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Abstract

PASQUAL, Alexander MattioliSound Directivity Control in a 3-D Space by a Compact Splagric
Loudspeaker Array2010. 171 p. Thesis (PhD in Mechanical Engineering): Fg@ilMechanical
Engineering, State University of Campinas, Campinas.

Angular control of the sound radiation can be achieved bggiaicompact array of indepen-
dently programmable loudspeakers operating at the samedney range. The drivers are usually
distributed over a sphere-like frame according to a Platsalid geometry to obtain a highly sym-
metrical configuration. Prototypes of compact sphericatipeaker arrays have been recently
developed and applied in room acoustics measurementsroglegustic music performance and
synthesis of directivity patterns of acoustical sourcehisas musical instruments. However, many
aspects concerning their control, design, electromechhbhehavior and ability to provide a more
realistic sound experience than conventional audio systemain unclear.

This work concerns the analysis and synthesis of sound fisldscompact spherical loud-
speaker array and aims to contribute to clarifying someaspeentioned above. A control strategy
based on the acoustic radiation modes of the spherical @rprgposed, which presents several ad-
vantages over the usual strategy based on the sphericabh@snA theoretical and experimental
analysis of the electromechanical behavior of compactdpadker arrays is also presented, in
which the acoustic coupling between drivers inside theyaname is taken into account. In addi-
tion, optimum driver signals corresponding to a given tadyectivity pattern are derived using two
different cost functions, indicating that the realism aof gynthesized pattern may be significantly
increased by neglecting the phase of the target directpatyern. Finally, the proposed theoret-
ical models are validated through measurements of elatingpedance, loudspeaker diaphragm
velocity and directivity patterns.

Vi



List of Figures

11

1.2

1.3

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Principal radiation directions for a violin in the hai#al plane [1]. . . . ... .. 3
Synthesis of the temporal and spatial signature of anstical source by a compact
loudspeakerarray. . . . . . . .. e 5
Spherical loudspeaker array prototypes based on thenRisolids. . . . . .. .. 7
Spherical coordinates. . . . . . . . . ... e 16
Acoustic dipole arbitrarily oriented modeled by two ropoles with source-strengths
FQsand—Q,. . . . . e e e e e e 17
Longitudinal (on the left) and lateral (on the right) dugpoles arbitrarily oriented
modeled by two dipoles with momerds, and—d,,. . . . .. .. ... ...... 18
Directivity patterns of a monopole, a dipole and a ldtquadrupole. The figure

shape indicates the magnitude of a normalized sound peeszod the dark and
light portions indicate a80° phase difference. . . . . . . . ... ... ... .... 20

Directivity patterns of a longitudinal quadrupole exatked atkr = 0.2, kr = 2,
kr = 20 and under farfield condition. The figure shape indicates tagmtude of

a normalized sound pressure and the color gradient inditatphase. . . . . . . . 20
Complex-valued spherical harmonicsuptoorder3.. . . . . . .. .. ... .. 25
Real-valued spherical harmonicsuptoorder 3. . . . . . . .. ... ... ... 27
An acoustic domain (“listening areay,, bounded byi’, andT’;, free of sound
sources and scatterers. . . . . . ... e 32

Vii



2.9 Boundary value problems: a) Interior problem: soundc®siand scatterers out-
side the listening area; b) Exterior problem: free-fieldrebtadiation. . . . . . . .

2.10 Synthesis or playback of an acoustic field: a) Irradrateproduction: Ambisonics

and Wave Field Synthesis; b) Radiation reproduction: camlpadspeaker array. .

3.1 Radiation efficiencies of the first 49 acoustic radiatieodes of the continuous
sphere (spherical harmonics). . . . . . . . . . . . ... .. .

3.2 Spherical cap with aperture anglemounted on a rigid spheremt . . . . . . ..

3.3 Convex regular polyhedra (Platonic solids) and thedspheres. . . . . . .. ...

3.4 Radiation efficiency of the ARM # 1 of the continuous sghand the discrete
spheres based on the Platonic solids (linear scale on théogérithmic scale on
theright). . . . . . . . e

3.5 Radiation efficiency of the ARM # 2 to 4 of the continuoubese and the discrete
spheres based on the Platonic solids (linear scale on théogérithmic scale on
theright). . . . . . . . e

35

3.6 Radiation efficiency of the ARM #5 to 9 of the continuoukese, the dodecahedron-

like sphere and the icosahedron-like sphere, as well as R & 5 to 6 of the
hexahedron-like sphere and the ARM # 5 to 7 of the octahelikersphere (linear
scale on the left; logarithmic scale ontheright). . . . . . ... .. ... ...

3.7 Radiation efficiency of the ARM # 10 to 16 of the continuspbkere, the ARM # 8
of the octahedron-like sphere, the ARM # 10 to 12 of the doldedeon-like sphere
and the ARM # 10 to 16 of the icosahedron-like sphere (lineateson the left;
logarithmic scale ontheright). . . . .. ... .. ... ... ... .......

3.8 Radiation efficiency of the ARM # 17 to 25 of the continumphere and the
ARM # 17 to 20 of the icosahedron-like sphere (linear scalthereft; logarithmic

scaleontheright).. . . . . . . . ... ..

3.9 Sound pressure patterns corresponding to the ARM # Edafificrete spheres based

on the five Platonic solids. Patterns obtained#er= 0.1 at a distance = 10a

fromthe spherecenter. . . . . . . . . . . ... ...

viii

a7

47



3.10 Sound pressure patterns corresponding to the ARM #aliscrete spheres based
on the five Platonic solids. Patterns obtained#aor= 0.1 at a distance = 10a
fromthe spherecenter. . . . . . . . . . . ... ... 49

3.11 Sound pressure patterns corresponding to the ARM # Beohéxahedron-like,
octahedron-like and dodecahedron-like spheres, as welea®\RM # 9 of the
icosahedron-like sphere. Patterns obtained:for 0.1 at a distance = 10a from
thespherecenter. . . . . . . . . . 50

3.12 Sound pressure patterns corresponding to the ARM # &eobttahedron-like
sphere, the ARM # 12 of the dodecahedron-like sphere and R & 10 of the
icosahedron-like sphere. Patterns obtained:for 0.1 at a distance = 10a from
thespherecenter. . . . . . . . . . . ... 50

3.13 Sound pressure patterns corresponding to the ARM #ikaliscrete spheres based
on the five Platonic solids. Patterns obtainedifer= 5 at a distance = 10a from
thespherecenter. . . . . . . . . . . ... 51

3.14 Frequency response functions between input diaphvatpuity and output voltage. 57

3.15 Ratio between the voltage magnitude that feeds the sadisited driver of the
array (driver # 1) and the resulting sound power. Simulatesults obtained for
the acoustic radiation modes #1,2,5and12. . .. .. .. ... ... .. .. 59

4.1 Upper and lower bounds of the normalized root mean seuese(RMSE) achieved
in the synthesis of functions in the subspaces spanned lgrisphharmonics of
orders 0, 1, 2 and 30, = 15.1° has been used for the tetrahedron, hexahedron,
octahedron, dodecahedron and icosahedron. . . . ... ... ........... 64

4.2 Upper and lower bounds of the normalized root mean sgqueoe(RMSE) achieved
in the synthesis of functions in the subspaces spanned lgyisphharmonics of or-
ders 0, 1, 2 and 3, = 54.7°, 45.0°, 35.2°, 31.7° and20.9° have been used for the
tetrahedron, hexahedron, octahedron, dodecahedron@sahiedron, respectively. 65

4.3 Normalized ARM weights for a dodecahedral source Wjth 15.1°. These curves
arise from the synthesis of a function in the subspace splmynspherical harmon-
ics of ordern chosen so that it leads to the lowest RMSE. . . . . . ... ... ...



4.4 Synthesis of the farfield directivity of a spherical cajoted according to the Euler
angles(0°,37.38%,0%) by a dodecahedral source with= 15.1°. Comparison be-
tween the normalized magnitude RMSE obtained by solvingtiedard weighted
least-squares problem (phase concerned) and the maglaasiesquares problem
(phase notconcerned). . . . . . .. 71

4.5 Synthesis of the farfield directivity of a spherical capented according to the
Euler angleg0°, 37.38°, 0°) by a dodecahedral source with = 15.1°. Compar-
ison between the target directivity pattern and the syitbdspatterns obtained
by solving the standard weighted least-squares probleasgboncerned) and the
magnitude least-squares problem (phase not concerned) fer2. . . . . .. .. 72

4.6 Synthesis of the farfield directivity of a spherical capented according to the
Euler angleg0°,37.38%,0°) by a dodecahedral source with = 15.1°. Compar-
ison between the target directivity pattern and the syitbdspatterns obtained
by solving the standard weighted least-squares probleas@boncerned) and the
magnitude least-squares problem (phase not concerneki) fer3. . . . . .. .. 72

4.7 Synthesis of the farfield directivity of a spherical capeoted according to the
Euler angleg0°,37.38%,0°) by a dodecahedral source with = 15.1°. Compar-
ison between the target directivity pattern and the syitbdspatterns obtained
by solving the standard weighted least-squares probleas@boncerned) and the
magnitude least-squares problem (phase not concernet) ter5. . . . . .. .. 73

4.8 Synthesis of the farfield directivity of a spherical capented according to the
Euler angles(0°,37.38°,0°) by a dodecahedral source with = 15.1°. Usual
norm ofc,,, obtained by the standard and the magnitude least-squatsf the
vector difference betweenthem. . . . . ... .. ... ... L 73

4.9 Synthesis of the farfield directivity of a spherical capented according to the
Euler angleg0°, 37.38°%,0°) by a dodecahedral source with= 15.1°. Directivity
patterns corresponding to the vector difference betweemptimum weigths,,,;
obtained by the standard and the magnitude least-squares. .. . . . . . . . .. 74

5.1 Block diagram representing the synthesis ofi/thie acoustic radiation mode of a
L-driver loudspeakerarray. . . . . . . . . . . o i i e 78



5.2 Block diagram representing the sound pressure fieldusemtiby the-th acoustic
radiation mode of d-driver loudspeaker array after equalization. . . ... ... 9 7

5.3 Filtery(w),l =1,2,...,12, that compensates for the non-flat frequency response
of the electromechanical transducers of a hollow loudspeaitay with 12 identi-
cal drivers. The transducer features are given in the ronafmalue” of Tab. 6.1. . 83

5.4 Radiation efficiency of the acoustic radiation modesdddecahedral source with
0y = 15.1° (linear scale on the left; logarithmic scale on theright). ... . .. .. 83

5.5 Frequency response (log magnitude) of the sound peesqualizers for the acous-
tic radiation modes of a dodecahedral source. . . . ... ... ... ..... 84

5.6 Radiation patterns da000H > and 4750H z corresponding to the ARM # 2 of a
dodecahedral source with= 0.075m andf, = 15.1°. . . . . ... ... ... .. 84

5.7 Frequency response (log magnitude) of the sound powetieqrs for the acoustic
radiation modes of a dodecahedral source. . . . . .. .. ... ... ... .. 85

5.8 Frequency response (log magnitude) of the sound powetiegrs for the acoustic
radiation modes of a dodecahedral source. Solid curvesd teoretical filters;
dashed curves: approximated IR filterswith=D =9. . . . . . .. ... .. .. 87

5.9 Sound power level of the equalized acoustic radiatiodeamf a dodecahedral
source. The ideal sound power equalization filters have Bpproximated by IIR
filterswithB =D =9. . . . . . . . . . 88

5.10 Sound pressure responséfa@, g%) for some acoustic radiation modes of the do-
decahedral array with IR sound power equalizers.. . . . . ............. 88

6.1 Spherical array prototype with = 12 independently programmable transducers
mounted on a hollow sphere with outer radius- 0.075m and inner radius; =
0.060m. . v v e e e 90

6.2 Experimental set-up for the electrical impedance measents. . . . . .. .. .. 92

6.3 Theoretical and experimental electrical impedancehefdriver #11 under the
following operation conditions: suspended driver, dricesunted at open-closed
tubes of volume§/;; = 1.5 x 10~*m? andV,, = 3.3 x 10~*m?, suspended driver
with attached masses 0#1;;, My, M3, Myy) = (0.9,1.4,2.3,2.8) x 1073kg. . . . 93

Xi



6.4 Theoretical and experimental electrical impedancesokpended driver unit (driver #08)
for use in the spherical array prototype. . . . . . . . . .. ... . 94

6.5 Laser scanning grid points on the driver vibrating stsefaOn the left, driver is
suspended and both diaphragm and suspension velocitiesesreured. On the
right, driver is mounted on the spherical array prototype anly the diaphragm
velocityismeasured. . . . . . . ... 96

6.6 Measured vibration pattern of the diaphragm (first 7 iroeles) and suspension
(circles 8 to 16) of a suspended driver for use in the sphiesicay prototype.
This pattern has been measured at the frequent§16fH > and the grid points are
illustrated on the left of Fig. 6.5. The results have beemradized and averaged
over the circumferences showninsuchafigure. . .. ... ... ....... 98

6.7 Theoretical and experimental FRFs corresponding toctiméig. 1 described in
Tab. 6.2 and to a “suspended" driver. Each experimental BRtteiarea-weighted
average of FRFs measured on the driver diaphragm surface...... . . . . . . . 100

6.8 Theoretical and experimental FRFs corresponding toctiméig. 2 described in
Tab. 6.2. The experimental FRF is the area-weighted avesbB&Fs measured
on the driver diaphragm surface. . . . . . .. . .. .. .. .. ... .. ... 101

6.9 Theoretical and experimental FRFs corresponding toctimdig. 3 described in
Tab. 6.2. The experimental FRF is the area-weighted avesh§&Fs measured
on the driver diaphragm surface. . . . . . .. . .. .. .. ... .. .. ... 102

6.10 Theoretical and experimental FRFs corresponding éoctinfig. 4 described in
Tab. 6.2. The experimental FRF is the area-weighted avesh§&Fs measured
on the driver diaphragm surface. . . . . . .. . .. .. .. .. ... .. ... 103

6.11 Experimental set-up for the directivity measurematitise large anechoic chamber
of the Laboratory of Mechanics and Acoustics of the Nati&etter for Scientific
Research (UPR-7051, CNRS, Marseille, France). . . . . ... ... ... .. 105

6.12 Experimental set-up for the directivity measuremevith the driver and micro-
phone labelsindicated. . . . .. ... .. .. ... .. .. ... .. .. .. . 106

6.13 Theoretical and experimental FRFs correspondingacatmfigurations #1 to #4
showninTab.6.4. . . . . . . . . . . 081

Xii



6.14 Theoretical and experimental FRFs correspondingdadmfigurations #5 to #7
showninTab.6.4. . . . . . . . . . . . ..

6.15

6.16

6.17

6.18

6.19

6.20

6.21

6.22

6.23

6.24

6.25

6.26

6.27

6.28

6.29 Theoretical and experimental directivity patterd@iH > corresponding to a ro-
tated dipole obtained from a linear combination of the ARN2 #0#04. . . . .

6.30 Theoretical and experimental directivity patterG@i/ > corresponding to a ro-
tated lateral quadrupole obtained from a linear combinatibthe ARM #05 to
H0O. . .

D.1

Theoretical and experimental directivity patterntfer ARM #01 atl00H z. . . . .
Theoretical and experimental directivity patterntfer ARM #02 ati0O0H z. . . . .
Theoretical and experimental directivity patterntfer ARM #02 atl000H z. . . .
Theoretical and experimental directivity patterntfie ARM #02 atl500H 2. . . .
Theoretical and experimental directivity patterntfer ARM #03 atl00H z. . . . .
Theoretical and experimental directivity patterntfier ARM #03 atl000H z. . . .
Theoretical and experimental directivity patterntfer ARM #04 atl00H z. . . . .
Theoretical and experimental directivity patterntfie ARM #04 a000H z. . . .
Theoretical and experimental directivity patterntfer ARM #05 at00H z. . . . .
Theoretical and experimental directivity patterntfer ARM #06 att00H z. . . . .
Theoretical and experimental directivity patterntfer ARM #07 atb00H z. . . . .
Theoretical and experimental directivity patterntie ARM #07 a000H z. . . .
Theoretical and experimental directivity patterntfer ARM #10 atl000H z. . . .

Theoretical and experimental directivity patterntfier ARM #10 a000H z. . . .

Block diagram representation of a discrete-time SIS&esy. . . . . . . . ..

Xiii

.. .091

110

111

111

112

112

113

113

114

114

115

115

116

116

117



List of Tables

4.1

6.1

6.2

6.3

6.4

C1l

C.2

C.3

CA4

C5

C.6

C.7

Iterative variable exchange procedure to solve the madmleast-squares problem. 70

Estimated parameters of the 12 AurasdumdBW2-326-8A drivers used in the
spherical array prototype. . . . . . . . . ... e 93

Measurement configurations for evaluating the intevattetween drivers mounted
on the spherical array prototype. Each driver number cpords to a position in
the array showninFig. 6.1. . . . . . . ... ... ... e 96

Sensitivities of the electret microphones used in thectlvity measurements; cal-
ibration performed in january 2010. . . . . . . . .. ... ... o ... 107

Measurement configurations for evaluating some FRRsdaet an input driver
voltage and an output sound pressure taken at the mic #10aftkana is posi-

tioned so that mic #10 is approximately in front of thedri#®d.. . . .. ... .. 107
Basic properties of Platonicsolids. . . . . . .. .. .. ... . .......... 140
Cartesian coordinates and Euler angles of the centeegfdlyhedrons’ faces. . . . 141
Modal matrix @) of the tetrahedron. . . . . . . . .. . ... ... ... ...... 142
Modal matrix @) of the hexahedron. . . . . . .. .. ... ... .. ....... 142
Modal matrix ) of the octahedron. . . . . . .. .. ... ... ... ....... 142
Modal matrix @) of the dodecahedron. . . . . . ... .. ... .. ........ 142
Modal matrix @) of the icosahedron. . . . . . ... .. ... ... ........ 142

Xiv



List of Symbols and Abbreviations

Latin Letters

Q

OQ° ©ws s

N S ST
SN
3

o~
¢

Outer sphere radius

Inner sphere radius

Clamped electromagnetic force, filter coefficient
Magnetic flux density

(N + 1) x L complex matrix

Sound speed

Mechanical compliance of the driver suspension
L x L matrix that couples the power radiated by the elements of
Correction factor

Filter coefficient

Dipole moment

Rotation matrices for complex-valued spherical harmsnic
(N + 1) x L complex matrix

Net acoustic force acting on a driver diaphragm
3-D free-space Green’s function

Wave number

Spherical Hankel function of the first kind
Spherical Hankel function of the second kind
Struve function of order 1

Electrical current

Identity matrix

Spherical Bessel function of the first kind

Bessel function of first kind

Jacobi polynomial

Parameter of the lossy inductor model

Length of the voice-coil conductor

XV



SRS

XX s e A48T non o
&

2 =

Number of degrees of freedom, number of loudspeakers
Mass of the driver diaphragm assembly

Parameter of the lossy inductor model

Unit normal

Truncation order

Number of samples in the azimuth angle direction

Total number of samples over a sphere

Number of samples in the zenith angle direction

Sound pressure

Complex magnitude spectrum of the sound pressure
Legendre polynomial

Associated Legendre function of the first kind

Volume velocity of a pulsating sphere, monopole sourcersith
Radial coordinate

Mechanical resistance of the driver suspension
Voice-coil resistance

Mono audio signal

Area of a vibrating surface

Vibrating surface

Net surface area of a driver membrane

Time

Sampling period

Transduction matrix

Column vector of velocity amplitude coefficients

\oltage

Volume, listening area

Position vector

Position vector of an elementary radiator, point on a gseriace
Acoustic power

Diagonal matrix containing non-dimensional area weiglstdrs
Real-valued spherical harmonic function
Complex-valued spherical harmonic function

Vector containing complex-valued spherical harmonicsougrder N

Acoustic-impedance matrix
Clamped electrical impedance

XVi



Greek Letters

o - First zyz Euler angle
16} - Second zyz Euler angle
v - Third zyz Euler angle

r - Smooth closed surface

4] - Dirac delta
Omn - Kronecker delta
A(4) - Laplace operator, variation
€ - Compensation filter
0 - Zenith angle
L = -1
w(w) - Eigenvalue ofT (w)
1% = —Ww
&(Xs) - Set of orthogonal functions defined on a vibrating surface
P - Fluid density in the absence of acoustic perturbation
o - Radiation efficiency
v(x,t) - Acoustic velocity
v(X,w) - Complex magnitude spectrum of the acoustic velocity
v(x,t) - Radial acoustic velocity
Un - Acoustic velocity normal to a vibrating surface
) - Azimuth angle
() - Acoustic radiation mode
v - Modal matrix
w - Angular frequency
Superscripts
* - Complex conjugate
ap - Allpass
H - Complex conjugate transpose
min - Minimum phase
T - Matrix transpose

- Frequency domain

XVii



Subscripts

ap - Allpass

c - Continuous-time

[ - Acoustic radiation mode or transducer of the loudspeattaya
min - Minimum phase

opt - Optimum

ref - Reference

Abbreviations and Acronyms

ARM - Acoustic Radiation Mode

BIBO - Bounded-Input Bounded-Output

CLF - Common Loudspeaker Format

CNMAT - Center for New Music and Audio Technologies
DSP - Digital Signal Processing

FIR - Finite-duration Impulse Response

FRF - Frequency Response Function

HOA - Higher Order Ambisonics

IEM - Institute of Electronic Music and Acoustics
IR - Infinite-duration Impulse Response
IRCAM - Institut de Recherche et Coordination Acoustique/Musique
ITA - Institute of Technical Acoustics

LDV - Laser Doppler Vibrometry

LMS - Least Mean Squares

LTI - Linear Time-Invariant

MIMO - Multiple Inputs Multiple Outputs

RMSE - Root Mean Square Error

SISO - Single Input Single Output

WEFS - Wave Field Synthesis
Symbols

R{-} - Realpartofacomplex number

1 - Matrix of all 1's

XViii



Contents

1

Introduction 1
1.1 Directional characteristics of soundsources . . . . . ... .. ........ 2
1.2 Compact spherical loudspeakerarrays . . . . . ... ... .. ........ 4
1.3 Thesis main contributions and organization . . .. ... .............. 7
1.3.1 Directivityrepresentation. . . . . . . . . .. ... L 7
1.3.2 Electromechanical behavior of spherical loudspealtays . . .. .. .. 9
1.3.3 Optimizationcriteria . . . . . . . .. ... . . e 11
1.3.4 Thesisorganization . . . . . . .. .. ... ... ... 12
Sound Radiation and 3-D Sound Field Rendering 14
21 Waveequation. . . . . . . . . e e e 14
2.2 Directivity patterns . . . . . . . . . e e 16
2.21 Simplemultipolesources . . . . . .. ... e 16
2.2.2 Nearfield and farfield propagation . . . . .. .. ... ... .. .... 21
2.3 Subspaces for directivity representation . . . . .. .. ... L 22
2.3.1 Sphericalharmonics . . . . . . ... ... e 23
2.3.2 Acoustic radiationmodes (ARMS) . . . . . . ... e 28

XiX



2.4 Spatial sound rendering using loudspeaker arrays

241 Theory . .. ... ... ...

2.4.2 Spatialaudiosystems . . . ... ... ...

Spherical Loudspeaker Array Modeling

3.1 Soundradiation . . . . ... ... ...
3.1.1 Continuoussphere . . ... ... ... .........
3.1.2 Discretesphere . . . . .. ... ... o .

3.1.2.1 Convexregular polyhedra . . . ... ... ...

3.2 Electromechanical behavior. . . . . ... ... ... ......
3.2.1 Electrodynamic loudspeakers . ... ..........
3.2.2 Acousticalcoupling . . ... ... ... o L.

3.2.2.1 Lumped-parametermodel . . .. .. ... ..
3.2.2.2 Distributed-parameter model . . . ... ...

3.3 Enclosuredesign . .. ... ... ... ... .. .. .. ...

Synthesis and Reproduction of Directivity Patterns

4.1 Synthesis of an arbitrary function. . . . .. ... ... ... ..
4.2 Synthesis of a spherical harmonic function . . . . . . . . ......

4.3 Synthesis with desired magnitude response . . . . . .. ...

Equalization Filtering

5.1 The electroacoustical modeling of spherical loudspeakrays revisited

5.2 Signal processing chain of a spherical loudspeakey arra

XX

38

38

38

40

60

62

68

75

54



5.2.1 Sound pressure equalization . . . . .. ... ... ..
5.2.2 Sound power equalization . . .. .. ... ... ... . ... ...

5.3 Numerical example: a dodecahedral loudspeakerarray. .. ... . . . .. .. ..

6 Experimental Evaluation
6.1 Prototype description . . . . . . . .. e e
6.2 Parameter estimation of the electrodynamic loudspeakdel . . . . . . . . . ..
6.3 Electromechanical behavior. . . . . . . ... ... .. L
6.3.1 Experimental procedures . . . . . . . . .. ... 0.
6.3.2 Resultsanddiscussion . . . . .. ... ... L 00 e
6.4 Soundradiation . . . . . .. ... e
6.4.1 Experimental procedures . . . . . . . . . ... e .

6.4.2 Resultsanddiscussion . . . . . . . . . ... .

7 Conclusion
7.1 Directivity representation . . . . . . . ... e
7.2 Electromechanical behavior of spherical loudspeakaya. . . . . . .. ... ..
7.3 Optimizationcriteria . . . . . . . . . . e e

7.4 Furtherresearch . . . . . . . . . . . e

A Wave Equation in Spherical Coordinates
Al Generalsolution. . . . . . . . .. . e

A.2 Exterior and interior problems . . . . .. ... .. L oo

B Properties of the Coupling Matrix for the Discrete Sphere

XXi

82

89

89

91

95

95

97

104

104

107

119

119

121

122

123

133

133

136

138



C Convex Regular Polyhedra 140

D Discrete-Time LTI Systems 143

E Author’s Publications 147

XXii



Chapter 1
Introduction

The spatial properties of sound fields are important for hus@nd source localization in daily
life and greatly affect the perceived sound quality andlligibility, which has been explored in
audio applications since the early days of the two-chanteeésphonic reproduction, remaining
an active field of research and development. In the aesshatittext, spatial control of sound has
been widely used in contemporary electroacoustic musiwhich not only the projection space,
but also the composed space (integral to the compositielf)itge dealt with [2, 3].

Most of the spatial audio systems such as conventional sod;0VFS (Wave Field Syn-
thesis) [4] and Ambisonics [5] provide the listeners witlaal sensations by surrounding them
with many loudspeakers. Nevertheless, the difficultiesredgting the interaction between the
electroacoustic sources and the room they are placed in thakgroblem extremely complex to
address and massive computation is necessary to deal witartte number of loudspeakers used
in sofisticated spatialization systems like WFS.

In this work a different approach is adopted. Instead ofiptadoudspeakers around the
listener to produce spatial sound effects, a multi-chaalesitroacoustic source is used in order to
reproduce the sound field generated by an acoustical soutoesgnthesize a desired sound field.
Thus, the interaction of the source with the room it is plaged naturally felt and understood
by the listener, making the problem much simpler to treatlikdrthe WFS loudspeaker array, a
multi-channel source is a compact array of loudspeakerngmas to simulate complicated sound
radiators such as musical instruments.

In the following, the directional characteristics of sowsmirces are briefly described. Next,
an overview of the state of the art concerning compact sgélloudspeaker arrays for radiation



control is presented. Finally, the thesis main contritngiare highlighted.

1.1 Directional characteristics of sound sources

A sound source can be characterized by the temporal andispaiperties of the sound field that
it produces under free-field conditions, i.e., in the absefany reflected wavésThe interaction
with both the room the source is placed in and the listenesihg system determines the perceived
auditory event. The temporal structure of the audio sigredshing the eardrums plays a major
role in the human perception, which is categorized in mlisicd psychoacoustical attributes such
as pitch, duration, dynamics, timbre, loudness and loatdin [6, 7].

The temporal signature of a sound source can be capturechah@ed by well-established
techniques, like Fourier analysis [8]. The source spaitglagure is characterized by the so-called
sound directivity or directionality, which depends on fnegcy and can be obtained through mea-
surements in an anechoic chamber. Unfortunately, the sjgoreding experimental procedures are
complex, time-consuming and require expensive facilitlegch are not readily available in many
acoustics laboratories. Therefore, little directivittal@an be found in literature. The overall
directional characteristics of several musical instruteere presented in [1], which is perhaps
the most comprehensive and referenced work on this sulf@ate the excitation mechanism of
a loudspeaker unit is merely an electrical signal that caeds#ly controlled and processed, the
directivity characterization is simpler than for musicastruments. Many loudspeaker manufac-
turers provide directivity data of their products in a filerfat called CLF (Common Loudspeaker
Format), which can be downloaded in the CLF group websitp:(hvww.clfgroup.org/).

As said above, the directivity pattern of a sound sourcelevamt for human perception.
This statement can be qualitatively checked by rotatingvargsound source around its axis. It
is not expected that this will change the directional chizréstics of the source, but will rather
lead to a directivity pattern that is a rotated version ofahiginal one relatively to the room the
source is placed in and to the listener’s position, so thabrhghe should be able to experience
a different sound sensation. However, a directivity pattsontains lots of information and the
scientific community has not yet found out what features afétimportant for human perception.
In addition, as far as the 3-D sound field simulation and sssithis concerned, listening tests and

1There is a mechano-acoustic coupling between the radiatidg and the sound field it produces. Strictly speak-
ing, this coupling depends on the characteristics of thenrttee source is placed in, so that the room affects the
acoustical properties of the sound source. However, sirast of the sound sources placed in ordinary rooms present
a mechanical impedance much higher than the sound field ¢iamme mismatch), the room has just a minor effect on
the source dynamics, so that it can be neglected.



room acoustics simulation results have shown that the ehafithe directivity representation for
the actual source has an influence on the perceived soundchailmdm acoustical parameters such
as the clarity factor, the lateral energy fraction and théyetecay time [9, 10, 11].
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Figure 1.1: Principal radiation directions for a violin imethorizontal plane [1].

