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|. INTRODUCTION

Although the microscopic behavior of electronsin conductors is strongly affected by quantum
mechanical effects, the macroscopic behavior of usual electronic circuitsis classica : voltages

and currents obey Kirchhoff rules, and their evolution is determined by the current-voltage
relations of the various elements. The search for electronic circuits exhibiting quantum
properties in their macroscopic behavior arose when Caldeira and Leggett realised that
electronic circuits were the best candidates to test for a possible limit of validity of quantum
mechanics at the macroscopic level [1]. They explained quantitatively how dissipation, which

is unavoidable in a macroscopic system, usually prevents the observation of a quantum
behavior. Nevertheless, they showed that for a Josephson junction placed in a superconducting

ring, dissipation can be made small enough to observe quantum tunneling of the flux
threading the ring. Quantum tunneling out of a metastable flux state has indeed been observed

in these systems [2]. Furthermore, observation of quantum tunneling in a dlightly different

system where the Josephson junction is biased with a current source, was found to be in good
agreement with the predictions, once the effect of residual dissipation is taken into account

[3]. The next step in this new field of macroscopic quantum mechanics then clearly appeared

to be the realisation of a coherent superposition of two quantum states which differ at the
macroscopic level. This extreme quantum situation is called macroscopic quantum coherence.

Despite numerous attempts, it could not be achieved in the above Josephson systems because

a static coherent superposition of two flux states is much more fragile with respect to residual
dissipation than quantum tunneling of flux [4].

In this work | will describe experiments done on a new “quantum” electronic component : the
superconducting single electron transistor. The device consists of two nanoscale series-
connected superconducting tunnel junctions (see Fig. 1). A tunnel junction consists of two
metallic electrodes separated by a thin insulating layer (typically 1 nm thick). Since the
electrode between the two junctions is isolated from the rest of the circuit, we call it the
“‘island”. The principle of this device is based on a tunable coherent superposition of two
island states whose charges differ ley 2 difference which affects the macroscopic behavior

of the device. The advantage of dealing with charge variables instead of flux variables is due
to a very fundamental asymmetry : the typical dissipation felt by a charge variable is smaller
than that felt by a flux variable in a ratio of the ordeZgfR« = 2a << 1, where 2= 1fg,c =

377Q is the impedance of the vacuuR = h/e? = 25.8 KQ is the resistance quantum and

o = e2[4Teghc = 1/137 is the fine structure constant (see Refs. 4 & 5 in the case of flux and
charge, respectively).
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Fig. 1. Schematic representation of a superconducting single electron transistor and its bias
circuit. The transistor itself consists of three superconducting electrodes (rectangles marked
S) separated by tunnel barriers (represented by the hatched rectangles) and a gate capacitor.
The middle electrode is called the island, while the other elements are named by analogy with
afield effect transistor (FET). The biasing circuit is represented by an ideal voltage source V,,
in series with a load impedance Z,,,4. The gate voltage source V is supposed ideal.
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Fig. 2. Scanning electron micrograph of a sample. The sample fabrication will be described
in Chap. V. The junctions are formed at the overlap of two aluminum films. The insulating
tunnel barrier is made by oxidizing the first aluminum layer prior to the deposition of the
second layer. The non-superconducting copper |eads participate in the impedance Z,,4 of the
electromagnetic environment of the transistor. They provide a relaxation mechanism for
unpaired electrons. This relaxation is essential for the observation of macroscopic quantum
coherence.
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Fig. 3. a) Symbolic representation of a small area superconducting tunnel junction. The
relevant macroscopic parameters which characterise the junction are its capacitance C and
its Josephson coupling energy E;. b) Schematic electrical diagram of the superconducting
single electron transistor at zero bias voltage and without environmental impedance. The
tunnel junctions (supposed identical) are connected in series thereby defining an isolated
island (enclosed by dashes).

A gate electrode capacitively coupled to the island controls the mixing of charge states in the
island : it arbitrates the competition between the electrostatic charging energy of the island
which tends to impose the charge of the island, and the Josephson coupling energy which
tends to mix charge states in the superconducting electrodes and particularly in theisland. The
maximum supercurrent which can flow through the device depends on the relative weights of
the quantum superposition of charge states in the island. Hence, the measurement of the
maximum supercurrent of the transistor constitutes an observation of macroscopic quantum
coherence in the island.

In the following we describe more precisely how the gate voltage controls the macroscopic
guantum superposition and we explain the possible difficulties associated with the observation
of the macroscopic quantum coherence.

A convenient scale for the electrostatic energy cost of charging the island is the electrostatic

energy E. = €2/2C5 of one extra electron on the island, where Cs is the total capacitance of

the island. The capacitance Cs is dominated by the capacitances of the two junctions.
Nowadays junctions made using electron-beam lithography (see Fig. 2) commonly have areas

of the order of 100 nmx100 nm resulting in capacitances in the fF11B) range. This yields

a charging energlc of the order of 1 K. For thermal fluctuations not to spoil the operation

of a transistor made with such junctions, one must lower the temperature much below 1 K.
Such temperatures (10-100 mK) are routinely achievedhtedHe dilution refrigerator.

A second fundamental energy scale in the transistor results from an interplay between
superconductivity and tunneling. This effect is named after Josephson who discovered it in
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1962 [6]. We will first describe the behaviour of a single superconducting tunnel junction
(Fig. 3a). It will serve as a basis to the understanding of the transistor. Charge carriers in the
superconducting electrodes of the junction are Cooper pairs. The states of a single junction
can be indexed by the number k of Cooper pairs having crossed the tunnel barrier. At zero
voltage across the junction, all these states are degenerate in electrostatic energy (Fig. 4a).
Classically, a current flowing through the device would result from a succession of transitions
between k-states. Josephson showed that quantum tunneling between the electrodes of the
junctions induces an elastic coupling between the k-states whose matrix element is —E;/2
where E; is known as the Josephson coupling energy, a quantity which depends on the
transparency of the tunnel barrier. This coupling is symbolised by arrows in Fig. 4a. The
situation is identical to the one found in the tight binding description of a one-dimensional
crystal with one atom per unit cell : the electrostatic energy plays the role of the energy of the
orbitals, while the Josephson energy is equivalent to the hopping energy. We can apply the
Bloch theorem as in the crystal. Therefore, a good quantum number will be the phase & across
the junction which is the conjugate quantity of k. The eigenstates of the system are
characterised by a well-defined value of &, which in the k-states picture corresponds to a
coherent superposition of an infinite number of states : the number of Cooper pairs having
crossed the junction is completely undetermined quantum mechanically. The eigenenergies of
the system form a band parametrised by o, with energy E(d) = —-E;cosd (Fig. 4b). The
existence of such a band enables a supercurrent flow (that is a current with no voltage drop)
through the junction. The theoretical maximum supercurrent (hereafter called the critical
current) the junction can transmit is proportional to the width of the band.

The transistor can be described in terms very similar to those we used here for the single
junction. The states of the transistor can be indexed by the combination of the number k of
Cooper pairs having crossed the device and the number p of excess Cooper pairs on the island
(Fig. 58). At zero bias voltage on the transistor the energies of the states of the system are
degenerate with respect to k. If one starts in the ground state of the island, there is a minimal
electrostatic energy cost U :4EC‘1—(Qgj mod2e)‘ associated to the entrance or exit of a
Cooper pair in the island, where Qq = C,V, is what we call the gate charge. This electrostatic
energy can be tuned between O and 4E by varying the gate voltage Vg, with a periodicity
corresponding to adding one Cooper pair on each plate of the capacitor C,. The behaviour of
the system is thus 2e-periodic in Q. If we suppose that E; < E¢, in afirst approach we can
consider only the two states of lowest electrostatic energy in a given Qg-period. These two
states differ by one Cooper pair in the island. The classical succession of electrostatic energy
levels of the system corresponding to a current flow at zero bias voltage, as a function of k, is
shown in Fig. 5b. The Josephson couplings are still symbolised by arrows, and the junctions
are assumed to have the same Josephson coupling energy E;. The system is again analogous to
a one-dimensiona crystal but now with two atoms per unit cell. Thus, in our simplified
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description of the transistor which neglects the influence of the bias circuit (we have supposed
V=0, Z5,q=0), we can still apply the Bloch theorem. The phase & across the source and
drain which is the conjugate quantity of k (see Fig. 5c) is a good quantum number. The
eigenstates of the system now form two bands parametrised by & (Fig. 5b). The width of the
bands depends on the relative strength of U and E;. Hence, the transistor is a (maybe unique)
example of a device whose quantum band structure can be modulated by ssimply changing the
gate voltage : as U is changed from O to 4E- by varying the gate voltage, the width of the
bands varies between E; (half that of a single junction) and E#/2E.. As long as the system
stays in the lowest band, the physics of the transistor is that of a single Josephson junction
with a gate-voltage tunable effective Josephson coupling. This modulation of the effective
Josephson coupling translates into a modulation of the maximum supercurrent (see Fig. 6 &
7). This justifies the name of “transistor” given to the device : it can be considered a
superconducting field effect transistor.

a) b)
electrostatic +
electrostatic k,d Josephson energy
energy TN
A I A I
I I
I I
E I I
3 I I
o | .2 __ — _ | |
I I
I I
I I
I I
I I
1 1 1 1 1 1 1 > l 1 1 1 1 1 1 l
-1 0 1 2 —mn-1m/2 0 12 ™
k 0

Fig. 4. a) Electrostatic energy states of a single Josephson junction indexed by the number k
of Cooper pairs having crossed the tunnel barrier. The states are coupled by the Josephson
coupling energy as symbolised by the arrows joining adjacent states. The description is
analogous to that of a 1-D crystal with one atom per unit cell in the tight-binding model. b)
Trandational invariance of a) can be used to diagonalize the system in the d representation
where 0 is the phase difference across the junction. The variable d is canonically conjugated
with the variable k.
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Fig. 5. (previous page) a) Variables which can be used to describe the state of the system. The
state of each junction can be specified in terms of k; (i = 1,2) the number of Cooper pairs
having crossed each junction or 9, the phase across the junctions. From these four variables
we define four other variables which are more convenient for describing the state of the whole
transistor. These variables are canonically conjugate two by two: (i) k, the number of Cooper
pairs having crossed the whole transistor and & the total phase difference across the
transistor, and (ii) p, the number of excess Cooper pairsin the island and 8 the phase of the
superconducting condensate in the island. b) Electrostatic energy states of transistor, for the
two lowest electrostatic energy states of the island as a function of the number k of Cooper
pairs having crossed both junctions. The ground state and the first excited state differ by one
Cooper pair in the island (Ap = +1). The Josephson coupling energy (supposed the same for
both junctions) is symbolised by the arrows joining adjacent states. The description is
analogous to that of a 1-D crystal with two atoms per unit cell. c) Asin Fig. 4, translational
invariance of b) can be used to diagonalize the system in the & . We have now two bands. The
amplitude of the bands depends on the relative magnitude of E; and U which itself can be
adjusted by varying the gate voltage. The switching property of the transistor is based on this
modulation of the band structure by the gate voltage.

20 T T T
10F 3 -
I F
2 0_,,,,,,,,,,,,,,,,,,,.;:.:‘;r,,ﬂ‘.,, e t ,,,,,,,,,,,
5 A
10+ -
-20 A ] A i A ] A
-10 -0.5 0.0 0.5 1.C

V (mV)

Fig. 6. Experimental current-voltage characteristic of one of our samples (# 13) biased by a
nearly ideal current source. Data points on the zero-voltage axis correspond to the
superconducting state of the transistor. When the driving current is increased above the
switching current I, the voltage across the transistor suddenly increases. The value of the
switching current is modulated by the gate voltage (see Fig. 7).
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As we explained in the beginning of this introduction, the quantum character of the transistor

lies in the variable p indexing the number of Cooper pairs in the island and its conjugate
variable, the phase 8 of the superconducting condensate in the island (Fig. 5a). These
variables obey an Heisenberg uncertainty relation of the type 86.0p =1 [7]. When U is tuned

to its maximum by adjusting the gate voltage, the electrostatic energy cost of changing p is
significant and this nearly suppresses quantum fluctuations of p. Of course, at the same time,

0 is completely undetermined quantum-mechanically. In this situation the bands of the
transistor are narrow, and the maximum supercurrent is weak. On the contrary, when U = 0, p
fluctuates between the two values corresponding to the lowest electrostatic energy level : dp =

1 and 80 is reduced. In this situation, the state of the transistor has no classical description : it

is in a coherent superposition of states. The width of the bands are now maximum and the

critical current of the transistor is a'so maximum. Thus, from the point of view of p and 6, the

gate voltage controls the “squeezing” of the fluctuationp.ofhe larger the squeezing, the
smaller the critical current of the device.

The behaviour of the transistor is shown in Fig. 7 where we plot the variations of the maximal
experimental supercurrent (hereafter called the switching current) of one of the samples we
have fabricated, as a function of the gate charge. This switching current is compared with the
maximum supercurrent given by the theory (see Fig. 7). Our results shown in Fig. 7 constitute
the first observation of the modulation predicted by Likharev who first discussed the set-up of
the transistor nearly a decade ago [8]. During a long time experiments could not confirm these
predictions [9,10,11]. There were indeed reasons to suspect that some fundamental problems
could prevent the observation of these predictions. One can think of two types of problems :

i) The first type of problems concerns the possibility of defects in the superconducting order.
In the description of the transistor we have presented, we have made a crucial assumption
which was not correctly justified : we implicitly invoked the BCS theory of superconductivity
[12] to assume that the electrons in the island were all paired (and therefore, in even number)
at low temperature. The BCS theory of superconductivity is known to be rigorous in the
thermodynamic limit of a large system. In small islands such as that of the transistor, one
cannot predict what will be the influence of disorder, impurities, boundaries etc. on the states
of the superconducting system : there might be available states of any parity at any energy in
the island. Furthermore, even if one follows the BCS theory liteiiadlyagssuming the validity

of the thermodynamic limit in a finite non-ideal system), there are excited states of the
superconductor in which the electrons are not all pairedwith an odd electron number in

the island. Considering these excited states, Matwteal. [13] showed that when the
charging energ¥c is greater than the gap of the superconductor in the island, the state of
maximum quantum superposition in the island of the transistor is metastable and may well be
unobservable in practice. Finally, even if we suppose that the lowest energy states of the
island are really those of even parity, is it possible practically to place and keep the system in
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Fig. 7. Low temperature switching current (dots) and the critical current of a transistor (top
curve, no fitting parameters), as a function of the gate charge Q, = CyV,, for sample #13. The
critical current which is the theoretical maximal supercurrent would correspond to the
switching current at T=0. The data we have obtained in our experiments are the first to
reproduce faithfully the variations of the critical current. Moreover, for this particular
sample, the difference between the experimental data and the maximum achievable
supercurrent is unprecedentedly small for an unshunted small junction system. This close
agreement was obtained by implementing a specially designed electromagnetic environment
for the transistor. The remaining difference is explained by a hot-electron effect : the
experimental data isin good agreement with a calculation of the switching current where the
temperature of the electromagnetic environment is taken to be 50 mK (dashes). The heating of
electrons in this sample results of Joule effect in a resistance in series with the transistor. See
Chap. V & VI for further details.

these states? In other words, won't external perturbations unavoidably disturb the system in a
real experiment?

ii) The second type of problem is related to the el ectromagnetic environment of the transistor.
The effect of the dissipation on the macroscopic quantum coherence of charge states is
analysed in Ref. 5, where it is shown to be hardly observable for usual circuits. However, the
description of the transistor we have made appeals to the notion of Josephson coupling. This
notion is known to be perfectly valid for a large-area superconducting tunnel junction where
the capacitance is such that E- << E; : the capacitance of the junction shunts the
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electromagnetic environment of the junction which is then irrelevant (the impedance of the
environment can be taken equal to zero). On the contrary, for small junctions, one cannot a

priori disregard the role of the environment and the theory of Josephson coupling must be
reexamined. Another important issue is the way the experimentally measured quantity is

related to the prediction concerning the critical current of the transistor : The critical current

only sets an upper limit for the intensity of the supercurrent flowing through the transistor. In

systems of large junctions it is known that the environment has an influence on the
experimental critical current : when dissipation is increased, one observes a transition from

the regime of macroscopic quantum tunneling of the phase to the classical regime of thermal
activation over a barrier [3]. How does the environment influence the effective maximum
supercurrent in a small-junction system? What is the “best” environment to perform the
experiment if one wishes the largest possible supercurrent?

In this work, we address all these problems both theoretically and experimentally, and we
bring answers to most of the above questions.

Finally, in this work we will also show that the transistor is more than just a switch for the
supercurrenti(e. atVV = 0) : its quantum character yields a rich behaviour at finite voltage as
well. For example, we will demonstrate the existence of a hierarchy of “resonant Cooper pair
tunneling” processes which has been predicted [14,15] and whose first order has recently been
observed by Havilanet al. [16]. We will also show evidences for Zener tunneling between
the two lowest bands of the transistor. These quantum effects must be separated from the
more classical Shapiro steps which we have also observed, both with external irradiation, and
without (self-induced Shapiro steps).

Organisation of thiswork

In Chap. Il we describe the quantum mechanics of a tunnel junction in an electromagnetic
environment treated as a perturbation. For a superconducting tunnel junction we find that the
electromagnetic environment renormalizes the Ambegaokar-Baratoff [17] value of the
Josephson coupling energy.

In Chap. Il we develop a model of the transistor based on the Josephsatorian. We

first justify the use of the Josephson Hamiltonian by a microscopic analysis of charge transfer
in the transistor. Then, using a phase representation of the Hamiltonian of the transistor, and
keeping only a finite number of charge states of the island, we show that it behaves as a
tunable Josephson junction. We derive the gate-voltage dependence of the critical current
using a simple two-band model which we extend and compare to a three-band model. We then
describe rapidly the principle of the “poisoning” of the supercurrent by quasiparticles. Finally
further extend our theoretical description of the transistor by presenting an analytic calculation
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of the "resonant Cooper pair tunneling” current which is responsible for the gate voltage
dependent resonances appearing in the current-voltage characteristic of the transistor.

In Chap. IV we introduce the notion of the generalised current-voltage characteristic of a
Josephson junction to explain the relationship between the critical current and the
experimentally measured switching current of small-area Josephson junctions. Our main result
is the understanding of the crucia role of the dissipation on the magnitude of the switching
current of small unshunted junctions.

Our experimental techniques are described in Chap. V. We focus in particular on the
fabrication of the samples and on the experimental set-up.

In Chap. VI we present our experimental results. We first give an overview of the current-
voltage characteristic of the transistor. We then discuss the following effects concerning the
switching current :

«  Effect of the dissipation on the magnitude of the supercurrent,

- Effect of charge noise on the switching current histograms,

«  Poisoning of the supercurrent by quasiparticles.
These effects can be quantitatively accounted for by the theory developed in Chap. I1, 11l and
IV. Wefinally describe effects observed in the current-voltage characteristic at finite voltage :

«  Resonant Cooper pair tunneling,

«  AC Josephson effect under irradiation and self-induced AC Josephson effect,

«  Zener tunneling between bands of the transistor.
Our results on the first effect agree semi-quantitatively with theory. We give a qualitative
explanation of the last two effects.

In the conclusion, we summarize the results obtained, we draw the scope of this work and we
point out possible future directions.

The thesis includes two appendices :

Appendix A consists of a reprint of a paper on the poisoning of the supercurrent (Phys. Rev.
Lett., 72, 2458 (1994)).

Appendix B presents a table of parameters and miscellaneous information on the samples
involved in the experiments.
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Il. QUANTUM MECHANICS OF A TUNNEL
JUNCTION IN AN ELECTROMAGNETIC
ENVIRONMENT

A. Quantum description of circuits

1. Electrons in metals

The problem of electrons in a metal is [dfbody problem whiclcannot be solve@xactly.
Fortunately, we do not need to know the exact structure of the electronic statemetahms
model its macroscopidynamicsAll we need to know are the excitations of gystem above
the ground state. Thgpical energies we W consider are the energy thfermal fluctuations
kgT, potential energiesV associated with voltagéropsV, electrostatic energieSc... All
these energies will be much less than the Fermi ertigrayhich in metals is ofhe order of the
electron-volt. For such low energies, the excitationsvaeteseparated intowo kinds (seeFig.

1):

i) Long wavelength collective excitations of electromagnetic nature such as surface charge, and
the associated currents. These excitations propagate at the speed of light.

i) Shortwavelength collective excitations insidlee metal with k=kz which are of kinetic
nature.They are the electronipart of what eletical engineers calheat. Theseinetic
excitations can be described by the Hdiguid theory developed by Landau [1]. He
showed that in theicinity of the Fermi surface these kinetic excitations can g in
correspondence witlthose of asystem of free fermionic particles hence their name :
“quasiparticles”. Because of tkereening of charge in a metal, these quasiparticles have no
electrostatic charge in thesual sense. There is no long range eledteid which is
associated with a quasiparticle, and this is consistenthgtfact thaguasiparticles behave
like free fermions. The quasiparticlpgopagate at thEermi velocityvg =7ike/m" wherem'
is the effective mass of the quasiparticles. This velocity is typicaflyrkd.

In most circumstances the lowgavelength excitations can be ignored and one tosai

currents byassigning a dirge e to electron-like quasiparticles. In thvgork we must go

beyond this simple scheme.

The separation of excitations described here breaks dawenonedimension ofthe metallic

circuit becomes comparable tioe screening length, which is ¢fie order of thenter-atomic

distance, or at high energies. We will stay away from these limits in this discussion.
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Fig. 1. Schematic representation of the excitations of a metaltie (top panel), and their
frequencies as a function of thave vector othe excitation (bottom panel). The lattice of
ions is represented by the network of + symbols and the elecftoiidoy the grey shade.

The variations of the density of the electronic fluid are represented by the darkness of the
grey shade. Short wave-vector excitations are separatedviiottypes. The first typevhich

we call “surface plasmons” corresponds to the usual currents and charges wirthethey
propagate at the velocity of light. The static charge is a degenerate k=0 surface plasmon.
The second type consists of bulk plasmehigh are much higher in energy : they are not
relevant for the energies we consider. Excitatiaith wave vectors othe order of k are
Landau's quasiparticles of the Fermi liquid theory. They are microscopic uncharged
excitations of the metal which propagate at the Fermi velocity.

2. Quantum state of a metallic electrode and of an electrical circuit

The above considerations lead us to describe an excisasitmof a mllic electrode by a ket
lentfpllin the Hilbert spaceEeta= Eeml Eqp WhereEg, is the Hilbert space forall the
electromagnetic degrees of freedom, dig the space ofuasiparticlestateswhich is usually

the only one considered in the theory of electric transport.
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In the case of an el@izal circuit, the totalHilbert space is also a tensoriatoduct
Leircuit =Eem ULy’ - In this caseEqy” = Egy0...0Eq is itselfthe tensoriaproduct of the
quasiparticle Hilbert spaces ftine variouselements ofthe circuit. On the contraryEg)’
cannotgenerally be divided ithe same way because differgurts of thecircuit can interact
via electromagnetic fields. Itilvrather be separated into spaces corresponding tliftéeent

modes of the fields.

3. Quantum mechanics of electromagneticdegrees of freedom in a
circuit

In this section wexplainhow toform a Hamiltoniaroperator in thespacéﬁgﬁ{f. We suppose
that the circuit is aetwork ofnon-dissipative discrete dipoles. Thisnist arestrictionsince
any linear element, dissipative or na,d a resistor, &ransmission linegan be modelled by a
network of infinitesimal discrete elements (see Ref. 2 and Sec. B.1.a).

Let usfirst describethe circuitusing the classical Hamiltonian formalisnCurrents () and
voltages ) are not adapted fdahis formalism. In a given branch gfie circuit, we rather
define

t
Q) = i),
the charge having flown through the branch and the generalized flux
o(t) = [ v(t)dt.

We then write the electromagneticeegy E(Q,®) in thebranch as a function @ and/or ®
(e.g.E=Q?/2C or E=®?/2L for a capacitor or an inductor, respectively). Therswa up the
energies of thdV branches of the circuit

N
Etot:ZEi(Q’q)i)'
i=1

This isnot yet aclassical Hamiltonian becausiee variablesQ;, ®; are notindependent. To
obtain a Hamiltonian, we further need éiminate some variables by makingse of the
Kirchhoff's relations obeyed bthe Q's and®'s. These relations includeonstantswhich
correspond tanitial conditions of thevariables. The number of such independent relatighs
determinethe final number of variables ithe Hamiltonian. Theelimination procedure is not
unique. Depending orthe elimination procedure, we W obtain different Hamiltonians
H{ Q. .{ ®,}) depending on different sets of variables. These Hamiltorsiemselated to one
another by a canonical transformation. For a given choice of the Hamiltép&anong the R
remaining variableshe variablesQ, and ®, pertaining to a particular branch ar@nonically
conjugate variables :
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b, =  =-2H

3 o kDO{1...,R}.

The above Hamilton equations reproduce the standard electrical equatioaziotuit for the
usual orientation convention of dipoles

V= VA - VB
se—{_J<—n
[
With this convention, flux is a position-like quantity and charge is momentum-like.

At this point, the quantization procedure is straightforward. Variables become operators

Q-Q
> - B

and canonical conjugate operators obey the commutation relation
[&)i ,Q] =ih.
Since fromnow on we ll be dealing only withthe operatorsd;,Q we will drop the

circumflex mark onthese operators. It sometimes more convenient to ube equivalent
dimensionless operators obtained by introducing the fundamental coestadty’ :

k=Q/e o =ed/n,

which are the operators corresponding to tluenber of transferred electrons ahe phase
across the element. Itvery important tastress here that the spectrunk@andQ) is a priori
continuous.This is becauséhe electrongorm afluid in the conductors and it jgossible to
displace this fluid by an arbitrarily small amount.

B. Tunneling of electrons

We now come to the description of assential ingredient adur experiments the tunnel
junction. As already explained, a tunnel junction consistsvofmetdlic electrodes separated
by a thin insulating layer. In such a junctiohat tunnelghrough the barrier are real charged
electronsnot quasiparticles. The reason for this is tttet charge of théunneling electrons
cannot be screened inside of the insulatortuAnel process can be seen fakows : a
quasielectron incident on the barrier undressesf of its positive screeningloud as it
penetrates the barrier, and dressesagpin inthe other electrodeSince a chargee-is
transferred in the procesgjnneling couples quasiparticle and electromagneég¢igrees of
freedom. It is essential thate Hamiltonian used to describehe punction and its
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electromagnetic environment correctiseats this coupling inorder toreach a consistent
description of our circuits.

