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Résumé: Méthodes pour Accélérer les

Triangulations de Delaunay

Cette thèse propose de nouvelles méthodes pour accélérer certaines des plus importantes opéra-
tions dans une triangulation de Delaunay, conciliant efficacité et bonne complexité théorique.

Nous proposons deux approches pour calculer la triangulation de Delaunay de points sur
(ou proches) d’une sphère. La première approche calcule la triangulation de Delaunay de points
exactement sur la sphère par construction. La deuxième approche calcule directement l’enveloppe
convexe de l’ensemble d’entrée, et donne quelques garanties sur la sortie. Les deux approches sont
basées sur la triangulation régulière sur la sphère. La deuxième approche améliore les solutions
de l’état de l’art.

L’operation de mise à jour d’une triangulation de Delaunay, quand les sommets bougent, est
critique dans plusieurs domaines d’applications. Quand tous les sommets bougent, reconstruire
toute la triangulation est étonnamment une bonne solution en pratique. Toutefois, lorsque les
points se déplacent tres peu, ou si seulement une fraction des sommets bougent, la reconstruction
n’est plus la meilleure option. Nous proposons un système de filtrage basé sur le concept de
tolérance d’un sommet. Nous avons mené plusieurs expériences pour évaluer le comportement
de l’algorithme sur des ensembles de données variés. Les expériences ont montré que l’algorithme
est particulièrement pertinent pour les régimes convergents tels que les itérations de Lloyd. En
dimension deux, l’algorithme présenté est un ordre de grandeur plus rapide que la reconstruction
pour les itérations de Lloyd. En dimension trois, l’algorithme présenté a des performances
équivalentes à la reconstruction quand tous les sommets bougent, cependant il est entièrement
dynamique et améliore les solutions dynamiques précédentes. Ce résultat permet d’aller plus
loin dans le nombre d’itérations de façon à produire des maillages de qualité supérieure.

La localisation de points dans une subdivision de l’espace est un classique de la géométrie algo-
rithmique; nous réexaminons ce problème dans le cas des triangulations de R

d pour exploiter une
éventuelle cohérence entre les requêtes. Nous analysons, implementons, et évaluons une strategie
de localisation de point adaptable aux distributions des requêtes, basée sur Jump & Walk, appel-
lée Keep, Jump, & Walk. Pour des paquets de requêtes, l’idée principale est d’utiliser les requêtes
précédentes pour améliorer le traitement de la requête courante. Maintenant à propos de la com-
plexité d’une requête dans une triangulation de Delaunay, nous montrons que la hiérarchie de
Delaunay peut être utilisée pour localiser un point q à partir d’une requête précédente p avec une
complexité randomisée O(log ♯(pq)) pourvu que la triangulation vérifie certaines hypothèses (♯(s)
désigne le nombre de simplex traversés par le segment s). Finalement, nous combinons la bonne
adaptabilité à la distribution des requêtes du Keep, Jump, & Walk, et la bonne complexité de la
hiérarchie de Delaunay, en une nouvelle stratégie de localisation de points appellée Keep, Jump,
& Climb. Selon nos connaissances, Keep, Jump, & Climb est le premier algorithme adaptable
aux distributions des requêtes qui marche en pratique et en théorie pour les triangulations de
Delaunay—dans nos expérimentations, Keep, Jump, & Climb est plus rapide que la hiérarchie
de Delaunay indépendamment de la cohérence spatiale des requêtes, et significativement plus
rapide quand la cohérence spatiale est forte.
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Abstract: Practical Ways to Accelerate

Delaunay Triangulations

This thesis proposes several new practical ways to speed-up some of the most important opera-
tions in a Delaunay triangulation.

We propose two approaches to compute a Delaunay triangulation for points on or close to
a sphere. The first approach computes the Delaunay triangulation of points placed exactly on
the sphere. The second approach directly computes the convex hull of the input set, and gives
some guarantees on the output. Both approaches are based on the regular triangulation on the
sphere. The second approach outperforms previous solutions.

Updating a Delaunay triangulation when its vertices move is a bottleneck in several domains
of application. Rebuilding the whole triangulation from scratch is surprisingly a viable option
compared to relocating the vertices. However, when all points move with a small magnitude, or
when only a fraction of the vertices moves, rebuilding is no longer the best option. We propose a
filtering scheme based upon the concept of vertex tolerances. We conducted several experiments
to showcase the behavior of the algorithm for a variety of data sets. The experiments showed
that the algorithm is particularly relevant for convergent schemes such as the Lloyd iterations.
In two dimensions, the algorithm presented performs up to an order of magnitude faster than
rebuilding for Lloyd iterations. In three dimensions, although rebuilding the whole triangulation
at each time stamp when all vertices move can be as fast as our algorithm, our solution is fully
dynamic and outperforms previous dynamic solutions. This result makes it possible to go further
on the number of iterations so as to produce higher quality meshes.

Point location in spatial subdivision is one of the most studied problems in computational
geometry. In the case of triangulations of R

d, we revisit the problem to exploit a possible
coherence between the query points. We analyze, implement, and evaluate a distribution-sensitive
point location algorithm based on the classical Jump & Walk, called Keep, Jump, & Walk.
For a batch of query points, the main idea is to use previous queries to improve the retrieval
of the current one. Regarding point location in a Delaunay triangulation, we show how the
Delaunay hierarchy can be used to answer, under some hypotheses, a query q with a O(log ♯(pq))
randomized expected complexity, where p is a previously located query and ♯(s) indicates the
number of simplices crossed by the line segment s. We combine the good distribution-sensitive
behavior of Keep, Jump, & Walk, and the good complexity of the Delaunay hierarchy, into a
novel point location algorithm called Keep, Jump, & Climb. To the best of our knowledge,
Keep, Jump, & Climb is the first practical distribution-sensitive algorithm that works both in
theory and in practice for Delaunay triangulations—in our experiments, it is faster than the
Delaunay hierarchy regardless of the spatial coherence of queries, and significantly faster when
queries have reasonable spatial coherence.
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Chapter 1

Introduction

“The universe we observe has precisely the properties we should expect if there is, at
bottom, no design, no purpose, no evil, no good, nothing but blind, pitiless indifference.”

— Charles Robert Darwin

Pafnuty Lvovich Chebyshev, Andrey Andreyevich Markov, Georgy Feodosevich Voronoi,
and Boris Nikolaevich Delaunay have all substantially contributed to the progress of sci-
ence; their portraits are shown in Figure 1.1. Delaunay was a PhD student of Voronoi,
Voronoi was a PhD student of Markov, who in turn was a PhD student of Chebyshev.
They contributed in the field of probability, statistics, and number theory, to name a
few; some of their contributions, such as Chebyshev’s inequality, Markov chains, Voronoi
diagrams1, and Delaunay triangulations carry their signature.

(a) Chebyshev (b) Markov (c) Voronoi (d) Delaunay

Figure 1.1: Some memorable russian mathematicians.

1Some researches manipulated these kind of diagrams before Voronoi. Informal use of Voronoi dia-
grams can be traced back to Descartes in 1644, and formal use can be traced back to Dirichlet in 1850;
sometimes Voronoi diagrams are also called Dirichlet tessellations.
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(a) Voronoi diagram (b) Delaunay triangulation

Figure 1.2: Voronoi diagram and Delaunay triangulation. The space is R
2, the

metric is the Euclidean metric.

The contributions of these mathematicians partially form the basis of several con-
temporary researches. In particular, Voronoi diagrams [219] and Delaunay triangula-
tions [89] are extensively adopted in several fields of research, ranging from archeology to
zoology [104].

Given a set of n points S = p1, p2, . . . , pn in a space Z, consider n regions Ri such that
Ri contains all the points in Z closer to pi than any other point pj, pi 6= pj. The union
of these regions is the Voronoi diagram of S; see Figure 1.2(a). The word closer in the
definition above deserves a special treatment: A point pi is closer to pj compared to pk if
and only if dist(pi, pj) < dist(pi, pk), where dist is a distance function defined by a given
metric on Z. The Delaunay triangulation is simply the dual of the Voronoi diagram; see
Figure 1.2(b). In this thesis, when the metric is not mentioned, the Euclidean metric is
meant.

Aurenhammer [37] and Okabe et al. [175] give a comprehensive (though not exhaustive)
list of different kinds of Voronoi diagrams, applications, and properties. The literature
on Voronoi diagram and Delaunay triangulations is vast, the following three books are
recommended [82, 182, 51]. In this thesis, our main focus is Delaunay triangulations;
some Delaunay triangulations are depicted in Figure 1.3.

Delaunay triangulations have some very useful properties; here are an important sam-
pling of them:

Property 1 ([57, 114]). Each edge of the Delaunay triangulation of a set of points is a
chord of at least one empty hypersphere; i.e., a hypersphere including no points in the set.
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Property 2 ([155, 205]). In the plane, the Delaunay triangulation maximizes the mini-
mum angle.

Property 3 ([175, 92]). The minimum spanning tree of S is a subgraph of the Delaunay
triangulation.

Property 4 ([175]). The nearest neighbor graph of S is a subgraph of the Delaunay
triangulation.

Property 5 ([81, 185, 68]). The Delaunay triangulation minimizes the roughness measure
of a piecewise linear interpolation for a given function.

We can find Delaunay triangulations on: data analysis [206], data clustering [136, 30],
geographic databases [173], geophysics [118], information visualization [154], mesh gen-
eration [111, 87], mesh optimization [24, 216, 67], mesh smoothing [25], motion plan-
ning [192], re-meshing [218, 23], surface reconstruction [63, 146], to name a few. More
applications (and details) can be found e.g., in the following texts [29, 37, 175, 209, 110].
It is not surprising that Delaunay triangulations found their place in several applications,
the properties above show a few reasons to use them.

In some applications, such as data analysis, data clustering, and meshing, the size of
the input sets increase with the available technology; consequently, the interest in practical
and fast ways for constructing Delaunay triangulations keeps rising. Past researches
led to four main ways to compute Delaunay triangulations: sweep line [119, 208, 202],
duality [57, 114, 207], divide-and-conquer [197, 156, 132, 73], and incremental [156, 132,
199, 130, 93, 47]. Since the Delaunay triangulation is the dual of the Voronoi diagram,
computing Delaunay triangulations and Voronoi diagrams is equivalent, and descriptions
in what follows account for both.

Sweep line [119, 208, 202]. Fortune’s sweep line algorithm is a classical algorithm
to build Delaunay triangulations for points in the plane. The algorithm maintains a line
that sweeps the plane from the leftmost point to the rightmost point of the input set.
Each time the line passes through a point, the point is included in the Voronoi diagram.
Fortune’s algorithm computes Delaunay triangulations in O(n log n).

Duality [57, 193, 114, 194, 66, 207]. Delaunay triangulations in dimension d can
be obtained from convex hulls in dimension d + 1 thanks to the duality between them.
The procedure consists in: (i) lifting points in S onto the unit paraboloid one dimension
higher; (ii) computing the lower hull of the lifted points; then (iii) projecting back the
lower hull onto R

d. This approach delegates the computation of a Delaunay triangulation
to the computation of a lower hull one dimension higher. The lower hull of a set of points
in dimension d can be computed in O(n log n+ n⌊d/2⌋) for any fixed dimension; i.e., using
duality, Delaunay triangulations in dimension d can be computed in worst-case optimal
O(n log n+ n⌈d/2⌉).

Divide-and-conquer [197, 156, 132, 73]. The divide-and-conquer algorithms di-
vide the problem of computing the Delaunay triangulation of a point set in: (i) computing
the Delaunay of two disjoint subsets of the input set, and (ii) merging the solutions of
the two smaller problems into the solution of the original problem; this process is then
applied recursively. In two dimensions, the divide-and-conquer algorithms can typically
compute Delaunay triangulations in O(n log n) time.

Incremental [156, 132, 199, 130, 47, 93]. The incremental algorithms start with
an empty Delaunay triangulation, then inserts one point after another, until all the points
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of the input set are inserted. The result is the Delaunay triangulation of the whole input
set. Incremental construction of the Delaunay triangulation can be held in a worst case
O
(

n⌈d/2⌉+1
)

complexity; however, in randomized analyses, the incremental construction
has a O(n log n + n⌈d/2⌉) complexity. (Under some hypotheses on the size of the output
O(n log n) suffices for any finite dimension [93].)

The incremental algorithms gained special attention of the scientific community, for
several reasons: (i) the point set does not need to be known in advance; (ii) they work
well in pair with randomization [76, 75]; (iii) they are often simpler to implement; and (iv)
some of them behave well in practice also for dimensions higher than two. When points
are known in advance, sorting the points can dramatically improve the performance of
the incremental algorithm [27, 60, 88]. A very efficient implementation of the incremen-
tal Delaunay triangulation construction can be found in the Computational Geometry
Algorithms Library (Cgal) [64].

Applications such as mesh optimization, mesh smoothing, motion planning, and re-
meshing, require the Delaunay triangulation to be dynamic. A dynamic data structure
is a data structure that can be maintained under insertions and deletions of points.
Naive relocations of points are automatically supported by successively inserting and
deleting a point. Efficient incremental algorithms support efficient dynamic insertions,
and with some extra effort, efficient deletions [70, 94, 99] as well. The three operations
cited above are amongst the most important operations on a Delaunay triangulation;
however, the most fundamental2 operation is point location: Given a query point, the
point location retrieves the triangle of the Delaunay triangulation in which the query point
lies in. Two- and three-dimensional Delaunay triangulations in Cgal support efficient
point location [93], insertion [88], deletion [94, 99], and relocation.3

To sum up, Delaunay triangulations date back from 1934 [89] and is one of the most
famous and successful data structures introduced in the field of Computational Geometry.
Two main reasons explain this success: (i) it is suitable to many practical uses; and (ii)
computational geometers have produced efficient implementations [223, 179, 201].

While implementations nowadays are very efficient, there is still room for improve-
ments. And improvements are highly necessary for a broad range of applications. Inter-
esting instances of applications such as geographic database [173], mesh optimization [217],
and Poisson surface reconstruction [146] require several hundred millions of operations on
Delaunay triangulations of some few millions of points; and this keeps increasing. In this
thesis, we focus on designing algorithms to perform operations on a Delaunay triangula-
tion even faster.

Contributions

This thesis proposes several new practical ways to speed-up some of the most important
operations on a Delaunay triangulation. Our main focus is to reduce the computation
time needed to perform operations in large input sets. We contribute with solutions for
the following three problems:

2Insertions, deletions, and relocations depend on point location.
3Support for relocations is a new feature in Cgal 3.7, implemented during this thesis.
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Problem 6 (Delaunay triangulations on the sphere). “Given points on or close to the
sphere, propose solutions to construct the Delaunay triangulation on the sphere of these
points.”

We propose two efficient and robust approaches to compute a Delaunay triangulation
for points on or close to a sphere. The first approach computes the Delaunay triangulation
of points placed exactly on the sphere. The second approach computes the convex hull of
the input set, and gives some guarantees on the output. The second approach outperforms
previous solutions.

Problem 7 (Relocations on a Delaunay triangulation). “Given a set of moving points,
compute its Delaunay triangulation at some given discrete time stamps.”

Updating a Delaunay triangulation when its vertices move is a bottleneck in several
applications. Rebuilding the whole triangulation from scratch is surprisingly a viable op-
tion compared to relocating the vertices. However, when all points move with a small
magnitude, or when only a fraction of the vertices moves, rebuilding is no longer the best
option. We propose a filtering scheme based upon the concept of vertex tolerances. We
conducted several experiments to showcase the behavior of the algorithm for a variety of
data sets. The experiments showed that the algorithm is particularly relevant for conver-
gent schemes such as the Lloyd iterations. In two dimensions, the algorithm presented
performs up to an order of magnitude faster than rebuilding for Lloyd iterations. In three
dimensions, although rebuilding the whole triangulation at each time stamp when all ver-
tices move can be as fast as our algorithm, our solution is fully dynamic and outperforms
previous dynamic solutions. This result makes it possible to go further on the number of
iterations so as to produce higher quality meshes.

Problem 8 (Point location in triangulations). “Given a triangulation T and a set of
query points, for each query point, find the cell in T containing it.”

Point location in triangulations of Rd is one of the most studied problems in compu-
tational geometry. We revisit the problem to exploit a possible coherence between the
query points. We analyze, implement, and evaluate a distribution-sensitive point location
algorithm based on the classical Jump & Walk, called Keep, Jump, & Walk. For a batch
of query points, the main idea is to use previous queries to improve the current one. Re-
garding point location in a Delaunay triangulation, we show how the Delaunay hierarchy
can be used to answer, under some hypotheses, a query q with a O(log ♯(pq)) randomized
expected complexity, where p is a previously located query and ♯(s) indicates the number
of simplices crossed by the line segment s. We combine the good distribution-sensitive
behavior of Keep, Jump, & Walk, and the good complexity of the Delaunay hierarchy,
into a novel point location algorithm called Keep, Jump, & Climb. To the best of our
knowledge, Keep, Jump, & Climb is the first practical distribution-sensitive algorithm that
works both in theory and in practice for Delaunay triangulations—in our experiments, it
is faster than the Delaunay hierarchy regardless of the spatial coherence of queries, and
significantly faster when queries have reasonable spatial coherence.

Overview of the Thesis

We start with Chapter 2, which describes some necessary notions and definitions that are
extensively used in what follows. Then the rest of the thesis is divided into three parts
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plus a conclusion. Each part concerns a different problem, and consists of one or more
chapters.
• Part I, Delaunay triangulations on the sphere: Chapter 3. This chapter

presents two approaches to compute Delaunay triangulations for points on or close to the
sphere.
• Part II, Relocations on a Delaunay triangulation: Chapters 4 and 5. Chap-

ter 4 briefly describes the state of the art of point relocations in a triangulation, both
in theory and in practice. Then Chapter 5 presents a new dynamic filtering algorithm,
which avoids unnecessary insertions and deletions of vertices when relocating them.
• Part III, Point location in triangulations: Chapters 6, 7, and 8. Chapter 6

reviews old results and presents new results on some spanning trees embedded in R
d; these

results are used in Chapter 8. Chapter 7 describes a sampling of the most important point
location algorithms both in theory and practice. Then in Chapter 8, we present several
new distribution-sensitive point location algorithms.

Finally, we conclude the work with Chapter 9 in Part IV, where we present some
perspectives and we collect some of the most important open problems spread along this
work.

(a) (b)

(c) (d)

Figure 1.3: Delaunay triangulation. (a) two-dimensional Delaunay triangulation of
points in a disc; (b) three-dimensional Delaunay triangulation of points in a ball (picture

taken from the Cgal [64]); (c) and (d) are useful artifacts that we can obtain using Delaunay
triangulations (more details in Chapter 5).



Chapter 2

Notions and Definitions

“All of the books in the world contain no more information than is broadcast as video in
a single large American city in a single year. Not all bits have equal value.” — Carl

Sagan.

This chapter presents the well-known arithmetic filtering technique, which has trans-
formed a theoretical game called Computational Geometry in a practical tool. Then,
some useful definitions about triangulations are given. Notions and definitions presented
in this chapter are subsequently used in the rest of this thesis.

2.1 Exact Arithmetic

2.1.1 Predicate

In the whole generality, predicates are functions mappings elements from an arbitrary set
of possible inputs to a finite set of predicate results. However, in computational geometry,
it is often used to map geometrical primitives (e.g. points, lines, spheres) to signs (−1, 0,
+1).

In this thesis, we assume an even less general setting: Predicates are the sign of some
polynomial. Even if this setting is less abstract, it turns out that a great amount of useful
predicates in computational geometry can be described as such.

Algorithms in computational geometry often rely on predicates. And these predicates
must be computed exactly, otherwise the algorithm may even not terminate [147]. In
other words, robustness of algorithms in computational geometry is related with the exact
computation of predicates.

A way to compute predicates exactly is adopting the exact geometric computation
paradigm from Yap and Dubé [221]. More precisely, computing signs with exact number
types [6, 8, 7], which are multi-precision number types capable of representing exactly a
rational (or more generally an algebraic number).
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Exact number types are very slow. In the next section, we describe how to accelerate
several orders of magnitude the exact predicate computations with a very practical filtering
technic.

2.1.2 Accelerating Computations with Filtering

Exact predicate computation using naive exact number types is too slow. In order to
avoid an excessive overhead, one could use a technic called arithmetic filtering.

Arithmetic filtering consists basically in: (i) computing an approximate value λ
of the expression using fast inexact number types;1 (ii) computing a bound ∆λ on the
maximum deviation between the approximate and exact value, called error bound, using
inexact number types; (iii) checking whether λ−∆λ and λ+∆λ have the same sign, i.e.,
checking for a filter success (when the computation is certified); and finally, in the case
of a filter failure (when the computation is not certified), (iv) computing the exact value
using exact number type. Such a procedure is schematized in Figure 2.1.

There are three main derivations of the arithmetic filtering; their main difference lies
in how inexact computations are certified:

Static Filtering. If the error bound can be computed at compile time, e.g., when
the expression uses only +,−,×, and an upper bound on the inputs is known, then the
inexact computation can be certified with just one additional comparison. We call this
filtering scheme a static filtering. The next two schemes are less restrictive.

Semi-Static Filtering. Some arithmetic operations, such as division and square root,
require the knowledge of a lower bound on the inputs in order to upper-bound the error.
This makes upper-bounding errors of an expression hard to handle statically because of
the lower bounds on the intermediate results. A solution consists in: (i) computing an
upper bound of the relative error 2 of the expression at compile time; then, for each input
of the expression, (ii) computing its order 3 at compile time and (iii) computing its upper
bound4 at running time; and finally, (iv) multiplying the relative errors by the upper
bound of each input to the power of its corresponding order. We call this filtering scheme
a semi-static filtering. We can find implementations of semi-static filtering in Cgal [64].
However, sometimes the relative error bounds are too pessimistic.

Dynamic Filtering. In this scheme, for every arithmetic operation, error bounds for
the results are computed on the fly; then, the results are compared against these error
bounds. This can be done automatically using interval arithmetic [56]. However, as a
drawback, dynamic filtering is at least twice slower than static filtering [98, 165].

The three categories of arithmetic filtering above can be combined in order to improve
performances.5 In the next section we show how the value of an expression computed
inexactly can be bounded in the case of the (IEEE 754) double precision floating-point
number type.

1e.g., float and double in C and C++.
2The relative error of an expression computation is the (absolute) error divided by the exact value.
3An order of an input is its power in the expression; e.g., an area has an order of 2 (meter squared).
4Sometimes also computing lower bounds if necessary; e.g. when the expressions use a division.
5Cgal combines semi-static and dynamic filtering for better performances.
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Figure 2.1: Arithmetic filtering.

2.1.3 Bounding Expressions Computed With Double

The IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754) is the most widely-
used standard for floating-point computation, and is followed by many CPU and FPU
implementations. The standard defines formats for representing floating-point numbers
and special values together with a set of floating-point operations that operate on these
values. It also specifies four rounding modes and five exceptions. The default rounding
mode is the “Round to Nearest”, which naturally consists of rounding to the nearest
representable value; if the number fails midway, it is rounded to the nearest value with
an even least significant bit. These rules for rounding apply to the four basic operations
(+,−,×, /) and also to the square root operation. This rounding mode leads to absolute
errors smaller than ulp(x)/2, with ulp(x) being the units in the last place of x (for
standard double it is 2−53). For an easy-to-read survey on floating-point arithmetic
fundamentals, please refer to [124].

Let x be the exact value of a given expression ξ, and f(x) the value obtained by com-
puting ξ with floating-point numbers; then next, we obtain αx such that |f(x)− x| ≤ αx,
for any expression ξ composed by the following five operations: (+,−,×, /,√). The value
αx is a certified error bound of x; i.e., a value such that the interval [f(x) − αx, f(x) + αx]
contains the exact value x.

If f(a) and f(b) are the resulting floating-point evaluations with their certified error
bounds αa and αb respectively, then a certified error bound αa±b of a± b can be obtained
as follows:

|f(a± b)− (a± b)| ≤ αa±b = αa + αb + |a± b|ulp(1)
2

, (2.1)

Besides, a certified error bound αa×b of a× b can be obtained as follows:

|f(a× b)− (a× b)| ≤ αa×b = αa|b|+ αb|a|+ |a||b|
ulp(1)

2
. (2.2)

For the division and the square root operation, we cannot bound their floating-point value
because the inverse of an expression cannot be bounded statically. However, the inverse
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of an expression can be bounded on the fly. Then, a certified error bound α1/a of 1/a,
assuming A = |f(a)− αa| ≤ |a| and αa < A ≤ |f(a)|, can be obtained as follows:

∣

∣

∣

∣

f

(

1

a

)

−
(

1

a

)∣

∣

∣

∣

≤ α1/a =
αa

A2
+

∣

∣

∣

∣

1

A

∣

∣

∣

∣

ulp(1)
2

. (2.3)

The equation above depends on A and αa. If the above-mentioned condition αa < A ≤
|f(a)| does not hold, the error bound is no longer certified, and a filter failure should be
signaled. Moreover, if f(a) is a non-degenerated floating-point expression with a ≥ 0,
then a certified error bound α√

a of
√
a can be obtained as follows:

∣

∣f(
√
a)−√a

∣

∣ ≤ α√
a =

αa

2
√
A

+
√
a
ulp(1)

2
. (2.4)

Recall that |f(a)| − αa ≤ |a| ≤ |f(a)|+ αa, and hence |a|−1/2 ≤ (|f(a)| − αa)
−1/2.

An example on how such error computations are used in practice is shown in Section 5.3
with details.

2.2 Triangulations

2.2.1 Definitions

A k-simplex is a polytope of dimension k with k + 1 vertices; see Figures 2.2(a), 2.2(b),
2.2(c), and 2.2(d). A face of a k-simplex σ is a l-simplex contained in σ, with l < k. A
simplicial complex is a set T of simplices such that: (i) any face of a simplex in T is also
in T , and (ii) the intersection of any two simplices σ1, σ2 ∈ T is a face of both σ1 and σ2;
see Figures 2.2(g) and 2.2(h). The dimension d of a simplicial complex is the maximum
dimension of its simplices. A d-simplex, a (d− 1)-simplex, and a (d− 2)-simplex are also
called a cell, facet, and a ridge respectively; see Figures 2.2(a), 2.2(b), 2.2(c).

A simplicial complex T is pure if any simplex of T is included in a cell of T . Two
cells in T are said to be adjacent if they share a facet. A simplicial complex is connected
if the adjacency relation defines a connected graph over the set of cells of T . The union
UT of all simplices in UT is called the domain of UT . A point p in the domain of T is
said to be singular if its surrounding in UT is neither a topological ball nor a topological
disc. A d-dimensional triangulation is a d-dimensional simplicial complex that is pure,
connected, and without singularity; see Figures 2.2(e) and 2.2(f).

Let T be a triangulation and Z a given space, let each simplex of T be assigned a
subset of Z, then the set of all these subsets, one for each simplex, is the embedding of
T in Z; this definition however is too abstract for the scope of this thesis. Next, we
instantiate a more specific definition of the embedding of T , which is used throughout
this work.

Let T be a triangulation. We define the graph (V,E) of T , where V and E are the
set of 0-simplices and 1-simplices of T respectively, as the combinatorics or combinatorial
structure of T . We call a vertex of the combinatorial structure of T a vertex of T for
short. Let each vertex of T be assigned a point in R

d, then the structure formed by linking
points by segments of line according to the combinatorics of T is called the embedding
of T in R

d; or simply the embedding of T , when there is no ambiguity. Note that a
valid triangulation can have an embedding that is an invalid triangulation; this happens
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.2: Simplex, simplicial complex, and triangulation. (a) a 1-simplex (a

three-dimensional ridge); (b) a 2-simplex (a three-dimensional facet); (c) a 3-simplex (a three-

dimensional cell); (d) a 4-simplex; (e) a two-dimensional triangulation; (f) a three-dimensional

triangulation; (g) a simplicial complex; (h) not a simplicial complex.

e.g., when the embedding of T becomes self-intersecting, such as the example depicted
in Figure 2.2(h): The valid triangulation shown in Figure 2.2(e) can be made invalid by
switching the embedding of two vertices; see Figure 2.2(h).

2.2.2 Representation

There are several ways to represent triangulations as a data structure; see [182, 201, 223,
179] for a comprehensive list. In this thesis, we use Cgal’s 2D and 3D triangulation
representations [223, 179], which we succinctly describe next.

In Cgal’s representation, only cells and vertices are actually stored in memory. Each
cell σ has an array Aσ and an array Vσ of d + 1 neighbor pointers and vertex pointers
respectively: pointers in Aσ point to distinct adjacent cells; and pointers in Vσ point to
distinct vertices of σ. Indexing Aσ and Vσ by i, 0 ≤ i ≤ d, gives respectively: a cell σi, and
the vertex opposite to σi. A vertex v has a coordinate p corresponding to its embedding,
and a pointer to an incident cell; such pointer is necessary to efficiently navigate inside
the triangulation. Figure 2.3 depicts the representation of a two-dimensional cell and its
three vertices. Additional data can be easily annexed to cells and vertices. Finally, the set
of cells and the set of vertices are stored in two separate containers. Such a representation
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0
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0
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cell

neighbor 2
neighbor 1

neighbor 0

Figure 2.3: Representation of a cell and its vertices.

gives a constant-time access between adjacent cells, which is useful when performing point
location; this feature is used in Section 7.3.1.

Cgal adopts the following common practice to easily handle the boundary of T : It
consists in adding a “point at infinity” ∞ to the initial set of points [20, 223, 179]; see
Figure 2.4. Let S be the initial set of points, we consider an augmented set S ′ = S∪{∞};
let CH(S) be the convex hull of S, and T (S) a triangulation of S, then the extended
triangulation is given by

T (S ′) = T (S) ∪ {(f,∞) | f facet of CH(S)}. (2.5)

In addition to T (S), every facet on the boundary of the convex hull CH(S) is connected
to the point ∞; such connections produce new simplices incident to ∞, which are called
infinite simplices. In contrast with T (S), T (S ′) has the convenient property that there
are exactly d + 1 simplices adjacent to each simplex in T (S ′); T (S ′) can also be seen as
a triangulation of the topological hypersphere.

2.2.3 Delaunay

A triangulation of a set of points is a Delaunay triangulation if no point in the set is inside
the circumsphere of any cell in the triangulation [182, 37]; see Figure 2.5. Several Delaunay
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(a)
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2

∞

(b)

Figure 2.4: Infinite vertex. Representation: (a) without infinite vertex; (b) with infinite

vertex.

triangulation construction algorithms have been described in the literature. Many of them
are appropriate in the static setting [197, 119], where the points are fixed and known in
advance. There is also a variety of so-called dynamic algorithms [127, 93, 100], in which
the points are fixed and the triangulation is maintained under point insertions or deletions.

2.2.4 Certificates

Among several instances of predicates on computational geometry, in this thesis, we are
specially interested in two predicates related to (Delaunay) triangulations: the orientation
predicate and the empty-sphere predicate; this section presents both of them.

When one or more predicates are used to evaluate whether a geometric data structure
is valid or invalid, we denote by certificate each of those predicates. By convention, we
assume that a certificate is said to be valid when it is positive.

A triangulation lying in R
d can be checked to be valid by using the orientation cer-

tificate [95]: For each cell of the triangulation, every d + 1 vertices have the same orien-
tation. (The definition of a valid triangulation is presented in Section 2.2.1.) Therefore,
this certificate is applied to the sequence of d + 1 points p1 = (x1 1, . . . , x1 d), . . . , pd+1 =
(xd+11, . . . , xd+1 d) belonging to a cell of the triangulation. The orientation certificate in
R

d is the sign of the determinant of the following matrix:






x1 1 . . . x1 d 1
...

. . .
...

...
xd+11 . . . xd+1 d 1






. (2.6)

See Figure 2.6(a) and 2.6(b) for an illustration of a valid and invalid set of cells in two
dimensions. By convention, vertices of a cell are stored in an order such that the evaluation
of the orientation predicate on these vertices gives a positive sign; see Figure 2.3. When
all the cells of a triangulation lying in R

d are correctly oriented (i.e., positively oriented),
we say that the triangulation is embedded in R

d; or simply embedded, when there is no
ambiguity.

A triangulation embedded in R
d can be checked to be Delaunay by using the empty-

sphere certificate [95]: For each pair of adjacent cells of the triangulation (including infinite
cells), the hypersphere passing through the d + 1 vertices of a cell on one side does not



14 Notions and Definitions

Figure 2.5: Delaunay triangulation.

contain the vertex on the other side. Therefore, this certificate is applied to the sequence
of d + 2 points p1 = (x1 1, . . . , x1 d), . . . , pd+2 = (xd+21, . . . , xd+2 d) belonging to a pair of
adjacent cells of the triangulation. The empty-sphere certificate in R

d is the sign of the
determinant of the following matrix:







x1 1 . . . x1 d

∑d
i=1 x

2
1 i 1

...
. . .

