
HAL Id: tel-00532638
https://theses.hal.science/tel-00532638v1
Submitted on 4 Nov 2010 (v1), last revised 18 Jan 2011 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Authenticated Key Agreement Protocols: Security
Models, Analyses, and Designs

Augustin Sarr

To cite this version:
Augustin Sarr. Authenticated Key Agreement Protocols: Security Models, Analyses, and Designs.
Mathematics [math]. Université Joseph-Fourier - Grenoble I, 2010. English. �NNT : �. �tel-00532638v1�

https://theses.hal.science/tel-00532638v1
https://hal.archives-ouvertes.fr

Université de Grenoble

Thèse
pour obtenir le grade de

Docteur
de l’Université de Grenoble

Formation Doctorale : Mathématiques et Informatique

École Doctorale : Mathématiques, Sciences et Technolo-

gies de l’Information, Informatique

Discipline : Cryptologie

présentée et soutenue publiquement

par

Augustin P. Sarr
le 18 octobre 2010

Authenticated Key Agreement Protocols:
Security Models, Analyses, and Designs

—

Protocoles d’échanges de clefs authentifiés :
modèles de sécurité, analyses et constructions

— J ury —

Jean–Claude Bajard . . . Prof. Université Paris 6 . Co–directeur

Cas Cremers Senior Scientist, ETH Zurich . Examinateur

Philippe Elbaz–Vincent Prof. Université de Grenoble . Co–directeur

Xavier Facélina Directeur Technique, Netheos . Examinateur

Louis Goubin Prof. Université de Versailles–Saint–Quentin Rapporteur

Antoine Joux DGA, Prof. Université de Versailles–Saint–Quentin . . . Examinateur

Marc Joye HDR, Technical advisor, Technicolor Rapporteur

Yassine Lakhnech. Prof. Université de Grenoble . Examinateur

Remerciements

Je tiens à exprimer ici ma profonde gratitude à tous ceux qui d’une façon ou d’une autre
ont contribué à la réalisation de ce travail. En particulier, à mes directeurs de recherche

Jean-Claude Bajard, Xavier Facélina et Philippe Elbaz-Vincent qui, après m’avoir initié
aux différents aspects de la cryptologie et de la recherche, ont accepté de diriger ce travail
de thèse. Ils m’ont aidé, conseillé et soutenu tout au long de ce travail; et très souvent,
ils ont fait bien plus que leur travail. Nos différentes discussions ont inspiré l’essentiel
des résultats présentés dans ce manuscrit. Je salue leurs qualités humaines. Qu’ils soient
assurés de ma profonde reconnaissance.

Mes remerciement vont également à la société Netheos, en particulier à ses dirigeants
Olivier Détour et Xavier Facélina qui ont aussi permis ce travail. Sans l’environnement
favorable qui règne dans les locaux de cette équipe, ce travail m’aurait été très pénible; je
remercie chaleureusement tous les salariés de Netheos.

Ma gratitude va également à Louis Goubin et Marc Joye qui m’ont fait l’honneur de
rapporter sur ce travail. Je les remercie vivement pour l’effort qu’ils ont fourni et l’intérêt
qu’ils ont porté à ce manuscrit. Mes vives remerciements vont également à Cas Cremers,
Antoine Joux et Yassine Lakhnech qui ont bien voulu examiner ce travail et faire partie
du jury.

Enfin, je ne saurais terminer ces remerciements sans en adresser à ma famille et à mes
amis, qu’ils soient de Dakar, de Montpellier, de Mont-Rolland ou de Saint-Louis. Je leur
dois beaucoup; qu’ils en soient remerciés.

i

À mon frère

Daniel SARR
Fey sosa faanu.

Contents

Chapitre 1 Introduction (in french) 2

1.1 Contexte et motivation . 2
1.2 Contributions . 6
1.3 Plan du manuscrit . 7

Introduction 9

Chapter 2 Elliptic Curve Cryptography and Related Industrial Problematics 12

2.1 Introduction . 12
2.2 Overview of Elliptic Curves . 13
2.3 Coordinate Systems and the Group Law 17

2.3.1 Coordinate Systems for Elliptic Curves over Prime Fields . . . 18
2.3.2 Coordinate Systems for Elliptic Curves over Binary Fields . . . 20

2.4 Scalar Multiplication . 23
2.4.1 The Double–and–Add Method 23
2.4.2 Non–Adjacent Forms . 24
2.4.3 Montgomery Scalar Multiplications 26

2.5 The Elliptic Curve Discrete Logarithm (and related) Problem(s) . . . 28
2.5.1 Attacks on the ECDLP . 29

2.6 Basic Elliptic Curves Based Schemes 33
2.6.1 The Elliptic Curve Integrated Encryption Scheme 34
2.6.2 The Elliptic Curve Digital Signature Algorithm 35
2.6.3 The Password Authenticated Connection Establishment 36

2.7 Advantages of Elliptic Curves based Cryptography 38
2.8 Elliptic Curve Cryptography Standards Activities 39
2.9 Patents in Elliptic Curve Cryptography 41
2.10 Examples of elliptic curves cryptography deployment 43

Chapter 3 Security Models for Authenticated Key Agreement 44

3.1 Introduction . 44
3.2 The Bellare–Rogaway Model(s) . 45
3.3 The Canetti–Krawczyk Model(s) . 47
3.4 The Extended Canetti–Krawczyk Model 49

3.4.1 The Menezes–Ustaoglu Variant 51
3.5 Security Nuances in the (e)CK Models 52

3.5.1 Inadequacy of the CK Matching Sessions Definition 52
3.5.2 The eCK Ephemeral Key and the Use of the NAXOS Transfor-

mation . 54

i

3.6 Stronger Security . 56
3.7 Relations between the seCK and eCK models 60
3.8 The Strengthened MQV Protocol . 61
3.9 Security Analysis of the SMQV Protocol 64

3.9.1 Proof of Theorem 3. 65
3.10 Conclusion . 74

Chapter 4 Complementary Analysis of Diffie–Hellman based Protocols 76

4.1 Introduction . 76
4.2 The Unified Model Protocol . 77
4.3 The Station–to–Station Protocol . 79
4.4 The MQV Protocol . 80

4.4.1 Kunz–Jacques and Pointcheval Security Arguments 82
4.4.2 Limitation of the Security Arguments 82
4.4.3 Kaliski’s Unknown Key Share Attack 83

4.5 Complementary Analysis of ECMQV 84
4.5.1 Points for Impersonation Attack 84
4.5.2 Decomposed i–point Search . 86
4.5.3 Exploiting Session Specific Secret Leakages 93

4.6 Complementary Analysis of the HMQV design 96
4.6.1 Exploiting Secret Leakage in the XCR and DCR Schemes . . . 96
4.6.2 Exploiting Session Specific Secret Leakages in HMQV 97

4.7 A New Authenticated Diffie–Hellman Protocol 100
4.7.1 Full Exponential Challenge Response Signature scheme 100
4.7.2 Full Dual Exponential Challenge Response Signature scheme . 102
4.7.3 The Fully Hashed MQV Protocol. 103

4.8 Conclusion . 107

Chapter 5 Implementations of the PKCS #11 Standard 108

5.1 Introduction . 108
5.2 Context of the Work . 109
5.3 An Overview of the PKCS #11 Specification 110

5.3.1 PKCS #11 Terminology . 110
5.3.2 Operations in the Standard Specification 112

5.4 (In)Security in the PKCS #11 Standard 113
5.4.1 Logical Security Weaknesses . 114
5.4.2 Implementation solutions . 117

5.5 Overview of two PKCS #11 Implementations 118
5.5.1 Implementation for eKeynoxTM 118
5.5.2 Implementation for RCP . 122

Chapter 6 Conclusion 127

Bibliography 129

List of Algorithms and Protocols

1.1 Variante à deux messages du protocole signé de Diffie–Hellman 4
2.1 Left–to–right binary Double–and–Add method 24
2.2 Right–to–left binary Double–and–Add method 24
2.3 NAF computation . 25
2.4 Binary NAF scalar multiplication . 25
2.5 NAFw computation . 26
2.6 Window NAF scalar multiplication . 26
2.7 Montgomery point multiplication . 28
2.8 Pollard’s rho algorithm . 31
2.9 Parallelized Pollard’s rho algorithm . 32
2.10 ECIES Encryption . 35
2.11 ECIES Decryption . 35
2.12 ECDSA Signature Generation . 36
2.13 ECDSA Signature Verification . 36
2.14 The PACE Protocol . 38
3.1 The protocol P . 54
3.2 Signed Diffie–Hellman using NAXOS transformation 56
3.3 The Strengthened MQV Protocol . 64
4.1 UM key exchange . 79
4.2 STS using Encryption and Signature Schemes 80
4.3 ECMQV key exchange . 82
4.4 Zero search for l–bit random oracle . 84
4.5 Naive i–point search . 88
4.6 Simultaneous Inversion . 89
4.7 Optimized i–point search . 92
4.8 Modified rho algorithm for decomposed i–point detection 93
4.9 HMQV key exchange . 99
4.10 FHMQV key exchange . 105
4.11 FHMQV–C key exchange . 108

iii

List of Attacks

3.1 Impersonation Attack against P using Ephemeral DH exponent Leakage 55
3.2 Impersonation Attack against SDHNT using Ephemeral DH exponent

Leakage . 57
4.1 Kaliski’s unknown key share attack . 84
4.2 Impersonation Attack against ECMQV using a decomposed i–point . . . 86
4.3 Weak ECMQV MIM attack using ephemeral secret exponent leakage . . 96
4.4 MIM attack against ECMQV using ephemeral secret exponent leakages . 97
4.5 Impersonation attack against HMQV using a decomposed i–point 100
4.6 MIM attack against HMQV using ephemeral secret exponent leakages . . 101

iv

List of Figures

2.1 Chord-and-tangent rule . 16

3.1 Implementation Approaches . 58

4.1 Naive i–point search illustration . 88
4.2 López–Dahab coordinates and simultaneous inversion in naive i–point

search . 89
4.3 Building a CDH solver from a FXCR forger 102
4.4 Building a FXCR forger from a FDCR forger 103
4.5 Particularly suited FHMQV implementation environment 105

5.1 Objects Hierarchy in PKCS #11 . 111
5.2 The “Smart Mobile Key” . 119
5.3 Overview of the SMK physical components 119
5.4 Main Modules in eKeynox . 119
5.5 Interconnections between the Internal Structures 120
5.6 Authentication Screenshot . 121
5.7 RCP Board Block Diagram . 123
5.8 RCP Board . 123
5.9 The SCM Microsystems SPR532 PINpad 124
5.10 RCP abstraction layers . 125

v

Notations

G A multiplicatively written cyclic group of prime order q generated
by G.

1̄ The identity element in G.
G∗ G \ {1̄}.
Â An entity with public key A, when ‘Â’ is used as input for some

function, we refer to Â’s certificate.
A An attacker.
SignÂ(m) Â’s signature on a message m.
EncK(m) Symmetric encryption of a message m using a key K.
DecK(m) Decryption of a message m using a key K.
X An element in G.
x The discrete logarithm of X in base G.
|x| The bit length of x.
‖ k ‖ The absolute value of a number k.
(EC)DLP Elliptic Curve Discrete Logarithm Problem.
CDHP Computational Diffie–Hellman Problem.
ECDHP Elliptic Curve Computational Diffie–Hellman Problem.
(EC)DDHP (Elliptic Curve) Decisional Diffie–Hellman Problem.
(EC)GDHP (Elliptic Curve) Gap Diffie–Hellman Problem.
H, H̄,Hi,i∈N Digest functions.
KEA1 Knowledge–of–Exponent Assumption.
KDF Key Derivation Function.
MAC Message Authentication Code.
∈R “Chosen uniformly at random in”.
{0, 1}λ The set of binary stings of length λ.
{0, 1}∗ The set of finite length binary stings.
N The set of non–negative integers, i.e. {0, 1, · · · }.
N

∗
N \ {0}.

gcd(n1, n2) The greatest common divisor of two integers n1, n2.
GF (q) A finite field with q elements.
(s1, · · · , sn) The concatenation of s1, · · · , sn, if s1, · · · , sn are (or can be repre-

sented) as binary strings.

1

Chapitre 1

Introduction (in french)

Contents

1.1 Contexte et motivation . 2

1.2 Contributions . 6

1.3 Plan du manuscrit . 7

1.1 Contexte et motivation

Historiquement, la cryptographie a été souvent utilisée pour des besoins de confiden-

tialité. Une entité désirant communiquer avec une autre, convient avec celle–ci d’un
procédé de (dé)chiffrement ainsi que d’un secret. L’expéditeur qui souhaite son message
confidentiel le chiffre avant de l’envoyer au destinataire. À la réception du message,
le destinataire, qui a connaissance du procédé de déchiffrement ainsi que du secret à
utiliser, applique le procédé et retrouve le message initial en clair. Cette approche de la
confidentialité, dite cryptographie symétrique ou cryptographie à clef secrète, nécessite
un accord préalable sur le secret de chiffrement. Il se pose donc le problème de la mise
en œuvre de cet accord de façon à garantir la non–divulgation du secret, ainsi que
celui du stockage des clefs, notamment lorsque les partenaires sont multiples.

Au besoin de confidentialité, que certains auteurs (voir [DRIO53], p. ex.) font re-
monter à l’Égypte antique, s’ajoutent les besoins fondamentaux d’authentification,
d’intégrité des données et de signature. L’authentification, qui peut s’appliquer aussi
bien aux entités qu’aux données, est la « garantie » de l’exactitude de la réalité d’une
identité ou d’une information. L’intégrité de données a trait aux altérations de don-
nées ; le but étant, de rendre celles–ci au moins détectables. Une signature lie l’identité
d’une entité à une donnée ; et comme telle, elle garantit l’origine de la donnée. Lorsque
l’unicité d’un signataire est garantie, une signature vérifiable par tous induit (de par
la garantie de l’origine) la non–répudiation, c.–à–d., l’incapacité d’un signataire à nier
l’authenticité d’une donnée signée.

La démocratisation de l’accès à internet, ainsi que la dématérialisation des échanges
(commerce en ligne, e–gouvernance, etc.) intensifient l’acuité des besoins fondamen-
taux, en plus d’en poser de nouveaux. Les exigences de sécurité et de performance,
liées parfois des enjeux cruciaux, sont de plus en plus élevés.

Certaines limites de la cryptographie symétrique trouvent réponse dans l’approche
révolutionnaire proposée par Diffie et Hellman1 [DIF76]. Dans cette approche, chaque

1Il apparait que les services secrets britaniques avaient mis au point en 1973 un schéma de chiffre-
ment à clef public, le GCHQ (voir http://www.gchq.gov.uk/history/pke.html). Par ailleurs, la relation
entre fonctions à sens unique et cryptographie a été déjà évoquée, dans [JEV58] en 1874. La discussion
portait spécifiquement sur la factorisation des entiers, aujourd’hui à la base du fameux schéma RSA.

2

http://www.gchq.gov.uk/history/pke.html

1.1. Contexte et motivation

entité dispose d’un secret (dit clef privée) lié à une information publique (clef pu-

blique). Le chiffrement à destination d’une entité se fait en utilisant sa clef publique,
le déchiffrement nécessite la clef privée. Le besoin d’accord préalable sur un secret de
chiffrement partagé ne se pose donc plus, tout comme celui de la multiplication des
secrets à stocker pour de multiples partenaires. Les clefs publique et privée sont liées
par une relation connue ; cependant, pour une paire de clefs « bien choisie », il doit
être infaisable de calculer la clef privée à partir de la partie publique.

En pratique, la question de la distribution et de l’authenticité des clefs publiques
est traitée via des infrastructures à cléfs publiques. Le principe d’une telle infrastruc-
ture consiste à faire partager à des entités, une entité de confiance, dite autorité de

certification qui signe (donc lie), après validation, une clef publique et une identité.
L’objet ainsi signé est dit certificat.

Bien qu’apportant des réponses à certaines limites de la cryptographie à clef secrète,
en pratique la cryptographie asymétrique est moins performante. En effet, à niveau de
sécurité équivalent, les schémas de chiffrement à clef publique les plus courants sont
nettement plus lents que les schémas symétriques. Afin de mitiger ce manque relatif
de performance, les schémas asymétriques et symétriques sont généralement utilisés
de paire. Lorsque les données à émettre sont de taille conséquente, une combinaison
possible (probablement la plus simple), d’un schéma symétrique et asymétrique est
comme suit :

• L’émetteur Â choisit une clef secrète s au hasard, chiffre la clef secrète avec la clef
publique du destinataire, ici B̂, puis, chiffre son message m avec la clef secrète.

• Le destinataire, utilisant sa clef privée b, déchiffre la clef secrète et, utilisant cette
dernière, accède au message m.

Â : B̂ B̂ : b, B, B̂
s ∈R {0, 1}k,
cs = EncB(s),
cm = Encs(m),

cm, cs −→
s = Decb(s),

m = Decs(cm),

Dans cette combinaison, (1) une des entités choisit la clef de chiffrement du message
(clef de session) et la fait parvenir à son partenaire ; (2) la communication suivante (ici
de l’initiateur vers le destinataire) utilise la clef choisie par l’initiateur. Les protocoles
construits avec cette idée, qui consiste à faire choisir une clef de session par une des
entités et la faire parvenir aux autres, sont dits protocoles de transport de clef.

Bien qu’efficace, cette approche n’est pas adaptée à certaines situations. En effet,
il peut être désirable pour une entité d’avoir des garanties sur la fraîcheur des clefs
de session qu’elle utilise. Les motivations de cet objectif de fraîcheur peuvent être
de deux origines. La première concerne la divulgation potentielle des clefs session :
les clefs peuvent être utilisées dans des applications ou espaces de stockage qui ne
sont pas de confiance, le format et le volume des données chiffrées peut les rendre

3

1.1. Contexte et motivation

vulnérables à une cryptanalyse, etc. La seconde source de motivation, sans doute la
plus importante, est qu’il est souhaitable que les clefs sessions soient décorrélées de
façon à éviter le rejeu d’un message d’une session antérieure, par une entité malicieuse.
Il peut être donc souhaitable pour chaque entité d’avoir la garantie que la clef de
session qu’elle utilise est fraîche, et n’a fait l’objet d’aucune utilisation antérieure. En
exemple, pour les protocoles d’authentification en temps–réel, il est souvent désirable
de pouvoir garantir qu’une entité malicieuse ne peut rejouer les messages d’une session
antérieure. Globalement, pour une entité, la garantie de la fraîcheur d’une donnée peut
être obtenues de deux manières : (1) l’entité participe directement à la génération de
la donnée, ou (2) la donnée, alors reçue, est liée à une donnée fraîche (dite nonce)
fournie par l’entité en question.

Dans un protocole d’échange de clef, il est commun que la dérivation d’une clef
de session, en une entité, implique à la fois des données fraîches générées par l’entité,
ainsi des données reçues d’une entité distante. De plus, les données reçues peuvent être
liées (de façon implicite ou explicite) à des données fraîches.

Protocole 1.1 Variante à deux messages du protocole signé de Diffie–Hellman
Messages du Protocole :

Â : a, A, Â B̂ : b, B, B̂
x ∈R [1, q − 1],
X = Gx, σA = SignÂ(X)

B̂, Â, X, σA −→

y ∈R [1, q − 1],
Y = Gy, σB = SignB̂(Y)

←− Â, B̂, X, Y, σB

κA = Xy κB = Xy

K = H(κA, Â, B̂, X, Y) K = H(κB , Â, B̂, X, Y)

I) L’initiateur Â effectue les étapes suivantes
(a) Choisir x ∈R [1, q − 1], calculer X = Gx et σA = SignÂ(X) .
(b) Envoyer (B̂, Â,X, σA) à B̂.

II) À la reception de (B̂, Â,X, σA), B̂ effectue les étapes suivantes :
(a) Vérifier que X ∈ G∗ et valider la signature σA.
(b) Choisir y ∈R [1, q − 1], calculer Y = Gy et σB = SignB̂(Y).
(c) Envoyer (Â, B̂,X, Y, σB) à Â.
(d) Calculer κB = Xy.
(e) Calculer K = H(κB, Â, B̂,X, Y).

III) À la réception de (Â, B̂,X, Y, σB), Â effectue les étapes suivantes :
(a) Vérifier que Y ∈ G∗ et valider la signature σB.
(b) Calculer κA = Y x.
(c) Calculer K = H(κA, Â, B̂,X, Y).

IV) La clef de session partagée est K.

En présence d’une infrastructure à clef publiques, il apparaît attractif de signer les
messages du protocole Diffie–Hellman (dont les limites, notamment pour ce qui est de
l’attaque dite « de l’homme du milieu » sont bien connues). Une variante possible du
protocole résultant est décrite ci–dessus (Protocole 1.1).

4

1.1. Contexte et motivation

Le Protocole 1.1 satisfait un certain nombre d’attributs de sécurité. Si l’on admet
l’hypothèse qu’une entité malicieuse ne saurait accéder aux exposants privés éphémères
x et y, il est défendable que l’objectif d’authentification mutuelle est satisfait, sous
l’hypothèse du problème calculatoire de Diffie–Hellman. En effet, sous cette hypothèse,
comme seul B̂ peut générer une signature en son nom, pour toute signature validée
par Â, seul B̂ peut avoir connaissance de l’exposant de la clef privée éphémère, et
inversement. Ainsi, seuls Â et B̂ peuvent calculer κA = κB et dériver la clef de session.
Il peut aussi être désirable pour Â d’avoir la « preuve » que B̂ dispose effectivement
de la clef de session (ou inversement) ; cet objectif est dit confirmation de clef. Il n’est
pas difficile de voir que le Protocole 1.1 ne satisfait pas cet objectif.

Pour Shoup [SHO99] la confirmation de clef n’est pas importante, seuls importent
l’information sur l’aboutissement d’une session partenaire et l’authenticité et la confi-

dentialité de la clef de session. Autrement dit, pour une session entre Â et B̂, pour
Â, seul importe le fait que la sesssion en B̂ aboutisse, et la garantie qu’aucune entité
en dehors de Â et B̂ ne peut calculer la clef de session. Nous ne discuterons pas de
l’importance ou non de la confirmation de clef en terme de sécurité. On peut juste re-
marquer que d’un point de vue fonctionnel, il peut être important ; en example, avant
le chiffrement d’un gros volume de données, il peut être souhaitable de s’assurer que
le destinataire peut effectivement réussir le déchiffrement, et s’éviter ainsi un effort de
chiffrement inutile.

La démarche de construction et d’évaluation des protocoles cryptographiques a
souvent similaire à celle que nous venons d’éffectuer avec le Protocole 1.1 ; les protocoles
sont construits sur la base de l’intuition, et analysés de façon informelle. Un schéma
étant considéré comme adéquat, s’il résiste à la cryptanalyse au bout d’un certain
nombre d’années. Cette approche a conduit à un nombre conséquent de protocoles,
dont une vaste majorité de designs qui se sont révélés insuffisants en terme de sécurité.

Il est à noter (à juste titre) que l’hypothèse de l’adversaire passif, faite ci–dessus,
ne saurait correspondre à la réalité de la majorité des environnement d’implantation.
De plus, le propre d’un attaquant étant de mettre un système dans un état autre que
ceux initialement prévus par le designer, notre hypothèse sur l’environnement, tout
comme nos arguments informels sur la sécurité du Protocole 1.1 ne sauraient suffire,
notamment eu égard aux conséquences potentielles d’une défaillance du protocole en
environnement de déploiement. Il est aussi à observer que toute divulgation d’un expo-
sant privé éphémère d’une session ayant abouti en Â donne à l’attaquant la possibilité
de se faire passer indéfiniment pour Â auprès de n’importe quelle autre entité. L’ob-
jectif qu’un attaquant ne devrait pas pouvoir se faire passer pour une entité à moins
d’avoir connaissance de la clef privée statique de celle–ci n’est pas satisfait.

Un nouvelle approche dans la l’analyse des protocoles cryptographiques a été in-
troduite par Bellare et Rogaway [BEL93a]. Cette nouvelle méthode adapte la dé-
marche d’analyse des algorithmes cryptographiques de Goldwasser et Micali [GOL84],
à l’analyse des protocoles d’échange de clef. La démarche, dite de « sécurité prouvée »,
consiste : (1) à définir avec précision les objectifs de sécurité du protocole à construire,

5

1.2. Contributions

(2) à construire un protocole « candidat », et (3) à lier la sécurité du protocole ainsi
défini à celui d’un problème admis difficile. Pour cela, il est souvent montré qu’un
adversaire qui réussit à violer la sécurité du protocole, peut être utilisé pour résoudre
de façon efficace le problème admis difficile.

La terminologie utilisée est cependant quelque peu controversée ; en effet, pour
certains auteurs, [KOB07a, KOB07b] notamment, le terme « sécurité prouvée » prête
à confusion, d’autant plus que des limites sont connues sur certaines définitions et
réductions de sécurité, et peut être avantageusement remplacé par « sécurité par ré-
duction ».

La sécurité d’un protocole n’est pas simplement à considérer au regard des hypo-
thèses qui conduisent à la réduction, mais aussi au regard de la qualité du modèle dans
lequel les arguments de sécurité sont établis. L’adéquation du modèle à la réalité des
environnements d’implantation et de déploiement est aussi à importante.

Depuis les travaux initiateurs de Bellare–Rogaway [BEL93a], les modèles de sé-
curité pour l’analyse des protocoles n’ont cessé d’évoluer ; la finesse des définitions
est souvent améliorée. Bien que les objectifs pratiques de sécurité soient pour l’es-
sentiel les mêmes, les définitions de sécurité proposées ne sont pas toujours formelle-
ment comparables. Parmi les modèles proposés jusque là, les modèles dits de Canetti–
Krawzyk [CAN01] et Canetti–Krawzyk étendu [LAMA07] sont considérés comme étant
les plus évolués. Pour autant, un regard attentif sur certains protocoles montrés sûrs
dans ces modèles suggère une inadéquation entre l’analyse formelle et la réalité à la-
quelle est souvent confronté l’implanteur d’un protocole. Cette thèse, traite à la fois
de l’analyse des définitions de sécurité, de Canetti–Krawzyk et de Canetti–Krawzyk
étendu notamment, de l’analyse et de la construction des protocoles d’échange de clef
authentifiés.

1.2 Contributions

Nous montrons que les définitions de sécurité de Canetti–Krawzyk [CAN01] et Canetti–
Krawzyk étendu [LAMA07] présentent des subtilités qui font que certaines attaques,
qui peuvent être menées en pratique, ne sont pas considérées dans les analyses de
sécurité. Nous illustrons ces limites avec attaques sur des protocoles montrés sûrs dans
ces modèles de sécurité.

Nous proposons une forte définition de sécurité, qui englobe le modèle eCK, et
prend en compte des aspects pratiques liés à l’implantation des protocoles. Nous pro-
posons une analyse complémentaire des schémas de signature XCR (“Exponential
Challenge Response”) et DCR (“dual exponential Challenge Response”), qui sont les
briques du protocole HMQV. Nous introduisons de nouveaux points, dits i–points,
qui peuvent être utilisés lorsque leur décomposition est connue pour une attaque par
impersonation contre les protocoles (C, H)MQV(–C). Nous explorons la recherche de
ces points et de leur décomposition, et montrons qu’elle peut s’effectuer environs deux
fois plus vite que la résolution du problème du logarithme discret. Nous expérimentons
la recherche de i–points décomposés sur des courbes de taille réduite, l’expérimenta-

6

1.3. Plan du manuscrit

tion confirme les avantages de notre approche. Sur la base de cette analyse, nous
montrons la vulnérabilités des protocoles (C, H)MQV(–C) [UST08, LAW03, KRA05b]
aux fuites d’informations spécifiques à une session. Nous montrons notamment que
lorsqu’un attaquant accède à certaines informations de session, qui ne conduisent pas
à une divulgation de la clef statique du détenteur de la session, il peut réussir une
attaque par usurpation d’identité.

Nous proposons les schémas de signature FXCR (“Full XCR”) et FDCR (“Full
DCR”) à partir desquels nous construisons les protocoles FHMQV (“Fully Hashed
MQV”) et SMQV (“Strengthened MQV”) qui préservent la performance remarquable
des protocole (H)MQV, en plus d’une meilleure résistance aux fuites d’informations.
Les protocoles FHMQV et SMQV sont particulièrement adaptés aux environnements
dans lesquels une machine non digne de confiance est combinée avec un module matériel
à faible capacité de calcul et résistant aux violations physiques de sécurité. Dans un
tel environnement, les opérations effectuées sur le module matériel hors temps mort se
réduisent à des opérations peu coûteuses. Nous montrons que les protocoles FHMQV
et SMQV satisfont notre définition de sécurité sous les hypothèses de l’oracle aléatoire
et du problème échelon de Diffie–Hellman.

Le travail présenté dans ce manuscrit a bénéfiée d’un financement Cifre. Il est aussi
le fruit de la la collaboration entre la société Netheos et des laboratoires I3M, Institut
fourier, LIRMM, à travers notamment les professeurs Jean–Claude Bajard et Philippe
Elbaz–Vincent.

1.3 Plan du manuscrit

Le chapitre 2 donne un aperçu globale des courbes elliptiques et de leur utilisation
en cryptographie. Nous rappelons brièvement les courbes elliptiques, l’arithmétique
afférente dans le cas des corps finis, ainsi que quelques schémas (qui peuvent être)
basés sur les courbes elliptiques.

Dans le chapitre 3 nous rappelons les modèles de Bellare–Rogaway, de Canetti–
Krawzyk (CK) [CAN01] et le modèle dit de Canetti–Krawzyk étendu (eCK). Nous
illustrons les limites de ces modèles et proposons le modèle seCK (strengthened eCK).
La relation du modèle seCK au modèles (e)CK [LAMA07] est explorée également. Afin
d’illustrer le fait que le modèle seCK n’est pas très restrictif, nous proposons les sché-
mas d’identification FXCR–1 et FDCR–1, avec lesquels nous construisons le protocole
SMQV qui satisfait la seCK sécurité sous les hypothèse du problème calculatoire de
Diffie–Hellman et de l’oracle aléatoire.

Dans le chapitre 4, nous introduisons les i–points et explorons la relation de ces
points aux attaques par impersonation. Nous discutons des facilités de parallélisation
liées à la recherche de ces points, et montrons cette recherche, peut être combinée
à l’algorithme rho de Pollard. Nous montrons certaines limites des protocoles (C,
H)MQV(–C), et proposons le protocole FHMQV, que nous montrons sûr dans le mo-
dèle seCK.

7

1.3. Plan du manuscrit

Le chapitre 5 présente le standard PKCS #11 ; nous discutons les limites du stan-
dard, et des restrictions qui peuvent être nécessaires pour une implantation sécurisée.
Nous proposons une discussion succincte sur certains aspects des implantations que
nous avons eu à effectuer. La discussion relative aux implantations, qui sont aujour-
d’hui utilisées dans des produits commerciaux, est volontairement limitée.

Enfin, dans le chapitre 6, nous suggérons des pistes à explorer pour des travaux
futures.

8

Introduction

Key exchange protocols are fundamental elements in network communications secu-
rity. A key exchange protocol is said to be authenticated if each implicated entity is
assured that no other entity, but those identified can compute the shared key. Broadly,
following their design elements, authenticated key exchange protocols can be divided
into two groups: those in which authentication is achieved via explicit signatures,
and those in which authentication is implicitly guaranteed by the ability of implicated
parties to compute the shared key. The later has attracted more interest because pro-
tocols with implicit authentication are generally more efficient than the others. Even
if the concept of a secure protocol may seem intuitive, a rigorous formalization of this
notion is notoriously far from being a simple task [BOY03, chap .2].

Moreover, security is meaningless, except in reference with a well defined security
model. A security model specifies, among other things, what constitutes a security
failure, and what adversarial behaviors are being protected against. The aim is that
a protocol shown secure in the model, confines to the minimum the effects of the
considered adversarial behaviors.

Besides the considered definition, security must be understood in regard to the
assumptions under which the arguments are given. Proving that a cryptographic pro-
tocol is secure is a subtle task; there are many technicalities and possible interactions
involved. For a secure protocol, it should be infeasible for an adversary, eavesdropping
or altering communications between parties, to make the protocol fail in any of its
security goals. In particular, for authenticated key exchange protocols, it should be
impossible for an attacker in control of communications between parties, to imperson-
ate a party, unless it knows the party’s static key. Designing a secure key exchange
protocol is also a difficult task. Most of the proposed protocols have only heuristic
arguments; and with the benefit of hindsight, many of the protocols previously claimed
provably–secure, turn out to be flawed, or designed with reference to a security model
which is not strong enough.

Since the pioneering complexity theoretic work of Bellare and Rogaway [BEL93a],
the foundations of the definitions of a secure key exchange seem well established.
Based on [BEL93a], different security definitions [BEL95, BLA97a, SHO99, CAN01,
KRA05, LAMA07] were proposed. Even if the definitions are not always formally
comparable [CRE09b, CRE09a, CHO05] they use the same fundamental approach. A
protocol is secure if an adversary controlling communications between parties, cannot
distinguish a session key from a random value chosen under the distribution of session
keys, unless it makes queries which overtly reveal the session key. Among the models
used in the analysis of authenticated key agreement protocols, the Canetti–Krawczyk

9

1.3. Plan du manuscrit

(CK) [CAN01] and extended Canetti–Krawczyk (eCK) models [LAMA07] are consid-
ered as “advanced” security definitions to capture security for key agreement protocols.
Security arguments for recent protocols are usually provided in these models. Unfor-
tunately, even if the (e)CK models are considered as advanced security definitions,
there remains unconsidered practical attacks, which can make part of the protocols
shown secure in these models fail in their fundamental security goals in practice.

Furthermore, while current security definitions are used for protocols security argu-
ments, they are of no help in protocol design. There is no well established paradigm for
the design of authenticated key agreement protocols. Analyzing the building blocks
of already well–established efficient schemes, in order to identify the design choices
which make them more efficient than the others is also important.

In this dissertation, we consider the security definitions in regard to which much
of the recent protocols security arguments are provided. We point out some limita-
tions in the Canetti–Krawczyk and extended Canetti–Krawczyk models which make
some practical attacks unconsidered in security arguments. We also propose a new
security model which encompasses extended Canetti–Krawczyk model, and captures
the intuition of a secure protocol implementation. We also propose two efficient pro-
tocols, which provably meet our security definition, under the Random Oracle model
and the Gap Diffie–Hellman Assumption. The protocols we present are particularly
suited for distributed implementation environment wherein a computationally limited
tamper resistant device is used, together with an untrusted host machine. In such
environments, for our protocols, the non–idle time computational effort of the device
safely reduces to few non–costly operations.

This dissertation is organized as follows. In chapter 2, we present an overview of
elliptic curves based cryptography, and related industrial problematics. Even if our
results are presented in a generic group, this dissertation is mainly written with elliptic
curve groups in mind (and even jacobian of hyperelliptic curves).

In chapter 3, we outline the original Bellare–Rogaway (BR) model, and present
the (e)CK models. We also highlight the importance of finely understanding the
limitations of the (e)CK models, when using them in security reductions. We show
how the CK matching sessions definition makes some practical impersonation attacks
unconsidered in security arguments. We also show how the use of the NAXOS trans-
formation [LAMA07] leads to protocols which are formally eCK, but also practically
insecure. We propose a strong security definition which encompasses the eCK model,
and provides stronger reveal queries to the adversary. We also propose a new authen-
ticated key agreement protocol called Strengthened MQV (SMQV), which meets our
security definition under the gap Diffie–Hellman assumption and the Random Oracle
model.

In chapter 4, we illustrate the two main approaches for achieving authentication
in Diffie–Hellman protocols. We do so using a enhanced variant of the UM protocol
from [NIS07], and variants of the Station–to–Station protocol. After that, we restrict
our attention on the design elements of the famous MQV and HMQV protocols, which
are probably the most efficient of all authenticated Diffie–Hellman protocols. We pro-

10

1.3. Plan du manuscrit

pose a complementary analysis of the Exponential Challenge Response (XCR) and
Dual Exponential Challenge Response (DCR) signature schemes. On the basis of this
analysis we show how impersonation and man in the middle attacks can be performed
against the (C, H)MQV protocols when some session specific information leakages
occur. We propose the Full Exponential Challenge Response (FXRC) and Full Dual
Exponential Challenge Response (FDCR) signature schemes. Using these schemes we
define the Fully Hashed MQV (FHMQV) protocol, which resists the attacks we present
and preserves the remarkable performance of the (H)MQV protocols.

In chapter 5, we propose an analysis of the Public Key Cryptography Standards
(PKCS) #11 standard specification and its implementations. We discuss sensitive
keys export, key space reduction, key wrapping based fault attacks, and more gener-
ally the security consequences of allowing conflicting security attributes in PKCS #11
objects. Finally, we present few of the technicalities related to our implementations
of PKCS #11, concerning the Everbee SMK (“Smart Mobile Key”) and the Recon-
figurable Cryptographic Platform (RCP). The discussion in this chapter is voluntarily
limited, because of the commercial nature of the involved products and implementa-
tions.

11

Chapter 2

Elliptic Curve Cryptography
and Related Industrial Problematics

Contents

2.1 Introduction . 12

2.2 Overview of Elliptic Curves . 13

2.3 Coordinate Systems and the Group Law 17

2.3.1 Coordinate Systems for Elliptic Curves over Prime Fields . 18

2.3.2 Coordinate Systems for Elliptic Curves over Binary Fields . 20

2.4 Scalar Multiplication . 23

2.4.1 The Double–and–Add Method 23

2.4.2 Non–Adjacent Forms . 24

2.4.3 Montgomery Scalar Multiplications 26

2.5 The Elliptic Curve Discrete Logarithm (and related) Problem(s) . . 28

2.5.1 Attacks on the ECDLP . 29

2.6 Basic Elliptic Curves Based Schemes 33

2.6.1 The Elliptic Curve Integrated Encryption Scheme 34

2.6.2 The Elliptic Curve Digital Signature Algorithm 35

2.6.3 The Password Authenticated Connection Establishment . . 36

2.7 Advantages of Elliptic Curves based Cryptography 38

2.8 Elliptic Curve Cryptography Standards Activities 39

2.9 Patents in Elliptic Curve Cryptography 41

2.10 Examples of elliptic curves cryptography deployment 43

2.1 Introduction

Computer security and more generally network security involves many security facets,
physical security (tamper protection mechanisms), logical security, environmental se-
curity, etc. In practice, many security mechanisms are conjointly used to fulfill prac-
tical needs in a given context.

Historically cryptography has been used for confidentiality, a message sender en-
crypts the message, and transmits the encrypted text. The receiver decrypts the
encrypted message to get the content. Naturally, it is necessary that the message
sender and receiver previously agree on an encryption and decryption process, and
a particular key. Such cryptographic schemes are termed symmetric cryptography.
Symmetric cryptography comes with the natural concern of secure key sharing. As
computing systems are today highly interconnected, there is also a need for remote
systems to identify one another with a high degree of confidence; this need is often
coupled with that of key sharing.

12

2.2. Overview of Elliptic Curves

Another encryption approach was proposed in seventies [DIF76]; in this approach
different keys are used for encryption and decryption. The encryption key, termed
public key, is publicly available, while the decryption key (private key) is kept secret
by the owner. As the two keys are related in some publicly known way, a knowledge
of the public key allows in theory to compute the private part. However, for well
defined schemes, it is computationally infeasible to compute the private part from the
public one. Such schemes (and related techniques) are termed public key cryptography.

Public key schemes only are not sufficient for security; a public key must be bind to
its owner’s identity. In practice this binding is commonly performed using a public

key infrastructure. The principle of a public key infrastructure consists in making a
third party, trusted by other parties, provide this binding through signatures. The
signed data for party, which includes the party’s identity and public key is termed
certificate. A main benefit of public key encryption is that any party which knows
the public key of the receiver can securely send to it a message, while in symmetric
key cryptography, only a set of parties sharing a secret key can securely communicate.
However, public key schemes seem to be slower than the symmetric ones. In practice,
symmetric schemes are often used to encrypt a large amount of data, while public key
schemes are used for key distribution and establishment. Also for public, public key
infrastructures infrastructures are needed for public key distribution.

Cryptography has gone beyond its traditional use for protecting information trans-
mission. It fulfills many needs in modern information systems; using cryptography,
the following can be achieved [MEN96, chap. 1].
(a) Confidentiality, which is keeping information secret from all parties, but those

allowed to see it; secrecy and privacy are also used as synonyms of confidentiality.
(b) Authentication applies to both entities and information itself; it is the guarantee

that a claimed identity or a given information is authentic.
(c) Data integrity addresses the unauthorized alteration of data. To insure data in-

tegrity, tampering which includes data insertion, deletion, and substitution must
be detected.

(d) A signature binds the identity of an entity with some information, it provides non–

repudiation, i.e, the inability to deny the authenticity of the information. Only
information sender can generate a valid signature which binds its identity to the
information, while anyone can verify the validity of a given signature.

In this chapter, we provide an overview of the use of elliptic curves in cryptography.
We provide a brief introduction to elliptic curves, and (related) discrete logarithm
problem(s); few elliptic curve based schemes are discussed to illustrate the use of
elliptic curves. Finally we provide an overview of standards related to elliptic curve
cryptography, and rapidly discuss some patent related issues.

2.2 Overview of Elliptic Curves

The use of elliptic curves in cryptography was independently proposed by Koblitz
[KOB87] and Miller [MIL86]. Since then, many research deals with the design and
analysis of elliptic curve based schemes; applications of elliptic curves include also,

13

2.2. Overview of Elliptic Curves

among others, integer factorization and primality proving [LEN87, GOL84].
The number–theoretic problems upon which are based the most commonly used

public–key schemes are: (1) the integer factorization problem, upon which are based
the well–known RSA encryption and signature schemes; (2) the multiplicative discrete
logarithm problem over finite fields, used for the design of the Elgamal and DSA
signature schemes [MEN96, chap. 11]; and (3) the elliptic curve discrete logarithm
problem, which hardness is crucial for the elliptic curve based schemes.

The topic of elliptic curves involves a large amount of mathematics; our aim in this
section is to summarize the basic theory for cryptographic needs. We briefly recall the
elliptic curves, and their group law. For additional readings, a concise treatment can
be found in [HAN03], more detailed treatments can be found in [SIL86, SIL92, WAS08,
COH05b, BLA00].

Let K be a field, the two–dimensional projective space P
2(K) is the equivalence

classes of the triples (x, y, z), with x, y, z ∈ K and not all null; (x, y, z) and (x′, y′, z′)
are said to be equivalent if there is some λ ∈ K such that (x, y, z) = (λx′, λy′, λz′),
their equivalence class is denoted (x : y : z). If (x : y : z) ∈ P

2(K) with z 6= 0,
then (x : y : z) = (x/z : y/z : 1); these points are said to be “finite.” The points
(x : y : 0) are termed points at infinity in P

2(K). Let A
2(K) =

{

(x, y) ∈ K × K
}

be
the two–dimensional affine plane over K, we have an inclusion A

2(K) →֒ P
2(K) given

by (x, y) 7−→ (x : y : 1).
A multivariate polynomial P (x1, · · · , xk) is said to be homogeneous of degree d,

if for all (x1, · · · , xn), P (λx1, · · · , λxk) = λdP (x1, · · · , xk). Hence, if F (x, y, z) is
homogeneous, (x : y : z) and (x′ : y′ : z′) in P

2(K) such that (x : y : z) = (x′ : y′ : z′)
and F (x, y, z) = 0, then F (x′, y′, z′) = 0. And, if f(x, y) is a polynomial of degree d, we
have the homogeneous polynomial F (x, y, z) = zdf(x/z, y/z); the zeros of F in P

2(K)
is the set of (x0 : y0 : 1) such that (x0, y0) is a zero of f(x, y) added with the zeros
at infinity. Conversely, if F (x, y, z) is an homogeneous polynomial of degree d, and
(x : y : z) ∈ P

2(K) with z 6= 0 then F (x, y, z) = zdf(x/z, y/z) and f(x, y) = F (x, y, 1).

Definition 1 (Elliptic Curve [HAN03, chap. 3]). Let K be a field and K̄ its algebraic
closure. An elliptic curve E is the set of zeros in P

2(K̄) of an homogeneous polynomial

F (x, y, z) = y2z + a1xyz + a3yz
2 − x3 − a2x

2z − a4xz
2 − a6z

3

where a1, a2, a3, a4, a6 ∈ K, and F being non–singular; namely, there is no (x0 : y0 :

z0) ∈ P
2(K̄), such that

∂F

∂x
(x0, y0, z0) =

∂F

∂y
(x0, y0, z0) =

∂F

∂z
(x0, y0, z0) = 0.

The affine variant of E is given by the polynomial

f(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6.

The quantity ∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6 6= 0, wherein b2 = a2

1 + 4a2, b4 =
2a4 + a1a3, b6 = a2

3 + 4a6, and b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4 is said to be
the discriminant.

14

2.2. Overview of Elliptic Curves

If L is any extension of K, the set of rational points of E over L is

E(L) =
{

(x : y : z) ∈ P
2(K) : y2z+ a1xyz+ a3yz

2 − x3 − a2x
2z− a4xz

2 − a6z
3 = 0

}

.

A projective rational point (x : y : z) with z 6= 0 corresponds to the affine point
(x/z, y/z). The projective point (0 : 1 : 0) is also rational point, somewhat abusively
termed ∞ in both the projective and affine representations. When rational points are
represented in affine coordinates, E(L) is equivalent to

{

(x, y) ∈ K ×K : y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6 = 0

}

∪ {∞}

wherein ∞ corresponds to the projective point (0 : 1 : 0).
The quantities b2, b4, b6, and b8 are only used to shorten the definition of ∆; the con-
dition ∆ 6= 0 ensures that the curve E has no singularity.

Simplified equations. Two elliptic curves over a field K, given by

E1 : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

and
E1 : y2 + a′

1xy + a′
3y = x3 + a′

2x
2 + a′

4x+ a′
6

are said to be isomorphic over K if there are some u 6= 0, r, s, t ∈ K, such that
(x, y) 7−→ (u2x + r, u3y + u2sx + t) transforms E1 into E2. Such a transformation is
said to be an admissible change of variables.

Let E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 be an elliptic curve over K, and

char(K) the characteristic of K.

(1) If char(K) 6= 2, 3, the admissible change of variables (x, y) 7−→
(x− 3a2

1 − 12a2

36
,

y − 3a1x

216
− a3

1 + 4a1a2 − 12a3

24

)

leads to an isomorphic curve E′ : y2 = x3 +ax+b,

with a, b ∈ K, and with discriminant ∆E′ = −16(4a3 + 27b2).

(2) If char(K) = 2, and a1 6= 0, then (x, y) 7−→
(

a2
1x +

a3

a1
, a3

1y +
a2

1a4 + a2
3

a3
1

)

yields

the isomorphic curve E′ : y2 + xy = x3 + ax2 + b, with a, b ∈ K; E′ is said to be
non–supersingular, its discriminant is ∆E′ = −b.
If a1 = 0, the admissible change of variables (x, y) 7−→ (x+ a2, y) yields the curve
E′ : y2 + cy = x3 + ax + b, where a, b, c ∈ K; E′ is supersingular, and has
discriminant ∆ = c4.

(3) If char(K) = 3, and a2
1 6= −a2, (x, y) 7−→

(

x+
a4 − a1a3

a2
1 + a2

, y+a1x+
a1(a4 − a1a3)

a2
1 + a2

+

a3

)

leads to E′ : y2 = x3 + ax2 + b, with a, b ∈ K. E′ is non–supersingularand

its discriminant is ∆ = −a3b.
If a2

1 = −a2, then (x, y) 7−→ (x, y + a1x + a3) leads to the isomorphic curve
E′ : y2 = x3 + ax + b, with a, b ∈ K; E′ is supersingular and has discriminant
∆ = −a3.

15

2.2. Overview of Elliptic Curves

Elliptic curves in Weierstrass form can be simplified using admissible transformations;
in the continuation, we suppose curves represented in their simplified forms.

