

Etude de la dynamique interne des molecules pyramidales non planes dans les etats vibrationnels tres excites

N. Sanzharov

► To cite this version:

N. Sanzharov. Etude de la dynamique interne des molecules pyramidales non planes dans les etats vibrationnels tres excites. Physique Atomique [physics.atom-ph]. Université de Bourgogne; Université d'Etat de Tomsk, 2007. Français. NNT: . tel-00534472

HAL Id: tel-00534472 https://theses.hal.science/tel-00534472

Submitted on 9 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Université de Bourgogne Université d'Etat de Tomsk Thèse

$\begin{array}{c} {}_{\rm présentée \ par :} \\ {\rm SANZHAROV} \ NIKOLAY \end{array}$

$\begin{array}{c} {\rm pour \ obtenir \ le \ titre \ de} \\ {\rm DOCTEUR \ EN \ } PHYSIQUE \end{array}$

ETUDE DE LA DYNAMIQUE INTERNE DES MOLECULES PYRAMIDALES NON PLANES DANS LES ETATS VIBRATIONNELS TRES EXCITES Soutenue le 14 avril 2007

Commision d'examen : Georgii MAYER

Stanislav SHANDAROV Yurii BYCHKOV Valerii LOSEV Aleksandr BYKOV Elena BEKHTEREVA Oleg ULENIKOV Claude LEROY

Rapporteurs : Aleksandr BYKOV Vladimir PICHUGIN Examinateur, Président du Jury Professeur, Tomsk, TUCSR Professeur, Tomsk, HCEI Professeur, Tomsk, TSU Professeur, Tomsk, IAO Maître de Conférences, Tomsk, TSU Professeur, Tomsk, TSU Maître de Conférences à l'Université de Bourgogne

Professeur, Tomsk, TSU, Recteur de l'Université

Examinateur Examinateur Rapporteur Examinateur Co-Dir. Co-Dir.

Professeur, Tomsk, IAO Professeur, Tomsk, TPU

Co-directeurs de thèse : Oleg ULENIKOV Claude LEROY Michel LOËTE

Professeur, Tomsk, TSU Maître de Conférences à l'Université de Bourgogne Professeur à l'Université de Bourgogne

Laboratoire de Physique de l'Université de Bourgogne (L.P.U.B.) Unité Mixte de Recherche n°5027 associée au C.N.R.S. B.P. 47870 - 21078 Dijon - France

première partie : version française, deuxième partie : version russe

Table des matières

1	Intr	ntroduction											
	1.1	Contex	xte et travail	7									
		1.1.1	Contexte	7									
		1.1.2	Travail	8									
2	Cha	lînes de	e groupes	11									
	2.1	Introd	uction	11									
	2.2	Choix	d'une chaîne de groupe	12									
	2.3	Group	e dynamique	13									
	2.4	Group	e de dégénérescence	14									
	2.5	Le gro	upe $U(n)$ comme groupe d'invariance de l'oscillateur isotrope de dimension n	14									
		2.5.1	Oscillateur isotrope de dimension n	14									
	2.6	Dégéne	érescence d'un oscillateur de dimension n dans un état p	16									
		2.6.1	Première méthode : analyse de la fonction d'onde	16									
		2.6.2	Deuxième méthode : dénombrement	17									
		2.6.3	Cas particulier : $n = 3$	19									
•													
3	Ger	énéralités sur les groupes unitaires											
	ა.1 ე.ე	Diff.		21									
	3.2	Dennit	De la faction de la construction	21									
	<u></u>	3.2.1 D/f:4	Parametrisation exponentielle ou representation exponentielle	22									
	3.3	Dennit	Comme de Lie comment	23 02									
		3.3.1 2.2.0		23 09									
		3.3.2	Le rang d'un groupe de Lie	23									
		3.3.3		24									
		3.3.4	Sous-groupe	24									
		3.3.5	Sous-groupe invariant (ou ideal)	24									
		3.3.6	Groupe simple	25									
	0.4	3.3.7	Groupe semi-simple	25									
	3.4	Les op	erateurs invariants ou operateurs de Casimir	25									
		3.4.1		25									
		3.4.2	Theoreme de Racah \dots	25									
		3.4.3	Rang du groupe unitaire $U(n)$	26									
		3.4.4	La forme de Killing ou tenseur metrique	26									
		3.4.5	Critère de Cartan	27									
	0.5	3.4.6	Semi-simplicité du groupe $U(n)$	28									
	3.5	Modèl	e algebrique du Hamiltonien	31									
		3.5.1	Introduction	31									
		3.5.2	Le concept de symétrie dynamique	31									

	3.6	Groupe unitaire $SU(n)$ comme sous-groupe spécial unitaire du groupe unitaire									
		U(n)	. 32								
		3.6.1 Définition du passage	. 32								
		3.6.2 Conséquences	. 32								
		3.6.3 Passage $U(n) \to SU(n)$. 33								
	3.7	Les représentations d'un groupe unitaire $U(n)$. 34								
		3.7.1 La méthode de Gelfand-Zetlin (G-Z)	. 34								
		3.7.2 Les différentes notations d'un état de G-Z	. 35								
		3.7.3 Poids d'un état ou d'un diagramme de G-Z	. 36								
		3.7.4 La série de Clebsch-Gordan des R.I. de $U(n)$. 37								
		3.7.5 Les éléments matriciels des générateurs E_{ij}	. 37								
		3.7.6 Les représentations totalement symétriques	. 39								
		3.7.7 Interprétation physique des composantes du poids	. 40								
		3.7.8 Interêt physique des représentations totalement symétriques	. 41								
4	La	théorie des chaînes de groupes : application aux molécules $XY_3(C_{3v})$	43								
	4.1	Généralités sur les molécules $XY_3(C_{3v})$. 43								
	4.2	Choix de la chaîne de groupes pour les molécules $XY_3(C_{3v})$. 45								
	4.3	Etude du groupe $K(3)$. 46								
		4.3.1 Définition :	. 46								
		4.3.2 Etude des R.I. du groupe $K(3)$. 47								
		4.3.3 Réduction de la représentation $\left[n, \dot{0}^2\right]$ de $U(3)$ dans $K(3)$. 54								
		4.3.4 Etude algébrique de la chaine $K(3) \supset S(3) \supset C_{3v}$. 55								
		4.3.5 Les opérateurs de Casimir du groupe $K(3)$. 60								
	4.4	Symétrisation des kets et des générateurs	. 64								
		4.4.1 Introduction et généralités	. 64								
		4.4.2 Processus de symétrisation des kets et des générateurs dans $S(p)$. 66								
		4.4.3 Détermination des kets symétrisés dans C_{3v} .	. 66								
		4.4.4 Symétrisation des générateurs dans C_{3v}	. 67								
	4.5	Hamiltonien d'élongation des molécules XY_3 non planaires	. 69								
		4.5.1 Hamiltonien d'ordre un	. 70								
		4.5.2 Interprétation physique de l'opérateur $\mathcal{Y}^{3(A_1)}$. 71								
	4.6	Calcul des états vibrationnels d'élongation pour les molécules $XY_3(C_{3n})$. 72								
		4.6.1 Rappel et résultats sur la molécule de stibine SbH_2	. 72								
		4.6.2 Interprétation des résultats	. 75								
		4.6.3 Bappel et résultats sur la molécule d'arsine A_5H_2	. 10 76								
		4.6.4 Résultats pour la molécule de phosphine $PH_3 \ldots \ldots \ldots \ldots$. 79								
5	Нат	miltonien vibrationnel des molécules $XY_2(C_{2n})$ (modèle local-local)	83								
0	5.1	Vibrations de pliage des molécules $XY_2(C_{2n})$	83								
	5.2	Le couplage élongation-pliage dans l'approche local-local	. 88								
6	Le	couplage élongation-pliage dans l'approche local-normal	191								
U	пс (couplage ciongation-phage dans i approvine iocal-normal	141								
7	Les	Les programmes informatiques									
	7.1	Le calcul des éléments matriciels des opérateurs H_1^e et H_1^p	. 159								
	7.2	Le couplage élongation-pliage dans le modèle local-local	. 162								
	7.3	L'algorithme des calculs	. 162								
	7.4	La méthode de Levenberg-Marquardt	. 163								

	7.5 Le couplage élongation-pliage dans le modèle local-normal								
8									
	8.1	usion	171						
	8.2	Perspe	ectives	174					
		8.2.1	L'effet tunnel	174					
		8.2.2	La rotation algébrique	174					
		8.2.3	Détermination de familles de potentiel à partir des Hamiltoniens algébriques	175					
Bi	bliog	graphie		180					

Chapitre 1 Introduction

1.1 Contexte et travail

1.1.1 Contexte

Depuis plusieurs années, l'interêt planétologique croissant de certaines molécules telles le méthane CH_4 , l'ammoniac NH_3 , ou plus récemment l'arsine AsH_3 [1] (détectées dans l'atmosphère des planètes géantes) mais aussi la physique des semi-conducteurs (par exemple pour la stibine SbH_3), ont nécessité l'introduction et le développement de nombreux modèles d'études vibrationnelles en spectroscopie moléculaire afin de reproduire le mieux possible les données expérimentales (énergie, intensité, etc.). De nombreux formalismes ont été proposés. On trouve des modèles basés sur des calculs *ab initio* [2, 3], mais surtout sur des formalismes tensoriels [4]. Il existe aussi, l'approche "standard" proposée par Wilson *et al.* [5], qui repose sur un développement du Hamiltonien vibrationnel en coordonnées internes.

Il y a environ une vingtaine d'années, sous l'impulsion de Iachello *et al.* [6], divers formalismes algébriques (issus des travaux des nucléaristes) ont été proposés. Par exemple, le modèle des vibrons [7, 8], dans lequel on associe à chaque coordonnée interne le groupe unitaire U(2); le groupe dynamique étant construit comme le produit direct des différents groupes U(2) relatifs aux différentes coordonnées internes. Ces formalismes algébriques, dont les bases mathématiques sont issues de la théorie des groupes et des algèbres [9, 10, 11], présentent malgré leur aspect abstrait, les trois principaux interêts suivants :

- ils sont facilement applicables à différents systèmes moléculaires (molécules diatomiques, triatomiques [7], etc.),
- ils permettent de ne pas présupposer de forme particulière au potentiel intramoléculaire,
- enfin, ils permettent d'écrire un Hamiltonien moléculaire avec peu de paramètres.

Le formalisme que nous utiliserons dans la suite, appelé formalisme unitaire U(p+1), a été introduit à l'origine par Michelot et Moret-Bailly [12]. Dans le cadre de l'approximation de Born-Oppenheimer, ces auteurs proposent d'étudier séparément les mouvements de vibration et de rotation moléculaire. Ce formalisme propose de choisir le groupe unitaire U(p+1) comme groupe dynamique caractéristique d'un système à p degrés de liberté. Ainsi Leroy [13] a étudié les modes d'élongation des molécules tétraédriques XY_4 dans des états vibrationnels très excités ; puis dans un second temps, Boujut [14] s'est intéressé aux modes de pliage de ces mêmes molécules.

Dans notre travail, nous nous sommes intéressé aux modes vibrationnels très excités des molécules tétra-atomiques XY_3 . Nous présenterons les différentes étapes de la construction des

Hamiltoniens vibrationnels, rendant compte des propriétés d'élongation et de pliage de ces molécules.

1.1.2 Travail

Dans le deuxième chapitre, concernant les généralités, nous montrerons pourquoi nous utiliserons le groupe de Lie unitaire U(n) dans la description d'un ensemble de n oscillateurs identiques. En particulier, nous rappelerons que le groupe de symétrie d'un ensemble de n oscillateurs identiques est U(n). De plus, le nombre d'états physiques d'un oscillateur p fois dégénéré dans un état énergétique à n quanta, est exactement la dimension d'une représentation totalement symétrique $[n, \dot{0}^{p-1}]$ de U(p)

$$C_{n+p-1}^{n} = \dim \left[n, \dot{0}^{p-1} \right].$$
 (1.1.1)

L'utilisation des groupes continus requiert certaines notions propres aux groupes de Lie. C'est pourquoi dans le troisième chapitre, nous effectuerons un rappel des principales propriétés et caractéristiques des groupes de Lie; et nous porterons une attention toute particulière aux cas des groupes unitaires. Nous présenterons la notion d'état de Gelfand-Zetlin (G-Z) [15] et de poids associé, ainsi que le lien existant avec les états locaux moléculaires que nous utiliserons par la suite. De plus, nous présenterons la notion de représentation totalement symétrique d'un groupe unitaire, ainsi que sa dimension.

Le cadre mathématique dans lequel se situe ce travail étant défini, nous particulariserons (chapitre 4) notre formalisme aux cas des molécules XY_3 non planaires. Dans le cadre du formalisme U(p+1), nous serons amenés à exposer la méthode de construction d'un Hamiltonien vibrationnel relatif à un ensemble de trois oscillateurs identiques reposant sur la chaîne de groupes :

$$U(4) \supset U(3) \supset K(3) \supset S(3) \simeq C_{3v}.$$
(1.1.2)

Une application aux molécules de stibine, d'arsine et de phosphine sera alors entreprise, en vue de valider notre modèle. Dans notre démarche, nous avons volontairement traité des molécules ne présentant que très peu d'effet tunnel. La barrière de potentiel, des molécules de stibine et d'arsine, est si importante que nous pouvons omettre cet effet.

Dans le sixième chapitre, nous avons étudié, pour les molécules XY_3 non planaires, le couplage des modes vibrationnels d'élongation avec ceux de pliage (modèle local-local). Nous présenterons la construction d'un opérateur algébrique de couplage de ces différents degrés de liberté, ainsi que la confrontation de ce modèle avec des données expérimentales. L'étude que nous conduirons reposera sur la chaîne de groupes :

$$(U_e(4) \supset U_e(3) \supset K_e(3) \supset S_e(3) \simeq C_{3v}) \otimes (U_p(4) \supset U_p(3) \supset K_p(3) \supset S_p(3) \simeq C_{3v}) \supset C_{3v}.$$
(1.1.3)

Nous montrerons alors, comment l'introduction du nombre quantique de polyade $K = 2n_e + n_p$ (où n_e et n_p représentent les nombres vibrationnels totaux d'élongation et de pliage) nous permet une modélisation informatique du problème, tout particulièrement dans le processus de diagonalisation de la matrice hamiltonienne.

Dans le septième chapitre, nous avons étudié, pour les molécules XY_3 non planaires, le couplage des modes vibrationnels d'élongation avec ceux de pliage (modèle local-normal). Nous présenterons la construction d'un opérateur algébrique de couplage de ces différents degrés de

liberté, ainsi que la confrontation de ce modèle avec des données expérimentales. L'étude que nous conduirons reposera sur la chaîne de groupes :

$$(U_e(4) \supset U_e(3) \supset K_e(3) \supset S_e(3) \simeq C_{3v}) \otimes (U_p(3) \otimes U_p(2) \supset U_p(2) \otimes U_p(1) \supset O_p(2) \simeq C_{3v}) \supset C_{3v} \otimes (1.1.4)$$

Enfin, nous clôturerons ce travail en exposant quelles sont les différentes perspectives que l'on peut lui apporter.

Chapitre 2

Chaînes de groupes

2.1 Introduction

La démarche que nous utiliserons dans ce travail, usuellement appelée "approche algébrique", repose principalement sur le schéma suivant :

$$G_1 \supset G_2 \supset \cdots \supset \dots G_{Mol.} \tag{2.1.1}$$

Le groupe "maximal" G_1 doit rendre compte d'un maximum d'informations possibles sur le système moléculaire étudié : énergies, dégénérescences associées, mais également les transitions possibles. Autrement dit, ce groupe nous renseigne sur les propriétés dynamiques du système, c'est pour ces raisons que la plupart des auteurs s'accordent à l'appeler groupe dynamique [16, 12, 17].

Le second groupe G_2 est, mathématiquement, le premier sous-groupe du groupe dynamique. Ce groupe G_2 doit donc offrir une description plus partielle des propriétés de la molécule. En fait, ce sous-groupe doit nous donner un accès immédiat aux différentes énergies possibles et dégénérescences associées; cette propriété est à raprocher du théorème de Wigner [18, 9] : le sous-groupe G_2 est en fait le groupe d'invariance du Hamiltonien¹. Ainsi, les énergies possibles de la molécule se classifient suivant les R.I. du groupe G_2 , et les dimensions de ces dernières nous donnent les valeurs des dégénérescences associées.

Enfin, la chaîne de groupes se termine par le groupe de symétrie moléculaire $G_{Mol.}$. Les groupes intermédiaires dépendent de la physique du problème traité. A titre d'exemple, citons l'utilisation des techniques algébriques dans les domaines de la physique suivants :

- Physique des particules élémentaires : 1961, Gell-Mann comprend que l'on peut ranger les hadrons en multiplets de SU(3). Le cadre conceptuel de la physique des particules est le Modèle Standard qui permet de décrire les interactions fortes par la Chromodynamique Quantique (Q.C.D.) et les interactions électro-faibles (c'est-à-dire les interactions faibles et l'électrodynamique quantique (Q.E.D.)) par le modèle de Weinberg-Salam. La Chromodynamique repose sur le groupe de jauge local SU(3) tandis que le modèle de Weinberg-Salam repose sur le groupe $SU(2) \otimes U(1)$ à symétrie spontanément brisée. Pour différentes applications des méthodes algébriques à la physique des particules élémentaires, le lecteur interessé pourra, par exemple, se référer à [19, 20, 21, 22].

¹En fait ceci se retrouve dans l'écriture du Hamiltonien d'ordre zéro du système. En effet, nous verrons ultérieurement que ce dernier peut s'écrire à l'aide des invariants des groupes continus (et semi-continus) présents dans la chaine, mais que ceux issus du groupe dynamique G_1 peuvent être enlevés. C'est donc bien les invariants du groupe de dégénérescence qui contribuent en premier à l'expression du Hamiltonien d'ordre zéro du système.

- Physique nucléaire : les méthodes algébriques sont depuis de très nombreuses années utilisées dans le cadre de la physique nucléaire [23, 24]. En effet, en 1975 Iachello et Irma [25] proposent un modèle algébrique rendant compte de la structure collective au sein de noyaux. Les constituants fondamentaux sont des paires corrélées de protons et de neutrons traitées comme des bosons. Ce modèle est connu actuellement sous le nom de "Interacting Boson Model" (I.B.M.1) et repose principalement sur l'utilisation du groupe unitaire U(6). Il a ensuite été amélioré en 1979 par Iachello et Scholten [26] afin de donner naissance au modèle I.B.M.2. Ce modèle, plus important, exploite le concept de supersymétrie. Ce dernier considère l'interaction bosons-fermions au sein du noyau. I.B.M.2 est construit en considérant comme constituants fondamentaux les simples fermions (protons et neutrons) auxquels s'ajoutent leurs paires corrélées (bosons). Enfin, plus récemment, en 1988, Elliot [27] continue son développement (en tenant compte de l'invariance isotopique des forces nucléaires) pour aboutir aux modèles I.B.M.3 et I.B.M.4.

- Physique moléculaire : en 1981 Iachello et Levine introduisent le modèle algébrique du vibron [28, 6, 8]. Les constituants fondamentaux ici sont des quanta de vibration anharmonique, appelés les vibrons. Kellman [29], en 1984, étudie les différents groupes de non-invariance pour le couplage de plusieurs oscillateurs ; ceci en vue d'une description des degrés de liberté en terme d'oscillateurs. Puis, en 1987 Moret-Bailly et Michelot [12] adopte le point de vue de Iachello dans le modèle I.B.M.1 en considérant que pour un problème à p degrés de liberté, un groupe de non-invariance ou groupe dynamique possible est le groupe unitaire U(p+1). C'est ce point de vue que nous adopterons dans ce travail.

- Physique mathématique : de très nombreux scientifiques ont contribués aux développements et à l'utilisation des techniques algébriques. On peut, par exemple, citer les travaux de Baird et Biedenharn qui, entre autres, déterminent les invariants de SU(n) [30], ainsi que la notion de représentation conjuguée [31]. Ces mêmes auteurs proposent [32] une classification canonique pour les opérateurs tensoriels dans SU(3). Puis Moshinsky [33] détermine l'expression des opérateurs échelle adaptés à la chaîne canonique. On peut également mentionner les travaux de Ciftan sur la structure combinatoire des états dans le groupe U(n) [34]. De plus, il détermine par des méthodes probabilistes et combinatoires, les états maximaux et semi-maximaux de U(n)[35]. Signalons également les travaux de Itzykson et Nauenberg [36] sur les représentations et la décompositions des groupes unitaires. Enfin, des travaux plus récents ont été publiés, à titre d'exemple mentionnons ceux de Ponnapalli, Schlesinger et Kent concernant la détermination des éléments matriciels des générateurs de U(n) à partir de schéma de factorisation au sein de base de Gelfand [37, 38], ou ceux de Floreanini, Lapointe et Vinet [39] sur une description agébrique de plusieurs oscillateurs identiques.

2.2 Choix d'une chaîne de groupe

L'étude des états vibrationnels entreprise dans ce travail s'effectue sous quelques hypothèses. Examinons nos hypothèses de travail :

- l'approximation de Born-Oppenheimer [40, 41] qui consiste à séparer le mouvement électronique de celui des noyaux, en supposant que les noyaux effectuent de petits déplacements au voisinage d'une position d'équilibre,
- la molécule se trouve dans un état électronique fondamental totalement symétrique [41]; ce qui nous permet d'éviter tous les problèmes complexes (couplage vibronique² voire

 $^{^{2}}$ Le couplage vibronique est l'interaction entre les degrés de liberté vibrationnels et électroniques; le couplage rovibronique quant à lui, couple les degrés de liberté rotationnels, vibrationnels et électroniques.

rovibronique) liés à la dégénérescence électronique. Cette hypothèse trouve sa justification dans le fait que l'on étudie des molécules à couches électroniques externes complètes,

- on peut en première approximation, étudier séparément les mouvements de rotation et de vibration moléculaire (élongation et pliage), c'est-à-dire négliger le couplage rovibrationnel,
- le repère moléculaire satisfait aux conditions d'Eckart [40], ce qui nous permet de considérer qu'une molécule non linéaire constituée de N noyaux possède (3N-6) degrés de liberté vibrationnels [41].

Pour rendre compte des états vibrationnels d'un système de p oscillateurs identiques, Moret-Bailly et Michelot [12] proposent, sous les hypothèses précédentes, l'utilisation de la chaîne de groupes suivante

$$U(p+1) \supset U(p) \supset S(p) \simeq G_{Mol} \tag{2.2.1}$$

dans laquelle :

- U(p+1) est le groupe dynamique (au sens de Wybourne). Ce groupe doit nous renseigner sur les propriétés dynamiques du système étudié, comme par exemple les transitions.
- U(p) est le groupe de dégénérescence. Ce groupe doit nous donner accès aux énergies du système étudié ainsi qu'aux dégénérescences associées.
- S(p) est le groupe de permutation de p objets identiques, en l'occurence ici, les p oscillateurs identiques. Ce groupe est isomorphe au groupe moléculaire G_{Mol} pour les molécules considérées.

Leroy [13] utilise et étudie cette chaîne dans le cas particulier p = 4 pour des molécules telles le méthane ou le silane. Dans le cadre de ce travail, nous nous limiterons à la situation de 3 oscillateurs identiques, et donc nous caractériserons les états vibrationnels des molécules XY_3 non planaires par

$$U(4) \supset U(3) \supset S(3) \simeq C_{3v}.$$
 (2.2.2)

L'étude consiste, dans un premier temps, à représenter matriciellement les éléments géométriques constituant le groupe moléculaire C_{3v} , puis par le processus de projection, de déterminer les états symétrisés associés.

2.3 Groupe dynamique

Les groupes dynamiques sont les groupes qui peuvent reproduire le spectre d'énergie et les dégénéres-cences des niveaux, et qui, en plus, contiennent un ensemble d'opérateurs qui déterminent les probabilités de transition entre les états. Cette dernière propriété exige que nous considérions les groupes de non invariance dont tous les générateurs ne commutent pas avec le Hamiltonien du système physique. La construction d'un tel groupe ayant les propriétés précédentes permettrait une description complète des propriétés dynamiques du système physique; c'est pourquoi il porte le nom de groupe dynamique du système. Au vue de cette définition, on constate que le groupe de dégénérescence est un sous-groupe du groupe dynamique.

En fait, les symétries dynamiques apparaissent lorsqu'il est possible de résoudre l'équation de Schrödinger de différentes façons, soit dans différents systèmes de coordonnées ou dans un système de coordonnées simples qui pourra être orienté dans différentes directions [19]. Par exemple, pour l'atome d'hydrogène, on peut soit travailler en coordonnées sphériques, soit en coordonnées paraboliques. Il existe un théorème qui permet de définir le nombre d'opérateurs de Casimir d'un groupe semi-simple. L'intérêt que nous aurons à invoquer ce théorème lors de notre étude des modes vibrationnels par méthode algébrique, est que nous connaîtrons à l'avance le nombre maximal de paramètres qui interviennent dans l'expression de l'opérateur Hamiltonien d'ordre zéro.

2.4 Groupe de dégénérescence

Les groupes de dégénérescence (ou groupe d'invariance dynamique) sont ceux qui sont capables de donner une description complète du système consiréré. Ainsi, ces groupes sont tels qu'il est possible d'établir une correspondance biunivoque entre les valeurs propres de l'énergie du système et un ensemble de représentations unitaires irréductibles (R.U.I.) du groupe réalisées dans l'espace de Hilbert \mathcal{H} des fonctions propres du Hamiltonien H, de façon telle qu'à chaque R.U.I. réalisée dans \mathcal{H} appartienne une et une seule valeur propre de H et vice versa. Ainsi, le degré de dégénérescence de chaque valeur propre est égal à la dimension de la R.U.I. correspondante.

2.5 Le groupe U(n) comme groupe d'invariance de l'oscillateur isotrope de dimension n

Nous allons examiner un résultat essentiel dans la compréhension de notre démarche (physique et mathématique) adoptée pour l'étude et la description des modes vibrationnels des molécules XY_3 non planaires.

En effet, dans une vision habituelle du problème de l'étude des modes vibrationnels des molécules, ceux-ci sont décrits comme un ensemble d'oscillateurs harmoniques ou anharmoniques attachés aux différents degrés de liberté vibrationnelle de la molécule envisagée³. Puis, dans l'approche quantique de ce problème, on examinera les opérateurs correspondants à ces divers oscillateurs et leurs interactions.

On va dans la section suivante justifier l'utilisation que nous ferons des groupes de Lie unitaires. En effet, on va montrer que le groupe d'invariance ou de dégénérescence d'un oscillateur isotrope de dimension n est le groupe unitaire d'ordre n, que nous noterons U(n). Ce résultat essentiel a été découvert indépendamment par Demkov [42, 43] et par Hill et Jauch [44]. Cependant, c'est l'exposé de Baker que nous utiliserons ici [45].

2.5.1 Oscillateur isotrope de dimension n

Le Hamiltonien d'un oscillateur isotrope de dimension n, admet comme groupe d'invariance, ou groupe de dégénérescence le groupe unitaire U(n) d'ordre n.

En mécanique classique, les modes vibrationnels des molécules sont décrits comme un ensemble d'oscillateurs harmoniques ou anharmoniques attachés aux différents degrés de liberté de la molécule. Le passage à la mécanique quantique peut s'opérer en quantifiant les variables physiques décrivant ces oscillateurs et leurs interactions.

³On entend par degrés de liberté, les six possibilités de mouvements élémentaires suivants :

[•] les trois liaisons L_1 , L_2 , L_3 ,

[•] les trois angles inter-liaisons α_{12} , α_{23} , α_{13} où α_{ij} est l'angle de pliage entre les liaisons L_i et L_j .

Ainsi, en mécanique classique, on associe la fonction hamiltonienne $\mathcal H$ suivante à n oscillateurs harmoniques identiques

$$\mathcal{H} = \sum_{k=1}^{n} h_k = \frac{1}{2} \sum_{k=1}^{n} \frac{P_k^2}{m} + m\omega^2 q_k^2$$
(2.5.1)

puis en quantifiant, on obtient

$$\widehat{\mathcal{H}} = \frac{1}{2} \sum_{k=1}^{n} \frac{\widehat{P}_{k}^{2}}{m} + m\omega^{2} \widehat{q}_{k}^{2}.$$
(2.5.2)

En posant

$$\widehat{\mathcal{P}}_k = \frac{\widehat{P}_k}{\sqrt{m\hbar\omega}} \quad \text{et} \quad \widehat{\mathcal{Q}}_k = \sqrt{\frac{m\omega}{\hbar}} \,\widehat{q}_k$$
(2.5.3)

on réécrit le Hamiltonien comme

$$\widehat{\mathcal{H}} = \frac{\hbar\omega}{2} \sum_{k=1}^{n} \left(\widehat{\mathcal{P}}_{k}^{2} + \widehat{\mathcal{Q}}_{k}^{2} \right).$$
(2.5.4)

avec $[\,\widehat{\mathbb{Q}}_k\,,\,\widehat{\mathbb{P}}_k\,]=i1\!\!1,$ l'expression quantique du Hamiltonien $\widehat{\mathcal{H}}$ est :

$$\widehat{\mathcal{H}} = \frac{\hbar\omega}{2} \sum_{k=1}^{n} \left[\left(\widehat{\mathcal{Q}}_{k} - i\widehat{\mathcal{P}}_{k} \right) \left(\widehat{\mathcal{Q}}_{k} + i\widehat{\mathcal{P}}_{k} \right) + 1 \right] = \hbar\omega \sum_{k=1}^{n} \left[\left(\frac{\widehat{\mathcal{Q}}_{k} - i\widehat{\mathcal{P}}_{k}}{\sqrt{2}} \right) \left(\frac{\widehat{\mathcal{Q}}_{k} + i\widehat{\mathcal{P}}_{k}}{\sqrt{2}} \right) + \frac{1}{2} \right].$$
(2.5.5)

On peut poser :

$$\begin{cases} \widehat{a}_{k}^{\dagger} = \frac{\widehat{Q}_{k} - i\widehat{\mathcal{P}}_{k}}{\sqrt{2}} : \text{ opérateur de création d'un quantum pour l'oscillateur } k \\ \widehat{a}_{k} = \frac{\widehat{Q}_{k} + i\widehat{\mathcal{P}}_{k}}{\sqrt{2}} : \text{ opérateur d'annihilation d'un quantum pour l'oscillateur } k \end{cases}$$
(2.5.6)

cette forme d'écriture nous permet de donner la forme suivante au Hamiltonien quantique $\widehat{\mathcal{H}}$ des n oscillateurs

$$\widehat{\mathcal{H}} = \hbar\omega \sum_{k=1}^{n} \left[\widehat{a}_{k}^{\dagger} \widehat{a}_{k} + \frac{1}{2} \right] = \hbar\omega \sum_{k=1}^{n} \left[\widehat{n}_{k} + \frac{1}{2} \right] = \hbar\omega \left[\left(\sum_{k=1}^{n} \widehat{n}_{k} \right) + \frac{n}{2} \right]$$
(2.5.7)

avec l'opérateur $\hat{n}_k = \hat{a}_k^{\dagger} \hat{a}_k$ qui est l'opérateur nombre de quanta de l'oscillateur k. On vérifie également les trois relations de commutation :

$$[\hat{a}_k, \hat{a}_l] = 0 \quad \text{et} \quad [\hat{a}_k^{\dagger}, \hat{a}_l^{\dagger}] = 0 \quad \text{et} \quad [\hat{a}_k, \hat{a}_l^{\dagger}] = \delta_{kl}.$$
(2.5.8)

Pour que le groupe unitaire U(n) soit le groupe d'invariance de ce système constitué de n oscillateurs isotropes, il suffit de montrer que pour tout élément quelconque \mathcal{U} de U(n), on a

$$[\mathcal{U},\widehat{\mathcal{H}}] = 0 \qquad \Longleftrightarrow \qquad \mathcal{U}^{-1}\,\widehat{\mathcal{H}}\,\mathcal{U} = \widehat{\mathcal{H}} \tag{2.5.9}$$

Ainsi, choisissons un élément quelconque du groupe U(n), c'est-à-dire une transformation unitaire \mathcal{U} de dimension n, que nous représentrerons par une matrice carrée $n \times n$. Comme cette transformation n'affecte que les opérateurs (elle laisse les scalaires invariants), on peut écrire qu'à la suite de l'action de cette transformation unitaire on a :

$$\begin{cases} \widehat{a}_{s} \stackrel{\mathfrak{U}}{\to} \widehat{a}_{s}^{,} = \sum_{\substack{i=1\\n}}^{n} u_{is} \widehat{a}_{i} \\ \widehat{a}_{s}^{\dagger} \stackrel{\mathfrak{U}}{\to} \widehat{a}_{s}^{,\dagger} = \sum_{j=1}^{n} u_{sj}^{-1} \widehat{a}_{j}^{\dagger} \end{cases}$$
(2.5.10)

il nous reste à vérifier que l'expression du Hamiltonien $\widehat{\mathcal{H}}$ avant la transformation unitaire \mathcal{U} est bien égale à celle $\widehat{\mathcal{H}}' = \mathcal{U}^{-1} \widehat{\mathcal{H}} \mathcal{U}$ après la transformation considérée. On a

$$\widehat{\mathcal{H}} = \hbar\omega \sum_{k=1}^{n} \left[\widehat{a}_{k}^{\dagger} \widehat{a}_{k} + \frac{1}{2} \right] = \hbar\omega \sum_{k=1}^{n} \sum_{l=1}^{n} \left[\widehat{a}_{k}^{\dagger} \widehat{a}_{l} \,\delta_{k\,l} + \frac{1}{2} \right] = \hbar\omega \sum_{k=1}^{n} \sum_{l=1}^{n} \left[\widehat{a}_{k}^{\dagger} \widehat{a}_{l} \,\left(\sum_{s=1}^{n} u_{s\,k}^{-1} u_{l\,s} \right) + \frac{1}{2} \right]$$
(2.5.11)

en réorganisant les termes, on obtient alors

$$\widehat{\mathcal{H}} = \hbar\omega \sum_{s=1}^{n} \left(\sum_{k=1}^{n} \widehat{a}_{k}^{\dagger} u_{sk}^{-1} \sum_{l=1}^{n} \widehat{a}_{l} u_{ls} + \frac{1}{2} \right) = \hbar\omega \sum_{s=1}^{n} \left(\left[u_{ks} \widehat{a}_{k} \right]^{\dagger} \left[u_{sl}^{-1} \widehat{a}_{l}^{\dagger} \right]^{\dagger} + \frac{1}{2} \right)$$
(2.5.12)

en utilisant maintenant les définitions (2.5.10) des opérateurs \hat{a}_{s}^{i} et $\hat{a}_{s}^{i\dagger}$ on obtient l'expression suivante

$$\widehat{\mathcal{H}} = \hbar \omega \sum_{s=1}^{n} \left(\left[\widehat{a}_{s}^{, \dagger} \right]^{\dagger} \left[\widehat{a}_{s}^{, \dagger} \right]^{\dagger} + \frac{1}{2} \right) = \hbar \omega \sum_{s=1}^{n} \left(\widehat{a}_{s}^{, \dagger} \widehat{a}_{s}^{, \dagger} + \frac{1}{2} \right) = \widehat{\mathcal{H}}'$$
(2.5.13)

finalement, on a bien $\mathcal{H} = \mathcal{H}'$. Ce qui démontre bien que l'action d'une transformation unitaire quelconque, d'ordre n, laisse le Hamiltonien de n oscillateurs isotropes (ou d'un oscillateur n fois dégénéré) invariant.

2.6 Dégénérescence d'un oscillateur de dimension n dans un état p

On cherche la dégénérescence, notée dim E(n, p), de l'état énergétique E(n, p)

$$E(n,p) = \hbar\omega\left(p + \frac{n}{2}\right) = \hbar\omega\left(\sum_{i=1}^{n} n_i + \frac{n}{2}\right)$$
(2.6.1)

d'un oscillateur de dimension n qui se trouve dans un état $|p\rangle$ tel que $\sum_{i=1}^{n} n_i = p$.

2.6.1 Première méthode : analyse de la fonction d'onde

Dans cette première méthode, nous suiverons l'exposé proposé par Pétrachène et Trifonov [18], qui consiste à remarquer que les fonctions d'onde de ce système se transforment comme les composantes d'un tenseur symétrique de rang p dans un espace de dimension n. En effet, notons par $\Psi_{n_1...n_n}^{[n]}$ la fonction d'onde de ce système relative à cet état énergétique E(n,p). Cette fonction s'écrit

$$\Psi_{n_1...n_n}^{[n]} = \frac{1}{\sqrt{\prod_{i=1}^n n_i!}} \prod_{i=1}^n \left(\widehat{a}_i^{\dagger} \right)^{n_i} \Psi_{0...0}^{[n]}$$
(2.6.2)

où $\Psi_{0\dots 0}^{[n]}$ est la fonction de l'état fondamental. Mais comme l'ordre d'application des opérateurs \hat{a}_i^{\dagger} n'intervient pas, ces fonctions $\Psi_{n_1\dots n_n}^{[n]}$ se transforment donc, sous l'action de transformations unitaires, comme les composantes $T_{j_1\dots j_p}^{[n]}$ d'un tenseur symétrique de rang p dans un espace de dimension n. Ceci signifie que la transformation s'effectue sur les composantes de ce tenseur symétrique. En vertu de la symétrie du tenseur, on peut toujours disposer les indices $j_1 \dots j_p$ dans l'ordre croissant

$$j_1 \leq j_2 \leq \cdots \leq j_p \qquad \Longrightarrow \qquad j_1 < j_2 + 1 < \cdots < j_p + p - 1$$
 (2.6.3)

c'est-à-dire qu'en posant $i_k \equiv j_k + k - 1$ on obtient alors la série d'inégalités strictes qui suit

$$i_1 < i_2 < \dots < i_p.$$
 (2.6.4)

Les p nombres i_k sont alors tous distincts, et peuvent prendre toutes les valeurs entières comprises entre 1 et n + p - 1. Le nombre $\mathcal{N}(n, p)$ de composantes indépendantes d'un tenseur symétrique est donc

$$\mathcal{N}(n,p) = \mathbf{C}_{n+p-1}^{p} = \frac{(n+p-1)!}{p! (n-1!)}$$
(2.6.5)

Enfin, d'après le théorème de Wigner $(1927)^4$, on sait que la multiplicité de la dégénérescence d'un niveau d'énergie est égale à la dimension de la représentation correspondante. Comme dans notre cas, la représentation considérée est celle qui se réalise sur les composantes indépendantes d'un tenseur symétrique (de rang p dans un espace de dimension n), cela implique nécessairement que l'ordre de dégénérescence dim E(n, p), de l'état énergétique E(n, p) vaut $\mathcal{N}(n, p)$:

dim
$$E(n,p) = \mathbf{C}_{n+p-1}^p = \frac{(n+p-1)!}{p! (n-1)!}$$
 (2.6.6)

2.6.2 Deuxième méthode : dénombrement

Une autre possibilité de raisonnement est possible. Cette dernière est beaucoup plus intuitive que la précédente, car elle est basée sur la notion de dénombrement. Comme on a la condition

$$\sum_{i=1}^{n} n_i = p \tag{2.6.7}$$

cela signifie que l'on cherche tous les n-uplets (n_1, \ldots, n_n) différents qui satisfont à cette condition. En fait le problème est identique à :

"Nombre de possibilités différentes de répartir p boules identiques au sein de n cases identiques ?"

On commence par placer p boules identiques dans une grande enceinte, puis on introduit (n-1) cloisons identiques afin de créer n cases identiques. Ainsi, pour l'unique système formé des (n-1) cloisons identiques et des p boules identiques, il y a alors (n+p-1)! permutations possibles qui conservent le nombre d'éléments qui composent ce système. Tenant compte de l'indiscernabilité des (n-1) cloisons et des p boules, on divise par p! et par (n-1)!. Le nombre $\mathcal{N}(n,p)$ de possibilités différentes de répartir p boules identiques au sein de n cases identiques est donné par

$$\mathcal{N}(n,p) = \mathbf{C}_{n+p-1}^{p} = \frac{(n+p-1)!}{p! (n-1)!}.$$
(2.6.8)

⁴Pour une démonstration complète de ce théorème, on pourra, par exemple, consulter les trois références [9, 18, 46] et [47]. On trouvera dans ces mêmes références les principales conséquences et applications de ce théorème à la physique et tout particulièrement à la mécanique quantique.

Ceci implique que le nombre de n-uplets (n_1, \ldots, n_n) différents qui satisfont à la condition (2.6.7) vaut $\mathcal{N}(n, p)$. En d'autres termes, on retrouve bien le résultat trouvé avec la première méthode.

On peut représenter graphiquement cette fonction dégénérescence, on obtient alors la (Fig. 2.1)

FIG. 2.1 – Dégénérescence $\mathcal{N}(n, p)$ d'un état énergétique E(n, p) avec $p \leq 29$ et $n \leq 10$.

Lorsque nous souhaiterons travailler numériquement jusqu'à un certain nombre n_q de quanta particulier, il nous faudra alors tenir compte d'un nombre $N(n, n_q)$ d'états physiques qui est

$$N(n, n_q) = \sum_{p=0}^{n_q} \mathcal{N}(n, p) = \sum_{p=0}^{n_q} \mathbf{C}_{n+p-1}^p = \sum_{p=0}^{n_q} \frac{(n+p-1)!}{p! (n-1)!} = \frac{(n+n_q)!}{n! n_q!}$$
(2.6.9)

On peut représenter graphiquement cette fonction nombre d'états $N(n, n_q)$, et on obtient alors la (Fig. 2.2)

On constate que le nombre d'états physiques dont il faut tenir compte lorsque l'on souhaite travailler jusqu'à un certain nombre de quanta n_q augmente de manière importante avec la dimension n de l'oscillateur. Ceci explique, en partie, pourquoi nous avons travaillé sur des molécules de symétrie C_{3v} : le nombre d'états dont on doit tenir compte est numériquement traitable.

FIG. 2.2 – Nombre d'état énergétique $N(n, n_q)$ avec $n_q \leq 29$ et $n \leq 10$.

2.6.3 Cas particulier : n = 3

Dans cette situation particulière d'un oscillateur de dimension trois (c'est-à-dire triplement dégénéré) dans l'état n_s^5 , on trouve que l'ordre de dégénérescence du niveau $E(3, n_s)$ vaut

dim
$$E(3, n_s) = \mathbf{C}_{n_s+3}^{n_s} = \frac{(n_s+2)(n_s+1)}{2}$$
 (2.6.10)

Nous verrons au cours de l'étude des représentations des groupes unitaires de dimension finie, que cette dimension est en fait celle de la représentation totalement symétrique de U(3) (qui sera notre groupe de dégénérescence dans le formalisme algébrique utilisé), notée $[n_s, 0, 0]$, et que ce type de représentation particulière tient une place prépondérante dans la description physique des modes vibrationnels des molécules que nous considérerons. Le résultat (2.6.10) obtenu est un cas particulier de la formule de Weyl [48]. Ainsi, dans le cas n = 3, le nombre d'états vibrationnels qui intervient dans le problème, jusqu'à 29 quanta, est représenté graphiquement sur la figure 2.6.3 qui suit

On peut d'ailleurs vérifier que, dans cette situation particulière, le nombre d'états dont on devrait tenir compte lors d'un traitement de ce problème est N(3, 29) = 4960; et on a bien :

$$N(3,29) = \sum_{p=0}^{n_q=29} \mathcal{N}(3,p) = \sum_{p=0}^{n_q=29} \mathbf{C}_{p+2}^p = \frac{1}{2} \sum_{p=0}^{n_q=29} (p+2)(p+1) = 4960$$
(2.6.11)

⁵Cette notation n_s est directement liée à notre étude ultérieure des modes vibrationnels d'élongation des diverses molécules XY_3 étudiées. Lors de cette étude, n_s représentera le nombre total de quanta qui se trouvent être réparties sur les trois liaisons des molécules.

FIG. 2.3 – Nombre d'états physiques d'un oscillateur triplement dégénéré avec $n_q \leq 29$.

qui est bien le résultat obtenu avec la relation (2.6.9) précédente

$$N(3,29) = \frac{(3+29)!}{29!\,3!} = 4960 \tag{2.6.12}$$

le principal intérêt de cette dernière formule, étant bien évidemment d'éviter une sommation discrète sur le paramètre p. Lors de l'étude des représentations de dimension finie des groupes unitaires, nous préciserons le lien entre ces différentes formules. Nous verrons alors que cette dimension est en fait celle de la représentation totalement symétrique de U(4) (qui sera notre groupe dynamique), notée $[n_s, 0, 0, 0]$. On constate alors que

dim
$$[n_s = 29, 0, 0, 0] = \sum_{p=0}^{n_s=29} \dim [p, 0, 0]$$
 (2.6.13)

cette relation est strictement identique à (2.6.11) si ce n'est qu'elle est exprimée dans le langage usuel des représentations de dimension finie des groupes unitaires.

Chapitre 3 Généralités sur les groupes unitaires

3.1 Introduction

Dans ce chapitre, nous n'allons pas entreprendre une étude mathématique complète des groupes unitaires. Le lecteur intéressé par une telle étude pourra, par exemple, se reporter aux références [49, 50]. Nous nous limiterons ici à l'étude et à la classification des représentations de dimension finie des groupes unitaires, ce problème n'ayant d'ailleurs trouvé sa solution que récemment. En effet, ce n'est qu'en 1950 que Gelfand et Zetlin (G-Z) [15] ont mené à terme l'étude de la classification des représentations de dimension finie des groupes unitaires. Nous adopterons, par principe, que les développements mathématiques proposés dans ce travail, sont limités à la bonne compréhension des idées physiques auxquelles ils sont rattachés. Mais avant d'exposer la méthode générale d'étude des représentations de dimension finie des groupe de Lie, ainsi que quelques éléments de vocabulaire qui nous servirons dans la suite de ce travail. En effet, dans l'étude des symétries des systèmes physiques, les groupes unitaires font partie d'une catégorie importante : les groupes de Lie.

3.2 Définition des générateurs d'un groupe de Lie

Dans cette section nous allons présenter les principales caractéristiques des groupes de Lie et nous nous placerons du point de vue du physicien qui souhaite utiliser ces outils mathématiques pour la description des objets physiques qu'il considère. Dans un groupe de Lie, que nous noterons **G**, il y a une infinité d'éléments¹ (contrairement aux groupes discrets), les éléments sont indicés par des paramètres (réels ou complexes) qui varient de façon continue dans un certain intervalle. Un élément quelconque du groupe peut être noté $\mathcal{U}(\alpha_1, \alpha_2, \ldots, \alpha_D)^2$, où les α_n varient dans un intervalle donné. Le nombre D de paramètres indépendants nécessaires à la spécification d'un élément quelconque du groupe s'appelle la dimension du groupe. Il est important de noter que la dimension d'un groupe de Lie n'a rien à voir avec la dimension de ses représentations matricielles.

Dès lors, le produit de deux éléments d'un groupe de Lie peut donc être représenté de la

¹Pour qu'un groupe continu **G** de dimension D soit un groupe de Lie, il ne suffit pas que ses éléments varient de façon continue, il faut en plus qu'il possède la structure d'une variété différentiable, c'est-à-dire, qu'il est possible de le mettre en correspondance avec \mathbb{R}^D pour le paramétrer.

²Cela signifie simplement que l'on choisit un certain espace vectoriel \mathcal{E} de dimension finie D, et munie d'une certaine base \mathcal{B} . C'est sur cet espace vectoriel \mathcal{E} que l'on représente l'élément \mathcal{U} du groupe de Lie **G** par la forme choisie $\mathcal{U}(\alpha_1, \alpha_2, \ldots, \alpha_D)$.

façon suivante

$$\mathfrak{U}(\alpha_1,\ldots,\alpha_D) \times \mathfrak{U}(\beta_1,\ldots,\beta_D) = \mathfrak{U}(\gamma_1,\ldots,\gamma_D)$$
(3.2.1)

avec

$$\gamma_n = \gamma_n(\alpha_1, \dots, \alpha_D; \beta_1, \dots, \beta_D) \qquad (1 \le n \le D)$$
(3.2.2)

Par exemple, le groupe des rotations et le groupe des translations spatiales sont deux groupes de Lie de dimension D = 3. Pour le groupe de Lie des translations spatiales (de translation $\vec{r_0}$), le vecteur $\vec{r_0}$ constitue un ensemble de trois paramètres réels appropriés. Pour le groupe des rotations, les trois angles d'Euler (θ , φ , ψ) constituent eux aussi un ensemble de trois paramètres réels appropriés.

L'étude des groupes de Lie est facilitée grâce à une caractéristique remarquable, en effet, la plupart de leurs propriétés s'obtient simplement de la considération des éléments voisins de l'élément neutre II du groupe de Lie considéré. Notons d'abord que l'on peut toujours choisir les paramètres α_n de sorte que l'élément neutre II corresponde à des valeurs nulles de tous les α_n , c'est-à-dire :

$$\mathcal{U}(0, 0, \dots, 0) = \mathbf{I}.$$
 (3.2.3)

Ainsi, si tous les paramètres α_n sont petits, alors l'élément $\mathcal{U}(\alpha_1, \ldots, \alpha_D)$ associé est voisin de l'élément neutre. Considérons alors l'élément $\mathcal{U}(\alpha_1, \ldots, \alpha_D)$ voisin de l'élément neutre II, on peut alors effectuer un développement limité au premier ordre par rapport aux α_n de cet élément, on a alors :

$$\begin{aligned} \mathfrak{U}(\alpha_{1},\ldots,\alpha_{D}) &= \mathrm{II} + \sum_{n=1}^{D} \left(\frac{\partial \,\mathfrak{U}(\alpha_{1},\ldots,\alpha_{D})}{\partial \alpha_{n}} \right)_{\alpha_{n}=0} \alpha_{n} + \mathcal{O}(\alpha^{2}) \\ &= \mathrm{II} - (i^{2}) \sum_{n=1}^{D} \left(\frac{\partial \,\mathfrak{U}(\alpha_{1},\ldots,\alpha_{D})}{\partial \alpha_{n}} \right)_{\alpha_{n}=0} \alpha_{n} + \mathcal{O}(\alpha^{2}) \end{aligned}$$

$$= \mathrm{II} - i \sum_{n=1}^{D} i \left(\frac{\partial \,\mathfrak{U}(\alpha_{1},\ldots,\alpha_{D})}{\partial \alpha_{n}} \right)_{\alpha_{n}=0} \alpha_{n} + \mathcal{O}(\alpha^{2}) \end{aligned}$$

$$= \mathrm{II} - i \sum_{n=1}^{D} \alpha_{n} X_{n} + \mathcal{O}(\alpha^{2})$$

avec l'expression $\mathcal{O}(\alpha^2)$ qui représente tous les termes d'ordre deux ou plus en α_n . Nous avons introduit, de façon arbitraire, le terme i^2 dans nos développements, afin de pouvoir satisfaire à certaines relations de commutation. Les X_n sont définis comme :

$$X_n = i \left(\frac{\partial \mathcal{U}(\alpha_1, \dots, \alpha_D)}{\partial \alpha_n} \right)_{\alpha_n = 0}.$$
 (3.2.5)

On appelle ces D opérateurs X_n (n = 1, ..., D), les générateurs du groupe de Lie. Ces générateurs X_n agissent dans le même espace que les éléments \mathcal{U} du groupe de Lie envisagé.

3.2.1 Paramétrisation exponentielle ou représentation exponentielle.

On sait qu'un élément $\mathcal{U}(\alpha_1, \ldots, \alpha_D)$, pour lequel les paramètres α_n sont très petits, est voisin de l'élément neutre II. Notons $\mathcal{U}(\delta\alpha_1, \ldots, \delta\alpha_D)$ un tel élément, on a

$$\mathfrak{U}(\delta\alpha_1,\ldots,\delta\alpha_D) = \mathbb{1} - i \sum_{n=1}^D \delta\alpha_n X_n + \mathfrak{O}(\alpha^2)$$
(3.2.6)

écrivons

$$\delta \alpha_n = \frac{\alpha_n}{N} \tag{3.2.7}$$

avec $N \in \mathbb{N}$. Cette écriture particulière des paramètres du groupe nous permet alors d'obtenir les divers développements qui suivent

$$\begin{aligned} \mathcal{U}(\alpha_1, \dots, \alpha_D) &= \lim_{N \to +\infty} \left[U(\delta \alpha_1, \dots, \delta \alpha_D) \right]^N \\ &= \lim_{N \to +\infty} \left[U\left(\frac{\alpha_1}{N}, \dots, \frac{\alpha_n}{N}\right) \right]^N \\ &= \lim_{N \to +\infty} \left[\mathbbm{I} - i \sum_{n=1}^D \frac{\alpha_n}{N} X_n + \mathcal{O}\left(\frac{\alpha^2}{N^2}\right) \right]^N \end{aligned}$$
(3.2.8)
$$&= e^{-i \sum_{n=1}^D \alpha_n} X_n$$

la dernière ligne est obtenue en utilisant le fait que, pour un opérateur \widehat{X} quelconque, nous avons

$$e^{\widehat{X}} = \lim_{N \to \infty} \sum_{k=0}^{N} \frac{\widehat{X}^{k}}{k!} = \lim_{N \to \infty} \sum_{k=0}^{N} \frac{N!}{(N-k)!} \frac{1}{N^{k}} \frac{1}{k!} \widehat{X}^{k} \mathbb{I}^{N-k} = \lim_{N \to \infty} \sum_{k=0}^{N} \mathsf{C}_{N}^{k} \frac{\widehat{X}^{k}}{N^{k}} \mathbb{I}^{N-k} = \lim_{N \to \infty} \left(\mathbb{I} + \frac{\widehat{X}}{N} \right)^{N}$$
(3.2.9)

L'expression (3.2.8) est la paramétrisation exponentielle de la représentation $\mathcal{U}(\alpha_1, \ldots, \alpha_D)$ de l'élément considéré du groupe de Lie **G**, c'est-à-dire que l'on représente les éléments $\mathcal{U}(\alpha_1, \ldots, \alpha_D)$ sous la forme d'une exponentielle d'opérateurs. Cette forme de représentation des éléments d'un groupe de Lie est bien connue en mécanique quantique. En effet, on la retrouve, par exemple, dans l'expression mathématique des propriétés d'un système physique, qui possède la caractéristique de rester invariant sous l'action d'une rotation ou d'une translation.

3.3 Définitions et vocabulaire

Nous allons examiner maintenant comment la notion de constante de structure permet d'accéder à une classification simple des groupes continus, et ceci de manière tout à fait générale.

3.3.1 Groupe de Lie compact

Un groupe de Lie est dit compact si tous ses paramètres prennent des valeurs continues dans des domaines fermés et bornés, c'est-à-dire des domaines compacts. L'algèbre associée (au groupe de Lie considéré) est-elle aussi qualifiée de compacte.

3.3.2 Le rang d'un groupe de Lie

Le rang d'un groupe de Lie est simplement défini par le plus grand nombre de générateurs qui commutent entre eux.

3.3.3 Groupe abélien

Un groupe est dit abélien si tous ses éléments commutent. Ansi dans le cadre d'un groupe de Lie unitaire \mathbf{G} de dimension D, cela signifie simplement que toutes les constantes de structures sont nulles :

$$C_{mn}^q = 0 \quad 1 \leqslant m, n, q \leqslant D. \tag{3.3.1}$$

Cette condition implique alors que nous avons $[X_m, X_n] = 0$ et ceci pour tout m et n appartenant au domaine $[1, \ldots, D]$. En vertu de la définition du rang d'un groupe de Lie, on en déduit donc que le rang d'un groupe de Lie abélien est égal à la dimension de ce groupe.

3.3.4 Sous-groupe

Un sous-groupe **H** (de dimension d) d'un groupe de Lie unitaire **G** (de dimension $D \ge d$) est un ensemble de Σ éléments formant eux-mêmes un groupe. Si on note par $(\alpha_1, \alpha_2, \ldots, \alpha_d)$ les paramètres associés au sous-groupe **H** dans l'ensemble $(\alpha_1, \alpha_2, \ldots, \alpha_D)$ associé au groupe **G**, alors on doit avoir

$$[X_m, X_n] = i \sum_{l=1}^d C_{mn}^l X_l \quad \leqslant m, n, l \leqslant d$$
(3.3.2)

ce qui s'écrit aussi de la manière strictement équivalente suivante

$$C_{mn}^{l} = 0 \quad 1 \leqslant m, n \leqslant d \quad \text{et} \quad d \leqslant l \leqslant D.$$
(3.3.3)

3.3.5 Sous-groupe invariant (ou idéal)

Un sous-groupe invariant **H** (de dimension $d \leq D$) d'un groupe de Lie unitaire **G** (de dimension D et d'éléments \mathcal{U}) est l'ensemble des éléments $\mathcal{U}_{\mathbf{H}}$, qui contient tous les Σ éléments conjugués $\overline{\mathcal{U}}_{\mathbf{H}} \equiv \mathcal{U} \mathcal{U}_{\mathbf{H}} \mathcal{U}^{-1}$ de ses éléments.

Si **H** contient $\mathcal{U}_{\mathbf{H}}$ alors il contient également tous les éléments du type $\mathcal{U}\mathcal{U}_{\mathbf{H}}\mathcal{U}^{-1}\mathcal{U}_{\mathbf{H}}^{-1} = \overline{\mathcal{U}}_{\mathbf{H}}\mathcal{U}_{\mathbf{H}}^{-1}$ ceci puisque **H** est un sous-groupe donc un groupe, et comme $\overline{\mathcal{U}}_{\mathbf{H}} \in \mathbf{H}$ et $\mathcal{U}_{\mathbf{H}}^{-1} \in \mathbf{H}$ alors cela implique que le produit de ces deux éléments appartient lui aussi au sous-groupe **H**. Or, on sait que

$$\mathfrak{U}\mathfrak{U}_{\mathbf{H}}\mathfrak{U}^{-1}\mathfrak{U}_{\mathbf{H}}^{-1} = \mathfrak{I} - \sum_{m=1}^{D} \sum_{n=1}^{d} \alpha_{m} \beta_{n} \left[X_{m} , X_{n} \right] + \mathfrak{O}(\alpha^{2}, \beta^{2}) \in \mathbf{H}$$
(3.3.4)

avec la condition

$$[X_m, X_n] = i \sum_{l=1}^{\lambda} C_{mn}^l X_l \quad \text{avec} : \ 1 \le m \le D \ \text{et} \ 1 \le n \le d$$
(3.3.5)

il nous faut déterminer λ afin que $\mathcal{U}\mathcal{U}_{\mathbf{H}}\mathcal{U}^{-1}\mathcal{U}_{\mathbf{H}}^{-1}$ appartienne bien au sous-groupe **H**. On peut donc écrire

$$\mathcal{U}\mathcal{U}_{\mathbf{H}}\mathcal{U}^{-1}\mathcal{U}_{\mathbf{H}}^{-1} = \mathrm{I} - i\sum_{l=1}^{\lambda} \underbrace{\left(\sum_{m=1}^{D} \sum_{n=1}^{d} \alpha_{m} \beta_{n} C_{m\,n}^{l}\right) X_{l}}_{\equiv \gamma_{l}} + \mathcal{O}(\alpha^{2}, \beta^{2}) \in \mathbf{H}$$

$$= \mathrm{I} - i\sum_{l=1}^{\lambda} \gamma_{l} X_{l} \in \mathbf{H}$$

$$(3.3.6)$$

ce qui implique que $\lambda = d$. Ainsi, on a la relation

$$[X_m, X_n] = i \sum_{l=1}^d C_{mn}^l X_l \quad \text{avec} : \ 1 \le m \le D \ \text{et} \ 1 \le n, l \le d.$$
(3.3.7)

3.3.6 Groupe simple

Un groupe de Lie unitaire \mathbf{G} est dit simple, s'il n'a pas d'autre sous-groupe invariant que son élément unité.

3.3.7 Groupe semi-simple

Un groupe de Lie unitaire \mathbf{G} est qualifié de semi-simple, s'il n'a pas d'autre sous-groupe invariant abélien que son élément unité ou lui même.

3.4 Les opérateurs invariants ou opérateurs de Casimir

3.4.1 Définition

Les opérateurs invariants ou opérateurs de Casimir d'un groupe, sont par définition, des opérateurs qui ont la propriété de commuter avec tous les générateurs du groupe considéré.

Par exemple, pour le groupe SO(3), si on définit J_x , J_y et J_z , alors en définissant l'opérateur $J^2 \equiv J_x^2 + J_y^2 + J_z^2$, on a

$$[J^2, J_i] = 0$$
 avec $i = x, y, z$ (3.4.1)

l'opérateur $J^2 \equiv J_x^2 + J_y^2 + J_z^2$ est donc un opérateur invariant du groupe SO(3).

3.4.2 Théorème de Racah

Introduction et interêt

Les groupes semi-simples sont, très souvent, ceux qui interviennent lors de la description des systèmes physiques qui possèdent la propriété d'être invariants par rapport à une transformation géométrique quelconque. Lorsqu'une grandeur physique caractérisant un système possède la propriété d'être invariante par rapport à une transformation non géométrique, on dit que la symétrie associée est dynamique. En général, ces symétries dynamiques ont pour origine une forme particulière de l'équation de Schrödinger, ou elles sont la conséquence de lois classiques. On peut par exemple examiner l'atome d'hydrogène et l'oscillateur isotrope, comme étant deux systèmes physiques qui admettent des symétries dynamiques. En ce qui concerne l'atome d'hydrogène, la forme particulière de l'équation de Schrödinger provient du potentiel de type coulombien qui décrit la dynamique de l'électron par rapport au noyau. On montre alors qu'au sens de [19], pour les états liés de l'atome d'hydrogène, le groupe de symétrie dynamique est SO(4), et lorsqu'on considère les états du continuum, le groupe de symétrie dynamique est SO(3, 1). Par contre, pour Wybourne [16], le groupe dynamique de l'atome d'hydrogène, en tenant compte du continuum, est SO(4,2). En ce qui concerne l'oscillateur isotrope de dimension p, son groupe dynamique est, pour nous, U(p+1); mais il existe bien d'autres possibilités [16] tel les groupes non compacts SU(p, 1), $Sp(2p, \mathbb{R})$, ou encore $Os(p) = N(p) \wedge H$ où N(p) est le groupe de Heisenberg, H est le Hamiltonien du système et \wedge représente le produit semi-direct. En fait, pour être précis, cette notation concerne les algèbres et non les groupes. Si l'algèbre de Heisenberg relative au groupe N(p) est désignée par h_p , et si celle relative au groupe du Hamiltonien H est notée

$$\mathbf{g}_H = \left\{ a^{\dagger}, a \right\} \tag{3.4.2}$$

alors l'opération qui définie Os(p) devrait être notée

$$g_{Os(p)} = h_p \oplus g_H. \tag{3.4.3}$$

A titre d'exemple, pour p = 3, c'est-à-dire pour un oscillateur isotrope de dimension 3, on a $h_3 = \{a^{\dagger}, a, II\}^3$, de sorte que

$$\mathbf{g}_{Os(3)} = \left\{ a^{\dagger}, a, \mathbf{1} \right\} \oplus \left\{ a^{\dagger}, a \right\}.$$

$$(3.4.4)$$

Théorème de Racah :

Pour tout groupe de Lie semi-simple de rang k, il existe k opérateurs invariants ou opérateurs de Casimir.

Une démonstration de ce théorème a été donné par G. Racah, et elle peut être trouvée dans la référence [51]. Ce théorème nous indique que le groupe SO(3) n'admet qu'un seul et unique opérateur invariant, à savoir l'opérateur J^2 .

3.4.3 Rang du groupe unitaire U(n)

Par définition, le groupe unitaire U(n) est formé par l'ensemble des matrices carrées \mathcal{M} de dimension $(n \times n)$ qui vérifient

$$\mathcal{M} \mathcal{M}^{\dagger} = \mathbf{I}_{n} \qquad \text{avec } \mathcal{M}^{\dagger} = \mathcal{M}^{\star^{t}}. \tag{3.4.5}$$

Puis, comme chacune des matrices carrées \mathcal{M} possède n^2 éléments \mathcal{M}_{ij} avec $1 \leq i, j \leq n$, cela signifie que le groupe unitaire U(n) admet n^2 générateurs indépendants.

On a vu précédemment que le rang d'un groupe de Lie est donné par le nombre maximal de générateurs qui commutent entre eux. Notons E_{ij} (avec $1 \le i, j \le n$) les n^2 générateurs de U(n), ces générateurs satisfont à la relation de commutation [11] suivante :

$$[E_{im}, E_{jn}] = \delta_{jm} E_{in} - \delta_{in} E_{jm} \qquad \text{avec } E_{im}^{\dagger} = E_{mi}.$$
(3.4.6)

Cette relation de commutation indique que le plus grand ensemble de générateurs E_{ij} (avec $1 \le i, j \le n$) qui commutent entre eux, est formé par l'ensemble $\Omega_n \equiv \{E_{ij}\}$ (card $(\Omega_n) = n$).

3.4.4 La forme de Killing ou tenseur métrique

On définit la forme de Killing d'un groupe de Lie \mathbf{G} à D paramètres par la relation suivante

$$[g]_{n\,m} \equiv \sum_{p=1}^{D} \sum_{q=1}^{D} C_{n\,p}^{q} C_{m\,q}^{p}$$
(3.4.7)

cette forme est symétrique puisque $[g]_{nm} = [g]_{mn}$, et porte aussi le nom de tenseur métrique du groupe de Lie **G**. En fait, on peut donner une autre forme (strictement équivalente) à ce tenseur.

³Selon les auteurs, on définit l'algèbre de Heisenberg h₃ de manière légèrement différente : on ajoute l'élément $a^{\dagger} a$ aux trois éléments { a^{\dagger} , a, $\mathbb{1}$ }. Ainsi, au lieu de noter h₃ l'algèbre de Heisenberg, on la désigne alors par h₄.

Pour ceci, on définit une représentation⁴ matricielle [19] des générateurs X_i (i = 1, ..., D) du type

$$X_n \mid X_p \rangle \stackrel{\text{def}}{=} C^q_{np} \mid X_q \rangle \quad \text{et} \quad \langle X_i \mid X_j \rangle \stackrel{\text{def}}{=} \delta_{ij}$$
(3.4.8)

ceci implique

$$C_{np}^{q} = \langle X_{q} \mid X_{n} \mid X_{p} \rangle = [X_{n}]_{qp}$$
(3.4.9)

de sorte que la forme de Killing puisse maintenant s'écrire

$$[g]_{nm} \equiv \sum_{p=1}^{D} \sum_{q=1}^{D} [X_n]_{qp} [X_m]_{pq} = Tr([X_n] [X_m]) = Tr(X_n X_m)$$
(3.4.10)

la dernière écriture étant simplement utilisée afin d'alléger un peu la notation. Ainsi, la matrice représentative du tenseur métrique [g] est carrée et de dimension $(D \times D)$. Elle s'exprime comme :

$$[g] = \begin{bmatrix} Tr(X_1X_1) & Tr(X_1X_2) & \dots & Tr(X_1X_D) \\ Tr(X_2X_1) & \ddots & & \vdots \\ \vdots & & Tr(X_nX_n) & \vdots \\ \vdots & & & \ddots & \vdots \\ Tr(X_DX_1) & \dots & \dots & Tr(X_DX_D) \end{bmatrix}$$
(3.4.11)

Comme on a une matrice carrée de dimension $(D \times D)$, ce la nous permet d'écrire que le déterminant de [g] vaut

det
$$[g] = \sum_{i=1}^{D} g_{ic} (-1)^{i+c} |M_{ic}|$$
 (3.4.12)

où la somme s'effectue sur les lignes i de la matrice à la colonne c fixée, $|M_{ic}|$ est le mineur associé à l'élément g_{ic} considéré. On a alors

$$\det [g] = \sum_{i=1}^{D} Tr(X_i X_c) (-1)^{i+c} |M_{ic}|$$

$$= \sum_{i=1}^{D} \sum_{p=1}^{D} \sum_{q=1}^{D} C_{ip}^q C_{cq}^p (-1)^{i+c} |M_{ic}|$$
(3.4.13)

finalement, on obtient l'expression suivante du déterminant de la matrice carrée, représentative de la forme de Killing dans cette représentation particulière :

det
$$[g] = \sum_{i=1}^{D} \left[\sum_{p=1}^{D} \sum_{q=1}^{D} C_{ip}^{q} C_{cq}^{p} (-1)^{i+c} |M_{ic}| \right]$$
 (3.4.14)

3.4.5 Critère de Cartan

Critère de Cartan :

Un groupe de Lie G est semi-simple si le déterminant de la forme de Killing qui lui est associée est différent de zéro.

 $^{^{4}}$ Cette représentation particulière porte le nom de représentation régulière ou adjointe du groupe de Lie **G** considéré.

Pour démontrer ceci, il suffit de remarquer que si le groupe de Lie **G** considéré n'est pas semi-simple, alors le déterminant de la forme de Killing qui lui est associée est nul. Ceci signifie simplement que, si le groupe de Lie **G** n'est pas semi-simple, alors ce groupe admet un certain sous-groupe **H** invariant abélien (autre que l'élément identité) qui est, par hypothèse, de dimension d < D. Dès lors, les constantes de structures du groupe de Lie **G** vérifient

$$C_{mn}^{l} = C_{nm}^{l} = 0 \quad \text{pour } 1 \leq m \leq D$$

pour $1 \leq n \leq d$
pour $d + 1 \leq l \leq D$ (3.4.15)

Ainsi, à ce stade, le déterminant de la forme de Killing (associé au groupe \mathbf{G}) prend la forme qui suit

det
$$[g] = \sum_{i=1}^{D} \left[\sum_{p=1}^{d} \sum_{q=1}^{d} C_{ip}^{q} C_{cq}^{p} (-1)^{i+c} |M_{ic}| \right]$$
 (3.4.16)

de plus, comme le sous-groupe invariant abélien **H** est, de par sa définition, un sous-groupe abélien, alors il est aussi un groupe abélien. Cela implique que ses constantes de structure C_{ab}^c avec $1 \leq a, b, c \leq$ sont toutes nulles. On en conclut donc que

$$C_{ab}^c = 0 \quad 1 \leqslant a, \, b, \, c \leqslant d \tag{3.4.17}$$

ainsi, en choisissant la colonne c fixée parmi celle relative au sous-groupe invariant abélien \mathbf{H} , on peut donc écrire que :

$$C^p_{cq} = 0 \quad 1 \leqslant p \,, \, q \leqslant d \tag{3.4.18}$$

finalement le déterminant de la forme de Killing devient

$$\det [g] = 0 \tag{3.4.19}$$

car tous les éléments de la colonne c de la matrice représentative du tenseur métrique sont nuls.

3.4.6 Semi-simplicité du groupe U(n)

Nous allons démontrer la semi-simplicité du groupe unitaire U(n) à l'aide du critère de Cartan. Soient E_{ij} (avec $1 \le i \le n$) les n^2 générateurs de ce groupe, qui satisfont à la relation de commutation (3.4.6).

Afin de pouvoir réaliser ces n^2 générateurs, on peut utiliser, entre autre, deux représentations possibles : la représentation bosonique et la représentation matricielle "unité".

La représentation bosonique

On introduit les opérateurs bosons création et annihilation, respectivement notés b_i^{\dagger} et b_j $(1 \leq i, j \leq n)$ qui satisfont aux relations de commutations de Bose

$$\left[b_{i}^{\dagger}, b_{j}^{\dagger}\right] = \left[b_{i}, b_{j}\right] = 0 \quad \text{et} \quad \left[b_{i}, b_{j}^{\dagger}\right] = \delta_{ij} \tag{3.4.20}$$

puis, afin de réaliser les n^2 générateurs E_{ij} du groupe unitaire U(n), on pose

$$E_{ij} = b_i^{\dagger} b_j \quad \text{avec } 1 \leqslant i \,, \, j \leqslant n \tag{3.4.21}$$

on vérifie donc qu'on a bien l'égalité :

$$\left[b_i^{\dagger} b_m, b_j^{\dagger} b_n\right] = \delta_{j\,m} \, b_i^{\dagger} \, b_n - \delta_{i\,n} \, b_j^{\dagger} \, b_m. \tag{3.4.22}$$

La représentation matricielle "unité"

Dans le cadre de cette représentation particulière, on pose par définition que le générateur E_{ij} (du groupe U(n)) est représenté par une matrice carrée de dimension n, construite avec des zéros partout sauf un 1 qui se trouve à l'intersection de la ligne i et de la colonne j. Ceci implique

$$E_{ab} E_{cd} = \delta_{bc} E_{ad}. \tag{3.4.23}$$

Puis, de la même façon que précédemment, on vérifie également l'égalité (3.4.6).

Forme de Killing associée

On va maintenant écrire la matrice⁵ représentative de la forme de Killing associée au groupe U(n). Pour cela, nous utiliserons la représentation matricielle "unité". Effectuons la correspondance suivante

$$E_{ab} = X_{\alpha} = X_{n(a-1)+b} \tag{3.4.24}$$

A titre d'exemple, pour le groupe U(3), on a les $3 \times 3 = 9$ quantités X_{α} suivantes :

Ainsi, avec $(a, b) \in [1, n]$, on a effectivement $\alpha \in [1, n^2]$. Les termes de la matrice métrique sont alors du type

$$[g]_{\alpha\beta} = Tr(X_{\alpha}X_{\beta}) = Tr(E_{ab}E_{cd}) = Tr(\delta_{bc}E_{ad}) = \delta_{bc}Tr(E_{ab}E_{bd})$$
(3.4.26)

avec les deux conditions :

$$\alpha \equiv (a, b) \quad \text{et} \quad \beta \equiv (c, d).$$
 (3.4.27)

Cette dernière forme d'écriture de l'élément $[g]_{\alpha\beta}$ nous conduit naturellement à distinguer les trois situations mathématiques qui suivent :

• 1) $\forall a \neq b \neq d \neq a$ avec $(a, b, d) \in [1, n]$: On a alors :

$$E_{ab} E_{bd} = E_{ad} \quad \text{donc} \quad Tr(E_{ab} E_{bd}) = Tr(E_{ad}) = 0.$$
 (3.4.28)

• 2) $\forall (a, b) \in [1, n]$ avec $d = a \neq b$: On a alors :

$$E_{ab} E_{ba} = E_{aa} \quad \text{donc} \quad Tr(E_{ab} E_{ba}) = Tr(E_{aa}) = 1.$$
 (3.4.29)

• 3) $\forall a \in [1, n]$:

On a alors :

$$E_{a\,a} E_{a\,a} = E_{a\,a} \quad \text{donc} \quad Tr\left(E_{a\,a} E_{a\,a}\right) = Tr\left(E_{a\,a}\right) = 1.$$
 (3.4.30)

Examinons les résultats obtenus dans le cadre des trois situations précédentes. Il résulte qu'un élément par ligne et par colonne de la matrice représentative du tenseur métrique vaut 1 et les autres sont tous nuls. On peut donc conclure que le déterminant de la matrice [g] est non nul, d'après le critère de Cartan, le groupe unitaire U(n) est semi-simple. Par conséquent, en vertu,

⁵Cette matrice est carrée et d'ordre $(n^2 \times n^2)$.

du théorème de Racah, le groupe unitaire U(n) admet n opérateurs invariants (opérateurs de Casimir). De plus, on peut remarquer que la matrice $[g]_{U(n)}$ représentative du tenseur métrique du groupe U(n) est bien symétrique comme nous l'avions déjà mentionné lors de sa définition.

