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Abstract

Many astrophysical plasmas, among them the solar wind, are collisionless. The typical
frequencies of the system dynamics are indeed much higher than the collision frequency,
so that the solar wind cannot be considered at local thermodynamic equilibrium. In this
context, kinetic and/or nonlinear processes (wave-particle and wave-wave interactions)
are of primary importance for the redistribution of the energy in the plasma. Kinetic
processes and nonlinear plasma theory have been extensively studied since the 1960s, but
observational evidence for such processes is still lacking.
In the particular case of electron and ion electrostatic coupling and in the context of space
plasma, the main goals of this thesis are (i) to understand the physics of kinetic and/or
nonlinear processes and (ii) to provide observational evidence of such processes.
The study is based on electric field observations and kinetic plasma simulations. In-
situ waveform measurements are provided by the TDS observing mode of the WAVES
instrument onboard the STEREO mission. The kinetic simulations were performed using
a 1D-1V Vlasov-Poisson code in the electrostatic approximation.
The results of this thesis are the following. (1) A method has been developed to measure
and to calibrate in-situ small scale density fluctuations, through the quasistatic fluctu-
ations of the spacecraft floating potential. (2) The first observational evidence for pon-
deromotive effects (which nonlinearly couples solar wind ion dynamics to high-amplitude
Langmuir waves) is obtained by analyzing a data set of density and electric field measure-
ments over more than three years. (3) This work also provides the first direct, complete
set of evidence for Langmuir electrostatic decay (an archetype of wave-wave interaction)
associated to a Type III burst. The resonant character of the interaction is shown in the
observations, by verifying the conservation of momentum and energy during the interac-
tion (relation of resonance), as well as the phase coherence through a bicoherence analysis.
A new expression for the Langmuir decay threshold is computed from the simulations,
taking into account the dynamics of the process, and is shown to be in agreement with
the observations. (4) Finally, the long time evolution of weak Langmuir turbulence (in
the Langmuir electrostatic decay regime) is shown to asymptotically end up with strong
turbulence and the formation of Langmuir cavitons, through the Vlasov-Poisson system.
This thesis shows the importance of a complementary approach between observations and
simulations.
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Résumé

De nombreux plasmas astrophysiques, dont le vent solaire, sont non-collisionels. Les
fréquences typiques des processus dynamiques sont grandes devant la fréquence de colli-
sion, de sorte que le vent solaire est hors équilibre thermodynamique local. Dans ce con-
texte, les processus cinétiques et/ou non-linéaires (interactions ondes-particules et ondes-
ondes) permettent de redistribuer l’énergie dans le plasma. Si les processus cinétiques et
la théorie non-linéaire des plasmas ont été intensivement étudiés depuis les années 1960,
des preuves observationnelles concluantes manquent encore.
L’objectif de cette thèse est double : d’une part comprendre les effets cinétiques et/ou non-
linéaires (en particulier dans le cas des couplages electrostatiques ions-electrons) et d’autre
part fournir des preuves observationnelles de leur existence dans les plasmas spatiaux.
Cette étude se fonde sur des observations in-situ et des simulations numériques. Les
mesures de formes d’onde de champ électrique sont fournies par l’instrument radio WAVES
embarqué sur les sondes STEREO. Les simulations numériques sont réalisées en utilisant
un code cinétique Vlasov-Poisson unidimensionel dans l’approximation électrostatique.
Les résultats de cette thèse sont les suivants. (1) Une méthode de mesure et d’étalonnage
in-situ des fluctuations de densité haute fréquence (0.1 - 1kHz donc dans un domaine non
accessible par les instruments particulaires) a été développée en utilisant les variations
quasi-statiques du potentiel flottant des sondes. (2) Des mesures simultanées de champ
électrique et de densité sur plus de trois ans de données fournissent la première preuve
observationnelle d’effets pondéromoteurs dans le vent solaire, permettant de coupler la
densité du plasma aux ondes de Langmuir de grande amplitude. (3) Ce travail fournit
également la première preuve observationnelle directe de l’instabilité de décroissance des
ondes de Langmuir, un archétype d’interaction onde-onde, associé à un sursaut de type III.
Le caractère résonant de l’interaction est validé grâce aux observations de forme d’ondes,
en vérifiant la conservation de l’impulsion et de l’énergie (relations de résonances), ainsi
que la résonance de phase à travers une analyse de bicohérence. Les simulations fournissent
une nouvelle expression du seuil d’instabilité de décroissance des ondes de Langmuir,
en accord avec les niveaux d’énergie observés. (4) Enfin, les simulations Vlasov-Poisson
montrent que l’évolution de la turbulence faible de Langmuir sur des temps longs tend vers
un régime de turbulence forte via la formation de structures cohérentes électrostatiques
(cavitons).
Cette thèse illustre l’importance d’une approche complémentaire observations-simulations
pour l’étude des plasmas spatiaux, ainsi que le rôle fondamental joué par les processus
cinétiques.
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Riassunto

Gran parte dei plasmi astrofisici, tra cui il vento solare, sono non-collisionali. In questi
sistemi infatti le frequenze tipiche della dinamica del sistema sono grandi in confronto alla
frequenza di collisione, e quindi questi sistemi non possono essere considerati all’equilibrio
termodinamico locale. In questo contesto, i processi cinetici e/o nonlineari (interazione
onda-particella e onda-onda) permettono una ridistribuzione dell’energia nel plasma. Nonos-
tante che sia i processi cinetici che la teoria nonlineare del plasma siano stati intensiva-
mente studiati a partire dagli anni sessanta, mancano ancora prove osservative precise che
tali processi abbiano effettivamente luogo nei plasmi spaziali.
Nell’ambito dei plasmi spaziali e più in particolare per quanto riguarda la dinamica elet-
trostatica ionica ed elettronica, questa tesi di dottorato si pone un obiettivo duplice: (i)
comprendere la fisica relativa ai processi cinetici e/o nonlineari e (ii) dare prove osservative
di quest’ultimi.
Lo studio si basa sia su osservazioni spaziali in-situ che su simulazioni numeriche. Misure
di forme d’onda del campo elettrico provengono dello strumento radio WAVES sulle sonde
STEREO. Le simulazioni numeriche sono state effetuate usando un codice cinetico Vlasov-
Poisson unidimensionale nel limite elettrostatico.
I risultati sono i seguenti. (1) È stato sviluppato un metodo di misura e di calibrazione in-
situ di fluttuazioni di densità a piccola scala, usando le variazioni quasistatiche del poten-
ziale della sonda. (2) Si è ottenuta la prima prova osservativa di effetti ponderomotrici
nel vento solare (accopiando nonlinearmente la densità del plasma alle onde plasma elet-
troniche, dette Langmuir, di grande ampiezza), analizzando più di tre anni di osservazioni
in-situ del campo elettrico e di densità. (3) La prima prova diretta del decadimento Lang-
muir elettrostatico (un archetipo di interazione onda-onda) è stata ottenuta associando
osservazioni e simulazioni. Le forme d’onde in-situ, associate ad un evento di tipo III, per-
mettono di osservare il carattere risonante dell’interazione sia attraverso la conservazione
del momento e dell’energia, che attraverso la coerenza di fase, per mezzo di un’analisi
detta di bicoerenza. Una nuova soglia per il decadimento Langmuir elettrostatico è ri-
cavata dalle simulazioni tenendo conto della dinamica dell’interazione, convalidata dalle
osservazioni. (4) Infine, le simulazioni Vlasov-Poisson mostrano che l’evoluzione della
turbolenza Langmuir debole su tempi lunghi tende asintotticamente verso un regime di
turbolenza forte tramite la formazione di cavitoni Langmuir.
Questa tesi illustra l’importanza strategica di un approccio basato sia sulle osservazioni
sia sulle simulazioni numeriche.
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Chapter 1

Introduction

1.1 Studying nonlinear space plasma dynamics... What

for?

One of the main difficulty in describing space plasmas dynamics is that the systems are
often out of equilibrium since collisions are infrequent. Indeed, for most astrophysical
plasma the mean free path is much larger than the other typical scale lengths that char-
acterize the plasma dynamics (gyration radii, skin depth, Debye length). In the absence
of collisions, what are the processes responsible for the relaxation of the system?

In a collisionless plasma, the particle velocity distribution function is not bound to be
Maxwellian, but may exhibit strong distortions. The distribution function distortions
may be source of free energy that feeds the development of different kinds of kinetic
instabilities. Temperature anisotropies are the source of several electromagnetic insta-
bilities (e.g. the firehose, mirror and ion-cyclotron instabilities for proton temperature
anisotropies, Weibel and whistler instabilities for electron temperature anisotropies, etc.),
while beams of charged particles are the source of electrostatic instabilities (e.g. Bune-
man and bump-on-tail instabilities) or electromagnetic instabilities (current filamentation
instability). Different kinds of waves are thus generated that extract energy from the un-
stable particle distribution function.
These waves can in turn interact with the particles and modify the distribution func-
tion. Wave-particle interaction is a nonlinear process that, in the absence of collisions,
"thermalizes" the plasma through energy exchange between the waves and the particles.
The collisionless plasma certainly does not finally reach a Maxwellian equilibrium, but at
least the unstable irregularities of the distribution functions are smoothed through wave-
particle interactions.
A second kind of nonlinear process, namely wave-wave interaction, describes the interac-
tion between different plasma oscillations. The energy exchanged between different waves
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enables to redistribute the energy at different time and/or spatial scales. In the context
of the relaxation of a collisionless plasma, wave-wave interactions are a way to transfer
energy from oscillations for which wave-particle interactions would be inefficient to other
oscillations where coupling with particles is this time efficient.

To put it in a nutshell, wave-wave interactions enable the circulation of the energy be-
tween different plasma waves while wave-particle interactions finally give the energy back
the distribution function. Nonlinear plasma processes are the channels that enable, in the
absence of collisions, to redistribute the energy at scales much smaller than the particle
mean free path. Nonlinear plasma processes has been extensively studied from the 70s
[Sagdeev and Galeev , 1969; Davidson, 1972; Hasegawa, 1975]. The key problem is to iden-
tify, for a given set of parameters and among the wide range of possible nonlinear plasma
processes, the efficient ones. To answer this question, we need both to (i) understand
the nonlinear processes, to this end numerical experiments are of great help, (ii) afford
observational evidence of nonlinear processes in space plasma.

We address this problem in the case of weakly magnetized plasmas, for electrostatic waves.
This work focuses on the wave-wave interactions that couple the plasma dynamics at the
electron scales, namely Langmuir waves, with the dynamics at ion scales, namely ion
acoustic waves. The nonlinear behavior of Langmuir waves is an archetype of nonlin-
ear effects in plasma physics. Such a study is interesting for two reasons: (a) because
Langmuir waves are ubiquitous in space plasma and (b) because the nonlinear behavior
simplified in the case of Langmuir waves since they are linearly polarized, electrostatic
oscillations. They can thus be described in the electrostatic approximation using a one
dimensional description. This aspect considerably simplifies the geometry of the problem
and hence the understanding of both observations and numerical investigations.

Such work is made possible owing to the presence of three complementary aspects: (i)
a typical example of out of equilibrium and weakly magnetized astrophysical plasma
accessible for in-situ measurements, namely the solar wind, (ii) a space instrumentation
that enables to resolve the electrostatic scales, in our case the WAVES experiment on
board of STEREO spacecraft, (iii) and the nowadays computational capabilities which
enable accurate and almost noiseless numerical investigations of nonlinear kinetic plasma
dynamics.
Throughout this Ph.D. thesis, I present observational results and numerical studies that
prove the occurrence of nonlinear processes in the interplanetary medium. In particular,
I focus my attention on the mechanism that enables to couple high frequency electron
plasma disturbances (Langmuir waves) to low frequency ion dynamics.



1.2. Modeling collisionless space plasma: the Vlasov equation 3

1.2 Modeling collisionless space plasma: the Vlasov

equation

As discussed above the solar wind is a collisionless medium. This means that usually the
phenomena of interest have time (and space) scales short with respect to collision time
(and space) scales; in this sense, the absence of collisions is a general feature of space
plasma. On these time scales, of the order or smaller than the ballistic transit time of the
particles, the motion of charged particles is dominated by the interaction with the waves
that are created by the deformation of the distribution functions induced by these motions.
This enables to describe the plasma dynamics by a mean field approximation. The kinetic
model of a weakly coupled plasma, which allows to take into account departures from
equilibrium, is the Vlasov equation, also called collisionless Boltzmann equation [Vlasov ,
1938, 1968].

The Vlasov equation is obtained from the Liouville equation for the n-particles distribution
function, reordered in term of the reduced distribution functions through the so-called
BBGKY hierarchy. The absence of collisions enable to truncate the BBGKY chain by
neglecting the two-particle correlation function, leading to the Vlasov equation for the
one-particle distribution function1. The Vlasov equation describes, in the collisionless
regime, the evolution of the plasma species distribution function:

∂fα

∂t
+
(
~v.~∇x

)
fα +

( ~F

mα

.~∇v

)
fα = 0 (1.1)

The α-th plasma species, composed by particles of mass mα, is characterized by the
distribution function fα(~x,~v, t) defined so that fα(~x,~v, t) ~dx ~dv is the number of particles
located in a phase space volume element ~dx ~dv centered on (~x,~v) at time t. ~F is the force
exerted on the α-th species particles, given by the Lorentz force due to the electromagnetic
field self-consistently generated by the plasma charge distributions and motions and all
other external forces.

In the following, the discussion is restricted to weakly magnetized plasma, i.e. to plasma
such that the plasma frequency is much higher than the electron cyclotron frequency.
We thus neglect the influence of the magnetic field at small scales and limit ourselves to
the electrostatic approximation. The force ~F is then associated with the self-consistent
electric field ~E:

~F = qα ~E = −qα~∇Φ (1.2)

where qα is the electric charge associated with the α-th plasma species and Φ is the electric
potential expressed in terms of the distribution functions through Poisson equation:

∆Φ =
1

ǫ0

∑

α

(∫

v

fαdv
)

(1.3)

1The derivation of the Vlasov equation is found in most textbooks on kinetic plasma physics or
statistical physics [Krall and Trivelpiece, 1973; Diu et al., 2001]
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with ǫ0 the vacuum permittivity.

The nonlinearities of the Vlasov-Poisson system arise from the last term
(

~F
mα
.~∇v

)
fα of

Vlasov equation 1.1, because the force ~F is a function of the distribution functions fα.
We will come back on that point in the next section, when describing some nonlinearities
of the Vlasov-Poisson system. Let us first recall some classic linear results.

An important physical mechanism associated with the kinetic description of plasmas is the
so-called Landau damping [Landau, 1946]. It is a linear process leading to the decrease of
the wave amplitude when the distribution function locally varies monotonically, in velocity
space, at velocity close to the wave phase velocity vph such that

(
v ∂f

∂v

)
|vph

< 0. In the
case of a monotonically decreasing distribution function, Landau damping is efficient since
there are more particles able to extract energy from the wave than particles transferring
energy to it. This case is illustrated in the top panel of Fig. 1.1 where the distribution
function is locally decreasing at the phase velocity of the wave. Particles traveling faster
(resp. slower) than the wave release (resp. extract) energy to (resp. from) the wave.

Figure 1.1: Schematic representation of a distribution function for which the wave at phase
velocity vph is kinetically damped by Landau damping (a) or excited by bump-on-tail instability
(b). In case (a) (resp. (b)), the energy gained from the waves by the slower particles is more
(resp. less) than the energy given to the waves by the faster particles. [Adapted from Tsurutani

and Lakhina, 1997]
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As already mentioned before, in a non-uniform and non-stationary situation, even an
initially Maxwellian plasma can be severely distorted from this Maxwellian state. In
particular, it is possible for a plasma to exhibit a beam in velocity space. Around a
given velocity, the particle distribution contains more fast particles than slow ones, as
shown is the bottom panel of Fig. 1.1. Such configuration is an example of unstable
distribution function, source for free energy for the development of the so-called bump-
on-tail instability, or inverse Landau damping, for configurations such that

(
v ∂f

∂v

)
|vph

> 0.
There is a net injection of particle energy into a resonant wave traveling with a phase
velocity vph slightly inferior to the beam velocity vb.
In the electrostatic case, described by the Vlasov-Poisson system, this kind of deformation
of the distribution functions may generate either Langmuir waves and ion acoustic waves2.
In the following, we will be interested in the weak nonlinearities that couple together this
two modes. Let us briefly describe these linear modes.

Ion acoustic waves are compressible oscillations of the plasma density (both ions and
electrons). The pressure force is coupled to a restoring electric field generated by a
(small) charge separation between ions and electrons. The dispersion relation of ion
acoustic waves, in the limit where the electron temperature is much larger than the proton
temperature, reads:

ω
S

=
k

S
cs

(1 + k2
S
λ2

D
)1/2

where k
S

is the ion acoustic wave vector, cs =
√
Te/mi is the ion sound speed and λ

D
the

Debye length, the screening length scale of a particle of charged e, defined by

λ
D
≡
√
ǫ0kB

Te

nee2
= vth,e/ωpe

with Te the electron temperature, mi the ion mass and k
B

the Boltzmann constant.
When the electron and ion temperature are close, ion sound speed get close to the ion
thermal speed. This situation corresponds to case illustrated in the top panel of Fig. 1.1,
for which much more resonant particles travel slower than the wave, extracting energy
from it. Ion acoustic waves are thus highly damped by Landau damping when electron
and ion temperatures are close.
For ion acoustic wavelengths much larger than the Debye length, the dispersion relation
reduces to ω

S
= kcs. This wave is equivalent to a sound wave for which the ions would

have the temperature of the electrons.

Langmuir waves, also called electron plasma waves, are high frequency oscillations of
the electron density over a fixed ion background. The frequency is high enough for the
ions not to have time to respond because of their higher inertia. The charge separation

2The wave vector associated with Langmuir waves and ion acoustic waves is parallel to the oscillat-
ing electric field associated with the wave. In this case, Faraday law shows that no magnetic field is
associated with the oscillation of the electric field, this is the origin of the term "electrostatic" waves.
The "electrostatic world" modeled by the Vlasov-Poisson system actually corresponds to the frequency
domain between the electron cyclotron frequency fce and the plasma frequency fpe.
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generates an electric force acting as the restoring force. In the cold plasma approximation,
i.e. when the thermal velocity of the plasma is much smaller than the phase velocity of
the wave, the Langmuir waves oscillate at the plasma frequency fpe = ωpe/2π. We recall
the expression of the (angular) plasma frequency:

ωpe =

√
nee2

ǫ0me

with ne the electron density, me the electron mass and e the elementary charge. When
taking into account the finite temperature of the electrons, a (small) frequency correction
appears, leading to the following dispersion relation:

ω2
L

= ω2
pe + 3k2

L
v2

th,e = ω2
pe(1 + 3k2

L
λ2

D
)

where k
L

is the wave vector, vth,e the electron thermal velocity. The Langmuir waves
propagate at the group velocity vg = 3v2

th,e/vφ, with vφ = ω
L
/k

L
the phase velocity.

Langmuir waves are found in space plasma wherever there are electrons beams propagating
parallel to the magnetic field. These electrons then radiate Langmuir waves through the
bump-on-tail instability (bottom panel of Fig. 1.1).
Plasma kinetic theory shows that unless the phase velocity is much greater than the
electron thermal velocity (ω

L
/k

L
>> vth,e, equivalent to k

L
λ

D
<< 1), the Langmuir wave

is damped by the already mentioned Landau damping (top panel of Fig. 1.1).

The Landau damping is a linear phenomenon that describes the local effect (in velocity
space) of the distribution function on the waves. However, it does not describe the
feedback of the same wave on the resonant particles at v ≃ vph. The self-consistent
picture requires to take into account the nonlinearities of the Vlasov equation, contained

in the term
(

~F
mα
.~∇v

)
fα.
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1.3 Nonlinear evolution of Langmuir waves

Landau damping (resp. inverse Landau damping) describes how a local monotonic vari-
ation of the distribution function close to the wave phase velocity affects the wave am-
plitude. In return, the wave also modifies the distribution function by transferring (resp.
extracting) energy to (resp. from) the distribution function. In the absence of binary
collisions, this nonlinear feedback of the waves on the particles is the mechanism that
lead to the relaxation of the distribution function.
The nonlinear Landau damping described the trapping of resonant particles in the poten-
tial well of the wave. Quasilinear diffusion of the distribution function in velocity space
then leads to the local flattening of the distribution function at velocities close to the wave
phase velocity (

(
∂f
∂v

)
|v≃vph

= 0), which eventually stops the energy exchange between the
wave and the distribution function. Other kind of wave-particle interactions can compete
with the quasilinear diffusion of the distribution function. For instance, for large enough
Langmuir waves, trapped particles may in turn interact with the Langmuir wave oscilla-
tion and generate coupled sideband oscillations (sideband instability).
However, wave-particle interactions are efficient in extracting energy from the waves only
when there are enough resonant particles traveling at the wave phase velocity v ≃ vph.
In the particular case of Langmuir waves, this means that the wave phase velocity is of
the order or a few times greater than the electron thermal velocity, corresponding to the
wavevector domain k

L
λ

D
> 0.1. This condition is not, however, valid in the solar wind.

Electron beams have typical beam velocities vb ≃ 10 − 50 vth,e that generate Langmuir
waves with phase velocities vph ≃ vb much greater than the electron thermal velocity.
This corresponds to wavevectors k

L
λ

D
∼ 10−2 − 10−1.

In the following I will consider the evolution of these small kL Langmuir waves. The
nonlinear evolution of Langmuir waves is a broad topic. I hereafter limit the discussion
to the electrostatic case and focus on the nonlinear feedback of Langmuir waves on the
ion background density.

Ponderomotive effects

Coupling between electrons and ions dynamics enable to transfer the energy from electron
time scales to ion time scales. Such nonlinear instabilities are described in the framework
of the Zakharov model [Zakharov , 1972]. The derivation of the Zakharov equations is
based on a simplified model3 involving fluid concepts. The model leads to two equations
coupling the high frequency dynamics of the electric field to the low frequency dynamics
of the plasma density. One of these equations describes the evolution of the electric field
envelop, including the nonlinearity through a term involving a density fluctuation, and
the other describes the evolution of the density fluctuation due to the ponderomotive force
(Eq. 1.4) exerted by the Langmuir waves electric field.

3The Vlasov description includes the Zakharov equations.
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The origin of the ponderomotive force is the following. Oscillations of a wave induces
an energy density proportional to the square of its amplitude, equivalent to a pressure.
When this energy density varies in space, a force proportional to its gradient is exerted
on the plasma. It is defined as

Fpond = − e2

4miω2
L

∂E2
0

∂x
(1.4)

where E0(x) is the slowly varying electric field amplitude in space. The ponderomo-
tive effect is an essential nonlinear ingredient for the description of modulated, or local-
ized, large-amplitude high-frequency oscillations of the electric field. Localized Langmuir
wavepackets with large enough amplitude can for instance dig ion cavities through this
ponderomotive force.

In the framework of the Zakharov model, Langmuir waves evolve through different kinds
of wave-wave instabilities (decay instabilities, modulational instabilities) depending on
the wavelength and amplitude. Figure 1.2, extracted from Zakharov et al. [1985], sum-
marizes the electrostatic instabilities of interest in the case of the nonlinear evolution of
a monochromatic Langmuir wave (seen in the energy-wavelength space). Typical param-
eters in the solar wind, my plasma laboratory, range in region (I) that corresponds to
a maximum growth rate for the Langmuir decay instability, a resonant three-wave in-
teraction coupling electron plasma waves (Langmuir waves) with ion density waves (ion
acoustic waves).

Three-wave coupling

Wave-wave interactions4 describe the nonlinear interactions between the (linear) eigen-
modes of the system. At least three waves are needed to describe nonlinear wave-wave
interactions. The electrostatic decay instability (Fig. 1.2, region I) is a three-wave mech-
anism, while the modulational instability (region II) is a four-wave coupling.

Let me introduce the basics of three-wave coupling with a simple model. I consider three
harmonic oscillators yi(t) with respective natural frequencies ωi (i = 1, 2, 3), interacting
through a weak quadratic nonlinear coupling via the coupling constant K. This would
represent the first order corrections to the linear theory.

∂2

∂t2
y1(t) + ω2

1y1(t) = Ky2(t)y3(t)

∂2

∂t2
y2(t) + ω2

2y2(t) = Ky1(t)y3(t)

∂2

∂t2
y3(t) + ω2

3y3(t) = Ky1(t)y2(t)

4Introductions on wave-wave interactions can be found in most nonlinear plasma physics textbooks
[Sagdeev and Galeev , 1969; Bellan, 2006].
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Figure 1.2: Location in the energy-wavelength space of different electrostatic instabilities for a
monochromatic Langmuir wave in an isotropic plasma. W/n0T is the Langmuir electric energy
normalized with the thermal energy, kλD is the wavevector, normalized with the Debye length,
corresponding to maximum growth rate. Approximate boundaries are as labeled: (I) electro-
static decay instability; (II) modulational instability; (III) modified decay instability; (IV)
subsonic modulational instability; (V) supersonic modulational instability. [Source: Zakharov

et al., 1985]
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Let us express each oscillator in term of a slowly varying amplitude in time Yi(t) and a
rapidly varying phase (ωit + φi) such that yi(t) = Yi(t) cos(ωit + φi). The right-hand
products KYi(t)Yj(t) cos(ωit+ φi) cos(ωjt+ φj) are seen for each oscillator as the sum of
two "external" oscillators at frequencies ωi + ωj and ωi − ωj:

1

2
KYi(t)Yj(t)

[
cos
(
(ωi + ωj)t+ (φi + φj)

)
+ cos

(
(ωi − ωj)t+ (φi − φj)

)]
.

If the beat due to one of this two "external" oscillators is close to the natural frequency
of the left-hand side oscillator

ωi ± ωj ≃ ωk

then the forcing is resonant and energy is exchanged between the oscillators.
This picture is easily extended to a propagating wave by adding its wavevector ki in the
phase (ωit+kix+φi). It leads to a second equivalent resonant relation on the wavevectors:

ki ± kj = kk.

Finally, in order for three-wave coherent interaction to remain efficient, the phase differ-
ence between the three waves should not vary much. This is the origin of a third resonant
relation that characterizes the phase locking between the waves:

φi − φj = φk.

A powerful test of this last conservation law is the bicoherence test, described in Ap-
pendix D. The three-wave coupling is thus a resonant nonlinear interaction.

I now consider two different initial conditions on the relative amplitude between the three
waves. First, consider two finite-amplitude oscillations much larger than the third one.
This last one grows from the nonlinear coherent interaction of the two preexisting oscil-
lations. This is equivalent to inelastic scattering.

Table 1.1: Different possibilities for electromagnetic (e.m.) and electrostatic (e.s.) nonlinear
three-wave interactions between electromagnetic waves, Langmuir waves and ion acoustic waves.
The last two processes, in bold, were studied in this Ph.D. work.

Mother High frequency Low frequency Common name
wave daughter wave daughter wave
e.m. e.m. Langmuir stimulated Raman instability
e.m. e.m. acoustic stimulated Brillouin instability
e.m. e.m. zero frequency self-focusing (e.m. caviton)
e.m. Langmuir Langmuir two-plasmon decay
e.m. Langmuir ion acoustic e.m. parametric decay instability

Langmuir e.m. ion acoustic Langmuir e.m. decay instability
Langmuir Langmuir ion acoustic Langmuir e.s. decay instability
Langmuir Langmuir zero frequency Langmuir caviton
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Now consider a single finite-amplitude oscillation much larger than the two others. Then
the large amplitude oscillation feeds the two other oscillations. The initially large ampli-
tude oscillation is called mother, while the two others are called daughters. This process
decreasing the amplitude of the mother oscillation through the resonant amplitude in-
crease of the daughters is called parametric decay. Damping effects may eventually be
added to this description, introducing a threshold on the mother wave amplitude to trig-
ger its decay.
Some possibilities for three-wave interactions between electromagnetic waves, Langmuir
waves and ion acoustic waves are shown in Table 1.1. We now concentrate on a partic-
ular case of three-wave coupling between Langmuir waves and ion acoustic waves: the
Langmuir electrostatic decay.

Langmuir electrostatic decay

Langmuir electrostatic decay (hereafter LED) – also called Langmuir decay instability or
parametric decay instability – is an archetype of wave-wave interaction in an unmagnetized
plasma. It is a resonant parametric instability that transfers energy from a finite amplitude
Langmuir wave L toward a second Langmuir wave L′ and an ion acoustic wave S through
a three-wave resonant interaction:

L→ L′ + S

From a quantum point of view, each Langmuir plasmon decays into a secondary Langmuir
plasmon and an ion acoustic phonon as illustrated in Figure 1.3.

An efficient three-wave coupling requires the fundamental equations of energy and mo-
mentum conservation to be satisfied:

ωL = ω
L′ + ω

S
(1.5)

~k
L

= ~k
L′ + ~k

S
(1.6)

where ω and ~k are the frequency and wavenumber of the waves, as well as the phase

Figure 1.3: Schematic representation of Langmuir electrostatic decay: a Langmuir plasmon
decaying into a daughter Langmuir plasmon and an ion acoustic phonon.
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locking of the waves:

φL = φ
L′ + φ

S
(1.7)

where φ is the phase lag of each wave.

The conservation of momentum and energy during the Langmuir electrostatic decay pro-
cess is illustrated in Figure 1.4. Combining the respective dispersion relations and the
relation of resonance 1.5 and 1.6, we obtain the frequencies and wavenumbers of the
daughter Langmuir wave L’ and ion acoustic wave S from a given mother Langmuir wave
L at frequency ω

L
and wavevector k

L
. Wavenumbers are of the same order, so that the

momentum is well distributed between the product waves, but since the frequency of
the ion acoustic wave is much smaller than the frequency of the daughter Langmuir, the
energy carried out by the phonon is small compared to the energy carried out by the
daughter plasmon, so that almost all the initial energy eventually goes to the daughter
Langmuir wave.

When observed on board of a spacecraft, equations 1.5 and 1.6 reduce to a single relation
for the Doppler shifted frequencies fDoppler = ωDoppler/2π:

fDoppler
1 = f1 +

~k1

2π
.~VSW

= (f2 + f3) +
(~k2 + ~k3)

2π
.~VSW

Figure 1.4: Relation dispersion of Langmuir waves (red line) and ion acoustic waves (blue line).
The curvature of the Langmuir waves dispersion relation has been voluntarily exaggerated for
illustrative purposes. This graphic illustrates the conservation of momentum and energy during
the electrostatic decay of the Langmuir wave L into the backscattered Langmuir wave L’ and
the ion acoustic wave S: (

ωL

~kL

)
=

(
ω

L′ + ωS

~k
L′ + ~kS

)
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leading to the following equation for resonance:

fDoppler
1 = fDoppler

2 + fDoppler
3 (1.8)

Equation 1.8 can be directly tested from in situ measurements which combine high spectral
and temporal resolution, as well as phase information. Only waveform measurements can
provide the required information. Such observations are available with the waveform
analyzer of the WAVES instrument on board the STEREO mission that will be discussed
in section 2.2.

Moreover, for the LED to develop, the electric field of the mother Langmuir wave has to
reach a critical value. The analytical calculation of this threshold has been discussed in
Nishikawa [1968]; Sagdeev and Galeev [1969]; Dysthe and Franklin [1970]; Bardwell and
Goldman [1976]; Robinson et al. [1993b] by considering three monochromatic waves.
The underlying idea is that for the instability to develop, the growth rate γ

LED
of the two

daughter waves must be higher than their own linear Landau damping rates γ
L′ and γ

S
:

γ
LED

>
√
γ

L′γS

The threshold for the parametric decay of a monochromatic mother Langmuir wave can
be expressed in term of the electric energy of the mother Langmuir wave, normalized to
the kinetic energy [Bardwell and Goldman, 1976]:

ǫ0E
2
L

nkBT
> 8

γ
L′

ω
L′

γ
S

ω
S

with ωL′ , ωS the angular frequency of the daughter waves. The threshold for electrostatic
decay has been estimated for typical solar wind parameters to be (ǫ0E

2)/(nkBT ) ≥ 2.5×
10−5 [Lin et al., 1986b]. However, Langmuir waves above this threshold are observed
without any signature of electrostatic decay.

If the theory relative to Langmuir electrostatic decay is well established since the 60s, first
observations of the ion acoustic decay product in laboratory experiments is astonishingly
recent [Depierreux et al., 2000], while no such ion acoustic decay product had yet been
found in space observations. We show the first observation of this nonlinear process in
space plasma in Henri et al. [2009]. Also, the threshold for Langmuir electrostatic decay
to occur has been revisited in Henri et al. [2010b] to consider the most realistic case of
localized, propagating Langmuir wavepackets in solar wind temperature conditions.
These two new results are discussed in section 3.2.

Transition toward strong Langmuir turbulence

Until now, I have discussed wave-wave interactions in term of the interactions between
linear modes. This describes weak nonlinearities, i.e. corresponding to electric fields large
enough for the nonlinearities to affect the dynamics of the system, but however not too
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high so that the description in terms of linear modes is still valid. In other terms, the
nonlinearities do not strongly modified the dielectric response of the plasma. This is the
framework of weak turbulence, in opposition to the so-called strong turbulence, when the
amplitude is so large that the linear dielectric response does not apply anymore. The
transition between weak and strong turbulence is generally described in term of (i) the
energy and (ii) the spectral width of the waves. For an initial Langmuir wave of high
enough energy (and/or large enough spectrum), the nonlinear dynamics is govern by
strong turbulence effects [Robinson, 1997; Goldman, 1984].

It is known that the modulational instability, found for k
L
λ

D
< 10−3 (see Fig. 1.2, p. 9),

can evolve toward strong turbulence through the collapse of modulated Langmuir wave
packets that eventually form Langmuir cavitons [Thornhill and ter Haar , 1978]. When
the Langmuir amplitude is high enough and/or its spectrum is large enough, the Langmuir
pump wave beats with itself (modulational instability) and modifies the equilibrium via
the ponderomotive pressure which acts to expel the plasma. The Langmuir wave may
then dig a hole in the plasma density which can in return focus and even trap the pump
wave. This is the origin of the so-called Langmuir caviton. It is a non propagating
coherent structure characteristic of strong Langmuir turbulence, formed by a localized
electric field oscillating at the plasma frequency self-consistently associated with density
cavities Zakharov [1972]. By "self-consistently" we mean that the localized oscillating
electric field is an eigenmode of the ion density cavity, while the ion density cavity is
itself sustained by the ponderomotive force generated by the high frequency electric field
oscillation.
In this picture the transition from weak to strong turbulence seems to be controlled by
the amplitude of the initial wave.

I report in Henri et al. [2010d], described in section 3.3, that the Langmuir electrostatic
decay can also evolve toward the formation of cavitons. I show that the transition from
weak to strong Langmuir turbulence is not only determined by an initial Langmuir wave
with strong amplitude and/or large spectral width, but that it also occurs for the long-time
weak-turbulent evolution of a monochromatic wave at moderate amplitude. It illustrates
the breakdown of long time evolution Langmuir weak turbulence, already discussed by
other authors for the general description of wave turbulence [Biven et al., 2001, 2003].
Conceptually, such transition occurs when the time evolutions have reached the time scale
of strong turbulence effects.
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Contents

This thesis is organized as follow. I first describe in chapter 2 the tools I used for my study:
STEREO observations in the solar wind (section 2.1) of both electric field (section 2.2)
and density fluctuations (section 2.3) and numerical kinetic simulations (section 2.4) to
interpret the observed data (section 2.5). To ease the reading, the details are given in the
appendices.
The chapter 3 is devoted to the comments on the main results. I first show observational
evidence of Langmuir ponderomotive effects (section 3.1), then evidence of Langmuir
electrostatic decay is provided by complementary observations and numerical simulations
(section 3.2). I finally discuss the long time evolution of weak Langmuir turbulence
(section 3.3). The published papers can be found there (section 5).
The last chapter discusses the consequences of this work and provide new perspectives for
future developments.
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Chapter 2

The complementary tools: from in-situ
observations to kinetic simulations.

Studies of space plasma nonlinear dynamics become possible owing to the favorable con-
junction of three different factors.

(i) We have a direct access to a natural plasma laboratory. Near-Earth space plasmas:
the ionosphere, the magnetosphere and, in the particular context of this thesis, the solar
wind are examples of collisionless plasma that are accessible for in-situ plasma exper-
iments. One could argue that plasma experiments may be enough to study the wide
range of plasma nonlinearties. If major advances have indeed been made through the
interrelationship between laboratory and space plasma experiments, "it is unrealistic to
expect the dimensional parameters corresponding to space plasma to be matchable in the
laboratory" [Koepke, 2008].

(ii) Space instrumentation, through in-situ measurements, gives access to the processes
at the kinetic scales. In particular, the electromagnetic fields are observed through high
cadence waveform measurements which enable observations of wave-wave interactions1.