1. Description of the junction + environment system

We consider here a single junction in an arbitrary linear electromagnetic envirofinient.
environment can contaimther junctions which we Wl treat here as capacitors (this
corresponds tameglectingthe possibility of simultaneous tunnelingvents [J). Let usfirst
define the general form of the electromagnetic environment of the junction.

a) GENERAL ELECTROMAGNETIC ENVIRONMENT FOR A TUNNEL JUNCTION

In greatgenerality we can assume ttiae unction is biased by several idealltage and/or
current sources through adar circuit (Fig. 2a). Using Thévenin'sheorem (Fig. 2 b)this
junction environment can be reduced tddealvoltage sourc#/ ¢ in series with an impedance
Z(w). We then separate thenction's capacitive and tunnel functions becahsgunction's
capacitance participates in the electromagnetic environment : the junction is decomposed as the
parallel combination of a “pure tunnel element” archpacitor of capacitanég The circuit is
equivalent (Fig. 2 c) to a pure tunnel element in series with an effective impedance

O AC)

1+ j6CZ4 ()

and a voltage source
CSVS
C,+C

V =

where
-1
C :(Iim jooZS(oo))
w-0

is the series capacitance df(w) which is possibly infinite(so-called low impedance
environment case in Refs. 4,5,6).



26 The Tunnel Junction and its Environment 11.B.1

a) ) V, b) C)
DO (@-Hzwh W-{zw]
Linear

Black Box _| IQ

d) L, L, L,

AHTTH - -

Cy C, Cm

Fig. 2. a) A tunnel junction in an arbitrary linear environment, biased by multiple current
and/or voltage sourced) From Thévenin's theorem the environment is equivalent to a
voltage source Yin series with an impedance,. ZThe junction is formally split into the
parallel combination of a capacitor C and a “pure tunnel element” represented by the double
T symbolc) The electromagnetic environment of the pure tunnel element is equivalent to an
impedance Z (equal to the capacitance of the junction in panaltal Z) in series with a
renormalized voltage source ®) Finally, the impedance seen by the pure tunnel element is
decomposed into an infinite number of LC oscillators, and the voltage source is treated as a
precharging of the capacitor{C

Finally, weuse the fact that an arbitrampedance can be decomposed amfamite set of LC
oscillatorsevenlydistributed in frequency [2] (Fig. @). The parameters of the oscillators are
given bythe capacitance€,, (m = 0,1,...p0) and inductances,, (m= 1,2...p0) formally
defined by the relations
1w -1 -1
Z(w) = lim lim {&1+ Z‘{ %Cm +- %Cm }}
1207620 j0 & J(0-0m)*N  j(0+wm) +N
1
LmCm

Wy, = Me =

:

The real part of the impedance then appears as the spectral density of the set of oscillators :
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ReZ (oo):gslirrg[i Z 0 d(w-w m)) (1)
7 Am=1

whereZ,, = ./ L/C, is the mode impedance.
In this decomposition of the impedance, the series capacifgméeZ(w)!

-1
Cy = ( lim j(oZ(oo)) =G +C,
w-0

corresponding to the zero-frequency modesimgledout and it wil play a particular role
hereatfter.

The voltage sourc& is easilyincorporated in this description dfe environment of the
junction. It is modelled by ainfinitely large capacito€ with aninfinitely large charge? such
thatV=0/C. ThiscapacitorC is connected in series wi}, so it is equivalent to havingnly

Cy (which is possibly infinite too) charged up to

Qo =CoV+Q*, (2)

whereQ* is an initial condition constant.

2. Description of tunneling

We now turn to the description adinnelingthrough the purdéunnel element that we have
introduced in the previous section. We introducefliine @1 and the charg; of thetunnel
element :

left right
electrode T /T electrode
.
P

Electronstunnelingthrough the barrier W be handled in a perturbativepproach. Thélea is
that if the two sides ofthe unction were far away, the approprigt@amiltonian for the
quasiparticlepart of thesystem would simply béhe sum ofthe HamiltoniansH, and Hgy,
describing the excitation states of the left and right electrode respectively

ot _ L 4 4R
Hop = Hgp + Hep

L _ T R _ \
qu - Z Sfamafc qu - Z € tf'o' bc’
{0 r,o'

1 This capacitance is often not€g in the literature. We prefer to use h&gfor coherence of notation.
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The operatorsa;r0 and ay; (o;ro, andh, ) are the creation arghnihilation operators for
guasiparticles of spiw in the eigenstaté (spin o' and eigenstate) of the unperturbed
HamiltonianH| (Hg, respectively).
Whenelectrons arallowed to tunnel betweethe two electrodes, we simply addcaupling
operator of the form [4]

HT = Zeiq)TTZram ch +hc

Lr,o

where/ andr are used tondex states to thdeft and right side othe barrier,o is thespin
index, and¢; is the phase across thennel element. This couplingperator iscalled the
“tunneling Hamiltonian2. This Hamiltonian couplestates of thesystem differing by one
electron transferred through the barrier. For example, actinggiverastate of thesystem, the
amb:r0 term destroys a quasiparticle thre left side andcreates a new one on the rigide.
We suppose that the factdy, which measurethe strength of theoupling is independent of
spin(no magetic impurities inthe barrier). Theigér factor is an operator thahifts Q; by e,
implementingthe transfer of the charge eof the electron. From the commutatioglation
between the tunnel element's electromagnetic ope@caadd, we have

e_i¢TQTé¢T = Q]_ + e

We see here how the tunneling Hamiltonian couples electromagnetic and quasiparticles degrees
of freedom.

In principlethe T, can be calculated frotie knowledge of thevavefunctions orboth sides

of thejunctions and othe barrier geometry. In practice, we cannot and waatowvant to

reach such a microscopic descriptionoofr systems. Weather try todescribeour systems

using a few macroscopic phenomenological parameters. Weee that such a macroscopic
description is possiblgor our tunnel junctions :all we need to know is asingle
phenomenological parametevhich is poportional to the secondnoment of the T,
distribution versus energy. Thus, contrarily to what one wdalik at first glance, our
predictive power is not reduced to zero by this lack of microscopic knowledge.

a) DOMAIN OF VALIDITY , APPROXIMATIONS

The description of tunnelingdopted here ibased on théypothesis thathe states in thieft
and right electrode ameot affected by theoupling termThis is evidently dimit of very weak

2 This denomination can be misleading because, as we explained in sec. A.3, a Hamiltooidy lwanritten
for the totalsystem (junction environment). By analogy witthe classical description given §ec.A.3, we
would rather call the coupling operator a (non-diagonal) energy operator. The coupling operatbeceailys
"a Hamiltonian" {.e. part of the total Hamiltonian) after the eliminationsaperfluous variables ithe total

energy of the system has been performed.
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Fig. 3. Convention of orientation used for the charges and fluxes.

coupling. Thisweak coupling hypothesis allovise use of thé-ermigolden rule to evaluate
transitions induced b%{;. Thisapproach isvell suited forour junctionsbut it would not be
applicable to barriers of even moderate transparency.

3. Hamiltonians for the electromagnetic environment + tunnejunction
system

Following the prescriptions we gave in 8A.3 we write tb&al erergy operator of thgunction
+ environment system as a function of the fluxes and charges of all the branches

) ”Qﬁz CDr'az o
E:%O+;1(2Cl +(2Ln)1 +Hr +Hgp

where theQC's refer to charges of the capacibwanches anel's to fluxes ofthe inductor
branches of the oscillators. Wdlwransform this energy into an Hamiltonieinfor thesystem
by eliminating superfluous variables.

a) KIRCHHOFFS LAWS

For the orientations specified by Fig. 3, Kirchhoff's laws yield
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Qr()=-Qn()-Qh(d (Om
Qr (1) =-Q () + X (0)
DL (t) = D (1) (Om) ©)
D (1) = Dy (1) + i ® L (t) + Constant
m=1

where®; andQ+ refer to thetunnel element an®, andQ, refer to the sourc€, We have
supposed that dt= 0, whenthe source is connected, the oscillators westexcited. The
initial valueQ(0) of the charg€), of the source capacitor is fixed by Eq. (2).

b) FIRST FORM OF THEHAMILTONIAN

By using the third and fourth Kirchhoff equation we can write the Hamiltonian of the system as
H=Hem+ Hr +Hgp
where
w (AC)2 C)\?2
Hoo= 4 Z(Q“‘) ,(n)
em
2Cy & Cm 2Ly

Hy = Z elq)TEr N ch +hc

£,r,o

Note thataccording to the fourtKirchhoff equation, the phas; = e®; /% in the tunneling
Hamiltonian has been replaced by the operator

b= Zq)n
n=0

where thep, = e(Dﬁ /h are the phases across the capacitors, conjugate to the dQ&idése
see that with this choicenly the quantities pertaining to the capacitors are tlefiserelative
to the inductors and thtennel element have been eliminat&tie HamiltonianHg,, is that of
harmonic oscillators, plus a quadratic termQg With this writing of the Hamiltonian, an
eigenstate of theenvironment is specified by givinthe occupationnumbersN,,, of the
oscillators and,. An eigenvector of the environment will be noted

NJen\D: |QO|:[N1aN2, ven ,Nm, g

It is sometimes practical to use the bosonic creatioraanﬁhilationoperators:;ﬂ andc, of the
harmonic oscillators. They are given by

1
2r

(Cn+CE): bn

B

(4a)

Sl

(ch = cn) =421 Ky
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where
_ T,
ry = Re ,
(4b)
_ Ln
Z, A
C,

and whereR, =h/e? is the quantum of resistanddsing these operators, tHgamiltonian of
the environment can be written

2C &=
where
hy = 70n( Ny +3),
Np = Cicn, (4c)

w, =1//L,C,.

¢) OTHER CHOICE OF VARIABLES FOR THHHAMILTONIAN

To illustrate the fact that the expression of H@miltonian isnot unique, let us indicate
another simple and interesting choicevafiables. Elimination isow performedisingthe first
and second lines of the Kirchhoff laws (3). We obtain

H=Hgm+ Hy + Hgp
where
2 2
(QO-Q)°, &(Qr-Qn)  (®n)
2C, mz:l 2C,, 2L,

HT = Zeiq)TTZr amch +hc

£,r,o

Hem =

Here, along with theperatorQ; and¢ of thetunnel element, onlthe quantitiepertaining
to the inductors are left. ThHeamiltonianH, is that of harmonic oscillators shifted Ky,
plus a quadratic term i@+ -Qy(0). An eigenstate of thenvironment wouldtill be given by a
ket of the same form as in the previous section

|Wern == 1QTONLN,, ... Ny, ...O

but the charge factor now has a different meaning.
If the squares are expanded in the lattamiltonianH,, one obtains after factorisation of
linear and quadratic terms @
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2 2
_QO(O) Q) (®m) QO ,
Z <, 2 | Y G mlc QTch

Besides the consta@(0)%/2C,, we recognise the Hamiltonian of the oscillators, a term of the
form -Q{ (wherel{ is a voltage) and aaffective charging energy. The voltagecan be
decomposed ad = V,+ U, thesum ofthe static voltagd/y = Qy(0)/C, and thefluctuating
total voltage across thescillatorsU = $%_, Q4 /2Cn. The effective charging energgelf can

be re-interpreted as the bare charging energy of the junction, owing to the relation :
i—— Z———+—JdooReZ (,o)——

m—O

whereC is the capacitance of the sole junction. Thus, dropping the constant, we rewrite
2
Hem = Z h,— Qrid +—— QT

In this formulationthe coupling ofthe oscillators to thquasiparticles is due two terms of
the total Hamiltonian Hy andQ+U.

4. Tunneling rate, tunnel resistance of a junction

To illustrate the above considerations, wdl wow derive the tunneling rate of electrons
through a juntion in an arbitrary linear electromagnetic environment. As previously, if the
circuit containsothertunnel junctions, wéreatthem as capacitors. Thusyr calculationwill

fail to describe tunnel events occurring simultaneously on several judcfidrestunnelingate

is then used to compute th¥ characteristic of a normal-metal junction.

a) CALCULATION OF THE TUNNELING RATE

We will use here the secomorm of the Hamiltonian given irSec. 3.c above, where we keep
the variablesp, andQy of thetunnel element as independent degrees of freedostat& of
the total system writes

|W)=lem)| ap ) qRr)
=|Qr)| N, Ny..., Nn>|dg,>| , @}

wherent-R1{0,1} are the occupatiomumbers othe quasiparticlestates in thdeft and right
electrode.
The rate of electron transfer through the junction is given by Fermi's golden rule

3 These events involve higher orders of the tunneling Hamiltonians and they can be neglected for our purpose.
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2T[
Mg = f[Hrli) 5( -E)
whereliland[fCare theinitial andfinal state of thesystem and wherE, ; are the totaénergies
(electromagnetic plus quasiparticle)tbe initial andfinal states.Using the decomposition of
the state$ [Jf(linto electromagnetic and quasiparticle degrees of freedom we write

(£ |H]i) = (fom/€®[iem)(f T [i gg *+ (T ent€ *liem)(F T '[i op

where the operator

T= Z Ty &g ch
fro
acts only on the quasiparticle space.
Let us now compute the rate for an electgwing from the left electrode to the right
electrode. Tha& T term doesot contribute since it transfers the wrong direction. The total
rate is obtained by summing over all the possible initial and final states

=25 o < - 57 )

As already mentionedi%e shiftsQt by e, thus Qs must equaQq;+e for the rate not t@anish.
At zero temperature thescillators are in their grourstate. In thecase of experiments with
nanojunctionghe usual electromagnetic environmeate such that the dominaiig,Je'®7fi g,/
term is the one wheral the oscillators remain in the grousthté. In this sinple case we can
calculate

o GV+Q - Q)+ e?
Co 2Cy

AEem Eem Elem - =

which simply reduces tAE*™=-eVwhenCy=00
The factorinvolving T can be rewrittemisingthe Fermi functionsf, ¢ giving the occupancy of
the energy levels as a function of the temperature

K fop| Tl iqp>‘2 =T 12 L (e)(1- fr(e)))
4r,o

thus,

4 The case of arbitrary impedanead temperature caalso be treated exactlySee forinstanceRef. 5. The

result is that the tunneling rate can be expressed as

L(€"))P(e —¢' — AE®)dedk’

whereP(E) is the probability of transfering the energyo the electromagnetic environment. The funcigg)

can be calculated from the impedance and the temperature.



34 The Tunnel Junction and its Environment 11.B.4

2T

r==-
hf

S [Tl fL(e )1~ fr(e)Ble, — €, ~AE™™)

0

This summation W be dominated by asmall fraction of T, terms, those corresponding to
pairs of quasiparticlstates on botkides which have strong overlap under the barrier. To go
further we replace the distributiofT,,[*> by its average valudT]?> which we suppose
independent of energwnd we integrate over the energy levels:

P = 2TT2g] oL (elor(e!) fL(e)1- fre)B(e '~ AET)dece
= 27T[|T|2 gJ'pL(e +AEem)pR(£) fL(e +A Eem)(l— f(€))de

= 2T golpf f(e+AE™)1- fe)ce

1
= fle +AE®M)(1- f(g))de
2 ) f(e+DET)A- 1(e)
where thep are thequasiparticle density cftates oreach sidenot including spin degeneracy
andg=2 is a factor accounting for tispin 1/2 of the electrons. To write the thiekpression
we have replacethe densities ofstates by thelensitiesp® at the Fermi level. Inthe last
expression we have introduced the so-called tunnel resistance of the junction

Re¢

=—— (5)
42T gpP

Ry
where R = h/e? is the quantum of resistance. Thame of “tunnel resistance” jastified
below.

b) VOLTAGE BIASED JUNCTION TUNNEL RESISTANCE

Whenthe environment impedance has no segapacitor C,=o00) a current caflow through
the junction in response to the applied voltsge

| = (-e)F -T)= %J-(f(e—ev)— f(e))de

The remaining integral involving Fermi functions on the right hand side gW,dadependently
of the temperature. Thus we recover an “ohmic” law

\%

Rr
for the normatunnel junction, hencthe name of “tunnel resistance” given Ry. One should
be cautious, however, that charge transport tanael junction is different from that in a
resistor,yielding in particular a different noise spectrum [8]. Also, it should be remembered

5 This replacement corresponds to making the assumption of instantaneous tunneling [7].
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that Ry wasdefined fromaveraged quantities. Thus, saofficiently smallsystems, deviations

from the ohmic law canappear,revealing microscopic details d¢iie barrier. Oufunctions
however are very well described by this ohmic law.

As announced previously, we dot need to botheabout thespecific matrix elements of the
tunnel Hamiltonian : we have obtained a single, easy to measure, macroscopic
phenomenological parametghich correctly describethe unction forour purposesrhis will

remain valid even when the junction becomes superconducting, as we shall see later.

C) LINK WITH THE LANDAUER FORMULA

The latter result can be related to 8wmmilar one given bythe Landaueformula, using the
somewhat different language of scatteriiitpis formula expressethe conductance of the
junction in terms of transmission probability of incident wave packets [9]

e2 N
=5 95T
Gr hgnzl n

where/\is the number of incident channels on the junctionZyisl the transmission dhe nt
channel. Definingf=27, /N, the average transmission per channel,idemutifying G =1/Ry,
we obtain

NT = ar?[T)?pPpR

which links the average transmission coefficient to the average matrix elenient of

C. Josephson coupling

1. Tunnel coupling between two superconducting electrodes

Whenthe two electrodes of a tunnel junctiare in their superconducting grousthte, the
electrons form Cooper pairs, and there are no quasipariitisssituation prevails at very low
temperature and at voltages lower thane€whereA is the superconducting gap (\@ssume
that the electrodes amade fromthe same metal. The general case wauddl bemuch more
complicated). The tunnelinglamiltonian which inthe normal state coupled states of the
system athe first order in perturbation theorgan nowonly couple states dtigherorders
sincecreation of quasiparticle isot energetically allowed. We ant to evaluate theoupling
induced bythe tunneling Hamiltonianbetweentwo generic states |JA and |BO of the
junction + environment systeriimiting ourselves to the secomdder inH;. We thus have to
evaluate the sum over all intermediate sthfes
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1
Eo—-F

Wag = Z (B Hyl)

iZA,B

(iHT[A) (6)

whereEy = (Eo*tEg)/2. This expression [10] iglid aslong asWyg remains much smaller than
the minimumvalue ofthe energydifference Ey-E;). In other word€E, andEg must always be
somewhatsmallerthan the smllestE; which istwice the superconducting gap. Hentes
calculation ofthe coupling wil only be valid in asub-space of states of lognergy. In the
following, we will denote byP a projector ontdhis subspace. Tharojector can bdéormally
written

_ 1 dz

2IT[C z-Hy

whereC is a contour in theomplex plane which enclost®e part of theeal axis on which lie
the energies othe states we project ontandH, is theHamiltonian ofthe systemwithout the
perturbationi( e. without the tunneling Hamiltonian).

In theremainingpart of the chapter weillvuse the representation of thlamiltonian of the
junction in its electromagnetic environment whvehas introduced in Sec. B.3.b., where we use
only the degrees of freedom of the capacit&imilarly to what was done in theormal case,
we write the tunnel Hamiltonian &k, =Tel$+T Tel®, where

¢ = Zq)n
n=0

T= ZTEr &g ch
{ro

the ¢, being the phases of the capacitors of the environment.
Then for a given intermediate stitdn the sum (6), we have:

(B[Hrl) (ilH[A)=

Eo— K
1
Eo - E

{(Ble®TIi)i|* T A +(BI P T i 40 TT| A+
(Bl TN TT| A+ (BT )il 8 T A)

The lasttwo terms vanish unles§AC=|BOin which case they give a contribution to the
correction in eargy of[AlJdue to the perturbatiad;. On the contrary thérst two terms can
only contribute whenA¥ |BOand theyare responsiblefor the coupling. Each of these two
terms transfers a charge of through the junction, butot in thesame direction ; they are
complex-conjugated. We then write the energy denominator as a time integral :

1 :_Jmex,{_w}i
E-E  J, o |
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which permits to rewrit&\V,g as
Wag =(B/H;j| A

where

+00 Ht —Ht Ht
HJ:—J' N eonddTen T +he (7a)
o n
is calledthe JosephsoHamiltonian. As already mentioned, this expressioH pis meaningful
only in asubspace of low energstates.This writing hasthe great advantage thatcén be
factored into the contributions of the charge, oscillatorscpadiparticles degrees of freedom.
To perform this factorisation we decompa$e states of theystem into charge|(,0,
oscillator (W) and quasiparticle[0) part, and theHamiltonianH into the corresponding
parts :

Ho=HR+HY +H=

o= %
2Cy
2 2
qo < (Qn) | (®h)
2 2¢, 2L,
H= = Hgy + Hgp

The integrand of (7a) becomes a tensorial product

HO% -H% HS HYt  -H% H¥t -H%t H7

H*t
e2ndbogh Yo O] & & e & |0 BT & T %| (7b)

We have also decomposéite operatorp into ¢,+¢ which act on thezero-frequency and
finite-frequency modesh(= Y i, ¢,,) of the environment, respectively.

2. Josephson's calculation

We will first recover Josephson's results [1This calculation ofthe Josephsoroupling
corresponds to the case where éhgironmental degrees of freed@mcludingcharge) can be
neglected and wheanly the quasiparticles need to be considered. Furthernsinee we
couple statesvith no quasiparticles, there is eoaergy inthe final andinitial states. Thus we
can drop the explt/2#) terms, and only one matrix element needs to be calculated :

+00 —Ht

HJ:—§meq[ %xwmfiﬂ9+hc (8)
0



38 The Tunnel Junction and its Environment 11.C.2

where |00 denotes thevacuum state for thequasiparticles. The vacuurstate for the
guasiparticles is also referred tothe BCS ground staténserting the closure relation, the
integrand can be written

_Elt
Z O[T|=)e * (5[T]0). (9)
Let us first compute the matrix elements
(OT|=)(=[T10)

These matrix elementsorrespondschematically tathe process described in Fig. 4. In the
intermediatestep wenecessarily havereatediwo excitations of the superconductors, one on
each side. These excited states are obtained by applying the Bogd&itrbmnic quasiparticle
operators on thevacuum of quasiparticles|00 [12]. We will note L =(/,/)
(respectively,R =(r,r)) a pair of time-reversed electrongtates in theleft (resp. right)
electrode of the junction. Itinis notation, theindex ¢ (r) of the electronicstate incorporates

Energy — . : .
A initial state intermediate state final state
E+AT
E. T 00 -G @
L=(¢1) R =(r,r)

Barrier

Fig. 4. Schematic representation of the second order tunnel process respdosilbe
Josephson coupling in a superconducting tunnel junction. This coupling between ground
states of the system results from the elastic transfevatlectrons acrosthe junction. This
transfer can be decomposed inteo steps, corresponding to the sequential transfer of two
electrons between twaairs of time reversed statés=(¢,¢) and R =(r,T), withthe overline
indicating the time-reversed state. In the diagram, ovals represent pairs of time-reversed
guasi-electron states. In the ovals, a full (open) slohbolises an occupied (empty) quasi-
electron state. This representation corresponds to the projection of the BCS state on a state of
given total number of electrons in the system. The four possible states twfothpairs
involved in the process are drawn, their energy being indicated by their position on the
vertical axis. The actual state of a pair is indicated by the use of black colour, while the other
accessible states are dimmed. In this picture, the name of “Cooper pair” can only be given to
a full or empty ovalwhile the half-occupied ovals are called “quasiparticle excitations” or
broken Cooper pairs. In the first step of the transfeiylapair breaks on thédeft side. One
electron of the pair crosses the barrier afilts an empty electronic state on the right side :

this breaks the empty pair on the right side. The resulting intermediate state has two
guasiparticle excitations of opposite spin, one on each side. In the second step, the second
electron crosses the barrier and recombinath its companion electron otie right side.

Both pairs return to the ground state upon completion of this second transfer.
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both theindexing ofthe electronic trajectory and the electsgn andthe overline indicates
time-reversal symmetrylhe Bogoliubov quasiparticle creation aadnihilationoperators on
the left (resp., right)side for a quasiparticle irstatep with energye, are notedoﬂ;,anda D
(respectively,BI, andB, ). Theseperators are related to tleedinary quasiparticl®perators
through the transformation

T=y.al
o, =usa -V, g BI:URbrT_VRl? (10)
O‘%:ULag“LVcaa Bl =ur i + v

involving the BCu andv coherence factors.

In thefirst step of the process, under the action of the teri;afontainingb’a, on |00 an
electron of thdeft side tunnelghrough the barrier. The intermediat@ateexpressed in terms
of Bogoliubovoperators isx%BﬂO) with an energg+€,. The projection of the state created
by b,Taf on this intermediatstateyields vEu% (we used anticommutation properties of the
fermionic operatora andb).

In the second step, the electrénon theleft crosses the barrier under the action of the
Tﬁhlaz term of Hy and recombines witthe previous one tgive the final state [00. The
action ofb;aZ on the intermediatstateyields v u.|0) (here again anticommutation rules
were used). Finally we project orj@,] and collecting all the factors, this process gives:

Tl

TE,rTZ,rUE\EbEVz— de e
LR

To obtain the last expression we have made use of the relation

_ o_ A
UpVp = (UpVp) = 2,
and of the time-reversal symmetrytof.

We can nowsum all the contributions to (9)coming from the different intermediate
quasiparticle states, including spin index, with their proper energy-time exponential

|Tf,r|2A2 e_(ea +ep)t/n

(11)
Ly derer

To go further, we replace tHg&, * by their average valug]? as in the case of theormal
metal junction. Summatioover all states is replaced by integration over enavgi the BCS
density of excited states

€

p(e) = 2po ﬁ

Herep, is, as previouslythe normal-metal density ddtates at thé&ermi level,not including
spin degeneragyand the factor of 2 is counting for theo branches of excitations. We can
rewrite (11) as:
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Ropd T J‘J‘ de .derp ex;{—(sﬁ +sR)t/h]
Je2 -2 [e -2

whereg=2 is thespin degeneracy dhe intermediatstate. Thedouble integral factoriself
and each factoyields Ky(At/%), whereK, is themodified Bessel function dhe secondind.
We finally get for the integrand of (8):

Ngp3|T? K§(Ayh) (12)

Thus, the Josephson Hamiltonian writes in this case
+00
~ A
Hjy =-e?| O><O|Agp%|T|2J % KZ(At/h)+h.c.
0

The remaining integral yield#®/4. This result is usually written (forgetting the projector on the
vacuum of quasiparticles)

E .
H, = —7Je2'¢ +h.c.= —E; cos®

thereby defining the Josephson coupling ené&rgy

T[2

By =—-0pg| T, (13)

a) AMBEGAOKAR-BARATOFF RELATION

By makinguse of (5), we obtain an important relatiorking E; andRy, thetunnel resistance
of the junction defined in the normal-state :

hA
8e’R

3= (14a)

This result isoften expressed in a different way, usth@ currenty=2eE;/# which, wewill
see, is the critical current of the junction. The latter equation is then equivalent to

T A

which is known as the Ambegaokar-Baratoff relation [13].

