin - ﬁu,a) + A€min (ﬁu,imax - ﬁ'u,cv)
Ruiin — R Swimax Ptimax — R
Emin(su,a _ Su’imin) ( Utmin U, + U,tmax ylmax U,

Su o T Su »Ymin Suﬂmin suﬂmax - 8u7a
U, Tmax 'Q'Ul @ R'Uqa — 'R'U‘»imin )

Sualmax - S'U':O‘ Suza - Suaimin

v

Emin(su,a - Su’imin) (

> 0 because of the convexity of R.

At each iteration, we set the throughput of either iy, or imax to its throughput in S , SO
the number of virtual processors which have different throughputs in §” and S is strictly
decreasing. At the end, either one of the two other cases is reached so S does not consume
more power than S”, or S = §”. Overall, our scheduling is optimal.

Remark. One can note that this gives a different proof from the one in [83], while using a
general power consumption function, and while giving the formula of the throughput of each
Processor.



124 CHAPTER 5. STEADY-STATE SCHEDULING

Lemma 5.2. The optimal power consumption to achieve a throughput of p is:

PBuit1 — Pu,i

Suyi+1 — Su,i

Pulp) = max {(wp—gwi) +‘»13u,¢}.

0<i<my,

Proof. The power consumption of S is:

Bulp) = PiioRusio + Pijio+18Ruig+1
_ Suyio (3u7i0+1 —wp) 3u7i0+1(w/) - SUJO)

- ﬁu,’i() +
w(suﬂ'o-i-l - Su7i0) w(5u7i0+l - Su»io)

pSu,io+1ﬁu,io+1 — SuioRuio  SuyioSujio+1 (Ruio+1 — Rujio)

ﬁu,io—‘rl

Su,i0+1 - Su,io w(su,i0+1 - Su,io)
B wp‘»Bu,z‘oH — Puio  SuyioPusio+1 — Sujio+1Pusio
Su,io-‘rl — Su,ig Su,ig+1 — Su,ig
_ wp‘pu,i(ﬁ-l — Puio it PBuio+1 — Pujio P Suig+1 — Su,io
Su,i0+1 - Su,’io Su,’io+1 - Su,io Su,i0+1 - Su,’io
Pujio+1 — Pu,
= (’LU,O - SU,io) 0 . + m%io
Su,io-i-l — Su,ig
As P is super-linear, we have, if j < k:
k — Buj 1 — B 1 — B
mu, &Bu] > muj—i_ SBUJ = muk > (Suk Su,j)ipu A (Buj + Sq3u,j
Su,k — Su,j Su,j4+1 — Su,j Su,j+1 — Su,j
and, if j > k:
Pug = Pusr _ Pugrt = Pug Pugtt = Puy
& = S o) o = ‘Bu,k 2 mu,j - (Su,j - Su,k)M
Su,j — Su,k Su,j+1 — Su,j Su,j+1 — Su,j

As 545y < wpy < Sy ig+1 and P is super-linear, we have, for all if s, 5, > Sy

+1 — 3 i1 — .

(wp - Su,i)M + g,Bu’i = (wp — Su,io)M +
Sujitl = Susi Suyi+1 — Su,i

PBuit1 — Pu,i

((Su,io — Sy ) TR L
Su,i+1 — Su,i
Pujiv1 — Pu,i
S (wp — Suﬂ-o)u + qsu,’io

Su,i+1 — Su,i
PBuio+1 — Pusio

Su,ig+1 — Su,io

+ mu,io - (*Bu(p)

< (wp = Sujio)



5.5. MINIMIZING POWER CONSUMPTION 125
And, if 544541 < 84,4, 50 We have:
Puirt ~ Pus Puirt — Pus
(wp = sui) ="+ Pui < (WP = Suigr1) = +
Su,i+1 — Su,i w,i+1 — Suyi
Pu,i+1 — Pui
<§Bu,i — (Suyi — Sujig+1) ——
Su,i+1 — Su,i
PBuit1 — Pui
< (wp— suipp) DT
Su,i+1 — Su,i
Pu,io+1 — Pu,i
< (wp = Suyig1) —2 0 PBsig+1
5u,i0+1 - Su,io
(* because (wp — Sy ip+1) < 0%)
S (wp — sugp) Pt = Pt
u,0+1 — Su,io
Pou,ip+1 — Pu,i
<q3u7i0+1 - (Su,ioJrl - 5u7i0> 0 0
su,i0+1 - Su,io
PBu,ip+1 — Pu,i
< (wp = Sup) = =2+ PBuio = Pu (p)
wu,ig+1 — Su,ig
Then ig is the mode that maximizes the formula:
Puit1 — Pu,i
Suyi+1 — Su,i
|

Maximizing the throughput

Maximizing the throughput is

a problem very similar to the one studied in the previous section.

The maximization of the throughput is bounded by two types of constraints:

e The first constraint limits the total power consumption of the processors to a given bound,

e The second constraint states that the processing capacity of P, ; can not be exceeded, and

that the different modes

are exclusive.

My,

MAXIMIZE p, = Zpuﬂ- SUBJECT TO

n
§5 Whuigy (: S pﬁ> <p 622)
.7 Su.,i ,7
=1 ’ =1
Moy
WPy, G <1
— Sui
=1

This linear program can be solved over the rationals, and this time the distribution of the
frequencies of the processor will depend upon the bound on power consumption.

Lemma 5.3. If ¥ > 0 and 3

10, 0 <ig <My, Puiv <P < Puig+1, then an optimal solution

to mazimize the throughput of the processor is:

Su,ig ((*Bu,io—kl — ;43)
W(Puio+1 — Pusio)

Pu,ig =

SU,io-&-l(m - sIgu,io)
W(PBuio+1 — BPusio)

ﬁu,io—i-l = ﬁu,i =0 ’Lfl ¢ {io,’io + 1}



126 CHAPTER 5. STEADY-STATE SCHEDULING

. . . ~ S . .
Otherwise the processor can run at its mazimum mode (pum, = —) while respecting the
power consumption constraint.

Proof. We first show that S is feasible:

< [) 'mu,iw _ sBu,io (‘Bu,ioJrl - m) + mu,ioJrl (‘B - ‘Bu,io) _ ;B
— sy PBujio+1 — Busio ’
Z Pu iw _ (gﬂpu,io—&-l - g'B) + (q3 - ‘Bu,io) 1.

Su,i PBusior1 — Buio)  (Buior1 — Buio)

Let &’ be an optimal solution, 8" = {p}, 1, -
it respects all the constraints. So:

S i < B and Z”“

S
i—1 Uu,i

s Pu.m, t- As 8" is a solution of the linear program,

Let imin be the slowest mode used by &', and imax the fastest. Then we can distinguish two
cases:

o If i,;, > %9 or iy = 29 and p;m-O = Pu,ioc — €0(€0 > 0): (in both cases, pgmo = Pujip — €)
then we have:

My My,
( Z PL) Ruior1 < Z P iR
i=ig+1 i—ig+1
S (I; - p{u,ioﬁu,io - (I; - (ﬁu,io - G)ﬁu7i0
< (B = PusioBuio) T €Ruio = Puio+1Ru,io+1 + €Rusio
< Rujig+l (pu,io—l-l + e
Ru,’io—i—l
o My
= Z Pui S Puio T+ Z Pui
=10 1=109+1
~ Ru 410 )
< wio — €) + i+l FEe—"
(Pusio — €) <pu i+ Ruioi1
My ] My
< D pui—e (1 - ) <N pu
i=io Ruio+1 i=io

And so our solution does not have a smaller throughput, and is thus also optimal.

o If i, < 19+ 1 0Or ima = 79 + 1 and p,’u,io_}_1 = Pujio+1 — €1(€1 > 0): (in both cases,
p;,i0+1 = Pujip+1 — €) then, we have:

Tmax /
wZz 1 puz Z puz za: puz pu,i0+1w

<
Su,ig i—1 Su,i Su,i Su,ig+1
,0 ; w i w ew
< 1- uio+l™ 1— pu,zo+1 i
Su,i0+1 Su,i0+1 Su,i0+1
WPy 4 Ew
< Puio +

Su,ig 8u,i0+1



5.5. MINIMIZING POWER CONSUMPTION 127

So the throughput of S’ is:

imax 0
/ / /
Z Pui < Z Pui + Pujig+1
=1 =1
~ Su,ig ~
< | Pujio +e——— | + (Puip — €)
Su,i0+1
Moy S ; Lz
~ u,i0 ~
< Zpu,i_6<1_s_> Szpu,i
i=1 wiotl i=1

And so our solution does not have a smaller throughput, and is thus also optimal.

e Otherwise we use the same new scheduling §” than is the previous section:

" _ / _ .

p;’/ﬂimin - p;himin €min

Pu,a = Pya T €min + €max
11 _ / _
;U/‘yimax - p;himax €max

Pui = py; Otherwise

)

/
. . Pui Su,i (Sua_sui i )
Wlth emin — mln { . smax , emaX — EminA’ and A — stmax ) yvmin .

/
puvimin ? . ( . o )
>\ Suylmin suﬂmax S’LL,Oé

From the previous section, we know that S” does not consume more power than S’. and
so still respects the given constraints. And the throughput achieved is the same than S’
By iterating this construction, we can extract an optimal scheduling where i, = a (each
iteration sets the throughput of either imin Or imax to zero).

Lemma 5.4. The maximum achievable throughput according to the power consumption limit is:

) s ’ So s — 8,:) + S, . — 8, .
Pu (q3) — min { U, My © max {5]3( u,i+1 u,z) u,zmu,z-‘rl u,z—&-lmu,z }} .

W 1<i<ma W(Puit1 — Puyi)

Proof. This proof is very similar to the one of lemma 5.2. |

5.56.3 At the system level

In this section, we take the whole system into account, in order to either maximize the throughput
or minimize the power consumption of the platform. But thanks to the previous section, we will
be able to simplify the problem.

Minimization of the power consumption

If we started working on this problem from scratch, we would have written the following linear
program (Equation (5.23)). The linear program is defined by five types of constraints:

e The first set of constraints links the throughput of a processor and the throughput of its
virtual processors

e The second constraint states that the system has to ensure a given throughput,



128 CHAPTER 5. STEADY-STATE SCHEDULING

e The third set of constraints states that the processing capacity of a processor P, should
not be exceeded, and that modes are exclusive.

e The fourth set of constraints states that the bandwidth of the link from Ppagter t0 Py 1S
not exceeded.

e The last constraint states that the total outgoing capacity of the master is not exceeded.

P My

MINIMIZE P = Z meﬁm SUBJECT TO

u=1 =1

Moy
Vu, Zpu,i = Pu
=1

p
Z Pu =P
u=1
Moy

Vu, Mw <1

im1 Su,u,i

Pu
Yu, —6 < 1
u? b,u —

(5.23)

p

Pu
0 <1
BW —

u=1

This linear program is composed of a large number of equations (3p+3), and lots of variables
(>°F_, my, < p x max,{m,}). But thanks to the previous section, we no longer need to specify
the throughput of each frequency of each processor. We only have to fix a throughput for each
processor, and according to the previous section, we know how to use the different frequencies
in order to achieve that throughput while minimizing the power constraint. Furthermore, the
bounded multi-port constraint is not needed anymore, because either the outgoing capacity of
the master is able to ensure the given throughput (BW > p), or the system has no solution.
Overall, we can reduce the previous linear program to Equation (5.24):

( p
MINIMIZE B = P, SUBJECT TO

u=1
p
Z Pu =P
u=1 b
Vu, p, < min { Su,my ; u}
w 1)

Vo, V1<i<my, Bu> (woy — Sui)

(5.24)

qgu,i-&-l - mu,i

Su,i+1 — Su,g

+ ‘Bu,i

Of course, the complexity of the problem has not totally disappeared. For each B, used in
our objective function, we added m,, equations. But now we can reformulate the problem in such
a way that it can easily be solved. The constraints of Linear program (5.24) state that we have to
achieve a given throughput p, while the throughput of each processor is limited by its maximal
speed and its bandwidth. The last constraint is just related with the power consumption, which
has to be minimized. So this problem can be optimally solved using a greedy strategy: we sort
all the processors in an increasing order according to their power consumption efficiency. Of



5.5. MINIMIZING POWER CONSUMPTION 129

course, this power consumption depends on the different modes of the processors, and the same
processor will appear a number of times equal to its number of modes. Formally, we sort in
sBu,i—i—l - mu,i }

Suyi+1 — Su,i 1<i<ma,1<u<p
virtual processors so the system can perform the given throughput, given that each processor’s
throughput will be limited by its maximal frequency and the bandwidth of the link between
itself and the master. Altogether, we obtain the greedy Algorithm 11.

non decreasing order { . The last step will be to select the cheapest

Algorithm 11: Greedy algorithm to minimize the power consumption given a throughput

bound
Data: throughput p that has to be achieved

for u =1 to p do
| Tlu] < 0; /* Throughput of processors P, */
& «— 0; /* Total throughput of the system */
L — sorted list of the P, ;_ such that V j, Rugrty T Bugiy o Bugpr iy Pugenije

kol Sujildi; “Sujii; T Sujppddijpn TSujpnijpn
while ¢ < p do

P,, i, < next(L); /* Selection of the next cheapest mode */

p'— Tlugl; /* previous throughput of P, (at mode iy, —1) */

7 [ug] < min {S"’“TZ’“, buT’“;p' +(p— <I>)}; /* new throughput of P,, (at mode i) */

if Tluy) = % then
| L — L\{Py,;};/* we do not need to look at faster modes of P,, */
| b 04 Tl

One can detail more precisely the line that gives the new throughput of P,, at mode 7.
One can easily understand that the throughput is bounded by the maximum throughput at
this speed and by the maximum communication throughput. The last term states that the
throughput does not have to be greater than the previous throughput (p’) plus the remaining
throughput that has to be achieved (p — ®).

One can notice that, if the last selected mode is Puk0 ik this greedy algorithm will

1. fully use each processor having at least one mode consuming strictly less than Puko,ik()?
and this either at the throughput of the bandwidth if reached (this throughput is achieved
according to section 5.5.2), or at the largest single fastest mode that consumes strictly less

than P, or at the same mode than P,

ko 77;k'0 ko 7ik0 ?

2. either not use at all or fully use at its first non-trivial mode any processor whose first

non-trivial mode consumes exactly the same than ngo,ik();
3. not use at all any processor whose first non-trivial mode consumes strictly more than the
mode P,

kg lkg ?

4. use Puk(),ik() at the minimum throughput so the system achieves a throughput of p, accord-
ing to section 5.5.2.

Theorem 5.5. Algorithm 11 optimally solves Linear program (5.23).

Proof. Let S = {p,} be the throughput of each processor given by Algorithm 11, and S = {py }
be an optimal solution of the problem, different from S. We know that there exists at least



130 CHAPTER 5. STEADY-STATE SCHEDULING

one processor whose throughput in § is strictly lower that the one in S, otherwise the power
consumed by S would be greater than the one of S. Let P, be one of these processors. Of
course, the remaining work of P, in S has to be performed by (at least) one other processor,
whose throughput is strictly greater in S than in S (otherwise, S could not achieve a total
throughput of p). Let Py be one of these processors.

The idea is then to transfer a portion of work from Py to P,,. This amount of work € equals
to the minimum of the additional throughput needed by P, to achieve a throughput p,,, and
of the excess of throughput of Py; when compared to S:

€ = min{pm — pm: Py — P}

What do we know about Py, in §? We know for sure that Algorithm 11 required from it a
throughput pps (which may be equal to 0). That means, according to the selection process of
Algorithm 11, that: 1) either Py is saturated by its bandwidth, but in that case, pyr > par,
which contradicts the definition of Py, or 2) Py is saturated at a given mode Py ;, and the next
mode Pjy,i4+1 has a power consumption greater than, or equal to, any other selected processor, P,
included, or 3) P)s is not saturated, but in that case it is the last selected mode by Algorithm 11
and so has a power consumption greater than, or equal to, any other selected processor, P,
included. Overall, the power consumption of P is greater than, or equal to, the one of P,,.
Let S’ be the scheduling where:

plm = pm t €
P =M~
pi; = pi;j otherwise.

Then, if we compare the power consumed by &’ and S:

p p
S8, o= | D Pu| +Fn+ B
u=1 u=1
u#m, M

7' 1 B 7‘
P = max {(wp;n _ Sm,i)M + qgmﬂ}
i Smyi+1 — Smyi

_ p/m <wmm,im+l - gpm,im> + (mme — Smiin, spm,ierl - mm,im>

Smim+1 — Smyim Smyim+1 7 Smyim

= (Pm + 6))\ml + Amas
PBari+1 — P n iBM,i}
SM,i+1 — SMi

_ p/]w <w mM,’L‘A[—‘rl - ngM,iM) + (%Mﬂ;]\/] o 3]\/[7ijw f’]3]\4',1'1”—"-1 - gpM,Z‘]\/[)

SMin+1 = SM,in SMip+1 = SM,in
= (pm — €)My + Mgy

and Py, — max{wp'M—SM,»
KA

We know that:

Prim+1 = Pmin
Smyim+1 — Smyim SMyin41 — SMyiy

;BMJMH - ‘BMJM

(Greedy selection)



5.5. MINIMIZING POWER CONSUMPTION 131

So:
i]3m/ = (Pm)‘m1 + Amz) + €Ay
= Pn+ 5/\7711
By’ = (pmAvn + M) — €
= Pu — e

eAmy —Aagy) <0

p
> B,
u=1

IN

p p
Z “pu +q3m+q31\/[ :quu
= u=1

u=1
u#m, M

We can iterate these steps as long as S is different of S, hence proving the optimality of our
scheduling. ]

Maximizing the throughput

Maximizing the throughput is a very similar problem, and a similar greedy algorithm finds an
optimal solution.

Algorithm 12: Greedy algorithm to maximize the throughput given a power consumption
upper bound
Data: Power consumption lower bound 3
for u=1to p do
L Tu] <0
U «— 0;
L « sorted list of the P,, ;, such that V j,
while ¥ < 8 do
Py, i, < next(L);
P — Tlugl;
. bu w1t —Pur,t
Tlug] — min {Puyini (055 = suie ) TEIETT Lo, oy 4 (B - 0) |

Sup,ip+1"Suy,i
. i bu,, Buy i +1— Puy,ig
lf T[uk] - gw(s - Sukvik> Suk’ik"’l_sukﬂik + ‘Bukvik then
| L= L\{Py 5}

LV =V Tlu] =%

Puj1+i;—Pu i < By a4ij = Pujirije

PR . — . — . by
Suj,1+zj suj,lj suj+1,1+zj+1 Suj+1,2j+1

On heterogeneous platforms, Algorithm 12 is optimal for maximizing the throughput given
a bounded energy. The only difference between Algorithm 12 and Algorithm 11 is the objective
function that is considered during the selection process. The proof of its optimality is then very
similar to the one of Algorithm 11.

5.5.4 More realistic consumption models

When we move to more realistic platforms, the problem gets much more complicated.



132 CHAPTER 5. STEADY-STATE SCHEDULING

Models

There exist many ways to improve the previous model in order to get a more realistic one. This
includes the model where processors have a threshold mode (they cannot run slower than this
mode), or the model with consumption overhead, and any combination of the previous models.
We can have different problems when dealing with consumption overhead. First of all, we have
to specify when the consumption overhead is paid, as one can have an overhead only when
turning on the worker, when turning it off, or for each transition of mode; a processor turned
on can consume even when idle. Of course, all combinations of the previous options are not
realistic. Thus the case where the cost of tuning on and off a processor is null but it consumes
even when it is idle is absurd: one just needs to turn it off when idle to have an apparent cost
of zero. That is why we may need to add the constraint that processors can only be turned
on once and never be turned off again. Many more problems come from timing overhead, or
memory constraints. To understand the last point, one can consider multi-core processors. If
at least one core is turned on, then one other core can be turned off and still some data can be
sent to its memory. This way, the core will have data to process as soon as it is turned on. Of
course, one has to declare whether the chosen model takes memory constraints into account.