Group Law. Let E be an elliptic curve over a field K, P = (x1, y1) and Q = (x2, y2)
two finite K–rational points. The line joining P and Q is a rational line (i.e., a line
with coefficients in K), and it generally meets E in a third point R′. If so, as the
intersections of E and the rational line are given by the solutions of a cubic equation
with rational coefficients, and P and Q are rational, R′ is rational also. The sum of P
and Q is defined to be the reflexion of R′ on the x–axis, R in Figure 2.1. To double a
point P , one first draw the tangent line to the elliptic curve at P , this line intersects
the curve at a second point R′; the double R is the reflection of R′ across the x–axis.

The set of rational points of an elliptic curve over a field K can be endowed with
an abelian group structure; even if any of the rational points can be used as the
identity element, the point at infinity ∞ is commonly used for this. The group law is
described hereunder in affine coordinates for simplified equations over finite fields of
characteristic different from 2 and 3, and also for curves over binary fields.

Figure 2.1: Chord-and-tangent rule

If E is an elliptic curve defined over a field K of characteristic char(K) 6= 2, 3, and
given by E : y2 = x3 + ax+ b, with a, b ∈ K, the group law is as follows.

• For all P = (x1, y1) ∈ E(K), P + ∞ = ∞ + P = P ; the opposite of P is
−P = (x1,−y1).

• If Q = (x2, y2) ∈ E(K) and Q 6= ±P , the sum of P and Q is P + Q = (x3, y3)

where x3 =
(y1 − y2

x1 − x2

)2
− x1 − x2 and y3 =

(y1 − y2

x1 − x2

)

(x1 − x3) − y1.

• The double of P is given by 2P = (x′
3, y

′
3) where x′

3 =
(3x2

1 + a

2y1

)2
− 2x1, and

y′
3 =

(3x2
1 + a

2y1

)

(x1 − x3) − y1.

If E is a non–supersingular curve over a field GF (2m), given by E : y2 + xy =
x3 + ax2 + b, a, b ∈ K

16

2.2. Overview of Elliptic Curves

• For all P = (x1, y1) ∈ E(K), P + ∞ = ∞ + P = P ; the opposite of P is
−P = (x1, x1 + y1).

• If Q = (x2, y2) ∈ E(K) and Q 6= ±P , P + Q = (x3, y3), where x3 = λ2 + λ +

x1 + x2 + a and y3 = λ(x1 + x3) + x3 + y1, wherein λ =
y1 + y2

x1 + x2
.

• The double of P 6= −P is 2P = (x′
3, y

′
3) where x′

3 = λ2 + λ + a and y′
3 =

x2
1 + λx3 + x3, wherein λ =

y1

x1
+ x1.

If E is a supersingular curve over GF (2m), given by E : y2 + cy = x3 + ax2 + b, with
a, b, c ∈ K

• For all P = (x1, y1) ∈ E(K), P + ∞ = ∞ + P = P , and −P = (x1, y1 + c).
• If Q = (x2, y2) ∈ E(K) and Q 6= ±P , the sum of P and Q is P + Q = (x3, y3),

wherein x3 =
(y1 + y2

x1 + x2

)2
+ x1 + x2 and y3 =

(y1 + y2

x1 + x2

)

(x1 + x2) + y1 + c.

• If P = (x1, y1) ∈ E(K), with P 6= −P , 2P = (x3, y3) where x3 =
(x2

1 + a

c

)2
and

y3 =
(x2

1 + a

c

)

(x1 + x3) + y1 + c.

Group Order. If E is an elliptic curve defined over a field K, the number of points
in E(K) is denoted #E(K). If K is a finite field GF (q), as for any x ∈ K there are
at most two y ∈ K such that (x, y) ∈ E(K) (and ∞ ∈ E(K)), #E(K) ∈ [1, 2q + 1].
A tighter bound is given by Hasse’s theorem (see [WAS08, chap. 4]).

Theorem 1 (Hasse). If E is an elliptic curve over GF (q), then ‖q+1−#E
(

GF (q)
)

‖ 6
2
√
q, or equivalently #E

(

GF (q)
)

= q + 1 − t, for some t, with ‖t‖ 6 2
√
q; t is said to

be the trace of E over GF (q).

Hasse’s theorem provides a bound for #E
(

GF (q)
)

, but does not provide a method
to compute this quantity. Shoof [SCH85] proposes an algorithm which computes
#E

(

GF (q)
)

in O
(

(log q)6
)

time complexity. Schoof’s algorithm was improved by
Elkies and Atkin, the improved variant is now termed as the SEA (Schoof–Elkies–
Atkin) algorithm [SCH95]. Satoh [SAT00] proposed an alternative algorithm which is
often faster than SEA when q = pe for a small prime p > 3; subsequent works, among
which [FOU00, SKJ03], deal with the usual cryptographic case of p = 2.

If E is an elliptic curve defined over a field GF (q) of characteristic p, its order
#E

(

GF (q)
)

can be used to define supersingularity. Indeed, E is supersingular if
p divides its trace t. An elliptic curve E defined over GF (q), is also defined over
any extension GF (qn) of GF (q). The group of the GF (qn)–rational points contains
E
(

GF (q)
)

, and if #E
(

GF (q)
)

is known, the order of E
(

GF (qn)
)

can be efficiently
computed using the following.

Theorem 2. Let E be an elliptic curve defined over GF (q) with order #E
(

GF (q)
)

=
q + 1 − t. For all n > 2, the order of E over GF (qn) is #E

(

GF (qn)
)

= qn + 1 − Vn,

where {Vn,n∈N} is defined by V0 = 2, V1 = t, and Vn = V1Vn−1 − qVn−2 for n > 2.

17

2.3. Coordinate Systems and the Group Law

2.3 Coordinate Systems and the Group Law

The affine addition formulas require an inversion, which is much slower than a multipli-
cation (see, for instance, [HAN03, table 5.3, p. 220] for efficiency comparisons between
inversion and multiplication implementations). In many uses of cryptographic schemes
on modern (efficient) computers, this difference is not prohibitive. However, for servers
with a large amount of computations, the distinction between different addition formu-
las efficiency becomes relevant. In this section, we discuss some alternative coordinate
systems and addition formulas for non–supersingular elliptic curves over the prime
and binary fields (see [HAN03, chap. 3] and [COH05b, chap. 13, 24] for a broader
treatment).

2.3.1 Coordinate Systems for Elliptic Curves over Prime Fields

We suppose elliptic curves represented in their simplified Weierstrass forms. Let E be
an elliptic curve given by E : y2 = x3 + ax+ b. Recall that if Q1 = (x1, y1) and Q2 =
(x2, y2) are two rational points, with Q1 6= ±Q2, their sum is Q3 = Q1 +Q2 = (x3, y3)
where is x3 and y3 are as follows,

x3 = λ2 − x1 − x2, (2.1)

y3 = λ(x1 − x3) − y1, (2.2)

wherein λ =
y2 − y1

x2 − x1
.

And, the double of Q1 = (x1, y1) is 2Q1 = (x3, y3) where x3 and y3 are given by

x3 = λ2 − 2x1, (2.3)

y3 = λ(x1 − x3) − y1, (2.4)

where λ =
3x2

1 + a

2y1
.

For affine coordinates, the addition and doubling costs are respectively I + 2M + S and
I + 2M+ 2S, where I, M, and S stand respectively for inversion, field multiplication,
and squaring (the field additions are neglected).

Projective Coordinates. The standard projective representation of the curve E is
given by E : y2z = x3 + axz2 + bz3. As rational points are represented as elements
(x : y : z) of the projective space P

2(K), it is possible to “clear” the denominators in
the affine formulas. If Q1 = (x1 : y1 : z1) and Q2 = (x2 : y2 : z2) are two rational
points, with Q1 6= ±Q2, their sum is Q3 = (x3 : y3 : z3), where

x3 = uw, (2.5)

y3 = u(v2x1z2 − w) − v3y1z2, (2.6)

z3 = v3z1z2, (2.7)

wherein u = y2z1 − y1z2, v = x2z1 − x1z2, and w = u2z1z2 − v3 − 2v2x1z2.

18

2.3. Coordinate Systems and the Group Law

The double of Q1 is Q3 = 2Q1 = (x3 : y3 : z3), where

x3 = 2uw, (2.8)

y3 = t(4v − w) − 8y2
1u

2, (2.9)

z3 = 8u3, (2.10)

wherein t = az2
1 + 3x2

1, u = y1z1, v = ux1y1, and w = t2 − 8v.

Using projective coordinates, addition and doubling operations require respectively
12M + 2S and 7M + 5S.

Jacobian Coordinates. A modification of the projective coordinates leads to a
faster doubling operation. Let (x : y : z) represent the affine point (x/z2, y/z3).
Notice that for any positive integers c and d, we have an equivalence relation on the
set of non–zero triples over GF (p) by defining (x1, y1, z1) and (x2, y2, z2) equivalent if
x1 = λcx2, y1 = λdy2, and z1 = λz2 for some λ ∈ GF (p). And, if c = 2 and d = 3, the
projective point (x : y : z), with z 6= 0 corresponds to the affine point (x/z2, y/z3).
The equation of the curve is given by E : y2 = x3 + axz4 + bz6. The opposite of
(x : y : z) is (x : −y : z), and the point at infinity is (1 : 1 : 0). With this point
representation, if Q1 = (x1 : y1 : z1) and Q2 = (x2 : y2 : z2), with Q1 6= ±Q2, their
sum is Q3 = (x3 : y3 : z3) where

x3 = −v3 − 2rv2 + w2, (2.11)

y3 = −tv3 + (rv2 − x3)w, (2.12)

z3 = vz1z2, (2.13)

wherein r = x1z
2
2 , s = x2z

2
1 , t = y1z

3
2 , u = y2z

3
1 , v = s− r, and w = u− t.

And, the double of Q1, is given by Q3 = (x3 : y3 : z3) where

x3 = −2v + w2, (2.14)

y3 = −8y4
1 + (v − x3)w, (2.15)

z3 = 2y1z1, (2.16)

wherein v = 4x1y
2
1, and w = 3x2

1 + az4.

Using this point representation, addition and doubling now require respectively 12M + 4S
and 4M + 6S. Moreover, when a = −3, another enhancement is possible, as w =
3(x2

1 − z4
1) = 3(x1 + z2

1)(x1 − z2
1), it can be computed using one squaring and one

multiplication. The doubling operation takes 4M + 4S. The NIST curves over prime
fields are chosen with a = −3 for this reason [IEE00, IEE09].

Even if doubling is enhanced when using Jacobian coordinates, the general points
addition remains slower than for projective coordinates. The addition operation is
improved, when a point Q is represented as (x, y, z, z2, z3). This point representation is
termed Chudnovsky coordinates; the addition and doubling formulas are the same as for
Jacobian coordinates, however, the costs reduce respectively to 11M + 3S and 5M + 6S.

19

2.3. Coordinate Systems and the Group Law

Modified Jacobian coordinates. The modified Jacobian coordinates are mainly
the same as Jacobian coordinates, except that a point Q is represented as (x, y, z, az4)
and t = 8y2

1 (the notations are the same as for Jacobian coordinates), so y3 = s(r −
x3) − t and az4

3 = 2t(az4
1). The addition cost is then 13M + 6S, and a doubling

operation requires 4M + 4S.

Other Coordinate systems are possible, Edward coordinates [EDW07, BER08] or
Jacobi–quartic coordinates [BIL03, DUQ07] for instance, on certain curves. It is also
possible to perform additions or doubling operations between points with different
representations, and give the result in a third coordinate system; these operations are
termed mixed coordinates. Many combinations are possible, we only give in Tables 2.1
and 2.2 the operation counts for the most efficient ones; the characters in bold indicate
the coordinate systems; the notation C1+C2 C3 , from [HAN03, chap. 3], means
the addition of two points given in the C1 and C2 coordinate systems, with a result
given in the coordinate system C3.

Table 2.1: Operation counts for point addition and doubling. The A, P, J, M, and C stand
respectively for Affine coordinates, Standard Projective coordinates, Jacobian coordinates,

Modified Jacobian coordinates, and Chudnovsky coordinates.

General Addition Doubling

A I + 2M+ S A I + 2M+ 2S
P 12M + 2S P 7M + 5S
J 12M + 4S J 4M + 6S
C 11M + 3S C 5M + 6S
M 13M + 6S M 4M + 4S

Table 2.2: Operation counts for mixed point addition and doubling.

Mixed Addition Mixed Doubling

C + C J 10M + 2S 2M C 4M + 5S
C + J J 11M + 3S 2M J 3M + 4S
C + C M 11M + 4S 2A C 3M + 5S
J + C M 12M + 5S 2A M 3M + 4S
M + C M 12M + 5S 2A J 2M + 4S

J + A M 9M + 5S
M + A M 9M + 5S
C + A M 8M + 4S
C + A C 8M + 3S
J + A J 8M + 3S
M + A J 8M + 3S
A + A M 5M + 4S
A + A C 5M + 3S

20

2.3. Coordinate Systems and the Group Law

2.3.2 Coordinate Systems for Elliptic Curves over Binary Fields

We consider here, the non–supersingular curves E : y2 +xy = x3 +ax2 +b. We do not
consider here the arithmetic of supersingular curves; these curves come with efficiently
computable pairings, which even if constructive in pairing based cryptography (see,
for instance, [COH05b, chap. 24]), makes the ECDLP easier to solve than on non–
supersingular curves.

Recall that the opposite of a pointQ = (x, y) is −Q = (x, x+y), and ifQ1 = (x1, y1)
and Q2 = (x2, y2), with Q1 6= ±Q2, their sum is Q3 = (x3, y3) where

x3 = λ2 + λ+ x1 + x2 + a, (2.17)

y3 = λ(x1 + x3) + x3 + y1, (2.18)

wherein λ =
y1 + y2

x1 + x2
.

And, the double of Q1 = (x1, y1) is Q3 = (x3, y3) where

x3 = λ2 + λ+ a, (2.19)

y3 = λ(x1 + x3) + x3 + y1, (2.20)

wherein λ = x1 +
y1

x1
.

Affine addition and doubling operations have the same cost, namely I + 2M + S;
where I, M, and S still refer to inversion, multiplication and squaring.

Projective Coordinates. In projective coordinates, the curve is given by an equa-
tion E : y2z + xyz = x3 + ax2z + bz3; a point (x : y : z), with z 6= 0 represents the
affine point (x/z, y/z), and the point at infinity is ∞ = (0 : 1 : 0). If Q1, Q2 are two
points given by Q1 = (x1 : y1 : z1) and Q2 = (x2 : y2 : z2), with Q1 6= ±Q2, their sum
is (x3 : y3 : z3) where

x3 = sv, (2.21)

y3 = tz2(rx1 + sy1) + v(r + s), (2.22)

z3 = s3u, (2.23)

wherein r = y1z2 + z1y2, s = x1z2 + z1x2, t = s2, u = z1z2, and v =
u(r2 + rs+ at) + st.

And, if Q1 = (x1 : y1 : z1), its double is (x3 : y3 : z3) wherein

x3 = tv, (2.24)

y3 = v(s+ t) + r2t, (2.25)

z3 = tu, (2.26)

where r = x2
1, s = r + y1z1, t = x1z1, u = t2, and v = s2 + st+ au.

21

2.3. Coordinate Systems and the Group Law

The addition and doubling costs are respectively 16M + 2S and 8M + 4S; and if one
of the points is given in affine coordinates, i.e., z1 or z2 equals 1, the point addition
cost reduces to 12M + 2S.

Jacobian Coordinates. The curve is given here by E : y2 +xyz = x3 +ax2z2 +bz6;
a point (x : y : z), with z 6= 0, corresponds to the affine point (x/z2, y/z3). The point
at infinity is (1 : 1 : 0), and the opposite of a point (x : y : z) is (x : xz + y : z).
If Q1 = (x1 : y1 : z1) and Q2 = (x2 : y2 : z2), are two rational points with Q1 6= ±Q2,
their sum Q1 +Q2 is given (x3 : y3 : z3), where

z3 = r′z2, (2.27)

x3 = az2
3 + wt′ + v3, (2.28)

y3 = t′x3 + r′2s′, (2.29)

wherein v = r + s, w = t+ u, r′ = vz1, s′ = wx2 + r′y2, z3 = r′z2, and t′ =
w + z3, with r = x1z

2
2 , s = x2z

2
1 , t = y1z

3
2 , and u = y2z

3
1 .

The double of Q1 = (x1 : y1 : z1), is given by Q3 = (x1 : y1 : z1), where

x3 = s+ bt4, (2.30)

z3 = x1t, (2.31)

y3 = sz3 + x3(r + y1z1 + z3), (2.32)

with r = x2
1, s = r2, and t = z2

1 .

The addition cost is 16M + 3S, a doubling operation needs 5M + 5S. If one of the
inputs is in affine coordinates, the addition cost reduces to 11M + 3S. Notice also that
if the coefficient a equals 0 or 1, one multiplication less is needed in the addition.

López–Dahab Coordinates. In this coordinate system the curve is given by an
equation E : y2 + xyz = x3z + ax2z2 + bz4. A point (x : y : z) with z 6= 0 represents
the affine point (x/z, y/z2); the point at infinity is (1 : 0 : 0), the opposite of (x : y : z)
is (x : xz + y : z).

If Q1 = (x1 : y1 : z1) and Q2 = (x2 : y2 : z2) are two points, with Q1 6= ±Q2, their
sum is given by (x3 : y3 : z3), where

x3 = r(s′ + u) + s(t+ r′), (2.33)

z3 = wz1z2, (2.34)

y3 = w(ru′ + wr′) + x3(u′ + z3), (2.35)

wherein r = x1z2, s = x2z1, t = r2, u = s2, v = r + s, w = t + u, r′ =
y1z

2
2 , s′ = y2z

2
1 , t′ = r′ + s′, and u′ = t′v.

22

2.4. Scalar Multiplication

The double of a point Q1 = (x1, y1, z1) is (x3, y3, z3) where

x3 = t2 + s, (2.36)

z3 = rt, (2.37)

y3 = x3(y2
1 + az3 + s) + z3s, (2.38)

wherein r = z2
1 , s = br2, and t = x2

1.

The addition cost in this coordinate system is 13M + 4S, a doubling operation requires
5M + 4S. When one of the points is given in affine coordinates, the addition cost
reduces to 9M + 5S. The formulas are the following.

x3 = r2 + t(r + s2 + at), (2.39)

z3 = t2, (2.40)

y3 = (u+ x3)(rt+ z3) + (y2 + x2)z2
3 , (2.41)

wherein r = y1 + y2z
2
1 , s = x1 + x2z1, t = sz1, and u = x2z3.

As for the odd characteristic case, mixed coordinates addition and doubling are
possible. Many combinations are possible, we only give in Table 2.3 the operation
costs for the most efficient ones; notice that even if the coefficient a of a curve may
be small, we count a multiplication by a (which may be computed using few additions
when a is small) as a full multiplication.

Table 2.3: Operation counts for addition and doubling. The A, P, J, and LD stand
respectively for Affine, Standard Projective, Jacobian, and López–Dahab.

Doubling Addition

P 8M + 4S P 16M + 2S
J 5M + 5S J 16M + 3S
LD 5M + 4S LD 13M + 4S
2A P 6M + 2S P + A P 12M + 2S
2A LD 3M + 3S J + A J 11M + 3S
2A M 2M+2S LD + A LD 9M + 5S
A I + 2M + S A + A LD 6M + 2S

A + A J 5M + S
A I + 2M + S

2.4 Scalar Multiplication

This section deals with methods for computing kP , where P is a rational point of order
n of an curve E defined over a finite field GF (q), and k is an integer in [1, n− 1]. We
suppose that #E

(

GF (q)
)

= nh, with h small, and k represented as a binary string
k = (kt−1, · · · , k0), where kt−1 6= 0 is the most significant bit; we mainly refer to
[COH05b, chap 13] in this section.

23

2.4. Scalar Multiplication

2.4.1 The Double–and–Add Method

This method is the additive variant of the classical Square–and–multiply exponentia-
tion algorithm; the computation of kP is performed using serial addition or doubling
operations depending on the binary representation of k. The Algorithms 2.1 and 2.2
compute kP starting either from the right or left of the binary representation of k.

Algorithm 2.1 Left–to–right binary Double–and–Add method

Input: P , k = (kt−1, · · · , k0).
Ouput: Q = kP .

(1) Set Q = ∞.
(2) For j from t− 1 downto 0 do

(a) Q = 2Q.
(b) If kj = 1 then Q = Q+ P .

(3) Return Q.

Algorithm 2.2 Right–to–left binary Double–and–Add method

Input: P , k = (kt−1, · · · , k0).
Ouput: Q = kP .

(1) Set Q = ∞.
(2) For j from 0 to t− 1 do

(a) If kj = 1 then Q = Q+ P .
(b) P = 2P .

(3) Return Q.

When k is chosen uniformly at random, the expected number of nonzero bits in its
representation is t/2 ≈ |q|/2, as the cofactors are chosen in practice to be small. The
Double–and–Add algorithm is expected to require |q|/2 point additions and |q| point
doubling operations.

2.4.2 Non–Adjacent Forms

If P is a rational point, its opposite can be obtained using few additions in the base
field. The cost of a point subtraction is the same as that of an addition. It is then
worthwhile to consider point multiplication with representations of k involving signed
digits.

A signed–digit representation of an integer k in base β consists of a string (kj , · · · , k0)
such that ‖ki‖ < β and k =

∑j
i=0 kiβ

i. The representation is said to be in non–adjacent
form if β = 2 and kiki+1 = 0, for i = 0, · · · , j − 1. We denote the NAF of an integer k
by NAF(k).

Proposition 1 ([REI60]). If k is a positive integer, then k has exactly one NAF form.

The main advantage of the NAF representation is that it has in general fewer non–zero
digits than the binary representation. The length of NAF(k) is at most one bit most
than that of the binary representation of k; and the average density among all NAFs of

24

2.4. Scalar Multiplication

a fixed length l is approximately l/3 [MOR90]. Moreover, the NAF of an integer k can
be computed by repeatedly dividing k by 2, with a remainder r in {−1, 0, 1} chosen
so that if k is odd (k − r)/2 is event, this ensures the next digit in the remainder to
be 0. The procedure is given in Algorithm 2.3 [ARN93][HAN03, chap. 3].

Algorithm 2.3 NAF computation

Input: A positive integer k.
Ouput: NAF(k).

(1) Set i = 0.
(2) While k > 1 do

(a) If k is odd then ki = 2 − (k mod 4), and k = k − ki.
(b) Else, ki = 0.
(c) k = k/2 and i = i+ 1.

(3) Return (ki−1, · · · , k0).

The Double–and–Add method can be modified to use the NAF form of the scalar k.
The procedure is given in Algorithm 2.4. Notice that as the length of NAF(k) is
expected to be |q|/3, the NAF Double–and–Add method is expected to require |q|/3
point additions and |q| doubling operations.

Algorithm 2.4 Binary NAF scalar multiplication

Input: P , k.
Ouput: Q = kP .

(1) Compute NAF(k) =
∑l−1

i=0 k12i.
(2) Set Q = ∞
(3) For j from l − 1 downto 0 do

(a) Q = 2Q.
(b) If kj = 1 then Q = Q+ P .
(c) If kj = −1 then Q = Q− P .

(4) Return Q.

A generalization of the NAF scalar multiplication to process a fixed number of digits
at a time is also possible [COH05a][HAN03, chap. 3]. If w is an integer greater than 1,
then every integer k has a unique representation k =

∑l−1
i=0 ki2i, wherein (1) each ki is

odd or null, (2) ‖ki‖ < 2w−1 for i = 0, · · · , l − 1, and (3) for any w consecutive ki, at
most one among them is non–zero. This expansion is termed width–w NAF, or NAFw

for short, and the NAFw expansion of an integer k is denoted (kl−1, · · · , k0)NAFw .
Avanzi [AVA05] shows that the NAFw expansion is that of smallest weight among all
the expansions with coefficients with absolute values smaller than 2w−1. The average
non–zero digits among all NAFws of length l is approximately l/(w+1). Algorithm 2.5
is a generalization of Algorithm 2.4, it computes NAFw(k) for k ∈ N

∗.
A generalization of the NAF Double–and–Add algorithm is given in Algorithm 2.6
[HAN03, chap. 3]; the expected running time for the precomputations (the step (2)) is

one doubling operation plus (2w−2 − 1) additions, the while–loop requires
|q|

w + 1
point

25

2.4. Scalar Multiplication

Algorithm 2.5 NAFw computation

Input: A positive integer k.
Ouput: NAFw(k).

(1) Set i = 0.
(2) While k > 1 do

(a) If k is odd then ki = 2 − (k mod 2w), and k = k − ki.
(b) Else, ki = 0.
(c) k = k/2, and i = i+ 1.

(3) Return (ki−1, · · · , k0).

additions and |q| ≈ l doubling operations.

Algorithm 2.6 Window NAF scalar multiplication

Input: A width w, k, and P .
Ouput: Q = kP .

(1) Compute NAFw(k) =
∑l−1

i=0 k12i.
(2) Compute Pi = iP for i ∈ {1, 3, 5, · · · , 2w−1 − 1}.
(3) Set Q = ∞.
(4) For j from l − 1 downto 0 do

(a) Q = 2Q.
(b) If kj 6= 0 then

• If kj > 0 then Q = Q+ Pkj .
• Else, Q = Q− Pkj .

(5) Return Q.

2.4.3 Montgomery Scalar Multiplications

The Montgomery approach introduces an efficient x–coordinate computation; it was
proposed for some curves over large characteristic fields [MON87], and later generalized
to smaller characteristic curves. An elliptic curve EM is in Montgomery form if it is
given by an equation

EM : by2 = x3 + ax2 + x.

The arithmetic of Montgomery curves has the following advantage. If P = (x1, y1) is
a rational point, with P = (X1 : Y1 : Z1) in projective coordinates, and kP = (Xk :
Yk : Zk), then for all m,n the X and Z–coordinates of (m+ n)P = mP + nP can be
computed as follows.
If m 6= n

Xm+n = Zm−n
(

(Xm − Zm)(Xn + Zn) + (Xm + Zm)(Xn − Zn)
)2
, (2.42)

Zm+n = Xm−n
(

(Xm − Zm)(Xn + Zn) − (Xm + Zm)(Xn − Zn)
)2
. (2.43)

26

2.4. Scalar Multiplication

Else,

4XnZn = (Xn + Zn)2 − (Xn − Zn)2, (2.44)

X2n = (Xn + Zn)2(Xn − Zn)2, (2.45)

Z2n = 4XnZn
(

(Xn − Zn)2 + ((a+ 2)/4)(4XnZn)
)

. (2.46)

When (m−n)P is known, and the y–coordinate is not needed, the addition mP +nP

requires 4M + 2S, while a doubling requires 3M + 2S. Notice that for many sys-
tems (see the ECIES scheme, for instance, in subsection 2.6.1) only the x–coordinates
are needed. The y–coordinate yn = Yn/Zn can be recovered using the following for-
mula [OKE01]

yn =
(x1xn + 1)(x1 + xn + 2a) − 2a− (x1 − xn)2xn+1

2by1
.

All Montgomery curves can be transformed into a short Weierstrass curve; however,
the converse is not true, as the order of any Montgomery curve is divisible by 4. It is
also worthwhile to mention that the elliptic curve cryptography standards (the NIST
[NIS03], for instance) recommend the use of curves with cofactors no greater than 4; the
curves proposed in standards, are not necessarily transformable into the Montgomery
form. Further discussions on the transformability of the Weierstrass curves into the
Montgomery form can be found in [OKE01, sect. 4].

A generalization of Montgomery’s idea to curves in simplified Weierstrass form was
proposed by Brier and Joye [BRI02]. If E is given by

E : y2 = x3 + ax+ b.

The addition formulas are the following (the notations are the same as for the Mont-
gomery form).
If m 6= n,

Xm+n = Zm−n
(

− 4bZmZn(XmZn +XnZm) + (XmXn − aZmZn)2), (2.47)

Zm+n = Xm−n(XmZn −XnZm)2. (2.48)

And

X2n = (X2
n − aZ2

n)2 − 8bXnZ
3
n, (2.49)

Z2n = 4Zn
(

Xn(X2
n + aZ2

n) + bZ3
n. (2.50)

When (m−n)P is known, the addition cost is 9M + 2S, a doubling operation requires
6M +3S; the formula to recover the y–coordinate is

yn =
2b+ (x1xn + a)(x1 + xn) − (x1 − xn)2xn+1

2y1
.

27

2.4. Scalar Multiplication

López and Dahab [LOP99] propose an extension of Montgomery’s idea to the binary
case. When E is an non–supersingular curve over a binary field, given by

E : y2 + xy = x3 + ax2 + b.

The sum (m + n)P (the notations remain the same as for Montgomery’s addition),
with with m 6= n, is given by

Zm+n = (XmZn)2 + (XnZm)2, (2.51)

Xm+n = Zm+nXm−n +XmZnXnZm. (2.52)

And

X2n = X4
n + bZ4

n =
(

X2
n +

√
bZ2

n

)2
, (2.53)

Z2n = X2
nZ

2
n. (2.54)

An addition requires 4M + 1S, the doubling cost is 2M + 3S if
√
b is precomputed,

2M + 4S otherwise.

With either of the above curve forms, multiplication can be performed as in Al-
gorithm 2.7. At each step of this algorithm, the difference P2 − P1 equals P , so the
Montgomery formulas, can be used for curves in both Montgomery and Weierstrass
forms. The computation of kP requires (6M + 4S)(|q|/2−1) for curves in Montgomery
form and simplified Weierstrass curves over binary fields, and (14M + 5S)(|q|/2 − 1)
for simplified Weierstrass curves over prime fields. Notice also that, as at each step
a doubling and an addition are performed, this multiplication is also interesting for
side–channel attacks [KOC96] resilience.

Algorithm 2.7 Montgomery point multiplication

Input: P , k = (kt−1, · · · , k0).
Ouput: Q = kP .

(1) Set P1 = P and P2 = 2P .
(2) For j from 0 to t− 1 do

(a) If kj = 0 then
P1 = 2P1 and P2 = P1 + P2.

(b) Else,
P1 = P1 + P2 and P2 = 2P2.

(3) Return P1.

Depending on the implementation context, other enhancements are possible on point
multiplication efficiency. If the point P is a fixed one for instance, precomputation
based windowing multiplications are possible [HAN03, chap. 3]. Using the additive
variant of Shamir’s multiple exponentiation technique [MEN96, Algorithm 14.88], the
cost of the computations of the form k1P+· · ·+kjP , can also be reduced to be roughly
equivalent to one point multiplication and half [HAN03, chap. 3].

28

2.5. The Elliptic Curve Discrete Logarithm (and related) Problem(s)

2.5 The Elliptic Curve Discrete Logarithm (and related) Problem(s)

Loosely speaking, modern cryptography deals with the construction of schemes which
are easy to operate but hard to foil. Indeed, almost all of modern cryptography rises or
falls with the question of whether or not one–way functions exist. One–way functions
are easy to evaluate but hard (on the average) to invert. The elliptic curve discrete
logarithm problem, is widely believed to be a one–way function.

Definition 2 (ECDLP). Let E be an elliptic curve over a finite field GF (q), and
P ∈ E

(

GF (q)
)

a point of order n. The elliptic curve discrete logarithm problem
(ECDLP) is: given Q ∈ 〈P 〉, P , and n, find l ∈ [1, n − 1] such that lP = Q. The
integer l is said to be the discrete logarithm of Q in base P , and is noted l = logP Q.

The hardness of the ECDLP is a prerequisite for the security all elliptic curve crypto-
graphic schemes. The best known general purpose method to solve the ECDLP is the
combination of the Pohlig–Hellman algorithm [HAN03, chap. 4] and Pollard’s rho al-
gorithm [HAN03, TES01a] (see also 2.5.1) which has a running time of O(

√
n1) where

n1 is n’s the largest prime factor. For (well chosen) elliptic curve parameters such
that n is divisible by a sufficiently large prime, to make O(

√
n1) operations infeasible

(|n1| > 163 is today sufficient), solving the ECDLP is believed to be infeasible.
For some cryptographic schemes the hardness of the following (EC)DLP related

problems is required.

Definition 3 (ECDHP). Let E be an elliptic curve over GF (q), and P ∈ E
(

GF (q)
)

,
Q1 = l1P,Q2 = l2P ∈ 〈P 〉. The computational Elliptic Curve Diffie–Hellman Problem
(ECDHP) is, given P,Q1, Q2, and n, find Q3 = l1l2P .

It is not difficult to see that any efficient ECDLP solver yields an efficient ECDHP
solver. The ECDHP is not harder than the ECDLP. However, it is not known whether
the converse is true (i.e., whether the ECDHP is as hard as the ECDLP). Given an
efficient ECDHP solver there is no know algorithm which efficiently solves the ECDLP,
unless in some specific cases. When ϕ(n) (where ϕ is the Euler totient function)
has no large prime factor, Den Boer [DEN88] shows that the ECDLP and ECDHP
problems are equivalent. Boneh and Shparlinski [BON01] show that for an elliptic
curve E defined over a prime field GF (p), and P ∈ E

(

GF (p)
)

of prime order, with
the ECDHP difficult in 〈P 〉, no efficient algorithm can predict the least significant bit
of the x–coordinate (or the y–coordinate) of the Diffie–Hellman secret point l1l2P for
most elliptic curves isomorphic to E. (This provides some “evidence” that computing
the least significant bit of the x–coordinate of of l1l2P from P , l1P , and l2P is as hard
as computing l1l2P .)

For many schemes, the hardness of the ECDHP is not known to be sufficient;
loosely speaking, it is required that given P , l1P , l2P , and n, no efficient algorithm
can learn any information about l1l2P . This is formalized through the Elliptic Curve
Decisional Diffie–Hellman Problem (ECDDHP).

Definition 4 (ECDDHP). Let E be an elliptic curve over a finite field GF (q), P ∈
E
(

GF (q)
)

a point of order n. The Elliptic Curve Decisional Diffie–Hellman Problem

29

2.5. The Elliptic Curve Discrete Logarithm (and related) Problem(s)

(ECDDHP) is: given P, l1P, l2P, n, and W = l3P , determine whether or not W
equals l1l2P .

Any efficient algorithm which solves the ECDHP yields an efficient ECDDHP
solver. The ECDDHP is not harder than the ECDHP; it is not known whether or
not the converse is true.

2.5.1 Attacks on the ECDLP

Even widely believed, there is no proof that the ECDLP is intractable. (Notice that
a proof of the non–existence of a polynomial–time algorithm for the ECDLP would
imply that the complexity class P is different from NP.)

The Pohlig–Hellman Attack. The Pohlig–Hellman approach [POH78] reduces
the computation of l = logP Q to computations of discrete logarithms in prime order
subgroups of 〈P 〉. Suppose the prime factorization of n known, n =

∏

pei
i ; the idea

is to find l mod pei
i for each i, and use the Chinese Remainder Theorem (CRT) to

obtain l mod n. Using this idea, the computation of l mod n reduces to computations
of l mod pe, with p prime. Suppose that l writes in base p as l = z0 + z1p+ z2p

2 + · · · ,
with 0 6 zi 6 p−1; l mod pe

i is computed by successively determining z0, z1, · · · , ze−1.
The computations are the following:
(1) Compute T =

{

j
n

p
P, for 0 6 j 6 p− 1

}

.

(2) Compute Q0 =
n

p
Q, this will equal an element z0

n

p
P of T , and stop if e = 1.

(3) Compute Q1 = Q − z0P and
n

p2
Q1, this will equal an element z1

n

p
P of T , and

stop if e = 2.
(4) More generally, if z0, · · · , zr−1 and Q1, · · · , Qr−1 are already computed, to com-

pute zr, one does the following:
• Compute Qr = Qr−1 − zr−1p

r−1P .
• Determine zr such that

n

pr+1
Qr = zr

n

p
P .

(5) Compute l mod pe = z0 + z1p+ z2p
2 + · · · + ze−1p

e−1.

As
n

p
P = P0, has order p, we have Q0 =

n

p
Q =

n

p
(z0 + z1p+ · · ·)P = z0

n

p
P ; hence

z0 = logP0
Q0. Next,

n

p2
Q1 =

n

p2
(l−z0)P =

n

p2
(z0 +z1p+z2p

2 + · · ·−z0)P = z1
n

p
P =

z1P0. Similarly the computations yield z2, z3, · · · , ze1 ; besides, it is not needed to
continue, as l mod pe is known. The ECDLP in 〈P 〉 is not harder that in its prime
order subgroups.

Shanks’ Baby Step Giant Step Attack. Shanks’ method [SHA71, TES01b] uses
a time–memory trade–off; it requires approximately

√
n operations and

√
n space

complexity. The approach, which is rather simple, is the following.
(1) Compute m = ⌈√

n⌉ and mP .
(2) Compute and store iP for 1 6 i 6 m.

30

2.5. The Elliptic Curve Discrete Logarithm (and related) Problem(s)

(3) Compute Rj = Q − j(mP) for 0 6 j < m, until Rj matches an element of the
stored list.

(4) Return l = i+ jm.
The method is general–purpose and deterministic; however it requires a large storage,
which makes the “equivalent” probabilistic methods often preferable.

Pollard’s rho Method. The leading idea in the rho method [POL78] is to find
two distinct couples (c1, d1), (c2, d2) such that c1P + d1Q = c2P + d2Q; and compute
l = logPQ = (d2 − d1)−1(c1 − c2) mod n. For this purpose, an iterating function
f : 〈P 〉 −→ 〈P 〉 that approximates a random function is used. Since 〈P 〉 is finite,
a sequence (Ri)i∈N with R0 ∈R 〈P 〉 and Ri,i>0 = f(Ri−1) will eventually collide.
Thus there exists some λ and µ, called respectively period and preperiod, such that
R0, · · · , Rλ+µ−1 are pairwise distinct and Rλ+µ = Rµ. If f is supposed to be random,
the expected values of the period and preperiod are λ ≈

√

πn/8 and µ ≈
√

πn/8.
A convenient way to build such iterating functions [POL78, TES01a] is to take a
(pseudo)random partition {P1, · · · ,PL} of 〈P 〉 (with subsets having roughly the same
size) and γj , δj ∈R [0, n − 1] for each Pj (L is the number of branches); then f can

be defined 〈P 〉 ∋ R
f7−→ R + γjP + δjQ if R ∈ Pj . Collision search is performed

using Floyd’s cycle finding algorithm [KNU81, Exercise 3.1–6] in which one starts
with (R1, R2) and compute (Ri, R2i)i>1 until Ri = R2i. The required storage for this
approach is thus negligible. The expected number of couples that have to be computed
until collision is about 1.0308

√
n; the method is given in Algorithm 2.8.

Algorithm 2.8 Pollard’s rho algorithm

Input: P , n , Q ∈ 〈P 〉.
Ouput: l = logP Q or “failure”.

(1) Choose a partition function g : 〈P 〉 −→ {1, · · · , L} (g(R) = j if R ∈ Pj).
(2) For j from 1 to L do

(a) choose γj , δj ∈R [0, n− 1];
(b) compute R(j) = γjP + δjQ.

(3) Choose c1, d1 ∈R [0, n− 1] and compute R1 = c1P + d1Q.
(4) Set R2 = R1, c2 = c1, and d2 = d1.
(5) Repeat

(a) j = g(R1), R1 = R1 +R(j), c1 = c1 + γj mod n, and d1 = d1 + δj mod n;
(b) For i from 1 to 2 do

j = g(R2), R2 = R2 +R(j), c2 = c2 + γj mod n, and d2 = d2 + δj mod n.
until R2 = R1.

(6) If d1 = d2 return “failure”.
(7) Return l = (c1 − c2)(d2 − d1)−1 mod n.

In a naive parallel implementation of the rho algorithm, with an instance running on
each processor until one succeeds, the expected computational effort of each processor

before one succeeds is 3
√

n

m
, when m processors are available [VAN99].

31

2.5. The Elliptic Curve Discrete Logarithm (and related) Problem(s)

Van Oorschot and Wiener [VAN99] propose a client–server parallelization approach
which, when m processors are available, yields a factor m speedup. In this approach,
each client processor randomly chooses its own starting point R0j , but the iterating
function is the same for all clients. An easily testable subset of 〈P 〉 is used as a
distinguished set; the set of distinguished points can be, for instance, the set of points
with the leading t bits of their x–coordinate being zero. When a client processor
finds a distinguished point, the point is transmitted to the server which stores it in a
sorted list. When the server receives the same distinguished point for the second time,
it computes the desired solution. For each client processor, the expected number of

iterations before a collision is

√

πn/2
m

. Let ϑ be the proportion if distinguished points,

the expected number of elliptic curve operations per client processor before a collision

is found is
1
m

√

πn

2
+

1
ϑ

. The overall messages received by the server is ϑ
√

2πn.

Algorithm 2.9 Parallelized Pollard’s rho algorithm

Input: P , n , Q ∈ 〈P 〉.
Ouput: l = logP Q or “failure”.

(1) Choose a partition function g : 〈P 〉 −→ {1, · · · , L} (g(R) = j if R ∈ Pj).
(2) Choose an easily computable distinguishing property for points ∈ 〈P 〉.
(3) For j from 1 to L do

(a) Choose γj , δj ∈R [0, n− 1].
(b) Compute R(j) = γjP + δjQ.

(4) Each of the client processors does the following:
(a) Choose c, d ∈R [0, n− 1] and compute R = cP + dQ.
(b) Repeat

(i) If R is distinguished point, send (c, d,R) to the server.
(ii) Compute j = g(R).
(iii) Compute R = R+R(j), c = c+ γj mod n, and d = d+ δj mod n.

until the server receives the same distinguished point twice
(5) Let (c1, d1, Rd) and (c2, d2, Rd) be the two triples associated with the distin-

guished point Rd received twice.
(6) If d1 = d2 return “failure”.
(7) Return l = (c1 − c2)(d2 − d1)−1 mod n.

Isomorphism Attacks. Suppose that the order n of 〈P 〉 is prime, and let G be a
group of order n. Both 〈P 〉 and G are cyclic of order n, hence isomorphic. If the
isomorphism is efficiently computable, the ECDLP in 〈P 〉 can be reduced to a DLP
in G.

If E defined over GF (p), is an anomalous curve (i.e., #E
(

GF (p)
)

= p) the group
of rational points E

(

GF (p)
)

isomorphic to the additive group of GF (p). As simulta-
neously shown in [SAT98, SEM98, SMA99] the isomorphism between E

(

GF (p)
)

and
the additive group of GF (p) can be efficiently computed. The ECDLP in prime–field
anomalous curves reduces to an additive DLP problem in the additive group of GF (p),

32

2.5. The Elliptic Curve Discrete Logarithm (and related) Problem(s)

which can be efficiently solved.
If in addition to being prime, the order n of E

(

GF (q)
)

satisfies gcd(n, q) = 1;
let k be the smallest integer satisfying qk = 1 mod n. As k, said to be the embedding

degree, is the order of q modulo n, it divides n − 1. And, as n divides qk − 1, the
multiplicative group GF (qk)× has a unique subgroup G of order n. The MOV pairing
attack [MEN93], builds an isomorphism between 〈P 〉 and G when n does not divide
q− 1, while the Frey–Rück attack [FRE94] builds an isomorphism between 〈P 〉 and G
without requiring this condition.

For non–supersingular elliptic curves over binary fields, Frey and Gangl [FRE98]
propose the idea of using the Weil descent [BLA00, chap. 8][COH05b, chap. 7, 22],
also termed scalar restriction, to reduce the ECDLP in E

(

GF (2m)
)

to a discrete
logarithm problem in the jacobian of a hyperelliptic curve of larger genus over a proper
subfield GF (2l) of GF (2m). Gaudry, Hess, and Smart (GHS) [GAU02] give an efficient
algorithm which reduces the ECDLP to the discrete logarithm problem in a Jacobian
of a hyperelliptic curve over a proper subfield GF (2l) of GF (2m). Since subexponential
running–time algorithms are known for the discrete logarithm problem in higher genus
curves [COH05b, chap. 20, 21], this yields a possible method of attack against the
ECDLP.

Tuned Implementation Outcomes

Despite the parallel variant and possible optimizations in Pollard’s rho approach (the
use of equivalence classes [WIE99] or Teske’s r–addings [TES01a]), the published ef-
fective records for the elliptic curve discrete logarithm problem still remain somewhat
moderate. The most recent record solved an instance of the ECDLP over a 112–bit
prime field, the SEC 2 ‘secp112r1’ standard curve [BOS09]; it required 62.6 PlaySta-
tion 3 (PS3) years. The computations, sometimes interrupted, took 7 months of calen-
der time, and required 0.6 Terabyte of disk space. According to [BOS09], a continuous
execution of their code on a cluster of more than 200 PS3 would take 3.5 months.
(Notice that they do not indicate the exact number of PS3s they used.) The previous
records, dated respectively from 2004 and 2002, were on Certicom challenges ECC2–
109 and ECCp–109 [CERT09]. The record on ECC2–109 and ECCp–109 required
respectively 17 and 18 months of calender time [CERT09].

Surprisingly, even if Teske’s r–addings [TES01a] are used for the records, the nega-
tion map which theoretically yields a factor

√
2 speed–up, was not used for any of the

records. In fact, the negation map yields fruitless cycles [BOS10], and it does not
effectively achieve its theoretical speed–up; its use requires further fruitless cycle han-
dling techniques. A discussion on the effective use of the negation map can be found
in [BOS10].

Security Precautions for Cryptographic Curves

As a consequence of the aforementioned attacks, a curve E defined over GF (q) is
cryptographically interesting, if #E

(

GF (q)
)

is divisible by a large prime n. Having
|n| > 163 is sufficient for resistance against the Pohlig–Hellman, Pollard’s rho, and

33

2.6. Basic Elliptic Curves Based Schemes

Shanks’ BSGS attacks; for an optimal resistance to these attacks E can be chosen
such that #E

(

GF (q)
)

= nh with h 6 4. To avoid the prime field anomalous curves,
#E

(

GF (q)
)

should be different from q. The Weil and Tate pairing attacks are infeasi-
ble, if n does not divide qk − 1 for 1 6 k 6 t with t large enough (t > 20 is sufficient).
Menezes and Qu [MEN01] show that the GHS attack fails for all cryptographically in-
teresting elliptic curves over GF (2m) with m prime and in [160, 600]. To guard against
attacks that may be discovered in the future, one may use curves chosen at random,
as long as the mentioned security precautions are satisfied.

2.6 Basic Elliptic Curves Based Schemes

The basic public key security services can be built using elliptic curves; in this section
we recall some basic elliptic curve based schemes. In practice, (well–chosen) curves are
precomputed and shared between a group of parties. In the continuation, we suppose
that the considered parties choose their keys in a public domain parameters. (Notice
that all the protocols described in the next chapters in a generic group, can be used
with elliptic curve groups.)

Definition 5 (Domain parameters). A domain parameters Ψ = (q, FR, S, a, b, P, n, h)
consists of:
(a) A field order q.
(b) An indication of the representation of the elements of GF (q).
(c) For randomly generated curves, a seed S used to generated verifiably at random

the coefficients a and b.
(d) The coefficients a, b ∈ GF (q) defining the curve (i.e., y2 = x3 + ax+ b if GF (q) is

a prime field or an optimal extension field1, and y2 + xy = x3 + ax2 + b if GF (q)
is a binary field).

(e) A point P = (x, y) ∈ E
(

GF (q)
)

(represented in affine coordinates) of prime order;
P is said to be the base point.

(f) The integer n is the order of P , and hn = #E
(

GF (q)
)

; h is said to be the cofactor.

Domain parameters must be chosen to avoid the Pohlig–Hellman, Pollard’s rho, and
isomorphism attacks. Given a valid domain parameters, a key pair generation con-
sists in:

• Choosing d ∈R [1, n− 1].
• Computing Q = dP .
• The public key is Q, the private part is d.

The public key Q should be available to any party, which may communicate with its
owner; in addition, the identity of the key owner must be associated with the key in
a way which is verifiable by all parties. Certification Authorities (CAs) are used to
generate certificates attesting this association.