...
...

...
xd+21 . . . xd+2 d

∑d
i=1 x

2
d+2 i 1






. (2.7)

This is equivalent to the orientation certificate in R
d+1, when the points are lifted on the

unit paraboloid Π = {(x1, . . . , xd+1) ∈ R
d+1 | xd+1 =

∑d
i=1 x

2
d}. See Figure 2.6(c) and 2.6(d)

for an illustration of a valid and invalid pair of adjacent cells in two dimensions. When
one or both cells of the pair of adjacent cells are infinite, then there is a total of d + 1
finite points, and the empty-sphere certificate boils down to an orientation certificate:
The sphere passing through the boundary facet and the “point at infinity” degenerates
into a plane, and the certificate becomes equivalent to verifying whether a point lies on
a particular side of that plane. Two situations should be considered here: (i) if the num-
ber of infinite cells is one, then the empty-sphere certificate is automatically verified by
the validity of the triangulation; (ii) otherwise, the empty-sphere certificate becomes a
reversed orientation certificate, as shown in Figure 2.7.
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(a) (b) (c) (d)

Figure 2.6: Orientation and empty-sphere certificates. (a) all the cells are oriented

in the same way (counter-clockwise), the orientation certificate is valid; (b) the cell with the

red arrows is oriented incorrectly (clockwise), the orientation certificate fails; (c) circumscribed

spheres (circles) are empty, the empty-sphere certificate is valid. (d) circumscribed spheres con-

tain a point, the empty-sphere certificate is invalid. Semi-static and dynamic filtering in both two

and three dimensions are implemented for these certificates in Cgal [137, 59].

∞ ∞

∞

∞

∞

(a)

∞

∞ ∞

∞

∞
c1

c2

(b)

Figure 2.7: Empty-sphere certificates on infinite cells. Orientation of finite cells are

counter-clockwise: (a) orientation of three consecutive vertices of the convex hull is clockwise, the

empty-sphere certificate is valid; and (b) there are three consecutive vertices of the convex hull

with the same orientation as the finite cells, the empty-sphere certificate acting on the infinite

cells c1 and c2 is invalid.
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Part I

Delaunay triangulations on the sphere





Chapter 3

Robust and Efficient Delaunay

Triangulations of Points On or Close to

a Sphere

“Le croissant de la lune, constamment dirigé vers le soleil, indique évidemment qu’elle
en emprunte sa lumière.” — Pierre-Simon Laplace.1

This chapter is a joint work with Manuel Caroli, Sebastien Loriot, Olivier Rouiller, Monique
Teillaud and Camille Wormser.

• M. Caroli, P. M. M. de Castro, S. Loriot, O. Rouiller, M. Teillaud and C. Wormser.
Robust and Efficient Delaunay Triangulations of Points on Or Close to a Sphere. In SEA
’10:Proceedings 9th International Symposium on Experimental Algorithms, pages 462–473,
2010. (Also available as: Research Report 7004, INRIA, 2009.)

The Cgal project [5] provides users with a public discussion mailing list, where they
are invited to post questions and express their needs. There are recurring requests
for a package computing the Delaunay triangulation of points on a sphere or its dual,
the Voronoi diagram. This is useful in many domains such as geophysics [118] (see
Figure 3.1(a)), geographic information systems (see Figure 3.9), information visualiza-
tion [154] (see Figure 3.1(b)), or structural molecular biology, to name a few.

An easy and standard solution to the problem of computing such a Delaunay trian-
gulation consists in constructing the 3D convex hull of the points: They are equivalent
[58, 215]. The convex hull is one of the most popular structures in computational geometry
[82, 51]; optimal algorithms and efficient implementations are available [66, 3, 4].

Another fruitful way to compute Delaunay on a sphere consists of reworking known
algorithms designed for computing triangulations in R

2. Renka adapts the distance in the

1The crescent of the moon being always directed towards the sun, indicates obviously that she borrows
her light from that luminary.
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(a) (b)

Figure 3.1: Definitions. (a) Geophysical Simulation (picture taken from Fohlmeister [118])., (b)
Information Visualization (picture taken from Larrea et al. [154]).

plane to a geodesic distance on a sphere and triangulates points on a sphere [184] through
the well-known flipping algorithm for Delaunay triangulations in R

2 [155]. As a by-product
of their algorithm for arrangements of circular arcs, Fogel et al. can compute Voronoi
diagrams of points lying exactly on the sphere [116]. Using two inversions allows Na et
al. to reduce the computation of a Voronoi diagram of sites on a sphere to computing two
Voronoi diagrams in R

2 [172]; however, to the best of our knowledge, no implementation is
available. Note that this method assumes that data points are lying exactly on a sphere.

As we are motivated by applications, we take practical issues into account carefully.
While data points lying exactly on the sphere can be provided either by using Cartesian
coordinates represented by a number type capable of handling algebraic numbers exactly,
or by using spherical coordinates, in practice data-sets in Cartesian coordinates with
double precision are most common. In this setting, the data consists of rounded points
that do not exactly lie on the sphere, but close to it.

Our Contributions. In Section 3.3, we propose two different ways to handle such
rounded data. Both approaches adapt the well-known incremental algorithm [55] to the
case of points on, or close to the sphere. It is important to notice that, even though
data points are rounded, we follow the exact geometric computation paradigm pioneered
by Yap [221]. Indeed, it is now well understood that simply relying on floating-point
arithmetic for algorithms of this type is bound to fail (see [147] for instance).

The first approach (Section 3.3.1) considers as input the projections of the rounded-
data points onto the sphere. Their coordinates are algebraic numbers of degree two. The
approach computes the Delaunay triangulation of these points exactly lying on the sphere.

The second approach (Section 3.3.2) considers circles on the sphere as input. The
radius of a circle (which can alternatively be seen as a weighted point) depends on the
distance of the corresponding point to the sphere. The approach computes the weighted
Delaunay triangulation of these circles on the sphere, also known as the regular triangu-
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lation, which is the dual of the Laguerre Voronoi diagram on the sphere [215] and the
convex hull of the rounded-data points.

These interpretations of rounded data presented in this work are supported by the
space of circles [44, 96] (Section 3.2).

We implemented both approaches, taking advantage of the genericity of Cgal. In
Section 3.4, we present experimental results on very large data-sets, showing the efficiency
of our approaches. We compare our code to software designed for computing Delaunay
triangulations on the sphere, and to convex hull software [138, 179, 3, 2, 4, 184, 115]. The
performance, robustness, and scalability of our approaches express their added value.

3.1 Definitions and Notation

Let us first recall the definition of the regular triangulation in R
2, also known as weighted

Delaunay triangulation. A circle c with center p ∈ R
2 and squared radius r2 is considered

equivalently as a weighted point and is denoted by c = (p, r2). The power product of
c = (p, r2) and c′ = (p′, r′2) is defined as pow(c, c′) = ‖pp′‖2 − r2 − r′2, where ‖pp′‖
denotes the Euclidean distance between p and p′. Circles c and c′ are orthogonal if
and only if pow(c, c′) = 0. If pow(c, c′) > 0 (i.e., the disks defined by c and c′ do not
intersect, or the circles intersect with an angle strictly smaller than π

2
), we say that c and

c′ are suborthogonal. If pow(c, c′) < 0, then we say that c and c′ are superorthogonal ; see
Figure 3.2. Three circles whose centers are not collinear have a unique common orthogonal
circle.

π/2 < π/2 > π/2

Figure 3.2: Power product. From left to right: orthogonal (pow(c, c′) = 0), suborthogonal
(pow(c, c′) > 0), and superorthogonal (pow(c, c′) < 0) circles in R

2.

Let S be a set of circles. Given three circles of S, ci = (pi, r
2
i ), i = 1 . . . 3, whose

centers are not collinear, let T be the triangle whose vertices are the three centers p1,
p2, and p3. We define the orthogonal circle of T as the circle that is orthogonal to the
three circles c1, c2, and c3. T is said to be regular if for any circle c ∈ S, the orthogonal
circle of T and c are not superorthogonal. A regular triangulation RT (S) is a partition
of the convex hull of the centers of the circles of S into regular triangles formed by these
centers; see Figure 3.3 for an example. The dual of the regular triangulation is known as
the power diagram, weighted Voronoi diagram, or Laguerre diagram.

If all radii are equal, then the power test reduces to testing whether a point lies inside,
outside, or on the circle passing through three points; the regular triangulation of the
circles is the Delaunay triangulation DT of their centers.
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Figure 3.3: Regular triangulation. Regular triangulation of a set of circles in the plane
(their power diagram is shown dashed)

More background can be found in [36]. We refer the reader to standard textbooks for
algorithms computing Delaunay and regular triangulations [82, 51].

This definition generalizes in a natural manner to the case of circles lying on a sphere
S in R

3: Angles between circles are measured on the sphere, triangles are drawn on the
sphere, their edges being arcs of great circles. As can be seen in the next section, the
space of circles provides a geometric presentation showing without any computation that
the regular triangulation on S is a convex hull in R

3 [215].
In the sequel, we assume that S is given by its center, having rational coordinates (we

take the origin O without loss of generality), and a rational squared radius R2. This is
also how spheres are represented in Cgal.2

3.2 Space of Circles

Computational geometers are familiar with the classic idea of lifting up sites from the
Euclidean plane onto the unit paraboloid Π in R

3 [37]. We quickly recall the notion

2We mention rational numbers to simplify the presentation. Cgal allows more general number types
that provide field operations: +,−,×, /.
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of space of circles here and refer to the literature for a more detailed presentation [96].
In this lifting, points of R3 are viewed as circles of R2 in the space of circles: A circle
c = (p, r2) in R

2 is mapped by π to the point π(c) = (xp, yp, x
2
p + y2p − r2) ∈ R

3. A point
of R3 lying respectively outside, inside, or on the paraboloid Π represents a circle with
respectively positive, imaginary, or null radius. The circle c in R

2 corresponding to a point
π(c) of R3 outside Π is obtained as the projection onto R

2 of the intersection between Π
and the cone formed by lines through π(c) that are tangent to Π; this intersection is also
the intersection of the polar plane P (c) of π(c) with respect to the quadric Π.

Points lying respectively on, above, below P (c) correspond to circles in R
2 that are

respectively orthogonal, suborthogonal, superorthogonal to c. The predicate pow(c, c′)
introduced above is thus equivalent to the orientation predicate in R

3 that tests whether
the point π(c′) lies on, above or below the plane P (c). If c is the common orthogonal
circle to three input circles c1, c2, and c3 (where ci = (pi, r

2
i ) for each i), then pow(c, c′)

is the orientation predicate of the four points π(c1), π(c2), π(c3), π(c
′) of R

3. It can be
expressed as

sign
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, (3.1)

where zpi = x2
pi
+ y2pi − r2i for each i and z2p′ = x2

p′ + y2p′ − r′2. It allows to relate Delaunay
or regular triangulations in R

2 and convex hulls in R
3 [37], while Voronoi diagrams in R

2

are related to upper envelopes of planes in R
3.

Up to a projective transformation, a sphere in R
3 can be used for the lifting instead

of the usual paraboloid [44]. In this representation the sphere has a pole3 and can be
identified to the Euclidean plane R

2. What we are interested in this chapter is the space
of circles drawn on the sphere S itself, without any pole. This space of circles has a nice
relation to the de Sitter space in Minkowskian geometry [80].

We can still construct the circle c on S that is associated to a point p = πS(c) of
R

3 as the intersection between S and the polar plane PS(p) of p with respect to the
quadric S; see Figure 3.4. Its center is the projection of p onto S and as above, imaginary
radii are possible.4 So, in the determinant in Eq.(3.1), xpi , ypi , and zpi (respectively
xp′ , yp′ , zp′) are precisely the coordinates of the points pi = πS(ci) (respectively p′ = πS(p)).
This is extensively used in Section 3.3. Again, we remark that Delaunay and regular
triangulations on S relate to convex hulls in 3D.

Interestingly, rather than using a convex hull algorithm to obtain the Delaunay or
regular triangulation on the surface as usually done for R2 [37], we do the converse in the
next section.

3.3 Algorithm

The incremental algorithm for computing a regular triangulation of circles on the sphere
S is a direct adaptation of the algorithm in R

2 [55]. Assume that RT i−1 = RT ({cj ∈
S, j = 1, . . . , i− 1}) has been computed.5 The insertion of ci = (pi, r

2
i ) works as follows:

3See the nice treatment of infinity in [44].
4Remember that S is centered at O and has squared radius R2.
5For the sake of simplicity, we assume that the center O of S lies in the convex hull of the data-set.

So, we just initialize the triangulation with four dummy points that contain O in their convex hull.
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S

c
p = πS(c)

O

PS(p)

c1

p1 = πS(c1)

p2 = πS(c2)

c2

Figure 3.4: Power product on the sphere. c1 is suborthogonal to c, c2 is superorthogonal
to c.

• locate pi (i.e., find the triangle t containing pi),
• if t is hiding pi (i.e., if ci and the orthogonal circle of t are suborthogonal) then stop;
pi is not a vertex of RT i. Note that this case never occurs for Delaunay triangulations.
• else (i) find all triangles whose orthogonal circles are superorthogonal to ci and remove
them; this forms a polygonal region that is star-shaped with respect to pi;6 (ii) triangulate
the polygonal region just created by constructing the triangles formed by the boundary
edges of the region and the point pi.

Two main predicates are used by this algorithm:
The orientation predicate allows to check the orientation of three points p, q, and r on
the sphere. (This predicate is used in particular to locate new points.) It is equivalent
to computing the side of the plane defined by O, p, and q on which r is lying, i.e., the
orientation of O, p, q, and r in R

3.
The power test introduced in Section 3.1 boils down to an orientation predicate in R

3,
as seen in Section 3.2. (This predicate is used to identify the triangles whose orthogonal
circles are superorthogonal to each new circle.)

The two approaches briefly presented in the introduction fall into the general frame-
work of computing the regular triangulation of circles on the sphere. The next two sections
precisely show how these predicates are evaluated in each approach.

6As previously noted for the edges of triangles, all usual terms referring to segments are transposed
to arcs of great circles on the sphere.
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3.3.1 First approach: using points on the sphere

In this approach, input points for the computation are chosen to be the projections on S

of the rounded points of the data-set with rational coordinates. The three coordinates of
an input point are thus algebraic numbers of degree two lying in the same extension field
of the rationals.

In this approach weights, or equivalently radii if circles, are null. The power test
consists in this case in answering whether a point s lies inside, outside,7 or on the circle
passing through p, q, and r on the sphere. Following Section 3.2, this is given by the
orientation of p, q, r, and s, since points on the sphere are mapped to themselves by πS.

The difficulty comes from the fact that input points have algebraic coordinates. The
coordinates of two different input points on the sphere are in general lying in different
extensions. Then the 3D orientation predicate of p, q, r, and s given by Eq.(3.1) is the
sign of an expression lying in an algebraic extension of degree 16 over the rationals, of
the form a1

√
α1 + a2

√
α2 + a3

√
α3 + a4

√
α4 where all a’s and α’s are rational. Evaluating

this sign in an exact way allows to follow the exact computation framework ensuring the
robustness of the algorithm.

Though software packages offer exact operations on general algebraic numbers [6, 8],
they are much slower than computing with rational numbers. The sign of the above simple
expression can be computed as follows:
–1– evaluate the signs of A1 = a1

√
α1 + a2

√
α2 and A2 = a3

√
α3 + a4

√
α4, by comparing

ai
√
αi with ai+1

√
αi+1 for i = 1, 3, which reduces after squaring to comparing two rational

numbers,
–2– the result follows if A1 and A2 have the same signs,
–3– otherwise, compare A2

1 with A2
2, which is an easier instance of –1–.

To summarize, the predicate is given by the sign of polynomial expressions in the rational
coordinates of the rounded-data points, which can be computed exactly using rational
numbers only.

3.3.2 Second approach: using weighted points

In this approach, the regular triangulation of the weighted points is computed as described
above. As in the previous approach, both predicates (orientation on the sphere and power
test) reduce to orientation predicates on the data points in R

3. Note that Section 3.2 shows
that the weight of a point p is implicit, as it does not need to be explicitly computed
throughout the entire algorithm.

Depending on the weights, some points can be hidden in a regular triangulation. We
prove now that under some sampling conditions on the rounded data, there is actually no
hidden point.

Lemma 9. Let us assume that all data points lie within a distance δ from S. If the
distance between any two points is larger than 2

√
Rδ, then no point is hidden.

Proof. A point is hidden if and only if it is contained inside the 3D convex hull of the
set of data points S. Let p be a data point, at distance ρ from O. We have ρ ∈ [R −

7On S, the interior (respectively exterior) of a circle c that is not a great circle of S corresponds to the
interior (respectively exterior) of the half-cone in 3D, whose apex is the center of S and that intersects S

along c.
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δ, R + δ]. Denote by dp the minimum distance between p and the other points. If dp >
√

(R + δ)2 − ρ2, the set B(O,R + δ) \ B(p, dp) is included in the half-space H+ = {q :
〈q − p,O − p〉 > 0}. Under these conditions, all other points belong to H+ and p is not
inside the convex hull of the other points. It follows that if the distance between any two
data points is larger than supρ

√

(R + δ)2 − ρ2 = 2
√
Rδ, no point is hidden.

Let us now assume we use double precision floating-point numbers as defined in the
IEEE standard 754 [9, 124]. The mantissa is encoded using 52 bits. Let γ denote the
worst error, for each Cartesian coordinate, done while rounding a point on S to the nearest
point whose coordinates can be represented by double precision floating-point numbers.
Let us use the standard term ulp(x) denoting the gap between the two floating-point
numbers closest to the real value x [169] (also discussed in Section 2.1.3). Assuming again
that the center of S is O, one has γ ≤ ulp(R) ≤ 2−52+⌊log2(R)⌋ ≤ 2−52R. Then, δ in the
previous lemma is such that δ ≤

√

3/4γ < 2−52R. Using the result of the lemma, no point
is hidden in the regular triangulation as soon as the distance between any two points is
greater than 2−25R.

Note that this approach can be used as well to compute the convex hull of points that
are not close to a sphere: The center of the sphere can be chosen at any point inside a
tetrahedron formed by any four non-coplanar data points.

3.4 Implementation and Experiments

Both approaches presented in Section 3.3 have been implemented in C++, based on the
Cgal package that computes triangulations in R

2. The package introduces an infinite
vertex in the triangulation to compactify R

2 (discussed in Section 2.2.2). Thus the un-
derlying combinatorial triangulation is a triangulation of the topological sphere. This
allows us to reuse the whole combinatorial part of Cgal 2D triangulations [180] without
any modification. However, the geometric embedding of Cgal 2D triangulation [223],
bounded to R

2, must be modified by removing any reference to the infinite vertex. A
similar work was done to compute triangulations in the 3D flat torus [61, 62], reusing the
Cgal 3D triangulation package [179] as much as possible.

The genericity offered in Cgal allows the encapsulation of geometric predicates; such
genericity is obtained through the mechanism of traits classes [171]. Traits classes allow
us to easily use exactly the same algorithm for both approaches. We implement two
different traits classes, each one corresponding to a distinct approach; see Figure 3.5.

To display the triangulation and its dual, the code is interfaced with the Cgal 3D
spherical kernel [84, 83], which provides primitives on circular arcs in 3D. The vertices
of the triangulations shown are the projections on the sphere of the rounded-data points.
The circular arcs are drawn on the surface of the sphere; see Figures 3.7, 3.8, and 3.9.

We compare the running time of our approaches with several available software pack-
ages on a MacBook Pro 3,1 equipped with a 2.6 GHz Intel Core 2 processor and 2GB 667
MHz DDR2 SDRAM8; see Figure 3.6. We consider large sets of random data points9 (up
to 223 points) on the sphere, rounded to double coordinates. Figure 3.7 indicates running

8 Further details: MAC OS X version 10.5.7, 64 bits; compiler g++ 4.3.2 with -O3 and -DNDEBUG
flags, g77 3.4.3 with -O3 for Fortran. All running times mentioned exclude time used by input/output.

9generated by CGAL::Random_points_on_sphere_3
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Figure 3.5: Run both approaches with one single algorithm.

times on some real-life data. Each experiment was repeated 30 times, and the average is
taken.

Graph 1st of Figure 3.6 shows the results of our first approach. We coded a traits class
implementing the exact predicates presented in Section 3.3.1, together with semi-static
and dynamic filtering [158]. The non-linear behavior of the running time is due to the
fact that our semi-static filters hardly ever fail for less than 213 points, and almost always
fail for more than 218 points.

Graph 2nd shows the results of the second approach. One of the predefined kernels10 of
Cgal provides us directly with an exact implementation of the predicates, filtered both
semi-statically and dynamically. In our experiments we have observed that no point is
hidden with such distributions, even when the data-set is large, which confirms in practice
the discussion of Section 3.3.2.

The Cgal 3D Delaunay triangulation (graph DT3) [179], with the same Cgal kernel,
also provides this convex hull as a by-product. We insert the center of the sphere to avoid
penalizing this code with too many predicate calls on five cospherical points that would
always cause filters to fail.

For these three approaches, 3D spatial sorting reduces the running time of the location
step of point insertion [88, 60].

If the data points are lying exactly on a sphere, their Delaunay Triangulation can be
extracted from an arrangement of geodesic arcs as computed by the code of Fogel and
Setter [115, 116]. Since it is not the main purpose of their algorithm, the running times
are not comparable: close to 600 seconds for 212 points. Note however that the code is
preliminary and has not been fully optimized yet. No graph is shown.

We consider the following two software packages computing a convex hull in 3D,11 for

10precisely CGAL::Exact_predicates_inexact_constructions_kernel
11The plot does not show the results of the Cgal 3D convex hull package [138] because it is much

slower than all other methods (roughly 500 times slower than Qhull).
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Figure 3.6: Comparative benchmarks. The programs were aborted when their running
time was above 10 minutes (HULL, SUG, QHULL) or in case of failure (STRIPACK).

which the data points are first rounded to points with integer coordinates. Predicates are
evaluated exactly using single precision computations.
Graph HULL corresponds to the code [3] of Clarkson, who uses a randomized incremental
construction [75] with an exact arithmetic on integers [74].
Graph SUG shows the running times of Sugihara’s code in Fortran [2, 215].

Graph QHULL shows the performance of the famous Qhull package of Barber et al. [4]
when computing the 3D convex hull of the points. The option we use handles round-off
errors from floating point arithmetic by merging facets of the convex hull when necessary.
The convex hull of points situated close to the sphere contains in practice all the input
points; see Lemma 9. In this situation QHULL is clearly outperformed by the second
approach. However, QHULL can be about twice faster than our second approach when
almost all the input points are hidden.

Renka computes the triangulation with an algorithm similar to our first approach,
but his software STRIPACK, in Fortran, uses approximate computations in double [184].
Consequently, it performs quite well on random points (better than our implementations
for small random data-sets), but it fails on some data-sets: Using STRIPACK, we did not
manage to compute a triangulation of more than 219 random points (it returns an error
flag). The same occurred for the inputs used to produce Figures 3.7, 3.8, and 3.9. Our
implementations handle arbitrary data sets.

To test for exactness we devised a point set that is especially hard to triangulate
because it yields many very flat triangles in the triangulation. This point set is defined
as
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In Figure 3.8 we show the Delaunay triangulation of S250 and the Voronoi diagram of
S100.

In Table 3.1, we compare the memory usage of our two approaches, the 3D Delaunay
triangulation, and Qhull. The given figures given in bytes per processed vertex (bppv)
and averaged over several data-sets of size larger than 216.
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Figure 3.7: Weather stations. Delaunay triangulation (left) and Voronoi diagram (right)
of 20,950 weather stations all around the world. Data and more information can be found at
http://www.locationidentifiers.org/. Our second approach computes the result in 0.14 sec-
onds, while Qhull needs 0.35 seconds, and the first approach 0.57 seconds. STRIPACK fails on
this data-set.

Approach 1st 2nd DT3 QHULL
Bytes per Vertex 113 113 174 288

Table 3.1: Memory usage. These measurements are done with CGAL::Memory_sizer for
the first approach, second approach and for the 3D Delaunay triangulation. For the Qhull
package the measurement is done with the -Ts option, taking into account the memory
allocated for facets and their normals, neighbor and vertex sets.

3.5 Conclusion

The results show that our second approach yields better timings and memory usage than
all the other tested software packages for large data-sets, while being fully robust. This
justifies a typical phenomenon: The well-designed specialized solution outperforms the
more general one. Here the specialized one is our second approach, and the general one is
the Delaunay triangulation 3D computation from which the 3D convex hull is extracted.

The first approach is slower but still one of the most scalable. It exactly computes the
triangulation for input points with algebraic coordinates lying on the sphere, and thus
ensures that in any case all points appear in the triangulation. It is the only one to do so
within reasonable time and thus being useful for real-world applications.

One important news this chapter brings — and yet, a very intuitive one — is that: (i)
when most of the input points lie on their convex hull, then a two-dimensional structure is
more adequate than a three-dimensional one (for the incremental construction); (ii) in the
converse, then a three-dimensional is more adequate. Although we have not experimented
in higher-dimensions, we think that this same phenomenon repeats; this leads to the
question below.
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Figure 3.8: Hard cases with skinny triangles. Delaunay triangulation of S250 (left),
Voronoi diagram of S100 (right). STRIPACK fails for e.g., n = 1, 500.

3.6 Open Problem

Problem 10. Does modifying the d-dimensional Delaunay triangulation of Boissonnat et
al. [49] in order to handle Regular triangulations, improve the (d+1)-dimensional convex
hull construction when most of the input points are on their convex hull?

We believe that an extension of the first approach to higher dimensions would prob-
ably fail, because the orientation predicate computation cannot be simplified as direct
computations on rationals. However, the second approach does not seem to be highly im-
pacted by the dimension (as long as the dimension remains “reasonably” small); leaving
some hope for future works.

Figure 3.9: Post-offices in France. Delaunay triangulation (left) and Voronoi diagram
(right) of the 9,031 post-offices in France (including Overseas Departments and Territo-
ries).
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Chapter 4

State of the Art: Moving Points on

Triangulations

“As far as the laws of mathematics refer to reality, they are not certain; and as far as
they are certain, they do not refer to reality.” — Albert Einstein.

• P. M. M. de Castro and O. Devillers. State of the Art: Updating Delaunay Triangulations
for Moving Points. Research Report 6665, INRIA, 2008.

Maintaining a triangulation of a set of points is the basis of many applications. In
several of these applications, the point set evolves over time. Thus, the vertices of the
triangulation — defined by input data points — are moving. This happens for instance in
data clustering [136, 30], mesh generation [87], re-meshing [218, 23], mesh smoothing [25],
mesh optimization [24, 216, 67], to name a few.

There are two distinct contexts, when looking at point relocations in a triangulation:
(i) if points move continuously and we want to keep track of all topological changes, we
call such a context a kinetic relocation context [129, 187]; (ii) if we are only interested
in the triangulation at some discrete time stamps, we call such a context a time stamp
relocation context [128, 187].

This chapter briefly describes the state of the art of point relocations in a triangulation,
both in a kinetic relocation context (Section 4.1) and in a time stamp relocation context
(Section 4.2). Section 4.1 focuses on theoretical aspects of point relocations, whereas
Section 4.2 focuses on practical aspects of point relocations. Delaunay triangulations are
emphasized, and several fundamentals described in this chapter are useful in Chapter 5.

4.1 Kinetic Relocation Context

In theory, maintaining a data structure of moving points is classically formalized through
two very important concepts: (i) kinetic data structures [129], and (ii) Davenport-Schinzel
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sequences [18]. The first concept substantiates a data structure where primitives move;
and the second concept can be used to bound the complexity of such data structures.

4.1.1 Davenport-Schinzel Sequences

An (n, s) Davenport-Schinzel sequence, for positive integers n and s, is a sequence of n
distinct symbols with the properties that no two adjacent elements are equal, and that it
does not contain, as a subsequence, any alternations a · · ·b · · ·a · · ·b of length s+2 between
two distinct symbols a and b. Here are some examples of such sequences for n = 5 and
s = 1, 2, 3:

s = 1 → 1, 2, 3, 4, 5

s = 2 → 1, 2, 3, 4, 5, 4, 3, 2, 1

s = 3 → 1, 2, 1, 3, 1, 3, 2, 4, 5, 4, 5, 2, 3

The size of the largest (n, s) Davenport-Schinzel sequence is denoted by λs(n); be-
sides, the ratio between the size of the largest (n, s) Davenport-Schinzel sequence and the
number of symbols is given by βs(n) = λs(n)/n. Bounds for λs(n), for s = 1 and s = 2
are trivial (λ1(n) ≤ n, and λ2(n) ≤ 2n − 1). For s = 3, λ3(n) = O(nα(n)) [135, 150],
where α is the inverse Ackermann function.1 And for any arbitrary positive integer s, the
best bounds up to 2009 are due to Nivasch [174]:2

λs(n) ≤
{

n · 2(1/t!)α(n)t+O(α(n)t−1), s ≥ 4 even;

n · 2(1/t!)α(n)t log2 α(n)+O(α(n)t), s ≥ 3 odd;
(4.1)

where t = ⌊(s − 2)/2⌋. For any constant s, an easier bound (and less tight) is λs(n) =
O(n log n) that is βs(n) = O(log n).

Theorem 11 proved by Hart and Sharir [135] relates Davenport-Schinzel sequences and
the combinatorial structure of lower envelopes of collections of functions; this relationship
plays an important role to bound the complexity of some kinetic data structures, discussed
in Section 4.1.2.

Theorem 11 (Hart and Sharir [135]). Let W be a collection of n partially-defined, con-
tinuous, univariate functions, with at most s intersection points between graphs of any
pair. Then the length of the lower envelope sequence of W is at most λs+2(n).

Figure 4.1 illustrates this relationship with a possible set of line segments and its
corresponding Davenport-Schinzel sequence with s = 3→ 1, 2, 1, 3, 1, 3, 2, 4, 5, 4, 5, 2, 3.

4.1.2 Kinetic Data Structures

To represent continuous motions on a given geometric data structure, one could associate
a function of time to each one of its primitives, which are usually points on the Euclidean
space; such functions are called trajectories. Functions applied on moving points are

1Any known finite quantity q in the universe gives α(q) ≤ 5.
2Nivasch was attributed the best student paper awards of SODA’09 for this work.
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s1
s2

s3

s4 s5

12 34511 2233 4 5
Figure 4.1: Lower envelope of some line segments. Segments s1, s2, s3, s4, s5 give the
Davenport-Schinzel sequence: 1, 2, 1, 3, 1, 3, 2, 4, 5, 4, 5, 2, 3.

consequently a function of time. Namely, when the points move along a trajectory, cer-
tificates become certificate functions of time. The domain of these trajectories is usually
an interval contained in R, which is denoted by timeline.

Without loss of generality, a given certificate is valid while its corresponding certificate
function is non-negative. For continuous trajectories, if a given geometric data structure is
valid, then it is certified to be valid until at least the value of one of its certificate functions
changes sign; this happens, when the current time in the timeline corresponds to one
root of a certificate function. Such changes trigger an event, and an event might trigger
(sometime expensive) updates in the data structure. Updates consist basically in one or
several discrete changes ; the number of such discrete changes is related to the number
of events, which in turn is related to the complexity of the combinatorial structure of
lower envelopes of collections of functions.3 Geometric data structures maintained under
this motion model, which was introduced by Basch et al. in 1997 [40], are called kinetic
data structures. Note that one certificate failure does not necessarily imply an invalid
geometric data structure, unless the chosen set of certificates is minimal.

In the last fifteen years, the scientific community designed, analyzed, and implemented
a variety of kinetic data structures: e.g., kinetic maximum [11], kinetic sorted order
[11, 167], kinetic convex hull [40, 22, 12], kinetic closest pair [40], kinetic collision detection
[211, 149, 39, 10], kinetic triangulations [15, 19, 145], kinetic Delaunay triangulations in
two and three dimensions [20, 187], and kinetic regular triangulations in two and three
dimensions [133, 187].

Primitives are allowed to arbitrarily change their trajectory at any time, as long as
they remain continuous. Such events are called trajectory update. Whenever a trajectory
update occurs, all the certificates involved must be re-solved in order to guarantee the
validity of the structure. We may simplify the continuous trajectories of the primitives to
polynomials, thus each coordinate could be represented by a polynomial of time. Then,
certificate functions are also polynomials of time, and their roots can be handled exactly.

3The Theorem 11 bounds the complexity of the combinatorial structure of such lower envelopes.
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General Algorithm. Assuming: (i) primitives are point in R
d, and (ii) motions are

defined between two time stamps ta, tb, such that −∞ < ta ≤ tb < ∞; for any set E
of certificate functions Ci, the kinetic data structure algorithm (detailed e.g., in Guibas
[129]) can be schematized as follows:

• Input moving points p(t) as trajectory functions defined on the interval [ta, tb].