Figure 1.1 depicts the essential characteristics of thectiwity pattern of a violin in the
horizontal plane according to [1]. The shaded areas reptése directions in which the sound
pressure level is within 3 dB of its maximum value averageer @a/given frequency range in the
horizontal plane. Most simulation and auralization of roacoustics use the averaged directivity
data of musical instruments presented in that work. Howelkerangular radiation pattern of a vi-
olin varies strongly with frequency above about 1 kHz, chagglrastically from one semitone to
the next, so that averaged directivity patterns give risepoor representation of the violin spatial
signature [12, 13]. This behavior is important for the wiosiound quality and it has been called
“directional tone color”, which makes it very difficult to@aduce a realistic violin sound with a sin-
gle ordinary loudspeaker because it imposes its own dwigctin all sounds it generates [14, 13].
The violin example illustrates the shortcomings of avedagjeectivity patterns and how complex
the directional characteristic of a sound source may be.



1.2 Compact spherical loudspeaker arrays

Modern loudspeaker systems provide satisfactory conted the temporal signature of the sound
field they generate, so that the current audio technologiede used to reproduce these charac-
teristics of acoustical sources. On the other hand, the a@naially available loudspeaker systems
are not able to reproduce the directivity pattern of an eabjtsound source. As stated before, the
loudspeakers impose their own spatial signature on thdtireg3-D sound field, which is gener-
ally quite different from the spatial signature of the omiglisource that the electroacoustical device
aims to reproduce.

In order to overcome the limitations of conventional audystems concerning directivity
reproduction, a compact spherical array of independemtgnrammable loudspeaker units can be
used. This electroacoustic device consists of severatidrimounted on a rigid sphere-like frame,
which are generally distributed according to a convex ragoblyhedron (Platonic solid) geometry
to obtain a highly symmetrical configuration, so that theuscence of preferred regions in the
three-dimensional rendition space is reduced. The magctieg is to control the directivity pattern
of the loudspeaker array by acting on the signals that feedrdmsducers. Unlike conventional
loudspeaker systems, the array drivers operate at the saquehicy range, so that the sound fields
produced by the individual loudspeaker units interact imatwllable way. Hence, the compact
loudspeaker array should ideally be able to reproduce bh&themporal and spatial signature of
an acoustical source, i.e., the sound field produced by agivarce at a given position in a room
would be entirely reproduced by replacing the original sewvith the electroacoustical device, as
depicted in Fig. 1.2, wher¥ is the rendition space ardis a surface enclosing the source.

It is worth mentioning that the spherical loudspeaker afaygely employed to obtain an
approximate omnidirectional soufci room acoustics measurements constitute a simple special
case of directivity controlled loudspeaker arrays. Theatd of omnidirectional sources are usually
mounted on the faces of a rigid Platonic solid [15, 16, 17, $8]that the desired directivity is
approximately obtained by driving the array elements withsame electrical signal. These devices
are simple mono-channel sources whose acoustical behawi@il-known. In contrast, this work
focuses rather on the general case of multi-channel sotordgectivity control.

Researchers from IRCAMir{stitut de Recherche et Coordination Acoustique/Musigaeis)
introduced the concept of using a compact array of indepghdprogrammable electrodynamic
loudspeakers in 1992 [19]. The first IRCAM prototype was a-chiannel dodecahedral source

2Strictly speaking, an omnidirectional source is that orie &bradiate sound energy to all directions. However, in
this work, a source will be called omnidirectional if it ratks sound energy equally to all directions.



a) Original source b) Compact loudspeaker array

Figure 1.2: Synthesis of the temporal and spatial signaifiesn acoustical source by a compact
loudspeaker array.

(twelve drivers, one per face) used to synthesize some sidigdctivity patterns [20]. Later, they
built a set of three cubic shaped loudspeaker arrays ofrdiftesizes in order to increase the fre-
quency bandwidth: a 25-cm cube with six 7-in (17.78-cm)ehsfor the mid frequencies, an 8-cm
cube with six tweeters for the high frequencies and a larglee avith four horizontal drivers for the
low frequencies. These devices were conceived to provetgrelacoustic music composers with a
new spatialization tool and to partially reproduce the gty of musical instruments [21].

Since a given directivity pattern can be decomposed ovess loh the so-called spherical
harmonic functions (these are treated in detail in secti@il, the IRCAM sources were pro-
grammed to reproduce such functions. This method leads & afdilters for each spherical
harmonic, so that a desired pattern can be obtained onlydaygthg the gain associated with each
set of filters. Due to its relatively small number of louddgera, the cubic source is able to repro-
duce only spherical harmonics of lower orders, that are tbaapole (order = 0), the dipole
(ordern = 1) in any spatial direction and partially the spherical hanmse of ordem = 2 but with
angular restrictions.

Kassakian and Wessel from CNMAT (Center for New Music andidde@chnologies, Uni-
versity of California Berkeley) presented further themat developments and simulated some
spherical source configurations with different sizes analmer of drivers [22]. The mean square
error was used to evaluate the spherical array performaneproducing spherical harmonic func-
tions. However, loudspeaker constraints were not consibland their directivities were supposed
to be frequency independent. These researchers alsowttestia dodecahedral array with twelve



independent 4-in (10.16-cm) drivers, each provided wélown sealed enclosure in order to avoid
the acoustical coupling inside of the array cavity [23]. Slation results showed that the prototype
can reproduce spherical harmonics up to order 2 and partially harmonics of order = 3 in
specific combinations, but only in the low-frequency rangeduse of the relatively large source
diameter (37 cm approximately).

In order to increase the operating range of the sphericatepuesearchers from CNMAT
in collaboration with the Meyer Sound Laboratories builtcampact spherical loudspeaker array
with 120 independent 1.25-in (3.175-cm) drivers (an icesbn with six drivers per face with
25.4cm in diameter) [24]. The geometric and engineerindgjehges that were overcome to create
it are described in [25]. Simulation results were also pres® and showed that the source can
potentially reproduce spherical harmonics up to ordet 8 over a large frequency range (up to
7 kHz approximately). However, details of the directivityntrol software and measurements of
the array have not been provided so far. It is worth mentigtiiat relevant driver constraints such
as limited excursion, distortion and overheating were akém into account in the simulations.

Zotteret al. from IEM (Institute of Electronic Music and Acoustics, Gra@aistria) presented
an analytical model that describes the radiated sound ffeddspherical array and is dedicated to
the synthesis of spherical harmonic patterns [26, 27]. Doece is modeled as a rigid sphere with
several vibrating caps corresponding to the loudspeakérsoptimum cap velocities are obtained
by the least-squares method. They also constructed anhiedisd source with 20 independent
drivers sharing a common enclosure [28, 29, 30].

Behler and Pollow from ITA (Institute of Technical AcoustjiAachen, Germany) built do-
decahedral arrays to be used in room acoustics measuremertier to obtain improved room
impulse responses for auralization purposes [31, 32, 33].

Figure 1.3 shows the spherical loudspeaker array protetgpgeloped at the laboratories
mentioned above. The researches concerning the applicdttompact loudspeaker arrays to elec-
troacoustic music performance that were conducted at&ondJniversity are also worth mention
(see [34, 35, 36]). In contrast to all works cited up to nowjackilconsider only electrodynamic
transducers, a loudspeaker array of four piezoelectnsthacers that provides directivity control
in the horizontal plane at high frequencies (5 — 20 kHz) hasndy been proposed [37].

It is worth noting that, besides room acoustics measuresnetdctroacoustic music perfor-
mance and synthesis of directivity patterns of acousticaftees, other applications for spherical
loudspeaker arrays can be sought, such as informationslifiun privileged adjustable direc-
tions, microphone feedback control in sound reinforcena@plications [38] and active control of
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Figure 1.3: Spherical loudspeaker array prototypes baseldeoPlatonic solids.

sound [39].

1.3 Thesis main contributions and organization

This work concerns the analysis and synthesis of diregtpatiterns by a compact spherical loud-
speaker array. As explained throughout this section, tt&dhmain contributions are: the character-
ization of an improved basis for directivity representafithe investigation of the electromechan-
ical behavior of compact loudspeaker arrays and the cortipauanalysis of distinct optimization
criteria to derive the signals that must feed the driversroleoto reproduce a given directivity
pattern.

1.3.1 Directivity representation

Spherical harmonics have been playing an important rolphescal array research. These func-
tions constitute a natural basis for representation of d@aurce directivities, since they emerge
from the solution of the Helmholtz equation in spherical hoates (refer to appendix A). There-

fore, as said before, the control strategy generally adbist¢o provide the spherical array with

some preprogrammed basic directivities correspondingherscal harmonic patterns. The num-
ber of these elementary directivities is limited to the nembf loudspeakers in the array. Then,
different radiation patterns can be achieved simply by gianthe gains associated with the ba-



sic directivities, so that it is not necessary to redesignfilkers when a different target directivity
pattern is desired.

However, it is known that spatial aliasing degrades the spdlearray capability in synthe-
sizing spherical harmonics as frequency increases [226 Ko that the control strategy based on
these functions becomes inaccurate. In fact, althoughrghéarmonics are suitable basis ele-
ments in describing arbitrary directivity patterns, thayeot be expected to correspond to efficient
radiation patterns of a spherical loudspeaker array atexjufencies.

At low frequencies, since higher order spherical harmoeidsbit very low radiation effi-
ciencies [40], spatial aliasing does not affect the radmpattern in the farfieRll However, as
frequency increases, the radiation efficiencies of highaéeospherical harmonics increase as well
and they start to propagate to the farfield. Thus, the spdlesitay can no longer radiate pure
spherical harmonics, like the monopole or dipoles. Morecathigh frequencies the shape and
vibration pattern of each loudspeaker lead to numerouatiadihigher order spherical harmonics,
which are combined and interact in the nearfield when meliipidspeakers are driven. Then, in
order to obtain an accurate sound field representationruhedted spherical harmonic expansion
must retain a number of terms much higher than the numbedependent degrees of freedom of
the array. Such terms can be grouped in a finite number of ®ibsgesponding to the so-called
“acoustic radiation modes” (these are treated in detaiatisn 2.3.2) of the array.

Acoustic radiation modes are an alternative way to deschbesound field that a vibrat-
ing structure radiates. Such a modal approach is based orefiiovently a given velocity dis-
tribution on the structure surface radiates sound energyitahas been used since the 1990’s
(cf. [42, 43, 44, 45, 46]). Radiation modes are commonly usedescribe the structural vibra-
tion of primary sources in active noise control applicasig¢see, for example, [47]). However, they
have not been applied to secondary sources or to compaddeakier arrays for directivity control.
The author has found only one work by Wenal. [48] which applies such a modal approach to
sound field synthesis by planar loudspeaker arrays, wherarthy elements were assumed to be
simple omnidirectional point sources.

As far as a vibration system with a finite number of degreessafdom is concerned (as is the
case for a spherical loudspeaker array), its radiation smiegan an equally finite dimension sub-
space on which any radiation pattern that such a systemedaiglenerate can be projected. Such
a useful property does not hold for the spherical harmorpeasentation of the sound field pro-

3If a given field point is sufficiently far from the source sotttize sound pressure decreases linearly with distance
along a radial line connecting the point with the source fonmer is said to be in the farfield [41]. For further detalils,
refer to section 2.2.2.



duced by the same radiator. Actually, the real-valued spaldnarmonics are the radiation modes
of the continuous sphere [40], i.e., the sphere which is tbéssume any surface velocity pattern
(infinite number of degrees of freedom). Therefore, splaéharmonics span an infinite dimension
subspace so that truncation error generally arises froregherical harmonic decomposition.

In this work, instead of using a finite set of spherical harrosras preprogrammed basic
directivities, an approach based on the acoustic radiatiotles of the spherical loudspeaker array
is proposed. Unlike the usual spherical harmonic stratagy, radiation pattern that the array
is able to reproduce can be decomposed into its radiatioremagth no approximation error.
Since radiation modes are closely related to radiationieffaies, this approach leads also to a
quantitative description of the low-frequency constrsimt the directivity synthesis, which have
only been qualitatively discussed in previous works. Meegpradiation modes allow to rank the
expansion terms by their radiation efficiencies, so thatlaced number of active channels can be
obtained because it is useless to drive inefficient modeslllyj radiation modes are not restricted
to spherical shapes. So, it is expected that most of the igles®nted here can be extended to
non-spherical loudspeaker arrays and will allow to take extcount the actual vibration pattern
and shape of the loudspeakers.

1.3.2 Electromechanical behavior of spherical loudspeakarrays

Unlike omnidirectional sources, the interaction of thersbfields produced by the independent
drivers of a directivity controlled source is not intuitiaad some attempts have been made to
predict the radiation pattern of a spherical array [22, Z5,39]. For the moment, the spherical
caps approach proposed in [26] is the most elaborate radigtiediction model for a compact
spherical loudspeaker array, in which the drivers of thayaare modeled as convex spherical caps,
each oscillating with a constant radial velocity amplitwder its surface. This model presents the
advantage of having an analytical solution (which will begented in section 3.1.2) and is inspired
in a previous work dealing with a single driver mounted orngadrsphere [49]. However, it cannot
predict the non-rigid body behavior of real drivers and eetfl their actual geometry, which is
known to affect the radiation pattern, especially at higigérencies [50, 51].

A comparison of the theoretical predictions by the sphédap model and measured direc-
tivity data in an anechoic chamber for a single driver modmte a rigid sphere (a 3-in, 7.62-cm,
cone woofer mounted on a sphere with a 10-in, 25.4-cm, raddysresented in [49]. It was ob-
served that, in general, the theoretical predictions miuelexperimental results closely, indicating
that the spherical cap approach can be extended to spheridsapeaker arrays. However, the cap



size used in the simulations presented in [49] was madedrexyddependent in order to match the
experimental data. This was explained as being probabisudtref the driver suspension behavior,
which can be hardly modeled as a rigid body. This can be igetstd by measuring the vibration

of the driver membrane and suspension.

For a spherical loudspeaker array, theoretical results hatbeen explicitly compared to di-
rectivity measurements in anechoic chamber so far. As antdtfact, directivity measurements of
the IEM icosahedral array are described in [28, 29]. Thes&swdo not directly compare the mea-
sured radiation patterns to theoretical predictions, &u{29] does provide an indirect comparison
which indicates a deviation between experimental and #tead results. Nevertheless, the used
measurement setup is not satisfactory for directivity rmaeasents, for example, the experiments
were not conducted in an anechoic chamber. Therefore, @tipessible to determine whether the
prediction radiation model or the experimental setup (a¢hjpshould be improved.

The directivity control by a spherical loudspeaker arrapgbieved by setting the relative
voltages, rather than velocities, of the array elementsiacelethe electromechanical behavior of
such a device must be known in order to evaluate its surfdaton pattern which, in turn, leads
to the sound field. In this direction, similar electromedbahmodels for spherical arrays were
proposed in [27] — which was later improved in [29, 52] — an@][3Surface velocity measure-
ments by LDV (Laser Doppler Vibrometry) of the IEM icosahaldarray revealed a good match
between theoretical and experimental results in the l@gtfency range [27, 29, 52], while some
discrepancies were observed at high frequencies. Howavgra single point on the membrane of
each driver was measured, so that the rigid body assumpiidd oot be explicitly and rigorously
validated. Nevertheless, since researchers have beetyroanterned about the relation between
an idealized vibration pattern of the loudspeaker arraythadesulting acoustic radiation pattern,
there is still a lack in the accurate description of the etenechanics of spherical loudspeaker
arrays for radiation control.

The enclosure design is a controversial issue that is alateceto the electromechanical
behavior of spherical arrays. Two different approaches Hseen reported in literature (cf. [23,
29, 30, 31, 32, 52]). In the first approach, the drivers sharteramon hollow enclosure and, in
the second, they have their own independent sealed cavitiesformer leads to an easier to build
mechanical frame and to a larger cabinet volume that paintives rise to lower voltages in
the low-frequency range [31, 52, 53]. However, to let theehs share an empty cavity produces
undesirable acoustic cavity resonances in the operatemuéncy range of the array [32, 52] and
leads to acoustic coupling effects that cannot be easilgtighe. The electromechanical model
proposed in [32] takes the acoustic coupling into accoumhbgeling the common array cavity as

10



a lumped-parameter element (acoustic compliance). Ortliee band, the model presented in [27]

applies the spherical caps approach also to the interiordsteld, so that the resulting boundary-

value problem has an analytical solution and the higheemodvity modes can be considered
(distributed-parameter model); as a drawback, this masRlraes that the array cavity is a perfect
sphere.

This work presents a detailed theoretical and experimantaestigation of the compact loud-
speaker array electromechanics. An improved electronmciianodel which takes into account
the inductance losses of the driver voice-coil is proposadl experimentally validated through
LDV measurements of a dodecahedral source prototype, amshahapter 6. Unlike the previ-
ous works mentioned before, many points on the surface afitghragm suspension assembly of
the drivers are measured by using a scanning laser Dopfissmeter, so that uneven deforma-
tion can be characterized. The cited lumped- and distribptgameter modeling of the acoustic
coupling between the drivers inside the array frame are emetp In addition, directivity measure-
ments were carried out in an anechoic chamber in order tg shedimitations and applications of
the spherical caps model proposed in [26].

As it will be shown in section 3.3, the effect of the internabastic coupling on the sound
power can be evaluated in a simple way by combining the eleechanical model with the acous-
tic radiation mode approach, on which the enclosure desgpussion presented in this work is
based. Furthermore, this combination leads to an unexgpeesailt, namely, the acoustic radiation
modes of a Platonic loudspeaker are the eigenvectors ofahsduction matrix obtained using the
electromechanical model for drivers sharing a common @dbinhis result greatly simplifies the
equalization filter design and is discussed in chapter 5.

1.3.3 Optimization criteria

As said before, compact spherical loudspeaker arrays atetaseproduce or to synthesize desired
directivity patterns. To accomplish this, an inverse peoibbimust be addressed, i.e., the signals that
must feed the drivers in order to reproduce the target dwigcpattern must be derived from an
optimization criterion.

Most of the published works about spherical loudspeakexyarminimize the Euclidean
norm of the difference between the target pattern and ththegized pattern in order to obtain
the velocity of each driver (cf. [22, 26, 54]). This is a wkllown convex optimization problem
(least-squares) that can be easily solved and whose soiatimique. However, the least-squares

11



method may lead to a suboptimal solution due to the fact thetcost function is based on the

physical characteristics of the sound field rather than osyahmpacoustic measure. For example,
in the least-squares formulation, magnitude error andgkea®r are treated equally, although the
importance of these errors may not be equal as far as the hpeneeption is concerned.

Modern room acoustic simulation and auralization toolsypeto evaluate the influence of
source directivity on the sound field in a room. For this psganly the magnitude of the farfield
directivity data is used [10, 32, 33, 55]. Therefore, theriture on room acoustics suggests that the
phase of the farfield directivity pattern plays a minor raieéhie human perception compared to its
magnitude. Hence, it is expected that a spherical loudgpeakay will be able to better synthesize
the perceptually relevant attributes of the sound fieldéf phase of the target pattern is excluded
from the cost function.

Unlike the usual least-squares method, the optimizati@blpm with desired magnitude
response (phase not concerned) is hon-convex and thembyeedifficult to solve. The so-called
“magnitude least-squares” problem and several solutiothods are described in detail in [56].
In addition, its application to directivity synthesis byhgpical arrays is briefly presented in some
recent works [33, 37, 56, 57]. However, a comparison betwkeerstandard least-squares and the
magnitude least-squares applied to directivity synthleasnot been satisfactorily presented and
discussed so far, so that the advantages and the shortcoofitige latter remain unclear. This is
carried out in chapter 4.

1.3.4 Thesis organization

This thesis is organized as follows:

e Chapter 2: this chapter presents an overview of advancedstap acoustics that are not
collected in books, but which are essential (except fori@e@.2, which is rather comple-
mentary) to the comprehension of the thesis content;

e Chapter 3: the theoretical models used to predict the sadidtion and the electromechan-
ical behavior of spherical loudspeaker arrays are destrilveaddition, a discussion on the
enclosure design and simulation results are presented;

e Chapter 4: this chapter addresses the inverse problem,lyagien the target directivity
pattern and the radiation model described in chapter 3migdtion criteria are applied to

12



compute the velocity of each driver of the spherical arraymirical simulation results are
also presented;

e Chapter 5: the problem of equalization filtering is addrds3evo different equalization ap-
proaches for a spherical loudspeaker array are preserdambarpared. A numerical example
is provided;

e Chapter 6: the theoretical models presented in chapterekaegimentally validated. Results
of electrical impedance, loudspeaker vibration and diviggtmeasurements of a 12-driver
array prototype are presented and discussed,;

e Chapter 7: conclusions and suggestions for further worlpeesented.

13



Chapter 2

Sound Radiation and 3-D Sound Field
Rendering

This chapter reviews some topics related to sound radiatidrspatial audio as they are required for
the comprehension of the thesis. First, the basic wave gadjwa model used throughout this work
— which is described by the well-known Helmholtz equation spiesented in section 2.1. Next,
section 2.2 introduces fundamental concepts on soundedinectivity through the development
of elementary radiators such as monopoles and dipoleshwiy be skipped by advanced readers.
The subspaces for directivity representation (spheriaamlonics and acoustic radiation modes)
mentioned in chapter 1 are considered in detail in secti®nhose content is essential and widely
used in the next chapters. Finally, the theory of spatiahdoendering through loudspeaker arrays
is presented in section 2.4, as well as some promising aedimblogies.

2.1 Wave equation

This work concerns linear acoustic phenomena in a perfeoolgeneous quiescent gas, i.e., only
low energy waves not subjected to dissipative effects antidxechange are considered; in addition,
there is no mean flow and the medium properties are constanairgiform through the acoustic
domain. Therefore, in the absence of sound sources in thaidotie following well-known
linearized wave equation governs the sound propagatidn [58

1Pp(xt)

Ap (X, t) — v

=0 (2.1)
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wherep (X, t) is the sound pressureis the sound speed,is the position vectot, is time andA (-)
is the Laplace operator.

The acoustic velocity (x, t) is related with the acoustic pressuyréx, ¢t) by the linearized
Euler equation [58]

ov (Xt
p (X, 1)
ot
wherep is the fluid density when the acoustic perturbation is absemoughout this work, unless
otherwise specified, lower case bold letters indicate vectohile upper case bold letters indicate
matrices.

= —Vp(X,1) (2.2)

Now assume a harmonic time dependence of the forttf (classical choice in theoretical
acoustics) fop (x, t), where. = y/—1 andw is the angular frequency. This yields the wave and
Euler equations in the frequency domain, respectively,

AP (X, w) + E*p (X,w) =0 (2.3)
and
wpt (X,w) = Vp (X,w) (2.4)

wherek = w/c is the wave numbep(x,w) ando(x,w) are the complex magnitude spectrum of
the acoustic pressure and velocity, respectively. In otfwds, they are the Fourier transforms
of p(x,t) andv (x,¢), i.e., p(x,v) = [*_p(x,t)edt ando(x,v) = [* v(X,t)e ¥ dt. It

is worth noting that the traditional convention of choosafjarmonic time dependence dn“*
results in a negative frequeney= —w in the signal processing sense.

Equation (2.3) is an ordinary differential equation namediniholtz equation.

Hereafter, the overbars will be omitted for the sake of comeece. Unless otherwise speci-
fied, frequency domain is assumed.
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2.2 Directivity patterns

2.2.1 Simple multipole sources

Let (r, 6, ¢) be spherical coordinates, where> 0,0 < § < 7w and0 < ¢ < 27 are, respectively,
the radial coordinate, the zenith angle and the azimutheargl depicted in Fig. 2.1. Hence, the
position vector can be written as= r sin 6 cos ¢ & + 7 sin fsin ¢ , + r cos 0 €, wheree, g, and

e, are the unit vectors of the standard basis in three-dimasasio

Figure 2.1: Spherical coordinates.

Now, consider a pulsating sphere of radiusentered at the origin and letbe the amplitude
of the radial velocity at- = a, which is assumed to be constant over the sphere. Then, under
free-field conditions, solution of Eq.(2.3) in sphericabodinates yields [58]

_ wpQs tk(r—a) 25
p(r) 4rr(1 — Lka)e (2:5)

wherer > a andQ, = 4wa?v is the volume velocity at, also referred to as the source-strength
function. It is worth noting that-.w(@; is the volume acceleration at

Equation (2.5) shows that a pulsating sphere in an unboumgeium gives rise to an out-
going spherically symmetric wave. In addition, the souneispure magnitude decreases linearly
with the distance. Since the acoustic field does not depend @md ¢, the pulsating sphere is an
isotropic or omnidirectional source.

The pulsating sphere can be idealized as a point soutcss et to be very small but very
large, such that), remains constant arieh can be neglected. Such a hypothetical source is called
an acoustic monopole. If it is locatedxtinstead of at = 0, Eq.(2.5) becomes
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P(X) = wpQsG (X, Xs) (2.6)

where
el,k)lX—Xsl

G(X,Xs) = (2.7)

A X — X

is the 3-D free-space Green'’s functtand|x — x| is the radial distance from the source.

Sound fields other than omnidirectional can be obtained pgrposing two or more monopoles.
Consider two monopoles of opposite source-strengtls and —Q),, located atxs + d/2 and
Xs — d/2, respectively, as depicted in Fig. 2.2. Hence, the regufiound pressure is

P(X) = 1wpQuG(X,Xs + 0/2) — 1wpQ.G(X, Xs — d/2) (2.8)

Figure 2.2: Acoustic dipole arbitrarily oriented modelgdttvo monopoles with source-strengths
+Qs and—Qs.

By assuming thad| is vanishing small, an acoustic dipole is obtained. In timst] G(X, Xs+
d/2) can be approximated with a truncated Taylor serie§@sxs) £+ (d/2) - V,G(X, Xs), Where
V, denotes the gradient with respect to the source coordifz8gsThen, Eq.(2.8) simplifies to

p(X) = 1wpQd - V,G(X, Xs) (2.9)

1The Green’s function so defined satisfies the inhomogeneelshbltz equatiomAG (X, Xs) + k2G(X,Xs) =
d(X — Xs), whered(+) is the Dirac delta [59].

17



where

dG(X, X

VG (X, Xs) = ﬁwx — X (2.10)

and ( )

X — Xs
VX —Xg| = 211
‘ S| |X _ Xs‘ ( )

By using Egs.(2.7), (2.10) and (2.11), Eq.(2.9) becomes

k2|d 1 ' e 2.12
p(X)——pC ‘ m|COSSO< + k‘|X—Xs|> 47T|X—Xs| ( . )

whered,, = @.d is the dipole moment angd is the angle between vectatsandx — Xs.

Two monopoles with opposite source-strengths separateahbgfinitesimal distance lead
to a dipole. Analogously, two dipoles with opposite dipolements separated by an infinitesimal
distance lead to a quadrupole. Figure 2.3 shows the two bgmes of quadrupoles: a longitudinal
quadrupole on the left and a lateral quadrupole on the rigigre|d| is vanishing small.

Figure 2.3: Longitudinal (on the left) and lateral (on thght) quadrupoles arbitrarily oriented
modeled by two dipoles with momends, and—d,.

Proceeding similarly as for the dipole, the quadrupole poed a sound pressure field given
by

p(X) = wp(dm - Vi) (d - V)G(X,Xs) (2.13)

Consider a longitudinal quadrupole aligned along theis so thad = |d|e,, dy, = |dn|€;
andxs = z,e,. Then, Eq.(2.13) becomes
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2G(X, Xs)

0
p(X) = wp|dm||d|—7 (2.14)

If z, = 0, one hagx — xs| = r andz = rcosf. Hence, evaluation of the partial derivatives
of the Green'’s function in Eq.(2.14) yields (cf. [58])

L 1 1 1

Lkr
13 _ 2 R T
p(r,0) = —rpck’|dm||d| [(1 3 cos” 0) <k:r 12,3 + 3) 3} e (2.15)

Similarly, for a lateral quadrupole witd = |d|e;, dn = |dum|ex andxs = z,6 + y.€y,
Eq.(2.13) becomes

2G(X, Xs)

0

If x5 =y, = 0,0ne hagx—Xs| = r, x = rsin f cos ¢ andy = r sin f sin ¢. Hence, evaluation
of the partial derivatives of the Green’s function in EqL@).yields (cf. [58])

p(r,0,¢) = —1pck®|dm||d| sin? 6 cos ¢ sin ¢ (k:?ir? —-1- %) Z:; (2.17)

Consider a sound source centered at the origin of the cadslgystem depicted in Fig. 2.1.
The directivity pattern of this source describes its adoustld as a function of) and ¢ for a
givenr, i.e., the directivity function of a sound source is its adiaguadiation pattern. Inspection
of Egs.(2.6), (2.12) and (2.17) reveals that the diregtipigtterns of the monopole, the dipole
aligned along the axis and the lateral quadrupole considered here are, tagdgca constant,
cos A andsin?  cos ¢ sin ¢. These patterns are shown in Fig. 2.4, where they have besratived
to a unitary maximum pressure amplitude. The figure shapeates the magnitude of the sound
pressure, and the dark and light portions indicat8@ phase difference. It is worth noting that
the directivity patterns of these radiators do not depenthemlistance and the frequency.

