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Preliminary Remark & Notations

Preliminary remark:

• This document makes use of colors to illustrate compositions. Although not mandatory for
its understanding, an online (or colored) version of this document will ease the reading.

Notations:

• Body text:

– Italic text represents emphasized notion (e.g., citation, key concept),

– Bold text represents critical information,

– SMALL CAPITALS are used to denote existing names,

– Teletype identifies code artifact.

• Formalism:

– Uppercase letters in calligraphy style (L) represent concepts defined in ADORE

* Orchestrations (O), Variables (V), Activities (A), . . .

– Lower case letters (l) and singular symbols (act) refer to scalar variables

* Let e ∈ E a given “element”.

– Upper case letters (L) or plural symbols (vars) refer to sets of variables

* Let E = {e1, . . . , en} a set of “elements”.

– A ⋆ defines a “zero or more” indications (inspired by regular expression notation)

* Let e⋆ ∈ E⋆, e⋆ = {e1, . . . , en} (used for variables or concepts, indifferently)

– A ⋆
<

defines an explicitly ordered set (i.e., a list)

* Let (e1, . . . , en) ∈ E⋆<

• Relations:

– The arrow means “leads to”.

1
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«It always seems impossible until it’s done.»
Nelson Mandela
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1.1 Context & Problematic

Context Background. In the Service Oriented Architecture (SOA) paradigm an application
is defined as an assembly of services that typically implements mission-critical business pro-
cesses [OASIS, 2006a]. Services are loosely–coupled by definition, and complex services are built
upon basics ones using composition mechanisms. These compositions describe how services will
be orchestrated when implemented, and are typically created by business process specialists. The
loose coupling methodology enables the separation of concerns and helps system evolution. Us-
ing Web Services as elementary services, and Orchestrations [Peltz, 2003] as composition mech-
anism, Web Service Oriented Architectures (WSOA) provide a way to implement these loosely–
coupled architectures. The W3C consortium defines the following vocabulary for these artifacts
in its reference glossary:

Service: “A service is an abstract resource that represents a capability of performing tasks that

form a coherent functionality [...].”

Web Services: “A Web service is a software system designed to support interoperable machine-to-

machine interaction over a network. [...]”

Orchestration: “An orchestration defines the sequence and conditions in which one Web service

invokes other Web services in order to realize some useful function. I.e., an orchestration is the pat-

tern of interactions that a Web service agent must follow in order to achieve its goal.” [W3C, 2004]

Problematic. In this context, a large part of the intrinsic complexity of an application is shifted
into the definition of business processes. To perform such a task, process designers use “compo-

sition of services” mechanisms (e.g., orchestrations of services) and realize their use cases as
message exchanges between services. A factor that contributes to the difficulty of developing
complex SOA applications is the need to address multiple concerns in the same artifact. For
a given process, a business expert designs its own process, which is then enriched by concerns
added by the security expert, the persistence expert, the sales expert, . . .

3
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This situation emphasizes the need for separation of concerns (SOC) mechanisms as a sup-
port to the design of complex business processes. In the SOC paradigm, concerns are defined
separately, and finally assembled into a final system using composition techniques. In the con-
text of SOA, it leads us to compose orchestrations, that is, to compose “composition of services”.
Following such an approach, experts design small orchestrations, focused on their field of exper-
tise. The complexity of building the final behavior which integrates all the concerns together is
delegated to automatic algorithms. State–of–the–art approaches such as feature–oriented pro-
gramming [Prehofer, 1997] and aspect–oriented programming [Kiczales et al., 1997] support a
SOC approach.

Existing SOC approaches dedicated to SOA are code–driven. For example, the AO4BPEL

approach [Charfi and Mezini, 2007] integrates aspect–oriented mechanisms into an existing or-
chestration language (BPEL). Working at the code level does not fit the reality of the SOA uni-
verse, where business processes can be expressed using different languages, according to differ-
ent norms. Moreover, the code level is very detailed and somehow too complex to easily support
the definition of mechanisms used to support business process compositions. The Model–Driven
Engineering (MDE) paradigm [France and Rumpe, 2007] tames this complexity with a simple
idea: instead of handling a system, try to reason on a partial view of your system (i.e., a model),
expressed according to the concepts you really need (i.e., a meta–model) [Muller et al., 2009].

1.2 Contribution: Behavioral Composition in SOA

In this context, the contribution of this dissertation is to study the composition of business pro-
cesses in the context of SOA, at the modeling level. The ultimate goal of this thesis is to support
the composition of business process models, i.e., to support at the model level the design of com-
plex business processes through the composition of smaller artifacts, automatically.

We propose ADORE to fulfill this goal. ADORE means “an Activity meta–moDel supOrting oR-

chestration Evolution” and supports a compositional approach to design complex orchestrations.
Models describing smaller orchestrations of services are composed to produce a model describing
an orchestration of a larger set of services. The models of smaller orchestrations, called orches-
tration fragments, describe different aspects of a complex business process, where each aspect
addresses a concern. Concerns can be non–orthogonal (e.g., non–functional), and then required
into multiple processes.

ADORE allows business process specialists to model different process aspects separately and
then compose them. The support for separation of concerns helps to tame the complexity of creat-
ing and evolving models of large business processes in which many functional and non-functional
concerns must be addressed. The ADORE framework consists of a formal model used to define
both orchestrations and fragments. An action language is defined over this model, allowing one
to interact with ADORE artifacts. Based on this action language, we define four composition al-
gorithms used to support business process designers while they design complex processes. Com-
position is automated, and thus business process specialists do not need to manually compose
the fragments they create. These algorithms ensure properties such as determinism or element
preservation. As a consequence, designers can rely on the algorithm to automate the “techni-
cal” part of the composition, and simply focus on their business expertise. Interference detection
mechanisms are implemented to automatically identify issues in the composed artifacts, and help
designers to solve it.

ADORE can be viewed as a method that integrates Model Driven Development and Separa-
tion of Concerns techniques to support development of business–processes driven applications. It
is important to note that ADORE provides support for modeling only business process concerns,
that is, activities and their orchestrations. For example, the modeling of object structures manip-
ulated by the activities is not supported in ADORE. In this respect, ADORE can be considered to
be complementary to other SOC approaches that support the modeling of object structures (e.g.,

meta–model composition), or services architectures (e.g., ADL), but not of activities and their
orchestrations.
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1.3 Thesis Outline

This document is organized into five sections. In PART I, we study different composition ap-
proaches defined in the literature, dealing with composition of services (CHAP. 2) and compo-
sition of models (CHAP. 3). PART II is dedicated to the description of the ADORE kernel. The
meta–model is described in CHAP. 4, and operationalized with an associated syntax and execu-
tion semantic in CHAP. 5. CHAP. 6 describes the action language associated to ADORE models,
and how algorithm can be defined using this language to interact with existing models.

Based on this formal definition, PART III defines several composition algorithms. The first
one defines how a fragment of process can be integrated into legacy processes (CHAP. 7). Then,
we define how several fragments are merged when they enhance the same point in a process
(CHAP. 8). We define in CHAP. 9 an algorithm used to inline business processes and then avoid
costly data exchanges if possible. Finally, we describe in CHAP. 10 an algorithm able to transform
an orchestration handling a scalar data into an orchestration handling a set of data.

We present in PART IV two systems used to validate this work. The first one is a car crash
crisis management system (CHAP. 11), realized in the context of an AOM case study published
in the TAOSD journal. The second one (CHAP. 12) describes the usage of ADORE to handle an
information broadcasting system named JSEDUITE (deployed and daily used in several academic
institutions).

Finally, PART V ends this document by exposing several perspectives of this work in CHAP. 13.
CHAP. 14 concludes this by summarizing the contributions.

Appendixes. In APP. A, we describe the implementation of the ADORE framework. APP. B
defines several technical algorithms used at the implementation level to make ADORE usable in
real–life context (e.g., the definition of generic fragments or the cosmetic simplification of pro-
cesses). APP. C illustrates how usual aspect–oriented ordering mechanisms can be realized in
ADORE. Finally, the last two appendices focus on the implementation of the running example:
APP. D provides an implementation in the BPEL language, and APP. E focuses on an ASPECTJ
implementation.

1.4 Running Example: the PICWEB System

To illustrate this work, we use a running example called PICWEB. This implementation was ini-
tially used as an example in a M.SC. course focused on “Workflow & Business Processes”, given
in the POLYTECH’NICE engineering school. As a consequence, it follows SOA methodological
guidelines [Papazoglou and Heuvel, 2006], positioning it as a typical usage of a SOA for experi-
mental purposes. PICWEB is a subpart of a larger legacy system called JSEDUITE (see CHAP. 12).
The JSEDUITE system aims to deliver information to several devices in academic institutions.
It supports information broadcasting from academic partners (e.g., transport network, school
restaurant) to several devices (e.g., user’s smart-phone, PDA, desktop, public screen).

PICWEB is a restricted version of JSEDUITE, focusing on picture management. Inspired by
Web 2.0 folksonomies [Hotho et al., 2006], the PICWEB system relies on community–driven part-
ners such as FLICKR® (provided by Yahoo!®) or PICASA™ (provided by Google®) to store and then
retrieve available pictures. It allows a set of pictures with a given tag and up to a given threshold
number to be retrieved from existing partner services.

Functional Requirements. The PICWEB system defines a very simple business process called
getPictures. Based on a received tag, the process will invoke the different repositories (e.g.,

FLICKR® service) to retrieve pictures associated to this tag in the folksonomy. The different re-
sults are then interlaced to build a set of retrieved pictures. This set must be truncated to fit
a user–given threshold before being returned to the user. Repositories must be invoked concur-
rently to optimize the execution time of the process.

Non–Functional Requirements. PICWEB defines the following non–functional requirements:
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• Timeout: According to several causes (e.g., network latency, server overload), the distant
repository may consume a lot of time to retrieve pictures. A timeout mechanism will dis-
rupt the invocation of the associated repository when such situation occurs (i.e., after sixty
seconds of wait).

• Fault Management: A repository may throw errors while invoking it (e.g., “invalid argu-
ments”, “no match found”, “server overload”). These fault must be stored into a log for
statistical purpose, but must not interfere with the execution of the process (i.e., a fault
must be silently ignored).

• Cache: A simple cache mechanism will accelerate the average response time of the PICWEB

process. If the process is invoked with a tag defined in the cache, the process must return the
cached data instead of performing the computation. We assume that the temporal validity
of a cached data is handled by the cache itself.

Development Scenario. The first version of PICWEB is used for prototyping purpose only and
must integrate only the FLICKR® repository. Since this realization of the system fits the client
needs, other concerns (e.g., PICASA™ repository usage, cache) will be integrated in the process.

Technical Realization. The PICWEB example is extracted from a real–life application. The
way it interacts with FLICKR® and PICASA™ services is driven by their respective API. To sim-
plify the example description, we create Web Services associated to these API. They kept the
principles of each API, simplifying it by hiding non–relevant methods, and providing a way to
define orchestration of services in this context.

• FLICKR®: This service defines an operation named getPictures. It takes as input a tag
and a key (used by the server to certify the call). The result of a call contains a set of url
associated to relevant pictures (i.e., pictures using the tag).

• PICASA™: this service defines an explore operation. Based on a tag, it returns a set of url
associated to relevant pictures. There is no need for a key or authentication mechanisms in
the API provided by Google (at least for folksonomy exploration purpose).

PICWEB is a subpart of JSEDUITE, and uses several technical services defined in JSEDUITE:

• Registry: it is usual for service providers to protect their operations with the usage of a
user–specific key (see FLICKR®). As a consequence, the key registry service can store such
information, and the invocation of the getByKey operation returns the key associated to
the serviceName received as input.

• Cache Service: this service allows one to introduce cache mechanisms in a business process.
This feature is important to ensure short response time for users while broadcasting infor-
mation. For a given key, the service can check the validity of the associated data (operation
isValid), or return the data to the user (operation get). One can store a data under a
given key through the store operation.

• Stopwatch: this service is defined to serve a statistical purpose. It allows one to retrieve
the current time, and then compute execution time for a given process. In the context of
PICWEB, we focus on the wait operation which realizes a count down mechanism: invoking
wait(4) basically do nothing but takes four seconds to terminate.

• Log: this service realizes a remote logger through the definition of a write operation. This
operation takes as input a category (e.g., “info”, “fault”) and a message.
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State of the Art

Notice: This chapter describes the “context” of the thesis contribution. We made the

choice to only give a big picture of composition mechanisms. We study in CHAP. 2

mechanisms defined to handle composition of services & separation of concerns, and in

CHAP. 3 mechanisms defined to handle composition of models. We postpone “specific”

analysis of related works in the associated chapter.
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Services, Compositions & Separation of Concerns

«But if I try to make sense of this mess I’m in, I’m not sure where I

should begin. I’m falling.»
Sum41 (“Over my head”)
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2.1 Introduction

This dissertation describes a contibution to the design of Services Oriented Architecture (SOA),
using composition mechanisms inspired by the Separation of Concerns (SOC) paradigm. The
ultimate objective of the contribution is to tame the design of complex business processes, through
a compositional approach. In this chapter, we focus on the context of this work, that is, SOA &
SOC. Considering “composition” as the keystone of our contribution, we will use the successive
definitions of this word to act as an Ariadne’s thread (denoted as “➠ ”). We try here to understand
how the “composition of objects” notion born twenty years ago leads us to the “composition of
composition of services” problematic proposed in this dissertation. Based on these definitions, we
identify several properties required by a platform which aims to tackle this issue: (i) SOA–driven
properties are denoted as Px, and (ii) SOC–driven properties are denoted as Πx.

This chapter is organized as the following. We describe in SEC. 2.2 the genesis of SOA, and
focus on behavior in SEC. 2.3. Then, we describe in SEC. 2.4 the Separation of Concerns (SOC)
paradigm and its relations to the topic. We conclude this chapter by summarizing this state-of–
the–art study in SEC. 2.5.

9
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2.2 Genesis & Contribution Context

2.2.1 From Objects to Services

Objects. The Object–Oriented paradigm (OOP) defines useful concepts for developers, e.g., ab-

straction, encapsulation, modularity. It was a major revolution in the software engineering
field [Booch, 1986]. In this context, the composition of objects is defined as a way to com-

bine simple objects into more complex ones, at a structural level. This structural opera-
tion is not specific to the OOP, but supports in this context notions such as encapsulation and
modularity. At the behavioral level, compositions are structured by inheritance [Snyder, 1986],
traits [Schärli et al., 2003] or mixins [Bracha and Cook, 1990] mechanisms. But composition can
also be expressed directly through object references in method bodies. These fine–grained mech-
anisms often lead to the spaghetti–code anti–pattern [Brown et al., 1998], which identifies non–
maintenable pieces of software. Based on objects, design patterns were defined as established
and reusable solutions to common problems [Gamma et al., 1995]. The object composition mech-
anisms are highly used in these patterns, showing its importance in an object–oriented approach.
These patterns were one of the initial steps to more coarse–grained software design approaches,
which lead to the advent of the “component” age.

Components. In front of objects limitations in terms of granularity (limited to the fine–grained
description of system, at the class or the prototype [Ungar and Smith, 1987] level), the research
community produces a new paradigm, based on the component keystone [Szyperski, 1998]. The
Component Based Software Engineering (CBSE) paradigm [Kozaczynski and Booch, 1998] re-
lies on the definition of components, which can be seen as coarse–grained objects with explicit
interfaces and then avoid the definition of spaghetti code. A component holds its contract,
which describes required and provided operation. At this level of abstraction, the composi-
tion is seen as the assembly of components to build a more complex application. First
classes entities such as connectors [Yellin and Strom, 1997] are used to realize connections be-
tween provided and required operations. These connectors support communication abstrac-
tion, and can be implemented as components [Matougui and Beugnard, 2005]. Component mod-
els allow the interchangeability of components and supports the so–called “component–off–the–
shelf” approach[Medvidovic et al., 1997]. Complex applications are built has the assembly of
reusable and interchangeable components [Batory and O’Malley, 1992]. The use of Architecture
Description Languages (ADL, [Medvidovic and Taylor, 2000]) extends this approach and allows
to formally analyze a component based architecture. These languages support the definition of
high–level properties expected in the component assembly, and can be then visualized or ver-
ified [Oquendo, 2004]. The ADL domain supports formal notations in order to define struc-
ture and behavior of software architectures. For instance in [Barais and Duchien, 2005] au-
thors use OCL to define invariant properties for component architectures and FSP Language
to specify external component behaviors. This framework allows to partially check the archi-
tecture type consistency at structural and behavioral level. Several component–based models
and their associated platforms are available (e.g., the CORBA component model [OMG, 2006b],
FRACTAL [Bruneton et al., 2004]).

Services. Where components focus on architectural description to provide reusable pieces of
software, services focus on a business–oriented vision. In the service–oriented paradigm, coarse
grained “business” functionality are exposed through services. The key idea is not the reusability
in itself, but the definition of loosely–coupled entities [Papazoglou, 2003], specified in business
terms instead of technical ones. Services are published by a provider, and discovered over the
network by potential consumers. Consumers can then use the service as a black box, through its
publicly available interface, without any implementation concern. In this context, the composi-

tion word is used to denote the composition of service invocations to perform a business–

oriented task.
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“Services reflect a “service–oriented” approach to programming, based on the idea of describing

available computational resources, e.g., application programs and information system compo-

nents, as services that can be delivered through a standard and well-defined interface. [...] Service–

based applications can be developed by discovering, invoking, and composing network–available

services rather than building new applications.” [Papazoglou, 2008]

➠ The meaning of “composition” slowly shifts in twenty years. From a fine grained

data structure combination at the object level, the word refers to the structural

assembly of components at the architectural level in the CBSE paradigm. At the

service level, composition refers to a business behavior, which assembles (beyond

a single program and language) invocations of several services to perform a task.

This “vision” is used as the starting line of the contribution described in this dis-

sertation.

2.2.2 Service–Oriented Architectures & Infrastructures

We focus now on the service paradigm, and the associated architectures built according to its
principles.

Definition. Service–Oriented Architectures (SOA) were defined to support the service approach.
However, their is no real consensus on the definition of the SOA concept.

• “A service-oriented architecture is a style of multi–tier computing that helps organizations

share logic and data among multiple applications and usage modes” (definition published
by the Gartner Group [Schulte and Natis, 1996]).

• “Service Oriented Architecture is a paradigm for organizing and utilizing distributed capa-

bilities that may be under the control of different ownership domains. It provides a uniform

means to offer, discover, interact with and use capabilities to produce desired effects consis-

tent with measurable preconditions and expectations” [OASIS, 2006a].

• “SOA enables flexible integration of applications and resources by: (1) representing every

application or resource as a service with standardized interface, (2) enabling the service to

exchange structured information(messages, documents, "business objects"), and (3) coordi-

nating and mediating between the services to ensure they can be invoked, used and changed

effectively” [Dodani, 2004].

In practice, the different definitions converge on the following interaction protocol: services
are published by a service provider, and registered into a service directory. On the customer side,
one will start by exploring the service directory to find the relevant service, and then invoke it,
as depicted in FIG. 2.1.

The SOA paradigm takes its root in the previously described paradigm. The main concepts
are reused, e.g., encapsulation, interchangeability, abstraction or architectural reasoning. In ad-
dition, several properties associated to services raised in the literature [Wang and Fung, 2004].
These properties address (i) implementation independence, (e.g., a client can consume indiffer-
ently a JAVA or a .NET service) (ii) state–less nature (i.e., a query is sufficient to itself to compute
a result), (iii) business cohesion (i.e., exposed operations are business–related) and finally (iv)

operation idempotence. These principles facilitate the definition of loosely coupled architectures.

Loosely-coupled & Composition. The key idea is to support the re–usability of preexisting
pieces of software, exposed as services with the minimum amount of inter–dependencies. The
business–driven “composition” of service is the keystone of the SOA paradigm. Services are pub-
lished as elementary bricks one needs to compose to build business–oriented applications. The
compositions outsource these dependencies out of the services, and then avoid the spaghetti–

architecture anti–pattern [Brown et al., 1998]. This paradigm also eases the integration of busi-
ness partners services, kept separated from the internal information system, and only composed
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Figure 2.1: Service Brokering [Papazoglou and Heuvel, 2006]

when needed, without strong links and dependencies. As a consequence, the business process de-
sign activity shifts from developers to business experts. It leads us to the first property expected
by a platform supporting the design of services compositions.

 P1: Business expressiveness. The abstraction level associated to the definition of
service compositions must reach the “business” layer.

2.2.3 Web Services: A Normative Environment

The Web Services standard can be used to implement operational SOA, known under the name
of “Web Service–Oriented Architecture” (WSOA) [Peltz, 2003]. This technology is massively used
in the industry, as an integration platform for legacy pieces of software [Linthicum, 2000], po-
tentially heterogeneous. We restrict our study to contractualized web services (as descendants of
component–based architecture), and do not address REST1 architectures [Fielding, 2000]. Web
services rely on four technologies to support the implementation of SOA: (i) XSD to describe data
structures, (ii) WSDL to describe service interfaces, (iii) SOAP to exchange messages and (iv)

UDDI to support service discovery. These XML–based technologies allow the definition of code
generator, used to automatically address the published services.

• XSD The Xml Schema Description language [W3C, 2008] is a XML–based meta–language
used to formalize the structure of a XML document. In the context of WSOA, it is used to
specify the data structures exchanged between services.

• WSDL The Web Service Description Language [W3C, 2001] is used to describe service inter-
faces in an implementation–independent way. The WSDL interface of a service describes the
different operations provided, grouped by ports, as well as the address to be used to invoke
the service. Operation signatures are described as data structures (i.e., XSD artifacts).

• SOAP The Simple Object Access Protocol (SOAP) [W3C, 2007] is a protocol used to support
the exchange of messages between services. Messages are encoded in a XML dialect, and
transported over the network through standard protocols (e.g., HTTP, SMTP).

• UDDI The Universal Description Discovery and Integration standard (UDDI) [OASIS, 2004]
supports the discovery part of the service model. UDDI registries publish web services
interfaces, available for customers. One can query the registry as (i) a white pages system
(e.g., “give me the FLICKR® service”), (ii) a yellow pages system (e.g., “give me a picture
repository service”) or finally (iii) as a green pages system (e.g., “give me a service accessible
over HTTP”).

1REST web services do not publish explicit interface, and rely instead on self–descriptive messages. As a consequence,
it does not intrinsically change the fundamentals of composition mechanisms.
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➠ An interesting thing to notice is that their is no intrinsic support for composition

mechanisms in the previously listed standards. In the context of WSOA, composi-

tion mechanisms are not standardized!

Standards are part of the reality, and numerous actors rely on it. Pieces of software are
implemented to support standards, e.g., code generators or validation tools. This fact induces the
second property required by a platform designed to support composition of services.

 P2: One cannot ignore reality. De facto standards exist in industry, and compo-
sition platforms must be able to reach them.

Based on these standards, the Web Services technological stack provides a strong foundation
to define SOA. However, the “simplicity” of the model does not intrinsically supports concerns
such as transactions, reliability, notification support. To address these issues, several Web Ser-
vices specifications were defined. These specification are known under the WS-* acronym. The
initial idea of the WS-* specification was to support non–functional concerns at the protocol
level. For example, the WS-SECURITY standard [OASIS, 2006b] provides in a 76 page document
a specification to support well-known security models (e.g., security tokens) while exchanging
SOAP messages. This proliferation of complex standards2 leads to three issues: (i) platform ven-
dors are not able to implement all these standards and obviously make commercial choices, (i)

reference implementation of a standard are not mandatory (this point is exposed as one of the
reason which explain the “rise and fall” of CORBA [Henning, 2006]) and finally (ii) the WS-* are
not always “necessary” (i.e., the protocol level is not the right place to implement such a con-
cern [Vinoski, 2004]). Actually, these different standards need to be interleaved to support the
definition of complex business processes [Curbera et al., 2003].

➠ Compositions appear now at different levels: (i) the behavior defined as a compo-

sition of services and (ii) the policies composed to handle technical concerns.

A composition platform needs to support the definition of such concerns/policies, and their
integration in the business–driven behavior. These two properties are stated as the following:

 P3: Concerns Reification. Concerns are first class entities and encapsulate knowl-
edge which need to be integrated at the business level. This integration modifies
the business-driven behavior.

 P4: Concerns Behavioral Composition. One needs to manage the way concerns
are integrated into the system and its preexisting behavior, to support the defini-
tion of complex pieces of software.

2.3 Focus on Behavioral Compositions

We described in the previous sections how the SOA paradigm relies on the “composition of ser-
vice” notion. This section describes workflow mechanisms used to support the compositions on
services, with an emphasis on the Business Process Execution Language (a de facto standard for
web services composition, used as the validation platform for this contribution).

2.3.1 From Workflows . . .

Workflows languages are used to support the abstraction of behavior. The workflow word can
refer to two notions: (i) human workflows or (ii) software workflows. In this dissertation, we
focus on the second kind of workflows. Software workflow are defined by the SOA4ALL as the
following: “The sequence of activities performed in a business that produces a result of observable

value to an individual actor” [Soa4All, 2009]. One can found in the literature many different lan-
guages used to express workflows [Montagnat et al., 2009], at different levels of abstraction. The

2The (non–exhaustive) list of WS-* standard maintained by Wikipedia exposes 49 standards (complementary or over-
lapping) promoted by major SOA actors (http://en.wikipedia.org/wiki/List_of_web_service_sp ecifications ,
08/23/2010).

http://en.wikipedia.org/wiki/List_of_web_service_specifications
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more common representation used to reify workflows is based on graphs: steps are represented
as nodes, and relations between the steps as arrows between the associated nodes. At the work-
flow design level, this representation fits business–experts needs, by simplifying a workflow to a
simple graph description. At the implementation level, a graph representation allows execution
engine to reason on the graphs, and then optimize their execution.

Parallel Composition. Three kinds of parallelism can be identified in a workflow, to optimize
their execution. These considerations are critical to obtain efficient compositions. We can identify
two different kinds of parallelism at a coarse–grained level: (i) steps which are not dependent
between each others can be used in parallel (activity parallelism) and (ii) two steps defined in
sequence can be executed in parallel on two separated data sets (data parallelism). Usually,
data parallelism are handled by the execution platform [Glatard, 2007]. On the contrary, activ-
ity parallelism is defined at the workflow level, where designers can explicitly decide to avoid
unexpected wait3.

 P5: Activity Parallelism. Activity parallelism is very important to support the
design of efficient workflows. A composition tools must define mechanisms to
support it.

Workflow Patterns. The Workflow Patterns Initiative is an academic joint work4 which iden-
tifies 43 control patterns [van der Aalst et al., 2003, Russell et al., 2006a] used to asses workflow
languages and standard. Their study also identify patterns dealing with resource handling, data

management and exceptions. The initiative publish in–depth evaluations of several existing lan-
guages or standard implementation5. The goal of these evaluations is to measure the expres-
siveness of these languages and standards. The considerable number of patterns raises an ex-
pressiveness issue in the definition of compositions. A language cannot implement naturally all
of these concepts in its syntax (in their study, there is no evaluated tools which provide such a
support). It naturally leads to a choice–diversity issue, and the following property:

 P6: Syntax Independence. Composition tools must be abstracted from their con-
crete syntax and provide abstract mechanisms to support the definition of work-
flows.

2.3.2 . . . To the Business–Process Execution Language (BPEL)

In the context of web services, workflows can be designed as centralized orchestrations or peer–
to–peer choreographies [Peltz, 2003]. Choreography languages are intended to “define from a

global viewpoint the common and complementary observable behavior specifically, the information

exchanges that occur and the jointly agreed ordering rules that need to be satisfied” [W3C, 2005].
This standard was aborted by the W3C in July 2009, due to its non–adoption by the indus-
trial nor academic community. On the contrary, the Business Process Execution Language
(BPEL [OASIS, 2007]) is defined as an industrial standard used to implement orchestrations,
under the name of business processes:

“[...] WS-BPEL defines a model and a grammar for describing the behavior of a business process

based on interactions between the process and its partners. [...] The WS-BPEL process defines

how multiple service interactions with these partners are coordinated to achieve a business goal,

as well as the state and the logic necessary for this coordination. [...]” [OASIS, 2007]

The associated specification is implemented and available in open–source execution engines such
as the OPEN ESB6 one. Industrials promote the standard by the adoption of BPEL–ready service
buses [Bolie et al., 2006], and an involvement in its definition7. Academic research propose state–

3Experimental performance benchmarks are designed to check this capability [Din et al., 2008]
4http://www.workflowpatterns.com/ , Eindhoven & Queensland Universities of Technology.
5http://www.workflowpatterns.com/evaluations/
6http://open-esb.dev.java.net/
7The language derives from the WSFL initial release, published by IBM and Microsoft

http://www.workflowpatterns.com/
http://www.workflowpatterns.com/evaluations/
http://open-esb.dev.java.net/
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of–the–art enhancements to this language. For example, formal languages such as petri–nets can
be used to allow model–checking of existing orchestrations [Hinz et al., 2005]. In [Pourraz, 2007],
the author proposes a π–calculus driven vision of the BPEL, supporting the verification of archi-
tectural properties. The semantic web community provides interesting approaches to support the
adaptation of business processes based on semantic descriptions [Küster and Kunig-Ries, 2006].
the scientific workflow community also used BPEL processes to enact workflows on computing
grids [Emmerich et al., 2005].

➠ According to P2 (“one cannot ignore reality”) and to ease the reading of this disser-

tation, we adopt the vocabulary associated with BPEL and consider “composition
of services” as “orchestrations of services”, that is, “business processes”.

2.4 Introducing Separation of Concerns

The previous sections identify the context of the work presented here, that is, composition of
services expressed as orchestration. In this context, compositions are defined as the keystone
of the SOA paradigm, used to support complex business–oriented processes. However, the SOA

paradigm does not provide natural support (or concepts) to tame the design of complex busi-
ness processes. The Separation of Concerns (SOC) paradigm [Hürsch et al., 1995] was defined to
tackle this issue. The underlying ideas came from E. W. Dijkstra:

“ We know that a program must be correct and we can study it from that viewpoint only; we

also know that it should be efficient and we can study its efficiency on another day, so to speak.

In another mood we may ask ourselves whether, and if so: why, the program is desirable. But

nothing is gained –on the contrary!– by tackling these various aspects simultaneously. It is what I

sometimes have called «the separation of concerns», which, even if not perfectly possible, is yet

the only available technique for effective ordering of one’s thoughts, that I know of. This is what I

mean by «focusing one’s attention upon some aspect»: it does not mean ignoring the other aspects,

it is just doing justice to the fact that from this aspect’s point of view, the other is irrelevant. It is

being one- and multiple-track minded simultaneously. ” [Dijkstra, 1974]

Based on this idea, several approaches and programming paradigm emerge to consider pro-
grams as the composition of elementary concerns: (i) subject–oriented programming which fo-
cuses on the identification of composable subject in a program [Harrison and Ossher, 1993], (ii)

role–oriented programming which considers entities as sharing several roles across their life–
cycle [Becht et al., 1999] and (iii) aspect–oriented programming [Kiczales et al., 1997] which fo-
cuses on the handling of cross–cutting concerns. Another cutting edge research domain which is
part of the SOC paradigm is the research made on the Software Product Lines paradigm (SPL,
[Clemens and Northtop, 2001]) and Feature Oriented Programming (FOP, [Prehofer, 1997]).

➠ Following the SOC paradigm, concerns are composed to build the final applica-

tion. One can notice a new shift in the definition of composition: programs are no

longer considered as the composition in itself, but as the unit of composition used

to build more complex pieces of software.

SOA relies on business–driven processes, written by business experts [Stein et al., 2008]. Con-
sidering each concerns as a domain of expertise (e.g., security, persistence, encryption, P3), each
expert can work on its own concern separately. As a consequence, a composition platform needs
to take care of concurrent and potentially disjoint work when the concerns will be integrated (P4).

 Π1: Concurrent experts support. In the context of SOA, separation of concerns
leads to the intervention of several experts, working concurrently on the same
system.
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2.4.1 Aspect–Oriented Programming

The AOP paradigm is initially defined as the following:

“ AOP works by allowing programmers to first express each of a system’s aspects of concern in a sep-

arate and natural form, and then automatically combine those separate descriptions into a final

executable form using a tool called an Aspect Weaver™. [...] Using AOP, a system is decomposed

into its basic functionality and the cross- cutting aspects. (The basic functionality is sometimes

called the primary aspect.) The basic functionality and each of the aspects are captured using

appropriate special-purpose languages.” [Kiczales et al., 1997]

The key ideas used to support the SOC paradigm are (i) the encapsulation of cross-cutting
concerns in separated aspects and (ii) the usage of a “weaver” program to integrate aspects into
a legacy application. A strong difference is made between the base program (i.e., the “business”
code) and the cross–cutting concerns implemented as aspects (e.g., authentication, security, log).
We use in this dissertation the ASPECTJ [Kiczales et al., 2001] platform as a reference imple-
mentation and vocabulary.

Aspects. An aspect defines (i) an implementation of a cross–cutting concern as plain code and
(ii) indications for the weaver to know where the concern should be integrated in the base pro-
grams. The AOP vocabulary [ERCIM, 2010] defines joinpoints (from subject–oriented program-
ming) as the set of reachable locations in a base program (e.g., a method call) and pointcuts as the
concrete subset of joinpoints targeted by the aspect (e.g., “the call of the method m”). According to
Aksit, “The crosscutting concerns of a design represent crucial abstractions. It is therefore impor-

tant to represent these concerns explicitly, encapsulate their implementation details, and provide

operations to extend them. AOP languages make crosscutting concerns more understandable and

manageable.” [Elrad et al., 2001]. Consequently, the definition of AOP focuses on cross–cutting
concerns capture to tame the complexity of designing large pieces of software. At the execution
level, the aspects are executed sequentially in the most common approaches. Dedicated AOP

platform must be used to support aspect concurrency [Douence et al., 2006].
In the SOA context, cross–cutting concerns are usually handled by WS-* policies, such as

WS-SECURITY. At the implementation level, AOP can be used to support their integration in
the web service platform [Verheecke et al., 2003]. However, several cross–concerns such as data–
persistence or fault tolerance must be handled at the orchestration level instead of the protocol
one [Karastoyanova and Leymann, 2009].

➠ SOC composition mechanisms must be defined to support the integration of con-

cerns in base orchestrations.

Weaver. The role of the weaver is to perform the integration of the aspects into the base pro-
gram [Masuhara et al., 2003]. A weaver consumes as inputs the base program and the associated
aspects. The expressed pointcuts are analyzed against the joinpoints (pointcut matching step) to
identify where the aspect code (known under the name of “advice”) must be integrated. The
output of the weaver is an “advised” program, which include the base programs and the aspects
advices. To support dynamic weaving [Popovici et al., 2002], the weaver must be integrated in
the targeted language. Finally, the “advised” program may behave incorrectly due to aspect
interferences. Several works address this issue [Katz and Katz, 2008, Aksit et al., 2009] by pro-
viding mechanisms to detect interferences and mechanisms to support their resolution. Usually,
aspects are ordered to solve these interference. However, the identification of the “right” order is
known as a very difficult task [Pawlak et al., 2005]. The main algorithm used to compose aspect
with a base program is implemented in the weaver entity. However, the way aspects are sched-
uled at runtime are handled by another algorithm: the aspect scheduler. This fact leads us to the
second compositional property:

 Π2: Support for multiple composition algorithm. Composition of multiple con-
cerns induces different mechanisms to be used while performing the integration.
These mechanisms need to be supported by different accurate algorithms.
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Aspect–Oriented methodology applied to SOA & BPEL. One can found in the literature
several research works which implement AOP mechanisms for SOA. For example, the AO4BPEL

framework [Charfi and Mezini, 2004] proposes a modification of a BPEL execution engine to sup-
port dynamic weaving of aspects. In [Courbis and Finkelstein, 2005], authors propose to use
aspect at different levels (semantic analysis, BPEL engine & BPEL processes) to support the
introduction of unforeseen features. These approaches handle AOP at the level of the BPEL en-
gine. From the composition point of view, it supports the integration of BPEL advices inside
legacy process. We previously explained why a syntactic–driven approach is not sufficient from
our point of view. Moreover, these approaches imply to learn at least two languages (the BPEL

and the aspect language) to integrate new concerns into existing process. Other approaches
use aspects at the operation level, to modify the internal behavior of operations exposed by ser-
vices [Baligand and Monfort, 2004, Ortiz and Leymann, 2006]. The Service Component Architec-
ture specification [OpenSOA, 2007] can be used to bind component and services in a more global
view [Seinturier et al., 2009]. As a consequence, component–based approaches can be adapted
to SOA through this platform. In [Barais et al., 2008b], the authors manage the integration, in
component assemblies, of new concerns represented as architectural aspects. This work relies on
transformation rules describing precisely how to weave an architectural aspect in an assembly.
Transformation engine manages the composition of the aspects. The behavioral modifications are
then the consequences of architecture changes. In [Pessemier et al., 2008], at component level,
the authors express a similar point of view defining aspect components as encapsulation of advice
codes.

 Is AOP the expected paradigm? Based on this description, we can confront8

AOP to the properties identified to support the design of complex business processes
(Px). According to its initial definition, the AOP was designed to reify non–functional9

concerns as first class entities (P3[+]) and supports their integration (P4[+]). However,
the paradigm was not designed to support business–driven expressiveness (P1[−]),
and is strongly coupled with the underlying language (P6[−]). SOA standard can be
reached iff the underlying language implements associated API (P2[∼]). The aspect
ordering mechanisms does not allow an immediate support for activity parallelism
(P5[∼]) (see CHAP. 7).

2.4.2 Feature–Oriented Programming

Where AOP expresses cross–cutting concerns to be integrated into a base program, Feature–
Oriented Programming (FOP) proposes to build an application as the composition of coarse–
grained features. These two approaches are designed to achieve different goals, and are com-
plementary [Apel and Batory, 2006]. We consider here the FOP implementation provided by the
AHEAD tool suite [Batory et al., 2004]. These tool suite is a direct descendant of the GENVOCA

tool [Batory and O’Malley, 1992]. AHEAD is used to support a step–wise development approach,
defined as the following:

“ Stepwise refinement is a powerful paradigm for developing a complex program from a simple

program by incrementally adding details [Dijkstra, 1997]. The program increments that we con-

sider in this paper are feature refinements modules that encapsulate individual features where

a feature is a product characteristic that is used in distinguishing programs within a family of

related programs (e.g., a product line) [Griss, 2000].” [Batory et al., 2004]

An interesting specificity of the FOP paradigm is its natural representation through plain
mathematical notations [Batory, 2008]. The composition operator is denoted as •, and corre-
sponds to the usual function composition f • g(x) = f(g(x)). The f • g notation means “add the
feature f to the program g”. According to this functional representation, a system is defined as

8Px[+] means that this property is satisfied by the paradigm, and on the contrary Px[−] identifies a lack. The Px[∼]
notation denotes an indirect support.

9e.g., performance, security [Chung and do Prado Leite, 2009]



18 CHAPTER 2. SERVICES, COMPOSITIONS & SEPARATION OF CONCERNS

a composition of features. This algebraic representation allows the usage of equation optimizers
to rewrite the compositions in an efficient way [Liu and Batory, 2004]. This property is identified
as the following:

 Π3: Compositions as first class entities. Compositions must be reified as dedi-
cated entities, and then automatically analyzed to enhance their efficiency / cor-
rectness.

According to the FOP paradigm, features are sequentially composed (layered) to obtain the
final system. Without any extra–information, it is clear that f • g and g • f produce different
systems: f • g(x) = f(g(x)) 6= g(f(x)) = g • f(x). The order of composition is consequently
important. Several methods can be used to support the definition of this order. It is possi-
ble to reify the interaction of a feature and another one [Liu et al., 2005] using mathematical
derivative function. Another lead is to use commuting diagrams [Kim et al., 2008] to explore
the different composition orders. The way features are composed together can be constrained
through the usage of design constraint rules [Batory and Geraci, 1997], expressed as attributed
grammars [McAllester, 1994]. A “valid” composition is consequently identified as a word recog-
nized by the design constraint grammar. This approach allows the user to identify conflicting
features upstream. Software product lines can be checked to identify inherent conflicts in some
extents [Kästner et al., 2009], and ensure safe composition. These detections can be done di-
rectly on the product line [Apel et al., 2010], or on the final product [Perrouin et al., 2008]. The
identification of conflict ensures “safe–composition”, and leads us to the following property:

 Π4: Conflict detection mechanisms. Conflicting entities need to be properly iden-
tified by the composition platform.

At the implementation level, the AHEAD tool suite provides command–line tools to support
the composition of features [Batory, 2006]. One can notice the definition of several composition
algorithms (e.g., mixin & jampack), which enforces the Π2 property: different goals need differ-
ent composition algorithms. The tools compose class-based structure, and behavior expressed as
state–machine.

Feature–Oriented methodology applied to SOA. FOP is used to support the synthesis of
SOA. Based on a set of user–given requirements, the associated services are synthesized in
a generative approach [Batory, 2007]. This approach leads to several issues & challenges, de-
scribed in [Apel et al., 2008]. The most important one is the “black–box” assumptions on services:
code–composition techniques cannot be directly used to pervasively modify the internal code of a
service, as such a service is considered to be a black–box, independent from any implementation.

 Is FOP the expected paradigm? Features are definitively designed to fulfill a
business–oriented vision of software design (P1[+]). Concerns are reified as identi-
fied and independent artifacts (P3[+]). Like AOP, the SOA standards can be reached
with the associated implementation step (P2[∼]). Behavioral composition is driven
by state machines, which naturally support parallel composition (P5[+]) but compel
the designer to use such a formalism (P4[∼]). The FOP paradigm is obviously syntax–
independent, as one can design features involving different languages (e.g., Java, XML
description and Makefile compilation instruction). However, each language should be
operated by the associated composition tool in order to be supported by the approach
(P6[∼]).

2.5 Summary & Contribution Choices

Summary. In SEC. 2.2 and SEC. 2.3, we identified properties required by a platform in order
to support the design of complex business processes. Then, we confront theses properties with
two SOC of concerns approaches: AOP and FOP. We summarized the result of these comparisons
in TAB. 2.1: there is no immediate support for all of these properties in both AOP and FOP.
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SOA Composition Property AOP FOP

P1 Business expressiveness − +
P2 One cannot ignore reality ∼ ∼
P3 Concern Reification + +
P4 Concerns Behavioral Composition + ∼
P5 Activity Parallelism ∼ +
P6 Syntax Independence − ∼

Table 2.1: Summary of expected properties and their implementation in AOP & FOP

Towards a SOA–dedicated composition support. We propose an intermediate approach to
fulfill this goal. This approach will be designed exclusively for the context of SOA. This domain–
specialization allows us to strengthen the previously described approach in order to support the
definition of complex business processes.

P1. Business expressiveness. From FOP, we keep the business orientation associated to a fea-
ture. We do not categorize the concerns as “functional” and “non–functional”. Concerns
are expressed with the same concepts than legacy processes, and stay at the same level of
expressiveness.

P2. One cannot ignore reality.The approach will not diverge from the WSOA standard described
in the previous section.

P3. Concern Reification.Concerns will be considered as first class entities, like aspect or fea-
tures.

P4. Concerns Behavioral Composition.Concerns will express pieces of behavior that aim to be
integrated into preexisting ones. We restrict this work to the composition of behaviors, and
consider complementary tools to address the composition of structural data.

P5. Activity Parallelism. The approach will naturally support activity parallelism.

P6. Syntax Independence. Syntax independence is not reachable of one stay at the language
level. As a consequence, we will follow a model–driven approach and reason on models
instead of code (see CHAP. 3).

Composition properties expected in the platform. The previously described properties
emphasize the SOA domain specialization, at the business process level. We consider now the
intrinsic properties needed by the composition platform in itself:

Π1 Concurrent experts support. A stepwise development will be available when the concern
order is known. But the composition mechanisms will be designed to support the concurrent
definition of concerns, without explicit ordering. Experts can then work concurrently, and
only specify a partial order on their concerns. Ordered concerns are composed like layered
features (see CHAP. 7), and unordered concerns are handled in a particular way to provide
such a support (see CHAP. 8).

Π2 Support for multiple composition algorithms. Both AOP and FOP defines different compo-
sition algorithms. The approach will include mechanisms to define new composition algo-
rithms (see CHAP. 6).

Π3 Composition as first class entities. The indication given by the process designers will be
used to reason about the given composition, and “optimize” it. We propose a full develop-
ment method, based on the scheduling of several composition algorithm inside a step (see
PART III).

Π4 Conflict detection mechanisms. The processes obtained after composition will be checked to
identify issues generated by the composition (see CHAP. 7). These conflict detection mecha-
nisms will include SOA–dedicated properties.
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We summarize in TAB. 14.1 (p. 191) how the contribution described in the next chapter
respects this properties. We believe that a concise summary used to conclude this work according
to these properties will be more simple to follow than a diffused version where properties are
evocated chapter by chapter.



3
Composing Behavioral Models

«Do not quench your inspiration and your imagination; do not be-

come the slave of your model.»
Vincent van Gogh
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3.1 Introduction

In the previous chapter, we identified several properties that support the definition of complex
business processes (Px), following a Separation of concerns (SOC) approach (Πx). It leads us
to the “specification” of a SOA–dedicated composition tools. However, we described the “syntax
proliferation” issue in the context of SOA, which is still unanswered. We propose to use a model–
driven approach to tackle this issue. The key idea is the definition of a small meta–model (see
CHAP. 4), preserved from flourishes added by each workflows language. This “kernel” will be used
as a solid foundation for the platform described in the previous chapter. The goal of this chapter
is to motivate why we define our own meta–model instead of relying on an existing one. We
identify requirements (Rx) expected in a model–driven platform to support the design of complex
business processes, according to a SOC approach. These requirements are then confronted with
the existing formalisms.

The chapter is organized as the following: SEC. 3.2 briefly presents the Model–Driven engi-
neering (MDE) approach, following a pragmatic rationale. We present in SEC. 3.3 formalisms
used to support behavioral modeling, and SEC. 3.4 describes several model–driven approaches

21
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which support behavioral composition. Finally, we summarized in SEC. 3.5 the benefits identified
in these approaches which are reused in this contribution.

3.2 Towards a Model–Driven Approach

Working at the code level to identify and validate concerns inter–dependencies is known to be a
difficult problem (e.g., the ASPECTOPTIMA case study [Kienzle et al., 2009b]). Based on this fact,
it seems obvious to raise the level of abstraction, and follow a model–driven approach. We use
the following definition of “modeling” as starting line for this study:

“Why do we model? Modeling is a central part of all the activities that lead up to the deployment

of good software. We build models to communicate the desired structure and behavior of our

system. We build models to visualize and control the system’s architecture. We build models to

better understand the system we are building, often exposing opportunities for simplification and

reuse. We build models to manage risk.” [Booch et al., 2005]

In the context of SOC and SOA, the keypoint of the previous definition is “to understand the

system”. In our case, the system is composed by several business processes which need to be
composed to build a more complex one. Staying at the code level compel us to reason about
low–level artefacts (i.e., a syntactical representation of the business process), each with its own
specificity (e.g., depending on the used language).

 R1: Need for Abstraction. Reasoning at the model level is mandatory to better
understand our system. To understand the composition mechanisms needed to
support the design of complex business processes, we will use an abstraction of
the business processes core elements (i.e., activities and relations between activ-
ities).

In the same book, authors expose four principles (guidelines) used as the foundation of a
modeling–based approach. These principles can be seen as guidelines for modeling.

“Principles of Modeling. (i) The choice of what models to create has a profound influence on

how a problem is attacked and how a solution is shaped. (ii) Every model may be expressed at

different levels of precision. (iii) The best models are connected to reality. (iv) No single model is

sufficient. Every nontrivial system is best approached through a small set of nearly independent

models.” [Booch et al., 2005]

Based on these principles, we identify two points of view. First of all, models must be dedi-
cated to solve a dedicated problem, anchored in the reality (principles (i) & (iii)). Secondly, sev-
eral models are needed to solve different problems, and the approaches must be complementary.
(principles (ii) & (iv)).

 R2: Need for Problem–Specialization. In our context, the problem is to compose
several business processes into a more complex one. We will use in this contribu-
tion a modeling approach dedicated to this single purpose.

3.2.1 Models & Meta–Models

There is no “accepted” definition of what is a model. In [Muller et al., 2009], the authors defend
“that we are using models, as Molière’s Monsieur Jourdain was using prose, without knowing it”.
They identify nine (!) different definitions associated in the literature to the model word. We
provide here the four more relevant to our topic:
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• “Models provide abstractions of a physical system that allow engineers to reason about that

system by ignoring extraneous details while focusing on the relevant ones.”
[Brown and Alan, 2004]

• “A model is an abstraction of a (real or language based) system allowing predictions or

inferences to be made.” [Kühne, 2006]

• “A model is a simplification of a system built with an intended goal in mind. The model

should be able to answer questions in place of the actual system.” [Bézivin and Gerbé, 2001]

• “A model of a system is a description or specification of that system and its environment for

some certain purpose.” [Miller and Mukerji, 2003]

The two first definitions enforce R2: models support the resolution of problems. The two lasts
definitions raise a related requirement, based on the purpose notion.

 R3: A purpose, a model. Models must be defined with for a given purpose. In our
case, the purpose is the composition. The modeling approach described in this
contribution focuses on this purpose.

Meta-models. A meta–model is defined as the model of models [OMG, 2006]. It contains struc-
tural information used to express models conform to itself. If we draw a parallel with grammar-

ware [Wimmer and Kramler, 2006], a meta-model M is assimilated as a grammar G, and a model
m conforms to M is a word w accepted by G. As a consequence, a meta–model contains all the
“concepts” needed to express models. In our case, a meta–model dedicated to the representa-
tion of business processes will contains concepts such as activity and relation between activities.
However, meta–models should not be considered as paper–only artifacts. Powerful tools exist
(e.g., the Eclipse Modeling Framework EMF [Merks et al., 2003]) to equip meta–models and gen-
erate “things” (e.g., code, documentation) based on their definitions. The Meta–Object Facility
(MOF [OMG, 2006]) is defined as a meta–meta–model1 and provides a reference standard used
to define meta–models in both industrial and research tools. Several meta–models were defined
to support the design of business processes using EMF as pivot representation. We describe in
SEC. 3.3 why these approaches are not sufficient to support the definition of composition mecha-
nisms.

Model transformations. Models (and meta–models) can be represented using “common” for-
malisms (e.g., XMI [OMG, 2007]). Model transformation engines [Czarnecki and Helsen, 2003]
support the implementation of transformation chains between tools (e.g., AGG [Taentzer, 2004],
ATL [Jouault and Kurtev, 2006]), based on these formalisms. These approaches are declarative,
and rely on pattern–matching mechanisms. An alternative is to use a meta–language such as
KERMETA to implement a transformation [Muller et al., 2005]. In a sense, a transformation is
”simply” a matter of manipulating a model to produce another one. As a consequence, meta–
languages dedicated to model manipulation are particularly adapted to support the implemen-
tation of model transformation. Independently of the chosen paradigm to implement a trans-
formation, the principles are the same. Let s a system, and m a representation of this system
according to a meta–model M (denoted as m = µ(s,MS)),. According to R2 and R3, this rep-
resentation of s follows a given goal, supported by M . Considering another meta–model M ′, a
transformation τ can be defined to transform m into a model m′ = τ(m), conform to M ′. For
example, a design model (m) can be formally checked in another formalism (m′), thanks to the
associated transformation. This transformation approach leads us to the fourth requirement.

 R4: Be complementary, and transform if necessary. Models are transformed to
cross the boundary of a given goal, using well-defined transformation languages
and formalism, to ensure interoperability.

1i.e., a set of related concepts used to express meta–models, published as a meta–model itself.
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3.2.2 Immediate Benefits of Model–Driven Engineering

The key idea of model–driven development is the central place accorded to models in the software
development cycle. Models are then considered as “productive” entities, with associated tools.

“Model Driven Development (MDD) raises the level of abstraction of the development life cycle by

shifting its emphasis from code to models, metamodels and model transformations. It views any

software artifact produced at any step of the development process as a valuable asset by itself to

reuse across different applications and implementation platforms so as to cut the cost of future

development efforts.” [Blanc et al., 2005]

The definition of common formalisms supports tools interoperability through model transfor-
mations [Sun et al., 2009], as stated in R4. Based on this approach, a model–driven approach
can benefit from many research and industrial tools, in their respective domain of expertise. We
consider here two “domains”, chosen according to their relations with the previously identified
properties: (i) coherency (Π1 & Π4, multiple experts working concurrently may generate conflict-
ing models) and (ii) domain–specific languages (P1 & P3, business expressiveness).

Coherency. According to Π1, several business experts may interact with the system, concur-
rently. Several cutting–edge researches focus on the support of collaborative design in model–
driven environment. In [Sriplakich et al., 2006], authors propose MODELBUS, a tool dedicated
to support collaborative development in model–driven environment. The tool supports mecha-
nisms used to merge concurrent changes on the models, based on structural coherency checks.
Conflicts are identified (Π4), and can be automatically solved in some extents. The immediate
successor of MODELBUS is the PRAXIS tool [Blanc et al., 2008, Blanc et al., 2009], which ensures
model coherency using an action–based approach. According to this approach, a model is con-
sidered as the set of elementary actions used to build it. Based on these descriptions, coherency
rules are defined as construction patterns, and a logic–based inference engine is used to identify
violations. PRAXIS is integrated in a peer–to–peer framework to support real–time collaboration
in an efficient way [Mougenot et al., 2009].

