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Résumé en français

Dans un contexte d’expansion rapide de l’Internet, la caractérisation statistique du trafic
dans les réseaux est une préoccupation centrale pour les fournisseurs d’accès, autant que
pour les équipementiers et les développeurs de nouveaux protocoles. En effet, une bonne
compréhension du trafic dans les situations représentatives des comportements des utilisa-
teurs est une clé essentielle pour pouvoir garantir les performances au sens large, regroupées
sous le terme de qualité de service.

Une avancée majeure dans cette direction a été la découverte en 1993 par Leland et al.
et par Paxson et Floyd du caractère auto-similaire à grande échelle des séries temporelles
de trafic agrégé dans le cœur des réseaux; suivie en 1997 du modèle de Taqqu et al. qui
explique la présence de ces lois d’échelle par l’agrégation d’un grand nombre de sources
ON/OFF dont les périodes ON (ou OFF) suivent une distribution à queue lourde. Ces
résultats ont marqué le début d’une forte activité de recherche sur la modélisation des lois
d’échelle dans les réseaux et leur impact sur la qualité de service.

Cependant, ces modèles théoriques se basent sur des hypothèses simplificatrices, in-
évitables pour en assurer la solvabilité, mais qui en limitent l’applicabilité aux réseaux
réels. En effet, ils considèrent un modèle où l’émission par les sources est décorrélée du
reste du système. Si ce modèle d’émission représente bien le comportement du protocole
UDP, il s’avère être, dans une large mesure, inadapté à la description du comportement
du protocole TCP (utilisé à plus de 80% dans l’Internet actuel), qui lui, est basé sur un
mécanisme de contrôle liant l’émission des sources à la dynamique du système.

La complexité introduite par ce mécanisme de contrôle fait immédiatement ressortir la
nécessité d’une étude expérimentale des caractéristiques du trafic. Cependant, une telle
étude nécessite d’être capable de générer du trafic depuis un grand nombre de sources
parfaitement contrôlées et de mesurer le trafic qui en résulte. C’est un problème très ardu
si l’on veut utiliser un système réaliste comportant des liens à très haut débit (jusqu’à
10 Gbps), particulièrement lorsqu’il s’agit de mesurer le trafic à la fois en entrée et en
sortie d’un buffer pour en étudier la dynamique. Pour cette raison, les études empiriques
se sont souvent restreintes à l’utilisation de simulateurs et de nombreuses questions restent
ouvertes, comme celles (fondamentales) de l’impact des lois d’échelles (ou plus généralement
de la distribution des tailles de flux) sur la qualité de service ou encore de la modélisation
du trafic prenant en compte la corrélation des sources introduite par leur interaction au
niveau du buffer (en TCP).

Dans mon travail de thèse, j’ai choisi de m’intéresser aux lois d’échelles dans les réseaux
et à leur impact sur la qualité de service, tant du point de vue expérimental que théorique
et mes contributions ont été les suivantes.
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Développement d’une plate-forme expérimentale à très haut débit pour la
métrologie à grain fin. [4] [10, 9] [12]

Comme pré-requis pour toute tentative de modélisation du trafic, il est nécessaire de
posséder une plate-forme expérimentale capable de générer du trafic depuis un grand
nombre de sources, et de pouvoir mesurer le trafic agrégé. Pour cela, j’ai participé au
développement d’une telle plate-forme, basée sur l’utilisation du testbed entièrement con-
trôlable Grid’5000 pour la génération du trafic. J’ai également participé au développement
de l’outil MetroFlux qui permet de capturer sans perte le trafic traversant un lien à très
haut débit (jusqu’à 10 Gbps). Malgré les difficultés liées à l’obtention d’une telle plate-
forme fiable, nous sommes parvenus à mettre au point un dispositif expérimental unique
qui permet de générer du trafic contrôlé depuis un grand nombre de sources et de monitorer
le buffer commun à ces sources pour en étudier la dynamique.

Etude de l’auto-similarité à grande échelle dans le trafic agrégé. [1] [6, 7] [8, 11]
La première étude expérimentale que j’ai menée a visé à valider expérimentalement

le modèle de Taqqu et al. qui lie le paramètre de Hurst du trafic agrégé H à l’indice de
queue lourde de la distribution de la taille des flux α. Ce modèle n’avait jusqu’alors été
validé que partiellement dans deux situations: soit sur des traces de trafic réel venant de
l’Internet où l’on ne peut alors observer qu’un point de fonctionnement de la relation; soit
sur des simulateurs. Grâce à l’utilisation de longues expériences stationnaires parfaitement
contrôlées, et à l’utilisation des estimateurs les plus performants connus à l’heure actuelle,
j’ai pu obtenir des résultats bien meilleurs que ceux précédemment observés. Cela m’a
aussi permis de montrer les limites de validité de ce modèle, ainsi que de montrer que
du fait de son caractère “grande échelle”, ce résultat reste valable en TCP en l’absence de
congestion qui corrèle les sources.

J’ai ensuite montré que le résultat de Taqqu et al. reste valable en présence de pertes
aléatoires modérées, mais que si le taux de perte devient important, le mécanisme de
contrôle de TCP modifie trop profondément l’émission des paquets et oblige à reconsidérer
la notion de flux. Puis, j’ai montré qu’en situation de congestion où le trafic agrégé sature
à la capacité du lien, ce résultat reste valable en considérant le trafic d’un sous-ensemble
des sources.

Enfin, j’ai étendu le modèle de Taqqu et al. pour prendre en compte la corrélation
entre les débits d’émission des sources et les tailles de flux. J’ai utilisé une approche basée
sur des points de Poisson dans le plan ; approche classique dans le cadre des processus
multiplicatifs possédant des propriétés de multifractalité, mais peu utilisée dans le cadre
de processus additifs à longue mémoire. Ce modèle m’a permis d’interpréter des valeurs
de H observées sur du trafic web, dans une situation qui n’entrait pas dans le cadre du
modèle de Taqqu et al.

Estimation de l’indice de queue lourde de la distribution des tailles de flux sous
échantillonage. [5, 3]

Parce que la capture de tous les paquets qui traversent un lien peut s’avérer coûteuse,
nous avons alors été amené à considérer une procédure d’estimation de α à partir d’un
sous-échantillon du trafic. J’ai développé un estimateur basé sur le principe du maximum
de vraisemblance, dont les performances sont meilleures que celles des estimateurs exis-
tants. Cela m’a de plus permis de ré-interpréter ces derniers comme des approximations
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de l’estimateur que j’ai proposé.

Etude de la qualité de service avec des sources ON/OFF à queue lourde.
Nous avons alors abordé la question de l’impact du paramètre de queue lourde de la

distribution de la taille des flux sur la qualité de service.
Dans un premier temps, nous avons étudié le cas du protocole UDP, pour lequel une

étude numérique basée sur des simulations est suffisante. Ces simulations m’ont permis de
confirmer, pour des buffers de taille finie, des résultats obtenues dans le cadre théorique
de buffers infinis: la qualité de service (en terme d’occupation moyenne du buffer et de
taux de perte) est systématiquement dégradée par des faibles valeurs de α (synonymes de
queues très lourdes), mais ce uniquement pour des tailles de buffers suffisamment grandes.
J’ai également montré que la taille de buffer critique au delà de laquelle ce résultat est vrai
est différente pour les deux métriques de qualité de service, résultat que j’ai interprété par
la nature statistique différente de ces deux quantités.

Nous nous sommes ensuite intéressé au cas du protocole TCP, introduisant une rétroac-
tion qui rend impossible l’étude par simples simulations. J’ai donc à nouveau utilisé la
plate-forme expérimentale unique dont nous disposons pour réaliser de nombreuses expéri-
ences impliquant un grand nombre de sources ON/OFF TCP avec des périodes ON à queue
lourde d’indice variable. Cela m’a permis de montrer que contrairement à une intuition
légitime basée sur le cas du protocole UDP (et à des travaux passés sur des simulateurs),
certains paramètres de qualité de service (le taux de perte en particulier) ne sont pas
nécessairement dégradés par de faibles valeurs de α lorsque le protocole utilisé est TCP.

Identification de nouvelles lois d’échelles multifractales dans le trafic à l’aide
d’un modèle markovien de TCP.

Le caractère “grande échelle” des résultats théoriques précédemment mentionnés et leur
faible impact sur la qualité de service observé nous ont naturellement amené à considérer
la modélisation du trafic à une échelle plus proche de la dynamique du protocole TCP
(l’échelle RTT). Une modélisation multifractale s’est alors avérée adaptée et j’ai développé
un modèle basé sur une évolution markovienne du trafic de chaque source prenant en
compte les corrélations introduites par l’interaction des sources au niveau du buffer, à
l’échelle RTT. Ce travail s’est divisé en deux composantes. Une première composante
théorique a consisté en la démonstration d’un théorème presque sûr de grandes déviations
pour une seule réalisation d’un processus stationnaire ergodique possédant des propriétés
de mélange et associé à un principe de grandes déviations traditionnel (i.e. impliquant
des moyennes d’ensemble). L’application de ce théorème au cas des chaînes de Markov
m’a ensuite permit d’exhiber de nouvelles lois d’échelles multifractales dans le trafic TCP.
Ces lois d’échelles, intimement liées à la dynamique du protocole TCP et à ses mécan-
ismes de contrôle, permettent une analyse multi-résolution de différents paramètres liés
aux performances de TCP: le débit et la “fairness” (équité entre plusieurs sources). Elles
permettent la prédiction de bornes (au sens probabiliste) sur les performances atteintes
dans une situation données, et sont donc d’un intérêt direct pour la communauté réseaux.
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Abstract

In today’s context of rapid expansion of the Internet, statistical characterization of network
traffic is a central preoccupation for Internet Service Providers, as well as for networks
infrastructures and protocols designers. A deep understanding of traffic characteristics in
situations corresponding to typical users behaviors is indeed essential to guaranty Quality
of Service, i.e. performance in the broad sense.

A major breakthrough in that direction was the discovery in 1993 by Leland et al.
and by Paxson and Floyd of the self-similar nature of aggregate traffic time series at
large time scales. Following up this seminal discovery, the theoretical work by Taqqu and
collaborators in 1997 proposed a plausible origin for these scaling laws by showing that
they can be generated by a large number of ON/OFF sources with heavy-tailed ON (and
OFF) distributions. These results were followed by a large research activity on the impact
of scaling laws on Quality of Service.

However, as these theoretical models rely on necessary simplifying assumptions to en-
sure their tractability, their practical application to real networks situations is of limited
use. In particular, they assume independence between the sources emission and the rest
of the system. Realistic in the context of UDP protocol behavior, this emission model
turns unable to account for the specificity of TCP protocols (used in more than 80% of the
transfers), which rely on control mechanisms that inevitably correlate the sources emission
to the system dynamic.

The complexity introduced by this control mechanisms gives a major importance to
the experimental study of the traffic characteristics. However, performing such a study in
realistic conditions that involve a large number of sources and very high speed links (up to
10 Gbps), is very challenging. In particular, full capture of the traffic at such high rates is
an arduous task, especially when synchronized captures at the input and output of a buffer
are needed to study its dynamic. For this reason, empirical studies have often been limited
to the use of simulators, and many fundamental questions related to TCP traffic remain
open: What is the impact of scaling laws (or more generally of the file size distribution)
on the Quality of Service? How to take into account, in TCP traffic models, the sources
correlation introduced by their interaction at the buffer level? etc.

In my PhD work, I chose to focus on scaling laws in network traffic and their impact on
Quality of Service, both from an experimental and theoretical viewpoint. My contributions
are the following:

xi
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Development of an experimental platform for fine grain metrology at very high
speed. [4] [10, 9] [12]

Platform based on the Grid’5000 tested for traffic generation; and on the FPGA based
device GtrcNet for traffic capture.

Study of self-similarity at large time scales in aggregate network traffics. [1]
[6, 7] [8, 11]

Experimental validation of Taqqu’s theorem; study of the self-similarity in lossy TCP
traffics; extension to take into account the correlation between flow sizes and flow rates
observed on real web traffic.

Estimation of the flow size distribution tail index from packet sampled data. [5,3]
Design of a Maximum Likelihood estimation and comparison with other existing esti-

mators.

Study of the Quality of Service with heavy-tailed distributed ON/OFF sources.
Experimental study of several QoS metrics, with different tail index parameters, for both

UDP and TCP protocols.

Identification of new multi-fractal scaling laws in TCP traffic, using Markovian
models.

Theoretical study (proof of a large deviation theorem for one realization of a mixing
process) and application to TCP traffic (experimental validation and applications).



CONTENTS xiii



xiv CONTENTS



Chapter 1

Introduction

1.1 Context

Communication networks
Communication networks are the support of the transmission of various types of informa-

tion: voice, computer files, etc. They are constituted of nodes (machines, call servers, etc.)
and links transporting the information between the nodes. Two main categories of com-
munication networks can be distinguished. In circuit switching networks, used historically
for telephony or currently in optical networks, an isolated channel is reserved between two
nodes for the duration of the call. This way, once the connection is established, the trans-
mission quality is guaranteed during the entire call. However, if no channel is available,
a connection request might be blocked. The procedure which decides whether a request
can be accepted or not is called admission control. On the other hand, in packet switching
networks, consistent pieces of information (files for instance) are fragmented in packets
emitted successively, that can take different routes to their destination and be multiplexed
with packets from other sources. In such networks, even if a logical connection (e.g. a TCP
connection) can be established between a source and a destination, there is no guarantee a
priori on the links’ availability, and subsequent packets might be lost or delayed. To limit
packet losses, intermediate points of the network (routers and switches) can store a limited
amount of packets in buffers. The well-known Internet is based on this packet-switching
principle. It has greatly expanded over the last decade, and is still expanding fast (the
french institute ARCEP1 reports a 12% increase of the number of high-speed internet
subscribers between June 2008 and June 2009 in France, reaching more than 18 million
subscribers).

Quality of Service in packet networks
In this context, Quality of Service (QoS) is a central preoccupation for network operators.

Since the “quality” of a connection cannot be guaranteed in packet-switching networks as
it is in circuit-switching networks, the “service” provided (and eventually sold) by the
operator has to be defined, and how its quality is quantified is not clear. Network QoS can
be defined in many different ways and include a variety of concepts such as performance,
security, and transmission reliability. We focus on the performance aspects, and typical QoS
metrics are then delay (time taken for a packet or a flow to go from source to destination),
jitter (variation of the delay), bandwidth (quantity of information sent per time unit, i.e.
transmission speed) and loss rate. In this context, there are several ways to tackle the

1Autorité de Régulation des Communications Eléctroniques et des Postes, http://www.arcep.fr

1

http://www.arcep.fr
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question of QoS. We present only two approaches here, that radically differ in their basic
principles: the first approach is deterministic and attempts to give users strict guarantees
on given performance metrics. It is naturally based on the general principles of resource
reservation and admission control. The second approach is probabilistic, and basically
attempts to optimize the control of best-effort transfers based on some knowledge of the
traffic distribution. Hybrid approaches, such as the DiffServ model [Blake et al., 1998]
based on prioritization have also been proposed, but we do not present them here.

A deterministic approach to guarantee QoS. The deterministic approach con-
sists in guaranteeing QoS to users, e.g., a certain minimal bandwidth (the exact form of the
performance guarantee is part of the Service Level Agreement (SLA) between the customer
and the network operator). Since the operator’s infrastructure is not easily and quickly ex-
tendable when the demand arrives, this is possible through reservation of some bandwidth
during a fixed period of time, or admission-control procedures; and is equivalent to intro-
ducing circuit-switching properties in a packet-switching network. An example of such an
approach is the IntServ model [Braden et al., 1994], which is based on admission control
and resource reservation. The customer negotiates a service level at the connection, and
if his requirement cannot be satisfied, the request is blocked. Guaranteeing performance
between two nodes connected via a complex network is difficult. The elegant theory of
network calculus [Le Boudec and Thiran, 2001] is able to provide deterministic bounds for
several performance metrics like delay and bandwidth. However, the IntServ model has
not been widely developed, mainly because of scalability issues (due to the “state-fulness”
of this model), and of pricing and management issues. An alternative solution exploiting
recent advances in dynamic control plans, has been recently proposed. It uses the idea
of reservation in advance [Soudan, 2009]: a user reserves the previous day, e.g., before
6 p.m., the amount of bandwidth he will need the following day and during what period of
time. Obviously, admission control is also applied with this method, since, if the demand
cannot be satisfied, it is refused. The chances for the demand to be satisfied increase if
it is made long in advance. This creates an incentive for users to do so, which has the
beneficial effect of helping the network operator manage his resources. To achieve the
operator’s goal (maximal profit), pricing schemes can be applied (e.g., reservations made
long in advance are cheaper, strong constraints are more expensive), leading to complex
optimization problems closely related to game theory, which are promising topics of cur-
rent and future research. Such deterministic approaches to guarantee QoS are well-suited
for users having bulk data to transfer and hard deadlines for their transmission. However,
beyond the issue that the users are constrained to plan their transfers in advance; it has
several scalability limitations which render it hard to deploy for all the traffic.

A probabilistic approach to improve best-effort transfers. The strict QoS
guarantees offered by the deterministic approach do not correspond to the needs of many
applications. Indeed, there has been much work to develop applications that are able to
cope with network variability. For example, video applications implement large buffers
on the receiver to absorb periods of network congestion when information does not arrive
regularly, so that a strict bandwidth guarantee is not needed. The second approach that
we consider is then somehow opposite: it does not rely on admission control or reservation
policies to provide strict QoS guarantees. Instead the goal is to optimize the transfers and
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resource usage in a best-effort context. User behavior is not modified in this approach.
Instead, users are free to send whatever they want at any time, and it is the role of the
network to provide reasonable performance. QoS is evaluated in probabilistic terms in this
approach (for example, the mean delay is 100 ms or the delay is less than 100 ms 95% of
the time) and is usually called Quality of Experience (QoE). Evidently, QoS in this context
strongly depends on the traffic matrix and distribution (i.e., characterization of the users
demand). However, given a traffic distribution, there are several ways to improve QoS in
such an environment (without acting directly on user behavior). Firstly, the infrastructure
(capacity of the links and size of the buffers) can be adapted to the demand. This is
the dimensioning problem: for example, given the traffic distribution, determining what
the optimal buffer size should be to achieve a small loss rate and not increase delay too
much. Secondly, most of the Internet traffic relies on the TCP transport protocol. This
protocol ensures reliability of the transmission by reemitting lost packets, but it also uses
a congestion avoidance mechanism: if a packet is lost (sign of congestion), the emission
rate is reduced, otherwise the emission rate is increased to exploit the remaining capacity.
Optimization of this mechanism, to avoid loss events while maximizing resource utilization
is a way to improve performance. Finally, manipulation of packets within a fixed size
buffer is a promising approach: Active Queue Management (AQM) and packet scheduling
are examples of such approach. AQM consists in detecting congestion before losses occur.
Packets can then be dropped (with RED) or marked (with ECN) before the buffer is
actually full, with the goal of limiting severe congestion events. Flow aware approaches,
based on the knowledge of traffic and flows to achieve better forwarding of packets are also
promising [Bonald et al., 2002].

Statistical characterization of network traffic
All the aforementioned probabilistic approaches to network QoS require a deep under-

standing of the properties of the traffic generated by users. In packet-switching networks,
traffic consists of packets, and a full characterization naturally falls into the field of point
processes : traffic is characterized by the arrival time of all the packets. If packets can have
different sizes, then the process is said marked : characterization of each point include (in
addition to its arrival time) its size. At the input points of the network’s shared links, pack-
ets of several users are naturally interleaved: this is the equivalent of the superimposition
operation in point processes theory. This operation is often called (source) aggregation and
the corresponding router is the aggregation point. Due to the large number of users, and
the naturally random human behavior, this aggregate traffic is well modeled by a random
point process. This is an important property in the study of traffic from large-scale net-
works (like the Internet), that makes the use of probabilistic methods relevant to our work
(random models might not apply well to, e.g., traffic in a very small cluster of machines
where deterministic effects of a particular application can prevail). There are various ways
of characterizing a random point process. The finer way consists in describing the intervals
between two consecutive points, by their marginal statistics (the probability that the inter-
val between two consecutive packets has a certain value) and correlations (the conditional
probability that the interval between two consecutive packets has a certain value, given the
values of precedent intervals). However, one might not be interested in such a fine-grain
description, and prefer a more coarse-grain description, based on the count process. This
process is the number of packets in consecutive time windows of fixed size ∆. Consider-
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ing this process corresponds to averaging the traffic at time scale ∆. Variations inside
a time window are lost in this description; for example, one cannot distinguish the case
where all the packets are at the beginning of the window from the case where packets are
regularly spaced in the window. Validity of this description to tackle QoS problems is still
justified by the existence of buffers which “absorb” small-scale variations of the traffic. Of
course, careful choice of ∆ is required to obtain accurate QoS predictions. The count-based
description is then very practical, because it provides information at regularly spaced in-
tervals (∆). It can be viewed as a uniformly sampled continuous signal, for which many
signal processing techniques are available to analyze statistical properties. A deep under-
standing of the statistical properties of this signal in situations corresponding to typical
users’ behavior is essential to understand and eventually improve QoS in networks.

Markovian modeling for phone networks. The statistical analysis of network
communications started in 1917 with the works of Danish engineer Agner K. Erlang on
phone networks. Erlang’s approach is based on Markov chains: simple stochastic processes
for which the probability of an event depends only on the preceding event. The Markovian
approach of Erlang supposes that incoming calls arrive as a Poisson process (the simplest
point process where inter-arrival times are independent and exponentially distributed).
The corresponding count process in consecutive time windows has Poisson marginals and
independent values. The number of customers in the system can then be described by a
Markov chain if the call duration is exponentially distributed. This approach was proven
to be justified in phone networks, and was used to dimension the network in order to ensure
a very low blocking rate.

New statistical properties in packet-network traffic: scaling laws. At the
beginning of packet-switching networks, the statistical characterization of traffic was based
on Poissonian assumptions similar to the ones of Erlang’s approach [Kleinrock, 1969].
However, after the congestion collapse of 1986, the AIMD mechanism was introduced in the
TCP transport protocol [Jacobson, 1988]. The main reason of the extraordinary expansion
of the Internet, both in term of size of the network and size of the transfered files, probably
lies in this decentralized congestion control algorithm, which permitted for example the
web success in 1992. In 1993, pioneering work by Leland et al., and by Paxson and Floyd
showed that aggregate traffic of different kind of packet-switching networks possesses the
long-range dependence property: the probability of an event depends not only on the
previous event, but also on events that happened long in the past. The presence of the
long-range dependence property invalidates Markovian modeling (unable to account for this
type of long-term correlation), and consequently the dimensioning and control procedures
based on this Markovian assumption. The long-range dependence property of a signal is
often induced by self-similarity, an example of the more general concept of scaling laws,
which express that no specific scale prevails in the system. Instead, different scales of
the system are linked together by a scale-invariant quantity that remains invariant when
calculated at different scales. In the case of self-similarity, this scale-invariant quantity
characterizes the evolution of the variance (or, more generally, any finite order moment)
of the signal across scales. It remains constant in the signal, and the scaling law is then
called monofractal. A few years after the first observation of self-similarity in network
traffic (in 1997), several works reported the presence of a different type of scaling laws:



1.2. PRESENTATION OF THE SYSTEM 5

multifractality at small time scales. The term multifractality denotes erratic variations
of the scale-invariant quantity with time. Although it can refer to any scale-invariant
quantity, it is usually understood to refer to the local regularity, and is then characteristic
of a very high variability of the signal regularity. Scaling laws are of primary importance in
the statistical characterization of network traffic, and will therefore be at the center of this
thesis. They are valuable fingerprints of the system state and of the mechanisms underlying
their presence. Moreover, they can have a strong impact on performance. They are, for
example, sources of QoS degradation, and so need to be considered in design problems
such as buffer sizing. A precise understanding of their origin is thus essential. A major
breakthrough in this direction has been the theoretical work by Taqqu and collaborators in
1997. It posits that the heavy-tail nature of some probability distributions, mainly that of
flow size distributions, suffices to generate traffic exhibiting long-range dependence. The
idea that infinite variance distributions produce long-range dependence was already put
forward by Mandelbrot (Taqqu’s PhD advisor until 1972) since 1969 and throughout his
work.

The need for an experimental study in realistic conditions.
The theoretical models previously mentioned and many other models that appeared

later explaining the presence of self-similarity in network traffic and its impact on QoS
are simplified to ensure their tractability. In particular, the source emission is assumed
independent of the rest of the system. Although this represents well the UDP protocol’s
behavior2, it is unable to account for the specificity of the TCP protocol, whose control
mechanisms inevitably correlate the source emission to the system’s dynamic. Due to their
complexity, comprehensive modeling of all TCP specifications is very arduous and this gives
a major importance to experimental studies of traffic characteristics. However, performing
such a study in realistic conditions, implying a large number of sources and a very large
spectrum of rates as in the Internet (up to 10 Gbps), is a very difficult task. In particular,
full capture of the traffic (necessary to perform fine-grain analysis) at such high rates is
an arduous challenge, especially when synchronized captures at the input and output of
a buffer are needed to study its dynamic. For this reason, empirical studies have often
been limited to the use of simulators. However, simulators have limitations of their own.
Current simulators (like ns2) have computation-cost limitations that reduce their usability
for large-scale high-speed networks. Moreover, such discrete event simulators introduce
unavoidable determinism and cannot account for the natural randomness inherent to real
systems. An experimental study in realistic conditions is then necessary to tackle the very
important question:
Overall question: In realistic conditions, what are the statistical characteristics
of network traffic? What is their impact on the Quality of Service in packet
networks?

1.2 Presentation of the system

The single bottleneck system. To precise and answer this question, this thesis focuses
on the following simplified system. A large number of sources share a single bottleneck

2Throughout this manuscript, we abusively equation “UDP traffic” to “non-controlled traffic”, even
though some UDP applications implement control mechanisms.



6 CHAPTER 1. INTRODUCTION

(no specific scheduling) Network (no bottleneck)
Sources Destinations

Switch/Router

PC N

PC 2

PC 1

PC N

PC 2

PC 1

Sources traffic:

Flow scale (ON/OFF)

Packet scale 
(protocol)

Aggregate

traffic

Aggregate

traffic

(input) (output)

QoS QoS

Bottleneck

(Delay, loss,

throughput) (completion times)

Receiver

(TCP only)

TCP Control

Figure 1.1: The single bottleneck system.

(Figure 1.1). The bottleneck applies no specific scheduling policy (First Come First Serve
(FCFS)), and uses the simple droptail policy (packets are dropped only if no room is avail-
able in the buffer). No correlation is introduced a priori between the sources. In our work,
the number of sources goes up to 100. This is only 1 or 2 orders of magnitude less than
the typical access point of an Internet Service Provider (ISP), where the sources are the
subscribers geographically grouped and sharing the access point. In a core point of the In-
ternet backbone, several links carrying the traffic from multiple ISPs are aggregated and the
number of users can be much greater, but the backbone links are usually over dimensioned
so that QoS problems are much more critical at the access points. The general principles
derived in our study, however, give interesting insights regarding the backbone situation
as well. Obviously, such a single bottleneck system does not allow studying specific effects
arising in networks of queues, like stability problems. We also do not tackle questions
related to scheduling. However, this simple system is rich enough to permit a thorough
study of the statistical characteristics of network traffic and in particular to identify the
fundamental origins of scaling laws without introducing unnecessary complexity.

Description of user behavior. The statistical characteristics of aggregate traffic ob-
viously depend on the characteristics of each source’s emission, which we now describe.
There are two levels of source characterization: the flow level and the packet level (or flow
scale and packet scale). The flow level describes user behavior (what data is sent and
when) at a coarse grain. To account for the typical user’s behavior, we use the simple
ON/OFF scheme: a source emits data during a certain ON period (called flow time or
flow duration), then stops emitting for some OFF time usually called idle time or think
time. Packets emitted during an ON period form a flow (a coherent set of related packets
pertaining to a same entity, usually a file). The quantity of packets in a flow is called flow
length or flow size and the quantity of bytes, flow volume. For a given flow size, the flow
duration might vary, depending on the conditions. That is why our description of user
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behavior is focused on flow sizes rather than ON times.

For a given source, flow sizes and OFF periods are assumed independent, and hence
to complete the description, we only need to characterize their distributions. Based on
recurrent observations on real Internet traces since 1996, we use heavy-tailed distributions,
characterized by their tail index α. The packet-level description of the source traffic is
governed by the transport protocol, which we now discuss.

The transport protocol. To complete the description of a source’s emission, we need
to describe how packets are emitted within a flow. This is controlled by the transport
protocol. Two main protocols exist in the Internet that differ fundamentally in their basic
principles: UDP and TCP. The UDP protocol is the simpler of the two. It emits regularly
spaced packets, at some constant rate (number of packets per time unit). This emission
mechanism is independent of the system’s state (the rate does not change if packets are
lost), and unreliable (lost packets are never recovered so that integral transmission of a file
is not guaranteed). It can however be well suited for situations like voice or radiophony
transmission, where partial information is sufficient. For radiophony broadcasting, for
example, a certain percentage of information loss is acceptable without compromising
the auditive impression. On the opposite, the TCP protocol is based on two principles
proposed in 1973 by Cerf and Kahn: regulation and acknowledgment. The principle of
acknowledgment is intended to permit reliable transmissions. After emission of a packet
by a source, the destination acknowledges good reception of the packet (by sending an ACK
packet). Non-received packets can then be retransmitted. The principle of regulation is
intended to detect and avoid congestion in the network: if the network is congested, the
source should slow down its emission rate, whereas if bandwidth is available it can emit
more aggressively. A simple and efficient form of this regulation has been proposed in 1988
by Jacobson [Jacobson, 1988], on which is based the common TCP variant Reno that we
present here. The source emits a burst with a certain number of packets called congestion
window. After a certain time called Round Trip Time (RTT, basically corresponding to
the transmission time to the destination and return), acknowledgments are received by the
source. If a single loss is detected, the congestion window is divided by two, otherwise it is
increased by one; the source then emits a burst of the corresponding value. This mechanism
is called Additive Increase Multiplicative Decrease (AIMD). Single losses can be detected by
the reception of acknowledgment packets from subsequent sent packets. In the case of loss
bursts, where no acknowledgement is received during a certain time interval (a timeout
called RTO), the congestion window is reset to the value one packet. The emission in
the TCP case is then fundamentally different from the UDP case in several ways: firstly,
it is ack-clocked (bursts of packets are emitted every RTT), and thus not regular. It
introduces a new characteristic time scale: the RTT. More importantly maybe, the rate is
adapted based on some feedback. It means that an open loop analysis of the system is not
possible: e.g., we cannot analyze the effect of the source emission on the buffer (e.g., loss
probability), without accounting for the reverse effect of the losses on the source emission.
Finally, this feedback introduces correlation between the sources. Indeed, when one source
reduces its sending rate because of a loss, other sources can benefit from this reduced load
to increase their rate. In case of an ideal rate adaptation, this correlation takes a particular
form: the total rate equals the capacity of the link. Practically though, non-instantaneous
adaptation leads to periods of partially used link capacity. As the additive increase of
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Jacobson’s algorithm can be too slow at the beginning of a connection, until the first loss
is detected or some threshold is reached, the Slow Start algorithm is used: the congestion
window is doubled at each RTT. This permits to increase the sending rate faster at the
beginning. After the first loss, the protocol enters the so called Congestion Avoidance
phase, where Jacobson’s algorithm is used in the simplest TCP variant, called Reno. The
slow start mechanism is also used after a timeout, when the congestion window is reset to
one. While the exponential increase during this phase corresponds to a fast increase, this
justifies the term Slow Start, for a small number of packets (one) is first sent. Many other
TCP variants than Reno have been proposed [Guillier, 2009], that change the evolution of
the congestion window during the congestion avoidance phase. Basically, these variants try
to minimize the time to increase the sending rate after a loss, using various growth shapes
and levels of aggressivity. This presentation is oversimplified, and many other subtleties
and diverse implementations of TCP mechanisms have appeared in the last two decades,
that are partly responsible for the difficulty of building a comprehensive TCP model. The
research community itself has limited confidence in complex models trying to account for
all of these specifications and usually trust them less than experimental studies to give
accurate results on the performance of TCP in various situations. Oversimplified models
of TCP forgetting these subtleties and concentrating on essential mechanisms like AIMD,
however, are able to provide qualitative insights and tendencies of major interest in both
the understanding of TCP traffic behavior and the development of more efficient protocols.

The general questions in the single bottleneck system. The single bottleneck
system that we study allows us to decompose the overall question of statistical character-
ization of the network traffic and QoS, by considering the different points of the network,
represented on Figure 1.1. Basically, we want to characterize the traffic and QoS at each
point of the network, and we articulate our work around the following general issues:

Aggregate network traffic characterization.

Source traffic characterization at flow scale.

Impact of the traffic characteristics on QoS (in performance terms).

TCP traffic at packet scale and TCP throughput predictability.

The approaches to these questions strongly depend on the used protocol (TCP, UDP).
With UDP, because the source emission is independent of the system, the questions can be
studied separately with an open-loop approach. For instance, based on the characteristics
of the source traffic, we can determine the characteristics of the aggregate traffic at the
input of the buffer; and knowing this input traffic, we can determine the QoS at the buffer
(loss, delay, etc.), without coming back to the source emission. Characterization of the
QoS at the receiver is irrelevant with UDP because the flow rate is almost constant and the
completion time of a flow is thus proportional to its size. On the opposite, these questions
cannot be studied separately with TCP, because of the feedback mechanism. Indeed, the
characteristics of the source emission process influence the aggregate traffic shape, which
itself has an impact on the QoS at buffer level (loss in particular), thus modifying the
source emission process, etc. This is a closed-loop system, whose modeling is much more
difficult than in UDP’s case where fluid models can give satisfying results. An experimental
approach is thus necessary, bringing the preliminary problem of possessing an appropriate
tool:
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Experimental platform reproducing realistic conditions.

All of these general questions have already received a major attention in various research
communities such as mathematics and networks communities; both from the academic and
the industrial side (for network operators in particular). Of course, they all have received
partial answers in the literature, but some parts are still missing, in particular due to the
difficulty of a large-scale experimental approach in realistic conditions. The next section
details my contributions and the answers they bring to these questions; and relate the
specific context in which my work has been done.

1.3 Summary of my contributions and context of my work

Development of an experimental platform for fine-grain metrology at very high
speed. [4] [10, 9] [12]

As a pre-requisite to experimentally tackle the previously mentioned questions, it is
necessary to possess a large-scale experimental platform, able to generate traffic from a
large number of sources in realistic conditions (very high speed), and to measure the traffic
going through a link. I participated in the development of such a platform, based on the
fully controllable testbed Grid5000 for traffic generation. Our contributions included the
development of TranSim, a tool to automate the generation of traffic from a large number
of sources and the collect of logs and statistics for each experiment; and the development of
MetroFlux, a tool to capture the traffic going through a link at up to 10 Gbps. I made these
developments in collaboration with the INRIA engineers Yichun Lin (January 2007–June
2007), Damien Ancelin (April 2007–April 2009), and Matthieu Imbert (2008–). The tool
MetroFlux is based on the FPGA device GtrcNet developed at AIST, Japan. At 1 Gbps, it
is able to performed two synchronized captures, for example at the input and output of a
buffer to study its dynamic. Despite the natural difficulty inherent to real equipments, we
managed to obtain a reliable and powerful metrology platform, which I used throughout
my thesis study network traffic and QoS.

Study of the self-similarity at large time scales in aggregate network traffic. [1]
[6, 7] [8, 11]

This contribution gives answers to the question of the aggregate traffic characterization.
It assumes knowledge of the flow scale description of source behavior and focuses on the
large-scale properties of the count process of the aggregate traffic (number of packets in
consecutive windows of size ∆).

The first part of this contribution is an experimental investigation, in the idealized loss-
free situation, of Taqqu’s relation linking the self-similarity of aggregate network traffic
to the flow size distribution tail index. This relation had been validated only in two
situations: on real internet traces, where only one point of the curve can be observed; and
on simulators. Using large-scale controlled experiments generating stationary traffic traces
of long duration, and using state-of-the-art estimators, I could obtain significantly better
match than previously observed on simulators. I could also investigate the limits of Taqqu’s
model, in term of scale range involved; and clarify the role of the transport protocol in
generating self-similarity. The conclusion is that in loss-free situations, Taqqu’s result holds
true independently of the used protocol. All of this study was performed in collaboration
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with Patrice Abry, Pierre Borgnat and Guillaume Deweale, from École Normale Supérieure
de Lyon (Physics lab., CNRS-ENS Lyon).

As a natural sequel of this work, I extended this experimental study to more realistic
situations including losses of two types: lossy link and congestion losses. I showed that
in the lossy link case, self-similarity still holds for small loss rates, but falls down for
high ones. This result is not in contradiction with Taqqu’s model, provided that flows
are properly defined. It gives insights into what can actually be considered as a “flow”
in Taqqu’s model. In the congestion case, I showed that self-similarity, which cannot be
measured on the total aggregate traffic saturating at the link capacity, is still present when
considering the traffic of a subset of sources, although its parameter is affected by the
sources’ correlation introduced by their interaction at the buffer.

In the last part of this contribution, I proposed an extension of Taqqu’s model, where
flow rates and durations are correlated. This study was motivated by the observation
of real web traffic (acquired with our tool MetroFlux ), where such correlations introduced
different tail indices for the flow size distribution and the flow duration distribution. In this
case, Taqqu’s model (and other existing similar ones) was unable to explain the observed
self-similarity parameter. Based on a M/G/∞ like model, I introduced this correlations,
and calculated the resulting self-similarity parameter. A good match was then observed
with the real traffic at the origin of this development.

Estimation of the flow-size distribution’s tail index from packet-sampled data.
[5, 3]

In this contribution, I consider the opposite question, as compared to the previous one:
from the observation of the aggregate traffic, how to recover the sources’ characteristics
at flow scale? I focused on the estimation of the tail index parameter of the flow size
distribution, assuming a zeta distribution (a particular discrete heavy-tailed distribution).
The aggregate traffic is observed at packet level. However, due to very high speeds inherent
to current realistic networks, only a sub-sampled of the aggregate traffic is observed, to
limit computational and storage costs.

While several solutions based on approximations existed to estimate the flow size dis-
tribution tail index αSI, from sampled data, I proposed a rigorous maximum-likelihood
solution. I then showed that other proposed estimators can be reinterpreted as approxi-
mations of this maximum-likelihood estimator. Using numerical simulations to assess its
performance, I showed that the maximum-likelihood estimator outperforms other estima-
tors and is notably the only one reliable at sampling rates as small as 1/1000.

This work have been done in collaboration with Florence Forbes and Stéphane Girard,
from INRIA Grenoble (Mistis team).

Study of the impact of heavy-tailed flow size distributions on Quality of Ser-
vice.

This contribution aims at giving answers to the question of the impact of traffic char-
acteristics on the QoS, for both the UDP and TCP protocols. I assume a heavy-tailed
distribution of the file size distribution, with some tail parameter αSI (i.e., the flow scale
description of the source behavior is given), and I focuse on the impact of αSI on the QoS,
in the realistic case of finite size buffers.

I first handle the UDP case with simple matlab simulations. Concentrating on the
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mean buffer occupancy and loss rate, I show that these two QoS metrics increase (are
degraded) when αSI decreases (with very heavy tails) for large buffers; whereas they are
insensitive to αSI for small buffers. I also show that the critical buffer size separating those
two regimes is not the same for the mean buffer occupancy and the loss rate, and interpret
this result by the different statistical nature of these two quantities.

I then turn to the TCP case, that I treat with experiments performed on our metrology
platform. My results show that the impact of the αSI parameter is not as clear as for the
UDP case, and that more than the αSI value only, the entire distribution have to be
considered to evaluate buffer QoS metrics such as loss rate, delay and throughput; and
end-to-end QoS metrics such as flow rate or completion time.

Identification of new multifractal scaling laws in TCP traffic and application
to TCP throughput prediction.

This last contribution gives answers to the question of TCP traffic characterization at
packet scale and its application to TCP throughput prediction. I show that TCP traffic
intrinsically possesses a new type of scaling laws exhibiting a multifractal behavior. I show
that a Markov model of the TCP congestion window is able to reproduce this new scaling
behavior, and gives an analytic formula of the corresponding large deviation spectrum.
The proposed model is versatile, and allows to account for various experimental conditions
as well as to account for synchronization between several competing TCP flows.

This contribution is divided in two parts. The first part is a theoretical contribution.
I prove an original (almost sure) large deviation theorem, which allows for the evaluation
of the large deviation spectrum observed on one single realization of a stochastic process
(verifying some properties). The quantity that is proven to be multifractal is not the
classical Hölder exponent, but rather the mean of the process in consecutive time windows.

The second part of this contribution consists in applying this theorem to the analysis
of the evolution of the congestion window of long-lived TCP sources. Using a Markovian
model for TCP congestion windows, I show that TCP traffic intrinsically possesses this
new kind of multifracatal scaling laws (note that this Markov model does not contradict
the long-range dependence of aggregate ON/OFF traffic, because we use it only for the
individual congestion window of TCP flows, and not for the aggregate traffic). This new
scaling behavior is genuinely linked to the AIMD mechanism of TCP, and permits a multi-
scale analysis of various TCP performance metrics, such as throughput or fairness. These
properties of the traffic are experimentally validated using a large number of experiments
performed on our metrology platform. I also experimentally show the capabilities of the
model to account for various experimental conditions (various cross traffic), and its ability
to account simply and efficiently for the synchronization between several competing TCP
flows. The scaling laws that I exhibit in this contribution, and the Markov model that I
proposed, permit the computation of probabilistic bounds on TCP throughput and fairness
in various situations.

This work has been done in close collaboration with Julien Barral, from INRIA Roc-
quencourt (SISYPHE team).

1.4 Organization of the thesis

The manuscript is organized as follows.
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Chapter 2 exposes the theoretical background and tools that will be used throughout
the thesis. This chapter is intended to sketch the concepts used in the following, without
entering into mathematical technicalities and with a network-research orientation.

In Chapter 3, we present the state of the art in network traffic and QoS analysis. This
chapter exposes the different answers existing in the literature to the questions related to
network traffic and QoS characterization, and points the questions for which no conclusive
answer has been proposed yet, and that will be developed in the rest of the thesis.

Chapter 4 presents our large-scale experimental facility, and the tools we developed to
deploy a metrology platform able to provide an experimental support to investigate traffic
characteristics and QoS in realistic conditions.

In Chapter 5, we tackle the question of characterizing statistical properties of aggregate
network traffic at large time scales. We start with an experimental validation of Taqqu’s
relation between long-range dependence and heavy tails in the idealized loss-free conditions,
both with TCP and UDP. Then we move to more realistic conditions with two kinds of
losses: lossy link and congestion losses. Finally, we consider the case (observed on real web
traffic) where flow rates and durations are correlated.

Chapter 6 considers the opposite question: from the observation of the aggregate traffic
at packet level, how to recover the sources’ characteristics at flow level? To cope with very
high speed constraints inherent to current realistic networks, only a sub-sample of the
aggregate traffic is observed, and we then concentrate on the estimation of the flow size
distribution’s tail index αSI.

In Chapter 7, we tackle questions related to the impact of heavy-tailed flow size distri-
butions on QoS metrics such as buffer delay, loss and throughput; and transfer completion
times or average rates.

In Chapter 8, we consider the characterization of TCP source traffic at packet level.
This study is done for long-lived TCP sources, and we focus on scaling laws and their
relations with the TCP mechanisms, in particular with the AIMD mechanism.

We conclude in Chapter 9, and give several perspectives for future research work.



Chapter 2

Theoretical background and

tools

This chapter presents the mathematical concepts that will be used throughout the rest of
the manuscript. It aims at introducing these notions rather informally through their link
to network traffic. We do not enter into technical details, and give specific references for
each notion.

2.1 Simple processes with small-range correlations

2.1.1 Renewal processes and Poisson process

As we have mentioned in the previous chapter, the most natural framework to describe
network traffic is the theory of point processes, due to the inherently discrete nature of
packet traffic. A point process is a mathematical construct that represents a discrete series
of events as random points in space. Despite its seeming simplicity, the theory of point
processes is a very rich and complex field of study in mathematics. More or less formal
approaches to point processes can be found in [Cox and Isham, 1980,Daley and Vere-Jones,
2003,Baccelli and Brémaud, 2003,Lowen and Teich, 2005].

For the case of a one-dimension point process, the points are on a line correspond-
ing to the time, and their position is often called arrival time and denoted by (tk)k≥0.
The corresponding counting process Nt is the number of points between times 0 and t:
Nt =

∑∞
k=0 1tk∈[0,t), whereas the count process is the number of points in consecutive time

windows of size ∆: X(∆)
i =

∑∞
k=0 1tk∈[i∆,(i+1)∆). The count process corresponds to the

increments of the counting process: X(∆)
i = N(i+1)∆−Ni∆. Finally, the inter-arrival times

are usually denoted by τk = tk+1 − tk. The simplest point process is the Poisson process.

Definition 2.1.1 (Poisson process). A Poisson process of rate λ is a point process whose
inter-arrival times are independent and follow an exponential distribution of parameter λ:

∀k,P[τk ≥ x] = e−λx, x > 0. (2.1)

Although the term “Poisson process” usually refers to the counting process Nt (a con-
tinuous time process), we use it to denote the point process as a whole. The name “Poisson
process” refers to the fact that the counting process follows a Poisson distribution of pa-
rameter λt:

P(Nt = n) =
(λt)ne−λt

n!
, (2.2)

13
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whose mean and variance are both equal to λt. The count process also follows a Poisson
distribution of parameter λ∆. The other important property of this process is that it is
independent. In other words, the counting process has independent increments. Note that
these properties of the count and counting processes can also be used to define the Poisson
process, and the definition 2.1.1 that we chose is then seen as a property.

The simplicity of the Poisson process comes from two assumptions: independence of
the inter-arrival times and exponential distribution (the only memoryless distribution).
It is the most simple example of a more general class of point processes called renewal
processes.

Definition 2.1.2 (Renewal processes). A renewal process is a point process whose inter-
arrival times are independent.

Up to now, we have considered the count and counting processes where the number of
points falling in some interval are counted. If each point is affected a weight, the process
obtained by summing the weights of the points falling in some interval in called renewal-
reward process. The sequence of weights is assumed independent and identically distributed
(i.i.d.). Such processes can be used for example to take into account variable packet

sizes, and the process (X
(∆)
i )i≥0 represents the bandwidth in consecutive time windows of

size ∆. As compared to the Poisson process, removing the assumption of exponentially
distributed inter-arrival times in the definition of renewal processes already leads to severe
complications. For example, the superimposition of several renewal processes is not in
general a renewal process (whereas the superimposition of Poisson processes is a Poisson
process whose rate is the sum of the individual rates). The count process is also no longer
independent (we shall for example see in next chapter that if the inter-arrival times are
heavy-tailed distributed, it exhibits long-range dependence). The next proposition shows,
however, that the superimposition of a large number of independent renewal processes
converges towards a Poisson process, provided that a proper rescaling is applied (see a
more general version of this proposition in [Daley and Vere-Jones, 2007, Section 11.2, p.
150]).

Proposition 2.1.3 (Convergence of the superimposition of independent renewal processes
towards a Poisson process). Let N be a renewal process on R, whose inter-arrival-time
distribution has finite mean λ−1. Let Nn be the point process obtained by superimposing n
independent replicates of N and dilating the scale of R by a factor n. Then as n goes to
infinity, Nn converges to a Poisson process of rate λ.

2.1.2 Markov chains

In the previous section, we considered the point process corresponding to packet arrivals.
Such a packet-scale description is not always necessary, and many results can be obtained
using a flow-scale description: the point process now corresponds to the flow arrivals, and
each flow is assumed to emit continuously at a constant rate during a random time. This
situation corresponds to the classical setting used in queueing theory, where the flows are
usually called jobs, and the flow duration called service time. It also represents the case of
phone networks, where the flows are the calls.

In the case where the job- (flow-) arrival process is Poisson, and the service times (flow
durations) are exponentially distributed (the case of an M/M/1 queue), the evolution of
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the number of customers Xk (number of active flows) at time t = k∆ can be described by
a Markov chain.

Markov chains is now a rather classical topic in mathematics, and a lot of references
are available on the subject. The reader can consult for example [Feller, 1971, Revuz,
1984,Benaïm and El Karoui, 2005], and the references therein for more information.