The angular radiation pattern of the longitudinal quadteps given by the term between
square brackets in Eqg.(2.15). Unlike the radiators preskintFig. 2.4, the longitudinal quadrupole
directivity depends on the non-dimensional paramgteri.e., it depends on the distance and the
frequency. Figure 2.5 illustrates the directivity patgeafi a longitudinal quadrupole aligned along
the z axis forkr = 0.2, kr = 2, kr = 20 and very largekr (farfield). As before, the patterns
have been normalized to a unitary maximum pressure ampliith 0 phase. The figure shape
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Figure 2.4: Directivity patterns of a monopole, a dipole arldteral quadrupole. The figure shape

indicates the magnitude of a normalized sound pressurethandbrk and light portions indicate a
180° phase difference.

indicates the magnitude of the sound pressure and the aeldiegit indicates its phase.
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Figure 2.5: Directivity patterns of a longitudinal quadolp evaluated atr = 0.2, kr = 2,
kr = 20 and under farfield condition. The figure shape indicates thgmtude of a normalized
sound pressure and the color gradient indicates its phase.

The color gradient in Fig. 2.5 reveals that the directiviggtprn is a complex-valued function
that converges to the farfield directivity &s increases. In fact, Fig. 2.4 illustrates very particular
radiators whose directivities do not dependken Unlike the monopole, the dipole and the lateral
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guadrupole, the directivity patterns of most of the actoalsl sources do depend on both distance
and frequency. In addition, unlike the longitudinal quanbiie, the farfield directivity is generally

a function of frequency. When the directivity pattern of aso source is presented in a technical
publication, it is understood that data were taken at thiefdr In the following section, the
nearfield and farfield propagation are discussed.

2.2.2 Nearfield and farfield propagation

When dealing with sound radiation problems under free-fogldditions, it is important to keep
in mind the difference between nearfield and farfield propaga For an arbitrary radiator, if
the sound field is evaluated at a distance sufficiently large fthe source, the sound pressure
magnitude will decrease linearly with distance along aaldie connecting with the source, which
characterizes the farfield propagation. Otherwise, ona@badield propagation.

Equation (2.7) shows that the sound pressure magnitudeipeddby a monopole always
decreases linearly with distance, so that there is no nkhrfien the other hand, the terms in
brackets in Egs.(2.12), (2.15) and (2.17) show that theegengarfield pressure associated with
the dipole and quadrupole. Singe!r—2 andk~2r3 tends to zero faster thar! asr increases,
the nearfield terms vanish at a distance sufficiently largestated before. Then, under farfield
condition, Egs.(2.12), (2.15) and (2.17) simplify to

) 6Lk|X—X5|
p(X) = —pCl{Z |dm‘ Coswm (218)
vkr
3 2,€
p(r,0) = tpck’|dn||d| cos® 0 (2.19)
4dmr
and i
p(r, 0, ) = tpck®|dm||d| sin?  cos ¢ sin gbz (2.20)
wr

Many compact acoustical sources produce three-dimernsioonad fields which can be con-
veniently represented in spherical coordinates in the samyeas the simple multipole sources.
Fortunately, Eq.(2.3) is separable in such a coordinatesyso that application of the method of
separation of variables leads to the general solution uneeifield conditions (see appendix A.2)
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p(r0,6)=> "> AuhD (kr) Y (6, 0) (2.21)

n=0 m=—n

whereA,,, is a constant],zg)() is the spherical Hankel function of the first kind a¥igl'(-) is the
spherical harmonic function that will be discussed in secf.3.1.

Equation (2.21) shows thaﬁf)() describes the radial propagation of each series term. Ex-
plicit expressions of this function for somevalues are [60, 61]

ha) = —i—
L el,l’

WD) = _(EH)? (2.22)
3t 3 e

W = (B0 T

For large arguments, the functiduﬁl)(kr) approacheg—:)" e (kr)~! [60, 61], so that
each propagation term in Eq.(2.21) will decrease lineaiti w, so does the sound pressure mag-
nitude, as stated before. On the other hand, for small argteyhe functiorhﬁll)(k:r) approaches
—u(kr)™"1(2n — 1)!!, where(2n — 1)!! is the double factorial of2n — 1) [62, 61].“ This divergent
behavior, customarily described as the ‘nearfield’, setshen the argumeritr becomes smaller
thann. Hence, the nearfield extends further and further out fon hign fact at anyr, no matter
how large, nearfield behavior will be encountered if suffitelargen values are included” [62].

Briefly, how far one must be from the source in order to ensanféeld propagation depends
on the frequency and the complexity of the directivity patteThe latter is represented by the
largestn that must be retained in Eq.(2.21) in order to accuratelgrigs the sound field, as it
will be explained in section 2.3.1. As frequency increase¥¥@ the directivity pattern becomes
simpler, the nearfield effects take place closer to the sourowever, it is worth noting that the
directivity complexity of an actual source generally ireses with frequency.

2.3 Subspaces for directivity representation

In this section, two distinct subspaces for directivityregentation are described and discussed,
namely, the subspace spanned by spherical harmonic fasctiod the subspace spanned by the
acoustic radiation modes.
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The angular dependence of the solution of the Helmholtz temuan spherical coordinates
— Eq.(2.3) — is given by a linear combination of sphericalrhanic functions (see Eq.(2.21)).
Therefore, these functions constitute a natural basisfmesentation of sound source directivities
and are applied to a wide range of sound radiation problems.

Acoustic radiation modes (also called simply radiation eg)care another class of functions
that is of importance in sound radiation problems. Radmtdes constitute a set of independent
surface velocity distributions and are a useful represiemaof vibration patterns when one is
mainly interested in the sound field radiated by a vibratingcture. Such a modal decomposition
is only a function of the frequency, the radiating structgeemetry and the constraints the body
is subjected to, i.e., it does not depend on the source ofatixe and on the mass and stiffness of
the structure, as it will be made clear later. In additionli@ion modes of some radiators (e.g.,
a continuous sphere) are frequency independent, whereasrfe other radiators (e.g., a capped
cylinder) they are claimed to present such a property [43].

In aiming to achieve a reduced representation of threequsineal radiation patterns, sub-
spaces spanned by a set of spherical harmonics or acoudititioa modes (ARMs) have been
widely used in the analysis of radiated sound fields, as safior®. In the same way, these func-
tions play a major role in this work. It is worth noting thatlpspherical harmonic decomposition
has been used in studying the radiation from compact lowdspearrays, see [22, 21, 27, 26]; ra-
diation modes have not yet been applied to loudspeakersatgtyplanar ones, see [48]. Therefore,
this section provides some background on such basis fartility representation.

2.3.1 Spherical harmonics

As discussed in section 2.2.1, a directivity pattern is aglemvalued function evaluated over the
sphere surface. Then, any directivity pattern with suffit@ntinuity properties can be expanded
in a uniformly convergent double series of spherical harie®due to the completeness property
of these functions [60]. The complex-valued spherical lmama functions are defined for € N
andm € Z : |m| < n by [60, 63]

. (n+m)!Pn (cos 0) '™ (2.23)

Y," (0, 0) = (—1)m\/

where P (-) is the associated Legendre function of the first kind. #or> 0, this function is
related to the Legendre polynomiat,(-), by the formula [60]
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m/2 A" Py (2)

P(z) = (1 —2%) T

n

(2.24)

Form = 0, one hasP’(-) = P,(-). In order to generate the functions for < 0, the
following expression can be used together with Eq.(2.2@) [6

) pm() (2.25)

In this work, n will be referred as the order &f"(-). It is worth noting that some authors
refer ton as degree and ta as order. In addition, spherical harmonics as defined her@airothe
Cordon-Shortley phase factor1)™ and are orthonormal over the spherical surface [60], i.e.,

2w
/ / Y™ (0,6)° Y™ (0, 6) sin 0d0ded = Gy S (2.26)

where the asterisk indicates complex conjugatednds the Kronecker delta.

Figure 2.6 illustrates the complex-valued spherical havie®up to ordem = 3, where
magnitude and phase are represented by figure shape andycadibent, respectively. Explicit
expressions oY, (-) for somen andm values are [60, 61]

1 ) 5 »
Y3(0.0) = —— Yi?(0,6) =\ o -3sin? e
Y0, ¢) = 8% sin fe "¢ Y5 (0,0) =4/ 227?3 sin 6 cosfe™"
3 5 (3 1
Y0, 9) = in cos 6 Yy (0, 0) = yy (5 cos? 0 — 5) (2.27)
Y0, 0) = — 8?; sin fe? Y3 (0,¢) = —1/ 227?3 sin 6 cos fe'?
Y72(0,¢) = 92%3 sin? fe??

Alternatively, the angular dependence of the solution efltelmholtz equation can be ex-
pressed by the real-valued spherical harmonic functigfs;), instead of the complex-valued
spherical harmonics defined in Eq.(2.23). The former aggedIto the latter by [64]
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Y, (0, ) m=20
Yn'(0,0) = § [(=1)™Y,;(0,0) + Y, ™(0,0)]/ (V2)  m>0 (2.28)
[(=D)™Y,™(0,0) =Y, ™(0,0)]/ (1W2)  m<0

In other words, sincé& . ™(0,¢) = (—1)"Y,™(0, ¢)* [61], the functionsy)"(-) are derived
from the real and imaginary parts of the complex-valued gpakharmonics. Such functions are
also orthonormal over the spherical surface.

Figure 2.7 illustrates the real-valued spherical harmonojzto order = 3, where the dark
and light portions indicate 80" phase difference. Comparison of Figs. 2.7 and 2.6 and itispec
of Egs.(2.6), (2.12), (2.17), (2.27) and (2.28) reveal tkat spherical harmonics of ordets= 0,

n = 1 andn = 2 : m # 0 match the radiation patterns of the acoustic monopole,lepand
lateral quadrupoles, respectively. On the other hghd) and real spherical harmonics of higher
orders are only similar to the longitudinal quadrupoleupcies and so on; there is not an exact
correspondence between them [61].

Function spaces spanned by complex or real-valued sphbao@monics of the same order
n are linear subspaces that are invariant with respect td ragation through spatial angles [65].
Then, a rotated spherical harmonic of ordecan be written as a linear combination of spherical
harmonics of orden. The rotation of the complex-valued spherical harmonickeiscribed by [64]

= > Y (0,0) Dl 8,7) (2.29)

m/'=—n

where0) < a < 27,0 < g < wand0 < v < 27 are the zyz Euler angles that relate the original
coordinate systert?, ¢) to the rotated on€)’, ¢’). Following [63], rotation matrices are

Dr, (a,B,7) = e™™edr, (B)e™™ (2.30)
where the functiond,, (-) are related to the Jacobi polynomuafl%” -) according to

dr,. (8) = \/(le:;;:gz : Z/))" <sm§) <cosg) J,(mem ™) (cos3)  (2.31)

Similarly, the rotation of the real-valued spherical hamiaes is described by [64]
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n

WOG) = d(B)60.0) +27 S { [oosm'a)yf (6,6) + sin(m'a)y,™

m/=

(=) o (8) + d i (B)] | (2.32)

for m =0,

yg(@cgb’) = (_1)md8m(/6)C05(m7)\/§y2(9’¢) +
Z {[(—1)m+m’dnm,m(g)cos(m7 +mla)+

(=1)™d",m (B)CO My — m' )] Y™ (0, 9) + (2.33)
[ Yy g (3)sin(mey + m'a)—
(-

D™, (B)sin(my —m'a)] v, ™ (6, ¢)}

form > 0 and

' (0.¢) = (= 1)m+1d” (B)sin(my)V'2y; (0, ¢) +

{ [ ymEmLgn, (B)sin(my + m'a)+

m’/=1

(=)™ d™ e (B)sin(my — m/a)] y (0, ¢) + (2.34)
[ Yy g (B)cogmry + m'a)—
(-

Dmd” L (B)cosmy — m'a)] v, ™ (6, ¢>)}
form < 0.

2.3.2 Acoustic radiation modes (ARMS)

The modal approach for representing the exterior radiati@mracteristics of vibrating structures
has been used since the 1990’s, see [42, 43, 44, 45, 40, 667446]. The expression “radia-
tion mode” first appeared in [67]. In the same way as the sirattnodes widely used in solid
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mechanics and vibration analysis [68], the acoustic remhanodes are real orthogonal functions
describing surface velocity patterns. In addition, forlarating system with degrees of freedom,
these modal approaches both lead to a sétlafearly independent modes. On the other hand, un-
like structural modes, radiation modes are defined so tlegtridiate sound energy independently,
i.e., the total radiated sound power is given by a linear doatlon of the sound power produced
by each mode. Then, in applications where one is mainlyested in the sound field, a reduced
representation of the surface velocity can be achieved bleatng the radiation modes which do
not radiate efficiently.

Another advantage of radiation modes over structural maglésat, unlike the latter, the
former do not depend on the mass and stiffness of the vilgrabhd body, i.e., the material prop-
erties and thickness play no role in determining the ramiiathodes, which are only a function
of the frequency, the body shape and the constraints it igesiga to, as it will be made clear
later. In addition, radiation modes of some radiators (détge continuous sphere) are frequency
independent [43].

As far as a vibration system with a finite number of degreesedfdom is concerned, its ra-
diation modes span an equally finite dimension subspace @hwhy radiation pattern that such
a system is able to generate can be projected. Such a usejdrpr does not hold for the spher-
ical harmonic representation of the sound field producectsydame radiator. Actually, the real
spherical harmonics are the radiation modes of the contimgphere [40], i.e., the sphere which
is able to assume any surface velocity pattern (infinite remolbdegrees of freedom). Therefore,
spherical harmonics span an infinite dimension subspaceydse verified by noting that the index
n in EQ.(2.23) is unbounded. Hence, truncation error gelyeaaises from the spherical harmonic
decomposition, which can be dealt with by retaining a largenber of terms. Further details will
be provided in section 3.1.

In the following, it will be shown how to obtain the radiatiomodes for a discrete structure
with an arbitrary shape by accomplishing the eigenvaluéyaiseof a radiation operator.

LetI" be a surface enclosing the sound sourceragde the unit normal pointing out of the
volume containing the source. Then, the acoustic pdWerdiated by the source is [58]

r

wherep is the sound pressure, is the acoustic velocity and the asterisk indicates the ¢exnp
conjugate.
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The radiation efficiency of a vibrating structure is commonly defined as (see [44, 8(), 6

1%
peS (|vn(Xs)?)
where S is the effective area of the vibrating surfaSewv,, is the acoustic velocity normal 9,
Xs € S is a point on the radiator surface afl is the spatial mean operator usually defined so
that (see [40])

g

(2.36)

(Jun(xs)?) = %/S\vn(xs)ﬁdxs (2.37)

For a vibrating structure witlh. degrees of freedom, the surface velocity can be represented
as

L
Un(XS) = Zulgl(xs) = UTE(XS) (2.38)
=1

whereu is a column vector of velocity amplitude coefficien§$xs) is a column vector containing
an arbitrary complete set of orthogonal functions definedhensurfaceS and the superscript T
indicates the transpose.

Substitution of Eq.(2.38) into (2.37) yields

{|va(xs)?) = ufVu (2.39)

whereV = (25)7! [ €*(xs)€" (Xs)dXs is anL x L matrix, the superscript H indicates the complex
conjugate transpose. Singg) is a set of orthogonal function¥, is a real positive diagonal matrix.

The calculation of the acoustic power radiated from a discséructure generally leads to
expressions of the form (cf. [43, 44, 45, 40, 66, 47])

W = peSutCu (2.40)

whereC is anL x L real symmetric matrix [43, 45, 40] which couples the poweliated by the
elements ofi.

Substitution of Eqgs.(2.40) and (2.39) into (2.36) yields
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() utCu
0’ =
uHVu

(2.41)

Notice that the radiation efficiency is in the form of the getieed Rayleigh quotient. Thus,
the solution of the generalized eigenvalue probf@g = AV leads to a set of. real orthogonal
eigenvectors),, v, ..., corresponding to real eigenvalues, orderedas X, > ... > L.
These eigenvectors are the acoustic radiation modes (ARMkdhe eigenvalues are their radiation
efficiency coefficients, i.eq, = o(v,) = \;.

Let ¥ be anL x L modal matrix whose columns contain the radiation mogiesThen,u
can be decomposed over such a basis, so that

u=wc (2.42)
wherec is a column vector containing nondimensional coefficients.

In addition, the generalized eigenvalue problem can beittewras

C¥ = VWA (2.43)

whereA is anL x L diagonal matrix containing the eigenvalues

Let the eigenvectors be normalized so tildV & = |, wherel is the identity matrix. Hence,
substitution of EQgs.(2.42) and (2.43) into (2.40) yields

L
W = pcScAc = peS Z a1le]? (2.44)

=1
Finally, substitution of Eqs.(2.42) and (2.43) into (2.489ds to

_ c"Ac _ Zlel alle)?

= = (2.45)
cc ZIL:1 |Cl‘2

Inspection of Eqs.(2.44) and (2.45) reveals, respectitiefjt acoustic radiation modes radi-
ate sound energy independently and tha< o < o4, i.e., an arbitrary velocity pattern cannot be
either more efficient than the 1st mode, or less efficient tharith mode. Hence, acoustic radia-
tion modes allow to rank expansion terms by their radiatifiniencies, and to define a truncation
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order from a required accuracy. Therefore, they improv&asarvelocity representation upon just
using some arbitrary orthogonal bagis).

2.4 Spatial sound rendering using loudspeaker arrays

2.4.1 Theory

Let I, andI’; be smooth closed surfaces defined so tha¢énclosed’;, as illustrated in Fig.2.8.

Moreover, there are no sound sources and scatterers inlima&® between these surfaces, which
will be called from now on “listening area”.

Figure 2.8: An acoustic domain (“listening area’), bounded byl", andT’;, free of sound sources
and scatterers.

Now, letI', andI', be the portions of the boundary on which, respectively, tt@uatic
pressure and velocity are specified. Hencé, # I', U I';, one had’, C I" andI', C I', so that
r=r,ur,, wherel', NI, = 0. Let~,(x) and~,(x) be, respectively, the sound pressuré& at
and the acoustic velocity &, normal to it pointing out to the exterior &f. The acoustic field on
the boundary is due to the presence of acoustical sourcs&leut, which will be called “primary

sources”. Then, the sound pressuré/ims the solution of the following boundary value problem
(refer to Eqgs.(2.3) and (2.4)):
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Ap(X) + k*p(X) =0 VxeV

Yp(X) vx el (2.46)
—wpr(X)  YxeTl,

8 out

whereng is the unit vector normal td and pointing out to the exterior &f.

For all frequencies but the natural frequencies of the aamisystem, this boundary value
problem has a unique solution [59], i.e., the sound field@ inesulting from the primary sources
and scatterers is entirely determined by the boundary tiondi Therefore, if the primary sources
(and, eventually, the scatterers) are replaced by secpsdarces (e.g., loudspeakers) that lead to
the same pressure on the boundary as the original configarditil, the sound field produced by
the secondary sources in the listening area will be exalodysame of that one generated by the
primary sources. It is worth noting thag(x) and-~, (x) are complex-valued functions, so that their
magnitude and phase must be considered.

The Green'’s representation of the solution of the proble#6)Ris given by the following
expression, also known as Kirchhoff-Helmholtz integr&l][5

oo = | (za(ng G2 (XS)) T (2.47)

anout ar‘OUt

wherex € V andxs € I'. If x € R3, G(x,Xs) is the 3-D free-space Green’s function given in
Eq.(2.7).

As discussed in section 2.2.1, the functi6iix, Xs) can be interpreted as the field of a
monopole source placed at the poxat Similarly, the directional derivative af(x, Xs) can be
interpreted as the field of a dipole source placedsaivhose main axis lies in the direction of
Nout- Then, EQ.(2.47) states that the sources and scatterasid®litcan be replaced by monopoles
and/or dipoles continuously distributed on the boundaryit is worth noting thaty(xs) and its
directional derivatives are not independent, the unknawetion can be obtained by substituting
the boundary conditions in Eq.(2.47) witton the boundary.

If the Helmholtz equation is separable in the chosen coatdisystem, the method of sepa-
ration of variables can be used to solve it. If so, such a Emlutan be used as an alternative to the
Kirchhoff-Helmholtz integral. As stated before, the Helotth equation is separable in spherical
coordinates and its general solution is (see appendix A)
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(r,0,0) = Z Z (Apnh Y (k1) + Brunh® (k1)) Y™ (0, ) (2.48)
n=0 m=—n
where A,,,, and B,,,, are constants to be determined from the boundary condjt?df‘?i-) is the
spherical Hankel function of the second kind. Since a haimbme dependence of the form
e~ has been assumefd,” (kr) andh(? (kr) represent an outgoing wave and an incoming wave,
respectively [61].

If T, andI’; are concentric spherical surfaces, the series coefficiéptsand B,,,,, can be
obtained through the knowledge of either the acoustic press the radial acoustic velocity at all
points on the two concentric spheres.

The solution of the boundary value problem described by Z4f) is simplified if there
are no sources and scatterers outdidgeor insidel’;. If so, one has an exterior problem or an
interior problem, respectively, as depicted in Fig. 2.9eif ithe coefficientsl,,,, and B,,,,, are not
independent of each other. For an exterior problem (frdd-fieund radiation), the outer sphere
can be eliminated an&,,,, = 0 in Eq.(2.48) due to the fact that there are no incoming wakes.
an interior problem, the inner sphere can be eliminatedapgd = B,,, [62], so that Eq.(2.48)
simplifies to

(r,0,0) = Z Z Apnn (k1) Y™ (0, ) (2.49)

n=0 m=—n

wherej, (z) = b (z) + AP (z) is the spherical Bessel function of the first kind (see apixef

The primary source(s) (and, eventually, scatterers) geéeé) a 3-D acoustic field that can be
recorded using a suitable arrangement of microphones. , Themesulting multi-track recording
can be reproduced by a set of loudspeakers operating at e saquency range (secondary
sources). Figure 2.10 depicts playback configurationsexmig irradiation reproduction (interior
problem) and radiation reproduction (exterior problem)esi8les playback of a recorded sound
field, the loudspeaker arrays can also be used to achievialspaitrol of the acoustic field, for
example, in real time performances. In addition, they candagl as improved sound enhancement
systems that do not modify the spatial characteristics efstbund field produced by the primary
sources. Similarly, loudspeaker arrays can be used ineatise control applications. Anyway,
the problem of evaluating the electrical signal that wildreach loudspeaker must be undertaken.

In the following section, some of the most promising teclbigas for spatial sound rendering
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using loudspeaker arrays are introduced.

2.4.2 Spatial audio systems

The most of the spatial audio systems has been conceivedddiadtion reproduction, which is
illustrated on the left side of Fig. 2.10. The main charasterof these systems is that many virtual
sources located outside the listening area can be condjdarye¢hat the listeners are immersed in
a complex sound scene. The stereophonic systems, congpthigirtonventional “surround” audio,
are the most common irradiation reproduction systems. Mewéhese systems present a reduced
“sweet spot”, the rear channels are only for ambiance oriabeffects and they do not provide a
stable position of the virtual sources, i.e., optimum hatg is restricted to a small fraction of the
listening area, and the virtual sources cannot be placedyrpasition of the 3-D space outside
the listening area. There are more sophisticated systeahattempt to overcome these limitations,
like Wave Field Synthesis (WFS) and Ambisonics, which walldxiefly described in the following.

The WFS is a well established spatial audio rendering teglenihat potentially leads to an
exact reproduction of the desired sound field within the wHigkening area. It was first proposed
by Berkhout in 1988 [69] and is based on the Kirchhoff-Helhtthmtegral (Eq.(2.47)), so that the
effect of primary sources is recreated by a continuousibigton of monopole and dipole sources
on a closed surface around the listening area.

However, in actual WFS installations, the continuous ttigtion of secondary sources is
replaced by a loudspeaker array with a finite number of tnacesdé. This can be sought as a spatial
sampling process, which leads to spatial aliasing arsfwit can degrade the system performance
when the wavelength of the sound to be reproduced is smatimparison to the average distance
between the secondary sources. Hence, a large number adlyl@tsced loudspeakers must be
used in order not to produce audible spatial aliasing atsfaso that WFS remains a high cost
spatial audio solution. Moreover, since WFS attempts taikte the acoustic characteristics of a
virtual space, the acoustics of the rendition space mustipgressed. However, the difficulties in
predicting the interaction between the secondary sourtthe room they are placed in make this
problem complex to address. This can be dealt with by plattiegvhole system in an anechoic
chamber, which would increase the system cost. For furtbiaild about the WFS, refer to [69, 4,
70, 71].

The Ambisonics is a spatial audio recording and renderiogrigue that aims to reproduce
a desired sound field at the center of a loudspeaker setupadtfist proposed by Gerzon in
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1973 [5] and is based on the spherical harmonic decompnosifithe sound field, so that Eq.(2.49)
is applied.

Like the WFS, the performance of the Ambisonics systemsriged by the number of loud-
speakers. Since EQ.(2.49) represents an infinite sum, ties seust be truncated to a given order
n < N which determines the minimum number of loudspeakers. lerotfords, the system per-
formance is improved by reducing the truncation error, Wwidan be dealt with by increasing the
number of loudspeakers. The so-called B-format signaldhatd Ambisonic signal of first order
(N = 1), i.e., the sound information is encoded in four channefsesponding to the monopole
and to the dipoles shown in Fig. 2.7. Systems with more cHarare referred to Higher Order
Ambisonics (HOA).

Nowadays, the HOA is an active area of research and develupriée first Ambisonics
Symposium was held in june 2009 at the IEM in Graz (Austriapr farther details about the
Ambisonics, refer to the symposium proceedings [72].

Unlike the irradiation reproduction, there are not manyiaggistems providing sound radia-
tion control, which is illustrated on the right side of Figl@. As discussed in section 1.2, the most
common radiation reproduction systems are the compactisph®udspeaker arrays largely em-
ployed to obtain an approximate omnidirectional sourceoomr acoustics measurements. Sound
fields other than omnidirectional can be obtained by usingrapact array of independently pro-
grammable loudspeakers. Compact spherical loudspealessdor radiation control is a timely
research field and some aspects concerning their electrsiécal behavior and practical imple-
mentation remain unclear. This work deals with such systems

37



Chapter 3

Spherical Loudspeaker Array Modeling

3.1 Sound radiation

Sphere-like structures (e.g., dodecahedra and icosgheaira been proposed for directivity syn-
thesis by a compact loudspeaker array (see [25, 31, 22, 3Zi86e their high symmetry is desir-
able when controlling sound fields in a three-dimensionatep For the same reason, the acoustic
radiation from spherical sources can be evaluated anallytizccording to the expressions that will
be developed in this chapter. It is worth noting that dodedad and icosahedra can be modeled as
spheres for acoustic purposes.

Here, two different spherical sources are considered: ¢batinuous” sphere and the “dis-
crete” sphere. The continuous sphere can assume any yal@tiibution on its surface, i.e., it can
oscillate continuously over its surface. On the other hémel discrete sphere is a set of spherical
caps mounted on a rigid sphere; each cap can oscillate indep#y with a constant radial velocity
over its surface, so that the discrete sphere has a finite eluofillegrees of freedom equal to the
number of caps.

3.1.1 Continuous sphere

The complex sound pressure amplitude outside a radiatimgrsjin the free-field condition is given
by Eq.(2.21), and the complex radial velocity amplitude&ddr to appendix A.2)
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L 00 n (1) r
v (Tv 97 (b) = _E Z Z Aan%)Ynm (97 ¢) (31)

n=0 m=—n d <k

It has been demonstrated that the spherical harmonicseaaetiustic radiation modes (ARMSs)
of the continuous sphefg40]. Thus, substitution of thewn-th term of Egs.(2.21) and (3.1) into
(2.35) and (2.37) leads, respectively, to the radiated pawe to the spatial mean-square velocity

for themn-th mode, i.e.,

1 (A

and
(3.3)

1 <|Amn|a) 2 dhSY (ka) dhP (ka)

(vmn(@,8.0)F%) = 55 | =2 d(ka)  d(ka)

whereaq is the sphere radius arftl= 4ma?.

Substitution of Egs.(3.2) and (3.3) into (2.36) leads tordmdiation efficiency of thenn-th
mode (cf. [40])

- LA (ka) dh® (ka)\
"m"_<<k“) d(ka)  d(ka) (3-4)

wheremn = n? + n + 1 + m is used for linear indexing of the spherical harmonics.

Equation (3.4) shows that,,,, does not depend om and it is only a function of the non-
dimensional parametéw for spherical harmonics of a given orderThe radiation efficiencies for
the first 49 radiation modes of the continuous sphere (spdddrarmonics up to order = 6) are
presented in Fig. 3.1.

Figure 3.1 illustrates the grouping characteristic of tbeustic radiation modes discussed in
[40]. The number of modes within each groupist+1,i.e.,1 (¢ =0),3(n=1),5n=2),7(n =
3), 9 (n = 4), etc. Itis shown that,,,, increases wittta and decreases with Moreover, at lowka
values, the radiation efficiency is strongly affectedryyso that simple directivity patterns (lower
order spherical harmonics) radiate much more efficienyttomplex ones. This result pinpoints
the main difficulty concerning sound radiation reproduciiothe low-frequency range: the sphere

LIt is worth noting that, in this work, the radiation modes defined as surface velocity patterns, as in [40]. Some
authors call “radiation mode” the surface velocity pattana its corresponding farfield radiation pattern, or only th
latter.
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Figure 3.1: Radiation efficiencies of the first 49 acoustéiaton modes of the continuous sphere
(spherical harmonics).

surface must present a huge velocity amplitude in order edymre complex directivity patterns

with meaningful sound power levels. Besides technical raimds concerning large displacements
of a real electroacoustic source, the linearized wave efuatesented in section 2.1 does not
describe properly the system dynamics for large displaoésmso that a non-linear model must be
used. It is worth noting that,,,, can be increased over a given frequency range by increasing
However, in practice, a larger sphere limits the radiationtml in the high-frequency range, as it
will become clear throughout this work.