1An optimal extension field is a field GF (pm) such that (1) p = 2n − c for some integers n, c with
log2 |c| 6 n/2, and (2) an irreducible polynomial f(z) = zm−w exists in GF (p)[z]; efficient arithmetics
can be performed on these fields [BAIL98, BAIL01].

34

2.6. Basic Elliptic Curves Based Schemes

2.6.1 The Elliptic Curve Integrated Encryption Scheme

The ECIES scheme is an elliptic curve variant of the famous ElGamal public key en-
cryption scheme [STI95, chap. 6]. It was proposed by Bellare and Rogaway [BEL97];
Cramer and Shoup [CRA04] showed the scheme secure against adaptive chosen ci-
phertext attacks, under the Random Oracle model and the elliptic curve Gap Diffie–
Hellman assumption (which is: given an efficient ECDDHP solver, the ECDHP prob-
lem remains hard). The ECIES scheme is standardized in ANSI X9.63 [ANS01b] and
IEEE P1363 [IEE00]. An ECIES encryption is as follows; KDF is a key derivation
function, Enc is a symmetric encryption scheme, and MAC a message authentication
scheme.

Algorithm 2.10 ECIES Encryption

Input: A domain parameters Ψ = (q, FR, S, a, b, P, n, h), a public key Q, and a
message m.
Output: A ciphertext c = (R,C, t).

(1) Choose k ∈R [1, n− 1].
(2) Compute R = kP and Z = hkQ.

• If Z = ∞, go to step (1).
• Else, destroy k.

(3) Compute (K1,K2) = KDF (xZ , R), where xZ is the x–coordinate of Z.
(4) Compute C = EncK1(m), and t = MACK2(C).
(5) Return c = (R,C, t).

The design of ECIES is quite simple, the sender provides the receiver with R = kP ,
together with Z = hkQ = hk(dP), where Q and d are the receiver’s public and private
keys. (The use of hkQ instead of kQ guarantees that Z does not belong to the small
subgroup of E

(

GF (q)
)

.) The receiver can compute Z = hdR, K1, and K2; it then
authenticates and decrypts the ciphertext c to obtain m. Recall that validating a
public key R consists in: (1) verifying that R 6= ∞, and xQ and yQ are properly
represented in GF (q), and (2) verifying that R satisfies the curve defined by a and b,
and that nR = ∞. The decryption operation is given in Algorithm 2.11.

Algorithm 2.11 ECIES Decryption

Input: A domain parameters Ψ = (q, FR, S, a, b, P, n, h), a private key d, and a
ciphertext c = (R,C, t).
Output: A plaintext m or “failure” (i.e, ciphertext rejection).

(1) Validate the public key R, if the validation fails, return “failure”.
(2) Compute Z = hdR, if Z = ∞, return “failure”.
(3) Compute K1,K2 = KDF (xZ , R).
(4) Verify that t = MACK2(C), if not return “failure”.
(5) Return m = DecK1(m).

For a honest sender, it is not difficult to see that the decryption algorithm yields the
message m.

35

2.6. Basic Elliptic Curves Based Schemes

2.6.2 The Elliptic Curve Digital Signature Algorithm

ECDSA is an elliptic curve analog of the DSA scheme [MEN96, chap. 3]; it seems to
appear for the first time in [VAN92] as a response to a NIST request for comments.
It is today widely standardized [ANS05, IEE00, FIP00]. The signature generation is
as follows; H is |n|–bit hash function.

Algorithm 2.12 ECDSA Signature Generation

Input: A domain parameters Ψ = (q, FR, S, a, b, P, n, h), a private key d, and a
message m.
Output: A signature sig = (r, s).

(1) Choose k ∈R [1, n− 1].
(2) Compute R = kP and convert xR (the x–coordinate of R) to an integer x̄R.
(3) Compute r = x̄R mod n, if r = 0, go to step (1).
(4) Compute e = H(m).
(5) Compute s = k−1(e+ dr) mod n; if s = 0, go to step (1).
(6) Return sig = (r, s).

The ECDSA signature scheme is proven GMR2–secure (i.e., existentially unforgeable
against an efficient adaptive chosen message attacker) in the generic group model
[BRO05]. But, as shown by Dent [DEN02] security arguments in the generic group
model does not necessarily provide assurance in practice; namely [DEN02] describes
a signature scheme which is provably secure in the generic group model, but insecure
in any specific group.

A signature verification is as in Algorithm 2.13. For a signature sig = (r, s)
on a message m; since s = k−1(e + dr) mod n, it follows that k = s−1(e + dr) =
s−1e+s−1rd = u1+u2d mod n. Hence the required equality between x̄R and x̄u1P +u2Q

holds.

Algorithm 2.13 ECDSA Signature Verification

Input: A domain parameters Ψ = (q, FR, S, a, b, P, n, h), a public key Q, and a
signature sig = (r, s).
Output: “valid” or “invalid”.

(1) Verify that r and s belong to [1, n− 1]; if not return “invalid”.
(2) Compute e = H(m).
(3) Compute w = s−1 mod n.
(4) Compute u1 = ew mod n, u2 = rw mod n.
(5) Compute R = u1P + u2Q.

(6) If R = ∞, return “invalid”.
(7) Convert xR to an integer x̄R, and compute v = x̄R mod n.
(8) If v = r return “valid”; else, return “invalid”.

2Goldwasser, Micali, and Rivest security definition [GOL88]

36

2.6. Basic Elliptic Curves Based Schemes

2.6.3 The Password Authenticated Connection Establishment

The PACE protocol was proposed by the German Federal Office for Information Se-
curity (BSI) [BSI10]. The protocol establishes a secure channel between two parties
(a chip and a terminal), based only on a weak password. Recall that a key refers
to a string with sufficiently large entropy to be resistant to guessing attacks, while a
password refers to a short string which may be easily memorized by a human user.

The PACE protocol was designed with travel document systems in mind. Broadly,
the protocol divides into four main steps; in the first, the initiator (the chip) provides
the responder (the terminal) with a random nonce s encrypted with a key derived from
the password. Second, both parties run an ephemeral base point generation protocol.
Third, they run an anonymous Diffie–Hellman protocol based on a domain parameters
provided by the initiator, and finally derive the shared key. The protocol description is
given in Protocol 2.14, wherein KDFπ, KDF1 and KDF2 are key derivation functions.
The domain parameters validation, may simply consist in verifying that it was signed
by a trusted third party; if any verification fails, the run fails and terminates.

PACE is rather a framework, allowing different instantiations of the ephemeral
base point generation. In our description, we used the most prominent base point
generation protocol; other instantiations are possible [BSI10, BEN09].

The protocol is shown secure in the Abdalla, Fouque and Pointcheval model
[ABD05] under a variant of the (EC)DHP problem (the PACE–DH problem), the
random oracle model, and the ideal cipher model (which are now known to be equiv-
alent [COR08]). It is not known whether the ECDHP is equivalent to the ECPACE–
DHP; however, in generic groups, the two problems are shown to be equivalent [BEN09].

As the security of the PACE protocol relies only on a password π an adversary
can guess the right π with probability at least 1/2|π| and then impersonate one party
to another. Loosely speaking, the security arguments show that for any attacker
performing C(l) on–line attacks, where l = 1/2 log2 n, the probability it succeeds is
smaller than C(l)/2|π| + ε(l), where ε(·) is negligible (i.e., for all c > 0 there is some
kc such that, ‖ε(k)‖ < k−c for all k > kc). In particular, the adversary should not be
able to compute the password of any party through an off–line dictionary attack by
successfully matching password candidates to executions afterwards.

Notice also that, despite of its formal security arguments [BEN09], the PACE pro-
tocol is particularly sensitive to ephemeral secret information leakages. The protocol
is not only vulnerable to ephemeral DH exponent leakage, but also to a leakage of
the ephemeral base point or the final DH secret σ. As one can see, if an attacker can
access an ephemeral base point P̃ at an honest party, say B̂, it can substitute Â’s
ephemeral public key XA (at step IIIb) with 2P , for instance, in Â message to B̂, and
using P̃ = (sG+2XB) and c (which is sent in Â’s first message), recover the password
π using an off–line exhaustive search.

37

2.6. Basic Elliptic Curves Based Schemes

Protocol 2.14 The PACE Protocol
Protocol Messages:

Â : π, Ψ B̂ : π
Kπ = KDFπ(π),
s ∈R [1, n− 1],
c = EncKπ (s)

c, Ψ −→

Kπ = KDFπ(π),
s = DecKπ (c),
xB ∈R [1, n− 1],

←− XB = xBP

xA ∈R [1, n− 1],

XA = xAP −→

P̃ = sP + xBXA,
yB ∈R [1, n− 1],

←− YB = xBP̃

P̃ = sP + xBXA,
yA ∈R [1, n− 1],

YA = yAP̃ −→

σA = yAYB σB = yBYA,
KEnc = KDF1(σA), KEnc = KDF1(σB),
KMac = KDF2(σA), KMac = KDF2(σB),

←− tB = MACKMac (YB , Ψ)

tA = MACKMac (YA, Ψ) −→

I) The initiator Â does the following:
(a) Choose s ∈R [1, n− 1], compute Kπ = KDFπ(π), and c = EncKπ

(s).
(b) Send c and Ψ = (q, FR, S, a, b, P, n, h) to B̂.

II) B̂ does the following:
(a) Compute Kπ = KDFπ(π), and s = DecKπ

(c).
(b) Validate the domain parameters Ψ.
(c) Choose xB ∈R [1, n− 1], and send XB = xBP to Â.

III) Â does the following:
(a) Verify that XB ∈ G∗.
(b) Choose xA ∈R [1, n− 1], and send XA = xAP to B̂.

IV) B̂ does the following:
(a) Verify that XA ∈ G∗.
(b) Choose yB ∈R [1, n− 1], and send YB = yB(sP + xBXA) to Â.

V) Â does the following:
(a) Verify that YB ∈ G∗.
(b) Choose yA ∈R [1, n− 1], and send YA = yA(sP + xAXB) to B̂.
(c) Compute σA = yAYB, KEnc = KDF1(σA), and KMac = KDF2(σA).

VI) B̂ does the following:
(a) Verify that YA ∈ G∗.
(b) Compute σB = ybYA, KEnc = KDF1(σB), and KMac = KDF2(σB).
(c) Send tB = MACKMac

(YB ,Ψ) to Â.
VII) Â verifies that tB = MACKMac

(YB ,Ψ), and sends tA = MACKMac
(YA,Ψ) to Â.

VIII) B̂ verifies that tA = MACKMac
(YA,Ψ).

IX) The shared session keys are KEnc and KMac.

38

2.7. Advantages of Elliptic Curves based Cryptography

2.7 Advantages of Elliptic Curves based Cryptography

Different criteria can be considered when comparing public key scheme families. In
practice, principal criteria seem to be functionality, security, and efficiency. The RSA,
discrete logarithm (over finite fields), and elliptic curve discrete logarithm families
provide the basic functionalities in public key cryptography (encryption, signature,
key exchange and distribution); and the hardness of the underlying mathematical
problems, which is necessary for the security of the schemes, is well–studied and seems
widely believed.

Public key schemes are often used in combination with symmetric schemes. For
the same security, against the best known attacks, the elliptic curve parameters can
be chosen much smaller than the RSA or finite field discrete logarithm ones. For
instance, a 160–bit elliptic curve group order is expected to yield the same security
level as a 1024–bit RSA modulus or multiplicative discrete logarithm group order. The
differences become particularly important when the desired security level increases;
a (well–chosen) 512–bit domain parameter is currently equivalent in security to a
15360–bit RSA modulus. Table 2.4 summarizes the approximate sizes for security
equivalence between, symmetric schemes, elliptic curves, RSA, and discrete logarithm
based schemes.

Table 2.4: Key sizes (in bits) for equivalent security levels [LAW03, chap. 1].

Symmetric ECC RSA/DL

80 160 1024
112 224 2048
128 256 3072
192 384 8192
256 512 15360

The advantages of using significantly smaller parameters in elliptic curve crypto-
graphy include efficiency and storage reduction (faster computations and smaller keys).
Even if, for small public exponents (e = 65537, for instance), public key operations
for RSA schemes can be expected faster than for elliptic curve schemes, the other
operations (signature generation, decryption, etc.) are faster for elliptic curves than
for RSA or finite field discrete logarithm based schemes. The advantage of elliptic
curve schemes can be particularly important in computationally limited processing
environments with limited storage or bandwidth.

2.8 Elliptic Curve Cryptography Standards Activities

Elliptic curve cryptography is now widely used in industry, and cryptographic standard
bodies often provide standards dealing with elliptic curve cryptography. In this sub-
section, we recall some of these bodies and the schemes they standardize, our survey is
not exhaustive; indeed an exhaustive survey would be difficult, if not impossible, as al-
most every country defines its own cryptographic standards, ANSSI “Agence Nationale

39

2.8. Elliptic Curve Cryptography Standards Activities

de la Sécurité des Systèmes d’Information”, formerly known as DCSSI, in France, BSI
(Federal Office for Information Security) in German, etc.

American National Standards Institute (ANSI). The ANSI X9 committee
develops standards for the financial services industry. Many Elliptic curves based
schemes are standardized by the X9 committee, ECDSA in ANSI X9.62 [ANS05],
STS [DIF92] (see also section 4.3), ECMQV (see section 4.4), and ECIES, among
others, are standardized in ANSI X9.63 [ANS01b]. The hash functions considered for
the ECDSA scheme are the functions of the SHA family (SHA–1, SHA–224, SHA–256,
SHA–384 and SHA–512 [FIP08]). The considered key derivation function in X9.63 is
hash function based. Notice also that the domain parameters are considered only over
the prime and binary fields.

National Institute of Standards and Technology (NIST). The NIST is a
federal agency within the US Commerce Department’s Technology Administration.
Its mission includes the proposition of security related Federal Information Processing
Standards (FIPS) intended for use by US federal government departments. The FIPS
standards, including AES and HMAC, are probably, among the most widely adopted
and deployed cryptographic schemes around the world. The ECDSA signature scheme,
and many elliptic curves based cryptographic protocols, among which an UM variant
termed ‘dhHybrid1’ in the standard (see also section 4.2), and some ECMQV variants,
are standardized in [NIS07].

Institute of Electrical and Electronics Engineers (IEEE). The scope of the
IEEE P1363 working group is rather large, including schemes based on integer factor-
ization, elliptic curves, and lattices. The P1363 standard [IEE00] includes elliptic curve
signature schemes (among which ECDSA), and elliptic curve key agreement schemes
(ECMQV protocol, and some variants of the Elliptic Curve Diffie–Hellman (ECDH)
protocol). The current draft [IEE09] includes the HMQV protocol. The P1363 differs
from the ANSI and FIPS standards in that it has no mandated minimum security
requirement. The considered finite field are the prime and binary fields.

Standards for Efficient Cryptography Group (SECG). This standard body,
led by Certicom, tries to bring elliptic curve cryptographic techniques into real–life
business. In 2000, the SECG body published two standards: the SEC 1, which stan-
dardizes some elliptic curve cryptographic schemes, and SEC 2, which recommends
domain parameters to use with these schemes. While these standards were updated
recently, the SECG body provides no other standard. More information about the
SECG, and its two standards can be found at http://www.secg.org/.

International Organization for Standardization (ISO). The ISO organization
develops standards in many fields. Indeed, there are many technical committees, deal-
ing with broad topics. The technical committees (TC) are divided into subcommittees
(SC), which in turn are divided into working groups. The ISO technical committees

40

http://www.secg.org/

2.9. Patents in Elliptic Curve Cryptography

and working groups subdivisions seems to follow techniques applications, rather than
the techniques themselves

The cryptographic standards mainly concern the following technical committees:
the technical committee 68 (Financial services) which involves 28 participating coun-
tries, and the joint technical committee (JTC) 1 (Information Technology), which is a
collaboration between ISO and the International Electrotechnical Commission (IEC).
Most of the work of these committees are not cryptography or security related, only
few subcommittees are work on security the JTC1/SC 17, the JTC1/SC 27; and the
JTC1/SC 37.

The subcommittee dealing with elliptic curve cryptography is the subcommittee
SC 27 of the JTC 1. The standardized schemes include the Elliptic Curve Schnorr
Digital Signature Algorithm (ISO/IEC 14888–3, 2006), Elliptic curve generation tech-
niques (ISO/IEC 15946–5, 2009), and the ECMQV protocol (ISO/IEC 15946–3:2002).

Public–Key Cryptography Standards (PKCS). The PKCS standards are pro-
posed by RSA Data Security to computer systems developers, the aim is to provide
sufficient bases for for interoperability. Many standards are proposed and deployed
(see chapter 5, for instance), however the standard dealing specifically with elliptic
curves based cryptography, the PKCS #13 standard, is still under development. Its
scope includes domain parameters generation and validation, key generation and val-
idation, digital signatures, public-key encryption, key agreement, and ASN.1 syntax
for parameters, keys, and schemes identification. The PKCS# 11 standard considers
the use of some elliptic curves based schemes, ECDSA, ECMQV, ECDH, etc. but
refers to other standards for the definition of these schemes.

2.9 Patents in Elliptic Curve Cryptography

A patent is a set of exclusive rights granted by a state or a set of states to an inventor or
its assignee for a limited duration, at most 20 years in France [INP09], in exchange of
a public disclosure of an invention. The patent granting procedures, and requirements
placed on a patent vary from one country to another. However, in most countries, a
patentee holds the right to prevent others from using or distributing in any way the
patented invention without permission. The exact boundary of what is protected by
a patent is given by the patent claims. To infringe a patent, each and every element
of its claims must be present in the infringing product. Even if only a single element
of a patent’s claims is missing in a product, the product does not infringe the patent,
except if ti is used in the product something equivalent to the missing elements. Two
elements can be considered equivalent if (1) they perform the same function, and (2)
achieve the same result, in the same way.

Even if some aspects of patent law have been harmonized internationally (through
treaties or organizations such as the Patent Cooperation Treaty, or the European
Patent Organization), there remains however some differences between the US and
European patents.

41

2.10. Examples of elliptic curves cryptography deployment

In Europe, an invention is patentable if it is novel, and solves a technical prob-
lem in a non–obvious way scientific theories and mathematical methods are not then
patentable (see Article 52 of the European Patent Convention at http://www.epo.org/

patents/law/legal-texts/epc.html). In US, the requirements are similar, but seem less
restrictive; to be patentable, an invention must be novel and not obvious (see the US
Code 35, Sec. 101, at http://www.gpoaccess.gov/index.html). In Europe, when two
persons apply for a patent on the same patentable invention, the first to have applied
will get the patent; this holds even if the second is able to prove that he discovered the
invention first. Only filing date counts in Europe. In US, if two applications interfere,
it is first tried to determine the first inventor, this may include examining research
logbooks, dates for prototypes, and so on; if found, he gets the patent.

Some patent related confusing around elliptic curve cryptography. Patents seems to
be a main factor limiting elliptic curve cryptography implementation and deployment.
For instance, elliptic curve cryptography schemes were integrated in OpenSSL, only
in the version 0.9.8 in 2005 (see http://www.openssl.org/.)

Numerous ECC related patents are hold by Certicom [CER] (82 US patents, 195
US and non–US patents at january 2009 — see at http://www.certicom.com/index.

php/licensing/patents-issued). It seems that Certicom is the main elliptic curve cryp-

tography related patents holder. Surprisingly, there is no patent claims at the SECG

standard website (see at http://www.secg.org/) besides that of Certicom. It is difficult

to provide an exhaustive review of the patents related to elliptic curve cryptography,

we only list some patents or patent applications closely related to our work (most of

them can be found at http://www.freepatentsonline.com/).

Two important patents related to our work are the (most recent) US patent on

MQV [LAMB07] (which includes the MQV variant using the simultaneous multipli-

cation technique) and the European patent on HMQV [KRA08], there is also a US

patent application on HMQV [KRA06], we do not know however, whether or not it

was granted. A shallow review of some ECC related patents is given in Table 2.5; the

symbol ✍ indicates that the concerned document is a patent application.

As one can expect, it is difficult to determine the exact boundaries of elliptic

curve cryptography related patents. Nevertheless, it seems possible to implement

numerous ECC schemes without any patent infringement. An interesting indication on

alternative possible implementations comes from the RSA Laboratories FAQ entries3:

“In all of these cases, it is the implementation technique that is patented, not the prime

or representation, and there are alternative, compatible implementation techniques

that are not covered by the patents”. Naturally, this is not legal truth; and, as often

with patents, only court truth matters.

2.10 Examples of elliptic curves cryptography deployment

In this section we provide few examples of elliptic curves cryptography deployment.

3http://www.rsa.com/rsalabs/node.asp?id=2325

42

http://www.epo.org/patents/law/legal-texts/epc.html
http://www.epo.org/patents/law/legal-texts/epc.html
http://www.gpoaccess.gov/index.html
http://www.openssl.org/
http://www.certicom.com/index.php/licensing/patents-issued
http://www.certicom.com/index.php/licensing/patents-issued
http://www.secg.org/
http://www.freepatentsonline.com/
http://www.rsa.com/rsalabs/node.asp?id=2325

2.10. Examples of elliptic curves cryptography deployment

Table 2.5: Some ECC related patents

US 5761305: “Key Agreement and Transport Protocols with
Implicit Signatures” (pertain to MQV)

Certicom (Jun.98)

US 5889865: “Key Agreement and Transport Protocol with
Implicit Signatures” (pertain to MQV)

—— (Mar. 99)

US 5896455: “Key Agreement and Transport Protocol with
Implicit Signatures” (pertain to MQV)

—— (Apr. 99)

US 6122736: “Key agreement and transport protocol with im-
plicit signatures” (pertain to MQV)

—— (Sept. 00)

US 6785813: “Key agreement and transport protocol with im-
plicit signatures” (pertain to MQV)

—— (Aug. 04)

US 5933504: “Strengthened public key protocol” (pertains to
preventing the small-subgroup attacks in key
agreement protocols)

—— (Aug. 99)

US 6141420: “Elliptic Curve Encryption Systems” (pertains
to point compression)

—— (Oct. 00)

US 7418099: “Method and Apparatus for Performing Elliptic
Curve Arithmetic” (pertains to preventing in-
valid curve attacks in key agreement protocols)

—— (Aug. 08)

US 0033405 ✍ “Method and Structure for Challenge–Response
Signatures and High–Performance Secure Diffie–
Hellman Protocols” (pertain to HMQV and the
(X, D)CR schemes)

IBM (Aug.06)

US 5787028 “ Multiple Bit Multiplier” (pertains to multipli-
cation optimizations in GF (2m))

Certicom (Jul. 98)

US 0040225 “Fast Scalar Multiplication for Elliptic Curve
Cryptosystems over Prime Fields ” (pertains to
point multiplication optimizations and side chan-
nel attacks resilience)

ATMEL (Feb.
2010)

US 7602907 “Elliptic Curve Point Multiplication” (pertains
to point multiplication optimizations and side
channel attacks resilience)

Microsoft (Oct.
09)

US 0180612 ✍ “Authentication Method Employing Elliptic
Curve Cryptography” (pertains to mobile sys-
tems authentication)

Lin & Associates
IP, Inc. (Jul.
2008)

With the Vista operating system, Microsoft designed a new cryptographic services

provider, termed “Cryptography API: Next Generation (CNG)”, for a long term re-

placement of the Microsoft CryptoAPI. The CNG is intended for developers in the

Windows programming environment. The main add–on of the CNG compared to the

Microsoft CryptoAPI is that it implements some elliptic curve based schemes, mainly

the ECDSA and the ECDH. More details on the CNG can be found at http://msdn.

microsoft.com/en-us/library/aa376210(v=VS.85).aspx.

Also about five years ago, Microsoft embedded a digital rights management (DRM)

system into the Windows Media Player. When data representation related technicali-

ties (which may be XML, base 64 encoding, etc., depending on the the DRM version)

43

http://msdn.microsoft.com/en-us/library/aa376210(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa376210(v=VS.85).aspx

2.10. Examples of elliptic curves cryptography deployment

are ruled out, the DRM license request protocol is simply a signed and encrypted

request followed by a signed and encrypted response. The client generates an ECDSA

signed license request, together with a 16–byte random key; the request is encrypted

using the RC4 scheme, and the RC4 encrypting key encrypted using the sever’s public

key. The public key encryption scheme is ECC Elgamal. The server’s response is

encrypted in a similar way. More details on the windows DRM system can be found

at http://msdn.microsoft.com/en-us/library/cc227964.aspx.

Elliptic curve cryptography is now used in the German e–passports (see http://

www.en.bmi.bund.de). The scheme used for document signature is ECDSA; some au-

thentication protocols are also proposed (mainly variants of the static Diffie–Hellman

protocol). The PACE protocol (see section 2.6.3) is today mandatory [BSI10].

The security and efficiency advantages of elliptic curve based schemes over RSA

or multiplicative discrete logarithm based schemes are clear. As security will remain

an essential concern in communications, even if the deployment of ECC schemes is

still limited compared to RSA, there should be no doubt that the next generation

cryptographic tools will be mainly elliptic curves based.

44

http://msdn.microsoft.com/en-us/library/cc227964.aspx
http://www.en.bmi.bund.de
http://www.en.bmi.bund.de

Chapter 3

Security Models
for Authenticated Key Agreement

Contents

3.1 Introduction . 44

3.2 The Bellare–Rogaway Model(s) . 45

3.3 The Canetti–Krawczyk Model(s) . 47

3.4 The Extended Canetti–Krawczyk Model 49

3.4.1 The Menezes–Ustaoglu Variant 51

3.5 Security Nuances in the (e)CK Models 52

3.5.1 Inadequacy of the CK Matching Sessions Definition 52

3.5.2 The eCK Ephemeral Key and the Use of the NAXOS Trans-
formation . 54

3.6 Stronger Security . 56

3.7 Relations between the seCK and eCK models 60

3.8 The Strengthened MQV Protocol 61

3.9 Security Analysis of the SMQV Protocol 64

3.9.1 Proof of Theorem 3. 65

3.10 Conclusion . 74

3.1 Introduction

Much of recent research on key agreement deals with provably secure key exchange.

Since this approach was pioneered by Bellare and Rogaway [BEL93a], different mod-

els were proposed [BEL95, BLA97a, SHO99, CAN01, KRA05, LAMA07]. Among

these models, the Canetti–Krawczyk (CK) [CAN01] and extended Canetti–Krawczyk

(eCK) [LAMA07] models (which are incomparable [CRE09b, UST09]) are considered

as “advanced” approaches to capture security of key agreement protocols; and security

arguments for recent protocols are usually provided in the (e)CK models.

Broadly, a security model specifies, among other things, what constitutes a secu-

rity failure, and what adversarial behaviors are being protected against. The aim is

that a protocol shown secure, in the model, confines to the minimum the effects of the

considered adversarial behaviors. In the CK and eCK models, session specific infor-

mation leakages are respectively captured using reveal queries on session states and

ephemeral keys, which store session specific information; the adversary is supposed to

interact with parties, and to try to distinguish a session key from a randomly chosen

value. A protocol is secure if an adversary controlling communications between par-

ties, cannot distinguish a session key from a random value, unless it makes queries

which overtly reveal the session key.

45

3.2. The Bellare–Rogaway Model(s)

While it is desirable that key agreement protocols confine the adverse effects of

failures the minimum possible, some of the (e)CK–secure protocols fail to be imperson-

ation attack resilient, when some session specific information leakage occurs [SAR09a].

In both the CK and (e)CK models, the definitions of the reveal queries make a part

of practical attacks unconsidered.

In this chapter, we outline the main ideas of the original Bellare–Rogaway (BR)

model upon which are based the (e)CK models, and present the CK models and

eCK models. We also highlight the importance of finely understanding the limita-

tions of the eCK models, when using them in security reductions. In section 3.6,

we propose a strong security definition, from [SAR10a], which encompasses the eCK

model, and provides stronger reveal queries to the adversary. To illustrate that our

security definition is usable, and not too restrictive, we propose a new authenti-

cated key agreement protocol called Strengthened MQV (SMQV), which meets our

security definition under the gap Diffie–Hellman assumption and the random oracle

model [SAR10a]. The SMQV protocol provides the same efficiency as the (H)MQV

protocols [LAW03, KRA05b]. In addition, because of its resilience to intermediate

results leakages, SMQV is particularly suited for implementations using a tamper–

resistant device, to store the static keys, together with a host machine on which ses-

sions keys are used. In such SMQV implementations, the non–idle time computational

effort of the device can be securely reduced to few non–costly operations. This chapter

includes results from [SAR09a, SAR09b, SAR10a].

3.2 The Bellare–Rogaway Model(s)

The first complexity theoretic formalization of a secure key exchange protocol, seems

to appear in [BEL93a]. Although the original variant of the BR model covered the

two party mutual authentication case in the symmetric key setting, other variants

dealing with three party server–based protocols [BEL95] or public key based pro-

tocols [BLA97a], among others, was subsequently proposed. The original Bellare–

Rogaway model is outlined hereunder.

The model considers a set I of parties sharing a long–lived key generator, i.e.

a polynomial time machine, which on input the security parameter λ, outputs a long

lived key for each couple {i, j}, i, j ∈ I. Each party i ∈ I, is modeled with an infinite

set of oracle Πs
i,j j ∈ I, s ∈ N; an oracle Πs

i,j models the s–th session that the entity i

attempts to run with j. The considered adversary (denoted here A) is a probabilistic

polynomial time machine in control of communication links betweens parties. The

oracles only interact with the adversary; they do not interact directly one another.

The conversation of an oracle is defined to be the ordered concatenation of incoming

and outgoing messages. Let ins
i,j denote the ordered concatenation of Πs

i,j ’s incoming

messages, and outsi,j be defined in a similar way. The conversations of two oracles Πs
i,j

and Πt
j,i are said to be matching if ins

i,j equals outtj,i, and conversely. The adversary is

not allowed to access directly to the oracles private information; however, the following

queries are allowed for oracle activations, and also to capture information leakages that

may occur.

46

3.2. The Bellare–Rogaway Model(s)

• Send(i, j, s,M). This query provides the oracle Πs
i,j with the message M . As an

answer, the oracle returns the next message that would be returned in a normal

execution of the protocol. When M is the empty string, the call is understood

as an oracle (des)activation query.

• Reveal(i, j, s). This query captures session key leakages. When it is issued on an

already completed oracle Πs
i,j , the attacker is provided with the oracle’s session

key; if the oracle has not completed yet, the call is ignored.

• Corrupt(i,K). With this query, the adversary learns all long–lived secrets at

the party i, and set i’s long–lived secrets to K; from there, i is controlled by the

adversary. (Notice that the model from [BEL93a] does not consider the Corrupt

query; however, it is considered in security arguments using this model [BEL95,

BLA97a, BLA97b, WON01, CHE03], so we describe it as part of the model.)

• Test(i, j, s). When a completed oracle Πs
i,j is issued with this query, it chooses

γ ∈R {0, 1}, and provides A with kγ , where kγ is the key computed in the oracle,

if γ equals 1, otherwise, a random value chosen under the distribution of session

keys. The adversary then guesses the value of γ. (The adversary has to produce

its guess immediately after learning kγ ; as discussed in [CAN01a, Appendix A],

this requirement is not strong enough.)

A completed oracle Πs
i,j is said to be fresh, if it was not sent a Reveal query, and no

completed oracle with matching conversation was sent a Reveal query.

A protocol is said to be (BR) secure, if

• in the presence of an adversary which faithfully convey messages, two oracles

with matching conversations yield the same session key, and

• no polynomially bounded adversary can succeed in guessing the value of γ in a

fresh oracle with probability significantly greater than 1/2.

Blake–Wilson et al.’s variant. This variant introduces rather minor modifications

to deal with the public key setting [BLA97a]. Except the setup phase, in which the

long–lived key generator in the original model is replaced with a key pair generator,

the Blake–Wilson et al.’s variant is mainly the same as the original one. Indeed, this

variant seems to be rather an illustration of the BR model’s usability in the public key

setting (modulo minor modifications) than a proposition of a new model.

Shoup’s Generalization. Shoup [SHO99] proposes a generalization of the BR

model. The proposed model, somewhat abstract, considers the use of session keys

in applications. Three corruption cases are considered. (1) In the static corruption

case, the adversary decides about entities to corrupt, prior to starting interactions be-

tween parties. (2) In the adaptive corruption case, the adversary can corrupt an entity

at any time. The corrupt query provides the adversary with the long–lived secrets of

the entity on which the query is issued. (3) Similar to the adaptive corruption, the

strong adaptive corruption can be issued on an entity at any time, the attacker then

obtains all secret information at the party.

47

3.3. The Canetti–Krawczyk Model(s)

The Bellare–Rogaway security is shown equivalent to Shoup’s simulation–based

security in the static corruption case [SHO99]; this may seem surprising, as the BR

model allows the attacker to corrupt parties at any moment, however as shown in

[SHO99, section 15.3], in the BR model, security against static, adaptive and strong

adaptive corruptions are equivalent. The security definition in the strong adaptive

corruption case is shown to imply the BR security, added with forward secrecy. The

strong adaptive security is not shown to imply the adaptive one.

In hindsight, while introducing a fundamental approach, upon which recent “ad-

vanced” security models are built, the Bellare–Rogaway security definition(s), seems

unsatisfactory; as ignoring many important security attributes, among which key com-

promise impersonation resilience, ephemeral private keys leakage resilience, and in

general session–specific information leakages resilience.

3.3 The Canetti–Krawczyk Model(s)

The parties considered in this model [CAN01] are probabilistic polynomial time ma-

chines, P̂1, · · · , P̂n, interconnected each other. A protocol is defined as a collection of

procedures run by a finite number of parties; each protocol specifies its processing rules

for incoming and outgoing messages. A key exchange is a protocol which involves two

parties. A session is an instance of a protocol run at a party. At session activation, a

session state is created to contain specific information computed in the session.

For key exchange protocols, each session is activated with a quadruple (P̂i, P̂j , ψ, ς),
where P̂i is the session owner, P̂j is the peer, ψ is the session identifier, and ς is the

role of P̂i in the session. The session identifier is required to be unique at each party

involved in the session, i.e., a party never uses the same session identifier twice. Two

sessions with initial inputs (P̂i, P̂j , ψ, ς) and (P̂j , P̂i, ψ
′, ς ′) are said to be matching if

ψ = ψ′.

Adversary. The adversary A is a probabilistic polynomial time machine in control of

communications between parties; outgoing messages are submitted to A which decides

about their delivery. A also decides about session activations; in addition, it is given

the following queries, aiming to model practical information leakages.

• SessionStateReveal. When this query is issued on an uncompleted session, the

adversary obtains the ephemeral information contained in the session. The model

does not however specify the information revealed by this query; it leaves this

to be specified by each protocol.

• SessionKeyReveal. With this query, the adversary obtains, the session key de-

rived in a completed and unexpired session.

• Corrupt. When this query is issued on a party, the adversary obtains all the

information hold by the party, including its static private key and session states.

Once the query is issued, the attacker (which is in control of communication

links) can impersonate the party at will; one then consider the party under the

48

3.3. The Canetti–Krawczyk Model(s)

attacker’s control. A party against which this query is not issued is said to be

honest.

• Expire. This query models the erasure of a session key (and state) from the

session owner’s memory. Notice that a session can be expired while its matching

session is unexpired.

• Test. As in the Bellare–Rogaway model, when the test query is issued on a

completed (and unexpired) session, a bit γ is chosen at random, and depending

on the value of γ, the attacker is provided with either the session key, or a random

value chosen under the distribution of session keys. The attacker is allowed to

continue its run with regular queries, but not to reveal the test session or its

matching session’s key or state.

Definition 6. A session is said to be locally exposed if it was sent a SessionStateReveal

query, a SessionKeyReveal query, or if its owner is corrupted. A session is said to be

exposed if it or its matching session is locally exposed. An unexposed session is said

to be CK–fresh.

With this session freshness definition, a secure protocol is as follows.

Definition 7 (CK–security). Let Π be a protocol such that if two honest parties

complete matching sessions then, except with negligible probability, they both compute

the same session key.

• Π is said to be (CK–)secure if no polynomially bounded adversary can distinguish

a CK–fresh session key from a random value (chosen under the distribution of

session keys) with probability significantly greater than 1/2.

• And Π is said to be CK–secure without forward secrecy1, if it meets the CK

security definition against any adversary which is not allowed to perform Expire

queries.

It is worthwhile to mention that HMQV security arguments [KRA05] are pro-

vided in a variant of the CK model, termed CKHMQV, which defines matching ses-

sions using the matching conversations notion. Sessions are identified with quadruples

(P̂i, P̂j , X, Y) where P̂i is the session owner, P̂j is the peer, and X (resp. Y) is the

outgoing (resp. incoming) ephemeral public key. This matching sessions definition is

used in [KRA05] to “simplify the presentation” [KRA05, section 2, p. 10], however,

this significantly changes the security definition. Also, in separate analyses, Krawczyk

[KRA05, sections 6 and 7.4] allows the adversary to query a SessionStateReveal on the

test session, or to learn the static private key of the test–session owner. Notice also

that, seemingly, the purpose of [KRA05], was not to propose a new security model, as

it refers to [CAN01] for details [KRA05, p. 9], and considers its session identifiers and

matching sessions definition (which make the CK and CKHMQV models incomparable)

as consistent with the CK model [KRA05, p. 10].

1Some authors, [KRA05] for instance, use the term ‘perfect forward secrecy’, but following [BOY03],
we prefer ‘forward secrecy’ to avoid a confusion with (Shannon’s) ‘perfect secrecy’.

49

3.4. The Extended Canetti–Krawczyk Model

Captured Security Attributes. CK–secure protocols provide security against eaves-

dropping only attackers, as a successful eavesdropping only attacker would succeed in

distinguishing test. They provide also the known session key security attribute, since

an adversary gains no useful information about fresh sessions by learning other session

keys.

In addition, within the limits of matching sessions definition2, CK secure protocols

provide impersonation and unknown key share attacks resilience. As if an attacker

was able to makes two non–matching sessions (P̂i, P̂j , ψ, ς) and (P̂t, P̂j , ψ, ς
′) yield the

same session key, it would issue a SessionKeyReveal on one of the sessions and use the

other as test session; key replication attack resilience is captured also.

The CK–security captures also forward secrecy, as if an attacker could compute a

session key, using only the session owner’s session key, it would succeed in distinguish-

ing test, using the following sequence of queries: Test(sid), then Expire(sid), and then

Corrupt(P̂i) (P̂i is the session owner, sid the session identifier). The attacker compute

session key using P̂i’s static key and answers to the test query.

3.4 The Extended Canetti–Krawczyk Model

The eCK model was initially presented as a strengthening of the CK model [LAMA07].

The model focuses on the public key setting. Here also, the adversary is supposed in

control of communications between parties supposed to be probabilistic polynomial

time machines. All parties share a group G, in which their static public keys are chosen.

They share also a common certification authority (CA). At certificate issuance, the CA

is only supposed to test the public key for membership in G∗; no proof of possession

of the corresponding private key is required.

For two–party DH protocols, sessions are activated at each party P̂i, with parame-

ters (P̂i, P̂j) or (P̂i, P̂j , Y), which make P̂i initiate a session with peer P̂j or respond to a

session initiated at P̂j . Each session at P̂i is identified with a quintuple (P̂i, P̂j , X, Y, ς)
where P̂j is the peer, X is the outgoing ephemeral key, Y the incoming one, and ς the

role of P̂i in the session (initiator (I) or responder (R)). Two sessions with identifier

(P̂i, P̂j , X, Y, ς) and (P̂j , P̂i, Y,X, ς
′) (with ς ′ 6= ς) are said to be matching.

A major deviation from the CK model is introduced through the ephemeral key

notion. The ephemeral key of a session is required (1) to contain all session–specific

information, i.e., all ephemeral secret information an attacker may query, and (2) all

computations performed to derive the session key at a party “must deterministically

depend on that party’s ephemeral key, long–term secret key, and communication re-

ceived from the other party” [LAMA07]. Static key leakages are captured through the

StaticKeyReveal query, which provides the attacker with the static private key of the

entity upon which it is issued. The model’s queries are the following.

• EphemeralKeyReveal(sid). When the attacker issues this query, it is provided

with the sid session ephemeral key.

2As discussed in section 3.5 some practical attacks are not considered when matching sessions are
defined using matching identifiers, as in the CK model.

50

3.4. The Extended Canetti–Krawczyk Model

• SessionKeyReveal(sid). If the session sid has already completed, the session

owner provides the attacker with the session key; otherwise, the query is ignored.

• StaticKeyReveal(party). When the attacker issues this query, it is provided with

the static private key of the entity upon which it is issued.

• EstablishParty(party). The adversary registers a static public key on behalf of a

party. As the adversary is in control of communications, from there, the party is

supposed totally controlled by the adversary. A party against which this query

is not issued is said to be honest.

• As in the CK model, a Test(sid) query is provided; recall that when the adversary

issues this query, a bit is chosen at random, and depending on the chosen bit–

value, the adversary is provided with either the sid session key or a random value

chosen under the distribution of session keys.

With these queries, session key freshness and protocol security are defined as follows.

Definition 8 (Session freshness). Let sid be the identifier of a session completed at

an honest party Â with some honest peer B̂.

• The session sid is said to be strongly eCK–fresh if none of the following holds.

– A issues a SessionKeyReveal query on sid or sid∗ (if sid∗ exists).

– A issues a StaticKeyReveal query on Â and an EphemeralKeyReveal query

on sid.

– sid∗ exists, and A makes a StaticKeyReveal query on B̂ and an Ephemeral-

KeyReveal query on sid∗.

– The session with identifier sid∗ does not exist, and A makes a StaticKey-

Reaveal query on B̂ before the completion of the sid session.

• And sid is said to be eCK–fresh if it meets the strong freshness variant, where

the last condition is replaced by

– The session with identifier sid∗ does not exist and Â makes a StaticKeyRe-

veal query on B̂.

Definition 9 (eCK–security). Let Π be a protocol such that if two honest parties

complete matching sessions, they both compute the same session key.

• The protocol Π is said to be strongly eCK–secure if no polynomially bounded

adversary can distinguish a strongly eCK–fresh session key from a random value

(chosen under the distribution of session keys) with probability significantly

greater than 1/2.

• And Π is said to be eCK–secure if no polynomially bounded adversary can

distinguish an eCK–fresh session key from a random value (chosen under the

distribution of session keys) with probability significantly greater than 1/2.

The eCK model provides two security definitions, the strong security definition cap-

tures forward secrecy. However, as shown by Krawczyk [KRA05, section 3.2], no im-

plicitly authenticated two–message protocol such as ours can achieve forward secrecy.

These protocols, can however achieve weak forward secrecy, which (loosely speaking)

is: session keys (previously) computed in presence of an eavesdropping only attacker

cannot be recovered, when the adversary is given the session owner’s static private

key.

51

3.4. The Extended Canetti–Krawczyk Model

Captured Security Attributes. If ephemeral keys are actually defined to con-

tain all information on which leakage may occur in practice3, the eCK model can be

considered as preferable to the CK one, as it captures the main security attributes

captured in the CK model. In addition, the eCK model allows an attacker to issue an

ephemeral key reveal query on a test session. Hence, if the ephemeral key is defined to

contain the ephemeral DH exponent, the eCK model captures the (desirable) security

attribute that an attacker should not be able to compute a session key, unless it knows

both the static and ephemeral private keys of an entity implicated in the session.

3.4.1 The Menezes–Ustaoglu Variant

Until there, we have implicitly made the assumption that, at session activation, a party

knows the identity of its peer; this is the pre–specified peer model [CAN02]. In the

post–specified peer model, a party may not know the identity of its peer at session

activation; the peer’s identity is learned during the protocol run.

Menezes and Ustaoglu [MEN09] propose a variant of the eCK model, called com-

bined eCK model (ceCK), geared to the post model (‘pre–specified peer’ and ‘post–

specified peer’ are respectively shortened to ‘pre’ and ‘post’). In this model, sessions

are activated at a party Â with parameters (Â, B̃) or (Ã, B̂, in), where P̃ is a desti-

nation address for message delivery, and in is the incoming message; Â is the session

initiator if the activation parameter is (Â, B̃). As in the eCK model, the ceCK match-

ing sessions are defined using matching conversations; session identifiers are updated

to contain the peer’s identity once known. In addition to the eCK reveal queries, the

ceCK adversary is also provided with an EphemeralPublicKeyReveal query. When the

adversary issues this query at a party, it obtains the ephemeral public key that the

party will use the next time it is activated for session initialization. Notice that the

ceCK EphemeralPublicKeyReveal query definition seems conflicting with the common

use of ephemeral public key, as an ephemeral public key is usually computed after a

session activation.

Except these differences on session identifiers, session activation parameters, and

the addition of the EphemeralPublicKeyReveal query, the ceCK and eCK security

definitions are the same.

Equally important, the separation between the pre and post models security seems

unclear. The protocol P claimed secure in the pre model, and not executable in the

post model (unless changed in a fundamental way) [MEN09], is in effect insecure in

the pre–model, if the considered security model is strong enough (see section 3.5.1).

The HMQV protocol is executable in the post model, but claimed insecure (in the

post–model). In fact, the proposed attack [MEN09, section 3.2] cannot be carried

out in practice, not because it requires an important on–line computational effort

(260 operations, when the order of G is a 160–bit prime), but since the step (2.c) of

the attack cannot be performed without changing the M̂ found at the step (2.b). In

practice, M̂ (is a certificate, and) is defined to contain M (which is provided to the

certification authority at certificate issuance), and when M is changed, so is M̂ (notice

3Notice that this may differ from the information an adversary is formally allowed to query.

52

3.5. Security Nuances in the (e)CK Models

that changing M requires another certificate issuance); and then, after the step (2.c),

the claimed equality between H̄(X, M̂) and H̄(X, B̂) does not hold.

For the Σ0 protocol (secure in the post model, while insecure in the pre one), the

model in which it is shown secure in the post model [CAN02] is not strong enough; it is

not difficult to see, for instance, that the Σ0 protocol is both eCK and ceCK insecure.

Table 3.1 gives some protocols, the security definition they meet, and the assump-

tions under which the security reductions are carried. All analysis are performed in

the random oracle (RO) model [BEL93b]. The count of computational effort (CE)

at each party is naive, i.e., without optimizations from [MEN96, Algorithm 14.88]

and [MRA96], incoming key validation is not considered also.

Table 3.1: Exemples of Protocols meeting different security definitions.

Protocol Security Assumptions CE

CMQV [UST08] eCK GDH 3
HMQV [KRA05] CKHMQV CDH, KEA1 2.5
MQV [LAW03] — — 2.5
NAXOS [LAMA07] eCK GDH 4
NAXOS–C [MEN09] ceCK GDH 4
UP [UST09] ceCK GDH 3.5

The MQV protocols are probably the most efficient of all know two-party Diffie–

Hellman protocols. However, MQV has not security reduction. The key idea in the

MQV design (a dual identification scheme) is reused in the (C, H)MQV protocols,

yielding efficient protocols. The computational effort for a party in the other proto-

cols is significantly far from the 2.5 exponentiations in the (H)MQV protocols, which

represents only 25% additional computational effort per party, when compared to the

unauthenticated Diffie–Hellman protocol.

3.5 Security Nuances in the (e)CK Models

In this section, we discuss shades of security in the (e)CK models, which can make

practical attacks unconsidered in security reductions.

3.5.1 Inadequacy of the CK Matching Sessions Definition

Recall that, in the CK model, two sessions with activation parameters (P̂i, P̂j , s, role)
and (P̂j , P̂s, s

′, role′) are said to be matching if they have the same identifiers (s = s′).
The requirement about the identifiers (id) used at a party is that “the session id’s of

no two KE sessions in which the party participates are identical” [CAN01]. Session

identifiers may, for instance, be nonces generated by session initiators and provided

to the peers through the first message in the protocol. In this case, when each party

stores the previously used identifiers and verifies at session activation that the session

identifier was not used before, the requirement that a party never uses the same

identifier twice is achieved.