Definition 2.1.4 (Markov chain). A discrete process (Xk)k≥0 is a Markov chain if

P(Xk+1 = nk+1|Xk = nk, Xk−1 = nk−1, · · · , X0 = n0) = P(Xk+1 = nk+1|Xk = nk). (2.3)

This is the simplest case of correlated process: the probability of an event depends only
on the preceding event, and not on an event occurred further in the past. In other words,
one often says that “the future depends only on the present”. As for the case of point
processes, Markov chains reveal many rich behaviors despite their apparent simplicity.

The set of possible values for Xk is called the state space E. If we assume that there is
a maximal number of active flows in the queue (for example because of the finite number
of sources), then process X can only take a finite number of values and the state space is
finite. We present only this case here and assume that the state space is {1, · · · , c}, c ≥ 1.
The Markov chain is characterized by a transition matrix Q, such that:

Qij = P(Xk+1 = j|Xk = i). (2.4)

The properties of the Markov chain are governed by those of the matrix Q. This matrix
always verifies ∀i,

∑c
j=1Qij = 1. Given the distribution p(k) on E at time k, the transition

matrix determines the distribution at time (k+ 1): p(k+1)
j =

∑c
i=1 p

(k)
i Qij , usually written

in short p(k+1) = p(k)Q and named Chapman-Kolmogorov equation. A steady-state or
invariant distribution is a fixed point of this equation:

Definition 2.1.5 (Steady-state distribution). A distribution p on E is called steady-state
distribution (or invariant distribution) of the Markov chain X of transition matrix Q if

p = pQ, i.e. ∀j ∈ E, pj =

c∑

i=1

piQij . (2.5)

A steady-state distribution always exists, but the irreducibility assumption is necessary
for its unicity:

Definition 2.1.6 (Irreducible Markov chain). A Markov chain X of transition matrix Q
is called irreducible if ∀(i, j) ∈ E2, there exists k ≥ 1 such that (Qk)ij > 0.

A Markov chain is irreducible if each state of E is accessible from any state of E. It
means that the chain cannot be reduced, or separated in two independent chains. If the
chain is irreducible, there exists a unique steady state distribution, verifying ∀i ∈ E, pi > 0.
An almost-sure ergodic theorem also holds:

Theorem 2.1.7 (Almost-sure ergodic theorem). If X is an irreducible Markov chain of
steady-state distribution p, then almost surely:

lim
n→

1

n

n−1∑

k=0

1{Xk=i} = pi. (2.6)
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This theorem means that when one realization of the Markov chain is generated, the
result obtained by counting the proportion of a particular value converges toward the
steady-state distribution of this value as the size of the realization grows. It implies that the
ensemble mean of the process is equal to the empirical mean calculated on one realization.
When the chain is aperiodic (Definition 2.1.8), a stronger ergodic theorem can be stated,
implying another type of convergence.

Definition 2.1.8 (Aperiodic Markov chain). Let i ∈ E and R(i) = {k ∈ N : Qk(i, i) > 0}.
The period of i is the greatest common divider of R(i). If Q is irreducible, all the states
have the same period, and the Markov chain is called aperiodic if this period is one.

The theory of Markov chains has been extensively used to dimension and control phone
networks, following the work of Erlang in 1917. At the beginning of packet networks, it was
also used [Kleinrock, 1969] to model the traffic. However, the assumption of exponentially
distributed flow durations (underlying the direct use of simple Markov chain models) was
proven to fall down in the Internet in the early 90s. Instead the flow-duration distributions
appeared to exhibit heavy-tailed distributions. While modeling the aggregate traffic with
Markov processes in such a situation is still theoretically possible, the state space becomes
extremely large and so complicated that more parsimonious models are usually preferred
to account for the long-term correlations. Such models, based on long-range dependence
are presented in Section 2.3. To model the traffic of an individual source, however, Markov
chain models can be accurately used with very simple state spaces, representing the possible
values of the congestion window. Many such models have appeared since the late 90s. The
idea is that with Reno’s AIMD mechanism, the new congestion window depends only on
the current value: it is either divided by two or increased by one, with some probabilities
related to the loss probability.

2.2 Heavy-tailed distributions

There are various ways to define classes of distributions decreasing more slowly than the
exponential distribution [Adler et al., 1998,Markovich, 2007]. Heavy-tailed distributions
are one such class and we choose here a classical definition adapted to our study, which is
sometimes named “regularly varying tail distributions” in the specialized literature.

Definition 2.2.1 (Heavy-tailed random variable). A random variable Z is heavy-tailed
with tail index α if its distribution is of the form

PZ(|Z| ≥ z) = z−αL(z), (2.7)

where L is a slowly varying function, i.e. L(tz)/L(z) → 1 as z → ∞ for any t > 0.

In this thesis, we consider positive random variables only, and we remove the absolute
value of equation (2.7). The term “heavy-tailed” can apply either to the random vari-
able or to its distribution. With this definition, not all the distributions decreasing more
slowly than the exponential correspond to heavy-tailed random variables. For example,
the Weibull distribution is not heavy-tailed. As compared to the exponential distribution
of equation (2.1) governed by the characteristic value λ, there is no such characteristic
value in the heavy-tail distribution of equation (2.7).
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The most popular paradigm of heavy-tailed distribution is the Pareto distribution.
While a “pure Pareto” distribution is proportional to z−α, we will use throughout the
manuscript a distribution of the form:

PZ(Z ≥ z) = kα(z + k)−α, z > 0, (2.8)

where k is a positive parameter, and α > 0. The corresponding normalized pdf is

pZ(z) =
αkα

(z + k)(α+1)
. (2.9)

This distribution has two parameters: k and α. The parameter k is a “location” parameter:
changing the value of this parameter roughly translates the distribution on the x-axis. For
a given value of α, this parameter controls the mean of the distribution, which reads
EZ = k

α−1 (if it is finite). Parameter α controls the maximal order moment which is finite:

α = sup
r
{r > 0 : E(Zr) <∞}, (2.10)

If α < 1, the mean is infinite, if 1 < α < 2, the mean is finite but the variance is infinite,
and if α > 2 the variance is finite. This parameter is also the exponent of the algebraic
decrease of the distribution, in the asymptotic regime of large values. Because it will be
useful for the estimation of α, we mention here that by a duality argument [Gonçalves and
Riedi, 2005], the power-law decay of the distribution (2.8) for large values transposes to a
power-law decay of the characteristic function χZ(s) = Ee−isZ at the origin; and the tail
exponent α correspondingly transposes according to:

α = sup
r
{r > 0 : 1 −ℜχZ(s) = O(sr) as s→ 0+}, (2.11)

where ℜ stands for the real part. This power-law decay of ℜχZ(s) reflects a scale-invarient
property, a concept that we now expose.

2.3 Scaling laws

Scaling laws can be related to several concepts such as self-similarity or multifractality.
Even though these notions are not equivalent, they share a common property: there is
no characteristic scale that prevails to describe the system. Instead, different scales of
the system are linked together by a specific scale-invariant property. Scaling laws are also
closely related to the concepts of fractal dimensions, but we do not use this angle in our
presentation.

For more than half a century now, scaling laws have been the object of an extremely
large number of research activities, from both the theory and application sides. Our short
presentation is then necessarily oversimplified and far from exhaustive. We focus only
on the concepts used in the rest of the manuscript. The interested reader can consult
the collection of chapters covering a large number of topics in [Abry et al., 2002b], and
more specialized references on mathematical aspects and on applications [Beran, 1994,
Mandelbrot, 1997,Park and Willinger, 2000,Embrechts and Maejima, 2002,Doukhan et al.,
2003].
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2.3.1 Self-similarity and long-range dependence

Self-similarity and fractional Brownian motion
Self-similarity is the simplest example of scaling laws, expressing that a process remains

statistically the same when rescaled by any factor c, provided that it is re-normalized by
cH :

Definition 2.3.1 (Self-similarity). A process (Y (t))t∈R is self-similar of index H is

{Y (t), t ∈ R} f.d.d.
= {cHY (t/c), t ∈ R},∀c > 0, (2.12)

where
f.d.d.
= stands for finite-dimension distribution equality.

Scale-invariant quantity H, called Hurst parameter, characterizes the link between
different scales of the process. This definition implies that for all finite moments of Y :
E|Y (t)|q = E|Y (1)|q|t|qH , clearly exhibiting the two major characteristics of a self-similar
process: its scale-free nature and its necessary non-stationarity.

A sub-class of the class of self-similar processes is that of stationary increments pro-
cesses:

Definition 2.3.2 (Stationary increments). A process Y has stationary increments if ∀∆ ∈
R, the law of the increment process:

X(∆) = {X(∆) = Y (t+ ∆) − Y (t), t ∈ R}, (2.13)

is independent of t, i.e.

Y (t+ ∆) − Y (t)
f.d.d.
= Y (∆) − Y (0). (2.14)

Self-similar processes of index H whose increments are stationary are usually written in
short H-sssi. Such processes necessarily have an index H in (0, 1) and an auto-covariance
structure of the form (if the second order moment is finite):

EY (t)Y (s) =
EY (1)2

2
(|t|2H + |s|2H − |t− s|2H), ∀(t, s) ∈ R. (2.15)

A corresponding equation exists for the auto-covariance function of the increment process.
The most prominent example of H-sssi process is the fractional Brownian motion [Man-

delbrot and Van Ness, 1968]:

Definition 2.3.3 (Fractional Brownian motion). The fractional Brownian motion of index
H is the only H-sssi processes which is Gaussian and centered.

In this definition, unicity arises from the fact that a Gaussian process is entirely deter-
mined by the auto-covariance structure, here of the form of equation (2.15). If H = 1/2,
the fBm is then an ordinary Brownian motion. The increment process of the fBm is called
fractional Gaussian noise (fGn). If H > 1/2, it is a particular case of process possessing the
less restrictive long-range-dependence property. Before defining long-range dependence, let
us mention that the Gaussian property is not necessary for the self-similar property of Def-
inition (2.3.1) to hold. Another important class of self-similar processes than fBm, is that
of α-stable Lévy motions. These Lévy motions are defined as processes with stationary in-
dependent increments of α-stable distribution (0<α<2) [Samorodnitsky and Taqqu, 1994].
Such processes can be shown to be H-sssi, with H = 1

α . Note however that in the case of
infinite variance processes, relation (2.15) does not hold.
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long-range dependence

Definition 2.3.4 (Long-range dependence). A second-order stationary process X is long-
range dependent if its correlation function statisfies:

EX(t)X(t+ τ) ∼
τ→∞

C|τ |−β, for 0 < β < 1, (2.16)

where C is a constant.

The long-range dependence is then a second-order asymptotic (for large scales) prop-
erty. The fGn is long-range dependent with parameter β = 2 − 2H, if H > 1/2. More
generally, for anyH-sssi process of finite variance such that H > 1/2, the increment process
X(∆) is long-range dependent. Strictly speaking, long-range dependence and self-similarity
designate two different notions, although closely related: the latter is associated to non-
stationary time series, such as fBms, while the former is related to stationary time series,
such as fGn. Moreover, whereas self-similarity implies long-range dependence, the oppo-
site does not hold (long-range dependence is only equivalent to asymptotic second order
self-similarity). As for the case of self-similarity, the Gaussian property is not necessary
for the long-range dependence property of equation (2.16) to hold, and any distribution is
acceptable as long as its second order moment is finite, so that the auto-covariance function
is well defined. For infinite variance processes that are H-sssi, one cannot deduce a long-
range dependence property of the increments (Lévy motion for example have independent
increments).

Equation (2.16) clearly exhibits the slow decrease of the auto-covariance function, which
is not integrable. This long-term correlation structure is in sharp contrast with the short-
term correlations of Markov chains.

2.3.2 Small scales: Hölder exponent and multifractality

The fBm/fGn have been massively used to model long-range-dependence effects in network
traffic. However, its uniform regularity at small scales limits its application in several
situations. It has led to the introduction of a new class of scaling laws that we describe
now: Hölder multifractality.

Hölder exponent and local regularity

Studied process Y is now defined on a bounded interval, that without loss of generality we
assume to be [0, 1]. At each scale n ∈ N, the interval [0, 1] is divided in 2n consecutive basic
intervals of size 2−n. Exploring the small-scales properties of the signal then corresponds
to letting n go to infinity.

Definition 2.3.5 (Hölder exponent). At scale n, the grain Hölder exponents are defined
for j = 0, · · · , 2n − 1 by:

hn(j) =
log sup {|Y (u) − Y (v)| : u, v ∈ [j2−n, (j + 1)2−n)}

log 2−n
, j = 1, · · · , kn. (2.17)

The Hölder exponent at time t is defined by

h(t) = lim inf
n→∞

hn(⌊2nt⌋) (2.18)
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This definition of the Hölder exponent based on the maximal oscillation of the process
within an interval of size 2−n coincides with the classical definition based on the degree
of local regularity in most cases. The Hölder exponent characterizes the local regularity
of the process at time t: values close to 0 denote almost discontinuous processes, whereas
values close to 1 are associated to almost differentiable processes. Other local exponents
exist, in particular based on the wavelet coefficients of the signal, that we do not consider
here (see [Riedi, 2003]).

For a fBm of Hurst parameter H, the Hölder exponent is constant: h(t) = H almost
surely. The fBm is then called monofractal. However, for more complex processes called
multifractal, the Hölder exponent erratically varies. There exists different possible defini-
tions of the singularity spectrum which characterize the variability of the Hölder exponent.
In many cases, the “multifractal formalism” is said to hold, meaning that all spectra coin-
cide. We describe here only the large-deviation spectrum.

large-deviation spectrum

Definition 2.3.6 (large-deviation spectrum). The large-deviation spectrum is defined as

f(α) = lim
ε→0

lim
n→∞

1

n
log2

[
#
{
j ∈ {0, · · · , 2n − 1} : hn(j) ∈ [α− ε, α+ ε)

}]
. (2.19)

Note that the existence of the limit on n is not trivial (see [Riedi, 2003] for conditions
guaranteeing its convergence, and see also similar arguments developed in Chapter 8).
With this definition, the large-deviation spectrum is −∞ for values of the Hölder expo-
nent never achieved, or between 0 and 1 in the domain of observable Hölder exponents.
Equation (2.19) describes the scale invariance of the statistical repartition of grain Hölder
exponents and permits an easy interpretation: roughly, when n goes to infinity, the pro-
portion of grain Hölder exponent values around α decreases as exp(n(f(α) − 1)), where
f(α) does not depend on n.

2.4 Wavelets and estimation

In previous sections, we introduced essential quantities to describe network traffic: tail
index α (usually of the flow-size distribution), Hurst parameter H, and the large-deviation
spectrum (usually of the aggregate traffic). We now present techniques to estimate these
parameters.

2.4.1 Discrete wavelet transform

We first briefly describe wavelets, because they constitute a convenient tool to identify
scale-invariance properties, and they are then used for estimation issues. More information
on wavelets and their numerous applications can be found in [Meyer, 1992, Daubechies,
1992,Mallat, 1999].

Performing a wavelet transforms of a signal X consists in computing the (Discrete)
Wavelet Transform coefficients:

dX(j, k) = 〈ψj,k, X〉, (2.20)
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where the collection

{ψj,k(t) = 2−j/2ψ0(2
−jt− k), k ∈ Z, j ∈ Z}

forms a basis of L2(R). Reference template ψ0 is termed mother-wavelet and is charac-
terized by its number of vanishing moments Nψ > 1, an integer such that

∫
tkψ0(t) dt =

0,∀k = 0, ..., Nψ − 1. The wavelet coefficient is the inner product of signal X with a
translated and dilated version of the mother-wavelet. Integer j is usually called the scale
and corresponds to the dilatation of the analysis wavelet at scale j. This dilation mecha-
nism intuitively justifies the appropriateness of the wavelet transform in the study of many
phenomena implying scale-invariance properties.

2.4.2 Estimation of the tail index

Estimation of the tail exponent α for heavy-tailed random variables is an intricate issue
that received considerable theoretical attention in the statistics literature [Seal, 1952,Hill,
1975,McCulloch, 1997,Crovella and Taqqu, 1999,Nolan, 2001,Gonçalves and Riedi, 2005,
Markovich, 2007,Clauset et al., 2009]: measuring the tail exponent of a heavy-tailed dis-
tribution amounts to evaluating, from observations, how fast the probability of rare events
decreases in equation (2.7). We present here only the method of [Gonçalves and Riedi,
2005] which is a robust wavelet-based method, used in this thesis for the first time in the
context of network traffic. An advantage of this estimator is that it is non-parametric, i.e.,
it does not assume a priori a specific form of the distribution.

The principle of this estimator is simple and relies on the wavelet identification of
the scale-invariance property associated with the power-law decrease of the characteristic
function ℜχZ(s) at the origin, observed in equation (2.11). Hence, computing the discrete
wavelet decomposition of ℜχZ , and retaining only the wavelet coefficients that lie at the
origin k = 0, yields the following multi-resolution quantity:

dχZ
(j, 0) = EΨ0

(
2jZ

)
≤ C2jα for j → −∞, (2.21)

where Ψ0(·) denotes the Fourier transform of analyzing wavelet ψ0(·). Now, let {z0, · · · , zn−1}
be a set of i.i.d. heavy-tailed random variables of tail index α, and replace the ensemble
average in equation (2.21) by its empirical estimator, the estimate α̂ simply results from a
linear regression of the form

log d̂(n)
χZ

(j, 0) = log n−1
n−1∑

i=o

Ψ(2jzi)

≈ α̂j + logC, as j → −∞. (2.22)

The estimator was proven to converge for all heavy-tailed distributions, with a reduced
variance of estimation in O(n−1) (where n is the sample size). It was moreover shown to
be robust for all α > 0, even for α close to 1+, when the apparent data mean instability is
responsible for the slow convergence of usual empirical estimates. We refer the interested
reader to [Gonçalves and Riedi, 2005] where robustness and effective use of this estimator
are thoroughly studied. Yet, let us mention the existence of a theoretical scale range
where the linear model of equation (2.22) holds, and which is helpful for practitioners to
adequately adjust their linear fitting over a correct scale range.
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2.4.3 Estimation of the Hurst parameter

Many methods exist to estimate the Hurst parameter from a sample of the process, such as
the Variance-Time method, the R/S method, or the Whittle method (see [Beran, 1994]).
However, all of them have been shown to be outperformed by the method that we present
here: the wavelet method [Abry et al., 1995]. This method turned out to be particularly
efficient at analyzing Internet time series in [Abry et al., 2000,Abry et al., 2002a] and has
then been massively used in this context.

The method is based on a discrete wavelet decomposition of signal X (see the previous
section). Then, if the process is H-sssi, the variance of the wavelet coefficients verifies:

E|dX(j, k)|2 = E|dX(0, 0)|22j(2H+1), (2.23)

and, provided that Nψ > H + 1/2, the sequence {dX(j, k), k = . . . ,−1, 0, 1, . . .} forms
a stationary and weakly correlated time series. These two central properties warrant
using the empirical mean S(j) = n−1

j

∑
k |dX(j, k)|2, (nj being the number of available

coefficients at scale 2j) to estimate the ensemble average E|dX(j, k)|2. Equation (2.23)
indicates that self-similarity transposes to a linear behavior of log2 S(j) vs. log2 2j = j
plots, often referred to as Logscale Diagrams (LD). A (weighted) linear regression of the
LD within a proper range of octaves j1, j2 is used to estimate H.

The wavelet estimator is endowed with a practical robustness that comes from its
extra degree of freedom Nψ. In the case of a Gaussian process, the wavelet estimator is
also able to provide error bars on the estimated value of the Hurst parameter. In practice,
the main difficulty lies in the correct choice of the regression range j1 ≤ j ≤ j2, which
basically should be in accordance with the scale range in which the correlation structure
of equation (2.16) holds. This will be discussed throughout the manuscript, in the light of
actual measurements.

2.4.4 Estimation of the large-deviation spectrum

Because multifractality corresponds to a scale-invariance property, wavelet-based estima-
tors can also be used to estimated the large-deviation spectrum. However, we did not use
such a tool in our work. Instead, we use a technique based on the direct computation of
the oscillations of equation (2.17). Then, from a practical viewpoint, estimation of the
large-deviation spectrum is a delicate issue. The main problem is to adapt quantity ε of
equation (2.19) to the scale n. In this work (estimations in Chapter 8), we use a recent
original idea of [Barral and Gonçalves, 2009], that we do not further develop here.



Chapter 3

Network traffic and Quality of

Service analysis: state of the art

Introduction

This chapter presents the state of the art in network traffic and QoS analysis, from both
the theoretical and experimental sides. We review existing answers to the general questions
of the introduction, and we point particular questions which remain open and for which
we will propose answers in the rest of this manuscript.

We first present the literature on the statistical analysis of aggregate network traffic
(Section 3.1). We focus here on the analysis of scaling laws, at both large and small scales.
Section 3.2 presents the state of the art on the analysis of Quality of Service in performance
terms, and more particularly on the impact of scaling laws and heavy-tails on QoS. Finally,
we expose in Section 3.3 the literature on the analysis of TCP-traffic properties at packet
scale and TCP throughput evaluation.

For the sake of clarity, the literature related to the flow size distribution’s tail index
estimation from sampled data has been voluntarily excluded from this state of the art, and
will be thoroughly exposed in the dedicated chapter (Chapter 6).

3.1 Statistical properties of aggregate network traffic

Aggregate network traffic characterization.

Statistical characterization of aggregate network traffic has been the object of a large
quantity of research activity. Many recent results can be found in books [Adler et al.,
1998, Park and Willinger, 2000, Doukhan et al., 2003] and survey papers [Abry et al.,
2002a,Erramilli et al., 2002]. Our presentation is focused on the analysis of scaling laws,
that we divide in two categories: large-scale and small-scale properties.

3.1.1 Large scales

Observation

Discovery of the self-similar nature of aggregate traffic of various nature.
A major breakthrough in network traffic analysis has been the discovery of its self-similar
property at large time scale [Leland et al., 1993,Paxson and Floyd, 1994] (see also extended
versions of these papers in [Leland et al., 1994, Paxson and Floyd, 1995]), invalidating

23
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Markov models that had been successfully used for phone networks traffic. In [Leland
et al., 1993, Leland et al., 1994], the authors study aggregate traffic traces acquired be-
tween 1989 and 1992 in a Local Area Network (LAN) at the Bellcore Morris Research
and Engineering center. Using Variance-Time, R/S and periodogram methods, they show
that the averaged bandwidth in consecutive time windows (i.e., the count process) exhibits
long-range dependence. In [Paxson and Floyd, 1994,Paxson and Floyd, 1995], the authors
show that traffic acquired in various Wide Area Networks (WANs) between 1989 and 1991
also exhibits long-range dependence. They use the Variance-Time and Whittle methods,
also applied to the averaged bandwidth. Using the same methods, the authors of [Beran
et al., 1995,Garrett and Willinger, 1994] show that Variable Bit Rate (VBR) traffic also
exhibit the same long-range dependence property. In all of these papers, the authors posit
the presence of some heavy-tailed distribution, mainly that of the flow size, as the origin
of the long-range dependence.

Taqqu’s relation between self-similarity and heavy-tails. Following up this
seminal discovery, the authors of [Willinger et al., 1995,Willinger et al., 1997] propose a
physical explanation for the presence of long-range dependence. They consider an ON/OFF
model and propose the relation:

H =
3 − αH

2
, (3.1)

where αH = min(αON, αOFF, 2), αON (respectively αOFF) being the tail index of the dis-
tribution of ON (respectively OFF) periods. This relation confirms that heavy-tailed
ON/OFF periods are able to generate long-range dependence in the aggregate-traffic count
process, and gives an analytical formula linking both properties. It also confirms the role
of infinite variance distributions in generating long-range dependence: if 1 < αON < 2,
then the ON period distribution has infinite variance, and 1/2 < H < 1, i.e., the traffic is
long-range dependent (and similarly for the OFF periods). In the following, we will often
call relation (3.1) “Taqqu’s relation”, in reference to the paper [Taqqu et al., 1997b] where
its proof appeared.

Validation of Taqqu’s relation. This relation have been validated in two differ-
ent situations. The first situation is that of [Crovella and Bestavros, 1996, Crovella and
Bestavros, 1997,Crovella et al., 1998], where the authors analyze World Wide Web (WWW)
requests’ traffic traces acquired in 1995. They find that the distribution of the observed ON
times is heavy-tailed with a tail parameter around 1.21, while the OFF-time distribution is
also heavy-tailed of index 1.5. Using Variance-Time, R/S and periodogram methods, they
estimate a Hurst parameter around 0.8, whereas relation (3.1) predicts value 0.89, but no
clear interpretation of this deviation is given. Interestingly, in these papers, the authors
find that the file-size distribution has a heavier tail than the ON-size distribution (a tail
parameter around 1.06). They explain this difference by slow-start effects, giving a higher
rate to larger flows, and thus decreasing the tail of the ON-times distribution. No com-
ment, however, is made on the fact that relation (3.1) assumes constant rates and might
not be valid when the tail parameters of the file sizes and ON-times distributions have
different values. Finally, the authors claim that the heavy-tailed distribution of the files
transfered in their traces simply results from the heavy-tailed distribution of the available
files in the web.
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Another type of validation of relation (3.1) is presented in [Park et al., 1996]. The
authors use simulator ns2 to generate ON/OFF-type traffic with different tail indices,
and estimate the corresponding Hurst parameter using Variance-Time and R/S methods.
Using heavy-tailed file sizes and exponential OFF times with the TCP protocol, they find
that the Hurst parameter decreases when the tail parameter increases, but a quite large
deviation is observed with respect to relation (3.1). In the reverse case (when the file sizes
are exponential and the OFF times heavy-tailed), they obtain a Hurst parameter no larger
than 0.7 with a tail parameter of 1.05. In these experiments, loss rates are not controlled
and vary with the tail parameters, which might have an impact on the scaling properties
of the traffic (a quite high loss rate of 4% is observed in the worst case where the tail
index is 1.05). Similarly, when a greedy UDP protocol is used, the Hurst parameter is no
larger than 0.7. They interpret this last observation by the fact that a greedy protocol
concentrates the transfer mass in time and reduces the dependence structure at large scales,
but no bound is given to explain at which scales the long-range dependence can be observed.
Apart from the partially controlled environment, another origin of the mismatch observed
in [Park et al., 1996,Crovella and Bestavros, 1996] might lie in the statistical tools used
for the estimation of the Hurst parameter. Indeed, Variance-Time and R/S methods have
been shown to suffer from many drawbacks, and the wavelet estimator proposed in [Abry
and Veitch, 1998] has been proven to be a much more robust tool. However, even with
this robust estimator, validation of relation (3.1) is not straightforward (see [Roughan and
Veitch, 2007] and reference therein), and the scale range for estimating the Hurst parameter
has to be chosen carefully. Only very recently, relation (3.1) has received a validation where
the Hurst parameter is estimated with the wavelet estimator, carefully used [Abry et al.,
2009]. In this work, the authors use M/G/∞ numerical simulations (with matlab), and
ON/OFF simulations (with ns2) and focus on the signal processing aspect. They show
that the regression scale range used in the wavelet estimation has to be chosen carefully
and give plausible explanation for the deviation commonly observed in the validation of
relation (3.1).

The role of TCP. Despite the meaningful contribution of [Willinger et al., 1995,Will-
inger et al., 1997] and the physical explanation that it offers to explain large-scale self-
similarity in aggregate network traffic, another possible origin of this property has been
debated over the last decade: the TCP protocol. In [Veres and Boda, 2000, Sikdar and
Vastola, 2001], based on ns2 simulations of long-lived TCP connections, the authors ar-
gue TCP control mechanisms are able to generate long-range dependence in the aggregate
traffic, independently of the ON/OFF structure of the sources. However, the scaling be-
havior is not observed at large time scales and corresponds to pseudo self-similarity, i.e.,
non-asymptotic self-similarity lying in some intermediate scale range. A plausible inter-
pretation of this pseudo self-similarity observed in long-lived TCP connections is given
in [Guo et al., 2001,Guo et al., 2002,Figueiredo et al., 2002]. The authors use a Markov
model to show that under very high loss rates (around 20%), the timeout mechanism can
generate heavy-tailed distributed OFF periods. The limited support of this OFF-period
distribution implies that resulting self-similarity is observable on a limited scale range only
and thus justifies its non-asymptotic character. Then, the same simulations as in [Veres
and Boda, 2000] are performed in [Figueiredo et al., 2005] over longer durations, and show
that the aggregate traffic is asymptotically not long-range dependent at large time scales.
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This way, they point again a classical pitfall in estimating long-range dependence: a bad
choice of scale range. Based on ns2 simulations, the authors of [MacIntyre et al., 2008]
show that this kind of pseudo scaling behavior holds independently of the TCP variant
used. To conclude on the link between TCP and self similarity, let us finally mention
paper [Veres et al., 2000]. In this paper, the authors do not debate about how TCP can
generate self-similarity, but they show that TCP can propagate self-similarity. They con-
sider the case where TCP traffic shares a fixed-capacity link with self-similar cross traffic.
Due to the control mechanisms, the sum of the TCP traffic and the cross traffic saturates
at the link capacity and the TCP traffic therefore inherits the self-similar property of the
cross traffic.

Questioning the evidence for self-similarity in backbone traffic. At the
approximate same time as this debate on the role of TCP in generating self-similarity, a few
papers appeared questioning the evidence for self-similarity in Internet backbones. In [Cao
et al., 2001b, Cao et al., 2001a], the authors use traffic traces from 6 different Internet
backbone monitors measuring 15 interfaces ranging from 100 Mbps to 622 Mbps, and show
that this traffic is well-modeled by a Poisson process (thus not long-range dependent).
They argue that the high statistical multiplexing on backbone links is responsible for the
Poisson behavior. This apparent contradiction is solved somehow in the same way as for
the role of TCP in generating self-similarity: this is a matter of time scales. In [Roughan
and Gottlieb, 2002], the authors indeed show that backbone traffic is long-range dependent
if investigated at sufficiently large scales (the traces used in [Cao et al., 2001b,Cao et al.,
2001a] are at most 5 minutes long, whereas in [Roughan and Gottlieb, 2002], one-year-long
traces are used). Similar findings are reported in [Karagiannis et al., 2004a,Karagiannis
et al., 2004b], and finally, a very recent comprehensive study of seven years’ worth of traces
(acquired on a trans-Pacific backbone link: the MAWI dataset) confirms that the long-
range dependence property is present even for highly multiplexed traffic [Borgnat et al.,
2009].

The literature related above shows that the conditions underlying the observation of
self-similarity in aggregate traffic, and more particularly the validity of Taqqu’s relation
(equation 3.1), have been largely debated in the last decade. However, no comprehensive
study performed on a real large-scale experimental facility have yet been realized, and some
points remain unclear:

- To what extend is Taqqu’s relation valid in real network conditions? What
are the scales involved? Does the protocol play a role? In which situation
(loss-free, lossy link, congestion)?

Self-similarity of flow arrivals. All the previously mentioned papers where focus-
ing on the long-range dependence of the averaged bandwidth of the packet traffic (i.e., the
count process) and its origin, and one might now wonder whether the flow-arrival process
possesses similar properties. This question is tackled in [Hohn et al., 2002b], where the au-
thors show, based on various publicly available traces, that the count process corresponding
to the flow-arrival process (i.e. the number of flows in consecutive time windows) indeed
exhibits self-similarity. The same authors conclude however in subsequent papers [Hohn
et al., 2002a,Hohn et al., 2003] that this long-range dependence in the flow-arrival process
is not responsible for the long-range dependence in the packet-arrival process. The method
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used in these papers consists in performing what they call semi-experiments : based on a
real Internet trace, some characteristics are artificially modified, while keeping others con-
stant. For example, the authors modify the flow-arrival process to make it Poisson, while
keeping the same packet-arrival processes within each flow. They observe the same large-
scale scaling behavior and conclude that the correlation structure of the flow-arrival process
is not responsible for the observed long-range dependence on the packet-level traffic. Such
trace-driven analysis, while essential to understand key properties of Internet traffic, often
leads to partial results intimately linked to the specific characteristic of the studied trace,
that might fall down when considering other traces with different characteristics. To under-
stand, in more generality, the different mechanisms susceptible to generate self-similarity ,
we now turn to the different models that have been proposed in the literature.

Models
A large number of models able to reproduce large-scale self-similarity have been proposed

and applied in various fields of science [Doukhan et al., 2003]. We present here only
those which have been applied to network-traffic analysis. We give a network-oriented
presentation of these models and their links, and we do not enter mathematical details of
their proofs and precise statement.

Basically, all of these models rely on the introduction of a heavy-tailed distribution.
We can distinguish three main categories of models whose parameters are closely related
to meaningful network traffic parameters. The first model is the fractal point processes
(FPP) model. It considers renewal point processes whose inter-arrival times are heavy-
tailed. Even though it is not the most used in network-traffic analysis, we present it first
because it is the simplest and it is useful to understand certain properties of the other
models. The second model considers renewal reward processes, whose inter-arrival times
are also heavy-tailed. The ON/OFF model is a special case of this model, in which the
reward strictly alternate between 1 and 0. The third class of models is the infinite source
Poisson models with heavy-tailed transmission times. This class of models include M/G/∞
models, Poisson shot-noise models and cluster point processes (with Poisson cluster arrivals
and heavy-tailed cluster sizes).

Fractal point processes. Fractal point process (FPP) are point processes whose
count process exhibit long-range dependence. There are many kinds of such processes
(see [Ryu and Lowen, 1996, Lowen and Teich, 2005]), but we introduce here only the
simplest and most closely related to network traffic: the fractal renewal process (FRP).
The FRP has been introduced in [Lowen and Teich, 1993]. It is a simple renewal process,
whose inter-arrivals are heavy-tailed with tail index α. If 1 < α < 2, then the count process
is long-range dependent, and its Hurst parameter satisfies equation (3.1), with αH = α.
In [Lowen and Teich, 1993], the authors consider a pure Pareto distribution with a lower
cutoff A (i.e. proportional to 1/xα for x > A), and show that the algebraic decrease of
the autocorrelation function is observed at time scales much larger than A. This result
allows us to make one important remark: generally speaking, the correlation structure of
the inter-arrival process is not the same as the correlation structure of the count process.
Indeed, here the inter-arrivals are independent (this is a renewal process), whereas the
count process exhibits long-range correlations. However, the sharp difference between the
correlation structures of both processes observed here is likely due to the heavy-tailed
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distributed inter-arrival times. Indeed, if inter-arrivals are exponentially distributed and
the count process exhibits long-range dependence, the process cannot be a renewal process
(otherwise it would be a Poisson process) and the correlation structure of the count process
must then be somehow present in the inter-arrival process. This remark is important when
considering the superimposition of a large number of independent FRPs, whose inter-arrival
distribution is maintained the same (with the same lower cutoff A). The resulting process
is no longer a renewal process. Intuitively, the inter-arrival time distribution tends toward
an exponential distribution (see also [Lowen and Teich, 2005]). However the correlation
structure of the count process is unchanged (it remains long-range dependent) at time
scales much larger than A, even if the number of points at such scales increase with the
number of superimposed processes. Despite its exponentially distributed inter-arrivals, the
superimposed process should not be confused with a Poisson process. This remark will be
important in understanding the difference between the renewal models and the M/G/∞
models. Before exposing these models, let us mention that applications of the FRP model
to network traffic (the point process then corresponds to the packet-arrival process) are
presented in [Ryu and Lowen, 1996], and in [Paxson and Floyd, 1995].

Renewal models. Renewal models are based on the same general setting firstly
introduces by Mandelbrot in 1969 [Mandelbrot, 1969] in an economical context. They
consider a renewal reward process, whose inter-renewal times are denoted by Uk and re-
wards are denoted by Wk. The sequences {Uk} and {Wk} are always assumed i.i.d. and
mutually independent. The process of interest W (t) is then set equal to Wk if t lies in the
kth renewal period. In a network context, one can think of the sequence {Uk} as the flow
inter-arrival times, and of Wk as rate of the kth flow. The process W (t) is then simply
the instantaneous rate of a source. In [Taqqu and Levy, 1986], the authors consider the
case where the inter-renewal times are heavy-tailed and the rewards have finite variance,
and tackle the characterization of the aggregate process from a large number of sources
at large time scales. They find that the limit process depends on which of the number
of sources or of the time scale tends first toward infinity: it is a Lévy motion if the time
scale goes to infinity first, whereas it is a fractional Brownian motion in the opposite case.
Several improvements of these results have been added since, mainly to include more gen-
eral assumptions on the reward distribution, and various limiting processes between Lévy
stable motion and fractional Brownian motion are found [Levy and Taqqu, 1987,Levy and
Taqqu, 2000] (see also [Doukhan et al., 2003]) in different limiting regimes. However, these
improvements have received low attention from the network community, and we prefer to
detail the results for a special case of the renewal models which is one of the most widely
used model in the network community: the ON/OFF model. This model has been pro-
posed in [Willinger et al., 1995,Willinger et al., 1997] to explain the self-similarity observed
in aggregate network traffic, and the proofs of the results presented here appeared in the
companion paper [Taqqu et al., 1997b]. The ON/OFF model is a renewal model where
the rewards are strictly alternating between 1 and 0. The reward 1 corresponds to an
ON period where a source is emitting with a constant rate (set to the normalized value
1), and the reward 0 corresponds to an OFF period (idle time or think time) where the
source is not emitting. The ON (respectively OFF) periods are heavy-tailed distributed
with tail index αON (respectively αOFF). Both distributions are assumed to have a finite
mean (i.e., αON, αOFF > 1), and at least one of these distributions is assumed to have an
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infinite variance (i.e., αON < 2 or αOFF < 2). We denote by W (n)(t) the instantaneous
rate of the source n at time t (W (n)(t) = 0 or 1), and define the cumulative input process
from N aggregated sources:

WN (Tt) =

∫ Tt

0

N∑

n=1

W (n)(u)du.

Then, the following limit theorem holds (where the limit can be in the finite dimension
distribution sense or the weak convergence sense, see [Taqqu et al., 1997b]):

lim
T→∞

lim
N→∞

WN (Tt) − EWN (Tt)

THN1/2
= σBH(t) (3.2)

and

lim
N→∞

lim
T→∞

WN (Tt) − EWN (Tt)

T 1/αHN1/αH
= cΛαH(t), (3.3)

where αH = min(αON, αOFF) < 2, H is as in relation (3.1), BH is a fractional Brownian
motion of Hurst parameter H, ΛαH is a Lévy stable motion and σ and c are constants.
If both the ON- and OFF-periods distributions have finite variance, then the limiting
process is an ordinary Brownian motion (thus not long-range dependent) independently of
the limits’ order. Finally, in [Taqqu et al., 1997b], the authors also show that the result
of equation (3.3) is valid for any finite number of sources, including one (removing the left
limit). The result of equation (3.2) has been the most used in the last decade for network-
traffic modeling. It states that the aggregate cumulative input process, properly rescaled,
behaves at large time scales like a fractional Brownian motion, whose Hurst parameter
satisfies relation (3.1). This implies two characteristics: its marginal is gaussian, and it is
self-similar. Equivalently, one can say that the aggregate traffic (the increment process of
the aggregate cumulative traffic) behaves like a fractional Gaussian noise: it is gaussian
and long-range dependent. The limits’ order in equation (3.2) is quite natural in network-
traffic analysis: the traffic of a large number of sources is first aggregated, and then we look
at this aggregate traffic at large time scales. However, when considering the reverse limit
order, a strongly different process is found: the Lévy motion of equation (3.3). It has stable
marginals (i.e., non-gaussian and heavy-tailed), and its increments are not correlated. This
surprising contrast between the two processes obtained in two limiting regimes raises several
questions: how to understand the two limiting regimes? What happens if both N and T
tend toward infinity together? In real systems with a finite number of sources and time
scale, when is the Gaussian approximation valid? To understand the limiting regimes, one
can think of the two following situations (see [Sarvotham et al., 2005]). If a small number
of sources emit with a high rate, the aggregate process will likely be constituted of bursts,
not stretched out in time. Since emission by each source is short, the aggregate traffic will
not be correlated, and since the bursts have high rates, large values of the aggregate traffic
are likely to happen so that the marginal will be heavy-tailed. This situation correspond
to the limiting regime of equation (3.3). The time limit is achieved first because of the high
rate of the sources (“time goes fast”). In the opposite situation, think of a large number
of sources with rather slow emission rates. Because of the large number of sources, the
aggregate process will likely be Gaussian, and because the emission rate is slow, there will
be long flows introducing correlations at large time scales. This situation corresponds to
the limiting regime of equation (3.2). The question “what happens if both N and T tend
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toward infinity together?” is answered in [Mikosch et al., 2002]. The authors consider
the number of sources as a function of the time scale T : N(T ) which tends to infinity
when T tends to infinity. They introduce a slow growth condition under which the limiting
regime of equation (3.3) is achieved and a fast growth condition under which the limiting
regime of equation (3.2) is achieved. This is further elaborated in [Gaigalas and Kaj, 2003]
where the authors show that a new process between Lévy motion and fBm is obtained
in the intermediate case between the slow growth and fast growth conditions. Finally,
for practical applications in real systems where the number of sources and time scale are
finite, we need to know which limit regime is valid. It is suggested in [Taqqu et al., 1997b]
that for a particular number of sources and time scale, to decide which regime is valid,
it is sufficient to look at the marginal distribution: if it is Gaussian, then the process is
fBm, and if it is stable then it is a Lévy motion. Conditions underlying the validity of
the Gaussian approximation are given in [Kilpi and Norros, 2002] and imply a sufficient
aggregation, both horizontal and vertical.

Infinite source Poisson models. In the simplest version of the infinite source Pois-
son models, flows arrive at the link as a Poisson process of rate λ, and transmit data at a
fixed rate of 1 during a heavy-tailed random time of tail index αON. It is also known as the
M/G/∞ model originally considered in [Cox, 1984]. Amazingly, in this model, the exact
same results as for the ON/OFF model (equations (3.2) and (3.3)) hold true (see [Doukhan
et al., 2003]) when replacing the number of sources N by the flow-arrival rate λ, and set-
ting αH = αON. It is shown in [Mikosch et al., 2002] that the same growth conditions also
distinguish the two limiting regimes. Before further commenting on the relationship be-
tween the ON/OFF and infinite source Poisson models, we mention some of the numerous
variants of the infinite source Poisson model, which all roughly rely on the same mecha-
nism of a Poissonian arrival of some heavy-tailed flows and mainly differ on the way data
is transmitted within a flow (see also a survey of infinite Poisson models in [Guerin et al.,
2003], and the references in [Mikosch et al., 2002]). In [Kurtz, 1996], the authors consider
an infinite source Poisson model with the general form of the “workload function” inside a
flow and establish (for the first time) the Gaussian limit result. A similar model is consid-
ered in [Maulik and Resnick, 2003b] (where the “workload function” is called “transmission
schedule”) and the other limiting result is shown (the Lévy motion). In [Barakat et al.,
2002], the Poisson shot-noise model is developed. This model is basically very similar to
the two models previously mentioned. The “workload function” or “transmission schedule”
is now called “shot”, but “shots” still arrive according to a Poisson process. An application
of this model is proposed in [Nguyen et al., 2004] where the shot shape is representative of
the AIMD mechanism with Poisson losses. Even though it does not reproduce long-range
dependence, we also mention the model proposed in [Ben Azzouna et al., 2004], where the
M/G/∞ setting with Weibullian service times is used to model backbone traffic. Since the
Weibullian distribution has finite variance, no long-range dependence property is found.
In [D’Auria and Resnick, 2006], the authors consider a model where the rate within a
flow is constant, but the rate of a flow is a random variable. The flow sizes are drawn
at random according to a heavy-tailed distribution of tail index αSI; and the rates are
drawn at random independently of the sizes, according to any finite mean distribution.
Flow duration (flow size divided by flow rate) is then heavy-tailed with αON = αSI and
they find a long-range correlation structure of Hurst parameter H as in relation (3.1) with
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αH = αSI = αON. The last model we mention in this infinite Poisson model category is the
Cluster Point Processes (CPP) model proposed in [Hohn et al., 2003]. In this model, the
discrete approach of point processes is used. Flows are “clusters” of points and the flow
arrival time is the time of the first packet of the cluster. The flow-arrival process is Poisson.
The number of points in the cluster (the flow size) is heavy-tailed of tail index αSI, and
points (packets) within a cluster (flows) follow a renewal process with some inter-renewal
distribution determining the mean flow rate. Based on results on point processes (see [Cox
and Isham, 1980,Daley and Vere-Jones, 2003]), the authors calculate the aggregate traffic’s
spectrum and again find long-range dependence of Hurst parameter H as in relation (3.1)
where αH = αSI. As in the model of [D’Auria and Resnick, 2006], the flow duration is
this model is heavy-tailed of tail index αON = αSI. As already observed in [Crovella and
Bestavros, 1997], this might not hold true in real Internet traffic. For example, slow-start
effects might imply higher rates for larger flows. In this case, flow rate is correlated to flow
size and the tail indices of the flow-duration and the flow-size distributions are different.
In [Hohn et al., 2003], the authors suggest as future work to introduce multi-class CPP,
for example with a class for small flows (mice) having small rates, and another class for
large flows (elephants) having high rates. Such a work, however, has not been done and
the following question remains open:

- What happens if flow-duration and flow-size distributions have different tail in-
dices? Which of these tail indices, if any, governs the long-range dependence
of the aggregate traffic?

Relationships and differences between the ON/OFF model and the infinite
source Poisson model. We have seen the ON/OFF and infinite source Poisson models
yield very similar results, as far as the large-scale correlation structure is concerned (we
limit this discussion to the Gaussian limiting regime of equation (3.2)). In both models, flow
duration is heavy-tailed of index αON. However, the ON/OFF model is the only one capable
of including some OFF times, and thus capable of reproducing long-range dependence that
they can generate via their heavy-tailed distribution of index αOFF. Actually, the basic
difference between the ON/OFF model and the infinite source Poisson model lies in the
flow-arrival process. While it is Poisson in the infinite source Poisson model, it is more
complex in the ON/OFF case. Indeed, the flow inter-arrival time is the sum of the ON
and OFF periods. Its distribution is then heavy-tailed with tail index min(αON, αOFF).
The flow-arrival process then enters the framework of FRPs, and we have seen that the
superimposition of a large number of such processes have almost exponential inter-arrival
times, but it is not a renewal process. Results regarding the FRP show that the count
process associated to the flow arrival is long-range dependent with Hurst parameter as
in relation 3.1, where αH = min(αON, αOFF). In the case of the ON/OFF model, there
can be two origins for the long-range dependence of the aggregate traffic: the correlation
structure of the flow-arrival process, and the heavy-tailed ON periods. The results of the
ON/OFF model show that whichever yields the larger correlations (i.e., the larger Hurst
exponent) dominates. If αON < αOFF, both origins yield the same Hurst parameter for the
aggregate traffic, governed by αH = αON. If αOFF < αON, the correlation structure of the
flow-arrival process prevails at imposing long-range dependence with a Hurst parameter
governed by αH = αOFF In this last case, the heavy-tailedness of the ON times would yield a
smaller Hurst parameter, and this potential origin then has no effect (taking exponentially



32CHAPTER 3. NETWORK TRAFFIC AND QOS ANALYSIS: STATE OF THE ART

distributed ON-times would not change the Hurst parameter of the aggregate traffic).
In the infinite source Poisson model, the flow-arrival process is uncorrelated, so that the
effect of the heavy-tailed ON periods always dominates. Going back to papers [Hohn et al.,
2002a,Hohn et al., 2003], where the authors, using semi-experiments, state that the long-
range dependence of the flow-arrival process does not impact the long-range dependence
of the aggregate traffic, we see that this conclusion was trace-driven, and not fully general:
it is likely that in the trace studied in these papers, the long-range dependence of the
flow-arrival process was not stronger than the one induced by the heavy-tailedness of the
ON periods. Let us finally mention that the infinite source Poisson model can be seen as
the limit of the ON/OFF model in some sense that we explain now. Consider the case
where instead of applying the rescaling of equation (3.2), when adding sources (i.e., when
increasing N), we increase the mean OFF period µOFF so that the load remains constant.
In this case, two consecutive flows of the same source are more and more separated in
time when N increases. In the limit where N goes to infinity, two consecutive flows are
separated by an infinite time, so that each source can be considered to emit only one flow.
Since the sources are independent, the flow-arrival process is then Poisson and we recover
the infinite source Poisson model (c.f. Proposition 2.1.3).