3.1.2 Discrete sphere

The sound radiation from a loudspeaker mounted on a rigidreptan be approximated by mod-
eling the loudspeaker diaphragm as a spherical cap thdtabssiwith a constant radial velocity
over its surface [49, 73, 33, 39, 26]. This model better apipnates the actual loudspeaker sound
field as the aperture angle of the cap is made smaller. In thiik,\& spherical loudspeaker array is
modeled as a discrete sphere.

Figure 3.2 illustrates a spherical cap mounted on a rigigésplwherdy, z) are global Carte-
sian coordinates,. is the position vector of the center of the capis the position vector of a given
but arbitrary point outside the sphefg,is the half aperture angle of the capjs the zenith angle
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in local coordinates and is the zenith angle in global coordinates. The position ef¢anter of
the cap defines the local coordinates so thabbrresponds t6, = 0.

74

Figure 3.2: Spherical cap with aperture anjJenounted on a rigid sphere it

Equations (2.21) and (3.1) describe the acoustic field. Netvwhe cap oscillate with a con-
stant radial velocity amplitude, over its surface, i.e§, = 1 over the cap surface orotherwise
(refer to Eq.(2.38)). Then,

Uuy |f 91 S 80
0 = 3.5
vie, b 6) {o if 6 < 6, < (3:5)
By lettingr = a in EQ.(3.1), one has
0 (0,61, ) = ——Z S 4, sl (600 (3.6)

n=0 m=—n

By using the orthonormality property of the spherical hamnms, multiplication of Eq.(3.6)
by Y™ (6, #;)" and integration over the unit sphere yields

Lpc %
Amn (1 / / Gl, ¢l) sin 91d¢91d¢l (37)
dhy’ (ka)
d (ka)

Letn = cos 6;. Hence, by using Eq.(2.23),

41



o[ . . on+1 !
/ / Y, (01, ¢0)" sin 0,d6idey = 2m0mo | 1 / P, (n)dn (3.8)
0 0 ™ cos g

But, according to [60],

1 1 fl (dpn+1 (77) _dPn 1( ))dﬁ ifn>0
/ Py(m)ydn=q 2n+1°"" dn dn (3.9)
o fnlo ldn ifn=0

wherer, = cos b.

Substitution of Eq.(3.9) into (3.8) yields

// Ynm,*dQ _ 6m0 ﬂ- Pn—l(”()) - Pn—i-l(n(]) If n>0 (310)
& 2n+1 | 1—-mn ifn=0

where(), is the angular sector containing the spherical capééher sin ,d6,d¢;, SO thatfol dQ =
27(1 — cos 6y) is the solid angle of the spherical cap.

Finally, substitution of Eq.(3.10) into (3.7) leads to (&1])

A = Lfcul \/Ttsmo Po-1(n0) = Paya(no) !f n>0 (3.11)
dhD (kay V 2n+1 L= =0
~d(ka)

Notice thatr. defines a symmetry axis. For this reasdn,, = 0 if m # 0, since spherical
harmonics withm # 0 do not present axial symmetry, as shown in Fig. 2.6. Heneestlund
pressure and the radial acoustic velocity produced by thébeaome, respectively,

(r, 01, ¢1) ZAon Y (61, 6) (3.12)
and "
P dhy, (kr)
u(r, b, &) = T ;AOnWYr?(eb(bl) (3.13)

By letting («y, 5;, ;) be the zyz Euler angles that locatein the global coordinates system,
substitution of EQ.(2.29) into (3.12) and (3.13) leads to
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(r,0,0) = Z Z Agnh P (kr) Y, (0, 6) D (e, B, 1) (3.14)

n=0 m=—n

and

u(r8,0)=——3% 3 AOHMW(Q,@D;O(@Z,@,%) (3.15)

By superimposing the radiated fields frdntaps with the same aperture angle and truncating
the series so that < NV, the sound pressure and radial acoustic velocity genebgtedspherical
array are

p=uB'Y (3.16)
and

v=u"E'Y (3.17)

whereu is a column vector containing the velocities of theaps andy is a vector that contains
(N +1)* spherical harmonics, so thet= Y™, withi = n*4+n+1+m. BandE are(N +1)? x L
matrices given by

= _AOnh (kr)Dn (alv ﬁlv 71) (318)
and 0
L dhy,”’ (k)
E;=— A D A
il oo, on d(kr) mo(az,ﬁl, %) (3.19)

Substitution of Eqgs. (2.26), (3.16) and (3.17) into (2.38)ds to

2
W= %UT%{BHE}u (3.20)

Then, comparison of Eq.(2.40) with (3.20) yields

C=

H
2pcS§R {B"E} (3.21)

It is worth noting thatC is real and symmetric, as required. In addition, it does epietd
onr, as expected (see appendix B).
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Since it has been assumed that all spherical caps have tleeasam the net vibration surface
is S = 2ma?(1 — cos fy) L. Thus, Eq.(2.39) becomes

o Uu

Comparison of Eq.(2.39) with (3.22) reveals that

V=l (3.23)

wherel is the identity matrix.

Finally, the acoustic radiation modes of the discrete sphead the corresponding radiation
efficiencies can be obtained as described in section 2.3.2.

3.1.2.1 Convex regular polyhedra

The equations presented up to now can be used to predict timel $i@ld radiated by a discrete
sphere regardless of the positions of the spherical capslweasphere. As far as radiation control
in the full three-dimensional space is concerned, the lpeakers must be distributed as symmet-
rically as possible over the spherical array frame in oragrte favor any portion of the rendition
space. Therefore, to distribute the spherical caps ovespghere according to a Platonic solid sym-
metry (i.e., the spatial orientation of each cap is made leguée vector normal to a face of the
polyhedron) presents great interest, as said before.

Figure 3.3 shows the five Platonic solids (convex regulayhpedra) and their midspheres.
The midsphere of a polyhedron is a sphere which is tangeneiy @dge of the solid. The radius
of the midsphere is called the midradius. It is worth notingtf for acoustic purposes, a Platonic
solid can be approximated by a sphere whose radius,the polyhedron’s midradius.

The so-called dihedral angle of a Platonic solid is the integingle between the planes of
two adjacent faces. Then, it can be verified that the uppét 69, so that the spherical caps
do not overlap each other is half the supplement of the déledrgle. The dihedral angles are
70.5%, 90°, 109.5%, 116.6° and138.2° for the tetrahedron, hexahedron, octahedron, dodecatedro
and icosahedron, respectively [74]. Hence, the correspgndaximumd, are54.7°, 45°, 35.2°,
31.7° and20.9°. Then, the rati@ma®(1 — cosby) L/ (4ma?) represents the available fraction of the
spherical surface to mount the loudspeakers, namsdlyJ%, 87.9%, 73.1%, 89.5% and 65.8%,
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tetrahedron hexahedron octahedron dodecahedron  icosahedron

Figure 3.3: Convex regular polyhedra (Platonic solids) tueit midspheres.

respectively. Therefore, among the Platonic solids hathegsame midradius, the dodecahedron
presents the largest surface area available for assentbémdyivers, i.e., one can use larger drivers
so that a higher sound power is obtained for a given

In order to obtain the acoustic radiation modes and theiati@ch efficiencies, the eigenvalue
problem given by Eq.(2.43) must be solved, wh€randV are given by Egs.(3.21) and (3.23),
respectively. These matrices dependiand,, L and on the Euler angles defining the position of
each spherical cap on the sphere. The Cartesian coordofdtescenter of each face of a Platonic
solid and the corresponding Euler angle are given in appeDdi

Despite the fact that is a function ofka andf,, it has been observed that the eigenvalue
analysis leads to the same setlobrthogonal eigenvectords, regardless of théa andf, values.
Therefore, the results suggest that the acoustic radiatiotes of a discrete sphere based on a
Platonic solid do not depend dm, as is the case for a continuous spRefEhe modal matrix¥
for each Platonic solid is presented in appendix C. Itis lvadting that, in this work, the radiation
modes are defined as surface velocity patterns. Some awhlbrsadiation mode” the surface
velocity pattern and its corresponding farfield radiatiati@rn, or only the latter.

Unlike the modal matrix, the radiation efficiency of eachiaéidn mode depends strongly on
ka. Figures 3.4 to 3.8 show the radiation efficiency of the roiiamodes (ARMs) of the discrete
spheres based on the Platonic solids as a functidm.ofor comparison, the radiation efficiency
of the radiation modes of the continuous sphere (spherarahbnics) are also presented.

It can be noticed that the radiation modes of the discretergghpresent the grouping char-
acteristic in the same way as the continuous sphere — eactf dine Figs. 3.4 to 3.8 corresponds
to a radiation group excepted for Fig. 3.7, which presentsrawdiation groups for the icosahedron.

2The frequency independence property of radiation modes aoghold for a general radiator geometry. However,
a “nesting” property stating that the efficient radiationdas at frequency < w4 can be decomposed over the
efficient radiation modes at,,... is suggested in [43]. This property holds analytically fpherical, cylindrical and
plane radiators (with infinite number of degrees of freedommereas it is a conjecture for some radiators other than
these ones.
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In addition, it is shown that the continuous and discreteesplourves present the same behavior at
low ka values, so that the efficiency curves of the radiation gr@aupsvell discriminated. There-
fore, the radiation modes have been arranged in descendieg af their radiation efficiencies in
the lowka range.

In order to better illustrate the relation between the attolehavior of the continuous and
discrete spheres, the sound pressure patterns producemngyacoustic radiation modes of the
discrete spheres based on the five Platonic solids are simokigs. 3.9 to 3.12. These directivity
patterns have been evaluated on a spherical surface osradiul0a for ka = 0.1. It has been
assumed), = 54.7Y, 45.0°, 35.2°, 31.7° and 20.9° for the tetrahedron, hexahedron, octahedron,
dodecahedron and icosahedron, respectively. Thesdues correspond to the maximum values so
that the spherical caps do not overlap each other. The gpviers by Eq.(3.14) has been truncated
to orderN = 10 and the medium properties assumed te be343m /s andp = 1.21kg/m?.

Comparison of Figs. 3.9 to 3.12 with Fig. 2.7 reveals thatdinectivity patterns associated
to the radiation modes of the discrete spheres match reatisphharmonic functions. Since the
acoustic radiation modes are real modes, they lead to theeggasentation of spherical harmonics
rather than the complex one.

Figure 3.13 shows the sound pressure patterns producee fiydhacoustic radiation mode
of the discrete spheres based on the five Platonic solidskéJthle patterns presented in Fig. 3.9,
these directivity patterns have been evaluatdehat 5.
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Figure 3.9: Sound pressure patterns corresponding to th AR of the discrete spheres based
on the five Platonic solids. Patterns obtainediaer= 0.1 at a distance = 10a from the sphere
center.
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Figure 3.10: Sound pressure patterns corresponding tof#M A 2 of the discrete spheres based
on the five Platonic solids. Patterns obtainediaer= 0.1 at a distance = 10a from the sphere
center.
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Hexahedron: ARM # 6 Octahedron: ARM # 6 Dodecahedron: ARM # 6 Icosahedron: ARM # 9
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Figure 3.11: Sound pressure patterns corresponding to B A 6 of the hexahedron-like,
octahedron-like and dodecahedron-like spheres, as wéleeBRM # 9 of the icosahedron-like
sphere. Patterns obtained far = 0.1 at a distance = 10a from the sphere center.
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Figure 3.12: Sound pressure patterns corresponding tofé #A8 of the octahedron-like sphere,
the ARM # 12 of the dodecahedron-like sphere and the ARM # tBefcosahedron-like sphere.
Patterns obtained fdra = 0.1 at a distance = 10a from the sphere center.
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Figure 3.13: Sound pressure patterns corresponding tof#M A 1 of the discrete spheres based
on the five Platonic solids. Patterns obtainediar= 5 at a distance = 10a from the sphere
center.

Comparison of Figs. 2.7 and 3.13 shows that there are dsccsgs between the radiated
sound fields and the real spherical harmonics. This arisetodhe fact that the radiation efficiency
curves of the spherical harmonics become closénascreases (refer to Fig. 3.1), so that the higher
order spherical harmonics excited by the discrete sphartibaote significantly to the resulting
sound field. In other words, the radiated sound field is a fioeebination of spherical harmonics
of distinct orders rather than a pure spherical harmonictfan. Since this phenomenon takes
place due to the discretization of the radiation surfachag been called “spatial aliasing” in the
sound reproduction literature (cf. [71, 21, 52, 75]). Farttetails will be provided in section 4.2.

3.2 Electromechanical behavior

In this section, an electromechanical model of a compaaidpeaker array is presented. The
theoretical development is divided into two subsectionghek first, the electrical and mechanical
behavior of the array drivers is considered (here, onlyteddgnamic loudspeakers are concerned).
Then, two different approaches for modeling the acoustipling between drivers are presented.

3.2.1 Electrodynamic loudspeakers

An electrodynamic loudspeaker can be modeled as a singteaed-freedom (SDOF) mechanical
system driven by electromagnetic and acoustic forces. Tdssmof the driver diaphragm assembly
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M, the mechanical compliance of the driver suspensgioand its mechanical resistanéepro-
vide, respectively, the inertial, the energy storage amcktiergy dissipation elements of the SDOF
system. By assuming a harmonic time dependence of the dotrh, application of the Newton'’s
second law leads to

1
—wMuy + Ry — ——uy = F9 + F© (3.24)
wC

where the subscrigtrefers to thd-th loudspeaker of the array. (s the number of loudspeakers),
wy IS its veIocity,Fl(e) is the electromagnetic force an]@‘“) is the net acoustic force acting on the
driver diaphragm.

Now, let B be the magnetic flux density in the driver air gap @nthe length of the voice-
coil conductor in the magnetic field, so that the diaphragmentent generates an induced voltage
given by Bl.u. On the other hand, the electromagnetic force acting on idqghdagm due to the
presence of an electrical currenin a magnetic field is given by(®) = Bl.i. Hence, application
of the Kirchhoff’s second law leads to

e Ble
F9 = (z@)l (v — (Bl,), w) (3.25)
l

where(Bl.), is the force factor of théth loudspeaker uniizl(e) is the clamped electrical impedance
(u; = 0) of its voice-coil andy, is the voltage that feeds tlieh driver.

Many models have been proposed to evaIL@ﬁeé. The simplest one considers it as an
electrical resistance and is restricted to low-frequen@lysis [76]. As frequency increases, the
voice-coil inductance greatly affects its electrical idpace. In this work, following [77], the
electrical part of the transduction system is modeled asiatoe in series with a lossy inductor, so
thatZl(e) is explicitly given by

7 = R + Ky(—w)™ (3.26)

whereRl(e) is the voice-coil resistance of tligh driver andK; andn; are parameters of the lossy
inductor model.

Substitution of Eq.(3.25) into (3.24) yields

1 Bl,.)? .
—wM, + R — — + (B, w— F = (3.27)
w(C Zl(e)

whereb;, = (Zl(e))_l(Ble)lvl is the clamped electromagnetic force.
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Equation (3.27) can be written in matrix notation as
Gu-—-f,=b (3.28)

whereG is anL x L diagonal matrix whose entries aje= —LanLRl—(LwCl)‘1+(Zl(e))—1 (Bl.)?,
uis anlL x 1 vector of velocity amplitude coefficients, is anL x 1 vector of acoustic forces acting
on the loudspeakers diaphragms #&nd an x 1 vector whose components dre

In this section, algebraic expressions have been developedier to evaluaté&. In the
following, two distinct analytical models used to obtéjrare presented.

3.2.2 Acoustical coupling

Now, letp;, andp}, be the net sound pressures acting, respectively, on the ameouter di-
aphragm surface of thieth driver due to the movement of tlieth driver. Then, the net acoustic

force can be written as
L

F =53 (o — i) (3.29)

I'=1
wheres, is the net surface area of th¢h loudspeaker unit.
Let Sbe anL x L diagonal matrix containing; in its entries. Then, Eq.(3.29) can be written

in matrix notation as follows
f,=S(Z"-Z")Su (3.30)

whereZ~ andZ™ are, respectively, the internal and external acousticeiltapce matriced(x L)
which describe the acoustical coupling between the arrangd.

Finally, substitution of Eq.(3.30) into (3.28) leads to
(G+S(Z"-Z27)Su=b (3.31)
As far as the enclosure design is concerned, two differgmtogghes have been reported in
literature. In the first approach, the drivers share a comhudlow enclosure [31, 30] and, in the

second, they have their own independent sealed cavitie2[@1 In the latter, there will be no
internal acoustic coupling so that will be diagonal.
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3.2.2.1 Lumped-parameter model

Let V;, be the net internal volume of the loudspeaker array. If treyal’dimensions of the latter
are much smaller than an acoustic wavelength and the enésgipation is not taken into ac-
count, the enclosure behavior can be described by an acalustimpliance, = V;/pc?, i.e., a
lumped-parameter element which stores energy, whésehe medium density andis the sound
speed [58]. Hence, the acoustic impedance associatedheittolumeV, is Z, = (wC;,)~! and
the entries of the internal coupling mat@x becomes

2

_ pc
Ly = —— .32
w= o (3.32)

Equation (3.32) shows that,, does not depend on the pair of drivers considered and it pro-
vides a simple and low computational cost way to evaluatatio@stic coupling between the loud-
speakers in the array cavity. On the other hand, the extanmaistic coupling cannot be so easily
evaluated. Fortunately, the external acoustic force idlstampared to the other forces acting on
a loudspeaker diaphragm, so that it is not able to apprecaffect the system electromechanics.
Therefore, the external acoustic coupling is neglected aerd it is assumed that each loudspeaker
behaves as a piston mounted on an infinite baffle as far astimakforce acting on its diaphragm
is concerned. The acoustic radiation impedance of a bagfildn radiator is given by [58]

25— L° (1 _A(2kr) LH1(2lm)) 5 (3.33)

7r7"l2 kry kr;

wherer, is the radius of thé-th piston,k is the wave numbet], (-) is the Bessel function of first
kind and orderl, H,(-) is the Struve function of order and ;. is the Kronecker delta. At low
frequencies, the main effect of this radiation impedande isicrease slightly the moving mass,
whose value is therefore given as a corrected value (inotudidiation) in commercial data sheets.

If each transducer has an independent sealed cavity, thiesof the internal acoustic-
impedance matrix becom&; = pc2(wV, )" and Z;, = 0 for I # I, whereV,") is the net
internal volume of the cavity of thith driver.

3.2.2.2 Distributed-parameter model

Similar to the exterior sound field, the interior field prodddiy a loudspeaker unit mounted on
an empty rigid sphere can be approximated by modeling th@sjpeaker diaphragm as a convex
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spherical cap that oscillates with a constant radial vetogi over its surface. If so, the sound
pressure inside the array’s cavity is given by Eq.(A.22).e Toefficients(),,,, of the series are
(compare to Eq.(3.11))

Lpcuy T P, _1(no) — Pos1(no) ifn>0
djn (ka) \ 2n +1 0{1—770 ifn=20 (3:34)

d (ka)

In obtaining Eq.(3.34), it is assumed that the sphericalcaayer is placed a = 0 (north
pole), so that the problem becomes axisymmetric.

Equations (A.20), (3.11), (A.22) and (3.34) can be used &duate the external and internal
sound pressure fields acting on each loudspeaker diaphragrtodts own vibration and to the
vibration of the other loudspeakers. The net sound presggrandp;;, can be obtained by inte-
grating Egs.(A.22) and (A.20) over the surface of #lk spherical cap and dividing this result by
S,. Then, the entries of the acoustic-impedance matricesiaze by

1 2w 0, )
Zl:lt, = / / p(a, 91, qSl)aQSlrﬁldé’ldgbl (335)
SSpuy Jo 0

In the numerical implementation, the series given in Eg2QMand (A.22) must be truncated
to order N so thatn < N. It is worth noting that ifkr << 1, the Z,, calculated by the lumped-
parameter and distributed-parameter models will leadg¢s#me result.

3.3 Enclosure design

To define an optimum enclosure for a compact loudspeakgraitaindependently programmable
transducers is not a simple task due to the fact that therdnmgeract with each other in a compli-
cated manner inside the cabinet. This problem can be addibysroviding each transducer with
a sealed cavity in order to suppress the acoustical coygmthat the electromechanical behavior
of the compact array becomes easier to predict. Howevearstiution leads to a harder to build
mechanical frame compared to the alternative solution aimting the drivers on a common hol-
low enclosure. In addition, since the latter implies a lacgvity volume, one may conjecture that
it leads to lower voltages for a given diaphragm velocity,[3&, 79]. This section discusses and
compares these two enclosure designs.
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It is useful to consider two extreme cases concerning tlaivelmovement of the transduc-
ers, but it must be kept in mind that any state in between caacbieved. In the first, all drivers
vibrate with the same velocity magnitude and phase. In tbersg the sum of the driver velocities
is zero. As far as the spherical arrays presented in sectio®.® are concerned, the former corre-
sponds to the first acoustic radiation mode, and the latt@esponds to anyone of the remaining
radiation modes. This emerges from inspection of the moddtioes presented in Tabs. C.3 to
C.7, which reveals that; , ¥,y = 0,forl’ =2,3,..., L.

When all drivers vibrate in phase with the same velocity nitagle, inspection of Egs.(3.31)
and (3.32) shows that a common hollow cabinet provides eacisducer with an additional me-
chanical compliance df;(Lpc25%)!, i.e., each transducer behaves as if it had been mounted on
a sealed cavity with volum®,/L. Therefore, the voltages evaluated using the lumped-peteam
model remain unchanged whether the drivers have their oaledeavities or share the same
enclosure.

When the sum of the driver velocities is zero, the transddisgriacements will not produce
internal sound pressure fluctuation if they share a commioineg i.e., the entire cavity compliance
is compensated by the opposite phase movement of the aalaygents, which is equivalent to
mount each driver on an independent cabinet with a huge \aldimerefore, to let the drivers share
a common enclosure leads to lower voltages in the complidnognated region (low-frequency
range) compared to providing each one of them with its owledezavity.

In both the extreme cases, if the drivers share a common efalilre acoustic modes of
the spherical cavity will modify the system dynamics at tk$e frequencies corresponding to the
eigenfrequencies of such modes. Unlike the lumped-paemebdel, this effect is predicted by
the distributed-parameter model. The eigenfrequenciesrajid spherical cavity are character-
ized by the singularities of the coefficients,,, in Eq.(A.22). Inspection of Eq.(3.34) shows that
such singularities take place at the zeros of the first dévevaf j,,(ka). Then, the lowest four
eigenfrequencies correspond to the followingvalues: 2.0816, 3.3421, 4.4934 and 5.9404.

As a numerical example, consider a compact spherical laakgy array with, = 12 drivers
distributed on a sphere with radius= 0.075m according to the dodecahedron symmetry, so that
the spatial orientation of each cap is made equal to the vaotmal to a face of a dodecahedron.
All drivers are supposed to be equal with the charactesigitesented in the row “mean value” of
Tab. 6.1. Since. = 0.075m andS = 0.0012m?2, the aperture angle of the spherical cap model is
0, = 15.1°. The two different enclosure designs discussed above aisidared. In the first one,
the drivers share the same spherical cavity with volline (4/3)ra® = 1.8 x 10~3m? and both
the lumped- and the distributed-parameter model are useshipute the voltages. In the second,

56



each driver has its own independent sealed cavity with veluﬂ? = V,/12 = 1.4726 x 10~*m3
and the voltages are evaluated by the lumped-parametedmode

Frequency response functions (FRFs) between input digphvelocity and output voltage
are shown in Fig. 3.14. For each FRF, the velocity and theageliare taken on the same driver.
These FRFs have been obtained by letting v, in Eq.(3.28), where the acoustic radiation modes
are given in Tab. (C.6). The medium properties have beenre$tio bec = 343m/s andp =
1.21kg/m?3. In addition, a truncation orde¥ = 29 has been adopted when using the distributed-
parameter model.
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Figure 3.14: Frequency response functions between inpphdagm velocity and output voltage.

Sincea = 0.075m, the eigenfrequencies of the spherical cavity 85é5H =, 2433H z,
3271H ~z and4324H z. The vertical dotted red lines in Fig. 3.14 indicate thesgdiencies. Com-
parison of the continuous black line with the dashed blaw, las well as the continuous blue line
with the dashed blue line show that the lumped- and the diggd-parameter model lead to the
same curves, except for some singularities at the cavignéigquencies, as discussed before.

As far as the first radiation mode is concerned, the cabirmtighes each driver with an
additional mechanical compliance of approximatelfpc252?)~! ~ 7.31 x 10~*m/N. This value
is not much larger than the mechanical compliafice 4.75 x 10~*m/N of the driver suspension,
so that the FRF magnitude increases in the compliance-agtedrirequency range in comparison
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with the remaining radiation modes. Moreover, if the caeitlyenfrequencies are neglected, to let
the drivers share a common hollow enclosure will lead to #meselectromechanical behavior as
to provide each driver with its own sealed cavity, as expkcte

It is worth noting that the theoretical FRFs presented in Eit)4 do not depend on the choice
of an active driver of the spherical array. Computation & BRF will always lead to the same
curve regardless of the considered active transducer.

No remarkable differences have been observed between the &Rluated by the lumped-
and the distributed-parameter model, except for freqsnodrresponding to the natural frequen-
cies of the spherical cavity. This suggests that driverag#s can be evaluated by using a simple
lumped-parameter model for the enclosure, so that heaeylagibns involved in the distributed-
parameter modeling may be unnecessary. In fact, the tweragticases shown in Fig. 3.14 do
not represent a challenge to the acoustic coupling modelsepted in section 3.2.2. Since the
statements presented in this section rely on the validith@proposed theoretical models, a set of
experiments must be accomplished in order to validate tfdm.accuracy of the proposed models
is demonstrated by comparison with experimental resulthapter 6.

The radiation efficiency of the radiation modes has not yenhaken into account in the
enclosure design discussion. Since a spherical array gosep to produce an acoustic field rather
than diaphragm vibration, radiation efficiency plays an am@nt role. It has been stated that
a reduction in the electrical signal power is achieved inldve-frequency range by letting the
drivers share a common enclosure. However, one questicimemnanswered: since the radiation
efficiency drops rapidly with decreasing frequency (retefFtgs. 3.5 to 3.8), does this claimed
voltage reduction take place in a frequency range in whietrédiation efficiency values lead to
meaningful sound power levels? If not, such an improvemeniseless. In the following, an
attempt is made to partially answer this question.

As said before, Fig. 3.14 was obtained by letting- v, in EQ.(3.28), wherap, is thei-th
radiation mode. Ther; = ¢, in EQ.(2.44) so that these equations permit to evaluateatie r
between the voltage magnitude that feeds a given transdiittex array and the total sound power.
Figure 3.15 shows this ratio for the dodecahedral sourcsidered here foi = 1, 2, 5 and12.
The voltages were taken at the most solicited driver of theyadriver # 01, refer to Tab. C.6) and
computed by using the lumped-parameter model.

Comparison of the continuous with the dashed lines revéalslétting the drivers share a
common cabinet reduces the voltages in a frequency rangéiichwhe radiation efficiency is
too small, especially for the radiation modes # 5 and 12. Aroomcabinet is expected to provide
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Figure 3.15: Ratio between the voltage magnitude that féeglmost solicited driver of the array
(driver # 1) and the resulting sound power. Simulation rssoibtained for the acoustic radiation
modes # 1, 2,5 and 12.

some improvement only for the acoustic radiation modes #2 kdence, the results presented here
suggest that the enclosure design does not play a centeabnathe dynamic range of a compact
loudspeaker array. Therefore, since a common cabinet @airto build and the models proposed
in section 3.2 permit to predict the acoustical couplingdaghe cavity, one may conclude that
there is no reason to build a complicated frame in order twigeoeach driver with its own sealed
cavity. In addition, it will be shown in chapter 6 that mosttbg cavity modes are damped in
practice, so that they do not affect the loudspeaker dyremic
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Chapter 4

Synthesis and Reproduction of Directivity
Patterns

A compact loudspeaker array with independently progranteniaansducers is an engineering so-
lution aiming to realize the ambition of synthesizing amdéproducing a given directivity pattern.
In chapter 3, a theoretical model that predicts the radigiattern of a spherical loudspeaker array
from the knowledge of the driver velocities or voltages wegppsed. In this chapter, the inverse
problem is addressed. The task is to find optimum weightshwitiast be applied to the array’s
elements in order to achieve the target directivity pattern

First, the synthesis of an arbitrary pattern whose magaeitundi phase are defined on a spheri-
cal surface enclosing the loudspeaker array is addressaavbighted least-squares method. Next,
this same approach is employed in order to synthesize ptexispl harmonic functions, i.e., the
target directivity is a spherical harmonic. Finally, thelplem of synthesizing only the magnitude
of the directivity pattern (phase not concerned) is dedat wi

4.1 Synthesis of an arbitrary function

This section concerns the synthesis or reproduction oflaitrairy directivity pattern by a compact
spherical loudspeaker array. The target pattern is a desinend pressure distribution (iny, 0, ¢),
wherery > a is fixed but arbitrary, namely, the target pattern is define@ spherical surface that
encloses the loudspeaker array. The task is to find optimughtgawhich must be applied to each
acoustic radiation mode in order to achieve the target timigcpattern.
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Because the functions considered in this chapter are dedjéz numerical processing, they
must be sampled. Since these functions are defined on a cghariface, the author has chosen
to use a uniform angular grid given By = tA# and¢, = pA¢, wheret = 0,1,..., N, — 1
andp = 0,1,..., N, — 1, N, andN,, are, respectively, the number of samples in the zenithal and
azimuthal direction. Hencey, = N,N, is the number of sample®\¢ = 7/(N, — 1) rad and
A¢ = 2m/N,rad. The sampled sphere so defined motivates the use of the fofjamner product:

X, y] = y"Wx (4.1)

wherex,y € Cs andW € RY**":. The matrixW is diagonal and contains non-dimensional area
weight factors that are determined by surface integrati@r appropriate sections of the sphere.
Thus, the diagonal terms &Y, w;, are

1 %tz 0 1 Af ) )
— sin #dfd¢p = — sin? (—) ift=0o0rt=N,—1
N ¢_fAM[ N, 4 ‘
w; = 2 (4.2)
1 dpt 5 0= sin 6; AO . .
— [ [ sinfdbdo = t sin (—) if1<t< N, —2
L Am $p— 52 0+ 57 Ny 2

wherei = pN; + ¢ + 1.