• For any certificate function Ci ∈ E evaluated on the input, compute a set of discrete
certificate failure times. In other words, the roots rij of the certificate function Ci.

• Insert each root rij ∈ [ta, tb] in a priority queue associated to an event. The head of
the priority queue corresponds to the smallest root inserted.

• Take the first root in the priority queue. Fetch the associated event. Handle it by
updating the geometric data structure, then removing the root from the priority
queue. And so generate new certificate functions.

• When there are no more events, then the algorithm ends.

We distinguish two types of event: internal and external. External events are events
associated with necessary changes in the configuration of the data structure. Internal
events, on the other hand, are events where some certificate fails, but the overall desired
configuration still remains valid (they are essentially an overhead). Roughly speaking,
internal events are dummy events introduced by some certificate; the cause is often the
choice of the set of certificates, which is not minimal.

For a given kinetic data structure finding a good set of certificates is a challenge: A
good set of certificates assures the validity of the data structure and is inexpensive to
maintain.

In general, the scientific community is concerned in providing good kinetic data struc-
tures. Four classical measures to evaluate whether a kinetic data structure is good are:

• Locality: how many certificates depend on each primitive.

• Responsiveness: worst case amount of work required to process a single event.

• Efficiency: the total cost of processing all events over some period.

• Compactness: the total number of certificates needed by the kinetic data structure.

Kinetic data structures performing well on those measures are said to be: local, respon-
sive, efficient, and compact. Basch et al. [41] are the first to our knowledge to formalize
these measures, but recently a stronger version of the formalization has been proposed by
Alexandron et al. [22]:

• Locality: A kinetic data structure is local, if the maximum number of events at any
fixed time in the queue that are associated with a particular primitive is no more
than polylogarithmic in the number of input primitives.

• Responsiveness: A kinetic data structure is responsive, if the processing time of
an event by the repair mechanism is no more than polylogarithmic in the number
of input primitives.
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• Efficiency: A kinetic data structure is efficient, if the ratio between the number of
internal events to the number of external events is no more than polylogarithmic in
the number of input primitives.

• Compactness: A kinetic data structure is compact, if the space used by the data
structure is larger than the number of input primitives by at most a polylogarithmic
factor.

Next, we present some of the kinetic triangulations maintained under this motion
model. The focus is, amongst the four criterion discussed above, the efficiency criterion.

4.1.3 Kinetic Delaunay Triangulations

Among all triangulations of Rd, one of the most interesting is the Delaunay triangulation
under the Euclidean metric. The most efficient kinetic data structure known up to 2010,
to our knowledge, is due to Albers et al. [20], which dates back from 1998.4 This result is
summarized in Theorem 12.

Theorem 12 (Albers et al [20]). Given a finite set S(t) of n moving points describing
polynomial trajectories of bounded degree in R

d, the maximum number of events5 over
time is O(ndλs(n)), where s is a constant depending only on the trajectories.

In the plane,6 whether O(n) Steiner points7 are allowed to be added or not, the best
lower bound up to 2010 is quadratic [16]. Their construction works for any triangulation
in the plane, and hence being a very general result. Theorem 13 summarizes this result.

Theorem 13 (Agarwal et al. [16]). There exists a scenario of n points moving in the
plane at constant speed so that any kinetic triangulation of linear size, with possibly a
linear number of Steiner points, requires Ω(n2) discrete changes over the course of motion.

As we can see, there is a huge gap between the quadratic lower bound and the near
cubic upper bound (in the plane). It is strongly believed that Delaunay triangulations of
moving points under the Euclidean metric in the plane have a near-quadratic maximum
number of discrete changes. And, not only experimental evidences corroborate with this
belief, but also theoretical evidences: Delaunay triangulations of moving points (with
constant velocity) under the L1 or L∞ metric produce O(n2α(n)) discrete changes [71].
Actually, closing this gap is one of the most important open problems in computational
geometry at the present moment [90].8

4The original idea is even older, and comes from Guibas et al. [131] for Delaunay triangulations of
moving points in the plane.

5Such events in the plane lead to an expected O(1) discrete changes.
6Most of the theoretical results related to triangulations in this area until 2010, are about triangulations

in the plane.
7Additional dummy points intended to improve complexity.
8Progress have been recently done in this direction: In the 26th Symposium on Computational Ge-

ometry, Agarwal et al. [17] introduced a subgraph of the Delaunay graph in the plane that undergoes a
nearly quadratic number of discrete changes.
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4.1.4 Kinetic Triangulations

Notorious works have been done to find expected local, responsive, efficient and compact
kinetic triangulations in the plane. The journey starts with: (i) a naive O(n4) kinetic
triangulation; then passes through (ii) a O(n3βs(n)) kinetic Delaunay triangulation (see
Section 4.1.3); through (iii) Agarwal et al.’s O(n7/3) kinetic triangulation [15]; through (iv)
Agarwal et al.’s n22O(

√
logn log logn) hierarchical kinetic triangulation [19]; and finally ends

with (v) a near-quadratic Õ(n2) 9 kinetic triangulation [145] presented in the 26th Sym-
posium on Computational Geometry. (The journey for a near-quadratic kinetic Delaunay
triangulation in the plane keeps on.) We briefly describe three important landmarks of
this journey: kinetic fan triangulations [15], kinetic hierarchical fan triangulations [19],
and kinetic treap-based triangulations [145]. This section is largely borrowed from these
three nice works [15, 19, 145]. (Kinetic Delaunay triangulations in L1, L∞, and polygonal
metrics [71, 72] were known to be near-quadratic before kinetic treap-based triangula-
tions; however formal measures on kinetic data structures [41] were not yet defined at this
time, and only the efficiency criterion was guaranteed.)

Fan triangulation. Let S = {p1, . . . , pn} be a set of n (stationary) points in R
2,

sorted in non-increasing order of their y-coordinates. The fan triangulation of S is con-
structed by sweeping a horizontal line h from y = +∞ to y = −∞. At any time the
algorithm maintains the fan triangulation of points from S that lie above h. It updates
the triangulation when the sweep line crosses a point pi ∈ S by adding the edges pipj
whenever pi sees pj; look at Figure 4.2. The triangulation at the end of the sweep is the
fan triangulation of S.

Figure 4.2: Fan triangulation. Construction of fan triangulation at various stages — the
points denoted by double circle is being inserted, and the thick edges are added (picture taken from

Agarwal et al. [19]).

Kinetic fan triangulations have two distinct types of event:

• Ordering event. It happens when two points are switching orders; i.e., exactly
when two points in S have the same y-coordinates. See Figure 4.3(a).

• Visibility event. It happens when a point is becoming (in)visible; i.e., exactly
when two adjacent edges of the fan triangulation become collinear. See Figure 4.3(b).

Theorem 14 bounds the number of discrete changes for kinetic fan triangulations and
points in linear motion.

9g = Õ(f(n)) means that g = O(f(n) · h(n)), where h(n) is a polynomial of the logarithm of n.
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(a)

(b)

Figure 4.3: Fan triangulation events. (a) ordering event, pi and pj switch order; (b)
visibility event, pipj and pipk become collinear and finally pj sees pk. (Picture taken from Agarwal

et al. [19].)

Theorem 14 (Agarwal et al. [15]). For points in linear motion, the number of discrete
changes to the fan triangulation is bounded by O(n4/3λs(n)), where s is a constant.

Constrained fan triangulation. Later, Agarwal et al. introduced the constrained
fan triangulations [19] as a tool to design more efficient kinetic triangulations. Let Λ be a
set of segments with pariwise-disjoint interiors whose endpoints lie in S. The constrained
fan triangulation of S and Λ is built almost in the same way as the fan triangulation of
S. The only difference is that, during the sweep-line process, points cannot see each other
when a segment of Λ blocks their vision; see Figure 4.4.

A kinetic constrained fan triangulation has another type of event:

• Crossing event. It happens when a point is crossing a segment of Λ; i.e., exactly
when a point is on a segment of Λ.

Hierarchical fan triangulation. Based on constrained fan triangulations, Agarwal
et al. defines hierarchical fan triangulations. Given a set of n points S in the plane,
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Figure 4.4: Constrained fan triangulation. Constructing constrained fan triangulation
with respect to Λ (thick edges) at various stages (picture taken from Agarwal et al. [19]).

the hierarchical fan triangulation [19] constructs random samples ∅ = R0 ⊆ R1 ⊆ R2 ⊆
. . . ⊆ Rh = S, and maintain a set of constrained fan triangulations Fi of Si and Λi, for
i = 1, . . . , h, where Si = Ri and Λi = Fi−1; see Figure 4.5.

Figure 4.5: Hierarchical fan triangulation. A hierarchical fan triangulation with three
levels — points in the first level are denoted by double circles, second level by hollow circles, and
third level by black circles (picture taken from Agarwal et al. [19]).

A kinetic hierarchical fan triangulation has another type of event:

• Hereditary event. It happens when a topological change in Fi propagates changes
in Fj, for j > i, as the insertion and deletion of an edge in Fi affects the visibility
of points in Rj.

If we let h =
⌈

√

log n/ log log n
⌉

be the number of levels of the kinetic hierarchical

fan triangulation, then we have o(n2+ǫ) events; this is summarized in Theorem 15.

Theorem 15 (Agarwal et al. [19]). Let S be a set of n points moving in R
2. If the motion

of S is algebraic, a triangulation of S can be maintained that processes n22O(
√
logn log logn)

events, and each event requires O(log n) time to be processed.
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Note however that this bound is still not Õ(n2). And thus, using the measures in
Section 4.1.2, the kinetic hierarchical fan triangulation is not yet efficient. The kinetic
triangulation described in the sequel, is the first one, to our knowledge, to meet formally
all the criteria.

Treap-based triangulation. Kaplan et al. [145] defines the treap-based triangula-
tion10 as follows: Given a set of points S, assign to each point of S a random priority, and
sort them by their x-coordinates. Then, split S at the point p with the highest priority
into a left portion SL and a right portion SR, compute recursively the upper convex hulls
of SL ∪ {p} and of SR ∪ {p}, and merge them into the upper convex hull of the whole
set S. This process results into a pseudo-triangulation [186] of the portion of the convex
hull of S lying above the x-monotone polygonal chain C(S) connecting the points S in
their x-order. Each pseudo-triangle is x-monotone, and consists of an upper base and
of a left and right lower concave chains, meeting at its bottom apex ; Figure 4.6 depicts
the anatomy of such a pseudo-triangle, whereas Figure 4.7 illustrates a global view of the
recursive steps. A symmetric process is applied to the portion of the hull bellow C(S), by
computing recursively lower convex hulls of the respective subsets of S.

The treap-based triangulation of S is obtained by partitioning each pseudo-triangle τ
into triangles; this is accomplished by: (i) processing each vertex of τ in order, according
to the random priority that they received, and (ii) drawing from each processed vertex v
a chord, within the current sub-pseudo-triangle τ ′ of τ containing v, which split τ ′ into
two sub-pseudo-triangles. This process ends with a triangulation of τ . The treap part of
the treap-based triangulation’s name is due to the fact that the recursive upper-hulls (or
lower-hull) can be represented as a binary search tree on the x-coordinates of the points,
and a heap with respect to the points priorities [145], i.e., a treap [28].

Figure 4.6: Pseudo-triangle of the treap-based triangulation. Elements of a pseudo-
triangle τ and the corresponding upper-hull (picture taken from Kaplan et al. [145]).

Kinetic treap-based triangulations have three distinct type of event:

• Envelope event. It happens when a vertex, which is not an endpoint of bridge(τ),
is being added to or removed from one of the chains bounding τ ; i.e. when one of
the chains L(τ), R(τ) contains three collinear vertices; see Figure 4.8(a).

• Visibility event. It happens when a point of R(τ) and a point of L(τ) ∪ L−(τ)
are not seeing each other anymore, or vice-versa; see Figure 4.8(b).

10Kaplan et al. [145] did not give a name to their triangulation. The name we suggest here is neither
original from Kaplan et al. [145] nor definitive.
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Figure 4.7: Recursive pseudo-triangulation. Recursing on the left and right part of the
pseudo-triangle τ (picture taken from Kaplan et al. [145]).

• Swap event. It happens when some point p not belonging to τ and with higher
priority than the (i) apex, (ii) upper-left point or (iii) upper-right point of τ , is
crossing one of the vertical lines through these points; see Figure 4.8(c).

(a) (b) (c)

Figure 4.8: Kinetic treap-based triangulation events. (a) visibility event; (b) envelope
event. The sub-pseudo-triangle τ0 contains all edges which are inserted to or deleted from the
resulting triangulation of τ . (c) swap event. The funnel of τ immediately before the x-swap
between p and the apex of τ , which causes the vertices p1 and p2 to appear on L(τ), and the
vertices q1, q2, q3 to disappear from R(τ). (Picture taken from Kaplan et al. [145].)

Kaplan et al. [145] proved that the kinetic treap-based triangulation processes an
Õ(n2) number of events, which is the first local, responsive, efficient, and compact kinetic
triangulation (see Section 4.1.2); the efficiency requirement is summarized in Theorem 16.

Theorem 16 (Kaplan et al. [145]). Let S be a set of n points moving in R
2. A trian-

gulation of S can be maintained that processes an expected number of O(n2βs+2(n) log n)
events, each in O(log2 n) expected time, where s is the maximum number of times at which
any single triple of points in S may become collinear.

At this point, we reiterate that bounds on the number of discrete changes discussed
above are expected in the random order of the indices, and not in the worst case.

4.2 Time Stamp Relocation Context

Several applications, such as mesh smoothing, mesh optimization, re-meshing, and some
physical simulations to name a few, can be modeled in terms of time stamp relocations.
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For these applications, standard kinetic data structures tend to be overwhelming in prac-
tice: On one hand, events occurring between two time stamps in a standard kinetic data
structure are often useless in a time stamp relocation context; and on the other hand, the
granularity of two time stamps are often high enough so that triangulation snapshots at
two consecutive time stamps are “reasonably” similar.

Within the time stamp relocation context, a simple method consists in rebuilding the
whole triangulation from scratch at every time stamp. We denote such an approach by
rebuilding . When samples of the output at each timestamp have an expected linear size,
rebuilding can lead to an expected O(kn log(n)) time complexity [93], where n denotes
the number of vertices of the triangulation and k denotes the number of distinct time
stamps. Despite its “poor” theoretical complexity, the rebuilding algorithm turns out to
be surprisingly hard to outperform when most of the points move, as already observed
[187]. Furthermore, rebuilding the triangulation from scratch allows us to use the most
efficient static algorithms: Delaunay triangulation construction from Cgal [223, 179] is an
example of such efficient static algorithms; it sorts the points so as to best preserve point
proximity for efficient localization, and make use of randomized incremental constructions.

There are a number of applications, which require computing the next vertex locations
one by one, updating the Delaunay triangulation after each relocation [24, 216, 217].
Naturally, rebuilding is unsuitable for such applications, since it requires the knowledge of
all the vertex locations at once. Another naive updating algorithm, significantly different
from rebuilding, is the relocation algorithm, which relocates the vertices one by one.
Roughly speaking, the latter consists of iterating over all vertices to be relocated; for
each relocated vertex the algorithm first walks through the triangulation to locate the
simplex containing its new position, inserts a vertex at the new position and removes the
old vertex from the triangulation. And thus, each relocation requires three operations
for each relocated point: (i) one point location, (ii) one insertion, and (iii) one deletion.
When the displacement of a moving point is small enough the point location operation
is usually fast. In favorable configurations with small displacement and constant local
triangulation complexity, the localization, insertion, and deletion operations take constant
time per point. This leads to O(m) complexity per time stamp, where m is the number of
moving points. Such complexity is theoretically better than the O(n log n) complexity of
rebuilding. In practice however, the deletion operation is very costly and hence rebuilding
the whole triangulation is faster when all vertices are relocated; i.e., when m = n.

We recall from Section 2.2.3 that: (i) algorithms which are not able to relocate vertices
one by one are referred to as static; (ii) algorithms relocating vertices one by one are
referred to as dynamic. Advantages of being dynamic include to name a few:

(i) the computational complexity depends mostly on the number of moving points
(which impacts on applications where points eventually stop moving);

(ii) the new location of a moving point can be computed on the fly, which is required
for variational methods [87, 24, 216, 217];

(iii) the references to the memory that the user may have, remain valid (this is not true
for the rebuilding algorithm).

Rebuilding is static while the relocation algorithm is dynamic.



44 State of the Art: Moving Points on Triangulations

Several recent approaches have been proposed to outperform the two naive algorithms
(rebuilding and relocation) in specific circumstances. For example, kinetic data struc-
tures [129] are applicable with a careful choice of vertex trajectories [187]. Some work
has also been done to improve the way kinetic data structures handle degeneracies [12],
when the timeline can be subdivided in time stamps. Approaches based on kinetic data
structures are often dynamic as they can relocate one vertex at a time. Guibas and Russel
consider another approach [128], which consists of the following sequence: (i) remove some
points until the triangulation has a non-overlapping embedding; then (ii) flip [112, 54]
the invalid pairs of adjacent cells until the triangulation is valid (i.e., Delaunay); and
finally (iii) insert back the previously removed points. In this approach, the flipping step
may not work in dimensions higher than two [200]; when that happens rebuilding is trig-
gered, and rebuilds the triangulation from scratch with a huge computational overhead.
For their input data however, such stuck cases do not happen too often, and rebuilding
can be outperformed when considering some heuristics on the order of points to remove.
Although this method can be adopted in a dynamic way, when relocating one vertex at
a time, it loses considerably its efficiency as it is not allowed to use any heuristic any-
more. Shewchuk proposes two elegant algorithms to repair Delaunay triangulations: Star
Splaying and Star Flipping [204]. Both algorithms can be used when flipping do not work,
instead of rebuilding the triangulation from scratch. Finally, for applications that can live
with triangulations that are not necessarily Delaunay at every time stamp (e.g., almost-
Delaunay triangulations upon lazy deletions [87]), some dynamic approaches outperform
dynamic relocation by a factor of three [87]. It is worth mentioning that dynamic algo-
rithms performing nearly as fast as rebuilding are also very well-suited for applications
based on variational methods.

When dynamicity is not required, rebuilding the triangulation at each time stamp is
definitely an option, and performs well in practice. We show here some attempts of the
scientific community to outperform the rebuilding approach on the last years:11 (i) kinetic
data structures within a time stamp relocation context (Section 4.2.1); (ii) static methods
(Section 4.2.2); and (iii) almost-Delaunay structures (Section 4.2.3).

4.2.1 Kinetic Data Structures

Kinetic data structures can be used to update Delaunay triangulations within a time
stamp relocation context as well [187]. Let us first, remind a few points that should be
considered when looking at kinetic data structures: (i) certificate functions, (ii) event
processing, (iii) event generation, and (iv) trajectories.

A valid triangulation in two or three dimensions, with a single extra vertex at infinity
connected to each hull facet [48], can be checked to be Delaunay using the empty-sphere
certificate; the definition of an empty-sphere certificate and its details along with the
vertex at infinity and derived notions can all be found in Section 2.2.

• Two Dimensions. Given a sequence of four points p1(x1, y1), p2(x2, y2), p3(x3, y3),
p4(x4, y4) of a pair of adjacent cells (also denoted by faces in 2D, when there is no
ambiguity), the empty-sphere certificate (also denoted by empty-circle certificate in

11There are some very recent progress in the field, including techniques derived from this work’s con-
tribution in Chapter 5 [224].
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2D) function equation is the determinant of the following matrix:









x1(t) y1(t) x1(t)
2 + y1(t)

2 1

x2(t) y2(t) x2(t)
2 + y2(t)

2 1

x3(t) y3(t) x3(t)
2 + y3(t)

2 1

x4(t) y4(t) x4(t)
2 + y4(t)

2 1









, (4.2)

and, given a sequence of three finite points p1(x1, y1), p2(x2, y2), p3(x3, y3) of a pair
of infinite adjacent cells (also convex hull’s edges in 2D), the empty-circle function
becomes the determinant of the following matrix:





x1(t) y1(t) 1
x2(t) y2(t) 1
x3(t) y3(t) 1



 . (4.3)

• Three Dimensions. The situation is analogous here. Given a sequence of five
points p1(x1, y1, z1), p2(x2, y2, z2), p3(x3, y3, z3), p4(x4, y4, z4), p5(x5, y5, z5) of a pair
of adjacent cells, the empty-sphere certificate function equation is the determinant
of the following matrix:













x1(t) y1(t) z1(t) x1(t)
2 + y1(t)

2 + z1(t)
2 1

x2(t) y2(t) z2(t) x2(t)
2 + y2(t)

2 + z2(t)
2 1

x3(t) y3(t) z3(t) x3(t)
2 + y3(t)

2 + z3(t)
2 1

x4(t) y4(t) z4(t) x4(t)
2 + y4(t)

2 + z4(t)
2 1

x5(t) y5(t) z5(t) x5(t)
2 + y5(t)

2 + z5(t)
2 1













, (4.4)

and, given a sequence of four finite points p1(x1, y1, z1), p2(x2, y2, z2), p3(x3, y3, z3),
p4(x4, y4, z4) of a pair of infinite adjacent cells, the empty-sphere certificate function
becomes the determinant of the following matrix:









x1(t) y1(t) z1(t) 1
x2(t) y2(t) z2(t) 1
x3(t) y3(t) z3(t) 1
x4(t) y4(t) z4(t) 1









. (4.5)

In two dimensions, the intersection of a pair of adjacent faces such that the empty-
circle certificate fails is an edge; such an edge is called a bad edge. Analogously, in three
dimensions, a bad facet is a facet that is the intersection of a pair of adjacent cells such that
the empty-sphere certificate fails. For Delaunay triangulations, an event being processed
means updating its combinatorial structure when required; i.e., repairing its simplices, by
getting rid of the bad edges (or the bad facets in 3D).

In two dimensions, for an embedded triangulation, it is well-known that flipping the
bad edges successively suffices to correctly update the entire combinatorial structure [205];
i.e., make the triangulation Delaunay. Thus, in two dimensions an event can be processed
by simply flipping the bad edge and generating four new certificates each time [187, 20].
However, in three dimensions, it is not known whether flipping is enough to update the
combinatorial structure in this kinetic scenario. (If points do not move continuously,
flipping is not enough [144].) It is common in three dimensions processing events by
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vertex insertion and deletion; Russel’s experiments [187] however, indicates that flipping
works much of the time, and produces six near empty-sphere certificates each time.

Recall that, in the time stamp relocation context, we are considering that points move
discretely at a finite sequence of time stamps. This should be contrasted with kinetic data
structures, where points move continuously. To model a relocation time stamp context
based on a kinetic Delaunay triangulation, for each interval between two time stamps ta
and tb, we need to choose a trajectory for each moving point p(t) of the input set: Such a
trajectory can be any function of time, as long as (i) it is continuous, (ii) starts at p(ta),
and (iii) ends at point p(tb). Next, we look at some interesting choices for the trajectories.

A natural choice for the trajectory is curves parametrized by a polynomial of the time;
such a choice leads to certificate functions that are also polynomials of time, and their
roots can be extracted with some of the available exact algebraic equation solvers [188].
Taking a look at Eq.(4.2) and Eq.(4.4), we notice that using arbitrary polynomials as
interpolant may lead to certificate functions with high degrees. Since, at some point,
we compute roots of certificate functions, some strategy has to be considered to avoid
searching for roots of high-degree polynomials.

Several strategies were proposed by Russel in his PhD Thesis [187]. We present them
here as a small survey. Let T (d) be the time needed for finding roots on a polynomial of
degree d, f the number of cells in the initial triangulation and eη the number of events
which occur when the points are moved to their final position using the strategy η.

• Linear interpolation (LI). Pick a constant velocity motion for each moving point
starting at its initial position and ending at its final position. In other words, allow
x, y, z to change linearly at the same time. The resulting certificates have degree
four in two dimensions and five in three dimensions. The cost to maintain the
structure is then (f + 6eLI)T (5) in three dimensions.

• Lifted Linear interpolation (LLI). Please, have a look at Eq.(4.4), l = xi
2+ yi

2+ zi
2

is the coordinate of (xi, yi, zi) on the lifted space [114]. If the kinetic data structure
can also handle the added complexity of being a kinetic regular triangulation [36],
which is the case of Russel’s [187], then the coordinate on the lifted space can be
interpolated as well, and thus decreasing the degree of the polynomial by one. The
cost to maintain the structure becomes (f + 6eLLI)T (4) in three dimensions.

• Point at a time (PAT). If we manage to vary each row on Eq.(4.4) one at a time,
we get linear polynomials as certificate functions. It corresponds to moving each
point as in LLI, but one after another. Since each certificate must be recomputed
five times in three dimensions, one for each point involved, then the cost becomes
(5f + 6ePAT )T (1).

• Coordinate at a time (CAT). The same idea above can be applied for the coordinates,
by moving each coordinate one at a time. The total number of trajectory changes
becomes four (coordinate l included). Therefore, the cost becomes (4f+6eCAT )T (1).

Russel evaluates the performance of these strategies in several data sets. The data
sets, tables and benchmarks in the rest of this section can be found in Russel’s original
work [187] with more details.
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• From molecular simulations, hairpin and protein A: A short 177 atom beta hair-
pin and Staphyloccocal protein A, a 601 atom globular protein.

• From muscle simulations, bicep: A volumetric data from a simulation of a bicep
contracting. The points move comparatively little between the frames.

• From falling object simulations, falling objects and shifting objects: Those sets
are taken from a simulation of a collection of 1000 objects dropped into a pile.
Initially, the objects fall through the air with occasional contacts, but later in the
simulation they form a dense, although still shifting pile. The two data sets are
related with those two distinct phases of the simulation, and are called falling objects
and shifting objects respectively.

Further details on those data sets are shown in Table 4.1.

name points cells ephemeral cells empty-sphere tests tol. 20% tol.
hairpin 177 1114 2554 7516 8.5 1.5

protein A 601 3943 10250 31430 8.6 1.5
bicep 3438 21376 66553 210039 9.0 1.6

falling objects 1000 6320 17137 52958 12 1.7
shifting objects 1000 6381 17742 55299 13 1.2

Table 4.1: Attributes of the static Delaunay triangulation. Ephemeral cells are
cells created during the construction process which are not in the final triangulation. There were
generally three time as many ephemeral cells as cells in the final triangulation. Their number
gives some idea of the excess work done by the rebuilding process. Tol. is the average fraction of
the local edge length that a point must move so as to invalidate an empty-sphere certificate. The
20% tol. is the fraction of the local average edge length that points need to move to invalidate
20% of the certificates. Very small displacements compared to the edge length can invalidate cells
in a Delaunay triangulation.

Naively implemented, kinetic data structures cannot compete with rebuilding, even
when ignoring exactness issues as it is shown in Table 4.2. The running time is dominated
by the initialization; i.e., generating the costs and solving the certificate function for each
pair of adjacent cells of the initial triangulation.

Nevertheless, the fastest strategy was the coordinate at a time, with point at a time
being almost as fast; the latter actually caused fewer events in general, however its extra
initialization cost made it slightly slower. Both techniques were about a factor of two
more expensive than rebuilding the triangulation.

As mentioned before, even adopting any of the aforementioned strategies, the naive
approach of kinetic data structure performance is far behind rebuilding’s. One way to
reduce the cost of maintaining the combinatorial structure, is to adopt some filtering
techniques. Four layers of filtering were proposed by Russel [187]. Naturally, if none of
the filters succeed, the sign of the roots of the certificate function are computed exactly,
using an exact polynomial equation solver [188].

• Layer 0 (avoiding activation) tries to avoid redundancies by allowing a small set
of vertices to “jump” directly to their final position when no certificate would be
invalidated.
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motion hairpin protein A bicep falling objects shifting objects
linear .04 .03 .04 .06 .06

lifted linear .07 .08 .09 .10 .07
coordinate at a time .50 .62 .39 .48 .54

point at a time .40 .30 .40 .51 .44

Table 4.2: Kinetic Delaunay update costs. Speedups compared to rebuilding and event
counts for different interpolating motions are shown. Note that all algorithms are slower than
rebuilding and so all the costs are smaller than one. The coordinate at a time based methods are
within a factor of two of rebuilding.

• Layer 1 (interval arithmetic) first evaluates the empty-sphere certificate functions
at the current time stamp with interval arithmetic [178, 56], then if 0 is included on
the output interval, evaluates them exactly; this is similar to the arithmetic filtering
presented in Section 2.1.2.

• Layer 2 (using the derivative) uses a lower bound on the derivative of the certificate
function in an attempt to prove that such certificate function does not fail until the
next time stamp.

• Layer 3 (approximate the failure time) uses Newton’s approximation method to
produce an approximation of when a certificate function vanishes; i.e., it finds the
intervals where the roots of the certificate function are contained: the root intervals.
If successful, Layer 3 can prove that the certificate function has no roots in the
interval over which it is being solved, or find an interval that contains the first root.

Table 4.3 indicates the filter failure ratio achieved by each filtering layer.

data set filter 0 filter 1 filter 2 filter 3
good 4% 12% 54% 0%

borderline 68% 29% 6% 2%

Table 4.3: Filter failures. The table shows the failure rates for each level of filters. On
the borderline data, there were many more failures of the early filters, which were caught by the
derivative filter in level two (after the certificate function was generated). The inputs are divided
into good and borderline sets. The former are data sets where the filters (especially filter 0 and
1) perform well and the update procedure works effectively, the latter where they do not work as
well.

After mixing all those ingredients together, the kinetic data structure approach may
be faster than rebuilding, but only when there is far less than 1% bad certificates overall;
this strongly indicates that kinetic data structure is not well-suited within a time stamp
relocation context.

Acar et al. [12] improve the way kinetic data structure works for convex hull in three
dimensions,12 mostly in the case of several triggers of close events in time. They divide

12Convex hulls in three dimensions relate to Delaunay triangulations in two dimensions [57].
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time into a lattice of fixed-size intervals, and process events at the resolution of an interval;
see Figure 4.9. The original idea comes from [13] and the main motivation is to avoid
ordering the roots of polynomials, which is slow when roots are close to each other (because
of the precision required to compare them exactly).

Figure 4.9: Dividing time into a lattice. The lattice and events by time interval (picture

taken from Acar et al. [12]).

4.2.2 Static Techniques

When moving points from a Delaunay triangulation between two discrete time stamps,
there is a family of static techniques that only involves computing certificates on the
initial and final coordinates and directly transforming the initial triangulation into the
final answer. Hence, those techniques are comparatively easier to make them run faster
than their kinetic counterpart. Guibas and Russel [128] came up with a number of such
techniques; they are presented next.

Let (T ,Φ) signify assigning the coordinates of a sequence of points Φ = {pi}ni=0 to
the sequence of vertices Φ = {vi}ni=0 of the triangulation T , and DT (Φ) signify the De-
launay triangulation of the points in Φ.13 Thus, for two sequences of points S and S ′,
the combinatorial structures of the Delaunay triangulation of S and S ′ are equal when
(DT (S), S ′) is also Delaunay; the definition of combinatorial structure can be found in
Section 2.2.1. To verify whether (DT (S), S ′) is Delaunay: (i) check whether all cells are
correctly oriented, then (ii) check whether all pair of adjacent cells have a positive evalu-
ation of the empty-sphere certificate. Whenever (DT (S), S ′) is not Delaunay, one could
remove from S a subsequence of points Ψ one by one, in such a way that (DT (S\Ψ), S ′) is
Delaunay. Then reinsert Ψ on the triangulation. Since (DT (∅), S ′) is trivially Delaunay,
removing Ψ = S suffices to guarantee the correctness of this technique. This kind of
static technique is called point deletion. In order to improve the performance of such a
technique, points could have some sort of score to evaluate the deletion order. A total of
three distinct heuristics to compute the score of points were considered by Guibas and
Russel [128], they are:

• random. Each vertex is given a score of one if it is involved in an invalid certificate,
and zero otherwise; this means picking any points that is involved in an invalid
certificate.

13For short, in this discussion, any Delaunay triangulation of a sequence of points is assumed to
be unique, which is not true in general; however such an issue can be handled by using the symbolic
perturbation method [99] in order to make the Delaunay triangulation unique for any input sequence.
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• worst first. Each vertex is assigned a score based on how many failed certificates it
is involved in.

• geometry. Each vertex is assigned a score based on how much the displacement has
locally distorted the geometry of the point set. Such a heuristic is likely to use more
expensive computations; however it uses not only combinatorial properties of the
sets S and S ′, but geometrical properties as well.

On the aforementioned process, vertex deletion is likely to be called several times on
each iteration; vertex deletion [70, 94, 99] is expensive in both two and three dimensions
(it is much more expensive than insertion). In two dimensions, Chew’s randomized vertex
deletion14 algorithm [70] is a nice option. In three dimensions, one of the most pro-eminent
method so far is Devillers and Teillaud’s [99], which the robustness is guaranteed by the
symbolic perturbation method (implemented in Cgal [179]).