Pour bien comprendre la forme de la matrice métrique, on peut, à titre d'exemple, exprimer cette dernière dans le cas particulier du groupe U(3). On obtient alors la matrice 9×9 suivante

$\left[\begin{array}{c} Tr\left(X_{1} X_{1}\right) \\ Tr\left(X_{2} X_{1}\right) \\ Tr\left(X_{3} X_{1}\right) \\ Tr\left(X_{4} X_{1}\right) \\ Tr\left(X_{5} X_{1}\right) \\ Tr\left(X_{5} X_{1}\right) \\ Tr\left(X_{6} X_{1}\right) \\ Tr\left(X_{7} X_{1}\right) \\ Tr\left(X_{7} X_{1}\right) \\ Tr\left(X_{9} X_{1}\right) \end{array}\right]$	$\begin{array}{c} Tr\left(X_{1}\;X_{2}\right)\\ Tr\left(X_{2}\;X_{2}\right)\\ Tr\left(X_{3}\;X_{2}\right)\\ Tr\left(X_{4}\;X_{2}\right)\\ Tr\left(X_{5}\;X_{2}\right)\\ Tr\left(X_{5}\;X_{2}\right)\\ Tr\left(X_{6}\;X_{2}\right)\\ Tr\left(X_{7}\;X_{2}\right)\\ Tr\left(X_{8}\;X_{2}\right)\\ Tr\left(X_{9}\;X_{2}\right)\end{array}$	$\begin{array}{c} Tr\left(X_{1} X_{3}\right) \\ Tr\left(X_{2} X_{3}\right) \\ Tr\left(X_{3} X_{3}\right) \\ Tr\left(X_{4} X_{3}\right) \\ Tr\left(X_{5} X_{3}\right) \\ Tr\left(X_{5} X_{3}\right) \\ Tr\left(X_{6} X_{3}\right) \\ Tr\left(X_{7} X_{3}\right) \\ Tr\left(X_{8} X_{3}\right) \\ Tr\left(X_{9} X_{3}\right) \end{array}$	$\begin{array}{c} Tr\left(X_{1} X_{4}\right) \\ Tr\left(X_{2} X_{4}\right) \\ Tr\left(X_{3} X_{4}\right) \\ Tr\left(X_{4} X_{4}\right) \\ Tr\left(X_{5} X_{4}\right) \\ Tr\left(X_{5} X_{4}\right) \\ Tr\left(X_{7} X_{4}\right) \\ Tr\left(X_{8} X_{4}\right) \\ Tr\left(X_{8} X_{4}\right) \\ Tr\left(X_{9} X_{4}\right) \end{array}$	$\begin{array}{c} Tr\left(X_{1} \; X_{5}\right) \\ Tr\left(X_{2} \; X_{5}\right) \\ Tr\left(X_{3} \; X_{5}\right) \\ Tr\left(X_{4} \; X_{5}\right) \\ Tr\left(X_{5} \; X_{5}\right) \\ Tr\left(X_{5} \; X_{5}\right) \\ Tr\left(X_{6} \; X_{5}\right) \\ Tr\left(X_{7} \; X_{5}\right) \\ Tr\left(X_{8} \; X_{5}\right) \\ Tr\left(X_{9} \; X_{5}\right) \end{array}$	$\begin{array}{c} Tr\left(X_{1} \ X_{6}\right) \\ Tr\left(X_{2} \ X_{6}\right) \\ Tr\left(X_{3} \ X_{6}\right) \\ Tr\left(X_{4} \ X_{6}\right) \\ Tr\left(X_{5} \ X_{6}\right) \\ Tr\left(X_{5} \ X_{6}\right) \\ Tr\left(X_{7} \ X_{6}\right) \\ Tr\left(X_{7} \ X_{6}\right) \\ Tr\left(X_{8} \ X_{6}\right) \\ Tr\left(X_{9} \ X_{6}\right) \end{array}$	$\begin{array}{c} Tr\left(X_{1} \; X_{7}\right) \\ Tr\left(X_{2} \; X_{7}\right) \\ Tr\left(X_{3} \; X_{7}\right) \\ Tr\left(X_{4} \; X_{7}\right) \\ Tr\left(X_{5} \; X_{7}\right) \\ Tr\left(X_{5} \; X_{7}\right) \\ Tr\left(X_{7} \; X_{7}\right) \\ Tr\left(X_{8} \; X_{7}\right) \\ Tr\left(X_{9} \; X_{7}\right) \end{array}$	$\begin{array}{c} Tr\left(X_{1}X_{8}\right)\\ Tr\left(X_{2}X_{8}\right)\\ Tr\left(X_{3}X_{8}\right)\\ Tr\left(X_{4}X_{8}\right)\\ Tr\left(X_{5}X_{8}\right)\\ Tr\left(X_{5}X_{8}\right)\\ Tr\left(X_{6}X_{8}\right)\\ Tr\left(X_{7}X_{8}\right)\\ Tr\left(X_{7}X_{8}\right)\\ Tr\left(X_{9}X_{8}\right)\end{array}$	$ \begin{array}{c} Tr(X_{1} X_{9}) \\ Tr(X_{2} X_{9}) \\ Tr(X_{3} X_{9}) \\ Tr(X_{4} X_{9}) \\ Tr(X_{5} X_{9}) \\ Tr(X_{5} X_{9}) \\ Tr(X_{7} X_{9}) \\ Tr(X_{7} X_{9}) \\ Tr(X_{8} X_{9}) \\ Tr(X_{9} X_{9}) \end{array} $
st_à_dire								(3.4.31)

c'est-à-dire

L	$Tr(E_{11}E_{11})$	$Tr(E_{11}E_{12})$	$Tr(E_{11}E_{13})$	$Tr(E_{11}E_{21})$	$Tr(E_{11}E_{22})$	$Tr(E_{11}E_{23})$	$Tr(E_{11}E_{31})$	$Tr(E_{11}E_{32})$	$Tr(E_{11}E_{33})$	
L	$Tr(E_{12}E_{11})$	$Tr(E_{12}E_{12})$	$Tr(E_{12}E_{13})$	$Tr(E_{12}E_{21})$	$Tr(E_{12}E_{22})$	$Tr(E_{12}E_{23})$	$Tr(E_{12}E_{31})$	$Tr(E_{12}E_{32})$	$Tr(E_{12}E_{33})$	
L	$Tr(E_{13}E_{11})$	$Tr(E_{13}E_{12})$	$Tr(E_{13}E_{13})$	$Tr(E_{13}E_{21})$	$Tr(E_{13}E_{22})$	$Tr(E_{13}E_{23})$	$Tr(E_{13}E_{31})$	$Tr(E_{13}E_{32})$	$Tr(E_{13}E_{33})$	
L	$Tr(E_{21}E_{11})$	$Tr(E_{21}E_{12})$	$Tr(E_{21}E_{13})$	$Tr(E_{21}E_{21})$	$Tr(E_{21}E_{22})$	$Tr(E_{21}E_{23})$	$Tr(E_{21}E_{31})$	$Tr(E_{21}E_{32})$	$Tr(E_{21}E_{33})$	
L	$Tr(E_{22}E_{11})$	$Tr(E_{22}E_{12})$	$Tr(E_{22}E_{13})$	$Tr(E_{22}E_{21})$	$Tr(E_{22}E_{22})$	$Tr(E_{22}E_{23})$	$Tr(E_{22}E_{31})$	$Tr(E_{23}E_{32})$	$Tr(E_{22}E_{33})$	i.
L	$Tr(E_{23}E_{11})$	$Tr(E_{23}E_{12})$	$Tr(E_{23}E_{13})$	$Tr(E_{23}E_{21})$	$Tr(E_{22}E_{22})$	$Tr(E_{23}E_{23})$	$Tr(E_{23}E_{31})$	$Tr(E_{23}E_{32})$	$Tr(E_{23}E_{33})$	
İ	$Tr(E_{31}E_{11})$	$Tr(E_{31}E_{12})$	$Tr(E_{31}E_{13})$	$Tr(E_{31}E_{21})$	$Tr(E_{31}E_{22})$	$Tr(E_{31}E_{23})$	$Tr(E_{31}E_{31})$	$Tr(E_{31}E_{32})$	$Tr(E_{31}E_{33})$	
L	$Tr(E_{32}E_{11})$	$Tr(E_{32}E_{12})$	$Tr(E_{32}E_{13})$	$Tr(E_{32}E_{21})$	$Tr(E_{32}E_{22})$	$Tr(E_{32}E_{23})$	$Tr(E_{32}E_{31})$	$Tr(E_{32}E_{32})$	$Tr(E_{32}E_{33})$	
L	$Tr(E_{33}E_{11})$	$Tr(E_{33}E_{12})$	$Tr(E_{33}E_{13})$	$Tr(E_{33}E_{21})$	$Tr(E_{33}E_{22})$	$Tr(E_{33}E_{23})$	$Tr(E_{33}E_{31})$	$Tr(E_{33}E_{32})$	$Tr(E_{33}E_{33})$	
	-								(2/20))
									(0.4.02	4

après calcul de ces différentes quantités, on obtient l'expression de la matrice représentative du tenseur métrique $[g]_{U(3)}$ qui suit

on en conclu que le groupe unitaire d'ordre trois est bien semi-simple, et donc qu'il admet trois opérateurs invariants.

Remarque :

Si on note par $e_{i,j}$ la réalisation d'un générateur E_{ij} suivant la représentation matricielle unité, on constate que la matrice $[g]_{U(3)}$ peut également s'écrire

$$[g]_{U(3)} = \begin{bmatrix} e_{1,1} & e_{2,1} & e_{3,1} \\ e_{1,2} & e_{2,2} & e_{3,2} \\ e_{1,3} & e_{2,3} & e_{3,3} \end{bmatrix}$$
(3.4.34)

et la matrice $[g]_{U(n)}$ peut s'écrire sous la forme de la matrice carrée $(n^2\times n^2)$ suivante

$$[g]_{U(n)} = \begin{bmatrix} e_{1,1} & e_{2,1} & \cdots & e_{n-1,1} & e_{n,1} \\ e_{1,2} & e_{2,2} & \cdots & e_{n-1,2} & e_{n,2} \\ \vdots & & \ddots & & \vdots \\ \vdots & & & \ddots & & \vdots \\ e_{1,n} & & \cdots & & e_{n,n} \end{bmatrix} \implies [g]_{U(n)}^2 = \mathbb{I}_{n^2}.$$
(3.4.35)

La dernière égalité implique que det $[g]_{U(n)} = \pm 1$. Il y a dans $[g]_{U(n)}$, n colonnes qui contribuent à mettre un 1 sur la diagonale. En effet, les n éléments diagonaux $e_{i,i}$ sont des matrices qui admettent un 1 sur leur diagonale (à l'intersection de la ligne i et de la colonne i). Ce qui implique qu'il y a $\frac{1}{2}(n^2 - n)$ couples de colonnes à permuter pour obtenir la matrice $[g]_{U(n)}^2 = \mathbb{I}_{n^2}$. Ainsi, on en déduit que le déterminant de $[g]_{U(n)}$ est

$$\det \left[g\right]_{U(n)} = (-1)^{\frac{n(n-1)}{2}} \neq 0 \quad \forall n \in \mathbb{N} \qquad \Longrightarrow \qquad U(n) \text{ est bien un groupe semi-simple.}$$
(3.4.36)

Dans le cas particulier n = 3, on retrouve bien le résultat (3.4.33).

Il nous faut maintenant exprimer les opérateurs invariants des groupes unitaires U(n), et plus particulièrement ceux des groupes U(3) et U(4) qui interviendrons ultérieurement dans l'étude des modes vibrationnels des molécules considérées.

3.5 Modèle algébrique du Hamiltonien

3.5.1 Introduction

De part la définition des générateurs d'un groupe dynamique, toute observable doit pouvoir s'écrire en un développement de l'ensemble de ces générateurs. Ainsi, l'opérateur Hamiltonien H du système à p degrés de liberté peut s'écrire sous la forme d'un développement en série de puissance des générateurs E_{ij} du groupe unitaire U(p+1):

$$H = \alpha^0 \, \mathbb{I}_d + \sum_{i,j}^{p+1} \alpha^1_{ij} E_{ij} + \frac{1}{2} \sum_{i,j,k,l}^{p+1} \alpha^2_{ij\,k\,l} E_{ij} E_{k\,l} + \cdots \,.$$
(3.5.1)

Mais l'écriture du Hamiltonien sous cette forme, conduit à un modèle qui repose sur un nombre de paramètres très important. De plus, une telle écriture présente un autre inconvénient : elle ne repose pas explicitement sur la symétrie moléculaire du système considéré. Afin de remédier à ces inconvénients, Gilmore et Draayer [52], ont introduit le concept de symétrie dynamique. L'idée initiale consiste à remarquer que le Hamiltonien relatif à une molécule doit être invariant sous l'action des différentes opérations de symétrie du groupe moléculaire G_{Mol} . Dans le cadre d'un formalisme algébrique, le moyen le plus simple pour satisfaire à cette condition physique, est de construire le Hamiltonien à partir des différents invariants des groupes constituants la chaîne algébrique.

3.5.2 Le concept de symétrie dynamique

Ce concept, développé par Gilmore et Draayer [52] ainsi que par Iachello et Levine [6], permet d'obtenir l'allure du spectre. Son énoncé est le suivant :

le Hamiltonien d'ordre zéro est construit à partir des opérateurs invariants des groupes continus et semi-continus présents dans la chaîne algébrique.

Exemple : Le rotateur rigide

Dans le cas d'une molécule diatomique, on peut caractériser ses états rotationnels par la chaîne de groupes suivante :

Chaîne de groupes :
$$SU(3) \supset SO(2)$$

 $\downarrow \qquad \downarrow$
Opérateurs invariants : $J^2 \qquad J_z^2$
 $\downarrow \qquad \downarrow$
Valeurs propres : $j(j+1) \qquad K^2$.
(3.5.2)

On en déduit donc que, dans la base standard $\{|j, K\rangle\}$, le Hamiltonien d'odre zéro et l'énergie associée s'écrivent respectivement comme :

$$H_0 = \alpha J^2 + \beta J_z^2 \implies E_0^{\{|j, K\rangle\}} = \alpha j(j+1) + \beta K^2.$$
(3.5.3)

On a ainsi un problème algébriquement soluble, puisque, dans la chaîne considérée, le Hamiltonien est diagonal : l'énergie est fonction des nombres quantiques caractéristiques de la chaîne de groupes.

3.6 Groupe unitaire SU(n) comme sous-groupe spécial unitaire du groupe unitaire U(n)

3.6.1Définition du passage

Par définition, le groupe spécial unitaire SU(n) est formé des matrices unitaires carrées ($n \times$ n) de déterminant égal à +1. Ces groupes sont très utilisés en physique : SU(2) décrit les états de particules possédant des spins $\frac{1}{2}$, SU(3) est lié aux propriétés harmoniques d'oscillateurs ou à la rotation des propriétés des systèmes, et SU(4) représente des états de particules élémentaires dans le modèle des quarks [19].

En fait, pour passer du groupe unitaire U(n) à son sous-groupe spécial unitaire SU(n), il suffit de poser les transformations suivantes [10] sur les générateurs

$$\forall \ 1 \leqslant i, j \leqslant n \quad E_{ij}^{SU(n)} \equiv E_{ij}^{U(n)} - \frac{\mathcal{I}_1^{U(n)}}{n} \,\delta_{ij} \tag{3.6.1}$$

avec $\mathcal{I}_1^{U(n)} = \sum_{i=1}^n E_{ii}^{U(n)}$ qui est l'opérateur de Casimir linéaire du groupe unitaire U(n). On peut alors remarquer que :

$$\mathcal{J}_{1}^{SU(n)} = \sum_{i=1}^{n} E_{ii}^{SU(n)} = \sum_{i=1}^{n} \left(E_{ii}^{U(n)} - \frac{\mathcal{J}_{1}^{U(n)}}{n} \right) = \sum_{i=1}^{n} E_{ii}^{U(n)} - \mathcal{J}_{1}^{U(n)} = 0.$$
(3.6.2)

Conséquences 3.6.2

En premier lieu, puisque $\mathcal{J}_1^{U(n)}$ est l'invariant linéaire du groupe U(n), alors les générateurs $E_{ij}^{SU(n)}$ satisfont à la même relation de commutation (3.4.6) que les générateurs $E_{ij}^{U(n)}$. De plus, la condition (3.6.2) impose que les générateurs indépendants de SU(n) sont au

nombre de $n^2 - 1$, et que son rang est n - 1. Enfin, comme le groupe U(n) est semi-simple

par sa construction, SU(n) est lui aussi semi-simple. Ainsi en vertu du théorème de Racah, le groupe spécial unitaire SU(n) admet n-1 opérateurs invariants. Leroy, dans sa thèse [13], montre comment on passe de ce formalisme "unitaire" au formalisme "standard" pour le groupe SU(2) dont on sait qu'il est isomorphe⁶ au groupe SO(3).

3.6.3 Passage $U(n) \rightarrow SU(n)$

Comme le groupe U(n) possède n^2 générateurs E_{kj} (avec $1 \leq k, j \leq n$), il possède également n^2 paramètres α_{kj} (avec $1 \leq k, j \leq n$). De sorte qu'un élément $\mathcal{U}_{U(n)}$ quelconque ce ce groupe s'écrit en représentation paramétrique

$$\mathcal{U}_{U(n)} = e^{-i\sum_{k=1}^{n}\sum_{j=1}^{n}\alpha_{kj}E_{kj}} = e^{-i\sum_{k=1}^{n}\sum_{j\neq k=1}^{n}\alpha_{kj}E_{kj}} - i\sum_{i=k}^{n}\alpha_{kk}E_{kk}.$$
(3.6.3)

c'est-à-dire, en utilisant les transformations (3.6.1) relatives au passage de U(n) à SU(n), on peut réécrire l'élément $\mathcal{U}_{U(n)}$ comme

$$\mathcal{U}_{U(n)} = e^{-i\sum_{k=1}^{n}\sum_{j\neq k=1}^{n}\alpha_{kj}E_{kj} - i\sum_{k=1}^{n}\alpha_{kk}E_{kk}} = e^{-i\sum_{k=1}^{n}\sum_{j\neq k=1}^{n}\alpha_{kj}E_{kj}^{SU(n)} - i\sum_{k=1}^{n}\alpha_{kk}\left(E_{kk}^{SU(n)} + \frac{\mathcal{I}_{1}^{U(n)}}{n}\right)^{2}$$
(3.6.4)

ce qui nous donne encore

$$\mathcal{U}_{U(n)} = e^{-i\sum_{k=1}^{n}\sum_{j\neq k=1}^{n}\alpha_{kj}E_{kj}^{SU(n)} - i\sum_{k=1}^{n}\alpha_{kk}E_{kk}^{SU(n)} - i\frac{\mathcal{I}_{1}^{U(n)}}{n}\sum_{k=1}^{n}\alpha_{kk}}$$
(3.6.5)

c'est-à-dire, après regroupement des deux premières séries de termes présentes dans l'exponentielle, on obtient

$$\mathfrak{U}_{U(n)} = e^{-i\sum_{k=1}^{n}\sum_{j=1}^{n}\alpha_{kj}E_{kj}^{SU(n)}}e^{-i\frac{\mathfrak{I}_{1}^{U(n)}}{n}\sum_{k=1}^{n}\alpha_{kk}}$$
(3.6.6)

finalement, en notant par $\mathcal{U}_{SU(n)}$ un élément quelconque du groupe SU(n), on obtient le résultat suivant :

$$\mathfrak{U}_{U(n)} = \mathfrak{U}_{SU(n)} \times e^{-i\frac{\mathfrak{I}_{1}^{U(n)}}{n}} \sum_{k=1}^{n} \alpha_{kk}$$
(3.6.7)

Ce qui signifie simplement que, pour pouvoir passer du groupe unitaire U(n) à son sousgroupe spécial unitaire SU(n), il suffit d'imposer la condition :

$$U(n) \longmapsto SU(n) : \sum_{k=1}^{n} \alpha_{kk} = 0.$$
(3.6.8)

Ici s'achève les rappels généraux sur les groupes et algèbres de Lie. Nous allons maintenant présenter la méthode de Gelfand-Zetlin, qui permet une étude et une classification complète des représentations unitaires de dimension finie.

⁶De manière tout à fait générale, on peut montrer que les groupes SU(n) et SO(n+1) sont isomorphes. Mais il faut bien prendre garde à ne pas penser que ces groupes sont identiques, car ils diffèrent par leur structure topologique.

3.7 Les représentations d'un groupe unitaire U(n)

3.7.1 La méthode de Gelfand-Zetlin (G-Z)

Afin de caractériser totalement l'espace porteur⁷ V_n d'une représentation irréductible (R.I.) de U(n), G-Z [15] introduisent un ensemble complet de n opérateurs $\mathcal{I}_k^{(n)}$ $(1 \le k \le n)$ invariants de U(n). Ces opérateurs étant construits sur les générateurs de l'algèbre associée, sont donnés par $\mathcal{I}_k^{(n)} = \sum_{i_1,\ldots,i_k=1}^n E_{i_1i_2}E_{i_2i_3}\ldots E_{i_ki_1}$ avec $1 \le k \le n$. L'ensemble des valeurs propres simultanées $\left\{\lambda_k^{(n)}\right\}_{1\le k\le n}$ associées à $\left\{\mathcal{I}_k^{(n)}\right\}_{1\le k\le n}$ permet de

L'ensemble des valeurs propres simultanées $\{\lambda_k^{(n)}\}_{1 \leq k \leq n}$ associées à $\{\mathcal{I}_k^{(n)}\}_{1 \leq k \leq n}$ permet de caractériser l'espace porteur V_n , c'est-à-dire permet un étiquetage possible des R.I. de U(n). Puis, l'introduction d'un E.C.O.C. permet d'étiqueter individuellement tous les états de V_n . Le choix usuel pour ce dernier, consiste à prendre les n(n+1)/2 opérateurs :

$$\mathcal{J}_{k}^{(r)} = \sum_{i_{1},\dots,i_{k}=1}^{r} E_{i_{1}i_{2}} E_{i_{2}i_{3}}\dots E_{i_{k}i_{1}} \quad \text{avec } 1 \leqslant k \leqslant r \text{ et } 1 \leqslant r \leqslant n.$$
(3.7.1)

Chacun de ces opérateurs $\mathfrak{I}_k^{(r)}$ apparaît comme étant l'un des r opérateurs invariants de l'un des sous-groupes U(r) de U(n). L'algèbre associée (aux sous-groupes U(r)) est formée par le sous-ensemble des générateurs $\{E_{ij}\}_{1 \leq i,j \leq r}$. Cet E.C.O.C. particulier est en fait parfaitement adapté à la décomposition au sein de la chaîne canonique

$$U(n) \supset U(n-1) \supset \dots \supset U(1) \tag{3.7.2}$$

du groupe U(n). La diagonalisation simultanée des opérateurs de l'E.C.O.C. nous conduit à adopter la notation

$$\begin{vmatrix} \lambda_1^{(n)} & \lambda_2^{(n)} & \cdots & \lambda_n^{(n)} \\ \cdots & \cdots & \cdots & \cdots \\ & \lambda_1^{(r)} & \cdots & \lambda_r^{(r)} \\ \cdots & \cdots & \cdots & \ddots \\ & & \lambda_1^{(2)} & \lambda_2^{(2)} \\ & & & \lambda_1^{(1)} \end{vmatrix} \right)$$
(3.7.3)

pour les états de l'espace porteur V_n de la R.I. considérée. La disposition des valeurs propres sous forme de triangle permet de mieux mettre en évidence la structure canonique puisque, par exemple, la ligne numéro r (en partant du bas) donne un ensemble de r étiquettes nécessaires et suffisantes pour caractériser complètement une R.I. de U(r).

G-Z [15] résolvent entièrement le problème relatif à la détermination des R.I. possibles du groupe U(n). En effet, ces auteurs montrent qu'il est possible de caractériser une R.I. par un ensemble de n entiers

$$[m_{1n}, m_{2n}, \cdots, m_{nn}] \tag{3.7.4}$$

qui satisfont aux règles :

$$m_{1n} \ge m_{2n} \ge \dots \ge m_{nn}. \tag{3.7.5}$$

⁷Un espace porteur V d'une R.I. λ d'un groupe **G**, est un espace qui n'admet aucun sous-espace stable sous l'action des éléments du groupe **G**.

G-Z introduisent alors une nouvelle notation, pour les états (3.7.3), qui porte le nom de "diagramme de G-Z" ou "état de G-Z". Ainsi, (3.7.3) devient⁸ :

et les coefficients m_{ij} $(1 \le i \le j \le n-1)$ satisfont aux règles d'encadrement suivantes :

$$m_{1\,j+1} \ge m_{i\,j} \ge m_{i+1\,j+1}.\tag{3.7.7}$$

La ligne numéro r de l'état de G-Z caractérise une R.I. $[m_{1r}, m_{2r}, \dots, m_{rr}]$ du sous-groupe U(r) de U(n). De plus, la dimension de l'espace porteur associé à cette R.I. $[m_{1n}, m_{2n}, \dots, m_{nn}]$, c'est-à-dire le nombre d'états (3.7.6) possibles, nous est donnée par la formule de Weyl [53] :

$$\dim\left([m_{1n}, m_{2n}, \cdots, m_{nn}]\right) = \frac{\prod_{i < j} (m_{in} - m_{jn} + j - i)}{\prod_{i=1}^{n-1} i!}.$$
(3.7.8)

3.7.2 Les différentes notations d'un état de G-Z

Nous adopterons dans la suite de ce travail les notations simplifiées de Louck [10]. Ces conventions de notation concernent les R.I. ainsi que les états de G-Z.

Convention sur les R.I.

Les R.I. (3.7.4) du groupe unitaire U(n) seront désormais désignées comme suit :

$$[m]_n \equiv [m_{1\,n}, m_{2\,n}, \cdots, m_{n\,n}]. \tag{3.7.9}$$

Convention sur les états de G-Z

Les états de G-Z du type (3.7.6), seront désormais notés de la manière suivante :

⁸Les relations qui lient les coefficients $\lambda_i^{(r)}$ aux m_{1r} sont données par Louck dans [10].
3.7.3 Poids d'un état ou d'un diagramme de G-Z

Définition

Par définition, le poids $[W(m)]_n$ d'un état ou d'un diagramme de G-Z, est un vecteur de n composantes, W_{in} , tel que :

$$[W(m)]_{n} \equiv W\begin{pmatrix} [m]_{n} \\ (m)_{n-1} \end{pmatrix} \equiv [W_{1n}, W_{2n}, \cdots, W_{nn}] \quad \text{avec} : \begin{cases} W_{in} = \sum_{j=1}^{i} m_{ji} - \sum_{j=1}^{i-1} m_{ji-1} \\ (2 \leq i \leq n) \\ W_{1n} = m_{11} \end{cases}$$
(3.7.11)

Cette relation signifie simplement que pour déterminer la composante W_{in} du vecteur poids sur un diagramme ou un état de G-Z, on fait la somme des éléments présents sur la ligne numéro i (numérotée en partant du bas), puis, on lui soustrait la somme des éléments présents sur la ligne i - 1 inférieure.

Enfin, on dit qu'un poids $[W'(m)]_n$ est plus grand qu'un poids $[W(m)]_n$, si la première composante non nulle dans la différence

$$[W'_{1n} - W_{1n}, W'_{2n} - W_{2n}, \cdots, W'_{nn} - W_{nn}]$$
(3.7.12)

est positive. Par exemple, le poids [2, 1, 0] est plus grand que [2, 0, 0].

Exemple : la R.I. [3, 2, 0] de U(3)

Prenons comme exemple d'application la R.I. [3, 2, 0] de U(3). En premier lieu, on détermine la dimension de cette R.I. Par application de la formule de Weyl (3.7.8), on trouve que

$$\dim \left([3, 2, 0] \right) = 15. \tag{3.7.13}$$

Nous devons donc déterminer 15 diagrammes de G-Z qui satisfont aux conditions d'encadrement (3.7.7). Ces 15 diagrammes de G-Z et leur poids respectif sont

Remarque :

Les poids [0, 2, 3] et [3, 2, 0] sont respectivement appelés, au sens de (3.7.12), poids minimum et poids maximum.

3.7.4 La série de Clebsch-Gordan des R.I. de U(n)

Nous verrons ultérieurement que la détermination de l'expression des tenseurs maximaux, c'est-à-dire de poids maximal, en représentation bosonique, nous oblige à considérer une serie de Clebsch-Gordan particulière. Nous allons donc maintenant définir de façon générale la série de Clebsch-Gordan de deux R.I. de U(n).

Soient deux R.I. $[m]_n$ et $[m']_n$ de U(n), alors la série de Clebsch-Gordan, notée $[m]_n \times [m']_n$, s'exprime de la manière suivante [10]

$$[m']_n \times [m]_n = [m]_n \times [m']_n = \sum_{(m)} ([m']_n + [W(m)]_n)$$
(3.7.15)

où l'indice de sommation (m) parcourt les différents diagrammes de G-Z possibles pour la R.I. $[m]_n$ de U(n). Le vecteur $[m'']_n = [m']_n + [W(m)]_n$ apparaissant dans l'expression de droite de (3.7.15), est obtenu en considérant l'addition vectorielle :

$$m_{in}'' = m_{in}' + W_{in}. aga{3.7.16}$$

Cependant, la relation ci-dessus ne permet pas de définir totalement la série de Clebsch-Gordan, puisque le vecteur $[m'']_n$ dont les composantes sont définies par (3.7.16), peut ne pas satisfaire aux conditions (3.7.5). Dans ce cas, on dit que le vecteur $[m'']_n$ est non lexical. Il existe alors une série de règles [10, 13] qui permettent de le rendre lexical :

• Règle 1 :

On commence par ajouter à $[m'']_n$ le vecteur $[n-1, n-2, \dots, 1, 0]$. Le nouveau vecteur $[p'']_n$ ainsi créé s'écrit :

$$[p'']_n = [p''_{1n}, p''_{2n}, \cdots, p''_{nn}] = [m''_{1n} + n - 1, m''_{2n} + n - 2, \cdots, m''_{nn}].$$
(3.7.17)

• Règle 2 :

Si le nouveau vecteur $[p'']_n$ contient au moins deux entiers identiques, alors le vecteur inital $[m'']_n$ ne contribue pas à la somme présente dans (3.7.15).

• Règle 3 :

Dans la situation où tous les p''_{in} sont distincts les uns des autres, il faut dans un premier temps réarranger les différents p''_{in} dans un ordre lexical (i.e. décroissant)

$$[p''_{i_1 n}, p''_{i_2 n}, \cdots, p''_{i_n n}] \qquad \text{avec} \quad p''_{i_1 n} \ge p''_{i_2 n} \ge \cdots \ge p''_{i_n n}. \tag{3.7.18}$$

Puis, dans un deuxième temps, on soustrait au vecteur précédent le vecteur $[n - 1, n - 2, \dots, 1, 0]$, de façon à obtenir le vecteur $[\mu]_n$ suivant :

$$[\mu]_n = [\mu_{1\,n}, \mu_{2\,n}, \cdots, \mu_{n\,n}] = [p_{i_1\,n}'' - (n-1), p_{i_2\,n}'' - (n-2), \cdots, p_{i_n\,n}''].$$
(3.7.19)

Enfin, on remplace, dans l'expression (3.7.15), le vecteur $[m']_n + [W(m)]_n$ par $\pm [\mu]_n$. Le choix du signe (+) ou (-) se fait suivant que l'ensemble (i_1, i_2, \dots, i_n) se déduit de $(1, 2, \dots, n)$ par une permutation, respectivement, paire ou impaire.

3.7.5 Les éléments matriciels des générateurs E_{ij}

Les générateurs E_{ij} associé au groupe U(n) peuvent être, de manière générale, décomposés en trois sous-ensembles.

L'ensemble des générateurs $\{E_{ii}\}_{1 \leq i \leq n}$. Il s'agit de l'ensemble des générateurs diagonaux dans la base des états de G-Z $\{|(m)_n\rangle\}$.

L'ensemble des générateurs $\{E_{ij}\}_{1 \leq i < j \leq n}$. Il s'agit de l'ensemble des générateurs, dits de montée, dans la base des états de G-Z $\{|(m)_n\rangle\}$.

L'ensemble des générateurs $\{E_{ji}\}_{1 \leq i < j \leq n}$. Il s'agit de l'ensemble des générateurs, dits de descente, dans la base des états de G-Z $\{|(m)_n\rangle\}$.

Les dénominations précédentes, n'ont de sens que si une notion d'ordre est introduite dans la base des états de G-Z { $|(m)_n\rangle$ } d'une représentation $[m]_n$ du groupe U(n). La procédure pour réaliser cet ordre est la suivante [10] : pour un état de G-Z $|(m)_n\rangle$ donné, on définit un vecteur $[g(m)_n]$ à n(n+1)/2 composantes, comme suit :

$$[g(m)_n] \equiv [m_{1\,n}, m_{2\,n}, \cdots, m_{n\,n}, m_{1\,n-1}, m_{2\,n-1}, \cdots, m_{n-1\,n-1}, \cdots, m_{1\,2}, m_{2\,2}, m_{1\,1}].$$
(3.7.20)

Puis, par définition, on dit qu'un état $|(m')_n\rangle$ est supérieur à un état $|(m)_n\rangle$ si la première composante non nulle de la différence $[g(m')_n] - [g(m)_n]$ est positive. Et par conséquence, un état sera qualifié de "maximal" (respectivement "minimal") s'il est supérieur (respectivement inférieur) à tous les autres.

De manière générale, Louck [10], définit l'action d'un générateur de l'algèbre u(n). Dans le cas des générateurs diagonaux, on a la formule suivante

$$E_{ii} |(m)_n\rangle = W_{in} |(m)_n\rangle \qquad \Longleftrightarrow \qquad \langle (m)_n | E_{ii} | (m)_n\rangle = W_{in} \qquad (3.7.21)$$

avec W_{in} qui est défini par (3.7.11).

Puis, dans le cas des générateurs (non diagonaux) de montée, on obtient la relation qui suit

$$E_{ij} |(m)_n\rangle = \sum_{(m')} \left[\langle (m')_n | E_{ij} | (m)_n \rangle \right] |(m')_n\rangle \equiv \sum_{(m')} \zeta_{ij}^{[m',m]} |(m')_n\rangle$$
(3.7.22)

avec $\zeta_{ij}^{[m',m]} \equiv \langle (m')_n | E_{ij} | (m)_n \rangle$. Ces coefficients $\zeta_{ij}^{[m',m]}$ sont donnés par [10]

où l'indice τ_k peut prendre toutes les valeurs $1, 2, \dots, k$. La quantité S(p-q) vaut +1 si $p \ge q$, et -1 si p < q. Cependant, il subsiste une ambiguïté [10] lorsque k = i, dans ce cas, on effectue la substitution

pour
$$k = i$$
: $S(\tau_{i-1} - \tau_i) \iff S(i - \tau_i)$
 $\sqrt{\frac{\prod_{s=1}^{i-1} (m_{s\,i-1} - m_{\tau_i\,i} + \tau_i - s - 1)}{\prod_{s=1, s \neq \tau_i}^{i-1} (m_{s\,i} - m_{\tau_i\,i} + \tau_i - s)}}$. (3.7.24)

Enfin, dans le cas des générateurs (non diagonaux) de descente, on utilise le fait que $E_{ji} = E_{ij}^{\dagger}$. Ainsi, on obtient :

$$\langle (m)_n | E_{ji} | (m')_n \rangle = \langle (m')_n | E_{ij} | (m)_n \rangle \iff \zeta_{ji}^{[m,m']} = \zeta_{ij}^{[m',m]}.$$
 (3.7.25)

3.7.6 Les représentations totalement symétriques

Définition

ī.

Une représentation totalement symétrique du groupe U(n) est définie comme :

$$[m_{1n} = N, m_{2n} = 0, \cdots, m_{n-1n} = 0, m_{nn} = 0] = [N, \underbrace{0, \cdots, 0, 0}_{n-1}] \equiv [N, \dot{0}^{n-1}].$$
(3.7.26)

La dénomination "totalement symétrique" qui qualifie ce type de R.I. de U(n) est abusive, mais elle est consacrée par l'usage [10]. Cette appellation provient du fait que le tableau de Young associé à cette représentation est celui de la R.I. totalement symétrique (au vrai sens du terme) du groupe des permutations $S(n)^9$.

Etats de G-Z associés

Les états de G-Z $|(m)_n\rangle$ qui sont associés à la représentation totalement symétrique $[N, \dot{0}^{n-1}]$ de U(n) sont donnés par [54] :

$$|(m)_n\rangle \equiv \begin{vmatrix} m_{1n} = N & 0 & \cdots & 0 \\ & \cdots & & \cdots & \cdots \\ & & m_{1r} & \cdots & 0 \\ & & & m_{12} & 0 \\ & & & & m_{11} \end{vmatrix}$$
(3.7.27)

dont le poids est : $[W(m)]_n = [m_{11}, m_{12} - m_{11}, \cdots, m_{1n} - m_{1n-1}]$, avec les règles d'encadrement $m_{1n} \ge m_{1n-1} \ge \cdots \ge m_{12} \ge m_{11}$. On constate alors que si l'on pose

$$\begin{cases} n_i = W_{in} = m_{1i} - m_{1i-1} \text{ pour } 2 \leq i \leq n, \\ n_1 = W_{1n} = m_{11} \end{cases}$$
(3.7.28)

où les W_{in} sont les composantes du poids définies par (3.7.11), alors les états de G-Z $|(m)_n\rangle$ (3.7.27) deviennent

$$\begin{vmatrix} m_{1n} = N = \sum_{i=1}^{n} n_{i} & 0 & \cdots & 0 \\ & \cdots & & \cdots & \cdots & \cdots \\ & m_{1r} = \sum_{i=1}^{r} n_{i} & \cdots & 0 & \\ & \cdots & & \cdots & \cdots & \ddots & \ddots \\ & & m_{12} = \sum_{i=1}^{2} n_{i} & 0 & \\ & & m_{11} = n_{1} & \\ \end{matrix}$$

$$(3.7.29)$$

⁹La seule R.I. de U(n) qui soit réellement totalement symétrique est $[\dot{0}^n]$.

dont le poids est $[W(m)]_n = [n_1, n_2, \cdots, n_n]$.

On remarque qu'il existe une correspondance biunivoque entre les kets (3.7.29) et leur poids. C'est pourquoi, on utilisera la notation

Il ne nous reste plus qu'à associer une interprétation physique aux différentes quantités n_i $(1 \leq i \leq n)$. Pour cela, on va utiliser la représentation bosonique des générateurs de l'algèbre associée au groupe unitaire U(n).

3.7.7 Interprétation physique des composantes du poids

On sait que diverses représentations des générateurs sont possibles, en particulier la représentation bosonique, cette dernière est explicitée dans §§3.4.6; de plus, dans le cas d'une R.I. totalement symétrique, la relation (3.7.21) peut alors être réécrite comme :

$$E_{ii} |n_1, n_2, \cdots, n_n\rangle = n_i |n_1, n_2, \cdots, n_n\rangle \qquad \Longleftrightarrow \qquad b_i^{\dagger} b_i |n_1, n_2, \cdots, n_n\rangle = n_i |n_1, n_2, \cdots, n_n\rangle$$

$$(3.7.31)$$

De plus, le terme $b_i^{\dagger} b_i$ a été interprété comme étant l'opérateur nombre de quanta \hat{n}_i d'ordre *i* [12], c'est-à-dire associé au $i^{i \grave{e}m e}$ degré de liberté. De sorte que (3.7.31) devient

$$E_{ii} |n_1, n_2, \cdots, n_n\rangle = n_i |n_1, n_2, \cdots, n_n\rangle \qquad \Longleftrightarrow \qquad \widehat{n}_i |n_1, n_2, \cdots, n_n\rangle = n_i |n_1, n_2, \cdots, n_n\rangle.$$

$$(3.7.32)$$

Au regard de l'équation aux valeurs propres précédente, l'interprétation physique des composantes n_i $(1 \leq i \leq n)$ du poids est évidente : il s'agit du nombre de quanta associé au $i^{i \grave{e}me}$ degré de liberté, par exemple, du nombre de quanta relatif à la $i^{i \grave{e}me}$ liaison moléculaire. D'un point de vue mathématique, n_i est la valeur propre de l'opérateur nombre de quanta \hat{n}_i dans la base canonique $\{|n_1, n_2, \dots, n_n\rangle\}$.

Enfin, dans la réalisation bosonique, on peut écrire qu'un état physique (3.7.30) est engendré, à partir de l'état vide de la manière suivante :

$$|n_1, n_2, \cdots, n_n\rangle = \prod_{i=1}^n \left[\frac{b_i^{\dagger n_i}}{\sqrt{n_i!}}\right] |0, 0, \cdots, 0\rangle.$$
 (3.7.33)

Ainsi, l'action physique de l'opérateur b_i^{\dagger} est d'augmenter d'un quantum le nombre de quanta attaché au $i^{i \grave{e}m e}$ degré de liberté (c'est-à-dire la liaison numéro *i*). De même, l'action physique de l'opérateur b_i est de diminuer d'un quantum le nombre de quanta de la liaison numéro *i*.

3.7.8 Interêt physique des représentations totalement symétriques

Déterminons la dimension d'une représentation totalement symétrique $[N, \dot{0}^{n-1}]$ de U(n), à partir de la formule de Weyl (3.7.8), nous obtenons :

dim
$$([N, \dot{0}^{n-1}]) = \frac{(N+n-1)!}{N!(n-1)!} = \mathbf{C}_{N+n-1}^{N}.$$
 (3.7.34)

Ce résultat est essentiel, puisqu'il signifie que le nombre d'états (3.7.30) physiquement acceptables contenus dans la représentation totalement symétrique $[N, \dot{0}^{n-1}]$ de U(n), est exactement égal au nombre d'états d'un oscillateur n fois dégénéré, qui se trouve dans un état énergétique de N quanta. Ce résultat se trouve effectivement confirmé par le rapprochement des deux relations (2.6.6) et (3.7.34). De même, on peut également vérifier la relation (2.6.13)

$$\dim \underbrace{\left[N, \dot{0}^{3}\right]}_{U(4)} = \sum_{p=0}^{N} \dim \underbrace{\left[p, \dot{0}^{2}\right]}_{U(3)}.$$
(3.7.35)

Ceci montre l'extrême cohérence qui existe dans l'utilisation mathématique des groupes unitaires, et en particulier l'emploi des représentations totalement symétriques, pour décrire la physique associée à un ensemble d'oscillateurs.

Chapitre 4

La théorie des chaînes de groupes : application aux molécules $XY_3(C_{3v})$

4.1 Généralités sur les molécules $XY_3(C_{3v})$

Les molécules XY_3 non planes (Fig. 4.1) ont C_{3v} comme groupe de symétrie moléculaire. Ce groupe moléculaire admet les six éléments suivants

FIG. 4.1 – Molécule $XY_3(C_{3v})$

- l'élément identité I_d ;
- une rotation dans le sens direct autour de l'axe C_3 ;
- une rotation dans le sens indirect autour de l'axe C_3 ;
- trois plans de symétrie verticaux σ_1 , σ_2 , σ_3 ,
- qui se décomposent en trois classes d'éléments conjugés
 - classe 1 : l'élément identité;

- classe 2 : deux rotations;

- classe 3 : trois plans de symétrie verticaux,

d'où on déduit les trois R.I. associées :

- la R.I. A_1 symétrique de dimension 1;
- la R.I. A_2 antisymétrique de dimension 1;
- la R.I. E de dimension 2.

Tous les renseignements permettant la description et la caractérisation de ce groupe se trouvent dans la table de caractères TAB. 4.1 :

C_{3v}	I_d	$3\sigma_i$	$2C_3$
A_1	1	1	1
A_2	1	-1	1
E	2	0	-1

TAB. 4.1 – La table de caractères du groupe C_{3v}

Nous nous intéresserons à des molécules comme l'arsine (AsH_3) , la phosphine (PH_3) et la stibine (SbH_3) . Normalement ces molécules sont caractérisées par trois liaisons r_1, r_2, r_3 $(r_i \equiv XY_i)$ et trois angles $\alpha_{12}, \alpha_{13}, \alpha_{23}$ $(\alpha_{ij} \equiv Y_i \hat{X} Y_j)$. En examinant comment les différentes opérations de symétrie du groupe C_{3v} agissent sur les liaisons et les angles, on obtient :

C_{3v}	I_d	C_3	C_{3}^{-1}	σ_1	σ_2	σ_3
atome Y_1	1	3	2	1	3	2
atome Y_2	2	1	3	3	2	1
atome \mathbf{Y}_3	3	2	1	2	1	3

TAB. 4.2 – Action des éléments du groupe C_{3v} sur les atomes Y

Ces molécules admettent des vibrations d'élongation et de pliage. À partir de l'action des éléments du groupe C_{3v} sur les liaisons et les angles, on peut trouver comment la représentation élongation-pliage $\Gamma_{ep} = \Gamma_e \otimes \Gamma_p$ se décompose en terme des R.I. du groupe C_{3v} :

C_{3v}	I_d	$3\sigma_i$	$2C_3$
Γ_e ou Γ_p	3	0	1

TAB. 4.3 – Représentation d'élongation et de pliage

A partir des résultats du tableau 4.3, on trouve facilement les décompositions suivantes :

- la représentation $\Gamma_e = A_1 \otimes E$ correspond aux modes $\nu_1(A_1)$ et $\nu_3(E)$;

- la représentation $\Gamma_p = A_1 \otimes E$ correspond aux modes $\nu_2(A_1)$ et $\nu_4(E)$.

Dans le tableau 4.4, on présente les fréquences des modes fondamentaux vibrationnels pour les molécules qui nous intéressent ; pour ces molécules on a 6 degrés de liberté vibrationnel au total : 3 degrés de liberté d'élongation et 3 degrés de liberté de pliage.

fréquence (cm^{-1})	SbH_3	AsH_3	PH_3
$ u_1(A_1) $	1890.502	2115.164	2321.12
$ u_2(A_1)$	782.24	906.752	992.13
$ u_3(E)$	1894.497	2126.423	2326.87
$\nu_4(E)$	827.75	999.225	1118.31

TAB. 4.4 – Fréquences des modes fondamentaux de quelques molécules $XY_3(C_{3v})$

4.2 Choix de la chaîne de groupes pour les molécules $XY_3(C_{3v})$

Comme on l'a montré dans le chapitre 2, pour un système de p oscillateurs identiques, il est possible d'utiliser la chaîne de groupes suivante :

$$U(p+1) \supset U(p) \supset S(p) \approx G_{mol} \tag{4.2.1}$$

On voit alors apparaître diverses situations physiques associées aux divers modes de vibration ν_i ($i = 1 \ge 4$):

Situations Physiques	Groupes Dynamiques associés
$\omega_1 \simeq \omega_2 \simeq \omega_3 \simeq \omega_4$	U(7)
$\omega_1 \simeq \omega_3 \neq \omega_2 \simeq \omega_4$	$U_e(4) \otimes U_p(4)$
$\omega_1 \simeq \omega_2 \neq \omega_3 \simeq \omega_4$	$U_{ep}(3)\otimes U_{ep}(5)$
$\omega_1 \simeq \omega_4 \neq \omega_3 \simeq \omega_2$	$U_{ep}(4) \otimes U_{ep}(4)$
$\omega_1 \simeq \omega_2 \simeq \omega_3 \neq \omega_4$	$U_{ep}(5)\otimes U_p(3)$
$\omega_1 \simeq \omega_3 \simeq \omega_4 \neq \omega_2$	$U_{ep}(6) \otimes U_p(2)$
$\omega_1 \simeq \omega_3 \neq \omega_2 \neq \omega_4$	$U_e(4) \otimes U_p(3) \otimes U_p(2)$
$\omega_1 \neq \omega_2 \neq \omega_3 \neq \omega_4$	$U_e(2) \otimes U_p(2) \otimes U_e(2) \otimes U_p(2)$

TAB. 4.5 – Situations physiques possibles pour des molécules $XY_3(C_{3v})$

Pour notre système, on a 3 degrés de liberté d'élongation et 3 degrés de liberté de pliage. Nos molécules sont des molécules locales, c'est-à-dire des molécules pour lesquelles, en première approximation, il est possible d'étudier les modes d'élongation et les modes de pliage séparément. Donc il faut examiner les fréquences des modes fondamentaux pour choisir une "bonne" chaîne de groupes. Le facteur \mathcal{L} traduit la dégénérescence des modes vibrationnels, c'est-à-dire on peut "estimer" la chaîne de groupes à partir de la valeur de ce facteur, le facteur \mathcal{L} étant défini comme :

$$\mathcal{L} = \frac{\Delta \nu^{vibration}}{\nu^{vibration}_{mogen}} = 2 \left| \frac{\nu_m - \nu_n}{\nu_m + \nu_n} \right|$$
(4.2.2)

Dans la table 4.6 on présente les valeurs du facteur \mathcal{L} pour des molécules de symétrie C_{3v} . En examinant la valeur du facteur \mathcal{L} pour les modes d'élongation, il est raisonnable de prendre le modèle théorique du type $U(4) \supset U(3)$. En revanche, pour les modes de pliage le facteur \mathcal{L} est relativement différent de zéro, c'est pourquoi dans ce cas il y a deux possibilités :

- soit le modèle $U_p(4) \supset U_p(3)$

	SbH_3	AsH_3	PH_3
\mathcal{L}_e	0.0021	0.0053	0.0024
\mathcal{L}_p	0.056	0.097	0.120

TAB. 4.6 – Valeurs du facteur \mathcal{L} pour des molécules de symétrie C_{3v}

- soit le modèle $U_p(3) \otimes U_p(2) \supset U_p(2) \otimes U_p(1)$

On a donc deux chaînes de groupes qui correspondent aux deux situations physiques suivantes :

$$\begin{bmatrix} (U_e(4) \supset U_e(3) \supset K_e(3) \supset S_e(3)) \\ \otimes \\ (U_p(4) \supset U_p(3) \supset K_p(3) \supset S_p(3)) \end{bmatrix} \supset C_{3v}$$
(4.2.3)

$$\begin{bmatrix} (U_e(4) \supset U_e(3) \supset K_e(3) \supset S_e(3)) \\ \otimes \\ (U_p(3) \otimes U_p(2) \supset U_p(2) \otimes U_p(1) \supset K_p(2) \otimes K_p(1) \supset S_p(2) \otimes S_p(1)) \end{bmatrix} \supset C_{3v}$$
(4.2.4)

Le deuxième cas 4.2.4 correspond à la situation où on peut décrire les modes d'élongation à l'aide d'opérateurs développés en approche locale et les modes de pliage en base de modes normaux.

4.3 Etude du groupe K(3)

4.3.1 Définition :

Un ensemble d'oscillateurs qui possèdent la même énergie peut être décrit comme appartenant à une même couche. Ainsi, pour un système composé de n oscillateurs identiques, dont les états sont décrits par des kets de G-Z de poids $W([m]_n)$, les énergies possibles nous sont données par $\hbar\omega W([m]_n)$. Donc la structure en couche est entièrement déterminée par le poids des états de G-Z.

Le poids $W([m]_n)$ est relié aux R.I. du groupe A(3) formé des matrices $(3 \ge 3)$ unitaires diagonales notées a:

$$a = \begin{pmatrix} e^{i\alpha_1} & 0 & 0\\ 0 & e^{i\alpha_2} & 0\\ 0 & 0 & e^{i\alpha_3} \end{pmatrix}$$
(4.3.1)

Chacon *et al.* [55] montrent que l'action d'un élément a du groupe A(3) sur un ket de G-Z est défini comme

$$\begin{pmatrix} e^{i\alpha_1} & 0 & 0 \\ 0 & e^{i\alpha_2} & 0 \\ 0 & 0 & e^{i\alpha_3} \end{pmatrix} \begin{vmatrix} n & 0 & 0 \\ n_1 + n_2 & 0 \\ n_1 & n_1 \end{vmatrix} \geq e^{i(\alpha_1 + \alpha_2 + \alpha_3)} \begin{vmatrix} n & 0 & 0 \\ n_1 + n_2 & 0 \\ n_1 & n_1 \end{vmatrix}$$

$$(4.3.2)$$

ou de manière totalement équivalente :

$$a|n_1n_2n_3\rangle = e^{i(\alpha_1 + \alpha_2 + \alpha_3)}|n_1n_2n_3\rangle$$
(4.3.3)

Considérons maintenant le groupe des permutations de trois objets identiques S(3), par exemple oscillateurs, liaisons, ... etc. Notons par $\{p\}$ l'ensemble des matrices (3×3) représentatives des éléments du groupe des permutations S(3). L'ensemble $\{ap\}$ forme donc un groupe, définit comme K(3), dont A(3) est un sous-groupe invariant car il vérifie la propriété [56] :

$$\{ap\} \equiv \{q\} \qquad A(3) \supset qA(3)q^{-1} \qquad \forall q \in K(3) \tag{4.3.4}$$

Donc, le groupe K(3) est formé par le produit ap des éléments du sous-groupe invariant A(3) et de S(3). De plus, ces deux groupes n'ont que l'élément unité en commun

$$A(3)\bigcap S(3) = \mathbb{I}_3 \tag{4.3.5}$$

ces dernières propriétés impliquent [56, 57] que le groupe K(3) est défini comme le produit semi-direct de deux groupes A(3) et S(3):

$$K(3) \equiv A(3) \land S(3) \tag{4.3.6}$$

4.3.2 Etude des R.I. du groupe K(3)

Il est très important d'étudier les R.I. du groupe K(3) car cela nous permettra facilement de faire la correspondance entre les groupes infinis et discrets. Nous constaterons que les R.I. de K(3) sont caractérisées par un poids et par les permutations des composantes de ce poids. C'est pourquoi les différents nombres d'occupation des couches sont fixés par les R.I. de K(3)et K(3) peut être considéré comme un groupe de symétrie de trois oscillateurs identiques dans un modèle en couche.

A partir de la définition du groupe K(3), sa structure de classe ressemble à celle de S(3). Pour caractériser les différentes classes du groupe K(3), il nous faut déterminer les caractères des matrices représentatives des différents éléments $\{ap\}$ formant K(3).

S(3) a trois classes $(111 \equiv 1^3)$, (210), (300). Les valeurs propres ϵ_j (j = 1, 2, 3) des matrices représentatives des éléments $\{ap\}$ du groupe K(3) pour ces trois cas sont :

$$\begin{cases} p = (r)(s)(t) \equiv I_d: & \epsilon_1 = e^{i\alpha_r}, \epsilon_2 = e^{i\alpha_s}, \epsilon_3 = e^{i\alpha_t} \\ p = (rs)(t): & \epsilon_{1,2} = \pm e^{i\frac{\alpha_r + \alpha_s}{2}} \\ \epsilon_3 = e^{i\alpha_t} \\ p = (rst): & \epsilon_j = e^{i\frac{2\pi}{3}(j-1)}e^{i\frac{\alpha_r + \alpha_s + \alpha_t}{3}} & j = 1, 2, 3 \end{cases}$$
(4.3.7)

Nous étudions les R.I. du groupe K(3) en suivant la méthode proposée par McIntoch [58, 59] sur l'étude des groupes semi-directs.

Les R.I. du groupe A(3) sont parfaitement déterminées. Ce groupe peut s'écrire comme la somme directe de trois groupes C_{∞} :

$$A(3) = C_{\infty}(1) \oplus C_{\infty}(2) \oplus C_{\infty}(3) \tag{4.3.8}$$

Donc les R.I. du groupe A(3) peuvent être écrites comme les produits directs des R.I. des trois groupes C_{∞} [53]. De plus, les R.I. d'un groupe C_{∞} sont déterminées par $e^{i\alpha_n}$ $(n \in \mathbb{N})$, c'est pourquoi les R.I. du groupe A(3) peuvent être caractérisées par le poids $w = (n_1 n_2 n_3)$. Ainsi pour tout élément $a \in A(3)$, une R.I. est définie comme :

$$D^{w=(n_1n_2n_3)}(a) = e^{i(\alpha_1n_1 + \alpha_2n_2 + \alpha_3n_3)}$$
(4.3.9)

Définissons maintenant le groupe du poids \mathcal{W} , qui est un sous-groupe de S(3) et est formé par les éléments h qui satisfont à

$$h \in \mathcal{W}:$$
 $D^{w=(n_1n_2n_3)}(hah^{-1}) = D^{w=(n_1n_2n_3)}(a)$ (4.3.10)

c'est-à-dire que les permutations $h \in \mathcal{W}$ laissent le poids $w = (n_1 n_2 n_3)$ inchangé [57]. Les R.I. du groupe $\mathcal{W} = \sum_i \oplus S(n_i)$ avec $\sum_i n_i = n$ sont des produits directs des différentes R.I. des groupes $S(n_i)$ présentes au sein de la somme directe définissant le groupe \mathcal{W} . Notons ces R.I. par $f_w = f_1, f_2, \dots$ où f_1, f_2, \dots sont les partitions des différents groupes $S(n_i)$. Utilisant les R.I. de \mathcal{W} , nous pouvons former les produits directs de matrices suivants :

$$\mathcal{D}^{(wf_w)}(ah) \equiv D^{w=(n_1 n_2 n_3)}(a) \mathcal{D}^{f_w}(h)$$
(4.3.11)

McIntosh montre [58, 59] que cette représentation est irréductible.

Maintenant déterminons un ensemble de générateurs de classes résiduelles à droite (G.C.R.) $\{c_i\}$ du groupe \mathcal{W} dans S(3) qui nous permettra de déduire les représentations du groupe K(3)à partir des représentations (éq. 4.3.11) de $A(3) \wedge \mathcal{W}$. Il nous faut donc déterminer un ensemble de (G.C.R.) $\{c_i\}$. Horie [60] propose une méthode systématique pour effectuer le choix des différents c_i , par exemple :

- Si $\mathcal{W} = S(n_1) \oplus S(n_2)$ alors

$$c_{1} = I_{d}$$

$$avec \begin{cases} 1 \leqslant q \leqslant \min(n_{1}, n_{2}) \\ 1 \le s_{1} < s_{2} \cdots < s_{q} \le n_{1} \\ n_{1} + 1 \le t_{1} < t_{2} \cdots < t_{q} \le n_{1} + n_{2} \end{cases}$$

$$c_{q+1} = (s_{1}t_{1})(s_{2}t_{2}) \cdots (s_{q}t_{q}) \qquad (4.3.12)$$

- Si $\mathcal{W} = S(n_1) \oplus S(n_2) \oplus \cdots \oplus S(n_j)$ alors on commence par prendre les G.C.R. $\{c_i\}$ de $S(n_1) \oplus S(n_2)$ dans $S(n_1 + n_2)$, puis, on prend les G.C.R. $\{c_i\}$ de $S(n_1 + n_2) \otimes S(n_3)$ dans $S(n_1 + n_2 + n_3)$ etc. Ensuite, on multiplie à droite tous les G.C.R. $\{c_i\}$ de $S(n_1) \oplus S(n_2)$ par tous les G.C.R. de $S(n_1 + n_2) \otimes S(n_3)$ etc. On obtient un nombre k de G.C.R pour le groupe \mathcal{W} , sous-groupe de S(3):

$$k = \frac{\left[\sum_{i=1}^{j} n_i\right]!}{\prod_{i=1}^{j} n_i!}$$
(4.3.13)

On présente un exemple de la méthode de Horie pour le cas $\mathcal{W} = S(1) \oplus S(2)$ dans la table 4.7.

W	$\{c_i\}$	$M_i = \mathcal{W}c_i$
$C(1) \oplus C(0)$	T	
$S(1) \oplus S(2)$	$c_1 = I_d$	$M_1 = Wc_1 = WI_d = W = \{I_d, (12)\}$
	$c_2 = (13)$	$M_2 = \mathcal{W}c_2 = \{(13), (321)\}$
	$c_3 = (23)$	$M_3 = \mathcal{W}c_3 = \mathcal{W} = \{(23), (123)\}$

TAB. 4.7 – Exemple de la méthode de Horie pour le cas $\mathcal{W} = S(1) \oplus S(2)$

Nous allons maintenant déterminer la table de caractères du groupe K(3). Cette étape est obligatoire si on désire effectuer la descente $U(3) \supset K(3)$ et $K(3) \supset C_{3v}$. On peut distinguer trois cas pour le poids w qui correspond aux différentes possibilités pour le groupe du poids \mathcal{W} :

* $w = (n_1 n_1 n_1)$ correspond à $\mathcal{W} = S(3)$

$$\begin{array}{cccc}
 & A(3) & S(3) \\
\text{R.I. de } K(3): & (n_1n_1n_1) & \{300\} \\
 & (n_1n_1n_1) & \{210\} \\
 & (n_1n_1n_1) & \{111\}
\end{array}$$

$$(4.3.14)$$

Ce cas correspond à une seule couche qui contient trois oscillateurs identiques. Il est clair que le groupe du poids dans cette situation est S(3) et les R.I. de K(3) sont simplement le produit direct des représentations des groupes A(3) et S(3):

$$\mathcal{D}^{w=(n_1n_1n_1)\{f_1f_2f_3\}}(ap) = D^{w=(n_1n_1n_1)}(a)\mathcal{D}^{\{f_1f_2f_3\}}(p) = e^{in_1(\alpha_1+\alpha_2+\alpha_3)}\mathcal{D}^{\{f_1f_2f_3\}}(p) \quad (4.3.15)$$

 τ)

et on peut facilement trouver le caractère associé

$$\chi^{w=(n_1n_1n_1)\{f_1f_2f_3\}}(ap) = e^{in_1(\alpha_1+\alpha_2+\alpha_3)}\chi^{\{f_1f_2f_3\}}(p), \qquad (4.3.16)$$

avec les caractères [61]

$$\chi \{300\}(p = I_d) = 1$$

$$\chi \{300\}(p = (ij)(k)) = 1$$

$$\chi \{300\}(p = (ijk)) = 1$$

$$\chi \{210\}(p = I_d) = 2$$

$$\chi \{210\}(p = (ij)(k)) = 0$$

$$\chi \{210\}(p = (ijk)) = -1$$

$$\chi \{111\}(p = I_d) = 1$$

$$\chi \{111\}(p = (ij)(k)) = -1$$

$$\chi \{111\}(p = (ijk)) = 1$$

(4.3.17)

Avec $p = I_d$ nous pouvons déduire les dimensions de ces différentes R.I. de K(3)

$$dim((n_1n_1n_1){300}) = 1dim((n_1n_1n_1){210}) = 2dim(n_1n_1n_1){111} = 1$$
(4.3.18)

* $w = (n_1 n_1 n_2)$ correspond à $\mathcal{W} = S(2) \oplus S(1)$

$$\begin{array}{ccc} A(3) & S(3) \\ \text{R.I. de } K(3): & (n_1 n_1 n_2) & \{20\}\{1\} \\ & (n_1 n_1 n_2) & \{11\}\{1\} \end{array} \tag{4.3.19}$$

où {20}{1} et {11}{1} sont respectivement les R.I. symétrique et antisymétrique du groupe S(2) Cette situation correspond au cas de deux couches, dont l'une est occupée par deux oscillateurs identiques et l'autre par un seul. On a les éléments de \mathcal{W} {(12), I_d } ainsi que les représentations orthogonales de Young [61] des groupes S(2) et S(1) :

$$S(2): \{20\}: \mathcal{D}^{\{20\}}(p) = 1 \quad \forall p \in S(2)$$

$$: \{11\}: \mathcal{D}^{\{11\}}(I_d) = 1$$

$$: \{11\}: \mathcal{D}^{\{11\}}(ij) = -1 \quad \forall (ij) \in S(2)$$

$$S(1): \{1\}: \mathcal{D}^{\{1\}}(I_d) = 1$$

$$(4.3.20)$$

On peut donc facilement obtenir les représentations de $\mathcal{W} = S(2) \oplus S(1)$:

$$\{20\}\{1\}: \mathcal{D}^{\{20\}\{1\}}(p) = 1 \quad \forall p \in S(2)$$

$$\{11\}\{1\}: \mathcal{D}^{\{11\}\{1\}}(I_d) = 1$$

$$: \mathcal{D}^{\{11\}\{1\}}(ij) = -1 \quad \forall (ij) \in S(2)$$

$$(4.3.21)$$

A partir de ce qui précede nous pouvons obtenir la représentation matricielle de tous les éléments ap du groupe K(3) pour les trois états non symétrisés possibles $|n_1n_1n_2\rangle$, $|n_1n_2n_1\rangle$ et $|n_2n_1n_1\rangle$:

$$\mathcal{D}^{w=(n_{1}n_{1}n_{2})\{f_{1}f_{2}\}\{1\}}(ap) = D^{w=(n_{1}n_{1}n_{2})}(a)\mathcal{D}^{\{f_{1}f_{2}\}\{1\}}(p) = |n_{1}n_{1}n_{2}\rangle |n_{1}n_{2}n_{1}\rangle |n_{2}n_{1}n_{1}\rangle$$

$$= \begin{pmatrix} e^{n_{1}\alpha_{1}+n_{1}\alpha_{2}+n_{2}\alpha_{3}} & 0 & 0 \\ 0 & e^{n_{1}\alpha_{1}+n_{2}\alpha_{2}+n_{1}\alpha_{3}} & 0 \\ 0 & 0 & e^{n_{2}\alpha_{1}+n_{1}\alpha_{2}+n_{1}\alpha_{3}} \end{pmatrix}$$

$$\times \mathcal{D}^{\{f_{1}f_{2}\}\{1\}}(p)$$

$$\operatorname{avec} : \{f_{1}f_{2}\}\{1\} = \begin{cases} \{20\}\{1\} \\ \{11\}\{1\} \end{cases} (4.3.22)$$

Maintenant il faut expliciter la forme des matrices $\mathcal{D}^{\{f_1f_2\}\{1\}}(p)$.

 $\alpha) \quad p = I_d$

Il est clair que dans ce cas on a

$$\mathcal{D}^{\{20\}\{1\}}(I_d) = \mathbb{I}_3$$

$$\mathcal{D}^{\{11\}\{1\}}(I_d) = \mathbb{I}_3$$
(4.3.23)

donc les caractères sont la somme des éléments diagonaux des matrices $D^{w=(n_1n_1n_2)}(a)$

$$\chi^{w=(n_1n_1n_2)\{\{20\}\{1\}}(aI_d) = \chi^{w=(n_1n_1n_2)\{\{11\}\{1\}}(aI_d) = e^{i(n_1\alpha_1+n_1\alpha_2+n_2\alpha_3)} + e^{i(n_1\alpha_1+n_2\alpha_2+n_1\alpha_3)} + e^{i(n_2\alpha_1+n_1\alpha_2+n_1\alpha_3)}$$
(4.3.24)

β) p = (12)(3) ou tout autre élément (ij)(k) de la même classe Il y a trois relations

$$\begin{cases} I_d (12) \ I_d = (12) \\ (13)(12)(23) = (12) \\ (23)(12)(13) = (12) \end{cases} \iff \begin{cases} c_1(12)c_1^{-1} = (12) \in W \\ c_2(12)c_3^{-1} = (12) \in W \\ c_3(12)c_2^{-1} = (12) \in W \end{cases}$$
(4.3.25)

nous avons alors les deux matrices

$$\mathcal{D}^{\{20\}\{1\}}((12)(3)) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\mathcal{D}^{\{11\}\{1\}}((12)(3)) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$
(4.3.26)

ainsi, les caractères nous sont donnés par

$$\chi^{w=(n_1 n_1 n_2) \{20\} \{1\}}(a(12) (3)) = e^{i(n_1 \alpha_1 + n_1 \alpha_2 + n_2 \alpha_3)}$$

$$\chi^{w=(n_1 n_1 n_2) \{11\} \{1\}}(a(12) (3)) = -e^{i(n_1 \alpha_1 + n_1 \alpha_2 + n_2 \alpha_3)}$$
(4.3.27)

 $\gamma) \ p = (123)$ ou tout autre élément (ijk) de la même classe On a trois relations

$$\begin{cases} I_d & (123) & (23) = (12) \\ (13) & (123) & I_d = I_d \\ (23) & (123) & (13) = I_d \end{cases} \iff \begin{cases} c_1(123)c_3^{-1} = (12) \in W \\ c_2(123)c_1^{-1} = I_d \in W \\ c_3(123)c_2^{-1} = I_d \in W \end{cases}$$
(4.3.28)
$$\mathcal{D}^{\{20\}\{1\}}((123)) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
$$\mathcal{D}^{\{11\}\{1\}}((123)) = \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}$$
(4.3.29)
$$\mathcal{D}^{\{11\}\{1\}}((123)) = \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}$$
on déduit les caractères :

d'où on déduit les caractères :

$$\chi^{w=(n_1 n_1 n_2) \{20\} \{1\}}(a(1 2 3)) = 0$$

$$\chi^{w=(n_1 n_1 n_2) \{11\} \{1\}}(a(1 2 3)) = 0$$
(4.3.30)

Puis de la relation (4.3.23) nous déduisons les R.I. $w = (n_1 n_1 n_2) \{f_1 f_2\} \{1\}$ de K(3)

$$\dim((n_1 n_1 n_2) \{20\} \{1\}) = 3$$

$$\dim((n_1 n_1 n_2) \{11\} \{1\}) = 3$$
(4.3.31)

* $w = (n_1 n_2 n_3)$ correspond à $\mathcal{W} = S(1) \oplus S(1) \oplus S(1)$

Nous avons, dans cette situation, trois oscillateurs dans trois couches différentes. L'élément du groupe du poids $\mathcal{W} = S(1) \oplus S(1) \oplus S(1)$ est l'élément identité I_d ; et les R.I. de $A(3) \wedge \mathcal{W}$ nous sont données par (4.3.11)

$$\mathcal{D}^{w=(n_1 n_2 n_3)\{1\}\{1\}\{1\}}(ae) = D^{w=(n_1 n_2 n_3)}(a) \mathbb{I}_1$$

$$= e^{i(n_1 \alpha_1 + n_2 \alpha_2 + n_3 \alpha_3)}$$
(4.3.32)

Ainsi, les représentations induites de K(3) sont données par la relation

$$\mathcal{D}_{\bar{m}\,m}^{w=(n_1\,n_2\,n_3)\,\{1\}\,\{1\}\,\{1\}\,\{ap\}} = D^{w=(n_1\,n_2\,n_3)}(c_{\bar{m}}a\,c_{\bar{m}}^{-1})\,\mathcal{D}^{\{1\}\,\{1\}\,\{1\}\,\{c_{\bar{m}}\,p\,c_{m}^{-1}\}\,\delta(c_{\bar{m}}\,p\,c_{m}^{-1},\,h\in\mathcal{W})}$$

$$= D^{w=(n_1\,n_2\,n_3)}(c_{\bar{m}}a\,c_{\bar{m}}^{-1})\,\mathcal{D}^{\{1\}\,\{1\}\,\{1\}\,\{1\}\,\{c_{\bar{m}}\,p\,c_{m}^{-1}\}\,\delta(c_{\bar{m}}\,p\,c_{m}^{-1},\,I_d\in\mathcal{W})}$$

$$= D^{w=(n_1\,n_2\,n_3)}(c_{\bar{m}}a\,c_{\bar{m}}^{-1})\,\mathcal{D}^{\{1\}\,\{1\}\,\{1\}\,\{1\}\,\{1\}\,\{l_d\}\,\delta(c_{\bar{m}}\,p\,c_{m}^{-1},\,I_d\in\mathcal{W})}$$

$$= D^{w=(n_1\,n_2\,n_3)}(c_{\bar{m}}a\,c_{\bar{m}}^{-1})\,\mathbb{I}_6\,\delta(c_{\bar{m}}\,p\,c_{m}^{-1},\,I_d\in\mathcal{W})$$

$$= D^{w=(n_1\,n_2\,n_3)}(c_{\bar{m}}a\,c_{\bar{m}}^{-1})\,\delta(c_{\bar{m}}\,p\,c_{m}^{-1},\,I_d\in\mathcal{W})$$

$$= D^{w=(n_1\,n_2\,n_3)}(c_{\bar{m}}a\,c_{\bar{m}}^{-1})\,\delta(c_{\bar{m}}\,p\,c_{m}^{-1},\,I_d\in\mathcal{W})$$

$$= D^{w=(n_1\,n_2\,n_3)}(c_{\bar{m}}a\,c_{\bar{m}}^{-1})\,\delta(c_{\bar{m}}\,p\,c_{m}^{-1},\,I_d\in\mathcal{W})$$

$$= D^{w=(n_1\,n_2\,n_3)}(c_{\bar{m}}a\,c_{\bar{m}}^{-1})\,\delta(c_{\bar{m}}\,p\,c_{m}^{-1},\,I_d\in\mathcal{W})$$

avec

$$\{c_i\} = \{c_1 = I_d, c_2 = (1\,2), c_3 = (1\,3), c_4 = (2\,3), c_5 = (3\,2\,1), c_6 = (1\,2\,3)\}$$
(4.3.34)

donc les G.C.R. $\{c_i\}$ sont les six éléments du groupe symétrique S(3). La condition $c_{\bar{m}} p c_m^{-1} = I_d$ est similaire à $p = c_{\bar{m}}^{-1} c_m$, donc la matrice (6×6) représentative de l'élément $p \in S(3)$ est construite en ayant 1 aux places où p apparaît dans la table de multiplication de S(3) (voir TAB. 4.8) et 0 ailleurs.

S(3)	m	1	2	3	4	5	6
	c_m	I_d	(12)	(13)	(23)	(123)	(321)
m	$c_{ar{m}}^{-1}$						
1	I_d	I_d	(12)	(13)	(23)	(123)	(321)
2	(12)	(12)	I_d	(123)	(321)	(13)	(23)
3	(13)	(13)	(321)	I_d	(23)	(123)	(321)
4	(23)	(23)	(123)	(321)	I_d	(12)	(13)
5	$(123)^{-1}$	(321)	(13)	(23)	(12)	I_d	(123)
6	$(321)^{-1}$	(123)	(23)	(12)	(13)	(321)	I_d

TAB. 4.8 – Table de multiplication $\{c_m c_{\bar{m}}^{-1}\}$ du groupe symétrique S(3)

L'élément identité I_d est le seul élément p de S(3) à avoir, dans sa matrice représentative, des valeurs diagonales toutes non nulles. Ceci implique donc que le caractère associé satisfasse à

$$\chi^{w=(n_1 \, n_2 \, n_3)\,\{1\}\,\{1\}\,\{1\}}(ap) \ltimes \delta(p \,, \, I_d) \tag{4.3.35}$$

Par suite, comme la matrice représentative de l'élément identité I_d est la matrice unité \mathbb{I}_6

d'ordre 6, on peut écrire que le caractère (4.3.35) est

$$\chi^{w=(n_1 n_2 n_3)\{1\}\{1\}\{1\}}(ap) = \delta(p, I_d) \operatorname{Tr} \left[\mathbb{I}_6 \times \begin{pmatrix} \theta_1 & 0 & 0 & 0 & 0 \\ 0 & \theta_2 & 0 & 0 & 0 \\ 0 & 0 & \theta_3 & 0 & 0 & 0 \\ 0 & 0 & 0 & \theta_4 & 0 & 0 \\ 0 & 0 & 0 & 0 & \theta_5 & 0 \\ 0 & 0 & 0 & 0 & 0 & \theta_6 \end{pmatrix} \right]$$
(4.3.36)

avec les différents $\theta_i \ (1\leqslant i\leqslant 6)$ qui valent

$$\begin{cases} \theta_1 = e^{i(n_1 \alpha_1 + n_2 \alpha_2 + n_3 \alpha_3)} & \theta_2 = e^{i(n_2 \alpha_1 + n_1 \alpha_2 + n_3 \alpha_3)} & \theta_3 = e^{i(n_3 \alpha_1 + n_2 \alpha_2 + n_1 \alpha_3)} \\ \theta_4 = e^{i(n_1 \alpha_1 + n_3 \alpha_2 + n_2 \alpha_3)} & \theta_5 = e^{i(n_3 \alpha_1 + n_1 \alpha_2 + n_2 \alpha_3)} & \theta_6 = e^{i(n_2 \alpha_1 + n_3 \alpha_2 + n_1 \alpha_3)} \\ (4.3.37) \end{cases}$$

et la matrice contenant les θ_i $(1 \leq i \leq 6)$ est exprimée dans la base composée des kets non symétrisés

$$|n_1 n_2 n_3\rangle |n_2 n_1 n_3\rangle |n_3 n_2 n_1\rangle |n_1 n_3 n_2\rangle |n_3 n_1 n_2\rangle |n_2 n_3 n_1\rangle$$
 (4.3.38)

C'est-à-dire que le caractère $\chi^{w=(n_1\,n_2\,n_3)\,\{1\}\,\{1\}\,\{1\}}(ap)$ vaut

$$\chi^{w=(n_1 n_2 n_3) \{1\} \{1\} \{1\}}(ap) = \delta(p, I_d) \quad (e^{i(n_1 \alpha_1 + n_2 \alpha_2 + n_3 \alpha_3)} + e^{i(n_2 \alpha_1 + n_1 \alpha_2 + n_3 \alpha_3)} + e^{i(n_3 \alpha_1 + n_2 \alpha_2 + n_1 \alpha_3)} + e^{i(n_1 \alpha_1 + n_3 \alpha_2 + n_2 \alpha_3)} + e^{i(n_3 \alpha_1 + n_1 \alpha_2 + n_2 \alpha_3)} + e^{i(n_2 \alpha_1 + n_3 \alpha_2 + n_1 \alpha_3)})$$

$$= \delta(p, I_d) \sum_{\substack{(r,s,t) = p(1,2,3) \\ p \in S(3)}} e^{i(n_r \alpha_1 + n_s \alpha_2 + n_t \alpha_3)}$$

$$(4.3.39)$$

Puis, en tenant compte du fait que la matrice représentative de l'élément identité I_d est la matrice unité \mathbb{I}_6 , on peut écrire que :

$$\dim\left(\left(n_{1} \, n_{2} \, n_{3}\right)\left\{1\right\}\left\{1\right\}\left\{1\right\}\right) = 6 \tag{4.3.40}$$

Nous résumons dans la TAB. 4.9 cette étude des R.I. du groupe K(3).