Domain Specific language (DSL). DSL [Fowler, 2010] are very important in our context,
according to the business–driven property P1. A DSL is a language dedicated to a given do-
main, which intensively uses the essence of the domain in its syntax [Parr, 2009]. Generative
programming [Czarnecki et al., 2002] is used to target preexisting languages, which act as exe-
cution platforms for the DSL. State–of–the–art research on the relations between meta–models
and DSL’ grammars [Muller et al., 2008], proposing to automatically support the transformation
from one to the other. Using tools such as SINTAKS [Muller and Hassenforder, 2005] or EMF-
TEXT [Heidenreich et al., 2009], one can obtain easily a textual syntax associated to a meta–
model. Graphical syntax can be obtained through dedicated framework such as the Graphical
Modeling Framework (GMF [Kolovos et al., 2009]).

3.2.3 Requirements Summary & Leading Choices

The previously identified requirements Rx identify the two following facts: (i) a model–driven
approach is dedicated to a given purpose and (ii) completes others approaches, dedicated to other
purpose. In the previous chapter, we identify our purpose as the following:

“To support the design of complex business processes following a compositional approach”

There is no approach described in the literature which fulfill this specific goal. However,
one can found cutting–edge research which deals with (i) business processes modeling and (ii)

model composition. The remainder of this chapter consists of a description of these approaches,
adopting a complementary point of view. We try to identify reusable mechanisms we can use in
existing approaches to tackle our own specific problem.
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Figure 3.1: BPMN formalism example: the travel booking process [White, 2005]

3.3 Cutting Edge Behavioral Modeling Formalisms

The goal of this section is to describe cutting edge research used to model system behavior. Our
goal is to identify complementary formalisms and reuse some of their choice in our own con-
tribution. We organize these formalisms according to the three following criteria: (i) business
abstraction, (ii) graphical syntax and (iii) execution semantics. Paragraphs identified by a (†)
symbol are based on an article currently under review written with the authors of the associated
methods.

3.3.1 Business Abstraction (BPMN)

The Business Process Modeling Language (BPMN [OMG, 2006a]) is defined to support the mod-
eling of business processes. As defined specifically for this purpose, the language fits the ab-
straction needed to support such a design. It defines several Elements used to model business
processes. The notation defines 11 concepts, sub–categorized according to their kind. The lan-
guage rely on Scope, represented as swimlanes in the notation. Each Lane represents a given
subset of activities, grouped by role, in a given organization (depicted as a Pool). An Activity
can be instantiated as (i) a Task (i.e., black box), (ii) a Subprocess (i.e., white box) or (iii) a
Transaction (i.e., a sub–process which needs to be compensated in case of failure). From the
relation point of view, three kinds of ObjectConnection can be defined to schedule the activity
set: (i) SequenceFlow to schedule activities inside the same Pool, (ii) MessageFlow to rep-
resent cross–organizational relations (i.e., an arrow crossing the boundary of a Pool) and (iii)

Association to bind an activity with a Data resource. Despite its intrinsic complexity, the
language is clearly identified as suitable to support the design of business processes by busi-
ness experts [Wohed et al., 2006]. We represent in FIG. 3.1 a travel agency process using this
formalism.

The specification came with an informal mapping to the BPEL execution language. Such a di-
chotomy between modeling and execution is clearly identified in [Kloppmann et al., 2009]. How-
ever, several conceptual mismatches were identified between the BPMN modeling elements and
the BPEL syntax [Recker and Mendling, 2006]. As a consequence, there is no “accepted” trans-
formation from BPMN models to BPEL execution code. One can found in the literature several
transformations, based on different interpretations of the BPMN standard [Ouyang et al., 2006,
Pant, 2008].

 Key Points assimilated in our approach. From the BPMN, we will keep the

business–driven expressiveness. However, we will propose a reduced number of con-

cepts, and then limit potential misinterpretations.
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Figure 3.2: Taxonomy of UML behavioral diagrams [OMG, 2005]

3.3.2 Graphical Syntax (UML Activity Diagrams)

The UML super–structure [OMG, 2005] identifies two classes of diagrams: (i) structural and (ii)

behavioral. We represent in FIG. 3.2 the class hierarchy associated to behavioral diagrams. The
activity diagram formalism is the only UML notation which was clearly demonstrated as suitable
to represent business processes [Russell et al., 2006b]. As a consequence, we based our analysis
on this notation. An example of activity diagram is depicted in FIG. 3.3.

Contrarily to the BPMN, the activity diagram notation is not dedicated to business process
modeling. However, the notation represents “activities” as boxes, and “relations between activ-
ities” as arrows. This simple notation supports the definition of arbitrarily complex behavior.
However, we identify two drawbacks in this notation according to our goal: (i) the syntactic level
and (ii) the lack of an accepted semantics associated to the notation.

• Syntactic approach. The activity diagrams formalism can be used as a workflow specifi-
cation language [Dumas and ter Hofstede, 2001]. The formalism can also be used to specify
data-flows, which can be verified and validated with associated tools [Störrle, 2004]. It im-
mediately raises an abstraction issue: the formalism defines a syntax (another one . . . ),
but does not reach the domain–specific abstraction expected by R1. According to a study
published in [France et al., 2006], plain UML is not designed to support a model–driven
development approach “as is”, and need to be operated at a higher level of abstraction.

• Execution Semantics. One can found in the literature different execution semantics as-
sociated to the activity diagram notation: there is no “accepted” semantics in the model-
ing community. Formal methods such as Abstract State Machine [Börger et al., 2010] or
Petri–nets [Eshuis and Wieringa, 2001] can be used to support the definition of these se-
mantics. In [Eshuis, 2002], the author defined two completely different semantics associ-
ated to activity diagrams, allowing the usage of these diagrams at both implementation and
requirement levels. The Executable UML was designed to provide an execution semantics
associated to UML diagrams [Mellor and Balcer, 2002]. Unfortunately, they do not consider
activity diagrams in their formalisms.

 Key Points assimilated in our approach. From activity diagrams, we will kept

the notation simplicity, considering activities as boxes and relations between activities

as arrows. This choice eases the reading of a diagram, which is based on a well-known

representation.
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Figure 3.3: Example of an ATM activity diagrams [Ericsonn, 2000]
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3.3.3 Execution Semantics (Protocol Modeling)

(†) A Protocol Model [McNeile and Simons, 2006] of a system is a set of protocol machines (PMs)
that are composed to create the behavior of the system. The specification of a PM includes its
local storage and the alphabet of event types. The local storage is represented as a set of its
attributes. Each event type is specified by meta–data. An event instance comes from the envi-
ronment and is atomic. Instances of PMs are created with happening of events. PM instances
can be included in other PMs. A PM instance behaves so that it either accepts or refuses an event
from its alphabet, depending on its state and the state of other included machines. Events that
are not in its alphabet are ignored. To evaluate state, a machine may read, but not alter, the
local storage of the included machines. In [Roubtsova et al., 2009], authors propose a complete
case study where protocol modeling is used to support the modeling of a complex system. The
main focus of the PM approach is specification of the interaction between the system and the en-
vironment [McNeile and Roubtsova, 2010]. The semantics of event acceptance is extended with
the sematic of event refusal. This allows for modeling of the situation when events occur and
the system cannot accept them. The behaviour of the system in a PM model is a set of traces of
events accepted by the system.

PMs are good candidates to prototype the interaction of a system and its environment, but do
not fit the right level of abstraction associated to business process design in our context. Business
processes need to be expressed in business terms, and PMs rely on “machines”, “events” and
“alphabet”.

 Key Points assimilated in our approach. From PMs, we keep the idea of a

strong execution semantics associated to our models. This execution semantics must

be simple to understand and verify, and supported by a formal model (e.g., first–order

logic).

3.4 Model–Driven Compositions Mechanisms

In this section, we describe several cutting–edge composition methods applied on models, to
support behavioral composition. For each described approach, we identify the key–points which
can be reused in our own approach to support the design of complex business processes.

3.4.1 Sequence Diagrams Weaving

In [Klein et al., 2007], the authors propose a method dedicated to support the weaving of as-
pects using sequence diagrams formalism. Behavioral aspects are defined as sequence diagrams
too. The approach is fully described in [Klein, 2006], and integrated into a multi–view modeling
approach (RAM,[Kienzle et al., 2009a]). Aspect pointcuts are defined as events captured by the
aspect and expressed in the base sequence diagram. The key idea of the approach is to support
the matching of message sequences using a partOf semantic: an pointcut capturing the sequence
of messages m1 → m2 will match a longer sequence such as m1 → µ → m2. This mechanisms
supports the introduction of multiple aspects on the same point, as the events added by an aspect
will not interfere with the others. According to its weaving mechanisms [Klein et al., 2006], the
approach supports the usage of multiple events as target, where usual AOP techniques capture
a single one. They propose several matching strategies to catch messages sequence (i.e., enclosed

part, general part and safe part), and let the user choose the one which fits its goal. However, the
approach is dedicated to sequence diagrams (and the associated structural concerns described in
class diagrams) which cannot be used “as is” to represent business processes. Finally, the compo-
sition operator defined in the approach rely on activity ordering, and does not support naturally
the activity parallelism identified in P5.

 Key Points assimilated in our approach. From Klein’s method, we keep three

key points (i) the usage of the same formalism to represent both aspect and base pro-

gram, (ii) the support of multiple aspects weaving on the same point and (iii) the use of

multiple activities as potential target of an aspect.
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3.4.2 Conflict Detection

The MATA approach [Whittle et al., 2009] supports the weaving of models aspects using a graph–
based approach. This approach supports powerful conflict detection mechanisms, used to support
the “safe” composition of models [Mussbacher et al., 2009]. The underlying formal model asso-
ciated to this detection is based on critical pair analysis [Heckel et al., 2002]. Initially defined
for term rewriting system and then generalized to graph rewriting systems, critical pairs for-
malize the idea of a minimal example of a potentially conflicting situation. This notion support
the development of rule–based system, identifying conflicting situations such as “the rule r will
delete an element matched by the rule r′” or “the rule r generate a structure which is prohibited
according to the existing preconditions”. These mechanisms were demonstrated as relevant to
identify composition conflicts in the software product line domain [Jayaraman et al., 2007]. How-
ever, these kind of conflicts are driven by the syntax of the graph transformation language, and
must be operated to reach the business level expressiveness.

 Key Points assimilated in our approach. From MATA, we keep need for conflict

detection mechanism to support the “safe”2 composition of business processes.

3.4.3 Parallel Composition

(†) The complete system is composed using CSP parallel composition [Hoare, 1978]. It serves as
a natural weaving algorithm for aspects. The alphabet of the composed machine is the union
of the alphabets of the constituent machines; and the local storage of the composed machine is
the union of the local storages of the constituent machines. When presented with an event the
composed machine will accept it if and only if all its constituent machines, that have this event
in their alphabet, accept it. If at least one of such machines refuses the event it is refused by
the composed machine. The concept of event refusal is critical to implement CSP composition for
composition of protocol machines [McNeile and Roubtsova, 2008]. This composition guarantees
a property of local reasoning on behaviours of PMs about the behavior of the complete system.
However, all the reasoning are specialized for each given instance of a PM, and it is not possible
to express “meta–properties”.

 Key Points assimilated in our approach. From PMs compositions, we keep

the intrinsic support of parallel composition (P4). Our contribution will not introduce

order if not explicitly needed.

3.4.4 Multi–view modeling

Multi–view modeling approaches are used to support the design of complex systems, based on
different points of views. In RAM (Reusable Aspect Models[Klein and Kienzle, 2007]), one can
use both class diagrams and sequence diagrams to design a system. The approach supports the
concurrent weaving of these two kinds of artifacts, and maintains consistency. The class dia-
grams are merged according to [Reddy et al., 2006], and sequence diagrams according to Klein’s
method [Kienzle et al., 2009a]. This approach focuses on the definition of low–level aspects.
The Theme/Uml approach [Carton et al., 2009] is another interesting multi–view modeling ap-
proach [Barais et al., 2008a], very similar to RAM. However, the Theme/Uml approach does not
support model composition mechanisms.

 Key Points assimilated in our approach. The contribution of this thesis is

dedicated to the composition of business processes, that is, behavior–driven entities. As

a consequence, the approach will be integrated into a multi–view modeling approach if

one needs to combine behavior and structure for example.

2In our context, “safe” means without conflicts.



30 CHAPTER 3. COMPOSING BEHAVIORAL MODELS

3.5 Summary & Contribution Choices

There is no model–driven approach described in the literature which tackles the same problem
than the one described in this dissertation. However, cutting–edge researches dealing with be-
havior modeling and model composition provide a powerful source of inspiration to the definition
of a new approach. These “inspiration points” were identified in this chapter.

Based on these points, the contribution of this thesis is stated as the following:

• From the behavior representation point of view:

– A formal meta–model will be defined to specifically support the design of business
processes, using a business expressiveness instead of a syntactic approach.

– A graphical notation inspired by well–known formalism will be used to support the
understanding of the meta–model

– A formal execution semantic will be associated to the meta–model, to support the defi-
nition of composition algorithms

• From the composition point of view:

– The approach will support the weaving of new concerns on blocks of activities

– The activity parallelism will be part of the composition process, and no order will be
introduced by the composition mechanisms (although explicitly needed).

– The approach will focus on behavioral compositions, and will be defined as complemen-
tary with structural approaches.

– Conflict detection mechanisms will be defined to support the validation of the compo-
sition results.



Towards . . .

State–of–the–art. In this part, we describe research works relevant to the topic of this contri-
bution. Our goal was to clearly identified where the contribution of this thesis is located according
to cutting–edge researches on the same domain.

Towards the specification of a model–driven framework. Based on this study of the lit-
erature, we identified the key points of our contribution, that is, the support of complex business
processes design through a compositional approach. The remainder of this dissertation focus on
the description of this work. We provide here a coarse grained overview of the contribution.

We will adopt a model–driven approach, and then propose a meta–model used to support the
design of business processes. The meta–model is dedicated to support the composition of business
processes, and consequently embed concepts associated to this notion. Even if this meta–model
is by essence different from the ones existing in the literature, we will use a graphical notation
close to the one defined by UML activity diagrams, to support the intuitive understanding of the
models. Finally, we will equip this meta–model with a strong execution semantics. (PART II)

Based on this meta–model, we identified as critical that different composition mechanisms
need to be supported, to fulfill different goals. We will provide four different composition mecha-
nisms (PART III), used (i) to assess the meta–model described in the previous pragraph and (ii) to
support process designers whilst building complex processes. We will validate these algorithms
on two large case studies, based on “real-world” systems (PART IV).

Remarks about implementation. All the work presented in this dissertation is implemented,
and available for download on the project websitea. The implementation of the framework is used to
support the realized case studies, which contains thousands of activities and relations between activities
(available for download too). We made the choice to not present the implementation in this document,
considering it as the technical fact of the contribution. However, we provide in APP. A and APP. B an
overview of the underlying implemenation, at a coarse grained level. The interested reader should refer
to the website to retrieve the latest information about the implementation.

ahttp://www.adore-design.org
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Part II

The ADORE Kernel

Notice: This part defines the thesis foundations. The pressed reader may focus on

CHAP. 5, which describes the graphical notation associated to the formal model, and

then gives an intuitive idea of the underlying foundations. These foundations are for-

mally described in CHAP. 4. Finally, CHAP. 6 describes how the ADORE models are

manipulated to support the description of composition algorithm.





4
The ADORE Meta–Model

«I have deep faith that the principle of the universe will be beautiful

and simple.»
Albert Einstein
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4.1 Introduction

As described in the previous chapters, a considerable number of technologies were defined to
support the composition of services paradigm. According to the MOF, “A model is a simplification

of a system, with a certain purpose” [OMG, 2006]. Considering our purpose to be the support of
orchestration evolution, we describe here the ADORE meta–model, defined for this specific goal.

The ADORE activity meta–model is directly inspired by the BPEL language grammar expres-
siveness. The rationale of the BPEL is defined as the following:

“The Business Process Execution Language (BPEL) is a model and a grammar for describ-

ing the behavior of a business process based on interactions between the process and its part-

ners.” [OASIS, 2007]

The BPEL defines nine different kinds of atomic activities (e.g., service invocation, message
reception and response) and seven composite activities (e.g., sequence, flow, if/then/else), plus
additional mechanisms such as transactions and message persistence. We decide to extract from
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the BPEL all concepts necessary “for describing the behavior of a business process”. From the
activity expressiveness point of view, ADORE can be seen as a simplification of the BPEL concepts,
as explained in the following section. The major shift between the BPEL and ADORE relies in the
links between activities, used to schedule the process content. We enhance the expressiveness
of links between BPEL activities (called relations in ADORE) to support orchestration evolution
through our composition mechanisms.

In this chapter, we describe in SEC. 4.2 the ADORE meta–model following a top–down ap-
proach (using the ECLIPSE EMF class diagram formalism [Merks et al., 2003]). Then, we define
formally each concept used in ADORE in SEC. 4.3, using first-order logic [Rosen, 2000]. We finally
express in SEC. 4.4 a set of properties valid over ADORE concepts. These formal concepts will be
used in next chapters to support the description of composition algorithms.

4.2 Coarse–Grained Description

The ADORE meta–model defines an Universe as its root. This concept contains all the business
processes available for the composition algorithms. We define a BusinessProcess as a set of
variables, a set of activities and a set of relations reifiying a partial order between the activities.
A business process can define two different kinds of artifacts: (i) as Orchestration (which
realizes the behavior associated to an operation of service) or (ii) a Fragment (defining an
incomplete behavior which aims to be integrated into another process). The associated graphical
representation is depicted in FIG. 4.1.

Figure 4.1: Global overview of the ADORE meta–model

The Activity concept represents an elementary task realized by a given business process.
An activity uses a set of inputs variables, and assigns its result in a set of outputs variables.
The different types of activities that can be defined in ADORE (see FIG. 4.2) include (i) service
invocation (denoted by Invoke), (ii) variable assignment (Assign), (iii) fault reporting (Throw),
(iv) message reception (Receive), (v) response sending (Reply), and (vi) the null activity, which
is used for synchronization purpose (Nop). Consequently, the ADORE meta-model contains all the
atomic activities defined in the BPEL normative document except the wait (stopwatch activity)
and the rethrow 1

ADORE defines four different types of relationships between activities (see FIG. 4.3). All
relations are expressed using binary operators. ADORE can define simple wait between ac-
tivities through the WaitFor operator. Using WeakWait, one can reify predecessors’ disjunc-

1In ADORE, a rethrow can be performed by catching a fault with an OnFailure relation and then use a Throw
activity to re–throw the fault.
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Figure 4.2: ADORE class hierarchy reifiying activities kinds

tion [Gregory, 1997], to allow non–determinism in the order of events. Conditional branches in a
process control–flow are represented using Guard relations. Finally, a fault catching mechanism
is defined through the OnFailure relations. As the ADORE meta-model does not define compos-
ite activities, BPEL composite constructions are reified using the different relations available in
the meta-model. A sequence of activities is defined by a WaitFor relation; If/then/else flows are
modeled using Guard relations.

Figure 4.3: ADORE class hierarchy reifiying relations kinds

We represent data exchanged between activities using the Variable concept (see FIG. 4.4).
Additionally to its name and type, a Variable also holds a boolean attribute isSet, determin-
ing if the entity is representing a set or a simple scalar. Constants are defined as extensions
of simple variables, and contain an immutable value. Contrarily to the BPEL, we do not define
control–loops (e.g., for, while) in ADORE. We represent iteration in ADORE using a “for each”

mechanism (which can be executed concurrently or in sequence). An Activity may be bound to
a Variable through an IterationPolicy. As a consequence, the activity will be executed “for

each” data defined in the associated set.
The ADORE purpose is to support the evolution of orchestrations. To perform such a goal,

we extend the previously defined meta–model to represent incomplete processes. Such processes
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Figure 4.4: ADORE concepts associated to Variables and Constants

(called Fragment, FIG. 4.5) are not suitable for direct execution: they aim to be integrated into
existing Orchestrations. As a consequence, they hold three kinds of special activities, dedi-
cated to this goal: (i) a Hook which represents the point where the fragment will be integrated,
(ii) a Predecessors to represent hook’ predecessors in the targeted orchestration and finally
(iii) a Successors to represent hook’ successors.

Figure 4.5: ADORE extension to integrate Fragment concept

Relations to AOP/AOM. According to the ERCIM working group on software evolution, aspect–

oriented approaches rely at a syntactic level on four elementary notions [ERCIM, 2010], identified
as: (i) joinpoints, (ii), pointcuts (iii), advice and finally (iv) aspects. Joinpoints represent the set
of well-defined places in the program where additional behavior can be added. In the ADORE

context, we use activities to reify this notion. Pointcuts are usually defined as a set of joinpoints.
In ADORE, one can identify sets of activities as pointcuts using explicit declarations (e.g., use
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{act3, act4} activities as pointcuts) or computed declarations (e.g., all activities calling the service
srv). Advice describes the additional business logic to be added in the initial system. We reify
advices as fragment. Finally, aspects are defined as a set of pointcuts and advices. There is no
explicit aspect notion in ADORE. This is done according to the usage of composition algorithms
(see PART III).

4.3 ADORE: the Formal Model

In this section, we formally define each ADORE concepts using the may–sorted first–order logical
formalism. The goal of this work is to build a solid basis used to support both execution semantic
and composition algorithms definition in the following sections. The usage of first–order logic
definitions allows us to easily map this formal model into an executable implementation, using
the PROLOG language. However, we consider these implementation details as technical (the
ADORE implementation is available on the project website2, defined as 8, 000 lines of PROLOG

and 3, 000 line of Java wrapper code) and base the remaining of this document on this formalism.
A brief description of the implementation is available in APP. A and APP. B.

4.3.1 Variables (V) & Constants (C)

A variable v ∈ V is defined as a name, a type and a boolean value isSet? used to distinguish
scalars from data–sets. Both name and type are defined as ground terms, i.e., terms without any
variables.

v = (name, type, isSet?) ∈ (GroundTerm×GroundTerm× B) = V

PICWEB Illustration. We consider here the getPictures process defined in the PICWEB require-
ments. The process receives a tag from the user and build a set of pictures URL picture⋆ as an output.

tag = (tag, string, false) ∈ V

picture
⋆ = (picture⋆, url, true) ∈ V

To access variable content, we define a set of eponymous functions:

∀v = (n, t, i) ∈ V

name(v) = n ∈ GroundTerm

type(v) = t ∈ GroundTerm

isSet?(v) = i ∈ B

Constants. Constants are defined as variables with an immutable initial value. This concept
is reified using a dedicated boolean function isConstant?. One can access constant internal value
through a dedicated function value.

• isConstant? : V → B

• value : V → GroundTerm

We denote as c ∈ C the fact that c is a constant.

c ∈ C ≡ c ∈ V ∧ isConstant?(c)

PICWEB Illustration. The getPictures process must retrieve a key associated to the FLICKR service
before being able to call it. This key is stored in a key repository, under the name flickr. We use a service

constant to define such data in the process.

service = (service, string, false) ∈ C, value(service) = ’flickr’

2http://www.adore-design.org

http://www.adore-design.org
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4.3.2 Activities (A)

An activity a ∈ A is defined as a name, a kind ∈ Kinds (to represent the inheritance graph
depicted in FIG. 4.2, see next paragraph), a set of input variables inputs and a set of output
variables outputs.

A = (GroundTerm×Kinds× V⋆ × V⋆)

a = (name, kind, inputs, outputs) ∈ A

To access activity content, we define a set of eponymous functions. We also define a vars
function to access to the used variable without any consideration on their directions.

∀a = (n, k, in⋆, out⋆) ∈ A

name(a) = n ∈ GroundTerm

kind(a) = k ∈ ClosedTerm

inputs(a) = in⋆ ∈ V⋆

outputs(a) = out⋆ ∈ V⋆

vars(a) = inputs(a) ∪ outputs(a) ∈ V⋆

PICWEB Illustration. the getPictures process invokes a key registry to retrieve the key associated
to the FLICKR® service. This requirement step is defined as an activity a, using a service constant as
input and a key variable as output.

a = (a, ka, {service}, {key}) ∈ A,

service = (service, string, false) ∈ C, value(service) = ’flickr’

key = (key, string, false) ∈ V

Activity Kinds (Kinds). The ADORE meta–model defines nine Kinds of activities, classified
through an inheritance graph in the object–oriented paradigm. We use closed terms (i.e., terms
without any free variables) to represent these concepts in first–order logic. The complete mapping
between meta–model concepts and closed–terms is summarized in TAB. 4.1

Family Concept Term/Arity Syntax

Business Assign assign/1 assign(fct)
— Invoke invoke/2 invoke(srv, op)
— Nop nop/0 nop

Interface Receive receive/0 receive
— Reply reply/0 reply
— Throw throw/0 throw

Fragment Predecessors P/0 P
— Hook hook/0 hook
— Successors S/0 S

Table 4.1: From activity inheritance graph to Kind (closed–terms) model

Concepts that do not define additional attributes are directly mapped to the associated ground
term (e.g., the Nop concept is mapped into a nop kind). Two concepts enhance the Activity
meta–class with additional attributes. We represent these concepts (i.e., Assign and Invoke) as
closed terms, where bound variables defined inside these terms contain the additional attributes.
As a consequence, the Assign meta–class (which holds a function) is mapped into a closed term
of arity 1, named assign. We illustrate3 such a mapping in FIG. 4.6. The P, S and hook kind are
defined to refer to preexisting behavior. We describe in the fragment paragraph how we use it to
define incomplete processes which aim to be integrated into others.

3Models conforms to the ADORE meta–model are textually defined using the HUTN syntax [Rose et al., 2008].
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Assign {function:"f"}  assign(f)

Invoke {service:"s"; operation:"o"}  invoke(s, o)

Figure 4.6: “Model to Closed Term” mapping example

PICWEB Illustration. According to the requirement, the getPictures process retrieves the key
associated to FLICKR in the key registry. This step is represented in ADORE using an activity a ∈ A. This
activity invokes the operation getByKey defined in the registry service.

kind(a) = invoke(registry, getByKey)

Limitation. In ADORE, we consider activities inputs and outputs as sets of variables. Accord-
ing to the definition of a set, one cannot use as input (or output) the same variable twice in a given
activity. For example, we consider here an assign activity, relying on the add function to perform
the sum of two integers. Based on the previously defined formalism, one cannot define an activ-
ity which reify the following assignment: x′ ← [ add(x, x). At the implementation level, we define
inputs (respectively outputs) as a set of ordered pairs (param, var) ∈ (GroundTerm × V), repre-
senting that the variable var is used to fill the parameter param. Assuming that the add function
signature is add(a, b) 7→ a+b, the previous example is then implemented as x′ ← [ add((a, x), (b, x)).
We consider these considerations as technicals and keep it out of the formal model to lighten the
description.

4.3.3 Relations (R)

Relations defined in ADORE model activity scheduling. We define a binary relation4 as an ordered
pair of activities (i.e., left and right). We denote as left < right the fact that a relation exists
between left and right. As ADORE defines different kinds of relations, we use a label (defined as
a closed term) to reify this information.

left < right ⇒ ∃r = (left, right, label) ∈ (A×A× ClosedTerm) = R

Path (i.e., relation transitive closure). We define a path between two activities a and a′ as
the set of related activities used to go from a to a′ according to a given set of relations R ∈ R⋆.
The function path+ (defined as path extension) computes all the existing paths between a and a′.

path : R⋆ ×A×A → A⋆

(R, a, a′) 7→ a⋆ ≡

{
a < a′ ∈ R⇒ a⋆ = {a, a′}
∧ ∃a < α ∈ R, path(R,α, a′) = A⇒ a⋆ = {a} ∪A

path+ : R⋆ ×A×A → {A⋆}⋆

(R, a, a′) 7→ {A⋆ | ∀p = path(R, a, a′), p ∈ A⋆}

To access relation content, we define a set of eponymous functions:

∀rel = (l, r, lab) ∈ R

left(rel) = l ∈ A

right(rel) = r ∈ A

label(rel) = lab ∈ ClosedTerm

In this section, we only describe the semantics of each relation in isolation, considering only
two activities. The way relations interact to produce complex behavior (and the associated exe-
cution semantics) is described in SEC. 5.3.

4ADORE uses only binary relations.
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Wait For (a ≺ a′). The waitFor relation defines a basic wait between two activities. Let a ≺
a′ ∈ R. The activity a′ will start only after the end of the activity a.

a ≺ a′ ≡ (a, a′, waitFor) ∈ R

PICWEB Illustration. According to the getPictures requirement description, the process invokes
the key registry (a1 ∈ A) and then invokes the FLICKR® service with the retrieved key (a2 ∈ A). This wait
is denoted as a1 ≺ a2.

Guards (a
c

≺ a′, a
¬c

≺ a′). The guard relation allows one to define conditional branches. It
enforces the waitFor relation to restrict the execution of its right activity according to the boolean
response of the left one. We use a closed term guard(variable, value) to model this information.
The ground term variable is the name of an existing boolean variable, and the value is bound to
a boolean value. Since a

c

≺ a′, the a′ activity will start only if the end of activity a assigns the
boolean true to the variable c.

a
c

≺ a′ ≡ (a, a′, guard(c, true)) ∈ R, c ∈ outputs(a) ∧ type(c) = B

a
¬c

≺ a′ ≡ (a, a′, guard(c, false)) ∈ R, c ∈ outputs(a) ∧ type(c) = B

Remark on the guard notation. To lighten the logical description used in this document,
and unless it is explicitly contradicted, we use the a

c

≺ a′ notation to refer to the existence of a
guard, and the a

¬c

≺ a′ notation to refer to its opposite.
PICWEB Illustration. For performance reasons, one can add a cache mechanism in front of the
FLICKR® invocation in the getPictures process. As a consequence, the FLICKR® service will be invoked
(a1) only if the isV alid operation of the cache service returns false (stored in a boolean variable val) when

invoked (test): test
¬val

≺ a1.

Weak Wait (a≪ a′). The weakWait relation defines a potential disjunction between the prede-
cessors of the right activity. This relation allows designers to explicitly define alternative paths
in their process. As a consequence, these relations make sense when combined with each others
(see SEC. 5.4 for more details on the execution semantic associated to the weakWait relations).
Considering {a′ ≪ a, a′′ ≪ a} ∈ R2, the activity a will start after the end of activity a′ or after the
end of activity a′′. A single weakWait is equivalent to a waitFor relation.

{
a′ ≪ a ≡ (a′, a, weakWait) ∈ R
a′′ ≪ a ≡ (a′′, a, weakWait) ∈ R

}

⇒ a waits the end of a′ or a′′

a′ ≪ a ∈ R, ∄a′′ ≪ a ∈ R ⇒ a′ ≺ a

PICWEB Illustration. The FLICKR® service may take too much time to provide a response when
invoked (a1 ∈ A) in the getPictures process. To avoid such a behavior, one can start a stopwatch in
parallel (a2 ∈ A). The activity a3 following the FLICKR® invocation (which reply the result) will then start
after the end of a1 (normal execution) or after the end of a2 (timeout triggered). This behavior is modeled
in ADORE with the two following relations: {a1 ≪ a3, a2 ≪ a3}

On Failure (a
f

◭ a′). The onFailure relation allows one to catch a fault thrown by an activity

during its execution. As a consequence, a
f

◭ a′ means that the activity a′ will start if a fault f is
thrown by the activity a.

a
f

◭ a′ ≡ (a, a′, onFailure(f)) ∈ R

PICWEB Illustration. During its execution, the FLICKR® service can throw an “Invalid API Key”

fault (abbreviated as iAK) if the given key is not a valid one (e.g., revoked, outdated) when performing
the invocation (a1). One can decide to store such an error in a log using a dedicated invocation (a2). The

following relation represents this behavior: a1
iAK

◭ a2.
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Paths specialization. The previously defined path function can be specialized into two differ-
ent categories of paths:

• a control–path only involves waitFor, weakWait and guards relations.

• an exceptional–path involves at least one onFailure relation.

4.3.4 Business Processes (P)

A business process p ∈ P is defined as a name (defined as a ground term), a set of variables
vars to exchange data between service invocations, a set of activities acts which manipulate the
variables, and a set of relations rels to schedule the activity set according to a partial order.

p = (name, vars, acts, rels) ∈ (Symbol × V⋆ ×A⋆ ×R⋆) = P

To access process content, we define a set of eponymous functions:

∀p = (n, v⋆, a⋆, r⋆) ∈ P

name(p) = n ∈ GroundTerm

vars(p) = v⋆ ∈ V⋆

acts(p) = a⋆ ∈ A⋆

rels(p) = r⋆ ∈ R⋆

Relation to Graph Theory. Let p ∈ P. The previously defined formalism is definitively in-
spired by graph theory. We use the following definition of directed graphs5 to draw a parallel
between the ADORE meta–model and graph theory:

“ A directed graph (or just digraph) D consists of a non-empty finite set V (D) of elements called

vertices and a finite set A(D) of ordered pairs of distinct vertices called arcs. A weighted di-

rected (pseudo)graph is a directed graph D along with a mapping c : A(D) → R. Thus, a

weighted directed (pseudo) graph is a triple D = (V (D), A(D), c). If a is an element (i.e., an arc)

of a weighted directed (pseudo)graph D = (V (D), A(D), c), then c(a) is called the weight or the

cost of a.” [Bang-Jensen and Gutin, 2000]

Considering activities as vertices (acts(p) ≡ V (D)) and relations as arcs (rels(p) ≡ A(D)), we
can define a process as a directed graph. To include the different relations available in ADORE,
we use the cost function associated to a weighted digraph, and consider the cost of an arc as the
label associated to its relation.

c : A(D)→ R ≡ label : R → ClosedTerm

Orchestrations 6= Fragments. According to the previously defined inheritance graph (see
FIG. 4.1), a business process can be either an orchestration or a fragment of orchestration. We
define two boolean functions named isOrchestration? and isFragment? to model this information.

• isOrchestration? : P → B

• isFragment? : P → B

5In the context of ADORE, we do not differentiate direct graphs, pseudographs and multigraph, according to PROP. 4.9
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PICWEB Illustration. We consider here the truncate business process, which truncates a received
set of URLs according to a user-given threshold. It is composed by five activities which respectively (a0)

receives the user given parameters, (a1) counts the cardinality of the received set, (a2) tests if the set must
be truncated, (a3) performs the truncation and finally (a4) replies the truncated set. These activities are
using four variables to perform such a goal: url⋆ the set to restrict, threshold the user–given value, length
the effective cardinality of the received set and c a boolean condition deciding if the set must be truncated
or not. An anonymous constant λ0 is used to store the 1 value, used when truncating the set. This process
involves waitFor and guards relations to model the expected behavior. A complete description of this
process is depicted in FIG. 4.7, expressed using the ADORE formal model.

url⋆ = (url, string, true) ∈ V

threshold = (threshold, integer, false) ∈ V

length = (length, integer, false) ∈ V

c = (c, boolean, false) ∈ V

λ0 = (λ0, integer, false),∈ C, value(λ0) = ’1’

V = {url⋆, threshold, length, c, λ0} ∈ V
⋆

a0 = (a0, receive, ∅, {url
⋆, threshold}) ∈ A

a1 = (a1, assign(count), {url
⋆}, {length}) ∈ A

a2 = (a2, assign(isGreaterThan), {length, threshold}, {c}) ∈ A

a3 = (a3, assign(subset), {url
⋆, λ0}, {url

⋆}) ∈ A

a4 = (a4, reply, {url
⋆}, ∅) ∈ A

A = {a0, a1, a2, a3, a4} ∈ A
⋆

R = {a0 ≺ a1, a1 ≺ a2, a2
c

≺ a3, a2
¬c

≺ a4, a3 ≺ a4} ∈ R
⋆

truncate = (truncate, V,A,R) ∈ P

Figure 4.7: truncate business process modeled using ADORE formalism

Fragments (denoted as F) and orchestrations (denoted as O) represent a partition6 of P.
These two sets can be defined in intention:

O ≡ {p ∈ P | isOrchestration?(p)}

F ≡ {p ∈ P | isFragment?(p)}

P = O ∪ F , O ∩ F = ∅

On the one hand, an orchestration defines the behavior of an operation, exposed in a service.
This additional information is modeled as a closed term orch of arity 2, available through a
dedicated function (extras).

extras : O → ClosedTerm

o 7→ orch(service, operation)

On the other hand, fragments represent incomplete behavior (which aims to be integrated
into other processes) and consequently defines ghosts variables (handled in the fragment but
concretely defined in the targeted business process). These variables are reified through frag-
ment hook activity, which makes the link between the fragment and the targeted process. We
define a dedicated function ghost : F → V⋆ to identify such variables. To reify activities existing
in the targeted process, we use the P (predecessors), S (successors) and hook activity kind. We

6A partition is defined as the following: “Given a set S, a partition is a pairwise disjoint family P = {Ai} of non–empty

subsets of S whose union is S.” [Rosen, 2000]
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also provide a set of eponymous functions to easily access to these artifacts in a given process (ac-
cording to PROP. 4.13 —fragment coherence, a fragment can only define one hook —respectively
P and S— activity).

P : F → A

f 7→ a ∈ acts(f), kind(a) = P

hook : F → A

f 7→ a ∈ acts(f), kind(a) = hook

S : F → A

f 7→ a ∈ acts(f), kind(a) = S

ghosts : F → V⋆

f 7→ vars(hook(f))

PICWEB Illustration. As explained above, truncate and getPictures business processes are mod-
eled as orchestrations. Additional extensions such as cache or timeout mechanisms are defined as frag-
ments.

truncate ∈ O, extras(truncate) = orch(helpers, truncate)

getP ictures ∈ O, extras(getP ictures) = orch(picweb, getP ictures)

cache ∈ F , timeout ∈ F

Path syntactic shortcut. For a given process p ∈ P, we refer to the previously defined path
function according to the rels(p) set of relations, and activities contained in the same process.
Given a and a′ two activities contained in acts(p), we denote as a → a′ the existence of a path
between a and a′. To lighten the expression of properties on the ADORE metamodel, we also
consider that a→ a′ can be considered as a = a′.

a→ a′ ≡ ∃p ∈ P, a ∈ acts(p), a′ ∈ acts(p), path(rels(p), a, a′) 6= ∅ ∨ a = a′

Following the same convention, we denote as <
→ a “control–path” and ◭

→ an “exceptional path”.

Entry & Exit points. According to their kinds and their positions in the partial order induced
by the relations, activities can be defined as entry or exit points.

entry : P → A

p 7→ a ∈ acts(p), kind(a) ∈ {receive,P}

∧ ∄a′ ∈ acts(p), a′ → a

exit : P → A⋆

p 7→ {a | a ∈ acts(p), kind(a) ∈ {reply, throw, S}

∧ ∄a′ ∈ acts(p), a→ a′}

4.3.5 Universe (U)

An universe u ∈ U is defined as a set of business processes procs ∈ P⋆ (simple renaming).

u = procs ∈ P⋆ = U

PICWEB Illustration. According to the previous section, the universe associated to PICWEB is com-
posed by four processes.

picweb = {truncate, getP ictures, cache, timeout}

To access universe content, we define a procs function, and several transitive relations to
reach entities defined in the contained processes.
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∀u = p⋆ ∈ U

procs(u) = p⋆ ∈ P⋆

orchs(u) = {p | p ∈ procs(u), isOrchestration?(p)} ∈ O⋆

frags(u) = {p | p ∈ procs(u), isFragment?(p)} ∈ F⋆

vars(u) =
⋃

p∈p⋆

vars(p) ∈ V⋆

acts(u) =
⋃

p∈p⋆

acts(p) ∈ A⋆

rels(u) =
⋃

p∈p⋆

rels(p) ∈ R⋆

4.3.6 Iteration Policies (I) & Blocks

An iteration policy i ∈ I is defined as a data–set variable set⋆, a scalar variable scalar, a kind and
a set of involved activities acts. The semantics associated to iteration policies can be informally
described as follows: activities contained in the activity set will be executed for each scalar ∈ set⋆,
according to its kind. The complete semantics associated to iteration policies and their kinds is
described in SEC. 5.5. Even if policies are not contained by a process as they represent meta–data
associated to ADORE entities, we consider as part of the process concept a function pols : P → I⋆

wich returns all the policies involved in a given process.

i = (set⋆, scalar, kind, acts) ∈ (V × V × {serial, parallel} × A⋆) = I

To access iteration policies content, we define a set of eponymous functions:

∀i = (s, v, k, a⋆) ∈ I

set(i) = s ∈ V, isSet?(s)

scalar(i) = v ∈ V,¬isSet?(v)

kind(i) = k ∈ {serial, parallel}

acts(i) = a⋆ ∈ A⋆

Blocks. Iteration policies rely on a loop semantic7. As a consequence, the set of activities
involved in an iteration policy must respect additional constraints to be semantically valid. We
define the concept of block of activities to reify such a restriction. A block is basically defined as
a set of activities, equiped with functions defined to handle it.

We define the “boundary” of a block b through its interface, that is, activities involved in the
block and related to others which are not part of the block. The reciprocal function (internal)
gives access to the internal activities of the block, that is, activities which do not communicate
with others defined outside the block. We require that a block of activities involved in an itera-
tion policy must not contain any “interface” activity (i.e., receive, reply & throw). Based on this
assumption, we ensure that a block is always preceded (repectively succeded) by at least one ac-
tivity. The predecessors (preds) of a given block b (respectively the successors succs) are defined
as the activities which immediately precede the first activities of b (respectively the last ones). A
block is considered as a singleton when it only contains a single activity.

Let p ∈ P a⋆ ⊂ acts(p)

firsts : A⋆ → A⋆

a⋆ 7→ {a | a ∈ a⋆, ∃a′ < a ∈ rels(p) ∧ a′ 6∈ a⋆}

lasts : A⋆ → A⋆

a⋆ 7→ {a | a ∈ a⋆, ∃a < a′ ∈ rels(p) ∧ a′ 6∈ a⋆}

7 as explained in SEC. 5.5
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interface : A⋆ → A⋆

a⋆ 7→ firsts(a⋆) ∪ lasts(a⋆)

internal : A⋆ → A⋆

a⋆ 7→ {a | ∃f ∈ firsts(a⋆), a ∈ a⋆, f → a ∧ a 6∈ lasts(a⋆)}

preds : A⋆ → A⋆

a⋆ 7→ {a′ | ∃a ∈ a⋆, ∃a′ < a ∈ rels(p) ∧ a′ 6∈ a⋆}

nexts : A⋆ → A⋆

a⋆ 7→ {a′ | ∃a ∈ a⋆, ∃a < a′ ∈ rels(p) ∧ a′ 6∈ a⋆}

singleton? : A⋆ → B

a⋆ 7→ |a⋆| = 1, firsts(a⋆) = lasts(a⋆) = interface(a⋆) = internal(a⋆)

The activities involved in an iteration must define a well–formed block of activities, that is, a
block of activities wich respects PROP. 4.21.

Limitations. Regarding the current ADORE meta–model, it is not possible to use several it-
eration policies on the same activity. Such an extension is one of the perspectives of this work.
ADORE also does not support policies defined inside others.

4.4 Properties

We present in this section a set of properties defined over the previously defined formal concepts.
Without further explanations, an ADORE model (i.e., a model conforms to the ADORE meta–
model) assumes the respect these properties.

Objectives. These properties reify constraints expressed over the meta–model and consequently
restrict the ADORE expressiveness into entities compatible with the composition mechanisms de-
scribed in PART III. At the implementation level, the composition engine throws an exception
when it identifies a constraint violation.

4.4.1 Variables

Property 4.1 (variable uniqueness). Let v ∈ V a variable. There is no other variables which

use the same name. This property allow the assimilation of a variable and its name while per-

forming a composition, and avoid inadvertent capture [Kohlbecker et al., 1986].

∀v ∈ V, ∀v′ ∈ V, name(v) = name(v′)⇒ v = v′

Property 4.2 (constant immutability). Let c ∈ C a constant. There is no activity a ∈ A which

uses c as an output.

∀c ∈ C, ∄a ∈ A, c ∈ outputs(a)

4.4.2 Activities

Property 4.3 (activity uniqueness). Let a ∈ A an activity. There is no other activity which use

the same name. This property allow the assimilation of an activity and its name while performing

a composition.

∀a ∈ A, ∄a′ ∈ A, a 6= a′ ∧ name(a) = name(a′)

Property 4.4 (Restriction on orchestration activities). Let a ∈ A an activity. Receive activ-

ities can only use output variables (as value are received from the outside and then assigned to

local variables) and reply activities can only use input variables (as the content of these variables
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will be responded to the outside). A throw activity only accepts one input variable of type string
which contains the fault name.

∀a ∈ A, kind(a) = receive⇒ inputs(a) = ∅

∀a ∈ A, kind(a) = reply ⇒ outputs(a) = ∅

∀a ∈ A, kind(a) = throw

⇒ outputs(a) = ∅ ∧ inputs(a) = {v}, type(v) = string

Property 4.5 (Restriction on fragment activities). Let u ∈ U , and f ∈ frags(u) a fragment.

As predecessors and successors potentially represent multiple activities dealing with multiple

variables, they cannot hold any variable from the fragment point of view.

∀a ∈ A, kind(a) ∈ {P, S} ⇒ vars(a) = ∅

4.4.3 Relations

Property 4.6 (relation containment). A relation contained in a (unique) process p ∈ P in-

volves activities from the same process.

∀a < a′ ∈ R, ∃!p ∈ P, a < a′ ∈ rels(p)⇒ a ∈ acts(p) ∧ a′ ∈ acts(p)

Property 4.7 (irreflexive relations). Relations in ADORE reify waits between activities. As it

does not make any sense for an activity to wait for its own end, all relations defined in ADORE are

defined as irreflexive.

∀a ∈ A, a < a 6∈ R

Property 4.8 (asymmetric relations). According to the same reasons as the irreflexive prop-

erty, direct cycle such as {a < a′, a′ < a} cannot be defined in ADORE.

∀(a, a′) ∈ A2, a < a′ ∈ R ⇒ a′ < a 6∈ R

Property 4.9 (acyclic relations). This property is a generalization of the previous one. It en-

sures that there is no existing cycle in the relation set. As a consequence, a process p ∈ P is

assimilated as a directed acyclic graph (DAG).

∀(a, a′) ∈ A2, a < a′ ∈ R ⇒ a′ → a 6∈ R

Property 4.10 (guard vivacity). To ensure that guards relations are always semantically valid,

no other activity may change the value assigned in the boolean condition while a guard can be

crossed.

∀(a, a′) ∈ A2, ∀α ∈ A, ∃a
c

≺ a′ ∈ R ∧ c ∈ outputs(α)⇒ α→ a

4.4.4 Business Process

Property 4.11 (single entry–point). Let p ∈ P. There is only one unique entry point activity

a ∈ acts(p) defined in p.

∀p ∈ P, ∃!a ∈ acts(p), a = entry(p)

Property 4.12 (“entry–to–exit” path existence). Let p ∈ P. All exit points of p are connected

to its entry point through a path.

∀p ∈ P, ∀a ∈ acts(p), a = exit(p)⇒ entry(p)→ a

Property 4.13 (fragment structure). Let f ∈ F a fragment. This fragment can only define one

predecessor activity (P), one hook activity and one successors activity (S).

∀f ∈ F , ∃!a ∈ acts(f), a = P(f)

∀f ∈ F , ∃!a ∈ acts(f), a = hook(f)

∀f ∈ F , ∃!a ∈ acts(f), a = S(f)
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Property 4.14 (fragment coherence). Let f ∈ F a fragment. This fragment defines at least

one path which connects predecessors, hook and successors.

∀f ∈ F , P(f)→ hook(f) ∧ hook(f)→ S(f)

Property 4.15 (process isolation). Let p ∈ P a process. Activities and variables contained in p
are locally scoped and as a consequence cannot be shared with other processes.

∀p ∈ P, ∀v ∈ vars(p)⇒ ∄p′ ∈ P, p′ 6= p ∧ v ∈ vars(p′)

∀p ∈ P, ∀a ∈ acts(p)⇒ ∄p′ ∈ P, p′ 6= p ∧ a ∈ acts(p′)

Property 4.16 (activity path completeness). All activities defined in a process p ∈ P must be

connected to the entry point and to at least one exit point.

∀p ∈ P, ∀a ∈ acts(p), a 6= entry(p), a 6∈ exit(p)⇒ ∃e ∈ exit(p), first(p)→ a→ e

Property 4.17 (activity position consistency). An activity defined as a receive or a P cannot

be preceded by another activity (i.e., it must be an entry point). Respectively, an activity defined

as a reply, a throw or a S cannot be followed by another activity (i.e., it must be an exit point).

∀p ∈ P, ∀a ∈ acts(p),kind(a) ∈ {receive,P} ⇒ a = entry(p)

kind(a) ∈ {reply, throw, S} ⇒ a ∈ exit(p)

4.4.5 Iteration Policies & Block

Property 4.18 (dataset isolation). Let i ∈ I an iteration policy. The associated data set set(i)
cannot be modified directly by an activity involved in the iteration.

∀i ∈ I, ∀a ∈ acts(i), set(i) 6∈ outputs(a)

Property 4.19 (no cross–boundary fault handling). Let i ∈ I an iteration policy. As the

activities involved in i will be executed multiple times, we require that no onFailure relation can

cross an iteration policy boundary.

∀i ∈ I, ∀a ∈ acts(i) ⊂ acts(p), ∄a
f

◭ a′ ∈ rels(p) ∧ a′ 6∈ acts(i)

Property 4.20 (block consistency). We consider a block of activities b ∈ A⋆ as consistent iff all

activities defined inside are contained by the same process p ∈ P.

∀b ∈ A⋆, ∀a ∈ b, ∃p ∈ P, a ∈ acts(p)⇒ ∄a′ ∈ b, a′ 6∈ acts(p)

Property 4.21 (well-formed activity block). Let b ∈ A⋆ a consistent block of activities. We

consider a block as well–formed iff (i) it is defined as a singleton or (ii) its interface activities do

not overlap its internal content (that is, internal(b) ∩ external(b) = ∅). In other words, there is no

activity defined in b which is related to activities defined inside and outside b (excepting for the

singleton block).
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5
Equiping ADORE: Syntax & Semantics

«He who loves practice without theory is like the sailor who boards

ship without a rudder and compass and never knows where he may

cast.»
Leonardo da Vinci
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5.1 Introduction

In CHAP. 4, we defined a formal model to reify ADORE foundations. The goals of this chapter are
multiples. We start by defining a graphical syntax associated to the formal model in SEC. 5.2,
to lighten the expression of ADORE models. Then, we define an execution semantic for ADORE

artifacts in SEC. 5.3. Finally, we expose how multiple relations can be composed to express
complex behavior (SEC. 5.4). SEC. 5.5 is dedicated to iteration policy semantic description.

5.2 Graphical Syntax

To make ADORE artifacts more readable, we define a graphical syntax associated to the formal
model. The ultimate goal of this syntax is to allow one to easily understand the behavior of a
given process. As ADORE is inspired by graph–theory, we use a graph–based representation. We
basically represent activities as boxes, and relations between activities as arrows. We voluntar-
ily choose to not represent variable declaration in the graphical syntax, according to our goal
(understand the behavior).
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a (v1, ..., vn) := receive()

(a) (a, receive, ∅, {v1, . . . , vn})

a reply(v1, ..., vn)

(b) (a, reply, {v1, . . . , vn}, ∅)

a throw(v)

(c) (a, throw, {v}, ∅)

Figure 5.1: Graphical notation associated to interface activities

a (o1, ..., on) := srv::op(i1, ..., in)

(a) (a, invoke(srv, op), {i1, . . . , in}, {o1, . . . , on})

a (o1, ..., on) := f(i1, ..., in)

(b) (a, assign(f), {i1, . . . , in}, {o1, . . . , on})

a nop()

(c) (a, nop, ∅, ∅)

Figure 5.2: Graphical notation associated to business activities

5.2.1 Representation of Activities

We represent an ADORE activity as a box. The left part of the box contains the name of the
activity. The right part of the box is dedicated to activity content, according to its kind and
variable usage:

• Variables are represented by their name,

– Data–sets (v ∈ V, isSet?(v)) are postfixed with a ⋆,

– Constants (c ∈ C) are valued and surrounded by quotes.

• Sets of variables are represented using a parenthesized form (v1, . . . , vn),

• The := symbol denotes assignment,

• The srv::op notation denotes an invocation of the operation op exposed by the service srv,

• Special keywords are dedicated to their associated kind: receive , reply , nop & throw ,

• Assignments are represented using their function as keyword.

The notation used for interface activities is depicted in FIG. 5.1, and the one associated to
business activities is depicted in FIG. 5.2.

Fragment–Specific Activities. Fragments of processes define three special activities: (i) a
hook, (ii) its predecessors and (iii) its successors. These activities refer to the behavior of the
process where the fragment will be integrated to. We decide to represent these activities using a
dashed notation instead of a plain one, to makethe difference of their intrinsic nature explicit.

Short Notation. When the contents of an activity is not important for a given context, we allow
the usage of simple boxes to represent an activity, without the contents right part. We use this
syntactic shortcut to illustrate ADORE capabilities when the activity kind is not relevant (e.g.

activity scheduling). An example is represented in FIG. 5.4.
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a (o1, ..., on) := hook(i1, ..., in)

(a) (a, hook, {i1, . . . , in}, {o1, . . . , on})

P

(b) (a,P, ∅, ∅)

S

(c) (a, S, ∅, ∅)

Figure 5.3: Graphical notation associated to fragment activities

a = (nop, ∅, ∅) ≡ a nop() ≡ a

Figure 5.4: Syntactic shortcut used to lighten graphical representation

5.2.2 Representation of Relations

We represent a < a′ ∈ R a relation between two activities as an arrow starting from a and
ending in a′. The ADORE meta–model defines four types of relations between activities. The label
associated to a relation is represented by the graphic style applied to the arrow:

• a plain arrow represents waitFor relations,

• a plain arrow with an associated label represents a guard,

• a dashed arrow with a round tail represents a weakWait,

• a red arrow with a diamond tail represents a onFailure relation.