Now, letY, be a(IV + 1)? x N, matrix containing samples of the complex-valued spherical
harmonics as rows (sampled version of the vedthrp be a vector containing/, samples of the
sound pressure field produced by the spherical array-atr, andp, be a vector containingv,
samples of the target directivity pattern. So, by refertimd=gs.(2.42) and (3.16), the following
optimization problem can be formulated, which must be sbfee eachka value for a given array
geometry:

min ||Y [B¥c—p,|, (4.3)
Cc
where||x||, = [X, x]% is the Euclidian norm anB is evaluated at = .

This is a well-known convex optimization problem (weightedst-squares) whose solution
is [80]
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cor = ((YIB®) W (Y]BW))  (YIB®)"Wp, (4.4)
It is worth noting that the weight matriW must be used in order not to favor densely sampled
regions on the sphere.

The voltages that must feed the drivers can be obtained bstituting Egs.(4.4) and (2.42)
into (3.28).

The optimization problem presented in expression (4.3)dcbe stated without using ra-
diation modes. If so, optimization results are supposecad Idirectly to the loudspeaker unit
velocities. In this case, since the loudspeakers in they arsaally present the same radiation ef-
ficiency, one must always deal withindependent channels regardlessef On the other hand,
using radiation modes leads to a reduced number of channeldodthe fact that some modes
do not radiate sound energy /at ranges that can be determined through inspection of their ra
diation efficiencies. Actually, the optimization problemeo individual loudspeaker responses is
ill-conditioned when the radiation modes of the array hasy \different efficiencies. This would
lead to huge drive levels or require a regularization precesich is avoided when truncating the
radiation mode expansion.

In addition, it has been shown in section 3.1.2.1 that ramhanodes lead to spherical har-
monic radiation patterns under some circumstances, sohtabtational properties of such func-
tions can be used in order to rotate the radiation patterm motneed to evaluate Eq.(4.4) (further
details on this subject will be provided in section 4.2). dfiyy the radiation pattern of a radiation
mode is generally more attractive than the radiation patér loudspeaker unit. Thus, a single
channel (radiation mode) is still useful in room acoustied alectroacoustic music applications,
for example.

4.2 Synthesis of a spherical harmonic function

Linear combinations of spherical harmonics of the samerdrdee been generally used as target
patterns in directivity synthesis by compact loudspeakeaya (cf. [22, 54, 26]). According to
Zotter et al. (2007), it is possible to control spherical harmonics ofesrd provided thatn <
V'L — 1, whereL is the number of loudspeakers in the array. In addition, éis rule of thumb

is satisfied, the accuracy of spherical harmonic synthesgisadies asa increases. In both cases,
synthesis error is due to spatial aliasing. In the followithg synthesis of spherical harmonics by
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spherical loudspeaker arrays is revisited within the fraork of the acoustic radiation modes.

It is known that function spaces spanned by spherical haice@f the same ordet are
linear subspaces that are invariant with respect to rigigtian through spatial angles [65], refer
to Egs.(2.29) and (2.32) to (2.34). For example, if a givettgpa is in the subspace generated
only by harmonics of ordet = 3, any rotation of this pattern also possesses a spheriaaldmac
expansion consisting only of harmonics of ordet 3. Then, ifp, contains samples of a function
in the subspace generated by spherical harmonics of ardszan be expressed ps= (ng)an,
whereq,, containg2n-+1 complex coefficients and™ is an2n+1 x N, matrix whose rows contain
spherical harmonics of order

Now, letX,, be anL x 2n + 1 matrix containing the,,, associated with each one of the
2n + 1 rows of Y™, namely, each column of,, is obtained by letting, be a column of Y ")T
in Eq.(4.4). Then, solution of problem (4.3) yields the dsing minimum root mean square er-
ror (RMSE):

min(RMSE) = min ) YTB®c— (Y™)Tq, (4.5)
C C

— | (¥IBwX, — (v()7) q,
2

2

Equation (4.5) leads to the minimum RMSE for a given but aabyjtq,,. Any function in the
subspace spanned by spherical harmonics of ordan be represented by choosing a suitaple
So, to let this vector be the optimization variable in an &addal minimization or maximization of
the RMSE given in Eq.(4.5) leads, respectively, to the sasied hardest to synthesize directivity
pattern in the considered subspacey, lfis normalized so that!q, = 1, one has [22]

min
an

‘(YZB\IIXH _ (Y("))T> q,

s

and

= Amax 4.7)

max H (Y}B\pxn - (Y§“>)T> q,
2

A

whereAmin and\yax are the minimum and maximum singular values\of (YZB\IIXn — (Yﬁ”))T),
respectively.

Briefly, the maximum and minimum singular values\f: (YTB®X,, — (Y")T) provide,
respectively, upper and lower mean square error boundiatswd with the subspace spanned
by spherical harmonics of order The directivity patterns associated with such bounds @an b
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determined by examining the right-singular vectors oladim the singular value decomposition,
which are the vectorg,, corresponding to the singular values.

Figures 4.1 and 4.2 show the upper and lower bounds of thealzed RMSE — defined
in Eq.(4.8) — computed as described in this section for wBfié spherical arrays and spherical
harmonic subspaces. In the same way as in section 3.1.2.fgltbwing values were used in the
simulations: N, = 39 x 20 = 780, ¢ = 343m/s, p = 1.21kg/m3, ro = 10a and N = 10.
The five spherical array configurations corresponding toRtatonic solids were simulated. In
Fig. 4.1,0, = 15.1° has been used for the tetrahedron, hexahedron, octahatbdacahedron
and icosahedron. In Fig. 4.2, = 54.7°, 45.0°, 35.2%, 31.7° and20.9° have been used for the
tetrahedron, hexahedron, octahedron, dodecahedron@sahedron, respectively.

|(YIBwX, - (v")7) q,

Norm. RMSE= : (4.8)
[oriore
s n
2
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Figure 4.1: Upper and lower bounds of the normalized rootmsemare error (RMSE) achieved
in the synthesis of functions in the subspaces spanned risphharmonics of orders 0, 1, 2
and 3.6, = 15.1° has been used for the tetrahedron, hexahedron, octahettrdecahedron and
icosahedron.

The ability of a discrete sphere based on a Platonic soligrithesize any pattern in a sub-
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space spanned by spherical harmonics of ordes reduced a%a andn increase, as shown in
Figs. 4.1 and 4.2. For each spherical array, only one cupeeiented fon = 0 andn = 1 for the
sake of clarity because computations have shown that uppdower error bounds for each one of
these subspaces are not distinguishable — the same is oald=£ 2 as far as the dodecahedron
and the icosahedron are concerned. This means that a giemtivdty pattern in these subspaces
can be freely rotated without affecting the RMSE. Howeweryf = 3 (andn = 2 for the tetrahe-
dron, hexahedron and octahedron), the error is not unifodistributed over the subspace, so that
one has unachievable patterns and well synthesized pgtteth can be determined by examining
the right-singular vectors obtained in the singular valeeanposition, as said before. Figures 3.9
to 3.13 illustrate functions in the subspace spanned byrggihéarmonics of the same order that
lead to the lower error bound curves presented in Figs. 44&h
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Figure 4.2: Upper and lower bounds of the normalized rootmsepare error (RMSE) achieved
in the synthesis of functions in the subspaces spanned risphharmonics of orders 0, 1, 2
and 3.0, = 54.7°, 45.0°, 35.29, 31.7° and20.9° have been used for the tetrahedron, hexahedron,
octahedron, dodecahedron and icosahedron, respectively.

As arule of thumb, it is not possible to synthesize a pure spideharmonic function of order
n > /L — 1 due to spatial aliasing, that is, the number of degrees efifsm of the discrete sphere
is not large enough to match a high order spherical harmohiowever, high order spherical
harmonics may co-exist with low order ones in the radiateld fieom a discrete sphere. This
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phenomenon is also due to spatial aliasing and it takes plake increases, leading to synthesis
error as shown in Figs. 4.1 and 4.2. Such a behavior can baiegdl by examining the radiation
efficiencies of the spherical harmonic functions, whichevgresented in Fig. 3.1.

Figure 3.1 shows that the efficiency curves of the radiatimugs are well discriminated
in the lowka range, so that simple directivity patterns radiate muchenedficiently than complex
ones. Thus, even if the discrete sphere excites high orterispl harmonics due to spatial aliasing,
they will not propagate to the farfield. Therefore, error pherical harmonic synthesis is small at
low ka values provided that, is made sufficiently large. On the other hand, the efficienocyes
of the spherical harmonics become closekasncreases, so that spatial aliasing produces non-
evanescent undesirable patterns in the sound field, letasygthesis error.

In order to reduce the spatial aliasing artifacts that d#gthe spherical harmonic synthesis
at high frequencies, the sphere radiusan be made smaller. However, the low radiation efficiency
at low ka values imposes a constraint on the directivity synthestiseriow frequency range, since
high loudspeaker diaphragm displacements must be achieeeder to produce meaningful sound
pressure levels. Then, the design of a spherical loudspeaatasy for spherical harmonic synthesis
must be a compromise between low and high frequency reptioduc

Figure 4.1 suggests that the RMSE decreases with increttsngumber of loudspeakers
in the array. However, because the same cap aperture @nglel5.1° was used in all spherical
arrays, the available radiation surface of each polyhediasnot completely used. In Fig. 4.2, the
cap aperture angle for each discrete sphere is chosen dbélatailable radiation surface is fully
used. Therefore, Fig. 4.2 presents a better comparisorebatspherical arrays than Fig. 4.1.

Inspection of Fig. 4.2 reveals that the dodecahedron-likece leads to the smallest RMSE
in the synthesis of functions in the subspaces spanned lgyisphharmonics of ordens = 0 and
n = 1. In addition, forn = 2, the icosahedron does not present a significant improveaventhe
dodecahedron. For < 3, there arg3 + 1)? = 16 spherical harmonics, so that the dodecahedron
(12 drivers) is not able to provide radiation control up testbrder due to the spatial aliasing
(although there is at least one pattern in the subspaee3 that is well synthesized, as indicated
by the dodecahedron dashed line in Fig. 4.2). In this casdactisahedron performs better.

When comparing spherical loudspeaker arrays with a givdiusa:, the position of the
drivers on the sphere, the number of independently driveddpeakers and the net radiation sur
face must be taken into account. In section 3.1.2.1, theadlaifraction of the source surface to
mount the drivers for the spherical arrays based on the itasolids was presented. Among the
Platonic solids, the dodecahedron presents the largakilaiearadiation surface, so that it provides
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the highest sound power level for a given velocity amplitafiéhe spherical caps. In addition, it
leads to the smallest RMSE in the synthesis of a sphericatdric of ordem = 0. For these rea-
sons, the omnidirectional sound sources are usually atiraiing to the dodecahedron geometry.

Figure 4.2 shows that the ability of the icosahedron to sssitte an arbitrary function in the
subspaces = 3 is limited to the lowka range. However, the radiation efficiencies of the icosahe-
dron’s radiation modes corresponding to the spherical bares of ordem = 3 are very low in the
low ka range, as shown in Fig. 3.7. In addition, the icosahedrosguits the smallest available ra-
diation surface. Then, the synthesis of functions in thespabe: = 3 by an icosahedron-like array
is restricted to a narrow frequency range. Moreover, theaeight channels that must be handled
when using an icosahedron rather than a dodecahedron maitibal in real-time applications.
Therefore, among the Platonic solids, the discrete splgm@ach indicates that the dodecahedron
is the best choice for sound directivity control in full 3-paxé.
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2 2
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Figure 4.3: Normalized ARM weights for a dodecahedral sewvith 9, = 15.1°. These curves
arise from the synthesis of a function in the subspace splyapherical harmonics of order
chosen so that it leads to the lowest RMSE.

As stated in EQq.(4.5), the vector containing the optimumghts that must be applied to
each acoustic radiation mode of the spherical array,is= X,,q,,. Now, let the elements af,,
be grouped according to the radiation efficiencies of theesmponding radiation modes, which
are shown in Figs. 3.4 to 3.8. Then, for a dodecahedral sporee hasc],, = [c] c] cj ci],

1The discrete sphere model better approaches the actual fielchproduced by a loudspeaker arrayass made
smaller. Therefore, it is expected that the results preskintFig.4.1 will be more accurate than the results presente
in Fig. 4.2

67



wherec, € C'*! is the contribution of the radiation mode #d,, € C3>*! is the contribution of
the radiation modes # 2 to 4, € C>*! is the contribution of the radiation modes # 5 to 9 and
c; € C**!is the contribution of the radiation modes # 10 to 12.

The scalar quantitx/c?c,— (c'(;'pt (,pt)_1 ;1 =0,1,2,3 can be used to evaluate the relative
contribution of each radiation group to the synthesizedepat In Fig. 4.3, these quantities are
plotted againsta for a dodecahedral source with = 15.1°. Each graph corresponds to a target
directivity pattern, which is a function in the subspacersyl by spherical harmonics of order
that leads to the lower error bound shown in Fig. 4.1.

Figure 4.3 shows that only one radiation group is active fgivenn, i.e., each radiation
group is closely related to the subspace spanned by sphkeagaonics of a given order. This
result is consistent with the discussion in section 3.1.2.1

4.3 Synthesis with desired magnitude response

In the previous sections of this chapter, both magnitudepdrage of the target directivity pattern
were taken into account in the cost function used to obtatmamn weights for the acoustic ra-

diation modes of the spherical array. In addition, phasereand magnitude error were treated
equally, which yielded a convex optimization problem thatild be solved by a simple weighted
least-squares method (refer to Egs.(4.3) and (4.4)). Hexyeékis approach may lead to a sub-
optimal solution if the importance of these errors are natatéq As discussed in section 1.3.3,
it is expected that a spherical loudspeaker array will be &blbetter synthesize the perceptually
relevant attributes of the sound field if the phase of theetapgttern is excluded from the cost
function.

Itis worth noting that phase cannot be neglected if the tagttern is defined in the nearfield,
i.e.,ro must be made sufficiently large in order to ensure farfielgppgation. In order to understand
this, consider two nearfield directivity patterns with tlaeree magnitude but with different phase at
a given frequency. The two corresponding farfield direttipiatterns will differ in magnitude due
to the phase difference in the nearfield. Therefore, thegphasst not be neglectedf is in the
nearfield.

At a given frequency, the directivity phase over the spla¢sarface defined by = r, can
be neglected, as discussed above. However, at a given liwagripoint on this spherical surface,
to neglect the phase spectrum may lead to audible phasetdistf81]. Throughout this section,
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it will be shown how this problem can be somewhat handled.

The problem of synthesizing a directivity pattern with dedimagnitude response has been
addressed in the literature [37, 57, 23, 56, 32, 33, 82]. ilmlork, the cost function proposed in
[57] is used, so that the optimization problem can be fortealas

min [[[YIB®c| - [p,][], (4.9)

Unlike the problem stated in (4.3), this is a non-convex miaation problem called magni-
tude least-squares, which is studied in depth in [56]. Thisomstrained minimization problem is
equivalent to the following constrained one [57, 56]

minimize ||Y;B®¥c—P,p,||,
cp
¢ (4.10)
subject to (diagp,))"diag(p,) = |
whereP; = diag(|p,|) andp, € C"=. The constraint ensures thatprovides only phase informa-
tion.

Since phase is not concerned in (4.9), it makes intuitivesersing the phase of the target
pattern as an optimization variable. Then, an optimum pl@séhe target pattern is searched
in (4.10) so that the resulting target is now easier to sysifieein the traditional least-squares
sense than the original target. A mathematical proof of thevalence of (4.9) and (4.10) can be
found in [56], as well as several different methods of sajvin However, a comparison between
optimization with and without phase for radiation patteyntbesis has not been provided in the
literature so far. Here, this task is accomplished by usisiigatly modified version of the iterative
variable exchange method for finding a local minimizer dégctin [56], which is presented below.

Problem (4.10) is not convex in the optimization varialdesdp,. However, for fixed,, it
Is convex inc and the solution is given in Eq.(4.4) by replacipgwith P,p,. On the other hand,
for fixed c, the optimump, is cAaYIBYO)  Thig suggests a method to solve (4.10) in whichis
iteratively updated according fp = @Y IB¥) The algorithm is summarized in Tab. 4.1.

This iterative method does not ensure optimality of the tsmhy but an example will be
presented later in this chapter indicating that it perfob@mtier than the standard least-squares and
provides good results as far as the directivity control bypmpact spherical loudspeaker array is
concerned. Its main advantage over the other methods prdpo$56] is that it is simple and easy
to implement.
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Table 4.1: Iterative variable exchange procedure to stleertagnitude least-squares problem.
1) Choose convergence critetia

2) Letp!”) = ¢aralpy)
3)Letc = ((YIB®)"W (YIBY)) " (vTBY)" wp,

4) Let r)(l) _ 6Larg(YSTB\Ilc)
(1)_4(0)
5) Repeat whil ‘p‘ (1?‘ H > €

~(0) _ a(1)

P: " =Py
= ((vIB®)"w (YIBY)) C(vTBE) " wp,p
pgl) _ ebarg(YIB\Ifc)

6) Optimal solutionc,,, = ¢ andp{”” = p\"

The procedure described in Tab. 4.1 must be run for dactialue. Because the optimal
results obtained for eadtu value are not connected to each other, the phase spectrura syn-
thesized sound pressure at a given but arbitrary point isagg to differ from the phase spectrum
of the target sound pressure at this same point, which mayrgge to audible phase distortion, as
said before. Notice that if the phase of all eIementSi&’ft) are equally changed, the magnitude
RMSE will remain unchanged and the phasegf will be changed by the same amount. There-
fore, for eachka value, pto”t andc,,; can be redefined by multiplying them by an unit-modulus
complex number so that the phase spectrum of the synthesmmedl pressure at a chosen point
will be exactly the same as the phase spectrum of the targedsoressure at the chosen point.
Then, no phase distortion will take place at this point, Whian be made to correspond to the
main radiation direction (maximum sound pressure magaijtofithe target directivity pattern in a
frequency range of interest.

In order to illustrate the ideas presented here and to caipar optimal solutions of the
magnitude least-squares problem with the standard weldbést-squares problem, the directivity
synthesis by a dodecahedral loudspeaker arraydyith 15.1° is considered. In the same way as in
section 4.2, the following values were used in the simutesioV, = 39 x 20 = 780, ¢ = 343m/s,

p = 1.21kg/m3 and N = 10. However, it was used, = 20a instead ofry = 10a in order to
ensure farfield propagation. The directivity of a singleesjidal cap mounted on a sphere was used
as target pattern. The Euler angles used to define the positithis spherical cap on the sphere
were(0°,37.38°,0%). Then, inspection of Tab. C.2 reveals that this positiorsdug match any of
the spherical caps of the dodecahedral source.

Figure 4.4 shows the normalized magnitude RMSE defined i4Bd.), wherec,,, was
obtained in the magnitude least-squares sense (phasenuatrned) and in the standard weighted
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least-squares sense (phase concerned). The target @aitetime synthesized patterns obtained by
both methods foka = 2, ka = 3 andka = 5 are shown in Figs. 4.5 to 4.7, respectively.

[1YIB®C,.| — [Py,

Norm. magnitude RMSE-
[Pl

(4.11)
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70

Phase concerned
- = =Phase not concerned
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Figure 4.4: Synthesis of the farfield directivity of a sphalicap oriented according to the Euler
angles(0°,37.38°,0°) by a dodecahedral source with = 15.1°. Comparison between the nor-
malized magnitude RMSE obtained by solving the standardhted least-squares problem (phase
concerned) and the magnitude least-squares problem (pbasencerned).

Figure 4.4 shows that the magnitude error can be drastioadlyced if a cost function that
does not take into account the phase error is used. Inspeatifigs. 4.5 and 4.6 reveals that
magnitude synthesis is improved to the detriment of phasthegis, as expected.

The standard least-squares gives rise to very low poweatiadipatterns for higha values,
as illustrated in Fig. 4.7. This can be clearly shown by cornmggthe optimum weights,,: ob-
tained by the standard and the magnitude least-squaresteFg8 shows the usual norrfxHx,
of these vectors and the vector difference between themdiFeetivity patterns corresponding to
the vector difference foka = 2, 3 and5 are shown in Fig. 4.9.
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Figure 4.5: Synthesis of the farfield directivity of a sphalicap oriented according to the Euler
angles(0°,37.38°,0°) by a dodecahedral source with = 15.1°. Comparison between the target
directivity pattern and the synthesized patterns obtamedolving the standard weighted least-
squares problem (phase concerned) and the magnitudestpaastes problem (phase not concerned)
for ka = 2.
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Figure 4.6: Synthesis of the farfield directivity of a sphalicap oriented according to the Euler
angles(0°, 37.38°, 0°) by a dodecahedral source with = 15.1°. Comparison between the target
directivity pattern and the synthesized patterns obtamedolving the standard weighted least-
squares problem (phase concerned) and the magnitudestpaastes problem (phase not concerned)
for ka = 3.
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Figure 4.7: Synthesis of the farfield directivity of a sphalicap oriented according to the Euler
angles(0°,37.38°,0°) by a dodecahedral source with = 15.1°. Comparison between the target
directivity pattern and the synthesized patterns obtamedolving the standard weighted least-
squares problem (phase concerned) and the magnitudestpaastes problem (phase not concerned)
for ka = 5.
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Figure 4.8: Synthesis of the farfield directivity of a sphalicap oriented according to the Euler
angles(0°,37.38°,0°) by a dodecahedral source with = 15.1°. Usual norm of,,; obtained by
the standard and the magnitude least-squares, and of ttog ddterence between them.
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Figure 4.9: Synthesis of the farfield directivity of a sphkaticap oriented according to the Euler
angles(0°,37.38%,0%) by a dodecahedral source with= 15.1°. Directivity patterns correspond-
ing to the vector difference between the optimum weigilys obtained by the standard and the
magnitude least-squares.
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Chapter 5
Equalization Filtering

In this chapter, the diffusion of a mono audio signal throagitompact spherical loudspeaker array
is considered. The mono signal provides the temporal ate#of the sound field produced by the
spherical array, whereas its spatial characteristicsargaled by adjusting the gains associated to
the multiple channels of the electroacoustic device, eaehod them corresponding to an acoustic
radiation mode of the spherical array.

First, the electroacoustical model of a spherical loudspearray presented in chapter 3
is revisited in order to derive a useful relation betweenabeustic radiation modes of a discrete
sphere and the electromechanical behavior of a hollow ggaiésudspeaker array. Next, the signal
processing chain to diffuse a mono signal through a holldvespal array is presented. Since both
the electromechanical response of the transducers anddiaion efficiency of the loudspeaker
array depend on frequency, the system must be provided veih af equalization filters in order
to produce a flat frequency response. Two equalization agpes are presented and compared. In
the first one, sound pressure equalization in a given radialirection is provided. In the second
approach, sound power equalization is provided. Finalhyraerical example is presented.

5.1 The electroacoustical modeling of spherical loudspeakar-
rays revisited

The electromechanical modeling of a compact loudspeakay avas considered in section 3.2.
It has been shown that the clamped electromagnetic foroegagh a driver’'s membrane can be
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related to the membrane velocity of the transducers aaograi Eq.(3.31). Assuming that all
drivers of the array present the same electromechanicalrésaand using the lumped-parameter
model proposed in section 3.2.2.1 for drivers sharing a comeoabinet, this equation simplifies to

7(e) (w)
Bl,

N PCQ &2

wherej(w) = —wM+R—(1wC) " +[Z©(w)]~ (Bl.)’+Z*(w) §%, 1lisanL x L matrix of all 1’s
andv is anL x 1 vector containing the complex amplitude of the voltagesfined the transducers.
By defining the functiong(w) = Z© (w)(Bl.) '§(w) and f(w) = —Z© (w)pc2 S (wV, Bl )™,
Eq.(5.1) can be rewritten as

T(w)u=v (5.2)
whereT (w) = g(w)l + f(w)1.

Now, lety; and(,; be, respectively, theth eigenvalue and eigenvectordf so that

T(w) ¢ = (W), (5.3)

Substitution of the definition of into Eq.(5.3) yields

Inspection of Eq.(5.4) reveals that the term in bracketderright side is thé-th eigenvalue
of 1. In addition, comparison of Egs.(5.3) and (5.4) shows Thahdl1 both possess the same set
of eigenvectorg,,¢,,...,{;. Becausel is a constant matrix, its eigenvalues and eigenvectors
are constant too, i.e¢;, and[;;(w) — g(w)][f(w)]~" do not depend on frequency. Th¢h row of
Eq.(5.4) leads to

m(w) — gw) _ Xjm G
f(w) Git

where(j,; is the j-th element of thé-th eigenvector oT .

(5.5)

Since the left side of Eq.(5.5) does not depend eitheramon j, admissible]; must satisfy
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one of the following conditions:

e (u=C=...=Cu,
* 25:1@1:0'

Substitution of these expressions in Eq.(5.5) yields tgereialues ofl, namely,

m(w) —g(w) ) L multiplicity 1
flwy { 0 multiplicity L — 1 (56)
Finally, the eigenvalues af are
Lf((x)) + g(CU) |f Cll = C2l = ...= CLI
= 5.7
e { 9(w) it S G =0 &7

Itis worth noting thaf describes the electromechanical behavior of any compadsjmeaker
array regardless of its overall shape, provided that theedsipresent the same electromechanical
features and share a common cabinet.

A comparison betweeq, and the acoustic radiation modes of the Platonic solide(ref
Tabs. C.3 to C.7) reveals that the latter, like the formes, eigenvectors of . Because neither
the internal acoustic coupling between drivers nor theicibmechanical characteristics are taken
into account in deriving the radiation modes, this resultloa explained by the highly symmetrical
shape of the Platonic solids. The fact that the eigenvectovs 'C (refer to Eq.(2.41)) are eigen-
vectors ofT greatly simplifies the design and implementation of eqadilin filters for a spherical
loudspeaker array with internal acoustic coupling, aslitlva shown in section 5.2.

5.2 Signal processing chain of a spherical loudspeaker arya

Let s.(t) be the continuous-time audio signal one wants to diffuseutjn a spherical loudspeaker
array with a directivity corresponding to an acoustic réidiamode of the array, i.ey(w) =

U (w) = 9¥,5.(w), wheres.(w) is the Fourier transform of.(¢). Assuming that the transducers
share a common hollow cabinet and that the spherical aresepts a Platonic solid shapg, is
an eigenvector of, so that Egs.(5.2) and (5.3) lead to
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Vi(w) = pu(w)th;5e(w) (5.8)

Equation (5.8) gives the voltages that must be fed to thg'am@nsducers so that the surface
vibration pattern corresponds to thé¢h radiation mode. In addition, the caps’ velocities prése
the same temporal characteristicssg$). A block diagram is shown in Fig. 5.1, whetg, are the
entries of the modal matrix, i.&; is thei-th element of thé-th radiation mode. It is worth noting
that each element of the matnix is a real number.

se(t) ——1 u(w) Rt \ /1l se(t)
WUy, \ /r\I‘Ql s¢(t)
—> \I’3l T(w)‘l 4*1131 Sc(t)

L] \IJLZ / \Ll Sc(t)

Figure 5.1: Block diagram representing the synthesis of-iieacoustic radiation mode of &
driver loudspeaker array.

Multiplication of the input signal by a set df real numbers contained i, gives rise to
the /-th radiation mode, as said before. The SISO (Single Inpngl8iOutput) systemu;(w)
plays the role of an equalization filter, which compensatesttie non-flat frequency response
of the electromechanical transducer. However, since tiadi&fficiency is highly dependent on
frequency, additional equalization must be provided ireotd take this into account. Let(w) be
a filter that compesates both the electromechanical traesdesponse and the mechano-acoustical
source response. Thus, for a complete equalized systewpltages that must feed the drivers are
given by

Vi(w) = &(w)h5c(w) (5.9)

In section 3.1.2, it has been shown that the sound pressldepfieduced by a spherical
array isp = u'B"Y (refer to Eq.(3.16)). Hence, Eqgs.(5.2) and (5.9) yield ihensl pressure (after
equalization) when the vibration pattern of the sphericehyacorresponds to itsth radiation
mode, namely,
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B, (k7)Y (0, 6) \

B; (k7)Y (0, 0)

pD(r,0,0,t)

7
/TN

BL(kr)Y (0. ¢)

— Wy

Figure 5.2: Block diagram representing the sound pressei@ firoduced by thé-th acoustic
radiation mode of d.-driver loudspeaker array after equalization.

pU(r,0,6,w) = YT(0,0) B(kr) T(w) ™" 9, &(w) 5.(w) (5.10)

Figure 5.2 shows a block diagram, whdgis thei-th column ofB and the total system
output is the sound pressure evaluate@-ad, ¢). The MIMO (Multiple Inputs Multiple Outputs)
systemT (w)~" and the SISO systen® (k)Y (6, ¢) correspond to the physical system, namely,
the transduction process and the sound radiation, resphctivhereas the SISO system&v) and
¥,; must be implemented.