Groupe du poids \mathcal{W}	$K(3) = A(3) \land S(3)$	$\begin{array}{c} 1 \text{ élément} \\ a \ I_d \end{array}$	3 éléments $a(ij)(k)$	$\begin{array}{c} 2 \text{ éléments} \\ a \left(i j k \right) \end{array}$
S(3)	$(n_1 \ n_1 \ n_1) \ \{300\}$	$e^{in_1(lpha_1+lpha_2+lpha_3)}$	$e^{i n_1(lpha_1+lpha_2+lpha_3)}$	$e^{i n_1(\alpha_1+\alpha_2+\alpha_3)}$
S(3)	$(n_1 \ n_1 \ n_1) \ \{210\}$	$2e^{in_1(lpha_1+lpha_2+lpha_3)}$	0	$-e^{in_1(\alpha_1+\alpha_2+\alpha_3)}$
S(3)	$(n_1 \ n_1 \ n_1) \ \{111\}$	$e^{in_1(\alpha_1+\alpha_2+\alpha_3)}$	$-e^{in_1(\alpha_1+\alpha_2+\alpha_3)}$	$e^{i n_1(\alpha_1+\alpha_2+\alpha_3)}$
$S(2)\oplus S(1)$	$(n_1 \ n_1 \ n_2) \ \{20\} \ \{1\}$	$\sum_{c_1;c_2;c_3} e^{i(n_1\alpha_1 + n_1\alpha_2 + n_2\alpha_3)}$	$e^{i\left(n_{1}\alpha_{i}+n_{1}\alpha_{j}+n_{2}\alpha_{k}\right)}$	0
$S(2) \oplus S(1)$	$(n_1 \ n_1 \ n_2) \ \{11\} \ \{1\}$	$\sum_{c_1;c_2;c_3} e^{i(n_1\alpha_1 + n_1\alpha_2 + n_2\alpha_3)}$	$-e^{i\left(n_{1}\alpha_{i}+n_{1}\alpha_{j}+n_{2}\alpha_{k}\right)}$	0
$S(1)\oplus S(1)\oplus S(1)$	$(n_1 \ n_2 \ n_3) \ \{1\} \ \{1\} \ \{1\}$	$\sum_{\substack{(r,s,t) \\ = \\ p(1,2,3) \\ p \in S(3)}} e^{i(n_r\alpha_1 + n_s\alpha_2 + n_t\alpha_3)}$	0	0

avec : $c_1 = I_d$; $c_2 = (13)$; $c_3 = (23)$

et

et • $\chi^{(w = (n_1 n_2 n_3) \{1\} \times \{1\} \times \{1\})}(ap) = \delta(p, I_d) \sum_{\substack{(r, s, t) = p(1, 2, 3) \\ p \in S(3)}} e^{i(n_r \alpha_1 + n_s \alpha_2 + n_t \alpha_3)} = \delta(p, I_d) [e^{i(n_1 \alpha_1 + n_2 \alpha_2 + n_3 \alpha_3)} + e^{i(n_1 \alpha_1 + n_2 \alpha_2 + n_1 \alpha_3)}]$ $e^{i(n_{2}\alpha_{1}+n_{1}\alpha_{2}+n_{3}\alpha_{3})} + e^{i(n_{3}\alpha_{1}+n_{2}\alpha_{2}+n_{1}\alpha_{3})} + e^{i(n_{1}\alpha_{1}+n_{3}\alpha_{2}+n_{2}\alpha_{3})} + e^{i(n_{3}\alpha_{1}+n_{1}\alpha_{2}+n_{2}\alpha_{3})} + e^{i(n_{2}\alpha_{1}+n_{3}\alpha_{2}+n_{1}\alpha_{3})}]$

•
$$\chi^{(w = (n_1 n_1 n_2) \{f_1 f_2\} \times \{1\}}(ap) = \sum_{c_1; c_2; c_3} e^{i(n_1 \alpha_1 + n_1 \alpha_2 + n_2 \alpha_3)} = e^{i(n_1 \alpha_1 + n_1 \alpha_2 + n_2 \alpha_3)}$$
 action de $c_1 = I_d$ sur $(n_1 n_1 n_2)$
+ $e^{i(n_2 \alpha_1 + n_1 \alpha_2 + n_1 \alpha_3)}$ action de $c_2 = (13)$ sur $(n_1 n_1 n_2)$
+ $e^{i(n_1 \alpha_1 + n_2 \alpha_2 + n_1 \alpha_3)}$ action de $c_3 = (23)$ sur $(n_1 n_1 n_2)$

TAB. 4.9 – Table de caractères du groupe semi-continu K(3)

Réduction de la représentation $\left[n, \dot{\mathbf{0}}^2\right]$ de U(3) dans K(3)4.3.3

A titre d'application nous pouvons déduire la décomposition de la représentation totalement symétrique $[n, 0^2]$ de U(3) dans K(3) :

$$\begin{bmatrix} n, \dot{0}^2 \end{bmatrix} = (n_1 n_1 n_1) \{300\} \, \delta(3n_1, n) + \sum_{\substack{n_1 \neq n_2 \\ 2n_1 + n_2 = n}} (n_1 n_1 n_2) \{20\} \{1\} \\ + \sum_{\substack{n_1, n_2, n_3 \\ n_1 > n_2 > n_3}} (n_1 n_2 n_3) \{1\} \{1\} \{1\} \\ \{1\} \}$$

$$(4.3.41)$$

Par exemple, pour n = 3 la relation précédente devient

$$\begin{bmatrix} 3, 0^{2} \end{bmatrix} = (111) \{300\} + \sum_{\substack{n_{1} \neq n_{2} \\ 2n_{1} + n_{2} = 3}} (n_{1}n_{1}n_{2}) \{20\} \{1\} + \sum_{\substack{n_{1}, n_{2}, n_{3} \\ n_{1} > n_{2} > n_{3} \\ n_{1} + n_{2} + n_{3} = 3 \end{bmatrix} (n_{1}n_{2}n_{3}) \{1\} \{1\} \{1\}$$

$$= (111) \{300\} + (300) \{20\} \{1\} + (210) \{1\} \{1\} \{1\}$$

On peut vérifier l'égalité des dimensions, en effet, on a

$$\dim\left(\left[3, \overset{\circ}{0}^{2}\right]\right) = \frac{(3+2)!}{3!\,2} = 10 \tag{4.3.43}$$

(4.3.42)

 et

$$\dim (111) \{300\} = 1 \dim (300) \{20\} \{1\} = 3 \dim (210) \{1\} \{1\} \{1\} = 6$$

$$(4.3.44)$$

4.3.4 Etude algébrique de la chaine $K(3) \supset S(3) \supset C_{3v}$

Avant d'étudier la reduction des RI de K(3) dans S(3) nous devons déjà défenir le produit élargi de représentations de S(p).

Produit élargi de représentations de S(p)

Considérons deux systèmes physiques indépendants constitués par p_1 et p_2 oscillateurs, tous totalement identiques, et de groupe d'invariance respectif $S(p_1)$ et $S(p_2)$. Lorsqu'il n'y a aucune interaction entre les deux systèmes, le groupe d'invariance de l'ensemble est simplement le produit direct $S(p_1) \otimes S(p_2)$.

Si l'état du premier système appartient à l'espace de la représentation $D^{(1)}$ de $S(p_1)$, et celui du second à $D^{(2)}$ de $S(p_2)$, le système global sera évidemment un état de l'espace $D^{(1)} \otimes D^{(2)}$ du groupe d'invariance $S(p_1) \otimes S(p_2)$ de l'ensemble.

Supposons maintenant qu'il existe une interaction entre les deux systèmes d'oscillateurs. Comme les oscillateurs sont équivalents, le système global possède la symétrie du groupe $S(p_1 + p_2)$. Une question intéressante est de savoir à quelles R.I. de $S(p_1 + p_2)$ appartient l'état du système global.

Nous sommes ainsi conduits à une nouvelle décomposition, celle d'un produit élargi [20, 61] de deux R.I. $D^{(\alpha)}$ et $D^{(\beta)}$:

$$D^{(\alpha)} \vee D^{(\beta)} = D^{(\mu_1)} \oplus D^{(\mu_2)} \oplus \cdots$$
 (4.3.45)

Si d_{α} et d_{β} sont les dimensions des R.I. $D^{(\alpha)}$ et $D^{(\beta)}$, alors la dimension \mathcal{N} du produit élargi $D^{(\alpha)} \vee D^{(\beta)}$ nous est donnée par [20] :

$$\dim \left(D^{(\alpha)} \vee D^{(\beta)} \right) = \mathcal{N} = d_{\alpha} d_{\beta} \frac{(p_1 + p_2)!}{p_1! p_2!}$$
(4.3.46)

A titre d'exemple, effectuons le produit élargi de la représentation $\{3100\}$ du groupe S(4) représentée par le tableau de Young , par la représentation $\{210\}$ de S(3) représentée par le tableau de Young : par le tableau de Young (4.3.47)

Nous explicitons ci-après une méthode générale, dites "des noeuds et des coudes" due à Coleman [62], qui permet de déterminer la dimension d'une R.I. quelconque d'un groupe de permutation. Afin d'illustrer cette méthode, nous choisissons arbitrairement le diagramme de S(7).

Ce que les anglo-saxons appelent les noeuds (node) sont en fait les cases qui constituent le diagramme de Young considéré.

Première étape : affectation des coudes aux noeuds

On choisit un noeud quelconque sur le diagramme précédent, puis on lui associe un entier naturel appelé "longueur de coude" tel qu'il soit égale au nombre de noeuds à droite dans sa ligne plus le nombre de noeuds en bas dans sa colonne plus un. On obtient ainsi :

Deuxième étape : Dimension de la R.I. associée au tableau de Young considéré

La dimension de la R.I. associée au tableau de Young considéré est alors donnée par la relation suivante

ce qui donne

$$\dim\left(\boxed{\boxed{}}\right) = \frac{7!}{6 \times 5 \times 3 \times 2 \times 1 \times 2 \times 1} = 14 \tag{4.3.50}$$

En appliquant cette méthode "des noeuds et des coudes" aux R.I. $\{3100\}$ du groupe S(4) représentée par le tableau de Young , par la représentation $\{210\}$ de S(3) représentée par le tableau de Young , on obtient alors à l'aide de (4.3.46)

Effectuons maintenant le produit élargi b Celui ci se fait en plusieurs étapes. On commence par affecter la lettre a à toutes les cases de la première ligne du multiplicateur, puis b à toutes les cases de la deuxième ligne, et ainsi de suite. On obtient ici :

Puis, accolons les différentes cases a du diagramme précédent au diagramme multiplicande de façon à ce qu'elles n'apparaissent pas dans une même colonne, et cela de toutes les manières possibles. A ce stade, on obtient les différents diagrammes :

Une fois que ceci est fait, on accole les cases b aux diagrammes de Young précédemment obtenus en respectant non seulement la même restriction qu'auparavant mais aussi la suivante : en lisant de droite à gauche et de haut en bas les lettres rencontrées dans les diagrammes obtenus, à aucun moment le nombre de lettres b rencontrées ne doit dépasser le nombre de lettres a, c'est la préséance des a sur les b. Puis, on place les c, d, ... en respectant dans ce processus de lecture la préséance des b sur les c, des c sur les d, et ainsi de suite. On obtient ici les tableaux suivants :

et, on vérifie bien que la somme des dimensions (4.3.54) obtenues est bien égale à celle du produit élargi \bigvee \bigvee :

$$14 + 15 + 14 + 35 + 35 + 20 + 21 + 21 + 35 = 210 = \dim\left(\Box \Box \lor \lor \Box \right)$$
(4.3.55)

Application aux R.I. de K(3)

Afin de faciliter la lecture de ce chapitre, nous nous permettons de rappeler, sous forme de tableau, les éléments essentiels en terme de R.I. et de classes d'équivalence, de l'isormophisme $S(3) \simeq C_{3v}$.

	C_{3v}	I_d	$3\sigma_i$	$2C_{3}$
	S(3)	(1^3)	(21)	(3)
R.I. C_{3v}	$\begin{array}{c} \text{R.I.} \\ S(3) \end{array}$			
A_1	{300}	1	1	1
A_2	{111}	1	-1	1
E	{210}	2	0	-1

TAB. 4.10 – Table de caractères de $S(3) \simeq C_{3v}$

Première répartition : $(n_1 n_1 n_1)$

On a les trois cas :

$$K(3) \supset S(3) \approx C_{3v}$$

$$((n_1n_1n_1) \{300\}) \implies \{300\} \simeq A_1$$

$$((n_1n_1n_1) \{111\}) \implies \{111\} \simeq A_2$$

$$((n_1n_1n_1) \{210\}) \implies \{210\} \simeq E$$

$$(4.3.56)$$

Deuxième répartition : $(n_1 n_1 n_2)$

Pour la R.I. ($(n_1n_1n_2)$ {20} {1}) de K(3), nous avons :

$$\square \lor a = \square a \oplus \boxed{a}$$
$$= \{300\} \oplus \{210\}$$
$$= A_1 \oplus E$$
$$(4.3.57)$$

Puis, pour la R.I. ($(n_1n_1n_2)$ {11} {1}) on obtient :

Troisième répartition : $(n_1 n_2 n_3)$

Enfin, en ce qui concerne la R.I. $((n_1n_2n_3) \{1\}\{1\}\})$ de K(3), nous obtenons :

$$(\square \lor a) \lor b = (\square a \oplus \square) \lor b$$
$$= \square a b \oplus \square b \oplus \square a \oplus \square b$$
$$= [300] \oplus \{111\} \oplus 2\{210\}$$
$$= A_1 \oplus A_2 \oplus 2E$$
(4.3.59)

Ces différents résultats sont regroupés dans la table 4.11.

$K(3) = A(3) \land S(3)$	S(3)	C_{3v}	dim
$(n_1 \ n_1 \ n_1) \ \{300\}$	{300}	A_1	1
$(n_1 \ n_1 \ n_1) \ \{1^3\}$	$\{1^3\}$	A_2	1
$(n_1 \ n_1 \ n_1) \ \{210\}$	{210}	E	2
$(n_1 \ n_1 \ n_2) \ \{20\} \ \{1\}$	$\{300\} \oplus \{210\}$	$A_1 \oplus E$	3
$(n_1 \ n_1 \ n_2) \ \{11\} \ \{1\}$	$\{1^3\} \oplus \{210\}$	$A_2 \oplus E$	3
$(n_1 \ n_2 \ n_3) \ \{1\} \ \{1\} \ \{1\}$	${300} \oplus {1^3} \oplus {2{210}}$	$A_1 \oplus A_2 \oplus 2E$	6

TAB. 4.11 – Decomposition des R.I. de K(3) dans $C_{3v} \approx S(3)$

De la table 4.11 nous extrayons le sous tableau 4.12 qui est constitué des R.I. de K(3) dont la décomposition dans $C_{3v} \approx S(3)$ contient $A_1 \simeq \{300\}$.

En comparant les tables 4.12 et 4.13, il apparaît clairement que les seules représentations Γ induites par les kets $|n_i n_j n_k \rangle$ dans $C_{3v} \approx S(3)$, sont les R.I. du groupe K(3) qui contiennent la composante A_1 dans C_{3v} (ou {300} dans S(3)). De plus, les dégénérescences des représentations Γ sont simplement les dimensions des R.I. de K(3) correspondantes.

De tous les résultats issus jusqu'à présent de cette étude du groupe K(3), nous pouvons tracer le diagramme théorique des niveaux d'énergie vibrationnelle (d'élongation) des molécules XY_3 non planaires. Dans notre exemple, nous avons choisi $N \ge 4$ (FIG. 4.2). On constate alors

$K(3) = A(3) \land S(3)$	S(3)	C_{3v}	dim
$(n_1 \ n_1 \ n_1) \ \{300\}$	{300}	A_1	1
$(n_1 \ n_1 \ n_2) \ \{20\} \ \{1\}$	$\{300\}\oplus\{210\}$	$A_1 \oplus E$	3
$(n_1 \ n_2 \ n_3) \ \{1\} \ \{1\} \ \{1\}$	$\{300\} \oplus \{1^3\} \oplus 2\{210\}$	$A_1 \oplus A_2 \oplus 2E$	6

TAB. 4.12 – Decomposition des R.I. de K(3) dans $C_{3v} \approx S(3)$ qui contiennent $A_1 \approx \{300\}$

Base $ n_i n_j n_k >$	Représentation Γ dans $S(3)$	Représentation Γ dans C_{3v}	dim
$ n_1 n_1 n_1 >$	{300}	A_1	1
$ n_1 n_1 n_2 >$	$\{300\} \oplus \{210\}$	$A_1 \oplus E$	3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\{300\} \oplus \{1^3\} \oplus 2\{210\}$	$A_1 \oplus A_2 \oplus 2E$	6

TAB. 4.13 – Representations Γ induites dans $C_{3v} \approx S(3)$ par la base $|n_i n_j n_k >$

visuellement toute l'utilité d'introduire le groupe K(3) dans la description des états vibrationnels d'élongation des molécules XY_3 non planaires.

En examinant la figure 4.2, on peut donner une interprétation physique au groupe K(3). En effet, de par les différents poids w que l'on peut associer au sous-groupe A(3), on constate que le groupe K(3) nous donne accès aux différentes répartitions énergétiques possibles des quanta sur les liaisons de la molécule. En effet, intuitivement on constate que pour une molécule pyramidale, il n'y a que trois répartitions énergétiques possibles : les trois liaisons ont le même état énergétique ($w = (n_1 n_1 n_1)$), ou bien une liaison est dans un état différent des deux autres ($w = (n_1 n_2 n_3)$), ou finalement les trois liaisons ont des états énergétiques différents ($w = (n_1 n_2 n_3)$). C'est pourquoi nous donnerons au groupe K(3) le nom de groupe de la répartition énergétique.

4.3.5 Les opérateurs de Casimir du groupe K(3)

Le Hamiltonien d'ordre zéro associé au système étudié physique peut être construit à l'aide du concept de symétrie dynamique [6]. C'est pourquoi nous devons déterminer un ensemble complet d'opérateurs invariants (opérateurs de Casimir) pour le groupe K(3). Dans la chaîne

FIG. 4.2 – Schéma des énergies théoriques pour une molecule XY_3 non planaire, pour $N \ge 4$

(4.2.3), à l'exception du groupe K(3), les opérateurs invariants linéaires et quadratiques des différents groupes sont :

$$\mathfrak{I}_{1}^{(U(4))} = \sum_{i=1}^{4} \widehat{N}_{i} = \widehat{N} \quad , \quad \mathfrak{I}_{2}^{(U(4))} = \widehat{N}(\widehat{N} + 3) \\
\mathfrak{I}_{1}^{(U(3))} = \sum_{i=1}^{3} \widehat{N}_{i} = \widehat{n} \quad , \quad \mathfrak{I}_{2}^{(U(3))} = \widehat{n}(\widehat{n} + 2) \\
\mathfrak{I}_{1}^{(S(3))} = \sum_{i=1}^{3} \widehat{N}_{i} = \widehat{n} \quad , \quad \mathfrak{I}_{2}^{(S(3))} = \sum_{i\neq j=1}^{3} \widehat{N}_{i} \widehat{N}_{j}$$
(4.3.60)

Les deux quantités $\mathcal{I}_1^{(S(3))}$ et $\mathcal{I}_2^{(S(3))}$ sont des opérateurs invariants sous les opérations du groupe S(3). Ils sont construits à partir des opérateurs de poids de U(3).

Mais d'après le concept de symétrie dynamique, seuls les invariants des groupes continus ou semi-continus contribuent au Hamiltonien d'ordre zéro associé aux états vibrationnels de la molécule. Et comme le groupe S(3) est discret, nous ne devrions donc pas introduire dans le Hamiltonien les deux quantités $\mathcal{I}_1^{(S(3))}$ et $\mathcal{I}_2^{(S(3))}$. Ceci nous conduit à devoir déterminer l'ensemble des opérateurs de Casimir attaché au groupe semi-continu K(3). Les composantes du poids $(n_1 n_2 n_3)$ sont les valeurs propres des opérateurs \widehat{N}_1 , \widehat{N}_2 , \widehat{N}_3 , et sont associées aux R.I. du sous-groupe abélien A(3) du groupe unitaire U(3).

Il s'ensuit que les R.I. de K(3) sont induites par $A(3) \wedge W$ où W est le groupe du poids. Ainsi W fait apparaître la structure en couche des trois oscillateurs par la décomposition

$$W = S(n_{i_1}) \oplus S(n_{i_2}) \oplus S(n_{i_3}) \oplus \dots \oplus S(n_{i_m}), \qquad (4.3.61)$$

où les groupes $S(n_{i_i})$ sont des sous-groupes de permutation du groupe S(3) avec la condition

$$\sum_{j=1}^{m} n_{i_j} = 3 \tag{4.3.62}$$

Or le système physique étudié est une molécule du type XY_3 non planaire, donc de symétrie $S(3) \simeq C_{3v}$. Cette molécule admet, par rapport à chacune de ses liaisons j, un sous-groupe de symétrie locale $S^j(2) \approx C_i^j$, où C_i est le groupe de l'inversion.

Nécessairement, on en déduit que les opérateurs

$$\hat{N}_j$$
 et $\hat{N}_k + \hat{N}_l$ avec $1 \le j \ne k \ne l \ne j \le 3$ (4.3.63)

sont invariants sous l'action de tous les éléments de transformation du groupe de symétrie locale $S^{j}(2)$.

Mais comme l'action d'un projecteur $P^{(\{300\})} = P^{(A_1)}$ de $C_{3v} \approx S(3)$ sur \widehat{N}_j et $\widehat{N}_k + \widehat{N}_l$ nous donne l'invariant linéaire $\sum_{j=1}^{3} \widehat{N}_i = \mathcal{I}_1^{(U(3))} = \widehat{n}$, et de plus, parce que K(3) est un sous-groupe de U(3), on en déduit donc que $\mathcal{I}_1^{(U(3))}$ est aussi l'invariant linéaire de K(3):

$$\mathcal{I}_1^{(K(3))} = \mathcal{I}_1^{(U(3))} \tag{4.3.64}$$

Formons maintenant le produit

 α) $w = (n_1 n_1 n_1)$ i.e. $\mathcal{W} = S(3)$

$$\widehat{N}_j(\widehat{N}_k + \widehat{N}_l) \tag{4.3.65}$$

qui est un opérateur invariant du sous-groupe local de symétrie $S^{j}(2)$. La symétrisation de l'opérateur (4.3.65) dans S(3) est strictement équivalente à une symétrisation par rapport à tous les sous-groupes locaux $S^{j}(2)$ (j = 1, 2, 3). Dit autrement, à partir des opérateurs (4.3.63), il est impossible de construire une combinaison linéaire qui nous conduise à l'invariant linéaire $\mathcal{I}_{1}^{(K(3))}$. Ainsi, on en conclu que :

$$\mathcal{I}_{2}^{(K(3))} = \underbrace{\widehat{N}_{1}(\widehat{N}_{2} + \widehat{N}_{3})}_{S^{1}(2)} + \underbrace{\widehat{N}_{2}(\widehat{N}_{1} + \widehat{N}_{3})}_{S^{2}(2)} + \underbrace{\widehat{N}_{3}(\widehat{N}_{1} + \widehat{N}_{2})}_{S^{3}(2)}$$
(4.3.66)

Par un raisonnement similaire, nous pouvons distinguer les opérateurs invariants $\mathfrak{I}_k^{(K(3))}$ pour les trois partitions w du groupe du poids \mathcal{W} :

$$\mathfrak{I}_{1}^{(K(3))} = \widehat{N}_{1} + \widehat{N}_{2} + \widehat{N}_{3} = \sum_{i=1}^{3} \widehat{N}_{i} = \mathfrak{I}_{1}^{(U(3))}$$
(4.3.67)

$$\beta w = (n_1 n_1 n_2) \text{ i.e. } \mathcal{W} = S(2) \oplus S(1)$$

$$\mathfrak{I}_2^{(K(3))} = \widehat{N}_1(\widehat{N}_2 + \widehat{N}_3) + \widehat{N}_2(\widehat{N}_1 + \widehat{N}_3) + \widehat{N}_3(\widehat{N}_1 + \widehat{N}_2) = 2(\widehat{N}_1 \widehat{N}_2 + \widehat{N}_1 \widehat{N}_3 + \widehat{N}_2 \widehat{N}_3) = \sum_{i \neq j=1}^3 \widehat{N}_i \widehat{N}_j = \mathfrak{I}_2^{(S(3))}$$

$$(4.3.68)$$

 γ) $w = (n_1 n_2 n_3)$ i.e. $\mathcal{W} = S(1) \oplus S(1) \oplus S(1)$

$$\mathfrak{I}_{3}^{(K(3))} = \widehat{N}_{1}\widehat{N}_{2}\widehat{N}_{3} = \frac{1}{6}\sum_{i\neq j\neq k=1}^{3}\widehat{N}_{i}\widehat{N}_{j}\widehat{N}_{k}$$
(4.3.69)

Nous avons donc déterminé un ensemble de trois opérateurs invariants pour le groupe K(3). Mais l'ensemble

$$\{\hat{N}_1, \hat{N}_2, \hat{N}_3\}$$
 (4.3.70)

constitue un E.C.O.C., et donc tout ensemble de 3 opérateurs indépendants construit à partir des opérateurs \hat{N}_i (i = 1, 2, 3) constitue lui aussi un E.C.O.C..

Nous travaillons au sein de la représentation totalement symétrique $\left[n, \dot{0}^2\right]$ du groupe unitaire U(3). C'est pourquoi l'opérateur \hat{n} est constant au sein de cette représentation totalement symétrique. En conséquence, les opérateurs

$$\widehat{n}, \, \widehat{n}^2, \, \widehat{n}^3 \tag{4.3.71}$$

sont conservés dans les R.I. de K(3). Ces opérateurs (totalement symétrique dans $S(3) \simeq C_{3v}$) peuvent être inclus dans l'expression du Hamiltonien, et sont nécessairement des opérateurs invariants dans tous les groupes qui contiennent S(3), ce qui est le cas de K(3). Nous pouvons écrire

$$\widehat{n} = \sum_{\substack{i=1\\ =\widehat{A}_1}}^{3} \widehat{N}_i = \mathfrak{I}_1^{(K(3))} \qquad \text{puis} \qquad \widehat{n}^2 = \sum_{\substack{i=1\\ =\widehat{A}_2}}^{3} \widehat{N}_i^2 + \sum_{\substack{i\neq j=1\\ =\widehat{A}_2}}^{3} \widehat{N}_i \widehat{N}_j = \widehat{A}_2 + \mathfrak{I}_2^{(K(3))} \tag{4.3.72}$$

 et

$$\widehat{n}^{3} = \underbrace{\sum_{i=1}^{3} \widehat{N}_{i}^{3} + 3 \sum_{i \neq j=1}^{3} \widehat{N}_{i}^{2} \widehat{N}_{j}}_{=\widehat{A}_{3}} + 6 \widehat{N}_{1} \widehat{N}_{2} \widehat{N}_{3} = \widehat{A}_{3} + \sum_{i \neq j \neq k=1}^{3} \widehat{N}_{i} \widehat{N}_{j} \widehat{N}_{k} = \widehat{A}_{3} + 6 \mathfrak{I}_{3}^{(K(3))} \quad (4.3.73)$$

En inversant ces relations, nous obtenons :

$$\begin{cases}
\widehat{A}_{1} = \sum_{i=1}^{3} \widehat{N}_{i} = \widehat{n} = \mathcal{I}_{1}^{(K(3))} \\
\widehat{A}_{2} = \sum_{i=1}^{3} \widehat{N}_{i}^{2} = \widehat{n}^{2} - \mathcal{I}_{2}^{(K(3))} \\
\widehat{A}_{3} = \sum_{i=1}^{3} \widehat{N}_{i}^{3} + 3 \sum_{i \neq j=1}^{3} \widehat{N}_{i}^{2} \widehat{N}_{j} = \widehat{n}^{3} - 6 \mathcal{I}_{3}^{(K(3))}
\end{cases}$$

$$(4.3.74)$$

 $\{\widehat{A}_i\}$ avec i = (1, 2, 3) constitue un autre ensemble d'opérateurs invariants de K(3). Comme \widehat{n}^m (m = 1, 2, 3) se réduit à une constante dans la représentation $\left[n, 0^2\right]$, l'action des $\mathcal{I}_i^{(K(3))}$ (i = 1, 2, 3) est la même dans cette représentation $\left[n, 0^2\right]$. Nous en déduisons que \widehat{A}_3 ou de manière identique $\mathcal{I}_3^{(K(3))}$ est nécessaire pour distinguer les états locaux pour des nombres quantiques $n \ge 6$. Ces résultats sont résumés dans la table 4.14. Donc, si nous souhaitons introduire l'opérateur $\mathcal{I}_3^{(K(3))}$ dans le Hamiltonien, il nous faudrait des données expérimentales pour les états locaux (411) et (330). Mais avec les données expérimentales actuelles, l'utilisation de cet opérateur est d'ordre purement théorique.

Invariants	$\mathbb{J}_1^{(K(3))}$	$\mathcal{A}_2^{(K(3))} =$	$\mathbb{J}_2^{(K(3))} =$	$\mathbb{J}_{3}^{(K(3))} =$	$\mathcal{A}_3^{(K(3))} =$
Etat local	$\sum_{i=1}^{3} \widehat{N}_i$	$\sum_{i=1}^{3} \widehat{N}_{i}^{2}$	$\sum_{i \neq j=1}^{3} \widehat{N}_i \widehat{N}_j$	$\frac{1}{6} \sum_{i \neq j \neq k=1} \widehat{N}_i \widehat{N}_j \widehat{N}_k$	$\sum_{i=1}^{3} \widehat{N}_i^3 + 3 \sum_{i \neq j=1}^{3} \widehat{N}_i^2 \widehat{N}_j$
n=1					
(100)	1	1	0	0	1
n=2					
(200)	2	4	0	0	8
(110)	2	2	2	0	8
n=3					
(300)	3	9	0	0	27
(210)	3	5	4	0	27
(111)	3	3	6	1	21
n=4					
(400)	4	16	0	0	64
(310)	4	10	6	0	64
(220)	4	8	8	0	64
(211)	4	6	10	2	52
n=5					
(500)	5	25	0	0	125
(410)	5	17	8	0	125
(320)	5	13	12	0	125
(311)	5	11	14	3	107
(221)	5	9	16	4	101
n=6					
(600)	6	36	0	0	216
(510)	6	26	10	0	216
(420)	6	20	16	0	216
(411)	6	18	18	4	192
(330)	6	18	18	0	216
(321)	6	14	22	6	180

TAB. 4.14 – Action des opérateurs invariants du groupe K(3) sur la dégénéres cence des états locaux

4.4 Symétrisation des kets et des générateurs

4.4.1 Introduction et généralités

Dans la chaîne algébrique (4.4.1) relative aux modes d'élongation, le passage local $U(3) \supset S(3)$ suggère l'étiquetage de la RI $[n_e \equiv n, 0^2]$ de $U_s(3)$ par le nombre quantique $n = n_1 + n_2 + n_3$. La signification physique de ces quatre nombres quantiques étant :

- n : nombre total de quanta relatif à l'oscillateur d'élongation triplement dégénéré

- $n_i\,(i=1,2,3)$: nombre de quanta relatif à l'oscillateur d'élongation i non dégénéré

avec
$$n \equiv n_1 + n_2 + n_3$$

Ainsi, les nombres quantiques suivants vont apparaître :

$$\begin{array}{ccccc} U(4) &\supset & U(3) &\supset & S(3) &\approx & C_{3v} \\ \downarrow & & \downarrow & & \\ N & & n \end{array}$$
(4.4.1)

Le groupe dynamique U(4) est engendré par les seize générateurs suivants :

$$\widehat{E}_{ij} \equiv \widehat{b}_i^+ \widehat{b}_j]_{i,j=1,2,3,4}$$
(4.4.2)

Parmi ces seize générateurs de $U_{(4)}$, les neuf suivants engendrent le sous-groupe U(3):

$$\widehat{E}_{ij} \equiv \widehat{b}_i^+ \widehat{b}_j]_{1 \le i,j \le 3} \tag{4.4.3}$$

Afin de pouvoir écrire les différents kets symétrisés dans la chaîne (4.4.1), il nous faut recenser les diverses possibilités physiques de répartition des quanta qui peuvent exister. Ces diverses possibilités sont les suivantes :

 α) $n_1 = n_2 = n_3 \equiv n$ d'où le seul ket non symétrisé : $|n, n, n\rangle$.

L'action des opérations de symétrie de C_{3v} sur ce ket, engendre Γ_{e_1} :

on obtient donc $\Gamma_{e_1} = A_1$ de dimension 1.

$$\beta) \begin{cases} n_1 = n_2 \equiv n \\ n_3 \equiv n' \end{cases}$$

Il existe donc trois kets non symétrisés : $|n, n, n'\rangle |n, n', n\rangle |n', n, n\rangle.$

Comme précédemment, on démontre que :

c'est-à-dire $\Gamma_{e_2} = A_1 \oplus E$, et dim $\Gamma_{e_2} = 3$.

 $\gamma) \quad n_1 \neq n_2 \neq n_3 \neq n_1$

On détermine donc six kets non symétrisés :

$$|n_1, n_2, n_3\rangle |n_1, n_3, n_2\rangle |n_2, n_1, n_3\rangle |n_2, n_3, n_1\rangle |n_3, n_1, n_2\rangle |n_3, n_2, n_1\rangle$$

ainsi que l'action de C_{3v} sur ces kets :

qui se réduit en $\Gamma_{e_3} = A_1 \oplus A_2 \oplus 2E$, on vérifie bien que dim $\Gamma_{e_3} = 6$.

4.4.2 Processus de symétrisation des kets et des générateurs dans S(p).

Les kets relatifs à la chaîne de groupes (4.2.1) envisagée vont pouvoir se déduire des kets non symétrisés par projection sur les sous-espaces relatifs aux différentes R.I. du groupe S(p)à l'aide des projecteurs $P_{\sigma}^{[C]}$:

$$|(n_1 \dots n_{p+1}), r[C]\sigma\rangle = \frac{\dim[C]}{g} \sum_{\mathcal{R} \in S(p)} [\mathcal{D}^{[C]}(\mathcal{R})]^*_{\sigma\sigma} \mathcal{O}_{\mathcal{R}}|n_1, \dots, n_i, \dots, n_{p+1}\rangle$$
(4.4.7)

où :

- [C] représente une R.I. du groupe S(p),

- r est un indice de multiplicité de [C].
- dim[C] représente la dimension de la R.I. [C],
- g est le nombre total d'éléments du groupe S(p),
- $\mathcal{O}_{\mathcal{R}}$ est l'opérateur associé à l'opération de symétrie $\mathcal{R} \in S(p)$,
- $\mathcal{D}^{[C]}(\mathcal{R})$ sont les matrices orientées des opérations $\mathcal{O}_{\mathcal{R}}$ du groupe S(p),
- σ représente la composante de la RI du groupe S(p) et vaut $1, 2, \ldots, dim[C]$.

De même on symétrise les générateurs dans S(p). On peut classer ces générateurs symétrisés en trois ensembles :

- les générateurs ne dépendant que des opérateurs de poids. Ces générateurs sont diagonaux dans la base $\{|n_1, \ldots, n_i, \ldots, n_{p+1}\rangle\}$,
- les générateurs diagonaux dans la représentation $\left[n; \overset{p}{0}^{p-1}\right]$. Ces opérateurs couplent des états locaux définis pour la même valeur de n,
- les générateurs non diagonaux dans la représentation $[n; 0^{p-1}]$. Ces opérateurs couplent des états locaux définis pour des valeurs différentes de n.

Les outils théoriques généraux étant maintenant présentés, nous allons particulariser ceux-ci aux systèmes moléculaires XY_3 .

4.4.3 Détermination des kets symétrisés dans C_{3v} .

On doit symétriser l'ensemble des kets non symétrisés et les générateurs de U(4) dans la chaîne (4.4.1). La procédure de symétrisation dans S(p) (p quelconque) ayant été décrite, il nous suffit de symétriser dans C_{3v} qui est isomorphe à S(3). On reïtère donc le processus de symétrisation définit dans le paragraphe précédent. Il suffit alors de se donner les matrices $[\mathcal{D}^{C}(\mathcal{R})]$ où :

- \Re est une opération de symétrie du groupe C_{3v}
- C est une RI du groupe C_{3v}

Nous indiquons ci-après ces matrices

$$\begin{aligned}
\mathcal{D}^{A_1}(\mathcal{R}) &= (1) & \forall \mathcal{R} \in C_{3v} \\
\mathcal{D}^{A_2}(\mathcal{R}) &= (-1) \quad \text{pour} \quad \mathcal{R} \equiv \sigma_{v_1}, \, \sigma_{v_2}, \, \sigma_{v_3} \\
\mathcal{D}^{A_2}(\mathcal{R}) &= (1) \quad \text{pour} \quad \mathcal{R} \equiv I_d, \, C_3, \, C_3^{-1}
\end{aligned} \tag{4.4.8}$$

$$\mathcal{D}^{E}(\sigma_{v_{1}}) = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \quad \mathcal{D}^{E}(\sigma_{v_{2}}) = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \quad \mathcal{D}^{E}(\sigma_{v_{3}}) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\mathcal{D}^{E}(C_{3}) = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \quad \mathcal{D}^{E}(C_{3}^{-1}) = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \quad \mathcal{D}^{E}(I_{d}) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$(4.4.9)$$

Le résultat final de ce processus de symétrisation des kets donne :

- Etat symétrisé du type : $n_1 = n_2 = n_3 \equiv n$ $|(n n n), A_1\rangle = |n n n\rangle$
- Etats symétrisés du type : $n_1=n_2\equiv n$ et $n_3\equiv n'$

$$|(n n n'), A_1\rangle = \frac{1}{\sqrt{3}} [|n n n'\rangle + |n n' n\rangle + |n' n n\rangle] |(n n n'), E_1\rangle = \frac{1}{\sqrt{6}} [2|n n n'\rangle - |n n' n\rangle - |n' n n\rangle] |(n n n'), E_2\rangle = \frac{1}{\sqrt{2}} [|n n' n\rangle - |n' n n\rangle]$$

- Etats symétrisés du type : $n_1 \neq n_2 \neq n_3$

Dans les kets symétrisés du type $|(n_1 n_2 n_3), r C_{\sigma}\rangle$ nous choisissons la convention de notation $n_1 > n_2 > n_3$.

$$\begin{split} |(n_1 n_2 n_3), A_1\rangle &= \frac{1}{\sqrt{6}} [|n_1 n_2 n_3\rangle + |n_1 n_3 n_2\rangle + |n_2 n_1 n_3\rangle \\ &+ |n_2 n_3 n_1\rangle + |n_3 n_1 n_2\rangle + |n_3 n_2 n_1\rangle] \\ |(n_1 n_2 n_3), A_2\rangle &= \frac{1}{\sqrt{6}} [|n_1 n_2 n_3\rangle - |n_1 n_3 n_2\rangle - |n_2 n_1 n_3\rangle \\ &+ |n_2 n_3 n_1\rangle + |n_3 n_1 n_2\rangle - |n_3 n_2 n_1\rangle] \\ |(n_1 n_2 n_3), 1E_1\rangle &= \frac{1}{\sqrt{12}} [2|n_1 n_2 n_3\rangle - |n_3 n_2 n_1\rangle - |n_1 n_3 n_2\rangle \\ &+ 2|n_2 n_1 n_3\rangle - |n_2 n_3 n_1\rangle - |n_3 n_1 n_2\rangle] \\ |(n_1, n_3, n_2), 1E_2\rangle &= \frac{1}{2} [|n_1 n_3 n_2\rangle - |n_3 n_2 n_1\rangle - |n_3 n_1 n_2\rangle + |n_2 n_3 n_1\rangle] \\ |(n_1 n_2 n_3), 2E_1\rangle &= \frac{1}{2} [-|n_1 n_3 n_2\rangle + |n_2 n_3 n_1\rangle - |n_3 n_1 n_2\rangle + |n_3 n_2 n_1\rangle \\ |(n_1 n_2 n_3), 2E_2\rangle &= \frac{1}{\sqrt{12}} [-|n_1 n_3 n_2\rangle + |n_2 n_3 n_1\rangle + 2|n_2 n_1 n_3\rangle \\ -2|n_1 n_2 n_3\rangle + |n_3 n_1 n_2\rangle - |n_3 n_2 n_1\rangle] \end{split}$$

4.4.4 Symétrisation des générateurs dans C_{3v}

Cherchons en quelles R.I. se décompose la représentation adjointe Γ_{adj} du groupe dynamique U(4), c'est-à-dire celle engendrée par les générateurs E_{ij} de ce groupe :

$$\Gamma_{adj} = 5A_1 \oplus A_2 \oplus 5E \tag{4.4.10}$$

Les seize générateurs non symétrisés du groupe dynamique U(4) peuvent être répartis en trois ensembles :

- ceux diagonaux dans la base $\{|n_1, \ldots, n_i, \ldots, n_4\rangle\}$, c'est-à-dire les opérateurs de poids

$$E_{11}$$
, E_{22} , E_{33} , E_{44} (4.4.11)

qui engendrent la représentation $\Gamma_1 = 2A_1 \oplus E$

- ceux diagonaux dans la représentation $\left[n_{e}, \overset{\circ}{0}^{2}\right]$, i.e

$$E_{12}$$
, E_{13} , E_{32} , E_{21} , E_{31} , E_{23} (4.4.12)

qui engendrent la représentation $\Gamma_2 = A_1 \oplus A_2 \oplus 2E$

- ceux non diagonaux dans la représentation $\left[n_e, 0^2\right]$, soient

$$E_{14}$$
, E_{24} , E_{34} , E_{41} , E_{42} , E_{43} (4.4.13)

qui engendre la représentation $\Gamma_3 = 2A_1 \oplus 2E$

On peut vérifier, une fois ces opérations de réductions en R.I. de C_{3v} effectuées, que :

$$\Gamma_{adj} = \Gamma_1 \oplus \Gamma_2 \oplus \Gamma_3 \qquad \Longrightarrow \qquad \dim \Gamma_{adj} = \dim \Gamma_1 + \dim \Gamma_2 + \dim \Gamma_3. \tag{4.4.14}$$

Le résultat final de ce processus de symétrisation des générateurs est donc :

- Premier ensemble : générateurs symétrisés qui ne dépendent que des opérateurs de poids Ces opérateurs sont donc diagonaux dans la base de G-Z et dans celle des états symétrisés

- Deuxième ensemble : générateurs symétrisés diagonaux au sein de la représentation totalement symétrique [n,0,0] de U(3)

Ces générateurs symétrisés couplent donc des états locaux caractérisés par la même valeur de n.

$$\begin{array}{rcl} \mathcal{Y}^{3(A_1)} &=& E_{13}+E_{31}+E_{32}+E_{23}+E_{21}+E_{12}\\ \mathcal{Y}^{1(A_2)} &=& -E_{13}+E_{31}-E_{32}+E_{23}-E_{21}+E_{12}\\ \mathcal{Y}^{2(E)}_1 &=& -E_{13}-E_{31}-E_{32}-E_{23}+2E_{21}+2E_{12}\\ \mathcal{Y}^{2(E)}_2 &=& \sqrt{3}(E_{13}+E_{31}-E_{32}-E_{23})\\ \mathcal{Y}^{3(E)}_1 &=& E_{32}-E_{23}-E_{13}+E_{31}\\ \mathcal{Y}^{3(E)}_2 &=& \sqrt{3}(-2E_{12}+2E_{21}-E_{32}+E_{23}+E_{31}-E_{13}) \end{array}$$

- Troisième ensemble : générateurs symétrisés non-diagonaux au sein de la représentation totalement symétrique [n,0,0] de U(3)

Ils couplent donc des états locaux caractérisés par des valeurs de n différentes.

$$\begin{array}{rcl} \mathcal{Y}^{4(A_1)} &=& E_{14} + E_{41} + E_{34} + E_{43} + E_{24} + E_{42} \\ \mathcal{Y}^{5(A_1)} &=& \imath (E_{14} - E_{41} + E_{24} - E_{42} + E_{34} - E_{43}) \\ \mathcal{Y}^{4(E)}_1 &=& E_{14} + E_{41} - 2E_{34} - 2E_{43} + E_{24} + E_{42} \\ \mathcal{Y}^{4(E)}_2 &=& \sqrt{3}(E_{14} + E_{41} - E_{24} - E_{42}) \\ \mathcal{Y}^{5(E)}_1 &=& \imath (E_{14} - E_{41} - E_{42} + E_{24} - 2E_{34} + 2E_{43}) \\ \mathcal{Y}^{5(E)}_2 &=& \imath \sqrt{3}(E_{14} - E_{41} + E_{42} - E_{24}) \end{array}$$

4.5 Hamiltonien d'élongation des molécules XY₃ non planaires

Hamiltonien algébrique d'ordre zéro

En faisant usage du concept de symétrie dynamique, nous pouvons écrire le Hamiltonien H_0 . Cet Hamiltonien est construit avec les invariants linéaires et quadratiques des différents groupes continus et semi-continus présents dans la chaine de groupes (4.2.3)

$$H_0 = A \,\mathfrak{I}_1^{(U(4))} + B \,\mathfrak{I}_2^{(U(4))} + C \,\mathfrak{I}_1^{(U(3))} + D \,\mathfrak{I}_2^{(U(3))} + E \,\mathfrak{I}_1^{(K(3))} + F \,\mathfrak{I}_2^{(K(3))}$$
(4.5.1)

avec $(A, B, C, D, E, F) \in \mathbb{R}$. En tenant compte des redondances, on obtient :

$$H_0 = A \mathfrak{I}_1^{(U(4))} + B \mathfrak{I}_2^{(U(4))} + (C+E) \mathfrak{I}_1^{(U(3))} + D \mathfrak{I}_2^{(U(3))} + F \mathfrak{I}_2^{(K(3))}$$
(4.5.2)

Mais au sein de la représentation totalement symétrique $\left[N = \sum_{i=1}^{4} n_i, \overset{\circ}{0}^3\right] \det U(4)$, l'opérateur \widehat{N} est une constante; en conséquence, les opérateurs de Casimir $\mathfrak{I}_1^{(U(4))}$ et $\mathfrak{I}_2^{(U(4))}$ construits à partir de l'opérateur \widehat{N} doivent être éliminés de l'Hamiltonien H_0 , on obtient

$$H_{0} = (C + E) \mathfrak{I}_{1}^{(U(3))} + D \mathfrak{I}_{2}^{(U(3))} + F \mathfrak{I}_{2}^{(K(3))}$$

$$= (C + E) \widehat{n} + D \widehat{n}(\widehat{n} + 2) + F \sum_{i \neq j=1}^{3} \widehat{N}_{i} \widehat{N}_{j}$$

$$= (C + E + 2D) \widehat{n} + D \widehat{n}^{2} + F \sum_{i \neq j=1}^{3} \widehat{N}_{i} \widehat{N}_{j}$$

$$(4.5.3)$$

mais comme $\hat{n}^2 = \sum_{i=1}^3 \hat{N}_i^2 + 2 \sum_{i>j=1}^3 \hat{N}_i \hat{N}_j$, nous obtenons une forme équivalente pour H_0

$$H_0 = (C + E + 2D)\,\hat{n} + D\,\sum_{i=1}^3 \hat{N}_i^2 + (2F + 2D)\,\sum_{i>j=1}^3 \hat{N}_i \hat{N}_j \tag{4.5.4}$$

Finalement, le Hamiltonien H_0 se réduit à

$$H_0 = a_0 \,\hat{n} + a_1 \, \sum_{i=1}^3 \hat{N}_i^2 + a_2 \sum_{i>j=1}^3 \hat{N}_i \hat{N}_j \tag{4.5.5}$$

avec l'ensemble des paramètres rééls

$$\{a_0 = C + E + 2D, a_1 = D, a_2 = 2F + 2D\}$$
(4.5.6)

On constate que dans la base $\{ | n_1, n_2, n_3 \rangle \}$ (donc également dans la base symétrisée définie dans §§4.4.3) le Hamiltonien H_0 est un opérateur totalement diagonal. On a donc l'équation aux valeurs propres suivante :

$$H_0 | n_1, n_2, n_3 \rangle = E_0(n_1, n_2, n_3) | n_1, n_2, n_3 \rangle$$
(4.5.7)

soit encore

$$\left[a_0\,\hat{n} + a_1\,\sum_{i=1}^3\,\hat{N}_i^2 + a_2\sum_{i>j=1}^3\,\hat{N}_i\,\hat{N}_j\right]\,|\,n_1\,,\,n_2\,,\,n_3\,\rangle = \left[a_0\,n + a_1\,\sum_{i=1}^3\,n_i^2 + a_2\sum_{i>j=1}^3\,n_in_j\right]\,|\,n_1\,,\,n_2\,,\,n_3\,\rangle$$

$$(4.5.8)$$

Dès lors, on comprend que, même si cet Hamiltonien H_0 offre déjà une meilleure description que celle fournie par un potentiel de Morse usuel, il ne rendra pas bien compte de certaines subtilités du spectre vibrationnel, comme par exemple le passage entre des états du type $|n_1, n_2, n_3\rangle$ vers $|n_1 + 1, n_2 - 1, n_3\rangle$, car :

$$\langle n_1, n_2, n_3 | H_0 | n_1 + 1, n_2 - 1, n_3 \rangle = 0$$
 (4.5.9)

4.5.1 Hamiltonien d'ordre un

Le Hamiltonien H_0 doit être complété par des opérateurs non diagonaux dans la base $\{ | n_1, n_2, n_3 \rangle \}$, opérateurs qui doivent bien évidemment être totalement symétriques, c'est-àdire être de symétrie A_1 .

L'idée est de développer jusqu'au second ordre les générateurs symétrisés (qui sont donnés dans (§§4.4.4). On obtient alors l'expression générale suivante du Hamiltonien H pour une molécule de type C_{3v} :

où les coefficients $\alpha_i^{(j)}$ sont tous réels, j désigne l'ordre de développement en les générateurs associés et $1 \le i \le 16$.

Bien évidemment, l'expression de H contient des opérateurs qui sont eux mêmes inclus dans H_0 . Mais comme le concept de symétrie dynamique s'applique à des groupes continus ou semi-continus, nous allons donc construire le Hamiltonien H en ajoutant à H_0 des opérateurs qui sont invariants dans la chaîne (4.2.3), mais qui ne sont pas des opérateurs de Casimir des groupes continus ou semi-continus présents dans (4.2.3). En conséquence, H_0 ne dépend pas des opérateurs $b_i^+b_4$ et $b_4^+b_i$ (i = 1, 2, 3, 4). On a alors l'expression du Hamiltonien H:

$$H = \alpha_{3}^{(1)} \mathcal{Y}^{2(A_{1})} + \alpha_{4}^{(2)} \left[\mathcal{Y}^{2(A_{1})} \otimes \mathcal{Y}^{2(A_{1})} \right]^{(A_{1})} + \alpha_{5}^{(2)} \left[\mathcal{Y}^{1(E)} \otimes \mathcal{Y}^{1(E)} \right]^{(A_{1})} + \alpha_{6}^{(1)} \mathcal{Y}^{3(A_{1})} + \alpha_{7}^{(2)} \left[\mathcal{Y}^{3(A_{1})} \otimes \mathcal{Y}^{3(A_{1})} \right]^{(A_{1})} + \alpha_{8}^{(2)} \left[\mathcal{Y}^{1(A_{2})} \otimes \mathcal{Y}^{1(A_{2})} \right]^{(A_{1})} + \alpha_{9}^{(2)} \left[\mathcal{Y}^{2(E)} \otimes \mathcal{Y}^{2(E)} \right]^{(A_{1})} + \alpha_{10}^{(2)} \left[\mathcal{Y}^{3(E)} \otimes \mathcal{Y}^{3(E)} \right]^{(A_{1})}$$

$$(4.5.11)$$

Maintenant, nous allons conserver dans l'expression précédente de H, tous les operateurs ou les produits tensoriels d'opérateurs, qui sont de degré un en les générateurs, et les opérateurs qui forment déjà H_0 . On a alors :

$$H = H_1 = \alpha_3^{(1)} \mathcal{Y}^{2(A_1)} + \alpha_4^{(2)} \left[\mathcal{Y}^{2(A_1)} \otimes \mathcal{Y}^{2(A_1)} \right]^{(A_1)} + \alpha_5^{(2)} \left[\mathcal{Y}^{1(E)} \otimes \mathcal{Y}^{1(E)} \right]^{(A_1)} + \alpha_6^{(1)} \mathcal{Y}^{3(A_1)}$$
(4.5.12)

Développons les produits tensoriels

$$\begin{bmatrix} \mathcal{Y}^{2(A_{1})} \otimes \mathcal{Y}^{2(A_{1})} \end{bmatrix}^{(A_{1})} = \begin{bmatrix} A_{1} \end{bmatrix}^{1/2} F \begin{pmatrix} A_{1} & A_{1} & A_{1} \\ \cdot & \cdot & \cdot \end{pmatrix} \mathcal{Y}^{2(A_{1})} \mathcal{Y}^{2(A_{1})}$$

$$= \widehat{N}_{1}^{2} + \widehat{N}_{2}^{2} + \widehat{N}_{3}^{2} + 2\widehat{N}_{1}\widehat{N}_{2} + 2\widehat{N}_{1}\widehat{N}_{3} + 2\widehat{N}_{2}\widehat{N}_{3}$$

$$(4.5.13)$$

 et

$$\begin{bmatrix} \mathcal{Y}^{1(E)} \otimes \mathcal{Y}^{1(E)} \end{bmatrix}^{(A_1)} = \begin{bmatrix} A_1 \end{bmatrix}^{1/2} F \begin{pmatrix} E & E & A_1 \\ 1 & 1 & . \end{pmatrix} \mathcal{Y}^{1(E)}_1 \mathcal{Y}^{1(E)}_1 + \begin{bmatrix} A_1 \end{bmatrix}^{1/2} F \begin{pmatrix} E & E & A_1 \\ 1 & 2 & . \end{pmatrix} \mathcal{Y}^{1(E)}_1 \mathcal{Y}^{1(E)}_2$$

+
$$\begin{bmatrix} A_1 \end{bmatrix}^{1/2} F \begin{pmatrix} E & E & A_1 \\ 2 & 1 & . \end{pmatrix} \mathcal{Y}^{1(E)}_2 \mathcal{Y}^{1(E)}_1 + \begin{bmatrix} A_1 \end{bmatrix}^{1/2} F \begin{pmatrix} E & E & A_1 \\ 2 & 2 & . \end{pmatrix} \mathcal{Y}^{1(E)}_2 \mathcal{Y}^{1(E)}_2$$

=
$$\frac{1}{\sqrt{2}} \left[\widehat{N}_1 + \widehat{N}_2 - 2\widehat{N}_3 \right]^2 + \frac{1}{\sqrt{2}} \left[\sqrt{3} \left(\widehat{N}_1 - \widehat{N}_2 \right) \right]^2$$

=
$$2\sqrt{2} \left(\widehat{N}_1^2 + \widehat{N}_2^2 + \widehat{N}_3^2 - \widehat{N}_1 \widehat{N}_2 - \widehat{N}_1 \widehat{N}_3 - \widehat{N}_2 \widehat{N}_3 \right)$$
(4.5.14)

avec les coefficients de Clebsh-Gordan F

Finalement, le Hamiltonien de notre système moléculaire devient :

$$H_{1} = \alpha_{3}^{(1)} \left[\widehat{N}_{1} + \widehat{N}_{2} + \widehat{N}_{3} \right] + \left(\alpha_{4}^{(2)} + 2\sqrt{2}\alpha_{5}^{(2)} \right) \left[\widehat{N}_{1}^{2} + \widehat{N}_{2}^{2} + \widehat{N}_{3}^{2} \right] + \left(2\alpha_{4}^{(2)} - 2\sqrt{2}\alpha_{5}^{(2)} \right) \left[\widehat{N}_{1}\widehat{N}_{2} + \widehat{N}_{1}\widehat{N}_{3} + \widehat{N}_{2}\widehat{N}_{3} \right] + \alpha_{6}^{(1)}\mathcal{Y}^{3(A_{1})}$$

$$(4.5.15)$$

En comparant les expressions (4.5.5) et (4.5.15), on constate que l'expression précédente du Hamiltonien devient H:

$$H_1 = H_0 + H^{(1)} \tag{4.5.16}$$

avec

$$H_{0} = \alpha_{3}^{(1)} \mathcal{Y}^{2(A_{1})} + \alpha_{4}^{(2)} \left[\mathcal{Y}^{2(A_{1})} \otimes \mathcal{Y}^{2(A_{1})} \right]^{(A_{1})} + \alpha_{5}^{(2)} \left[\mathcal{Y}^{1(E)} \otimes \mathcal{Y}^{1(E)} \right]^{(A_{1})} H^{(1)} = \alpha_{6}^{(1)} \mathcal{Y}^{3(A_{1})} = a_{3} \sum_{i \neq j=1}^{3} b_{i}^{+} b_{j}$$

$$(4.5.17)$$

où

$$\alpha_3^{(1)} = a_0 , \ \alpha_4^{(2)} = \frac{a_1 + a_2}{3} , \ \alpha_5^{(2)} = \frac{2a_1 - a_2}{6\sqrt{2}} , \ \alpha_6^{(1)} = a_3$$
(4.5.18)

4.5.2 Interprétation physique de l'opérateur $\mathcal{Y}^{3(A_1)}$.

Ce terme supplémentaire s'écrit :

$$\mathcal{Y}^{3(A_1)} = \widehat{E}_{1\,3} + \widehat{E}_{3\,1} + \widehat{E}_{3\,2} + \widehat{E}_{2\,3} + \widehat{E}_{2\,1} + \widehat{E}_{1\,2} = \sum_{i \neq j=1,2,3} b_i^+ b_j \tag{4.5.19}$$

On peut interpréter l'opérateur $b_i^+ b_j$ $(i \neq j = 1, 3, 5)$ de la façon suivante : il échange un quantum d'énergie de la liaison j à la liaison i. On peut donc en conclure que l'opérateur $\mathcal{Y}^{3(A_1)}$ est un terme de couplage entre les différentes liaisons de la molécule.

Il apparaît donc une compétition entre H_0 et H_1 ; c'est-à-dire entre deux phénomènes physiques totalement différents :

- l'anharmonicité des oscillateurs associés aux différentes liaisons de la molécule, représentée par les termes quadratiques de H_0 :
$\mathcal{B}[\hat{n}_1^2 + \hat{n}_2^2 + \hat{n}_3^2]$ et $\mathcal{C}[\hat{n}_1\hat{n}_2 + \hat{n}_1\hat{n}_3 + \hat{n}_2\hat{n}_3]$

- le couplage entre les différentes liaisons de la molécule, représenté par H_1 .

Ainsi, la physique de notre problème va dépendre des "intensités" relatives des différents coefficients présents dans l'expression de H.

4.6 Calcul des états vibrationnels d'élongation pour les molécules $XY_3(C_{3v})$

4.6.1 Rappel et résultats sur la molécule de stibine SbH_3

La molécule de stibine, est de part son intérêt industriel une molécule du type XY_3 très étudiée, ce qui justifie l'abondance des données expérimentales dans la littérature [63]. En effet, la molécule de stibine sous forme gazeuse est la source la plus pure pour obtenir de l'antimoine, qui entre dans la fabrication des composés semi-conducteurs.

La toxicité des composés d'antimoine est comparable à celle de l'arsenic. L'antimoine est un produit naturel qui entre pour 0,001% dans la composition de l'écorce terrestre. Au regard de sa toxicité, il est vital pour l'environnement de comprendre le comportement de l'antimoine au sein de l'écosystème. On a observé une baisse de la fertilité des sols ayant été contaminés par de l'antimoine au travers des précipitations. Dans l'atmosphère, les émissions d'antimoine peuvent être transportées sur de longues distances.

Rappelons les fréquences fondamentales de la molécule de stibine :

$$\begin{cases}
\nu_1(A_1) = 1890.502 \ cm^{-1} \\
\nu_2(A_1) = 782.24 \ cm^{-1} \\
\nu_3(E) = 1894.497 \ cm^{-1} \\
\nu_4(E) = 827.85 \ cm^{-1}
\end{cases}$$
(4.6.1)

La forme du Hamiltonien \widehat{H} utilisée est :

$$H = a_0 \,\hat{n} + a_1 \,\left(\hat{n}_1^2 + \hat{n}_2^2 + \hat{n}_3^2\right) + a_2 \,\left(\hat{n}_1 \hat{n}_2 + \hat{n}_1 \hat{n}_3 + \hat{n}_2 \hat{n}_3\right) + a_3 \underbrace{\sum_{\substack{i \neq j=1,2,3 \\ = \mathbf{y}^3(A_1)}} b_i^+ b_j}_{= \mathbf{y}^3(A_1)} \tag{4.6.2}$$

On remarquera que seul l'opérateur $\mathcal{Y}^{3(A_1)}$ est non diagonal dans la base des kets symétrisés (dans C_{3v}). Nous avons effectué le calcul des éléments matriciels de cet opérateur par un programme informatique.

Pour notre ajustement, nous indiquerons l'écart-type $\sigma(d, p)$:

$$\sigma(d,p) = \sqrt{\frac{1}{d-p} \sum_{i=1}^{d} \left[E_i^{(cal)} - E_i^{(obs)} \right]^2}$$
(4.6.3)

où :

- d est le nombre de données expérimentales mises en jeu lors de l'ajustement,

- p est le nombre de paramètres décrivant le modèle utilisé.

La matrice de corrélation des paramètres a_i (i = 0, 1, 2, 3) présents dans le Hamiltonien \widehat{H} , est notée \mathcal{M}_{cor} .

La méthode utilisée pour effectuer l'ajustement est la méthode des moindres carrés non linéaires. Après ajustement, on détermine le jeu de paramètres suivant :

$$\begin{cases} a_0 = 1926.988(431) \ cm^{-1} \\ a_1 = -33.427(085) \ cm^{-1} \\ a_2 = -0.290(252) \ cm^{-1} \\ a_3 = -1.571(380) \ cm^{-1} \end{cases}$$
(4.6.4)

La matrice de corrélation \mathcal{M}_{cor} , étant :

$$\mathcal{M}_{cor} = \begin{pmatrix} a_0 & a_1 & a_2 & a_3 \\ a_0 & 1 & & & \\ a_1 & -0.96 & 1 & & \\ a_2 & -0.37 & 0.22 & 1 & \\ a_3 & -0.44 & 0.42 & -0.02 & 1 \end{pmatrix}$$
(4.6.5)

Pour la comparaison entre les valeurs observées et calculées, on utilisera [63]. On peut résumer les résultats obtenus lors de l'ajustement des paramètres de notre modèle, par le tableau suivant :

ket	%init.ket (Modulus)	EigenValues	Obs. En.	Cal-Obs	Cal-Obs **	Calc-Obs ***
	(Mod.1)	(cm -1)	(cm -1)	(cm -1)	(cm -1)	(cm -1)
(1 0 0)1A1>	1.000	1890.419	1890.502	-0.083	-0.82	-0.500
(1 0 0)1E1>	1.000	1895.132	1894.497	0.635	0.31	0.927
(2 0 0)1A1>	0.996	3719.959	3719.933	0.026	-0.42	0.007
(2 0 0)1E1>	0.999	3720.196	3719.860	0.336	-0.08	0.396
(1 1 0)1A1>	0.996	3783.690				
(1 1 0)1E1>	0.999	3788.404				
(3 0 0)1A1>	0.999	5480.008	5480.285	-0.277	-0.02	-0.233
(3 0 0)1E1>	0.999	5480.162	5480.235	-0.223	0.04	-0.073
(2 1 0)1A1>	0.995	5608.238	5607.000	1.238	0.45	0.956
(2 1 0)1E1>	0.821	5610.893				
(2 1 0)2E1>	0.821	5615.607				
(2 1 0)1A2>	1.000	5617.964				
(1 1 1)1A1>	0.996	5679.814				
(4 0 0)1A1>	0.999	7173.023	7173.799	-0.776	0.93(*)	-0.756
(4 0 0)1E1>	0.999	7173.023	7173.783	-0.760	0.95(*)	-0.645
(3 1 0)1A1>	0.994	7371.242				
(3 1 0)1E1>	0.854	7372.028				
(3 1 0)2E1>	0.850	7373.599				
(3 1 0)1A2>	1.000	7374.385				
(2 2 0)1A1>	0.992	7439.377				

paran (**) [163]	res de le	ur modele.					
(*) C	les nòt	valeurs	n'ont pas ét	é introduites p	ar Lummila	<i>et al.</i> [63] d	ans l'ajusten	nent des
				$\sigma(13,$	$(4) = 0,72 \text{ cm}^{-1}$	-1		
	•		• 					
	•		•					
	0	U) IEI>	0.999	11020.330				
	7 0 7 0	()) 1A1>	0.999	11850.996				
	•	0) 4 4 4 5		11050 000				
	•		•					
(5	5 1	0)1A2>	0.999	10692.949				
(5	5 1	0)2E1>	0.819	10692.825				
(5	51	0)1E1>	0.820	10690.792	10691.500	0.724	2.80(*)	0.724
(5	51	0)1A1>	0.999	10690.792	10691.500	-0.708	2.80(*)	-1.107
(6	50	0)1E1>	0.999	10358.469	10358.000	0.469	10.93(*)	0.435
(6	50	0)1A1>	0.999	10358.469	10358.000	0.469	10.93(*)	0.350
(2	2 2	1)1E1>	0.997	9337.637				
(2	2 2	1)1A1>	0.989	9327.678				
(3	31	1)1E1>	0.997	9325.493				
(3	31	1)1A1>	0.988	9265.215				
1(3	32	0)1A2>	0.999	9203.365				
1(3	32	0)2E1>	0.749	9203.365				
(3	32	0)1E1>	1.000	9193.937				
1(3	32	0)1A1>	1.000	9193.937				
(4	ł 1	0)1A2>	1.000	9067.094				
(4	ł 1	0)2E1>	0.826	9066.308				
(4	ł 1	0)1A2>	0.999	9068.000				
1(4	ł 1	0)1E1>	0.828	9064.737				
(4	1	0)1A1>	0.998	9063.951				
1(5	50	0)1E1>	0.999	8799.267				
1(5	50	0)1A1>	0.999	8799.267				
	2 1	1)1E1>	0.999	7509.084				
	2 1	1)1A1>	0.996	7499.656				
(2	2 2	0)1E1>	0.990	7439.377				

TAB. 4.15 – Niveaux d'énergie observés et calculés pour la molécule de stibine SbH_3 pour $n\leqslant 6$

4.6.2 Interprétation des résultats

Dans ce tableau de résultats, la colonne 1 indique les états vibrationnels symétrisés en notation locale. La colonne 2 nous indique le module du coefficient de "pureté" de l'état considéré après diagonalisation. En fait il traduit si la base locale utilisée est adéquate ou pas : si ce coefficient vaut 1, alors l'état considéré est état propre du Hamiltonien ajusté. Les deux colonnes suivantes nous indiquent les énergies calculées par notre modèle et les énergies observées. Et enfin, les trois dernières colonnes montrent les écarts de notre modèle et les comparaisons avec des résultats de deux autres travaux [63, 64]. De façon évidente notre modèle reproduit les niveaux observés (déduits des données expérimentales) pour la molécule de stibine SbH_3 . Non seulement l'écart-type de notre modèle $\sigma(13, 4) = 0.72 \ cm^{-1}$ est de l'ordre de la précision expérimentale, mais de plus chaque valeur "Cal - Obs" est de l'ordre de cette précision expérimentale. Notre modèle reste stable pour toutes les valeurs de n, c'est-à-dire que l'écart entre calculés et observés est de l'ordre de quelques dixièmes de cm^{-1} aussi bien pour n = 1 que pour n = 6.

Le modèle Hamiltonien developpé par Lummila *et al.* [63], basé sur des potentiels de Morse et des termes d'interaction "élongation-élongation" tient compte du couplage avec le pliage. La valeur $\sigma_L(7,4) = 0.62 \ cm^{-1}$ qu'ils calculent, est obtenue pour un ajustement avec sept données. Afin de pouvoir comparer notre modèle avec le leur, nous avons effectué un ajustement de notre modèle avec ces sept mêmes données : nous obtenons alors $\sigma(7,4) = 0.11 \ cm^{-1}$. Mais si on utilise toutes les données observées (qu'ils possèdaient également), on obtient pour notre modèle, un écart-type d'une valeur de $\sigma(13,4) = 0.72 \ cm^{-1}$, alors qu'une même estimation de leur écarttype (avec toutes les données), conduit à la valeur $\sigma_L(13,4) = 5.35 \ cm^{-1}$. On constate que leur modèle "s'effondre", alors que le notre démontre une grande qualité de stabilité.

De plus, l'écart "Cal - Obs" reste constant avec notre formalisme, alors que leur ajustement se dégrade, puisque leurs écarts "Cal - Obs" deviennent très important avec $n : 3 \ cm^{-1}$ puis 11 cm^{-1} pour les niveaux n = 6.

La colonne %Ket.init de TAB. 4.15 indique que la base obtenue après diagonalisation du Hamiltonien est quasiment la base de départ. Par exemple, pour la symétrie E dans l'état n = 4, les kets $|(400); E\rangle$, $|(211); E\rangle$, $|(220); E\rangle$ sont des kets propres à 99% (deux combinaisons linéaires adéquates des kets $|(310); 1E_1\rangle$ et $|(310); 2E_1\rangle$ conduiraient au même pourcentage). La colonne %Ket.init indique donc que l'opérateur $\mathcal{Y}^{3(A_1)}$ n'est que perturbatif; d'où l'importance du concept de symétrie dynamique.

En outre, les modèles basés sur une approche "potentiel de Morse" c'est-à-dire $V_M(r_i) = \sum_{i=1}^{i=p} D(1 - e^{-a r_i})^2$ pour un système à p liaisons, ne permettent que l'ajustement des deux paramètres D et a. La résolution exacte de l'équation de Schrödinger avec un potentiel de Morse (ou une somme de potentiel de Morse indépendants) [65] conduit à $E_M = \alpha n + (-\frac{\beta^2}{4})\sum_{i=1}^{i=p} n_i^2 + \beta \sum_{i\neq j=1}^{i=p} n_i n_j (\alpha, \beta \in \mathbb{R} \text{ et dépendants de } D \text{ et } a)$. On remarque alors que l'énergie $E_0 = a_0 n + a_1 \sum_{i=1}^{i=p} n_i^2 + a_2 \sum_{i\neq j=1}^{i=p} n_i n_j$, obtenue avec le Hamiltonien H_0 (issu du concept de symétrie dynamique), peut reproduire exactement E_M dans le cas particulier où $[a_0 = \alpha, a_2 = \beta, a_1 = (-\frac{\beta^2}{4}) = (-\frac{a^2}{4})]$. Ceci montre que notre modèle algébrique d'ordre zéro peut reproduire exactement un potentiel de Morse, mais permet aussi d'autres descriptions physiques. Le modèle de Morse semble inadapté à reproduire les niveaux observés de la molécule de stibine, alors que notre modélisation algébrique reproduir relativement bien les niveaux de cette molécule qui apparaît donc très locale.

Enfin la matrice de corrélation \mathcal{M}_{cor} nous montre que les paramètres de notre modèle sont très peu corrélés, à l'exception de a_0 et a_1 . Ceci provient du faible nombre de données expérimentales dont nous disposons pour effectuer notre ajustement.

On compare egalement nos résultats avec [64]. Dans ce travail l'auteur a appliqué le même modèle mais il n'a pas pris en compte deux composantes de I.R. de type E.

Nous allons estimer la limite de dissociation de la molécule de stibine. En premier lieu, on peut déjà remarquer que le meilleur moyen de dissocier une molécule, est de mettre un maximum de quanta sur une seule et même liaison, de façon à ce que l'excitation générée conduise à la rupture de la liaison. Ainsi, l'état physique associé à la dissociation de la molécule est du type $|(n 0 0), 1E, 1A_1\rangle$. L'idée étant de chercher le maximum de la fonction $E_0(n)$ dans un état $|(n 0 0), 1E, 1A_1\rangle$. Pour cela nous commencerons par supposer cette fonction comme étant continue par rapport à n. Ainsi, on a la condition extrêmale

$$\frac{\partial E_0(n)}{\partial n} = 0 \bigg]_{n=n_{max}} \implies n_{max} = \frac{-a_0}{2a_1}$$
(4.6.6)

Or, d'après les règles d'encadrement qui fixe la réduction $U(4) \supset U(3)$, on a $n_{max} = N$, ce qui nous conduit à écrire

$$n_{max} \simeq 28,82 \qquad N = 29 \implies E_0(29) \simeq 27771 \ cm^{-1}$$
 (4.6.7)

Donc l'état de la dissociation est du type $|(2900), 1E, 1A_1\rangle$, ainsi, on en déduit l'énergie de dissociation D_e :

$$D_e \simeq \langle (N \, 0 \, 0), \ 1E, 1A_1 | \ H_0 | (N \, 0 \, 0), \ 1E, 1A_1 \rangle = E_0(29) \simeq 27771 \ cm^{-1}$$
 (4.6.8)

Cette estimation D_e de l'énergie de dissociation est tout à fait comparable à celle obtenue de manière expérimentale [63] :

Théoriquement Expérimentalement
$$D_e \simeq 27771 \ cm^{-1}$$
 $D_e \simeq 28900 \ cm^{-1}$ (4.6.9)

soit une erreur relative de 3.9%. Le modèle présenté est donc tout à fait satisfaisant.

4.6.3 Rappel et résultats sur la molécule d'arsine AsH_3

La molécule d'arsine, de part son interêt planétologique, est une molécule du type XY_3 très étudiée. Mais, depuis quelques années les (éco)toxicologues portent à l'arsenic et ses dérivés un intérêt tout particulier.

A l'état naturel, l'arsenic est un solide sous sa forme élémentaire, mais on le retrouve le plus souvent, seul ou associé à divers autres métaux, dans des composés soufrés. Parmi les composés naturels contenant de l'arsenic, il faut mentionner l'arsénopyrite (FeAsS), le réalgar (AsS), l'orpiment (As_2S_3), la nickeline (NiAs) et la cobaltite (CoAsS). L'arsenic peut se retrouver à l'état gazeux sous forme de trioxyde d'arsenic volatil (As_2O_3), d'arsine (AsH_3) et d'arsines méthylées. En solution, on peut retrouver l'arsenic sous forme d'As(III) et d'As(V) inorganiques, ainsi que sous diverses formes de composés méthylés de l'As(V).

De l'arsenic très pur est nécessaire pour produire des semi-conducteurs à l'arséniure de gallium et à l'arséniure d'indium. La France, après la Russie, est le deuxième pays produisant de l'arsenic.