(iii) Last but not least, we can accurately model kinetic plasma. Modern computers start
to reach the necessary computing power to investigate the nonlinear dynamics of plasmas
through noiseless simulations. The joint investigation of numerical experiments and space
plasma observations is essential to reveal the efficient nonlinear mechanisms taking place
in astrophysical plasma to redistribute free energy at small scales.

1Unfortunately, up to now, space instrumentation relative to particle experiments does not enable
to sample the distribution functions at high enough rate, at least in the solar wind, to directly observe
wave-particle interactions, which are the processes that finally thermalize, in some way, the plasma.
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simulations.

2.1 The solar wind: a natural laboratory for nonlinear

plasma dynamics

The solar wind is the expansion of the solar corona outward into the solar system. It
is a stream of fully ionized atomic particles, mostly composed of electrons and protons2

emitted outward from the sun, with a density of a few particles per cubic centimeter.
The solar wind has two components distinguished by their average speed.Representative
properties of the solar wind, as observed in the ecliptic plane at the heliocentric distance
of one astronomical unit, are summarized in table 2.1. Let us now give a quantitative
perspective on some typical plasma parameters.

Table 2.1: Representative Solar Wind Properties (Ecliptic Plane, 1 AU). The solar wind veloc-
ity, density, etc. are highly variable; the quantities represented in the table are illustrative only.
The temperatures given are kinetic temperatures.

Property Typical Value

Slow solar wind mean velocity 400 km.s−1

Fast solar wind mean velocity 800 km.s−1

Density n 1-10 cm−3

Proton temperature Tp 1-2 105 K
Electron temperature Te 1-5 105 K

Magnetic field 5 105 gauss (5 nT)
Composition electron, ions: 96% protons, 4% He++

The solar wind is an archetype of collisionless and weakly magnetized plasma flow. First,
the solar wind flow is collisionless. The typical Debye length is typically λ

D
≃ 10 m at

1 AU, so that the plasma parameter g = nλ3
D
, which represents the number of particles in

a Debye sphere, is g ≃ 109, equivalent to a Coulomb logarithm log g ∼ 20. In other words,
the solar wind plasma is weakly coupled. An equivalent point of view consist in realizing
that at 1 Astronomical Unit (hereafter AU), the solar wind mean free path is about
λmfp ∼ 1011 at 1 AU, i.e. of the order of the length scale of the system itself. The collision
frequency is then typically ν ∼ 10−5 Hz, much smaller that the other typical frequencies.
Since collisions are very unlikely on the typical length scale and time scales of interest, the
plasma components depart from Maxwellian equilibrium, exhibiting different anisotropies
and suprathermal components, confirmed by in-situ observations of electron [Montgomery
et al., 1968; Pilipp et al., 1987; Maksimovic et al., 2005] and proton [Hundhausen et al.,
1970; Marsch et al., 1982; Hammond et al., 1996] distribution functions. The particle
distribution function is usually described with a Maxwellian core of thermal particles, a
halo of superthermal particles and a strahl of magnetic field-aligned high energy particles
directed in the anti-sunward direction. On top of that, local disturbances may lead to

2The ion part of the solar wind is composed of 96% of protons (hydrogen nuclei) and 4% of α particles
(helium nuclei), with a trace of heavier nuclei.



2.1. The solar wind: a natural laboratory for nonlinear plasma
dynamics 19

the appearance of beam, or anisotropies. That is why studying the solar wind requires a
kinetic approach to explain the observed deformations of the distribution functions that
a fluid approach is enable to describe.
The solar wind can be considered weakly magnetized because the plasma frequency is
much larger than the gyrofrequencies. At 1 AU, the plasma frequency is about fpe ∼ 10
kHz, while the electron gyrofrequency is fce ∼ 100 Hz. The electrostatic domain thus
ranges from 100 Hz to a few kHz at the Earth radii. This is the range of frequency where
ion acoustic and Langmuir waves are found.

High energy electron beams propagating parallel to the ambient magnetic field are formed
by several electron acceleration mechanisms such as in shocks and magnetic reconnection
regions. These deformations of the distribution function then radiate Langmuir waves.
In this thesis I have illustrated the nonlinear evolution of beam-driven Langmuir waves
in two regions: in the Earth foreshock and during Type III bursts.

The solar wind flow is supersonic and superalfvenic; for example, in the ecliptic plane at
1 AU the flow velocity is typically 300 to 800 km.s−1, whereas typical sound and Alfvén

Figure 2.1: Observations of the electron distribution function with SWE instrument onboard
WIND spacecraft in a) the undisturbed solar wind and b) the Earth electron foreshock. Upper
panels: iso-contours of the electron distribution function f(v‖, v⊥), with v‖ (resp. v⊥) the velocity
parallel (resp. perpendicular) to the ambient magnetic field. Middle panels: reduced distribution
functions f(v‖). Bottom panels: parallel cut (solid curve) and perpendicular cur (dashed line)
through f(v‖, v⊥). [Source: Fitzenreiter et al., 1996]
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simulations.

speeds are of order 50 km.s−1. Since the flow is supersonic, collisionless shocks are formed.
Shock waves travelling outwards the Sun in the solar wind are formed when the fast solar
wind flow encounters the slow solar wind flow, or when plasma is ejected from the solar
corona after filament disruptions (CMEs). Standing bow shocks are also formed when
the solar wind is deflected by planetary obstacles. In the absence of collisions, the main
process that dissipates the energy at the shock is the reflection of particles upstream the
shock, forming electron and ion beams. Langmuir waves are observed where the electron
beams are formed in front of these shocks. This is for instance the case of the Earth’s
electron foreshock. It is the region upstream from the bow shock that is downstream of
the magnetic field lines tangent to the shock. The foreshock plasma includes convected
solar wind plasma as well as electrons reflected by the bow shock. The Earth’s electron
foreshock is easily accessible for in-situ space plasma experiments that detect the reflected
electron beams, as shown in Fig. 2.1. The apparition of the electron beam at negative
velocity is observed when the WIND spacecraft enters the electron foreshock.

A second example of process that leads to the generation of Langmuir waves in the solar
wind are the Type III bursts. During the violent reorganizations of intense magnetic
fields in and above the solar photosphere called solar flares, usually occurring in active
regions on the sun, a large amount of energy is release through radiation (especially UV
and X-rays) and acceleration of particles in the solar corona. High energy electrons (1-100
keV) are expelled from the solar corona and travel along the interplanetary magnetic field
lines, producing a bump on the local electron distribution function. Fig. 2.2 shows an

Figure 2.2: Electron distribution function, in the velocity direction parallel to the ambient
magnetic field, measured by ISEE 3 during the onset of a Type III burst at different times.
[Adapted from Lin et al., 1981]
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observational example of such deformation of the electron distribution function, when the
electrons coming from the solar corona crosses the spacecraft. Note the apparition of the
electron beam at vb = 2 1010 cm.sec−1. Due to this unstable configuration of the electron
distribution function, Langmuir waves resonantly grow via bump-on-tail instability such
that ω

L
/k

L
≃ vb.

During Type III events as well as in the electron foreshock, the beam-driven Langmuir
waves somehow convert to electromagnetic waves at the local electron plasma frequency
fpe (fundamental emission) or twice this value 2fpe (harmonic emission). I recall that
the plasma frequency scales as the square root of the plasma density n (ω2

pe = ne2/ǫ0me)
and the plasma density decreases with the heliocentric distance r because of the spherical
expansion of the solar wind (n ∝ r−2). In the case of Type III bursts, electron beams are
observed to travel for long distances (several astronomical units, across the solar wind).
As the high energy electrons, expelled during a flare, ballistically travel from the Solar
corona across the solar wind, Type III radio emissions simultaneously show a pronounced
time drift towards lower frequencies, as shown in Fig. 2.3. This is the main signature of
Type III radio bursts.

The physical mechanism that leads to the generation of these radio emissions has however
not yet been identified. Different models have been developed to explain the origin of the

Figure 2.3: Typical "dynamic diagram" of a Type III radio burst. The dynamic diagram shows
the time-frequency evolution of the radio emission (Type III observation from Cassini spacecraft,
image courtesy: Ron Gurnett, University of Iowa).
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simulations.

radio emissions found at the local plasma frequency and its harmonic.
A common point of these different models in explaining why the radio waves are emitted
at the plasma frequency, or its harmonic, is that the beam-driven Langmuir waves convert
to electromagnetic waves. This conversion can be linear or nonlinear.
Among the linear models, the origin of electromagnetic waves may be explained by lin-
ear mode conversion of Langmuir to electromagnetic waves induced by density inhomo-
geneities [Sakai et al., 2005; Kim et al., 2008]. An alternative approach considers the
electromagnetic radiation of trapped Langmuir waves in density holes [Malaspina et al.,
2010].
On the other part, nonlinear models start with the fact that the beam-driven Langmuir
waves are observed in-situ at amplitude large enough (ǫ0E2/nkBTe ≃ 10−3 − 10−4) to fur-
ther evolve through nonlinear processes. Different nonlinear conversion processes based
on wave-wave interactions has been proposed to generate the radio waves. In particular,
parametric instabilities provide an effective channel for nonlinear mode conversion starting
with the nonlinear evolution of large amplitude Langmuir waves. Some authors proposed
mechanisms based on four-wave interactions [Alves et al., 2002], but most involve three-
wave interactions, through the coupling of Langmuir waves with lower frequency waves,
such as whistler waves [Kennel et al., 1980; Kellogg et al., 1992a; Moullard et al., 1998;
Abalde et al., 2001] or ion acoustic waves [Wild , 1950; Ginzburg and Zheleznyakov , 1958;
Lin et al., 1986a; Hospodarsky and Gurnett , 1995]. Three-wave interactions that could
lead to the emission of radio waves are the following. Through electromagnetic coupling,
a mother Langmuir wave L decays into a low frequency wave LF and a transverse elec-
tromagnetic wave Tfpe at the local plasma frequency, observed as Type III fundamental
emission:

L → Tfpe + LF (2.1)

Through a two-step coupling process, the mother Langmuir wave L decays into an ion
acoustic wave S and a daughter Langmuir wave L′, which further couples with the mother
wave to generate a transverse electromagnetic wave T2fpe at twice the local plasma fre-
quency, observed as Type III harmonic emission:

L → L′ + LF

L′ + L → T2fpe

Different observations have favored this channel to convert Langmuir waves toward elec-
tromagnetic radio waves.
A number of authors have claimed that the spectral analyses of the electric field in the
solar wind provides some support in favor of the electrostatic decay process [Lin et al.,
1986b; Kellogg et al., 1992b; Gurnett et al., 1993; Thejappa et al., 1993, 1995; Thejappa
and MacDowall , 1998; Thejappa et al., 2003]. They based their conclusions on some char-
acteristics signatures like the simultaneous occurrence of Langmuir and low frequency
waves (like ion acoustic, whistlers or lower hybrid waves), or the comparison between
theoretical thresholds and the observed energy in the waves. However, as already pointed
out by Kennel et al. [1980] and Thejappa et al. [1995], the simultaneous occurrence of two
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waves in the spectrum doesn’t necessarily mean wave coupling. Indeed, the waves can be
generated by particles of different energy present in a same electron cloud. It is necessary
to check the resonance interaction between the waves in order to conclude in favor of the
three-wave coupling process.
Waveform observations of beat-like Langmuir wave packets had also been observed during
Type III bursts [Cairns and Robinson, 1992; Hospodarsky and Gurnett , 1995; Li et al.,
2003] and in the Earth foreshock [Bale et al., 1996; Soucek et al., 2005] and interpreted as
a signature of the Langmuir decay. However, no signature of the daughter low frequency
wave was found. The exact mechanism was still unclear and different interpretations re-
mained open for the identity of the low frequency wave: ion-acoustic, electron acoustic,
whistler.

To summarize, Langmuir electrostatic decay is of particular importance concerning the
generation of solar wind type III radio emission since it could be the first step of the
nonlinear conversion of Langmuir oscillations to the electromagnetic radiation at twice
the plasma frequency (T2fpe). If some observations of beam-driven Langmuir waves in
Type III events and in the Earth electron foreshock tend to favor the occurrence of
electrostatic decay, there is still no direct observational evidence of such coupling.
Without a simultaneous waveform observation of the three waves involved in the
coupling, it is impossible to verify the direct signature of the resonance interaction through
the resonant relations (Eqs. 1.5 and 1.6 p. 11) and in particular the phase-locking (Eq. 1.7),
a direct signature of the phase resonance between the waves.

This is a main topic addressed in this thesis, tackled by using both in-situ observations
of Langmuir waves and kinetic simulations of their nonlinear evolution. I describe in the
two following sections the waveform provided by the STEREO/WAVES experiment that
I used to simultaneously (i) observe the three waves involved in Langmuir electrostatic
decay in the solar wind and (ii) directly confirm the resonant interaction [Henri et al.,
2009, 2010b].
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simulations.

2.2 Observations of the electric field: STEREO/WAVES

experiment

The Solar TErrestrial RElations Observatory (STEREO) mission was launched on Octo-
ber 26, 2006. It is composed of two identical spacecraft, described in Appendix A. Both
spacecraft have an heliocentric orbit in the ecliptic plane at nearly 1 Astronomical Unit
(AU) [Kaiser et al., 2007]. The "ahead" spacecraft (hereafter STEREO A) being slightly
closer from the sun, it has a shorter orbital period than the Earth and hence drifts ahead
of the Earth (at an average rate of approximately 22◦ per year), while the "behind" space-
craft (hereafter STEREO B) is in a slightly larger orbit. As a result, STEREO A travels
faster than STEREO B so that, viewed from the Sun, the two spacecraft separates at an
average of 45◦ per year.

The STEREO observatory carries four complementary scientific instruments, described
in Appendix A. Among them, STEREO/WAVES (S/WAVES) experiment, build by a
team led by the Observatoire de Paris and the University of Minnesota, consists of (i)
three radio receivers (fixed, high and low frequency receivers) that track electromagnetic
disturbances through the heliosphere and (ii) a time domain sampler that measures in-
situ electric waveforms [Bougeret et al., 2008]. S/WAVES use three mutually orthogonal
wire antenna, each 6 meters long, with an effective length of about 1 meter, to measure
the electric field. Details on the electric antenna system of the S/WAVES instrument can
be found in Bale et al. [2008]. S/WAVES has inherited from the experience gain from
WIND/WAVES, a previous similar instrument mounted on the WIND spacecraft (1994).
Among the questions regarding Type III radio emission listed in Bougeret et al. [2008] at
the beginning of the STEREO mission, I will discuss the following ones:

• What is the mechanism of coupling between Langmuir waves and radio waves?

• What are the roles of linear and nonlinear processes in the evolution of Langmuir
waves and the production of Type III radiation?

To investigate these questions, two modes of observation are thus available: (i) remote
observation of radio waves, through three spectral radio receivers, which enables to follow
the propagation of the Type III radiosources, as a tracer for electron beams in the helio-
sphere and (ii) in situ measurement of electric waveforms with the Time Domain Sampler
mode (hereafter TDS).

This last mode produces rapid samples of electric field waveforms and is primarily in-
tended for the study of Langmuir waves. Practically, the TDS samples the voltage on
the S/WAVES antennas continuously. When the sampled amplitude exceeds a comand-
able threshold, a triggering system takes a snapshot with the largest part of the signal
at the center of the time series. A typical event from one channel is shown in Fig.2.5.
The TDS gathers events on four channels simultaneously: three orthogonal antennas
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Figure 2.4: Orientation of STEREO spacecrafts and definition of the spacecraft coordinates
(courtesy: Baptiste Cecconi).

monopole channels as well as a pseudo-dipole channel obtained by taking the difference
of two monopoles. By monopole, we mean that the measured voltage is the difference
between the antenna potential and the spacecraft potential that is usually considered
constant. The analog voltage signal is then filtered, the frequency gain being flat from
∼ 100 Hz to about the sampling rate. After filtering, the analog signals are digitized,
the S/WAVES A/D converter is accurately linear. This point is particularly important
for our study: it ensures that spurious nonlinear artifacts are not introduced, and make
possible the studies of nonlinear wave interactions. The largest signal obtained before
saturation is about 125 mV RMS. The sensitivity of the TDS depends on frequency, but
in practice the noise level for each channel is less than 10 µV RMS (at about 10 kHz) at
the input to the preamplifier. Events can be as long as 16,384 samples. For this kind of
long events, the memory provides storage for about 40 full events a day, each of which
has 4 channels. More events may be stored by defining shorter events.

Practically, the voltage measured on the three antennas is converted into an electric field,
and projected in the spacecraft coordinates, using the set of parameters called w/base caps
(Graz) by Bale et al. [2008, Table 13], in order to take into account the effective length and
direction of the STEREO antennas. In its final orbit the spacecraft coordinates (X,Y,Z)
are defined as follows: the X-component is sunward along the radial direction, the Z-
component is normal to the ecliptic plane, southward for STEREO A and northward for
STEREO B, and the Y-component complete the direct orthogonal frame as shown in
Fig. 2.4.

The available sampling times are listed in Table 2.2. Signatures of Langmuir waves are
accessible through configurations A and B, which resolve the plasma frequency (typically
10 to 30 kHz). An example of TDS Langmuir waveform is shown in Fig. 2.5. The results
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Table 2.2: Different available configurations on TDS.

Sample speed Corresponding time Pass band Maximum
(sample per sec) resolution (µsec) filter (kHz) duration (msec)

A 250,000 4 0.1 – 108 66
B 125,000 8 0.1 – 54 131
C 31,250 32 0.1 – 13.5 524
D 7,812 128 0.1 – 3.38 2,097

shown in section 3.1 are based on waveforms from both configurations, whereas results
from section 3.2 where obtained while the TDS was in the "B" configuration only. This
last configuration is of particular importance for our study. Waveforms are composed of
N = 16, 384 samples with an acquisition rate of 125,000 samples per second, i.e. a time
step of δt = 8 µsec for a total duration of 130 msec per event. In terms of frequencies, those
electric field waveforms enable to cover a range from 10 Hz to 60 kHz. Thus, signatures
from below the electron cyclotron frequency (typically 100 Hz in the solar wind) to the
plasma frequency are available. Moreover, the long total duration of each waveform allows
both to capture entire Langmuir wave packets and to access low frequency signals. This
key-point is essential for my observational investigation of wave-wave interactions that
couple high frequency Langmuir oscillations to much lower frequency waves, in particular
the ion acoustic waves.

Spacecraft dedicated to space plasma only are usually spinning spacecraft (e.g. Ulysses
and WIND), while they are three-axis stabilized when imaging instruments are carried

Figure 2.5: Example of TDS Langmuir waveform. The electric field is expressed in mV.m−1.
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on board (e.g. CASSINI and STEREO). In the case of spinning spacecraft, it is easier to
deploy wire-like or ribbon-like long (several tens of meters) and thin (a few millimeters)
antennas, while three-axis stabilized spacecraft can only carry smaller (a few meters) and
thicker (a few centimeters) rigid antennas. The longer the antenna, the more current is
integrated along the antenna axis, the larger the signal-to-noise ratio. An electric impulse
is associated with each particle impacting the surface, producing an antenna shot noise.
The larger is the total antenna surface, the more impacted charged particles are collected
increasing the shot noise and limiting the signal-to-noise ratio. That is one of the reasons
why long and thin antenna are preferred.
There are two different passive ways to measure a voltage with electric antennas. The
voltage measured by an antenna used in monopole mode is the difference between the
antenna potential and the spacecraft potential that is usually considered constant. The
voltage measured by an antenna used in dipole mode is the difference between two antenna
potentials; this kind of measure is thus independent from the spacecraft potential. The
shot noise is obviously even greater when the antenna is used in monopole mode. Since
this is the case of S/WAVES, the electron plasma noise at the plasma frequency is hidden
and cannot be used to deduce temperature and density from the quasi thermal noise
spectroscopy [Meyer-Vernet and Perche, 1989].

The TDS noise level in space condition is thus dominated by the shot noise resulting from
impacting charged particle on both the antennas and the spacecraft. It is typically about
0.1 mV. On the S/WAVES 1-meters equivalent length antennas, this noise level enable
to observe electric field signals with an amplitude larger than & 0.1 mV.m−1. Typical
Type III and foreshock Langmuir waves are observed above this value. But what for the
ion acoustic waves?

The electric field fluctuation δE
S

associated to an ion acoustic-like density fluctuation
δn/n is evaluated to δE

S
= (kBTe/e)kS

δn/n by considering a Boltzmanian equilibrium
of the electrons. Small scale (k

S
∼ 0.1 λ−1

D ) ion acoustic waves with δn/n ∼ 10−3 have an
associated electric field δE

S
≃ 10−4 V.m−1. Such electric field fluctuation would produce a

voltage δV ≃ 0.1 mV on the S/WAVES 1-meters equivalent length antennas. This voltage
is comparable to the level of noise. The electric field associated to the ion acoustic mode
is thus too low to be observed by S/WAVES. Instead, the density fluctuations themselves
have to be observed.

In order to study the coupling of Langmuir waves oscillations with the ion density back-
ground through solar wind observations, simultaneous observations of both the electric
field and the density fluctuations are required. We have described so far how the electric
field is measured in the solar wind, enabling to observe the Langmuir waves advected by
the solar wind. But how can we observe the ion acoustic waves, and more generally the
density fluctuations that nonlinearly couple with the large amplitude Langmuir waves?
A solution has been found using the fact that the spacecraft potential is affected by
the density fluctuations associated to the waves and crossing the spacecraft. Spacecraft-
plasma interaction is the key to directly observe the density fluctuations.
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2.3 Observations of density fluctuations, a new approach

Compared to former "time domain samplers", the TDS observation mode of the S/WAVES
experiment provides long time series. It therefore gives access to low frequency signals.
The low frequency signal recorded by the TDS is often identical on the three monopole
antenna channels. An example is shown in Fig. 2.6 where we plot the voltage measured by
the three monopole antennas, each plotted in a different color. This might be interpreted
as the signature of a longitudinally polarized wave along the bisectrix of the three an-
tennas. However, since this direction is related to the spacecraft geometry and is usually
different from any solar wind speed or magnetic field directions, such an explanation is
very unlikely.
More likely, as previously pointed out [Kellogg et al., 2009], at low frequencies the sig-
nal can be dominated by local density fluctuations in which the spacecraft is embedded,
inducing quasistatic changes in the spacecraft charging. In this case, the response is
expected to be identical on the three antennas.

I hereafter discuss the origin of this low frequency signal in the context of spacecraft-
plasma interactions and show how I have calibrated the measured spacecraft voltage in
function of density fluctuations crossing the spacecraft. I also discuss the validity range
of calibration. Detailed calculations for this calibration are given in Appendix B, a letter
has also been submitted [Henri et al., 2010c].

The body of a spacecraft embedded in a plasma emits and collects charged particles,
and its electric potential permanently adjusts to the variations of the ambient plasma,

Figure 2.6: Example of TDS waveform, expressed in antenna voltage in mV, with an identical
signal at about 100 Hz on all three monopole antenna channels, each plotted in a different color.
This signal is identified as a variation of the spacecraft potential, and interpreted in term of a
density wave crossing the spacecraft.
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in order to ensure that the currents balance is satisfied [Pedersen, 1995]. In the solar
wind, the spacecraft charging is mainly determined by the balance between the emission
of photoelectrons, due to ionizing photons from the sun, and the collection of ambient
solar wind electrons. I neglect the much smaller collection of solar wind protons and the
secondary emission of electrons. The balance between the outgoing photoelectron current
and the incoming solar wind electron current gives the equilibrium spacecraft potential
Φ

SC
, which is typically a few volts positive.

Quasi-neutrality holds at the considered frequencies (100 Hz to 1 KHz), so that the
electron density is here a tracer for the plasma density. Since the incoming solar wind
electron flux depends on the plasma density, a small variation in the plasma density δn
produces a change in spacecraft potential δΦ

SC
that is well approximated in quasistatic

equilibrium by:

δn/n = −
(

e

k
B
Tph

+
e

k
B
Te

1

1 +
eΦ

SC

k
B

Te

)
δΦ

SC
(2.2)

where Tph is the temperature of the photoelectrons escaping the spacecraft and Te the
solar wind electron temperature (see Appendix for derivation of Eq. B.5). This expression
contains an implicit dependance on both the plasma density and the spacecraft collecting
surfaces through Φ

SC
.

Several values of the photoelectron temperature Tph can be found in the literature [Ped-
ersen, 1995; Escoubet et al., 1997; Scudder et al., 2000; Pedersen et al., 2008]. They span
in the range in the range Tph ≃ [1−4]×104 K for different spacecraft covers material and
at different phases of the solar cycle. Since the photoelectron temperature is smaller than
the electron temperature (Te ≃ [1 − 2] × 105 K), δn/n is dominated by the first term in
Eq. B.5, so that it is roughly proportional to δΦ

SC
. Finally, density fluctuations crossing

the spacecraft can be retrieved from the observed fluctuations of spacecraft potential,
measured on monopole antenna simultaneously to the electric field, using:

δΦ
SC

≃ −(k
B
Tph/e) (δn/n) (2.3)

If density fluctuations can be measured this way, then we should be able to observe
a strong correlation between the level of density fluctuations and the level of Langmuir
electric energy (for large enough Langmuir wave amplitude) due to ponderomotive effects:
δn/n ≃ W

L
. I will describe such observations in section 3.1. I discuss in Appendix B

how this result constraint the photoelectron temperature to Tph ≃ 3 eV for the STEREO
spacecraft.

I have assumed quasistatic equilibrium to deduce the variations of spacecraft potential due
to fluctuations of the incoming plasma density. It holds as long as the solar wind density
fluctuates with frequencies lower than the typical charging frequency of the spacecraft
f

SC
≃ 1 KHz. Conversely, density fluctuations at frequencies higher than f

SC
will scarcely

modify the spacecraft potential.
The same discussion holds for the antenna: (i) its equilibrium potential depends on the
density of the surrounding plasma and (ii) a fluctuation of the density may modify its
equilibrium potential. However, the antenna collecting surface is much smaller and so is
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its charge frequency f
A
≃ 100 Hz.

For δn/n to produce a signal on a monopole antenna voltage, the density fluctuation must
modify the spacecraft potential without modifying the antenna potential. This means that
observable density fluctuations have frequencies fδn such that

f
A
< fδn < f

SC

The typical noise level on S/WAVES monopole antenna is about 0.1 mV, which means
that density fluctuation δn/n > 10−4 are observable. However, the selection criteria which
controls the choice of telemetered events favors the highest voltage events, high amplitude
signal will thus be preferentially telemetered. I will show in section 3.1 that signature of
density fluctuations are observed in TDS waveforms in the range 10−4 < δn/n < 10−2.

To summarize, I have provided a calibration of the relative density fluctuations modifying
the spacecraft floating potential (Eq. B.6). This method gives access to the level of
relative density fluctuations from long time series waveform observations on a monopole
antenna. This calibration has been applied to the STEREO spacecraft, showing that
density fluctuations δn/n > 10−4 in the frequency range3 [100 Hz – 1 KHz] leave identical
signatures on the different TDS waveforms.
At these scales, density fluctuations propagate in the solar wind at the ion sound speed
(cs ≃ 30 km.s−1 at 1 AU). Since it is much smaller than the solar wind speed, the
observed frequencies are dominated by Doppler effect4. When accounting this Doppler
shift, the frequency range of observation corresponds to solar wind density fluctuations
with wavelengths λ ∼ [500 − 5000 m], i.e. [50 − 500 λ

D
].

This discussion holds for signals (i) observed on a monopole antenna and (ii) created by
density fluctuations only5. The signal is then carried by the spacecraft potential and the
antenna acts as a ground. Measuring the electric field oscillations is basically the oppo-
site: the spacecraft potential acts as a ground and the potential antenna oscillate with
the electric field.
STEREO/WAVES antennas thus enable to measure simultaneously both (a) the Lang-
muir electric field, via high frequency variations of the antenna potential Φ

A
, and (b)

density fluctuations, via low frequency oscillations of the spacecraft potential Φ
SC

that
give identical signals on the different antennas.
Measures of the solar wind density through the spacecraft floating potential has already
been done by other authors on other spacecraft by using Langmuir probes. The new and

3Note that the TDS pass-band filter has its own low frequency cut-off at ∼ 100 Hz so that any signals
of lower frequency should be considered with caution.

4The (group and phase) velocity of ion acoustic waves, cs, being much smaller than V
SW

, the observed
frequency of ion acoustic waves are dominated by Doppler effect and reads:

ωobs
S

= ω
S

+ ~k
S
.~V

SW
≃ k

S
(cs + V

SW
cos θ ~B,~V

SW

) ≃ k
S
V

SW
cos θ ~B,~V

SW

5If a large electric field is associated with the density fluctuation, then the measured signal on a
monopole antenna would be much more complex to analyze.
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important aspect of this work is that we measure density fluctuations at much smaller
spatial scales, simultaneously to electric field measurements. This provides the first occa-
sion to directly observe the ponderomotive effects of finite-amplitude Langmuir waves on
the density background. I discuss such observations in the next chapter.

In-situ spacecraft observations in a moving plasma, as the solar wind, have two intrinsic
limitations. First, measures are performed at a single spatial point, where the spacecraft
is located. Second, the plasma moves in the spacecraft frame. This introduces a Doppler
effect that mixes up the time and spatial evolutions. A numerical model is a strong
support to in-situ observations, as it enables to investigate the nonlinear dynamics in
space and time, without these intrinsic limitations of in-situ spacecraft observations. I
discuss in the next section how the collisionless solar wind plasma is modeled numerically
through the Vlasov-Poisson system of equations. I then show in section 2.5 how such
simulations enable to understand the signal that would be recorded on the STEREO
antenna when a decaying Langmuir wave crosses the spacecraft. In particular, I show
how the density fluctuations associated with the daughter ion acoustic waves would affect
the voltage signal.
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2.4 Numerical model for the Vlasov-Poisson system

The Vlasov-Poisson model, previously described in section 1.2, is used for the simulations
described in sections 3.2 and 3.3.
The numerical scheme that solves these equations uses a partially eulerian approach. The
distribution function f at a given time t is known on a space velocity grid (xi, vj). Then
a Lagrangian step is used to follow f along the characteristics which at t + ∆t ends up
at (xi, vj). This characteristics started at time t at a phase space point (x⋆

i , v
⋆
j ) which

usually is not a grid point, so that some interpolation is needed to calculate f(x⋆
i , v

⋆
j , t) =

f(xi, vj, t+ ∆t). The numerical model uses a III order Van-Leer interpolation scheme.

The code integrates the Vlasov equation by means of the so-called "splitting scheme"
(i.e. it splits the Vlasov equation in several advection equations). The main points of
the numerical scheme can be described as follows. It uses a fundamental property of the
Vlasov equation is the Liouville theorem, which states that the phase-space distribution
function is conserved along trajectories of matter elements (the characteristics curves) in
phase space:

f
(
x(t), v(t), t

)
= constant

The numerical treatment for solving the Vlasov equation uses this property to advance
with time the distribution function in the (x,v) phase space. The numerical scheme of
the electrostatic version of the Vlasov code is based on the splitting scheme [Cheng and
Knorr , 1976]. It consists in exploiting the Liouville theorem in two steps, while evolving
the system during a time step ∆t, where the space and velocity advection terms are
advanced separately:

f sp(x, v) = f(x− v∆t/2, v, t)

f v(x, v) = f sp(x, v − ∂2φ

∂x2
∆t)

f(x, v, t+ ∆t) = f v(x− v∆t/2, v)

The distribution function f(t) is first spatially advected to f sp over half a time step, then
f sp is advected in the velocity space to f v over an entire time step, finally f v is spatially
advected to f(t + ∆t) over a second half time step. Such mapping of the distribution
function conserves the volume element in phase space δxδv, a property characterizing
symplectic transformations. This enables to conserve the Hamiltonian character of the
Vlasov equation. However, the projection of the distribution function on the grid points
at each time step breaks the symplectness of the numerical scheme by including some
dissipation at the spatial and velocity grid scales. In order to know the level of numerical
dissipation after each run, different invariants of the Vlasov-Poisson system are checked
to remain constant during the run.

The Eulerian approach is complementary to the Particle in Cell Lagrangian (PIC) one
that consists in approximating the plasma by a finite number of macro-particles. Both
approaches are based on the mean field approximation of plasma dynamics. The main
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advantage of the Eulerian approach is that it enables a direct and almost noise-free (even
in the nonlinear regime) investigation of the evolution of the electron and ion distribution
function.

The Vlasov-Poisson system is solved for the electron and ion distribution function, fe(x, v, t)
and fi(x, u, t). I here limit the discussion to the 1D-1V case that concerns the results
shown in sections 3.2 and 3.3. The equations are normalized with the following character-
istic electron quantities: the charge e, the electron mass me, the electron density ne, the
plasma (angular) frequency ωpe, and the Debye length λD, the electron thermal velocity
vth,e = λDωpe =

√
Te/me and an electric field Ē = mevth,eωpe/e. Then, the dimensionless

equations for each species read:

∂fe

∂t
+ v

∂fe

∂x
− (E + Einit

ext )
∂fe

∂v
= 0 (2.4)

∂fi

∂t
+ u

∂fi

∂x
+

1

µ
(E + Enoise

ext )
∂fi

∂u
= 0 (2.5)

Since I concentrate on mechanisms taking place in the frequency range fce < f < fpe, I
can neglect the influence of the magnetic field. The set of equation 2.4 and 2.5 is closed
with the Poisson equation where the charge density is computed from the distribution
functions.

∂2φ

∂x2
=

∫
fedv −

∫
fidu ; E = −∂φ

∂x
(2.6)

where v (resp. u) is the electron (resp. ion) velocity normalized to the electron thermal ve-
locity. In all the simulations presented hereafter µ = mi/me = 1836 is the ion-to-electron
mass ratio. φ and E are the self-consistent electric potential and electric field generated
by the plasma charge density fluctuations according to Poisson equation (Eq. 2.6). Einit

ext

and Enoise
ext are ’external’ drivers, added to the Vlasov equation that can be switched on

or off during the run. Einit
ext is an external forcing that enable to resonantly generates

a monochromatic wave or a wave packet propagating in a given direction. I decided to
generate the Langmuir waves with an external forcing instead of the classic bump-on-tail
instability in order to control the initial shape and amplitude of the wavepackets. Enoise

ext

is an external forcing that can generate ion density noise during the runs. Details on both
’external’ drivers Einit

ext and Enoise
ext are given in Appendix E.

The electron (resp. ion) distribution function is discretized in space for 0 ≤ x < Lx, with
Lx the total box length. The electron velocity grid ranges over −vmax ≤ v ≤ +vmax (resp.
−umax ≤ u ≤ +umax for the ion velocity grid). Finally, periodic boundary conditions are
used in the spatial direction.
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In all the runs the following initial conditions have been taken: electron and ion distribu-
tions functions are initially Maxwellian with respect to velocity, with a random noise in
density:

fe(x, v) =
e−v2

√
2π

[1 + ǫ
∑

k

cos(kx+ ψk)] (2.7)

fi(x, u) =

√
Θ
µ
e−

Θ

µ
u2

√
2π

[1 + ǫ′
∑

k

cos(kx+ ψ′
k)] (2.8)

where Θ = Ti/Te is the ion-to-electron temperature ratio set to Θ = 0.1 or 1 in the different
runs. Those values correspond to typical temperature ratios in the solar wind. ψk and
ψ′

k are random phases with a uniform distribution. A (small) initial Langmuir random
noise is needed for the parametric instability to develop. The parameter ǫ (resp. ǫ′) is the
amplitude of the initial electron (resp. ion) density level of noise. The parameters (ǫ,ǫ′)
are chosen so that the development of the instability occurs relatively rapidly, as Vlasov
codes have a very low level of numerical noise. When imposing such a random density in
the initial condition for the distribution functions, a charge separation is generated and
rapidly self-organise into a large spectrum of Langmuir noise. A "sea" of Langmuir waves
then fills the simulation box.

The code used in this work has been developed by A. Mangeney, F. Califano. A multidi-
mensional version of the code has been parallelized by C. Cavazzoni (CINECA, Bologna,
Italy). The numerical scheme as well as the parallelization strategy is described in Man-
geney et al. [2002]. To properly study the nonlinear interaction of Langmuir waves with
density fluctuations, I had to face several difficulties, some of them inherent to kinetic
simulations. In particular:

• Observed Langmuir waves generated in the solar wind have a phase velocity much
larger than the electron thermal velocity. They are thus not directly affected by
Landau damping. Since kinetic damping effects are not dominant in this case and
in order for us to better control the shape and amplitude of the waves, I decided
to generate such waves with an external forcing instead of the classic bump-on-tail
instability. I thus implemented such an external forcing that resonantly generates a
monochromatic wave or a wave packet propagating in a given direction.

• Conversely, solar wind ion acoustic fluctuations are expected to be kinetically damped
by Landau damping because Te ∼ Ti. They are nonetheless observed [Gurnett and
Frank , 1978; Kurth et al., 1979]. To generate such density noise during the whole
runs, I have implemented an external forcing that continuously inject a low level of
density fluctuations.
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The simulations discussed in this thesis are 1D and start with an homogeneous medium
that include the previously discussed random noise. However, some preliminary simula-
tions have been performed (i) with considering an initially inhomogeneous plasma, (ii) in
2D configurations. I did the following complementary investigations to prepare this new
step.