Other models. To conclude this section on models able to reproduce long-range
dependence, we mention a few other models that are somewhat less related to our work.
Several authors have proposed Markovian models able to reproduce pseudo self-similarity
(i.e., self-similarity in a finite scale range) [Robert and Le Boudec, 1997, Misra et al.,
1998, Horváth and Telek, 2002, Khayari et al., 2004, Gong et al., 2005]. The advantage
of these models is that they permit the use of well-known queueing-theory results in the
Markovian framework and they can be of great interest in some practical applications.
However, they hide the fundamental origin of asymptotic self-similarity: heavy-tails and
more particularly infinite variance distributions (Markovian models are intimately linked
to exponential distributions). We mention the existence of models based on dynamical
systems [Erramilli et al., 2002]. These models use chaotic maps to reproduce a heavy-
tailed ON time. Finally, even if it is not related to the rest, we mention the model proposed
in [Rodolakis and Jacquet, 2005], where the authors show that long-lived TCP flows with
random RTT drawn according to a heavy-tailed distribution generate long-range-dependent
aggregate traffic. However, such a heavy-tailed distribution of the RTT has not been
observed in the Internet.

3.1.2 Small scales

While there has been a large amount of work done to characterize large-scale properties of
aggregate network traffic (see previous section), much less research work has been dedicated
to the study of the small-scale properties of the traffic, which we briefly expose now. We
first present two papers exploring the log diagram’s behavior for a fixed order moment
(q = 2) and focusing on the effect of pacing. We articulate the rest of the literature on
the question: is network traffic multifractal at small scales? We first present papers giving
a positive answer and the models proposed to explain this answer, and then we turn to
papers giving a negative answer. We finally expose two mathematical models suggesting
that TCP mechanisms can generate multifractality. An exhaustive survey of multifractal
properties observed in network traffic can be found in [Veitch et al., 2005].
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Pacing and burstiness at small scales
In [Jiang and Dovrolis, 2004b, Jiang and Dovrolis, 2005], the authors explore the log

diagram of network traffic at small time scales, namely sub-RTT scales. They fix the order
moment (q = 2) and thus do not tackle the question of the potential multifractality of
the traffic. They focus on the effect of pacing and find that, as compared to TCP shaped
traffic (where bursts are sent at the beginning of the RTT), paced traffic have much smaller
burstiness at small scales. They characterize the burstiness by the absolute position of the
log-diagram at a particular scale below RTT. Since they look at second-order statistics,
their definition of burstiness is related to the variance of the process. They find that pacing
has no effect on burstiness beyond the RTT scale. These studies clearly show that the small
time scales behavior of the traffic mainly depends on the way packets are emitted within a
flow (see also [Barakat et al., 2002]), and not on the flow-arrival structure, or the flow-size
distribution as it was the case for large-scale properties.

Is aggregate network traffic multifractal at small scales?

The case for. The first evidence for multifractality at small scales in network traffic
is reported is [Riedi and Lévy Véhel, 1997]. The authors study traffic captured at the
gateway of LANs at Berkeley and CNET labs, and show that both the incoming traffic
(WAN to LAN) and the outgoing traffic (LAN to WAN) are consistent with the multi-
fractal property, even though their multifractal spectrum can be very different. Several
processes are considered and yield the same conclusion: the “bytes per packet” process,
the “time per packet” process and most importantly maybe the classical “bytes per time”
process (i.e., the count process of the aggregate traffic). Later, [Feldmann et al., 1998b]
analyze WAN traffic from various locations between 1990 and 1997. The authors find
that multifractality is not present in early traces, whereas this characteristic appears more
pronounced in their last traces. They analyze the aggregate traffic averaged in time win-
dows of size ∆ = 10 ms and find evidence for multifractality between 10 ms and roughly
500 ms. The same authors analyze in [Feldmann et al., 1998a,Feldmann et al., 1999a] (see
also [Feldmann et al., 1999b]) WAN traffic from an ISP and from a corporate environment,
acquired in 1997. In these traces, they find good agreement with a multifractal behavior
on the aggregate traffic between 1 ms and 100 ms. To reproduce this small-scale multi-
fractal behavior, several cascade models have been proposed [Riedi et al., 1999,Feldmann
et al., 1998a,Feldmann et al., 1999b] (multiplicative cascades were at that time the only
type of model known to generate controlled multifractal behavior). However, no direct
relation between these models and meaningful network characteristics are given. In [Riedi
et al., 1999], it is alluded that multiplicative effects might come from non-linear effect
introduced by queueing behaviors. In [Feldmann et al., 1998a,Feldmann et al., 1999b], the
authors suggest that the cascading behavior should be sought in the packet-transmission
characteristics within a flow, but no more explanation is given. This is fully coherent with
the theoretical work of [Maulik and Resnick, 2003b,Maulik and Resnick, 2003a] where the
authors show that in an infinite source Poisson model, under fairly general conditions, the
multifractal spectrum of the aggregate traffic is the same as the multifractal spectrum of
the small-scale transmission process within one flow. Notwithstanding these meaningful
contributions, they leave open the question of the fundamental origin of the multifractal
property observed. A completely different interpretation of the multifractal property is
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proposed in [Sarvotham et al., 2001, Sarvotham et al., 2005]. The authors analyze traffic
traces acquired at University of Auckland, and propose to decompose the traffic in two
components: the alpha traffic, constituted of a small number of sources emitting with a
high rate; and the beta traffic, constituted of the rest (i.e., a large number of sources emit-
ting with moderate rates). As mentioned earlier, the alpha traffic is likely similar to the
limit regime of equation (3.3) (Lévy process) whereas the beta traffic is likely similar to the
limit regime of equation (3.2) (fBm). The authors of [Sarvotham et al., 2001, Sarvotham
et al., 2005] then attribute the multifractal property of the total traffic to the alpha traffic
part, since the Lévy process is known for its multifractal behavior [Jaffard, 1999]. However,
this interpretation might again be trace-driven. Indeed, University of Auckland is in New
Zealand, and traffic captured here is likely to have a bimodal distribution of the RTTs
(this is actually shown in [Wang et al., 2002]): small RTTs for national communications
and large RTTs for international communications. Small RTT connections thus constitute
the alpha traffic (they achieve high rates), whereas large RTT connections constitute the
beta traffic. Such a sharp distinction between alpha and beta traffic might not be possible
in traffic from a less isolated country.

The case against. In parallel to this quest for the origin of the multifractal property,
several articles even question its manifestation in real Internet traces. In [Taqqu et al.,
1997a], the authors study the same traffic trace as in [Leland et al., 1993], which originally
led to the discovery of self-similarity. They find a monofractal behavior for time scales
larger that 100 ms, and they conclude that no multifractal model is necessary to describe
the traffic. Based on Internet backbone traces, [Zhang et al., 2003,Ribeiro et al., 2005] also
conclude that the traffic is consistent with monofractal models. The time scales studied
in these papers is 1–100 ms, whereas RTTs experienced by the different connections are in
the range 10 ms–1 s. To further precise the monofractal behavior observed, the authors
analyze the small-scale regularity exponent and find that “high capacity” flows are able
to create regularity exponents larger than 0.5 (i.e., correlations at small scales), whereas
traces without this type of flows have a regularity exponent of 0.5. The same conclusion is
found in [Jiang and Dovrolis, 2004a]. Finally, in [Veitch et al., 2005], the authors review
evidence of multifractality proposed in the past, and show that statistically poor estimation
procedures have led to the wrong conclusion that the traffic is multifractal. Instead, they
posit the use of the CPP model proposed in [Hohn et al., 2003], that predicts a monofractal
behavior at small scales.

Two models of TCP generating multifractality. Outside of this debate about
the potential presence of the multifractal property in real Internet traces, two articles
propose TCP models that are consistent with usual multifractal properties [Barral and
Lévy Véhel, 2004,Baccelli and Hong, 2002]. Differently to prior models mentioned above,
these two models are based on a large number of long-lived TCP connections (rather than
on aggregate-level ON/OFF structure). In [Barral and Lévy Véhel, 2004], the authors
obtain a theoretical formula of the multifractal spectrum of the aggregate traffic with a
fluid model of each TCP source. However, for tractability purposes, they assume random
exponential losses and they have to consider an infinite number of sources, which introduce
variability unrelated to TCP control mechanisms. In [Baccelli and Hong, 2002], the authors
find multifractality in the aggregate traffic arising from a fluid AIMD model of many TCP
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connections with congestion losses. However, their results are numerical and do not give
analytical expressions relating the multifractal spectrum of the aggregate traffic to TCP
mechanisms in various experimental conditions.

The debate that we briefly related above shows that the statistical properties of aggre-
gate network traffic at small scales remain unclear: some authors observed multifractality
at small scales in the aggregate traffic and attribute this property to the source traffic
characteristics within a TCP flow. Some others question the evidence for multifractality.
Some others finally propose models showing that the aggregation of a large number of
TCP sources might lead to multifractality in the aggregate traffic. The question of the po-
tential relation between TCP mechanisms and small scale multifractality of the aggregate
traffic still remains unsatisfactorily answered. It seems however intimately related to the
statistical properties of the TCP traffic at packet level that we will review in Section 3.3,
but we first turn to the literature discussing potential impact of the statistical properties
mentioned above (scaling laws and heavy-tails) on QoS.

3.2 Analysis of the Quality of Service

Impact of the traffic characteristics on QoS (in performance terms).

While many parameters can impact QoS (protocols, network topology, infrastructure, spe-
cific QoS mechanisms, etc.), we focus here only on the impact of the statistical properties
mentioned above: scaling laws and heavy tails. We restrict ourselves to the single-buffer
problem, and also do not relate considerable amount of work on scheduling policies. We
divide the papers in two categories, based on the approach they use: open-loop analysis or
closed-loop analysis.

3.2.1 Open-loop analysis (UDP): the impact of scaling laws

Since the discovery of long-range dependence and suspected multifractality in aggregate
network traffic, a large amount of work has appeared on the evaluation of the potential
consequences of these properties on QoS. The first category of papers that we present now
use an open-loop method: they consider a long-range dependent (or multifractal) process
feeding a buffer (most frequently of infinite size), and do not account for feedback. In this
sense, they are more representative of the UDP case, even if some of these papers use real
traces including TCP traffic. Consequently, these approaches consider only buffer QoS
metrics, and they mainly concentrate on the delay or buffer occupancy.

Many of the results presented here can be found in the survey paper [Erramilli et al.,
2002] and in the book [Park and Willinger, 2000]. As it was the case for statistical charac-
terization of the traffic, much more research work have focused on the effect of long-range
dependence on queueing behavior and fewer papers have considered the effect of small-scale
scaling behavior and multifractality.

The impact of long-range dependence

Evaluation of the mean delay for infinite-size buffers. As a first QoS metric,
a few papers have focused on the mean delay. In [Erramilli et al., 1996], the authors use
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a real Ethernet trace exhibiting long-range dependence. To compare with the case where
traffic is not long-range dependent, they use a shuffled version of the trace. These traces
are used as the input of an infinite-size buffer, whose capacity can vary to achieve various
utilization (load). They focus on the curve of the mean delay versus load, and conclude
that beyond some knee, the mean delay increases much faster with the load for long-range-
dependent input traffic. However, an interesting remark concludes their paper: this effect
might not be observed with finite-size buffers, because the range of relevant time scales
would then be limited. The same result (the mean delay increases faster with the load for
long-range-dependent input traffic) is obtain in [Fiorini et al., 1997] based on a queueing-
theory approach (the authors use a superposition of exponential distributions to emulate
a heavy-tailed distribution: the TPT distribution proposed in [Greiner et al., 1999]).

Overflow probability for infinite-size buffers. The QoS metric that has been
studied the most over the decade is probably the overflow probability : the probability that
the buffer content exceeds a certain threshold, generally called B (i.e., roughly the buffer-
content distribution). The problem of determining this overflow probability for infinite-size
buffers fed by long-range-dependent traffic has indeed generated a very large amount of
theoretical works, which basically differ in the form of the input process (fBm, ON/OFF
process, M/G/∞ process), and in the limiting regime that they consider (as for the models
presented in Section 3.1.1, the limits order plays an important role, as well as the rescaling
procedure). Most of them consider asymptotically large values of the threshold B (i.e., the
tail of the buffer-content distribution). In the seminal paper [Norros, 1994], the authors
consider an infinite-size buffer fed by a fBm of Hurst parameter H. They show that the
buffer-content marginal distribution Q(B) is asymptotically of Weibull type:

logQ(B) ∼
B→∞

KB2(1−H), (3.4)

where K is a slowly varying pre-factor. This Weibullian decrease implies a higher overflow
probability than the case of a Markovian input process, where an exponential decrease is
observed. It is likely to have stimulated the research activity on long-range dependence
in network traffic, because it clearly predicts that long-range dependence can be a source
of QoS degradation, at least as far as fBm is a good model for the input traffic and the
buffer is large enough for the result to hold. Note that if H = 1/2, we retrieve the expo-
nential decrease because the input process is no longer long-range dependent. Refinements
of equation (3.4) are proposed in [Massoulié and Simonian, 1999, Narayan, 1998], where
explicit formulae are given for pre-factor K. Following up this major contribution, many
authors considered the case of an infinite buffer fed by an ON/OFF process. They consider
N ON/OFF sources, with mean OFF time µOFF, feeding a buffer of capacity C. They are
interested in the limit when N tends to infinity. To keep the load constant, some param-
eters have to be rescaled when N increases (note that all the studies consider a load less
than 1 for stability). In [Simonian and Veitch, 1997], the authors rescale the capacity only:
C = Nc, where c is a constant. They find a Weibullian decrease of the buffer-content dis-
tribution (as in [Norros, 1994]) if the ON and/or OFF period is heavy-tailed. In [Brichet
et al., 1996], the capacity is kept constant, but µOFF is rescaled so as to keep the load
constant (recall that this scaling corresponds to the limit to the M/G/∞ model). The
decrease of the buffer-content distribution in this case is heavy-tailed if the ON periods
are heavy-tailed (see also [Jelenković and Lazar, 1999] where similar results are found and
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extended). The OFF-period distribution does not matter in this case since µOFF goes
to infinity. A third rescaling scheme is used in [Mandjes and Borst, 2000, Mandjes and
Boots, 2001], where both the capacity and the threshold are rescaled: C = Nc,B = Nb,
where b and c are constants. For large b values, the authors find that, independently of the
OFF-times distribution, the buffer-content distribution decay is heavy-tailed if the ON-
time distribution is heavy-tailed whereas it is exponential if the ON-time distribution is
not heavy-tailed. An interesting advantage of this third rescaling scheme is that it allows
the authors to derive results in the case of small values of b (i.e., small overflow thresh-
old). They find that in this case, the overflow probability depends on the ON and OFF
distribution only through their mean [Mandjes and Kim, 2001,Mandjes and Boots, 2001].
This insensitivity result confirms previous findings of [Ryu and Elwalid, 1996,Neidhardt
and Wang, 1998]: for small thresholds, long-term correlations do not impact the overflow
probability, even if the buffer has an infinite size. These findings were based on the approx-
imation of the critical time scale: the most likely amount of time it takes for the queue to
fill up beyond the given threshold. While the critical time scale approximation is a power-
ful theoretical tool, it is impractical because its computation requires statistics (marginal
distribution) of the traffic at all time scales. Computing it is then easy for parsimonious
models like fBm, but becomes much more difficult for more general types of traffic or if
one want to compute it directly from measurement. To overcome this drawbacks, some
further approximations are proposed in [Ribeiro et al., 2006b].

Finite-size buffers. As remarked in [Heyman and Lakshman, 1996], it is not equiv-
alent to study an infinite-size buffer, and look at the probability that the buffer content
exceed a threshold B; or to study a finite buffer of size B and look at the drop probability.
Indeed, dropped packets reduce the number of packets that get into the buffer and thus
shorten the busy periods. The overflow probability in the infinity buffer is then an upper
bound of the loss probability in the finite buffer. However, very few papers have consid-
ered the case of a finite-size buffer. In [Heyman and Lakshman, 1996], the authors propose
a discrete model based on cells for variable bitrate (VBR) traffic. They use the critical
time-scale approximation to show again that long-term correlations do not impact the loss
probability. They conclude that Markov models are sufficient to study the loss probability
for small buffers. In [Grossglauser and Bolot, 1999], the authors introduce a non-tractable
model and use numerical simulations to come to the same conclusion. Finally, theoretical
large deviation results for the case of finite-size buffers are obtained in [Jelenković and
Momčilović, 2003], but their validity holds for very large buffers only.

The gain of multiplexing and the importance of marginal distributions. Al-
though it is not related to the question of the impact of long-range dependence on QoS,
we mention here two important remarks recurrently appearing in the papers mentioned
above. Firstly, and independently of the presence of long-range dependence, there is a gain
of multiplexing. Indeed, for the same mean aggregate traffic, the more sources there are,
the smaller the variance (at each scale). This effect can be seen for example in a reduction
of the pre-factor of equation (3.4), or equivalently, on the absolute position of the log dia-
gram (lower for a smaller variance, independently of its slope). This effect is mentioned for
example in [Grossglauser and Bolot, 1999,Heyman and Lakshman, 1996,Erramilli et al.,
2002], but many other papers make the same remark. The second remark is related to
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the first one: marginal distributions are very important for the evaluation of QoS. This is
very clear when considering the critical time-scale approximation, which depends on the
marginal distributions of the input traffic at each time scale, and in [Ribeiro et al., 2006b],
where the approximations of the critical time scale proposed depend on the distributions
at a subset of time scales. This second remark is clearly related to the first one in the case
of Gaussian distributions, where the variance is one of the two parameters of the distribu-
tion. However, the authors of [Grossglauser and Bolot, 1999] stress that the mean of the
distribution is also an extremely important parameter, that should be properly taken into
account.

The impact of small-scale scaling behavior
We now turn to the few papers discussing the impact of small-scale statistical properties

of the aggregate traffic on QoS. The same trace-driven method as in [Erramilli et al., 1996]
is used in [Erramilli et al., 2000], where the authors extend the study to the effect of small-
scale multifractality (to suppress multifractality from the real trace, the authors uniformly
distribute packets in a small time windows of 512 ms). They find that, while long-range
dependence has a strong impact at high loads, like in the previous paper [Erramilli et al.,
1996], for small loads it is the multifractal property that is likely to degrade the performance
(mean and maximal delay here). Finally, in the previously mentioned papers [Jiang and
Dovrolis, 2004b,Jiang and Dovrolis, 2005], the authors also study the impact of small-scale
properties on the delay, focusing on the effect of pacing. They consider the log-diagram
for the second-order moment only (i.e., the variance) and are not interested in potential
multifractality issues. They show that pacing reduces the variance of the aggregate traffic at
sub-RTT scales. Using this aggregate traffic as the input of an infinite-size buffer of variable
capacity, they find that paced traffic generates smaller mean delay for low utilization (below
70%) only. They suggest that for higher utilization, long-range dependence effects would
predominate. These results are coherent with the results presented above, in particular
those for small-threshold overflow probability and finite buffers: for small loads, the buffer
content is globally small, so that the critical time scale is small and the long-term correlation
has no impact, whereas higher loads naturally increase the buffer utilization and the critical
time scales so that long-range dependence becomes an important factor.

3.2.2 Closed-loop analysis (TCP): the impact of heavy-tailed distribu-
tions

The papers presented in the previous section use an open-loop method to evaluate buffer
QoS metrics, such as delay. While considerable insights are gained from these studies, they
are more suitable to model UDP traffic, and the fact that they do not consider feedback
make their direct use difficult for TCP traffic [Arvidsson and Karlsson, 1999, Joo et al.,
2001]. For TCP traffic, the approach is fundamentally different because the QoS observed
at the buffer (loss) directly impacts the emission process by the sources and then the
aggregate traffic. It is no longer possible to assume a priori specific properties of the
aggregate traffic and study separately the impact of these properties on QoS, as it was the
case for UDP traffic. The question of interest is then to characterize QoS given the flow-level
properties of the sources (i.e., flow-size distribution and OFF-time distribution). In the
case of TCP, the QoS metrics of interest are at the buffer level (delay, loss, throughput) but
also at the receiver (completion time). While many parameters, in particular the protocol,
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can impact QoS [Dukkipati and McKeown, 2006], we focus our presentation on the impact
of a long-tailed flow-size distribution on QoS.

An empirical study of the impact of α on QoS. A first and seminal empirical
study of the effect of heavy-tailed flow-size distribution on QoS appeared in [Park et al.,
1997]. The authors use ns simulations with 32 ON/OFF sources where the flow-size dis-
tribution is a pure Pareto distribution of fixed mean and of varying tail index α; and the
OFF-times distribution is exponential. They find that a small value of α systematically
degrades the QoS metrics: loss, mean delay and throughput, but that this effect is smaller
for very small values of the buffer size (3 packets). These results however might be affected
by specific deterministic effects of the simulator at small time scales, especially for small
buffer sizes. Moreover, the pure Pareto distribution only has two parameters: α and the
lower cutoff k (fixing the mean for a specified value of α). Thus, varying the α parameter
for a fixed mean not only changes the tail of the distribution but also its body, and does
not permit to assess the isolated effect of the tail of the distribution on QoS parameters.

Insensitivity results. Apart from the paper mentioned above, the largest part of
the literature on the impact of heavy-tailed distributions on QoS has concluded to insen-
sitivity, i.e., there is no impact of heavy-tailed distributions for TCP traffic [Arvidsson
and Karlsson, 1999, Heyman et al., 1997, Massoulié and Roberts, 2000, Ben Fredj et al.,
2001,Roberts, 2004]. Basically, the argument supporting this result is that QoS metrics
depend only on the distribution of active flows at an instant, which depends only on the
mean of the ON-times distribution as long as the flow-arrival process is Poisson. More
precisely, the authors of [Ben Fredj et al., 2001,Roberts, 2004] show that if the flow arrival
is Poisson, then the first-order QoS statistics depend only on the mean of the flow-size
distribution. The QoS metrics considered are the mean throughput and the completion
time (which is shown to be proportional to flow size). Without questioning the Poisson
flow-arrival assumption (which is certainly justified at small time scales for a large number
of sources, but see also [Schroeder et al., 2006, Prasad and Dovrolis, 2008]), their results
also use another simplification: equal bandwidth sharing. They assume that bandwidth is
equally shared between the active connections and the authors of [Ben Fredj et al., 2001]
note that their result might not hold if “the rate limit is generally different for every flow
and can vary during the transfer”. These results might then fall down if transient behaviors
(like for example slow start) predominate, or if different TCP variants coexist.

Fixed-point approaches. Due to the closed-loop characteristic introduced by TCP’s
feedback mechanisms, fixed point approaches have naturally been proposed. The first one
appeared in [Casetti and Meo, 2000]. The authors model separately the sources’ behavior
and the network. The behavior of a source is modeled by a complex Markov chain with
two “big states”, ON and OFF. Within the big state ON, they introduce many states rep-
resenting the evolution of the source’s congestion window. The parameter of this Markov
chain is the loss probability. To model the network, they use classical queueing models,
whose output is the loss probability. They use a fixed-point approach to determine the
loss probability in the operating point. Extensions of this method to include specific mech-
anisms of TCP Vegas are considered in [Wierman et al., 2003b, Wierman et al., 2003a].
However, this fundamentally Markovian approach is limited to exponential ON and OFF
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distributions. To overcome this limitation, a similar approach is used in [Garetto and
Towsley, 2003, Garetto and Towsley, 2008] where the authors use a superposition of ex-
ponential distributions to emulate a heavy-tailed distribution, but no evaluation of the
impact of the tail parameter is proposed. Moreover, these models based on Markov chains
with many states to account for the numerous specificities of TCP have a lot of parame-
ters (especially if several such chains have to be superposed to account for a heavy-tailed
distribution). They allow for numerical results only, and extracting qualitative behavior is
difficult. Their large complexity also reduces their trustability from the viewpoint of the
practically-interested community, which often prefers experimental evaluations.

In the case of the UDP protocol, most of the work on the impact of scaling laws/heavy-
tails have been done in the framework of infinite queues and give asymptotical results either
for very small or very large buffers. On the other side, in the case of the TCP protocol,
proposed models have such a complexity that it is difficult to extract qualitative tendencies.
Finally, in both cases, the following question have received partial answers only, which need
comprehensive empirical studies to be completed:

- In realistic conditions implying finite buffer sizes, what is the impact of heavy-
tailed flow-size distributions on QoS (in performance terms)? More pre-
cisely, on which QoS metric?

3.3 Source-traffic characteristics at packet level

TCP traffic at packet scale and TCP throughput predictability.

In Section 3.1.2, we have mentioned the literature on the statistical properties of the
aggregate traffic at small time scales, and have concluded that the potential relationship
between TCP mechanisms and aggregate traffic multifractality remains unclear. We have
seen however, that many authors invoke characteristics of the source emission process
within a flow to explain the presence of multifractal properties in the aggregate traffic, so
that we now review the literature related to this question. With the UDP protocol, the
question of source traffic characterization has limited interest because packets are regularly
emitted within a flow. In TCP, packets are emitted by bursts at the beginning of each
RTT. The number of packets in a burst is called the congestion window, directly related
to the QoS parameter throughput. A large amount of work have discussed the evolution
of this congestion window under various external conditions. Most of these works have
been done in the framework of long-lived TCP connections, which does not include the
flow-level structure (ON/OFF) of a source. This framework represents well the packet-
emission process within a long flow. Surveys of the results briefly presented here can be
found in [Barakat, 2001,Erramilli et al., 2002,Budhiraja et al., 2004]. As we shall see, most
of these results deal with the first-order statistics (mean) of the congestion window and do
not discuss potential multifractality. For this reason, our presentation is quite short.

Recall that we concentrate on the single bottleneck buffer, and we do not develop
the large amount of work that appeared on the case of TCP connections going through
a network of queues, and the stability problems that this generates [Kelly et al., 1998,
Bonald, 1998,Gibbens et al., 2000,Kelly, 1999,Roughan et al., 2001,Baccelli and Bonald,
1999,Baccelli and Hong, 2000,Baccelli and Hong, 2005].
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One singleTCP connection
We first present the works considering only one TCP connection. Under various loss-

process assumptions, with various methods (Markov, fluid model), and with various level
of complexity (e.g., introducing or not TCP mechanisms like timeout and slow start) all of
them are basically trying to evaluate the mean throughput achieved by the TCP connection
(i.e., the mean congestion window).

A first series of papers assumes Bernoulli losses (i.e., independent packet losses). This
is the case of [Mathis et al., 1997,Lakshman and Madhow, 1997,Padhye et al., 1998] where
the authors show, using a simple Markov chain to model the evolution of the congestion
window, that the mean congestion window goes as the inverse square root of the loss
probability p:

E{cwnd} ∼
p→0

K√
p
, (3.5)

where K is a constant. This is the well-known square root formula, and applies for small
loss rates. In [Padhye et al., 1998, Padhye et al., 2000], the authors extend the model
to account for the timeout mechanism, and obtain a more complex formula that applies
over a wider range of loss rates, but nevertheless reduce to the formula (3.5) for very
small loss rates. Many other extensions of this models have also been proposed in [Fortin-
Parisi and Sericola, 2004] (to include the slow start mechanism), [Kaj and Olsén, 2001]
(to include various mechanisms like maximal advertisement windows, fast retransmit and
ack threshold) and [Sikdar et al., 2003, Kumar, 1998] (to include TCP variants other
than RENO). They also assume Bernoulli losses and focus on the evaluation of the mean
congestion window. Instead of the discrete Markov chain, several authors have used fluid
models of TCP. This is the case for example of [Misra et al., 1999] where the authors
assume that the loss process is Poisson and obtain the mean throughput by solving a
“Poisson counter-driven stochastic differential equation” (see also [Budhiraja et al., 2004]
and the reference therein).

Several propositions have appeared to handle more general loss processes than Bernoulli.
In [Kamal, 2004], the authors use a Markov chain to model the evolution of the congestion
window of one TCP connection, and a “discrete batch Markov arrival process” is used to
model the rest of the traffic. In [Altman et al., 2000,Altman et al., 2005], the authors con-
centrate on the congestion window just before a loss and they recover the mean throughput
via Palm calculus, using a stationary ergodic loss process. They find a more general for-
mula than (3.5) for the mean throughput. This line of thought is extended in [Blanc et al.,
2009b,Blanc et al., 2009a] to different TCP variants, but with a Bernoulli loss assumption.

We mention two other types of extensions of the fluid models for long-lived TCP sources.
In [Carofiglio et al., 2007], the authors propose various extensions of fluid models to take
into account small-scale variability. In [Baccelli and McDonald, 2006], the square root
formulae is extended to ON/OFF sources with Bernoulli losses. A further extensionis
proposed in [Baccelli et al., 2007] to include rate-dependent losses.

Multiple TCP connections
The papers presented above were considering a single TCP connection, and trying to

evaluate the mean congestion window. A few papers have tackled the modeling of several
competing TCP connections. In this case, two important new notions have to be consid-
ered: fairness and synchronization. Roughly, synchronization represents the tendency that
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several sources experience a loss event at the same time, and fairness is the general term
used to describe how fairly several sources share the available capacity of a link. In [Ait-
hellal et al., 1997], the authors consider the case of two competing TCP connections and
use a fluid model to evaluate their mean throughput. In [Hurley et al., 1999], multiple
TCP connections receiving feedback depending on their sending rate are studied. Based
on a fluid model and resolution of ordinary differential equations, first-order statistics of
the fairness are obtained. In [Qiu et al., 2001], the impact of synchronization on the mean
throughput of many TCP connections is experimentally studied. Finally, in [Baccelli and
Hong, 2002], the authors use a fluid model of N TCP sources reproducing the AIMD be-
havior. Using products of matrices, they obtain the steady state distribution from which
they deduce, in addition to the first-order statistics of the throughput of each connection,
the autocorrelation function and the covariance matrix. They also derive results on fairness
showing that instantaneous throughputs of each connection can exhibit a large dispersion
(with some heavy-tailed dispersion index). As a possible mean to describe the variability
of TCP traffic, and characterize it beyond its mean, we mentioned at the end of Section
3.1, the authors of [Baccelli and Hong, 2002] also show that aggregated traffic from a large
number of long-lived TCP sources following their fluid AIMD model exhibits small-scale
multifractality. However, this result is numerically supported only. Moreover, it does not
link the multifractal property of the aggregate traffic to the TCP mechanisms governing the
behavior of each sources. This is also the case of [Barral and Lévy Véhel, 2004] mentioned
earlier (Section 3.1.2).

None of the papers mentioned above have given conclusive answers regarding the po-
tential multifractal characteristic of TCP traffic, that could explain the multifractality
of aggregate traffic. The models proposed are often restricted to prediction of first order
statistics of TCP throughput (the mean), and the following question of primary importance
remains open:

- Do TCP mechanisms generate multifractal scaling laws in the packet-level
source traffic? What is their relation with TCP throughput prediction (be-
yond the mean)?

Conclusion

We summarize here the open questions that we have pointed out in this chapter, and on
which we concentrate to propose answers in the rest of the manuscript. For the sake of
completeness, we have included in this summary the questions related to the experimental
platform and to the flow size distribution tail index estimation for which the state of the
art will be reviewed in the dedicated chapters (Chapters 4 and 6).
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Experimental platform reproducing realistic conditions.
−→ Chapter 4

Aggregate network traffic characterization.

- To what extend is Taqqu’s relation valid in real network conditions? What
are the scales involved? Does the protocol play a role? In which situation
(loss-free, lossy link, congestion)?

−→ Chapter 5, Sections 5.1 and 5.2

- What happens if flow-duration and flow-size distributions have different tail
indices? Which of these tail indices, if any, governs the long-range depen-
dence of the aggregate traffic?

−→ Chapter 5, Section 5.3

Source traffic characterization at flow scale.

- How to estimate the flow-size distribution’s tail index from packet-sampled
data?

−→ Chapter 6

Impact of the traffic characteristics on QoS (in performance terms).

- In realistic conditions implying finite buffer sizes, what is the impact of heavy-
tailed flow-size distributions on QoS (in performance terms)? More pre-
cisely, on which QoS metric?

−→ Chapter 7

TCP traffic at packet scale and TCP throughput predictability.

- Do TCP mechanisms generate multifractal scaling laws in the packet-level
source traffic? What is their relation with TCP throughput prediction (be-
yond the mean)?

−→ Chapter 8
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Chapter 4

Experimental and numerical

aspects

The results of this chapter have been published in [4] [1] [10,9], and presented as a demon-
stration in [12].

Experimental platform reproducing realistic conditions.

Introduction

Chapter 1 introduced the necessity of an experimental approach of questions related to
the analysis of network traffic and QoS, in particular due to the complexity introduced
by protocol TCP. In this chapter, we present the metrology platform that we developed
to perform large-scale experimental studies of network traffic and QoS in realistic con-
ditions, including a large number of controlled sources, high-speed dedicated links and
high-performance traffic-measurement tools.

We first discuss some existing solutions, for the experimental platform and for the
measurement tools. Then we present our solution to perform controlled experiments in
realistic conditions (Section 4.2). It is based on the large-scale fully controllable testbed
Grid5000 (Section 4.2.1). In Section 4.2.1, we present our experiments, and the tool
we developed to automate them and handle the logs collection: TranSim. Section 4.2.2
is dedicated to the presentation of our solution for packet-level traffic capture at up to
10 Gbps: MetroFlux. While other solutions could have been possible (based on DAG cards
for example), our tool is based on the FPGA device GtrcNet, which perform traffic capture
and various other functions, such as sampling, traffic generation, latency emulation, etc.

The versatility of our capture tool MetroFlux allows us to also plug it on real links. This
way, we obtain real traffic traces from such links that complement controlled experiments
performed on Grid5000. Such traces are presented in Section 4.3.

While studies of network traffic involving the TCP protocol necessitate an experimental
approach performed on a real network, UDP traffic is less complex, and interesting studies
can be performed using simple numerical simulations to complement the experimental
approach. To perform such simulations, we develop matlab routines that we present in
Section 4.4.

We conclude and provide a summary of the controlled experiments, traces and simula-
tions used in the rest of the manuscript, at the end of this chapter.

45



46 CHAPTER 4. EXPERIMENTAL AND NUMERICAL ASPECTS

4.1 Existing solutions for empirical network-traffic analysis

This section presents some existing possibilities to empirically tackle questions related to
network traffic and QoS analysis. This survey is non exhaustive, and we do not claim
that there does not exist similar platforms that could have fulfilled our requirements under
slight alteration.

4.1.1 Experimental platforms and simulators

Real Internet traces. To analyze statistical characteristics of network traffic, a first
and natural method relies on the study of real Internet traces. To this end, many Inter-
net traces, acquired at various points of the Internet backbone are publicly available, in
particular from the National Laboratory for Applied Network Research project (NLANR).
However, while the analysis of real Internet traces is essential to characterize the main fea-
tures and trend of recent traffic in realistic conditions, it has limitations. Indeed, Internet
traffic parameters (e.g., the load, the flow-size distribution) are not controlled. It is thus
impossible to change these parameters and study their effect on the system. Moreover,
Internet traffic presents cyclic trends related to the daily activity periods, that prevents
the observation of long stationary traces.

Simulators. To overcome these limitations, simulators have been massively used in
the research community. The most used network simulator in empirical analysis of network
traffic and QoS is ns [22]. It is a discrete event simulator, providing substantial support
for simulation of TCP, routing, and multicast protocols over wired and wireless (local
and satellite) networks. However, simulators also have restrictions. The main restriction
of simulators lies in their scalability limitation, and in the difficulty of their validation.
Indeed, the network is an abstraction, protocols are not production code, and the number
of traffic sources or bitrates you can simulate depends on the computing power of the
machine. Simulators also have a determinism issue: they cannot take into account the
small-scale randomness inherent to real systems.

Experimental platforms. Large-scale experimental facilities are alternatives that
may overcome the limitations of both the Internet and simulators, as they permit control-
ling network parameters and traffic generation, including statistics and stationarity issues.
A lot of initiatives appeared to propose such solutions, with different objectives (GENI,
FIRE, etc.). We expose here only a few of them, among the most famous. Emulab [White
et al., 2002] is a network experimental facility where network protocols and services are run
in a fully controlled and centralized environment. The emulation software runs on a cluster
where nodes can be configured to emulate network links. In an Emulab experiment, users
specify an arbitrary network topology, having a controllable, predictable, and reproducible
environment. They have full root access on PC nodes, and they can run the operating
system of their choice. However, the core network’s equipments and links are emulated.
The PlanetLab testbed [Bavier et al., 2004] currently consists of about 1000 PCs on about
500 sites (mostly hosted by universities with about 2 PCs on each site) connected to the
Internet (no specific or dedicated link). PlanetLab allows researchers to run experiments
under real-world conditions, and at a very large scale. Research groups are able to request
a PlanetLab slice (virtual machine) in which they can run their own experiment. However,
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the non-isolated links used in PlanetLab do not permit an isolated study of network traffic
generated in controlled situations. Moreover, it does not easily permit the inclusion of
measurement tools at chosen points of the network. The OneLab project in Europe pro-
vides an open federated laboratory, built on PlanetLab Europe, which aims at supporting
network research for the future Internet. A versatile monitoring software (COMO) was
notably developed within this project (a new version is still under development).

In our experimental platform, we use the Grid5000 testbed. As we shall see in Section
4.2.1, this experimental facility fulfill our requirements: a large number of fully controlled
machines (around 5000 machines on 10 sites) and high-speed dedicated links (10 Gbps).
Moreover, because we are members of the Grid5000 project, slight alterations of the con-
figuration were possible to adapt it to the specific requirements of our experiments. In
particular, we could easily include traffic-measurement tools at key points of the network.

4.1.2 High-speed traffic capture

In addition to the capability of generating traffic from a large number of controlled sources
in a realistic environment, a complete characterization of the traffic requires its capture at
key points of the network.

A few studies have already focused on the feasibilty of network-traffic capture at speeds
as high as 10 Gbps, using commodity hardware [Schneider et al., 2007,Anderson and Arlitt,
2006]. Most of these studies and of the few solutions available on the market to perform
traffic capture (e.g., products from Endace, Solera Networks, or GigaStor) focus on full
traffic capture, whereas our requirements are more focused on the extraction and capture
of packet headers, which are sufficient for our needs. Besides, a lot of the solutions available
today are designed and marketed as intrustion-detection or -prevention systems, and focus
on real-time deep-packet inspection rather than traffic capture.

Moreover, our requirements also include the capability of capturing headers with no
loss even in the worst case of very small packets arriving at the maximal load. In this
worst case, the capture system has to cope with a data bandwidth which is almost as high
as if it was storing the full packets instead of the headers, so that the technical problems
are quite similar:

• The capture server has to handle a high number of packets per second, which will
in turn trigger a high number of interrupts per second, if using the legacy network
stack.

• The data path in the capture system has to be as short and direct as possible, and
keep data copy to a minimum.

• The disk storage has to be both very large and very fast.

In [Schneider et al., 2007], the authors come to the conclusion that commodity hard-
ware is unable to fulfill all these requirements and they propose to distribute the capture
among several servers. DAG cards, from Endace, which are quite popular in the research
community, address the first two problems by optimizing the data path in the host system
and providing an appropriate API. The authors in [Anderson and Arlitt, 2006] solve the
first two problems by using a state-of-the-art (at the time of writing) high-performance
server, carefully tweaked for the task, and custom software optimizing the capture. They
solve the storage problem by using a very powerful raid array. They also use a special
dataseries file format for the storage.
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Such solutions, based on DAG cards, for example, could have been acceptable to ful-
fill our traffic capture requirements. However, we chose to use another solution, based
on FPGA device GtrcNet, that in addition offers various other features and large re-
configurability.

4.2 Controlled experiments

4.2.1 Grid5000: a large-scale testbed

Grid5000 overview

Grid5000 [15], is a 5000 CPUs nation-wide Grid infrastructure for research in Grid com-
puting [Bolze et al., 2006], providing a scientific tool for computer scientists similar to
the large-scale instruments used by physicists, astronomers, and biologists. It is a re-
search tool featuring deep reconfiguration, control and monitoring capabilities designed
for studying large-scale distributed systems and for complementing theoretical models and
simulators. Up to 17 French laboratories are involved and 9 sites host at least one cluster,
each made of about 500 cores. A dedicated private optical networking infrastructure, pro-
vided by RENATER, the French National Research and Education Network, interconnects
the Grid5000 sites. Two international interconnections are also available: one at 10 Gbps
interconnecting Grid5000 with DAS3 in the Netherlands, and one at 1 Gbps with Naregi
in Japan. A new interconnection with a site in Porto Alegre (Brazil) is also available
since July 2009. In the Grid5000 platform, the network backbone is composed of private
10 Gbps Ethernet links connected to a DWDM core with dedicated 10 Gbps lambdas (see
Figure 4.1).

Grid5000 offers to every user full control of the requested experimental resources. It
uses dedicated network links between sites, allows users to reserve the same set of resources
across successive experiments, to run their experiments in dedicated nodes (obtained by
reservation) and it allows users to install and to run their own experimental condition injec-
tors and measurement software. Grid5000 exposes two tools to implement these features:
OAR is a reservation tool, and Kadeploy an environment-deployment system. OAR of-
fers an accurate reservation capability (CPU/Core/Switch reservation) and integrates the
Kadeploy system. With Kadeploy, each user can make his own environment and have a
total control on the reserved resources. For instance, software and kernel modules for rate
limitation, QoS mechanisms, congestion control variants can be deployed automatically
within the native operating system of a large number of communicating nodes. OAR also
permits users to reserve equipements for several hours. As a consequence, Grid5000 enables
researchers to run successive experiments reproducing the exact experimental conditions
several times, an almost impossible task with shared and uncontrolled networks. This also
ensures large-duration observation windows under stationary conditions – something that
cannot be achieved on the Internet. As a private testbed from which we are members,
Grid5000 makes installing experimental hardware, such as the traffic capture instrument
at representative traffic aggregation points, quite easy..

In terms of monitoring tools, users have access to the RENATER Monitoring tool, the
Grid5000 infrastructure description, the Nagios tool, Ganglia and SFlow (only at lyon).
The RENATER Monitoring tool provides a view of all connections on the Grid5000 back-
bone. With it, users can see the availability and the usage of the global links. The Grid5000
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infrastructure’s description gives all the information about the different Grid5000 plat-
forms. It shows, graphically, on all sites their internal connections, that means, what kind
of network hardware is used and what are the different links between them. The Nagios
tool is used to warn the administrators about connectivity and services problems. Ganglia
provides users with the rate usage per node and other information, not necessarily network
specific, such as the available disk space, the cpu usage, and so on. The Sflow tool is an
experimental monitoring tool which provides a sampling of the network traffic. The com-
mon NetFlow tool providing flow-level information is also available on several Grid5000
sites.

Description of our experiments

We now describe more precisely the experiments we performed, and the tool we developed
to automate them: TranSim.

Topology To obtain the single bottleneck topology described in Chapter 1 (Figure 1.1),
we always use the site of Lyon for the sources and one of the other sites of Grid5000
for the destinations. The bottleneck is always at the site of Lyon. In all our controlled
experiments, we use a bottleneck of 1 Gbps. Prior to January 2008, the uplink of the
Lyon site was at 1 Gbps, and the traffic was monitored at the principal router of Lyon,
as shown in Figure 4.2. This topology is used in the experimental validation of Taqqu’s
relation, presented in Section 5.1. In this configuration, 140 machines were available at
the Lyon site, but only 100 were actually used in our experiments. Each source has a
maximal emission rate of 1 Gbps, but as we shall see, we can use different rate-limitation
mechanisms to limit this source emission rate, in order, for example, to avoid congestion.
The destination site used was Rennes, and the minimal RTT between Lyon and Rennes
was then 12 ms.

After January 2008, the uplink of the Lyon site was upgraded to 10 Gbps, and the
topology that we use in all our experiments (except those of 5.1) is shown on Figure 4.3.
Up to 46 machines are monitored at a 1 Gbps switch in Lyon. One of these machines
is also monitored before entering the switch, so that for QoS analysis, we can compare
the input and output traffic of this source. Each of these 46 machines can have a different
source behavior. For example, some of them can use the UDP protocol, and some other the
TCP protocol with different TCP variants, etc. In addition, we can use the 94 remaining
machines of the Lyon site to impose a cross traffic in order to create congestion at the
10 Gbps output of the Lyon site. These 94 machines will be used only to emulate a lossy
link at the output of the 1 Gbps switch, in Section 5.2.1. The destination site in the
experiments using the topology of Figure 4.3 is usually Rennes or Nancy, leading to a
minimal RTT of 12 ms or 10 ms respectively. Note finally that the second topology of
Figure 4.3 has the advantage that we can vary the switch’s output buffer size, between 96
and 4096 packets (this would not have been possible with the first topology of Figure 4.2,
because we cannot change the buffer size of the principal router of the Lyon site).

In all our experiments, we use “tap”s to duplicate the traffic to be captured. This way,
we avoid potential delays introduced in the switch-mirroring operation.

Transfer generation Typically, in our experiments, a large number of sources emit
“flows” following an ON/OFF scheme where ON and OFF periods are random variables.
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description

Client nodes Sun Fire V20z (bi-opteron)
Kernel GNU/Linux 2.6.18.3

iperf version 2.0.2

Table 4.1: Characteristics of the sources (nodes of the Lyon site).

It is thus impossible to start these transfers manually, and so we developed tool TranSim
to automate the transfers and log collection.

TranSim automates each step of an experiment:

• reservation of the required nodes;

• deployment of the environment on each node;

• launch the measurement tools (capture, web100);

• start the sequence of transfers (with iperf ) and OFF times (with the sleep command)
for each source;

• stop the experiment after a predefined time;

• stop the capture;

• log collection (web100, iperf, netstat).

TranSim also allows us to have several sources located on the same machine (or node),
which are independent at flow scale. This way, if we use two independent sources on each
node, we can have up to 92 independent monitored sources in the topology 2 of Figure 4.3.
Two sources located on the same node have independent ON/OFF schemes, but share the
same network interface.

TCP and UDP transfers are realized using iperf [18]: a traffic-generation tool that
allows users to tune the different TCP and UDP parameters so as to evaluate their impact
on network performance. Among the numerous parameters that can be set with TranSim,
the most interesting parameters for our experiments are:

the protocol : TCP or UDP;

the TCP variant (if relevant): Reno [Jacobson, 1988], BIC [Xu et al., 2004], CUBIC
[Rhee and Xu, 2005], HighSpeed [Floyd, 2003];

the rate limitation : none, PSP [Takano et al., 2005], HTB [17], TCP congestion window
limitation, Iperf (for UDP traffic) [18].

Each of these parameters can be set separately for each node, or for groups of nodes.
In all of our experiments, the sources are nodes of the Lyon site, and Table 4.1 sum-

marizes the specific characteristics of these source machines.

Rate limitation The last major aspect of the experimentation is the careful design
of traffic generation. In real networks, flows are not the fluid ON/OFF flows: packets
composing the flows are sent entirely, one after the other, at the wire bit-rate. Following
up, a critical feature to consider in network-experiment design is the traffic-generation
mechanism, especially the rate at which the packets are sent. For studies of 1 Gbps
congestion with TCP sources, we want to let the TCP feedback mechanisms control the
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Figure 4.4: Different sending patterns. The upper figure shows a schematic view of an
RTT -based rate limitation, the lower ones packet-level rate limitation, and in-between
timer-based rate limitation.

emission rate, and we do not impose external source rate limitation. However, for the
validation of Taqqu’s theorem in loss-free conditions, that we perform in Section 5.1, we
want to avoid congestion, and so we need to impose such an external source-rate limitation.

An important parameter is the aggregation level of traffic K, defined as the ratio
between bottleneck capacity C and the access link’s nominal capacity Ca [Srikant, 2007].
In xDSL context and more generally in the Internet, it is not rare to have K ranging over
1000, while in data-center context, K is around 1 or 10. In our Grid5000 setup, the K
factor is close to 1. To obtain a K factor larger than 100 (so as to mimic the natural rate
limit due to the bandwidth of users’ uplink in an Internet configuration) and to impose
an aggregated throughput average lower than C = 1 Gbps, each source’s rate has to be
limited to at most 10 Mbps.

For the sake of scalability, only software end-hosts rate-limitation mechanisms are con-
sidered. We focus on GNU/Linux mechanisms as it is the most deployed operating system
in our environment. End-host-based mechanisms can control the individual flows in a scal-
able and simple way [Soudan et al., 2007]. When considering packets of constant size, we
can enforce data rates over a large period of time by imposing the inter-packets intervals.
In end-host systems, four different beat times are controllable: a) userland timers, b) TCP
self-clocking, i.e., RTT of the transfer’s path, c) OS’s kernel timers, and d) packet-level
clocking. In our experiments we used three rate-limitation approaches which act at differ-
ent time scales: the first one is based on packet-level clocking (packet spacer), the second
one on OS’s kernel timers (Token Bucket), the last one on TCP self- clocking, that is the
RTT of the transfer’s path (window size limitation).