Les fréquences fondamentales de la molécule d'arsine sont [66] :

$$\begin{cases}
\nu_1(A_1) = 2115.164 \ cm^{-1} \\
\nu_2(A_1) = 906.752 \ cm^{-1} \\
\nu_3(E) = 2126.423 \ cm^{-1} \\
\nu_4(E) = 999.225 \ cm^{-1}
\end{cases}$$
(4.6.10)

La forme du Hamiltonien \widehat{H} utilisée est :

$$H = a_0 \,\hat{n} + a_1 \,\left(\hat{n}_1^2 + \hat{n}_2^2 + \hat{n}_3^2\right) + a_2 \,\left(\hat{n}_1 \hat{n}_2 + \hat{n}_1 \hat{n}_3 + \hat{n}_2 \hat{n}_3\right) + a_3 \underbrace{\sum_{\substack{i \neq j = 1, 2, 3 \\ \equiv y^{3(A_1)}}} b_i^+ b_j}_{\equiv y^{3(A_1)}} \tag{4.6.11}$$

La méthode utilisée pour effectuer l'ajustement est la méthode des moindres carrés non linéaires. Après ajustement, on obtient le jeu de paramètres suivant :

$$\begin{cases}
 a_0 = 2161.759(396) \ cm^{-1} \\
 a_1 = -38.692(079) \ cm^{-1} \\
 a_2 = -1.645(405) \ cm^{-1} \\
 a_3 = -3.702(257) \ cm^{-1}
\end{cases}$$
(4.6.12)

La matrice de corrélation des paramètres a_i (i = 0, 1, 2, 3) présents dans le Hamiltonien \hat{H} , est :

$$\mathcal{M}_{cor}(21,4) = \begin{pmatrix} a_0 & a_1 & a_2 & a_3 \\ a_0 & 1 & & & \\ a_1 & -0.96 & 1 & & \\ a_2 & -0.81 & 0.75 & 1 & \\ a_3 & -0.15 & 0.10 & -0.06 & 1 \end{pmatrix}$$
(4.6.13)

On peut résumer les résultats obtenus lors de l'ajustement des paramètres de notre modèle, par le tableau suivant :

TAB. 4.16 – Niveaux d'énergie observés et calculés pour la molécule d'arsine AsH_3 pour $n \leq 6$ avec 20 données expérimentales

ket	%init.ket (Modulus)	EigenValues (cm -1)	Obs. En. (cm -1)	Cal-Obs (cm -1)	Cal-Obs (cm -1) *
(1 0 0)1A	1> 1.000	2115.662	2115.164	0.498	0.241
(1 0 0)1E	1> 1.000	2126.759	2126.423	0.346	0.649
(2 0 0)1A	1> 0.989	4167.180	4166.772	0.408	0.421
(2 0 0)1E	1> 0.998	4168.405	4167.935	0.470	0.606
(1 1 0)1A	1> 0.989	4238.652	4237.700	0.952	1.445
(1 1 0)1E	1> 0.998	4248.534	4247.520	1.014	1.944
(3 0 0)1A:	1> 0.998	6136.459	6136.340	0.119	0.215
(3 0 0)1E	1> 0.998	6136.504	6136.330	0.174	0.670
(2 1 0)1A	1> 0.987	6276.143	6275.830	0.313	0.889
(2 1 0)1E	1> 0.971	6282.389	6282.350	0.039	-1.294
(2 1 0)2E	1> 0.970	6295.202	6294.710	0.492	-4.385
(2 1 0)1A	2> 1.000	6299.631			
(1 1 1)1A:	1> 0.990	6366.126	6365.950	0.176	2.127
(4 0 0)1A	1> 0.999	8027.467	8028.977	-1.510	-1.482

(4	0	0)1E1>	0.999	8027.468	8028.969	-1.501	-1.085
(3	1	0)1A1>	0.983	8249.148	8249.510	-0.362	0.934
(3	1	0)1E1>	0.772	8257.357	8258.370	-1.013	-1.074
(3	1	0)2E1>	0.781	8250.769			
(3	1	0)1A2>	1.000	8258.879			
(2	2	0)1A1>	0.974	8331.650			
(2	2	0)1E1>	0.984	8332.843			
(2	1	1)1A1>	0.987	8393.932			
(2	1	1)1E1>	0.997	8414.851			
(5	0	0)1A1>	0.999	9841.028	9841.400	-0.372	-0.485
(5	0	0)1E1>	0.999	9841.028	9841.400	-0.372	-0.123
(4	1	0)1A1>	0.995	10139.912			
(4	1	0)1E1>	0.859	10139.998			
(4	1	0)2E1>	0.860	10147.375			
(4	1	0)1A2>	0.998	10147.458			
(3	2	0)1A1>	0.990	10284.327			
(3	2	0)1E1>	0.994	10284.954			
(3	2	0)2E1>	0.994	10307.174			
(3	2	0)1A2>	0.998	10307.716			
(3	1	1)1A1>	0.960	10368.110			
(3	1	1)1E1>	0.988	10371.930			
(2	2	1)1A1>	0.964	10437.916			
(2	2	1)1E1>	0.993	10456.227			
(6	0	0)1A1>	0.999	11577.189	11576.290	0.899	0.581
(6	0	0)1E1>	0.999	11577.189	11577.290	0.899	0.927
(5	1	0)1A1>	0.997	11951.990			
(5	1	0)1E1>	0.864	11951.992			
(5	1	0)2E1>	0.865	11959.413			
(5	1	0)1A2>	0.999	11959.416			
	•						
(7	0	0)1A1>	0.999	13235.959			
(7	0	0)1E1>	0.999	13235.959			

(*) [67] $\sigma(20,4) = 0,80 \text{ cm}^{-1}$

On a encore comparé nos résultats avec ceux de [67]. Notre écart-type $\sigma(20, 4)$ est 0, 80 cm⁻¹ alors que celui de [67] est $\sigma(20, 4) = 1, 42$ cm⁻¹.

On peut également observer que les coefficients de pureté des états $|(n \ 0 \ 0)1A1 > \text{et } |(n \ 0 \ 0)1E1 >$ sont proches de l'unité, cela implique que ces états peuvent être considérés comme des états propres de H_0 . On a donc

$$H_0 | (n \, 0 \, 0), \ 1E, 1A_1 \rangle = E_0(n) | (n \, 0 \, 0), \ 1E, 1A_1 \rangle = (a_0 \, n + a_1 \, n^2) | (n \, 0 \, 0), \ 1E, 1A_1 \rangle \quad (4.6.14)$$

Nous allons estimer la limite de dissociation de la molécule d'arsine :

$$\frac{\partial E_0(n)}{\partial n} = 0 \bigg]_{n=n_{max}} \implies n_{max} = \frac{-a_0}{2a_1}. \tag{4.6.15}$$

Or, d'après les règles d'encadrement qui fixent la réduction $U(4) \supset U(3)$, on a $n_{max} = N$, ce qui nous conduit à écrire

$$n_{max} \simeq 27,93$$
 $N = 28 \implies E_0(28) \simeq 30174 \ cm^{-1}$ (4.6.16)

Donc l'état de la dissociation est du type $|(2800), 1E, 1A_1\rangle$, ainsi, on en déduit l'énergie de dissociation D_e :

$$D_e \simeq \langle (N \, 0 \, 0), \ 1E, 1A_1 | \ H_0 | (N \, 0 \, 0), \ 1E, 1A_1 \rangle = E_0(28) \simeq 30174 \ cm^{-1}.$$
 (4.6.17)

Cette estimation D_e de l'énergie de dissociation est tout à fait comparable à celle obtenue de manière expérimentale [66] :

Théoriquement Expérimentalement
$$D_e \simeq 30174 \ cm^{-1}$$
 $D_e \simeq 31669 \ cm^{-1}$ (4.6.18)

soit une erreur relative de 4,66%. Le modèle présenté est donc tout à fait satisfaisant.

4.6.4 Résultats pour la molécule de phosphine PH_3

Enfin nous présentons les résultats pour une molécule de type XY_3 : la molécule de phospine (PH_3) . Cette molécule présente un intérêt pour la planétologie puisqu'elle a été trouvée dans l'atmosphère des planètes géantes et comme les molécules précédentes, elle présente aussi un intérêt industriel.

Les fréquences fondamentales de la molécule de phosphine sont [68] :

$$\begin{cases}
\nu_1(A_1) = 2321.12 \ cm^{-1} \\
\nu_2(A_1) = 992.13 \ cm^{-1} \\
\nu_3(E) = 2326.87 \ cm^{-1} \\
\nu_4(E) = 1118.31 \ cm^{-1}
\end{cases}$$
(4.6.19)

La forme du Hamiltonien \widehat{H} utilisée est :

$$H = a_0 \,\hat{n} + a_1 \,\left(\hat{n}_1^2 + \hat{n}_2^2 + \hat{n}_3^2\right) + a_2 \,\left(\hat{n}_1 \hat{n}_2 + \hat{n}_1 \hat{n}_3 + \hat{n}_2 \hat{n}_3\right) + a_3 \underbrace{\sum_{\substack{i \neq j = 1, 2, 3 \\ \equiv y^{3(A_1)}}} b_i^+ b_j}_{\equiv y^{3(A_1)}} \tag{4.6.20}$$

La méthode utilisée pour effectuer l'ajustement est la méthode des moindres carrés non linéaires. Après ajustement, on détermine le jeu de paramètres suivant :

$$\begin{cases} a_0 = 2365.725(411) \ cm^{-1} \\ a_1 = -42.132(082) \ cm^{-1} \\ a_2 = -0.172(411) \ cm^{-1} \\ a_3 = -1.715(287) \ cm^{-1} \end{cases}$$
(4.6.21)

La matrice de corrélation \mathcal{M}_{cor} , étant :

$$\mathcal{M}_{cor} = \begin{pmatrix} a_0 & a_1 & a_2 & a_3 \\ a_0 & 1 & & & \\ a_1 & -0.95 & 1 & & \\ a_2 & -0.81 & 0.73 & 1 & \\ a_3 & -0.21 & 0.18 & -0.02 & 1 \end{pmatrix}$$
(4.6.22)

À l'aide du jeu de paramètres 4.6.21, on a calculé les valeurs des niveaux vibrationnels d'élongation pour la molécule PH_3 (TAB. 4.17).

TAB. 4.17 – Niveaux d'énergie observés et calculés pour la molécule de phosphine PH_3 pour $n\leqslant 6$ avec 17 données expériment ales

<pre>ket %init.ket EigenValues Obs. En. Cal-Obs (Modulus) (cm -1) (cm -1) (cm -1)</pre>
(Modulus) (cm -1) (cm -1) (cm -1) (modulus) (cm -1) (cm -1) (cm
(100)1A1> 1.000 2320.163 2321.131 -0.968 (100)1E1> 1.000 2325.308 2326.876 -1.568 (200)1A1> 0.998 4562.632 4566.260 -3.627 (200)1E1> 0.999 4562.853 4565.780 -2.926 (110)1A1> 0.998 4644.218 4644.660 -0.442
(100)1A1> 1.000 2320.163 2321.131 -0.968 (100)1E1> 1.000 2325.308 2326.876 -1.568 (200)1A1> 0.998 4562.632 4566.260 -3.627 (200)1E1> 0.999 4562.853 4565.780 -2.926 (110)1A1> 0.998 4644.218 4644.660 -0.442
(100)1E1>1.000 2325.308 2326.876 -1.568 (200)1A1>0.998 4562.632 4566.260 -3.627 (200)1E1>0.999 4562.853 4565.780 -2.926 (110)1A1>0.998 4644.218 4644.660 0.442
(200)1A1>0.998 4562.632 4566.260 -3.627 (200)1E1>0.999 4562.853 4565.780 -2.926 (110)1A1>0.998 4644.218 4644.660 0.440
(2 0 0)1E1> 0.999 4562.853 4565.780 -2.926
(1 1 0)1A1 > 0.998 4044.218 4044.000 -0.442
(1 1 0)1E1> 0.999 4649.074
(3 0 0)1A1> 0.999 6717.878 6714.600 3.278
(3 0 0)1E1> 0.999 6717.881 6714.600 3.281
(2 1 0)1A1> 0.997 6881.429 6881.530 -0.100
(2 1 0)1E1> 0.968 6883.941 6883.730 0.211
(2 1 0)2E1> 0.968 6889.882 6890.860 -0.977
(2 1 0)1A2> 1.000 6892.005
(1 1 1)1A1> 0.998 6971.689 6971.160 0.529
(4 0 0)1A1> 0.999 8788.691 8788.000 0.691
(4 0 0)1E1> 0.999 8788.691 8788.000 0.691
(3 1 0)1A1> 0.997 9039.941 9040.000 -0.059
(3 1 0)1E1> 0.834 9041.238 9040.000 1.238
(3 1 0)2E1> 0.836 9043.502
(3 1 0)1A2> 1.000 9043.810
(2 2 0)1A1> 0.996 9126.532
(2 2 0)1E1> 0.997 9126.532
(2 1 1)1A1> 0.998 9204.109
(2 1 1)1E1> 0.999 9214.399
(5 0 0)1A1> 0.999 10775.319
(5 0 0)1E1> 0.999 10775.319
(4 1 0)1A1> 0.999 11111.352
(4 1 0)1E1> 0.865 11112.209

(4 1 0)2E1>	0.865	11113.924		
(4 1 0)1A2>	0.999	11114.782		
(3 2 0)1A1>	0.998	11276.795		
(3 2 0)1E1>	0.996	11276.795		
(3 2 0)2E1>	0.996	11287.086		
(3 2 0)1A2>	0.998	11279.368		
(3 1 1)1A1>	0.993	11366.377		
(3 1 1)1E1>	0.990	11366.377		
(2 2 1)1A1>	0.964	11443.954		
(2 2 1)1E1>	0.993	11454.245		
(6 0 0)1A1>	0.999	12677.504	12678.210	-0.705
(6 0 0)1E1>	0.999	12677.504	12678.210	-0.705
(5 1 0)1A1>	0.999	13098.059		
(5 1 0)1E1>	0.866	13098.916		
(5 1 0)2E1>	0.866	13100.632		
(5 1 0)1A2>	0.999	13100.632		
•				
•				
(7 0 0)1A1>	0.999	14495.593		
(7 0 0)1E1>	0.999	14495.593		

$\sigma(17, 4) = 1,74 \text{ cm}^{-1}$

Malheureusement nous n'avons pas de résultats comparatifs pour cette molécule sauf [68] où les auteurs regardent le couplage entre les vibrations d'élongation et les vibrations de pliage. On voit que notre modèle fonctionne relativement bien puisque $\sigma(17,4) = 1,74 \text{ cm}^{-1}$; mais dans les précédents cas, on avait des écarts-types inférieurs à un. Nous ne pouvons pas expliquer pourquoi avec la molécule de phosphine on a de grands écarts entre les valeurs calculées et observées, on peut seulement supposer que c'est à cause de grandes résonances entre les niveaux d'élongation et les niveaux de pliage. On n'a pas encore pris en compte les niveaux de pliage, c'est pourquoi on ne peut pas encore pour l'instant vérifier notre hypothèse.

Comme précédemment, on a estimé la valeur de $n_{max} \simeq 28,07$ $N = 28 \implies E_0(28) \simeq 33208 \ cm^{-1}$. Donc l'état de dissociation est du type $|(2800), 1E, 1A_1\rangle$, et on en déduit l'énergie de dissociation D_e :

$$D_e \simeq \langle (N \, 0 \, 0), \ 1E, 1A_1 | \ H_0 | (N \, 0 \, 0), \ 1E, 1A_1 \rangle = E_0(28) \simeq 33208 \ cm^{-1}.$$
 (4.6.23)

Chapitre 5

Hamiltonien vibrationnel des molécules $XY_3(C_{3v})$ (modèle local-local)

5.1 Vibrations de pliage des molécules $XY_3(C_{3v})$

Pour construire l'Hamiltonien qui va décrire les états vibrationnels des molécules XY_3 il faut d'abord considérer comment on peut développer les kets des états de pliage, les générateurs pour ce type de vibration et évidemment un Hamiltonien qui permet d'obtenir des états vibrationnels de pliage. On peux considérer les vibrations de pliage de la même manière que pour les vibrations d'élongation, c'est-à-dire en appliquant tout ce qu'on a déjà précédemment utilisé mais ici, dans ce cas, pour des angles entre liaisons ($\alpha_{12}, \alpha_{13}, \alpha_{23}$), c'est-à-dire on va considérer des modes vibrationnels de pliage comme des modes locaux.

Premièrement, nous définissons la correspondance entre des opérateurs bosoniques et les angles $\alpha_{12}, \alpha_{13}, \alpha_{23}$ (FIG. 5.1) :

FIG. 5.1 – Angles entre liaisons d'une molécule XY_3 non planaire

On peut choisir :

$$\{b_5^+, b_5\} \text{ correspondant à } \alpha_{23}$$
$$\{b_6^+, b_6\} \text{ correspondant à } \alpha_{13}$$
$$\{b_7^+, b_7\} \text{ correspondant à } \alpha_{12}$$

et noter un ket non symmetrisé comme $|(n_5 n_6 n_7)\rangle$.

Dans ce cas on peut considérer comme des opérations du groupe S_3 les éléments suivants : σ_{v1} : (67), σ_{v2} : (57), σ_{v3} : (56), C_3 : (576), C_3^{-1} : (567).

La prochaine étape est de construire des kets et des générateurs symétrisés, il suffit d'appliquer le même formalisme qu'au chapitre précédent, on obtient pour les kets :

- Etat symétrisé du type :
$$n_5 = n_6 = n_7 \equiv n$$

 $|(n n n), A_1\rangle = |n n n\rangle$

- Etats symétrisés du type : $n_5 = n_6 \equiv n$ et $n_7 \equiv n'$

$$\begin{aligned} |(n n n'), A_1\rangle &= \frac{1}{\sqrt{3}} [|n n n'\rangle + |n n' n\rangle + |n' n n\rangle] \\ |(n n n'), E_1\rangle &= \frac{1}{\sqrt{6}} [2|n n n'\rangle - |n n' n\rangle - |n' n n\rangle] \\ |(n n n'), E_2\rangle &= \frac{1}{\sqrt{2}} [|n n' n\rangle - |n' n n\rangle] \end{aligned}$$

- Etats symétrisés du type : $n_5 \neq n_6 \neq n_7$

Dans les kets symétrisés du type $|(n_5 n_6 n_7), r C_{\sigma}\rangle$ nous choisissons la convention de notation $n_5 > n_6 > n_7$.

$$\begin{split} |(n_5 n_6 n_7), A_1\rangle &= \frac{1}{\sqrt{6}} [|n_5 n_6 n_7\rangle + |n_5 n_7 n_6\rangle + |n_6 n_5 n_7\rangle \\ &+ |n_5 n_7 n_6\rangle + |n_7 n_5 n_6\rangle + |n_7 n_6 n_5\rangle] \\ |(n_5 n_6 n_7), A_2\rangle &= \frac{1}{\sqrt{6}} [|n_5 n_6 n_7\rangle - |n_5 n_7 n_6\rangle - |n_6 n_5 n_7\rangle \\ &+ |n_6 n_7 n_5\rangle + |n_7 n_5 n_6\rangle - |n_7 n_6 n_5\rangle] \\ |(n_5 n_6 n_7), 1E_1\rangle &= \frac{1}{\sqrt{12}} [2|n_5 n_6 n_7\rangle - |n_7 n_6 n_5\rangle - |n_5 n_7 n_6\rangle \\ &+ 2|n_6 n_5 n_7\rangle - |n_6 n_7 n_5\rangle - |n_7 n_5 n_6\rangle + |n_6 n_7 n_5\rangle] \\ |(n_5 n_6 n_7), 1E_2\rangle &= \frac{1}{2} [|n_5 n_7 n_6\rangle - |n_7 n_6 n_5\rangle - |n_7 n_5 n_6\rangle + |n_6 n_7 n_5\rangle] \\ |(n_5 n_6 n_7), 2E_1\rangle &= \frac{1}{2} [-|n_5 n_7 n_6\rangle + |n_6 n_7 n_5\rangle - |n_7 n_5 n_6\rangle + |n_7 n_6 n_5\rangle \\ |(n_5 n_6 n_7), 2E_2\rangle &= \frac{1}{\sqrt{12}} [-|n_5 n_7 n_6\rangle + |n_6 n_7 n_5\rangle + 2|n_6 n_5 n_7\rangle \\ &- 2|n_5 n_6 n_7\rangle + |n_7 n_5 n_6\rangle - |n_7 n_6 n_5\rangle] \end{split}$$

De même, pour les générateurs on obtient :

Premier ensemble : générateurs symétrisés qui ne dépendent que des opérateurs de poids.
 Ces opérateurs sont donc diagonaux dans la base de G-Z et dans celle des états symétrisés.

$$\begin{array}{lll} \mathcal{Y}^{1(A_1)} &=& \widehat{N}_8 \\ \mathcal{Y}^{2(A_1)} &=& \widehat{N}_5 + \widehat{N}_6 + \widehat{N}_7 \\ \mathcal{Y}^{1(E)}_1 &=& \widehat{N}_5 + \widehat{N}_6 - 2\widehat{N}_7 \\ \mathcal{Y}^{1(E)}_2 &=& \sqrt{3} \left[\widehat{N}_5 - \widehat{N}_6 \right] \end{array}$$

- Deuxième ensemble : générateurs symétrisés diagonaux au sein de la représentation totalement symétrique [n, 0, 0] de U(3)

Ces générateurs symétrisés couplent donc des états locaux caractérisés par la même valeur de n.

- Troisième ensemble : générateurs symétrisés non-diagonaux au sein de la représentation totalement symétrique [n, 0, 0] de U(3).

Ils couplent donc des états locaux caractérisés par des valeurs de n différentes.

Enfin on peut appliquer la même idée que celle utilisée dans le cas des vibrations d'élongation pour développer l'Hamiltonien vibrationnel de pliage :

$$H = a_4 \,\hat{n} + a_5 \,\left(\hat{n}_5^2 + \hat{n}_6^2 + \hat{n}_7^2\right) + a_6 \,\left(\hat{n}_5 \hat{n}_6 + \hat{n}_5 \hat{n}_7 + \hat{n}_6 \hat{n}_7\right) + a_7 \underbrace{\sum_{\substack{i \neq j = 5, 6, 7 \\ \equiv y^{3(A_1)}}} b_i^+ b_j}_{\equiv y^{3(A_1)}} \tag{5.1.2}$$

Maintenant on peut effectuer l'ajustement des paramètres de l'Hamiltonien vibrationnel de pliage pour les trois molécules étudiées. Malheureusement il n'y a pas assez de donnés experimentales pour la molécule de stibine (on a que quatre niveaux), c'est pourquoi à titre d'exemple, nous présentons les résultats pour la molécule d'arsine et pour la molécule de phosphine.

La méthode utilisée pour effectuer l'ajustement est la méthode des moindres carrés non linéaires. Après ajustement, on détermine le jeu de paramètres suivant :

$$\begin{cases}
 a_4 = 973.97(2.26) \ cm^{-1} \\
 a_5 = -5.09738(1.43) \ cm^{-1} \\
 a_6 = 2.95563(2.58) \ cm^{-1} \\
 a_7 = -31.772(262) \ cm^{-1}
\end{cases}$$
(5.1.3)

La matrice de corrélation \mathcal{M}_{cor} , étant :

$$\mathcal{M}_{cor} = \begin{pmatrix} a_4 & a_5 & a_6 & a_7 \\ a_4 & 1 & & & \\ a_5 & -0.95 & 1 & & \\ a_6 & -0.38 & 0.10 & 1 & \\ a_7 & -0.13 & 0.12 & 0.02 & 1 \end{pmatrix}$$
(5.1.4)

A partir des paramètres obtenus on a calculé les niveaux vibrationnels de pliage pour la molécule d'arsine TAB. 5.1

TAB. 5.1 – Niveaux d'énergie vibrationnels de pliage observés et calculés pour la molécule d'arsine AsH_3 pour $n \leq 4$ avec 6 données expérimentales

ket	%init.ket	EigenValues	Obs. En.	Cal-Obs				
	(Modulus)	(cm -1)	(cm -1)	(cm -1)				
(1 0 0)A1>	1.00	905.329	906.752	-1.423				
(1 0 0)E >	1.00	1000.647	999.225	1.423				
(1 1 0)A1>	0.82	1809.022	1806.149	2.874				
(2 0 0)E >	0.81	1899.782	1904.115	-4.332				
(2 0 0)A1>	0.80	1995.690	1990.998	4.693				
(1 1 0)E >	0.81	2000.249	2003.483	-3.234				
(2 1 0)A1>	0.81	2711.048						
(2 1 0)E >	0.64	2796.982						
(3 0 0)A1>	0.85	2887.751						
(3 0 0)E >	0.56	2893.718						
(2 1 0)E >	0.87	2990.020						
(2 1 0)A2>	1.00	2997.654						
(1 1 1)A1>	0.74	2999.744						
(2 1 1)A1>	0.62	3611.366						
(2 2 0)E >	0.40	3692.147						
(4 0 0)A1>	0.78	3777.405						
(3 1 0)E >	0.43	3785.121						
(4 0 0)E >	0.63	3875.803						
(3 1 0)A2>	1.00	3885.550						
(3 1 0)A1>	0.37	3888.118						
(2 2 0)A1>	0.67	3979.357						
(3 1 0)E >	0.72	3983.130						
(2 1 1)E >	0.79	3996.233						
•								
•								
$\sigma(6,4) = 5,64 \text{ cm}^{-1}$								

86

On présente également les résultats pour la molécule de phosphine. Par la méthode des moindres carrés non linéaires on a obtenu le jeu de paramètres suivant :

$$\begin{cases}
 a_4 = 1077.757(002) \ cm^{-1} \\
 a_5 = -0.704(001) \ cm^{-1} \\
 a_6 = -14.502(005) \ cm^{-1} \\
 a_7 = -42.900(001) \ cm^{-1}
 \end{cases}$$
(5.1.5)

avec la matrice de corrélation \mathcal{M}_{cor} :

$$\mathcal{M}_{cor} = \begin{pmatrix} a_4 & a_5 & a_6 & a_7 \\ a_4 & 1 & & & \\ a_5 & -0.91 & 1 & & \\ a_6 & 0.19 & -0.55 & 1 & \\ a_7 & -0.36 & 0.53 & -0.73 & 1 \end{pmatrix}$$
(5.1.6)

Le calcul des energies vibrationnels de pliage est présenté dans le tableau suivant :

TAB. 5.2 – Niveaux d'énergie vibrationnels de pliage observés et calculés pour la molécule de phosphine PH_3 pour $n \leq 4$ avec 8 données expérimentales

ket	%init.ket (Modulus)	EigenValues (cm -1)	Obs. En. (cm -1)	Cal-Obs (cm -1)	
(1 0 0)1A:	L> 1.000	991.25	992.13	-0.88	
(1 0 0)1E:	L> 1.000	1119.95	1118.31	1.64	
(1 1 0)1A:	L> 0.83	1972.21	1972.55	-0.34	
(2 0 0)1E:	L> 0.79	2105.12	2108.15	-3.03	
(1 1 0)1E:	L> 0.79	2230.07	2234.93	-4.86	
(2 0 0)1A:	L> 0.83	2234.27	2226.83	7.44	
(2 1 0)1A:	L> 0.81	2942.91	2940.77	2.14	
(2 1 0)1E:	L> 0.75	3079.92			
(3 0 0)1E:	L> 0.67	3209.39			
(3 0 0)1A:	L> 0.76	3212.31	3214.20	-1.89	
(1 1 1)1A:	L> 0.69	3331.39			
(2 1 0)2E:	L> 0.77	3339.09			
(2 1 0)1A	2> 1.00	3339.09			
(2 1 1)1A:	L> 0.70	3903.35			
(2 2 0)1E:	L> 0.59	4044.36			
(3 1 0)1E:	L> 0.65	4178.20			
(3 1 0)1A:	L> 0.59	4180.14			

(4 0 0)1A1>	0.65	4304.90
(4 0 0)1E1>	0.99	4310.02
(2 1 1)1E1>	0.54	4420.76
(3 1 0)2E1>	0.61	4434.81
(2 2 0)1A1>	0.53	4438.98
•		
•		
		$\sigma(8,4) = 4,99 \text{ cm}^{-1}$

On peut voir que les résultats sont relativement moyens. Nous supposons que c'est soit à cause de résonanes avec des niveaux vibrationnels d'élongation, soit on doit décrire les modes vibrationnels de pliage comme des modes normaux. Maintenant on va examiner le couplage des modes vibrationnels d'élongation et des modes vibrationnels de pliage avec une description des modes d'élongation comme des modes locaux (on a déjà montré que c'est une bonne approche) et des modes de pliage comme des modes locaux. C'est-à-dire on va introduire l'interaction entre les modes d'élongation et les modes de pliage.

5.2 Le couplage élongation-pliage dans l'approche locallocal

Dans ce cas on va utiliser la chaîne des groupes (4.2.3).

On a déjà montré l'efficacité de la chaîne de groupes $(U_e(4) \supset U_e(3) \supset K_e(3) \supset S_e(3) \supset C_{3v})$ dans le cas des vibrations d'élongation. Le Hamiltonien pour le système vibrationnel couplé élongation-pliage doit donc inclure :

$$H_e = a_0 \left(\hat{n}_1 + \hat{n}_2 + \hat{n}_3 \right) + a_1 \left(\hat{n}_1^2 + \hat{n}_2^2 + \hat{n}_3^2 \right) + a_2 \left(\hat{n}_1 \hat{n}_2 + \hat{n}_1 \hat{n}_3 + \hat{n}_2 \hat{n}_3 \right) + a_3 \underbrace{\sum_{\substack{i \neq j=1,2,3 \\ \equiv \mathcal{Y}^{3(A_1)}}} b_i^+ b_j}_{\equiv \mathcal{Y}^{3(A_1)}} (5.2.1)$$

et les kets symétrisés $|(n_1, n_2, n_3), C_e\rangle$ de §§4.4.3 seront également inclus dans la partie des kets totals de notre système.

A partir de la deuxième partie de la chaîne (4.2.3) $(U_p(4) \supset U_p(3) \supset K_p(3) \supset S_p(3) \supset C_{3v})$ on peut développer

$$H_p = a_4 \left(\hat{n}_5 + \hat{n}_6 + \hat{n}_7 \right) + a_5 \left(\hat{n}_5^2 + \hat{n}_6^2 + \hat{n}_7^2 \right) + a_6 \left(\hat{n}_5 \hat{n}_6 + \hat{n}_5 \hat{n}_7 + \hat{n}_6 \hat{n}_7 \right) + a_7 \underbrace{\sum_{i \neq j = 5, 6, 7}}_{\equiv \mathcal{Y}^{3(A_1)}} b_i^+ b_j \left(5.2.2 \right)$$

et les kets symétrisés de pliage $|(n_5, n_6, n_7), C_p\rangle$ §§5.1.

Pour nos molécules XY_3 non planaires il existe la relation approchée entres les fréquences des modes vibrationnels fondamentaux

$$(\nu_1(A_1) \simeq \nu_3(E)) \simeq 2 (\nu_2(A_1) \simeq \nu_4(E)).$$
 (5.2.3)

c'est-à-dire on doit considérer un opérateur de couplage élongation-pliage qui correspond à cette résonance 2 : 1 entre les modes vibrationnels d'élongation et les modes vibrationnels de

pliage. Maintenant on peut écrire le Hamiltonien de notre système couplé élongation-pliage dans l'approche local-local :

$$\begin{aligned} H_{ep}^{LL} &= a_0 \left(\hat{n}_1 + \hat{n}_2 + \hat{n}_3 \right) + a_1 \left(\hat{n}_1^2 + \hat{n}_2^2 + \hat{n}_3^2 \right) + a_2 \left(\hat{n}_1 \hat{n}_2 + \hat{n}_1 \hat{n}_3 + \hat{n}_2 \hat{n}_3 \right) + a_3 \underbrace{\sum_{\substack{i \neq j = 1, 2, 3 \\ \equiv \mathcal{Y}^{3(A_1)}}}_{\equiv \mathcal{Y}^{3(A_1)}} \\ &+ a_4 \left(\hat{n}_5 + \hat{n}_6 + \hat{n}_7 \right) + a_5 \left(\hat{n}_5^2 + \hat{n}_6^2 + \hat{n}_7^2 \right) + a_6 \left(\hat{n}_5 \hat{n}_6 + \hat{n}_5 \hat{n}_7 + \hat{n}_6 \hat{n}_7 \right) + a_7 \underbrace{\sum_{\substack{i \neq j = 5, 6, 7 \\ \equiv \mathcal{Y}^{3(A_1)}}}_{\equiv \mathcal{Y}^{3(A_1)}} \\ &+ a_8 \hat{H}_{en} \end{aligned}$$
(5.2.4)

Développons l'opérateur d'interaction qui correspond à la résonance 2 : 1 entre les modes vibrationnels d'élongation et les modes vibrationnels de pliage, c'est-à-dire nous devons prendre 2 quanta de vibration d'élongation pour exciter un quantum de vibration de pliage ou au contraire pour exciter 2 quanta de vibration d'élongation on doit donner un quantum de vibration de pliage. Mathémathiquement, cette étude nous conduit à l'introduction de l'opérateur de couplage suivant :

$$H_{ep} = \sum_{i=1}^{3} \sum_{k=5}^{7} \sum_{n>k=5}^{7} \left(b_i^{\dagger} b_4 b_k b_n b_8^{\dagger 2} + b_i b_4^{\dagger} b_k^{\dagger} b_n^{\dagger} b_8^2 \right)$$
(5.2.5)

Nous avons introduit les opérateurs $\{b_4^{\dagger}, b_4\}$ et $\{b_8^{\dagger}, b_8\}$ qui sont des couples d'opérateurs de bosons propres aux groupes dynamiques $U_e(4)$ et $U_p(4)$ respectivement. On a besoin de ces opérateurs pour permettre l'échange entre des vibrations d'élongation et des vibrations de pliage. Evidemment, on doit introduire les nombres quantiques qui caractérisent $U_e(4)$ et $U_p(4)$, on note ces nombres quantiques comme n_4 et n_8 respectivement, c'est-à-dire nous avons les kets $|n_1n_2n_3(n_4); C_e\rangle$ pour les vibrations d'élongation et $|n_5n_6n_7(n_8); C_p\rangle$ pour les vibrations de pliage.

<u>ARTICLE ACCEPTÉ</u> :

Vibrational Modes of the Stibine Molecule

Journal of Molecular Spectroscopy

Vibrational Modes of the Stibine Molecule

L. Pluchart^{*}, C. Leroy^{* 1}, N. Sanzharov^{*+}, F. Michelot^{*}, E. Bekhtereva^{**} and O. Ulenikov^{**}

* Laboratoire de Physique de l'Université de Bourgogne – UMR CNRS 5027, B.P. 47 870, F-21078 Dijon Cedex, France

**Laboratory of Molecular Spectroscopy, Physics Department, Tomsk State University, Tomsk, 634050, Russia.

Abstract

In this paper, we use the algebraic approach to describe the vibrational modes of stibine molecule (of C_{3v} molecular symmetry group) up to 21 quanta. As the stibine molecule exhibits stretch-bend resonances, we build an algebraic pyramidal coupling operator between stretching modes and bending modes adapted to this molecule. The standard deviation associated to the fit of the vibrational levels is 1.75 cm⁻¹.

Keywords : algebraic approach, vibrational modes, high excited levels, SbH_3 molecule

1 Introduction

The interest for the vibrational spectra of stibine, SbH_3 , lies in the fact that the stibine gas is the purest gas source of antimony, which is used in the manufacture of compound semiconductors for IR sensors and solid-state laser [1]. Moreover, this molecule presents a local mode behavior as defined by Child *et al.* [2,3] and analyzed in [4,5]. Many formalisms have been applied to interpret local modes molecules. The first algebraic approach in the field of molecular spectroscopy was initially given by Iachello *et al.* [6,7] with the vibron model where a U(4) algebra is used to describe the spectra of diatomic molecules and small polyatomic molecules. In [8], Iachello *et al.* expanded the used method

Preprint submitted to Elsevier Science

21 June 2005

 $[\]overline{1}$ To whom correspondence should be addressed.

E-mail address: Claude.Leroy@u-bourgogne.fr

Fax: +33 3 80 39 59 71

⁺ Permanent address: Laboratory of Spectroscopy, Physics Department, Tomsk State University, Tomsk, 634050, Russia.

to the study of bending states in linear four-atomic molecules. Later, Iachello with co-authors [9] also used the algebraic methods for the study of quasi-linear four-atomic molecules. Those works use the same dynamical group U(4) we use in this work.

Readers interested about the subject may find many references and explanations in [10].

Using the isomorphism between SU(2) and the Morse potential, Van Roosmalen *et al.* [11,12] developed another algebraic model describing the stretching modes of XY_2 molecules. Others developments based upon this SU(2)formalism have been proposed by Lemus and Franck [13] and by Xi-Wen Hou *et al.* [14]. Alternatively, an algebraic formalism based on unitary groups, initially developed by Michelot *et al.* [15] and Leroy *et al.* [16–19] has shown to be well efficient to reproduce the vibrational levels of XY_4 molecular systems. A wide literature has been devoted to the stibine molecule. The ground state spectroscopic constants, molecular geometry and analysis of the structure in the first excited states of this molecule can be found in [20–22].

In the present paper, we propose to apply the U(p + 1) formalism to the SbH_3 system. We show that the accuracy of our model is better than in a previous analysis [5]. In [23] we have proposed an algebraic treatment of the vibrational stretching modes for arsine molecule AsH_3 which is characterized by the condition $\nu_1(A_1) \simeq \nu_3(E)$, namely

$$U(4) \supset U(3) \supset K(3) \supset S(3) \approx C_{3v}.$$
(1)

In chain (1), K(3) is the semi-continuous group defined as the semidirect product of the group A(3) (formed by the diagonal unitary matrices) and the group of permutations S(3)

$$K(3) = A(3) \wedge S(3).$$
 (2)

The stibine molecule ${}^{121}SbH_3$ is characterized by the fundamental modes

$$\nu_1(A_1) = 1890.502 \text{ cm}^{-1},
\nu_3(E) = 1894.497 \text{ cm}^{-1},
\nu_2(A_1) = 782.24 \text{ cm}^{-1},
\nu_4(E) = 827.85 \text{ cm}^{-1}.$$
(3)

Therefore we can write the physical conditions

$$\nu_1(A_1) \simeq \nu_3(E)$$
 and $\nu_2(A_1) \simeq \nu_4(E)$. (4)

These two physical particularities allow us to describe the vibrational modes

of the stibine molecule SbH_3 by using the algebraic chain

$$\begin{bmatrix} (U_s(4) \supset U_s(3) \supset K_s(3) \supset S_s(3) \approx C_{3v}) \\ \otimes \\ (U_b(4) \supset U_b(3) \supset K_b(3) \supset S_b(3) \approx C_{3v}) \end{bmatrix} \supset C_{3v}$$
(5)

where s stands for stretching and b stands for bending. In the following section we briefly explain the background of this algebraic formalism. In section 3, we use the properties of the projection operators to obtain a local basis symmetrized in the molecular group C_{3v} of the molecule. Section 4 is devoted to the algebraic model of the Hamiltonian for the stretching modes and we apply it to the stretching energy levels of the molecule of stibine. In section 5, we develop the algebraic model for all the vibrational modes and we introduce the polyad number K which helps to reduce the size of the matrices we have to diagonalize. Before to conclude, last section is concerned with the analysis of the energy levels of the stibine molecule and discussion.

2 Lie groups and molecular symmetry groups

The determination of the irreducible representations (irrep) of the unitary groups U(n) is due to Gel'fand and Zetlin (G-Z) [24]. The method [25,26] consists in the determination of a complete set of invariant operators $\mathbf{I}_{k}^{(U(n))}$ called generalized Casimir operators. These operators are built with the help of the U(n) generators \mathbf{E}_{ij} :

$$\mathbf{I}_{k}^{(U(n))} = \sum_{i_{1}i_{2},\dots,i_{k}=1}^{n} \mathbf{E}_{i_{1}i_{2}} \mathbf{E}_{i_{2}i_{3}}\dots \mathbf{E}_{i_{k}i_{1}}$$
(6)

with k = 1, 2, ..., n.

These Hermitian operators $\mathbf{I}_k^{(U(n))}$ commute with every generator \mathbf{E}_{ij} :

$$\left[\mathbf{I}_{k}^{(n)}, \mathbf{E}_{ij}\right] = 0 \quad \forall i, j, k = 1, 2, \dots, n$$
(7)

Now, we consider the set ${\mathcal I}$ formed of the $\frac{n}{2}(n+1)$ operators ${\bf I}_k^{(U(j))}$ as ${\mathcal I}=$

$$\begin{bmatrix} \mathbf{I}_{1}^{U(n)} & \mathbf{I}_{2}^{U(n)} & \dots & \mathbf{I}_{n-1}^{U(n)} & \mathbf{I}_{n}^{U(n)} \\ & \mathbf{I}_{1}^{U(n-1)} & \dots & \mathbf{I}_{k}^{U(n-1)} & \dots & \mathbf{I}_{n-1}^{U(n-1)} \\ & \ddots & & \mathbf{I}_{k}^{U(j)} & \dots & \\ & & & \mathbf{I}_{1}^{U(2)} & & \mathbf{I}_{2}^{U(2)} \\ & & & & \mathbf{I}_{1}^{U(1)} \end{bmatrix}$$
(8)

$$\mathbf{I}_{k}^{(U(j))} = \sum_{i_{1}, i_{2}, \dots, i_{k}=1}^{j} \mathbf{E}_{i_{1} i_{2}} \mathbf{E}_{i_{2} i_{3}} \dots \mathbf{E}_{i_{k} i_{1}}$$
(9)
 $1 \leq j \leq n \text{ and } 1 \leq k \leq j.$

The operators in $\mathcal I$ are Hermitian, independent and mutually commute. The set (m) of $\frac{n}{2}(n+1)$ integers

$$(m) =$$

$$\begin{bmatrix} m_{1n} & m_{2n} & \dots & \dots & m_{nn} \\ m_{1n-1} & \dots & m_{kn-1} & \dots & m_{n-1n-1} \\ & \ddots & & \dots & & \\ & & & & \dots & & \\ & & & & & m_{12} & & m_{22} \\ & & & & & & m_{11} \end{bmatrix}$$
(10)

with the conditions

$$m_{ij+1} \ge m_{ij} \ge m_{i+1j+1} \qquad 1 \le i \le j \le n-1$$
 (11)

is called a G-Z pattern.

Every irrep of a unitary group U(j) is described by a set of ordered integers (negative, zero or positive)

$$[m]_{j} = [m_{1j} \, m_{2j} \dots \, m_{jj}] \tag{12}$$

with $m_{1j} \ge m_{2j} \ge \ldots \ge m_{jj}$. The interest of this notation is that the irreps $[m_{1j-1}m_{2j-1}\dots m_{j-1j-1}]$ of the group U(j-1) verifying conditions (10) in the decomposition of the irrep $[m_{1j}m_{2j},\dots, m_{jj}]$ of U(j) appear only once: the chain of groups

$$U(n) \supset U(n-1) \ldots \supset U(2) \supset U(1)$$
(13)

is called a canonical chain.

For one fixed representation $[m]_n$ of U(n), the set of G-Z patterns we can build on the (n-1) first lines (the first line is defined by m_{11}) is an orthonormal basis of the space $V([m]_n)$ of the representation $[m]_n$. Therefore, we can define the G-Z's ket

4

$$|(m)_n\rangle = \left| \binom{[m]_n}{(m)_{n-1}} \right\rangle.$$
(14)

The dimension of the irrep $[m]_n$ is given by the Weyl formula [27]

$$D([m]_n) = \frac{\prod_{i < j} (m_{in} - m_{jn} - i + j)}{1! \, 2! \, \dots \, (n-1)!},$$
(15)

with

and the weight of a G-Z's ket is defined [25] by

$$W(m) = W\begin{pmatrix} [m]_n \\ (m)_n \end{pmatrix} = W_{1n}(m), \dots, W_{2n}(m), W_{nn}(m)$$
(16)

with

$$W_{in} = \sum_{j=1}^{i} m_{ji} - \sum_{j=1}^{i-1} m_{ji-1} \ (2 \le i \le n) \text{ and } W_{11} = m_{11}$$

One concept of an algebraic formalism, is to introduce a chain of groups (or algebras)

$$G_1 \supset G_2 \supset G_3 \supset \cdots G_n \tag{17}$$

to describe a physical system.

Wybourne [28] imposes the G_1 group to describe completely the dynamical properties of the physical system. Therefore, G_1 is called the dynamical group. The algebraic formalism U(p+1) developed in [15] is based on the dynamical group G_1 taken as the unitary group U(p+1).

A lot of realizations are possible for the generators of the unitary group U(p+1)[29]. One of them, particularly interesting, is the Bosonic realization.

In this realization, a possible set of generators is constituted by the $(p+1)^2$ operators \mathbf{E}_{ij}

$$\mathbf{E}_{ij} = \mathbf{b}_i^+ \mathbf{b}_j \quad i, j = 1, 2, ..., p+1$$
 (18)

with the usual Bose relations

$$\begin{bmatrix} \mathbf{b}_i \,, \mathbf{b}_j \end{bmatrix} = \begin{bmatrix} \mathbf{b}_i^+ \,, \mathbf{b}_j^+ \end{bmatrix} = 0$$

$$\begin{bmatrix} \mathbf{b}_i \,, \mathbf{b}_j^+ \end{bmatrix} = \delta_{ij}.$$
 (19)

The second group G_2 of the chain (17)) informs about the energy levels and the associated degeneracies. Indeed, the degeneracies are equal to the dimension of the distinct irreps of G_2 included in the totally symmetric irrep $[N, \underbrace{00 \dots 0}_{p \ zeros}] \equiv$

 $\left[N, \dot{0}^{p}\right]$ of the dynamical group U(p+1). Therefore, G_{2} is called the degeneracy group of the molecular system.

The set of all the physical states is given by the action of the (p + 1) Boson creation operators on the vaccum state

$$|n_1, n_2, \dots, n_p, n_{p+1}\rangle = \frac{\prod_{i=1}^{i=p+1} (\mathbf{b}_i^+)^{n_i}}{\prod_{i=1}^{i=p+1} \sqrt{n_i!}} |0, \dots, 0, 0\rangle.$$
(20)

We define the weight operator \mathbf{N}_i

$$\mathbf{N}_i = \mathbf{b}_i^+ \mathbf{b}_i = \mathbf{E}_{ii} \quad \text{with:} \ i = 1, \dots, p+1$$
(21)

which is diagonal in the basis (20). The operator N_i (i = 1, ..., p) is interpreted in [15] as the operator number of quanta associated to the *i*-th bond of the molecule:

$$\mathbf{N}_{i} | n_{1}, \dots, n_{i}, \dots, n_{p} \rangle = n_{i} | n_{1}, \dots, n_{i}, \dots, n_{p} \rangle$$

$$(22)$$

The action of this weight operator can also be defined on the G-Z's ket. But as we are working within the totally symmetric irrep of the group U(p+1), it exists an isomorphism between the G-Z's ket and the weight of this ket. So, the G-Z's ket within the totally symmetric irrep $\left[N = \sum_{i=1}^{p+1} n_i, \dot{0}^p\right]$ of the dynamical group U(p+1), that is

$$\begin{vmatrix} N = \sum_{i=1}^{p+1} n_i & \dots & 0 & \dots & 0 \\ n = n_1 + \dots + n_p & \dots & \dots & 0 \\ & \ddots & & \dots & \ddots \\ & & & n_1 + n_2 & 0 \\ & & & n_1 \end{vmatrix}$$
 (23)

is isomorphic to the weight $(n_1, n_2, \ldots, n_{p+1})$.

The definition of G_2 as a degeneracy group, implies that a physical system caracterized by p degrees of freedom can be modeled by p oscillators.

Furthermore, the degeneracy of an isotropic oscillator, with dimension p in the *n*-state $(n = \sum_{i=1}^{p} n_i)$, is equal to the dimension of the irrep $[n = \sum_{i=1}^{p} n_i, \dot{0}^{p-1}]$ of the unitary group U(p). Therefore we chose U(p) as the degeneracy group G_2 .

3 Local basis for *XY*₃ molecules

As shown in Refs. [7,17], all the physical states associated with the vibrational stretching modes of XY_3 molecules are obtained within the irrep $[N_s, 0, 0, 0] = \left[N_s, \dot{0}^3\right]$ of U(4) as symmetrized G-Z's kets in the group chain (1), that is

$$|n_{1}n_{2}n_{3}n_{4}, r_{s}C_{s}\sigma_{s}\rangle$$

$$= \mathbf{P}_{\sigma_{s}}^{\mathbf{C}_{s}} \begin{vmatrix} N_{s} = n_{1} + n_{2} + n_{3} + n_{4} & 0 & 0 & 0 \\ n_{s} = n_{1} + n_{2} + n_{3} & 0 & 0 \\ n_{1} + n_{2} & 0 & \rangle$$

$$= \mathbf{P}_{\sigma_{s}}^{\mathbf{C}_{s}} |n_{1}n_{2}n_{3}n_{4}\rangle$$

$$= \mathbf{P}_{\sigma_{s}}^{\mathbf{C}_{s}} |n_{1}n_{2}n_{3}N_{s} - n_{s}\rangle,$$

$$(24)$$

$$\mathbf{P}_{\sigma_{\mathbf{s}}}^{\mathbf{C}_{\mathbf{s}}} = \frac{[C_s]}{3!} \sum_{R \in C_{3v}} [\mathcal{D}^{C_s}(R)]^*_{\sigma_s \sigma_s} \mathbf{O}(R)$$
(25)

denotes the projection operator, and r in relation (25) is a symbol which distinguishes the irreps C_s of the C_{3v} group whose multiplicity is greater than 1. In (25), $[C_s]$ represents the dimension of irrep C_s . The matrix $\mathcal{D}^{C_s}(R)$ of the oriented irreps are given in [23]. As usual, in the G-Z representation, n_i represents the eigenvalue of the number operator $\mathbf{E}_{ii} = \mathbf{N}_i$ associated with the *i*-th bond (bond XY_i of Fig. 2 of [23]) of the molecule. $\mathbf{n}_s = \sum_{i=1}^3 \mathbf{N}_i$ is the first order invariant of U(3) (up to an additive constant), the eigenvalues of which are bounded condition $0 \le n_s \le N_s$. A complete basis of symmetrized local states can be found in Appendix A.

For the symmetrized kets (in the group chain (1)) of the bending modes, we have the same vectors, but with the substitutions

$$\begin{array}{l} n_1 \Leftrightarrow n_5 \quad n_2 \Leftrightarrow n_6 \quad n_3 \Leftrightarrow n_7 \\ n_4 \Leftrightarrow n_8 \quad N_s \Leftrightarrow N_b \quad n_s \Leftrightarrow n_b \\ r_s \Leftrightarrow r_b \quad C_s \Leftrightarrow C_b \quad \sigma_s \Leftrightarrow \sigma_b, \end{array}$$

$$(26)$$

where indices 5, 6 and 7 refer respectively to the bending angles α_{12} , α_{13} and α_{23} (see Fig. 2 of [23]). Therefore, a symmetrized G-Z's kets associated the bending modes, can be written as

$$|n_5 n_6 n_7 n_8, r_b C_b \sigma_b\rangle. \tag{27}$$

It is now easy to build the coupled symmetrized basis. This basis is generated by the tensorial product of a symmetrized ket relative to the stretching modes $|n_1n_2n_3n_4, r_sC_s\sigma_s\rangle$ and a symmetrized ket relative to the bending modes $|n_5n_6n_7n_8, r_bC_b\sigma_b\rangle$. These states are denoted by

$$| n_1 n_2 n_3 (n_4) n_5 n_6 n_7 (n_8) (r_s C_s \sigma_s - r_b C_b \sigma_b) \to C \sigma \rangle$$

$$= \sum_{\sigma_s, \sigma_b} [C]^{1/2} F \begin{pmatrix} C_s \ C_b \ C \\ \sigma_s \ \sigma_b \ \sigma \end{pmatrix}$$

$$| n_1 n_2 n_3 n_4, r_s C_s \sigma_s \rangle | n_5 n_6 n_7 n_8, r_b C_b \sigma_b \rangle,$$

$$(28)$$

where $[C]^{1/2} F\begin{pmatrix} C_s & C_b & C \\ \sigma_s & \sigma_b & \sigma \end{pmatrix}$ are the Clebsh-Gordan (coupling) coefficients of the C_{3v} point group.

With the same method, as described for the symmetrized basis, we build symmetrized operators using (25). We give the symmetrized stretching tensors in Appendix B. Of course, bending symmetrized operators are obtained through the same process with the following correspondences for the index of the Boson operators

$$1 \rightarrow 5, 2 \rightarrow 6, 3 \rightarrow 7, 4 \rightarrow 8,$$

where

where indices 5, 6 and 7 refer respectively for the bending angles α_{12} , α_{13} and α_{23} as defined for the bending kets here before.

To resume these two last sections, we may now associate the chain (5) to the corresponding labeling scheme:

$$\begin{bmatrix} \begin{bmatrix} N_{s}, \dot{0}^{3} \\ (U_{s}(4) \supset U_{s}(3) \supset K_{s}(3) \supset S_{s}(3) \supset S_{s}(3) \approx C_{s_{3v}} \\ (U_{b}(4) \supset U_{b}(3) \supset K_{b}(3) \supset S_{b}(3) \supset S_{b}(3) \approx C_{b_{3v}} \\ \begin{bmatrix} N_{b}, \dot{0}^{3} \end{bmatrix} \begin{bmatrix} n_{b}, \dot{0}^{2} \end{bmatrix} \quad (w_{b} = (m_{1}, m_{2}, m_{3}), f_{w_{b}}) \quad (\lambda_{b_{1}}, \lambda_{b_{2}}, \lambda_{b_{3}}) \quad (C_{b}\sigma_{b}) \end{bmatrix} \supset \begin{bmatrix} C_{3v} \\ (C\sigma) \end{bmatrix}$$

$$(29)$$

First and last line of (29) indicate clearly the irreps associated respectively with each group of the stretching (second line) and bending modes (third line). Since we have discussed the irreps of K(3), its invariant operators and the isomorphism between S(3) and C_{3v} in [23], we do not repeat that discussion here.

4 Algebraic model of the Hamiltonian for the stretching modes

The zeroth-order Hamiltonian is determined by the concept of dynamical symmetry [6,7]. The Hamiltonian related to the algebraic chain (1), built from the concept of dynamical symmetry dynamic, takes the following form

$$\mathbf{H_{0s}} = a_0 \,\mathbf{n_s} + a_1 (\mathbf{N}_1^2 + \mathbf{N}_2^2 + \mathbf{N}_3^2) + a_2 (\mathbf{N}_1 \mathbf{N}_2 + \mathbf{N}_1 \mathbf{N}_3 + \mathbf{N}_2 \mathbf{N}_3).$$
(30)

However, before to construct completely a vibrational Hamiltonian which has to take into account resonances between the stretching and bending modes, groups chain (5) or (29) indicates clearly that, in a first approximation, we can study separately these two types of modes. For the stibine molecule, we have checked different models in order to reproduce the stretching experimental data. The Hamiltonian, referred hereafter as Model 1, is given by

$$\mathbf{H}_{\mathbf{s}} = a_{0}\mathbf{n}_{\mathbf{s}} + a_{1} \left[\mathbf{N}_{1}^{2} + \mathbf{N}_{2}^{2} + \mathbf{N}_{3}^{2}\right] + a_{2} \left[\mathbf{N}_{1}\mathbf{N}_{2} + \mathbf{N}_{1}\mathbf{N}_{3} + \mathbf{N}_{2}\mathbf{N}_{3}\right] + a_{3} \sum_{i \neq j=1}^{3} \mathbf{b}_{i}^{+}\mathbf{b}_{j}.$$

$$(31)$$

We define

$$\mathbf{H}_{\mathbf{1}_{\mathbf{s}}} = \alpha_3^{(1)} \mathcal{Y}^{3(A_1)} = a_3 \sum_{i \neq j=1}^3 \mathbf{b}_i^+ \mathbf{b}_j$$

as being a pure pyramidal operator, i.e., an operator which lifts the residual degeneracy in the C_{3v} group adapted to the study of pyramidal type mole-

cules. On another way, we have tested all possible tensor operators by fitting the stretching experimental data of the stibine molecule. The best result is obtained with the Hamiltonian referred hereafter as Model 2:

$$\mathbf{H}_{\mathbf{s}} = a'_{0} \mathbf{n}_{\mathbf{s}} + a'_{1} \left(\mathbf{N}_{1}^{2} + \mathbf{N}_{2}^{2} + \mathbf{N}_{3}^{2} \right) \\
+ a'_{2} \left(\mathbf{N}_{1} \mathbf{N}_{2} + \mathbf{N}_{1} \mathbf{N}_{3} + \mathbf{N}_{2} \mathbf{N}_{3} \right) + a'_{3} \mathcal{Y}^{3(A_{1})} \\
+ a'_{4} \left[\mathcal{Y}^{3(A_{1})} \otimes \mathcal{Y}^{3(A_{1})} \right]^{(A_{1})} + a'_{5} \left[\mathcal{Y}^{1(A_{2})} \otimes \mathcal{Y}^{1(A_{2})} \right]^{(A_{1})}.$$
(32)

In (31) and (32), $a_0 \mathbf{n_s}$ and $a'_0 \mathbf{n_s}$ are the harmonics terms. All others operators contributions are anharmonic. In both case (31) and (32), the $\mathbf{H_s}$ matrix being sparse and far from the diagonal, its eigenvalues have a strong non-linear dependance on the parameters. Thus, we use a nonlinear least squares fit method. We obtain the following two sets of parameters

Model 1:

$$a_0 = 1927.058(236) \text{cm}^{-1} a_1 = -33.441(466) \text{cm}^{-1} a_2 = -0.102(139) \text{cm}^{-1} a_3 = -4.426(546) \text{cm}^{-1}$$

Model 2:

$$\begin{array}{l} a_0' = 1927.154(128) \mathrm{cm}^{-1} \ a_1' = -33.461(027) \mathrm{cm}^{-1} \\ a_2' = 0.655(366) \mathrm{cm}^{-1} \ a_3' = -3.512(452) \mathrm{cm}^{-1} \\ a_4' = -0.159(321) \mathrm{cm}^{-1} \ a_5' = 0.179(556) \mathrm{cm}^{-1} \end{array}$$

We summarize this analysis in Table 1. Column 1 gives the usual local notation for the stretching kets. Columns 2 and 3 show that the eigenstates are close to the initial basis, that is close to column 1. Some modulus near 75% or 80% $(n10, 1E_1, 2E_1, n = 2, 3, 4)$ indicate simply that new combinations of these kets affected of a multiplicity label, would correct these percentages up to 100% as the diagonalization process mixes only those kets. Columns 4 and 5 exhibit the eigenvalues of Model 1 and 2. As these models differ only by some nondiagonal terms, the values of these columns differ a little, but the difference is not significant as indicated in columns 7 and 8. Moreover, the standard deviations $\sigma(d, p)$ we calculated, and define as

$$\sigma(d,p) = \sqrt{\frac{1}{d-p}\sum_{i=1}^{d} \left[E_i^{(cal)} - E_i^{(obs)}\right]^2}$$

where d is the number of experimental data included in the fit and p is the number of parameters included in the fit, are quite close: $\sigma^{Mod.1}(13, 4) = 0.77 \text{ cm}^{-1}$ and $\sigma^{Mod.2}(13, 6) = 0.54 \text{ cm}^{-1}$. The last column of Table 1 shows the difference between calculated and observed energies from a previous fit [5]. However, in this paper, the authors did not reproduce well the data with $n_s > 3$ as the difference equals 10.93 cm^{-1} for $n_s = 6$ and even 17.14 cm^{-1} for $n_s = 7$, so they excluded these data from the fit in the least squares calculation (with a star in Table 1). We have only rejected the data for the $n_s = 7$ levels

(with a cross in Table 1) as the deviation reaches about 7.3 $\rm cm^{-1}$ for those levels.

To conclude this section, our two models indicate that stretching modes can be studied separately of the bending ones in a first approximation. Saying differently, it allows, a posteriori, the use of chain (5), forms initially by two chains related to the two different motions. In any case, as the number of experimental data is not so high, and as the two models give extremely close results, we shall restrict our Hamiltonian to Model 1 for simplicity in what follows.

5 Algebraic model of the vibrational Hamiltonian

From the previous construction of a pure stretching Hamiltonian \mathbf{H}_{s} we easily deduce that a basic vibrational Hamiltonian $\mathbf{H} = \mathbf{H}_{s} + \mathbf{H}_{b}$, built from the chain (29), is given by :

$$\mathbf{H} = a_{0} \mathbf{n}_{s} + a_{1} (\mathbf{N}_{1}^{2} + \mathbf{N}_{2}^{2} + \mathbf{N}_{3}^{2}) + a_{2} (\mathbf{N}_{1} \mathbf{N}_{2} + \mathbf{N}_{1} \mathbf{N}_{3} + \mathbf{N}_{2} \mathbf{N}_{3}) + a_{3} \sum_{i \neq j=1}^{3} \mathbf{b}_{i}^{+} \mathbf{b}_{j} + a_{4} \mathbf{n}_{b} + a_{5} (\mathbf{N}_{5}^{2} + \mathbf{N}_{6}^{2} + \mathbf{N}_{7}^{2}) + a_{6} (\mathbf{N}_{5} \mathbf{N}_{6} + \mathbf{N}_{5} \mathbf{N}_{7} + \mathbf{N}_{6} \mathbf{N}_{7}) + a_{7} \sum_{i \neq j=5}^{7} \mathbf{b}_{i}^{+} \mathbf{b}_{j}.$$
(33)

However, we have to introduce, into the Hamiltonian, a coupling term between the stretching and bending degrees of freedom. In order to build this term, noted $\mathbf{H_{s-b}} = a_8 \mathcal{H}_{s-b}$, we should remember that the stibine molecule has 2:1 Fermi-type resonances

$$\nu_1(A_1) \simeq 2\nu_2(A_1) \quad \text{and} \quad \nu_3(E) \simeq 2\nu_4(E).$$
 (34)

This is why, we can consider the following term

$$\mathcal{H}_{\mathbf{s}-\mathbf{b}} = \sum_{i=1}^{3} \sum_{k\geq l=5}^{7} \left(\mathbf{b}_{i}^{+} \mathbf{b}_{k} \mathbf{b}_{l} \mathbf{b}_{4} \mathbf{b}_{8}^{+2} + \mathbf{b}_{4}^{+} \mathbf{b}_{l}^{+} \mathbf{b}_{k}^{+} \mathbf{b}_{i} \mathbf{b}_{8}^{2} \right).$$
(35)

In reference [5] the authors showed that the quantity

$$2n_s + n_b = K \quad \text{with} \quad K \in \mathbb{N} \tag{36}$$

is a good label for this physical problem. Within the K blocks, we can deduce the number \mathcal{N} of vibrational states (for all symmetries $C = A_1, A_2, E$). This number is given in Table 2 for $1 \le K \le 28$. The choice of K = 28 is as follows: $n_s = 7$ is the maximal quantum number for which a level is observed (it is a pure stretching level defined with $n_s = 7$ and $n_b = 0$). As $K = 2n_s + n_b$ is a constant for a given couple (n_s, n_b) , one deduces that K = 14 is a possible block for each C_{3v} symmetry. But the code which generates the basis, produces all the stretching kets from $n_s = 0$ to $n_s = 7$ and, of course, all the bending kets from $n_b = 0$ to $n_b = 14$. Then by coupling the two sets of stretching and bending kets, we obtain $K_{max} = 28$.

Table 2 :

Number of vibrational states \mathcal{N} within the K blocks for all symmetries

K	\mathcal{N}	K	\mathcal{N}	K	\mathcal{N}	K	\mathcal{N}
1	2	8	189	15	1647	22	4264
2	6	9	275	16	2113	23	3754
3	13	10	399	17	2374	24	4389
4	26	11	550	18	2949	25	3377
5	45	12	763	19	3064	26	3893
6	75	13	1011	20	3706	27	2212
7	121	14	1347	21	3593	28	2526

From Table 2, we deduce the total number N of vibrational states for all symmetries (A_1, A_2, E) , as shown in Fig. 1:

Fig. 1:

Table 2 and Fig. 1 show that our problem would be computationally unsolvable for high energies that is for high n_s and n_b values. Indeed, near 23000 cm⁻¹, the total number of vibrational states is around 50 000 ! Usual computational methods of fit would be unefficient for matrix of that size and CPU time

11

would be enormous. This is why the introduction of the K label together with the usual C symmetry type in the C_{3v} group is of primary importance for the data-processing of the problem. The matrix representation of the Hamiltonian operator in basis (28) can be done by blocks of defined symmetry, then, within each block of symmetry C, the same process can be extended with blocks K. Therefore, the Hamiltonian matrix has the form indicated in Fig. 2.

Finally, with the algebraic approach U(p+1), one obtains a model of Hamiltonian with nine parameters

$$\mathbf{H} = a_0 \,\mathbf{n_s} + a_1 (\mathbf{N}_1^2 + \mathbf{N}_2^2 + \mathbf{N}_3^2)
+ a_2 (\mathbf{N}_1 \mathbf{N}_2 + \mathbf{N}_1 \mathbf{N}_3 + \mathbf{N}_2 \mathbf{N}_3) + a_3 \sum_{i \neq j=1}^3 \mathbf{b}_i^+ \mathbf{b}_j
+ a_4 \,\mathbf{n_b} + a_5 (\mathbf{N}_5^2 + \mathbf{N}_6^2 + \mathbf{N}_7^2)
+ a_6 (\mathbf{N}_5 \mathbf{N}_6 + \mathbf{N}_5 \mathbf{N}_7 + \mathbf{N}_6 \mathbf{N}_7) + a_7 \sum_{i \neq j=5}^7 \mathbf{b}_i^+ \mathbf{b}_j
+ a_8 \sum_{i=1}^3 \sum_{k \ge l=5}^7 \left(\mathbf{b}_i^+ \mathbf{b}_k \mathbf{b}_l \mathbf{b}_4 \mathbf{b}_8^{+2} + \mathbf{b}_4^+ \mathbf{b}_l^+ \mathbf{b}_k^+ \mathbf{b}_i \mathbf{b}_8^2 \right).$$
(37)

6 ENERGY LEVELS OF THE STIBINE MOLECULE

Before to start the full analysis of the vibrational stibine levels, one must remember that the use of the operator (34) implies the knowledge of the maximum values of the quantum numbers n_s and n_b , that is $N_s = n_{s_{max}}$ and $N_b = n_{b_{max}}$. The determination of $N_s = n_{s_{max}}$ is done as follows: we assume that a way to dissociate the molecule is to concentrate the energy on one bond, that is, in the case of the stretching mode, for a $|(n00), A_1 \text{ or } E\rangle$ ket. The previous analysis has shown that such kets are pure, that is, are preserved after diagonalisation (See Table 5 where %init.ket ≥ 0.995 for such kets).

So we simply examine the derivative of \mathbf{H}_{0s} as being a continuous function of n_s when the eigenkets are of $|(n00), A_1 \text{or} E\rangle$ type. For the Hamiltonian Model 1, this leads to

$$\begin{aligned} \mathbf{H}_{\mathbf{0}_{\mathbf{s}}}|(n00), A_1 \text{ or } E\rangle &= E_{0_s}(n)|(n00), A_1 \text{ or } E\rangle \\ &= (a_0 n + a_1 n^2)|(n00), A_1 \text{ or } E\rangle. \end{aligned}$$

As we impose $\frac{\partial E_{0s}(n)}{\partial n} = 0 \Big]_{n=n_{max}}$, we determine $n_{max} \simeq 28.81$, that is $N_s = 29$. One can note that the relative variation of the parameter a_0 to a'_0 (resp. a_1)

to a'_1) from Model 1 to Model 2 is about 0.005% (resp. 0.06%) which confirms the stability of the diagonal part of the two Hamiltonians \mathbf{H}_{0_s} . Indeed, the same calculations of $N_s = n_{s_{max}}$ can be done with Model 2, and we obtain once again that $n_{max} \simeq 28.79$ that is $N_s = 29$.

One interesting application of the determination of $n_{max} = 29$ is to estimate the energy for this value. With Model 1, we find that $E_{0_s}(29) \simeq 27761 \text{ cm}^{-1}$ and $E_{0_s}(29) \simeq 27747 \text{ cm}^{-1}$ with Model 2. These values are in good agreement with the experimental determination of the dissociation energy of the stibine molecule [4]: $D_e \simeq 28900 \text{ cm}^{-1}$, that is, a relative error of 3.94% with Model 1 and 3.98% with Model 2.

More delicate is the estimation of the quantum number $N_b = n_{b_{max}}$. Indeed, the available pure bending spectrum of the stibine molecule presents only four experimental data. Using a four parameters model for the Hamiltonian

$$\mathbf{H}_{\mathbf{b}} = a_4 \, \mathbf{n}_{\mathbf{b}} + a_5 (\mathbf{N}_5^2 + \mathbf{N}_6^2 + \mathbf{N}_7^2) + a_6 (\mathbf{N}_5 \mathbf{N}_6 + \mathbf{N}_5 \mathbf{N}_7 + \mathbf{N}_6 \mathbf{N}_7) + a_7 \sum_{i \neq i=5}^7 \mathbf{b}_i^+ \mathbf{b}_j$$
(38)

acting on the bending symmetrized kets, we have to solve a non linear system of four equations with four unknowns. We obtain

$$a_4 = 814.77(8.91)$$
 cm⁻¹ $a_5 = -11.44756(338)$ cm⁻¹
 $a_6 = -0.0002436(728)$ cm⁻¹ $a_7 = -41.7917(160)$ cm⁻¹.

The evaluation of the maximum of $E_{0_b}(n) = a_4 n + a_5 n^2$ as being a continuous

function of n_b , that is $\frac{\partial E_{0_b}(n)}{\partial n} = 0 \Big]_{n=n_{max}}$, leads to $N_{max} = 35.6$, so $N_b = 36$.

For the lowest values of the vibrational quantum numbers n_s and n_b , one must point out that the model is, in fact, not really so sensitive to the values of N_s and N_b , whereas it becomes more and more dependent of these values when the vibrational quantum numbers increase. Physically, the U(p + 1)model expresses naturally that the maximal vibrational numbers N_s and N_b are taken into account when the energies reach values close to the maximal ones as, for example, the dissociation limit.

Table 3:

n'_i	conditions	n'_4	n'_j	conditions	n'_8
$n_i - 1$	i = 1 or 2 or 3	$n_4 + 1$	$n_j + 2$	j = 5 or 6 or 7	$n_8 - 2$
$n_i - 1$	i = 1 or 2 or 3	$n_4 + 1$	$n_{j_1} + 1 \\ n_{j_2} + 1$	$5 \le j_1 \ne j_2 \le 7$	$n_8 - 2$
$n_i + 1$	i = 1 or 2 or 3	$n_4 - 1$	$n_j - 2$	j = 5 or 6 or 7	$n_8 + 2$
$n_i + 1$	i = 1 or 2 or 3	$n_4 - 1$	$n_{j_1} - 1 \\ n_{j_2} - 1$	$5 \le j_1 \ne j_2 \le 7$	$n_8 + 2$

Quantum numbers resulting of the action of the operator $a_8 \mathcal{H}_{s-b}$

Indeed, let us examine the action of $a_8 \mathcal{H}_{\mathbf{s}-\mathbf{b}}$ on a ket

$$a_{8}\mathcal{H}_{\mathbf{s}-\mathbf{b}}|n_{1}n_{2}n_{3}n_{4}n_{5}n_{6}n_{7}n_{8}\rangle = \Lambda|n_{1}'n_{2}'n_{3}'n_{4}'n_{5}'n_{6}'n_{7}'n_{8}'\rangle,$$
(39)

where the possible values of the quantum numbers $n'_1n'_2n'_3 n'_{\overline{s}} - N_{\overline{s}}n'_s n'_5 n'_6 n'_7 n'_8 = N_{\overline{s}}n'_b$ are given in Table 3. From the form (35) of the operator $\mathcal{H}_{\mathbf{s}-\mathbf{b}}$, the action of this operator on a ket $|n_1n_2n_3n_4n_5n_6n_7n_8\rangle$ leads explicitly to :

 $a_{8}\mathcal{H}_{\mathbf{s}-\mathbf{b}}|n_{1}n_{2}n_{3}n_{4}n_{5}n_{6}n_{7}n_{8}\rangle = a_{8}\sum_{i=1}^{3}\sum_{k\geq l=5}^{7} \left[(n_{i}+1)(n_{k})(n_{l}-\delta_{k,l})(n_{4})(n_{8}+1)(n_{8}+2)\right]^{\frac{1}{2}} \\ |n_{1}+\delta_{i,1}n_{2}+\delta_{i,2}n_{3}+\delta_{i,3}n_{4}-1n_{5}-\delta_{k,5}-\delta_{l,5}n_{6}-\delta_{k,6}-\delta_{l,6}n_{7}-\delta_{k,7}-\delta_{l,7}n_{8}+2\rangle \\ +a_{8}\sum_{i=1}^{3}\sum_{k\geq l=5}^{7} \left[(n_{i})(n_{k}+1)(n_{l}+1+\delta_{k,l})(n_{4}+1)(n_{8})(n_{8}-1)\right]^{\frac{1}{2}} \\ |n_{1}-\delta_{i,1}n_{2}-\delta_{i,2}n_{3}-\delta_{i,3}n_{4}+1n_{5}+\delta_{k,5}+\delta_{l,5}n_{6}+\delta_{k,6}+\delta_{l,6}n_{7}+\delta_{k,7}+\delta_{l,7}n_{8}-2\rangle \\ (40)$

Thus Λ in (39) is equal to

$$\Lambda = \langle n'_{1} = n_{1} \pm \delta_{i,1} n'_{2} = n_{2} \pm \delta_{i,2} n'_{3} = n_{3} \pm \delta_{i,3} n'_{4} = n_{4} \mp 1 n'_{5} = n_{5} \mp (\delta_{k,5} + \delta_{l,5}) \\
n'_{6} = n_{6} \mp (\delta_{k,6} + \delta_{l,6}) n'_{7} = n_{7} \mp (\delta_{k,7} + \delta_{l,7}) n'_{8} = n_{8} \pm 2|a_{8}\mathcal{H}_{\mathbf{s}-\mathbf{b}}|n_{1}n_{2}n_{3}n_{4}n_{5}n_{6}n_{7}n_{8} \\
= a_{8} \left[(n_{i} + 1 - \delta_{n'_{i},n_{i-1}})(n_{4} + 1 - \delta_{n'_{4},n_{4-1}})(n_{k} + 1 - \delta_{n'_{k},n_{k-1}} - \delta_{n'_{k},n_{k-2}}) \right]^{\frac{1}{2}} \\
\times \left[(n_{l} + 1 + \delta_{l,k} - 3\delta_{n'_{k},n_{k}-2} - \delta_{n'k,n_{k}-1})(n_{8} + 1 - \delta_{n'_{8},n_{8}-2})(n_{8} + 2 - 3\delta_{n'8,n_{8}-2}) \right]^{\frac{1}{2}} \\$$
(41)

with $1 \le i \le 3$ and $5 \le l \le k \le 7$.

Now, taking into account that $n_4 = N_s - n_s$ and $n_8 = N_b - n_b$, relation (41)

may be rewritten as:

$$\Lambda = a_8 N_s^{\frac{1}{2}} N_b \left[(n_i + 1 - \delta_{n'_i, n_i - 1}) (1 - \frac{n_s}{N_s} + \frac{1}{N_s} - \frac{1}{N_s} \delta_{n'_4, n_4 - 1}) \right]^{\frac{1}{2}} \\
\times \left[(n_k + 1 - \delta_{n'_k, n_k - 1} - \delta_{n'_k, n_k - 2}) (n_l + 1 + \delta_{l,k} - 3\delta_{n'_k, n_k - 2} - \delta_{n'k, n_k - 1}) \right]^{\frac{1}{2}} \\
\times \left[(1 - \frac{n_b}{N_b} + \frac{1}{N_b} - \frac{1}{N_s} \delta_{n'8, n_8 - 2}) (1 - \frac{n_b}{N_b} + \frac{2}{N_b} - \frac{3}{N_s} \delta_{n'8, n_8 - 2}) \right]^{\frac{1}{2}} \tag{42}$$

Denoting $\epsilon_s = 1 - \frac{n_s}{N_s} + \frac{1}{N_s} - \frac{1}{N_s} \delta_{n'_4, n_4 - 1}$

and
$$\epsilon_b = (1 - \frac{n_b}{N_b} + \frac{1}{N_b} - \frac{1}{N_s} \delta_{n'8, n_8 - 2})(1 - \frac{n_b}{N_b} + \frac{2}{N_b} - \frac{3}{N_s} \delta_{n'8, n_8 - 2})$$

one obtains immediately that

$$1 - \frac{n_s'}{N_s} \le \epsilon_s \le 1 - \frac{n_s'}{N_s} + \frac{1}{N_s}$$

and

$$(1 - \frac{n_b'}{N_b})(1 - \frac{n_b'}{N_b} - \frac{1}{N_b}) \le \epsilon_b \le (1 - \frac{n_b'}{N_b} + \frac{1}{N_b})(1 - \frac{n_b'}{N_b} + \frac{2}{N_b}).$$

So for usual large values of the quantum numbers N_s ($N_s = 29$) and N_b ($N_b = 36$), taking into account the conditions of Table 2, it results for (n_s , n_b) = (0, 0) that

$$1.006 \le \sqrt{\epsilon_s \epsilon_b} \le 1.084,\tag{43}$$

and for the maximum quantum numbers $(n_s, n_b) = (7, 14)$ used in the present fit, it becomes:

$$0.283 \le \sqrt{\epsilon_s \epsilon_b} \le 0.323. \tag{44}$$

Relation (43) means that for low values of the quantum numbers n_s and n_b , the matrix element (42) behaves as

$$\Lambda \simeq a_8 N_s^{\frac{1}{2}} N_b \left[(n_i + 1 - \delta_{n'_i, n_i - 1}) (n_k + 1 - \delta_{n'_k, n_k - 1} - \delta_{n'_k, n_k - 2}) \right]^{\frac{1}{2}} \times \left[(n_l + 1 + \delta_{l,k} - 3\delta_{n'_k, n_k - 2} - \delta_{n'k, n_k - 1}) \right]^{\frac{1}{2}}$$
(45)

In others words, (45) expresses that the knowledge of the quantum numbers N_s and N_b is not necessary to reproduce the spectrum for low values of the quantum numbers n_s and n_b . Indeed, as mentioned here before, N_s and N_b are connected to the maxima of E_{0_s} and E_{0_b} . As known, the usual harmonic developments, even completed with perturbative terms, reproduce rather well the lowest part of molecular spectra without to know the values of the dissociation limits. If one wanted to reproduce only the low harmonic part of the molecular spectra with our model, matrix element of the operator (35) could be reduced to the matrix element (45) which can be seen as the matrix element of the operator $a'_8 \mathcal{H}_{\mathbf{F}} = a'_8 \sum_{i=1}^3 \sum_{k\geq l=5}^7 \left(\mathbf{b}_i^+ \mathbf{b}_k \mathbf{b}_l + \mathbf{b}_l^+ \mathbf{b}_k \mathbf{b}_l \right)$ weighted of

the effective parameter $a'_8 = a_8 N_s^{\frac{1}{2}} N_b$. In such a case, any arbitrary choice, enough large, of the quantum numbers N_s and N_b would be mathematically equivalent as being in fact, physically irrelevant. Formally, the operator $a'_8 \mathcal{H}_{\mathbf{F}}$ is similar to a Fermi operator used in a 2:1 resonance. But, relation (44) shows that the knowledge of the values of the quantum numbers N_s and N_b is important when the quantum numbers n_s and n_b increase. Indeed if these numbers approach N_s and N_b , our model expresses that exchange of energy between the stretching and the bending modes can not be made without taking into account the dissociation limits of the molecule. Of course, as one could expect from a physical model, this means that the energies of the upper levels depend upon the values of the maximum quantum numbers.