53

3.5. Security Nuances in the (e)CK Models

Unfortunately, when a party, say B̂, has no means to be aware of the sessions

initiated at the other parties, and intended to it, apart from receiving the initiator’s

message, the CK model insufficiently captures impersonations attacks. Consider, for

instance, Protocol 3.1 (wherein H and H2 are digest functions); it is from [MEN09],

and is CK–secure under the Gap Diffie–Hellman assumption [MAU96] and the Ran-

dom Oracle (RO) model [BEL93b]. As the session state is defined to be the ephemeral

DH exponent4, while the protocol P is (formally) CK–secure, its practical security is

unsatisfactory, unless session identifiers are added with further restrictions. If session

identifiers are nonces generated by initiators, the protocol P practically fails in authen-

tication. As an illustration, consider Attack 3.1, wherein the attacker impersonates Â,

exploiting a knowledge of an ephemeral DH exponent used at Â.

Protocol 3.1 The protocol P
Protocol Messages:

Â : a, A, Â B̂ : b, B, B̂
x ∈R [1, q − 1],
X = Gx,

tA = H2(Ba, I, s, Â, B̂, X),

X, tA −→

y ∈R [1, q − 1],
Y = Gy,

tB = H2(Ba,R, s, B̂, Â, Y),

←− Y , tB

K = H(Y x, X, Y) K = H(Xy, X, Y),

I) At session activation with parameters (Â, B̂, s), Â does the following:
(a) Create a session with identifier (Â, B̂, s, I).
(b) Choose x ∈R [1, q − 1].
(c) Compute X = Gx and tA = H2(Ba, I, s, Â, B̂,X).
(d) Send (B̂, Â, s,X, tA) to B̂.

II) At receipt of (B̂, Â, s,X, tA), B̂ does the following:
(a) Verify that X ∈ G∗.
(b) Create a session with identifier (B̂, Â, s,R).
(c) Compute σ = Ab and verify that tA = H2(σ, I, s, Â, B̂,X).
(d) Choose y ∈R [1, q − 1].
(e) Compute Y = Gy, tB = H2(σ,R, s, B̂, Â, Y), and K = H(Xy, X, Y).
(f) Send (Â, B̂, s, I, Y, tB) to Â.
(g) Destroy y, σ, and complete (B̂, Â, s,R) by acceptingK as the session key.

III) At receipt of (Â, B̂, s, I, Y, tB), Â does the following:
(a) Verify the existence of an active session with identifier (Â, B̂, s, I).
(b) Verify that Y ∈ G∗.
(c) Verify that tB = H2(Ba,R, s, B̂, Â, Y).
(d) Compute K = H(Y x, X, Y).
(e) Destroy x, and complete (Â, B̂, s, I), by accepting K as the session key.

4[MEN09] does not specify the information contained in a session state. But, since the adversary
controls communications between parties, we do not see another non–superfluous definition of a session
state which Protocol P can be shown CK–secure with; as the protocol is insecure if the session state
is defined to be σ = Ab.

54

3.5. Security Nuances in the (e)CK Models

Attack 3.1 Impersonation Attack against P using Ephemeral DH exponent Leakage

I) At the activation of a session (Â, B̂, s, I), the attacker A does the following:
(a) Intercept Â’s message to B̂ (B̂, Â, s,X, tA).
(b) Perform a session SesssionStateReveal query on (Â, B̂, s, I) (to obtain x).
(c) Send (Â, B̂, s, I, 1̄, 0|q|) to Â, where 1̄ is the identity element in G and 0|q|

is the string consisting of |q| zero bits (as 1̄ 6∈ G∗, Â aborts the session
(Â, B̂, s, I)).

II) When A decides later to impersonate Â to B̂, it does the following:
(a) Send (B̂, Â, s,X, tA) to B̂.
(b) Intercept B̂’s message to Â (Â, B̂, s, I, Y, tB).
(c) Compute K = H(Y x, X, Y).
(d) Use K to communicate with B̂ on behalf of Â.

The attacker makes B̂ run a session and derive a key with the belief that its peer

is Â; in addition, the attacker is able to compute the session key that B̂ derives; in

practice, this makes the protocol fail in authentication.

The capture of impersonation attacks based on ephemeral DH exponent leakages

is insufficient in the CK–model, unless the matching sessions definition is added with

further restrictions. The reason is that (in a formal analysis) the attacker A cannot

use the session at B̂ (in which it impersonates Â) as a test session, since the matching

session is exposed, while there is no guarantee that (in practice) B̂ would not run and

complete such a session. If matching sessions are defined using matching conversations,

it becomes clear that Protocol P is both formally and practically insecure. Indeed, in

this case, a leakage of an ephemeral DH exponent in a session allows an attacker to

impersonate indefinitely the session owner to its peer in the exposed session.

3.5.2 The eCK Ephemeral Key and the Use of the NAXOS Transforma-

tion

In the eCK model [LAMA07], the ephemeral key of a session is required to contain all

session–specific information an attacker may query, and all computations performed

to derive a session key have to deterministically depend on the ephemeral key, static

key, and communication received from the peer.

The design and security arguments of many eCK secure protocols, among which

CMQV [UST08], NAXOS(+, –C) [LAMA07, LEE08b, MEN09], and NETS [LEE08a],

use the NAXOS transformation [LAMA07], which consists in defining the ephemeral

DH exponent as the digest of a randomly chosen value and the static private key of

the session owner, and (unnaturally) destroying it after each use. The ephemeral key

(i.e., the session specific information the attacker may learn) is then defined to be the

random value. And, as the attacker is not allowed to issue both an EphemeralKeyRe-

veal query on a test session and a StaticKeyReveal query on the session owner, with

this transformation designing eCK–secure protocols is relatively convenient. However,

from a practical perspective, it seems difficult to see how the NAXOS transforma-

tion prevents leakages on the ephemeral DH exponents (which are not contained in

ephemeral keys). How does this transformation prevent an attacker using power ana-

55

3.5. Security Nuances in the (e)CK Models

lysis on the exponentiation to perform, since exponentiations with the DH exponent

are performed in each completed session. And, in any environment, which does not

guarantee that leakages on DH exponents cannot occur, the NAXOS type protocols

security is at best unspecified.

Protocol 3.2 Signed Diffie–Hellman using NAXOS transformation

Protocol Messages:
Â : a, A, Â B̂ : b, B, B̂
rA ∈R [1, q − 1],

X = GH1(rA,a),

σA = SignÂ(B̂, X)

X, σA −→

rB ∈R [1, q − 1],

Y = GH1(rB ,b),

σB = SignB̂(Y, Â, X),

←− Y , σB

K = H2(Y H1(rA,a)) K = H2(XH1(rB ,b))

I) The initiator Â does the following:
(a) Choose rA ∈R [1, q− 1], compute X = GH1(rA,a), and destroy H1(rA, a).
(b) Compute σA = SignÂ(B̂,X).
(c) Send (B̂,X, σA) to B̂.

II) B̂ does the following:
(a) Verify that X ∈ G∗.
(b) Verify that σA is a valid signature with respect to Â’s public key and

message (B̂,X).
(c) Choose rB ∈R [1, q − 1], compute Y = GH1(rB ,b), and destroy H1(rB, b).
(d) Compute σB = SignB̂(Y, Â,X);
(e) Send (Y, Â,X, σB) to Â.
(f) Compute K = H2(XH1(rB ,b)).

III) Â does the following:
(a) Verify that Y ∈ G∗.
(b) Verify that σB is a valid signature with respect to B̂’s public key and

message (Y, Â,X).
(c) Compute K = H2(Y H1(rA,a)).

IV) The shared session key is K.

Consider, for instance, Protocol 3.2, it is from an earlier version5 of [CRE09b].

If the ephemeral keys are defined to be rA and rB (as in the NAXOS security argu-

ments [LAMA07]) and the signature scheme is secure against chosen message attacks,

Protocol 3.2 can be shown eCK–secure. Nevertheless, Protocol 3.2 is insecure if the

ephemeral key is defined to contain the ephemeral DH exponent. In fact, as shown

in Attack 3.2, an adversary which (partially6) learns H1(rA, a) in a session between

5http://eprint.iacr.org/cgi-bin/versions.pl?entry=2009/253, version 20090625.
6If the adversary partially learns H1(rA, a), it recovers the remaining part, using Shanks’ Baby

Step Giant Step algorithm [TES01a] or Pollard’s rho algorithm [TES01a], if the bits it learns are the
most significant ones, or tools from [GOP07] if the leakage is on middle–part bits; recovering H1(rA, a)

56

http://eprint.iacr.org/cgi-bin/versions.pl?entry=2009/253

3.6. Stronger Security

Â and B̂, initiated by Â, can indefinitely impersonate Â to B̂ [SAR10b, SAR10c].

One can see also that the NAXOS protocol [LAMA07] cannot meet the eCK–security

definition, if the ephemeral key is defined to contain the ephemeral DH exponent.

Attack 3.2 Impersonation Attack against SDHNT using Ephemeral DH exponent
Leakage

(1) A records Â’s outgoing message, say (B̂,X(l), σ
(l)
A), together with the learned

ephemeral DH exponent in the leaked session.
(2) Each time A decides to impersonate Â to B̂, it does the following:

(a) Send (B̂,X(l), σ
(l)
A) to B̂.

(b) Intercept B̂’s message to Â (Y, Â,X(l), σB).
(c) Compute K = H2(Y H1(rA,a)).
(d) Use K to communicate with B̂ on behalf of Â.

Session key derivation generally involves some intermediate results (the values a

session owner may need to compute or store between messages), which cannot be

computed, given only the session’s ephemeral private key. For instance, in the protocols

using the NAXOS transformation, ephemeral DH exponents cannot be computed given

only the ephemeral key (the random nonce), in the Protocols 1 and 2 from [KIM09,

pp. 6, 12] (which do not use the NAXOS transformation), an attacker cannot learn

the intermediate value s1 = x + a1 or s2 = x + a2. In fact, in the eCK model, once

the ephemeral key is defined, the parties are considered as black boxes, which may

only leak session keys, ephemeral keys, and static keys. This does not match the

usual protocol implementations, wherein a party may store, and leak intermediate

secret values between messages. And, in any environment, which does not guarantee

that leakages on intermediate secret values cannot occur, the concrete security of the

eCK–secure protocols is unspecified.

3.6 Stronger Security

In this section, we describe the strengthened eCK model [SAR10a, SAR10c], which

considers leakages on intermediate results (the values a party may need to compute

between messages or before a session key), encompasses the eCK model [LAMA07],

and provides stronger reveal queries to the attacker.

A common setting wherein key agreement protocols are often implemented is that

of a server used together with a (computationally limited) tamper–resistant device,

which stores the long–lived secrets. In such a setting, safely reducing the non–idle time

computational effort of the device, is usually crucial for implementation efficiency.

To reduce the device’s non–idle time computational effort, ephemeral keys can be

computed on the device in idle–time, or on the host machine when the implemented

protocol is ephemeral DH exponent leakage resilient.

In many DH protocols, (C, FH, H)MQV–C [LAW03, UST08, SAR09a, KRA05]

and NAXOS(+, –C) [LEE08b, MEN09, LAMA07], for instance, the computation of

from partial leakage requires some additional computations.

57

3.6. Stronger Security

the intermediate results is more costly than that of the ephemeral public key. For these

protocols, implementation efficiency is significantly enhanced when the ephemeral keys

are computed on the device in idle–time, while the intermediate results, which require

expensive on–line computations and session keys are computed on the host machine.

Unfortunately the security of the (e)CK–secure protocols, when leakages on the in-

termediate results are considered is at best unspecified. A security definition which

captures attacks based on intermediate result leakages is clearly desirable. The model

we propose captures such attacks, together with the attacks captured in the (e)CK

models.

Session. We suppose n 6 L(|q|) (for some polynomial L) parties P̂i=1,··· ,n supposed

to be probabilistic polynomial time machines and a certification authority (CA) trusted

by all parties. The CA is only required to verify that public keys are valid ones

(i.e., public keys are only tested for membership in G∗; no proof of possession of

corresponding private key is required). Each party has a certificate binding its identity

to its public key. A session is an instance of the considered protocol, run at a party.

A session at Â (with supposed peer B̂) can be created with parameter (Â, B̂) or

(B̂, Â,m), where m is an incoming message, supposed to be from B̂; Â is the initiator

if the creation parameter is (Â, B̂), otherwise a responder. At session activation, a

session state is created to contain the information specific to the session. Each session

is identified with a tuple (P̂i, P̂j , out, in, ς), wherein P̂i is the session holder, P̂j is

the intended peer, out and in are respectively the concatenation of the messages P̂i

sends to P̂j , or supposes to be from P̂j , and ς is P̂i’s role in the session (initiator or

responder). Two sessions with identifiers (P̂i, P̂j , out, in, ς) and (P̂ ′
j , P̂

′
i , out

′, in′, ς ′) are

said to be matching if P̂i = P̂ ′
i , P̂

′
j = P̂ ′

j , ς 6= ς ′, and at completion in = out′ and

out = in′.
For the two–pass DH protocols, each session is denoted with an identifier (Â, B̂,X,

⋆, ς), where Â is the session holder, B̂ is the peer, X is the outgoing message, ς in-

dicates the role of Â in the session (initiator (I) or responder (R)), and ⋆ is the

incoming message Y if it exists, otherwise a special symbol meaning that an incom-

ing message is not received yet; in that case, when Â receives the incoming public

key Y, the session identifier is updated to (Â, B̂,X, Y, ς). Two sessions with identifiers

(Â, B̂,X, Y, I) and (B̂, Â, Y,X,R) are said to be matching. Notice that the session

matching (B̂, Â, Y,X,R) can be any session (Â, B̂,X, ⋆, I); as X,Y ∈R G∗, a session

cannot have (except with negligible probability) more than one matching session.

Adversary and Security. The adversary A, is a probabilistic polynomial time

machine; outgoing messages are submitted to A for delivery (A decides about mes-

sages delivery). A is also supposed to control session activations at each party via

the Send(P̂i, P̂j) and Send(P̂j , P̂i, Y) queries, which make P̂i initiate a session with

peer P̂j , or respond to the (supposed) session (P̂j , P̂i, Y, ⋆, I). We suppose that the

considered protocol is implemented at a party following one of the approaches hereun-

der. We suppose also that at each party an untrusted host machine is used together

with a tamper–resistant device. Notice that basing our model on these implemen-

58

3.6. Stronger Security

tation approaches does not make it specific; rather, this reduces the gap that often

exists between formal and practical security. Such modeling techniques, which take

into account hardware devices and communication flows between components, were

previously used in [BRE02].

Approach 1. In this approach, the static keys are stored on the device (a smart–card,

for instance) the ephemeral keys are computed on the host machine, passed to

the smart–card together with the incoming public keys; the device computes

the session key, and provides it to the host machine (application) for use. The

information flow between the device and the host machine is depicted in Fig-

ure (3.1a). This implementation approach is safe for eCK–secure protocols when

ephemeral keys are defined to be ephemeral DH exponents, as a leakage on an

ephemeral DH exponent does not compromise the session in which it is used. In

addition, when an attacker learns a session key, it gains no useful information

about the other session keys.

Host Machine

Card Reader Smart–Card

x,X, Y, B̂

x,X, Y, B̂ a, Â

· · ·
K

K

(a) Implementation Approach 1

Host Machine

Card Reader Smart–Card

Y, B̂

Y, B̂ x,X, a, Â

· · ·
IR

IR

(b) Implementation Approach 2

Figure 3.1: Implementation Approaches

Approach 2. Another approach, which has received less attention in the formal treat-

ment of DH protocols, is when the ephemeral keys, and top level intermediate

results are computed on the device, and the host machine is provided with some

intermediate results IR which it computes the session key with. As the compu-

tation of the intermediate results is often more costly than that of the ephemeral

public keys, implementation efficiency is often significantly enhanced using this

approach. Naturally, this comes with the requirement that leakages on the in-

termediate results should not compromise any unexposed session; and whatever

intermediate results an attacker learns, it should not be able to impersonate a

party, unless it knows the party’s static private key. Namely, an adversary may

have a malware running on the host machine at a party, and learn all values

computed or used at the party, except those stored in the party’s tamper–proof

device; this should not compromise any unexposed session.

We define two sets of queries, modeling leakages that may occur on either imple-

mentation approaches. We consider leakages on ephemeral and static private keys,

and also on any intermediate (secret) value which evaluation requires some secret in-

formation. As the adversary can compute any information which evaluation requires

only public information, considering leakages on such data is superfluous.

In Set 1, which models leakages in the first implementation approach, the following

59

3.6. Stronger Security

queries are allowed.

• EphemeralKeyReveal(session): this query models leakages on ephemeral DH ex-

ponents.

• CorruptSC(party): this query models an attacker which (bypasses the eventual

tamper protection mechanisms on the device, and) gains read access to the de-

vice’s private memory; it provides the attacker with the device owner’s static

private key.

• SessionKeyReveal(session): when the attacker issues this query on an already

completed session, it is provided with the session key.

• EstablishParty(party): with this query, the adversary registers a static key on

behalf of a party; as the adversary controls communications, from there the

party is supposed totally controlled by A. A party against which this query is

not issued is said to be honest.

In Set 2, which models leakages on the second implementation approach, the following

queries are allowed; the definitions remain unchanged for the queries belonging also

to Set 1.

• For any node in the intermediate results, which computation requires a secret

value, a reveal query is defined to allow leakage on the information computed in

this node. These queries models leakages that may occur on intermediate results

in computing session keys.

• SessionKeyReveal(session).

• EstablishParty(party).

• CorruptSC(party).

Before defining the seCK security, we define the session freshness notion. Test queries

can only be performed on fresh sessions.

Definition 10 (Session Freshness [SAR10a, SAR10c]). Let Π be a protocol, and Â

and B̂ two honest parties, sid the identifier of a completed session at Â with peer B̂,

and sid′ the matching session’s identifier. The session sid is said to be locally exposed

if one of the following holds.

• A issues a SessionKeyReveal query on sid.

• The implementation at Â follows the first approach and A issues an Ephemer-

alKeyReveal query on sid and a CorruptSC query on Â.

• The implementation at Â follows the second approach and A issues an interme-

diate result query on sid.

The session sid is said to be exposed if (1) it is locally exposed, or (2) its matching

session sid′ exists and is locally exposed, or (3) the session with identifier sid′ does

not exist and A issues a CorruptSC query on B̂. An unexposed session is said to be

fresh.

Our session freshness conditions match exactly the intuition of the sessions one

may hope to protect. In particular, it lowers (more than in the eCK model) the

necessary adversary restrictions for any reasonable security definition. Notice that

only the queries corresponding to the implementation approach followed by a party

can be issued on it.

60

3.7. Relations between the seCK and eCK models

Definition 11 (Strengthened eCK–Security [SAR10a, SAR10c]). Let Π be a protocol,

such that if two honest parties complete matching sessions, then they both compute

the same session key. The protocol Π is said to be seCK–secure, if no polynomially

bounded adversary can distinguish a fresh session key from a random value, chosen

under the distribution of session keys, with probability significantly greater than 1/2.

Forward Secrecy. As shown in [KRA05], no implicitly authenticated two–message

protocol such as ours can achieve forward secrecy. Indeed, our security definition

captures weak forward secrecy, which (loosely speaking) is: any session established

without an active involvement of the attacker remains secure, even when the implicated

parties static keys are disclosed. The seCK security definition can be completed with

the session key expiration notion [CAN01] to capture forward secrecy. Although the

protocol we propose can be added with a third message, and yield a protocol which

(provably) provides forward secrecy, in the continuation, we work with the security

definition without forward secrecy, and focus on two–pass DH protocols.

3.7 Relations between the seCK and eCK models

In the eCK model, an adversary may compromise the ephemeral key, static key, or

session key at a party, independently of the way the protocol is implemented. The

seCK model considers an adversary which may (have a malware running at a party’s

host machine and) learn all information at the party, except those stored in a tamper–

resistant device. The seCK approach seems more prevalent in practice, and reduces

the gap that often exists between formal arguments and practical implementations

security.

The eCK and seCK session identifiers and matching sessions definitions are the

same. When the adversary issues the CorruptSC query at a party, it is provided with

the party’s static key; the CorruptSC query is the same as the eCK StaticKeyReveal

query. For a session between two parties, say Â and B̂, following the first implemen-

tation approach, the seCK session freshness definition reduces to the eCK freshness

with ephemeral keys defined to be the ephemeral DH exponents. By assuming that all

parties follow the first implementation approach, the seCK–security definition reduces

to the eCK one; the seCK model encompasses the eCK one.

Proposition 2. Any seCK–secure protocol is also an eCK–secure one.

The seCK model also separates clearly from the eCK model. The eCK model

does not consider leakages on intermediate results; and this makes many of the eCK

secure protocols insecure in the seCK model. For instance, in the CMQV protocol

(shown eCK–secure) [UST08], an attacker which learns an ephemeral secret exponent

in a session, can indefinitely impersonate the session owner; the same holds for the

(H)MQV(–C) protocols (see sections 4.5 and 4.6). It is not difficult to see that NAXOS

cannot meet the seCK security definition. The protocols 1 and 2 from [KIM09, pp. 6,

12] (shown eCK–secure) fail in authentication when leakages one the intermediate

results are considered. Indeed an attacker, which learns the ephemeral secret exponents

61

3.8. The Strengthened MQV Protocol

s1 = x+ a1 and s2 = x+ a2 in a session at Â, can indefinitely impersonate Â to any

party. Notice that the attacker cannot compute Â’s static key from s1 and s2, while

it is not difficult to see that leakages on s1 (or s2) and the ephemeral key, in the same

session imply Â’s static key disclosure.

Also, the seCK model is not only about the formal treatment of key agreement

protocols, it is also about securely implementing authenticated key exchange. When

a protocol is shown secure in the seCK model, it is also clearly specified how it can

be securely implemented. In fact, providing security arguments in the seCK model,

includes (1) stating which operations or data have to be handled in an area with the

same protection mechanisms as the area in which is stored the session owner’s static

key, and (2) stating which information can be computed or stored in an untrusted

area. Notice that the existence of protection mechanisms for a static private key is

inherent to the ability to keep secret a static secrete information; this is a prerequisite

for cryptography.

The seCK model is practically stronger than the CK model [CAN01]. Key Com-

promise Impersonation resilience, for instance, is captured in the seCK model while

not in CK model. As shown in [CHO05], and illustrated in section 4.6 with Proto-

col P, the CK model is enhanced when matching sessions are defined using matching

conversations. In addition, the seCK reveal query definitions go beyond the usual

CK session state definition (ephemeral DH exponents). Compared to the CKHMQV

model7 [KRA05], the reveal query definitions are enhanced in the seCK model to

capture attacks based on intermediate result leakages. In the HMQV security argu-

ments [KRA05, subsection 7.4], the session state is defined to contain the ephemeral

DH exponent8; the HMQV protocol does not meet the seCK–security.

3.8 The Strengthened MQV Protocol

In this section, we present the strengthened MQV protocol, and its building blocks,

to show that the seCK security definition is useful, and not limiting; as seCK–secure

protocols can be built with usual building blocks. We start with the following variants

of the FXCR and FDCR signature schemes (see section 4.7).

Definition 12 (FXCR–1 Signature). Let B̂ be a party with public key B ∈ G∗, and

Â a verifier; B̂’s signature on a message m and challenge X provided by Â (x ∈R

[1, q − 1] is chosen and kept secret by Â) is SigB̂(m,X) = (Y,XsB), where Y = Gy,

y ∈R [1, q−1] is chosen by B̂, and sB = ye+b, where e = H̄(Y,X,m). And, Â accepts

the pair (Y, σB) as a valid signature if Y ∈ G∗ and (Y eB)x = σB.

The security of the FXCR–1 schemes can be shown with arguments similar to that of

the FXCR scheme, given in section 4.7.1.

7CKHMQV is the variant of the CK model in which the HMQV security arguments are provided;
however, it seems that the aim of [KRA05] was not to propose a new model, as it refers to [CAN01]
for details [KRA05, p. 9], and considers its session identifiers and matching sessions definition (which
make the CK and CKHMQV models incomparable) as consistent with the CK model [KRA05, p. 10].
See [CRE09b] for a comparison between the CKHMQV and (e)CK models.

8In [KRA05, subsection 5.1], the session state is defined to contain the ephemeral public keys, but
this definition is superfluous, as the adversary controls communications between parties.

62

3.8. The Strengthened MQV Protocol

Proposition 3 (FXCR–1 Security). Under the CDH assumption in G and the RO

model, there is no adaptive probabilistic polynomial time attacker, which given a public

key B, a challenge X0 (B,X0 ∈R G∗), together with hashing and signing oracles,

outputs with non–negligible success probability a triple (m0, Y0, σ0) such that:

(1) (Y0, σ0) is a valid signature with respect to the public key B, and the message–

challenge pair (m0, X0); and

(2) (Y0, σ0) was not obtained from the signing oracle with a query on (m0, X0).

The dual variant of the FXCR–1 scheme is as follows.

Definition 13 (FDCR–1 Scheme). Let Â and B̂ be two parties with public keysA,B ∈
G∗, and m1,m2 two messages. The dual signature of Â and B̂ on the messages m1,m2

is DSigÂ,B̂(m1,m2, X, Y) = (XdA)ye+b = (Y eB)xd+a, where X = Gx and Y = Gy are

chosen respectively by Â and B̂, d = H̄(X,Y, m1,m2), and e = H̄(Y,X,m1,m2).

As for the FXCR–1 scheme, the following proposition can be shown with arguments

similar to that of the FDCR scheme 4.7.2.

Proposition 4 (FDCR–1 Security). Let A = Ga, B,X0 ∈R G∗ (A 6= B). Under the

RO model, and the CDH assumption in G, given a,A,B,X0, a message m10, a hashing

oracle, together with a signing oracle (simulating B̂’s role), no adaptive probabilistic

polynomial time attacker can output, with non–negligible success probability a triple

(m20 , Y0, σ0) such that:

(1) DSigÂ,B̂(m10 ,m20 , X0, Y0) = σ0; and

(2) (Y0, σ0) was not obtained from the signing oracle with a query on some (m′
1, X

′)
such that X0 = X ′ and (m′

1,m
′
2) = (m10 ,m20), where m′

2 is a message re-

turned at signature query on (m′
1, X

′); (m10 ,m20) denotes the concatenation of

m10 and m20.

The strengthened MQV protocol follows from the FDCR–1 scheme; a run of SMQV is

as in Protocol 3.3. The execution aborts if any verification fails. The shared secret σ

is the FDCR–1 signature of Â and B̂, on challenges X,Y and messages Â, B̂ (the

representation of Â and B̂’s identities). The parties identities and ephemeral keys are

used in the final digest computation to make the key replication resilience security

attribute immediate (and also to avoid unknown key share attacks). A run of SMQV

requires 2.5 times a single exponentiation (2.17 times a single exponentiation when the

multiple exponentiation technique [MEN96, Algorithm 14.88] is used); this efficiency

equals that of the remarkable (H, FH)MQV protocols. SMQV provides all the security

attributes of the (C, H)MQV protocols, added with ephemeral secret exponent leakage

resilience.

Moreover, suppose an implementation of SMQV or (C, H)MQV using an un-

trusted9 host machine together with a computationally limited tamper resistant device;

and suppose that the session keys are used by some applications running on the host

machine, and that the ephemeral keys are computed on the device in idle–time. This

idle–time pre–computation seems common in practice [SCH91] (and possible in both

9There are many reasons for not trusting the host machine: bogus or trojan software, viruses, etc.

63

3.8. The Strengthened MQV Protocol

Protocol 3.3 The Strengthened MQV Protocol

Protocol Messages:
Â : a, A, Â B̂ : b, B, B̂
x ∈R [1, q − 1],
X = Gx,

(Â, B̂, X) −→

y ∈R [1, q − 1],
y = Gy,

←− (B̂, Â, Y)

sA = (xd + a) mod q, sB = (ye + b) mod q,

σA = (Y eB)sA σB = (XdA)sB ,

K = H(σA, Â, B̂, X, Y) K = H(σB , Â, B̂, X, Y).

I) The initiator Â does the following:
(a) Choose x ∈R [1, q − 1].
(b) Compute X = Gx.
(c) Send (Â, B̂,X) to the peer B̂.

II) At receipt of (Â, B̂,X), B̂ does the following:
(a) Verify that X ∈ G∗.
(b) Choose y ∈R [1, q − 1].
(c) Compute Y = Gy.
(d) Send (B̂, Â, Y) to Â.
(e) Compute d = H̄(X,Y, Â, B̂) and e = H̄(Y,X, Â, B̂).
(f) Compute sB = ye+ b mod q and σ = (XdA)

sB .
(g) Compute K = H(σ, Â, B̂,X, Y).

III) At receipt of (B̂, Â, Y), Â does the following:
(a) Verify that Y ∈ G∗.
(b) Compute d = H̄(X,Y, Â, B̂) and e = H̄(Y,X, Â, B̂).
(c) Compute sA = xd+ a mod q, and σ = (Y eB)sA .
(d) Compute K = H(σ, Â, B̂,X, Y).

IV) The shared session key is K.

the (C, H)MQV and SMQV protocols). But, as (C, H)MQV(–C) is not ephemeral

secret exponent leakage resilient (see section 4.6), the ephemeral secret exponents

(sA = x + da or sB = y + eb) cannot be used on the untrusted host machine. The

exponentiation σ = (Y Be)sA = (XAd)sB has to be performed on the device in non

idle–time. In contrast, for SMQV, σ = (Y eB)sA = (XdA)sB can be computed on the

host machine, after the ephemeral secret exponent is computed on the device. Because

the session key is used on the host machine, and a leakage of only the ephemeral secret

exponent, in a SMQV session, does not compromise any other session; there is no need

to protect the ephemeral secret exponent more than the session key. In SMQV, the

non–idle time computational effort of the device reduces to few non–costly operations

(one integer addition, one integer multiplication, and one digest computation), while

for (C, H)MQV at least one exponentiation has to be performed on the device in non

idle–time.

Table 3.2 summarizes the comparisons between SMQV and some other DH pro-

64

3.9. Security Analysis of the SMQV Protocol

Table 3.2: Security and Efficiency Comparison between SMQV and other DH protocols.

Protocol Security Assumptions NC NICE 1 NICE 2

CMQV [UST08] eCK GDH 3E 1E 1E
FHMQV [SAR09a] CKFHMQV GDH 2.5E 1E 1D + 1A + 1M
HMQV [KRA05] CKHMQV GDH, KEA1 2.5E 1E 1E
MQV [LAW03] – – 2.5E 1E 1E
NAXOS [LAMA07] eCK GDH 4E 3E 3E
NAXOS–C [MEN09] ceCK GDH 4E 3E 3E
SMQV [SAR10c] seCK GDH 2.5E 1E 1D + 1A + 1M

tocols. All the security reductions are performed using the Random Oracle model

[BEL93b]; incoming ephemeral keys are validated10. KEA1 stands for “Knowledge

of Exponent Assumption” [BEL04], CDH and GDH stand respectively for “Com-

putational DH” and “Gap DH” assumptions [OKA01]. The ‘A’, ‘D’, ‘E’, and ‘M’

stand respectively for integer addition, digest computation, exponentiation, and inte-

ger multiplication. The NC column indicates the naive count efficiency (i.e., without

optimizations from [MEN96, Algorithm 14.88] or [MRA96]); NICE 1 and NICE 2 indi-

cate the non–idle time computational effort of the device in the two approaches (when

ephemeral keys are computed in idle–time).

The MQV protocol has no security reduction11. The FHMQV security arguments

were initially provided in a model which considers intermediate results and ephemeral

key leakages in two separate settings; the model implicitly assumes that all parties

follow the same implementation approach, and cannot be shown to encompass the CK

or eCK models. (However, FHMQV can be shown to meet the seCK security definition

— the protocol is discussed in section 4.7.) In contrast, the seCK model considers also

the security of sessions between parties following different implementation approaches,

and its matching sessions definition makes it encompass the eCK model. The CMQV

and NAXOS protocols are shown eCK–secure, they both use the NAXOS transfor-

mation. The NAXOS–C security arguments are provided in the combined eCK model

(ceCK) [MEN09], geared to the post–specified peer model.

3.9 Security Analysis of the SMQV Protocol

The SMQV protocol provides more security attributes than the NAXOS(+, –C), (C,

H)MVQ protocols, in addition to allow particularly efficient implementations, in en-

vironments wherein a tamper proof device is used to store private keys.

10Ephemeral key validation is voluntarily omitted in the HMQV design [KRA05], but the HMQV
protocol is known to be insecure if ephemeral keys are not validated [MEN06].

11We are aware of [KUN06], which shows that (under the RO model and the CDH assumption) the
MQV variant wherein d and e are computed as H̄(X) and H̄(Y), is secure in a model of their own
design. Notice that, for this variant, an attacker which finds x0 ∈ [1, q− 1] such that H̄(Gx0) = 0, can
impersonate any party to any other party. Finding such an x0 requires O(2l) digest computations
(see section 4.5).

65

3.9. Security Analysis of the SMQV Protocol

Theorem 3. Let sA = xd + a and σ = (Y eB)sA , where d = H̄(X,Y, Â, B̂) and

e = H̄(Y,X, Â, B̂), be the intermediate results in a session at Â with peer B̂. Under

the GDH assumption in G and the RO model, the SMQV protocol is seCK–secure.

In accordance with our security model, the following session activation queries are

allowed.

• Send(Â, B̂), which makes Â perform the step I) of Protocol 3.3, and create a

session with identifier (Â, B̂,X, ⋆, I).
• Send(Â, B̂,X), which makes B̂ perform the step II) of Protocol 3.3, and create

a session with identifier (B̂, Â, Y,X,R).
• Send(Â, B̂,X, Y), which makes Â update the session identifier (Â, B̂,X, ⋆, I) (if

any) to (Â, B̂, X, Y, I) and perform the step III) of SMQV.

The queries in Set 1 are the following: EphemeralKeyReveal, CorruptSC, Session-

KeyReveal, and EstablishParty. In Set 2, the allowed queries are:

(a) CorruptSC, to obtain the static private key of a party;

(b) SessionKeyReveal, to obtain a session key;

(c) SecretExponentReveal, to obtain a secret exponent s = xd+ a or ye+ b;

(d) SessionSignatureReveal, to obtain a session signature σ;

(e) EstablishParty(party) to register a static public key on behalf of a party.

Recall that an algorithm is said to be a Decisional Diffie–Hellman Oracle (DDHO)

if on input G,X = Gx, Y = Gy, and Z chosen uniformly at random in G, it outputs 1
if and only if Z = Gxy. And the Gap DH (GDH) assumption [OKA01] is said to hold

in G∗ if given a DDHO, there is no polynomially bounded algorithm, which solves the

CDH problem in G, with non–negligible success probability.

3.9.1 Proof of Theorem 3.

It is immediate from the definition of SMQV that if two honest parties complete

matching sessions, they compute the same session key. Suppose that A succeeds

with probability significantly greater than 1/2 in distinguishing a fresh session key

from a random value. Distinguishing a fresh session key from a random value can be

performed only in one of the following ways.

Guessing attack: A guesses correctly the test session key.

Key replication attack: A succeeds in making two non–matching sessions yield the

same session key, it then issues a session key reveal query on one of the sessions,

and uses the other as test session.

Forging attack: A computes the session signature σ, and issues a digest query to

get the session key.

Under the RO model, guessing and key replications attacks cannot succeed, except

with negligible probability. (Key replication attacks cannot succeed, as if X 6= X ′,
or Y 6= Y ′, or Â 6= Â′, or B̂ 6= B̂′, the probability that H(σ, Â, B̂,X, Y) equals

H(σ′, Â′, B̂′, X ′, Y ′) is negligible.) We thus suppose that A succeeds with non–negligible

probability in forging attack. Let E be the event “A succeeds in forging the signature

of some fresh session (that we designate by sid0 = (Â, B̂,X0, Y0, ς)).” The event E

66

3.9. Security Analysis of the SMQV Protocol

divides in E.1: “A succeeds in forging the signature of a fresh with matching session,”

and E.2: “A succeeds in forging the signature of a fresh without matching session.”

It suffices to show that neither E.1 nor E.2 can occur with non–negligible probability.

Recall that a function ε(·) is said to be negligible if for all c > 0, there is some kc such

that for all k > kc, ||ε(k)|| < k−c.

Analysis of E.1

Suppose that E.1 occurs with non–negligible probability; at least one of the following

events occurs with non–negligible probability.

E.1.1: “E.1 ∧ both Â and B̂ follow the first implementation approach”;

E.1.2: “E.1 ∧ both Â and B̂ follow the second implementation approach”;

E.1.3: “E.1 ∧ Â and B̂ follow different implementation approaches.”

We have to show that none of E.1.1, E.1.2 and E.1.3 can occur, except with negligible

probability.

Analysis of E.1.1. Since the test session is required to be fresh, the strongest

queries that A can perform on Â, B̂, the test session, and its matching session are

(i) CorruptSC queries on both Â and B̂; (ii) EphemeralKeyReveal queries on both

sid0 and sid′
0; (iii) a CorruptSC query on Â and an EphemeralKeyReveal query on

sid′
0; (iv) an EphemeralKeyReveal query on sid0 and a CorruptSC query on B̂. It thus

suffices to show that none of the following events can occur with non–negligible prob-

ability.

E.1.1.1: “E.1.1 ∧ A issues CorruptSC queries on both Â and B̂”;

E.1.1.2: “E.1.1 ∧ A issues EphemeralKeyReveal queries on both sid0 and sid′
0”;

E.1.1.3: “E.1.1 ∧ A issues a CorruptSC query on Â and an EphemeralKeyReveal query

on sid′
0”;

E.1.1.4: “E.1.1 ∧ A issues an EphemeralKeyReveal query on sid0 and a CorruptSC

query on B̂.”

Since from any polynomial time machine, which succeeds in E.1.1 and performs weaker

queries, one can build a polynomial time machine which succeeds with the same prob-

ability, and performs one the strongest allowed queries.

Event E.1.1.1. Suppose that E.1.1.1 occurs with non–negligible probability, using A we

build a polynomial time CDH solver S, which succeeds with non–negligible probability.

The solver interacts with A as follows.

(1) S simulates A’s environment, with n parties P̂1, · · · , P̂n, and assigns to each P̂k a

random static key pair (pk, Pk = Gpk), together with an implementation approach

indication. We only suppose that the number of parties following the first imple-

mentation approach is n1 > 2. S starts with two empty digest records H1 and H2.

Since A is polynomial (in |q|), we suppose that each party is activated at most m

times (m,n 6 L(|q|) for some polynomial L). S chooses i, j ∈R {k | P̂k follows the

first implementation approach}, and t ∈R [1,m] (with these choices, S is guessing

the test session). We refer to P̂i as Â and P̂j as B̂.

67

3.9. Security Analysis of the SMQV Protocol

(2) At H̄ digest query on some ̺ = (X,Y, P̂l, P̂m), S answers as follows: if there exists

some d such that (̺, d) already belongs to H1, S returns d; else, S provides A with

d ∈R {0, 1}l, and appends (̺, d) to H1.

(3) At H digest query on some ψ = (σ, P̂l, P̂m, X, Y), S responds as follows: if (ψ, κ)
already belongs to H2, for some κ, S returns κ; else, S chooses κ ∈R {0, 1}λ,

provides A with κ, and appends (ψ, κ) to H2.

(4) At Send(P̂l, P̂m) query, S chooses x ∈R [1, q − 1], creates a session with identifier

(P̂l, P̂m, X, ⋆, I), and provides A with the message (P̂l, P̂m, X).
(5) At Send(P̂m, P̂l, Y) query, S chooses x ∈R [1, q−1], creates a session with identifier

(P̂l, P̂m, X, Y,R), provides A with the message (P̂l, P̂m, X), and completes the

session (P̂l, P̂m, X, Y,R) (S also updates H1 and H2 in this step).

(6) At Send(P̂l, P̂m, X, Y) query, S updates the identifier (P̂l, P̂m, X, ⋆, I) (if any) to

sid = (P̂l, P̂m, X, Y, I). If the sid′ session exists and is already completed, S sets

the sid session key to that of sid′. Else, if a digest query was previously issued on

some ψ = (σ, P̂l, P̂m, X, Y), and if σ is the sid session signature (S can compute the

session signature), S sets the session key to H(ψ). Else, S chooses κ ∈R {0, 1}λ,

sets the session key to κ, and updates H2.

(7) If A issues a CorruptSC , an EphemeralKeyReveal, a SessionKeyReveal, or an Estab-

lishParty query at a party following the first implementation approach, S answers

faithfully.

(8) If A issues a CorruptSC , a SessionKeyReveal, a SecretExponentReveal, a Ses-

sionSignatureReveal, or an EstablishParty query at a party following the second

implementation approach, S answers faithfully.

(9) At the activation of the t–th session at Â, if the peer is not B̂, S aborts; else,

S provides A with (Â, B̂,X0) (recall that S takes as input X0 and Y0 ∈R G∗).

(10) At the activation of the session matching the t–th session at Â, S provides A
with (B̂, Â, Y0).

(11) In any of the following situations, S aborts.

• A halts with a test session different from the t–th session at Â.

• A issues a SessionKeyReveal or an EphemeralKeyReveal query on the t–th

session at Â or its matching session.

• A issues an EstablishParty query on Â or B̂.

(12) If A provides a guess σ0 of the test session signature, S outputs

(

σ0(Xd0
0 A)−bY −ae0

0

)(d0e0)−1

=
(

(Xd0
0 A)y0e0Y −ae0

0

)(d0e0)−1

=
(

(Y e0
0)x0d0+aY −ae0

0

)(d0e0)−1

as a guess for CDH(X0, Y0). Otherwise S aborts.

The simulated environment is perfect except with negligible probability; and if A is

polynomial, so is S. When A activates the test session and its matching session,

the ephemeral keys X0 and Y0 it is provided with are chosen uniformly at random

in G∗; their distribution is the same as that of the real X and Y. The probabil-

68

3.9. Security Analysis of the SMQV Protocol

ity of guessing correctly the test session is (n2
1m)−1

; and if S guesses correctly the

test session and E.1.1.1 occurs, S does not abort. Thus S succeeds with probabi-

lity (n2
1m)−1 Pr(E.1.1.1) which is non–negligible, unless Pr(E.1.1.1) is negligible. This

shows that under the CDH assumption and RO model, E.1.1.1 cannot occur, except

with negligible probability.

Event E.1.1.2. If E.1.1.2 occurs with non–negligible probability, using A, we build

a polynomial time CDH solver, which succeeds with non–negligible probability. For

this purpose, we modify the simulation in the analysis of E.1.1.1 as follows.

• S takes as input A,B ∈R G∗.

• Â and B̂’s public keys are set to A and B; the corresponding private keys are

unknown. (S also keeps a list of the completed session identifiers together with

the session keys.)

• At Send(P̂m, P̂l, Y) query, with P̂l = Â or B̂, S responds as follows.

– S chooses x ∈R [1, q−1], computes X = Gx, creates a session with identifier

sid′ = (P̂l, P̂m, X, Y,R), and provides A with the message (P̂l, P̂m, X).
– S chooses κ ∈R {0, 1}λ, d, e ∈R {0, 1}l and sets H̄(X,Y, P̂m, P̂l) = d,

H̄(Y,X, P̂m, P̂l) = e, and the sid′ session key to κ.

• At Send(P̂l, P̂m, X, Y) query, with P̂l = Â or B̂, S does the following.

– S updates the session identifier (P̂l, P̂m, X, ⋆, I) (if any) to sid = (P̂l, P̂m, X,

Y, I).
– And, (i) if a value is already assigned to the sid′ session key, S sets the

sid session key to that of sid′. (ii) Else, if a digest query was previously

issued on some ψ = (σ, P̂l, P̂m, X, Y), and if σ = CDH(XdPl, Y
ePm) (in

this case, d and e are already defined, and the verification is performed

using the DDHO), S sets the sid session key to H(ψ). (iii) Else, S chooses

κ ∈R {0, 1}λ, and sets the sid session key to κ; if no value was previously

assigned to h1 = H̄(X,Y, P̂l, P̂m) (resp. h2 = H̄(Y,X, P̂l, P̂m)), S chooses

d ∈R {0, 1}l and sets h1 = d (resp. h2 = d).

• At A’s digest query on ψ = (σ, P̂l, P̂m, X, Y), with P̂l = Â or B̂, or P̂m = Â or

B̂, S responds as follows.

– If there is some κ such that (ψ, κ) already belongs to H2, S returns κ.

– Else, (i) if there is an already completed session with identifier sid =
(P̂l, P̂m, X, Y, I) or sid′, and if σ = CDH(XdPl, Y

ePm), then S returns

the completed session’s key. (ii) Else, S chooses κ ∈R {0, 1}λ, sets H(ψ) =
κ, and provides A with κ; if no value was previously assigned to h1 =
H̄(X,Y, P̂l, P̂m) (resp. h2 = H̄(Y,X, P̂l, P̂m)), S chooses d ∈R {0, 1}l and

sets h1 = d (resp. h2 = d).

• When A activates the t–th session at Â, if the peer is not B̂, S aborts; else S
chooses x0 ∈R [1, q − 1], and provides A with the message (Â, B̂,X0 = Gx0).

• When A activates the session matching the t–th session at Â, S chooses y0,∈R

[1, q − 1], and provides A with (B̂, Â, Y0 = Gy0).
• If A issues an EphemeralKeyReveal query on the t–th session at Â or its matching

session, S answers faithfully.

69

3.9. Security Analysis of the SMQV Protocol

• S aborts in any of the following situations:

– A halts with a test session different from the t–th session at Â;

– A issues a SessionKeyReveal query on the t–th session at Â or its matching

session;

– A issues a CorruptSC or an EstablishParty query on Â or B̂;

• If A halts with a guess σ0 fo the test session signature, S outputs a guess of

CDH(A,B) from σ0, x0, y0, d0, and e0.

Under the RO model, the simulation remains perfect, except with negligible prob-

ability. And, if E.1.1.2 occurs with non–negligible probability, A succeeds with non–

negligible probability under this simulation. If A succeeds and S guesses correctly the

test session (this happens with probability (n2
1m)−1 Pr(E.1.1.2)), S outputs CDH(A,B).

Under the GDH assumption and the RO model, E.1.1.2 cannot occur, unless with neg-

ligible probability.

Events E.1.1.3 and E.1.1.4. The roles of Â and B̂ in E.1.1.3 and E.1.1.4 are symmetri-

cal; it then suffices to discuss E.1.1.3. If E.1.1.3 occurs with non–negligible probability,

using A, we build a polynomial time CDH solver which succeeds with non–negligible

probability. We modify the simulation in the analysis if E.1.1.1 as follows.

• S takes as input X0, B ∈R G∗.

• B̂’s public key is set to B (the corresponding private key is unknown), and Â’s

key pair is (a = pi, G
a), pi ∈R [1, q − 1].

• At Send(P̂m, B̂,X) query, S responds as follows. (i) S chooses y ∈R [1, q − 1],
computes Y = Gy, creates a session with identifier sid′ = (B̂, P̂m, Y,X,R), and

provides A with the message (B̂, P̂m, Y). (ii) S chooses κ ∈R {0, 1}λ, d, e ∈R

{0, 1}l, sets the sid′ session key to κ, H̄(X,Y, P̂m, B̂) = d, and H̄(Y,X, P̂m, B̂) =
e.

• At Send(B̂, P̂m, Y,X) query:

– S updates the session identifier (B̂, P̂m, Y, ⋆, I) (if any) to sid = (B̂, P̂m, Y,

X, I).
– And, (i) if a value is already assigned to the sid′ session key, S sets the

sid session key to that of sid′. (ii) Else, if a digest query was previously

issued on some ψ = (σ, B̂, P̂m, Y,X) (in this case, d and e are defined) and

if σ = CDH(XdPm, Y
eB), S sets the sid session key to H(ψ). (iii) Else,

S chooses κ ∈R {0, 1}λ and sets the sid session key to κ; if no value was

previously assigned to h1 = H̄(Y,X, B̂, P̂m) (resp. h2 = H̄(X,Y, B̂, P̂m)), S
chooses d ∈R {0, 1}l and sets h1 = d (resp. h2 = d).