3. Effect of an electromagnetic environment on the Josephson coupling

a) CHARGE CONTRIBUTION

We now evaluate the charge factor of the integrand (7b).
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Qs -QBt Qt

Inserting &oe'% and d%e® on theleft and onthe right,respectively, and usiniipe fact that
é%translatesQ, by e, we can rewrite this as

ei¢°exp{2é0h[ (Q+9° Q§+ }}éq’o

Working out the algebra the opera@y vanishes, yielding the simple result

Ect
e200 o

where Ec =€2/2C, is the charging energy of a single electron the capacitanc&,. This
charging energy is noreroonly whenZ(w) has a finite seriesapacitance. This latter case
corresponds to a circultaving an isolatedsland connected to the junctiorE: being the
charging energy of a single electron on this island.
The latter result could have been obtained more simply by notingthibatlectrostatic
contribution to the energy denominators of (6) gives, whatever the states considered, the
constant

b) MODIFICATION OF THE COUPLING IN PRESENCE OF AN ISLAND

The result of the last paragraph, along with (12) can be used to evaluate the Josephson
Hamiltonian (7) inthe absence of oscillators ihe environment. The presence of siand
simply amounts to a renormalizationBf:

E, = E F(%) (15)

where the notatioiE is used for the Ambegaokar-Baratetflue ofthe Josephsonoupling
energy (14a) and where the functieis defined by

+00

4

F(x) :—2de e VK3 (y). (16)
™ Jo

This Laplace transform d{§ can be expressed in terms of special functions :
2X 2} 2 2
-3 sfuaet )27
() 2 32 1115 K\

where;F, is thegeneralised hypergeometric function &ds the completelliptic integral of
the first kind.
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A numerical evaluation df is plotted in Fig. 5. We see thatdiverges forx=2. In this region
however, the hypotheses for tbalculation ofthe couplingare notsatisfied anylonger : the
energy of the intermediate states is not far enough from the energy of the initial and final states.
Thus, quite paradoxically, in presence of charging effinetsJosephsonoupling energy is
enhancedas compared to the Ambegaokar-Barat@tfue. This is because in this case the
electrostatic energy of the intermediate step is lowered due torlavity ofthe electrostatic
potential, and it reduces the energy denominator of (6).

We can evaluate the actual correction to the Joseptmgiing brought by thecharging in
our experiments. In the experiments we have conducted wehgd K andA was the gap of
aluminum which isabout 2 K. The argument &fthusremained under 0.5. The corresponding
enhancement d; is then of the order of 10-15%.

The result we obtain here extends a calculation previously published by Matade\14].

C) ELECTROMAGNETIC CONTRIBUTION

We now decompose the oscillator factor in (7b) intpreduct of factors corresponding to
each oscillator :

F(x) -
1
0
0 1 2
X

Fig. 5. function giving the renormalized Josephson coupling in presence of a charging energy
term.
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H%t -H"%t H*t h,t —h,t hyt

e2n d¥en & " =1 @ d & 2 (17)

where we have usetthe notationsh, and ¢, for the Hamiltonian andthe phase of tha™™
oscillator as defined by (4). Usinthe commutation rules of the bosonic creation and
annihilation opera‘rorsc;ﬂandcn of theharmonic oscillators, eacfkactor in (17) can be
transformed to

h.t -h,t h.t . w,t
o L 2ig,chm
e27’1 éq)n e h éq)n éh = e 2 rémnt (18)

This expressioigannot by usedirectly inthe JosephsoHamiltonian because would always
diverge ag - +oo. This divergence is aartefact of thecalculation because we have allowed
stateswith an arbitrary number gbhotons,which is incontradiction with thenypothesis of
coupling onlystates of lowenergy. To satisfy this hypothesis, we must impose dlhdhe
oscillators of frequency higher than a cut-off frequeagy<A/# are in their groundtate in
both thefinal and initial states. For thesescillators, the factors we must compute in (17)
reduce to

ht o cht At Tt
(Ople?"dten & &o,)=(0,| & & '¥[q,) (19)
:<0n|62i¢” On>ern(l—e'wnt)

where|0,[is thevacuum ofphotons for thei" oscillator.For theoscillators of low frequency
(w<wy), Eq. (18)can be linearized imw,t for the calculation ofthe Josephsohlamiltonian
becaus&K{(At/#) then decreases omauchshortertime scale. This amounts to stopping the
integration overtime at a fewsi/A to remove thedivergence caused by an arbitrarfiigh
number of photons in these low frequency modes. At this point one notices thatnénear
terms are obtained binearizing (19), so that this high frequerteym incidentally also gives

the correctanswer for the lowrequency oscillators. Anothaevay to see this result is to say
that it simply corresponds to neglecting smeall energyg, in the denominator of (6yvhich is

a goodapproximation as long &,<<2A. Taking advantage of these remarks, (17) can be
written

. _ A wnt L~
P &2t ¢ ) pid Pexp{z R(1- éw"t)}
n n
Going to the continuouimit, the discretesum on modes is replaced by an integreér
frequency (see Eq. (1)) :

(1-™") Rez )
0 R

S rn(l—e'“’”t) S G(t) = 2J:om (20)

and (17) writes
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pe? o pf),

The functionG(t) we have found here @oselyrelated to the phase-phase correlafiorction
J(t) introduced in Refs. 4 & 5 in theontext of theCoulomb blockade of tunnelingdore
precisely, we have(t)= —J(-it).

d) MODIFICATION OF THEJOSEPHSONHAMILTONIAN BY THE ENVIRONMENT

Collecting results obtained in a) and a)e can write the restriction of the Josephson
Hamiltonian to the subspace of low-energy states in the form:

whereP is the projector onto this subspace and wkgre a renormalized Josephson coupling
energy :

E, = ES % Om%dtexp{ Ect/h+G(t) K (AyR) (21)

whereG(t) is defined by (20) anB{ is the Ambegaokar-Baratoff value of the coupling (14).
€) SINGLE-OSCILLATOR ENVIRONMENT

In this paragraph wapplythe result wehave just obtained tthe case where the\eronment
consists of a single oscillator. In this case the fund8@hsimply writes

G(t) = %(1— e )

whereZ = (L/C)12 andw= (LC)1/2. The Josephson coupling is given by (21) which now writes

E, = EQ% %dtexp{%(l— e“*’t)}KS(At/h).
0

SinceK{ acts as a window of widthy/A in the integralthis expression admits goie limits in
the cases whergo << A oriw>>A:

E, |F(Z/R¢)  if hw > A

ES |1 if A < A

The functionF that appears here is thahich givesthe renormalization ofthe Josephson
coupling by a charging energy (16). Reciprocally, hehe, effect of the environmental
impedance can be interpreted as a renormalization of the charging energy of the circuit.

f) APPLICATION TO THE SINGLE ELECTRON TRANSISTOR

To illustrate further thecalculation we have made, weow apply it to the case of a
superconducting single electron transistor connected in series with a resistoa)Hiisis a
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R ¢ R

4|

O

a) b)

Fig. 6. a) Realistic description of the electromagnetic environment of the superconducting
single electron transistor in some of our experiments. b) Schematic representation of the
impedance seen by a pure tunnel element (symbolised by the cross) of the transistor. The
symbol C designates the capacitance of the junctions and R is the resistance of the normal-

metal leads of the transistor.

realistic description othe configuration we had iseveral ofour experiments (see Chap.
V&VI). The electromagneticenvironment seen by each junction tbke transistor iswvell
described in a lumped element model.pére tunnel element othe transistor sees the
capacitance of its junction in parallel withe series combination ahe capacitance of the
other junction and the resistance (Fig. 6b).

The impedancé&(w) seen by the pure tunnel element is then

R- i R Q+2/ Q)

Z(w) = 22
() 4+(RCw)? (22)
The real part of this impedance is
R
ReZw)=——
©) 4+(RCw)?

and the series capacitance, which is the capacitance of the island, is given by
-1
G :(Iim iooZ(oo)) =2C.
w-0

For theimpedance (22}he function G(t) can be expressed in terms of #pecial functions
cosine-integral and sine-integral

G(t) = i[y + Log1 - ci1 cosE +(E—si£) sini}
2Ry T T 1T \2 1 T

wherey =0.577216... is Euler's constant and where
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25

15

1.0

(2R, /R)G(t)

0.5

0.0
0

t/t

Fig. 7. Plot of the function G(t) for the impedance seen by a tunnel element in the
superconducting single electron transistor.

Ec being definedise?/2C,, the charging energy of an electron on the island of the transistor. A
plot of thefunction G(t) is given in Fig. 7.The renormalized Josephson energy can then be
calculatednumericallyfor any value ofR/R¢ andE./A (see Fig. 8). Thealue of E;/EJ for

R=0 is determined by thalain charging effect renormalizati¢{{E./A) (see Sec. 3.a & b, Eq.
(15)). The saturation of theenormalized coupling observed at large valueR & alsoeasily
explained :for AR>> R¢E- we can make a short-time expansionGgf) in (21). Forthis
purpose we can go back to the definition (20) and linearize the exponential

o (1-ea0t

Rq
:ﬁijeZ(w)doozﬂl:E.
R¢ 70 R¢ 4C &

Thus, for large resistanceSR > R¢E.) we obtain a Josephson coupling

E; = Ej F2Ec/b)
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16
vl e —— E./=0.1 |
: T E./A=0.5

O'ﬁ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
wor ] E./A=1
) s S

10

0 1 2

R /R,

Fig. 8. Renormalization of the Josephson coupling enéngth respect tahe Ambegoakar-
Barratoff value B) as a function of the resistance in seneth the transistor, for different
values of the charging energy. The value at R =0 is given by the functigr-(&eviously
defined (Eq. (16)) while the asymptotic value is R{Z8.

similar tothe zero-resistancealue but with a doubled effective charging energy. Ttert-
time expansion of(t) corresponds to the limit where the capacitance of the second junction of
the transistor does nbave time to change its charge durihgvirtual state of thelosephson
tunnelingprocess, due to theC delay. The relevant charging energy is then that sihgle
junction, €2/2C. Thislimit whereonly the capacitance of the jction counts igeminiscent of
the “local rules” obtained in theontext ofCoulomb blockade for a normal-state junction [15].
Note that thehigh-resistance asymptotic valuenst defined if Ec > A sinceF diverges for
arguments greater than 2.

For most of thesamples we fabricated, we h&<A/2 andR/R¢ in the 10% In one
experiment however, we had increased this resistan&Rg= 1.5%. Combining this value
with the measured ratig-/A = 0.29, this gives a renormalizationf of about 8.5%.

Conclusion

In this chapter weénave calculatedhe JosephsoRlamiltonianfor low-energystates of the
junction + environment system in presence of an arbitrary environment impef{aycdhe
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essential result of thighapter is that thdorm of the Josephsordamiltonian originally
computed by Josephson wh&(w)=0 is preserved, with simply a renormalization of the
Josephson coupling energiwen byEq. (21). For states of trenvironment of higher energy
or for high chargingenergy, the perturbative approach have used herails. In these cases,

it seems that the structure itself of the Josephson Hamiltonian is modified.
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lll. THEORY OF THE SUPERCONDUCTING
SINGLE ELECTRON TRANSISTOR

In this theoretical treatment dfe transistor we M/ limit ourselves to temperaturés<A/kg
at which thermallyexcited quasiparticles ithe superconductor can be neglected anbids
voltages such that << 2A/e. In this voltage rangehe eletrical sources cannot provide the
energy necessary to bre@ooperpairs in a single pair tunnelingrocess. Thus, theain
charge transport process through the transisibbevthe transfer ofCooperpairs. In Sec. A
we describe charge transfer from the pointiefv of the single electrotunneling Hamiltonian
to justify the use of thendividual Josephsoftdamiltonians ofthe junctions inthe rest of the
chapter. In Sec. B, we show that at zero voltagewhele transistor can begeated as an
effective Josephson junction withgate voltage dependesifective Josephson energy.3ec.
C we discussthe possibility of the presence of ongquasiparticle inthe circuit and its
consequenced:inally, in Sec. D, weanalysethe behaviour ofthe system at finitebut low
voltage.

A. Microscopic description of charge transport in the
transistor

For thewhole transistor, the single electraimneling Hamiltonian can beritten (see Sec.
11.B)

Hy =Hn +Hr
Hr= ) e Taghl +he
s,1,0
Hr2= ) e Tyghe Gy + h
ido

where theoperatorsa, b, ¢ anda’, b', ¢ are theannihilationand creatioroperators for the
guasielectrons and quasiholes thre source, thasland and thedrain of the transistor,
respectively, and; ,, ¢, , are thetunnel coupling matrices artde phases of each jtion of
the transistor. Startinfjom the single electrotunneling Hamiltonian, we cainy to evaluate
the effective Josephson coupling tife transistor in theame way as we difbr the single
junction (see Sec. II.C). Tstay at the lowesbrder in perturbation theory, weilwconsider
only processes iwhich nomore thantwo Cooperpairs are broken at treame timeFor the
guasiparticlepart of thetunneling Hamiltonianthese processes can be separated into two
types which both decompose in four steps (see Fig. 1) :

Type A. The firststep consists ibreaking aCooperpair on theleft side and transferring an
electron to thasland. Inthe second step, thguasiparticle irthe island istransferred to the
right electrode. Athis pointtheisland isneutral, and theystem haswo quasiparticles in it.
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The third and fourth step repeat fiveat and second tachievethe transfer of a whole pair. In
this type of processes it is also possible to swap the first and second and/or the third and fourth
steps (using an occupied pair in the island).

Type B. The firststep is thesame as previously. The secatdp now consists dfansferring
the second electron of the broken pair inifiendand to recombinéhe quasiparticles into the
ground state. In this intermediate step, there are no quasiparticles in the systenslaunckiee
charged. The third and fourth steps are analogous tdirgteand secondut involve the
second junction. In this second typeprbcess, thdirst two and lasttwo transfers can be
swapped. Theonly effect of this swapping is to changlee electrostatic energy in the
intermediate state.

Even though type A processes seems favoured because their second intermediakégbigte is
degenerate, their total amplitude is drastically reduced because they require trarestactipg
the same quasiparticlstate through botfunctions. Inour disorderedslands, it is extremely
unlikely that a single stateas a significant coupling tmoth source andrain electrodes. In the
following we will neglect thipossibilityand focus on type B pair transfer. The situation could
be quite different in a clean system like-alimensionaklectron gas (assuming it could be
made superconducting, though).

In the type of transfer we retain here, we cagroupelectronic transferéwo by two and
speak in terms ofwo Josephson tunneling @ooperpairs instead of four electramnnel
events. Taking advantage of this remarkthe next section we illv obtain theeffective
coupling ofthe transistor bygiagonalization of a Hamiltoniawhereonly Josephson transfers
are considered.

Fig. 1. (next page)lwo generic types dburth-order processes in the tunneling Hamiltonians

to transfer a Cooper across the transistor. Electronic states including spin index are indexed
by a letter and time-reversed states are indicated by an overline. The convention used to
represent the states of the superconductors is the same than that of Fig. 4 ofl ,Ghayept

that only the actual state of pairs is drawn, instead offthe accessible states. Only the
quasiparticle energy is taken into account, not the charging energy of the states. Type A
processes wher¢ghe same quasiparticles must tunnel through tive barriers are very
unlikely in our experiments.
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B. Phase representation of the transistor ;
effective Josephson coupling

In this section we mak#he hypothesis thathe environment otthe transistor is sucthat we
can use theenormalized Josephsdtamiltonianintroduced in Sec. 1.C. Weillv hereonly
consider internal degrees of freedom of the transistor.

1. Good quantum variables for the transistor

It is easy to convince oneself thitie transistohastwo internal degrees of freedoffor a
general discussion of this problem see Ref. 1). For example we can chouketbe state of
the transistor by theumbersk; and k, of Cooperpairs havingcrossed thdeft and right
junction, respectively. However we anticipate that like in a single Josephson junction neither of
these Wil be a goodquantum number. The electrostatic energther favours statesith a
givenn = 2(k;-k,) measuring the excess number of electrons on the island.

Sincethe junctionsare superconducting, anotherspibly good choice of variablegould be
the phasesdifferences$ 6, andd, of the junctionswhich are conjugateariables ofk; andk,
respectively. Again, thesare not goodjuantum numbers because phasé = (8,-9,)/2 (0
is the conjugate oh) of the superconducting wavenction in the island wil have large
quantum fluctuations since tends to be ked. A better suited/ariable isd =8;+0,. The
conjugatevariable ofd is k = (k;+k,)/2, measuringhe number ofCooperpairs havingflown
through the transistor.

Given thisset ofvariables, withthe phaseslefined usinghe superconductinfux quantum
h/2e, we have the commutation relations

[8y,ki] =[3, k] =[6,1y2] =[5, K =
[n,K]=[5,n=[6,K=[5,6]=0

1in the following the phases operators are noted byG@meek letterd and aredefined by reference to the
“superconducting” flux quantur®g = h/2e as opposed tthe phase$ we have used iChap. Il whichwere
defined with respect tthe flux quantumh/e. The notation wause herefollows the usual convention in the
context of Josephson junctionBhe dimensionless number of charge operkt@ also taken relative to the
charge 2 of Cooperpairs. Thisdoublechange of unitpreserveshe commutation relatiord[ k] = i. With this

new definition of the phase, the Josephson Hamiltonian wifesE jco instead of Ejcos 2.
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n =2k, n,=2k,

T~ n=n,n,

k=(K, +k,)/2
5=5,+,

Fig. 2. Pairs of conjugate variables in the transistor. The sysmbols k's refer to Cooper pair
numbers, n's to electron numbers, Greek letters to phases defined dysinp/2e, the
superconducting flux quantum. The variables we choose to describe the transisipthere
excess electron number in the island &nthe total phase difference across the transistor.

Following the above considerations, we introduce basis ofstates|n,dlJof the transistor
indexed bythe values ofn andd that we anticipate to be tlgood quantum numbers in the
problem. It wil sometimes be useful ise an alternateasis indexed bthe values ofn andk.
These sets of states are Fourier transformed pairs:

In,d) = 1% 1, K

rze

In,k) = e *|n?d)

= jda
wherel is a 2tlong interval.

2. Form of the Hamiltonian

From the previous sections, the Hamiltonian of the transistor itself can be written as:
H=Hg+Hy +Hj+Hgp

The first term Hg = Ec(n-ng)? is the electrostatiHamiltonian of the circuit in which

Ec =€%/(2Cs) denotes the electrostatenergy of a single electron e island, while

ng = CyVy/e is the chargdin units ofe) on the gate capacitanduced bythe gate voltag¥,,
which isour control“knob” over the transistordz andCy denote the totatapacitance of the
islandand thegate capacitanceespectively). In writingHg we have assumed thtite gate
capacitance is negligible compared wile junctions capacitances. The second and third terms
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are the Josephsaoupling Hamiltonians afhetwo junctions. These terms can be written (see
Sec. II.C) :

Hj =—-E;C080,

Hj, =—E;,C0d,.

HereEj, , are the Josephsa@oupling energies of junction 1 and 2, respectively. Wefinst
suppose thaE;; = E;, = E; sinceour junctionsare fabricated to baominally identical(the
general case igeated in Sec. 4). Byakinguse of the relations betweép, d,, 6 andd, the
Josephson Hamiltonians can be rewritten as

HJ]_:_EJ COE(9+5/2),
HJ2 :_EJ 005(9—5/2),

The last term of thélamiltonianaccounts for thénternal degrees of freedom tbfe supercon-
ductors:

_ t
Hop = D E1VY;-
j

In this expression,/j’r and y; are the Bogoliubowguasiparticle creation anénnihilation
operators and;, the energy of the quasiparticle. In the present section (B), we will askate

all the electrons in the superconductors are paired (i.e. there are no quasipartidies). In
case, afl = 0, Hy, can bedropped. Of coursanly evenn statescan be considered withis
hypothesis of perfect parity. We further assume for simplicity, that the island, when neutral, has
an even number of electr@ih this were not thecase, this wouldnly induce a unit shift on the
variableng).
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n=-2 n=0 n=2 n=

Fig. 3. Electrostatic energy levels of even-n states for the transisgsus the dimensionless
gate charge. The energy diagram is periodic in the gate charge. As a first approximation, one
can describe the transistor by retaining only th® lowestelectrostatic states at any given
gate charge.

3. Two-band model of the transistor

At T =0 we areonly interested in the lowest ergy bands. Also, since practice wehave
E; < Ec, we can compute these bandsnleglectingn-states whose electrostagoergies are
above a fewE.. As the JosephsoHamiltonians couplestates whosa differ only by two
electrons, thesimplest possiblepproach to compute the ground band is to retaiynthe two
stategn,dlJof lowest electrostatic energy and to makenadrsuperpositiorout of them. To
do so we willdivide the ny domain into intervals aheform 2q < ny < 2(q+1), where the two
lowestn-states are = 20 andn = 2(q+1) (see Fig. 3). Wdiagonalizethe Hamiltonian in the
subspace spanned by thése lowest states. There is howeveprablem athe boundaries of
these intervals whertbe lowest electrostatic energy sthezomes coupled tiwvo degenerate
states and one of themnst taken into account in tlkagonalization. These degeneracies can
be treated correctly in the restricted spapanned by the three lowest electrostahergy
states ofeach intervalput this necessitatethe diagonalization of @8x3 matrix, resulting in
complicated expressions. Thitseatment is made irBec. 4. The two-level approach is
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a) b)
electrostatic electrostatic +
energy Josephson energy
A | A |
| |
| |
_ | |
| |
| |
E; | |
2 | |
| |
| |
n=0 | |
| |
| |
I |
1 1 1 1 1 1 1 > I 1 1 1 1 1 1 I
-1 0 1 2 —-m-m/2 0 M2 m
k 0

Fig. 4. Analogy of the two-state model of the transistith a 1-D crystalwith twoatoms per
lattice period. The Josephson coupling (thin lines in the left panel) is equivalent to the
exchange energy. The Bloch theorem ensuresdihdie conjugate variable of k, is a good
guantum number. The eigenstates of the system form bands paramettized by

nevertheless useful as a first approximatiorin®essential features dhe device and their
qualitative discussion.

a) ANALOGY WITH A 1-D CRYSTAL

This restriction of keepingnly two states irsolving the problem brings us to a simpler, well-
known problem : d-D crystal inthe tightbinding model as already mentioneddhap. | (see
Fig. 4). We are faced with @groblem which is equivalent tiinding electronic states in a 1-D
crystal withtwo atoms per unicell. Heren labelsthe atoms in the unit cell and thariabled
playsthe role of the waveector. The electrostatiend Josephson energiase equivalent to
the energies of the orbitals and hopping energy, respectively.
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b) DIAGONALIZATION OF THE HAMILTONIAN

In the domain where & ny< 2 theevenn states of lowest electrostatic energy [@a&lland
[2,060] In this basis, the matrix of the Hamiltonian writes:

Ec(-ng)° —EJcosg
H=

o
-E, cos Ec@-nyY

The system can be treated as a fictitious sgnria magnetic field. Let us define the energies
M = Ec(nj—2n,+2)
D = 2E¢(1-ny)
J= EJ COS§
2

whereM andD are themean andhalf difference ofthe electrostati@nergies othe states

|0,6C= |; Cand[+2,8C= |, [J andJ the coupling energy. We can rewrite the Hamiltonian as

with

whereg,, o, ando, are thePauli matricesintroducing theangle 2 betweerh andz, theunit
vector in thez direction, the eigenstates and eigenenergies are given by

|llJo>:COSG|T>+ sim|i> €=M —-+/D? + 32
@) =sina|T)- com|l) & =M+D?+32

For any given value ofi;, and by analogy witthe Bloch states in arystal, we vl call these
eigenenergies, energy bands thoe variabled (see Fig. 4). The position, shape andbtode
of the bands depend on the valuep{see Fig. 5). The treatment we have applied is aiig

in the domain where & ny < 2out, sincethe electrostatic energyiagram is periodic imy,
the eigenenergies ofhe total Hamiltonian must be periodic withy, with period 2, each
interval of the form 2q<ny<2(g+1) corresponding to alifferent set of two lowest
electrostatic energgtates. To extend the solution Wwave found, we simply duplicate it to
cover the whole range of values. The bands are alsw2eriodic functions ob (theyinvolve

o only through cos¥/2).
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‘,

E/E.

Fig. 5 3D plot of the energy bands as function®aind ny calculated for fg = 2E;. Note
that the bands touch at pointsere ry is an odd integer and = mmod 2t This degeneracy
is nhon-generic : it is lifted if thewo Josephson energies thie junctions are not rigorously
equal as usually happens in the experiments. The band separation |§;ikelf;,| (see Sec.
4).

¢) EFFECTIVE JOSEPHSON COUPLING

The energy-phase relation in the grouoachd 60(6,ng)) is theequivalentfor the transistor of
the -E;co relation for the single Josephson junctita.functional dependence even hasy
similar properties. For example, its extrema s& at0 andd = 1t To carry this analogy further
we introduce the notation:

Eo(8.ng) = Eqfny) fo( ny.0)

where

Eolng) =2 (/D7 + E5 -/

is the effective Josephson coupling energy of the transistor and the fdpedisnch that

fo(ng,n)— fo(ng,o) =2
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2E, /E,

04 r

0.0

Fig. 6. Ratio of the effective Josephson energy of the transistor to the single-junction
Josephson energy as a function of the gate charge, for the two-charge-states-modes$pThe
occurring at even integer values of s an artefact of the modekhich neglects the
degeneracy of charge states that exists at these gate charges. The essential features of the
transistor are well captured howevethe effective Josephson energy presents sharp peaks of
height E/2 centred around odd integer values gf fihe width of these peaks is of the order

of E;/Ec.

which is equivalent tohe cosine of the single junction. The strength ofetfifiective Josephson
coupling for different values d&. at a giverk; is plotted in Fig. 6.

As far as interband transitions are neglected, the trandisttaves essentially assigle
Josephson junction. The baBg(d) can then be considered as a potential for the phasSer

the typical electromagnetic environment oftransistor one can furthermore show that the
phase behaves as a classical variable J2je superconducting state of the transistor
corresponds to a static solution &or

4. Three-band model

As announced previously, we can imprakie two-bandnodel ofthe transistor by going to a
three-band model. Thisilvcomplicatethe calculationshut the equation of thieands remains
analytic. To be complete, weillwfurthermore consider here tlgeneral case whetée two
junctions have different Josephson coupling energies.
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In thedomain where -¥ ny < 1 theevenn states of lowest electrostatic energy mre0, £2,

with the n =+2 beingdegenerate aty = 0. This degeneracy was neglectedhe two-band
model, but it can betreated correctly in the restricted space generated by the three lowest
states|-2, 0[] |0, dUJand|2, 8[1 In this basis, the matrix of the Hamiltonian writes:

Ec(-2-ny)? —%(Ene_i5/2+ B> é’i5/2) 0
H = _%(EJle+i6/2+ E eua/z) E(- @)2 %( B, gd/2 4 5 +é6/2)
0 ~3(Ene™?+ B e"?) & (2- g)°

and the secular equation takes the form of a polynomial of third dedgee in

(E-Ecng)(E Eo( - ))(E—Ec(r’b+2) b2 E E8+2%)=0

where

_li2
—Z(E31+ Ej, +2 Ey Ejpcosd).