Moreover, as $\mathcal{H}_{\mathbf{s}-\mathbf{b}}$ is purely non diagonal (see Table 3), we have checked our model by changing the values of $N_s = n_{s_{max}} = 29$ and $N_b = n_{s_{max}} =$ 36. With N_s from 25 to 34 and N_b from 33 to 39, it leads to almost the same calculated energies for the lowest levels, the variations being completely irrelevant comparatively to the experimental precision.

Therefore, by fitting the experimental data [5], we obtain the following results given in Table 4: column 1 refers to the coupled kets where the first three figures represent n_1 , n_2 and n_3 . The fourth figure stands for n_4 with the maximal value of 29. The three next figures are the bending quantum numbers followed by n_8 the maximal value is 36. Then, we have summarized the coupling scheme by giving the stretching symmetry, the bending symmetry and the total resulting symmetry in C_{3v} group. The calculated eigenvalues are given in column 2, observed energies are given in column 3 and the difference calculated-observed energies is indicated in column 4. In the last column, we give the percentage of the initial ket which has been preserved after the diagonalisation process. In order not to have a too long table, we have shortened it by giving the complet results from 781.810 cm^{-1} to 7173.616 cm^{-1} and some partial results up to $23597.394 \text{ cm}^{-1}$. The worst difference in column 4 does not exceed 3.758 cm^{-1} near 4513.000 cm^{-1} and the differences in this column do not increase when the quantum numbers increase. The quality of the initial basis is relatively well preserved as most of the values in the last column are higher than 50%. In modulus, some percentages are less than 15% (14.10 % at 6921.715 cm⁻¹), however these bad values are reached when a multiplicity label appears (there are two bending states $|421, E\rangle$ in the region of 6921.715 cm⁻¹) and a different choice of construction of the initial basis could correct those percentages. The standard deviation associated to this fit is $\sigma(23,9) = 1.75 \text{ cm}^{-1}$, and the parameters are (in $\rm cm^{-1}$):

$$\begin{array}{ll} a_0 = 1925.30(1.14) & a_1 = -32.80(56) \\ a_2 = 65.27(1.33) & a_3 = -0.77(01) \\ a_4 = 792.74(55) & a_5 = 16.09(23) \\ a_6 = -81.62(78) & a_7 = -4.28(35) \\ a_8 = -0.018177(45). \end{array}$$

16
The correlation matrix $\mathcal{M}_{cor}(23,9)$ is:

$$\begin{split} \mathcal{M}_{cor}(23,9) = & \\ & a_0 & a_1 & a_2 & a_3 & a_4 & a_5 & a_6 & a_7 & a_8 \\ a_0 & 1 & & & & & \\ a_1 & -0.88 & 1 & & & & \\ a_2 & 0.67 & -0.91 & 1 & & & & \\ a_3 & 0.34 & -0.51 & 0.46 & 1 & & & \\ a_4 & -0.11 & -0.09 & -0.03 & 0.25 & 1 & & \\ a_5 & -0.31 & 0.33 & -0.05 & -0.29 & -0.80 & 1 & & \\ a_6 & 0.69 & -0.78 & 0.56 & 0.53 & 0.40 & -0.74 & 1 & \\ a_7 & -0.16 & 0.27 & -0.18 & -0.95 & -0.35 & 0.38 & -0.46 & 1 & \\ a_8 & -0.66 & 0.66 & -0.36 & -0.42 & -0.53 & 0.83 & -0.87 & 0.40 & 1 \end{split} \right)$$

If the parameters a_0 and a_1 of the pure stretch fit remain almost unchanged comparatively in this complete vibrational fit, the parameter a_2 is now completely different. In fact the interaction operator $\mathcal{H}_{\mathbf{s}-\mathbf{b}}$ between the two vibrational modes takes effectively into account the initial large difference about 7.3 cm⁻¹ between observed and calculated energies for the $|(700)1A_1 \text{ or } 1E_1\rangle$ kets. Locally, $\mathcal{H}_{\mathbf{s}-\mathbf{b}}$ may act as an operator of stretching to improve the fit, the difference being now of -0.241 cm⁻¹ and 1.085 cm⁻¹ (resp.) only for the $|(700)1E_1\rangle \equiv |(700)22||(000)36; (1E 1A_1) - - > E\rangle$ and $|(700)1A_1\rangle \equiv$ $|(700)22||(000)36; (1A_1 1A_1) - > A_1\rangle$ kets. The correlation matrix $\mathcal{M}_{cor}(23, 9)$ is relatively good, even if it is rather an indicator than a statistical result due to the weak number of experimental data.

Table 4: Observed	and Calculated	Vibrational	Levels o	$f^{121}SbH_{\odot}$
-------------------	----------------	-------------	----------	----------------------

ket	EigenValues (cm-1)	Obs. En. (cm-1)	Calc-Obs (cm-1)	%init.ket (Modulus)
(0 0 0)29 (1 0 0) 35;(1A1 1A1)> A1	> 781.810	782.240	-0.430	99.98
(0 0 0)29 (1 0 0) 35;(1A1 1E)> E	> 826.921	827.850	-0.929	98.35
(0 0 0)29 (1 1 0) 34;(1A1 1A1)> A1	> 1557.992	1559.000	-1.008	99.13
(0 0 0)29 (1 1 0) 34;(1A1 1E)> E	> 1572.003			99.70
(0 0 0)29 (2 0 0) 34;(1A1 1E)> E	> 1650.246			99.69
(0 0 0)29 (2 0 0) 34;(1A1 1A1)> A1	> 1650.590	1652.700	-2.110	98.95
(1 0 0)28 (0 0 0) 36;(1A1 1A1)> A1	> 1891.790	1890.502	1.288	99.83
(1 0 0)28 (0 0 0) 36;(1E 1A1)> E	> 1893.317	1894.497	-1.180	99.99
(0 0 0)29 (1 1 1) 33;(1A1 1A1)> A1	> 2275.009			97.88
(0 0 0)29 (2 1 0) 33;(1A1 1E)> E	> 2347.308			73.97
(0 0 0)29 (2 1 0) 33;(1A1 1A1)> A1	> 2348.884			97.61
(0 0 0)29 (2 1 0) 33;(1A1 2E)> E	> 2360.017			74.05
(0 0 0)29 (2 1 0) 33;(1A1 1A2)> A2	> 2372.609			100.00
(0 0 0)29 (3 0 0) 33;(1A1 1E)> E	> 2522.271			99.57
(0 0 0)29 (3 0 0) 33;(1A1 1A1)> A1	> 2522.342			99.31
(1 0 0)28 (1 0 0) 35;(1A1 1A1)> A1	> 2659.810	2661.000	-1.190	99.46
(1 0 0)28 (1 0 0) 35;(1E 1A1)> E	> 2693.566			99.96
(1 0 0)28 (1 0 0) 35;(1E 1E)> A1	> 2703.857			100.00
(1 0 0)28 (1 0 0) 35;(1E 1E)> A2	> 2703.854			100.00
(1 0 0)28 (1 0 0) 35;(1E 1E)> E	> 2703.866			98.66
(1 0 0)28 (1 0 0) 35;(1A1 1E)> E	> 2705.235	2705.000	0.235	98.34
(0 0 0)29 (2 1 1) 32;(1A1 1A1)> A1	> 3000.570			98.88
(0 0 0)29 (2 1 1) 32;(1A1 1E)> E	> 3027.012			98.92

(0 0 0)29 (2 2 0) 32:(1A1)	1E)> E >	3098.888			96.78
		0100 101			07 50
(0 0 0)29 (2 2 0) 32;(IAI	IAI)> AI >	3100.484			97.50
(0 0 0)29 (3 1 0) 32:(1A1	1A1)> A1 >	3180.508			97.95
		0100 010			07.04
(0 0 0)29 (3 1 0) 32;(1A1	2E)> E >	3183.340			87.34
(0 0 0)29 (3 1 0) 32:(1A1)	1A2)> A2 >	3187.759			100.00
		24.07 000			05 50
(0 0 0)29 (3 I 0) 32;(IAI	IE)> E >	3187.803			85.58
(0 0 0)29 (4 0 0) 32:(1A1)	1A1)> A1 >	3425.335			97.51
	1	0.405 .000			00.50
(0 0 0)29 (4 0 0) 32;(1A1)	IE)> E >	3425.622			98.59
(1 0 0)28 (1 1 0) 34;(1E	1A1)> E >	3443.937			80.25
		0110.000			00.77
(I U U)28 (I I U) 34;(IAI	IAI)> AI >	3449.892			93.77
(1 0 0)28 (2 0 0) 34;(1E)	1E)> A2 >	3458.938			81.75
1(100)2811(110) 34.(1F	1F)> F >	3/63 107			99 66
(I 0 0)2011(I I 0) 54,(IL		5405.107			33.00
(1 0 0)28 (1 1 0) 34;(1A1	1E)> E >	3465.281			98.96
(1 0 0)28 (1 1 0) 34.(1E)	1E)> A2 >	3465.381			81.75
		0100.001			70.40
(1 0 0)28 (1 1 0) 34;(1E	1E)> A1 >	3465.539			79.13
(1 0 0)28 (2 0 0) 34;(1E	1A1)> E >	3469.139			79.64
		2540 550			01 65
((1 0 0)20))(2 0 0) 34;(IE	IE)> AI >	3540.556			01.05
(1 0 0)28 (2 0 0) 34;(1E	1E)> E >	3542.288			87.37
1(100)2811(200) 24.(141	1E)> E >	26// /00			00 26
(1 0 0/20 (2 0 0/ 34,(IAI	IE)> E >	3344.499			90.30
(1 0 0)28 (2 0 0) 34;(1A1	1A1)> A1 >	3548.099			96.19
$ (0 0 0)29 (2 2 1) 31 \cdot (1 1 1)$	$1 \Delta 1$) $> \Delta 1 >$	3690 299			97 55
(0 0 0)20 (2 2 1) 01, (IAI		0000.200			51.00
(0 0 0)29 (2 2 1) 31;(1A1	1E)> E >	3718.425			98.35
(2 0 0)27 (0 0 0) 36:(1A1	1A1)> A1 >	3718.686	3719.933	-1.247	99.79
1(2 0 0)2711(0 0 0) 00,(111		0720.000	0710.000	2.211	00110
(2 0 0)27 (0 0 0) 36;(1E	1A1)> E >	3720.393	3719.860	0.533	99.89
(1 1 0)27 (0 0 0) 36:(1A1	1A1)> A1 >	3784.507			85.46
		0700 500			07.00
(I I 0)2/ (0 0 0) 36;(IE	IAI)> E >	3/88.588			87.00
(0 0 0)29 (3 1 1) 31:(1A1	1E)> E >	3795.050			98.18
	141 > > 41 >	3706 000			06 04
(0 0 0)29 (5 I I) 51;(IAI	IAI)> AI >	3/90.220			90.04
(0 0 0)29 (3 2 0) 31;(1A1	1E)> E >	3852.634			76.33
$ (0,0,0)29 (3,2,0) 31\cdot(141) $	$1 \land 1$) $> \land 1>$	3863 341			98 87
(0 0 0)2011(0 2 0) 01,(IAI	INI / / NI /	0000.011			50.01
(0 0 0)29 (3 2 0) 31;(1A1	2E)> E >	3876.529			77.65
(0 0 0)29 (3 2 0) 31 (1A1	1A2)> A2 >	3887.733			99.68
1(0 0 0)2011(0 2 0) 01,(111		4004 400			00.00
(0 0 0)29 (4 1 0) 31;(1A1)	1A1)> A1 >	4034.469			99.14
(0 0 0)29 (4 1 0) 31:(1A1	2E)> E >	4038,424			98.55
	10) > 0 >	1010 151			00 72
(0 0 0)29 (4 1 0) 51;(IAI	IE)> E >	4040.454			90.15
(0 0 0)29 (4 1 0) 31;(1A1	1A2)> A2 >	4042.969			99.37
$ (1 0 0)28 (1 1 1) 33 \cdot (141)$	$1 \land 1$) $> \land 1>$	4167 256			97 55
(1 0 0/20) (1 1 1/ 33, (IAI	IRI) / RI /	4107.200			31.00
(1 0 0)28 (1 1 1) 33;(1E	1A1)> E >	4168.251			97.73
(1 1 0)27 (1 0 0) 35(141)	1A1)> A1 >	4228,108			72.10
1(1 0)2; 11(1 0 0) 00; (111		12201100			72.20
(1 0 0)28 (2 1 0) 33;(1E	1A1)> E >	4235.418			79.68
(1 0 0)28 (2 1 0) 33;(1A1	1E)> E >	4239.535			68.40
	1E) NEN	1011 067			62 44
(1 0 0)2011(2 1 0) 55;(IE		4244.007			03.44
(1 0 0)28 (2 1 0) 33;(1E	1E)> A2 >	4249.414			65.34
(1 0 0)28 (2 1 0) 33(141)	2E)> E >	4251 641			82.86
	4	4050.070			74.04
(1 0 0)28 (3 0 0) 33;(1E	1E)> A2 >	4252.270			74.84
(1 0 0)28 (2 1 0) 33;(1E	2E)> A1 >	4252.346			68.93
1(100)2811(210) 33.(1F	2F)> F >	1252 /10			60 91
(1 0 0/2011(2 1 0/ 33,(IE		1202.110			00.31
(1 0 0)28 (3 0 0) 33;(1E	1E)> E >	4254.031			73.16
(1 0 0)28 (2 1 0) 33:(1A1	1A1)> A1 >	4254.812			69.12
	417 > > > > > > > > > > > > > > > > > > >	4055 700			00.00
I(I U U)20II(2 I U) 33;(1E	1E /> AI >	4200./02			33.30
(1 1 0)27 (1 0 0) 35;(1E	1E)> A2 >	4257.280			68.81
(1 1 0)27 (1 0 0) 35.(111	1E)> F >	4257 512			59 77
1 (1 1 0)2111 (1 0 0) 00,(IAI		1201.012			55.11
(1 1 0)27 (1 0 0) 35;(1E	1E)> A1 >	4258.106			72.54
(1 0 0)28 (2 1 0) 33:(1E	2E)> A2 >	4259.884			67.02
	141)>>	1060 311			67 47
I(I U U)20II(3 U U) 33;(1E	IWT)> F >	4200.311			01.41
(1 0 0)28 (2 1 0) 33;(1A1	1A2)> A2 >	4265.692			99.08
(0 0 0)29 (2 2 2) 30.(111	1A1)> A1 >	4346.077			93 37
1 (0 0 0)2011 (2 2 2) 00, (IAI		1010.011			00.51
I(U U U)29II(5 U U) 31;(1A1	1A1)> A1 >	4357.074			92.51
(0 0 0)29 (5 0 0) 31·(1A1	1E)> E >	4357,227			92.25
	141)> E >	1100 110			00.00
I(I I U)2/II(I U U) 35;(IE	INT)> E >	4400.149			99.29
(2 0 0)27 (1 0 0) 35;(1E	1E)> A1 >	4417.494			97.43
1(000)2911(321) 30.(111	1F)> F >	4417 534			70 30
1 (0 0 0)2011 (0 2 1) 30,(IAI		1111.004			10.09
(1 1 0)27 (1 0 0) 35;(1E	1E)> E >	4417.746			97.04
(2 0 0)27 (1 0 0) 35:(1E	1E)> A2 >	4417.857			99.94
	117) > 11	4410 074			04.05
I(I U U)28 (3 U U) 33;(1E	1E)> A1 >	4418.274			24.85
(0 0 0)29 (3 2 1) 30:(1A1	1A1)> A1 >	4422.615			92.54
(1 0 0)28 (3 0 0) 33.(11)	1F)> F >	4424 875			88 41
I(1 0 0/2011(3 0 0/ 33;(IAI	15 // 5 /	1124.010			00.44
I(100)28II(300)33:(1A1	1A1)> A1 >	4425.176			89.62

1(0	0	0)29 (32	1)	30;(1A1	2E)	>	Е	>	4437.307			71.06
1(0	0 (0)29 (32	1)	30;(1A1	1A2)	>	A2	>	4458.804			99.92
(2	2 0	0)27 (1 0	0)	35;(1A1	1E)	>	Е	>	4516.758	4513.000	3.758	99.35
(2	2 0	0)27 (1 0	0)	35;(1A1	1A1)	>	A1	>	4547.023	4545.000	2.023	99.61
(2	2 0	0)27 (1 0	0)	35;(1E	1A1)	>	Е	>	4585.548			99.90
1(0	0 (0)29 (33	0)	30;(1A1	1E)	>	Е	>	4593.036			93.84
(2	2 0	0)27 (1 0	0)	35;(1E	1E)	>	Е	>	4595.781			99.97
(0	0 (0)29 (33	0)	30;(1A1	1A1)	>	A1	>	4595.820			94.28
(0	0 (0)29 (4 1	1)	30;(1A1	1E)	>	Е	>	4600.115			98.40
1(0	0 (0)29 (4 1	1)	30;(1A1	1A1)	>	A1	>	4600.566			96.72
1(0	0 (0)29 (4 2	0)	30;(1A1	1A2)	>	A2	>	4682.196			99.76
1(0	0 (0)29 (4 2	0)	30;(1A1	2E)	>	Е	>	4682.628			79.39
1(0	0 (0)29 (4 2	0)	30;(1A1	1A1)	>	A1	>	4685.885			96.18
1(0	0 (0)29 (42	0)	30;(1A1	1E)	>	Е	>	4686.237			75.22
(1	. 0	0)28 (2 1	1)	32;(1A1	1A1)	>	A1	>	4881.880			63.74
(1	. 0	0)28 (2 1	1)	32;(1E	1A1)	>	E	>	4888.273			86.95
(1	. 1	0)2711(1 1	0)	34;(1A1	1A1)	>	A1	>	4900.341			36.93
(1	. 0	0)2811(2 2	0)	32;(1E	1E)	>	A1	>	4910.277			88.72
(1	. 0	0)2811(22	0)	32;(1E	1E)	>	A2	?	4910.787			52.31
(1	. 0	0)2811(31	0)	32;(1E	1E)	>	A2	>	4911.797			69.42
1(1	. 0	0)2811(31	0)	32;(1E	2E)	>	A2	?	4912.731			66.19
	. 1	0)2711(20	(0)	34;(1A1	1A1)	>	A1	?	4915.271			65.92
	. 0	0)2811(2 1		32;(IE	1E	Ś	>	E	2	4917.037			99.15
	. 0	0)2811(2 1	1)	32;(IAI	IE	Ś	>	E	2	4918.409			15.30
	. 0	0)2811(2 2	1)	32;(IE	112	Ś	>	E A 1	2	4918.933			80.02
	. 0	0)2811(2 1	1)	32;(IE	112	Ś	>	AI	2	4918.992			87.92
	. 0	0)2811(21	1)	32;(IE	141	Ś	>	A2	2	4919.156			87.94
		0)2911(51	0)	30;(IAI		Ś	>	AI F	2	4921.184			93.12 42.01
		0)2911(5 1	0)	20, (1A1	75	Ś		E F	(4921.274			40.21
		0)2911(5 1	0)	20, (1A1	140	Ś		10	(4921.109			00.90
	0	0)2911(2 2	0)	30,(IMI 32.(1F	15	Ś	>	RZ F	\$	4929.000			72 00
1(1	. 0	0)2711(1 1	0)	34.(1E	1E 1F	ŝ	>	Δ1	Ś	4989 035			68 63
1(1	0	0)2811(2 2	0)	32.(111	1E 1F	ś	>	F	Ś	4991 646			95 64
1(1	0	0)2811(4 0	0)	32. (1E	1E	ì	>	A2	Ś	4993.738			99.34
1(1	1	0)2711(2 0	0)	34 · (1E	1E	ś	>	A1	>	4994,418			26.30
1(1	. 0	0)2811(3 1	0)	32:(1E	2E	ź	>	E	>	4994.428			77.36
1(1	. 0	0)2811(2 2	0)	32:(1A1	1A1)	>	A1	>	4997.236			92.88
10	0	0)2911(3 2	2)	29;(1A1	1A1)	>	A1	>	4998.932			97.17
1(1	. 0	0)2811(3 1	0)	32:(1E	1E)	>	Е	>	5004.739			57.54
1(0	0 (0)29 (3 2	2)	29;(1A1	1E)	>	Е	>	5040.902			97.64
(1	. 0	0)28 (3 1	0)	32;(1E	1A1)	>	Е	>	5055.772			59.43
(1	. 1	0)27 (1 1	0)	34;(1A1	1E)	>	Е	>	5057.437			65.88
(2	2 0	0)27 (1 1	0)	34;(1A1	1A1)	>	A1	>	5058.023			83.16
(1	. 1	0)27 (1 1	0)	34;(1E	1A1)	>	Е	>	5070.990			58.43
(1	. 1	0)27 (2 0	0)	34;(1A1	1E)	>	Е	>	5073.055			65.08
(1	. 1	0)27 (2 0	0)	34;(1E	1E)	>	A2	>	5073.913			40.86
1(2	2 0	0)27 (2 0	0)	34;(1E	1E)	>	A2	>	5074.625			47.16
(1	. 0	0)28 (3 1	0)	32;(1E	1E)	>	A1	>	5075.308			100.00
(1	. 0	0)28 (3 1	0)	32;(1A1	2E)	>	Е	>	5075.924			77.05
(1	. 0	0)28 (4 0	0)	32;(1E	1E)	>	A1	>	5076.598			90.18
1(1	. 0	0)28 (4 0	0)	32;(1E	1E)	>	Е	>	5077.498			84.45
1(2	2 0	0)27 (1 1	0)	34;(1E	1E)	>	A2	>	5079.319			46.66
(1	. 1	0)27 (1 1	0)	34;(1E	1E)	>	A2	>	5081.061			66.66
(1	. 0	0)2811(3 1	0)	32;(1A1	1A2)	>	A2	>	5083.728			84.94
(1	. 0	0)2811(3 1	0)	32;(1A1	1A1)	>	A1	?	5088.645			81.01
	. 0	0)2811(4 0	0)	32;(1E	1A1	,	>	E	?	5089.057			61.24
	, 0	0)2911(33	1)	29;(IA1	114	Ś	>	Ľ ∧ 1	2	51U5.359			93.36
1(0	, 0	0)2911(33	(T)	29;(1A1		Ś	>	A1 F	2	5111.300			94.44 E6 //
1(7		0)2011(101	1)	32, (IAL	1 A 1	Ś	>	⊡ ∧ 1	(5180 220			00.44 06 04
	, 0	0)2011(4 2	1)	20,(IAI	THT	Ś	>	E WT	(5105.330			71 61
100	, 0	0)2011(4 0	1)	20,(1A1	25 1 A O	Ś	>	∆⊃	5	5202 702			11.01
1(0	0	0)2911(4 2	1)	20, (IAI 29.(1A1	1F	Ś	>	л∠ E	Ś	5202.102			67 32
1(1	0	0)2811(4 0	0)	32.(141	1 4 1	ś	>	A1	Ś	5293.912			75.05
$(1)^{1}$	0	0)2811(4 0	0)	32:(111	1E	ś	>	E	>	5298, 509			78.96
$(1)^{1}$	ŏ	0)2811(3 1	0)	32;(1F	2E	ś	>	Ã1	>	5318.226			64.67
1(1	. 1	0)2711(2 0	0)	34:(1F	1A1)	>	E	>	5318.605			89.20
			-			-	-							

(1 1 0)27 (2 0 0)	04 (47						
	34 (1E	1E)	-> E >	5319,454			73.47
		, , ,		5000 047			
1(200)2/11(110)	34;(IE	IE)	-> AI >	5323.047			99.41
(2 0 0)27 (2 0 0)	34;(1A1	1A1)	-> A1 >	5323.726			86.61
	20.(111	1 =)	-> F >	5323 005			75 27
1(0 0 0)2511(4 5 0)	20,(181	111)	· L ·	0020.000			10.21
(110)27 (110)	34;(1E	1E)	-> E >	5325.731			81.39
(2 0 0)27 (1 1 0)	34:(1E	1A1)	-> E >	5336.115			79.33
	00. (111	1 4 1	× 41 ×	E220 020			00 10
1(000)2911(430)	29;(IAI	IAI)	-/ AI /	5559.250			99.10
(200)27 (200)	34;(1E	1E)	-> A1 >	5353.068			97.15
(2 0 0)27 (1 1 0)	34:(1E	1E)	-> E >	5355.187			99.77
	01,(14	412)		5056.464			74.04
1(000)2911(600)	30;(IAI	IE)	-> E >	5356.464			74.24
(2 0 0)27 (1 1 0)	34;(1A1	1E)	->E>	5358.232			98.07
(0 0 0)29 (4 3 0)	29.(141	2E)	-> E >	5358, 495			76.98
	20,(111			5000.500			70.00
1(000)2911(600)	30;(1A1	1A1)	-> A1 >	5360.509			72.03
(2 0 0)27 (2 0 0)	34;(1E	1A1)	-> E >	5361.802			74.80
	20.(111	142)	-> ^2 >	5372 005			00 26
	20,(141	112)	- H2 -				00.20
1(200)2711(200)	34;(1E	1E)	-> E >	5434.447			91.15
(0 0 0)29 (5 1 1)	29;(1A1	1E)	-> E >	5437.592			99.04
(0,0,0)20 (5,1,1)	20. (111	1 1 1)	-> A1 >	E/127 721			00 67
1(000)2911(511)	29,(IAI	IAI)	-/ AI /	5457.751			90.07
(200)27 (200)	34;(1A1	1E)	->E>	5439.104			66.54
(300)26 (000)	36.(141	141)	-> A1 >	5478, 126	5480.285	-2.159	99.59
	00,(111	444		5404 044	5400.005	4 000	00.07
1(300)2611(000)	36;(IE	IAI)	-> E >	5481.244	5480.235	1.009	98.97
(0 0 0)29 (5 2 0)	29;(1A1	1E)	->E>	5519.440			67.32
(0 0 0)29 (5 2 0)	29.(141	142)	-> A2 >	5520.560			98.92
	20,(111			5504 000			00.02
1(000)2911(520)	29;(1A1	2E)	-> E >	5521.328			69.82
(0 0 0)29 (5 2 0)	29;(1A1	1A1)	-> A1 >	5521.342			98.40
(1 0 0)28 (2 2 1)	31.(141	141)	-> 41 >	5565 854			58 86
	04.(41	444		5570.047			04.54
(100)28 (221)	31;(IE	IAI)	-> E >	55/3.01/			81.51
(110)27 (111)	33;(1A1	1A1)	-> A1 >	5593.251			48.37
(1 1 0)27 (2 1 0)	33:(1A1	1A1)	-> A1 >	5601.511			16.30
	21.(17	117)	> 40 >	E600 0E0			01 00
1(100)2811(311)	51;(IE	16)	-/ AZ /	5602.056			01.90
(2 1 0)26 (1 0 0)	35;(1E	1E)	-> A2 >	5605.503			71.01
(100)28 (320)	31:(1E	2E)	-> A2 >	5605.887			68.57
	26. (111	1 4 1)	> 11 >	E606 400	E607 000	0 500	00 00
1(210)2611(000)	30;(IAI	IAI)	-/ AI /	5606.420	5607.000	-0.560	99.09
(2 1 0)26 (1 0 0)	35;(2E	1E)	-> A2 >	5608.066			70.96
	21.(10	112)					00 20
$ (1 \ 0 \ 0)28 (2 \ 2 \ 1)$	31,(15	16)	-> E >	5608.991			33.20
$ (1 \ 0 \ 0)28 (2 \ 2 \ 1)$ $ (1 \ 0 \ 0)28 (2 \ 2 \ 1)$	31,(16	1E)	-> E >	5608.991 5612 373			98.00
(1 0 0)28 (2 2 1) (1 0 0)28 (2 2 1) (0 1 0)28 (2 2 0)	31;(1A1	1E)	-> E >	5608.991 5612.373			98.00
(1 0 0)28 (2 2 1) (1 0 0)28 (2 2 1) (2 1 0)26 (0 0 0)	31;(1A1 36;(1E	1E) 1E) 1A1)	-> E > -> E > -> E >	5608.991 5612.373 5612.653			98.00 95.01
(1 0 0)28 (2 2 1) (1 0 0)28 (2 2 1) (2 1 0)26 (2 2 1) (2 1 0)26 (0 0 0) (2 1 0)26 (1 0 0)	31;(1A1 36;(1E 35;(1A1	1E) 1E) 1A1) 1E)	-> E > -> E > -> E > -> E >	5608.991 5612.373 5612.653 6084.549			98.00 95.01 82.42
(1 0 0)28 (2 2 1) (1 0 0)28 (2 2 1) (2 1 0)28 (2 2 1) (2 1 0)26 (0 0 0) (2 1 0)26 (1 0 0) (3 0 0)26 (1 0 0)	31; (1A1 36; (1E 35; (1A1 35; (1A1	1E) 1E) 1E) 1E)	-> E > -> E > -> E > -> E > -> E >	5608.991 5612.373 5612.653 6084.549 6090.540			98.00 95.01 82.42 72.94
(1 0 0)28 (2 2 1) (1 0 0)28 (2 2 1) (2 1 0)26 (0 0 0) (2 1 0)26 (1 0 0) (3 0 0)26 (1 0 0) (2 0 0)27 (2 1 0)	31; (1A1 36; (1E 35; (1A1 35; (1A1 35; (1A1	1E) 1E) 1E) 1E) 1E)	-> E > -> E > -> E > -> E > -> E >	5608.991 5612.373 5612.653 6084.549 6090.540			98.00 95.01 82.42 72.94
(100)28 (221) (100)28 (221) (210)26 (000) (210)26 (100) (300)26 (100) (200)27 (210)	31; (1A1 36; (1E 35; (1A1 35; (1A1 33; (1E	1E) 1E) 1A1) 1E) 1E) 1A1)	-> E > -> E > -> E > -> E > -> E > -> E >	5608.991 5612.373 5612.653 6084.549 6090.540 6117.497			98.00 95.01 82.42 72.94 80.05
(100)28 (221) (100)28 (221) (210)26 (000) (210)26 (100) (300)26 (100) (210)26 (100) (210)26 (100) (210)26 (100) (210)26 (100) (210)26 (100) (210)26 (100) (210)26 (100) (210)26 (100) (210)26 (100) (210)26 (100)	31;(1A1 36;(1E 35;(1A1 35;(1A1 33;(1E 35;(1A1	1E) 1E) 1E) 1E) 1A1) 1A1)	-> E > -> E >	5608.991 5612.373 5612.653 6084.549 6090.540 6117.497 6131.859			98.00 95.01 82.42 72.94 80.05 75.68
(1 0 0)28 (2 2 1) (1 0 0)28 (2 2 1) (1 0 0)28 (2 2 1) (2 1 0)26 (0 0) (2 1 0)26 (1 0 0) (3 0 0)26 (1 0 0) (2 0 0)27 (2 1 0) (2 1 0)26 (1 0 0) (3 0 0)26 (1 0 0)	31;(1A1 36;(1E 35;(1A1 35;(1A1 33;(1E 35;(1A1 35;(1A1 35;(1A1	1E) 1E) 1E) 1E) 1A1) 1A1) 1A1)	-> E > -> A1 >	5608.991 5612.373 5612.653 6084.549 6090.540 6117.497 6131.859 6135.837			98.00 95.01 82.42 72.94 80.05 75.68 60.68
(1 0 0)28 (2 2 1) (1 0 0)28 (2 2 1) (2 1 0)26 (0 0 0) (2 1 0)26 (1 0 0) (3 0 0)26 (1 0 0) (2 0 0)27 (2 1 0) (2 1 0)26 (1 0 0) (2 1 0)26 (1 0 0) (3 0 0)26 (1 0 0)	31;(1A1 36;(1E 35;(1A1 35;(1A1 33;(1E 35;(1A1 35;(1A1 35;(1A1	1E) 1E) 1E) 1E) 1A1) 1A1) 1A1) 1A1)	-> E > -> A1 >	5608.991 5612.373 5612.653 6084.549 6090.540 6117.497 6131.859 6135.837			98.00 95.01 82.42 72.94 80.05 75.68 60.68
(1 0 0)28 (2 2 1) (1 0 0)28 (2 2 1) (2 1 0)26 (0 0) (2 1 0)26 (1 0 0) (3 0 0)26 (1 0 0) (2 0 0)27 (2 1 0) (2 1 0)26 (1 0 0) (3 0 0)26 (1 0 0) (3 0 0)26 (1 0 0) (2 0 0)27 (2 1 0)	31; (1A1 36; (1E 35; (1A1 35; (1A1 35; (1A1 35; (1A1 35; (1A1 35; (1A1	1E) 1E) 1E) 1E) 1A1) 1A1) 1A1) 1A1) 1A1)	-> E > -> A1 > -> A1 > -> E >	5608.991 5612.373 5612.653 6084.549 6090.540 6117.497 6131.859 6135.837 6137.272			98.00 95.01 82.42 72.94 80.05 75.68 60.68 60.86
(1 0 0)28 (2 2 1) (1 0 0)28 (2 2 1) (2 1 0)26 (1 0 0) (2 1 0)26 (1 0 0) (3 0 0)26 (1 0 0) (2 0 0)27 (2 1 0) (2 1 0)26 (1 0 0) (3 0 0)26 (1 0 0) (2 0 0)27 (2 1 0) (2 0 0)27 (2 1 0)	31; (1A1 36; (1E 35; (1A1 35; (1A1 33; (1E 35; (1A1 35; (1A1 35; (1A1 33; (1E 33; (1E	1E) 1E) 1E) 1E) 1A1) 1E) 1E)	-> E > -> E > -> E > -> E > -> E > -> E > -> A1 > -> E > -> E > -> A1 > -> E > -> E > -> A1 > -> E > -> E >	5608.991 5612.373 5612.653 6084.549 6090.540 6117.497 6131.859 6135.837 6137.272 6139.265			98.00 95.01 82.42 72.94 80.05 75.68 60.68 60.86 57.20
(100)28 (221) (100)28 (221) (210)26 (000) (210)26 (100) (200)26 (100) (200)26 (100) (200)26 (100) (200)26 (100) (200)26 (100) (200)26 (100) (200)27 (210) (200)27 (210) (200)27 (210)	31; (1A1 36; (1E 35; (1A1 35; (1A1 35; (1A1 35; (1A1 35; (1A1 35; (1A1 33; (1E 33; (1E 33; (1E	1E) 1E) 1E) 1A1) 1A1) 1A1) 1A1) 1A1) 1A1) 1E) 1E) 1E) 1E)	-> E > -> A1 > -> E > -> A1 > -> E > -> A1 > -> E > -> E > -> E >	5608.991 5612.373 5612.653 6084.549 6090.540 6117.497 6131.859 6135.837 6137.272 6139.265 6141.050			98.00 95.01 82.42 72.94 80.05 75.68 60.68 60.86 57.20 98.67
(1 0 0)28 (2 2 1) (1 0 0)28 (2 2 1) (2 1 0)26 (2 0 0) (2 1 0)26 (1 0 0) (3 0 0)26 (1 0 0) (2 0 0)27 (2 1 0) (2 1 0)26 (1 0 0) (3 0 0)26 (1 0 0) (2 0 0)27 (2 1 0) (2 0 0)27 (3 0 0) (2 0 0)27 (2 1 0)	31; (1A1 36; (1E 35; (1A1 35; (1A1 35; (1A1 35; (1A1 35; (1A1 35; (1A1 33; (1E 33; (1E 33; (1A1	1E) 1E) 1A1) 1E) 1A1) 1A1) 1A1) 1A1) 1E) 1E) 1E) 1E) 1E) 1A1)	-> E > -> A1 > -> E > -> A1 > -> E > -> A1 > -> E > -> E > -> F >	5608.991 5612.373 5612.653 6084.549 6090.540 6117.497 6131.859 6135.837 6137.272 6139.265 6141.050 6144.015			98.00 95.01 82.42 72.94 80.05 75.68 60.68 60.86 57.20 98.67 77.75
(100)28 (221) (100)28 (221) (210)26 (000) (210)26 (100) (200)26 (100) (200)26 (100) (200)26 (100) (200)26 (100) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (300) (200)27 (300) (200)27 (300) (200)27 (210) (200)27 (200)27 (200)	31; (1A1 36; (1E 35; (1A1 35; (1A1 35; (1A1 35; (1A1 35; (1A1 33; (1E 33; (1E 33; (1E 33; (1A1 33; (1E) 33; (1A1 33; (1A1) 33;	1E) 1E) 1E) 1E) 1A1) 1A1) 1A1) 1A1) 1A1) 1E) 1E) 1E) 1A1) 1E) 1E) 1A1)	-> E > -> A1 > -> E > -> A1 > -> E > -> A1 > -> E > -> E > -> A1 > -> E > -> A1 > -> E > -> E > -> E > -> E > -> E > -> E > -> A1 > -> E >	5608.991 5612.373 5612.653 6084.549 6090.540 6117.497 6131.859 6135.837 6137.272 6139.265 6141.050 6144.015 6444.520			98.00 95.01 82.42 72.94 80.05 75.68 60.68 60.86 57.20 98.67 77.75
(100)28 (221) (100)28 (221) (210)26 (000) (210)26 (100) (200)26 (100) (200)26 (100) (200)26 (100) (200)26 (100) (200)26 (100) (200)26 (100) (200)27 (210) (200)27 (2100) (200)27 (2100) (200)27 (2100) (200)27 (2100) (200)27 (2100) (200)27 (2100) (200)27 (2100) (200)27 (2100)	31; (1A1 36; (1E 35; (1A1 35; (1A1 35; (1A1 35; (1A1 35; (1A1 35; (1A1 33; (1E 33; (1E 33; (1A1 33; (1E 33; (1A1) 33; (1A1) 33	1E) 1E) 1E) 1E) 1A1) 1A1) 1A1) 1A1) 1A1) 1E) 1E) 1E) 1A1) 1E) 1E) 1E)	-> E > -> E > -> E > -> E > -> E > -> A1 > -> E > -> A1 > -> E > -> E > -> A1 > -> E >	5608.991 5612.373 5612.653 6084.549 6090.540 6131.859 6135.837 6137.272 6139.265 6141.050 6144.015 6144.539			$\begin{array}{c} 38.20\\ 98.00\\ 95.01\\ 82.42\\ 72.94\\ 80.05\\ 75.68\\ 60.68\\ 60.86\\ 57.20\\ 98.67\\ 77.75\\ 74.11\end{array}$
(100)28 (221) (100)28 (221) (210)26 (100) (210)26 (100) (210)26 (100) (210)26 (100) (210)26 (100) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (2100) (200)27 (2100) (200)27 (2100) (200)221 (5300) (200)221 (5300)	31; (1A1 36; (1E 35; (1A1 35; (1A1 35; (1A1 35; (1A1 33; (1E 33; (1E 33; (1E 33; (1A1 33; (1E 33; (1A1 33; (1E 33; (1E	1E) 1E) 1E) 1E) 1A1) 1A1) 1A1) 1A1) 1E) 1E) 1A1) 1E) 1A2)	-> E > -> E > -> E > -> E > -> E > -> E > -> A1 > -> E > -> A1 > -> E > -> A1 > -> E >	5612.373 5612.653 6084.549 6090.540 6117.497 6131.859 6135.837 6137.272 6139.265 6141.050 6144.015 6144.539 6144.434			98.00 95.01 82.42 72.94 80.05 75.68 60.68 60.86 57.20 98.67 77.75 74.11 99.56
(100)28 (221) (100)28 (221) (210)26 (000) (210)26 (100) (200)26 (100) (200)26 (100) (200)26 (100) (200)26 (100) (200)26 (100) (200)26 (100) (200)27 (210)	31; (1A1 36; (1E 35; (1A1 35; (1A1 35; (1A1 35; (1A1 35; (1A1 33; (1E 33; (1E 33; (1E 33; (1E 33; (1E 33; (1E 33; (1E	1E) 1E) 1A1) 1E) 1A1) 1E) 1E) 1A1) 1E) 1E) 1A2)	-> E > > -> A1 > -> E > -> E > -> A1 > -> E > -> E > -> -> E > -> A1 > -> E > -> -> E > -> -> A1 > -> -> E > -> -> A1 > -> -> E > -> -> A1 > -> -> A1 > -> -> -> -> -> A1 > -> -> -> -> -> -> -> A1 > -> -> -> -> -> -> -> -> -> -> -> -> -> -	5608.991 5612.373 5612.653 6084.549 6090.540 6131.859 6135.837 6137.272 6139.265 6141.050 6144.015 6144.539 6146.434 6146.510			98.00 95.01 82.42 72.94 80.05 75.68 60.68 60.68 60.68 60.86 57.20 98.67 77.75 74.11 99.56 92.94
(100)28 (221) (100)28 (221) (210)26 (100) (210)26 (100) (210)26 (100) (210)26 (100) (210)26 (100) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (200)20 (530) (200)27 (200)20 (500)	31; (1A1 36; (1E 35; (1A1 35; (1A1 35; (1A1 35; (1A1 33; (1E 33; (1E 33; (1E 33; (1E 33; (1E 33; (1E 33; (1E 33; (1E 33; (1E 33; (1E) 33;	1E) 1E) 1E) 1E) 1A1) 1A1) 1A1) 1A1) 1A1) 1A1) 1E) 1E) 1A1) 1E) 1A2) 1E) 1A2) 1E) 1A2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5602.991 5612.373 5612.653 6084.549 6090.540 6117.497 6131.859 6135.837 6137.272 6139.265 6141.050 6144.015 6144.539 6146.510 6147.192			98.00 95.01 82.42 72.94 80.05 75.68 60.68 60.86 57.20 98.67 77.75 74.11 99.56 92.94
(1 0 0)28 (2 1) (1 0 0)28 (2 2 1) (2 1 0)26 (0 0) (2 1 0)26 (1 0 0) (2 0 0)27 (1 0 0) (2 0 0)27 (2 1 0) (2 0 0)27 (2 1 0) (2 0 0)27 (2 1 0) (2 0 0)27 (2 1 0) (2 0 0)27 (2 1 0) (2 0 0)27 (2 1 0) (2 0 0)27 (2 1 0) (2 0 0)27 (2 1 0) (2 0 0)27 (2 1 0) (2 0 0)27 (2 1 0) (2 0 0)27 (2 1 0) (2 0 0)27 (2 1 0) (2 0 0)27 (2 1 0) (2 0 0)27 (2 1 0) (2 0 0)27 (2 1 0) (2 1 0)26 (1 0 0) (2 1 0)26 (1 0 0) (2 0 0)27 (3 0 0)	31; (1A1 36; (1E 35; (1A1 35; (1A1 35; (1A1 35; (1A1 35; (1A1 35; (1A1 33; (1E 33; (1E 33; (1E 33; (1E 33; (1E 33; (1E 33; (1E 33; (1E) 33; (1E) 33	1E) 1A1) 1A1) 1A1) 1A1) 1A1) 1A1) 1E) 1E) 1E) 1A2) 1E) 1E) 1E)	>> E > > >> A1 > > >> >	5608.991 5612.373 5612.653 6084.549 6090.540 6117.497 6131.859 6135.837 6137.272 6139.265 6141.050 6144.015 6144.539 6146.434 6146.510 6147.198			98.00 95.01 82.42 72.94 80.05 75.68 60.68 60.68 60.86 57.20 98.67 77.75 74.11 99.56 92.94 86.89
(1000)28 (221) (1000)28 (221) (210)26 (1000) (210)26 (1000) (210)26 (1000) (210)26 (1000) (210)26 (1000) (200)27 (2100) (200)27 (2100) (200)27 (2100) (200)27 (2100) (200)27 (2100) (200)27 (2100) (200)27 (2100) (200)27 (2100) (210)27 (2500) (210)27 (2500) (210)26 (1000) (200)27 (2500) (200)27 (2500) (200)27 (2500) (200)27 (2500) (200)27 (2500) (200)27 (2500) (200)29 (5300) (200)29 (5300)	31; (1A 36; (1E 35; (1A1 35; (1A1 33; (1E 33; (1E 33; (1A1 33; (1E 33; (1A1 33; (1E 33; (1A1 33; (1E 33; (1A1 35; (1A1)35; (1A1)3	1E) 1E) 1E) 1E) 1E) 1A1) 1A1) 1A1) 1A1) 1A1) 1E) 1E) 1E) 1A2) 1A2) 1E >	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 5602.991\\ 5612.373\\ 5612.653\\ 6084.549\\ 6090.540\\ 6117.497\\ 6131.859\\ 6135.837\\ 6137.272\\ 6139.265\\ 6141.050\\ 6144.015\\ 6144.539\\ 6146.434\\ 6146.510\\ 6147.198\\ 6147.200\\ \end{array}$			98.00 95.01 82.42 72.94 80.05 75.68 60.68 60.86 60.86 57.20 98.67 777.75 74.11 99.56 92.94 86.89 81.29
(100)28 (221) (100)28 (221) (210)26 (000) (210)26 (100) (210)26 (100) (200)26 (100) (200)26 (100) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (210)26 (100) (210)26 (100) (210)26 (100) (210)26 (1300) (210)26 (1300) (210)26 (100) (111)26 (100)	31; (141 36; (12 35; (141 35; (141 35; (141 35; (141 35; (141 33; (12 33; (12 33; (12 33; (12 33; (141 33; (12 33; (12 33; (141 33; (141) 33; (141) 33; (141) 33; (141) 33; (141) 34; (141	1E) 1E) 1E) 1E) 1E) 1A1) 1A1) 1A1) 1A1) 1A1) 1E) 1E) 1E) 1A1) 1E) 1E) 2E) 2E) 1E) 1E) 1E) 1E) 1E)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5608.991 5612.373 5612.653 6084.549 6090.540 6117.497 6131.859 6135.837 6137.272 6139.265 6144.050 6144.050 6144.519 6146.434 6146.510 6147.198 6147.200 6149.487			98.00 95.01 82.42 72.94 80.05 75.68 60.68 60.68 60.86 67.20 98.67 77.75 74.11 99.56 86.89 81.29 99.69
(100)28 (221) (100)28 (221) (210)26 (100) (210)26 (100) (210)26 (100) (200)27 (210) (200)27 (2530) (200)27 (530) (11)26 (100) (200)22 (530) (11)26 (100) (200)22 (530)	31; (14) 36; (12) 35; (14) 35; (14) 35; (14) 33; (12) 33; (14) 33; (14) 33; (14) 33; (14) 33; (14) 33; (14) 33; (14) 35; (14) 35; (14) 35; (14)	1E) 1E) 1A1) 1E) 1E) 1E) 1A1) 1A1) 1A1) 1A1) 1A1) 1A1) 1E) 1E) 1A2) 1A2) 1E) 2E) 1E) 1E) 1E) 1E) 2E) 1E) 1A2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 5602.991\\ 5612.373\\ 5612.653\\ 6084.549\\ 6090.540\\ 6117.497\\ 6131.859\\ 6135.837\\ 6137.272\\ 6139.265\\ 6141.050\\ 6144.015\\ 6144.539\\ 6146.510\\ 6147.198\\ 6147.200\\ 6149.487\\ c151\\ 044\end{array}$			98.00 95.01 82.42 72.94 80.05 75.68 60.68 60.86 60.86 67.70 98.67 77.75 74.11 99.56 92.94 86.89 81.29 99.69 99.69
(1000)28 (221) (1000)28 (221) (210)26 (000) (210)26 (100) (200)26 (100) (200)27 (210) (200)27 (200)21 (200)22 (530) (200)22 (530) (111)26 (100) (200)29 (530) (200)29 (530) (200)29 (530) (200)22 (530) (200)22 (530) (200)22 (530) (200)22 (530) (200)22	31; (14) 36; (12) 35; (14) 35; (14) 35; (14) 35; (14) 35; (14) 33; (12) 33; (12) 33; (12) 33; (12) 33; (14) 33; (12) 33; (14) 33; (14) 35;	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 5608.991\\ 5612.373\\ 5612.653\\ 6084.549\\ 6090.540\\ 6117.497\\ 6131.859\\ 6135.837\\ 6137.272\\ 6139.265\\ 6141.050\\ 6144.015\\ 6144.015\\ 6144.539\\ 6146.510\\ 6147.198\\ 6147.200\\ 6149.487\\ 6151.944 \end{array}$			98.00 95.01 82.42 72.94 80.05 75.68 60.68 60.68 60.68 60.68 60.68 67.20 98.67 77.75 74.11 99.56 92.94 86.89 81.29 99.69 94.80
(1000)28 (221) (1000)28 (221) (210)26 (1000) (210)26 (1000) (200)27 (210) (200)27 (31; (14) 36; (12 35; (14) 35; (14) 35; (14) 35; (14) 35; (14) 33; (12 33; (12 33; (12 33; (12 28; (14) 35; (14) 35; (12 35; (14) 35; (14)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 5602.991\\ 5612.373\\ 5612.653\\ 6084.549\\ 6090.540\\ 6117.497\\ 6131.859\\ 6135.837\\ 6137.272\\ 6139.265\\ 6141.050\\ 6144.015\\ 6144.539\\ 6146.434\\ 6146.510\\ 6147.198\\ 6147.200\\ 6149.487\\ 6151.944\\ 6152.784 \end{array}$			98.00 95.01 82.42 72.94 80.05 75.68 60.86 60.86 57.20 98.67 77.75 74.11 99.56 92.94 86.89 81.29 99.69 94.80 69.76
(100)28 (221) (100)28 (221) (210)26 (100) (210)26 (100) (210)26 (100) (210)26 (100) (210)26 (100) (210)26 (100) (210)26 (100) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)29 (530) (111)26 (100) (111)26 (100) (200)29 (530) (300)29 (530)	31; (14) 36; (12) 35; (14) 35; (14) 35; (14) 35; (14) 35; (14) 35; (14) 33; (12) 33; (12) 33; (12) 33; (14) 33; (14) 33; (14) 33; (14) 33; (14) 33; (14) 33; (14) 33; (14) 35;	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5612.373 5612.653 6084.549 6090.540 6117.497 6131.859 6135.837 6137.272 6139.265 6141.050 6144.015 6144.015 6144.539 6146.510 6147.198 6147.198 6147.200 6149.487 6151.944 6152.784 6152.133			98.00 95.01 82.42 72.94 80.05 75.68 60.86 60.86 60.86 60.86 60.86 60.86 60.86 60.86 97.20 98.67 77.75 74.11 99.56 92.94 86.89 81.29 99.69 94.80 69.76 75.25
(100)28 (221) (100)28 (221) (210)26 (000) (210)26 (100) (210)26 (100) (210)26 (100) (200)26 (100) (200)27 (210) (200)29 (530) (111)26 (100) (200)29 (530) (200)29 (530) (200)29 (530) (200)29 (530) (200)29 (530) (200)29 (530) (200)29 (530) (200)29 (530) (200)29 (530) (200)27 (1110)	31; (14) 36; (12 35; (14) 35; (14) 35; (14) 35; (14) 35; (14) 35; (14) 33; (12 33; (12 33; (12 33; (12 33; (12 33; (12 33; (12 33; (14) 35; (14) 35	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 5602,991\\ 5612,373\\ 5612,653\\ 6090,540\\ 6197,497\\ 6131,859\\ 6135,837\\ 6135,837\\ 6137,272\\ 6139,265\\ 6141,050\\ 6144,539\\ 6146,434\\ 6146,510\\ 6147,198\\ 6147,200\\ 6147,198\\ 6147,200\\ 6149,487\\ 6151,944\\ 6152,784\\ 6153,133\\ 6158,171\\ \end{array}$			98.00 95.01 82.42 72.94 80.05 75.68 60.86 60.86 60.86 57.20 98.67 77.75 74.11 99.56 92.94 86.89 81.29 99.69 94.80 69.76 75.25
(100)28 (221) (100)28 (221) (210)26 (100) (210)26 (100) (210)26 (100) (210)26 (100) (210)26 (100) (210)26 (100) (210)26 (100) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)22 (530) (111)26 (100) (200)22 (530) (300)22 (530) (200)22 (530) (200)22 (530) (200)22 (530) (200)22 (530) (200)22 (530) (200)22 (530) (200)22 (530) (200)22 (530) (200)22 (530) (200)22 (250) (200)22 (250)	31; (14) 36; (12) 35; (14) 35; (14) 35; (14) 35; (14) 35; (14) 33; (12) 33; (12) 33; (12) 33; (12) 33; (14) 33; (14) 33; (14) 33; (14) 33; (14) 35;	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5602.991 5612.373 5612.653 6084.549 6090.540 6117.497 6131.859 6135.837 6137.272 6139.265 6141.050 6144.015 6144.539 6146.434 6146.510 6147.198 6147.200 6149.487 6151.944 6152.784 6153.133 6158.171			98.00 95.01 82.42 72.94 80.05 75.68 60.68 60.68 60.68 60.86 60.86 77.20 98.67 77.75 74.11 99.56 92.94 86.89 81.29 99.69 94.80 69.76 57.25 65.26
(100)28 (221) (100)28 (221) (210)26 (000) (210)26 (100) (200)26 (100) (200)26 (100) (200)26 (100) (200)27 (210) (111)26 (100) (200)29 (530) (200)26 (100) (200)26 (100) (200)27 (2530) (200)27 (2530) (200)27 (111) (200)27 (2333)	31; (14) 36; (12) 35; (14) 35; (14) 35; (14) 35; (14) 35; (14) 33; (12) 33; (12) 33; (12) 33; (14) 33; (14) 33; (14) 33; (14) 33; (14) 33; (14) 33; (14) 33; (14) 35; (14) 26; (14) 35; (14) 27; (14) 35; (15) 27; (14) 27; (15) 27; (14) 27; (15) 27; (15) 27; (15) 27; (15) 27; (15) 27; (15) 27; (1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5608.991 5612.373 5612.653 6084.549 6090.540 6117.497 6131.859 6135.837 6137.272 6139.265 6144.015 6144.015 6144.510 6147.198 6147.200 6145.944 6151.944 6152.784 6153.133 6158.171 6213.704			98.00 98.00 95.01 82.42 72.94 80.05 75.68 60.68 60.68 60.68 60.68 60.68 67.20 98.67 77.75 74.11 99.56 92.94 86.89 81.29 99.69 94.80 69.76 65.86 65.75
(100)28 (221) (100)28 (221) (210)26 (100) (210)26 (100) (210)26 (100) (210)26 (100) (210)26 (100) (210)26 (100) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (2530) (200)29 (530) (111)26 (1100) (200)29 (530) (200)29 (530) (200)29 (530) (200)29 (530) (200)29 (530) (200)29 (530) (200)29 (5330) (200)29 (5333) (200)29 (1111) (110)27 (210)	31; (14) 36; (12 35; (14) 35; (14) 35; (14) 35; (14) 35; (14) 33; (12 33; (12 33; (12 33; (14) 33; (12 28; (14) 35; (14)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5602.991 5612.373 5612.653 6084.549 6090.540 6117.497 6131.859 6135.837 6137.272 6139.265 6141.050 6144.015 6144.539 6146.434 6146.510 6147.198 6147.198 6147.200 6149.487 6151.944 6152.784 6153.133 6158.171 6213.704 6230.152			98.00 95.01 82.42 72.94 80.05 75.68 60.86 60.86 60.86 60.86 60.86 77.20 98.67 77.75 74.11 99.56 92.94 86.89 81.29 99.69 94.80 69.76 75.25 65.86 87.56 87.305
(100)28 (221) (100)28 (221) (210)26 (000) (210)26 (100) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (230) (200)27 (2530) (111)26 (100) (200)29 (530) (200)29 (530) (200)29 (530) (200)29 (530) (200)29 (530) (200)29 (530) (200)29 (530) (200)29 (333) (100)29 (213) (100)29 (220)	31; (14) 36; (12) 35; (14) 35; (14) 35; (14) 35; (14) 35; (14) 35; (14) 33; (12) 33; (12) 33; (14) 33; (14) 33; (14) 33; (14) 35; (14) 33; (12) 33; (12) 33; (14) 35;	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5602.991 5612.373 5612.653 6084.549 6090.540 6117.497 6131.859 6135.837 6137.272 6139.265 6144.015 6144.015 6144.539 6144.539 6146.510 6147.198 6147.198 6147.200 6149.487 6151.944 6152.784 6152.784 6153.133 6158.171 6213.704 6230.152 6234.907			98.00 98.00 95.01 82.42 72.94 80.05 75.68 60.68 60.68 65.720 98.67 77.75 74.11 99.56 92.94 86.89 81.29 99.68 94.80 69.76 75.25 65.86 87.56 87.56 87.56 88.83
(100)28 (221) (100)28 (221) (210)26 (100) (210)26 (100) (210)26 (100) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (111)26 (100) (200)27 (530) (111)26 (1100) (200)27 (530) (200)27 (1110) (200)27 (1111) (100)29 (533) (110)27 (210) (110)27 (210) (110)27 (210) (110)27 (210) (110)28 (222)	31; (14) 36; (12) 35; (14) 35; (14) 35; (14) 35; (14) 35; (14) 35; (14) 35; (14) 35; (12) 33; (12) 33; (12) 28; (14) 35; (1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5602.991 5612.373 5612.653 6084.549 6090.540 6117.497 6131.859 6135.837 6137.272 6139.265 6141.050 6144.015 6144.539 6146.434 6146.510 6147.198 6147.200 6149.487 6151.944 6152.784 6153.133 6158.171 6230.152 6234.907 6324.97			98.00 95.01 82.42 72.94 80.05 75.68 60.86 60.86 57.20 98.67 77.75 74.11 99.56 92.94 86.29 94.89 81.29 99.69 94.80 69.76 75.25 65.86 87.56 87.305 88.23 77.305
$ \begin{bmatrix} 1 & 0 & 0)28 \\ 1 & 0 & 0)28 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 2 & 1 \end{bmatrix} \\ \begin{bmatrix} 2 & 1 & 0)26 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \\ \begin{bmatrix} 2 & 1 & 0)26 \\ 1 & 0 & 0 \end{bmatrix} \\ \begin{bmatrix} 2 & 1 & 0)26 \\ 1 & 0 & 0 \end{bmatrix} \\ \begin{bmatrix} 2 & 1 & 0 \\ 2 & 0 \end{bmatrix} \\ \begin{bmatrix} 2 & 1 & 0 \\ 2 & 0 \end{bmatrix} \\ \begin{bmatrix} 2 & 1 & 0 \\ 2 & 0 \end{bmatrix} \\ \begin{bmatrix} 2 & 1 & 0 \\ 2 & 0 \end{bmatrix} \\ \begin{bmatrix} 2 & 1 & 0 \\ 2 & 0 \end{bmatrix} \\ \begin{bmatrix} 2 & 1 & 0 \\ 2 & 0 \end{bmatrix} \\ \begin{bmatrix} 2 & 1 & 0 \\ 2 & 0 \end{bmatrix} \\ \begin{bmatrix} 2 & 1 & 0 \\ 2 & 0 \end{bmatrix} \\ \begin{bmatrix} 2 & 0 & 0 \\ 2 & 0 \end{bmatrix} \\ \\ \begin{bmatrix} 2 & 0 & 0 \\ 2 & 0 \end{bmatrix} \\ \begin{bmatrix} 2 & 0 & 0 \\ 2 & 0 \end{bmatrix} \\ \\ \begin{bmatrix} 2 & 0 & 0 \\ 2 & 0 \end{bmatrix} \\ \\ \begin{bmatrix} 2 & 0 & 0 \\ 2 & 0 \end{bmatrix} \\ \\ \begin{bmatrix} 2 & 0 & 0 \\ 2 & 0 \end{bmatrix} \\ \\ \begin{bmatrix} 2 & 0 & 0 \\ 2 & 0 \end{bmatrix} \\ \\ \begin{bmatrix} 2 & 0 & 0 \\ 2 & 0 \end{bmatrix} \\ \\ \end{bmatrix} \\ \\ \begin{bmatrix} 2 & 0 & 0 \\ 2 & 0 \end{bmatrix} \\ \\ \\ \end{bmatrix} \\ \\ \\ \end{bmatrix} \\ \\ \end{bmatrix} \\ \\ \end{bmatrix} \\ \\ \end{bmatrix} \\ \\ \\ \end{bmatrix} \\ \\ \\ \end{bmatrix} \\ \\ \end{bmatrix} \\ \\ \end{bmatrix} \\ \\ \end{bmatrix} \\ \\ \\ \end{bmatrix} \\ \\ \end{bmatrix} \\ \\ \end{bmatrix} \\ \\ \\ \end{bmatrix} \\ \\ \\ \end{bmatrix} \\ \\ \end{bmatrix} \\ \\ \\ \\ \end{bmatrix} \\ \\ \\ \end{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \\ \\ \\ \\ \\ \\ \end{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \\ \\ \\ \\ \\ \\ \\ \end{bmatrix} \\$	31; (14) 36; (12) 35; (14) 35; (14) 35; (14) 35; (14) 35; (14) 35; (14) 33; (12) 33; (12) 33; (14) 33; (14) 33; (14) 33; (14) 35;	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5602.991 5612.373 5612.653 6084.549 6090.540 6117.497 6131.859 6135.837 6137.272 6139.265 6141.050 6144.015 6144.015 6144.539 6146.510 6147.198 6147.198 6147.198 6147.200 6149.487 6151.944 6152.784 6153.133 6158.171 6213.704 6230.152 6234.907 6235.137			98.00 98.00 95.01 82.42 72.94 80.05 75.68 60.68 60.68 60.68 60.68 60.68 60.68 60.68 67.20 98.67 77.75 74.11 99.56 92.94 86.89 81.29 99.69 94.80 69.76 75.25 65.86 87.56 87.56 87.56 87.56 88.83 78.31
(100)28 (221) (100)28 (221) (210)26 (100) (210)26 (100) (200)27 (210) (110)28 (530) (200)27 (1100) (200)27 (11100) (200)28 (120)3 (110)28 (222) (100)28 (222) (100)28 (222) (100)28 (2500)	31; (14) 36; (12 35; (14) 35; (14) 35; (14) 35; (14) 35; (14) 35; (14) 33; (12 33; (12 28; (14) 33; (12 28; (14) 35; (12 33; (12 28; (14) 35; (14) 35	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5602.991 5612.373 5612.653 6084.549 6090.540 6117.497 6131.859 6135.837 6137.272 6139.265 6144.050 6144.015 6144.539 6146.434 6146.510 6147.200 6149.487 6151.944 6152.784 6153.133 6158.171 6213.704 6230.152 6234.907 6235.137 6235.631			98.00 98.00 95.01 82.42 72.94 80.05 75.68 60.86 57.20 98.67 77.75 74.11 99.56 92.94 86.89 81.29 99.69 94.80 81.29 99.69 94.80 85.75 65.86 87.56 87.56 83.730 88.83 78.31 98.62
(100)28 (221) (100)28 (221) (210)26 (100) (210)26 (100) (210)26 (100) (210)26 (100) (210)26 (100) (210)26 (100) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (210) (200)27 (2530) (110)28 (2530) (200)221 (5330) (200)221 (5330) (200)221 (5330) (1100)28 (222) (100)28 (222) (100)28 (222) (100)28 (222)	31; (14) 36; (12 35; (14) 35; (14) 35; (14) 35; (14) 35; (14) 33; (12 33; (12 33; (12 33; (12 33; (14) 33; (12 28; (14) 35; (14)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5602.991 5612.373 5612.653 6084.549 6090.540 6117.497 6131.859 6135.837 6137.272 6139.265 6141.050 6144.015 6144.015 6144.539 6146.510 6147.198 6147.198 6147.198 6147.200 6149.487 6151.944 6152.784 6153.133 6158.171 6231.704 6230.152 6234.907 6235.137 6236.631 6238.923			98.00 98.00 95.01 82.42 72.94 80.05 75.68 60.86 60.86 60.86 60.86 60.86 60.86 60.86 92.94 86.89 81.29 99.69 94.80 69.76 75.25 65.86 87.56 75.25 65.86 87.56 88.83 78.31 98.62 92.50
$ \begin{bmatrix} 1 & 0 & 0)28 \\ 1 & 0 & 0)28 \\ 1 & 2 & 1 \\ 2 & 1 & 0)26 \\ 1 & 2 & 1 \\ 2 & 1 & 0)26 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1$	31; (14) 36; (12) 35; (14) 35; (14) 35; (14) 35; (14) 35; (14) 35; (14) 35; (14) 33; (12) 33; (12) 33; (12) 33; (12) 33; (12) 33; (12) 33; (12) 33; (12) 33; (14) 35; (14) 30; (14) 31; (1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 5602,991\\ 5612,373\\ 5612,653\\ 6084,549\\ 6090,540\\ 6117,497\\ 6131,859\\ 6135,837\\ 6137,272\\ 6139,265\\ 6141,050\\ 6144,015\\ 6144,539\\ 6146,434\\ 6146,510\\ 6147,198\\ 6147,200\\ 6149,487\\ 6151,138\\ 6152,784\\ 6152,784\\ 6152,784\\ 6153,133\\ 6158,171\\ 6213,704\\ 6230,152\\ 6234,907\\ 6235,137\\ 6236,631\\ 6238,923\\ 6249,700\\ \end{array}$			98.00 98.00 95.01 82.42 72.94 80.05 75.68 60.86 57.20 98.67 77.75 74.11 99.56 92.94 86.89 81.29 99.69 94.80 69.76 75.25 65.86 87.56 73.05 88.83 78.31 98.62 92.50 92.50
(1 0 0)28 (2 1) (1 0 0)28 (2 2 1) (2 1 0)26 (1 0 0) (2 1 0)26 (1 0 0) (2 1 0)26 (1 0 0) (2 1 0)26 (1 0 0) (2 1 0)26 (1 0 0) (2 0 0)27 (2 1 0) (2 0 0)27 (2 1 0) (2 0 0)27 (2 1 0) (2 0 0)27 (2 1 0) (2 0 0)27 (2 1 0) (2 0 0)27 (2 1 0) (2 0 0)27 (2 1 0) (2 0 0)27 (2 1 0) (2 0 0)27 (3 0 0) (2 0 0)27 (5 3 0) (1 1 1)26 (1 0 0) (0 0 0)29 (5 3 0) (1 1 1)26 (1 0 0) (0 0 0)29 (5 3 0) (1 0 0)28 (5 3 0) (1 0 0)28 (5 3 0) (1 0 0)28 (1 0 10) (1 0 0)28 (1 1 1 1) (0 0)29 (5 3 0) (1 0 0)28 (2 2 1 0) (1 0 0)28 (2 2 2) (1 0 0)28 (2 2 2) (1 0 0)28 (2 2 2) (1 0 0)28 (2 2 2) (1 0 0)28 (2 2 2) (1 0 0)28 (2 0 2)	31; (14) 36; (12) 35; (14) 35; (14) 35; (14) 35; (14) 35; (14) 33; (12) 33; (12) 33; (12) 33; (12) 33; (12) 33; (12) 33; (12) 28; (14) 35;	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5602.991 5612.373 5612.653 6084.549 6090.540 6117.497 6131.859 6135.837 6137.272 6139.265 6141.050 6144.015 6144.015 6144.539 6146.434 6146.434 6146.510 6147.198 6147.198 6147.200 6149.487 6151.944 6152.784 6153.133 6158.171 6233.133 6158.171 6235.137 6236.631 6238.923 6249.700			98.00 95.01 82.42 72.94 80.05 75.68 60.68 60.68 60.68 60.86 77.20 98.67 77.75 74.11 99.56 92.94 86.89 94.80 69.294 81.29 99.69 94.80 69.75.25 65.86 87.56 73.05 88.83 78.31 98.62 92.50 93.08 92.50 93.08
$ \begin{bmatrix} 1 & 0 & 0)28 (2 & 2 & 1) \\ (1 & 0 & 0)28 (2 & 2 & 2) \\ (2 & 1 & 0)26 (1 & 0 & 0) \\ (2 & 1 & 0)26 (1 & 0 & 0) \\ (2 & 0 & 0)27 (2 & 1 & 0) \\ (2 & 0 & 0)27 (2 & 1 & 0) \\ (2 & 0 & 0)27 (2 & 1 & 0) \\ (2 & 0 & 0)27 (2 & 1 & 0) \\ (2 & 0 & 0)27 (2 & 1 & 0) \\ (2 & 0 & 0)27 (2 & 1 & 0) \\ (2 & 0 & 0)27 (2 & 1 & 0) \\ (2 & 0 & 0)27 (2 & 1 & 0) \\ (2 & 0 & 0)27 (2 & 1 & 0) \\ (2 & 0 & 0)27 (2 & 1 & 0) \\ (2 & 0 & 0)27 (2 & 1 & 0) \\ (2 & 0 & 0)27 (2 & 1 & 0) \\ (2 & 0 & 0)27 (2 & 1 & 0) \\ (2 & 0 & 0)27 (3 & 0 & 0) \\ (2 & 0 & 0)27 (3 & 0 & 0) \\ (2 & 0 & 0)27 (3 & 0 & 0) \\ (1 & 1 & 0)26 (1 & 0 & 0) \\ (1 & 0 & 0)29 (5 & 3 & 0) \\ (3 & 0 & 0)29 (5 & 3 & 0) \\ (3 & 0 & 0)29 (5 & 3 & 0) \\ (1 & 0 & 0)28 (2 & 2) \\ (1 & 0 & 0)28 (2 & 2) \\ (1 & 0 & 0)28 (2 & 2) \\ (1 & 0 & 0)28 (1 & 0) \\ (1 & 0 & 0)28 (2 & 0) \\ (1 & 0 & 0)28 (1 & 0) \\ (1 & 0 & 0)28 (1 & 0) \\ (1 & 0 & 0)28 (2 & 0) \\ (1 & 0 & 0)28 (2 & 0) \\ (1 & 0 & 0)28 (2 & 0) \\ (1 & 0 & 0)28 (1 & 0 & 0) \\ (1 & 0 & 0)28 (1 & 0 & 0) \\ (1 & 0 & 0)28 (1 & 0 & 0) \\ (1 & 0 & 0)28 (1 & 0 & 0) \\ (1 & 0 & 0)28 (1 & 0 & 0) \\ (1 & 0 & 0)28 (1 & 0 & 0) \\ (1 & 0 & 0)28 (1 & 0 & 0) \\ (1 & 0 & 0)28 (1 & 0 & 0) \\ (1 & 0 & 0)28 (1 & 0 & 0) \\ (1 & 0 & 0)28 (1 & 0 & 0) \\ (1 & 0 & 0)28 $	31; (11 36; (12 35; (11 35; (11 35; (11 35; (11 35; (11 35; (11 35; (12 33; (12) 33;	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5612.373 5612.653 6084.549 6090.540 6117.497 6131.859 6135.837 6137.272 6139.265 6144.050 6144.539 6144.539 6146.434 6146.510 6147.198 6147.200 6147.198 6147.200 6147.198 6147.200 6147.198 6147.200 6147.198 6147.200 6147.198 6147.200 6147.198 6147.200 6147.198 6153.133 6158.171 6230.152 6234.907 6235.137 6236.631 6238.923 6249.700 6255.651			98.00 98.00 95.01 82.42 72.94 80.05 75.68 60.86 60.86 60.86 60.86 60.86 60.86 80.89 81.29 99.69 94.80 69.76 75.55 65.86 87.56 73.05 88.831 78.31 98.62 92.50 93.08 99.89
$ \begin{bmatrix} 1 & 0 & 0)28 \\ 1 & 0 & 0)28 \\ 1 & 2 & 1 \\ 2 & 1 & 0)26 \\ 1 & 2 & 1 \\ 2 & 1 & 0)26 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 2 & 1 & 0)26 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 2 & 1 & 0)26 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 2 & 1 & 0)26 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 2 & 1 & 0)26 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 2 & 0 & 0)27 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0)27 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0)27 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0)27 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0)27 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 $	31; (1A) 36; (1E 35; (1A) 35; (1A) 35; (1A) 35; (1A) 35; (1A) 33; (1E 33; (1E 33; (1E 33; (1E 28; (1A) 35; (1A) 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>>> E E > > >> > => E E > > > ></pre>	5602.991 5612.373 5612.653 6084.549 6090.540 6117.497 6131.859 6135.837 6137.272 6139.265 6141.050 6144.015 6144.539 6146.434 6146.510 6147.198 6147.198 6147.200 6149.487 6151.944 6152.784 6153.133 6158.171 6233.137 6235.137 6236.631 6238.923 6249.700 6255.651 6256.496			98.00 95.01 82.42 72.94 80.05 75.68 60.68 60.68 60.68 60.86 60.86 77.20 98.67 77.75 74.11 99.56 92.94 86.29 99.69 94.80 69.76 85.25 65.86 87.56 88.83 78.31 98.62 92.50 93.08 99.89 95.36
$ \begin{bmatrix} 1 & 0 & 0)28 \\ 1 & 0 & 0)28 \\ 1 & 2 & 1 \\ 2 & 1 & 0)26 \\ 1 & 2 & 1 \\ 2 & 1 & 0)26 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0)26 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0)26 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0)26 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0)26 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0)26 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0)26 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0)27 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0)27 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0)27 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0)27 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0)26 \\ 1 & 1 & 0)26 \\ 1 & 1 & 0)26 \\ 1 & 1 & 0)26 \\ 1 & 1 & 0)26 \\ 1 & 1 & 0)26 \\ 1 & 1 & 0)26 \\ 1 & 1 & 0)27 \\ 1 & 0 & 0)29 \\ 1 & 1 & 0)27 \\ 1 & 0 & 0)29 \\ 1 & 1 & 0)27 \\ 1 & 0 & 0)28 \\ 1 & 1 & 0)27 \\ 1 & 0 & 0)28 \\ 1 & 1 & 0)27 \\ 1 & 0 & 0)28 \\ 1 & 1 & 0)27 \\ 1 & 0 & 0)28 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\$	31; (11 36; (12 35; (11 35; (11 35; (11 35; (11 35; (11 35; (11 33; (12 33; (12) 33; (12) 33	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5602.991 5612.373 5612.653 6084.549 6090.540 6117.497 6131.859 6135.837 6137.272 6139.265 6141.050 6144.015 6144.015 6144.539 6144.510 6147.198 6147.198 6147.198 6147.198 6147.198 6147.198 6147.198 6147.198 6151.944 6152.784 6153.133 6158.171 6213.704 6230.152 6234.907 6235.137 6236.631 6236.496 6249.700 6255.651			98.00 98.00 95.01 82.42 72.94 80.05 75.68 60.68 60.68 60.68 657.20 98.67 77.75 74.11 99.56 92.94 86.89 81.29 99.69 94.80 69.76 75.25 65.86 87.56 87.56 87.56 87.56 87.56 87.56 87.52 88.31 98.62 92.50 93.08 93.83 88.52 93.83 93.83 93.83 93.83 93.85 9
$ \begin{bmatrix} 1 & 0 & 0)28 \\ 1 & 0 & 0)28 \\ 1 & 2 & 1 \\ 2 & 1 & 0)26 \\ 1 & 2 & 1 \\ 2 & 1 & 0)26 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 \\ 2 & 1 & 0)26 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 $	31; (1A) 36; (1E 35; (1A) 35; (1A) 35; (1A) 35; (1A) 35; (1A) 35; (1A) 35; (1E 33; (1E 33; (1E 28; (1A) 35; (1E 20; (1A) 35; (1E 30; (1E) 30; (1E)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>>> E E > > >> -> /pre>	$\begin{array}{c} 5608.991\\ 5612.373\\ 5612.653\\ 6084.549\\ 6090.540\\ 6117.497\\ 6131.859\\ 6135.837\\ 6137.272\\ 6139.265\\ 6141.050\\ 6144.015\\ 6144.539\\ 6146.510\\ 6147.198\\ 6147.200\\ 6149.487\\ 6151.944\\ 6152.784\\ 6153.133\\ 6158.171\\ 6213.704\\ 6230.152\\ 6234.907\\ 6235.137\\ 6236.631\\ 6238.923\\ 6249.700\\ 6255.651\\ 6256.496\\ 6257.740\\ \end{array}$			98.00 98.00 95.01 82.42 72.94 80.05 75.68 60.86 60.86 60.86 60.86 67.20 98.67 77.75 74.11 99.56 92.94 81.29 99.69 94.80 69.76 65.76 81.25 73.05 88.83 78.31 98.62 92.50 93.08 99.89 99.89 94.80 88.20 95.68 95.86 95
$ \begin{bmatrix} 1 & 0 & 0)28 \\ 1 & 0 & 0)28 \\ 1 & 2 & 1 \\ 2 & 1 & 0)26 \\ 1 & 2 & 1 \\ 2 & 1 & 0)26 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0)26 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0)26 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0)26 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0)26 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0)26 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0)26 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0)26 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0)27 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0)27 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0)27 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0)27 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & $	31; (14) 36; (12) 35; (14) 35; (1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5602.991 5612.373 5612.653 6084.549 6090.540 6117.497 6131.859 6135.837 6137.272 6139.265 6141.050 6144.015 6144.015 6144.539 6146.510 6147.198 6147.198 6147.198 6147.198 6147.200 6149.487 6151.944 6152.784 6153.133 6158.171 6230.152 6234.907 6235.137 6236.631 6238.923 6249.700 6255.651 6256.496 6257.740 6258.711			98.00 98.00 95.01 82.42 72.94 80.05 75.68 60.68 60.68 657.20 98.67 77.75 74.11 99.56 92.94 86.89 81.29 99.66 94.80 69.76 75.25 65.86 87.56 87.56 87.56 87.56 87.56 87.56 87.56 87.55 94.80 69.76 94.80 69.76 94.80 69.76 87.55 88.83 87.55 88.83 87.55 88.83 87.55 88.83 99.48 99.48 99.48 99.48 99.48 99.48 99.48 99.48 99.48 99.48 99.48 99.48 99.48 99.48 99.48 99.48 99.48 99.48 99.48 87.55 75.55 88.83 87.55 98.83 98.83 98.62 99.89 85.36 98.82 99.89 85.36 98.82 99.89 85.36 98.82 99.89 85.36 88.82 99.88 85.86 85.86 85.86 85.85 8