Besides, whenever points are removed and placed anywhere else, many new cells and
facets are created, leading to a significant quantity of certificates generated. On the
other hand, flips can be much cheaper and easier to analyze because of the constant
number of certificates generated: four for two dimensions and six for three dimensions. If
the triangulation is embedded, then, in two dimensions, any triangulation can be made
Delaunay with such flips. In three dimensions, it is not guaranteed; whenever it is not
possible to made a three-dimensional triangulation Delaunay by successive flips, we call
such a case a stuck case. In most of the three-dimensional triangulations that Guibas and
Russel [128] experimented, they could made them Delaunay with successive flips.

With this in mind, an alternative algorithm consists in: (i) removing a set of points Ψ
from S, such that (DT (S\Ψ), S ′) is embedded (defined in Section 2.2.4); then (ii) trying
to use successive flips to finish the conversion to Delaunay. For two-dimensional triangula-
tions, this algorithm works well and fast. Conversely, for three-dimensional triangulations,
removing points can no longer be safely applied in the stuck cases. Moreover, after the
displacements, the triangulation is not necessarily Delaunay anymore and the hole created
by removing a point from a non-Delaunay triangulation in three dimensions may not be
able to be filled with cells [200]. An alternative for the stuck cases consists in: (i) finding
a point incident to a non-Delaunay cell that can be removed from the triangulation, then
(ii) removing it. If even that alternative fails, then the method recomputes the triangula-
tion from scratch. This static technique is called hybrid, and works well in both two and
three dimensions, because, in practice, the stuck cases seem to be rare enough [128].

Benchmarks of those static methods using data sets detailed in Table 4.1 come from the
original work of Russel [187], where more details can be found. From those benchmarks,
amongst the three heuristics above, the worst first heuristic achieved the best running
time, followed closely by the random heuristic. In general, they outperformed rebuilding
when 1-2% of the cells were invalidated by vertex displacements. The fastest method
overall was the hybrid method which could outperform rebuilding when even around 10%
of the cells were invalidated by vertex displacements. Nevertheless, the frequency of stuck
cases was less than 10% per time stamp in average for their data sets. Benchmarks are
detailed in Table 4.4; Guibas and Russel’s attempt to use geometry as a heuristic was
unsuccessful [187], and results are omitted.

14Chew’s algorithm builds the Delaunay triangulation of vertices of a convex polygon, which is equiv-
alent to vertex deletion in a two-dimensional Delaunay triangulation.
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simulation step random worst first hybrid
hairpin 1 .65 .65 1.4

protein A 1 .32 .42 1.5
2 .06 .24 1.1

bicep 1 1.8 2.0 3.1
2 1.3 1.3 2.7
4 .70 .78 2.3
8 .08 .10 .73

falling objects 1 1.4 1.6 3.5
2 1.2 .93 3.5
4 .38 .53 2.0
8 .81 .22 1.4

shifting objects 1 .46 .60 2.2
2 .42 .44 1.2

Table 4.4: Static update performance. The table shows the speedups to patch the trian-
gulation compared to rebuilding and the number of deletions for the presented heuristics. Entries
in boldface are ones which are better than rebuilding (i.e., larger than one).

Guibas and Russel achieve in their experiments a speed-up factor of about three times
on rebuilding for some input data. Moreover, Star Splaying and Star Flipping [204] can
be used when flipping causes a deadlock, instead of rebuilding the triangulation from
scratch. Since, if the points don’t move to far, Star Splaying is linear with respect to the
number of vertices, then if the constants hidden in the big-O notation is not too large,
it has some potential to outperform rebuilding in practice; however, to the best of our
knowledge, no implementation of these methods is currently available.

4.2.3 Almost-Delaunay Structures.

Not every application needs to maintain a Delaunay triangulation at each single time
stamp, but only some “reasonable” triangulation instead. In that case, it may be relevant
to find some significantly cheaper almost-Delaunay scheme. This is specially useful for
surface reconstruction and re-meshing problems: DeCougny and Shephard [86] use an
almost-Delaunay property based on an empty circumsphere criterion in order to accelerate
their surface re-meshing scheme; Debard et al. [87] use an almost-Delaunay property based
on lazy operations to lessen the computation time of their 3D morphing application.

We believe that the work described in [87] illustrates well how the cost of maintaining
deforming surfaces can be reduced with such almost-Delaunay structures. Their morphing
algorithm aims to minimize some energy function, and works as follows:

(1) sample a set of points S from the surface;

(2) discretize the surface by triangulating S (ideally a Delaunay triangulation);

(3) minimize an energy function (e.g., the Gaussian energy [220]) on the cells of the
triangulation.
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Since the third step is hard, Debard et al. use a similar scheme as Meyer et al.’s [166]:
The scheme consists of a simple gradient descent method, where only one point moves at a
time. It is exactly for that task that their algorithm would benefit from a faster Delaunay
triangulation update for moving points. Debard et al. [87] propose a dynamic scheme to
trade quality of mesh for speed of computation, by relaxing the Delaunay condition and
moving points one at a time. Naturally, there is a trade-off between convergence speed
and computation time. The Delaunay condition is relaxed by the means of lazy updates,
which associates a score to each vertex, indicating how strongly its position would violate
the embedding and Delaunay properties after a displacement:

• If the vertex displacement would make a triangulation invalid, its score is incre-
mented by s1.

• If the vertex displacement would make a triangulation non-Delaunay, its score is
incremented by s2.

When the score of a vertex reaches slimit, the vertex is relocated. Experimentally, they
have founded that (s1, s2, slimit) = (2, 1, 4) is a good trade-off between Delaunayness of
the structure and convergence speed. See [87] for further details.

Their benchmark consists of moving three thousand points from a random initial
distribution of points to a well-shaped ellipsoid. The experiment reflects the relative
cost of each certificate on the average: (i) relocating vertices naively, and (ii) using their
almost-Delaunay structure. As shown in Table 4.5, the largest portion of the running-time
is due to the deletion of vertices in both cases. However, the alternative method could
save around half the time due to deletion operations. Still, in both cases, moving points
is the bottleneck of their reconstruction algorithm.

algorithm predicate CPU time (%)
relocation 92.59

remove 74.31
empty-sphere 6.58

insert 2.90
orientation 0.62

locate 0.06
internal 7.41

almost-Delauany 81.15
remove 49.00

empty-sphere 11.59
insert 2.70

orientation 2.06
locate 0.07

internal 18.85

Table 4.5: Benchmarks, taken from the work of Debard et al. [87].

Debard et al. achieve a three time factor speed-up on the naive relocation algorithm.
Their scheme is above twice slower than rebuilding, however it is dynamic.



Chapter 5

A Filtering Scheme for Point

Relocations on Delaunay Triangulations

“To those who ask what the infinitely small quantity in mathematics is, we answer that it
is actually zero. Hence there are not so many mysteries hidden in this concept as they

are usually believed to be.” — Leonhard Euler.

• P. M. M. de Castro, J. Tournois, P. Alliez and O. Devillers. Filtering relocations on a
Delaunay triangulation. In Computer Graphics Forum, 28, pages 1465–1474, 2009. Note:
Special issue for EUROGRAPHICS Symposium on Geometry Processing. (Also available
as: Research Report 6750, INRIA, 2008.)

• P. M. M. de Castro and O. Devillers. Fast Delaunay Triangulation for Converging Point
Relocation Sequences. In Abstracts 25th. European Workshop on Computational Geome-
try, pages 231-234, 2009.

For several applications, points move at some discrete time stamps. And at each time
stamp, it is required to maintain the Delaunay triangulation of those points. This happens
for instance in data clustering [136, 30], mesh generation [87], re-meshing [218, 23], mesh
smoothing [25], mesh optimization [24, 216, 67], to name a few. Moreover, this operation
is often the bottleneck in these applications.

Two naive solutions exist: rebuilding and relocation. Several other solutions exist and
are detailed in Section 4.2.

When all the points move, rebuilding is a very good option in practice. However,
when points move with a small magnitude, or when only a fraction of the vertices move,
rebuilding is no longer the best option. This chapter contributes with a solution specially
designed for these cases.

Our Contributions. We propose to compute for each vertex of the triangulation
a safety zone where the vertex can move without changing its connectivity. This way
each relocation that does not change the connectivity of the triangulation is filtered. We
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show experimentally that this approach is worthwhile for applications where the points
are moving under small perturbations.

Our main contribution takes the form of a dynamic filtering method that maintains,
within a time stamp relocation context, a Delaunay triangulation of points relocating
with small amplitude. The noticeable advantages of the filter are: (i) Simplicity. The
implementation is simple as it relies on well-known dynamic Delaunay triangulation con-
structions [93, 100] with few additional geometric computations; and (ii) Efficiency. Our
filtering approach outperforms in our experiments by at least a factor of four, in two and
three dimensions, the current dynamic relocation approach used in mesh optimization
[216]. It also outperforms the rebuilding algorithm for several conducted experiments.
This opens new perspectives, e.g, in mesh optimization, the number of iterations is shown
to impact the mesh quality under converging schemes. The proposed algorithm enables
the possibility of going further on the number of iterations.

In Section 5.1, we introduce two relevant regions associated with a vertex of a Delaunay
triangulation: (i) the safe region and (ii) the tolerance region of a vertex. Also, we
delineate the relationship between these regions and the connectivity of the triangulation.
Then, in Section 5.2, we present Algorithm 1, which is a filtering algorithm based on the
tolerance region, and the main contribution of this chapter. In Section 5.3, we obtain
some constants for certified vertex tolerance computations. And finally, in Section 5.4, we
present several experiments in both two and three dimensions in order to evaluate how
Algorithm 1 behaves in practice.

5.1 Defining New Regions

We now introduce the notions of safe region and tolerance region of a vertex.

5.1.1 Tolerances

Let the function C : Zm → {−1, 0, 1} be a certificate acting on a m-tuple of points
ζ = (p1, p2, . . . , pm) ∈ Zm, where Z is the space where the points lie. By abuse of
notation, p ∈ ζ means that p is one of the points of ζ, and ζpi is the i-th point in ζ. We
define the tolerance of ζ with respect to C, namely ǫC(ζ) or simply ǫ(ζ) when there is
no ambiguity, the largest displacement applicable to p ∈ ζ without invalidating C. More
precisely, the tolerance, assuming C(ζ) > 0, can be stated as follows:

ǫC(ζ) = inf
ζ′

C(ζ′)≤0

max
i=1...m

‖ζpi − ζ ′pi‖, (5.1)

where ‖.‖ is the Euclidean norm of a vector.
Let X be a finite set of m-tuples of points in Zm. Then, the tolerance of an element

e belonging to one or several m-tuples of X with respect to a given certificate C and to
X , is denoted by ǫC,X (e) (or simply by ǫ(e) when there is no ambiguity) and is defined as
follows:

ǫC,X (e) = inf
ζ∋e
ζ∈X

ǫC(ζ). (5.2)
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5.1.2 Tolerance in a Delaunay Triangulation

Call a pair of adjacent cells a bi-cell, then the tolerance involved in a Delaunay triangu-
lation is the tolerance of the empty-sphere certificate acting on any bi-cell of a Delaunay
triangulation; see Figure 5.1(a). From Eq.(5.1), it corresponds to the size of the smallest
perturbation the bi-cell’s vertices can undergo so as to become cospherical. This is equiv-
alent to compute the hypersphere that minimizes the maximum distance to the d + 2
vertices; i.e., the optimal middle sphere, which is the median sphere of the d-annulus
of minimum width containing the vertices; see Figures 5.1(d) and 5.1(e). An annulus,
defined as the region between two concentric hyperspheres, is a fundamental object in
computational geometry [122].

Dealing with Boundary. When dealing with infinite bi-cells, namely the ones
which include the point at infinity, the d-annulus of minimum width becomes the region
between two parallel hyperplanes. This happens because the hypersphere passing through
∞ reduces to an hyperplane.

In order to precise which are those parallel hyperplanes, we consider two distinct cases
(that coincide in two dimensions):

• If only one cell of the bi-cell is infinite then one hyperplane H1 passes through the
d common vertices of the two cells. The other hyperplane H2 is parallel to H1 and
passes through the unique vertex of the finite cell which is not contained in the
infinite cell; see Figure 5.2(a).

• Otherwise the two vertices which are not shared by each cell form a line L and
the remaining finite vertices are a ridge of the convex hull H (an edge in three
dimensions). Consider the hyperplanes: H1 passing through H and parallel to L;
and H2 passing through L and parallel to H. They compose the boundary of the
d-annulus; see Figure 5.2(b).

5.1.3 Tolerance Regions

Let T be a triangulation lying in R
d and B a bi-cell in T ; see Figure 5.1(a). The interior

facet of B is the common facet of both cells of B; see Figure 5.1(b). The opposite vertices of
B are the remaining two vertices that do not belong to its interior facet; see Figure 5.1(c).
We associate to each bi-cell B an arbitrary hypersphere S denoted by delimiter of B; see
Figure 5.1(e). If the interior facet and opposite vertices of B are respectively inside and
outside the delimiter of B, we say that B verifies the safety condition; we call B a safe
bi-cell. If a vertex p belongs to the interior facet of B, then the safe region of p with
respect to B is the region inside the delimiter; otherwise, the safe region of p with respect
to B is the region outside the delimiter. The intersection of the safe regions of p with
respect to each one of its adjacent bi-cells is called safe region of p. If all bi-cells of T are
safe bi-cells we call T a safe triangulation. When a triangulation is a safe triangulation,
we say that it verifies the safety condition.

It is clear that a safe triangulation implies a Delaunay triangulation as:

• Each delimiter can be shrunk so as to touch the vertices of the interior facet, and
thus defines an empty-sphere passing through the interior facet of its bi-cell (which
proves that the facets belongs to the Delaunay triangulation).
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(a) (b) (c)

(d)
(e)

Figure 5.1: Definitions. (a) A three-dimensional bi-cell, (b) its interior facet and (c) opposite
vertices. (d) The boundaries of its 3-annulus of minimum width; the smallest boundary passing
through the facet vertices and the biggest boundary passing through the opposite vertices. (e)
depicts its standard delimiter separating the facet and opposite vertices.

Then we have the following proposition (the definition of combinatorial structure can
be found in Section 2.2.1):

Proposition 17. Given the combinatorics of a Delaunay triangulation T , if its vertices
move inside their safe regions, then the triangulation obtained while keeping the same
combinatorics as in T in the new embedding remains a Delaunay triangulation.

Proposition 17 is a direct consequence of the implication between safe and Delaunay
triangulations: If the vertices remain inside their safe regions then T remains a safe
triangulation. As a consequence it remains a Delaunay triangulation.



Defining New Regions 57

(a) (b)

Figure 5.2: Infinite bi-cells. The 3-annulus of minimum width of a bi-cell containing: (a)
one infinite cell and one finite cell, (b) two infinite cells.

Note that the safe region of a vertex depends on the choice of the delimiters for each bi-
cell of the triangulation. We denote by tolerance region of p, given a choice of delimiters,
the biggest ball centered at the location of p included in its safe region. More precisely, let
D(B) be the delimiter of a given bi-cell B. Then, for a given vertex p ∈ T , the tolerance
region of p is given by:

ǫ̃(p) = inf
B∋p
B∈T

dist(p,D(B)), (5.3)

where dist is the Euclidean distance between a point and a hypersphere. We have ǫ̃(p) ≤
ǫ(p), since the delimiter generated by the minimum-width d-annulus of the vertices of a
bi-cell B maximizes the minimum distance of the vertices to the delimiter; see Figure 5.3.

Among all possible delimiters of a bi-cell, we define the standard delimiter as the
median hypersphere of the d-annulus with the inner-hypersphere passing through the
interior facet and the outer-hypersphere passing through the opposite vertices. Both me-
dian hypersphere and d-annulus are unique. We call the d-annulus the standard annulus.
If our choice of delimiter for each bi-cell of T is the standard delimiter, then we have
ǫ̃(p) = ǫ(p). Notice that the standard annulus is usually the annulus of minimum width
described in Section 5.1.2 defined by the vertices of B. In pathological cases where the
minimum-width annulus is not the standard annulus, then the standard delimiter is not
safe [122].

Computing the standard annulus of a given bi-cell B requires computing the center of
a d-annulus. This is achieved through finding the line perpendicular to the interior facet
passing through its circumcenter (which corresponds to the intersection of the bisectors of
the vertices of the interior facet of B) and intersecting it with the bisector of the opposite
vertices of B.
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Figure 5.3: Safe region and tolerance region. p ∈ R
2 the center of B. The region A is

the safe region of p, while B is its tolerance region.

5.2 Filtering Relocations

The dynamic relocation algorithm, which relocates one vertex after another, unlike re-
building, can be used when there is no a priori knowledge about the new point locations
of the whole set of vertices. Dynamic approaches are especially useful for algorithms based
on variational methods, such as [87, 24, 216, 217].

In this section, we propose two improvements over the naive relocation algorithm
for the case of small displacements. Finally, we detail two algorithms devised to filter
relocations using the tolerance and safe region of a vertex respectively in a Delaunay
triangulation (see Section 5.1.3). The former being fast and of practical use.

5.2.1 Improving the Relocation Algorithm for Small Displace-
ments

In two dimensions, a modification of the relocation algorithm leads to a substantial accel-
eration: by a factor of two in our experiments. This modification consists of flipping edges
when a vertex displacement does not invert the orientation of any of its adjacent triangles.
The key idea is to avoid as many deletion operations as possible, as they are the most
expensive. In three dimensions, repairing the triangulation is far more involved [204].

A weaker version of this improvement consists of using the relocation algorithm only
when at least one topological modification is needed; otherwise the vertex coordinates
are simply updated. Naturally, this additional computation leads to an overhead, though
our experiments show that it pays off when displacements are small enough. When this
optimization is combined with the first algorithm described in the next section, our ex-
periments show evidence that it is definitely a good option.

5.2.2 Filtering Algorithms

We now redesign the relocation algorithm so as to take into account the tolerance region
of every relocated vertex. The filtering algorithms proposed in this section are capable
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of correctly deciding whether or not a vertex displacement requires an update of the
connectivity so as to trigger the trivial update condition. They are dynamic in the sense
that points can move one by one, like the naive relocation algorithm.

Vertex Tolerance Filtering

• Data structure. Consider a triangulation T , where for each vertex v ∈ T we
associate two point locations: fv and mv. We denote them respectively by the fixed
and the moving position of a vertex. The fixed position is used to fix a reference
position for a moving point; whereas the moving position of a given vertex is its
actual position, and changes at every relocation. Initially, the fixed and moving
positions are equal. We denote by Tf and Tm the embedding of T with respect to
fv and mv respectively. For each vertex, we store two numbers: ǫv and Dv;1 they
represent respectively the tolerance value of v and the distance between fv and mv.

• Pre-computations. We initially compute the Delaunay triangulation T of the
initial set of points S, and for each vertex we set ǫv = ǫ(v) and Dv = 0. For a
given triangulation T , the tolerance of each vertex is computed efficiently by: (i)
computing tolerances of all the bi-cells in T , and (ii) keeping the minimum value
on each vertex.

• Computations. For every vertex displacement, run Algorithm 1.

• Correctness. Algorithm 1 is shown to terminate as each processed vertex v: either
(i) gets a new displacement value Dv ≤ ǫv when the filter succeeds (in line 1); or
(ii) gets a new displacement value Dv = 0 ≤ ǫv when the filter fails (in line 8). In
such a situation, from Proposition 17, Tm is a Delaunay triangulation.

• Complexity. The tolerance algorithm has the same complexity as the relocation
algorithm, given that relocation orders do not alter the complexity of the relocation
algorithm. If all points move, then the amortized number of calls to the relocation
algorithm per vertex is at most 2; this is due to the fact that when a vertex is
relocated with the relocation algorithm, its D value is necessarily set to 0 (in line 8),
and thus it can’t be relocated more than twice: one time due to its displacement,
and a second time due to some other vertex displacement.

Safety Region Filtering

A natural idea is to replace the tolerance test by a more involved test that checks whether
a vertex stays within its safe region. We could also run this safety test in case of failure
of the first test. The modified algorithm can be describe as follows.

• Data structure. Consider a triangulation T , where for each vertex v ∈ T we
associate two points: fv and mv, as in Algorithm 1. For each bi-cell, we associate a
point cB and a value rB > 0,2 representing the center and the radius of its standard
delimiter respectively.

1ǫv and Dv are computed and stored squared for a better performance.
2rB is computed and stored squared for a better performance.
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Algorithm 1 Vertex Tolerance Filtering.

Require: Triangulation T after pre-computations, a vertex v of T and its new location p
Ensure: T updated after the relocation of v
1: (mv, Dv)← (p, ‖fv, p‖)
2: if Dv < ǫv then
3: we are done
4: else
5: insert v in a queue Q
6: while Q is not empty do
7: remove h from the head of Q
8: (fh, ǫh, Dh)← (mh,∞, 0)
9: update T by relocating h with the relocation algorithm optimized for small

displacements, as described in Section 5.2.1
10: for every new created bi-cell B do
11: ǫ′ ← half the width of the standard annulus of B
12: for every vertex w ∈ B do
13: if ǫw > ǫ′ then
14: ǫw ← ǫ′

15: if ǫw < Dw then
16: insert w into Q
17: end if
18: end if
19: end for
20: end for
21: end while
22: end if

• Pre-computations. Compute the Delaunay triangulation T of the initial set of
points, and for each bi-cell compute its standard delimiter.

• Computations. For every vertex displacement, run Algorithm 2.

• Correctness. Correctness is ensured by the same arguments used for the correct-
ness of Algorithm 1.

• Complexity. Similarly to Algorithm 1, the amortized number of calls to the re-
location algorithm per vertex is at most 2. However, the complexity of the safety
test is proportional to the number of bi-cells incident to a vertex, which is in the
worst case O(n); and thus the worst-case complexity of Algorithm 2 is worse than
Algorithm 1. However, in the average case, for several distributions, the number of
bi-cells incident to a vertex is O(1); and in these cases, Algorithm 1 and 2 have the
same complexity.

Back to Vertex Tolerance Filtering

We can expect that while the tolerance algorithm takes a shorter time to verify whether
a point mv is inside its tolerance region, the safe region algorithm accepts (significantly)
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Algorithm 2 Safety Region Filtering.

Require: Triangulation T after pre-computations, a vertex v of T and its new location p
Ensure: T updated after the relocation of v
1: mv ← p
2: if mv is inside the safe region of v then
3: we are done
4: else
5: insert v in a queue Q
6: while Q is not empty do
7: remove h from the head of Q
8: fh ← mh

9: update T by relocating h with the relocation algorithm optimized for small
displacements, as described in Section 5.2.1

10: for every new created bi-cell B do
11: compute and store cB and rB with respect to Tf
12: for every vertex w ∈ B do
13: if mw belongs to the interior facet of B then
14: if ‖mw, cB‖ > rB then
15: insert w into Q
16: end if
17: else
18: if ‖mw, cB‖ < rB then
19: insert w into Q
20: end if
21: end if
22: end for
23: end for
24: end while
25: end if

bigger vertex displacements without calling the relocation algorithm; compare regions
A and B in Figure 5.3. However, the safety test is rather involved and does not save
any computation time in practice, even when using first order approximations. In our
experiments, Algorithm 2 is strictly worse than Algorithm 1, and we dropped it.3

When relocations of the vertices are governed by a convergent scheme, we can run
rebuilding for the first few time stamps until the points are more or less stable, then
switch to the filtering algorithm. As a drawback, the algorithm is no longer dynamic
during the first time stamps. We give more details on this approach in Section 5.4.2.

Another point concerns robustness issues: Computing the tolerance values using
floating-point computations may, in some special configurations, produce rounding er-
rors, and hence wrong evaluation of ǫv. The algorithm ensures that Tf , the embedding
at fixed position, is always correct while the embedding Tm at moving position may be
incorrect. A certified correct Delaunay triangulation for Tm is obtained through a certified

3That bad news is adjourned in purpose; we believe that Algorithm 2 gives an illustration of a recurring
phenomenon we experienced in this work: Some inviting ideas do not work in practice as smoothly as it
seems to do.
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lower bound computation of ǫv (see Section 5.3). As expected, the numerical stability of
ǫv depends on the quality of the simplices. To explain this fact, consider the smallest
angle θ between the line l perpendicular to the interior facet of a bi-cell passing through
its circumcenter and the bisector h of the opposite vertices; see Figure 5.4. The numerical
stability depends on the size of such an angle. For convex bi-cells, if θ is too small, the
two simplices are said to have a bad shape [69]. It is worth saying that the computation
of ǫp is rather stable in the applications that would benefit from filtering, since the shape
of their simplices improves over time.

θ
h

l

Figure 5.4: Numerical stability. If the smallest angle θ between the (d− 2)-dimension flat
h and the line l is too small, the simplices are badly shaped in the sense of being non isotropic.

5.3 Certified Computations

In this section, we show the tolerance of the empty-sphere certificate computations in
two and three dimensions for finite bi-cells. We also show the details on the arithmetic
filtering scheme in order to certify the computations; the notion of arithmetic filtering
can be reviewed in Section 2.1.2. Assume: (i) the inputs are upper-bounded by a power
of 2, represented by L; (ii) τ{z1,...,zk} and α{z1,...,zk} are a bound on the absolute value and
error of the variables z1, . . . , zk respectively. Also, let us use the standard term ulp(x),
and denote µ = ulp(1)/2. (The error bound formulas of +,−,×, /,√ and the definition
of ulp(x) are given in Section 2.1.3.)

/** Given a 2D bi-cell B with vertices

* v_i (x_i, y_i), i = 1, 2, 3, 4,

* compute the squared bi-cell tolerance.

* One circle passes through v_1, v_4;

* and the other through v_2, v_3

*/

1: squared_half_annulus_width(p_1, p_2, p_3, p_4)

2: {

3: /* One bisector */

4: a_1 := 2 * (x_2 - x_4);

5: b_1 := 2 * (y_2 - y_4);

6: c_1 := ((x_4)^2 + (y_4)^2) - ((x_2)^2 + (y_2)^2);

7: /* The other bisector */
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8: a_2 := 2 * (x_1 - x_3);

9: b_2 := 2 * (y_1 - y_3);

10: c_2 := ((x_3)^2 + (y_3)^2) - ((x_1)^2 + (y_1)^2);

11: /* The intersection between them */

12: g := (a_1 * b_2) - (b_1 * a_2);

13: n_x := (b_1 * c_2) - (b_2 * c_1);

14: n_y := (a_2 * c_1) - (a_1 * c_2);

15: /* The coordinates of the center of the annulus */

16: den := 1 / g;

17: x_annulus := n_x * den;

18: y_annulus := n_y * den;

19: /* The smallest annulus squared radius */

20: r_2 := (x_2 - x_annulus)^2 + (y_2 - y_annulus)^2;

21: /* The biggest annulus squared radius */

22: R_2 := (x_3 - x_annulus)^2 + (y_3 - y_annulus)^2;

23: /* The squared in-circle tolerance */

24: w := (r_2 + R_2 - 2 * sqrt(r_2 * R_2))/4;

25: return w;

26:}

These are error bounds for g, nx, and ny:

αg ≤ 128L2µ, α{nx,ny} ≤ 192L3µ.

Computations are detailed in Table 5.1. Since g is a divisor, we need to find an error bound
of its inverse, represented by den, semi-statically with Eq.(2.3). Take U = f(g)−αg, then:

αden ≤
128L2µ

U2
+

(

1

U

)

µ, τden ≤
1

U
.

From the seventeenth line on, pre-computed error bounds become too big (compared with
the tolerances). We use the equations in Section 2.1.3 to dynamically evaluate a tighter
upper bound of the absolute error. Note that bi-cells are from a triangulation which is
supposedly Delaunay, and hence g cannot be 0.

variables τ α
{a1, b1, a2, b2} ≤ 4L ≤ 4Lµ
{c1, c2} ≤ 4L2 ≤ 12L2µ

{g} ≤ 32L2

≤ 4α{a1,...}τ{a1,...} + 4τ 2{a1,...}µ

≤ 64L2µ+ 64L2µ
≤ 128L2µ

{nx, ny} ≤ 32L3

≤ 2(τ{c1,c2}α{a1,...} + τ{a1,...}α{c1,c2}) + 4τ{a1,...}τ{c1,c2}µ
≤ 2(16L3µ+ 48L3µ) + 64L3µ

≤ 192L3µ

Table 5.1: Certified 2D tolerance computation. Error bounds for the computation in
2D of the squared tolerance of a bi-cell.
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/** Given a 3D bi-cell B with vertices

* v_i (x_i, y_i, z_i), i = 1, 2, 3, 4, 5,

* compute the squared bi-cell tolerance.

* One sphere passes through v_1, v_5;

* and the other through v_2, v_3, v_4

*/

1: squared_half_annulus_width(v_1, v_2, v_3, v_4, v_5)

2: {

3: double sa = (x_1)^2 + (y_1)^2 + (z_1)^2;

4: double sb = (x_2)^2 + (y_2)^2 + (z_2)^2;

5: double sc = (x_3)^2 + (y_3)^2 + (z_3)^2;

6: double sd = (x_4)^2 + (y_4)^2 + (z_4)^2;

7: double se = (x_5)^2 + (y_5)^2 + (z_5)^2;

8: /* One bisector */

9: double a_1 = 2*(x_1 - x_5);

10: double b_1 = 2*(y_1 - y_5);

11: double c_1 = 2*(z_1 - z_5);

12: double d_1 = sa - se;

13: /* The second bisector */

14: double a_2 = 2*(x_2 - x_4);

15: double b_2 = 2*(y_2 - y_4);

16: double c_2 = 2*(z_2 - z_4);

17: double d_2 = sb - sd;

18: /* The third bisector */

19: double a_3 = 2*(x_4 - x_3);

20: double b_3 = 2*(y_4 - y_3);

21: double c_3 = 2*(z_4 - z_3);

22: double d_3 = sd - sc;

23: /* The intersection between them */

24: double m01 = a_1*b_2 - a_2*b_1;

25: double m02 = a_1*b_3 - a_3*b_1;

26: double m12 = a_2*b_3 - a_3*b_2;

27: double x01 = b_1*c_2 - b_2*c_1;

28: double x02 = b_1*c_3 - b_3*c_1;

29: double x12 = b_2*c_3 - b_3*c_2;

30: double y01 = c_1*a_2 - c_2*a_1;

31: double y02 = c_1*a_3 - c_3*a_1;

32: double y12 = c_2*a_3 - c_3*a_2;

33: double z01 = a_1*b_2 - a_2*b_1;

34: double z02 = a_1*b_3 - a_3*b_1;

35: double z12 = a_2*b_3 - a_3*b_2;

36: double g = m01*c_3 - m02*c_2 + m12*c_1;

37: double x012 = x01*d_3 - x02*d_2 + x12*d_1;

38: double y012 = y01*d_3 - y02*d_2 + y12*d_1;

39: double z012 = z01*d_3 - z02*d_2 + z12*d_1;

40: double den = 1/g;

41: /* The coordinates of the center of the annulus */
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42: double x_annulus = x012 * den;

43: double y_annulus = y012 * den;

44: double z_annulus = z012 * den;

45: /* The smallest annulus squared radius */

46: r_2 := (x_2 - x_annulus)^2 + (y_2 - y_annulus)^2

+ (z_2 - z_annulus)^2;

47: /* The biggest annulus squared radius */

48: R_2 := (x_1 - x_annulus)^2 + (y_1 - y_annulus)^2

+ (z_1 - z_annulus)^2;

49: /* The squared in-sphere tolerance */

50: w := (r_2 + R_2 - 2 * sqrt(r_2 * R_2))/4;

51: return w;

52:}

These are error bounds for g, x012, y012, and z012:

αg ≤ 384L3µ, α{x012,y012,z012} ≤ 5, 568L4µ.

Computations are detailed in Table 5.2. Again, since g is a divisor, we need to find
an error bound of its inverse, represented by den, semi-statically with Eq.(2.3). Take
U = f(g)− αg, then:

αden ≤
2, 944L3µ

U2
+

(

1

U

)

µ, τden ≤
1

U
.

From forty-second line on, pre-computed error bounds become too big (compared with
the tolerances). We use the equations in Section 2.1.3 to dynamically evaluate a tighter
upper bound of the absolute error. Note that, as in the two-dimensional case, g cannot
be 0.

5.4 Experimental Results

This section investigates through several experiments the size of the vertex tolerances
and the width of the standard annulus in two and three dimensions. We discuss the
performance of the rebuilding, relocation and filtering algorithms on several data sets.

We run our experiments on a Pentium 4 at 2.5 GHz with 1GB of memory, running
Linux (kernel 2.6.23). The compiler used is g++4.1.2; all configurations being com-
piled with -DNDEBUG -O2 flags (release mode with compiler optimizations enabled).
Cgal 3.3.1 [5] is used along with an exact predicate inexact construction kernel [59, 117].
Each experiment was repeated 30 times, and the average is taken.