This equation is exactly solvable. Introducing intermediate quantities:

2 16 2. _ 128 3 —M
A= 3a+€EC(3 ng), H= —aEC (9 rﬁ) and 0= Arccos—— L

the three roots are given by:

8m(6,ng) :(§+né) EC+MCO{W) withm=01,2

Exactly as inthe two-band model, thes@genenergies form bands parametrizedbwhose
positions, shapes and amplitudes depend on the vahjgsse Fig. 7). The treatment Wwave
applied is valid only in the domain whereshy < 1 but, since the electrostatic enediggram
is periodic inng, theeigenenergies must be periodic with with period 2, each interval of the
form 20-1<ny < 2g+1 corresponding to a differeset of three lowest electrostagnergy
states. To extend the solution Wave found, we simply duplicate it tmver the entire range
of nyvalues. The bands are stitperiodic functions ob (they involved only through cos).
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Fig. 7. 3D plot of the bands of the transistor calculateih the three band model, for an
average Josephson coupling energy oftthejunctions § = E-/2 and a relative difference
between the two Josephson enerdieg/E; = 20%.

EFFECTIVEJOSEPHSON COUPLING

As in the two-band model, the energy-phase relation in the ground man@)(is equivalent
to the -E;co relation of the single Josephson junction. We keep the notation:

Eo(8.1g) = Eg(1y) fo ry:8) with i ny,1)~ f n0) = 2.

wherefy playsthe role of the cdsin the single Josephson gtion andEg(ng) represents the
effective Josephson coupling energytioé transistor. The strength of te#fective Josephson
coupling fordifferent values oE-/E;, in the case ofdentical junctions E;=Ej; =Ej) is
plotted in Fig. 8along with the predictions of thisvo band model, for comparison. The
present model predicts affective Josephson coupliradout twice asarge as the two-band
model atng = 0. This discrepancy due to the fact that the two-bantbdel neglect®ne of
the two available excited charge state in the vicinity of O.
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2E, /E,

Fig. 8. Ratio of the effective Josephson coupling of the transistor to the single junction
Josephson coupling, as a function of the gate voltage. Full heavy lines are the results of the
calculation for the three band model for identical junctions, for varioy&E The light
dashed lines are the results obtained by tiwe band model which doesot treat the
degeneracy occurring at even integer values pfile see that the simple two-band model
underestimates by a factor ®2 the effective Josephson coupling at even integer values of
ng, While its predictions on the amplitude and the width of the peaks are essentially correct.

5. Critical current of the transistor

When acurrentl is driventhrough the transistor, one must add an extra t&ml /@, to the
HamiltonianH, introduced in Sec. 2 [3khis amounts to tiltinghe potential inwhich the
phase evolves. The criticalirrentl - of the transistor is theaximumtheoretical supercurrent
that can flomthrough the transistor. It corresponds to ¢hecal tilting of the band forwhich
local minima ofthe potential disappear, thtmmovingthe possibility of static solutions fob.
The critical current is given by the relation:

_2m &, _2n ofy
le(ng) = Max{g(& n )} "o, Eo( ng) Méax{g(&”g)}
To simplify the notations, we introduce a functagn,) such that

Ie(ng) = CZTTO[(“ (ng)) Eo( ng)
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The last equatiorlinks the effective Josephson coupling amide critical current of the
transistor. This equation is similar to the single junction equatiowHmh we have = 0. For
the two-bandmodel we alsofind &(ng) =0. This happens becausiee maximum of the
derivative off, is exactly 1 independent tfe value ofng, just as for the cosine in the case of
the single junctionThis exact relation between tledfective Josephson energy ahe critical
current of the transistor breaks dowhen more chargstates are taken into account in the
diagonalization othe Hamiltonian (Maxpf,/dd} # 1 in this case ; it isiot even analytic for
the three-band model). However famy reasonableet of parameters favhich the approach
we have used here islid (E;q, Ejp < Eg), we find numerically thag(ng) << 1. Thus the
equationlinking the critical current and the Josephsooupling energy othe single Josephson
junction

2m
lc =—E
C o J
remains “numericallyrue” to ahigh degree of accuracy for the transistoany gate charge,
with the definition of the effective Josephson coupling energy that we have adopted.

6. Relation with the superconducting “electron box”

In the absence of currenthe superconductin§ET can be considered as a superconducting
single electron box [1,4] (thevo junctions ofthe transistor irparallel are equivalent to the

single junction of the box. See Fig. 9). Tdiesence o€urrent corresponds to settidg= 0 in

all the results previously obtained.

In the box experiment, one measures the charge of the ground state of the island. In the vicinity
of ng =1, we keemnly thetwo statesn = 0 andn = 2, as in the two-band model. The ground
state of the box is theW,[i= cost|0CH sinu|20wherecos 2x = D/,/D? + E2 (we use here the

Superconducting

Transistor at 1=0 single electron box

Island "Box” N
|
\ ‘ | charge Q I I
CE, c-m—m— _ _ C.E, P 2C2, = . Cq
g
@ (v
\
a) b)

Fig. 9. At zero current, the transistor is equivalent to the superconducting single electron box.
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notationD = 2E(1-n,) already used in Sec. 3.b.). The charge is given by

(Q)/e=2(2|wy)’
D

JD% +E?

With the samenotations, theritical current of the transistor given by(we use here thivo-
band model which is sufficient sinog= 1)

%(_)[lc(ng) = Ep(ng) :%(\/ D? + E5 -| Q)

The two quantities areobviously related. Indeed, one can compare the fluctuations of the
charge in thesland [Q?( [Q[3 = E{/(E{ + D?) with thecritical currentl; of the transistor as

a function ofthe gate chargetheyboth present a peak whose width is of ¢tnéer ofE;/E.

(see Fig. 10)This clearlyshows that the measurement of thigical current of the transistor
constitutes an observation of the charge fluctuations instaed :the greater the charge
fluctuations, the greater the supercurrent. A rea@geriment alsoreported asimilar
observation in a device where the charge fluctuations were controlled by a flux [5].

In Fig. 10 we have alsplotted thederivative dQL/dn, of the average charge of tigand

= 2sirfa

=1-

2 .
E,/Ec=03
a1} .
2f
0 1 1 1 1
1.0k —(E;/2E.)dQ0/dn ) ]
SRR [QZ - [QE?
" TTTT 2B /B =1/ cax
05 g .
0.0 Lo SooTIIIII e T S T T S LToIToIInoos
0.0 0.5 1.0 15 2.0

Fig. 10. Top panel: charge of the island of a superconducting single electron box, for a ratio
E;/Ec = 0.3. Bottom panel : the derivative of the charge of the island of the box (full line),
the fluctuations of the charge in the island of the box (dotted line) and the critical current of
the transistor (dashes) all present a peakvidth of the order of FZE.. Both experiments
observe, in a different manner, the coherent charge superposition inside the island.
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which would be obtained in a lock-in measurementhef charge of thesland. This derivative

is proportional to the power 3/2 of the charge fluctuations.

In conclusion, both the superconducting single electron box and the transistor demonstrate the
same macroscopic quantum coherence in a different manogés. ldwever that the box
experiment is in principle bettsuited totest thepredictions of quanturmechanics [4] since

its datacan be interpretedirectly [6], whereas irthe transistor theritical current is not
measured directlysee Chap. IV). At thdéime of this writing, experimental results on the
superconducting box have not yet been published [7].

7. Duality with the dc squid

The transistor is in some sense the dual device of the DC SQUID. The correspondaece is
in the following table :

SUPERCONDUCTING SINGLE DC SQUID

ELECTRON TRANSISTOR

junctions in series junctions in parallel
island loop
modulation ofl - by a charge modulation &f by a flux
period 2 period®,=h/2e

sensitive detector for electrometry sensitive detector for magnetometny
high input impedance (capacitor) low input impedance (transformer)

Note however that the shape of the modulation ofdtigal current with respect tux in a

DC SQUID isdifferent fromthe modulation of theritical current with thegate charge of the
transistor.This is becauséoth devices see a low impedance environment. The shape of the
modulation of theeritical current of the SQUID would b&milar to that othe transistor if the
SQUID was in a high impedance environment. Anotligerence betweethe SQUID and the
transistor is that there is mguivalent of a fluxransformer for charges (one camly make a
capacitive divider, not a multiplier).

C. Poisoning of the supercurrent

The simple description of the transistor aveadopted her@eglects thgossibility to have
unpaired electrons in thslandand isessentially that whickwvas firstgiven by Likharev [8].
Matveevet al [9] were thefirst to realise that quasiparticles could have a dranmtieence
on the critical current of the transistor. We will here briefly go over their reasoning.



68 Theory of the Transistor I.C.

We assuméhe validity of the B.C.S. theory a$uperconductivity [10,11] in themall island of
the transistor. Then, eadddn (n = electronnumber inthe island) state is degenerateith
respect to theuasiparticle configuration. Thainimum configuration energy of eaabddn
state isA, the energygap of the superconductor. If we plot the configuration + electrostatic
energy ofthe lowest of the odd-stateswith the energy ofthe groundevenn states, as a
function ofthe gate voltage (see Fig. X&p panel) we see that fdr < E¢, the state of lowest
energy inthe vicinity of odd integer values ofy, is an odda state. At zero temperature, in
these ranges af; it is favourable for a quasiparticle émter thesland inorder for thesystem
to be in its ground odd state.This oddn state is Josephson-coupled to othédn states.
Thus, oddn states also form bands and can carry a supercurrent. The modulatiocraictile
current of the odah-ground band witimy is shifted byAn, = 1 with respect to that of theven-
n groundband (see Fig. 1hottompanel). If we assume th#te system occupiethe lowest
available configuration + electrostatic energgate, we predict anodulation of thecritical
current with shargholes” in the vicinity of odd integer values ofiy (Fig. 11,bottom panel).
These hole®ccur atplaces where we had predicted peakshefsupercurrent inbsence of
the quasiparticle$)encethe name of “poisoning” othe supercurrergiven to this effect. The
depth and the width of the holes depend on the fafig. as shown in Fig. 12. WénA > E
oddn states areinstable, no poisoningccurs, themodulation of thecritical current is that
predicted in Sec. Bwith maxima atodd integer values ofy. Whenthe gap is zero, the
modulation of the supercurrentasperiodic, veryweak, and thenaxima ofthe critical current
are displaced by #P with respect to the largkecase.
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|(ng)/ldmax

Fig. 11.Top panel : Each parabola is the electrostatic + configuration energy of states of the
transistor for a given number n of electrons in the island, plotted as a function of the gate
charge. Parabolas of thewestodd-n states (dashed lines) are higherfbthan those of the
even-n states (full lines). In the caskereA < E depicted here, odd-n states are thwest
states of the system in the vicinity of odd integer valueg. dattom panel : modulation of

the critical current of the transistowith respect tothe gate charge for the ground band
formed by the even-n states (thin full line) and odd-n states (thin dashed line). A ratio
E;/Ec=0.3 wasused for the calculation. If the transistimllows the state dbwest energy on

the top panel, we predict a modulation of the critical current as indicated by the thick line.
We see that the entrance of a quasiparticle in the island suppresses the supercurrent peak,
hence the name of “poisoning” given to the effect.

At finite temperatures, thingsre more complicated because of the entreffect associated
with the degeneracy of theddn states. In formeexperiments [12,6] we have demonstrated
that theequilibrium occupationprobability ofoddn states in amallsuperconductingsland is
governed by the odd-even free eneudjiferenceintroduced by the Harvard group [13].
Predicting howthis odd-even free energlifference wvill manifest itself experimentally in the
transistor requires a precise description of how rntteasurementare performed. Wanill
return to this problem in Chap. VI.
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Fig. 12. Modulation of the critical current of the transistor as a function of gate voltage for
different values of the rati/Ec, showing the poisoningffect. A ratio E/E-=0.3 wasused
for the calculation.

D. The superconducting single electron transistor at finite
voltage : resonant Cooper pair tunneling

Whenthe transistor ibiased at a finiteoltageV << 2A/e, thel-V characteristic is determined
by both itsinternalstructureand the electromagnetevironment : when &€ooperpair goes
through the transistor, the energgMorovided by the source can either excite the oscillators
of the environment orthe levels of the internal structure of the transistor. These latter
excitations manifest themselves as resonamtexse positions in voltage depend on the gate
voltage and theharging energy. Therocesgesponsibldor these resonances is known in the
literature as the “resonamtinneling of Cooper pairs” [14,15,16,17]. In thdollowing we
calculateanalyticallythese resonancedgthin a doubleperturbative approach with respect to
the Josephson coupling and the environment.
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1. Description of the system at finite voltage

The representation of thdamiltonian ofthe transistor €nvironment system weillvuse here
is based on the one we gave in Sec. Il.B.3.c for a siogletion. We can write the
Hamiltonian as

H=Hg+H;+H

env
where

He = Ec(n® - 2nny) - 2ekv

o 2 2
H = Z(zek_ Qn) +((Dm)
env 2C, 2L,

m=1

and where we use the notations®, k, 8, Ec and ny introduced in Sec. [11.B.1 for the
transistor, an®@,,, ®,, C,, L,, (m=1,...00) introduced in Sec. 11.B for thescillators of the
environment. We assume thhe junctionsareidentical. Thestate of the transistdincluding

here the voltage sourceglongs tothe space spanned by tkets |n, kxintroduced in Sec.
[11.B.1 while the state of thenvironment oscillators belongs tite space spanned by the kets
IN4,..., N,Owhere the\; are the occupation numbers of the harmonic oscillators. A state of the
total system is then described as a tensorial product of the state of the transistat of the
environment.

a) UNPERTURBED ELECTROSTATIC STATES OF THE TRANSISTOR AT FINITE
VOLTAGE

At finite voltage, thek-degeneracy of thja, k(istateswith respect to the electrostatic energy is
lifted because each pagone through the transistor lowers the total energy otiticeit by
2eV. As in the case of zeltwas volage, we can restricur analysis togate chargesyJ[0,1].
The othervalues ofny can betreatedstraightforwardly usinghe properties ofymmetry and
periodicity ofthe Hamiltonian withrespect tan andng. We will first consideronly the states
having the two lowestisland charges jIn = 0,kOand |n = 2,k+1/20wherek is an arbitrary
integer. At zero voltage, these statemve an electrostatic enerdy(n) =U(n/2 mod 2)
independent ok, whereU = 4E(1-ny) (Fig. 13). Atfinite voltages thex degeneracy ibfted
and the statebavethe energiesE(n,k) = E(n)—2ekV : the electrostatic enerdgvels form a
double staircase as a functionkdfFig. 13b&c).
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b) ROLE OF THEJOSEPHSON AND ENVIRONMENT PERTURBATIONS QUALITATIVE
DESCRIPTION OF THE RESONANTOOPER PAIR TUNNELING

The effects othe Josephson amhvironment Hamiltonians athe unperturbed states \wave
just described W be very different fromone another. The Josephsblamiltonian alone
preserves the discrete character of the states of the transisterthe coupling to the
environmenttates confers fnite width and afinite lifetime tothe states of the transistor. To
take into account thdifference innature of theséwo perturbations, we iV treatthem on a
different footing. We wll first find the states of the transistavhen only the Josephson
coupling is considered. We then calculate currentwhich results from the transitions
between these states induced by the coupling to the environmental degrees of freedom.
Without doing any calculation, it is possible to understagdalitatively the effect of the
perturbations and the process of resor@ombperpair tunneling. At voltage¥ higher than
U/e (Fig. 1), everystate isunstable and decayswards thefollowing. This decay isvery
similar tothe processvhich gives rise to &urrent in a single juwition at finitevoltage (see
Chap. IV).
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a) V=0 b) O<V<Ule c) V>Ule
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Fig. 13. Electrostatic energy levels of theklstates for three voltages. The trarrows
represent the Josephson coupling. a) V = 0, corresponding to the superconducting state of the
transistor. States with one extra pair in the island (n = 2) are separated from the ground state
by the gate voltage dependent energy U (4. b) For voltages 0 <V < e the n=0

states are metastable and each n = 2 states can decay toward two states. The relaxation is due
to the coupling of the electromagnetic degrees of freeddimthe electronic degrees of
freedom. c) For \# U/e, every state is unstable and decays into the next one. The current
through the transistor is the result of the sequential tunneling of Cooper pairs through each
junction. This case is very similar to that of a single Josephson junction at finite voltage.

At voltagesV lower thanU /e (Fig. 13b) the situation is more complicated and is very different
from that of a single junction. At these voltagbs stateq0,klJare metastableyhile the
|2, k+ 1/20statescan nowdecaytowards eithetO,kOor |0,k+ 1] The metastabl®, kUstates
can still decay towards |0, k' > k[J statesvia virtual states(co-tunneling process). These
processes ar@articularly important wherthe states|O, kil and [2,k+m+1/2(] are nearly
degenerate (see Fig. 14a, in the aasel), that iswheneV=U/(2m+1). At this point the
two states weonsider are coupled by high-order Josepltsupling :there can be a resonant
transfer from|O, kOto |2,k+m+1/20] This latterstate being unstablethe superpositiomnill
decaytowards eithef0, k+mOor |0, k+ m+ 1Jand the process can thstart overagain.This
reasoning predicts resonances in k\é characteristic at voltageé= U/(2m+ 1)e (seeFig.
15a) which have been callé@ooper pairtunneling resonances”. The situatiorresniniscent
of the*“radiative cascade” in atomic physics, whereatom placed in a resonant lafeld can
absorb and re-emit photons in a cyclic manner [18].tAdement we perform in tHellowing

is inspired from that of the radiative cascade [18].
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Fig. 14. a) Electrostatic energy levels of the transistor at a voltage ng&elUThe thin full

lines represent the Josephson coupling between the states. At this voltage, the states separated
by 1 1/2 unit along the k axis are nearly degenerate. A higher-order Josephson coupling lifts
this degeneracy. This high-order coupling can be handled perturbatively by the means of an
effective Hamiltonian in the subspace spannedamynearly degenerate states, as indicated

by the dotted capsules. In these subspaces, the high order Josephson coupling can be
replaced by an effective coupling as indicated by the thin dashed line joining the states. Each
couplingarrow wehave drawn has a corresponding decay chamhe to the possibility of
inelastic transition in the environment. b) After diagonalization of the effective Hamiltonians
we are leftwith quasi-eigenstates among which photon-induced transijansws) are
possible. The current in the transistor corresponds to the cascade fromed by these transitions.

Fig. 15. (next page) a) Electrostatic energy levels as a function of V for the states indexed by
n=0 and n=2 and K[-10,10]. At zero voltage, the statesith n =2 havethe energy

U = 4E(1-ny). The dotted lines indicate the positions of the level crosgimgieh occur at

eV/U = inverse of odd integer numbers). b) Numerical eigenenergies of the systmthe
Josephson coupling is taken into account. A value;ef @3U wasused in the calculation.

Outer states and high order crossings arewetl calculated because die finite size of the
matrix used in the calculation (21 levels). We see that the eigenenergies at zero voltage re-
construct the band structure already obtained (see Sec. I1I.B). At finite voltages the Josephson
coupling turns level crossings into anticrossings. Moreover, these anticrossings are displaced
toward higher voltages by theffect of the Josephson interaction. The dotted lines are the
positions of the resonance given by a second-order perturbation theory calculation (see text).
The figureshows that it is possible toeat each anticrossing locally as the anticrossing of a

two level system. This is implemented byxa 2ffective Hamiltonian for pairs of levels that
come into resonance.
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2. Effect of the Josephson perturbation

We will now make an approximate diagonalization thie Josephsormplus electrostatic
Hamiltonian. The idea ofour calculation is totreat the JosephsonHamiltonian as a
perturbation to the lowest relevaatder in the theory of perturbationshis amounts to
keeping the minimal coherence in thesystem. Theeigenbasis is obtained by block
diagonalization ofthe perturbedHamiltonian : weseparate the totdflilbert space into 2-
dimensionalsubspaces spanned by pairs of unpertudiateswhich come into resonance
(level crossings in Fig. Bj. In each of these subspaces we writeeffective Hamiltonian
which is then easily diagonalized.

range of validity of the method and extensions

The 2x2effective Hamiltoniarfor thetwo unperturbed states we wanthmck-diagonalize is
meaningful only whenhe two eigenstates we obtain anell separated from the othefEhis
excludesthe cases where the electrostainergyU becomes comparable or smallean the
Josephson coupling energy. This happgnsa large Josephson couplifgit also for any
Josephson coupling neag=1 sinceU vanishesfor this gate voltage Also, wheneV is
comparable or smalleghan theinterlevel coupling energy;, there is noway to treat the
Josephson Hamiltonian perturbatively and the situation is more complex.

When our simple 2x2block diagonalizatiorfails, it is still possible to find numerically an
eigenbasis of the perturbed Hamiltonian. This eigenbasis must be periodenod 1) and in
energy (period V). It can be obtained by making a numerical diagonalizatisgheoperturbed
Hamiltonian with asufficiently large number otinperturbed states for tistde effects to be
negligible. This is the approach used in Ref. 16.

a) EFFECTIVEHAMILTONIAN OF A PAIR OF NEARLY DEGENERATE STATES

We consider the stat¢e = |n = 0, kUand|blF= |n = 2,k+q/20] whereq is an oddnteger. We
suppose the voltagé such that their electrostatic energies are nearly degenerate,

qeV= U.

We will use the notationDd to designate the subspace of statgsanned by
{10, k0|2, k+qg/20. We callP the projector on the subspafgd andQ its complementary
projector P+Q = 1). If the states we consider amell separatedrom the others, wean use
an effective Hamiltonian i®,J [18]:

2 However, ifone ignores theossibility of Zenetunnelingbetween bands (see S&t.C.4), theng =1 case

can be treated simply because the transistor then behaves similarly to a single junction
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Heff — Ea + Raa(_E) Rab(_a
Ra(E) B+ Ry B

where theRij(E) are thematrix elements ofthe restrictionPR(z)P of the displacement
operator [18]

Hy+Hy,— 2 ;@

R()= Hy+ H,
I_|el Z- Hel Z- Hel

Hjy+...
S J

to the subspac®d calculated for the average ener§y=(E,+ E,)/2, with E;=0 and
E,= U-geV. Here, theHamiltonianH, is the unperturbetiamiltonian ancH; is treated as a
perturbation,

He :U(gmodZ)— 2eVk
Hy =-3Y [l0,k)(2 k+3[+/ 0 K(2 k-3|+ h g
k

where we have introducdtie notationJ = E;/2, E; beingthe Josephsoooupling energy of
the two supposedly identical junctions. Weillwcalculate thematrix elements of the
displacement operator at the leading order in the perturbation.

If q> 1, thedisplacement in energR,(E) and R,,(E) of the states is non zemnly in
second order in the perturbatiaile the effective couplingR,(E) is non zero abrderq in

the perturbation.

We now introduce further approximatior&nce we vant to calculate resonancesich will
occur on a narrow voltage range, wdl wompute thematrix elements othe displacement
operator at the exgeted voltage of the resonance and neglect their voltage dependence in the
remainingpart of thecalculation. The voltage athichthe resonance appears is determined by
the equality

Es+Rua(B)= B+ RY B (2)
which should in principle be solved self-consistently, siBcandE, depend on the voltage of
the resonance. Thieadingcorrection to the position of the resonance can be obtained by
computing the matrix elements thie displacemenbperatorusingthe unshifted position of the
resonanc®’ = U/qe for which we haveE = 0.

Within these approximations theatrix elements othe displacemenbperator at théowest
order in the perturbation are then given by
J? 2¢?

Rob(0) = —Ria(0) = U g?-1

e ol -
Rin(0) = RyA(0) = [t !:!(a—l modz) .
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Inserting these values in (2), we obtain the position of the resonance, at the leading order in the
perturbation

2 4
Vy= 22RO U I 4q I 3)
ge ge eUg®-1 |eU®

instead of simplyJ/gein absence of the perturbation.
In order to shorten the notations in the following we introduce

Jq = ab(o)

E
Dq = E) + Ryp(0)

(note thaD,, is voltage-dependent via) so that the effective Hamiltonian can be written

2 Jg ~Dq

If g =1, |aland|blCare coupled at order one in the perturbation, buditi@acement of the
levels is still ofthe second order. Wean use thesame writing ofthe Hamiltonian as in the
general case by lettiny =J andD, = E /2+J/U.

b) DIAGONALIZATION OF THE EFFECTIVEHAMILTONIAN

We can now use theffective Hamiltoniarfor the stategalland|b]to obtain the eigenstates of
the system in this subspace. The effective Hamiltonian is rewritten as

E cos2a  sin2a
peff =B - Dg +J§ _
2 sin2a - cos2a

with
cos = Dq/JDS +J3
sin2a = J, /[ D2 + 32

The eigenstates of the system with their associated eigenenergy are given by

(4)

|Wq) = cosa|a) + sirn|b) Eq=

E
2 (5)
|p,) =sinala) - cosu| b) gu:%
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energy

o

voltage

Fig. 16. Eigenenergy levels of the effective 2x2 Hamiltonian near the resonance (The mean
energy of the levels has been subtracted). The dotted lines are the energy levels without the
perturbation.