Example of these graphical notations can be found in FIG. 5.5

5.2.3 Iteration Policy

We illustrate in FIG. 5.6 the syntax associated to the iteration policy concept. We use a nested
sub–graph notation, where activities represented inside the sub–graph are part of the activities
involved in the iteration policy. The kind associated to the policy is represented enclosed by <>.
We use a “x in x⋆” label defined inside the subgraph to represent an iteration policy Ip where
scalar(Ip) = x and set(Ip) = x⋆.

5.2.4 Process Representation

We represent a process as a directed acyclic graph. Orchestrations and fragments differ accord-
ing to their bottom label: an orchestration label is composed by the extras informations han-

a

a’

(a) a ≺ a′

a

a’

(b) a≪ a′

a

a’

c

(c) a
c
≺ a′

a

a’

f

(d) a
f

◭ a′

Figure 5.5: Graphical representation associated to ADORE relations



54 CHAPTER 5. EQUIPING ADORE: SYNTAX & SEMANTICS

a

b

a’

<serial>
x in x*

(a) Serial Policy

a

b

a’

<parallel>
x in x*

(b) Parallel Policy

Figure 5.6: Graphical notation associated to Iteration Policies

dled by the process, and a fragment label contains only the name of the fragment. To ease the
identification of activities provenance in composed processes, we enhance fragment with colors.
As fragment–specific activities refer to an exterior behavior, they are not colored to emphasize
the semantic difference. We use the same assumption to represent relation entering or leaving
successors and predecessors, represented as dashed lines (as they refer to relations defined in the
target process).
PICWEB Illustration. We depict in FIG. 5.7 artifacts extracted from the PICWEB case study. The
getPictures process, as defined in the requirement, is represented in FIG. 5.7(a)a. The cache fragment,
used to model a cache policy, is represented in FIG. 5.7(b).

aThis figure corresponds to the formal model represented in FIG. 4.7.

5.3 Execution Semantics

In this section, we focus on the definition of a semantics associated to the execution of modelled
activities. We use this semantics in the next chapters to illustrate how the different composition
algorithms interact with the original behavior during the composition. The goal of this section is
(i) to describe the semantics associated to activity execution, and (ii) to illustrate how it can be
instantiated for a given model.

The software architecture community defines several formal methods associated to the defini-
tion of architecture and their behavior. In the large family of Formal Architecture languages, one
can use π–calculus [Sangiorgi and Walker, 2001] to model the architecture of software systems.
The π–Diapason [Pourraz, 2007] approach is defined as a domain–specific π–calculus implemen-
tation, dedicated to orchestration of web services. Like the previous formalism, its goal is to
check orchestration correctness by using a virtual machine in order to check its behavior.

Specification languages such as ALLOY [Jackson, 2006] can be used to express complex be-
havior in a software system. After the definition of Signatures and Facts, one can express
Predicates, Functions and Assertions used to perform model–checking on the defined
model. The goal of ALLOY is to check model correctness, that is, the fact that the modeled behav-
ior respects a given program specification. ALLOY can then exhibit a counter–example if such a
behavior exists in the finite scope domain used to perform the check.

Petri–Nets can be applied to model workflows [van der Aalst, 1998]. This formalism gives to
workflow (i) a formal semantic, (ii) a graphical nature and (iii) a large expressiveness. Existing
work on Petri–nets investigate properties associated to Petri–nets, as well as analysis techniques.
However, according to Wil van der Aalst, “Petri nets describing real processes tend to be complex

and extremely large. Moreover, the classical Petri net does not allow for the modeling of data and

time”. As a consequence, the simple initial formalism must be enhanced into a more complex one
in order to take care of these concerns.

Temporal Languages such as CCSL [Mallet et al., 2010] allow one to express Clocks, and a
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Orchestration picweb::getPictures

rcv (tag,threshold) := receive()

a1 (key) := registry::getByKey(’flickr’)

a2 (picture*) := flickr::getPictures(tag,key)

a3 (picture*) := helpers::truncate(picture*,threshold)

rpl reply(picture*)

(a) getPictures process, modeled as an orchestration

Fragment cache

P

a1 (val) := cache::isValid(key)

S

a20 (data*) := hook(key)

val

a21 (data*) := cache::read(key)

!val

a30 cache::store(key,data*)

(b) cache concern, modeled as a fragment of process

Figure 5.7: Graphical representation illustrated on PICWEB artifacts
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quasi–order between clock events through the definition of precedence rules and exclusion
between pairs of activities. Based on such a temporal description of a system, it is possible to
simulate the execution and to analyze traces to check the correctness of a system against its
specification. From a simplified point of view, CCSL can be seen as a domain–specific model–
checker for time–driven models.

Finally, process algebra and the associated temporal logic implementation (such as the auto-
mata–driven approach LTSA [Magee and Krammer, 2006]) can be used to express the behavior
of a system, as an automata. Temporal properties can be checked on the automata, such as
deadlocks or famine. These languages focus on concurrency description, and provide a formal
foundation (based on automata) for this point of view.

Synthesis. The previously described methods focus on model–checking and correctness val-
idation. They reason on a system in–the–large, and do not focus on activities in isolation. How-
ever, our goal is to express the execution semantics associated to each activity of a process, as
a basis to express and demonstrate properties kept during the composition of processes. As a
consequence1, we choose a simple formalism (that is, finite automaton and boolean logic) and
illustrate the semantics using such a model.

Focus on executability. The KERMETA meta–language [Fleurey, 2006] is defined to “breathe

life into meta–models”. Using an aspect–oriented approach, the language supports the enhance-
ment of legacy meta–models. With this approach, one can implement new operations in a meta–
model, and consequently add executability concerns in a structural meta–model. The KERMETA

language is used as underlying support in the CCSL tool. Using the same approach, it is possible
to use KERMETA to make ADORE models executable. However, this is not our goal here. We
do not want to make ADORE models executable, but instead predict their behavior in a static
way. The main idea is to describe a–priori the semantic of an ADORE model based on its descrip-
tion, where KERMETA will support runtime reasoning, on the fly. We made the choice to support
the executability of ADORE models through dedicated transformations. The first one targets the
industrial BPEL standard, according to the property “One cannot ignore reality” identified in
the state–of–the–art. The second (still an ongoing work) targets CCSL, for simulation and trace
analysis purpose.

5.3.1 Activity Lifecycle Automaton

The life–cycle of an activity includes several states. Informally, an activity a ∈ A waits for
its execution to begin, then executes its internal logic before ending its execution in normal or
errorneous state. We use a deterministic automata to model this life–cycle.

“ A deterministic finite automata consists of: (i) a finite set of states (often denoted Q), (ii) a finite

set of input symbol (often denoted Σ), (iii) a transition function (often denoted δ), (iv) a start state

(qo ∈ Q) and finally (v) a set of final states (F ⊂ Q).” [Hopcroft et al., 2001]

According to this definition, we model activity life–cycle as an automaton α which defines four
states: an activity waits before being executed (initial state), executes its internal behavior, ends
its execution (i.e., successful execution, final state) or fails (i.e., errorneous execution, final state).
The alphabet of the automaton is as reduced as possible (trigger, successful and error). The tran-
sition function δ depicted in FIG. 5.8 is deterministic. As a consequence, the life-cycle automata
only accepts a language Λ(α) containing two words (i.e., successful or erroneous execution).

Q = {wait, execute, end, fail}

Σ = {trigger, successful, error}

q0 = wait

F = {end, fail}

α = (Q,Σ, qo, F )

Λ(α) = {”trigger, successful”, ”trigger, error”}

1A bridge between ADORE and CCSL is exposed as one of the perspectives of this thesis
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wait

execute

trigger

end

successful

fail

error

Q× Σ trigger successful error

wait execute − −
execute − end fail
end − − −
fail − − −

Figure 5.8: Activity life–cycle transition function δ : Q× Σ→ Q

Generalization for “Multiple Errors” Handling. According to the service–oriented paradigm,
an operation may throw several kinds of faults. To support this feature, we extend the previously
defined automata by modeling the fail state and the error symbol as closed terms of arity 1 (the
fault name f ). As a consequence, we can virtually represent an infinite number of errors, with a
finite number of states. This is still valid in ADORE semantics since the important information
is that the activity ends in an error state.

Q = {wait, execute, end, fail(f)}

Σ = {trigger, successful, error(f)}

Λ = {”trigger, successfull”, ”trigger, error(f)”}

5.3.2 Process Execution & Activity Triggering

Each invocation of a process p ∈ P is executed as a different instance. When the process is
invoked, we attach an automata to each activity defined in acts(p). Each automata starts in its
initial state, and waits for a trigger event to appear. Such a trigger is specific for each activity a, as
it depends on the partial order defined by the relation set rels(p). We model it as the satisfiability
of a logical formula ϕ(a). This formula composes the final states of a’ predecessors, according to
rels(p). As soon as the system can satisfy ϕ(a), the trigger symbol is sent to the automaton
associated to a. The way ϕ(a) is computed according to rels(p) is described in SEC. 5.4.

Process End. A process instance is considered to be ended since one of its exit point reaches
a final state. The final state of the process is then defined as the final state of the reached exit
point. When a process instance is ended, it is automatically destroyed.

5.3.3 Iteration Policies Handling

When an activity a ∈ A is involved in an iteration policy defined on a finite data–set d⋆ ≡
{d1, . . . , dn}, a must be executed for each di. As a consequence, we associate for each di ∈ d⋆

an automaton αi to a. We also enrich the trigger symbol of the automaton alphabet, now defined
as a closed term of arity 1: trigger(i). Each automaton αi uses the trigger(i) symbol in its own
alphabet Σi. According to the same idea, the satisfaction of the formula ϕi(a

′) will push the
trigger(i) symbol in the automaton.

Σi = {trigger(i), successful, error(f)}

αi = (Q,Σi, qo, F )
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5.4 From Relations to Trigger Formula (ϕ)

Notation. We denote as ϕ(a) the trigger formula associated to a. This formula is defined as
a boolean composition of the final states of a predecessors. We define two syntactic shortcuts
end(a)2 and fail(a, f)3 to reify these final states in ϕ. According to guards relations, boolean
variable values may also be used. We denote as v (respectively ¬v) the fact that the boolean
variable v ∈ V is valued with true (respectively false).

5.4.1 Process Entry Point & Single Predecessors

Entry Point. Let p ∈ P a business process. The entry–point of p starts automatically its
execution, and does not need to wait for anything else. As a consequence, its trigger formula is
defined as true, and immediately satisfied.

∀a ∈ acts(p), a = entry(p)⇒ ϕ(a) = true

Single Predecessors. Let p ∈ P a business process. When an activity a is preceded by a
unique activity a′ according to rels(p), the associated formula only depends on the type of rela-
tions between a and a′.

• A waitFor implies to wait for the end of a′,

• A guard implies to wait for the end of a′ and check the condition value,

• An onFailure implies to wait for a given fault to be thrown.

∀a ∈ acts(p), ∃!a′ < a ∈ rels(p),







a′ ≺ a ⇒ ϕ(a) = end(a′)

a′
c

≺ a ⇒ ϕ(a) = end(a′) ∧ c

a′
¬c

≺ a ⇒ ϕ(a) = end(a′) ∧ ¬c

a′
f

◭ a ⇒ ϕ(a) = fail(a′, f)

These rules are illustrated in FIG. 5.9.

5.4.2 Composition of Relations

When several relations use the same activity as right part, we need to compose the left activities
to obtain a consistent formula. The goal of this section is to formalize the intuitive semantics
associated to the graphical representation presented above. The pressed reader may skip this
formalization step and rely on his/her intuition. We consider here an activity a ∈ A, involved in
a process p ∈ P, a ∈ acts(p). To lighten the formula description, we use the p notation to refer
to such a business process. Before describing in details the different functions used to compute
such a formula, we provide here an intuitive description of these functions. For a given activity
a, the following situations must be handled while computing ϕ(a):

• Φw: weak predecessors reify an explicit disjunction in the entering flow,

• Φf : an exceptional–path reaches the control–path from which it diverges, and then implic-
itly defines a disjunction. Nested fault are handled by a recursive function Φd, dedicated to
the identification of such disjunction,

• Φe: predecessors guarded by exclusive conditions implicitly define a disjunction,

• Φc: all others situations need to the conjunction of a’ predecessors. A dedicated function Φb

reify the way formulas are computed for a single (binary) relation.

2end(a) ≡ “the activity a is in state end”
3fail(a, f) ≡ “the activity a is in state fail(f)”
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a1

a2 a3







ϕ(a1) = true
ϕ(a2) = end(a1)
ϕ(a3) = end(a1)

(a) waitFor relations

a1

a2

c

a3

!c







ϕ(a1) = true
ϕ(a2) = end(a1) ∧ c
ϕ(a3) = end(a1) ∧ ¬c

(b) guards relations

a1

a2 a3

f







ϕ(a1) = true
ϕ(a2) = end(a1)
ϕ(a3) = fail(a1, f)

(c) onFailure relations

Figure 5.9: Trigger formulas associated to single–preceded activities

Composed Formula (Φ). For a given activity a, we use this function to build the final formula
ϕ(a) associated to a. It consists of a logical formula computed on the preceding activities (preds
function) by the Φw function.

Φ : A → Formula

a 7→ ϕ(a) = Φw(a, preds(a))

preds : A → A⋆

a 7→ {a′ | ∃a′ < a ∈ rels(p)}

Handling Weak Relations (Φw). Using a weakWait relation, one defines a disjunction in the
predecessor set. According to this semantics, we compute the formula as the disjunction of such
predecessors and a formula expressed on the rest of the predecessors (Φf , see next paragraph).
This function and the previous one are illustrated in FIG. 5.10.

Φw : A×A⋆ → Formula

(a, P ) 7→ ( ∨
a′∈weaks(a)

end(a′)) ∧ Φf (a, P\weaks(a))

weaks : A → A⋆

a 7→ {a′ | ∃a′ ≪ a ∈ rels(p)}

Handling Fault Branches (Φf ). Predecessors of the activity can be defined as children of a
“failure–fork”, that is, a point where the control–path and an exceptional path diverge. We call
such a point an origin of failure4 (the top–most point is computed through the originf function).
Formulas associated to each branch (one per origin of failure, where such a “failure–driven”

4FIG. 5.11 defines two origin of failure for the predecessor set {a, b, c, d, e, f, g}: o1 and o3 (since o2 is surrounded by
o1, it is not considered at this step).
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a1

a

a2 ...

Φ(a) :

Φ(a) = Φw(a, preds(a))
preds(a) = {a1, a2, . . .}

Φw(a, {a1, a2, . . .}) :

P = {a1, a2, . . .}
weaks(a) = {a1, a2}
Φw(a, P ) = (end(a1) ∨ end(a2)) ∧ Φf (a, {. . .})

⇒ ϕ(a) = (end(a1) ∨ end(a2)) ∧ Φf (a, {. . .})

Figure 5.10: Building ϕ(a): Φ and Φw illustration

partition is obtained through the Πf function) are conjuncted together, and then conjuncted with
the formula associated to predecessors without an adequate origin of failure in their ancestors.
This function is illustrated in FIG. 5.11.

Φf : A×A⋆ → Formula

(a, P ) 7→ ( ∧
b∈Πf (a,P )

Φd(a, b)) ∧ Φd(a, P\ ∪ (Πf (a, P )))

Πf : A×A⋆ → (A⋆)⋆

(a, P ) 7→ {b | ∃o ∈ origin+
f (P ), b = branch(o, a)}

origin+
f : A⋆ → A⋆

P 7→ {o | o = originf (P )}

originf : A⋆ → A

P 7→ o, ∃o
f

◭ x ∈ rels(p), ∃α ∈ P, x→ α

∧∄o′ ∈ acts(p), o′ → o, o′ 6= o, ∃α′ ∈ P, o′
◭

→ α′

branch : A×A → A⋆

(o, a) 7→ {a′ | ∃a′ < a ∈ rels(p), o→ a′}

Handling Disjunctive Flows (Φd). Considering a restricted subset of predecessors P (e.g.,

computed as a branch by Φf ), we need to identify the control–path (thanks to the function fc)
and the different exceptional–paths (see FIG. 5.12) existing in P ancestors (such a partition is
obtained through the Πe function). For each subset of activities, we inductively call Φf to identify
sub–branches and then associated formulas are built by induction. The stop–condition associated
to this induction system is the reception of a subset of activities which only defines a control–path
(i.e., there is no existing sub–branch defined inside this subset).

Φd : A×A⋆ → Formula

(a, P ) 7→

{
fc(a, P ) = P ⇒ Φe(a, P )
fc(a, P ) 6= P ⇒ Φf (a, fc(a, P )) ∨ ( ∨

p∈Πe(a,P )
Φe(a, p))

fc : A×A
⋆ → A⋆

(a, P ) 7→ {a′ | a′ ∈ P, ∃o ∈ originf (a, P ), o
<
→ a′}
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root

o1

o3o2

c d

f1

e

f g

f2

a b

f3

a’

ϕ(a′) = Φ(a′) = Φf (a
′, {a, b, c, d, e, f, g}) (weaks(a′) = ∅)

Φf (a
′, {a, b, c, d, e, f, g}) :

Πf (a
′, {a, b, c, d, e, f, g}) = {{a, b, c, d, e}, {f, g}}

result  Φd(a
′, {a, b, c, d, e}) ∧ Φd(a

′, {f, g})

Φd(a
′, {a, b, c, d, e})

fc(a
′, {a, b, c, d, e}) = {a, b, c, e} ( 6= {a, b, c, d, e})

Πe(a
′, {a, b, c, d, e}) = {{d}}

result  Φf (a
′, {a, b, c, e}) ∨ Φe(a

′, {d})

Φf (a
′, {a, b, c, e}) :

Πf (a
′, {a, b, c, e}) = {{a, b}}

result  Φd(a, {a, b}) ∧ Φd(a
′, {c, e})

Φd(a
′, {a, b}) :

fc(a
′, {a, b}) = {a} ( 6= {a, b})

Πe(a
′, {a, b}) = {{b}}

result  Φf (a
′, {a}) ∨ Φe(a

′, {b})
 end(a) ∨ end(b)

Φd(a
′, {c, e}) :

fc(a
′, {c, e}) = {c, e} (={c, e})

result  Φc(a
′, {c, e}) = · · · = end(c) ∧ end(e)

Φd(a
′, {f, g}) = · · · = end(f) ∨ end(g)

⇒ ϕ(a) = ((end(a) ∨ end(b)) ∧ end(c) ∧ end(e)) ∨ end(d)) ∧ (end(f) ∨ end(g))

Figure 5.11: building ϕ(a′): Φf and Φd inductive system
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Πe : A×A
⋆ → (A⋆)⋆

(a, P ) 7→ {flow | ∃o ∈ origin+
f (P ), ∃f ∈ faults(o), f low = fe(a, P, o, f)}

faults : A → Term⋆

a 7→ {f | ∃a
f

◭ α ∈ rels(p)}

fe : A×A
⋆ ×A× Term 7→ A⋆

(a, P, o, f) 7→ {a′ | a′ ∈ P, ∃o
f

◭ α ∈ rels(p), α→ a′}

Handling Exclusive Activities (Φe). We are considering now P a subset of a predecessors
which does not contain any exclusivity induced by fault–catch mechanisms (inductively solved).
Activities can be exclusive according to their transitive guards. Based on all the available guards
expressed on P members (these conditions are obtained through the conds function), we compute
the formula by using a dedicated function Φχ.

Φe : A×A
⋆ → Formula

(a, P ) 7→ Φχ(A,P, conds(P ))

conds : A⋆ → (V⋆)⋆

P 7→ {V | ∀a ∈ P, V = guards+(a)}

guards+A → V⋆

a 7→ {v | guard(a, v)}

guard : A× V → B

(a, v) 7→ ∃g
v

≺ α ∈ rels(p), α→ a, ∄g
¬v

≺ α′ ∈ rels(p), α′ → a

∨ ∃g
¬v

≺ α ∈ rels(p), α→ a, ∄g
v

≺ α′ ∈ rels(p), α′ → a

If the given set of conditions C is empty, there is no possible exclusivity between activities,
and the computation of the formula is delegated to the Φc function which builds a conjunction of
waits. In the other case, we start by picking one5 condition c in C, and remove6 it from C. We
compute a partition of the predecessors set, according to their relation with the c condition: (i)

predecessors guarded by c = true (thanks to the onTrue function), (ii) predecessors guarded by
c = false (thanks to the onFalse function) and finally (iii) predecessors with no relation with c
(function notOn).

The formula builts on this partition is by essence valid according to PROP. 4.10 (guard vivac-
ity). We built the final formula thanks to a recursive call on Φχ, as the disjunction of formulas
associated to onTrue and onFalse activities, conjuncted with the formula associated to the rest
of the predecessors. An illustration of this function usage is depicted in FIG. 5.13.

Φχ : A×A⋆ × (V⋆)⋆ → Formula

(a, P,C) 7→

{
C = ∅ ⇒ Φc(a, P )
C 6= ∅ ⇒ F

Let c = one(C), C ′ = remove(c, C),

F = Φχ(a, notOn(P, c), C ′) ∧ ( Φχ(a, onTrue(P, c), C
′)

∨ Φχ(a, onFalse(P, c), C ′))

onTrue : A⋆ × V → A⋆

(P, v) 7→ {a | ∃g
v

≺ α ∈ rels(p), α→ a, ∄g
¬v

≺ α′ ∈ rels(p), α′ → a}

onFalse : A⋆ × V → A⋆

(P, v) 7→ {a | ∃g
¬v

≺ α ∈ rels(p), α→ a, ∄g
v

≺ α′ ∈ rels(p), α′ → a}

notOn : A⋆ × V → A⋆

(P, v) 7→ P\(onTrue(P, v) ∪ onFalse(P, v))

5We consider a function one : (X⋆)⋆ → X which picks an element in the set which has the minimum cardinality. For
example, one({{a, b}, {a, b, c, d}} = a

6We consider a function remove : X × (X⋆)⋆ → (X⋆)⋆ which removes an element in all the existing subsets. For
example, remove(a, {{a, b}, {a, b, c, d}} = {{b}, {b, c, d}}
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a0

a1

...

...

...

f1

...

f2

a3

a

f01

a4

f02 f’02

...

Φ(a) :

preds(a) = {a3, f01, f02, f
′
02, a4} = P

result  Φw(a, P ) = Φf (a, P ) (weaks(a) = ∅)

Φf (a, P ) :

Πf (a, P ) = {{a3, f01, f02, f
′
02}}

result  Φd(a, {a3, f01, f02, f
′
02}) ∧ Φd(a, {a4})

︸ ︷︷ ︸

=end(a4)

Φd(a, {a3, f01, f02, f
′
02}) :

P ′ = {a3, f01, f02, f
′
02}

fc(a, P
′) = {a3} ( 6= P ′)

Πe(a, P
′) = {{f01}, {f02, f

′
02}}

result  Φe(a, {f01})
︸ ︷︷ ︸

=end(f01)

∨ Φe(a, {f02, f
′
02})

︸ ︷︷ ︸

=end(f02)∧end(f ′

02
)

∨Φf (a, {a3})
︸ ︷︷ ︸

=end(a3)

⇒ ϕ(a) = (end(f01) ∨ (end(f02) ∧ end(f ′
02)) ∨ end(a3)) ∧ end(a4)

Figure 5.12: Building ϕ(a): Multiple Faults handling in Φd
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a1

a2

!c

...

c

...

a5

a

...

c’

...

!c’

a3 a4 a6

a7

Φ(a) :

preds(a) = {a3, a4, a5, a6, a7} = P
result  Φw(a, P ) = Φf (a, P ) = Φd(a, P ) = Φe(a, P )

Φe(a, P ) :

conds(P ) = {{c}, {c, c′}} = Conds
result  Φχ(a, P,Conds)

Φχ(a, P,Conds) :

one(Conds) = c, remove(c, Conds) = {{c′}}
onTrue(P, c) = {a5, a6}, onFalse(P, c) = {a3, a4}
notOn(P, c) = {a7}
result  (Φχ(a, {a5, a6}, {{c

′}}) ∨ Φχ(a, {a3, a4}, {{c
′}}))

∧Φχ(a, {a7}, {{c
′}})

Φχ(a, {a5, a6}, {{c
′}}) :

one({{c′}}) = c′, remove(c, Conds) = ∅
onTrue({a5, a6}, c

′) = ∅ = onFalse({a5, a6}, c
′)

notOn({a5, a6}, c
′) = {a5, a6}

result  Φχ(a, {a5, a6}, ∅) = Φc(a, {a5, a6})
︸ ︷︷ ︸

end(a5)∧end(a6)

Φχ(a, {a3, a4}, {{c
′}}) :

onTrue({a3, a4}, c
′) = {a3}, onFalse({a3, a4}, c

′) = {a4}
notOn({a3, a4}, c

′) = ∅
result  Φχ(a, {a3}, ∅) ∨ Φχ(a, {a4}, ∅)

 Φc(a, {a3})
︸ ︷︷ ︸

end(a3)

∨Φc(a, {a4})
︸ ︷︷ ︸

end(a4)

Φχ(a, {a7}, {{c
′}}) :

onTrue({a7}, c
′) = ∅ = onFalse({a7}, c

′)
notOn({a7}, c

′) = {a7}
result  Φχ(a, {a7}, ∅) = Φc(a, {a7})

︸ ︷︷ ︸

end(a7)

⇒ ϕ(a) = ((end(a3) ∨ end(a4)) ∨ (end(a5) ∧ end(a6))) ∧ end(a7)

Figure 5.13: Building ϕ(a): Φe Illustration
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Handling Conjunctive Flows (Φc). Considering a subset P of a predecessors without any
exclusive activities, the formula associated to P is a conjunction of all the waits induced by the
binary relation existence (computed through Φb).

Φc : A×A
⋆ → Formula

(a, P ) 7→ ∧
a′∈P

Φb(a, a
′)

Handling Binary Relation (Φb). According to the previous functions, we are now handling
binary relations, and expect to transform it into a Formula. The result depends on the kind of
relation defined in the relation label, as explained in SEC. 5.4.1.

Φb : A×A → Formula

(a, a′) 7→







a′ ≺ a ∈ rels(p)⇒ end(a′)

a′
c

≺ a ∈ rels(p)⇒ end(a′) ∧ c

a′
¬c

≺ a ∈ rels(p)⇒ end(a′) ∧ ¬c

a′
f

◭ a ∈ rels(p)⇒ fail(a′, f)

5.5 Iteration Policy Handling

We handle predecessors associated to an iteration policy Ip (defined on data–set d⋆ = {d1, . . . , dn})
according to the kind of Ip. We base the semantics of these policies on the BPEL definition of the
forEach composite activity:

“ The <forEach> activity will execute its contained <scope> activity exactly N+1 times where N
equals the <finalCounterValue> minus the <startCounterValue>.

• If the value of the parallel attribute is no then the activity is a serial <forEach>. The

enclosed <scope> activity MUST be executed N+1 times, each instance starting only after the

previous repetition is complete. [...]

• If the value of the parallel attribute is yes then the activity is a parallel <forEach>.

The enclosed <scope> activity MUST be concurrently executed N+1 times. [...]

[...] The <forEach> activity without a <completionCondition> completes when all of its child

<scope>’s have completed. [...] ” [OASIS, 2007]

Let Ip an iteration policy defined on d⋆. According to this definition, we express the following
mapping between ADORE and BPEL concepts:

forEach ≡ Ip

startCounterValue ≡ 1

finalCounterValue ≡ |d⋆|

scope ≡ acts(Ip)

parallel =

{
yes ≡ kind(Ip) = parallel
no ≡ kind(Ip) = serial

completionCondition ≡ ∅

We denote as endi(a) the fact that the automaton associated to the data di for the activity a
reaches its end state. The Φi algorithm is defined as an enhancement of the previously described
algorithm which propagates the i concern in the computed formula for predecessors involved in
an iteration policy. The behavioral distinction between serial and parallel policies can be defined
in ADORE as the following:

• Serial Policy: The block contents is executed one by one, for each data. An illustration of
this semantics is depicted in FIG. 5.15. It starts on the first data d1, using the previously
defined semantics to trigger the first activity (S2). Until the last data dn, reaching the end
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of the block for a data di means triggering the di+1 execution (S2). The last data dn triggers
the execution of the block successors (S3). The other activities use the previously defined
semantics (S1).

• Parallel Policy: The block contents is concurrently executed for each di ∈ d⋆. An illustration
of this semantics is depicted in FIG. 5.16. It starts by triggering all the first activities (P2).
Blocks successors wait for the satisfaction of the conjunction of all ϕi formulas for the last
activity of the block (P3). The other activities use the previously defined semantics (P1).

Composition with the previously defined semantics. Let a ∈ A an activity. To compute the
complete execution semantic associated to a, we need to pre–process the predecessor set before
using the previously defined algorithms. For each iteration policy associated to a predecessor of
a, we compute the associated formula with a function ΦI

7. The previously defined algorithm Φw

is then executed on the remaining predecessors. The final formula is built as a conjunction of
these formulas. An illustration of this composition is depicted in FIG. 5.14.

Limitation. We do not handle error policies associated to iteration policies, and we consider
that no fault can be thrown by activities defined in the activity block associated to a policy. This
is coherent with PROP. 4.19 (“no cross–boundary onFailure relation”) and also with the semantic
associated to error–handling defined by the BPEL:

“If premature termination occurs such as due to a fault, [...] then this N+1 requirement does not

apply. ” [OASIS, 2007]

Considering iteration as equivalent to a final recursion, one can bypass this limitation, but
must write the process using this style of writing (and rely on the execution engine to optimize
the execution). Enhancing ADORE expressiveness to address in a better way error handling and
error composition for iteration policies is exposed as one of the perspective of this work.

a

b c d e

f

<?>
x in x*

<?>
y in y*

⇒ ϕ(f) = end(b) ∧ end(c)
︸ ︷︷ ︸

usual

∧

ΦI(f, {d}) ∧ ΦI(f, {e})
︸ ︷︷ ︸

iterations

Figure 5.14: Composition of iteration and control–flow

7Defined as an implementation of the previously described mechanisms
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a

b2b1

a’ a’’

b3

b4 b5

<serial>
x in x*

DEFINITIONS :

d⋆ = {d1, . . . , dn}, |d
⋆| = n

B = {b1, b2, b3, b4, b5}
firsts(B) = {b1, b2} = F
nexts(B) = {a′, a′′} = N

GENERAL DESCRIPTION :

(S1) ∀a ∈ B\F, ϕi(a) = Φi(a)
(S2) ∀a ∈ F, ϕ1(a) = Φ(a)

ϕ2≤i≤n(a) = ∧
ν∈nexts

Φi−1(ν)

(S3) ∀a ∈ N, ϕ(a) = Φn(a)

COMPUTED EXECUTION SEMANTICS :

ϕ(a) = true
ϕi(b3) = endi(b1) ∧ endi(b2) (S1)
ϕi(b4) = endi(b3) (S1)
ϕi(b5) = endi(b3) (S1)
ϕ1(b1) = end(a) (S2)
ϕ2≤i≤n(b1) = endi−1(b4) ∧ endi−1(b5) (S2)
ϕ1(b2) = end(a) (S2)
ϕ2≤i≤n(b2) = endi−1(b4) ∧ endi−1(b5) (S2)
ϕ(a′) = endn(b4) (S3)
ϕ(a′′) = endn(b5) (S3)

Figure 5.15: Execution semantics associated to serial Iteration Policies
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a

b2b1

a’ a’’

b3

b4 b5

<parallel>
x in x*

DEFINITIONS :

d⋆ = {d1, . . . , dn}, |d
⋆| = n

B = {b1, b2, b3, b4, b5}
firsts(B) = {b1, b2} = F
nexts(B) = {a′, a′′} = N

GENERAL DESCRIPTION :

(P1) ∀a ∈ B\F, ϕi(a) = Φi(a)
(P2) ∀a ∈ F, ϕi(a) = Φ(a)
(P3) ∀a ∈ N, ϕ(a) = ∧

i=1...n
Φn(a)

COMPUTED EXECUTION SEMANTICS :

ϕ(a) = true
ϕi(b3) = endi(b1) ∧ endi(b2) (P1)
ϕi(b4) = endi(b3) (P1)
ϕi(b5) = endi(b3) (P1)
ϕi(b1) = end(a) (P2)
ϕi(b2) = end(a) (P2)
ϕ(a′) = ∧

i=1...n
endn(b4) (P3)

ϕ(a′′) = ∧
i=1...n

endn(b5) (P3)

Figure 5.16: Execution semantics associated to parallel Iteration Policies



6
Interacting with ADORE: Actions & Algorithms

«Great things are done by a series of small things brought together.»
Vincent van Gogh
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6.1 Introduction

The ADORE meta–model aims to compose business processes together, following the Separation

of Concerns paradigm. As a consequence, we need to formally define mechanisms to interact
with ADORE models. State–of–art approaches such as the MOF reflexive API [OMG, 2006] use
an action language to perform such a goal. The D-PRAXIS approach advocates an action–based
approach of model representation:

“ Every model can be expressed as a sequence of elementary construction operations. The sequence

of operations that produces a model is composed of the operations performed to define each model

element.” [Blanc et al., 2008]

In this chapter, we define in SEC. 6.2 the logical foundations underlying the approach. Then,
we describe in SEC. 6.3 the different actions defined over the ADORE meta–model. Finally,
SEC. 6.4 shows how these actions can be used to define algorithms.
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6.2 Logical Foundations

In this section, we enhance the ADORE meta–model to equip it with an equivalence relation
(used to match equivalent elements while composing elements). We also explain how the logical

substitution mechanism can be used to perform model derivation1 in a simple way.

6.2.1 Equivalence (≡)

In the previous chapters, we use the equality symbol = in its usual form, that is, two entities
defined in ADORE are equals since they are exactly the same. This plain equality relation is
too strong when talking about composition algorithms, since such algorithms identify equivalent

entities2 and then work on it. An informal definition of the ADORE equivalence relation (de-
noted as ≡) can be the following: “two entities are equivalent since their contents are equivalent,

excepting their names”. The equivalence of closed terms is assimilated as their equality. When
talking about sets, we consider two sets as equivalent since they are equipollent according to the
≡ relation.

≡: V × V → B

(v, v′) 7→ type(v) = type(v′) ∧ isSet?(v) = isSet?(v′)

≡: A×A → B

(a, a′) 7→ kind(a) = kind(a′) ∧ inputs(a) ≡ inputs(a′) ∧ outputs(a) ≡ outputs(a′)

≡: R×R → B

(r, r′) 7→ left(r) ≡ left(r′) ∧ right(r) ≡ right(r′) ∧ label(r) = label(r′)

≡: P × P × B

(p, p′) 7→ vars(p) ≡ vars(p′) ∧ acts(p) ≡ acts(p′) ∧ rels(p) ≡ rels(p′)

6.2.2 Substitutions (θ)

Composition algorithms often create new entities which derive from the legacy ones3. According
to the logical background of ADORE, we use logical substitutions [Stickel, 1981] to allow one to
build new elements by modifying existing ones. The complete definition of logical substitution is
given below:

Substitution Component. “A substitution component is an ordered pair of a variable v and

a term t written as v ← t. A substitution component denotes the assignment of the term to the

variable or the replacement of the variable by the term.”

Substitution. “A substitution is a set of substitution components with distinct first elements,

that is, distinct variables being substituted for. Applying a substitution to an expression results

in the replacement of those variables of the expression included among the first elements of the

substitution components by the corresponding terms. The substitution components are applied

to the expression in parallel, and no variable occurrence in the second element of a substitution

component is replaced even if the variable occurs as the first element in another substitution com-

ponent. Substitutions are represented by the symbols σ, θ, and φ. The application of substitution

θ to expression A is denoted by Aθ. The composition of substitutions θσ denotes the substitution

whose effect is the same as first applying substitution θ, then applying substitution σ; that is,

A(θσ) = (Aθ)σ for every expression A.” [Stickel, 1981]

1We use the word “derivation” according to its linguistic definition: “derivation: Used to form new words, as with

happi-ness and un-happy from happy, or determination from determine.” [Crystal, 1999]
2ADORE entities are only structural, and passed by values according to the BPEL semantics.
3e.g., in the KOMPOSE framework: “Merging: matched model elements are merged to create new model elements

that represent an integrated view of the concepts.” [Fleurey et al., 2007]
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Example. Let a an activity, and v, v′ two variables. The activity a uses the variable v. Using
two substitution components v ← v′ and a ← a′, one can create an activity a′ which uses the
variable v′ instead of v (i.e., uses a float instead of a double) by applying a substitution.

v = (v, double, false) ∈ V, v′ = (v′, f loat, false) ∈ V

a = (a, receive, ∅, {v}) ∈ A, θ = {a← a′, v ← v′}

aθ = (a′, receive, ∅, {v′}) ∈ A

6.3 The ADORE Action Language

The MetaObject Facility (MOF [OMG, 2006]) defines4 a reflexive API used to manipulate model
elements. This API, dedicated to the class–based MOF meta–model, describes seven atomic oper-
ations used to handle model–element through reflection. The PRAXIS method [Blanc et al., 2008]
restricts this set of operations to four, allowing one to (i) create a model element, (ii) delete a
model element, (iii) set a property in a model element (setProperty) and finally (iv) set a refer-
ence from a model element to another one (setReference). Each operation defined in PRAXIS

exhibits a precondition. It is interesting to notice that the action–based representation supports
naturally a collaborative development approach [Mougenot et al., 2009].

Considering ADORE as a meta–model dedicated to business processes, we decide to specialize
the concepts expressed in the previous languages to build a domain–specific language dedicated
to the handling of ADORE elements. In this context, we define two elementary actions (add &
del), and three composite actions defined as macros over the elementary ones (replace, unify
& discharge). Each ADORE action requires a precondition and ensures a postcondition. We
decide to use a functional representation of the actions, considering that the execution of an
action returns a new universe where the postcondition is true, instead of modifying the existing
one through a side–effect. To lighten the description of the mechanisms, we refer to ADORE

elements in the same way one refers to “model elements” when talking about class instances.
We use the E symbol to reify the Element concept, formally defined as the union of all existing
concepts defined in ADORE. We denote as Action the set of all existing actions. To lighten the
description of the logical formulas, we indifferently accept for an element the usage of the element
itself or its identifier (its name).

E = (V ∪ A ∪R ∪ P ∪ U ∪ I)

Execution. An action is performed on a given universe u ∈ U , where a precondition can be
checked (modeled as a boolean function). We denote as do the function used to perform an action.
Since its precondition is true, an action cannot fail and always returns an universe where its
postcondition is true (modeled as a boolean function).

do : Action× U → U

(α, u) 7→

{
¬precondition(α, u) ∨ u = nil⇒ nil
precondition(α, u)⇒ do(α, u) = u′ ∧ postcondition(α, u′)

6.3.1 Elementary Actions: Add & Del

In this section, we describe the two elementary actions available on ADORE elements: add and del.
Using these actions, one can change a container element (i.e., a business process or an universe)
by adding (respectively removing) an element inside the container. To lighten the description,
we assume that the container exists in the universe used to perform the action. Executing an
elementary action only modifies the container element, ceteris paribus.

4Pages 27→ 30 of the specification, http://www.omg.org/spec/MOF/2.0/PDF/

http://www.omg.org/spec/MOF/2.0/PDF/
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Add. This operation is used to create an element and insert it into another one, e.g., adding an
activity into a business process. It tooks as input a ground term (the kind of concept to be added,
e.g., activity), the element to be added and its future container. We use a term of arity three to
represent it.

add(kind, element, container) ∈ Action, kind ∈ GroundTerm, element ∈ E , container ∈ E

According to the kind parameter, an add action will check structural preconditions. Since the
semantic of an add is to augment the original model, executing such an action returns an universe
which contains the original one. If an element with the same name still exists in the universe,
the add action will silently retract it before performing the add. Thanks to this property, the add
action is intrinsically idempotent.

do(add(k, e, c), u) = u′ ⇒ do(add(k, e, c), do(add(k, e, c), u)) = u′ (Idempotency)

We describe in TAB. 6.1 the preconditions and postconditions associated to the add action. We
define a syntactic shortcut to lighten the usage of the add action: the kind is shortened to its
first letter and then used as an index of the add symbol. Precondition (1) ensures the respect of
PROP. 4.15 (process isolation) at the activity level. Precondition (2) handles PROP. 4.10 (guard
vivacity) at the relation level. Finally, precondition (3) checks the intrinsic correctness of an
iteration policy.

α = add(kind, element, container) u ∈ U , do(α, u)
kind element container Precondition Postcondition

addv(v, p) ≡ variable v ∈ V p ∈ P – v ∈ vars(p)
adda(a, p) ≡ activity a ∈ A p ∈ P (1) a ∈ acts(p)
addr(r, p) ≡ relations r = (a < a′) ∈ R p ∈ P (2) r ∈ rels(p)
addp(p) ≡ process p ∈ P u ∈ U – p ∈ procs(u)

addi(i, p) ≡ iteration i ∈ I p ∈ P (3) i ∈ pols(p)

(1) ≡ ∀v ∈ vars(a), v ∈ vars(p)

(2) ≡ a ∈ acts(p), a′ ∈ acts(p), ∄a′ → a

∧ (label(r) = guard(v, b)⇒ v ∈ vars(p) ∧ v ∈ outputs(a))

(3) ≡ set(i) ∈ vars(p) ∧ scalar(i) ∈ vars(p)

∧ ∀a ∈ acts(i), (a ∈ acts(p) ∧ set(i) 6∈ outputs(a))

Table 6.1: Preconditions & Postconditions associated to the add action.

Del. This operation is used to remove an element from its container, according to its kind. We
use a term of arity three to represent it.

del(kind, element, container) ∈ Action, kind ∈ GroundTerm, element ∈ E , container ∈ E

The semantics of a del action is to remove an element in the original model, and the execution
of such an action returns an universe which is contained by the original one. The general idea
of the del preconditions is to allow the deletion of an element only when it is never “used” (e.g.,

deleting a variable still used as input or output in an activity will be refused) in the container.
The deletion of a non–existing element is accepted, and basically returns the original universe.
As a consequence, the del action is idempotent. Deleting an element after adding it is equivalent
to do nothing, and returns the same universe as the one existing before the add. Precondition (1)
ensures that a variable cannot be deleted if an activity is still using it. Precondition (2) does the
same at the activity level: an activity cannot be deleted if still related to another one.

do(del(k, e, c), u) = u′ ⇒ do(del(k, e, c), do(del(k, e, c), u) = u′ (Idempotency)
u = do(del(k, e, c), do(add(k, e, c), u)) (del ◦ add composition)
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We present in TAB. 6.2 the associated preconditions and postconditions. We use the same
syntactic shortcut than the add one.

α = del(kind, element, container) u ∈ U , do(α, u) = u′

kind element container Precondition Postcondition
delv(v, p) ≡ variable v ∈ V p ∈ P (1) v 6∈ vars(u′)
dela(a, p) ≡ activity a ∈ A p ∈ P (2) a 6∈ acts(u′)
delr(r, p) ≡ relations r = (a < a′) ∈ R p ∈ P – r 6∈ rels(u′)
delp(p) ≡ process p ∈ P u ∈ U – p 6∈ procs(u′)

deli(i, p) ≡ iteration i ∈ I p ∈ P – i 6∈ pols(u′)

(1) ≡ ∄a ∈ acts(p), v ∈ vars(a) ∧ ∄(a
v

≺ a′) ∈ rels(p)

(2) ≡ ∄r ∈ rels(p), (left(r) = a ∨ right(r) = a)

Table 6.2: Preconditions & Postconditions associated to the del action.

6.3.2 Action Lists, Execution & Model Consistency

Considering an ordered list5 of actions A = (α1, . . . , αn) ∈ Actions⋆
<

, we define the execution of A
on an universe u ∈ U as the functional folding [Iverson, 1962] of do (denoted as do+).

do+ : Action⋆
<
× U → U

(A, u) 7→

{
A = ∅ ⇒ u
A 6= ∅ ⇒ do+(tail(A), do(head(A), u))

Example. We consider here a simple orchestration of services, which receives an integer and
immediately returns it. We describe in FIG. 6.1 a sequence of actions S which builds such a
process.

α1 = addp((example, ∅, ∅, ∅))
α2 = addv((v, integer, false), example)
α3 = adda((rec, receive, ∅, {v}), example)
α4 = adda((rpl, reply, ∅, {v}), example)
α5 = addr((rec, rpl, waitFor), example)
S = (α1, α2, α3, α4, α5)

(a) S, a sequence of elementary actions

Orchestration simple::example

rec (v) := receive()

rpl reply(v)

(b) Process obtained after the execution of S

Figure 6.1: A sequence of actions, and the result of its execution

Ensuring Model Consistency. We defined in SEC. 4.4 a set of properties which makes ADORE

models consistent, and assumes that all these rules are respected. Even if the precondition as-
sociated to each action avoids several inconsistencies at a fine–grained level (e.g., type check-
ing), we cannot ensure that the coarse–grained properties (e.g., “entry–to–exit” path existence,
PROP. 4.12) are respected. Moreover, it is normal for a model to be inconsistent while creating
it [Balzer, 1991].

5We consider a list as usually defined in the literature [Cormen et al., 2001], with function such as head to retrieve its

first element, tail to access to the others and
+
← [ to append an element at its end. We use the E⋆< notation to denote a “list

of E”
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As a consequence, we consider that models handled while executing an action list can be
inconsistent according to the ADORE constraints. But the final model obtained after the execution
of the last action must be consistent. An inconsistent model will be rejected by the system at this
step. Considering that each model handled in ADORE was created by executing an action list, we
can inductively ensure that all models handled in the framework are consistent.

Such an issue is illustrated in the previous example. For simplification purpose, we focus
on a single property: the “entry–to–exit” path existence (PROP. 4.12). Assuming that the initial
universe u ∈ U is consistent, the computed universes retrieved after the execution of α1 and α2

are still consistent according to this property. But since the α3 action is executed, the constraint
is violated and the computed universe is inconsistent. The execution of α5 fixes this inconsistency
and returns a consistent model, accepted by the framework.

do+(S, u) = u′

︸ ︷︷ ︸

consistent

≡ do(α5, do(α4, do(α3,

consistent
︷ ︸︸ ︷

do(α2, do(α1, u)))
︸ ︷︷ ︸

inconsistent

))

6.3.3 Composite Actions: Replace, Unify & Discharge

Since the previously described actions are elementary and technically–oriented, we define more
complex actions by combining them. Such composite actions ease the description of composition
mechanisms in next chapters. We define these actions as macros, that is, actions which can be
refined into elementary ones. The execution semantic of these macro–actions is equivalent to the
execution of the sequence of elementary actions associated to a macro, statically computed before
starting the execution. As a consequence, preconditions and postconditions are checked for each
executed elementary action.

Replace. The replace action allows one to change all usages of an element (named old) by
another one (named new). The replace action is modeled as a term of arity four: the kind of
replacement, the old element, the new one, and the container p. We define a short notation
r(old, new, p) which makes implicit the kind of replacement to lighten the descriptions. Executing
a replace action means to add the new element, substitute all usage of old in p by a usage of new,
and then delete the old element. In ADORE, we only allow the replacement of variables and
activities, contained by a given process p ∈ P. A replacement is valid only between elements
from the same kind (i.e., an activity cannot be replaced by a variable).

kind ∈ GroundTerm, old ∈ (V ∪ A), new ∈ (V ∪ A), p ∈ P,

r(old, new, p) ≡ replace(kind, old, new, p) ∈ Action

We describe in the following paragraph the elementary actions associated to each kind of
replacement defined in ADORE.

r(v, v′, p) ≡ replace(variable, v, v′, p) ∈ Action, v ∈ V, v′ ∈ V, p ∈ P : θ = {v ← v′}

propagatea = {r(a, aθ, p) | ∃a ∈ acts(p), v ∈ vars(a)}

propagater = {(delr(r, p), addr(rθ, p)) | ∃r = a
v

≺ a′ ∈ rels(p)}

policies = {deli(i, p), add(iθ, p) | ∃i ∈ pols(p), v = scalar(i) ∨ v = set(i)}

 (addv(v
′, p))

+

← [ propagatea
+

← [ propagater
+

← [ policies
+

← [ delv(v, p)

r(a, a′, p) ≡ replace(activity, a, a′) ∈ Action, a ∈ A, a′ ∈ A, p ∈ P : θ = {a← a′}

clean = {delr(a < x, p) | ∃a < x ∈ rels(p)} ∪ {delr(x < a, p) | ∃x < a ∈ rels(p)}

reorder = {addr((a
′, x, k), p) | ∃(a, x, k) ∈ rels(p)}∪{addr((x, a

′, k), p) | ∃(x, a, k) ∈ rels(p)}

policies = {(deli(i), addi(iθ, p)) | ∃i ∈ pols(p), a ∈ acts(i)}

 ()
+

← [ clean
+

← [ (dela(a, p), adda(a
′, p))

+

← [ reorder
+

← [ policies
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We illustrate the replace action using a simple process, in FIG. 6.2(a). This business process
oracle ∈ O receives a value (a0), asks an oracle service to find a matching candidate (a1) and then
replies such a data to the caller (a2). Considering that the a1 invocation can now return a set
of candidates instead of a single one, we can use a replace action r(candidate, candidate⋆) to take
care of this requirement. The sequence of elementary actions obtained as a refinement of this
composite action is depicted in FIG. 6.2(c).

Orchestration oracle

a0 (value) := receive()

a1 (candidate) := oracle::match(value)

a2 reply(candidate)

(a) Initial orchestration

Orchestration oracle

a0 (value) := receive()

a1 (candidate*) := oracle::match(value)

a2 reply(candidate*)

(b) Resulting orchestration

θ = {candidate← candidate⋆}
α1 = addv((candidate

⋆, data, true), p)

r(a1, a1θ, oracle))  







α2 = delr(a0 ≺ a1, oracle), α3 = delr(a1 ≺ a2, oracle)
α4 = dela(a1, oracle)
α5 = adda((a1, invoke(...), {value}, {candidate

⋆}), oracle)
α6 = addr(a0 ≺ a1, oracle), α7 = addr(a1 ≺ a2, oracle)

r(a2, a2θ, oracle)  







α8 = delr(a1 ≺ a2, oracle), α9 = dela(a2, oracle)
α10 = adda((a2, reply, {candidate

⋆}, {}), oracle)
α11 = addr(a1 ≺ a2, oracle)

S = (α1, α2, α3, α4, α5, α6, α7, α8, α9, α10, α11)

(c) Sequence S of elementary actions equivalent to α

Figure 6.2: Illustrating the replace action: α = r(candidate, candidate⋆, oracle)

Unify. This action allows one to unify several model elements into a single one. It is modeled
as a term of arity three, where the first parameter is the set of model elements e⋆ = {e1, . . . , en}
to be unified and the second one is the expected name of the unified element. This action makes
sense in the context of a given process p ∈ P which contains all the entities to be unified. We use
the same notation than the one used for the replace action: a complete term of arity four, and a
shortened version where the kind of unification is implicit.

e⋆ ∈ (V⋆ ∪ A⋆), name ∈ GroundTerm, p ∈ P

u(e⋆, name, p) ≡ unify(kind, e⋆, name, p) ∈ Action

We describe here the elementary actions associated to the unification of a variable set. We
assume that unification candidates are coherent: a set of variables to be unified must define
an equivalence class according to the ≡ relation. We use the one function previously defined in
SEC. 5.4.2 to access to a given candidate contained in the candidate set.

u(V, v′, p) ≡ unify(variable, V, v′, p), V = {v1, . . . , vn} ∈ V
⋆, v′ ∈ GroundTerm; p ∈ P :

Precondition: ∀(ν, ν′) ∈ V 2, ν ≡ ν′. Let v = one(V ) ∈ V,

guards = {(delr(a
v

≺ a′, p), addr(a
v′

≺, p) | ∃(a
v

≺ a′) ∈ rels(p), v ∈ V }
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 (addv((v
′, type(v), isSet?(v)), p))

+

← [ {r(v, v′, p) | ∃v ∈ V }
+

← [ guards

The unification of a set of activities A ≡ {a1, . . . , an} (holding the same kind) produces an
activity a′ defined through the union of inputs and outputs variables: vars(a′) =

⋃

a∈A

vars(a).

u(A, a′, p) ≡ unify(activity, A, a′, p), A = {a1, . . . , an} ∈ A
⋆, a′ ∈ GroundTerm, p ∈ P :

Precondition: ∀(α, α′) ∈ A, kind(α) = kind(α′)

 (adda((a
′, kind(one(A)),

⋃

a∈A

inputs(a),
⋃

a∈A

outputs(a)), p))
+

← [ {r(a, a′, p) | ∃a ∈ A}

We illustrate the unify action on the example depicted in FIG. 6.3. The original orchestra-
tion depicted in FIG. 6.3(a) contains four activities: {rec, a, b, rpl}. One can decide to unify the
activities a and b to produce a new activity, named c. Such an action can be realized by using a
unify({a, b}, c) action, which produces the associated elementary action sequence S (FIG. 6.3(c)).
The process obtained after the execution of S is depicted in FIG. 6.3(b)

Orchestration unify

rec (x,y,z) := receive()

a (x) := nop(x,z) b (y) := nop(y,z)

rpl reply(x,y)

(a) Initial Orchestration

Orchestration unify

rec (x,y,z) := receive()

c (x,y) := nop(x,y,z)

rpl reply(x,y)

(b) Resulting Orchestration

α1 = adda((c, nop, {x, y, z}, {x, y}), unify)

r(a, c, unify)  







α2 = delr(rec ≺ a, unify), α3 = delr(a ≺ rpl, unify)
α4 = dela(a, unify)
α5 = adda((c, nop, {x, y, z}, {x, y}), unify) (= α1)
α6 = addr(rec ≺ c, unify)
α7 = addr(c ≺ rpl, unify)

r(b, c, unify)  







α8 = delr(rec ≺ b, unify), α9 = delr(b ≺ rpl, unify)
α10 = dela(b, unify)
α11 = adda((c, nop, {x, y, z}, {x, y}), unify) (= α1 = α5)
α12 = addr(rec ≺ c, unify) (= α6)
α13 = addr(c ≺ rpl, unify) (= α7)

S = (α1, α2, α3, α4, α5, α6, α7, α8, α9, α10, α11, α12, α13)

(c) Sequence S of elementary actions equivalent to α

Figure 6.3: Illustrating the unify example: α = u({a, b}, c)

Idempotency & Redundant Actions. When looking at the produced elementary action se-
quences, one can immediately identify redundant actions. For example, in the sequence of actions
S produced in FIG. 6.3, several actions are redundant. Even if such redundancy is not an issue
according to the intrinsic idempotency of the elementary actions, the sequences can be optimized.
We represent here the complete sequence, underlining the redundant actions, and then propose
an equivalent sequence of actions S′:

S = (α1, α2, α3, α4, α5, α6, α7, α8, α9, α10, α11, α12, α13)

S′ = (α1, α2, α3, α4, α6, α7, α8, α9, α10)
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We do not address in ADORE the optimization of elementary action sequences, and expose it as a
perspective of this work.