Under these more realistic models, the power consumption depends now on the length of
the interval during which the processor is turned on (we pay the overhead only once during this
interval). We have to introduce some new notations to express the power consumption as a
function of the length of the interval ¢t we look at, and of the mode:

Puai(t) =Bt + 52,

where ‘,]3222 is the energy overhead.

We will consider in the following sections that we have no memory constraints. Thus, we
can adapt to the case with power overhead the closed formula given in Section 5.5.2 in order
to determine the power consumption of processor P, when running at throughput p, during ¢
time-units.

If there is no power overhead when switching between modes, then the formula is simply the
same as previously:

>‘J3u,¢+1(t) — Pu,i(t)

Suyi+1 — Su,i

Pu(t, py) = max {(wPu — Su,i + mu,l(t)}

0<i<my,

In that case, the throughput p,, supposed to be between the two modes P, ;, and P, 41, is
t(Su,ig+1 — PuW)

Susio+1 — Susig

obtained by running the mode P, ;, during time-units, and the mode P, ;,+1

t(puW — Suig)

Su,io—‘rl - Su,io
are used per time-unit in Section 5.5.2).

during time-units (these values are obtained from the fraction of time the mode

Otherwise, if we have power overhead when switching between modes, we have to compare
the power consumption when switching between the modes with the power consumption of the

upper mode P, i,+1(1)-



5.5. MINIMIZING POWER CONSUMPTION 133

Multi-core problem

In this part, we look at the problem of scheduling on multi-cores without memory constraints,
where there is a power consumption overhead only when turning on the processor. Then, we
can prove a property about one optimal schedule.

Lemma 5.5. There exists an optimal schedule in which all processors, except possibly one, are
used at o mazimum throughput, i.e., either the throughput dictated by their bandwidth or the
throughput of one of their modes.

Proof. Let S be an optimal schedule without that property. We will study S during an interval
of arbitrary length, say ¢ time-units. As we have no control on the behavior of S, every processor
can be turned on and off as many times as possible. Let A, (¢) be the communication volume
received by P, during the t time-units, and Q,(t) the computational volume performed during
this interval. One can note that both volumes are not necessary equal, as we chose an arbitrary
time interval. We will now compare S and &', with S’ being the schedule identical to S outside

of the considered interval and which, during that interval, sends tasks to processors at rate A“f(t)

Qu(t)

and where processors compute with a throughput of —=7=~. We only need to focus to the most

constrained problem, i.e., when the total communication throughput is lower than the total
computational throughput. We suppose that the memory contains, at time ¢t = 0, My tasks.

Communications under S’ are feasible: Under S, each processor received a volume of tasks
equals to A, (t) during ¢ time-units, so its bandwidth throughput were greater than or
equal to A“f(t), which means that &’ also respects the bandwidth constraints. For the

master’s point of view, the total volume of communication during the ¢ time-units under

P P P
Ayt
S is ZAu(t), so we had: ZAu(t) < t-BW. Consequently, Z t( ) and S’ respects
1 u=1 u=1

u=
the bounded capacity of the master.

Computations under S’ are feasible: To perform the computation, we will use the tech-
nique described in the previous section. We have Q,,(t) < Mo+ Ay(¢). If

Su,ig < QU(t) < Su,ig+1
w ~t

(4o might be equal to zero),

then we use the mode P, ;, during

Qy
t (Su,io-i-l — %w)

3u,ig+1 - Su,io

t1 =

time-units, and the mode P, ; 41 during

Qu
t ( t(t)w - Sudo)

Su,i0+1 - Su,io

ty =

time-units, and this solution is feasible. For the first part of the computation, the processor
is run at its slower mode in order to minimize the power consumption. After ¢; time-units,
the processor has stored a fraction of tasks equal to:

Aut U,
Mo+ <() _ S7)> t

t w



134 CHAPTER 5. STEADY-STATE SCHEDULING

Then, if we look at the memory M of the processor during the computation under the
mode P, ;,+1 after ¢ time-units (¢’ < t3), we have:

M = Nm+<&ﬁ)_%m>h_<%wﬂ_Adw>ﬂ

t w w n
S Mo+ Au(t)  Suio 4y ((Buwiort Au(t) .,
t w w t
ALt t18,, 5 toS., »
= Mo+ u )(t1+t2)— ( —ulo 4 2 wo+1>
t w w
Swigp1 — 2y Lul®yy g
= Mo+ Ay(t) | — byt %0
Su,io+1 — Su,io Sujio+1 — Su,ig
( Qu(t) ) (Qu(t) )
S’u,,Z'O Su,i0+1 - Tw Su,io+1 fw _ SU7i0
—t
w(Su,io+1 — Susio) W(Su,ig+1 — Susio)
Qy(t
— Wm+AAﬂ_tif):QJﬂ—QMﬂ:0

So there is always tasks in the memory of the processor, so S’ is feasible.

S’ does not consume more power than S: We only pay a power overhead each time a pro-
cessor is turned on, and &’ turned on only once each processor used by S. Furthermore,
the throughput of each processor is smaller under S’ than under S, because the processors
use under &’ the whole ¢ time-units to perform the same amount of work than under S.
Overall, the power consumption of S’ is no greater than the one of S.

Now, let us have a look at the throughput of each worker under &’. If &’ does not have the
property of the lemma, then there are at least two processors P, and Py, that are not at their
maximum throughput. As &’ uses the technique of section 5.5.2, we know that these throughput
are achieved using only two modes Py, and Par;,,+1 for Py (Par,i,, may have a throughput
of zero), and Py, Pmi,,+1 for Pp. Let us suppose that Pj; consumes more power at its
throughput than P, at its own. This means that:

mm,inﬁ-l(t) - mm,im (t) < q3M,iM+1 (t) - g'BM,iM (t) .

Smyim—+1 = Smyim SMyip+1 = SMyinm

We now construct a new schedule 8” from &', with:

noo_ /
pm - pm + €
1 _ /
S Pvy = Pm—¢€
"o ! oth :
Py = p, otherwise
_ : b /. Smyim+1 AN SM,ing
€ - mln{§ — Pms J,n “PmiPM T T }

Then, if we compare the power consumed by §” and S’

DB = | D B | B+ BLO).
u=1

u=1
u#m, M



5.5. MINIMIZING POWER CONSUMPTION 135

o) = ot — s Bt O = Bsll) gy}
? m,i+1 Sm,i

_ p” <wq3m,im+1(t) — Prsim (t)> + (‘Bmz (t) — S P, im+1(t) — Bn,im (t)>

8m7i7n+1 - smvim Smalm“l‘l - Smyim

= (P + Ay + Anas

and P (1) = max {(pr — SM,i )mM;;ii :?ﬂx’i(t)

+ ‘~I3M,z'(t)}
m]\/[,iju-'rl (t) - q3M,iA4 (t)

= Py (me’iMH(t) — Pt (t)> + <‘I3M,iM (t) — sMins

SMyip+1 — SMying
/
= (P — Ay + Ay

SMyins+1 — SM,iyy

As P (t) is still super-linear (it is an affine function of ), we have:

PBuint1(t) = P, () Buin k1) — Puin14(t)

<
Suyin+1 T Suyiy o Suyig+k+1 — Su,iy+k
So:
‘B;;z(t) = (p;n)\ml + >\m2) + 6>‘m1
= ;B;n(t) + E)\ml
) = (Puran + ) — A

= “B/]M(t) - 6>‘1\41
€Am; —Aay) < 0

> Bt
u=1

IN

Zmu + B0, (8) + By (1) Zmu
u;ﬁmM

Then S” achieves the same throughput than &', and does not consume more power than S’. As
the number of processor that are not at a maximum throughput is strictly smaller in §” than
in &’ as long as &’ has two processors which are not at a maximum throughput, one can iterate
this steps until only one processor is not saturated. |

Remark (Memory constraints). In the presence of memory constraints, each processor has to
switch to its upper mode when its memory is full. Our strategy is then to switch a minimum
number of times. As we are in a steady-state approach, we can determine the cyclic behavior of a
processor which has to achieve a throughput of p,, such that S“# < pu < % We suppose that
the memory is empty at the beginning, and that the memory bound is M. Then, the bandwidth
throughput will be p,, and the computation throughput will be either S“T’io r SWTOH Our goal is
to run the slowest mode during the longest interval. After

M
5 (pu = =52)

time-units under the mode P, ;,, the memory will be full and we will have to switch to the mode
Pu,i0+1 during

M
Su,ig+1
0 (0 = pu)
time-units until the memory is empty, and to repeat this pattern.

to =

)



136 CHAPTER 5. STEADY-STATE SCHEDULING

We tried to adapt our greedy solution to take into account the power overhead (Algo-
rithm 13); We saw previously that the performance of the algorithm depends on the time interval
we consider. The greater it is, the less power overhead we have to pay. So our adapterd algorithm
will sort all processors in an increasing order according to the ratio of their power consumption
during d time-units at given mode over the speed of this mode, d being a parameter of the
algorithm. We also compare this with the ratio of the power consumption of a processor when
its throughput is limited by its bandwidth over this bandwidth.

Algorithm 13: Adapted Greedy algorithm
Input: d: time interval
Data: throughput p that has to be achieved
for u =1 to p do
| T(u] < 0; /* Throughput of processor P, */
& — 0; /* Total throughput of the system */

L — sorted list of the (P, , pu,) such that
muj,puj (d) < %1Lj+11puj+1 (d)

. o Sukvik‘ . s“k‘rik buﬁk buk - .
ru; < puyin , with p,,, = =k if =k < =k and 5% otherwise, ;

while ¢ < p do
Py, i, — next(L); /* Selection of the next cheapest mode */

o' — Tlugl; /* previous throughput of P, */
T ug) < migl {pu; 0+ (p—@)}; /* new throughput of P, */
if Tluy) = 2% then
| L — L\{Py,;};/* we do not need to look at faster modes of P, */
e bt Tl - 4

Unfortunately, our algorithm is no longer optimal because of the last processor. During our
selection process, we took into account the consumption of the processors during d time-units,
so we know the consumption of all the first processors that we selected. But the last one may be
limited by the remaining amount of work to perform, so it may not run during the whole interval
or may not run at a constant throughput. And if the interval during which the processor has
to run is smaller than that, then the ordering of the processors according to the ratio of their
consumption over their throughput may change. For example, one can see that for achieving
a very small throughput, we may prefer a processor with a small overhead and a large power
consumption per time-units than the opposite.

Turned on only once

In this section, we will suppose that, once a processor is turned on, it will never be turned
off, and thus will always have some non null power consumption. This model is more realistic,
because a processor cannot be turned off and on at no cost. Under such constraints, the problem
becomes NP-hard.

Definition 5.2 (MS-power). Given two values P and p, a master-worker platform P composed
of n workers, and a power consumption function B, is it possible to achieve a total throughput
of at least p with a total power consumption at most equal to P?

First of all, our problem is harder than MS-power. If our problem of maximizing the through-
put given an upper bound P on the power consumption (resp. minimizing the power consumption



5.5. MINIMIZING POWER CONSUMPTION 137

given a lower bound p on the throughput) can be solved in polynomial time, then for all p < pgpt
(resp. P > Popt) MS-power has a schedule, elsewhere it does not.

Theorem 5.6. The problem MS-Power is NP-Hard on a platform where every processor can
only be turned on once.

Proof. We will make the reduction from 2-partition.
First of all, it is clear that the problem belongs to NP.

n

Let I ={ai,...,a,} be an instance of 2-Partition. We will note 24 = Z a;. We remind the
reader that the objective of 2-Partition is to find one subset of I whose s&rﬁ is equal to A.

Let I’ be an instance of MS-power. We build a platform composed of a master and n workers,
each worker having a unique mode of speed a;, a bandwidth of a;, and a bound on the master’s
bandwidth equal to 2A. Processor P; as a power consumption of a; per time-unit at its only
mode. Finally, we let P = p = A.

Then, if we find a scheduling whose power consumption is A and whose throughput is A,
we have exhibited a subset of I whose sum is equal to A. On the other hand, if one can find a
subset of I whose sum is equal to A, then it represents a feasible schedule. |

One can note that lemma 5.5 also holds for this problem: at most one processor is not used
at a maximum throughput. For this problem, we adapt our original greedy algorithm so that the
last processor to be selected is used at the throughput determined by the greedy algorithm only if
this throughput is greater than or equal to its first mode. Otherwise, if we want to minimize the
power consumption given a lower bound on the throughput, we compare the power consumption
of all processors when having an additional amount of work equal to the remaining throughput
that has to be achieved, and we pick the best solution. On the contrary, if we want to maximize
the throughput given an upper bound on the power consumption, then we discard from L this
last processor and all processors that were not yet enrolled by the greedy algorithm, and then
we continue the execution of the greedy algorithm. In other words, we are looking among the
enrolled processors the processors (more than one may be chosen) that can most efficiently use
the remaining energy budget. We compute the power consumption each processor would have
if we request it to increase its throughput by the “missing” throughput (the difference between
the required throughput and the throughput achieved so far).

5.5.5 Related Work

Several papers have been targeting the minimization of power consumption. Most of these works
suppose that they can switch to arbitrary speed values. Here is a brief overview of those papers:

Unit time tasks. Bunder in [38] focuses on the problem of offline scheduling unit time tasks
with release dates while minimizing the makespan or the total flow time on one processor.
He chooses to have a continuous range of speeds for the processors. He extends his work
from one processor to multi-processors, but unlike us, did not take any communication
time into account. His approach corresponds to scheduling on multi-core processors. He
also proves the NP-completeness of the problem of minimizing the makespan on multi-
processors with jobs of different amount of work.

Authors in [4] concentrate on minimizing the total flow time of unit time jobs with release
dates on one processor. After proving that no online algorithm can achieve a constant



138 CHAPTER 5. STEADY-STATE SCHEDULING

competitive ratio if job have arbitrary sizes, they exhibit a constant competitive online
algorithm and solve the offline problem in polynomial time. Contrarily to [38] where the
authors gather the tasks into blocks and schedule them with increasing speed in order to
minimize the makespan, here the authors prove that the speed of the blocks need to be
decreasing in order to minimize both total flow time and the energy consumption.

Communication-aware. In [142], the authors are interested about scheduling task graphs
with data dependences while minimizing the energy consumption of both the processors
and the interprocessor communication devices. They demonstrate that in the context of
multiprocessor systems, the interprocessor communications were an important source of
consumption, and their algorithm reduces up to 80% the communications. However, as
they focus on multiprocessor problems, they only consider the energy consumption of the
communications, and suppose that the communication times are negligible compared to
the computation times.

Deadlines. Most papers are trying to minimize the energy consumed by the platform given a
set of deadlines for all tasks on the system. In [119], the authors focus on the problem
where tasks arrive according to some release dates. They show that during each time
interval composed of the release dates and the deadlines of the applications, the optimal
voltage is constant, and they determine this voltage, as well as the minimum constant
speed for each job.

[10] improves the best known competitive ratio to minimize the energy while respecting
all deadlines.

[46] works on a overloaded platform (which means that no algorithm can finish all the
jobs) and try to maximize the throughput. Their online algorithm is O(1) competitive for
both throughput maximization and energy minimization.

Task-related consumption. |5] addresses the problem of periodic independent real-time tasks
on one processor, the period being a deadline to all tasks. The particularity of this work
is that they suppose the energy consumption is related to the task that is executed on the
processor. They exhibit a polynomial algorithm to find the optimal speed of each task,
and proved that EDF can be used to obtain a feasible schedule with these optimal speed
values.

Discrete voltage case. In [83], the authors represent the problem of scheduling tasks on a
single processor with discrete voltage. They also look at the model where the energy
consumption is related to the task, and describe how to split the voltage for each task.
They extend their work in [110] to online problems.

In [147], the authors add the constraint that the voltage can only be changed at each cycle
of every task, in order to limit the number of transitions and thus the energy overhead.
They find that under such model, the minimal number of frequency’s transitions in order
to minimize the energy may be greater than two.

Slack sharing. In [148, 122], the authors investigate dynamic scheduling. They are dealing
with the problem of scheduling DAG tasks before deadlines, using a semi-clairvoyant model.
For each task, the only information available is their worst-case execution times. Their
algorithm operates in two steps: first a greedy static algorithm schedules the tasks on the
processors according to their worst-case execution times and the deadline, and reduces



5.6. CONCLUSION 139

the processors speed so each processor meets the deadline. Then, if a task ends sooner
than according to the static algorithm, a dynamic slack sharing algorithm uses the extra-
time to reduce the speed of computations for the following tasks. The authors investigate
the problem with time overhead and voltage overhead when changing processor speeds,
and adapt their algorithm accordingly. Unfortunately, they do not take into account any
communication.

5.6 Conclusion

In the first part of this chapter, we have studied the problem of scheduling multiple applica-
tions, made of collections of independent and identical tasks, on a heterogeneous master-worker
platform. These applications had different release dates. We aimed at minimizing the maximum
stretch, or equivalently at minimizing the largest relative slowdown of each application due to
their concurrent executions. We derived an optimal algorithm for the off-line setting (when all
application sizes and release dates are known beforehand). We have adapted this algorithm to
an online scenario, so that it can react when new applications are released.

We have evaluated in practice our new algorithms against classical greedy heuristics, and
also against some involved static multi-applications strategies. This evaluation was made both
through actual experiments on a real cluster, using MPI, and through extensive simulations,
conducted with SimGrid. Both types of evaluation showed a great improvement when using our
CBS3M strategy, which achieves an averaged worse max-stretch only 16% greater than the off-
line optimal max-stretch To the best of our knowledge, this work is the first attempt to provide
efficient scheduling techniques for multiple bag-of-tasks applications in an online scenario.

Future work includes extending the approach to other communication models (such as the
one-port model) and to more general platforms (such as multi-level trees). It would also be very
interesting to deal with more complex application types, such as pipelines or even general DAGs.

In the second part, we have studied the problem of scheduling a single application with
power consumption constraints, on a heterogeneous master-worker platform. We proved some
relationships between the throughput and the power consumption at the processor level, and we
developed an optimal algorithm for the problem on the whole heterogeneous platform for the
simple ideal power consumption model. When we changed our power consumption model to a
more realistic one, problems became more complicated. We proved that some problems became
NP-Hard, and we heuristically extended our algorithm to deal with these models.

We would like to point out that Section 5.5 is still an ongoing work. As future work, it would
be interesting to develop our study towards more realistic models, and find some approximation
algorithms. It would then be necessary to test them through simulations.



140 CHAPTER 5. STEADY-STATE SCHEDULING




Chapter 6

Conclusion

Throughout this thesis, we tried to underline the challenges of scheduling on heterogeneous
platforms with realistic communication models. Even very simple problems such as scheduling
independent identical tasks on master-worker platforms proved to be hard in practice. However,
the simplicity of the platform’s shape under the master-worker model helped us to find greedy
algorithms which achieve good performance.

The main contributions of this work can be divided in three parts.

Scheduling : we proved some new results for online and offline scheduling of independent iden-
tical tasks with release dates on heterogeneous platforms. For the online setting, we have
provided a comprehensive set of lower bounds for the competitive ratio of any determin-
istic online scheduling algorithm, for each source of heterogeneity and for three objective
functions. For the offline setting, we have derived several new results, as an optimal
makespan-minimization algorithm for communication-homogeneous platform, and an NP-
hardness proof of the scheduling problem on fully heterogeneous platform.