• At A’s digest query on some ψ = (σ, P̂l, P̂m, X, Y), with P̂l = B̂ or P̂m = B̂,

S responds as follows. (i) If the same query was previously issued, S returns

the previously returned value. (ii) Else, if there is an already completed session

with identifier sid = (P̂l, P̂m, X, Y, I) or sid′, and if σ = CDH(XdPl, Y
ePm),

S returns the completed session’s key. (iii) Else, S chooses κ ∈R {0, 1}λ, sets

H(ψ) = κ, and provides A with κ. If no value was previously assigned to

h1 = H̄(X,Y, P̂l, P̂m) (resp. h2 = H̄(Y,X, P̂l, P̂m)), S chooses d ∈R {0, 1}λ and

70

3.9. Security Analysis of the SMQV Protocol

sets h1 = d (resp. h2 = d).

• When A activates the t–th session at Â, if the peer is not B̂, S aborts; otherwise,

S provides A with (Â, B̂,X0) (recall the solver takes as input X0 and B).

• When A activates the session matching the t–th session at Â, S chooses y0 ∈R

[1, q − 1], and provides A with (B̂, Â, Y0).
• If A issues an EphemeralKeyReveal query on the session matching the t–th session

at Â, S answers faithfully.

• In any of the following situations, S aborts.

– A halts with a test session different from the t–th session at Â.

– A issues a CorruptSC query on B̂ or an EstablishParty query on Â or B̂.

– A issues an EphemeralKeyReveal query on the t–th session at Â.

• If A halts with a guess σ0, S produces
(

σ0(Xd0
0 A)

−y0e0
B−a

)e−1
0

as a guess for

CDH(X0, B).

The simulation remains perfect, except with negligible probability; the solver S guesses

correctly the test session with probability (n2
1m)−1. If A succeeds under this simu-

lation, and S guesses correctly the test session, S outputs CDH(X0, B). Hence if

A succeeds with non–negligible probability in E.1.1.3, S outputs with non–negligible

probability CDH(X0, B), contradicting the GDH assumption.

None of the events E.1.1.1, E.1.1.2, E.1.1.3 or E.1.1.4 can occur with non–negligible

probability; E.1.1 cannot occur, unless with negligible probability.

Analysis of E.1.2. Suppose that E.1.2 occurs with non–negligible probability, we

derive from A a polynomial time CDH solver which succeeds with non–negligible

probability. The strongest queries that S can issue on Â, B̂, the test session and its

matching session are CorruptSC queries on both Â and B̂. (Recall that both Â and B̂

follow the second approach). We modify the simulation in the analysis of E.1.1.1 as

follows.

• S takes X0, Y0 ∈R G∗ as input.

• A’s environment, is simulated in the same way as in the analysis of E.1.1.1,

except that i and j are chosen in {k | P̂k follows the second implementation

approach} (we suppose here that n−n1 > 2, and still refer to P̂i as Â and P̂j as

B̂).

• S aborts in the following situations.

– A issues an EstablishParty query on Â or B̂.

– A halts with a test session different from the t–th session at Â.

– A issues a SessionKeyReveal, a SecretExponentReveal, or a SessionSigna-

tureReveal query on the test session or its matching session.

The simulation remains prefect, and if A is polynomial, so is S. In addition, S
guesses correctly the test session with probability ((n− n1)2m)−1

; and if A succeeds

and S guesses correctly the test session, it outputs CDH(X0, Y0) (from A’s forgery

a, b, d0 and e0). S succeeds with probability ((n− n1)2m)−1 Pr(E.1.2) which is non–

71

3.9. Security Analysis of the SMQV Protocol

negligible, unless Pr(E.1.2) is negligible. Under the GDH assumption and the RO

model, E.1.2 cannot occur with non–negligible probability.

Analysis of E.1.3. In E.1.3 (Â and B̂ follow different implementation approaches),

either Â or B̂ follows the first implementation approach; we suppose that Â follows the

first implementation approach. (As the test session’s matching session exists, from any

polynomial time machine which succeeds in E.1.3 when Â follows the first approach,

one can derive a polynomial time machine which succeeds with the same probability

when Â follows the second approach.) The strongest queries that A can perform on

Â, B̂, the test session, and its matching session are (i) CorruptSC queries on both Â

and B̂, (ii) an EphemeralKeyReveal query on the test session and a CorruptSC query

on B̂. And, since from any polynomial time machine which succeeds in E.1.3, and

issues weaker queries, one can build a polynomial time machine which succeeds with

the same probability and performs one of the above strongest queries, it suffices to

consider the following events.

E.1.3.1: “E.1.3 ∧ A issues CorruptSC queries on both Â and B̂”;

E.1.3.2: “E.1.3 ∧ A issues an EphemeralKeyReveal query on the test session and a

CorruptSC query on B̂.”

To show that E.1.3.1 cannot occur with non–negligible probability, we use the simula-

tion in the analysis of E.1.1.1, modified as follows.

• The environment remains the same except that i ∈R {k | P̂k follows the first

implementation approach}, and j ∈R {k | P̂k follows the second implementation

approach}.

• S aborts in any of the following situations.

– A halts with a test session different from the t–th session at Â.

– A issues a SessionKeyReveal query on the t–th session at Â or its matching

session.

– A issues a SecretExponentReveal, or a SessionSignatureReveal query on the

session matching the test session, or an EphemeralKeyReveal query on the

test session.

– A issues an EstablishParty query on Â or B̂.

Using the same arguments, as in the analysis of E.1.1.1, S is a polynomial time CDH

solver which succeeds with probability (n1(n− n1)m)−1 Pr(E.1.3.1). Under the GDH

assumption and the RO model, Pr(E.1.3.1) is negligible.

Making S take as input X0, B ∈R G∗ (the arguments are similar to that used in

the analysis of the event E.1.1.3), one can show also that E.1.3.2 cannot occur, unless

with negligible probability.

Analysis of E.2

Suppose that E.2 (A succeeds in forging the signature of some fresh session without

matching session) occurs with non negligible probability. As E.2 divides in

E.2.1: “E.2 ∧ both Â and B̂ follow the first implementation approach”;

E.2.2: “E.2 ∧ both Â and B̂ follow the second implementation approach”;

72

3.9. Security Analysis of the SMQV Protocol

E.2.3: “E.2 ∧ Â and B̂ follow different implementation approaches”;

at least one of the events E.2.1, E.2.2, or E.2.3 occurs with non–negligible probability.

Event E.2.1. The strongest queries that A can perform in E.2.1 are either an Ephemer-

alKeyReveal query on the test session, or a CorruptSC query on Â. It then suffices to

discuss E.2.1.1: “E.2.1 ∧ A performs a CorruptSC query on Â,” and E.2.1.2: “E.2.1 ∧ A
performs an EphemeralKeyReveal query on the test session.”

E.2.1.1. To show that E.2.1.1 cannot happen with non–negligible probability, we

modify the simulation in the analysis of E.1.1.3 to take as input a ∈R [1, q − 1] and

X0, B ∈R G∗ (Â’s key pair is set to (a,Ga), and B̂’s public key to B); S aborts if A
activates a session matching the t–th session at Â. The simulation remains perfect,

except with negligible probability. And if S guesses correctly the test session, and

A succeeds with a forgery σ0, S outputs σ0 as a FDCR–1 forgery, on messages Â

and B̂ with respect to the public keys A and B. S succeeds with probability ((n −
n1)2m)−1 Pr(E.2.1.1), and contradicts Proposition 4, unless Pr(E.2.1.1) is negligible.

E.2.1.2. We modify here the simulation in the analysis of E.1.1.2 to abort if A activates

a session matching the t–th session at Â. The simulated environment remains per-

fect, except with negligible probability. And from any valid forgery σ0, and a correct

guess of the test session, S outputs Ay0e0+b (from σ0, x0, d0, and e0). S is polyno-

mial; and if E.2.1.2 occurs with non–negligible probability, on input A,B ∈R G∗, S
outputs Y0 and Ay0e0+b with non–negligible probability. Hence, using the “oracle re-

play technique” [POI00], S yields a polynomial time CHD solver, which succeeds with

non–negligible probability; contradicting the GDH assumption.

Event E.2.2. Suppose that E.2.2 occurs with non–negligible probability, using A, we

build a polynomial time FXCR–1 signature forger, which succeeds with non–negligible

probability. For this purpose, we modify the simulation in the analysis of E.1.1.1 as

follows. (Notice that A’s CorruptSC queries on Â can be answered faithfully.)

• S takes as input X0, B ∈R G∗.

• Both i, j ∈R {k | P̂k follows the second implementation approach}; Â’s key pair

is set to (a = pi, G
pi), pi ∈R [1, q−1] and B̂’s public key to B; the corresponding

private key is unknown (we suppose that Â 6= B̂).

• At Send(P̂l, B̂,X) query, S answers as follows.

– S chooses sB ∈R [1, q−1], d ∈R {0, 1}l, and sets Y = (GsBB−1)d−1
. If there

is some d′ such that ((X,Y, P̂l, B̂), d′) already belongs to H1, S aborts; else,

S appends ((X,Y, P̂l, B̂), d) to H1.

– S creates a session with identifier sid′ = (B̂, P̂l, Y,X,R), completes the sid′

session, and provides A with the message (B̂, P̂l, Y). (Notice that S can

compute the session signature.)

• At A’s Send(B̂, P̂l) query, S responds as follows.

– S chooses sB ∈R [1, q − 1], e ∈R {0, 1}l, and sets12 Y = (GsBB−1)e−1
. If

12To simulate consistently the intermediate values leakage in sessions at B̂, S has to assign values
to H̄ query with a partially unknown input. For these queries, random values are chosen in {0, 1}l as
H̄(Y, ⋆, B̂, P̂l); when S is queried later with H̄(Y, X, B̂, P̂l), it responds with H̄(Y, ⋆, B̂, P̂l).

73

3.9. Security Analysis of the SMQV Protocol

there exists some X and e′ such that ((Y,X, B̂, P̂l,), e′) already belongs

to H1, S aborts.

– S creates a session with identifier (B̂, P̂l, Y, ⋆, I), and provides A with

(B̂, P̂l, Y).
• When A activates the t–th session at Â, if the peer is not B̂, S aborts; else, S

provides A with (Â, B̂,X0).
• S aborts in any of the following situations.

– A activates at B̂ a session matching the t–th session at Â.

– A halts with a test session different from the t–th session at Â.

– A issues a CorruptSC query on B̂, or an EstablishParty query on Â or B̂.

– A issues a SecretExponentReveal, a SessionSignatureReveal, or a Session-

KeyReveal query on the t–th session at Â.

• If A halts with a guess σ0 of the test session signature, S outputs (σ0(Y e0
0 B)−a)d−1

0

= Xy0e0+b
0 as a guess for a FXCR–1 forgery on challenge X0 and message (Â, B̂)

(the concatenation of Â and B̂) with respect to the public key B.

Under the RO model, the simulation of A’s environment is perfect, except with

negligible probability. The deviation happens when the same Y is chosen twice as

outgoing ephemeral key in sessions at B̂, with the same peer P̂l, this happens with

probability less than m/q (which is negligible). Hence, under this simulation E.2.2

occurs with non–negligible probability. And, when A outputs a correct forgery, and

S guesses correctly the test session, S outputs a valid FXCR–1 signature forgery on

challenge X0 and message (Â, B̂) with respect to the public key B. S succeeds with

probability ((n− n1)2m)−1 Pr(E.2.2), where negligible terms are ignored, contradict-

ing Proposition 3.

Event E.2.3. The test session’s matching session does not exist, and Â and B̂ follow

different implementation approaches.

• If Â follows the first implementation approach (E.2.3.1), A is allowed to issue

either a CorruptSC query on Â, or an EphemeralKeyReveal query on the test

session.

– If E.2.3.1.1: “E.2.3.1 ∧ A issues a CorruptSC query on Â,” occurs with non–

negligible probability. We modify the simulation in the analysis of E.1.1.1

to take as input X0, B ∈R G∗, and simulate B̂’s role as in the analysis of

E.2.2 (Â’s role is simulated as in E.1.1.1). If A succeeds with non–negligible

probability, it yields a polynomial time FXCR–1 signature forger which

succeeds with non–negligible probability; contradicting Proposition 3.

– And, if E.2.3.1.2: “E.2.3.1 ∧ A issues an EphemeralKeyReveal query on

the test session,” occurs with non–negligible probability, we modify the

simulation in E.1.1.1 to take as input A,B ∈R G∗, and abort if A acti-

vates a session matching the t–th session at Â. We simulate Â’s role as

in E.1.1.2 and B̂’s role as in E.2.2. From any valid forgery σ0, S outputs

σ0(Y e0
0 B)−x0d0 = Ay0e0+b; and using the oracle replay technique, S yields

an efficient CDH solver, contradicting the GDH assumption.

74

3.10. Conclusion

• And, if Â follows the second implementation approach, we make S take as input

A,B ∈ G∗, simulate Â’s role in the same way as that of B̂ in E.2.2, and B̂’s

role as in E.1.1.2, except that when A activates the t–th session at Â, S chooses

x0 ∈R [1, q − 1] and provides A with (Â, B̂,X0) (S also aborts if A activates

a session matching the t–th session at Â). If A succeeds with non–negligible

probability, S outputs with non–negligible probability Ay0e0+b, and using the

oracle replay technique, S yields an efficient CDH solver; E.2.3 cannot occur,

except with negligible probability.

Reflection Attacks If Â = B̂, E.1 reduces to E.1.1 and E.1.2; in addition E.1.1

reduces to E.1.1.1 and E.1.1.2. The analyses of the events E.1.1.1, E.1.1.2, and E.1.2

hold if Â = Â; reflections attacks cannot succeed in E.1.

In E.2 (which reduces here to E.2.1 and E.2.2), E.2.1 reduces to E.2.1.2 (the

CorruptSC query is not allowed on Â), if A succeeds with non–negligible probability,

it yields a polynomial time machine S which on input A outputs with non–negligible

probability Y0 and (Y e0
0 A)a, and S yields a squaring CDH solver, contradicting the

GDH assumption.

Neither E.1 nor E.2 can occur with non–negligible probability, the SMQV protocol

is seCK–secure.

3.10 Conclusion

Even if today insufficient, the Bellare–Rogaway model introduces a major approach

for the analysis of key agreement protocols. This approach is enhanced and used in

the (e)CK models. However, even if considered as advanced, the (e)CK models do

not sufficiently capture the intuition of a secure key agreement protocol. Namely, the

principle that an attacker should not be able to impersonate a party, unless it knows

the party’s static key is not guaranteed in the (e)CK models.

In the CK model, the matching sessions definition is inadequate. As shown in

section 3.5, some impersonation attacks are not captured in the CK model, and for-

mal CK–security does not necessary yield practical security. In the eCK model, the

ephemeral key definition is not careful enough. This allows the design of formally

eCK secure protocols which are practically insecure when leakages on ephemeral

Diffie–Hellman exponents or intermediate results are considered. We propose the

strengthened eCK model, designed with implementation security and efficiency in

mind. The seCK model separates from the eCK model, in addition to encompass

it. The seCK model provides stronger reveal queries to the adversary, and is not too

restrictive. As illustrated with the SMQV protocol, seCK–secure protocols can be

built with usual building blocs. When the SMQV protocol is implemented in a dis-

tributed environment with an untrusted host machine and a tamper resistant device

with ephemeral public keys computed in idle–time, the non–idle time computational

effort of the device safely reduce to few non–costly operations.

Future prospects related to the seCK model include the adaptation of the seCK se-

curity definition to password based key agreement and group Diffie–Hellman protocols.

75

3.10. Conclusion

There is an underlying identification (implicit or explicit) scheme, in any authenticated

key agreement protocol; and there is no known general paradigm for the design a key

agreement protocols. We will also be interested in formalizing the security attributes

an identification scheme should provide to yield a seCK secure protocol.

76

Chapter 4

Complementary Analysis
of Diffie–Hellman based Protocols

Contents

4.1 Introduction . 76

4.2 The Unified Model Protocol . 77

4.3 The Station–to–Station Protocol . 79

4.4 The MQV Protocol . 80

4.4.1 Kunz–Jacques and Pointcheval Security Arguments 82

4.4.2 Limitation of the Security Arguments 82

4.4.3 Kaliski’s Unknown Key Share Attack 83

4.5 Complementary Analysis of ECMQV 84

4.5.1 Points for Impersonation Attack 84

4.5.2 Decomposed i–point Search 86

4.5.3 Exploiting Session Specific Secret Leakages 93

4.6 Complementary Analysis of the HMQV design 96

4.6.1 Exploiting Secret Leakage in the XCR and DCR Schemes . 96

4.6.2 Exploiting Session Specific Secret Leakages in HMQV . . . 97

4.7 A New Authenticated Diffie–Hellman Protocol 100

4.7.1 Full Exponential Challenge Response Signature scheme . . . 100

4.7.2 Full Dual Exponential Challenge Response Signature scheme 102

4.7.3 The Fully Hashed MQV Protocol. 103

4.8 Conclusion . 107

4.1 Introduction

The Diffie–Hellman protocol [DIF76], remains the basis of many recent key agree-

ment protocols. In this protocol, two parties , say Â and B̂, generate and exchange

ephemeral public keys X,Y , and compute the shared secret Z = Y x = Xy; the session

key is derived from Z. The protocol is secure against an eavesdropping only at-

tacker; however this is clearly insufficient. The main limitation of the Deffie–Hellman

protocol is its lack of authentication, usually illustrated with the well–known man–in-

the–attack, wherein the attacker intercepts Â’s message to B̂ X, chooses x′ ∈ [1, q−1]
and sends X ′ = Gx′

to B̂; B̂’s message to Â is intercepted and modified in a similar

way. In doing so, the attacker impersonates Â to B̂ and conversely.

To prevent the man–in–the–middle attack, the messages exchanged between Â

and B̂ can be their static keys, and the shared secret Z = Ab; the protocol is termed

static Diffie–Hellman. However, this variant also is unsatisfactory, as the shared secret

does not depend on any random input, the static Diffie–Hellman protocol cannot

77

4.2. The Unified Model Protocol

achieve the known session key security attribute, which is that an adversary which

learns some session keys should not be able to compute other session keys.

The above two Diffie–Hellman protocols are widely used for the design of authen-

ticated key agreement protocols. Broadly, the idea is to “mix” the two original DH

variants to achieve authentication and randomize session keys. Two main approaches

are followed: explicit authentication wherein authentication is achieved using explicit

signatures, and implicit signature, wherein authentication is achieved through the sole

ability of a party to compute the shared secret. It is usually carried more interest to

the later approach, since it generally yields more efficient protocols.

Numerous designs was proposed (a large part of them can be found in the “Key

Establishment Protocols Lounge1”); unfortunately, in hindsight the rate of secure

protocols, particularly when regarded through recent security models, is meager.

In this chapter, we illustrate the two main design approaches for achieving authen-

tication in Diffie–Hellman protocols. We do so using the UM (variant from [NIS07])

and Station–to–Station protocols. After that, we restrict our attention on the de-

sign elements of the famous (C, H)MQV protocols. We highlight some shortcomings

in the (H)MQV design. On the basis of this analysis we show how impersonation

and man in the middle attacks can be performed against the (C, H)MQV protocols,

when some session specific information leakages occur [SAR09a, SAR09b]. We define

the Full Exponential Challenge Response (FXRC) and Full Dual Exponential Chal-

lenge Response (FDCR) signature schemes; and using these schemes we propose the

Fully Hashed MQV protocol, which preserves the remarkable performance of the (C,

H)MQV protocols and resists the attacks we present [SAR09a, SAR09b]. The FHMQV

protocol meets the seCK security definition under the Gap Diffie–Hellman assumption

and the Random Oracle model [SAR09a].

4.2 The Unified Model Protocol

The variant of the UM protocol we discuss in this section is the dhHybrid1 from

the NIST SP800–56A standard [NIS07]. This variant seems to provide more security

attributes than the others analyzed in [BLA97a, JEO04]. (In this section, we refer

to the NIST dhHybrid1 protocol as UM.) A run of UM, between two parties, say Â

and B̂, is as in Protocol 4.1, H is 2λ-bit hash function, where λ is the desired session

key length, MAC is a message authentication code, and Λ designates optional public

information that may be used in key derivation.

The design of the UM protocol is rather simple. When the key confirmation stage is

ruled out, the core protocol can be viewed as a simultaneous run of the static and non–

static Diffie–Hellman protocols. As shown in [MEN08], the UM protocol achieves many

important security attributes among which implicit entity authentication, key secrecy,

unknown key share attacks resilience, forward secrecy, known session key security.

However, the protocol fails to be key compromise impersonation resilient. Menezes

and Ustaoglu [MEN08, p. 2] argue that key compromise impersonation (KCI) resilience

“is arguably not a fundamental security requirement of key agreement”. It is also

1at https://wiki.isi.qut.edu.au/ProtocolLounge/

78

https://wiki.isi.qut.edu.au/ProtocolLounge/

4.2. The Unified Model Protocol

Protocol 4.1 UM key exchange

Protocol Messages:
Â : a, A, Â B̂ : b, B, B̂
x ∈R [1, q − 1],
X = Gx,

B̂, Â, X −→

y ∈R [1, q − 1],
Y = Gy,

σe = Xy, σs = Ab,

(k, k′) = H(σe, σs, Â, B̂, Λ),

tB = MACk′ (R, B̂, Â, Y, X),

←− Â, B̂, X, Y, tB

σe = Y x, σs = Ba

(k, k′) = H(σe, σs, Â, B̂, Λ)

tA = MACk′ (I, Â, B̂, X, Y)

B̂, Â, X, Y, tB , tA −→

I) The initiator Â does the following:
(a) Choose x ∈R [1, q − 1], and compute X = Gx.
(b) Send (B̂, Â,X) to B̂.

II) At receipt of (B̂, Â,X), B̂ does the following:
(a) Verify that X ∈ G∗.
(b) Choose y ∈R [1, q − 1], compute Y = Gy

(c) Compute σe = Xy, σs = Ab, and (k, k′) = H(σe, σs, Â, B̂,Λ).
(d) Destroy σe, σs, and y.
(e) Compute tB = MACk′(R, B̂, Â, Y,X).
(f) Send (Â, B̂,X, Y, tB) to Â.

III) At receipt of (Â, B̂,X, Y, tB), Â does the following:
(a) Verify that Y ∈ G∗.
(b) Compute σe = Y x, σs = Ba, and (k, k′) = H(σe, σs, Â, B̂,Λ).
(c) Destroy σe, σs, and y.
(d) Verify that tB = MACk′(R, B̂, Â, Y,X).
(e) Compute tA = MACk′(I, Â, B̂,X, Y), and destroy k′.
(f) Send (B̂, Â,X, Y, tB, tA) to B̂.

IV) At receipt of (B̂, Â,X, Y, tB, tA), B̂ verifies that tA = MACk′(I, Â, B̂,X, Y),
and destroys k′.

V) The shared session key is k.

sustainable that, as it is difficult (if not impossible) to guarantee that key compromise

can always be immediately detected, and as for non–KCI resilient protocols, when a

key comprise occurs, the key owner cannot achieve neither entity authentication nor

key secrecy, which are fundamental goals in authenticated key exchange, KCI resilience

is crucial.

Indeed the UM protocol does not only fail to be KCI resilient, it fails also to be

resilient to a leakage of σs, as an attacker which learns σs in some session between Â

and B̂ can indefinitely impersonate Â to B̂, and conversely; it can then indefinitely

succeed in man–in–the–middle attack between Â and B̂.

79

4.3. The Station–to–Station Protocol

4.3 The Station–to–Station Protocol

The Station–to–Station (STS) protocol [DIF92] provides authentication by adding

explicit signatures to the non–static Diffie–Hellman protocol. Other variants of the

STS protocol exist, wherein authentication is achieved using message authentication

or encryption schemes. The original variant which uses an encryption and a signature

scheme [DIF92] is given in Protocol 4.2; Sign and Enc are respectively a signature

and a public key encryption scheme.

Protocol 4.2 STS using Encryption and Signature Schemes

Protocol Messages:
Â : a, A, Â B̂ : b, B, B̂
x ∈R [1, q − 1]
X = Gx

Â, X −→

y ∈R [1, q − 1]
Y = Gy

K = Xy

cB = EncK(SignB̂(Y, X))

←− B̂, Y, cB

K = Y x

cA = EncK(SignÂ(Y, X))
cA −→

I) The initiator Â does the following:
(a) Choose x ∈R [1, q − 1], and compute X = Gx.
(b) Send (Â,X) to the peer B̂.

II) At receipt of (Â,X), B̂ does the following:
(a) Choose y ∈R [1, q − 1], and compute Y = Gy.
(b) Compute K = Xy.
(c) Compute sB = SignB̂(Y,X).
(d) Compute cB = EncK(sB).
(e) Send (B̂, cb) to Â.

III) At receipt of (B̂, cb), Â does the following:
(a) Compute K = Y x.
(b) Compute sB = DecK(cB).
(c) Verify that sB is a valid signature on (Y,X) with respect to the key B.
(d) Compute sA = SignÂ(X,Y).
(e) Compute cA = EncK(sA).
(f) Send (Â, cA) to Â.

IV) B̂ does the following:
(a) Compute sA = DecK(cA).
(b) Verify that sA is a valid signature on (X,Y) with respect to the key A.

V) The shared session key is K.

Notice that in usual practical settings the session key is computed asK = KDF (Y x),
where KDF is a key derivation function. The security arguments from [DIF92] of this

variant of STS are rather informal. But, since a session key computation involves only

80

4.4. The MQV Protocol

ephemeral information, an that one cannot make a party complete a session unless

the party is provided with a valid fresh2 signature, it is tenable that the STS protocol

provides forward secrecy. In addition, since to impersonate a party, one has to be able

to generate a fresh and valid signatures of the party, key compromise impersonation

resilience is also achieved.

As shown in [BLA99], when a MAC scheme is used in Protocol 4.2 instead of an

encryption scheme, the resulting variant of STS becomes vulnerable to an unknown

key share attack. The attacker simply registers a certificate Ê using the target party’s

public key; it then replaces the target party’s certificate with Ê in all messages from

the target party. The attack can be prevented in many manners, a simple and non–

costly one is using the implicated parties identities in the session key computation

(K = H(Y x, Â, B̂)). The STS variants can also can be modified to include the identity

of the signer in the MACed and signed data.

4.4 The MQV Protocol

MQV is a key exchange protocol with implicit authentication, based on the Diffie–

Hellman protocol. It was proposed by Law, Menezes, Qu, Solinas and Vanstone

[LAW03], and is to date one of the most widely standardized key exchange proto-

cols [ANS01a, ANS01b, IEE00, ISO02, NIS03]. When the underlying group is that of

the rational points of an elliptic curve E over a finite field, the protocol is denoted

ECMQV. If so, we use the following notations: Ψ = (q, FR,S, a, b, P, n, h) is a domain

parameters, where q is the order of the base field GF (q), FR is the field representation,

S is the seed for randomly generated elliptic curves, the coefficients a and b ∈ GF (q)
define the equation of the elliptic curve E over GF (q), P is a point of the curve of

order n a large prime, and h is the cofactor of n. We denote by QA the static public

key of an entity with identity Â, and dA the corresponding private key. The public

keys are supposed to belong to 〈P 〉 \ {∞}. The affine representation of a point R

of the curve E is denoted (xR, yR), and R̄ is the integer (x̄R mod 2l) + 2l, where x̄R

is the integer representation of xR and l = ⌈(⌊log2 n⌋ + 1)/2⌉. The notation MAC

still refers a message authentication code scheme and KDF a key derivation function.

Validating a public key Q with respect to Ψ consists in [HAN03]

• Verifying that Q 6= ∞;

• Verifying that xQ and yQ are correctly represented in Fq with respect to FR;

• Verifying that Q satisfies the curve equation defined by a and b;

• And verifying that nQ = ∞.

An execution of ECMQV between two entities, say Â and B̂, is as in Protocol 4.3;

if any verification fails the execution terminates with failure.

There are also a two and one pass variants of the (EC)MQV protocol. The two–

pass variant is obtained by removing the key confirmation step (the tags tA and tB
and messages in which they are sent) from the tree–pass variant. In the one–pass

2Signature freshness is guaranteed by the use of the newly generated ephemeral keys as signed
data.

81

4.4. The MQV Protocol

Protocol 4.3 ECMQV key exchange

Protocol Messages:
Â : a, A, Â B̂ : b, B, B̂
kA ∈R [1, n− 1]
RA = kAP

Â, RA −→

kB ∈R [1, n− 1]
RB = kBP,

sB = (kB + R̄BdB) mod n,

Z = hsB(RA + R̄AQA),
(k1, k2) = KDF (xZ),

tB = MACk1
(2, B̂, Â, RB , RA),

←− B̂, RB , tB

sA = (kA + R̄AdA) mod n,

Z = hsA(RB + R̄BQB),
(k1, k2) = KDF (xZ),

tA = MACk1
(3, Â, B̂, RA, RB),

tA −→

I) The initiator Â does the following:
(a) Choose kA ∈R [1, n− 1].
(b) Compute RA = kAP .
(c) Sends Â, RA to the peer B̂.

II) At receipt of Â, RA, B̂ does the following:
(a) Validate the ephemeral key RA.
(b) Choose kB ∈R [1, n− 1].
(c) Compute RB = kBP .
(d) Compute sB = (kB + R̄BdB) mod n, Z = hsB(RA + R̄AQA).
(e) Verify that Z 6= ∞.
(f) Compute (k1, k2) = KDF (xZ), where xZ is the x–coordinate of Z.
(g) Compute tB = MACk1(2, B̂, Â, RB, RA).
(h) Send B̂, RB, tB to Â.

III) At receipt of B̂, RB, tB, Â does the following:
(a) Validate the ephemeral key RB.
(b) Compute sA = (kA + R̄AdA) mod n, Z = hsA(RB + R̄BQB).
(c) Verify that Z 6= ∞.
(d) Compute (k1, k2) = KDF (xZ), where xZ is the x–coordinate of Z.
(e) Verify that tB = MACk1(2, B̂, Â, RB, RA).
(f) Compute tA = MACk1(3, Â, B̂, RA, RB)
(g) Send tA to B̂.

IV) B̂ verifies that tA = MACk1(3, Â, B̂, RA, RB).
V) The shared session key is k2.

variant (motivated by the scenarios in which the responder is off–line) there is no key

confirmation, in addition the peer’s static public key is used as incoming ephemeral

key.

In the ECMQV protocol, the exponent sA serves as implicit signature for Â’s

ephemeral public key RA, in the sense that only Â can compute sA; and this signature

82

4.4. The MQV Protocol

is (indirectly) verified by B̂, when using RA + R̄AQA = sAP to compute Z. The tags

tA and tB ensure each entity that the other entity has indeed computed the shared

secret Z.

4.4.1 Kunz–Jacques and Pointcheval Security Arguments

Besides the work of Kunz–Jacques and Pointcheval [KUN06], which relies on a some-

what non–standard assumption, recalled hereunder, we are aware of no security re-

duction for the MQV protocol. In this subsection, we outline the Kunz–Jacques and

Pointcheval security arguments and discuss their limitations.

Let f be a function f : 〈P 〉 −→ {0, 1}l, the f–Randomized Computational Diffie–

Hellman [KUN06] (f–RCDH) problem is: given Rx = kxP and Ry = kyP , with

Rx, Ry ∈R 〈P 〉, find Rs and Rt ∈ 〈P 〉 such that Rt = kxRs + f(Rs)kxkyP = (ks +
f(Rs)ky)Rx where ks and kt are respectively logP Rs and logP Rt.

If the considered function f is fMQV : R −→ R̄, a f–RCDH solver allows to succeed

in impersonation attack. Indeed, given a fMQV–RCDH solver, one can impersonate B̂

to Â in any session initiated by Â (and with intended peer B̂), by solving the f–RCDH

problem instance with Rx = RA +R̄AQA and Ry = QB. One can then provide to Â Rs

as ephemeral key, together with the static one Ry = QB, and use Rt as secret group

element (the Z that Â derives at step (IIIb) in Algorithm 4.1). And then compute the

same session key as Â does. Notice that this holds for both the two and three–pass

variants of the (EC)MQV protocol.

Under the assumption that the fMQV–RCDH problem is intractable (fMQV–RCDH

assumption), [KUN06] shows that the MQV protocol is secure in a security model of

their own design (inspired from that of Bellare–Rogaway [BEL93a]) which captures

key secrecy, mutual authentication and weak forward secrecy.

Moreover, under the assumption that the considered function f is a random oracle,

the f–RCDH and the CDH assumptions are equivalent [KUN06]. Hence, under the

CDH assumption and the random oracle model, the modified variant of the (EC)MQV

protocol, where the secret group element Z is defined as Z = h(kA + H̄(RA)dA)(RB +
H̄(RB)QB) = h(kB + H̄(RB)dB)(RA + H̄(RA)QA) for some l–bit hash function H̄, is

secure in the sense of [KUN06].

4.4.2 Limitation of the Security Arguments

Such a variant of the MQV protocol, wherein fMQV(R) = H̄(R), presents an un-

pleasant aspect which is not discussed in [KUN06]. Indeed as H̄ is a random oracle,

Algorithm 4.4 yields a pair (i0, Ri0) such that H̄(R0) = 0 with probability Prs ≈ 0.63.

As Pr
(

H(R) = 0
)

= 1/2l, and in Algorithm 4.4, the number of points Rj = jP such

that H̄(Rj) = 0 is a binomial random variable with parameters (2l, 1/2l), the proba-

bility that Algorithm 4.4 succeeds is Prs = 1 − (1 − 1/2l)2l ≈ 1 − e−1 ≈ 0.63 for l large

enough.

Although Algorithm 4.4 is not more efficient than a DLP solver (it requires O(2l)
point additions and digest computations), it is highly parallelizable; and an attacker

which holds such a pair (i0, Ri0 = i0P) with H̄(Ri0) = 0 can (1) impersonate any

83

4.4. The MQV Protocol

Algorithm 4.4 Zero search for l–bit random oracle

Set R = ∞;
Set j = 0;
while j 6 2l do

R = R+ P ;
j = j + 1;
IfH̄(R) = 0 return (j, R);

end while
return “failure”;

entity to any other entity, and (2) succeed in man–in–the–midlle attack between any

couple of entities.

To impersonate an entity, say Â, to some other entity B̂, the attacker sends QA and Ri0

to B̂; as H(Ri0) = 0, it can compute

Z = CDH(Ri0 + H̄(Ri0)QA, h(RB + H̄(RB)QB)) = i0h(RB + H̄(RB)QB),

where RB and QB are B̂’s public keys; and then compute the same session key as B̂.

And since a man–in–the–middle attack can be performed by simultaneously imper-

sonating Â to B̂ and B̂ to Â, it is not difficult to see that given such a pair (j0, R0)
and attacker can succeed in man–in–the–middle–attack between any pair of parties.

4.4.3 Kaliski’s Unknown Key Share Attack

In [KAL01], Kaliski provides an unknown key share attack against the two–pass variant

of (EC)MQV, if certificate registrations can be performed on–line. The attacker A
makes the session responder, say B̂, share a key with a different entity that intended

without a knowledge of that; the attack is described in Attack 4.1.

Attack 4.1 Kaliski’s unknown key share attack

I) Â chooses kA ∈R [1, n− 1], computes RA = kAP and sends Â, RA to B̂.
II) The attacker A does the following:

(a) Intercept Â’s message to B̂.
(b) Choose u ∈R [1, n− 1].
(c) Compute RE = SA − uP where SA = RA + R̄AQA.
(d) Compute QE = R̄−1

E uP (dE = R̄−1
E u).

(e) Obtain a certificate for the public key QE .
(f) Send to Ê, RE to B̂.

III) Both Â and B̂ compute the same key
K = h(kA + R̄AdA)(RB + R̄BQB) = h(kB + R̄BdB)(RA + R̄AQA) = h(kB +
R̄BdB)(RE + R̄EQE).

Since the implicit signature

SE = RE + R̄EQE = SA − uP + R̄ER̄
−1
E uP = SA,

84

4.5. Complementary Analysis of ECMQV

Â and B̂ share the secret

Z = (kB + R̄BdB)SE = (kA + R̄AdA)SB,

and then derive the same session key, with B̂ having the belief that the key is shared

with an entity with identity Ê. The attacker A cannot compute K; and, it has to

obtain the certificate Ê during the protocol’s run. As on–line ACs exist, and obtaining

a certificate during a run of (EC)MQV is possible, it is arguable that the two–pass

(EC)MQV does not achieve entity authentication.

Fortunately, there exists simple counter–measures against Kaliski’s attack, among

which adding the protocol with a third–pass (as in three–pass variant), or modifying

the key computation to integrate the identities of implicated entities (K = H(Z, Â, B̂)

instead of K = H(Z) for instance).

4.5 Complementary Analysis of ECMQV

In this section, we analyze the three–pass (EC)MQV variant; to be concrete, we sup-

pose that the underlying group is that of the rational points of a well chosen elliptic

curve.

4.5.1 Points for Impersonation Attack

To make clear the use of the points we introduce next for impersonation attacks, we

first formalize our definitions of impersonation and man–in–the–middle attacks.

Definition 14 (Impersonation Attacks). Let Π be a key exchange protocol. An

attacker A is said to succeed in impersonating Â to B̂ if:

(a) it succeeds in making B̂ run the protocol Π, and derive a session key with the

belief that its peer is Â; and

(b) it can efficiently compute the session that B̂ derives.

And A is said to succeed a man–in–the–middle attack between Â and B̂ if:

(a) it succeeds in making Â run the protocol, and derive a session key with the belief

that its peer is B̂;

(b) it succeeds in making B̂ run the protocol, and derive a session key with the belief

that its peer is Â;

(c) it can efficiently compute the session keys that Â and B̂ derive.

We term an attack wherein the last conditions (b) and (c) are satisfied, and the con-

dition (a) is modified to “A succeeds in making Â run the protocol Π, and derive

a session key with the belief that his peer is (an entity with identity) Â” as a weak

man–in–the–middle attack. Notice that it is not meaningless that an entity estab-

lishes a session with another one with the same (identifying) certificate; for instance

a hand–held computer may communicate with desktop computer sharing the same

(identifying) certificate with it.

85

4.5. Complementary Analysis of ECMQV

In the ECMQV protocol, when a party Â completes a session with peer B̂, the

shared secret Z is indeed a combination of the values QA, RA, QB, and RB, with the

objective that only the knowledge of one of the couples (dA, kA) or (dB, kB) permits

to compute it. If (〈P 〉 ∋ R −→ R̄) were constant (R̄ = γ ∈ N, for all R), it would be

easy to impersonate Â to B̂, using R′
A = kP − γQA, k ∈ [1, n − 1]. As (R −→ R̄) is

not constant, to succeed in impersonating Â, one has to find a point R′
A ∈ 〈P 〉 such

that R′
A = ζP − R̄′

AQA where ζ ∈ [1, n− 1] is known.

Definition 15 (Points for impersonation attack (i–point) [SAR08]). Let Ψ be a do-

main parameters and QA a valid public key with respect to Ψ. A point R′
A ∈ 〈P 〉\{∞}

is said to be an i–point for Â, if there exists ζ ∈ [1, n−1] such that R′
A = ζP − R̄′

AQA;

ζ is said to be the decomposition.

Given an i–point for Â R′
A and its decomposition ζ, impersonating Â to any entity, can

be performed as in Attack 4.4 [SAR08], which does not require more computations than

an ECMQV execution. Notice that the important aspect is knowing the decomposition

of an i–point.

Attack 4.2 Impersonation Attack against ECMQV using a decomposed i–point

Require: An i–point for Â R′
A and its decomposition ζ.

(1) Send Â, R′
A to the peer B̂

(2) Intercept B̂’s response B̂, RB, tB, and do the following:
(a) Validate the ephemeral key RB.
(b) Compute Z = hζ(RB + R̄BQB) and verify that Z 6= ∞.
(c) Compute (k1, k2) = KDF (xZ).
(d) Verify that tB = MACk1(2, B̂, Â, RB, R

′
A).

(e) Compute tA = MACk1(3, Â, B̂, R′
A, RB).

(f) Send tA to B̂.
(3) Use k2 to communicate with B̂ on behalf of Â.

Since R′
A and QA are valid public keys and ζ 6= 0 mod n, B̂’s verifications at steps (IIa)

and (IIe) of the ECMQV execution do not fail3. Hence B̂ sends RB, tB at step (IIh).

The value of Z that B̂ computes at step (IId) (of Protocol 4.3) is

Z = hsB(R′
A + R̄′

AQA) = hsB(ζP) = hζ(sBP) = hζ(RB + R̄BQB).

This is the value we compute at step (2b) in Attack 4.4. Then the values of k1 and k2

we compute at step (2c) are those computed by B̂ at step (IIg), and then the test at

step (IV) of ECMQV succeeds. Thus the session key we obtain at step (3) is the one

that B̂ obtains.

Notice also that given an i–point for Â and its decomposition, and an i–point

for B̂ and its decomposition, an attacker can indefinitely succeed in man–in–the–

middle attack between Â and B̂.

3Since the ephemeral private key kB is chosen at random, the probability that sB = 0 is negligible.

86

4.5. Complementary Analysis of ECMQV

In the following proposition we show the existence of i–points, for any given domain

parameters and valid public key.

Proposition 5 (Existence of i–points [SAR08]). Let Ψ be a domain parameters and

QA a valid public key with respect to Ψ. There exists at least (n − 2l − 1) i–points

for Â.

Proof. Let 〈P 〉 be the image of 〈P 〉 through (R −→ R̄). The cardinal of 〈P 〉 is 6 2l.

And for every Ȳ ∈ 〈P 〉 there is at most one point R∞ ∈ 〈P 〉 such that R̄∞ = Ȳ

and R∞ + R̄∞QA = ∞; since the existence of another point R′
∞ ∈ 〈P 〉, which satisfy

R̄′
∞ = Ȳ and R′

∞ + R̄′∞QA = ∞, would imply R∞ + Ȳ QA = R′
∞ + Ȳ QA = ∞ i.e.

R∞ = R′
∞.

Let R∞ be the set of such R∞ points. The cardinal of R∞ is at most 2l, and

every point R ∈ 〈P 〉 \ {R∞ ∪ {∞}} is an i–point for Â. Indeed for a such point R,

R+R̄QA 6= ∞ and since both R and QA are in 〈P 〉, there exists some ζ ∈ [1, n−1] such

that R+ R̄QA = ζP , or equivalently R = ζP − R̄QA. The proposition is shown.

4.5.2 Decomposed i–point Search

This section is about the decomposed i–point search problem (ECIP), which is the

following: given a valid domain parameter Ψ and QA, a valid public with respect to Ψ,

find R ∈ 〈P 〉 and ζ ∈ [1, n− 1] such that R = ζP − R̄QA.

Any efficient ECDLP solver yields an efficient ECIP solver. The ECIP problem is

not harder than the ECDLP problem; we do not know however whether or not the

converse is true. We suppose that for iu ∈R [0, 2l − 1] and ζv ∈R [1, n− 1], the l–least

significant bits of the x–coordinate of Ru,v = ζvP − (2l + iu)QA are random.

Naive Search

The naive search consists in computing 2l points of the form Ru,v = ζvP − (2l + iu)QA,

with ζv ∈R [1, n − 1] and iu ∈ [0, 2l − 1] . When the l–least significant bits of xRu,v

are supposed random Pr(R̄u,v = 2l + iu) = 1/2l. In these computations, the number

of points Ru,v such that R̄u,v = 2l + iu is a binomial random variable with parameters

(2l, 1/2l). Hence these computations lead to a decomposed i–point with a success

probability Prs = 1 − (1 − 1/2l)2l ≈ 1 − e−1 ≈ 0.63 > 1/2, for l sufficiently large.

When some storage is used (as in Algorithm 4.5), the naive approach requires 2l point

additions plus 2
l
2

+1 point multiplications and O
(

2
l
2

+1
)

space complexity. Notice that

contrary to the classical parallel collision search (see section 2.5.1), when parallelizing

the algorithms 4.1 and 4.5, there is no need that the processors share a common

list, the communications between the different processors are only required when a

processor finds an i–point, and inform the others.

When testing the naive approach with small values of n we get the results sum-

marized in Table 4.1. The first factor in the number of examples column indicates

the number of domain parameters4, the second indicates the number of public keys

4 The domain parameters are chosen at random: the coefficients a, b ∈R GF (p), the discriminant

87

4.5. Complementary Analysis of ECMQV

Algorithm 4.5 Naive i–point search

Input: P , n, and QA ∈ 〈P 〉.
Output: a decomposed i–point for Â or “failure”.

(1) Compute 2
l
2 couples (iu, (2l + iu)QA), iu ∈R [0 · · 2l − 1].

(2) Compute 2
l
2 couples (ζv, ζvP), ζv ∈R [1, n− 1].

(3) For u from 1 to 2
l
2 do

For v from 1 to 2
l
2 do

– Compute Ru,v = ζvP − (2l + iu)QA.
– If R̄u,v = (2l + iu) return Ru,v, ζv.

(4) return “failure”.

used on each domain parameters, and the third indicates how many times decomposed

i–point search was done for each public key.

Table 4.1: Naive i–point search success rate.

size of n percentage of success number of examples

15 61.90 10×10×10
20 64.30 10×10×10
25 62.80 10×10×10
30 63.20 10×10×10
35 61.80 5×10×10
40 63.60 5×10×10

Possible Optimizations

The naive search consists simply in building two lists L1 and L2 (the first column and

the first line in Figure 4.1) of length 2l/2 and verifying whether or not there is some

point Ri,j = Ri +Rj with Ri ∈ L1 and Rj ∈ L2 such that R̄i,j = i. The Ri,j ’s can be

destroyed, once tested, only the lists L1 and L2 need to be stored.

The naive decomposed i–point search is highly parallelizable; when m processors

are available, it suffices to provide each processor with an interval to traverse; disjoint

intervals covering L1 × L2 can be conveniently defined.

In what follows, we present the main idea of a still ongoing work on optimized

parallelization of decomposed i–point search. As points are represented in affine co-

ordinates in the ECMQV protocol (and then in the i–point definition), and at field

level, the most costly operation is inversion, a natural question is about the way in

which inversions can be removed at least partly from the decomposed i–point search.

We have no general answer for this question, however, for curves defined over binary

fields, partly removing inversions in decomposed i–point search is possible.

Suppose the domain parameters’ elliptic curve defined over a binary field GF (2m).
The idea is a combination of the López–Dahab affine formulas and the Montgomery

of the corresponding curve is verified to be non-zero and it is verified whether there exists a rational
point P of order n satisfying ⌊log2 n⌋ = ⌊log2 q⌋.

88

4.5. Complementary Analysis of ECMQV

P ′ 2P ′ 3P ′ · · · 2l/2P ′

−(2l + 1)Q

−(2l + 2)Q

−(2l + 3)Q

...

−(2l + 2l/2)Q

R1,1

R2,1

R3,1

...

R2l/2,1

R1,2

R2,2

R3,2

...

R2l/2,2

R1,3

R2,3

R3,3

...

R2l,3

· · ·

· · ·

· · ·

. . .

· · ·

R1,2l/2

R2,2l/2

R3,2l/2

...

R2l/2,2l/2

Figure 4.1: Naive i–point search illustration

simultaneous inversion algorithm, we recall hereunder. Montgomery’s simultaneous

inversion algorithm [MON87] (Algorithm 4.6) is based on a generalization of the ob-

servation that if xi 6= 0,
1
x1

= x2
1

x1x2
and

1
x2

= x1
1

x1x2
. The computation of l

inverses reduces to one inversion plus 3(l − 1) multiplications, and l temporary sto-

rage.

Algorithm 4.6 Simultaneous Inversion

Input: x1, · · · , xl ∈ GF (q).
Ouput: x−1

1 , · · · , x−1
l .