3. Effect of the environment ; transition rates

We now consider theffect of the coupling of the eigenstates of the electrostapicis
JosephsorHamiltonian with the oscillators of the electromagnegnvironment. Wewill
suppose that thenvironment is a weak perturbation tbe system {e. it has an impedance
muchlower thanh/e?). The coupling tahe continuum ofstates of theenvironment il give

an imaginanpart to theenergies othe eigenstates of the electrostalies Josephson system.
This imaginarypart of the eargy will generate transitions between the states that were
calculated in the previous section (see Fig. 14b) and a current will result from these transitions.
To obtain this current, we first need to calculdie rates of the numeropsssible transitions
between the pairs states that waave obtained ithe previous section. We suppose that the
voltage is nea¥, (Eq. (3)), so that theystem is approximately diagonalizedtiire subspaces
D3, We first considetthe general case wherg> 1 (the casey=1 is easilyobtained by
simplifying the generaltreatment). Eaclguasi eigenstate dhe subspac®,! can decay into
each of theguasi eigenstates tie subspace‘:@,?ﬂq_l)/2 andD,ﬁL(qH)/z (see Fig. 17). Due to
the relatively high energy of these transitions (the voltagetikw by hypothesis), we neglect
the reverse transitions farhich the environment would have to providlee energy. There are
also transitions of lower energies within the quasi eigenstates of the subgpmewhich we

take into account the possibility of “upward” transitions.
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a) EXPRESSIONS FOR THE TRANSITION RATES

We will now derive the expression of the transitioates. Byexpandingthe squares in the
Hamiltonian Hgp,, (1) of the environment,the coupling of the environmental degrees of
freedom to the transistor's degrees of freedom takef®nmeof a term 2KV, whereV is the
total voltage across trescillators of theenvironmentj.e. across thémpedanceZ(w) seen by
the transistor (see Sec. 11.B.3.c). Thus,tthesitionratel; betweeranytwo statediand|fl]
of the system is given by Fermi's golden rule [19]

M = 5( 126K S ), ©

where wy = (E;-Ef) /2 and Sy(w) is the quantum spectradensity ofthe fluctuations of the

voltageV across the transistor at tfrequencyw. This spectral density of noise is related to

the impedancé(w) seen by the transistor via the fluctuation-dissipation theorem [19]:
hw

1-expg(—hw/kgT)

Sy(w) =2Re Zw) (7)
where T is the temperature of the electromagne&invironment. Inthe following we will
suppose that thenpedance othe environment athe frequencies thatre considered here can
be described by a resistarRe< Ry = h/e? and we will notep = R/Ry.
We can derive an alternate expression for the transition rate (6) in the following way :
2 Sp(wir)
2
(e )
Sy (wyt

(oo )2

N = h_12|< f[2eK i>|2(h0)if )

1
n

[(F[Ho.2eK] i)

whereH, = Hg + H;. Then, we use the fact that
[2ek Hy] = Ze% =inl

wherel is the current operator which can be expressed as

I :§EJ siné cod
h 2

2e E
:?%%{|O,k><2,k+%|+| 2k+3)}0k+1-hd

Thus, we obtain an alternate expression for the transition rate

M =|(f |||i>|2 SV(wifz (8)
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The two expressions (6) and (8) of the transiti@tes are rigorouslgquivalent. However,
when applied tadhe calculation of a transitiomate between the approximate eigenstates we
have found irSec. 2, one ahem might give aero ratewhile the othergives anon-zero rate.
This discrepancy iglue to the neglect of components ader E;/eV or smaller in the
approximate eigenstates.héh higherorder components are taken into accoempressions
(6) and (8)give the sameresult. In thefollowing we use the expression of thatewhich gives

a non-zero rate at the lowest order in the calculation of the eigenstates.

b) INTRA-DOUBLET TRANSITION RATES

We now calculate the transitioatesy andy' between théwo quasi eigenstatg¥ Uand|¥ 0
of a doublet (see Fig. 17). W the notations and the results (5) of Sec. &pression (6)
yields

211 q 32
n \/J2+D21 exi{- 2/J2+D2/kBT

The second ratg' is easilyobtained fromthe detailecbalance symmetry obeyed Hye two

rates :
iy 2,/32+D?
Y =yexp- Ul oy exr}%
B B

9)
whereT is the temperature of the environment.
C) INTER-DOUBLET TRANSITIONS

We use here the expression (8) to compute the transition rates between the quasi-eigenstates of
different doubletsUsingthe expressions (5) of the quasi-eigenstates, we compute the squares
of the matrix elements of the current figuring in (8) for the various transitions :

rE r. (e—‘])z coga sirfa
dd" uu- 2%
el 2 . 4
M3 | —| sin"a
du (271)
2
ML (:—;) cos'a
where a is defined by (4), and =E;/2, as previously. Irthe following we neglect the
differences in the transition energy for fherates and wéake the average energy-1)eV for
all of them. Similarly, wetake the energyq@1)eV for thel * rates. We further neglect the

Boltzmann exponential ithe denominator of (7)which is consistent withour neglect of the
upward transitions between doublets. We thus obtain the final expression for the rates
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Fig. 17. Different decay processes of the quasi-eigenstates of a doublet and labelling of the
rates of the processes.

2
r=r= 2—T[p—2J cofa sirfa
h (gxleV

+ 21 2J2 . 4
M= —p————sin"a
h o (gxleV

2
e 2—T[p—2J cos'a
h o (gxleV

4. Calculation of the current

We nowdefinethe probability pd (p) that the ground (excited) eigenstitg(W ) of the
doubletDJ is occupied. We furthedefine the total probability for the system to be in a

ground or excited state of a doublet

+00
Pi= S
k=—00
+00
R = Z Pk
k=—00

which of course verify?y +P, = 1.
The equation of evolution of these probabilities is given by

Ri=-R,= (rJd+ rad+y) F)u_(rtiu+ gt V') P4

Thus, the stationary value of the probabilities is given by
Faa*+ Mgty
Moa+Toa+Maut Tty +y'

Py=1-P,=
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From this point the current is easily obtained by summing the rates multiplied [y badbility
that theirinitial state is occupiednd by the charge the process carries through the transistor.
For each rate, the transferred charge through the transistor is given by :

MiarMiu: Qaa=20= (@zD)e
ri: 95,=(2qcofa £ 1k
My Qf,=(2gsin“a £ 1)e

y: Q=-gecos2a
y': Q' =gecos2a

Finally, the steady-state cascade of transitions gives a current
lg = Pa[ladQaa* I aQ at T 'a@ "o TRt v'2']+
R MauQuu T i et Tt T dio +v9]
which can be slightly simplified using the fact thgt+ B, =1, I';,=T g and 97,,= Q%4
lg=TadQaa* T aat P I @ ad T @ V| +P[E ™ ol " 3d davQ]  (10)

The casel = 1 can bdreated in thesame way by suppressitige processes corresponding to
thel ~ rates above.

a) |-V CHARACTERISTICS

To compute the I-\tharacteristics of theample we simpladd the currentk, corresponding

the variousg = 1,3,5... This is ofcourse not a goodpproximation asoon as thealifferent
resonances begin to overlap. This approximation is quite reasonable in most situations since the
resonances araturally wellseparated in voltage ; it dotsl however neany = 1 andV = 0,

but our diagonalization is not valid anyway in this range of parameters. In Fig. 18 we lplot an
V characteristic obtained in this manrfer two values ofthe Josephson coupling. One
immediately notices thequalitative difference betweetihe q =1 “resonance” and those of
g> 1: theq = 1 resonance takes the shape of a roustig@ This stepmarks theonset of the
sequential tunneling aZooperpairs, as occurs in a single Josephsmetjon (see Fig. 13c). It

is alsoclearly visible thathe width of the resonance depeedsemely rapidly orthe value of

the Josephson coupling for the high order resonances. This happens because thigivedth is
by J, O (E;/U)4.
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Fig. 18. Theoretical I-V characteristic of a transistor. The curveserobtained using Eq.

(10). Only the first excited charge state of the island is taken into account here, and the
resonances of order higher than g = 7 have not been calcul@tenl values othe Josephson
coupling-charging energy ratio are considered. The q = 1 resonance is barely visible in both
case : it is more a rounded step than a resonance. The other resonances are asymmetric in
shape. Their width diminishes rapidly with increasing ordertled resonance, anwvith
decreasing strength of the Josephson coupling. The effect of energy-level displacement is
clearly visible on the change in the q = 3 resonamtengoing from the top to the bottom
panel.

To further reproduce what seen is thexperiments we must alsald the resonances due to
the crossing of tha = 0 statewith the n= -2 statewhich isthe second charge state of the
island inthe domain gLJ[0,1]. Forthis chargestate wehaveU = 4E(1+ny) in thecalculations

of the resonances. The resultsafmming allthese processes is shown in Fig. 19, for gate
chargesy[J[-0.5,0.95].

The positions of the resonances in W@y planeare shown in Fig. 20, in the case were
E;<<Ec. The resonancefall on linesdiverging fromthe V=0, ny = (odd integer) points,
where theswitching current of the transistor isarimum.One can think othe peaks in the
supercurrent modulation with the gate voltageesslting ofthe build-up ofall the resonances
due to the resonant Cooper pair tunneling.
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Fig. 19.Simulated |-V characteristics for different gate charges. The gate charge ranges from
ng=-0.5 (bottom trace) to = .95 (top trace), the y= 0 trace is indicated by aarrow on

the right hand side. We have used the model described in the text but using this time the first
two excited charge states of the island and a rajicE= 4/5. Also, for each of thesdharge

states we have calculated the resonance only up to the g = 5 level crossing

5. Application : determination of the charging energy of the transistor

The crossing of the resonanagsible in Fig. 19 any= 0 is of greapractical importance : it
allows a precise determination tfe charging energy othe transistor. These resonance
crossings corresponds to the degeneracy ofnthet2 levels atng=0. In particular, the
crossing of the resonancesastierq = 3 is particularly welkuited for thispurpose because it
is clearly seen irthe experiments (se8ec. V.C.)and muchmore precise than the smooth
shoulder made byhe q=1 resonance. According tBq. (2), this particular crossing of
resonances &k, = 0 occurs at the voltagésuch that
3  32E;

eVv=

which is easily inverted to yield
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eV/4EC

Fig. 20. Positions of the current peaks due to resonant Cooper pair tunneling of order
q=1,3,5,7 in the V-piplane, for a E<< E. The supercurrent peak of the transistor can be
thought to result of the accumulation of these resonances near V=0.
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The correction brought by the Josephsomnpling can be evaluated withe independently
determined value d&; given by the Ambegaokar-Baratoff formula. In our experiments it never
exceeded 1% of the dominant teriithis was also othe order ofprecision we had on the
position of the crossing of the resonances. The correction could thus be idmbres.stress
the practical importance this determination othe charging energy the charging energy is
usually obtained by fittingthe temperature dependence of th€ characteristic of the
transistor in the normal stat&his method istedious (it takes hours) amglves a typical
accuracy on thealue ofthe charging energy ahe order of 10%. \tth the methoddescribed

in this section we could obtairapidly (no changing ofthe temperature was required) an
accuracy of a few percent on the charging energy (see Chap. V1.).

C
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V. SWITCHING CURRENT OF SMALL
JOSEPHSON DEVICES

At T=0 the Josephsoooupling energy inthe superconducting single electron transistor
(SSET)should manifest itself aszero-voltage supercurrent branch in thé characteristic of
the device. Howeversmall Josephson junctions have Josephson coupling energies so low
(typically afraction of aKelvin) that it isnot possible experimentally teeach a regime where
thermal fluctuations can be neglected. Under these conditions superdlovenn these
experiments tends to be suppressedthin past,this question has beemell studied both
experimentally and theoreticallfor resistively shunted junctions [1,2]However, in our
experiments, like in most experiments seeking to observe quantum fluctuatites pifase,
the transistor was “unshunted” : ttveo junctionswerebiased at dc by a nearly idealrrent
source. Wehave observed avell defined “superconducting branch”i.€. at nearly zero
voltage) and a hysteretic behaviour. A parametegretpractical importance in this case is
the maximumsupercurrent one cagirive through the transistawvhich we callthe switching
current.

In the following, we present a comprehenspproach of theroblem of a Josephson junction
imbedded in a classical arbitrary electromagnetic environment and we elub®lagestion of
therelationship betweethe switchingcurrent of an unshuntedrjction and its criticaturrent.
Most of theanalysis readily applies tthe moregeneral problem of Josephson devitks
SQUIDs and SSETSs.

A. Theoretical aspect of the measurement
of a Josephson junction

1. Description of a typical experimental set-up

In typical experiments, dosephson junction is biased using acdorent sourcél and one
measures the dc voltade=[V(t)Jacross the junction. Achematic othe experimentaket-up
is shown in Fig. 1a. We usenéiarquadrupoles?; and Q, to describethe electromagnetic
properties of thdeads (possibly containing filtering elements) connectiregunction to the
current source and to the voltageasuringapparatus. Theupction itself is described as a
capacitance; in parallel with apuretunnel element. Using Nortortseorem, thelipole seen
by the puretunnel element can be replaced by acdecrent sourcd, in parallel with an
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admittancé Y(w) (Fig. 1b). In this descriptionthe properties of the electromagnetic
environment of the tunnel element are entirely contained in the admitf@oice

After solvingthe dynamics ofthe system in thigepresentation, going back to the dc currents
and voltages in theriginal {J, V} representation is simply a matter applying a linear

i 4 B

) 1l Q | = X |v | @ | v
| |

— !

L Y(w) v(t) 'o><

O

b)

1K

L 1,(t) y(w)

v(t) |O><

>
~
N~

Fig. 1. a) Typical set-up used to measure the current-voltage characteristic of Josephson
junctions. The leads containing filtering elemewtsich connectghe junction to the bias
sourceJ and to the voltage measuring apparat(woltage V(t)) are described by the
quadrupolesQ; and Q,. The electrical behaviour of the junction itself is modelled by a
capacitance cin parallel with a pure tunnel elemewthose critical current isgl By use of
Norton's theorem, the set-up is equivalertt)}ovhere the electromagnetic environment of the
pure tunnel element is entirely contained in the admittaie®. Yhe admittance (¥) can be
formally separated into the parallel combination of a capacitor ¢ and another admittance
y(w) as indicated inc). The thermal noise generated by the admittance is modelled by the
noise current source(t).

1 Since we describe here a current bias of the junction with a parallel connection of electrical ¢keEiuts

1b & c), it is more convenient to use admittancather thanmpedances. The admittan¥éw) we introduce
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transformation on; = [(t)JandV = D(t)[) the averag&alues ofthe currentflowing through
the junction and the voltage across the junction, respectively.
The admittancé&(w) can further be decomposed as plaeallel combination of a capacitance
and an admittancgw) given by
c= lim m
wW-0o JW
y(w) = Y(w) - jaw

The capacitance is thejunction'sown capacitance; increased by some extra capacitance
brought by the leads. Thiermal noise generated bye dissipativepart of theadmittance
y(w) is described by a noismirrent source,(t) in parallel withthe admittance. The spectral

density of this noise source is

S (w) =4lg TRe yw).

2. Equations of dynamics for the system

We now want toanalysethe dynamics ofthe circuit represented in Fig. 1c. Timepedance
seen by theunction at high frequency is ipractice always of the order of thecuum
impedance, = 377Q which is much belor, = 25.8 K2. This permits us to treat the phdse

of the junction as a classical variable [3]. Kirchhoff's law applied to the circuit of Fig. 1c gives

I +in®) =i )+ [ V(- 07 (Dt +cu() (1)

1 +o00

where y(t) = 5= | y(w)e!* dw is theinverse Fourier transform of(w), i(t) is the current
flowing through theunnel junction and(t) is the voltage across the junction. The curr@t
flowing through the junction is given by the Hamilton equation

=120 =5

where ¢o= Dy/21=%/2e and o itself is a dynamicquantity. In the latter equation
E(d) = E;f(d) is the equation of the lowest energgnd ofthe effective junction,E; is the
Josephson coupling energy &ifd) andf'(d) are periodieven andddfunctions of amplitude
2 (f(d) = —co for a single junction, see Chdp.for the case of the transistor). It iseful to
introduce thecritical currently = E;/¢, of the junction. The voltaggt) across theunction is
related to the phase by the equation

v(t) = 9 d(1).
Written in terms oB, Eq. (1)gives

here is simply connected to the impedaZe) we have used in Chap. Il bfw) = 1/Z(w).
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Fig. 2. The dynamics of the phase difference of a Josephson device in presence of a driving
current is that of a particle in a tilted washboard potential. The tilt of the potential is
proportional to the driving current and the friction the particle experiences is provided by the
admittance of the environmeal). If the current is too weak, the particle can only diffuse from
well to well undethe influence of thermal fluctuations) When the potential is tilted over a
critical value L called the switching current, the energy gained galoginthe potential is on
average greater than the energy lost by friction and the particle runs away, leadirfimite a
voltage state. The value of the switching current depends greatly on the damping of the
particle : the lesser the damping, thmwer I;. c) For a current greater than the critical
current |, the tilted potential no longer has any local minima : there cannot be a static
solution for the phase.

I +in) =1of ') +of. 8¢ ~OF (Ddtt +6.c3. )

The evolution of3 is identical to that of a particle of mas$gicin the tilted potential
do(lof(d) —1,9) (see Fig. 2), with a random fordgi,(t) and a friction force described by the
kerneld£Y(t).

3. Discussion of the solutions

A supercurrent in the jution correspondstrictly speaking to a static solution fdre phase
(3=0). Forbiascurrentsl,, greater thar,, the tilted potentiahas no locaminima,and there
are only dynamicsolutions for the phase, associated witHinte dc voltage across the
junction. At currents lower thal, Eq. (2)admits static solutions corresponding to phaeticle
sitting at localminima of the potential. These static solutions amestable against thermal
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fluctuations and the particleilivdiffuse from well to well giving rise to departure of the
supercurrent branch frorthe zero voltageaxis. Thedifficult part of theproblem is the
discussion othe stability of this diffusivemotion. This problem can lhesatednumerically [4].

A weak point of thisnumericalapproach is that it does nptovide much intuition on the
behaviour othe system whenhe parameters vary. In th@lowing we use an approach based
on the current-voltage characteristic of thadtion in its electromagnetic environmeihis
approachwhich does notrely on aparticular calculational technique, givesreore general
albeit only qualitative understanding of the behaviour of the system.

a) CURRENT-VOLTAGE CHARACTERISTIC OF THE JUNCTION INITS ELECTRG
MAGNETIC ENVIRONMENT.

A general discussion dhe stability of the dynamicscan be doneisingthe notion of current-
voltage characteristic of theurjction in its electromagnetic environment. The-V
characteristic is plotted in th&/{1;} plane whereV = [¥(t)Uis the average voltage across the
junction andl;=[0(t)Uis the average currerftowing through the junction. Thd;-V
characteristic is defined dbe set of points of the\{ |} plane wherethe average power
delivered bythe current sourchg, is equal to the averagmwer dissipated in thedmittance
y(w). In this definition, “average” means an averager the pseudo-peridd or a relevant
time for the evolution of the system followed by a thermodynamic ensemble average.

In the absence of thermal fluctuations, the motion of the phase is deterministite average
power balance is obtained for solutions of the differential equation (2) for Wisperiodic.
The low-voltage shape of the characteristic is obtainech the standard phasdiffusion
picture [3] which predicts a lowdifferential resistance branch which me#its V= 0 axis at
T=0. The asymptotic high-voltage behaviour tbé characteristic is quitaniversal : at
voltageshigh enough, the JosephsdrequencyQ =V/¢, becomes larger thaany other
characteristic frequency dhe system, andhe velaity of the phase becomesssentially
constant ézQ, the phase almost doest feel the rugosity of the potential), with gight
sinusoidal modulation @he JosephsoftequencyQ. This slight modulation is responsible for
the dc current; flowing through theynction which can be evaluated as followke constant
velocity of the phase is associated with an ac Josephson ci(tjentysinQt. Since the
junction is a non-dissipative elememie powerdissipated in theenvironment bythe ac
Josephson curreft,.= | £/2ReY(Q) is equal to the apparent gowerP =1,V = 1,V-V2Y(0)
delivered bythe source to the jation [5]. Thispower conversion can be seen as a patrtial
rectification ofthe ac Josephson current by thadgtion itself combined witlthe admittance
Y(w). Therefore, asymptotically we predict the shape of the characteristic to be
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Fig. 3.a) General shape of the current voltage characteristic of a Josephson junction, plotted
in the {V, L} plane,where V ighe average voltage across the junction an Ithe average
current flowing through itb) & c) Two types of behaviour of a Josephson junction in an
electromagnetic environment depending on the relative value of the differential conductance
of the characteristic and the dc conductance of the source. Each case is plotted in the {V, |
plane on the left panel and in the usual {y, toordinates on the right panel b) Non-
hysteretic behaviour. c) Hysteretic behaviour.
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time

Fig. 4. The periodic evolution of the phase corresponding to a point on the characteristic of
the junction, at zero temperature and for a vanishing average voltage consisisazieasion

of 2t phase jumps well separatedtime. The system spends most of the time crossing the
local maxima of the tilted potential (locateddt &, modulo2m) at very small velocity.

i
" 2V ReY(Vo)

I

Frequently, the admittance depenasakly onthe frequency in this frequency range ats
gives a ¥V dependence of the current at large voltagéss of course ceases to leie as
soon as the voltage liBsgh enough to break Cooppairs. At this voltagehe characteristic of
the unction presents a stea@mrease othe current, due to quasiparticldssuming a very
smooth shape of the characteristic, these remhrkgy us todraw a qualitative |-V
characteristic (see Fig.ap Of course, if theadmittanceY(w) has particular featurelke
resonances, we expect to see them somehow in the characteristic [6,3].
At T =0, the point atvhich the characteristic leaves the= 0 axis isdenoted by, Thebias
currentl,, is theminimum current forwhich, in absence of thermal fluctuationise particle
launched at a locahaximum ofthe potential withinfinitesimal initial velocityreaches the next
maximum. We will now establish that the characteristic reaches this point with @jistepdy
-Y(0) (note thatY(0) is real since InY(w) is a continuousodd function). For a vanishing
average voltag®/ across the junction, the motion of the phase consists of indepermdent 2
jumps separated itime by an arbitrarily long intervel = ®,/V (see Fig. 4). The average
voltage across the junction is

00" as

-7/2

and the average currentflowing though the admittance is



96 Switching Current of Small Josephson Devices IV.A.3
T2 T2, -
=2 iY(t):@_[ ¢ (6+V)()
-7/2 T J-3/2

where * is the convolutioproductand \7(t) theinverse Fourier transform dhe admittance
Y(w). AsV - 0 the ratioly/V is given by

J/2 .~ oo
[ a0 [ty
jim Y = fim 222 = T
VACAVARE Se S - e
dt5(t) dt' &(t)
-7/2 —00

fm dt FT{3(0)Y(w)]

d 3(t)
_Y(w= 0)5(w = 0)

: =Y(0)
d(w=0)

Here §(w) is the Fourier transform aXt). Sincel ; +1y = I, we finally obtain that

lim =2 =-Y(0).

Similarly, the sign ofthe curvature of the characteristiczatro voltage igjiven bythe sign of

the derivative ofthe average power lost Ifrction with respect to the average voltage across
the junction.This can be justified byhe following reasoning : ithe average power lost by
friction decreases with increasing \age, it induces aavalanche onhe voltagewhich is the
sign of a hysteretic behaviour tife system. As we W show below, the hysteretim=haviour
canonly exist if the differential conductance of the characteristic of theaction becomes
smallerthan ¥(0) which canonly happen if the curvature of the characteristic is negative at
V=0.

The voltage scale associated witle temperature and the admittanc¥4is kgT/¢oReY. One
expectsfinite temperature characteristics to gwen by a sort of convolution dhe zero-
temperature characteristic with a function of width

b) DYNAMIC STABILITY OF THE CURRENT-VOLTAGE CHARACTERISTIC:
HYSTERETIC AND NONHYSTERETIC BEHAVIOUR

Once thisl ;-V characteristic is obtained, tligscussion othe stability of a biagpoint isvery
simple : a biagoint is stableonly if the dc conductanc&(0) of the bias source and the
differential conductance of the junctioh, &V verify

9 v >o0.
av
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This criterion distinguishethe points of thd;-V characteristiovhich represent stable and
unstable power equilibrium.

One can then separate the experimental behaviour of Josephson junctions in an electromagnetic
environment intwo categories : (i) non hysteretic behaviouthié differential conductance of
the unction remaingreater than the opposite of the dc conductance céritieonment at all
voltages (Fig. 3b)This isthe case for dc shunted junctioris) hysteretic behaviour if the
differential conductance of thaupction is smallethan the opposite of the dc conductance of
the environment orpart of thevoltage domain (Fig. Q. In this latter case, starting from the
zero bias, whenthe bias current is increased, thgystem first follows a lowdifferential
resistance branch (call¢lde “supercurrent branch”) and then switches toga voltage state

at theinstability point. Thebiascurrentl, at this instabilitypoint definesthe switchingcurrent

I in a hysteretiset-up. The measure@lue ofthe switchingcurrent can fluctuate arourtiis
value due to the effect ¢iie randommoisecurrenti(t) ; our sinple approach does ngredict
the amplitude of these fluctuations. W& the bias current is reduced from ovég the bias
point follows the high voltage branch down to a secomdtability point atl,=1, which is
called the retrapping current.

C) STATIC HYSTERESIS

The hysteretic behaviour we have just defineddgreamic hysteresis : it the dynamics of the
particle already escaped fromwell which isstable or unstable. Thiy/namic hysteresisiust
not be confused with the statibiysteresis of Josephson junctions often discussed in the
literature. This static hysteresis is associated with the escape of the particle out ofwredl first
This escape can either happen by thermal activaber the potential barrier or by
macroscopic quantum tunneling [7]. The escape tifoesboth of thesephenomena vary
roughly exponentially withthe size ofthe barrier. At low temperatur&{>>kgT) and low tilt

of the potential, the escapene out of this first well can be much larger thahe relevant
experimental time scal&scapeout of the first well canonly occurwithin the experimental
time scale whetthe potential is tilted to a point where theight ofthe barrier issufficiently
reduced. Thus, at low enough temperature,bibecurrent corresponding tthis tilt of the
potential can become larger than the curtgnprovided that,, <1, Under these conditions,
whenthe particle escapes, it producesnatching ofthe system to a stable finiteoltage state
given bythe intersection of the load line of the source (drénem the point of the/ = 0 axis

at whichthe particle escaped) with the characterisiiois implies that at sufficiently low
temperatures thexperimental behaviour of a junction can be hysteretic #vaugh itsl;-V
characteristic is10t hysteretic in the senggiven in b)(case ofresistivelyshunted junctions
with high enoughquality factor), and thehysteresis cycle can be widenedthe set-up is
already intrinsicallyhysteretic. In the case @xperiments orsmall junctions E; 3 kgT),
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activation of the particleut ofthe well usuallyhappens on a time scale mwgtorter than the
characteristic experimental time scale and such a static hysteresis is not observed.

B. Application to non-resistively-shunted junctions

In thefollowing we will developour analysis ofthe dynamics ofthe system inthe case where

the unction is noshunted at DC, that is wheYéw = 0) = 0 (The case of the shunjadction

has been thoroughly studied tine past [1,2]). As we W see, for thisbiasing scheme the
behaviour of a Josephson junctioressentiallyhystereticFor the purpose alefiniteness and
simplicity, we will suppose that the admittange) can be described by tlseries combination

of a capacitorC and a resistolR as indicated in Fig. 5. This specific model of the
electromagnetic environment is easy to implement experimentally. In this configuration thermal
fluctuations can be modelled by a notsgrent sourcé (t) in parallel withthe resistance. The
noise current ,(t) verifies :

(in®)in(0)) = Z gTRS()
(8(t) is here the Dirac delta function, not the phase).

The equations aflynamics (equivalent teq. (2)) of thesystem shown in Fig. &regiven by
the coupled first order differential equations :

V= |b+i;](t)+“_;"—|of'(6) (3a)
cu:LR“—i,g(t) (3b)
¢05:V (3c)

where we havéhree time-dependentriablesd(t) the phase of the junctior(t) the voltage
across the jurtion andu(t), the voltage across the capacitarficgsee Fig. 5). One can
eliminateu andv between the equations to obtain a third-odierentialequation ind which
is still equivalent to (2) :

-~

() R b

X = = v 1,

ut) | = C

Fig. 5. Simple model of the environment of an unshunted Josephson junction.
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RCah0 +(C+ 9pd+ RCh F(B)d+ b f(8)= h+ RGi( L. (4)

In contrast with (2), this latter equation is local in time the price wérave paid is that it is
now non-linear. In absence of the friction terms andd , the “plasma frequency” of temall
oscillations of the phase at a local minima of the potential is

_ lo
“» =\ po(C+o) ©)

Using this characteristic frequency we can define a qualityr Q for the motion of theghase
in the potential
1

Q= RGw, (6)

In thefollowing, we furtherrestrict ouranalysis tatwo extreme cases : a “large” friction case
(Q < 1) and a “weak” friction cas€(>> 1).

1. Large friction limit

In this section we further suppose tlak C (this is asily achievedor snall-area junctions),
and that the dynamics of the phase is overdampes (1) which is equivalent to having

rc» Po

Rl

Under these assumptions, we can neglect the small capadtanitee second term d&q. (4).
Furthermore, at the characterisiequencyuwy, thefriction term ind in (4) is smaller by/C
than thefriction term ind and it can be neglected. Thus, #reall capacitance does not
affect the results.