Matrix product : we studied the problem of performing a matrix product on heterogeneous
master-worker platforms with the constraints of centralized data and limited memory. As
the problem of minimizing the makespan proved to be difficult, we focused on the mini-
mization of the total communication volume. We have derived a new, tighter, bound for
the minimal volume of communications needed to perform the multiplication, and devel-
oped an efficient memory layout, i.e., an algorithm to share the memory available on the
workers among the three matrices. We also extended this algorithm to provide an efficient
solution for heterogeneous platforms, as demonstrated by our MPI experiments.

Steady-state : as the difficulty of scheduling was related to the metric used (the makespan),
we focused at last on steady-state scheduling. In a first part, we have studied the problem
of scheduling multiple applications with release dates on a heterogeneous master-worker
platform. We aimed at minimizing the largest relative slowdown of each application due
to their concurrent execution. We derived an optimal algorithm for the off-line setting,
and we have adapted this algorithm to an online scenario, so that it can react when new
applications are released. In a second part, we studied the problem of maximizing the
throughput of one application given an upper bound on the power consumption, and the

141



142 CHAPTER 6. CONCLUSION

problem of minimizing the power consumption given a lower bound on the throughput, in
both cases on a platform composed of multi-modes processors. We developed an optimal
algorithm for the problem under the simple ideal power consumption model. Under more
realistic models, we have proved one NP-completeness result, and extended our algorithm.

Along these chapters, we have found efficient algorithms while minimizing the makespan. In
fact, it may be a better approach to focus on another objective function even if the real objective
is the minimization of the total completion time. For example, we focused in Chapter 4 on the
minimization of the total communication volume, as we thought that it was the bottleneck of
the application execution time. This objective function was easier to study, and the algorithms
obtained had at the end a smaller completion time than others. Another example occurred in
Chapter 5 when we focused on the minimization of the stretch of several applications. Using
such a metric led to solutions whose platform utilizations were better, and so the total comple-
tion time was the best among all other algorithms.

We also assumed that we had the exact communication speeds and computation speeds of
the workers. However, a realist hypothesis would be that we only have estimations, more or
less accurate. This is especially true for the communication times, because one has to share the
physical network links among several concurrent applications. For example, we often refereed to
BOINC-like computations, because they are composed of multiple bags of independent identical
tasks, and because participating processors are organized into a master-worker platform. How-
ever, BOINC does not know the communication bandwidth between the server and the workers.
In such a context, one may need to change our platform model. From the computational point
of view, one can also think of the scenario of platforms where the speed of the machines can
vary through time, and these machines may even be turned off, because of physical problems,
at any time during the scheduling. When one want to solve such problems, dynamic strategies
and a more decentralized approach may be a solution.

Next, one can remark that all previous studies were possible thanks to the simplicity of the
master-worker model. We often insist on the importance of taking into account the communica-
tion times, but we have neglected the contention problemns between the network links. Most of
the time, it was a reasonable assumption, because of the one-port model, but we could discuss
it further when using the bounded multi-port model.

So an important question to answer is: “if I do not have a master-worker platform, i.e., a star
network between the resources, what should I do?”. The question is to determine the best way
to map a master-worker platform (i.e., a star network between the master and the workers) from
any network connection graph. What do we do in the case where the machines are linked by a
sparse network? Do we choose the master and the workers so as to enroll the largest number of
workers on a star-network composed of these resources so that no contention will occur 7 Or do
we change our star-network to a multi-level tree 7

These are some important issues to investigate if one wants to squeeze the most out of the
various resources at our disposal.



Appendix A

Proofs of online competitiveness

Communication-homogeneous platforms

In this section, we have different-speed processors, so we order them such that P is the fastest
processor (p1 is the smallest computing time p;), while P, is the slowest processor.

Theorem A.l1. There is no scheduling algorithm for the problem
Q>1, MS | online, 1, p;j, ¢j =c | max C;
with a competitive ratio less than %

Proof. Suppose the existence of an on-line algorithm A with a competitive ratio p = g — €, with
e > 0. We will build a platform and study the behavior of A opposed to our adversary. The
platform consists of two processors, where p; =3, po =7, and ¢ = 1.

Initially, the adversary sends a single task ¢ at time 0. A sends the task i either to P,
achieving a makespan at least equal to ¢ 4+ p; = 4, or on P,, with a makespan at least equal to
¢+ p2 = 8. At time t; = ¢, we check whether 4 made a decision concerning the scheduling of 4,
and the adversary reacts consequently:

1. If A did not begin the sending of the task i, the adversary does not send other tasks.
The best makespan is then ¢1 + ¢+ p1 = 5. As the optimal makespan is 4, we have a
competitive ratio of g > p. This refutes the assumption on p. Thus the algorithm A must
have scheduled the task 7 at time c.

2. If A scheduled the task i on P the adversary does not send other tasks. The best possible
makespan is then equal to ¢ 4+ p2 = 8, which is even worse than the previous case. Con-
sequently, algorithm A does not have another choice than to schedule the task i on P; in
order to be able to respect its competitive ratio.

At time t; = ¢, the adversary sends another task, j. In this case, we look, at time t5 = 2¢, at
the assignment .4 made for j:

1. If j is sent on P», the adversary does not send any more task. The best achievable makespan
is then max{c + p1,2c+ p2} = max{1l + 3,2 + 7} = 9, whereas the optimal is to send the
two tasks to P; for a makespan of max{c + 2p1,2¢c + p1} = 7. The competitive ratio is
then % > % > p.

143



144 APPENDIX A. PROOFS OF ONLINE COMPETITIVENESS

2. If j is sent on P; the adversary sends a last task at time t9 = 2¢. Then the schedule has the
choice to execute the last task either on P; for a makespan of max{c+ 3p1,2c+ 2p1,3c+
p1} = max{10,8,6} = 10, or on P, for a makespan of max{c + 2p;,2¢c + p1,3c + p2} =
max{6, 5,10} = 10. The best achievable makespan is then 10. However, scheduling the first
task on P, and the two others on P; leads to a makespan of max{c+ps,2c+2p1,3c+p1} =
max{8,8,6} = 8. The competitive ratio is therefore at least equal to % = % > p.

3. If j is not sent yet, then the adversary sends a last task at time 5 = ¢o. A has the choice
to execute j on Pp, and to achieve a makespan worse than the previous case, or on Ps.
And it has then the choice to send k either to P, for a makespan of max{c+pi,to+c+ps+
max{c,p2}} = max{4,17} = 17, or to P} for a makespan of max{c + 2pi,ta + ¢+ p2, ta +
2c¢+p1} = max{7,10,7} = 10. The best achievable makespan is then 10. The competitive
ratio is therefore at least equal to 18—0 = % > p. Hence the desired contradiction.

|
Theorem A.2. There is no scheduling algorithm for the problem
Q>1,MS ’ Online, Tiy, Pj, ¢ =¢C ‘ max (Cz _ 7”2‘)

with a competitive ratio less than %ﬁ

Proof. Suppose the existence of an on-line algorithm 4 with a competitive ratio p = %ﬁ — €,
with € > 0. We will build a platform and study the behavior of A opposed to our adversary.

The platform consists of two processors, where p; = 2+3\ﬁ, po = H%‘ﬁ

,and ¢ = 1.

Initially, the adversary sends a single task ¢ at time 0. A sends the task i either to Pi,

547
3

achieving a max-flow at least equal to ¢ 4+ p; = , or on P, with a max-flow at least equal

toc+py = %ﬁ. At time 7 = 4_3‘ﬁ, we check whether A made a decision concerning the

scheduling of 7, and the adversary reacts consequently:

1. If A did not begin the sending of the task ¢, the adversary does not send other tasks. The

547
3

best possible max-flow is then 7 + ¢ 4+ p; = 3. As the optimal max-flow is , we have

5-7
2
algorithm A must have scheduled the task 7 at time 7.

a competitive ratio of % = > p. This refutes the assumption on p. Thus the

2. If A scheduled the task i on P the adversary does not send other tasks. The best possible

max-flow is then equal to %ﬁ, which is even worse than the previous case. Consequently,
algorithm 4 does not have another choice than to schedule the task ¢ on P; in order to be
able to respect its competitive ratio.

At time 7 = %ﬁ, the adversary sends another task, j. The best schedule would have been to

send the first task to P and the second to P; achieving a max-flow of max < {c¢+p2,2c+p1—7} =

max {4+§ﬁ, 4+§ﬁ} = 4+§‘ﬁ. We look at the assignment A made for j:

1. If j is sent on P, the best achievable max-flow is then max{c 4+ pi,2¢c + ps — 7} =
max{%ﬁ, 1+ 7} = 1+ /7, whereas the optimal is %ﬁ. The competitive ratio
is then %ﬁ > p.



145

2. If j is sent on Pp, the best possible max-flow is then max{c+p;, max{c+2p1,2c+p1}—7} =

max{‘r’*T\ﬁ, 14+ +/7} = 1+ /7. The competitive ratio is therefore once again equal to

Theorem A.3. There is no scheduling algorithm for the problem

Q>1, MS | online, r;, pj, ¢; =c | Z (Ci — 1)

with a competitive ratio less than M.

Proof. Suppose the existence of an on-line algorithm A with a competitive ratio p = M — €,
with € > 0. We will build a platform and study the behavior of A opposed to our adversary.
The platform consists of two processors, where p; = 2, ps = 4v/2 — 2, and ¢ = 1.

Initially, the adversary sends a single task i at time 0. A sends the task i either to P,
achieving a sum-flow at least equal to ¢ + p1 = 3, or on P,, with a sum-flow at least equal to
c+p2 = 4y/2—1. At time t; = ¢, we check whether A made a decision concerning the scheduling
of i, and the adversary reacts consequently:

1. If A did not begin the sending of the task ¢, the adversary does not send other tasks. The
best sum-flow is then t; + ¢+ p; = 4. As the optimal sum-flow is 3, we have a competitive
ratio of % > p. This refutes the assumption on p. Thus the algorithm A4 must have
scheduled the task ¢ at time c.

2. If A scheduled the task i on P, the adversary does not send other tasks. The best possible
sum-flow is then equal to ¢ + ps = 4/2 — 1, which is even worse than the previous case.
Consequently, algorithm A does not have another choice than to schedule the task i on P,
in order to be able to respect its competitive ratio.

At time t; = ¢, the adversary sends another task, j. In this case, we look, at time t5 = 2¢, at
the assignment .4 made for j:

1. If j is sent to P», the adversary does not send any more task. The best achievable sum-flow
is then (c+p1) + ((2¢ + p2) — t1) = 2+ 4v/2, whereas the optimal is to send the two tasks
to Py for a sum-flow of (c+ p1) + (max{2c+ p1,c+2p1} —t1) = 7. The competitive ratio
is then M > p.

2. If j is sent to P; the adversary sends a last task at time ¢35 = 2¢. Then the schedule has
the choice to execute the last task either on P; for a sum-flow of (¢ + p1) + (max{c +
2p1,2c+p1} —t1) + (max{3c+pi,c+3p1} —t2) = 12, or on P, for a sum-flow of (c+p1) +
(max{c+2p1,2¢c+ p1} —t1) + ((3¢ +p2) — ta) = 6 +4v/2. The best achievable sum-flow is
then 6 + 4+/2. However, scheduling the second task on P» and the two others on P leads
to a sum-flow of (¢ +p1) + ((2¢ + p2) — t1) + (max{3c + p1,c+ 2p1} — t2) = 5+ 4v/2. The

6+4v2 _ 244V2 p.

5+4v/2 7

3. If j is not send yet, then the adversary sends a last task k at time to = 2c¢. Then the
schedule has the choice to execute j either on Pj, and achieving a sum-flow worse than
the previous case, or on P». Then, it can choose to execute the last task either on P for a

competitive ratio is therefore at least equal to



146 APPENDIX A. PROOFS OF ONLINE COMPETITIVENESS

sum-flow of (¢4 p1) + (ta + c+p2 —t1) + (t2 + ¢+ p2 + max{c, pa} — t2) = 121/2+2, or on
Py for a sum-flow of (c+p1) + (t2 +c+p2 —t1) + (max{ta +c+p1,c+2p1 } —t2) = T+4v/2.
The best achievable sum-flow is then 7 4 41/2 which is even worse than the previous case.
Hence the desired contradiction.

Computation-homogeneous platforms

In this section, we have p; = p but processor links with different capacities. We order them, so
that P is the fastest communicating processor (c; is the smallest computing time ¢;).

Theorem A.4. There is no scheduling algorithm for the problem
P.y, MS | online, ri, pj =p, ¢; | maxC;
whose competitive ratio p is strictly lower than g.

Proof. Assume that there exists a deterministic on-line algorithm A whose competitive ratio is
p = g — €, with € > 0. We will build a platform and an adversary to derive a contradiction.

The platform is made up with two processors P; and P, such that p; = ps = p = max {5, 22—546 ,

ci=1and cy = L.

Initially, the adversary sends a single task ¢ at time 0. A executes the task i, either on Pj
with a makespan at least equal to 1 4+ p, or on P» with a makespan at least equal to %p.

At time-step £, we check whether A made a decision concerning the scheduling of i, and

which one:

1. If A scheduled the task i on P» the adversary does not send other tasks. The best pos-
sible makespan is then %p. The optimal scheduling being of makespan 1 + p, we have a

competitive ratio of

w

£ 3 3 6

= - — — > —
“1+p 2 2p+1)" 5
because p > 5 by assumption. This contradicts the hypothesis on p. Thus the algorithm
A cannot schedule task i on Ps.

2. If A did not begin to send the task i, the adversary does not send other tasks. The best
makespan that can be achieved is then equal to 1+ 5 +p =1+ 37;;’ which is even worse
than the previous case. Consequently, the algorithm A does not have any other choice

than to schedule task 7 on P;.

At time-step £, the adversary sends three tasks, j, k and . No schedule which executes
three of the four tasks on the same processor can have a makespan lower than 1+ 3p (minimum
duration of a communication and execution without delay of the three tasks). We now consider
the schedules which compute two tasks on each processor. Since ¢ is computed on P;, we have
three cases to study, depending upon which other task (j, k, or [) is computed on P;:

1. If j is computed on Py, at best we have:

(a) Task ¢ is sent to P; during the interval [0,1] and is computed during the interval
[1,1+p].



147

(b) Task j is sent to Py during the interval [§,1+ £] and is computed during the interval
14 p, 1+ 2p|.

(c) Task k is sent to P, during the interval [1 4+ £,1 + p| and is computed during the
interval [1 4 p, 1+ 2p).

(d) Task [ is sent to P» during the interval [1 4+ p,1 + %p} and is computed during the
interval [1 + 2p, 1 + 3p].
The makespan of this schedule is then 1 + 3p.
2. If k is computed on Pr:
(a) Task ¢ is sent to P; during the interval [0,1] and is computed during the interval
1,1+ p|.
(b) Task j is sent to P» during the interval [§,p] and is computed during the interval

[p, 2p].

(¢) Task k is sent to P; during the interval [p, 1+ p|] and is computed during the interval
14 p, 1+ 2p|.

(d) Task [ is sent to P» during the interval [1 4+ p,1 + %p} and is computed during the
interval [2p, 3p).

The makespan of this scheduling is then 3p.
3. If [ is computed on Pi:

(a) Task ¢ is sent to P; during the interval [0,1] and is computed during the interval

[1,1+p].
(b) Task j is sent to P» during the interval [§,p] and is computed during the interval
[p, 2p).
c) Task k is sent to P, during the interval |p, 32) and is computed during the interval
g 2 g
[2p, 3p).

(d) Task [ is sent to P; during the interval [%p, 1+ 32—”] and is computed during the interval
[1+32,1+ 2]

The makespan of this schedule is then 3p.

Consequently, the last two schedules are equivalent and are better than the first. Altogether,
the best achievable makespan is 3p. But a better schedule is obtained when computing ¢ on P,
then 7 on P;, then k on P, and finally [ on P;. The makespan of the latter schedule is equal
to 1+ %p. The competitive ratio of algorithm A is necessarily larger than the ratio of the best
reachable makespan (namely 3p) and the optimal makespan, which is not larger than 1 + %p.
Consequently:

3p 6 12 6 12 _ 6 €
PEI+® 5 B(6pr2) 5 Wp-5 2
2
which contradicts the assumption p = g — ¢ with € > 0. |

Theorem A.5. There is no scheduling algorithm for the problem
P.y, MS | online r;, pj =p, ¢; | max (C; — ;)

whose competitive ratio p is strictly lower than %



148 APPENDIX A. PROOFS OF ONLINE COMPETITIVENESS

Proof. Assume that there exists a deterministic on-line algorithm A whose competitive ratio is
p= % —¢, with 0 <e< i. We will build a platform and an adversary to derive a contradiction.
The platform is made up with two processors P, and P», such that p; = po = p = 2¢9 — ¢1, and
c1 = €, co = 1. Initially, the adversary sends a single task i at time 0. A executes the task i
either on P, with a max-flow at least equal to ¢; + p, or on P, with a max-flow at least equal
to co + p.

At time step 7 = cg — ¢, we check whether A made a decision concerning the scheduling of
i, and which one:

1. If A scheduled the task i on P, the adversary send no more task. The best possible max-
flow is then ¢y + p = 3 — €. The optimal scheduling being of max-flow ¢; + p = 2, we have

a competitive ratio of

€ S )
=———>-—c¢

“a+p 2 2 4

Thus the algorithm A cannot schedule the task i on Ps.

>02—|—p_3

2. If A did not begin to send the task ¢, the adversary does not send other tasks. The best
max-flow that can be achieved is then equal to % = %, which is the same than the
previous case. Consequently, the algorithm A does not have any choice but to schedule
the task 7 on Pj.

At time-step 7, the adversary sends three tasks, j, & and [. No schedule which executes
three of the four tasks on the same processor can have a max-flow lower than mazx(c; + 3p —
T, max(ci, T)+c1+p+max{ci,p} —7) = 6 — 2. We now consider the schedules which compute
two tasks on each processor. Since ¢ is computed on Py, we have three cases to study, depending
upon which other task (j, k, or 1) is computed on P;:

1. If j is computed on P;:

a) Task 7 is sent to P; and achieved a flow of ¢; +p = 2.

(a)
(b)
(©)
(d) Task [ is sent to P» and achieved a flow of max{r,c;}+¢1+ca+p+maz{ce,p} —7 =
5 —e.

Task j is sent to P; and achieved a flow of max{c; +2p—7, max{r,¢;}+c1+p—7} = 3.
Task k is sent to P, and achieved a flow of max{r,¢1}+¢c1 +co+p—7=3

The max-flow of this schedule is then 5 — €.
2. If k is computed on Pr:

a) Task 7 is sent to P; and achieved a flow of ¢; +p = 2.

(a)
(b)
(©)
(d) Task [ is sent to P» and achieved a flow of max{max{r,c1} + c2 + 2p, max{7,c1} +
202+C1+p}—7':5—26.

Task j is sent to Py and achieved a flow of max{r,c1} +co+p—7=3 —¢.

Task k is sent to P, and achieved a flow of max{c;+2p, max{r, c; }+ca+c1+p}—7 = 3.

The max-flow of this scheduling is then 5 — 2e.
3. If [ is computed on Pi:

(a) Task i is sent to P; and achieved a flow of ¢; +p = 2.



149

(b) task j is sent to P, and achieved a flow of max{7,¢1) +c2 +p} =3 —e.