1 ()		0)0711(~ ~	~ >							2070 004	~ ~ ~
1(2	2 0	0)2711(3 0	0)	33;(1A1	1A1) -	->	A1	>	6272.931	81.30
((0 (0)29 (6 1	1)	28;(1A1	1A1) -	->	Α1	>	6283.625	65.34
1(0	0 (0)29 (4 3	2)	27;(1A1	1E) -	->	Е	>	6285.890	70.79
1(0	0	0)2911(4 3	2)	27:(1A1	1A1) -	->	A 1	>	6298.680	85.95
100	. 1	0)2611(1 0		25, (25	1 / 1	ś.	_	5		6200 405	20 20
1(4		0)2011(2 0	1)	30, (2E	1 1 1	{	(E	(6302.425	71 02
1(1		0)2011(3 2	1)	30;(IE	IAI	2 -	~	E _	1	0302.030	11.03
1(2	2 0	0)2711(2 1	0)	33;(1A1	2E) -	->	Е	>	6303.963	99.77
1(0	0 (0)29 (6 1	1)	28;(1A1	1E) -	->	Е	>	6306.537	98.40
(1	. 0	0)28 (3 2	1)	30;(1A1	1A1) -	->	A1	>	6306.675	55.09
1(2	2 1	0)2611(1 0	0)	35:(1E	1A1) -	->	E	>	6307.156	74.90
100		0)2611(1 0	0)	25,(25	10	í.	_`	A 1		6200 260	00 06
		0)2011(1 0	0)	35, (ZE	15	, -	~	HI.	(0309.300	90.00
1(2	έ <u>τ</u>	0)2611(1 0	0)	35;(IE	IE) -	->	E	>	6310.405	98.91
(1	. 1	0)27 (2 2	0)	32;(1A1	1A1) -	->	Α1	>	6310.716	42.03
(1	. 0	0)28 (32	1)	30;(1A1	1E) -	->	Е	>	6313.572	69.71
(1	. 0	0)28 (5 1	0)	30;(1E	1E) -	->	A2	>	6314.592	47.50
1((0	0)2911(4 3	2)	27:(141	2E) -	->	E	>	6316.337	72.39
1(1	0	0)2811(3 2	1)	30 · (1F	117	ś.	->	F		6317 112	60 22
1 4		0)2011(4 0	~	00,(11	1.1.4	<i>.</i>	1		(6000.050	57 00
1(1	. 1	0)2/11(40	0)	52;(IAI	IAI	2 -		AI	·	0323.050	51.39
1(2	2 1	0)2611(2 0	0)	34;(1E	1E) –	->	A2	>	6327.106	83.39
(1	. 0	0)28 (4 2	0)	30;(1E	1E) -	->	A2	>	6327.992	30.60
(1	. 0	0)28 (3 3	0)	30;(1E	1A1) -	->	Е	>	6329.336	85.14
(1	. 0	0)2811(3 2	1)	30;(1A1	2E) -	->	Е	>	6329.729	71.19
1(1	1	0)2711(3 1	$\hat{0}$	32 (141	141) -	->	A 1	>	6330,005	74 84
1(4		0) 2011 (2 0	1)	20. (1RI	741	Ś	_(A 4	2	6220 064	71 10
1(1	. 0	0)2011(3 2	1)	50;(IE	25	2 -		AI	·	6330.064	/1.12
(1	. 0	0)28 (32	1)	30;(1E	2E) -	->	Е	>	6330.062	72.79
(1	. 0	0)28 (51	0)	30;(1E	2E) -	->	A2	>	6330.331	49.25
(1	. 0	0)28 (4 2	0)	30;(1E	2E) -	->	A2	>	6330.626	63.48
1(1	0	0)2811(3 3	0)	30:(1E	1E) -	->	A2	>	6330.655	99.94
103	> 1	0)2611(1 1	0)	34 · (1F	117	Ĵ-	->	42	>	6332 624	65 34
1(4		0)2011(1 1	1)	20. (1E	112	Ś	ĺ.	12	ĺ.	6333 607	76 10
1(1	. 0	0)2011(4 1	1)	30;(IE	1E	2 -	~	A2	1	0333.097	10.12
1(1	. 0	0)2811(33	0)	30;(1E	1E) -	->	E	>	6334.349	84.16
(1	. 0	0)28 (32	1)	30;(1E	2E) -	->	A2	>	6335.803	54.49
(1	. 0	0)28 (4 1	1)	30;(1E	1E) -	->	Α1	>	6336.372	55.23
(1	. 0	0)28 (4 1	1)	30;(1E	1A1) -	->	Е	>	6344.029	68.93
1(0	0 (0)29 (4 3	2)	27;(1A1	1A2) -	->	A2	>	6344.691	99.79
1(1	1	0)2711(2 1	1)	32:(1A1	1A1) -	->	A 1	>	6344.979	32.31
1(1	0	0)2811(3 2	1)	30 · (1E	1E) -	->	A2	>	6347 857	44 44
100	0	0)2011(7 0	<u></u>	20.(111	15	í-	->	F		63/9 671	03 01
		0)2011(7 0	0)	20,(111	1 1 1	Ś	(A 1	(6350 110	02.10
	, 0	0)2911(1 0	0)	29;(IAI	IAI	<u>,</u> -	-/	AI		6350.110	93.40
1(1	. 0	0)2811(32	1)	30;(1A1	1A2) -	->	A2	>	6351.384	99.59
1((0 0	0)2911(62	0)	28;(1A1	1E) -	->	E	>	6383.284	67.03
1(0	0 (0)29 (62	0)	28;(1A1	1A2) -	->	A2	>	6389.423	98.60
1(0	0 (0)29 (6 2	0)	28;(1A1	1A1) -	->	A1	>	6390.526	97.94
1(0	0 (0)2911(6 2	0)	28;(1A1	2E) -	->	Е	>	6392.128	70.61
100	0	0)2911(<u> </u>	1)	27.(141	1 F) -	->	F	>	6464 945	90 24
		0)2011(2)	27, (141	1 1 1	{	(A 1	(6470 721	06 46
100	, 0	0)2911(5 2	2)	27;(IAI	IAI	2 -	~	AI	1	6470.731	20.40
(1	. 0	0)2811(5 1	0)	30;(1E	1E) -	->	A1	>	6472.826	37.67
1(0	0 (0)29 (44	1)	27;(1A1	1A1) -	->	A1	>	6477.967	31.75
1(2	2 1	0)26 (1 1	0)	34;(1A2	1A1) -	->	A2	>	6478.062	79.34
1(0	0 (0)29 (52	2)	27;(1A1	1E) -	->	Е	>	6478.446	98.18
1(1	0	0)2811(4 1	1)	30 · (1F	1 F) -	->	F	>	6479 676	38 36
1(1		0)2011(2 2	<u> </u>	20,(111	10	ś.	Ś	F	ĺ.	6491 242	06.00
		0)2011(5 5	0)	30, (IAI	115	, -	-/	E .		0401.343	00.70
1(2	2 1	0)2611(1 0	0)	35;(2E	1E) -	->	E	>	6487.135	99.94
1(2	2 1	0)26 (2 0	0)	34;(2E	1E) -	->	A2	>	6489.534	80.59
(1	. 0	0)28 (51	0)	30;(1E	2E) -	->	Α1	>	6491.332	60.16
1(3	3 0	0)26 (2 0	0)	34;(1E	1E) -	->	A2	>	6491.417	78.81
(1	0	0)2811(4 1	1)	30:(1A1	1E) -	->	Е	>	6491.710	94.43
1(1	0	0)2811(4 2	n)	30 · (1F	25	í-	->	F		6491 983	29 67
1(4		0) 2011(2 0	0)	30.(114	1 / 1	ś.	Ś	<u>۸</u> 1	Ś	6492 049	20.01
	. 0	0)2011(00	0)	20. (1E	112	ζ-	~	M1	(6400 071	04.00
1(1	. 1	0)2/11(22	0)	32;(1E	TE	· -	->	Al	2	0492.2/1	20.46
(1	. 0	0)28 (6 0	0)	30;(1E	1E) -	->	A2	>	6493.152	95.40
(1	. 0	0)28 (4 2	0)	30;(1E	1A1) -	->	Е	>	6493.509	70.36
(1	. 1	0)27 (3 1	0)	32;(1E	2E) -	->	A1	>	6493.651	48.30
1(1	. 1	0)2711(3 1	0)	32:(1F	1E) -	->	A1	>	6494,607	30.01
1(1	0	0)28110	4 2	0)	30 · (1F	1F) -	->	E	>	6495.357	32.21
1(4	~	0) 2011(5 4	0)	30.(10	25	ś.	Ĺ			6/96 301	27 00
1(7		0)2011(1 4	0)	24./15	∠⊑ 1 ₽	ζ-		10	(6406 602	20 57
103		0)2011(1 1	0)	34;(IE	TE	· -	->	AZ		0490.002	30.57
1(2	: 1	0)2611(1 1	0)	34;(2E	1E) -	->	A2	>	0497.945	31.89

(1	. 0	0)28 (4	1 1 1)	30;(1A1	1A1)	>	A1	>	6498.088	95.79
(1	. 1	0)27 (2	2 1 1)	32;(1E	1E)	>	A1	>	6500.859	86.25
(2	2 1	0)26 (2	200)	34;(1A2	1A1)	>	A2	>	6502.857	78.07
(1	. 0	0)28 (5	510)	30;(1E	1E)	>	Е	>	6506.974	51.45
(1	. 1	0)27 (2	220)	32;(1A1	1E)	>	Е	>	6544.999	74.70
(1	. 0	0)28 (5	510)	30;(1E	1A1)	>	Е	>	6558.976	69.14
1(0	0 (0)29 (5	531)	27;(1A1	1A2)	>	A2	>	6559.552	99.44
1(0	0 (0)29 (5	531)	27;(1A1	2E)	>	Е	>	6560.610	73.75
(1	. 1	0)27 (4	100)	32;(1E	1E)	>	Α1	>	6567.415	70.91
1(0	0 (0)29 (5	531)	27;(1A1	1A1)	>	A1	>	6567.713	93.86
1(0	0	0)29 (5	531)	27;(1A1	1E)	>	E	>	6567.857	66.88
(1	. 1	0)27 (3	310)	32;(1A1	1E)	>	E	>	6573.096	81.95
(1	. 1	0)27 (2	220)	32;(1E	1E)	>	A2	>	6573.552	39.31
1(1	. 1	0)2711(3	3 1 0)	32;(IAI	1AZ	Ś	>	A2	2	6574.265	83.66
	. 1	0)2711(3	3 1 0)	32;(IE	1E OF	,	>	A2	2	6574.359	24.44
	. 1	0)2711(3	1 2 0)	32;(IE 20,(111	25	Ś		AZ F	(6574.902 6575 176	24.41
	. 0	0)2011(4	± 2 0)	20,(1E	10	Ś		E F	(6575.176 6575 440	00.00
1(1	. 0	0)2811(3	3 3 0)	30.(15	112	Ś		۵L	5	6575 555	100 00
1(1	0	0)2811(4	1 2 0)	30.(111	142	ś	>	12	Ś	6578 098	83 53
1(1	1	0)2711(4	1 0 0)	32 · (1E	1E	ś	>	A2	Ś	6578 806	88.86
1(1)	1	0)2711(2 1 1)	32:(1E	1E	ý	>	A2	>	6582.010	88.21
i(1)	0	0)28 (6	5 0 0)	30;(1E	1E	ĵ.	>	A1	>	6583.496	70.73
1(1	0	0)28 (3	321)	30;(1E	1E)	>	A1	>	6584.393	65.37
(1	. 0	0)28 (4	120)	30;(1A1	1A1)	>	A1	>	6586.536	85.26
(1	. 0	0)28 (5	510)	30;(1A1	1E)	>	Е	>	6895.504	62.97
1(3	3 0	0)26 (2	2 0 0)	34;(1E	1E)	>	Е	>	6899.588	74.10
1(3	8 0	0)26 (2	200)	34;(1E	1A1)	>	Е	>	6901.000	77.85
(1	. 1	0)27 (2	221)	31;(1A1	1A1)	>	A1	>	6904.323	36.14
1(3	3 0	0)26 (1	110)	34;(1E	1E)	>	Е	>	6905.760	71.87
1(2	2 1	0)26 (2	200)	34;(2E	1E)	>	Е	>	6907.397	87.56
1(0	0 (0)29 (4	1 4 2)	26;(1A1	1E)	>	Е	>	6913.266	87.63
(1	. 0	0)28 (4	121)	29;(1E	1E)	>	A2	>	6916.684	49.52
(1	. 0	0)28 (3	331)	29;(1E	1E)	>	A1	>	6918.419	87.40
(1	. 0	0)28 (3	331)	29;(1E	1E)	>	A2	>	6920.732	51.95
(1	. 0	0)28 (4	± 2 1)	29;(1E	2E)	>	A2	>	6921.715	14.10
	1	0)2911(4	± 4 2)	26;(IAI	1 4 1	,	>	AI	2	6922.279	90.64 70.15
1(2	1 2	0)2611(2	2 0 0)	34;(2E	TAI	,	>	E AO	2	6923.027	72.15
1(2		0)2711(4	± 1 0)	31;(IE 21,(1E	10	Ś		AZ	(6923.965	71 02
1(1	1	0)2711(3	200) 211)	31;(IE 31.(1A1	1 1 1	Ś		A2	ζ.	6924.169 6927 31 <i>1</i>	65 92
1(1	0	0)2811(3	, , , , , , , , , , , , , , , , , , ,	29.(1F	15	Ś	>	F	Ś	6929 850	99.22
1(1	0	0)2811(3	3 2 2)	29:(141	1E	ś	>	Ē	>	6932 854	97.73
i(1)	. 0	0)2811(3	322)	29;(1E	1E	ź	>	A1	>	6933.714	88.04
(1	. 0	0)28 (3	3 2 2)	29;(1E	1E)	>	A2	>	6934.159	86.60
(1	. 0	0)28 (3	331)	29;(1E	1A1)	>	Е	>	6934.480	84.21
1(2	2 1	0)26 (1	1 1 0)	34;(1A1	1A1)	>	A1	>	6951.127	81.71
1(2	2 0	0)27 (3	310)	32;(1E	1A1)	>	Е	>	6955.433	77.19
1(2	2 0	0)27 (2	220)	32;(1E	1E)	>	Е	>	6961.194	76.31
(1	. 1	1)26 (2	200)	34;(1A1	1E)	>	Е	>	6966.442	80.96
1(0	0 (0)29 (6	530)	27;(1A1	1E)	>	Е	>	6967.176	60.37
1(0	0 (0)29 (6	530)	27;(1A1	1A1)	>	A1	>	6967.928	96.66
1(2	2 0	0)27 (3	3 1 0)	32;(1E	2E)	>	Е	>	6968.203	77.05
1(0	0	0)29 (6	530)	27;(1A1	1A2)	>	A2	>	6968.370	98.36
1(0	0 0	0)29 (6	530)	27;(1A1	2E)	>	E	>	6968.758	63.87
1(2	2 0	0)2711(4	± U U)	32;(1E	121)	>	는 A 1	2	6070.000	13.65
1(2	2 U	0)2/11(2	2 1 1)	32;(1E 3/.(1/4	1E 1 A 1))	>	A1	~	6976 794	80 OF
1(1	. 1 1	1)2611(1	1 1 0)	34,(IAI	1F	ì	>	нт Г	Ś	6979 431	80 00
1(2	2 0	0)2711(3	3 1 0)	32:(1F	1E)	>	E	Ś	6979.965	60.01
(1	. 1	0)2711(3	3 2 0)	31:(1A1	1A1	ý	>	A1	>	6980.367	74.98
1(2	2 0	0)2711(2	2 2 0)	32;(1E	1A1)	>	E	>	6991.962	55.38
1(1	. 0	0)28 (3	331)	29;(1E	1E)	>	Е	>	6992.729	73.56
1(0	0 0	0)29 (5	532)	26;(1A1	1A1)	>	A1	>	6998.595	93.54
(1	. 0	0)28 (3	331)	29;(1A1	1E)	>	Е	>	6999.608	93.22
(1	. 0	0)28 (5	520)	29;(1E	1E)	>	A2	>	7000.235	89.07
(1	. 1	0)27 (4	1 1 0)	31;(1A1	1A1)	>	A1	>	7005.465	76.00
1(0	0 (0)29 (5	532)	26;(1A1	2E)	>	Е	>	7005.648	86.70

(1	0	0)28	(4	2	1)	29;(1E	2E)	>	Е	>	7005.852			72.63
(1	0	0)28	(5	1	1)	29;(1E	1E)	>	A2	>	7005.924			99.87
(1	0	0)28	11(4	3	0)	29;(1E	2E)	>	A2	>	7006.214			72.50
(1	0	0)28	11(4	2	1)	29;(1E	1E)	>	A1	>	7009.962			67.67
(1	0	0)28	11(3	3	1)	29;(1A1	1A1)	>	A1	>	7013.483			88.40
1(0	0	0)29	11(5	3	2)	26;(1A1	1A2)	>	A2	>	7017.111			99.57
1(0	0	0)29		5	3	2)	26:(1A1	1E)	>	Е	>	7018.099			81.05
1(1	0	0)28		4	2	1)	29:(1E	1E)	>	Е	>	7022.159			53.54
1(1	õ	0)28	$\frac{1}{1}$	4	3	0)	29.(1E	1E	ś	>	A2	>	7026.822			63.36
1(1	õ	0)28		4	3	0)	20,(1E	1 4 1	ś	>	F	\$	7060 587			53 43
1(1	õ	0)28		4	2	1)	20,(1E	1 4 1	ś	>	F	\$	7072 109			31 25
1(1	0	0)28		4	â	0)	20,(1E	16	ś	>	F	Ś	7074 298			67 21
	0	0)20		6	1	0)	20,(11	112	Ś	>	12	Ś	7074.230			18 65
	0	0)20		5	1	1)	20,(15	10	Ś		MZ A 1	(7078.212			40.00
	1	0)20		2	2		20,(10	10	Ś		A 1	(7094 129			50.02 E0.01
	1	0)21		5	2	0)	31,(IE	1 4 1	{		A 1	(7004.130			06.63
1(1	1	0)21		2	0	0)	31;(IAI	112	Ś	(AI	(7004.592			90.03
1(2	T	0)20		3	4	0)	33;(IE	1E	~	(AZ	2	7005.202			66.40
	0	0)28		6	1	0)	29;(IE	2E	2	>	A2	2	7086.260			54.88
1(2	1	0)26		2	1	0)	33;(2E	1E)	>	A2	>	7087.467			65.92
1(1	0	0)28	11(4	2	1)	29;(1A1	2E)	>	E	2	7087.498			71.18
1(1	0	0)28		4	3	0)	29;(1E	2E)	>	A1	>	7087.643			77.18
1(1	0	0)28		5	1	1)	29;(1E	1E)	>	Е	>	7087.741			95.01
(1	0	0)28	11(4	3	0)	29;(1E	2E)	>	Е	>	7087.812			74.47
(2	1	0)26	(2	1	0)	33;(1E	1E)	>	A2	>	7088.131			32.81
(1	0	0)28	(4	2	1)	29;(1A1	1A1)	>	A1	>	7089.499			91.85
(1	0	0)28	(7	0	0)	29;(1E	1E)	>	A2	>	7089.552			80.78
(1	1	0)27	(3	1	1)	31;(1E	1E)	>	Α1	>	7090.628			69.65
(2	1	0)26	(2	1	0)	33;(1E	2E)	>	A2	>	7092.358			57.44
(1	0	0)28	(5	2	0)	29;(1E	1E)	>	A1	>	7095.095			73.35
(1	0	0)28	(4	2	1)	29;(1A1	1A2)	>	A2	>	7095.916			99.38
(1	1	0)27	(2	2	1)	31;(1E	1E)	>	A1	>	7098.597			73.28
(1	0	0)28	(5	2	0)	29;(1E	2E)	>	A2	>	7099.105			70.78
(1	0	0)28	(4	2	1)	29;(1A1	1E)	>	Е	>	7102.534			64.71
(1	0	0)28	11(5	1	1)	29;(1E	1A1)	>	Е	>	7103.572			70.82
1(0	0	0)29	11(5	4	1)	26;(1A1	1E)	>	Е	>	7119.861			66.97
1(0	0	0)29	11(5	4	1)	26;(1A1	1A1)	>	A1	>	7145.875			98.51
1(2	1	0)26	11(1	1	0)	34;(1A1	1E)	>	Е	>	7152.166			99.15
1(0	0	0)29	11(5	4	1)	26:(1A1	2E)	>	Е	>	7168.161			70.61
1(4	0	0)25		0	0	0)	36:(1A1	1A1)	>	A1	>	7173.359	7173.799	-0.440	99.38
1(4	0	0)25		0	0	0)	36:(1E	1A1)	>	Е	>	7173,616	7173.783	-0.167	99.83
•••	-	-,		-		- /	, (ŕ		-					
1(6	0	0)23	11(0	0	0)	36.(141	1 A 1)	>	Δ1	>	10357.513	10358.000	-0.487	99.86
1(6	õ	0)23		0	õ	0)	36 · (1F	1 4 1	ś	>	F	\$	10358 618	10358 000	0.618	99 43
100	0	0)20		0	~	•,	00,(11	INI	'		5	ŕ	10000.010	10000.000	0.010	00.40
													•			•
													•			•
16 6	1	0122		<u> </u>	•	٥)	26.(15	1 \ 1	`		F		10690 590	10601 500	-1 020	. 70 / 2
1(5	1	0)23		0	0	0)	26.(111	1 1 1	\$		L A 1	(10601 076	10691.500	-1.920	12.43
103	Ŧ	0)23		0	0	0)	30,(141	INI	'	/	AT	1	10091.970	10091.500	0.470	33.30
				•	•								•			•
					•								•			•
	~	0.000			•	~	00 (15		、		_					
1(7	0	0)22		0	0	0)	36;(1E	1A1)	>	E	>	11843.259	11843.500	-0.241	94.36
107	υ	0)22	11(0	υ	0)	36;(1A1	1A1)	>	A1	>	11844.585	11843.500	1.085	99.88
					•								•			•
					•								•			•
					• .						_					
1(7	0	0)22	ЦĊ	13	1	0)	22;(1E	1A1)	>	Е	>	23551.961			91.33
1(7	0	0)22	II (:	14	0	0)	22;(1E	1A1)	>	Е	>	23597.394			99.14

TABLE 1: Observed and Calculated Stretching Levels of $^{121}SbH_3$ for $n\leq 12$

ket	%init.ket	%init.ket	EigenValue	s EigenValu	les Obs. En.	Cal-Obs	Cal-Obs	Cal-Obs
	(Modulus)	(Modulus)	(Mod.1)	(Mod.2)		(Mod.1)	(Mod.2)	(Ref. 5)
	(Model 1)	(Model 2)	(cm -1)	(cm -1)	(cm -1)	(cm -1)	(cm -1)	(cm -1)
(1 0 0)1A1>	1.000	1.000	1890.002	1890.824	1890.502	-0.499	0.322	-0.82
(1 0 0)1E1>	1.000	1.000	1895.424	1895.126	1894.497	0.927	0.629	0.31
(2 0 0)1A1>	0.996	0.996	3719.940	3720.258	3719.933	0.007	0.325	-0.42
(2 0 0)1E1>	0.999	0.893	3720.256	3720.299	3719.860	0.396	0.439	-0.08
(1 1 0)1A1>	0.996	0.997	3783.928	3784.973				
(1 1 0)1E1>	0.999	0.958	3789.034	3788.807				
(3 0 0)1A1>	0.999	0.999	5480.051	5480.176	5480.285	-0.233	-0.108	-0.02
(3 0 0)1E1>	0.999	0.999	5480.161	5480.285	5480.235	-0.073	0.050	0.04
(2 1 0)1A1>	0.995	0.996	5607.956	5606.976	5607.000	0.956	-0.023	0.45
(2 1 0)1E1>	0.821	0.810	5609.678	5612.409				
(2 1 0)2E1>	0.821	0.825	5614.021	5615.700				
(2 1 0)1A2>	1.000	0.999	5619.186	5615.567				
(1 1 1)1A1>	0.996	0.997	5681.084	5681.600				
(4 0 0)1A1>	0.999	0.999	7173.042	7173.127	7173.799	-0.756	-0.671	0.93(*)
(4 0 0)1E1>	0.999	0.946	7173.137	7173.186	7173.783	-0.645	-0.596	0.95(*)
(3 1 0)1A1>	0.994	0.988	7371.087	7371.928				
(3 1 0)1E1>	0.854	0.806	7373.334	7374.222				
(3 1 0)2E1>	0.850	0.785	7375.125	7375.841				
(3 1 0)1A2>	1.000	0.997	7375.322	7375.254				
(2 2 0)1A1>	0.992	0.988	7440.494	7441.719				
(2 2 0)1E1>	0.990	0.978	7441.359	7441.214				
(2 1 1)1A1>	0.996	0.994	7500.399	7503.265				
(2 1 1)1E1>	0.999	0.894	7510.814	7511.042				
(5 0 0)1A1>	0.999	0.999	8799.139	8799.129				
(5 0 0)1E1>	0.999	0.934	8799.228	8799.184				
(4 1 0)1A1>	0.998	0.996	9064.361	9065.348				
(4 1 0)1E1>	0.828	0.813	9066.231	9066.195				
(4 1 0)1A2>	0.999	0.941	9068.000	9068.524				
(4 1 0)2E1>	0.826	0.730	9068.296	9069.382				
(3 2 0)1E1>	0.746	0.709	9190.463	9189.110				
(3 2 0)1A1>	0.997	0.991	9194.383	9196.043				
(3 2 0)2E1>	0.749	0.525	9200.254	9204.748				
(3 2 0)1A2>	0.999	0.998	9205.555	9205.310				
(3 1 1)1A1>	0.988	0.981	9265.796	9267.944				
(3 I I)IEI>	0.997	0.860	9266.546	9267.903				
(2 2 1)1A1>	0.969	0.967	9321.010	9331.350				
(2 2 1)1E1>	0.997	0.955	9337.637	9337.825	40050 000	0 050	0.005	40.00(1)
(6 0 0)1A1>	0.999	0.999	10358.350	10358.205	10358.000	0.350	0.205	10.93(*)
(6 0 0)1E1>	0.999	0.930	10356.435	10556.257	10556.000	1 107	0.257	10.93(*)
(5 I 0)1A1>	0.999	0.996	10690.392	10691.437	10691.500	-1.107	-0.062	2.00(*)
(5 I 0)1EI>	0.820	0.765	10692.224	10691.566	10691.500	0.724	0.066	2.60(*)
(5 I 0) IA2>	0.999	0.971	10694.012	10694.541				
I(5 I 0)2EI>	0.819	0.782	10694.466	10695.989				
•	•							
		0 000	11050 670	11050 257	119/2 EOO	7 170/	+)6 0E7(+)	-17 14(*)
$ (700)1R1\rangle$	0.999	0.999	11850.760	11850.337	11843.500	7 260((+)6.857(+)	-17.14(*) =17.14(*)
1(100)101	0.333	0.323	11050.700	11050.407	11045.500	7.2000	1)0.307(1)	17.14(*)
•	•							
	0 999	0 999	13276 122	13275 584				
I(800)1F1>	0.999	0.928	13276 202	13275 633				
1(0 0 0)101	0.000	0.020	10210.202	10210.000				
•	•							
(900)1A1>	0.999	0.998	14634 683	14633 888				
(9 0 0)1E1>	0.999	0.927	14634 762	14633, 936				
1(0 0 0)111	0.000	0.021	11001.102	14000.000				
·	•							
(10 0 0)141>		0.998	15926 362	15925 269				
(10 0 0)1F1>	0.999	0.927	15926.440	15925.316				
(10 0 0)161/	0.000	0.021	10020.110	10020.010				
•	•							
(11 0 0)1A1>		0.998	17151 158	17149 726				
(11 0 0)1F1>	0.999	0.927	17151 236	17149 773				
1 (11 0 0)161/	0.000	0.021	1/101.200	1,110.113				

(12	0	0)1A1>	0.999	0.997	18309.072	18307.260
(12	0	0)1E1>	0.999	0.927	18309.149	18307.306

7 Conclusion

In this paper, we described the vibrational modes of the stibine $^{121}SbH_3$ by the U(p+1) algebraic formalism. Firstly, we have built a Hamiltonian adapted to the stretching modes of this molecule in order to test the quality and efficiency of a pure stretch chain of groups. Then we have built a Hamiltonian to describe all the vibrational degrees of freedom based on the coupling of two chains of groups devoted to stretching and bending vibrational modes. For that, we determined an algebraic coupling operator to describe the stretch-bend resonances. This coupling operator allows to introduce the polyad number $K = 2n_s + n_b$ which simplifies considerably the diagonalisation procedure of the Hamiltonian matrix. By fitting the experimental data, we obtain the R.M.S $\sigma(23, 9) = 1.75$ cm⁻¹ and estimate the stretch dissociation limit of the stibine molecule near 28900 cm⁻¹. The spectral amplitude described by our model is about 41% of the total vibrational spectra in energy.

8 Acknowledgments

This work was partially supported by a special grant of the President of the Russian Federation (Order N^o 1626 of the Ministery of Education of the Russian Federation) in the scope of the financial support of the PhD of N. Sanzharov during his stay in the LPUB.

References

- http://www.business.com/directory/electronics_and_ semiconductors/semiconductors/equipment_and_supplies/
- [2] M. S. CHILD and R. T. LAWTON Faraday Discussions Chem. Soc. 71, 273-285 (1981).
- [3] M. S. CHILD and L. HALONEN Advan. Chem. Phys. 57, 1-58 (1984).
- [4] M. HALONEN, L. HALONEN, H. BÜRGER and P. MORITZ J. Phys. Chem. 96, 4225-4231 (1992).
- [5] J. LUMMILA, T. LUKKA and L. HALONEN J. Chem. Phys. 104, 488-498 (1996).
- [6] F. IACHELLO Chem. Phys. Lett. 78, 581-585 (1981).
- [7] F. IACHELLO and R. D. LEVINE J. Chem. Phys. 77, 3046-3055 (1982).
- [8] F. IACHELLO and S. OSS and R. LEMUS J. Mol. Spectrosc. 149, 132-151 (1991).
- [9] F. IACHELLO and N. MANINI and S. Oss J. Mol. Spectrosc. 156, 190-201 (1992).
- [10] F. IACHELLO and R. D. LEVINE Algebraic Theory of Molecules Oxford University Press, New York, 1995.
- [11] O. S. VAN ROOSMALEN, R. D. LEVINE and A. E. L. DIEPERINK Chem. Phys. Lett. 101, 512-517 (1983).
- [12] O. S. VAN ROOSMALEN, F. IACHELLO, R. D. LEVINE and A. E. L. DIEPERINK Chem. Phys. Lett. 79, 2515-2536 (1983).
- [13] R. LEMUS and A. FRANCK J. Chem. Phys. 101, 8321-8332 (1990).
- [14] XI-WEN HOU, SHI-HAI DONG, ZONG-LIANG FANG and ZHONG-QI MA J. Mol. Spectrosc. 195, 132-136 (1999).
- [15] F. MICHELOT and J. MORET-BAILLY J. Phys. 48, 51-72 (1987) in french.
- [16] C. LEROY and F MICHELOT J. Mol. Spectrosc. 151, 71-96 (1992).
- [17] C. LEROY and F. MICHELOT Can. J. Phys. 72, 274-289 (1994).
- [18] C. LEROY, F. COLLIN and M. LOËTE J. Mol. Spectrosc. 175, 289-295 (1996).
- [19] C. LEROY and V. BOUJUT J. Mol. Spectrosc. 181, 127-135 (1997).
- [20] L. FUSINA and G. DI LONARDO J. Mol. Spectrosc. 216, 493-500 (2002).
- [21] L. FUSINA, G. DI LONARDO and P. DE NATALE J. Chem. Phys. 109, 997-1003 (1998).

[22] B. M. DINELLI, G. CORBELLI, A. C. FANTONI, F. SCAPPINI, G. DI LONARDO and L. FUSINA J. Mol. Spectrosc. 153, 307-315 (1992).

- [23] L. PLUCHART, A. MOURBAT and C. LEROY J. Mol. Spectrosc. 218, 1-11 (2003).
- [24] I. M. GEL'FAND and M. L. ZETLIN Dolk. Akad. Nauk. 71, 825-828 (1950) in russian.

[25] J. D. LOUCK Am. J. Phys. 38, 3-41 (1970).

[26] C. LEROY Thèse - Université de Dijon, 1991.

- [27] H. WEYL The Theory of Groups and Quantum Mechanics Dover Publications, Inc., New York, 1931.
- [28] B. G. WYBOURNE Classical Lie Groups for Physicists Wiley-Interscience, New York, 1974.

[29] P. KRAMER and M. MOSHINSKY Nuclear Physics 82, 241-274 (1966).

Appendix A: Symmetrized kets

$$\begin{split} |(n n n), A_1\rangle &= |n n n\rangle \\ |(n n n'), A_1\rangle &= \frac{1}{\sqrt{3}}[|n n n'\rangle + |n n' n\rangle + |n' n n\rangle] \\ |(n n n'), E_1\rangle &= \frac{1}{\sqrt{6}}[2|n n n'\rangle - |n n' n\rangle - |n' n n\rangle] \\ |(n n n'), E_2\rangle &= \frac{1}{\sqrt{2}}[|n n' n\rangle - |n' n n\rangle] \\ |(n 1 n 2 n 3), A_1\rangle &= \frac{1}{\sqrt{6}}[|n 1 n 2 n 3\rangle + |n 1 n 3 n 2\rangle \\ &+ |n 2 n 1 n 3\rangle + |n 2 n 3 n 1\rangle \\ &+ |n 3 n 1 n 2\rangle + |n 3 n 2 n 1\rangle] \\ |(n 1 n 2 n 3), A_2\rangle &= \frac{1}{\sqrt{6}}[|n 1 n 2 n 3\rangle - |n 1 n 3 n 2\rangle \\ &- |n 2 n 1 n 3\rangle + |n 2 n 3 n 1\rangle \\ &+ |n 3 n 1 n 2\rangle - |n 3 n 2 n 1\rangle] \\ |(n 1 n 2 n 3), 1E_1\rangle &= \frac{1}{\sqrt{12}}[2|n 1 n 2 n 3\rangle - |n 3 n 2 n 1\rangle \\ &- |n 1 n 3 n 2\rangle + 2|n 2 n 1 n 3\rangle \\ &- |n 2 n 3 n 1\rangle - |n 3 n 2 n 1\rangle \\ |(n 1 n 2 n 3), 1E_2\rangle &= \frac{1}{2}[|n 1 n 3 n 2\rangle - |n 3 n 2 n 1\rangle \\ &+ |n 3 n 1 n 2\rangle - |n 2 n 3 n 1\rangle] \\ |(n 1 n 2 n 3), 2E_1\rangle &= \frac{1}{2}[-|n 1 n 3 n 2\rangle + |n 2 n 3 n 1\rangle \\ &- |n 3 n 1 n 2\rangle + |n 3 n 2 n 1\rangle \\ |(n 1 n 2 n 3), 2E_2\rangle &= \frac{1}{2}[-|n 1 n 3 n 2\rangle + |n 2 n 3 n 1\rangle \\ &+ 2|n 2 n 1 n 3\rangle - 2|n 1 n 2 n 3\rangle \\ &+ |n 3 n 1 n 2\rangle - |n 3 n 2 n 1\rangle] \\ are defined with the convention n_1 > n_2 > n_3. \end{split}$$

where the kets $|(n_1 n_2 n_3), r C \sigma \rangle$

Appendix B: Symmetrized generators

$$\begin{split} \mathcal{Y}^{1(A_1)} &= \widehat{N}_4 \\ \mathcal{Y}^{2(A_1)} &= \widehat{n} \\ \mathcal{Y}^{1(E)}_1 &= \widehat{N}_1 + \widehat{N}_2 - 2\widehat{N}_3 \\ \mathcal{Y}^{1(E)}_2 &= \sqrt{3} \left[\widehat{N}_1 - \widehat{N}_2 \right] \\ \mathcal{Y}^{3(A_1)} &= E_{13} + E_{31} + E_{32} + E_{23} + E_{21} + E_{12} \\ \mathcal{Y}^{1(A_2)} &= -E_{13} + E_{31} - E_{32} - E_{23} + 2E_{21} + 2E_{12} \\ \mathcal{Y}^{2(E)}_1 &= -E_{13} - E_{31} - E_{32} - E_{23} + 2E_{21} + 2E_{12} \\ \mathcal{Y}^{2(E)}_2 &= \sqrt{3}(E_{13} + E_{31} - E_{32} - E_{23}) \\ \mathcal{Y}^{3(E)}_1 &= E_{32} - E_{23} - E_{13} + E_{31} \\ \mathcal{Y}^{3(E)}_2 &= \frac{1}{\sqrt{3}}(-2E_{12} + 2E_{21} - E_{32} + E_{23} + E_{31} - E_{13}) \\ \mathcal{Y}^{4(A_1)} &= E_{14} + E_{41} + E_{34} + E_{43} + E_{24} + E_{42} \\ \mathcal{Y}^{5(A_1)} &= E_{14} - E_{41} + E_{24} - 2E_{43} + E_{24} + E_{42} \\ \mathcal{Y}^{4(E)}_1 &= E_{14} + E_{41} - 2E_{34} - 2E_{43} + E_{24} + E_{42} \\ \mathcal{Y}^{4(E)}_2 &= \sqrt{3}(E_{14} + E_{41} - E_{42} + E_{24} - 2E_{34} + 2E_{43} \\ \mathcal{Y}^{5(E)}_1 &= E_{14} - E_{41} - E_{42} + E_{24} - 2E_{34} + 2E_{43} \\ \mathcal{Y}^{5(E)}_2 &= \sqrt{3}(E_{14} - E_{41} + E_{42} - E_{24}) \end{split}$$

Chapitre 6

Le couplage élongation-pliage dans l'approche local-normal

On peux developper Hamiltonien vibrationnel en base l'approche local-normal : les modes d'élongation sont décrits a l'aide d'opérateurs développés en approche locale et les modes de pliage en base de modes normaux.

ARTICLE ACTUELLEMENT SOUMIS :

On the study of the vibrational energy levels of Arsine Molecule

Journal of Molecular Spectroscopy

On the study of the vibrational energy levels of Arsine Molecule

N.A. Sanzharov^{a,b}, C. Leroy^{a,*}, O.N. Ulenikov^b, E.S. Bekhtereva^b

^aLaboratoire de Physique de l'Université de Bourgogne – UMR CNRS 5027, B.P. 47870, F-21078 Dijon Cedex, France

^bLaboratory of Molecular Spectroscopy, Physics Department, Tomsk State University, Tomsk, 634050, Russia.

Abstract

We compare two formalisms applied to the vibrational modes of the molecule of AsH_3 of C_{3v} molecular symmetry group. Indeed, the close stretching modes of this molecule may be considered as those of a three dimensional oscillator whereas the bending modes may be considered either as a one dimensional oscillator of symmetry A_1 and a two dimensional oscillator of symmetry E or as an approximate three dimensional oscillator. So, we have applied the U(p + 1) formalism to the both stretching and bending modes and introduced coupling terms acting on an appropriate coupled vibrational basis through a local mode formalism. We have then compared the result of our fitting with those obtained with the coupling of a local mode formalism adapted to the stretching vibrations with a normal mode formalism for the bending ones. Finally we compare our results with other methods recently proposed in the literature.

 $\mathit{Key words:}\xspace$ Vibrational excitations; $\mathit{AsH}_3;$ Unitary group approach; Local mode; Normal mode

1 Introduction

In the past 15 years, many papers have been proposed to investigate the local mode molecules consisting of several X - H bonds and many formalisms

Preprint submitted to Elsevier Science

19 December 2006

^{*} Corresponding author.

Email address: claude.leroy@u-bourgogne.fr (C. Leroy).

have been applied to interpret these molecules. The first approach was initially given by Iachello *et al.* [1,2] with the vibron model where a u(4) algebra is used to describe the spectra of diatomic molecules. However, this model becomes rather complex when the number of atoms is more than 4. Based on the properties of the unitary and special unitary groups, many teams have developed quite different models applied to the vibrational modes of molecular systems and it is worth to mention the works of Van Roosmalen *et al.* [3,4], Lemus and Franck [5] or Xi-Wen Hou *et al.* [6]. Interpreting differently the properties of the unitary groups, an algebraic formalism called the U(p + 1)formalism, initially developed by Michelot *et al.* [7] and Leroy *et al.* [8–11], has demonstrated its efficiency to reproduce the vibrational level of XY_4 molecular systems, and recently for XY_3 molecular systems such as the stretching modes of AsH_3 [12] and the vibrational modes of the stibine molecule [13].

Arsine molecule AsH_3 is one of the candidates for the study of the local mode effect of the symmetric top molecules. It is the simplest compound of arsenic, flammable, pyrophoric, and highly toxic molecular derivative of arsenic and hydrogen. The compound is of interest for its lethality, its applications in the semiconductor industry, and its use in the synthesis of organoarsenic species. Moreover, through vibrational dissociation of the arsine molecule, the production of arsenic, used in semiconductor industry, enhances an industrial competition between Russia, first world producer, and France ranked in second position. For these reasons, knowledge of the chemical and physical properties of this molecular system are of great imporance.

A wide literature has been devoted to the molecule of arsine: the ground state spectroscopic constants, molecular geometry and analysis of the structure in the first excited states of this molecule are presented in [14–19]. AsH_3 is known to be a pyramidal molecule of the C_{3v} molecular group symmetry. So arsine molecule is characterized by four fundamental modes (two one-dimensional and two double-dimensional) with the following frequencies for stretching vibrations $\nu_1(A_1) = 2115.164 \text{ cm}^{-1}$, $\nu_3(E) = 2126.423 \text{ cm}^{-1}$, and for the bending ones $\nu_2(A_1) = 906.752 \text{ cm}^{-1}$, $\nu_4(E) = 999.225 \text{ cm}^{-1}$.

The goal of the present paper is to study simultaneously all the vibrational levels of AsH_3 . The U(p + 1) formalism was proposed in [12] for the vibrational stretching modes of AsH_3 which is characterized by the condition $\nu_1(A_1) \simeq \nu_3(E)$, namely:

$$U(4) \supset U(3) \supset K(3) \supset S(3) \approx C_{3v}.$$
(1)

Here, we propose to apply our $U_s(4) \times U_b(4)$ formalism, as developed in [12,13], to the molecule of arsine. However, due to a poor local behaviour, we will see that a normal formalism is more adapted to describe the bending modes of AsH_3 . The formalism we apply allows one to consider in a considerably simpler way all the vibrational levels including the very excited one: the most important point is that the accuracy of our models does not decrease for these high excited levels. The paper is written as follows. The local mode through the U(p + 1) model is presented in the next section. In Section 3 we apply it to the stretching modes. In Section 4 we compare local and normal formalism applied to the bending modes. A local model for stretching modes coupled with a local model for bending modes is proposed in Section 5, then we replace the local model for bending modes by a normal one and apply it to all vibrational levels in Section 6. Our conclusion is given in Section 7. The reader is invited to read a recent paper of Sánchez-Castellanos *et al.* [20] on the same subject and also based on the $U_s(4) \times U_b(4)$ formalism. This paper of Lemus'team proposes some original ideas and good progress in theoretical spectroscopy. However, some concepts seem for us to be somewhere empirical as we will explain in the present work.

2 THE ALGEBRAIC FORMALISM U(p+1)

Assuming the physical conditions

$$\nu_1(A_1) \simeq \nu_3(E)$$
 and $\nu_2(A_1) \simeq \nu_4(E)$, (2)

we can describe the vibrational modes of the arsine molecule by using the following algebraic chain

$$\begin{bmatrix} (U_s(4) \supset U_s(3) \supset K_s(3) \supset S_s(3) \approx C_{3v}) \\ \otimes \\ (U_b(4) \supset U_b(3) \supset K_b(3) \supset S_b(3) \approx C_{3v}) \end{bmatrix} \supset C_{3v},$$
(3)

where s indicates the stretching vibration and b the bending one [12,13,21]. As a good survey of the U(p+1) formalism can be found in [12,13], we only present in this section a brief summary of main important properties of U(p+1). In general, the fundamental concept of an algebraic formalism is to introduce a chain of groups (algebras)

$$G_1 \supset G_2 \supset G_3 \supset \cdots G_n \tag{4}$$

to describe a physical system.

For a physical system characterized by p identical degrees of freedom, in the algebraic formalism [7,22], the dynamical group G_1 is chosen as the unitary group U(p+1). The second group G_2 of chain (4) gives us information about the energy levels and their degeneracies, and this is the reason why this group is known to be a degeneracy group. Moreover, this degeneracy group is taken as the unitary group U(p) in the U(p+1) algebraic formalism. Many realisations are possible to construct the generators of the unitary group U(p+1) [23]. In the Bosonic realization that we use, a set of generators of the dynamical group U(p+1) is constructed by $(p+1)^2$ operators \mathbf{E}_{ij}

$$\mathbf{E}_{ij} = \mathbf{b}_i^+ \mathbf{b}_j \quad (i, j = 1, 2, ..., p + 1)$$
 (5)

with the usual Bose relations

$$[\mathbf{b}_i, \mathbf{b}_j] = \left[\mathbf{b}_i^+, \mathbf{b}_j^+\right] = 0 \text{ and } \left[\mathbf{b}_i, \mathbf{b}_j^+\right] = \delta_{ij}.$$
 (6)

It is important to stress right now that it is impossible to exactly express physically the operators \mathbf{E}_{ij} , or saying differently, there is no a one-to-one way to connect \mathbf{b}_i^+ and \mathbf{b}_j with any usual canonical variables \mathbf{q} and \mathbf{p} . The first obvious reason comes from the realisation of the U(p+1) generators: these generators are purely abstract. They do not need to be defined in a real configuration space in order to respect U(p+1) generators properties. Consequently, any sytem of coordinates expressed or derived from the usual canonical variables \mathbf{q} and \mathbf{p} can not be put in correspondence in a single way with the operators \mathbf{b}_{i}^{+} and \mathbf{b}_{i} . It follows that such connections, established in [20], are a particular choice of the authors but are not proven as they can not. However, we agree with [20] concerning the fact that appropriate identification, even if not unique, may be chosen accordingly to some physical meaning. In any case, this does not express an advantage of a formalism or an important feature of an approach. It simply expresses the perspicacity in the choice of a unitary transformation between two systems of coordinates (one being physically meaningfull, the other one being abstract) which allows a comparison of operators or/and parameters between these two formalisms.

The set of all the physical states is given by the action of the (p + 1) Boson creation operators on the ground state:

$$|n_1, n_2, \dots, n_p, n_{p+1}\rangle = \frac{\prod_{i=1}^{i=p+1} (\mathbf{b}_i^+)^{n_i}}{\prod_{i=1}^{i=p+1} \sqrt{n_i!}} |0, \dots, 0, 0\rangle.$$
(7)

We define the weight operator \mathbf{N}_i

$$\mathbf{N}_i = \mathbf{b}_i^+ \mathbf{b}_i = \mathbf{E}_{ii} \quad \text{with:} \ i = 1, \dots, p+1, \tag{8}$$

diagonal in basis (7). The p operators \mathbf{N}_i (i = 1, ..., p) are interpreted as the operator numbers of quanta associated to the *i*th bond of the molecule:

$$\mathbf{N}_i | n_1, \dots, n_i, \dots, n_p \rangle = n_i | n_1, \dots, n_i, \dots, n_p \rangle.$$
(9)

The last group G_n of algebraic chain (4) is symply the molecular symmetry group of molecule. The determination of the irreducible representation (irrep) of the unitary groups U(n) is due to Gel'fand and Zetlin (G-Z) [24]. A practical method [9,25] consists in the determination of a complete set of invariant operators $\mathbf{I}_k^{(U(n))}$ called Casimir operators. These operators are built with the help of the U(n) generators \mathbf{E}_{ij} :

$$\mathbf{I}_{k}^{(U(n))} = \sum_{i_{1}, i_{2}, \dots, i_{k}=1}^{n} \mathbf{E}_{i_{1} i_{2}} \mathbf{E}_{i_{2} i_{3}} \dots \mathbf{E}_{i_{k} i_{1}}$$
(10)

with: k = 1, 2, ..., n.

These Hermitian operators $\mathbf{I}_k^{(U(n))}$ commute with each generator \mathbf{E}_{ij} :

$$\left[\mathbf{I}_{k}^{(n)}, \mathbf{E}_{ij}\right] = 0 \quad \forall i, j, k = 1, 2, \dots, n.$$
(11)

Now, we consider the set $\mathcal I$ formed of the $\frac{n}{2}(n+1)$ operators $\mathbf I_k^{(U(j))}$ as $\mathcal I=$

$$\begin{bmatrix} \mathbf{I}_{1}^{U(n)} & \mathbf{I}_{2}^{U(n)} & \cdots & \mathbf{I}_{n-1}^{U(n)} & \mathbf{I}_{n}^{U(n)} \\ & \mathbf{I}_{1}^{U(n-1)} & \cdots & \mathbf{I}_{k}^{U(n-1)} & \cdots & \mathbf{I}_{n-1}^{U(n-1)} \\ & \ddots & & \mathbf{I}_{k}^{U(j)} & \cdots & & \\ & & \mathbf{I}_{1}^{U(2)} & & \mathbf{I}_{2}^{U(2)} \\ & & & & \mathbf{I}_{1}^{U(1)} \end{bmatrix}$$
(12)

with:

$$\mathbf{I}_{k}^{(U(j))} = \sum_{i_{1}, i_{2}, \dots, i_{k}=1}^{j} \mathbf{E}_{i_{1} i_{2}} \mathbf{E}_{i_{2} i_{3}} \dots \mathbf{E}_{i_{k} i_{1}},$$

$$1 < j < n \text{ and } 1 < k < j.$$
(13)

The operators in $\mathcal I$ are Hermitian, independent and mutually commute. The set (m) of $\frac{n}{2}(n+1)$ integers (m)=

$$\begin{bmatrix} m_{1n} & m_{2n} & \dots & m_{nn} \\ m_{1n-1} & \dots & m_{kn-1} & \dots & m_{n-1n-1} \\ & \ddots & & \dots & & \\ & & & & \dots & & \\ & & & & & m_{12} & & m_{22} \\ & & & & & & m_{11} \end{bmatrix}$$
(14)

with the conditions

$$m_{ij+1} \ge m_{ij} \ge m_{i+1j+1} \qquad 1 \le i \le j \le n-1$$
 (15)

is called a G-Z's pattern.

Each irrep of a unitary group U(j) is described by a set of ordered integers (negative, zero or positive)

$$[m]_{j} = [m_{1j} \, m_{2j} \dots \, m_{jj}] \tag{16}$$

with: $m_{1j} \ge m_{2j} \ge \ldots \ge m_{jj}$. The interest of this notation is that the irreps $[m_{1j-1}m_{2j-1}\dots m_{j-1j-1}]$ of the group U(j-1), verifying conditions

(15), appear only once in the decomposition of the irrep $[m_{1j} m_{2j}, \ldots, m_{jj}]$ of U(j). The chain of groups

$$U(n) \supset U(n-1) \ldots \supset U(2) \supset U(1)$$
(17)

is called a canonical chain.

For one fixed representation $[m]_n$ of U(n), the set of G-Z's patterns that we can build in the first (n - 1) lines (the first line is defined by m_{11}) is an orthonormal base of the space $V([m]_n)$ of the representation $[m]_n$. Therefore, we can define the G-Z's ket

$$|(m)_n\rangle = \left| \binom{[m]_n}{(m)_{n-1}} \right\rangle.$$
(18)

The dimension of the irrep $[m]_n$ is given by the Weyl formula [26]

$$D([m]_n) = \frac{\prod_{i < j} (m_{in} - m_{jn} - i + j)}{1! \, 2! \, \dots \, (n-1)!},\tag{19}$$

and we define the weight of a G-Z's ket [24] by:

$$W(m) = W\begin{pmatrix} [m]_n \\ (m)_n \end{pmatrix} = W_{1n}(m), \dots, W_{2n}(m), W_{nn}(m)$$
(20)

with
$$W_{in} = \sum_{j=1}^{i} m_{ji} - \sum_{j=1}^{i-1} m_{ji-1} \ (2 \le i \le n)$$
 and $W_{11} = m_{11}$.

The action of this weight operator can also be defined on the G-Z's ket. But as we are working in the totally symmetric irrep $[N, \underbrace{00 \dots 0}_{p \text{ zeros}}] \equiv [N, \dot{0}^p]$ of the group U(p+1), there exists an isomorphism between the G-Z's ket and the weight of this ket. So, the G-Z's ket, within the totally symmetric irrep $\left[N = \sum_{i=1}^{p+1} n_i, \dot{0}^p\right]$ of the dynamical group U(p+1),

$$\begin{vmatrix} N = \sum_{i=1}^{p+1} n_i & \dots & 0 & \dots & 0 \\ n = n_1 + \dots + n_p & \dots & 0 \\ & \ddots & & & \ddots \\ & & & n_1 + n_2 & 0 \\ & & & & n_1 \end{vmatrix}$$
 (21)

is isomorphic to the weight $(n_1, n_2, \ldots, n_{p+1})$.

The definition of G_2 as a degeneracy group implies that a physical system caracterized by p degrees of freedom, can be modelized by p oscillators. Furthermore, the degeneracy of an isotrope oscillator, p times degenerated in the n-state $(n = \sum_{i=1}^{p} n_i)$, is equal to the dimension of the irrep $[n = \sum_{i=1}^{p} n_i, \dot{0}^{p-1}]$ of the unitary group U(p). Therefore, we chose U(p) as degeneracy group G_2 . In what follows, we apply this formalism with p = 3 for the arsine system.

3 LOCAL MODEL OF THE HAMILTONIAN FOR THE STRETCH-ING MODE

As well known, the frequencies of the two stretching fundamental modes of the arsine molecule are extremely close: $\nu_1(A_1) = 2115.164 \text{ cm}^{-1}$, $\nu_3(E) = 2126.423 \text{ cm}^{-1}$. To better appreciate this small difference between the two frequencies, we define their relative difference by: $\mathfrak{L}_S = 2\frac{|\nu_1-\nu_3|}{\nu_1+\nu_3}$ the value of which, when close to zero, indicates a 1:1 resonance between ν_1 and ν_3 . For the stretching arsine modes, the $\mathfrak{L}_S = 0.0053$ indicator suggests strongly a local behaviour, that is, suggests to use U(3) as degeneracy group of this system of quasi identical oscillators and U(4) as dynamical group. Therefore, we may build the Hamiltonian based on (1). We do not expand more our explanations about this model as all the theory may be found in [12,13]. The Hamiltonian used here was already defined in [12]

$$\mathbf{H}_{sL} = a_0 \mathbf{n}_s + a_1 [\mathbf{N}_1^2 + \mathbf{N}_2^2 + \mathbf{N}_3^2] + a_2 [\mathbf{N}_1 \mathbf{N}_2 \\
+ \mathbf{N}_1 \mathbf{N}_3 + \mathbf{N}_2 \mathbf{N}_3] + a_3 \sum_{i \neq j=1}^{3} \mathbf{b}_i^+ \mathbf{b}_j.$$
(22)

The basis used in this paper, has been already defined in [13]. In this basis, we obtain results extremely closed to those presented in [12], as may be seen with the parameters values and correlation matrice given hereafter

$$\begin{cases}
a_0 = 2161.773(396) \text{ cm}^{-1}, \\
a_1 = -38.695(079) \text{ cm}^{-1}, \\
a_2 = -1.650(405) \text{ cm}^{-1}, \\
a_3 = -3.712(257) \text{ cm}^{-1}, \\
a_3 = -3.712(257) \text{ cm}^{-1}, \\
\end{cases}$$

$$\mathfrak{M}_{corr}(20, 4) = \begin{pmatrix}
a_0 & a_1 & a_2 & a_3 \\
a_0 & 1.00 & & \\
a_1 & -0.96 & 1.00 & & \\
a_2 & -0.81 & 0.75 & 1.00 & \\
a_3 & -0.15 & 0.10 & -0.06 & 1.00
\end{pmatrix}. \quad (24)$$

The result of the fit is given in Table 1. The first column indicates the levels in local notation, the second column shows that the eigenkets are close to the initial basis given in the first column. Column 3 gives the eigenvalues, whereas Column 4 indicates the observed energy levels. Column 5 gives the difference

Calculated-Observed energy for the present model which may be compared with the same difference given in [12] (last column). We mention that all the experimental data used in the present paper are reported in [19,29]. We also mention that all the fits have been realised using the least square method involving the Levenberg- Marquard algorithm [27,28] which interpolates between the Gauss-Newton algorithm and the method of gradient descent. The main advantage of the Levenberg- Marquard algorithm is its robustness.

Table 1

Observed and calculated energies of vibrational stretching levels of arsine molecule

ket	%init.ket (Modulus)	EigenValues (cm -1)	Obs. En. (cm -1)	Cal-Obs (cm -1)	Cal-Obs (cm -1)
					[12]
(1 0 0)1A	1> 1.000	2115.653	2115.164	0.489	0.241
(1 0 0)1E	1> 1.000	2126.791	2126.423	0.368	0.649
(2 0 0)1A	1> 0.989	4167.189	4166.772	0.417	0.421
(2 0 0)1E	1> 0.998	4168.421	4167.935	0.486	0.606
(1 1 0)1A	1> 0.989	4238.659	4237.700	0.959	1.445
(1 1 0)1E	1> 0.998	4248.565	4247.720	0.845	1.944
(3 0 0)1A	1> 0.998	6136.475	6136.340	0.135	0.215
(3 0 0)1E	1> 0.998	6136.519	6136.330	0.189	0.670
(2 1 0)1A	1> 0.987	6276.125	6275.830	0.295	0.889
(2 1 0)1E	1> 0.971	6282.392	6282.350	0.042	-1.294
(2 1 0)2E	1> 0.970	6295.242	6294.710	0.532	-4.385
(2 1 0)1A	2> 1.000	6299.682			
(1 1 1)1A	1> 0.990	6366.156	6365.950	0.206	2.127
(4 0 0)1A	1> 0.999	8027.479	8028.977	-1.498	-1.482
(4 0 0)1E	1> 0.999	8027.480	8028.969	-1.489	-1.085
(3 1 0)1A	1> 0.983	8249.139	8249.510	-0.371	0.934
(3 1 0)1E	1> 0.772	8257.374	8258.370	-0.996	-1.074
(3 1 0)2E	1> 0.781	8250.770	*8257.270		0.093
(3 1 0)1A	2> 1.000	8258.905			
(2 2 0)1A	1> 0.974	8331.670			
(2 2 0)1E	1> 0.984	8332.870			
(2 1 1)1A	1> 0.987	8393.918			
(2 1 1)1E	1> 0.997	8414.893			
(5 0 0)1A	1> 0.999	9841.030	9841.400	-0.370	-0.485
(5 0 0)1E	1> 0.999	9841.030	9841.400	-0.370	-0.123
(4 1 0)1A	1> 0.995	10139.903			
(4 1 0)1E	1> 0.859	10139.990			
(4 1 0)2E	1> 0.860	10147.387			
(4 1 0)1A	2> 0.998	10147.472			
(3 2 0)1A	1> 0.990	10284.301			
(3 2 0)1E	1> 0.994	10284.931			

(3 2 0)2E1>	0.994	10307.213			
(3 2 0)1A2>	0.998	10307.758			
(3 1 1)1A1>	0.960	10368.098			
(3 1 1)1E1>	0.988	10371.940			
(2 2 1)1A1>	0.964	10437.916			
(2 2 1)1E1>	0.993	10456.263			
(6 0 0)1A1>	0.999	11577.177	11576.290	0.887	0.581
(6 0 0)1E1>	0.999	11577.177	11576.290	0.887	0.927
(5 1 0)1A1>	0.997	11951.968			
(5 1 0)1E1>	0.864	11951.970			
(5 1 0)2E1>	0.865	11959.412			
(5 1 0)1A2>	0.999	11959.415			
	•				
	•				
(7 0 0)1A1>	0.999	13235.928			
(7 0 0)1E1>	0.999	13235.928			

*: not included in the fit

It should be noted that we remove the |(310)2E1 > | level from our fit and reattribute $|(310)1E1\rangle$ as being the $|(310)2E1\rangle$ level (however, this reattribution induces only a change of 1 cm^{-1} between the two experimental data which is about the experimental precision in this region). Formally, this is obviously authorized as the label $\nu = 1, 2$ in $|(310)\nu E1 >$ is a label of multiplicity, i.e., it is not a label having a physical meaning so one can exchange these labels without influence on the other levels. There are two reasons why we remove the |(310)2E1 > | level from the experimental data. The first one is that the difference Calculated-Observed energy would be near 8 $\rm cm^{-1}$ for this level which would not be physically relevant. The second reason is given in the paper of Lin et al. [29] where O. Ulenikov was one of the co-authors which is also the case for the present paper. In that paper the authors explained that the (310, E) band observed at 8257.27 cm⁻¹ is a weak band and that this band cannot be convincingly assigned as the (310, E) one: its assignment and the value of the band center should be considered as tentative values only. We also agree with this conclusion, and maybe a new experiment, more precise, could raise this ambiguity.

The standard deviation of the fit $\sigma(20, 4) = 0, 80 \text{ cm}^{-1}$ is of the same order as the experimental precision and agrees with our hypothesis of local mode modelisation of the system. There is no formal difference between this value of σ and that determined in [12] where $\sigma(21, 4) = 1.54 \text{ cm}^{-1}$ (to be precise, $\sigma(20, 4) = 1.59 \text{ cm}^{-1}$ if one takes into account the elimination of the |(310)2E1 > level). Indeed, the Hamiltonian used in the present paper and that of [12] are the same and the only change comes from the small difference between the stretching basis given in the Appendices of [12] and [13]. The parameters are well determined and the correlation matrix does not exhibit value larger than 0.96.

In the next section, we examine the bending modes of the arsine molecule.

4 LOCAL AND NORMAL MODEL OF THE HAMILTONIAN FOR THE BENDING MODES

Analogously, as defined in the previous section, the $\mathfrak{L}_B = 2\frac{|\nu_2 - \nu_4|}{|\nu_2 + \nu_{34}|}$ value, with $\nu_2(A_1) = 906.752 \text{ cm}^{-1}, \nu_3(E) = 999.225 \text{ cm}^{-1}$, does not suggest a strong local mode behaviour for the bending modes as $\mathfrak{L}_B = 0.097$. This is the reason why we have tried both formalisms, local then normal, to represent the bending modes of the arsine molecule, even if unfortunaly, the number of pure bending data is limited to only 6 values.

4.1 LOCAL MODEL OF THE HAMILTONIAN FOR THE BENDING MODES

The local mode model is developped as shown in the previous section. The association between the quantum numbers n_5 , n_6 , n_7 and the bending angles is given in [13]. The Hamiltonian, already defined in [13], is:

$$\mathbf{H}_{\mathbf{bL}} = a_4 \, \mathbf{n}_{\mathbf{b}} + a_5 (\mathbf{N}_5^2 + \mathbf{N}_6^2 + \mathbf{N}_7^2) + a_6 (\mathbf{N}_5 \mathbf{N}_6 + \mathbf{N}_5 \mathbf{N}_7 + \mathbf{N}_6 \mathbf{N}_7) + a_7 \sum_{i \neq j=5}^7 \mathbf{b}_i^+ \mathbf{b}_j.$$
(25)

Table 2 presents the results of this fit. The five columns of Table 2 have the same signification as that given for Table 1. Obviously, the calculated energy levels do not agree with the observed ones as the difference between Calculated and Observed levels (Cal-Obs in Column 5) is larger than the experimental precision for all cases.

Table 2 $\,$

Observed and calculated energies of vibrational bending levels (local model) of arsine molecule

ket	%init.ket	EigenValues	Obs. En.	Cal-Obs
	(Modulus)	(cm -1)	(cm -1)	(cm -1)
(1 0 0)A1>	1.00	905.329	906.752	-1.423
(1 0 0)E >	1.00	1000.647	999.225	1.423
(1 1 0)A1>	0.82	1809.022	1806.149	2.874

	(200)E>	0.81	1899.782	1904.115	-4.332
	(2 0 0)A1>	0.80	1995.690	1990.998	4.693
	(1 1 0)E >	0.81	2000.249	2003.483	-3.234
	(2 1 0)A1>	0.81	2711.048		
	(2 1 0)E >	0.64	2796.982		
	(3 0 0)A1>	0.85	2887.751		
	(3 0 0)E >	0.56	2893.718		
	(2 1 0)E >	0.87	2990.020		
	(2 1 0)A2>	1.00	2997.654		
	(1 1 1)A1>	0.74	2999.744		
	(2 1 1)A1>	0.62	3611.366		
	(220)E>	0.40	3692.147		
	(4 0 0)A1>	0.78	3777.405		
	(3 1 0)E >	0.43	3785.121		
	(4 0 0)E >	0.63	3875.803		
	(3 1 0)A2>	1.00	3885.550		
	(3 1 0)A1>	0.37	3888.118		
	(2 2 0)A1>	0.67	3979.357		
	(3 1 0)E >	0.72	3983.130		
	(2 1 1)E >	0.79	3996.233		
_					

The parameters and the correlation matrix deduced from the fit are given here after

$$\begin{cases}
 a_4 = 973.97(2.26) \text{ cm}^{-1} \\
 a_5 = -5.10(1.43) \text{ cm}^{-1} \\
 a_6 = 2.96(2.58) \text{ cm}^{-1} \\
 a_7 = -31.772(262) \text{ cm}^{-1}
\end{cases}$$
(26)

$$\mathfrak{M}_{corr}(6,4) = \begin{pmatrix} a_4 & a_5 & a_6 & a_7 \\ a_4 & 1.00 & & \\ a_5 & -0.95 & 1.00 & \\ a_6 & -0.38 & 0.10 & 1.00 \\ a_7 & -0.13 & 0.12 & 0.02 & 1.00 \end{pmatrix}.$$
 (27)

The parameters are not well determined as, for example, a_6 the precision of which is of the same order as the parameter itself. We obtain a standard deviation $\sigma(6, 4) = 5.64$ cm⁻¹ which is clearly far away from the experimental precision. In fact, these results are not so surprising if we remember the rather large value of the indicator $\mathfrak{L}_B = 0.097$.

Consequently, we will now compare all these values with those obtained using a normal representation for the bending modes.

4.2 NORMAL MODEL OF THE HAMILTONIAN FOR THE BENDING MODE

Algebraically speaking, in the normal modes description, a chain of groups with associated quantum numbers usually devoted for the description of the bending modes of a XY_3 pyramidal molecule is

$$U_b(1) \otimes U_b(2) \supset O_b(2) \supset C_{3v}.$$

$$v_2 \qquad v_4 \qquad l_4 \qquad C\sigma$$
(28)

Up to the second order, a Hamiltonian is:

$$\mathbf{H}_{\mathbf{bN}} = \omega_2 \, \mathbf{v_2} + \kappa_2 \, \mathbf{v_2}^2 + \omega_4 \, \mathbf{v_4} + \kappa_4 \, \mathbf{v_4}^2 + \kappa_{24} \, \mathbf{v_2v_4} + \mathbf{g_4} \, \mathbf{l_4^2}. \tag{29}$$

It is important to note that the main difference between this Hamiltonian (29) and that of (25) defined in the previous section comes from two points. The first point in Eq. (29) is that we consider two distinct oscillators: the first, associated with \mathbf{v}_2 , is connected to a one-dimensional oscillator, whereas the part relative to \mathbf{v}_4 represents a two-dimensional oscillator. The second point refers to the \mathbf{l}_4^2 operator. Indeed, formally Hamiltonian (29) is exactly the same as that given in [30] (see Eq. (18.1.1)), where Coriolis interactions are indirectly taken into account through the \mathbf{l}_4^2 operator. This Coriolis dependence has been earlier demonstrated for XY_3 molecules as in [31,34] for AsH_3 or in [32] for PH_3 , [33] for SbH_3 and recently [35] for AsH_3 . Having only 6 data, we tried all possible 5-parameter models from Eq.(29), and obtained the best following results for the parameters and correlation matrice:

$$\begin{cases} \omega_2 = 910.42(1.75) \text{ cm}^{-1} \\ \kappa_2 = -3.67(19) \text{ cm}^{-1} \\ \omega_4 = 995.57(28) \text{ cm}^{-1} \\ \kappa_{24} = -1.32(82) \text{ cm}^{-1} \\ g_4 = 3.12(20) \text{ cm}^{-1} \\ \kappa_4 \quad \text{fixed to zero} \\ \begin{pmatrix} \omega_2 & \chi_2 & \omega_4 & \chi_{24} & g_4 \\ 1.00 \end{pmatrix} \end{cases}$$

$$(30)$$

$$\mathfrak{M}_{corr}(6,5) = \begin{pmatrix} \omega_2 & \chi_2 & \omega_4 & \chi_{24} & g_4 \\ \omega_2 & 1.00 & & \\ \chi_2 & -0.98 & 1.00 & \\ \omega_4 & 0.00 & 0.00 & 1.00 & \\ \chi_{24} & -0.67 & 0.62 & -0.16 & 1.00 & \\ g_4 & 0.00 & 0.00 & -0.72 & 0.00 & 1.00 \end{pmatrix}.$$
(31)

This time, the parameters are perfectly determined comparatively with those determined with a local model. Table 3 resumes the quality of this fit. Column 1 indicates the kets in normal notation $|v_2, v_4, |l_4|, C >$, Column 2 gives the eigenvalues and the last column presents the differences between Calculated and Observed energy levels. As the kets given in Column 1 are exactly the eigenkets, it was not useful to add a column %init.ket as in the previous tables.

Table 3

Observed and calculated energies of vibrational bending levels (normal model) of arsine molecule

			ket		EigenValues (cm -1)	Calc-Obs (cm -1)	
	1	0	0)A1	>	906.751	0.000	
1(0	1	1)E	>	998.687	-0.538	
1(2	0	0)A1	>	1806.149	0.000	
1(1	1	1)E	>	1904.115	0.000	
1(0	2	0)A1	>	1991.132	0.134	
(0	2	2)E	>	2003.617	0.134	
(3	0	0)A1	>	2698.191		
(2	1	1)E	>	2802.188		
(1	2	0)A1	>	2895.236		
(1	2	2)E	>	2907.721		
(0	3	1)E	>	2989.820		
(0	3	3)A1	>	3014.790		
(0	3	3)A2	>	3014.790		
(4	0	0)A1	>	3582.878		
(3	1	1)E	>	3692.905		
(2	2	0)A1	>	3791.984		
(2	2	2)E	>	3804.469		
(1	3	1)E	>	3892.599		
(1	3	3)A1	>	3917.569		
(1	3	3)A2	>	3917.569		
1(0	4	0)A1	>	3982.265		
(0	4	2)E	>	3994.750		
(0	4	4)E	>	4032.205		

The standard deviation is $\sigma(6,5) = 0.57 \text{ cm}^{-1}$ which is comparable with the experimental precision.

To conclude this section, it appears that local mode model does not well restitute the bending energy levels whereas normal one has a 10 times better standard deviation.

However, the purpose of our paper is to fit simultaneously all the known vibrational levels of the arsine molecule and to compare the normal modes formalism with the local modes formalism. As some of the vibrational levels are combination of stretching and bending excitation, we have tried both possible formalisms: local representation for the stretching part coupled, firstly, with a local representation of the bending part; then we fit again all these levels but with a normal scheme for the bending motion. During the fit process, not good results appeared for some levels, that is the difference between calculated energy and observed energy for these levels was surprisingly 5 or 10 times higher (in average) than for the others ones. This is why we will present global fit for 33 data and for 27 data.