• In order to start the simulation with a macroscopic density fluctuation that does not
reorganize itself into Langmuir oscillations, a Maxwellian equilibrium in the initial
electron distribution function must be imposed.

• In order to control the isotropy of an initial 2D density fluctuation spectrum, the
rotational component of the random noise must be filtered out. I define a controlled
initial irrotational electric noise generated by an isotropic spectrum of density ran-
dom noise.

• In order to run bidimensional Vlasov simulations, much heavier because the distri-
bution function need to be advanced in time is 4D (2 dimensions in space, but also
2 dimensions in velocity), I did a six-week visit at the High Performance Computing
group at the Italian supercomputer center CINECA, to optimize the performance
2D-2V electrostatic Vlasov code. New simulations with this optimized version are
in preparation, but will not be discussed here.

In appendix E, I discuss the methods and schemes I have developed to overcome these
questions.

A kinetic model is a strong support to in-situ observations. It enables to investigate the
nonlinear dynamics in space and time, without the intrinsic limitations of observations
obtained in a moving frame, such as the solar wind, which measures are performed at a
single spatial point and mix the time and spatial evolutions.



36
2. The complementary tools: from in-situ observations to kinetic

simulations.

2.5 Example of interpretation of in-situ observations

through Vlasov simulations

Henri et al., Solar Wind 12 Proceedings, 2010

I now show an example of how the Vlasov simulation can be used to produce the expected
signal that STEREO/WAVES would record when crossing a decaying Langmuir wave
packet.

An initial Langmuir wave packet, generated by the "external" electric field Eext, propagate
in the simulation box and self-consistently evolves through the Vlasov-Poisson model. At
some point, the mother Langmuir wave decays into a daughter Langmuir wave and an
ion acoustic wave. Details on the simulation setup are given in Henri et al. [2010a]. I
concentrate here on explaining the observed voltage between the antenna used in monopole
mode and the spacecraft. The different kind of noise that affect the observations (shot
noise on the spacecraft and on the antennas, thermal noise, etc) will not be discussed, the
observed signal being here much higher than the noise level.

In order to compare the simulation results with in-situ waveform observations, we mimic
the conditions of observation onboard a spacecraft that would record, on monopole an-
tennas, a decaying Langmuir wave. We thus hereafter introduce in the presentation of
simulation results both (i) a spacecraft floating potential effect and (ii) a Doppler-shift
effect.
As previously developed in section 2.3, the antenna voltage in monopole mode is a combi-
nation of an electric field signal, affecting the antenna potential, and a density fluctuation
signal, affecting the spacecraft potential. To reproduce this effect in the simulation, we
consider an "equivalent signal" s(x, t), that mimic the voltage measured between the an-
tenna and the spacecraft, defined by s(x, t) = α E(x, t)+β np(x, t), with α the equivalent
in the simulation of a calibration parameter that gives the antenna potential variations
due to fluctuations of the electric field, and β the equivalent in the simulation of a cali-
bration parameter that gives the spacecraft potential variations due to fluctuations of the
density.
In-situ observed waveforms are Doppler-shifted because the plasma is moving in the space-
craft frame. A Doppler-shift effect is introduced in the simulation by considering a virtual
spacecraft moving in the simulation box measuring the "equivalent signal" s

(
x(t), t

)
at

position x(t) = x0 + V
S
t where V

S
is a constant velocity. We choose here V

S
= vth,e for

convenience.
This "equivalent signal" s

(
x(t), t

)
, obtained from the simulations, represents the voltage

signal that would be recorded by an antenna in monopole mode, such as the ones on
STEREO, when the spacecraft crosses a decaying Langmuir wavepacket advected in the
solar wind.

For an easy confrontation with observed waveforms, simulation results are presented in
Fig. 2.7 as the will be presented when describing the observations in section 3.2. The
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top left panel shows the electric field (grey) and proton density (black line) waveforms
from the simulation. Both are plotted in normalized units, as described in the simulation
model. The left bottom panel shows the wavelet transform of the "equivalent signal"
s(x(t), t).
The simulations show (i) a beat-like modulation of the Langmuir electric field at the
plasma frequency corresponding to the mother and daughter Langmuir waves, (ii) an ion
acoustic signal detected at lower frequency and centered where the maximum of the beat-
like Langmuir signal is observed.
The Fourier spectrum of s(x(t), t) is shown in the right top panel, with a zoom at the
plasma frequency in the right bottom panel. The frequency of the ion acoustic density
fluctuations as well as the separation between the frequency peaks of the two Langmuir
waves are essentially a Doppler-shift effect. The full line represents the total Fourier spec-
trum. Dashed and dotted lines distinguish the contribution of the ion density fluctuations
and electric field respectively. I will show that this is in full agreement with the observa-
tions.
The simulation thus shows how the high frequency part of the observed spectrum is dom-
inated by the response of the antenna to the fluctuations of the electric field, whereas the
low frequency part is dominated by the response of the spacecraft potential to density
fluctuations. This analysis and the results have been published in Henri et al. [2010a].
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Figure 2.7: Waveform, spectrum and wavelet transform from simulation results, as they would
appear when observed by spacecraft instruments when crossing a decaying Langmuir wave packet.
Top left panel: waveform in a moving frame: electric field (grey) and proton density (black).
Bottom left panel: Morlet wavelet transform of signal s(x(t), t). Top right panel: corresponding
Fourier spectrum (full line) with respective contribution of the density fluctuations (dashed line)
and electric field (dotted line). Bottom right panel: zoom on the double peak at the plasma
frequency. (Source: Henri et al. [2010a])
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2. The complementary tools: from in-situ observations to kinetic

simulations.
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Chapter 3

Results

In section 1 I have presented some arguments in favor of studies of nonlinear plasma
processes. As presented in section 2, my laboratory of investigation is the solar wind and
the methods are based on analysis of observations from STEREO and kinetic simulations.
I now present in this section the results of my work.

3.1 Observational evidence for Langmuir ponderomo-

tive effects

First observations of Langmuir ponderomotive effects using the STEREO
spacecraft as a density probe.
Henri et al. (2010), submitted to GRL

In this section, I give observational evidence for Langmuir ponderomotive effects in the
solar wind. I use simultaneous observations of the electric field and density fluctuations
through the method described in section 2.3.

We first isolate in the TDS data from November 2006 to December 2009, the waveforms
that contain both Langmuir oscillations and density fluctuations signals. TDS events that
contain Langmuir oscillations are selected by considering the waveforms with a localized
frequency peak between 5 kHz and 50 kHz. Waveforms with identical signal on the
three monopole antennas at low frequency (f< 5kHz) are identified as showing density
fluctuations. Details on this selection are given in Appendix C.

For each selected event, the high frequency part of the voltage fluctuations, associated
to Langmuir waves, is converted into electric field. The associated Langmuir electric
energy is normalized to the electron kinetic energy W

L
= (ǫ0E

2
L
)/(2nekBTe), where E

L
is
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the modulus of the observed Langmuir electric field, ne is the electron density deduced
from the Langmuir frequency and Te is the solar wind electron temperature. In the
absence of in-situ measurement, we use the typical value in the solar wind Te ≃ 105

K. The low frequency part of the voltage fluctuations, identified as a fluctuation of the
spacecraft potential Φ

SC
, is converted into relative density fluctuations δn/n via Eq. B.6,

assuming a photoelectron temperature Tph = 3 eV. The determination of the photoelectron
temperature is discussed in Appendix B.

Fig. 3.1 shows an example of TDS event where both density fluctuations (blue) and Lang-
muir oscillations, plotted in term of the associated electric energy (black), are observed.
In this waveform, the Langmuir energy is large enough (W

L
≃ 10−2) to generate density

fluctuations by ponderomotive effects. As expected by the nonlinear theory, the level of
density fluctuations is of the order of the electric-to-thermal energy ratio (the normal-
ized Langmuir energy). Note also that the steeper the Langmuir envelop, the deeper
the generated density fluctuations, as expected from ponderomotive theory described in
section 1.3.

Figure 3.1: Example of TDS waveform for which both Langmuir waves, plotted here in term
of the Langmuir normalized electric energy WL(t) (black line), and density fluctuations δn/n(t)
(blue line) are observed.

For each waveform, we plot the maximum density fluctuation and the maximum Lang-
muir electric energy normalized to the electron thermal energy W

L
. Following the energy

of the Langmuir waves, two different behaviors are observed (Fig 3.2).
For low energy Langmuir waves (W

L
< 10−4), the level of density fluctuations is indepen-

dent of the level of Langmuir oscillations. In other words, Density fluctuations are not
affected by the propagation of Langmuir waves. It corresponds to the linear regime of
Langmuir waves.



3.1. Observational evidence for Langmuir ponderomotive effects 41

At higher energies, the non-linear evolution of Langmuir waves affects the density back-
ground until it reaches at saturation a level of density fluctuations δn/n ≃ W

L
. The red

dashed line is the expected saturation level of density fluctuations forced by Langmuir
ponderomotive effects. The transition between the linear and nonlinear domain is ob-
served for a normalized Langmuir electric energy W

L
∼ 10−4.

The blue dotted lines show the 3σ detection level for both electric energy and density
fluctuations. Density fluctuations associated to high amplitude Langmuir waves are well
above the noise level.

The waveforms are separated between those observed between November 2006 and Febru-
ary 2007, while the two STEREO spacecraft were still in the Earth environment (black)
and those observed between March 2007 and December 2009, when the two probes were
in their final orbit in the free solar wind (red). Most of the nonlinear Langmuir waves are
found at the beginning of the mission, while the spacecraft performed several crossings of
the Earth electron foreshock, a region where Langmuir waves are known to be intense.
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Figure 3.2: Level of density fluctuations vs Langmuir energy in the Earth electron foreshock
(black diamond) and in the quiet free solar wind (red diamond). The red dotted line shows the
expected saturation level of density fluctuations generated by Langmuir ponderomotive effects.
The blue dotted line shows the 3σ detection level for both electric energy and density fluctuations.
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This analysis confirms the interpretation of the low frequency voltage signals as a signature
of solar wind density fluctuations (section 2.3). Details can be found in a submitted paper
[Henri et al., 2010c] reproduced at the end of the thesis.

I have here shown how simultaneous in-situ observations of electric field and density fluc-
tuations give observational evidence for non-linear coupling between Langmuir oscillations
and density fluctuations. It is the first time that ponderomotive effects in space physics,
out of ionospheric experiments, are directly observed. It illustrates the energy transfer
between different time scales in space plasma and shows that the coupling between high
frequency oscillations of the electric field and low frequency variations of density is effi-
cient. In the following I will concentrate on a particular case of resonant ponderomotive
effect: the three-wave interaction between Langmuir and ion acoustic waves.
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3.2 Evidence for Langmuir electrostatic decay

The electrostatic decay of Langmuir waves, described in section 1.3, is a resonant version
of Langmuir ponderomotive effects. As explained in section 2.1, three-wave coupling in
general and Langmuir electrostatic decay in particular may explain the physical mecha-
nism at the origin of radio emissions associated with Type III bursts.
I use (i) in-situ observations from the STEREO mission to show that three-wave cou-
pling between Langmuir and ion acoustic waves indeed occur during Type III events, (ii)
Vlasov simulations to compute the threshold for Langmuir electrostatic decay in typical
solar wind conditions. By coupling in-situ observation and kinetic simulations, we show
that the observed level of Langmuir energy matches the computed threshold for the decay
process, confirming that Langmuir electrostatic decay is indeed observed during Type III
bursts.

Evidence for wave coupling associated with Type III bursts
Henri et al. (2009), JGR (Space Physics), 114, 3103

Based on data obtained in 2007-01-14 by the two STEREO spacecraft, we give the first
direct observation of nonlinear three-wave interaction between Langmuir waves associated
with a Type III event, observed at ≈ 20 kHz, and ion acoustic waves, observed at ≈ 80−
250 Hz. Three complementary methods are employed: spectral, wavelet and bicoherence
analyses.

During the period of strong Langmuir activity associated with the Type III electron beam
crossing both spacecraft, a total of 37 TDS waveforms (19 from STEREO A and 18 from
B) were transmitted from the two spacecraft. A spectral analyses shows that among the
37 waveforms, 14 (10 on STEREO A and 4 on B) show two distinguishable Langmuir
wave peaks together with an ion acoustic wave1. An example of such waveform is shown
in Fig. 3.3 (top left panel) with the associated Fourier spectrum (top and bottom right
panels). For these waveforms, the frequency of the waves verifies the doppler-shifted
frequency relation expected in case of three-wave coupling:

fDoppler
L

= fDoppler

L′
+ fDoppler

S

which is a combination of both the conservation of energy and momentum:

ω
L

= ω
L′ + ω

S

~k
L

= ~k
L′ + ~k

S

A wavelet analyses verifies the simultaneous time occurrence of the waves, and gives the
average scale length of the coupling estimated to 18± 5 km, corresponding to about 2000
Debye lengths (example shown in the bottom left panel of Fig. 3.3).

1The others show one Langmuir wave.
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However, observing simultaneous waves is not enough to conclude that they are resonantly
coupled. The resonant interaction is effective if the relative phases is such that the waves
remain in phase for long enough during the coupling mechanism:

φ
L

= φ
L′ + φ

S
(3.1)

This concept is sometimes called phase locking in the literature. In the opposite, if the
relative dephasing of the waves changes in time to much, the energy exchange becomes
highly inefficient and the three-wave coupling does not occur. The bicoherence is a power-
ful statistical estimator of quadratic phase coupling, characteristic of three-wave coherent
interactions. Detailed on the bicoherence are given in Appendix D. A bicoherence analysis
is used to statistically test Eq. 3.1 on the whole series of data. It shows that the relative
phase remains constant from one event to another, thus confirming the phase resonance
between the three waves.

In the specific context of Type III burst, we also show that the ion acoustic waves coupled
to the Langmuir waves show a frequency drift with time consistent with the ballistic
evolution of the Type III-associated electron beam that crosses the spacecraft, as suggested
by Cairns and Robinson [1995].

This analysis and the results have been published in Henri et al. [2009], reproduced at
the end of this thesis.

Figure 3.3: S/WAVES observations of Langmuir electrostatic decay. Top left panel: typical
antenna voltage waveform. Bottom left panel: corresponding Morlet wavelet transform. Top
right panel: corresponding Fourier spectrum. Bottom right panel: zoom on the double peak at
the plasma frequency. (Adapted form Henri et al. [2009])
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Vlasov simulations of Langmuir Electrostatic Decay and consequences for
Type III observations
Henri et al., (2010) JGR (Space Physics), 115, 6106

In the previous work, I have provided observational evidence for three-wave coupling
between Langmuir waves and ion acoustic density fluctuations during a Type III burst.
However, these observations give no indication concerning the direction of the energy
transfer between the coupled waves. Such three-wave coupling could indeed be either
the signature of the scattering of the beam-driven Langmuir waves L by preexisting ion
acoustic waves S:

L+ S → L′

or the decay of the mother beam-driven Langmuir waves:

L→ S + L′.

The decay process being a parametric instability, it is necessary to compare the energy of
the wave to the instability threshold in order to discriminate between these two mecha-
nisms.

Solar wind observations show that (i) Langmuir waves are localized wavepackets and (ii)
that the electron and the proton temperature are of the same order.
Since the electron temperature is close to the proton temperature, the phase velocity
of ion acoustic waves get close to the ion thermal velocity, so that Landau damping
becomes very efficient. The parametric instability threshold is determined by the fact
that the daughter waves growth rate γ

LED
should be greater than the Landau damping

rates (γ
LED

>
√
γ

L′γS
). The high Landau damping of ion acoustic waves could limit or

prohibit the development of the ion acoustic waves and thus the initialization of the decay.
This decay, which is conceptually a fluid process, is thus regulated by kinetic processes.
Moreover, observed Langmuir waves are localized. This induces two other limitations for
the decay to occur. First, it decreases the resonance between the waves, by generating
multiple k-channels for the decay. Second, since the mother and daughter waves propagate
at different group velocities, the wavepackets are expected to separate at some point. This
dynamic process means that only a finite interaction time is available to transfer energy
from the mother wave to the two daughter waves, which may reduce the efficiency of the
decay process.

The evaluation of the parametric instability threshold have to take into account both
kinetic and dynamic effects. Unfortunately, analytical estimations of this threshold (see
section 1.3) hold for (i) monochromatic waves2, without considering the dynamics of
the wavepackets in physical space, and (ii) idealized temperature ratios: Te/Tp >> 1.
Unfortunately, the ion acoustic Landau damping rate in realistic temperature condition,
Te ≃ Tp, cannot be solved analytically. A Vlasov-Poisson approach has thus been used

2Tsytovich [1970] gives a comprehensive discussion of the Langmuir decay starting from a broad
Langmuir k

L
-spectrum, but without considering the dynamics of the wavepackets in physical space.
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to study the decay dynamics. It allows to consider self-consistently the decay of the
Langmuir wave together with damping effect on the product waves.

Langmuir decay is studied numerically, at temperature ratios Te/Tp = 1 and Te/Tp = 10,
starting both from a monochromatic Langmuir wave and a Langmuir wavepacket. Even
for an initial monochromatic Langmuir wave, the product waves are resonantly generated
over a broad range of wavenumbers, naturally producing narrow daughter wavepackets.
Saturation levels for the ion acoustic relative density fluctuations are of the order of the
ratio of Langmuir electric energy to the total kinetic energy, as expected, but growth rates
are observed one to two orders of magnitude lower than the analytical values deduced
from the analytical purely monochromatic case. The growth rate for Langmuir decay
products γ

LED
is obtained from simulations for different initial Langmuir amplitude E

L

and wavevector k
L

in the parameter range of observations:

γ
LED

= Γ Eα
L
kβ

L
(3.2)

The fitting parameters Γ, α and β are given in Henri et al. [2010b] and reproduced in
table 3.1 for the two temperature ratios considered.

Γ α β
Tp/Te = 0.1 0.026 1.11 0.59
Tp/Te = 1 0.025 1.82 0.30

Table 3.1: Numerical values for the fit for the growth rate of LED driven density fluctuations
in expression 3.2. [Source: Henri et al., 2010b]

Then this growth rate is used to interpret and deduce a threshold for localized wavepackets
in dynamical conditions. During the decay process, the mother wavepacket generates a
daughter wavepacket traveling at a different group velocity. Eventually the two wavepack-
ets separate after a time interval τint thus stopping the decay process. τint is evaluated
from the initial Langmuir packet width and wavevector. Therefore, Langmuir decay is
efficient only if the interaction time between the two wavepackets before they separate,
τint, is larger than the growth time for the daughter waves, γ−1

LED
. The effective threshold

for the electrostatic decay of a propagating Langmuir wavepacket with wavevector
k

L
and a packet width ∆ can be estimated by imposing τint = γ−1

LED
:

Ethreshold
LED

=
(6 k1−β

L

Γ∆

)1/α

(3.3)

A series of simulations of the decay of an initial Langmuir wavepacket has been performed
that validate Eq. 3.3.
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The threshold I obtain from Vlasov simulations of the electrostatic decay is well above
the threshold usually found in the literature (estimated for (i) monochromatic Langmuir
waves, (ii) considering an infinite available coherent interaction time) which is an unrea-
sonable low value (ǫ0E2/nkBT ≥ 2.5 × 10−5). With such a low value, most Langmuir
waves would decay, which is not observed.

Finally, we go back to S/WAVES observations to check if the observed level of Lang-
muir energy is large enough to trigger the electrostatic decay. The threshold expressed
in Eq. 3.3 is compared to the amplitude of Langmuir waves S/WAVES observations from
Henri et al. [2009].
Figure 3.4 displays the amplitude and wavelength of the Type III beam driven Langmuir
wave. Each square, together with error bars, represents a single waveform where electro-
static three-wave coupling is observed.
Decay threshold from Eq. 3.3 is overplotted for temperature ratios Tp/Te = 1 and 0.1. The
observed Langmuir electric field during Type III perfectly span in the range of electrostatic
decay effective threshold computed from Vlasov simulations.

This analysis and the results have been published in Henri et al. [2010b], reproduced at
the end of this thesis.

Figure 3.4: Observed Langmuir electric field amplitude vs. wavelength. The threshold for
Langmuir electrostatic decay computed from Vlasov simulations is overplotted for two values of
the temperature ratio Tp/Te = 0.1 and 1. (Adapted from Henri et al. [2010b])
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3.3 Low energy Langmuir cavitons, the breakdown of

weak turbulence

Henri et al., submitted to PRL (2010)

I now concentrate on the long-time evolution3 of the Vlasov-Poisson system for moderately
high initial amplitude, still corresponding to the weak turbulence domain ǫ0E2

L
/nk

B
Te ∼

10−3.

Though 1D-1V Vlasov-Poisson simulations, the long time evolution of Langmuir weak
turbulence self-consistently generates ion cavitons. Langmuir cavitons are coherent struc-
tures in equilibrium between the total kinetic pressure force and the ponderomotive force
created by the high frequency Langmuir oscillations. They are characteristic of strong
Langmuir turbulence and are widely thought to be generated at high energy and to satu-
rate when the Langmuir energy is of the order of the background plasma thermal energy.
Langmuir cavitons observed for long-time evolution of Langmuir waves saturate at low
energy (with an electric to kinetic energy ratio as low as three orders of magnitude), unlike
the widespread belief that such structures saturate at higher energy ratios.

Electrostatic coherent structures of typical dimension much greater that a few Debye
length are produced by the long time evolution of an initial relatively moderate amplitude
turbulence. In particular, it gives evidence that "large" and "shallow" stable cavitons also
exist, which could give new insight in the interpretation of space plasma observations of
localized Langmuir waves. This result can have an important impact on the interpretation
of space plasma spacecraft data and encourage the space physics community to revisit the
admitted conclusion that strong turbulent Langmuir structures are formed at too high
energy to be relevant in space plasma environments. This analysis and the results have
been submitted [Henri et al., 2010d], the submitted version in reproduced at the end of
this thesis.

Henri et al. [2010d] shows how the Langmuir electrostatic decay can also evolve toward
the formation of cavitons. It illustrates the breakdown of long time evolution Langmuir
weak turbulence, previously described for general wave turbulence in Biven et al. [2001].
The point there is that the system can fully evolve through weak turbulence effects, until
the time scale for strong turbulence is reached. At this point the system dynamics is
completely modified and govern by the evolution of spatially coherent structures, the
same as the one described by strong turbulence. The main difference is that the observed
cavitons saturate at much smaller energy and remain stable until the end of simulation.

3Note that long time simulations may lead to numerical artifacts generated by the accumulation of
numerical error during the run. In order to validate the numerical experiment, the conservation of Vlasov
invariants during the whole runs is always checked.
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Chapter 4

Conclusions and Perspective

Nonlinear plasma processes are the mechanisms that enable, in the absence of collisions,
to redistribute the energy at scales much smaller than the particle mean free path. Wave-
particle interactions in some way "thermalize" the plasma, while wave-wave interactions
redistribute the energy at different time and spatial scale between the different plasma
modes.
The main goals of this thesis were namely (a) to infer observational evidence of such
nonlinear process, in particular of electrostatic wave-wave interactions, and (b) to under-
stand the full coupling dynamics by modeling realistic propagating localized wavepackets
which limit the coherence of the interaction, These goals have been reached by using a
complementary approach based on (i) instrumentation considerations in the context of
spacecraft-plasma interactions, (ii) in-situ observations of simultaneous electric field and
density fluctuations waveforms and (iii) kinetic simulations.

Langmuir electrostatic decay: a common process in the solar wind

I concentrated in this thesis on observations associated to one Type III burst (2007-01-14
observed with both STEREO spacecraft). Since the beginning of the STEREO mission,
several Type III bursts have been observed by the STEREO/WAVES remote radio re-
ceivers. However, only a few bursts were associated with electron beams that actually
crossed the STEREO spacecraft. From November 2006 to December 2010, only three
Type III bursts have been observed with an unambiguous associated Langmuir activity
recorded by the in-situ measurements, as a signature of electrons crossing the spacecraft.
Similar waveforms and associated spectrum are also found in the TDS waveforms associ-
ated to the two others Type III bursts which electron beams crossed one of the STEREO
spacecraft (in 2009-07-18 for STEREO A, in 2010-03-06 for STEREO B), indicating that
the same process occur and confirming the interpretation of the first observation.

Evidence of electrostatic three-wave coupling is also found in TDS Langmuir waveforms
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associated to the Earth foreshock. An example of waveform showing Langmuir electro-
static decay, observed in the Earth foreshock at the begin of the STEREO mission, is
shown in Fig. 4.1 (top panel).
Since foreshock electron beams have smaller velocities than those associated to Type III,
the foreshock beam-driven Langmuir waves have smaller wavelengths. Theory for elec-
trostatic wave coupling shows that the observed frequency of the daughter ion acoustic
wave is larger in this case (typically about 1 kHz). The higher frequency of the daughter
ion acoustic signal gives a more dynamical picture of the coupling process. The bottom
panels of Fig. 4.1 show the spectrum computed in three different time intervals of the
waveform. The mother Langmuir wave at f

L
≃ 20 kHz is observed during the whole

duration of observation, while the daughter Langmuir wave f
L′ ≃ 21 KHz and the ion

acoustic wave (at f
S
≃ 0.9 kHz) appear simultaneously for times 30 < t < 85 msec. This

example illustrates how the electron foreshock could represent an ideal plasma laboratory
for dynamical observations of Langmuir electrostatic decay.
Contrary to what was observed during the Type III burst, the mother Langmuir wave is
this time Doppler-shifted toward lower frequency. This simply indicates that the mother
Langmuir wave propagate sunward, as expected since foreshock electron beams are com-
posed of reflected electrons accelerated at the Earth bowshock.

These different observational pieces of evidence of the same process in various regions of
the solar wind strongly suggest that the electrostatic decay of Langmuir waves is a general
feature of the nonlinear evolution of small kL Langmuir waves in space physics.

Origin of radio emissions at the plasma frequency

Langmuir electrostatic decay may be an essential ingredient in the mechanism that leads
to radio emission at the harmonic of the plasma frequency, observed during Type II and
Type III radio bursts as well as in the electron foreshocks. This mechanism, described
by Ginzburg and Zheleznyakov [1958], has remained so far a theoretical model to explain
the origin of these kinds of radio emission, but was poorly supported by observational
evidence so far. We recall that it is a two step mechanism, starting with Langmuir elec-
trostatic decay. The second part of this mechanism, namely the coalescence of the mother
and daughter Langmuir waves that generate a transverse electromagnetic wave T2f−

p
at

twice the local plasma frequency has not been directly observed. This would represent a
further step in order to conclude for the complete physical mechanism leading to radio
emissions at the harmonic of the plasma frequency. The efficiency of this electromagnetic
wave-coupling is also to be confirmed. It is necessary to develop electromagnetic kinetic
models to give a final answer to the question of the origin of radio emissions at twice
the plasma frequency. Such kinetic simulations of this electromagnetic coupling implies a
multidimensional model that would require huge computational capabilities.
Such computation is, however, not only a question of computer resources. Wave-wave
interactions are processes taking place over frequencies and scales covering several orders
of magnitude. A kinetic description may not be needed at every scale of the simulation.
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Figure 4.1: Signature of Langmuir electrostatic decay in the Earth foreshock. Top panel:
electric field waveform. Bottom panels: corresponding fourier spectrum at three different time
interval: [0–30], [30–85] and [85–131] msec, indicated by vertical lines in the waveform. The
faint dotted lines show the frequency of the three coupled waves. The electron cyclotron fre-
quency at the time of observation fce ≃ 100Hz is indicated by the thicker dotted line. Note the
simultaneous appearance of the two daughter waves in the time interval [30–85] msec.
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Some coupling interface between fluid and kinetic description of the plasma could provide
an efficient approach to numerically model such processes. New computational scheme to
define this interface are thus to be developed.

A second direction of research concerns the origin of the fundamental radio emission Tf−
p

at the plasma frequency. The "classical" theoretical mechanism is the electromagnetic
decay, through which a mother Langmuir wave decays into a backscattered ion acoustic
wave and a transverse radio wave. This mechanism has not been tested, in part because
no fundamental emission was associated with the Type III burst I studied. The two other
Type III observed by STEREO with in-situ associated Langmuir waves could enable to
study this other coherent wave-wave process. Methods similar to those described in this
work could be used.

Limits of the model

The nonlinear interaction of Langmuir waves with the ion density background through
the ponderomotive force have been studied through a (i) 1D model (ii) in the electrostatic
approximation, and (iii) by considering an initially homogeneous medium.

A multidimensional model of wave-wave interactions would open other energy transfer
channels. The conservation of momentum, leading to the resonant relation on wavevectors
~k1 = ~k2+~k3, indeed provides different directions for the energy redistribution of the mother
wave.

When introducing the presence of a weak magnetic field (so that ωce << ωpe), the physics
for electrostatic decay is barely modified. But it opens, again, a wide range of possible
wave-wave interaction channels for the evolution of Langmuir waves. It is for instance
possible for the Langmuir wave to couple with much lower frequency waves, such as
whistler waves, shear Alfven waves, fast magnetosonic waves, and kinetic Alfven waves
[Luo et al., 1999; Abalde et al., 2001; Chian et al., 2002; Voitenko et al., 2003].

In my work, I have studied the reaction of the ion density background to the high am-
plitude electric field due to ponderomotive effects, considering an initially homogeneous
plasma. However, the solar wind plasma is known to be inhomogeneous. How would these
initial density fluctuations modify the dynamic of Langmuir waves?
First, it introduces the scattering of the Langmuir waves propagating on an inhomoge-
neous background. In addition, it also modifies the generation of the beam-driven by
Langmuir wave. This question is linked to an unanswered question concerning Type III
bursts electron beams generated in the solar corona is the so-called "Sturrock paradox"
[Sturrock , 1964]: why does the electron beam remain "unstable” over 1 AU of transit?
The behavior of Langmuir waves in an inhomogeneous medium is of particular interest,
in particular in the growth stage of the beam-driven Langmuir wave. As pointed out by
several authors density fluctuations can put the beam out of resonance with the generated
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Langmuir waves and enable its propagation over long distances. A statistical approach of
this effect has been developed in the framework of the stochastic growth theory [Robinson,
1993; Robinson et al., 1993a]. Numerical kinetic investigations of the bump-on-tail insta-
bility for an inhomogeneous medium could provide direct tests on the stochastic growth
theory.

Studying wave-wave interactions with future space experiments

Future space plasma experiments are already in preparation. Space missions such as
Solar Orbiter, Solar Probe, etc, have been proposed to further investigate space plasma.
What would be the ideal spacecraft for the investigations of coherent nonlinear wave-wave
interactions?

First of all, three-wave couplings are resonant coherent processes. I stress that the phase
coherence is the signature that enables to identify coherent wave-wave interactions. Test-
ing the phase coherence requires that the data conserves the information on the phase
of the signal. Waveform measurements are the only way to identify the phase coherence
during the coupling process. It is thus mandatory to keep such measurements capabilities
in future missions.

Second, to study nonlinear physics by means of observations, it is necessary to make
sure that the observed nonlinearities are parts of the physical mechanisms, and have not
been introduced by the instrument itself. Electronic should be free of spurious nonlinear
behavior that would contaminate the data, in particular through the A/D converter. This
is one of the improvements made from WIND/WAVE/TDS to STEREO/WAVE/TDS,
that should be kept in mind in future similar space plasma experiments.

Wave-wave interactions couple oscillations at different frequencies. The frequencies of the
different coupled waves can span over several order of frequencies. It is thus necessary to
have long time series, associated with wide filters, to be able to compare the dynamics at
high and low frequencies. Ideally the frequency range [1 Hz – 50 kHz] would cover signals
from below the electron cyclotron frequency (∼ 100 Hz) to above the plasma frequency
(∼ 10 kHz). This could enable to address the question of the possible coupling between
electrostatic waves and electromagnetic waves (such as the Langmuir – whistler coupling).

The compressible oscillation of a weakly magnetized plasma in the frequency range fce <
f < fpe are the ion acoustic waves. They are associated oscillations of the ion (and
electron) density and the electric field. How to observe ion acoustic signals? This depends
on the context of the mission. If the spacecraft is spinning, then long electric antennas can
be incorporated. The ion acoustic oscillations will be detectable through their associated
electric field for antenna length l & 100 m (see discussion p. 27). If the spacecraft is three-
axes stabilized, as it is requires when imaging experiments are parts of the space mission,
shorter and more rigid electric antennas must be used. The electric field associated to ion
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acoustic waves is then no more detectable. However, as shown in Henri et al. [2010c] and
discussed in section 2.3, ion acoustic oscillations are detectable through their associated
density fluctuations that affect the equilibrium electric potential of the spacecraft. Electric
antennas in monopole mode conserve the information on the spacecraft potential, but
antennas in dipole mode cancel it. That is why it would be interesting to keep the
monopole antenna voltage if using short antennas, in order to be able to observe the ion
acoustic density fluctuations.

The new possibility to directly observe density fluctuations (section 2.3) has enabled to
study some nonlinear interactions between Langmuir oscillations and the density back-
ground. Those density fluctuations are observed at small scales, in the range λ

S
∼

[50, 500] λ
D
, close to the dissipation scales of turbulence. This new way to observe small

scale density fluctuations could give new insight into solar wind turbulence dissipation
processes.

I have here concentrated on the observation of wave-wave interactions through obser-
vations of the electric field and the ion density. Considering these two observables is
pertinent for frequencies larger than the cyclotron frequencies. To extend wave-wave
studies at smaller frequencies, observations of the magnetic field would be needed. All
development of high frequency, until a few 100 Hz, magnetic field waveform instrument
is thus to be supported.
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Observations of Langmuir ponderomotive effects

using the STEREO spacecraft as a density probe.
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Density fluctuations, nonlinearly coupled by pon-
deromotive effects to Langmuir waves with energy
(ǫ0E

2)/(nk
B

T ) > 10−4, are directly measured in the so-
lar wind for the first time. High frequency density fluctu-
ations in the solar wind are measured using the observed
quasistatic fluctuations of the STEREO spacecraft float-
ing potential in the frequency range where the spacecraft
floating potential is in quasistatic equilibrium between pho-
toionization and electron attachment, whereas the potential
of the antenna, of much longer equilibrium time scale, is
blind to the density fluctuations.

Nonlinear coupling between electron and ion dynamics
enable to transfer the energy from electron to ion time scales.
In the electrostatic case, such nonlinearities are described by
the Zakharov model [Zakharov , 1972] which shows that high
amplitude Langmuir wave packets can generate density fluc-
tuations through a ponderomotive force. If such processes
have been extensively studied from the 70’s, observational
evidence in space plasma is still lacking. The main reason
is the difficulty to simultaneously observe electric field and
plasma density variations at comparable spatial scales. We
describe in this letter a method that allows such simultane-
ous observations. To our knowledge, this is the first direct
quantitative study of density fluctuations nonlinearly cou-
pled to finite amplitude Langmuir waves in space, based on
simultaneous observations of electric field and density fluc-
tuations.

The voltage measured on an electric antenna used in
monopole mode is the difference between the antenna po-
tential and the spacecraft floating potential. The space-
craft floating potential is usually considered as a ground to
study electric field oscillations measured on the antenna.
Compared to previous time domain samplers, the TDS ob-
servation mode of the SWAVES experiment on board the
STEREO mission gives access to long time series (until
131 msec of total duration with a time step δt = 8 µsec)
[Bougeret et al., 2008], thus giving access to in-situ electric
field in a large frequency range [10 Hz to 60 kHz].

The low frequency component of these waveforms is of-
ten identical on the three monopole antenna channels. This
might be interpreted as the signature of a longitudinally
polarized wave along the bisectrix of the three antennas,
but since this direction is related to the spacecraft geometry
and is generally different from any physical directions, such

Copyright 2010 by the American Geophysical Union.
0094-8276/10/$5.00

an explanation is very unlikely. More likely, as previously
pointed out [Kellogg et al., 2009], at low frequencies the sig-
nal can be dominated by local density fluctuations in which
the spacecraft is embedded, inducing quasistatic changes in
the spacecraft charging. In this case, the response is ex-
pected to be identical on the three antennas. The goal of
this paper is (i) to give a calibration of this density fluctu-
ation signal δn/n as a function of the measured spacecraft
potential variations, (ii) to discuss the frequency range in
which this calibration holds, and (iii) to use this method in
order to observe the density fluctuations forced by Langmuir
ponderomotive effects in the solar wind.