(¢) Task k is sent to P, and achieved a flow of max{max{r,c;1} + co + 2p, max{r,c1} +
2c0 +p} =5 — 2e.

(d) Task lissent to P; and achieved a flow of max{c;+2p, max{r, ¢1 }+2co+c1+p}—7 = 4.
The max-flow of this schedule is then 5 — 2e.

Consequently, the last two schedules are equivalent and are better than the first. Altogether,
the best achievable max-flow is 5 — 2¢. But a better schedule is obtained when computing ¢ on
P, then j on P;, then k on P,, and finally [ on P;. The max-flow of the latter schedule is equal
to max{co+p, max{7, co}+c1+p—7, max{max{r, ca} +c1 +co+p, co+2p} —7, max{max{r, co } +
2¢1 4 ca 4+ p,max{r,ca} +c1 +2p} — 7} = 4. The competitive ratio of algorithm A is necessarily
larger than the ratio of the best reachable max-flow (namely 5 — 2¢) and the optimal max-flow,
which is not larger than 4. Consequently:

_5-2 5
P=""y 73

N

which contradicts the assumption p = g — ¢ with € > 0.

Theorem A.6. There is no scheduling algorithm for the problem
P>17MS ‘ Onlinev Ti, Pj =D, € | Z (CZ —Ti)

whose competitive ratio p is strictly lower than 23/22.

Proof. Assume that there exists a deterministic on-line algorithm A whose competitive ratio is
p =23/22 — ¢, with € > 0. We will build a platform and an adversary to derive a contradiction.
The platform is made up with two processors P; and P», such that py =ps =p =3, and ¢; =1,
co = 2. Initially, the adversary sends a single task ¢ at time 0. A executes the task i either on
P, with a max-flow at least equal to ¢; 4+ p, or on P, with a max-flow at least equal to ¢y + p.

At time step T = c9, we check whether A made a decision concerning the scheduling of i,
and which one:

1. If A scheduled the task ¢ on P» the adversary sends no more task. The best possible
sum-flow is then ca +p = 5. The optimal scheduling being of sum-flow ¢; +p = 4, we have

a competitive ratio of
co+p 5 23

> =—> —.
Tca+p 40 22

Thus the algorithm A cannot schedule the task i on Ps.

2. If A did not begin to send the task i, the adversary does not send other tasks. The best
sum-flow that can be achieved is then equal to lecjr;'p = g, which is even worse than the
previous case. Consequently, the algorithm A does not have any choice but to schedule

the task ¢ on P;.

At time-step 7, the adversary sends three tasks, j, k, and I. We look at all the possible
schedules, with ¢ computed on P;:



150

APPENDIX A. PROOFS OF ONLINE COMPETITIVENESS

. If all tasks are executed on P; the sum-flow is (¢; + p) + (max{c; + 2p, max{7,c1} + c1 +

p—7)+ (max{c; + 3p, max{7, c1} + ¢1 + p+ max{cy,p} — 7) + (max{c; + 4p, max{r, c1 } +
c1 +p+ 2max{ci,p} —7) = 28.

. If j is the only task executed on P the sum-flow is (¢; + p) + (max{7,c1} +co+p—7) +

(max{c1 + 2p, max{r,c1} + co + c1 + p} — 7) + (max{c; + 3p,max{r,c1} +co+c1 +p+
max{cy,p}} —7) = 24.

. If k is the only task executed on P, the sum-flow is (¢; 4+ p) + (max{c; + 2p, max{r,c;} +

c1+p—7)+ (max{r, c1 }+c1+co+p—7)+ (max{c; +3p, max{7,c1 } +ca+2c; +p} —7) = 23.

. If L is the only task executed on P the sum-flow is (¢; +p)+ (max{c; +2p, max{r,c1} +c1+

p—7)+(max{c1+3p, max{r, ¢ }+c1+p+max{ci, p}—7)+(max{r, c1 } +2c1+co+p—7) = 24.

. If 7kl are executed on Py the sum-flow is (¢1 +p)+ (max{r, c1 } + co+p—7)+ (max{7,c1 } +

co + p+ max{ce,p} — 7) + (max{7,c1} + co + p + 2max{ce,p} — 7) = 28.

We now consider the schedules which compute two tasks on each processor. Since i is computed
on Pj, we have three cases to study, depending upon which other task (j, k, or ) is computed
on P1:

1. If j is computed on Py the sum-flow is: (¢1 +p) + (max{c; +2p, max{r,c1}+c1+p—7)+

(max{T,c1} +c1+coa+p—7)+ (max{r,c1} + c1 + co + p + max{cq, p} — 7) = 24.

2. If k is computed on Py: (c1 +p) + (max{7,c1} + ca +p—7) + (max{c; + 2p, max{r,c1} +

Cco + C1 +p}—7’)+(max{7',cl}+02 +p+max{cl+02,p}—7') = 23.

3. If [ is computed on Pi: (c1 + p) + (max{r,c1} + co +p —7) + (max{r,c1} + c2 + p +

max{ce,p} — 7) + (max{c; + 2p, max{7,c1} + 2c2 + ¢1 + p} — 7) = 25.

Consequently, the best achievable sum-flow is 23. But a better schedule is obtained when
computing ¢ on P», then j on Pi, then k on P, and finally [ on P;. The sum-flow of the latter
schedule is equal to (ca + p) + (max{7,c2} +¢c1 + p — 7) + (max{max{7,co} + ¢1 + co + p,ca +
2p} — 7 + max{max{7, c2} + 2¢1 + c2 + p,max{7,ca} + ¢1 + 2p} — 7} = 22. The competitive
ratio of algorithm A is necessarily larger than the ratio of the best reachable sum-flow (namely
23) and the optimal sum-flow, which is not larger than 22. Consequently:

23
P=5

which contradicts the assumption p = ? — € with € > 0. |

Heterogeneous platforms

In this section, we consider fully heterogeneous platforms.

Theorem A.7. There is no scheduling algorithm for the problem

Q>2, MS | online, r;, pj, ¢; | max(C; —r;)

whose competitive ratio p is strictly lower than /2.



151

Proof. Assume that there exists a deterministic on-line algorithm A whose competitive ratio is
p = 2—¢, with e > 0. We will build a platform and an adversary to derive a contradiction. The
platform is made up of three processors P;, P, and P; such that p; = €, ps = p3 = v2¢1 — 1,
=21+ \/5), ca=c3=1,and 7 = (v/2 — 1)c;. Note that 7 < ¢1, and that ¢; + p1 < po.

Initially, the adversary sends a single task ¢ at time 0. A executes the task ¢, either on P;
with a max-flow at least equal to ¢; +p1 = ¢1 +¢€, or on P or P, with a max-flow at least equal
to co + p2 = 3+ p3 = V2e1.

At time-step 7, we check whether A made a decision concerning the scheduling of i, and
which one:

1. If A scheduled the task i on Py or Ps, the adversary does not send any other task. The
best possible max-flow is then co + po = c3 + p3 = V/2¢1. The optimal scheduling being of
max-flow ¢1 + p1 = ¢1 + €, we have a competitive ratio of:

2
Zc2+p2: V2er S VI
c1+p1 c1+e¢

as ¢; > /2. This contradicts the hypothesis on p. Thus the algorithm A cannot schedule
task ¢ on P or Ps.

2. If A did not begin to send the task i, the adversary does not send any other task. The
best max-flow that can be achieved is then equal to 7 + ¢1 + p1 = V2¢1 + €, which is even
worse than the previous case. Consequently, algorithm A does not have any other choice
than to schedule task 7 on P;.

Then, at time-step 7, the adversary sends two tasks, j and k. We consider all the scheduling
possibilities:

e j and k are scheduled on P;. Then the best achievable max-flow is:

c1 + p1,
max { max{max{ci, T} +c1 +p1,c1 +2p1} — T,
max{max{cy, 7} + c1 + p1 + max{ci,p1},c1 +3p1} — 7}

=3c1+p1—7T

= (4— \/i)cl +e€
as p1 < cq.

e The first of the two jobs, j and k, to be scheduled is scheduled on P (or P3) and the other
one on ;. Then, the best achievable max-flow is:

c1 + pi1,
max{ (max{c1, 7} + co +p2) — 7T,
max{max{c1, 7} +ca+c1+pi,c1+2p1} — 7}

=c; +co — 7+ max{pa,c1 +p1}



152 APPENDIX A. PROOFS OF ONLINE COMPETITIVENESS

e The first of the two jobs j and k to be scheduled is scheduled on P; and the other one on
P, (or Ps). Then, the best achievable max-flow is:

C1 +p1>
max { max{max{ci, T} +c1 + p1,c1 + 2p1} — T,
(max{e1, 7} +c1 +co+p2) — 7}

= 2¢1 — 7 + max{py, co + p2}

= 301
e One of the jobs j and k is scheduled on P, and the other one on Ps.
max{cy + p1, (max{ci,7} + ca + p2) — 7, (max{c1, 7} + co +c3+p3) — T}
=c+2c0+p2—7T
=2c +1

e The case where j and k are both executed on P, or both on P;, leads to an even worse
max-flow than the previous case. Therefore, we do not need to study it.

Therefore, the best achievable max-flow for A is: 2¢;. However, we could have scheduled i on
P, j on P53, and then k on P, thus achieving a max-flow of:

max{co + p2, (max{ce, 7} + c3 + p3) — 7, (max{cy, 7} +c3+c1 +p1) — T}
= max{ce, 7} + c2 + max{ps,c1 +p1} — 7

= \/icl

Therefore, we have a competitive ratio of:

2
p> L =3,

which contradicts the hypothesis on p. |

Theorem A.8. There is no scheduling algorithm for the problem

Q>2, MS | online, r;, p;, ¢; | Z(Ci_ri)

Vv13—-1
5 -

whose competitive ratio p is strictly lower than

Proof. Assume that there exists a deterministic on-line algorithm A whose competitive ratio is
p= @ — €, with € > 0. We will build a platform and an adversary to derive a contradiction.
The platform is made up of three processors P, P», and P3 such that p1 =€, po = p3 =7+c1—1,
/5252 _
5261“261:1 (Gclﬂ). Note that 7 < ¢; and that:

) T  V13-3
lim —=——
c1—+00 C1 2

cg=c3=1,and 7 =

Therefore the exists a value Ny such that:

c1>Ngy = c¢1>cand T > e



153

The value of ¢; will be defined later on. For now, we just assume that ¢; > Np.

Initially, the adversary sends a single task ¢ at time 0. A executes the task i, either on Pj
with a sum-flow at least equal to ¢; + p1, or on P, or P3, with a sum-flow at least equal to
C2+pr=c3+p3=7T-+cC1.

At time-step 7, we check whether A made a decision concerning the scheduling of i, and
which one:

1. If A scheduled the task i on P or P, the adversary does not send any other task. The
best possible sum-flow is then co 4+ p2 = ¢3 4+ ps = 7 + ¢1. The optimal scheduling being
of sum-flow ¢; 4+ p1 = ¢1 + €, we have a competitive ratio of:

p> T+ .
c1+e€
However,
I T4+ 1;’_301 +c v13—1
11m = = .
c1—+oo ¢ + € cl 2

Therefore, there exists a value N7 such that:

T4+ V13—1 ¢
>N = > g
=M c1+e€ 2 2’

which contradicts the hypothesis on p. We will now suppose that ¢; > max{Np, N1}.
Then the algorithm A cannot schedule task i on Py or Ps.

2. If A did not begin to send the task i, the adversary does not send any other task. The
best sum-flow that can be achieved is then equal to 74 ¢; +p1 = 7+ ¢1 + €, which is even
worse than the previous case. Consequently, algorithm A does not have any other choice
than to schedule task ¢ on P;.

Then, at time-step 7, the adversary sends two tasks, j and k. We consider all the scheduling
possibilities:

e Tasks j and k are scheduled on P;. Then the best achievable sum-flow is:

(c1 +p1) + (max{max{cy, 7} +c1 +p1,c1 +2p1} — 7)
+ (max{max{c1, 7} + ¢1 + p1 + max{ci,p1},c1 +3p1} — 7)
= 6c1 + 3p1 — 27
=6c1 — 27 + 3¢

as p1 < 1.

e The first of the two jobs, j and k, to be scheduled is scheduled on P (or P3) and the other
one on P;. Then, the best achievable sum-flow is:

(c1 4+ p1) + (max{ci1,7} + c2 +p2) — 7)
+ (max{max{c1,7} + ca +c1 +p1,c1 +2p1} —7)
=4dc1 +2+2p1 +p2— 27
=5ci —17+1+4 2¢



154 APPENDIX A. PROOFS OF ONLINE COMPETITIVENESS

e The first of the two jobs j and k to be scheduled is scheduled on P; and the other one on
P, (or Ps). Then, the best achievable sum-flow is:

(c1 + p1) + (max{max{ci, 7} + ¢c1 + p1,c1 +2p1} — 7)
+ ((max{c1,7} +¢1 + e+ p2) — 7)
=5c1 +c2+2p1 +p2 — 27
=6c1 — T + 2¢

e One of the jobs j and k is scheduled on P> and the other one on Ps.

(c1 +p1) + ((max{ci, 7} + co + p2) — 7) + ((max{c1, 7} + co + ¢3 + p3) — 7)
=3¢y +3ca + p1 + 2p2 — 27
=bci+1+c¢€

e The case where j and k are both executed on P, or both on Ps, leads to an even worse
sum-flow than the previous case. Therefore, we do not need to study it.

Therefore, the best achievable sum-flow for A is: 5¢; — 7+ 1+ 2¢ (as ¢; > 7 > €). However, we
could have scheduled ¢ on P», j on Ps, and then k on Py, thus achieving a sum-flow of:

(c2 + p2) + ((max{ce, 7} + c3 + p3) — 7) + ((max{co, 7} + c3 +¢c1 + p1) — 7)
=c1+3c2 +p1+2p2
=3c1+21+1+e

Therefore, we have a competitive ratio of:

S oct — T+ 1+ 2¢
p_3cl+27+1+e

However,
S —T+1+2 . 5o —Y3Se  13-1
1m = 1m =
ca—+00 3¢+ 27+ 1+¢ c1—+o00 361 + 2@—361 2

Therefore, there exists a value Ny such that:

S5¢1 —7+14+2 V13—-1 ¢
= 3c1+2r+1+e 2 2’

which contradicts the hypothesis on p.
Therefore, if we initially choose ¢ greater than max{Ny, N1, N2}, we obtain the desired
contradiction. ]



Appendix B

Matrix product detailed experimental results

This appendix details all the results obtained during the heterogeneous MPI experiments of
Section 4.8.4.

155



Matrix size

8000 x 64000 x 8000

8000 x 80000 x 8000

ALGO Makespan R;l::f{‘ve # procs  Work Rjijsive Makespan RE::E‘VQ # procs  Work Rjiz;i{ve
Hom 1972 1.00 6 11832 1.61 2668 1.20 6 16008 1.73
Homl 2323 1.18 5 11615 1.58 2605 1.17 5 13025 1.41
Het 2076 1.05 6 12456 1.69 2220 1.00 7 15540 1.68
BMM 2410 1.22 8 19280 2.62 2645 1.19 8 21160 2.29

ODDOML 2171 1.10 8 17368 2.36 2289 1.03 8 18312 1.98
OMMOML 3685 1.87 2 7370 1.00 4614 2.08 2 9228 1.00
ORROML 2351 1.19 8 18808 2.55 2717 1.22 8 21736 2.36
Matrix size 8000 x 96000 x 8000 8000 x 112000 x 8000

ALGO Makespan R;l;:cfl.ve # procs  Work Rizﬁ{ve Makespan R;l;:u;ve # procs  Work Rjizﬁi{ve
Hom 2953 1.19 6 17718 1.59 3660 1.19 6 21960 1.73
HomlI 3291 1.33 5 16455 1.48 3637 1.18 6 21822 1.72
Het 2483 1.00 7 17381 1.56 3215 1.05 7 22505 1.77
BMM 3215 1.29 8 25712 2.31 4011 1.31 8 32088 2.52

ODDOML 2498 1.01 8 19984 1.79 3073 1.00 8 24584 1.93
OMMOML 5570 2.24 2 11140 1.00 6356 2.07 2 12714 1.00
ORROML 2887 1.16 8 23096 2.07 3133 1.02 8 25064 1.97
Matrix size 8000 x 124000 x 8000

ALGO Makespan R;l(?:f{‘ve # procs  Work Rjis:i{ve Aigo Thrlollgg;éput
Hom 3913 1.19 6 23478 1.59 Hom 4057 3748 4064 3825 4089
Homl 3916 1.19 6 23496 1.59 Homl 3444 3839 3646 3849 4086
Het 3507 1.06 6 21042 1.42 Het 4848 4505 4833 4355 4562
BMM 4237 1.28 8 33896 2.29 BMM 3320 3781 3733 3490 3776

ODDOML 3298 1.00 8 26384 1.79 ODDOML | 4837 4369 4804 4556 4851
OMMOML 7384 2.24 2 14774 1.00 OMMOML | 2170 2167 2154 2202 2166
ORROML 3925 1.19 8 31400 2.13 ORROML | 4364 3681 4157 4469 4076

sazis Aiowaw snoaudSoialoHy

9¢1

S1INS3Y TVLNIWIHIIXT dITIVLIA LONA0Hd XIHLVYN g XIANIddY



Matrix size

8000 x 64000 x 8000

8000 x 80000 x 8000

ALGO Makespan R;l::f{‘ve # procs  Work Rjijsive Makespan RE::E‘VQ # procs  Work Rjiz;i{ve
Hom 3340 1.35 2 6680 1.00 4186 1.41 2 8370 1.00
Homl 2481 1.00 4 9924 1.49 3275 1.10 4 13100 1.57
Het 2492 1.00 5 12455 1.86 2974 1.00 5 14870 1.78
BMM 4216 1.70 8 33728 5.05 5665 1.90 8 45320 5.41

ODDOML 3197 1.29 8 25576 3.83 4013 1.35 8 32096 3.83
OMMOML 2481 1.00 5 12405 1.86 3350 1.13 5 16750 2.00
ORROML 3140 1.27 8 25120 3.76 3967 1.33 8 31736 3.79
Matrix size 8000 x 96000 x 8000 8000 x 112000 x 8000

ALGO Makespan R;l;:cfl.ve # procs  Work Rizﬁ{ve Makespan R;l;:u;ve # procs  Work Rjizﬁi{ve
Hom 5052 1.38 2 10104 1.00 5844 1.39 2 11688 1.00
HomlI 3673 1.00 4 14692 1.45 4505 1.07 4 18020 1.54
Het 3783 1.03 5 18910 1.87 4202 1.00 5 21010 1.80
BMM 6318 1.72 8 50544 5.00 7867 1.87 8 62936 5.38

ODDOML 4994 1.36 8 39952 3.95 5347 1.27 8 42776 3.66
OMMOML 3769 1.03 5 18845 1.87 4439 1.06 5 22195 1.90
ORROML 4363 1.19 8 34904 3.45 4890 1.16 8 39120 3.35
Matrix size 8000 x 124000 x 8000

Relative Relative ALGO Throughput

ALGO Makespan perf. # procs  Work work P 6338
Hom 6709 1.37 2 13416 1.00 Hom 2395 2389 2375 2395 2385
HomlI 4897 1.00 4 19588 1.46 Homl 3224 3053 3267 3107 3267