The first two methods rely on Linux’s traffic-shaping mechanism: with the tc util-
ity [19], the qdisc associated with a network interface (the queue in which packets are put
before being sent to the network card) is configured. The PSP (PSPacer) [Takano et al.,
2005] qdisc spaces packets by inserting IEEE 802.3x PAUSE packets. These PAUSE pack-
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ets are discarded at the input port of the first switches. With this mechanism, packets
are regularly spaced and short bursts are avoided. The second method resorts to HTB
(Hierarchical Token Bucket) qdisc [17] that uses a bucket constantly filled by tokens at the
configured target rate. With this qdisc the average rate limit can be overridden during
short bursts. As the qdisc is set for the network interface, all the sources located on the
same node will share the same bandwidth limit.

The third method modifies the TCP window size to slow down the throughput. The
formula window_size = target_throughput×RTT determines the TCP window size to use
to limit the sending rate to target_throughput . As the TCP limitation acts for each TCP
connection, many sources located on the same node can have independent rate limitation
which is not the case for qdisk-based limitation mechanisms. For example, to limit the
rate of a 1 Gbps source to 5 Mbps with full-size (1500 Bytes) Ethernet packets and a
RTT of 12 ms, one has to fix the window size to 7.5 kBytes (corresponding to 5 full-
size Ethernet packets). These values will be used in our validation of Taqqu’s relation in
loss-free conditions (Section 5.1).

Independently of this artificial window limitation that can be imposed to limit the
source rate, the congestion window of a sender can also be limited by the receiver, through
a maximal congestion window transmitted in the acknowledgment packets called adver-
tisement window [Postel, 1981]. Even though the TCP header field corresponding to the
advertisement window is only 16 bits, large values are possible with a scaling option [Ja-
cobson et al., 1992] (the scaling factor in our configurations is 7). In all the configurations
corresponding to our experiments, we verified (using web100 variables) that the advertise-
ment window is never imposing a limitation below the capacity of the network card of the
machines: 1 Gbps. This effect will then not be discussed in the rest of the manuscript.

Finally, for UDP transfer, the rate limitation is directly implemented in the iperf tool
and relies on simple packet spacing (inter-packet times are determined so as to achieve the
required bandwidth).

4.2.2 MetroFlux: high-speed packet capture

To complete the description of our experimental facility to study network traffic and QoS,
we now describe our monitoring tool used to capture the traffic at a link up to 10 Gbps:
MetroFlux.

Global architecture of the system

Metroflux is a programmable system for traffic analysis which currently operates on a
1 Gbps or 10 Gbps link without loss in most conditions. As described on Figure 4.5, this
system is composed of hardware elements and software components. The Metroflux system
integrates the GtrcNet-1 box [Kodama et al., 2003] or the GtrcNet-10 box [16] (for 10 Gbps
links) and a storage server with a large amount of disk space. The system is able to capture
the first 52 bytes (for GtrcNet-1) or 56 bytes (for GtrcNet-10) of every packet (i.e., the
header and a few payload bytes), add them a 1 µs-precision timestamp, and group them in
a UDP packet that is sent to the capture server. This header aggregation reduces overhead,
but also reduces the number of interrupts of the computer that receive the traffic to analyse,
decreasing the local loss probability. The capture server runs a MAPI (Monitoring API
[Polychronakis et al., 2004], developed by the LOBSTER project [21]) daemon with a
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special GtrcNet driver that we developed, and is able to save the packet headers’ stream
into a pcap file for offline analysis (see Figure 4.6 for the detailed software architecture
of the server). The pcap format has been chosen because it is also used by tcpdump and
it saves packets with their capturing timestamp. The data-analysis server runs a packet
header extracting program, based on the MAPI library which provides advanced functions
to manipulate packet headers in pcap format. The maximal duration of a capture session
depends on the packet size and the throughput of the link, as well as the server’s storage
capacity. It can encompass more than 60 hours for 1 Gbps traffic constituted of 1500 Bytes
Ethernet packets, if the storage capacity is 1 TBytes. For 1 Gbps captures, our capture
server is a computer with a quad-core processor running at 2.66 GHz, 4 GB of memory,
2 ethernet gigabit ports, 300 GB SAS disk for the system, 1 RAID controller with 5 x
300 GB SAS disk in a RAID 0 array, offering 1500 GB available for storing capture files.
For 10 Gbps captures, our capture server is a Bi-Dual-Core (Opteron) running at 3.0 GHz,
with 8 GB of memory, 1 ethernet 10 Gbps port, 2 ethernet 1 Gbps ports, 146 GB disk for
the system, and 15x300 GB SAS 15 Krpm for the captured data, connected via a hardware
RAID 6 controller, for a total of 3.6 TB available for captured data (the partition for the
captured data uses an XFS filesystem). The capture chain, including header extraction
(GtrcNet), header grouping, header desencapsulation, and header storage in pcap format
(capture server), has been extensively tested both for the 1 Gbps and 10 Gbps. The
result is that even in the worst case (with 64 Bytes packets at the maximal rate), all the
packet headers can be captured without loss with the 1 Gbps system. At 10 Gbps, our
system can capture headers without loss in the case where 200 Bytes packets arrive at the
maximal bandwidth of 10 Gbps. Note that this case is already very rare (most packets
are 1500 Bytes), and that the system gives a warning for each lost packets, which never
occurred in our experiments and production-links-monitoring campaigns.

The Metroflux system can be installed transparently within an experimental or a pro-
duction network in two different ways (see Figure 4.7):

• incorporated in a 1 Gbps links (between source(s) and destination(s));

• plugged into a mirrored port of a switch.

If the Metroflux system is inserted in the data path, other GtrcNET functions such as
latency emulation or aggregated-throughput on-line measurement can be activated. To
fully appreciate the potential of our monitoring tool and its difference compared to other
possible solutions based, for instance, on DAG cards, we develop in the next section the
specificities of the GtrcNet device.

GtrcNet-10 characteristics for 10 Gbps links measurements

The FPGA-based hardware technology GtrcNet has been developed in AIST, Japan. Our
part in the development of this device has been roughly limited to bug reporting, and we
expose here the characteristics of the GtrcNet-10 only to give an overview of the functions
available, and support our choice of using this device to integrate in MetroFlux, rather
than other devices available, such as the DAG card, from Endace.

GtrcNet-10 [16] is a hardware layer-2 network equipment with 10 GbE ports (Gbps
Ethernet ports). It is the successor of the GtrcNet-1 [Kodama et al., 2003] device, which
has GbE ports. GtrcNet-10 provides many parametrable functions, such as traffic mon-
itoring at a microsecond resolution, traffic shaping, and WAN latency emulation at a
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Figure 4.5: Capture and analysis of the traffic with Metroflux
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Figure 4.6: Software architecture of the server

Figure 4.7: Two different ways of installing Metroflux on a link
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Figure 4.8: Example of packet capture on GtrcNet-10

10 Gbps wire speed. A remote computer can set several parameters, such as interval of
traffic-bandwidth monitoring, target bandwidth of traffic shaping, and delay of network
emulation. It gets results of bandwidth monitoring. In the Metroflux system, GtrcNet-10
is used and configured to capture headers of packets. GtrcNet-10 consists of a large-scale
Field Programmable Gate Array (FPGA), three 10 Gbps Ethernet XENPAK ports, and
three blocks of 1 GB DDR-SDRAM. By programming the FPGA, one can add new func-
tions and improve existing functions according to the user’s requirements.

Let us now detail the packet-capture functions of GtrcNet-10 with two examples. Fig-
ure 4.8 (a) shows a first example of the usage of GtrcNet-10 for packet capture. The traffic
to be captured is transferred between ports CH0 and CH1. GtrcNet-10 selects an input
port, duplicates packets from the port, and captures them in memory. This function can-
not capture bi-directional traffic. The traffic transfered between ports CH0 and CH1 is not
affected by the capture. A filtering condition is defined so that packets are captured only
if they satisfy the filtering conditions. A condition indicates a 16-bit field of the header,
selects any bits by 16-bit mask, and compares it with the specified 16 bit value. One or two
conditions can be specified, and the logical combination of two conditions (logical-and or
logical-or) can also be specified. For example, one can capture only packets whose source
port or destination port of TCP/IP header coincides with a specified value. One can also
capture only packets that have VLAN tag, the VLAN ID being a specified value. The
captured data are sent to a control PC via USB. Since the USB access speed of the current
implementation is only 100 Kbytes/sec, the capture size is limited to the memory size,
which is 1 Gbytes. If all the packets of a wire-rate traffic at a 10 GbE link are captured,
only 800 ms of traffic can be captured.

To overcome this limitation, Figure 4.8 (b) shows another example of usage for packet
capture on GtrcNet-10 (the one that is actually used in MetroFlux ). The traffic to be
captured is mirrored by a network switch, or duplicated by a “network tap”, and the
mirrored traffic is transferred to GtrcNet-10. GtrcNet-10 can capture selected header fields
of the packets into a memory. The fields to be captured are in 16-byte-long unit, and any
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field can be selected independently up to 128 bytes. Each captured packet header receives
a 64-bit timestamp, whose format is based on RFC-1305 [Mills, 1992] and it constitutes the
first 8 bytes of the captured header fields for each packet. Multiple captured headers are
encapsulated into a UDP packet, and transferred from an output port. Figure 4.9 shows
the format of the UDP packet, which includes ten 80 bytes of captured data. The first block
is a scheduled time for transmission. This field is only used inside of GtrcNet-10, and is not
transmitted. The next three blocks are Ethernet, IP, and UDP headers respectively. The
fifth block is a header of the forward packet that includes captured header size (hd), number
of captured headers (num), sequence number of packet (seq), and its transmit timestamp
(txTimestamp). Captured data follow the headers. If the one-way wire-rate traffic of a
10 GbE link with 1500 bytes IP packet is captured using the format in Figure 4.9, the
capture forward traffic rate is about 556 Mbps. The forward traffic is read by a receiving
node. If the traffic is too large to be read by single node, the destination of the forward
traffic can be distributed to multiple nodes (up to 16) in round-robin.

By mixing received and transmitted traffic in the mirrored traffic, bi-directional traffic
can be captured in a port, but the mirrored traffic is limited to 10 Gbps. Since a GtrcNet-10
can capture mirrored packets from three ports simultaneously, bi-directional traffic of wire
rate can be captured by mirroring received and transmitted traffic independently. Notice
that some switches cannot receive packets from the mirroring port. Since GtrcNet-10 can
transmit capture forward packet from any port, it solves the problem, but the solution
requires two ports of GtrcNet-10 to capture the traffic of one port.

GtrcNet-10 can capture packets in any combination, such as duplicating packets or
not, filtering packets or not, selecting header fields or not, accessing by USB or forwarding
as packets, but capture forwarding is only for selected headers. The forwarding function
also offers the possibility of sampling the packet stream (so as not to exceed the storage
capacity in long-duration captures, for example).

Double synchronized capture on GtrcNet-1

To study a buffer’s dynamic, we need to perform two synchronized captures at the input
and output of the switch, as presented on Figure 4.3. Several GtrcNet devices can be
synchronized using GPS. However, using GPS necessitate local arrangements that are not
always possible.

Thanks to the four GbE ports of the GtrcNet-1 (CH0-3), it is possible to simultaneously
perform two captures on the same GtrcNet-1 device. The traffic for the first capture is
received at port CH0 and headers are forwarded through port CH2, and the traffic for the
second capture is received at port CH1 and headers are forwarded through port CH3. In
addition to guaranteeing perfect synchronization of the two captures (all the timestamps
are fixed by the same clock), this has the advantage that only one GtrcNet device is needed
to perform two captures. With the GtrcNet-10 device, such a simple solution is not possible
because it has only three 10 GbE ports. Other solutions are possible, that we are currently
investigating.

4.2.3 Packet data processing

To go from the packet-level traces acquired with MetroFlux to the averaged and flow-
level statistics of interest, we use a series of tools that we now present. Basically, we are
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Figure 4.9: Packet format of capture forward

interested in recovering from the packet-level trace:

• the averaged bandwidth in consecutive time windows of arbitrary size ∆;
• the flow-level characteristics.

Moreover, extraction of subtraces for conditioned studies based on parameter filtering (e.g.,
traffic from/to a list of IPs, traffic on given ports, traffic using a specific protocol) can be
required.

We use a series of tools over the captured IP traffic traces. A first step is to handle
the captured IP traffic traces; secondly, we reconstruct the flows from the packets, and
calculate the averaged bandwidth.

IP traffic traces, saved in standard pcap format by the capture device, are first pro-
cessed by ipsumdump, a program developped at UCLA [20], able to read the pcap format
and to summarizes TCP/IP dump files into a self-describing binary format. Thanks to
this tool, we retrieve the needed information from our traces: timestamps, source and
destination IPs, port numbers, protocol, payload size, TCP flags, and sequence numbers.
The informations are condensed into a binary file that is easier to parse, and which does
not depend on specific capture hardware anymore.

Secondly, we use a collection of tools named IPTools working on the ipsumdump binary
format directly, which performs a variety of useful data operations on the traces. The IP-
Tools software has been developed at the Physics laboratory of ENS Lyon and is registered
at the APP1 [Dewaele et al., 2007]. Of relevant interest here are the operations already

1Association de Protection des Programmes (French association for software protection)
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mentioned: computation of the averaged-traffic time series; extraction of traffic subtraces
for conditioned study, based on parameter filtering (e.g., traffic from/to a list of IPs, traffic
on given ports, traffic using a specific protocol); and reconstruction of the flows existing in
the traces.

The question of flow reconstruction is an intricate problem, that is an important and
difficult aspect when one wants to study the impact of their distribution heavy-tailedness.
It is necessary to recompose each flow from the intertwined packet streams measured on
an aggregated link. This means we must identify and group all the packets pertaining to
the same set, while considering a significantly large number of flows. This constraint faces
the arduous issue of dynamic table updating.

In IPTools, flows are classically defined as a set of packets that share the same 5-
tuple comprising: source and destination IPs, source and destination ports, and protocol.
However, because there is a finite number of ports, it is possible for two different flows
to share the same 5-tuple, and thus to get grouped in a single flow. To avoid this, we
set a timeout threshold: a flow is considered as finished, if its packet train undergoes an
interruption lasting more than timeout . Any subsequent packet with the same 5-tuple
will tag the beginning of a new flow. Naturally, a proper choice of timeout is delicate,
but that is the only solution that works for any kind of flow. For TCP flows, though,
things are easier, as we can use the SYN or SYN/ACK flags to initiate a flow (closing any
currently open flow with the same 5-tuple), and the FIN or RCT flag to close the flow,
rendering timeout useless. Note that timeout remains necessary when the FIN packet is
accidently missing.

Flow reconstruction (with timeout ) is then performed in a table that contains all
the currently open flows, using hash functions to speed up the access. Since TCP se-
quence numbers and payload size for TCP packets are captured, it is possible to search for
dropped or re-emitted packets during the flow reconstruction and take that into account.
Elementary statistics on the flows are then available: number of packets, number of Bytes,
duration of the flow, etc.

Other functionalities and data operations have been implemented. We only cite one
here, namely, the extraction of traffic subtraces for conditioned study, based on parameter
filtering (e.g., traffic from/to a list of IPs, traffic on given ports, traffic using a specific
protocol).

IPTools also allows different kind of statistic computations on the data, such as time
aggregation (including multi-scale time aggregation). The flows (or packets) can be aggre-
gated at different timescales in a single pass, directly from the traffic data produced by
ipsumdump. These operations can also be performed simultaneously on several subtraces
of the traffic, in order to compare the statistical behavior of different parts of the data, or
different kind of traffics.

Various other features have been implemented in IPTools, that we do not present here,
because we do not use them in the rest of our work.

4.3 Real-traffic traces

To complement studies based on controlled experiments as presented in the previous sec-
tion, we resort to real-traffic traces in two different University contexts. We now briefly
present these traces.
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In2p3 trace. The first trace, which is used in Section 5.3, is acquired at the out-
put link of the in2p3 research center (Lyon, France) with our versatile monitoring tool
MetroFlux. We “plugged” Metroflux at the output of the in2p3 to capture the traffic from
the VLAN corresponding to RENATER web traffic. This VLAN is encapsulated in the
10 Gbps output link of in2p3 and we capture it with the GtrcNet-10. We captured this
traffic during more than one day between January 18th and January 19th, 2009, and we
observed a mean throughput slightly larger than 100 Mbps during working hours. This
traffic mainly corresponds to web traffic, but has the particularity of including a larger
number of elephants than usual traffic. Since the in2p3 is a nuclear-physics research cen-
ter, these large transfers are likely to correspond to the transfer of experiment results from
experiment centers like CERN.

ENS Lyon trace. The second trace, which is used in Chapter 6, comes from a
different university environment: the 1 Gbps output link of the campus site of École
Normale Supérieure de Lyon is monitored. The bidirectional traffic (input and output
traffic) going through this link is optically splitted and captured with an appropriate DAG
card [14] (see [Scherrer et al., 2007] for a more complete description of the system). The
trace we consider in Chapter 6 was acquired on March 4th, 2007, between 4:30pm and
5:30pm. It mainly consists of HTTP traffic from ENS students and researchers, achieving
a mean throughput of 87.7 Mbps. This trace was acquired within the METROSEC project
and is courtesy of the Physics lab. of ENS Lyon.

4.4 Numerical simulations

While analysis involving TCP traffic necessitates controlled experiments performed on a
real network to comprehensively include all TCP parameters, and especially the feedback
introduced; performing such experiments on a real network is less critical for UDP traffic.
Indeed, the source emission in UDP is simply constant and independent of the rest of
the system. Even though performing experiments in UDP with our metrology platform is
possible, we also developed an ensemble of matlab routines to simulate traffic traces and
queueing systems. Such numerical simulations can complement experiments performed on
a real network and usually allows for more flexibility in the scenario design.

Our simulation tools consists in two major blocks: aggregate-traffic simulation and
queueing simulation.

Our aggregate-traffic simulator can generate aggregate traffic from an arbitrary number
of ON/OFF sources. The traffic is simulated at packet level so as to give a packet-level
trace, basically equivalent to the traces that we acquire with MetroFlux. The simulator is
very flexible and allows us to vary many parameters, the most important being:

• the flow-size- and OFF-times-periods distributions;

• each source’s emission rate;

• the packet distribution within a flow.

Basically, any distribution that we are able to generate with matlab can be used for the
flow size and OFF times. This includes the distributions of interest in our work, i.e., the
exponential and heavy-tailed distributions, but also some distributions more complex to
generate, e.g., the stable distribution, that are not directly available in ns2 for example.
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Within each flow, the packets can be distributed in several ways. They can be regularly
spaced, so as to mimic the UDP protocol’s behavior (the inter-packet time is then deter-
mined according to the source’s emission rate). They can also be placed according to a
renewal process, again, where the inter-arrival time can follow any distribution available
in matlab, provided that it has a mean. This mean inter-arrival time is then determined
according to the source’s emission rate. They can finally be distributed by bursts, so as
to mimic the TCP protocol. This last way to place packets within a flow can be useful to
analyze small-scale properties of TCP traffic caused by its burst mechanism, but we did
not implement any feedback model. Indeed, as soon as it comes to studies involving TCP,
we prefer to use controlled experiments on our metrology platform, rather than relying on
a matlab program which would take into account the temporal dynamic of real systems. In
our simulation design, a great attention has been devoted to the control of memory usage,
so that we are able to generate very long traces, with intermediate storage on the hard
disk, even on machines with limited memory. For each packet of the trace, we keep several
quantities: a timestamp, the packets’ size, an emission source ID and a flow ID number.
The flow ID number allows us to perform simple flow-level analysis, particularly useful
in our study implying sampling (Chapter 6). We also developed simple tools to recover
from these packet-level traces the quantities of interest in our analysis, e.g., the averaged
bandwidth in consecutive time windows of arbitrary size.

For QoS studies, we developed a discrete queue simulator adapted to our traffic simu-
lator which simulates the dynamic of a single buffer fed by the output trace of our traffic
simulator. For each packet, the queue simulator computes the delay if there is room avail-
able in the buffer, and signifies a loss otherwise. The size and the capacity of the buffer can
be set to arbitrary values. To complement this discrete queue simulator, we also developed
a continuous queue simulator, which takes as an input the traffic averaged in consecutive
time windows of size ∆. The output is the loss rate and the buffer content sampled at
∆. We verified that, as long as ∆ is smaller than the buffer scale (i.e., time to feed or
empty the buffer at a capacity C), both the continuous and discrete simulators give the
same results. As we mentioned in Chapter 1, this is not surprising because the buffer
has the effect of absorbing variations at a scale smaller than its characteristic scale. This
advantage of the continuous time simulator is that it is much faster. The drawback is that
individual packets cannot be tracked, for example to study the delay of packets pertaining
to a given flow. We use these queue simulators in our study of the QoS in UDP, in Section
7.1.

Conclusion

The platform that we have presented in this chapter fulfills all of our requirements to study
network traffic and QoS in realistic conditions: a large number of fully controlled machines,
high-speed dedicated links and high-performance monitoring tools. Throughout the rest of
our work, we will extensively use this unique platform to perform controlled experiments,
and sometimes complement the controlled experiments by the real traces or simulations
presented in this chapter. Table 4.2 summarizes the experiments and traces used in the
rest of the manuscript.
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Chap. Sec. Exp./Simul./Trace Monitoring Description

5 5.1 Expe. validation of Taqqu’s relation in the loss-free case
Controlled exp. MetroFlux Topology: 1 (Fig 4.2)

1 Gbps Other site: Rennes
Nb sources: 100
Protocol: TCP

Rate limitation: 5 Mbps
5.2.1 Expe. validation of Taqqu’s relation in the lossy-link case

Controlled exp. MetroFlux Topology: 2 (Fig 4.3)
1 Gbps Other site: Rennes

10 Gbps cross tr.: constant UDP
1 Gbps monitored tr.: Nb sources: 50∗ ON/OFF

protocol: TCP
rate lim.: none

5.2.2 Expe. validation of Taqqu’s relation in the congestion case
Controlled exp. MetroFlux Topology: 2 (Fig 4.3)

1 Gbps Other site: Rennes
10 Gbps cross tr.: none

1 Gbps monitored tr.: Nb sources: 56∗ ON/OFF
protocol: TCP
rate lim.: none

5.3 Beyond Taqqu’s theorem: correlation between flow size and rate
in2p3 trace MetroFlux see Section 4.3

10 Gbps

6 Estimation of α from packet-sampled traffic
Simulations – Nb sources: 100 ON/OFF

rate limitation: 10 Mbps
regularly spaces pkts

ENS trace DAG see Section 4.3
1 Gbps

7 7.1 Analysis of QoS: the UDP case
Simulations – Nb sources: 50 ON/OFF

rate limitation: 38 Mbps
regularly spaces pkts

7.2 Analysis of QoS: the TCP case
Controlled exp. MetroFlux Topology: 2 (Fig 4.3)

1 Gbps Other site: Nancy
10 Gbps cross tr.: none

1 Gbps monitored tr.: Nb sources: 45 ON/OFF
protocol: TCP
rate lim.: none

8 New scaling laws in TCP traffic
Controlled exp. MetroFlux Topology: 2 (Fig 4.3)

1 Gbps Other site: Rennes
10 Gbps cross tr.: none

1 Gbps monitored tr.: 1–2 long-lived TCP sources
and

1 constant UDP source
or

32 ON/OFF UDP sources

Table 4.2: Summary of the traces and experiments used in the manuscript. Numbers of
sources denoted by ∗ use 2 sources by node.



Chapter 5

Large-scale self-similarity in

aggregate network traffic:

Taqqu’s theorem and beyond

The results of Section 5.1 have been published in [1] [6] [8], the results of Section 5.2.1 are
in [11], and the results of Section 5.3 are in [7].

Aggregate network traffic characterization.

- To what extend is Taqqu’s relation valid in real network conditions? What
are the scales involved? Does the protocol play a role? In which situation
(loss-free, lossy link, congestion)?

- What happens if flow-duration and flow-size distributions have different tail
indices? Which of these tail indices, if any, governs the long-range depen-
dence of the aggregate traffic?

Introduction

In this chapter, we tackle the question of aggregate network traffic characterization, focus-
ing on the large-scale scaling properties.

A major breakthrough in network traffic analysis and modeling has been the discovery
of the self-similar nature of aggregate time series at large time scales [Leland et al., 1993,
Paxson and Floyd, 1994]. Following up, the ON/OFF model proposed in [Willinger et al.,
1995,Taqqu et al., 1997b] posits the heavy-tailed nature of the ON and/or OFF period as
a plausible explanation for the origin of the self-similar property and clarifies the relation
between the tail exponent and the Hurst parameter (see Section 3.1.1 of Chapter 3):

H =
3 − αH

2
, (5.1)

where αH = min(αON, αOFF, 2), αON (resp. αOFF) being the tail index of the ON peri-
ods (resp. OFF periods) distribution. We call this relation (the same as relation 3.1 of
Chapter 3) “Taqqu’s relation”.

Notwithstanding the mathematical soundness of this heavy tail/LRD model, the sim-
plifications used to ensure its tractability (fluid source emission in particular), as well as
the asymptotic nature of the result, make necessary an experimental investigation of the

65
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conditions of its validity in real network situations. While some validations of Taqqu’s re-
lation (equation (5.1)) have been attempted (see Section 3.1.1 of Chapter 3), based either
on real Internet traces or on simulators, none of them were combining all of the well-suited
ingredients:

• a large-scale real experimental platform,

• a fully controllable environment,

• state-of-the-art estimators whose utilization is appropriately adapted to the experi-
mental conditions;

and the precise conditions underlying validity of Taqqu’s relation are still unclear. To
answer this question, we proceed by steps: we first impose loss-free conditions (Section 5.1)
and investigate the range of scales in which Taqqu’s relation holds. We also elucidate the
role of the protocol in this situation. Then we move to more realistic conditions, implying
losses of two types. In Section 5.2.1, we impose losses after the aggregation point to
emulate a lossy link, and in Section 5.2.2, we study the case of congestion losses arising at
the aggregation point (which is then the bottleneck).

Another simplification of the ON/OFF model is that is assumes a constant emission
rate, identical for each flow. This implies that the tail indices of the ON-time and flow-
size distributions (αON and αSI) are identical. Other models, mainly based on the infinite
source Poisson model propose to randomly draw the rate of each flow, but they draw the
rate independently of the size (or the duration) of the flows, so that these tail indices αON

and αSI are still identical (see Section 3.1.1 of Chapter 3). Such an assumption can fail in
real traffic, yielding the question of the prediction of the large-scale self similarity in that
situation where relation (5.1) cannot be used. In Section 5.3, we propose an extension
of existing models, which accounts for the correlation between flow rates and durations
(responsible of the different tail indices αON and αSI). Our results in term of self-similarity
index prediction are confronted to a real traffic trace exhibiting sharply different values of
αON and αSI.

5.1 Experimental validation of Taqqu theorem in the loss-free

case

In the next two sections, we use the the potential and the facilities offered by the large-
scale experimental platform presented in Section 4.2 to empirically investigate the scope
of applicability of Taqqu’s relation (equation (5.1)). Under controlled experimental condi-
tions, we first prescribe the flow-size distribution to different tail indices and compare the
measured self-similar exponents with their corresponding theoretical predictions. Our goal
is not to check the goodness-of-fit between traffic data and ON/OFF models, but rather to
investigate to what extent imposing such models on the sources of a real network facility
produces LRD, as predicted by Taqqu’s Theorem.

We start in this section with the advisedly elementary and yet realistic traffic pattern,
where congestion is voluntarily avoided using rate-limitation mechanisms.
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description

TCP variant Bic, with SACK
Topology Butterfly (Figure 4.2)
Bottleneck 1 Gbps

Destination site Rennes
RTT 12 ms

Sources nb. 100
Source rate 5 Mbps

Exp. duration 8 hours
Flows nb. 5.106

Aggregation time ∆ = 100 µs
Flow timeout timeout = 100 ms

Table 5.1: Fixed experimental global parameters.

5.1.1 Experiments’ description

The experiments performed in this section use the topology of Figure 4.2 (Section 4.2 of
Chapter 4). Table 5.1 summarizes the specific parameters used in these experiments.

We impose an ON/OFF emission scheme to 100 sources, with heavy-tailed ON and
OFF distributions PON and POFF, and i.i.d. ON and OFF periods. The emission of
packets in each flow is controlled by one of the methods described in Section 4.2.1, each
source rate being limited to 5 Mbps to avoid congestion at the 1 Gbps bottleneck, and to
guarantee loss-free traffic. In this situation, flow duration is proportional to flow size, at
least for sufficiently large flows for which transient behaviors at the establishment of the
target rate has negligible effect. Flow-size distribution PSI and ON-times distributions PON

are then identical, up to some constant multiplicative factor. Note also that we consider
in this section and the following, the size of the flows, defined as the number of packets in
the flow. Since the packets have a constant size of 1500 Bytes except for the first and last
packets which may be smaller, both quantities are proportional, provided that the flow is
long enough.

Let us emphasize that even though we impose a rate control (at TCP-window or packet
level) to avoid congestion, our TCP sources remain realistic. Indeed, they are ack-clocked,
they are regulated by slow-start and congestion avoidance algorithms of a real GNU/Linux
protocol implementation, and they are subject to real packet regulation. In average, each
packet goes through two layer-3 equipments (IP routers), four layer 2-equipments (1 Gbps
or 10 Gbps Ethernet switches), and three layer-1 equipments (Optical CrossConnect).

All experiments consist of one trace of 8-hour traffic generation, representing a total of
approximately n = 5.106 flows. We use the tools presented in Section 4.2.3 of Chapter 4,
to extract flow level information (flow sizes and OFF periods), and the aggregate traffic
time series X(∆)(t) (see the parameters used in Table 5.1).

In order to clearly define the terms of application of Taqqu’s Theorem on real traffic
traces, as well as to identify possible interactions with other factors, we designed four series
of experiments whose parameters are summarized in table 5.2.

Experiment A: This is the cornerstone experiment to check relation (5.1). Distribution of
the ON periods are prescribed to Pareto laws with mean µON = 0.24 s (corresponding to a
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Proto Rate αON αOFF µSI meas
lim param

A
TCP

PSP

1.1 – 4 - 100HTB Ĥ
TCP α̂

UDP iperf

B TCP TCP 1.1 – 4 -
100

∆µSI
j11000

C TCP TCP - 1.1 – 4 1000 Ĥ

D
TCP TCP

1.1 – 4 - 100 ĥlocUDP iperf

Table 5.2: Summary of experimental conditions.

mean flow size of µSI = 100 packets). The experiment is performed ten times with different
prescribed tail indices αON, varying from 1.1 to 4. OFF periods are kept exponentially dis-
tributed with mean µOFF = µON. For each value of αON, an experimental point (α̂ON, Ĥ)
is empirically estimated. Moreover, to evaluate the possible influence of the protocol, and
of the rate-limitation mechanism, the same series of experiments is reproduced with UDP
(user-level packet pacing) and TCP (using the 3 different rate-limitation mechanisms PSP,
HTB and TCP congestion window limitation). The exact same trials of random variables
defining the flow sizes and the OFF times is used for all experiments that imply the same
probability law PON.

Experiment B: Under similar conditions as in series A, the mean of the ON periods takes
on two different values µON = 0.24 s and µON = 2.4 s, corresponding to mean flow sizes
µSI = 100 and µSI = 1000 packets, respectively. The objective here is to relate µSI to
the lower scale bound ∆j1 = 2j1∆ defining a sensible regression range to estimate H (see
Section 2.4.3 of Chapter 2).

Experiment C: The protocol (TCP), the throughput limitation mechanism (TCP window
limitation) and the mean flow size (µSI = 1000) being fixed, we investigate now the role
of the OFF-periods distribution on the self-similar exponent H. Distribution of the OFF
periods are prescribed to Pareto laws with mean µOFF = 2.4 s. The experiment is repeated
with different prescribed tail indices αOFF, varying from 1.1 to 4. ON periods are kept
exponentially distributed with mean µON = µOFF. For each value of αOFF, an experimental
point (α̂OFF, Ĥ) is empirically estimated.

Experiment D: The last series of experiments aims at investigating self-similarity at finer
scales (lower than the RTT scale), and whose origin is distinct from that of long-range
dependance phenomena. The variable parameter is the ON distribution tail index as in
experiment A, whereas the scaling law index will be estimated in the short time-scales
limit, in order to characterize the traffic burstiness from the process X(∆). Under the same
experimental conditions as in series A, we then evaluate how the protocols (TCP versus
UDP) entail a significant change in the traffic burstiness at small scales.
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Figure 5.1: Difference between the prescribed HT index α and the actually estimated HT
index α̂ for the set of different values of α used in experiment series A (see Tabular. 5.2)
for two different protocols: TCP (+) and UDP (◦).

5.1.2 Results and discussion

Verifying Taqqu’s relation

For every trace, we use the wavelet-based methodologies described in Chapter 2 for heavy-
tail and self-similarity analyses. The estimated tail index α̂ (corresponding to either α̂ON

or α̂OFF, clear from the context of Tabular 5.2) results from the linear regression of equa-
tion (2.22) (Chapter 2, Section 2.4.2) applied to the flow-size sequence (or to the OFF times
series), where a sixth-order derivative of a Gaussian wavelet is systematically used. The
self-similarity index Ĥ is estimated from the LD plots of the aggregate traffic time series
X(∆) (Chapter 2, Section 2.4.3), using a standard Daubechies wavelet with 3 vanishing
moments [Mallat, 1999,Daubechies, 1992].

Tail-index estimates Proceeding with experiment A, for different values of the tail
index of the flow-size distribution, Figure 5.1 displays the differences between the prescribed
value α and the actually estimated value α̂. The two experimental curves, corresponding
to TCP and UDP protocols respectively, superimpose almost perfectly. Beyond coherence
with the fact that the exact same trial of random variables defining the flow lengths is used
in both cases, such a concordance demonstrates that the flow-reconstruction procedure,
for both TCP- or UDP-packets grouping, is fully operative, notably including a relevant
timeout adjustment (timeout = 100 ms).

Fig. 5.1 also shows an increasing difference (α̂ − α) with α. In our understanding,
this is not caused by an increasing bias of the HT estimator, which is known to perform
equally well for all α values. It is rather caused by the natural difficulty to prescribe
large values of α over fixed duration, principally when the mean of the distribution is
kept constant. Indeed, as α increases, large flows become more rare, and the number of
observed elephants during the constant duration (8 hours) of the experiments decreases,
progressively deviating from a statistically relevant sample. A second explanation lies in
the finite sample size issue: as the distribution mean is fixed, the maximum observed
value decreases and reduces the domain where the distribution asymptotically behaves as
a power law. This observation is fully consistent with arguments developed in [Roughan
et al., 1999]. In our numerical studies, we will then systematically compare the estimated
Hurst parameter to α̂ rather than to the prescribed α.
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Figure 5.2: Wavelet log-diagrams of aggregate traffic (aggregation interval ∆ = 100 µs).
Log-diagrams correspond to 4 time series obtained under similar experimental conditions
(experiment series A) with the protocol TCP, with 4 different values of αON: 1.1 (+), 1.5
(△), 1.9 (◦) and 4.0 (♦). For the sake of readability, curves were vertically shifted to avoid
overlapping.

Gaussianity Before verifying the presence of long-range dependence in the aggregate
traffic time series, we first need to verify the normal assumption (bear in mind that the
increment process of a fBm is a stationary and Gaussian process). Thus, for each trace
described in Tab. 5.2, the Kurtosis index1 of the aggregate traffic time series distribution
was computed at several different aggregation intervals. As the Kurtosis index was always
found to lie between 3.0 and 3.1, for aggregation intervals larger than ∆ = 10 ms, we
conclude that the aggregate traffic time series is a reasonably Gaussian process beyond
this limit.

Without claiming to be a rigorous proof, this normality verification indicates that the
number of used sources (100) is sufficient to meet the asymptotic conditions of an infinite
number of users.

LD-description Figure 5.2 shows typical LDs of aggregate traffic time series, obtained
under similar conditions (experiment series A of Tabular 5.2, TCP protocol, TCP window
limitation), for 4 different values of α. Such plots enable a generic phenomenological
description of LDs: 3 different ranges of scales can be visually identified, whose bounds do
not seem to drastically vary with α:

Coarse scales: In the coarse scale domain, a clear scaling behavior is systematically ob-

1The Kurtosis index of a R.V. is defined as the ratio of its fourth-order moment over its square variance,
and takes value 3 in the normal case.
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Figure 5.3: Averaged normalized log-diagrams for two different mean sizes µSI of the trans-
mitted flows: (×) µSI = 1000 packets – (△) µSI = 100 packets.

served. Since Taqqu’s Theorem (equation (5.1)) relates heavy tails and self-similarity in
the asymptotic limit of coarse scales, the corresponding scaling exponent, denoted Ĥ, is a
candidate to match that involved in relation (5.1).

Fine scales: At fine scales, another clear scaling behavior is also observed. However, the
corresponding scaling index, denoted h, is no longer related to Taqqu’s Theorem prediction
but rather to a local regularity property of the data.

Medium scales: Intermediate scales mostly connect the two scaling behaviors happening
for fine and coarse scales, but exhibit no noticeable scaling behavior.

In Figure 5.2, vertical lines materialize the two transition scales between the three
depicted domains, and can hence be identified as characteristic time scales of the data.
Let us now investigate the nature of these characteristic times.

Coarse-scales domain’s lower bound It is alluded in [Hohn et al., 2003] that the range
of scales where self-similarity can be measured is beyond a characteristic scale, referred to
as the knee of the LD, and that it is essentially controlled by the mean flow duration. To
investigate this argument in the context of our analyses, we designed two experiment series
with two different values of the mean flow duration (series B of Tab. 5.2). For each case,
all the LDs corresponding to the different values of α are computed. To emphasize the
impact of the mean flow duration, we substracted to each LD, the asymptotic linear trend,
obtained by linear regression between a scale ∆j1 , clearly above the knee position, and the
maximum available scale ∆jmax . Figure 5.3 shows, both for µSI = 100 and µSI = 1000 the
mean and standard deviation over all normalized LDs. Each graph clearly exhibits a slope
break: at scale ∆100

j = 0.64 s when µSI = 100 and at scale ∆1000
j = 10.28 s when µSI =
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Figure 5.4: Wavelet log-diagrams of aggregate traffic (aggregation interval ∆ = 100 µs).
Log-diagrams correspond to two time series obtained under similar experimental condi-
tions, for αON = 1.5, with two different protocols: TCP (+) and UDP (◦).

1000. Although for µSI = 100, the knee effect slightly smoothes out, the linear behavior
observed for µSI = 1000 clearly extends with the same slope beyond ∆1000

j up to ∆100
j .

Unquestionably, the measured knee position undergoes the same variations as the mean
flow duration, both quantities being in the same order of magnitude: ∆100

j ≃ µ100
ON(0.24 s)

and ∆1000
j ≃ µ1000

ON (2.4 s). This analysis confirms the intuition that the coarse scale range,
where self-similarity is to be measured, lies above the knee of the LD, whose position is
in the same order of magnitude as the mean flow duration. The coarse scales can then be
renamed: the flow scales, or the file scales.

Note that the value µON for the coarse-scales domain’s lower bound is a rough bound. It
has been recently shown in [Abry et al., 2009] that this bound can undergo small variations
when α varies: the larger α, the larger bound.

Protocol, rate limitation and coarse scales We now focus on the coarse-scales do-
main. Figure 5.4 shows the LDs obtained with two different protocols: TCP and UDP
(for α = 1.5). It evidences the central feature that both LDs are undistinguishable in the
coarse-scale domain. We conclude that, when source-rate limitation precludes congestion,
the protocol has no impact on the coarse scale self-similarity.

Similarly, Figure 5.5 shows typical LDs (α = 1.5, TCP) obtained with three different
rate-limitation mechanisms: PSP, HTB and TCP window limitation. As the three LDs
cannot be distinguished one from the other in the coarse-scale domain, we conclude that
the rate-limitation mechanism has no influence on the scaling behavior at coarse scales.
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Figure 5.5: Wavelet log-diagrams of aggregate traffic (aggregation interval ∆ = 100 µs).
Log-diagrams correspond to 3 time series obtained under similar experimental conditions,
for αON = 1.5, with three different rate limitation mechanisms: TCP (+), PSP (◦) and
HTB (△).
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Figure 5.6: Estimated Self-Similar index Ĥ of the aggregate traffic (aggregation interval
∆ = 100 µs) versus estimated tail index α̂ON of the corresponding flow-size distribution.
Solid plots represent the theoretical model of relation (5.1), dashed plots correspond to
experimental results: (a) with the TCP protocol; (b) with the UDP protocol.
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H versus αON Practically, to perform an empirical validation of relation (5.1), we need to
estimate the scaling parameter H and thus to carefully choose the range of scales where the
regression is to be performed. Although the knee position has been related to a measurable
experimental parameter (the mean flow duration), a systematic choice of the regression
range at coarse scales would certainly be hazardous. Instead, we defined for each trace
an adapted regression range, based on a linearity criterion, and found that all regression
ranges defined like this, encompass a scale interval (maxα ∆j1 = 20.5 s and ∆jmax = 1310
s), significantly extended to warrant statistically reliable self-similarity exponent estimates.

Figure 5.6 plots the estimates of coarse-scale scaling exponents against those of the tail
indices. Confidence intervals for Ĥ displayed on the graphs are supplied by the estimation
procedure detailed in Section 2.4.3, under valid normal assumption. Such estimations are
conducted independently for TCP and UDP protocols. For both protocols, estimations
show a satisfactory agreement with Taqqu’s theorem prediction (equation (5.1)). To the
best of our knowledge, this theoretical relation between self-similarity and heavy tail had
never been observed with such a satisfactory accuracy, (over a large and significant range
of α values). For instance, and although no definitive interpretation has been proposed yet,
the deviation below the theoretical relation for α close to 1 has been significantly reduced
when compared to similar analysis results reported in the literature (cf. e.g., [Park et al.,
1996]).

On the opposite, the origins of the difference between experimental and theoretical
curves for α around 2, are clearly identified. As mentioned earlier, while the mean flow
value is kept constant, the maximum flow size observed over a fixed period statistically
decreases. This amplitude-range shrinkage mechanically imposes the LD scaling interval
that conveys LRD to reduce as well2, and thus the estimation of H to be overvalued.
Another interpretation based on a bias-variance trade-off argument, and supported by
matlab simulations, is also given in [Abry et al., 2009]. Notice though, that when α
increases, this effect balances with the natural de-correlation (H = 0.5) holding beyond the
maximum flow-size scale, and Ĥ stabilizes to 0.5, which also coincides with the theoretical
value predicted by Taqqu’s theorem (equation (5.1)).

This improved agreement (as compared to [Park et al., 1996]) results from the com-
bination of a number of factors, mostly: robust statistical estimators and long-duration
controlled traces allowing us to really handle the asymptotic coarse-scale nature of Taqqu’s
theorem. Additionally, our analyses confirm that the TCP and UDP protocols do not im-
pact this relation, at least under loss-free conditions corresponding to our experimental
setup. This is in clear agreement with the findings reported in [Figueiredo et al., 2005],
showing that TCP is not responsible for the observed self-similarity. However, despite these
earlier results, a non-negligible number of contributions debated, investigated, and argued
in favor of an impact of protocols on self-similarity. Our analyses clearly show that the
range of scales where protocols impact the LD is far below the characteristic time scales
involved in self-similar phenomena.

As long as we actually consider coarse scales (larger than the mean duration of a flow),
and that congestion is properly avoided, the only cause for self-similarity is the heavy tail
in the flow-size distribution.

2Indeed, at scales beyond the maximal flow duration, the aggregate throughput is necessarily uncorre-
lated.
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Ĥ

1 1.5 2 2.5 3 3.5 4
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Estimated tail index α̂OFF

Figure 5.7: Estimated Self-Similar index Ĥ of the aggregate traffic (aggregation interval
∆ = 100 µs, TCP) versus estimated tail index α̂OFF of the corresponding OFF-periods
distribution. Solid plots represent the theoretical model of relation (5.1), dashed plots
correspond to experimental results.

OFF periods Under experimental conditions detailed in Tabular 5.2, Figure 5.7 displays
the estimated coarse-scale self-similarity exponents against those of the OFF-periods tail
indices. Since we already demonstrated that the protocol has no influence on the scaling
behavior at coarse scales, the current experiments were only performed with the TCP
protocol.

In contrast to similar results reported in the literature (cf. e.g., Figure 5 (right) of
[Park et al., 1996], where the estimated value of H is less than 0.7, even for αOFF =
1.05), our results show a very good match with the theoretical relation of equation (5.1).
Reasons for this theoretical accord certainly has the same origins as the ones evoked in the
previous paragraph (i.e., robust estimators, long-duration stationary traces and controlled
configurations), but possibly also in the fact that we scrupulously avoided congestion, and
consequently statistical alteration of the OFF periods. To the best of our knowledge, this
other part of Taqqu’s Theorem had never been satisfactorily addressed.

Finally, let us notice that confidence intervals displayed in Figure 5.7 are significantly
larger than the ones of Figure 5.6. This is due to the difficulty of imposing short OFF
intervals which led us here to increase the mean durations µOFF = µON = 2.4 s (instead
of 0.24 s). Consequently, according to the interpretation of Figure 5.3, the coarse-scale
regression range proportionally narrows.
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Figure 5.8: Fine-scale scaling exponent h estimates on aggregate traffic time series (∆ =
100µs). For different values of the tail index αON governing the flow-size distributions,
h is estimated by linear regression of Log-diagrams (see Fig. 5.4) over the scale range
[0.2 − 5]ms. Notched box-plots correspond to the UDP protocol, regular box-plots to the
TCP protocol.

Further analyses of the LD

We now turn to the medium and fine scales and study the influence of protocols and
rate-limitation mechanisms.

Medium scales
While the mean flow duration gives an upper bound for the medium-scale domain, Fig-

ure 5.2 shows that RTT (12 ms) corresponds to its lower bound. Therefore, this medium-
scale range will be referred to as the RTT -scales. Although no scaling behavior is visible in
this medium-scale range, Fig. 5.4 shows a significant difference between the LDs obtained
from TCP and UDP traffic. This is an expected result as RTT is the characteristic time
of action of the TCP protocol.

Fig. 5.5 shows that there is no significant difference in this domain between the LDs
corresponding to the three different rate-limitation mechanisms. The characteristic time
of action of the rate limitation is the mean inter-packet time. Due to the source-rate
limitation at 5 Mbps achieved with 1500-Bytes packets, the mean inter-packet time for one
source is 2.4 ms. As the mean number of sources emitting simultaneously is 50, the mean
inter-packet time is 48 µs, which is much lower than RTT . Accordingly, the rate limitation
does not impact the traffic at RTT scales.

Fine scales
Without entering the debate about potential multifractality of network traffic at small
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scales3, we discuss now the second-order self-similarity observed at fine time scales.

TCP and UDP impact on fine-scales scaling. Figure 5.4 shows a good scaling
behavior at fine scales, with different scaling indices for UDP and TCP.

To analyze the fine-scales scaling exponent in more details, every 8-hour trace cor-
responding to a particular value of α (see experimental conditions of Experiment A in
Table 5.2) is chopped into 66 short-length segments of duration T = 100 s each. The
resulting time series are then analyzed independently and a fine-scaling exponent h es-
timated. Based on these 66 values of ĥ, box-plots are displayed on Figure 5.8 for each
theoretical value of α. The values for TCP remain roughly constant around h ≃ 0.63.
Likewise for UDP, h does not seem to depend on α, but stands around 0.4, a significantly
smaller value than that for TCP.

Smaller than RTT , these fine scales correspond to the packet-scales. Clearly then,
the scaling index at these scales is sensitive to the packet-sending mechanism. When
using UDP, packets are emitted individually, separated by an inter-packet interval (2.4
ms) imposed by iperf to maintain the rate limitation (5 Mbps). Therefore, UDP traffic is
constantly and erratically varying. When using TCP, packets are sent by bursts containing
up to 5 packets. Then TCP traffic is bursty, but also sparse, with “long” periods of
no packets. We believe that this packet-sending scheme difference, in close relationship
with our experimental condition (source-rate limitation used to avoid congestion), is sole
responsible for the observed difference between TCP and UDP on the local regularity.