5 LOCAL \otimes LOCAL MODEL OF THE HAMILTONIAN

The chain of groups adapted to a local-local description of our XY_3 system has already been defined in [13]:

$$\begin{bmatrix} \left[N_{s}, \dot{0}^{3}\right] & \left[n_{s}, \dot{0}^{2}\right] & \left(w_{s} = \left(n_{1}, n_{2}, n_{3}\right), f_{w_{s}}\right) & \left(\lambda_{s_{1}}, \lambda_{s_{2}}, \lambda_{s_{3}}\right) & \left(C_{s}\sigma_{s}\right) \\ \left(U_{s}(4) \supset U_{s}(3) \supset K_{s}(3) \supset S_{s}(3) \approx C_{s_{3v}}\right) & \bigotimes \\ \left(U_{b}(4) \supset U_{b}(3) \supset K_{b}(3) \supset S_{b}(3) \approx C_{b_{3v}}\right) \\ \left[N_{b}, \dot{0}^{3}\right] & \left[n_{b}, \dot{0}^{2}\right] & \left(w_{b} = \left(m_{1}, m_{2}, m_{3}\right), f_{w_{b}}\right) & \left(\lambda_{b_{1}}, \lambda_{b_{2}}, \lambda_{b_{3}}\right) & \left(C_{b}\sigma_{b}\right) \end{bmatrix}$$

$$(32)$$

A first approximation Hamiltonian \mathbf{H}_{sLbL}^{0} is built from the two Hamiltonians Eq.(22, 25):

$$\mathbf{H_{sLbL}^{0}} = a_{0} \mathbf{n_{s}} + a_{1} (\mathbf{N_{1}^{2}} + \mathbf{N_{2}^{2}} + \mathbf{N_{3}^{2}})
+ a_{2} (\mathbf{N_{1}N_{2}} + \mathbf{N_{1}N_{3}} + \mathbf{N_{2}N_{3}}) + a_{3} \sum_{i \neq j=1}^{3} \mathbf{b}_{i}^{+} \mathbf{b}_{j}
+ a_{4} \mathbf{n_{b}} + a_{5} (\mathbf{N_{5}^{2}} + \mathbf{N_{6}^{2}} + \mathbf{N_{7}^{2}})
+ a_{6} (\mathbf{N_{5}N_{6}} + \mathbf{N_{5}N_{7}} + \mathbf{N_{6}N_{7}}) + a_{7} \sum_{i \neq j=5}^{7} \mathbf{b}_{i}^{+} \mathbf{b}_{j}.$$
(33)

The coupled basis, on which acts Hamiltonian (33) is defined in [13] and the C_{3v} coupling coefficients are given in [36]. In order to restitute the energy levels of our molecule, we have to reexamine the four fundamental frequencies of this system. Indeed, we may take into account the approximate 2:1 Fermi-

type resonances:

$$\nu_1(A_1) \simeq 2\nu_2(A_1)$$
 and $\nu_3(E) \simeq 2\nu_4(E)$. (34)

This modelisation has been already presented for the stibine molecule in [13]. The Hamiltonian has the same form as that given by Eq. (37) of [13]. However, we want now to distinguish two cases for the operator $\mathcal{H}_{\mathbf{s}-\mathbf{b}} = \sum_{i=1}^{3} \sum_{k\geq n=5}^{7} \left(\mathbf{b}_{i}^{+}\mathbf{b}_{k}\mathbf{b}_{n}\mathbf{b}_{4}\mathbf{b}_{8}^{+2} + \mathbf{b}_{4}^{+}\mathbf{b}_{n}^{+}\mathbf{b}_{k}\mathbf{b}_{8}^{2}\right)$. Indeed, the second summation on k and n does not distinguish the case when k = n, i.e., when a single bending degree of freedom exchanges 2 quanta with a bond, with the case $k \neq n$ (or equivalently k > n), i.e., when two different bending degrees of freedom exchange 1 quantum + 1 quantum with a bond. In the present work, we make a difference between these two operators, which leads to the following Hamiltonian:

$$\mathbf{H} = a_{0} \mathbf{n}_{s} + a_{1} (\mathbf{N}_{1}^{2} + \mathbf{N}_{2}^{2} + \mathbf{N}_{3}^{2})
+ a_{2} (\mathbf{N}_{1} \mathbf{N}_{2} + \mathbf{N}_{1} \mathbf{N}_{3} + \mathbf{N}_{2} \mathbf{N}_{3}) + a_{3} \sum_{i \neq j=1}^{3} \mathbf{b}_{i}^{+} \mathbf{b}_{j}
+ a_{4} \mathbf{n}_{b} + a_{5} (\mathbf{N}_{5}^{2} + \mathbf{N}_{6}^{2} + \mathbf{N}_{7}^{2})
+ a_{6} (\mathbf{N}_{5} \mathbf{N}_{6} + \mathbf{N}_{5} \mathbf{N}_{7} + \mathbf{N}_{6} \mathbf{N}_{7}) + a_{7} \sum_{i \neq j=5}^{7} \mathbf{b}_{i}^{+} \mathbf{b}_{j}
+ a_{8} \sum_{i=1}^{3} \sum_{k=5}^{7} (\mathbf{b}_{i}^{+} \mathbf{b}_{k}^{2} \mathbf{b}_{4} \mathbf{b}_{8}^{+2} + \mathbf{b}_{4}^{+} \mathbf{b}_{k}^{+2} \mathbf{b}_{i} \mathbf{b}_{8}^{2}) .
+ a_{9} \sum_{i=1}^{3} \sum_{k>n=5}^{7} (\mathbf{b}_{i}^{+} \mathbf{b}_{k} \mathbf{b}_{n} \mathbf{b}_{4} \mathbf{b}_{8}^{+2} + \mathbf{b}_{4}^{+} \mathbf{b}_{n}^{+} \mathbf{b}_{k}^{+} \mathbf{b}_{n} \mathbf{b}_{8}^{2}) .$$
(35)

In order to compute the matrix elements of the operators $\sum_{i=1}^{3} \sum_{k=5}^{7} \left(\mathbf{b}_{i}^{+} \mathbf{b}_{k}^{2} \mathbf{b}_{4} \mathbf{b}_{8}^{+2} + \mathbf{b}_{4}^{+} \mathbf{b}_{k}^{+2} \mathbf{b}_{i} \mathbf{b}_{8}^{2} \right)$ and $\sum_{i=1}^{3} \sum_{k>n=5}^{7} \left(\mathbf{b}_{i}^{+} \mathbf{b}_{k} \mathbf{b}_{n} \mathbf{b}_{4} \mathbf{b}_{8}^{+2} + \mathbf{b}_{4}^{+} \mathbf{b}_{n}^{+} \mathbf{b}_{k}^{+} \mathbf{b}_{8}^{2} \right)$, we need to estimate the values of the quantum numbers N_{s} and N_{b} . For the first quantum number N_{s} , as already defined in our previous paper [13] and also accepted as well in [20], this stretching number of bosons is related to the dissociation limit. The determination of $N_{s} = n_{s_{max}}$ is done as follows: a way to dissociate the molecule of arsine is to destruct a bond of this molecule, that is to concentrate the energy on one bond. In others words, the dissociation limit appears for a $|(n00), A_{1} \text{ or } E\rangle$ ket. Analysis of the stretching modes has shown that such kets are pure, that is, are preserved after diagonalisation (See Table 1 where %init.ket ≥ 0.99 for such kets).

So we examine the derivative of \mathbf{H}_{sL} as being a continuous function of n_s when

the eigenkets are of $|(n00), A_1 \text{ or } E\rangle$ type. For Hamiltonian (22) this leads to

$$\begin{aligned} \mathbf{H_{sL}}|(n00), A_1 \text{ or } E\rangle &= E_{0_s}(n)|(n00), A_1 \text{ or } E\rangle \\ &= (a_0 n + a_1 n^2)|(n00), A_1 \text{ or } E\rangle \end{aligned}$$

As we impose $\frac{\partial E_{0s}(n)}{\partial n} = 0 \Big]_{n=n_{max}}$, we determine $n_{max} \simeq 27.93$, that is $N_s = 28$. We must pay attention to the fact that a simple estimation of this value is enough for the evaluation of the matrix elements of the operators $\sum_{i=1}^{3} \sum_{k=5}^{7} (\mathbf{b}_i^+ \mathbf{b}_k^2 \mathbf{b}_4 \mathbf{b}_8^{+2} + \mathbf{b}_4^+ \mathbf{b}_k^{+2} \mathbf{b}_i \mathbf{b}_8^2)$ and $\sum_{i=1}^{3} \sum_{k>n=5}^{7} (\mathbf{b}_i^+ \mathbf{b}_k \mathbf{b}_n \mathbf{b}_4 \mathbf{b}_8^{+2} + \mathbf{b}_4^+ \mathbf{b}_n^+ \mathbf{b}_k^+ \mathbf{b}_i \mathbf{b}_8^2)$. Indeed, as demonstrated in [13], the matrix elements of these operators become only sensitive to N_s and N_b values when one wants to compute high energy levels. This may be really seen as a key point of our formalism because our model does not depend on what happens near the dissociation limit for low values of the quantum numbers (as may be expected for any zero-order harmonical model usually developed near the equilibrium configuration), whereas these values become predominant in the construction of the Hamiltonian matrix when one approaches the dissociation limit. In any case, as the experimental data do not go over 11600 cm⁻¹ whereas the dissociation limit is estimated to 31669 cm⁻¹, we shall assume that $N_s = 28$ is enough precise in our model to calculate the energy levels comparatively with the experimental precision.

For the second quantum number N_b , we completely agree with the argument of Sánchez-Castellanos *et al.* [20]: the bending boson number N_b is not related to the dissociation limit. Maybe, it could be determined using some physical effect or phenomena, as the planar configuration of the molecule [37], however such a physical meaning did not appear to us clearly. A first point of view could be to consider N_b as a parameter and we agree with this possible interpretation as given in [20]. However, we have preferred in our approach to adjust all the vibrational data by taking, one by one, all the integer values of N_b in the range [25-60]. We arrive at the same conclusion as that of [20]: the rms deviation remained basically the same for all values of N_b in the range [25-60]. However, this result is not so surprising: the bending experimental data do not exceed 2 quanta and any model must be able to reproduce these levels without knowing some highest bending quantum number. Consequently, in what follows, we shall use $N_b = 35$.

We performed a first fit, including all the available data, that is 33 data, with this 10 parameter model. Results of the fit are presented in Table 4. The first column gives the kets in local notation. The experimental data are given in Column 2.

The calculated energy are presented in Column 3 with the differences in Column 4. The fifth column gives the modulus of %init ket as already defined for

Table 1.

Table 4

Observed and calculated energies of vibrational levels (local-local model) of arsine molecule

ket		Obs. En	EigenValues	Calc-Obs	%init.ket	EigenValues	Calc-Obs	%init.ket	Calc-Obs	Calc-Obs	Calc-Obs	Calc-Obs
		(cm-1)	(cm-1) (33)	(cm-1) (33)	(Modulus)	(cm-1) (27)	(cm-1) (27)	(Modulus)	(cm-1) Mod.1	(cm-1) Mod.2	(cm-1) Mod.3	(cm-1) Mod.4
(0 0 0)28 (1 0 0) 34;(1A1 1A1 (0 0 0)28 (1 0 0) 34.(1A1 1F)> A1 >	906.752	900.475	-6.277	1.00	902.619	-4.133	0.99	1.97	9 295	2.3	1.4
(0 0 0)28 (1 1 0) 33;(1A1 1A1)> A1 > :	1806.149	1808.639	2,490	0.86	1808.139	1.990	0.79	-1.59	1.853	-1.4	-2.8
(0 0 0)28 (2 0 0) 33;(1A1 1E)> E > :	1904.115	1897.754	-6.361	0.79	1899.619	-4.496	0.85	0.53	-0.427	0.1	0.4
(0 0 0)28 (2 0 0) 33;(1A1 1A1)> A1 > :	1990.998	1994.373	3.375	0.79	1996.234	5.236	0.79	-6.25	1.602	-6.6	-5.2
(0 0 0)28 (1 1 0) 33; (1A1 1E)> E > 2	2003.483	2001.237	-2.246	0.86	2000.776	-2.707	0.85	5.92	-9.707	6.1	6.9
(1 0 0)27 (0 0 0) 35;(1A1 1A1)> AI > .	2115.164	2114.273	-0.891	0.99	2114.941 2126.481	-0.223	1 00	0.14	-1 537	-0.5	2.3
(0 0 0)28 (2 1 0) 32;(1A1 1A1)> A1 >		2721.806	0.020	0.81	2716.535	0.000	0.81	0.01	1.001		2.0
(0 0 0)28 (2 1 0) 32;(1A1 1E)> E >		2805.062		0.62	2803.202		0.64				
(0 0 0)28 (3 0 0) 32;(1A1 1A1)> A1 >		2893.956		0.85	2894.685		0.85				
(0 0 0)28 (3 0 0) 32;(1A1 1E)> E >		2901.568		0.56	2900.628		0.56				
(0 0 0)28 (2 1 0) 32;(1A1 2E)> E >		2996.828		1.00	2997.628		1.00				
$ (0 \ 0 \ 0)28 (1 \ 1 \ 1) \ 32;(141 \ 142)$)> A1 >		3008.903		0.74	3007.328		0.74				
(1 0 0)27 (1 0 0) 34;(1A1 1A1)> A1 > 3	3013.000	3014.387	1.387	0.99	3017.560	4.560	0.99	0.64	3.953	-1.0	-2.0
(1 0 0)27 (1 0 0) 34;(1E 1A1)> E >		3028.147		1.00	3029.098		1.00				
(1 0 0)27 (1 0 0) 34;(1A1 1E)> E > 3	3102.000	3110.717	8.717	1.00	3113.583	#	1.00	-0.16	-0.427	-1.9	-2.3
(1 0 0)27 (1 0 0) 34;(1E 1E)> A1 >		3122.589		1.00	3125.124		1.00				
(1 0 0)27 (1 0 0) 34;(1E 1E)> E >		3122.589		1.00	3125.124		1.00				
I(1 0 0)27II(1 0 0) 34;(1E 1E)> A2 >		3122.589		1.00	3125.124		1.00				
(0 0 0)28 (2 2 0) 31;(1A1 1E)> E >		3717.574		0.38	3709.298		0.40				
(0 0 0)28 (4 0 0) 31;(1A1 1A1)> A1 >		3799.858		0.79	3795.288		0.78				
(0 0 0)28 (4 0 0) 31;(1A1 1E)> E >		3809.922		0.52	3802.961		0.43				
(0 0 0)28 (3 1 0) 31;(1A1 2E)> E >		3898.482		0.63	3894.356		0.63				
(0 0 0)28 (3 1 0) 31;(1A1 1A2)> A2 >		3910.511		1.00	3904.085		1.00				
(0 0 0)28 (3 1 0) 31;(1A1 1A1)> A1 >		3913.928		0.39	3906.625		0.37				
(1 0 0)2/ (1 1 0) 33;(1A1 1A1)> A1 >		3924.321		0.78	3923.085		0.80				
(0 0 0)28 (2 2 0) 31:(1A1 1A1)> A1 >		4002.706		0.68	3998.577		0.67				
(0 0 0)28 (3 1 0) 31;(1A1 1E)> E >		4007.206		0.71	4002.351		0.72				
(1 0 0)27 (2 0 0) 33;(1A1 1E)> E >		4013.288		0.85	4014.559		0.85				
(0 0 0)28 (2 1 1) 31;(1A1 1E)> E >		4023.663		0.80	4015.430		0.78				
(1 0 0)27 (2 0 0) 33;(1E 1E)> A1 >		4024.476		0.86	4026.099		0.85				
(1 0 0)27 (2 0 0) 33;(1E 1E)> E >		4024.476		0.86	4026.099		0.85				
(1 0 0)27 (2 0 0) 33;(1E 1E)> A2 >		4024.476		0.86	4026.099		0.85				
(1 0 0)27 (1 1 0) 33;(1A1 1E)> E >		4114.326		0.85	4115.716		0.85				
(1 0 0)27 (2 0 0) 33;(1E 1A1)> E >		4119.223		0.79	4122.707		0.80				
(1 0 0)27 (1 1 0) 33;(1E 1E)> A1 >		4125.169		0.86	4127.256		0.85				
(1 0 0)27 (1 1 0) 33;(1E 1E)> E >		4125.169		0.86	4127.256		0.85				
(1 0 0)27 (1 1 0) 33;(1E 1E)> A2 >		4125.169		0.86	4127.256		0.85				
(2 0 0)26 (0 0 0) 35;(1A1 1A1)> A1 > 4	4166.772	4166.625	-0.147	0.98	4166.405	-0.367	0.98	2.49	3.033	1.3	2.2
(1 1 0)26 (0 0 0) 35;(1E 1A1)> $A1 > A$	4237 700	4237 678	-0.022	0.99	4107.717	0.904	0.99	1.34	-2.240	-0.7	2.4
(1 1 0)26 (0 0 0) 35;(1E 1A1)> E > 4	4247.530	4248.977	1.447	0.99	4248.833	1.303	0.99			1.0	2.6
(0 0 0)28 (2 2 1) 30;(1A1 1A1)> A1 >		4564.995		0.53	4541.773		0.54				
(0 0 0)28 (3 2 0) 30;(1A1 1E)> E >		4635.058		0.43	4617.775		0.46				
(0 0 0)28 (5 0 0) 30;(1A1 1A1)> A1 >		4710.189		0.71	4697.850		0.68				
(U U U)28 (4 1 0) 30;(1A1 2E)> E >		4723.381		0.43	4/07.679		0.47				
1(0 0 0)2811(5 0 0) 30;(1A1 1E)> E >		4804.734		0.63	4805 263		0.85				
(0 0 0)28 (4 1 0) 30;(1A1 1A1)> A1 >		4824.126		0.20	4808.332		0.15				
(1 0 0)27 (2 1 0) 32;(1A1 1A1)> A1 >		4837.469		0.80	4831.482		0.81				
(1 0 0)27 (2 1 0) 32;(1E 1A1)> E >		4848.493		0.81	4843.015		0.81				
(0 0 0)28 (3 2 0) 30;(1A1 1A1)> A1 >		4904.560		0.50	4893.234		0.46				
(0 0 0)28 (4 1 0) 30;(1A1 1E)> E >		4909.788		0.79	4897.728		0.78				
I(1 0 0)2/II(2 1 0) 32;(1A1 1E)> E >		4920.446		0.61	4913.993		0.57				
(1 0 0)27 (2 1 0) 32:(1F 1F)> A1 >		4931.760		0.62	4929.682		0.64				
(1 0 0)27 (2 1 0) 32;(1E 1E)> E >		4931.760		0.62	4929.682		0.64				
(1 0 0)27 (2 1 0) 32;(1E 1E)> A2 >		4931.760		0.62	4929.684		0.64				
(1 0 0)27 (3 0 0) 32;(1A1 1A1)> A1 >		5009.514		0.84	5002.979		0.80				
(0 0 0)28 (3 2 0) 30;(1A1 2E)> E >		5015.047		0.81	5007.578		0.85				
(1 0 0)27 (3 0 0) 32;(1A1 1E)> E >		5017.373		0.56	5009.627		0.85				
(U U U)28 (3 2 0) 30;(1A1 1A2)> A2 >		5020.317		0.85	5014.740		0.73				
(1 0 0)27 (3 0 0) 32;(1E 1A1)> <u>E</u> >		5020.395		0.85	5021 166		0.55				
(1 0 0)27 (3 0 0) 32;(1E 1E)> E >		5028.267		0.56	5027.109		0.56				
(1 0 0)27 (3 0 0) 32;(1E 1E)> A2 >		5028.267		0.56	5027.109		0.56				
(0 0 0)28 (3 1 1) 30;(1A1 1A1)> A1 >		5030.001		0.74	5027.109		0.56				
(0 0 0)28 (2 2 1) 30;(1A1 1E)> E >		5045.586		0.73	5027.608		0.72				
(2 0 0)26 (1 0 0) 34;(1A1 1A1)> A1 > 5	5057.000	5067.152	10.152	0.98	5069.025	#	0.99			3.3	-0.6
(2 U U)26 (1 U U) 34;(1E 1A1	ノ>ヒ > 5	000.1600	5068.861	11.861	0.99	5070.336	#	1.00			2.1	-0.9

$ \begin{array}{c} (1 \ 0 \ 0)27 (2 \ 1 \ 0) \ 32; (1A1 \ 2E \) \\ (1 \ 0 \ 0)27 (2 \ 1 \ 0) \ 32; (1A1 \ 1A2 \) \\ (1 \ 0 \ 0)27 (2 \ 1 \ 0) \ 32; (1A1 \ 2E \) \\ (1 \ 0 \ 0)27 (2 \ 1 \ 0) \ 32; (1E \ 2E \) \\ (1 \ 0 \ 0)27 (2 \ 1 \ 0) \ 32; (1E \ 2E \) \\ (1 \ 0 \ 0)27 (2 \ 1 \ 0) \ 32; (1E \ 2E \) \\ (1 \ 0 \ 0)27 (1 \ 1 \ 1) \ 32; (1E \ 1A1 \) \\ (1 \ 0 \ 0)27 (1 \ 1 \ 1) \ 32; (1E \ 1A1 \) \\ (1 \ 0 \ 0)27 (1 \ 1 \ 1) \ 32; (1E \ 1A1 \) \\ (1 \ 1 \ 0)26 (1 \ 0 \ 0) \ 34; (1E \ 1A1 \) \\ (1 \ 1 \ 0)26 (1 \ 0 \ 0) \ 34; (1E1 \ 1E \) \\ (2 \ 0 \ 0)26 (1 \ 0 \ 0) \ 34; (1E1 \ 1E \) \\ (2 \ 0 \ 0)26 (1 \ 0 \ 0) \ 34; (1E1 \ 1E \) \\ (2 \ 0 \ 0)26 (1 \ 0 \ 0) \ 34; (1E1 \ 1E \) \\ (1 \ 1 \ 0)26 (1 \ 0 \ 0) \ 34; (1E1 \ 1E \) \\ (1 \ 1 \ 0)26 (1 \ 0 \ 0) \ 34; (1E1 \ 1E \) \\ (1 \ 1 \ 0)26 (1 \ 0 \ 0) \ 34; (1E1 \ 1E \) \\ (1 \ 1 \ 0)26 (1 \ 0 \ 0) \ 34; (1E1 \ 1E \) \\ (1 \ 1 \ 0)26 (1 \ 0 \ 0) \ 34; (1E1 \ 1E \) \\ (1 \ 1 \ 0)26 (1 \ 0 \ 0) \ 34; (1E1 \ 1E \) \\ (1 \ 1 \ 0)26 (1 \ 0 \ 0) \ 34; (1E1 \ 1E \) \\ (1 \ 1 \ 0)26 (1 \ 0 \ 0) \ 34; (1E1 \ 1E \) \\ (1 \ 1 \ 0)26 (1 \ 0 \ 0) \ 34; (1E1 \ 1E \) \\ (1 \ 0 \ 0)28 (3 \ 2 \ 1) \ 25; (1A1 \ 1A1 \) \\ (0 \ 0 \ 0)28 (5 \ 1 \ 0) \ 25; (1A1 \ 1A1 \) \\ (0 \ 0 \ 0)28 (5 \ 1 \ 0) \ 25; (1A1 \ 1E \) \\ (1 \ 0 \ 0)27 (4 \ 0 \ 0) \ 31; (1A1 \ 1E \) \\ (1 \ 0 \ 0)27 (4 \ 0 \ 0) \ 31; (1A1 \ 1E \) \\ (1 \ 0 \ 0)27 (4 \ 0 \ 0) \ 31; (1A1 \ 1E \) \\ (1 \ 0 \ 0)27 (3 \ 1 \ 0) \ 31; (1A1 \ 1E \) \\ (1 \ 0 \ 0)27 (3 \ 1 \ 0) \ 31; (1A1 \ 1E \) \\ (1 \ 0 \ 0)27 (3 \ 1 \ 0) \ 31; (1A1 \ 1A1 \) \\ (1 \ 0 \ 0)27 (3 \ 1 \ 0) \ 31; (1A1 \ 1A1 \) \\ (1 \ 0 \ 0)27 (3 \ 1 \ 0) \ 31; (1A1 \ 1A1 \) \\ (1 \ 0 \ 0)27 (3 \ 1 \ 0) \ 31; (1A1 \ 1A1 \) \\ (1 \ 0 \ 0)27 (3 \ 1 \ 0) \ 31; (1A1 \ 1A1 \) \\ (1 \ 0 \ 0)27 (3 \ 1 \ 0) \ 31; (1A1 \ 1A1 \) \\ (1 \ 0 \ 0)27 (3 \ 1 \ 0) \ 31; (1A1 \ 1A1 \) \\ (1 \ 0 \ 0)27 $	$\begin{array}{c} - \rightarrow & E & > \\ - \rightarrow & A1 > \\ - \rightarrow & A1 > \\ - \rightarrow & A2 > \\ - \rightarrow & A1 > \\ - \rightarrow & E > \\ - \rightarrow & A2 > \\ - \rightarrow & A1 > \\ - \rightarrow & A2 > \\ - \rightarrow & A1 > \\ - \rightarrow & A2 > \\ - \rightarrow & A1 > \\ - \rightarrow & A2 > \\ - \rightarrow & A1 > $	\$112.438 \$122.438 \$122.905 \$122.905 \$122.905 \$122.905 \$122.905 \$122.905 \$132.835 \$133.358 \$135.695 \$151.492 \$163.4285 \$163.429 \$164.782 \$244.048 \$244.048 \$244.048 \$244.048 \$657.136 \$657.136 \$654.777 \$715.426 \$7715.426 \$734.306 \$841.188 \$841.188 \$842.787 \$869.796 \$925.627 \$9276.627 \$928.627 \$928.627 \$928.627 \$928.627 \$928.627 \$928.627 \$928.627 \$928.627 \$928.627 \$928.627 \$928.627 \$928.627 \$928.627 \$928.627	$\begin{array}{c} 0.85\\ 0.99\\ 0.86\\ 0.86\\ 0.86\\ 0.75\\ 1.00\\ 0.75\\ 358\\ 0.99\\ *\\ 1.00\\ 0.99\\ 0.61\\ 0.61\\ 0.61\\ 0.61\\ 0.72\\ 0.51\\ 0.69\\ 0.69\\ 0.60\\ 0.67\\ 0.67\\ 0.73\\ 0.73\\ 0.73\\ 0.73\\ 0.73\\ 0.88\\ 0.98\\ 0.99\\ 0.9$	5112.568 5120.196 5122.269 5124.108 5124.108 5134.108 5134.739 5131.739 5131.739 5141.224 5151.451 5165.049 5166.360 5237.247 5166.360 5247.475 524	$\begin{array}{c} 0.86\\ 1.00\\ 0.74\\ 0.86\\ 0.86\\ 0.86\\ 0.98\\ 0.99\\ \#& 1.00\\ \#& 0.99\\ \#& 1.00\\ 1.00\\ 1.00\\ 1.00\\ 0.99\\ \#& 1.00\\ 0.99\\ \#& 0.09\\ 1.00\\ 0.99\\ \#& 0.09\\ 0.99\\ \#& 0.09\\ 0.99\\ \#& 0.09\\ 0.99\\$			0.7 -4.8 -0.3 0.8	-1.3 -7.9 0.5 1.1
$ \begin{array}{c} (3\ 0\ 0)25 (\ 0\ 0\ 0\)\ 35; (141\ 141\) \\ (\ 3\ 0\ 0)25 (\ 0\ 0\ 0\)\ 35; (141\ 141\) \\ (\ 1\ 0\)\ 0\ 0\)\ 35; (141\ 141\) \\ (\ 1\ 0\)\ 0\ 0\)\ 35; (141\ 141\) \\ (\ 1\ 0\)\ 0\ 0\)\ 35; (141\ 141\) \\ (\ 1\ 0\)\ 0\)\ 35; (141\ 141\) \\ (\ 1\ 0\)\ 0\)\ 0\)\ 35; (141\ 141\) \\ (\ 1\ 0\)\ 0\)\ 0\)\ 35; (141\ 141\) \\ (\ 1\ 0\)\ 0\)\ 0\)\ 35; (141\ 141\) \\ (\ 1\ 0\)\ 0\)\ 0\)\ 35; (141\ 141\) \\ (\ 1\ 0\)\ 0\)\ 0\)\ 35; (141\ 141\) \\ (\ 1\ 0\)\ 0\)\ 0\)\ 35; (141\ 141\) \\ (\ 1\ 0\)\ 0\)\ 0\)\ 35; (141\ 141\) \\ (\ 1\ 0\)\ 0\)\ 0\)\ 35; (141\ 141\) \\ (\ 1\ 0\)\ 0\)\ 0\)\ 35; (141\ 141\) \\ (\ 2\ 0\)\ 0\)\ 35; (141\ 141\) \\ (\ 2\ 0\)\ 0\)\ 35; (141\ 141\) \\ (\ 1\ 0\)\ 0\)\ 35; (141\ 141\) \\ (\ 1\ 0\)\ 0\)\ 35; (141\ 141\) \\ (\ 1\ 0\)\ 0\)\ 35; (141\ 141\) \\ (\ 1\ 0\)\ 0\)\ 35; (141\ 141\) \\ (\ 1\ 0\)\ 0\)\ 35; (141\ 141\) \\ (\ 1\ 1\ 0\)\ 0\)\ 35; (141\ 141\) \\ (\ 1\ 1\ 0\)\ 0\)\ 35; (141\ 141\) \\ (\ 1\ 1\ 0\)\ 0\)\ 35; (141\ 141\) \\ (\ 1\ 1\ 0\)\ 0\)\ 35; (141\ 141\) \\ (\ 1\ 1\ 0\)\ 0\)\ 35; (141\ 141\) \\ (\ 1\ 1\ 0\)\ 0\)\ 35; (141\ 141\) \\ (\ 1\ 1\ 0\)\ 0\)\ 35; (141\ 141\) \\ (\ 1\ 1\ 0\)\ 0\ 0\)\ 35; (141\ 141\) \\ (\ 1\ 1\ 0\)\ 0\ 0\)\ 35; (141\ 141\) \\ (\ 1\ 1\ 0\)\ 0\ 0\ 0\)\ 35; (141\ 141\) \\ (\ 1\ 1\ 0\)\ 0\ 0\ 0\)\ 35; (141\ 141\) \\ (\ 1\ 1\ 0\)\ 0\ 0\ 0\ 0\ 0\)\ 35; (141\ 141\) \\ (\ 1\ 1\ 0\)\ 0\ 0\ 0\ 0\ 0\)\ 35; (141\ 141\) \\ (\ 1\ 1\ 0\)\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\)\ 35; (141\ 141\) \\ (\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\$	$\begin{array}{ccc} & \text{A1} & > & \text{6136. 340} \\ & \rightarrow & \text{E} & > & \text{6136. 330} \\ & \rightarrow & \text{E} & > & \text{C} \\ & \rightarrow & \text{E} & > & \text{C} \\ & \rightarrow & \text{E} & > & \text{C} \\ & \rightarrow & \text{E} & > & \text{C} \\ & \rightarrow & \text{E} & > & \text{C} \\ & \rightarrow & \text{E} & > & \text{C} \\ & \rightarrow & \text{A1} & > & \text{C} \\ & \rightarrow & \text{A1} & > & \text{C} \\ & \rightarrow & \text{E} & > & \text{C} \\ & \rightarrow & \text{C} & \text{C} \\ \end{array}$	6134.913 -1. 6133.804 -2. 6135.743 6139.483 6140.281 6145.911 6145.911 6145.911 6145.942 6145.911 6145.911 6145.911 6145.912 6167.707 6166.707 6166.707 6167.828 6230.728 6230.728 6230.728 6240.450 6246.569 6240.450 6246.569 6246.569 6246.569 6246.569 6246.569 6246.569 6246.569 6246.569 6246.569 6247.094 -1. 6285.987 -1. 6285.987 -1. 6286.265 0. 6286.265 0. 6286.286 0. 6366.286 0. 6429.887 6564.764	427 0.97 436 0.96 0.81 0.07 0.77 0.85 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.98 0.96 0.98 0.96 0.98 0.98 0.57 0.96 0.57 0.96 0.57 0.96 0.57 0.96 0.57 0.95 0.57 0.95 0.57 0.95 0.57 0.95 0.57 0.95 0.57 0.95 0.57 0.95 0.57 0.95 0.57 0.95 0.57 0.95 0.57 0.95 0.57 0.95 0.57 0.95 0.57 0.95 0.57 0.95 0.57 0.95 0.57	6135.717 - 6135.766 - 6138.225 - 6138.225 - 6138.490 - 6148.451 - 6148.451 - 6148.451 - 6148.451 - 6148.451 - 6148.451 - 6148.451 - 6148.451 - 6148.451 - 6148.451 - 6148.451 - 6148.451 - 6148.451 - 6148.451 - 6148.451 - 6148.451 - 6148.451 - 6147.181 - 6173.757 - 6248.608 - 6249.608 - 6249.608 - 6249.608 - 6367.936 - 6367.936 - 6377.936 - 6523.752	0.623 0.94 0.564 0.99 0.84 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.86 0.86 0.86 0.86 0.84 0.88 0.88 0.88 0.84 0.85 0.65 0.55	-0.23 -0.29 -1.37 -1.00	-4.667 1.951 -2.321 2.238	-2.5 -2.3 0.0 0.9 -0.2 0.5	-3.2 -2.9 1.0 1.8 2.7 2.7
$ \begin{array}{c} (\ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$	$\begin{array}{c} & \sim & E \\ & \sim & \sim & E \\ & \rightarrow & A1 \\ & \rightarrow & A2 \\ & \rightarrow & A1 \\ & \rightarrow & A1 \\ & \rightarrow & A2 \\ & \rightarrow & A1 \\ & \rightarrow & A2 \\ & \rightarrow & A1 \\ & \rightarrow & A2 \\ & \rightarrow & A1 $	6630.472 6653.472 6653.323 6651.647 6722.912 6727.904 6759.503 6792.586 6429.887 6542.584 6530.472 6653.472 6653.323 6691.647 6752.503 6691.647 6752.503 6691.647 6752.503 6691.647 6752.503 6691.647 6752.503 6691.647 6752.503 6691.647 6683.740 6880.166 6890.166	0.57 0.71 0.49 0.26 0.62 0.41 0.63 0.62 0.18 0.55 0.71 0.49 0.26 0.41 0.63 0.62 0.41 0.63 0.62 0.37 0.70 0.81 0.77	5053, 152 6595, 880 6614, 225 6682, 252 6896, 630 6693, 807 6779, 044 6779, 044 6779, 147 6377, 802 6535, 880 6614, 225 6668, 252 6663, 807 6779, 044 6779, 047 6779, 147 6786, 429 6796, 768 6884, 255	0.557 0.57 0.722 0.54 0.64 0.64 0.64 0.64 0.557 0.57 0.72 0.57 0.72 0.57 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.63 0.77				

(1 0 0)27 (5 0 0) 30;(1E 1E)> A2 >	6918.121		0.85	6900.278		0.22			
(1 0 0)27 (5 0 0) 30;(1E 1E)> E >	6930.674		0.00	6901.921		0.18			
((100)2/)((300)30,(1E 1E) × x1 >	0330.014		0.15	0301.332		0.10			
(1 1 0)26 (2 1 1) 31;(1E 1A1)> E >	7888.721		0.39	7876.596		0.61			
(200)26 (400)31;(1E 1E)> E >	7910.957		0.69	8011.977		0.18			
(2 0 0)26 (4 0 0) 31; (1E 1E)> A1 >	7911.074		0.49	8011.978		0.18			
(100)27 (510)29;(1E 1E)> E >	7930.180		0.36	7948.247		0.76			
(100)27 (600)29;(1A1 1E)> E >	7932.198		0.31	7909.878		0.41			
(1 0 0)27 (5 1 0) 29; (1E 1E)> A1 >	7934.889		0.39	7948.286		0.75			
(100)27 (510)29;(1E 1A1)> E >	7936.236		0.40	7929.795		0.40			
(100)27 (510)29;(1E 1E)> A2 >	7942.815		0.77	7944.122		0.71			
(3 0 0)25 (1 1 0) 33;(1A1 1A1)> A1 >	7943.358		0.76	7943.865		0.80			
(100)27 (510)29;(1A1 2E)> E >	7954.668		0.31	7929.795		0.40			
(0 0 0)28 (5 2 1) 27; (1A1 1A2)> A2 >	7955.280		0.29	7905.573		0.28			
(100)27 (510)29;(1E 2E)> A2 >	7968.158		0.74	8025.153		0.63			
(2 0 0)26 (4 0 0) 31;(1A1 1A1)> A1 >	7969.952		0.20	7961.697		0.77			
(100)27 (510)29;(1E 2E)> E >	7971.058		0.75	8012.059		0.51			
(2 0 0)26 (4 0 0) 31;(1E 1A1)> E >	7971.221		0.21	7969.370		0.51			
(1 0 0)27 (5 1 0) 29;(1E 2E)> A1 >	7971.277		0.50	8016.253		0.55			
(1 1 0)26 (4 0 0) 31;(1E 1E)> E >	7991.314		0.69	7986.300		0.67			
(100)27 (420)29;(1E 2E)> E >	8020.627		0.31	8036.885		0.52			
(2 0 0)26 (3 1 0) 31;(1E 2E)> A1 >	8020.658		0.23	7905.199		0.61			
(2 0 0)26 (3 1 0) 31;(1E 2E)> A2 >	8020.901		0.11	8012.201		0.26			
(0 0 0)28 (4 4 0) 27;(1A1 1E)> E >	8022.295		0.59	8021.440		0.59			
(4 0 0)24 (0 0 0) 35;(1A1 1A1)> A1 > 8028.977	8026.290 -	2.687	0.91	8026.902	-2.075	0.99	-1.389	0.5	0.3
(4 0 0)24 (0 0 0) 35;(1E 1A1)> E > 8028.969	8026.292 -	2.677	0.99	8026.903	-2.066	0.99	0.713	0.5	0.2
(1 0 0)27 (4 2 0) 29;(1A1 2E)> E >	8029.959		0.37	8036.885		0.52			
(1 0 0)27 (4 2 0) 29;(1E 2E)> A1 >	8031.370		0.10	8034.712		0.65			
(1 0 0)27 (4 1 1) 29;(1E 1E)> A2 >	8031.864		0.03	8011.353		0.73			
(1 0 0)27 (5 1 0) 29;(1A1 1A2)> A2 >	8038.671		0.67	8016.287		0.71			
(2 0 0)26 (3 1 0) 31;(1E 1E)> A2 >	8038.708		0.03	8012.201		0.26			
(1 0 0)27 (4 2 0) 29;(1E 2E)> A2 >	8044.829		0.21	8043.147		0.67			
(1 1 0)26 (4 0 0) 31;(1E 1A1)> E >	8047.455		0.78	8044.121		0.77			
(1 0 0)27 (3 3 0) 29;(1E 1A1)> E >	8059.328		0.07	7838.784		0.52			
(2 0 0)26 (2 2 0) 31;(1E 1E)> A1 >	8059.639		0.10	8061.007		0.33			
(2 0 0)26 (2 2 0) 31;(1E 1E)> E >	8060.554		0.11	8061.007		0.33			
(0 0 0)28 (5 3 0) 27;(1A1 1A1)> A1 >	8070.779		0.65	8073.033		0.00			
(1 0 0)27 (4 2 0) 29;(1E 1E)> E >	8071.006		0.55	8045.268		0.55			
(3 0 0)25 (2 0 0) 33;(1E 1E)> A1 >	8071.297		0.01	8035.392		0.85			
(1 0 0)27 (4 2 0) 29;(1E 1E)> A1 >	8071.719		0.15	8044.966		0.59			
(3 0 0)25 (2 0 0) 33;(1E 1E)> E >	8071.738		0.13	8035.392		0.85			
(3 0 0)25 (2 0 0) 33;(1A1 1E)> E >	8072.031		0.01	8035.339		0.85			
the contract of the second second									
(2 1 0)25 (2 0 0) 33;(1E 1E)> A1 >	8180.238		0.80	8182.675		0.83			
(1 0 0)27 (3 2 1) 29;(1E 2E)> E >	8180.560		0.64	8154.300		0.69			
(2 1 0)25 (2 0 0) 33;(1E 1E)> A2 >	8180.699		0.79	8182.667		0.83			
(100)27 (321)29;(1E 2E)> A1 >	8181.789		0.71	8155.794		0.72			
(1 0 0)27 (3 2 1) 29;(1A1 1A2)> A2 >	8190.523		0.93	8157.591		0.93			
(1 1 0)26 (3 1 0) 31;(1A1 1A1)> A1 >	8192.222		0.04	8145.232		0.37			
(2 1 0)25 (2 0 0) 33;(2E 1E)> E >	8192.266		0.83	8195.983		0.82			
(210)25 (200)33;(2E 1E)> A1 >	8192.270		0.82	8195.983		0.82			
(2 1 0)25 (2 0 0) 33;(2E 1E)> A2 >	8192.356		0.82	8195.983		0.83			
(210)25 (200)33;(1A21E)> E >	8196.734		0.86	8200.578		0.85			
(1 1 0)26 (3 1 0) 31;(1E 1E)> E >	8201.402		0.67	8197.072		0.67			
((1 (0)26))(3 1 0) 31;(1E 1E)> A1 >	5201.448		0.6/	8197.072		0.57			
(110)26 (310)31;(1E 1E)> A2 >	8204.393		0.73	8199.667		0.73			
1(200)2611(211)31;(1E 1E)> E >	5217.514		0.22	8213.314		0.8/			
(2 0 0)26 (2 1 1) 31;(1E 1E)> A1 >	8224.150		0.86	8213.315		0.87			
(100)2/ (321)29;(1E 1A2)>E>	8224.486		0.19	8187.353		0.88			
(1 1 0)20 (2 2 0) 31;(1A1 1A1)> A1 >	8237.949	0 124	0.59	8237.178	1 170	0.00		-2.1	-2.0
(3 + 0)24 (0 + 0)35;(1A1 + 1A1) -> A1 > 8249.520	8249.651	0.131	0.65	8250.696	1.1/6	0.01		-2.1	-3.8
(3 1 0)24 (0 0 0) 35; (2E 1A1)> E > 8258.380	8259.103	0.723	0.70	8252.430	-5.950	0.74		3.0	3.7
(3 1 0)24 (0 0 0) 35;(1E 1A1)> E > 825/.2/0	0200.070 9256 595	*	0.74	0209.201	*	1.00		-1.1	-2.2
(3 1 0/24 (0 0 0) 35;(IAZ IAI)> AZ >	0200.000		0.99	0200.0/0		1.00			
· ·									
	08/1 007	0 597	0.90	09/1 092	-0.317	0.99		0.0	5 2
$ (5 \cup 0)23 (0 \cup 0) 35;(181 181) -> 81 > 9841.400$	3041.99/ 00/1 00F	0.597	0.99	3041.U83	-0.317	0.99		0.0	5.3
(5 0 0/23 (0 0 0) 35;(IE IAI)> E > 9841.400	3041.885	0.485	0.99	3041.102	-0.238	0.33		0.0	-5.3
	11575 859 -	0 431	0 99 0	11577 526	1 236	0.99			5.2
(6 0 0)22 (0 0 0) 35(11 141) = E > 11576.290	11575 859 -	0 431	0.99	11577 526	1 236	0.99			5.0
(0 0 0,22,,(0 0 0, 00,(12 IRI) > 1 10/0.230	11010.000 -	0.401	0.00	11011.040	1.200	0.00			0.0
*, #: see explanations in the text.									
-									

The parameters and correlation matrice deduced from this fit are:

$$\begin{cases} a_{0} = 2161.496(48) \text{ cm}^{-1} \\ a_{1} = -38.669(12) \text{ cm}^{-1} \\ a_{2} = -1.65(12) \text{ cm}^{-1} \\ a_{3} = -4.42(11) \text{ cm}^{-1} \\ a_{4} = 966.461(15) \text{ cm}^{-1} \\ a_{5} = -2.193(96) \text{ cm}^{-1} \\ a_{5} = -2.193(96) \text{ cm}^{-1} \\ a_{6} = 14.41(47) \text{ cm}^{-1} \\ a_{7} = -31.898(89) \text{ cm}^{-1} \\ a_{8} = 0.01026(5) \text{ cm}^{-1} \\ a_{9} = -0.00360(7) \text{ cm}^{-1} \\ \end{cases}$$
(36)
$$\mathfrak{M}_{corr}(33, 10) =$$
$$\mathfrak{M}_{corr}$$

Comments: the correlation matrice does not show large correlated parameters as the highest value is 45% for the couple (a_4, a_8) . This means that there is no relevant signification between the parameters a_8 and a_9 ($a_8 \approx 3 a_9$) which would give a physical interpretation to the exchange of quanta between stretching and bending degrees of freedom. Table 4 shows that the first five pure bending levels $(n_b = 1 \text{ and } n_b = 2)$ and the |(100), A1; (100), E; E > 1level are not well reproduced by this model. The situation is even worse in the region 5057-5158 $\rm cm^{-1}$ where the known levels are reproduced with a precision less than 10 cm^{-1} . Stars in Column 4 indicate experimental values which have been removed from our fit. The explanation for the $|(310)E1 > \equiv$ $|(310)24||(000)35, (EA_1) - E >$ level has been given here before. The second removed data, that is the $|(110)26||(100)34, (A_1A_1) - > A_1 >$ level, gave during the first tries of fit, a surprising difference $E^{Calc} - E^{Obs}$ largely higher than 10 $\,\mathrm{cm}^{-1}$. We have no real serious argument to explain this large difference. However, we note that for the two fits presented in $\left[20\right]$ (see Table 2 and 3 (resp.) in [20] from which we have extracted Columns 11 and 12 (resp.), referred as Mod. 3 and Mod. 4 (resp.) in our Table 4), this level reaches also a large difference of -4.8 cm⁻¹ when they fitted 33 experimental data and even -7.9 cm⁻¹ with 35 experimental data, that is the worst difference of their fit. We have added Columns 9 and 10 (resp.) in our Table 4, referred as Mod. 1 and Mod. 2 (resp.) issuing from previous papers [19] and [38] (resp.), but as these studies dealed with reduced set of experimental data, it is not obvious to compare their results with ours.

The standard deviation reaches $\sigma(33, 10) = 5.34 \text{ cm}^{-1}$ which exceeds the
experimental precision. Consequently, in spite of the fact that our model is not adapted to describe these molecular levels, we have supposed a bad attribution of some levels or a very imprecise evaluation of some experimental transitions or that some vibrational levels could interact through Coriolis interaction [35] not taken into account by our model.

Thus, we have tried to remove different sets of data from our fits in order to improve the value of σ . After many attempts, the best numerical situation that we reached is described in Table 4 where Columns 6, 7 and 8 (resp.) have the same meaning as Columns 3, 4 and 5 (resp.). In Column 7, the symbol \sharp indicates the values which have not been included in this new fit comparatively with the previous one and the \star symbol means that this value was already removed from the 33 experimental data fit.

For this set of 27 "chosen" data, the parameters we deduced are:

$$\begin{cases}
 a_0 = 2161.7770(82) \text{ cm}^{-1} \\
 a_1 = -38.69467(67) \text{ cm}^{-1} \\
 a_2 = -1.5595(217) \text{ cm}^{-1} \\
 a_3 = -3.8603(16) \text{ cm}^{-1} \\
 a_4 = 969.149(16) \text{ cm}^{-1} \\
 a_5 = -1.6346(168) \text{ cm}^{-1} \\
 a_6 = 11.33382(22) \text{ cm}^{-1} \\
 a_7 = -31.47283(62), \text{ cm}^{-1} \\
 a_8 = -0.00244(50) \text{ cm}^{-1} \\
 a_9 = 0.00256(31) \text{ cm}^{-1}
\end{cases}$$
(38)

with the following correlation matrice

				N	$t_{corr}(2)$	7,10) =	=					
(a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9		
	$a_0 = 1.00$ $a_1 = -0.46$	1.00										
	$a_2 - 0.49$	-0.47	1.00									
	$a_3 - 0.29$	-0.03	-0.19	1.00	1.00						İ.	(20)
l	$a_4 = 0.13$ $a_5 = -0.18$	-0.14	-0.25	-0.00 -0.21	-0.29	1.00					•	(39)
	$a_6 0.15$	0.90	0.45	-0.04	-0.81	0.12	1.00					
	$a_7 - 0.15$	-0.90	-0.45	0.04	0.81	-0.12	0.97	1.00	1 00			
l	$a_8 = 0.30$	-0.65	-0.06	0.22	0.45	-0.09	0.56	-0.50	1.00	1.00	ł	
1	<i>ug</i> 0.00	0.00	0.00	-0.51	-0.02	0.03	-0.04	0.04	0.71	1.007		

Comments: the choice of this set of 27 experimental data, given in Table 4 leads with this model to the best possible value for the standard deviation $\sigma(27, 10) = 3.01 \text{ cm}^{-1}$. However, there is no relevant explanation for the elimination of these data, moreover, as could be forecasted with the comparison of local formalism and normal formalism applied to the bending modes, the pure bending levels are not well reproduced here. The difference between

observed and calculated energy reaches 4 and 5 cm⁻¹ for the first $n_b = 1$ and $n_b = 2$ quantum levels. The last point of discussion concerns Columns 5 and 8 which give the percentage of the initial ket (in the first column) in the eigenket after diagonalization. There is no large difference between these two columns for the first levels, that is, when the energy is less that 6000 cm⁻¹. But for the $|(100)27||(310)31; (EE) - > A_1 >$ level the difference becomes large without satisfactory explanation. For the upper part of the spectra, the values of these columns oscillate between 1.00 and 0.01. This last value appears for the $|(300)25||(200)33; (EE) - > A_1 >$ level with the 33 experimental data fit whereas it remains 0.85 when fitting only 27 data without reasonable explanation.

In the next section, we test a different formalism to construct the Hamiltonian: local modes for the stretching excitations and normal modes for the bending ones. There remains only one small difficulty within this formalism: the determination of adapted coupled interaction operators between those two modes.

6 LOCAL \otimes NORMAL MODEL OF THE HAMILTONIAN

From Sections 4 and 5, it appears clearly that the chain of groups adapted to a local-normal description of our XY_3 system is given by:

$$\begin{bmatrix} \begin{bmatrix} N_s, \dot{0}^3 \end{bmatrix} & \begin{bmatrix} n_s, \dot{0}^2 \end{bmatrix} & (w_s = (n_1, n_2, n_3), f_{w_s}) & (\lambda_{s_1}, \lambda_{s_2}, \lambda_{s_3}) & (C_s \sigma_s) \\ (U_s(4) \supset U_s(3) \supset K_s(3) \supset S_s(3) \approx C_{s_{3w}}) \\ U_b(1) \otimes U_b(2) \supset & O_b(2) & \supset C_{b_{3w}} \\ v_2 & v_4 & l_4 & (C_b \sigma_b) \end{bmatrix} \supset C_{3v} (C\sigma)$$

Without stretch-bend interaction terms, a first approximation Hamiltonian, built from Eq.(22, 29) is thus given by:

$$\mathbf{H}_{s\mathbf{LbN}}^{0} = a_{0} \mathbf{n}_{s} + a_{1} (\mathbf{N}_{1}^{2} + \mathbf{N}_{2}^{2} + \mathbf{N}_{3}^{2}) \\
+ a_{2} (\mathbf{N}_{1} \mathbf{N}_{2} + \mathbf{N}_{1} \mathbf{N}_{3} + \mathbf{N}_{2} \mathbf{N}_{3}) + a_{3} \sum_{i \neq j=1}^{3} \mathbf{b}_{i}^{+} \mathbf{b}_{j} \qquad (41) \\
+ \omega_{2} \mathbf{v}_{2} + \kappa_{2} \mathbf{v}_{2}^{2} + \omega_{4} \mathbf{v}_{4} + \kappa_{4} \mathbf{v}_{4}^{2} + \kappa_{24} \mathbf{v}_{2} \mathbf{v}_{4} + \mathbf{g}_{4} \mathbf{l}_{4}^{2}.$$

Analogously with the previous section, we take now into account relations (34) to add interacting terms. The scheme of construction of stretching-bending interacting terms is a straightforward construction when using tensorial operators symmetrized in C_{3v} group. Operators which can be included into the

Hamiltonian are given by:

$$\begin{split} \mathfrak{O}_{1}^{(A_{1})} &= [{}^{(1)}\mathbf{T}_{sL}^{(A_{1})} \times [\mathbf{a}_{2}^{(A_{1})} \times \mathbf{a}_{2}^{(A_{1})}]^{(A_{1})} + H.c.]^{(A_{1})} \\ \mathfrak{O}_{2}^{(A_{1})} &= [{}^{(1)}\mathbf{T}_{sL}^{(A_{1})} \times [\mathbf{a}_{4}^{(E)} \times \mathbf{a}_{4}^{(E)}]^{(A_{1})} + H.c.]^{(A_{1})} \\ \mathfrak{O}_{3}^{(A_{1})} &= [{}^{(2)}\mathbf{T}_{sL}^{(E)} \times [\mathbf{a}_{2}^{(A_{1})} \times \mathbf{a}_{4}^{(E)}]^{(E)} + H.c.]^{(A_{1})} \\ \mathfrak{O}_{4}^{(A_{1})} &= [{}^{(2)}\mathbf{T}_{sL}^{(E)} \times [\mathbf{a}_{4}^{(E)} \times \mathbf{a}_{4}^{(E)}]^{(E)} + H.c.]^{(A_{1})}, \end{split}$$

(H.c. denotes Hermitian conjugate)

with the following definitions:

Only the matrix elements of the creation $\mathbf{a}_4^{(E)}$ and annihilation $\mathbf{a}_4^{+(E)}$ operators have to be defined. We use the conventional matrix elements definition for these operators which can be deduced from the reduced matrix element given in Table 5.

Table 5 Reduced matrix elements $\langle v_4, l_4, C_p || a_4^{(E)} || v_4 + 1, l_4', C_p' \rangle$

l_4	C_p	l_4'	C'_p	E.M.R
0	A_1	1	E	$\sqrt{v_4 + 1}$
$6p \neq 0$	Г	6p + 1	E	$\sqrt{(v_4+l_4+2)/2}$
$6p \neq 0$	Γ	6p - 1	E	$(-1)^{\Gamma}\sqrt{(v_4-l_4+2)/2}$
6p + 1	E	6p + 2	E	$-\sqrt{(v_4+l_4+2)}$
1	E	0	A_1	$-\sqrt{v_4+1}$
6p + 1	E	$6p \neq 0$	Γ	$-(-1)^{\Gamma}\sqrt{(v_4-l_4+2)/2}$
6p + 2	E	6p + 3	Γ	$-(-1)^{\Gamma}\sqrt{(v_4+l_4+2)/2}$
6p + 2	E	6p + 1	E	$\sqrt{(v_4 - l_4 + 2)}$
6p + 3	Γ	6p + 4	E	$-(-1)^{\Gamma}\sqrt{(v_4+l_4+2)/2}$
6p + 3	Γ	6p + 2	E	$\sqrt{(v_4 - l_4 + 2)/2}$
6p + 4	E	6p + 5	E	$\sqrt{(v_4+l_4+2)}$
6p + 4	E	6p + 3	Г	$\sqrt{(v_4 - l_4 + 2)/2}$
6p + 5	E	6p + 6	Г	$-\sqrt{(v_4+l_4+2)/2}$
6p + 5	E	6p + 4	E	$-\sqrt{(v_4 - l_4 + 2)}$
			$\Gamma = A_1 \text{or} A_2$ $p = 0, 1, \dots$	

A complete Hamiltonian reads

$$\mathbf{H_{sLbN}} = a_0 \mathbf{n_s} + a_1 (\mathbf{N}_1^2 + \mathbf{N}_2^2 + \mathbf{N}_3^2) + a_2 (\mathbf{N}_1 \mathbf{N}_2 + \mathbf{N}_1 \mathbf{N}_3 + \mathbf{N}_2 \mathbf{N}_3) + a_3 \sum_{i \neq j=1}^3 \mathbf{b}_i^+ \mathbf{b}_j + \omega_2 \mathbf{v_2} + \kappa_2 \mathbf{v_2}^2 + \omega_4 \mathbf{v_4} + \kappa_4 \mathbf{v_4}^2 + \kappa_{24} \mathbf{v_2v_4} + \mathbf{g_4} \mathbf{l_4}^2 + \alpha_1 \mathfrak{O}_1^{(A_1)} + \alpha_2 \mathfrak{O}_2^{(A_1)} + \alpha_3 \mathfrak{O}_3^{(A_1)} + \alpha_4 \mathfrak{O}_4^{(A_1)}.$$

$$(42)$$

In order to compare our model with the previous one, we have fitted the two sets of data: 33 then 27 experimental data.

Results of the fit are given in Table 6. Definitions of the twelve columns and symbols \sharp and \star remain the same as before.

Table 6

Observed and calculated energies of vibrational levels (local-normal model) of arsine molecule

ket	Obs. En.	EigenValues	Calc-Obs	%init.ket	EigenValues	Calc-Obs	%init.ket	Calc-Obs	Calc-Obs	Calc-Obs	Calc-Obs
	(cm-1)	(cm-1)	(cm-1)	(Modulus)	(cm-1)	(cm-1)	(Modulus)	(cm-1)	(cm-1)	(cm-1)	(cm-1)
		(33)	(33)		(27)	(27)		Mod.1	Mod.2	Mod.3	Mod.4
(0 0 0)28 (1 0 0);(1A1 A1)> A1 >	906.752	899.165	-7.587	1.000	902.422	-4.330	1.000	1.97	-1.328	2.3	1.4
(0 0 0)28 (0 1 1);(1A1 E)> E >	999.225	997.439	-1.784	1.000	998.668	-0.557	1.000	0.31	9.295	0.7	0.8
(0 0 0)28 (2 0 0); (1A1 A1)> A1 >	1806.149	1798.182	-7.967	0.999	1806.140	-0.009	0.999	-1.59	1.853	-1.4	-2.8
(0 0 0)28 (1 1 1);(1A1 E)> E >	1904.115	1901.120	-2.995	0.999	1904.115	0.000	0.999	0.53	-0.427	0.1	0.4
(0 0 0)28 (0 2 0); (1A1 A1)> A1 >	1990.998	1989.325	-1.673	0.997	1991.178	0.180	0.999	-6.25	1.602	-6.6	-5.2
(0 0 0)28 (0 2 2);(1A1 E)> E >	2003.483	2000.268	-3.215	0.999	2003.476	-0.006	1.000	5.92	-9.707	6.1	6.9
(1 0 0)2/ (0 0 0);(1A1 A1)> A1 >	2115.164	2114.237	-0.927	0.999	2114.881	-0.283	0.999	0.14	0.932	-0.5	1.3
(1 0 0)2/ (0 0 0);(IE AI)> E >	2120.423	2126.243	-0.180	0.999	2126.860	0.437	0.999	0.34	-1.537	1.4	2.3
(0 0 0)28 ((3 0 0); (1A1 A1)> A1 >		2697.050		0.999	2/11.151		0.999				
(0 0 0)28 (2 1 1);(1A1 E)> E >		2804.651		0.999	2810.857		0.999				
(0 0 0)28 (1 2 0);(1A1 A1)> A1 >		2897.518		0.999	2899.650		0.999				
(0 0 0)28 (1 2 2);(IAI E)> E >		2908.447		0.999	2911.949		0.999				
(0 0 0)28 (0 3 1);(IAI E)> E >		2986.607		0.999	2989.830		0.999				
(0 0 0)28 (0 3 3);(1A1 A2)> A2 >		3008.431		0.997	3014.427		0.999				
(0 0 0)28 (0 3 3);(IAI AI)> AI >	2042 000	3008.431	0 404	0.997	3014.427	4 200	0.999	0.04	0.050	4.0	0.0
((100)27)((100);(IAI AI)> AI >	3013.000	3013.424	0.424	0.999	3017.320	4.320	0.999	0.64	3.953	-1.0	-2.0
(100)27 (100);(1E RI)> E >	2102 000	2111 679	0 679	0.999	3029.202		1.000	-0.16	-0.407	-1.0	-0.2
(100)27 (011);(1R1E)> E>	3102.000	2110 560	9.070	1 000	2121 500	#	1.000	-0.10	-0.427	-1.9	-2.3
(1 0 0)27 (0 1 1); (IE E)> AI >		3119.302		1.000	3121.520		1.000				
(1 0 0)27 (0 1 1);(IE E)> E >		3119.562		1.000	3121.526		1.000				
(1 0 0)27 (0 1 1);(IE E)> A2 >		3119.562		1.000	3121.520		0.999				
(1 0 0)27 (0 1 1);(IE E)> E >		3123.670		0.999	3125.527		0.999				
(1 0 0)27 (0 1 1);(IE E)> A2 >		3124.069		0.997	3125.532		0.999				
(1 0 0)2/ (0 1 1);(IE E)> AI >		3124.071		0.997	3125.532		0.999				
(0 0 0)28 (4 0 0);(IAI AI)> AI >		3595.772		0.999	3017.458		0.999				
(0 0 0)28 (3 1 1);(IAI E)> E >		3708.034		0.999	3/18.894		0.999				
(0 0 0)28 (2 2 0);(IAI AI)> AI >		3805.563		0.999	3809.417		0.999				
(0 0 0)28 (2 2 2);(IAI E)> E >		3816.478		0.999	3821.717		0.999				
(0 0 0)28 (1 3 1);(IAI E)> E >		3899.304		0.999	3901.327		0.999				
(1 0 0)2/ (2 0 0); (1A1 A1)> A1 >		3912.403		0.999	3921.034 2025 025		0.999				
(0 0 0)28 (1 3 3);(1A1 A2)> A2 >		3921.092		0.997	3925.925		0.999				
(0 0 0)28 (1 3 3);(IAI AI)> AI >		3921.092		0.997	3925.925		0.999				
(1 0 0)2/11(2 0 0);(IE AI)> E >		3924.453		0.999	3932.998		0.999				
(0 0 0)28 (0 4 0);(IAI AI)> AI >		39/8.356		0.999	3982.326		0.999				
(0 0 0)28 (0 4 2);(IAI E)> E >		3989.249		0.997	3994.624		0.999				
(1 0 0)2/ (1 1 1);(IAI E)> E >		4015.382		0.999	4019.027		1.000				
(1 0 0)27 (1 1 1);(1E E)> A1 >		4021.000		1 000	4020.973		1.000				
(100)27 (111);(1E E)> E >		4023.243		1.000	4020.973		1.000				
(100)27 (111);(1E E)> E >		4023.243		1.000	4020.975		0.999				
(100)27 (111);(1E E)> R2>		4023.243		0.000	4030.975		0.999				
(100)27 (111);(1E E)> E >		4027.302		0.999	4030.980		0.999				
(100)27 (111);(1E E) => A1 >		4027 798		0.997	4031 518		0.999				
(1 0 0)27 (1 1 1),(1E E)		4021.130		0.000	4106 072		0.000				
(100)27 (020);(1A1 E)> E >		4103.302		0.999	4100.073		0.999				
I(1 0 0)27II(0 2 0).(1E A1)> E >		4115 00F		0.990	4118 381		1 000				
I(1 0 0)27II(0 2 0);(IE RI)> E >		4100.500		1 000	4126 337		1 000				
I(1 0 0)27II(0 2 2);(IE E)> AI >		4122.000		1 000	4126 337		1 000				
I(1 0 0)27II(0 2 2);(IE E)> E >		4122.000		1 000	4126 337		1.000				
I(1 0 0)27II(0 2 2);(IE E)> A2 >		4126.000		0.001	4130 332		1 000				
I(1 0 0)27II(0 2 2);(IE E)> AI >		4126.003		0.991	4130 337		1.000				
I(1 0 0)27II(0 2 2);(IE E)> R2 >		4120.012		0.999	4130 345		0.999				
1(1 0 0)2/11(0 2 2);(1E E)> E >	4166 770	4165 047	-0.025	0.000	1166 601	-0.160	0.999	2.40	2 022	1.2	2.2
(2 0 0)2611(0 0 0);(IAI AI)> AI >	4167 025	4167 062	-0.925	0.999	4100.001	-0.109	0.986	2.49	3.033	1.3	2.2
(1 1 0)2611(0 0 0);(IE AI)> E >	4107.935	4107.203	-0.072	0.999	4100.032	0.097	0.997	1.34	-2.245	-0.7	2.4
(I I U)2011(U U U);(IAI AI)> AI >	4231.700	4231.438	-0.262	0.986	4230.285	0.085	0.907			-0.7	2.0