The initialization costs of the filtering algorithm accounting for less than 0.13% of the
corresponding total running time of the experiments, we consider them as negligible.

5.4.1 Clustering

In several applications such as image compression, quadrature, and cellular biology, to
name a few, the goal is to partition a set of objects into k clusters, following an op-
timization criterion. Usually such criterion is the squared error function. Let S be a



66 A Filtering Scheme for Point Relocations on Delaunay Triangulations

variables τ α

{sa, sb, sc, sd, se} ≤ 3L2 ≤ 8L2µ

{a1, b1, c1, a2,
b2, c2, a3, b3, c3} ≤ 4L ≤ 4Lµ

{d1, d2, d3} ≤ 6L2 ≤ 2α{sa,...} + 2τ{sa,...}µ
≤ 16L2µ+ 6L2µ ≤ 22L2µ

{m01,m02,m12, x01, x02, x12,
y01, y02, y12, z01, z02, z12} ≤ 32L2

≤ 4α{a1,...}τ{a1,...} + 4a1
2µ

≤ 64L2 + 64L2

≤ 128L2µ

{g} ≤ 384L3

≤ 3
(

α{m01,...}τc3 + α{a1, . . .}τ{m01,...}
)

+8τ{a1,...}τ{m01,...}µ
≤ 3(512L3µ+ 128L3µ) + 1, 024L3µ

≤ 2, 944L3µ

{x012, y012, z012} ≤ 576L4

≤ 3
(

α{m01,...}τ{d1,...} + α{d1, . . .}τ{m01,...}
)

+8τ{d1,...}τ{m01,...}µ
≤ 3(768L4µ+ 576L4µ) + 1, 536L4µ

≤ 5, 568L4µ

Table 5.2: Certified 3D tolerance computation. Error bounds for the computation in
3D of the squared tolerance of a bi-cell.

measurable set of objects in Z and P = {Si}k1 a k-partition of S. The squared error
function associated with P is defined as:

k
∑

i=1

∫

Si

dist(p, µi)
2dp, (5.4)

where µi is the centroid of Si and dist is a given distance between two objects in Z.
One relevant algorithm to find such partitions is the k-means algorithm. The most

common form of the algorithm uses the Lloyd iterations [162, 189, 107, 176]. The Lloyd
iterations algorithm starts by partitioning the input domain into k arbitrary initial sets.
It then (i) calculates the centroid of each set and (ii) constructs a new partition by
associating each point to the closest centroid; step (i) followed by step (ii) corresponds
to one Lloyd iteration. The algorithm then successively applies Lloyd iterations until
convergence.

When S = R
d, dist is the Euclidean distance, and ρ a density function4 with a support

in R
d, the Lloyd iterations algorithm becomes as follows: First, compute the Voronoi

diagram of an initial set of k random points following the distribution ρ. Next, each cell
of the Voronoi diagram is integrated so as to compute its center of mass. Finally, each
point is relocated to the centroid of its Voronoi cell. Note that, for each iteration, the
Delaunay triangulation of the points is updated and hence each iteration is considered as
a distinct time stamp.

Under the scheme described above, the convergence of Lloyd iterations is proven for
d = 1 [107]. Although only weaker convergence results are known for d > 1 [189], the Lloyd
iterations algorithm is commonly used for dimensions higher than 1 and experimentally
converges to “good” point configurations.

4The unique purpose of the density function here is to compute centroids.
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We consider in R
2 one uniform density function (ρ1 = 1) as well as three non-uniform

density functions: ρ2 = x2 + y2, ρ3 = x2 and ρ4 = sin2
√

x2 + y2. We apply the Lloyd
iterations to obtain evenly-distributed points in accordance with the above-mentioned
density functions, see Figure 5.5.

The standard annuli widths and tolerances increase up to convergence, while the av-
erage displacement size quickly decreases, see Figure 5.6. In addition, the number of
near-degenerate cases tends to decrease along with the iterations.

(a) Uniform density: ρ = 1

(b) Non-uniform density: ρ = x2 + y2

(c) Non-uniform density: ρ = x2

(d) Non-uniform density: ρ = sin2
(

√

x2 + y2
)

Figure 5.5: Point distribution before and after Lloyd’s iteration. 1, 000 points
are sampled in a disc with (a) uniform density, (b) ρ = x2 + y2, (c) ρ = x2, and (d) ρ =
sin2

√

x2 + y2. The point sets are submitted to 1, 000 Lloyd iterations with their respective density
function. Pictures represent from left to right the 1st, 10th, 100th and 1000th iteration.
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As shown by Figure 5.7 and Table 5.3 the proposed filtering algorithm outperforms
both the relocation and rebuilding algorithms. When we go further on the number of
iterations, filtering becomes several times faster than rebuilding even though being a
dynamic algorithm. It is worth saying that other strategies for accelerating the Lloyd
iterations exist. We can cite, e.g., the Lloyd-Newton method, devised to reduce the
overall number of iterations [105, 106, 161].
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Figure 5.6: Statistics in 2D. Consider a disc with a surface = n. The square root of this
quantity is the unity of distance. The curves depict for 1, 000 Lloyd iterations with ρ = x2:
(a) the evolution of the average displacement size, the average standard annulus width and the
average tolerance of vertices; (b) the distribution of the standard annulus width for iteration 1,
10, 100 and 1, 000.

density rebuilding reloc. filtering

(a) (b) (a/b) (a) (b)
uniform 2.63 2.63 1.00 16.05 40.8
x2 + y2 2.63 2.63 1.00 6.39 12.76

x2 2.70 2.70 1.00 6.05 14.41
sin2

√

x2 + y2 2.63 2.78 1.00 7.42 13.97

Table 5.3: Speedup factors: K-means with Lloyd’s iteration. The numbers listed
represent the speedup factor of each algorithm with respect to the relocation algorithm, for a given
input. Relocation and filtering are dynamic. (a) is the speed-up from the beginning to iteration
1, 000, (b) is the speed-up at last iteration.

5.4.2 Mesh Optimization

To evaluate the filtering algorithm in 3D, we experiment it on an isotropic tetrahedron
mesh generation scheme [217] based on a combination of Delaunay refinement and opti-
mization. We focus on the optimization part of the algorithm, based upon an extension of
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(b) ρ = x2 + y2
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(c) ρ = x2
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(d) ρ = sin2
√

x2 + y2

Figure 5.7: Computation times in 2D. The curves depict the cumulated computation times
for running up to 1,000 Lloyd iterations with: (a) uniform density (ρ = 1); (b) ρ = x2 + y2; (c)
ρ = x2; and (d) ρ = sin2

√

x2 + y2. The filtering algorithm consistently outperforms rebuilding
for every density function. Note how the slope of the filtering algorithm’s curve decreases over
time.

the Optimal Delaunay Triangulation approach [67], denoted by NODT for short. We first
measure how the presented algorithm accelerates the optimization procedure, assuming
that all vertices are relocated. We consider the following meshes:

- SPHERE: Unit sphere with 13, 000 vertices; see Figure 5.8(a).

- MAN: Human body with 8, 000 vertices; see Figure 5.8(b).

- BUNNY: Stanford Bunny with 13, 000 vertices; see Figure 5.8(c).

- HEART: Human heart with 10, 000 vertices; see Figure 5.8(d).

Figure 5.9 shows the MAN mesh model evolving over 1, 000 iterations of NODT op-
timization. (The mesh is chosen intentionally coarse and uniform for better visual de-
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(a) SPHERE (b) MAN

(c) BUNNY (d) HEART

Figure 5.8: Mesh optimization based on Optimal Delaunay Triangulation.(a)
Cut-view on the SPHERE initially and after 1, 000 iterations; (b) MAN initially and after 1, 000
iterations; (c) BUNNY initially and after 1, 000 iterations; (d) HEART initially and after 1, 000
iterations.

piction.) The figure depicts how going from 100 to 1, 000 iterations brings further im-
provements on the mesh quality. (Such improvements are confirmed over distribution of
dihedral angles and over number of remaining slivers [217].) In meshes with variable siz-
ing the improvement typically translates into 15% less leftover slivers. These experiments
explain our will at accelerating every single optimization step.

Experiments in 3D show a good convergence of the average standard annulus width
and average tolerance of vertices for the NODT mesh optimization process. However,
the average tolerance of vertices converges in 3D to a proportionally smaller value than
the average standard annulus width compared with the 2D case; see Figures 5.6(a) and
5.10(a). This is an effect of increasing the dimension and can be explained as follows: The
average number of bi-cells including a given vertex is larger than 60 in three dimensions;
this should be contrasted with the two-dimensional case, which is 12. As explained in
Section 5.1.3, the tolerance of a vertex v is half the minimum of the standard annulus width
of its adjacent bi-cells. In other words, the tolerance of a vertex is proportional to the
minimum value of around 60 distinct standard annulus widths. Figure 5.10(b) quantizes
how the standard deviation of the standard annulus widths in three dimensions is larger
than in two dimensions. Figures 5.11(a) and 5.11(b) show respectively the percentage of
failures and the amount of tolerance updates per failure in two and three dimensions.
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(a) (b) (c)

Figure 5.9: Mesh quality improvement. (a) MAN initially; (b), (c) MAN after 100 and
1, 000 iterations respectively.

The rebuilding algorithm is considerably harder to outperform in three dimensions for
two main reasons: (i) the deletion operation is dramatically slower, and (ii) the number
of bi-cells containing a given point is five times larger than in two dimensions. Never-
theless, the filtering algorithm outperforms rebuilding for most input data considered in
our experiments. In both two and three dimensions, it accelerates when going further on
the number of iterations; see Figure 5.7, Figure 5.12, Table 5.3, and Table 5.4. In three
dimensions, one recurring issue is the persistent quasi-degenerate cases. As the name sug-
gests such cases consist of almost co-spherical configurations of the vertices of a bi-cell
that persist during several iterations; this leads to several consecutive filter failures, which
themselves trigger expensive point relocations. In our experiments, the amount of such
persistent cases are negligible in 2D, but certainly not negligible in 3D; see Figure 5.11(c)
and Figure 5.11(d).

Last but not least, we implemented a small variation of the tolerance algorithm sug-
gested in Section 5.2.2. The latter consists of rebuilding for the first few iterations before
switching to the filtering algorithm. The switching criterion is heuristic. Experimentally,
we found that generally when 75% of the vertices remain inside their tolerance (55% in
three dimensions), the performance of the filtering algorithm is more or less the same as
rebuilding. This percentage can be used as a switching criterion. In our implementation
we sample 40 random vertices at each group of four iterations and compute their toler-
ance. We compare these tolerances with their displacement sizes, and check if at least
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Figure 5.10: Statistics in 3D. Consider a ball with volume = n. The cubic root of this
quantity is the unity of distance. The figures depict 1, 000 iterations of the meshing optimization
process on SPHERE: (a) evolution of the average displacement size, average standard annulus
width and average tolerance of vertices over 1, 000 iterations; (b) distribution of the standard
annulus width for 1, 10, 100 and 1, 000 iterations.

density rebuilding reloc. filtering

(a) (b) (a/b) (a) (b)
SPHERE 5.23 6.11 1.00 7.04 14.45

MAN 8.63 9.83 1.00 9.24 30.57
BUNNY 8.32 8.70 1.00 6.61 7.66
HEART 8.82 10.14 1.00 10.04 20.28

Table 5.4: Speedup factors: NODT. The numbers listed represent the speedup factor of
each algorithm with respect to the relocation algorithm, for a given input. (a) is the speed-up
factor from the beginning to iteration 1, 000, (b) is the speed-up factor at the last iteration.

75% of those vertices have their tolerance larger than their displacement size. In the
positive case, we switch from the rebuilding algorithm to the filtering algorithm. With
this variant of the filtering algorithm, which is not dynamic for the first few iterations,
we obtain an improvement in the running time of 10% in the mesh optimization process
of the HEART model.

Mesh optimization schemes such as NODT [217] are very labor-intensive due to the cost
of computing the new point locations and of moving the vertices. However, as illustrated
by Figure 5.9, a large number of iterations provides us with higher quality meshes. When
optimization is combined with refinement, performing more iterations requires not only
reducing computation time per iteration, but also additional experimental criteria. One
example is the lock procedure which consists of relocating only a fraction of the mesh
vertices [217]. In this approach, the locked vertices are the ones that are incident to
only high quality tetrahedra (in terms of dihedral angles). Each time a vertex move or a
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Figure 5.11: Filter failures and number of tolerance updates. Consider the execution
of the filtering algorithm for: the two-dimensional data set of Lloyd iterations with ρ = x2;
BUNNY and SPHERE. The curves depict the percentage of relocations for which the filter fails
along the iterations, for (a) BUNNY and Lloyd’s iteration with ρ = x2, (c) BUNNY and SPHERE;
the average number of tolerance updates done per filter failure, for (b) BUNNY and Lloyd’s
iteration with ρ = x2, (d) BUNNY and SPHERE. Observe how the complexity is higher for
the three-dimensional cases. Also note how the number of filter failures is higher for BUNNY

compared to SPHERE (around 25% for BUNNY against 16% for SPHERE at the 1000th iteration).

Steiner vertex is inserted into the mesh so as to satisfy user-defined criteria by Delaunay
Refinement (sizing, boundary approximation error, element quality), all impacted vertices
are unlocked. Our experiments show that more and more vertices get locked as the
refinement and optimization procedures go along, until 95% of them are locked. In this
context the dynamic approach is mandatory as the mesh refinement and optimization
procedure may be applied very locally where the user-defined criteria are not yet satisfied.
Note also that the status of each vertex evolves along the iterations as it can be unlocked
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Figure 5.12: Speedup factors: NODT. The figure represents the speedup factor of each
algorithm with respect to the rebuilding algorithm along the iterations, for a given input. Names
with capital letters (e.g., “SPHERE”) in the figure, means the filtering algorithm working in the
respective input data (e.g., SPHERE). The “speedup” of the relocation algorithm with respect to
rebuilding is more or less constant for each input data.

by the relocation of its neighbors. A static approach would slow down the convergence
of the optimization scheme. In this context, accelerating the dynamic relocations makes
it possible to go further on the number of iterations without slowing down the overall
convergence process, so as to produce higher quality meshes.

5.5 Conclusion

We dealt with the problem of updating Delaunay triangulations for moving points in
practice. We introduced the concepts of tolerance region and safe region of a vertex, and
put them at work in a dynamic filtering algorithm that avoids unnecessary insert and
remove operations when relocating the vertices.

We conducted several experiments to showcase the behavior of the algorithm for a
variety of data sets. These experiments showed that the algorithm is particularly suitable
for when the magnitude of the displacement keeps decreasing while the tolerances keep
increasing. Such configurations occur in convergent schemes such as the Lloyd iterations.
For the latter, and in two dimensions, the algorithm presented performs an order of
magnitude faster than rebuilding during the last iterations.
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In three dimensions, and although rebuilding the whole triangulation at each time
stamp can be as faster as our algorithm when all vertices move, our solution is fully
dynamic and outperforms previous dynamic solutions. Such a dynamic property is re-
quired for practical variational mesh generation and optimization techniques. This result
makes it possible to go further on the number of iterations so as to produce higher quality
meshes.

The parallelism being the pillar nowadays for huge speed-ups, it is important to note
that the filtering portion of Algorithm 1 is easily parallelizable. More precisely, (i) checking
whether a point is inside a tolerance region, or (ii) updating tolerance regions, are easily
parallelizable tasks. Combinatorial changes however are not [42]. If points tend to destroy
the Delaunay property at the same specific region, for general geometry, the best practical
algorithms [46, 42] cannot achieve an speed-up factor proportional to the number of
processors.

5.6 Open Problems

Problem 18. Is there in three dimensions a dynamic filtering algorithm which performs
an order of magnitude faster than rebuilding in practice?

Regarding that question, we are rather pessimistic. For several triangulations, even
checking statically their validity is not an order of magnitude faster than just rebuilding
the triangulation. Actually, checking the validity of a triangulation dynamically: i.e for
each vertex v of the triangulation, checking whether the star of v is valid; is slower than
just rebuilding the whole Delaunay triangulation. A better dynamic filtering algorithm
must surpasses ours on the following qualities: (i) tolerance regions should be bigger, (ii)
tolerance regions should be faster to compute, (iii) it should be fast to check whether a
point lies inside a tolerance region, and (iv) tolerance regions should be faster to update.
We have tried without success some approaches:5 (i) Algorithm 1 with the tolerance
region replaced by the largest ball centered at v touching the boundary of the safe region
at d points (instead of one point); (ii) Algorithm 2 with scaled and translated annuli to
adapt to the speed of the displacements; (iii) Algorithm 2; (iv); Algorithm 1 and in case of
failure Algorithm 2 (v) a variation of Algorithm 2 considering first order approximations.
The later being “just” about twice worse than Algorithm 1.

A dynamic algorithm, such as Algorithm 1, has typically a local vision of what is
happening in the input set; whereas a static algorithm has also a global vision. If a
static algorithm is enough for a given application, than some interesting features become
possible. First, usually in physical simulations, the triangulation of the points, up to
isometries, barely changes between two time stamps, whereas the size of the displacements
can be very large (typically during a translation of the input points). While a dynamic
approach can’t take that in consideration, a static one can. The same applies for scales
(e.g., explosion simulation, gravitation simulation) and rotations. Also in a static setting,
instead of looking at a vertex and its star, we can turn our attention to bi-cells and their
tolerances. Such change in paradigm decreases the number of redundant updates that is
required by the dynamic approach.

5Approaches are ordered from the worst to the “not so bad”.
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These new possibilities lead to the following questions:6

Problem 19. Is there in three dimensions a static filtering algorithm that performs an
order of magnitude faster than rebuilding in practice?

Problem 20. Is there a static filtering algorithm that is in some sense invariant to
translations, scales and rotations?

Finally, Algorithm 1 can be seen in a more abstract way, where (i) Delaunay triangula-
tion corresponds to a data structure A (AVL trees, convex hulls, kd-trees, to name a few),
(ii) points correspond to primitives, and (iii) tolerance region of a vertex in a Delaunay
triangulation corresponds to the tolerance region of a primitive with respect to A. In
the same way kinetic data structures have been formalized to support a general kinetic
framework (see Section 4.1.2), we believe that a more general time stamp relocation data
structure supports a general time stamp relocation framework. The measure of quality of
such time stamp relocation data structures is related to: (i) memory, the amount of addi-
tional space the filter requires; (ii) region size, the ratio between the tolerance region and
the biggest region where primitives can move without invalidating the structure, i.e., the
ratio between the false negatives and the total filter failures in average; (iii) update time,
the time to update the structure when a filter failure occurs; (iv) check time, the time to
check whether a point lies inside the tolerance region. We summarize this discussion with
the following question:

Problem 21. Is the Vertex Tolerance Filtering algorithm an instance of a more general
time stamp point relocation framework?

6A very recent work including techniques derived from this work’s contribution, attempts to partially
answer these questions [224].
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Chapter 6

On Some Greedy Spanning Trees

embedded in R
d

“Reductio ad absurdum, which Euclid loved so much, is one of a mathematician’s finest
weapons. It is a far finer gambit than any chess play: a chess player may offer the

sacrifice of a pawn or even a piece, but a mathematician offers the game.” — Godfrey
Harold Hardy.

• P. M. M. de Castro and O. Devillers. On the Asymptotic Growth Rate of Some Spanning
Trees Embedded in R

d. Submitted (accepted), Operation Research Letters, 2010. (Also
available as: Research Report 7179, INRIA, 2010.)

This chapter proposes to review some well-known trees embedded in R
d, and present

new results on the total weight of the Euclidean minimal k-insertion tree (EMITk) and
some stars embedded in R

d. Further than presenting new results on the growth rate of
trees embedded in R

d, this chapter builds some necessary fundamentals for Chapter 8.
A star is a tree having one vertex that is linked to all others, and EMITk is based on

minimal sequential insertions. More precisely, a point q is inserted in EMITk by linking q
to the point p that minimizes f(‖p− q‖) amongst the k previously inserted points. Here,
we are interested in functions f(l) ∼ lα as l → 0. When k ≥ n− 1, EMITk is simply the
minimal insertion tree EMIT defined in [213]. For some well-chosen sequence of n points
EMIT coincides with the Euclidean minimum spanning tree (EMST ) of these points.
EMIT is interesting because: (i) it can be constructed without the a priori knowledge
of the whole sequence of points; (ii) the sum of its weight is sub-linear in n. This is not
true for stars.

6.1 On Trees Embedded in R
d

The tree theory is older than computational geometry itself. Here, we mention some of the
well-known trees (and graphs) [207], which are related with the point location strategies
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Figure 6.1: Trees embedded in R
d.

developed in Chapter 8. Let S = {pi, 1 ≤ i ≤ n} be a set of points in R
d and G = (V,E)

be the complete graph such that the vertex vi ∈ V is embedded on the point pi ∈ S; the
edge eij ∈ E linking two vertices vi and vj is weighted by its Euclidean length ‖pi − pj‖.
We denote the sum of the length of the edges of G by ‖G‖. (G is usually referred to as
the geometric graph of S.)

We review below some well-known trees. Two special kinds of tree get a special name:
(i) a star is a tree having one vertex that is linked to all others; and (ii) a path is a tree
having all vertices of degree 2 but two with degree 1.
EMST. Among all the trees spanning S, a tree with the minimal length is called an
Euclidean minimum spanning tree of S and denoted EMST (S); see Figure 6.1(a). EMST
can be computed with a greedy algorithm at a polynomial complexity.
EMLP. If instead of looking for a tree, we look for a path with minimal length spanning
S, we get the Euclidean minimum length path denoted by EMLP (S); see Figure 6.1(b).
Another related problem is the search for a minimal tour spanning S: the Euclidean
traveling salesman tour, denoted by ETST . Both problems are NP-hard.

Since a complete traversal of the EMST (either prefix, infix or postfix) produces a
tour, and removing an edge of ETST produces a path, we have

‖EMST (S)‖ ≤ ‖EMLP (S)‖ < ‖ETST (S)‖ < 2‖EMST (S)‖ (6.1)

EMIT. Above, subgraphs of G are independent of any ordering of the vertices. Now,
consider that an ordering is given by a permutation σ, vertices are inserted in the order
vσ(1), vσ(2), . . . , vσ(n). We build incrementally a spanning tree Ti for Si = {pσ(j) ∈ S, i ≤ j}
with T1 = {vσ(1)}, Ti = Ti−1 ∪ {vσ(i)vσ(j)} and a fixed k, with 1 ≤ k < n, such that
vσ(i)vσ(j) has the shortest length for any max (1, i− k) ≤ j < i. This tree is called the
Euclidean minimum k-insertion tree, and is denoted by EMITk(S); see Figure 6.1(f).
When k = n− 1, we write EMIT (S); see Figure 6.1(c). ‖EMIT (S)‖ depends on σ and
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for some permutations it coincides with ‖EMST (S)‖. Unlike the previous trees, EMIT
and EMITk do not require points to be known in advance, and hence they are dynamic
structures.
EST. The use of additional vertices usually allows to decrease the length of a tree. Such
additional vertices are called Steiner points and the minimum-length tree with Steiner
points is the Euclidean Steiner tree of S; it is denoted by EST (S); see Figure 6.1(d).
Finding EST is NP-hard.
ESS. A star has one vertex linked to all other vertices. If this vertex is an additional
vertex that does not belong to V , we can choose its position so as to minimize the length
of the star. This point is called the Fermat-Weber point of S and the associated star is
denoted by ESS(S) (Euclidean Steiner star); see Figure 6.1(e).

6.1.1 On the Growth Rate of Trees in R
d.

We present here some results on the length of the above-mentioned structures. We start by
subgraphs independent of an ordering of the vertices. The Beardwood, Halton and Ham-
mersley theorem [43] states that if pi are independent and identically distributed random
variables with compact support, then ‖ETST (S)‖ = O(n1−1/d) with probability 1. By
Eq.(6.1) the same bound is obtained for ‖EMLP (S)‖ and ‖EMST (S)‖. While this result
gives a practical bound on the complexity, they are dependent on probabilistic hypothe-
ses. This was shown to be unnecessary. Steele proves [214] that the complexity of these
graphs remains bounded by O(n1−1/d) even in the worst case.

Consider the length of the path formed by sequentially visiting each vertex in V . This
gives a total length of

∑n
i=2 ‖pi−1pi‖. Let Vσ = {pσ(1), pσ(2), . . . , pσ(n)} be a sequence of n

points made by reordering V with a permutation function σ such that points in Vσ would
appear in sequence on some space-filling curve. Platzman and Bartholdi [181] proved that
in two dimensions the length of the path made by visiting Sσ sequentially is a O(log n)
approximation of ‖ETST (S)‖, and hence

∑n
i=2 ‖pσ(i−1)pσ(i)‖ = O(

√
n log n). One of the

main interests of such heuristic is that σ can be found in O(n log n) time.
Finally, Steele shows that the growth rate of ‖EMIT (S)‖ is as large as the one of

‖EMST (S)‖ [213]; i.e., ‖EMIT (S)‖ = O(n1−1/d).

6.2 A More General Framework: Weighted Distance

Consider now a more generic geometric graph G = (V,E), where the edges eij ∈ E linking
two vertices vi and vj is weighted by ‖pi − pj‖α, the weighted distance of pi and pj, i.e.,
its Euclidean length to the power of α. We denote the sum of the weights of the edges of
G by ‖G‖α (remember that we simply denote ‖G‖ for α = 1). We also refer to ‖G‖α as
the weighted length of G.

Concerning ‖EMST (S)‖α, Steele proves [212] that if pi are independent and identi-
cally distributed random variables with compact support, then ‖EMST (S)‖α = O(n1−α/d)
with probability 1. And, for the extreme case of α = d, Aldous and Steele [21] show that
‖EMST (S)‖d = O(1) if points are evenly distributed in the unit cube. Yukich [222] and
Lee [157] determined the worst-case bounds of ‖EMST (S)‖α when α > 0.

In the next section, we present some new results on ‖EMIT (S)‖ and ‖EMITk(S)‖
within the (more general) scenario described above.
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6.3 New Results on Minimum Insertion Trees

In this section, we study the length of EMIT (S) and EMITk(S), when edges eij are
weighted as an increasing function f(l) ∼ lα as l → 0, with l = ‖eij‖. Naturally, the
combinatorics of EMIT (S) or EMITk(S) is invariant to such edge weights, since f is
increasing, though the weighted length varies. The contributions in this section are three-
fold. First, we extend the result of Steele [213] from α = 1 to α ∈ (0, d), so as to obtain the
following worst-case bound for any sequence of points in the unit cube: ‖EMIT (S)‖α =
O(n1−α/d) (Section 6.3.1); we also generalize this bound for ‖EMITk(S)‖α. Results on
the worst-case growth rate of ‖EMIT (S)‖α works regardless of the shape of the domain
(here, the unit cube): Increasing the size of the cube to include sequence of points lying
outside the unit cube, only affects the constants in the Big-O notation. Second, we
obtain the expected total weight of ‖EMIT (S)‖α and ‖EMITk(S)‖α, when α > 0 and
points are evenly distributed inside the unit ball (Section 6.3.2). Third, we compare the
expected size of stars with fixed center, and also ‖EMIT1(S)‖α, when points are evenly
distributed inside the unit ball (Section 6.3.3).

6.3.1 Worst-Case Growth Rate of EMITk(S)

We extend the result of Steele [213] for ‖EMIT (S)‖α as follows:

Theorem 22. Let S be any sequence of n points in [0, 1]d, then we have that

‖EMST (S)‖α ≤ ‖EMIT (S)‖α ≤ γd,αn
1−α/d,

with d ≥ 2 and 0 < α < d. Where,

γd,α = 1 +
24ddd/2

(2α − 1)(d/α− 1)
.

The proof of Theorem 22 follows the same line as Steele [213], and starts with the
two lemmas below. Given a fixed sequence S = {p1, p2, . . . , pn} of points in R

d, then
we can build a spanning tree for S by sequentially joining pi to the tree formed by
{p1, p2, . . . , pi−1} for 1 < i ≤ n. We join pi to the tree, by adding the edge e linking pi
to p ∈ {p1, p2, . . . , pi−1}, such that p minimizes ‖pi − pj‖α for 1 ≤ j < i. Let wi ∈ R be
defined as follow:

wi = min
1≤j<i

‖pi − pj‖α, (6.2)

then wi is the minimal cost of joining pi to a vertex of a spanning tree of {p1, p2, . . . , pi−1}.
Now, we have that ‖EMIT (S)‖α =

∑

1<i≤n wi.

Lemma 23. If {p1, p2, . . . , pn} ⊂ [0, 1]d and wi = min
1≤j<i

‖pi − pj‖α, for 1 < i ≤ n, d ≥ 2

and 0 < α < d, then for any 0 < λ <∞ we have

∑

λ≤wi<2αλ

w
d/α
i ≤ 8ddd/2. (6.3)

Proof. Let C = {i : λ ≤ wi < 2αλ} and for each i ∈ C let Bi be a ball of radius ri = 1
4
w

1/α
i

with center pi. We argue by contradiction that Bi ∩ Bj = ∅ for all i < j.
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If Bi ∩ Bj 6= ∅, then the bounds ri ≤ 2αλ and rj ≤ 2αλ gives us

‖pi − pj‖ ≤
1

4
(wi

1/α + wj
1/α) < λ1/α. (6.4)

But, by definition of wj we have ‖pi−pj‖α ≥ wj for all i < j, which implies ‖pi−pj‖ ≥ w
1/α
j

for all i < j; and, by the lower bound on the summands in Eq.(6.3) we have λ ≤ wj, which
means λ1/α ≤ wj

1/α, so we also see ‖pi − pj‖ ≥ λ1/α. Since ‖pi − pj‖ ≥ λ1/α contradicts
Eq.(6.4), we have Bi ∩ Bj = ∅.

Now, since all of the balls Bi are disjoint and contained in a sphere with radius 2
√
d,

the sum of their volumes is bounded by the volume of the sphere of radius 2
√
d. Thus, if

ωd denotes the volume of the unit ball in R
d, we have the bound

∑

i∈C
ωdw

d/α
i 4−d ≤ ωd2

ddd/2

from which Eq.(6.3) follows.

Lemma 24. Let Ψ be a positive and non-increasing function on the interval
(

0,
√
d
]

,

then for any 0 < a < b ≤
√
d, with d ≥ 2 and 0 < α < d,

∑

a≤wi≤b

wi
(d/α)+1Ψ(wi) ≤

2α

2α − 1
· 8ddd/2

∫ b

a/2α
Ψ(λ)dλ. (6.5)

Proof. By Lemma 23 we have for any 0 < λ <∞,
∑

a≤wi<b

wi
d/αI(λ ≤ wi < 2αλ) ≤ 8ddd/2,

where

I(λ ≤ wi < 2αλ) = I(
1

2α
wi ≤ λ < wi)

is the indicator function. If we multiply by Ψ(λ) and integrate over [ 1
2α
a, b], we find

∑

a≤wi≤b

wi
(d/α)

∫ wi

wi/2α
Ψ(λ)dλ ≤ 8ddd/2

∫ b

a/2α
Ψ(λ)dλ. (6.6)

Since Ψ is non-increasing, the integrand on the left-hand side of Eq.(6.6) is bounded
from below by Ψ(wi), so Ψ(wi)wi(1 − 1

2α
) ≤

∫ wi

wi/2α
Ψ(λ)dλ, and Eq.(6.5) follows from

Eq(6.6).

Proof of Theorem 22. Divide the set {w2, w3, . . . , wn} in two sets R1 = {wi : wi ≤ n−α/d}
and R2 = {wi : wi > n−α/d}. We have the trivial bound

∑

wi∈R1

wi =
∑

wi≤n−α/d

wi ≤

n · n−α/d = n1−α/d. Now, let [a, b] =
[

n−α/d, dα/2
]

, Ψ(λ) = λ−d/α in Eq.(6.5), then we
have:

∑

wi≥n−α/d

wi ≤
2α

2α − 1
· 8ddd/2(d/α− 1)−1 ·

(

2d−αn1−α/d − d1−α/2
)

.

And hence,
∑

wi∈R2

wi ≤
24ddd/2

(2α − 1)(d/α− 1)
· n1−α/d. Now, we have that

n
∑

i=2

wi =
∑

wi∈R1

wi +
∑

wi∈R2

wi ≤
(

1 +
24ddd/2

(2α − 1)(d/α− 1)

)

· n1−α/d,
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from which Theorem 22 follows. The constant is γd,α = 1 + 24ddd/2

(2α−1)(d/α−1)
.

Naturally, Theorem 22 generalizes for EMITk for 0 < α < d as follows:

Corollary 25. Let S be any sequence of n points in [0, 1]d, then we have that ‖EMITk(S)‖α =
O(n · k−α/d), with d ≥ 2 and 0 < α < d.