R Yi) e
X b v
?

Fig. 6. Pure Josephson element biased by an ideal voltage source trough a resistor.
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10

VIRI,

Fig. 7.1;-V characteristic of a highly damped Josephson junction, for different temperatures.
Inset: temperature dependence of the maximum of jthé ¢haracteristic. For an ideal
current bias, this corresponds to the switching currgnt |

Going back to thesystem of firstorder differential equations (3) these considerations show
thatv is not a real degree of freedom of the system. The system (3) can be simplified as

$o 5 _ Rly+u+ RR(H o,
Rl, = RIy f'(d) (7a)
RCu= v-u (7b)

These latter equatioclearly show that the characteristic evolutiome of u is much larger
than that o®. It is thereforgpossible tareatu as a quasistatic quantity ina)7 Equation (7b)
can subsequently be integrated udimg averagealue ofv:q)OS provided by the integration
of (7a). It is important to poirdut here that thelifferentialequation (7a) is equivalent that
of a Josephson junction akgligible capacitance connected in series with a resRtand a
voltage sourcéJ = Rl,+u. (see Fig. 6)This problem is solved ithe literature for theingle
Josephson junctiori(p) = —co) [8]. The current flowing through the junction is given by

Il—in(EJ/kBT):|
I_in(Ej /kgT)

wherel,, is the modified Bessel function of complex order and

IJ(U,T):|0|m|: (8)
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n= Udyg _ U E,
ksTR Rl kgT

In this formula,U andT denote thédiasvoltage and the temperaturespectively. The;(V)
characteristic of theupction can be obtained frothe relationU = V+RI; andEg. (8).Such
[,(V) characteristics are plotted feeveral temperatures in Fig. 7. Going backuo current-
biased junctionthe load line of the source is horizontal, thussWwéchingcurrent is obtained
by finding the maximum of the current as a functio¥ of

I(T) =Max | ;(U,T) = Max | ;(V).
U \Y

Note thatthis switchingcurrent dependsnly onthe temperature, antbt on thevalue of the
resistancdR (provided damping remains large, of course).

2. Weak friction limit

We now turn to the case where the respdinse RC of the admittancg(w) is muchshorter
than theinverse plasma frequency (5) thfe system, whichcorresponds to a wealamping
(RCGw,<<1). Inthis limit we can go back tdq. (2)and make a short-time expansion of the
convolution product :

- —00

+00 o (k) +00 o (_i\K
[ owe-oxa= 3 O [Coksma=y myw=0. @
k=0 X k=0

Replacing in (2) and using= Scl)o, one obtains a differential equation &or
do|(c+ OB+ RCE+..|+ b F(3) = b+ (V)

where the term i® has vanished singg€0) = 0. The evolution od is still that of aparticle of
mass ¢+C)d in the tilted potentiaE;f(8) -0l , butthis time with a leading frictioterm of
the form $3RC?3. The expansion (9) used here can also be usedttier admittances, in
particular for a resistive shunt in which case the friction also has a viscous component.
We will now determine the value of the bias curignpreviously introduced in Sec. A.3.a. We
recall that it is defined ahe minimum current forwhich, in absence of thermal fluctuations,
the particlelaunched at a locanaximum ofthe potential withinfinitesimal initial velocity
reaches the nextarimum.For currents greater thdgp, the energyained going from one
local maximum ofthe potential to the next is greater than the energy lo$tidpn in this
movement the particle accelerates. As the partigéns kinetic energythe variations of the
velocity are reduced and, as a consequencdrithien experienced byhe particle decreases
(the dc component of the velocity doest dissipate sinceg/(0) = 0): there is amvalanche
effect which gives the hysteretic behaviour of the system.

Let us now give an estimate of the currgnbased on the energpalance argument : #tetilt

lp =1y the workW of the friction force on an intervald, d,+2r] going from one local
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maximum ofthe potential to the nextalanceghe energygain 21 ,¢, due to the tilt of the
potential. The workVis given by

W= q)ORCZ_[

60+2Tr

Since friction isweak, we use the fredynamics ofthe particle tomake the approximate
replacement

| .
6=-—2—£"(3)d
0(Cr0)

and the kinetic energy theorem gives

i \/2|0(f(50) —£(8)— (80 - d)si)
$o(C+0)

wheres,, = 1/l This gives

2 O +2TT

3
W= \/_¢ORC2[¢O(C+ )) L daf "(8),/ T (3) = F(3) = (3¢ — B)Sn,

0

The energy balance states tiét -2 ¢ ; this yields an estimate bf:

o= a¢0Rc2['—0f2, (10)
$o(C+0)

where

O +2T1
a——j 08¢ " (8) T(80) ~ 1(8) - (Bo -~ B

is a dimensionless coefficient ofderunity whichdepends or,,, throughs,, Thus, Eq. (10)
must in principle be solved self-consisterfty s,,=1,,/1o. However, one can show that the
currentl,, is much smaller than the critical currémt

ln _a C

This allows us taake s, = 0 to evaluatex, which yieldsfor the single Josephsguanction
(f(d) = —co9) :

a ——Jd600§\/1+ co® = —

and thus,
lm_ 4 C

l, 3MQC+c
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Fig. 8. Approximate form of the zero-temperature and finite-temperajuké dharacteristic
of a weakly damped unshunted junction.

From this value of,, the asymptotic behaviour at large voltage and the hysteretic behaviour of
the system, we can draw a tentative zero-temperature characteristic of the junction (see Fig. 8).

More work is needed toanalyse preciselyhe temperature dependence this switching
current, but we can try to sketch it here. The voltagele associated tthe thermal
fluctuations isVy = kgTR/¢o. We expect thermal fluctuations tound thel ;-V characteristic
on a voltage scale ohe order ofV;. The switchingcurrentlg of the unction is given by the
maximum ofthe rounded;-V curve.Giventheflat aspect of the characteristic at low voltage
for weakly damped junctions (see next section), we expect a weak effeettemperature on
I up to a temperature of the orderQiE,;/kg. If our reasoning is correct we predict that at low
temperatureslg is essentially equal td,, If true, our reasoning also has important
consequences on the interpretationegperimental results : aapparent saturation of the
switching current at low temperature (beforensaybe inaccessibleltra-low temperature
regime where a situation efatic hysteresis is reachednist necessariljthe sign of quantum
tunneling.

3. I-V characteristics ofunshunted junctionsfor arbitrary damping at
zero temperature

We now consider a jution in a circuit corresponding to that of Fig. 5 in the case where the
capacitance is negligiblebut for arbitraryquality factor Q =1/RQw, = /¢o/ R Cj . In this
case, one can obtain thg-V characteristic atero temperature byumerical calculation. The
characteristics are obtained fioyding the stationary solutions for the motion of the phase. The
characteristics plotted for vario@form afamily of curves admittinghe Q=0 curve asigh
voltage asymptote in th&/Rl, reduced voltage (Fig. 9). The currelyt at which the
characteristic reaches tkero voltageaxis decreases whethe Q is increased (Fig. 10). The



104 Switching Current of Small Josephson Devices IV.B.

1.0 T T T T T T T T
T=0 K
0.8;16;3.2;64
0.6 | -
l./1
V004t -
0.2 -
00 1 1 1 1
0 1 2 3 4 5
VIRI,

Fig. 9. 15-V characteristics of unshunted junctions at zero temperatoreseveral values of

the damping. The quality factor of the small oscillations of the system are (top curve to
bottom curve) Q =0; 0.2, 0.4; 0.8; 1.6; 3.2; 6.4. In these coordinates, the curves all admit
the Q = 0 characteristic as high voltage asymptote.

dependence df,, with Q interpolates between the lo@Himit 1,/1,= 1-2nQ? and thehigh-Q
limit 1,,/15= 4/31Q, as shown by the inset of Fig. 10.

Conclusion

We have discussed here the stability of the dynamics of the phase of a Josephsorugingtion
the notion ofl-V characteristic of the junctioirinding the I-V characteristic of a Josephson
junction in its environment is generally difficult problem, but some features of the
characteristics can be found from general arguments for smyadels of environments. Our
mainresult consists ifinding the zero-temperaturgwitching current of unshunteplinctions.
We establish that it dependsucially onthe damping provided byhe environment of the
junction, by a purely classical effect.
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Fig. 10. Dependence of the ratiq/l, = s,, with quality factor Qwhere |}, is the current at
which the zero-temperature characteristic reaches the zero voltage axis. Inset: log-log plot
showing the asymptotic behaviour gf & lowand high Q. The straight lines correspond to
the limits g,= 4/31Q and $,= 1-2nQ? at high and low Q, respectively.
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V. EXPERIMENTAL TECHNIQUES

A. Sample fabrication

All the sampleswere preparedising the shadowmask technique [1,2], with triple-angle
evaporation [3] to produce in sequence : 1) theslahd ofthe transistor, 2) the Al counter-
electrode of the junctions and finally 3) the Cu normal-metal leads of the tramgisthracted
as quasiparticle filter6See Fig. 1 & 2 and Sec. V.B.3). \B&artedwith either a bare oxidised
silicon substrate or a custom-made substrate with an insulated ganedFig. 4) which was
used to microfabricate directly on-chip capacitors. These substrates then regeilaers of
polymer from whichthe suspendeghask was made [4]. The polymers whseguentially spun
to the desiredhickness and baked. Thep layer consisted of PMMA (MW 950k), and the
bottom layer was a PMMA-MAA copolymer. This bilayer was patternedsicaaning electron
microscope, at 35 keV, atmaagnification of5000 for the smllest details and usingdose of
about 2 pC/urh The mask was then developed in a solution of MIBK—Propaifbig2vol.).
The undercut in the copolymer is adjusted so thabtteom layer can suspenithe smallest
details ofthe mask formed bythe remainingtop layer. Thesamplewas then placed in an
electron-gun evaporatiomachineand pumped down to a pressure €1fhb. We first
evaporated a 20 nm-thick film of pure Al at normal incidence. The insulating layertahtied
junctions was then grown by a controlled oxidisation of the Al atgoré€ssure of the order of
101 mb for three minutesNext, the counter-electrodes of thenctions were formed by
evaporating 20 nm of Al at ancidence angle aibout 20°Immediatelyafter, we evaporated
30 nm of Cu at an angle of -20° to forthe normal-metal leads ofthe transistor. The
depositionrate of all the evaporations was regulated at hr/s. Thesamplewas then
immersed a few minutes in warm 85°C) acetone talissolvethe polymers and to lift-off the
metal layers deposited onto the mask. The sample was tested by measuring its tunnel resistance
at room temperaturgyith an ohmmeter and a 2@resistance in series tinit the current to
less thar=100 nA.

A plot of the computer-generated pattern used forfabeacation ofthe on-chipcapacitively
shunted transistor is shown in Fig. 3a. The transitgelf is atthe centre of the figure. An
enlargement of this area is shown in Fig. 3b. Each shade infitn@sscorresponds to one of
the five magnificationand e-beamcurrent stepswhich were used to expose thehole
transistor. A SEM picture of an actusmple is shown in Fig. 2, showitige threeimages of
the mask. The capacitodefined bythe large house-shaped surfaces in Fig. 3a and the
underlyingground planeare 2.5 mr in area,they are in theleads ofthe transistor. The
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Fig. 2. Scanning electron microscope picture of an actual sample, showing the three images
of the mask at a magnification of 25000. The lighter strips correspond to the copper layer.
The junctions are visible as white dots at the overlap of the strips in the centre of the picture.
The supernumerary isolated islandich resultfrom the triple evaporation process have no

influence on the behaviour of the device.
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Fig. 3.a) Computer-generated pattern sent to the scanning electron microscope to expose the
mask. The various shades correspond to different magnifications steps and current doses. b)
enlargement by a factor of 250 of the centre of a), showing the smallest details of the mask.

capacitances of the capacitors are calculasanythe parameters of the,;8i, insulating layer
(g, =7, thickness = 1.fum); this yields =100 pF per capacitor. The narrow horizontal strips
constitutetwo gateswhich could be usedhdifferently. Note thehigh degree ofsymmetry of
the patternThis symmetry cancels any mutuatluctance between the gates andléaels of
the transistowhich were suspected to cause resonances in the electromagnatmment in
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<—— Imaging layer : PMMA 60 nm ——»
-<a— Undercut layer : Copolymer 600 nm —»

Insulating layer : SigNg4 1.5 um ——»

Ground Plane : Gold 200 nm ——»

Substrate : oxidized silicon ———»

Fig. 4. Thetwo types of substrates uséor the fabrication of the transistor. a) standard
oxidised silicon substrate (500 nm thermal oxide) whéntwo polymer layers used to make

the suspended mask. b) Improved substrate which incorporates a ground plane entering in the
fabrication of the on-chip capacitors.

a previous design ahe mask. In onsample(#13), the coppelayerwas replaced by spin-
glass alloy(Cu-Mn, 2%wtMn) to increase dissipation ithe environment and to prevent
proximity effect in the normal-metal (see Sec. V.B.1).

B. Experimental setup

Once fabricated, theamplewas gluedonto asmall copper plateusing silverpaint. The plate
itself was mounted on an integrated circsotket. The pads of th@rcuit were connected to
the pins ofthe sockeusing silver paint andopper wires. One of the sockets teave used
also was fitted with a coaxial lineonnecteddirectly on-chipfor the AC Josephsoegffect
measurements. Treocket was theplugged into a connector in tlidution refrigerator. The
copper plate supporting treamplewas thermally anchored to thenixing chamber using a
copper braid. Two concentric coppershields anchored to themixing chamber of the
refrigerator surrounded the sample. All the leads running fomm temperature to tleample
were made through carefully filtered coaxial linegsee Fig. 5). On each of thmas line,
measurement line arghteline, a typicalattenuation of 120 dB of theicrowave noise was
achieved by using microfabricated dissipative meander-line filters wieold developed in our
lab and whichare describeélsewhere [5]. Théias lineincorporated anechanical switch in a
shielded box at 4K witlwhich wecould change the sourgapedance from 12 K to 30 K2,
depending on what type of measurement was desired. The voltage thereasple was
amplified using @attery-powered low-noigere-amplifier(lthacomodel1201), fromwhich it
was sent to the data acquisition apparatus. The curremiavageasured directly in thisetup,

it was rather calculatagsingthe input voltage at thimp ofthe cryostat, the measured voltage
on the sample and the predetermined values of the resistors used in the bias line (see Fig. 6a).
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We did the measurements ofhe switching current of the transistor in theigh source
impedance configuratiorfsee Fig. 6c). Startindrom the superconducting state of the
transistor, weapplied acurrent ramp to the transistor. We determinedstihiéchingcurrent by
measuringthe time it took for the voltage across the transistor to reach a thresiade,
corresponding to thewitching ofthe transistor to a non-superconductstgte. Both the
synchronisation signal aghe ramp and the signebming fromthe pre-amplifierwere used to
trigger a high-speed timer (Philips model PM6654C) which measured the elapsed time between
the two trigger signals. The value ofhe switching current was then calculated from the
parameters of the ramp and thas line.The whole measurement of a modulation curve of the
transistor was automated : a computer program controlled the gate \®laiipey source
model 230) and acquired the time measurement via an IEEE link.

The otherbiasingmode was used to record th¥ characteristics of theample(see Fig. 6b).

It was especially useful t@mbserve resonances fatite voltages in regions where the current
bias scheme is unstable. This imperfecitage bias had alsothe advantage obeing
intrinsically stable (barring hysteresis tie sample, ofcourse) as compared to thusual
"perfect” voltage bias. Suchkaasset-up can irprinciple be achieved with @urrentamplifier
usingthe virtual ground techniqueThis virtualground isusually implemented by a feed-back
system at ambieniemperatureThis type of feed-back system always realises a trade-off
betweenfiltering of the noise inthe feed-back loop and thene constant of théeed-back
which both limit the stability of the voltage on theample. Inour setuphowever, the more
filtering you apply,the lessnoise you have. Theounterpart is that in our setywu are
restricted tousing ratherhigh sourceimpedances. This is because if yage asmall source
impedancethe current is calculated by subtractingmbers ofthe same magnitude : the
absolute accuracy dll the measurements lits your precision, and, more important, the
signal-to-noise ratio decreases.



112 Experimental Techniques V.B.

300K

-6dB

4 K

-10dB 08 K

170 kQ| F E
InF—=— _ | ______
A L L
I

L 20 mK
| SAMPLE |

Fig. 5. Schematic of the electrical wiring of the experiment inside of the dilution refrigerator.
All the lines consists of coaxial cables, except the twisted-pair cable going to the preamplifier
which itself is inside a screening tube. The square elements marked F are custom-made
dissipative microwave filters (see text). The bias line (driven by the voltage sgumuM

either be used as an almost ideal DC current source (swipem)with an impedance of 12

MQ or as a source with an impedance~#0 kQ (switch closed)The configuration of the
microwave line shown here correspondsthe latest experiments (samples 9-tBere we

tried to produce fractional Shapiro steps by modulating the gate voltage (see Sec. V.C.2.b).
The low attenuation on the microwave line (leftjas needed to compensate for the small
value of the coupling capacitor on-chip, but did not add any significant noise.
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Fig. 6. a) Principle of the electrical measurements performed on the samples. The vg|tage V
measured by the pre-amplifier of gain G corresponds to the voltage V across the sample plus
the voltage drop across the resistanged a filter. The current flowing through the sample

is obtained from the voltage drop across the resistangeblR The recording of an IV
characteristic was done by the acquisition of theaw voltages delivered by the ramp
generator and the pre-amplifier followed by a post-treatment on a computer. ¢) The recording
of the switching current data was entirely automated (see text).
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VI. EXPERIMENTAL RESULTS

A. Overview of thel-V characteristic

Before going into theletails ofthe experiments, let ugst give an overview othe geeral
features present in tHeV characteristic of the transistor. Thical I-V characteristic of a
transistor is presented in Fig. 1.réisembles strongly that oivo large (.e. large capacitance,
smallcharging energy) Josephson junctions connected in series in that it shows a pronounced
gap for|V| < 4A/e and a nearly vertical “supercurrent” branciVatO .

| ! | ! |
10 -
small wltage resonances
5r _
supercurrent branch ——
<< Of | 1
£ - -
— gap = 44/e h
5L \ -
[ "JQP" resonance 1
-10 -
2 | 2 | 2 | 2
-0.8 -0.4 0.0 04 0.8

V (mV)

Fig. 1. Main features of a typical I-V characteristic of a superconducting single electron
transistor withthe main features outlined. The acronym JQP stands for “Josephson plus
Quasi-Particle”. This conduction process is described in the text. (Data from sample 13,
taken in the low-impedance bias mode).

One notices however the presence of a broad resonance in the charact&fsa 4t which
corresponds in largginctions arrays tdhe switching of the Josephsorupction with the
second smikest critical current. Thisesonance was first observed amlysed by Fulton and
Dolan who called its mechanism the “Josephson plus quasiparticle cyclic process” [1]. It results
from a conductionprocessinvolving the presence ofjuasiparticles inthe island, these
guasiparticles acting as “catalyst” for electronic transfer.
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Fig. 2. Current-Voltage characteristic of a transistor with a nearly ideal curigas. One
notices the large hysteresis loop. The similarity of the JQP resondtitéhe 21/e plateau
present in the I-V characteristic t#vo large Josephson junctions (see Fig. 3) is much more
pronounced in this measurement of the characteristic. (Data from sample 13)

A

2A/e 4\e

Fig. 3. Schematic of the |-V characteristic o large Josephson junctions connected in
series and biased by an ideal current source. When the critical cugemntf Ithe weakest
junction is reached, the system switches to a voltage platedyatc®rresponding to the gap

of a single junction. When the bias current is increased further, one reaches the critical
current |-, of the second junction and the voltage switcheg\i@ Athe sum of the gaps of the

two junctions.
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Fig. 4. An example of modulation of the switching curneith the gate charge. (Data from
sample 13).

The essential difference with a system of large junctimwever, is the fact that thehole
characteristic is modulated by the gate voltage. The most spectangalation is that of the
supercurrent brancivhich was not olserved inearly experiments othe transistor [1,2,3,4].
We call themaximumsupercurrent that cafow through the transistor, thsvitchingcurrent
of the transistor. For hias currentexceedingthe switching currentthe transistoswitches
rapidly to a finitevoltage statepwing to its hysteretic behaviour (see Fig. 2 and Chéap.
The variations of the switching current as a function of gate voltage is shown in Fig. 4.
This gate-voltage modulation ig-periodic with respect to the charge present on the electrode
of the gate capacitor. The-periodicity is a manifestation dhe odd-everasymmetry of the
island ofthe transistor. It corresponaxactly tothe Z-periodicity of the staircase of the
superconducting single electron box experiment [5]. Asshadl see,our experiments have
proven that thexistence of a sizeabsipercurrent branch tgghtly connected to perfecte2
periodicity. In previous experiments dhe transistor [1,2,3,4], perfece-periodicity had
never been achieved artie supercurrentemained orders of magnitude smaller than
theoretical predictions, as illustrated by Fig. 5. Our experiments provide a cadqriamation
for these features and reconditee formerexperiments witlthe theory. Our results further
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Fig. 5. Current-voltage characteristic of a superconducting single electron transistor of the
Delft group (reproduced frorRef. 3,with permissionjfor two values of the gate charge at 10

mK. The modulation of the amplitude of the supercurrent peak (leftmost resonance) is plotted
in the inset(lower curve). The modulation is e-periodic in the gate charge and the maximum
amplitude of the supercurrent (indicated by the scale of the main figure) islovwstthan

the theoretical prediction €5 nA for this samplevhosetotal tunnel resistancevas 58 K).

The arrow indicates the position of the "Coulomb gap for Cooper pairs" which is what we call
the first order resonant Cooper pair tunneling process (see Sec. C.1).

demonstrate the rolplayed bythe dissipation inthe electromagnetienvironment of the
transistor on the experimental critical current of the device. These poirtsptaimed in detail

in the following section.

We have also analyséke features of the transistorfatite but low voltages. First odll, far
enough fronV =0, the modulation with the gate charge becoeqesriodic. The cross-over to
e-periodicity occurs when the transport voltagean provide the odd-even freenergy
difference, that is wherV = D(T, H)/e. In the voltage region comprised between the
supercurrent branch arnlde “JQP” peak, wéave analysethe mechanisms athe resonances
that appeared in theV characteristic. Such resonances have always been obpeevenlsly

in the characteristics of the transistors (seg Fig. 5), but theirvariations with thegate
voltage remained unexplained. Some resonam@e moving with the gate voltage kile
others were only changing in amplitude but none could unambiguously be associag@ckto a
phenomenon. By controlling the electromagnetitvironment ofthe transistor wehave
established that fixedesonances aréparasitic’ resonance inthe impedance of the
environment. In one instance we have used tfesgresonances as frequency “markers” : we
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interpreted theloubling ofthe voltage atvhich these frequencies appeared as a signature of a
Zener effect (see Sec. C.4). We will also present measurements of AC Josephson effect.

In samples with a clean electromagnetic environmentcaudld observe the gate voltage
dependent resonances with unprecedented accuracy. These resonances are caused by what i
known as “resonant Cooppair tunneling”. These resonances form a hierarchytoth the

first three orders have been observed. These resonances are also a way to measure the chargin
energy of the island. This will be explained in Sec. C.1

B. Modulation of the supercurrent

In a current-bias set-up, the transistisplays a hysteretic behaviour whtre current is
cycled(see Fig. 2). Wenthe current of the source is ramgdeaim zero, thel-V characteristic
first follows the superconducting branch, and then givan value ofthe source current, it
suddenly “switches” to a large voltage. This defines the switatungent of the transistor. The
I-V characteristic forms a large hysterdsigp : the current must be reducednearlyzero to
bring the transistor back in its superconductisigite. Therepetitive measurement of the
switching current in thesame conditionsisually yields gpeaked distribution (seSec. B.2)
which in a first approximation can be characterised by a single number.

1. Switching current vs. critical current

For all the samplesexcept ong the modulation of the measureditching current was &
periodic and in qualitative agreement withe theoretical prediction : its shape was
qualitativelycorrectand the aspect ratio of the peatsied in agreement wittihe parameters.
However, in thefirst samples,the switching current wasquantitatively well below the
theoretical critical current. By microfabricatingspecific on-chip electromagnetic environment
for our latter samples(see Chap. V), we werable to prove that the ratio between the
switching current and theeritical current isfixed by the dissipation inthe electromagnetic
environment of the transistor.

a) EXPERIMENTAL EVIDENCE OF THE ROLE OF DISSIPATION ON THE SWITCHING
CURRENT

To test therole of theenvironment orthe switching current, we made samples where the
electromagnetic environment dhe transistor waswell controlled by construction. It
incorporated a large capacitor in tleads ofthe device and parasitic resonances in the

1 One sample out of 13 wasmpletelye-periodic (seeappendix B). We explaithis by a finite number of
excited states insidihe BCS gap,down to very lowenergy. What surprises usttsat thisproblem does not

occur more frequently.
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environmentwere suppressed bgeometrically cancellingnost mutual inductances. The
electromagnetic environment tfe transistor in thessamples is weltescribed by aimple
lumped element model (see Fig. 6).

With this arrangement wevere able toprove that thelissipation inthe environment plays a
crucial role infixing the switching current. lrour arrangement, dissipation wasclusively due
to the resistance of theormal-metal quasiparticle filters. This resistance was of aotaws
when the normalmetal waspure copper. \Wen we cooled thesesamples tothe lowest
temperatures however, superconductivity could contaminateothyger by‘proximity effect”,
the effect of whichwas to reduce this resistanceh&# we measuretthe switchingcurrent of
these transistors, we saw it decreasing with temperature, as exjpecteal reduction of the
dissipation (se&ec. IV.B.3 and Fig. 7). We could check thas was indeegroximity effect
by applying a small magtic field. This magnetidield destroyed theroximity effect in the
copper and spectacularly increased the switching current.

@l = C G lo

Fig. 6. Realistic lumped element model of the electromagnetic environment of the transistor

for the samplesvith microfabricated capacitors oghip. The cross represents the pure
effective Josephson element equivalent to the transistor e Capacitance of the effective
junction. The large capacitanagas C = 1.8 nF (whicltonsisted of 50 pF on-chip plus the
rest on the sample mount in the refrigerator) anev&sthe resistance of the normal-metal
leads of the transistor. The typical series capacitancefGhe transistor is of the order of

1015 F and can be completely neglected.
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Fig. 7. Influence of the dissipation in the environmental impedance on the switching current
of the transistor. In a sample@herethe normal-metal leads exe made of pure copper,
superconductivity penetrated the normal metal. This phenom&nown as “proximity
effect” reduced the resistance of the metal and, as a consequence, redusadt¢himg
current of the transistor. This effect is clearly visilelow 120 mK. When a moderate
magnetic fieldvasapplied to the sample to prevent development of the proximity effect, the
switching current spectacularly increased (open symbols). (Data from sdhplehe effect

was also observed with sample 8).

b) SWITCHING CURRENT FOR STRONG DAMPING

In sample 13 we replacede pure copper of th@ormal-metal leads by a spin glass allGw-

Mn, 2% wt Mn). The presence of the Mpins forbadehe development chny proximity
effect, thus the resistance of thermal metal remainecbnstant with temperature. Moreover
the resistancdoeing that of an alloy, itvas thenmuch higher tharfor the pure copper
previously used : 400 ohms instead of a couple of ohms.