Discharge. This composite action allows one to discharge the contents of a given process into
another one (called target). As a consequence, the discharged process is destroyed and its contents
is added inside the targeted one. We model this action as a term of arity two.

d(process, target) ≡ discharge(process, target) ∈ Action, target ∈ P, process ∈ P

We describe here the elementary actions associated to the discharge action. An example of its
usage is given in SEC. 6.4.3.

d(p, p′) ≡ discharge(p, p′) ∈ Action, p ∈ P, p′ ∈ P :

del = {delr(r, p) | ∃r ∈ rels(p)} ∪ {deli(i, p) | ∃i ∈ pols(p)}

∪ {dela(a, p) | ∃a ∈ acts(p)} ∪ {delv(v, p) | ∃v ∈ vars(p)}

add = {addv(v, p
′) | ∃v ∈ vars(p)} ∪ {adda(a, p

′) | ∃a ∈ acts(p)}

∪ {addr(r, p
′) | ∃r ∈ rels(p)} ∪ {addi(i, p

′) | ∃i ∈ pols(p)}

 ()
+

← [ del
+

← [ (delp(p), addp((p
′, ∅, ∅, ∅))

+

← [ add

6.4 Defining Algorithms to Interact with Models

The Separation of Concerns paradigm allows designers to separate “things” (e.g., concerns). Com-
position algorithms are then used to compose these different “things” into a final system. Several
composition algorithms can be found in the literature. Using these algorithms, one can compose
class diagrams [Baniassad and Clarke, 2004, Reddy et al., 2006], state–charts [Nejati et al., 2007],
sequence diagrams [Klein et al., 2006], . . . According to the previously defined action language,
we can define composition algorithms dedicated to the ADORE meta–model (e.g., “integrate a
fragment inside another process”, CHAP. 7). These algorithms will be formally defined in the
next chapters. In this section, we focus on the notation associated to ADORE algorithms, and
then illustrate the way algorithms are described on two simple examples: (i) process cloning and
(ii) process correlation.

Algorithm Abstract Description. A composition algorithm takes as input everything it is
necessary for it to work (e.g., ADORE models, directives, meta–data), and produces as output a
sequence of actions. Executing this sequence will produce a new universe where the effect of
the algorithm will be visible. Since the sequence of actions is not executed, there is no changes
on the original model. According to the logical background of ADORE, we use in the algorithm
description a logical–based notation (e.g., quantifiers). We use the← [ symbol to denote imperative
assignment.

6.4.1 Traceability: Algorithm Context & Symbol Generation

Model composition can be compared with model transformations [Baudry et al., 2005]. Model
transformation often involves traceability concerns between legacy and newly created artifacts:
one must maintain a link between the original entity and the one created while transforming the
model [Falleri et al., 2006].

We address this issue in ADORE by providing three functions used to handle links between
model elements. While performing a composition, an algorithm can require a unique context
(modeled as a ground term) by calling the context() function. For a given context ctx and a set
of element e⋆, the gensym(e⋆, ctx) function returns an unique ground term associated to these
elements inside ctx (reifying a n → 1 traceability relation). The gensym function is idempotent,
and associates a single symbol for each element used as input. When the element set contains a
single element, we allow the usage of the element e ∈ E itself instead of the associated singleton
{e} ∈ E⋆.

Let e ∈ E , ctx = context(), s = gensym(e, ctx)⇒ ∄e′ ∈ E⋆, e′ 6= e, s = gensym(e′, ctx)
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6.4.2 Illustration #1: A Cloning Algorithm

We consider here an algorithm used to compute a clone of an ADORE process. We call a clone of
a process p ∈ P a process p′ which is equivalent to p: p′ ≡ p. We use this algorithm to illustrate
the traceability functions, as it intensively relies on it. The algorithm is described in ALG. 1. It
takes as input a process p and the expected name for its clone. It produces as output a sequence
of actions which create the clone process, clone all variables, activities, relations and policies.

Algorithm 1 CLONEPROCESS: p× p′ 7→ actions

Require: p ∈ P, p′ ∈ GroundTerm

Ensure: actions ∈ Actions⋆<

1: ctx← [ context(), actions← [ (addp((p
′, ∅, ∅, ∅))

2: ∀v ∈ vars(p) : {Variables}
3: old← [ name(v), new ← gensym(v, ctx), θ ← [ {old← new}, actions

+
← [ addv(vθ, p

′)
4: ∀a ∈ acts(p) : {Activities}
5: old← [ name(a), new ← [ gensym(a, ctx)

6: θ ← [ {old← new} ∪ {v ← n | v ∈ vars(a), n = gensym(v, ctx)}, actions +
← [ adda(aθ, p

′)
7: ∀r ∈ rels(p) : {Relations}
8: oldl ← [ name(left(r)), oldr ← [ name(right(r)),
9: newl ← [ gensym(left(r), ctx), newr ← [ gensym(right(r), ctx)

10: θ ← [ {oldl ← newl, oldr ← newr} ∪ {v ← v′ | r = a
v

≺ a′ ∧ v′ = gensym(v, ctx) }

11: actions
+
← [ addr(rθ, p

′)
12: ∀i ∈ pols(p) {Iteration Policies}
13: old⋆ ← [ name(set(i)), new⋆ ← [ gensym(set(i)), old← [ name(scalar(i)), new ← [ gensym(scalar(i))
14: θ ← [ {old⋆ ← new⋆, old← new} ∪ {o← n | ∃a ∈ acts(i), o = name(a) ∧ n = gensym(a, ctx)}

15: actions
+
← [ addi(iθ, p

′)
16: return actions

Since these actions are not executed, the clone does not really exist. One can then use the do+

function to execute this action set and obtain in return an universe containing both processes.

∃p ∈ P, ∃u ∈ U , do+(CLONEPROCESS(p, p′), u) = u′ ∈ U , ∃π ∈ procs(u′), name(π) = p′ ∧ π ≡ p

Example. Using as input the simple example depicted in FIG. 6.1, the clone algorithm will
produce the sequence of actions S′ described in FIG. 6.4. We can notice that this sequence of
actions is equivalent to the one used to build the business process (modulo the names used by
the elements) depicted in FIG. 6.1(a).

6.4.3 Illustration #2: Naive Process Correlation

We consider here an algorithm used to correlate6 process execution. This algorithm takes as
input two orchestrations (o1, o2) ∈ O

2, and returns the sequence of actions to perform in order to
correlate the activities defined in o2 with the execution of o1. This algorithm is a reduced version
(i.e., naive) of a composition algorithm used in the context of grid–computing [Nemo et al., 2007].
Contrarily to the original algorithm, we assume that the orchestrations used as inputs only define
one reply activity.

This naive version of the algorithm is described in ALG. 2. It starts by discharging the content
of o2 inside o1. Message reception activities are unified, and response sending activities too. The
computed action sequence is then returned to the caller. An illustration of the usage of the
NAIVECORRELATION algorithm is depicted in FIG. 6.5

6.4.4 Composition Algorithms Defined using ADORE

In this chapter, we describe the underlying mechanisms used to define algorithms in ADORE. We
illustrate this capability by defining two simple algorithms. Since the ultimate goal of ADORE

6The processes will share the message reception and response sending, and execute their internal behavior in parallel.
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example = (example, {v}, {rec, rpl}, {rec ≺ rpl}) ∈ O
v = (v, data, false) ∈ V

rec = (rec, receive, ∅, {v}) ∈ A
rpl = (rpl, reply, {v}, ∅) ∈ A

(a) Original Process: example ∈ O (FIG. 6.1(b))

Let ctx = context(), v′ = gensym(v, ctx),
rec′ = gensym(rec, ctx), rpl′ = gensym(rpl, ctx)

α1 = addp(example′, ∅, ∅, ∅)
α2 = addv((v

′, data, false), example′)
α3 = adda((rec

′, receive, ∅, {v′}), example′)
α4 = adda((rpl

′, reply, {v′}, ∅), example′)
α5 = addr((rec

′, rpl′, waitFor), example′)

(b) S′ = CLONEPROCESS(example, example′) ∈ Action⋆
<

Figure 6.4: Illustration of the CLONEPROCESS algorithm

Algorithm 2 NAIVECORRELATION: o1 × o2 7→ actions

Require: o1 ∈ O, o2 ∈ O, |exit(o1)| = |exit(o2)| = 1
Ensure: result ∈ Actions⋆<

1: ctx← [ context()
2: rec⋆ ← [ {a | ∃a ∈ (acts(o1) ∪ acts(o2)), kind(a) = receive}
3: rep⋆ ← [ {a | ∃a ∈ (acts(o1) ∪ acts(o2)), kind(a) = reply}
4: return (discharge(o2, o1), u(rec

⋆, gensym(rec⋆, ctx), o1), u(rep
⋆, gensym(rep⋆, ctx), o1))

is to build business process by composing small artifacts into more complex ones, we formally
define four algorithms used to handle recurring situations. These algorithms are fully described
in the next chapters. We provide here an informal description of each algorithm.

• WEAVE (CHAP. 7): this algorithm is used to integrate fragments of processes inside others
processes. It allows designers to separate concerns (e.g., security, business enhancement)
into fragments, and then automatically perform the integration of these entities in legacy
business processes. This algorithm is order–independent and ensures properties such as
guard and order preservation.

• MERGE (CHAP. 8): this algorithm focus on the shared join points issue. The previous algo-
rithm aims to weave a fragment on a given location. When several fragments need to be
woven on the same location, interference can appear between the different behaviors. The
MERGE algorithm composes the different fragments into a single one, ensuring that the
result of the composition is order–independent.

• INLINE (CHAP. 9): this algorithm is inspired by the compilation domain. It allows to inline

a process inside another one. As a consequence, at the design level the entities are kept
separated, but one can decide to reduce the number of exchanged message in the SOA by
using this algorithm.

• DATAFLOW (CHAP. 10): this algorithm is inspired by the grid–computing community. It
allows to define a process working on a scalar data s, and then automatically enhance it to
obtain a process iterating over a set of data s⋆ = {s1, . . . , sn}.
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Orchestration o1

a0 (a) := receive()

a1 (b) := do(a)

a2 reply(b)

(a) Initial orchestration o1 ∈ O

Orchestration o2

b0 (x) := receive()

b1 (y) := do(x)

b2 reply(y)

(b) Initial orchestration o2 ∈ O

A1 = d(o2, o1)
A2 = u({a0, b0}, rec, o1)
A3 = u({a2, b2}, rpl, o1)

S = (A1, A2, A3)

(c) S =NAIVECORRELATION(orch1, orch2) Orchestration o1

rec (a,x) := receive()

a1 (b) := do(a) b1 (y) := do(x)

rep reply(b,y)

(d) Result of S execution

d(o2, o1)  







α1 = delr(b0 ≺ b1, o2), α2 = delr(b1 ≺ b2, o2)
α3 = dela(b0, o2), α4 = dela(b2, o2), α5 = dela(b2, o2),
α6 = delv(x, o2), α7 = delv(y, o2)
α8 = addv(x, o1), α9 = addv(y, o1)
α10 = adda(b0, o1), α11 = adda(b2, o1), α12 = adda(b2, o1),
α13 = addr(b0 ≺ b1, o1), α14 = addr(b1 ≺ b2, o2)

u({a0, b0}, rec, o1)  







α15 = adda((rec, receive, ∅, {a, x}), o1)

r(a0, rec, o1)  







α16 = delr(a0 ≺ b1, o1), α17 = dela(a0, o1)
α18 = adda((rec, receive, ∅, {a, x}), o1)
α19 = addr(rec ≺ a1)

r(b0, rec, o1)  







α20 = delr(b0 ≺ b1, o1), α21 = dela(b0, o1)
α22 = adda((rec, receive, ∅, {a, x}), o1)
α23 = addr(rec ≺ b1)

u({a2, b2}, rpl, o1)  







α24 = adda((rpl, reply, {b, y}, ∅), o1)

r(a2, rpl, o1)  







α25 = delr(a1 ≺ a2, o1), α26 = dela(a2, o1)
α27 = adda((rpl, reply, {b, y}, ∅), o1)
α28 = addr(a1 ≺ rpl)

r(b2, rec, o1)  







α29 = delr(b1 ≺ b2, o1), α30 = dela(b2, o1)
α31 = adda((rpl, reply, {b, y}, ∅), o1)
α32 = addr(b1 ≺ rec, o1)

(A1, A2, A3) ≡ (α1, . . . , α32)

(e) Elementary actions associated to S

Figure 6.5: Illustrating the NAIVECORRELATION algorithm



Summary

In this part, we described in CHAP. 4 a formal meta–model used to support the ADORE ap-
proach. The ADORE meta–model allows designers to represent business processes (as orchestra-
tion of services) and fragments of business processes. It is defined using many–sorted first order
logic as foundations. We made the choice to only present in this document the formalism, and
leave the implementation details (the meta–model and the associated tools are implemented in
PROLOG & Java and represent 13, 000 lines of code) as appendix (CHAP. A).

Thanks to this formalism, we described in CHAP. 5 a graphical syntax used to represent models
of business processes. This syntax, inspired by UML activity diagrams, allows one to intuitively
understand a process without priori knowledge on ADORE. However, we also described a formal
execution semantic associated to the meta–model, anchoring this intuition into a computable set
of logical formulas.

Finally, we provided in CHAP. 6 an action framework and the associated execution engine
used to interact with ADORE models. Elementary actions (add & del) and their associated se-
mantics are described, and then composite activities (replace, unify, discharge) are formalized
as sequences of elementary actions. This action framework allows the definition of composition
algorithms, defined as action sequences producers.

 Based on these formal foundations and the associated tooling, we can now describe in the
next part the four composition algorithms defined to support the ADORE approach.
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Part III

Composition Algorithms

Notice: This part defines four composition algorithms defined to support designers

while modeling large business processes. The first and second algorithm (CHAP. 7,

CHAP. 8) draw a parallel between ADORE and Aspect–Oriented mechanisms (in terms

of weaving and merging mechanisms). The third algorithm (CHAP. 9) is inspired

by compilation techniques and targets processes performance. Finally, the last one

(CHAP. 10) focus on unanticipated iteration introduction (inspired by grid–computing

dataflow mechanisms). all along this part, we incrementally define a development

approach defined as the composition of these four algorithms.





7
Integrating Fragments through the WEAVE Algorithm

«Nature uses only the longest threads to weave her patterns, so that

each small piece of her fabric reveals the organization of the entire

tapestry. »
Richard P. Feynman
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7.1 Introduction

The ADORE approach allows one to design business processes through the usage of the Separa-

tion of Concerns paradigm. Fragments of processes can be automatically introduced into legacy
processes. This weaving action is realized through a dedicated algorithm, named WEAVE. The
goal of this chapter is (i) to describe the mechanisms used to perform a weave and (ii) to formally
describe the different properties ensured by the algorithm. As ADORE focuses on business pro-
cess design, we do not address the problematic of dynamic weave (exposed as a perspective of this
work). The weave algorithm presented here is then static, as commonly defined in the literature:

“Static weaving means to modify the source code of a class by inserting aspect–specific statements

at join points. For instance, weaving a persistence aspect inserts a database update statement

after every assignment to an instance variable.” [Böllert, 1999]
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This chapter starts by describing the weave algorithm in SEC. 7.2. Considering that a frag-
ment may define a behavior which interferes with the legacy one, we describe in SEC. 7.3 logical
rules used to identify such interferences in the models. SEC. 7.4 is dedicated to the description of
the properties ensured by the algorithm, such as execution order preservation. Finally, SEC. 7.5
illustrates the WEAVE algorithm on the PICWEB running example.

7.2 Algorithm Description

Using the WEAVE algorithm, a process designer can integrate a fragment f ∈ F into another
process (i.e., orchestration or fragment) p ∈ P. To perform the WEAVE, the designer must express
where the fragment will be woven. This target is defined as a block of activities B ∈ A⋆. We also
use a binding function β1 to let the user bind the ghost variables with concrete ones at weave
time. We modeled this weaving directive as a term ω of arity three:

ω(f,B, β) ∈ Directive, f ∈ F , B ∈ A⋆, (β : V × V → B) ∈ Function, ∃p ∈ P, B ⊂ acts(p)

To ease the understanding of the WEAVE algorithm, we start by describing a SIMPLEWEAVE

algorithm, which only handles a single directive. We define the final WEAVE algorithm as an
iteration of the SIMPLEWEAVE one.

7.2.1 Principles of the WEAVE Algorithm

The SIMPLEWEAVE algorithm takes as input a directive ω(f,B, β), and a process p (B ⊂ acts(p)).
The algorithm starts by discharging the content of f in p. As a consequence, all elements (vari-
ables, activities and relations) defined in the fragment are now part of the targeted process,
including ghost elements (i.e., hook variables and fragment–specific activities). These ghosts
must be eliminated from the process. The algorithm relies on two principles to perform this task:
(i) it concretises the ghost activities of f (i.e., predecessors, successors and hook are bound with
existing elements) and (ii) it replaces the ghost variables of f by real ones according to the bind-
ing function β. We start by describing these two mechanisms on simple examples, using a single
activity as target. The last paragraph describes how these mechanisms are generalized when
targeting a block of activities instead of a single one.

(i) Ghost Activities Vanishment. The ghost activities of the woven fragment must be re-
placed by the associated elements defined in p, according to B. Considering a directive denoted
as ω(f, {a}, β), we denote as Pa the set of a predecessors, and Sa the set of a successors in p. The
hook activity defined in f is denoted as h and its predecessors as Ph (respectively its successors as
Sh). When dealing with a successors, we only focus on control–path successors2. The predecessor
ghost activity is denoted as P (respectively S for the successors ghost activity).

Let p ∈ P, ω(f, {a}, β) ∈ Directive, a ∈ acts(p),

Pa = { α | ∃α < a ∈ rels(p)} ∈ A⋆, Sa = { α | ∃a < α ∈ rels(p) ∧ a
<
→ α} ∈ A⋆,

P = P(f), S = S(f), h = hook(f)
Ph = { α | ∃α < h ∈ rels(f)} ∈ A⋆, Sh = { α | ∃h < α ∈ rels(f)} ∈ A⋆}

The ghost activities vanishment is accomplished according to the following principles:

• P1 : Linking the untargeted behavior with the new one. Each relation existing in the
original process between a predecessor of a (π ∈ Pa) and a must be propagated3 to add such
relations when a relation is defined between P and a newly added activity (φ ∈ acts(f)). It

1Usually, the β function is defined as the variable equivalence (≡). Using a user–given function allows to let the user
choose the variable to use when multiple candidate are equivalents.

2This limitation is described in SEC. 7.2.2. We expose as a perspective a more fine–grained approach to deal with
exceptional flow.

3Propagate: “the spreading of something into new regions”, http://wordnet.princeton.edu .

http://wordnet.princeton.edu
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also propagates the relation existing between a and successors of a (σ ∈ Sa), following the
same principle.

{addr((π, α, l), p) | ∃π ∈ Pa, ∃(π, a, l) ∈ rels(p), ∃P < α ∈ rels(f) ∧ α 6= h}

∪ {addr((α, σ, l), p) | ∃σ ∈ Sa, ∃(a, σ, l) ∈ rels(p), ∃α < S ∈ rels(f) ∧ α 6= h}

 The actions generated to perform this task ensure that the legacy predecessors and
successors are well–connected with the newly added activities.

• P2 : Linking the new behavior with the concrete hook. Each relation existing between
the hook predecessors (π ∈ Ph) and the hook itself (respectively the hook and a successors
of the hook — σ ∈ Sh) must be propagated to take care of the newly added activities.

{addr((α, a, l), p) | ∃(α, h, l) ∈ rels(f), α 6= P} ∪ {addr((a, α, l), p) | ∃(h, α, l) ∈ rels(f), α 6= S}

 The actions generated for this task ensure that the activities added through the frag-
ment are well connected with the targeted activity.

• P3 : Deleting Ghost Activities. All relations between P, S and h must be deleted. After
that these ghost activities can be deleted too.

{delr((P, α, l), p) | ∃(P, α, l) ∈ rels(f)} ∪ {delr((α, S, l), p) | ∃(α, S, l) ∈ rels(f)}

∪ {dela(P, p), dela(h, p), dela(S, p)}

 As a consequence, after performing these actions, the ghost elements defined in f are
definitively destroyed.

We illustrate this principle in FIG. 7.1, where impacted relations are colored to easily visualize
the behavior of the algorithm. In this example, an orchestration o1 (FIG. 7.1(a)) is enriched by
a fragment f (FIG. 7.1(b)), on the activity a2 (according to the directive depicted in FIG. 7.1(c)).
The different “points of interest” (e.g., a2 predecessors) are described in FIG. 7.1(d). The algorithm
starts by discharging f in o1 (α1). Then, the actions generated according to P1 link the legacy
behavior to the newly added activities. In the example, activities α2 to α5 are generated to link
the added activities bef and par with the legacy predecessors (a01 and a11). The new activities are
then linked with the concrete target (according to P2), through the actions α10 and α11. Finally
(according to P3), relations involving a ghost activity are removed (α12 → α17), which allow the
deletion of these ghost activities (α18, α19 & α20).

(ii) Ghost Variable Replacement. The ghost variables used in the fragment must be re-
placed by the concrete ones, preexisting in the legacy behavior. We use the binding function β
to perform such a task4. For each input ghost variable (respectively output), the β function is
invoked to identify a matching candidate existing in the real inputs (respectively outputs) of the
targeted activity. Assuming that there is a single candidate matched, the algorithm generates
the associated replace directives, and picks up the next ghost variable.

{r(v, real, p) | ∃v ∈ inputs(h), ∃!real ∈ inputs(a), β(v, real)}

{r(v, real, p) | ∃v ∈ outputs(h), ∃!real ∈ outputs(a), β(v, real)}

The binding process can also identify two other situations: (i) there is no candidate found for
this ghost variable or on the contrary (ii) there are multiple candidates. We decide to raise an
error and stop the execution of the algorithm when such situations are encountered. Neverthe-
less, a recent collaboration with the requirement engineering community allows us to consider
alternative strategies. This work is exposed as a perspective of this thesis.

We illustrate the ghost variable unification step of the WEAVE algorithm in FIG. 7.2. In this
example, the weave directive described in FIG. 7.2(e) asks the algorithm to weave the fragment
f ′ (FIG. 7.2(a)) in the orchestration o2 (FIG. 7.2(c)), on the activity tgt. As the hook activity

4We assume that the β function is injective and deterministic
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Orchestration o1

rec receive()

a01 do() a11 do()

a2 target::act()

a03 do() a13 do()

rpl reply()

(a) Orchestration o1 ∈ orchs(u)

Fragment f

P

bef before::do()

par parallel::do()

S

h hook()

aft after::do()

(b) Fragment f ∈ frags(u)

Let S = SIMPLEWEAVE(ω(f, {a2},≡), o1), do
+(S, u) = u′

(c) Invocation of the algorithm: a2 is the targeted activity

Let ω(f, {a2}) ∈ Directive
Pa = {a01, a11}
Sa = {a03, a13}
Ph = {bef}
Sh = {aft}

(d) Points of Interest in o1 and f

α1 = d(f, o1)

P1 :







α2 = addr(a01 ≺ bef, p),
α3 = addr(a11 ≺ bef, p)
α4 = addr(a01 ≺ par, p),
α5 = addr(a11 ≺ par, p), . . . ,

P2 :

{
α10 = addr(bef ≺ a2, p)
α11 = addr(a2 ≺ aft, p)

P3 :







α12 = delr(P < bef),
α13 = delr(P < par), . . . ,
α18 = dela(P, p)
α19 = dela(h, p)
α20 = dela(S, p)

S = (α1, . . . , α20)

(e) Generated Actions

Orchestration o1

rec receive()

a01 do() a11 do()

bef before::do()

par parallel::do() a2 target::act()

aft after::do()

a03 do()

rpl reply()

a13 do()

(f) After the composition: o1 ∈ orchs(u′)

Figure 7.1: WEAVE illustration: Introducing a fragment (f ) inside an orchestration (o1)
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defined in f ′ uses two distinct variables in and out, the algorithm will generate two replacement
actions, according to the β function. When dealing with hook input, there is a single variable
used as input in tgt and equivalent to it: in ≡ x. The associated replacement is then generated:
r(in, x, o2). Considering that the hook output out is equivalent to both z and t variable, and
without any extra–information to perform its choice, the algorithm will fail.

(out, data, false)
out∈outputs(h)

≡ (z, data, false)
z∈outputs(tgt)

≡ (t, data, false)
t∈outputs(tgt)

⇒ “Multiple Candidates!”

Letting the user define the β function allows a very powerful expressiveness to perform the
binding (relying on the underlying logical model), when the simple variable equivalence ≡ is
not sufficient to discriminate the candidates. We will saw in the application chapters (PART IV)
that even if this situation is not the main one (i.e., the equivalence is almost sufficient), such a
mechanism is necessary when dealing with real–life example. In our example, the β function
relies on the name of the elements, and supports the generation of the expected replacement
directive: r(out, z, o2).

Handling Blocks of Activities. The previous principles were defined over a single concrete
activity. Considering the target defined in a directive as a well–formed (PROP. 4.21) activity block
B = {a1, . . . , an} ∈ A

⋆, we can generalize the two previously described principles to handle it as
a weave directive target:

(i) Ghost activity vanishment. This step concretises the predecessors (denoted as P), successors

(denoted as S) and hook (denoted as h) activities. Relations existing between preds(B) and
firsts(B) activities (respectively lasts(B) and nexts(B)) must be propagated in the newly
added behavior according to the relations existing between P and other activities (respec-
tively others activities and S). The relations using h as right part (respectively as left part)
are propagated for each activity in firsts(B) (respectively lasts(B)).

(ii) Ghost variable replacement. We define the inputs of a block as the union of the inputs of
its first activities. The outputs are defined as the union of the outputs of its last activities.
According to these definitions, the mechanisms described in the previous paragraph stay
the same.

We illustrate the SIMPLEWEAVE algorithm executed using a block as target in FIG. 7.3. In
this example, the algorithm weave a fragment f ′′ (FIG. 7.3(a)) into an orchestration o3 (FIG. 7.3(c)).
According to the weave directive (FIG. 7.3(b)), the target is defined as a block of activities B ∈ A⋆

(colored in gray).

B = {a02, a12, a3, a04, a14}

firsts(B) = {a02, a12}, lasts(B) = {a04, a14}

preds(B) = {a01, a11}, nexts(B) = {a05, a15}

inputs(B) =
⋃

a∈firsts(B)

inputs(a) = {v1, v2}, inputs(hook(f
′′)) = {in}, v1 ≡ in

outputs(B) =
⋃

a∈lasts(B)

outputs(a) = {v3, v4}, outputs(hook(f
′′)) = {out}, v3 ≡ out

We use several colors to identify the way relations are propagated by the algorithm. The
composition result is depicted in FIG. 7.3(d).

Remark On Activity Synchronization Introduction. Handling blocks of activities as tar-
get may enforce the trigger formula associated to an activity. Such a situation happens when
several independent branches of activities are used together in the same block, as in FIG. 7.3.
Initially, the activity a12 waits for the end of the activity a11 to start. Since the composition intro-
duces a common ancestor before the block, a12 waits for the end of this predecessor (bef ) in the
composed process. Since bef waits for the end of all the predecessors of the block, it also waits
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P = (p,P, ∅, ∅) ∈ A
bef = (bef, invoke(before, do), {in}, ∅) ∈ A
h = (h, hook, {in}, {out})

aft = (aft, invoke(after, do), {out}, ∅) ∈ A
S = (s, S, ∅, ∅) ∈ A
in = (in, data, false) ∈ V
out = (out, data, false) ∈ V

Af ′ = {P, bef, h, aft, S} ∈ A⋆

Vf ′ = {in, out} ∈ V⋆

Rf ′ = {P < bef, bef ≺ h, h ≺ aft, aft < S} ∈ R⋆

f ′ = (f ′, Af ′ , Vf ′ , Rf ′) ∈ F

(a) Fragment f ′ ∈ F (formal representation) Fragment f’

P

bef before::do(in)

S

h (out) := hook(in)

aft after::do(out)

(b) Graphical representation of f ′

rec = (rec, receive, ∅, {x, y}) ∈ A
tgt = (tgt, invoke(target, act), {x, y}, {z, t} ∈ A
rpl = (rpl, reply, ∅, {z, t}) ∈ A
x = (x, data, false) ∈ V
y = (y, string, false) ∈ V
z = (z, data, false) ∈ V
t = (t, data, false) ∈ V

Ao2 = {rec, tgt, rpl} ∈ A⋆

Vo2 = {x, y, z, t} ∈ V⋆

Ro2 = {rec ≺ tgt, tgt ≺ rpl} ∈ R⋆

o2 = (o2, Ao2 , Vo2 , Ro2) ∈ O

(c) Orchestration o2 ∈ O (formal representation)

Orchestration o2

rec (x,y) := receive()

tgt (z,t) := target::act(x,y)

rpl reply(z,t)

(d) Graphical representation of o2

S = SIMPLEWEAVE(ω(f, {tgt}, β), o1)
do+(S, u) = u′

β : V × V → B
v × v′ 7→ (v ≡ v′)

∨ (name(v) = out ∧ name(v′) = z)

r(in, x, o2) ∈ S







inputs(h) = {in}
inputs(tgt) = {x, y}
β(in, x) (in ≡ x)

r(out, z, o2) ∈ S







outputs(h) = {out}
outputs(tgt) = {z, t}
β(out, z) ("z" = "out" )

(e) Weave Directive (and consequences)

Orchestration o2

rec (x,y) := receive()

bef before::do(x)

tgt (z,t) := target::act(x,y)

aft after::do(z)

rpl reply(z,t)

(f) o2 ∈ procs(u′)

Figure 7.2: WEAVE illustration: Variable replacement
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Fragment f’’

P

bef before::do(in)

par parallel::do()

S

h (out) := hook(in)

aft after::do(out)

(a) Fragment f ′′ ∈ procs(u)

u ∈ U , f ′′ ∈ procs(u), o3 ∈ procs(u)
B = {a02, a12, a3, a04, a14}
S = SIMPLEWEAVE(ω(f ′′, B,≡), o3)
u′ = do+(S, u)

(b) Weave directive

Orchestration test::o3

rec (v1,v2) := receive()

a01 do() a11 do()

a02 do(v1) a12 do(v2)

a3 do()

a04 (v3) := do() a14 (v4) := do()

a05 do() a15 do()

rpl reply()

(c) Orchestration o3 ∈ procs(u)

Orchestration test::o3

rec (v1,v2) := receive()

a01 do() a11 do()

bef before::do(v1)

par parallel::do()

a02 do(v1)

a3 do()

a12 do(v2)

a04 (v3) := do() a14 (v4) := do()

aft after::do(v3)

a05 do()

rpl reply()

a15 do()

(d) Composition result: o3 ∈ procs(u′)

Figure 7.3: WEAVE Illustration: Handling blocks of activities as target
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for the end of the a01 activity. Consequently, the start of a12 is now transitively conditioned by
the end of a11 and the end of a01. In this example, the algorithm introduces two synchronization
points (bef and aft activities). It results in four unanticipated waits: (i) a02 waits now for the
end of a11, (ii) a12 for the end of a01, (iii) a05 for the end of a14 and (iv) a15 for the end of a04. We
tackle this issue by assuming that activities used in a block are semantically linked. As a conse-
quence, it makes sense to synchronize the block with all the legacy predecessors (respectively all
the legacy successors), even if it was not the case in the preexisting process. The use of process
algebras or model checking tools to identify such unwanted synchronizations are exposed as a
perspective of this work.

7.2.2 SIMPLEWEAVE: Integrating a single directive

The previous section describes the principles associated to the weave mechanism. We describe
in this section the SIMPLEWEAVE algorithm as an implementation of the previously described
principles.

Complete Algorithm. We describe in ALG. 3 the SIMPLEWEAVE algorithm. The algorithm
starts by initializing local variables and generating the first action: discharging the fragment
content into the targeted process (line1). Then, it performs the ghost activity vanishment step
(lines 3 → 8). The variable replacement step (lines 10,11) is performed before the return of
the final action list (line 13). It is important to notice that actions are generated on the legacy
processes (i.e., the right part of the intensional definitions relies on the preexisting elements).

Algorithm 3 SIMPLEWEAVE: ω × p 7→ actions

Require: ω = ω(f,B, β) ∈ Directive, f ∈ F , B ∈ A⋆, (β : V × V → B) ∈ Function, p ∈ P
Ensure: r ∈ Actions⋆<

1: { Initialization }
2: h← [ hook(f), P← [ P(f), S← [ S(f), r ← [ (d(f, p))
3: FB ← [ firsts(B), LB ← [ lasts(B), PB ← [ preds(P ), NB ← [ nexts(B)
4: { (i) Ghost Activity Vanishment }
5: r

+
← [ {addr((π, α, l), p) | ∃π ∈ PB , ∃a ∈ FB , ∃(π, a, l) ∈ rels(p), ∃P < α ∈ rels(f), α 6= h} {P1}

6: r
+
← [ {addr((α, ν, l), p) | ∃a ∈ LB , ∃ν ∈ NB , ∃(a, ν, l) ∈ rels(p), ∃α < S ∈ rels(f), α 6= h} {P1}

7: r
+
← [ {addr((a, α, l), p) | ∃a ∈ acts(f), a 6= P, ∃(a, h, l) ∈ rels(f), ∃α ∈ FB} {P2}

8: r
+
← [ {addr((α, a, l), p) | ∃a ∈ acts(f), a 6= h, ∃(h, a, l) ∈ rels(f), ∃α ∈ LB} {P2}

9: r
+
← [ {delr((P, a, l), p) | ∃(P, a, l) ∈ rels(f)} ∪ {delr((a, S, l), p) | ∃(a, S, l) ∈ rels(f)} {P3}

10: r
+
← [ (dela(P, p), dela(h, p), dela(S, p)) {P3}

11: { (ii) Ghost Variable Replacement }
12: r

+
← [ {r(v, real, p) | ∃v ∈ inputs(h), ∃!real ∈ inputs(B), β(v, real)} {Inputs}

13: r
+
← [ {r(v, real, p) | ∃v ∈ outputs(h), ∃!real ∈ outputs(B), β(v, real)} {Outputs}

14: return r

Expressiveness Limitations. The algorithm as defined in this section suffers from two ex-
pressiveness limitations.

• Overloading a relation with concrete successors: According to its definition, the algorithm
only propagates relations existing between fragment activities and concrete successors.
Consequently, if a new relation (such as a guard) is directly defined in a fragment f be-
tween an activity α ∈ acts(f) and S(f), the algorithm will not propagate it. This issue is
illustrated in FIG. 7.4(a). To tackle this issue, the implementation inserts a nop activity
between the origin of the relation and S(f), as illustrated in FIG. 7.4(b).

• Exceptional Successors: for a given fragment f , the algorithm assumes that the relation
existing between an activity a ∈ acts(f) and S(f) is a control–path. Using ADORE, one can
intercept an activity in the control–flow, and then enrich its neighborhood, as illustrated
in FIG. 7.4(c) and FIG. 7.4(d). But is it is not possible to intercept an error throwing. For
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example, in FIG. 7.4(c), it is possible to intercept the thr activity as any other activity, but
it is not possible to intercept “the successors of tgt when a fault happens”. We expose this
expressiveness limitation as a perspective of this work.

Fragment wrong

P

h (data) := hook()

S

t (c) := test(data)

c

e throw(’Error’)

!c

(a) Wrong fragment (t < S) Fragment good

P

h (data) := hook()

S

t (c) := test(data)

e throw(’Error’)

!c

n nop()

c

(b) Good fragment (nop introduction)

Orchestration o

rec receive()

tgt (x) := do()

rpl reply() thr throw(’Error’)

f

(c) Orchestration with fault handling

Orchestration o

rec receive()

tgt (x) := do()

thr throw(’Error’)

f

t (c) := test(x)

rpl reply()

e throw(’Error’) n nop()

!c c

(d) SIMPLEWEAVE(ω(good, {tgt},≡), o)

Figure 7.4: Illustrating expressiveness limitations in SIMPLEWEAVE

Remark on Process Simplification. The SIMPLEWEAVE algorithm never deletes preexisting
relations. As a consequence, composed processes may contain redundant relations. We made the
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choice to hide these relations in this chapter, to make the result more readable. Such a situation
is depicted in FIG. 7.5, where we depict the real process o2 obtained in FIG. 7.2. We illustrate in
FIG. 7.5(b) the two choices made to simplify this process, and the expected “simplified” result is
depicted in FIG. 7.5(c). There are two ways to handle this simplification: (i) analyzing the gener-
ated action set to identify the redundant actions a priori or (ii) defining a cosmetic algorithm and
execute it a posteriori. We present in APP. B an algorithm able to identify and eliminate redun-
dant relations. An a priori detection should be more efficient, which emphasizes the perspective
of optimizing the action list, as suggested in the previous chapter.

Orchestration o2

rec

bef

tgt

aft

rpl

(a) o2 ∈ procs(u′)







rec ≺ tgt ∈ rels(o2),
∃α in acts(o2),

rec ≺ α ∧ α→ tgt
⇒ delr(rec ≺ tgt, o2)







tgt ≺ rpl ∈ rels(o2),
∃α′ in acts(o2),

tgt ≺ α′ ∧ α→ rpl
⇒ delr(tgt ≺ rpl, o2)

(b) Simplification choices

Orchestration o2’

rec’

bef’

tgt’

aft’

rpl’

(c) Simplified process

ϕ(rec) = true = ϕ(rec′) = true
ϕ(bef) = end(rec) = ϕ(bef ′) = end(rec′)
ϕ(tgt) = end(bef) ∧ end(rec) ≡ ϕ(tgt′) = end(bef ′) (end(bef)⇒ end(rec))
ϕ(aft) = end(tgt) = ϕ(aft′) = end(tgt′)
ϕ(rpl) = end(aft) ∧ end(tgt) ≡ ϕ(rpl′) = end(aft) (end(aft)⇒ end(tgt))

(d) Execution Semantic Equivalence

Figure 7.5: Process Simplification: a “cosmetic” need.

7.2.3 WEAVE: Integrating multiples directives

The previously described algorithm only allows the weaving of a single fragment into a single
process. We define the final WEAVE algorithm as a folding of the SIMPLEWEAVE one. It takes as
input a set of directives5 Ω, and the targeted process. The computed action list is returned to the
caller as the concatenation of all the action list generated by the SIMPLEWEAVE algorithm.

Algorithm 4 WEAVE: Ω× p 7→ actions

Require: Ω ∈ Directive⋆, p ∈ P
Ensure: result ∈ Actions⋆<

1: return ()
+
← [ {SIMPLEWEAVE(ω(f,B, β), p) | ∃ω(f,B, β) ∈ Ω}

5As a consequence, it is not possible to weave the same fragment at the same location more than once. The MERGE

algorithm (CHAP. 8) tackles this issue.
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Example. We illustrate in FIG. 7.6 the usage of multiple weave directives. In this example, we
start by cloning several fragments (named before and after) before using the clones in a multiple
weave6. The obtained result is depicted in FIG. 7.6(e). We use colors to easily identify fragment
targets and added relations.

Fragment before

P

bef before::do()

S

h hook()

(a) before ∈ procs(u0)

Fragment after

P

h hook()

S

aft after::do()

(b) after ∈ procs(u0)

Orchestration o

rec receive()

a1 do()

a2 do()

rpl reply()

(c) o ∈ procs(u0)

Let u0 ∈ U

S1 = CLONEPROCESS(before, b)
S2 = CLONEPROCESS(after, a)
S3 = CLONEPROCESS(before, b′)
S4 = CLONEPROCESS(after, a′)

u1 = do+(S1
+

← [ S2
+

← [ S3
+

← [ S4, u0)

ω1 = ω(b, {a2},≡)
ω2 = ω(b′, {rpl},≡)
ω1 = ω(a, {rec},≡)
ω2 = ω(a′, {a1},≡)
Ω = {ω1, ω2, ω3, ω4}

S = WEAVE(Ω, o)
u2 = do+(S, u1)

(d) Weave Directives
Orchestration o

rec receive()

gen4 after::do()

a1 do()

gen1 before::do() gen2 after::do()

a2 do()

gen3 before::do()

rpl reply()

(e) o ∈ procs(u2)

Figure 7.6: WEAVE Algorithm: Illustrating the usage of multiple weave directives

Relations to AOP:. An “aspect–oriented” reader will notice that the ADORE weaving mecha-
nisms differ from the one usually defined in AOP frameworks:

6According to its definition, a WEAVE will discharge a fragment into a process, and as a consequence destructs it.
Using a clone allows one to use the same fragment multiple times.
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• Reduced join points model: In the AO* vocabulary, join points represent “well-defined points

in the execution of the program” [Kiczales et al., 2001]. The ASPECTJ framework defines
several kinds of join points, at a very fine–grained level: when talking about methods, one
can identify and then enhance (i) the method call, (ii) the method call reception or (iii) the
method call execution. Considering ADORE as a business process design tool, and business
processes as coarse–grained description of workflows, ADORE does not need such a fine–
grained expressiveness. Using ADORE, one can simply identify and enhance the execution
of a block of activities, according to its intrinsic nature.

• Pointcut/Advice separation: Usually, aspect users define pointcuts (an expression identi-
fying a set of join points), associated to advices (the code to be added at the join point
locations), to define aspects. Such an approach leads to aspect reusability issues, since an
advice is strongly coupled with its associated pointcut7. Several approaches propose to de-
couple an advice from its pointcut [Lagaisse and Joosen, 2006]. ADORE follows the same
intention: fragments are defined independently of the weave directive.

• No pointcut designators: Usual pointcut designation method introduces hard–coupling be-
tween aspects and the base program [Kellens et al., 2006]. It leads to well–known problems
such as the fragile pointcuts one [Stoerzer and Graf, 2005], where an evolution in the base
program may lead to unexpected join points capture. State–of–the–art researches focus on
pointcut expressiveness (e.g., LOGICAJ [Rho et al., 2006]). We set up ADORE as a back–end
for such approaches. As a consequence, there is no pointcut designators mechanisms in
ADORE, and the set of activities targeted for a given weave must be exhaustively described.
One can use a pointcut framework to generate such description. We also describe in the
CCCMS case study (CHAP. 11) how the ADORE logical back–end can be used to generate
weave directives.

• No aspect ordering: Several approaches (e.g., ASPECTJ, WEAVR) propose internal mecha-
nisms to order advices between each others [Zhang et al., 2007]. ADORE does not provide
such mechanisms, and considers that all fragment are woven in parallel. This choice al-
lows us to ensure several properties on the weaving process, such as order–independence.
However, aspect ordering can be realized through a chain of weaving (i.e., weave f on o, and
then weave f ′ on the retrieved result). The CCCMS case study (CHAP. 11) intensively uses
this mechanism to introduce security concerns in the designed systems: fragments dealing
with security are woven on others fragments, which are then used as secured versions of
the initial concerns they modeled.

• No before/after keywords: The ASPECTJ framework makes the distinction between several
classes of advices: around, before and after. Using this model, the execution framework
starts by executing the first “before” advice, and jumps into the next one until they all
start their execution. Then, around advices start their execution (according to their user–
defined order), followed by the legacy computation (i.e., proceed call). The stack of around

advices is handled, and the execution flow continues. After advices are then finally executed,
from the last to the first one. ADORE focuses on process design, and does not allow such a
differentiation between fragments. Fragments can then be seen as around advices, without
explicit ordering. However, one can simulate the ASPECTJ behavior using ADORE, as shown
in APP. C.

7.3 Behavioral Interference Detection Mechanisms

The Separation of Concerns paradigm allows one to define artifacts separately, and then relies
on tools to perform the automatic combination leading to the final (composed) system. It is well-
known that even if the separate artifacts are correct, interactions between the different concerns
may happen and then generate interference:

7In ASPECTJ, it is possible to avoid this situation through a “tricky” use of aspect inheritance
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“Aspects that in isolation behave correctly, may interact when being combined. When interaction

changes an aspect’s behaviour or disables an aspect, we call this interference.” [Aksit et al., 2009]

State–of–the–art research work in the AOM research field such as MATA [Whittle et al., 2009]
defines interference detection rules, based on critical pair analysis [Heckel et al., 2002]. These
mechanisms support designers by analyzing the given directives, and then identify (ii) depen-
dencies (a directive produces an element consumed by another one) and (ii) conflicts (a directive
avoid the application of another one). In ADORE, we use similar mechanisms in the algorithm

scheduler (see SEC. 8.4), at the directive level. In this section describes several mechanisms
defined in ADORE to identify interferences at the behavioral level.

7.3.1 Concurrency Introduction: Variable & Termination

Using ADORE, designers define fragments of processes, and then use the WEAVE algorithm to
perform the integration of fragments inside legacy process. This software development paradigm
supports the design of very large pieces of software, involving several developers working to-
gether on the same application. Even if the initial artifacts do not carry concurrent issue, the
composition result may encounter two kinds of concurrency issues: (i) concurrent access to a
variable and (ii) concurrent response sending.

Activity Exclusiveness. The concurrent interference described here intuitively relies on the
exclusivity of activities execution. Informally, two activities a and a′ are defined as exclusive

(denoted as a ⊗ a′) when they cannot be executed in parallel. We base the definition of this
property on the boolean formula associated to each activity through ADORE execution semantic
(see SEC. 5.3). The property is computed as a comparison of all execution formulas defined in the
execution path to identify the exclusion8.

⊗ : A×A → B

(a, a′) 7→

{
Let p ∈ P, e = entry(p), Pa = path+(rels(p), e, a), Pa′ = path+(rels(p), e, a′)
a 6= a′, ∃πa ∈ Pa, ∃α ∈ πa, ∃πa′ ∈ Pa′ , ∃α′ ∈ πa′ , ϕ(α)⊗ ϕ(α′)

Concurrent Access to a Variable. We consider here an e–commerce application (FIG. 7.7),
where customers can buy objects on the Web. For illustration purpose, we simplify the orches-
tration which handles the invoicing process to its smallest expression (FIG. 7.7(a)): it receives a
customer c and a price p (rec), builds the associated invoice i (act) and returns it to the caller (rpl).
The evolution scenario involves two designers: Bob and Alice. Bob is an e–commerce expert and
he defines a discount fragment (FIG. 7.7(b)) to offer a 10% discount on articles during a special
sales period. He asks the fragment to be woven on the rec activity. Alice works in the stocks
department, and wants to keep a trace of all the prices in a log file. She wrote a fragment named
log (FIG. 7.7(c)) to perform this task, and asks the fragment to be woven on the invoice build-
ing activity (act). As a consequence, this scenario involves two different designers who enhance
the same process at two different locations, using two different fragments. The obtained process
(FIG. 7.7(e)) contains a non–deterministic access to the p variable: there is no order between the
activity l and the activity d!

This situation is automatically detected by ADORE through the satisfaction of a logical rule.
Such an event is raised to the user, who can identify its source and fix the problem (e.g., by adding
a waitFor relation between the two activities).

Let p ∈ P, ∃a ∈ acts(p), ∃v ∈ outputs(a), ∃a′ ∈ acts(p), a′ 6= a, v ∈ vars(a′), ¬(a⊗ a′)

Remark: Usual aspect ordering techniques cannot handle this situation, since the two differ-
ent fragments are woven at different locations in the base process and then cannot be ordered
using an ASPECTJ–like mechanisms. Moreover, the fact that ADORE identifies such an issue is

8We consider as exclusive two formula ϕ and ϕ′ (denoted as ϕ ⊗ ϕ′) since they hold exclusive conditions, or different
events for the same activity (i.e., end(a) and fail(a)).
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Orchestration o1

rec (c,p) := receive()

act (i) := invoice::build(c,p)

rpl reply(i)

(a) o1 ∈ O

Fragment discount

P

h (px) := hook()

S

d (px) := discount(’10%’,px)

(b) discount ∈ F

Fragment log

P

l log::write(x)

S

h hook(x)

(c) log ∈ F

Let u ∈ U
o1 ∈ procs(u)

Bob:
discount ∈ procs(u)

ωbob = ω(discount, {rec},≡)
Alice:

log ∈ procs(u)
ωalice = ω(log, {act},≡)

Weave:
S = WEAVE({ωalice, ωbob}, o1)
u′ = do+(S, u)

(d) Weave Directives

Orchestration o1

rec (c,p) := receive()

d (p) := discount(’10%’,p) l log::write(p)

act (i) := invoice::build(c,p)

rpl reply(i)

(e) o1 ∈ procs(u′) (Composition Result)

Figure 7.7: Introducing a non–deterministic access to a variable

a strength to support the assessment of large processes built using the separation of concerns
paradigm.

Concurrent Termination. The previous paragraph describes how concurrent accesses can be
introduced in a process. This paragraph focuses on non–deterministic termination. We use as an
example the process depicted in FIG. 7.8(a). It receives two variables a and b (rec), performs a
parallel computation (act1,act2) to obtain a′ and b′, and then replies these values to its caller (rpl).
In this scenario, we use two different fragments (possibly defined by two different designers): the
first one (FIG. 7.8(b)) is used to check a postcondition on a′ (which must be a positive integer),
and asks to be woven on act1. The second one (FIG. 7.8(c)) ensures a precondition on b (which
cannot be equal to zero), and asks to be woven on act2. The obtained process is depicted in
FIG. 7.8(e). In this process, the two throw activities can be executed concurrently if the two
conditions are violated, under (¬c ∧ c′) condition set! As a consequence, the composed process is
non–deterministic.

This situation is automatically identified by ADORE as the satisfaction of a logical rule. Iden-
tifying such a situation supports designers to identify unexpected (and potentially complex) con-
ditions set in their processes.

Let p ∈ P, ∃a ∈ exit(p), ∃a′ ∈ exit(p), a′ 6= a,¬(a⊗ a′)
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Orchestration o2

rec (a,b) := receive()

act1 (a’) := do(a) act2 (b’) := do(b)

rpl reply(a’,b’)

(a) o2 ∈ O Fragment positive

P

h (x) := hook()

S

a1 (c) := isPositive(x)

e1 throw(’NEG RESULT!’)

!c

n nop()

c

(b) positive ∈ F

Fragment notZero

P

a2 (c’) := isZero(y)

S

e2 throw(’ZERO ARG!’)

c’

h hook(y)

!c’

(c) notZero ∈ F

Let u ∈ U

ω1 = ω(positive, {act1},≡)
ω2 = ω(notZero, {act2},≡)

S = WEAVE({ω1, ω2}, o2)
u′ = do+(S, u)

(d) Weave Directives

Orchestration o2

rec (a,b) := receive()

act1 (a’) := do(a) a2 (c’) := isZero(b)

a1 (c) := isPositive(a’)

act2 (b’) := do(b)

rpl reply(a’,b’)

e1 throw(’NEG RESULT!’)

!c

n nop()

c

!c’

e3 throw(’ZERO ARG!’)

c’

(e) o2 ∈ procs(u′) (Composed result)

Figure 7.8: Introducing non–deterministic termination in a process

7.3.2 Equivalent Activities & Directives

The previously described interferences were dangerous in terms of process execution. We focus
now on the detection of bad–smells in the composition process. We identified two situations were
such bad–smells can occur: (i) a fragment introduces an equivalent activity in a process and (ii)

an activity equivalent to one used as a fragment target exists in the process.
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Introducing Equivalent Activities. Multiple fragments can introduce service invocations
that are equivalent by weaving a same fragment on several activities or by requesting a same
service in different fragments. A rule that brings these equivalent services to the attention
of the designer can cause the designer to consider how the process can be refactored to avoid
unnecessary redundant invocations of services. This situation is illustrated in the CCCMS case
study (CHAP. 11).

Let ω(f,B, β) ∈ Directive, p ∈ P, B ⊂ acts(p), ∃α ∈ acts(f), ∃α′ ∈ acts(p), α ≡ α′

Forgotten Weave. When a fragment f is woven on an activity a′ that is equivalent to another
activity a that is not yet woven with f , the designer may have forgotten to weave f on the activity
a. Such a situation is identified by ADORE and a suggestion is displayed to the designer. This
situation is illustrated in the CCCMS case study (CHAP. 11).

Let ω(f,B, β) ∈ Directive, p ∈ P, B ⊂ acts(p), ∃B′ ⊂ acts(p)\B, B ≡ B′

7.3.3 Intrinsic Limitation: No Semantic Interference Detection

ADORE does not reify the semantic associated to each behavior. As a consequence, the inter-
ference detection mechanisms will only detect syntactic interferences. If one tries to weave a
fragment which is syntactically coherent with its target but semantically conflicting, such an in-
terference will not be detected by ADORE. We strongly assume that designers know the semantic
of the artifacts they are handling. As a consequence, we consider them as responsible of their
own acts while building a business process:

“Nemo auditur propriam turpitudinem allegans”9.

For example, weaving an encryption fragment and a persistence fragment inside the same
process requires to take a particular care of the data when they are not encrypted. Such a
preoccupation is semantically driven and it is impossible to detect it syntactically. The use of
formal method and knowledge representation such as ontology to automatically analyze and
detect interferences in ADORE artifacts at a semantic level are exposed as a perspective of this
work.

7.4 Properties Associated to the WEAVE Algorithm

The WEAVE algorithm supports designers when building processes, by automating the integra-
tion of fragments. This integration ensures a set of properties, which helps designers to assess
the composed process. We classify these properties in three categories: (i) order–independence
(to support collaborative design), (ii) elements preservation (to keep preexisting behaviors in the
composed system) and (iii) completeness (to ensure that a composed system is still executable).
When using the WEAVE algorithm to enrich a preexisting process, designers know that these
properties are ensured by the algorithm, and can then focus on their business preoccupations.

7.4.1 Order Independence & Determinism

These two properties ensure that the composed process will be the same, independently of the
order of the composition directives. This is very important when talking about the collaborative
design of business processes, involving several designers.

(Pw1
) Order Independence. For a given WEAVE execution, the way designers express the di-

rectives does not matter in the obtained result.

The WEAVE algorithm works on a set of directives Ω, which is by definition unordered. For
each directive ω(f,B, β) ∈ Ω, the algorithm generates a set of actions, but never executes it.
Consequently, weave directives are handled in isolation, and cannot interfere between each
others.

9“One cannot invoke in court his own wrongful act.”
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(Pw2
) Determinism. The WEAVE algorithm is deterministic and ensures to always return the

same result for a given set of weave directives.

The actions generated for each weave directive add new activities and relations in the
legacy process, and only delete the ghost elements. The way relations are added is de-
terministic. According to the idempotency property of the elementary action and the order–
independence, the execution of the action set always produces the same process as a result.

7.4.2 Preservation of Paths, Execution Order and Conditions

These two properties ensure that the introduction of a fragment will not “destroy” the execution
semantics associated to the existing process.

(Pw3
) Path Preservation. An execution of the WEAVE algorithm may extend (e.g., inserting

new activities, guards) preexisting execution paths, or add new ones, but cannot destroy existing

ones.

Let f a fragment. According to the fragment coherence property (PROP. 4.14), at least one
path exists between P(f), hook(f) and S(f). Let B the block used as weave target, PB the
preexisting predecessors of B and SB its preexisting successors. By construction, the P(f)
activity is mapped with all activities defined in PB, and S(f) is mapped with all activities
defined in SB . The algorithm never deletes a preexisting relation. Consequently, existing
paths are transitively conserved in the composed process.

(Pw4
) Execution Order Preservation. If the handled fragment does not bypass their hooks,

the preexisting execution order is preserved by construction. In the other situations, such a bypass

is considered as expected at the application level since it is defined in the fragment by the designer.

The path preservation property ensures that the preexisting execution flow is conserved,
but does not ensure that the preexisting execution semantic is preserved. The only way
of breaking the preexisting semantic is to weave a fragment which defines a path which
does not contains its hook activity. Such a situation implies that the concrete successors
of the targeted block of activity may then be executed even if the block was not executed,
as depicted in FIG. 7.9. In the composed process, the rpl activity can be executed even
if the act activity was not executed (contrarily to the base process which ensure that rpl
starts only after the end of act). According to ADORE execution semantics, such situation
can be added by using weakWait relations, fault handling or exclusive conditions to bypass

the hook. At the implementation level, a warning is raised to the designer when such a
situation is detected.

(Pw5
) Condition Preservation. Using ADORE, guards added by fragments and presexisting

guards cannot interfere between each others and are preserved by construction, since the designer

does not use a ghost variable in a guard.

The previous property ensures that the execution order is preserved. Even if we assume
the respect of this property in this paragraph, it does not mean that preexisting conditions
are always preserved. According to the process isolation property (PROP. 4.15), each vari-
able defined in a process is unique, and contained by only one process. Variables interact
between each others through the ghost variable replacement step of the WEAVE algorithm,
where hooked variables are mapped to concrete ones. As a consequence, the only way for a
fragment to interact with a preexisting guard is to define a new guard based on a hooked

variable, as depicted in FIG. 7.10. In the legacy process, the rpl1 activity will only start
if the c condition is evaluated to true. But in the composed process, since the woven frag-
ment adds the opposite condition to its successors, it implied that the rpl1 activity will be
executed even if c was evaluated to false. A restriction of ADORE expressiveness (a guard
relation should not use as left part a ghost variable) ensures that the preexisting conditions
are preserved, since the execution order is preserved.
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Orchestration o1

rec receive()

act do()

rpl reply()

(a) o ∈ O Fragment alternate

P

h hook() alt alt()

S

n nop()

(b) alternate ∈ F

Orchestration :o1

rec receive()

act do() alt alt()

n nop()

rpl reply()

(c) Composed Process

Figure 7.9: Breaking the existing execution semantics through a fragment

Orchestration o2

rec receive()

tst (c) := do(data)

rpl1 reply(’good’)

c

rpl2 reply(’bad’)

!c

(a) o2 ∈ O Fragment conds

P

h (x) := hook()

S

n nop()

!x

(b) conds ∈ F

Orchestration o2

rec receive()

tst (c) := do(data)

rpl1 reply(’good’)

c

rpl2 reply(’bad’)

!ca7 nop()

!c

(c) Composed Process

Figure 7.10: Breaking the existing guards relation semantic through a fragment

7.4.3 Completeness: Variable Initialization & Process Response

These properties ensure that the composed process can be executed without any syntactic issue.
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(Pw6
) Variable Initialization. Assuming that preexisting elements are initialized, the vari-

ables handled in a composed process are initialized too, by construction.

For a given fragment f , ghost variables are the only one which do not need to be initialized:
they are replaced with concrete elements by the algorithm. Assuming that the handled
processes (both fragment and targeted process) always initialize a variable before using
it, the algorithm ensures that no uninitialized variable can be encountered in a composed
process (thanks to the path preservation property Pw3

). At the implementation level, the
verification of variable initializations relies on an exploration of all possible execution paths,
which is a very time–consuming operation. As a consequence, it is faster to check this
property on small artifacts, and ensure that the composed (eventually huge) process is still
valid.

(Pw7
) Process Response. For each received message, a response message will be generated by

the composed process

The entry–to–exit property (PROP. 4.12) ensures that a fragment f always defines a path
between its entry point P(f) and an exit point (S(f), a throw or a reply activity). This
property must also be true in the targeted process. The algorithm binds P(f) and S(f) to
concrete activity. As a consequence, the newly added activities are connected to the process
entry point (through P(f) binding) and to the preexisting exit point through S(f) binding
(if needed). Consequently, we can ensure that each activity (which is not an exit point) is
connected to at least one exit point in the composed process.

7.5 PICWEB Illustration

In this section, we describe the usage of the WEAVE algorithm to design the PICWEB business
process. It illustrates the algorithm capabilities in front of a real–life example.

7.5.1 Initial Artifacts: Fragments & Process

We consider as base process the realization of the getP ictures behavior depicted in FIG. 5.7(a)
(p. 55). This orchestration receives a tag and a threshold. It asks for an API key associated to a
FLICKR® account through a registry service. Then, the FLICKR® service is invoked with the
received tag and the freshly retrieved key. The obtained set of images picture⋆ is then truncated
according to the user–given threshold, and finally returned to the caller.

Based on this implementation of this business process, we focus on the realization of the
following concerns: (i) including PICASA™ as a newly available source of pictures, and (ii) take
care of a possible timeout from a picture source.

Including PICASA™. This concern is realized by the fragment depicted in FIG. 7.11. This
fragment hooks an activity (h) which consumes a flag and produces a set of data res⋆. In parallel
of this hook, the fragment calls the PICASA™ service (aP1) using the hooked flag, to retrieve the
set of picture available in the PICASA™ repository (in the pic⋆ variable). Finally, the two datasets
are merged (aP2), and the preexisting execution flow can continue.

Handling a timeout issue. This concern is realized by the fragment depicted in FIG. 7.12.
In parallel of the hooked activity (h, producing a data⋆ variable), it starts a stopwatch, for 60
seconds (t1). We use weakWaits relation to define an alternative path: if the stopwatch reaches
zero before the end of the hooked activity, the expected data⋆ variable is initialized with an empty
list (t2).
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Fragment addPicasa

P

h (res*) := hook(flag) aP1 (pic*) := picasa::explore(flag)

S

aP2 (res*) := helpers::merge(res*,pic*)

Figure 7.11: Graphical representation of the addPicasa fragment

Fragment timeout

P

h (data*) := hook()

t1 stopwatch::wait(’60’)

S

t3 nop()

t2 (data*) := empty()

Figure 7.12: Graphical representation of the timeout fragment

7.5.2 Weaving a Fragment into Another Fragment

We consider here the following requirement: “an eventual timeout of the PICASA™ source implies

to silently ignore the situation”. Since this requirement is defined globally, we decide to weave the
timeout fragment into the addP icasa one. Consequently, each usage of the addP icasa fragment
will include the timeout concerns. The obtained result is depicted in FIG. 7.13.

7.5.3 Enhancing the getPictures Business Process

Using the composed fragment built in the previous section, a designer can now integrate the PI-
CASA™ source into the legacy getP ictures process. As a result (FIG. 7.14), the composed process
realizes the legacy behavior, and also call the PICASA™ service, including a mechanism to handle
an eventual timeout.
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Fragment addPicasa

P

h (res*) := hook(flag)

aP1 (pic*) := picasa::explore(flag) t1 stopwatch::wait(’60’)

S

aP2 (res*) := helpers::merge(res*,pic*)

t3 nop()

t2 (pic*) := empty()

Let u ∈ U , addP icasa ∈ procs(u), timeout ∈ procs(u)

S = WEAVE({ω(timeout, {aP2},≡)}, addP icasa), u′ = do+(S, u)

Figure 7.13: Enhanced addP icasa, including the timeout concern
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Orchestration picweb::getPictures

rcv (tag,threshold) := receive()

a1 (key) := registry::getByKey(’flickr’)

a2 (picture*) := flickr::getPictures(tag,key)

t1 stopwatch::wait(’60’) aP1 (pic*) := picasa::explore(tag)

ap2 (picture*) := helpers::merge(pic*,picture*)

a3 (picture*) := helpers::truncate(picture*,threshold)

rpl reply(picture*)

t2 (pic*) := empty()

t3 nop()

Let u0 ∈ U , addP icasa ∈ procs(u0), timeout ∈ procs(u0)

S0 = WEAVE({ω(timeout, {aP2},≡)}, addP icasa), u1 = do+(S0, u0)

Let getP ictures ∈ procs(u1), addP icasa ∈ procs(u1)

S1 = WEAVE({ω(addP icasa, {a2},≡)}, getP ictures), u2 = do+(S1, u1)

Figure 7.14: Composed getP ictures, including addP icasa and timeout
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MERGE concerns around Shared Join Points

«Do the difficult things while they are easy and do the great things

while they are small. A journey of a thousand miles must begin

with a single step.»
Lao Tzu
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8.1 Introduction

In the previous chapter, we described the WEAVE algorithm, which supports the integration of
fragments inside preexisting processes. It consumes a set of weave directives as input, and pro-
duces the sequence of actions needed to perform the expected integrations. It naturally allows
several directives to share the same activity block as target, and treats these directives as in-
dependent. However, considering a collaborative development context, (where several designers
work simultaneously on the same system), this situation should be detected and designers in-
formed: they are trying to enhance a process with different concerns, at the same location. The
AO* community identifies this issue under the name of Shared Joint Point (SJP).

107
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“It is possible that not just a single, but several units of aspectual behavior need to be superimposed

on the same join point. Aspects that specify the superimposition of these units are said to “share”

the same join point.” [Nagy et al., 2005]

In this chapter, we focus on the following problem: “How can one integrate several fragments
at the same location in the base program?”. Where usual Separation of Concerns techniques pro-
vides order–driven techniques, we choose an opposite approach, based on a MERGE algorithm. We
discuss in SEC. 8.2 the motivations of this choice. The algorithm is then described in SEC. 8.3.
Based on this algorithm and the WEAVE one, we implement in SEC. 8.4 a development method-
ology which supports designers while performing simultaneous compositions. This method is
finally applied to the PICWEB running example in SEC. 8.5

8.2 Algorithm Motivations: “Why not simply ordering?”

8.2.1 Step–Wise: Order as the Keystone of Feature Compositions

Step–wise development relies on ordering mechanisms, by essence. In such an approach, fea-
tures are composed sequentially, step by step. The AHEAD framework [Batory et al., 2004] uses
mathematical function composition mechanism (f • g(x) = f(g(x))) to compose features into a
global system. This approach is natural and intuitive: if one wants to add a security feature into
a base program p, he/she just needs to express the associated composition: p′ = security • p. Each
composition defines a step in the development process.

This approach makes designers think about the features they design, as well as the way
these features needs to be ordered. Considering a feature dealing with persistence and another
one dealing with security, one can decide to secure the persistence feature using the follow-
ing composition: security • persistence. Even if syntactically correct, the opposite composition
persistence • security may lead to semantic–driven issue (e.g., “persistent password”). Mathe-
matics techniques such as commuting diagrams can be used to identify and assess feature com-
position order [Batory, 2008]. For example, in [Kim et al., 2008], authors explore the ordering
problem to identify type–safe composition. When the different features are independent, the
composition order does not matter. Let f1 and f2 two features, and p a program. If we consider
f1 and f2 as independent (i.e., these two features do not interact with the same element), the
composition order is not important: indepedent?(f1, f2)⇒ f1 • f2 • p = f2 • f1 • p

 ADORE defends a slightly different position, which is complementary to the ones described
in the step–wise paradigm. We consider a step with a more coarse–grained definition: a set
of concerns of equivalent priority needs to be integrated into the legacy architecture. This
approach is common according to agile development methodology. In these methodologies1,
the step notion is reified as a sprint, i.e., “a time-boxed period of software development
focused on a given list of goals”. It lengths approximatively a month, used by the team

to fulfill the goals they had accepted. ADORE supports designers inside a step (FIG. 8.1),
when the composition of concerns with the same priority (i.e., integrated in the same step)
generates unanticipated interferences.

8.2.2 Aspect–Ordering Should Not Be a Technical Answer

Major AO* techniques rely on aspect–ordering to handle shared join points. Using these tech-
niques, one can declare precedence rules between several aspects, and then explicitly define the
way the different aspects will be executed at runtime. Implementation of AO* approaches such
as ASPECTJ [Kiczales et al., 2001] rely on this mechanism. In this framework, the order can be
defined (i) explicitly with the declare precedence construction or (ii) implicitly, depending the
way the different aspects are written. Using aspect ordering to solve an interaction spawn by a

1For concision reasons, we use here the vocabulary defined by the SCRUM method [Schwaber and Beedle, 2001].
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Figure 8.1: Development approach: The MERGE algorithm, supporting the WEAVE one.

shared join point is a coarse–grained resolution method. Let α and α′ two aspects, and a prece-
dence relation precedes(α, α′). This precedence declaration implies that the advice associated to
α will be located before the advice code associated to α′ in the aspect execution chain (see APP. C).
Such a mechanism is defined as mandatory by state–of–art research about AO* development:

“Ordering Aspects – To ensure the required behavior of the superimposed aspects at SJPs, it

must be possible to specify the execution order of the aspects.” [Nagy et al., 2005]

With this mechanism, two approaches can be used to define a system:

• A1. One can work on a given system, identity relations between aspects and then decide of
an order, following the same idea than the step–wise approach (but there is no composition
order exploration support).

• A2. Another approach is to perform the weaving, identify bugs in the aspectized system,
and use aspect–ordering to patch it.

There is no intrinsic difference between these two opposite approaches in state–of–the art imple-
mentation of AO* mechanisms.

 We defend that using aspect–ordering mechanisms to patch aspect interferences is a tech-
nical answer to a badly–stated problem. If two aspects needs to be explicitly ordered (A1),
they should not belong to the same development step. But if several aspects interfere
in a given step (A2), this information must be raised to the designers, who can then fo-
cus on the understanding on the interference, at the aspect level (and not the composed
system one). In ADORE, SJP are automatically identified. We define the MERGE algo-
rithm to support designers in front of SJP. The shared fragments are merged, and then
returned to the designer who can work on the merge fragment to solve interferences, if any.
One can found in the literature others alternative mechanisms to handle shared join point
(e.g., [Douence et al., 2004, Lopez-Herrejon et al., 2006]).

8.2.3 Ensuring a Deterministic Composition Mechanism

The ASPECTJ framework makes the choice to accept non–deterministic behavior when no order
are defined:

“Otherwise, if two pieces of advice are defined in two different aspects, it is undefined which one

has precedence.”

http://www.eclipse.org/aspectj/doc/next/progguide/s emantics-advice.html

http://www.eclipse.org/aspectj/doc/next/progguide/semantics-advice.html
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At runtime, the framework will implicitly choose an execution order between the two aspects,
due to its sequential handling of aspects. This decision is hidden to the developer, and may lead
to the introduction of unanticipated interactions (see APP. E).

 We defend that the composition process must ensure a deterministic result while handling
several fragments at the same join point. The reification of a MERGE algorithm and its
associated semantic in ADORE tackles this issue.

8.2.4 Identifying Shared Join Points in Collaborative Design

ASPECTJ does not inform its users when a shared join point is encountered. The underlying
dynamic model can explain this decision: aspects can be triggered at runtime according to a
dynamic pointcut declaration. ADORE restricting itself to static weaving, a static identification of
the shared join points is possible. This information can then be raised to the designers, requiring
a particular attention when their fragments must be woven at the same location than others.

 In ADORE, shared join points are automatically detected, and designers informed. A merged

fragment can be obtained as a default behavior, through the usage of the MERGE algorithm.
Designers can decide to refuse this default fragment, and interact together to design an
optimized one.

8.3 The MERGE Algorithm

This section describes the principles of the MERGE algorithm, and then provides a description of
the algorithm.

8.3.1 Principles

Identifying Shared Join Points. The previously defined WEAVE algorithm (CHAP. 7) uses as
input a set of binding directives Ω ∈ Directive⋆. The algorithm does not reason about the given
directive set, and generates the actions associated to each directive. When several designers
work together on the same system, the most simple way to integrate their decisions in the final
system is to perform the union of their respective directives (SEC. 7.3). Through the analysis of
the Ω directive set, it is possible to automatically identify shared join points.

We define the two following functions to identify shared join points in a given set of directives.
The isShared? boolean predicate allows one to check if a fragment target is shared with other
ones. The shared function returns the set of fragments woven at the same location B for a given
set of directives Ω.

isShared? : A⋆ ×Directive⋆ → B

(B,Ω) 7→ ∃ω(f,B, β) ∈ Ω, ∃ω(f ′, B, β′) ∈ Ω, f 6= f ′

shared : A⋆ ×Directive⋆ → F⋆

(B,Ω) 7→ {f | isShared?(B,Ω) ∧ ∃ω(f,B, β) ∈ Ω}

Fragment Activities Unification. We denote as F = {f1, . . . , fn} ∈ F
⋆ a set of fragments

shared around the same join point. The merged fragment is defined as the union of the fragments
(discharged in a new fragment f ′) , where predecessors, successors and hooks are unified. We
denote as ctx the context used to generate new symbols.

Let P = {p | ∃f ∈ F, p = P(f)}, S = {s | ∃f ∈ F, s = S(f)}, H = {h | ∃f ∈ F, p = hook(f)}

 (u(P, gensym(P, ctx), f ′), u(S, gensym(S, ctx), f ′), u(H, gensym(H, ctx), f ′))
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Ghost Variable Unification. We follow the same mechanism than the one defined in the
WEAVE algorithm. A user–defined unification function υ : V⋆ → B allows designer to identify
variables that need to be unified while merging the fragment set.

Let Vin = {v | ∃f ∈ F, v ∈ inputs(hook(f))}, Vout = {v | ∃f ∈ F, v ∈ outputs(hook(f))}

 ()
+

← [ {u(V, gensym(V, ctx), f ′) | ∃V ⊆ Vin, υ(V )}
+

← [ {u(V, gensym(V, ctx), f ′) | ∃V ⊆ Vout, υ(V )}

8.3.2 Illustrating Example

In this section, we consider three fragments: bef (FIG. 8.2(a)), par (FIG. 8.2(b)) and aft (FIG. 8.2(c)),
and the following weave directive set:

Ω = {. . . , ω(bef,B,≡), . . . , ω(par,B,≡), . . . , ω(aft,B,≡), . . .} ∈ Directive⋆

Fragment bef

P

bef before::do(in)

S

h hook(in)

(a) bef ∈ F

Fragment par

P

h hook(data) par parallel::do(data)

S

(b) par ∈ F

Fragment aft

P

h (out) := hook()

S

aft after::do(out)

(c) aft ∈ F Fragment f

bef before::do(v’)

h’ (out) := hook(v’)

aft after::do(out)

S

par parallel::do(v’)

P

(d) Expected merged fragment: (data ≡ in) v′

Figure 8.2: Illustrating the MERGE algorithm: MERGE({bef, par, aft},≡, f)

We use this example to illustrate the principles of the algorithm. The expected result (ob-
tained after the execution of the generated actions) is depicted in FIG. 8.2(d).

• Shared Join Point Identification. According to the previously defined shared function, the
composition engine identifies that B is a shared join point: shared(B,Ω) = {aft, bef, par}.
This information is raised to the designers, who now know that a shared join point exists
in their system.
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• Fragment Activities Unification. To create the merged fragment, three shared fragments are
discharged into a newly created one (empty, denoted as f ). Then, predecessors, successors
and hooks elements are respectively unified, to build the final behavior.

• Ghost Variable Unification. The designers involved in the definition of bef , aft and par are
informed of the situation. Consequently, they can assess their own fragment according to
the other ones. In this example, the data variable used in the par fragment represents the
same concrete element than the in variable defined in bef . These two variables are then
unified into a new one (v′).

8.3.3 Algorithm Description & Properties

The MERGE algorithm is fully described in ALG. 5. It takes as input a multiset of fragments (Φ),
an unification function (υ) and the expected name for the merged fragment (f ). The first line
initializes a context, and then fills the generated action list with initial actions: (i) creating an
empty fragment named f , and then discharging all the fragments contained in Φ into f . The
“fragment activity unification” step is realized through the lines three and four, which compute
the set of activities to unify (P , S and H) and then generate the associated unification action.
According to the υ function, lines six and seven realize the “ghost variable unification” step.
Finally, the generated action set is returned at line eight.

Algorithm 5 MERGE: Φ× υ × f 7→ actions

Require: Φ = {f1, . . . , fn} ∈ F
⋆, (υ : V⋆ → B) ∈ Function, f ∈ GroundTerm, ∄π ∈ P, name(π) = f

Ensure: acts ∈ Actions⋆<

1: ctx← [ context(), acts← [ (addp(f, ∅, ∅, ∅)) ∪ {d(φ, f) | φ ∈ Φ} { Initialization }
2: { Fragment Activities Unification }
3: P ← [ {π | φ ∈ Φ, π = P(φ)}, S ← [ {σ | φ ∈ Φ, σ = S(φ)}, H ← [ {h | φ ∈ Φ, h = hook(φ)},
4: acts

+
← [ (u(P, gensym(P, ctx), f), u(S, gensym(S, ctx), f), u(H, gensym(H, ctx), f))

5: { Ghost Variables Unification }
6: Vin ← [ {v | ∃φ ∈ Φ, v ∈ inputs(hook(φ))}, Vout ← [ {v | ∃φ ∈ Φ, v ∈ outputs(hook(φ))}

7: acts
+
← [ {u(V, gensym(V ), f) | ∃V ⊆ Vin, υ(V )} ∪ {u(V, gensym(V ), f) | ∃V ⊆ Vout, υ(V )}

8: return acts { Exit }

The algorithm ensures the two following properties: (i) determinism and (ii) parallel compo-
sition.

(i) Determinism. By construction, the algorithm generates unification actions according to the
received set of fragments Φ, and the unification function υ. Assuming that υ is a determin-
istic function, the MERGE algorithm ensures to always compute the same actions set.

(ii) Parallel Composition. The MERGE algorithm builds the final fragment by discharging all
shared fragments into the merged one. The performed unifications never create direct re-
lations between activities from different fragments. The hook activity is considered as a
synchronization point for all the fragments: a post–hook activity a from a fragment f may
transitively wait the end of an activity a′ defined in another fragment f ′. Considering the
fact that these two behavior share the hook activity, such a wait is considered as expected.
Consequently, the MERGE algorithm ensures that the behaviors defined in different frag-
ments are executed in parallel and synchronized on the unified hook.

(iii) WEAVE Equivalence. According to he parallel composition property, using a MERGE allows
the highlighting of a shared join point, but does not interfere with the final composition re-
sult (obtained with multiple execution of the WEAVE algorithm). Assuming that designers
does not modify the merged result, using in a WEAVE invocation (i) a directive consuming
the merged fragment or (ii) the initial directives are equivalent. This behavior is expected:
without any choice introduced by the designers, the MERGE algorithm must not interfere
with the WEAVE one. Its intrinsic goal is to highlight shared behavior and support the obliv-
ious assessment of merged fragments. The merged fragment is analyzed by the interference
detection rules to highlight problems.
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8.4 Taming Process Design Complexity

The previous section describes the MERGE algorithm in–the–small. We propose now a model-
ing approach which integrates together the WEAVE and the MERGE algorithm, as sketched in
FIG. 8.1. A preliminary version of this approach is described in [Mosser et al., 2008a]. We use
this approach and the associated implementation in the two case studies used to assess ADORE

(PART IV).

8.4.1 Prerequisite: An Algorithm Invocation Pool (I)

The goal of this approach is to support designers while they design large processes. We consider
now that several designers are working on the same system. As we describe in the previous chap-
ter, they design orchestrations, fragments, and express WEAVE directives to integrate fragments
into other processes.

We reify the invocations of the WEAVE algorithm as first class entities. Designers deposit their
invocations in an invocation pool I, in an oblivious way. When the system is asked to perform the
composition, the invocations stored in the pool are executed, and the final system is built.

8.4.2 Principle: Automated Reasoning on the Invocation Pool

The principle of the proposed approach is simple: based on the invocations stored in I, we auto-
mate the combination of interacting directives. This automation is done through an oracle named
“algorithm scheduler”. It supports designers while composing processes at two levels: (i) a static
analysis of the expressed directives and (ii) by scheduling the execution of the algorithm to reach
designers goals.

Static Reasoning. This part of the reasoning is done statically, based on the element de-
fined in the invocation pool. These mechanisms follow the same ideas than the ones defined
in MATA [Whittle et al., 2009], but rely on a business–rules approach instead of a critical–pair
analysis.

• Invocation Union. According to the WEAVE semantic, the directives defined in an invocation
do not interfere with each others. Based on this property, the scheduler rewrites several
WEAVE invocations targeting the same process as a single invocation using the union of the
preexisting directives.

Let I1 = WEAVE({ω(f,B, β)}, p) ∈ I, I2 = WEAVE({ω(f ′, B′, β′)}, p) ∈ I

 WEAVE({ω(f,B, β)}, p), ω(f ′, B′, β′)}, p) ∈ I, I1 6∈ I, I2 6∈ I

• Fragment Multiple Uses. The algorithm consumes their input elements. As a consequence,
if one decides to use the same artifact several times, it needs to be cloned before. The
scheduler detects such multiple usage of the same fragment, expresses clone directives,
and rewrites the invocation to use the clones instead of the original artifact.

Let I1 = WEAVE({ω(f,B, β)}, p) ∈ I, I2 = WEAVE({ω(f,B′, β′)}, p′) ∈ I

 CLONEPROCESS(f, f ′) ∈ I, WEAVE({ω(f ′, B′, β′)}, p′) ∈ I, I2 6∈ I

• Shared join Point Merge. When a shared join point is identified, the scheduler builds the
associated MERGE2, and uses a single WEAVE invocation to perform the integration. This
situation is considered as potentially harmful (interferences may spawn), so the designers
are informed with a warning. They can then assess the merged fragment in isolation with
the other elements, and tackle the issue created by this shared join point.

Let I1 = WEAVE({ω(f,B, β1)}, p) ∈ I, I2 = WEAVE({ω(f ′, B, β2)}, p) ∈ I

 MERGE({f, f ′}, β1 ∪ β2, µ) ∈ I, WEAVE({ω(µ,B, β)}, p) ∈ I, I1 6∈ I, I2 6∈ I

2We do not address in ADORE the automatic composition of the binding functions {β1, . . . , βn} into something more
complicated than a function ∪β which reaches the union of their image spaces
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Execution Scheduling: Composition Chain. When invocations do not rely on each others,
they can be executed in an arbitrary order. But when an invocation I uses as input an element
created by an invocation I ′ (such as a cloned fragment), it is clear that I ′ must be executed before
(i.e., the invocation is played to retrieve the associated actions set S, and S is executed to really
create the needed element). The scheduler supports this chaining by analyzing dependencies3 in
the expressed invocations, and executing the calls consequently.

8.4.3 Storing Designers Choices in a Knowledge Basis (Ξ)

The MERGE algorithm is used to assess the behavior built around a shared join point. If a
merged fragment contains errors due to an unanticipated interference, the designer may express
one or more actions to solve it. These actions must be capitalized to allow their reuse in similar
situations.

Ξ, the ADORE knowledge basis. We define a very simple knowledge basis to store designers
decisions. The basis can store rules, in a logical form A ⇒ B. If the prerequisite expressed as
A is satisfied, the actions defined as B are concatenated with the ones generated by the usual
algorithms.

Let µ a fragment obtained as the merge of two fragments f1 and f2. An interference appears,
and the designers decide to perform a re–ordering between two activities a and a′ to avoid such
a situation. The following rules is added into the knowledge basis:

Ξ
+

← [ merge({f, f ′})⇒ a ≺ a′

We consider now a later situation, where fragments f , f ′ and f ′′ must be woven on a shared
join point. A merge is triggered, asking the ADORE engine to merge these three fragments. The
previously added rule is satisfied (we are merging f and f ′), and the associated action4 is added
at the end of the generated ones by the scheduler:

S = MERGE({f, f ′, f ′′},≡, φ)
+

← [ addr(a ≺ a′, φ)
︸ ︷︷ ︸

Ξ rule

Limitations & Perspectives. We consider here a syntactic solution, where designer must
solve interferences at the activity instance level. At the technical level, the knowledge basis
interrogation is not efficient: it must take care of activity derivation while satisfying the rules.
We do not allow the expression of business–driven rules (e.g., “an invocation of the operation crypt
must always be the first one”). The usage of semantic web technologies to tackle this limitation
is exposed as a perspective. Another limitation is the absence of consistency verification in the
knowledge basis. We assume that the rules expressed in Ξ are consistent regarding each others,
and will not generate unexpected behavior.

8.5 Modeling PICWEB . . .

In this section, we show how the previously described modeling process is used to build the
PICWEB system. We use the “☛ ” symbol to denote an element expressed by the designers while
they perform the composition. We use the u0 symbol to denote the initial universe.

8.5.1 The Initial PICWEB System: FLICKR®, PICASA™ & Timeout

(u0) Base Universe. We consider here the realization of the requirements as business pro-
cesses. The base universe contains:

3We assume that circular dependencies were previously rejected or manually handled.
4At the implementation level, we must perform an analysis of the cloned entity to retrieve the current element instead

of their origins while handling cloned processes.
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☛ Two orchestrations getP ictures (FIG. 5.7(a)) to retrieve the set of relevant pictures and
truncate (FIG. 4.7) to restrict a set cardinality up to a given threshold.

☛ Two fragments: addP icasa (FIG. 7.11) to retrieve pictures stored in the PICASA™ repository,
timeout (FIG. 7.12) to handle an eventual repository timeout.

(u1) Introducing PICASA™ & Timeout. The addP icasa fragment is given by the user, and
asked to be woven on the FLICKR® invocation. According to the requirements, the timeout con-
cern impacts both FLICKR® and PICASA™ repository. We factorized this concern into a single
fragment timeout. This fragment needs to be woven into the addP icasa fragment (on the PI-
CASA™ invocation, aP1) and into the getP ictures orchestration (on the FLICKR® invocation, a2).
Designers express the two following WEAVE invocations I1 and I2 to perform such a goal:

☛ I1 = WEAVE({ω(timeout, {aP1},≡)}, addP icasa)

☛ I2 = WEAVE({ω(addP icasa, {a2},≡), ω(timeout, {a2},≡)}, getP ictures)

Based on these two invocations, the algorithm scheduler identifies the following situations:
(i) the timeout fragment is used twice, (ii) the a2 activity of the getP ictures process is a shared
join point and finally (iii) the second invocation I2 uses a fragment enhanced by the invocation of
I1. The scheduler performs the re–ordering, and executes the following sequence of actions:

τ1 = do+(CLONEPROCESS(timeout, t′), u0)

τ2 = do+(WEAVE({ω(timeout, {aP1},≡)}, addP icasa), τ1)

τ3 = do+(MERGE({addP icasa, timeout},≡, µ), τ2)

τ4 = do+(WEAVE({ω(µ, {a2},≡)}, getP ictures), τ3)

The shared join point information is sent to the designers, who examine the merged fragment
(denoted as µ) depicted in FIG. 8.3(a). The interference detection mechanism identifies a con-
current access to a variable in the merged process: v⋆ is concurrently accessed by t2 and aP2

5.
An equivalence between the two stopwatch activities (t1 and t′1) is also detected. Designers de-
cide (i) that the activity used to merge the picture sets must be the final one (aP2) and (ii) that
the two stopwatch must be unified. Knowledge is added in the knowledge basis Ξ, to store this
information, and the algorithm is re–played to build the expected result according to these new
information (FIG. 8.3(b)).

☛ Ξ
+

← [ merge({addP icasa, timeout})⇒ t3 ≺ aP2 ∧ u({t1, t
′
1}, t)

Acts = MERGE({addP icasa, timeout},≡, µ)

Acts
+

← [ (addr(t3 ≺ aP2, µ), u(t1, t
′
1, µ)) (cf. Ξ)

τ ′3 = do+(Acts, τ2)

u1 = do+(WEAVE({ω(µ, {a2},≡)}, getP ictures), τ ′3)

8.5.2 Introducing Fault Management

We consider now a version of PICWEB which needs to deal with FLICKR® faults. Based on the
requirements of the PICWEB system, we consider that the FLICKR® repository may respond fault
messages. In this case study, we consider two different faults: (i) the given key is not valid
because of an account deactivation (invalid) and (ii) the daily call quota is reached (overflow).
The requirements ask to silently ignore the fault

☛ We use the two fragments6 depicted in FIG. 8.4 to handle FLICKR® faults.

5At the implementation level, the engine also identifies a concurrent access between h′ and t2. The activity exclu-
siveness function does not take into account downstream weakWait relations. However, one can flag this conflict as a
false–positive one.

6These two fragments are instantiation of a generic one, defined to handle a fault f . We describe in APP. B an
instantiation algorithm (based on the CLONEPROCESS algorithm, including user–given substitution while cloning) used
to perform such a task.
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Fragment mu

t1’ stopwatch::wait(’60’)

t2’ (pic*) := empty()

t3’ nop()

aP2 (v*) := helpers::merge(pic*,v*)

aP1 (pic*) := picasa::explore(flag)

S

t1 stopwatch::wait(’60’)

t2 (v*) := empty()

t3 nop()

P

h’ (v*) := hook(flag)

(a) Automatically built µ ∈ procs(τ3): interference on v⋆ for {aP2, t2}, t1 ≡ t′1

Fragment mu

t2’ (pic*) := empty()

t3’ nop()

aP2 (v*) := helpers::merge(pic*,v*)

aP1 (pic*) := picasa::explore(flag)

S

t stopwatch::wait(’60’)

t2 (v*) := empty()

t3 nop()

P

h’ (v*) := hook(flag)

(b) µ ∈ procs(τ ′3), with Ξ actions (re–ordering & unification)

Figure 8.3: PICWEB merged fragment: PICASA™ & timeout concerns
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Fragment ignoreInvalid

P

h (data*) := hook()

S

iI1 log::write(’fault!’,invalid)

invalid

iI2 (data*) := empty()

(a) ignoreInvalid ∈ F

Fragment ignoreOverflow

P

h (data*) := hook()

S

iO1 log::write(’fault!’,overflow)

overflow

iO2 (data*) := empty()

(b) ignoreOverflow ∈ F

Figure 8.4: Fault management (silent ignore) fragments defined in PICWEB

These two fragments must be woven on the FLICKR® invocation defined in the getPictures
business process. Designers define the following WEAVE invocation to fulfill this requirement:

☛ I3 = WEAVE({ω(ignoreInvalid, {a2},≡), ω(ignoreOverflow, {a2},≡)}, getP ictures)

While reasoning on I1, I2 and I3, the algorithm scheduler identifies that the a2 shared join
point involves now four fragments: addP icasa, ignoreInvalid, ignoreOverflow and timeout. The
algorithms calls are rewritten as the following:

Acts = MERGE({addP icasa, ignoreInvalid, ignoreOverflow, timeout},≡, µ)

Acts
+

← [ (addr(t3 ≺ aP2, µ), u(t1, t
′
1, µ)) (cf. Ξ)

τ5 = do+(Acts, τ2)

τ6 = do+(WEAVE({ω(µ, {a2},≡)}, getP ictures), τ5)

While assessing the µ fragment, the designers identify two issues: (i) the aP2 activity must be
the last one (a concurrent access on v⋆ is identified by the engine) and (ii) the two activities used
to ignore a fault (iI2 and iO2) may be unified into a single one (considering that iI2 ≡ iO2). These
decisions are added in the knowledge repository, and the algorithm produces the expected result
as output.

☛ Ξ
+

← [ merge({addP icasa, ignoreInvalid})⇒ iI1 ≺ aP2

☛ Ξ
+

← [ merge({addP icasa, ignoreOverflow})⇒ iO1 ≺ aP2

☛ Ξ
+

← [ merge({ignoreInvalid, ignoreDisconnection})⇒ u({iI1, iO1}, i)

Acts = MERGE({addP icasa, ignoreInvalid, ignoreOverflow, timeout},≡, µ)

Acts
+

← [ (addr(t3 ≺ aP2, µ), u(t1, t
′
1, µ), addr)

Acts
+

← [ (addr(iI1 ≺ aP2, µ), addr(iO1 ≺ aP2, µ), u({iI1, iO1}, i, µ)

τ ′5 = do+(Acts, τ2)

u2 = do+(WEAVE({ω(µ, {a2},≡)}, getP ictures), τ ′5)

We represent in FIG. 8.6 the getP ictures process obtained in u2.

8.5.3 Step–Wise Development: Adding Cache Mechanisms

We show in the previous section how ADORE is used to support the modeling of large processes.
With this approach, we consider that a set of composition algorithm invocations are simultane-
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Fragment mu

t2’ (pic*) := empty()

t3’ nop()

aP2 (v*) := helpers::merge(pic*,v*)

aP1 (pic*) := picasa::explore(flag)

iI1 log::write(’fault!’,invalid)

S

t stopwatch::wait(’60’)

t2 (v*) := empty()

t3 nop()

iI2 (v*) := empty()

iO1 log::write(’fault!’,overflow)

iO2 (v*) := empty()

P

h’ (v*) := hook(flag)

invalid

overflow

(a) µ, automatically built

Fragment mu

t2’ (pic*) := empty()

t3’ nop()

aP2 (v*) := helpers::merge(pic*,v*)

aP1 (pic*) := picasa::explore(flag)

S

t stopwatch::wait(’60’)

t2 (v*) := empty()

t3 nop()

iI1 log::write(’fault!’,invalid)

i (v*) := empty()

iO1 log::write(’fault!’,overflow)

P

h’ (v*) := hook(flag)

invalid

overflow

(b) µ, including actions added in the knowledge basis

Figure 8.5: PICWEB merged fragment µ (including PICASA™ & timeout concerns)
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Orchestration picweb::getPictures

rcv (tag,threshold) := receive()

a1 (key) := registry::getByKey(’flickr’)

a2 (picture*) := flickr::getPictures(tag,key)

aP1 (pic*) := picasa::explore(tag)

t stopwatch::wait(’60’)

t3 nop()

iI1 log::write(’fault!’,invalid)

invalid

iO1 log::write(’fault!’,overflow)

overflow

a3 (picture*) := helpers::truncate(picture*,threshold)

rpl reply(picture*)

t2’ (pic*) := empty()

t3’ nop()

aP2 (picture*) := helpers::merge(pic*,picture*)

t2 (picture*) := empty()

i (picture*) := empty()
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ously defined, and executed independently of the order they were expressed. In usual step–wise
development methods, features are composed one after one, in a sequential way. We defend that
the approach proposed with ADORE is complementary: one can use ADORE to implement a step–
wise development method, as we sketched in the motivations section.

PICWEB Illustration. We illustrate this idea on the PICWEB example. We consider that the
system obtained in the previous section is the result of a first composition step. A designer wants
to add a cache mechanism to end the design of the getP ictures orchestration. This is clearly the
next step according to PICWEB semantic:

• Step 0 was the implementation of the base processes,

• Step 1 dealt with the enhancement of the base process to deal with multiple repositories
and the associated faults,

• Step 2 will focus now on processes performance.

As a consequence, the cache must store the pictures retrieved from the two repositories. At
the ADORE level, the cache fragment FIG. 5.7(b) is woven on all the activities defined in the
composed getP ictures, excepting {rcv, a1, a3, rpl}.

☛ S = WEAVE({ω(cache, acts(getP ictures)\{rcv, a1, a3, rpl},≡), getP ictures)

☛ u3 = do+(S, u2)

The final process, obtained after this new composition step, is depicted in FIG. 8.7.
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Orchestration picweb::getPictures

rcv (tag,threshold) := receive()

a1 (key) := registry::getByKey(’flickr’)

c1 (val) := cache::isValid(tag)

a2 (picture*) := flickr::getPictures(tag,key)

t3 nop()

iI1 log::write(’fault!’,invalid)

invalid

iO1 log::write(’fault!’,overflow)

overflow

a3 (picture*) := helpers::truncate(picture*,threshold)

rpl reply(picture*)

t2’ (pic*) := empty()

t3’ nop()

aP2 (picture*) := helpers::merge(pic*,picture*)

aP1 (pic*) := picasa::explore(tag)

c3 cache::store(tag,picture*)

t stopwatch::wait(’60’)

t2 (picture*) := empty()

i (picture*) := empty()

val val val

c2 (picture*) := cache::read(tag)

!val
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9
Improving Performances with the INLINE Algorithm

«You cannot simply put something new into a place. You have to

absorb what you see around you, what exists on the land, and then

use that knowledge along with contemporary thinking to interpret

what you see.»
Tadao Ando
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9.1 Introduction

In the previous section, we described the implementation of Separation of Concerns techniques
such as the WEAVE and the MERGE algorithm. In this section, we focus on a new kind of compo-
sition, inspired by the compilation technological domain: “process inlining”. We understand the
word inline according to its definition in the C++ language standard:

“The inline specifier indicates to the implementation that inline substitution of the function body

at the point of call is to be preferred to the usual function call mechanism.” [ISO, 2003]

In this chapter, we start by motivating the need for such a composition in the context of SOA.
We describe in SEC. 9.2 how an implementation of the PICWEB system can be speeded up using
such a technique. Then, we provide in SEC. 9.3 a formal description of the algorithm, and its
intrinsic limitation. We finally end this chapter in SEC. 9.4 by showing how the algorithm is
used to automatically enhance the PICWEB models.
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9.2 Motivating Example: PICWEB Slow Execution

We identified the need for an INLINE algorithm with the usage of the JSEDUITE instance daily
used in the POLYTECH’NICE engineering school. The fact was simple: the JSEDUITE system was
slow. Very slow. This section restricts the problem to its pure essence, and expresses it on the
PICWEB example.

Technical Information. All the experimentations made in this section were made on a Mac-
Book Pro computer, running Mac OS X 10.4.11 and built upon a 2.2 GHz Intel Core 2 Duo pro-
cessor and 2Go of RAM memory. We use the Glassfish 2.1 application server, and the associated
BPEL engine. The client is written using JAX-WS web services stack, as included in Netbeans
6.5.1. To control the execution time of the FLICKR® service and avoid network latency or uncon-
trolled server overload, we use a simulator for this service. This simulator generates a set of fake
picture URLs instead of exploring the real repository.

9.2.1 Implementation Benchmark: Average Invocation Time

Based on an intensive usage of PICWEB processes implementation (APP. D), we remark that the
getP ictures process seems to be slow. To ease the description of the problem, we consider here
the initial version of PICWEB. It contains two business processes: (i) truncate to restrict set
cardinality up to a given threshold, and (ii) getP ictures to retrieve the set of pictures expected
by the final user. We also consider the FLICKR® service, used to explore the FLICKR® repository
content. A registry is needed to use FLICKR® at a technical level, but it is ignored in the context
of this experience since it produces results equivalent to the FLICKR® service.

To assess the system, we instrumented the PICWEB implementation to control: (i) the aver-
age execution time of a service invocation and (ii) the cardinality of the picture set handled by
the processes. We measure the invocation time on the client–side1, in milliseconds. To avoid
server–side garbage collection slowdown, we consider an average execution time metric (based
on hundred invocations). We depict in FIG. 9.1 the result of this benchmark. The x axis repre-
sents the controlled set cardinality used for this experience. The y axis represents the average
execution time for each benchmarked service.
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Figure 9.1: Average exec. time (ms) associated to getP ictures, truncate and flickr invocations

1We consider the network latency as a constant for this experience, as we host client and server on the same physical
machine.
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Data analysis. The average execution of the FLICKR® and the truncate operations are “con-
stants”. They follow a linear progression while the cardinality is increased, and stay below an
average response time of 40ms when using a set containing a thousand elements. Considering
that truncate is implemented as a BPEL orchestration and FLICKR® as a JAX-WS, we assume
that such technological choices do not impact the performances in an effective way in this con-
text. The getP ictures operation follows a completely different scheme, and takes up to 340ms to
answer while handling a set of a thousand pictures. Considering that the two other operations
response times follow a regular progression, it seems that the internal logic of the getP ictures
operation impacts its performance.

Assumption: “Intensive Message Exchanges Generates Slowdown”. The getP ictures or-
chestration differs from the truncate one by the number of exchanged messages. The truncate
behavior is mostly internal, and the orchestration does not exchange data with the external
world. The getP ictures orchestration follows an opposite scheme, coordinating several message
exchanges between the services involved in the PICWEB system.

9.2.2 Weights & Costs: “Let’s reason about messages . . . ”

In this section, we use a very simple mathematical representation of the exchanged messages
to assess the previous assumption. We base our model on two notions: (i) the weight of the
exchanged elements and (ii) the cost of an operation invocation (expressed in terms of exchanged
data weights). Even if this model does not take care of conditional branches or exceptional replies,
it is sufficient to expose the problem tackled by the INLINE algorithm in simple terms.

Notations. We use the following notations to model message exchanges:

• Weight:

– We denote as we the weight of a scalar element e. For simplification purpose, we con-
sider that we does not depend on the element type.

– Let s⋆ a set of scalar elements of same weight. Its weight is equals to |s⋆|we.

– An exchanged message is composed by several elements e⋆ = {e1, . . . , en} binded to-
gether with glue information. This glue as a constant weight wg. The weight of a
message is then defined as |e⋆|we + wg

• Cost:

– An operation o receives an input message ino, and replies an output message outo.
The consumption cost associated to an operation is defined as the sum of the weights
associated to its input and output messages.

– If the operation is defined as an orchestration, its cost includes the costs of all the
invocation performed in the orchestration.

Instantiation in PICWEB context. Base on these notations, we express now the cost associ-
ated to the invocation of a PICWEB–defined operation. PICWEB artifacts are handling elements
such as integers, string and URLs. As a consequence, we consider their weights as equivalent
and constant

• FLICKR® receives a tag and a key as input, and returns a set of pictures p⋆ as output.

 Cost(flickr) = (wg + 2we) + (wg + |p
⋆|we) = 2wg + (|p⋆|+ 2)we

• truncate receives as input a data set p⋆ and a threshold. It returns a set of known cardinality
(threshold) as output. The orchestration does not call others services.

 Cost(truncate) = (wg+we+ |p
⋆|we)+(wg+ threshold.we) = 2wg+(|p⋆|+ threshold+1)we



126 CHAPTER 9. IMPROVING PERFORMANCES WITH THE INLINE ALGORITHM

• getP ictures receives as input a tag and a threshold. It returns a set of pictures, restricted
to threshold. The orchestration calls the flickr operation and the truncate one, added to its
interface cost.

 Cost(getP ictures) = (wg + 2we) + (wg + threshold.we) + Cost(flickr) + Cost(truncate)

= 6wg + (5 + 2threshold+ 2|p⋆|)we

In the context of this experience, we are focusing on the number of exchanged messages. As
a consequence, we consider as negligible the glue used to define messages: wg = 0. We use an
arbitrary size for each exchanged element: we = 1. To strengthen the difference between the
existing picture set and the restricted one, we consider that the user asks for a threshold equal
to 1. The costs associated to the PICWEB processes is then simplified as the following:

Cost(flickr) = |p⋆|+ 2, Cost(truncate) = |p⋆|+ 2, Cost(getP ictures) = 2|p⋆|+ 7

Key Idea: Optimizing Performances with Inlining. Assuming the existence of an algo-
rithm able to inline an orchestration o into another one o′, one can enhance the performances
(i.e., reduce its cost) of a process by inlining o into o′. As a consequence, the cost associated to o′

will be decreased by the cost associated to o. We denote as getP ictures′ a version of the process
where the truncate process was inlined. We represent in FIG. 9.2 these two linear functions.

Cost(getP ictures′) = Cost(getP ictures)− Cost(truncate) = |p⋆|+ 5
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Figure 9.2: Cost Model instantiated on the getP ictures process

9.2.3 Inlined Benchmark

To validate this model, we implement an inlined version of the getP ictures process, and run
the same benchmark. We depict in FIG. 9.3 the average execution times associated to such a
comparison benchmark.

The cost model predicts a benefit lesser than the one empirically experimented. This situation
is explained as the following:

• We made strong assumptions on the size of the data. For example, in a real–life usage of
PICWEB, URLs are more heavy than simple integers. Theses assumptions allow to simplify
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Figure 9.3: Comparing the inlined getP ictures process performances and the original one

the model and focus on the number of exchanged messages. The other parameters may only
change the y–intersect coefficient to tune the function.

• We do not model the intrinsic execution semantic and limitations associated to the BPEL

engine available in the Glassfish application server2. We only represent message exchanges,
in an abstract way, independently of any application server or execution engine. This model
is only used to support the intuitive benefits hidden in an inlining mechanism.

9.3 Definition of the INLINE algorithm

We present now the INLINE algorithm, defined to tackle the issue described in the previous
section.

9.3.1 Principles

Expressiveness. We do not address in this work the use of compilation heuristics3 to auto-
matically perform inlining in an efficient way [Chakrabarti and Liu, 2006]. The ADORE imple-
mentation of an inlining mechanism is inspired by the inline keyword defined in the C++
language [Stroustrup, 2000]. This keyword allows developers to explicitly ask the compiler to
inline the content of the flagged function when called.

Implementation. Performing an inlining is similar to the WEAVE algorithm. The inlined pro-
cess is discharged into the original one, and the relations defined in the original are rearranged
to target the newly added activities. Inlined variables are substituted by original ones, according
to a binding function β. The INLINE algorithm differs from the WEAVE one on three points:

• It is only possible to inline an invocation. Handling a block of activities or activities of other
kinds makes no sense in this context.

2The observed averaged execution time function associated to the initial getP ictures process looks like a quadratic
function instead of a linear one.

3However, according to the experiments made with Glassfish, a simple heuristic should be “always inline”. This
assumption needs to be verified empirically. Such an experiment is out of the scope of this work, as dedicated to a given
BPEL execution engine. A discussion on the topic was started on the OpenESB users mailing list. The archive of the list
contains leads to follow to setup such an experiment. http://bit.ly/9X0cAT

http://bit.ly/9X0cAT
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• The INLINE algorithm does not conserve several activities. The normal message exchanges
activities (i.e., with a kind equal to receive or reply) defined in the inlined process are
deleted. In the original process, the invocation of the inlined process is consumed.

• Variables are replaced following an opposite method than the WEAVE one. While weaving,
hook inputs are mapped with the variables used as input by the targeted activity, and hook
outputs are mapped to the output variables of the targeted activity. While inlining, we need
to substitute the variable received by the inlined orchestration (i.e., used as output of the
receive activity) by the ones sent to it by the original process (i.e., used as input by the
invocation). Respectively, variables used as input by the inlined reply are substituted by
the variables used as output by the preexisting invocation.

Illustration. We illustrate the INLINE algorithm using a data–handling system, built upon
two simple orchestrations: (i) o (FIG. 9.4(a)) and (ii) partition (FIG. 9.4(b)). The orchestration o
receives an integer set raw⋆, and a integer value x. It partitions raw⋆ according to x by invoking
a dedicated operation (act1). Then, the two retrieved sets pUp⋆ and pDown⋆ are sent to a dispatch
service (act2). The retrieved data set res⋆ is then replied to the caller.

We depict in FIG. 9.4(c) the process expected after inlining the activity act1. We artificially
color the activities to keep trace of their origin. The algorithm deletes the inlined invocation
(act1), and the interface of the partition process (p1 and p7). The variables defined in the partition
process are substituted by variables defined in the o process, according to the following binding:
t 7→ x, data⋆ 7→ raw⋆, up⋆ 7→ pUp⋆, down⋆ 7→ pDown⋆.

Advantages. Based on the previously defined model, this operation avoid the exchange of two
messages: (i) the partition input message (wg + (1 + |raw⋆|)we) and (ii) the partition output
message (wg + (|raw⋆|)we). Consequently, we identify the two advantages at using the INLINE

algorithm:

• At the conceptual level, the two processes are kept separated, and the partition orchestra-
tion is then factorized if multiply needed in a given system.

• At the deployment level, one can automatically inline processes and then enhance perfor-
mances. In this particular case, we denote as Cost(o′) the cost associated to the inlined
version of the orchestration o:

Cost(o′) = Cost(o)− 2wg + (1 + 2|raw⋆|)we

9.3.2 Description

We provide in ALG. 6 the formal description of the INLINE algorithm. The algorithm takes as in-
put an activity act, and the process to inline inl. Like the WEAVE algorithm, we use a β function
to perform variable binding4. After an initialization step which generates the discharge of inl in-
side o (line 1), the algorithm starts by identifying and then generating the variables substitutions
needs to adjust the data–flow (lines 3, 4). Then, it re–orders the predecessors and successors of
a (line 6,7). Finally, it cleans up the process by deleting useless relations and activities (lines
9→ 12).

Limitations. We made the choice to present in this document a limited version of the algo-
rithm, to lighten its description5. The algorithm presented here is a simplification of the real
one, which is more “technical”. For example, in this version, we do not take care of the differ-
ent existing kinds of relations available in ADORE, and assume that there are always waitFor
relations between the identified activities (lines 6 and 7). This version suffers from variable
fragility, that is, the substitutions may lead to parallel write conflict when two inlined variables

4At the implementation level, this mapping is automatically done following the named parameter convention described
in CHAP. 4.

5The source code of the complete INLINE algorithm is available on the ADORE website. See APP. B for details on
algorithm implementations.
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Orchestration srv::op

rec (x,raw*) := receive()

act1 (pUp*,pDown*) := partition::run(x,raw*)

act2 (res*) := dispatch::run(x,pUp*,pDown*)

rpl reply(res*)

(a) Orchestration o: partition a data set and asks for a dispatch

Orchestration partition::run

p4 (c) := greaterThan(t,data)

p5 add(up*,data)

c

p6 add(down*,data)

!c

p7 reply(up*,down*)

<serial>
data in data*

p1 (t,data*) := receive()

p2 (up*) := empty() p3 (down*) := empty()

(b) Behavior used to define the partition business process

Orchestration srv::op

rec (x,raw*) := receive()

p2 (pUp*) := empty() p3 (pDown*) := empty()

act2 (res*) := dispatch::run(x,pUp*,pDown*)

rpl reply(res*)

p4 (c) := greaterThan(t,raw)

p5 add(up*,raw)

c

p6 add(down*,raw)

!c

<serial>
data in data*

(c) Orchestration o after the inlining of the activity act1

Figure 9.4: Artifacts used to illustrate the INLINE algorithm
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Algorithm 6 INLINE: act× inl × β 7→ r

Require: act ∈ A, kind(a) = invoke(s, o), inl ∈ O, extra(inl) = orch(s, o), (β : V × V → B) ∈ Function

Ensure: r ∈ Actions⋆<

1: Let p ∈ P, act ∈ acts(p), r ← [ (d(inl, p)) { Initialization }
2: { Substituting Variables }
3: r

+
← [ {r(vrec, vp, p) | ∃vrec ∈ outputs(entry(inl)), ∃vp ∈ vars(p), β(vrec, vp)}

4: r
+
← [ {r(vrpl, vp, p) | ∃α ∈ acts(inl), kind(α) = reply, ∃vrpl ∈ inputs(α), β(vrpl, vp)}

5: { Re–Ordering Predecessors and Successors of a }
6: r

+
← [ {addr((α, ainl, l), p) | ∃(α, a, l) ∈ rels(p), ∃entry(inl) ≺ ainl ∈ rels(inl)}

7: r
+
← [ {addr((ainl, α, l), p) | ∃a ≺ α ∈ rels(p), ∃r ∈ acts(inl), kind(r) = reply, ∃(ainl, r, l) ∈ rels(inl)}

8: { Deleting Activities and Relations }
9: r

+
← [ {delr((α, a, l), p) | ∃(α, a, l) ∈ rels(p)} ∪ {delr((a, α, l), p) | ∃(a, α, l) ∈ rels(p)}

10: r
+
← [ {delr((r, α, l), p) | r = entry(inl), ∃(r, α, l) ∈ rels(inl)}

11: r
+
← [ {delr((r, α, l), p) | ∃r ∈ acts(inl), kind(r) = reply, ∃(r, α, l) ∈ rels(inl)}

12: return r
+
← [ (dela(a, p), dela(entry(inl), p)) ∪ {dela(r, p) | ∃r ∈ acts(inl), kind(r) = reply}

are mapped to the same preexisting one. At the implementation level, these issues are handled
using the following techniques:

• Instead of deleting interface activities, we replace it by nop ones, and connect the predeces-
sors (respectively successors) of a to this activity. It ensures that the preexisting relations
are kept.

• Instead of replacing inlined variables by preexisting ones, we preserve their scope with the
use of assignments. We copy the content of preexisting variables into the inlined ones at
the beginning of the inlined behavior, and perform the opposite assignment at its end.

These techniques generate “ugly” processes, polluted with a lot of technical relations and
activities. However, the inlined process are built for deployment purpose only, and then may not
be readable for humans.

9.3.3 Intrinsic Limitations: Inlining is not a “Holy Grail”

In this section, we show how the INLINE algorithm is used to reduce the amount of exchanged
data in the system. It does not impact the intrinsic complexity of a process: a quadratic process
exchanging few data with the outside world will not take large benefits from inlining. As a
consequence, the use of the INLINE algorithm can be seen as a final tune for a process, before
deployment.

9.3.4 Integration in the ADORE Development Approach

We define the INLINE algorithm as an “optimization” step, which aims to enhance performances.
As a consequence, we postpone its execution to the end of the step handling, as described in
FIG. 9.5.

9.4 Using the INLINE algorithm on PICWEB

We consider here simplified process associated to the PICWEB case study, to fit the implemen-
tation used in the previously described benchmark. The getP ictures process is represented in
FIG. 9.6(a), and the associated truncate helpers in FIG. 9.6(b).

Before deploying its process, the user asks ADORE to perform the inlining. After executing
the actions generated by the algorithm, an universe u′ containing the inlined process is returned
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Figure 9.5: Integration of the INLINE algorithm in the ADORE approach

to the user. the obtained process is depicted in FIG. 9.7.

Let u ∈ U , getP ictures ∈ procs(u), truncate ∈ procs(u)

S = INLINE(a2, truncate,≡)

u′ = do+(S, u)
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Orchestration picweb::getPictures

rcv (tag,threshold) := receive()

a1 (picture*) := flickr::getPictures(tag)

a2 (picture*) := helpers::truncate(picture*,threshold)

rpl reply(picture*)

(a) Initial business process

Orchestration helpers::truncate

t0 (url*,t) := receive()

t1 (length) := count(url*)

t2 (c) := isGreaterThan(length,t)

t3 (url*) := subset(url*,’1’,t)

c

t4 reply(url*)

!c

(b) Helper process used to restrict the set cardinality

Figure 9.6: Simplified implementation of PICWEB (without the key registry)
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Orchestration picweb::getPictures

rcv (tag,threshold) := receive()

a1 (picture*) := flickr::getPictures(tag)

t1 (length) := count(picture*)

rpl reply(picture*)

t2 (c) := isGreaterThan(length,threshold)

!c t3 (picture*) := subset(picture*,’1’,threshold)

c

Figure 9.7: Inlined version of the PICWEB getP ictures process
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10
Set–Driven Concerns: the DATAFLOW Algorithm

«Creativity comes from looking for the unexpected and stepping out-

side your own experience.»
Masaru Ibuka
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10.1 Introduction

In the previous chapters, we described algorithms inspired by research on programming lan-
guages, software engineering and compilation. In this chapter, we go back to the fundamentals
of SOA, and consider that business processes are not defined by computer scientists but by busi-
ness experts. This idea is commonly used by several software design methodologies. For example,
mashups–driven applications came from Web 2.0 movement and allow “end–user programming

of the Web” [Wong and Hong, 2007], making web users able to compose data sources in a friendly
way. Mashups invade scientific field of research like bioinformatic [Belleau et al., 2008]. At this
level, dealing with dataset and the associated notions (e.g., iteration, loop termination, variant,
invariant) is an error–prone and time consuming process. As mashups designers are not com-
puter sciences specialists by essence, automatic tools dealing with iteration may ensure the cor-
rectness of builded flows. A preliminary version of this work is described in [Mosser et al., 2009a].

In this chapter, we define an iteration introduction algorithm. We propose to automatically
enhance a process able to handle a scalar data d (more simple to define) into a process able to
handle a dataset d⋆ ≡ {d1, . . . , dn}. The need for such algorithms is motivated in SEC. 10.2.
The defined DATAFLOW algorithm is then described in SEC. 10.3. In SEC. 10.4, we describe

135
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several leads useful to handle more complex data–driven concerns in the DATAFLOW introduction
algorithm. Finally, we describe in SEC. 10.5 how this algorithm is used to automatically enhance
the PICWEB running example.

10.2 Motivations: Automatic Data–Driven Algorithms

10.2.1 Dataflow Refactoring

Evolution techniques like code refactoring [Fowler, 1999] handle the redesign of legacy applica-
tions, following some well-known code rewriting techniques (interface extraction, inheritance,
. . . ). These techniques are inspired by object–oriented concepts and typical object–oriented evo-
lution use cases. Inside WSOA workflows, a typical evolution is to transform a data into a dataset
and iterate computations over this dataset, e.g. for benchmarking purposes [Nemo et al., 2007].
To the best of our knowledge, no existing refactoring technique is able to automatically trans-
form an orchestration working on a single data v into an orchestration able to handle a dataset
v⋆ ≡ {v1, . . . , vn}.

 We propose to automate such a code refactoring mechanisms, in the context of ADORE pro-
cesses. Experts can then focus on their business models, defined on scalar elements, and
consequently more simple to express. An automated algorithm tackles the complexity of
introducing an iteration where necessary to finally handle a dataset instead of a scalar.

10.2.2 Array Programming

Array programming [Hellerman, 1964] relies on efficient access and operation on arrays data.
This paradigm defines several operators which work equally on arrays and on scalar data. Ap-
plications are then defined as the composition of operators. Current approaches try to introduce
array programming concepts inside other existing paradigms like object–oriented languages for
example [Mougin and Ducasse, 2003]. However, this very efficient paradigm is not immediately
usable by non–specialists.

 Contrarily to this method, we propose to introduce the set concept at the model level to
be able to reason on it, and then translate this concept into existing concepts (loop) in the
targeted technology.

10.2.3 Grid–Computing: From Mashups to Scientific Workflows

In the particular domain of grid–computing, algorithms enacted on the grid are designed to han-
dle very large datasets (e.g., medical images, DNA sequences, weather models). Following the
same paradigm than orchestrations, scientific workflows are supposed to be written by non–
specialist users (e.g., physician, neurologist). Grid workflows are data–intensive [Glatard, 2007]
so there is a need for grid users to handle data-set composition at a high level of abstraction.

 We propose to automate the introduction of an iteration inside a process. The designer will
express the process based on a scalar data, and the algorithm will automatically compute
the associated iteration policy. With such a tool, non–specialist users will focus on their
business (e.g., detect multiple sclerosis symptoms in MRI) instead of the iteration technical
considerations (e.g., counter increment, nested structure, termination)

10.3 Definition of the DATAFLOW algorithm

10.3.1 Running example: Adder

As a running example, we define a simple adder orchestration illustrated in FIG. 10.1. This
orchestration receives an invocation message containing two input string parameters x and y
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Orchestration adder::run

a1 (x,y) := receive()

a20 (xInt) := mem::get(x) a21 (yInt) := mem::get(y)

a3 (r) := add(xInt,yInt)

a4 reply(r)

Figure 10.1: The adder orchestration: adds two integers stored in the memory

(a1). It retrieves from a memory web service (a20, a21) the integer value associated to x in a
variable xint (resp. yint) and returns (a4) a result r (computed as xint + yint in a3).

Our goal is to produce through our DATAFLOW algorithm an orchestration adder(x∗) able to
handle a set of values x⋆ ≡ {x1, . . . , xn} instead of x. As the original process computes its result
r from xint and yint, we want to compute a set of results r⋆ ≡ {r1, . . . , rn}, where ri = xinti + yint.

adder : String × String → Integer

(x, y) 7→ xint + yint

adder(x
⋆) : String⋆ × String → Integer⋆

({x1, . . . }, y) 7→ {xint1 + yint, . . . }

10.3.2 Principles

The principles used to define the DATAFLOW algorithm are simple. Based on an given variable v,
it starts to identify v dataflow (as the transitive closure of x usages), and then builds an iteration
policy based on such a dataflow. Following the W3C definition, an orchestration represents a
“control–flow”. Identifying data flows inside an orchestration allows us to extract activities inside
the control flow which derives from the usage of a given variable.

Dealing with Data Usages: flow & core. We extend the ADORE set of functions to deal with
the transitive usage of a variable v. We divide this notion into two separated functions: (i) the
flow function extracts the complete dataflow associated to v, and (ii) the core function restricts a
flow to non–interface activities.

• flow: we define this function as a transitive closure of all activities impacted by the evolu-
tion of a variable v into a dataset v⋆: ∀ai ∈ flow(p, v), ai either uses v as input variable or
ai uses as input variable a variable transitively computed from v (computed with the trans
function).

trans : P × V → A⋆

(p, v) 7→ {ai | ∃α ∈ acts(p), v ∈ inputs(α), v′ ∈ outputs(α), ai ∈ flow(p, v′)}

flow : P × V → A⋆

(p, v) 7→ {ai|v ∈ vars(ai) ∨ ai ∈ trans(p, v)}

• core: we define the core of a dataset evolution as a set of activities built upon a flow, without
interface activities of (i) output variables of the firsts activities of the flow (received from
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the external world) and (ii) input variables of lasts activities of the flow (sent to the external
world). It represents the set of activities {ai, . . . , aj} defined in an orchestration o that needs
to be included in an iteration policy to support the v 7→ v⋆ evolution.

inter? : A× V → B

(a, v) = (kind(a) ∈ {receive, invoke} ∧ v ∈ outputs(a))

∨(kind(a) = reply ∧ v ∈ inputs(a))}

core : P ×A → A⋆

(p, v) 7→ flow(p, v)\{ai | ai ∈ firsts(flow(p, v)) ∧ inter?(ai, v)

∨ai ∈ lasts(flow(p, v)), ∃v′ ∈ outputs(ai) ∧ inter?(ai, v
′) }

We use the adder example and the variable x to illustrate these two functions. Based on this
example, the following activity sets are computed:

flow(adder, x) = {a1, a20, a3, a4}

core(adder, x) = {a20, a3}

A Four Step Algorithm. For a given orchestration o and a variable v ∈ vars(o), the DATAFLOW

mechanisms are the following: firstly, it extracts the evolution core core(o, v), which represents
the body of the computed loop; secondly a variable substitution v 7→ v⋆ is performed outside the
core activities; thirdly the algorithm introduces special activities inside the core to interface the
policy with the rest of the orchestration; and finally the order relation inside the orchestration is
rearranged to take care of the policy introduction1. FIG 10.3(b) illustrates the resulting workflow
in the adder example case.

1. Core Extraction. Using previously defined functions and properties, the core associated to
v in o is computed (core(o, v)). It represents the body of the computed loop we are going
to build. The ADORE meta–model does not handle multiple iterations on the same activ-
ity. As a consequence, the core is analyzed and the algorithm rejects the evolution if at
least one activity contained by the core is involved in another iteration. In our example,
core(adder, x) = {a20, a3}. These two activities correspond to the body of the loop that pro-
cesses the set of input data {x1, . . . , xn}.

2. Variables Creation & Substitution. In a generic way, the algorithm builds an iteration policy
able to handle a dataset as input, and returns datasets as output. The dataflow may lead
to the creation of several output sets (e.g., n different variables on transitively derived from
the targeted variable v will lead to the creation of n output data sets o⋆n). The behavior
defined in the core still works on the scalar variables, and the activities defined outside of
this core will only see datasets (denoted as input⋆ and output⋆). As a consequence, outside
the core, these variables must be substituted (using substitution pairs) to match with the
newly created datasets.

In the adder example, we have to perform two creations (x⋆ and r⋆), and two substitutions:
the input parameter x must be renamed as x⋆, and the output variable r must be renamed
as r⋆. The associated substitutions θ = {x ← x⋆, r ← r⋆} must be applied on activities
defined outside of the core (message reception as a1 and response sending as a4).

3. Policy Creation & Adaptation A serial iteration policy is created, containing the core ac-
tivities. The data–link between the input⋆ content and the preexisting input variable is
handled by the policy semantic (defined for all input ∈ input⋆). Inside the policy, a special
assignment activity (named “sweller”) is defined to store the scalar output currently com-
puted in output⋆. The order relation is enriched to push the sweller after its associated last
activity (e.g., the sweller associated to the output dataset out⋆i is defined as a follower of
the last activity which uses outi as output). If there is no output variable produced by the

1According to the meta–model constraints, a block of activities used inside a loop must be well–formed PROP. 4.21.
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core, there is no need for a sweller (there is nothing to store!). As a consequence, this step
is simply skipped in such a situation.

In the adder example, the sweller is defined as an assignment from r into r⋆ using the
append function (s1). The created policy contains the activity set {a20, a3, s1}. A new order
relation a3 ≺ s1 must be added to push the sweller associated to x⋆ after the last activity of
the dataflow which handles x (i.e., a3).

4. External Activities Reordering. The order relation rels(o) defined inside o may be incon-
sistent for now. The ADORE meta–model constraints ensure that the content of a policy
is well–formed. Activities and relation leading to ill–formed blocks must be reordered to
satisfy this constraint. We illustrate the activity reordering in FIG. 10.2. Let ext an activity
which is not part of the policy, and body an internal activity of the policy. We identified three
erroneous situations: (i) a relation between ext and body, (ii) a relation between body and
ext, and finally (iii) the two previous situations simultaneously. A relation ext < body is
pulled before the beginning of the policy (see a1 ≺ a2 in FIG. 10.2(b)). The reciprocal situa-
tion (body < ext) pushes the activity after the end of the policy (see a6 ≺ a5 in FIG. 10.2(b)).
Finally, when both situations are encountered on the same activity a, the policy will simply
absorb a (see a4 in FIG. 10.2(b)). These mechanisms are intrusive and break the preexisting
execution semantic. As a consequence, all these decisions are returned to the designer, for
information purpose.

The adder example obtained before reordering (FIG. 10.3(a)) contains two erroneous rela-
tions: a21 ≺ a3 and a3 ≺ a4. According to these two relations, the defined iteration policy
contains an ill–formed block, and then is not valid according to the meta–model constraint.
The reordering step pulls a21 before the beginning of the iteration and on the other side
pushes a4 at its end. The resulting orchestration adder(x⋆) is described in Fig 10.3.

10.3.3 Description of the algorithm

We describe in ALG. 7 the implementation of the DATAFLOW algorithm principles. The algorithm
takes as input a process p and a variable v. It starts by initializing a context (line 2), used to gen-
erate the symbols associated to the potential “swellers” activities. We denote as C the core of the
iteration policy, and as outs the variables representing outputs of the policy. In lines 4 and 5,
we generate the new datasets variables associated to v and outs, using a star postfix convention.
Then, the “swellers” activities are created (a “sweller” is generated from its associated outs vari-
able) and correctly inserted at the end of the policy. The future content of the policy (C and the
“swellers”) are stored (line 8). Finally, the activity reordering step is performed in lines 13→ 15.
The iteration policy (containing the previously identified activity and the absorbed ones) is finally
created (line 16), and the action list is returned to the caller.

Limitations. The previously described algorithm suffers from two limitations: (i) a fixed data
structure and (ii) no reasoning over the available preexisting relations.

• Fixed Data Structure. The data model associated to ADORE is simplistic. Considering that
we do not reify the type associated to a variable, we use a boolean flag to mark a variable
as a data set. Consequently, it is not possible to represent directly a “set of set” in ADORE.
Let i⋆ a set of integers, modeled in adore as a tuple (i⋆, integer, true). To define I as a set
of sets of integers, one can use the following tuple (I, arrayOfInteger, true), assuming that
the arrayOfInteger type is binded to such a data structure. This limitation is a part of the
perspective about data structure exposed in SEC. 13.4.

• No Relations Reasoning. The reordering mechanisms are technical and do not reason about
the relations they are reordering. For example, onFailure or guard relations may require
a particular attention when reordered. As a consequence, this algorithm only sketches the
automatic introduction of data set iterations in a process. However, its implementation was
sufficient to deal with very large and complex business processes defined in the CCCMS case
study (CHAP. 11).
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Orchestration example

rec (x*) := receive()

a1 do() a2 do(x)

a3 do(x) a4 do()

a6 do(x)a5 do()

rpl reply()

(a) Initial Process

Orchestration example

rec (x*) := receive()

a1 do() a2 do(x)

a3 do(x) a4 do()

a6 do(x)a5 do()

rpl reply()

<serial>
x in x*

(b) Policy (x⋆) before reordering

Orchestration example

rec (x*) := receive()

a1 do()

a2 do(x)

a5 do()

rpl reply()

a4 do()

a6 do(x)

a3 do(x)

<serial>
x in x*

(c) Automatically obtained process

Figure 10.2: Illustrating the DATAFLOW reordering mechanisms
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Orchestration adder::run (x*)

s1 r* := append(r,r*)

a20 (xInt) := mem::get(x)

a3 (r) := add(xInt,yInt)

a4 reply(r*)

<serial>
x in x*

a1 (x*,y) := receive()

a21 (yInt) := mem::get(y)

(a) Raw version of adder(x
⋆) (before activity re–ordering)

Orchestration adder::run (x*)

s1 r* := append(r,r*)

a4 reply(r*)

a20 (xInt) := mem::get(x)

a3 (r) := add(xInt,yInt)

<serial>
x in x*

a1 (x*,y) := receive()

a21 (yInt) := mem::get(y)

(b) Final version (after automatic re–ordering)

Figure 10.3: Automatically built adder(x
⋆) process: “adder for a set of x”.
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Algorithm 7 DATAFLOW: p× v 7→ actions

Require: p ∈ P, v ∈ vars(p)
Ensure: r ∈ Actions⋆<

1: { (Step 1) Initialization }
2: ctx← [ context(), C ← [ core(p, v), outs← [ {var | ∃α ∈ lasts(C), var ∈ outputs(α) }
3: { (Step 2) Variable Creation & Substitutions }
4: θ ← [ {name(var)← name(var)⋆ | ∃var ∈ outs ∪ {v}}

5: r ← [ {addv((name(var)⋆, type(var), true), p) | ∃var ∈ outs ∪ {v}}, r +
← [ {r(α, αθ, p) | ∃α ∈ acts(p)\C}

6: { (Step 3) Policy Content Creation & Adaptation }
7: r

+
← [ {adda((gensym(var, ctx), assign(append), {n, n⋆}, {n⋆}), p) | var ∈ outs, n = name(var)}

8: r
+
← [ {addr(α ≺ gensym(var, ctx), p) | α ∈ lasts(C), var ∈ outputs(α) }

9: r
+
← [ {addr(gensym(var, ctx) ≺ next, p) | α ∈ lasts(C), var ∈ outputs(α), α < next ∈ rels(p)}

10: PolActs← [ C ∪ {gensym(var, ctx) |var ∈ out}
11: { (Step 4) Reordering }
12: Body ← [ internals(C), Ext← [ acts(p)\Body

13: r
+
← [ {addr((e, f, tag), p) | e ∈ Ext, ∃f ∈ firsts(C), β ∈ Body,∃(e, β, tag) ∈ rels(p), ∄β′ ∈ Body, β′ → e}

14: r
+
← [ {addr((l, e, tag), p) | e ∈ Ext, ∃f ∈ firsts(C), β ∈ Body,∃(β, e, tag) ∈ rels(p), ∄β′ ∈ Body, e→ β′}

15: Absorbed← [ {e | ∃β ∈ Body,∃β′ ∈ Body,∃e ∈ Ext, β → e ∧ e→ β′}

16: r
+
← [ (addi(name(v)⋆, name(v), serial, PolActs ∪Absorbed, p)

17: return r

10.4 Handling Real–Life Processes

10.4.1 Cosmetic Activities & Policy Make–Up

Cosmetics Activities. The algorithm defined in the previous section is a generic algorithm
which automatically formats the output of the iteration policy as a list corresponding to a con-
catenation of the results dataset. In some cases, this generation is too basic and it does not reflect
the expected semantics of the dataset concern. For instance when working on numerical data,
a common need is to compute a global statistical result such as the average of a set of results
rather than handling individual values. ADORE interference detection rules set can detect in-
consistencies introduced by the make–up step (e.g. parallel write access), but it is under user’s
responsibility to solve those conflicts based on the application semantic.

To handle this diversity of possible algorithm specialization, we consider a set of “cosmetic”
activities, like flattening a list or computing an average. The user can manually insert a cosmetic
activity associated to an iteration policy to perform final optimization. As a consequence, the
automatically computed behavior is a default one, which can be customized to fit user needs. For
example, if the contents of the iterations allows it, one can decide to change the kind of iteration
from serial to parallel.

10.4.2 Towards Iteration Compositions

An unresolved issue of the DATAFLOW algorithm is the handling of multiple datasets. For ex-
ample, one may decide to enhance the adder process for both x and y input variables. Such
a feature is not supported by ADORE. The grid computing community uses dataflow language
(e.g., SCUFL [Oinn et al., 2004], GWENDIAn [Montagnat et al., 2009]) designed to handle data
sets. Based on these descriptions, dataflow are analyzed and their enactment on a grid can be
optimized [Glatard, 2007]. Data composition operators were defined in [Montagnat et al., 2006]
allowing composition through iteration strategy (one to one, one to many). Using these operators,
the designer can decide to model the following compositions:

x⋆ ⊙ y⋆  {x1 + y1, . . . , xn + yn}

x⋆ ⊗ y⋆  {x1 + y1, . . . , x1 + ym, x2 + y1, . . . , xn + ym}

These operators (⊗, ⊙) can be naturally composed. We expose as a perspective the usage of
iteration operator composition to address this issue in ADORE.
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10.4.3 Integration in the ADORE Development Approach

The DATAFLOW algorithm is, like the INLINE one, a finalization step. To be semantically correct,
the computed flow must take care of the activities introduced by the WEAVE directives. Con-
sequently, it must be executed after. Considering that the INLINE algorithm presented in this
document does not handle iteration policies, we postpone the execution of the DATAFLOW com-
putation at the end of the development step. The final version of the approach is described in
FIG. 10.4.

Figure 10.4: Integration of the DATAFLOW algorithm in the ADORE approach

10.5 Introducing Set–Concerns in PICWEB: tag 7→ tag⋆

In this section, we consider the PICWEB process obtained at the end of CHAP. 8. This process,
depicted in FIG. 8.7 corresponds to the realization of the complete requirements expressed in the
example description. This process is also the model associated to the existing implementation of
folkwonomy exploration in the legacy JSEDUITE application (CHAP. 12).

We decide to enhance the process to deal with a set of tags, instead of a scalar one. To lighten
the figures, we use a shortened graphical notation for each activity (represented by a single
box). Based on the following computation associated to core(getP ictures, tag), the algorithm build
(without reordering) the process depicted in FIG. 10.5.

core(getP ictures, tag) = {a2, a3, aP1, aP2, c1, c2, c3, i, t2, t
′
2}

The reordering step absorbs the activities defined in–the–middle (i.e., {iO1, iI1, t, t3, t
′
3}). The

final result is depicted in FIG. 10.6. Consequently, we automatically obtain a process able to
handle a dataset instead of a scalar data:

Let u ∈ U , getP ictures ∈ procs(u)

☛ S = DATAFLOW(getP ictures, tag)

u′ = do+(S, u)

getP ictures ∈ procs(u) : String × Integer → ArrayOfPictures

(tag, threshold) 7→ pictures

getP ictures ∈ procs(u′) : String⋆ × Integer → ArrayOfPictures⋆

(tag⋆, threshold) 7→ pictures⋆
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Orchestration picweb::getPictures

rcv

a1

c1

rpl

t3’

aP2

t

t2 t2’

t3iI1i iO1
<serial>

tag in tag*

val

a2

val

c2

!val

aP1

val

invalidoverflow

a3

c3

sweller

Figure 10.5: Illustrating the reordering mechanisms need on the PICWEB example
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Orchestration picweb::getPictures

rcv

a1

c1

rpl

<serial>
tag in tag*

a2

val

c2

!val

aP1

val

t

val

t3

iI1

invalid

iO1

overflow

a3

c3

sweller

i

aP2

t3’

t2t2’

Figure 10.6: Automatically obtained PICWEB process (tag 7→ tag⋆)
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Summary

In this part, we defined four different algorithms used to perform “compositions” in the context
of business processes. Moreover, we scheduled these algorithms into a computer–aided develop-
ment approach.

The WEAVE algorithm is the first step of this approach. It aims to support the integration of
fragments into other processes. This algorithm works on a set of parallel directives, and generates
the actions to execute to perform the expected integrations. Moreover, relying on the WEAVE

algorithm to enhance business processes ensures the respect of several composition properties,
such as deteminismn, path and conditions preservation, . . . . Interference detections mechanisms
are used to detect issue in the composed result.

The MERGE algorithm handles the well-known Shared Join Points problems, in the context
of business processes. It is defined to support designers when several fragments share the same
target location. The algorithm allows the composition of these fragments in an oblivious way (i.e.,
without any considerations about the composed system), and lets designers focus on a restricted
scope (the shared fragments only, instead of the final system) to assess the computed behavior.

The INLINE algorithm is inspired by the eponymous compilation technique. For performance
reasons, one can decide to inline a process inside another one, i.e., replace its invocation activity
by the actual code. We use an implemented benchmark to verify this assumption at the imple-
mentation level, and surprisingly, the actual results are better than the theoretical ones.

Finally, the DATAFLOW algorithm is used to support non–specialists while they handle datasets.
Using these mechanisms, a business expert can design a process working on a scalar data d, and
ask the algorithm to automatically refactor the process into a process able to handle a dataset
d⋆ = {d1, . . . , dn}.

 A well known scientific adage states: “Theory guides. Experiment decides.”. In the next part,
we use the defined algorithms and the associated development approach to handle two real–life
applications.
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Part IV

Applications

Notice: This part describes the usage of ADORE to handle two different real–life ap-

plications. The first one (CHAP. 11) is designed from scratch, at the model level. The

second one (CHAP. 12) is a daily used application, re–engineered with ADORE
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A Car Crash Crisis Management System (CCCMS)

«Another feature that everybody notices about the universe is that

it’s complex.»
Seth Lloyd
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11.1 Introduction

This chapter describes a model–driven case study realized with ADORE for a TAOSD special issue
on Aspect Oriented Modeling. This special issue was based on a common case study, a Crisis
Management System (CMS). The goal of this special issue is to compare existing Aspect Oriented

Modeling approaches between each other, based on the same example. In [Kienzle et al., 2009c],
authors describe the requirements of their CMS. According to the definition given by this case
study, a CMS is “a system that facilitates coordination of activities and information flow between

all stakeholders and parties that need to work together to handle a crisis”. Many types of crisis can
be handled by such systems, including terrorist attacks, epidemics, accidents. To illustrate the
case study, they provide an instance of a CMS in the context of car accidents. We decide to model
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this particular instance using ADORE, instead of inventing a new one. Obviously, this chapter
cannot exhaustively describe the implementation of such a complex system. A more detailed
description is available in the associated publication [Mosser et al., 2010b] and on the associated
website. The requirements define this system as the following:

“ The Car Crash CMS (CCCMS) includes all the functionalities of general crisis manage-

ment systems, and some additional features specific to car crashes such as facilitating the

rescuing of victims at the crisis scene and the use of tow trucks to remove damaged vehi-

cles.” [Kienzle et al., 2009c]

In this chapter, we describe in SEC. 11.2 how the requirements are modeled in ADORE. We
describe the realization of non–functional concerns in SEC. 11.3, and SEC. 11.4 illustrates how
ADORE tames the complexity of complex business processes design following a separation of
concerns approach. We provide in SEC. 11.5 a quantitative analysis of the CCCMS, based on
process metrics comparisons. Finally, SEC. 11.6 concludes this chapter by summarizing strengths
and weaknesses of ADORE in front of this case study.

11.2 Realizing the CCCMS

11.2.1 Requirements

Considering ADORE as a behavior–driven AOM approach, we focus on the behaviors described in
the requirements. The document defines ten use cases, described using textual scenario. Each
scenario defines first a main success scenario which represents the normal flow of actions to
handle a crisis (e.g., retrieve witness identity, contact firemen located near to the crash location).
Then, a set of extensions are described to bypass the normal flow when specific actions occur (e.g.,
witness provides fake identification, firemen are not available for a quick intervention).

Based on these requirements, we decide (i) to model main success scenarios as orchestrations
of service, (ii) to model business extensions and non–functional concerns as fragments, and finally
(iii) use composition algorithm to tame the complexity of designing the complete CCCMS.

11.2.2 Modeling Use Cases as Orchestrations

The use cases defined in the requirements document are treated as informal specifications of
service orchestrations. We use ADORE to model orchestrations. It is important to note that the
focus is not on modeling the internal behavior of services or activities, but on the modeling of
orchestrations. In the approach, a use case is realized as an orchestration of services. The main
success scenario in a use case is realized as a base orchestration.

We illustrate this choice using the “Capture Witness Report” use case (#2). Below is the de-
scription of the main success scenario for this use case, extracted from the requirement document:

“ Coordinator requests Witness to provide his identification.

1. Coordinator provides witness information to System as reported by the witness.

2. Coordinator informs System of location and type of crisis as reported by the witness.

In parallel to steps 2− 4:

2a.1 System contacts PhoneCompany to verify witness information.

2a.2 PhoneCompany sends address/phone information to System.

2a.3 System validates information received from the PhoneCompany.

3. System provides Coordinator with a crisis-focused checklist.

4. Coordinator provides crisis information to System as reported by the witness.

5. System assigns an initial emergency level to the crisis and sets the crisis status to active.

Use case ends in success.” [Kienzle et al., 2009c]
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The above scenario is realized as an orchestration of four service providers: (i) cms represents
the services provided by the System actor, (ii) phoneCie represents the services provided by the
PhoneCompany actor, (iii) ui represents services used to interact with the Coordinator actor and
(iv) msgBus represents services used to broadcast the mission status.

Orchestration cms::captureWitnessReport

rcv (coord,id) := receive()

a10 (wi) := ui::promptWitnessInfo(coord)

a11 cms::setWitness(wi,id)

a2a12 (pi) := phoneCie::getInfo(wi)a2 (i) := ui::promptPrelimInfo(coord)

a3 (ccl) := cms::buildCheckList(i) a2a3 (exact) := cms::validateWitnessInfo(wi,pi)

a50 cms::assignEmergencyLvl(id,ci)

a4 (ci) := ui::promptCheckList(coord,id,ccl)

a51 msgBus::send(’status’,’active’,id)

rpl reply()

Step Acts. Step Acts. Step Acts. Step Acts.

1 {a10, a11} 2 a2 3 a3 4 a4
5 {a50, a51} 2a.1 a2a12 2a.2 a2a12 2a.3 a2a3

Step↔ Activities correspondences

Figure 11.1: Orchestration representation for the Capture Witness Report use case (#2)

Fig. 11.1 shows a graphical ADORE model of the realization. The first step in the use case
scenario is realized by two activities: (i) the promptWitnessInfo operation provided by the
ui service is invoked (a10, this operation requests and records witness information) and (ii) the
setWitness operation provided by the cms is called (a11) to add the witness information to
the current crisis. Steps 2, 3 and 4 in the main use case scenario (getting crisis preliminary
information, building a crisis–dedicated checklist and prompting for check list answers) are each
realized by a single activity: a2, a3, a4 respectively. Steps 2a.1, 2a.2 and 2a.3 must be done in
parallel with steps 2 − 4. Steps 2a.1, and 2a.2 are realized by the activity a2a12, while step 2a.3
is realized by a2a3. Finally, step 5 is realized by two activities in the ADORE model: a50, which
assigns the emergency level, and a51, which sends a message on the message bus indicating that
the status of this crisis is now “active”.
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11.2.3 Modeling Extensions as Fragments

The Capture Witness Report use case describes six extensions to the main success scenario. These
extensions deal with abnormal situations, such as the disconnection of the witness phone call or
the detection of fake information given by the witness. We take as an example the extension #3a,
which describes how the main success scenario is enhanced if a camera–surveillance system is
available on the crisis location. This extensions is stated as follows:

“In parallel to steps 3− 4, if the crisis location is covered by camera surveillance:

3a.1 System requests video feed from SurveillanceSystem.

3a.2 SurveillanceSystem starts sending video feed to System.

3a.3 System starts displaying video feed for Coordinator.” [Kienzle et al., 2009c]

Fragment requestVideo<user>

P

t (c) := survSys::canCover(info.loc)

h hook(info)

S

a12 (feedId) := survSys::activateVideo(info.loc)

c

n nop()

!c

a3 ui::displayVideoFeed(user,feedId)

Step Acts. Step Acts. Step Acts.

3a.1 a12 3a.2 a12 3a.3 a3
Step↔ Activities correspondences

Figure 11.2: RequestVideo Fragment dealing with Capture Witness Report extension #3a

Figure 11.2 shows the fragment that realizes the above extension. The right branch of the
fragment contains the hook, h, that represents the behavior in the targeted orchestration to
which the fragment will be attached. The left branch of the fragment represents the additional
behavioral described in the use case the extension #3a. In parallel to the behavior described by
the hook (h) the system first determines if the surveillance system can cover the crisis area (t).
If this functionality is available for this location, the process requests a video feed (steps 1 and
2 in the use case extension are aggregated in a single ADORE activity a12) and then broadcasts
it to the Coordinator interface (a3)1. This fragment is woven on the block of activities {a3, a4},
considering that the associated requirements extension target the steps 3 and 4 of the main
success scenario.

1One may notice that the user variable used in the a3 activity is undefined in the fragment. This variable is replaced

after weaving by the coord one which pre–exists in the captureWitnessRepost process. By using such a mechanism, one
can use in a fragment a variable which is not hooked. Assuming that this usage is read–only, it does not jeopardize the
compositional properties ensured by the WEAVE algorithm.
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11.3 Zoom on Non–Functional Concerns

11.3.1 Modeling Non–Functional Concerns as Fragments

ADORE can be used to model non–functional (NF) properties that can be realized as system
behaviors. We realized three NF–concerns in the context of the CCCMS case study: (i) persistence,
(ii) security and (iii) statistical logging. We define five fragments to implement these concerns in
the CCCMS.

• Status Persistence. The persistence concern involved two fragments: logCreate (transform-
ing a transient entity into a persistent one) and logUpdate (logging status information for
a persistent entity). We make the choice to handle employees (both cmsEmployee and
worker entities) as persistent resource. As a consequence, the logCreate (resp. logUpdate)
fragment must be woven each time a service invocation creates (resp. uses) such an entity.

• Security. We realized a part of the security concerns through the following scenario: “an idle
employee must be re–authenticated”. We define a dedicated fragment (authenticateWhen-
Idle) to deal with this concern, and weave it on all activities interacting with an employee
through the user–interface.

• Statistical Logging. We realized this property by storing the execution time of a given
action. We differentiate normal execution (the action succeeds, logT ime) and exceptional

execution (the action failed, logError).

We focus now on the statistical logging property description, as defined in the requirements.
The two fragments realizing this property are depicted in FIG. 11.3.

• “The system shall record the following statistical information on both on-going and resolved

crises: rate of progression; average response time of rescue teams; individual response time

of each rescue team; success rate of each rescue team; rate of casualties; success rate of

missions.”

• “The system shall provide statistical analysis tools to analyze individual crisis data and

data on multiple crises.” [Kienzle et al., 2009c]

Functional vs Non–Functional: a Fuzzy Border. The requirement document defines at
the business scenario level a non–functional property! In use cases #1 (“Resolve Crisis”) and
#3 (“Assign Internal Resource”), equivalent scenario extensions dealing with user authentication
are defined (#1.1a and #3.1a). ADORE does not make any differences between functional and
non–functional concerns, focusing on behavioral composition. As a consequence, we naturally
reified this concern as a dedicated fragment (mustAuthenticate), shared with the two associated
business processes.

11.3.2 Discovering Fragments Target using Logical Predicates

ADORE does not provide any surface mechanisms to deal with pointcuts expressiveness. But the
underlying logical foundations of ADORE allow one to query the model using logical predicates.
It obviously implies that the designer knows the first–order logic paradigm. But the immediate
benefits are the unbounded possibilities of pointcut description [Rho et al., 2006]. We concretely
illustrate this situation using the NF–properties example. The associated fragments need to be
woven on many different activities, spread over the CCCMS models.

The persistence concern impacts the variables representing employees of the CCCMS company.
The logCreate fragment is used to transform a transient entity into a persistent one. As a con-
sequence, we need to identify all the activities in the CCCMS which creates an employee (i.e.,
using as output a variable of type cmsEmployee or worker). The reciprocal fragment logUpdate
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Fragment logTime<op>

P

a1 (start) := now()

S

h hook(key)

a2 (end) := now()

a3 (delta) := diff(end,start)

a4 dataBase::storeExecTime(op,delta)

(a) logTime Fragment

Fragment logError<exc,op>

P

h hook()

S

a0 database::storeError(exc,op)

exc

(b) logError Fragment

Figure 11.3: Non–functional fragments storing response times and errors

changes the status of a persistent entity, and must be woven on activities using employee as
input. Such activities can be easily identified as the following:

logCreate  {α | α ∈ A, ∃v ∈ outputs(α), type(v) ∈ {cmsEmployee,worker}}

logUpdate  {α | α ∈ A, ∃v ∈ inputs(α), type(v) ∈ {cmsEmployee,worker}}

11.4 Taming Orchestration Design complexity

11.4.1 Modeling the Complete CCCMS

To realize the CCCMS as a set of business processes, we design 12 orchestrations of services, and
24 fragments. These artifacts represent 276 activities ordered by 268 relations. To express the
composition and build the complete system, designers need to express 30 weave directives. When
dealing with NF–concerns, we define 5 fragments, and use logical predicates to automatically
identify 113 targets. The directive analysis step identify up to 40 shared join points in the system
when the NF–concerns are included.

Modeled System WEAVE MERGE |Action⋆|

Business–driven CCCMS 23 5 2422
Including NF concerns 86 40 10838

Table 11.1: Algorithms usage (& associated actions) when modeling the CCCMS

The final system (obtained after the execution of the composition directives) represents 1216
activities scheduled by 895 relations. All the models (inputs artifacts and composed ones) are
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available on the case study web page2 We summarize in TAB. 11.1 the number of times each
algorithm is invoked and the number of actions performed on the initial model to execute the
composition. Without specific optimizations, the composition engine implemented to support
the ADORE approach consumes 68 seconds to build the final system (i.e., main success scenario,
business extensions and non-functional concerns).

Illustration. We use the use case Capture Witness Report to illustrate the design process.
Based on the requirements and the designed artifacts, designers fill the invocation pool I with
the following directives3 In. These directives define a one–to–one mapping between the scenario
extensions defined in the requirements and the ADORE algorithm invocation semantic.

☛ I1 = WEAVE({ω(callDisconnected, {a10},≡)}, captureWitnessReport) ∈ I

☛ I2 = WEAVE({ω(callDisconnected, {a2},≡)}, captureWitnessReport) ∈ I

☛ I3 = WEAVE({ω(requestV ideo, {a3, a4},≡)}, captureWitnessReport) ∈ I

☛ I4 = WEAVE({ω(ignoreDisconnection, {a4},≡)}, captureWitnessReport) ∈ I

☛ I5 = WEAVE({ω(fakeWitnessInfo, {a2a3},≡)}, captureWitnessReport) ∈ I

☛ I6 = WEAVE({ω(fakeCrisisDetected, {a4},≡)}, captureWitnessReport) ∈ I

☛ I7 = WEAVE({ω(fakeCrisisDetected, {a3},≡)}, requestV ideo) ∈ I

Based on this invocation pool, the algorithm scheduler identifies the two following situations:
(i) two fragments are used for multiple integrations and must be cloned (callDisconnected &
fakeCrisisDetected), and (ii) a shared join point exists (a4). Based on these informations, the
invocation pool is rewritten as the following (we use Greek letters to denote artifacts generated
by the rewrite step) to handle the underlying CLONEPROCESS and MERGE invocations.

I ′1 = CLONEPROCESS(callDisconnected, π1) ∈ I

I ′2 = CLONEPROCESS(fakeCrisisDetected, π2) ∈ I

I ′3 = MERGE({ignoreDisconnection, fakeCrisisDetected}, µ1,≡}) ∈ I

I ′4 = WEAVE({ω(callDisconnected, {a10},≡)}, captureWitnessReport) ∈ I

I ′5 = WEAVE({ω(π1, {a2},≡)}, captureWitnessReport) ∈ I

I ′6 = WEAVE({ω(requestV ideo, {a3, a4},≡)}, captureWitnessReport) ∈ I

I ′7 = WEAVE({ω(µ, {a4},≡)}, captureWitnessReport) ∈ I

I ′8 = WEAVE({ω(fakeWitnessInfo, {a2a3},≡)}, captureWitnessReport) ∈ I

I ′9 = WEAVE({ω(π2, {a3},≡)}, requestV ideo) ∈ I

The execution scheduling step identifies several dependencies inside I. For example, the in-
vocation I ′5 uses as input a cloned fragment produced by I ′1. Based on a topological sort of the
invocation according to these dependencies, the invocation pool is executed as the following (we
denote as u0 the initial universe):

Let u0 ∈ U

u1 = do+(I ′1
+

← [ I ′2
+

← [ I ′3, u0)

u2 = do+(I ′9, u1)

u3 = do+(I ′4
+

← [ I ′5
+

← [ I ′6
+

← [ I ′7
+

← [ I ′8, u2)

11.4.2 MERGE to Assess Shared Join Points

The MERGE algorithm aims to support designers while handling shared join points. We saw in
the previous section that the CCCMS defines up to 40 shared join points when the NF–concerns
are included. We identify two interesting situations in the context of the CCCMS which strengthen

2http://www.adore-design.org/doku/examples/cccms/
3At the implementation level, we provide a domain–specific language to make it more easy to express. See APP. A for

more details about the current implementation of ADORE.

http://www.adore-design.org/doku/examples/cccms/
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Merged Fragments Sets Uses

{authentifyWhenIdle, logUpdate} 13
{logCreate, logT ime} 4
{logCreate, logError, logUpdate} 2
{authentifyWhenIdle, logUpdatev1

, logUpdatev2
} 2

{logUpdatev1
, logUpdatev2

} 2
{logUpdate, logT ime} 2
{logCreate, logUpdatev1

, logUpdatev2
, timeout, useHelicopter} 1

. . . 14 others combinations . . . 1

Table 11.2: Fragments sets used as MERGE inputs in the CCCMS

the need for such a mechanism: (i) a merged fragment is re–used up to 13 times in the system
and (ii) a shared join point consumes 5 fragments simultaneously. We summarize in TAB. 11.2
the most reused merged fragments in the context of the CCCMS.

11.4.3 WEAVE to Support Complex Behavior Definition

When the NF–concerns are included in the CCCMS, the WEAVE algorithm is used up to 86 times
across the 12 initial fragments. We represent in FIG. 11.4 the Capture Witness Report use case,
after composition4. We use the short notation to represent activity, and each color represents a
fragment. We propose in the next section a in–depth analysis of the complexity of the CCCMS,
based on quantitative software metrics.

11.4.4 Interference Detection Mechanisms in Action

The large size and conceptual complexity of applications such as the CCCMS is the main motiva-
tion for using aspect-oriented orchestration modeling approaches such as ADORE. Separation of
concerns reduces the complexity when focusing (locally) on one or a few fragments, but, at the
same time, increases complexity when looking (globally) at the model as a whole. To tame this
complexity we proposed to analyze the fragments and composed models to detect inconsistencies
and bad-smells.

We use two sets of rules in the CCCMS, which allow us to identify lacks in the requirements
document. The first ones rely on the separation of concerns paradigm, and identify troubles
introduced by the composition itself. The second ones, more surprisingly, are only technical, and
look for uninitialized variable or uncaught exceptions.

ADORE specific rules: Separation of Concerns. These rules are defined by ADORE in
SEC. 7.3 to automatically identify “bad” situations introduced by the use of a separation of con-
cerns approach.

• Concurrent Termination. This rule checks whether an ADORE model is deterministic or not.
A deterministic ADORE model has only one well-defined response activity for one path in
the activity graph. In the Capture Witness Report use case (#2), main success scenario fail-
ures are defined in extensions. For example, scenario extensions #5a and #5b are defined
in parallel. The first one defines a failure when the Phone Company actor cannot verify
witness informations. The second one defines another failure when the Coordinator actor
declares this crisis as a fake one. Since those two different situations are handled by two
different actors in parallel, the system is non-deterministic at the requirements level. The
ADORE framework identifies this situation through the violation of this rule.

4The CCCMS intensively relies on a message bus where notification are sent to share information and status while
handling a crisis. As a consequence, we relax the activity path completeness property (PROP. 4.16) for the notification
activities. By relaxing this constraint, (i) we obtain more “compact” processes for representation purpose, and (ii) it does
not impact the compositional properties according to the intrinsic “notification” intention of these activities.
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Orchestration cms::captureWitnessReport
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Figure 11.4: CaptureWitnessReport use case (main success, extensions & NF–concerns)
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• Equivalent Activity Introduction. Multiple fragments can introduce service invocations that
are equivalent by weaving a same fragment on several activities or by requesting a same
service in different fragments. A rule that brings these equivalent services to the attention
of the modeler can cause the modeler to consider how the model can be refactored to avoid
unnecessary redundant invocations of services. To illustrate this rule, we focus on the
statistics logging NF–concern. To record statistical information on response time of each
rescue team, we weave the fragment logT ime (FIG. 11.3) around each invocation activity
involving a cmsEmployee. When this fragment is woven on two immediately consecutive
activities, it generates several activities which compute the same time (for example activ-
ities a746 and a763 in FIG. 11.4). The business process can be refactored by unifying these
activities. A knowledge is added in the system to optimize the orchestrations involving
these useless concurrency calls (this pattern was detected three times in the CCCMS). An-
other interesting illustration can be found in the Capture Witness Report use case. This rule
has also detected that the Coordinator can inform the system that the crisis is a fake one
by analyzing witness answers, or by looking at the video feed, if available. Consequently,
the Coordinator’s approval will be requested twice when a video feed is available. In this
case, we consider that the redundancy of the situation is handled by the ui service: it will
not broadcast to the coordinator the same question multiple times.

• Forgotten Weave. When a fragment f is woven on an activity a′ that is equivalent to another
activity a that is not yet woven with f , ADORE displays a suggestion that the modeler
may have forgotten to weave f on the activity a. As an example, we consider the use case
#1 (“Resolve Crisis”5). An extension (#5a) defines the process behavior when there is no
available external resource. But extension #4a requests an external resource when there is
no available internal resource. As a consequence, the error processing mechanism defined
in extension #5a must also be triggered when extension #4a is used. This situation is
detected by ADORE which informs designers of the situation.

Syntactical checks detect requirements lacks. ADORE defines syntactical checks which
are too technical to be fully described in this document. For example, ADORE refuses the usage of
an uninitialized variable as input of an activity. We found interesting that such technical checks
allow us to identify lacks and weaknesses in the requirements document.

• Uninitialized Variables. This rule checks whether a variable is used before being initialized.
Ensuring this property before composition is not sufficient to ensure it after composition:
faulty interactions can lead to a composition result that violates this rule. Such a situation
is typical when handling error in an orchestration by reconnecting the error flow with the
normal one. Following the requirement document, in use case #1, each worker must submit
a report to the system when the asked task is ended. But in extension 5a, which describes
how the lack of an external resource is handled, there is no information on how to deal with
the missing report. Consequently, the report variable may be uninitialized in the process.
This situation is identified by ADORE.

• Exception Handling. This rules checks if the fault thrown by a process are handled in
the caller process. Fixing such weaknesses is not mandatory for the designer who can
decide to ignore the violations. In the Resove Crisis use case, step 1 requests that the
Coordinator captures the witness report. This step refers to use case #2 (Capture Witness

Report), which can fail when a fake crisis is detected. The weakness is that there is no
extension defining how the system should manage witness report when a fake crisis is
detected. Another example is given by the NF–concerns. Weaving NF-fragments adds
error throwing activities. But in the requirements document there is no information how
to deal with these errors. This rule has identified this set of missing information in the
requirements.

5The intention of the Coordinator actor is to resolve a car crash crisis by asking employees and external workers to
execute appropriate missions.
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11.5 Quantitative Analysis

In this section, we highlight the need of separation of concerns when designing a large set of
business processes. We collect quantitative data (obtained from ADORE) representing the initial
system and then make a comparison with data collected after composition (with or without NF–
fragments). We use a set of software metrics inspired by state-of-the-art research about business
process quality [Vanderfesten et al., 2007]. The analysis we present in this section is based on
data that are relevant only in the context of the AOM case study. The raw data for metrics
computation are available on the case study web site, and the complete quantitative analysis is
publicly available6.

11.5.1 Coarse–Grained Structural Complexity

Definition. Software engineering community usually uses LOC (“lines of code”) to measure
corse-grained software size. As the LOC metric is not directly suitable when dealing with busi-
ness processes we translate this coarse grained complexity using the activity set cardinality (de-
noted as |A⋆|).

Results. Our results according to this metric for the CCCMS case study are depicted in Fig.
11.5. We represent for each process p/inprocs(u) the associated |acts(p)|, and compare three dif-
ferent versions of the CCCMS: (i) the initial system (main success scenario), (ii) the business–only
system (including the scenarios extensions) and (iii) the final system (including both business ex-
tensions and non–functional concerns). The cardinality set average is multiplied by five between
the initial system (7.83 activities in average) and the final one (39.25 activities in average).

Figure 11.5: Evolution of the |acts(p)| indicator

Analysis. This chart clearly shows that the number of activities involved in the CCCMS realiza-
tion grows really fast. Talking about the evolution cost, up to 10.000 actions need to be performed
on the initial models to build the final ones. The composition algorithm takes in charge the com-
plexity of building the complete process. In the next section, we focus on this induced complexity
by looking at the provenance of entities inside computed processes.

6http://spreadsheets.google.com/pub?key=tgS6qbzqo5Cx TxlcTXbtsPA

http://spreadsheets.google.com/pub?key=tgS6qbzqo5CxTxlcTXbtsPA
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11.5.2 Entity Provenance

Definition. This section is a corollary of the previous one. Based on the coarse–grained com-
plexity of process, we identify how many activities came from the initial orchestration, the busi-
ness fragments and finally the non–functional fragments. This indicator allows us to quanti-
tatively qualify which part of the final system was initially defined in the requirements. We
normalized these values using the final cardinality (|acts(p)|) to obtain an activity provenance
percentage.

Results. Figure 11.6 represents these indicators for activities in the context of the CCCMS. We
can immediately notice than in average, more than 50% of a final process is defined as non–
functional activities. Extrema values are interesting too: the assignIntRes (use case #3) pro-
cess contains only 8% of initial business activities. On the contrary the execRescMission pro-
cess (use case #7) is composed of more than 70% of initial activities. These values conform to the
requirement documents, as scenario #3 defines only two steps in the main scenario and nine in
its extensions. On the contrary, scenario #7 defines seven steps and only three in its extension.

Figure 11.6: Activities provenance in the final CCCMS

Analysis. These indicators enforce the straightforward mapping between textual use cases and
designed process. A large process with small extensions will be defined as a large orchestration
and few fragments. But it also demonstrates the need of automatic composition, as in some case
up to 75% of a process is defined as extensions of a main scenario.

11.5.3 Cognitive Load

Definition. The cognitive load indicator aims to quantify the intrinsic complexity of a business
process. It is defined as an coarse grained approximation of the Control Flow Complexity indi-
cator [Cardoso, 2005], based on two simple concepts: the process surface and the labyrinthine

complexity. Surface is computed as a product between process width (i.e. number of activities
executed in parallel) and process height (i.e. longest path between an entry point and a exit
point). The labyrinthine complexity represents the number of different paths available in the
process. Inspired by [Laue and Gruhn, 2006] who defines cognitive load of programs as a linear
function (based on structural complexity), we define the cognitive load of an ADORE process as
the multiplication of its surface and its labyrinthine complexity, normalized by the number of
activities inside the process (|acts(p)|). This indicator allows us to apprehend both computational

and psychological complexities as defined in [Cardoso et al., 2006].
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CognitiveLoad(p) =
Surface(p)× Labyrinthine(p)

|acts(p)|

Figure 11.7: Cognitive load indicator (Main Success Scenario + Business Extensions)

Results. We focus in this part on the business–driven CCCMS, i.e., the initial system and its
business extensions7. For each process (excepting the handleAWorker one, as its cognitive load
is 247.5), Figure 11.7 represents the sum of initial processes and used fragments cognitive load,
and the cognitive load of the final process. For five processes (50%), the final load is clearly
higher than the sum of initial process and used fragments loads. For the other processes, the
final cognitive load follows the same magnitude than the cumulated one.

Analysis. This indicator clearly illustrates the immediate advantage of separation of concerns
to tame the complexity of designed artifacts. But it also highlights one of the weakness of the
ADORE platform (and more generally the AOM approach). Designing small processes (or pro-
cess without multiple extensions) using the separation of concerns paradigm may introduce an
overload in the design process. This overload is not visible in terms of result, but can be summa-
rized in the following sentence: “When should one write several small concerns and then express

a composition when he/she can directly express the expected result ?”. Such a typical useless com-
position is illustrated in use case Execute Rescue Mission (#7), as the main scenario is implicitly
designed to handle the sole extension defined on it: a request is sent in the main scenario, and
the response to this request is handled inside the extension.

11.6 Conclusions

11.6.1 Approach Intrinsic Limitations

Abstraction at workflow level. ADORE aims to support separation of concerns at the level
of workflows. The introduction of new concerns inside an activity is not managed by the ADORE

framework. In other words, we consider atomic activities and services as black boxes and do
not provide any mechanisms to enhance them internally. Moreover, when designing such a big

7We consider than non–functional concerns should not be handled manually in an AOM approach
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system as CCCMS, other separation of concerns features are needed to design structural infor-
mation about services and data. This is another limitation of the ADORE platform and one of our
perspectives.

Visualization scalability. The previous section demonstrated the scalability of the approach
in the CCCMS context. The possibility to vizualise and analyse partial composition such as be-
havioral merge results helps taming the complexity of business processes design. One of the
limitation of ADORE is to provide visualizations only for separate entities: when a system in-
volves many processes, it is necessary to have a holistic point of view on compositions and busi-
ness processes to grasp it. So other visualization methods are needed to tackle complexity of
compositions at the global system level. We start a collaboration with the MONDRIAN (a visual-
ization tool) community to address this problem [Mosser et al., 2010a]. The definition of accurate
visualization techniques is an ongoing perspective.

Pointcut abstraction level. The ADORE framework does not support complex pointcut defi-
nition using a surface language. As soon as we need quantification we need to use directly the
logical back–end. This approach is powerful and supports almost all kind of quantification. But
the cost is a definitive lost of abstraction mechanisms. We do not consider it as an insurmountable
drawback since business process modelers normally use explicit targets when they use process
indicators.

11.6.2 Summary

This chapter describes how to use the ADORE method to model the Crisis Management System
Case Study as a SOA. In the approach, use cases are modeled as service orchestrations. For each
use case, the main scenario is realized as a base orchestration, and the use case extensions and
non–functional properties are modeled as fragments. All the designed models are available on
the associated website8.

A quantitative analysis of the approach has been performed based on a set of metrics inspired
by state–of–the–art research on measuring business process complexity. It demonstrates the
benefits of separation of concerns to tame the complexity of creating and evolving models of large
business processes in which many functional and non-functional concerns must be addressed. It
also established that automatic merging and weaving of fragments are essential to deal with this
complexity. The case study provides some evidences that the ADORE method is scalable. The
orchestrations produced by the compositions in the case study are moderately large and complex
as indicated by the size metrics we’ve gathered. Introducing non–functional concerns complexify
the processes in a really deep way. The automated composition shields the developer from the
complexity of composing orchestrations.

From a utility standpoint, we were able to realize all the use cases without encountering any
methodological problems. ADORE intrinsically supports evolution of base orchestrations. We
illustrate this feature in the context of this case study by considering each scenario extension
as an evolution of the associated main success scenario. The introduction of non–functional
properties that impacts processes behaviors such as persistence or statistical logging follows the
same methodology. The DATAFLOW algorithm was successfully used to introduce iterations over
available resources while handling the crisis.

An important ADORE goal is to support end–user design of orchestrations, where an end–
user is a business process modeler. As a consequence, the modeling language utilizes concepts
and expressions that should be familiar to business process modelers. Once a process modeler
has specified where fragments are to be woven into the base model, ADORE composes the frag-
ments and base models automatically and provides indications of possible problems arising out
of interactions between fragments and base orchestrations.

Some interference rules only identify design bad–smells, but others detect errors that make
the composed result inconsistent. Such inconsistencies are detected and exposed to the process
modeler, who can then fix it. As a consequence, we do not ensure an a–priori orchestration

8http://www.adore-design.org/doku/examples/cccms/sta rt

http://www.adore-design.org/doku/examples/cccms/start
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correctness property. It is interesting to notice that these rules were able to detect requirement
weaknesses in the context of this case study.

At the implementation level, the composition engine handles the composition of the com-
plete application in 68 seconds, without any optimization on the PROLOG code. Moreover, we
supervised an M.Sc. three weeks project where four students of the POLYTECH’NICE school had
implemented in Java the processes computed by the composition engine. The implementation
coverage is not complete, but it does not seem to trigger any issue in the ADORE approach, at the
platform level.
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12
JSEDUITE, an Information Broadcasting System

«It is a very sad thing that nowadays there is so little useless infor-

mation.»
Oscar Wilde
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12.1 Introduction

This chapter describes the second case study of ADORE capabilities. It aims to explain the usage
of the framework to capitalize architect best practices and help orchestration definition. Con-
trarily to the CCCMS which was a model–driven case study, this chapter focuses on the re–
engineering of an existing piece of software. A preliminary version of this work is described
in [Mosser et al., 2008b, Mosser et al., 2009b].

JSEDUITE is an information system designed to fit academic institution needs. The initial
version and first proof of concept of the system was published in 2005. The current stable ver-
sion was released in February 2010, and has involved eight contributors at the code level (with
up to five concurrent work spreads over three continents). It supports information broadcast-
ing from academic partners (e.g. transport network, school restaurant) to several devices (e.g.

user’s smart-phone, PDA, desktop, public screen). This system is built upon a WSOA and used
as a validation platform by the FAROS project1. The system is deployed inside three institutions
(POLYTECH’SOPHIA engineering school & two institutions dedicated to visual impaired people:
(i) CLÉMENT ADER institute dedicated to childhood and (ii) the IRSAM association for adult peo-
ple.

1http://www.lifl.fr/faros (French only)
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This chapter is organized as the following: in SEC. 12.2, we describe the key concepts of
JSEDUITE in terms of business processes. We describe in SEC. 12.3 how ADORE is used to tackle
the issue encountered while designing the system manually. Finally, SEC. 12.4 concludes this
section, and expresses an interesting perspective of the system (related to software products
lines).

12.2 From Architectural Principles to Implementation

The JSEDUITE architecture is built upon three concepts at the business process level: (i) Infor-
mation broadcasting candidates, (ii) sources of information and (iii) providers.

12.2.1 Information Broadcasting Candidates (IBC)

First of all, we define an information as a data exchanged inside the system and finally delivered
to a broadcasting device. Such data can be instances of atomic types (e.g. string, integer,
date) or more complex data structures (e.g., RestaurantMenu, TeacherAbsence).

We called Information Broadcasting Candidates (IBC) existing web services which deliver rel-
evant information for academic institutions. The current implementation of JSEDUITE contains
13 IBC. These service are implemented as elementary services or orchestrations of services. El-
ementary services include dedicated realizations (e.g., restaurant menu database) or preexisting
services provided by partners (e.g., RSS reader, timetable hosting). The orchestrations of services
used to implement IBC aggregate elementary operations to provide an added–value service. The
PICWEB example is one of these orchestrations. We represent in FIG. 12.1 the available IBC.

Figure 12.1: Available Information Broadcasting Candidates (orange) in JSEDUITE

12.2.2 Profile & Sources of Information

The previous section defines IBC as regular web services. As a consequence, the operations one
can use to retrieve information from a given IBC accept a wide range of parameters. For example,
the PICWEB orchestration consumes a tag and a threshold to produce the relevant set of pictures
to be broadcasted in the system.

The JSEDUITE system tackles this problem by reifying a profile concept. A profile is uniquely
identified in the system, and associates parameters name and value. Based on a given profile,
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one can query it and extract parameters values associated to an IBC. For example, in the POLY-
TECH’NICE engineering school, we defined two profiles: (i) the public profile asks PICWEB to look
for pictures with the polytech tag, and (ii) the studentCommitee profile retrieves pictures pub-
lished by the students associations. This mechanism allows school headmasters to dispatch the
information flow according to different assistances.

Based on this concept of profile, we define a source as a mediation layer between an IBC and
the JSEDUITE system. Each IBC is encapsulated by a source, which performs the mediation
between real–life parameters and the JSEDUITE profile system. This mediation layer allows one
to handle any IBC through a common interface.

We implement a source as an orchestration of services which realizes a draw operation. A
source receives a profile identifier as input, and computes the relevant set of information associ-
ated to its associated IBC. We depict in FIG. 12.2 using the ADORE graphical syntax the source
associated to the PICWEB candidate. The source starts by asking the profile manager to know
if its associated IBC needs to be invoked (activity test). If not, an empty list of information is
returned (ign1, ign2). In the other case, the manager is invoked (par1) to retrieve the parameters
defined in the profile for this source. The values are then extracted (par2, par3), before perform-
ing the invocation of the real service (call1). The retrieved data are transformed into a list of
information (call2), and finally replied to the caller (rpl).

Orchestration picweb::draw

rcv (profile) := receive()

test (call) := manager::shouldCall(profile,’picweb’)

ign1 (result) := emptyList()

!call

par1 (param) := manager::getParam(profile,’picweb’)

call

ign2 reply(result)

rpl reply(result)

par2 (thr) := xpath(param,’//threshold’)

par3 (tag) := xpath(param,’//tag’)

call1 (raw*) := picweb::getPictures(tag,thr)

call2 (result) := toInformation(raw*)

Figure 12.2: Source associated to the PICWEB Information Broadcasting Candidate

Problems. Defining new sources is a repetitive task (P1). At the implementation level, this
work is done with an intensive usage of the copy/paste anti–pattern, a new source deriving
from the previous one. Several sources hold broadcasting policies, which modify the way they
interact with their associated IBC. For example, the RestaurantMenu source contains a piece
of code which dries it up after lunch time. Even if documented, these policies are interpreted by
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designers, and re–applied in a slightly different way in another source (P2). Such a development
process jeopardizes the global maintenance of the set of business processes defined in the system.

12.2.3 Information Providers

Based on the previously defined sources, we implement information providers as the keystones
of the JSEDUITE system. A provider aggregates several sources of information, by invoking them
and merging the associated sets of information into a single one. This set is manipulated accord-
ing to the provider target. For example, a provider designed for mobile devices such as smart-
phone will lighten information size by removing non–relevant details (such as large images).
Each broadcasting device is connected to a provider. We represent in FIG. 12.3 an overview of
this architecture. Providers allow to restrict the scope of sources: a “public” provider (connected
to a large screen in the institution lobby) will be only connected to “publicly available” sources of
information.

Figure 12.3: JSEDUITE big picture: Information Providers, Sources and IBC

Problems. Providers suffer from the same issue than the sources of information. Even if the
process of defining a new provider is well–documented in the project, designers use copy/paste

to derive a provider from another one (P ′
1), and then interpret the broadcasting policies before

re–implementing it (P ′
2). Non–functional properties (e.g., authentication, cache mechanisms) are

manually inserted too.

12.2.4 Implementation

At the implementation level, JSEDUITE is composed by 23 web services (written in JAVA with the
JAX-WS stack), 7 business processes (written in BPEL, WSDL and XSD). It represents approxima-
tively 70, 000 lines of code (and ∼ 125, 000 lines of code when including generated XML artifacts).
We identify 13 IBC, and then implement the 13 associated sources of information. Based on these
sources, we implement 4 providers. JSEDUITE is published using the LGPL license and benefits
of an APP2 registration.

12.3 Capitalizing Designers Knowledge with ADORE

We describe in the previous section the JSEDUITE architecture and its associated implementa-
tion. We also describe several issues identified while developing JSEDUITE. We describe in this

2“Agence pour la Protection des Programmes”, French institution for software ownership protection
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section how ADORE is used to handle such problems, by capitalizing designers knowledge into
reusable fragments.

12.3.1 Supporting Providers & Sources Design (P1, P
′
1)

We describe in the previous section how the manual design of a provider (or a source) is an
error–prone and time–consuming process. We propose to use a compositional approach to tackle
these issues. Using the ADORE formalism, we define an initial empty provider (FIG. 12.4(a)),
which plays the role of the initial system (basically doing nothing). We also define the addSource
fragment (FIG. 12.4(b)), which describes how a source will be inserted inside empty: The new
source is invoked in parallel of the initial behavior (a0), and the retrieved data are concatenated
with the legacy ones.

Orchestration provider::empty

rec (profile) := receive()

a0 (result*) := nop(profile)

rpl reply(result*)

(a) Initial (empty) provider

Fragment addSource

P

aSH (r*) := hook(id) aS1 (src*) := source::draw(id)

S

aS2 (r*) := concatenate(r*,src*)

(b) addSource generic fragment

Figure 12.4: Initial artifacts designed to support providers definition

Based on these artifacts, the complexity of designing a new provider is shifted into the ex-
pression of the associated composition directive. We consider now two designers Bob and Alice

working together on the same provider called sample. Bob works with the feedNews source, and
Alice handles the picweb one. They simply need to (i) clone the addSource fragment to obtain
their own copy, (ii) substitute the invoked source by the expected one and finally drop off a weave
directive in the invocation pool.

☛ I1 = WEAVE({ω(feedNews, {a0},≡)}, empty)

☛ I2 = WEAVE({ω(picweb, {a0},≡)}, empty)

The algorithm scheduler identifies a shared join points, and triggers a MERGE algorithm. At
the merged framgent level, an interference is detected: the r⋆ is concurrently accessed by the
two concatenation activities (derived from aS2). However, in the context of JSEDUITE, a domain–
dedicated knowledge states that when two concatenation interfere, the engine can choose an
arbitrary order to solve it. As a consequence, the composition supports provided by ADORE auto-
matically build the process depicted in FIG. 12.5 (Bob is blue, Alice is yellow).

The same pattern is followed to support the design of new sources. The only variability dimen-
sion between two sources is the number and the name of parameters retrieved in the profile. Con-
sequently, we define a generic business process abstractSource, and a fragment readParameter.
Based on these two artifacts, one can generate any kind of sources.

12.3.2 Broadcasting Policies & NF–Concerns as Fragment (P2, P
′
2)

Like for the CCCMS system, we do not make any difference between functional and non–functional
concerns when designing fragments in ADORE. We identify in the system eight broadcasting poli-
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Orchestration provider::sample

rec (profile) := receive()

a0 (result*) := nop(profile)

a1 (v2) := picweb::draw(profile)

a6 (v5) := feedNews::draw(profile)

a7 (result*) := concatenate(v5,result*)

rpl reply(result*)

a2 (result*) := concatenate(v2,result*)

Figure 12.5: Automatically built provider, aggregating feedNews and picweb

cies and two non–functional concerns. These ten concerns are factorized as fragment of processes.
For concisions reasons, we do not graphically represent each fragment, and simply summarize
its behavior in a few lines. The associated implementation artifacts are available on the ADORE

website:

http://code.google.com/p/adore/source/browse/trunk/ case_studies/jseduite

Broadcasting Policies. We design the eight broadcasting policies identified in JSEDUITE as
fragments.

• diet. The fragment sends the hooked set of information to a dedicated service able to delete
heavy details. This is particularly useful when the information needs to be broadcasted to
mobile device, due to the restricted bandwidth. For example, a News contains information
about its author, a short title, a summary, a set of tags, a full length content and a list of
associated news URLs. In this situation, we delete the two last items to reduce the size of
the data when exchanged over the network.

• dry. Several types of information do not make sense after (or before) a given hour. This
fragment asks for the system time and performs a comparison between the current time and
the one contained in the fragment. If the broadcasting condition is not satisfied (i.e., it is too
late or too early), it returns an empty list of information. For example, the Restaurant-
Menu source must be dried up after 2PM in the POLYTECH’NICE school (there is no dinner
service in this restaurant). The opposite example is the OnAirTonight source (retrieving
the evening TV shows schedule), which should not be broadcasted before the late afternoon
to let school users focus on their daily work.

• filter. This fragment filters a set of information according to the decision given by an oracle
service. School headmasters can then restrict the scope of some information. Using this
fragment, one can decide to delete News handling the “internal only” tag from the publicly
available providers.

• inhibitsOnBreaks. JSEDUITE feeds internal plasma screen to broadcast publicly available
information such as fellow students timetable. When a break (i.e., a short time between
two lectures) happens, it implies that a large amount of school users will walk in front
of the screens. One may want to inhibit several sources of information to only broadcast
very important information (e.g., next lecture location, student summons) during breaks. A

http://code.google.com/p/adore/source/browse/trunk/case_studies/jseduite
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fragment (a more complex version of the dry one) is defined to handle such a situation. For
example, we decide to only broadcast next lecture location and internal news during breaks
in POLYTECH’NICE.

• reorder. This fragment sends the retrieved set of information to an oracle service which
transforms it into an ordered list of information, according to information priority. It allows
headmasters to organize their information at different level of priority. Such a mechanism
is needed by the IRSAM association, which accommodates people with mental handicap.
Important information (e.g., doctor’s name and location) must be broadcasted just after the
screen wait page due to their mental weak memory capabilities.

• resize. The resize fragment is dedicated to picture–driven information. It analyzes the re-
trieved pictures, and sends the unnecessarily large entities to a resize service. This service
resizes the pictures and publishes their resized version on the local network. This mecha-
nism reduces the network bandwidth usage, but may slow down the global response time
(image analysis are costly operations). Consequently, it is often combined with a cache (see
NF–concerns) for performance reasons.

• shuffle. Considering a set of information as an ordered list (which is the underlying data
structure, relying on XML sequences), this fragment blends it to change the internal order.
This fragment is often used in conjunction with the truncate one to generate pseudo–random
informations (i.e., the retrieved set is shuffled and then truncated).

• truncate. The truncate service was described in the PICWEB running example. This frag-
ment hooks a set of information and sends it to the truncate business process.

Non Functional Concerns. We identify two non–functional concerns in the system. These
concerns are reified as fragment too.

• authenticate. We define a token–driven authentication mechanism to deal with access con-
trol list. This fragment hooks the reception of a profile identifier. It then asks the authen-
tication server to check if the profile holds a token valid for the current process. If not, a
security exception is thrown.

• cache. The cache fragment is equivalent to the one defined in PICWEB. The only difference
is the way the key used to identify the stored data is computed. In this fragment, the key is
computed as the concatenation of the profile identifier and the current process name.

“Points of Interest”. The previously defined fragments aim to be integrated into sources and
providers. These two classes of processes define point of interest where the fragment will be
woven: (i) profile reception, (ii) response sending and (iii) usual behavior (i.e., IBC invocation
for a source, initial empty behavior for a provider). The “usual behavior” point is used by the
fragment which supports the construction of the artifact (i.e., addSource and readParameter),
and by the cache one. The profile reception is adequate to weave inhibition fragment (e.g., dry).
The response sending point allows the definition of information sets (e.g., shuffle). We represent
in TAB. 12.1 where the different fragments are intended to be used.

12.3.3 Multiple Calls as DATAFLOW Usage

We describe in the next section how a source is designed. However, this design is simplistic, and
do not allow a profile to ask for the same source multiple times. For example, the timetable IBC
consumes the identifier of a lecture group, and returns the associated schedule. As a consequence,
to retrieve multiple schedules, we need to store in the profile multiples group identifiers, and
iterate over this set of parameters. This is exactly the goal of the DATAFLOW algorithm.

We depict in FIG. 12.6 a version of the picweb source able to handle a set of parameters, i.e.,

a set of tags and thresholds information. In this figure, we highlight in orange the activities
which are not part of the iteration, but still impacted by it. The activity par1 receives now a
set of parameters, and the activities ign1, ign2 and rpl work on list of depth 2. This example
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Target Process Class
Fragment Rec. Resp. Usual Source Provider

diet × × ×
dry × × ×

filter × ×
inhibitsOnBreak × ×

reorder × ×
resize × × ×
shuffle × × ×
truncate × × ×

authenticate × ×
cache × × ×

Table 12.1: Broadcasting Policies as Fragment in JSEDUITE

strengthen the need for algorithm like the DATAFLOW one in the context of SOA: this simple
change (param 7→ param⋆) creates an iteration containing four legacy activities, add a new ac-
tivity and its associated relations, and modify four activities inside the process. Finally, only the
two first activities where not impacted by the iteration introduction.

Orchestration picweb::draw (param*)

par2 (thr) := xpath(param,’//threshold’)

par3 (tag) := xpath(param,’//tag’)

call1 (raw*) := picweb::getPictures(tag,thr)

<serial>
param in param*

call2 (result) := toInformation(raw*)

swell (result*) := append(result,result*)

rpl reply(result*)

rcv (profile) := receive()

test (call) := manager::shouldCall(profile,’picweb’)

ign1 (result*) := emptyList()

!call

par1 (param*) := manager::getParam(profile,’picweb’)

call

ign2 reply(result*)

Figure 12.6: Automatic handling of multiple invocations in the picweb source
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12.4 Conclusions

12.4.1 Summary

In this chapter, we described how ADORE is used to capitalize designers knowledge while design-
ing SOA business processes. This knowledge is reified as fragment and then composed to build
new architectures. The methodology is illustrated on a legacy application, daily used in several
institutions.

Based on two initial orchestrations and two enhancement fragments, we are able to build
any artifact needed by the existing JSEDUITE system (i.e., source or provider). Moreover, we reify
broadcasting policies into reusable fragments of processes, which can be automatically integrated
into legacy process on an on–demand basis.

One limitation of the method is the knowledge basis defined by ADORE. Its expressiveness is
restricted at the instance level and does not allow one to express business–driven knowledge such
as “Always resize after truncating” of “Choose an arbitrary order between two parallel concatena-

tions”. We simulate this business–driven mechanism at the implementation level, but handling
it properly at the model level is still an open issue.

12.4.2 Towards an Information Broadcast Software Product Line

The domain–dedication idea exposed in the previous paragraph leads to a more general idea. By
capturing the business domain of information broadcasting into a meta–model, we can define a
Software Product Line dedicated to information broadcasting, at the business–level. The idea
is to target directly school headmasters. With such a product line, a headmaster will choose a
subset of available sources of informations, select policies to be applied on these sources, and
then build providers using his/her vocabulary. The underlying complexity of creating orches-
trations, applying fragments and solving conflicts is then given to an automatic engine. This
perspective is one of the short–term perspectives for the JSEDUITE system. Existing works on
software products lines [Thaker et al., 2007, Freeman et al., 2008, Uzuncaova et al., 2010] will
support the definition, the composition and the assessment of the system. As a consequence, a
generative environment will be available for school headmasters, who will simply express config-
urations and then obtain as a result a customized system.
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Summary

In this part, we described two large case studies used to assess the ADORE approach and its
associated implementation in real–life context.

The CCCMS application is realized as an answer for a common case study on AOM. It aims to
model the behavior of a Car Crash Crisis Management System. The requirements document was
defined by external stakeholders, which emphasizes the fact that ADORE can be used in real–
life context. This case study also shows the scalability of the approach and its implementation,
considering the CCCMS as a very complex system, orchestrating of lot of services invocations.
Moreover, interference detection mechanisms identify lacks in the requirements, at the process
level. Finally, the ADORE approach allow us to cover all the use cases defined in the document,
without any methodological issue.

The JSEDUITE application is based on a legacy implementation, daily used inside several aca-
demic institutions. This open–source system represents 70, 000 lines of code. We identified several
issues while developing the system, as repetitive, time–consuming and error–prone situations.
We perform a reverse engineering of the JSEDUITE system, using ADORE as a compositional ap-
proach to support its design. The system obtained by composition fits our needs, and tackles all
the issues identified in the initial development. Such an automated composition support lets us
imagine the definition of a software product line associated to the system.

 Based on these two case studies, we defend that ADORE fulfills its initial goal and then sup-
ports the definition of complex business processes using a separation of concerns approach. We
describe in the next part perspectives of this work identified while realizing theses case studies,
before concluding this dissertation.
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Part V

Perspectives & Conclusions

Notice: This part ends this dissertation. We expose in CHAP. 13 exciting perspectives

opened by this work. finally, CHAP. 14 concludes this dissertation by summarizing the

contribution made with ADORE
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Perspectives: Towards a Complete Development Approach

«Anybody who has been seriously engaged in scientific work of any

kind realizes that over the entrance to the gates of the temple of

science are written the words: “You must have faith”.»
Max Planck
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13.1 Introduction

Before concluding this thesis, we describe in this chapter several perspectives for the ADORE

framework. References to these perspectives were spread in the document, where their moti-
vating need was identified. We differentiate two kinds of perspectives: the first ones are based
on ongoing research collaborations, and illustrate preliminary results interesting enough to be
followed in a short term period. The second perspectives are only expressed as “sketch”, as we
consider these directions interesting but our research on the associated domain is very prospec-
tive.

This chapter is organized as the following: SEC. 13.2 describes a methodological approach
used to link a requirement engineering engine to ADORE. In SEC. 13.3, we propose a link between
ADORE and a visualization engine, used to graphically assess the composed system. Based on
these two collaborations, we tend to the definition of a complete model–driven business process
development framework, handling requirements, design and assessment models. Finally, we
describe in SEC. 13.4 sketched perspectives.
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13.2 Upstream: From Requirements Engineering to ADORE

This work is the product of a collaboration initiated in 2010 with Aymot and Mussbacher, Univer-
sity of Ottawa [Mosser et al., 2011]. In this work, we propose to link ADORE with an upstream
requirements engineering method and then automatically generate design artifacts (as ADORE

models) based on requirements models.

13.2.1 Context

While designing a system, business process designers have to design workflows in their contex-
tual environment, thus spending time on non-business oriented tasks to integrate non–functional
concerns. Several adaptations may occur on the same workflow due to the many different con-
cerns such as cost, efficiency, and security. These issue are tackled by the ADORE framework, at
the model level. However, designers have to ensure that the workflows conform to the initial and
adapted requirements.

Based on these observations, there is a need for helping users move from requirements to the
design of accurate workflows while taking into account several possibly crosscutting concerns.
Changes at requirements or design levels must be supported to apply adaptations in a safe way
in both ways. Over the last decade, many aspect-oriented software development (AOSD) tech-
niques [Chitchyan et al., 2005] have been proposed. Less attention has been paid to automati-
cally link together these approaches across life-cycle phases, even though AOSD claims improved
productivity when crosscutting concerns are encapsulated across these phases.

The Aspect-oriented User Requirements Notation (AoURN) [Mussbacher and Amyot, 2009,
Mussbacher et al., 2010] supports the elicitation, analysis, specification, and validation of re-
quirements in an aspect-oriented modeling framework for early requirements with the help of
goal and scenario models. AoURN introduces concerns as first-class modeling elements, regard-
less of whether they are crosscutting or not. Typical concerns in the context of AoURN are
stakeholders’ intentions, non-functional requirements, and use cases. AoURN groups together
all relevant properties of a concern such as goals, behavior, and structure, as well as pointcut
expressions needed to apply new goal and scenario elements or to modify existing elements in
the AoURN model. AoURN’s scenario models are defined with Aspect-oriented Use Case Maps
formalism (AoUCM)

13.2.2 Proposed Approach

We propose an iterative, concern-driven software engineering approach that is based on a tool-
supported, semi-automatic transformation of scenario-based, aspect-oriented requirements mod-
els into aspect-oriented business process design models. This approach is realized by a mapping
from Aspect-oriented Use Case Maps (AoUCM) to ADORE business process models, allowing for
the continued encapsulation of requirements-level concerns in design-level artifacts.

Inspired by agile methodologies, we consider that the design phase impacts the requirements.
As a consequence, we defend an iterative process were both requirements and design artifacts
interact together to build the final system. We illustrate this vision in FIG. 13.1.

Figure 13.1: Overview of an AoURN↔ ADORE process

The first step (1) in the process is to generate design artifacts based on the structural and
behavioral information available in the requirements model. An automated transformation of
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requirements models into design models reduces (or even eliminates) the amount of work done
in the requirements phase that needs to be redone in the design phase while at the same time
improving the consistency between the two layers. Changes at the requirements level are vali-
dated at this level, before being propagated to the design level. Moreover, due to the automatic,
correctness-preserving transformation, we ensure that the generated design model conforms to
these requirements. Hence, software engineers can take advantage of the analysis capabilities of
requirements notations. The feedback from the analyses serves to improve both the requirements
and the generated design models.

The reciprocal arrow (2) supports the transformation of design decisions into requirements
ones, when useful. ADORE may identify inconsistent data–flows introduced by omissions in the
requirements models (e.g., the requirements may assume the usage of data which are never
defined explicitly in the system). This information is fed back to the requirements layer for it-
erative refinement. From the separation of concerns point of view, ADORE identifies interactions
between several concerns around shared join points, which may not be described in the require-
ments model. Such interactions can then be solved at the requirements level, if necessary.

13.2.3 Firsts Experiments

We implement such a generative approach for AoUCM and ADORE models. For a given require-
ments model r, we define a model transformation τ to produce the associated design model
d = τ(r). We based our first experiment on the PICWEB example. With the help of AoURN,
each concern of the PICWEB application can be modeled from two points of view. AoURN goal
models describe the reasons for including a concern in the application and the impact of the con-
cern on high-level goals of all stakeholders. AoUCM, on the other hand, describes the scenarios
of the concern as well as the actors and structural system entities that work together to realize
the scenarios. We depict in FIG. 13.2 an AoURN representation of the PICWEB getP ictures initial
process.

 

Figure 13.2: PICWEB getP ictures process described in the AoURN notation

Based on the information described in the requirements, the transformation algorithm gen-
erates all the process skeletons associated with PICWEB concerns that are composed with each
other as desired. The design artifacts expressed in the language daily used by the designer, and
consistent according to the requirements. Designers only focus on their field of expertise and can
identify problems in the system (such as omissions) without having to build a design model from
scratch. The work effort is reduced, and the interventions are more accurate and precise. The
requirements engineer, on the other hand, benefits from an updated requirements model which
can be verified against the stakeholders’ goal models and re-evaluated by requirements analysis
techniques to ensure that the changes do not conflict with the intended results.
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13.2.4 Summary

With this work, we sketched a model transformation from a requirement engineering tool to
ADORE. This approach supports both requirement engineer and process designers while de-
signing an application. In terms of software design, it emphasizes the need to automate the
operationalization of requirements artifacts produced at the requirement steps. Moreover, we
identified several situations where the business process design phase introduces changes in the
requirements, which can be automatically capitalized with the associated transformation.

13.3 Downstream: Visualizing & Assessing Compositions

This work is the product of a collaboration with Bergel, University of Chile. In this work, we
propose to link ADORE with a visualization engine (MONDRIAN) [Mosser et al., 2010a]. The defi-
nition of visualizations associated to ADORE artifacts supports designers by providing a holistic
point of view on the compositions involved in the final system.

13.3.1 Context

Assuming that a complex system is difficult to understand by humans, separation of concerns
mechanisms propose to reduce the complexity by defining several smaller artifacts instead of
a single and large one. They identify and encapsulate parts of models that are relevant to a
particular concern. These artifacts are then composed to produce the expected system. As a
consequence, the intrinsic complexity of the system is shifted into the composition directives
used to build it. When a system involves many processes, it is necessary to have a holistic point
of view on features, compositions and business processes to grasp it.

When developing a large system (e.g., the CCCMS, CHAP. 11), designers handle a large set of
initial orchestrations, and a large set of fragments to apply in these orchestrations. ADORE tack-
les the complexity of integrating fragments into orchestrations, at the activity level. Such a de-
tailed and focused view of composition is not scalable to support the design of large system (non-
functional concerns introduction in the CCCMS raises the number of unification to more than a
thousand). Visualization techniques of large data set such as fish–eye [Sarkar and Brown, 1992]
can tame the readability problems, but do not reduce the amount of details visualized in this
representation. When designing a complete set of business processes using a compositional ap-
proach, the objectives of designers are to retrieve a holistic representation of the involved entities
to understand easily what they are doing. Such a global visualization is needed at both design
and analysis time:

• Design Phase. When building a complete system using a compositional approach, designer
needs to understand at a coarse–grained level the interactions between the different com-
position entities they are manipulating. At this step, designers focus on the fragments in
terms of impact (e.g., “the fragment throws a fault”) instead of their detailed behavior (e.g.,
“when a resource takes too much time to reach the crisis location, a timeout fault must be
thrown”).

• Analysis Phase. After the composition directives execution, designers obtain a composed

system. At this step, they need to identify critical points of the composed system, for exam-
ple to design unit tests. This step focuses on the comparison between the intrinsic complex-

ity of the original entities and the composed result.

13.3.2 Proposed Approach & Firsts Experimentations

We define three different visualizations of compositions. The common objective of these three
visualizations is to provide dashboards to designers. Composition dashboards are graphical rep-
resentations meant to help designers to (i) get a scalable and global overview of the compositions
present in an orchestration-based application, (ii) identity abnormal compositions and (iii) fa-
cilitate the comprehension of a large composition by categorizing compounds. The idea of these
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dashboards is to enable a better comparison of elements constituting a program structure and
behavior. These visualization are obtained through a model transformation from the ADORE log-
ical meta–model to an object–oriented one (defined in Smalltalk) used by MONDRIAN to define
its graphical rendering. It is out of the scope of this section to fully describe these visualizations.
The interested reader may refer to the associated publication. We focus here on a coarse grained
visualization of fragments, used to assess the set of available fragments used to build the system.
We use the CCCMS case study described in CHAP. 11.

The first visualization represents all the fragments (as square) involved in a system, focusing
on their impact. We have identified several impact properties represented as boxes: (i) hooked
variable modification, (ii) exception throw, (iii) fault handling, (iv) initial process execution inhibi-
tion and finally (v) restricted process inhibition. To illustrate this visualization, we instantiated
it on the CCCMS example (Fig. 13.3). It represents the 24 fragments defined to answer to the
different use–cases extensions realizations (based on the requirements).

Figure 13.3: Fragments dashboard instantiated on the CCCMS example.

Interpretation. Based on the graphical representation obtained in this view, we have identi-
fied 7 different fragment categories, grouped into 3 main families: business extensions (B), fault
handling (F) and control–flow inhibition (I).

• Business extensions (B): The white fragments only enrich existing process with new addi-
tional behavior. They do not modify the initial logic of the business process, and only add
new features to enrich it.

• Fault handler (F): Yellow boxes represent fault handling property. There are several ways
to deal with a fault when it occurs in a process: (i) doing a re–throw (green property) to
customize the fault, (ii) bypassing the fault (by modifying data to handle the problem, blue

property) locally and (iii) handling the fault by using a business-driven reaction (no other
property).

• Control–flow inhibition (I): The red property represents the inhibition of an activity and
its followers in a business process. The pink property is a restriction of the red one, since
the fragment only inhibits the followers of an activity. Correlated with the fault thrower
property (green color), we can identify precondition (activity inhibition & throw) and post-

condition (followers inhibition & throw) checker. The pink–only fragments represent “dan-
gerous” fragments, which inhibit several activities using a non–standard behavior. A deep
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understanding of the business–domain is necessary to grasp their behavior properly. The
timeout fragment is a typical example of this kind of fragments: instead of “simply” throw-
ing an exception when the system detects that a resource takes too much time to reach the
crisis location, the CCCMS business model asks to stop whatever the system was doing
and urgently inform a human coordinator able to decide what to do to counterbalance the
situation.

13.3.3 Summary

The described view helps designers to perform a coarse–grained identification of their critical
fragments, and assess the others. Based on these preliminary results, we submit a project to
the Chile Research Agency (ECO-Sud program) to facilitate further work. We plan to investigate
other representations associated to compositions, based on processes metric indicators. More-
over, others indicators can be used to assess compositions, such as data–flow treatment, security
introduction, performances costs.

13.4 Sketched Perspectives

The two previous perspectives were initiated with external collaborations. These collaborations
still need to be enriched to enrich the preliminary results identified in the associated articles.
The following perspectives are in a more prospective state, and describes directions we think
interesting to follow to enhance ADORE.

13.4.1 Users Experiments

The implementation of ADORE was realized to support the approach defended in this disserta-
tion. As a consequence, it is a very young platform. Even if we successfully use the tool on five
case study (only two were described here for concision reasons), the tool was never used by oth-
ers than our team. To address this issue, we plan to set up a blind experiment where the same
application is modeled by process designers with (i) usual tools and (ii) ADORE.

13.4.2 ADORE Expressiveness & Tooling

In this document, we describe the ADORE framework, and how it is used to handle several case
studies. However, the framework suffers from several limitations when talking about its expres-
siveness or tooling.

Code Generation: From ADORE to BPEL. ADORE is a model–driven framework. It works
on design models, and allows designers to compose business processes independently of their im-
plementation. We sketch in [Blay-Fornarino et al., 2009] how ADORE models can be transformed
into executable BPEL processes, using the KERMETA1 meta–language to support the transforma-
tion. However, more studies should be conducted in this area to handle the transformation in the
general case. Based on this code generation transformation, a complete development process can
be realized through ADORE (from requirements to code).

Representation of Data Structures. The ADORE framework focuses on behavior represen-
tation. At the model level, several works address the structural composition challenge (e.g.,

KOMPOSE [Fleurey et al., 2007]). Based on a code–driven experimentation made by fourth–year
engineer students, we identify in the context of the CCCMS several incomplete structural models
which can be derived from ADORE artifacts. To define a complete model–driven framework to
support composition of business process (both structural and behavioral), we are considering to
identify and then maintain a link between ADORE and KOMPOSE models. This link will ensure
the consistency of the final system, binding the two framework into a SOA dedicated one.

1http://www.kermeta.org

http://www.kermeta.org
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Iteration Policies Composition & Parallelism. As far as we are, we do not address in
ADORE the composition of iteration policies. State of the art research on grid–computing and
workflow enactment [Glatard, 2007] focuses on such problematic, at the workflow level. By en-
hancing the expressiveness of ADORE, one may define several policies on the same activities, and
then express how the data are composed. These information can be used to define a more clever
DATAFLOW algorithm, able to melt policies between each others.

13.4.3 Actions Sequences & Optimizations

The ADORE framework defines “algorithms” as action generators. These actions are then exe-
cuted sequentially by the execution engine. We identify two directions to follow to optimize this
methodology: (i) sequence optimization and (ii) multi–threaded execution.

Sequence optimization. Even on simple example, we show that the generated sequences
of actions are not minimal. An a–priori analysis of the sequences may effectively reduce the
length of these artifacts. Another direction is the optimization of sequences based on the ac-
tion semantics: if an element e is going to be deleted with the execution of the action ai, one
may consider to not execute actions which modifies e before its deletion (at the end, it will
be deleted, so why should we waste time on this element?). These optimizations are not that
easy [Blanc et al., 2008], but may lead to an approximation of minimal sequences.

Execution optimization. Nowadays, multi–core architecture are usual, even on personal
computer. The use of multiple threads in an application can speedup its execution time. In the
context of ADORE, the action sequence to be executed can be analyzed to identify disjoint actions
(that is, activity which does not work on the same artifacts). Consequently, a thread pool can be
used to introduce parallelism inside the execution engine. Following the same idea, algorithms
invocation are intrinsically independent (i.e., “embarrassingly parallel”), and may be executed
in parallel (even automatically [Dutra et al., 2004]). We do not provide an extensive benchmark,
but our preliminary tests on toy examples show a real benefit (approximatively two times faster
on a dual–core processor) to multi–thread the composition engine.

13.4.4 Knowledge Representation & Semantic Web

The knowledge basis used by ADORE is very restrictive. It is only a technical solution to a more
general problem. We sketched in the JSEDUITE case study how the knowledge basis expressive-
ness can be enhanced to automatically infer interference resolution rules. However, this solution
is not optimal as dedicated to a given application. We also show (see SEC. 12.4) that a semantic
point of view [Gasevic et al., 2006] on ADORE artifacts should supports designers through the
automation of several reasoning.

Globally, the knowledge basis used by ADORE can be seen as an “expert system”, and the
interference resolution rules as “business rules”. Coupled with a semantic web engine to express
the relationships between services and exchanged data, an important part of the interference
resolution may be automated. This idea is inspired by the one described in [Moreau et al., 2009],
where the authors automatically repair data–flow in BPEL processes, based on semantic annota-
tions.

13.4.5 Dynamic Weaving

The ADORE framework is a static one. It supports the static definition of behavioral models, and
their compositions. But the emerging “Models at Runtime” paradigm [Garlan and Schmerl, 2004]
emphasizes the need to handle models compositions at runtime, following a dynamic approach.
Moreover, context–aware application [Parra et al., 2009] needs to be reconfigured at runtime,
which induces a dynamic modification of their behavior when encountering a new context of exe-
cution. For all these reasons, we found very important to now think about ADORE as a dynamic
composition engine, identifying what should be enhanced to support such an approach.
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14
Conclusions

«It is good to have an end to journey toward; but it is the journey

that matters, in the end.»
Ursula K. Le Guin

In this document, we present the core of our research dealing with composition mechanisms
dedicated to Service–Oriented Architectures. To digest the contribution of this manuscript, we
take each part of the document, and then summarize its associated contribution.

State of the Art. From the literature, we particularly study two fields: (i) compositions of
services and (ii) compositions of models. The first one provides solutions to support designers
when they compose several services into more complex ones. It defines languages, norms and
framework which efficiently perform the assembly. From these mechanisms, we restrict the
scope of this study to business processes and workflow design. In front of the multiplicity of
norms and languages, we decide to follow a model–driven approach, being independent of a given
technical platform. The second field tackles the intrinsic limit of the first approaches. It supports
(under the name of “Separation of Concerns”) the design of large systems through the expression
of several small artifacts, and let the hard task of combining these incomplete models into the
final one to automatic engine. However, there is no method dedicated to the design of business
processes following the separation of concerns paradigm, at the model level. Filling this gap
is the objective of this thesis. We summarized in TAB. 14.1 the different answers provided by
ADORE regarding the properties Pi and Πi identified in this study of the literature.

The ADORE Kernel. Based on our study of the literature, we propose a meta–model named
ADORE able to reify key concepts associated to business process. We propose a graph–based
meta–model, where process activities are represented as nodes, and relations between activities
(e.g., wait or guards) as edges. The meta–model handles concepts dedicated to support a compo-
sitional approach of business process design, with the definition of fragment of processes. These
fragments are incomplete by nature, and aim to be integrated into others processes. We associ-
ated to this meta–model a graphical syntax and a formal execution semantic which underly the
remaining of the manuscript. Finally, we propose an action–based language used to interact with
existing models conform to the ADORE meta–model.

Composition Algorithms. The ADORE kernel allows us to define several algorithms to sup-
port the design of large business processes. We identified four algorithms, described as the fol-
lowing:

189
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• The WEAVE algorithm aims to integrate fragments into other processes. An interesting
characteristic of this algorithm is its order–independence: the obtained result does not de-
pend on the execution order of the weave directives expressed by the designers. As a conse-
quence, it is intrinsically different (but hopefully complementary) to sequential approaches
such as features or aspects.

• The MERGE algorithm handles the shared join point issue, triggered when several concerns
must be integrated in the base process at the same location. Instead of being ordered, we
propose to merge the involved concerns, keeping then explicitly unordered. Based on this
algorithm, we propose a methodological approach which supports designers while building
complex processes.

• The INLINE algorithm was defined for performance purpose. Based on experimental re-
sults, we identify that this well–known compilation technique makes sense in the context
of business process. As a consequence, we give to process designers an automatic capability
for inlining processes into other ones.

• Finally, the DATAFLOW algorithm is inspired by the grid–computing community. With this
algorithm, we consider that process designers are not supposed to be computer scientist,
and then should not be annoyed with technical details such as loops. We define this algo-
rithm to automatically introduce an iteration over a data set. With this method, one can
describe a process which works on a scalar, and then lets the algorithm tackle the complex-
ity of identifying the activities involved in the iteration, and finally creates the associated
artifacts in the original model.

Applications. According to Richard Feynman, “For a successful technology, reality must take

precedence over public relations, for nature cannot be fooled.”. We illustrate the usage of ADORE

with two large case studies. The first one was the definition of a Car Crash Crisis Manage-
ment System (CCCMS), according to a requirements document co–published by the University of
Mc Gill and the University of Luxembourg. This study shows how ADORE is used to support the
design of a complex system, defined by someone external. The second case study deals with infor-
mation broadcasting inside academic institutions. This application (JSEDUITE) is developed by
our research team (the first release was published in 2005) and can be considered as a “medium–
to–large” system (about 70,000 lines of code). We accurately use ADORE to reverse engineered
the legacy system (deployed into several institutions), and tackle methodological issues raised
while developing the system at the code level.

Finally, we expose as perspectives several research topics identified as perspectives of ADORE.
Some of them are based on ongoing collaborations with other universities, but most of them
are open fields which may lead to very exciting research dealing with composition and business
processes.

“That’s all folks!”

— The Looney Tunes
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SOA Property ADORE Answer

P1 Business Expressiveness The ADORE meta–model (see CHAP. 4) defines activities
and relations between activities, that is, the essence of
business process modeling. Fragments are described
using the same formalism. The composition directives
are expressed in terms of ADORE activities, in business
terms.

P2 One cannot ignore reality The ADORE meta–model can be seen as the simplifi-
cation a highly adopted standard (BPEL). We also use
activity–diagrams like notation so support the design of
processes. We assess the meta–model with two large
case studies (see PART IV)

P3 Concern Reification Concerns are reified as fragments, using the ADORE for-
malism (see CHAP. 4)

P4 Behavioral Composition ADORE composition mechanisms (see PART III) support
the enhancement of preexisting business processes, in
an order–independent way.

P5 Activity Parallelism The meta–model relies on a partial order between activ-
ities and consequently allow naturally such an expres-
siveness. The compositions algorithms never introduce
an order if not needed (see PART III), and then conserve
the preexisting parallelism

P6 Syntax Independence Even if ADORE is defined as a simplification of the
BPEL, its intrinsic concepts are not specific to the lan-
guage.

SOC Property ADORE Answer

Π1 Concurrent experts support The MERGE and WEAVE algorithms support an order–
independent composition process (see CHAP. 8). Expert
can work concurrently; the way they order their direc-
tive does not matter at the end.

Π2 Multiple comp. algorithms The action framework (see CHAP. 6) support the defini-
tion of composition algorithms in a simple way. We de-
fines four different composition algorithms in PART III.

Π3 Comp. as first class entities Composition directives are reified as first–class entities,
and the algorithm scheduler (see CHAP. 7) reason on
these entities to support the order–independence.

Π4 Conflict detection Conflict detection mechanisms (defined as boolean pred-
icate satisfaction) are used in the approach to support
the assessment of composed elements (see CHAP. 7).

Table 14.1: Summary of the contribution, according to PART I properties
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Implementation of ADORE

«Theory guides. Experiment decides»
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In this chapter, we briefly describe the current implementation of the ADORE platform. This
description is based on a demonstration designed for the AOSD’10 conference. The complete
implementation of ADORE is available under a LGPL license, on the associated public repository1.
This document is based on the revision 205 of ADORE.

A.1 Tool Support

ADORE user interface is implemented as an EMACS major mode, as shown in Fig. A.1. This mode
hides in a user–friendly way the set of shell scripts used to interact with the underlying engine.
The concrete ADORE engine is implemented as a set of logical predicates, using the PROLOG

language. Interference detection rules are also implemented as PROLOG predicates.
A dedicated compiler (defined using ANTLR2) implements an automatic transformation be-

tween ADORE concrete syntax and the associated PROLOG facts used internally by the engine
(Fig. A.2). As visualizing processes is important in design phase, ADORE provides a transfor-
mation from its internal facts model to a GRAPHVIZ3 code which can then be compiled into a
graphic file (e.g., PNG, EPS). It produces as a result a graphical representation of ADORE models,
as depicted in all the figures showing ADORE models in this document.

Raw data (e.g., number of activities, relations, process width) can be extracted as a XML

document. This document can then be processed (manually or using technology like XSLT) to
produce before/after graphics and benchmark the approach, as shown in the CCCMS validation
CHAP. 11.

1http://code.google.com/p/adore
2http://www.antlr.org/
3http://www.graphviz.org/

195

http://code.google.com/p/adore
http://www.antlr.org/
http://www.graphviz.org/


196 APPENDIX A. IMPLEMENTATION OF ADORE

Figure A.1: ADORE editor, as an EMACS major mode
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Figure A.2: PROLOG facts, generated by the ADORE compiler

A.2 Composition Algorithms Invocation

The ADORE surface language allows modelers to define composition units. These compositions
are compiled as PROLOG facts and analyzed by the engine. When the modeler asks ADORE to run
the compositions, it determines for a given composition the different algorithms (e.g., fragment
weave, behavioral merge) that need to be triggered and execute them.

Based on the CCCMS case study, we consider as an example a subpart of the capture-
WitnessReport composition. We focus here on the a4 activity, where the modeler asks to weave
two different fragments (ignoreDisconnection & fakeCrisisDetected ):

composition cms::captureWitnessReport {
apply ignoreDisconnection => a4;
apply fakeCrisisDetected => a4;

}

To perform such a composition, the logical engine schedules the algorithms invocations, rep-
resented in LISTING A.1. It starts by cloning the two initial fragments into temporary entities
(lines 1 & 2). The identification of a shared join point triggers the merge of the two involved
fragments into a new one (line 3). Finally, this merged fragment is woven on the initial process
(line 4), and a graph simplification algorithm is triggered (line 5) to make the result more under-
standable by humans (retracting useless relations).

✞
1 doClone(ignoreDisconnection, tmp_1),
2 doClone(fakeCrisisDetected, tmp_2),
3 doMerge([tmp_1,tmp_2], merged_1),
4 doWeave([weave(merged_1, [cms_captureWitnessReport_a 4])]),
5 doProcessSimplification(cms_captureWitnessReport),

✆

Listing A.1: Internal algorithms usage (automatically computed)

A.3 Pointcuts

ADORE does not provide any surface mechanisms to deal with pointcuts expressiveness. One
can start the engine in interactive mode and directly use PROLOG to query the model using
logical unification. Losing the surface language implies that the modeler knows the PROLOG

programming language. But the immediate benefits are the unbounded possibilities of pointcut
description offered by PROLOG.