Bandwidth limitation’s impact on fine-scales scaling. Figure 5.5 shows that
the scaling index at fine scales is approximately the same with TCP and HTB limitation,
but it is very different with PSP limitation. This difference can again be explained by
the packet-sending mechanism. When using HTB limitation, packets are sent by bursts,
in the same way as with TCP limitation, and the local regularity is then identical. On
the contrary, when using PSP, packets are sent individually, in the same way as with
UDP, and the small-scale scaling index with UDP and PSP are very close, lower than the
ones observed with TCP and HTB. These results are fully coherent with the arguments
developed in [Jiang and Dovrolis, 2005].

5.1.3 Conclusion

In this section, we experimentally demonstrated the validity of Taqqu’s theorem (equa-
tion (5.1)) in loss-free situations. Based on realistic and long-duration stationary traces,
we obtained a significantly better match than previous results existing in the literature,
especially in the case where the OFF periods are heavy-tailed. As it is elegantly tackled
in [Guo et al., 2001] and [Figueiredo et al., 2002], we believe that a precise statistical char-
acterization of idle times is an important factor of traffic modeling. Finally, following up
the controversial discussion about the relationship between transport protocols and self-
similarity (see, e.g., discussion in [Figueiredo et al., 2005]) our observations confirm that in
loss-free situations, protocols and rate-limitation mechanisms do not impact the observed
long-range dependence. Our analyses show that this is so, because the ranges of scales

3Performing a multifractal analysis of our traces of loss-free traffic would not be of great interest. Indeed,
the rate-limitation mechanism prevents sources from congestion and this suppresses the role of the TCP
feedback, usually invoked to explain multifractal properties of the traffic.
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(segmented according to the RTT and to the mean flow duration) related to self-similarity
are far coarser than those (fine and medium scale) associated to such mechanisms. Based
on this supervised study in loss-free situations, the causes of a possible break down of
Taqqu’s relation in real-world traffic will have to be sought elsewhere and in particular,
the protocol in itself should not be solely incriminated.

5.2 The effect of losses on LRD

We now use the loss-free study performed in previous section as a reference to investigate
the validity of Taqqu’s relation (equation (5.1)) in more realistic conditions implying losses.
We distinguish two cases: the lossy link and the congestion losses.

5.2.1 The lossy-link case

We first treat the case of the “lossy link”, where losses occur after the aggregation point.
Strictly speaking, a lossy link would be a link where packets are lost at random, indepen-
dently, i.e., with Bernoulli losses. To emulate such a loss process, we provoked congestion
after the aggregation point, as we now explain.

Experiments’ description

For the experiments presented in this section, we use the topology of Figure 4.3 (see
Section 4.2), with 50 “1 Gbps monitored TCP sources” (2 sources per node). The aggregate
traffic from these sources shares the principal router of Lyon with constant UDP cross traffic
from 20 machines (the “10 Gbps cross traffic”). This UDP cross traffic creates packet losses
after the aggregation point of the TCP sources (at the principal router of Lyon). Indeed,
the aggregate TCP traffic is always less than 1 Gbps, so that there is no loss at the
aggregation point (the Lyon switch of Figure 4.3). Varying the sending rate of the UDP
machines (x Mbps) allows us to vary the loss rate experienced by the TCP flows. The
destination site is Rennes and the RTT experienced by the TCP flows can vary, due to
the congestion at the Lyon router, between 12 ms and its maximal value of 50 ms. On the
nodes running TCP flows, we collect netstat statistics to compute the loss rate. Table 5.3
summarizes the parameters of the experiments.

In all the experiments, the flow sizes are heavy-tailed distributed with tail index α = 1.5
and the mean flow size is µSI = 1000 packets. The OFF times are exponentially distributed,
with mean µOFF = 0.6 s. We use the same random sequences of flow sizes and OFF times
in three experiments with different loss rates summarized in Table 5.4.

The first experiment is performed without UDP cross-traffic to avoid packet loss. In
this experiment, we impose a source rate limitation using the TCP window limitation
method, to avoid congestion at the Lyon switch. The limited rate is set to 20 Mbps for
each source, which yields a mean ON time µON equal to the mean OFF time. For the
last two experiments (with losses), the TCP window is “not artificially limited”, but is
naturally limited by the TCP congestion-control mechanism. Table 5.4 shows the mean
ON and OFF times measured from the traces, where the flows were reconstructed with
an infinite timeout . We used an infinite timeout here as the reference because we are
considering TCP traffic only (most of the flows can be separated with the SYN and FIN
packets), but we also verified that a timeout of 1 s leads to the almost same flow sequence.
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description

TCP variant Bic, with SACK
Topology Butterfly (Figure 4.3)
Bottleneck 10 Gbps (after aggregation)

Destination site Rennes
RTT 12–50 ms

TCP sources nb. 50
Fl. size distr. heavy-tailed, αSI = 1.5
Mean flow size µSI = 1000

OFF times distr. exponential
Mean OFF time 0.6 s
Exp. duration 2 hours

Flows nb. 106

Aggregation time ∆=10 ms

Table 5.3: Fixed experimental global parameters.

UDP rate (x) loss rate µON (s) µOFF (s)

α = 1.5
– no loss 0.53 0.76

450 Mbps 0.7% 0.55 0.77
475 Mbps 5% 6.14 0.70

Table 5.4: Experiment parameters: loss (estimated from netstat logs) and flow size and
OFF time mean (estimated from the flows’ reconstruction with an infinite timeout ).

For the third experiment, although the imposed flow sizes’ sequence is the same as for the
first two experiments, the mean ON time is significantly increased, due to the relatively
high loss rate.

Results and discussion

LD of the aggregate traffic We first investigate the LDs of the aggregate traffic time
series X(∆)(t) for the three experiments, displayed on Figure 5.9. The mean ON time
for each experiment has been materialized for it has been identified (see Section 5.1.2) as
the lower bound of the coarse-scale domain of interest for the long-range dependence of
relation (5.1). We now focus on these coarse scales.

While a clear scaling behavior is observed for the three experiments, the corresponding
Hurst parameter is much smaller for a high loss rate of 5%, than for small loss rates.
Table 5.5 displays the estimated Hurst parameter of the three experiments and confirms
this observation: while Taqqu’s prediction (H = 0.75, see equation (5.1)) is very well
verified for small loss rates (up to 0.7%), a high loss rate (5%) annihilates the long-range
dependence of the aggregate traffic (H very close to 0.5). This is not due to the increase
of the mean ON time because the Hurst exponent is estimated in a significant scale range
lying far beyond this lower bound in each experiment.
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10ms 100ms 1s 10s 100s 1000s

Figure 5.9: Log-Diagrams of the aggregate traffic time series X(∆)(t)for the three exper-
iments with α = 1.5: (blue) no loss – (red) loss rate 0.7% – (black) loss rate 5%. The
vertical lines materializes the mean ON times as shown in Table 5.4.

loss rate Ĥ

α = 1.5
no loss 0.76 ± 0.05
0.7% 0.75 ± 0.07
5% 0.53 ± 0.06

Table 5.5: Estimated LRD indices
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Interpretation We now propose an interpretation of this disappearance of the long-
range dependence for high loss rates, which is fully coherent with Taqqu’s theorem. The
key point of this interpretation lies in the flow reconstruction, and more particularly in the
choice of the timeout .

Figure 5.10 displays the flow-size and OFF-time distributions observed in the three
experiments after the flow reconstruction with two different values of the timeout : infinite
timeout and timeout =100 ms. This latter value was chosen because it is smaller than
the mean OFF time (about 0.6 s), but remains larger than the RTT . For this reason, it
allows us to detect gaps inside a flow that are greater than 100 ms and split this flow into
2 different flows, but does not separate each TCP window in a single flow.

For the first two experiments (no loss and loss rate 0.7%), the distributions recon-
structed with the two values of timeout are almost the same, showing that almost no flow
experiences an internal gap of more than 100 ms. For a small loss rate of 0.7%, it shows
that the TCP congestion window rarely falls down to zero, or at least, rarely stays at zero
for more than 100 ms. Since the reconstructed flow sequences are almost identical with
the two values of timeout , the OFF distributions in these two experiments are also very
similar.

On the contrary, with a loss rate of 5%, the distributions reconstructed with the two
values of timeout are very different: the flow-size distribution appears heavy-tailed with
an infinite timeout , but not with a timeout of 100 ms (Figure 5.10 (bottom, left)). The
strong modification of the flow-size distribution with a timeout of 100 ms shows that the
flows experience internal gaps of duration larger than 100 ms. These gaps correspond
to the intervals between two packet retransmissions during the TCP exponential backoff
periods [Paxson and Allman, 2000]. Exponential backoff periods arise when no acknowl-
edgment packet is received during an RTO period. This can in particular happen if all the
packets of a congestion window are lost. Then, the congestion window is set to one packet
which is sent, and the RTO is doubled (justifying the term exponential backoff). The
durations of the gaps within flows thus take the values 2k× RTO0, k = 0, 1, 2, . . . , where
RTO0 is almost equal to 4RTT s, corresponding to about 200 ms with congestion. These
characteristic values 200 ms, 400 ms and 800 ms indeed correspond to the peaks on the
OFF-time distribution observed on Figure 5.10 (bottom, right) in addition to the imposed
distribution with a timeout of 100 ms. Figure 5.11 shows that the flow-size distribution
obtained with a timeout of 100 ms is exponential. For large original flows (when recon-
structed with an infinite timeout ), smaller flows reconstructed with a timeout of 100 ms
mainly correspond to the packets emitted between two consecutive exponential backoff
periods. Under Bernoulli loss assumption, their exponential distribution can then be inter-
preted using the fact that the exponential distribution is the only memoryless distribution.
Indeed, assuming that a flow has achieved some stationary regime (for example with a
mean throughput as in the square-root formula [Padhye et al., 1998]), then the probability
to experiment a TCP timeout (no ACK received during an RTO) does not depend on the
amount of data already transfered, so that the flow-size distribution is memoryless. Such
an interpretation is likely to be valid only for the tail of the new distribution obtained with
a timeout of 100 ms. This tail is however sufficient to predict the long-range dependence
parameter via Taqqu’s relation (equation (5.1)). As the internal gaps within flows are
of the same order of magnitude as the mean OFF time, the flows reconstructed with an
infinite timeout cannot be considered as single ON periods. Instead, flows reconstructed
with a timeout of 100 ms must be considered to use the ON/OFF model and interpret
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Figure 5.10: (left) Flow-size distribution in log-log – (right) OFF time distribution. (top)
no loss – (middle) loss rate 0.7% – (bottom) loss rate 5%. Flows are reconstructed with:
(red) a timeout of 100 ms – (blue) an infinite timeout .
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Figure 5.11: Flow-size distribution in semilog axes in the experiment with a loss rate of
5%, and where flows are reconstructed with a timeout of 100 ms (same distribution as in
Figure 5.10 (bottom, left, red) with different axes to show the exponential distribution).

the LRD index using Taqqu’s Theorem. The estimated Hurst parameter H = 0.5 when
the loss rate is 5% is then in perfect agreement with the observed exponential distribution.

Conclusion

We showed in this section that in the case of a lossy link, high loss rates (5% in our
experiments) annihilate the coarse-scale long-range dependence originating in heavy-tailed
flow-size distributions. We showed that this results from a deep modification of the flow
structure, due to the exponential backoff periods, splitting a single flow in several smaller
flows, so that the flow distribution eventually becomes exponential. This study clarifies the
notion of flow in the ON/OFF model (packets should be “regularly” arriving during a ON
period with no internal gap of the order of magnitude of the mean OFF time), and gives
practical guidelines for the choice of an adequate timeout for the flow reconstruction.

From a more general viewpoint, our result shows that under certain conditions, TCP
mechanisms (the exponential backoff, here) are able to annihilate long-range dependence in
the aggregate traffic. It might also be invoked to explain the relatively poor match between
experimental curves and Taqqu’s relation (equation (5.1)) observed in [Park et al., 1996],
where the loss rate sometimes achieves 4%.

A more comprehensive set of experiments would be required to precisely quantify the
critical loss rate marking the transition between the regimes where long-range dependence
is observed or not, and to precise what it depends on (the mean OFF time, the flow-
size distribution’s tail index, etc.). Instead of using 10 Gbps cross traffic to emulate the
lossy link, we will perform these experiments using the capability of the GtrcNet device to
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description

TCP variant Reno, with SACK
Topology Butterfly (Figure 4.3)
Bottleneck 1 Gbps

Destination site Nancy
RTT 10–12 ms

Sources nb. 56
Fl. size distr. heavy-tailed, αSI = 1.1 – 3.0
Mean flow size µSI = 1000

OFF times distr. exponential
Mean OFF time 0.6 s
Exp. duration 4 hours

Aggregation time ∆ = 10 ms
Flow timeout timeout = 100 ms

Table 5.6: Fixed experimental global parameters.

emulate pure Bernoulli losses.

5.2.2 The case of congestion

In this section, we turn to the case of “congestion losses”: the losses occur at the aggregation
point (which is thus the bottleneck). This case is different from the lossy-link case because
it introduces correlation between the sources. This correlation between the sources is not
taken into account in Taqqu’s ON/OFF model, and we again use an empirical approach
based on controlled experiments, as we now expose.

Experiments’ description

To perform this section’s experiments, we use the topology displayed on Figure 4.3. As
our goal is to create congestion at the 1 Gbps Lyon Switch, we do not impose 10 Gbps
cross traffic. We use 56 “1 Gbps controlled sources” (with 2 sources per node), with no
rate limitation, emitting to the destination site of Nancy. The minimal RTT is 10 ms, and
the buffer size is 96 packets, susceptible to increase the RTT to no more than 12 ms (the
maximal queueing delay is 1.2 ms). Table 5.6 summarizes these fixed parameters.

We perform 4 experiments, imposing an ON/OFF emission scheme to the sources, with
a heavy-tailed flow-size distribution of variable tail index (α = 1.1, 1.5, 1.9 and 3.0). The
OFF-time distribution is always exponential, of mean µOFF = 0.48 s. Since the source
rate is not limited and is adapted by TCP mechanisms, cannot impose exactly the mean
ON time. We impose a mean flow size of µSI = 1000 pkts, which yields a mean ON time
measured in the experiments roughly always equal to the mean OFF time.

In all of our experiments, the loss rate observed is between 0.4 and 0.5%.

Results and discussion

Figure 5.12 shows the aggregate traffic of all the 56 sources, averaged in consecutive time
windows of variable size ∆ for the four values of α. It clearly shows that for each experi-
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ment, the aggregate traffic saturates at the bottleneck capacity (1 Gbps, corresponding to
8333 packets per 10 ms on the graphs), even when the traffic is averaged at large time scales
(∆ = 10 s). As a consequence, this traffic is non Gaussian (we always observed Kurtosis
larger than 3.6 on the traffic shown on Figure 5.12), and has an asymmetrical marginal
distribution. This saturation effect comes from TCP mechanisms (AIMD in particular),
which try to keep the aggregate bandwidth constant, at the link capacity. Note that in our
experiments, the pure truncation effect due to lost packets does not significantly modifies
the traffic shape because the loss rate remains small (around 0.5%). Thus, the input and
output traffic at the bottleneck are fairly similar. Ideally, the saturation effect would be
characterized by the constraint that the sum of the TCP congestion windows at each in-
stant are equal to the capacity of the link, which induces correlation between the sources
at the RTT scale (TCP’s characteristic time scale). In practice, non-instantaneous TCP
reactivity permits smaller values of the sum of the congestion windows. Figure 5.12 shows
that while the random ON/OFF structure introduces some variability in the aggregate
traffic, the correlation between sources at RTT scale affects the aggregate traffic even at
large time scales (∆ = 10 s) where the saturation effect is still visible.

Since the total aggregate traffic is not Gaussian, even at large time scales, we do not try
to measure long-range dependence on it, nor to validate Taqqu’s relation (equation (5.1)).
Indeed, even if some long-range dependence related to Taqqu’s model was present, it would
certainly be masked by the saturation effect at the link capacity. Instead, we consider
the sub-traffic corresponding to half of the sources (i.e. 28 sources chosen at random
within the 56 sources). Whereas for the ensemble of all the sources, the saturation effect
constraints the non Gaussian marginal distribution of the aggregate traffic, the constraint is
different for half of the sources: the aggregate traffic should equal the link capacity minus
the aggregate traffic of the other half of the sources, which is also a random variable.
Thus, the aggregate traffic corresponding to half of the sources has “one more degree of
freedom”, and it can be expected to be Gaussian despite the RTT-scale correlations between
sources. Figure 5.13 shows the aggregate traffic of half of the sources, and exhibits no visual
saturation effect. Moreover, we verified that for all the traffic shown on Figure 5.13, the
Kurtosis always lies between 2.9 and 3.0. This good Gaussianity is the first step of Taqqu’s
model validation on the data.

To complete the investigation of Taqqu’s model, Figure 5.14 shows the Hurst-parameters
estimates against the estimates of the ON-time distribution tail indices. We verified that
despite the flow rate variability due to TCP control mechanisms, the estimates of the
flow size distribution tail index always coincides with that of the ON time distribution
tail index. Moreover, the tail indices estimated from both halves of the traffic are also
identical.

Although Figure 5.14 shows a clear decreasing tendency of the Hurst parameter, we do
not observe a very good match between the experimental curve and the theoretical predic-
tion (equation (5.1)), contrarily to the loss-free case (cf. Figure 5.6). Based on the results
discussed in Section 5.1, we can eliminate a number of causes to explain this deviation.
Indeed, since the same wavelet tools have been used for Hurst-parameter and tail-index
estimations in Figure 5.6 and Figure 5.14, poor statistical estimations cannot explain the
deviation of Figure 5.14. Similarly, long-duration stationary traces have been used in both
cases: although the experiment time is only 4 hours in the congestion case instead of 8 hours
in the loss-free case, it is unlikely to explain the deviation of Figure 5.14, a fortiori because
the Hurst parameter has been estimated in a significant scale range ([1.28−163.84] s) lying
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Figure 5.12: Aggregate traffic of all the 56 sources: Count process X(∆)(t) (in pack-
ets per 10 ms) versus time t, for different values of ∆ and α. Note the saturation at
8333 pkts/10 ms, corresponding to the bottleneck capacity (1 Gbps).
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Figure 5.13: Aggregate traffic of 28 randomly chosen sources: Count process X(∆)(t) (in
packets per 10 ms) versus time t, for different values of ∆ and α.
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Figure 5.14: Estimated Self-Similar index Ĥ of the aggregate traffic versus estimated tail
index α̂ of the corresponding flow size distribution. Solid plots represent the theoretical
model of relation (5.1), dashed plots correspond to experimental results: (blue) 28 ran-
domly chosen sources – (red) the other 28 sources. The scale range of estimation of H is
[1.28 − 163.84] s.

far beyond the mean ON time and exhibiting a good linear behavior. A possible explana-
tion of the deviation between theoretical and empirical curves on Figure 5.14 could then
lie in the correlation between sources, reminiscent from the saturation effect induced by
TCP feedback mechanisms. Since we have seen that this correlation, although taking place
at the RTT scale, is able to modify the total aggregate traffic even at large time scales,
it is not surprising that for half of the traffic, this effect also holds, and that long-term
correlations are then increased.

Conclusion

In this section, we considered the case of congestion losses, introducing correlation between
the sources due to their interaction at the bottleneck. We showed that it introduces a
saturation effect on the total aggregate traffic which is then non-Gaussian and unlikely to
enter Taqqu’s model framework. Instead, we focused on the aggregate traffic of half the
sources and showed that it is Gaussian, and exhibits long-range dependence. However, we
observed a significantly larger deviation with respect to Taqqu’s relation (5.1) than in the
loss-free case, and we proposed to interpret it by the RTT-scale correlations between the
sources which can affect the traffic properties even at large time scales.

A more complete set of experiments is required to confirm and clarify our interpreta-
tion. In particular, half of the sources in our experiments here represent only 28 sources,
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which might partly explain the deviation observed on Figure 5.14. Moreover, longer exper-
iments should be performed in order to specify until which scale the RTT-scale correlation
introduced by TCP has an effect. Indeed, our experiments proved that this correlation
impacts the aggregate traffic up to a very large scale (of about 1 hour here), but we can-
not eliminate the possibility that at even larger time scales, the effect of the effect of this
correlation vanishes.

For a better understanding, a model taking into account the RTT-scale correlation is
needed in order to get more general insights into the aggregate-traffic properties at each
time scale. Such a model, to the best of our knowledge has not yet been proposed.

5.3 Beyond Taqqu’s Theorem

In all the experiments presented in the last two sections, the tail indices of the flow-size
distribution and the ON-time distribution was equal. In this final section, we treat the
case where these indices are different, due to correlation between the flow rates and flow
durations. This case does not fit in the framework of Taqqu’s ON/OFF model, nor that
of any other model proposed up to now (see Chapter 3, Section 3.1.1).

Our study is motivated by the observation of a real web traffic trace, which exhibit
clearly different tail indices for the ON period and flow size distributions. We then propose
a model accounting for the correlation between the flow rates and durations, which allows
us to predict the Hurst parameter of the aggregate traffic (the equivalent of relation (5.1)
of the ON/OFF model). We finally use our results to interpret the long-range dependence
observed on our real traffic trace.

5.3.1 A real traffic trace: description

In this section, we use the real traffic trace corresponding to the web traffic of in2p3, Lyon,
France (see a general description in Section 4.3 of Chapter 4). Although we captured
the traffic during more than one day, we restrict our analysis to a short part of the trace
to obtain stationary traffic, and use only the incoming traffic between 3pm and 3:30pm
on January 18, 2009. The mean throughput in this period is 127.3 Mbps. Contrary to
previous sections, the “size” of flows for this trace are in Bytes, and not in packets. To
reconstruct the flow sequence, we use a timeout of 100 ms.

Figure 5.15 shows the flow-size and flow-duration distributions. While both distribu-
tions clearly appear to be heavy-tailed, they exhibit sharply different tail indices: αSI =
0.8544 and αON = 1.1994 respectively. Several explanations could be posited to interpret
why longer flows achieve higher rates, thus explaining these different tail indices. A might
explanation might lie in transient effects at the beginning of each flow. Another explana-
tion could lie in the variable locations of the downloaded files, if for example users tend to
download large flows from closer locations (thus achieving higher rates more quickly be-
cause of smaller RTTs). The largest files might also be intentionally stored on servers with
the highest capacities. These are only hypotheses and we do not elaborate further here
on the origin of the different tail indices for the flow-size and flow-duration distributions,
which is out of our scope.

Figure 5.16 displays the log diagram of the aggregate traffic bandwidth in time windows
of size ∆ = 10 ms. We clearly observe a coarse-scale scaling behavior, with an estimated
Hurst parameter of Ĥ = 0.901 ± 0.045. The estimation is performed in the scale range
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Figure 5.15: (a) Flow-size distribution – (b) Flow-duration distribution. The tail indices
estimated with the wavelet method are respectively: αSI = 0.8544 and αON = 1.1994.
Straight lines materialize these slopes and have been vertically adjusted to the data. The
mean ON time is 0.12 s.

[0.64−40.96] s (lying far beyond the mean ON time of 0.12 s) but the same scaling behavior
appears to extend to the scale 100 s. This Hurst parameter shows a good agreement
with relation (5.1) of Taqqu’s ON/OFF model, where αH = αON would be the tail index
governing the long-range dependence. However, as already mentioned, the trace studied
here is not well modeled by the ON/OFF model with constant rates, and drawing general
conclusions from this case study would certainly be hazardous. Instead, we propose to
develop a model taking into account the different tail indices of the flow-size and flow-
duration distributions that originate from the flow rates and durations correlation.

5.3.2 A model accounting for the correlation between flow rates and
durations

Definitions and notations

Our model is based on the infinite source Poisson setting: flows are arriving as a Poisson
process. As we have seen in Chapter 3, such a model is not able to take into account
the long-range dependence of the flow arrival process (should this be at the origin of the
long-range dependence observed in the aggregate traffic). However, we observed on the
real trace of in2p3 that the flow-arrival process has a coarse-scale parameter around 0.65,
which is unlikely to explain the long-range dependence observed on the aggregate traffic
bandwidth.

Figure 5.17 depicts our setting. The point process (Ti, Di) (representing the arrival
time and the duration of the flows) is assumed to be a planar (spatial) Poisson process
of measure Λ [Cox and Isham, 1980,Kingman, 1993]. This means in particular that the
sequence (Di)i≥0 is independent. The measure Λ determines the mean number of points in
a part of the plane. For example, Λ(C(t1)) is the mean number of points in the cone C(t1)
(see Figure 5.17). In the case where the measure has a constant density (or intensity), the
point process is called homogeneous. Here, the measure Λ contains the information of the
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Figure 5.16: Log diagram of the aggregate traffic bandwidth in time windows of size
∆ = 10 ms. The estimated value of the Hurst parameter is Ĥ = 0.901± 0.045 (scale range
of estimation: [0.64 − 40.96] s)

flow-duration distribution. To account for a heavy-tailed flow-size distribution, we use the
following form for the measure Λ of an elementary square of size (dt,dd) centered on (t, d):

Λ(dt,dd) =
Cdtdd

dαON+1
, where C > 0, and αON > 1. (5.2)

Due to the dependence of Λ in the variable d, the point process is non-homogeous (the
density of points is higher for smaller values of d). However, due to the independence of
Λ in the variable t, the arrival time of a flow Ti is independent of its duration Di. In
our case where the x-axis represents the time, this specific form of the measure Λ ensures
the stationarity of the resulting traffic. To avoid integrability problems for d around zero,
we also set a minimal flow duration ε, under which the distribution is 0. This threshold
will not play any role in our study because we concentrate on long-range dependence. A
similar setting is used for example in [Barral and Mandelbrot, 2002], where the behavior
of the measure around d = 0 has a great role because the authors focus on small-scale
multifractality (note however, that in this paper the authors study a multiplicative process
which differs from our additive process considered here).

Each flow emits data at a constant rate Ri during time Di. The rates are random
variables such that sequence (Ri)i≥0 is independent. However, contrarily to previously pro-
posed models (see in particular [D’Auria and Resnick, 2006,D’Auria and Resnick, 2008]),
we do not assume that Ri is independent from Di. Instead, we permit some correlation
between the flow rates and durations that we will specify later in this section, when it
becomes necessary to pursue the calculations. The flow size, that we denote Si is then
determined by Si = DiRi.
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λW = E{Wt1∩t2}

Di

Ti
t1 t2

Ri

time t

d
u
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d

Wt1\t2

µW = E{Wt1\t2}
Wt2\t1

µW = E{Wt2\t1}

C(t1) C(t2)

Wt1∩t2

Figure 5.17: Setting of the model. Each point represent a flow. The x-coordinate represents
the start time Ti and the y-coordinate the duration Di. Ri is the rate of the flow. At time
t1, the active flows are those lying in cone C(t1) (the left border of the cones have a slope
of −1).
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We consider two time instants t1 < t2 and introduce the following notations (see Fig-
ure 5.17):

Wt1\t2 =
∑

(Ti,Di)∈C(t1)\C(t2)

Ri, (5.3)

Wt1∩t2 =
∑

(Ti,Di)∈C(t1)∩C(t2)

Ri, (5.4)

Wt1 = Wt1\t2 +Wt1∩t2 =
∑

(Ti,Di)∈C(t1)

Ri. (5.5)

The variables Wt2\t1 and Wt2 are defined similarly. The random variable Wt1 is directly
the instantaneous throughput at time t1 (the sum of the rates of the flows active at time
t1). The random variables Wt1\t2 and Wt1∩t2 are intermediate random variables, useful for
the calculations developed in the following. We can interpret these random variables as
follows: Wt1\t2 corresponds to the traffic of the flows that are active at time t1 but not
any more at time t2, whereas Wt1∩t2 corresponds to the traffic of the flows active at time
t1 and still active at time t2. For clarity purposes, we introduce the following notations for
the mean:

λW = E{Wt1∩t2} = Λ(C(t1) ∩ C(t2)), (5.6)

µW = E{Wt1\t2} = E{Wt2\t1} = Λ(C(t1)\C(t2)) = Λ(C(t2)\C(t1)), (5.7)

where simple calculations show that the last equality Λ(C(t1)\C(t2)) = Λ(C(t2)\C(t1))
holds due to the uniform distribution of the measure Λ in time. Finally, note that with
these notations, we have:

E{Wt1} = E{Wt2} = λ+ µ. (5.8)

The setting described here allows us to compute the autocovariance of the instantaneous
bandwidth Wt, in order to evaluate the Hurst parameter, as we shall see now.

Computation of the instantaneous bandwidth correlation

We are interested in the computation of the autocovariance function of the instantaneous
bandwidth, that is E{Wt1Wt2} − E{Wt1}E{Wt2}.
Proposition 5.3.1. If the planar point process {(Ti, Di)} is Poisson, then

E{Wt1Wt2} − E{Wt1}E{Wt2} = E{W 2
t1∩t2} − E{Wt1∩t2}2 = Var{Wt1∩t2} (5.9)

Proof. Using the notations introduced above, we have:

E{Wt1Wt2} = E{Wt1\t2Wt2\t1} + E{Wt1\t2Wt1∩t2} + E{Wt1∩t2Wt2\t1} + E{W 2
t1∩t2}.

Due to the Poisson assumption, the random variables Wt1\t2 ,Wt2\t1 ,Wt1∩t2 are mutually
independent, so that

E{Wt1Wt2} = E{Wt1\t2}E{Wt2\t1} + E{Wt1\t2}E{Wt1∩t2} + E{Wt1∩t2}E{Wt2\t1} + E{W 2
t1∩t2}

= µ2
W + 2λWµW + E{W 2

t1∩t2}
= (λW + µW )2 − λ2

W + E{W 2
t1∩t2}

directly giving equation (5.9) in view of the definition of λW (equation (5.6)) and of equa-
tion (5.8).
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Proposition 5.3.1 shows that the autocovariance depends only on the variance of the
traffic due to the flows in the intersection of the cones C(t1) and C(t2). This had been
noticed already in [Barral and Mandelbrot, 2002,Chainais et al., 2005], though the authors
were focusing on small-scale properties. To complete the computation of the autocovariance
function, we then need to compute Var{Wt1∩t2}.

If the flow rates were constant and equal to 1, then Wt1∩t2 would simply be the number
of points in C(t1) ∩ C(t2). Since the point process is Poisson, the variance Var{Wt1∩t2}
would then simply be λW and the autocovariance would be determined by the value of λW
(recall that the variance of the count process associated with a Poisson process is equal to
its mean). Before proceeding with the calculations in a more general case, we introduce
additional useful notations. We denote by N the random variable corresponding to the
number of points in C(t1) ∩ C(t2). We denote its mean by

λN = E{N}. (5.10)

Note that in the case where the rate is always 1, we simply have λW = λN . The next
proposition gives the general form of the autocovariance function, without specifying the
correlation between Ri and Di yet.

Proposition 5.3.2.

E{Wt1Wt2} − E{Wt1}E{Wt2} = λNE{R2
i }, (5.11)

where it is implicitly understood that the expectation is computed in C(t1) ∩ C(t2).

Proof. To evaluate the value of Var{Wt1∩t2}, we successively compute the values of E{Wt1∩t2}
and E{W 2

t1∩t2}.

E{Wt1∩t2} = E{E{Wt1∩t2 |N}}

=
∞∑

k=1

E{
k∑

i=1

Ri|N = k}P(N = k)

=

∞∑

k=1

k∑

i=1

E{Ri|N = k}P(N = k)

=
∞∑

k=1

kE{Ri}P(N = k)

= λNE{Ri}.

E{W 2
t1∩t2} = E{E{W 2

t1∩t2 |N}}

=
∞∑

k=1

E{(
k∑

i=1

Ri)
2|N = k}P(N = k)

By independence of the sequence (Ri)i

E{(
k∑

i=1

Ri)
2|N = k} = E{(

k∑

i=1

Ri)
2} = kE{R2

i } + (k2 − k)E{Ri}2,
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so that

E{W 2
t1∩t2} =

∞∑

k=1

(kE{R2
i } + (k2 − k)E{Ri}2)P(N = k)

=

∞∑

k=1

kE{R2
i }P(N = k) +

∞∑

k=1

k2
E{Ri}2

P(N = k) −
∞∑

k=1

kE{Ri}2
P(N = k)

= λNE{R2
i } + (λN + λ2

N )E{Ri}2 − λNE{Ri}2

= λNE{R2
i } + λ2

NE{Ri}2

Until that point, we still have not used the precise form of the measure Λ (equa-
tion (5.2)), and the precise form of the correlation between Ri and Di. The result of
Proposition 5.3.2 depends only on the Poisson and independence of the sequence (Ri)i
assumptions. It shows that the autocovariance function is the product of two terms: λN ,
the mean number of points in C(t1)∩C(t2), and E{R2

i }. The first term (λN ) depends only
on the measure Λ and is easily obtained via a simple integration (Proposition 5.3.3). To
compute the second term (E{R2

i }), we need in addition to precise the correlation between
Ri and Di (Proposition 5.3.4).

Proposition 5.3.3. If the measure Λ has the form of equation (5.2), then

λN = C
1

αON(αON − 1)
(t2 − t1)

−αON+1 (5.12)

Proof.

λN =

∫ ∞

d=t2−t1

∫ t1

t=t1−(d−(t2−t1))
Λ(du, dv)

= C

∫ ∞

d=t2−t1
(d− (t2 − t1))

1

dαON+1
dd

= C

∫ ∞

d=t2−t1

1

dαON
dd− C(t2 − t1)

∫ ∞

d=t2−t1

1

dαON+1
dd

= C
1

αON − 1
(t2 − t1)

−αON+1 − C
1

αON
(t2 − t1)

−αON+1

= C
1

αON(αON − 1)
(t2 − t1)

−αON+1

Finally, we now specify the correlation between Ri and Di to calculate the term E{R2
i }.

Our goal here is to specify a correlation which indeed leads to the different tail indices of
the flow-size and flow-duration distributions. We have already mentioned that taking Ri
as a random variable independent of Di would lead to the same tail indices, independently
of the distribution of Ri, provided that its mean is finite (see for instance [D’Auria and
Resnick, 2006, D’Auria and Resnick, 2008]). The different tail indices αSI and αON can
then only come from correlation between Ri and Di. The simplest choice would be to
deterministically take for each flow: Ri = Dβ−1

i , where β = αON
αSI

. In this case, we would
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have Si = Dβ
i or equivalently Di = S

1/β
i . This would effectively lead to the different tail

indices αON and αSI for the flow duration and size distributions. However, this assumption
of a deterministic rate for a flow of a given duration is not realistic. Instead we choose a
model where the conditional expectation and variance of the rate given the duration are
specified. This model is given in the next proposition.

Proposition 5.3.4. Assume that E{Ri|Di} = KDβ−1
i , where K is a constant and Var{Ri|Di} =

V , where V is a constant. We denote

α′ = αON − 2(β − 1). (5.13)

If α′ > 1, then

E{R2
i } =

1

λN
CK2 1

α′(α′ − 1)
(t2 − t1)

−α′+1 + V. (5.14)

Proof.

E{R2
i } = E{E{R2

i |Di}} = K2
E{D2(β−1)

i } + E{Var{Ri|Di}}

The same kind of integration as for the proof of Proposition 5.12 give

E{D2(β−1)
i } =

1

λN
C

1

α′(α′ − 1)
(t2 − t1)

−α′+1,

while we clearly have E{Var{Ri|Di}} = V , completing the proof.

We are now able to state the final proposition establishing the decrease of the autoco-
variance function with t2 − t1, and then the long-range dependence of the process (Wt)t.

Proposition 5.3.5 (Autocorrelation function and long-range dependence of the process
(Wt)t). If E{Ri|Di} = KDβ−1

i and Var{Ri|Di} = V , where K,V are constants and
α′ = αON − 2(β − 1) > 1, then

E{Wt1Wt2}−E{Wt1}E{Wt2} = CK2 1

α′(α′ − 1)
(t2−t1)−α

′+1+CV
1

αON(αON − 1)
(t2−t1)−αON+1.

(5.15)
The process (Wt)t is then (asymptotically) long-range dependent with Hurst parameter H
following equation (5.1) (H = 3−αH

2 ), where

αH = min(α′, αON). (5.16)

Proof. The first part is immediate from Propositions 5.3.2, 5.3.3 and 5.3.4. For the Hurst
parameter, recall that (see Chapter 2) a process is long-range dependent of Hurst parameter
H if its autocovariance function algebraically decreases like (t2 − t1)

2H−2.

Proposition 5.3.5 is our main result for this section. It establishes the long-range
dependence of the instantaneous bandwidth and gives the Hurst parameter. Before going
back to the in2p3 trace and verifying the consistence of our model choice with the data,
we make a few general remarks on the result of Proposition 5.3.5, and the choice of the
model.

Let us first comment on specific values of β = αON
αSI

.
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If β = 1 (αSI = αON): This case corresponds to the classical case of Taqqu’s model and
other infinite source Poisson models, where the rate is not correlated to the duration and
we have the same tail indices for the flow-size and flow-duration distributions. In this
case, the result of Proposition 5.3.5 reduces to Taqqu’s relation (5.1), where the tail index
controlling the long-range dependence αH is the unique tail index αSI = αON (bear in mind
that there are no heavy-tailed OFF times here because we used a Poisson flow arrival).

If β > 1 (αSI < αON): This is the case of the in2p3 trace, where the rate increases in average
with the duration of the flows. In this case the tail index controlling the long-range
dependence is αH = α′ < αON. The long-term correlations are then stronger than in
the case of constant rates. Note that, depending on the value of β, we can have either
αH < αSI, αH > αSI or αH = αSI. It means that the tail index controlling the long-range
dependence does not necessarily lie between αSI and αON, but can be smaller than both
these tail indices.

If β < 1 (αON < αSI): This case corresponds to a situation where the rate decreases in av-
erage with the duration of the flows. This could happen for instance with some scheduling
policy giving priority to small flows. In this case the tail index controlling the long-range
dependence is αH = αON < α′.

In the case where V = 0 (this corresponds to the deterministic case Ri = Dβ−1
i ), the tail

index controlling the long-range dependence is always αH = α′, even if β < 1. Note that
depending on the values of β, we can have in this case surprising situations similar to the
situations discussed for β > 1 where the tail index controlling the long-range dependence
αH is greater than the two tail indices αSI and αON. Note that the calculation of the
autocovariance function of equation (5.15) could easily be performed with some other (non-
constant) forms of the conditional variance Var{Ri|Di}. For example, an algebraically
increasing variance (Var{Ri|Di} = Dγ

i ) would lead to another index α′′ = αON − γ,
possibly controlling the long-range dependence for some set of parameters.

The long-range dependence that we have discussed until now is asymptotic long-range
dependence. However, depending on the values of the constants K and V , we can observe
situations where within some intermediate range of scale, the term of the autocovariance
function (5.15) with the larger exponent dominates. For example, in the case β > 1, the
first term of the autocovariance asymptotically dominates, but if the value of V is very
large and the value of K is not too large, the second term can dominate within some scale
range, thus leading to pseudo long-range dependence controlled by the tail index αON.
Note that the two constants K and V do not have the same units and cannot be compared
directly to one another. Instead, the whole terms of equation (5.15) have to be compared.

Let us finally mention that to “specify enough” the correlation between the flow rates
and durations, in order to compute the autocovariance function of equation (5.15), we had
to specify only the first two conditional moments E{Ri|Di} and Var{Ri|Di}. This is not
surprising since the autocovariance function is a second-order moment quantity, and we
found only second-order self-similarity (i.e., long-range dependence). To investigate finer
statistical properties of the instantaneous bandwidth, we might need to specify the entire
conditional probability P(Ri = r|Di = d).
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Figure 5.18: First two moments of the conditional probability of the flow rates given
the flow durations. The red dots are empirical histograms estimated on the in2p3 trace.
The black lines are not estimated from the empirical histograms. They have slope (left)
β − 1 = 0.4037 where β is estimated from the tail indices αSI and αON – (right) slope 0.
They have been vertically adjusted to fit the data in the range [1 − 100] s

5.3.3 Confrontation of the model with the real trace

We now come back to the in2p3 trace introduced in Section 5.3.1. Our goal is to con-
front the model we proposed in previous section to the real data, especially regarding
the assumptions we made on the correlation between flow rates and durations in Propo-
sition 5.3.5. From the in2p3 trace, we have obtained the estimations αSI = 0.8544 and
αON = 1.1994, which gives β = 1.4037, α′ = 0.392. Note that α′ < 1, so that the autoco-
variance function calculated in equation (5.15) theoretically diverges. As we shall see, the
long-range dependence observed in Section 5.3.1 is in fact pseudo long-range dependence,
i.e., we are interested in the autocovariance function decrease in a finite-scale range, so that
this divergence is not a problem (let us recall here that in Section 5.3.1 we have estimated
the values Ĥ = 0.901 ± 0.045 in the scale range: [0.64 − 40.96] s).

Figure 5.18 shows the conditional moments E{Ri|Di} and Var{Ri|Di}, as functions
of Di, estimated from the in2p3 trace. We plotted lines corresponding to the model of
Proposition 5.3.5: E{Ri|Di} = KDβ−1

i and Var{Ri|Di} = V , where K,V are constants,
with the estimated value of β. These lines are vertically adjusted and show a good match
in the range [1 − 100] s, with the values K = 105.2, V = 1012.4. This confirms the
relevance of our model in this scale range, which roughly corresponds to the scale range
in which we estimated the Hurst parameter in Section 5.3.1. With these values of K
and V , we can compare the two terms of the autocovariance function of equation (5.15).
We find that in the scale range of estimation of H ([0.64 − 40.96] s), the first term of
equation (5.15) is always five times smaller than the second term. We conclude that the
long-range dependence observed on Figure 5.16 is pseudo long-range dependence controlled
by the second term of equation (5.15), i.e., by the tail index of the flow-duration distribution
αON. The estimated value of the Hurst parameter shows a very good agreement with
relation (5.1) with αH = αON, confirming the accuracy of the model in Proposition 5.3.5
in predicting the Hurst parameter’s value provided that the terms of equation (5.15) are
appropriately compared in the scale range of interest.
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5.3.4 Conclusion

In this section, we developed a model taking into account the correlation between flow
rates and durations responsible for the different tail indices αSI and αON. Based only on
specifications of the first two order moments of the conditional probability of the rates given
the duration, we showed that the instantaneous bandwidth exhibits long-range dependence
with a Hurst parameter as in relation (5.1), where the controlling tail index αH can be either
αON or a combination of αON and αSI, whichever is the smaller. We also showed that, in
certain circumstances, pseudo long-range dependence with a different Hurst parameter can
be observed in a finite scale range. Finally, we validated the ability of our model to predict
the correct Hurst parameter on a real web traffic trace. However, the non-stationarity
inherent to real Internet data at large time scales (around one hour) constrained us to
restrain our study to 30 minutes of traces. Consequently, we observed pseudo long-range
dependence, and longer stationary traces would be required to illustrate the ability of
our model to predict asymptotic long-range dependence, which, as we saw, can exhibit a
different Hurst parameter.

The model proposed in this section is the first model, to the best of our knowledge,
that includes the correlation between flow rates and durations. This correlation is very
important. It has been observed for a decade [Crovella and Bestavros, 1997], and is likely
to become even more important with the appearance of FTTH and flow-aware approaches.
In the case where this correlation vanishes, our results coincide with the usual results
of Taqqu’s theorem. Further theoretical developments would be needed to give a more
rigorous mathematical statement of our results. Also, we assumed a Poisson flow arrival,
which is a useful simplification to conduct the calculations, but might not always hold.
Considering less restrictive flow-arrival processes would also be an interesting improvement
of our results, be it only to clarify in which situations a correlated flow-arrival process can
affect the aggregate traffic self-similarity.

Conclusion

In this chapter, we tackled the statistical characterization of aggregate network traffic,
focusing on large-scale scaling properties, namely long-range dependence.

We first performed a thorough investigation of Taqqu’s relation (equation (5.1)), in the
loss-free situation, then in more realistic conditions implying losses. This study showed
that, while the protocol TCP cannot be solely invoked to explain the long-range depen-
dence effects, its mechanisms can affect the Hurst parameter in two ways: exponential
backoff periods, splitting flows can annihilate the long-range dependence; and the RTT-
scale correlation between the sources can induce a deviation as compared to Taqqu’s rela-
tion. Beyond the proper use of robust statistical estimators, the very clear results that we
obtained were enabled by the use of long-duration and controlled traces generated on our
lar-scale experimental platform.

Moving beyond Taqqu’s model, we then proposed a extension of this model taking into
account unavoidable correlations between flow rates and durations. Our generalization is
fully consistent with Taqqu’s results (and other similar results), when this correlation falls
down to zero. Our approach was based on a planar Poisson point process, a setting rarely
used in long-range dependent models, which allowed us to refine the prediction of the Hurst
parameter. We believe that this setting, and the correlation parameter we introduced, will
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also conduct to interesting results on the small scales properties of the aggregate traffic.

Aggregate network traffic characterization.

- To what extend is Taqqu’s relation valid in real network conditions? What
are the scales involved? Does the protocol play a role? In which situation
(loss-free, lossy link, congestion)?

In loss-free situations, Taqqu’s relation is observed with a good agreement, inde-
pendently of the protocol, provided that the long-range dependence is mea-
sured in a significant scale range lying far beyond the mean flow duration.

In the lossy-link case, the long-range dependence persists with TCP for small loss
rates. For high loss rates, it breaks down because flows are split (by expo-
nential backoff periods) into smaller flows whose size distribution appears
exponential.

In the congestion case, the long-range dependence is present in sub-traffic corre-
sponding to a part of the sources, but its Hurst parameter is affected by the
correlation introduced by the interation of the sources at the buffer.

- What happens if flow-duration and flow-size distributions have different tail
indices? Which of these tail indices, if any, governs the long-range depen-
dence of the aggregate traffic?

A relation similar to Taqqu’s relation still holds. The governing tail index can
be the αON or a combination of αON and αSI, whichever is the smaller. In
some finite scale range, the larger of these indices can dominate in some
circumstances.



Chapter 6

Estimation of the flow-size

distribution’s tail index from

sampled data

The results of this chapter have been published in [3, 5].

Source-traffic characterization at flow scale.

- How to estimate the flow-size distribution’s tail index from packet-sampled
data?

Introduction

In the previous chapter, we assumed that the flow-size distribution had a given tail index,
and gave answers to the question of characterizing the aggregate traffic. We now turn to
the opposite question of characterizing the source traffic at flow scale, and focus on the
estimation of the flow-size distribution’s tail index. As we have seen in the previous chapter
that this tail index is likely to control the long-range dependence in many situations, its
estimation is indeed of primary importance. Moreover, knowledge of this tail index, as an
important part of the complete system description, can be very usefull in problems such
as characterization of the network’s resource usage, dimensioning, and scheduling.

Most proposed methods for estimating the tail index (see e.g. [Seal, 1952,Hill, 1975,
Crovella and Taqqu, 1999, Nolan, 2001, Gonçalves and Riedi, 2005, Clauset et al., 2009])
rely on observing the full traffic, implying the capture of every packets. However, with
very-high-speed networks, these methods become very demanding in terms of memory re-
sources and CPU consumption. It is thus necessary to sample the packet stream, retaining
(deterministically or randomly) only a subpart of the aggregated traffic going through the
link. This raises the question of how to estimate the flow-size distribution’s tail index from
sampled data, that we address in this chapter.

The more general problem of inferring the original flow-size distribution from sampled
data has been extensively studied in the literature [Duffield et al., 2003,Hohn and Veitch,
2006,Liu et al., 2006,Ribeiro et al., 2006a,Yang and Michailidis, 2007,Chabchoub et al.,
2009]. However, and despite its relatively simple formulation, no conclusive estimation
procedure or closed-form estimate expression has been derived so far. All approaches
undertake simplifying assumptions that lead to approximate solutions only.
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In this chapter, we derive the exact solution of the maximum-likelihood problem in the
case where the original flow-size distribution is a zeta distribution, and provide an analytic
expression for the heavy-tail exponent’s estimate from a sub-sampled packet series. We first
expose in Section 6.1 the mathematical formulation of the problem and set the definitions
and notation. Section 6.2 lists some of the previously proposed solutions to the problem
of tail-index estimation from sampled observations. In Section 6.3, we state and explicitly
solve the maximum-likelihood formulation of the problem. The proposed MLE solution is
given an enlightening interpretation in terms of a geometric solution that we proposed in
a former work. We complete this section with the Cramér-Rao bound derivation. Section
6.4 shows the results of numerical simulations to assess and rate MLE performance with
respect to that of previous approaches; and then compares the performance of the MLE
to the performance of the other estimators on the basis of a real Internet traffic trace.