6.3.2 Expected Growth Rate of EMITk(S)

Now, we compute a bound on the expected weight of an edge of EMITk(S) for points
evenly distributed in the unit ball B.

Theorem 26. When points are independent and identically distributed random variables
following the uniform distribution inside B, the expected weight E(weight) of an edge of
EMITk(S), with positive α, verifies:

(α/d)B(k + 1, α/d) ≤ E(weight) ≤ 2α(α/d)B(k + 1, α/d), (6.7)

where B(x, y) =
∫ 1

0
λx−1(1− λ)y−1dλ is the Beta function.

To prove Theorem 26, we evaluate the weighted distance between the origin and the
closest amongst k points {p1, p2, . . . , pk} evenly distributed in B. This provides the lower
bound. Then, we find an upper bound on the weighted distance between any point inside
the ball and the closest amongst k points {p1, p2, . . . , pk} evenly distributed in B.

Lemma 27. Let c be a point inside B, Prob (‖p− c‖ ≤ l) = Pc(l) be the probability
that the distance between a point p ∈ B and c is less or equal to l, and Pc,k(l) =
Prob (min1≤j≤k(‖pj − c‖) ≤ l) be the cumulative distribution function of the minimum
distance among k points independent and identically distributed inside B and c, then

Pc,k(l) = 1− (1− Pc(l))
k

Proof.

Pc,k(l) = Prob

(

min
1≤j≤k

(‖pj − c‖) ≤ l

)

= 1− Prob (‖pj − c‖ > l , 1 ≤ j ≤ k)

= 1− Prob (‖p1 − c‖ > l)k = 1− (1− Pc(l))
k .

A direct consequence of Lemma 27 is the following corollary.

Corollary 28. Let PB,k(l) = Prob (min1≤j≤k(‖pj −O‖) ≤ l) be the cumulative distribu-
tion function of the minimum distance among k points independent and identically dis-
tributed following the uniform distribution inside B, and the center of B, then PB,k(l) =
1− (1− ld)k.

Lemma 29. The expected value E (min1≤j≤k ‖pj −O‖α) of the minimum weighted dis-
tance among k points independent and identically distributed following the uniform distri-
bution inside B and the center of B, with positive α, is given by: E (min1≤j≤k ‖pj −O‖α) =
(α/d)B(k + 1, α/d).
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Proof. Using Corollary 28, we have:

E

(

min
1≤j≤k

‖pj −O‖α
)

=

∫ 1

0

lαP ′
B,k(l)dl = kd

∫ 1

0

ld−1+α
(

1− ld
)k−1

dl

= kB(k, 1 + α/d) = (α/d)B(k + 1, α/d).

Now, we shall obtain the upper bound. First we obtain a general expression for the
expected value of min1≤j≤k ‖pj − c‖α. Assume δ(c) = 1 + ‖c−O‖ in what follows.

Lemma 30. The expected value E (min1≤j≤k ‖pj − c‖α) of the minimum weighted distance
among k points independent and identically distributed inside B and c, with positive α, is

given by: E (min1≤j≤k ‖pj − c‖α) =
∫ δ(c)

0
αlα−1(1− Pc(l))

kdl.

Proof. As Pc(0) = 0 and Pc(δ(c)) = 1, integration by parts gives us the following identity:

i ·
∫ δ(c)

0

lαP ′
c(l)P

i−1
c (l)dl = δ(c)α −

∫ δ(c)

0

αlα−1P i
c(l)dl, i > 0. (6.8)

From Lemma 27, we also have the following expression for E (min1≤j≤k ‖pj −O‖α):

E

(

min
1≤j≤k

‖pj − c‖α
)

=

∫ δ(c)

0

klαP ′
c(l)(1− Pc(l))

k−1dl

=
k−1
∑

i=0

(−1)i
(

k − 1

i

)∫ δ(c)

0

klαP ′
c(l)P

i
c(l)dl. (6.9)

Replacing Eq.(6.8) in Eq.(6.9) leads to:

k−1
∑

i=0

(−1)i
(

k − 1

i

)∫ δ(c)

0

klαP ′
c(l)P

i
c(l)dl =

k
∑

i=0

(−1)i
(

k

i

)∫ δ(c)

0

αlα−1P i
c(l)dl

=

∫ δ(c)

0

αlα−1(1− Pc(l))
kdl.

Proof of Theorem 26. Lemma 29 gives us the lower bound in Theorem 26. Now, for a
point c ∈ B, if we take a function Ψ(l) such that Ψ(l) ≤ Pc(l) for 0 ≤ l ≤ δ(c), it upper
bounds the integral in Lemma 30. Take Ψ(l) = (l/δ(c))d, then we have:

E

(

min
1≤j≤k

‖pj − c‖α
)

=

∫ δ(c)

0

αlα−1(1− Pc(l))
kdl

≤
∫ δ(c)

0

αlα−1(1−Ψ(l))kdl

=

∫ δ(c)

0

αlα−1(1− ld/δ(c)d)kdl

= δ(c)α(α/d)B(k + 1, α/d).

And thus, δ(c) = 2 (c on the boundary of B) maximizes the value above. This completes
the proof.
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From Theorem 26, we have that the expected weight wi of the i-th edge of ‖EMIT (S)‖α
for points evenly distributed inside B, is such that

(α/d)B(i+ 1, α/d) ≤ wi ≤ 2α(α/d)B(i+ 1, α/d).

Evaluating for n− 1 gives

(α/d)
n
∑

i=2

B(i, α/d) ≤ ‖EMIT (S)‖α ≤ 2α(α/d)
n
∑

i=2

B(i, α/d).

By using Stirling’s identity B(x, y) ∼ Γ(y)x−y above, the expected growth rate of ‖EMIT (S)‖α,
with points in S evenly distributed in B, is:
• Θ

(

n1−α/d
)

, for 0 < α < d. It is noteworthy that there exists n0 < ∞, such that
for n > n0, ‖EMIT (S)‖α is bounded by (1 + ǫ)Γ(1 + α/d)2αn1−α/d with ǫ as small as we
want. The constant is considerably smaller than in Theorem 22.
• Θ(log n) for α = d. One might contrast this growth rate with the growth rate of

‖EMST (S)‖d in the cube, which is O(1) [21].
• And O(1) for α > d.
Analogously, the expected growth rate of ‖EMITk(S)‖α for points evenly distributed

inside B is:
• Θ

(

n · k−α/d
)

for 0 < α < d.
• Θ(n · log k/k) for α = d.
• And Θ(n/k) for α > d.

6.3.3 Two Stars and a Path

Consider the unit ball B, in this section, we consider the star centered at a given point
c ∈ B and whose leaves are a set S = {pi, 1 ≤ i ≤ n} of n evenly distributed points in
B.1 By addition of the expectation, the expected weighted length of a random edge of
the star is the expected weighted length between c and a random point in B

E(‖p− c‖α, p ∈ B) = lim
n→∞

n
∑

i=1

‖pi − c‖α
n

.

Denote the stars with shortest and largest expected weighted length inside the ball by
S and H as n→∞ respectively. Let E(‖p−O‖α, p ∈ B) and E(‖p−Ω‖α; p ∈ B) be the
expected value of an edge of S and H respectively, then as n → ∞ the size of S and H
becomes arbitrarily close to n ·E(‖p−O‖α, p ∈ B) and n ·E(‖p−Ω‖α; p ∈ B) respectively.

We analyze in the sequel the values of E(‖p−O‖α, p ∈ B) and E(‖p− Ω‖α; p ∈ B).

Theorem 31. When points are independent and identically distributed random variables
following the uniform distribution inside B, the expected weight E(‖p−O‖α; p ∈ B) of an
edge of the star centered at the center of the unit ball, with positive α, is given by:

(

d

d+ α

)

.

1Stars in this section have a fixed center regardless of n.
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Proof. Let Bl be a ball with radius l centered at the origin, we have

E(‖p−O‖α; p ∈ B) =

∫ 1

0

lαProb(p ∈ Bl+dl \ Bl)dl (6.10)

=

∫ 1

0

dld−1+αdl =
d

d+ α
.

Theorem 32. When points are independent and identically distributed random variables
following the uniform distribution inside B, the expected weight E(‖p−Ω‖α; p ∈ B) of an
edge of the star centered at the boundary of the unit ball, with positive α, is given by:

2d+α

(

2d+ α

2d+ 2α

)

B
(

d
2
+ 1

2
, d
2
+ 1

2
+ α

2

)

B
(

d
2
+ 1

2
, 1
2

) ,

where B(x, y) =
∫ 1

0
λx−1(1− λ)y−1dλ is the Beta function.

For the computation of E(‖p− Ω‖α; p ∈ B) we need the following lemma.

Lemma 33. Let Ω be a point on the boundary of the unit ball Bunit, and PH(l) =
Prob(‖p−Ω‖ ≤ l ; p ∈ Bunit) be the cumulative distribution function of distances between
an uniformly distributed random point inside Bunit and Ω, then

PH(l) =
1

B
(

d
2
+ 1

2
, 1
2

)

(

∫ arccos (1−l2/2)

0

sind(λ)dλ+ ld
∫ arccos (l/2)

0

sind(λ)dλ

)

,

where B(x, y) =
∫ 1

0
λx−1(1− λ)y−1dλ is the Beta function.

Proof. If we denote Bl the ball of radius l centered in Ω, the desired probability is clearly
volume(Bl ∩Bunit)/volume(Bunit). Bl ∩Bunit is the union of two spherical caps limited by
the hyperplane x = 1 − l2/2. The volume of the spherical cap formed by crossing a ball
BR with radius R centered at the origin, with the hyperplane x = R− h, for 0 ≤ h ≤ 2R,

is given by Rd π
d−1
2

Γ( d+1
2

)

∫ arccos (R−h
R )

0 sind(λ)dλ. Computing the two volumes and summing

them complete the proof.

Proof of Theorem 32. The theorem follows from:

E(‖p− Ω‖α; p ∈ B)=
∫ 2

0
lαP ′

H(l)dl

=
1

2

∫ 2

0

ld+α
(

1− l2

4

)
d−1
2

dl

B
(

d
2 + 1

2 ,
1
2

) +
1

2

∫ 2

0
2dld−1+α

∫ arccos (l/2)

0
sind(λ)dλ

B
(

d
2 + 1

2 ,
1
2

) dl

The right part of the expression above corresponds exactly to the expected value of lα

where l is the length of a random segment determined by two evenly distributed points
in the unit ball [190]. Its value is given by:

2d+α

(

d

d+ α

)

B
(

d
2
+ 1

2
, d
2
+ 1

2
+ α

2

)

B
(

d
2
+ 1

2
, 1
2

) . (6.11)
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The left part is simplified to obtain the following expression:

2d+αB
(

d
2
+ 1

2
, d
2
+ 1

2
+ α

2

)

B
(

d
2
+ 1

2
, 1
2

) .

Finally, we have E(‖p− Ω‖α; p ∈ B) = 2d+α
(

2d+α
2d+2α

) B( d
2
+ 1

2
, d
2
+ 1

2
+α

2 )
B( d

2
+ 1

2
, 1
2)

.

We may ask now what is the value of the ratio ρ(d, α) between E(‖p−Ω‖α; p ∈ B) and
E(‖p−O‖α; p ∈ B). It is an easy exercise to verify that ρ(1, α) = 2α. In Corollary 34, we
compute lim

d→∞
ρ(d, α).

Corollary 34. The ratio ρ(d, α) = E(‖p−Ω‖α;p∈B)
E(‖p−O‖α;p∈B) when d→∞ is given by 2α/2.

Proof. Computing ρ(d, α) with Theorems 31 and 32 gives:

ρ(d, α) = 2d+α

(

2d+ α

2d

)

B
(

d
2
+ 1

2
, d
2
+ 1

2
+ α

2

)

B
(

d
2
+ 1

2
, 1
2

) (6.12)

Using Stirling’s identities: B(a, b) ∼
√
2πaa−

1
2 bb−

1
2/(a + b)a+b− 1

2 , a, b ≫ 0 and B(a, b) ∼
Γ(b)a−b, a≫ b > 0, we have:

lim
d→∞

ρ(d, α) = lim
d→∞

{

2d+α

(

2d+ α

2d

)

B
(

d
2
+ 1

2
+ α

2
, d
2
+ 1

2

)

B
(

d+1
2
, 1
2

)

}

= lim
d→∞







2d+α
√
2π
(

d
2
+ 1

2

)
d
2
(

d
2
+ 1

2
+ α

2

)
d
2
+α

2

√
π
(

d+ 1 + α
2

)d+ 1
2
+α

2
(

d
2
+ 1

2

)− 1
2







= 2α/2 · lim
d→∞

{

(d+ 1)
d+1
2 (d+ 1 + α)

d+α
2

(d+ 1 + α
2
)
d+1
2 (d+ 1 + α

2
)
d+α
2

}

= 2α/2 · e−α/4 · eα/4 = 2α/2

Let E(‖p − p′‖α; p, p′ ∈ B) be the expected weight of an edge of EMIT1 (a random
path in the unit ball). Then, E(‖p − p′‖α; p, p′ ∈ B) is the expected value of lα, where
l is the length of a random segment determined by two evenly distributed points in the
unit ball. This is given by Eq.(6.11). From Theorem 31, Theorem 32, Corollary 34 and
Eq.(6.11), we obtain the following corollary:

Corollary 35. The ratios:
• E (‖p− p′‖α; p, p′ ∈ B)/E (‖p−O‖α; p ∈ B) is 2α/(1+α/2) when d = 1, and 2α/2 when
d→∞;
• E (‖p− Ω‖α; p ∈ B)/E (‖p− p′‖α; p, p′ ∈ B) = 1 + α/2d.

6.4 Conclusion

In this chapter, we extended the result in Steele [213], providing new results in a more
general framework. We also gave evidence that the worst-case constant in Theorem 22
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(

γd,α = 1 + 24ddd/2

(2α−1)(d/α−1)

)

is rather pessimistic. More precisely, when points are evenly

distributed inside the unit ball the constant is closer to 2α ·Γ(1+α/d) as n→∞. Finally,
we proved the convergence of the shortest and largest expected weighted length stars
inside the unit ball, and we obtained expressions: (i) for their expected weights and (ii)
for the expected ratios between them, and also (iii) between them and EMIT1(S).

6.5 Open Problems

We believe that the results obtained for points uniformly distributed in the unit ball
can be extended for non-uniform distribution as well. More precisely, we think that the
results obtained for uniform distribution can be extended for any bounded distribution
and 0 < α < d, with a similar technic used by Steele in [212].

Problem 36. Can the results obtained for points uniformly distributed in the unit ball
(Section 6.3.2 and 6.3.3) be extended for non-uniform distribution?

Finally, the case where α < 0 is also important and should be explored in future works.

Problem 37. Can the results obtained for points uniformly distributed in the unit ball
(Section 6.3.2 and 6.3.3) be extended for α < 0?
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Chapter 7

State of the Art: Point Location

“Probleme kann man niemals mit derselben Denkweise lösen, durch die sie entstanden
sind.” — Albert Einstein.1

Point location in spatial subdivision is one of the most classical problems in computa-
tional geometry [126]. Given a query point q and a partition of the d-dimensional space
in regions, the problem is to retrieve the region containing q.

In two dimensions, locating a point has been solved in optimal O(n) space and O(log n)
worst-case query time more then a quarter of a century ago both in theory [159, 160] and
in practice [148]. While O(log n) is the best worst-case query time one can guarantee,
it turns out that it is still possible to improve the query time in the average case when
successive queries have some spatial coherence. For instance, spatial coherence occurs
(i) when the queries follow some specific path inside a region, (ii) when a method (e.g., the
Poisson surface reconstruction [146, 64]) uses point dichotomy to find the solution to some
equation, or (iii) in geographic information systems, where the data base contains some
huge geographic area, while the queries lie in some small region of interest. During the
last twenty-five years, computer geometers borrowed from the classical one-dimensional
framework [151, 140] two ways to take the spatial coherence into account in point location
algorithms: (i) using the entropy of the query distribution [32, 142], and (ii) designing
algorithms that have a self-adapting capability, i.e., algorithms that are distribution-
sensitive [143, 91].

Entropy. Entropy-based point location assumes that a distribution on the set of
queries is known. There are some well-known entropy-based point location data struc-
tures in two dimensions: Arya et al. [32] or Iacono [142], both achieve a query time pro-
portional to the entropy of that distribution, linear space, and O(n log n) preprocessing
time. Those algorithms are asymptotically optimal [163]. However, in many applications
the distribution is unknown. Moreover, the distribution of query points can deliberately

1No problem can be solved from the same level of consciousness that created it.
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change over time. Still, it is possible to have a better complexity than the worst-case
optimal if queries are very close to each other.

Distribution sensitiveness. A point location algorithm that adapts to the distri-
bution of the query is called a distribution-sensitive point location algorithm. A few
distribution-sensitive point location algorithms in the plane exist: Iacono and Langer-
man [143] and Demaine et al. [91]. Both achieve a query time that is logarithmic in terms
of the distance between two successive queries for some special distances. However the
space required is above linear, and preprocessing time is above O(n log n).

Walk. Despite the good theoretical query time of the point location algorithms
above, alternative algorithms using simpler data structures are still used by practition-
ers. Amongst these algorithms, walking from a cell to another using the neighborhood
relationships between cells, is a straightforward algorithm which does not need any addi-
tional data structure besides the triangulation [97]. Walking performs well in practice for
Delaunay triangulations, but has a non-optimal complexity [100].

Building on walk. Building on the simplicity of the walk, both the Jump & Walk [168]
and the Delaunay hierarchy [93] improve the complexity while retaining the simplicity of
the data structure. The main idea of these two structures is to find a good starting
point for the walk to reduce the number of visited simplices. In particular, the De-
launay hierarchy guarantees a randomized expected O(log n) worst-case query time for
any Delaunay triangulation in the plane. Furthermore, these methods based on walking
extend well for any finite dimension, which is not true for the aforementioned optimal
algorithms. Under some realistic hypotheses, the Delaunay hierarchy guarantees a ran-
domized expected O(log n) worst-case query time even for Delaunay triangulations in the
d-dimensional space. Delaunay hierarchy is currently implemented as the Fast_location
policy of Cgal [64, 223, 179].

In this chapter, we briefly describe some tiny but representative sampling of all the
point location algorithms since 1973, with Knuth’s “post-office” problem [152], up to now.
We emphasize that this is not intended to be an exhaustive listing of all the existing point
location algorithms. (A comprehensive exposition of point location can be found in [210].)
The aim is to give enough background for Chapter 8.

7.1 Optimal Planar Point Location

During the 70’s and the beginning of the 80’s, one of the most studied questions in
computational geometry was:

“Is it possible to solve the planar point location problem with O(n) space, O(n)
preprocessing time, and O(log n) query time?”

This problem has been solved in 2D. The quest for an answer has an interesting story,
which we succinctly describe here. (The three-dimensional version of this problem is still
an open problem [90].)

To not go very far in the past, let us landmark the “post-office” problem, once men-
tioned by Knuth [152] in 1973, as the starting point of this story. Assume that a set of
post-offices are distributed in the plane, then given the location of a residence (in the
plane), which of the post-offices is the nearest to that residence? This problem is also
known as the nearest neighbor searching problem. Dobkin and Lipton [103], Shamos [196]
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and Dewdney [102], between 1975 and 1977, showed the relationship between this problem
and the Voronoi diagram; i.e., solving the “post-office” problem is equivalent to solving
the following problem: Given a query point q, find the polygon of the Voronoi diagram of
the input points containing q. Which is basically an easier instance of the planar point
location problem.

The problem of computing a Voronoi diagram with O(n) space and O(n log n) time
was already known in 1975 [197], also general subdivision search was already known to
be efficiently reduced to triangular subdivision (triangulation) search [123]. Great part of
the puzzle was solved. Also some close-to-optimal solutions were known: O(log n) query
time with a non optimal memory complexity [103], or O(log2 n) query time and O(n)
memory complexity [196]. However, the first affirmative answer for the optimal planar
point location problem was due to Lipton and Tarjan [159] in 1977, as an application of
their planar separator theorem [159, 160]. The first solution with an implementation is
due to Kirkpatrick [148] in 1983.2

Kirkpatrick’s Hierarchy. This is the first theoretically optimal and reasonably prac-
tical solution of the planar point location problem. As mentioned, a general planar point
location problem can be reduced to a point location problem in a triangulation within
O(n log n) time [123] (or even in linear time [65]). Let T be an arbitrary triangulation
with n vertices. A triangulation hierarchy associated with T is a sequence T1, . . . , Th of
triangulations, where T1 = T and each region R of Ti+1 is linked to each region R′ of Ti
such that R′ ∩R 6= ∅, for 1 ≤ i < h.

Kirkpatrick proved that there exist constants c1 and c2 such that for any triangulation
T with n vertices, a triangulation T ′ can be constructed in O(n) time, satisfying: (i)
the number of vertices in T ′ is less or equal to n · (1 − 1/c1); (ii) each triangle of T ′

overlaps at most c2 triangles in T . Therefore, it is possible to produce a triangulation
hierarchy with h = O(log n) and O(n) space, such that, for any query point q, at most
O(1) operations per level in the hierarchy are necessary to find the triangle containing q;
this is summarized in Theorem 38 and illustrated in Figure 7.1.

Theorem 38 (Kirkpatrick [148]). There is an O(log n) search time, O(n) space and O(n)
preprocessing time algorithm for the triangular subdivision search problem.

(a) level 1 (b) level 2 (c) level 3 (d) level 4 (e) level 5

Figure 7.1: Kirkpatrick’s hierarchy. An example with five levels of the Kirkpatrick’s hi-
erarchy; the first level is T (left), and the last level is made of one single triangle (right). The
green points are the vertices removed from Ti−1 to form Ti, and the blue edges are the new edges
of Ti.

2[148] was published in 1983, but Kirkpatrick actually published a technical report two years before.
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Other elegant but not so simple solutions came later in 1986 [191, 113, 77], e.g., with
an application of the so-called persistent search trees of Sarnak and Tarjan [191]. But
Kirkpatrick’s solution put an end on what we can call: “the first steps of the planar point
location problem”. Simple and practical solutions for some special subdivisions such as
the Delaunay triangulation of a set of points following some particular distributions were
already known before 1986 [164]. However, substantially simple and practical solutions
for the optimal point location problem for any subdivision in the plane came later in
the beginning of the 90’s, and are based on randomization.3 The first randomized point
location algorithms are due to Mulmuley [170], Seidel [195], and Boissonnat et al. [50]
with a trapezoidal map of the subdivision edges. The method is based on inserting the
line segments of the subdivision on a random order and maintaining a trapezoidal map of
these segments; see Figure 7.2. The point location data structure that results is simply a
directed acyclic graph, denoted by history graph, that records the history of the various
changes to the structure. For a fixed query point, the expected search involves at most
5 log n+ O(1) comparisons in expectation; the expectation is taken over all random per-
mutations of the segments. The lowest constant factor of the log expression of the query
time was found by Adamy and Seidel [14], who showed that point location queries can be
answered in log2 n+ 2

√

log2 n+ o
(√

log2 n
)

.

Figure 7.2: Trapezoidal map. Trapezoidal map of several segments.

7.2 Better Than Worst-Case Optimal

In Section 7.1, we mentioned several algorithms that are worst-case optimal for the planar
point location problem. It turns out though, that it is still possible to improve the com-
plexity taking into account the query distribution. Two approaches have been successful
in this task: (i) entropy-based point location, (ii) distribution-sensitive point location.
We slightly detail each one in what follows.

7.2.1 Entropy-based point location

Suppose we are given a planar subdivision K and a probability distribution on the set
of queries. More precisely, assume that for each cell s ∈ K, ps = Prob (q ∈ s) is the

3Clarkson and Shor [76] pioneered the use of randomization in computation geometry.



Better Than Worst-Case Optimal 95

probability that a query point lies in s.4 Then the entropy of K, denoted by H, is defined
as:

entropy(K) = H =
∑

s∈K
ps log(1/ps). (7.1)

It is possible to design algorithms depending on H instead of n. And H might be o(log n),
e.g., H is O(1) if query points are located in a constant number of cells. However, for the
easier one-dimensional point location problem, it is well-known that any algorithm based
on comparisons cannot do better than H;5 see Knuth [152] or Shannon [198].

For subdivisions composed of polygons of constant number of sides (such as a trian-
gulation), the scientific community has produced several algorithms whose time bounds
depend only on H. Arya et al. [31] show a data structure with O(n log∗ n) space, which
answers query in H + O(H2/3 + 1) expected time. This data structure was improved
later [33] to O(n) space and H+O(H1/2+1) expected query time. Other data structures
achieving O(H) query time, exist: e.g Iacono [141, 142]. All these algorithms are rather
involved. Finally in 2007, Arya et al. presented a randomized data structure, which is rea-
sonably simple and answers a query in expected (5ln2)H +O(1) and O(n) space, using a
weighted trapezoidal map [32]; this is summarized in Theorem 39. A weighted trapezoidal
map is basically a trapezoidal map that inserts the segments in a specific order depending
on the probability that a query lies on a given cell, instead of the classical random order;
intuitively, the segments that bound cells of high probability should be added early in the
process, since then any query that falls within this cell will have its location resolved near
the root of the history graph.

Theorem 39 (Arya et al [32]). Consider a polygonal subdivision K of size n, consisting
of cells with constant number of sides, and a query distribution presented as a weighted
assignment to the cells of K. In time O(n log n) it is possible to construct a structure
of space O(n) that can answer point-location queries in expected time O(H + 1). If S
is presented as a trapezoidal map, then the expected search time is (5ln2)H + O(1). All
bounds hold in expectation over random choices made by the algorithm.

For subdivisions composed of polygons of variable number of sides, there is no data
structure with better complexity than the worst-case optimal. Arya et al. [33] show that
even for the restricted case in which the subdivision consists of a single convex n-gon, there
exists a query distribution such that no point-location algorithm based on the orientation
predicate6 can achieve an expected query time that is solely a function of entropy.

7.2.2 Distribution-sensitive point location.

Entropy-based point location assumes that a distribution on the set of queries is known.
However, in many applications this is not true. Moreover, the distribution of query
points can deliberately change over time. Still, we want to have a better complexity
than the worst-case optimal if queries are very close to each other. A point location
algorithm which adapts to the distribution of the query is called a distribution-sensitive
point location algorithm, or self-adapting point location algorithm.

4Analyses of entropy-based point location presented in this section assume that the accesses to the
cells are independent one each other; this is sometimes too restrictive in practice.

5Actually, a better lower bound of H+Ω
(√

H
)

for planar point location was recently discovered [163].
6In other words, discovering in which side of a line a given point lies in.
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Previously, we saw that given the access probability of each cell of a triangulation
(assumed to be independent), it is possible to create a data structure whose expected
query time is the entropy of that probability distribution. Such a result is analogous to the
one-dimensional structure known as optimal binary search tree [151]. On the other hand,
splay trees have the same amortized asymptotic query time as optimal search trees [140],
without having to know the access probabilities. The question is: “Is there an analogous
of the splay trees for point location in the plane?”

To the best of our knowledge, just a few results on distribution-sensitive point location
exist up to 2010: Demaine et al [91], or Iacono and Langerman [143] data structures. They
are rather involved, requiring more than linear memory, and more than O(n log n) pre-
processing time. The complexity of their approach is in term of some distances, say dist,
between two successive queries qi−1, qi. Naturally, dist should depend on the triangula-
tion. And for general planar triangulations and general distance metrics, it is not possible
to produce a data structure with a better complexity than the worst-case optimal [91];
mainly because it is possible to have, for a point p, 2i points q such that dist(p, q) = i,
such phenomenon disallows the time complexity to be o(log n).

Iacono and Langerman [143] data structure is the most successful distribution-sensitive
point location data structure in terms of pre-processing and memory complexy, up to 2010,
to the best of our knowledge. It uses the β-diamond metric (β♦). The β♦-distance,
denoted by dβ̂♦(p, q), is defined as follows: Let Rβ be the diamond shaped region with
vertices p and q, symmetry axis pq, and angles at p and q both equal to a fixed constant
β > 0. Now, let β♦(p, q) be an r-offset of Rβ, with r the largest edge of the triangulation
intersecting Rβ. Then dβ̂♦(p, q) is the number of edges of the triangulation intersecting
β♦(p, q); see Figure 7.3. It is proved that such a metric satisfies the following properties:
(i) monotonicity, if points p1, p2 and p3 appear in that order on a line, then dβ̂♦(p1, p2) ≤
dβ̂♦(p1, p3); (ii) sanity, for a point q, the number of elements in {p | dβ̂♦(p, q) < k} is
polynomial on k. Because of the geometry of β♦(p, q), the monotonicity of dβ̂♦, and the
sanity dβ̂♦, with a clever (but rather involved) usage of pointers, (2, 4)-trees [139] and
persistent search trees [191], Iacono and Langerman [143] proved Theorem 40.

Theorem 40 (Iacono and Langerman [143]). For any angle β < π/2, it is possible, in

O
(

1
β
n log2 n log log n

)

time, to construct a data structure of size O
(

1
β
n log log n

)

so that

given points p and q and a pointer to the cell containing p, the data structure returns the

cell containing q in O
(

1
β
log dβ̂♦(p, q)

)

time.

We show in Section 8.4, that if the triangulation is Delaunay and satisfies some hy-
potheses, than it is possible to construct a data structure with O(n log n) preprocessing
time, O(n) memory, and O(log ♯(qi−1qi)) (amortized) expected query time, where ♯(pq)
indicates the expected number of simplices crossed by the line segment pq.

7.3 Practical Methods for Point Location

In the last sections, we presented several optimal approaches to locate a point on a trian-
gulation; in this section we present non-optimal approaches behaving well in practice. The
main interests are three: (i) algorithms in previous sections are rather involved, and prac-
titioners may prefer to implement simpler algorithms; (ii) non-optimal algorithms may be
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p q
βr

Figure 7.3: β-diamond metric. Diamond shaped region with vertices p and q.

faster than optimal ones in practice; (iii) the optimal algorithms are for triangulations in
the plane, which is highly insufficient for nowadays applications, where three-dimensional
triangulations are required. As a plus, one of the algorithm we present here, the De-
launay hierarchy [93], is optimal (in expectation) in two dimensions, and also in higher
dimensions under some (not so restrictive) hypotheses.

All the algorithms we present in this section are based on the notion of walking in
a triangulation; the best ones (Jump & Walk and Delaunay hierarchy) combine walking
with a good starting point. Assume hereafter that a triangulation T of n points, a query
point q and the location of another point p (the starting point) are given, we present some
existing practical methods for point location.

7.3.1 Walk Strategies

Visibility Graph

First, let us define the visibility graph VG(T , q) of a triangulation T of n points in di-
mension d and a query point q. VG(T , q) (or simply VG when there is no ambiguity) is a
directed graph (V,E), where V is the set of cells of T , and a pair of cells (σi, σj) belongs
to the set of edges E if σi and σj are adjacent in T and the supporting hyperplane of
their common facet separates the interior of σi from q; see Figure 7.4. When two cells σi

and σj are such that (σi, σj) ∈ E, we say that σj is a successor of σi. Now, a visibility
walk consists in repeatedly walking from a cell σi to one of its successor in VG until the
cell containing q is found; a walking strategy describes how this successor is chosen.
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q

Figure 7.4: Visibility graph. Arrows represent edges of VG.

Given two adjacent cells, deciding which one is a successor of the other relies on the
orientation predicate (presented in Section 2.2.4). By convention, the representation of a
cell σ of T gives its vertices p0, . . . , pd in an order corresponding to a positive orientation

orient(p0, p1, . . . , pd) = +1.

Then, an adjacent cell σ′ is the successor of σ if the supporting hyperplane of their
common facet (say the facet containing p1, . . . , pd) separates p0 and q, which is true if
orient(q, p1, . . . , pd) = −1.

The following two walking strategies are considered: (i) the straight walk is a visibility
walk where each visited cell intersects the segment pq; and (ii) the stochastic walk is a
visibility walk where the next visited cell, from a cell σ, is randomly chosen amongst the
successors of σ in VG.

Straight Walk

Straight walking in a triangulation is almost as old as Lipton and Tarjan solution of the
planar point location problem [159], and certainly straightforward. The main idea comes
from the early papers on computational geometry [155, 127, 55]. It relies on the fact
that the internal representation of T gives a constant-time access between neighboring
cells (which is the case of Cgal’s representation [179]; details are given in Section 2.2.2).
Now, consider the line segment s = pq, the procedure to locate a query point q is to walk
through all the cells intersected by s; this is done by repeatedly walking from a cell σ
to the successor in VG of σ that intersects s. The walk starts at a cell containing p and
stops at the cell containing q. This procedure is classically called straight walk ; straight
walk has a worst-case complexity linear in the number of cells of the triangulation [203],
see Figure 7.5.
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Figure 7.5: Worst-case straight walk. (a) stabbing Ω(n) cells in the plane; (b) stabbing
Ω(n2) cells in the space.