Het 5135 1.05 5 25675 1.91 Het 3211 3362 3172 3331 3115
BMM 8762 1.79 8 70096 5.22 BMM 1897 1765 1899 1779 1826
ODDOML 6325 1.29 8 50600 3.77 ODDOML | 2502 2492 2402 2618 2529
OMMOML 5085 1.04 5 25425 1.90 OMMOML | 3224 2985 3183 3153 3146
ORROML 6281 1.28 8 50248 3.75 ORROML | 2547 2520 2750 2863 2547

S)ul] UOIIEJIUNWWOD SNO’U3804919H

JASY



Matrix size

8000 x 64000 x 8000

8000 x 80000 x 8000

ALGO Makespan R;l::f{‘ve # procs  Work Rjijsive Makespan RE::E‘VQ # procs  Work Rjiz;i{ve
Hom 3199 1.58 8 25592 3.85 3933 1.38 8 31464 3.78
Homl 2588 1.28 6 15528 2.34 3347 1.17 6 20082 2.41
Het 2022 1.00 6 12132 1.83 2853 1.00 6 17118 2.06
BMM 2345 1.16 8 18760 2.82 3900 1.37 8 31200 3.75

ODDOML 3114 1.54 8 24912 3.75 3244 1.14 8 25952 3.12
OMMOML 3322 1.64 2 6644 1.00 4164 1.46 2 8328 1.00
ORROML 3109 1.54 8 24872 3.74 3936 1.38 8 31488 3.78
Matrix size 8000 x 96000 x 8000 8000 x 112000 x 8000

ALGO Makespan R;l;:cfl.ve # procs  Work Rizﬁ{ve Makespan R;l;:u;ve # procs  Work Rjizﬁi{ve
Hom 4683 1.35 8 37464 3.71 4870 1.35 8 38960 3.34
HomlI 3525 1.02 6 21150 2.10 4365 1.21 6 26190 2.25
Het 3461 1.00 8 27688 2.74 3615 1.00 8 28920 2.48
BMM 4019 1.16 8 32152 3.19 4208 1.16 8 33664 2.89

ODDOML 3491 1.01 8 27928 2.77 3726 1.03 8 29808 2.56
OMMOML 5044 1.46 2 10088 1.00 5825 1.61 2 11650 1.00
ORROML 4685 1.35 8 37480 3.72 4878 1.35 8 39024 3.35
Matrix size 8000 x 124000 x 8000

Relative Relative ALGO Throughput

ALGO Makespan perf. # procs  Work work P 7534
Hom 6283 1.63 8 50264 3.78 Hom 2501 2543 2562 2875 2547
HomlI 5129 1.33 6 30774 2.32 Homl 3091 2988 3404 3207 3120
Het 4026 1.04 8 32208 2.42 Het 3956 3505 3467 3873 3974
BMM 4414 1.14 8 35312 2.66 BMM 3412 2564 2986 3327 3625

ODDOML 3862 1.00 8 30896 2.33 ODDOML | 2569 3083 3437 3757 4143
OMMOML 6642 1.72 2 13284 1.00 OMMOML | 2408 2401 2379 2403 2409
ORROML 6227 1.61 8 49816 3.75 ORROML | 2573 2541 2561 2870 2569

sanijiqeded uoileindwod snNo0dUd304919H

89T

S1INS3Y TVLNIWIHIIXT dITIVLIA LONA0Hd XIHLVYN g XIANIddY



Matrix size

8000 x 80000 x 8000

8000 x 80000 x 8000

ALGO Makespan R;l::f{‘ve # procs  Work Rjijsive Makespan RE::E‘VQ # procs  Work Rjiz;i{ve
Hom 4811 1.50 7 33677 2.13 8932 1.49 7 62524 4.21
Homl 4742 1.48 7 33194 2.10 8957 1.49 7 62699 4.22

Het 3649 1.14 8 29192 1.85 6708 1.12 6 40248 2.71
BMM 3984 1.24 8 31872 2.02 6965 1.16 8 55720 3.75
ODDOML 3203 1.00 8 25624 1.62 6011 1.00 8 48088 3.24
OMMOML 3945 1.23 4 15780 1.00 7422 1.23 2 14844 1.00
ORROML 4834 1.51 8 38672 2.45 9219 1.53 8 73752 4.97
Matrix size 8000 x 80000 x 8000 8000 x 80000 x 8000

ALGO Makespan R;l;:cfl.ve # procs  Work Rizﬁ{ve Makespan R;l;:u;ve # procs  Work Rjizﬁi{ve

Hom 3704 1.24 4 14816 1.06 2768 1.05 4 11072 1.05
Homl 3507 1.18 4 14028 1.00 2989 1.13 4 11956 1.13
Het 2979 1.00 6 17874 1.27 2642 1.00 4 10568 1.00
BMM 3854 1.29 8 30832 2.20 6013 2.28 8 48104 4.55
ODDOML 3112 1.04 8 24896 1.77 4250 1.61 8 34000 3.22
OMMOML 5102 1.71 3 15306 1.09 3221 1.22 6 19326 1.83
ORROML 3083 1.03 8 24664 1.76 3916 1.48 8 31328 2.96

ALGO Throughput

LP 6689 3426 6476 6432
Hom 2078 1120 2700 3613
Homl 2109 1117 2852 3346
Het 2740 1491 3357 3785
BMM 2510 1436 2595 1663
ODDOML | 3122 1664 3213 2353
OMMOML | 2534 1347 1960 3105
ORROML | 2068 1085 3244 2554

s19sqns snoauaSowoy oM} yim swojie|d

69T



Matrix size

8000 x 80000 x 8000

8000 x 80000 x 8000

ALGO Makespan R;l::f{‘ve # procs  Work Rjijsive Makespan RE::E‘VQ # procs  Work Rjiz;i{ve
Hom 4485 1.62 6 26910 2.37 7914 1.50 6 47484 4.49
Homl 4990 1.80 5 24950 2.19 5285 1.00 2 10570 1.00

Het 2773 1.00 6 16638 1.46 5737 1.09 5 28685 2.71
BMM 4109 1.48 8 32872 2.89 7672 1.45 8 61376 5.81
ODDOML 3190 1.15 8 25520 2.24 7453 1.41 8 59624 5.64
OMMOML 5688 2.05 2 11376 1.00 6949 1.31 2 13898 1.31
ORROML 5224 1.88 8 41792 3.67 8964 1.70 8 71712 6.78
Matrix size 8000 x 80000 x 8000 8000 x 80000 x 8000

ALGO Makespan R;l;:cfl.ve # procs  Work Rizﬁ{ve Makespan R;l;:u;ve # procs  Work Rjizﬁi{ve
Hom 9138 1.81 6 54828 2.04 5252 1.41 7 36764 3.76
Homl 7131 1.41 5 35655 1.32 4889 1.31 2 9778 1.00

Het 5058 1.00 7 35406 1.32 3723 1.00 6 22338 2.28
BMM 6314 1.25 8 50512 1.88 5248 1.41 8 41984 4.29
ODDOML 5424 1.07 8 43392 1.62 4229 1.14 8 33832 3.46
OMMOML 8973 1.77 3 26919 1.00 4359 1.17 4 17436 1.78
ORROML 6732 1.33 8 53856 2.00 4596 1.23 8 36768 3.76
Matrix size 8000 x 80000 x 8000 8000 x 80000 x 8000

ALGO Makespan R(;)lj:flye # procs  Work ijljz{ve Makespan R;l;:cfl.ve # procs  Work Rjizz{ve
Hom 6563 1.41 5 32815 2.62 6233 1.46 5 31165 2.89
Homl 6263 1.35 2 12526 1.00 5452 1.27 5 27260 2.52

Het 4647 1.00 5 23235 1.85 4282 1.00 6 25692 2.38
BMM 6705 1.44 8 53640 4.28 5880 1.37 8 47040 4.35
ODDOML 4677 1.01 8 37416 2.99 4443 1.04 8 35544 3.29
OMMOML 8020 1.73 2 16040 1.28 10802 2.52 1 10802 1.00
ORROML 5890 1.27 8 47120 3.76 6320 1.48 8 50560 4.68

swuojiejd snosua8oualay Ajn4

091

S1INS3Y TVLNIWIHIIXT dITIVLIA LONA0Hd XIHLVYN g XIANIddY



Matrix size

8000 x 80000 x 8000

8000 x 80000 x 8000

ALGO Makespan R(;;I;mtf{.\/e # procs  Work R\eizive Makespan R(;}:;fl,f/e # procs  Work Ri}iﬂ{ve
Hom 5790 1.39 7 40530 3.21 10472 1.74 6 62832 3.30
Homl 6309 1.52 2 12618 1.00 10056 1.67 6 60336 3.17

Het 4151 1.00 6 24906 1.97 6027 1.00 7 42189 2.22
BMM 5676 1.37 8 45408 3.60 7308 1.21 8 58464 3.07
ODDOML 4583 1.10 8 36664 2.91 6381 1.06 8 51048 2.68
OMMOML 4943 1.19 4 19772 1.57 19014 3.15 1 19014 1.00
ORROML 7427 1.79 8 59416 4.71 10397 1.73 8 83176 4.37
Matrix size 8000 x 80000 x 8000 8000 x 80000 x 8000

ALGO Makespan R;l::fl.ve # procs  Work R:iz:i:e Makespan R(;)l::f{.\/e # procs  Work Ri}iﬁ{ve
Hom 5736 1.28 7 40152 2.86 7921 1.45 7 55447 4.12
Homl 4674 1.04 3 14022 1.00 5780 1.06 5 28900 2.14

Het 4488 1.00 5 22440 1.60 5468 1.00 7 38276 2.84
BMM 5957 1.33 8 47656 3.40 5828 1.07 8 46624 3.46
ODDOML 5016 1.12 8 40128 2.86 5602 1.02 8 44816 3.33
OMMOML 5175 1.15 3 15525 1.11 13474 2.46 1 13474 1.00
ORROML 5942 1.32 8 47536 3.39 9564 1.75 8 76512 5.68
Matrix size 8000 x 80000 x 8000 8000 x 80000 x 8000

ALGO Makespan Re;)l:rtfl‘ve +# procs  Work Ri}zﬁ{ve Makespan R;l::fl.ve # procs  Work Rjizii{ve
Hom 4908 1.17 7 34356 1.74 6610 1.41 5 33050 1.97
Homl 5128 1.22 6 30768 1.56 6022 1.29 5 30110 1.80

Het 4284 1.02 7 29988 1.52 4672 1.00 6 28032 1.67
BMM 5027 1.19 8 40216 2.04 6678 1.43 8 53424 3.19
ODDOML 4212 1.00 8 33696 1.71 5095 1.09 8 40760 2.43
OMMOML 6585 1.56 3 19755 1.00 8371 1.79 2 16742 1.00
ORROML 7042 1.67 8 56336 2.85 5293 1.13 8 42344 2.53

191



Matrix size 8000 x 320000 x 8000 8000 x 320000 x 8000
ALGO Makespan R;l;:cfl.ve # procs  Work Ri}iﬂ:e Makespan R(;l;icfl.ve # procs  Work Ri}iﬂ{ve
Hom 10867 1.44 6 65202 1.00 7711 1.11 11 84821 1.06
Homl 10842 1.44 6 65052 1.00 7720 1.11 11 84920 1.06
Het 7799 1.04 10 77990 1.20 7268 1.05 11 79948 1.00
BMM 10980 1.46 20 219600 3.38 10180 1.47 20 203600 2.55
ODDOML 7531 1.00 20 150620 2.32 6944 1.00 20 138880 1.74
OMMOML 12207 1.62 6 73242 1.13 7718 1.11 11 84898 1.06
ORROML 8862 1.18 20 177240 2.72 7015 1.01 20 140300 1.75
ALGO Throughput
Lp 5818 5954 4428 6202 4923 6028 6188 3990 6914 5675 6074 4269 10202 13564
Hom 2230 1264 1094 1904 1524 1604 1727 955 1743 1262 2037 1513 3681 5187
Homl 2004 1892 1402 2046 1597 1834 1585 994 2139 1730 1950 1661 3689 5181
Het 3606 1743 1977 2686 2152 2335 2409 1659 2228 1829 2334 2140 5129 5504
BMM 2434 1303 1584 1905 1491 1701 1762 1368 1679 1716 1989 1497 3643 3929
ODDOML | 3135 1342 1844 2365 2138 2251 2182 1567 1994 1785 2374 1963 5311 5760
OMMOML | 1758 1439 1114 2294 1247 926 2023 526 1932 742 1519 1195 3277 5183
ORROML | 1914 1116 1485 2176 1698 1582 1346 962 1683 1046 1420 1889 4514 5702

91

S1INS3Y TVLNIWIHIIXT dITIVLIA LONA0Hd XIHLVYN g XIANIddY



Appendix C

From theoretical throughput to realistic
schedule

In this section, we briefly explain how the optimality result of Section 5.4.2 for the model BMP-
FC-SS can be adapted to the other models. As expected, the more realistic the model, the less
tight the optimality guaranty. Fortunately, we are always able to reach asymptotic optimality:
our schedules get closer to the optimal as the number of tasks per application increases.

Property of the one-dimensional load-balancing schedule

First, we need to introduce a tool that will prove helpful for the proofs: the one-dimensional
load-balancing schedule and its properties.

One part of Chapter 5 is devoted to comparing results under different models. One of the
major differences between these models is whether they allow —or not— preemption and time-
sharing. On the one hand, we study “fluid” models, where a resource (processor or communication
link) can be simultaneously used by several tasks, provided that the total utilization rate is below
one. On the other hand, we also study “atomic” models, where a resource can be devoted to only
one task, which cannot be preempted: once a task is started on a given resource, this resource
cannot perform other tasks before the first one is completed. In this section, we show how to
construct a schedule without preemption from fluid schedules, in a way that keeps the interesting
properties of the original schedule. Namely, we aim at constructing atomic-model schedules in
which tasks terminate not later, or start not earlier, than in the original fluid schedule.

We consider a general case of n applications Ay, ..., A, to be scheduled on the same resource,
typically a given processor, and we denote by t; the time needed to process one tasgk of application
Ay at full speed. We start from a fluid schedule Spuiqa where each application Ay is processed
at a rate of oy tasks per time-units, such that ) ;_; oy < 1. Figure C.2(a) illustrates such a
schedule.

From Squiq, we build an atomic-model schedule Sip using a one-dimensional load-balancing
algorithm [36, 12]: at any time step, if ny is the number of tasks of application Ay that have
already been scheduled, the next task to be scheduled is the one which minimizes the quantity
(L)t Figure C.2(b) illustrates the schedule obtained. We now prove that this schedule has

ag
the nice property that a task is not processed later in Sip than in Sgyiq.

Lemma C.1. In the schedule Sip, a task T does not terminate later than in Sqyiq.

163



164 APPENDIX C. FROM THEORETICAL THROUGHPUT TO REALISTIC SCHEDULE

Figure C.1: Gantt charts for the proof illustrating the one-dimensional load-balancing algorithm.

T

[N 2

time time

(a) fluid schedule Sauig (b) atomic schedule Sip

Proof. First, we point out that tx/cy is the time needed to process one task of application Ay in
Sfuiq (with rate ay). So ”’“Txkt’“ is the time needed to process the first ny tasks of application Ay.

The scheduling decision which chooses the application minimizing ("’“Zﬁ consists in choosing

the task which is not yet scheduled and which terminates first in Sqyiq .k Thus, in Sip, the tasks
are executed in the order of their termination date in Spuq. Note that if several tasks terminate
at the very same time in Spyiq, then these tasks can be executed in any order in Sip, and the
partial order of their termination date is still observed in Sip.

77777777777777777777777777777777777777 ~_|

Tothcr : :
Thetore Ly, / Thetore : 7%

dfuia dip

Then, consider a task T; of a given application Ay, its termination date dgyiq in Spuia, and
its termination date dip in Sip. We call Sperore the set of tasks which are executed before T;
in Sip. Because Sip executes the tasks in the order of their termination date in Squid, Spefore
is made of tasks which are completed before T; in Sgyig, and possibly some tasks completed at
the same time as T; (at time dgyiq). We denote by Thefore the time needed to process the tasks
in Spefore-

In Sip, we have dip = Thefore + tr; Whereas in Squiq, we have dauia = Thefore + tk; + Lother
where Tyther is the time spent processing tasks from other application than Ag and which are
not completed at time dguiq, or tasks completing at time dguiq and scheduled later than 7T; in
S1p. Since Tother = 0, we have dip < dgyiq- |

The previous property is useful when we want to construct an atomic-model schedule, that
is a schedule without preemption, in which task results are available no later than in a fluid
schedule. On the contrary, it can be useful to ensure that no task will start earlier in an atomic-
model schedule than in the original fluid schedule. Here is a procedure to construct a schedule
with the latter property.

1. We start again from a fluid schedule Sayig, of makespan M. We transform this schedule
into a schedule S{;ulid by reversing the time: a task starting at time d and finishing at
time f in Squiq is scheduled to start at time M — f and to terminate at M — d in Sﬁulidv
and is processed at the same rate as in Sguiq. Note that this is possible since we have no
precedence constraints between tasks.



165

2. Then, we apply the previous one-dimensional load-balancing algorithm on Si;ulid7 leading
to the schedule Sl_Dl. Thanks to the previous result, we know that a task T does not
terminate later in Sf[% than in S’Eulid.

3. Finally, we transform Sl_[% by reverting the time one last time: we obtain the schedule
5’1_]32. A task starting at time d and finishing at time f in Sl_Dl starts at time M — f and
finishes at time M — d in SI_DZ. Note that Sl_Dl may have a makespan smaller that M (if
the resource was not totally used in the original schedule Sgyiq). In this case, our method
automatically introduces idle time in the one-dimensional schedule, to avoid that a task is
started too early.

Lemma C.2. A task does not start sooner in 51_])2 than in Sfuid-

Proof. Consider a task T, call f; its termination date in Sﬂ_ulid, and fo its termination date in
Sl_Dl. Thanks to Lemma C.1, we know that fo < fi. By construction of the reverted schedules,
the starting date of task T" in Squiq is M — f1. Similarly, its starting date in SI_DQ is M — fo and
we have M — fo > M — fy. [ |

Quasi-optimality for more realistic models

Here we explain how the optimality result of Section 5.4.2 can be adapted to the other mod-
els. We describe the delay induced by each model in comparison to the fluid model: starting
from a schedule optimal under the fluid model (BMP-FC-SS), we try to build a schedule with
comparable performance under a more constrained scenario.

In the following, we consider a schedule S1, with stretch S, valid under the totally fluid model
(BMP-FC-SS). For the sake of simplicity, we consider that this schedule has been built from
a point in Polyhedron (K) as explained in section 5.4.2: the computation and communication
rates (pq(tk) (tj,tj+1) and pgfjlu(tj,tj+1)) are constant during each interval, and are defined by
the coordinates of the point in Polyhedron (K).

We assess the delay induced by each model. Given the stretch S, we can compute a deadline
d®) for each application Aj. By moving to more constrained models, we will not be able to
ensure that the finishing time MS") is smaller than d®). We call lateness for application Ay, the
quantity max{0, MS*k) — d®)}, that is the time between the due date of an application and its
real termination. Once we have computed the maximum lateness for each model, we show how
to obtain asymptotic optimality.

Without simultaneous start: the BMP-FC model

We consider here the BMP-FC model, which differs from the previous model only by the fact
that a task cannot start before it has been totally received by a processor.