Before developing our solution for the specific problem of estimating the flow-size dis-
tribution’s tail index, let us mention that the impact of sampling has recently been studied
in many other contexts (this list of papers is not exhaustive and the interested reader
can see the references within the papers cited here): in [Mori et al., 2004] and [Estan
and Varghese, 2002], the authors tackle the problem of identifying elephant flows from
sampled data. In [Barakat et al., 2005], the authors consider the problem of ranking the
largest flows on a link under packet sampling. In [Brauckhoff et al., 2006] and [Kawahara
et al., 2007], the authors study the impact of sampling on anomaly-detection methods.
Furthermore, in [Hohn and Veitch, 2006], the authors point out that flow sampling (i.e.,
the sampling decision is made on the flows, and every packet of a picked flow is collected)
is a way to bypass the major difficulties inherent to packet sampling in the flow statistics’
estimation. As a way to combine the good statistical properties of flow sampling with the
low computational cost of packet sampling, the authors in [Tune and Veitch, 2008] propose
Dual Sampling. However, as it remains the most simple sampling procedure, and as it is
implemented in many routers [13], we will only consider packet sampling in this work.

6.1 Problem definition and notation

In this paper, we analyze traffic time series consisting of a succession of TCP-IP packets,
observed over a time duration T . Recall that, while the strict notion of flow still fuels an
active debate, we adopt the consensual definition that flows are reconstituted by regrouping
packets sharing the same protocol, the same source and destination IP addresses, and the
same source and destination port, and that the flow size is then defined as the number of
packets therein. It is a discrete random variable that we denote S. The original flow-size
distribution reads:

PS(S = i) = φi, i ∈ N. (6.1)

It can be empirically estimated as the normalized frequency of flows with size i that are
observed over the period T .

For discrete random variables, the zeta distribution is the paradigm of heavy-tailed
distributions (see equation (2.7) for the definition of heavy-tailed distributions):

P (S = i;α) =
i−(α+1)

ζ(α+ 1)
; (6.2)
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where

ζ(α+ 1) =

∞∑

k=1

k−(α+1) (6.3)

is the Riemann zeta function. The zeta distribution is the discrete counterpart of the
Pareto distribution. In our study, we implicitly consider original flows whose sizes are i.i.d.
random variables drawn from a heavy-tailed distribution of the form (6.2). Our goal is
then to estimate the tail exponent α of this underlying distribution.

Estimating the α index of heavy-tailed distributions from a set of independent realiza-
tions of the random variable S is a classical problem, broadly treated in the literature for
both continuous and discrete variables. For instance, Hill [Hill, 1975] and Nolan [Nolan,
2001], proposed maximum-likelihood estimators (MLE) for Pareto and alpha-stable laws
respectively, whereas Seal in [Seal, 1952], derived the discrete MLE counterpart for a
zeta distribution, recently revisited in [Clauset et al., 2009]. The wavelet-based estimator
of [Gonçalves and Riedi, 2005] presented in Section 2.4.2 and used in previous chapter also
works in this situation for a general heavy-tailed distribution.

When variable S is not directly observable, but only a thinned version of it, things
become more complicated, and the proposed solutions not so conclusive. That is precisely
the case when memory and CPU consumption issues compel to sample the packets streams.
Thus, the observed flow size, defined as the number of sampled packets within a flow, is
a random variable Y on its own, different from the original flow size S, and following the
new distribution:

PY (Y = j) = ηj . (6.4)

The simplest way to practically perform packet sampling consists in sequentially picking
one packet every K ∈ N, where p = 1

K is the sampling rate. However, for theoretical
development purposes, it is much simpler to consider random sampling, which consists in
randomly picking every packet with a probability p. The two methods have been proven
equivalent when a sufficiently large number of intertwined flows is assumed [Chabchoub
et al., 2007]. Thereafter, a probabilistic sampling with sampling rate p is always assumed.
Then, the conditional probability that a sampled flow of size j comes from an original flow
of size i ≥ j is simply governed by a binomial law:

PY |S(Y = j|S = i) = Bp(i, j) =

(
i

j

)
pj(1 − p)i−j , (6.5)

From this, we get the sampled flow size distribution expressed in terms of the original flow
size distribution:

PY (Y = j) = ηj =

∞∑

i=j

Bp(i, j)φi. (6.6)

Let us notice that equation (6.6) is properly normalized provided that all sampled flow
sizes, including j = 0, can be observed. As this is generally unrealistic in practice1, we are

1With the TCP protocol, the number of missed flows can be estimated as the difference between the
total number of expected flows, given by the counting of observed SYN packets divided by p, and the
number of actually observed flows.
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led to introduce the minimal observable size of a sampled flow: jmin (so that PY (Y = j) = 0
if j < jmin), and the correct re-normalization of the sampled flow size distribution is:

PY (Y = j) = ηj =

∑∞
i=j Bp(i, j)PS(S = i)∑∞

j′=jmin

∑∞
l=j′ Bp(l, j

′)PS(S = l)

=

∑∞
i=j Bp(i, j)φi∑∞

j′=jmin

∑∞
l=j′ Bp(l, j

′)φl
, (6.7)

for all j ≥ jmin. The normalization factor naturally reduces to 1 when jmin = 0.
The problem we address in this paper is the following: how can we estimate the tail

index α of the original flow-size distribution PS from a finite set of sampled flow sizes
observations {yk}k=1,...,m?

6.2 Related work

In this Section, we provide a comprehensive survey of the major methods existing to
estimate the flow-size distribution’s tail index from sampled data, clarifying their different
nature and their common features.

One can tackle this estimation issue from two distinct perspectives: (a) by applying a
standard tail-index estimator to the flow-size distribution which has been priorly estimated
from the sampled observations (2-steps methods); or (b) by directly inferring the tail index
from the sampled observations (without estimating the underlying distribution). These
approaches are described in Sections 6.2.1 and 6.2.2, respectively.

6.2.1 Two-steps methods

In the presence of fully observed data, tail-index estimation has been largely investigated
and the 2-steps procedures share the same estimation choice given below (Section 6.2.1).
Regarding the inference of the unknown flow-size distribution, several possibilities are listed
in Section 6.2.1.

Tail-exponent estimation

Let us assume that we were able to properly estimate the original flow-size distribution
beyond a minimal size imin from the observed sampled flows. If this latter obeys a power-
law model of the form (2.7), estimating the tail index α is not plagued by the sampling
obstacle anymore, and the classical estimators mentioned above can directly apply. In
this study, we choose to use a Hill-type method [Hill, 1975], whose good performance
is notoriously acknowledged by the statistical community. The Hill estimator from the
inferred original flow-size distribution {φ̂i}i=imin,...,∞ reads:

α̂Hill =




∞∑

i=imin

φ̂i ln
i

imin




−1

. (6.8)

A slightly modified Hill-estimation procedure has been proposed in [Clauset et al.,
2009] as a more appropriate procedure than the classical Hill estimator for discrete random
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variables:

α̂Discrete =




∞∑

i=imin

φ̂i ln
i

imin − 1
2




−1

. (6.9)

Note that these two procedures lead to the same estimation if imin is sufficiently large.
Next Section details some proposed methods to estimate the original flow-size distri-

bution from a sampled packet sequence.

Flow-size distribution inference

Inverse approximation using an a priori.
The basic idea behind inverse approximation is to recover the original distribution via

the sum and product rules:

PS(S = i) =
∞∑

j=0

PS|Y (S = i|Y = j)PY (Y = j), (6.10)

where the conditional probability PS|Y needs first to be estimated. To this end, we use the
Bayes formula where we initialize the unknown distribution PS to an a priori distribution
P ap

S , and get:

PS|Y (S = i|Y = j) =
PY |S(Y = j|S = i)P ap

S (S = i)

PY (Y = j)

=
Bp(i, j)P

ap

S (S = i)∑∞
l=j Bp(l, j)P

ap

S (S = l)
. (6.11)

In this approach, the estimation accuracy of PS essentially depends on a relevant choice
of P ap

S .

Uniform a priori with rectangular approximation of the conditional proba-
bility – scaling method. The simplest a priori distribution that we can plug in equation
(6.11) corresponds to a uniform a priori : P ap

S (S = i) = C, ∀i, which yields the conditional
probability:

PS|Y (S = i|Y = j) =
Bp(i, j)∑∞
l=j Bp(l, j)

= p ·Bp(i, j). (6.12)

We can further simplify this expression, approximating the binomial function by a simplis-
tic rectangular window:

PS|Y (S = i|Y = j) = p, for i =
j

p
+ 1, . . . ,

j + 1

p

= 0, otherwise, (6.13)

which finally leads to the original distribution estimate:

φ̂i = p η⌊ip⌋, ∀i. (6.14)

This expression was originally proposed in [Duffield et al., 2003] and called scaling esti-
mator, as it simply corresponds to the sampled flow-size distribution, re-scaled by a factor
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p. Figure 6.1(a) shows an example of flow-size distribution inference with the scaling
method. It illustrates the principal characteristic of this method: the inferred distribution
is piecewise constant on intervals of length 1/p intervals (on Figure 6.1(a), the step width
decreases with i because of the logarithmic x scale).

Zeta a priori with geometric mean approximation. As we are interested in
heavy-tailed distributions, a more natural choice for the a priori distribution P ap

S is the
zeta distribution of equation (6.2) with pre-fixed tail index αap . Under this assumption,
the conditional probability (6.11) becomes:

PS|Y (S = i|Y = j) =
Bp(i, j)i

−(αap+1)

∑∞
l=j Bp(l, j)l

−(αap+1)
. (6.15)

Then, instead of distributing the binomial mass Bp(i, j) uniformly on the interval
[jp−1 + 1, (j + 1)p−1], we concentrate all the conditional probability mass corresponding
to a given j, on a unique point denoted ı̄(αap)(j):

PX|Y (X = i|Y = j) = 1, for i = ı̄(αap)(j)

= 0, otherwise. (6.16)

We heuristically proposed in [5] to choose ı̄(αap)(j) as the geometric mean of the sequence
i = j, . . . ,∞, weighted by the conditional probability (6.15):

ı̄(αap)(j) = exp

(∑∞
i=j ln(i)Bp(i, j)i

−(αap+1)

∑∞
l=j Bp(l, j)l

−(αap+1)

)
. (6.17)

A possible justification for this approximation lies in the fact that geometric means are
naturally adapted to hyperbolic functions such as the power-law decay of heavy-tailed
distributions. In Section 6.3, we will demonstrate that the expression ı̄ consistently arises
when deriving the exact solution of the maximum-likelihood estimator. Figure 6.1(b),
displaying an example of inference with the zeta a priori method shows that the inferred
distribution with this method is much more accurate than with the scaling method, and
already gives an empirical justification for this approximation based on the definition of ı̄.

In contrast with the scaling method of [Duffield et al., 2003], the proposed zeta a priori
depends on the tail exponent αap that is precisely to be estimated. We then suggest an
iterative procedure which uses the tail index estimated at step k − 1 to set the a priori
αap of step k.

Maximum-likelihood estimation of the original distribution.
In [Duffield et al., 2003] also, Duffield et al. tackle the direct estimation of the φi’s in

equation (6.1), solving the maximum-likelihood formulation of the problem. However, as
this approach is highly sensible to the variance of the observations (i.e., to the sampled
flow-size frequencies), they show that maximizing the likelihood function yields negative
frequencies. Therefore, imposing a positive constraint on the φi’s, they resorted to an it-
erative Expectation-Maximization (EM) algorithm [Dempster et al., 1977,McLachlan and
Krishnan, 1997] whose output converges towards the ML solution. Notwithstanding its
persuasive interest, the difficulty to define a relevant criterion to stop the EM iterations,
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Figure 6.1: Original flow-size distribution inference with: (a) the scaling method – (b)
the zeta a priori method – (c) the EM algorithm. The curves represent the inferred
distributions with sampling rates: (blue) p = 1/10 – (red) p = 1/100. The black dots
represent the original flow-size distribution (Zeta, α = 1.5).

induces oscillating phenomena that drastically distort the tail decay of the inferred distri-
bution, and lead to highly biased tail-index estimates (see Figure 6.1(c)). For this reason,
we discard this method from our numerical evaluation in Section 6.4.

This approach from Duffield et al. has recently been improved in two different ways:
in [Ribeiro et al., 2006a], the authors propose a method taking advantage of the protocol
informations contained in a packet (mainly the TCP sequence numbers) to improve the
accuracy of the estimation. In [Yang and Michailidis, 2007], the authors use a mixture
model for the original flow-size distribution, separating small and large flows, and jointly
estimate the mixture coefficient and the distribution. However, as we consider here a
rigorous zeta distribution for the flow-size distribution, and we assume no knowledge about
the protocol information, these methods fail to apply in our context.

Expansion of the probability-generating function.
In [Hohn and Veitch, 2006], the authors propose an original spectral approach to recover

the probability densities of the original flow sizes from the thinned packets distributions.
The central idea relies on the one-to-one correspondence between the density function and
the probability generating function of a random variable. Then, due to the analyticity
properties of the latter, theoretical results from complex analysis can directly apply to
infer the original flow-size distribution from the probability generating function of the
sampled packets’ time series. Two distinct methods are devised: the first one constructs
a power series expansion of the thinned probability generating function about the origin,
and finds its non-trivial analytic continuation to the entire analytic domain of the original
flow-sizes random variable. The second one is based on the Cauchy integral formula, whose
evaluation on any closed contour including the origin can lead to the desired φi’s.

According to the author’s own evaluation, both methods perform fairly well only for
values of the sampling rate p > 0.5. As we are interested in a sparser packet thinning (typ-
ically p < 0.1), we will not proceed with this approach. This limitation notwithstanding,
its elegant theoretical formulation deserves to be stressed here.
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6.2.2 Direct tail-index estimation

Although more straightforward, methods which do not imply prior estimation of the un-
derlying heavy-tailed flow-size distribution (or characteristic function), but directly deduce
the tail index α from the sampled packet series have received much less attention. To our
knowledge, the only existing approach of this kind was proposed in [Chabchoub et al.,
2008,Chabchoub et al., 2009] (see also [Chabchoub, 2009]).

The method relies on stochastic counting. Under the same sampling conditions, let Wk

be a random variable defined as the number of sampled flows observed k times during a
given observation period ∆. Using a Poisson approximation, and assuming (i) that the
total number of packets is much larger than p−1, and (ii) that the number of flows is large
enough, the authors in [Chabchoub et al., 2008,Chabchoub et al., 2009] analytically prove
that a relation between E{Wk} and E{Wk+1} holds, leading to the following estimate of
α:

α̂k = (k + 1)

(
1 − E{Wk+1}

E{Wk}

)
− 1, for k ≥ k0. (6.18)

In this expression, k0 is a threshold defined to ensure that the counting process only
comprises flow sizes lying in the power-law decay of the distribution, and beyond which α̂k
converges to the expected value of the tail index.

In practice, the duration ∆ is divided into M non-overlapping shorter time intervals of
size ∆/M . For each segment m = 1, . . . ,M , the counts W (m)

k simulate independent realiza-

tions of the random variable Wk. The empirical mean M−1
∑M

m=1W
(m)
k then substitutes

the ensemble average E{Wk} in (6.18).

6.3 Maximum-Likelihood Estimation of the tail index

We now elaborate on the direct estimation of the tail index α, from a statistical angle.

6.3.1 Formulation

In what follows, we assume that the original flow-size distribution follows a heavy-tailed
zeta distribution of the form (6.2). Under this condition, the sampled flow-size distribution
(6.6) becomes:

PY (Y = j|α) =
1

ζ(α+ 1)

∞∑

i=j

Bp(i, j)i
−(α+1), (6.19)

where all sampled flow sizes, including j = 0, are implicitly observed (jmin = 0). Then,
bypassing the unstable estimation of the underlying original flow-size distribution PS , we
can directly express the log-likelihood function as:

L(α) = −n ln ζ(α+ 1) + n
∞∑

j=0

ηj ln




∞∑

i=j

Bp(i, j)i
−(α+1)


 , (6.20)

where n is the number of observed sampled flow sizes. In practice, when not all the
sampled flow sizes are observed (i.e. jmin > 0), it is the properly normalized form (6.7)
that needs to be adopted and accordingly, equations (6.19) and (6.20) take on the form
given in Appendix A, Section A.1.
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Formally, the maximum-likelihood estimate of the tail index α is a solution to the
following maximization problem:

α̂ML = argmax
α

L(α), (6.21)

and is asymptotically unbiased.

6.3.2 Resolution and interpretation

Differentiating the log-likelihood function (6.20) and equaling the result to zero readily
brings out the quantity ı̄(α)(j) that we intuitively introduced in [5] (see Section 6.2.1):

ζ ′(α+ 1)

ζ(α+ 1)
= −

∞∑

j=0

ηj ln ı̄(α)(j). (6.22)

A closed-form solution to this equation is not available and we adopted a fixed-point
resolution technique. We numerically checked that such a fixed-point iteration converges
toward the maximum-likelihood estimate α̂ML within a reasonable number of iterations
(see Section 6.4.1). In addition, following the lines of [Duffield et al., 2003], we found that
solving this ML problem via an Expectation-Maximization algorithm leads to the exact
same iterated procedure, whose solution then coincides with the MLE (see Appendix A,
Section A.3, were the derivation is presented).

This striking accordance draws an indirect justification for the geometric transformation
of relation (6.17). Indeed, let us suppose that, regardless of the choice αap , the transformed
variable ı̄(αap)(Y ) does follow a heavy-tailed Pareto distribution with tail exponent α. This
assertion can be justified as follows. Firstly, given that the random variable S follows a
Pareto distribution with tail exponent α, the random variable Y is asymptotically heavy-
tailed with the same exponent α. This is proven in two different ways in [Hohn and
Veitch, 2006] and [Chabchoub et al., 2007]. In [Hohn and Veitch, 2006], the proof is
based on the study of the generating functions of S and Y with a Tauberian Theorem
(see [Bingham et al., 1987, p. 333]). In [Chabchoub et al., 2007], the proof is based on a
Berry-Esséen Theorem (see [Feller, 1971, p. 542]). Then, given that the random variable
Y is asymptotically heavy-tailed with tail exponent α, equation (A.11) (see Section A.2 of
Appendix A) clearly shows that the transformed variable ı̄(αap)(Y ) is also asymptotically
heavy-tailed with the same exponent α. Experimentally, we checked that this heavy-
tailness of ı̄(αap)(Y ) indeed holds when considering only the observations yk larger than
some threshold jmin rarely exceeding 3 or so. Under this hypothesis, maximization of the
corresponding maximum-likelihood principle leads to the equation

χ′(α+ 1, jmin)

χ(α+ 1, jmin)
= −

∞∑

j=jmin

ηj ln ı̄(αap)(j), (6.23)

where

χ(α+ 1, jmin) =
∞∑

j=jmin

(
ı̄(αap)(j)

)−(α+1)
. (6.24)

In appendix A.2, we show that for large values of jmin:

χ(α+ 1, jmin) ≃ p · ζ(α+ 1, ı̄(α)(jmin)),
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where

ζ(α+ 1, imin) =

∞∑

i=0

(i+ imin)
−(α+1) ,

which clearly implies:

χ′(α+ 1, jmin)

χ(α+ 1, jmin)
=
ζ ′(α+ 1, ı̄(α)(jmin))

ζ(α+ 1, ı̄(α)(jmin))
.

This shows that applying directly a maximum-likelihood principle to the transformed ran-
dom variable ı̄(αap)(Y ) for the tail-index estimation with a heavy-tailed Pareto hypothesis
(i.e. using equation (6.23), and iterating), leads to the exact same procedure as applying
a fixed-point method to solve the initial maximum-likelihood problem (equation (6.22)).

In appendix A.2, we also show that for large values of jmin:

χ(α+ 1, jmin) ≃ p ·
(̄ı(α)(jmin))

−α

α
. (6.25)

Plugging equation (6.25) into equation (6.23) yields, after differentiation:

α̂ =




∞∑

j=jmin

ηj ln
ı̄(αap)(j)

ı̄(αap)(jmin)




−1

, (6.26)

which is a classical Hill estimation applied to the random variable ı̄(αap)(Y ) (see equation
(6.8)). Note that as previously mentioned, a classical Hill estimation (equation (6.8), [Hill,
1975]) and a modified estimation (equation (6.9), [Clauset et al., 2009]) lead to the same
result because in our case the practical values of ı̄(αap)(jmin) are sufficiently large.

6.3.3 Properties of the MLE

One additional feature of our approach is that being statistically well-based, theoretical
properties of the proposed estimator are accessible and allow us to evaluate its performance
in terms of bias and variance.

As previously mentioned, the ML estimator is asymptotically unbiased. In addition, we
can derive the theoretical Cramér-Rao bound fixing, for a given sample size, the minimum
variance that an unbiased estimator can achieve, that is:

Var(α̂) ≥ 1

I(α̂)
, (6.27)

with Fisher information:

I(α̂) = −E

{
∂2

∂α2
L(α)

}∣∣∣∣
α=bα

.

If the MLE is only asymptotically unbiased, the Cramér-Rao bound is the minimum vari-
ance only asymptotically. An unbiased estimator is said efficient if its variance attains the
Cramér-Rao bound, and if such estimator exists, then the MLE is necessarily efficient.
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In our case, straightforward differentiation of equation (6.20) gives

I(α) = n

[
ζ′′(α+1)ζ(α+1)−ζ′2(α+1)

ζ2(α+1)
+ EY

{(
P

∞

i=1 ln iBp(i,Y )i−(α+1)
P

∞

l=1Bp(l,Y )l−(α+1)

)2
}

−EY

{
P

∞

i=1(ln i)2Bp(i,Y )i−(α+1)
P

∞

l=1Bp(l,Y )l−(α+1)

}]
, (6.28)

where, again jmin = 0 is implicit. A different value of jmin essentially modifies the first term
of this sum, where the Riemann zeta functions undergo the same change as in equation
(6.7). The equation corresponding to jmin > 0 is given in Appendix A, Section A.1 (eq.
(A.3)). In equation (A.3), both n and its multiplicative factor depend on jmin. However,
as illustrated by the plots of Figure 6.2, the decrease of n with jmin always dominates the
non-monotonous variations of the other term. Therefore, the Cramér-Rao bound, as the
Fisher information, is essentially controlled by n, the number of observed sampled flows.

Note that the minimal index in the summations have been set to 1 in these equations
instead of the realization yk of the random variable Y . Since Bp(i, j) is equal to zero for
i < j, the sum remains unchanged.

Notably, we find that the second term of the right-hand size of the sum simply reduces
to EY {ln2 ı̄(α)(Y )}, where ı̄(α) was heuristically defined in (6.17).

6.4 Results

6.4.1 Performance evaluation using numerical simulations

Simulation scheme

We numerically evaluate the performances of the maximum-likelihood estimator α̂ML de-
rived in previous section, and draw up a comparative study with the other estimators
itemized in Section 6.2. Our study relies on synthetic traffic generated under matlab, as
exposed in Section 4.4. This allows us to flexibly adjust the different influencing parameters
such as the tail exponent of the prescribed flow-size distributions.

The traffic simulated reproduces the aggregated traffic generated by Nsources = 100
homogeneous ON/OFF sources.

The flow-size distribution is prescribed to a zeta distribution (6.2), with tail index α.
In addition, we fixed the following traffic characteristics:

• OFF periods are exponentially distributed. OFF and ON durations have the same
mean.

• Each source rate is set to 10 Mbps, resulting in a mean aggregated traffic of 500 Mbps.

• Packet size is constant and fixed to 1500 Bytes.

• Experimental data corresponds to a stationary packets series generated over a T =
300 s period.

The tail index α takes on five possible values: 1.1, 1.3, 1.5, 1.7 and 1.9. For each
of those, we generated 50 independent time series, that we randomly thinned afterwards,
imposing three different values for the sampling rate p: 1/10, 1/100 and 1/1000. For
each combination of α and p, bias and variance of all studied estimators are empirically
evaluated from the 50 independent realizations.



112 CHAPTER 6. ESTIMATION OF α UNDER SAMPLING

(a)

I(
α
)/
n

0 2 4 6 8 10
10

−3

10
−2

10
−1

10
0

10
1

jmin

(b)

n

0 2 4 6 8 10
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

jmin

(c)

I(
α
)

0 2 4 6 8 10
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

jmin

Figure 6.2: Variations of the different parts of the Fisher information with jmin (see
eq. (A.3)): (a) the pre-factor of the Fisher information I(α)/n – (b) the number of sampled
flows n – (c) the total Fisher information I(α). The three curves on each graph correspond
to three different values of p: (©, blue) p = 1

10 – (♦, red) p = 1
100 – (×, black) p = 1

1000 .
The number of original flows is fixed to N = 107 and α is fixed to 1.5. The graphs are
obtained with the numerical simulation described in Section 6.4.1.
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Figure 6.3: Comparison of the different tail-index estimation methods for five values of α:
1.1, 1.3, 1.5, 1.7, 1.9 (a small horizontal shift is introduced for clarity purposes): (blue) MLE
– (red) Zeta a priori method – (green) scaling method – (magenta) stochastic-counting
method. The error bars are centered on the bias and their lengths correspond to one
standard deviation from the mean.

Comparison between the different estimators

Under the experimental conditions described above, Figure 6.3 displays the statistical per-
formances of the different tail index estimators: the scaling method, the inverse approx-
imation with a zeta a priori, the stochastic counting and the MLE. Every experimental
result was obtained after we manually optimized each method’s parameters, so that each
of them reaches its minimum mean square error (MSE).

As a general remark, we stress that the performance of all the estimators systematically
degrades with α. We put forward two causes to explain this. First, the estimation’s
difficulty is inherently increasing with as the scarcity of large flows grows (as α increases,
the number of original elephants decreases and the number of large sampled flows also
diminishes). Second, as we consider a fixed-length observation window, the number of
original flows during this period grows as the tail distribution gets lighter (i.e., α goes
towards 2). These two competing phenomena should somehow balance. However, as we
mentioned, jmin > 0 is an important tuning parameter in all the methods, that forces to
discard the small sampled flows. Given that its effect is more penalizing for large values
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of α than for small ones, the number of observed flows effectively drops when α tends to
2, hence an increasing estimation variance.

Scaling method. This estimator shows a systematic bias which increases both
with the tail index α and as the sampling rate p gets smaller. As we reported in [5], this
poor performance certainly comes from the crude uniform a priori density choice and from
the finite-support boxcar approximation. In practice then, the scaling method cannot be
reliably used when p ≤ 1/10.

Inverse approximation with zeta a priori. We had to select a sensible criterion
to stop this iterative procedure: convergence is supposedly attained when the difference
between two consecutive estimates of α becomes smaller than 0.005. In practice, this
leads, in most cases, to a number of iterations between 10 to 100 iterations. As expected,
compared to the scaling method, a more appropriate choice of the a priori law, along with
a more adapted approximation of the binomial mass, sensibly reduces the estimation bias
and variance. For p ≥ 1/100, the bias even stabilizes with α. Still, for p ≤ 1/1000, the
influence of jmin > 1 becomes too penalizing and the estimates turn rapidly unreliable for
large values of α.

Stochastic counting method. The practical relevance of equation (6.18) depends
on a correct choice of the threshold k0. As for the other methods, this parameter was
systematically tuned so as to minimize the MSE for each combination of the pair α and
p. The observation period ∆ is set to ∆ = 5 s. Compared to the previous approach,
both bias and variance go up for almost all configurations. Yet, they remain remarkably
steady as p goes from 1/10 to 1/100. Even more, the variance remains roughly constant
with α and almost unchanged when the sampling rate falls to 1/1000. Its relatively poor
performances notwithstanding, this striking stability is a valuable asset that prompts the
use of stochastic counting with sparse thinning. Moreover, the extreme simplicity of the
method allows for a responsive implementation at a very low computational cost.

MLE. For the sake of fairness, we discarded from this analysis the particular choice
jmin = 0, as it would involve non observable data, only retrievable from a deeper TCP
packet inspection. Then, as the thorough MLE study of the next Section will show, MSE
systematically increases with jmin, and so we keep this index constant and equal to 1 in
the following experiments.

It is clear from Figure 6.3, that MLE outperforms all the other methods. The variance
of estimation is not only an order of magnitude below that of the inverse approximation
with a zeta a priori, but also remains perfectly acceptable at very loose sampling rates.
More precisely, we attain a precision up to the second decimal for p = 1/100, and up to
the first decimal in the worse case corresponding to p = 1/1000 and α = 1.9. Regarding
the bias, the estimates of Figure 6.3 show no visible deviation from the theoretical values
of α. The next Section reports on a more systematic evaluation of the MLE solution.

MLE performances

maximum-likelihood estimators are, by nature, asymptotically unbiased, as the numerical
simulations of Figure 6.3 confirm. We undertook a complementary series of experiments to
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represents the theoretical lower bound of the variance (Cramér-Rao bound). The value of
α is fixed to 1.5

precisely evaluate the evolution of the vanishing bias when the number N of original flows
grows to infinity, and for different sampling rates p. Fixing α = 1.5, we then observed that
beyond a number of original flows N ≥ 106 the bias stays below 0.003 for all thinning cases
(p ≥ 1/1000) and for jmin = 0. Under the same conditions though, it raises to 0.005 if,
shifting jmin to 1, we discard the smallest sampled flows and reduce the number of effective
observations. Numerical approximations needed to implement the MLE can also partially
explain the residual bias.

We derived in Section 6.3.3 the Cramér-Rao bound associated to the estimation of
the tail index α, from a sequence of n sampled flows. As n varies with jmin, (n = N if
jmin = 0, n ≤ N otherwise), it is empirically estimated for N , p and jmin fixed, and then
used to evaluate the theoretical bound of inequality (6.27). For different values of p and
jmin, Figure 6.4 plots as a function of N , the empirical variances obtained from numerical
simulations. Experimental points overlay almost perfectly with the theoretical limits, and
prompt to the conclusion that the proposed MLE is efficient, even though we have no
rigorous proof of this claim.

Now, analyzing the plots for N fixed, the variance of estimation naturally increases as
the sampling process gets looser (i.e., p gets smaller). It also increases with jmin. This is
clear from Figure 6.2 (c), which shows that the Fisher information is a decreasing function
of jmin and thus the Cramér-Rao bound is an increasing function of jmin. Let us recall
here that the dominant effect in the deterioration of the variance when jmin increases is the
consequent decrease of the number of observed flows (see Section 6.3.3 and Figure 6.2).

Compared to the variance amplitude, the bias of estimation is clearly negligible. Then,
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regarding the mean square error (defined as the sum of squared bias and variance), it is
primarily governed by the variance and behaves like O

(
N−1

)
. In particular, experimental

results show that for a number of original flows larger than 106, the MSE does not exceed
10−4 when p ≥ 1

100 , leading to a two decimal accuracy on the tail index estimate. Obviously,
this outstanding precision, albeit very loose sampling, stems from a perfect match between
data and the zeta distribution model. In the more general case though, where distributions
are only asymptotically heavy-tailed, we are led to choose a larger value for jmin. As a
consequence, the effective number of sampled observed flows reduces accordingly and the
performances of the MLE estimator can notably degrade.

Finally, let us stress that the computational cost of MLE, is an important drawback that
can seriously hamper its use with real time constraints. However, storage of the important
quantities for sampled values of α is a potential solution to overcome this limitation.

6.4.2 Confrontation to real traces

To evaluate the robustness of our maximum-likelihood estimation of α in the context of real
traffic traces, we estimate α from an artificially sampled trace of internet traffic, captured
on a real network link. We use the real trace acquired at École Normale Supérieure de
Lyon, described in Section 4.3, where a timeout of 1 s is chosen for the flow reconstruction
(but we check that other values yield almost the same results, so that this value is not
critical).

The corresponding flow-size distribution, displayed in Figure 6.5 in log-log coordinates,
clearly shows a heavy-tail behavior, and a zeta distribution model reasonably fits the data,
provided that we discard flows of size smaller than some threshold imin. In our experiment,
setting imin to 35, we obtained a maximum-likelihood estimate of the tail index without
sampling equal to α̂ = 0.9047. We will use this value as a benchmark to compare the
different sampling approaches.

To evaluate the accuracy of the different methods to estimate the flow size distribution
tail index from sampled data, we artificially perform sampling on this trace with the three
different sampling rates: p = 1/10, p = 1/100 and p = 1/1000. Again, flows of size smaller
than some threshold jmin are discarded for the estimation of α. This threshold is set as
follows: jmin is the smallest value of j verifying Bp(imin, j) < ε where j ≥ pimin and ε is a
threshold set to 0.05. Thus, every considered flow of size j ≥ jmin is the sampled version
of an original flow of size i ≥ imin with a probability greater than (1 − ε). Practically, in
our case, the values of jmin are jmin = 7 for p = 1/10 and jmin = 2 for p = 1/100 and
p = 1/1000. For the estimations based on the stochastic counting method, the parameters
k0 and ∆ are set to k0 = jmin and ∆ = 30 s respectively.

Table 6.1 reports the estimated tail indices obtained with the different methods previ-
ously considered. Although all the methods give estimates of α roughly coherent with the
expected value, two methods clearly stand out.

Firstly, the MLE clearly outperforms all the other methods in all the cases. This is a
direct consequence of the maximum-likelihood principle which yields an adapted estimator,
and it shows the relevance of the zeta distribution model utilization. Then, the inverse
approximation method using a zeta a priori with a geometric mean approximation yields
the closest estimates. This concordance is naturally interpreted by the fact that, as shown
in Section 6.3.2, the zeta a priori with geometric mean approximation method shares the
same basic estimation quantities (ı̄(αap)(j)) as the MLE, and gives a good approximation
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Figure 6.5: Flow-size distribution for the Internet traffic in a university context.

MLE Zeta a p. Scaling Stochastic
with geom. counting

p mean approx.
1 0.9047 - - -

1/10 0.9196 0.9281 0.9861 0.8413
1/100 0.9216 0.9935 1.2741 0.7050
1/1000 0.9572 1.0042 1.3160 1.0407

Table 6.1: Tail-index-parameter estimation for the Internet trace.

of the exact maximum-likelihood solution. Table 6.1 for this method reveals a small bias
increasing as the sampling gets looser (p gets smaller), which is fully consistent with the
results of Section 6.4.1 (Figure 6.3), for small values of α.

The last two methods give less accurate estimates. In adequacy with the results of
Section 6.4.1 (Figure 6.3) for small values of α, the scaling method shows a positive bias,
increasing as the sampling gets looser. This bias practically makes the use of the scaling
method impossible for p ≤ 1/10. The stochastic counting method seems to give reasonable
estimates for any value of p. However, we want to stress here that this method relies on
an appropriate choice of the observation period ∆, which has to be made with respect
to a bias-variance tradeoff (too large a value of ∆ deteriorates the estimation of E{Wk},
thus increasing the variance, whereas too small a value of ∆ might introduce an important
bias). An inappropriate choice might make the estimation unstable and hamper practical
use of this method.

Finally, we want to insist that the oustanding performance of the MLE comes at a high
computational cost, whereas the stochastic counting method has a very low cost.
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Conclusion

In this chapter, we tackled the question of estimating the flow-size distribution’s tail index
from packet sampled data. To address this question in a theoretically well-based framework,
we used the zeta distribution as a paradigm of discrete heavy-tailed distributions.

We first reviewed the existing methods using simplifications, thus providing better in-
sights into the nature of their approximations and highlighting the relationships between
the different methods. In particular, we provided a theoretical justification for the (bino-
mial) weighted geometric mean, a heavy-tailed data mapping that we had initially proposed
in [5] in an ad-hoc manner. Then, to go beyond approximated solutions, we derived the
exact maximum-likelihood estimation of the tail index. Our analytic solution was clearly
shown to outperform other estimation variants and we reported very good results on sim-
ulated data and on a real traffic trace as an illustration.

For higher practical capabilities, further investigation is required to make our maximum-
likelihood approach more efficient. Although theoretically sub-optimal some approximated
methods are much faster in term of computational time and the possibility to find a good
compromise between optimality and computational efficiency should be considered. In-
deed, a computationally efficient estimation procedure using sampled data could prove
very useful in the context of real-time adaptive protocols and network mechanisms, where
the time constraint makes long computation based on the entire traffic observation impos-
sible. Furthermore, the design of more robust estimators is also an interesting direction of
research as maximum-likelihood approaches are likely to be very sensitive to data-model
mismatches.

Finally, even if our ML estimator was developed within the specific context of network
monitoring, it can readily apply to other situations of the same kind. For instance, this is
the case with social networks where individuals (the equivalent of packets) are clustered
into groups (the equivalent of flows) of heavy-tailed distributed sizes, and when only a
cross-section of the population is observed.

Source-traffic characterization at flow scale.

- How to estimate the flow-size distribution’s tail index from packet-sampled
data?

We provide an exact maximum-likelihood solution for a zeta flow-size distribu-
tion, and show that most existing solutions are approximations of this MLE.
Our MLE outperforms previously proposed solutions.



Chapter 7

Impact of heavy-tailed flow-size

distributions on Quality of

Service

This chapter describes an early-stage research, and the preliminary empirical results pre-
sented here have not yet been published.

Impact of the traffic characteristics on QoS (in performance terms).

- In realistic conditions implying finite buffer sizes, what is the impact of heavy-
tailed flow-size distributions on QoS (in performance terms)? More pre-
cisely, on which QoS metric?

Introduction

In the last two chapters, we have seen how heavy-tailed flow-size distributions generate
long-range dependence in the aggregate traffic, and how to estimate the tail index αSI of
these distributions from sampled packet data. In this chapter, we now tackle the question
of the impact of the parameter αSI on the Quality of Service, in performance terms.

We have seen in Section 3.2 of Chapter 3 that many theoretical results appeared recently
on the impact of αSI on QoS. However, most of them give asymptotic results, either for very
large or very small buffers (see [Mandjes and Boots, 2001]), and do not consider the impact
of the TCP feedback. These results predict a degradation of QoS with small values of αSI

(i.e. very heavy tails) when the buffer is large, and an insensitivity of QoS with respect
to αSI for small buffers. A numerical evaluation (based on ns2 simulations) of the impact
of αSI with the TCP protocol appeared in [Park et al., 1997], where the authors reach the
same conclusions. However, more recent studies [Arvidsson and Karlsson, 1999,Ben Fredj
et al., 2001] argued that only the mean of the flow-size distribution is important. In this
chapter, our goal is to provide qualitative insights into the impact of the value of the tail
index αSI in practical situations implying finite-size buffers of medium size, for the two
protocols UDP and TCP.

The tail index αSI describes the algebraic decay of the distribution in the asymptotic
regime of very large flows, but does not depend on the body of the distribution. However,
the Pareto distribution has only two parameters: µSI and αSI. The mean flow time µSI is
an important parameter, which controls the small-scale correlation of the traffic and the
number of active flows. It has been posited as a major control parameter [Arvidsson and

119
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Karlsson, 1999,Ben Fredj et al., 2001], which is why we keep it constant in our simulations.
Thus, varying the αSI parameter not only changes the tail of the distribution, but actually
modifies the entire distribution. To assess the role of the distribution’s tail parameter
αSI, we will systematically compare the results obtained using two different Pareto-like
distributions whose parameters µSI and αSI are the same, but whose bodies are different:

(P1) p1(s) =
αSIk

αSI
1

(s+ k1)(αSI+1)
, s > 0, (7.1)

(P2) p2(s) =
αSIk

αSI
2

s(αSI+1)
, s > k2, (7.2)

where k1 = (αSI − 1)µSI and k2 = (αSI−1)µSI

αSI
. Note that the distribution (P1) is the

distribution introduced in equation (2.9) (in Section 2.2 of Chapter 2) that we have used
in previous chapters.

As we have mentioned in Chapter 1, questions related to QoS reveal different aspects
if the protocol used is UDP or TCP (because of the feedback introduced by TCP), and we
used different approaches to deal with these two cases.

7.1 The UDP case: numerical study

In the case of UDP traffic, the source emission process is independent of the system’s
dynamic and we use matlab simulations described in Section 4.4 of Chapter 4. The typical
meaningful QoS metrics for UDP traffic that we consider here are loss rate and buffer
occupancy.

7.1.1 Simulations’ description

Most of our simulations consist of simulated traffic from 50 ON/OFF sources, whose pa-
rameters are summarized in Table 7.1. The aggregate traffic is averaged in basic time
windows of size ∆0 = 0.2 ms and used as the input of our continuous queue simulator.
Our queueing simulations cover a large spectrum of buffer sizes B between 20 and 105 pkts.
As a meaningful quantity, we define quantity ∆B = B×pktsize

C , which represents the buffer
size in time units, or the buffer scale. We verified that for buffers of size ∆B larger than
∆0, continuous and discrete queue simulations give the same results, confirming the ability
of the buffer to absorb traffic variations at scales smaller than ∆B.

Using continuous queue simulations allows us to flexibly manipulate the input traffic.
Then, we can impose a load of exactly 0.95 by adjusting the mean of the aggregate traffic.
To assess the role of multiplexing on the queueing behavior, we also easily simulate the
aggregate traffic from 200 independent sources by dividing the variance of the aggregate
traffic from 50 independent sources by 4.

7.1.2 Results and discussion

Loss rate

Impact of αSI. Figure 7.1 (top) displays the loss rate as a function of the buffer size
∆B. For each distribution (P1) or (P2), comparison of the graphs for the different values of
αSI clearly brings the same conclusion: the loss rate is independent of αSI for small buffers,
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Parameter value

Bottleneck C = 1 Gbps
Buffer size 20 − 105 pkts
Source nb. 50
Source rate 38 Mbps

load 0.95
Experiment duration T = 2 hours
Flow-size distribution heavy-tailed, (P1) or (P2)

αSI = 1.1, 1.5, 1.9 or 3.0
Mean ON time µON = 0.0316 s

OFF time distribution exponential
Mean OFF time µOFF = µON

Table 7.1: Simulations’ parameters

and decreases when αSI increases for large buffers (the heavier tail, the higher loss rate).
This result is fully coherent with the asymptotic results of [Mandjes and Boots, 2001]. To
specify the bound between those two regimes, Figure 7.1 (bottom) displays the standard
deviation of the aggregate traffic averaged at scale ∆B. As we have already commented in
Chapter 5, the standard deviation depends on αSI only beyond the knee µON. Interestingly,
we observe that the critical value of ∆B beyond which the loss rate depends on αSI does not
correspond to this same knee (it is actually much smaller). This indicates that the standard
deviation of the input traffic at scale ∆B is not sufficient to evaluate the loss rate with a
buffer of size ∆B. Instead, correlations at scales larger than ∆B play an important role.
This result is fully coherent with the critical time-scale approximation and the subsequent
approximation of [Ribeiro et al., 2006b] (see Section 3.2 of Chapter 3), showing that the
loss rate (or more precisely in these theoretical works, the overflow probability) depends
on the marginal distribution of the input traffic at all time scales. Practically, here, the
loss rate significantly depends on αSI even for buffers of size much smaller than µON, for
both distributions (P1) and (P2).

Impact of the distribution shape. We now turn to the comparison of the results
obtained with distributions (P1) and (P2) for a same value of αSI. Figure 7.1 (top) shows
that for each value of αSI, distribution (P1) leads to higher loss rates than (P2). This
holds for values of ∆B larger than a threshold approximately equal to the critical buffer
size mentioned above, beyond which the loss rate depends on αSI. Figure 7.1 (bottom)
on the other side shows that the standard deviation of the input traffic is larger with
distribution (P1) only above the classical knee µON. Based on the results discussed above,
it is not surprising that this differentiation of the standard deviations beyond µON has
an effect on the loss rate for much smaller buffers. To interpret the variations of the
standard deviation, Figure 7.2 displays distributions (P1) and (P2) for each value of αSI

and the corresponding log-diagrams of the aggregate traffic. This figure shows that while
the algebraic decay of the distribution is the same with (P1) and (P2), the asymptotic
regime is achieved for larger flow sizes with distribution (P1), resulting in a higher number
of large flows. This effect increases when αSI increases and the ratio between the two
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Figure 7.1: Loss rate and standard deviation of the aggregate traffic versus ∆B for dif-
ferent values of αSI and for distributions (P1) and (P2). (continuous lines) The flow-size
distribution follows the law (P1) – (dashed lines) The flow-size distribution follows the
law (P2). (•, blue) αSI = 1.1 – (◦, red) αSI = 1.5 – (×, green) αSI = 1.9 – (⋄, magenta)
αSI = 3.0. The missing points on the right part of the loss-rate curves for large values of
αSI correspond to situations where no loss was observed in the simulation.
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distribution tails can be simply related to the ratio of the pre-factors of distributions (P1)
and (P2) for large flow sizes: ααSI

SI (see equation (7.2)). Similarly, the asymptotic regime is
also achieved at a larger scale in the log-diagrams with distribution (P1), and corresponds
to a higher absolute value of the variance at large scales. As compared to distribution (P2)
for the same mean and tail index, the use of distribution (P1) then leads to a larger loss
rate for large buffers.

Impact of multiplexing. To conclude our discussion on the impact of αSI on the
loss rate, we comment on the effect of multiplexing. Since we have seen that for the
two distributions (P1) and (P2) the impact of αSI is the same, we discuss here only the
results for distribution (P1) displayed on Figure 7.3. The input traffic corresponds to the
aggregation of 200 sources yielding the same load of 0.95. Although the loss rates are
smaller than on Figure 7.1 (top) which corresponds to a traffic of 50 sources (because
the standard deviation of the input traffic is smaller), the same variations with αSI are
observed. Consequently, the same conclusions hold: the loss rate depends on αSI only
beyond some threshold, significantly smaller than µON. We conclude that, as pointed out
in several papers (see Section 3.2 of Chapter 3), multiplexing only affects a pre-factor of
the loss rate, and does not modify the impact of αSI.

Buffer occupancy

We now turn to the buffer occupancy. To comment on the impact of αSI, we concentrate
only on the case where the input traffic corresponds to the aggregation of 50 sources,
whose flow-size distribution follows law (P1). Figure 7.4 shows the mean buffer occupancy
as a function of ∆B. Clearly, the same conclusion as for the loss rate holds: the mean
buffer occupancy is insensitive to αSI for small buffers, and decreases when αSI increases
for large buffers (the heavier the tail, the larger the mean buffer occupancy). However,
contrarily to the case of the loss rate, the knee µON is a rather accurate critical value
to distinguish those two regimes. We propose the following interpretation of this result.
Given a buffer scale ∆B, the correlations of the aggregate traffic at larger scales tend to
increase the loss rate because they induce long periods where the aggregate traffic is larger
than the capacity, thus feeding the buffer beyond its size. However, during these periods,
the buffer occupancy saturates at a value corresponding to its size. These long periods
where the buffer occupancy is equal to its size are also compensated by long periods where
the aggregate traffic is smaller than the capacity and the buffer occupancy is zero. This
compensation leads to a mean buffer occupancy that does not depend on the correlations
at scales larger than ∆B, but instead depends mainly on the variance at scale ∆B. In
other words, the mean buffer occupancy is a first order statistic and depends mostly on
the (mean and) variance of the input traffic at scale ∆B; whereas the loss rate is a more
complex property of the buffer occupancy distribution that depends also on the correlations
at larger scales.

To complete the description of the buffer occupancy, Figure 7.5 displays the buffer-
occupancy distributions for 3 different buffer sizes (small, medium and large). This figure
shows a complex behavior of the occupancy distribution, but allows us to make a few
general comments. Firstly, as it was the case for the mean delay, the distribution signifi-
cantly depends on αSI only for large buffers. Also, the distribution of the delay for small
buffers is not a truncated version of the distribution for large buffers. This is due to the
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are therefore presented with their absolute position. The distributions displayed are the
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saturation effect, characteristic of finite-size buffers that we discussed above. It illustrates
the difference between the loss rate in a finite-size buffer and the overflow probability in
an infinite-size buffer, mentioned in Section 3.2 of Chapter 3, which although following
similar trends, are different quantities.