The systems;(w) and¥;; can be implemented on a DSP (Digital Signal Processing) chip
or on a general-purpose computeln both cases, a discrete-time representation of thesersgs
must be derived. Because the entriesloére real-valued constants, they can be easily dealt with.
On the other hand, the digital realization of the filegiw) is not so simple and it is considered
below.

Let €(¢) be the impulse response of the continuous-time equalizéitier — which is as-
sumed to be an LTI (Linear Time-Invariant) system (refer ppendix D) — andg[m| contain
samples of;(t) so that

alm] = &(mTy), —00 < m < 00 (5.11)

wherem is an integer and’; is the sampling period. Hence[m] is a discrete-time representation
of &(t). The inequalityjwT;| < = must be satisfied in order not to produce aliasing distoféfn

It is known that an LTI system whose frequency response cavritten as a ratio of polyno-

1The free software PD (Pure Data) can be mentioned as an egarhalreal-time environment for digital audio
processing [83].
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mials ine*?s satisfies a constant-coefficient difference equation (tefappendix D), i.e., if

B wjT.
ijo bje ’

€ = - 5.12
€1 (w) ZJ'D:() djel,ijs ( )
then,
D B
> diylm — ] =Y bys[m — j] (5.13)
=0 =0

oo

wheres[m| contains samples of the inpst(t), y[m| = >~ s[jla[m — j] contains samples

of the output signal and;, andd; are constants. If; = 0 for j # 0, one has a so-called finite-
duration impulse response (FIR) system; otherwise, on@hasfinite-duration impulse response
(IIR) system.

Inspection of Eq. (5.13) reveals that the system can be septed by structures consisting
of an interconnection of the basic operations of additionltiplication by a constant and delay.
Hence, if the equalizer frequency response can be appreedhy Eq.(5.12) with a relative small
number of coefficients, the equalization filtering can becedfitly implemented in real-time with
no need to explicitly evaluate the convolution sum or Faurensforms.

In the following, two equalization schemes are presenteobtainé (w). The first one is
based on the sound pressure response in a given radiatemtiolir, and the second one is based
on the sound power radiated by the spherical array. Thethéreasons discussed abo¥éy) is
approximated by a rational polynomial functiond”s.

5.2.1 Sound pressure equalization

The sound pressure field produced by a spherical array whedriter tensions are weighted
according tayy, and filtered by (w) is given in Eq.(5.10).

Now, let (7, 6, ¢) be a given point in the acoustic domain afidw) be a frequency response
function defined as

H(w) =YT(0,9)B(k#) T(w) 4, (5.14)
Y,

= Y7(0.9)B(k7)

This is an LTI physical system. In addition, it is stable amdigal. Assuming thal/;(w)
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can be written as a rational function as shown in Eq.(5.12gn be expressed as the product of a
minimum-phase system and an all-pass system (refer to dppeh so that

Hy(w) = H™™ (w) H™ (w) (5.15)
whereH ™™ (w) is a minimum-phase system aff{*” (w) is an all-pass system.

Comparison of Egs.(5.10) and (5.14) shows that sound peesswialization in the direction
(6,¢) could be achieved by letting(w) = H;(w)~'. However, this leads to a non-realizable
equalizer since the inverse Hl(“p) (w) is noncausal. Fortunately, for the problem considered in
this work, it will be seen thatf(“" () is approximately a pure delay system, so that it does not
provide phase distortion. Thus, a system with linear phadena pressure magnitude distortion in

A A

the direction(d, ¢) can be obtained by letting

1
H™ (w)
Since¢ (w) is a minimum-phase system, the coefficients in Eq.(5.12)beaabtained by using a
filter design method which approximates a given but arhitnaagnitude response.

5.2.2 Sound power equalization

The equalization scheme described in the previous sedilimited to a given radiation direction.
This can be dealt with by equalizing the sound power radibiethe array instead of the sound
pressure in a given radiation direction.

Considering Fig. 5.2, the diaphragm velocities correspantb thel-th ARM can be seen to
be

U(w) = T(@) ha(@)sw) = s, w) (5.17)

If the L transducers of the spherical array have the same diaphnagyvehich are modeled
as spherical caps, one has

S = 271a* (1 — cosfy) L (5.18)
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If the acoustic radiation modes are normalized so ¢lyaty, = 2, substitution of Eq.(5.17)
into (3.22) yields

2\ _ |€l(w)|2 5. (w)]2
(Iv(a. 0. 0)F) = 155 5. () (5.19)

Sinceo (U) = o (¢;) = 0,(w), substitution of Egs.(5.18) and (5.19) into (2.36) leads to

@)l

W, = o3(w)pc2ma®(1 — cos by) L
= alpena s hIbL G

[5e(w)]” (5.20)

Finally, for a unitary gain, the magnitude response of theaéiger must be

_ (W)
& (w)| = oo (1 o f)L (5.21)

Since only magnitude response is concerned in Eq.(5.2&)cdkfficients in Eq.(5.12) can
be obtained by using a filter design method which approximatgiven but arbitrary magnitude
response.

5.3 Numerical example: a dodecahedral loudspeaker array

In order to illustrate and to discuss the ideas presentdtkipitevious sections, equalization filters
for a hollow spherical array witlh = 12 identical transducers are studied here.

As in section 3.3, the spherical caps (transducer diaphragendistributed on a sphere with
radiusa = 0.075m according to the dodecahedron symmetry. The aperture afdle caps
under consideration & = 15.1° and the medium properties are assumed te be343m /s and
p = 1.21kg/m?3. All transducers are supposed to be equal with the chaistitsrpresented in the
row “mean value” of Tab. 6.1.

Figure 5.3 shows the eigenvaluesTofw) given in Eq.(5.7), that is, the filterg;(w), | =
1,2,...,12, that compensates for the non-flat frequency response @ld¢iceromechanical trans-
ducers. For a dodecahedral source, the associated ei¢svace the acoustic radiation modes,
as discussed in section 5.1. In fact, Fig. 5.3 and the solekliof Fig. 3.14 provide the same
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information. Thus, for a discussion on the results preskimd-ig. 5.3, the reader is referred to
section 3.3.
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Figure 5.3: Filtery,(w), I = 1,2,...,12, that compensates for the non-flat frequency response
of the electromechanical transducers of a hollow loudspeaikay with 12 identical drivers. The
transducer features are given in the row “mean value” of &ab.

B S — T~ e
| T
0.9 e RO
! f o 0
0.8 =~~~ fmmmmnn ST R
> | s | >
! 84 |
S R 2
2 | ( | 2
(&) ' ' o
£ 0.6 o BRRREEEEEREEEREEE £
(5] I R4 I (V)
S 0-5’””””””””;‘;'_T’i' ”””””” (AR S
© St ‘ 8
goA SR g
x SR ‘ ‘ x
03— et —ARM#L
v - - =ARM#21t0 4
S i ‘== ARM #5109
o1l AT N YT ARM # 10 to 12| |
. /' K K I T T
0 4 ¢‘ﬁ‘\b. : I I
0 2 4 6 8 10
ka

Figure 5.4: Radiation efficiency of the acoustic radiatioodes of a dodecahedral source with
0y = 15.1° (linear scale on the left; logarithmic scale on the right).

In order to evaluate/T(é, gE) B(kr) for use in Eq.(5.14) and the radiation efficiency for use
in Eq.(5.21), the spherical harmonic series is truncateatdern < 20. The resulting radiation
efficiency of the acoustic radiation modes of a dodecahestnaice withd, = 15.1° is shown in
Fig. 5.4. These radiation efficiencies for a dodecahedmaicgowithd, = 31.7° are presented as
dark green lines in Figs. 3.4 to 3.7. A comparison of thesgezuwith Fig. 5.4 reveals that the
radiation efficiency increases with, as expected.
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The valuer = 0.75m is used to derive the sound pressure equalizers. In additierangular
direction (4, ¢) is chosen so that it corresponds to the main radiation directf the array in the
low-frequency range. The log magnitude of the frequencgaese £0 log,, |€,(w)]|) of the sound
pressure and sound power equalizers evaluated, respgdby&qgs.(5.16) and (5.21) are shown in

Figs.5.5 and 5.7. These curves have been multiplied by agaanso that the minimum value for
the ARM # 1 corresponds to zero dB.
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Figure 5.5: Frequency response (log magnitude) of the spueskure equalizers for the acoustic
radiation modes of a dodecahedral source.
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Figure 5.6: Radiation patterns HIO0 H = and4750H z corresponding to the ARM # 2 of a dodec-
ahedral source with = 0.075m andé, = 15.1°.
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Since the directivity of the acoustic radiation modes bessprery complicated in the high-
frequency range, it may happen tmétq?) matches a low pressure direction, leading to the sharp
peaks shown in Fig.5.5. Figure 5.6 illustrates this factwhich the radiation patterns for the
ARM # 2 evaluated at000H z and4750H z are presented. The radiation pattern is approximately
a vertical dipole atl000H z. In fact, in the low- and medium-frequency range, the maxmimu
sound pressure value (main radiation direction) is ackievethe vertical axis passing through the
loudspeakers located at the top and at the bottom of theispharray, as shown on the left of
Fig. 5.6. However, at750H z, this radiation direction corresponds to a low pressursrego that
a huge voltage should be applied to the drivers in order taigeosound pressure equalization at
this point, as suggested by the high gain of the equalizétienat this frequency (refer to Fig. 5.5).

In order to eliminate the sharp peaks shown in Fig 5.5 — whah damage the drivers,
lead to difficult to realize filters and do not make physicalssee— the sound pressure equalizers
can be derived by averaging the sound pressure values ebtiindifferent points on the sphere
of radiusr, instead of take only one point. However, because the iadiaiode approach leads
naturally to the sound power radiated by the source, soungépequalizers are a more attractive

alternative. Figure 5.7 shows that using power equalizengptetely eliminates the sharp peaks in
the frequency response.
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Figure 5.7: Frequency response (log magnitude) of the spomekr equalizers for the acoustic
radiation modes of a dodecahedral source.

On the other hand, because the directivity patterns of tth@tian modes do not appreciably
vary with frequency in the low-frequency range, there aresigoificant differences between the
low-frequency response of the sound pressure and sound gowaelizers, as shown in Figs. 5.5
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and 5.7. Distinct normalization constants have been appéethe curves corresponding to the
ARM # 1, so that they practically overlap. It is more diffictit produce a dipole with the same
power of a monopole than with the same pressure at a givemn gdiarefore, the curves ARM # 2

to 12 in Fig. 5.5 present lower values that these curves inF1g

Figures 5.5 and 5.7 reveal that large gains must be appli¢ggetinput signal in the low-
frequency range in order to compensate for the non-flat &equresponse of the system, which
can overload the drivers. This arises due to the electroamcal behavior and to the low radiation
efficiency of the loudspeaker array, as shown in Figs. 5.35a#d

The four frequency-response curves shown in Fig. 5.7 beabwser as frequency increases,
so that they almost overlap above approximat@lyf z. This is due to the fact that the radiation
patterns of the radiation modes are very complex in the higdpency range, so that the effi-
ciency curves of the radiation groups are not as well disoated as for lower frequencies (refer
to Fig. 5.4). Since it is not meaningful to control such coexpladiation patterns, only one active
channel (radiation mode) can be used in the high-frequeanaye:.

Besides the absence of sharp peaks in the frequency-respong, sound power equaliza-
tion presents another advantage over sound pressurezgjimadibased on a single point, namely,
the former can be achieved by using only 4 distinct filterserghs the latter demands 12 distinct
filters. This is due to the grouping characteristic of thaatidn modes shown in Fig. 5.4.

The compensation filters can be approximated by rationatnpohials ine“?s — refer
to Eq.(5.12) — so that the corresponding constant-coefiicéference equations are obtained.
Then, the equalizers can be implemented on a digital comptie Matlal® filter design toolbox
has been used to derive coefficients for discrete-time Irélthat approximate the frequency-
response magnitude of the sound power equalizers preserfegl 5.7.

Figure 5.8 shows the frequency response of the ideal thealrélters evaluated by Eq.(5.21)
and the approximated IIR filters obtained using the M&tl&lber design toolbox withB = D =9
andT, = (44100)~'s. In deriving the IIR filters, each ideal filter has been divds its minimum
amplitude value so that the corresponding IIR filter progideleast a unitary gain. Since the ideal
frequency response of the filters presents a large gain itotidrequency range, equalization
filtering can damage the drivers. Therefore, the low-freqyeesponse of the equalizers has been
ignored when evaluating the coefficients of the IIR filters.

Inspection of EQs.(5.20) and (5.21) reveals that the gonbtietween each IIR filter and
the associated ideal filter yields the characteristic squowler of the subset of channels corre-
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sponding to a radiation group of the dodecahedral array. chiaeacteristic sound power level —
10log,o(W/W,s) — is shown in Fig. 5.9, wher&/,.; has been chosen to equal the maximum
value of the ARM # 1 curve.
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Figure 5.8: Frequency response (log magnitude) of the spomekr equalizers for the acoustic
radiation modes of a dodecahedral source. Solid curvesd teoretical filters; dashed curves:
approximated IIR filters witlB = D = 9.

Figure 5.9 shows that IIR filters witB = D = 9 provide fairly sound power equalization for
the radiation groups of the dodecahedral source underdenasion. Low-frequency equalization
is not concerned for the sake of safety, as discussed before.

In order to establish whether or not the IR power equaligers rise to phase distortion, the
sound pressure level (28, Pa) at (7, 9, g%) is presented in Fig. 5.10 forthe ARM # 1, 2, 5 and 10,
i.e., the curves are given by the product/fw) and the corresponding IIR compensation filter,
forl =1,2,5and10.

The phase response of the sound pressure is approximatedy iegardless of the considered
channel, as shown on the right in Fig. 5.10; the phase is vedyetweer)® and 1080° for the
sake of readability. Therefore, the presence of sound poampensation filters, at least in the
radiation directior(é, 45), does not lead to phase distortion, as mentioned in the émagpaphs of
section 5.2.1.
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Figure 5.9: Sound power level of the equalized acoustiatami modes of a dodecahedral source.
The ideal sound power equalization filters have been apmabed by IIR filters withB = D = 9.
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Figure 5.10: Sound pressure respons(é*aéi, 45) for some acoustic radiation modes of the dodeca-
hedral array with IR sound power equalizers.
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Chapter 6
Experimental Evaluation

In the previous chapters, theoretical and computatione@s concerning compact spherical loud-
speaker arrays for radiation control were considered. Mbi$te results and discussions presented
up to now are based on the validity of the theoretical modedpgsed in chapter 3. In order to
experimentally validate them, a spherical array prototygebeen designed, built and subjected to
a series of measurements. In this chapter, the experimestalts are presented and compared to
the prediction models. All the experimental work reportetdenwas carried out at the Laboratory
of Mechanics and Acoustics of the National Center for SdienResearch (UPR-7051, CNRS,
Marseille, France) from may 2009 to july 20009.

The first section is devoted to the description of the sphkdacray prototype. The second
section deals with the identification of the parameters todeel in the electrodynamic loudspeaker
model described in section 3.2.1 for each individual traiced of the prototype. Next, an analysis
of the electromechanical behavior of the prototype basesidace vibration pattern measurements
is presented, including the effects of the acoustic cogpinside the array frame. Finally, sound
radiation patterns of the prototype obtained from direttimeasurements in an anechoic chamber
are presented.

6.1 Prototype description

The main source parameters determining the angular radipéttern of a spherical array are: the
position of each loudspeaker on the array, the number oédizzers., the sphere radiusand the
radiation patterns of the individual drivers. In addititime radiated sound power is affected by the
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array enclosure design, as discussed in section 3.3. lioliloe/ing, the effects of these parameters
on the sound field are briefly reviewed in order to justify thées used in the prototype described
here.

If the spherical array is intended to provide radiation coinh a full 3-D space, the drivers
must be distributed as symmetrically as possible over thergpsurface. For the same reason, ide-
ally identical drivers should be used. Therefatdransducers of a given type are usually mounted
on the sphere surface according to a Platonic solid geomBten, one may have = 4 (tetrahe-
dron), L = 6 (hexahedron). = 8 (octahedron)[. = 12 (dodecahedron) at = 20 (icosahedron)
drivers. It is easy to realize that the complexity of the colidble radiation patterns increases with
L, as well as the computational cost and the overall systenplsxity.

Among the Platonic solids having the same midradiushe dodecahedron presents the
largest surface area available for assembling the drivers,one can use larger drivers so that
a higher sound power is obtained for a giveras shown in section 3.1.2.1. Furthermore, using a
dodecahedron leads to a smaller error when synthesizingntim®opole and the dipoles, whereas
higher order spherical harmonics are better synthesizelebizosahedron (refer to Fig. 4.2).

For the reasons stated above, a dodecahedron-like arrddebasconsidered as a good com-
promise between complexity of the controllable radiatiattgrns, system complexity and sound
power. Figure 6.1 shows pictures of the prototype studied,@12-driver spherical array.

Figure 6.1: Spherical array prototype with = 12 independently programmable transducers
mounted on a hollow sphere with outer radius- 0.075m and inner radiug; = 0.060m.

In section 4.2, it was shown that the ability in controllirguad directivity by using a spher-
ical array with a given, degrades as the non-dimensional parameteincreases. Hence, high
frequency control can be improved by decreasingHowever, this leads to a smaller radiating
surface so that sound power is reduced. This is criticalendtv-frequency range due to the very
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low radiation efficiency of the source at lokw values. Therefore, the choice ofis a trade-off
between low and high frequency sound reproduction. Theoprp¢ presented in this work has
a = 0.075m and the nominal diameter of the driver9i851m. In addition, the inner sphere radius
isa; = 0.060m.

The radiation patterns of the individual loudspeakers nedion a rigid sphere are not usu-
ally available to be taken into account in the design phake.fiequency responses of the drivers
and their variability can be used as a criteria for choosuitable transducers. However, the latter
information is not usually provided by the loudspeaker nfacturers, so that the designer must be
experienced in order to be able to use the drivers varigl@bta choice criteria. The alternative
adopted in this work was to simulate the frequency respaoishe spherical array, as described in
section 3.2, with some different drivers by using the etaoechanical parameters presented in the
manufacturers’ data sheets. In addition, compact drivexsare easy to handle and do not occupy
much space of the sphere cavity have been considered to tee Bte prototype presented here
uses AurasourfiNSW2-326-8A drivers (nominal diameter:051m; cone material: titanium).

As said in section 3.3, to let the drivers share a common egitinet leads to an easier to
build mechanical frame and to slightly lower voltages in lihe-frequency range. Therefore, the
prototype presents an empty spherical frame, which has me@ufactured by stereolithography.
Moreover, this design choice permits to evaluate experatigrthe acoustic coupling model pro-
posed in section 3.2. However, it is expected that some aldrequencies of the cavity will lead
to undesirable effects on the electromechanical behaviteosystem.

6.2 Parameter estimation of the electrodynamic loudspeake
model

According to the electrodynamic loudspeaker model preseint section 3.2, théth driver unit

of a loudspeaker array can be characterized by the follopamgmetersi\/;, C;, Ry, (Bl.);, Rl(e),
K;, n; and S;. Many identification methods have been proposed to estithata. Most of these
methods are based on electrical impedance measuremehés\ati¢e-coil terminals of the driver.
In this work, an identification method developed by Dr. Ring Herzog (co-advisor of this PhD
work) has been used for evaluating each transducer of ttegispharray prototype. The parameters
identification is based on accurate measurements of thé&rielddmpedance of the driver, and
on an iterative process which alternates the identificatfoglectrical impedance and mechanical
resonance, each through an analytic LMS identificationi thr¢ overall residue is low enough.
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The resonance frequency shifts observed when applyinga se¢chanical perturbations (added
masses and compliances) are then used in an LMS estimatiba speaker compliance, mass and
effective surface [84]. Briefly, the method estimates thelehigparameters from a set of electrical
impedance measurements obtained with the driver operatidgr different conditions and it has

been successfully applied to a wide range of loudspeakestyp

All parameters mentioned above can be estimated by megdirectly the diaphragm di-
ameter in order to obtaifi, and by making two electrical impedance measurements. fiirghethe
driver is mounted on a baffle of any size or with no baffle andhesecond, the driver is mounted
on an unlined closed test box of a known volume.

For small drivers, the direct measurement method is notaggdd¢o provide accurate results
for S, due to the proportionally large surface area of the drivepsuasion. A better estimative is
obtained if an additional impedance measurement is takethid case, the driver is mounted on a
baffle or with no baffle (as in the firstimpedance measurenamt)a known test mass is attached
to the driver diaphragm. In addition, tli¢ estimation can also be improved by making an extra
impedance measurement with the driver mounted on an untilesgd test box of volume other
than the previous one.

Figure 6.2: Experimental set-up for the electrical impe#ameasurements.

The model parameters for each driver unit to be used in thergth array prototype have
been estimated from a set of seven electrical impedanceumnagasnts taken with the driver oper-
ating under the following conditions:

e Suspended driver (with no baffle);

e Driver mounted at the open side of open-closed tubes of vedifiri;, V;») = (1.5,3.3) x
10~*m? and diamete®.050m (refer to the pictures on the left and on the middle of Fig);6.2

e Suspended driver with attached masseS\éf;, My, M3, Myy) = (0.9,1.4,2.3,2.8) x 10 3kg
(refer to the picture on the right of Fig. 6.2).
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Since it is difficult to adjust the attached masses on thehdagpm surface of such small
drivers, four impedance measurements with four distincses have been taken in order to achieve

a somewhat average result.

Table 6.1: Estimated parameters of the 12 Auras8Ud8W?2-326-8A drivers used in the spherical

array prototype.
M (kg) C(m/N) |R(N.s/m)|Bl.(T.m)| R (Q) K n S(m?)

Driver#01 [1.10 x 107 3[4.22 x 10~%]  0.25 3.16 6.51 [7.61 x 10-1]0.87[1.18 x 1073
Driver#02  |1.04 x 1073]4.95 x 10~%| 0.26 3.20 6.32 |7.34x1074]0.88/1.18 x 1073
Driver#03 [1.23 x 1073 |4.10 x 10~4| 0.27 3.36 6.16 |8.19 x 107%|0.86/1.30 x 103
Driver#04 |1.13x 1073 |5.37 x 1074| 0.31 3.28 6.29 |6.79 x 107%|0.89/1.26 x 103
Driver #05 | 1.06 x 1073 ]4.62 x 104 0.26 3.16 6.34 [6.31 x107%]0.89|1.21 x 1073
Driver#06  |1.03 x 1073|5.50 x 10~%| 0.25 2.99 6.11 |8.48 x 107%]0.85|1.20 x 1073
Driver #07 |1.10 x 1073]4.60 x 10~%| 0.32 3.23 6.41 |7.71 x1074]0.88/1.19 x 1073
Driver#08 [1.09 x 1073 [4.48 x 10~4|  0.31 3.20 6.25 |8.68 x 1074/0.86/1.22 x 103
Driver#09 [1.09 x 1073 |5.32 x 10~4| 0.27 3.11 6.30 |7.80 x 107%|0.86/1.20 x 103
Driver#10 |1.15x 1073 |4.16 x 10~4|  0.30 3.17 6.28 |8.84 x 107%|0.85/1.23 x 103
Driver#11 |1.03x 1073|5.20 x 10~%| 0.24 3.05 6.36 [9.73x1074|0.84{1.11 x 1073
Driver#12 |1.03 x 1073]4.53 x 10~%| 0.25 2.96 6.26 [9.42 x 1074]0.84{1.15 x 1073
Meanvalue [1.09 x 10 3[4.75 x 10|  0.27 3.16 6.30 [8.07 x 10-%[0.86/1.20 x 103

Stardard deviation0.06 x 1072 [0.50 x 104 0.03 0.12 0.10 [1.02 x 1074]0.02/0.05 x 1073

Table 6.1 presents the estimated parameters of the 12glaf/ére spherical array prototype.
It can be noticed that parameter variability seems to beifsignt, especially for”, R and K,
which may have effects on the radiation pattern.
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Figure 6.3: Theoretical and experimental electrical ingre@ of the driver #11 under the fol-
lowing operation conditions: suspended driver, driver nted at open-closed tubes of volumes
Vi = 1.5 x 107*m? and V;, = 3.3 x 10~*m?, suspended driver with attached masses of
(M, Myy, Mys, My,) = (0.9,1.4,2.3,2.8) x 103kg.

Figure 6.3 shows the electrical impedance magnitude oéd#¥1 operating under the seven
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conditions described before. The discontinuous linesgmtesxperimental results that have been
used to estimate the parameters of the model developedtiars82. The continuous lines present
the curves obtained by using such a model Wit = 0 and the estimated parameters of the
driver #11. Except for a small deviation when the driver is mounted anttibe of volumé/,,, the

loudspeaker model fits very well the measured data in the &mad-medium-frequency ranges. It
is worth noting that good agreement has also been found éootter 11 drivers used in the array

prototype.

The curves labeled “suspended” in Fig. 6.3 are plotted in & for the driver #08, but in a
wider frequency range and with phase response included.al disturbance arount00H =z can
be noticed in the experimental curve. Beyond this value thieeretical phase response deviates
from the experimental data. This behavior has also beemadxten the other array drivers and it
is due to the non-rigid body motion of the diaphragm susmenassembly, as it will be discussed

in the next section.

Electrical Impedance
40 ‘ ‘

= = = Experimental
Model

Phase (degrees)

Frequency (Hz)

Figure 6.4: Theoretical and experimental electrical ingre of a suspended driver unit
(driver #08) for use in the spherical array prototype.

YIn fact, the imaginary part of (*) /u is an inertance that was assimilated idtbin Tab. 6.1. Therefore, only the
real part of (%) /v is actually neglected.
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6.3 Electromechanical behavior

Results of electrical impedance/() and diaphragm velocity/voltage (v) measurements can be
used to experimentally evaluate the electromechanica\ehof a loudspeaker unit. The former
are used to estimate the electroacoustic parameters gatlakethe driver low-frequency response,
as discussed in the previous section. The latter permiteaotity vibration patterns other than

rigid body motion which potentially affect the sound ratat This section deals with diaphragm
velocity/voltage measurements.

As far as a compact loudspeaker array for radiation congrobincerned, the experimental
analysis becomes more complicated, especially when therdrshare a common cabinet. If so,
since the acoustic coupling between drivers affects theativelectromechanical behavior of the
array, it must be somehow evaluated. It is worth noting tafpting effects depend on phase and
magnitude relations between transducers, i.e., on thatradipattern one aims to achieve.

In the following, the experimental procedures used to itigate the electromechanics of the
spherical array prototype are described and the resultprasented. First, the individual loud-
speaker units are considered. Then, their interaction wpenating together in the spherical array
is investigated.

6.3.1 Experimental procedures

The following methods can be used to experimentally chareet vibroacoustic sources:

¢ Vibrational methods: vibration sensors such as accelemmnare placed on the radiating
body surface in order to directly measure its vibration;

e Acoustical methods: microphones are used to measure thstacéield around the source,
so that backpropagation yields the body vibration;

e Optical methods: laser beams are used to measure the wibrdta target surface.

For surface measurements of light structures like loudsgremaembranes, vibrational meth-
ods do not provide good results because the sensor mady gféadt the system dynamics. Then,
non-contact (no mass loading) methods such as acoustidamital methods are more suitable.
Besides surface velocity, acoustical methods lead to arigésa of the sound field, but have

95



the shortcoming of requiring the knowledge of a radiatiorrapor and the solution of an inverse
problem [85]. Hence, since the radiated field is not impdrtarinvestigate the electromechani-
cal behavior of loudspeakers, optical methods were usedetsure the surface vibration of the
loudspeakers employed in the spherical array prototype.

The frequency response functions (FRF) between inputgekad output velocities of points
on the driver diaphragm and suspension (under the “susgéddeer condition) have been mea-
sured using a scanning laser Doppler vibrometer (Pctye8V—-400). The left side of Fig. 6.5
illustrates the measurement grid. Since the driver suspenqsesents a vibration pattern more
complicated than the diaphragm itself, a finer mesh in th&aralirection has been used over the
driver suspension.

Figure 6.5: Laser scanning grid points on the driver vilmgsurface. On the left, driver is sus-
pended and both diaphragm and suspension velocities asanaea On the right, driver is mounted
on the spherical array prototype and only the diaphragncityls measured.

In order to investigate the interaction between drivergtatadditional FRF measurements
has been carried out with the drivers mounted on the holldveis However, unlike the previous
measurements, the input voltage and the output velocitg baen taken at different drivers of the
spherical array, as summarized in Tab. 6.2, where eachramiwraber corresponds to a position in
the array depicted on the left of Fig. 6.1. Here, only poimtshe driver diaphragm are considered,
as shown on the right side of Fig. 6.5.

Table 6.2: Measurement configurations for evaluating theraction between drivers mounted on
the spherical array prototype. Each driver number cormedpdo a position in the array shown in
Fig. 6.1.

Configuration Active drivers Input  Output
1 #1 #7 #7
2 #1 #1 #7
3 #1 and #12 out of phase  #1 #7
4 #1-12 in phase #7 #7
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In Tab. 6.2, the “active drivers” column contains the nunslidithe active transducers, which
are fed with the same magnitude signal. The column “inputitaims the number of the transducer
in which the input voltage is taken. The column “output” ans the number of the transducer in
which the output velocity is taken. It is worth mentioningtlall passive drivers were operating in
a closed-circuit configuration during the experiments,fmitconnected to an amplifier.

For all configurations shown in Tab. 6.2, the FRF output issiinéace velocity of a point at
the diaphragm of the driver #7. In config. 1, only transducgis#driven, so that the FRF input
Is its voltage. This configuration permits to evaluate tHeat$ of the passive radiators (inactive
drivers) and the sphere volume on the electromechaniceddtive driver.