(1) Set c1 = x1

(2) For j from 2 to l do
cj = cj−1xj

(3) Compute u = c−1
l .

(4) For from l downto 2 do
(a) Compute x−1

j = ucj−1.
(b) Compute u = uxj .

(5) Set x−1
1 = u.

(6) Return (x−1
1 , · · · , x−1

l).

Moreover, if R1 = (x1, y1) and R2 = (x2, y2) are two rational points of an elliptic

curve defined over a binary field, and R2 −R1 = R = (x, y), then the x–coordinate of

R3 = R2 +R1 is [LOP99]

x3 = x+
x1

x1 + x2
+
(x1

x1 + x2

)2
, if P2 6= P1, (4.1)

x3 = x2
1 +

b

x2
1

, otherwise. (4.2)

Hence, computing the x–coordinate5 of R3 requires one field inversion, one squaring,

5Notice that in the test in Algorithm 4.5, at step (3), the computation of R̄u,v involves only the
x–coordinate of Ru,v, computing the y–coordinate is then superfluous.

89

4.5. Complementary Analysis of ECMQV

and one field multiplication. To compute the list L2 containing the couples (j, jP),
such that the differences between the jP are known, we choose λ ∈R [1, n − 1], and

set P ′ = λP and L2 =
{

(j, jP ′) : 1 6 j 6 2l/2
}

. For a randomly chosen public key Q,

we then suppose the l–least significant bits of the x–coordinate of −(2l + i)Q + jP ′

random.

Let k be a positive integer such that O
(

2l/2k2
)

temporary storage is “conveniently”

feasible, and suppose the x–coordinates of the k2 points Si,j = jP ′ + (2l + i)(−QA),
with 1 6 i, j 6 k precomputed. Recall that for a rational point point R, xR denotes

the x–coordinate of R. Let f(θ) be the polynomial defining the base field GF (2m),
and suppose in addition the x

(l)
Si,j

= θlxSi,j mod f(θ) precomputed for 1 6 l < m and

1 6 i, j < k. For the binary curves used in practice, the NIST curves for instance,

such computations require only few exclusive–or and shift operations (see [HAN03,

pp. 54–56] or [FIP00]).

Now, when traversing the two lists, let Ri0,j0 be the current element, and the

elements Ri0−εi,j0−εj , 1 6 εi, εj 6 k already traversed and temporarily stored. For

each elements Ri0+εi,j0+εj , with 1 6 εi, εj < k, we have

Ri0+εi,j0+εj = Ri0,j0 + Sεi,εj ,

Ri0,j0 − Sεi,εj = Ri0−εi,j0−εj .

And, from the affine López–Dahab formulas

xRi0+εi,j0+εj
= xRi0−εi,j0−εj

+
xSεi,εj

xSεi,εj
+ xRi0,j0

+
(xSεi,εj

xSεi,εj
+ xRi0,j0

)2
.

Ris,jw

Ri′

s,j′

w

Ris,ju

Ri′

s,j′

u

Ris,jv

Ri′

s,j′

v

Ri0,j0

Figure 4.2: López–Dahab coordinates and simultaneous inversion in naive i–point search

90

4.5. Complementary Analysis of ECMQV

As the x
(l)
Si,j

are precomputed, the multiplication in the computation of xRi0+εi,j0+εj

can be performed using only binary exclusive–or (XOR) operations (roughly (m−1)/2
XORs). Recall that if x, x′ ∈ GF (2m) and if the x(l) = θlx mod f(θ) are known for

1 6 l < m, then x′′ = x′x mod f(θ) can be computed as follows, wherein ⊕ denotes

the binary exclusive–or (XOR) operation:

(1) If x′
0 = 1 then x′′ = x, else x′′ = 0.

(2) For t from 1 to m− 1 do: if x′
t = 1 then x′′ = x′′ ⊕ x(l).

(3) Return x′′.
Besides the precomputation of the θlx mod f(θ), this is expected to require (m− 1)/2
XOR operations.

In the computation of each xRi0+εi,j0+εj
, we need an inversion; all the (k2 − 1)

inversions can be performed simultaneously. Yet, the simultaneous computation of

the (k2 − 1) inverses
(

xSεi,εj
+ xRi0,j0

)−1
, which requires one inversion and 3(k2 − 2)

field multiplications, is still optimizable. Observe that each of the (k2 − 1) inver-

sions, involve xRi0,j0
, and as said above, the x

(l)
Si,j

= θlxSi,j mod f(θ) are precomputed.

We can then modify the simultaneous inversion algorithm, by first precomputing the

x
(l)
Ri0,j0

= θlxRi0,j0
mod f(θ) for 1 6 l < m, such that the multiplications in steps (2)

and (4b) of Algorithm 4.6 are performed using only XOR operations. With these

modifications, the expected running time of the simultaneous inversion algorithm be-

comes one inversion and (k2 − 1) multiplications (and (m− 1)/2 field reductions and

2(m− 1)(k2 − 1)/2 XOR operations which we consider negligible).

To traverse the two lists, the computations are then performed per bloc (of (k2 −1)
elements), and for each non–successful bloc bi,j (i.e., a bloc which does not contain

an i–point which decomposition is given by an element of L1 × L2), once bi+1,j+1

computed, bi,j can be destroyed.

The idea is summarized in Algorithm 4.7, further tunning may be possible6; notice

also that when many processors are available, the precomputations can be performed

by an “initiator” processor and passed to the others.

The bloc dimension size k has to be chosen so that O(2l/2k2) storage is conveniently

feasible. The precomputations require 2l/2+1 + k2 elliptic curve point additions (the

combination of the Montgomery inversion and López–Dahab formula can be used in

precomputations for further optimizations). Traversing all the boundary blocs (the

blocs b1,j and bi,1) requires 2l/2+1/k field inversions + 2l/2+1 field multiplications, and

traversing all the non–boundary blocs requires roughly
(2l/2 − k)2

k2
field inversions and

(2l/2 − k) field multiplications.

Using this approach, which requires some precomputations, the number of inver-

sions in the naive search can be reduced by a factor that approximates k2.

Using Pollard’s Rho Algorithm

In this (sub)section, we modify the “simple” rho algorithm (without optimizations

from [VAN99, WIE99, GAL00]) to allow decomposed i–point detection [SAR08].

6Other ideas, among which incrementing k each time i and j reach the same value to further reduce
the number of inversions, or rewriting the simultaneous inversion, are under exploration.

91

4.5. Complementary Analysis of ECMQV

Algorithm 4.7 Optimized i–point search

Input: P , n, and QA ∈ 〈P 〉.
Output: a decomposed i–point for Â or “failure”.

(1) Choose λ ∈R [1, n− 1], and compute P ′ = λP .

(2) Compute the 2
l
2 couples (i,−(2l + i)QA), for 1 6 i 6 2l/2.

(3) Compute the 2
l
2 couples (j, jP ′), for 1 6 i 6 2l/2.

(4) Compute the x coordinate of Si,j = jP ′ − (2l + i)QA, for 1 6 i, j 6 k.

(5) For u from 1 to
2l/2

k − 1
do

(a) Check whether the bloc b1,u contains a decomposed i–point.
(b) If so, return the indexes (i0, j0) of the i–point.

(6) For u from 1 to
2l/2

k − 1
do

(a) Check whether the bloc bu,1 contains a decomposed i–point.
(b) If so, return the indexes (i0, j0) of the i–point.

(7) For each bloc bi,j with i, j 6 2l/2

k−1 do
(a) Check whether the bloc bi,j contains a decomposed i–point.
(b) If so, return the indexes (i0, j0) of the i–point.

(c) If i, j <
2l/2

k − 1
then

• Compute the bloc bi+1,j+1.
• Destroy the bloc bi,j .

(d) Else, goto step (7).
(8) Return “failure”.

To modify the rho method (Algorithm 2.8) for decomposed i–point detection, we

need to have d2 = −(2l + ξ) mod n for some known ξ < 2l.

Definition 16 ([TES01a]). Let r ∈ N \ {0}, X1, · · · , Xr ∈R 〈P 〉, and g : 〈P 〉 −→
{1, · · · , r} a hash function. A walk (Rk)k∈N in 〈P 〉 such that R0 ∈R 〈P 〉, Rk+1 =
Rk +Xg(Rk) is said to be an r–adding; {X1, · · · , Xr} is said to be the supporting set.

From Teske [TES01a], r–adding walks with an independent hash function and r > 16
in cyclic elliptic curves (sub)groups behave very close to uniformly distributed, with an

average period λ and preperiod µ satisfying λ+ µ 6 1.45
√
n. Adding a constant term

to all elements of a supporting set does not perturb the supporting set’s randomness

(for X ∈R 〈P 〉 and C, Y ∈ 〈P 〉, Pr(X = Y) = Pr(X = Y −C) = Pr(X+C = Y)). And

from [BAI08], fixing the starting value R0 to some constant does not seem significantly

worse than choosing R0 at random.

Now consider the walk (Rk)k∈N with starting value R0 = X0 − 2lQA, X0 ∈R 〈P 〉,
supporting set {X1−ε1QA, · · · , X32−ε32QA} where Xk ∈R 〈P 〉, and εk ∈R {0, 1}; with

Rk+1 = Rk +Xw(Rk) − εw(Rk)QA, where w is a hash function w : 〈P 〉 −→ {1, · · · , 32}.

This walk can be regarded as a “mix” of the following walks.

(a) The r–adding (Rjk
)k∈N with starting valueRj0 = X0, supporting set {Xj1 , · · · , Xjr }

(the set of Xi for which εi = 0), and with some convenient hash function w(1) :
〈P 〉 −→ {1, · · · , r1}.

92

4.5. Complementary Analysis of ECMQV

(b) The walk derived from (Rj′
k
)k∈N, by adding all elements of the supporting set of

(Rj′
k
)k∈N with the constant term −QA; where the starting value and supporting

set of (Rj′
k
)k∈N are Rj′

0
= −2lQA and {Xj′

1
, · · · , Xj′

32−r
} (the set of Xi for which

εi = 1), with some hash function w(2) : 〈P 〉 −→ {1, · · · , 32 − r}.

When independent hash functions w(1), w(2) are used, the walks (Rjk
) and (Rj′

k
) are

expected to behave close to uniformly distributed. We also expect this for the walk

(Rk)k∈N. In the walk (Rk)k∈N, each term Rk can be written Rk = X − (2l + ξ)QA

for some known ξ 6 2l for approximately 2l+1 steps. Under the assumptions that the

l–least significant bits of the x–coordinate of the Rk are random, and the iterating

function is a random one, the probability of detecting an i–point before 1.0308
√
n

couples (Rk, R2k) are computed is Pr (i) = 1−(1−1/2l)2.0616
√

n; and since 2.0616
√
n >

2l, it follows that 0.63 ≈ 1 − e−1 6 Pr (i) for n sufficiently large.

When only decomposed i–point detection is considered, the expected number

of couples (Rk, R2k) that have to be computed before success is 2l/2 = 2l−1 ≈
1.0308

√
n/2. Hence the rho algorithm with modifications to detect i–points is ex-

pected approximately twice faster than without modifications. The modified version

of the rho algorithm is given in Algorithm 4.8. We get a decomposed i–point for Â

if the return occurs at step (5b) and the private key dA if it occurs at step (7); and

in any of these cases one can succeed in impersonation and weak man–in–the–middle

attacks.

Algorithm 4.8 Modified rho algorithm for decomposed i–point detection

Input: P , n , QA.
Output: dA = logP QA, or a decomposed i–point for Â, or “failure”.

(1) Choose a partition function g : 〈P 〉 −→ {1, · · · , L} (g(R) = j if R ∈ Pj).
(2) For j from 1 to L do

(a) Choose γj ∈R [0, n− 1] and δj ∈R [0 · · 1].
(b) Compute R(j) = γjP + δj(−QA).

(3) Choose c1 ∈R [0 · · n− 1], d1 = 2l and compute R1 = c1P + d1(−QA).
(4) Set R2 = R1, c2 = c1, d2 = d1.
(5) Repeat

(a) j = g(R1), R1 = R1 +R(j), c1 = c1 + γj mod n, and d1 = d1 + δj ;
(b) For i from 1 to 2 do

j = g(R2), R2 = R2 +R(j), c2 = c2 + γj mod n, d2 = d2 + δj .
if R̄2 = d2 return R2 and c2.

until R2 = R1.
(6) If d1 = d2 return “failure”.
(7) return dA = −(c1 − c2)(d2 − d1)−1 mod n.

Remark 1.

(a) We do not reduce d2 modulo n since d2 6 2l for approximately 2l+1 iterations.

(b) The parallelization technique described in [VAN99] is applicable to this modified

version of the rho algorithm.

(c) Algorithm 4.8 applies also if the iterating function is defined over the set of equiva-

lence classes of any group automorphism ϕ over 〈P 〉 for which R̄ = ϕ(R) is satis-

93

4.5. Complementary Analysis of ECMQV

fied. In particular, if the iterating function is defined over the set of equivalence

classes of the automorphism (〈P 〉 ∋ R
ϕ−→ −R) [WIE99, GAL00].

Measuring L = (number of couples (Ri, R2i) computed until success)/n
1
2 , for small

values of n, and the average durations of Algorithms 2.8 and 4.8, we get the results

in Table 4.2. The number of branches is L = 32, Lr and ADr (resp. Lm and ADm)

are respectively the average L and the average duration (measured in seconds) for the

Pollard’s rho algorithm (resp. modified version); PM is the percentage of i–points in

the results of the modified version. The first factor in the number of examples (NE)

column indicates the number of domain parameters, the second indicates the number

of instances of the DLP that have been used on each domain parameters, and the third

indicates how many times each instance have been used.

Table 4.2: Number of couples (Ri, R2i) computed until success and average duration for the
rho algorithm and the modified version — on Magma V2.12_13 on a GNU/Linux Opteron

x86-64 4 processors 2390 MHz CPU.

size of n (bits) Lr ADr Lm ADm PM NE

20 1.043 0.019 0.462 0.011 72.10 10×10×10
30 1.048 0.766 0.539 0.403 64.80 10×10×10
40 1.038 29.102 0.452 14.363 71.60 10×10×10
50 1.040 995.132 0.489 512.610 69.10 10×10×10
60 1.097 32051.941 0.454 14097.042 63.33 3×2×5

Comparing these values, we see that the modified version is in practice, for sufficiently

small values of n, approximately twice faster than the rho algorithm. This conforms

to the complexity analysis of the modified rho, and tends to confirms, the expected

advantage of the modified algorithm over the rho method.

4.5.3 Exploiting Session Specific Secret Leakages

In this section we show how session specific information leakages can be exploited for

impersonation and man–in–the–middle attacks. We consider only leakages the most

significant bits; but using the tools from [GOP07] a similar analysis can be performed

when considering leakages on middle–part bits.

Impersonation Attack using Session Secret Leakage

Proposition 6 ([SAR08]). Let Â be a party executing the ECMQV protocol with some

peer D̂. If an attacker learns the β most significant bits of sA — defined at step (IIIb)

of Protocol 4.1 — then it can indefinitely impersonate Â to any entity; this requires

O
(

2
µ−β

2
)

time complexity and O
(

2
µ−β

2
)

space complexity where µ = ⌈log2 n⌉.

Remark 2. To meet the two–and–half points multiplications per party performance

(or a better), which partly makes the attractiveness of the ECMQV protocol, sA has

to be computed, and the multiplication (hsA)(RD + R̄DQD) has to be performed, and

94

4.5. Complementary Analysis of ECMQV

then ephemeral secret exponent (sA) leakage may occur (through side channel attacks

for instance), independently of the ephemeral private key kA.

Lemma 1 (Shank’s Baby Step Giant Step (BSGS) Algorithm [TES01b]). Let S = sP

where the β most significant bits of s are known. One can recover s in O
(

2
µ−β

2
)

operations and O
(

2
µ−β

2
)

space complexity.

Shanks method is deterministic, but requires the storage O
(

2
|q|−β

2
)

large integers.

Using the Pollard’s Kangaroo method [POL78, TES01a], one can compute s with

negligible storage, in probabilistic run time O
(

2
|q|−β

2
)

.

Lemma 2 ([SAR08]). Let Â be an entity executing the ECMQV protocol with some

peer D̂. If an attacker learns the ephemeral secret exponent at Â (sA), then it knows

an i–point for Â and its decomposition.

Proof. Since Â’s static and ephemeral public keys QA and RA are known, it suffices

to (re)write RA +R̄AQA = sAP i.e. RA = sAP − R̄AQA.

Proof of Proposition 6. From Lemma 1, if an attacker learns the β most significant bits

of sA, it can compute sA in O
(

2
µ−β

2
)

time complexity using O
(

2
µ−β

2
)

space complexity.

If the attacker learns sA, it holds a decomposed i–point for Â (RA + R̄AQA = sAP i.e.

RA = sAP − R̄AQA.); the proposition follows from Attack 4.2.

From Proposition 6, if an attacker learns (for instance) the half most significant bits

of an ephemeral secret exponent at Â, impersonating Â to any entity requires O
(

n
1
4
)

operations. Hence Proposition 6 leads to practical attacks when (partial) ephemeral

secret exponent leakage occurs, through side channel attacks for instance. This implies

also that the ECMQV protocol cannot meet the loss of information security attribute,

since not only the session in which leakage occured is compromised, but mutual au-

thentication is no more guaranteed for any ECMQV execution implicating Â, while

Â′s static private key is not disclosed. Ephemeral secret exponent leakage implies a

leakage of the corresponding session key. But, ephemeral secret exponent leakage does

not imply neither static leakage, not ephemeral private key leakage. Indeed, one can

show that from any algorithm B which given sA, RA and QA computes Â’s ephemeral

private key kA or the static one dA in CB operations, one can build an algorithm which

solves two instances of the discrete logarithm problem in 〈P 〉 in CDLP +CB operations,

where CDLP is the complexity for solving one instance of the DLP in 〈P 〉.
Ephemeral secret exponent leakage implies (but is not equivalent to) session key

reveal, and does not imply neither static key reveal nor ephemeral key reveal; while it

is not difficult to see that both ephemeral secret exponent and ephemeral key leakages

on the same session imply the session owner’s static key discloser.

Man–in–the–middle Attacks using Session Secret Leakages

We show here that ephemeral secret exponent leakages lead also to man–in–the–middle

attacks.

95

4.5. Complementary Analysis of ECMQV

Corollary 1. Let Â and B̂ be two entities executing the ECMQV protocol with respec-

tive peers Ĉ, D̂. (i) If an attacker learns the β most significant bits of the ephemeral

secret exponent at Â, it can succeed in weak man–in–the–middle attack between Â and

any entity; this requires O
(

2
µ−β

2
)

in time and O
(

2
µ−β

2
)

space complexity. (ii) If in ad-

dition, the attacker learns the β most significant bits of the ephemeral secret exponent

at Â, then it can indefinitely succeed in man–in–the–middle attack between Â and B̂

this also requires O
(

2
µ−β

2
)

in time and O
(

2
µ−β

2
)

space complexity.

If an attacker learns an ephemeral secret exponent at Â, weak man–in–the–middle

between Â and a party, say B̂′, is performed by “simultaneously” impersonating Â to

B̂′, and Â to Â, as in Attack 4.3; s
(l)
A is the ephemeral secret exponent the attacker

learned at Â, and R
(l)
A is Â’s outgoing ephemeral public key in the session in which

ephemeral secret exponent leakage happened.

Attack 4.3 Weak ECMQV MIM attack using ephemeral secret exponent leakage

(1) Send Â, R
(l)
A to B̂′.

(2) Intercept B̂′’s response (B̂′, RB′ , tB′) and do the following:
(a) Validate the ephemeral key RB′ .

(b) Compute ZB′ = hs
(l)
A (RB′ + R̄B′QB′).

(c) Verify that ZB′ 6= ∞.
(d) Compute (k1B′ , k2B′) = KDF (xZB′).

(e) Verify that tB′ = MACk1B′
(2, B̂′, Â, RB′ , R

(l)
A).

(f) Compute t′AB′
= MACk1B′

(3, Â, B̂′, R(l)
A , RB′).

(g) Send t′AB′
to B̂′.

(3) Send Â, R
(l)
A to Â.

(4) At Â’s response (Â, RA, tA) do the following:
(a) Validate the ephemeral key RA.

(b) Compute ZA = hs
(l)
A (RA + R̄AQA).

(c) Verify that ZA 6= ∞.
(d) Compute (k1A , k2A) = KDF (xZA

).
(e) Verify that tA = MACk1A

(2, Â, Â, RA, R
(l)
A).

(f) Compute t′AA
= MACk1A

(3, Â, Â, R(l)
A , RA).

(g) Send t′AA
to Â.

(5) Use the key k2B′ to communicate with B̂′ on behalf of Â.

(6) Use the key k2A to communicate with Â on behalf of (a peer with identity) Â.

The man–in–the–middle attack is as in Attack 4.4; s
(l)
A and s

(l)
B are the ephemeral

secret exponents the attacker learns (in previous sessions), and R
(l)
A and R

(l)
B are re-

spectively Â’s and B̂’s outgoing ephemeral public keys in the leaked sessions.

Roughly speaking, Attack 4.4, is simply a simultaneous impersonation Â to B̂,

and B̂ to Â; this can be performed given an i–point for Â and an i-point for B̂. The

session key that B̂ derives is k2B where (k1B , k2B) = KDF (xZB
), with

ZB = h(kB + R̄BdB)(R(l)
A + R̄

(l)
A QA) = hs

(l)
A (RB + R̄BQB).

96

4.6. Complementary Analysis of the HMQV design

Attack 4.4 MIM attack against ECMQV using ephemeral secret exponent leakages

(1) Send Â, R
(l)
A to B̂.

(2) Intercept B̂’s response (B̂, RB, tB) and do the following:
(a) Validate the ephemeral key RB.

(b) Compute ZB = hs
(l)
A (RB + R̄BQB).

(c) Verify that ZB 6= ∞.
(d) Compute (k1B , k2B) = KDF (xZB

).
(e) Verify that tB = MACk1B

(2, B̂, Â, RB, R
(l)
A).

(f) Compute tA = MACk1B
(3, Â, B̂, R(l)

A , RB).

(g) Send tA to B̂.

(3) Send B̂, R
(l)
B to Â.

(4) Intercept Â’s response (Â, RA, tA) and do the following:
(a) Validate RA.

(b) Compute ZA = hs
(l)
B (RA + R̄AQA) and verify that ZA 6= ∞.

(c) Compute (k1A , k2A) = KDF (xZA
) and

verify that tA = MACk1A
(2, Â, B̂, RA, R

(l)
B).

(d) Compute tB = MACk1A
(3, B̂, Â, R(l)

B , RA).

(e) Send tB to Â.
(5) Use the key k2B to communicate with B̂ on behalf of Â.
(6) Use the key k2A to communicate with Â on behalf of B̂.

This is the key the attacker derives for communication with B̂ on behalf of Â. Sim-

ilarly, the session key that Â derives is k2A where (k1A , k2A) = KDF (xZA
) and

ZA = hs
(l)
B (RA + R̄AQA).

4.6 Complementary Analysis of the HMQV design

In this section we highlight some shortcomings in the HMQV design. The HMQV

protocol [KRA05] was designed with the objective to circumvent flaws in the MQV

design. Namely, the security of MQV is susceptible to group elements representa-

tion, and the protocol cannot be shown secure without further assumptions on the

underlying group elements representation. Unfortunately, the HMQV is less secure

than stated. Notice that in our description of HMQV, the ephemeral public keys are

tested for membership in G∗; while public key validation is voluntarily omitted in

[KRA05], the HMQV protocol is known to be insecure if public keys are not correctly

validated [MEN06, MEN07].

4.6.1 Exploiting Secret Leakage in the XCR and DCR Schemes

Definition 17 (Exponential Challenge–Response signature [KRA05]). Let B̂ be an

entity with public key B ∈ G∗, and Â a verifier. B̂’s signature on message a m and

challenge X provided by Â (X = Gx, x ∈R [1, q − 1] is chosen and kept secret by Â)

is SignB̂(m,X) = (Y,XsB), where Y = Gy, y ∈R [1, q − 1] is chosen by B̂, and

97

4.6. Complementary Analysis of the HMQV design

sB = y + H̄(Y,m)b. The verifier Â accepts a pair (Y, σB) provided by B̂ as a valid

signature if Y ∈ G∗ and (Y Be)x = σB, where e = H̄(Y,m).

In this scheme, the information sB “allows” an attacker to generate valid signatures.

Indeed, given the sB, “corresponding” to some message m and some Y , one can gen-

erate a valid signature on any message–challenge pair (m,X1) (X1 is a new challenge

and the message is unchanged). In the HMQV protocol, the identity of B̂ stands for

Â’s message to B̂, and thus does not change from one session (between Â and B̂) to

another; hence (as in MQV) this can be exploited when sB leakage occurs.

Proposition 7 ([SAR09a]). Let B̂ be an entity, with public key B ∈ G∗, signing

a message–challenge pair (m,X). If an attacker learns the β most significant bits

of sB, then it can generate valid signatures with respect to B̂’s public key, on any

message–challenge pair (m,X1) (the message is unchanged); this requires O
(

2
|q|−β

2
)

time complexity and O
(

2
|q|−β

2
)

space complexity.

Definition 18 (Dual XCR signature [KRA05]). Let Â and B̂ be two entities with

public keys A,B ∈ G∗; and m1,m2 two messages. The Dual XCR (DCR) signature of

Â and B̂ on m1,m2 is DSignÂ,B̂(m1,m2, X, Y) = G(x+da)(y+eb), where X = Gx ∈R G∗

and Y = Gy ∈R G∗ are respectively chosen by Â and B̂, d = H̄(X,m1), and e =
H̄(Y,m2).

In the DCR scheme, once Â and B̂ have exchanged their respective message–challenge

pairs (m1, X) and (m2, Y), they can both compute the same DCR signature σA =
(Y Be)x+da = (XAd)y+eb = σB. Notice also that the DCR signature of Â and B̂ on

messages m1,m2 is an XCR of Â on the message m1 and challenge Y Be.

Proposition 8 ([SAR09a]). Let Â and B̂ be two entities, with public keys A,B ∈ G∗,
signing the messages m1,m2, with challenges X,Y . If an attacker learns the β most

significant bits of sA = x + da (d = H̄(X,m1)), then it can compute a valid DCR of

Â and B̂ on any message m′
2 and challenge Y ′ from B̂; this requires O

(

2
|q|−β

2
)

time

complexity and O
(

2
|q|−β

2
)

space complexity.

Proof. Since, the DCR signature of Â and B̂ on (m1,m
′
2), is also a XCR signature

of Â on challenge Y ′Be and message m1, the result follows from Proposition 7.

As in the MQV protocol, to meet the two–and–half exponentiations per party perfor-

mance in the DCR scheme, the ephemeral secret exponents have to be computed an

the exponentiation (Y Be)sA performed, and then ephemeral secret exponent leakage

may occur independently of the ephemeral private keys.

4.6.2 Exploiting Session Specific Secret Leakages in HMQV

A HMQV key exchange between two parties, say Â and B̂, is as in Protocol 4.9.

Roughly speaking, the secret shared between Â and B̂ is a DCR signature with mes-

sages fixed to Â and B̂. In [KRA05], Krawczyk presents the XCR scheme as a new

variant of the following Schnorr’s identification scheme:

98

4.6. Complementary Analysis of the HMQV design

Protocol 4.9 HMQV key exchange

Protocol Messages:
Â : a, A, Â B̂ : b, B, B̂
x ∈R [1, q − 1],
X = Gx,

(Â, B̂, X) −→

y ∈R [1, q − 1],
y = Gy,

←− (B̂, Â, Y)

sA = (x + da) mod q, sB = (y + eb) mod q,

σA = (Y Be)sA σB = (XAd)sB ,
K = H(σA) K = H(σB).

I) The initiator Â does the following:
(a) Choose x ∈R [1, q − 1].
(b) Compute X = Gx.
(c) Send (Â, B̂,X) to B̂.

II) B̂ does the following:
(a) Verify that X ∈ G∗.
(b) Choose y ∈R [1, q − 1].
(c) Compute Y = Gy.
(d) Send (B̂, Â, Y) to Â.
(e) Compute d = H̄(X, B̂) and e = H̄(Y, Â).
(f) Compute sB = (y + eb) mod q and σB = (XAd)sB .
(g) Compute K = H(σB).

III) Â does the following:
(a) Verify that Y ∈ G∗.
(b) Compute d = H̄(X, B̂) and e = H̄(Y, Â).
(c) Compute sA = (x+ da) mod q and σA = (Y Be)sA .
(d) Compute K = H(σA).

IV) The shared session key is K.

(a) The signer B̂ chooses y ∈R [1, q − 1] and sends Y = Gy to Â.

(b) The verifier Â chooses e ∈R [1, q − 1] and sends e to B̂.

(c) B̂ computes s = y + eb and sends s to Â.

(d) Â accepts s as a valid signature if Y ∈ G∗ and Gs = Y Be.

There is however a subtlety: in Schnorr’s scheme the random element e, used by B̂

when computing s, is always provided by the verifier Â; while in the XCR and DCR

schemes, when Â’s message m1 is fixed (to B̂ as in all sessions between Â and B̂)

the value of e, used when computing sB, depends only on the ephemeral key Y provided

by (the signer) B̂. This is precisely what makes replay attacks possible against the

XCR and DCR schemes, and the HMQV protocol, when sA or sB leakage occurs.

99

4.6. Complementary Analysis of the HMQV design

Impersonation Attack using Session Specific Secret Leakage

We show here how ephemeral secret exponent leakage can be used for impersonation

attacks. Following the complementary analysis on ECMQV, we define an i–point for

HMQV as follows.

Definition 19 (HMQV i–point). Let Â and B̂ be two entities with respective public

keys A, B ∈ G∗. A group element R ∈ G∗ is said to be a HMQV i–point for Â to B̂

if there exists some k ∈ [1, q − 1] such that R = GkA−H̄(R,B̂); k is said to be the

decomposition.

Proposition 9 ([SAR09a]). Let G = 〈G〉 be a group with prime order q, Â and B̂ two

entities with respective public keys A, B ∈ G∗. There exists at least q− (2l +1) HMQV

i–points for Â to B̂.

As for the MQV protocol, the following proposition links the decomposition of an

HMQV i–point to impersonation attack.

Proposition 10 ([SAR09a]). Let Â and B̂ be two entities with respective public keys

A, B ∈ G∗. Given a HMQV i–point for Â to B̂ X ′ and its decomposition k, one can

impersonate Â to B̂ with no more computations than needed by a HMQV execution.

Attack 4.5 Impersonation attack against HMQV using a decomposed i–point

Require A HMQV i–point for Â to B̂ X ′ and its decomposition k.
(1) Send (Â, B̂, X ′) to B̂.
(2) Intercept (B̂, Â, Y) and do the following:

(a) Verify that Y ∈ G∗.

(b) Compute σA =
(

Y Be
)k

where e = H̄(Y, Â).
(c) Compute K = H(σA).

(3) Use K to communicate with B̂ on behalf of Â.

Impersonations attacks using ephemeral secret exponent leakages against HMQV

can be performed in the same way as against MQV. The impersonation attack against

HMQV using ephemeral secret exponent leakage was independently reported by Basin

and Cremers [BAS10].

Proposition 11 ([SAR09a]). Let Â be an entity executing the HMQV protocol with

some peer B̂. If an attacker learns the β most significant bits of the ephemeral secret

exponent at Â, then it can indefinitely impersonate Â to B̂; this requires O
(

2
|q|−β

2
)

time complexity and O
(

2
|q|−β

2
)

space complexity.

Man in the Middle Attack using Session Specific Secret Leakages

If in a HMQV execution between Â and B̂, an attacker learns the ephemeral secret

exponent at B̂, in addition to the ephemeral secret exponent at Â, it can succeed in

a man in the middle attack between Â and B̂. The attack is described as Attack 4.6;

s
(l)
A and s

(l)
B are the ephemeral secret exponents the attacker learns, X(l) and Y (l)

100

4.7. A New Authenticated Diffie–Hellman Protocol

are respectively Â and B̂’s outgoing ephemeral public keys in the sessions in which

leakages happened. Notice that it is not required that s
(l)
A and s

(l)
B (partial) leakages

happen in matching sessions.

Attack 4.6 MIM attack against HMQV using ephemeral secret exponent leakages

(1) Send (Â, B̂, X(l)) to B̂.
(2) Intercept B̂’s response to Â (B̂, Â, Y) and send (B̂, Â, Y (l)) to Â.
(3) Intercept Â’s response to B̂, (Â, B̂, X).

(4) Compute σA = (XAdA)s
(l)
B , where dA = H(X, B̂).

(5) Compute KA = H(σA).

(6) Compute σB = (Y BeB)s
(l)
A , where eB = H(Y, Â).

(7) Compute KB = H(σB).
(8) Use the key KB to communicate with B̂ on behalf of Â.
(9) Use the key KA to communicate with Â on behalf of B̂.

Roughly, Attack 4.6 is a simultaneously impersonation Â to B̂, and B̂ to Â. In B̂’s

belief, Â initiates a session with him, with Â’s ephemeral public key being X(l); and in

Â’s believe, B̂ initiates a session with him, with B̂’s ephemeral public key being Y (l).

Hence the session key Â derives is

KA = H((Y (l)BeA)x+dAa) = H((XAdA)s
(l)
B),

where eA = H(Y (l), Â) and dA = H(X, B̂). This is the KA we compute in step 5.

Similarly, the session key that B̂ derives is KB = H((Y BeB)s
(l)
A) where eB = H(Y, Â).

In Attack 4.6 the communications are initiated by the attacker, but the attack remains

possible when communications are initiated by Â (or B̂).

4.7 A New Authenticated Diffie–Hellman Protocol

In this section, we define the Full Exponential Challenge Response (FXCR) and Full

Dual exponential Challenge Response (FDCR) schemes [SAR09a], which confine to

the minimum the consequences of ephemeral secret exponent leakages; and provide

security arguments for these schemes. Using these schemes, we define the Fully

Hashed MQV (FHMQV) protocol, which preserves the remarkable performance of

the (H)MQV protocols, in addition to ephemeral secret exponent leakage resilience.

4.7.1 Full Exponential Challenge Response Signature scheme

Definition 20 (FXCR signature scheme [SAR09a]). Let B̂ be an entity with public

key B ∈ G∗, and Â a verifier. B̂’s signature on message m and challenge X provided

by Â (X = Gx, x ∈R [1, q − 1] is chosen and kept secret by Â) is FSignB̂(m,X) =
(Y,XsB), where Y = Gy, y ∈R [1, q−1] is chosen by B̂, and sB = y+H̄(Y,X,m)b; the

verifier Â accepts a pair (Y, σB) as a valid signature if Y ∈ G∗ and (Y BH̄(Y,X,m))x = σB.

The FXCR scheme delivers all the security attributes of the XCR scheme; in addition

the “replay attack” we present in section 4.6 does not hold anymore. Indeed, suppose

101

4.7. A New Authenticated Diffie–Hellman Protocol

an attacker which has learned sB
(l) = y(l) + H̄(Y (l), X(l),m)b. When it is provided

with a new challenge X (chosen at random) and the same message m, except with

negligible probability X 6= X(l), and then H̄(Y (l), X(l),m) 6= H̄(Y (l), X,m). Hence,

to replay Y (l) on the message–challenge pair (m,X), the attacker has to find sB =
y(l) + H̄(Y (l), X,m)b; it is not difficult to see that if it can compute sB from sB

(l),

then it can find b from sB, which is not feasible.

Definition 21 (FXCR signature scheme security [SAR09a]). The FXCR scheme is

said to be secure in G if given a public key B, a challenge X0 (B,X0 ∈R G∗), and

hashing and signing oracles, no adaptive probabilistic polynomial time attacker can

output with non–negligible success probability a triple (m0, Y0, σ0) such that:

• (Y0, σ0) is a valid signature with respect to the public key B, and the message–

challenge pair (m0, X0); and

• (Y0, σ0) was not obtained from the signing oracle with a query on (m0, X0)
(freshness).

Using the “oracle replay” technique [POI00], we show that the FXCR scheme is secure

in the sense of Definition 21.

Proposition 12 ([SAR09a]). Under the CDH assumption in G and the RO model,

the FXCR signature scheme is secure in the sense of Definition 21.

Proof. Suppose a probabilistic polynomial time attacker A, which given B,X0 ∈R G∗

succeeds with non–negligible probability in forging a valid signature, with respect to

the public key B and challenge X0. Using A we build a polynomial time CDH solver S
which succeeds with non–negligible probability. The solver S provides A with random

coins, and simulates the digest and signature queries. The interactions between S
and A are described in Figure 4.3.

Under the RO model, the distribution of simulated signatures is indistinguishable

from that of real signatures, except the deviation that happens when H̄(Y,X,m) was

queried before. Let Qh and Qs be respectively the number of queries that A asks to

the hashing and signing oracles. Since the number of queries to the oracles is less

than (Qh + Qs), and Y is chosen uniformly at random in G, this deviation happens

with probability less than (Qh +Qs)/q, which is negligible. (As A is polynomial in |q|,
both Qh and Qs are polynomial in |q|.) Hence this simulation is perfect, except with

negligible probability. Moreover the probability of producing a valid forgery without

querying H̄(Y0, X0,m0) is 2−l (which is negligible). Thus, under this simulation, A
outputs with non–negligible probability a valid and fresh forgery (Y0, X0,m0, σ

(1)
0); we

denote H̄(Y0, X0,m0) by e
(1)
0 .

From the forking lemma [POI00], the repeat experiment outputs with non–negligible

probability a valid and fresh signature (Y0, X0,m0, σ
(2)
0) with a digest e

(2)
0 , which with

probability 1 − 2−l, is different from e
(1)
0 . Then the computation

(

σ
(1)
0

σ
(2)
0

)

(

e
(1)
0 −e

(2)
0

)−1

=

(

(

Y0B
e

(1)
0
)

x0

(

Y0B
e

(2)
0
)

x0

)

(

e
(1)
0 −e

(2)
0

)−1

= Bx0

102

4.7. A New Authenticated Diffie–Hellman Protocol

First Run of A:

(a) At A’s digest query on (Y,X,m), S responds as follows:
• if a value is already assigned to H̄(Y,X,m), S returns the value of
H̄(Y,X,m);

• otherwise, S responds with e ∈R {0, 1}l, and sets H̄(Y,X,m) = e.
(b) At A’s signature query on (m,X), S responds as follows:

• S chooses sB ∈R [1, q − 1], e ∈R {0, 1}l, sets Y = GsBB−e and
H̄(Y,X,m) = e. If H̄(Y,X,m) was previously defined, S aborts;

• S responds with (Y,XsB , sB) (notice that the forger is given sB in ad-
dition to XsB).

(c) At A’s halt, S verifies that A’s output (Y0, X0,m0, σ0) (if any) satisfies the
following conditions. If not, S aborts.

• Y0 ∈ G∗ and H̄(Y0, X0,m0) was queried from H̄.
• The signature (Y0, σ0) was not returned by B̂ on query (m0, X0).

Repeat: S executes a new run of A, using the same input and coins; and answer-
ing to all digest queries before H̄(Y0, X0,m0) with the same values as in the
previous run. The new query of H̄(Y0, X0,m0) and subsequent queries to H̄
are answered with new random values.

Output: If A outputs a second signature on (Y0, X0,m0, σ0) satisfying conditions

of step (c), with a hash value H̄(Y0, X0,m0)2 = e
(2)
0 6= e

(1)
0 = H̄(Y0, X0,m0)1,

then S outputs
(

σ
(1)
0 /σ

(2)
0

)(e
(1)
0 −e

(2)
0)−1

as a guess for CDH(B,X0).

Figure 4.3: Building a CDH solver from a FXCR forger

yields CDH(B,X0) with non–negligible probability. Recall that such a polynomial

time CDH solver, succeeding with non–negligible probability, can be transformed into

an efficient CDH solver [MAU96].

4.7.2 Full Dual Exponential Challenge Response Signature scheme

Definition 22 (FDCR signature scheme [SAR09a]). Let Â and B̂ be two entities

with public keys A,B ∈ G∗, and m1,m2 two messages. The FDCR signature of Â and

B̂ on messages m1,m2 is FDSignÂ,B̂(m1,m2, X, Y) = G(x+da)(y+eb) = (XAd)y+eb =

(Y Be)x+da, where X = Gx ∈R G∗ is chosen by Â (resp. Y = Gy ∈R G∗ is chosen

by B̂), d = H̄(X,Y,m1,m2), and e = H̄(Y,X,m1,m2).

In the FDCR scheme, as in the DCR scheme, once Â and B̂ have provided their respec-

tive message–challenge pairs, they can both compute the same signature. However,

contrary to the DCR and XCR schemes, the FDCR signature of Â and B̂ on messages

m1,m2 and challenges X,Y , is not a FXCR signature of Â on m1 and Y Be.

Definition 23 (FDCR scheme Security [SAR09a]). The FDCR scheme is said to be

secure in G, if given a,A,B,X0, and a message m10 , and hashing and signing oracles,

no adaptive probabilistic polynomial time attacker, can output with non–negligible

success probability a triple (m20 , Y0, σ0) such that:

• (m10 ,m20 , X0, Y0, σ0) is a valid FDCR signature with respect to the keysA andB.

103

4.7. A New Authenticated Diffie–Hellman Protocol

• (Y0, σ0) was not obtained from the signing oracle with a query on (m′
1, X

′) such

that X0 = X ′ and (m′
1,m

′
2) = (m10 ,m20), where m′

2 is the message returned at

signature query on (m′
1, X

′), and (m10 ,m20) denotes the concatenation of m10

and m20 (freshness).

Remark 3. Since we suppose that if Â 6= Â′, no substring of Â equals Â′ (and con-

versely), if Â 6= Â′ or B̂ 6= B̂′ then (Â, B̂) cannot equal (Â′, B̂′).

Proposition 13 ([SAR09a]). Under the CDH assumption in G and the RO model,

the FDCR signature scheme is secure in the sense of Definition 23.

Proof. Suppose an attacker A, which given a,A,B,X0,m10 (with A 6= B) outputs with

non–negligible success probability a valid and fresh signature forgery (m20 , Y0, σ0). Us-

ing A we build a polynomial time FXCR forger, which succeeds with non–negligible

probability. The forger S provides A with random coins, a,A,B,X0,m10 , and simu-

lates the role of B̂ as follows.

(1) At A’s digest query on (X,Y,m1,m2), S responds as follows:
• if a value is already assigned to H̄(X,Y,m1,m2), S returns the value of
H̄(X,Y,m1,m2);

• otherwise S responds with d ∈R {0, 1}l, and sets H̄(X,Y,m1,m2) = d.
(2) At signature query on (m1, X), S responds as follows.

• S chooses m2 ∈ {0, 1}∗, sB ∈R [1, q − 1], d, e ∈R {0, 1}l, computes
Y = GsBB−e, and sets H̄(X,Y,m1,m2) = d, H̄(Y,X,m1,m2) = e;
if H̄(X,Y,m1,m2) or H̄(Y,X,m1,m2) was defined in a previous query,
S aborts.

• S provides A with the signature ((m2, Y), (XAd)
sB , sB) (sB is returned,

with the signature).

Figure 4.4: Building a FXCR forger from a FDCR forger

The simulation of B̂’s role is perfect, except with negligible probability. The devia-

tion happens when the same message–challenge pair (m2, Y) is chosen twice in two sig-

nature queries on the same pair (m1, X). Since Y is chosen uniformly at random in G,

this happens with negligible probability. Then if A succeeds with non–negligible prob-

ability in forging a valid and fresh signature σ0, it succeeds also with non–negligible

probability under this simulation. And since S knows a, using A, it produces with

non–negligible success probability

σ0(Y0B
e)−da = (Y0B

e)x0+da(Y0B
e)−da = (Y0B

e)x0 = X0
y0+eb.

This is valid FXCR forgery on message (m10 ,m20) (the concatenation of m10 and m20)

and challenge X0 with respect to the public key B; contradicting Proposition 12.

4.7.3 The Fully Hashed MQV Protocol.

We can now derive the Fully Hashed MQV (FHMQV) protocol, which provides all

security attributes of the (H)MQV protocol, in addition to ephemeral secret exponent

104

4.7. A New Authenticated Diffie–Hellman Protocol

Protocol 4.10 FHMQV key exchange

Protocol Messages:
Â : a, A, Â B̂ : b, B, B̂
x ∈R [1, q − 1],
X = Gx,

(Â, B̂, X = Gx) −→

Y ∈R [1, q − 1],
y = GY ,

←− (B̂, Â, Y = Gy)

sA = (x + da) mod q, sB = (y + eb) mod q,

σA = (Y Be)sA σB = (XAd)sB ,

K = H(σA, Â, B̂, X, Y) K = H(σB , Â, B̂, X, Y).

I) The initiator Â does the following:
(a) Choose x ∈R [1, q − 1].
(b) Compute X = Gx.
(c) Send (Â, B̂,X) to B̂.

II) B̂ does the following:
(a) Verify that X ∈ G∗.
(b) Choose y ∈R [1, q − 1].
(c) Compute Y = Gy.
(d) Send (B̂, Â, Y) to Â.
(e) Compute d = H̄(X,Y, Â, B̂), e = H̄(Y,X, Â, B̂).
(f) Compute sB = (y + eb) mod q and σB = (XAd)sB .
(g) Compute K = H(σB, Â, B̂,X, Y).

III) Â does the following:
(a) Verify that Y ∈ G∗.
(b) Compute d = H̄(X,Y, Â, B̂), e = H̄(Y,X, Â, B̂)
(c) Compute sA = (x+ da) mod q and σA = (Y Be)sA .
(d) Compute K = H(σA, Â, B̂,X, Y).

IV) The shared session key is K.

leakage resilience. While using the same overall design as the (H)MQV protocols, FH-

MQV provides security attributes that are lacking in (H)MQV protocols. Ephemeral

secret exponent leakage resilience is provided in FHMQV, while not in the (C,H)MQV

protocols.

Theorem 4. Let sA = x + da and σ = (Y Be)sA, where d = H̄(X,Y, Â, B̂) and

e = H̄(Y,X, Â, B̂), be the intermediate results in a session at Â with peer B̂. Under

the GDH assumption in G, and the RO model, the FHMQV protocol is seCK–secure.

The proof of Theorem 4 is similar to that of Theorem 3 (see section 3.9.1), so we

omit it. Instead, we summarize the most important differences between the HMQV

and FHMQV protocols.

105

4.7. A New Authenticated Diffie–Hellman Protocol

Differences between the FHMQV and HMQV Designs

Notice that, we consider the HMQV variant wherein ephemeral keys are tested for

membership in G∗, as if not, HMQV is already known to be insecure [MEN07, MEN06].

Building blocks and adversary model. The design of FHMQV relies on the FXCR

and FDCR signature schemes. While in the XCR scheme as in the FXCR scheme,

both ephemeral secret exponent and ephemeral key leakages in the same session

imply a discloser of the session owner’s static private key. In the FXCR scheme,

an adversary which has learned an ephemeral secret exponent at a party is un-

able to forge the party’s signature. The seCK model allows ephemeral secret

exponent leakage. Better, in the FXCR and FDCR security arguments, when

the attacker issues a signature query, it is also provided with the signature’s

ephemeral secret exponent. The impersonation and man in the middle attacks

we presented in section 4.6 do not hold against the FHMQV protocol. An imme-

diate consequence of this security attribute is that, as for the SMQV protocol,

when implementing FHMQV in a distributed environment with a computation-

ally limited tamper–resistant device together with an untrusted host machine

(see Figure 4.5), the ephemeral keys can be computed in the device in idle–time,

while the exponentiation σ = (Y Be)sA = (XAd)sB is computed on the host

machine.

Application

Card Reader Smart Card

Untrusted host Machine

Figure 4.5: Particularly suited FHMQV implementation environment

As for SMQV, the non–idle computational effort of the device reduces to one

digest computation, one integer addition and one multiplication.

Key replication attacks resilience. At session key derivation in FHMQV, ephemeral

keys and peers identities are hashed with the session’s FDCR signature (K =
H(σ, Â, B̂,X, Y)). Since non matching sessions cannot have (except with neg-

ligible probability) the same ephemeral keys, and non matching digest queries

cannot have (except with negligible probability) the same digest value, the ana-

lysis of key replication attacks is immediate for the FHMQV protocol.

Computational asumptions. The security of the HMQV protocol relies on the

GDH, the Knowledge of Exponent Assumption (KEA1) [BEL04] and the RO

model. For the FHMQV protocol the (KEA1) assumption is not needed; we

only require the RO model and the GDH assumptions.

The FHMQV–C Protocol

As shown in [KRA05], no implicitly authenticated two–message protocol such as ours

can achieve the forward secrecy security attribute; key confirmation security attribute

106

4.8. Conclusion

(for both peers) cannot be achieved also. Nevertheless these security attributes may

be desirable; the FHMQV protocol can be added with a third message, yielding the

FHMQV–C protocol, we describe in Protocol 4.11; KDF1 and KDF2 are key derivation

functions, and MAC a message authentication code. If any verification fails, the

execution aborts.

When a party, say Â, completes a FHMQV–C session with some honest peer B̂, and

with incoming ephemeral key Y , it is guaranteed that Y was chosen and authenticated

by B̂, and that B̂ can compute the session key it derives. The FHMQV–C protocol

provides also perfect forward secrecy, the compromise of Â’s static private key, does

not compromise the session keys established in previous runs. This can be shown when

the analysis of FHMQV is completed with the session–key expiration notion [CAN01].

4.8 Conclusion

We introduced new points, i–points, for impersonation attacks against the (C, H)MQV(–

C) protocols, and showed their existence for any valid domain parameters. We ex-

plored the search of these points. The method we propose for decomposed i–point

search is expected to be twice faster than the Pollard’s rho algorithm. We proposed

a complementary analysis of the Exponential Challenge Response and Dual Expo-

nential Challenge Response signature schemes, which are the building blocks of the

(H)MQV protocols. On the basis of this analysis, we showed how impersonation and

man in the middle attacks can be performed against the (H)MQV protocols, when

some session specific information leakages occur. We proposed the Full Exponential

Challenge Response (FXCR) and Full Dual Exponential Challenge Response (FDCR)

signature schemes, with security arguments. Using these schemes, we defined the Fully

Hashed MQV (FHMQV) protocol, which preserves the efficiency of the (H)MQV pro-

tocols, and meets the seCK security definition. As for SMQV, FHMQV is particularly

suited for distributed environments wherein a tamper resistant device is used with

an untrusted machine. For future work, we will be interested in further investiga-

tions parallelizations and optimizations the decomposed i–point search. Decomposed

i–point search is not harder than the (EC)DLP, however we do not know whether the

converse is true or not; we will also be interested in investigating this question.

107

4.8. Conclusion

Protocol 4.11 FHMQV–C key exchange

Protocol Messages:
Â : a, A, Â B̂ : b, B, B̂
x ∈R [1, q − 1],
X = Gx,

(Â, B̂, X) −→

y ∈R [1, q − 1],
Y = Gy,

sB = (y + eb) mod q,

σB = (XAd)sB ,

K1 = KDF (σB , Â, B̂, X, Y),

tB = MACK1
(B̂, Y),

←− (B̂, Â, Y, tB)

sA = (x + da) mod q,
σA = (Y Be)sA ,

K1 = KDF (σA, Â, B̂, X, Y),

tA = MACK1
(Â, X),

tA −→

K2 = KDF2(σA, Â, B̂, X, Y) K2 = KDF2(σB , Â, B̂, X, Y)

I) The initiator Â does the following
(a) Choose x ∈R [1, q − 1].
(b) Computes X = Gx.
(c) Send (Â, B̂,X) to B̂.

II) At receipt of (Â, B̂,X) B̂ does the following:
(a) Verify that X ∈ G∗.
(b) Choose y ∈R [1, q − 1].
(c) Compute Y = Gy.
(d) Compute d = H̄(X,Y, Â, B̂) and e = H̄(Y,X, Â, B̂).
(e) Compute sB = (y + eb) mod q and σB = (XAd)sB .
(f) Compute K1 = KDF1(σB, Â, B̂,X, Y) and tB = MACK1(B̂, Y).
(g) Send (B̂, Â, Y, tB) to Â.

III) At receipt of (B̂, Â, Y, tB), Â does the following:
(a) Verify that Y ∈ G∗.
(b) Compute d = H̄(X,Y, Â, B̂) and e = H̄(Y,X, Â, B̂).
(c) Compute sA = (x+ da) mod q and σA = (Y Be)sA .
(d) Compute K1 = KDF (σA, Â, B̂,X, Y).
(e) Verify that tB = MACK1(B̂, Y).
(f) Compute tA = MACK1(Â,X).
(g) Send tA to B̂.
(h) Compute K2 = KDF2(σB, Â, B̂,X, Y)

IV) At receipt of tA, B̂ does the following:
(a) Verify that tA = MACK1(Â,X).
(b) ComputeK2 = KDF2(σB, Â, B̂,X, Y).

V) The shared session key is K2.

108

Chapter 5

Implementations of the PKCS #11
Standard

Contents

5.1 Introduction . 108

5.2 Context of the Work . 109

5.3 An Overview of the PKCS #11 Specification 110

5.3.1 PKCS #11 Terminology . 110

5.3.2 Operations in the Standard Specification 112

5.4 (In)Security in the PKCS #11 Standard 113

5.4.1 Logical Security Weaknesses 114

5.4.2 Implementation solutions 117

5.5 Overview of two PKCS #11 Implementations 118

5.5.1 Implementation for eKeynoxTM 118

5.5.2 Implementation for RCP . 122

5.1 Introduction

Cryptographic schemes are widely used in distributed systems. In such systems, the

different components may be developed by different teams which may be from different

companies. Even if the basic cryptographic schemes are standardized, there is a need

for a standard way of communication between the components. PKCS #11 is a com-

munication interface between applications and cryptographic devices. The standard is

designed with smart–cards in mind; it is widely adopted in industry, and deployed in

many security tokens: the Globull from Bull [BUL], the Smart Enterprise Guardian

from Gemalto [GEM], to mention only a few. Some software open source implemen-

tations, among which the NSS–PKCS #11 [MOZ] (which significantly deviates from

the standard specification) and the Lite Security Module PKCS #11 (a deamon based

implementation [MER09]), are also deployed.

Even if widely deployed, the PKCS #11 standard may be insecure, in particular,

when implemented without a strict security policy. Indeed, keys may have conflict-

ing attributes, which make them vulnerable to an attacker which gains access to an

authenticated session; in addition, the standard specification gives only few advices

on this point. In this chapter, we discuss some of the limitations of the PKCS #11

standard specification, and the ways to circumvent them in practical implementations.

We also discuss some of the design choices and technicalities of two PKCS #11 im-

plementations at Netheos. Because of the commercial nature of the products in which

the implementations are used, the discussion is voluntarily limited.

109

5.2. Context of the Work

In the next section, we discuss the context of the work; in section 5.3, we give

an overview of the PKCS #11 specification. Section 5.4 is about the (in)security in

the standard specification and implementations, we discuss sensitive keys export, when

security conflicting security attributes are allowed; we also discuss key space reduction,

and key wrapping based fault attacks. Section 5.5 deals with few of the technicalities

in our implementations, concerning the Everbee “Smart Mobile Key” (SMK) and the

Netheos’ Reconfigurable Cryptographic Platform (RCP).

5.2 Context of the Work

Our work on PKCS (Public–Key Cryptography Standards) #11 is initially motivated

by the aim of the Netheos company [NET] to develop secure mobile peripherals, to-

gether with tools for a fine management of these peripherals. The whole project is

termed eKeynoxTM1. A secure mobile peripheral provides an environment including

a secure storage, and some executable embedded applications (a customized Firefox,

some applications developed by Netheos, the Sumatra PDF viewer, etc.) to fulfill

usual needs.

For the management of the devices, a registration directory is designed, to verify

the identity of a certificate issuer, together with a publication center for a centralized

distribution of the software and firmware updates. Different types of actors exist,

among which the “help–desk operator”, who can revoke a particular device (by revoking

the corresponding owner’s certificate, and removing the device from the list of the

devices that can connect to the publication center), or create a new certificate (using

the registration directory) for device activation. A user is a daily owner of a device.

Some intermediate roles exist between these two extremes; broadly, these intermediate

roles are partial or total delegations of the help–desk operator ’s role on a subset of the

set of all users.

In the eKeynox context, as many applications use the same cryptographic objects

and functions, there is clearly a need for a standard way of communication between the

applications and the module providing cryptographic services. Moreover, as many of

the applications in the environment are not developed by Netheos, the communication

interface provided by the cryptographic services provider has to operate for all applica-

tions in the environment. The most popular cryptographic communication interfaces

seem to be the IBM Common Cryptographic Architecture (CCA) [IBM08], and the

RSA Public Key Cryptography Standards #11 (PKCS #11) [RSA04]. In the eKeynox

project, the main application software is developed in Java. And, a PKCS #11 module

can be plugged into the SUN Java Cryptographic Architecture [SUN06] (the high–level

cryptographic API — which now encompasses the Java Cryptographic Extension), in

Firefox, or in Thunderbird, with no development effort; this is not the case for the

IBM CCA. In the eKeynox project, a PKCS #11 module seems more adequate than

a CCA one. Our contributions in the eKeynox project included

(1) the architecture design of the PKCS #11 module;

(2) the specification of the embedded system’s API regarding the PKCS #11 module;

1eKeynox is a trademark registered by Netheos.

110

5.3. An Overview of the PKCS #11 Specification

(3) the test of this API;

(4) the implementation and test of the submodules, except for those in the embedded

system;

(5) the integration and test of the involved submodules.

Although the eKeynox solution is commercialized with many devices, the discussion

is restricted to the “Smart Mobile Key” (SMK) from Everbee [EVE].

Another project which has motivated this work is Netheos’ Reconfigurable Crypto-

graphic Platform (RCP) Project. The goal of Netheos, with this project, is to develop

sufficiently generic and modular VHDL and C source codes to permit rapid prototyp-

ing of hardware security modules (HSMs) or cryptographic accelerators, depending on

customers needs; the target market is mainly the corporate and bank servers segment.

Cryptographic devices providing a PKCS #11 interface are widely used in the design

of Public Key Infrastructures (PKIs), Virtual Private Networks (VPNs), and so on;

providing this interface in the RCP project make the integration of an RCP in such

tools convenient. Our contributions in the RCP project included

(1) the co–design of the system;

(2) the software submodules co–development (including the PKCS #11 interface), and

(3) the co–development of the modules running in the embedded processor.

5.3 An Overview of the PKCS #11 Specification

The PKCS #11 standard API, also termed Cryptoki, was proposed by RSA Labo-

ratories [RSAL], in an open cooperation with industries and academias. The goal

of the standard is to provide a standard way of communication between applications

and portable cryptographic devices, to abstract the devices specificities and allow

cryptographic resources sharing (many applications using simultaneously many cryp-

tographic devices).

5.3.1 PKCS #11 Terminology

In the PKCS #11 terminology, a token is a device which stores objects, and performs

cryptographic treatments using the objects it stores. A slot is a logical view of a token

reader; when tokens are removable, a slot may not contain a token. In practice, tokens

behave as cryptographic auxiliaries, storing cryptographic keys and implementing a

variety of cryptographic mechanisms, for applications running on a host machine. For

smart–card based implementations, for instance, a token corresponds to the card, and

a slot to the card–reader. The slot and token notions are however logical, and the im-

plementations may be software. Also, the perimeter of the cryptographic mechanisms

that should be supported by a token is not specified by the standard, this follows from

the needs in the context in which the token is intended to be used.

Objects and users. The objects contained in a token can have one of the fol-

lowing “types” (see Table 5.1 for PKCS #11 prefixes). The cko_hw_feature is

the class of the hardware features that may exist in a token: real–time clock, mono-

tonic counters, and so on; these objects are usually “read–only”. An object with type

111

5.3. An Overview of the PKCS #11 Specification

cko_mechanism provides information about a cryptographic mechanism supported

by a token. The storage objects, which are usually the most commonly used, include

data objects, keys objects, certificates objects, and domain parameters. The objects

hierarchy is summarized in Figure 5.1 [RSA04, p. 62].

Figure 5.1: Objects Hierarchy in PKCS #11

Table 5.1: PKCS #11 naming prefixes.

Prefixes Meanings

c_ function prefix
ck_ general constant or low level data type
cka_ attribute type
ckc_ certificate type
ckd_ key derivation function indicator in elliptic curve protocols
ckf_ bit f lag
ckg_ mask generation function indicator
ckh_ hardware feature type
ckk_ key type
ckm_ mechanism type
ckn_ notifications that cryptoki provides to an application
cko_ object class
ckp_ pseudo-random function
cks_ session state
ckr_ return value
cku_ user type
ckz_ salt or encoding parameter source

Storage objects may also be separated following their lifespan. Session objects are

destroyed as soon as the session in which they were created is closed; their visibility

is limited to the application in which they were created. Contrary to session objects,

token objects outlive the sessions in which they were created. When public, depend-

ing on the applied policy, token objects may be visible to all applications. When

token objects are private, token secrete keys for instance, their visibility is reduced to

authenticated applications.

The specification defines two types of users: the Security Officer (SO) and the

normal users. The security officer’s role is to administrate a token and its normal

112

5.3. An Overview of the PKCS #11 Specification

users (termed users for short). The functions crafted for a SO include creation of a

new user authentication mean (the C_InitPIN function), token reinitialization, i.e.

the destruction of all objects that can be destroyed in a token (C_InitToken), etc.

A SO cannot use a private object, only normal users can access the private objects.

PKCS #11 sessions. The communications between a user and a token are per-

formed through a session. An application may have many sessions with a token, and

a token may have different sessions with multiple applications. All the sessions of an

application have the same state. Namely, if one session of an application succeeds in

authentication, all the other sessions of that application becomes authenticated. And,

if an application which already has a read–only session, say s1, opens a read–write

session s2, the session s1 becomes also a read–write one. Security Officer sessions

are always read–write; a SO session can be either authenticated (R/W SO functions)

or unauthenticated (R/W public session). User sessions can be either read–write or

read–only. When an application opens an authenticated read–only session (R/O user

functions), it has access to both public and private objects, but it cannot modify the

private objects, or generate new ones. In an authenticated user read–write session, all

token objects can be modified; object creation and destruction become also allowed.

Notice also that, depending on implementation policy, a token may require a successful

authentication prior to allowing access to any object — public or private.

5.3.2 Operations in the Standard Specification

More than sixty functions are provided in the standard specification; in addition im-

plementor defined callbacks functions can be provided to Cryptoki for notification

about some events. The callback functions are used, for instance, to inform about

the already performed percentage of a potentially time–consuming function call. All

the functions follow the “all–or–nothing” rule; information about the execution of a

function and causes of failure (if any) are provided as an integer (which has to be

interpreted). For conciseness, we group the PKCS #11 functions into three “families”:

container management, object management, and cryptographic use of the objects. A

finer granularity description is given in [RSA04, pp. 89–187], however the general pur-

pose functions, token management functions, and session management functions are

all about containers (slots and tokens).

Container management. Container management functions include the C_Initialize

function, which initializes a PKCS #11 library, the C_GetSlotList function to get the

list of the available slots, C_OpenSession to open a session, etc. Container manage-

ment functions can also provide information about a token (C_GetTokenInfo), a slot

(C_GetSlotInfo), mechanisms implemented on a token or on a particular mechanism

(C_GetMechanismList, C_GetMechanismInfo), or (un)authenticate a user (C_Login,

C_Logout). Except the (un)authentication functions, the container management func-

tions are not sensitive; the information they provide can be publicly available.

113

5.4. (In)Security in the PKCS #11 Standard

Object management. Object management functions are used to manipulate ob-

jects and their attributes. At a lower level, a PKCS #11 object is a collection of

attributes; each attribute is a triple (Type, Value, ValueLength), where Type is the

attribute type (e.g. cka_private_exponent for a RSA private exponent), Value

is a byte array representing an arbitrary string of bytes, an integer, or an unpadded

string with non–null termination, ValueLength is the length in bytes of Value. Ob-

ject (including key) creation can be performed using the C_CreateObject function,

with parameters a session handle, an object template, and a pointer to receive the

created object’s handle. When creating an object in this way, the provided template

has to fill–in all the attribute values of the object, in addition to being consistent.

The C_CreateObject function can be used, for instance, to import public keys or

certificates into a token.

Key generation is performed using the C_GenerateKey or C_GenerateKeyPair

functions with parameters a session handle, a key generation mechanism, the tem-

plate of the key(s) to be generated, and pointer(s) to receive the handle(s) of the

generated key(s); these functions generate respectively a symmetric key or a key pair.

A symmetric key can also be derived from an existing one, using the C_DeriveKey

function, with parameters the handle of the key to be derived and the key derivation

mechanism.

Cryptographic use of objects. Storage objects are used with cryptographic func-

tions. Cryptographic operations can be performed in different ways. An encryption

operation is initialized using the C_EncryptInit function with parameters the en-

cryption mechanism (e.g. ckm_aes_cbc), and the handle of the encrypting key.

Once the operation initialized, the proper encryption can be performed using either

the C_Encrypt function for a single–part data encryption or the C_EncryptUpdate

and C_EncryptFinal functions for a multi–part data encryption. contrary to the

C_EncryptFinal or C_Encrypt functions, the C_EncryptUpdate function can be

called many times after a C_EncryptInit call; decryption, signature, signature verifi-

cation, or digest related functions are defined in a similar way.

A user can import a wrapped (encrypted) key into a token using the C_UnwrapKey

function with parameters the unwrapping key’s handle, the unwrapping mechanism,

a key template, and an address location to receive the unwrapped key’s handle. Con-

versely, an extractable key can be exported off a token using the C_WrapKey func-

tion. In addition, the C_GetAttributeValue and C_SetAttributeValue functions can

be used to read or modify the attributes of an object, if allowed; object destructions

are performed using the C_DestroyObject function.

5.4 (In)Security in the PKCS #11 Standard

When “correctly” implemented, the specification constitutes a real basis for a secure

cryptographic token interface. Unfortunately guaranteeing that an implementation is

a secure one, with respect to a given threat model is not a trivial task. The security

of a cryptographic device presents three aspects [WEI08]: (1) logical security which

114

5.4. (In)Security in the PKCS #11 Standard

is about the logical mechanisms to prevent unauthorized access to sensitive informa-

tion; (2) physical security which is about the physical barriers to prevent unauthorized

physical access to the computing system; and (3) environmental security which is the

eventual protection mechanisms in the deployment environment of the device (ac-

cess policy, cameras, etc.). However, physical and environmental security cannot be

concretely discussed in detail apart from an implementation in a given deployment

environment. In this section, we focus on the logical security in the PKCS #11 speci-

fication.

In the specification, accessing private objects is possible only after a successful au-

thentication as a user; an attacker which gains physical access to a device and is unable

to succeed in authentication cannot use the private objects or gather information about

them. In addition a key can be marked as sensitive (the value of its cka_sensitive
attribute is set to true) or unextractable (the value of the its cka_extractable
attribute is set to false). A sensitive key cannot be revealed in clear–text off its token,

and an unextractable object cannot be extracted from its token, even in an encrypted

form. In addition, the value of a cka_sensitive attribute can be modified only from

false to true; similarly the value of an cka_extractable attribute can change from

true to false, but not in another way [RSA04, pp. 65, 130].

The standard specification argues that conforming with the restrictions on sensitive

and unextractable keys in an implementation provides an adequate logical security for

objects management. As, while operating system security concerns, and potential

threats that may be caused by a malicious software or device driver, may allow an

attacker to access a session, or compromise a PIN, if authentication is performed

using a PIN, such attacks cannot compromise sensitive or unextractable keys, since

“a key that is sensitive will always remain sensitive” ; and “a key that is unextractable

cannot be modified to be extractable” [RSA04, sect. 7, p. 31].

Unfortunately, in the standard specification, the discussion about the sensitive and

unextractable objects in the presence of an attacker which accesses an authenticated

session is incomplete. Since the important aspect for keys marked as unextractable or

sensitive is not only to keep them marked unextractable or sensitive, but to guarantee

that: (1) an unextractable key cannot be exported off its token, and (2) a sensitive

key cannot be exported in clear–text off its token. Indeed, when an attacker accesses

an authenticated session, the specification fails in circumventing many practical at-

tacks [CLU03, DEL08]. In the following subsection, we recall some of these attacks.

5.4.1 Logical Security Weaknesses

The standard does no allow security officers to access private objects. This restriction

is rather surprising; in addition to being not motivated in the specification, it is difficult

to see how it can be achieved in practice; as a SO can create a valid authentication

mean for itself (as a user), login as a user, and access private objects.

Sensitive Key Export. Symmetric keys can be used for key (un)wrapping. Recall

that the allowed functional uses of a key are defined through the values of its attributes;

115

5.4. (In)Security in the PKCS #11 Standard

for instance, a key cannot be used for data encryption if the value of its cka_encrypt
attribute is false. The specification differentiates data encryption from key wrapping

for encrypting keys. Unfortunately, this distinction is not strict in cryptographic

mechanisms; some mechanisms (ckm_aes_ecb, for instance) can be used for both

key encryption and data decryption. In addition, the specification does not forbid

any combination of the attributes values that indicate possible uses of a key. As a

consequence, an attacker which accesses an authenticated read–write session (R/W

user functions), in a PKCS #11 device implemented without further restrictions, can

export in clear–text sensitive keys, using the following sequence of queries.

(a) Generate a symmetric key with the values of its cka_wrap and cka_decrypt
attributes set both to true (i.e. with ability to wrap keys and decrypt data).

(b) Wrap the target sensitive key, using the newly generated key as wrapping key, and

using a mechanism which can be used also for data encryption, ckm_aes_ecb
for instance (see [RSA04, pp. 188–192] for a summary of mechanisms uses).

(c) Decrypt the wrapped key (using the C_Decrypt function) to get the target sensi-

tive in clear–text off the token.

As the specification allows keys to be used for both data encryption and key wrap-

ping, the impossibility to extract sensitive keys in clear–text off their token cannot be

guaranteed, unless further restrictions are applied to the implementing module. The

separation of key roles should be clearly stated in the standard specification, together

with the potential security consequences in a non–conform implementation.

Wrapping with a weaker key. If an attacker accesses an authenticated read only

session (R/O user functions), with some computational effort, it may export in clear–

text a target sensitive key, using the following heuristic sequence of queries.

(a) Search for a weak key with ability to wrap a key (if such a key is not found the

attempts fails.)

(b) Wrap the target key using the weak key;

(c) If the target sensitive key can be used for encryption, then encrypt some data

with it.

(d) Else, if it can be used for key wrapping, wrap the weak key, using the target key

as wrapping key; else, the attempt fails.

(e) Perform a brute force attack on the weak key, and unwrap the target key to get

it in clear–text.

If the target key can be used for data encryption, success in the brute force search

can be tested using the encrypted data. Else, if the target key can be used for key

wrapping, the brute force attack can be performed as follows. We denote the sensitive

and weak keys by K0 and K1 respectively. The notation WrapT (·, ·) denotes a wrap-

ping operation performed in the token, the first parameter is the wrapping key; then

ω0 = WrapT (K1,K0) and ω1 = WrapT (K0,K1) denote respectively the wrapped sen-

sitive and weak keys. The notation Unwrapout(·, ·) denotes an unwrapping operation

performed off the token.

116

5.4. (In)Security in the PKCS #11 Standard

For K ′
1 ∈ {0, 1}|K1| do

K ′
0 = Unwrapout(K

′
1, ω0).

If K ′
1 = Unwrapout(K

′
0, ω1) return K ′

0.

end for

The attacker simply tries all the possible values of the weak keyK1; when a keyK ′
1 such

that K ′
1 = Unwrapout

(

Unwrapout(K
′
1, ω0), ω1

)

is found (such a key is very likely K1),

K ′
0 = Unwrapout(K

′
1, ω0) is returned as K0. Notice that the existence of weak keys in

cryptographic devices is common; this is usually motivated by a need of compatibility

with already existing infrastructures. The DES scheme [FIP99], for instance, even if

considered now as a weak scheme due to the shortness of its keys, is implemented in

many recent HSMs, including the Ultimaco SafeGuard CryptoServer [ULT09], which

meets the FIPS 140–2 security level 3.

Key Space Reduction. Some of the key derivation mechanisms provided by the

specification, make attacks possible against unextractable keys. Recall that unex-

tractable keys cannot be extracted off its token, even if wrapped; and the value of an

cka_extractable attribute can change only from true to false. Unfortunately some

key derivation mechanisms can be used to foil restrictions on unextractable keys.

The ckm_extract_key_from_key mechanism, for instance, permits to cre-

ate a new key using parts of a base key. An attacker which gains access to an authenti-

cated read–write session, can derive keys using separate parts of a target unextractable

key, and perform separate exhaustive searches on the target key parts to recover the

target key. For an unextractable 128–bit AES key the attacker can derive two DES

keys, use the derived keys to encrypt some data, and perform separate exhaustive

searches to find the derived DES keys; the remaining part of the target AES key can

be found with a limited computational effort.

Key Wrapping and Fault Attacks. The C_WrapKey function can be used for

fault attacks, in particular when the target key is a sensitive RSA private key, which can

be used for signature; some of the RSA private key attributes are recalled in Table 5.2.

Among the attributes in Table 5.2, only the cka_modulus and cka_private_-
exponent attributes are necessary for consistency; however, the other non–boolean

attributes are commonly used for faster signature generation [BON92]. To know

whether or not an RSA key has some sensitive attributes, one can call the C_GetAttri-

buteValue function, with the object’s handle and the template of the sensitive at-

tributes one is asking about as parameter. Of course, the call will fail, as the at-

tributes are sensitive. However, if the object has the attributes, the returned value is

ckr_attribute_sensitive, and ckr_attribute_type_invalid otherwise.

An attacker which accesses an authenticated read–write session, can wrap a RSA

key with cka_prime_1 and cka_prime_2 attributes, using a mechanism which

provide neither integrity checking nor error expansion (the ckm_aes_ecb mechanism

for instance); it can then modify the wrapped key, to make one of the factors of

the modulus n, say cka_prime_1 or p, altered when unwrapped. It then follows

a classical fault attack on RSA [BON92]. As the altered (wrapped) key can then

117

5.4. (In)Security in the PKCS #11 Standard

be unwrapped, and a signature generated using the faulty unwrapped key on some

message, say M . The attacker may then recover a non–trivial factor of n using the

signature and the message M , and then the private exponent of the target private key.

As if S is a RSA signature on a M , generated using the altered unwrapped key, then

M ′ − (S)e = M ′ − (Sq)e = 0 mod q,

where M ′ denotes the padded message before exponentiations, Sq is S mod q. Recall

that M ′ can be computed for many signature mechanisms (the ckm_sha384_rsa_-
pkcs mechanism, for instance). Better, for the ckm_rsa_x_509 mechanism, M ′

equals M . Now as S was generated using an erroneous factor p′, it is likely that

M ′ − (S)e = M ′ − (Sp)e 6= 0 mod p, and gcd(n,M ′ − (S)e) yields a non–trivial factor

of the modulus n, this allows in turn to recover the target private key.

Table 5.2: Some Attributes of a RSA Private Keys

Attribute Meaning

cka_modulus an RSA modulus, usually termed n
cka_public_exponent public exponent e
cka_private_exponent private exponent d
cka_prime_1 a prime factor p
cka_prime_2 a prime factor q (n = pq)
cka_exponent_1 d mod p− 1
cka_exponent_2 d mod q − 1
cka_coefficient q−1 mod p
cka_decrypt boolean
cka_sign boolean

Other variants of the attacks we present are possible [CLU03, DEL08, CAC09],

broadly the attacks highlight idiosyncrasies, from a security point of view, between

functional and security goals of the PKCS #11 specification, the lack a tamper de-

tection mechanism on wrapped keys, and the existence of mechanisms allowing the

generation of related keys, with different uses.

5.4.2 Implementation solutions

The key wrapping function (C_WrapKey) is intended to the encryption and export

of keys for backup storage, import in another token, or re–import in the source token

at a later time. Unfortunately, as discussed above, the non–separation of key roles is

problematic; key–wrapping keys can also be data encrypting keys, and yield sensitive

key export attacks. Separating key roles partly circumvents such attacks, and more

generally enhances implementation security.

Also, as most of the key wrapping mechanisms are also data encryption mecha-

nisms, and then provide no tamper detection mechanism for wrapped keys, key wrap-

ping based fault attacks are possible. Such attacks can be circumvented when keys are

tagged prior to encryption (a digest of the wrapped key can be appended to the key

118

5.5. Overview of two PKCS #11 Implementations

before it is encrypted). The weaker key wrapping attacks can also be circumvented,

simply by forbidding the protection of a key with a weaker key.

The key derivation mechanisms can be problematic also, as the specification pro-

vides no restriction on the size or uses of a derived key. In addition some derivation

mechanisms, ckm_extract_key_from_key or ckm_xor_base_and_data for

instance, provide related keys such that a leakage on a derived key partially reveals

the parent key. This security issue can be addressed by forbidding such key derivation

mechanisms.

Also, separating key roles, i.e. guaranteeing that a key cannot have different con-

tradictory roles (in regard to security) at the same time is not sufficient; it should

also be guaranteed that key roles do not change during their lifespan. If a key role

can change from wrapping key to data encrypting key, for instance, already wrapped

keys can be decrypted as data and then exposed in clear–text off their token. And,

if a data encrypting key can be modified to be a key wrapping key, previously en-

crypted data can potentially be unwrapped to get (token) sensitive keys with known

value. In addition, a derived key should inherit the functional attributes (cka_wrap,

cka_decrypt, etc.) of its parent key. Since if not, an attacker which accesses an

authenticated read–write session can derive two keys with the same key value, but

with different roles, key wrapping and data encryption, for instance; and using the

derived keys, export sensitive keys in clear–text.

The standard security weaknesses are well known [CLU03, CAC09, DEL08]2. Un-

fortunately, the weaknesses cannot be circumvented without fundamental changes in

the specification. As one can expect such changes come with the dual concerns of

interoperability and backwards compatibility.

5.5 Overview of two PKCS #11 Implementations

In this section, we discuss few of the technicalities in our PKCS #11 implementa-

tions. Considering the commercial nature of the eKeynoxTM and RCP products the

discussion is voluntarily limited.

5.5.1 Implementation for eKeynoxTM

Dedicated security devices attain a security level which cannot generally be achieved

using general purpose computers. The eKeynox project deals with the design and

management of such devices. In the eKeynox solution, cryptographic operations are

performed using a PKCS #11 module; the components of the solution are briefly

presented hereunder.

Overview of the eKeynox Components. The main physical components of the

SMK are a microprocessor (ARM926 EJ–S [ARM]) which embeds a Linux (2.6.15/

ARM), a fingerprint sensor module (a TCS3C–TCD42 from UPEK [UPEK]), a flash

2Notice the long duration between the first version of the specification which was published in
1995, and the work of Clulow [CLU03], which is to our knowledge the first publication on PKCS #11
vulnerabilities.

119

5.5. Overview of two PKCS #11 Implementations

memory and a chip (a DS3605 from Maxim [MAX]) for true random number genera-

tion. The random number generation chip and the fingerprint sensor are respectively

connected to the microprocessor through its I2C [PHI95] and USB [AXE06] interfaces.

The logical components of the system are as in Figure 5.4; our discussion focuses on

the PKCS #11 interface bloc.

Figure 5.2: The “Smart Mobile Key”

Figure 5.3: Overview of the SMK physical components

R. Serv. : Remote Servers,

Port. Apps. : Portable Applications,

Main App. : Main Application,

P11 Int. : PKCS #11 Interface,

CCL : Client Communication Library,

ESP : Embedded Services Provider,

FSM : Fingerprint Sensor Module.

FSM

USB DeviceHost MachineRemote Servers

ESPCCLP11 Int.

Port. Apps.

Main App.

R. Serv.

Figure 5.4: Main Modules in eKeynox

Overview of the PKCS #11 Module Internals. The type definitions provided

in the specification are not all adequate for a practical implementation as they are.

The sessions, for instance, are viewed off a token through handles (integer identifiers);

internally sessions have to be represented with much more data to track session states,

ongoing operations, generated objects, and so on. In addition internal structures

120

5.5. Overview of two PKCS #11 Implementations

(objects, sessions, tokens, etc.) have to be structured in a manner which allows an

efficient search. The structures from the specification are then internally added, with

attributes (in the sense of the C language) to allow an easier tracking and use. Sessions,

for instance, are internally represented as structures with attributes referencing the

savings of session state and ongoing cryptographic operation states. Recall that an

encryption can be performed using a sequence C_EncryptInit, C_EncryptUpdate,

· · · , C_EncryptUpdate, C_EncryptFinal, wherein the C_EncryptUpdate functions

is called many times; it is then necessary to track ongoing operations. In addition,

some internal structures are defined for convenience in guaranteeing the consistency of

the internal structures accessed by a process. An overview of the internal structures

interconnections is given in Figure 5.5; this color is used to indicate the internal

structures which can be externally viewed through an identifier, and this one is used

for structures with no external identifier, or internal references between structures.
typedef struct internal_session {

ck_slot_id slotId,

ck_session_handle handle,

ck_session_info_ptr pSessionInfo,

intern_obj_table_ptr pObjectTable,

ck_void_ptr pDecryptState,

ck_void_ptr pSignState,

· · ·
} internal_session;

Slot

External

Identifiers

Token

Objects

Table

Sessions

Table

Obj.

Sess.
Process

data

Figure 5.5: Interconnections between the Internal Structures

The process data structure is only for internal use in the module, it contains a pro-

cess identifier (assigned to the application by host the operating system), and the

identifiers of the sessions created by the process. The process data structure may

also contain references to the functions to use for mutex (mutual exclusion) objects

creation, destruction, or (un)locking. Recall that at the initialization of a PKCS #11

121

5.5. Overview of two PKCS #11 Implementations

module, an application can indicate how the module should deal with the application’s

multi–threaded accesses to the module, and provide the addresses of the functions the

module should use.

The slot structure contains generic slot information (slot description, version num-

ber, whether or not the token is present, etc.), and a reference to a token structure.

The token structure contains information about the token (serial number, whether or

not the token has its own random number generator, the available memory for private

objects etc.), it also contains pointers to function implementations. Some functions

are implemented in both the part of the PKCS #11 module which runns on the host

machine, and in the embedded Linux. At function call, depending on the nature of

the object to be used (session or token, public or private), the operation is performed

either in the device or on the host machine, this design choice does not only lightweight

the burden in the USB bus, it also makes possible the achievement of the security re-

quirement that private token objects should never be used on the host machine. The

session structures contain references to states of ongoing operations, and a reference

to an objects table. The objects referenced in an object table are either the inter-

nal representations of the sessions objects, or internal handles which permit to use

(embedded) token objects.

Authentication and Sensitive Data Protection. The authentication is twofold,

in addition to scanning its fingerprint, the user provides a PIN code through the

main application. Using the fingerprint and the PIN, an AES key is derived, and

using the key, the token objects are decrypted, and the derived key destroyed. If

the authentication fails, a counter is decreased, and when the counter reaches zero,

the token is blocked; in this case the user has to contact the “help–desk operator” to

unblock its token.

Figure 5.6: Authentication Screenshot

At token personalization phase, all the token objects needed to access the different

servers or to use the device, together with a (256–bit) random number are gener-

122

5.5. Overview of two PKCS #11 Implementations

ated, wrapped and saved on a dedicated server. The random number is latter used

by the helpdesk operator for to update the user’s certificates. In addition, after the

personalization phase, no token key generation or derivation is allowed, except those

periodically performed by a helpdesk operator for an update of the certificate. There

is no special physical protection for the token objects; however, except at the per-

sonalization phase, the token keys cannot be exported off a token (all the functions

calls dealing with token objects export are rejected). The token objects functional at-

tributes are separated and cannot be changed. The schemes considered as weak (DES,

RC2, etc.,) are not implemented, as the eKeynox solution needs no already existing

infrastructure, the compatibility issues are minored.

When a device owner is not authenticated, the token objects are encrypted with

a key which cannot be derived unless its fingerprint in PIN code are provided. And,

except at personalization phase, or during an update of a certificate, the token objects

are “read–only.” Hence one can have reasonable confidence in the physical security

provided by the implementation.

To enhance the logical security, the applications embedded in the environment are

modified to forbid temporary files or debug information logs on the host machine;

the necessary temporary files are created in the device secure storage. In addition,

before a portable application is launched by the main application, a (256–bit) random

number is generated in the embedded Linux, and injected in the application at launch.

When the applications calls a function which uses the token objects, it provides the

random number as additional (implicit) parameter; at the PKCS #11 module the

calling process identifier is also appended to the parameters. The random number

becomes obsolete when the application closes. With these mechanisms one can have a

reasonable confidence on the logical and physical security of the PKCS #11 module.

Performance Issues. When a cryptographic operation deals only with session ob-

jects, it is performed in the calling process address space, and with most of the host

machines there is no performance issue for session objects. Indeed for session objects,

the implementation uses the OpenSSL low–level cryptographic API [APV07]; a 2048–

bit RSA signature is performed within a few dozens of milliseconds (on Windows XP

Intel Core2 processor, 2.13GHz CPU). Unfortunately, for token objects, the efficiency

decreases very significantly; a 2048–bit RSA key pair generation takes 29 seconds, and

a signature generation 1.6 seconds. Token key pair generation is however performed

only at personalization phase, or for certificate update.

This eKeynox solution, is today used on tokens compatible with Windows 2000,

Windows XP, and Vista, in many companies.

5.5.2 Implementation for RCP

The RCP project aims to provide a generic and modular cryptographic design together

with VHDL and C source codes for a rapid prototyping of cryptographic devices,

depending on costumers needs. Broadly, besides genericity and modularity, the feature

requests in he RCP project include efficiency, price scalability, and naturally security

123

5.5. Overview of two PKCS #11 Implementations

scalability. The outcome of the project should be a proof of concept which is resilient

to both logical and physical attacks. In addition objects backup, restore, and firmware

update mechanisms have to be provided; and a protected authentication path, whereby

a user can directly log into a token, without using the host machine, have to be

designed.

In this section, we discuss some of the of design choices and the implementation

aspects. Notice that we do not discuss the reconfiguration aspects; a discussion on

this point can be found in [BAD09], our work on RCP was performed together with

this author.

Design Overview. The main components in the RCP proof of concept (POC) are

a secure Processor (the “Universal Secure Integrated Platform” (USIP) from Innova

card — which is now part of Maxim [MAX]), a FPGA (a Virtex 5) a smart card

reader, a flash memory, and a PCIe connector (see Figures 5.7 and 5.8).

Figure 5.7: RCP Board Block Diagram

Figure 5.8: RCP Board

124

5.5. Overview of two PKCS #11 Implementations

Figure 5.9: The SCM Microsystems SPR532 PINpad

The FPGA (field programmable gate array) is used for performance scalability; it

serves for the core cryptographic engine implementations, so lower or higher perfor-

mance FPGAs can be used depending on the needs. (It serves also as a lever for the

board price — the USIP price, 20$, is relatively low). FPGAs have no non–valatile

memory and cryptographic engines only are not sufficient, if not coupled with a se-

cure key management. The USIP provides a true RNG, integrated tamper sensors

(frequency, voltage, temperature, and die shield), external sensor inputs, a keyboard

controller, four memories (128K bytes of SRAM, 256K bytes of flash memory, 256 bytes

of user one–time programmable memory, and 128K bytes of ROM), and an “on the

fly AES encryption” of external memories. This represents a non negligible security

add–on; the USIP is used for master keys generation and storage.

For communication flexibility the FPGA is connected to a PCIe bus with 8 lanes

with a maximal throughput of 16 gigabit per second; the FPGA is also connected to

two RJ–45 interfaces that can support gigabit Ethernet. The communication interfaces

were voluntarily chosen to allow the use of different paths for plaintext and ciphertext

(red/black architecture). The smart–card reader is integrated for direct authentication

on the device; in addition the RS–232 interface, supported by the open source smart

card projects (OpenSC3 for instance) can be used to connect the PINpad (a SPR532

from SCM Microsystems [SCM]). The USIP provides tamper respondent mechanisms

to fulfill the security requirements of the FIPS 140–2 level 3. However, many FPGAs

cannot achieve the level 3 requirements, the reason is simply that they provide no

tamper respondent mechanism, invasive attacks are then possible. To make the RCP

possibly achieve the level 3 requirements, the trusted area is enclosed with a tamper

respondent sensor surface connected to the USIP external sensors interface.

With these design choices, the USIP acts as the “master” of the system, and the

FPGA as an accelerator which responds to the master’s calls.

On the RCP board, are mapped the abstraction layers summarized in Figure 5.10.

We defined a complementary API, which deals with the function requests which are not

defined in the PKCS #11 interface. It allows a backup of the whole objects contained

the system, and an update embedded C or VHDL codes. It allows also audit trial

exports, and system uninstall (the latter operation destroys all objects and makes the

system identical to an ex–works one).

3See http://www.opensc-project.org/.

125

http://www.opensc-project.org/

5.5. Overview of two PKCS #11 Implementations

Cryptoki Compl. API

Internal API

PCI Express Driver

Board PCIe Interface

FPGA (Crypto Engines)

USIP SafePad
H

ar
d
w

ar
e

S
ot

fw
ar

e

Functional API

Figure 5.10: RCP abstraction layers

Key Management. As usual the ex–works boards will be empty. The empty boards

are first pre–initialized by Netheos, which loads the FPGA bitstream and related

materials for bitstream confidentiality and secure remote updates. The secure flash

loader key of the USIP is then initialized, and the USIP code is encrypted with the

flash loader key, and then loaded in the embedded flash memory (which is different

from the USIP internal flash memory).

The proper initialization is performed in the deployment environment, the user

runs a simple application provided by Netheos, and insert smart–cards when required

for a backup of the master keys, and users authentication smart-cards. Internally

the initialization is also rather simple, the USIP generates the master keys, read the

time and date from the user, and stores it in its real time counter (RTC) for stamps

generation; the USIP then generates an empty record of the functional keys. Latter,

when a user queries a key generation, the key is generated and encrypted in the USIP,

and copied in the backup flash partition; finally the USIP updates the record of valid

keys to include the newly generated key. When a user issue an operation which involves

a key, the USIP decrypts the key, checks it’s validity an transmits it to the FPGA

which performs the operation; the private keys are never stored in cleartext out of the

trusted area. The communications between the FPGA and the USIP are secured with

a symmetric key which is injected in the FPGA bitstream and USIP running code at

pre–initialization.

For an external backup of the functional keys, only allowed to SOs, a key is gen-

erated and distributed on some smart cards, the backup flash partition is decrypted,

and checked for integrity, and then MACed together with the digest of the keys to be

backuped and encrypted with the newly generated key. Finally the backup “blob” is

copied in the indicated location.

Next Steps in the Development. The hardware specifications was defined and a

first version of the board was released in the end of 2008. At this writing, some parts

of the complementary library and VHDL code are still under development; and the

tamper responder enclosure is not integrated yet.

126

5.5. Overview of two PKCS #11 Implementations

The PKCS #11 API is added with the restrictions discussed in subsection 5.4.2 to

resist logical attacks. Without surface enclosure, while simple side–channel attacks,

simple power analysis or timing attack, are considered the core engines development,

the board may be subject to differential power analysis or fault injection. Including

the secure enclosure is mandatory. The USIP is configured to respond by erasing its

battery powered key at sensors alarm; in this case, the master key is lost and the board

keys are lost also. The already developed parts will be completed and used soon.

127

Chapter 6

Conclusion

Our work focused on the topic of security models for authenticated key agreement and

the design of authenticated key agreement protocols. We analyzed the main security

models for the analysis of Diffie–Hellman protocols in the public key setting, the CK

and eCK models, and provided secure and efficient designs of key agreement protocol.

Explored topics. In this dissertation, we recalled the Bellare–Rogaway model, and

presented the CK and eCK security models. We showed how the CK matching sessions

definition makes some protocols, shown secure fail in authentication. We illustrated

this, using the protocol P, which we showed to fail in authentication when leakages

on ephemeral Diffie–Hellman exponents are considered. We described the eCK model,

and showed that its ephemeral key definition, combined with the use of the NAXOS

transformation, yields protocols which may be formally secure, but practically inse-

cure, as vulnerable to ephemeral Diffie–Hellman exponent leakages. Taking the afore-

mentioned analysis into account, we proposed a new security model the strengthened

eCK model (seCK), which encompasses the eCK model. Moreover, contrary to the

eCK model which considers that an attacker may learn the ephemeral secret key at a

party, independently of the way in which the protocol is implemented, the hypothesis

in the seCK model is that an attacker may learn any information at a party, except

those stored in a tamper resistant device. The seCK model is not only about the

formal treatment of key agreement protocols, it is also about securely implementing

authenticated key exchange. When a protocol is shown secure in the seCK model, it

is also specified how it can be securely and efficiently implemented. Providing security

arguments in the seCK model, includes stating which operations or data have to be

handled in an area with the same protection mechanisms as the area in which is stored

the session owner’s static key, and which information can be computed or stored in an

untrusted area.

We identified new points, termed i–points, which can be used for impersonation

and man–in–the–middle attacks against the (H, C)MQV(-C) protocols, and explored

the search of these points. The method we propose for decomposed i–point search

is expected to be twice faster than the Pollard’s rho algorithm. We provided a com-

plementary analysis of the (H)MQV protocols, which are possibly the most efficient

two–party authenticated Diffie-Hellman protocols in the public key setting, and showed

these protocols vulnerable, to session specific information leakages. We proposed two

new building blocks for Diffie–Hellman protocols, the FXCR–1 and FXCR schemes,

and using these building blocks we proposed FHMQV and SMQV protocols, which

provably meet the seCK security definition, under the random oracle model and the

Gap Diffie–Hellman Assumption.

128

As the FHMQV and SMQV protocols are resilient to intermediate results leakages,

their implementations can be made particularly efficient in environments wherein exist

a tamper resistant device, together with a host machine, which may be untrusted.

The ephemeral keys can be computed in the device in idle–time, while the costly

exponentation in session key generation performed on the host machine. When the

underlying group is that of the rational points of an elliptic curve, the FHMQV and

SMQV can be securely implemented using computationally limited smart–cards. This

allows efficient and secure implementations of elliptic curve based protocols, using

computationally limited and (potentially low price) tamper resistant devices.

We also worked on two PKCS #11 implementations sketched in chapter 5. Even

if the communications on these works was limited, these implementations were a real

opportunity to face technical problems that may raise a practical implementation of

cryptographic schemes.

Open issues and future research directions. It is worth to explore further pos-

sible optimizations in the parallelizations of the decomposed i–point search. When

using the Montgomery’s simultaneous inversion technique together with the López–

Dahab affine formulas, inversions can be significantly reduced; however, with regard

to the remaining inversion and multiplications the parallelized decomposed i–point

search does not seem applicable for cryptographic curves, unless added with further

significant optimizations. Nevertheless, this approach is more easily parallelizable than

the Pollard’s rho algorithm. As, when the decomposed i–point search is parallelized,

no shared storage is needed, and no communication is needed between the processors,

except at initialization, or when a processor finds a decomposed i–points and informs

the other processors.

There is no well established paradigm for the design of authenticated key agreement

protocols. And as can be noticed, there is an underlying identification scheme, which

may be implicit or explicit, in any authenticated key exchange. This raises the question

of the properties an identification scheme should have to allow the design of a provably

secure authenticated key agreement protocol. An answer to this question would reduce

the design of an authenticated key agreement protocol to that of an identification

scheme.

As future prospects, we will be interested in possible optimizations in decomposed

i–point search. We will also give attention to the question of the conditions an iden-

tification scheme must satisfy to yield a provably secure protocol. Our work focused

mainly on Diffie–Hellman protocols in the public key setting, we will be interested

in the adaptation of ideas we developed in the public key setting to password based

protocols.