7.1.3 Conclusion

In this section, we showed that for UDP traffic, the QoS metrics loss rate and buffer
occupancy are degraded with very heavy tails (small values of the tail index αSI) if the
buffer is “large enough”. We showed that this result holds independently of the distribution
used ((P1) or (P2)), even if the chosen distribution has an effect on the absolute values of
these QoS quantities. For the mean buffer occupancy, we showed that the classical knee
µON is a good critical value to distinguish small and large buffers. On the opposite, the
loss rate is sensitive to αSI even for much smaller buffers. We interpreted this difference by
the fact that the mean buffer occupancy, as a first-order statistic, is mostly sensitive to the
aggregate input traffic characteristics at scale ∆B, whereas the loss rate, as a more complex
property of the distribution, is also sensitive to the correlations at larger scales. A more
comprehensive set of experiments would be required to further investigate this preliminary
interpretation. In particular, we used a Gaussian input traffic which is then characterized
only by its variance at each scale. Given the non-linear effects of the queueing behavior,
it is likely that the situation would be more complex in a more general context. This will
be the object of future work.

7.2 The TCP case: experimental study

In the case where the TCP protocol is used, the analysis of QoS is more complex and a
simple simulation-based approach as we used for UDP is not possible. The feedback mech-
anism makes impossible an open-loop analysis, where the traffic is first generated, and then
given as the input of a queue simulator. Moreover, the load is not controlled. Instead, it
is a consequence of the TCP mechanisms adapting the emission rate of each source. The
sources are also no longer independent: their interaction at the buffer introduces correla-
tions at the RTT scale. Finally, as we have seen in Section 5.2.2 of Chapter 5, the aggregate
traffic is strongly non-Gaussian and thus cannot be characterized simply by its variance.
For these reasons, the question of the impact of heavy-tailed flow-size distributions is more
delicate in the case of TCP than in the case of UDP, and the conclusions can be different.
Among the answers proposed in the literature accounting for the TCP feedback (see Sec-
tion 3.2 of Chapter 3), different conclusions have been reached. In [Park et al., 1997], the
authors conclude, based on ns2 simulations, that a very heavy tail (i.e., a small tail index)
systematically degrades the performance. On the other hand, in [Arvidsson and Karlsson,
1999,Ben Fredj et al., 2001], the authors propose models showing that first-order perfor-
mance statistics (e.g., mean throughput and flow completion times) depend only on the
mean of the flow-size distribution.

In this section, we provide results of experiments performed on our metrology platform
described in Section 4.2 of Chapter 4, attempting to provide qualitative insights into the
impact of αSI on QoS. Our approach is similar to previous section: we systematically
compare results using the two distributions (P1) and (P2).
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Parameter value

Topology Figure 4.3
Other site Nancy

Minimal RTT 10 ms
Bottleneck C = 1 Gbps
Buffer size 96, 896 pkts
Source nb. 45

Experiment’s duration T = 2 hours
Flow-size distribution (P1), (P2)

αSI = 1.1, 1.5, 1.9 or 3.0
Mean flow size µSI = 1000 pkts
Mean ON time experiment-dependent

around 0.3 s
OFF time distribution exponential

Mean OFF time 0.3 s

Table 7.2: Experiments’ parameters

7.2.1 Experiments’ description

All our experiments consist in 2 hours of traffic generated from 45 sources, from which we
discard the first 5 minutes to avoid transient behavior at the beginning of the experiment.
To avoid interactions of the sources unrelated to the buffer dynamic, we use only one source
per node. Table 7.2 summarizes the important experiments’ parameters. As we did in the
previous section, to assess the role of the flow-size distribution’s tail index, we impose
flow-size distributions of various tail indices, and systematically compare the results with
the two types of Pareto-like distributions (P1) and (P2). The mean flow size is always
set to µSI = 1000 pkts. To ensure that this mean flow size is exactly respected (even for
αSI = 1.1), we artificially multiply the generated random series corresponding to the flow
sizes by an appropriate factor. Since the TCP protocol adapts the source rate, the ON
times are not imposed. Instead, they depend on the experimental conditions and become
an interesting QoS metric. In all of our experiments, however, we observed that the mean
ON time is always around 0.3 s, and has the same value as the imposed mean OFF time.

Each experiment is performed two times with two different buffer sizes: 96 pkts and
896 pkts, corresponding to values of ∆B of respectively 1.2 ms and 10.8 ms. These two
values are smaller than the knee µON. However, in the case of TCP, it is not realistic (and
in most cases not possible) to have a buffer size larger than µON. Indeed, since the packets
are emitted by bursts at each RTT, and the RTT increases with the buffer occupancy,
which increases with the buffer size, this situation inevitably leads to a mean flow duration
larger than the buffer size.

During the experiments, the aggregate output is captured as well as the input for one of
the sources. The results presented for the loss and delay are deduced from the comparison
of the input and output captures of this source. For the case of losses, we verified that the
loss rates obtained are coherent with netstat data collected at each source.
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7.2.2 Results and discussion

We now present and discuss the results of our experiments in term of QoS metrics of two
types: buffer QoS metrics (loss, packet delay and throughput) and end-to-end QoS metrics.
For the latter, we choose to focus on the flow rate, which is the inverse of the completion
time.

Buffer QoS: loss, delay, throughput.

Figure 7.6 displays the evolution of the buffer QoS metrics with αSI, for the two distribu-
tions (P1) and (P2) and the two buffer sizes. It shows that these evolutions are less clear
in the case of TCP than they were in the case of UDP: the variations with αSI are within
a rather small range, and each point is associated with a rather large error bar, due to the
natural variability of real experimental conditions and to the complexity of a real system.
However, some tendencies and general conclusions can be drawn on the impact of αSI.
Firstly, as a general remark, we observe that for αSI = 1.1, the results corresponding to the
two distributions (P1) and (P2) are almost undistinguishable, because the distributions
themselves are very close (see Figure 7.2). When αSI increases, the difference between
distributions (P1) and (P2) increases, and the deviation between the corresponding QoS
curves of Figure 7.6 also increases in most cases. Regarding the loss rate, we observe that
for distribution (P1) (red curves), it is constant, whereas for distribution (P2), it decreases
when αSI increases. It indicates that the degradation of the loss rate with very heavy
tails observed in [Park et al., 1997] is not a universal behavior, valid for all experimental
conditions (in their experiments, the loss rate was much higher, of the order of 4%). It also
shows that for the same experimental conditions, two heavy-tailed flow-size distributions
with the same mean can lead to different behaviors of the loss rate as a function of αSI. It
indicates that the parameter αSI in itself is not sufficient to evaluate the loss rate, and is
not sole responsible for its evolution.

For the two other metrics, mean packet delay and throughput, the evolution with αSI

is the same for the two distributions (P1) and (P2). The mean packet delay systemati-
cally decreases when αSI increases, indicating a performance degradation for very heavy
tails (small values of αSI). On the opposite, the decrease of the mean throughput when
αSI increases indicates a performance improvement for very heavy tails. Note that the
throughput is calculated from the capture acquired after the buffer and thus does not
take lost packets into account. However, given the small loss rates, the throughput of the
input traffic and output traffic should not be significantly different. While the evolution
of the mean packet delay is coherent with the trend observed in [Park et al., 1997], the
evolution of the throughput is in contradiction with both the observations of [Park et al.,
1997], where link utilizations increase when αSI increases, and the prediction of the model
of [Ben Fredj et al., 2001], that throughput depends only on the mean of the distribution.
However, as we shall now develop, the tendencies that we observe in our experiments are
mainly governed by long transient behaviors at the beginning of each flow.

End-to-end QoS: flow rate

Figure 7.7 displays the distribution of the mean flow rates as a function of the flow sizes
for each experiment, and the corresponding flow-size distributions, where flow sequences
are reconstructed with a timeout of 100 ms from the output capture.
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The estimated flow-size distributions corresponds to the experiments with a buffer of
size B = 96 pkts. While they exhibit a global shape closely matching the theoretical
distributions (see Figure 7.2), a small number of small flows are also present, especially
noticeable for distribution (P2). They correspond to larger flows split by the timeout
mechanism, and are naturally less numerous when the buffer size is larger (B = 896 pkts)
and the loss rate smaller.

Regarding the flow rate distributions, the most striking observation is that they are
increasing until some rather large threshold (104 − 105 pkts for B = 96 pkts and 105 −
106 pkts for B = 896 pkts) before stabilizing for large flow sizes. To explain the origin
of this behavior, Figure 7.8 displays the evolution of the rate of one typical large flow
taken from the experiment with (P1), B = 96 pkts and αSI = 1.1. The top figure shows
that the mean rate of this flow increases as the number of transmitted packets increases,
and stabilizes after a threshold roughly equal to the threshold of Figure 7.7 (left, middle)
corresponding to the same experimental conditions. Figure 7.8 (bottom) shows that this
is due to the long transient behavior at the beginning of the flow. Roughly, the first loss
occurs after 2 seconds and has an effect on the mean flow rate until around 5 seconds
(corresponding to the transmission of 28,000 packets). This long transient behavior is due
to the absence of slow start at the beginning of the flow. Indeed, as shown on Figure 7.8
(bottom), the rate increases linearly, from the beginning (the different slopes correspond to
different RTTs due to variations of the queueing delay). The end of the slow-start phase is
controlled by an optimization parameter of the TCP implementation called SSTRHESHOLD.
In our Linux configuration, this parameter can only decrease from one flow to the next one
(of the same machine). Due to the high load in our experiments, it rapidly stabilizes at
around 12 packets, so that we almost only observe the congestion-avoidance phase. This
decreasing behavior of the SSTRHESHOLD is also due to the fact that in our experiments, the
destinations are always at the same location and the connections always have similar RTTs.
This can be for example representative of the particular case of a distributed application
which collects data always on the same server. The high loads of our experiments can also
be representative of an access point of the Internet.

The observation of a larger number of individual flows yields the same conclusion and
proves that the behavior of the mean flow rate as a function of the flow size (Figure 7.7)
is due to the long transient behaviors at the beginning of each flow. Smaller loss rates
observed with a buffer size of B = 896 pkts induce even longer transient periods, which
explains that the threshold is higher on Figure 7.7 (bottom, B = 896 pkts) than on
Figure 7.7 (bottom, B = 96 pkts). Comparing the flow-rate distributions of Figure 7.7
for the two buffer sizes, we also see that variances are increased for the larger buffer size,
due to the higher variability of the queueing delay. Finally, except for the experiment with
αSI = 1.1 and B = 896 pkts where the flow rates are slightly smaller (most probably due
to an higher mean delay increasing the RTT), the flow-rate distributions do not exhibit
significant variations for the different values of αSI, independently of the distribution used
((P1) or (P2)) and of the buffer size.

We now come back to the results of the buffer QoS, that we partially interpret using
our observations on the flow-rate distributions. The mean link throughput of Figure 7.6
(bottom) can be obtained (up to some constant depending on the mean number of active
flows which is almost constant in all of our experiments) as the mean of the flow-rate distri-
bution of Figure 7.7 (bottom, middle) weighted by the flow-size distribution of Figure 7.7
(top). For a given distribution ((P1) or (P2)), the mean throughput is then larger for
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Figure 7.8: Analysis of one large flow of the experiment with (P1), B = 96 pkts and
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on the beginning of the flow (the first 10 seconds). The red curve corresponds to the mean
flow rate between time 0 and t. These graphs are obtained from web100 data collected
every 3 ms.

small values of αSI, because of a larger number of large flows achieving high rates. For a
given value of αSI, it also explains the larger throughput obtained with distribution (P1)
because the number of large flows is greater (see Figure 7.2). It shows that, more than
the value of αSI reflecting the algebraic decay of the distribution for large flow sizes, the
absolute values of the whole distribution are essential to determine the link throughput.
The interpretation of the mean delay and loss rate is more delicate, because it depends not
only on the mean input traffic, but also on its distribution, variability and correlations.
The load decrease observed in most cases when αSI increases partly explains the decrease
of the mean delay. Regarding the evolution of the loss rate (in particular in the situation
of a large buffer (B = 896 pkts) with distribution (P1) where the mean delay decreases
whereas the loss rate remains constant when αSI increases), a clear interpretation should
certainly include considerations about the load, but also the variability of the flow rates
and the traffic correlation at RTT scale. We leave it as future work.

7.2.3 Conclusion

In this section, we presented preliminary experimental results to assess the impact of the
tail index of the flow-size distribution on QoS with the TCP protocol.

Based on experiments performed on our metrology platform, we showed that the vari-
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ations of the QoS metrics with the tail index αSI are more complex with TCP than they
were with UDP. More precisely, we observed in our experiments that the mean packet delay
and the mean throughput decrease when αSI increases independently of the distribution
used ((P1) or (P2)), but that the loss rate can decrease or remain constant depending on
the distribution. We also observed that the flow-rate distribution is roughly insensitive to
αSI in most situations. Finally, we noted that, more than the tail index αSI, the absolute
position of the distribution for a large range of sizes might play an important role in the
observed QoS.

However in our experiments, the results are likely to be mainly governed by long tran-
sient behaviors at the beginning of each flow, due to the absence of slow-start, and the
results might be different in other experimental conditions. This experimental study shows
the difficulty of reproducing real-world environments on controlled experimental platform.
It also shows that complex TCP optimization parameters can deeply affect experimental
results, which probably partially explains the existing gap between simplified TCP models
and real-world observations.

Conclusion

In this chapter, we tackled the question of the impact of the flow-size distribution tail index
on different Quality of Service metrics.

Based on traffic and queue simulations, we first showed that in the case of UDP traffic,
αSI systematically degrades the performance for large buffers whereas it has no impact on
the loss rate and buffer occupancy for small buffers. We also observed that the critical buffer
size marking the transition between these two regimes is different for these two metrics, and
interpreted this result by their different statistical nature which induce different sensitivity
to correlations at scales larger than the buffer size.

Then, based on experiments performed on our metrology platform, we showed that the
evolution of the QoS metrics for TCP traffic is less clear. In particular, we observed that
depending on the shape of the distribution, the impact of the tail parameter on the loss rate
can be vary. Some of our results are in contradiction with previous results in the literature,
and show that QoS can be very sensitive to complex TCP parameters. In particular, our
results are likely to be conditioned to the absence of slow-start in our experiments, and
need further work to be assessed in more generality and interpreted more deeply.

Impact of the traffic characteristics on QoS (in performance terms).

- In realistic conditions implying finite buffer sizes, what is the impact of heavy-
tailed flow-size distributions on QoS (in performance terms)? More pre-
cisely, on which QoS metric?

With UDP, the loss rate and mean buffer occupancy are degraded with very heavy
tails for large buffers, and are insensitive to αSI for small buffers. The crit-
ical buffer size marking the transition between these two regimes is approxi-
mately the mean flow duration for the mean buffer occupancy, and is smaller
for the loss rate.

With TCP, the results can depend more on the whole distribution than only on
αSI; and be very sensitive to complex TCP optimization parameters.



Chapter 8

Scaling laws in TCP traffic and

throughput predictability

The results of this chapter have not yet been published.

TCP traffic at packet scale and TCP throughput predictability.

- Do TCP mechanisms generate muti-fractal scaling laws in the packet-level
source traffic? What is their relation with TCP throughput prediction (be-
yond the mean)?

Introduction

In the last three chapters, we focused on the aggregate network traffic and its impact on
QoS. From the viewpoint of a user who transmits a long flow, the particular traffic emitted
by his own source is also very important to characterize. When the protocol is TCP, this
corresponds to the characterization of the congestion window’s evolution. We have seen
in Section 3.2 of Chapter 3 that most of the works on this question have concentrated on
the evaluation of the mean throughput of TCP traffic in various conditions (the almost-
sure mean throughput given by the ergodic theorem (Theorem 2.1.7 of Chapter 2). To
characterize more deeply the traffic variability, a few papers have attempted a multifrac-
tal description of the Hölder regularity, but none of them have conclusively linked this
multifractal property to the TCP protocol behavior.

In this chapter, we use a different approach of mutifractal scaling laws. The scale invari-
ant quantity that we consider is no longer the Hölder regularity, but the mean throughput in
consecutive time windows of size n RTT. We show that this quantity exhibits a multifractal
behavior genuinely generated by TCP control mechanisms, and we discuss the consequences
of these new scaling laws in term of TCP throughput and fairness predictability. Our ap-
proach consists in looking at the probability that the mean throughput in time windows
of size n RTT deviates from the almost-sure “global” mean. While large-deviations theory
offers a precise estimate of this probability on a large number of independent realizations,
we are interested here in the case of only one realization. We first provide in Section 8.1 an
original large-deviation theorem that establishes the large-deviation spectrum observable
on one realization of a general stochastic process. Section 8.1.4 summarizes the simplified
result in the case Markov chains (that we use to model TCP traffic in the next section) and
elaborates on its interpretation. In Section 8.2, we illustrate on a few example of real TCP

135
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traces the applicability of our theoretical result, its contribution to the characterization of
TCP throughput and its practical limits.

8.1 An almost-sure large-deviation result for one realization

of a stationary ergodic process

In this section, we establish an almost-sure large-deviation theorem in a general mathe-
matical context. The simplified results used for the application to TCP traffic (Section 8.2)
are summarized at the end (Section 8.1.4).

8.1.1 Framework

Let (Ω,F ,P) be a probability space on which all random variables are defined. We consider
a discrete time process X = (X0X1 · · · ) taking values in a space EN and we denote by µ
its law, and by T the shift on EN:

T jX = (XjXj+1 · · · ).

In what follows, we will be interested in processes satisfying some mixing properties.
There exists several mixing coefficients [Doukhan, 1994,Rio, 2000], which roughly describe
how far from independent is a sequence of random variables. We introduce here only the
strong mixing and uniform mixing coefficients that we use in the following. For two sub
σ-algebras U and V of a probability space (Ω,F ,P), the strong mixing coefficient is defined
as:

α(U ,V) = sup {|P(U)P(V ) − P(U ∩ V )| , U ∈ U , V ∈ V} ,

and the uniform mixing coefficient is defined as:

φ(U ,V) = sup

{∣∣∣∣P(V ) − P(U ∩ V )

P(U)

∣∣∣∣ , U ∈ U ,P(U) 6= 0, V ∈ V
}
.

The absolute value in these definitions ensures positivity of the mixing coefficients.
If we denote by χ(Xi) the σ-algebra generated by Xi (we do not use the classical

notation σ(Xi) to avoid confusion with variances in the following), the mixing coefficients
of the sequence (Xi)i∈N are defined by:

α(X)
m = sup

{
α (χ(Xi), χ(Xj)) , (i, j) ∈ N

2, |i− j| ≥ m
}
, m ≥ 1, (8.1)

φ(X)
m = sup

{
φ (χ(Xi), χ(Xj)) , (i, j) ∈ N

2, |i− j| ≥ m
}
, m ≥ 1, (8.2)

with α(X)
0 = 1

2 and φ(X)
0 = 1. With these definitions, it is easily seen that the sequences of

mixing coefficients are non-increasing.
The sequence (Xi)i∈N is said φ-mixing or α-mixing if the corresponding mixing coeffi-

cient tends to 0 as m tends to infinity. Note that we always have:

α(X)
m ≤ 1

2
φ(X)
m , (8.3)

so that a φ-mixing sequence is also α-mixing.
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We introduce a function Φ : EN → R
d, d ∈ N

∗ and assume that Φ depends only on a
finite number l ≥ 1 of coordinates of X: Φ(X) = Φ(X0 · · ·Xl−1). The function Φ can then
be simply seen as a function from El to R

d. For q ∈ R
d we define the following quantity:

Pn(q) =
1

n
log Eµ{e〈q,SnΦ〉}, (8.4)

where 〈·, ·〉 denotes the classical inner product on R
d, and Sn denotes the Birkhoff sum:

SnΦ(X) =
∑n−1

j=0 Φ(T jX). It is well-known that for a large category of processes, this
quantity converges when n goes to infinity to a function:

P (q) = lim
n→∞

Pn(q), (8.5)

called pressure in the dynamical system context, partition function in the multifractal
context, free energy in physics or logarithmic moment generating function in the large-
deviation context. In this work, we adopt the denomination pressure (and use the notation
P ). It has been established that the differentiability of this function is a sufficient condition
for an associated large-deviation principle to hold (this is the so called Gartner-Ellis theo-
rem [Ellis, 1984]). This condition is known to hold for a number of processes (see [Dembo
and Zeitouni, 1998]). However, it is also known to fail for certain φ-mixing processes with
exponential rates [Bryc and Dembo, 1996, Baxter et al., 1991], and we will then take it
as an assumption in the following. However, the pressure defined by equations (8.4) and
(8.5) is based on an ensemble mean, which corresponds to the averaging on a large number
of independent realizations of process X. In practical situations, we often have only one
realization of the process, and the question of whether such a large-deviation principle
holds with a pressure defined through an empirical mean on this realization is of primary
interest. The answer to that question is given in Theorem 8.1.1, which constitutes our
main result of this section.

8.1.2 An almost-sure large-deviation result for a uniformly mixing pro-
cess

Statement

Theorem 8.1.1. Assume that:

(i, stationary) X is a stationary ergodic process of law µ,

(ii, mixing prop.) the mixing coefficients of the sequence (Xi)i∈N∗ satisfy
∑∞

m=1 φ
(X)
m <

∞,

(iii, LDP holds) for all q ∈ R
d, the pressure defined in equation (8.5) exists and is

differentiable,

(iv, Φ bounded) ∀q ∈ R
d ∃M(q) <∞: ||〈q,Φ(X)〉||∞ < M(q).

Let K be a open convex subset of R
d, and let (kn)n∈N∗ be a sequence of integers such

that:
supq∈K

{[
1 ∨ en(M(q)−Pn(q))

]2 ·∑∞
m=1 φ

(X)
m

}
· log(n)

kn
−−−→
n→∞

0 (8.6)
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Then, µ− a.s., for all q ∈ K:

lim
ε→0

lim
n→∞

1

n
log

#
{
j ∈ {0, · · · , kn − 1} : SnΦ◦Tnj(X)

n ∈ Bo(α, ε)
}

kn
= f(α), (8.7)

where α = ∇P (q), Bo(α, ε) is the open ball of radius ε centered on α and f(α) = −P ∗(α)
is the opposite of the Legendre-Fenchel transform of P :

f(α) = − sup
q∈Rd

{〈q, α〉 − P (q)} (8.8)

Remark 8.1.2. The condition (ii) implies that the process X is mixing (recall that the
mixing coefficients are positive).

Remark 8.1.3. For simplicity, we used the notation ·∨· to denote the larger of two elements.

Proof

The key point of the proof is to show that the equivalent Ln(q) of the pressure defined
through an empirical mean on one realization converges toward the pressure P (q), so that
we can apply the Gartner-Ellis theorem with this new function. More precisely, we define:

Ln(q) =
1

n
log

1

kn

kn−1∑

j=0

e〈q,SnΦ◦Tnj(X)〉, ∀q ∈ R
d, (8.9)

which is the equivalent of the pressure of equation (8.4), where the ensemble mean has
been replaced by an empirical mean over kn windows of size n.

The proof operates in 3 steps:

1. We first show that for all q ∈ R
d, Ln(q) converges almost surely towards P (q).

2. Using a result of convex analysis, we then show that almost surely, for all q in a
bounded open set K, Ln converges toward P .

3. We finally apply Gartner-Ellis theorem to obtain the large-deviation spectrum of
equation (8.7).

For all q ∈ R
d, almost-sure convergence of Ln(q)

Lemma 8.1.4 (Convergence result). Let q ∈ R
d. Suppose that assumptions (i)-(iv) of

Theorem 8.1.1 are verified, and that kn is a sequence of integers such that

{[
1 ∨ en(M(q)−Pn(q))

]2 ·∑∞
m=1 φ

(X)
m

}
· log(n)

kn
−−−→
n→∞

0 (8.10)

Then,
Ln(q) −−−→

n→∞
P (q), µ− a.s. (8.11)
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Proof. We fix q ∈ R
d. First note that by stationarity, we have

∀n,∀j : Eµe
〈q,SnΦ◦Tnj(X)〉 = enPn(q).

To simplify the calculations, we then define the centered random variable:

X
(n)
j (q) = e〈q,SnΦ◦Tnj(X)〉−nPn(q) − 1, (8.12)

EµX
(n)
j (q) = 0.

Then,

Ln(q) =
1

n
log

[
1 +

Sn(q)
kn

]
+ Pn(q), (8.13)

where

Sn(q) =

kn∑

j=1

X
(n)
j (q). (8.14)

To prove lemma 8.1.4, it suffices to prove that Sn(q)
kn

converges almost surely towards
zero (note that it is not necessary).

We use the exponential inequality provided by Theorem 5 of [Doukhan, 1994, Section

1.4.2], applied to the sequence (X
(n)
j (q))j≥0 for n fixed; which states that if (X

(n)
j (q))j≥0

is a stationary centered process such that: (a) (X
(n)
j (q))j≥0 is bounded by Mn(q), and (b)

the sequence is uniformly mixing with limm→∞mφ
(X(n))
m = 0, then for all x > 0,

P

(
|Sn(q)| ≥ x

√
kn

)
≤ a exp


− bx2

σ2
n(q) + xMn(q)ψ(σ2

n(q))√
kn


 , (8.15)

where σ2
n(q) is any real number satisfying:

σ2
n(q) ≥

Var
[∑k

j=1X
(n)
j

]

k
, ∀k > 0,

and ψ(t) = inf{m ∈ N;mφ
(X(n))
m ≤ t}. Moreover, the constants a and b are independent of

Mn(q) and σ2
n(q).

In our case, the bounded assumption (a) is directly deduced from the bounded hypoth-
esis on Φ (assumption (iv) of Theorem 8.1.1), where the bound Mn(q) is given by

||X(n)
j ||∞ = ||e〈q,SnΦ◦Tnj(X)〉−nPn(q) − 1||∞

≤
[
1 ∨ en(M(q)−Pn(q))

]
= Mn(q). (8.16)

The mixing condition (b) on the sequence (X
(n)
j (q))j≥0 comes from the mixing condition

(ii) of Theorem 8.1.1 and from the fact that Φ(X) depends only on a finite number l of
coordinates of X. Indeed,

φ(X(n))
m = sup

{
φ
(
χ(X

(n)
i ), χ(X

(n)
j )

)
, (i, j) ∈ N

2, |i− j| ≥ m
}
,
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and χ(X
(n)
i ) ⊂ χ(Xjn+1, · · · , Xn(j+1)+l), so that

φ(X(n))
m ≤ φ

(X)
n(m−1)+1−l, (8.17)

where the index n(m− 1) + 1 − l is put to zero if negative (for small values of n and m).
We then clearly have:

∞∑

m=1

φ(X(n))
m <∞, (8.18)

which, using the assumption that the sequence of mixing coefficients is non-increasing
(satisfied from the definition in equation (8.2)), implies that condition (b) is satisfied.

Finally, for the upper bound σ2
n, we use the result of [Rio, 2000, page 14-15]:

Var
[∑k

j=1X
(n)
j

]

k
≤ 2Mn(q)

2
∑

m≥0

φ(X(n))
m = σ2

n(q), ∀k > 0. (8.19)

This result of [Rio, 2000] is proven in the case of a strongly mixing sequence of random
variables bounded by Mn(q) and concerns the sum of the strong mixing coefficient. We
adapted it here to the case of uniform mixing (see equation (8.3)).

Let ε′ be a positive real number. Equation (8.15), applied with x = ε′
√
kn brings:

P

( |Sn(q)|
kn

> ε′
)

≤ a exp

(
− bε′2kn
σ2
n(q) + ε′Mn(q)ψ (σ2

n(q))

)
. (8.20)

Given the value of σ2
n(q) ∼ Mn(q)

2 that we have chosen in equation (8.19), condi-
tion (8.10) implies that there exists a function f(n) which tends to infinity when n tends
to infinity, such that:

kn
σ2
n(q) + ε′Mn(q)ψ (σ2

n(q))
= log(n)f(n). (8.21)

Indeed, from equations (8.19) and (8.16), the term in braces in equation (8.10) is σ2
n(q)

(where the constant factor 2 was removed). Moreover, since Mn(q) is exponentially increas-
ing with n (see equation (8.16) and note that Pn(q) ≤M(q)), σ2

n(q) is non-decreasing when

n increases and ψ is then easily bounded from above. Indeed, since limm→∞mφ
(X(n))
m = 0,

we can find m0 such that m0φ
(X(n))
m0 ≤ σ2

1(q) and thus ψ(σ2
1(q)) ≤ m0. Then, for any

integer n, σ2
n(q) ≥ σ2

1(q), so that m0φ
(X(n))
m0 ≤ σ2

n(q) and ψ(σ2
n(q)) ≤ m0. Finally,

since σ2
n(q) ∼ Mn(q)

2, in the denominator of the fraction of equation (8.21), we have
ε′Mn(q)ψ

(
σ2
n(q)

)
= o(σ2

n(q)), so that condition (8.10), where only the term σ2
n(q) is “dom-

inated”, ensures validity of equation (8.21).
With a constant C depending on ε′ and b, equations (8.20) and (8.21) imply that:

P

( |Sn(q)|
kn

> ε′
)

≤ an−Cf(n).

Since, f(n) goes to infinity, there exists an integer n0 such that Cf(n) > 1,∀n > n0, which
ensures the convergence of the series

∑
n≥0 an

−Cf(n). By Borel-Cantelli’s lemma, we then
have:

Sn(q)
kn

−−−→
n→∞

0, µ− a.s., (8.22)

which, given equation (8.13), completes the proof of lemma 8.1.4.
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Remark 8.1.5. We see from equation (8.20) that to ensure this convergence result, kn must
roughly “dominate” (in the sense that a relation as equation (8.21) can be written) two
term: σ2

n(q) (the variance term) and ε′Mn(q) (the maximum term). With the upper bound
of equation (8.19) that we have taken as a function of Mn(q)

2, domination of the term σ2
n(q)

automatically implies domination of the term with Mn(q). However, this is a rough upper

bound of
Var

h

Pk
j=1X

(n)
j

i

k . In most cases, the critical term to dominate in equation (8.20) is
the variance term, and we shall see in next section a finer bound for this term, based on
the pressure. The precise conditions on the distribution of X(n) for this to hold are still
under investigation, but intuitively, we see that since EX

(n)
j = 0, it should not be difficult

to find a constant C such that Mn(q) ≤ Cσ2
n(q) for any upper bound σ2

n(q) of VarSn(q)
kn

,
so that domination of the term σ2

n(q) automatically implies domination of the term ε′Mn.

When choosing a tighter bound σ2
n(q) for

Var
h

Pk
j=1X

(n)
j

i

k , one must ensure that the value of

ψ does not introduce problems. However, the variance of the terms X(n)
j (q) constituting

the sum is exponentially increasing as enRn(q), with Rn(q) = Pn(2q) − 2Pn(q) ≥ 0 (see
next section); so that making σ2

n a non-decreasing function of n (and using arguments
mentioned above) should not be a big constraint.

Convexity argument: Almost surely, for all q ∈ K convergence of Ln(q).
Let K be an open convex subset of R

d and Kd a countable dense subset of K. For all
q ∈ Kd, under assumption (8.6), Ln(q) converges toward P (q) outside a negligible subset
Nq of Ω. The countable union N = ∪q∈Kd

Nq is still negligible, so that almost surely,
Ln(q) converges toward P (q) for all q ∈ Kd. Since the functions Ln are convex, Theorem
10.8 of [Rockafellar, 1970] ensures that outside the negligible set N (i.e. µ-a.s.), Ln(q)
converges towards P (q) for all q in K.

Application of the Gartner-Ellis Theorem
The last part of the proof follows the lines of a classical proof in the context of Hölder

multifractality (see [Riedi, 2003]). We denote by Ek the expectation with respect to a
uniform choice of an interval of size n among the kn intervals. We have, µ − a.s., for all
q ∈ K;

lim
n→∞

1

n
log Ek{e〈q,SnΦ(X)〉} = P (q), (8.23)

where function P is differentiable by assumption (iii) of Theorem 8.1.1.
By the Gartner-Ellis Theorem [Ellis, 1984], we then have µ − a.s., ∀q ∈ R

d and for
α = ∇P (q),

lim sup
n→∞

1

n
logQn{Bc(α, ε)} ≤ sup

β∈Bc(α,ε)
f(β), (8.24)

and

lim inf
n→∞

1

n
logQn{Bo(α, ε)} ≥ sup

β∈Bo(α,ε)
f(β), (8.25)

where Qn is the distribution of SnΦ(X)
n with respect to the uniform measure between 1 and

kn, and Bc(α, ε) is the closed ball of radius ε centered on α.
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Since for any n, α, ε, we have Qn{Bc(α, ε)} ≥ Qn{Bo(α, ε)}, the upper bound of equa-
tion (8.24) can be written:

lim sup
n→∞

1

n
logQn{Bo(α, ε)} ≤ lim sup

n→∞

1

n
logQn{Bc(α, ε)} ≤ sup

β∈Bc(α,ε)
f(β),

which gives:

sup
β∈Bo(α,ε)

f(β) ≤ lim inf
n→∞

1

n
logQn{Bo(α, ε)} ≤ lim sup

n→∞

1

n
logQn{Bo(α, ε)} ≤ sup

β∈Bc(α,ε)
f(β).

Now, by continuity of f , the two extreme terms of the inequality are equal, so that we
have:

lim
n→∞

1

n
logQn{Bo(α, ε)} = sup

β∈Bo(α,ε)
f(β) (8.26)

By continuity of f again, we have:

lim
ε→0

sup
β∈Bo(α,ε)

f(β) = f(α),

so that taking the limit ε → 0 in equation (8.26) gives the result of equation (8.7) and
completes the proof of Theorem 8.1.1.

8.1.3 The particular case of Markov chains

The assumptions of Theorem 8.1.1 are fairly general and a large class of processes enter
this framework. Independent processes satisfy these assumptions, but also ergodic Gibbs
measures (ergodic Gibbs measures are φ-mixing with geometrically decreasing mixing co-
efficients and the pressure is analytic, see [Bowen, 1975,Ruelle, 1984,Zinsmeister, 2000]).

In this section, we consider the special case of Markov chains, particularly useful to
model TCP traffic. For Markov chains, the φ-mixing property is equivalent to the irre-
ducible aperiodic property; and the mixing sequence then decreases exponentially [Bradley,
2005], so that the mixing assumption (ii) of Theorem 8.1.1 is satisfied for an irreducible
aperiodic Markov chain. We first give another condition on the sequence (kn)n∈N for the
result of Theorem 8.1.1 to hold. This condition relies on the computation of the pressure
and we then give a simple procedure to compute this pressure, based on the computation
of the spectral radius of a matrix derived from the transition matrix of the Markov chain.

In all the rest of this chapter, the process X is an irreducible aperiodic Markov chain,
whose transition matrix is denoted by Q. The state space is assumed finite of cardinal c
and we denote it E = {e1, · · · , ec}. Note that the states ei can be vectors.

A practical condition on the sequence (kn)n∈N

As we have noted in Remark 8.1.5, the critical condition on the sequence (kn)n∈N is to
dominate the term σ2

n(q) (in equation (8.20)), which is an upper bound of VarSn(q)
kn

. We
give here another upper bound than the one used in previous section (equation (8.19)),
and give the associated condition on kn.

Let us first introduce the following quantities:
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Definition 8.1.6. For q ∈ R
d, we define:

Rn(q) = Pn(2q) − 2Pn(q), (8.27)

R(q) = lim
n→∞

Rn(q) = P (2q) − 2P (q). (8.28)

Remark 8.1.7. Convergence of Rn follows from convergence of Pn.

Remark 8.1.8. Since the function P is convex and P (0) = 0, R(q) is non negative for all
q ∈ R

d.

The following proposition gives a practical condition on the sequence (kn)n∈N for the
result of Theorem 8.1.1 to hold:

Proposition 8.1.9. If
kn = e(1+δ)nR(q), for some δ > 0, (8.29)

then the result of Theorem 8.1.1 holds.

Proof. We use the following upper bound of VarSn(q)
kn

(recall that the process X is station-
ary):

σ2
n(q) = Varµ{X(n)

0 } +

∞∑

j=1

∣∣∣Covµ{X(n)
0 , X

(n)
j }

∣∣∣ . (8.30)

First note that
Varµ{X(n)

0 } = enRn(q) − 1.

For n sufficiently large (larger than the number of coordinates l on which depends Φ), since
X is a Markov chain, only the first term of the sum in equation (8.30) is non-zero, so that

σ2
n(q) = enRn(q) +O

(
enRn(q)

)
≤ CenRn(q),

for some constant C and n sufficiently large.
If kn = e(1+δ)nR(q), for some δ > 0, then

σ2
n(q) · log(n)

kn
≤ Cen(Rn(q)−R(q)−δR(q)) · log(n).

Since Rn(q) −−−→
n→∞

R(q), there exists a integer N0 such that for n > N0, |Rn(q) −R(q)| <
δR(q), and then (Rn(q) −R(q) − δR(q)) > 0. Finally, we get that

σ2
n(q) · log(n)

kn
−−−→
n→∞

0, (8.31)

which ensures convergence of the right-hand-side sum of equation (8.20). We conclude in
the same way as for the proof of Theorem 8.1.1.

The condition on the sequence (kn)n∈N of Proposition 8.1.9 will be used in the rest of
this chapter. It relies on quantity R(q), which is directly derived from the pressure. We
now give a practical procedure to compute this pressure in the case of irreducible aperiodic
Markov chains.
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Computation of the pressure for an irreducible aperiodic Markov chain.

To give a practical procedure to compute the pressure (Proposition 8.1.10), we restrict
ourselves to the case where the function Φ depends only on the first coordinate X1 of X
(l = 1); Φ is then a function from E to R

d. The case l ≥ 1 can be handled in a similar
manner, but yields a more complex result that we will not use in the following.

Proposition 8.1.10. If X is an irreducible aperiodic Markov chain on a finite state space
E = {e1, · · · , ec} of transition matrix Q, and Φ : E → R

d; then ∀q ∈ R
d,

P (q) = log
(
ρ
(
D(q)Qt

))
, (8.32)

where D(q) is a diagonal matrix with the elements {exp(〈q,Φ(e1)〉), exp(〈q,Φ(e2)〉), · · · ,
exp(〈q,Φ(ec)〉)}, Qt denotes the transpose of Q and ρ(·) denotes the spectral radius.

Proof. We use the same method as Section 7.1 of [Fan and Feng, 2000], extended to the
case of Markov measures. For simplicity, we introduce the following intuitive notations:
peiej

= Qij is the probability of a transition from state ei to state ej , and pei
is the steady-

state probability of state ei (note that the steady-state probability exists and is unique
because we consider an irreducible Markov chain).

For x ∈ EN and q ∈ R
d, let

g(x) = exp〈q,Φ(x)〉. (8.33)

Then

P (q) = lim
n→∞

1

n
log



∫

EN

n−1∏

j=0

g(T jx)µ(x)


 . (8.34)

We write:
∫

EN

n−1∏

j=0

g(T jx)µ(x) =
∑

x1···xn∈En

g(x1)px1 · g(x2)px1x2 · · · g(xn)pxn−1xn .

Let

Gn(1) =
∑

x1···xn−1∈En−1

g(x1)px1 · g(x2)px1x2 · · · g(xn−1)pxn−2xn−1 · g(1)pxn−1e1

...

Gn(c) =
∑

x1···xn−1∈En−1

g(x1)px1 · g(x2)px1x2 · · · g(xn−1)pxn−2xn−1 · g(c)pxn−1ec .

Then we have the following recursive relation:

Gn+1(1) = Gn(1)g(e1)pe1e1 + · · · +Gn(c)g(e1)pece1

...

Gn+1(c) = Gn(1)g(ec)pe1ec + · · · +Gn(c)g(ec)pecec ,

which can be written: 


Gn+1(1)
...

Gn+1(c)


 = A




Gn(1)
...

Gn(c)


 ,
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where

A = A(q) =




g(e1)pe1e1 · · · g(e1)pece1
...

...
g(ec)pe1ec · · · g(ec)pecec


 =




e〈q,Φ(e1)〉pe1e1 · · · e〈q,Φ(e1)〉pece1
...

...
e〈q,Φ(ec)〉pe1ec · · · e〈q,Φ(ec)〉pecec


 .

Thus, we have 


Gn(1)
...

Gn(c)


 = An−1




G1(1)
...

G1(c)


 ,

and since 


G1(1)
...

G1(c)


 = A




p1
...
pc


 ,

we can finally write: 


Gn(1)
...

Gn(c)


 = An




pe1
...
pec


 .

So,
∫

EN

n−1∏

j=0

g(T jx)µ(x) =

∥∥∥∥∥∥∥
An




pe1
...
pec




∥∥∥∥∥∥∥
1

,

where || · ||1 denotes the norm of a vector defined by the sum of all the absolute values of
its entries (note that, here, we only obtain the sum of all the entries but this is equivalent
because all the entries are positive).

Let

A
(n)
j =

c∑

i=1

(An)ij

be the sum of the elements of the jth column of the matrix An. Then,
∥∥∥∥∥∥∥
An




pe1
...
pec




∥∥∥∥∥∥∥
1

=
c∑

j=1

A
(n)
j pej

.

Let pmin = minj=1,··· ,c pej
and pmax = maxj=1,··· ,c pej

By irreducibility of the Markov chain,
we have 0 < pmin < 1 and 0 < pmax < 1.

We now write:

c∑

j=1

A
(n)
j pmin ≤

∥∥∥∥∥∥∥
An




pe1
...
pec




∥∥∥∥∥∥∥
1

≤
c∑

j=1

A
(n)
j pmax,

and then:

pmin||An||1 ≤

∥∥∥∥∥∥∥
An




pe1
...
pec




∥∥∥∥∥∥∥
1

≤ pmax||An||1
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So,

log

[
||An||

1
n

1

]
+

1

n
log(pmin) ≤

1

n
log




∥∥∥∥∥∥∥
An




pe1
...
pec




∥∥∥∥∥∥∥
1


 ≤ log

[
||An||

1
n

1

]
+

1

n
log(pmax),

and finally, by Gelfand’s formula,

P (q) = log(ρ(A(q))), (8.35)

where ρ(A(q)) denotes the spectral radius of A(q). Noting that A(q) = D(q)Qt, whereD(q)
is a diagonal matrix with the elements {exp(〈q,Φ(e1)〉), exp(〈q,Φ(e2)〉), · · · , exp(〈q,Φ(ec)〉)}
completes the proof.

8.1.4 Simplified results used in the following and interpretation

We summarize here the main result, in a simplified form used in the following for the
application to TCP traffic analysis, and elaborate on its interpretation. For more generality,
Theorem 8.1.1 has been proven for a function Φ taking values in R

d, and depending on
a finite number l of coordinates of the process X. In the following, we consider only the
case d = 1 and l = 1 (i.e. Φ is a function from E to R). The values of q and α are
then in R, and the open ball of center α and of radius ε then corresponds to the interval
(α− ε, α+ ε). Moreover, we consider the case of an irreducible aperiodic Markov chain on
a finite state space. Then, we use the following result, which is a straightforward corollary
of Theorem 8.1.1, Proposition 8.1.9 and Proposition 8.1.10:

Corollary 8.1.11. Let X be an irreducible aperiodic Markov chain on finite-state space
E = {e1, · · · , ec}, c ≥ 1, and let Φ be a function E → R.

Define the quantity

γ
(n)
j =

∑(j+1)n
i=jn+1 Φ(Xi)

n
, (8.36)

corresponding to the sample mean of Φ(X) on the jth interval of size n.
Then for all q ∈ R, provided that the number kn(q) of intervals of size n is large enough

for each n in the sense:

kn(q) = e(1+δ)nR(q), for some δ > 0, (8.37)

the following large-deviation result holds on almost-every realization of the process X:

lim
ε→0

lim
n→∞

1

n
log

#
{
j ∈ {0, · · · , kn − 1} : γ

(n)
j ∈ (α− ε, α+ ε)

}

kn
= f(α), (8.38)

where α = P ′(q), f(α) is the opposite of the Legendre-Fenchel transform of P :

f(α) = − sup
q∈R

{αq − P (q)} ,

and P (q) can be computed as:

P (q) = log (ρ (A(q))) , (8.39)

where A(q) is a c × c matrix of elements (A(q))i,j = eq·Φ(ei)Qj,i, and ρ(·) denotes the
spectral radius, i.e. the largest absolute value of the eigenvalues.
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Corollary 8.1.11 establishes that a large-deviation principle holds on one realization of
the process X: roughly, for a given value α, the proportion of values of the sample mean of
Φ(X) (γ

(n)
j ) around α decreases as exp(nf(α)) (note that f(α) is always non-positive with

the definition of equation (8.38)). We call the function f(α) the large-deviation spectrum
(as for the pressure, it also admits several names, depending on the context). It does

not depend on n, which reflects the scale invariance of the repartition of γ(n)
j and is thus

characteristic of the presence of a scaling law.

The possible values of α are those for which α = P ′(q) for some q ∈ R (for other

values of α, f(α) is usually set to −∞ and the proportion of interval on which γ
(n)
j then

takes this value is zero: such values of the sample mean are not observable). In many
cases (see next section), the pressure is strictly convex (i.e. non-linear), so that there is an
ensemble of possible values of α for which f(α) > −∞. The scaling law is then multifractal
(the spectrum is said non-degenerate, i.e. not reduced to a single point), and there is a
one-to-one correspondence between values of α and q given by α(q) = P ′(q). In the case
q = 0, the corresponding value of α is the almost-sure mean value given by the ergodic
theorem (Theorem 2.1.7 of Chapter 2); and the large-deviation spectrum takes the value
f(α) = 0. Positive values of q correspond to values of α larger than the almost-sure mean
and negative values of q correspond to values of α smaller than the almost-sure mean
(according to the convexity of P , which implies that its derivative is increasing).

In practice, to verify the scale invariance of the statistical repartition of the quantities
γ

(n)
j , one computes an estimation of the large-deviation spectrum at different scales n

(here, we use an original estimation method proposed in [Barral and Gonçalves, 2009]).
Then, a superimposition of the empirical spectra at the different scales indicates that this
repartition does not depend on the scale (it validates the convergence in equation (8.38)).

For Markov chains, a classical large-deviation principle is known to hold (see e.g.
[Dembo and Zeitouni, 1998]). It establishes the exponential decrease of the (ensemble)

probability that, over an interval of size n, the sample mean γ(n)
0 is around a value α; that

is the proportion of such intervals, computed on an infinite number of independent realiza-
tions of the process. In this context, the originality of Corollary 8.1.11 is that it establishes
that a large-deviation principle holds true on almost-every realization of the process taken
separately, and with the same large-deviation spectrum. Thus, the multifractal structure
can be observed on almost-every realization of the process X. Beyond the fact that it
is a nice mathematical observation (the ensemble multifractal structure is carried out on
almost-every single realization), the result of Corollary 8.1.11 is the necessary theoretical
step to ensure consistency with application to TCP traffic, where the evolution of the TCP
congestion window of a flow is described by one realization of a Markov chain.

There is however a “price to pay” to observe large deviations on one realization: the
number kn of intervals of size n has to grow exponentially fast with the scale n (condi-
tion (8.37)). For a value of q in R, the part of the spectrum corresponding to the value α =
P ′(q) can be observed if kn(q) grows exponentially fast with a rate R(q) = P (2q)− 2P (q).
This rate increases with |q|, that is as the corresponding value of α deviates from the
almost-sure mean value: “larger deviations (from the almost-sure mean) are more difficult
to observe”.

Practically, for a finite-size realization of size N , and for a finite scale n, one has ⌊N/n⌋
intervals of size n. Then, we define the minimal and maximal values of q for which this
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number of intervals is “sufficient” in the sense of condition (8.37):
{

qmin(n) = min{q ∈ R, ⌊N/n⌋ ≥ kn(q)},
qmax(n) = max{q ∈ R, ⌊N/n⌋ ≥ kn(q)},

(8.40)

and the corresponding values of α:
{

αmin(n) = P ′(qmin(n)),
αmax(n) = P ′(qmax(n)).

(8.41)

Roughly, within these bounds, the spectrum defined in equation (8.38) is observable at scale
n from one realization of size N . In other terms, they determine the interval [αmin, αmax]
of observable sample means of Φ(X). For a given size N , this interval shrinks around the
almost-sure mean as the scale n increases; while for a given scale n, it gets wider as the
size of the realization N increases. Numerical examples of these bounds will be given in
next section in the case of a Markov chain modeling TCP traffic.

8.1.5 Conclusion

In this section, we provided an original large-deviation theorem valid on almost-every
realization of a mixing process. In the particular case of a Markov chain X, this theorem
shows that the sample mean of Φ(X) in consecutive intervals of size n follows a multifractal
scaling law, where Φ is an arbitrary function providing extra versatility. The originality of
our result, in the context of Markov chain, lies in that the corresponding large-deviation
spectrum is observable on one realization, provided that the number of intervals of size n
grows sufficiently fast with the scale n. This condition also provides bounds to predict the
part of the spectrum observable on a finite size realization of process X, and we finally
provided a practical procedure to compute the theoretical large-deviation spectrum and
its bounds for a given transition matrix.