Floating potential of spacecraft and antennas

The spacecraft body emits and collects charged particles,
and its electric potential permanently adjusts to the change
in parameters of the ambient plasma, in order to ensure that
the currents balance. In the solar wind, the main charging
currents are due to the emission of photoelectrons Iph, and
to the collection of ambient plasma electrons, Ie. We neglect
here the smaller proton current and the secondary emission
of electrons. On a surface at zero potential, the photoemis-
sion flux jph due to solar ultraviolet radiation depends on
the average surface photoemission efficiency:

jph ≃ δ 1014 m−2sec−1

per unit of projected sunlit surface, with δ ∼ 1− 4 for typi-
cal spacecraft covers [Pedersen, 1995; Escoubet et al., 1997;
Scudder et al., 2000; Pedersen et al., 2008]. On the other
hand, since solar wind electrons have a thermal velocity
much larger than the solar wind speed, they are collected
on the total surface and the incoming electron flux on a sur-
face of zero potential is the ambient electron random flux:

je ≃ n
√

kTe/2πme < 1013m−2sec−1

where me, n and Te are respectively the electron mass, elec-
tron density (equal to the ion density) and temperature.
Since jphS⊥ >> jeS, where S⊥ and S are respectively the
sunlit projected surface and the total surface, the surface
charges positively, until its positive electric potential Φ binds
sufficiently the photoelectrons to make their net outward
flux balance the inward flux of solar wind electrons. The po-
tential must thus provide the photoelectrons with a potential
energy that outweighs their typical kinetic energy of a few
eV. Hence the equilibrium potential is a few volts positive.
By making the simplifying assumption that both solar wind
electrons and photoelectrons populations are Maxwellians

1



X - 2 HENRI ET AL.: LANGMUIR PONDEROMOTIVE EFFECTS

Figure 1. Frequency range of detection of density fluc-
tuations (in grey) between the spacecraft (blue line) and
antenna (red line) charging frequencies as a function of
n (left panel) and Tph (right panel).

with respective temperature Te and Tph, an approximation
that will be discussed below, the ejected photoelectron cur-
rent Iph and the incoming plasma electron current Ie on
a surface at positive potential Φ are respectively given by
[Meyer-Vernet , 2007, pp. 352-355]:

Iph ≃ jph eS⊥

(
1 +

eΦ

k
B

Tph

)α

exp
(

−eΦ

k
B

Tph

)
(1)

Ie ≃ n
(

k
B

Te

2πme

)1/2

eS
(
1 +

eΦ

k
B

Te

)β

(2)

where e is the electron charge, α and β both equal to 0,
1/2 and 1 for respectively plane, cylindrical and spherical
geometry of the considered charging process.

Let us first evaluate the spacecraft equilibrium potential.
Since the scale length of the spacecraft body Lsc is larger
than the photoelectrons Debye length, the photoemission
takes place in plane geometry so that αsc = 0. On the
other hand, since Lsc is smaller than the solar wind electron
Debye length, plasma electrons are collected in 3D so that
βsc = 1. The current balance condition Iph = Ie applied to
Eqs.(1)-(2) for the spacecraft body then gives its equilibrium
potential Φsc:

−eΦsc/k
B

Tph = log
[
(n/N0) (1 + eΦsc/k

B
Te)
]

(3)

where N0 = jph (k
B

Te/2πme)
−1/2 Ssc

⊥ /Ssc.
The above calculations also hold for the equilibrium po-

tential of the antenna ΦA in cylindrical geometry so that
αA = βA = 0.5 in Eqs.(1)-(2), which gives:

−eΦA/k
B

Tph ≃ log

[
n

NA
0

(
1 + eΦA/k

B
Te

1 + eΦA/k
B

Tph

)1/2
]

(4)

where NA
0 = jph (k

B
Te/2πme)

−1/2 SA
⊥/SA.

Equations (3) and (4) are solved using the STEREO
spacecraft parameters. The spacecraft body has the dimen-
sions L1×L2×L3 = 1.14×1.22×2.03 meters [Kaiser et al.,
2007], with a sunlit surface Ssc

⊥ = L2 × L3 ≃ 2.5 m−2. The
solar wind electrons are collected from all the spacecraft sur-
face, except the face located in the wake, so that the surface
Ssc ≃ 9.9 m−2. The S/WAVES antennas are 6 m long,
with an average diameter of 23.6 mm, inclined by 125o to
the sun-spacecraft direction [Bale et al., 2008]. This gives
a sunlit projected surface of about SA

⊥ = 0.12 m−2 and a
total surface area of about SA

tot = 0.45 m−2 per boom. Note
that equation (4) is a rough approximation in the STEREO
case since the antenna length is not greater than the plasma

Debye length, but this does not affect significantly the final
result.

The solutions of Eqs. (3) and (4) depends mainly on
the value of the photoelectron temperature. Various au-
thors have evaluated it in the range Tph ≃ [1 − 4] × 104 K
for different spacecraft covers and phases of the solar cy-
cle [Pedersen, 1995; Escoubet et al., 1997; Scudder et al.,
2000; Pedersen et al., 2008]. We will show later that by ap-
plying this calibration to density fluctuations generated by
the nonlinear evolution of Langmuir wave in the solar wind,
we constrain the temperature of photoelectrons emitted by
STEREO at Tph ≃ 3±1 eV. We will assume the same value
for the photoelectrons emitted by the antennas since this
does not affect significantly our results.
For Tph = 3 eV, Eqs. (3) and (4) yield, for typical solar
wind densities n = [1 − 10] cm−3 and temperature Te = 10
eV, Φsc = [3− 8] Volts and ΦA = [5− 10] Volts. With these
values, the suprathermal components of photoelectrons and
ambient electrons which play an important role in the mag-
netosphere [Escoubet et al., 1997] do not afffect our results.

These calculations hold as long as the solar wind den-
sity fluctuates with frequencies lower than the typical charg-
ing frequency of the considered object, so that the equilib-
rium remains quasistatic. Conversely, density fluctuations
with frequencies higher than the charging frequency of the
object will scarcely modify the potential. In other words,
we concentrate on density fluctuations with frequencies fδn

lower than the charging frequency of the spacecraft fsc, but
larger than the charging frequency of the antenna fA, able
to change the spacecraft floating potential without chang-
ing significantly the antenna potential. We now evaluate
these two frequencies by considering the respective charging
e-folding times τ = RC, with C the capacitance and R the
resistance evaluated as follows.
Since the dimension of the spacecraft Lsc and the antenna
radius a are both much smaller than the ambient Debye
length λD, the electric field surrounding them can be con-
sidered as a Coulomb field locally, vanishing at distance λD.
The spacecraft capacitance Csc is evaluated as the capaci-
tance of a spherical conductor of radius Lsc ≃ 1 m:

Csc ≃ 4πǫ0Lsc ≃ 110 pF

and the antenna capacitance CA is evaluated as the low fre-
quency capacitance of a cylindrical conductor of length L
and radius a in a plasma of Debye length λ

D
[Meyer-Vernet

and Perche, 1989]. In the limit L >> λ
D

the antenna ca-
pacitance is:

C
A
≃

2πǫ0 L

ln(λ
D

/a)
≃ 47 pF

whereas for L << λ
D

it reduces to the capacitance in vac-
uum:

C
A
≃

2πǫ0 L

ln(L/a) − 1
≃ 64 pF

The STEREO antenna length is of the same order as the
Debye length and the low frequency antenna capacitance is
between those two values, i.e. C

A
≃ 60 pF.

The resistance R = 1/|dI/dΦ| simplifies to R ≃ 1/|dIph/dΦ|,
since the photoelectron current is the fastest charging pro-
cess [Meyer-Vernet , 2007]. Using dIph/dΦ ≃ (e/k

B
Tph) Iph

and Iph = Ie, the resistances read:

R−1

i ≃ eSi e

k
B

Tph
n
(

k
B

Te

2πme

)1/2(
1 +

eΦi

k
B

Te

)βi

with i = sc or A, βsc = 1, βA = 1/2 for respectively the
spacecraft and the antenna.
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Figure 2. Example of TDS waveform for which both
Langmuir waves, plotted here in term of the Langmuir
normalized electric energy W

L
(t) (black), and density

fluctuations δn/n(t) (red) are observed.

The charging frequencies fi = 1/(2πRiCi) are solved nu-
merically and shown in Fig.1 as a function of the plasma den-
sity and the photoelectrons temperature. They are nearly
independent to the electron temperature in the range of so-
lar wind parameters. Therefore, density fluctuations with
frequencies between ∼ 100 Hz and a few kHz will produce
a change in spacecraft potential but no change in antenna
potential. Signals of much higher frequency vary too fast for
changing the floating potential of the spacecraft and anten-
nas. Signals of much smaller frequency change similarly the
floating potentials of the spacecraft and antennas, so that
the difference barely changes and should not be observed on
the monopole antennas.

Note that (i) the previous discussion holds for signals
observed on a monopole antenna and produced by density
fluctuations, whereas electric field oscillations behave just
opposite since the spacecraft potential is a ground and the
antenna potential oscillates with the electric field; (ii) the
TDS pass-band filter has its own low frequency cut-off at
∼ 100 Hz so that signals of lower frequency should be con-
sidered with caution.

A small variation δn of the plasma density in this fre-
quency range produces a change in spacecraft potential δΦsc

obtained by differentiating Eq. 3

δn/n = −

(
e

k
B

Tph
+

e

k
B

Te

1

1 + eΦsc

k
B

Te

)
δΦsc (5)

Since Tph << Te, δn/n is mainly determined by the first
term in Eq.(5) so that it is roughly proportional to δΦsc

with a proportionality factor determined by Tph. This is
confirmed by solving numerically Eq.(5) in a typical range
of solar wind plasma parameters. A relative variation in
plasma density δn/n thus produces a voltage δΦ ≃ −δΦsc

detected on all monopole antenna channels:

δn/n ≃
1

Tph[eV ]
δΦ[V olt] (6)

Evidence for Langmuir ponderomotive effects

According to the previous discussion, S/WAVES anten-
nas enable to measure both the Langmuir electric field,
via high frequency variations of the antenna potential ΦA,
and density fluctuations, via low frequency oscillations of
the spacecraft potential Φsc seen on the three booms in
monopole mode. We now check the validity of this anal-
ysis and calibrate Eq. 6 by studying the ponderomotive
effects of finite-amplitude Langmuir waves on the density
background.

We isolate in the TDS data from 10/2006 to 12/2009, the
waveforms that contain both Langmuir oscillations and den-
sity fluctuations signals. TDS events that contain Langmuir
oscillations are selected by considering the waveforms with a
localized frequency peak above 5 kHz, while those that con-
tain density fluctuations signals are isolated by considering
waveforms whose low frequency part (< 5 kHz) is identical
on the three monopole antennas.

For each event, the high frequency part of the voltage
fluctuations, associated to Langmuir waves, is converted into
electric field EL. The electric energy is normalized to the
electron kinetic energy W

L
= (ǫ0E

2

L
)/(2nkBTe), with n es-

timated from the Langmuir frequency. In the absence of ac-
curate in-situ measurement, we use a typical solar wind tem-
perature Te ≃ 105 K. The low frequency part of the voltage
fluctuations observed on the three monopoles is converted
into relative density fluctuations δn/n via Eq. 6, assuming
a photoelectron temperature Tph = 3 eV.

Figure 2 shows such an example where the Langmuir en-
ergy is large enough (W

L
≃ 10−2) to generate density fluctu-

ations by ponderomotive effects. As expected by nonlinear
theory, the level of density fluctuations is of the order of
the electric-to-thermal energy ratio (the normalized Lang-
muir energy W

L
). Note also that the steeper the Langmuir

envelop, the deeper the generated density fluctuations, as
expected in the case of ponderomotive effects.

For each event, we compare the maximum density fluc-
tuation to the maximum normalized Langmuir electric en-
ergy W

L
. Depending on the energy of the Langmuir waves,

two different behaviors are observed (Fig. 3). (i) For low
energy Langmuir waves (W

L
< 10−4), the level of density

fluctuations is independent on the level of Langmuir oscilla-
tions. In other words, density fluctuations are not affected
by the propagation of Langmuir waves, which corresponds
to the linear regime of Langmuir waves. (ii) At higher ener-
gies, the nonlinear evolution of Langmuir waves affects the
density background until it reaches at saturation a level of
density fluctuations δn/n ≃ W

L
. The red dashed line is

the expected saturation level of density fluctuations forced
by Langmuir ponderomotive effects. The transition between
the linear and nonlinear domain is observed for a normalized
Langmuir electric energy W

L
∼ 10−4.

Figure 3. Density fluctuations vs Langmuir energy in
the Earth electron foreshock (black diamonds) and in the
quiet free solar wind (red diamonds). The blue line shows
the expected saturation level of density fluctuations gen-
erated by Langmuir ponderomotive effects. The black
dotted lines are the 3σ detection level.
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Between 11/2006 and 02/2007, the two STEREO spacecraft
were still in the Earth environment (black labels in Fig. 3),
whereas between 03/2007 and 12/2009, the two probes were
in their final orbit in the free solar wind (red labels). Most
of the nonlinear Langmuir waves are found at the begin-
ning of the mission, while the spacecraft performed several
crossings of the Earth electron foreshock, a region where
Langmuir waves are known to be intense.

The typical noise level on S/WAVES monopole antenna
channel is about 0.1 mV, which means that both Langmuir
waves with electric energy W

L
> 10−7 and density fluctu-

ation with δn/n > 10−4 can be observed (3σ above noise).
The black dotted lines in Fig. 3 show the 3σ detection level
for both electric energy and density fluctuations. One sees
that density fluctuations associated to high amplitude Lang-
muir waves are well above the noise level. The selection cri-
teria that controls the choice of events sent by the telemetry
favors the highest voltage events, so that higher amplitude
Langmuir waves are preferentially observed. The blue line
δn/n = W

L
+ 3σ also takes into account the 3σ detection

level on density.
We hereafter justify the choice of the photoelectron tem-

perature Tph = 3 eV . The maximum level of spacecraft
potential fluctuations δΦsc and the maximum Langmuir en-
ergy are plotted for each waveform in Fig. 4. We recall
that the expected saturation level of density fluctuations
generated by nonlinear Langmuir evolution is δn/n = W

L

[Sagdeev and Galeev , 1969]. The dotted lines shows the
level of δΦsc corresponding to δn/n = W

L
by using Eq. 6

with different values of Tph = 1, 3 and 5 eV, taking into
account the 3σ noise level of spacecraft potential. The ob-
served level of spacecraft potential fluctuations is consistent
with Tph = 3 ± 1 eV. This value is consistent with previ-
ously published values, whereas, as we explained, the linear
slope is consistent with the expected saturation level of den-
sity fluctuations generated by nonlinear Langmuir evolution.

Conclusion

In this letter, we have shown that the voltage observed
identically on the three booms of the STEREO antennas
at frequencies 102 - 103 Hz are consistent with variations
in spacecraft potential due to small scale solar wind density
fluctuations. We also provided a calibration for such signals.
This frequency range corresponds to solar wind density
fluctuations with wavelengths λ ∼ [500 − 5000 m], i.e.
[50− 500 λ

D
], when taking into account the Doppler effect.

To our knowledge it is the first time one directly observes
and measures small-scale density fluctuations in the solar
wind, in such a wavelength range.

Using simultaneous in-situ observations of electric field
and density fluctuations, we gave direct observational evi-
dence for ponderomotive coupling between solar wind den-
sity fluctuations and high-frequency Langmuir oscillations
with electric-to-kinetic energy ratio WL > 10−4. It is the
first time that ponderomotive effects are directly observed
in natural space plasma, out of ionospheric experiments.

The authors are confident that this new oportunity to
observe contemporaneously finite amplitude Langmuir os-
cillations and associated density fluctuations will give new
insights in nonlinear Langmuir processes occurring in the
solar wind. These small scale density measurements provide
a new opportunity to directly observe the physical processes
occurring close to the dissipation range of solar wind turbu-
lence.
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Diderot; 5 Place Jules Janssen, 92190 Meudon, France

Figure 4. Fluctuations of potential δΦsc simultaneous
to Langmuir oscillations of normalized energies WL. The
dotted lines show the expected level of density fluctua-
tions generated by Langmuir ponderomotive effects, as-
sociated to δΦsc via Eq. 6, for different Tph.



5. List of Papers 63



64 5. List of Papers



65

Henri et al. (2009)
JGR-Space Physics, 114, A03103



66 5. List of Papers



Evidence for wave coupling in type III emissions

P. Henri,1,2 C. Briand,1 A. Mangeney,1 S. D. Bale,3 F. Califano,1,2 K. Goetz,4

and M. Kaiser5

Received 8 September 2008; revised 5 December 2008; accepted 23 December 2008; published 5 March 2009.

[1] Using new capabilities of waveform analyses provided by the S/WAVES instruments
onboard the two STEREO spacecraft, we present for the first time a complete set of
direct evidence for three-wave coupling occurring during a type III emission and involving
two Langmuir waves and an ion acoustic wave. Information on the Doppler-shifted
frequencies and especially the phases of the waves are used in order to check first the
conservation of momentum and energy, through Fourier analyses, and second the phase
locking between the waves, through bicoherence analyses. Wavelet analyses allow us to
resolve for the first time the coupling regions, in which spatial length is estimated to
be 18 ± 5 km. The wave packets travel at comparable speed, and the characteristic
available interaction time is about 1 s. Interpretations of the phase coupling and evaluation
of the growth rate of the waves tend to favor the parametric decay, at least in the
observational events considered in this work.

Citation: Henri, P., C. Briand, A. Mangeney, S. D. Bale, F. Califano, K. Goetz, and M. Kaiser (2009), Evidence for wave coupling in

type III emissions, J. Geophys. Res., 114, A03103, doi:10.1029/2008JA013738.

1. Introduction

[2] Solar type III radio emissions are one of the most
prominent features of the meter-decameter ranges of fre-
quency. The emissions show a pronounced drift with time
toward lower frequencies (an example is shown on Figure 2).
Since the early work of Wild [1950] and Ginzburg and
Zheleznyakov [1958], the generally accepted model for such
emission is as summarized below. During a flare, high-
energy electrons (1–100 keV) are expelled from the solar
corona and travel along the interplanetary magnetic field
lines. They produce a bump on the local electron distribu-
tion function generating Langmuir waves via the so-called
‘‘bump-on-tail instability.’’ Then, nonlinear wave couplings
generate electromagnetic waves at fp

! (the local electron
plasma frequency) or 2fp

!. The plasma frequency decreases
with the heliocentric distance owing to the decrease of the
electron density: this is the origin of the time frequency drift
characteristic of the type III emissions.
[3] However, as noted by Sturrock [1964], such a mech-

anism should deplete all the energy of the beam on a very
short time scale, which would not be able to travel long
distances as observed. Since then, many studies have been
devoted to validate the general model and to identify the

processes able to remove the particles out of resonance with
the waves and that stopping the growth of the waves and
allowing the beam to survive long distances.
[4] Different lines of research were developed. The first

one, within the frame of the quasi-linear theory, takes
advantage of the turbulent state of the solar corona and
solar wind: the fast particles are moved out of resonance
with the waves through scattering of the unstable waves on
density fluctuations covering a wide spectrum (from a few
hundred of meters to several hundred of kilometers) [Smith,
1970; Li et al., 2006]. However, Lin et al. [1981, 1986]
provided observational evidence that quasi-linear relaxation
alone cannot explained the evolution of the beam (at least
for the events they studied). First, they showed that the
electric field intensity computed from the theoretical growth
rate, extrapolated using the observed positive slope of the
electron distribution function, would be too large. The
amplitude of the waves would grow out of the framework
of quasi-linear theory. Second, quasi-linear models predicts
a plateauing of the bump of the distribution function which
is not observed.
[5] A second line of research takes into account inhomo-

geneities in the solar wind density [Budden, 1985] through
linear mode conversion and scattering of Langmuir waves
on density gradients. Willes and Cairns [2001] and Willes et
al. [2002] explained how Langmuir waves propagating
along the density gradients can be mode converted, which
could remove the beam particles out of resonance with
the waves. In the Stochastic Growth Theory framework
[Robinson, 1993], the beam driven Langmuir growth rate is
treated as a random variable that depends on random density
inhomogeneities, thus allowing the beam to propagate long
distances.
[6] Type III electromagnetic emissions are thought to be

produced via two different nonlinear wave-wave couplings.
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Through electromagnetic coupling, a pump Langmuir wave
L decays into a low-frequency LF waves and a transverse
electromagnetic wave Tfp! at the local plasma frequency,
observed as type III fundamental emission:

L ! Tf !p þ LF ð1Þ

Through electrostatic coupling, the pump Langmuir wave L
decays into a low-frequency LF and a daughter Langmuir
wave L0, which can further couple with the pump wave to
generate a transverse electromagnetic wave T2fp! at twice
the local plasma frequency, observed as type III harmonic
emission:

L ! L0 þ LF L0 þ L ! T2f !p ð2Þ

[7] This paper focuses on the electrostatic coupling. A
number of authors have claimed that the spectral analyses of
the electric field in the solar wind provides some support in
favor of the electrostatic decay process [e.g., Lin et al.,
1986; Kellogg et al., 1992; Gurnett et al., 1993; Thejappa et
al., 1993, 1995, 2003; Thejappa and MacDowall, 1998].
They based their conclusions on some characteristics sig-
natures like the simultaneous occurrence of Langmuir and
low-frequency waves (like ion acoustic, whistlers or lower
hybrid waves), or the comparison between theoretical
thresholds and the observed energy in the waves. However,
as already pointed out by Kennel et al. [1980] and Thejappa
et al. [1995], the simultaneous occurrence of two waves in
the spectrum doesn’t necessarily mean wave coupling.
Indeed, the waves can be generated by particles of different
energy present in a same electron cloud; an efficient three-
wave coupling requires the fundamental equations of energy
and momentum conservation to be satisfied:

w1 ¼ w2 þ w3 ð3Þ

~k1 ¼ ~k2 þ ~k3 ð4Þ

where w and~k refer to the pulsation and wave number of the
waves. When observed onboard only one spacecraft,
equations (3) and (4) reduce to a single relation for the
Doppler-shifted frequencies fDoppler = wDoppler/2p:

f
Doppler
1 ¼ f1 þ

~k1
2p

:~VSW

¼ ð f2 þ f3Þ þ
ð~k2 þ~k3Þ

2p
:~VSW

leading to the following equation for resonance:

f
Doppler
1 ¼ f

Doppler
2 þ f

Doppler
3 ð5Þ

Equation (5) can be directly tested from in situ measure-
ments which combine high spectral and temporal resolution,
as well as phase information. Only waveforms measure-
ments can provide the required information. Such observa-
tions are available with the S/WAVES investigation on the
STEREO mission [Bougeret et al., 2007].

[8] On the basis of data obtained on 14 January 2007 by
the waveform analyzer of the S/WAVES instrument onboard
STEREO, evidence for nonlinear coupling between Lang-
muir and ion acoustic waves (also known as ion sound
waves in the literature), at &80–250 Hz, occurring during a
type III event are presented. Three complementary methods
are employed: (1) a spectral analyses that checks the
frequency correlation, (2) a wavelet analyses that verifies
the time occurrence of the waves, and (3) a bicoherence
analyses that checks the phase correlation between the
waves. The validity of equations (3) and (4) on observed
data is thus directly tested (through equation (5)). The phase
relation was already studied in the Earth bow shock [Dudok
de Wit and Krasnosel’Skikh, 1995] and the foreshock [Bale
et al., 1996] environments, but, to our knowledge, it is the
first time it is used on data related to type III event. This
paper focuses on the parametric instability version of the
electrostatic decay, through direct tests on the phase reso-
nance, rather than its weak turbulence version [Robinson et
al., 1993]. This will be justified by the bicoherence analysis
of the electric waveforms.
[9] Details on the instrument, the data and the solar wind

conditions are presented in section 2. After identification of
the low-frequency mode, three independent analyses for the
three-wave coupling are presented in section 3. Section 4
discusses details on the coupling and describes it in the
context of the type III.

2. Observations and Data

[10] S/WAVES is composed of three 6 m monopole
antennas, orthogonal to each other, with an effective length
of about 1 m [Bougeret et al., 2007; Bale et al., 2008]. Two
modes of observation are available: remote sensing to
follow the propagation of the radiosources in the solar wind
with spectral radio receivers and in situ measurement of
electric waveforms along the three antennas with the Time
Domain Sampler mode (TDS).
[11] The TDS data reported in this paper are composed of

N = 16384 samples with an acquisition rate of 125,000
samples per second (a time step of dt = 8 ms for a total
duration of 130 ms per event). This long total duration
allows us to capture entire Langmuir wave packets. In terms
of frequencies, those electric field waveforms enable to
cover a range from 10 Hz to 60 kHz. Thus, signatures from
below the electron cyclotron frequency (typically 100 Hz in
the solar wind) to above the plasma frequency (typically 10
to 20 kHz) are accessible. The frequency gain is flat in the
frequency range of interest here (100 Hz to 20 kHz). Finally,
the S/WAVES A/D converter is accurately linear. Thus
spurious nonlinear artifacts are not introduced, so that
studies of nonlinear wave interactions are possible.
[12] The voltage measured on the three antennas is then

converted into an electric field, and projected in the space-
craft coordinates, using the set of parameters called w/base
caps (Graz) by Bale et al. [2008, Table 13] in order to take
into account the effective length and direction of the
STEREO antennas.
[13] In its final orbit the spacecraft coordinates (X, Y,

and Z) are defined as follows: the x component is sunward
along the radial direction, the Z component is normal to
the ecliptic plane, southward for STEREO A and northward
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for STEREO B, and the Y component complete the direct
orthogonal frame. But by the day considered in this study,
both STEREO spacecraft were not yet in their final orbit.
They were slowly rotating around the radial direction, to
reach their final configuration. Thus, the spacecraft coor-
dinates are corrected as follows: the x component is indeed
sunward in the radial direction, but the Y and Z components
are rotated by an angle of about !90! compared to the
previous definition on STEREO A and 180! on STEREO B.
In the following, the electric field measurements are
expressed in the corrected spacecraft coordinates.
[14] Figure 1 displays the position of WIND, STEREO A

and STEREO B on 14 January 2007, together with mag-
netic field and wind speed directions. The spacecraft are
separated by less than 200 Earth radii, so that plasma
measurements from WIND are used when those from
STEREO are not available (wind speed, temperatures).
The 1 h average wind speed from WIND/3-DP [Lin et al.,
1995] is about VSW = 315 km s!1. The magnetic fields are
recorded by IMPACT [Acuña et al., 2007] at 8 samples s!1

onboard both STEREO and by MFI [Lepping et al., 1995]
onboard WIND with 3 s resolution. The amplitude of the
magnetic field is 7.4 nT at STEREO A, 7.3 nT at STEREO
B, and 7.4 nT at WIND with maximal fluctuations below
0.2 nT during the period of interest. The magnetic field and
wind speed directions, obtained from WIND data with 92 s
resolution values, make an angle q = 60! with maximal
fluctuations below 9 during this period. The magnetic field
direction is almost identical at the three spacecraft positions
and remains constant within a few degrees during the whole
period of interest.
[15] The electron temperature observed by WIND/3DP is

T ’ 105 K, and the electron density in the solar wind,
estimated from the plasma frequency, is about n ’ 106 m!3.
From the electron density and temperature, the Debye
length is lD ’ 10 m.

[16] Figure 2 displays the time-frequency spectrum (the
so-called dynamic spectrum) recorded by WIND/WAVES
(WIND has higher sensitivity than STEREO for distinguish-
ing the plasma line) between 0700 and 1500. Type III is
observed from 1040 to 1150 (UT). The drift of the funda-
mental (full line) and the harmonic (dashed line) radio
emissions are estimated from the onset time of the type
III and the Parker spiral (Estimation courtesy of S. Hoang
following Hoang et al. [1994]). The radio emission in this
event is dominated by the harmonic while the fundamental
is very weak. An enhanced level of Langmuir wave activity
appears when the extrapolated fundamental of the type III
intersects the local (satellite position) plasma frequency line
(at about 1110 (UT) on WIND). Assuming that the beam
travels along the Parker spiral, the estimation of the onset
time of the type III, together with the observed onset time of
Langmuir wave activity, leads to an estimation of the
electron beam speed associated with the type III of about
Vb ’ 0.21c. The Langmuir activity was also recorded by the
in situ measurements of S/WAVES/TDS, as a signature of
the type III electrons passing the spacecraft. Note that owing
to ballistic effects, the type III electrons should cross the
three spacecraft at different times. In the following, we
concentrate on the TDS Langmuir events associated with
this type III on STEREO A between 1125 and 1205 UT, and
on STEREO B between 1150 and 1215 UT. Nineteen such
events have been measured by STEREO A and 26 events by
STEREO B.
[17] Other type III bursts are recorded by WIND/WAVES

before and after the one we study. No TDS electric field
waveforms associated with these bursts have been tele-
metered, possibly because of criteria selection from the
TDS or because the electron beams associated with these
bursts may not have crossed the STEREO spacecraft. Thus,
they are not described in the present paper.

Figure 1. Position of WIND and STEREO A and B projected on the ecliptic plane in GSE coordinates
on 14 January 2007 when the type III solar burst reaches the spacecraft. Distances are expressed in Earth
radii (RE) units. The solar wind speed and the magnetic field direction recorded by the spacecraft are
displayed. The values of the magnetic field magnitude and angle with the solar wind direction are
discussed in the text.
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[18] Moreover, since the fundamental electromagnetic
emission was not observed in this type III burst, the
electromagnetic coupling mechanism, see equation 1, for
generating the fundamental radio emissions at the plasma
frequency is out of the scope of this paper.

3. Evidence for Wave Coupling

[19] Figure 3 shows the three components of the electric
field of a typical event. An entire beat-like wave packet is
captured, lasting 50 ms. The maximal intensity of the
electric field is of the order of 10 mV m!1, the amplitude
along the X direction being larger than the two other
components.

3.1. Spectral Analyses

[20] Figure 4 displays the Fourier spectrum of the
x component of the electric field for the event shown on
Figure 3. Three main features appear: a low-frequency peak
at 0.25 kHz, an small intermediate frequency peak at 3 kHz,
and a high-frequency peak at 10 kHz. This last frequency is
identified from the dynamic spectrum (Figure 2) as the local
plasma frequency fp

!, and corresponds to the Langmuir
waves. A closer view on the high-frequency signal
(Figure 4, bottom) shows that it is actually composed of
two peaks separated by 0.25 kHz. The difference between
the frequency of the two Langmuir waves matches the lower
frequency. We now focus on the identification of the low-
frequency wave.
[21] The electron cyclotron frequency is about 0.2 kHz,

i.e., in the frequency range where the LF signal is observed.
The LF wave could be electromagnetic waves, such as

whistler and lower hybrid waves, or electrostatic waves
such as electron Bernstein mode or ion acoustic waves.
[22] When filtering out the high-frequency component,

the LF signal appears as a modulated sine-like function
identical on the three antennas. This could be interpreted as
the signature of a longitudinally polarized wave along the
bisectrix of the three antennas (the X direction), but since
this direction is related to the spacecraft geometry and is
usually different from the solar wind speed or the magnetic
field directions, such an explanation is very unlikely.
However, as pointed out by Kellogg et al. [2007], the signal
can be dominated at low frequencies by local density
fluctuations in which the spacecraft is embedded (through
quasi-static modifications of the spacecraft charging). In this
case, the response is expected to be identical on the three
antennas and the signal would appear only on the x compo-
nent, when ‘‘projected’’ in the spacecraft coordinates.
[23] The LF signal is thus identified as density perturba-

tions associated with a LF wave. Among the candidates in
this range of frequency, the only wave mode associated with
density fluctuations is the ion acoustic wave (IAW). Indeed,
when observing the other waves, which density fluctuations
are negligible, the recorded signal should be dominated by
the electric field, rather than by density fluctuations, thus
showing different signals on the three antennas, which is not
observed. We thus identify the low-frequency signature as
an IAW.
[24] Let us stress that we observe the IAW density

fluctuation in terms of an ‘‘equivalent’’ electrical field.
The true IAW electric field is proportional to and in phase
quadrature with the observed potential generated by the

Figure 2. Time frequency spectrum from WIND/WAVES on 14 January 2007. A type III burst is
observed from 1040–1150 (UT). The full line shows the leading edge of the fundamental emission. The
dashed line corresponds to the leading edge of the harmonic emission. Courtesy of S. Hoang.
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IAW density fluctuation. From now on, we will work only
with the x component electric field, and we consider the
density fluctuations as a tracer for IAW electric field.
[25] During the period of strong Langmuir activity, a total

of 37 TDS events (19 from STEREO A and 18 from B)
were transmitted from the two spacecraft. Among these
events, 14 (10 on STEREO A and 4 on B) show two
distinguishable Langmuir wave peaks together with an
IAW. Figure 5 displays for each event the relation between
the frequency difference DfL between the two Langmuir
waves and the frequency fIA of the IAW for the two
spacecraft. The resonant relation DfL = fIA is very well
satisfied for all 14 events. This relation between frequencies
observed in the spacecraft frame is compatible with the
conservation of momentum and energy that must be satis-
fied in case of three-wave coupling (equation 5) and
strongly suggests the possibility of such a nonlinear wave
coupling. In order to confirm this three-wave coupling, we
use two different analyses: a wavelet analyses (section 3.2)
and a bicoherence analyses (section 3.3) are now considered
on these selected TDS events.

3.2. Wavelet Analyses

[26] The wavelet transform is a powerful method to study
a signal composed of nonstationary waves [Daubechies,
1990; Farge, 1992].

[27] Consider a time series En with time step dt, the
wavelet transform of the time series is defined as the
convolution of the signal with a ‘‘mother’’ wavelet function
y normalized, translated, and scaled (s being the scale):

WnðsÞ ¼
X

N!1

n0¼0

En0
1
ffiffi

s
p y*

ðn0 ! nÞdt

s

" #

where y* stands for the complex conjugate of y. Among
various wavelets, we choose the Morlet wavelet Y0,
consisting of a plane wave modulated by a gaussian
envelope:

Y0ðhÞ ¼ p!1=4ei2phe!h2=2

With this definition, the Morlet wavelet scale factor s is
equal to the inverse of the Fourier frequency, which
simplifies the interpretation of the wavelet analyses. The
Morlet wavelet is known to provide a good compromise
between time and frequency resolution (reviews on wavelet
analyses can be found in the work by Torrence and Compo
[1998] and van den Berg [1999]).
[28] Figure 6 displays the modulus of the wavelet trans-

form applied to the waveform displayed in Figure 3 (top).
The resolution in frequency of the Morlet wavelet transform

Figure 3. Typical electric field waveform of Langmuir waves recorded by S/WAVES/TDS in spacecraft
coordinates, associated with type III.
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is not sufficient to separate the two high frequencies at
about 10 kHz. Instead it shows a signal, at the average of
these two frequencies, modulated by the beating frequency.
The IAW at 0.25 kHz is maximum at 60 ms when the
maximum of the Langmuir waves occurs.
[29] This is a general feature: a systematic wavelet

analyses on the 14 events reported in Figure 5 shows indeed
that the IAW and the Langmuir signals always occur
simultaneously. Knowing the electron temperature, the ion
sound speed is estimated to be Cs ’ 30 km.s!1. Since the
solar wind speed VSW ’ 315 km.s!1, the IAW packets are
mainly advected by the solar wind flow. From the average
duration of the IAW packets, the spatial length of the IAW
packet is estimated to be '18 ± 5 km. Note that the 3 kHz
signal is present during all the event, but is not correlated
with the two Langmuir waves, neither with the IAW.

3.3. Bicoherence Analyses

[30] Up to now, we have focused on the simultaneous
occurrence of three waves, with frequencies consistent with
a three-wave nonlinear coupling. But coupling requires also
phase coherence between the waves. Such phase relations
can only be checked from waveform data.
[31] The bicoherence is used as an estimator of quadratic

phase coupling, characteristic of three-wave coherent inter-
actions. Lagoutte et al. [1989] give a methodological

introduction to bicoherence analyses based on a Fourier
approach. Although studies of bicoherence have been
reported in the ionosphere [Pecseli et al., 1993], the bow
shock [Dudok de Wit and Krasnosel’Skikh, 1995] and the
solar wind near the foreshock edge [Bale et al., 1996], to
our knowledge, the present analyses represents the first time
that bicoherence is used to study three-wave coupling in the
solar wind during a type III.
[32] In the case of three-wave coupling, the relative phase

F1 + F2 ! F3 between the three phases Fi=1,3 associated to
the three frequencies fi=1,3 linked by the relation f1 + f2 = f3
should remain constant. Bicoherence measures statistically
the degree of stationarity of this relative phase.
[33] To optimize the time resolution, and diminish the

bias introduced by the method, the wavelet bicoherence [Van
Milligen et al., 1995; Dudok de Wit and Krasnosel’Skikh,
1995] is here preferred to the Fourier bicoherence. For
convenience, the wavelet transform will thereafter be
expressed in terms of frequencies, instead of scales. The
wavelet cross bispectrum is defined in frequency space as

Bðf1; f2Þ ¼< W ðf1ÞW ðf2ÞW*ðf1 þ f2Þ > ð6Þ

where < > stands for the average over the samples, and W*

for the complex conjugate of W (recall that W(ndt, F = 1/s)
is a function of both time and frequency).