Only driver #1 is active in config. 2. Hence, the FRF inputss/bltage. Since the FRF output
is the velocity of an undriven transducer (driver #7), sucl@afiguration leads to the evaluation of
the acoustic coupling inside of the array frame.

It is expected that the acoustic coupling will lead to two meffects. First, the dynamic
response of each driver will change in the compliance-dateuh (low-frequency) region due to
the sound pressure fluctuations inside the sphere inductteldriver displacements. Second, the
acoustic modes of the spherical cavity will modify the systédynamics at discrete frequencies
corresponding to the eigenfrequencies associated to thedes. Both effects are expected to
appear in config. 2. Configuration 3 is an attempt to isolatesttrond effect. One has two active
drivers fed by signals having the same magnitude, but ingpbpposition. Then, internal sound
pressure fluctuation will occur only if cavity modes are prds otherwise the measured FRF will
be zero.

Finally, all drivers are active in config. 4 and fed by the saigmal (magnitude and phase).
Hence, ideally, it does not matter which driver(s) is(arehsidered to obtain the FRF. Such a
configuration leads to an approximately omnidirectionalrgbfield and this is considered here
in order to emphasize the differences between the behafi@an eminidirectional source and a
directivity controlled source. The results are presentete following.

6.3.2 Results and discussion

Figure 6.6 shows the measured surface velocity of the digphrsuspension assembly of the
driver #7 plotted against the radial coordinate. Such sepatias been measuredl&i 6 H > with
the driver under the “suspended” condition. The laser socgnpoints are illustrated on the left of
Fig. 6.5. Then, it can be noticed that the first 7 circles in bi§ are points on the driver diaphragm
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and circles 8 to 16 are points on the driver suspension. Tédtschave been normalized and,
since the vibration pattern is practically axisymmetrigr@aged over the circumferences shown in

Fig. 6.5.

Magnitude

0 0.005 0.01 0.015 0.02 0.025

Phase (degrees)

0 0.005 0.01 0.015 0.02 0.025
Radial coordinate (m)

Figure 6.6: Measured vibration pattern of the diaphragnst(fir inner circles) and suspension
(circles 8 to 16) of a suspended driver for use in the spheaicay prototype. This pattern has

been measured at the frequencyl 616 H = and the grid points are illustrated on the left of Fig. 6.5.
The results have been normalized and averaged over therdemences shown in such a figure.

At frequencies below approximatelyy00H z, diaphragm and suspension oscillate in phase
and the vibration amplitude is nearly constant over theltiagm surface and over the inner portion
of the suspension surface, so that rigid motion assumgsiqrstified. As frequency increases, the
driver diaphragm still behaves as a rigid body. However stiigpension vibration becomes more
complex and its overall phase does not match the phase ofdhbrdgm motion. Near616 H z,
the inner and outer borders of the suspension vibrate pedigtin opposite phase, as shown in
Fig. 6.6. A previous work (refer to [84]) concerning loudakgers has shown that the finite stiffness
of the membrane may allow such a resonance, which leads tpetiterbation in the electrical

impedance shown in Fig. 6.4.

The suspension of any driver of the array presents the behdescribed above. Since the
suspension surface of the Auraso@ndSW2-326-8A drivers is proportionally large, it is under-
standable that its vibration affects the electrical impeda

Now, the acoustic coupling effects that take place wheredsiare mounted on the spherical
array prototype are investigated. Such effects are evaduat considering the FRFs described in
Tab. 6.2. Unless otherwise stated, each experimental F&depted in the next figures is the area-
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weighted average of the FRFs measured on the 61 points showhreaight side of Fig. 6.5. It
is worth noting that one has checked that the surface vglac@pproximately uniform over the
diaphragm surface.

In all simulations, the medium properties have been assumééc = 343m/s andp =
1.21kg/m?3. In addition, a truncation orde¥ = 29 has been adopted when using the distributed-
parameter model described in section 3.2.2.2.

Figure 6.7 shows the theoretical and experimental FRFegponding to config. 1 (refer to
Tab. 6.2). In addition, the FRF for a “suspended” driver isg@nted in order to show the effect of
the sphere volume on the system response. This experinteREals the area-weighted average
of the FRFs measured at the points on the driver diaphragmrsio the left side of Fig. 6.5.
Theoretical results have been computed using both the |daipe the distributed-parameter (con-
tinuous) models to evaluate the acoustic coupling (refeetion 3.2.2). The distributed-parameter
model assumes that the array cavity is an ideal sphere afsad: 0.075m, i.e., the effects of the
presence of driver elements and cables inside of the slhe&eity on the system response are not
taken into account. It is expected that such effects can bsidered in an overall sense by apply-
ing a correction factor to the spherical cavity volume wheimg the lumped-parameter approach.
Hence, in this work, the cavity volume value to be used in&82) isV, = (CF)(3ma®), where
C'F is a correction factor that can be obtained by trial and error

For frequencies lower than approximatéB00H z, the curves presented in Fig. 6.7 almost
superimpose. Since driver #7 is the only active driver ofdiray, the spherical cavity provides an
additional mechanical compliance of approximatelypc252)~! ~ 0.01m/N if CF = 1. This
value is much larger than the mechanical compliaficef the driver suspension. Therefore, the
spherical cavity does not affect the system response inothdrequency range, as shown in the
figure.

However, the distributed-parameter model leads to songeikirities due to the acoustic cav-
ity modes. The lowest 4 eigenfrequencies of a rigid spheciaaty correspond to the following
ka values: 2.0816, 3.3421, 4.4934 and 5.9404. Thusy fer0.075m, one hasl515H z, 2433H z,
3271 H z and4324 H z. Nevertheless, comparison of the 2 experimental curvesatethat only the
first cavity mode affects the experimental FRF. This sugg#sit higher order modes are much
more damped, probably due to a mismatch between the modae stmal the arrangement of the
loudspeaker frames inside the cavity. Moreover, the machhbehavior of the membrane be-
comes more and more dominated by its mass inertia as fregumreases. Coincidently, the first
eigenfrequency is very close to the high frequency limitdye/which the inner and outer borders
of the driver suspension no longer oscillate in phase.
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Figure 6.7: Theoretical and experimental FRFs correspati the config. 1 described in Tab. 6.2
and to a “suspended” driver. Each experimental FRF is theevaeeghted average of FRFs mea-
sured on the driver diaphragm surface.

Figure 6.8 shows the theoretical and experimental FRFegponding to config. 2. Here, the
diaphragm velocity is measured on a passive driver, so thatovement is only due to acoustic
coupling effects. Therefore, unlike in config. 1, changethim cavity volume have a great influ-
ence on the FRF. Therefore, a correction factdf = 0.6 has been used in order to approximate
the experimental result by the lumped-parameter modelenctimpliance-dominated frequency
range. When no correction factor is applied{ = 1), the lumped-parameter model leads to
the same result that the continuous model, except at theyaggenfrequencies discussed before,
as expected. It can be noticed that the experimental dresgpanse is greatly affected near the
first cavity eigenfrequency. Since higher order cavity nsoge damped in practice, the measured
diaphragm velocity of the passive driver is zero in the n@é@msinated frequency range.

Figure 6.9 shows the theoretical and experimental magaitedponses corresponding to
config. 3. Since the active drivers (#1 and #12) are fed bytrtet signals of the same magnitude
but in phase opposition, the diaphragm velocity of the pasgiiver (#7) is non-zero only at fre-
quencies close to the cavity eigenfrequencies that aretteoiusmted, namely515H = for the array
prototype considered here. Therefore, the lumped-pammaidel is not able to produce a non-
zero frequency response regardless of the correctionrfagio On the other hand, the first cavity
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Figure 6.8: Theoretical and experimental FRFs correspatdi the config. 2 described in Tab. 6.2.
The experimental FRF is the area-weighted average of FREsunad on the driver diaphragm
surface.

eigenfrequency emerges in the simulation results usingligtebuted-parameter model. Experi-
mental data indeed shows that the cavity resonance canmagbected in this situation, although
its effect is disturbed by the mechanical resonance of thédpeaker suspension, which occurs at
a frequency very close to the first acoustical resonanceecfdkiity.

The theoretical and experimental FRFs corresponding téigcoh are shown in Fig. 6.10.
Like config. 2, the application of the correction factof' = 0.6 improves the lumped-parameter
model results in the compliance-dominated frequency raifgde variability between the array
drivers is neglected, they will vibrate with the same veipenagnitude and phase. If so, the
spherical cavity provides each driver with an additionathamical compliance of approximately
Vio(Lpc?S?)~ = 7.31x10~*m/N if CF = 1, i.e., each transducer behaves as if it was mounted on
a sealed cavity with volum&, /L. This value is not much larger than the mechanical compéianc
C' of the driver suspension, so that the FRF magnitude peakftedlito the right in Fig. 6.10 in
comparison with Fig. 6.7. As far as an omnidirectional sgatrarray is concerned, if the cavity
eigenfrequencies and the transducers variability areeotsd, to let the drivers share a common
hollow enclosure will lead to the same electroacoustic@labsr as to provide each driver with
its own sealed cavity. Therefore, the enclosure designrforidirectional sources is much simpler
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Figure 6.9: Theoretical and experimental FRFs correspatdi the config. 3 described in Tab. 6.2.
The experimental FRF is the area-weighted average of FREsunad on the driver diaphragm
surface.

than for directivity controlled sources.

It is worth commenting on the apparently large volume cdioaaused here in order to adjust
the lumped-parameter model, i.€.F' = 0.6. Notice that this factor is applied to the volume of a
sphere whose radius is the outer radius of the dodecahedagl@ototype ¢ = 0.075m). Since
this volume is not the empty volume of the prototype cabifiét,does not possess a strict physical
sense. If the thickness of the spherical frame was takenaatount in the definition ot F’
(its inner radius is;; = 0.060m), a correction factor 06.6(a/a;)®> = 1.17 would lead to the same
theoretical results presented in this section, which isurreasonable number because it is expected
that the presence of wires inside the cavity will reduceteiag of increase the empty volume. As
a matter of fact, inspection of the AurasoGhNSW2-326-8A driver geometry and its assembling
on the spherical frame reveals that the cavity volume iseiased by an approximate amount of
2.5 x 107°m? due to each driver. Then, if the spherical frame thicknesistha driver shape were
taken into account in defining'F, a correction factor 0f0.6 x 47a®/3)/(12 x 2.5 x 107° +
4ra?/3) = 0.88 would result. By considering the wires inside the cavitis thalue will increase a
little so that the “optimum” volume corresponding to thé’ = 0.6 curves presented in this section
does not deviate much from the actual empty volume of theopypé cabinet, which corroborates
the theory.

On the other hand, since the distributed-parameter modehass that the loudspeaker array
cabinet is a perfect sphere, a sphere radius rather tharummgainhust be provided. Choosing a
sphere radius that yielded the actual cabinet volume waald to good results in the compliance-
dominated frequency range, similar to the lumped-parametelel. However, the interest in using
the distributed-parameter model is that it takes into antthe higher order cavity modes. Due to
the fact that the actual cabinet is not a perfect spherentipossible to ensure that using a sphere
radius corresponding to the actual cabinet volume will leadccurate cavity eigenfrequency re-
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Figure 6.10: Theoretical and experimental FRFs correspgntb the config. 4 described in
Tab. 6.2. The experimental FRF is the area-weighted averaf&Fs measured on the driver
diaphragm surface.

sults. Hence, for the sake of convenience, the outer raditiseododecahedral array prototype
was used in the distributed-parameter model results pregémthis section. Finally, the adopted
definition of C'F’ permits to compare the lumped-parameter to the distribpéedmeter model in
the compliance-dominated frequency range by let€itig= 1, so that it is justified.

As shown in Figs. 6.7, 6.8, 6.9 and 6.10, the electromechbmodels presented in this work
are not able to accurately predict the response of a trapsdiithe array prototype in the frequency
range approximately from.2 to 2k H z. For the other frequencies, the corrected lumped-paramete
model can be used to evaluate the frequency response. Tdremhscies between experimental
and theoretical results over this frequency range are dtleetsuperposition of two effects: the
actual non-spherical sound field inside the prototype gdwhich includes damping, actual driver
geometry and wires) and the non-rigid body motion of the efgvsuspension. The latter can
be taken into account by modeling the actual vibration patté the driver suspension, whereas
a complex enclosure model should be used in order to takeotingef into account. However,
since it is not yet known how these effects influence the soadihtion pattern, the pertinence of
developing such an improved model could be questioned ictipea As far as the cavity model is
concerned, the results presented here show that the respbagassive driver is harder to predict
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than the response of an active driver. However, one may camgthat the passive drivers of a
spherical array do not contribute as much as the activerdrigethe radiated sound field, so that
the development of a complex cavity model would not be jtifiT his hypothesis should be tested
in a future work.

6.4 Sound radiation

The sound radiation prediction model described in secti@r23assimilates each driver membrane
of the spherical array as a convex spherical cap that owsllaith a constant radial velocity am-
plitude across its surface. However, the membrane of thagoum@® NSW2-326-8A driver is a
concave spherical cap rather than a convex one. Since dadiator loudspeakers with convex and
concave membranes present different radiation pattertigeihigh-frequency range [50, 51], it is
not expected that the proposed method will be able to prédtkctound radiation from the spherical
loudspeaker array prototype for all frequencies. Moreaber diaphragm suspension assembly of
each driver is assumed to be a rigid body in the sound radiatiodel, which is not a good as-
sumption for all frequencies of interest, as shown in the@iptes section. Then, additional error is
introduced due to the uneven deformation of the driver susipa.

In order to evaluate the effects of the non-ideal geometdyaloration of the transducers on
the radiation pattern, the sound directivity of the spradrécray prototype operating under distinct
conditions was measured in an anechoic chamber. In thenioldp the experimental set-up is
briefly described and measurement data are presented anmhdrto simulation results. Since
it was shown in section 6.3 that only the first cavity mode @ffehe vibration of the drivers’
membranes, for the sake of simplicity, the author has dddigléake the internal acoustic coupling
into account by using the lumped-parameter model preseémtagttion 3.2.2.1, i.e., the high-order
cavity modes are neglected in the theoretical results ptedédere.

6.4.1 Experimental procedures

Figure 6.11 shows the experimental set-up for the dir@gtimeasurements. The driver and micro-
phone labels are indicated in Fig. 6.12. The loudspeakay amototype was mounted at the center
of a circular microphone array with radiug = 0.70m and with N; = 28 transducers equally
spaced, so that the angular spacing between consecutivgananes is approximatelyd = 6.7°.
The antenna was attached to an automatic turntable whag@roaxis passes through the center of
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the loudspeaker array prototype. Measurements were takgn-a 49 different antenna positions
with an angular spacing between consecutive positions jafoagmatelyA¢ = 7.0° , except for
spacing between positions 1 and 49, in whish = 24.0° was used due to mechanical constraints.

Figure 6.11: Experimental set-up for the directivity measwents at the large anechoic chamber of
the Laboratory of Mechanics and Acoustics of the Nationait€efor Scientific Research (UPR-
7051, CNRS, Marseille, France).

Condenser microphones with Panas&natectret capsules and omnidirectional characteris-
tics were used. Because of the low cost and small size of tnésephones, a large number of
them could be dealt with and a relatively non-diffractingeanma could be obtained in a simple
way. The calibration was performed in january 2010 at the Llslye anechoic chamber by using
a commercial pistonphone (B&K type 4231) with the micropb®mounted on the circular frame.
The resulting microphone sensitivities are presented Im 23 .

For each microphone and antenna position, an FRF between dinper voltage and out-
put sound pressure at the microphone position was measWwade noise at a sampling rate of
44100H z was used as the input signal. Then, the experimental segtelip k total ofV, N, = 1372
samples of the radiation pattern. Many directivity patsenere measured corresponding to differ-
ent combinations of magnitude and phase of the driver vefiagor each directivity measurement
run, the FRF input was taken at a specific driver of the loudkpearray.

In the first set of experiments, only one driver was made adtivough application of a
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1
#03 #02

Figure 6.12: Experimental set-up for the directivity measuents with the driver and microphone
labels indicated.

voltage of0.93V,.,,; in order to approximately obtain the radiation pattern afreane of the 12
drivers mounted on the sphere. Itis worth noting that thebassive) drivers may also contribute
to the resulting sound field due to the acoustic coupling.réfoee, it is not rigorous to state that
the resulting directivity data corresponds to the radrapattern of a single driver mounted on a
sphere.

Next, voltages proportional to the values presented in eattimn of the Tab. C.6 were
applied to the array drivers in order to obtain the diretfipatterns of each one of the 12 acoustic
radiation modes of the spherical array. The largest voltahee was).93V,.,,.s, corresponding to
driver #01 and ARM #05. Finally, directivity patterns capending to linear combinations of
radiation modes in a same radiation group were measured.

For the sake of clarity, only a few results considered as thstmelevant by the author are
presented here, namely, some FRF magnitude curves at amiceophone position and some
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Table 6.3: Sensitivities of the electret microphones usdtié directivity measurements; calibra-
tion performed in january 2010.
Microphone Sensitivity (mV/Pa) Microphone Sensitivity\(fiPa)

#01 25.8 #15 22.9
#02 25.8 #16 26.3
#03 27.5 #17 18.6
#04 24.6 #18 32.1
#05 23.9 #19 26.9
#06 18.5 #20 28.3
#07 23.6 #21 22.8
#08 20.4 #22 22.3
#09 27.5 #23 24.4
#10 35.5 #24 23.7
#11 25.7 #25 17.8
#12 31.9 #26 24.6
#13 20.0 #27 24.7
#14 19.8 #28 21.4

directivity patterns at given frequencies. The former amaarized in Tab. 6.4.

Table 6.4: Measurement configurations for evaluating soRfesFbetween an input driver voltage
and an output sound pressure taken at the mic #10. The angepoaitioned so that mic #10 is
approximately in front of the driver #01.

Configuration Active drivers Input

#01 #01
#12 #12
#04 #04
#10 #10

ARM #01 #01
ARM #02 #12
ARM #05 #12

~NOo oo wWDNPRE

Finally, it is worth mentioning that all passive drivers we&onnected to amplifiers during the
experiments, so that they were operating in a closed-ticomfiguration.

6.4.2 Results and discussion

Figures 6.13 and 6.14 present the magnitude of the FRFsspamding, respectively, to the con-
figurations #1 to #4 and #5 to #7 described in Tab. 6.4. Thedptassure is taken at the mic #10.
The antenna is positioned so that mic #10 is approximatefyoint of the driver #01, which is
approximately the situation represented in Fig. 6.12.
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Figure 6.13: Theoretical and experimental FRFs correspgntb the configurations #1 to #4
shown in Tab. 6.4.

Comparison of Figs. 6.12 and 6.13 reveals that the FRF matgidecreases as the angle
between the microphone position and the symmetry axis adc¢tiee driver increases, as expected.
This is due to the acoustical shadowing produced by the spdredl to the radiation pattern of a
single driver, in which the main radiation direction is thévdr symmetry axis.

Figure 6.14 shows that, in the low-frequency range, the FREnitude decreases with in-
creasing the complexity of the acoustic radiation mode.sThidue to the fact that, at low fre-

guencies, the radiation efficiency decreases as the madliatode complexity increases, as shown
in Fig. 5.4.

The theoretical results present good agreement with therempntal data in the low-frequency
range, as shown in Figs. 6.13 and 6.14. However, as frequeromases, the theoretical model is
no longer able to predict the actual sound pressure spectuagiven measurement point. It is
worth noting that the experimental curves present a rerbéekaehavior change aroun@00H z,
which is due to the uneven diaphragm deformation shown in@:gand to the first cavity mode.
As a matter of fact, since the mechanical resonance of therdsuspension occurs at a frequency
very close to the first cavity eigenfrequency, it is not pblesio determine their individual contri-
butions to the discrepancy observed in the correspondatgéncy range between sound pressure
simulation results and sound pressure experimental data.

Figures 6.15 to 6.28 show the theoretical and experimeiredtivity patterns corresponding
to some acoustic radiation modes of the dodecahedral aroégtype for specific frequencies. No-
tice that one sector of grid points is missing in the dirattiplots, which is due to the mechanical
constraints mentioned in section 6.4.1. Simulation resuktch fairly well the experimental data
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Figure 6.14: Theoretical and experimental FRFs correspgntb the configurations #5 to #7
shown in Tab. 6.4.

(notice that the FRF magnitude is presented in linear sct@pugh inspection of the latter reveals
that the variation of the FRF magnitude over the zenith anglenlike over the azimuthal angle
— is not as smooth as the theoretical results. This can beodaiedlibration problem between the
microphones of the circular antenna. Notice that each plavoe corresponds to a zenith angle.

Despite the fact that the radiation model is not able to ptatle sound pressure spectrum at
a given point for high frequencies, Figs. 6.18, 6.22, 6.26 &28 reveal a fairly good correspon-
dence between simulation results and experimental datar &s fthe overall directivity pattern is
concerned. This indicates that the velocity magnitude dras@ relations between distinct drivers
are more important than the vibration pattern of each indial driver membrane to the resulting
directivity pattern.

For frequencies higher than approximatély0H z, there are some perturbations on the ex-
perimental directivity patterns near the poles, as shovigs. 6.17, 6.18, 6.20, 6.26 and 6.28. This
is probably due to wave reflections from the frame on whichni@ophone antenna is mounted.

As discussed in sections 3.1.2.1 and 4.2, the directivitiep@s associated to the radiation
modes of a dodecahedral loudspeaker match real-valuedcghermonic functions for lovka
values. If this condition is satisfied, a pure spherical lanm pattern with an angular orientation
other than that produced by a single radiation mode can laéraat by making a linear combination
of the radiation modes within the corresponding radiatiooug. For example, it is possible to
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Figure 6.15: Theoretical and experimental directivitytpat for the ARM #01 att00H z.

synthesize a rotated dipole with any axis orientation byositg a proper combination of the
radiation modes #02 to #04. The weights to be applied to eadiatron mode can be evaluated
from the zyz Euler angles describing the desired rotationdiyg Eqgs.(2.32), (2.33) or (2.34).

Figures 6.29 and 6.30 show, respectively, a rotated dipudeaarotated lateral quadrupole
obtained using the equations cited above. Again, therariag@geement between the experimental
and theoretical results. It is worth mentioning that sehadditional rotated patterns obtained from
different combinations of orthogonal dipoles (ARM #02 t@#0r real-valued spherical harmonics
of order 2 (ARM #05 to #09) have been measured and the resats always revealed a fair
agreement. Hence, the dodecahedral loudspeaker proti¢goebed in this work can be used to
produce directivity patterns that can be electronicaltated. It is expected that this could be done
in real-time, which may find applications in electroacoustusic.

110



ARM # 02: 400 Hz
Theoretical

Experimental

0.2
o . giasagiﬁ\
ZZEN EEsS
255NN N
0 =0 =SS
) e
NN AReae
) | N
0.1 \ il ~§§§‘==
V7 NS N
y KL

0 100
phase (degrees)

0 100
phase (degrees)

Figure 6.16: Theoretical and experimental directivitytpat for the ARM #02 att00H =.
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Figure 6.17: Theoretical and experimental directivitytgat for the ARM #02 al 000 H z.
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Figure 6.18: Theoretical and experimental directivitytpat for the ARM #02 at 500 H z.
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Figure 6.19: Theoretical and experimental directivitytgat for the ARM #03 attl00 H -.
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Figure 6.20: Theoretical and experimental directivitytpat for the ARM #03 at 000 H z.
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Figure 6.21: Theoretical and experimental directivitytgat for the ARM #04 atl00 H -.
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Figure 6.22: Theoretical and experimental directivitytpat for the ARM #04 a2000H z.
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Figure 6.23: Theoretical and experimental directivitytgat for the ARM #05 a600H z.
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Figure 6.24: Theoretical and experimental directivitytpat for the ARM #06 a600H =.
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Figure 6.25: Theoretical and experimental directivitytgat for the ARM #07 a600H z.
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Figure 6.26: Theoretical and experimental directivitytgat for the ARM #07 aR000H =.
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Figure 6.27: Theoretical and experimental directivitytpat for the ARM #10 at 000 H z.
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Figure 6.28: Theoretical and experimental directivitytgat for the ARM #10 aR000H =.
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Figure 6.29: Theoretical and experimental directivitytpat at400 H = corresponding to a rotated
dipole obtained from a linear combination of the ARM #02 t&#0
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Figure 6.30: Theoretical and experimental directivitytpat at600 H = corresponding to a rotated
lateral quadrupole obtained from a linear combination efARM #05 to #09.
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Chapter 7
Conclusion

As stated in chapter 1, the main contributions of this thasss

e The characterization of an improved basis for directivitgnesentation, namely, the acoustic
radiation modes discussed in sections 2.3.2 and 3.1.2;

e The investigation of the electromechanical behavior of pach loudspeaker arrays. This
was provided through the development of the electromechbiniodels presented in sec-
tion 3.2, which were experimentally validated from laseppler vibrometry measurements
in section 6.3;

e The comparative analysis of distinct optimization criien derive the signals that must feed
the drivers in order to reproduce a given directivity pattein section 4.3 of this work,
the standard least-squares (phase concerned) was contipdhedmagnitude least-squares
(phase not concerned). The latter was shown to performrbette

In the following, these topics are summarized and suggestuar further work are presented.

7.1 Directivity representation

In this work, acoustic radiation modes were applied to sdigld synthesis by a spherical loud-
speaker array. As described in section 3.1.2, the transdn@gy was modeled as a discrete sphere,
i.e., arigid sphere on which a set of independent spheragad s mounted. Analytical expressions
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were presented to evaluate the radiated field, the radiafifociency and the acoustic radiation
modes of spherical arrays. In addition, the spherical cagageh was experimentally validated
through directivity measurements of a spherical arrayqtype performed in an anechoic cham-
ber, as shown in section 6.4.

It was shown in section 3.1.2.1 that the radiation efficieoicg spherical array decreases as
the complexity of the radiation mode increases and withehsing frequencies. Low radiation effi-
ciency means that high loudspeaker diaphragm displacemargt be achieved in order to produce
meaningful sound pressure levels. It is worth noting thataasing the number of loudspeakers
does not significantly improve the radiation efficiency at foequencies, since even a continuous
sphere does not radiate efficiently at low frequencies.

The farfield radiation pattern of each radiation mode of aréi® sphere matches a real low-
order spherical harmonic at low frequencies. However,dbiss not occur as frequency increases,
when high-order spherical harmonics start to propagatectdetrfield, so that radiation modes lead
rather to a combination of many spherical harmonics of iisorders.

Using radiation modes to describe the array directivityspras several advantages over
spherical harmonics. Unlike the latter, the former coostita finite set of vectors that spans a
subspace on which any radiation pattern the array is ablepimduce can be projected. Further-
more, the eigenvalue analysis that must be carried out ierdodobtain the radiation modes leads
also to the radiation efficiencies of the modes, i.e., thefi@guency constraints in sound repro-
duction by a spherical array are naturally evaluated. Inteh] these modes radiate sound energy
independently, so that the total sound power is given by sugtine individual contributions of
each mode. Radiation modes also lead to a reduced numbena eltannels due to the fact that
some modes do not radiate sound energy at some frequen®@srtdrag can be determined through
inspection of their radiation efficiencies. Thus, it is @sslto take such modes into account and
so this approach avoids overloading the loudspeakers.l¥inadiation modes are not restricted
to spherical shapes. So, it is expected that most of the igles®nted here can be extended to
non-spherical loudspeaker arrays and will allow to take extcount the actual vibration pattern
and shape of the loudspeakers.

Therefore, to provide the array with preprogrammed surfagecity distributions corre-
sponding to its acoustic radiation modes is a better costrategy than using spherical harmonics
as elementary directivities.
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7.2 Electromechanical behavior of spherical loudspeakemraays

In section 3.2, two electromechanical models of a compautdpeaker array for radiation control
were presented: a lumped-parameter model and a distripatesineter model. Both take into
account the acoustic coupling between drivers and can lstasempute the diaphragm velocities
of the array elements from the voltages that feed them arel wecsa. In order to evaluate the
accuracy of the proposed models, a compact spherical amégtype with 12 drivers was subjected
to electrical impedance and LDV surface velocity measurgmeas discussed in sections 6.2 and
6.3, respectively. Since the spherical array prototypseges a hollow spherical cavity on which
the transducers are mounted, the acoustic coupling effeats be experimentally investigated.

In the lumped-parameter model, the enclosure is modeled asaustic compliance and, in
the distributed-parameter model, the cavity is assumee @ firerfect rigid sphere so that the ana-
lytical solution of the Helmholtz equation in spherical cdoates can be used. The latter, unlike
the former, takes into account the acoustic modes of therigaheavity that affect the system re-
sponse as frequency increases. Therefore, the distripatesneter model leads to singularities at
frequencies corresponding to the spherical cavity eigepfencies. However, experimental results
demonstrated that only the first cavity eigenfrequencyr@amately 1.5 kHz) affects the system
behavior, so that one may conclude that higher order cavitgen have a negligible contribution
to the membrane velocity.

On the other hand, it was observed that the results obtaybdth the distributed-parameter
and the lumped-parameter models do not match the expehtaia in the compliance-dominated
frequency range. This is due to the presence of wires andrdramponents inside the cavity, so
that the actual cavity shape deviates from the ideal sphEli@vever, this could be dealt with
by applying a correction factor to the spherical cavity vouwhen using the lumped-parameter
model. In fact, the corrected lumped-parameter model ptedggood agreement with experimental
data, except for the frequency range approximately fromtd 2 kHz, which comprises the first
cavity eigenfrequency. In addition, the discrepancy betwibe corrected lumped-parameter model
results and the experimental data in this frequency rangésasdue to the fact that the inner and
outer borders of the driver suspension vibrate practicaltypposite phase near 1.6 kHz.