Although further theoretical work would be required to give a more general statement
of our theorem and find the less restrictive conditions of its validity, its application to the
simple case of Markov chains already suffices to demonstrate the existence of new scaling
laws in TCP traffic, closely related to performance issues. We now turn to this aspect.

8.2 Application to TCP traffic

In this section, we use the theorem proven in previous section, applied to a Markov chain
modeling TCP throughput, to demonstrate that TCP traffic exhibits multifractal scaling
laws of large-deviation spectrum given by equation (8.38). We experimentally illustrate
our results on a few examples of long-lived TCP flows, and discuss their consequences in
term of TCP performance prediction.

8.2.1 A Markovian model of TCP throughput

Markov chains have been widely used to model the evolution of TCP congestion window’s
evolution (see Section 3.3 of Chapter 3). While many of these models aimed at including
different TCP mechanisms like slow start or timeout, our goal here is to provide a model
analytically supporting the observation of new scaling laws originating from the AIMD
mechanism, and we do not include these other mechanisms.
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We use a Markov chain (Xi)i≥0, where Xi represents the congestion window value
(in packets) at time i (that is after the ith RTT). This Markov chain is, as we will see,
irreducible and aperiodic. Moreover, since there is always a maximal congestion windows
(imposed either by the sender or the receiver), its state space E is finite.

To specify more precisely our model, we now explicit the structure of the transition
matrix Q in the case of a TCP Reno connection. Our model has two separate components:
the specifications of the AIMD mechanism, which impose the possible transitions, and the
experimental conditions, which dictate the probability of these transitions.

For a single TCP connection, the state space of the Markov chain is simply E =
{1, · · · , c}. The simple AIMD mechanism considered here works as follows. If no loss is
detected, the congestion window is increased by one, and if a loss is detected, it is divided
by two. Instead of assuming Bernoulli losses, we assume that the loss probability is a
function p(·) of the current congestion window. The non-zero coefficients of the transition
matrix read, ∀i ∈ {1, · · · , c}:

{
Qi,min(i+1,c) = 1 − p(i),

Qi,max(⌊i/2⌋,1) = p(i).
(8.42)

The loss function p(·) represents the network conditions. Setting the loss probability to
a constant function p(·) of the congestion window only is a simplifying assumption for
it supposes that the loss probabilities are stationary and do not depend on the past.
However, any function p(·) can be used, if it is consistent with the irreducibility of the
Markov chain (which in realistic cases and with an appropriate state space is a very weak
constraint). It can include many cases, such as Bernoulli losses (with a function of the form
p(i) = 1−(1−ppkt)

i), or congestion losses when the TCP connection shares the bottleneck
with some cross-traffic (this case will be developed in the following); and thus gives a large
versatility to our model. However, its most important strength probably lies in its ability
to adapt to the case of multiple competing connections. Although an arbitrary number of
connections could theoretically be taken into account (at the cost of a numerical burden
due to a large state space), we describe here only the case of two flows.

To handle that case, we consider now vectorial states:

Xi =
(
X

(1)
i , X

(2)
i

)
, (8.43)

where X(1)
i (respectively X(2)

i ) represents the congestion window of connection 1 (respec-
tively 2) at time i. The state space is then E = {1, · · · , c}2. For simplicity, we assume

that for each flow, the loss probability depends only on the sum X
(sum)
i = X

(1)
i +X

(2)
i of

the current congestion windows, and we continue to denote by p(·) this probability. Given

the value of the sum X
(sum)
i , the loss probability of each flow is then independent of its

individual congestion window value. Consequences of these assumptions will be discussed
in Section 8.2.2. Let us mention though that this assumption is not a pre-requisite of the
model. Indeed, any transition probability could be set when filling the transition matrix
Q. However, this assumption allows us to include essential parameters of the system in a
simple and efficient manner.

To complete the specification of the model, we need to precise the joint loss probability
of the two flows. Let us denote by l

(f)
i , f = 1, 2 the boolean variable equal to 1 if flow

f experiences a loss at time i. To include the effect of synchronization that tends to
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increase the probability that both flows experience a loss at the same time, we introduce
the synchronization rate syn ∈ [0, 1], and assume that the joint probabilities are as follows:





P (l
(1)
i = 0, l

(2)
i = 0|X(sum)

i = s) = (1 − p(s))2 + syn · p(s)(1 − p(s)),

P (l
(1)
i = 1, l

(2)
i = 0|X(sum)

i = s) = p(s)(1 − p(s)) − syn · p(s)(1 − p(s)),

P (l
(1)
i = 1, l

(2)
i = 1|X(sum)

i = s) = p(s)2 + syn · p(s)(1 − p(s)).

(8.44)

The syn parameter is intended to describe the synchronization of the two sources, i.e. the
tendency that they behave similarly (experience simultaneous losses or not). Special values
of the synchronization rate defined this way lead to particular cases of interest: if syn = 0,
we recover the independent case where the probabilities of equation (8.44) are (1− p(s))2,
p(s)(1−p(s)) and p(s)2; whereas syn = 1 corresponds to the fully synchronized case where
losses always affect both flows together (the probabilities of equation (8.44) are then 1−p(s),
0 and p(s)). Other definitions of the synchronization rate have been proposed (notably
in [Baccelli and Hong, 2002]) and we do not claim our definition to be “universally better”
than the other proposed definitions. However, we believe that its intuitive soundness and
easy interpretation justify its introduction in our work.

With this complete specification of the loss probabilities, the transition matrix Q is
easily filled according to the possible transitions dictated by the AIMD mechanism gov-
erning each flow. In the case of two flows, we will be interested in the behavior of the
congestion window of one flow, but also in the sum of both congestion windows (repre-
senting the cumulated throughput of the two flows), and in the difference between the two
congestion windows, because this last quantity is representative of the fairness. All of these
cases can easily be handled by an appropriate choice of function Φ, as shown in Table 8.1.
For all of these quantities, Corollary 8.1.11 ensures that the mean value in consecutive
time windows of size n RTT (the exponent γ(n) of equation (8.36)) is associated with a
multifractal scaling law, for which it gives the analytical formula of the large-deviation
spectrum, easily computable with the help of Proposition 8.1.10 (with the transition ma-
trix Q given by our model). As we have seen, this large-deviation spectrum reflects the
distribution of the quantity γ(n), and thus allows predicting bounds on the achieved per-
formance, in probabilistic terms. Such bounds give, e.g., the probability that the mean
throughput of a connection is around a certain value over a time window of n RTT; or the
probability that, over a time window of n RTT, the throughput of one connection is twice
the throughput of the other connection. The shape of the large-deviation spectrum is then
of primary importance, for it allows to perform a multi-scale analysis of TCP performance
parameters.

8.2.2 Experimental validation and applications

We now use the experimental facility described in Section 4.2 of Chapter 4 to experimen-
tally demonstrate the ability of the proposed Markov model to accurately reproduce the
newly defined large-deviation spectrum observed on real TCP traffic. We treat the case of
one, then two TCP flows sharing a single bottleneck with either constant or random UDP
cros-traffic. Empirical spectrums presented in this section are estimated with the method
of [Barral and Gonçalves, 2009].
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TCP performance parameter associated function Φ

Individual throughput of flow f Φ (Xi) = X
(f)
i , f = 1, 2

Total throughput Φ (Xi) = X
(sum)
i = X

(1)
i +X

(2)
i

Fairness Φ (Xi) = X
(diff)
i = X

(1)
i −X

(2)
i

Table 8.1: Different TCP performance parameters, and associated function Φ in the case of

two competing TCP connections. The state Xi =
(
X

(1)
i , X

(2)
i

)
represents the congestion

window of the connections 1 and 2 at time i (in RTT unit).

Experimental setting

In all of our experiments, the topology of Figure 4.3 is used between the sites of Lyon and
Rennes (RTT = 12 ms) with no 10 Gbps cross traffic at the principal router of Lyon. The
bottleneck is at the Lyon switch, of capacity 1 Gbps. The size of the limiting buffer is 96
packets, and corresponds to a 1.2 ms maximal queueing delay which does not significantly
modify the RTT value.

Long-lived TCP connections share the bottleneck with two possible types of UDP cross
traffic:

• constant cross traffic, generated by a single UDP source at 835 Mbps,

• random cross traffic generated by 32 ON/OFF UDP sources, with mean OFF times
and mean ON periods of 0.12 s and 0.1 s respectively. Each source’s rate is limited
at 40 Mbps, leading to a mean aggregate traffic load of 580 Mbps. The ON and OFF
distributions are chosen exponential, so as not to generate long-range dependent
aggregate traffic.

The experiment’s duration is set to 1 hour, during which the TCP parameters (conges-
tion window and detected losses) are collected every 3 ms via web100 reports. To avoid
transient behaviors, we discard the first 60 s, and we retrieve from the remainder the con-
gestion window size’s time series resampled at the RTT rate. Results presented in the
following stem from the analysis of these processes.

Except in Section 8.2.2, all of our results describe TCP connections using Reno variant.

One single TCP flow

Deterministic losses
In the case of a single TCP connection sharing the bottleneck with constant UDP traffic,

the TCP connection deterministically experiences losses every time its congestion window
has reached a maximal value compatible with the available bandwidth, here 147 packets.
The congestion window oscillates between 73 and 147 packets and its mean in sufficiently
large time windows should then constantly be equal to (147 + 72)/2 = 110, leading to
a degenerate theoretical spectrum displayed on Figure 8.1. A degenerate spectrum is a
spectrum reduced one single point. It is characteristic of a monofractal scaling law, where
the scale-invariant quantity can take only one value. Here, this absence of variability is due
to the determinism of the congestion window evolution, implying, for the mean congestion
window in sufficiently large time windows, a unique possible value. Figure 8.1 shows that
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Figure 8.1: One TCP connection / constant UDP cross traffic. Theoretical (blue) and
empirical (black to red) large-deviation spectrum estimated at different scales: n =
100, 200, 500 and 1000.

the empirical spectrum indeed converges toward the theoretical spectrum. The non-zero
width of the empirical spectrum is due to a non-integer number of periods of the congestion
window evolution within a time window of size n, and is naturally decreasing with n (as
the number of such periods increases).

Random losses
As a realistic example of random experimental conditions that significantly differs from

the commonly used Bernoulli assumption, we choose to generate ON/OFF cross traffic as
described in Section 8.2.2. In Figure 8.2, statistical characteristics of the resulting traffic
aggregated at buffer scale (1.2 ms) show a normal distribution (due to a sufficient number
of sources), and a negligible correlation beyond the mean ON period (0.1 s). Note that
the ON and OFF distributions have been chosen exponential, so that the cross-traffic
does not possess long-range dependence. Thus, the loss probabilities does not depend on
the past losses and satisfy the assumptions made in Section 8.2.1. Even though long-
range dependent cross-traffic is likely to have minor impact on the multifractal properties
investigated in this chapter if the scales involved are clearly separated, a complete study
of this case is beyond the scope of our simple example aimed at illustrating the method.

As it is a basic component of our model, we now specify the loss probability as a
function of the congestion window (the function p(·) of Section 8.2.1). A first possibility
is to use directly the empirical observation, displayed in Figure 8.3. However, to permit
numerical studies in cases where this empirical observation is not available, we also propose
the following model. Assuming that TCP packets are regularly spaced within a RTT, the
bandwidth of the TCP connection during the RTT is then constant, equal to µTCP(cwnd) =
cwnd·pktsize

RTT
in bps. Total traffic inherits Gaussian characteristics from UDP cross-traffic

with the mean shifted by µTCP(cwnd). Loss probability is then simply estimated as the
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Figure 8.2: Statistical characteristics of the ON/OFF UDP cross traffic aggregated at
buffer scale (1.2 ms). (a) Probability density function estimation – (b) Autocorrelation
function estimation.
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Figure 8.3: One TCP connection / ON/OFF UDP cross traffic. Loss probability as a
function of the congestion window: (blue) raw empirical observation – (red) sliding window
empirical estimation (window size: 20) – (black) model of equation (8.45), with estimated
value σ = 108 Mbps.
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probability that the total traffic aggregated at buffer scale exceeds the link capacity C:

p(cwnd) = 1 − 1

2

(
1 + erf

(
C − (µTCP(cwnd) + µUDP)

σ
√

2

))
, (8.45)

where σ is the variance of the UDP cross traffic at buffer scale and erf denotes the error
function arising from the cumulative Gaussian distribution. Note that this reasoning can
easily adapt to any distribution, and is not limited to the Gaussian case.

Figure 8.3 compares the model of equation (8.45) to the empirically observed loss prob-
ability and shows a remarkably good agreement for large congestion windows (roughly
beyond 100). Such a good agreement is likely to be contextual: Firstly, in our real en-
vironment, we observed that packets do not arrive in burst at the beginning of an RTT,
but are actually spanned over the RTT (with a slight peak at the beginning), for example
due to random usage of the machines’ CPU. Secondly, queueing effects that are not taken
into account in equation (8.45) are actually negligible in our experimental setting because
of the small buffer size. The slight discrepancy observed between the model and the data
for smaller windows (less than 100 pkts) is due to the non-zero correlation function of the
cross traffic for lags up to roughly 100 RTT (120 ms). This persistence effect promotes
consecutive packet losses and thus accentuates the probability of TCP loss at rather small
congestion windows. Note that this non-Markovian effect, which remains limited in our
experiments, could limit the applicability of our simple Markov chain based model in case
of an ON/OFF cross traffic with very large ON period mean.

Returning to the congestion window size’s time series, we estimate the empirical large-
deviation spectrum as defined in (8.38), using the method proposed in [Barral and Gonçalves,
2009]. Then, Figure 8.4 shows a clear superimposition of the spectra obtained at different
time scales (from 100 to 1000 RTT). This scale-invariance property is reminiscent of the
presence in TCP traffic of the multifractal scaling laws we devised in the previous section.
To verify its origin, we compare these empirical estimates to the theoretical spectrum ex-
pression of a Markov chain, where the modeled loss probability density (8.45) or its empiri-
cal estimate can be used indifferently. In both cases, we obtain good agreement. It confirms
the ability of our simple Markov chain model to account for the essential characteristics
of TCP control mechanisms which generate the multifractal structure observable on a real
TCP implementation trace. The difference observed at small α’s between the two theoret-
ical predictions and the estimated spectrum, comes from the loss probability overshoot for
small window sizes. The loss model of equation (8.45) does not take it into account and
therefore leads to an underestimated number of intervals with small mean throughputs.
On the other side, this overshoot leads to overestimating the number of intervals where the
congestion window remains small when using the raw empirical loss probability whereas
in reality, consecutive losses periods responsible for this overshoot are followed by periods
without loss increasing the congestion window (recall the persistence effect of the cross
traffic). The good global match between empirical spectra and the theoretical spectrum
using the raw empirical loss probability confirms that the non-Markovianity has very slight
consequences in our experiment.

Remarkably though, notice the good match between empirical and theoretical values of
the bounds αmin and αmax of equation (8.41), which complete the scaling-law description
and allow us to accurately predict the minimal and maximal values of the mean throughput
expectable at a given scale in a finite-duration experiment.
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Figure 8.4: One TCP connection / ON/OFF UDP cross traffic. (top) large-deviation
spectra: (black to red) empirical at scales n = 100, 200, 500, 1000; (blue) theoretical using
raw empirical losses; (green) theoretical using the model of equation (8.45) – (bottom)
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Figure 8.5: One TCP connection / Bernoulli losses (numerical simulations): comparison
with the square root formula of [Padhye et al., 1998]. (blue) mean congestion window
obtained as the apex of the theoretical large-deviation spectrum – (red) Mean congestion
window from the square root formulae.

As compared to the deterministic case of Figure 8.1, the spectrum of Figure 8.4 cor-
responding to the random-loss case have a large width, characteristic of a high variability
of the mean throughput in time windows of size n. Even though the observed range of
variability (reflected by the bounds αmin and αmax) naturally decreases with the averaging
period n, it remains significant over 1000 RTTs (between 125 and 190 pkts); and the values
of the spectrum close to zero denote a rather large probability to observe a mean through-
put in a time window of size n deviating from the almost-sure “global mean” corresponding
to the apex of the spectrum. Note finally that although the theoretical result of equa-
tion (8.38) rigorously holds in the limit n → ∞, Figure 8.1 shows that it approximately
holds above n = 100 which corresponds to scales of interest in network applications.

Bernoulli losses
We finally mention that in the case of the widely used assumption of Bernoulli losses,

our model is fully consistent with previously derived results. In particular, Figure 8.5
shows that the apex of the corresponding large-deviation spectrum coincides with the
mean throughtput predicted by the well-known square root formula of [Padhye et al.,
1998] (the one which does not include timeout effects, see equation (3.5) of Chapter 3).
This coherence with simpler models considering only the mean throughput is an important
aspect of our model, which can also be used to obtain first order statistics of diverse TCP
performance parameters in various conditions.

Two competing TCP flows

We now study the case of two competing TCP connections in constant and random cross
traffic. To handle the case of two connections, we use the model described in Section 8.2.1
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for vectorial-states Markov chains. We use the assumption of Section 8.2.1 according to
which the loss probability depends only on the sum of the congestion windows. We use
the empirical loss probability. For constant cross traffic, it is almost a step function taking
value 1 for congestion windows larger than 150. For the ON/OFF cross traffic, it is similar
to Figure 8.3.

Steady-state distributions
As a first assessment of the ability of the model presented in Section 8.2.1 (in partic-

ular equation (8.44)) to reproduce basic properties of TCP traffic, Figure 8.6 compares
the theoretical and empirical steady-state distributions in both cross-traffic conditions.
Synchronization rates used in the blue curves of this figure are estimated from the traces
(syn = 0.57 for the constant cross traffic and syn = 0.85 for the ON/OFF cross traffic).
Mismatch between the theoretical curves when the syn parameter is assumed equal to zero,
and the empirical curves confirms that synchronization is an important parameter of the
system. The quasi-superimposition of the curves with the estimated synchronization rate
and with the joint probability shows that the effect of synchronization is well taken into
account with our single parameter syn. Finally, good match of these two curves with the
empirical data supports our assumption that the loss probability is only a function of the
sum of the congestion windows.

Besides validating our model, Figure 8.6 also confirms natural intuitions on the effect of
synchronization, mainly that it tends to equalize the congestion windows of the two flows,
and then to reduce their variability and the variability of their difference. It also naturally
reduces the mean of their sum (and thus the global performance).

Spectrums
Large-deviation spectra with constant and ON/OFF cross traffic conditions are displayed

in Figures 8.7 and 8.8. We first observe that these figures confirm again the presence of our
novel multifractal scaling law in the case of two TCP connections as their empirical spectra
overlay at different scales. Comparison of the theoretical spectra with and without syn-
chronization confirms our previous conclusions about the synchronization effect: it tends
to reduce the variability of the congestion window of individual flows, and the variability
of their difference, thus reducing the mean of their sum.

However, whereas theoretical and empirical spectra of the sum fairly match, empirical
spectra of the individual congestion window and of the difference are much narrower than
their theoretical predictions, even with the inclusion of the synchronization parameter.
Let us recall that we assume a loss probability independant of the individual windows (for
a given sum). We could easily refine this hypothesis and distribute this loss probability
conditionnaly to each window size. Assigning a higher loss probability to the flow with the
larger congestion window certainly would reduce the spectrum’s width.

This slight mismatch between our model and the experiments due to oversimplifica-
tion could not be detected based on the steady-state distributions’ observation. The new
multifractal scaling laws that we identified in this work can then be seen as a fine analysis
which can turn very useful in checking a model’s adequacy to real systems.

Finally, note the very good match between theoretical and empirical bounds when
synchronization is taken into account.
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Figure 8.6: Two TCP connections. (left) Constant UDP cross traffic – (right) ON/OFF
UDP cross traffic. Steady-state distributions of (top) the congestion window of flow 1 –
(middle) the sum of the congestion windows – (bottom) the difference of the congestion
windows. (red) empirical observation – (magenta) model of equation (8.44) with syn = 0 –
(blue) model of equation (8.44) with syn = 0.57 for constant UDP cross traffic and syn =
0.85 for ON/OFF cross traffic – (green) utilization of the empirical joint loss probability.
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Figure 8.7: Two TCP connections / Constant cross traffic. Large-deviation spectra and
bounds for (a) the congestion window of flow 1 – (b) the sum of the congestion windows
– (c) the difference of the congestion windows. (top) large-deviation spectra: (black to
red) empirical at scales n = 100, 200, 500, 1000; (magenta) theoretical with syn = 0; (blue)
theoretical with syn = 0.57; (green) theoretical with the empirical joint loss probability –
(bottom) min and max bounds of the spectrum: (red) empirical; (same colors as for the
spectrum) theoretical.
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Figure 8.8: Two TCP connections / ON/OFF cross traffic. See legend of Figure 8.7, blue
curves correspond here to syn = 0.85.
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Figure 8.9: One TCP connections / ON/OFF cross traffic. Large-deviation spectra. Em-
pirical large-deviation spectra at scales n = 100, 200, 500, 1000 for three other TCP variants
than Reno.

Different TCP variants

As examples of other TCP variants, Figure 8.9 shows the spectra of a single connection
with ON/OFF cross traffic. The TCP variants presented are BIC, HighSpeed and CUBIC
(compare also with Figure 8.4 for the case of Reno). Even though further work extending
the model of Section 8.2.1 is required to have theoretical predictions of these spectra, we
conclude from the good superimposition of the spectra at different scales observed on this
figure, that other TCP variants than Reno also inherently possess scale-invariance proper-
ties of the same kind. Even though the shape of the spectra are different for the different
variants, the most important difference is certainly their apex, which reflect the variant’s
aggressivity. Note that Figure 8.10 shows that the model proposed in the previous section
for the loss probability as a function of the congestion window remains quite accurate with
these other TCP variants.

As examples of the case of two TCP connections including other variants than Reno,
Figure 8.11 shows the spectra corresponding to the case where one TCP Reno connection
is competing with a BIC or a CUBIC connection, with constant cross traffic. This figure
confirms the scale invariance property of the large-deviation spectrum corresponding to
different TCP performance parameters, and highlight its possible use to perform a multi-
scale analysis of the “TCP friendliness” of other TCP variants than Reno: the repartition
of the mean fairness between several competing TCP flows of different variants, in time
windows of size n, is invariant across scales.

8.2.3 Conclusion

In this section, we demonstrated that real TCP traffic, generated on physical machines over
a real network, inherently possess a new type scaling laws directly related to TCP perfor-
mance parameters. The scale-invariant quantity is the averaged throughput or fairness in
time windows of size n, and it exhibits a multifractal behavior.

We proposed a Markov chain model of the TCP congestion window evolution based
on the AIMD mechanism. Then, using the large-deviation theorem that we provided
in previous section, we showed that our model accurately reproduces the large-deviation
spectrum in several examples of experimental conditions. This conclusively assesses the
fundamental role of the AIMD mechanism in generating the newly defined scaling laws.



8.2. APPLICATION TO TCP TRAFFIC 161

lo
ss

pr
ob

ab
ili

ty

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

cwnd (pkts)

Figure 8.10: One TCP connection / ON/OFF UDP cross traffic. Loss probability as
a function of the congestion window: (blue) Reno – (red) BIC – (green) HighSpeed –
(magenta) CUBIC – (black) model of equation (8.45), with estimated value σ = 108 Mbps.
The continuous curves represent the sliding window estimations.

The main strength of our model is that it can include several competing TCP connections,
and take into account synchronization effects between these connections.

Although the scaling law theoretically holds for very large scales only, our experimental
results show that it holds for scales larger than n = 100 RTT, which correspond to scales of
interest in applications. Moreover, the bounds on the observable spectrum on finite-length
traces are also well predicted, which completes the description of the spectra and also gives
valuable practical information for applications.

Our experimental results show that similar scaling laws are also present in TCP traffic
using other variants than Reno. Inclusion of these variants in our analytical model would
then be an interesting direction of future work, to offer the possibility of an analytical
multi-scale analysis of the fairness between several connections using different variants,
directly related to the “TCP friendliness” of these variants.

Conclusion

In this chapter, we have shown that TCP traffic possess new types of multifractal scaling
laws, whose scale-invariant quantities correspond to average TCP performance parameters
such as throughput or fairness, in time windows of a certain size n.

We first provided an almost-sure large-deviation theorem, in a general mathematical
context. The originality of this theorem lies that it considers the empirical mean of a
process on one realization, instead of its ensemble mean. It then theoretically assesses the
presence of the new scaling laws on one realization of the process, but also allows us to
predict bounds on the corresponding large-deviation spectrum observable on a finite-size
realization.

Application of this theorem to a Markov chain model of the AIMD mechanism of TCP
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Figure 8.11: Two TCP connections / Constant UDP cross traffic: case of one Reno con-
nection competing with one connection using another variant: (left) BIC – (right) CUBIC.
Large-deviation spectra at scales n = 100, 200, 500, 1000 for the congestion windows: (top)
individual congestion window for the connection using the other variant – (middle) indi-
vidual congestion window for the Reno connection – (bottom) fairness (X(1)−X(2)) where
X(1) is the congestion window of the Reno connection and X(2) the congestion window of
the other connection.
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allowed us to show that this mechanism is genuinely responsible for the presence of the new
scaling laws identified in TCP traffic, and to compute the corresponding theoretical large-
deviation spectrum. Our model is able to include several competing TCP connections
(potentially synchronized), and provides a support to perform an analytical multi-scale
analysis of TCP performance parameters throughput and fairness. Such an analysis permits
the prediction of probabilistic bounds on this performance parameters of primary interest
for QoS issues. Moreover, our model can easily include various types of evolution of the
TCP congestion window, and it can then be used to find the optimal evolution.

This work has been done in the context of long-lived TCP connections and it can
be extended in several directions. Firstly, our model assumes stationary loss probabil-
ities which do not depend on past losses. Relaxation of this assumption, for example
using inhomogeneous Markov chains, would be an interesting direction to include more
realistic scenarios than the examples presented in this chapter. In the same lines, us-
ing heterogeneous sources, and including variable RTTs and queueing delays, would also
permit to handle more realistic situations. Inclusion of the ON/OFF structure would be
another interesting direction to embed in a single framework long-range dependence due to
heavy-tailed flow size distributions and multifractality due to the AIMD mechanism. Also,
theoretical spectra are obtained through the computation of spectral radii, which can have
high computational costs with large matrices corresponding to a large number of compet-
ing flows, thus limiting the scalability of our method. Given the potential applications in
optimization procedures, design of efficient procedures in this case could give our method
higher practical capabilities of primary interest.

TCP traffic at packet scale and TCP throughput predictability.

- Do TCP mechanisms generate multifractal scaling laws in the packet-level
source traffic? What is their relation with TCP throughput prediction (be-
yond the mean)?

The AIMD mechanism generates multifractal scaling laws in TCP traffic from
one connection. The scale-invariant quantity is the averaged throughput in
time windows of size n. A Markov model allows us to demonstrate this
multifractal property and to calculate the corresponding theoretical large-
deviation spectrum observable on one realization based on an almost-sure
large-deviation theorem. Bounds on the spectrum for a finite-size realizatioin
can also be predicted.

In the case of multiple connections, these scaling laws are also present and per-
mit a multi-scale analysis of TCP performance metrics such as the total or
individual throughput or fairness.

The large-deviation spectrum permits the prediction of probabilistic bounds on
the throughput and fairness of TCP connections.
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Chapter 9

Conclusions and perspectives

Quality of Service is a central preoccupation for network users, intimately linked to the
properties of the traffic. While several approaches are possible, we adopted in this thesis
a probabilistic approach, based on a deep understanding of the statistical properties of
network traffic and of their impact on QoS.

Conclusions

A thorough review of the state of the art regarding scaling laws in network traffic and their
impact on QoS (Chapter 3) revealed that these questions have been at the center of a large
amount of research works over the last decade. However, such works belong mainly to two
categories, theoretical or experimental, which are sometimes separated by such a gap that
theoretical models can fail at describing the results of real-world experimentations. While
this is a common fact in many fields of science, in the case of networks, we can identify
a major cause for this division: the TCP protocol. Despite its apparent simplicity (in
its basic variant, Reno), the TCP protocol introduces a large complexity in the system.
Indeed, its feedback mechanisms inevitably introduce correlations between sources sharing
a bottleneck. Taking this correlation into account in mathematical models is a very arduous
challenge, far from being solved at this time. In this sense, experimental studies are
essential to provide accurate results in specific conditions. On the other hand, our state-
of-the-art review also evidenced the risks of drawing general conclusions from specific
experimental results, and more particularly from the analysis of a specific Internet trace.
While these studies are essential to understand the main evolutions of Internet traffic, such
conclusions are likely to be trace-driven and not to hold in full generality. In this sense,
theoretical models can help to understand the genuine origin of experimental results, and
to determine their limits and conditions of validity in different situations. In our work,
we have tried to keep a constant interaction between these theoretical and experimental
aspects.

To performed controlled, yet realistic experiments, we developed a large-scale experi-
mental platform (Chapter 4). Based on the testbed Grid5000, this platform consists in a
large number of fully controllable machines interconnected by very high-speed dedicated
links, and allows reproducing realistic conditions with real network equipments and TCP
implementations. We also developed a tool, MetroFlux, able to capture traffic at packet
level, at up to 10 Gbps. This tool also enables synchronized captures at the input and the
output of a buffer, to study its dynamic. It then permits a deep inspection of both traf-
fic and QoS properties. Despite the natural difficulty inherent to real equipments shared
by a large research community, we managed to obtain a reliable and powerful metrology

165
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platform which we used throughout the rest of our work.
This metrology platform first allowed us to perform a thorough investigation of Taqqu’s

relation between heavy-tails and long-range dependence (Chapter 5). Then, we could
close a ten-year-old debate about the role of the TCP protocol in generating long-range
dependence. We showed that, because of the scale range involved in Taqqu’s relation,
the protocol is, by itself, unable to generate such scaling behavior in loss-free situations.
Moving to more realistic conditions implying losses, we showed that the interaction of the
protocol and the system can modify the observed long-range dependence. In particular, in
congestion situations, RTT-scale correlations introduced by TCP feedback mechanisms can
have an impact even on large-scale traffic properties. This controlled experimental study
allowed us to clarify the situations in which simplifications of Taqqu’s model render it
incompatible with real traffic properties. Then, to include a commonly observed situation
where the flow-size and flow-duration distributions have different tail indices, we proposed
an extension of Taqqu’s model taking into account the flow-scale correlation between rates
and durations. This model is based on a planar Poisson process, a setting rarely used
in the context of long-range dependence, which proved well suited to predict the Hurst
parameter of the aggregate traffic. Our results show that, depending on the precise form
of this correlation, surprising effects can appear: the long-range dependence can be even
stronger than the one predicted by the original Taqqu’s relation.

The study of long-range dependence confirms that the tail index of the flow-size distri-
bution is an important parameter of the system. While its estimation from packet traces
enters a well-known framework if all the packets are observed, the situation is more compli-
cated when resource-usage limitations constrain to retain only a sub-sample of the packet
stream. We proposed a rigorous maximum-likelihood solution and showed that other pro-
posed solutions are approximations of this estimator (Chapter 6). Practically, we showed
that it is the only reliable estimator at sampling rates as small as 1/1000, advocating its
use in long-duration monitoring of very high-speed traffic.

Turning to the evaluation of QoS and its link with scaling laws, we used two different
approaches. We first performed an empirical evaluation of the impact of the flow-size
distribution’s tail index αSI on QoS (Chapter 7). With the UDP protocol, we observed a
clear deterioration of QoS for very heavy tails and for large buffers. In contrast, we showed
the insensitivity of QoS with respect to αSI for small buffers. These results are coherent
with asymptotic theoretical results proposed in the literature. However, our empirical
approach allowed us to go beyond asymptotic results and to specify the bounds between
the large-buffer and the small-buffer regimes. In particular, we observed different regime
frontiers for the loss rate and for the mean buffer occupancy, stemming from the different
statistical nature of these quantities. In the case of TCP, the impact of αSI on QoS was
less clear. Our results suggest that the absolute position of the whole distribution might
be as important as its tail index for the evaluation of QoS. However, our experimental
results showed evolutions of certain QoS metrics with αSI in contradiction with several
prior results of the literature. This tends to prove that the results in TCP can strongly
depend on the experimental conditions and advocates the use of real experiments as a good
approach to tackle QoS issues in TCP.

As a complementary aspect to the flow-scale characterization of QoS, we finally turned
to the packet-scale characterization of TCP traffic within a long flow (Chapter 8). Based
on an original large-deviation theorem, we showed that the TCP congestion window’s evo-
lution exhibits a new type of mutlifractal scaling laws, genuinely originating in the AIMD
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mechanism. The scale-invariant quantity is the mean TCP throughput within some time
window, and the corresponding large-deviation spectrum thus directly reflects a multi-scale
analysis of TCP performance. We proposed a Markov chain model of the congestion win-
dow’s evolution, which permits to simply compute the theoretical spectrum and to predict
probabilistic bounds on the expected throughput. Such bounds, accounting for the traffic
variability, enable a finer description than the predictions of the global mean throughput
existing in the literature. Beyond the versatility of the proposed model with respect to
experimental conditions, its most important strength lies in that, using higher dimension
Markov chains, it can take into account the RTT-scale correlation between competing
sources. Then, in the case of several flows, our model also allows performing a multi-scale
analysis of fairness and it gives the corresponding QoS bounds. Finally, we experimentally
showed that other TCP variants than Reno also inherently possess the same kind of scaling
laws.
Let us highlight that our multifractal approach is different from the standard Hölder mul-
tifractality, which, in spite of many efforts, was never proven to straightforwardly connect
to TCP mechanisms. In this sense, our work offers a fresh view on the widely debated
question of the link between TCP and multifractality, and opens new perspectives.

Perspectives

The Internet is currently undergoing deep modifications both in term of structure, with the
emergence of FTTH and flow-aware control mechanisms; and in term of users’ behavior,
with the development of new aggressive TCP variants and the expansion of UDP-based
traffic. A precise understanding of the impact of these new mechanisms on traffic and
QoS is essential to ensure the best performance and stability for the future Internet. Such
a deep understanding, in our opinion, can only be based on a combination of theoretical
studies and experimental investigations. In this context, our work opens new perspectives
of future work on both aspects.

The metrology platform that we developed will remain useful to many network re-
searchers, to perform experimental studies implying the new mechanisms of the future
Internet. Indeed, its high-speed links allows reproducing a large spectrum of rates, such as
the ones that will be available at home in the future Internet, with the emergence of FTTH.
Moreover, although our work in this thesis used only a nation-wide network, Grid5000 also
offers several international connections (with Japan, Brazil and the Netherlands). These
long-distance connections can be used to perform experiments with heterogeneous and/or
large RTTs, e.g., to study the behavior of new aggressive TCP variants developed for large
bandwidth-delay products. The deployment of MetroFlux in Japan is already planed, via
the ANR1 project PetaFlow2, and will permit a deep analysis of the traffic properties in
such situations.

Regarding the characterization of the aggregate traffic properties, some parts of the
problem have been left over. We saw that the RTT-scale correlations play an important
role, but our analysis remained qualitative on this point. A quantitative study of their
precise impact and of the scales involved is then a natural future work. Extension of our
study to situations implying multiple RTTs, and multiple bottlenecks would be an inter-

1Agence National pour la Recherche, (French national research agency)
2ANR Strategic Japanese-French Cooperative Program on “Information and Communications Technol-

ogy Including Computer Science”
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esting complementary direction.
The model that we proposed to extend Taqqu’s relation also opens up several directions
for further work. From a theoretical viewpoint, a deeper examination of the processes
would be required to prove their convergence properties in a more general setting. It is
likely that, as for the classical models which do not include the correlation between flow
rates and durations, there exist (at least) two limiting regimes yielding different processes
(like the fBM and the Lévy process in Taqqu’s model). Several hints lead us to believe
that the introduction of this correlation might also lead to interesting scaling properties of
aggregate traffic at small scales, of great relevance in a network context. From an applica-
tion viewpoint, the question of the precise origin of the flow-scale correlation between rates
and durations remains open, but answers to this question should probably be sought in a
more general context including the effects of flow-aware control procedures, susceptible to
modify strongly these flow-scale correlations. Then the model we proposed could enable
an analysis of the impact of these new mechanisms on the aggregate traffic properties.
Finally, to complete the description of large-scale properties of aggregate traffic, a model
embedding both the RTT-scale correlation (introduced by TCP) and the flow-scale corre-
lation (possibly introduced by flow-aware control procedures) would be of great interest.
Such a model would for example allow studying the interactions between the TCP protocol
and the flow-scale control procedure, through their effect on the aggregate traffic.

Our study of large-scale properties of the traffic indicates that the tail index of the
flow-duration distribution can be important if it is different from the one of the flow-size
distribution. A promising direction to extend our work on the estimation of the flow-
size distribution’s tail index under sampling would then be to adapt it to the case of the
flow-duration distribution. In order to use the tail parameter in control or optimization
procedures, real-time constraints require extra work to reach a fully operational estimator
in term of computational cost. Finally, this estimator has been developed within the frame-
work of Pareto distributions and its adaptation to more general heavy-tailed distributions
could also be an interesting direction to extend our work.

The empirical approach that we used to evaluate the impact of the flow-size distribu-
tion’s tail index on QoS allowed us to observe some new results on queueing behaviors,
but many questions remain open on this aspects. Our empirical results on loss rate and
buffer occupancy in UDP are intimately related to the finite-size character of the buffer,
for which mathematical modeling is very arduous. It then exposes a challenging direction
for future theoretical work. Such work on QoS in UDP is likely to have a major impor-
tance in the future Internet with the expansion of UDP-based applications. Moreover, our
study was limited to Gaussian input traffic, and a natural extension would be to consider
more general input processes. Given the non-linear queueing effects, the situation is likely
to turn much more complicated. Such a work, however, could be of major importance,
because non-Gaussian traffic is likely to appear more prominently in the future Internet,
due to the emergence of FTTH, increasing the probability of high-rate bursts.
In the case of TCP, the tail index did not appear as a sufficient parameter of the flow
size distribution to characterize QoS, and this result offers challenging future work to find
more pertinent parameters of the distribution. As we saw, the results are also likely to be
sensitive to some complex optimization parameters of TCP, such as the SSTHRESHOLD. A
precise characterization of the impact of these parameters is then essential, and the use of
our controlled metrology platform will be of great help is this quest. The extension of our
study to different TCP variants is also an aspect that we have left over, and that would
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be an important future work.
The multifractal approach that we proposed to characterize TCP traffic at packet-scale

also opens new directions of future work, both in an network application context, and
in a more theoretical context. Firstly, extension of the Markov model we proposed to
new aggressive TCP variants would be an interesting perspective, for it would permit an
analytical mulit-scale evaluation of their “TCP friendliness”. Inclusion in the model of
heterogeneous RTTs and queueing delays would also be an interesting direction to handle
more general situations. Then, the model could be used, not only to characterize and
predict achieved QoS, but also for control and optimization problems related to the TCP
protocol such as finding the optimal evolution of the congestion window to maximize
the performance bounds predicted by the large-deviation spectrum. To consider such
approaches in real-time, however, further work would be required to enhance the practical
capabilities of our approach based on the computation of spectral radii of large matrices.
The next step toward the understanding of scaling laws and QoS in networks is probably
to merge the flow-scale and packet-scale approaches, i.e., include the ON/OFF structure
in the Markov-chain model. This is a very arduous challenge, for it implies correlations of
different types, at both small and large scales.
The large-deviation theorem that we provided to show that a multifractal behavior is
observable on one realization of a Markov chain also opens several directions of future works
of diverse nature. Firstly, the statement of the theorem itself can be improved, in particular
by finding a necessary condition for its result to hold (we used a sufficient condition which
can be too restrictive). From a theoretical viewpoint, this theorem shows how to generate
a new class of mutlifractal processes with prescribed large-deviation spectra. This can be
of interest for the mutlifractal community, with a goal of finding new ways (not based
on multiplicative cascades) to generate processes with controlled mutlifractality. Finally,
we believe that this theorem can find applications in many domains other than networks,
where the same kind of scaling laws is of primary interest.

In this thesis, we have tried to provide a better understanding of network traffic prop-
erties and their impact on QoS, in order to eventually permit the development of more ef-
ficient control and optimization procedures for the future Internet. Trying to draw bridges
between theory and experiments, we have seen that one of the main difficulties in the
mathematical description of real-world phenomena is the inclusion of different types of
correlations, at different scales. While our work was motivated by network applications,
this is a common problem in many fields of science like physics or economics (some authors,
for instance, partially attribute the current financial crisis to erroneous predictions due to
the use of the (uncorrelated) standard Brownian motion). We believe that the develop-
ment of models including various types of correlations is a major mathematical challenge
for current and future research, conditioning the development of accurate prediction and
control procedures in many domains.
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Appendix A

Technical derivations for

Chapter 6

A.1 Formulae of the sampled flow size distribution, log-likelihood

and Fisher information for an arbitrary value of jmin

With an arbitrary value of the minimal sampled size observed jmin, the sampled flow size
distribution (eq. (6.19)) becomes when using the proper normalization (eq. (6.7)):
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The log-likelihood function can then be written:
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Finally, by differentiation of eq. (A.2), the Fisher information for an arbitrary jmin is
obtained:
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P
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P
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}
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{
P

∞

i=1(ln i)2Bp(i,Y )i−(α+1)
P

∞

l=1Bp(l,Y )l−(α+1)

})
. (A.3)

A.2 Asymptotic relations between some normalization sums

In this appendix, we show a few relations between the normalization sums of the following
distributions: Zeta, Pareto, distribution of ı̄(αap) assumed to be algebraically decreasing.
The tail index of these distributions is denoted α.
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Let us first stand and recall a few notations:

ζ(α+ 1, imin) =

∞∑

i=0

(i+ imin)
−(α+1) =

∞∑

i=imin

i−(α+1), (A.4)

ψ(α+ 1, xmin) =

∫ ∞

xmin

x−(α+1)dx =
x−αmin

α
, (A.5)

χ(α+ 1, jmin) =

∞∑

j=jmin

(
ı̄(αap)(j)

)−(α+1)
, (A.6)

where

ı̄(αap)(j) = exp

(∑∞
i=j ln(i)Bp(i, j)i

−(αap+1)

∑∞
l=j Bp(l, j)l

−(αap+1)

)
. (A.7)

Considering that ζ(α+ 1, imin) is the Riemann sum approximating the integral ψ(α+
1, imin), we can easily see that:

ζ(α+ 1, imin − 1) ≤ ψ(α+ 1, imin) ≤ ζ(α+ 1, imin). (A.8)

As we also have:

ζ(α+ 1, imin) − ζ(α+ 1, imin − 1) =
1

imin − 1
−→

imin→∞
0, (A.9)

we conclude that
ζ(α+ 1, imin) ≃

imin→∞
ψ(α+ 1, imin). (A.10)

We give now an approximation of ı̄(αap)(j) when j is large: First note that the function
Bp(i, j)i

−(αap+1) (considered as a function of i) mainly takes non null values in an interval
centered on the value i = j

p (where the function is maximal) and of width a few times√
jpq. If j is large, the function ln(i) is approximately constant in this interval, equal to

ln( jp). Then we can rewrite ı̄(αap)(j) by putting the ln function out of the summation:

ı̄(αap)(j) ≃ exp

(
ln(

j

p
)

∑∞
i=j Bp(i, j)i

−(αap+1)

∑∞
l=j Bp(l, j)l

−(αap+1)

)

≃ j

p
. (A.11)

Note that this approximation can be used to reduce drastically the computational cost for
the computation of ı̄(αap)(j) for large values of j.

Direct plug of equation (A.11) into equation (A.6) leads to the approximation

χ(α+ 1, jmin) ≃
(

1

p

)−(α+1) ∞∑

j=jmin

(j)−(α+1)

≃
(

1

p

)−(α+1)

ζ(α+ 1, jmin). (A.12)
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Using the approximation of equation (A.10) then leads to

χ(α+ 1, jmin) ≃
(

1

p

)−(α+1) j−αmin

α

≃ 1

p

( jmin

p )−α

α

≃ 1

p
ψ(α+ 1,

jmin

p
). (A.13)

As ı̄(αap)(jmin) ≃ jmin

p , the overall conclusion then reads:

χ (α+ 1, jmin) ≃
jmin→∞

1

p
ψ
(
α+ 1, ı̄(αap)(jmin)

)
(A.14)

≃
jmin→∞

1

p
ζ
(
α+ 1, ı̄(αap)(jmin)

)
. (A.15)

A.3 EM approach for the estimation of α

Following the lines of [Duffield et al., 2003], we show in this section that the EM approach to
the estimation of α from sampled data effectively leads to the same procedure as performing
a fixed point method on likelihood solution of equation (6.22), as claimed in Section 6.3.2
of Chapter 6. The calculations are presented in the case jmin = 0.

The EM algorithm was introduced in [Dempster et al., 1977], and a detailed desciption
can be found in [McLachlan and Krishnan, 1997]. This versatile algorithm is an iterative
procedure that converges to the maximum likelihood estimate under mild assumptions on
the likelihood function (see [McLachlan and Krishnan, 1997]), when missing data prohibit
its straightforward calculation. Observed data are said incomplete and viewed as an ob-
servable function of the so-called complete data. A proper choice of the incomplete data is
a key to ensure tractability of the method and an adequate form of the iterative procedure.
In our case, the incomplete data is simply the joint probability of S and Y , that we denote
to simplify the expressions:

pij = PS,Y (S = i ∩ Y = j). (A.16)

The observation ηj can easily be recovered from the incomplete data: ηj =
∑

i pij .
Assuming the complete to be known, we form the complete log-likelihood (recall that

n is the number of observed flows):

Lc(α) =
∞∑

i=1

∞∑

j=0

pij log (φiBp(i, j))

= n log ζ(α+ 1) + n

∞∑

i=1

∞∑

j=0

pij log
(
Bp(i, j)i

−(α+1)
)
, (A.17)

where the sum over i, which should start at i = j has been equivalently taken from 1
because pij = 0 if i < j.

After an initialization (e.g. α(0) = 1), the EM algorithm iterates two steps: the E-step
(the expectation step) and the M-step (the maximization step).
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E-step Form the expectation Q(α, α(k)) of the complete log likelihood, conditionally to the
observation η = {ηj , j = 1, 2, · · · }, considering the parameter at the k-th iteration α(k):

Q(α, α(k)) = Eα(k){Lc(α)|η}. (A.18)

M-step Define and determine:

α(k+1) = argmax
α

Q(α, α(k)). (A.19)

In our case, we have:

Q(α, α(k)) = n log ζ(α+ 1) + n
∞∑

i=1

∞∑

j=0

Eα(k){pij |η} log
(
Bp(i, j)i

−(α+1)
)
. (A.20)

The maximization step is obtain by simply solving the equation:

dQ(α, α(k))

dα
Iα(k+1) = 0, (A.21)

where

dQ(α, α(k))

dα
= n

ζ ′(α+ 1)

ζ(α+ 1)
+ n

∞∑

i=1

∞∑

j=0

Eα(k){pij |η} ln i

= n
ζ ′(α+ 1)

ζ(α+ 1)
+ n

∞∑

i=1

Eα(k){φi|η} ln i, (A.22)

noticing that
∑

j pij = φi. Finally, direct computation yields:

Eα(k){φi|η} =

∞∑

j=0

ηj
φ

(k)
i Bp(i, j)∑∞

l=1 φ
(k)
l Bp(l, j)

, (A.23)

so that plugging equation A.23 into equation A.22 brings (see the definition of ı̄ in equa-
tion 6.17 and recall that the summation on i in this definition can start indifferently at j
or at 1 due to the presence of the term Bp(i, j)):

dQ(α, α(k))

dα
= n

ζ ′(α+ 1)

ζ(α+ 1)
+ n

∞∑

i=1

∞∑

j=0

ηj
φ

(k)
i Bp(i, j) ln i

∑∞
l=1 φ

(k)
l Bp(l, j)

= n
ζ ′(α+ 1)

ζ(α+ 1)
+ n
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j=0

ηj ln ı̄(α(k))(j). (A.24)

Resolution of equation A.21 then readily brings the equation:

ζ ′(α(k+1) + 1)

ζ(α(k+1) + 1)
= −

∞∑

j=0

ηj ln ı̄(α(k))(j), (A.25)

effectively is identical to the fix point resolution of equation (6.22) of Section 6.3.2, which
concludes the demonstration.
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