Theorem C.1. From schedule S1, we can build a schedule Sy obeying the BMP-FC model where

" w®)
the maximum lateness for each application is 1213%);1 @

Proof. From the schedule Sy, valid under the fluid model (BMP-FC-SS), we aim at building
Sy with a similar stretch where the execution of a task cannot start before the end of the
corresponding communication. We first build a schedule as follows, for each processor P, (1 <
u < p):



166 APPENDIX C. FROM THEORETICAL THROUGHPUT TO REALISTIC SCHEDULE

1. Communications to P, are the same as in S7;

2. By comparison to S, the computations on P, are shifted for each application Ag: the
computation of the first task of Ay is not really performed (P, is kept idle instead of
computing this task), and we replace the computation of task ¢ by the computation of
task ¢ — 1.

Because of the shift of the computations, the last task of application Aj is not executed in this
schedule at time d®). We complete the construction of Sy by adding some delay after deadline

d®) to process this last task of application Ay, at full speed, which takes a time % All the
e
following computations on processor P, (in the next time-intervals) are shifted by this delay.

The lateness for any application Ay on processor P, is at most the sum of the delays for

all applications on this processor, > ;_, %, and the total lateness of Ay is bounded by the
Su

maximum lateness between all processors:

. 2w
lateness® < max
1<u<p &~ ()
= u
An example of such a schedule S is shown in Figure C.2 (on a single processor). |

Figure C.2: Example of the construction of a schedule Sy for BMP-FC model from a schedule
S1 for BMP-FC-SS model. We plot only the computing rate. Each box corresponds to the
execution of one task.

o

(0) 4O

(a) Schedule S; (BMP-FC-SS model) (b) Schedule Sz (BMP-FC model)

Atomic execution of tasks: the BMP-AC model

We now move to the BMP-AC model, where a given processor cannot compute several tasks in
parallel, and the execution of a task cannot be preempted: a started task must be completed
before any other task can be processed.

Theorem C.2. From schedule S1, we can build a schedule S3 obeying the BMP-AC model where
the mazimum lateness for each application is



167

Proof. Starting from a schedule S; valid under the fluid model (BMP-FC-SS), we want to
build S3, valid in BMP-AC. We take here advantage of the properties of one-dimensional load-
balancing schedules, and especially of ng. Schedule S5 is built as follows:

1. Communications are kept unchanged;

2. We consider the computations taking place in S; on processor P, during time-interval
[tj,tj+1]. A rational number of tasks of each application may be involved in the fluid
schedule. We first compute the integer number of tasks of application Ay to be computed
in Ss:

ik = [P0 (tr 1) X (1 — )]

The first n, j tasks of Ay scheduled in time-interval [t;, ;1] on P, are organized using
the transformation to build 51_])2 in the one-dimensional load-balancing section.

3. Then, the computations are shifted as for Sy: for each application A, the computation of
the first task of Ay is not really performed (the processor is kept idle instead of computing
this task), and we replace the computation of task ¢ by the computation of task ¢ — 1.

Lemma C.2 proves that, during time-interval [t;,¢;41], on processor P,, a computation does not
start earlier in S3 than in S7. As Sp obeys the totally fluid model (BMP-FC-SS), a computation
of S1 does not start earlier than the corresponding communication, so a computation of task
i of application Ay in S7 does not start earlier than the finish time of the communication for
task 4 — 1 of Ag. Together with the shifting of the computations, this proves that in S3, the
computation of a task does not start earlier than the end of the corresponding communication,
on each processor.

Because of the rounding down to the closest integer, on each processor P,, at each time-
interval, S3 computes at most one task less than S; of application Aj. Moreover, one more task
computation of application Ay is not performed in S5 due to the computation shift. On the
whole, as there are at most 2n — 1 time-intervals, at most 2n tasks of A remain to be computed
on P, at time d®). The delay for application Ay is:

n (k)
w
lateness™®) < max 2n X Z X —

1<u<p pt Sg)

This is obviously not the most efficient way to construct a schedule for the BMP-AC model:
in particular, each processor is idle during each interval (because of the rounding down). Tt
would certainly be more efficient to sometimes start a task even if it cannot be terminated
before the end of the interval. This is why for the experiments of section 5.4.4, we implemented
on each worker a greedy schedule with Earliest Deadline First Policy instead of this complex
construction. However, we can easily prove that this construction has an asymptotic optimal
stretch, unlike other greedy strategies.

Asymptotic optimality

In this section, we show that the previous schedules are close to the optimal, when applications
are composed of a large number of tasks. To establish such an asymptotic optimality, we have
to prove that the gap computed above gets smaller when the number of tasks gets larger. At



168 APPENDIX C. FROM THEORETICAL THROUGHPUT TO REALISTIC SCHEDULE

first sight, we would have to study the limit of the application stretch when I1%) is large for each
application. However, if we simply increase the number of tasks in each application without
changing the release dates and the tasks characteristics, then the problem will look totally
different: any schedule will run for a very long time, and the time separating the release dates
will be negligible in front of the whole duration of the schedule. This behavior is not meaningful
for our study.

To study the asymptotic behavior of the system, we rather change the granularity of the
tasks: we show that when applications are composed of a large number of small-size tasks,
then the maximal stretch is close to the optimal one obtained with the fluid model. To take
into account the application characteristics, we introduce the granularity g, and we redefine the
application characteristics with this new variable:

= — w®) = g x w*)  and 55“) =g x oW,

When g = 1, we get back to the previous case. When g < 1, there are more tasks but they
have smaller communication and computation size. For any g, the total communication and
computation amount per application is kept the same, thus it is meaningful to consider the
original release dates.

Our goal is to study the case ¢ — 0. Note that under the totally fluid model (BMP-FC-SS),
the granularity has no impact on the performance (or the stretch). Indeed, the fluid model can
be seen as the extreme case where g = 0. The optimal stretch under the BMP-FC-5S S, does
not depend on g.

Theorem C.3. When the granularity is small, the schedule constructed above for the BMP-FC
(respectively BMP-AC) model is asymptotically optimal for the maximum stretch, that is

lim S = Sopt
g—0

where S is the stretch of the BMP-FC (resp. BMP-AC) schedule, and Sopy the stretch of the
optimal fluid schedule.

Proof. The lateness of the applications computed for the BMP-FC model, and for the BMP-AC
model, becomes smaller when the granularity increase: for the BMP-FC model, we have

nw®
lateness®) < max A —
1<u<p S(k) g—0
k=1 °u

Similarly, for the BMP-AC model,

n_ (k)
lateness®) < max 2n X E wik —F 0.
1<u<p — S( ) g—0

u

Thus, when g gets close to 0, the stretch obtained by these schedules is close to Sepg. |

One-port model

In this section, we explain how to modify the previous study to cope with the one-port model.
We cannot simply extend the result obtained for the fluid model to the one-port model (as we



169

have done for the other models) since the parameters for modeling communications are not the
same. Actually, the one-port model limits the time spent by a processor (here the master) to
send data whereas the multiport model limits its bandwidth capacity. Thus, we have to modify
the corresponding constraints. Constraint (5.10) of Section 5.4.2 is replaced by the following
one.

P (k)
V1<j<on-1, ZZp%’ZLu(tﬁtm)ébu <1 (5.10-)
u=1k=1
Note that the only difference with Constraint (5.10) is that, now, we bound the time needed
by the master to send all data instead of the volume of the data itself. The set of constraints
corresponding to the scheduling problem under the one-port model, for a maximum stretch S,
are gathered by the definition of Polyhedron (K7):

pg\’f[)_)u(tj,tjﬂ),pgﬁ)(tj,tjﬂ), Vk,u,jsuch that 1 <k <n,1<u<p1<j<2n-1 (K1)
under the constraints (5.3), (5.7), (5.5), (5.6), (5.4), (5.8), (5.9), (5.10-b), and (5.11) !

As in Section 5.4.2, the existence of a point in the polyhedron is linked to the existence of
a schedule with stretch S. However, we have no fluid model which could perfectly follow the
behavior of the linear constraints. Thus we only target asymptotic optimality.

Theorem C.4.

(a) If there exists a schedule valid under the one-port model with stretch Si, then Polyhe-
dron (K1) is not empty for Sy.

(b) Conversely, if Polyhedron (K1) is not empty for the stretch objective S, then there exists
a schedule valid for the problem under the one-port model with parameters Hék), (5§k), and

wék), as defined previously, whose stretch S s such that

lim § = Ss.
g—0

Proof. (a) To prove the first part of the theorem, we prove that for any schedule with stretch
S1, we can construct a point in Polyhedron (K7). Given such a schedule, we denote by

A%’;Lu(tj, tj+1) the total number of tasks of application Ay sent by the master to processor
P, during interval [t;,t;41]. Note that this may be a rational number if there are ongoing

transfers at times ¢; and/or ¢j41. Similarly, we denote by AP (tj,tj+1) the total (rational)
number of tasks of Ay, processed by P, during interval [t;,¢;41]. Then we compute:

k
AP (5, t501)
b1 —

A(k) (t ts )
k s\l bj+1
P (g ) = M

‘ . and  pP(t;,tj11) =
ti+1 —

As in the fluid case, we can also compute the state of the buffers based on these quantities:

ti+1<t;

We can easily check that all constraints (5.3),(5.4), (5.5), (5.6), (5.7), (5.8), (5.9), and (5.10-b)

are satisfied. Variables B (t5), pg\]}Lu(tj,tj+1), and pq(f) (tj,tj+1) define a point in Poly-

hedron (K7).



170 APPENDIX C. FROM THEORETICAL THROUGHPUT TO REALISTIC SCHEDULE

(b) From a point in Polyhedron (K), we build a schedule which is asymptotically optimal,
as defined in the previous section. During each interval [¢;,¢;11], for each worker P,, we
proceed as follows.

1. We first consider a fluid-model schedule Sy following exactly the rates defined by the

point in the polyhedron: the tasks of application Ay are sent with rate pxc[)_,u(tj, tit1)

and processed at rate pi(f) (tj,tj+1).

2. We transform both the communication schedule and the computation schedule using
one-dimensional load-balancing algorithms. We first compute the integer number of
tasks that can be sent in the one-port schedule:

k
R = |l (b ti) X (tr00 = 1)

The number of tasks that can be computed on P, in this time-interval is bounded
both by the number of tasks processed in the fluid-model schedule, and by the number
of tasks received during this time-interval plus the number of remaining tasks:

j—1

comp __ __ - k L. . ) comm comm comp

Mk = mm{ {Pg Mty tj1) % (i _t])J C Y (nuzk - ”mk) }
i=1

The first nffﬁfn tasks sent in schedule Sy are organized with the one-dimensional

load-balancing algorithm into Sip, while the last n(;o;n,f tasks executed in schedule

Sy are organized with the inverse one-dimensional load-balancing algorithm 51_])2'

3. Then, the computations are shifted: for each application A, the computation of the
first task of Ay is not really performed (the processor is kept idle instead of computing
this task), and we replace the computation of task i by the computation of task ¢ — 1.

The proof of the validity of the obtained schedule is very similar to the proof of Theorem C.2
for the BMP-AC model: we use the fact that a task does not start earlier in ng than in
Sy, and no later in Sip than in Sy to prove that the data needed for the execution of a
given task are received in time.

At time d®), some tasks of application Ay, are still not processed, and some may even not be
received yet. Let us denote by Ly the number of time-intervals between #*) and d®)| that
is time-intervals where tasks of application Ay may be processed (L < 2n — 1). Because
of the rounding of the numbers of tasks sent, at most one task is not transmitted in each
interval, for each application. At time d®), we thus have at most Ly tasks of application
Ay to be sent to each processor P,. We have to serialize the sending operations, which

takes a time at most
n

u=1 bu
Then, the number of tasks remaining to be processed on processor P, is upper bounded
by 2Ly + 1: at most Ly are received late because of the rounding of the number of tasks
received, at most Ly tasks are received but not computed because we also round the number
of tasks processed, and one more task may also remain because of the computation shift.
The computation (at full speed) of all these tasks takes at most a time (2Lj + 1)% on
Sa



171

processor P,. Overall, the delay induced on all processors for finishing application Ay can
be bounded by:

"Ly x 6% w®)
Zl B + 12132{})(2[4C +1) x 732’“) .

As Ly < 2n — 1, the lateness of any application Ay is thus:

" - (k) (k)
lateness®) < Z (Z (Qni)xé + max (4n — 1) x w) .
k

u 1<u<p sF)

u=1 u

As in the proof of Theorem C.3, when the granularity becomes small, the stretch of the
obtained schedule becomes as close to Sy as we want. |



172 APPENDIX C. FROM THEORETICAL THROUGHPUT TO REALISTIC SCHEDULE




Appendix D

Bibliography

1]

3]

4]

[10]

[11]

M. Adler, Y. Gong, and A. L. Rosenberg. Optimal sharing of bags of tasks in heterogeneous
clusters. In Proceedings of the 15th annual ACM symposium on Parallelism in algorithms
and architectures (SPAA’03), pages 1-10. ACM Press, 2003.

Susanne Albers. On randomized online scheduling. In Proceedings of the 84th annual ACM
symposium on Theory of computing (STOC’02), pages 134 — 143. ACM Press, 2002.

Susanne Albers. Online algorithms: a survey. Mathematical Programming, 97(1-2):3-26,
2003.

Susanne Albers and Hiroshi Fujiwara. Energy-efficient algorithms for flow time minimiza-
tion. ACM Trans. Algorithms, 3(4):49, 2007.

Hakan Aydin, Rami Melhem, Daniel Mosse, and Pedro Mejia-Alvarez. Determining op-
timal processor speeds for periodic real-time tasks with different power characteristics.
ecrts, 00:0225, 2001.

K.R. Baker. Introduction to Sequencing and Scheduling. Wiley, New York, 1974.

M. Banikazemi, V. Moorthy, and D. K. Panda. Efficient collective communication on het-
erogeneous networks of workstations. In Proceedings of the 27th International Conference
on Parallel Processing (ICPP’98). IEEE Computer Society Press, 1998.

M. Banikazemi, J. Sampathkumar, S. Prabhu, D.K. Panda, and P. Sadayappan. Commu-
nication modeling of heterogeneous networks of workstations for performance characteriza-
tion of collective operations. In HCW’1999, the 8th Heterogeneous Computing Workshop,
pages 125-133. IEEE Computer Society Press, 1999.

C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert. Scheduling
strategies for master-slave tasking on heterogeneous processor platforms. IEEE Transac-
tions on Parallel and Distributed Systems, 15(4):319-330, 2004.

N. Bansal, T. Kimbrel, and K. Pruhs. Dynamic speed scaling to manage energy and
temperature. Foundations of Computer Science, 2004. Proceedings. 45th Annual IEEE
Symposium on, pages 520-529, 17-19 Oct. 2004.

Amotz Bar-Noy, Sudipto Guha, Joseph (Seffi) Naor, and Baruch Schieber. Message mul-
ticasting in heterogeneous networks. SIAM Journal on Computing, 30(2):347-358, 2000.

173



174

APPENDIX D. BIBLIOGRAPHY

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

O. Beaumont, V. Boudet, A. Petitet, F. Rastello, and Y. Robert. A proposal for a het-
erogeneous cluster ScaLAPACK (dense linear solvers). IEEE Transactions on Computers,
50(10):1052-1070, 2001.

O. Beaumont, V. Boudet, F. Rastello, and Y. Robert. Matrix multiplication on hetero-
geneous platforms. IEEE Transactions on Parallel and Distributed Systems, 12(10):1033—
1051, 2001.

O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert. Bandwidth-centric
allocation of independent tasks on heterogeneous platforms. In International Parallel and
Distributed Processing Symposium (IPDPS). ITEEE Computer Society Press, 2002.

Olivier Beaumont, Vincent Boudet, Fabrice Rastello, and Yves Robert. Partitioning a
square into rectangles: NP-completeness and approximation algorithms. Algorithmica,
34:217-239, 2002.

Olivier Beaumont, Vincent Boudet, and Yves Robert. A realistic model and an efficient
heuristic for scheduling with heterogeneous processors. In HCW’2002, the 11th Heteroge-
neous Computing Workshop. IEEE Computer Society Press, 2002.

Olivier Beaumont, Larry Carter, Jeanne Ferrante, Arnaud Legrand, Loris Marchal, and
Yves Robert. Centralized versus distributed schedulers for multiple bag-of-task applica-
tions. In International Parallel and Distributed Processing Symposium (IPDPS). IEEE
Computer Society Press, 2006.

Olivier Beaumont, Larry Carter, Jeanne Ferrante, Arnaud Legrand, Loris Marchal, and
Yves Robert. Centralized versus distributed schedulers for multiple bag-of-task applica-
tions. IEFE Transactions on Parallel and Distributed Systems, 19, 2008, to appear.

Olivier Beaumont, Henri Casanova, Arnaud Legrand, Yves Robert, and Yang Yang.
Scheduling divisible loads on star and tree networks: Results and open problems. [EEFE
Transactions on Parallel and Distributed Systems, 16(3):207-218, 2005.

Olivier Beaumont, Arnaud Legrand, Loris Marchal, and Yves Robert. Independent and
divisible tasks scheduling on heterogeneous star-schaped platforms with limited mem-
ory. In 13th Euromicro Workshop on Parallel, Distributed and Network-based Processing
(PDP’05), pages 179-186. IEEE Computer Society Press, 2005.

Olivier Beaumont, Arnaud Legrand, Loris Marchal, and Yves Robert. Steady-state
scheduling on heterogeneous clusters. International Journal of Foundations of Computer
Science, 16(2):163-194, 2005.

Olivier Beaumont, Arnaud Legrand, and Yves Robert. A polynomial-time algorithm for
allocating independent tasks on heterogeneous fork-graphs. In ISCIS XVII, 17th Inter-
national Symposium On Computer and Information Sciences, pages 115-119. CRC Press,
2002.

Olivier Beaumont, Arnaud Legrand, and Yves Robert. The master-slave paradigm
with heterogeneous processors. IEEE Transactions on Parallel and Distributed Systems,
14(9):897-908, 2003.



175

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Michael A. Bender, Soumen Chakrabarti, and S. Muthukrishnan. Flow and stretch met-
rics for scheduling continuous job streams. In Proceedings of the 9th annual ACM-SIAM
symposium on Discrete Algorithms (SODA’98), pages 270-279. Society for Industrial and
Applied Mathematics, 1998.

Michael A. Bender, S. Muthukrishnan, and Rajmohan Rajaraman. Approximation algo-
rithms for average stretch scheduling. Journal of Scheduling, 7(3):195-222, 2004.

F. Berman. High-performance schedulers. In I. Foster and C. Kesselman, editors, The
Grid: Blueprint for a New Computing Infrastructure, pages 279-309. Morgan-Kaufmann,
1999.

F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira, J. Hayes,
G. Obertelli, J. Schopf, G. Shao, S. Smallen, N. Spring, A. Su, and D. Zagorodnov. Adap-
tive computing on the grid using AppLeS. IEEE Transactions on Parallel and Distributed
Systems, 14(4):369-382, 2003.

D. Bertsimas and D. Gamarnik. Asymptotically optimal algorithms for job shop scheduling
and packet routing. Journal of Algorithms, 33(2):296-318, 1999.

V. Bharadwaj, D. Ghose, and V. Mani. Multi-installment load distribution in tree networks
with delays. IEEE Transactions on Aerospace Electronic Systems, 31:555-567, April 1995.

P.B. Bhat, C.S. Raghavendra, and V.K. Prasanna. Efficient collective communication in
distributed heterogeneous systems. In International Conference on Distributed Computing
Systems (ICDCS), pages 15-24. IEEE Computer Society Press, 1999.

P.B. Bhat, C.S. Raghavendra, and V.K. Prasanna. Efficient collective communication
in distributed heterogeneous systems. Journal of Parallel and Distributed Computing,
63:251-263, 2003.