Figure 4. Fourier spectrum of the x component electric field from Figure 3. (top) Whole frequency
range. (bottom) Zoom centered on the high-frequency double feature at 10 kHz.
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[34] To take into account phase effects only, in other
words to avoid amplitude effects, the wavelet cross bispec-
trum is normalized. The wavelet normalized cross bispec-
trum, also called wavelet bicoherence, is thus defined as

bðf1; f2Þ ¼
< W ðf1ÞW ðf2ÞW*ðf1 þ f2Þ >
< jW ðf1ÞW ðf2ÞW*ðf1 þ f2Þj >

For a stationary signal, the bicoherence vanishes when the
phase relation is random, and maximal (1 for the chosen
normalization) when the phase relation remains constant. A
nonzero bicoherence value b(f1, f2) is thus the signature of
phase locking between three waves with frequencies f1, f2,
and f1 + f2.
[35] When using a wavelet basis, the bicoherence is

computed by averaging on overlapping samples. But as
stressed by Soucek et al. [2003], the statistical validation of
bicoherence requires to use independent samples. The
duration of an independent sample can be evaluated from
the time of coherence of the waves, which is about the
duration of the wave packet. It means that each TDS event
should be considered as an independent sample and that
the bicoherence computed with only one event can be
meaningless.
[36] Bicoherence is very sensitive to the nonstationarity

of frequencies and to the presence of discontinuities in the
data set. The nonstationarity of frequencies involved in a
three-wave coupling spreads the bicoherence signal and
thus decreases the wavelet bicoherence value at all involved
frequencies. This is a consequence of the intrinsic frequency
accuracy of the Morlet wavelet. Indeed, the time-frequency
finite resolution of the chosen wavelet implies that the
uncertainty on the frequencies is DF ’ 1/4f, with Df the
resolution at 3 dB. Discontinuities in the waveform, such as
spikes, appears through spectral analyses as a large spec-
trum of coupled frequencies (for instance Dirac’s function is
a white noise with correlated phases). This implies an
increase of the bicoherence signal, without physical signif-
icance, and thus reduces the signal-to-noise ratio of the
bicoherence. To avoid both effects, only events with an
IAW in the frequency range (100 Hz, 200 Hz), and free of
spikes are considered, reducing the number of useful samples
to 10. The signal analyzed for the study of bicoherence
resulted from the concatenation of these 10 ‘‘independent’’

Figure 6. Modulus of the Morlet wavelet transform of the event displayed in Figure 3 (top).

Figure 5. Difference between the two Langmuir frequen-
cies (DfL) as a function of the ion acoustic wave frequency
(fIA) on 14 different events on STEREO A and B. Each
point represents a different Time Domain Sampler (TDS)
event during the type III. Only events showing an ion
acoustic mode and two Langmuir waves are displayed.
The dotted line is not a fit but shows the expected identity
DfL = fIA.
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samples, the averages appearing in equation (6) being
replaced by averages over the points of the concatenated
signal.
[37] Note that the density fluctuation of the IAW is in

phase quadrature with its associated electric field, which
does not affect the bicoherence study because bicoherence
is not sensitive to constant dephasing.
[38] Figure 7 shows the results of the bicoherence anal-

yses computed in this way. Three main signatures linked
to the three waves discussed above arise at (fIA, fIA) ’
(0.2 kHz, 0.2 kHz); (fL, fL) ’ (10 kHz, 10 kHz); (fL, fIA) ’
(10 kHz, 0.2 kHz). The evaluation of the statistical signif-
icance of the bicoherence, discussed bellow, shows that the
multiple signatures at frequencies lower than 6 kHz are
significant. However, it is not linked to the three-wave
process discussed in this paper and will described in a
future work. We limit the present discussion to the follow-
ing results.
[39] First, at low frequencies, the phase resonance

between low-frequency modes at (fIA, fIA) ’ (0.2 kHz,
0.2 kHz) can be interpreted as the generation of harmonics
of the IAW. It could also be linked to the multiple bicoher-
ence signatures present in this frequency range. However,
no obvious peak at twice the IAW frequency is seen in the
Fourier spectrums.
[40] Second, the bicoherence shows a phase locking that

involves waves at about 10 kHz. This could be interpreted
as the generation of the transverse EM mode at 2fp

!

generated during the type III. However, the conversion of
Langmuir waves into EM waves L + L0 ! T should be hard
to detect because of the low sensitivity of the antennas to
local EM waves. The observed bicoherence signature is
more likely due to the generation of the Langmuir harmon-
ics at twice the plasma frequency. The bicoherence value is
b(fL, fL) = 0.34.

[41] Third, the main result of this bicoherence analyses is
the evidence for a bicoherence signal that involves a high-
frequency mode fL ’ 10 kHz and a low-frequency mode
fIA ’ 0.1–0.2 kHz, with a value of b(fL, fIA) = 0.37. Indeed,
this implies that the three waves described in sections 3.1
and 3.2 remain phase locked from one event to the other. It
is the signature of the expected phase coupling between the
IAWand the two Langmuir waves. This is a strong evidence
in favor of three-wave interaction in agreement with the
hypothesis suggested by Fourier and wavelet analyses.
[42] To validate the bicoherence study, one can evaluate

the statistical threshold above which the bicoherence applied
to the original signal is considered significant, by comput-
ing the bicoherence on phase randomized surrogate data.
Surrogate data are generated from the original data set by
keeping the power spectrum unchanged and redistributing
the phases randomly, in order to destroy the nonlinear
dynamics in the data. See Koga and Hada [2003] and Siu
et al. [2008] for details on the method. Bicoherence com-
puted on 30 phase randomized surrogates (a good compro-
mise between statistics and computing time) shows in the
frequency domain of interest a mean bicoherence response
!b < 0.04, with a standard deviation sb < 0.03. Bicoherence
computed on the original data with response above !b +
3sb ’ 0.1 are thus considered significant. This result
clearly confirms the validity of our bicoherence analyses,
thus demonstrating the three-wave coupling.

4. Discussions

[43] We have shown that the data obtained on 14 January
2007 by the waveform analyzer of the S/WAVES instrument
onboard STEREO, show strong evidence for a nonlinear
coupling between two Langmuir waves and an IAW in the
range 80–250 Hz. The IAW observed frequency is domi-
nated by the Doppler shift; its wavelength is estimated
between 1 and 3 km for the different events. From conser-
vation of momentum, the wavelengths of the Langmuir
waves are about twice this value. Considering that the
spatial length of the coupling region is of the order of the
length of the advected ion acoustic wave packet, we
estimate the average spatial length Lc of the coupling region
to be Lc ' 18 ± 5 km (about 2.103 lD). As a result, the
length of the coupling zone, as discussed in section 3.2, is
quite short since it only covers a few Langmuir wave-
lengths. We shall now come to discuss the nature of the
coupling as well as the consequences for the understanding
of the physics of type III bursts.

4.1. Electrostatic Coupling

[44] The bicoherence analysis shows a phase resonance
between the three waves. Therefore, we interpret the
observed coupling between electrostatic waves in term of
a parametric instability rather than the weak turbulence
approach.
[45] The observed electrostatic three-wave coupling can

be explained via two kinds of parametric coupling. The first
one concerns the parametric decay of a finite-amplitude
Langmuir wave (L) into an IAW (S) and a backscattered
daughter Langmuir wave (L0):

L ! S þ L0

Figure 7. Wavelet bicoherence of three-wave TDS events
computed for frequencies from 100 Hz to 30 kHz (inside the
dotted line). Minimum value in white for bicoherence b = 0,
maximum value in black for bicoherence b = 0.6. Note three
main signatures at (fIA, fIA) ’ (0.2 kHz, 0.2 kHz); (fL, fL) ’
(10 kHz, 10 kHz) and (fL, fIA) ’ (10 kHz, 0.2 kHz).
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The second one concerns the scattering of a beam excited
mother Langmuir wave by preexistent IAW into a back-
scatter Langmuir wave:

Lþ S ! L0

[46] In the case of parametric decay, the IAW is expected
to be generated by the ponderomotive force created by the
two beating Langmuir waves. The electric pressure is thus
expected to compensate the thermal pressure. To test this
possibility, the ratio of electric energy to thermal energy is

!0E
2

nkBT
’ 6:10!4

using the following values: E ’ 10 mV.m!1 the observed
electric field for the Langmuir waves, T ’ 105 K the
electron temperature and n ’ 106 m!3 the electron density.
The threshold for parametric decay of the pump Langmuir
wave into a daughter Langmuir wave and an IAW is
[Nishikawa, 1968; Bardwell and Goldman, 1976]

!0E
2

nkBT
> 8

gIA
wIA

gL0

wL0

with w and g the angular frequency and Landau damping of
the IAW and daughter Langmuir waves. The threshold for
electrostatic decay has been estimated for typical solar wind
parameters to be e0E

2

nkBT
( 2.5 10!5 [Lin et al., 1986]. The

observed ratio is much higher than this threshold, which
allows the development of parametric decay. Since the
parametric decay is far more efficient than the parametric
scattering, we conclude in favor of the decay.
[47] To take into account the limited size of the wave

packets, we shall now estimate whether the daughter waves
have enough time to be generated via the decay process
before leaving the region of the pump Langmuir wave
packet. We compare the characteristic growth rate for the
parametric decay to the available interaction time before the
daughter wave packets leave the coupling region.
[48] First, the efficiency of the coupling requires that the

ion acoustic speed matches the Langmuir wave group
velocity. The IAW packets travel at the ion sound speed
Cs ’ 30 km.s!1, and the Langmuir wave packets travel at
its group velocity Vg

L, given by Vg
L = @w/@k ’ 3klDve

th

evaluated to Vg
L ’ 30 to 100 km.s!1 for Langmuir wave-

length lL ’ 2 to 6 km. Thus both the beam-driven
Langmuir wave and the ion acoustic wave packets travel
at comparable speed, enabling energy transfer between the
waves providing that the growth rate for the decay is large
enough.
[49] Then, the available interaction time tI for the three

waves to resonate is estimated by considering the time for
which the pump Langmuir wave packet L and the back-
scatter Langmuir daughter wave packet L0 remain inside the
same region of length Lc:

tI ' Lc=V
L
g ' 1 s

This available interaction time for coupling is then
compared to the characteristic growth time of the daughter

waves. The growth rate v for electrostatic decay in the case
of monochromatic waves in an homogeneous background is
[Sagdeev and Galeev, 1969]

n ’ kIACs

!0E
2

nkBT

mp

me

" #1=4

' 200 s!1

The growth rate for electrostatic decay is evaluated to 200
s!1, which is about the ion acoustic time. The available
interaction time for coupling is far larger than the evaluated
growth time of the daughter waves

tI >> 1=n;

which enable the decay to develop before the daughter wave
packets leave the region of coupling. The growth rate for
electrostatic decay has been evaluated for infinite waves in a
homogeneous medium, and gives a first order of magnitude,
but the nonmonochromatic nature of the wave packets
should be taken into account. Let us now describe the
electrostatic coupling in the context of the type III burst.

4.2. Three-Wave Coupling and Type III Burst

[50] The main picture is the following: during a type III,
electron beams generate the mother Langmuir wave through
beam instability. It then decays into a backscattered daugh-
ter Langmuir wave and an IAW with proper wave numbers
and frequencies given by momentum and energy conserva-
tion (equations (3) and (4)).
[51] If this Langmuir mother wave couples to a second

Langmuir wave and the IAW, the relation between the
frequency fIA of the IAW and the speed of the electron
beam is given to a good approximation by Cairns and
Robinson [1992] and Hospodarsky and Gurnett, [1995]

Vb &
2fpVSW j cos qj

fIA
ð7Þ

The beam speed for the fastest electrons involved in the
coupling and observed by the TDS can be estimated from
the minimum IAW frequency observed at 80 Hz at the
beginning of the type III on STEREO B, together with
equation (7):

Vb ’ 4 105 km:s!1 ’ 0:13 c

which is consistent with the estimation in section 2 from the
dynamic diagram of type III (Figure 2).
[52] Simple time-of-flight arguments on the type III

electron beam predict that at a given position, the beam
speed Vb vary inversely with time (fast electrons cross the
spacecraft first, the slower ones come after):

Vb ’ D=ðt ! t0Þ ð8Þ

with D the distance between the generation of the beam at t0
and the fixed observer. Lin et al. [1981] observed this drift
and explained how it controls the frequency drift of
the beam-generated Langmuir wave. With equation (7) the
IAW frequency (equal to the difference of frequency
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between the two Langmuir waves) is expected to vary
linearly with time:

fIA ¼ DfL & 2fpVSW j cos qj
D

ðt ! t0Þ ð9Þ

[53] Cairns and Robinson [1992] and Hospodarsky and
Gurnett [1995] used electron distribution function measure-
ments on different type III observed at 1 AU and derived
values for the drift of the IAW frequency of 100 to
300 Hz.h!1 depending on the plasma parameters. Distribu-
tion functions are not yet available on STEREO and we
cannot fit the beam speed drift by equation (7), so that the
distance parameter D is still unknown. But a crude estima-
tion of D & 1 AU can be made, to get an order of magnitude
of about 100 Hz.h!1 for the expected frequency drift.
[54] The observed IAW frequency are considered for each

single event, and then plotted against the time of the event
on Figure 8. Over the 14 three-wave events, the observed
time variation, from one event to another, of the IAW
frequency is well represented by a linear drift of 260 ±
30 Hz.h!1, consistent with the time evolution of an IAW
coupled with the beam-driven Langmuir wave. Since DfL =
fAI, at the same time, the two Langmuir peaks have
frequencies that move away one from the other, with the
same drift (not shown in the paper). This frequency drift of
the IAW together with the separation in frequency of the
Langmuir waves is another evidence for wave coupling in
the context of the type III.
[55] Previous observations of electron distribution func-

tions during type III also allowed the derivation of the beam
velocity and the beam temperature. From these measure-
ments Cairns and Robinson [1995] predicted a relative
bandwidth for IAW DfIA/fIA ranging from 5% to 40%, but
had not the frequency resolution to check it. Fourier
analyses of the S/WAVES/TDS waveforms enables to
measure it directly: DfAI/fAI ’ 20%, which is compatible

with previous observations of type III electron beams. These
two last results should however be checked in the future
from STEREO distribution function observations, when
available.
[56] Finally, the eventual coalescence of the two Lang-

muir waves into a transverse wave T

Lþ L0 ! T2f !p

could then explain the generation of the type III radio
harmonic emission at twice the plasma frequency observed
on Figure 2 [Ginzburg and Zheleznyakov, 1958]. However,
this mechanism was not detected in this study because of
the presence of electrostatic harmonic Langmuir waves at
twice the plasma frequency that prevent the direct detection
of less intense transverse electromagnetic waves from in situ
measurements.

5. Conclusion

[57] This paper shows for the first time, to our knowl-
edge, a complete set of direct evidence of the coherent
coupling between Langmuir waves and ion acoustic waves
during a type III emission. The work is based on three
independent methods: Fourier, wavelet, and bicoherence
analyses of the S/WAVES waveform data (TDS observation
mode).
[58] More than a third of the electric field data shows

beam-driven Langmuir waves coupled with a second Lang-
muir wave and an ion acoustic wave. (1) The Doppler-
shifted frequencies of the three waves satisfy the resonant
relations expected for three-wave coupling. (2) The relative
phase between the three waves remains constant from one
waveform to another, consistent with a coherent wave-
coupling mechanism. (3) The coupling regions are spatially
localized with size of about 20 km, corresponding to about
2000 Debye lengths. (4) The electric field of the beam-

Figure 8. Ion acoustic wave frequency (fIA) versus time of the event (UT). Each single event is
represented by a diamond for STEREO A and a triangle for STEREO B, together with their respective
error bars. The dashed line displays the least squares fit. Points at bottom (fIA ’ 0) show events without
coupling. (For sake of clarity, STEREO B events have been shifted downward. In these last cases no IAW
is reported.)
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driven Langmuir wave is above the threshold for parametric
decay. (5) By defining the interaction time as the time
before interacting wave packets separate, we found that
the interaction time is long enough when compared to the
inverse of the excited mode growth rate. (6) The frequency
of the ion acoustic waves drifts in time during the whole
type III, as consistent with the expected evolution of the
type III electron beam speed. This confirms the interpreta-
tion of the data in terms of the parametric electrostatic decay
of the beam-driven Langmuir waves.
[59] Waveform data of S/WAVES give access to both

phase information and high-frequency resolution which
cannot be obtained by spectral instruments. It is worth
noting that, for the first time in solar wind observations,
long time series of waveform data are available. This allows
us first to observe low frequencies (around 100 Hz), and
second to resolve the entire coupling region. Finally, the
possibility to compute time-frequency analyses with high
temporal and spectral resolution enable to discriminate
among the observed waves which ones are actually in-
volved in the coupling process. For instance the 3 kHz IAW
(Figure 3), frequently seen in our waveforms during the
observed time of interest, but totally independent to the
observed coupling, could have been thought to participate to
the coupling through spectral observations only.
[60] Important questions still remain open. For example:

why do the beam-driven Langmuir fluctuations appears as
short isolated wave packets? Ergun et al. [2008] have
recently shown that gaussian-shaped and modulated solar
wind Langmuir waves commonly recorded in the solar wind
can be interpreted trapped eigenmodes in density structures.
The trapping of beam-driven Langmuir waves in density
cavities, not observed but not excluded in the events studied
here, could explain their spatial shape. An other possible
approach could be that of beam-plasma interaction in an
inhomogeneous media [Krasnoselskikh et al., 2007].
[61] Another related question concerns the efficiency of

the parametric decay for a nonmonochromatic pump wave.
What is the evolution for the parametric decay for a short
isolated Langmuir wave packet? Therefore, our model of
monochromatic wave in an homogeneous media must be
considered as a first step in the line of interpreting obser-
vational type III data. Numerical simulations are expected to
be of great help in elucidating this nonlinear, inhomoge-
neous problem.
[62] The present study is based on a single type III burst,

for which radio electromagnetic waves were detected from
remote sensing measurements together with electrostatic
Langmuir waves detected by in situ measurements. A
statistical analysis will certainly be possible during the
growing phase of the current solar cycle, when more events
are observed, to offer more observational constraints on the
theory.
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Vlasov simulations of Langmuir Electrostatic Decay and
consequences for Type III observations.
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Abstract. The electrostatic decay enables energy transfer from a finite amplitude Langmuir to a backscattered daughter
Langmuir wave and ion acoustic density fluctuations. This mechanism is thought to be a first step for the generation of type
III solar radio emissions at twice the plasma frequency. The electrostatic decay is here investigated through Vlasov-Poisson
simulations by considering Langmuir localized wave packets in the case Te = Tp. Simulation results are found to be in good
agreement with recently reported observations from the STEREO mission of the electrostatic decay of beam-driven Langmuir
waves during a type III burst.

Keywords: Type III, parametric instability, Langmuir waves
PACS: 96.50.Tf, 96.60.tg

INTRODUCTION

Solar Type III radio emissions are one of the most promi-

nent features of the meter-decameter ranges of frequency.

The emissions show a pronounced drift with time to-

wards lower frequencies. Since the early work of Wild

[1] and Ginzburg and Zheleznyakov [2], the generally

accepted model for such emission is as summarized be-

low. During a flare, high energy electrons (1-100 keV)

are expelled from the solar corona and travel along the

interplanetary magnetic field lines. The supra-thermal

electrons produce a bump on the local electron distri-

bution function generating Langmuir waves via the so-

called "bump-on-tail instability". Then, nonlinear wave

couplings generate electromagnetic waves at f−p (the lo-

cal electron plasma frequency) or 2 f−p . The plasma fre-

quency decreases with the heliocentric distance due to

the decrease of the electron density: this is the origin

of the time frequency drift characteristic of the Type III

emissions.

Type III electromagnetic emissions are thought to be pro-

duced via two different nonlinear wave-wave couplings.

Through electromagnetic coupling, a mother Langmuir

wave L decays into a low frequency LF waves and a

transverse electromagnetic wave Tf−p
at the local plasma

frequency, observed as Type III fundamental emission:

L → Tf−p
+LF

Through electrostatic coupling, known as Langmuir

Electrostatic Decay (hereafter LED), the mother Lang-

muir wave L decays into a low frequency ion acoustic

wave S and a daughter Langmuir wave L′, which can fur-

ther non linearly couple with the pump wave to generate

a transverse electromagnetic wave T2 f−p
at twice the local

plasma frequency, observed as Type III harmonic emis-

sion:

L → L′ +S then L′ +L → T2 f−p

We hereafter concentrate on the LED.

Henri et al. [3] recently reported direct observations

of Langmuir waves decaying into secondary Langmuir

waves and acoustic waves during a Type III solar event,

from STEREO/WAVES data. They found that:

• the Doppler-shifted frequencies of the three ob-

served waves satisfy the resonant relations of

momentum and energy conservation expected for

three-wave coupling

ωL = ωL′ +ωS
!kL =!kL′ +!kS (1)

• a bicoherence analysis confirms the phase coher-

ence of the three waves;

• the coupling regions are spatially localized with size

of about 2000 Debye lengths.

In this former work, the LED threshold and the growth

rate of IAW density fluctuations generated by LED were

both evaluated from analytical solutions involving a

purely monochromatic three-wave coupling [4]. How-

ever, observations show that: (i) the Langmuir waves are

isolated wave packets with a packet width of the order of

a few wavelengths; (ii) proton and electron temperatures

are known to be close in the solar wind so that IAW asso-

ciated with the LED should be strongly Landau-damped,

this would limit the development of the IAW and thus the

LED.
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The goal of this paper is to study the dynamic of

the LED through 1D-1V Vlasov-Poisson simulations by

considering an initial localized Langmuir wave packet,

for equal electron and ion temperature. For a better com-

parison with observed waveform during Type III bursts,

the simulation results are also presented as they would

appear if observed by spacecraft instruments.

DESCRIPTION OF THE MODEL

LED is here investigated through 1D-1V Vlasov-Poisson

simulations in the electrostatic approximation. The de-

scription of the code and the numerical scheme can be

found in Mangeney et al. [5].

The Vlasov-Poisson system is solved for the 1D-1V

electron and proton distribution function, fe(x,v, t) and

fp(x,u, t). The equations are normalized by using the

following characteristic electron quantities: the charge

e, the electron mass me, the electron density ne, the

plasma (angular) frequency ωpe =
√

4πnee2/me, the De-

bye length λD =
√

Te/4πnee2, the electron thermal ve-

locity vth,e = λDωpe =
√

Te/me and an electric field

Ē = mevth,eωpe/e. Then, the dimensionless equations for

each species read:

∂ fe

∂ t
+ v

∂ fe

∂x
− (E +Eext)

∂ fe

∂v
= 0 (2)

∂ fp

∂ t
+u

∂ fp

∂x
+

1

µ
(E +Eext)

∂ fp

∂u
= 0 (3)

∂ 2φ

∂x2
=

∫

fedv−

∫

fpdu ; E = −
∂φ

∂x
(4)

where v (resp. u) is the electron (resp. ion) velocity nor-

malized to the electron thermal velocity. Furthermore

µ = mp/me = 1836 is the proton-to-electron mass ratio

and φ and E are the self-consistent electric potential and

electric field generated by the plasma charge density fluc-

tuations according to Poisson equation (Eq. 4). Finally,

Eext is an "external" driver added to the Vlasov equa-

tion that can be switched on or off during the runs. The

electron (resp. ion) distribution function is discretized in

space for 0 ≤ x < Lx, with Lx = 10000 λD the total box

length, for a resolution of dx = λD. The electron velocity

grid ranges over −5 ≤ v/vth,e ≤ +5, with a resolution of

dv = 0.04 vth,e. (resp. −5 ≤ u/uth,i ≤ +5, with a resolu-

tion of du = 0.04 uth,i for the proton velocity grid, where

uth,i =
√

Tp/mp is the proton thermal velocity). The tem-

peratures are chosen to be equal Tp = Te.

Periodic boundary conditions are used in the spatial

direction. The electron and proton distributions functions

are initially Maxwellian with respect of velocity, with a

random noise in density.

Finally, the initial Langmuir wave packet with the

desired wavelength λL and electric field amplitude EL

is generated by an "external" electric field Eext . The

pump Eext oscillates at the expected Langmuir frequency

ωL = ωpe +3/2(2πλD/λL)2, with a phase equal to ωLt−

2πx/λL, and is spatially localized with a gaussian-shaped

envelop. A Langmuir wave packet propagating only in

the forward direction is thus excited. The external elec-

tric field Eext is switched off when the generated Lang-

muir wave reaches the desired amplitude EL, typically

at t ∼ 300 ω−1
pe , much shorter than the LED timescale.

The initial Langmuir wave packet then evolves self-

consistently. Further details on the forcing can be found

in [9].

LANGMUIR ELECTROSTATIC DECAY

OF A LOCALIZED WAVEPACKET

In order to compare the simulations results with observa-

tions of electric waveforms during Type III events, Lang-

muir wavelength and amplitude are set as indicated by

solar wind observations. We choose a Langmuir wave

packet with wavelengths centered on λL = 200 λD, a

packet width ∆ = 2000 λD, and a maximum initial elec-

tric field EL = 6 10−2. Since the electric field associated

with IAW is known to be low, in the following, ion den-

sity fluctuations will be used as a tracer for IAW.

LED is observed in Vlasov simulations for a level of

Langmuir electric amplitude typical of those observed in

the solar wind during type III bursts. The evolution of

the Langmuir wave packet is shown in Fig. 1. The elec-

trostatic decay starts at t ≃ 104 ω−1
pe . The mother and

daughter Langmuir wave packets can be follow in the

top left panel that shows the space-time evolution of the

electric density energy E(x, t)2/2. The Langmuir mother

wave packet propagates towards the right at its group ve-

locity (black plain line) and emits daughter Langmuir

wave packets propagating backward at their own group

velocity (white dashed line). The bottom left panel shows

the temporal evolution of ion density fluctuations dur-

ing the decay of the Langmuir wave. The fluctuations

along the dashed line is a small amplitude artifact of

the initial forcing, it does not interact with the elec-

trostatic coupling. Instead, ion density fluctuations gen-

erated from the Langmuir mother wave packet (along

the black solid line) propagate forward at the ion sound

speed (slope of the dashed line) with the expected wave-

length for the IAW decay product λ
IA
≃ 150 λ

D
. They

are the decay product. Note that the IA fluctuations are

generated locally where the two Langmuir wave pack-

ets beats. Indeed, IAW density fluctuations are heavily

Landau damped, since Te = Tp, as soon as the waves es-

cape the area where LED occurs. Therefore, the LED-
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FIGURE 1. Evolution of a localized Langmuir wave packet with initial normalized amplitude EL = 6 10−2. Top panel: electric
density energy E(x, t)2/2. Bottom panel: proton density fluctuations. The expected group velocity of the mother (resp. daughter)
Langmuir wave is shown by the black plain line (resp. white dashed line). The ion sound speed is shown by the black dashed line.

produced IAW is expected to be observed in the solar

wind only locally where the mother and daughter Lang-

muir waves interact.

In order to compare the simulation results with in-

situ waveform observations, we mimic the conditions

of observation onboard a spacecraft that would record,

on monopole antennas, a decaying Langmuir wave. We

thus hereafter introduce in the presentation of simula-

tion results (i) a spacecraft floating potential effect, (ii)

a Doppler-shift effect.

First, monopole antenna channel are known to be sen-

sitive to both the electric field and the proton density

fluctuations, through the fluctuation of the spacecraft po-

tential [6, 7, 8]. This means that the observed signal

is a combination of both electric field and proton den-

sity fluctuations. To reproduce this effect in the simula-

tion, we consider an "equivalent signal" s(t) = E(x, t)+
α np(x, t), with α the equivalent in the simulation of a

calibration parameter that gives in the observations the

ratio of the spacecraft floating potential with respect to

density fluctuation. This parameter is set to α = 50 as an

order of magnitude following the prescription of Kellogg

et al. [8].

Second, observed waveforms in the spacecraft frame are

Doppler-shifted since the plasma is moving at the solar

wind speed. A Doppler-shift effect is introduced in the

simulation by considering the "equivalent signal" s(t) at

position x(t) = x0 +V
S
t where V

S
is a constant velocity.

We choose here V
S
= vth,e as a first approach.

This "equivalent signal" s(x(t), t), obtained from the sim-

ulation, represents the signal that would be recorded by

a spacecraft crossing such a decaying Langmuir wave

packet.

For an easy confrontation with observed waveforms,

simulation results are analyzed and presented in Fig. 2

the same way observations have been analyzed and pre-

sented by Henri et al. [3]. Both a Doppler-shift effect

and the sensitivity to both the electric field and the den-

sity fluctuations are taken into account. The top left panel

shows the electric field (grey) and proton density (black

line) waveforms from the simulation. Both are plotted in

normalized units, as described in the simulation model.

The left bottom panel shows the wavelet transform of

s(x(t), t). The simulations show that (i) beat-like mod-

ulation at the plasma frequency would be observed, (ii)

the IAW signal would be seen at lower frequency cen-

tered where the maximum of the beat-like Langmuir sig-

nal is observed. This is in full agreement with the obser-

vations. The Fourier spectrum of s(x(t), t) is shown in the

right top panel, with a zoom at the plasma frequency in

the right bottom panel. The frequency of IAW density

fluctuations as well as the separation between the fre-

quency peaks of the two Langmuir waves are essentially

a Doppler-shift effect. The full line represents the total

Fourier spectrum. Dashed and dotted lines distinguish

the contribution of the ion density fluctuations and elec-

tric field respectively. The simulation thus proves that the

high frequency part of the observed spectrum is domi-

nated by the response of the antenna to the fluctuations

of the electric field, whereas the low frequency part is

dominated by the response of the spacecraft potential to

density fluctuations.

The waveform and spectrum obtained from Vlasov

simulations agrees qualitatively well with observations

reported in Henri et al. [3]. However, in order to check

whether the level of density fluctuations is quantitatively

consistent with previsions from Vlasov simulations, a

full calibration of the floating potential of the STEREO

spacecraft is needed in order to get a better evaluation

of α that fully takes into account the geometry and

dimension of the spacecraft.
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FIGURE 2. Waveform, spectrum and wavelet transform from simulation results, as they would appear when observed by
spacecraft instruments when crossing a Langmuir wave under LED. Top left panel: waveform in a moving frame: electric field
(grey) and proton density (black). Bottom left panel: Morlet wavelet transform of signal s(x(t), t). Top right panel: corresponding
Fourier spectrum (full line) with respective contribution of the density fluctuations (dashed line) and electric field (dotted line).
Bottom right panel: zoom on the double peak at the plasma frequency.

CONCLUSION

We have reported 1D-1V Vlasov-Poisson simulations of

the Langmuir Electrostatic Decay. The simulations have

been done in typical solar wind conditions: (i) equal elec-

tron and proton temperature, in order to take into ac-

count the strong Landau damping of daughter ion acous-

tic waves, and (ii) localized wave packets, in order to

consider the limited interaction time between the mother

and daughter waves, each propagating at its own group

velocity.

Vlasov simulations in typical solar wind conditions (i)

shows that the observed level of Langmuir electric field

during type III burst is high enough for Langmuir Elec-

trostatic Decay to start, (ii) reproduce qualitatively the

beat-like Langmuir waveforms as well as the spectrum

observed during type III bursts when obtained from

monopole antennas.

In order to fully confirm the interpretation of the ob-

served Langmuir waveforms in term of the LED of

type III beam-driven Langmuir waves, an effective

threshold will be computed from vlasov simulation in

typical solar wind conditions [9].

We have study here a first step for the generation of elec-

tromagnetic waves like for example Type III emission.

Further Vlasov-Maxwell simulations must be performed

to study the next step of the process and check the energy

transfer from electrostatic to electromagnetic emissions.
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[1] Recent observation of large‐amplitude Langmuir waveforms during a type III event in
the solar wind has been interpreted as the signature of the electrostatic decay of
beam‐driven Langmuir waves. This mechanism is thought to be a first step to explain the
generation of type III radio emission. The threshold for this parametric instability in the
typical solar wind condition has been investigated through 1D‐1V Vlasov‐Poisson
simulations. We show that the amplitude of the observed Langmuir beatlike waveforms
is of the order of the effective threshold computed from the simulations. The expected
levels of associated ion acoustic density fluctuations have also been computed for
comparison with observations.

Citation: Henri, P., F. Califano, C. Briand, and A. Mangeney (2010), Vlasov‐Poisson simulations of electrostatic parametric
instability for localized Langmuir wave packets in the solar wind, J. Geophys. Res., 115, A06106, doi:10.1029/2009JA014969.

1. Introduction

[2] During a solar flare, high‐energy electrons (1–100 keV)
are expelled from the solar corona and travel along the
interplanetary magnetic field lines, producing a bump on the
local electron distribution function. Langmuir waves then
grow via the so‐called bump‐on‐tail instability. Langmuir
waves are observed at amplitude large enough (E2/(8pnT) ’
10−3–10−4) to further excite electromagnetic waves through
nonlinear processes. These electromagnetic waves are the
main signature of type III radio bursts. Wave‐wave inter-
action through parametric instabilities have been shown to
be the physical mechanism underlying the non linear evo-
lution of large amplitude Langmuir waves.
[3] Langmuir electrostatic decay (LED), also called

Langmuir decay instability (LDI) or parametric decay
instability (PDI) in the literature, enables energy transfer
from a finite amplitude Langmuir wave L toward a second
Langmuir wave L′ and an ion acoustic wave (IAW) S
through a three‐wave resonant interaction:

L ! L′ þ S:

This process is thought to be a first step toward the
generation of solar wind type III radio emission at twice
the plasma frequency (T2fpe), as a result of a coalescence

of the two Langmuir waves [Ginzburg and Zheleznyakov,
1958]:

Lþ L′ ! T2fpe :

[4] Spectral observations of high‐frequency intense
Langmuir waves and low‐frequency ion acoustic waves
during type III bursts have been interpreted as a signature of
Langmuir electrostatic decay [Lin et al., 1986a]. Further-
more, waveform observations during type III bursts of
modulated Langmuir wave packets on one hand [Cairns and
Robinson, 1992; Hospodarsky and Gurnett, 1995; Bale et
al., 1996; Li et al., 2003] and of IAW frequency drift
associated with type III electron beam velocity drift on the
other hand [Cairns and Robinson, 1995] have both been
interpreted by the Langmuir electrostatic decay.
[5] The LED is a resonant parametric instability. To be

resonant, the three‐wave coupling requires the fundamental
equations of energy and momentum conservation to be
satisfied:

!L ¼ !L
0 þ !S

~kL ¼~kL′ þ~kS ; ð1Þ

where w and ~k are the frequency and wave number of the
waves. Moreover, for the LED to develop, the electric field
of the mother Langmuir wave has to reach a critical value.
The analytical calculation of this threshold has been dis-
cussed by Nishikawa [1968], Sagdeev and Galeev [1969],
Dysthe and Franklin [1970], Bardwell and Goldman [1976],
and Robinson et al. [1993] by considering three mono-
chromatic waves. The underlying idea is that for the insta-
bility to develop, the growth rate gLED of the two product
waves must be higher than their own linear Landau damping
rates gL′ and gS:

!LED >
ffiffiffiffiffiffiffiffiffiffiffi

!L′!S
p
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The threshold for parametric decay of the mother Langmuir
wave is thus evaluated in term of the electric to kinetic
energy ratio [Bardwell and Goldman, 1976]:

"0E
2

nkBT
> 8

!L′

!L′

!S

!S

;

with wL′, wS the angular frequency of the daughter waves.
The threshold for electrostatic decay has been estimated
for typical solar wind parameters to be ("0E

2)/(nkBT) ≥

2.5 × 10−5 [Lin et al., 1986b]. To our knowledge, only LED
that couples three monochromatic waves have been con-
sidered analytically. Indeed, the analytical treatment of
resonance becomes complicated when considering a finite
frequency bandwidth, in which case a numerical treatment is
necessary.
[6] Earlier related works on simulations of LED have

been based on the Zakharov equations [Sprague and Fejer,
1995; Gibson et al., 1995; Soucek et al., 2003], considering
the instability as a fluid mechanism. Recently, kinetic
simulations using PIC codes [Matsukiyo et al., 2004; Huang
and Huang, 2008] and Vlasov codes [Goldman et al., 1996;
Umeda and Ito, 2008] have shown that the beam‐plasma
interaction can saturate through LED and have been able to
reproduce the modulated shape of Langmuir waves.
[7] If the threshold for LED is commonly thought to be at

moderate amplitude, a recent numerical work [Umeda and
Ito, 2008] claims that no LED would occur until the elec-
tric energy is comparable to the plasma kinetic energy. As a
result, it would be no more possible to consider the LED as
a mechanism for the generation of type III radio emission.
[8] Henri et al. [2009] (hereinafter referred to as Paper I)

recently reported direct observations of Langmuir waves
decaying into secondary Langmuir waves and acoustic
waves during a type III solar event, from STEREO/WAVES
data. They found that the Doppler‐shifted frequencies of
the three observed waves satisfy the resonant relations of
momentum and energy conservation expected for three‐
wave coupling. A bicoherence analysis confirmed the phase
coherence of the three waves. In this former work, the LED
threshold and the growth rate of IAW density fluctuations
generated by LED were both evaluated from analytical
solutions involving a purely monochromatic three‐wave
coupling [Sagdeev and Galeev, 1969]. However, observa-
tions show that (1) the large amplitude Langmuir waves are
isolated wave packets with a packet width of the order of a
few wavelengths and (2) ion and electron temperatures are
close (0.1 < Te/Ti < 10) so that ion acoustic waves associated
with the LED should be Landau damped. Thus several
questions remain open about the generation and the
dynamics of the LED observed in the solar wind: (1) What
are the threshold and the growth rate of the LED when
electron and ion temperatures are close? What is the effec-
tive threshold of LED when the mother Langmuir wave is a
localized wave packet? (2) What is the saturation level for
IAW density fluctuations in these conditions? What is the
expected level of IAW density fluctuations where saturation
is not observed? The goal of this paper is to answer these
questions by studying the dynamics of the LED through
1D‐1V Vlasov‐Poisson simulations.
[9] The paper is organized as follows. The Vlasov‐Poisson

simulation model is described in section 2. The numerical

results are presented in section 3, first for a monochromatic
mother Langmuir wave (section 3.1), then for a mother
Langmuir wave packet (section 3.2). Growth rates, satura-
tion levels for IAW density fluctuations and threshold for
LED are studied. The simulation results are finally discussed
in section 4 in the context of solar wind observations.
Particular attention is paid to the case of equal temperature
for electrons and ions, in which case the growth of IAW
should be limited by its Landau damping.