It was shown that the electromechanical behavior of the/gmmatotype cannot be completely
described by assuming that the diaphragm suspension algseih@ach driver is a rigid body. In
addition, the non-spherical geometry of the enclosure dicatps the internal sound field near the
first cavity eigenfrequency. Coincidently, for the sphafirray prototype studied in this work, the
mechanical resonance of the driver suspension occursed@ency very close to the first acoustical
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resonance of the cavity. Therefore, it was not possible terdene their individual contributions
to the discrepancy observed in the corresponding frequemge between sound pressure simula-
tion results and sound pressure experimental data, whishpvesented in section 6.4.2. Anyway,
theoretical results can be improved by using a flexible dmeembrane model and by taking into
account the uneven suspension deformation. On the othdr trameffects of the acoustical reso-
nance of the cavity can be reduced by working on the enclaesign, e.g., by adding an acoustic
absorbent material in the cavity.

The combined use of radiation modes and the proposed afeetitanical models led to
a simple way to compare the performance of the two differentasure designs that have been
described in the literature, namely, drivers sharing a comhmollow cavity and each driver with
its own sealed cavity. Simulation results for a specific sighéarray indicated that the former
does not provide a relevant reduction in the voltages tleat fiee drivers in the operating frequency
range. Nevertheless, a common enclosure is easier to theldcoustical coupling can be predicted
by the electromechanical models proposed in this work, Baegxperimental results revealed that
only the first cavity resonance affects the system dynarttics €ffect can be reduced, as discussed
above). Hence, one may conclude that there is no reasonltbébcomplicated mechanical frame
in order to provide each driver with its own sealed cavity.

Finally, it was shown in chapter 5 that the acoustic radiatitodes of a Platonic shaped
loudspeaker are the eigenvectors of the transductionxfatrdrivers sharing a common cabinet,
which greatly simplifies the equalization filter design.

7.3 Optimization criteria

The capability of Platonic shaped loudspeakers in reprioguspherical harmonic patterns was
evaluated in the least-squares sense in chapter 4. Thendd@sigspherical loudspeaker array for
spherical harmonic synthesis must be a compromise betweearid high frequency reproduction:
at high frequencies, spatial aliasing artifacts degradespiherical harmonic synthesis, which can
be dealt with by decreasing the radius of the spherical a@aythe other hand, at low frequencies
one has the low radiation efficiency problem, which can bédtagth by increasing the radius of
the spherical array.

Among the Platonic solids having the same midradius, thedaltedron presents the largest
surface area available for assembling the drivers, thexefielding a higher sound power for a
given midradius. Furthermore, it was shown that using a daldedral source leads to a smaller
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error when synthesizing the monopole and the dipole. Thesiddecahedral loudspeaker presents
the best compromise between complexity of the controlleddétion patterns, number of channels
and sound power. It is worth noting that the only benefit ohgsan icosahedron is to provide
control over some spherical harmonics of order= 3 within a very limited frequency range.
No improvement either in the sound power level or in the sgsitherror for low-order spherical
harmonics is achieved.

An example of directivity synthesis in which the target pattis not a spherical harmonic was
provided in section 4.3. Two different cost functions wesediand compared: the standard RSME
(phase concerned) and the magnitude RMSE (phase not cedgethwas shown that excluding
the phase error of the cost function greatly reduces the memerror in directivity synthesis,
which increases significantly the application of loudsmeakrays toward high frequencies. This
reveals that the relation between the phase and magnitadialsgistributions depends largely on
the radiating body characteristics, so that magnitudenggit does not yield phase synthesis and
vice versa. Finally, it is worth noting that phase can be eetgld only in farfield synthesis.

7.4 Further research

As discussed in section 3.1.2.1, it was observed that thesticoradiation modes of a Platonic
solid loudspeaker do not depend on frequency, which is a weejul result because it leads to a
basis for directivity representation that can be used fofrafjuencies and possesses the advan-
tages summarized in section 7.1. However, this result hbe®n rigorously proved. In fact, the
frequency independence property for radiation modes isetptired. For the frequency range of
interest, it is sufficient that the efficient radiation modésny frequency can be decomposed over
the efficient radiation modes obtained for the maximum fesmy of interest. Such a “nesting”
property holds analytically for spherical, cylindricalcaplane radiators (with infinite number of
degrees of freedom), whereas it is a conjecture for somat@diother than these ones [43]. Then,
further research concerning the “nesting” property of tiiiation modes of spherical loudspeaker
arrays would help to evaluate the applicability of such adtsdifferent radiating bodies and to
sampling strategies over the sphere other than Platonic.

In the electromechanical loudspeaker models proposedsmibrk, the membrane suspen-
sion assembly is assumed to be rigid. This is one of the main@mings of these models,
which would benefit from the development of a multi-degrééreedom approach describing the
mechanical behavior of the driver membrane and suspension.
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It was shown in section 6.3 that the driver response is atklay the first cavity mode for fre-
guencies close to the corresponding eigenfrequency. Hitemative enclosure designs including,
for example, an acoustic absorbent material can be inastign order to minimize the effects of
cavity resonances on the loudspeaker array performance.

Finally, the magnitude error in the directivity synthesigreatly reduced by excluding the
phase error of the cost function, as shown in section 4.3s 3inggests that using a cost function
based on a psychoacoustic metric rather than on the phy$iaedcteristics of the sound field may
significantly increase the realism of the synthesized patt@herefore, the directivity synthesis
by a compact loudspeaker array would benefit from furthezaiesh on the perceptual features of
directivity patterns.
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Appendix A

Wave Equation in Spherical Coordinates

A.1 General solution

Here, a general solution for the wave equation in spherigcatdinates is developed. Hence, the
Laplace operator becomes [73]

10 [(,00) 1o (. ,0() 1 0%()
Al = r2or (T or ) * r2sin 6 06 (sm@ 00 * r2sin®@ 0¢? AD

wherer is the radial coordinaté), is the zenith angle andis the azimuth angle.

Substitution of Eq.(A.1) into (2.3) yields to

10 20p 1 0 . Op 1 02]) )
2or \ or) " 2sin0of ) T 2o = A.2
r2 Or <T 87’) + r2sin 6 00 <Sm989) - r2sin? 0 02 +kp=0 (A.2)

Equation (A.2) is separable. Hence, its solution is

p(r,0,0) = R(r)©(0)®(0) (A.3)

Substitution of Eq.(A.3) into (A.2) leads to

1d [ ,dR 1 d (. dO 1 &?e .,
T (7‘ %)jL@sin@@ (Slne—)+7¢sin29?&+kr =0 (A.4)




By separating the variables, Eq.(A.4) yields to three adirdifferential equations:

1 d*® 9
sinf d (. dO© o o
5 40 (sméﬁ) +n(n+1)sin®d =m (A.6)
— 2 = A7
Rdr(r dr)+kr n(n+1) (A7)

wherem andn are constants.

The general solution to Eq.(A.5) can be easily shown to be

D (@) = 1™ 4 Poe™t™? (A.8)

where®, and®, are constants. Since the relatidri¢) = ® (¢ + 27l) must be satisfied in order
to provide continuity and periodicity @b (¢) (wherel is an integer) must be an integer.

To solve Eq.(A.6), let) = cos . Then, it becomes

2 9

Equation (A.9) is an associated Legendre equation whoserglesolution is [86]

O (0) = O,P (cos ) + OQ7" (cos ) (A.10)

where©; and©, are constants?”(-) and@!"(-) are the Legendre functions of the first and second
kind, respectively. Sinc@" (n) are not finite at the poles whene= +1, ©, = 0. P!" (n) diverges
atn = 1 unlessn is restricted to be an integer. In addition, wheis an integer the® () = 0 if

m > n [61].

Equations (A.8) and (A.10) show that the angular dependehtiee solution to Eq.(A.2) is
conveniently described by spherical harmonic functioagefrto section 2.3.1).

Finally, Eq.(A.7) will be solved. Let: = kr andy = v/krR. Then, Eq.(A.7) becomes
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@2 d 1\?
xz—y+x—y+<x2—<n+§) )yzO (A.11)

Equation (A.11) is a Bessel equation. Then, the generatisalto Eq.(A.7) is [86]

R(r) = \/1]{:7 (R1Jn+% (kr) + RaY, s (kr)) (A.12)

where R; and R, are constants/,,(-) andY,(-) are the Bessel functions of the first and second
kind, respectively.

Equation (A.12) can be more properly written in terms of thhesical Bessel functions of
the first and second kind, which are respectively defined@is [8

. m
Jn () = pyRLTE (x) (A.13)
(2) = /5 Yar: (@) (A14)
Yn \T) = 2 n-i—% x .
Thus, Eq.(A.12) can be rewritten as
R(r) = Rijy (kr) + Roy, (kr) (A.15)

Alternatively, the solution can be written as

R(r) = RiAW (kr) + Roh® (kr) (A.16)

wheren" () andh{? (-) are the spherical Hankel functions of the first and second ¢itso called
spherical Bessel functions of the third kind), respectiwehich are defined as [86]

hg) () = Jn () + 1y, (z) (A.17)
W () = jn () = wyn () (A.18)

It is worth noting that the constanf$, and R, presented in Egs.(A.12), (A.15) and (A.16)
are different.
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Since a time dependence of the foerm“! has been assumed (refer to section Zhilj,(kr)
andhﬁf)(k;r) represent an outgoing wave and an incoming wave, respbctive

The general solution to Eq.(A.2) is obtained by substitytigs.(A.8), (A.10), (A.16) and
(2.23) into (A.3), so that

p(r,0,0) = Z Z AnhY (kr) + Bnh@ (kr)) Y™ (6, 6) (A.19)

n=0 m=—n

whereA,,,, andB,,,, are constants to be determined from the boundary conditions

A.2 Exterior and interior problems

Equation (A.19) is simplified if there are no sources andteoats outside an imaginary surface
enclosing the sources or inside an imaginary surface sodexiby the sources. If so, one has an
exterior problem or an interior problem, respectively. ihie coefficientsd,,,,, and B,,,,, are not
independent of each other.

For an exterior problem (free-field sound radiation), sitioere are not incoming waves,
B, = 0 so that Eq.(A.19) simplifies to

(r,0,¢) = Z Z Apnh D (kr) Y™ (6, ¢) (A.20)

n=0 m=—n

Substitution of Eq.(A.20) into (2.4) yields to the follovgrexpression for the radial compo-
nent of the acoustic velocity:

dn (kr)

n=0 m=—n

For an interior problem, since thg(-) functions are not finite at the origin [614,,,.,, = Bun
so that Eq.(A.19) simplifies to

(r, 0, ¢) = Z Z Crnjn (k)Y (6, ¢) (A.22)

n=0 m=—n
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Substitution of Eq.(A.22) into (2.4) yields to the follovgrexpression for the radial compo-
nent of the acoustic velocity:

I o — djn, (k7)< 1,
v (r,0,0) = _EZ 3" Com 2 (z(m«))yn 0, ¢) (A.23)

n=0 m=—n

137



Appendix B

Properties of the Coupling Matrix for the

Discrete Sphere

The matrix that couples the power radiated by the spheregas of a discrete sphere is given by

Eq.(3.21). Each term of such a matrix is

(N+1)2
Cuy = 2,0 Z B Ev

By using Egs.(3.18) and (3.19), one has

(N+1)2 N

1 . dh? (kr)
BXEy, = — A, PR (ko) 2
Z il Ly Z pc| On| n ( T) d(kT) Xll

where

X = ZD (a1, By, 1) Do, Birs r)

m=—n

= dio(B)die(Br) + > 2d70(B)dpo(Br) cos(m(ay — )
m=1

is real andyj;, = x7,-

It can be shown that
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W) (1
R {—th)(kr)*dlz;zk(?ﬂk; )} _ (;)2 (B.4)

SinceS = 2ma?(1 — cos by) L, substitution of Egs.(B.2) and (B.4) into (B.1) leads to

N
Cll’ = (47TL(1 — COS 90)(pc)2(k5a)2ulu1/)_1 Z |A0n|2XZ/ (BS)
n=0

It can be verified that is symmetric and that it does not depend-oim addition, substitution
of Eq.(3.11) into (B.5) reveals th&t does not depend anandp either.
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Appendix C

Convex Regular Polyhedra

Table C.1 presents some basic properties of Platonic J@gids The dihedral angle is the interior
angle between any two face planes.

Table C.1: Basic properties of Platonic solids.

Polyhedron number of faces number of vertices dihedral angle (degrees)
Tetrahedron 4 4 70.53

Hexahedron 6 8 90.00

Octahedron 8 6 109.47
Dodecahedron 12 20 116.57
Icosahedron 20 12 138.19

Table C.2 presents the Cartesian coordinates of the cergach face of a Platonic solid and
the corresponding Euler angle.

The modal matrices containing the acoustic radiation motidse discrete spheres based on
the Platonic solids are presented in Tabs. C.3 to C.7. Thehmoaltrices have been normalized so
that®e 'V = I,
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Table C.2: Cartesian coordinates and Euler angles of thtercefithe polyhedrons’ faces.

Polyhedron Cartesian coordinates  Euler angles (degrees)
(+1,+1,+1) (45,54.74, 0)
Tetrahedron (-1,-1,+1) (225,54.74,0)
(-1,+1,-1) (135, 125.64, 0)
(+1,-1,-1) (315, 125.64, 0)
(-1,0,0) (180, 90, 0)
(+1,0,0) (0, 90, 0)
Hexahedron (0,—1,0) (270, 90, 0)
(0,+1,0) (90, 90, 0)
(0,0,-1) (0, 180, 0)
(0,0,+1) (0,0,0)
(+1,+1,+1) (45,54.74, 0)
(+1,+1,-1) (45, 125.26, 0)
(+1,-1,+1) (315, 54.74, 0)
Octahedron (+1,-1,-1) (315, 125.26, 0)
(-1,+1,+1) (135, 54.74, 0)
(-1,+1,-1) (135, 125.26, 0)
(-1,-1,+1) (225, 54.74, 0)
(-1,-1,-1) (225, 125.26, 0)
(0,0,+1) (0,0,0)
(0.8944, 0, 0.4472) (0, 63.43, 0)
(0.2764,0.8507, 0.4472) (72, 63.43, 0)
(-0.7236, 0.5257, 0.4472) (144, 63.43, 0)
(-0.7236,-0.5257, 0.4472) (216, 63.43, 0)
Dodecahedron (0.2764,—0.8507, 0.4472) (288, 63.43, 0)
(—0.8944,0-0.4472) (180, 116.57, 0)
(—0.2764,-0.8507,—0.4472) (252, 116.57, 0)
(0.7236,-0.5257,—0.4472) (324, 116.57, 0)
(0.7236, 0.5257+-0.4472) (36, 116.57, 0)
(—0.2764, 0.8507+-0.4472) (108, 116.57, 0)
(0,0,—-1) (0, 180, 0)
(2,0,2.618) (0, 37.38,0)
(0.618, 1.9021, 2.618) (72, 37.38, 0)
(-1.618,1.1756, 2.618) (144, 37.38, 0)
(-1.618,—1.1756, 2.618) (216, 37.38, 0)
(0.618,—1.9021, 2.618) (288, 37.38, 0)
(-2,0,-2.618) (180, 142.62, 0)
(—0.618,—-1.9021,-2.618) (252, 142.62, 0)
(1.618,—-1.1756,—2.618) (324, 142.62, 0)
(1.618, 1.1756+-2.618) (36, 142.62, 0)
Icosahedron (—0.618, 1.9021-2.618) (108, 142.62, 0)
(3.2361, 0, 0.618) (0,79.19, 0)
(1,3.0777,0.618) (72,79.19, 0)
(—2.618,1.9021, 0.618) (144,79.19, 0)
(—2.618,—1.9021, 0.618) (216, 79.19, 0)
(1,-3.0777,0.618) (288, 79.19, 0)
(-3.2361,0-0.618) (180, 100.81, 0)
(-1,-3.0777,-0.618) (252, 100.81, 0)
(2.618,—-1.9021,-0.618) (324, 100.81, 0)
(2.618, 1.9021;-0.618) (36, 100.81, 0)
(-1,3.0777-0.618) (108, 100.81, 0)
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Table C.3: Modal matrix¥) of the tetrahedron.
1.4142 14142 14142 14142
1.4142 1.4142 —1.4142 -1.4142
1.4142 —1.4142 —1.4142 1.4142
1.4142 —1.4142 1.4142 -1.4142

Table C.4: Modal matrix¥) of the hexahedron.

1.4140 0 —2.4495 0 —1.0001 1.7321
1.4140 0 2.4495 0 —-1.0001 1.7321
1.4140 0 0 —2.4495 -1.0001 -1.7321
1.4140 0 0 24495 -1.0001 -1.7321
1.4140 —-2.4495 0 0 2.0002 0
1.4140 2.4495 0 0 2.0002 0

Table C.5: Modal matrix¥) of the octahedron.

1.4142
1.4142
1.4142
1.4142
1.4142
1.4142
1.4142
1.4142

1.4142 1.4142 1.4142 1.4142-1.4142 1.4142 1.4142
—1.4142 1.4142 1.4142 1.4142 1.4142-1.4142 —-1.4142
1.4142 14142 —1.4142 —-1.4142 1.4142 1.4142 —1.4142
—1.4142 1.4142 -—-1.4142 -1.4142 -1.4142 -1.4142 1.4142
1.4142 —-1.4142 14142 -1.4142 -1.4142 -1.4142 -—-1.4142
—1.4142 —-1.4142 1.4142 —-1.4142 1.4142 1.4142 1.4142
1.4142 -—-1.4142 -1.4142 1.4142 1.4142 —1.4142 1.4142
—1.4142 —-1.4142 -1.4142 1.4142 -1.4142 14142 -1.4142

Table C.6: Modal matrix¥) of the dodecahedron.

1.4143 2.4495
1.4143 1.0954
1.4143 1.0954
1.4143 1.0954
1.4143 1.0954
1.4143 1.0954
14143  —1.0954
14143  —1.0954
14143  —1.0954
14143  —1.0954
14143  —1.0954
14143  —2.4495

0 3.1623 0 0 2.4495
2.1908 0 —0.6325 2.1908 2.1908 0 0 2.1908 0 —1.0954
0.6770 20835 —0.6325 —1.7725 0.6770 2.0835 —1.2879 —1.7725 —1.2879 —1.0954
—1.7725 1.2879 —0.6325 0.6770 —1.7725 1.2879 2.0835 0.6770 2.0835 —1.0954
—1.7725 —1.2879  —0.6325 0.6770 —1.7725 —1.2879  —2.0835 0.6770 —2.0835 —1.0954
0.6770 —2.0835 —0.6325 —1.7725 0.6770 —2.0835 1.2879 —1.7725 1.2879 —1.0954
—2.1908 0 —0.6325 2.1908 2.1908 0 0 —2.1908 0 1.0954
—0.6770 —2.0835 —0.6325 —1.7725 0.6770 2.0835 —1.2879 1.7725 1.2879 1.0954
1.7725 —1.2879  —0.6325 0.6770 —1.7725 1.2879 20835 —0.6770 —2.0835 1.0954
1.7725 12879  —0.6325 0.6770 —-17725 —1.2879 —-2.0835 —0.6770 2.0835 1.0954
—0.6770 2.0835 —0.6325 —1.7725 0.6770 —2.0835 1.2879 17725  —1.2879 1.0954
0 0 3.1623 0 0 0 0 0 0 —2.4495

Table C.7: Modal matrix¥) of the icosahedron.

1.4142 19465 1.3876—0.5346 0.6396

1.1520 0.2540 2.8232 0.47850.1943 15769 1.4764—1.8154 1.6549 —1.6157—-0.8066 2.6696 0.1015 0.8545 0.3639

1.4142 19465 0.9371 1.1545-0.1266—0.9052—2.4518 1.7621 0.2200—0.0397—1.4157 2.3503 0.6858—2.3936 0.0581 0.5169—1.5961—2.0087—1.1491 0.3118
1.4142 1.9465—0.8084 1.2480 0.0879—3.1250—0.1607 0.0132 0.4477—2.2049—0.3177—0.6950 1.5982 2.1274 0.3627

1.4142 1.9465 —1.4368—0.3831—2.1933—-1.0402 1.5333 —0.5978 1.1828

1.4142 1.9465 —0.0796—1.4849—-1.5385 0.7446 1.9591 1.2660-1.2797 2.1651 1.5511-0.8539 0.4212 —0.3748 1.3972
1.4142—-1.9465—-1.3876 0.5346 0.6396 1.1520 0.2540 2.8232 0.4785 0.194B5769—1.4764 1.8155—-1.6549 1.6157

1.4142—-1.9465—0.9371—-1.1545—-0.1266 —0.9052—-2.4518 1.7621 0.2200 0.0397
1.4142—-1.9465 0.8084 —1.2480 0.0879 —3.1250—0.1607 0.0132 0.4477

1.1587 0.5979 2.648D2.7419 0.2814

0.2739—1.3947—-2.2778—0.8898 —1.1392 —1.8040—1.2033-0.2743—-1.4798 2.1131 1.1270

1.9767—1.3972 0.7388 —1.0765—2.0840
0.8066 2.6696 0.1015 0.8546 0.3639

1.41572.3503—0.6858 2.3936 —0.0581—0.5169—1.5961—2.0087—1.1491 0.3118
22049 0.3177 0.69501.5982—2.1274—0.3627—1.1587 0.5979 2.6482—0.7419 0.2814

1.4142—-1.9465 1.4368 0.3831—-2.1933—1.0402 1.5333 —0.5978 1.1828 —0.2739 1.3947 22778 0.8898 1.1392 1.8039 1.203®.2743—-1.4798 2.1131 1.1270
1.4142—-1.9465 0.0796 1.4849—1.5385 0.7446 1.9591 1.2660-1.2797—-2.1651—1.5511 0.8539 —0.4212 0.3748 —1.3972—1.9767—1.3972 0.7388 —1.0765—2.0840

1.4142 0.4596 2.2452—0.8649 2.3046

1.3126 0.7467-0.2049 1.5382 —2.1253—0.1354—1.4964—1.1070—0.9322 2.1576 —0.6899—2.3460 1.0669 0.5166 1.0444

1.4142 0.4596 1.5164 1.8680-0.8540 1.0678 —2.5451—1.0742—0.7062 2.3993 —1.2593—-0.7814 0.2172 15700 1.123}1.5079—0.0754 1.2677 2.1857—1.2688
1.4142 0.4596 —1.3080 2.0194 2.4077—1.1796 0.7577 —1.1511—0.9550—0.2342 2.8104 —0.0725 0.2040 —1.2241 0.9348 —1.9046 0.6746 —1.8079 0.5200 —2.0015
1.4142 0.4596 —2.3248—0.6199—0.7427 1.3402 —0.2651—1.8770 2.0147 0.0399—1.2334 1.5489 —2.0194 0.7947 2.2739—0.4448 1.3479 —0.4275—2.4077—0.4513
1.4142 0.4596 —0.1288—2.4026 0.0152 0.6328 0.1717-0.9594—2.9410—-0.0796—0.1823 0.8014 27052 0.3223 0.29552.4102 0.3990 —0.0993—-0.8146 2.6772
1.4142—-0.4596—2.2452 0.8649 2.3046 1.3126 0.746+0.2049 1.5382 2.1253 0.1354 14964 1.1070 0.9322.1576
1.4142—0.4596—1.5164—1.8680—0.8540 1.0678 —2.5451—1.0742—0.7062—2.3993 1.2593 0.7814-0.2172—1.5700—1.1231
1.4142—0.4596 1.3080 —2.0194 2.4077 —1.1796 0.7577 —1.1511—0.9550 0.2342 —2.8104 0.0725 —0.2040 1.2241 —0.9348
1.4142—-0.4596 2.3248 0.6199-0.7427 1.3402 —0.2651—1.8770 2.0147 —0.0399 1.2334 —1.5489 2.0194 —0.7947—2.2739

1.4142—-0.4596 0.1288 2.4026

0.0152 0.6328 0.17170.9594—2.9410 0.0796 0.1823—0.8014—2.7052—0.3223—0.2955

142

0.6899 —2.3460 1.0669 0.5166 1.0444
1.5079 —0.0754 1.2677 2.1857—1.2688
1.9046 0.6746—1.8079 0.5200 —2.0015
0.4448 1.3479-0.4275—2.4077—0.4513
24101 0.3990—-0.0993—-0.8146 2.6772



Appendix D

Discrete-Time LTI Systems

This appendix presents some basic concepts concerningigigane LTI (Linear Time-Invariant)
systems that have been taken from [8], to which the readerafayfor an in-depth discussion.

A discrete-time signal is a sequence of numbers that can taénel, for instance, by sam-
pling a continuous-time signal. L&t be the sampling period and(¢) be a continuous-time signal.
Thus, a discrete-time representationegft) is given byz[n] = z.(nTy), wheren is an integer in
the range-oo < n < oc.

A discrete-time systerii'{-} is an operator applied to[n] that gives rise to a discrete-time
signalyn], i.e., y[n] = T{z[n|}, wherez[n] is the system input angn| is the system output.
Because this system possesses one input and one outpudalieid a SISO (Single Input Single
Output) system. A block diagram representation of a SIS@ayss shown in Fig. D.1.

{-}

z[n]

y[n]

Figure D.1: Block diagram representation of a discretest®iSO system.

The so-called linear systems satisfy the principle of sppeition. Let) _; z;[n] be the input
of a SISO system and be a constant. Then, the system is linear if and only if

T {chxj[n]} = 3T {aylnl) (D.2)

In addition, the system will be time-invariant if a time ghif the input produces the same
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shift in the output. In other words, ifjn] = T {x[n]}, the system will be time-invariant provided
thaty[n — ng) = T {x[n — nel}, for all n.

Besides linearity and time-invariance, the following pedpes of systems are also of impor-
tance:

e Causality: a system is causal if the output depends only shgral current inputs, but not
on future inputs;

e Stability: a system is stable in the BIBO (Bounded-Input Baed-Output) sense if and only
if every bounded input produces a bounded output.

This work deals with LTI systems. An LTI system has a usefolperty, namely, it is com-
pletely characterized by its impulse respohgg. Then, if h[n] is known, the system response to
any input can be evaluated by

ylnl = aljlhin —j] (D.2)

Equation (D.2) is called the convolution sum and is alsoesented by/[n| = z[n] * h[n].

oo

An LTI system is stable ifand only -2 [A[j]| < co. In addition, itis causal ifi[n] = 0
for n < 0. If the impulse response has a finite number of nonzero samnhle system is called
a FIR (Finite-duration Impulse Response) system. Othenvitiss called an IIR (Infinite-duration
Impulse Response) system.

Let =z be a complex variable. Thetransform of a sequenagn| is defined as

X(z) = Z zn|z™" (D.3)

The convolution property states thetz) = H(z)X(z), where thez-transform of the im-
pulse response of an LTI system is referred to as the systeatidn. Since the-transform of
a sequence constitutes a unique pair, any LTI system is @telplcharacterized by its system
function (assuming that the series in Eq.(D.3) converges).

It is known that an LTI system whosetransform of the impulse response can be written as
a ratio of polynomials in~! satisfies a constant-coefficient difference equation,if.e.
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Y(z) Spbiz

H(z) = XG) S (D.4)
then

D B

> diyln—j] = bzn - j] (D.5)

j=0 Jj=0

whereb; andd; are constants;[n] is the system input angln| is the system output. Equation (D.5)
is a Dth-order linear constant-coefficient difference equatioat leads to the system output with
no need to explicitly evaluate the convolution sum or to dgti z-transforms.

If zin Eq.(D.3) is replaced by*’=, the z-transform reduces to the Fourier transform, where
v is the angular frequency and7;| < = in order to avoid aliasing. The frequency response
of a LTI system is the Fourier transform of the impulse reggonin general, knowledge of the
magnitude of the frequency response does not provide aoyniation about the phase of the
frequency response. However, for the so-called minimuasprsystems, the frequency-response
magnitude specifies the phase uniquely, and the frequespense phase specifies the magnitude
to within a scale factor. A minimum-phase system is staldesal and possess a rational system
function, i.e., Hmin(z) can be written in the form presented in Eq.(D.4). Moreovee, inverse
system of a minimum-phase system — a system with systemifumét,,(z) ' — is also stable
and causal.

A nonminimum-phase LTI system that presents a rationaksy$tinction can be represented
as the cascade combination of a minimum-phase system anl@asa system. The latter is a
system for which the frequency-response magnitude is aaandience,

H(2) = Hin(2) Hapl2) (D.6)

whereHq(2) is the system function of the corresponding all-pass system

Now, consider a stable and causal LTI system described biiamah functionH,(z). As-
sume that this system presents an undesirable frequerpynssso that it distorts the input signal.
The original signal can be recovered by processing thertigstsignal with a compensating sys-
tem. Perfect compensation will be achieved if the systenatfan of the compensating system is
Hy(z)~!. However, if the compensating system is required to beestatd causal, perfect compen-
sation will be achieved only ifi,(z) is a minimum-phase system. If not, application of Eq.(D.6)
yields
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Hy(z) = Hy\(2) H® () (D.7)

The functionsH,(z) andHr(anZ](z) present the same frequency-response magnitude. Letting
the compensation filter qé{r%(z)]‘l, the resulting function that relates the original signal #re
recovered one is

H () HD (=)

min ap

= H(2) (D.8)

min

Then, the frequency-response magnitude is exactly corapsthsvhereas the phase response
is modified according tdfé‘é)(e“’Ts) so that phase distortion takes place. Howeveﬁiéﬁ)(ew'fs) is
a linear-phase system, i.e., if

Hég) (D) = emwTona (D.9)

then the effect of this system is a simple time shifigfsamples, which corresponds to introduce
a delay ofT,n,. Therefore, an all-pass system with a linear phase respse®&eeptable in many
applications.
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