(1 1 0)26 (0 0 0);(1E A1)> E >	4247.720	4247.995	0.275	0.996	4248.837	1.117	0.997			1.0	2.6
(0 0 0)28 (5 0 0);(1A1 A1)> A1 >		4494.347		0.999	4525.059		0.999				
(0 0 0)28 (4 1 1);(1A1 E)> E >		4611.270		0.999	4628,226		0.999				
$ (0, 0, 0)28 (3, 2, 0)\cdot(141, 41,)> 41>$		4713 460		0 999	4720 478		0 999				
1(000)2011(202)(111 E)> E >		4704 257		0.009	4720 770		0.000				
((0 0 0)28) (3 2 2); (INI E)> E >		4124.351		0.998	4132.119		0.999				
((1 0 0)2/)((3 0 0);(1A1 A1)> A1 >		4811.353		0.999	4814.118		0.999				
(0 0 0)28 (2 3 1);(1A1 E)> E >		4811.851		0.999	4826.082		0.999				
(1 0 0)27 (3 0 0);(1E A1)> E >		4823.338		0.998	4838.007		0.999				
(0 0 0)28 (2 3 3);(1A1 A2)> A2 >		4833.596		0.996	4838.717		0.999				
$ (0 \ 0 \ 0)28 (2 \ 3 \ 3):(1A1 \ A1 \) -> A1 >$		4833.596		0.996	4838.717		0.999				
1(000)2811(140);(141 A1)> A1 >		1895 560		0 008	1896 847		0 999				
(0 0 0)2011(1 4 0),(1A1 AI) > AI >		4000 400		0.007	4000.440		0.000				
(0 0 0)28 (1 4 2);(1A1 E)> E >		4906.433		0.997	4909.146		0.999				
(1 0 0)27 (2 1 1);(1A1 E)> E >		4918.935		0.999	4925.787		0.999				
(1 0 0)27 (2 1 1);(1E E)> A1 >		4926.788		1.000	4933.724		1.000				
(100)27 (211);(1E E)> E >		4926.788		1.000	4933.724		1.000				
$ (1 \ 0 \ 0)27 (2 \ 1 \ 1):(1E \ E \)> A2>$		4926.788		1.000	4933.724		1.000				
1(100)2711(211);(1E E) -> E >		4020.005		0.000	1000.721		0.000				
(1 0 0)2711(2 1 1);(IE E)> E >		4930.903		0.999	4937.710		0.999				
((100)2/)((211);(1E E)> A2 >		4931.383		0.996	4937.721		0.999				
(1 0 0)27 (2 1 1);(1E E)> A1 >		4931.384		0.996	4937.721		0.999				
(0 0 0)28 (1 4 4);(1A1 E)> E >		4938.976		0.993	4946.041		0.999				
(0 0 0)28 (0 5 1);(1A1 E)> E >		4975.481		0.997	4980.964		0.999				
$ (0 \ 0 \ 0)28 (0 \ 5 \ 3):(1A1 \ A2 \) -> A2 >$		4997.197		0.995	5005.559		0.999				
$ (0 \ 0 \ 0)28 (0 \ 5 \ 3)(141 \ 41 \) -> 41 >$		4997 198		0 995	5005 559		0 999				
(0 0 0)2011(0 0 0),(1A1 A1) > A1 >		-1337.130		0.335	5003.555		0.000				
((100)2/(((120);(IAI AI)> AI >		5011.781		0.999	5014.563		0.999				
(1 0 0)27 (1 2 2);(1A1 E)> E >		5022.500		0.995	5026.498		0.999				
(1 0 0)27 (1 2 0);(1E A1)> E >		5024.138		0.997	5026.874		0.999				
(100)27 (122);(1E E)> A1 >		5030.755		1.000	5034.810		1.000				
(100)27 (122):(1E E)> E >		5030.755		1.000	5034.810		1.000				
(100)27 (122)·(1F F)> A2>		5030 755		1.000	5034 810		1.000				
		5034 104		0.000	5038 003		0.000				
(1 0 0)2/11(1 2 2);(IE E)> A1 >		5034.124		0.986	5038.803		0.999				
(1 0 0)27 (1 2 2);(1E E)> A2 >		5034.707		0.999	5038.810		1.000				
(1 0 0)27 (1 2 2);(1E E)> E >		5035.424		0.986	5038.818		0.999				
(0 0 0)28 (0 5 5);(1A1 E)> E >		5040.482		0.988	5054.748		0.999				
(2 0 0)26 (1 0 0):(1A1 A1) -> A1 >	5057.000	5065.197	8.197	0.974	5069.049	#	0.986			3.3	-0.6
1(200)2611(100);(1E A1)> E >	5057 000	5066 591	0 501	0 997	5070 474	#	0 997			2 1	-0.9
(200)2011(100),(1E RI) > E >	3037.000	5000.331	0.001	0.307	5010.414		0.331			2.1	0.5
(100)27 (031);(1A1 E)> E >		5100.725		0.997	5104.727		0.999				
(1 0 0)27 (0 3 1);(1E E)> A1 >		5108.888		1.000	5112.717		1.000				
(100)27 (031);(1E E)> E >		5108.888		1.000	5112.717		1.000				
(100)27 (031);(1E E)> A2 >		5108.888		1.000	5112.717		1.000				
(100)27 (031):(1E E)> E >		5113.006		0.995	5116.659		0.999				
I(100)27II(031):(1F F)> A2 >		5113 449		0 990	5116 666		0 999				
(1 0 0)2711(0 0 1),(1E E) > A2 >		5113.440		0.330	5110.000		0.000				
((100)2/)((031);(1EE)> A1>		5113.534		0.992	5110.005		0.999				
(1 0 0)27 (0 3 3);(1A1 A1)> A1 >		5122.036		0.986	5129.339		0.999				
(1 0 0)27 (0 3 3);(1A1 A2)> A2 >		5122.037		0.986	5129.339		0.999				
(100)27 (033);(1E A2)> E >		5133.823		0.691	5140.724		0.987				
(1 0 0)27 (0 3 3);(1E A1)> E >		5135.394		0.681	5141.276		0.706				
	E100 000										
	5128 000	5136 642	8 642	0 986	5141 295	#	0 706			07	-1 3
(1 1 0)26) (1 0 0); (IAI AI)> AI >	5128.000	5136.642	8.642	0.986	5141.295	#	0.706			0.7	-1.3
(110)26 (100);(1A1 A1)> A1 > (110)26 (100);(1E A1)> E >	5128.000 5128.000	5136.642 5147.191	8.642 *	0.986 0.996	5141.295 5151.264	# *	0.706 0.997			0.7 -4.8	-1.3
(1 1 0)26 (1 0 0);(1A1 A1)> A1 > (1 1 0)26 (1 0 0);(1E A1)> E > (2 0 0)26 (0 1 1);(1A1 E)> E >	5128.000 5128.000 5158.000	5136.642 5147.191 5164.039	8.642 * 6.039	0.986 0.996 0.984	5141.295 5151.264 5165.305	# * #	0.706 0.997 0.986			0.7 -4.8 -0.3	-1.3 -7.9 0.5
(110)26 (100);(1a1 a1)> A1 > (110)26 (100);(1E A1)> E > (200)26 (011);(1A1 E)> E > (200)26 (011);(1E E)> A1 >	5128.000 5128.000 5158.000	5136.642 5147.191 5164.039 5164.510	8.642 * 6.039	0.986 0.996 0.984 1.000	5141.295 5151.264 5165.305 5166.711	# * #	0.706 0.997 0.986 0.997			0.7 -4.8 -0.3	-1.3 -7.9 0.5
$\begin{array}{c} (1 \ 1 \ 0) 26 (1 \ 0 \ 0);(1 \ A \ 1 \)> \ A \ 1 \\ (1 \ 1 \ 0) 26 (1 \ 0 \ 0);(1 \ A \ 1 \)> \ E \\ (2 \ 0 \ 0) 26 (0 \ 1 \ 1);(1 \ A \ E \)> \ E \\ (2 \ 0 \ 0) 26 (0 \ 1 \ 1);(1 \ E \)> \ A \ 1 \\ (2 \ 0 \ 0) 26 (0 \ 1 \ 1);(1 \ E \)> \ E \\ \end{array}$	5128.000 5128.000 5158.000	5136.642 5147.191 5164.039 5164.510 5164.510	8.642 * 6.039	0.986 0.996 0.984 1.000 1.000	5141.295 5151.264 5165.305 5166.711 5166.733	# * #	0.706 0.997 0.986 0.997 0.996			0.7 -4.8 -0.3	-1.3 -7.9 0.5
$\begin{array}{c} (1 \ 1 \ 0)26 (1 \ 0 \ 0);(11 \ A1) \longrightarrow A1 \\ (1 \ 1 \ 0)26 (1 \ 0 \ 0);(11 \ A1) \longrightarrow E \\ (2 \ 0 \ 0)26 (0 \ 1 \ 1);(11 \ E \) \longrightarrow A1 \ A1 \ A1 \ A1 \ A1 \ A1 \ A1 \ A1$	5128.000 5128.000 5158.000	5136.642 5147.191 5164.039 5164.510 5164.510 5164.510	8.642 * 6.039	0.986 0.996 0.984 1.000 1.000	5141.295 5151.264 5165.305 5166.711 5166.733 5166.752	# * #	0.706 0.997 0.986 0.997 0.996 0.996			0.7 -4.8 -0.3	-1.3 -7.9 0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5128.000 5158.000	5136.642 5147.191 5164.039 5164.510 5164.510 5164.510 5165.362	8.642 * 6.039 7.362	0.986 0.996 0.984 1.000 1.000 1.000	5141.295 5151.264 5165.305 5166.711 5166.733 5166.752 5167.060	# # #	0.706 0.997 0.986 0.997 0.996 0.996 1.000			0.7 -4.8 -0.3	-1.3 -7.9 0.5
$\begin{array}{c} (1 \ 1 \ 0)26 (\ 1 \ 0 \ 0); (1AI \ AI \) &> AI \) \\ (1 \ 1 \ 0)26 (\ 1 \ 0 \ 0); (1E \ AI \) & -> E \) \\ (2 \ 0 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & ->> AI \) \\ (2 \ 0 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & ->> AI \) \\ (2 \ 0 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & ->> AI \) \\ (2 \ 0 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & ->> AI \) \\ (2 \ 0 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & ->> AI \) \\ (2 \ 0 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & ->> AI \) \\ (4 \ 2 \ 0 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & ->> AI \) \\ (4 \ 2 \ 0 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & ->> AI \) \\ (4 \ 2 \ 0 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & ->> AI \) \\ (5 \ 2 \ 0 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & ->> AI \) \\ (5 \ 2 \ 0 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & ->> AI \) \\ (5 \ 2 \ 0 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & ->> AI \) \\ (5 \ 2 \ 0 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & ->> AI \) \\ (5 \ 2 \ 0 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & ->> AI \) \\ (5 \ 2 \ 0 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & ->> AI \) \\ (5 \ 2 \ 0 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & ->> AI \) \\ (5 \ 2 \ 0 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & ->> AI \) \\ (5 \ 2 \ 0 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & ->> AI \) \\ (5 \ 2 \ 0 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & ->> AI \) \\ (5 \ 2 \ 0 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & ->> AI \) \) \\ (5 \ 0 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & ->> AI \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \) \ (1E \) \) \ (1E \) \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \) \ (1E \) \) \) \ (1E \) \) \) \) \ (1E \) \) \) \) \ (1E \) \) \) \) \) \) \) \) \) \ $	5128.000 5128.000 5158.000	5136.642 5147.191 5164.039 5164.510 5164.510 5164.510 5165.362	8.642 * 6.039 7.362	0.986 0.996 0.984 1.000 1.000 1.000 0.964	5141.295 5151.264 5165.305 5166.711 5166.733 5166.752 5167.060	# * #	0.706 0.997 0.986 0.997 0.996 0.996 1.000			0.7 -4.8 -0.3 0.8	-1.3 -7.9 0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5128.000 5158.000	5136.642 5147.191 5164.039 5164.510 5164.510 5164.510 5165.362 5165.490	8.642 * 6.039 7.362	0.986 0.996 0.984 1.000 1.000 0.964 0.982	5141.295 5151.264 5165.305 5166.711 5166.733 5166.752 5167.060 5167.060	# * #	0.706 0.997 0.986 0.997 0.996 0.996 1.000 1.000			0.7 -4.8 -0.3 0.8	-1.3 -7.9 0.5
$ \begin{array}{c} (1 \ 1 \ 0) 26 (\ 1 \ 0 \ 0); (1AI \ AI \) & \rightarrow AI \) \\ (1 \ 1 \ 0) 26 (\ 1 \ 0 \ 0); (1E \ AI \) & \rightarrow E \) \\ (2 \ 0 \ 0) 26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (2 \ 0 \ 0) 26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (2 \ 0 \ 0) 26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (2 \ 0 \ 0) 26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (2 \ 0 \ 0) 26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (2 \ 0 \ 0) 26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (2 \ 0 \ 0) 26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (2 \ 0 \ 0) 26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (2 \ 0 \ 0) 26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (2 \ 0 \ 0) 26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (2 \ 0 \ 0) 26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (2 \ 0 \ 0) 26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (2 \ 0 \ 0) 26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (2 \ 0 \ 0) 26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (2 \ 0 \ 0) 26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (2 \ 0 \ 0) 26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (2 \ 0 \ 0) 26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (2 \ 0 \ 0) 26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (2 \ 0 \ 0) 26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (2 \ 0 \ 0) 26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (2 \ 0 \ 0) 26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \) \\ (2 \ 0 \ 0) 26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \ (1E \) \) \) \ (1E \) \) \ (1E \) \) \) \ (1E \) \) \) \ (1E \) \) \) \) \ (1E \) \) \) \) \ (1E \) \) \) \) \) \) \) \) \) \ $	5128.000 5128.000 5158.000	5136.642 5147.191 5164.039 5164.510 5164.510 5165.362 5165.490 5165.505	8.642 * 6.039 7.362	0.986 0.996 0.984 1.000 1.000 0.964 0.982 0.974	5141.295 5151.264 5165.305 5166.711 5166.752 5167.060 5167.060 5167.060	# * #	0.706 0.997 0.986 0.997 0.996 0.996 1.000 1.000 1.000			0.7 -4.8 -0.3 0.8	-1.3 -7.9 0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5128.000 5158.000	5136.642 5147.191 5164.039 5164.510 5164.510 5165.362 5165.490 5165.505 5235.085	8.642 * 6.039 7.362	0.986 0.996 0.984 1.000 1.000 1.000 0.964 0.982 0.974 0.984	5141.295 5151.264 5165.305 5166.711 5166.752 5167.060 5167.060 5167.060 5236.967	# #	0.706 0.997 0.986 0.997 0.996 0.996 1.000 1.000 1.000 0.987			0.7 -4.8 -0.3	-1.3 -7.9 0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5128.000 5158.000	5136.642 5147.191 5164.039 5164.510 5164.510 5165.362 5165.490 5165.505 5235.085 5240.803	8.642 * 6.039 7.362	0.986 0.996 0.984 1.000 1.000 1.000 0.964 0.982 0.974 0.984 1.000	5141.295 5151.264 5165.305 5166.711 5166.733 5166.752 5167.060 5167.060 5167.060 5236.967 5243.098	# * #	0.706 0.997 0.986 0.997 0.996 0.996 1.000 1.000 1.000 0.987 1.000			0.7 -4.8 -0.3	-1.3 -7.9 0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5128.000 5158.000	5136.642 5147.191 5164.039 5164.510 5164.510 5164.510 5165.362 5165.490 5165.490 5165.505 5235.085 5240.803 5240.803	8.642 * 6.039 7.362	0.986 0.996 0.984 1.000 1.000 0.964 0.982 0.974 0.984 1.000 1.000	5141.295 5151.264 5165.305 5166.711 5166.752 5167.060 5167.060 5167.060 5167.060 5243.098 5243.098	* *	0.706 0.997 0.986 0.997 0.996 1.000 1.000 1.000 0.987 1.000 1.000			0.7 -4.8 -0.3	-1.3 -7.9 0.5
$ \begin{array}{c} (1 \ 1 \ 0)26 (\ 1 \ 0 \ 0); (1AI \ AI \) & \rightarrow AI \) \\ (1 \ 1 \ 0)26 (\ 1 \ 0 \ 0); (1AI \ AI \) & \rightarrow E \) \\ (2 \ 0 \ 0)26 (\ 0 \ 1 \); (1AI \ E \) & \rightarrow AI \) \\ (2 \ 0 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (2 \ 0 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (2 \ 0 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (2 \ 0 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (2 \ 0 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (1 \ 0 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (1 \ 1 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (1 \ 1 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (1 \ 1 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (1 \ 1 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (1 \ 1 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (1 \ 1 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (1 \ 1 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (1 \ 1 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (1 \ 1 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (1 \ 1 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (1 \ 1 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (1 \ 1 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (1 \ 1 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (1 \ 1 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \\ (1 \ 1 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \) \\ (1 \ 1 \ 0)26 (\ 0 \ 1 \); (1E \ E \) & \rightarrow AI \) \) \ (1 \) (1 \); (1E \ E \) & \rightarrow AI \) \) \ (1 \) (1 \) (1 \) (1 \); (1E \ E \) \) \) \ (1 \) (1 \$	5128.000 5128.000 5158.000	5136.642 5147.191 5164.039 5164.510 5164.510 5164.510 5165.362 5165.505 5235.085 5240.803 5240.803	8.642 * 6.039 7.362	0.986 0.996 0.984 1.000 1.000 1.000 0.964 0.982 0.974 0.984 1.000 1.000	5141.295 5151.264 5165.305 5166.711 5166.733 5166.752 5167.060 5167.060 5167.060 5167.060 5236.967 5243.098 5243.098	# * #	0.706 0.997 0.986 0.997 0.996 1.000 1.000 1.000 0.987 1.000 1.000 1.000			0.7 -4.8 -0.3 0.8	-1.3 -7.9 0.5
$ \begin{array}{c} (1 \ 1 \ 0 \ 0 \ 0 \ (1 \ 1 \ 0 \ 0 \) \ (1 \ 1 \ 0 \ 0 \) \ (1 \ 1 \ 1 \ 0 \ 0 \) \ (1 \ 1 \ 1 \ 0 \ 0 \) \ (1 \ 1 \ 1 \ 0 \ 0 \) \ (1 \ 1 \ 0 \ 0 \) \ (1 \ 1 \ 0 \) \ (1 \ 1 \ 0 \) \ (1 \ 1 \ 0 \) \ (1 \ 1 \ 0 \) \ (1 \ 1 \ 0 \) \ (1 \ 1 \ 0 \) \ (1 \ 1 \ 0 \) \ (1 \ 1 \ 0 \) \ (1 \ 1 \ 0 \) \ (1 \ 1 \ 0 \) \ (1 \ 1 \ 0 \) \ (1 \ 1 \ 0 \) \ (1 \ 1 \ 0 \) \ (1 \ 1 \ 0 \) \ (1 \ 1 \ 0 \) \ (1 \ 1 \) \ (1 \) \ ($	5128.000 5128.000 5158.000	5136.642 5147.191 5164.039 5164.510 5164.510 5164.510 5165.505 5235.085 5240.803 5240.803 5240.803	8.642 * 6.039 7.362	0.986 0.996 0.984 1.000 1.000 0.964 0.982 0.974 0.984 1.000 1.000 1.000	5141.295 5151.264 5165.305 5166.711 5166.752 5167.060 5167.060 5167.060 5236.967 5243.098 5243.098 5243.098	# #	0.706 0.997 0.986 0.996 0.996 1.000 1.000 0.987 1.000 1.000 1.000 1.000			0.7 -4.8 -0.3 0.8	-1.3 -7.9 0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5128.000 5158.000	5136.642 5147.191 5164.039 5164.510 5164.510 5164.510 5165.362 5165.490 5165.505 5235.085 5240.803 5240.803 5240.803 5240.803	8.642 * 6.039 7.362	0.986 0.996 0.984 1.000 1.000 0.964 0.982 0.974 0.984 1.000 1.000 1.000 0.996	5141.295 5151.264 5165.305 5166.711 5166.733 5166.752 5167.060 5167.060 5167.060 5236.967 5243.098 5243.098 5243.098	# * #	0.706 0.997 0.986 0.996 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000			0.7 -4.8 -0.3	-1.3 -7.9 0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5158.000 5158.000	5136.642 5147.191 5164.039 5164.510 5164.510 5165.450 5165.605 5235.085 5240.803 5240.803 5240.803 5245.537	8.642 * 6.039 7.362	0.986 0.996 0.984 1.000 1.000 0.964 0.982 0.974 0.984 1.000 1.000 1.000 0.996	5141.295 5151.264 5165.305 5166.711 5166.752 5167.060 5167.060 5236.967 5243.098 5243.098 5243.098 5243.098	# #	0.706 0.997 0.996 0.996 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.997			0.7 -4.8 -0.3	-1.3 -7.9 0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5158.000 5158.000	5136.642 5147.191 5164.039 5164.510 5164.510 5164.510 5165.362 5165.490 5165.505 5235.085 5240.803 5240.803 5240.803 5245.485 5245.537 5246.007	8.642 * 6.039 7.362	0.986 0.996 1.000 1.000 0.964 0.964 0.964 0.984 1.000 1.000 1.000 0.996 0.996	5141.295 5151.264 5165.305 5166.711 5166.733 5166.752 5167.060 5167.060 5167.060 5236.967 5243.098 5243.098 5243.098 5243.098 5243.517	# #	0.706 0.997 0.986 0.997 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.987 0.997 0.997			0.7 -4.8 -0.3	-1.3 -7.9 0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5158.000 5158.000	5136.642 5147.191 5164.039 5164.510 5164.510 5164.510 5165.362 5165.490 5165.505 5235.085 5240.803 5240.803 5240.803 5244.803 5245.537 5246.007 5382.774	8.642 * 6.039 7.362	0.986 0.996 1.000 1.000 0.964 0.982 0.974 0.984 1.000 1.000 1.000 0.996 0.996 0.993 0.999	5141.295 5151.264 5165.305 5166.711 5166.733 5166.752 5167.060 5167.060 5236.967 5243.098 5243.098 5243.098 5247.501 5247.511 5247.517	# * #	0.706 0.997 0.996 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.997 0.999			0.7 -4.8 -0.3 0.8	-1.3 -7.9 0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5128.000 5158.000	5136.642 5147.191 5164.039 5164.510 5164.510 5164.510 5165.362 5165.490 5165.505 5235.085 5240.803 5240.803 5240.803 5245.485 5245.537 5246.007 5392.774	8.642 * 6.039 7.362	0.986 0.994 1.000 1.000 0.964 0.984 1.000 1.000 1.000 1.000 0.996 0.996 0.996 0.993 0.999	5141.295 5151.264 5165.305 5166.711 5166.733 5166.752 5167.060 5167.060 5243.098 5243.098 5243.098 5243.098 5247.511 5247.511 5247.514	# * #	0.706 0.997 0.986 0.997 0.996 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000			0.7 -4.8 -0.3	-1.3 -7.9 0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5128.000 5158.000	5136.642 5147.191 5164.039 5164.510 5164.510 5165.362 5165.490 5165.505 5235.085 5240.803 5240.803 5240.803 5240.803 5245.485 5245.537 5246.007 5392.774	8.642 * 6.039 7.362	0.986 0.996 1.000 1.000 0.964 0.982 0.974 0.982 1.000 1.000 1.000 1.000 0.996 0.999 0.999	5141.295 5151.264 5165.305 5166.713 5166.752 5167.060 5167.060 5167.060 5236.967 5243.098 5243.098 5243.098 5247.501 5247.517 5433.954	# * #	0.706 0.997 0.986 0.997 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.987 1.000 0.997 0.997 0.999			0.7 -4.8 -0.3	-1.3 -7.9 0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5128.000 5158.000	5136.642 5147.191 5164.039 5164.510 5164.510 5164.510 5165.362 5165.490 5165.505 5240.803 5240.803 5240.803 5240.803 5244.845 5246.007 5392.774	8.642 * 6.039 7.362	0.986 0.996 0.984 1.000 1.000 0.964 0.982 0.974 0.984 1.000 1.000 0.996 0.996 0.996 0.993 0.999	5141.295 5151.264 5165.305 5166.711 5166.733 5166.752 5167.060 5167.060 5236.967 5243.098 5243.098 5243.098 5243.098 5247.501 5247.514 5247.517 5433.954	# * #	0.706 0.997 0.996 0.997 0.996 1.000 1.000 1.000 1.000 1.000 1.000 0.987 1.000 0.997 0.997 0.999			0.7 -4.8 -0.3	-1.3 -7.9 0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5128.000 5158.000	5136.642 5147.191 5164.039 5164.510 5164.510 5164.510 5165.490 5165.505 5235.085 5240.803 5240.803 5240.803 5244.805 5245.537 5246.007 5392.774	8.642 * 6.039 7.362	0.986 0.996 0.984 1.000 1.000 0.964 0.982 0.974 0.984 1.000 1.000 1.000 0.996 0.993 0.999 1.000	5141.295 5151.264 5165.305 5166.733 5166.733 5166.752 5167.060 5167.060 5167.060 5167.060 5167.060 5167.060 5243.098 5243.098 5243.098 5243.098 5243.098 5243.098 5243.098 5243.098 5243.098	# * # #	0.706 0.997 0.996 0.997 0.996 1.000 1.000 0.987 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.997 0.999			0.7 -4.8 -0.3	-1.3 -7.9 0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5128.000 5158.000	5136.642 5147.191 5144.039 5164.510 5164.510 5164.510 5165.305 5165.305 5240.803 5240.803 5240.803 5240.803 5240.803 5245.537 5246.007 5392.774	8.642 * 6.039 7.362	0.986 0.986 0.984 1.000 1.000 0.964 0.982 0.974 1.000 1.000 0.996 0.996 0.996 0.999 1.000 1.000	5141.295 5151.264 5155.305 5166.731 5166.735 5166.752 5167.060 5167.060 5167.060 5167.060 5167.060 5236.967 5243.098 5243.098 5243.098 5247.511 5243.098 5247.511 5433.954	# #	0.706 0.997 0.986 0.997 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.097 0.997 0.997			0.7 -4.8 -0.3	-1.3 -7.9 0.5
$ \begin{array}{c} (1 \ 1 \ 0 \ 0 \ 0 \) (1 \ 1 \ 0 \ 0 \) (1 \ 1 \ 0 \ 0 \) (1 \ 1 \ 0 \ 0 \) (1 \ 1 \ 0 \ 0 \) (1 \ 1 \ 0 \ 0 \) (1 \ 1 \ 0 \ 0 \) (1 \ 1 \ 0 \ 0 \) (1 \ 1 \ 0 \ 0 \) (1 \ 1 \ 0 \ 0 \) (1 \ 1 \ 0 \ 0 \) (1 \ 1 \ 0 \) (1 \ 1 \ 0 \) (1 \ 1 \ 0 \) (1 \ 1 \ 0 \) (1 \ 1 \ 0 \) (1 \ 1 \ 0 \) (1 \ 1 \ 0 \) (1 \ 1 \ 0 \) (1 \ 1 \ 0 \) (1 \ 1 \ 0 \) (1 \ 1 \ 0 \) (1 \ 1 \ 0 \) (1 \ 1 \ 0 \) (1 \ 1 \ 0 \) (1 \ 1 \ 0 \) (1 \ 1 \ 0 \) (1 \ 1 \) (1 \ 1 \ 0 \) (1 \ 1 \) (1 \ 1 \ 0 \) (1 \ 1 \) (1 \ 1 \ 0 \) (1 \ 1 \) (1 \ 1 \ 0 \) (1 \ 1 \) (1 \ 1 \ 0 \) (1 \ 1 \) (1 \ 1 \ 0 \) (1 \ 1 \) (1 \ 1 \ 0 \) (1 \ 0 \ 1 \) (1 \ 1 \ 0 \) (1 \ 1 \) (1 \ 1 \ 0 \) (1 \ 1 \) (1$	5128.000 5128.000 5158.000	5136.642 5147.191 5144.039 5164.510 5164.510 5165.362 5165.490 5165.365 5235.085 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5245.455 5245.537 5245.617 5246.007 5246.007 546.5190 6068.190 6068.190	8.642 * 6.039 7.362	0.986 0.996 0.984 1.000 1.000 0.964 0.982 0.974 0.984 1.000 1.000 1.000 0.996 0.993 0.999 1.000 1.000 1.000	5141.295 5151.264 5155.305 5166.733 5166.752 5167.060 5167.060 5167.060 528.967 5243.098 5243.098 5243.098 5243.098 5243.098 5243.098 5243.098 5243.514 5247.514 5247.514 5247.514	# #	0.706 0.997 0.996 0.997 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.999 0.999 0.996 0.996 0.996			0.7 -4.8 -0.3	-1.3 -7.9 0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5128.000 5158.000	5136.642 5147.191 5144.039 5144.510 5144.510 5163.362 5165.362 5165.365 5235.085 5246.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.537 5245.485 5245.537 5245.537 5245.537 5245.537	8.642 * 6.039 7.362	0.986 0.986 0.984 1.000 1.000 0.964 0.984 1.000 1.000 0.996 0.996 0.999 1.000 1.000 1.000 1.000 1.000	5141.295 5151.264 5165.305 5166.711 5166.752 5167.060 5167.060 5167.060 5236.967 5234.098 5243.098 5243.098 5243.098 5243.098 5243.098 5243.098 5247.511 5247.514 5247.514 5247.514	# #	0.706 0.997 0.986 0.997 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.997 0.997 0.999 0.996 0.996			0.7 -4.8 -0.3	-1.9 -7.9 0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5128.000 5158.000	5136.642 5147.191 5144.039 5164.510 5164.510 5164.510 5165.900 5165.500 5240.803 5240.803 5240.803 5240.803 5240.803 5245.537 5246.007 5392.774 6068.190 6068.190 6068.234	8.64 * 6.039 7.362	0.986 0.986 0.984 1.000 1.000 0.964 0.982 0.974 0.984 1.000 1.000 1.000 0.996 0.993 0.999 1.000 1.000 1.000 0.995 0.993	5141.295 5151.264 5165.305 5166.711 5166.733 5167.760 5167.760 5167.760 5236.967 5243.098 5243.098 5243.098 5243.098 5247.514 5247.514 5247.514 5247.514 5247.515 6072.208 6072.508	* *	0.706 0.997 0.996 0.997 0.996 1.000 1.000 1.000 1.000 1.000 0.997 0.997 0.997 0.999 0.996 1.000			0.7 -4.8 -0.3	-1.3 -7.9 0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5128.000 5158.000	5136.642 5147.191 5144.039 5144.510 5144.510 5164.510 5165.302 5165.505 5235.085 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5245.485 5245.537 5245.537 5245.537 5245.537 5245.037 6068.190 6068.190 6068.294 6068.294	8.642 * 6.039 7.362	0.986 0.986 0.984 1.000 1.000 0.964 0.982 0.974 0.982 0.974 0.984 1.000 1.000 0.996 0.996 0.996 0.999 1.000 1.000 1.000 0.905 0.999	5141.295 5151.264 5155.305 5166.711 5166.713 5167.060 5167.060 5167.060 5236.967 5234.098 5243.098 5243.098 5243.098 5243.098 5243.514 5247.511 5247.514 5247.514 5247.514 5247.514 5247.514	# * #	0.706 0.997 0.998 0.997 0.996 1.000 1.000 1.000 1.000 1.000 0.987 1.000 0.997 0.997 0.999 0.999 0.996 1.000 0.999 0.999			0.7 -4.8 -0.3	-1.3 -7.9 0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5128.000 5158.000	5136.642 5147.191 5144.039 5164.510 5164.510 5164.510 5165.490 5165.490 5165.490 5240.803 5240.803 5240.803 5240.803 5240.803 5245.537 5246.07 5392.774 6068.190 6068.190 6068.234 6068.234	8.642 * 6.039 7.362	0.986 0.996 0.984 1.000 1.000 0.964 0.982 0.974 0.984 1.000 1.000 1.000 0.996 0.993 0.999 1.000 1.000 1.000 0.996 0.993 0.999	5141.295 5151.264 5165.305 5166.711 5166.733 5167.760 5167.760 5167.760 5236.967 5243.098 5243.098 5243.098 5243.098 5247.514 5247.514 5247.514 5247.514 5247.515 6072.208 6072.508 6072.508 6072.508	# #	0.706 0.997 0.996 0.997 0.996 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.997 0.997 0.999 0.999 0.999 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.996 0.996 0.997 0.997 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.997 0.996 0.996 0.996 0.996 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.997 0.997 0.997 0.997 0.997 0.997 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.999 0.990 0.990 0.990 0.990 0.997 0.995 0.			0.7 -4.8 -0.3	-1.3 -7.9 0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5128.000 5158.000	5136.642 5147.191 5144.039 5164.510 5164.510 5164.510 5165.490 5165.490 5165.490 5235.085 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5245.537 5246.007 5245.019 6068.190 6068.190 6068.290 6068.290	8.642 * 6.039 7.362	0.986 0.986 0.984 1.000 1.000 0.964 0.982 0.974 0.982 0.974 1.000 1.000 0.996 0.993 0.999 1.000 1.000 1.000 1.000 0.945 0.974 0.954	5141.295 5151.295 5151.295 5150.711 5160.711 5160.733 5167.060 5167.060 5167.060 5167.060 5167.060 5167.060 5167.060 5167.060 5236.967 5243.098 5243.098 5243.098 5243.098 5247.514 5247.514 5247.514 5247.515 5433.964 6072.208 6072.208 6072.508 607	# #	0.706 0.997 0.986 0.997 0.996 1.000 1.000 1.000 1.000 1.000 1.000 0.987 0.997 0.997 0.997 0.999 0.999 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000			0.7 -4.8 -0.3	-1.3 -7.9 0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5128.000 5158.000	5136.642 5147.191 5144.039 5144.510 5144.510 5144.510 5145.490 5165.490 5165.490 5240.803 525 525 525 525 525 525 525 525 525 52	8.642 * 6.039	0.986 0.996 0.994 1.000 1.000 0.964 0.982 0.974 0.982 0.974 0.984 1.000 1.000 0.996 0.993 0.999 1.000 1.000 1.000 0.995 0.993 0.999	5141.295 5151.295 5151.295 5167.711 5166.771 5166.752 5167.060 5167.060 5167.060 5167.060 5167.060 5167.060 5167.060 5167.060 523.096 7523.096 7523.096 7523.096 7524.514 5247.514 5247.514 5247.514 5247.514 5247.514 6072.208 6072.208 6072.508 6072.508 6072.508 6072.508 6072.508 6072.508 6072.508 6072.508 6072.508 6072.114 6072.213	# #	0.706 0.997 0.986 0.997 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.997 0.997 0.999 0.996 1.000 1.000 1.000 0.999 0.998			0.7 -4.8 -0.3 0.8	-1.3 -7.9 0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5128.000 5158.000	5136.642 5147.191 5144.039 5164.510 5164.510 5164.510 5164.510 5165.490 5165.490 5245.805 5240.803 5245.805 5240.803 5245.815 5240.803 5245.455 5240.803 5245.537 5245.007 5392.774 5392.774 5392.774	8.642 * 6.039	0.986 0.996 0.9984 1.000 1.000 0.964 0.982 0.974 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.993 0.999 1.000 0.945 0.974 0.974 0.974	5141.295 5151.264 5165.305 5166.711 5166.733 5167.060 5167.060 5167.060 5167.060 5243.098 5243.098 5247.514 5247.514 5247.514 5247.514 5247.517 543.945 6072.208 6072.208 6072.208 6072.508 6075	# * *	0.706 0.997 0.986 0.997 0.986 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.997 0.999 0.999 0.999 0.998 0.998 0.998 0.998			0.7 -4.8 -0.3	-1.3 -7.9 0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5128.000 5158.000	5136.642 5147.191 5144.039 5144.510 5164.510 5164.510 5165.490 5165.490 5165.505 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5245.455 5245.537 5245.537 5245.537 5245.537 5245.637 5392.774	8.642 * 6.039 7.362	0.986 0.996 0.994 1.000 1.000 0.964 0.982 0.974 0.982 0.974 1.000 1.000 0.996 0.993 0.999 1.000 1.000 1.000 0.995 1.000 1.000 0.94 1.000 1.000 0.94 1.000 1.000 0.995 0.995 0.995 1.000	5141.295 5151.295 5151.264 5165.305 5166.711 5166.752 5167.060 5167.060 5167.060 5167.060 5167.060 5167.060 5236.967 5233.986 5233.986 5234.088 5247.514 5247.514 5247.514 5247.514 5247.514 5247.514 5247.514 6072.208 6072.208 6072.208 6072.508 6075.508 6075.508 6075.508 6075.508 6075.508 6075.508 6075.508 607	# #	0.706 0.997 0.986 0.997 0.996 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.00000 1.00000000			0.8 -4.8 -0.3	-1.3 -7.9 0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5128.000 5158.000	5136.642 5147.191 5144.039 5164.510 5164.510 5164.510 5164.510 5165.490 5165.490 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5245.537 5246.07 5246.07 5245.537 5246.07 5247.548 5247.548 5247.548 5247.548 5247.548 5248.5485 5248.54855 5248.548555555555555555555555555555555	8.642 * 6.039	0.986 0.996 0.9984 1.000 1.000 0.964 0.982 0.974 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.993 0.999 1.000 0.945 0.974 0.974 0.974 0.954 0.974	5141.295 5151.264 5165.305 5166.711 5166.733 5167.7060 5167.7060 5167.060 5243.098 5243.098 5243.098 5243.098 5247.514 5243.098 5247.514 5247.514 5247.514 5247.517 544.517 544.517 544.517 544.517 544.517 545.518 6072.208 6072.208 6072.508 6072.508 6072.518 6075.51	* *	0.706 0.997 0.986 0.997 0.986 0.996 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.997 0.997 0.999 0.999 0.998 0.998 0.998 0.998 0.998 0.998			0.7 -4.8 -0.3	-1.3 -7.9 0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5128.000 5158.000	5136.642 5147.191 5144.039 5144.510 5164.510 5164.510 5165.490 5165.490 5240.803 526	8.642 * 6.039	0.986 0.996 0.9984 1.000 1.000 1.000 0.964 0.982 0.974 0.984 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.00000 1.00000000	5141.295 5151.264 5165.305 5166.711 5166.733 5167.060 5167.060 5167.060 5167.060 5167.060 5167.060 5236.967 5233.098 5233.098 5233.098 5233.098 5234.514 5247.511 5247.514 5247.517 5247.514 5247.514 5247.514 6072.208 6072.208 6072.208 6072.508 607	# • •	0.706 0.997 0.986 0.997 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.997 0.997 0.997 0.997 0.999 0.996 1.000 1.000 0.999 0.998 0.998 0.998 0.998 0.998 0.998 0.998			0.8 -0.3	-1.3 -7.9 0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5128.000 5158.000	5136.642 5147.191 5144.039 5164.510 5164.510 5165.490 5165.490 5165.505 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5245.485 5245.485 5245.485 5245.537 5245.017 5392.774 6068.190 6068.190 6068.234 6069.372 6069.529 6069.716 6059.240	8.642 * 6.039	0.986 0.996 0.9984 1.000 0.964 0.982 0.974 0.982 0.974 0.982 0.974 0.984 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.993 0.999 1.000 0.945 0.976 0.945 0.976 0.945 0.976 0.994 1.000	5141.295 5151.264 5165.305 5166.711 5166.733 5167.060 5167.060 5167.060 5236.967 5236.967 5233.098 5243.098 5243.098 5247.514 5243.098 5247.514 5243.098 6072.208 6072.208 6072.208 6072.508 6072.508 6072.208 6072.138	# #	0.706 0.997 0.986 0.997 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000			0.7 -4.8 -0.3	-1.3 -7.9 0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5128.000 5158.000	5136.642 5147.191 5144.039 5164.510 5164.510 5164.510 5165.490 5165.490 5245.805 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5246.815 5245.455 5245.537 5245.019 6068.190 6068.190 6068.234 6069.529 6069.716 6069.243 6105.080 6111.884 6111.884 6111.884	8.642 * 6.039	0.986 0.996 0.994 0.984 0.984 0.984 0.984 0.984 0.984 0.984 0.984 0.984 0.984 0.990 0.994 0.990 0.999 0.999 0.999 0.999 0.993 0.999 0.993 0.999 0.994 0.994 0.994 0.994 0.994 0.994 0.995 0.994 0.994 0.995 0.995 0.994 0.995	5141.295 5151.264 5165.305 5166.711 5166.733 5167.060 5167.060 5167.060 5236.967 5233.098 5233.098 5233.098 5233.098 5233.098 5233.098 5233.098 5233.098 5234.098 5234.098 5234.098 5247.511 5247.514 5247.514 5247.514 5247.514 6072.208 6072.508 607	# • •	0.706 0.997 0.987 0.997 0.996 1.000 0.9990 0.999 0.00000000			0.7 -0.3 0.8	-1.3 -7.9 0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5128.000 5158.000	5136.642 5147.191 5144.039 5144.510 5164.510 5164.510 5165.490 5165.490 5165.505 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5245.455 5245.537 5245.537 5245.537 5245.017 5392.774 6068.190 6068.190 6068.234 6069.372 6069.529 6069.716 6059.240 6069.529 6069.529 6069.716 6059.529 6069.529 6059.559 6059.559 6059.559 6059.559 6059.559 6059.559 6059.559 6059.559 6059.559 6059.559 6059.559 605	8.642 * 6.039 7.362	0.986 0.996 0.994 0.994 0.994 0.994 0.996 0.994 0.964 0.984 0.984 0.984 0.993 0.999 1.000 1.000 0.993 0.999 1.000 1.000 0.945 0.974 0.945 0.974 0.945 0.974 0.945 0.974 0.945 0.974 0.945 0.974 0.945 0.974 0.945 0.974 0.945 0.974 0.995	5141.295 5151.294 5165.305 5166.711 5166.752 5167.060 5167.060 5167.060 5167.060 5167.060 5167.060 5167.060 5167.060 5167.060 523.098 523.098 523.098 5243.098 5243.098 5243.098 5247.511 5247.514 5247.514 5247.514 6072.208 6072.208 6072.508 6072.508 6072.508 6072.508 6072.508 6072.508 6072.508 6072.108 6072.5	# • #	0.706 0.997 0.986 0.997 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.996 1.000 0.999 0.0998 0.0998 0.000 0.000 0.000 0.000 0.0000 0.0000 0.000000			0.7 -0.3 0.8	-1.3 -7.9 0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5128.000 5158.000	5136.642 5147.191 5144.039 5144.510 5164.510 5164.510 5165.490 5165.490 5245.865 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5245.455 5245.537 5245.619 6068.190 6068.190 6068.190 6068.29 6068.277 6068.271 6069.271 6075 6075 6075 6075 6075 6075 6075 6075	8.642 * 6.039	0.986 0.996 0.994 0.994 0.984 0.984 0.982 0.984 0.984 0.984 0.984 0.984 0.984 0.993 0.999 1.000 0.996 0.993 0.999 1.000 0.944 0.984 0.996 0.993 0.999 1.000 0.974 0.974 0.974 0.994 0.994 0.974 0.974 0.994 0.995 0.994 0.995 0.994 0.995	5141.295 5151.264 5155.305 5156.711 5166.733 5167.7060 5167.060 5167.060 5167.060 5167.060 5167.060 5236.967 5233.098 5234.098 5237.517 5235.098 5237.517 5235.098 5237.517 5235.098 5237.517 5235.098 5237.517 5235.098 5237.517 5235.098 5237.517 5235.098 5237.517 5235.098 5237.517 5235.098 5237.517 5235.098 5237.517 5235.098 5237.517 5235.098 5237.517 5235.098 5237.517 5235.097 5237.517 5235.097 5237.517 5235.097 5237.517 5235.097 5237.517 5235.097 5237.517 5235.097 5237.517 5235.097 5237.517 5235.097 5237.517 5235.097 5237.517 5235.097 5237.517 5235.097 5237.517 5235.097 5237.517 5237.517 5237.517 5237.517 5237.517 5237.517 5237.517 5237.517 5237.517 5237.517 5237.517 5237.517 5237.517 5237.517 5237.517 5237.517 5237.517 5237.517 5237.517 5257.517 5237.5175.5175.5175.5175.5175.5175.5175.51	# • •	0.706 0.997 0.987 0.997 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.997 0.997 0.999 0.999 0.999 0.999 0.998 0.998 0.998 0.998 0.998 1.000 1.000			-4.8 -0.3	-1.3 -7.9 0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5128.000 5158.000 5158.000	5136.642 5147.191 5144.039 5144.510 5144.510 5144.510 5145.505 5240.803 525 5260.803	8.642 * 6.039 7.362	0.986 0.996 0.996 0.994 0.996 0.994 0.996 0.997 0.997 0.997 0.997 0.997 0.997 0.993 0.999 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.994 0.945 0.974 0.994 0.994 0.974 0.974 0.994 0.994 0.994 0.974 0.974 0.994 0.994 0.994 0.994 0.994 0.974 0.994	5141.295 5151.264 5165.305 5166.711 5166.733 5167.7060 5167.060 5167.060 5167.060 5236.967 5233.098 5233.098 5233.098 5233.098 5233.098 5243.098 5243.098 5243.098 5247.517 5247.517 5247.514 5247.514 5247.514 5247.514 6072.208 6072.208 6072.508 6072.508 6072.508 6072.508 6072.508 6072.508 6072.508 6072.508 6072.508 6072.1144 6072.1144	# #	0.706 0.997 0.987 0.997 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.997 0.999 0.996 0.996 0.996 0.996 0.996 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.00000 1.00000000		.4.627	-0.3 0.8	-1.3 -7.9 0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6138.340	5136.642 5147.191 5144.039 5164.510 5164.510 5164.510 5164.510 5165.490 5165.490 5235.085 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5246.537 5246.007 5245.537 5246.007 5392.774 5392.7755 5395.7755 5395.7755 5395.77555 5395.77555555555555555555	8.642 * 6.039 7.362	0.986 0.996 0.994 0.994 0.994 0.994 0.996 0.992 0.974 1.000 0.982 0.974 1.000 0.982 0.974 1.000 0.994 0.996 0.999 1.000 0.999 1.000 0.999 0.999 0.997 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.995 0.999 0.994 0.994 0.994 0.994 0.994 0.995 0.994 0.995	5141.295 5151.295 5151.295 5151.295 5151.295 5157.060 5167.7060 5167.7060 5167.060 5236.967 5233.098 5234.098 5234.098 5234.098 5234.098 5234.098 5234.514 5234.095 5234.514 5234.095 5234.514 5234.095 5234.514 5237.5145 5237.5	# # #	0.706 0.997 0.986 0.997 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.997 0.997 0.997 0.997 0.997 0.999 0.998 1.000 0.998	-0.23	-4.667	-215 -25	-1.3 -7.9 0.5 1.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5128.000 5158.000 5158.000 5158.000	b136.642 b136.642 b147.191 b144.039 b144.510 b164.510 b164.510 b165.362 b165.490 b165.505 b240.803 b240.803 b240.803 b240.803 b240.803 b240.803 b240.803 b240.803 b244.805 b245.537 b245.637 b245.637 b246.807 b392.774 c068.190 c068.191 c06	8.642 * 6.039 7.362 -3.330 -1.322	0.986 0.996 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.993 0.999 1.000 0.946 0.993 0.993 0.993 0.993 0.993 0.993 0.994 0.944 0.974 0.995	5141.295 5151.264 5165.305 5166.711 5166.733 5166.753 5167.060 5167.060 5167.060 5236.967 5233.098 5233.098 5233.098 5233.098 5233.098 5233.098 5233.098 5233.098 5237.517 5237.517 5237.514 5247.514 5247.514 5247.514 5247.514 5247.514 5247.514 5247.514 5247.515 525	# # #	0.706 0.997 0.986 0.997 0.996 1.000 0.9990 0.999 0.990 0.990 0.990 0.990 0.990 0.990 0.900 0.900 0.900 0.000	-0.23 -0.29	-4.667 1.951	-2.5 -2.3	-1.3 -7.9 0.5 1.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6136.340 6136.330	5136.642 5147.191 5144.039 5164.510 5164.510 5164.510 5164.510 5165.490 5165.490 5245.805 5240.803 5240.803 5240.803 5240.803 5240.803 5244.537 5246.537 5246.007 5246.007 5247.007 525	8.642 * 6.039 7.362 7.362	0.986 0.996 0.994 0.994 0.994 0.994 0.996 0.992 0.974 1.000 0.982 0.974 1.000 0.994 1.000 0.996 0.999 1.000 0.999 1.000 0.999 1.000 0.999 1.000 0.994 0.999 0.999 1.000 0.994	5141.295 5151.264 5155.305 5167.711 5166.771 5167.7060 5167.060 5167.060 5236.967 5233.098 5234.098 5234.098 5234.098 5234.098 5234.098 5234.501 5234.515 5247.511 5247.511 5247.512 5247.512 5243.086 6072.228 6072.508 60	# # # -0.493 -0.422	0.706 0.997 0.986 0.997 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.987 0.997 0.997 0.997 0.997 0.997 0.997 0.996 1.000 0.998	-0.23 -0.29	-4.667 1.951	-2.5 -2.3	-1.3 -7.9 0.5 1.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6136.340 6136.330	b136.642 b136.642 b147.191 b144.039 b144.510 b164.510 b164.510 b165.362 b165.490 b165.505 b240.803 b240.803 b240.803 b240.803 b240.803 b240.803 b240.803 b240.803 b240.803 b240.803 b244.685 b245.455 b245.637 b25	8.642 * 6.039 7.362 -3.330 -1.322	0.986 0.996 0.984 0.984 0.984 0.984 0.982 0.982 0.974 1.000 0.982 0.974 1.000 0.982 0.974 0.982 0.974 0.982 0.982 0.999 0.993 0.999 0.933 0.999 0.933 0.999 0.933 0.999 0.933 0.999 0.933 0.999 0.933 0.999 0.933 0.999 0.934 0.996 0.996 0.997 0.996 0.997	5141.295 5151.264 5165.305 5166.711 5166.733 5167.7060 5167.060 5167.060 5167.060 5236.967 5233.098 5233.098 5233.098 5233.098 5233.098 5233.098 5233.098 5233.098 5233.098 6072.208 6072.208 6072.208 6072.508 60	# # #	0.706 0.997 0.986 0.997 0.996 1.000 0.997 0.999 0.998	-0.23 -0.29	-4.667 1.951	-2.5 -2.3	-1.3 -7.9 0.5 1.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6136.340 6136.330	5136.642 5147.191 5144.039 5144.510 5164.510 5164.510 5165.490 5165.490 5165.505 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5245.485 5245.485 5245.485 5245.537 5245.085 5245.485 5245.537 5245.085 525 525 525 525 525 525 525 525 525 5	8.64 * 6.039 7.362 -3.330 -1.322	0.986 0.996 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.982 0.984 1.000 0.984 0.994 0.994 0.999 0.999 1.000 0.994 0.999 0.999 0.999 0.999 0.999 0.994	5141.295 5151.264 5155.305 5156.711 5166.733 5167.7060 5167.7060 5123.967 5233.098 5234.098 5234.098 5234.098 5234.098 5234.098 5234.098 5234.098 5234.098 5234.098 5234.098 5234.098 5234.098 5234.098 5234.098 5234.098 5234.098 5237.501 5234.098 6072.208 6072.208 6072.508 6	# # # -0.493 -0.422	0.706 0.997 0.986 0.997 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.996 1.000 0.998	-0.23 -0.29	-4.667 1.951	-2.5 -2.3	-1.7.9 -7.9 0.5 1.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6136.340 6136.330	5136.642 5147.191 5144.039 5144.510 5164.510 5164.510 5165.490 5165.490 5165.490 5240.803 524	8.642 * 6.039 7.362 7.362 -3.330 -1.322	0.986 0.996 0.994 0.984 0.984 0.984 0.982 0.974 1.000 0.982 0.974 1.000 0.982 0.974 1.000 0.986 0.993 0.993 1.000 0.993 0.993 1.000 0.993 0.993 1.000 0.994 0.993 0.993 1.000 0.994 0.994 0.994 0.994 0.994 0.994 0.995 0.994 0.995 0.997 0.995 0.997 0.999 0.997 0.999 0.997 0.999 0.997 0.999 0.997 0.997 0.999 0.997 0.997 0.997 0.999 0.997 0.997 0.997 0.999 0.997 0.997 0.997 0.997 0.999 0.997 0.997 0.997 0.997 0.997 0.997 0.999 0.997 0.997 0.997 0.997 0.999 0.997 0.999 0.997 0.997 0.997 0.999 0.997 0.999 0.997 0.999 0.997 0.999 0.997 0.999 0.997 0.999 0.997 0.999 0.997 0.999 0.991 0.997 0.999 0.9910	5141.295 5151.264 5165.305 5166.711 5166.733 5166.752 5167.060 5167.060 5167.060 5167.060 5167.060 5167.060 5167.060 5167.060 5167.050 523.098 523.098 523.098 523.098 524.501 5247.511 5247.511 5247.511 5247.514 6072.208 6072.208 6072.508	# # #	0.706 0.997 0.986 0.997 0.996 1.000	-0.23 -0.29	-4.667 1.951	-2.5 -2.3	-1.3 -7.9 0.5 1.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5128.000 5158.000 5158.000 5158.000	5136.642 5147.191 5144.039 5144.510 5144.510 5164.510 5165.490 5165.490 5165.505 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5245.455 5245.537 5245.537 5245.537 5245.017 5392.774 6068.190 6068.190 6068.190 6068.190 6068.234 6069.372 6069.529 6069.716 6059.240 6069.529 6069.716 6059.529 6069.529 6069.529 6069.529 6069.529 6069.529 6069.529 605	8.642 * 6.039 7.362 -3.330 -1.322	0.986 0.996 0.996 0.984 0.984 0.984 0.984 0.982 0.984 0.982 0.984 0.984 0.984 0.984 0.984 0.984 0.984 0.984 0.984 0.984 0.984 0.985 0.984 0.985 0.990 0.985	5141.295 5151.295 5151.295 5151.295 5167.705 5167.706 5167.706 5167.706 5167.706 5167.706 5167.706 5167.706 5167.706 5167.706 5167.706 5167.706 5167.706 523.997 523.997 523.997 5247.517 5247.517 5247.517 5247.514 5247.514 5247.514 5247.514 6072.208 6072.208 6072.5	# # #	0.706 0.997 0.986 0.997 0.996 1.000	-0.23 -0.29	-4.667 1.951	-2.5 -2.3	-1.7.9 -7.9 0.5 1.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5128.000 5158.000 5158.000 5158.000 5158.000 6136.340 6136.330	5136.642 5147.191 5144.039 5144.510 5164.510 5164.510 5164.510 5165.490 5165.490 5245.080 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5244.805 5245.485 5245.485 5245.485 5245.190 6068.190 6068.190 6068.190 6068.190 6068.190 6068.224 6069.243 6059.272 6069.716 6059.29 6059.716 6059.210 6111.884 6111.884 6111.884 6111.884 6111.884 6111.884 6114.5831 6135.006 6133.010 6134.4233.010 6134.020 6134.020 6134.020 6134.020 6134.020 6134.020 6135.000 6135.000 6135.000 6135.000 6135.000 6135.000 6135.000 6135.000 6135.000 6135.00	8.64 * 6.039 7.362 7.362 -3.330 -1.322	0.986 0.996 0.994 0.994 0.994 0.994 0.994 0.995 0.982 0.984 1.000 0.982 0.974 1.000 0.984 0.994 0.993 0.999 1.000 0.996 0.993 0.999 1.000 0.945 0.994 0.993 0.993 0.999 0.993 0.999 0.991 0.094 0.995 0.994 0.995 0.995 0.995 0.995 0.997 0.995 0.997 0.999 0.997	5141.295 5151.264 5165.305 5166.711 5166.733 5167.7060 5167.7060 5167.7060 5167.7060 5236.967 5233.098 5233.098 5233.098 5233.098 5233.098 5233.098 5234.098 5234.098 5234.098 5247.511 5247.511 5247.511 5247.511 5247.513 6072.208 6072.208 6072.508	# # #	0.706 0.997 0.987 0.997 0.996 1.000 0.998 0.000 0.998 0.000 0.998 0.0000 0.0000 0.0000000000	-0.23 -0.29	-4.667 1.951	-2.5 -2.3	-1.3 -7.9 0.5 1.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5128.000 5158.000 5158.000 5158.000	5136.642 5147.191 5144.039 5144.510 5144.510 5144.510 5145.490 5145.505 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5245.455 5245.537 5245.537 5245.637 5392.774 6068.190 6068.190 6068.190 6068.190 6068.190 6068.190 6068.190 6068.190 6068.190 6068.190 6068.190 6068.191 6069.722 606	8.642 * 6.039 7.362 -3.330 -1.322	0.986 0.996 0.996 0.984 0.984 0.982 0.982 0.982 0.982 0.982 0.982 0.982 0.982 0.982 0.982 0.982 0.982 0.982 0.982 0.983 0.999 0.993 0.999 0.993 0.999 0.993 0.999 0.993 0.995 0.905 0.995	5141.295 5151.295 5151.295 5151.295 5151.295 5167.7060 5167.7060 5167.7060 5167.7060 5167.7060 5236.967 5233.098 5233.098 5233.098 5233.098 5233.098 5233.098 5233.098 5233.098 5247.517 5247.517 5247.517 5247.514 515.214 6072.208 6072.208 6072.208 6072.508 6072.508 6072.508 6072.518 6075.518 6075.518	# # #	0.706 0.997 0.986 0.997 0.996 1.000	-0.23 -0.29	-4.667 1.951	-2.5 -2.3	-1.3 -7.9 0.5 1.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6136.340 6136.330	5136.642 5147.191 5144.039 5144.510 5144.510 5164.510 5164.510 5165.490 5165.490 5245.080 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5240.803 5245.455 5245.537 5245.619 6068.190 6068.190 6068.190 6068.190 6068.190 6068.224 6069.529 6069.716 6069.2403 f111.884 6111.884 6111.884 6111.884 6111.884 6111.884 6114.6831 6135.006 6133.007 6135.006 6135.006 6135.006 6138.825 6144.483 6144.483 6144.483	8.642 * 6.039 7.362 7.362 -3.330 -1.322	0.986 0.996 0.996 0.994 0.996 0.994 0.996 0.992 0.976 0.982 0.974 1.000 0.982 0.974 1.000 0.984 1.000 0.984 1.000 0.984 1.000 0.984 1.000 0.996 0.999 1.000 1.000 1.000 0.996 0.999 1.000 1.000 0.996 0.999 1.000 0.996 0.999 1.000 0.996 0.999 0.991 1.000 0.996 0.999 0.991 1.000 0.996 0.993 0.991 1.000 0.996 0.993 0.991 1.000 0.996 0.993 0.991 1.000 0.996 0.993 0.991 0.094 0.996 0.993 0.991 0.097 0.996 0.999 0.991 0.000 0.996 0.999 0.991 1.000 0.996 0.999 0.991 0.000 0.996 0.999 0.991 0.000 0.996 0.999 0.991 0.000 0.996 0.999 0.991 0.000 0.996 0.999 0.991 0.000 0.996 0.999 0.991 0.999 0.999 0.991 0.999 0.991 0.999 0.991 0.999 0.991 0.9	5141.295 5151.264 5151.264 5151.264 5151.264 5151.264 5167.7060 5167.060 5167.060 5167.060 5236.967 5233.098 5233.098 5234.098 5234.098 5234.098 5234.098 5234.098 5234.514 5247.514 5247.514 5247.514 5247.514 6072.208 6072.208 6072.208 6072.508 6072.408 6072.408 6072.208 6072.408 6072.408 6072.408 6072.408 6072.408 6072.408 6072.508 6072.208 6072.508 6072.508 6072.208 6072.208 6072.208 6072.208 6072.208 6072.208 6072.208 6072.208 6072.208 6072.508 6072.508 6072.208 6072.508 6072.508 6072.508 6072.508 6072.508 6072.508 6072.508 6072.508 6072.508 6072.208 6072.508 60	# # # -0.493 -0.422	0.706 0.997 0.986 0.997 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.997 0.999 0.999 0.999 0.999 0.999 0.999 0.998 0.999 0.997 0.0000000000	-0.23 -0.29	-4.667 1.951	-2.5 -2.3	-1.3 -7.9 0.5 1.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5128.000 5128.000 5158.000 5158.000 6158.000	b136.642 b147.191 b144.039 b147.191 b144.039 b144.510 b164.510 b165.490 b165.505 b240.803 b240.803 b240.803 b240.803 b240.803 b240.803 b240.803 b240.803 b240.803 b240.803 b240.803 b240.803 b240.803 b244.803 b244.619 0608.190 0608.190 0608.190 0608.190 0608.190 606	8.642 * 6.039 7.362 -3.330 -1.322	$\begin{array}{c} 0.986\\ 0.996\\ 0.996\\ 0.984\\ 0.986\\ 0.986\\ 0.984\\ 0.982\\ 0.982\\ 0.982\\ 0.984\\ 0.982\\ 0.984\\ 0.982\\ 0.984\\ 0.982\\ 0.984\\ 0.982\\ 0.984\\ 0.984\\ 0.982\\ 0.984\\ 0.984\\ 0.984\\ 0.993\\ 0.999\\ 0.993\\ 0.999\\ 0.993\\ 0.999\\ 0.993\\ 0.999\\ 0.993\\ 0.999\\ 0.993\\ 0.999\\ 0.993\\ 0.999\\ 0.993\\ 0.999\\ 0.993\\ 0.999\\ 0.993\\ 0.999\\ 0.993\\ 0.999\\ 0.993\\ 0.999\\ 0.993\\ 0.999\\ 0.993\\ 0.999\\ 0.993\\ 0.999\\ 0.993\\ 0.992\\ 0.$	5141.295 5151.264 5165.305 5166.711 5166.733 5166.752 5167.060 5167.060 5167.060 5236.967 5233.098 5233.098 5233.098 5233.098 5233.098 5233.098 5243.098 5243.098 5243.098 5247.517 5247.512 5247.517 5257.517 525	# # #	0.706 0.997 0.986 0.997 0.996 1.000 0.998 0.998 1.000 0.998 0.997 0.997 0.997 0.997	-0.23 -0.29	-4.667 1.951	-2.5 -2.3	-1.3 -7.9 0.5 1.1

(100)27 (044);(1EE)> A1>	6148.282	0.893 6154.390	1.000
(1 1 0)26 (1 1 1);(1E E)> A2 >	6149.198	0.899 6157.947	1.000
(110)26 (111);(1EE)> A1>	6149.255	0.996 6158.327	0.984
(110)26 (111);(1EE)> E>	6149.771	0.995 6158.362	0.997
(2 0 0)26 (0 2 0);(1A1 A1)> A1 >	6156.212	0.992 6158.362	0.997
(2 0 0)26 (0 2 0);(1E A1)> E >	6157.694	0.965 6159.369	0.997
(2 0 0)26 (0 2 2);(1E E)> A1 >	6167.506	0.979 6170.190	0.994
(200)26 (022);(1EE)> E>	6167.506	1.000 6171.595	0.984
(2 0 0)26 (0 2 2);(1E E)> A2 >	6167.506	1.000 6171.603	0.995
(2 0 0)26 (0 2 2);(1A1 E)> E >	6169.034	1.000 6171.619	0.994
(2 0 0)26 (0 2 2);(1E E)> A2 >	6170.327	0.813 6171.871	0.994
(200)26 (022);(1EE)> E>	6170.735	0.916 6171.871	1.000
(2 0 0)26 (0 2 2);(1E E)> A1 >	6171.570	0.849 6171.871	1.000
(1 1 0)26 (0 2 0);(1A1 A1)> A1 >	6227.130	0.912 6229.465	1.000
(110)26 (022);(1A1E)> E >	6237.870	0.983 6240.000	0.986
(110)26 (020);(1E A1)> E >	6237.907	0.864 6241.788	0.996
(110)26 (022);(1EE)> A1>	6243.799	0.880 6247.910	0.986
(110)26 (022);(1EE)> E>	6243.799	1.000 6247.910	1.000
(110)26 (022);(1EE)> A2>	6243.799	1.000 6247.910	1.000
(110)26 (022);(1EE)> E>	6248.108	1.000 6252.319	1.000
(110)26 (022);(1EE)> A2>	6249.119	0.989 6252.330	0.997
(110)26 (022);(1EE)> A1>	6249.335	0.979 6252.333	0.997
(2 1 0)25 (0 0 0);(1A1 A1)> A1 > 6275.830	6274.593 -1.237	0.979 6275.309 -0	0.521 0.997 -1.37 -2.321 0.0 1.0
(210)25 (000);(1E A1)> E > 6282.350	6281.381 -0.969	0.975 6282.142 -0	0.208 0.998 0.9 1.8
(2 1 0)25 (0 0 0);(2E A1)> E > 6294.710	6295.482 0.772	0.967 6295.935	1.225 0.970 -1.00 2.238 -0.2 2.7
(2 1 0)25 (0 0 0);(1A2 A1)> A2 >	6300.262	0.999 6344.143	0.970
(1 1 1)25 (0 0 0);(1A1 A1)> A1 > 6365.950	6366.209 0.259	0.963 6366.874 0	0.5 2.7
(U U U)28 (6 1 1);(1A1 E)> E >	6417.297	U.991 6450.771	0.999
(0 0 0)28 (5 2 0);(1A1 A1)> A1 >	6528.809	0.986 6546.482	0.995
(U U U)28 (5 2 2);(1A1 E)> E >	6539.658	U.999 6558.785	0.999
(1 U U)27 (5 0 0);(1A1 A1)> A1 >	6608.686	U.999 6640.019	0.999
(1 U U)27 (5 0 0);(1E A1)> E >	6620.671	U.998 6643.583	0.999
(0 0 0)28 (4 3 1);(1A1 E)> E >	6636.492	0.999 6651.904	0.999
(0 0 0)28 (4 3 3);(1A1 A1)> A1 >	6658.119	0.998 6668.185	0.999
(0 0 0)28 (4 3 3);(1A1 A2)> A2 >	6658.119	0.998 6668.185	0.999
(1 0 0)27 (4 1 1);(1A1 E)> E >	6725.593	0.994 6729.770	0.999
(0 0 0)28 (3 4 0);(1A1 A1)> A1 >	6729.512	0.994 6742.070	0.999
(1 0 0)27 (4 1 1);(1E E)> A1 >	6733.470	0.999 6743.189	0.999
(100)27 (411);(1E E)> E >	6733.470	0.998 6751.136	0.999
(100)27 (411);(1E E)> A2 >	6733.470	1.000 6751.136	0.999
(100)27 (411);(1EE)> E>	6737.547	1.000 6751.136	1.000
(100)27 (411);(1E E)> A1>	6738.142	1.000 6755.076	1.000
(100)27 (411);(1EE)> A2>	6738.142	0.998 6755.082	1.000
(0 0 0)28 (3 4 2);(1A1 E)> E >	6740.332	0.994 6755.082	0.999
(0 0 0)28 (3 4 4);(1A1 E)> E >	6772.665	0.994 6778.969	0.999
(0 0 0)28 (2 5 1);(1A1 E)> E >	6818.718	0.996 6817.347	0.999
(1 0 0)27 (3 2 0);(1A1 A1)> A1 >	6827.765	0.989 6835.422	0.999
(1 0 0)27 (3 2 2);(1A1 E)> E >	6838.230	0.997 6841.944	0.999
(100)27 (320);(1E A1)> E >	6840.172	0.999 6841.944	0.998
(0 0 0)28 (2 5 3);(1A1 A2)> A2 >	6840.318	0.987 6847.314	0.999
(0 0 0)28 (2 5 3);(1A1 A1)> A1 >	6840.318	0.996 6847.739	0.999
(100)27 (322);(1E E)> A1>	6846.741	0.993 6855.666	0.999
(100)27 (322);(1E E)> E >	6846.741	0.993 6855.666	0.999
(100)27 (322);(1E E)> A2>	6846.741	1.000 6855.666	1.000
(100)27 (322);(1E E)> A1 >	6849.172	1.000 6859.623	1.000
(100)27 (322);(1E E)> A2>	6850.644	1.000 6859.634	1.000
(100)27 (322);(1E E)> E >	6851.164	0.942 6859.642	0.999
(2 0 0)26 (3 0 0);(1A1 A1)> A1 >	6864.019	0.999 6877.818	0.999
(2 0 0)26 (3 0 0);(1E A1)> E >	6865.209	0.958 6879.235	0.999
(0 0 0)28 (2 5 5);(1A1 E)> E >	6883.276	0.929 6891.136	0.986
(U U U)28 (1 6 0);(1A1 A1)> A1 >	6893.293	0.956 6894.013	0.996
(0 0 0)28 (1 6 2);(1A1 E)> E >	6904.103	0.981 6906.311	0.999
(100)2/ (231);(1A1 E)> E >	6925.939	0.996 6929.046	0.999
(1 0 0)2/ (2 3 1);(1E E)> A1 >	0934.1//	0.994 6937.017	0.999
I(1 0 0)2/II(2 3 1);(IE E)> E >	0334.177	1 000 6007 017	0.998
(1 1 0)2/11(2 3 1);(IE E)> A2 >	0334.1//	1.000 6040 000	1.000
(1 1 0)2011(1 0 0);(IAI A1)> A1 >	0334.008	1.000 0940.928	1.000
(U U U)28 (1 6 4);(1A1 E)> E >	6936.437	1.000 6940.940	1.000
$ (1 \cup 0)2/ (2 \exists 1);(1E E) \longrightarrow E >$	6938.202	0.985 6940.965	0.998
$ (1 \cup 0)2/ (2 \exists 1);(1E E) -> A2 >$	6938.707	0.988 6943.204	0.999
(1 0 0)2/ (2 3 1);(1E E)> A1 >	6938.857	0.991 6949.481	0.999
(110)26 (300);(1E A1)> E >	6945.142	0.982 6953.665	0.999
(1 0 0)2/ (2 3 3);(1A1 A1)> A1 >	6946.617	0.985 6953.665	0.986
((1 0 0)2/)((2 3 3);(1A1 A2)> A2 >	6946.634	0.995 6959.994	0.999
· ·			
	7075 059	0.006 7064 744	0.000
I(1 0 0)2/II(2 4 4);(IE E)> E >	1910.000	0.920 /984./41	0.999
(2 U U)20 (2 2 2);(1E E)> A2 >	1916.151	0.4/4 /984./41	0.334
(2 U U)26 (2 2 2);(1E E)> A1 >	1911.512	0.352 /984.741	1.000
I(1 U U)2/II(2 4 4);(IE E)> A1 >	1919.539	0.768 7987.742	1.000
(1 U U)2/ (2 4 4);(1E E)> E >	1919.539	0.730 7988.301	1.000
(1 U U)2/ (2 4 4);(1E E)> A2 >	1919.539	1.000 /988.304	0.041
(2 U U)20 (2 2 2);(1E E)> A1 >	1983.164	1.000 /989.410	0.876
(2 U U)20 (2 2 2);(1E E)> E >	1983.164	1.000 7989.920	0.621
(2 0 0)20 (2 2 2);(IE E)> A2 >	1 303.104	1.000 7990.121	0.002
(2 0 0)20 (2 2 2);(IE E)> E >	1 300.000	1.000 7990.121	1,000
1(1 0 0)2711(2 4 4):(1E E)> E >	7992 604	0.850 7990 301	1,000
(1 0 0)27 (2 4 4);(1E E)> A2 >	7992.004	0.660 7990.301	1,000
1(1 0 0)2011(2 4 4);(1E E)> R >	7009 570	0.000 /990.012	0.973
1(0 0 0)2011(0 0 4);(1A1 E)> E >	0010 000	0.700 0013.333	0.013
(1 0 0)2711(1 0 1);(IAI E)> E >	0010.000	0.000 0013.720	0.007
(I U U)2/ (I D I);(IE E)> AI >	0013.322	0.965 8021.457	0.331

(1 0 0)27 (1 5 1);(1E E)> E >	8019.958	0.988 8021.457	0.999		
(1 0 0)27 (1 5 1); (1E E)> A2 >	8019.958	1.000 8021.457	1.000		
(0 0 0)28 (1 7 7);(IAI E)> E >	8022.522	1.000 8025.236	1.000		
(1 0 0)27 (1 5 1);(1E E)> E >	8023.340	0.046 2025.275	1.000		
(100)24 (100)(1E = 1) = E > 8028 969	8024 423 -4 546	0.973 8026 932	-2 045 0 997	-1 389	0.5 0.3
(4 0 0)24 (0 0 0);(141 41) -> 41> 8028.977	8024.441 -4.536	0.951 8026.932	-2.036 0.998	0.713	0.5 0.2
(1 0 0)27 (1 5 3);(1A1 A2)> A2 >	8031.121	0.931 8037.998	0.998	01110	0.0 0.2
(1 0 0)27 (1 5 3);(1A1 A1)> A1 >	8031.352	0.975 8039.915	0,998		
(300)25 (111);(1A1 E)> E >	8033.625	0.991 8039.963	0.996		
(300)25 (111);(1E E)> E >	8034.020	0.867 8040.042	0.996		
(3 0 0)25 (1 1 1);(1E E)> A1 >	8034.334	0.919 8040.067	0.857		
(3 0 0)25 (1 1 1);(1E E)> A2 >	8034.399	0.702 8040.718	0.993		
(3 0 0)25 (1 1 1);(1E E)> A1 >	8035.964	0.702 8040.718	0.859		
(3 0 0)25 (1 1 1);(1E E)> E >	8035.964	0.943 8040.718	0.995		
(3 0 0)25 (1 1 1);(1E E)> A2 >	8035.964	0.898 8043.204	1.000		
(100)2/ (153);(1E A2)> E >	8043.341	1.000 8047.726	1.000		
(1 0 0)27 (1 E 2);(1A1 A1)> A1 >	8043.518 8045 340	1.000 8049.876	1.000		
(1 0 0)27 (1 5 3);(1E A1)> E >	8051 030	0.625 8058 231	0.999		
$ (0 \ 0 \ 0)28 (0 \ 0 \ 0);(1A1 \ A1) \rightarrow A1 \rightarrow A2 >$	8051.940	0.982 8060.063	0.688		
(110)26 (222);(1A1 E)> E >	8054.011	0.605 8066.159	0.688		
(110)26 (220);(1E A1)> E >	8054.300	0.968 8066.159	0.996		
(1 1 0)26 (2 2 2);(1E E)> A1 >	8060.056	0.968 8066.159	0.986		
(210)25 (111);(1E E)> E >	8183.101	0.873 8192.795	0.968		
(210)25 (111);(1E E)> A2 >	8183.539	0.718 8192.795	0.968		
(210)25 (111);(1E E)> A1 >	8183.698	0.771 8192.795	1.000		
(2 1 0)25 (1 1 1);(1E E)> A1 >	8188.550	0.940 8192.795	1.000		
(2 1 0)25 (1 1 1);(2E E)> A1 >	8188.550	0.966 8192.795	1.000		
(2 1 0)25 (1 1 1);(1E E)> E >	8188.550	0.962 8197.809	1.000		
(210)25 (111);(2E E)> E >	8188.550	1.000 8197.809	1.000		
(2 1 0)25 (1 1 1);(1E E)> A2 >	8188.550	1.000 8198.116	1.000		
(2 1 0)25 (1 1 1);(2E E)> A2 >	8100.165	1 000 8199.511	0.766		
(200)26 (044);(1EE) = X = X	8190.165	1 000 8199 925	0.700		
$ (2 0 0)26 (0 4 4);(1E E) \rightarrow A2 >$	8190.165	1.000 8199.925	0.989		
(2 1 0)25 (1 1 1);(2E E)> A2 >	8197.927	1.000 8200.067	1.000		
(210)25 (111);(2E E)> A1 >	8197.977	1.000 8200.086	1.000		
(210)25 (111);(2E E)> E >	8198.634	1.000 8200.087	1.000		
(2 0 0)26 (0 4 4);(1E E)> A2 >	8201.573	0.957 8200.961	0.970		
(2 0 0)26 (0 4 4);(1E E)> A1 >	8201.610	0.955 8200.961	0.969		
(1 0 0)27 (0 6 6);(1E A2)> E >	8203.134	0.918 8204.825	0.969		
(2 1 0)25 (1 1 1);(1A2 E)> E >	8203.199	0.795 8211.123	0.764		
(1 0 0)2/ (0 6 6);(1E A1)> E >	8206.419	0.795 8211.231	0.764		
(1 1 0)20 (0 4 0); (141 R1)> R1 >	0210.192	0.491 8220.500	0.333		
(0 0 0)28 (8 1 1);(1A1 E)> E >	8222.133	0.525 6231.072	0.703		
(1 1 0)26 (0 4 0);(1E A1)> E >	8227.162	0.974 8239.101	0.984		
(110)26 (042);(1EE)> A1>	8233.124	0.999 8239.101	0,995		
(110)26 (042);(1E E)> E >	8233.124	0.947 8239.101	0.984		
(1 1 0)26 (0 4 2);(1E E)> A2 >	8233.124	0.971 8243.386	1.000		
(1 1 0)26 (0 4 2);(1E E)> E >	8236.994	1.000 8243.398	1.000		
(1 1 0)26 (0 4 2);(1E E)> A2 >	8237.984	1.000 8243.405	1.000		
(3 1 0)24 (0 0 0);(1A1 A1)> A1 > 8249.520	8247.086 -2.434	1.000 8248.807	-0.713 0.995	-	2.1 -3.8
(310)24 (000);(2E A1)> E > 8257.270	8248.359 *	0.975 8250.729	* 0.995		3.6 3.7
(3 1 0)24 (0 0 0);(1E A1)> E > 8258.380	8255.521 -2.859	0.957 8257.774	-0.606 0.995	-	1.1 -2.2
(3 1 0)24 (0 0 0);(1A2 A1)> A2 >	5255.870	0.957 8259.564	0.976		
	0939 710 -0 003	0 000 0841 222	-0.062 0.000		0.0 5.0
(5 0 0)23 (0 0 0);(14 1 41) -> 41 > 9841.400	9838.597 -2.803	0.999 9841.338	-0.062 0.999		0.0 -5.3
	2.090	3.333 3011.223	0.110 0.333		0.0 0.0
	44574 040 0 017	0 000 44570 000	0.400 0.000		
$ (0 0 0)_{22} (0 0 0);(1A1 A1) -> A1 > 11576.290$	115/4.243 -2.047	0.999 115/6.692	0.402 0.998		5.2
(0 0 0)22 (0 0 0);(IE AI)> E > 115/6.290	110/4.243 -2.04/	0.333 112/0.692	0.402 0.998		5.0

The standard deviation $\sigma(33, 13) = 5.75 \text{ cm}^{-1}$ remains almost the same as that we obtained ($\sigma(33, 10) = 5.34 \text{ cm}^{-1}$) with the local-local model. Surprisingly, the worst reproduced energy levels are in the low part of the spectra whereas the differences between observed and calculated energy decrease for higher energy values. It appears that the interaction operators act rather well to reproduce these higher levels but have an opposite effect for the first levels. An interesting result is indicated in Column 5. This column shows that the initial basis is extremely close to the eigen basis as could be expected from the corresponding column %ket.init of Tables 1 and 3. The interacting terms $\mathfrak{D}_{i}^{(A_{1})}$, $(1 \leq i \leq 4)$ between stretching and bending modes, introduced in Hamiltonian (42) seem to act perturbatively on the initial basis.

The parameters and the correlation matrice are given by:

$$\begin{cases} a_0 = 2160.70884(85) \text{ cm}^{-1} \\ a_1 = -38.58700(20) \text{ cm}^{-1} \\ a_2 = -0.88135(220) \text{ cm}^{-1} \\ a_3 = -3.94960(204) \text{ cm}^{-1} \\ \omega_2 = 899.23242(442) \text{ cm}^{-1} \\ \chi_2 = -0.06785(298) \text{ cm}^{-1} \\ \omega_4 = 994.66287(333) \text{ cm}^{-1} \\ \chi_{24} = 4.5160(134) \text{ cm}^{-1} \\ g_4 = 2.77778(115) \text{ cm}^{-1} \\ \alpha_1 = 0.07477(102) \text{ cm}^{-1} \\ \alpha_2 = -0.01175(237) \text{ cm}^{-1} \\ \alpha_3 = -0.01040(63) \text{ cm}^{-1} \\ \alpha_4 = 0.08915(18) \text{ cm}^{-1} \end{cases}$$
(43)

$\mathfrak{M}_{corr}(33,13) =$

(a_{0}	a_0 1.00	a_1	a_2	a_3	ω_2	χ_2	ω_4	χ_{24}	g_4	α_1	α_2	α_3	α_4
	a_1	-0.88	1.00											
	a_2	-0.58	-0.23	1.00										
	a_3	-0.36	-0.21	-0.26	1.00									
	ω_2	-0.14	-0.06	-0.05	-0.19	1.00								
	χ_2	-0.11	-0.06	-0.03	-0.13	-0.93	1.00							
	ω_4	-0.04	-0.03	-0.04	-0.02	-0.08	-0.05	1.00						
	χ_{24}	-0.10	-0.08	-0.00	-0.02	-0.32	-0.22	-0.23	1.00					
	g_4	-0.20	-0.08	-0.06	-0.24	-0.03	-0.02	0.18	-0.08	1.00				
	α_1	-0.39	-0.34	-0.10	-0.17	-0.09	-0.08	-0.01	-0.06	-0.04	1.00			
	α_2	-0.10	-0.02	0.00	-0.07	-0.02	-0.01	-0.24	0.01	-0.12	0.00	1.00		
	α_3	-0.35	-0.43	0.14	-0.01	0.04	0.00	0.02	-0.21	0.04	-0.33	0.09	1.00)
(α_4	0.10	0.20	-0.01	0.07	-0.14	-0.09	-0.34	0.03	0.36	0.09	-0.41	0.20	1.00/
												(-	44)	

In order to completely compare with the results obtained in Section 5, we have then fitted the previous set of 27 data with Hamiltonian (42). The columns of Table 6 have the same meaning as defined in Table 4, so Columns 6, 7 and 8 refer to this last fit with parameters and correlation matrice given here after:

$$a_{0} = 2161.52045(87) \text{ cm}^{-1}$$

$$a_{1} = -38.66201(20) \text{ cm}^{-1}$$

$$a_{2} = -1.28553(218) \text{ cm}^{-1}$$

$$a_{3} = -3.99999(224) \text{ cm}^{-1}$$

$$\omega_{2} = 901.77064(527) \text{ cm}^{-1}$$

$$\chi_{2} = 0.65168(32) \text{ cm}^{-1}$$

$$\omega_{4} = 995.5956(443) \text{ cm}^{-1}$$

$$q_{4} = 3.0719(33) \text{ cm}^{-1}$$

$$\alpha_{1} = -0.06205(62) \text{ cm}^{-1}$$

$$\alpha_{2} = 0.03487(121) \text{ cm}^{-1}$$

$$\alpha_{3} \text{ fixed to 0}$$

$$\alpha_{4} = -0.00921(818) \text{ cm}^{-1}$$

$$\mathfrak{M}_{corr}(27, 12) =$$

	(a_0	a_1	a_2	a_3	ω_2	χ_2	ω_4	χ_{24}	g_4	α_1	α_2	α_4	
1	a_0	1.00)	
	a_1	-0.90	1.00											
	a_2	-0.53	-0.23	1.00										
ļ	a_3	-0.30	-0.20	-0.25	1.00									
ł	ω_2	-0.06	-0.04	0.00	-0.12	1.00								Ł
ĺ	χ_2	-0.05	-0.04	0.00	-0.08	-0.94	1.00							Ι.
	$\widetilde{\omega}_4$	-0.00	-0.00	-0.00	-0.00	-0.12	-0.07	1.00						
	χ_{24}	0.00	0.00	0.00	0.00	-0.37	-0.22	-0.31	1.00					
	g_4	0.00	0.00	0.00	0.00	-0.09	-0.05	-0.74	-0.23	1.00				
	α_1	0.42	0.43	0.05	0.11	0.08	0.07	0.00	0.00	0.00	1.00			
	α_2	0.35	0.33	0.25	-0.03	-0.02	-0.01	0.05	0.00	-0.00	-0.12	1.00		
1	α_4	0.26	0.36	-0.09	0.13	0.01	0.01	0.05	0.00	0.07	-0.19	-0.81	1.00/	
	, -											(4	.6) ´	

Once more again, the rms value decreases suddenly for this set of 27 data. We obtain $\sigma(27, 12) = 1.87 \text{ cm}^{-1}$ which is the best value of all our fits. The highest difference between observed and calculated energy levels reaches about 4 cm⁻¹ for the first level and for the 3013.0 cm⁻¹ experimental level, but the quality of our model does not decrease for high values of the quantum numbers (see levels $n_s = 6$ near 11576.29 cm⁻¹ in Table 6) as can be expected for a model which tries to reproduce all the vibrational levels, not only in the low part of the spectra but everywhere. One may see that the parameters α_i ($1 \le i \le 4$) are those which have mostly changed between the two fits. For example, the α_3 parameter was oscillating around zero at each step of the fit procedure, changing alternatively of sign whereas the rms remained unchanged near 1.9 cm⁻¹. So we fixed this parameter to zero. At last, the parameter α_4 is not well defined as the precision of this parameter is of the same order of magnitude as the parameter itself.

It is interesting to note that both papers of Lukka *et al.* [19] and more recently of Sánchez-Castellanos *et al.* [20] are partially based on earlier calculations of Breidung *et al.* [18]. More precisely, in [18] they determined a set of cubic force constants for XY_3 molecules, among them for the AsH_3 system (see Table IV in [18]) which are injected as fixed parameters in the models of [19] and [20]. However, Breidung *et al.* explain in their paper that these force constants have been determined with the assumption of a reduced normal coordinates development, that is, not adapted to high excited vibrational levels. Furthermore, when comparing the valence coordinate stretching force constant f_{rrr} of AsH_3 deduced from their ab initio calculations with a previous derivation based on a three-parameter local-model [15], they comment "reasonable agreement" between the two values (10 % of relative difference) but no characterization of the quality of the others cubic force constants can be estimated as no studies on the subject were done before. So, in [19], it is explained that they used these four cubic force constants in their model because they could not freely optimize all parameters of the model, probably due to the lack of data and/or the unstability of the fit procedure. The same explanation is given in [20], however one could stress that no precision for these ab initio parameters is somewhere given. Moreover in [20], as they deal with abstract U(4) generators, this approach is valid only if one can prove a true and one-to-one connection between the algebraic operators and the potential surface variables, which to our knowledge has not yet been proved. More precisely, the path from an irrep [N] of U(p+1), that is an irrep of finite dimension to the harmonic representation as given in [20], that is a representation of infinite dimension, could be better precised as being, for example, the result of an algebra contraction (see Eq. (20.82) in [22]) or a geometrical structure of a quantum system (see Section (2.4) in [39])

To conclude this discussion, the rms in [20] are comparable with ours. Indeed, in [20], they need a 13 parameter model, even if some of the parameters are frozen, to reproduce 33 experimental data with a rms of 2.68 cm⁻¹ or alternatively, they defined a 10 parameter model, with some constrained parameters, to reproduce 35 experimental data with a rms of 3.58 cm⁻¹. It follows that, a priori, neither their models nor ours are precise enough to reproduce the experimental data. Works on the subject must progress.

7 Conclusion

Firstly, we have successfully applied the algebraic U(p + 1) formalism to the stretching modes of the arsine molecular system. Then we have applied this local mode model to the bending modes of AsH_3 and compared the result of the fit with a normal modes model. It appears clearly that the normal modes model is well adapted to the bending motion. When taking into account all the vibrational levels of the molecule, through coupled local-local and coupled local-normal models, we observe no large difference between the two coupling schemes but both models reproduce rather satisfactorily high energy levels comparatively with other papers. A further precise determination of suitable unitary transformation between our pure algebraic generators and the usual

canonical variables could help us to improve the quality of our fits and could help us to introduce more physical meaning in our formalism.

8 Acknowledgments

This work was partially supported by a grant of the French Embassy in Moscow (Grant N^o 2005-708) in the scope of the financial support of the PhD of N. Sanzharov during his stay in the LPUB.

References

- [1] F. Iachello, Chem. Phys. Lett. 78(1981) 581-585.
- [2] F. Iachello, R.D. Levine, J. Chem. Phys. 77 (1982) 3046-3055.
- [3] O.S. Van Roosmalen R.D. Levine, A.E. L.Dieperink, Chem. Phys. Lett. 101 (1983) 512-517.
- [4] O.S. Van Roosmalen, F. Iachello, R.D. Levine, A.E.L. Dieperink, Chem. Phys. Lett. 79 (1983) 2515-2536.
- [5] R. Lemus, A. Franck, J. Chem. Phys. 101 (1990) 8321-8332.
- [6] Xi-Wen Hou, Shi-Hai Dong, Zong-Liang Fang, Zhong-Qi Ma, J. Mol. Spectrosc. 195 (1999) 132-136.
- [7] F. Michelot, J. Moret-Bailly, J. Phys. 48 (1987) 51-72 (in French).
- [8] C. Leroy, F. Michelot, J. Mol.Spectrosc. 151 (1992) 71-96.
- [9] C. Leroy, F. Michelot, Can. J. Phys. 72 (1994) 274-289.
- [10] C. Leroy, F. Collin, M. Loëte, J. Mol. Spectrosc. 175 (1996) 289-295.
- [11] C. Leroy, V. Boujut, J. Mol. Spectrosc. 181 (1997) 127-135.
- [12] L. Pluchart, C. Leroy, A. Mourbat, J. Mol. Spectrosc. 218 (2003) 1-11.
- [13] L. Pluchart, C. Leroy, N. Sanzharov, F. Michelot, E.S. Bekhtereva, O.N. Ulenikov, J. Mol. Spectrosc. 232 (2005) 119-136.
- [14] M. Carlotty, G. Di Lonardo, L. Fusina, J. Mol. Spectrosc. 102 (1983) 310-319.
- [15] M. Halonen, L. Halonen, H. Bürger, P. Moritz, J. Phys. Chem. 96 (1992) 4225-4231
- [16] Wm.B. Olsen, A.G. Maki, R.L. Sams, J. Mol. Spectrosc. 55 (1975) 252-270.

- [17] O.N. Ulenikov, A.E. Cheglokov, G.A. Shavchenko, M. Winnewisser, B.P. Winnewisser, J. Mol. Spectrosc. 157 (1993) 141-160.
- [18] J. Breidung, W. Thiel, J. Mol. Spectrosc. 169 (1995) 166-180.
- [19] T. Lukka, E. Kauppi, L. Halonen, J. Chem. Phys 102 (1995) 5200-5206.
- [20] M. Sánchez-Castellanos, O. Álvarez-Bajo, C.A. Amezcua-Eccius, R. Lemus, J. Mol. Spectrosc. 240 (2006) 81-92.
- [21] O. Álvarez-Bajo, M. Sánchez-Castellanos, R. Lemus, J. Mol. Spectrosc. 236 (2006) 134-146.
- [22] B.G. Wybourne, Classical Lie Groups for Physicists, Wiley, Interscience, New York, 1974.
- [23] P. Kramer, M. Moshinsky, Nuclear Physics 82 (1966) 241-274.
- [24] I.M. Gel'fand, M.L. Zetlin, Dolk. Akad. Nauk. 71 (1950) 825-828 (in Russian).
- [25] J.D. Louck, Am. J. Phys. 38 (1970) 3-41.
- [26] H. Weyl, The Theory of Groups and Quantum Mechanics, Dover Publications, Inc., New York, 1931.
- [27] K. Levenberg, Quart. Appl. Math. 2 (1944) 164-168
- [28] D. Marquardt, SIAM J. Appl. Math. 11 (1963) 431-441
- [29] H. Lin, O.N. Ulenikov, S. Yurchinko, X-G. Wang, Q-S. Zhu, J. Mol. Spectrosc. 187 (1998) 89-96.
- [30] D. Papoušek, M.R. Aliev, Molecular Vibrational-Rotational Spectra, Elsevier Scientific Publishing Company, Amsterdam-Oxford-New York, 1982.
- [31] P.K.L. Yin, K.N. Rao, J. Mol. Spectrosc. 29 (1969), 486-494.
- [32] L. Fusina, G. Di Lonardo, J. Mol. Structure 517-518 (2000) 67-78.
- [33] L. Fusina, G. Di Lonardo, J. Mol. Spectrosc. 216 (2002) 493-500.
- [34] G. Di Lonardo, L. Fusina, J.W.C. Johns, J. Mol. Spectrosc. 104 (1984) 282-301.
- [35] G. Di Lonardo (Private communication).
- [36] O.N. Ulenikov, A.B. Malikova, S. Alanko, M. Koivusaari, R. