. Le-g-mot-?-?-g-n, où ? est la bijection décrite dans la sous-section 5.5.1, donc n + 1 ? k est l'extrémitié de la route de ? , 10. le R-mot ? ? R n,k , obtenu par ? = (? ) ?1 (T ), où ? est la bijection décrite dans la sous-section 5.5.1, donc n + 1 ? k est l'extrémité de la route de ? , 11. la suite u ? U n,k , obtenue par u = ?(?), où ? est la bijection décrite dans la sous-section 5, ?) = ?(u), où ? et ? sont les bijections décrites dans la sous-section 5.5.2, donc k est la somme des deux derniers éléments de v

. Dans-chaque-colonne, les éléments correspondants sont décrits via les différentes bijections mentionnées dans le chapitre. De plus, dans la table, on encadre la statistique k = ? 1 si ? ? A n

]. D. Bibliographieand79 and . André, Développement de sec x et tan x, Comptes Rendus de l'Académie des Sciences de Paris, pp.965-979, 1879.

]. D. And81 and . André, Sur les permutations alternées, Journal de Mathématiques Pures et Appliquées, vol.7, issue.1881, pp.167-184

L. [. Andrews and . Littlejohn, A combinatorial interpretation of the Legendre-Stirling numbers, Proceedings of the, pp.2581-2590, 2009.
DOI : 10.1090/S0002-9939-09-09814-1

W. [. Andrews, L. L. Gawronski, and . Littlejohn, The Legendre???Stirling numbers, Discrete Mathematics, vol.311, issue.14, 2009.
DOI : 10.1016/j.disc.2011.02.028

]. V. Arn91 and . Arnold, Bernoulli-Euler updown numbers associated with function singularities, their combinatorics and arithmetics, Duke Mathematic Journal, vol.63, pp.537-555, 1991.

A. [. Blasiak, K. A. Horzela, A. I. Penson, G. H. Solomon, and . Duchamp, Combinatorics and Boson normal ordering: A gentle introduction, American Journal of Physics, vol.75, issue.7, pp.75-639, 2007.
DOI : 10.1119/1.2723799

URL : http://arxiv.org/abs/0704.3116

]. A. Bro84 and . Broder, The r-Stirling numbers, Discrete Mathematics, vol.49, pp.241-259, 1984.

]. D. Cal05 and . Callan, A note on downup permutations and increasing 0-1-2 trees, p.preprint, 2009.

]. L. Car73 and . Carlitz, Permutations with prescribed pattern, Mathematische Nachrichten, pp.5831-53, 1973.

]. C. Cha00 and . Chauve, Structures arborescentes, problèmes algorithmiques et combinatoires, Thèse de doctorat, 2000.

G. [. Clarke, J. Han, and . Zeng, A combinatorial interpretation of the Seidel generation ofq-derangement numbers, Annals of Combinatorics, vol.106, issue.1, pp.313-327, 1997.
DOI : 10.1007/BF02558483

]. R. Don75 and . Donaghey, Alternating permutations and binary increasing trees, Journal of Combinatorial Theory Series A, vol.18, pp.141-148, 1975.

]. D. Dum74 and . Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Mathematical Journal, vol.41, pp.305-318, 1974.

]. D. Dum95 and . Dumont, Further triangles of Seidel-Arnold type and continued fractions related to Euler and Springer numbers, Advances in Applied Mathematics, vol.16, pp.275-296, 1995.

D. Dumont and G. Viennot, A Combinatorial Interpretation of the Seidel Generation of Genocchi Numbers, Annals of Discrete Mathematics, vol.6, pp.77-87, 1980.
DOI : 10.1016/S0167-5060(08)70696-4

]. E. Egg10 and . Egge, Legendre-Stirling permutations, European Journal of Combinatorics, 2010.

E. [. Ehrenborg and . Steingrímsson, Yet Another Triangle for the Genocchi Numbers, European Journal of Combinatorics, vol.21, issue.5, pp.593-600, 2000.
DOI : 10.1006/eujc.1999.0370

]. R. Ent66 and . Entringer, A combinatorial interpretation of the Euler and Bernoulli numbers, Nieuw Archief voor Wiskunde, vol.14, pp.241-246, 1966.

L. [. Everitt, E. R. Littlejohn, and . Wellman, Legendre polynomials, Legendre???Stirling numbers, and the left-definite spectral analysis of the Legendre differential expression, Journal of Computational and Applied Mathematics, vol.148, issue.1, pp.213-238, 2002.
DOI : 10.1016/S0377-0427(02)00582-4

K. [. Everitt, L. L. Kwon, R. Littlejohn, G. J. Wellman, and . Yoon, Jacobi???Stirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression, Journal of Computational and Applied Mathematics, vol.208, issue.1, pp.208-237, 2007.
DOI : 10.1016/j.cam.2006.10.045

G. [. Foata and . Han, The $q$-tangent and $q$-secant numbers via basic Eulerian polynomials, Proceedings of the American Mathematical Society, pp.385-393, 2009.
DOI : 10.1090/S0002-9939-09-10144-2

URL : https://hal.archives-ouvertes.fr/hal-00438479

D. Foata and G. Han, DOUBLOONS AND NEW Q-TANGENT NUMBERS, The Quarterly Journal of Mathematics, vol.62, issue.2, p.17, 2009.
DOI : 10.1093/qmath/hap043

URL : https://hal.archives-ouvertes.fr/hal-00438482

D. Foata and M. P. Schützenberger, Théorie géométrique des polynômes eulériens , Lecture Notes in Math no, 1970.

M. [. Foata and . Schützenberger, Nombres d'Euler et permutations alternantes , A survey of combinatorial theory, pp.173-187, 1973.

Y. Gelineau and J. Zeng, Combinatorial interpretations of the Jacobi-Stirling numbers, The Electronic Journal of Combinatorics, vol.17, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00385228

H. [. Gelineau, J. Shin, and . Zeng, Bijections for Entringer families, European Journal of Combinatorics, vol.32, issue.1, pp.100-115, 2011.
DOI : 10.1016/j.ejc.2010.07.004

URL : https://hal.archives-ouvertes.fr/hal-00863456

I. Gessel, R. P. Stanley, and S. Polynomials, Stirling polynomials, Journal of Combinatorial Theory, Series A, vol.24, issue.1, pp.24-33, 1978.
DOI : 10.1016/0097-3165(78)90042-0

URL : https://hal.archives-ouvertes.fr/hal-00843320

]. A. Gla71 and . Glaser, History of binary and other nondecimal numeration, Tomash, 1971.

N. [. Graham and . Zang, Enumerating split-pair arrangements, Journal of Combinatorial Theory, Series A, vol.115, issue.2, pp.293-303, 2008.
DOI : 10.1016/j.jcta.2007.06.003

URL : http://doi.org/10.1016/j.jcta.2007.06.003

J. [. Hivert, L. Novelli, J. Tevlin, and . Thibon, Permutation statistics related to a class of noncommutative symmetric functions and generalizations of the Genocchi numbers, Selecta Mathematica, vol.15, issue.1, pp.105-119, 2009.
DOI : 10.1007/s00029-009-0489-x

URL : https://hal.archives-ouvertes.fr/hal-00484691

A. [. Huber and . Yee, Combinatorics of generalized q-Euler numbers, Journal of Combinatorial Theory, Series A, vol.117, issue.4
DOI : 10.1016/j.jcta.2009.07.012

]. F. Jac04 and . Jackson, A basic-sine and cosine with symbolic solutions of certain differential equations, Proceedings of Edinburgh Mathematical Society, pp.28-39, 1904.

]. C. Jor47 and . Jordan, Calculus of Finite Difference, 1947.

]. A. Kem33 and . Kempner, On the shape of polynomial curves, Tôhoku Mathematical Journal, vol.37, pp.347-362, 1933.

G. Kreweras, Sur les Permutations Compt??es par les Nombres de Genocchi de 1-i??re et 2-i??me Esp??ce, European Journal of Combinatorics, vol.18, issue.1, pp.18-19, 1997.
DOI : 10.1006/eujc.1995.0081

URL : http://doi.org/10.1006/eujc.1995.0081

I. [. Kuznetsov, A. E. Pak, and . Postnikov, Increasing trees and alternating permutations, Uspekhi Matematicheskikh Nauk. Izdatel'stvo Nauka, pp.49-79, 1994.
DOI : 10.1070/RM1994v049n06ABEH002448

A. F. Loureiro, New results on the Bochner condition about classical orthogonal polynomials, Journal of Mathematical Analysis and Applications, vol.364, issue.2, pp.307-323, 2010.
DOI : 10.1016/j.jmaa.2009.12.003

]. P. Mac16 and . Macmahon, Combinatory Analysis, réimpression Chelsea, 1916.

]. J. Mar06 and . Martin, The slopes determined by n points in the plane, Duke Mathematical Journal, vol.131, issue.1, pp.119-165, 2006.

J. [. Martin and . Wagner, Updown numbers and the initial monomials of the slope variety, Electronic Journal of Combinatorics, vol.16, issue.82, p.8, 2009.

]. C. Pou82 and . Poupard, De nouvelles significations énumératives des nombres d'Entringer, Discrete Mathematics, vol.38, pp.265-271, 1982.

]. C. Pou89 and . Poupard, Deux propriétés des arbres binaires ordonnés stricts, European Journal of Combinatorics, vol.10, pp.369-374, 1989.

]. C. Pou97 and . Poupard, Two other interpretations of the Entringer numbers, European Journal of Combinatorics, vol.18, pp.939-943, 1997.

J. Riordan, An introduction to Combinatorial Analysis, 1958.

J. Riordan, Combinatorial Identities, 1968.

]. L. Sei77 and . Seidel, Über eine einfache Entstehungsweise der Bernoullischen Zahlen und einiger verwandten Reihen, Sitzungsber. Münchener. Akad, vol.4, pp.157-187, 1877.

H. Shin and J. Zeng, The <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mi>q</mml:mi></mml:math>-tangent and <mml:math altimg="si2.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mi>q</mml:mi></mml:math>-secant numbers via continued fractions, European Journal of Combinatorics, vol.31, issue.7, pp.1689-1705, 2010.
DOI : 10.1016/j.ejc.2010.04.003

]. N. Slo and . Sloane, The On-Line Encyclopedia of Integer Sequences

]. R. Sta78 and . Stanley, Generating functions, Studies in Combinatorics, pp.100-141, 1978.

]. R. Sta09 and . Stanley, A Survey of Alternating Permutations, 2009.

J. Stirling, Methodus Differentialis, Sive Tractatus De Summatione et, Interpolazione Serierum Infinitorum, 1730.

]. C. Twe22, J. Tweedie, and . Stirling, A Sketch of his Life and Works, 1922.

J. Zeng and J. Zhou, A q-analog of the Seidel generation of Genocchi numbers, European Journal of Combinatorics, pp.27-30, 2006.

L. Quasi, 3)}, sur laquelle on a tracé l'équerre diagonale H 4, p.31