L. Blackford, J. Choi, A. Cleary, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,
G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK: A portable
linear algebra library for distributed-memory computers - design issues and performance.
In Proceedings of the ACM/IEEFE Symposium on Supercomputing. IEEE Computer Society
Press, 1996.

L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, 1. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaL A-
PACK Users’ Guide. SIAM, 1997.

J. Blazewicz, J.K. Lenstra, and A.-H. Kan. Scheduling subject to resource constraints.
Discrete Applied Mathematics, 5:11-23, 1983.

BOINC: Berkeley Open Infrastructure for Network Computing. http://boinc.berkeley.
edu.

P. Boulet, J. Dongarra, Y. Robert, and F. Vivien. Static tiling for heterogeneous computing
platforms. Parallel Computing, 25:547-568, 1999.

Peter Brucker. Scheduling Algorithms. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2004.


http://boinc.berkeley.edu
http://boinc.berkeley.edu

176

APPENDIX D. BIBLIOGRAPHY

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

David P. Bunde. Power-aware scheduling for makespan and flow. In SPAA ’06: Proceedings
of the eighteenth annual ACM symposium on Parallelism in algorithms and architectures,
pages 190-196, New York, NY, USA, 2006. ACM.

David P. Bunde. Power-aware scheduling for makespan and flow. In Proceedings of the
18th annual ACM symposium on Parallelism in algorithms and architectures (SPAA’06),
pages 190-196, New York, NY, USA, 2006.

T. Burd. FEnergy-Efficient Processor System Design. PhD thesis, 2001. Available
at the url http://bwrc.eecs.berkeley.edu/Publications/2001/THESES/energ_eff_
process-sys_des/BurdPhD. pdf.

L. E. Cannon. A cellular computer to implement the Kalman filter algorithm. PhD thesis,
Montana State University, 1969.

H. Casanova and F. Berman. Grid’2002. In F. Berman, G. Fox, and T. Hey, editors,
Parameter sweeps on the grid with APST. Wiley, 2002.

H. Casanova and F. Berman. Grid Computing: Making The Global Infrastructure a Reality,
chapter Parameter Sweeps on the Grid with APST. John Wiley, 2003. Hey, A. and Berman,
F. and Fox, G., editors.

Henri Casanova. Network modeling issues for grid application scheduling. International
Journal of Foundations of Computer Science, 6(2):145-162, 2005.

A.J. Chakravarti, G. Baumgartner, and M. Lauria. Self-organizing scheduling on the or-
ganic grid. International Journal of High Performance Computing Applications, 20(1):115—
130, 2006.

Ho-Leung Chan, Wun-Tat Chan, Tak-Wah Lam, Lap-Kei Lee, Kin-Sum Mak, and Pru-
dence W. H. Wong. Energy efficient online deadline scheduling. In SODA “07: Proceedings

of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages 795-804,
Philadelphia, PA, USA, 2007. Society for Industrial and Applied Mathematics.

Chandra Chekuri and Sanjeev Khanna. Approximation schemes for preemptive weighted
flow time. In Proceedings of the 34th annual ACM symposium on Theory of computing
(STOC’02), pages 297-305. ACM Press, 2002.

Z. Chen, J. Dongarra, P. Luszczek, and K. Roche. Self adapting software for numerical
linear algebra and lapack for clusters. Parallel Computing, 29(11-12):1723-1743, 2003.

Yi-Jen Chiang, Ricardo Farias, Claudio T. Silva, and Bin Wei. A unified infrastructure for
parallel out-of-core isosurface extraction and volume rendering of unstructured grids. In
PVG ’01: Proceedings of the IEEE 2001 symposium on parallel and large-data visualization
and graphics, pages 59-66, Piscataway, NJ, USA, 2001. IEEE Press.

Gyu Sang Choi, Jin-Ha Kim, Deniz Ersoz, Andy B. Yoo, and Chita R. Das. A comprehen-
sive performance and energy consumption analysis of scheduling alternatives in clusters.
Journal of Supercomputing, 40(2):159-184, 2007.

P. Chrétienne, E. G. Coffman Jr., J. K. Lenstra, and Z. Liu, editors. Scheduling Theory
and its Applications. John Wiley and Sons, 1995.


http://bwrc.eecs.berkeley.edu/Publications/2001/THESES/energ_eff_process-sys_des/BurdPhD.pdf
http://bwrc.eecs.berkeley.edu/Publications/2001/THESES/energ_eff_process-sys_des/BurdPhD.pdf

177

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]
[65]

M. Cierniak, M.J. Zaki, and W. Li. Compile-time scheduling algorithms for heterogeneous
network of workstations. The Computer Journal, 40(6):356-372, 1997.

M. Cierniak, M.J. Zaki, and W. Li. Customized dynamic load balancing for a network of
workstations. Journal of Parallel and Distributed Computing, 43:156-162, 1997.

Walfredo Cirne, Daniel Paranhos, Lauro Costa, Elizeu Santos-Neto, Francisco Brasileiro,
Jacques Sauvé, Fabricio Alves Barbosa da Silva, Carla Osthoff Barros, and Cirano Silveira.
Running Bag-of-Tasks Applications on Computational Grids: The MyGrid Approach.
In Proceedings of the 32th International Conference on Parallel Processing (ICPP’03),
October 2003.

R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empirical optimiza-
tions of software and the ATLAS project. Parallel Computing, 27(1-2):3-35, January
2001.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT
Press, 1990.

James Cowie, Bruce Dodson, R.-Marije Elkenbracht-Huizing, Arjen K. Lenstra, Peter L.
Montgomery, and Joerg Zayer. A world wide number field sieve factoring record: on to
512 bits. In Kwangjo Kim and Tsutomu Matsumoto, editors, Advances in Cryptology -
Asiacrypt 96, volume 1163 of LNCS, pages 382-394. Springer Verlag, 1996.

P. E. Crandall and M. J. Quinn. Block data decomposition for data-parallel programming
on a heterogeneous workstation network. In IEEE International Symposium on High Per-
formance Distributed Computing (HPDC), pages 42-49. IEEE Computer Society Press,
1993.

Javier Cuenca, Luis Pedro Garcia, Domingo Gimenez, and Jack Dongarra. Processes
distribution of homogeneous parallel linear algebra routines on heterogeneous clusters. In
International Conference on Heterogeneous Computing. IEEE, Computer Society Press,
2005.

A. Darte, Y. Robert, and F.Vivien. Scheduling and Automatic Parallelization. Birkhaiiser,
2000.

Jack Dongarra, Swen Hammarling, and David Walker. Key concepts for parallel out-of-core
LU factorization. Parallel Computing, 23(1-2):49-70, 1997.

Pierre-Frangois Dutot. Complexity of master-slave tasking on heterogeneous trees. Fu-
ropean Journal of Operational Research, 164(3):690-695, August 2005. Special issue on
Recent Advances in Scheduling in Computer and manufacturing Systems (J. Blazewicz,
K. Ecker, and D. Trystram editors).

H. El-Rewini, H. H. Ali, and T. G. Lewis. Task scheduling in multiprocessing systems.
Computer, 28(12):27-37, 1995.

Entropia. URL: http://www.entropia.com.

Dror G. Feitelson. Workload Characterization and Modeling Book. electronic draft, no
published yet.


http://www.entropia.com

178

APPENDIX D. BIBLIOGRAPHY

[66]

[67]

[68]

[69]

[70]

[71]
[72]

[73]

[74]

[75]

[76]
[77]

78]

[79]

[80]

Dror G. Feitelson and Larry Rudolph. Metrics and benchmarking for parallel job schedul-
ing. In Job Scheduling Strategies for Parallel Processing, volume 1459 of Lecture Notes in
Computer Science, pages 1-24, 1998.

James Frey, Todd Tannenbaum, Ian Foster, Miron Livny, , and Steven Tuecke. Condor-G:
A Computation Management Agent for Multi-Institutional Grids. In IEFE International
Symposium on High Performance Distributed Computing (HPDC). IEEE Computer Soci-
ety Press, August 2001.

M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, 1979.

Rong Ge, Xizhou Feng, and Kirk W. Cameron. Performance-constrained distributed dvs
scheduling for scientific applications on power-aware clusters. Journal of Supercomputing,
0:34, 2005.

Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and Vaidy
Sunderam. PVM: Parallel virtual machine: a users’ guide and tutorial for networked
parallel computing. MIT Press, Cambridge, MA, USA, 1994.

GLPK: GNU Linear Programming Kit. http://www.gnu.org/software/glpk/.

J. P Goux, S. Kulkarni, J. Linderoth, and M. Yoder. An enabling framework for master-
worker applications on the computational grid. In IEEE International Symposium on High
Performance Distributed Computing (HPDC). IEEE Computer Society Press, 2000.

W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implemen-
tation of the MPI message passing interface standard. Parallel Computing, 22(6):789-828,
September 1996. see also http://www-unix.mcs.anl.gov/mpi/mpich/.

William Gropp. Mpich2: A new start for mpi implementations. In PVM/MPI, page 7,
2002.

E. Heymann, M. A. Senar, E. Luque, and M. Livny. Adaptive scheduling for master-
worker applications on the computational grid. In R. Buyya and M. Baker, editors, Grid
Computing - GRID 2000, pages 214-227. Springer-Verlag LNCS 1971, 2000.

HMMER. URL: http://hmmer.wustl.edu/.

L. Hollermann, T. S. Hsu, D. R. Lopez, and K. Vertanen. Scheduling problems in a
practical allocation model. Journal of Combinatorial Optimization, 1(2):129-149, 1997.

B. Hong and V.K. Prasanna. Bandwidth-aware resource allocation for heterogeneous
computing systems to maximize throughput. In Proceedings of the 32th International
Conference on Parallel Processing (ICPP’03). IEEE Computer Society Press, 2003.

B. Hong and V.K. Prasanna. Distributed adaptive task allocation in heterogeneous com-
puting environments to maximize throughput. In International Parallel and Distributed
Processing Symposium (IPDPS). IEEE Computer Society Press, 2004.

J.-W. Hong and H.T. Kung. 1/O complexity: the red-blue pebble game. In Proceedings
of the annual ACM symposium on Theory of computing (STOC’81), pages 326-333. ACM
Press, 1981.


http://www.gnu.org/software/glpk/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://hmmer.wustl.edu/

179

[81]

[82]

[83]

[84]

[85]

[36]

[87]

[38]

[39]

[90]

[91]

[92]

(93]

[94]

T. S. Hsu, J. C. Lee, D. R. Lopez, and W. A. Royce. Task allocation on a network of
processors. IEEFE Transactions on Computers, 49(12):1339-1353, 2000.

Dror Ironya, Sivan Toledo, and Alexander Tiskin. Communication lower bounds for
distributed-memory matrix multiplication. Journal of Parallel and Distributed Computing,
64(9):1017-1026, 2004.

Tohru Ishihara and Hiroto Yasuura. Voltage scheduling problem for dynamically variable
voltage processors. In ISLPED ’98: Proceedings of the 1998 international symposium on
Low power electronics and design, pages 197-202, New York, NY, USA, 1998. ACM.

San Jeddi and Wahid Nasri. A poly-algorithm for efficient parallel matrix multiplication
on metacomputing platforms. In CLUSTER, pages 1-9, 2005.

M. Kaddoura, S. Ranka, and A. Wang. Array decomposition for nonuniform computational
environments. Jowrnal of Parallel and Distributed Computing, 36:91-105, 1996.

A. Kalinov and A. Lastovetsky. Heterogeneous distribution of computations while solving
linear algebra problems on networks of heterogeneous computers. In P. Sloot, M. Bubak,
A. Hoekstra, and B. Hertzberger, editors, HPCN Furope 1999, LNCS 1593, pages 191-200.
Springer Verlag, 1999.

A. Kalinov and A. Lastovetsky. Heterogeneous distribution of computations solving lin-
ear algebra problems on networks of heterogeneous computers. Journal of Parallel and
Distributed Computing, 61(4):520-535, 2001.

N. T. Karonis, B. Toonen, and 1. Foster. Mpich-g2: A grid-enabled implementation of the
message passing interface. Journal of Parallel and Distributed Computing, 63(5):551-563,
2003.

S. Khuller and Y.A. Kim. On broadcasting in heterogenous networks. In Proceedings of
the 15th annual ACM symposium on Discrete Algorithms (SODA’04), pages 1011-1020.
Society for Industrial and Applied Mathematics, 2004.

B. Kreaseck. Dynamic autonomous scheduling on Heterogeneous Systems. PhD thesis,
University of California, San Diego, 2003.

Barbara Kreaseck, Larry Carter, Henri Casanova, and Jeanne Ferrante. On the interfer-
ence of communication on computation in java. In International Parallel and Distributed
Processing Symposium (IPDPS). IEEE Computer Society Press, 2004.

Barbara Kreaseck, Larry Carter, Henri Casanova, Jeanne Ferrante, and Sagnik Nandy.
Interference-aware scheduling. International Journal of High Performance Computing Ap-
plications, 20(1):45-59, 2006.

A. Lastovetsky and R. Reddy. Data partitioning with a realistic performance model of
networks of heterogeneous computers. In International Parallel and Distributed Processing
Symposium (IPDPS). IEEE Computer Society Press, 2004.

A. Legrand, L.Marchal, and H. Casanova. Scheduling Distributed Applications: The SiMm-
GRID Simulation Framework. In Proceedings of the Third IEEE International Symposium
on Cluster Computing and the Grid (CCGrid’03), pages 138145, May 2003.



180

APPENDIX D. BIBLIOGRAPHY

[95]

[96]

[97]

98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

Arnaud Legrand, Héléne Renard, Yves Robert, and Frédéric Vivien. Mapping and load-
balancing iterative computations on heterogeneous clusters with shared links. IJEFE Trans.
Parallel Distributed Systems, 15(6):546-558, 2004.

Arnaud Legrand, Alan Su, and Frédéric Vivien. Minimizing the stretch when schedul-
ing flows of biological requests. In Proceedings of the 18th annual ACM symposium on
Parallelism in algorithms and architectures (SPAA’06), pages 103—112, Cambridge, Mas-
sachusetts, USA, 2006. ACM Press.

Arnaud Legrand, Alan Su, and Frédéric Vivien. Minimizing the stretch when scheduling
flows of divisible requests. Research report rr-6002, INRIA, 2006. http://hal.inria.fr/
inria-00108524. Also available as LIP research report RR2006-19.

J.K. Lenstra, R. Graham, E. Lawler, and A.-H. Kan. Optimization and approximation
in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics,
5:287-326, 1979.

Joseph Y-T. Leung and Hairong Zhao. Minimizing mean flowtime and makespan on
master-slave systems. Journal of Parallel and Distributed Computing, 65(7):843-856, 2005.

Joseph Y-T. Leung and Hairong Zhao. Minimizing sum of completion times and makespan
in master-slave systems. Transactions on Computers, 55(8):985-999, August 2006.

Keqin Li and Victor Y. Pan. Parallel matrix multiplication on a linear array with a
reconfigurable pipelined bus system. IEEE Transactions on Computers, 50(5):519-525,
2001.

M. Litzkow, M. Livny, and M. W. Mutka. Condor - A hunter of idle workstations. In
Proceedings of the 8th International Conference of Distributed Computing Systems, pages
104-111. IEEE Computer Society Press, 1988.

P. Liu. Broadcast scheduling optimization for heterogeneous cluster systems. Journal of
Algorithms, 42(1):135-152, 2002.

M. Maheswaran, S. Ali, H.J. Siegel, D. Hensgen, and R.F. Freund. Dynamic matching
and scheduling of a class of independent tasks onto heterogeneous computing systems. In
HCW’1999, the 8th Heterogeneous Computing Workshop, pages 30-44. IEEE Computer
Society Press, 1999.

J.M. Moore. An n job, one machine sequencing algorithm for minimizing the number of
late jobs. Management Science, 15(1), September 1968.

S. Muthukrishnan, Rajmohan Rajaraman, Anthony Shaheen, and Johannes Gehrke. On-
line scheduling to minimize average stretch. In IEEE Symposium on Foundations of Com-
puter Science, pages 433-442, 1999.

W. Nasri and D. Trystram. A polyalgorithmic approach applied for fast matrix multiplica-
tion on clusters. Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th
International, pages 234—, April 2004.

The network simulator ns 2. URL: http://www.isi.edu/nsnam/ns.


http://hal.inria.fr/inria-00108524
http://hal.inria.fr/inria-00108524
http://www.isi.edu/nsnam/ns

181

[109]

|110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

M. G. Norman and P. Thanisch. Models of machines and computation for mapping in
multicomputers. ACM Computing Surveys, 25(3):103-117, 1993.

Takanori Okuma, Tohru Ishihara, and Hiroto Yasuura. Real-time task scheduling for a
variable voltage processor. In ISSS ’99: Proceedings of the 12th international symposium
on System synthesis, page 24, Washington, DC, USA, 1999. IEEE Computer Society.

J. M. Orduna, F. Silla, and J. Duato. A new task mapping technique for communication-
aware scheduling strategies. In T. M. Pinkston, editor, Workshop for Scheduling and
Resource Management for Cluster Computing (ICPP’01), pages 349-354. IEEE Computer
Society Press, 2001.

Jean-Francgois Pineau, Yves Robert, and Frédéric Vivien. The impact of heterogeneity
on master-slave on-line scheduling. In HCW’2006, the 15th Heterogeneous Computing
Workshop. IEEE Computer Society Press, 2006.

Jean-Francois Pineau, Yves Robert, and Frédéric Vivien. Off-line and on-line scheduling
on heterogeneous master-slave platforms. In PDP’2006, 14th Euromicro Workshop on Par-
allel, Distributed and Network-based Processing, Montbéliard-Sochaux, France, February
15-17 2006. IEEE Computer Society Press.

Jean-Francois Pineau, Yves Robert, Frédéric Vivien, and Jack Dongarra. Matrix prod-
uct on heterogeneous master-worker platforms. In 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP’08), 2008.

Mencoder Media Player. URL: http://www.mplayerhq.hu/.

C. D. Polychronopoulos. Compiler optimization for enhancing parallelism and their impact
on architecture design. IEEE Transactions on Computers, 37(8):991-1004, August 1988.

Prime. URL: http://www.mersenne.org.

Kirk Pruhs, Jif{ Sgall, and Eric Torng. On-line scheduling. In J. Leung, editor, Handbook of
Scheduling: Algorithms, Models, and Performance Analysis, pages 15.1-15.43. Chapman
& Hall/CRC Press, 2004.

Gang Quan and Xiaobo Hu. Energy efficient fixed-priority scheduling for real-time systems
on variable voltage processors. In Design Automation Conference, pages 828-833, 2001.

R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Commun. ACM, 21(2):120-126, 1978.

C. Roig, A. Ripoll, M. A. Senar, F. Guirado, and E. Luque. Improving static scheduling
using inter-task concurrency measures. In T. M. Pinkston, editor, Workshop for Schedul-
ing and Resource Management for Cluster Computing (ICPP’01), pages 375-381. IEEE
Computer Society Press, 2001.

Cosmin Rusu, Rami Melhem, and Daniel Mossé. Multi-version scheduling in rechargeable
energy-aware real-time systems. J. Embedded Comput., 1(2):271-283, 2005.

T. Saif and M. Parashar. Understanding the behavior and performance of non-blocking
communications in MPI. In Proceedings of Euro-Par 2004: Parallel Processing, LNCS
3149, pages 173-182, 2004.


http://www.mplayerhq.hu/
http://www.mersenne.org

182

APPENDIX D. BIBLIOGRAPHY

[124]
[125]

[126]
[127]

[128]

[129]

[130]

[131]

[132]
[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

Simone Santini. We are sorry to inform you ... Computer, 38(12):128, 126-127, 2005.