129

Related Publications and Reports
(in chronological order)

• Sarr A. P.: Analysis of the ECMQV Protocol. Technical report, 2008.

• Sarr A. P., Elbaz–Vincent Ph., Bajard J. C.: A Secure and Efficient

Authenticated Diffie–Hellman Protocol. In Proc. of Public Key Infrastructures,

Services and Applications — EuroPKI 2009, Lecture Notes in Computer Science,

vol. 6391, pp. 83–98, Springer–Verlag, 2010.

• Sarr A. P., Elbaz–Vincent Ph., Bajard J. C.: A Secure and Efficient

Authenticated Diffie–Hellman Protocol (extended version). Cryptology ePrint

Archive, Report 2009/408, 2009.

• Sarr A. P., Elbaz–Vincent Ph., Bajard J. C.: Enhanced Security and

Efficiency for Authenticated Key Agreement. International Workshop on Foun-

dations of Security and Privacy — FCS-PrivMod 2010.

• Sarr A. P., Elbaz–Vincent Ph., Bajard J. C.: A New Security Model for

Authenticated Key Agreement (extended version). Cryptology ePrint Archive,

Report 2010/237, 2010.

• Sarr A. P., Elbaz–Vincent Ph., Bajard J. C.: A New Security Model for

Authenticated Key Agreement. In Proc. of the 7th International Conference

on Security and Cryptography for Networks — SCN 2010, Lecture Notes in

Computer Science, vol. 6280, pp. 219–234, Springer–Verlag, 2010.

130

Bibliography

[ABD05] Abdalla M.,Fouque P.A., Pointcheval D.: Password-based
authenticated key exchange in the three-party setting. In Proc of
PKC 2005, Lecture Notes in Computer Science, vol. 3386, pp. 65–
84, Springer-Verlag, 2005.

[AND94] Anderson R.: Why Cryptosystems Fail. Communications of the
ACM, vol. 37, pp. 215–227 ACM, 1994.

[ANS01a] ANSI X9.42.: Public Key Cryptography for the Financial Services
Industry: Agreement of Symmetric Keys Using Discrete Logarithm
Cryptography. ANSI, 2001.

[ANS01b] ANSI X9.63.: Public Key Cryptography for the Financial Services
Industry: Key Agreement and Key Transport using Elliptic Curve
Cryptography. ANSI, 2001.

[ANS05] ANSI X9.62.: Public Key Cryptography for the Financial Services
Industry, The Elliptic Curve Digital Signature Algorithm (ECDSA).
ANSI, 2005.

[APV07] Apvrille A.: Conception et architecture de la bibliothèque cryp-
tographique d’OpenSSL. MISC number 32, pp.52–60, July 2007.

[ARN93] Arno S., Wheeler. F. S.: Signed Digit Representations of Mini-
mal Hamming Weight. IEEE Transactions on Computers vol. 42(8),
pp. 1007–1010, IEEE, 1993.

[AVA05] Avanzi R.: A note on the signed sliding window integer recoding
and a left-to-right analogue. In Proc. of Selected Areas in Cryptog-
raphy 2004, Lecture Notes in Computer Science, vol. 3357, pp. 130–
143. Springer–Verlag, 2005.

[AXE06] Axelson J.: USB Mass Storage Designing and Programming De-
vices and Embedded Hosts. Lakeview Research LLC Madison, 2006.

[BAD09] Badrignans B.: Using FPGAs for Security–Sensitive Applica-
tions. PhD thesis, Université Montpellier 2, 2009.

[BAI08] Bai S., Brent R. P.: On the Efficiency of Pollard’s Rho Method
for Discrete Logarithms. InProc. Fourteenth Computing — The
Australasian Theory Symposium CATS, vol. 37, pp. 125–131, Aus-
tralian Computer Society, 2008.

[BAIL98] Bailey D. V., Paar C. Optimal Extension Fields for Fast Arith-
metic in Public-Key Algorithms. In Proc. of Crypto 98, Lecture
Notes of Computer Science, vol. 1462, pp. 472–485, 1998.

131

Bibliography

[BAIL01] Bailey D. V., Paar C. Efficient Arithmetic in Finite Field Ex-
tensions with Application in Elliptic Curve Cryptography. Journal
of Cryptology, vol. 14, pp. 153–176, 2001.

[BAS10] Basin D., Cremers C.: Modeling and Analyzing Security in the
Presence of Compromising Adversaries. In Proc. of ESORICS 2010,
Lecture Notes in Computer Science, vol. 6345, pp. 340–356, 2010.

[BEL98] Bellare M., Canetti R., Krawczyk H.: A Modular Approach
to the Design and Analysis of Authentication and Key Exchange
Protocols. In Proc. of the thirtieth annual ACM symposium on The-
ory of computing, pp. 419–428, ACM, 1998.

[BEL04] Bellare M., Palacio A.: The Knowledge–of–Exponent Assump-
tions and 3–round Zero–Knowledge Protocols. In Proc. of Crypto 04,
Lecture Notes in Computer Science, vol. 3152, 273–289, Springer–
Verlag, 2004.

[BEL00] Bellare M., Pointcheval, D., Rogaway P.: Authenticated
Key Exchange Secure Against Dictionary Attacks. In Proc. of EU-
ROCRYPT 2000, Lecture Notes in Computer Science, vol. 1807,
pp. 139–155, Springer–Verlag, 2000.

[BEL93a] Bellare M., Rogaway P.: Entity Authentication and Key Distri-
bution. In Proc. of Crypto 93, Lecture Notes in Computer Science,
vol. 773, pp. 232–249, Springer–Verlag, 1993.

[BEL93b] Bellare M., Rogaway P.: Random Oracles are Practical: a
Paradigm for Designing Efficient Protocols. In Proc. of the 1st ACM
Conference on Computer and Communications Security, pp. 62–73,
ACM, 1993.

[BEL95] Bellare M., Rogaway P.: Provably Secure Session Key Dis-
tribution — The Three Party Case. In Proc. of the twenty–seventh
annual ACM symposium on Theory of computing, pp. 57–66, ACM,
1995.

[BEL97] Bellare M., Rogaway P.: Minimizing the Use of Random Or-
acles in Authenticated Encryption Schemes. In Proc. of the First
International Conference on Information and Communication Se-
curity, Lecture Notes In Computer Science, vol. 1334, pp. 1–16,
Springer Verlag, 1997.

[BEN09] Bender J., Fischlin M., Kügler D.: Security Analysis of the
PACE Key-Agreement Protocol, In Proc. of ISC 2009, Lecture Notes
in Computer Science, vol. 5735, pp. 33–48, Springer Verlag, 2009.

[BER08] Bernstein D., Lange T.: Faster Addition and Doubling on Ellip-
tic Curves. In Proc. of Asiacrypt 2007, Lecture Notes in Computer
Science, vol. 4833, pp. 29–50, Springer–Verlag, 2008.

132

Bibliography

[BIL03] Billet O., Joye M.: The Jacobi Model of an Elliptic Curve and
Side-Channel Analysis. In Proc of Applied Algebra, Algebraic Algo-
rithms and Error-Correcting Codes — AAECC 2003, Lecture Notes
in Computer Science, vol. 2643, pp. 34–42, Springer–Verlag, 2003.

[BLA00] Blake I. F., Seroussi G., Smart N. P.: Elliptic Curves in
Cryptography, London Mathematical Society Lecture Note Series,
vol. 265, Cambridge University Press, 2000.

[BLA97a] Blake–Wilson S., Johnson D., Menezes A.: Key Agreement
Protocols and their Security Analysis. In Proc. of the 6th IMA In-
ternational Conference on Cryptography and Coding, Lecture Notes
of Computer Science, vol. 1355, pp. 30–45, Springer–Verlag, 1997.

[BLA97b] Blake–Wilson S., Menezes A.: Security Proofs for Entity Au-
thentication and Authenticated Key Transport Protocols Employ-
ing Asymmetric Techniques. Lecture Notes of Computer Science,
vol. 1361, pp. 137–158, Springer–Verlag, 1997.

[BLA99] Blake–Wilson S., Menezes A.: Unknown Key–Share Attacks on
the Station–to–Station (STS) Protocol. In Proc. of the Second Inter-
national Workshop on Practice and Theory in Public Key Cryptog-
raphy Lecture Notes of Computer Science, vol. 1560, pp. 154–170,
Springer–Verlag, 1999.

[BLU84] Blum M., Micali S.: How to Generate Cryptographically Strong
Sequences of Pseudorandom Bits. SIAM Journal on Computing,
vol. 13, pp. 850–864, 1984.

[BON92] Boneh D.: Twenty Years of Attacks on the RSA Cryptosystem.
Notices of the American Mathematical Society, vol. 46(2), pp. 203–
212, 1999.

[BON01] Boneh D., Shparlinski I.: On the Unpredictability of Bits of the
Elliptic Curve Diffie–Hellman Scheme. In Proc. of Crypto 01, Lec-
ture Notes in Computer Science, vol. 2139, pp. 201–212, Springer–
Verlag, 2001.

[BOS09] Bos J., Kaihara M., Montgomery P.: Pollard rho on the
PlayStation 3. Handouts of SHARCS 2009, pp. 35–50, 2009.

[BOS10] Bos J., Kleinjung T., Lenstra A.: On the Use of the Negation
Map in the Pollard Rho Method. In Proc. of the Ninth Algorithmic
Number Theory Symposium, Lecture Notes in Computer Science,
vol. 6197, pp. 67-83, 2010.

[BOY03] Boyd C., Mathuria A.: Protocols for Authentication and Key
Establishment. Springer Verlag, 2003.

[BRE02] Bresson E., Chevassut O., Pointcheval D.: Dynamic
Group Diffie–Hellman Key Exchange under Standard Assumptions.
In Proc. of Eurocrypt 02, Lecture Notes in Computer Science,
vol. 2332, pp. 321–336, Springer–Verlag, 2002.

133

Bibliography

[BRI02] Brier É. Joye M.: Weierstrass Elliptic Curves and Side-Channel
Attacks. Public Key Cryptography – PKC 2002, Lecture Notes in
Computer Science, vol. 2274, pp. 335–345, Springer–Verlag, 2002.

[BRO05] Brown D.: Generic groups, collision resistance, and ECDSA. De-
signs, Codes and Cryptography, vol. 35 (1), pp. 119–152, 2005.

[BSI10] BSI: Advanced Security Mechanism for Machine Readable Travel
Documents — Extended Access Control (EAC), Password Authen-
ticated Connection Establishment (PACE), and Restricted Identi-
fication (RI), TR–03110, Version 2.03, 2010 (available at https://
www.bsi.bund.de.)

[CAC09] Cachin C., Chandrany N.: A Secure Cryptographic Token In-
terface. In Proc. of the 22nd IEEE Computer Security Foundations
Symposium, pp. 141–153, IEEE Computer Society (available from
http://www.zurich.ibm.com/~cca/papers/mkms.pdf) 2009.

[CAN01] Canetti R., Krawczyk H.: Analysis of Key–Exchange Proto-
cols and Their Use for Building Secure Channels. Lecture Notes of
Computer Science, vol. 2045, pp. 453–474, Springer–Verlag, 2001.

[CAN01a] Canetti R., Krawczyk H.: Analysis of Key–Exchange Proto-
cols and Their Use for Building Secure Channels. Cryptology ePrint
Archive, 2001/040, 2001.

[CAN02] Canetti R., Krawczyk H.: Security Analysis of IKE’s
Signature–based Key–Exchange Protocol. In Proc of Crypto 02, Lec-
ture Notes in Computer Science, vol. 2442, pp. 143–161. Springer–
Verlag, 2002 (extended version available from http://eprint.iacr.org/
2002/120).

[CERT09] Certicom Corp.: Certicom ECC Challenge, available at http://
www.certicom.com/images/pdfs/challenge-2009.pdf, 2009.

[CHE03] Chen L., Kudla C.: Identity Based Authenticated Key Agree-
ment Protocols from Pairings. In Proc. of in 16th IEEE Computer
Security Foundations Workshop, pp. 219–233, IEEE, 2003 (Revised
version at http://eprint.iacr.org/2002/184/).

[CHO05] Choo K. R., Boyd C., Hitchcock Y.: Examining
Indistinguishability–Based Proof Models for Key Establishment
Protocols. Lecture Notes in Computer Science, vol. 3788, pp. 624–
643, Springer–Verlag, 2005.

[CLU03] Clulow J.: On the Security of PKCS #11. Lecture Notes in Com-
puter Science, vol. 2779, pp. 411–425, Springer–Verlag, 2003.

[COH05a] Cohen H.: Analysis of the Flexible Window Powering Algorithm.
Journal of Cryptology, vol. 18(1), pp. 63–76, 2005.

[COH05b] Cohen H, Frey G. (editors): Handbook of Elliptic and Hyper-
elliptic Curve Cryptography, CRC Press, 2005.

134

https://www.bsi.bund.de
https://www.bsi.bund.de
http://www.zurich.ibm.com/~cca/papers/mkms.pdf
http://eprint.iacr.org/2002/120
http://eprint.iacr.org/2002/120
http://www.certicom.com/images/pdfs/challenge-2009.pdf
http://www.certicom.com/images/pdfs/challenge-2009.pdf
http://eprint.iacr.org/2002/184/

Bibliography

[COR01] Coron J.S., Naccache D., Kocher P.: Statistics and Secret
Leakage. Lecture Notes in Computer Science, vol. 1962, pp. 157–
173, Springer–Verlag, 2001.

[COR08] Coron J.S., Patarin J., Seurin Y.: The Random Oracle Model
and the Ideal Cipher Model are Equivalent. In Proc. of Crypto 08,
Lecture Notes in Computer Science, vol. 5157, pp. 1–20, Springer–
Verlag, 2008.

[CRA04] Cramer R., Shoup V.: Design and Analysis of Practical Public-
Key Encryption Schemes Secure against Adaptive Chosen Cipher-
text Attack. SIAM Journal on Computing, vol. 33(1), pp. 167–226,
2004.

[CRE09a] Cremers C.: Session–state Reveal is stronger than Ephemeral
Key Reveal: Attacking the NAXOS key exchange protocol. Lecture
Notes in Computer Science, vol. 5536, pp. 20–33, Springer–Verlag,
2009.

[CRE09b] Cremers C.: Formally and Practically Relating the CK, CK-
HMQV, and eCK Security Models for Authenticated Key Exchange.
Cryptology ePrint Archive, 2009/253, 2009.

[DEL08] Delaune S., Kremer S., Steel G.: Formal Analysis of
PKCS #11. In Proc. of the 21st IEEE Computer Security Foun-
dations Symposium, pp. 331–344, IEEE Computer Society, 2008.

[DEN88] Den Boer B.: Diffie–Hillman is as Strong as Discrete Log for
Certain Primes. In Proc of Crypto 88, Lecture Notes in Computer
Science, vol. 403, pp. 530–539, Springer–Verlag, 1990.

[DEN02] Dent A.: Adapting the Weaknesses of the Random Oracle Model
to the Generic Group Model. In Proc. of Asiacrypt 02, Lecture Notes
in Computer Science, vol. 2501, pp. 100–109, Springer–Verlag, 2002.

[DIF76] Diffie W., Hellman M. E.: New Directions in Cryptography.
IEEE Transactions on Information Theory, vol. 22(6), pp. 644–654,
IEEE 1976 (available from http://dret.net/biblio/reference/dif77).

[DIF92] Diffie W., van Oorschot P. C., Wiener M. J.: Authentication
and Authenticated Key Exchanges. Designs, Codes and Cryptogra-
phy, vol. 2(2), pp. 107–125, Springer Netherlands, 1992.

[DRIO53] Drioton É.: Les principes de la cryptographie égyptienne.
Comptes–rendus des séances de l’année – Académie des inscriptions
et belles–lettres, 97e année, N. 3, pp. 355-364, 1953 (available from
http://www.persee.fr).

[DUQ07] Duquesne S.: Improving the arithmetic of elliptic curves in the
Jacobi model. Information Processing Letters, vol. 104(3), pp. 101–
105, Elsevier, 2007.

135

http://dret.net/biblio/reference/dif77
http://www.persee.fr

Bibliography

[EDW07] Edwards H.: A normal form for elliptic curves. Bulletin of the
American Mathematical Society, vol 44(3), pp. 393–422, AMS, 2007.

[FIA86] Fiat A., Shamir A.: How To Prove Yourself: Practical Solutions
to Identification and Signature Problems. Lecture Notes in Com-
puter Science, vol. 263, pp. 186–194, Springer–Verlag, 1986.

[FIP08] FIPS 180–3: Secure Hash Standard (SHS), FIPS 2008 (available
from http://csrc.nist.gov/publications/PubsFIPS.html.)

[FIP00] FIPS 186–2: Digital Signature Standard (DSS). 2000 (available
from http://csrc.nist.gov/publications/PubsFIPS.html.)

[FIP01] FIPS 140–2: Security Requirements for Cryptographic Mod-
ules. 2001 (available from (available from http://csrc.nist.gov/
publications/PubsFIPS.html.)

[FIP99] FIPS 46–3: Data Encryption Standard (DES). 1999.

[FOU00] Fouquet M., Gaudry P., Harley R.: An extension of Satoh’s
algorithm and its implementation. Journal of the Ramanujan Math-
ematical Society, vol. 15(4), pp. 281–318, 2000.

[FRE94] Frey G., Rück H.: A remark concerning m–divisibility and the
discrete logarithm in the divisor class group of curves. Mathematics
of Computation, vol. 62, pp. 865–874, 1994.

[FRE98] Frey G., Gangl H.: How to disguise an elliptic curve. Talk at
Waterloo workshop on the ECDLP, 1998 (available at http://www.
cacr.math.uwaterloo.ca/conferences/1998/ecc98/slides.html.

[GAL00] Gallant R., Lambert R., Vanstone S.: Improving the Paral-
lelized Pollard Lambda Search on Binary Anomalous Curves. Math-
ematics of Computation, vol. 69(232), pp. 1699–1705, American
Mathematical Society, 2000.

[GAU02] Gaudry P., Hess F., and Smart N. P.: Constructive and De-
structive Facets of Weil Descent on Elliptic Curves. Journal of Cryp-
tology, vol. 15(1), pp. 19–46, 2002.

[GOL84] Goldwasser S., Kilian J.: Almost all primes can be quickly
certified. In Proc. of the 18th Annual ACM Symposium on Theory
of Computing, pp. 316–329, ACM, 1986.

[GOL84] Goldwasser S., Micali S.: Probabilistic Encryption. Journal of
Computer and System Sciences, vol. 28, pp. 270–299 1984.

[GOL88] Goldwasser S., Micali S., Rivest R.: A Digital Signature
Scheme Secure Against Adaptive Chosen-message Attacks. SIAM
Journal on Computing, vol. 17, pp. 281–308,1988.

[GOP07] Gopalakrishnan K., Thériault N., Yao. C. Z.: Solving Dis-
crete Logarithms from Partial Knowledge of the Key. Lecture Notes
in Computer Science, vol. 4859, pp. 224–237, Springer–Verlag, 2007.

136

http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html
http://www.cacr.math.uwaterloo.ca/conferences/1998/ecc98/slides.html
http://www.cacr.math.uwaterloo.ca/conferences/1998/ecc98/slides.html

Bibliography

[HAN03] Hankerson D., Menezes A., Vanstone S.: Guide to Elliptic
Curve Cryptography. Springer–Verlag, 2003.

[IBM08] IBM Corp.: CCA Basic Services Reference and Guide for the
IBM 4758 PCI and IBM 4764 PCI–X Cryptographic Coproces-
sors, 19th ed., IBM, 2008 (available from http://www-03.ibm.com/
security/cryptocards/pcicc/library.shtml.)

[IEE00] IEEE 1363: Standard Specifications for Public Key Cryptography.,
IEEE, 2000.

[IEE09] IEEE 1363: Standard Specifications for Public Key Cryptography
(Working Draft). IEEE, 2009.

[INP09] INPI: Le brevet, tout ce qu’il faut savoir avant de déposer un brevet.
INPI, 2009 (available from http://www.inpi.fr.)

[ISO02] ISO/IEC IS 9798–3: Information Technology – Security tech-
niques – Cryptography techniques based on elliptic curves – Part 3:
Key Establishment., 2002.

[JEO04] Jeong I., Katz J., Lee. D.: One–round protocols for two–party
authenticated key exchange. Lecture Notes in Computer Science,
vol. 3089, pp. 220–232, Springer–Verlag, 2004.

[JEV58] Jevons W. S.: The Principles of Science: A Treatise on
Logic and Scientific Method p. 141, Macmillan & Co., Lon-
don, 1874; more recently reprinted by Dover Publications,
New York, NY, 1958 (available at http://www.archive.org/stream/
principlesofscie00jevorich#page/n166/mode/1up)

[JUS96] Just M., Vaudenay S.: Authenticated Multi–Party Key Agree-
ment. Lecture Notes in Computer Science vol. 1163, pp. 36–49,
Springer–Verlag, 1996.

[KAL01] Kaliski B.: An unknown key–share attack on the MQV key agree-
ment protocol. ACM Transactions on Information and System Se-
curity (TISSEC), vol. 4(3), pp. 275–288, ACM, 2001.

[KIM09] Kim M., Fujioka A., Ustaoglu B.: Strongly Secure Authenti-
cated Key Exchange without NAXOS’ Approach. In Proc. of the
fourth International Workshop on Security, IWSEC 09, Lecture
Notes in Computer Science, vol. 5824, pp. 174–191, Springer–Verlag,
2009.

[KOC96] Kocher P.: Timing attacks on implementations of Diffe–Hellman,
RSA, DSS, and other systems. Advances in Cryptology – Crypto
96, Lecture Notes in Computer Science, vol. 1109, pp. 104–113,
Springer–Verlag, 1996.

[KNU81] Knuth D.: The Art of Computer Programming. vol. 2. Addison
Wesley, Reading Massachusetts, 1981.

137

http://www-03.ibm.com/security/cryptocards/pcicc/library.shtml
http://www-03.ibm.com/security/cryptocards/pcicc/library.shtml
http://www.inpi.fr
http://www.archive.org/stream/principlesofscie00jevorich#page/n166/mode/1up
http://www.archive.org/stream/principlesofscie00jevorich#page/n166/mode/1up

Bibliography

[KOB87] Koblitz N.: Elliptic Curve Cryptosystems. Mathematics of Com-
putation, vol. 48(177), pp. 203–209, 1987.

[KOB07a] Koblitz N.: The Uneasy Relationship Between Mathematics and
Cryptography. Notices of the AMS, vol. 54(8), pp. 973–979, AMS,
2007.

[KOB07b] Koblitz N., Menezes A.: Another Look at “Provable Security”.
Journal of Crypptology, vol. 20(1), pp. 3–37, 2007.

[KRA05] Krawczyk H.: HMQV: A Hight Performance Secure Diffie–
Hellman Protocol (full version). Cryptology ePrint Archive,
2005/176, 2005.

[KRA05b] Krawczyk H.: HMQV: A High-Performance Secure Diffie-
Hellman Protocol. In proc. of Crypto 05, Lecture Notes in Computer
Science, vol. 3621, pp. 546–566, Springer–Verlag, 2005.

[KRA06] Krawczyk H.: Method and Structure for Challenge–Response Sig-
natures and Hight–Performance Secure Diffie–Hellman Protocol.,
US Patent Application Publication 0179319 A1, 2006.

[KRA08] Krawczyk H.: Method and Structure for Challenge–Response Sig-
natures and Hight–Performance Secure Diffie–Hellman Protocol.,
European Patent 1847062 B1, 2008.

[KUN06] Kunz-Jacques S., Pointcheval D.: About the Security of
MTI/C0 and MQV. In proc. of the international conference Secu-
rity and Cryptography for Networks, SCN 2006, Lecture Notes in
Computer Science vol. 4116, pp. 156–172, Springer–Verlag, 2006.

[LAMA07] LaMacchia B., Lauter K., Mityagin A.: Stronger Security of
Authenticated Key Exchange. Lecture Notes in Computer Science,
vol. 4784, pp. 1–16, Springer–Verlag, 2007.

[LAMB07] Lambert R., Vadekar A.: Method and Apparatus for Computing
a Shared Key. US Patent 7512233.

[LAW03] Law L., Menezes A., Qu M., Solinas J., Vanstone S.: An
Efficient protocol for authenticated key agreement. “Designs, Codes
and Cryptography”, vol. 28(2), pp 119–134, Kluwer Academic Pub-
lishers, 2003.

[LEE08a] J. Lee, C. S. Park. An Efficient Authenticated Key Exchange Protocol
with a Tight Security Reduction. Cryptology ePrint Archive, Report
2008/345, 2008.

[LEE08b] Lee J., Park J. H.: Authenticated key exchange secure under
the computational Diffe–Hellman assumption. Cryptology ePrint
Archive, Report 2008/344, 2008.

[LEN87] Lenstra H. W.: Factoring Integers with Elliptic Curves. Annals
of Mathematics, vol. 126, pp. 649–673, 1987.

138

Bibliography

[LOP99] López J., Dahab R.: Fast Multiplication on Elliptic Curves Over
GF (2m) without precomputation. In proc. of Cryptographic Hard-
ware and Embedded Systems — CHES 99, Lecture Notes in Com-
puter Science, vol. 1717, pp. 316–327, Springer–Verlag, 1999.

[MAU96] Maurer U. M., Wolf S.: Diffie–Hellman Oracles. Lecture Notes
in Computer Science, vol. 1109, pp. 268–282, Springer–Verlag, 1996.

[MEN93] Menezes A., Okamoto T., S. Vanstone.: Reducing elliptic
curve logarithms to logarithms in a finite field. IEEE Transactions
on Information Theory, vol 39(5), pp. 1639–1646, 1993.

[MEN96] Menezes A., van Oorschot P., Vanstone S.: Handbook of
Applied Cryptography. CRC Press, 1996.

[MEN01] Menezes A., Qu M.: Analysis of the Weil Descent Attack of
Gaudry, Hess and Smart. In Proc. of Topics in Cryptology — CT–
RSA 2001, Lecture Notes in Computer Science, vol. 2020, pp. 308–
318, Springer–Verlag, 2001.

[MEN06] Menezes A., Ustaoglu B.: On the Importance of Public–Key
Validation in the MQV and HMQV Key Agreement Protocols.
In Proc. of Indocrypt 2006, Lecture Notes in Computer Science,
vol. 4329, pp. 133-147, Springer–Verlag, 2006.

[MEN07] Menezes A.: Another Look at HMQV. Journal of Mathematical
Cryptology, vol. 1, pp. 148–175, Walter de Gruyter, 2007.

[MEN08] Menezes A., Ustaoglu B.: Security Arguments for the UM Key
Agreement Protocol in the NIST SP 800-56A Standard. In Proc. of
of ACM Symposium on Information, Computer and Communica-
tions Security 2008, pp. 261–270, ACM, 2008.

[MEN09] Menezes A., Ustaoglu B.: Comparing the Pre– and Post–
specified Peer Models for Key Agreement. International Journal of
Applied Cryptography, vol. 1(3) pp. 236–250, 2009 (available from
http://www.cacr.math.uwaterloo.ca/~ajmeneze).

[MER09] Merli C.: Lite Security Module. at http://www.clizio.com/
lsmpkcs11.html, 2009.

[MIL86] Miller V. S.: Use of Elliptic Curves in Cryptography. In Proc of
Crypto 85, Lecture Notes in Computer Science, vol. 218, pp. 417-
426, Springer–Verlag, 1986.

[MIY97] Miyaji A., Ono T., Cohen H.: Efficient elliptic curve exponentia-
tion. Information and Communication Security — ICICS 1997, Lec-
ture Notes in Computer Science, vol. 1334, pp. 282–290, Springer–
Verlag, 1997.

[MON87] Montgomery P.: Speeding the Pollard and Elliptic Curve Meth-
ods of Factorization. Mathematics of computation, vol. 48(177), pp.
243–264, AMS, 1987.

139

http://www.cacr.math.uwaterloo.ca/~ajmeneze
http://www.clizio.com/lsmpkcs11.html
http://www.clizio.com/lsmpkcs11.html

Bibliography

[MOR90] Morain F., Olivos J.: Speeding up the computations on an ellip-
tic curve using addition-subtraction chains. Informatique Théorique
et Applications, vol. 24, pp. 531–543, 1990.

[MOZ09] Mozilla Foundation: Common PKCS #11 Implementation
Problems (Revision 48936), at http://www.mozilla.org/projects/
security/pki/pkcs11/netscape/problems.html, 2009.

[MRA96] M’Raïhi D., Naccache D.: Batch Exponentiation: A Fast DLP-
based Signature Generation Strategy. In Proc. of the third ACM
conference on Computer and communications security, pp. 58–61,
ACM, 1996.

[NIS03] NIST Special publication 800–56: Recommendation on Key Estab-
lishment Schemes, 2003.

[NIS07] NIST Special publication 800–56A: Recommendation for Pair–Wise
Key Establishment Schemes Using Discrete Logarithm Cryptogra-
phy, 2008.

[OKA01] Okamoto T., Pointcheval D.: The Gap–Problems: A New
Class of Problems for the Security of Cryptographic Schemes. In
Proc. of Crypto 96, Lecture Notes in Computer Science, vol. 1992,
pp. 104–118, Springer–Verlag, 2001.

[OKE01] Okeya K., Sakurai K.: Efficient Elliptic Curve Cryptosystems
from a Scalar Multiplication Algorithm with Recovery of the y-
Coordinate on a Montgomery-Form Elliptic Curve. In Proc of Cryp-
tographic Hardware and Embedded Systems — CHES 2001, Lecture
Notes in Computer Science, vol. 2162, pp. 126–141, 2001.

[PHI95] Philips Semiconductors: The I2C–bus and how to use it
(including specifications) (available from http://www.mcc-us.com/
i2cHowToUseIt1995.pdf), 1995.

[POH78] Pohlig S., Hellman M.: An improved algorithm for comput-
ing logarithms over GF (p) and its cryptographic significance. IEEE
Transactions on Information Theory, vol. 24, pp. 106–110, 1978.

[POI00] Pointcheval D., Stern J.: Security Arguments for Digital Signa-
tures and Blind Signatures. Journal of Cryptology, vol. 13, pp. 361–
396, Springer–Verlag, 2000.

[POL00] Pollard J. M.: Kangaroos, Monopoly and Discrete Logarithms.
Journal of Cryptology, vol. 13, pp. 437–447, 2000.

[POL78] Pollard J. M.: Monte Carlo methods for index computation
mod p. Mathematics of computations,vol. 32, pp. 918–924, AMS,
1978.

[QUI01] Quisquater J.-J., Samyde D.: Electromagnetic analysis (EMA):
Measures and counter–measures for smart cards. In Proc. of Smart

140

http://www.mozilla.org/projects/security/pki/pkcs11/netscape/problems.html
http://www.mozilla.org/projects/security/pki/pkcs11/netscape/problems.html
http://www.mcc-us.com/i2cHowToUseIt1995.pdf
http://www.mcc-us.com/i2cHowToUseIt1995.pdf

Bibliography

Card Programming and Security 2001, Lecture Notes in Computer
Science, vol. 2140, pp. 200–210. Springer–Heidelberg, 2001.

[REI60] Reitwiesner G. W.: Binary arithmetic. Advances in computers,
vol. 1, pp. 231–308, Academic Press, 1960.

[RSA04] RSA Lab.: PKCS #11 v2.20: Cryptographic Token Interface Stan-
dard. RSA Laboratories, 2004.

[SAR08] Sarr A. P.: Analysis of the ECMQV Protocol. Technical report,
2008.

[SAR09a] Sarr A. P., Elbaz–Vincent Ph., Bajard J. C.: A Secure and
Efficient Authenticated Diffie–Hellman Protocol. In Proc. of Public
Key Infrastructures, Services and Applications — EuroPKI 2009,
Lecture Notes in Computer Science, vol. 6391, pp. 83–98, Springer–
Verlag, 2010.

[SAR09b] Sarr A. P., Elbaz–Vincent Ph., Bajard J. C.: A Secure and
Efficient Authenticated Diffie–Hellman Protocol (extended version).
Cryptology ePrint Archive, Report 2009/408, 2009.

[SAR10a] Sarr A. P., Elbaz–Vincent Ph., Bajard J. C.: Enhanced
Security and Efficiency for Authenticated Key Agreement. Interna-
tional Workshop on Foundations of Security and Privacy — FCS-
PrivMod 2010.

[SAR10b] Sarr A. P., Elbaz–Vincent Ph., Bajard J. C.: A New Se-
curity Model for Authenticated Key Agreement (extended version).
Cryptology ePrint Archive, Report 2010/237, 2010.

[SAR10c] Sarr A. P., Elbaz–Vincent Ph., Bajard J. C.: A New Secu-
rity Model for Authenticated Key Agreement. In Proc. of the 7th
International Conference on Security and Cryptography for Net-
works — SCN 2010, Lecture Notes in Computer Science, vol. 6280,
pp. 219–234, Springer–Verlag, 2010.

[SAT00] Satoh T.: The Canonical Lift of an Ordinary Elliptic Curve over
a Finite Field and its Point Counting. Journal of the Ramanujan
Mathematical Society, vol. 15(4), pp. 247–270, 2000.

[SAT98] Satoh T., Araki K.: Fermat quotients and the polynomial time
discrete log algorithm for anomalous elliptic curves. Commentarii
Mathematici Universitatis Sancti Pauli, vol. 47, pp. 81–92, 1998.

[SHA71] Shanks D.: Class number, a theory of factorization, and genera.
In Proc. of Symposia in Pure Mathematics, vol. 20, pp. 415–440,
AMS, 1971.

[SCH91] Schnorr C. P.: Efficient Signature Generation by Smart Cards.
Journal of Cryptology, vol. 4(3), pp. 161–174, Springer New York,
1991.

141

Bibliography

[SCH85] Schoof R.: Elliptic curves over finite fields and the computation
of square roots mod p. Mathematics of computation, vol. 44(170),
pp. 483–494, 1985.

[SCH95] Schoof R.: R. Schoof. Counting points on elliptic curves over fi-
nite fields. Journal de Théorie des Nombres de Bordeaux, vol. 7(1),
pp. 219–254, 1995.

[SEM98] Semaev I.: Evaluation of discrete logarithms in a group of p-torsion
points of an elliptic curve in characteristic p. Mathematics of Com-
putation, vol. 67, pp. 353–356, 1998.

[SHO99] Shoup V.: On Formal Models for Secure Key Exchange. Cryptol-
ogy ePrint Archive, 1999/012, 1999.

[SIL86] Silverman J. H.: The Arithmetic of Elliptic Curves. Number 106
in Graduate Texts in Mathematics, Springer Verlag, 1986.

[SIL92] Silverman J. H., Tate J.: Rational Points on Elliptic Curves.
Undergraduate Texts in Mathematics, Springer Verlag, 1992.

[SKJ03] Skjernaa. B.: Satoh’s algorithm in characteristic 2. Mathematics
of Computation, vol. 72(241), pp. 477–487, 2003.

[SMA99] Smart N.: The discrete logarithm problem on elliptic curves of
trace one. Journal of Cryptology, vol. 12, pp. 193–196, 1999.

[STI95] Stinson D. R.: Cryptography: Theory and Practice. CRC Press,
1995.

[SUN06] SUN Corp.: JavaTM Cryptography Architecture (JCA) Reference
Guide, 2006.

[TES01a] Teske E.: On random walks for Pollard’s rho method. Mathemat-
ics of Computation, vol. 70, pp. 809–825, AMS, 2001.

[TES01b] Teske E.: Square-root Algorithms for the Discrete Logarithm
Problem (A survey). Public Key Cryptography and Computational
Number Theory, pp. 283–301, Walter de Gruyter, 2001.

[ULT09] Ultimaco: SafeGuard CryptoServer Hardware Security Modules
Datasheet. 2009 (available from http://hsm.utimaco.com/fileadmin/
assets/Leaflet/DS_SGCS_CryptoServer_en.pdf.)

[UST08] Ustaoglu B.: Obtaining a secure and efficient key agreement pro-
tocol from (H)MQV and NAXOS. “Designs, Codes and Cryptogra-
phy”, vol. 46(3), pp. 329–342, ACM, 2008.

[UST09] Ustaoglu B.: Comparing SessionStateReveal and Ephemer-
alKeyReveal for Diffie-Hellman protocols. In proceedings of ProvSec
2009, Lecture Notes in Computer Science, vol. 5848, pp. 183–197,
Springer–Verlag, 2009.

142

http://hsm.utimaco.com/fileadmin/assets/Leaflet/DS_SGCS_CryptoServer_en.pdf
http://hsm.utimaco.com/fileadmin/assets/Leaflet/DS_SGCS_CryptoServer_en.pdf

Bibliography

[VAN99] Van Oorschot P. C., Wiener M. J.: Parallel Collision Search
with Cryptanalytic Applications. Journal of Cryptology, vol. 12(1),
pp. 1–28, 1999.

[VAN92] Vanstone S.: Responses to NIST’s Proposal. Communications of
the ACM, vol. 35, 50-52, ADCM, 1992.

[WAS08] Washington L.: Elliptic Curves: Number Theory and Cryptogra-
phy(Second Edition). CRC Press, 2008.

[WEI08] Weingart S. H.: Physical Security Devices for Computer Sub-
systems : A Survey of Attacks and Defenses. (An update of the
version published at CHES 2000, available from http://www.atsec.
com/downloads/pdf/phy_sec_dev.pdf), 2008.

[WIE99] Wiener M. J., Zuccherato R. J.: Faster Attacks on El-
liptic Curve Cryptosystems. Lecture Notes in Computer Science,
vol. 1556, pp. 190–200, Springer–Verlag, 1999.

[WON01] Wong D. S., Chan A. H.: Efficient and Mutually Authenticated
Key Exchange for Low Power Computing Devices. Lecture Notes
in Computer Science, vol. 2248, pp. 172–289, Springer–Verlag, 2001.

Companies and Organizations

[ARM] ARM: http://www.arm.com.

[BUL] Bull: http://www.bull.fr.

[CER] Certicom: http://www.certicom.com

[EVE] Everbee: http://www.everbee.com.

[GEM] Gemalto: http://www.gemalto.com.

[IBM] IBM Security: http://www-03.ibm.com/security.

[MAX] Maxim: http://www.maxim-ic.com.

[MOZ] Mozilla Foundation http://www.mozilla.org.

[NET] Netheos R&D: http://www.netheos.net.

[RSAL] RSA Laboratories: http://www.rsa.com/rsalabs.

[SCM] SCM Microsystems: http://www.scmmicro.com.

[THA] Thales Security: http://www.thalesgroup.com/security.

[ULT] Utimaco: http://www.utimaco.de.

[UPEK] UPEK: http://www.upek.com.

143

http://www.atsec.com/downloads/pdf/phy_sec_dev.pdf
http://www.atsec.com/downloads/pdf/phy_sec_dev.pdf
http://www.arm.com
http://www.bull.fr
http://www.certicom.com
http://www.everbee.com
http://www.gemalto.com
http://www-03.ibm.com/security
http://www.maxim-ic.com
http://www.mozilla.org
http://www.netheos.net
http://www.rsa.com/rsalabs
http://www.scmmicro.com
http://www.thalesgroup.com/security
http://www.utimaco.de
http://www.upek.com

Index

A
authentication . 13

B
Bellare–Rogaway Model 46

BR security . 47
Blake–Wilson et al.’s variant 47
BR freshness . 47
conversation . 46
Shoup’s variant . 47

C
Canetti–Krawczyk Model 48

security definition 49
session freshness . 49
exposed session . 49
queries . 48

confidentiality . 13
coordinate systems . 18
Cryptoki . 111

D
Data integrity . 13
DCR scheme . 98

E
ECDSA . 36
ECIES scheme . 35
eKeynox . 110
elliptic curve . 14

group law . 16
Hasse’s theorem . 17
simplified equations 15

elliptic curve decisional Diffie–Hellman prob-
lem .
29

elliptic curve discrete logarithm problem . 29
Baby Step Giant Step attack 30
Pohlig-Hellman attack 30
Pollard’s rho attack 31

elliptic eurve Diffie–Hellman problem 29
extended Canetti–Krawczyk Model 50

security definition 51
session freshness . 51

F
FDCR scheme . 103
FHMQV protocol . 105
FHMQV–C protocol 107
FXCR scheme . 101

H
HMQV protocol . 104

I
i–point . 86

naive search . 87
search, modified rho algorithm 93
search, using Pollard’s rho algorithm 91
decomposition search 87
existence . 87

impersonation attack
definition . 85

M
man–in–middle attack

definition . 85
MQV . 81

Kaliski’s attack . 84
ECQMV . 81
Kunz–Jacques and Pointcheval arguments

83

P
PKCS #11 . 111

(in)security . 114
key space reduction 117
sensitive key export 115
objects hierarchy 112
overview . 111
security officer . 112
sensitive key . 115
session objects . 112
slot . 111
token . 111
token objects . 112
unextractable key 115

post–specified peer model 52
pre–specified peer model 52
privacy . 13

S
scalar multiplication . 23

Double–and–Add method 24
Montgomery’s method 26
non–adjacent forms 24

seCK model . 57
seCK–security . 61
secrecy . 13
Shank’s BSGS lemma 95
simultaneous inversion 89

144

Index

U
unified model protocol 78

W
weak forward secrecy . 51

X
XCR scheme . 97

145

Abstract. An impressive ratio of the previously proposed key agreement protocols turn out
to be insecure when regarded with respect to recent security models. The Canetti–Krawczyk
(CK) and extended Canetti–Krawczyk (eCK) security models, are widely used to provide secu-
rity arguments for key agreement protocols. We point out security shades in the (e)CK models,
and some practical attacks unconsidered in (e)CK–security arguments. We propose a strong
security model which encompasses the eCK one. We propose a complementary analysis of the
Exponential Challenge Response (XRC) and Dual Exponential Challenge Response (DCR)
signature schemes, which are the building blocks of the HMQV protocol. On the basis of this
analysis we show how impersonation and man in the middle attacks can be performed against
the (C, H)MQV(–C) protocols when some session specific information leakages happen. We
define the Full Exponential Challenge Response (FXRC) and Full Dual Exponential Challenge
Response (FDCR) signature schemes; using these schemes we propose the Fully Hashed MQV
protocol and the Strengthened MQV protocol, which preserve the remarkable performance of
the (H)MQV protocols and resist the attacks we present. The SMQV and FHMQV proto-
cols are particularly suited for distributed implementations wherein a tamper–proof device is
used to store long–lived keys, while session keys are used on an untrusted host machine. In
such settings, the non–idle time computation effort of the device reduces to few non–costly
operations. The SMQV and FHMQV protocols meet our security definition under the Gap
Diffie–Hellman assumption and the Random Oracle model.

Key words: authenticated key agreement, practical vulnerability, CK model, eCK model,
FXCR scheme, FDCR scheme, strengthened eCK model, MQV, HMQV, FHMQV, SMQV.

Résumé. Une part importante des protocoles d’échange de clefs proposés se sont révélés vul-
nérables lorsqu’analysés au regard des définitions de sécurité les plus récentes. Les arguments
de sécurité des protocoles récents sont généralement fournis avec les modèles de sécurités
dits de Canetti–Krawczyk (CK) et Canetti–Krawczyk étendus (eCK). Nous montrons que
ces définitions de sécurité présentent des subtilités qui font que certaines attaques, qui peu-
vent être menées en pratique, ne sont pas considérées dans les analyses de sécurité. Nous
proposons une forte définition de sécurité, qui englobe le modèle eCK. Nous proposons une
analyse complémentaire des schémas de signature XCR (“Exponential Challenge Response”)
et DCR (“Dual exponential Challenge Response”), qui sont les briques du protocole HMQV.
Sur la base de cette analyse, nous montrons la vulnérabilités des protocoles (C, H)MQV(–C)
aux fuites d’informations spécifiques à une session. Nous montrons notamment que lorsqu’un
attaquant accède à certaines informations de session, qui ne conduisent pas à une divulga-
tion de la clef statique du détenteur de la session, il peut réussir une attaque par usurpation
d’identité. Nous proposons les schémas de signature FXCR (“Full XCR”) et FDCR (“Full
DCR”) à partir desquels nous construisons les protocoles FHMQV (“Fully Hashed MQV”)
et SMQV (“Strengthened MQV”) qui préservent la performance remarquable des protocole
(H)MQV, en plus d’une meilleure résistance aux fuites d’informations. Les protocoles FH-
MQV et SMQV sont particulièrement adaptés aux environnements dans lesquels une machine
non digne de confiance est combinée avec un module matériel à faible capacité de calcul et
résistant aux violations de sécurité. Dans un tel environnement, les opérations effectuées sur
le module matériel hors temps mort se réduisent à des opérations peu coûteuses. Les proto-
coles FHMQV et SMQV satisfont notre définition de sécurité sous les hypothèses de l’oracle
aléatoire et du problème échelon de Diffie-Hellman.

Mots clefs: protocoles d’échange de clefs authentifiés, vulnérabilités, modèle CK, modèle
eCK, schema de signature FXCR, schema de signature FDCR, modèle eCK fortifié, MQV,
HMQV, FHMQV, SMQV.

	Introduction (in french)
	Contexte et motivation
	Contributions
	Plan du manuscrit

	Introduction
	Elliptic Curve Cryptography and Related Industrial Problematics
	Introduction
	Overview of Elliptic Curves
	Coordinate Systems and the Group Law
	Coordinate Systems for Elliptic Curves over Prime Fields
	Coordinate Systems for Elliptic Curves over Binary Fields

	Scalar Multiplication
	The Double–and–Add Method
	Non–Adjacent Forms
	Montgomery Scalar Multiplications

	The Elliptic Curve Discrete Logarithm (and related) Problem(s)
	Attacks on the ECDLP

	Basic Elliptic Curves Based Schemes
	The Elliptic Curve Integrated Encryption Scheme
	The Elliptic Curve Digital Signature Algorithm
	The Password Authenticated Connection Establishment

	Advantages of Elliptic Curves based Cryptography
	Elliptic Curve Cryptography Standards Activities
	Patents in Elliptic Curve Cryptography
	Examples of elliptic curves cryptography deployment

	Security Models for Authenticated Key Agreement
	Introduction
	The Bellare–Rogaway Model(s)
	The Canetti–Krawczyk Model(s)
	The Extended Canetti–Krawczyk Model
	The Menezes–Ustaoglu Variant

	Security Nuances in the (e)CK Models
	Inadequacy of the CK Matching Sessions Definition
	The eCK Ephemeral Key and the Use of the NAXOS Transformation

	Stronger Security
	Relations between the seCK and eCK models
	The Strengthened MQV Protocol
	Security Analysis of the SMQV Protocol
	Proof of Theorem 3.

	Conclusion

	Complementary Analysis of Diffie–Hellman based Protocols
	Introduction
	The Unified Model Protocol
	The Station–to–Station Protocol
	The MQV Protocol
	Kunz–Jacques and Pointcheval Security Arguments
	Limitation of the Security Arguments
	Kaliski's Unknown Key Share Attack

	Complementary Analysis of ECMQV
	Points for Impersonation Attack
	Decomposed i–point Search
	Exploiting Session Specific Secret Leakages

	Complementary Analysis of the HMQV design
	Exploiting Secret Leakage in the XCR and DCR Schemes
	Exploiting Session Specific Secret Leakages in HMQV

	A New Authenticated Diffie–Hellman Protocol
	Full Exponential Challenge Response Signature scheme
	Full Dual Exponential Challenge Response Signature scheme
	The Fully Hashed MQV Protocol.

	Conclusion

	Implementations of the PKCS #11 Standard
	Introduction
	Context of the Work
	An Overview of the PKCS #11 Specification
	PKCS #11 Terminology
	Operations in the Standard Specification

	(In)Security in the PKCS #11 Standard
	Logical Security Weaknesses
	Implementation solutions

	Overview of two PKCS #11 Implementations
	Implementation for eKeynox™
	Implementation for RCP

	Conclusion
	Bibliography