2. Full Vlasov‐Poisson Simulation Model

[10] In typical solar wind conditions, the ratio between
electron and ion temperatures fluctuates around 1. The IAW
produced during three‐wave coupling should then be
suppressed by Landau damping. This would limit the
development of the IAW and thus the LED. However, the
IAW Landau damping rate in such temperature condition
cannot be solved analytically, so that it cannot be included
in a fluid code. Kinetic effects due to wave‐particle inter-
actions are to be taken into account self‐consistently as a
possible limitation for the instability to grow. A Vlasov‐
Poisson approach has thus been used to study LED
dynamics. It allows to consider self‐consistently the decay
of the Langmuir wave together with damping effect on the
product waves. Since solar wind electrons are weakly
magnetized (wce/wpe ’ 10−2), magnetic effects are discarded.
[11] The Vlasov‐Poisson system is solved for the electron

and ion distribution function, fe (x, v, t) and fi (x, u, t), with
the numerical scheme described by Mangeney et al. [2002],
limiting our study to the 1D‐1V case. The equations are
normalized by using the following characteristic electron
quantities: the charge e, the electron mass me, the elec-
tron density ne, the plasma (angular) frequency wpe =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4#nee2=me

p

, the Debye length lD =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Te=4#nee2
p

, the
electron thermal velocity vth,e = lDwpe =

ffiffiffiffiffiffiffiffiffiffiffiffi

Te=me

p

and an
electric field E = mevth,ewpe/e. Then, the dimensionless
equations for each species read:

@fe
@t

þ v
@fe
@x

% ðE þ Einit
ext Þ

@fe
@v

¼ 0; ð2Þ

@fi
@t

þ u
@fi
@x

þ 1

$
ðE þ Enoise

ext Þ @fi
@u

¼ 0; ð3Þ

@2%

@x2
¼
Z

fedv%
Z

fidu; E ¼ % @%

@x
; ð4Þ

where v (u, respectively) is the electron (ion, respec-
tively) velocity normalized to the electron thermal
velocity. Here m = mi/me = 1836 is the ion‐to‐electron
mass ratio. % and E are the self‐consistent electric potential
and electric field generated by the plasma charge density
fluctuations according to Poisson equation (4). Eext

init and
Eext
noise are “external” drivers added to the Vlasov equation

that can be switched on or off during the run. The electron
(ion, respectively) distribution function is discretized in
space for 0 ≤ x < Lx, with Lx = 5000 lD the total box length,
with a resolution of dx = lD. The electron velocity grid
ranges over −5 vth,e ≤ v ≤ +5 vth,e, with a resolution of dv =
0.04 vth,e. (−5 uth,i ≤ u ≤ +5 uth,i, respectively, with a reso-
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lution of du = 0.04 uth,i for the ion velocity grid, where uth,i
is the ion thermal velocity). Finally, periodic boundary
conditions are used in the spatial direction.
[12] In all the runs the following initial conditions have

been taken: electron and ion distributions functions are
initially Maxwellian with respect to velocity, with a random
noise in density:

feðx; vÞ ¼
e%v2

ffiffiffiffiffiffi

2#
p 1þ "

X

k

cosðkxþ  kÞ
" #

ð5Þ

fiðx; uÞ ¼

ffiffiffi

!
$

q

e%
!
$u

2

ffiffiffiffiffiffi

2#
p 1þ "′

X

k

cosðkxþ  k′Þ
" #

; ð6Þ

where Q = Ti/Te is the ion‐to‐electron temperature ratio set
to Q = 0.1 or 1 in the different runs. Variables yk and y′k are
random phases with a uniform distribution. The parameter "
("′, respectively) is the amplitude of the initial electron (ion,
respectively) density level of noise. The parameters (", "′)
are chosen so that the development of the instability happens
relatively rapidly, as Vlasov codes have a very low level of
numerical noise. The influence of the level of initial density
fluctuation on the LED has been studied for values 10−8 < ",
"′ < 10−4. Neither the growth rate of density fluctuations, nor
its saturation level are modified by the choice of the para-
meters " and "′, as long as they remain weak. Only the time
needed for the instability to saturate is modified. The chosen
values " = "′ = 10−5 are a good compromise to limit the
computation time. However, when the electron and proton
temperatures are of the same order the initial perturbation on
ion density is rapidly damped out and the generation of the
IAW starts from the numerical noise. When starting from a
monochromatic Langmuir wave (section 3.1), the interaction
time between the waves is “infinite.” In this case the IAW
can grow from the numerical noise to significant values
providing we wait for long enough. On the other hand, when
starting from a Langmuir wave packet (section 3.2) the
interaction time between the waves is now finite. A con-
tinuous injection of noise is then needed to seed the insta-
bility. This is why an external driver Eext

noise is added in the
Vlasov equation for ions (equation (3)). The aim is to
control the generation of a continuous incoherent noise in
the proton density. For self‐consistency, the driver is used in
both cases Q = 0.1 and Q = 1. The details of the forcing are
described in appendix A. From a physical point of view,
IAW grow from the proton density fluctuations background.
Note that such density irregularities are observed in the solar
wind [Celnikier et al., 1987; Harvey et al., 1988].
[13] In space conditions, the full physical process for the

nonlinear evolution of large amplitude Langmuir waves is
characterized by two successive steps. The first one is the
generation of Langmuir waves from the bump‐on‐tail
instability, the second one the electrostatic decay of these
Langmuir waves if their amplitudes reach the LED thresh-
old. Other authors have already studied the generation of
beam driven Langmuir wave packets [Omura et al., 1994,
1996; Silin et al., 2007; Umeda, 2007]. Among their results,
they have shown that the beam‐driven Langmuir waves are
localized packets. This localization is explained through the
mechanism of kinetic localization in the framework of a

nonlinear trapping theory [Muschietti et al., 1995, 1996;
Akimoto et al., 1996; Usui et al., 2005]. It is has also been
shown that the beam‐driven Langmuir wave packets are
formed on time scales considerably shorter than those of
parametric instabilities [Intrator et al., 1984; Akimoto et al.,
1996].
[14] Our aim here is to focus the attention on the LED

process. Motivated by the fact that the generation and
localization of beam‐driven Langmuir waves are decoupled
from the LED process, we choose not to generate Langmuir
waves by a bump‐on‐tail instability, but to resonantly grow
the initial Langmuir wave by means of an electric field Eext

init

added in equation (2). This method enables to have a direct
control on the energy and the spectrum of the initial
Langmuir wave and avoid other effects due to the non‐
Maxwellian character of the initial distribution function.
Switched on at the beginning of the run, it acts as a driver to
resonantly grow the wave with the desired spectrum and
electric field amplitude. Details on the external driver Eext

init

are given in Appendix B. The external driver is then
switched off and the generated Langmuir wave evolves
self‐consistently. In section 3.1, a monochromatic Langmuir
wave of wavelength lL and amplitude EL is generated by
imposing Eext

init = Eext
(1) (compare equation (B1)). In section 3.2,

a Langmuir wave packet of mean wavelength lL, packet
width D and maximum amplitude EL is generated by
imposing Eext

init = Eext
(2) (compare equation (B2)). The external

electric field Eext
init is switched off when the amplitude

(maximum amplitude, respectively) of the generated
Langmuir wave (wave packet, respectively) reaches the
desired value EL. This happens typically for time t < 300 wpe

−1,
small compared to the decay time scale. So, the resonant
generation of the Langmuir wave (wave packet, respectively)
does not interfere with the LED mechanism.
[15] In order to compare the simulation results with

observations of electric waveforms during type III events,
the Langmuir wavelength and amplitude are set as indicated
by solar wind observations. Langmuir waves grow by res-
onance with an electron beam at phase velocity vL

F = wL/kL ’
Vbeam. Typical electron beams span in the range 0.05–0.2 c
[Dulk et al., 1987; Hoang et al., 1994]. Taking into account
the Langmuir dispersion relation, we deduce Langmuir
wavelengths in the range lL = [100–600] lD. However, for a
temperature ratio Q = 1 (Q = 0.1, respectively), the daughter
Langmuir wave packet is expected, from equation (1) and
respective dispersion relations, to be backscattered for lL <
285 lD (lL < 385 lD, respectively), and scattered forward
for lL > 285 lD (lL > 385 lD, respectively). Thereby,
mother and daughter Langmuir Doppler‐shifted frequencies
are very close and hardly separated on observation. Thus, to
be able to compare the simulations with observations, we
choose Langmuir wavelengths that allow observations of
LED, namely lL = 100 lD for the initial monochromatic
Langmuir wave in section 3.1, and 50 lD < lL < 400 lD for
the initial Langmuir wave packet in section 3.2. Since the
phase velocities of the two expected Langmuir waves are
large enough, their Landau damping can be neglected. Thus
the phase velocity of the Langmuir waves do not need to be
resolved in the electron distribution function velocity box.
On the other hand, the expected IAW travel at the ion‐sound
speed cs =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTe þ TiÞ=mi

p

, which is of the order of the ion
thermal speed when electron and ion temperature are close,
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thus leading to a large Landau damping. The ion‐sound
speed is resolved in the ion distribution function velocity
box.
[16] The typical Langmuir waves amplitude is directly

given by waveform observations and normalized to the
electron temperature:

E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

"0E2
obs=2

nkbTe

s

: ð7Þ

In Paper I, the typical observed values are 10−2 < EL < 10−1.
We choose several amplitudes in the range 10−3 < EL < 1.

3. Numerical Results

[17] During the first part of the simulation (0 < t < t0) the
external electric pump generates a Langmuir monochro-
matic wave (wave packet, respectively) at the desired
amplitude. At time t = t0, the external pump is switch off
when the Langmuir wave (wave packet, respectively)
reaches the desired value. For t > t0 the Langmuir wave
evolves self‐consistently. We consider time t = t0 as the
beginning of the numerical experiment.
[18] The typical intensity of the electric field of the IAW

generated by LED is much below the level of Langmuir
electric noise. In the following, the ion density is therefore
used as a tracer for IAW.

3.1. Electrostatic Decay of a Monochromatic
Langmuir Wave

[19] In this section, we consider the evolution of a
monochromatic wave generated by the external pump
defined in equation (B1). Table 1 summarizes the expected
wavelength, wave numbers, phase velocity and group
velocity in the case of three monochromatic resonant waves,
as a function of the mother Langmuir wavelength lL and the
temperature ratio Q.
[20] A broad spectrum of daughter waves generated by the

instability is clearly seen on Figure 1. It shows the electric
field and ion density spectrum, black and red lines,
respectively, at given times. Dashed vertical lines indicate
the expected wave numbers of the LED products as reported
in Table 1. In Figure 1 (top left), t = 103 wpe

−1, the spectrum
corresponds to the “initial condition” where only the
Langmuir wave at kL = 0.063 lD

−1 and its harmonic at
0.13 lD

−1 are present. Then, the growth of the LED produces
(1) a daughter Langmuir waves L′ at kL′ ’ 0.04 lD

−1 in the
electric field spectrum and (2) an IAW at kS ’ 0.10 lD

−1 in
the ion density spectrum. Both are shown in Figure 1: t = 5 ×

104 wpe
−1 (Figure 1, top right) and t = 105 wpe

−1 (Figure 1,
bottom left). Finally, at t > 105 (Figure 1, bottom right)
harmonics of the IAW are produced, low‐k fluctuations are
generated and the LED saturates. We need to stress here that
during the decay phase, even if the Langmuir wave L is
monochromatic, the product waves L′ and S are both wave
packets with wave numbers centered on the expected wave
number. This results from the fact that different k channels
are available for energy transfer from the Langmuir wave
toward its decay products. Indeed Figure 2 shows the linear
growth rate versus k for different wave numbers of the
daughter Langmuir wave electric field (in black) and IAW
density fluctuations (in red) spectrum. Growth rates for both
daughter waves are overplotted with kS axis and kL′ axis such
that kS + kL′ = kL. As expected, the growth rates are the same
for each couple of product waves that verify the wave
number resonant condition. The spread in wave number is
about DkL′ =DkS ’ 0.025 for both waves, thereby a relative
spectral spread of DkS/kS ’ 0.2 for the IAW and DkL′/kL′ ’
0.6 for the Langmuir product wave. Note that the generation
of a large spectrum of product waves limits the spatial
coherence of the interaction. This point is discussed in
section 4.2.
[21] We then compute an “integrated” (over space) ion

density fluctuations hdni generated by LED defined by

h&niðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Lx

Z Lx

0

ðnðt; xÞ % n0Þ2 dx

s

; ð8Þ

with the mean ion density n0 = 1 in dimensionless units. We
define the saturation level dnsat as the maximum value
reached by the mean density fluctuations hdni(t) during the
simulation. The growth rate for average density fluctuation
is here gLED = 2.3 × 10−5 wpe, or gLED = 4.1 × 10−2 fS when
expressed in term of the IAW frequency, defined by fS = cs/
lS = 5.5 × 10−4. This means that the characteristic time scale
for the density to grow is about 24 IAW periods, in this case.
The saturation level dnsat = 8.7 × 10−5, obtained at time t =
1.4 × 105 wpe

−1, is of the order of the expected saturation level
defined by the ratio of electric energy to the thermal energy
dnsat

0 = 1
2
EL
2/(Te + Ti) = 2.3 × 10−4. The simulation has been

repeated for several initial Langmuir wave amplitude, with
values in the range 10−3 < EL < 1, and for two temperature
ratios Q = 0.1 and Q = 1.
[22] We found that the evolution becomes strongly non-

linear when the Langmuir wave electric field is “not small,”
i.e., when EL ^ 0.3 for Q = 1 and EL ^ 0.2 for Q = 0.1.
When strong non linear processes take place the evolution is

Table 1. Expected Waves Involved in the Langmuir Electrostatic Decay, Given the Initial Langmuir Wavelength and Using Equations (1)
for Q = 0.1 and Q = 1a

Waves Wavelength (lD) Wave Number (lD
−1) Phase Velocity (vth

e = lDwpe
−1) Group Velocity (vth

e = lDwpe
−1)

Q = 0.1 L lL = 100 kL = 0.063 vL
% = 16 vL

g = 0.189
L′ lL′ = 132 kL′ = (−) 0.047 L′

% = − 21 vL′
g = −0.141

S lS = 57 kS = 0.110 cs = 0.024 cs = 0.024
Q = 1 L lL = 100 kL = 0.063 vL

% = 16 vL
g = 0.189

L′ lL′ = 154 kL′ = (−) 0.041 vL′
% = −24.5 vL′

g = −0.123
S lS = 60 kS = 0.104 cs = 0.033 cs = 0.033

aThe table shows for each wave the expected wavelength (in Debye length lD) corresponding wave number (in inverse Debye length lD
−1) used in the

paper figures and phase and group velocities (in lDwpe
−1).
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not simply driven by the LED mechanism. Conversely, for
small values of EL, the system is mainly driven by the LED
process so that we can compute the growth rate for average
density fluctuations and the density fluctuations saturation
level as previously defined.
[23] The growth rate deduced from simulations gLED of

the average density fluctuations hdni deduced from the
simulation is displayed in Figure 3 for the two temperature
ratios. As shown before, for too high values of the Langmuir
amplitude, about EL ’ 0.3, corresponding to an electric to
thermal energy ratio of 0.1, strong nonlinear effects arise
before LED. Also, as expected, the growth rates are lower
for Q = 1 than Q = 0.1, due to the increase of IAW Landau
damping in the first case. Contrary to former results [Umeda
and Ito, 2008], we show here that the LED is observed for
initial Langmuir waves with electric energy 5 orders of
magnitude lower than the plasma thermal energy.
[24] An analytical effective growth rate gLED

analytical has been
overplotted (dashed lines). It is defined as the difference
between the analytical full monochromatic case of
undamped monochromatic waves in an homogeneous
background gLED

th [Sagdeev and Galeev, 1969] and the IAW
Landau damping gS

Landau:

!
analytical
LED ¼ !thLED % !LandauS ; ð9Þ

where

!thLED ’ kIACs

"0E
2

nkBT

mp

me

" #1=4

; ð10Þ

gLED
th is of the order of the IAW frequency with solar wind

parameters. The growth rate computed from Vlasov simu-
lations gLED is 1–2 orders of magnitude lower than
gLED
analytical. The discussion concerning the discrepancy

Figure 1. Spectrum of both electric field (in black) and ion density (in red) at four different times from
simulation of LED of a monochromatic Langmuir wave with wave number kL = 0.063 and initial electric
amplitude EL = 3 × 10−2. Dashed lines indicate the expected wave numbers of the LED waves. (top left)
Initial conditions. (bottom right) Spectrum at saturation. Note the presence of the second harmonic of the
IAW in this last case.

Figure 2. Spectral growth rate for the Langmuir wave L′
electric field (in red, kL′ axis at the bottom, leftward) and
the IAW density fluctuations (in black, kS‐axis at the top,
rightward) generated by the LED of a monochromatic Lang-
muir wave (EL = 3 × 10−2 and Q = 1). Both axes are scaled
to show the resonant condition in wave numbers: kS + kL′ = kL.
Vertical error bars are 1 − s error bars for the fitting of the
growth rate. The vertical dotted line indicates the expected
wave numbers for monochromatic LED products.
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between the analytical monochromatic case and Vlasov
simulations is postponed to section 4.2.
[25] We also looked for the dependence of the growth rate

with respect to the mother Langmuir wave vector kL.
Finally, the growth rate for density fluctuations generated by
LED has been fitted by a power law:

!LED ¼ " E'
L k

(
L : ð11Þ

The fitting parameters G, a and b are given in Table 2.
[26] The saturation level of density fluctuation dnsat is

summarized in Figure 4 forQ = 0.1 (Figure 4, top) andQ = 1
(Figure 4, bottom). The expected saturation level hdn0sati,
expressed as the initial Langmuir electric energy to the total
kinetic energy ratio,

h&nsat0 i ¼ 1

2
E2
L=ðTe þ TiÞ; ð12Þ

is overplotted (dashed lines). The obtained saturation level of
density fluctuation is in good agreement with the expected
values in both cases.
[27] To summarize, the simulations of the Langmuir

electrostatic decay from an initial monochromatic Langmuir
wave have shown that (1) the threshold for the instability to
grow, expressed in term of the Langmuir wave electric
energy, is at least 5 orders of magnitude lower than the
plasma thermal energy when 0.1 < Q < 1; (2) the product
waves are resonantly generated over a broad range of
wave numbers, naturally producing narrow wave packets;
(3) growth rates of IAW density fluctuations are 1–2 orders
of magnitude lower than the analytical values deduced from
the pure monochromatic case; and (4) saturation levels for
IAW relative density fluctuations are of the order of the ratio
of Langmuir electric energy to the total kinetic energy.

3.2. Electrostatic Decay of a Langmuir Wave Packet

[28] In the following, we consider the evolution of a
finite‐amplitude Langmuir wave packet, generated by the
external electric field pump defined in equation (B2). We
recall that, in order to mimic the presence of a low level of
small‐scale ion acoustic turbulence, we introduce a source
term of ion acoustic noise. This forcing generates incoherent
proton density fluctuations at a level dn/n ∼ 10−5 much
smaller than the expected level of density fluctuations
generated by LED.
[29] Figure 5 shows the LED of a Langmuir wave packet

with wavelengths centered on lL = 200 lD, a packet width
D = 2000 lD, a maximum initial electric field EL = 6 × 10−2,
and the two temperature ratio Q = 0.1 (Figure 5, left) and
Q = 1 (Figure 5, right). The mother and daughter Langmuir
wave packets can be followed in Figure 5 (top) that show the
space‐time evolution of the electric field density energy
E(x, t)2/2. The Langmuir mother wave packet propagates
toward the right and emits backscattered Langmuir wave
packets. Figure 5 (bottom) shows the temporal evolution of
ion density fluctuations during the decay of the Langmuir
wave. IAW density fluctuations are generated locally (by
ponderomotive force from the two Langmuir wave packets
beats) and propagate forward at the ion sound speed (dashed
line). When Q = 0.1 IAW propagate and escape the area
where LED develops. Conversely, when Q = 1, IAW den-
sity fluctuations are heavily damped as soon as the waves
escape the area where LED occurs. Thereby, the waves can
be observed only where the mother Langmuir wave decays.
Finally, as for the case of monochromatic Langmuir waves,
the LED growth rate is lower for a larger value of Q.
[30] The simulation has been repeated for different values

of EL and mean wavelength lL, with a packet width of D =
10 lL. Figure 6 summarizes the results for the evolution of
the Langmuir wave packet, each point representing a single
simulation.

Table 2. Numerical Values for the Fit for the Growth Rate of
LED‐Driven Density Fluctuations in Equation (11)

G a b

Tp/Te = 0.1 0.026 1.11 0.59
Tp/Te = 1 0.025 1.82 0.30

Figure 3. Growth rate for IAW density fluctuations versus
Langmuir wave initial electric field amplitude for two tem-
perature ratios. (top) Q = 0.1. (bottom) Q = 1. The growth
rate is expressed in (left) plasma frequency unit wpe and in
(right) IAW frequency fIA. The full line is a fit of Vlasov
simulations (stars). The dashed line shows the analytical
growth rate gLED

analytical from Sagdeev and Galeev [1969]
when LED‐generated IAW remain monochromatic, includ-
ing the linear Landau damping of IAW. The vertical dotted
line sets the limits above which strong nonlinear effects
occur before LED starts.

HENRI ET AL.: VLASOV SIMULATION OF LANGMUIR DECAY A06106A06106

6 of 13



Figure 5. (top) Space‐time evolution of the electric energy density. (bottom) Space‐time evolution of
the ion density fluctuations. (left) Q = 0.1. (right) Q = 1. Full lines show the expected group velocities
of the Langmuir wave packets, while dashed lines display the ion sound speed.

Figure 4. Average density fluctuation at saturation dnsat (expressed in percentage of mean density) for
different Langmuir wave initial electric field amplitudes for both (top) Q = 0.1 and (bottom) Q = 1. The
dashed lines show the expected level of saturation dn0

sat = (0.5 × EL
2)/(Te + Ti) defined as the Langmuir

electric energy to the total kinetic energy ratio.
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[31] During the decay process, the mother wave packet
generates a daughter wave packet traveling at a different
group velocity. The region of parameters leading to elec-
trostatic decay is displayed with green squares in Figure 6.
Eventually the two wave packets separate thus stopping the
LED process. Therefore, LED is efficient only if the inter-
action time between the two wave packets is longer than the
growth time for the daughter waves. The growth time of the
instability is controlled by the Langmuir electric field
amplitude: the larger the amplitude, the smaller the growth
time (Figure 3). The interaction time is controlled by the
Langmuir wavelength: the larger the wavelength, the
smaller its group velocity and so the larger the interaction
time. Thus, for low‐amplitude and/or short wavelengths, the
Langmuir wave packet propagates at its group velocity
without nonlinear interactions. The region of parameters
leading to a linear behavior without electrostatic decay is
displayed with orange crosses in Figure 6. The efficiency of
LED (green) region increases toward the linear (orange) part
(i.e., LED is observed for lower lL and EL) if temperature
ratio Q decreases or/and the size D of the mother wave
packet increases. Finally, strong non linear effects dominate
the evolution of high‐amplitude and/or large‐wavelength
Langmuir wave packets, and LED is no more the dominant
process. The region of parameters where other non linear
effects are dominant is shown with red crosses in Figure 6.
These strong non linear effects seem to be the signature of
strong turbulence: Langmuir collapse and formation of
cavitons. This evolution is out of scope of the present
study and will be studied in a future work.
[32] The effective threshold for the electrostatic decay of a

Langmuir wave packet can be estimated by imposing that
the interaction time tint is equal to the inverse growth rate of
daughter wave packets gLED. The growth rate for LED gLED
has been obtained from simulations of monochromatic
Langmuir waves LED and fitted in equation (11). The
interaction time tint is evaluated from

)int ’ #=ðv gL % v
g
L′Þ; ð13Þ

where (vL
g
− vL′

g) is the difference of group velocity between
the two waves that first separate, here the mother and
daughter Langmuir waves, and D the packet width of the
mother Langmuir wave, which is assumed to be about the
length of interaction. Using equation (1) and kS ’ 2 kL,
equation (13) can be written in normalized units as

)int ’ #=ð6 kLÞ: ð14Þ

Finally, tint = gLED
−1 gives the effective LED threshold of a

Langmuir wave packet with wave vector kL and a packet
width D:

E threshold
LED ¼ 6 k

1%(
L

#"

 !1='

; ð15Þ

expressed in normalized units. The semianalytical threshold
is overplotted in Figure 6 (red line) in order to validate its
dependency with the mother Langmuir wave vector kL.
[33] We also performed a series of simulations in order to

validate the dependency of ELED
threshold with D. This time the

simulation starts with a mother Langmuir wave packet of
mean wavelength lL = 200 but with different packet width
values in the range 5 lL < D < 30 lL, covering the typical
range for Langmuir wave packets in the solar wind, and
initial amplitude EL. The results are presented in Figure 7,
together with the semianalytical threshold (red line). In both
cases, equation (15) is in agreement with simulations of
LED of localized Langmuir wave packets.
[34] The threshold decreases when (1) the ion to electron

temperature ratio decreases, since the Landau damping of
IAW decreases and their effective growth rate increase;
(2) the mean Langmuir wavelength increases, since
Langmuir wave packets with longer wavelengths propagate
at smaller group velocities thus increasing the available
interaction time with the ion background; and (3) the width
of the Langmuir wave packets increases, since the interac-
tion time between the mother and daughter waves increases.
The effective threshold obtained by Vlasov simulations and
described in this section is compared to observations of LED
in the solar wind in the next section.

Figure 6. Evolution of a Langmuir wave packet, (bottom) with different wavelengths centered on lL but
a same packet width of D = 10 lL and different initial electric fields EL (left axis). (left) Q = 0.1. (right)
Q = 1. In green are simulations where LED is observed; in orange are simulations where the available
interaction time between the waves is lower than the LED time scale; in red are simulations where strong
NL effects arise before/instead of LED. Previous simulation results from Umeda [2007] and Umeda and
Ito [2008] are overplotted in Figure 6 (left) with black crosses and diamonds, respectively. The red line is
the semianalytical threshold expressed in equation (15).
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[35] Finally, in two recent works of 1D‐1V Vlasov simu-
lations, Umeda [2007] and Umeda and Ito [2008] reported
the evolution of beam‐excited Langmuir waves. Their sim-
ulation parameters areQ = 0.1, a beam speed vbeam = 8 × vth,e
with a beam temperature equals to the electron core tem-
perature and a beam density ratio of 0.1% and 0.5%,
respectively. These beams generate Langmuir waves at a
phase velocity of about vbeam − vth,e = 7 × vth,e, i.e., a
Langmuir wavelength lL ’ 40 × lD. The amplitude of the
Langmuir waves reaches EL ∼ 0.3 in the first case, EL ∼ 1 in
the second case. They observed the LED process in the
second case only. We have overplotted their results in
Figure 6 (black cross and diamond, respectively). These
previous simulations agrees with equation (15): for these
parameters, the equation predicts that LED of localized
Langmuir wave packets should occur for high Langmuir
electric energy levels (of the order of unity).
[36] To summarize the simulations of the Langmuir

electrostatic decay from an initial Langmuir wave packet:
(1) we have illustrated how the localization of Langmuir
wave packets is crucial for the evolution of Langmuir decay
by limiting the interaction time between mother and
daughter waves; (2) we have shown that the ion acoustic
waves are generated locally, where the wave packets inter-
act, and then IAW are damped as soon as they escape the
region where the mother and daughter Langmuir waves
interact when electron and ion temperature are equal or
escape this region when the electron temperature is higher
than the ion temperature; and (3) we used results from the
Langmuir electrostatic decay of a monochromatic Langmuir
wave (section 3.1) to compute a semianalytical threshold
for the electrostatic decay of Langmuir wave packets
(equation (15)); this semianalytical threshold has been shown
to be in agreement with simulations of the electrostatic decay
of Langmuir wave packets.

4. Discussion

[37] In the following, we discuss, first, the initialization of
LED in the case Q = 1, second, the discrepancy between the

LED growth rate obtained from simulations and analytical
estimation. LED threshold obtained from simulations is then
compared to observations. Finally, we show that the satu-
ration of the instability gives an upper limit to the expected
level of observed density fluctuations.

4.1. Initialization of Langmuir Electrostatic Decay

[38] In the case of equal electron and ion temperature,
associated with a strong Landau damping of ion acoustic
fluctuations, one may wonder whether processes comple-
mentary to the resonant interaction of the waves could
facilitate the LED. In particular, a decrease (even local) of
the IAW Landau damping during the beginning of the LED
process could ease the initialization of the instability. Such
decrease can happen either through two main processes.
(1) Wave‐particle interactions due to the trapping of ions in
the IAW potential well could modify the ion distribution
function by forming a plateau at the ion sound speed which,
in turn, could then decrease the Landau damping rate.
However, no such plateauing is observed. (2) The beats of
the mother and daughter Langmuir waves, could heat the
electrons so that the ion‐to‐electron temperature ratio
decrease locally, leading to a partial suppression of the IAW
Landau damping. However the temperature ratio during the
simulation has too small variations DQ/Q < 1% to really
modify the IAW Landau damping. This hypothesis is thus
also ruled out.
[39] Since no such complementary processes are present

in the simulations, the initiation of the LED is likely to be
caused by the resonant interaction of the waves, that
dominates locally the Landau damping of IAW.

4.2. Growth Rate for Langmuir Electrostatic Decay

[40] We have seen in section 3.1 that a large discrepancy
exists between the growth rate of mean density fluctuations
obtained from the simulations, gLED, and the analytical one
deduced from three monochromatic waves, gLED

th [Sagdeev
and Galeev, 1969]. (The influence of the resolution in
velocity has been checked, and the results are unchanged as
far as the resolution in velocity is not too low. The results

Figure 7. Evolution of a Langmuir wave packet with a mean wavelength lL = 200 but different packet
widths D (bottom axis, normalized to lL) and different initial electric fields EL (left axis). (left) Q = 0.1.
(right) Q = 1. In green are simulations where LED is observed; in orange are simulations where the avail-
able interaction time between the waves is lower than the LED time scale; in red are simulations where
strong NL effects arise before/instead of LED. The red line is the semianalytical threshold expressed in
equation (15).
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are also independent of the size of the box, as long as the
box remains larger than the coherence length of the daughter
wave packets.) The existence of a strong IAW Landau
damping gLandau, such that gLED = gLED

th
− gLandau could

explain this difference. Since Landau damping for IAW
cannot be found analytically when electron and temperature
are close, we performed complementary simulations and
measured an IAW Landau damping of gLandau = −1.9 ×
10−5 wpe forQ = 0.1 (gLandau = −8.9 × 10−4 wpe, respectively,
for Q = 1), much lower than gth. Thus, the hypothesis that
gLED = gLED

th
− gLandau is to be ruled out.

[41] Note that the growth rate measured from simulations
already takes into account the effect of the Landau damping.
Thus, the difference between gLED and gLED

analytical should be
carried by the evaluation of gLED

th . Actually, the main dif-
ference between the analytical treatment of three‐wave
resonance and Vlasov simulations is that the daughter waves
are treated as monochromatic in the first case whereas they
are observed to have a non negligible spectral width in the
second (see Figures 1 and 2). Simulations have shown that
the spectral width of the product waves increases when
(1) Q ’ 1, in which case the IAW dispersion relation is
numerically observed to spread out around the analytical
branch; therefore the resonance can occur with (w, k) values
slightly different from the theoretical expectation; and
(2) the energy of the Langmuir mother wave increases, in
which case the linear approximation for a d‐shaped reso-
nance is no longer valid. The limited spatial coherence of
daughter wave packets implies that their growth is localized
where mother and daughter wave packets interact, thus
strongly limiting their growth rate. This explains why the
growth rate deduced from simulations is much lower than
the analytical one.

4.3. Threshold of Langmuir Electrostatic Decay
and Type III Observations

[42] The TDS observation mode of the S/WAVES
experiment on board the STEREO mission [Bougeret et al.,

2007] gives access to in situ electric field waveform in 3D
with an equivalent spectral resolution up to 60 kHz. In
Paper I, we have shown evidence for nonlinear coupling
between Langmuir waves at about 10 kHz and ion acoustic
waves at about 0.2 kHz. We recall here the global plasma
parameters for these observations. The 1‐h‐average wind
speed from WIND/3‐DP [Lin et al., 1995] is about VSW =
315 km s−1. The electron temperature observed by WIND/
3DP is Te ’ 105 K, and the electron density in the solar
wind, estimated from the plasma frequency, is about ne ’
106 m−3. From the electron density and temperature, the
Debye length is lD ’ 20 m.
[43] Figure 8 displays the observed value of Langmuir

electric field, normalized as described in equation (7), for
the whole data set of waveforms where LED has been
observed. Their wavelength, not directly measured, is
evaluated as follows. By taking into account the Doppler
shift caused by the solar wind and noting that the IAW
should propagate here antisunward, the ion acoustic wave-
length reads:

*S ¼ ðVSW þ csÞ=f obsS

where the sound speed cs is evaluated by

cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBðTe þ TpÞ=mp

q

;

where kB is the Boltzman constant, mp the proton mass and
Tp the proton temperature that remains unknown but is of
the order of Te in the solar wind. The mother Langmuir
wavelength lL is then about twice the LED‐produced ion
acoustic wavelength.
[44] However, caution should be taken when directly

comparing this threshold value with the observation. Indeed
solar wind type III Langmuir wave packets are most prob-
ably localized in 3D. The observed waveforms are 1D
spatial cuts of the real 3D structures and thus only give a
lower limit on the width of the wave packet, as well as its

Figure 8. Observed Langmuir electric field amplitude, normalized like the simulations, versus wave-
length. The threshold for LED computed from Vlasov simulations is overplotted for two values of the
temperature ratio Q = 0.1 and Q = 1.
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maximum amplitude. We assume that the Langmuir wave
packets have a 3D gaussian shape, and that the spacecraft
crosses it somewhere within a distance from the center of
the 3D structure of the order of the full width at half max-
imum. Therefore a realistic range for the maximum electric
field EL

real reached by the 3D wave packet is calculated as:
EL
obs

⪅ EL
real

⪅ e EL
obs, where EL

obs is the observed level of
Langmuir electric field. Data are plotted with such error
bars.
[45] The LED threshold expressed in equation (15) is

overplotted for two values of the ion to electron temperature
ratioQ = 0.1 andQ = 1, using computed values from Table 2.
The observed electric field amplitudes are of the order of the
threshold computed from Vlasov‐Poisson simulations, in the
case of a localized wave packet and Q ≈ 1, confirming that
the development of LED is compatible with the observed
events.

4.4. Saturation of LED: Expected Level of Observed
Density Fluctuations

[46] In our simulations, for initial Langmuir wave packets
in the range of amplitudes that correspond to observations of
Langmuir waves during type III events, the IAW‐like den-
sity fluctuations associated with the LED do not reach the
saturation level. Indeed, the mother and Langmuir wave
packets that propagate at different group velocities separate
before the saturation stage, thus stopping the growth of the
IAW. This is confirmed in the observations, since most of
the observed waveforms show (1) mother and daughter
Langmuir waves with different energies and (2) IAW with
no harmonics. The saturation level hdn0sati/n0 = EL

2/(Te + Ti)
should thus be an upper limit on the expected level of
density fluctuations on observations of LED during type III.
[47] Density fluctuations at the frequencies considered

here can be measured in space from the variations of the
floating potential of the spacecraft [Pedersen, 1995] when it
crosses the region where LED is observed. The voltage signal
observed on STEREO/Waves waveforms with monopole
antennas channels contains information on the floating
potential of the spacecraft. This remains however to be
calibrated. Knowing the saturation level of IAW during
LED, and given the calibration, we could check whether the
observed level of density fluctuations is consistent with our
simulations.