Andreas S. Schulz and Martin Skutella. The power of a-points in preemptive single machine
scheduling. Journal of Scheduling, 5(2):121-133, 2002. DOI:10.1002/jos.093.

SETI. URL: http://setiathome.ssl.berkeley.edu.

J. Sgall. On line scheduling-a survey. In On-Line Algorithms, Lecture Notes in Computer
Science 1442, pages 196-231. Springer-Verlag, Berlin, 1998.

G. Shao. Adaptive scheduling of master/worker applications on distributed computational
resources. PhD thesis, Dept. of Computer Science, University Of California at San Diego,
2001.

G. Shao, F. Berman, and R. Wolski. Master/slave computing on the grid. In Heterogeneous
Computing Workshop (HCW). IEEE Computer Society Press, 2000.

B. A. Shirazi, A. R. Hurson, and K. M. Kavi. Scheduling and load balancing in parallel
and distributed systems. IEEE Computer Society Press, Los Alamitos, CA, USA, 1995.

Barbara Simons. Multiprocessor scheduling of unit-time jobs with arbitrary release times
and deadlines. SIAM Journal on Computing, 12(2):294-299, 1983.

O. Sinnen. Task Scheduling for Parallel Systems. Wiley, May 2007.

Oliver Sinnen and Leonel Sousa. Experimental evaluation of task scheduling accuracy:
Implications for the scheduling mode. IEICE TRANSACTIONS on Information and Sys-
tems, E86-D(9):1620-1627, 2003. Special Issue on Parallel and Distributed Computing,
Applications and Technologies.

Oliver Sinnen and Leonel Sousa. Communication contention in task scheduling. IEEFE
Transactions on Parallel and Distributed Systems, 16(6):503-515, 2005.

Kevin Skadron, Mircea R. Stan, Karthik Sankaranarayanan, Wei Huang, Sivakumar
Velusamy, and David Tarjan. Temperature-aware microarchitecture: Modeling and im-
plementation. ACM Trans. Archit. Code Optim., 1(1):94-125, 2004.

David Skillicorn. Strategies for parallel data mining. IEEE Concurrency, 07(4):26-35,
1999.

Wayne E. Smith. Various optimizers for single-stage production. Naval Research Logistics
Quarterly, 3:59-66, 1956.

M. Tan, H. J. Siegel, J. K. Antonio, and Y. A. Li. Minimizing the aplication execution time
through scheduling of subtasks and communication traffic in a heterogeneous computing
system. IEEE Transactions on Parallel and Distributed Systems, 8(8):857-871, 1997.

Qinghui Tang, Sandeep. K. S. Gupta, Daniel Stanzione, and Phil Cayton. Thermal-aware
task scheduling to minimize energy usage of blade server based datacenters. dasc, 00:195—
202, 2006.

Sivan Toledo. A survey of out-of-core algorithms in numerical linear algebra. In Ezternal
Memory Algorithms and Visualization, pages 161-180. American Mathematical Society
Press, 1999.


DOI: 10.1002/jos.093
http://setiathome.ssl.berkeley.edu

183

[141]

[142]

[143]
[144]

[145]

[146]

[147]

|148]

[149]

Krijn van der Raadt, Yang Yang, and Henri Casanova. Practical divisible load scheduling
on grid platforms with apst-dv. In Proceedings of the 19th IEEFE International Parallel and
Distributed Processing Symposium (IPDPS’05), page 29.2, Washington, DC, USA, 2005.
IEEE Computer Society.

Girish Varatkar and Radu Marculescu. Communication-aware task scheduling and voltage
selection for total systems energy minimization. In ICCAD ’08: Proceedings of the 2003
IEEE/ACM international conference on Computer-aided design, page 510, Washington,
DC, USA, 2003. IEEE Computer Society.

A. Watt. 8D Computer Graphics. Addison-Wesley Longman Publishing Co., Boston, 1993.

J. B. Weissman. Scheduling multi-component applications in heterogeneous wide-area
networks. In Heterogeneous Computing Workshop (HCW). IEEE Computer Society Press,
2000.

R. Clint Whaley and Jack Dongarra. Automatically tuned linear algebra software. In
Proceedings of the ACM/IEEE Symposium on Supercomputing. IEEE Computer Society
Press, 1998.

Tao Yang and Apostolos Gerasoulis. DSC: Scheduling parallel tasks on an unbounded
number of processors. IEEE Transactions on Parallel and Distributed Systems, 5(9):951—
967, 1994.

Yumin Zhang, Xiaobo Sharon Hu, and Danny Z. Chen. Energy minimization of real-
time tasks on variable voltage processors with transition energy overhead. In ASPDAC:
Proceedings of the 2003 conference on Asia South Pacific design automation, pages 65—70,
New York, NY, USA, 2003. ACM.

Dakai Zhu, Rami Melhem, and Bruce R. Childers. Scheduling with dynamic voltage/speed
adjustment using slack reclamation in multiprocessor real-time systems. IEEFE Transac-
tions on Parallel and Distributed Systems, 14(7):686-700, 2003.

Ling Zhuo and Viktor K. Prasanna. Scalable and modular algorithms for floating-point
matrix multiplication on reconfigurable computing systems. I[EEE Transactions on Parallel
and Distributed Systems, 18(4):433-448, 2007.



184 APPENDIX D. BIBLIOGRAPHY




Appendix E

Publications

The publications are listed in reverse chronological order.

Articles in international refereed journals

[A1] Jack Dongarra, Jean-Francois Pineau, Yves Robert, Zhiao Shi, and Frédéric Vivien.

Revisiting matrix product on master-worker platforms. International Journal of Foun-
dations of Computer Science, 2008. To appear.

[A2] Jean-Francois Pineau, Yves Robert, and Frédéric Vivien. The impact of heterogeneity

on master-slave scheduling. Parallel Computing, 34(3):158-176, 2008.

Articles in international refereed conferences

[B1]

[B2]

[B3]

[B4]

[B5]

Jean-Francois Pineau, Yves Robert, and Frédéric Vivien. Off-line and on-line scheduling
on heterogeneous master-slave platforms. In PDP’2006, 14th Euromicro Workshop on
Parallel, Distributed and Network-based Processing. IEEE Computer Society Press, 2006.

Jean-Francois Pineau, Yves Robert, and Frédéric Vivien. The impact of heterogeneity
on master-slave on-line scheduling. In HCW’2006, the 15th Heterogeneous Computing
Workshop. IEEE Computer Society Press, 2006.

Jack Dongarra, Jean-Frangois Pineau, Yves Robert, Zhiao Shi, and Frédéric Vivien.
Revisiting matrix product on master-worker platforms. In 9th Workshop on Advances in
Parallel and Distributed Computational Models APDCM 2007. IEEE Computer Society
Press, 2007.

Jack Dongarra, Jean-Francois Pineau, Yves Robert, and Frédéric Vivien. Matrix product
on heterogeneous master-worker platforms. In 18th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, Salt Lake City, Utah, February 20-23
2008.

Anne Benoit, Loris Marchal, Jean-Francois Pineau, Yves Robert, and Frédéric Vivien.
Offline and online master-worker scheduling of concurrent bags-of-tasks on heterogeneous
platforms. In 10th Workshop on Advances in Parallel and Distributed Computational
Models APDCM 2008. IEEE Computer Society Press, 2008.

185



186

APPENDIX E. PUBLICATIONS

Research reports

[C1]

[C2]

[C4]

Jean-Francois Pineau, Yves Robert, and Frédéric Vivien. Off-line and on-line scheduling
on heterogeneous master-slave platforms. Technical report, LIP, July 2005.

Jean-Francois Pineau, Yves Robert, and Frédéric Vivien. The impact of heterogene-
ity on master-slave on-line scheduling. Research report LIP 2005-51, Laboratoire de
'informatique de parallélisme (LIP), Ecole normale supérieure de Lyon, France, October
2005. Also available as INRIA research report 5732.

Jean-Francois Pineau Jack Dongarra, Zhiao Shi Yves Robert, and Frédéric Vivien. Re-
visiting matrix product on master-worker platforms. Research report, Laboratoire de
l'informatique de parallélisme (LIP), Ecole normale supérieure de Lyon, France, Novem-
ber 2006. Also available as INRIA research report 6053.

Anne Benoit, Loris Marchal, Jean-Francois Pineau, Yves Robert, and Frédéric Vivien.
Offline and online scheduling of concurrent bags-of-tasks on heterogeneous platforms.
Research report, Laboratoire de l'informatique de parallélisme (LIP), Ecole normale
supérieure de Lyon, France, December 2007. Also available as INRIA research report
6401.



Appendix F

Notations

The notations used in this thesis are unfortunately not uniform from one chapter to another,
because they depend on our choice of model. The notations are also supposed to be coherent
with the refering litterature. Here is a brief overview of all the notations used.

Definition F.1 (|x] and [x]). For x in R, lets |x]| be the integer in Z verifying:
lz] <x<|z|+1,

and [x] be the integer in Z such as:
[z] — 1< < [z],

Here are the various platform and application models under study:

- BMP-FC-SS is the Bounded Multiport (Section 2.4.2) with Fluid Computation (Section 2.3.2)
and Synchronous Start model (Section 2.3.4);

- BMP-FC is the Bounded Multiport (Section 2.4.2) with Fluid Computation (Section 2.3.2)
model;

- BMP-AC is the Bounded Multiport (Section 2.4.2) with Atomic Computation (Section 2.3.3)
model;

- OP-AC is the One-Port (Section 2.4.2) with Atomic Computation (Section 2.3.3) model.

We describe our scheduling problems using the notation a | 8 | v:

e « denotes the platform. We use 1 when we are working on a single processor, P for plat-
forms with identical processors, Q for platforms with different-speed but uniform proces-
sors and R for unrelated processors. We use MS to indicate that we work on master-worker
platforms.

e (3 denotes all the platform and applications constraints. This is where we indicate if we
have a communication-homogeneous platform or a computation-homogeneous platform.
We can also precise whether or not we have tasks with release dates or deadlines. If this
field does not contain a constrain, for example the presence of release dates, then the
problem is supposed to be without release dates.

e ~ denotes the objective. Along this thesis, we deal with several objective functions:

— the makespan or total execution time maz Cj;

187



188 APPENDIX F. NOTATIONS

— the maz-flow or maximum response time maz (C; — 75);

the sum-flow > (C; — r;);

; i =T .
— the maximum stretch mcc}x A
i =T
— the average stretch ) 2127

We always considier the master-worker model. The master is denoted Fy and the workers
Py, ..., Py

Chapter 3

m is the number of processors of the platform;

Cy is the time needed by the master to send a task to P;

P 1s the time needed by P, to execute a task;

7; is the release time of task i;

C; denotes the end of the execution of task ¢ under the target schedule.

Chapter 4

We describe the platform using the following notations:

- p is the number of processors of the platform:;

- we are computing the product C = C + A x B. Matrix A is of size » X t, B is of size s X ¢
and C of size 7 X s. All three matrices are split into blocks of size q X q;

- W, is the computation speed of Py;

- €y is the communication speed of the the link between the master and Py;

- M, represent the number of blocks of matrices of size ¢ x ¢ that can hold into the memory
of P,.

During the proof of the lower bound on the communication volume, we use the following notation:
- « is the number of buffers used by elements of A;
- (3 is the number of buffers used by elements of B;
- = is the number of buffers used by elements of C.

Our homogeneous algorithm will use:
- p? blocks for elements of C, pu blocks for elements of B, and 1 block for elements of A,
pr 441 <mg
- B processors if the matrix is big enough, and the platform fast enough;
- £ otherwise.

Chapter 5

Here are the notations used to describe the applications:
- A®) represents the k" application;
- w® represents the computation need of A%);
- 8 is the communication volume of A%);
- TI(R) represents the number of independant tasks of A%):
- (k) is the release date of A®);



189

S is the actual stretch that we want to achieve;

- Sopt is the minimal max-stretch of all applications for our platform;

- d®) is the deadlines of A®*) that we have to achieve a stretch S;

t; represents either a release date or a deadline;

C(¥) represents the completion time of A®*);

- MS™®) is the flow of A,

- MS*(®) is the flow of A% if the application was alone on the platform.

We describe the platform using the following notations:
- p represents the number of processors of the platform
- b, represents the bandwidth available from the master to P;
- BW represents the total outgoing capacity of the master;
- sg“) represents the speed of worker P, to process a task of AK).

§5(k)
With such notations, the time needed to send a task of A% to P, would be 7 while the time

u
w®)
ﬁ.
We use several notation to express our problem with linear programming:

- ﬂ“) (tj,tj+1) denotes the computation throughput of worker P, during time-interval
[tj,tjt1] for application Ay, i.e., the average number of tasks of A; computed by P,
per time-units;

- pg\lfl)_,u(tj, tj+1) denotes the communication throughput from the master to the worker
P, during time-interval [t;,¢;11] for application Ay, i.e., the average number of tasks of
Ay sent to P, per time-units;

- B (t;) denotes the (fractional) number of tasks of application Ay stored in a buffer on
P, at time t;

- Agk) (tj,tj41) denotes the rational number of tasks of Ay processed by P, during interval
[t5, tj+1;

- Ag\’f[)_m(tj, tj+1) denotes the rational number of tasks of application Ay sent by the mas-
ter to processor P, during interval [t;,t;41].

needed to compute it on P, would be

During the part about energy consumption, we introduce some new notations:
- A is the unique application that is considered in this part;
- My, denotes the number of frequencies of Py;
- P, ; denotes that the processor P, is running at the ¢th mode;
- 84,i denotes the speed of processor P, at the ith mode;
- Pu, denotes the throughput of P, ;;
B, denotes the power consumption per time-unit of P,;

;W
- Ru, denotes the instantaneous power consumption of P, (‘Bu,z = pu,iﬁu,i)

u,i



190 APPENDIX F. NOTATIONS







Abstract:
The results summarized in this document deal with the scheduling of independent tasks

on large scale master-worker platforms, when realistic communication models are uti-
lized. The contributions of this work are divided into three main parts: 1) Parallel
algorithms: we underline the difficulty of scheduling identical independent tasks on
heterogeneous master-worker platforms using the one-port communication model. We
look at several sources of heterogeneity as well as several objective functions; 2) Matrix
product: we compute the total communication volume that is needed for matrix mul-
tiplication in the presence of memory constraints and when data is centralized, and we
develop a memory layout whose performance is close to the theoretical lower bound on
the communication volume. We extend this algorithm for heterogeneous platforms; 3)
Scheduling: lots of applications are constituted of a very large number of independent
identical tasks. We focus on steady-state, and prove how to minimize the slowdown of
one application when several are deployed, and how to minimize power consumption
when only one application is present.
Keywords:

Scheduling, independent tasks, communication models, master-worker platform.

Résumé :

Les travaux présentés dans cette thése portent sur diverses techniques d’ordonnance-
ment de tiches indépendantes pour des plates-formes de type maitre-esclaves dis-
tribuées & grande échelle, lorsque les temps de communications des taches sont pris
en compte par des modéles réalistes. Les contributions de cette thése se situent & trois
niveaux : 1) Algorithmique Paralléle : nous avons montreé la complexité d’ordonnancer
des taches indépendantes sur une plate-forme hétérogéne en modélisant les commu-
nications avec un modéle un-port, en regardant plusieurs sources d’hétérogénéité et
plusieurs fonctions objectives; 2) Produit de matrices : nous avons calculé la borne
théorique du volume de communication minimal nécessaire pour effectuer un produit
de matrices dont les données sont centralisées, et otl la mémoire des esclaves est limitée,
et nous avons défini un algorithme efficace de partage de la mémoire, impliquant un
volume de communication proche de la borne théorique. Nous avons ensuite étendu cet
algorithme a des plate-formes hétérogeénes ; 3) Ordonnancement : dans le cadre d’ordon-
nancement d’applications constituées d’un tres grand nombre de taches indépendantes
et de caractéristiques identiques, nous avons étudié en régime permanent comment
minimiser le retard de chaque application lorsqu’elles sont plusieurs & entrer en com-
pétition pour les ressources de calcul, et comment minimiser la consommation de la
plate-forme lorsqu’une seule application est déployée.

Mots-clés :
Ordonnancement, tiches indépendantes, modéles de communication, plate-forme

maitre-esclaves.



	1 Introduction
	2 Framework
	2.1 Large scale platforms
	2.2 The Master-Worker platform
	2.3 Computation models
	2.3.1 The processors
	2.3.2 Fluid computation
	2.3.3 Atomic computation
	2.3.4 Synchronous start

	2.4 Communication models
	2.4.1 Communication time
	2.4.2 Communication behavior

	2.5 Applications
	2.5.1 Divisible Load applications
	2.5.2 Bag-of-Tasks applications

	2.6 Scheduling
	2.6.1 Beforehand
	2.6.2 Offline
	2.6.3 Online

	2.7 Objectives
	2.7.1 Metrics based on completion times
	2.7.2 Metrics based on flow times
	2.7.3 Max-based vs. sum-based metrics
	2.7.4 Energy consumption

	2.8 Notations

	3 The difficulty of scheduling with communications
	3.1 Framework
	3.2 Online theoretical results
	3.2.1 Fully homogeneous platforms
	3.2.2 Heterogeneous platforms
	3.2.3 Overview and summary
	3.2.4 Creating the worst platform

	3.3 Heuristics
	3.3.1 Communication-homogeneous platforms
	3.3.2 Computation-homogeneous platforms
	3.3.3 Fully heterogeneous platform

	3.4 MPI experiments
	3.4.1 The algorithms
	3.4.2 The experimental platform
	3.4.3 The tasks
	3.4.4 Results

	3.5 Related work
	3.6 Conclusion

	4 Matrix product
	4.1 Introduction
	4.2 Framework
	4.2.1 Application
	4.2.2 Platform

	4.3 Combinatorial complexity of a simple version of the problem
	4.4 Minimization of the communication volume
	4.4.1 Lower bound on the communication volume
	4.4.2 The maximum re-use algorithm

	4.5 Algorithms for homogeneous platforms
	4.5.1 Principle of the algorithm
	4.5.2 Impact of the start-up overhead
	4.5.3 Dealing with ``small'' matrices or platforms

	4.6 Algorithms for heterogeneous platforms
	4.6.1 Bandwidth-centric resource selection
	4.6.2 Incremental resource selection

	4.7 Extension to LU factorization
	4.7.1 Single processor case
	4.7.2 Algorithm for homogeneous clusters
	4.7.3 Algorithm for heterogeneous platforms

	4.8 MPI experiments
	4.8.1 Platforms
	4.8.2 Algorithms
	4.8.3 Experiments on homogeneous platforms
	4.8.4 Experiments on heterogeneous platforms

	4.9 Related work
	4.10 Conclusion

	5 Steady-State scheduling
	5.1 Introduction
	5.2 Framework
	5.3 Scheduling a single bag-of-tasks application
	5.4 Scheduling multiple bag-of-tasks applications
	5.4.1 Stretch
	5.4.2 Offline setting for the fluid model
	5.4.3 Online setting
	5.4.4 MPI experiments and SimGrid simulations
	5.4.5 Related work

	5.5 Minimizing power consumption
	5.5.1 Models
	5.5.2 At the processor level
	5.5.3 At the system level
	5.5.4 More realistic consumption models
	5.5.5 Related Work

	5.6 Conclusion

	6 Conclusion
	A Proofs of online competitiveness
	B Matrix product detailed experimental results
	C From theoretical throughput to realistic schedule
	D Bibliography
	E Publications
	F Notations