If T is the Delaunay triangulation of points evenly distributed in some finite convex
domain and s is not close to the domain boundary, the expected number of cells stabbed
by s is proportional to n1/d [127, 55], or even more precisely

O
(

‖s‖ · n1/d
)

. (7.2)

The term ‖s‖ when used inside a Big-O notation, rigorously speaking, represents a ratio
between two quantities having the same unity of measure. Here is the shortcut: ‖s‖
abbreviates ‖s‖/δ (when it applies), where δ is the diameter of the domain boundary. In
this thesis, as the domain is bounded in all the theorems where this notion is relevant
(independently of n), then we took the liberty to omit δ, as it is a constant. And hence,
we simplify ‖s‖/δ to O (‖s‖).

Boundaries make the analysis significantly more complex. In the plane, Bose and De-
vroye [53] shows that s being close to the boundary7 does not affect Eq.(7.2) in expecta-
tion.8 Actually the distribution does not even need to be uniform, see Theorem 41.

Theorem 41 (Bose and Devroye [53]). Let 0 < α ≤ f(x, y) ≤ β < ∞ be a probability
distribution of points with a convex compact support C ⊂ R

2, for fixed constants α, β.
Let s be a fixed line segment contained in C. Then the expected number of intersections
between s and the Delaunay triangulation of n random points following the distribution f
is O

(

‖s‖ · n1/2
)

.

In three dimensions, there is no similar bound as in Theorem 41. The best bound
is due to Mücke et al. [168] and its underlying probabilistic analysis is rather technical.
They basically showed that, under some slightly more restrictive hypotheses, the number
of intersected Delaunay cells is proportional to O

(

n1/3 log n/ log log n
)

; see Theorem 42.

7It is assumed in [53] that the boundary contains at least one circle of positive radius.
8The expected worst-case complexity has been shown lately to be O(

√
n) [52] as well.
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Theorem 42 (Mücke et al. [168]). Let 0 < α ≤ f(x, y, z) ≤ β < ∞ be a probability
distribution of points with a convex compact support C ⊂ R

3 having small curvature,
for fixed constants α, β. Let s be a fixed line segment inside C, but at a distance of at
least Ω

(

(log n/n)1/3
)

from the boundary of C. Then the expected number of intersections
between s and the Delaunay triangulation of n random points following the distribution f
is O

(

n1/3 log n/ log log n
)

.

It is conjectured though, that even considering boundaries, for n evenly distributed
points inside a convex domain of Rd, the actual expected total number of intersected cells
of the Delaunay triangulation of those points is O

(

‖s‖ · n1/d
)

.

Stochastic Walk

Let q be the query point, and σ be a cell of T , with vertices on points p0, . . . , pd. Then
recall that an adjacent cell σ′ is the successor of σ in VG(T , q) if the supporting plane
of their common facet (say the facet containing the points p1, . . . , pd) separates p0 and q;
this is true if orient(q, p1, . . . , pd) = −1.

Before describing the stochastic walk procedure, let us remind a trick to handle queries
that are not inside the convex hull of T (also presented in Section 2.2.4). It consists into
compactifying R

d into the topological sphere by: (i) adding a point at infinity ∞, and
then (ii) gluing ∞ and each facet of the convex hull of T , forming new simplices (one for
each facet). These new simplices are called infinite simplices. When an infinite simplex
has dimension d, it is called an infinite cell.

We describe now the fundamental procedure of the stochastic walk algorithm, which
runs for each visited cell. Assume σ is the current cell being visited, and i is a random
index chosen from 0 . . . d.

Selecting next cell to visit. The adjacent cells of σ (σ0, σ1, . . . , σd) are tested
sequentially starting at σi (i random) to be a successor of σ. The first cell, which is a
successor of σ in the sequence, is selected.

Cell found. When there is no successor of σ, then σ contains q, and the remaining
work is to count the number of orientation tests that result in 0 in order to know exactly
whether q is inside σ or on its boundary (and which piece of boundary).

Cell not found. If σ is an infinite cell, then q is outside the convex hull of T .
A straightforward modification of the stochastic walk leads to a more efficient pro-

cedure.9 It consists simply into not selecting the previous visited cell as a candidate to
be the next cell to visit [97]. This effectively avoids one orientation predicate computa-
tion. To implement this modification one needs only to remember the previous visited
cell during the walk and compare it with σj. Cgal incorporates this modification in its
stochastic walk implementation, and so do we in the next chapter.

Current results on the complexity of the stochastic walk are weaker than the results for
straight walk: It is known that the stochastic walk finishes with probability 1 [97], though
it may visit an exponential number of cells (even in R

2). In the case of Delaunay trian-
gulations, the complexity becomes linear in the number of cells. For evenly distributed
points, the O(‖s‖ · n1/d) complexity is also conjectured for stochastic walk, but remains
unproved even in the plane; see Figure 7.6. In practice, stochastic walk answers point

9The modified stochastic walk is often referred to as the remembering stochastic walk.
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Figure 7.6: Stochastic walk complexity conjecture. (a) shows the logarithm in base
2 of the average number of visited cells by a stochastic walk done from the cell containing the
point (1/2, 1/2, 1/4), to the query point (1/2, 1/2, 3/4), in several Delaunay triangulations of
210, . . . , 220 points evenly distributed in the unit cube. The slope of the curve in this log-graph
shows approximately 1/3, which indicates an approximate O(n1/3) visited cells, where n is the
number of points. (b) shows the average number of visited cells by a stochastic walk done from
the cell containing the point (1/2, 1/2, 1/2 − l/2), to the query point (1/2, 1/2, 1/2 + l/2), for
l = 0.00, 0.01, . . . , 0.50, in several Delaunay triangulations of 220 points evenly distributed in the
unit cube. Note the linear behavior.

location queries faster than the straight walk [97] and it is the current choice of Cgal for
the walking strategy [223, 179], in both dimensions 2 and 3.

In general. For simplicity, straight walk is used for analyses; stochastic walk is used
in practice. Other walk strategies exist,10 but are not considered in this thesis.

7.3.2 Jump & Walk

Jump & Walk takes a random sample of k vertices of T , called landmarks, and uses a
two-steps location process to locate a query q. First, the jump step determines the nearest
landmark in the sample in (brute-force) O(k) time, then a walk in T is performed from
that vertex; see Figure 7.7.

Assuming that: (i) T is Delaunay, (ii) points in T are evenly distributed in a convex
region of the space, and (iii) the query point is far enough from the boundary, then
Jump & Walk becomes easy to analyze. Because of the uniformity of the distribution, for
each landmark p, an expected O(n/k) points are located inside a ball centered at p. And
assuming the aforementioned hypotheses, a walk from a landmark to a query point takes
O
(

(n/k)1/d
)

time, see Section 7.3.1. By summing up the cost of the brute-force jump
step, we have an expected O

(

(n/k)1/d + k
)

time complexity, which is optimized taking
k = n1/(d+1). This gives a final complexity of O

(

n1/(d+1)
)

.
Naturally, if we don’t assume the hypotheses above, the analysis becomes harder.

Devroye et al. [101] shows that, under similar hypotheses as the ones in Theorem 41, if
the query point is independent of the points of the triangulation, then the time to locate

10For instance, compass routing [153] or orthogonal walk [97].
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q

Figure 7.7: Jump & Walk. The walk starts from the nearest landmark (represented by dots

above) with respect to the query. Then it ends at the cell containing the query.

a query point is O
(

n1/3
)

; see Theorem 43.

Theorem 43 (Bose and Devroye [101]). Let 0 < α ≤ f(x, y) ≤ β < ∞ be a probability
distribution of points with a convex compact support C ⊂ R

2, for fixed constants α, β. Let
S be a set of n random points following the distribution f . Assume that a query point
q is independent of the choice of points in S. Then the expected time to locate q in the
Delaunay triangulation of S using Jump & Walk is O

(

n1/3
)

.

In Section 8.2.3, we show that this still works in a more general framework, where the
random sample can evolve and adapt to the distribution over time.

In three dimensions, there is no similar bound as in Theorem 43, which is understand-
able, since the best bounds on the size of a walk is not “yet” proved to be O

(

n1/3
)

. As
an extension of Theorem 42, Mücke et al. [168] shows that, the jump and walk strategy
takes O

(

δ1/4n1/4(log n/ log log n)3/4
)

time, where δ is the expected degree of a vertex; see
Theorem 44.

Theorem 44 (Mücke et al. [168]). Let 0 < α ≤ f(x, y, z) ≤ β < ∞ be a probability
distribution of points with a convex compact support C ⊂ R

3 having small curvature, for
fixed constants α, β. Let S be a set of n random points following the distribution f .
Assume that a query point q is independent of the choice of points in S, and is at distance
of at least Ω

(

n−1/18
)

from the boundary of C. Then the expected time to locate q in the

Delaunay triangulation of S using Jump & Walk is O
(

δ1/4n1/4(log n/ log log n)3/4
)

.

The expected maximum degree of a vertex is O(log n/ log log n) [45], and O(1) [109]
if points are chosen uniformly at random in a d-dimensional ball. And hence the ex-
pected cost here is bounded by O

(

n1/4 log n/ log log n
)

, and O
(

n1/4(log n/ log log n)3/4
)

for points chosen at random in a d-dimensional ball. Nevertheless, the actual expected
time complexity is conjectured to be O

(

n1/4
)

, even with boundaries.
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7.3.3 Delaunay hierarchy

Building on the idea of Jump & Walk, the Delaunay hierarchy [93] uses several levels
of random samples: At each level of the hierarchy, the walk is performed starting at
the closest vertex of the immediately coarser level. Building the hierarchy by selecting
a point in the coarser level with some fixed probability, yields a good complexity. In
two dimensions, the complexity is O(log n) in the worst case. In higher dimensions, this
logarithmic time holds if random samples of T have a linear number of cells.

Given a set of n points S in the plane, the Delaunay hierarchy [93] constructs random
samples S = S0 ⊆ S1 ⊆ S2 ⊆ . . . ⊆ Sh such that Prob(p ∈ Si+1 | p ∈ Si) = 1/α for some
constant α > 1. DT i, the Delaunay triangulation of Si, is computed for 0 ≤ i ≤ h, and
the hierarchy is used to find the nearest neighbor of a query q by walking at one level i
from the nearest neighbor of q at the level i+ 1.

Devillers [93, Lemma 4] shows that the expected cost of walking at one level is O(α)
and since the expected number of levels is logα n, we obtain a logarithmic expected time
to descend the hierarchy for point location. The crux of the proof resides in the fact that
the expected degree of the nearest neighbor of a vertex in T is bounded in the plane for
any distribution of points. From the size of the samplings described above, the total size
of the structure is O(n) ·∑∞

i=0 α
−i = O(n). Theorem 45 summarizes the behavior of the

hierarchy for points in the plane.

Theorem 45 (Devillers [93]). The construction of the Delaunay hierarchy of a set of
n points is done in expected time O(n log n) and O(n) space, and the expected time to
locate a query q is O(log n). The expectation is on the randomized sampling and order of
insertion, with no assumption on point distribution.

Theorem 45 holds for Delaunay triangulation T of arbitrary finite dimension d, as long
as the number of cells is O(n), and the expected degree of the nearest neighbor of a vertex
in T is bounded. Since the kissing number [177] in any finite dimension d is bounded,
the condition holds when the expected degree of vertices in each random sample of T is
O(1). And hence, T having random samples of linear size, is a sufficient condition for
Theorem 45 to hold in higher dimensions [93].

Delaunay hierarchy supports insertion and deletion of vertices; i.e., it is dynamic, while
being optimal. Another interesting feature of the Delaunay hierarchy is that the average
number of visited simplices during the walk on a particular level of the triangulation tends
to be similar for each level when n is big enough. Figure 7.8 shows the distribution of the
number of simplices visited during the stochastic walk done on the last level (level h) of
the hierarchy for some set of points. Figure 7.9 shows experimentally the impact of the
number of vertices on the distribution.

If query points are given one at a time, Delaunay hierarchy is one of the best solution
in practice for two and three dimensions. The Delaunay hierarchy, for points in two and
three dimensions, is implemented in Cgal [223, 179].

We show in Section 8.4, that, under some hypotheses on the triangulation, the De-
launay hierarchy can be used to achieve very fast distribution-sensitive point location as
well.
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Figure 7.8: Delaunay hierarchy with stochastic walk. The distribution of the number

of simplices visited during the stochastic walk done on the last level of the hierarchy for 220 points:

(a) evenly distributed in a square, (b) evenly distributed on an ellipse, (c) evenly distributed in a

cube, (d) evenly distributed on an ellipsoid.
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Figure 7.9: Varying the number of vertices. The distribution of the number of simplices

visited during the stochastic walk done on the last level of the hierarchy for various number of

random points: (a) evenly distributed in a square, and (b) evenly distributed on an ellipse, (c)

evenly distributed in a cube, and (d) evenly distributed on an ellipsoid.
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Chapter 8

Simple and Efficient

Distribution-Sensitive Point Location,

in Triangulations

“Simplicity is a great virtue but it requires hard work to achieve it and education to
appreciate it. And to make matters worse: complexity sells better.” — Edsger Wybe

Dijkstra.

• P. M. M. de Castro and O. Devillers. Practical Self-Adapting Point Location, in Triangu-
lations. Submitted, 2010. (Also available as: Research Report 7132, INRIA, 2010.)

• P. M. M. de Castro and O. Devillers. Simple and Efficient Distribution-Sensitive Point
Location, in Triangulations. Submitted, 2010

Point location in spatial subdivision is one of the most studied problems in computa-
tional geometry. In the case of triangulations of Rd, we revisit the problem to exploit a
possible coherence between the query points. We propose several new ideas to improve
point location in practice. Under some hypotheses verified by “real point sets”, we also
obtain interesting theoretical analysis. Chapter 6 and 7 present most of the fundamentals
used in this chapter.

Our Contributions. In Section 8.1, we introduce the Distribution Condition: A
region C of a triangulation T satisfies this condition if the expected cost of walking in T
along a segment inside C is in the worst case proportional to the length of this segment. In
Section 8.5.1, we provide experimental evidence that some realistic triangulations verify
the Distribution Condition for the whole region inside their convex hull. And, we relate
this condition to the length of the edges of some spanning trees embedded in R

d in order
to obtain complexity results. Results on the length of such trees can be reviewed in
Chapter 6.
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In Section 8.2, we investigate constant-size-memory strategies to choose the starting
point of a walk. More precisely, we compare strategies that are dependent on previous
queries (self-adapting strategies) and strategies that are not (non-self-adapting strategies),
mainly in the case of random queries. Random queries are a priori not favorable to self-
adapting strategies, since there is no coherence between the queries. Nevertheless, our
computations prove that self-adapting strategies are, either better, or not really worse in
this case. Thus, there is a good reason for the use of self-adapting strategies since they
are competitive even in situations that are seemingly unfavorable. Section 8.5.2 provides
experiments to confirm such behavior on realistic data.

In Section 8.3, we revisit Jump & Walk so as to make it distribution-sensitive. The
modification is called Keep, Jump, & Walk. In a different setting, Haran and Halperin
verified experimentally [134] that similar ideas in the plane give interesting running time in
practice. Here, we give theoretical guarantees that, under some conditions, the expected
amortized complexity of Keep, Jump, & Walk is the same as the expected complexity
of the classical Jump & Walk. We also provide analysis for some modified versions of
Keep, Jump, & Walk. In Section 8.5.3, experiments show that Keep, Jump, & Walk, has
an improved performance compared to the classical Jump & Walk in 3D as well. Despite
its simplicity, it is a competitive method to locate points in a triangulation.

In Section 8.4, we show that climbing the Delaunay hierarchy can be used to answer a
query q in O(log ♯(pq)) randomized expected complexity, where p is a point with a known
location and ♯(s) indicates the expected number of cells crossed by the line segment s.
Climbing instead of walking turns Keep, Jump, & Walk into Keep, Jump, & Climb, which
appears to take the best of all methods both in theory and in practice.

8.1 Distribution Condition

To analyze the complexity of the straight walk and derived strategies for point location,
we need some hypotheses claiming that the behavior of a walk in a given region C of the
triangulation is as follows.

Distribution Condition. Given a triangulation scheme (such as Delaunay,
Regular, . . .), and a distribution of points with compact support Σ ⊂ R

d, C ⊆
Σ: For a triangulation T of n points following the given distribution and built
upon the given triangulation scheme, the Distribution Condition is verified if
there exists a constant κ ∈ R, and a function F : N→ R, such that for a seg-
ment s ⊆ C, the expected number of simplices of T intersected by s, averaging
on the choice of the sites in the distribution, is less than 1 + κ · ‖s‖ · F(n).

One known case where the Distribution Condition is verified is the Delaunay triangu-
lations of points following the Poisson distribution in dimension d, where F(n) = O(n1/d),
for any region C; see Figure 8.1-left. We believe that the distribution condition generalizes
to other kinds of triangulation schemes and other kinds of distributions. An interesting
case seems to be the Delaunay triangulation of points lying on some manifold of dimension
δ embedded in dimension d. We claim that the relevant dimension is in fact the one of the
manifold (see Figure 8.1-right), this claim is supported by our experiments (Section 8.5.1)
and stated in the following conjecture:
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Figure 8.1: Distribution Condition. (a) F(n) = O(
√
n), (b) F(n) = O(n).

Conjecture 46. The Delaunay triangulations in dimension d of n points evenly dis-
tributed on a bounded manifold Π of dimension δ, verify the Distribution Condition inside
the convex hull of Π, with F(n) = O(n1/δ).

The Distribution Condition ensures the relationship between the cost of locating points
and the proximity between points. Let T be a triangulation of n points following some
distribution with compact support in R

d, if the Distribution Condition is verified for a
region C in the convex hull of T , the expected cost of locating in T a finite sequence S of
m query points lying in C is at most

κ · F(n) ·
m
∑

i=1

|ei|+m, (8.1)

where ei is the line segment formed by the i-th starting point and the i-th query point.

Now, please take a look at the expression
∑m

i=1 |ei| above. The structure formed by
all these segments has a special meaning for point location purpose. We shall see this
meaning in what follows.

Let S = {q1, q2, . . . , qm} be a sequence of queries. For a new query, the walk has to
start from a point whose location is already known; i.e., a point inside a cell visited during
a previous walk. Thus the k segments ei, 1 ≤ i ≤ m, formed by (i) the starting point
of the i-th walk toward qi, and (ii) qi itself, must be connected. Therefore the graph E
formed by these line segments ei is a tree spanning the query points; we call such a tree
the Location Tree. Its length is given by ‖E‖ = ∑e∈E ‖e‖. Eq.(8.1) can be rewritten as
the following expression:

κ · F(n) · ‖E‖+m. (8.2)
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8.2 Constant-Size-Memory Strategies

In this section, we analyze the Location Tree length of strategies that store a constant
number of possible starting points for a straight walk. We also provide a comparative
study between them.

8.2.1 Fixed-point strategy.

In the fixed-point strategy, the same point c is used as starting point for all the queries,
then the Location Tree is the star rooted at c, denoted by Sc(S). The best Location
Tree we can imagine is the Steiner star, but of course computing it is not an option,
neither in a dynamic setting nor in a static setting. This strategy is used in practice: In
Cgal 3.6, the default starting point for a walk is the so-called point at infinity, detailed
in Section 2.2.2; thus the walk starts somewhere on the convex hull, which looks like a
kind of worst strategy.

In the worst case, one can easily find a set of query points S such that |ESS(S)| =
Ω(m), or such that |Sc(S)|/|ESS(S)| goes to infinity for some c. Now we focus on the
case of evenly distributed queries.

Theorem 47. Let S be a sequence of m query points independent and identically dis-
tributed following the uniform distribution inside the unit ball, then the expected length of
the Location Tree of the best fixed-point strategy is

(

d

d+ 1

)

·m.

Proof. Restricted case of Theorem 31 for α = 1.

Theorem 48. Let S be a sequence of m query points independent and identically dis-
tributed following the uniform distribution inside the unit ball, then the expected length of
the Location Tree of the worst (on the choice of c inside the ball) fixed-point strategy is

2d+1

(

2d+ 1

2d+ 2

)

B
(

d
2
+ 1

2
, d
2
+ 1
)

B
(

d
2
+ 1

2
, 1
2

) ·m,

where B(x, y) =
∫ 1

0
λx−1(1− λ)y−1dλ is the Beta function.

Proof. Restricted case of Theorem 32 for α = 1.

Corollary 49. Let S be a sequence of m query points independent and identically dis-
tributed following the uniform distribution inside the unit ball, then the ratio between the
expected lengths of the Location Tree of the best and worst fixed-point strategies is at most
2 (for d = 1), and at least

√
2 (when d→∞).

Figure 8.2 gives the expected average length of an edge of the best and worst fixed-
point Location Trees.
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8.2.2 Last-point strategy.

An easy alternative to the fixed-point strategy is the last-point strategy. To locate a
new query point, the walk starts from the previously located query. The Location Tree
obtained with such a strategy is a path. When T verifies the Distribution Condition, the
optimal path is the EMLP (S). (Definition of EMLP (S) can be found in Section 6.1.)

In the worst case, the length of such a path is clearly Ω(m); an easy example is to
repeat alternatively the two same queries. In contrast with the fixed-point strategy, the
last-point strategy depends on the query distribution. If the queries have some spatial
coherence, it is clear that we improve on the fixed-point strategy. Such a coherence may
come from the application, or by reordering the queries. There is always a permutation of
indices on S such that the total length of the path is sub-linear [214, 121]. Furthermore,
in two dimensions, one could find such permutation in O(m logm) time complexity [181].

Now, the question we address is: “if there is no spatial coherence, how the fixed and
last point strategies do compare?”.

Theorem 50. The ratio between the lengths of the Location Tree of the last-point strategy
and the fixed-point strategy is at most 2.

Proof. This is an easy consequence of the triangle inequality. Take S = p1, . . . , pm, and
any fixed-point c. Then we have:

‖pipi+1‖ ≤ ‖cpi‖+ ‖cpi+1‖,

for all 1 ≤ i < m. Summing the term above for each value of i leads to the inequality:

m−1
∑

i=1

‖pipi+1‖ ≤
m−1
∑

i=1

‖cpi‖+
m
∑

i=2

‖cpi‖ ≤ 2
m
∑

i=1

‖cpi‖,

which completes the proof.

Theorem 51. The ratio between the lengths of the Location Tree of the last-point strategy
and the fixed-point strategy can be arbitrarily small.

Proof. Consider a set of m queries distributed on a circle in R
d. If the queries are visited

along the circle, the length of the location tree of the last-point strategy is O(1), while
|ESS| = Ω(m).

Combining the results in Theorem 50 and Theorem 51, it is reasonable to conclude that
the last-point strategy is better in general, as the improvement the fixed-point strategy
could bring does not pay the price of its worst-case behavior. We now study the case of
evenly distributed queries.

Theorem 52. Let S be a sequence of m query points independent and identically dis-
tributed following the uniform distribution inside the unit ball, then the expected length of
the Location Tree of the last-point strategy is

2d+1

(

d

d+ 1

)

B
(

d
2
+ 1

2
, d
2
+ 1
)

B
(

d
2
+ 1

2
, 1
2

) ·m.
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Proof. This is equivalent to find the expected length of a random segment determined by
two points uniformly independent and identically distributed in the unit ball, which is
given in [190].

Theorems 47, 48, and 52 lead to the following corollary:

Corollary 53. Let S be a sequence of m query points independent and identically dis-
tributed following the uniform distribution inside the unit ball, then the ratio between the
expected lengths of the Location Tree of the last-point and the best fixed-point strategies
is at most

√
2 (when d → ∞), and at least 4/3 (when d = 1) whereas the ratio between

the expected Location Tree lengths of the last-point and the worst fixed-point strategies is
2d/(2d+ 1).
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Figure 8.2: Expected lengths. Expected average lengths of an edge of the last-point, best

and worst fixed-point Location Trees. The domain C for each dimension d is the d-dimensional

unit ball, and the queries are evenly distributed in C.

As shown in Figure 8.2, the last-point strategy is in between the best and worst fixed-
point strategies, but closer and closer to the worst one when d increases. Thus, in the
context of evenly distributed points in a ball, the last-point strategy cannot be worse than
any fixed point strategy by more than a factor of

√
2. Still, the fixed-point strategy may

have some interests under some conditions: (i) queries are known a priori to be random;
and (ii) a reasonable approximation of the center of ESS(S) can be found.

Now, one might ask whether the shape of C affects the cost of the strategies. In the
quest for an answer, we may consider query points independent and identically distributed
following the uniform distribution inside the the unit cube [0, 1]d. This leads to the
following related expressions:

Bd =

∫ 1

0

. . .

∫ 1

0

(

λ2
1 + . . .+ λ2

d

)1/2
dλ1 . . . dλd,

Xd =

∫ 1

0

. . .

∫ 1

0

(

(λ1 − 1/2)2 + . . .+ (λd − 1/2)2
)1/2

dλ1 . . . dλd,

∆d =

∫ 1

0

. . .

∫ 1

0

(

(λ1 − λ′
1)

2 + . . .+ (λd − λ′
d)

2
)1/2

dλ1 . . . dλd dλ
′
1 . . . dλ

′
d,

where Bd, Xd, and ∆d are respectively the average length of an edge of: the largest star
(rooted at a corner), the smallest star (rooted at the center), and of a random path. Above
expressions are often referred to as box integrals [38]. First, note that by substitution of
variable we have Bd/Xd = 2, independently of d. In Anderssen et al. [183], we have that,
Bd ∼

√

d/3 and ∆d ∼
√

d/6 and thus Bd/∆d and ∆d/Xd ∼
√
2 when d goes to infinity.
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These ratios have to be compared with Corollary 53. If C is an unit cube, the expected
Location Tree length of the last-point, best and worst fixed-point strategies remains in
bounded ratio, but with different values compared to the case where C is a ball. Notice
however that, when d is large, the ratio between the best fixed-point and the last-point
strategies remains

√
2 in both cases.

8.2.3 k-last-points strategy.

We explore here a variation of the last-point strategy: Instead of remembering the place
where the last query was located, we store the places where the k last queries were
located, for some small constant k. These k places are called landmarks in what follows.
Then to process a new query, the closest landmarks are determined by O(k) brute-force
comparisons, then a walk is performed from there. This strategy has some similarity with
Jump & Walk; the main differences are that the sample has fixed size and depends on the
query distribution (it is dynamically modified).

The Location Tree associated with such a strategy is EMITk(S). It has bounded
degree k + 1 (or the kissing number +1 in dimension d, if it is smaller than k + 1) and
its length is greater than ‖EMST (S)‖ and smaller than the length of the path obtained
by visiting the vertices in the same order, thus previous results provide upper and lower
bounds. (Definitions of EMITk(S) and EMST (S) can be found in Section 6.1.)

A tree of length Ω(m/k) = Ω(m) is easily achieved by repeating a sequence of k queries
along a circle of length 1. Theorem 22 (for α = 1) bounds the size of the Location Tree of
the k-last-points strategy for k successive queries, though the constant γd,1 seems too big.
However this constant is rather pessimistic if we refer to practical data sets; Theorem 54
leads to Corollary 55, which gives a better constant for queries evenly distributed inside
the unit sphere. (This observation can be found in Section 6.3.2 within a more general
context.)

Theorem 54. Let S be a sequence of m query points independent and identically dis-
tributed following the uniform distribution inside the unit ball, then the expected length of
the Location Tree of the k-last-points strategy verifies

(

1

d

)

B

(

k + 1,
1

d

)

·m ≤ E(length) ≤ 2

(

1

d

)

B

(

k + 1,
1

d

)

·m. (8.3)

Proof. Restricted case of Theorem 26 for α = 1.

Corollary 55. Let S be a sequence of k query points independent and identically dis-
tributed following the uniform distribution inside the unit ball, then the expected value
of ‖EMIT (S)‖ is 2 · Γ(1 + 1/d) · k1−1/d as k → ∞ , where Γ(x) =

∫∞
0

tx−1e−tdt is the
Gamma function.

Proof. From Theorem 54, we have that the expected length li of the i-th edge of ‖EMIT (S)‖
in the unit ball for evenly distributed points, is such that li ≤

(

2
d

)

B
(

i+ 1, 1
d

)

. Where

B(x, y) =
∫ 1

0
λx−1(1− λ)y−1dλ is the Beta function. Summing the expression above for

k − 1 edges, and using Stirling’s identity B(x, y) ∼ Γ(y)x−y, we have that there exists
k0 <∞, such that for k > k0, ‖EMIT (S)‖ is bounded by (1 + ǫ) · 2 · Γ(1 + 1/d) · k1−1/d

with ǫ as small as we want.
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Intuitively, if the queries have some not too strong spatial coherence, the k-last-points
strategy seems a good way to improve the last-point strategy. Surprisingly, experiments
in Section 8.5 shows that even if the points have some strong coherence, a small k strictly
greater than 1 improves on the last-point strategy when points are sorted along a space-
filling curve. More precisely, k = 4 improves the location time by up to 15% on some
data sets.

8.3 Keep, Jump & Walk

8.3.1 Jump & Walk

The Jump & Walk technique takes a random sample of k vertices of T , and uses a two-
steps location process to locate a query q. First, the jump step determines the nearest
vertex in the sample in (brute-force) O(k) time, then a walk in T is performed from that
vertex. The usual analysis of Jump & Walk makes the hypothesis that T is the Delaunay
triangulation of points evenly distributed. Taking k = n1/(d+1) gives a complexity of
O(n1/(d+1)) [168, 101]. More details can be found in Section 7.3.2.

8.3.2 A Simple Modification: Distribution Sensitiveness

The classical Jump & Walk strategy [168, 101] uses a set of k landmarks randomly chosen
in the vertices of T ; a query is located by walking from the closest amongst the land-
marks. In order to ensure the distribution sensitiveness of such a strategy, instead of
using vertices of T as landmarks, we keep previous queries as landmarks. Then, we have
several possibilities: (i) we can use k queries chosen at random in previous queries; (ii) we
can use the k last queries for the set of landmarks; and (iii) we can keep all the queries
as landmarks, and regularly clear the landmarks set after a batch of k queries.1

For any rule to construct the set of landmarks, the time to process a query q splits in:
— Keep: the time K(k) for updating the set of landmarks if needed,
— Jump: the time J(k) for finding the closest landmark, and
— Walk: the time W (k) to walk from the closest landmark to q.

This modification performs surprisingly well in practice, experimental results for method
(ii) are provided in Section 8.5.3.

In this section, we analyze such a strategy. The analysis consider the straight walk
as the walk strategy. We start with the following lemma, which is a fundamental piece of
the analysis.

Lemma 56. Let T be a triangulation of n points following some distribution with compact
support in R

d, if the Distribution Condition is verified for a region C in the convex hull of
T , then W (k) has an expected amortized O

(

F(n) · k−1/d + 1
)

complexity for k queries.

Proof. For k queries, the Location Tree of each variation above is an EMIT with k
vertices. (Definition of EMIT (S) can be found in Section 6.1.) Let T be a triangulation
of n points following some distribution with compact support in R

d, if the Distribution

1The strategy presented in this section is similar to the k-last-points strategy. The main difference is
that k is not necessarily a constant anymore, and hence it is allowed to be ω(1); details on the k-last-points
strategy can be found in Section 8.2.3.
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Condition is verified for a region C in the convex hull of T , the expected cost of locating
in T a finite sequence S of k query points lying in C is, from Eq.(8.2), at most

κ · F(n) ·
∑

e∈E
‖e‖+ k = κ · F(n) · ‖E‖+ k = O

(

F(n) · k1−1/d + k
)

, (8.4)

since, by Theorem 22 (for α = 1), ‖EMIT‖ = O(k1−1/d). Therefore, W (k) has an ex-
pected amortized O

(

F(n) · k−1/d + 1
)

complexity for k queries. (Recall from Section 8.1
that the Distribution Condition does not force T to be a Delaunay triangulation.)

Combining various options for F(n) and the data structure to store the landmarks,
gives us some interesting possibilities. The trick is always to balance these different costs,
since increasing one decreases another.

Keep, Jump, & Walk. Classical Jump & Walk uses a simple sequential data struc-
ture to store the random sample of T and assumes F(n) = O(n1/d). It is possible to
use the same data structure to store the set of landmarks. Keep step decides whether
the query is kept at a landmark and inserts it if needed. With a list, keep step takes
K(k) = O(1) and jump step takes J(k) = O(k). Then, using Lemma 56 and taking
k = n1/(d+1) landmarks amongst the queries ensures an expected amortized query time
of O(n1/(d+1)). It is noteworthy that the complexity obtained here matches the classical
Jump & Walk complexity with no hypotheses on the distribution of query points (natu-
rally, the queries must lie in the region C, which in turn must lie inside the convex hull of
T ; details on the Distribution Condition can be found in Section 8.1).