5. Conclusion

[48] In order to study the origin of electromagnetic radio
emissions during type III bursts, we have reported in this
paper 1D‐1V Vlasov‐Poisson simulations of the Langmuir
electrostatic decay. The simulations have been done in
typical solar wind conditions: ratio of the electron to ion
temperature from 0.1 to 1, mother Langmuir wavelengths
typical of those observed during type III events and, most
important, by considering localized Langmuir wave packets.
The main results are the following.
[49] 1. Langmuir electrostatic decay develops even when

the electron and ion temperatures are close. Its threshold,
when considering a monochromatic wave, is at least 5 orders
of magnitude lower than the plasma thermal energy when
0.1 < Q < 1.

[50] 2. Langmuir electrostatic decay resonantly generates
daughter waves over a broad range of wave numbers, nat-
urally leading to narrow wave packets. This limits the length
of coherence which is why the growth rate is 1–2 orders of
magnitude lower than the analytical values deduced from a
pure monochromatic case.
[51] 3. The behavior of daughter ion acoustic waves de-

pends on the temperature ratio. Ion acoustic waves can
escape the region where the resonant coupling takes place
and propagate when electron temperature is higher than
proton temperature. Conversely, they are damped as soon as
they escape the resonant coupling area when temperatures
are equal.
[52] 4. We confirm that the saturation level for IAW

density fluctuations is of the order of the ratio of Langmuir
electric energy to the total kinetic energy. However, for the
range of amplitudes that correspond to observations, the
IAW‐like density fluctuations associated with the LED
should not reach the saturation level because (1) the mother
and Langmuir wave packets that propagate at different
group velocities separate before the saturation stage and
(2) harmonics of the IAW are seen at saturation in the simu-
lations but, to our knowledge, not in type III observations.
[53] 5. Finally, an effective threshold has been obtained

(equation (15)) for localized Langmuir wave packets and
compared to STEREO/WAVES observations. The observed
Langmuir electric field during type III reported by Henri et
al. [2009] is in the range of LED effective threshold com-
puted from Vlasov simulations, thus confirming the inter-
pretation of these observed electric field waveforms in term
of the LED of type III beam‐driven Langmuir waves.
[54] The physical mechanism responsible for the genera-

tion of electromagnetic radio waves during type III burst is
still under study. The process described by Ginzburg and
Zheleznyakov [1958] and leading to the generation of type
III radio emission at twice the local plasma frequency is a
two step process: (1) first the beam‐driven Langmuir wave
decays through LED, then (2) the mother and daughter
Langmuir waves coalesce to generated the electromagnetic
wave.
[55] Up to now, observations have shown that resonant

coupling between Langmuir waves and ion acoustic waves
does occur during a type III burst [Henri et al., 2009]. The
present paper also shows that Langmuir electrostatic decay
may occur in solar wind conditions and that the threshold is
reached by the observed Langmuir electric amplitude. These
two complementary studies thus confirms step 1 does occur.
[56] Langmuir electrostatic decay generates two counter-

propagating Langmuir waves in opposite direction, but step
2 requires obliquely propagating Langmuir waves for waves
to couple and produce the transverse electromagnetic wave.
Does the density inhomogeneities scatter the Langmuir
waves enough to introduce a significant perpendicular
component to their wave vector? An important step would be
to study the interaction of Langmuir waves with an inho-
mogeneous background, in order to check this hypothesis.
Finally, the coalescence of counterpropagating Langmuir
waves is hard to observe because the signal would be hidden
by the generation of the harmonic of the mother Langmuir
wave. Simulations of step 2 with input from the observations
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could at least show whether the coalescence process could
occur in the solar wind.

Appendix A: Generation of the Ion Density Noise

[57] The continuous injection of ion density noise is
driven by an external fields Eext

noise added to the ion dynamics
(equation (3)). This driver is defined by

Enoise
ext ðx; tÞ ¼ E

ions;max
ext

P

* cosð2#x=*Þcosð!*t þ$*′′ðtÞÞ
j
P

* cosð2#x=*Þcosð!*t þ$*′′ðtÞÞj
: ðA1Þ

It introduces a flat spectrum for wavelength over the range
50 < l < 1000. Eext

noise(x, t) is normalized in order to have a
maximum amplitude of Eext

ions, max = 1 × 10−5. The fre-
quencies wl are chosen to satisfy the dispersion relation of
IAW, wl = (2p/l)cs with cs =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ!Þ=$
p

the ion sound
speed. The phases y″k(t) have a steplike variation, constant
over a time interval dt. At the end of each interval, they are
independently drawn from a uniform distribution. This way,
the generation of ion acoustic noise is made of a succession
of time coherent forcing for time intervals of duration dt =
500 × wpe

−1 (about 80 plasma oscillations). This means that
for an IAW of wavelength lIA = 100, the forcing lasts 1/20th
of a period, much shorter than the typical IAW oscillation
time in order to generate an incoherent noise. This forcing
thus generates density fluctuations much smaller than the
level of density fluctuations generated by LED in our
simulations.

Appendix B: Generation of the Initial Langmuir
Wave

[58] In this appendix, we describe the driver Eext
init, added in

the Vlasov equation for electrons (equation (2)). This
external electric field controls the generation of the initial
Langmuir wave. It acts as a driver that resonantly grow a
Langmuir wave propagating in only one direction, with the
desired spectrum and electric field amplitude. In section 3.1,
a monochromatic Langmuir wave of wavelength lL and
amplitude EL is resonantly excited by the external electric
field pump by defining Eext

init = Eext
(1):

E
ð1Þ
ext ðx; tÞ ¼ E

ð1Þ
0 ðtÞ cosðk0x% !0tÞ: ðB1Þ

In section 3.2, a Langmuir wave packet of mean wavelength
lL, packet width D and maximum amplitude EL is reso-
nantly excited by defining Eext

init = Eext
(2):

E
ð2Þ
ext ðx; tÞ ¼ E0ðtÞ cosðk0x% !0tÞ exp % x% x0 % v

g
Lt

0:5#

" #2
 !

:

ðB2Þ

In both cases, the pump wave vector k0 = 2p/lL and the
frequency w0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3k20

p

are chosen to satisfy the Langmuir
dispersion relation, in order to generate a Langmuir wave at
the desired wavelength lL. The width of the wave packet is
set to D = 10 lL. The pump wave packet moves at the
Langmuir group velocity vL

g = 3k0/w0 from its initial
position x0 = Lx/3. The time‐dependant external electric field

amplitude E0(t) scales on the desired Langmuir amplitude
EL:

E
ð1Þ
0 ðtÞ ¼ +ELð1% expð%t=)ÞÞ: ðB3Þ

In the monochromatic case (wave packet case, respec-
tively), the parameter t is set to 30 wpe

−1 (100 wpe
−1,

respectively) so that the external electric field amplitude
smoothly increases during a few Langmuir oscillations, in
order to avoid the generation of other plasma waves
induced by steplike switch of the pump. The parameter h is
set experimentally to 5 × 10−2 (10−2, respectively), so that
the characteristic time scale to resonantly grow the Lang-
muir wave (wave packet, respectively) is large compared
to its oscillation time scale, but small compared to the
decay time scale. So, the resonant generation of the
Langmuir wave (wave packet, respectively) does not
interfere with the LED mechanism.
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Low energy Langmuir cavitons or the asymptotic limit of weak turbulence

P. Henri∗ and F. Califano†
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Langmuir cavitons are coherent structures in equilibrium between the total kinetic pressure force
and the ponderomotive force created by the high frequency Langmuir oscillations. They are char-
acteristic of strong Langmuir turbulence and are widely thought to be generated at high energy
and to saturate when the Langmuir energy is of the the order of the background plasma thermal
energy. By using 1D-1V Vlasov-Poisson simulations, we show, first, that the long time evolution of
Langmuir weak turbulence self-consistently generates ion cavitons, thus illustrating the breakdown
of long time evolution Langmuir weak turbulence; second, such cavitons saturate at low energy
(with an electric to kinetic energy ratio as low as three orders of magnitude), unlike the wide-spread
belief that such structures saturate at higher energy ratios. This gives evidence that ”large” and
”shallow” stable cavitons also exist. Finally we show that Langmuir coherent structures much larger
than the Debye length are generated by an initial ”low” level of Langmuir turbulence.

PACS numbers: 52.35.Fp,52.25.Dg,52.35.Ra,52.65.-y

The transition between weak and strong turbulence
regime is governed by the amplitude level of the fluctu-
ations as well as the width of the spectrum [1–3]. At
finite but small energy, the non linear dynamics of the
waves is well described by three-waves or four-waves in-
teractions in the random phase approximation through
the kinetic wave equations, whereas at higher energies
intermittency dominate the dynamics, through the ap-
parition of coherent structures. Moreover, some range of
scales may be described by the theory of weak turbulence
while other ranges display the properties of strong tur-
bulence. Since the coherent structures are regions where
enhanced wave dissipation occurs, it could be expected
that the asymptotic long time evolution of plasma tur-
bulence be described by the weak turbulence theory.

In this letter we show that, contrary to this naive ex-
pectation, in the simple case of one dimensional Lang-
muir turbulence, an archetype of wave turbulence in
plasma physics, the long time evolution of weak turbu-
lence breaks out toward strong turbulence. Moreover, we
show that the characteristic coherent structures of Lang-
muir strong turbulence, called cavitons, may saturate at
”low” energy and remain relatively stable with electric
energy three orders of magnitude lower than the ther-
mal energy of the plasma, an energy range considered to
belong to the weak Langmuir turbulence regime.

Langmuir cavitons are localized electric fields oscillat-
ing at the plasma frequency selfconsistently associated to
density cavities [4]. The density depression is known to
be in the range 0.01 < δn/n < 0.80 [5]. They have been
observed in several plasma experiments starting from
Kim, Stenzel and Wong [6] and in ionospheric experi-
ments [7]. However, the occurrence of strong Langmuir
turbulence in natural space plasma environment has been

ruled out because the coherent structures called cavitons
are thought to saturate with electric energies of the order
of the thermal energy and lengthscale of about 20−30λ

D
.

Cavitons at ”high” energies have also been intensively
studied through numerical experiments with Zakharov
codes [8–11] and Vlasov codes [12–14]. For moderate
forcing, it has been shown that weak turbulence and
strong turbulence features can coexist [8].

We concentrate in this letter on low energy cavitons.
We show that even in the ”small” forcing regime weak
turbulence can fully develop and break out on long time
evolution toward strong turbulence behaviour through
the formation of low energy cavitons, independently of
the initial level of coherence of Langmuir oscillations. A
power law governing the relation between the length scale
of the structure and its energy is obtained, which could
be directly tested on space plasma data. The depth of
Langmuir cavitons scales as the electric to thermal energy
ratio, as expected.

Long time Langmuir turbulence is here investigated
through 1D-1V Vlasov-Poisson simulations in the elec-
trostatic approximation. The Vlasov-Poisson system
is solved for the 1D-1V electron and proton distribu-
tion function, fe(x, v, t), fp(x, u, t) and the self-consistent
electric potential and electric field, φ and E. The
equations are normalized by using the following char-
acteristic electron quantities: the charge e, the elec-
tron mass me, the electron density ne, the plasma
(angular) frequency ωpe =

√
4πnee2/me, the Debye

length λ
D

=
√

Te/4πnee2, the electron thermal veloc-

ity vth,e = λ
D

ωpe =
√

Te/me and an electric field
Ē = mevth,eωpe/e. The electric energy density (normal-
ized to the electron kinetic energy), will be denoted by



2

W
L

= 0.5 × E2. Then, the dimensionless equations for
each species read:

∂fe

∂t
+ v

∂fe

∂x
− (E + Eext)

∂fe

∂v
= 0 (1)

∂fp

∂t
+ u

∂fp

∂x
+

1

µ
E

∂fp

∂u
= 0 (2)

∂2φ

∂x2
=

∫
fedv −

∫
fpdu ; E = −∂φ

∂x
(3)

where v (resp. u) is the electron (resp. ion) velocity nor-
malized to the electron thermal velocity, µ = mp/me =
1836 is the proton-to-electron mass ratio and Eext an
”external” driver added to the Vlasov equation that can
be switched on or off during the runs.

We shall use a numerical box of length Lx = 5000 λ
D

,
and a velocity range −5 ≤ v/vth,e ≤ +5 (resp. −5 ≤
u/uth,i ≤ +5) for the electrons (resp. protons). The
spatial mesh grid spacing is dx = λ

D
, while the veloc-

ity resolution is dv = 0.04 vth,e (resp. du = 0.04 uth,i)

for the electrons (resp. protons), uth,i =
√

Tp/mp being
the proton thermal velocity). Periodic boundary con-
ditions are used in the spatial direction. The electron
and proton velocity distribution functions are initially
Maxwellian, with equal temperatures, Tp = Te, so that
ion acoustic fluctuations are very efficiently damped out.
Note in particular that no electron beam is assumed to
be present at t = 0. An initial random noise in density
in the wavelength range 30 < λ < 500 is also added.

Two different initial conditions are considered, (i) co-
herent and (ii) incoherent initial Langmuir waves. In
both cases, the initial electric energy is 10−4 <∼ W <∼
10−2, corresponding to the transition between weak and
strong turbulence regime. In case (i), we generate a
monochromatic Langmuir wave propagating in one di-
rection only with a wavelength λ

L
by resonance by in-

troducing an ”external” electric field Eext in Eq 1 oscil-
lating at the plasma frequency with the wavelength λ

L
.

The forcing is switched off when E reaches the ampli-
tude E

L
. The initial wave then evolves self consistently

according to the Vlasov-Poisson system. The details of
our external forcing for the generation of a Langmuir
wave is given in Henri et al. [15, Appendix 1]. The am-
plitude of the Langmuir wave generated by the forcing is
2×10−2 < E

L
< 1.2×10−1, corresponding to a Langmuir

energy 2× 10−4 < W < 7.2× 10−3. This is a typical en-
ergy range of weak Langmuir turbulence regime. Finally,
the initial random noise in density is δn/n = 10−5. In
case (ii), no initial coherent Langmuir wave is generated
(Eext = 0). Instead the system evolves starting with a
relatively high level of random noise in electron density
corresponding to a flat spectrum in the electric field. The
r.m.s. electron density perturbation amplitude range is

FIG. 1: Long time evolution of electric energy W
L

(top
panel) and ion density δn/n (bottom panel), starting from
a monochromatic Langmuir wave. Note in the ion density
fluctuations the generation of (i) ion acoustic waves from the
Langmuir electrostatic decay between 3 × 104 < t < 6 × 104;
(ii) ion cavities filled with electric energy for t > 105.

10−3 <∼ δne/ne
<∼ 10−2, corresponding to a r.m.s. electric

field 10−2 <∼ E <∼ 10−1.

We first discuss the results of a simulation from the
first series of numerical experiments, starting with a
monochromatic Langmuir wave with E

L
= 0.06 and

λ
L

= 100 λ
D

. The time evolution of both electric energy
and ion density fluctuations are shown in Fig. 1. The
initial Langmuir wave first undergoes electrostatic para-
metric instability (Langmuir electrostatic decay) during
the period 3 × 104 < t < 6 × 104. In the mean time,
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FIG. 2: Ion cavitons. Blue line: mean ion density fluctua-
tions. Black lines: oscillations of trapped Langmuir waves,
expressed in normalized electric energy W

L
.
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as expected, we observe the generation of associated ion
acoustic fluctuations (bottom panel). Then, ion cavities
start to form at t ≃ 105. The cavities are filled with
electric energy (top panel) in the form of an electrostatic
field oscillating at the plasma frequency, i.e. in the form
of Langmuir waves. In Fig. 2 we show the spatial profile
of these ion cavities. The blue line shows the ion density
fluctuation δn/n and the black lines show the profile of
trapped Langmuir energy W

L
for t > 1.5×105. Ion cavi-

ties are shown in Fig. 3 to be in equilibrium between the
total kinetic pressure force and the ponderomotive force
created by the high frequency Langmuir oscillations. The
ponderomotive force (red line) is defined as

Fpond = − e2

4miω2

L

∂E2

∂x

and the opposite of the total kinetic pressure force (black
line) is defined by

Fpressure = −∇(Pe + Pi)

where the electron and ion pressure, Pe and Pi, are di-
rectly calculated from the distribution functions:

Pα =

∫ vmax

−vmax

fα × (v − v̄)2dv

for each species α. These coherent structures are thus
identified as the so-called ”cavitons”, characteristic of
strong Langmuir turbulence.

We have performed several simulations with different
initial forcings, the initial Langmuir amplitude in case
(i), and different values of the initial random noise in
density in case (ii). In both cases, we let the system
freely evolve until it eventually reaches the timescale for
strong turbulence for which we observe the formation of
Langmuir cavitons. We observe that the formation of
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FIG. 3: Equilibrium of Langmuir cavitons. The ponderomo-
tive force (black line) compensates the pressure gradient (red
line).

cavitons does not need a high level of Langmuir waves,
as soon as the system evolves for “long enough” times.
In case (i) parametric decay occurs first and saturates
in the first part of the simulation. Then cavitons are
formed and remain stable until the end of the simula-
tion t = 105. In case (ii) the initial electron density
fluctuation rapidly self-organise into a large spectrum of
Langmuir noise. The ”sea” of Langmuir waves that fills
the simulation box, then collapses toward stable low en-
ergy cavitons. In both cases the non linear structures are
similar, which indicates that the asymptotic behavior of
Langmuir turbulence is independent from the initial level
of coherence of Langmuir oscillations. As expected, re-
gardless of the initialization of the turbulence (i.e. in
both (i) and (ii) cases), we find that the larger the ini-
tial Langmuir waves, the sooner Langmuir cavitons are
generated. For each simulation, we isolate the cavitons,
and measure the depth of the ion density hole δn/n, the
length of the structure L (defined as the width of the ion
cavity at the height of 1/e the maximum depth) and the
maximum Langmuir electric energy W

L
that sustains the

density hole. Results are reported in Fig. 4 where each
point represents a single caviton. Langmuir cavitons are
observed with maximum Langmuir energy ranging over
three decades. It is worth noticing that Langmuir cavi-
tons are observed also at relatively low electric energy
values, W

L
∼ 10−3. The depth of the ion cavity, ex-

pressed in relative density δn/n, is of the order of the
Langmuir electric density energy (as expected for high
energy cavitons) over three decades:

δn/n = (δn/n)
0

Wα
L

(4)

with (δn/n)
0

= 0.28±0.06 and α = 1.13±0.06 the fitting
parameters. Fit results are given with their respective
3 − σ errors. The width of the cavitons (expressed in
Debye length units) also scales on the Langmuir electric
density energy:

L = L
0

W β
L

(5)

with L
0

= 18 ± 4 and β = −0.47 ± 0.05. As expected,
Langmuir cavitons have larger length scale when the
Langmuir electric energy is lower. A very important re-
sult here is that cavitons of length scale of many hundred
of Debye length are generated. As a direct consequence
of Eq 4 and 5 we can deduced the power law between the
depth and the length of the ion cavities associated with
the cavitons:

L = L
0

(δn/n)γ (6)

with L
0

= 10 ± 3 and γ = −0.42 ± 0.05.
The typical depth of the ion cavities is of the order of

the Langmuir electric energy. This result, well known at
higher energy levels, has been extended at lower energy
and is verified on three order of magnitude. The length
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cavitons according to their Langmuir energy W

L
. Each dia-

mond represents a single caviton. The line shows the power
law fit.

scale of the Langmuir cavitons is shown to scale as the in-
verse square root of its electric energy. Interestingly, the
scaling laws found for low energy cavitons (Eq. 5, 4, 6)
are similar to the scaling laws that describe the depth
and length of Langmuir solitons [16]. It is worth to un-
derline that we are studying here the so-called Langmuir
cavitons, also called by some authors Langmuir standing

solitons. The two kinds of coherent structures, Langmuir
solitons and Langmuir cavitons, have different equilib-
ria. Langmuir solitons are propagating structures main-
taining their shape through the balance between disper-
sive and nonlinear effects, whereas cavitons are standing
structures with electric oscillations that self-consistently
sustain the density cavity of which they are eigenmodes.

By using Vlasov simulations, characterized by a very
low level of numerical noise even during the non lin-
ear regime, we have shown that the coherent structures
called Langmuir cavitons, characteristic of strong Lang-
muir turbulence, also appear during the long time evolu-
tion of moderate amplitude Langmuir oscillations. The
corresponding energetic range of initial Langmuir pertur-
bations W

L
∼ 10−4 − 10−3, as well as the energy of the

largest stable cavitons W
L
∼ 10−3, are typically consid-

ered to belong to the so-called weak Langmuir turbulence
regime. The distinction between weak and strong turbu-
lence thus loose part of its signification on long time evo-
lution of moderate amplitude Langmuir oscillations. This
result is independent from the initial level of Langmuir
waves coherence. The formation of Langmuir cavitons
appears to be the asymptotic limits of weak turbulence.

We confirm that wave turbulence is expected to break-
down for times larger than the typical non linear time
scale [17, 18].

We have shown that electrostatic coherent structures of
typical dimension much greater that a few Debye length
are produced by the long time evolution of an initial rel-
atively moderate amplitude turbulence. This result can
have an important impact on the interpretation of space
plasma spacecraft data. We are thus confident that these
new insight in Langmuir turbulence may encourage the
space physics community to revisit the admitted con-
clusion that strong turbulent Langmuir structures are
formed at too high energy to be relevant in space plasma
environments.
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Appendix A

STEREO Mission

The Solar TErrestrial RElations Observatory (STEREO) mission was launched on Octo-
ber 26, 2006. It is composed of two identical spacecraft (Fig. A.1). Both spacecraft have
an heliocentric orbit in the ecliptic plane at nearly 1 Astronomical Unit (AU) [Kaiser
et al., 2007]. The "ahead" spacecraft (hereafter STEREO A) being slightly closer from
the sun, it has a shorter orbital period than the Earth and hence drifts ahead of the
Earth (at an average rate of approximately 22◦ per year), while the "behind" spacecraft
(hereafter STEREO B) is in a slightly larger orbit. As a result, STEREO A travels faster
than STEREO B so that, viewed from the Sun, the two spacecraft separates at an average
of 45◦ per year.

The principal mission objective for STEREO is to understand the origin and consequences
of Coronal Mass Ejections, the most energetic eruptions on the Sun [Driesman et al.,
2007]. In this purpose, the STEREO observatory carries four complementary scientific
instruments:

• the Sun-Earth Connection Coronal and Heliospheric Investigation (SECCHI) ex-
periment combines a suite of five optical telescopes that images the Sun and the
heliosphere up to Earth orbit. It consists of three types of telescopes: two white
light coronagraphs, an extreme ultraviolet imager and two heliospheric white light
imagers [Howard et al., 2008].

• the In situ Measurements of PArticles and CME Transients (IMPACT) experiment
focuses on in situ observations of energetic particles: it measures in situ solar wind
electrons, energetic electrons, protons and heavier ions [Luhmann et al., 2008]. IM-
PACT also includes a magnetometer to measure the in situ magnetic field strength
and direction. [Acuña et al., 2007].

• the PLAsma and SupraThermal Ion Composition (PLASTIC) experiment measures
the composition of heavy ions in the ambient plasma as well as protons and alpha
particles [Galvin et al., 2008].
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• the STEREO/WAVES (S/WAVES) experiment consists of three radio receivers
(fixed, high and low frequency receivers) that track electromagnetic disturbances
through the heliosphere and a time domain sampler that measures in-situ electric
waveforms. It is described in the next section.

The S/WAVES instrument, build by a team led by the Observatoire de Paris and the
University of Minnesota, is designed to be an interplanetary radio burst tracker that
observes the generation and evolution of traveling radio disturbances from the Sun to the
orbit of Earth [Bougeret et al., 2008]. S/WAVES has inherited from the experience gain
from WIND/WAVES, a previous similar instrument mounted on the WIND spacecraft
(1994). Among the questions regarding the Type II and Type III radio emission listed
in Bougeret et al. [2008] at the beginning of the STEREO mission, I tackled during my
Ph.D. the following ones:

• What is the mechanism of coupling between Langmuir waves and radio waves?

• What are the roles of linear and nonlinear processes in the evolution of Langmuir
waves and the production of type II and III radiation?

Figure A.1: Illustration of spacecraft B in its deployed configuration. The SECCHI instruments
point at the Sun and the IMPACT boom and SWAVES antennas are on the opposite end. For
scale, the large vertical boom (IMPACT boom) is approximately 6 m long. Source: Driesman

et al. [2007]
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S/WAVES use three mutually orthogonal wire antenna, each 6 meters long, with an
effective length of about 1 meter. Details on the electric antenna system of the S/WAVES
instrument can be found in Bale et al. [2008]. The S/WAVES instrument is composed of
the following receivers:

• Radio receivers (HFR and LFRhi) that measure radio wave intensity, source direc-
tion, and angular size in the frequency range of 16 MHz to 40 kHz, corresponding
to source distances of about 1 Solar Radius to 1 AU;

• Low Frequency Receivers (LFRlo) that make measurements of radio and plasma
waves near the electron plasma frequency at 1 AU (2.5 to 40 kHz);

• a Fixed Frequency Receiver (FFR) that measures radio emissions at 32 - 34 MHz at
high time resolution to complement ground-based radio-heliograph measurements;

• a Time Domain Samplers (TDS) that simultaneously make wideband waveform
measurements on three electric antennas at one of several commandable sample
rates and bandwidths.

Two modes of observation are thus available: (i) remote observation and measurement of
radio waves to follow the propagation of the radiosources in the heliosphere with three
spectral radio receivers and (ii) in situ measurement of electric waveforms with the Time
Domain Sampler mode (hereafter TDS).

This last mode produces rapid samples of electric field waveforms and is primarily in-
tended for the study of Langmuir waves. Data from this observation mode are the ones I
have principally used to produce this work.
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Appendix B

Using the STEREO spacecraft as a
density probe.

The measured voltage on an electric filed antenna, used in monopole mode, is the differ-
ence between the antenna potential and the spacecraft floating potential. The spacecraft
floating potential is usually considered a ground to study electric field oscillations mea-
sured on the antenna. We show here how the fluctuation of the spacecraft potential can
be used to study density fluctuations1.
These are the successive steps. After recalling some basics concerning spacecraft charging
in the solar wind, I give the explicit dependence of the spacecraft potential on the solar
wind plasma density. I then discuss the frequency range for which density fluctuations
modify the spacecraft potential, producing a signature on the antenna in monopole mode.
Finally, I compute the variation of spacecraft potential associated with a given fluctuation
of the solar wind plasma density. I will also show how the nonlinear theory on Langmuir
ponderomotive effect can constrain the value of the photoelectron temperature.

Spacecraft charging

In the solar wind, the body of a spacecraft emits and collects charged particles. Its
electric potential permanently adjusts to the variation of the ambient plasma parameters,
in order to ensure currents balance [Pedersen, 1995]. The currents affecting the spacecraft
potential result from:

1. The photoelectron current Iph. Photoelectrons emitted from the spacecraft by solar
ultraviolet radiation. The average solar ultraviolet radiation at 1 AU is ∼ 10−3 W.m2

corresponds to an average flux of ionising photons F⊙ ≃ 1014 m−2sec−1. On a surface

1I acknowledge the help and guidance of Nicole Meyer-Vernet (LESIA, Observatoire de Paris) for this
investigation.
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at zero potential at 1 AU, the photoemission flux jph depends on the average surface
photoemission efficiency:

jph = δ 1014 m−2sec−1

per unit of projected sunlit surface, with δ ∼ 1 − 4 for typical spacecraft covers
[Pedersen, 1995; Escoubet et al., 1997; Scudder et al., 2000; Pedersen et al., 2008].
Photoelectrons escape from the sunlit face of the spacecraft of surface S⊥, so that
Iph = jphS⊥.

2. The collected solar wind electron current Ie. Solar wind electrons have a thermal
velocity (vth,e ≃ 1200 km.sec−1) larger than the solar wind speed (vth,e ≃ 300− 800
km.sec−1), so that (i) the associated incoming electron flux on a spacecraft at zero
potential is the ambient electron random flux:

je ≃ ne

√
kTe/2πme < 1013 m−2sec−1

where me, ne and Te are respectively the electron mass, density and temperature;
and (ii) solar wind electron are collected on the total surface Stot so that Ie = jeStot.

3. The collected solar wind proton current Ip. Conversely, solar wind protons have
a thermal velocity (vth,p ≃ 50 km.sec−1) much smaller than the solar wind speed,
so that (i) solar wind protons are collected on one face only, (ii) the associated
attachment flux is better estimated from the mean proton flux jp ≃ npVSW

∼
1012 m−2sec−1. With Stot ≃ 6 Sperp, the proton current is more than an order of
magnitude lower than the proton current Ip = jpSperp << jeStot = Ie.

To summarize, the different currents affecting the spacecraft charging in the solar wind
are classified as follow:

Iph >> Ie >> Ip

In the solar wind, the main charging currents are due to the emission of photoelectrons
Iph, and to the collection of ambient plasma electrons, Ie. We neglect here the smaller
proton current and the secondary emission of electrons.

Since the outward photoelectron current is much greater than the incoming electron cur-
rent, the surface charges positively, until its positive electric potential Φ binds sufficiently
the photoelectrons to make their net outward flux balance the inward flux of solar wind
electrons. To do so, the potential must provide the photoelectrons with a potential energy
that outweights their typical kinetic energy of a few eV. Hence, the equilibrium poten-
tial is a few volts positive. Making the assumption that both solar wind electrons and
photoelectrons populations are Maxwellian with temperature Te and Tph respectively, the
ejected photoelectron current Iph and the incoming plasma electron current Ie on a surface
at positive potential Φ are respectively given by [Meyer-Vernet , 2007, pp. 352-355]:

Iph ≃ jph eS⊥

(
1 +

eΦ

k
B
Tph

)α

exp
( −eΦ
k

B
Tph

)
(B.1)
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Ie ≃ ne

( k
B
Te

2πme

)1/2

eS
(
1 +

eΦ

k
B
Te

)β

(B.2)

where e is the electron charge, S⊥ and S are respectively the sunlit projected surface and
the total surface collecting ambient plasma electrons. α and β are parameters depending
on the geometry of the surface relatively to the considered charging process: α and β are
both equal to zero, 1/2 and 1 for respectively plan, cylindrical and spherical geometries.
We now consider quasi-neutrality of the solar wind plasma, which holds for frequencies
much lower than the plasma frequency, so that the electron density ne is a tracer for the
proton density np = ne, hereafter called n.

Equilibrium potential

Let us first evaluate the equilibrium potential of the spacecraft surface. Since the length
scale of the spacecraft body (∼ 1 m) is larger than the photoelectrons Debye length
(∼ 0.1 m), the photoemission process is considered to occur on a plane geometry, so that
α

SC
= 0. On the other hand, since the length scale of the spacecraft body is smaller than

the solar wind electrons Debye length (∼ 10 m), the plasma electrons are collected in 3D
so that β

SC
= 1. The current balance condition Iph = Ie applied to Eqs.(B.1)-(B.2) for

the spacecraft body then gives the equilibrium spacecraft potential Φ
SC

solution of:

exp
(−eΦ

SC

k
B
Tph

)
=

n

N0

(
1 +

eΦ
SC

k
B
Te

)
(B.3)

where N0 = jph

( k
B
Te

2πme

)−1/2 Ssp
⊥

Ssp

The previous discussions on surface charging also hold for the equilibrium potential of the
antenna, Φ

A
, in cylindrical geometry, so that α

A
= β

A
= 0.5. Eqs.(B.1)-(B.2) then give

Φ
A

through:

exp
(−eΦ

A

k
B
Tph

)
≃ n

Nant
0

(
1 +

eΦ
A

k
B

Te

1 +
eΦ

A

k
B

Tph

)1/2

(B.4)

where Nant
0 = jph

( k
B
Te

2πme

)−1/2 Sant
⊥

Sant

Eq (B.4) is a rough approximation because the antenna length is of the order of the Debye
length.

Equations (B.3) and (B.4) are solved numerically by considering the following parameters:
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• The STEREO spacecraft body has the following dimensions L1 ×L2 ×L3 = 1.14×
1.22×2.03 meters [Kaiser et al., 2007]. The sunlit surface is Ssp

⊥ = L2×L3 ≃ 2.5m−2.
Because the electron thermal velocity is higher than the solar wind speed, solar wind
electrons can charge the spacecraft from all its surface – except the spacecraft face
opposite to the sun that is in the proton wake 2. The total surface is thus about
Ssp ≃ 9.9 m−2.

• S/WAVES antennas are approximately 6 m long, with a tip diameter of 15.2 mm
and a base diameter of 32 mm, and are inclined by 125o with respect to the sun-
spacecraft direction [Bale et al., 2008]. This gives a sunlit projected surface of about
Sant
⊥ = 0.12 m−2 and a total surface area of about Sant

tot = 0.45 m−2.

Solutions of Eqs. (B.3) and (B.4) are especially sensitive to the value of the photoelectron
temperature. Various authors have evaluated it in the range Tph ≃ [1 − 4] × 104 K for
different spacecraft covers and phases of the solar cycle [Pedersen, 1995; Escoubet et al.,
1997; Scudder et al., 2000; Pedersen et al., 2008].
I will later show that by applying the current calibration to density fluctuations generated
by the non-linear evolution of Langmuir waves in the solar wind, and especially in the
foreshock region, I constraint the temperature of photoelectrons emitted by the STEREO
spacecraft at Tph ≃ 3 eV.
Even though the temperature of the photoelectrons emitted by the STEREO spacecraft
cover and its antennas might not to be the same, we will hereafter assume the same value
to estimate the charging time scale of the antenna. Anyway, this will not modify our final
calibration of δn/n in function of δΦsp (Eq. B.6).

The value of the antenna and spacecraft potential obtained Eqs. (B.3) and (B.4) are
shown in Fig. B.1 for Te = 10 eV and Tph = 3eV . The spacecraft potential at equilibrium
for typical plasma densities n = [1 − 10] cm−3 is typically Φ

SC
= [3 − 8] Volts and the

antenna potential is in the range Φ
A

= [5 − 10] Volts.

Charging time scale

These evaluations of the equilibrium potentials hold as long as the solar wind density
fluctuates with frequencies lower than the typical charging frequency of the considered
object, so that the equilibrium remains quasistatic. Conversely, density fluctuations at
frequencies higher than the charging frequency of the object will scarcely modify the po-
tential.
I now concentrate on density fluctuations that produce a quasistatic fluctuation of the
spacecraft floating potential without modifying the antenna potential, i.e. on density fluc-
tuations observed at frequencies fδn such that

f
A
< fδn < f

SC

2The spacecraft face opposite to the sun is thus embedded in an high electric field repelling solar wind
electrons of the bulk.
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Figure B.1: Values of spacecraft (blue line) and antenna (red line) equilibrium potential for
typical solar wind densities [1 − 10] cm−3 at Te = 10 eV and Tph = 3 eV.

where f
A

(resp. f
SC

) is the charging frequency of the antenna (resp. spacecraft).
I now evaluate these two frequencies by considering the respective charging e-folding
timesτ = RC, with C the capacitance and R the resistance evaluated as follows.

The typical dimension of the spacecraft L
SC

and the antenna radius a are both much
smaller than the ambient Debye length λD, so that the electric field surrounding them can
be considered a Coulomb field in their vicinity, vanishing at distance λD. The spacecraft
capacitance C

SC
is evaluated as the capacitance of a spherical conductor of radius L

SC
=

1 m at potential Φ
SC

and outer radius λ
D

at potential zero:

C
SC

≃ 4πǫ0LSC
≃ 110 pF

and the antenna capacitance C
A

is evaluated as the low frequency capacitance of a cylin-
drical conductor of length L and radius a in a plasma of Debye length λ

D
[Meyer-Vernet

and Perche, 1989]. In the limit L >> λ
D

the antenna capacitance is:

C
A
≃ 2πǫ0 L

ln(λ
D
/a)

≃ 47 pF

whereas for L << λ
D

it reduces to:

C
A
≃ 2πǫ0 L

ln(L/a) − 1
≃ 64 pF

In the case of STEREO, the low frequency antenna capacitance is between those two
values C

A
≃ 60 pF.
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The resistance R = 1/(dI/dΦ) simplifies to R ≃ −1/(dIph/dΦ), since the photoelectron
current is the fastest charging process [Meyer-Vernet , 2007]. From Eq. B.1 and the
respective parameters α, the spacecraft (resp. antenna) resistance R

SC
(resp. R

A
) read:

R−1
SC

= jpheS
sp
⊥

e

k
B
Tph

exp
(−eΦ

SC

k
B
Tph

)

R−1
A

= jpheS
ant
⊥

e

k
B
Tph

(
1 +

eΦ
A

k
B
Tph

)1/2

×
[
1 − 1

2

(
1 +

eΦ
A

k
B
Tph

)− 1

2

]
exp

(−eΦ
A

k
B
Tph

)

The spacecraft (resp. antenna) charging frequency f
SC

= 1/(2πR
SC
C

SC
) (resp. f

A
=

1/(2πR
A
C

A
)) are solved numerically. Their value mostly depend on the plasma density,

through the dependence in Φ, and the value of the photoelectrons temperature, as seen in
Fig.B.2. As explained earlier, the photoelectron temperature will be constrained around
3 eV (vertical dotted line in the third panel).