We consider as an example the pointcut associated to the logUpdate fragment. This frag-
ment must be applied on service invocations which use a variable of type cmsEmployee or
worker as input. Based on the ADORE formal model, such a pointcut can be expressed as the
following logical rule (a ∈ acts(p)):

Kind(a) = invoke ∧ ∃v ∈ InputV ars(a), T ype(v) = (cmsEmployee ∨ worker )
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Using PROLOG, it is very easy to implement such a rule, as shown in LISTING A.2. We provide
on the website a PROLOG toolbox4 to automate recurring patterns identification.

✞
1 cut4logUpdate(Acts) :-
2 findall([A], (findVarUsageByType(cmsEmployee,in,A), hasForKin d(A,invoke)), CmsEmployees),
3 findall([A], (findVarUsageByType(worker,in,A), hasForKind(A, invoke)), Workers),
4 merge(CmsEmployees, Workers, Raws), sort(Raws, Acts).

✆

Listing A.2: PROLOG code associated to the logUpdate non–functional concern

We provide in ADORE a meta–predicate (LISTING A.3) used to automate the pointcut mech-
anism. This predicate calls the user-defined pointcut predicates and then automatically builds
the associated weave directives.

✞
1 build(FragmentName, PointcutPredicate, Directives) :-
2 call(PointcutPredicate, List), findall(weave(FragmentName,E), member(E,List), Directives).

✆

Listing A.3: ADORE Meta–predicate used to automate pointcut matching

One can then define a pointcut as a unary predicate and asks ADORE to build the composition
directives associated to it, as shown in (LISTING A.4).

✞
1 ?- build(logUpdate, cut4logUpdate, L), length(L, Count).
2 L = [weave(logUpdate, [a13]), weave(logUpdate, [a20]),|.. .],
3 Count = 72.

✆

Listing A.4: Computing composition directives associated to logUpdate

A.4 Fact Model & Associated Action Language

We implement the ADORE logical model as a set of elementary facts. As a consequence, the im-
plementation is more fine–grained than the formal model. It allows us to be more efficient at
the implementation level while handling ADORE models. We represent in LST A.5 the dynamic
PROLOG fact model used in ADORE, and the associated actions used to interact with it.

✞
1 %% Business Processes (Orchestration / Fragment)
2 :- dynamic process/1. %% createProcess(P)
3 :- dynamic isFragment/1. %% setAsFragment(P)
4 :- dynamic hasForParameter/2. %% setAsFragmentParameter(P,I)
5 :- dynamic hasForSrvName/2. %% setService(P,I)
6 :- dynamic hasForOpName/2. %% setOperation(P,I)
7 :- dynamic hasForColor/2. %% defColor(P,I)
8

9 %% Activities
10 :- dynamic activity/1. %% createActivity(A)
11 :- dynamic hasForKind/2. %% setActivityKind(A,K)
12 :- dynamic isContainedBy/2. %% setContainment(A,P)
13 :- dynamic hasForService/2. %% setInvokedService(A,I)
14 :- dynamic hasForOperation/2. %% setInvokedOperation(A,I)
15 :- dynamic usesAsBinding/3. %% setMessageBinding(A,I,V)
16 :- dynamic hasForFunction/2. %% setFunction(A,I)
17

18 %% Variables
19 :- dynamic variable/1. %% createVariable(V)
20 :- dynamic hasForType/2. %% setVariableType(V,T)
21 :- dynamic hasForInitValue/2. %% setInitValue(V,S)
22 :- dynamic isConstant/1. %% setConstancy(V).
23 :- dynamic isSet/1. %% flagAsSet(V).

4such as the findVarUsageByType predicate which identify activities that use a specific type in their associated
variables.
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24 :- dynamic usesAsInput/2. %% addAsInput(V,A)
25 :- dynamic usesAsOutput/2. %% addAsOutput(V,A)
26 :- dynamic fieldAccess/3. %% createFieldAccess(I,V,L).
27

28 %% Relations
29 :- dynamic waitFor/2. %% defWaitFor(A,A)
30 :- dynamic weakWait/2. %% defWeakWait(A,A)
31 :- dynamic isGuardedBy/4. %% defGuard(A,A,V,true|false)
32 :- dynamic onFailure/3. %% defOnFail(A,A,S|’*’)
33

34 %% Policies
35 :- dynamic policy/3. %% defPolicy(I,Formula,Formula)
36 :- dynamic iteratesOver/2. %% setIteration(A,Policy)
37

38 %% Composition directives
39 :- dynamic context/1. %% defCompositionContext(I)
40 :- dynamic contextTarget/2. %% setCompositionTarget(I,P)
41 :- dynamic contextOutput/2. %% setContextOutput(I,I)
42 :- dynamic activityBlock/3. %% defActivityBlock(I,I,L)
43 :- dynamic applyFragment/4. %% defApply(I,P,I,P)
44 :- dynamic applyParameter/3. %% setApplyParam(I,I,S)
45 :- dynamic setDirective/2. %% defSetify(I,V)
46

47 %% Knowledge
48 :- dynamic adoreEquivalence/2.
49 :- dynamic variableBinding/2.

✆

Listing A.5: Implementation of the ADORE logical model as PROLOG facts

A.5 Execution Example

The ADORE engine defines a mechanism to keep trace of the actions generated by the algorithm.
We describe here the trace generated while performing the compositions depicted in LST A.1.

% INFO: Running doClone(ignoreDisconnection,uc22_iD_1)
% INFO: Computing action set
% 3,016 inferences, 0.000 CPU in 0.001 seconds (0% CPU, Infinite Lips)
% INFO: => Result: 14 actions
% INFO: Executing action set
% 490 inferences, 0.000 CPU in 0.000 seconds (0% CPU, Infinite Lips)
% INFO: doClone(ignoreDisconnection,uc22_iD_1) ended with suc cess!
% INFO: Running doClone(fakeCrisisDetected,uc22_fCD_2)
% INFO: Computing action set
% 3,525 inferences, 0.010 CPU in 0.001 seconds (772% CPU, 352500 Lips)
% INFO: => Result: 36 actions
% INFO: Executing action set
% 1,300 inferences, 0.000 CPU in 0.000 seconds (0% CPU, Infinite Lips)
% INFO: doClone(fakeCrisisDetected,uc22_fCD_2) ended with suc cess!
% INFO: Running doMerge([uc22_iD_1, uc22_fCD_2],uc22_iD_fCD_1)
% INFO: Computing action set
% 1,835 inferences, 0.000 CPU in 0.001 seconds (0% CPU, Infinite Lips)
% INFO: => Result: 17 actions
% INFO: Executing action set
% 4,984 inferences, 0.000 CPU in 0.001 seconds (0% CPU, Infinite Lips)
% INFO: doMerge([uc22_iD_1, uc22_fCD_2],uc22_iD_fCD_1) ended with success!
% INFO: Running doWeave(...)
% INFO: Computing action set
% INFO: weave(uc22_iD_fCD_1,[cms_captureWitnessReport_a4])
% 5,994 inferences, 0.000 CPU in 0.002 seconds (0% CPU, Infinite Lips)
% INFO: => Result: 18 actions
% INFO: Executing action set
% 6,544 inferences, 0.000 CPU in 0.001 seconds (0% CPU, Infinite Lips)
% INFO: doWeave(...) ended with success!
% INFO: doProcessSimplification(cms_captureWitnessReport) ...
% 258,933 inferences, 0.040 CPU in 0.036 seconds (113% CPU, 6473325 Lips)
% 14,885 inferences, 0.000 CPU in 0.002 seconds (0% CPU, Infinite Lips)
% INFO: ... done ( 58 actions).
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A.6 Execution Semantics

The execution semantics computation described in SEC. 5.4 is implemented in the engine. Based
on a process model expressed using the ADORE language, one can run the algorithm and then
obtain a textual description of the boolean formulas associated to each activity, as depicted in
FIG. A.3.

Figure A.3: Execution semantics formulas, automatically computed by the engine
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B.1 Algorithm “Framework” & Architecture

We implement composition algorithms as plain PROLOG source files. In addition to the four

final algorithms presented in this document, we publish in the source repository several other
prototypes:

http://adore.googlecode.com/svn/trunk/prolog/algos/

Algorithms definition relies on the module system defined by the SWI-PL implementation of
PROLOG. Each algorithm is described in a given module, and then cannot interfere with others
(e.g., name conflicts, multiply defined predicates).

ADORE algorithms follow the same implementation pattern. An algorithm X defines a pred-
icate buildActions, which generates ADORE actions to be executed on the current universe.
A predicate doX is defined as a shortcut to (i) compute the action set and (ii) execute it on the
current universe. This predicate is exported outside the module, and is consequently available
for the user. The remaining of the file contains algorithm–dedicated predicates.

We consider here the WEAVE algorithm to illustrate this architecture. The first line declares
this code as a module for the SWI-PL module system, and publishes the doWeave predicate. Lines
3 and 4 implement the doWeave predicate. It computes the actions associated to the received set
of Directives, and then executes it. Finally, lines 6, 7, 8 are dedicated to the generation of the
actions associated to the WEAVE algorithm: it starts by creating a new context associated to this
invocation, and then retrieves the actions associated to each directives received as input.
✞

1 :- module(weave,[doWeave/1]).
2

3 doWeave(Directives) :-
4 weave:buildActions(Directives, Actions), executeActio nSet(Actions).
5

6 buildActions(Directives, Actions) :-
7 declareContext(weave(Directives),Ctx),
8 findall(A, weave:applyDir(Ctx, Directives,A), Raw), flatten([R aw],Actions).

✆
Listing B.1: Illustration of algorithms architecture (WEAVE)
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B.2 Complete Example: Process Simplification

We motivate in the previous section the need for a simplification algorithm, able to delete re-
dundant relations in a given process. This simplification is defined according to the following
principles:

• waitFor Absorption. The idea of this step is to identify relation which are implied by other
ones. For example, defining between x and y a guard and a waitFor is redundant: the guard
implies the waitFor semantic.

• weakWait Simplification. According to the execution semantic associated to ADORE, defin-
ing a single relation of king weakWait between two activities x and y is equivalent to the
definition of a waitFor.

• Transitive paths destruction. Considering a relation x < y, it can be deleted if an equivalent
transitive path x < z

<
→ y exists in the process.

For illustration purpose, we use three different implementations mechanisms for these prin-
ciples, described in LST B.2. Lines 1→ 10 declare the algorithm, and implement its public inter-
face. The two first occurrences of the simplify predicate (lines 11→ 16) generate the retract of
a waitFor relation, according to the waitFor Absorption principles. We base the generation of this
delete action on the PROLOG implementation of the ADORE meta–model. The final occurrence of
the simplify predicate (lines 17.18) generates two actions, according to the weakWait Simplifi-

cation. When a single weakWait is detected, the predicate retracts it and defines the equivalent
waitFor. This predicate uses the meta–call predicate findall to retrieve all the solution exist-
ing to a given goal. Algorithm can use the complete expressiveness power of PROLOG, and then
express in a few lines of code very complex goals. Finally, we implement the last principle as a
new composite action. This action delTransitivePath is declared as a macroAction in the
engine (line 21), which will perform its refinements into elementary actions before trying to ex-
ecute them. Such a syntactic shortcut allows users to dynamically enhance the action language
for their own needs.
✞

1 :- module( processSimplification, [doProcessSimplifica tion/1, delTransitivePaths/2]).
2

3 doProcessSimplification(Process) :-
4 processSimplification:buildActions(Process,Actions) , executeActionSet(Actions).
5

6 buildActions(Process, Actions) :-
7 process:exists(Process), process:getActivities(Proce ss,Acts),
8 findall(A,processSimplification:simplify(Acts,A),SplActs),
9 flatten([ SplActs, delTransitivePaths(Process)], Actio ns).

10

11 simplify(Activities,myRetract(waitFor(X,Y))) :-
12 member(X, Activities), member(Y, Activities), waitFor(X ,Y),
13 (isGuardedBy(X,Y,_,_)| weakWait(X,Y)).
14 simplify(Activities,myRetract(waitFor(X,Z))) :-
15 member(X, Activities), member(Y, Activities), member(Z, Activities),
16 isGuardedBy(X,Y,_,_), waitFor(X,Z), relations:existsC ontrolPath(Z,Y).
17 simplify(Activities,[myRetract(weakWait(X,Y)),defWa itFor(X,Y)]) :-
18 member(X, Activities), findall(P,weakWait(X,P),[Y]).
19

20

21 :- assert(user:isMacroAction(delTransitivePaths,2)).
22 delTransitivePaths(Process,Actions) :-
23 findall(A, processSimplification:delATransitivePath(Process ,A),Raw),
24 flatten(Raw,Actions), cleanup.
25

26 delATransitivePath(Process,Action) :-
27 process:getActivities(Process,Activities), member(X, Activities),
28 member(Y, Activities), waitFor(Y,X), relations:getCont rolPath(X,Y,L), \+ L = [X,Y],
29 getLazyGuards(X,GuardsX), getLazyGuards(Y,GuardsY), Gu ardsX = GuardsY,
30 relations:delAPath(X,Y,Action).

✆

Listing B.2: Illustration ADORE algorithm implementation: SIMPLIFY
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B.3 Chaining Algorithms

At the application level, we identify situations were a generic fragment can be defined and then
instantiate to fit specific purpose (see SEC. 8.5, SEC. 12.3). For example, a fragment is defined to
silently ignore a fault f, and instantiated by the designer to catch an overflow fault in a given
process. This algorithm is seen as an extension of the CLONE one: the internal content is cloned,
and then the expected “generic” elements are substituted by new ones.

We illustrate this capability of ADORE in LST B.3, which describes the buildActions pred-
icate of the INSTANTIATE algorithm. This predicate starts by creating a context (line 2), shared
by this invocation and the underlying one. Then, it asks the CLONE algorithm to compute its
associated actions (line 3). These actions are enriched by the substitutions identified to perform
the instantiation (line 4) , and finally returned to the user.

✞
1 buildActions(Orig,Target,Output,Params,Dirs) :-
2 declareContext(instantiate(Orig,Target,Output),Ctx) ,
3 clone:cloneProcess(Ctx,Orig,Output,CloneActions),
4 performInstantiations(Ctx,Params,InstActions),
5 flatten([CloneActions,InstActions],Dirs).

✆

Listing B.3: Invoking an algorithm from another one: INSTANTIATE
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«In order to be irreplaceable one must always be different.»
Coco Chanel
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Aspect–Oriented mechanisms usually define ordering mechanism to handle aspect woven at
shared join points. We propose in ADORE a merge–driven mechanism. However, even if ordering
techniques are not explictly reified in ADORE, one can chain the invocations of the composition al-
gorithms to simulate it. The goal of this chapter is to describe how the ASPECTJ weave semantic
can be simulated in ADORE.

C.1 Initial Artifacts

We consider in this chapter a toy–example, depicted in FIG. C.1. We consider its do activity as the
target of all the fragments defined in this chapter.

Orchestration main::test

rec receive()

do write(’do’)

rpl reply()

Figure C.1: Initial process used to illustrate aspect ordering in ADORE

ASPECTJ defines three kinds of advices: before, after and around. ADORE does not pro-
vide such a difference at the model level, and considers all fragments as around advices. As a
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consequence, we use the following conventions to simulate this mechanisms: (i) before frag-
ments cannot define activities scheduled after the hook and (ii) after advices cannot define
activities schedule before the hook. We represent in FIG. C.2 the fragments used in the context
of this experiment.

Fragment myBefore1

P

b write(’before (1)’)

S

h hook()

Fragment myBefore2

P

b write(’before (2)’)

S

h hook()

Fragment myAfter1

P

h hook()

S

a write(’after (1)’)

Fragment myAfter2

P

h hook()

S

a write(’after (2)’)

Fragment myAround1

P

aR11 write(’around 1 (before)’)

S

h hook()

aR12 write(’around 1 (after)’)

Fragment myAround2

P

aR21 write(’around 2 (before)’)

S

h hook()

aR22 write(’around 2 (after)’)

Figure C.2: Fragments used to simulate aspect–ordering in ADORE

All these fragments are intended to be woven on the do activity defined in the previous or-
chestration.
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C.2 Default Behavior Defined by ADORE

The usual behavior of ADORE is to identify shared join points, generate a MERGE invocation and
inform designers of such a choice. As a consequence, the do activity is identified as a shared join
point, and all the previously defined fragments are merged. We describe in LST C.1 the associ-
ated algorithms invocation, at the implementation level. The involved fragments are first cloned
(lines 1 and 2). Then, the MERGE algorithm is invoked to merge all these fragments (line 3), and
finally woven on the targeted activity (line 4). The computed orchestration is depicted in FIG. C.3.

✞
1 doClone(myAround1,mar1), doClone(myAround2,mar2), doC lone(myBefore1,mb1),
2 doClone(myBefore2,mb2), doClone(myAfter1,ma1), doClon e(myAfter2,ma2),
3 doMerge([mar1,mar2,mb1,mb2,ma1,ma2],f), doProcessSim plification(f),
4 doWeave([weave(f,[main_test_do])]),

✆

C.3 Simulating “Layered” Weaving

The weave semantics defined by ASPECTJ follows a layered approach. Advices defined as before
are executed first, around advices in second, and finally after advices in third. According to
ASPECTJ semantics, in the absence of an explicit order defined by the programmer, the execu-
tion order is undefined. We made the choice to keep parallelism instead of enforcing an order.
To simulate such a behavior, consider separately the around fragments and the others1. These
two layers are merged independently from each other. Based on these two merged fragments, we
simply chain the WEAVE invocations to first weave the around layer and then weave the other
layer. As a consequence, the activities added by the around fragments are take into considera-
tions by the second WEAVE invocation. In terms of implementation, we describe in LST C.2 the
associated algorithms invocation. The obtained process is depicted in FIG. C.4.

✞
1 doClone(myAround1,mar1), doClone(myAround2,mar2), doM erge([mar1,mar2],mar),
2 doClone(myBefore1,mb1), doClone(myBefore2,mb2), doClo ne(myAfter1,ma1),
3 doClone(myAfter2,ma2), doMerge([mb1,mb2,ma1,ma2],f),
4 process:getHook(f,H), doWeave([weave(mar,[H])]), doPr ocessSimplification(f),
5 doWeave([weave(f,[main_test_do])]),

✆

C.4 Introducing Aspect Ordering

ASPECTJ allows programmers to define explicit order between aspects, with the “declare -
precedence” directive. In this example, we consider the following declaration:

declare precedence: myBefore1, myBefore2, myAround1, myAround2, myAfter1, myAfter2

To simulate such an explicitly ordered weave, we simply chain the invocations in a more
constrained way than the previous one. A precedence declared between a and b is transformed
in ADORE as the weaving of b which targets the hook defined in a. We illustrate this usage in
LST C.3. The sequential process obtained as a result is described in FIG. C.5.

✞
1 doClone(myAround2,mar2),
2 doClone(myAround1,mar1), process:getHook(mar1,Hmar1) , doWeave([weave(mar2,[Hmar1])]),
3 doClone(myBefore2,mb2), process:getHook(mb2,Hmb2), do Weave([weave(mar1,[Hmb2])]),
4 doClone(myBefore1,mb1), process:getHook(mb1,Hmb1), do Weave([weave(mb2,[Hmb1])]),
5 doClone(myAfter2,ma2), process:getHook(ma2,Hma2), doW eave([weave(mb1,[Hma2])]),
6 doClone(myAfter1,ma1), process:getHook(ma1,Hma1), doW eave([weave(ma2,[Hma1])]),
7 doWeave([weave(ma1,[main_test_do])]),

✆

1According the convention used for before and after fragments, the two layers are implicitly defined



208
A

P
P

E
N

D
IX

C
.

S
IM

U
L

A
T

IN
G

A
S

P
E

C
T–O

R
D

E
R

IN
G

W
IT

H
A

D
O

R
E

Orchestration main::test

rec receive()

a1 write(’around 1 (before)’) a6 write(’around 2 (before)’) a11 write(’before (1)’) a15 write(’before (2)’)

do write(’do’)

a2 write(’around 1 (after)’) a7 write(’around 2 (after)’) a19 write(’after (1)’) a23 write(’after (2)’)

rpl reply()

F
igu

re
C

.3:
R

esu
lt

obtain
ed

w
ith

th
e

u
su

al
A

D
O

R
E

M
E

R
G

E
m

ech
an

ism



C.4. INTRODUCING ASPECT ORDERING 209

Orchestration main::test

rec receive()

a14 write(’before (1)’) a18 write(’before (2)’)

do write(’do’)

a2 write(’around 1 (after)’) a7 write(’around 2 (after)’)

rpl reply()

a1 write(’around 1 (before)’)

a22 write(’after (1)’) a26 write(’after (2)’)

a6 write(’around 2 (before)’)

Figure C.4: Result obtained with a layered mechanism
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Orchestration main::test

rec receive()

a15 write(’before (1)’)

do write(’do’)

a2 write(’around 2 (after)’)

rpl reply()

a1 write(’around 2 (before)’)

a7 write(’around 1 (after)’)

a6 write(’around 1 (before)’)

a19 write(’after (2)’)

a11 write(’before (2)’)

a23 write(’after (1)’)

Figure C.5: Process designed with fully–ordered fragment weaving
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C.5 ASPECTJ Implementation

In this section, we propose an implementation of this example using the ASPECTJ framework.
The initial process is implemented as a Java method, described in LST C.4.

✞
1 public class Main {
2 public Main() {}
3 public void myDo() {
4 System.out.println( " do" );
5 }
6 public static void main(String[] args) {
7 Main m = new Main();
8 m.myDo();
9 }

10 }
✆

Listing C.4: Initial process implemented as a Java method

The different fragments represented in the previous example are implemented as aspects, as
described in LST C.5.

✞
1 abstract aspect anExtension {
2 declare precedence: myBefore1, myBefore2;
3 declare precedence: myAround2, myAround1;
4 declare precedence: myAfter1, myAfter2;
5

6 pointcut aCall(): execution( * myDo(..)) && this(Main);
7 }
8

9 aspect myBefore1 extends anExtension {
10 before(): aCall() { System.out.println( "before (1)" ); }
11 }
12

13 aspect myBefore2 extends anExtension {
14 before(): aCall() { System.out.println( "before (2)" ); }
15 }
16

17 aspect myAfter1 extends anExtension {
18 after(): aCall() { System.out.println( "after (1) " ); }
19 }
20

21 aspect myAfter2 extends anExtension {
22 after(): aCall() { System.out.println( "after (2) " ); }
23 }
24

25 aspect myAround1 extends anExtension {
26 void around(): aCall() {
27 System.out.println( " around 1 (before)" );
28 proceed();
29 System.out.println( " around 1 (after)" );
30 }
31 }
32

33 aspect myAround2 extends anExtension {
34 void around(): aCall() {
35 System.out.println( " around 2 (before)" );
36 proceed();
37 System.out.println( " around 2 (after)" );
38 }
39 }

✆

Listing C.5: Aspects defined to implement the described fragments
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Based on these artifacts, we obtain the following execution traces, coherent with the process
obtained with ADORE in ordered mode.

mosser@necronomicon:ordering/aspectJ$ javac Main.java
mosser@necronomicon:ordering/aspectJ$ java Main

do
mosser@necronomicon:ordering/aspectJ$ ajc Main.java aspects.aj
mosser@necronomicon:ordering/aspectJ$ java Main
before (1)
before (2)

around 2 (before)
around 1 (before)

do
around 1 (after)
around 2 (after)

after (2)
after (1)
mosser@necronomicon:ordering/aspectJ$
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D.1 Implementation Overview & Choices

In this chapter, we describe the different artifacts needed at the implementation level to realize
the PICWEB application as an orchestration of services. This version of the system is imple-
mented with the NETBEANS 6.7 IDE, and deployed in a GLASSFISH 2.2 application server. The
business process is implemented as a BPEL orchestration (and its associated WSDL & XSD arti-
facts), and bundled into a JBI component. This component is deployed into the application server,
and handled by the associated BPEL engine.

D.2 Implementing Processes with the NETBEANS 6.7 IDE

The BPEL language can be seen as an assembly language to orchestrate messages exchanges be-
tween services. Software editors provide high level graphical IDE to allow a more easier interac-
tion with BPEL codes. We illustrate such editors in FIG. D.1. This screenshot represents the NET-
BEANS 6.7 IDE displaying a graphical representation associated to the initial version of PICWEB.
The left and right columns represent WSDL interfaces provided (left) and consumed(right). The
middle part of the editor supports the design of the business process in itself. Nested activities
are represented as nested boxes.

However, such a graphical representation suffers from a scalability issue. We provide in
FIG. D.2 a screenshot of the same editor while designing the final version of PICWEB. Even of
this process is a simple one, the readability of the graph and the high level of details make it
difficult to read.

D.3 XML Code Associated to PICWEB

We focus now on the code representation associated to the final version of PICWEB. We volun-
tarily hide the WSDL and XSD artifacts associated to this example for concision reasons. The
complete implementation of this business process is available on the project website.
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Figure D.1: Initial version of the PICWEB process
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Figure D.2: Final version of the PICWEB process
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We provides in LST D.1 an extract of the BPEL code which implements this business process.
We hide technical details such as namespace declaration and process wrapping. These 280 lines
of code represents the essence of the process.
✞

1 <partnerLinks>
2 <partnerLink name= "cache" partnerLinkType= "tns:DataCacheLinkType"
3 partnerRole= "DataCacheRole" />
4 <partnerLink name= "registry" partnerLinkType= "tns:KeyRegistryLinkType"
5 partnerRole= "KeyRegistryRole" />
6 <partnerLink name= "flickr" partnerLinkType= "tns:FlickrWrapperLinkType"
7 partnerRole= "FlickrWrapperRole" />
8 <partnerLink name= "picasa" partnerLinkType= "tns:PicasaBinderLinkType"
9 partnerRole= "PicasaBinderRole" />

10 <partnerLink name= "merge" partnerLinkType= "tns:Merge"
11 partnerRole= "MergePortTypeRole" />
12 <partnerLink name= "shuffle" partnerLinkType= "tns:Shuffle"
13 partnerRole= "ShufflePortTypeRole" />
14 <partnerLink name= "truncate" partnerLinkType= "tns:Truncate"
15 partnerRole= "TruncatePortTypeRole" />
16 <partnerLink name= "ext" partnerLinkType= "tns:PicWeb" myRole= "PicWebPortTypeRole" />
17 </partnerLinks>
18 <variables>
19 <variable name= "shuffled_set" type= "ns0:SetOfPictureUrl" />
20 <variable name= "validity" type= "xsd:boolean" />
21 <variable name= "merged_set" type= "ns0:SetOfPictureUrl" />
22 <variable name= "picasa_set" type= "ns0:SetOfPictureUrl" />
23 <variable name= "flickr_set" type= "ns0:SetOfPictureUrl" />
24 <variable name= "key" type= "xsd:string" />
25 <variable name= "result" type= "ns0:SetOfPictureUrl" />
26 <variable name= "PicWebOperationOut" messageType= "tns:PicWebOperationResponse" />
27 <variable name= "PicWebOperationIn" messageType= "tns:PicWebOperationRequest" />
28 </variables>
29 <sequence>
30 <receive name= "receive" createInstance= "yes" partnerLink= "ext"
31 operation= "PicWebOperation" portType= "tns:PicWebPortType"
32 variable= "PicWebOperationIn" />
33 <scope name= "cache_validity" >
34 <variables>
35 <variable name= "IsValidOut" messageType= "tns:isValidResponse" />
36 <variable name= "IsValidIn" messageType= "tns:isValid" />
37 </variables>
38 <sequence name= "cache_validity_seq" >
39 <assign name= "cache_validity_pre" >
40 <copy>
41 <from>$PicWebOperationIn.in/ns0:tag</from>
42 <to>$IsValidIn.parameters/code</to>
43 </copy>
44 <copy>
45 <from>120</from>
46 <to>$IsValidIn.parameters/delta</to>
47 </copy>
48 </assign>
49 <invoke name= "cache_validity_call" partnerLink= "cache" operation= "isValid"
50 portType= "tns:DataCache" inputVariable= "IsValidIn"
51 outputVariable= "IsValidOut" />
52 <assign name= "cache_validity_post" >
53 <copy>
54 <from>$IsValidOut.parameters/return</from>
55 <to variable= "validity" />
56 </copy>
57 </assign>
58 </sequence>
59 </scope>
60 <if name= "validity_switch" >
61 <condition>$validity</condition>
62 <scope name= "get_cache_content" >
63 <variables>
64 <variable name= "GetValueOut" messageType= "tns:getValueResponse" />
65 <variable name= "GetValueIn" messageType= "tns:getValue" />
66 </variables>
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67 <sequence name= "get_cache_content_seq" >
68 <assign name= "get_cache_content_pre" >
69 <copy>
70 <from>$PicWebOperationIn.in/ns0:tag</from>
71 <to>$GetValueIn.parameters/code</to>
72 </copy>
73 </assign>
74 <invoke name= "get_cache_content_call" partnerLink= "cache" operation= "getValue"
75 portType= "tns:DataCache" inputVariable= "GetValueIn"
76 outputVariable= "GetValueOut" />
77 <assign name= "get_cache_content_post" >
78 <copy>
79 <from>sxxf:doUnMarshal($GetValueOut.parameters/retu rn)</from>
80 <to variable= "merged_set" />
81 </copy>
82 </assign>
83 </sequence>
84 </scope>
85 <else>
86 <sequence name= "invalid_cache" >
87 <flow name= "retrieve_pictures" >
88 <sequence name= "flickr_business" >
89 <scope name= "registry" >
90 <variables>
91 <variable name= "GetOut" messageType= "ns2:getResponse" />
92 <variable name= "GetIn" messageType= "ns2:get" />
93 </variables>
94 <sequence name= "registry_seq" >
95 <assign name= "registry_pre" >
96 <copy>
97 <from> ’flickr’ </from>
98 <to>$GetIn.parameters/name</to>
99 </copy>

100 </assign>
101 <invoke name= "registry_call" partnerLink= "registry" operation= "get"
102 portType= "ns2:KeyRegistry" inputVariable= "GetIn"
103 outputVariable= "GetOut" />
104 <assign name= "registry_post" >
105 <copy>
106 <from>$GetOut.parameters/return</from>
107 <to variable= "key" />
108 </copy>
109 </assign>
110 </sequence>
111 </scope>
112 <scope name= "flickr" >
113 <variables>
114 <variable name= "ExploreFolksonomyOut"
115 messageType= "ns5:exploreFolksonomyResponse" />
116 <variable name= "ExploreFolksonomyIn"
117 messagaeType= "ns5:exploreFolksonomy" />
118 </variables>
119 <sequence name= "flickr_seq" >
120 <assign name= "flickr_pre" >
121 <copy>
122 <from>$PicWebOperationIn.in/ns0:tag</from>
123 <to>$ExploreFolksonomyIn.parameters/search</to>
124 </copy>
125 <copy>
126 <from variable= "key" />
127 <to>$ExploreFolksonomyIn.parameters/api_key</to>
128 </copy>
129 </assign>
130 <invoke name= "flickr_call" partnerLink= "flickr" operation= "exploreFolksonomy"
131 portType= "ns5:FlickrWrapper" inputVariable= "ExploreFolksonomyIn"
132 outputVariable= "ExploreFolksonomyOut" />
133 <assign name= "flickr_post" >
134 <copy>
135 <from>$ExploreFolksonomyOut.parameters/return</from >
136 <to>$flickr_set/ns0:pictureUrl</to>
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137 </copy>
138 </assign>
139 </sequence>
140 </scope>
141 </sequence>
142 <scope name= "picasa" >
143 <variables>
144 <variable name= "GetOnTagOut" messageType= "ns4:getOnTagResponse" />
145 <variable name= "GetOnTagIn" messageType= "ns4:getOnTag" />
146 </variables>
147 <sequence name= "picasa_tecj" >
148 <assign name= "picasa_pre" >
149 <copy>
150 <from>$PicWebOperationIn.in/ns0:tag</from>
151 <to>$GetOnTagIn.parameters/tag</to>
152 </copy>
153 </assign>
154 <invoke name= "picasa_call" partnerLink= "picasa" operation= "getOnTag"
155 portType= "ns4:PicasaBinder" inputVariable= "GetOnTagIn"
156 outputVariable= "GetOnTagOut" />
157 <assign name= "picasa_post" >
158 <copy>
159 <from>$GetOnTagOut.parameters/return</from>
160 <to>$picasa_set/ns0:pictureUrl</to>
161 </copy>
162 </assign>
163 </sequence>
164 </scope>
165 </flow>
166 <scope name= "merge" >
167 <variables>
168 <variable name= "MergeOperationOut" messageType= "ns6:MergeOperationResponse" />
169 <variable name= "MergeOperationIn" messageType= "ns6:MergeOperationRequest" />
170 </variables>
171 <sequence name= "merge_seq" >
172 <assign name= "merge_pre" >
173 <copy>
174 <from variable= "picasa_set" />
175 <to>$MergeOperationIn.in/ns3:set1</to>
176 </copy>
177 <copy>
178 <from variable= "flickr_set" />
179 <to>$MergeOperationIn.in/ns3:set2</to>
180 </copy>
181 </assign>
182 <invoke name= "merge_call" partnerLink= "merge" operation= "MergeOperation"
183 portType= "ns6:MergePortType" inputVariable= "MergeOperationIn"
184 outputVariable= "MergeOperationOut" />
185 <assign name= "merge_post" >
186 <copy>
187 <from>$MergeOperationOut.out/ns3:result</from>
188 <to variable= "merged_set" />
189 </copy>
190 </assign>
191 </sequence>
192 </scope>
193 <scope name= "set_cache_content" >
194 <variables>
195 <variable name= "MemorizeOut" messageType= "tns:memorizeResponse" />
196 <variable name= "MemorizeIn" messageType= "tns:memorize" />
197 </variables>
198 <sequence name= "set_cache_content_seq" >
199 <assign name= "set_cache_content_pre" >
200 <copy>
201 <from>$PicWebOperationIn.in/ns0:tag</from>
202 <to>$MemorizeIn.parameters/code</to>
203 </copy>
204 <copy>
205 <from>sxxf:doMarshal($merged_set)</from>
206 <to>$MemorizeIn.parameters/data</to>
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207 </copy>
208 </assign>
209 <invoke name= "set_cache_content_call" partnerLink= "cache" operation= "memorize"
210 portType= "tns:DataCache" inputVariable= "MemorizeIn"
211 outputVariable= "MemorizeOut" />
212 </sequence>
213 </scope>
214 </sequence>
215 </else>
216 </if>
217 <scope name= "shuffle" >
218 <variables>
219 <variable name= "ShuffleOperationOut" messageType= "tns:ShuffleOperationResponse" />
220 <variable name= "ShuffleOperationIn" messageType= "tns:ShuffleOperationRequest" />
221 </variables>
222 <sequence name= "shuffle_seq" >
223 <assign name= "shuffle_pre" >
224 <copy>
225 <from variable= "merged_set" />
226 <to>$ShuffleOperationIn.in/ns7:set</to>
227 </copy>
228 <copy>
229 <from>2</from>
230 <to>$ShuffleOperationIn.in/ns7:saltScale</to>
231 </copy>
232 </assign>
233 <invoke name= "shuffle_call" partnerLink= "shuffle" operation= "ShuffleOperation"
234 portType= "tns:ShufflePortType" inputVariable= "ShuffleOperationIn"
235 outputVariable= "ShuffleOperationOut" />
236 <assign name= "shuffle_post" >
237 <copy>
238 <from>$ShuffleOperationOut.out/ns7:result</from>
239 <to variable= "shuffled_set" />
240 </copy>
241 </assign>
242 </sequence>
243 </scope>
244 <scope name= "truncate" >
245 <variables>
246 <variable name= "TruncateOperationOut" messageType= "tns:TruncateOperationResponse" />
247 <variable name= "TruncateOperationIn" messageType= "tns:TruncateOperationRequest" />
248 </variables>
249 <sequence name= "truncate_seq" >
250 <assign name= "truncate_pre" >
251 <copy>
252 <from>$PicWebOperationIn.in/ns0:treshold</from>
253 <to>$TruncateOperationIn.in/ns1:treshold</to>
254 </copy>
255 <copy>
256 <from variable= "shuffled_set" />
257 <to>$TruncateOperationIn.in/ns1:set</to>
258 </copy>
259 </assign>
260 <invoke name= "truncate_call" partnerLink= "truncate" operation= "TruncateOperation"
261 portType= "tns:TruncatePortType" inputVariable= "TruncateOperationIn"
262 outputVariable= "TruncateOperationOut" />
263 <assign name= "truncate_post" >
264 <copy>
265 <from>$TruncateOperationOut.out/ns1:set</from>
266 <to variable= "result" />
267 </copy>
268 </assign>
269 </sequence>
270 </scope>
271 <assign name= "prepare_reply" >
272 <copy>
273 <from variable= "result" />
274 <to>$PicWebOperationOut.out/ns0:result</to>
275 </copy>
276 </assign>
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277 <reply name= "reply" partnerLink= "ext" operation= "PicWebOperation"
278 portType= "tns:PicWebPortType" variable= "PicWebOperationOut" />
279 </sequence>

✆

Listing D.1: BPEL implementation realizing the PICWEB business process
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We provide in this chapter an implementation of the PICWEB system, based on the ASPECTJ
framework. Part of this work was pair–programmed with Max Kramer during a workshop on
Aspect–Oriented Modeling organized by the Mc Gill University. His M.Sc. thesis focuses on
the transformation of Reusable Aspect Models into executable programs using ASPECTJ. The
complete code associated to this chapter is available on the ADORE code repository (revision 208):

http://adore.googlecode.com/svn/trunk/experiences/p icweb/AspectJ/

E.1 Initial System

We propose a simulated environment for PICWEB. Legacy PICWEB services are implemented as
plain Java classes. We simulate the service usual life–cycle by sharing singleton instances on
the different pieces of code. We propose in LST. E.1 an initial implementation of the getP ictures
process. This process consumes two services (Flickr & KeyRegistry), and basically retrieves
the key associated to the FLICKR® service before invoking it.
✞

1 package picweb;
2 public class PicWeb {
3 public static Flickr FLICKR = new Flickr();
4 public static KeyRegistry REGISTRY = new KeyRegistry();
5 public String[] getPictures(String tag, int threshold) {
6 String key = REGISTRY.getByKey( "flickr" );
7 String[] flickrSet = FLICKR.getPictures(key,tag);
8 return flickrSet;
9 }

10 }
✆

Listing E.1: Java implementation of the PICWEB initial process: getP ictures
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Based on this implementation, we define a Main class as the entry point of this experience.
This class is described in LST E.2, and simply instantiates a PicWeb instance before invoking
the process to retrieve 3 pictures tagged with the aTag information.
✞

1 public class Main {
2 public static void main(String[] args) {
3 System.out.println( "### Main: Calling PicWeb ###" );
4 PicWeb picweb = new PicWeb();
5 String[] data = picweb.getPictures( "aTag" ,3);
6 System.out.println( "### Main: Displaying Results ###" );
7 for(d: data)
8 System.out.print(d + " " );
9 }

10 }
✆

Listing E.2: Entry Point: the Main executable class

This code is compiled and executed as the following:

mosser@necronomicon:picweb/AspectJ$ javac -version
javac 1.6.0_20
mosser@necronomicon:picweb/AspectJ$ javac picweb/ * .java Main.java
mosser@necronomicon:picweb/AspectJ$ java -version
java version "1.6.0_20"
Java(TM) SE Runtime Environment (build 1.6.0_20-b02-279- 10M3065)
Java HotSpot(TM) 64-Bit Server VM (build 16.3-b01-279, mixe d mode)
mosser@necronomicon:picweb/AspectJ$ java Main
### Main: Calling PicWeb ###
### Main: Displaying Results ###
http://flickr/aTag/0/227880700.jpg http://flickr/aTag/1/3318878.jpg
http://flickr/aTag/2/323156151.jpg http://flickr/aTag/3/637702224.jpg
http://flickr/aTag/4/1640207320.jpg http://flickr/aTag/5/958164350.jpg
http://flickr/aTag/6/1161421641.jpg http://flickr/aTag/7/1979648410.jpg
http://flickr/aTag/8/1121449394.jpg
mosser@necronomicon:picweb/AspectJ$

E.2 Enhancing PICWEB with ASPECTJ

The initial system needs to be enriched with several concerns to fit the PICWEB requirements.
In this chapter, we only describe two extensions: (i) adding PICASA™ as an available picture
repository and (ii) truncating the retrieved set to match the given threshold.

E.2.1 Abstract Aspect to Factorize the Pointcut

Instead of spreading the pointcut definition into several aspects, we decide to define an abstract
aspect (LST E.3) which factorizes the PICWEB pointcut. This pointcut is defined as the inter-
ception of the call of a method named getPictures targeting a PicWeb instance. The two
arguments s and l (respectively defined as String and int) are also intercepted (lines 6, 7). We
use this artifact to factorize the services instances, simulating the usual service life–cycle.
✞

1 package foo;
2 import picweb. * ;
3

4 abstract aspect factorized {
5

6 protected pointcut callPicWeb(String s, int l):
7 target(PicWeb) && call(String[] getPictures(String, int)) && args(s,l);
8

9 protected Picasa PICASA = new Picasa();
10 protected Merge MERGE =new Merge();
11 protected Truncate TRUNCATE = new Truncate();
12 }

✆

Listing E.3: Common aspect used to factorize the PICWEB pointcut and the available services
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E.2.2 Enhancements: picasa & truncate

We extend this abstract aspect to implement the two concerns previously cited. The PICASA™
repository is introduced by an aspect named Picasa, described in LST E.4. As there is no intrin-
sic parallelism in Java, we define a sequential implementation: the aspect retrieves the pictures
stored in PICASA™, then performs the usual behavior (proceed), and sends the two retrieved
sets to a service which merges them. The merged set is then returned to the caller.
✞

1 package foo;
2 aspect picasa extends factorized
3 {
4 String[] around(String tag, int threshold): callPicWeb(tag,threshold) {
5 System.out.println( "===> around@picasa: start <====" );
6 String[] picasa = PICASA.explore(tag);
7 String[] raw = proceed(tag,threshold);
8 String[] result = MERGE.run(raw,picasa);
9 System.out.println( "===> around@picasa: end <====" );

10 return result;
11 }
12 }

✆

Listing E.4: Adding the PICASA™ repository with an aspect

The truncate aspect implements the following behavior: the usual behavior is called to re-
trieve the expected picture set, and then sent to a dedicated service which restricts its cardinality.
✞

1 package foo;
2 aspect truncate extends factorized
3 {
4 String[] around(String s, int i): callPicWeb(s,i) {
5 System.out.println( "===> around@truncate: start <====" );
6 String[] raw = proceed(s,i);
7 String[] result = TRUNCATE.run(raw,i);
8 System.out.println( "===> around@truncate: end <====" );
9 return result;

10 }
11 }

✆

Listing E.5: Truncating the retrieved picture set with an aspect

E.2.3 Compilation & Execution of the Aspectized System

We use ASPECTJ to compile the legacy Java classes and the newly added aspects. According to
its weave semantic, aspects encountered around shared join points are ordered in an arbitrary
way. Under these conditions, the ASPECTJ weaver gives priority to the picasa aspect. As a
consequence, the behavior of the process is not the expected one: it retrieved only 3 pictures from
FLICKR®, but all the pictures stored in PICASA™ are returned.

mosser@necronomicon:picweb/AspectJ$ ajc -v
AspectJ Compiler 1.6.9 (1.6.9 - Built: Monday Jul 5, 2010 at 15:28:35 GMT)
- Eclipse Compiler 0.785_R33x, 3.3
mosser@necronomicon:picweb/AspectJ$ ajc foo/ * .aj picweb/ * .java Main.java
mosser@necronomicon:picweb/AspectJ$ java Main
### Main: Calling PicWeb ###
===> around@picasa: start <====
===> around@truncate: start <====
===> around@truncate: end <====
===> around@picasa: end <====
### Main: Displaying Results ###
http://flickr/aTag/0/2053982697.jpg http://picasa/aTag/0/1921508604.jpg
http://flickr/aTag/1/762924805.jpg http://picasa/aTag/1/1480936115.jpg
http://flickr/aTag/2/1803095015.jpg http://picasa/aTag/2/691756950.jpg
http://picasa/aTag/3/670113902.jpg http://picasa/aTag/4/1376587185.jpg
http://picasa/aTag/5/2080312885.jpg http://picasa/aTag/6/1875826715.jpg
http://picasa/aTag/7/743514902.jpg
mosser@necronomicon:picweb/AspectJ$
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E.2.4 Interference Resolution

To solve this interference, it is mandatory to explicitly order these two aspects. We add a declare
precedence declaration in the factorized aspect to fulfill this goal. With this rule, the AS-
PECTJ weaver gives precedence to the truncate aspect: it is executed earlier in the aspect chain.
Consequently, when entering the truncate advice, the proceed returned value will contain the
PICASA™ pictures (the picasa aspect is executed later in the aspect chain). We propose in
LST E.6 an enriched version of the factorized aspect, declaring this precedence.

✞
1 abstract aspect factorized {
2 declare precedence: truncate, picasa; // <== Aspect Ordering Declaration
3

4 protected pointcut callPicWeb(String s, int l):
5 target(PicWeb) && call(String[] getPictures(String, int)) && args(s,l);
6 protected Picasa PICASA = new Picasa();
7 protected Merge MERGE =new Merge();
8 protected Truncate TRUNCATE = new Truncate();
9 }

✆

Listing E.6: Ordering aspects to solve undetected interference

mosser@necronomicon:picweb/AspectJ$ ajc foo/ * .aj picweb/ * .java Main.java
mosser@necronomicon:picweb/AspectJ$ java Main
### Main: Calling PicWeb ###
===> around@truncate: start <====
===> around@picasa: start <====
===> around@picasa: end <====
===> around@truncate: end <====
### Main: Displaying Results ###
http://flickr/aTag/0/1625623832.jpg http://picasa/aTag/0/348409446.jpg
http://flickr/aTag/1/1552297148.jpg
mosser@necronomicon:picweb/AspectJ$

E.3 Complete Implementation of PICWEB

We propose a complete implementation of the PICWEB running example, with details available on
the previously given web site. This implementation contains the several functional concerns: (i)

truncate and (ii) picasa, (iii) a cache mechanism and (iv) a shuffle invocation to randomize
the retrieved picture set.

The truncate aspect must be the first one in the aspect chain, as it will perform the final
truncation. Then, the shuffle aspect must be executed before the cache one, to randomize
results even when cached. Finally, the cache aspect must be executed before the picasa one, to
include in the cached data the pictures retrieved from PICASA™. Consequently, the only execu-
tion order leading to the expected result (one in 4× 3× 2× 1 = 24) in terms of PICWEB semantic
is the following:

declare precedence: truncate, shuffle, cache, picasa;

Based on this declared precedence rule, the execution of the aspectized code returns the ex-
pected values.

mosser@necronomicon:picweb/AspectJ$ ajc extensions/ * .aj picweb/ * .java Main.java
mosser@necronomicon:picweb/AspectJ$ java Main
### Main: Calling PicWeb ###
-> Entering: call(String[] picweb.PicWeb.get(String, in t))
===> around@truncate: start <====

===> around@shuffle: start <====
===> around@cache: start <====

-> Entering: call(boolean picweb.Cache.isValid(String, int))
<- Leaving: call(boolean picweb.Cache.isValid(String, i nt))
===> around@picasa: start <====

-> Entering: call(String[] picweb.Picasa.getOnTag(Stri ng))
<- Leaving: call(String[] picweb.Picasa.getOnTag(Strin g))
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-> Entering: call(String picweb.KeyRegistry.get(String ))
<- Leaving: call(String picweb.KeyRegistry.get(String) )
-> Entering: call(String[] picweb.Flickr.exploreFolkso nomy(String, String))
<- Leaving: call(String[] picweb.Flickr.exploreFolkson omy(String, String))
-> Entering: call(String[] picweb.Merge.run(String[], S tring[]))
<- Leaving: call(String[] picweb.Merge.run(String[], St ring[]))

===> around@picasa: end <====
-> Entering: call(boolean picweb.Cache.memorize(String , String[]))
<- Leaving: call(boolean picweb.Cache.memorize(String, String[]))

===> around@cache: end <====
-> Entering: call(String[] picweb.Shuffle.run(String[] ))
<- Leaving: call(String[] picweb.Shuffle.run(String[]))

===> around@shuffle: end <====
-> Entering: call(String[] picweb.Truncate.run(String[ ], int))
<- Leaving: call(String[] picweb.Truncate.run(String[] , int))

===> around@truncate: end <====
<- Leaving: call(String[] picweb.PicWeb.get(String, int ))
### Main: Displaying Results ###
http://flickr/aTag/4/636482563.jpg http://picasa/aTag/10/566071465.jpg
http://picasa/aTag/0/693733048.jpg

When the process is called a second time, the cache aspect inhibits the execution of the
picasa one, and consequently the execution of the legacy behavior.

mosser@necronomicon:picweb/AspectJ$ java Main
### Main: Calling PicWeb ###
-> Entering: call(String[] picweb.PicWeb.get(String, in t))
===> around@truncate: start <====

===> around@shuffle: start <====
===> around@cache: start <====

-> Entering: call(boolean picweb.Cache.isValid(String, int))
<- Leaving: call(boolean picweb.Cache.isValid(String, i nt))
-> Entering: call(String[] picweb.Cache.getValue(Strin g))
<- Leaving: call(String[] picweb.Cache.getValue(String) )

===> around@cache: end <====
-> Entering: call(String[] picweb.Shuffle.run(String[] ))
<- Leaving: call(String[] picweb.Shuffle.run(String[]) )

===> around@shuffle: end <====
-> Entering: call(String[] picweb.Truncate.run(String[ ], int))
<- Leaving: call(String[] picweb.Truncate.run(String[] , int))

===> around@truncate: end <====
<- Leaving: call(String[] picweb.PicWeb.get(String, int ))
### Main: Displaying Results ###
http://picasa/aTag/11/1922537237.jpg http://flickr/aTag/16/1115753675.jpg
http://flickr/aTag/9/1122668184.jpg
mosser@necronomicon:picweb/AspectJ$
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Abstract

The Service Oriented Architecture (SOA) paradigm supports the assembly of atomic services to
create applications that implement complex business processes. Since the design of a complete
process can be very complex, composition mechanisms inspired by the Separation of Concerns

paradigm (e.g., features, aspects) are needed to support the definition of large systems by compos-
ing smaller artifacts into a complex one. In this thesis, we propose ADORE, “an Activity meta–

moDel supOrting oRchestration Evolution” to address this issue in the SOA context. The ADORE

meta-model allows process designers to express in the same formalism business processes and
fragment of processes. Such fragments define additional activities that aim to be integrated into
others process. They can be composed into several processes and at different location through the
use of algorithms which tame the complexity of large process design. Using these algorithms en-
sure properties in the final processes such as guard and activity order preservation. The underly-
ing logical foundations of ADORE allow to define interference detection rules as logical predicate,
such as consistency properties on ADORE models. Consequently, the ADORE framework supports
process designers while designing large process, managing the detection of interference among
fragments and ensuring that the composed processes are consistent and do not depend on the
order of the composition. This work is illustrated in this document according to two case study:
(i) JSEDUITE, an information broadcasting system daily used in several academic institutions
and (ii) the CCCMS, a common case study to compare Aspect Oriented Modeling approaches. Ac-
cording to several collaboration with others research teams in various domain (i.e., requirement
engineering, visualization and real–time systems), we expose as perspectives the integration of
ADORE into a complete software development tool chain.

Résumé

Les Architectures Orientées Services (SOA) permettent la définition d’applications complexes
par assemblage de service existants, par exemple sous la forme d’“orchestrations de services”
implémentant des processus métiers. La complexité grandissante de ces assemblages impose
l’utilisation de techniques telle que la Séparation des Préocupations (e.g., aspects, fonctional-
ités) pour en maitriser la difficulté. Dans cette thèse, nous présentons ADORE, un métamodèle
d’activité permettant l’évolution des orchestrations. Ce métamodèle permet aux designers d’orch-
estration d’exprimer dans le même formalisme (celui des processus métier) des “orchestrations”
et des “fragments d’orchestrations”. Ces fragments définissent des activités additionnelles qui
visent à être intégrée dans d’autres processus métiers. Nous proposons alors différents algo-
rithmes de compositions permettant l’intégration automatique de ces fragments dans des pro-
cessus existants. Ces algorithmes définissent un ensemble de propriétés de compositions (e.g.,

préservation des relations d’ordre, des conditions), et assurent leur respect dans les processus
composés. De plus, les algorithmes définis dans ce cadre assurent que les résultats de compo-
sition obtenus ne dépendent pas de l’ordre d’application des fragments. Les fondations logiques
sous–jacente à ADORE permettent la définition de règles de détection d’interférences dans les
processus, sous la forme de prédicats logiques.Le canevas logiciel développé dans cette thèse pro-
pose ainsi un support aux designers, en identifiant les interférences entre fragments apparais-
sant lors des compositions. Nous illustrons cette contribution au travers de deux études de cas:
(i) JSEDUITE, une application de diffusion d’information utilisée en production dans plusieurs
établissement scolaires et (ii) CCCMS, une application de gestion de crise (accidents de voitures)
implémentée dans le cadre d’une réponse à une étude de cas commune sur la modélisation ori-
entée aspects (publiée dans le journal TAOSD). Pour conclure, nous mettons en perspectives de
récentes collaborations avec des équipes à l’international, visant l’intégration d’ADORE au sein
d’un processus de développement logiciel complet, allant des l’ingénierie des besoins à la produc-
tion de code, en passant par la visualisation efficace des processus composés.
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