Outside this classical framework, Jump & Walk has some interests, even with weaker
hypotheses; i.e., without a so good distribution of vertices. In general, considering
Lemma 56, taking k = F(n)1−1/(d+1) balances the jump and the walk costs. Another
remark is that if the landmarks are a random subset of the vertices of T (as is the classical
Jump & Walk), then the cost of the walk is F(n/k) [93, Variation of Lemma 4]. Assuming
F(j) = O(jβ), the jump and the walk costs are balanced by taking k = n1−1/(β+1) in this
case.

Besides, if Conjecture 46 is verified, Keep, Jump, & Walk should use a sample of size

k = O
(

(

n1/(d−1)
)1−1/(d+1)

)

to construct Delaunay triangulation for points on a hypersurface, and not O(n1/(d+1))
as for random points in the space. In particular, k should be O(n3/8) in 3D; this is
verified experimentally in Section 8.5, and should be applied in surface reconstruction
applications.

Keep, Walk, & Walk. In Keep, Walk, & Walk, the data structure to store the
landmarks is a Delaunay triangulation L, in which it is possible to walk. Assuming a
random order on the landmarks, inserting or deleting a landmark after location takes
O(1); then keep step takes K(k) = O(1), and jump step takes J(k) = O(F(k)).

If the queries and the sites are both evenly distributed we get J(k) = O(k1/d) and, by
Lemma 56, W (k) = k−1/d · F(n) = O(k−1/d · n1/d), which gives k =

√
n to balance the

jump and walk costs. Finally, the point location takes expected amortized time O(n1/2d).
If walking inside T and L takes linear time, k = n1−1/(d+1) balances Keep, Walk, & Walk

costs.
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Delaunay Hierarchy of Queries. A natural idea is to use several layers of triangu-
lations, walking at each level from the location at the coarser layer. When the landmarks
are vertices of T and each sample takes a constant ratio of the vertices at the level below,
this idea yields the Delaunay hierarchy [93].

Storing the queries in a Delaunay hierarchy may have some interesting effects: If the
region C of T has some bad behavior F(n)≫ n1/d, we can get interesting query time to the
price of polynomial storage. More precisely, if the queries are such that a random sample of
the queries has a Delaunay triangulation of expected linear size (always true in 2D), then
using a random sample of k queries for the landmarks and a Delaunay hierarchy to store
L, gives K(k) = J(k) = O(log k). Then by Lemma 56 we have W (k) = O(k−1/d · F(n))
(amortized) and taking k = F(n)d/ logd n balances jump and walk costs, leading to an
expected amortized logarithmic query time.

In practice, neither Keep, Walk, & Walk nor Delaunay Hierarchy of Queries work
well; the reason is the relatively big constants hidden in the Big-O notation of the
point insertion complexity. Further results for these strategies are omitted. However,
Keep, Jump, & Walk performs well; experiments are presented in Section 8.5.3.

8.4 Climbing Up in the Delaunay Hierarchy

In this section, we show how the Delaunay hierarchy can be made distribution-sensitive
under some hypotheses. Assume T is a Delaunay triangulation, then classical use of the
Delaunay hierarchy provides a logarithmic cost in the total size of T to locate a point. The
cost we reach here is logarithmic in the number of vertices of T in between the starting
point and the query.

Given a set of n points S in the space, we assume that the expected size of the Delaunay
triangulation of a random sample of size r of S has linear size. The hypothesis is always
verified in 2D, and proved in several other situations: points randomly distributed in
space [108] or on an hypersurface [125, 34, 35, 26]. The Delaunay hierarchy [93] constructs
random samples S = S0 ⊇ S1 ⊇ S2 ⊇ . . . ⊇ Sh such that Prob(p ∈ Si+1 | p ∈ Si) = 1/α
for some constant α > 1. The h+1 Delaunay triangulations DT i of Si are computed and
the hierarchy is used to find the nearest neighbor of a query q by walking at one level i
from the nearest neighbor of q at the level i+ 1. It is proven that the expected cost of
walking at one level is O(α) and since the expected number of levels is logα n, we obtain
a logarithmic expected time to descend the hierarchy for point location. More details can
be found in Section 7.3.3.

If a good starting vertex v = v0 in DT 0 is known, the Delaunay hierarchy can be used
in another way: From v0 a walk starts in DT 0 visiting cells crossed by segment v0q; the
walk is stopped, either if the cell containing q is found, or if a cell having a vertex v1
belonging to the sample S1 is found. If the walk stops because v1 is found, then a new
walk in DT 1 starts at v1 along segment v1q. This process continues recursively up to the
level l, where a cell of DT l that contains q is found; see Figure 8.3. Finally, the hierarchy
is descended as in the usual point location. Theorem 57 bounds the complexity of this
procedure.
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Figure 8.3: Climbing.

Theorem 57. Given a set of n points S, and a convex region C ⊆ CH(S), such that the
Delaunay triangulation of a random sample of size r of S

(i) has expected size O(r),
(ii) satisfies the Distribution Condition in C with F(r) = O(rβ) for some constant

β,
then the expected cost of climbing and descending the Delaunay hierarchy from a vertex v
to a query point q, both lying in C, is O(logw), where w is the expected cost of the walk
from v to q in DT the Delaunay triangulation of S.

Proof. Climbing one level. Since the probability that any vertex of DT i belongs to
DT i+1 is 1/α, and that each time a new cell is visited during the walk a new vertex is
discovered, the expected number of visited simplices before the detection of a vertex that
belongs to DT i+1 is 1 +

∑∞
j=0 j

1
α

(

1− 1
α

)j
= α.

Descending one level. The cost of descending one level is O(α) [93, Lemma 4].
Number of levels. Let wi denote the number of edges crossed by viq in DT i; the
Distribution Condition gives wi = F(n/αi)‖viq‖ ≤ F(n/αi)‖v0q‖. If F(r) is a polynomial
function O(rβ), the expected number of levels that we climb before descending is less than
l = (logw0)/β, since we have

wl = F(n/αl)‖vlq‖ ≤ F(n/αl)‖v0q‖ = w0/α
lβ = w0/α

logw0 = 1

(where the big O have been omitted). Then, at level l the walk takes constant time.
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Please remind that in Section 8.3, we keep landmarks in order to improve the classical
walking algorithm, which leads to Keep, Jump, & Walk. Now, it is natural to improve the
climbing algorithm described above by adding landmarks in D0 as well, and starting the
climbing procedure from a good landmark. Since the complexity of climbing is O(logw),
to balance the different costs, the number of considered landmarks has also to be O(logw).
More exactly, we look at landmarks till the number of seen landmarks is smaller than the
expected cost of climbing and walking from the best landmark we have seen. Using the
hypotheses in Theorem 57, this cost is given by logw = O(log(1 + κ · F(n) · ‖pq‖)) =
O(log(n‖pq‖)); neither F(n) nor the constant in the big O need to be known to ensure
such a complexity. This approach is evaluated experimentally in the next section.

8.5 Experimental Results

Experiments have been realized on synthetic and realistic models (scaled to fit in the unit
cube). The scanned models used here: Galaad, Pooran’s Hand, and Turtle are
taken from the Aim@shape repository [1]; the scanned models are depicted in Figure 8.4.
The hardware used for the experiments described in what follows, is a MacBook Pro 3,1
equipped with an 2.6 GHz Intel Core 2 processor and 2 GB of RAM, Mac OS X version
10.5.7. The software uses Cgal 3.6 [5] and is compiled with g++ 4.3.2 and options -O3

-DNDEBUG. All the triangulations in the experiments are Delaunay triangulations. Each
experiment was repeated 30 times, and the average is taken. The walking strategy used
in the section is the stochastic walk.

We consider the following data sets in 2D: uniform square, points evenly dis-
tributed in the unit square; anisotropic square, points distributed in a square with
a ρ = x2 density; ellipse, points evenly distributed on an ellipse, the lengths of the axes
are 1/2, and 1. We consider the following data sets in 3D: uniform cube. Points evenly
distributed in the unit cube. anisotropic cube. Points distributed in a cube with a
ρ = x2 density. ellipsoid. Points evenly distributed on the surface of an ellipsoid; the
lengths of the ellipsoid axes are 1/3, 2/3, and 1. cylinder. Points evenly distributed
on the surface of a closed cylinder. Galaad, Pooran’s Hand, and Turtle. They
are data sets obtained by scanning a 3D model of a physical object.

Figure 8.4: Scanned models.
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Files of different sizes, smaller than the original model are obtained by taking random
samples of the main file with the desired number of points.

8.5.1 The Distribution Condition

Our first set of experiments is an experimental verification of the Distribution Condition.
We compute the Delaunay triangulation of different inputs, either artificial or realistic,
with several sizes; for realistic inputs we construct files of various sizes by taking random
samples of the desired size.

Figure 8.5 shows the number of crossed tetrahedra in terms of the length of the walk,
for various randomly chosen walks in the triangulation. A linear behavior with some
dispersion is shown. From this experiment, the walks that deviates significantly from the
average behavior are more likely to be faster than slower, which is a good news.

From Figure 8.5, the slope of lines best fitting these point clouds give an estimation of
F(n) for a particular n (namely n = 220). By doing these computations for several values
of n, we draw F(n) in terms of the triangulation size in Figure 8.6.

If F(n) is clearly bounded by a polynomial on n, then curves in Figure 8.6 should lie
below some line. Now, from the biggest slope of lines tangent to these different curves,
we evaluate the exponent of n. The points sampled on an ellipsoid give F(n) ∼ n0.52, and
on a closed cylinder give F(n) ∼ n0.51, which are not far from Conjecture 46 that claims
F(n) = O(n1/2). The points evenly distributed in a cube give F(n) ∼ n0.31, which is not
far from F(n) = O(n1/3). For the scanned models, the curves are a bit concave, with
a slope always smaller than 0.5; the Conjecture 46 is also verified in these cases, since
the Distribution Condition claims only an upper bound and not an exact value for the
number of visited tetrahedra.

8.5.2 k-last-points strategy

CGAL library [179] uses spatial sorting [88] to introduce a strong spatial coherence in a set
of points. For each data set considered above: (i) we construct Delaunay triangulations
of several sample (of 220 points) of the data set; then (ii) we locate 220 queries evenly
distributed inside the Delaunay triangulation of the samples with the k-last-point strategy
after spatial sorting the queries; finally (iii) we output the average time taken to retrieve
all the queries. Surprisingly, using a small k slightly improves on k = 1 which indicates
that even with such a strong coherence, k-last-points strategy is worthwhile. Table 8.1
shows the running times on various sets for different values of k, taking k = 4 always
improves on k = 1 and in some cases by a substantial amount.

8.5.3 Keep, Jump, & Walk and Keep, Jump, & Climb

In this section, we compare the performance of various point location procedures: classical
Jump & Walk (J&W); walk starting at the previous query (last-point); Keep, Jump,
& Walk described in Section 8.3 (K&J&W); descending the Delaunay hierarchy [93]
(Delaunay hierarchy); climbing and descending the Delaunay Hierarchy (Climb); and
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Figure 8.5: Distribution Condition. ♯ of crossed tetrahedra in terms of the length of
the walk. The number of points sampled in each model here is 220.
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k 1 2 3 4 5 6 k = 4 improves

2D
uniform square 1.70s 1.65s 1.65s 1.65s 1.66s 1.67s 2%
anisotropic square 1.64s 1.61s 1.60s 1.60s 1.61s 1.62s 1%
ellipse 3.07s 2.73s 2.62s 2.56s 2.54s 2.52s 17%

3D
uniform cube 3.57s 3.45s 3.41s 3.39s 3.40s 3.46s 5%
anisotropic cube 3.45s 3.35s 3.32s 3.31s 3.32s 3.39s 4%
ellipsoid 6.34s 5.71s 5.48s 5.38s 5.34s 5.44s 15%

cylinder 5.43s 5.12s 5.06s 4.99s 5.03s 5.01s 8%

Pooran’s Hand 3.81s 3.63s 3.58s 3.57s 3.56s 3.63s 6%

Galaad 4.19s 4.08s 4.04s 4.03s 4.07s 4.12s 3%
Turtle 2.15s 2.09s 2.07s 2.06s 2.05s 2.05s 5%

Table 8.1: Static point location with space-filling heuristic plus last-k-points
strategy. Times are in seconds.

Keep, Jump, & Climb (K&J&C).2 For the later, we use a number of log n landmarks.3

We consider the following experiment scenarios.
Scenario I — This scenario is designed to show how the proximity of queries relates

to the point location algorithms performance. LetM be a scanned model with 220 vertices
inside the unit cube, we first define Si, for i = 0, . . . , 20, the 2i vertices of M closest to
the cube center. When i is large (resp. small), points are distributed in a large (resp.
small) region on M. Then, we form the sequence Ai of 220 points by taking 220 times a
random point from Si (repetitions are allowed) and slightly perturbing these points. The
perturbation actually removes duplicates and ensures that most of the queries are strictly
inside a Delaunay tetrahedron and thus preventing filter failures. Figure 8.7 shows the
computation times for point location and different strategies in function of i.

2The behavior of these algorithms can be experimented in a javascript demo [85].
3 The technique described in Section 8.4 to optimize the number of landmarks is not justified when

the maximal number of landmarks: log n is small enough. For our models of 220 points we explore
systematically 20 landmarks.
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Scenario II — This scenario is designed to show how the spatial coherence of queries
relates with the point location algorithms performance. Consider a scenario where N
random walkers w0, w1, . . . wN−1, are walking simultaneously with the same speed inside
the unit cube containingM, and at each steps, queries are issued for each walker position.
Each random walker starts at different positions and with different directions. One step
consists of a displacement of length 0.01 for all walkers. In Figure 8.8, we compute
the time to complete all 220 queries generated by 1 to 20 random walkers, for different
strategies. One single walker means a very strong spatial coherence; on the other hand,
several walkers mean a weaker spatial coherence.

The walk strategy used in the experiments is the stochastic walk. To guarantee hon-
est comparisons, we use the same stochastic walk implementation for all the experiments:
the stochastic walk implemented in Cgal [223, 179].
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Figure 8.7: Results for scenario I (proximity of queries). Computation times of the

various algorithms in function of the number of points on the model enclosed by a ball centered

at (0.5, 0.5, 0.5) for: (a) Pooran’s Hand model; and (b) Galaad model.

From Scenario I (Figure 8.7). One can observe that Keep, Jump, & Walk actually
benefits from the proximity of the queries and is clearly better than Jump & Walk and
even better than the Delaunay hierarchy if the portion of M where the queries lie in
is below 6% of the total surface of M. Taking n3/8 landmarks instead of n1/4 performs
clearly better which is another experimental validation of Conjecture 46 (as announced
in Section 8.3). Not surprisingly, climbing and descending the hierarchy is slower than
just descending the hierarchy when queries are not closer one each other, and improves
with proximity. Finally, Keep, Jump, & Climb combines all the advantages and appears
as the best solution in practice for this experiment.

From Scenario II (Figure 8.8). With a single walker, the spatial coherence is
very strong and we expect a very good result for the last-point strategy since it highly
benefits from previous location without any overhead for maintaining any structure of any
case. This is indeed what happens, but Keep, Jump, & Walk and Keep, Jump, & Climb
remain quite close. And, of course, when the number of walkers increases, performance of
last-point strategy fall down, while Keep, Jump, & Walk/Climb still have good running
times. Observe that the Keep, Jump, & Walk with n3/8 landmarks does not seem to be
strongly dependent on the number of walkers.
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Figure 8.8: Results for scenario II (coherence of queries). Computation times of

the various algorithms in function of the number of parallel random walkers for: (a) Pooran’s

Hand model; and (b) Galaad model. Less random walkers mean strong spatial coherence (a

single walker pushes that to an extreme).

8.5.4 A Last Optimization: Structural Filtering

The exactness of the walk is certified by exact computations, which are classically acceler-
ated by arithmetic filtering. To speed-up the walking procedure even more, we can use a
filtering scheme called structural filtering, proposed by Funke et al. [120], which works at
a higher level than the classical arithmetic filtering scheme. It is based on the relaxation
of the exactness of the predicates; see Figure 8.9.

More precisely, the correctness of the visibility walk relies on the exactness of the
orientation predicates; the filtering mechanism accelerates their exact computation (see
Sections 2.1.2 and 2.2.4 for a review), but it remains slower than a direct evaluation
with floating-point numbers (without any certification of the sign). Structural filtering
extends this classical filtering mechanism to a higher level. Instead of certifying exactness
at each orientation predicate, the filtering mechanism just certifies that the returned
simplex contains the query. Since a walk is mostly dependent on the performance of the
orientation predicate, using a cheaper predicate improves the whole performance of the
walk. Therefore, a two-phases exact algorithm can be designed:

• The first phase consists in running the visibility walk algorithm with an uncertified
orientation predicate; we call this phase the relaxation phase. This phase either terminates
in some cell, and then returns that cell; or visits a number of cells equals to some given
threshold, and then returns the current cell being visited.4 This threshold mechanism
avoids a possible non-termination of the relaxation phase due to rounding errors. At the
end, this phase returns a cell (hopefully) not too far from the solution; see Figure 8.9.

• The second phase consists in running the visibility walk algorithm with a certi-
fied orientation predicate starting at the cell returned by the relaxation phase, until the
solution is found; we call this phase the certification phase; see Figure 8.9.

Point location strategies described in this work are compatible with such optimization,
and we could obtain around 20% speed-up for Pooran’s Hand and Galaad models in
our previous experiments; details are shown in Figures 8.10 and 8.11.

4Simplices that are not a cell, in general, can’t be caught in this phase: Inexact computations are
specially not reliable in degenerate cases.
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Figure 8.9: Structural Filtering. The certification phase of the structural filtering scheme,

is the classical arithmetic filtering scheme. Now, most of the steps are made with inexact arith-

metic (very fast). One may contrast this figure with Figure 2.1, which describes the usual arith-

metic filtering scheme.

8.6 Conclusion

Our aim was to improve in practice the performance of point location in triangulation
and we are mostly interested in
• queries with spatial coherence
• inside 3D triangulations
• in the Cgal library.

Before starting this work, our best data structure for this purpose was the Delaunay
hierarchy, which can handle 1M queries in a 1M points triangulation in about 15 seconds
for various scenarios. We proposed Keep, Jump, & Climb: It uses the Delaunay hierarchy
in a different way, which is never slower and often significantly faster than the classical
descent of the Delaunay hierarchy in our experiments. For a reasonable amount of spatial
coherence of the queries, running time are improved by a factor 2. (In Figure 8.8, the
running times vary from around 5s to around 10s depending on the query coherence;
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Figure 8.10: Scenario I: with and without structural filtering (SF).
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Figure 8.11: Scenario II: with and without structural filtering (SF).

this should be contrasted with the classical Delaunay hierarchy, which achieves around
15s.) By using structural filtering, we improve our performances by an additional 20%;
structural filtering is a filtering mechanism, which allows to ensure robustness to numerical
issues in a cheaper way than usual arithmetic filtering of the predicates.

One of our main tool in the theoretical analysis of our strategies is the introduction
of the Distribution Condition that relates the expected number of tetrahedra intersected
by a line segment with its length. It allows to analyze algorithms in a more general
context than Delaunay triangulation of evenly distributed points. For example, we can
derive from our work that the best size of sample for Keep, Jump, & Walk, when the
data points lie on a surface, is n3/8 and not the usual n1/4. Our experiments show that
the Distribution Condition actually corresponds to some practical cases.

From a theoretical point of view, climbing the Delaunay hierarchy provides a solution
to the problem of distribution-sensitive point location, which is much simpler and faster
than previous data structures [143, 91], but requires some reasonable hypotheses on the
point set.

As a final remark, we insist on the dichotomy between the straight and stochastic
walk. The straight walk is used in theoretical analysis for the simplicity and the available
previous results, while the visibility walk is used in practice, since it is faster and easier
to implement. Thus an interesting research direction is deriving stronger theoretical basis
for the stochastic walk.
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8.7 Open Problems

The Distribution Condition brings several questions for the computational geometers.
The first question is the one raised by Conjecture 46:

Problem 58. Do the Delaunay triangulations of n points evenly distributed on a bounded
δ-dimensional manifold embedded in the d-dimensional space behave similarly to points
evenly distributed in the Euclidean space of dimension δ with respect to the Distribution
Condition?

If Conjecture 46 has an affirmative answer, then walking on such triangulations does
not depend on the ambient dimension, but only on the manifold dimension.

Figure 8.5 and 8.6 invite us to believe in a positive answer even if the points are not
actually evenly distributed (they come from a laser scan), thus we may wonder what are
actually the hypotheses needed by the conjecture.

Problem 59. What hypotheses a sampling of a bounded δ-dimensional manifold embedded
in the d-dimensional space should verify such that the Delaunay triangulation satisfy the
Distribution Condition with F(n) = n1/δ?

Recently Connor and Kumar [79] has been able to produce a practical point location
algorithm in the plane and a k-nearest neighbor graph construction algorithm [78]. Their
work relies in a well-known hypothesis called the constant factor expansion hypothesis.
Let S be a finite set of n points in R

d, B(c, r) be the ball with radius r centered at c, and
NN k(q) the k-th nearest neighbor of q. Then the constant factor expansion hypothesis
requires that, for any point q lying in some region C and any k = 1, . . . , n, the number of
points of S enclosed by B(q, 2 · ‖qNN k(q)‖) ≤ γk, where γ = O(1). The constant factor
expansion hypothesis and the Distribution Condition seem to be related, and a positive
answer to the following question may enable the sharing of results derived from one or
another.

Problem 60. Is the Distribution Condition related, in some sense, to the constant factor
expansion hypothesis?

In the plane, by climbing and descending the Delaunay hierarchy, one can obtain a
o(log n) distribution-sensitive point location algorithm (in expectation and amortization),
as long as the triangulation scheme and distribution of points satisfy the Distribution
Condition with F = o(nǫ), ∀ǫ > 0, in the domain the queries lie in. Such triangula-
tion schemes with sub-polynomial Distribution Condition seems quite restrictive but they
indeed exist as shown by the example depicted in Figure 8.12.

Problem 61. What is the least restrictive set of hypotheses on the triangulation and on
the queries, such that a o(log n) distribution-sensitive point location algorithm is possible?

Problem 62. In the plane, is it possible to climb in the Delaunay hierarchy with a good
complexity and with less restrictive hypotheses than in Theorem 57?

Problem 63. Let ∆ be any triangulation scheme (such as Delaunay, Regular, Con-
strained, . . .), let ρ be any distribution of points with compact support Σ ⊂ R

d, and
let C be any region inside Σ with positive volume. For a triangulation T of n points
following distribution ρ and built upon the triangulation scheme ∆, does the Distribu-
tion Condition necessarily hold almost everywhere in C, for some polynomial F(n) (say
F(n) = O

(

n⌈d/2⌉)) ?
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Note that regions that does not satisfy the Distribution Condition exist; see Figure 8.12
(the circle). However, the region has no volume. We could not find an example of
triangulation scheme and distribution of points, such that the Distribution Condition
does not hold for some polynomial F(n), and a region with positive volume.

Finally, we insist once again in the dichotomy between straight walk and stochastic
walk.

Problem 64. What is the actual complexity of the stochastic walk?

Figure 8.12: Fractal-like scheme. The triangulation scheme above, for points uniformly

distributed on the circle, satisfy the Distribution Condition with F = O(log n) for any closed

region inside the circle. However, if we take a segment s intersecting the circle, then as n→∞,

s intersects the same number of cells regardless of its size, violating the Distribution Condition.
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Chapter 9

A Few Last Words

“Rien ne se perd, rien ne se crée, tout se transforme.” — Antoine-Laurent de Lavoisier.1

9.1 Summary

In this thesis, we proposed several new practical ways to speed-up some of the most
important operations in a Delaunay triangulation.2 We concentrated ourselves on the
following aspects:

• Efficiency. Solutions presented in this work have some added value; they are faster
than at least one important state-of-the-art solution.

• Robustness. Solutions presented in this work solve the problem they aim to solve,
for any valid input.

• Simplicity. Solutions presented in this work are simple to implement.

The simplest solutions we designed were often the ones with the best performance.
The following sections summarize our work.

1Nothing is lost, nothing is created, everything is transformed.
2We also obtained new theoretical results on the growth rate of some greedy spanning tree embedded

in R
d (see Chapter 6). However, this is a side-result, where the first purpose, in the context of this thesis,

is to provide enough background for Chapter 8.
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9.1.1 Delaunay Triangulations of Points On or Close to a Sphere

Idea: Plug slightly modified predicates into a slightly modified regular triangu-
lation to:
• build the Delaunay triangulation of the rays emanating from the center of
the sphere to the input points;
• build the convex hull of the input points.

In Chapter 3, we proposed two approaches for computing the Delaunay triangulation
of points on a sphere, or of rounded points close to a sphere, both based on the classic in-
cremental algorithm initially designed for the plane. We implemented the two approaches
in a fully robust way, building upon existing generic algorithms provided by the Cgal

library. The efficiency and scalability of the method was shown by benchmarks. The
second approach provides a two factor speed-up on the state-of-the-art approaches.

Chapter 3 brought the following important news: (i) when most of the input points
lie on their convex hull, then a two-dimensional structure is more adequate than a
three-dimensional one (for the incremental construction); (ii) otherwise, then a three-
dimensional is more adequate.

9.1.2 Filtering Relocations on Delaunay Triangulations

Idea: Compute a tolerance for each point representing how far it can freely
move without affecting the “Delaunayness” of the triangulation. Then when
relocating points, before any combinatorial change, check the tolerance in order
to see whether it is necessary to update the combinatorial structure of the
triangulation or not.

Updating a Delaunay triangulation when its vertices move is a bottleneck in several
domains of application. Rebuilding the whole triangulation from scratch is surprisingly
a viable option compared to relocating the vertices. However, when all points move
with a small magnitude, or when only a fraction of the vertices moves, rebuilding is
no longer the best option. Chapter 5 considers the problem of efficiently updating a
Delaunay triangulation when its vertices are moving under small perturbations. The
main contribution is a filtering scheme based upon the concept of vertex tolerances.

We conducted several experiments to showcase the behavior of the algorithm for a
variety of data sets. The experiments showed that the algorithm is particularly relevant
when the magnitude of the displacement keeps decreasing while the tolerances keep in-
creasing. Such configurations occur in convergent schemes such as the Lloyd iterations.
For the latter, and in two dimensions, the algorithm presented performs up to an order
of magnitude faster than rebuilding.

In three dimensions, and although rebuilding the whole triangulation at each time
stamp can be as fast as our algorithm when all vertices move, our solution is fully dynamic
and outperforms previous dynamic solutions. Such a dynamic property is required for
some applications, e.g practical variational mesh generation and optimization techniques.
The result in Chapter 5 makes it possible to go further on the number of iterations so as
to produce higher quality meshes.
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9.1.3 Distribution-Sensitive Point Location

Idea: For a batch of query points, the main idea is to use previous queries to
improve the location of the current one. Additionally, instead of descending
the Delaunay hierarchy from the highest level, in the classical way, one could
“climb” the hierarchy and then descend the hierarchy at a possibly lower level.
The combination of these two ideas leads to a novel point location algorithm
called Keep, Jump, & Climb, which appears to take the best of these ideas both
in theory and in practice. Analyses are possible by requiring the Distribution
Condition to hold when relevant.

Point location in spatial subdivision is one of the most studied problems in computa-
tional geometry. In the case of triangulations of Rd, we revisited the problem to exploit
a possible coherence between the query points.

For a single query, walking in the triangulation is a classical strategy with good practi-
cal behavior and expected complexity O(n1/d) if the points are evenly distributed. Based
upon this strategy, in Chapter 8, we analyzed, implemented, and evaluated a distribution-
sensitive point location algorithm based on the classical Jump & Walk, called Keep, Jump,
& Walk. For a batch of query points, the main idea is to use previous queries to improve
the location of the current one. In practice, Keep, Jump, & Walk seems to be a very
competitive method to locate points in a triangulation.

Regarding point location in a Delaunay triangulation, in Chapter 8, we showed how
the Delaunay hierarchy can be used to answer, under some hypotheses, a query q with a
O(log ♯(pq)) randomized expected complexity, where p is a previously located query and
♯(s) indicates the number of simplices crossed by the line segment s.

We combined the good distribution-sensitive behavior of Keep, Jump, & Walk, and
the good complexity of the Delaunay hierarchy, into a novel point location algorithm
called Keep, Jump, & Climb. To the best of our knowledge, Keep, Jump, & Climb is the
first practical distribution-sensitive algorithm that works both in theory and in practice
for Delaunay triangulations—in our experiments, it is faster than the Delaunay hierarchy
regardless of the spatial coherence of queries, and significantly faster (more than twice
speed-up factor) when queries have reasonable spatial coherence.

And last but not least, we introduced the Distribution Condition in Chapter 8, which
allowed us to analyze the algorithms above. Roughly speaking, a region C of a trian-
gulation T satisfies this condition if the expected cost of walking in T along a segment
inside C is in the worst case proportional to the length of this segment. This Distribution
Condition seems to be realistic; some indicatives are shown in Chapter 8.

9.2 Perspectives

• Parallelism. While parallelism did not take its place in this thesis, I believe in
its future. More precisely, I think that improvements optimizing the parallelization
aspects of an algorithm is more relevant to improve speed than fine-tuning constants.
Clock rates do not grow at the same pace as ten years ago. Instead, it seems
possible to increase the number of different processors working together to solve
one problem. Sometimes when memory are not necessarily shared between the
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processors, surprisingly the speed-up can be even proportionally higher than the
number of processors; this happens mainly because of the reduction of cache failures.

I believe however, that algorithm complexity remains the main source of speed-up.
The n term (the size of the input) will probably keep to increase with time. For
instance, when successive queries have no spatial coherence, Keep, Jump, & Walk
for n < 30, 000 is often faster than Keep, Jump, & Climb, however at n = 106 the
situation changes. Interesting meshes nowadays has between one and three orders
of magnitude more vertices than interesting meshes of twenty years ago.

• Simplicity. I believe that simplicity should be sought. During my thesis, the
simplest algorithms were often the best ones in practice; such a recurring fact should
not be simply demoted as coincidence.

In Chapter 5, we designed a filtering scheme for relocation in a Delaunay triangu-
lation based on the tolerance of a vertex. We designed several other more involved
tolerance regions, and filtering schemes; any of them being half as fast as the scheme
described in Chapter 5.

In Chapter 8, we proposed several distribution-sensitive point location algorithms
based on Keep, Jump, & Walk; however, Keep, Jump, & Walk (and the related
algorithms) was not the only strategy we sought to allow distribution-sensitiveness.
We also tried e.g., to include cells visited during a previous walk, and optimiz-
ing some locality criteria, as landmarks. The winner was once again the simplest:
Keep, Jump, & Walk.

• Filtering. All the works in this thesis benefit somehow from filtering. Approaches
in Chapter 3 benefit from static, semi-static and dynamic arithmetic filtering. The
method designed in Chapter 5 is a new filtering scheme itself. Chapter 8 benefit
from static, semi-static, dynamic, and structural filtering.

• Distribution Condition. The Distribution Condition allows one to relate the com-
plexity of a walk in the triangulation with the size of a segment. When strategies can
be expressed as several walks, than the complexity of the strategy relates with the
growth rate of the corresponding graph in the space; this is a very important short-
cut. The Distribution Condition seems to be a realistic condition (if not a necessary
condition), and it can be useful for: (i) further analyses of distribution-sensitive
algorithms, and (ii) a better understanding of the properties of a triangulation in
R

d. Perhaps the function F in the Distribution Condition is a nice descriptor of the
complexity of a given distribution of points in R

d for a triangulation scheme.

9.3 Open Problems

To conclude this work, I briefly list here some of the open problems stated along the run
I find particularly interesting.

• Problem 19 (Chapter 5): Is there in three dimensions a static filtering algorithm
which performs an order of magnitude faster than rebuilding in practice?
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• Problem 21 (Chapter 5): Is the Vertex Tolerance Filtering algorithm an instance of
a more general time stamp point relocation framework?

• Problem 58 (Chapter 8): Do the Delaunay triangulations of n points evenly dis-
tributed on a bounded δ-dimensional manifold embedded in the d-dimensional space
behave similarly to points evenly distributed in the Euclidean space of dimension δ
with respect to the Distribution Condition?

• Problem 63 (Chapter 8): Let ∆ be any triangulation scheme (such as Delaunay,
Regular, Constrained, . . .), let ρ be any distribution of points with compact support
Σ ⊂ R

d, and let C be any region inside Σ with positive volume. For a triangulation
T of n points following distribution ρ and built upon the triangulation scheme ∆,
does the Distribution Condition necessarily hold almost everywhere in C, for some
polynomial F(n) (say F(n) = O

(

n⌈d/2⌉) )?

• Problem 64 (Chapter 8): What is the actual complexity of the stochastic walk?
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