A plot of the low-temperature modulation of thitchingcurrent is shown in Fig. 8. and the
experimental dependence thie switching current versus the temperature is shown in Fig. 9.
One clearly sees th#te low temperature reduction of teeitchingcurrent observed in Fig. 7
has been suppressed by using the spin-glass alloy, as expected.
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Fig. 8. Low temperature switching current (dot)d the critical current of a transistor (top

curve, no fitting parameters), as a function of the gate chagge @V, for sample #13. The

critical current which isthe theoretical maximal supercurrent would correspond to the

switching current aff=0. Our theory of theswitching currentfor overdampedlosephson
junctions permits the calculation of the switching current fiaite temperature(dots

T =16 mK; dashes T =50 mK). The T=16 mK data can only be fitted if one supposes the
temperature of the electromagnetic environment to be 50 mK (dashes). This hot-electron

effect was to be expected because of Joule effect in the normal-metal filters.

In this sample we had=1.8nF, C;=0.5fF, R=4002 and 4.0< I(ny) <11.4nA. Thevalues
of Ic(ng) were calculated using the three-band model of the transistor describeci iti.B.4.
This model was applied usirthe experimentally determined value &f/kz=660 mK (see
Sec. Il.D.5)and thevalueE;/kg = 520 mK of the Josephsaoupling for a single junction of
the transistor calculatddom the Ambegaokar-Barratoformulacorrected otharging effects
(see Sec. II.C)Writing the eletrical equations of the circuit, one sees t@ats unimportant

and that the characteristic frequency of the small oscillations of the phase in its potential is

Wy _
21T

e
21,C

The quality factor for these oscillations is

1
Q_R

~0.01- 0.02
0

~12.5- 215MHz.
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Fig. 9. Comparison of experimental value of the switching cumettit the theory of strongly
damped Josephson junctions plotted as a function of the thermometer's temperature. At high
temperature, a very good agreement is obtained without any adjustable parameter. The
deviation appearing below60 mK can be explained by heating effects in the sa(apée
text). Data from sample 13.

Thus, thedynamics ofthe phase irthis samplewvas strongly overdamped. If we suppdisat

the shape of the grourmhnd ofthe transistor is namportant, we can calculate tleitching
current aexplained inSec. 1V.B.1 for an overdamped singlmction. Thefull line in Fig. 9

and the theoretical(ny) curves in Fig. 8 where obtained using this theory. Agreement between
the theory and thexperiment is verygood attemperatures above ~G0K. Below this
temperature thdiscrepancy can be explained blgat electron effect ithe sample. One could
estimate the electronic temperature in the sample using the formula [6]

P=3V(T0- Toy).

(1)

In this formula,P=RI? is the powergiven tothe electronsy is thevolume of the metal,
T =2 nWum3K™ is a material dependent parametéiich measurethe coupling of electrons

with phonons T, is the (unknown) electronic temperature ang is the phonon temperature
which is equal tdhe thermometer's temperature. Madume of metal tdake into account is
here anll-defined quantity which is certainly muclarger than theolume ofthe resistors. A
rigorous treatment would requiselving the differential equations of heat in the geometry of
the sample However, putting someealistic figures irEq. (1), onesees that it is actuallery
likely that electrons are hot enough to explain the deviation of the data at low temperature.
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Note that bygoing to this overdamped situation we have reachednaximum switching
currentwhich can be achieved inren-shunted system : no modificationtbé ewironment
can further increaste switchingcurrent atanytemperature (apart fromeducing theheating
effect, of course).

C) SWITCHING CURRENT FOR LOW DAMPING

In our first sampleshe impedance othe electromagnetienvironment ofthe transistor was
not controlled, but one careasonably assume thide friction was veryweak at theplasma

frequency ofthe phase. Due tour lack of knowledge othe admittance iparallel with the

transistor, we can simply predict along times ofreasoning exposed in Sd¥.B.2 a scaling

of the switching current with the effective Josephson energy of the transistor :

| OEY?

This scaling agreed well with experiments (see Sec. 3a below and paper in appendix A).

2. Fluctuations of the switching current and noise measurements

The fluctuations of thewitchingcurrent on repeatesheasurements have several origins : (i)
In the parametedlomain where wevere working, theswitching ofthe transistor wasormally
thermally activated, thus thermal fluctuations cowtlen the distribution.(ii) The switching
currentbeing very sensitive tthe charge thesland “sees”, any movement of @rge in the
vicinity of the island €.g.noise in the gate voltage) yields fluctuations of the switching current.
In one occasion we observed that such a charge noiséhevaninant contribution to the
width of the distribution ofig : At a given value ofy the width of thenearly Gaussian
distribution ofl s was proportional to d[/dn, (see Fig. 10). From the proportionality constant
one can express thmise as a standard deviationtleé gate charge of the order of 431€
From theabsence of correlations in successive measurements at a repatéion 45 Hz, we
conclude to a fastetynamic ofthe noise mechanism. This noiges slowly decreasing with
time, onthe scale of days, indicating that some relaxati@s going on and proving that the
noise wasiot simply due tgoorfiltering. Weinterpret this charge noise as rapidvements

of charges, probably located in the substrate of the sample.
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Fig. 10. Top right panel : Histograms of switching curréiotr sample 13, taken at gate
voltages indicated by the black squares on thelééippanel. On the top left panel wave
also plotted the average switching current as a function of the gate charge. Bottom panel :
Plot of the derivative of the average switching curmgith respect tahe gate charge (dots +
line; left axis) andwidth of the histograms (black squares; right axis) vs. gate voltage. The
width of the histograms is nearly proportional to the derivative of the average switching
current with respect tahe gate charge. This is consistemth a width ofthe histograms
originating in rapid motion of random charges near the transistor.

Another conclusion of these measurements isttiaintrinsic histogram width mentioned in
(i) is very narrow (notlarger than the histogram af=0). This narrow distribution is an
essential piece of information dhe finite temperatureswitching process (see Chap. IV.).
Here, we Wl rather translatéhis width in terms ofimit performance of the transistor used as
an electrometer. Bpnalogy withoptics, we cardefine the chargeresolving power of the
transistor as the chargeise figure giverabove. Mte thatthis resolvingpoweronly gives an
indication onthe performance of thdevice and thathe actualimit is only imposed by the
number of measurements atigerefore by the amount ¢ifne available tomeasure ajiven
charge. If we suppose that the narrowest histogram we obsenye=@} is fixed by the actual
intrinsic fluctuations othe switching current of the transistor, and iffabrication technique
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could suppress the chargeise we observe (perhaps by fabricating a suspended island), we
can estimate the limit resolving power of such a transistor 4030E0% e.

If the transistor wasactually going to beused as an electrometer, it woudrtainly be
interesting to make it non-hysteretic. This cardbee byplacing a resistive shunt between the
source anddrain electrodesThis non hysteretic superconducting singlectron transistor
should offer better performance than its normal-metainterpart (18 e/~/Hz proven
sensitivity [1), owing to the higher current and lower output impedance it presents.

3. Poisoning of the supercurrent

We have presentethe zero-temperature picture of thmisoning of the supercurrent
introduced by Matveeegt al.[8] in Sec. Ill.C. We W here discushow this phenomenon may
appear in experimentiue todynamiceffects. We W presentexperimental results iane of
these cases.

In the Matvee\et al. description of the phenomenon, the parametech controls theparity
effects intheisland ofthe transistor i&/E.. However, afinite temperature we know that the
equilibrium probability ofodd oreven occupation athe island isgoverned by the odd-even
free energy differencB(T,H) in theisland [4,5],not the gap Moreover, what isneasured
experimentally is a switching curremiot exactly the critical current. As already explained in
Chap. IV, the procesduring whichthe effective junction switches results fratme dynamics
of the system. To give a detailed prediction tbe effect of quasiparticle poisoning on an
experiment, it is necessary kmow thetimescales on whiclthe variousphenomenabccur.
Thus, we introduce the characteridtroescales g of the switching ofthe transistor tdinite
voltage,1,, of the odd-even equilibration time in the island, anthe ramptime ofthe current
during a measurement of tBeitching current. We can envision severalgerimit cases, as
indicated below :

L Toe>>T, >>Tg

The parity changes in thglandoccur ontime scalegreater than théme it takes tomeasure
the switching current. A given measuremenl wive the switching current corresponding to
the parity at the moment the measurement is performed. m¢asurementare repeated on a
time scalegreater thamn,, we will obtaintwo values ofthe switchingcurrent corresponding to
the odd or even occupancy of the island. The ratio dirélgeiency of these measuremeniis
be given by the Boltzmann factor eXp({,H)/kgT).

i T >>Te>> T4

At any value of the current, the island samples both the odd and even state. iatortiene

2 At zero magnetic field, the odd-even free energy differ@(deH) is approximately given by
D(T,00=A-kgTIn N

whereA is the gap of the superconductor &N¥l\p, p being the density of states in the island.
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it is possiblefor the transistor to switch, itilvswitch because this the fastesphenomenon.
Thus, theswitchingcurrent wll correspond to theninimal critical current of the odd oeven
state of thasland. Thispredicts a weak-periodic modulation of thewitchingcurrentexactly
as if the gap did not exist. The effect of poisoning is extreme.

il T >>T>>Tge

In this case, durinthe process odwitchingthe phase can libought toevolve in an average
potential corresponding to tleeld and even occupation dfie island in aratio given by the
Boltzmannfactor exp(D(T,H)/kgT). The switchingcurrent is then a sort of average between
the switching whichwould occur for pureven orodd occupation of thisland. The shape of
the gate chargmodulation of theswitchingcurrent at low temperature and low matiofield

is a rounded version of that predicted by Matveeal. At highertemperatures anchagnetic
fields, the poisoning leads to a complex modulatipattern of theswitching current with
respect to the gate charge, with a non monotonous dependence in tempEnatuséie case
encountered in the paper reprinted in appendix A. Infoflewing section wepresent a
complete set of data showing the manifestation of this effect.

a) EXPERIMENTAL OBSERVATION OF THE POISONING

We present here data sivitchingcurrent modulatiorirom sample #5 whickdemonstrate the
effect of quasiparticle poisoning tife supercurrent asfanction of temperature armdagnetic
field. The figures presented hagenstitute a superset of those presented imatiee given in
appendix A. The theoretical curves accompanyirggdata were obtainagingthe argument
of average potential for the phase presented in point iii) above and ssiatingl,, 0 132 for
the zero-temperaturgwitchingcurrentl ,, of thesample. This scalingorresponds to a weak
damping ofthe phasavhich is relevantor this sample(see Sec. IV.B.2). Ithis weakfriction
limit the switchingcurrent is supposed to depewdakly ontemperature, hence we compare
directly the experimental switchingcurrent atfinite temperature tol,, For a complete
description of how thexperimental curvewere obtained, the reader is referred to the article.
It is important to mention thdhe wholeset of theoretical curves presented hereoatained
using a unique set of parameters for the model.
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Fig. 11 A. Modulation of the switching current at T = 65 ni&r an increasing magnetic
field. Note the logarithmic scale. The dip appearing at odd integer values j

corresponds to the poisoning. These low-temperature data correspond to a rounded version of
the theory of Matveev et al. [gseefor comparison Fig. 12 of Chagll.). |

maximum switching current (see article).
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temperature. It corresponds to the vanishing of the odd-even free energy difference in the
island.
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Fig. 11 C.Temperature dependence of the modulation of the switching current at H = 0.07 T.
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Fig. 11 E.Temperature dependence of the modulation of the switching current at H = 0.14 T.
Note that at this field the peaks in the modulation move aitbttemperature. Note also that

for this field and the following, the high-temperature modulation is greater in amplitude than
the low-temperature modulation.
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Fig. 11 F.Temperature dependence of the modulation of the switching currentat H = 0.16 T.
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Fig. 11 G.Temperature dependence of the modulation of the switching currentat H = 0.17 T.
At this field, thelow-temperature switching current is already nearly e-periodic. In this
situation, as the temperature increases, the position of the peaks in the switching current
change from half-integer values of /@ to integer values of {2e.
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Fig. 11 H. Top panels: experimental switching current as a function of temperature for
Qy=0 and Q=e Top to bottom, same field values as in Fig. 11 A. Bottom panels:
theoretical predictions for the same conditions as in top panels. The th@vBs reproduce
the strongly non-monotonic temperature dependence found in the experimg atf@
low fields.
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b) THE PROBLEM OF OUTOFEQUILIBRIUM QUASIPARTICLES

The description we have made so fartlod experimental consequence of poisonalgyays
supposed that quasiparticles wereletrmal equilibrium. This i:i0t necessarilythe case in
experimentsFor example, out-of-equilibrium quasiparticles candoeated by the absorption
of infrared photons by the superconducting electrodes of the transistor, andldkation
mechanism othese quasiparticlmay bequite slow. If there arenanysuch out-of-equilibrium
quasiparticles, it is like having rgap for the excitations and then th@isoning is extreme :
one measures a weeldperiodic modulation of the supercurrent.

As we understand it now, all the previous experiments on the superconducting transistor where
more or less plagued with this problem of poisoning by uncontrolled quasipaiciesvas
recently checked biiergenrotheeet al. : by improvingthe screening othe sample in their
dilution refrigerator they observed a better ratio of odd to even peaks [9].

In our experiments onthe transistor we avoidedhis problem of out-of-equilibrium
quasiparticles by fabricatingur samples with normal-metal leads very clos¢hmisland(see
Chap. V).This normal metahcted as a trafor afilter) for out-of-equilibrium quasiparticles :
such a quasiparticle enteritige normalmetal decays in energy aesdnnot subsequently re-
enter the superconductdvery recentlythe same quasiparticle filter technique wasplied
successfully in Delft : the modulation of a transistor becagrgefiodic.

With our samples, when weeduced the odd-even free energyamplying a magnetidield
and/or raisingthe temperature we could recover eperiodic modulationpattern of the
switching current corresponding to a complgbteising (see previous sectionfor some
parameters we could obtain a modulagattern of theswitchingcurrentvery similar inshape
and amplitude tdhe modulation of the supercurrent peak observed in preexpsriments
[3,4] (see Fig. 12)This observation also seems ¢onfirm the hypothesis of poisoning in
former experiments.
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Fig. 12. Top panel : modulation of the switching current of sample #5 at T=65 mK and H=0
(open squares) and T=203 mK and H=0.11 Tesla (black dots). Bottom panel : magnification
of the T=203 mK and H=0.11 Tesla curve. The magnetic field and the temperature
suppressed the odd-even free energy difference : the modulation pattern became e-periodic
with a very wealamplitude, corresponding to a complete poisoning. This modulation pattern

is strikingly similar to that observed in previous experiments (see bottom curve of inset of Fig.
5 and top curve of Fig. 2 of Ref. 4)

) POSSIBLE APPLICATIONS

As already mentioned, out-of-equilibrium quasiparticles carcrbated byinfrared photons
incident on the superconductor. It is thus possible to envisiofalthieation of a very sensitive
(ideally singlephoton) IRdetectorbased on this effectthe leads ofthe transistor serve as
antennas and the transistobiased just below its switchirgurrent atQ,=e. When aphoton
strikes the superconductor, it create® quasiparticles. If one of them reachés island
before recombinatiothe transistor switches to a large voltage (see Fig. 2) system is its
own amplifier! One can then rearm thietector bycycling the current to zero. For a correct
operation, the detectomust be cooledwell below the odd-evensymmetry breaking
temperature (~250 mK for Aslands), its environment must be cold enough to dazzle it,
and the photofiux to measure must be weaker than the relaxatos ofquasiparticles in the
device.
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C. Finite Voltage

1. Resonant Cooper pair tunneling

Our understanding of thgate voltage dependent resonances of the transidtesésl on the
resonantunneling ofCooperpairs described isec. IlI.D. In order to compareur experi-
mental results wittour model ofthe process, we mustst describe preciseliiow we made
the measurement of these resonances becaoae &n important consequencetbaanalysis
of the data. Wemeasured these resonances withias source of intermediatenpedance
(=30 kQ bias impedancesee Chap. V). Thbiassource was ramped down tero, to get as
close as possible tihe supercurrent brancRampingthe source up would haveasked the
lowest voltages because of thgsteresis othe characteristicThis methodogetherwith the
source impedance prevented the correct observation of the narrow resonances predicted by our
model, because of thetrinsic instability ofthe bias scheme iparts of thel-V characteristic
where thedifferential conductance IddV is negative andjreater in absolutgalue than the
source conductance (see Fig. 13).

Thus, if our model iscorrect, wecan at best observkeV characteristics with truncated
resonances. We have simulated such a truncation in Fig. 15 & 14 tlhusipgrameters of the
samples which gavehe measureglotted in the same figures. The resultare semi-
quantitativelycorrect, excepbearny = oddinteger whereur model is known to be incorrect.
In Fig. 15 oneclearlysees the current peaks due to the various orders of retsonaegling of
Cooperpairs(up to thefifth order),with a position in agreement with the theorygtiorder
resonances had never been observedesoly inprevious experiments (seeg. Fig. 16 and
Ref. 10).
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Fig. 13. The imperfect bias source we used could not reveal the sharp resonances predicted
by the theory because of an intrinsic instability.
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Fig. 14. Comparison of experimental results of sample 13 (top, -0.p<In0) with our

model (bottom, -0.5 <

0.5, the Josephson energy is rather large so that the model is only

valid in a limited range aroundy 0), with no other adjustable paramettvan the charging
energy. Experimental results are less marked than what is predicted.
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Fig. 15. Left page, top figure : experimental I-V characteristicsdeveral gate charges. A

span of about 2 periods in the gate voltage is covered. One clearly sees the resonances
corresponding to the resonant Cooper pair tunneling of order g=1, 3,5. (Data from sample
7).

Bottom figure : theoretical positions of the resonances in ¥ mplane, at a scale
compatible witlthe top figure. Heavy lines correspond to the observed resonances in the top
figure for the ore@rs g =1 (full lines), q=3 (dotted lines), g =5 (dash-dot). The dashed lines
indicate the position of the g=1 resonance corresponding to a loss of the 2e-periodicity
(odd-n states). These resonances are observed experimentally over 100 pV (heavy section of
the dashed lines in the bottom figure).

This page : calculated I-V characteristiegth the parameters of the sample of the top left
figure. We have used the model described in Sec.Wlitida truncation othe unstable parts

of the characteristics. A detailed comparison is difficult because of the poor signal-to-noise
ratio for the peaks in the experimental data.
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Fig. 16. Data from the Go6teborg group (reproduced fr&af. 11,with permission) showing
resonant Cooper pair tunneling of first order.

2. AC Josephson effect

a)“NORMAL" SHAPIRO STEPS

Whenthe transistor ibiased at a finite \tage, if theimpedance irthe environment of the
transistor isnegligible, the phasedifference across the transistagvolveslinearly in time
according to the Josephson relatidydi = 2rvV/®,. We suppose that the transistor stays in its
lowest energy band. In this casiee currenflowing through the transistor averageszeyo. If

a sinusoidal modulation is superimposed tba DC voltage, the vetdy of the phase is
modulated and an average current cassity flow inthe device. In particulanvhen the
Josephson frequency =V/®, is a multiple of the irradiation frequency f, the I-V
characteristics develops voltage plateawkich are like the supercurrent branch, but
transposed affinite voltage. These voltage plateaux atelled “Shapiro steps”. They
correspond to #cking ofthe dynamics ofthe phase on the exterriedquency.That these are
a replica ofthe supercurrent branch can tnederstood by aewriting of theHamiltonian at
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finite voltage. We make the hypothesis that the lowest band of the transistor can be replaced by
a sinusoidal band (which is a good approximation ngar0) :

H(Vpe, A) = - ES" cosd

with
Py ;
—2 0=V~ + AcosQt
21T bC

where A is theamplitude ofthe microwave modulation an@ =21t its circular frequency.

Integrating this last equation and replacing in the former one yields

2TWVpct N 2TA
O d,Q

H(Vpe, A) = —ES" co{ sier}.

The cosine can be expanded using Bessel functions :

e

= ZJn[i)H(VDC —n®, f, A= 0)

D, f
Whenthe voltage is equal to a particular liple of ®,f the corresponding term in the sum
above will give a replica ahe supercurrent branch witlcaupling energy reduced byfactor
Jn(A/®,f). The other terms contribute by an oscillatory current which averages to zero.
For the datashown in Fig. 17 & 18, we provoked the appearance of Shapiro stems a
microwavegenerator and an antenna inside the cryostat.cobpling ofthe microwaves to
the DC bias line of the transistor was not controlled in this experiment, it depended strongly on
the frequency. A recording of Shapiro steps obtaitied way is shown in Fig. 17. We
observedvell developed voltage plateaux at voltagedtiple of ®,f. The data were taken at
Qy=0 where the grounland ofthe transistor isiearly sinusoidal andhere the transistor
behaved essentially as a single Josephson junction.
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Fig. 17. Shapiro steps observed under microwave irradiation of a transistor 3td2=GHz.
The gate charge was,@ 0. The top axis is graduated in units®{f, the theoretical interval
between the steps. Data from sample 7.
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Fig. 18. Measured amplitude of the Shapiro steps as a function of the microwave amplitude
(left and bottom axis). Some points could not be measured because of the hysteresis of the |-V
characteristic. The data is comparedth the power3/2 of the Bessel functiong (top and

right axis). Data from sample 7.
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The data shown here correspond wample with dailored electromagnetic environment (see
Chap. V), but with a rather low damping. For this type of damping we have established that the
amplitude ofthe supercurrent branataled as power 32 of the Josephsoroupling energy

(see Chap. IV). Therefore, we expect thatah®litude ofthe nt" Shapiro steps shoulgary

with the microwave amplitude a§l,(A/®,f)¥% The measured amplitude tie various
Shapiro steps as a function tbe microwave amplitude iplotted in Fig. 18along with the

power 32 of theBessel functiondor comparison. The agreement is q@ted inspite of the
crudeness of the description used here.

In samples 5 and3, the oddShapiro steps disappeared n€gr=e. This isunderstood as
Zener effect between the two lowest bands of the transistor. This effect is explained in Sec. 4.

b) FRACTIONAL SHAPIRO STEPS

By connecting themicrowave line carefully t@ne of the gates of the transistor, we tried to
generate fractional Shapisteps. Thadea is toproduce amicrowave modulation ahe gate
charge so that thgystem follows drajectory in the f;,0} plane which picks mostly positive
contributions to the current. Trace a) of Fig.di%es an example of suchtijectorywhich
would yield the /2 harmonic ofthe normal Shapiro step (tHequency ofthe microwave
excitation of the gate charge is twice that of the motiamiofthe band).
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)

Fig. 19. Trajectories in the {5,0} plane which should produce sub-harmonic Shapiro steps.
The lighter-tinted areas correspond to positive instantaneous current, and the darker to
negative current (the instantaneous current is obtained by taking the derivative of the ground
band energy with respect &). The plotted trajectories a) and b) pick more positive than
negative current, thus they should give a Shapiro step. a) would giv,fji2 step and b)

the 2byf/3.
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Fig. 20. Possible fractional Shapiro steps observed in sample 5. The microwave frequency
was f=12.471 GHz. Left panahows two steps at 2/4 of the voltage V ®,f of the first
standard Shapiro steps, and right panel shows a step at 1/3 of the first Shapiro step.
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We didnot succeed to do this inw&ell controlled manner. lparticular,our samples with a
clean electromagnetic environment never displdiiede resonances. We obsersethetimes
resonances that looked like these fractidr@imonicqgsee Fig. 20) but we coultbt draw any
conclusions because of several problems :

() In these experiments, tlw®upling ofthe microwaves wasot controlled : we simply used
an antenna to radiate tmeicrowaves inside ofhe cryostat. Irthis set-up themicrowaves
certainly did not couple exclusively tothe gate voltage. Moreover, transmission of the
microwaves was extremely dependent tbe frequency and we couldnly observethis
phenomenon in narrow frequency windows.

(i) These samples hadanylow-frequency resonanceghich could alvays beinterpreted as
an arbitrary fraction of the first ordinary Shapiro step.

(i) On the contrarymaybethese resonances of thavironment participated stabilising the
phenomenon which otherwise would have been too unstable to be observed.

3. Fixed resonances

Our first samples had asssentiallyjuncontrolled electromagnetic environment. Thesplayed
resonances in theV characteristic whose center voltage was independent gatbeevoltage,
but whoseamplitude could depend ayate voltage. Aexample of such resonances is shown
in Fig. 21 wherawo resonances staralt atV =40 pV andv =80 uV.Other resonances are
obviouslypresent in the voltage range 20460, but noneseems to have eonstant position
with gate voltage, they are caused by the resonant Cpapedunneling. We interpréhe two
fixed resonances as self-induced Shapiteps caused by resonance in the electromagnetic
environment ofthe transistor : Afinite voltage the transistoemits an ACcurrent at the
Josephson frequency tine leads. If thempedance othe environment presents a resonance at
this frequency, it prduces a current peak in te/ characteristic [12,13]. Several facts
support this hypothesis:

(i) The resonances shown in Fig. 21 appear at voltagégplewf 40 pV, as expcted for
Shapiro steps at a frequency and its multiples.

(i) The resonances werkighly enhanced by very little microwave irradiation at the
corresponding frequency.
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Fig. 21. Lowvoltage |-V characteristics of a sample &®Bveral values of the gate chargg Q

(each trace has been offset for clarity; about 2 periods pfaf@ covered). Resonances
clearly appear at fixed voltagdgarrows). Here the resonance at 80 UV corresponds to the
first harmonic of the other one. We interpret these resonances as self-induced Shapiro steps
at f=20 GHz and 2f. Data from sample 8.

(iii) In samples with carefully designedectromagnetic environments, these resonances did not
appeatr.

4. Zener effect

Samples 5 and 13 had a peculiar behavfourgate voltageslose toQ,=e mod 2 : It
seemed thathe relation between theequency andhe voltage for the AC Josephsefiect
was changing.

This was particularlyvisible on the displacement of fixedesonances of sample 5 of the
environment, as illustrated by Fig. 22a. It was alstble onthe AC Josephson effect, for
which the oddharmonics othe Shapiro steps disappeared clos@jee (see Fig. 23)This
doubling of the voltage is interpreted as tlkeubling of the period of theE(d) relation
corresponding to a Zener effect between the two lowest bands of the transistor (Fig. 24).
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Fig. 22.a) I-V characteristics of a sample, for different gate voltages. A span of aritie

than one period in the gate voltage is covered and traces are offset by 0.09 nA for clarity. The
doubling of the voltage of self-induced Shapiro steps aroyweQmod 2e is interpreted as
Zener effecbetween théwo lowestbands of the transistor (Data from sample b) At the

same scale, the hatched areas are domains of theplanewherethe Zener probability is
greater than 1/2, assuming perfect symmetry of the junctions.