Density fluctuations with frequencies between ∼ 100 Hz and a few kHz produce a change
in spacecraft potential but no change in antenna potential; such signal can be observed
on an antenna in monopole mode. Signals of much higher frequency vary too fast for
changing the floating potential of the spacecraft and antennas. Signals of much smaller
frequency change similarly the floating potentials of the spacecraft and antennas, so that
the difference barely changes and should not be observed on the monopole antenna.
Note that (i) the previous discussion hold for signals observed on a monopole antenna
and created by density fluctuations only, whereas electric field oscillations behave just
opposite: the spacecraft potential is a ground and the potential antenna oscillate with
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Figure B.2: Frequency transition above which the variation of equilibrium potential of the
spacecraft (blue line) and antenna (red line) remains quasistatic. Left to right panels: variations
with density, electron temperature and photoelectron temperature. The vertical dotted line in
the third panel indicates the photoelectron temperature associated with the STEREO spacecraft
Tph = 3 eV.
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the electric field; (ii) the TDS pass-band filter has its own low frequency cut-off at ∼ 100
Hz so that signals of lower frequency should be considered with caution.

Density fluctuations and associated variations of spacecraft potential

A small variation in plasma density δn in the frequency range [100 Hz− 1 KHz] produces
a change in spacecraft potential δΦ

SC
obtained by differentiating Eq. B.3:

δn/n = −
(

e

k
B
Tph

+
e

k
B
Te

1

1 +
eΦ

SC

k
B

Te

)
δΦ

SC
(B.5)

which contains an implicit dependence on both the plasma density and the spacecraft col-
lecting surfaces in the term Φ

SC
(Eq. B.3). Since Tph << Te, δn/n is mainly determined

by the first term in Eq. B.5, so that it is roughly proportional to δΦ
SC

with a propor-
tional factor determined by Tph. This is confirmed by solving numerically Eq. B.5 to give
the density fluctuation δn/n associated with a variation δΦ

SC
of the spacecraft floating

potential when varying the mean density, the solar wind electron temperature and the
photoelectron temperature, as shown in Fig. B.3. Note that the variation of STEREO
spacecraft potential induced when encountering a fluctuation of density hardly depends on
the background plasma density (top panel), neither on the electron temperature (medium
panel) in the typical range of solar wind plasma parameters. Conversely, this calibration of
the level of density fluctuation mostly depend on the value of photoelectrons temperature,
we keep this in mind in order to later constrain Tph from observations.
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Figure B.3: Ratio of the relative density variation δn/n to the variation of spacecraft poten-
tial with respect to density, electron temperature and photoelectron temperature (Left to right
panels).
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Finally, a change in spacecraft potential δΦ
SC

then corresponds to a variation of the
plasma density δn/n:

δn/n ≃

1

Tph[eV ]
δΦ

SC
[V olt] (B.6)

which is identically detected on all monopole antenna channels3.

Validation of the analysis

We now motivate the choice of the photoelectron temperature Tph = 3 eV . The maximum
level of spacecraft potential fluctuations and the maximum Langmuir energy is plotted
for each waveform in Fig. B.4. We recall that the expected saturation level of density
fluctuations generated by non linear Langmuir evolution is δn/n = W

L
[Sagdeev and

Galeev , 1969]. The dotted lines shows the level of spacecraft potential fluctuations corre-
sponding to such level of density fluctuations δn/n = W

L
by using Eq. B.6 with different

values of the photoelectron temperature Tph = 1 eV , 3 eV and 5 eV . The observed level
of spacecraft potential fluctuations is consistent with Tph = 3 eV ± 1 eV . This is thus
consistent with previously published values, all in the range Tph = [1 − 3] eV, as well as
self-consistent with the expected saturation level of density fluctuations generated by non
linear Langmuir evolution.

The typical noise level on S/WAVES monopole antenna channel is about 0.1 mV, which
means that both (i) Langmuir waves with electric energy W

L
> 10−7 and (ii) density

fluctuation with δn/n > 10−4 can be observed (3σ above the noise). However, the selection
criteria that controls the choice of telemetered events favors the highest voltage events,
higher amplitude Langmuir waves will thus be preferentially telemetered.

Finally, we stress that the no correlation is found between the previously described low
frequency signals interpreted as fluctuations of the spacecraft potential and the high
amplitude Langmuir electric field measured on each separate monopole antenna channel.
This important point allows to discard the hypothesis that the low frequency signals
observed on STEREO would be generated by either antennas sheath rectification [Boehm
et al., 1994; Stasiewicz et al., 1996] or non linear artifacts from the TDS receivers.

3Note that Eq. B.3 could have been fairly approximate by Φ ≃ (k
B
Tph/e) ln[N0/n] when considering

that the dependence of Φ
SC

in the logarithm is negligible. This straightforwardly leads to the variation
of spacecraft potential induced by a small variation in electron density:

δΦ
SC

≃ −(k
B
Tph/e) (δn/n) ≃ −3 × (δn/n) Volts
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Figure B.4: Level of spacecraft potential fluctuations for different Langmuir energy. Each sin-
gle point represents a TDS waveform where both Langmuir electric oscillations and spacecraft
potential fluctuations are observed. The dotted lines show the expected level of density fluc-
tuations generated by Langmuir ponderomotive effects for different values of the photoelectron
temperature Tph.
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Appendix C

Identification of waveforms of interest:
application to S/WAVES

About 50 to 200 voltage waveforms data from the S/WAVES Time Domain Sampler
(TDS) are daily telemetered, depending on the observational mode (Table 2.2, p. 26). The
primary goal of the TDS is to observe Langmuir waves. However, other signals of interest
are found in these data: signature of dust impact on the spacecraft blanket [Meyer-Vernet
et al., 2009], signature of density fluctuations crossing the spacecraft [Kellogg et al., 2009;
Henri et al., 2009, 2010c], low frequency waves such as whistler waves [Cattell et al., 2009].

To ease the data analysis, I have classified the TDS waveforms according to the nature
of the signals of interest defined and identified as follow. Fig. C.1 show examples of such
waveforms.

(1) Langmuir events;

(2) density fluctuations events;

(3) low frequency waves events;

(4) dust events;

(1) Waveform containing signatures of Langmuir waves (Fig. C.1 top left panel) are iden-
tified by selecting highly peaked (Typically a spectral peak > 20 times the spectral back-
ground with ∆f/fmax < 5 10−2) high-frequency oscillations in the Langmuir frequency
range, typically ∼ [5 Hz - 40 KHz].
(2) Density fluctuations affecting the spacecraft floating potential lead to the same low
frequency signature on the three monopole antenna channels in a specific range of frequen-
cies, typically ∼ [100 Hz - 1 KHz] (section 2.3, p. 28). These events have been identified
by selecting events with identical low frequency voltage on the three antennas (top right
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panel). The method is the following: a maximum variance analysis is performed on the
equivalent 3D voltage signal, selecting events show a clear maximum variance axis di-
rected along the bissectrix of the three antennas.
(3) Waveform containing signatures of low frequency waves (bottom left panel) are sim-
ply identified by a low frequency peak seen out of the Langmuir frequency range, i.e.
< 5 kHz.
(4) Waveforms characteristic of dust impacts on the spacecraft blanket (bottom right
panel) have been isolated by looking for high-derivative and high skewness waveforms
(fast growth of antenna charging, long time to reach equilibrium state after the impact).

Signals that do not enter in any of these categories are rejected from the selection algo-
rithm.

Figure C.1: Classification of signals of interest in TDS waveforms data. The voltage is expressed
in mV. Different colors show different antennas voltage. Top left panel: Langmuir wave; bottom
left panel: low frequency wave; top right panel: density fluctuations affecting the spacecraft
potential; bottom right panel: signature of dust impact on the spacecraft blanket.

Criteria (1), (2) and (3) are independent and can be combined, as illustrated in Fig. C.2.
For instance, ion acoustic waves are low frequency density oscillations: criteria (2) and
(4). In the case of a waveform showing Langmuir electrostatic decay, both Langmuir
oscillations and ion acoustic oscillations are seen: criteria (2), (3) and (4) should be
active simultaneously.
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Figure C.2: Example of TDS waveforms. The voltage is expressed in mV. Left panel: ion
acoustic oscillation; right panel: Langmuir wave decaying through electrostatic decay.

Application 1: nonlinear evolution of Langmuir waves.

Over all the TDS waveforms from November 2006 to the end of 2009, 49 waveforms
(concerning 15 days) are found with a Langmuir electric energy, normalized to the electron
thermal energy, greater than 10−2, and 1179 waveforms (concerning a total of 92 days)
with Langmuir electric energy greater than 10−3. This set of waveforms offers a good
opportunity to study the non linear behaviour of Langmuir waves in the solar wind. First
results have been submitted [Henri et al., 2010c].

Application 2: Langmuir waves generated in magnetic

holes.

The list of TDS waveforms showing Langmuir oscillations has been used to identify the
Langmuir waves associated with magnetic holes (collaboration with C. Briand, LESIA,
Meudon, France and I. Soucek, Institute of Atmospheric Physics, Prague, Czech Repub-
lic). A paper has been submitted on the properties of these Langmuir waves [Briand
et al., 2010].

Application 3: cross-calibration of STEREO/IMPACT

electron density measurements

The large number of detection of Langmuir events have enabled to cross-calibrate the
electron density measurements from STEREO/IMPACT (collaboration with A. Opitz,
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CESR, Toulouse, France). The problem was to calibrate the offset in electron density
measurements of the IMPACT experiment. To this purpose, I provided a large number of
punctual density estimations obtained from in-situ observations of Langmuir oscillation. I
recall that the Langmuir waves oscillate at the electron plasma frequency, which depends
on the electron density. This collaboration led to a common submission [Opitz et al.,
2009].

The electron density can be obtained from the plasma frequency.
A first method to evaluate the electron plasma frequency is the so-called quasi-thermal
noise spectroscopy [Meyer-Vernet and Perche, 1989]. It enables to deduce the electron
density and temperature from the electric noise generated on the antenna by the thermal
motion of the surrounding moving electrons. However, S/WAVES antenna have a high
level of shut noise. The electron plasma noise at the plasma frequency is hidden by the
shut noise. The electron plasma frequency, and hence the electron density, cannot be
deduce from the quasi thermal noise spectroscopy.

A second method, compatible with S/WAVES shut noise level, is too evaluate the plasma
frequency directly from the observed Langmuir frequency. The solar wind is a mov-
ing medium, the observed frequencies are thus Doppler shifted1. The resulting observed
Langmuir angular frequency is:

ωobs
L

= ω
L

+ ~k
L
.~V

SW

≃ ωpe (1 +
3

2
k2

L
λ2

D
) + k

L
V

SW
cos θ ~B,~V

SW

where ~V
SW

is the solar wind speed, and θ ~B,~V
SW

the angle between the magnetic field and
the solar wind speed directions, recalling that the propagation is parallel to the magnetic
field ~k

L
‖ ~B.

Uncertainties on the evaluation of the plasma frequency from the Langmuir frequency arise
from three effects: (i) the thermal correction

(
3
2
k2

L
λ2

D

)
, (ii) the Doppler-shift correction

and (iii) the shape of the Langmuir wavepackets.

The Doppler shift correction is of the order (foreshock Langmuir waves) or greater (Type III

1We here neglect the spacecraft orbital velocity at about 30 km.s−1, orthogonal to the mean flow and
small compared to the solar wind speed.
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associated Langmuir waves) than the thermal correction:

Thermal correction

Doppler correction
=

3
2
k2

L
λ2

D

~k
L
.~V

SW
/ωpe

≃
3
2
k̃

L

2

1
2

V
SW

vth,e
k̃

L

with cos θ ~B,~V
SW

≃ 0.5

≃ 3
vth,e

V
SW

k̃
L

≃ 10 k̃
L

using vth,e ≃ 3 V
SW

≃ 10
( vb

vth,e

)−1

where we have written the normalized wavenumber k̃
L

= k
L
λ

D
≃ vth,e

vb
.

In the typical conditions of the solar wind speed (∼ 300− 800 km.s−1), electron beams in
the Earth electron foreshock (resp. associated to Type III bursts) have typical velocities
vb ≃ 10 vth,e (resp. velocities vb ≃ 30 − 40 vth,e), and generates Langmuir waves at phase
velocity vφ ≃ vb, ie at wavelength λ

L
≃ 60 λ

D
(resp. λ

L
≃ 200 − 300 λ

D
).

The thermal correction to the plasma frequency is 3
2
k2

L
λ2

D
∼ 10−2 for Langmuir waves in

the Earth foreshock (resp. ∼ 10−3 for Type III-associated Langmuir waves), i.e. a few
100 Hz (resp. 10 Hz).
The Doppler shift correction is about 1% of the total observed frequency, i.e. a few
100 Hz: ~k

L
.~V

SW
/ωpe & 10−2 for Langmuir waves in the Earth foreshock (resp. . 10−2

for Type III-associated Langmuir waves). It is worth noticing that two Langmuir waves
with similar wavelengths, but propagating in opposite directions, are distinguishable only
through the Doppler effect.

I first isolated the S/WAVES "Langmuir oscillations" in-situ electric field waveforms from
TDS data. The electron plasma frequency fpe is then estimated from the Langmuir waves
frequencies fL.
A gaussian fit of the Langmuir spectrum gives the mean Langmuir frequency, together
with the standard deviation which evaluate mostly the shape of the wavepacket.
The spectral width however hardly exceed 1%, the thermal correction is . 1%, while
the Doppler shift correction is . 10%. The observed Langmuir frequency thus gives an
evaluation of the plasma frequency to about 10%.

The electron density ne is deduced from the evaluated plasma frequency:

ne[cm
−3] = (fpe[kHz]/8.98)2 ≃ (f

L
[kHz]/8.98)2

with an uncertainty δne

ne
= 2 δfpe

fpe
≃ 20%. The uncertainty on the plasma frequency eval-

uation is dominated by the Doppler-shift effect. This correction is however not biased
(unlike the thermal correction that is always positive). It can be either positive or nega-
tive according to the direction of propagation of the Langmuir wave. Since the objective
is to calibrate the offset in the electron density measurements from IMPACT, this large
uncertainty on the electron density is compensated by the large number of measurements.
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Appendix D

Bicoherence: a powerful diagnostic for
three-wave interactions

The bicoherence is used as an estimator of quadratic phase coupling, characteristic of
three-wave coherent interactions. Lagoutte et al. [1989] gives a methodological introduc-
tion to bicoherence analyses based on a Fourier approach1. Although studies of bicoher-
ence have been reported in the ionosphere [Pecseli et al., 1993], the bow shock [Dudok de
Wit and Krasnosel’Skikh, 1995] and the solar wind near the foreshock edge[Bale et al.,
1996], to our knowledge, Henri et al. [2009] is the first bicoherence study of three-wave
coupling in the solar wind during a Type III.

In the case of three-wave coupling, the relative phase ∆Φ = Φ1+Φ2−Φ3 between the three
phases Φi=1,3 associated to the three frequencies fi=1,3 linked by the relation f1 + f2 = f3

should remain constant. Bicoherence measures statistically the degree of stationarity of
the relative phase ∆Φ. The Fourier cross-bispectrum B is defined in a 2D frequency space
(f1, f2) by

B(f1, f2) =< F (f1)F (f2)F
∗(f1 + f2) >, (D.1)

where F is the Fourier spectrum of a given signal, F ∗ for the complex conjugate of F and
< > stands for the average over different independent samples. The third term F ∗(f1+f2)
means that we consider the correlation between signals at three different frequencies such
that the third frequency is equal to the sum of the two others.

To take into account phase effects only, i.e. to avoid amplitude effects, the Fourier cross-
bispectrum is normalized. The normalized cross-bispectrum, also called bicoherence, is
thus defined as:

b(f1, f2) =
< F (f1)F (f2)F

∗(f1 + f2) >

< |F (f1)F (f2)F ∗(f1 + f2)| >
(D.2)

1Note that high-order spectral statistics are general methods used in a wide range of fields: sonar and
radar, interferometry, nonlinear systems, image processing, biomedical signal analysis, etc [Mendel , 1991;
Mandel and Wolf , 1995].
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Figure D.1: Illustration of phase locking and bicoherence. Left panel: Relative phases ∆Φ in
the complex plan for two series of experiments. The first series ∆Φj (red crosses) is random
while the second series ∆Φi green circles) is almost constant (phase locking). Right panel: the
first (resp. second) series is characterized by a low (resp. high) level of bicoherence.

For a stationary signal, the bicoherence vanishes when the phase relation is random, and
maximal (1 for the chosen normalization) when the phase relation remains constant. A
non-zero bicoherence value b(f1, f2) is thus the signature of phase locking between three
waves with frequencies f1, f2 and f1 + f2.

To illustrate this property, let us consider two series of experiments where three waves
with frequencies fi (i=1,2,3) such that f1 + f2 = f3 are detected. Figure D.1 illustrates
how the bicoherence quantifies the phase locking. The left panel shows in the complex
plan the relative phases ∆Φ for (i) a first series of experiment the relative phases ∆Φ
between our three waves are different from one experiment to another (red crosses) and
(ii) a second series of experiment where ∆Φ does not vary to much (green circles), as it
would be expected in the case of resonant three-wave interactions. The bicoherence is
the norm of the average phase in the complex plan (distance between the average of the
complex phases and the origin of the complex plan, represented by colored segment in the
right panel). In the first case (red) the bicoherence is almost zero, while in the second case
(green) the bicoherence is close to one. In the first case, no resonance is found between
the waves, while in the second case bicoherence shows that the three waves stay in phase
from one event to another, strongly suggesting that they are resonantly interacting.

To optimize the time resolution, and diminish the bias introduced by the method, the
wavelet bicoherence [Van Milligen et al., 1995; Dudok de Wit and Krasnosel’Skikh, 1995]
has been preferred to the Fourier bicoherence for the observational study of electrostatic
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decay Henri et al. [2009]. For convenience, the wavelet transform is expressed in terms
of frequency f , instead of the wavelet scale s = 1/f . The wavelet cross-bispectrum is
defined as in Eq. D.1 by replacing the Fourier transform with the wavelet transform W :

B(f1, f2) =< W (f1)W (f2)W
∗(f1 + f2) >, (D.3)

where < > now stands for the time-average over one sample only (I recall that the wavelet
W (t, f) is a function of both time and frequency). Wavelet bicoherence is normalized as
the Fourier bicoherence (Eq. D.2):

b(f1, f2) =
< W (f1)W (f2)W

∗(f1 + f2) >

< |W (f1)W (f2)W ∗(f1 + f2)| >
(D.4)

I stress the difference between Fourier and wavelet bicoherence: Fourier bicoherence is
computed over different realizations of a same experiment, while the wavelet bicoherence
is computed over time for a single experiment. Wavelet bicoherence is thus computed by
averaging on overlapping samples. But as stressed by Soucek et al. [2003], the statistical
validation of bicoherence requires to use independent samples. The duration of an inde-
pendent sample can be evaluated from the time of coherence of the waves, which is about
the duration of the wavepacket. It means that each localized waveform can be considered
an independent sample. The wavelet bicoherence computed with only one localized wave-
form would be meaningless. In Henri et al. [2009], several TDS waveforms have been first
juxtaposed to form a long time series that contains several independent samples. The
wavelet bicoherence is then computed on this equivalent signal.

The bicoherence is very sensitive to the non-stationarity of frequencies and to the presence
of discontinuities in the data set. The non-stationarity of frequencies involved in a three-
wave coupling spreads the bicoherence signal and thus decreases the wavelet bicoherence
value at all involved frequencies. This is a consequence of the intrinsic frequency accuracy
of the Morlet wavelet. Indeed, the time-frequency finite resolution of the chosen wavelet
implies that the uncertainty on the frequencies is ∆f ≃ 1/4f , with ∆f the resolution at
3 dB. Discontinuities in the waveform, such as spikes, appears through spectral analyses as
a large spectrum of coupled frequencies (for instance Dirac’s function is a white noise with
correlated phases). This implies an increase of the bicoherence signal, without physical
significance, and thus reduces the signal-to-noise ratio of the bicoherence.

Bicoherence analysis has been used on S/WAVES observations [see Henri et al., 2009] and
Vlasov simulations of Langmuir electrostatic decay. I describe here the evolution of the
bicoherence during a numerical experiment of the electrostatic decay of a monochromatic
Langmuir wave.

I use the 1D-1V Vlasov-Poisson model with periodic boundaries described in section 2.4.
The ion-to-electron temperature ratio is Ti/Te = 1, the ion-to-electron mass ration is
µ = 1836. A monochromatic Langmuir wave with wavenumber k

L
= 0.06 and electric

field amplitude E
L

= 6 10−2 is initially generated by the external forcing Eext.

The evolution of the electric field and the ion density fluctuations are shown in Fig. D.2.
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Figure D.2: Time-position evolution of the electric field (left panel) and the proton density
fluctuations (right panel). Position is expressed in Debye length unit, time in inverse plasma
frequency unit.

The mother Langmuir wave propagate rightward and decays into a backscattered Lang-
muir wave (k

L′ ≃ 0.04) and an ion acoustic wave (k
S
≃ 0.1). The decay product are

observed in Fig. D.2 from time t ≃ 3 104 ω−1
pe .

From the evolution of density fluctuations (right panel), the ion acoustic wave seems to
propagate leftward, while the theory predicts that it is emitted in the same direction as
the mother Langmuir wave (rightward). In fact, the ion acoustic wave indeed propagate
rightward, as seen from the evolution of the wave crests. They are generated where the
two Langmuir waves (mother and daughter) beat, but are Landau damped as soon as
they escape the beat regions because of the temperature ratio Ti/Te = 1. The leftward-
propagating "apparent wavepackets" are only the signature of the beat regions where the
ion acoustic waves can exist. Since the mother wave is monochromatic, these leftward-
propagating "apparent wavepackets" shows the localization of the daughter Langmuir
wavepacket. It can be shown that they follow the expected group velocity of the daughter
Langmuir wave. I recall that, as described in Henri et al. [2010b], even when considering
a monochromatic mother Langmuir wave, both daughter waves are in fact wavepackets.

Let us now look at the three-wave interactions that occur during this run. The Fourier
bicoherence is computed in term of wavenumbers to look for phase resonance associated
the relation k1 +k2 = k3. This means that high bicoherence response at (k1, k2) represents
a coherent interaction between three waves with wavenumber k1, k2 and k3 = k1 + k2.
The evolution of the Fourier bicoherence with time during the simulation is shown in
Fig. D.3 and D.4 (time evolution from top to bottom). Left panels show the electric
field bicoherence, right panels the density bicoherence at the same time. Dotted lines
show the expected wavenumbers of the Langmuir and ion acoustic waves associated to
the electrostatic decay of the initial Langmuir wave.
When considering the wavenumbers, the Langmuir decay is such that ~k

L
= ~k

L′ + ~k
S
,

but since the Langmuir daughter wave is backscattered, k
L′ is negative. When expressed

in term of the modulus of the wavenumber, the conservation of momentum reads k
S

=
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k
L′ + k

L
(see Fig 1.4 page 12).

At the beginning of the simulation (0 < t < 103 ω−1
pe corresponding to the two top panels

of Fig. D.3), the initial large amplitude Langmuir wave is in phase resonance with a wave
at 2k

L
as shown from the maximum electric field bicoherence at (k1, k2) = (k

L
, k

L
). This

is most likely the signature of a resonance with a pseudo-mode at 2k
L
, oscillating at 2ω

L
,

as a prelude for the Langmuir nonlinear evolution.
The signature of Langmuir electrostatic decay is then observed, first in the ion density
bicoherence2, then also in the electric field bicoherence at (k1, k2) = (k

L′ , kL
). Note that

the decay is observed through the bicoherence before its signature in physical space in
Fig. D.2. Again, the bicoherence shows phase resonance and is insensitive to the amplitude
of the signal. That is why three-wave coupling is observed with this method at early time,
as soon as the decay begins.
At some point, the ion acoustic waves generated by the Langmuir decay are large enough
to act themselves as pump waves and generate, first, the harmonic S(2) at 2k

S
(density

bicoherence at (k
S
, k

S
), as a signature of S → S(2) + S(2)), then the other harmonics S(n)

(density bicoherence at (nk
S
, nk

S
) in Fig. D.4). This is the ion acoustic cascade.

This example illustrate how the bicoherence analysis allows to identify as well (i) a sin-
gle three-wave interaction (Langmuir electrostatic decay) and (ii) a full developed weak
turbulence based on multiple and simultaneous three-wave interactions (ion acoustic tur-
bulence).

This discussion is based on a poster presented at the 52nd congress of the Società Astro-
nomica Italiana (SAIt), Pisa, Italy, May 2009 (Bicoherence as a diagnostic for non-linear
three-wave interactions).

2The ion-to-electron mass ratio is finite, a (small) oscillation of the ions is thus also associated to the
Langmuir wave. Since the bicoherence is normalized in order to be sensitive to phase coherence, but
insensitive to the signal amplitude, it is not surprising to observe signature of the electrostatic decay in
the density bicoherence.
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Figure D.3: (First part) Evolution of the Fourier bicoherence computed for both the electric
field (left panels) and the ion density (right panels) during the run shown in Fig. D.2. Top panel:
0 < t < 1000 ω−1

pe . Medium panel: 1000 < t < 2000 ω−1
pe . Bottom panel: 2000 < t < 3000 ω−1

pe .
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Figure D.4: (Second part) Evolution of the Fourier bicoherence computed for both the electric
field (left panels) and the ion density (right panels) during the run shown in Fig. D.2. Top
panel: 3000 < t < 4000 ω−1

pe . Medium panel: 4000 < t < 5000 ω−1
pe . Bottom panel: 5000 < t <

6000 ω−1
pe .
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Appendix E

Vlasov Code

I summarize in this appendix some numerical work performed on the Vlasov-Poisson code.
The simulations discussed in this thesis are 1D and start with an homogeneous medium.
In the following, I give the explicit form of the external forcing Einit

ext and Enoise
ext added to

the Vlasov equation.
Some preliminary simulations have also been performed (i) with considering an initially
inhomogeneous plasma, (ii) in 2D configurations. I describe here some complementary
investigations to prepare this new step.

Generation of Langmuir waves

To numerically investigate the nonlinear evolution of a Langmuir wave (or wavepacket),
I wish to control the amplitude and shape of an initial Langmuir wave. In this purpose,
I chose not to generate the Langmuir wave via a bump-on-tail instability, but by directly
imposing the desired parameters of the oscillation.

Langmuir waves are oscillations of the electron density on a fixed ion background. An
intuitive method could be to generate an initial Langmuir wave by imposing an initial
electron density fluctuations in the simulation box. However, imposing an initial electron
density fluctuation produces a standing wave, sum of two counter-propagating Langmuir
waves.

In order to initially produce a Langmuir wave propagating in a single direction, I chose to
use an external driver driver Einit

ext , added in the Vlasov equation for electrons (Eq. 2.4).
This ’external’ electric field controls the generation of the initial Langmuir wave. It acts
as a driver that resonantly grows a Langmuir wave propagating in only one direction,
with the desired spectrum and electric field amplitude.
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A monochromatic Langmuir wave of wavelength λ
L

and amplitude E
L

is resonantly
excited by the external electric field pump by defining Einit

ext = E
(1)
ext:

E
(1)
ext(x, t) = E

(1)
0 (t) cos(k0x− ω0t) (E.1)

A Langmuir wave packet of mean wavelength λ
L
, packet width ∆ and maximum ampli-

tude E
L

is resonantly excited by defining Einit
ext = E

(2)
ext:

E
(2)
ext(x, t) = E0(t) cos(k0x− ω0t) exp

(
−
(x− x0 − vg

L
t

0.5∆

)2
)

(E.2)

In both cases, the pump wavevector k0 = 2π/λ
L

and the frequency ω0 =
√

1 + 3k2
0 are

chosen to satisfy the Langmuir dispersion relation, in order to generate a Langmuir wave
at the desired wavelength λ

L
. The width of the wave packet is set to ∆ = 10 λ

L
. The

pump wave packet moves at the Langmuir group velocity vg
L

= 3k0/ω0 from its initial
position x0 = Lx/3. The time-dependant external electric field amplitude E0(t) scales on
the desired Langmuir amplitude E

L
:

E
(1)
0 (t) = ηE

L
(1 − exp(−t/τ)). (E.3)

In the monochromatic case (resp. wave packet case), the parameter τ is set to 30 ω−1
pe

(resp. 100 ω−1
pe ) so that the external electric field amplitude smoothly increases during a

few Langmuir oscillations. This avoids the generation of other plasma waves induced by
step-like switch of the pump. The parameter η is set experimentally to 5 × 10−2 (resp.
10−2), so that the characteristic time scale to resonantly grow the Langmuir wave (resp.
wave packet) is large compared to its oscillation time scale, but small compared to the
decay time scale. So, the resonant generation of the Langmuir wave (resp. wave packet)
does not interfere with the Langmuir electrostatic decay mechanism.

The method is easily transposed to a bi-dimensional description of the wave by simply
modifying the phase of the wave and the shape of the envelop.

Generation of ion acoustic noise

A continuous injection of ion density noise can be driven by the external fields Enoise
ext

added to the ion dynamics (Eq 2.5). It may represent the density fluctuations coming
through a turbulent cascade, not described in the simulation, from scales larger than the
simulation box to smaller scales resolved in the box. This driver is defined by:

Enoise
ext (x, t) = Eions,max

ext

∑
λ cos(2πx/λ)cos(ωλt+ Ψ

′′

λ(t))

|∑λ cos(2πx/λ)cos(ωλt+ Ψ
′′

λ(t))|
(E.4)

It introduces a flat spectrum for wavelength over the range 50 < λ < 1000. Enoise
ext (x, t)

is normalized in order to have a maximum amplitude of Eions,max
ext = 1 × 10−5. The fre-

quencies ωλ are chosen to satisfy the dispersion relation of IAW, ωλ = (2π/λ)cs with
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cs =
√

(1 + Θ)/µ the ion sound speed. The phases ψ′′
k(t) have a step-like variation, de-

fined by a piecewise constant function over a time interval δt. At the end of each interval,
they are independently drawn from a uniform distribution. This way, the generation of
ion acoustic noise is made of a succession of time coherent forcing for time intervals of
duration δt = 500 × ω−1

pe (about 80 plasma oscillations). This means that for an IAW of
wavelength λ

S
= 100, the forcing lasts 1/20th of a period, much shorter than the typical

IAW oscillation time in order to generate an incoherent noise. This forcing thus gener-
ates density fluctuations much smaller than the level of density fluctuations generated by
Langmuir electrostatic decay in our simulations.

Starting with macroscopic inhomogeneities

When setting an initial random density that is different for electrons and ions, charge
separation rapidly self-organises into a broad spectrum of Langmuir noise. A "sea" of
Langmuir waves then fills the simulation box. This is the way I generate the (small)
initial Langmuir random noise needed for the parametric instability to develop.

When setting an initial random density that is identical for electrons and ions, one could
expect to generate only ion acoustic fluctuations. This is wrong.
The reason is the following. The ion density fluctuation rapidly self-reorganize into ion-
acoustic fluctuations, but ion-acoustic density fluctuations are associated with electric
field fluctuations. If the initial charge separation (which controls the initial electric field)
is not imposed so that it actually corresponds to the associated ion acoustic initial density
fluctuation, then the system self-organize into both ion-acoustic and Langmuir waves.

In order for an initial macroscopic density inhomogeneity not to generate Langmuir noise,
one must impose an initial charge separation consistent with the ion acoustic fluctuations.
The initial ion density fluctuations associated to a pressure gradient ~∇P should be com-
pensated by a separation of charges associated through the Poisson equation to an electric
field ~E that ensure the initial equilibrium.
A solution is the following. In order to start with density fluctuations that project onto
ion acoustic fluctuations only, one imposes an initial Boltzmanian equilibrium for the elec-
trons. By doing so, no Langmuir oscillation is generated by the initial density fluctuation.

In the 1D-1V case, the initial charge separation ne−ni corresponds to an electric potential
φ through Laplace equation:

∆φ =
∂2φ

∂x2
= ne − ni

We first imposed the electron density inhomogeneity ne = ne(x). The ion density ni =
ni(x) is then calculated by imposing to the electrons to be in Boltzmanian equilibrium:

ne = exp(φ)
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The ion density, given by Laplace equation:

ni = ne −
∂2φ

∂x2
,

is expressed in term of the electron density only, by using φ = log(ne):

ni = ne +
( 1

ne

∂ne

∂x

)2

− 1

ne

∂2ne

∂x2
(E.5)

In the 2D-2V case, Laplace equation becomes:

∆φ =
∂2φ

∂x2
+
∂2φ

∂y2
= ne − ni

so that the ion density ni = ni(x, y) in equilibrium with the imposed electron density
ne = ne(x, y) reads:

ni = ne +

(
1

ne

(∂ne

∂x
+
∂ne

∂y

))2

− 1

ne

(
∂2ne

∂x2
+
∂2ne

∂y2

)
(E.6)

The spatial grid being periodic, the derivative are calculated in both 1D-1V and 2D-2V
cases by Fourier transform.

However, this method does not guarantee to get stable ion fluctuations. Indeed, the initial
density fluctuations are modified on ion time scales. It just cancels unwanted Langmuir
oscillations by imposing to the initial density fluctuations to reorganize themselves along
the ion acoustic branch only. To get a stable ion fluctuation in the Vlasov-Poisson model,
one must impose a stabilizing external force on the Vlasov equation for the ions.

In this method, I have imposed the inhomogeneity on the electron density. However, the
charge separation for ion acoustic fluctuations is small, so that the ion density inhomo-
geneity is almost equal to the electron inhomogeneity.

Irrotational initial noise in the 2D-2V electrostatic code

When setting a random noise in density, both rotational and irrotational electric fields
are generated. However, the Vlasov-Poisson system does not describe rotational electric
fields, filtrated by the resolution of the Poisson equation1. We wish to better control the
initial noise of the simulation by directly imposing an irrotational initial random electric
field, generated by an isotropic initial random density fluctuations. In order to ensure
that the electric field is irrotational, we impose a potential Φ(x, y) define as follow:

Φ(x, y) = Φ0

Nk∑

i,j=1

1√
k2

i + k2
j

(
sin
(
kix+ kjy + φ

(0)
i,j

)
+ sin

(
kix− kjy + φ

(1)
i,j

))
(E.7)

1more exactly through the resolution of Laplace equation!
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The associated electric field reads:

Ex(x, y) = Φ0 ex(x, y) (E.8)

Ey(x, y) = Φ0 ey(x, y) (E.9)

with

ex(x, y) =

Nk∑

i,j=1

ki√
k2

i + k2
j

(
cos
(
kix+ kjy + φ

(0)
i,j

)
+ cos

(
kix− kjy + φ

(1)
i,j

))

ey(x, y) =

Nk∑

i,j=1

kj√
k2

i + k2
j

(
cos
(
kix+ kjy + φ

(0)
i,j

)
− cos

(
kix− kjy + φ

(1)
i,j

))

The parameter Φ0 is chosen so that the maximum electric field amplitude is Emax:

Φ0 = Emax/maxx,y

(√
e2x(x, y) + e2y(x, y)

)
(E.10)

Then, the divergence of the electric field reads:

~∇. ~E(x, y) =
∂Ex

∂x
+
∂Ey

∂y

= −Φ0

Nk∑

i,j=1

k2
i√

k2
i + k2

j

(
sin
(
kix+ kjy + φ

(0)
i,j

)
+ sin

(
kix− kjy + φ

(1)
i,j

))

+
k2

j√
k2

i + k2
j

(
sin
(
kix+ kjy + φ

(0)
i,j

)
+ sin

(
kix− kjy + φ

(1)
i,j

))

where φ
(l)
i,j ∈ [0, 2π], i, j = 1, Nk and l = 0, 3 are random phases, ki = i2π/Lx and

kj = j2π/Ly (i, j = 1, Nk) are the wavevectors.

Finally by considering Poisson equation ∇ ~E = ρp − ρe, the electron and proton initial
density fluctuations can be chosen as follow:

1. Fixed ions and fluctuation in the electron density ρe(x, y) = −∇ ~E(x, y)

2. Fluctuation of both ion density ρi(x, y) = α∇ ~E(x, y) and electron density ρe(x, y) =

−(1 − α) ∇ ~E(x, y), with 0 < α < 1.
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