Whenthe gate chargQ, becomes close tg these bandtend topinch atd =1t mod 2t The
pinching isperfectonly if E;; =E;, andQgy=e, in the othercases the gap between thends
only reduces to

_ 2
c=2(Ea2Be ) ey

A finite voltage V across the transistor corresponds tagigen velocity of the phase

5 = 21V/®, . Zener effecbccurswhenthe phase cannot “take the turn” at the anticrossing of
levels and changes band : tiie systemdoes notspend enough time ithe vicinity of the
anticrossing, it cannot follow adiabatically the lowest level. The characteristic evolution time of
the state of thesystem atd=1 is T1=#/¢ and thetime it spends irthe vicinity of the
anticrossing is of theorder of T’ =¢/E;3=&®,/2nE,;V, whereE;=(Ej+Ej)/2 is the
average Josephson coupling energyheftwo junctions One thus expects a crossoW@m
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Fig. 23. Shapiro steps taken with sample 5 under microwave irradiation atX.465 GHz.

Top panel : Shapiro steps taken negy=D. Steps 1 and 2 are clearly seen. Bottom panel :
near Q= e steps 2 and 4 are the only one visible. The odd Shapiro could not be observed
near this gate voltage, except at high microwgesver wherethe modulation became e-
periodic. The doubling of the voltage of the steps is interpreted as a signature of Zener
tunneling between the two lowest bands of the transistor (see text).

adiabatic behaviour when<< 1' to Zener tunnelingor T > 1'. An exact treatment [14jives
the probability of Zener tunneling at one anticrossing of the bands :

{7t
P, =exg —— | = ex
T 2E,eV

For a given voltage, the Zener transitions can occur oalisiSmall enough. This meanswil
only occur in thevicinity of Qy=e andonly if [Ejy-Ej,| is smallenough.This explains why the
effect wasnot visible in all the samples : it requires vergymmetrical junctions. When the
Zener probability is close tone, the transistdrehaves as the period of the esrgy band as a
function ofthe phase had doubled. In particular, the AC current the transisits in the
environment has a frequency dividedtip ; it requires a voltage twice &ggh to emit at the
previous frequency. This qualitativekplainsthe observations. Weilwnow try to make a
quantitative comparisomssuming perfectly symmetrical junctions, we can calcuites a
function ofthe gate chargand of the voltage for theample of Fig. 22&-or this purpose we
use thendependently measured parametershefsampleE;/kg =275 mK andEc/kg = 1.0 K.
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Fig. 24. Plot of thetwo lowestbands of the transistor near @ e. If the gap between the
bands remains too large or if the velocity of the phase is low, the motion of the phase is
“adiabatic”, following the ground energy band (a). On the opposite, if the gap is small
enough, and the voltage high enough, the velocity of the phase can provoke Zener transitions
(b), doubling the period of the &(relation.

The result of the calculation is shown in Fig. 22b, where the shaded areas correspond to ranges
of gate chargeand voltage forwhich P,>1/2. These areas correspond quitell to the
domains where the doubling of voltage is visible in Fig. 22a, with no fitting parameters.

We must pointout though, that the observation of Shapiro steps necessitates sriotn

uniform motion ofthe phasecgontrarily to what wehavesupposed here. Thus, theeceding

analysis needs to be refined somehow to take this effect into account.
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VIl. CONCLUSION

When westartedthis work thebehaviour othe superconducting single electron transistor was
not clearly understood incomparison with its normal-state version. The cause of these
difficulties are nowidentified :the initial description of the transistor considerady the role

of thecharging energ¥. and of the Josephson enefgywhereaswo otherquantitiesplay a
least as large a role, (i) the distribution egpfasiparticles irthe superconducting electrodes
described by an effectiveemperatureT * and the related odd-even free-enedifference
D(T", H) and (ii) the impedanceZ(w) seen by the transistor. By conductingseries of
experiment we could progressively disentangle the effects associated with these quantities.
Undoubtedly, the mostecisivestep inthis direction waghe fabrication ofthe normal-metal
quasiparticle filters in our samples. This innovation allowed the observation of the long-sought-
after “perfect 2-periodicity” of the transistor : the shape of the supercurrent modulaitbn

the gate voltage wagualitatively in agreement witthe theoretical predictions. litself the
observation of this modulationonstituted thefirst observation of macroscopic quantum
coherence.

The role of these quasiparticle filters is to achieve an effective thermalization of longtived
of-equilibrium quasiparticles ithe superconductors that otherwise prevent the observation of
macroscopic quantum coherengais effect ofdestruction of the coherencenigknamed the
“poisoning” of the supercurrent byuasiparticles; it was probablyhe nmain cause ofe-
periodicity in early experiments dhe transistor. Bypplying a magnetitield and/or raising

the temperature wiave been able toedrease the odd-even free-energy inistend of the
transistor and we then observed in dettiks effects ofthe quasiparticle poisoning of the
supercurrent. These observations were found to lgpoad agreement with theorywhich
proves that quasiparticleare indeed at thermal equilibrium when filteewe used. The
poisoning effect may be used as principle for an ultra-sensitive infra-red detector.

By microfabricating a well-characterized electromagnetic environrfiegnthe transistor, we
could further clarify the observations in the low-voltageart of the current-voltage
characteristics of theamples : we discriminatdtie resonances due to the electromagnetic
environment of the transistor and those due to “resonant Cpajpeunneling”. With a purely
RC electromagnetic environmerthe “parasitic’ resonances due tihe environment are
eliminated whereas those due to “resonadboper pair tunneling” remain. Thesttter
resonances depend on the gate voltage of the trarsmstdorm a hierarchy. We observed for
the first time the first three orders ofthis hierarchy. These resonances allow a precise
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determination of thecharging energy othe device.Previously the determination othis
essential parameter had always been approximate.

In two sampleswve could observe an other typé macroscom quantum phenomenon : Zener
tunneling betweethe two lowest band of the transistor. Unfortunately, thedfect does not
yield itself to an easy investigation in this system and our results are still preliminary.

Last bu not least our experiments alsgieldedresults whose scope extends farther fjoah
the superconductinginge electron transistor : wéave shownhow the electromagnetic
environment plays a capltaole in smal Josephson junction systems. Firtadl, we have
calculated theenormalization othe Josephsocoupling energyn presence of a perturbative
environment For Josephsojunctions fabricatedy usual techniques, this renormalizatien
dominatedby charging effectsf any. The second important result coneghe magnitude of
the experimenth supercurrenin these systems. Weave presented a neanalysisof the
behaviour of these systems basedhe notion of current-voltage characteristic gtiaction

in its environment. We distinguish betwesvo types of hysteretic behaviourrfthe system :
() a static hysteresist very low temperature and(ii) dependingon the environment, a
dynamic hysteresiat highe temperaturesMany experiment concerningpsephson junctions
(including our experimentsn the transistor) are done the currenbias mode : thedeviceis
not shuntedat dc. In this setup, wehave foundthat the system has aynamic hysteretic
behavior andve explainechow the observesgwitching currentis relatedto thecritical current
of thedevice ando the damping providedy the electromagnetienvironment. We predich
particular thathe switching current of underdampesi/stems is inverselgroportionalto the
quality factor of the circuitat the plasma frequency dahe systen ard we conjecturethat it
shoutl depend very weaklpn temperature. Our data two extreme situations (over- and
under-damped system) agree with this description.

We havenow reached a pdinvhere we can explan the experimental observatiora low
voltage on the transistor in a quite wide range of parameters for the system.

The knowledge gaineith these experiments shoudghply to a wide variety of circustwhere
Coulomb and/or Josephson effects are present. In particular, it is now cleaetbiad ot pay
great attentiorio thedesign ofthe electromagnetienvironment of such circuits. The®ntrol
of the quasiparticle populatiors also an imperious godl quantum superpositia of charge
states is sought.

During this work however, w hawe not answerd all the initial questions : wedo not
understand what controls tlgeality of the superconductingrderin theisland. At the point
we are havirg defectsin thedensity ofstates seemdo be amatter of chance only oneout of
thirteen samplesvas e-periodic at low temperaturejndicating the presence ofow-lying
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excited states theisland. Nevertheless, one considersnaking multiple-island circuits, this
apparent low probability of defect can soon become a serious problem.

A possible extension dhe experimend describedn this work is the precise investigation of
the phenomenon of macroscopic quantum tunnellibgvould be interestingo observe the
influenceof the strength otlissipation on coherence. A superconducsimgje electron box
experiment should be well suited for this purpose. Another extension of this woukvedahe
realisation of a superconducting devider metrological application such as the
superconducting Cooper pair pump.
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APPENDIX A

We reprint here a paperiginally published in Physical Revieletters,volume 72, number
15, pp. 2458-2461, 1994.

Observation of Parity-Induced Suppression of Josephson
Tunneling in the Superconducting Single Electron Transistor

P. Joyez, P. Lafarge, A. Filipe, D. Esteve and M.H. Devoret
Service de Physique de I'Etat Condensé, CEA-Saclay
F-91191 Gif-sur-Yvette, France

Abstract: We have measureéde supercurrenbranch of a superconducting single electron
transistor as a function of gate charge, temperature and magnetic field. At low temperature and
magnetic field,the switching current goedrom a minimum to a maximunwhen the gate
charge is varied from O & as expected for asland inthe ground state/ith an even electron
number. Wherthe oddelectron numbeground statdbecomes populated by an increase of
temperature or field, the Josephstumneling is stronglysuppressed, in agreemewith
theoretical predictions.

PACS 73.40.Gk, 73.40.Rw, 74.50.+r
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The consequences of thduality of phase and number-of-particle variables are
particularly well illustrated by the competition between Josephson tunneling and single electron
charging phenomena in ultrasmall superconducting junction systems [1,2]. @wesioiplest
devices consists dfvo Josephson junctions in series [3,4,5t6F number ofCooperpairs on
the middle “island”tends to bdixed by the charging energ¥. =e2/2Cs of theisland while
the associated phase tends tofiged by the Josephsowoupling energyE; of the two
junctions which wesupposadenticalfor simplicity. Here Cs refers to the totatapacitance of
theisland. This model system has been investigated theoretically in detail [1,F&,®rge
area junctionsg;>>E.) the charging effectsare overcome by Josephstumneling and the
maximumsupercurrent that cafow through thetwo junction system is judy = 2eE;/a, the
maximum supercurrent of each junction. However, fonall area junctions §; <<Eg), the
maximumsupercurrent should strongly depend on the polarisation cligygpplied to the
island by means of gate electrodehencethe name of “superconducting singidectron
transistor” given to such device. Wh@g =e mod 2, i.e. whenrstateddiffering byone Cooper
pair in the island are degenerate, thmaximum current should attain,/2 while for
Qy =0 mod 2 it shouldfall to avalue oforderIyE;/Ec [1] (here and in thdollowing, we
assume forconvenience thathe neutralisland has an even number @kfctrons).Recently
Matveev et al. [9] have shown theoretically that this simple electrostatic modulation of
Josephson tunnelingilihbe observedonly if the parity of thenumbern of excess electrons on
theisland can bé&eptevenfor all Q4. This requires thahe odd-even freenergy differenced
[5,10] of theisland isgreater tharE.. WhenD < E¢, theisland isunstable, in theicinity of
Qg =€, with respect to the entrance of a quasipartidleis quasiparticle prevents the
formation of the coherent superposition of chastetes alQ, =e, and therefore “poisons”
Josephson tunneling. A compl&g-dependence of the supercurrent should then be observed.
In this Letter we present aexperiment orthe superconducting single electron transistor in
which, for the first time, we observéhe characteristic featur@ssulting from poisoning of
Josephson tunneling.

The sample was preparedusing standard e-beam lithography and shadmask
evaporation techniques [11]. The main difference with previous experiments is the use of the 3-
angle evaporation technique of Havilatdal. [12] in order tofabricate in a single pump-down
the alumina-covered Al island eleotle, thetwo Al drain andsource electrodes and the Cu
(3% wt. Al) buffer electrodes (see device layouttire inset of Fig.1). Webelieve thatthese
last electrodes allovthe quasiparticle population ithe transistor to reach the thermal
equilibrium valueand prevent uncontrolled poisoning of Josephtameling by out-of-
equilibrium quasiparticles frorthe rest of the circuit. The contact between thea@d Al
electrodes isufficiently good tohave a negligible influence dhe behavior ofthe transistor at
low voltages. The electricalitng between thesample andhe measuringapparatus at room
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temperature was madbrough aseries of cryogenic filters as in previous experiments [10].
From the measurement of tbevice withthe Al electrodes brought in the normal state by a
magnetic field, we obtainetthe relation between thgate charg®, andgate voltageJ, and

we could estimat&/ky = 1.0 K. The normal resistance of ttveo junctions in series was
Ry =49.2 K2. The valueA =180 peV of the gap of the superconductiduminum was
extractedrom the largescalel-V characteristic of theample ireero magatic field. Using the
Ambegaokar-Baratoff relation [13] we deduced frd®y and A the Josephsorenergy
E;/ks =275 mK and critical curremg = 2eE;/# = 11.4 nA of each junction, supposithgy are
identical. In Fig. 1 we showhe sub-gap current-voltage\) characteristic of theaupction at

T =20 mK and folQy=e. A supercurrent branch @early seen with nearlyero voltageike

in the recenexperiment by Eiles and Martinis [d}s resdual slope was measured to lbss
than 100Q, ourresistance resolutiogiventhe wring of the sample tahe external apparatus.
This branch defines a switchiegrrentls at whichthe device switches to a voltaget by the
resistance of the curremias source,which was 12.1 M2 for the data we present in the
remainder of this paper.

In Fig. 2a we show the variations lgfas a function othe gate charg@q for several
values ofthe mageticfield and atT =65 mK. Atlower temperatures the dada not change
except forQq /e in thevicinity of +0.75 modulo 2 where we observed what we interpret as a
low voltage self-induced Shapistep [14] andwvhich slightly biasedhe measurement of the
switching current. At low magnetfelds, the switchingcurrentvaried monotonically when the
gate charge wagried from O tce. As thefield increased, the peak &@; =e became a dip, a
behavior corresponding tbie poisoning of Josephson tunneling by a single quasipariials.
dip widened as the field was increased further, in agreement with Ref. 9.

In order to compar®ur experimental results téheory, we nowmake aminimal
extension of Ref. 9 ttake into accourfinite temperature andnvironmental impedance. The
states of the transistor acenveniently characterized two quantum numberghe number
n = (N-N) of excess electrons on tl#andand by the chargiow indexk = (N+N')/2, where
N and N' denote thenumber of electron$aving crossed thgunctions (see Fig3a). The
Josephson Hamiltonian couples states with differdnit with thesame parity oh and we can
thus separate theanifold of states into odar and everm manifolds. Inthe following, the
superscripp will designate a given parity, evenaad. Inside a manifold oparity p, we now
perform a change of representationwinich the new states atadexed byn andd, the total
phase difference dhe transistorwhich isthe variable canonicallgonjugate tdk. If we now
restrict the span af to the three lowest electrostatic energy states;ameexactly diagonalize
the sum of the Josephson and electrosHaimiltonians. In contrast witthe treatment oRef.

9, this procedure takes into account the degeneracy ofirsteexcited chargestates that
occurs ay =0( =€) whenp is even(odd). Weobtain a groundtate energy banEl(? fop(é),
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where thefunction ff is such that Maxf}-Min{ S} =2, for arbitrary values of the
parameters;, Ec andQ, (see Fig. 3b). Ithis calculation we assumegate voltagenvariant
Josephson coupling; for each of theynction (this isvalid sincethe errgy gap A of the
superconductor is such tHag << 2A). The ZT-periodicEé’ fop(é) function is equivalerfor the
transistor to the energy-phase relatiBgcoqd) for a single Josephsgqunction; in particular it
goesfrom aminimum to a maximurmvhend goesfrom O toTt The transistor can thus been
as an effective junction with a gate charge-dependent effective Josephson coupling&nergy

The relation between thieV characteristic observeekperimentally andhe energy-
phase relation depends on both the temperafuasd the admittanc®(w) which, in the
lumped element model dhe electromagnetienvironment otthe junction, is irparallel with
thebiascurrent sourcé. This admittance ¥ govern thedynamics o which isanalogous to
that of a particle in the tilted potentigf f(d) —(®,/2mdl, where®, =h/2e. In the case of
interest here, where the respotisee ofthe admittance ishort compared to theharacteristic
time of the evolution 0d, we can write the differential equation obeyedlas:

. . 21EP df P
&[Y(O)é— j\(’(O)as—1 v'(0)5+..}+ o dig” _ |
2n 2 P, dd

This equation generalizébe equation of motion of theesistively andcapacitively
shunted junction (RCSdhodel [15] to an effective Josephson element shunted by a general
admittance.

‘ For I <l¢o = (21§ /Po)Max{diy’/ b} , this equation admits zero-voltage solution
(6 =0) corresponding to the particle sitting immanimum ofthe tilted potentialThis solution
is unstable against thermal fluctuations and therdf@earticle W diffuse from well towell
in the potentialgiving rise to adeparture of the supercurrent branch from the zero-voltage
axis. However, forl, < <I 4 this diffusive motion isitself unstable againdhe runaway
down the potential [16], whelg, is the current fowhich, onthe average, the energgin due
to the tilt of the potential becomgseater than energy loss dueftiation. In the weaKriction
limit appropriate to our experiment, the runaway curtgms given by:

E(g’ v2 E(')D 32
Im =®g GY(O)[W) +BY (O)[W) +...1,

wherea, 3, ... aredimensionless coefficients whi@re weakly dependent onfop. The first
term in theexpansioncorresponds to thevell known 4,/TRCw, result of the RCSanodel
[17]. Here,since we have an unshunted junction, teisnvanishes anthe Qg -dependence of
I, is dominated by the second term.viaw of the importance ofhermal fluctuations in our
experiment(E(?s E; /2), we will compare theQg-dependence of the measursditching
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current with the theoretica,-dependence of, rather than of thecritical current I,
considered by Matveest al. [9].

We nowmake a crucial assumption. We assume tihatnverse ofthe transitiorrate
between theoddn and evem states ismuch smallerthan the characteristitme of the
runawayprocess.This assumption of rapiddd-even transition igistified sincethe normal
electrodeswhich provide thequasiparticle involved irthe transition, arevery close to the
island [18]. Inthe calculation ofthe switching current, wehus replaceE(? by theBoltzmann
averageEd" = EQ%p 4+ EEY®" Ryen Wherep,qq andpe,enare theprobabilities of being in an
odd- or evem state, respectively, and which verify:

podd/even[| Z eXp{_[EC(Qg/e_ ')2 +( anCQ) [() T, H:|/ Ié ‘%
n odd even
HereD(T,H) s calculated as in Ref. 19.

Using this analysis wean calculate thdunction 1,(Qg,H,T) in which enters the
unknown scale paramet®t(0)/Y'(0)3/2 andtwo adjustablgoarameters: i) the paramefgrof
the reduction ofl; due to penetration of magtic field in the junctions [14] defined by
lo(H) =1p(1-pH?) in the lowfield limit of relevance here ang the critical field H, suchthat
D(O.H >H) =0, whichcorresponds to thield at whichl,(Q,) becomes-periodic atT =0.
In Fig. 2b, we plotly(QgH,T=65mK)/I 5 where I =1.,(Qs=€H=0,T =65mK
usingthe besffit valuesp =18.5 T2 andH, = 0.20 Twhich are consistent with thginction
geometry and with a previous measuremem ¢19], respectively. These valuage also used
in the othercomparisons described below. A close agreement witlexperimental results is
obtained. Thevalidity of our model can be checked further tre temperature dependence of
thel,, versusQy data shown in Fig. 4 taken for tirtermediatefield H = 0.11 T. Eperiments
at highertemperatures agree ledssely withtheory, therelative amplitude othe peakdeing
greater in experiment than in theory. WWadieve this iglue to the neglect of the departurd of
from |, induced by thermal fluctuations ithe phasediffusion state. However, th&on-
monotonousbehavior ofthe Qy =e switching current as dunction of temperature isell
captured by oumodel, as shown in Fig. 5 where we also plot@ge= 0 switchingcurrent for
comparison. Note that the recovery above 250 m&mériodicity, due to theanishing of the
odd-even free energy difference, was also founatirer experiments [5,10]Our model
predicts the detailed featurestbfs recoverythe oddmanifold contributesdominantly to the
current atQy =0 and theeven manifolccontributesdominantly tothe current aQ, =e but, at
intermediate temperatures, thwitchingcurrent ismaximum atQy = &2 as in thehigh field
limit of Ref. 9.

In conclusion, we have shown that in a Josephson system wiemumber of
guasiparticles was controlled, experimental measurements of charging effectsezatained
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by a minimal model, in contrast with preceding experiments. As Figexemplifies, the
competition between theharging energythe Josephsoanergy andhe odd-even freenergy
difference poduces acomplex behavior othe supercurrent as fanction of gate charge,
magnetic field and temperatureThis intrinsic complexity,together with the difficulties
associated with the control of out-of-equilibrium quasiparticles, proledpliains whythe data

in the superconducting state has always been found harder to interpret than in the normal state.
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Figures

— 1pm

100 ' 0 ' 100
V()

Fig. 1 Current-voltage characteristic of superconducting single electron transistor laRose
out isshown in uppeleft inset. Thdetters N and S refer to normal (Cu) and superconducting
(Al) electrodes. The tunnel barrieese indicated by grey rectangles. Tlyate voltageU
induces onthe middle island agate chargeQ, whose value i® for the data shown. The
temperature was 2@K. The maximumcurrentdefinesthe switching currentl. Lower right
inset is an electron micrographtbe device. The currefibws through themiddle strip only.

The top electrode is the gate.
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Fig. 2 a) Switching current as a function of gate charge, for several valinesroagetic field
H, atT =65mK.Top to bottomH =0, 0.07, 0.11, 0.14, 0.16, 0.17 T. Tdip atodd integer
values ofQ/e corresponds to thpoisoning of Josephson tunneling thye entrance of one
quasiparticle irtheisland. b) Theoretical runawayurrent as dunction ofgate charge, for the
same field values as in a).
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Fig. 3a) Energyevels ofthe transistor af, = 0.02. The numben labellingthe levelsrefer to
the number of electrons ithe middle island.The numbek is the charge transfemdex. The
lines joiningthe levelsrepresent the Josephson couplinglyQevelswith the same parity oh

are coupled. The eveanmanifold (levels in solid linejnd theoddn manifold (levels irdashed
line) areweakly coupled by theotunneling of one electranom a normal lead téhe middle

island (doublearrow). b) Lowest energlgands corresponding tbe even andbdd manifolds.
The variabl& is canonically conjugate to
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Fig. 4 a) Switchingurrent as dunction ofgate charge, d =0.11 T and foseveral values

of the temperatur&, showingthe complex transition from &periodicity toe-periodicity with

the increase ofl. Opendots: T =65 mK;solid dots: T = 203mK; triangles: T =356 mK. b)
Theoretical runaway current as a function of gate charge, for thetsamperaturezalues as in

a) (the full and dotted line correspond to the lowest and highest temperatures, respectively).
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Fig. 5 Toppanels: experimental switchimgirrent as dunction of temperature fa@y =0 and

Qg =e. Top to bottom,same field values as in Fig. Bottom panels: theoretical runaway
current for the same conditions as in top panels. The theory curves reproduce the strongly non-
monotonic temperature dependence found in the experim@pt=a for low fields.
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APPENDIX B

Characteristics of the samples

sample date |eor2e| R, |Ejkg| lg [Igmax| Igmax|EJkg| on-chip fixed
# period| (kQ) | (mK) | (nA) | (nA) | Icmax| (K) | capacitors?resonancegs
1 |02/04/93 2+e | 120 | 125| 5.2| 0.002 0.08% 1* no
2 |20/04/93 2 |59.0] 254| 10. 0.3] 5.6%0.3* no
3 |24/05/93 2 |41.0| 366| 153 1.1 14% 0.3* no
4 |09/06/93 2 |53.0] 283| 11.9 1.3] 22% 1* no
5 |22/07/93 2 |49.2] 305| 12.§ 1.3] 20% 1.0 no yes
6 |08/11/93 2 |44.7| 336| 14.1] 0.9 13% 1.1 no yes
7 |01/12/93 2 | 24.8| 605| 25.3 3.0 24% 0.64 yes no
8 |04/01/94 2 | 17.0| 882| 37.0 6.0 32% 0.46 yes yes
9 |12/01/94 2 |56.8| 264| 11.1 0.6 11%=.65 yes nd
10 |07/02/94 e | 30.0] 500| 20.9 0.1 1.1% 0.41 yes no
11 |09/02/94 2 |21.8| 688| 28.8 9.0 62% 0.69 yes yes
12 |13/04/94 2 | =25 yes
13 |19/04/94 2 | 30.0] 500| 20.9 7.3] 70% 0.66 yes no

Table 1. Main characteristics tife samples we have measuréd. thesesamples had normal-
metal leads to prevent quasiparticle poisoningcdlumn four, we give the period of the
modulation of the supercurrent with respect to ¢fage chargeColumn 5 :total tunnel
resistance of theample atow temperatureColumn 6 and 7, calculated Josephson Coupling
energyE; of each junction (assumed identical) and critaairentl, of each junction obtained
using Ambegaokar-Baratokquation.Column 8 :ratio of maximum measured switching
current tomaximalcritical current of the transistdgmax=1,/2. Column 9 : Charging energy

of the sample determined using the gate voltage dependent resonances (see Sec. V.C.1), excep
(*) for samplesl-4 (roughestimates based on temperature dependence of charging effects or
normal-statel-V characteristics.). Column 10 indicatesthe sampleincorporated on-chip
microfabricated capacitors (see Cha&fp). Column 1llreportsobservation of gate voltage
independent resonances (these were not looked after in samples 1-4).

Miscellaneous information : Samples 1 andéte voltage biase&ample 1 wasot perfectly
2e-periodic because its normal-metal filtevgere too short (they were made longer in
subsequent experiments). A cryogenic problem prevented coolisgngfle 2 below 50 mK.
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Samples 3 and 12 were destroyed accidentally by an electrostatic Saogie 4 couldiot be
measured in the normsiate (superconducting cdilsabled). Sample 5 wased for the paper
given in appendix A. Sample 7 and 8 had samples orthe same chip andhowedfinite-
voltage fixed resonances in spite of a microfabricated environmerssilplg because of the
poor symmetry ofthe mask. Temperatumeeasurements made on samplevére unreliable
because of a thermalisation problem. Measuremeriisitatvoltage onsample 9 had poor
signal to noiseratio due to thesmallness ofthe currentwhich prevented a precise
determination of some parameters (1). Samples 9 to 13 had a coaxial micratdee
connectedlirectly on chipfor AC Josephson effect measureméntt thecoaxial cable used
with sample 9was too resistive and heated upe sample when microwavesere applied.
Sample 10 was completegyperiodic. Samples 8 and 11 showed a decreasigecwitching
current with the temperature below 100 mK (§=. V.B.1). Insamplel3, normal-metal
leads of the transistor were made of a spin glass alloy Cu-Mn (2% wt. Mn).



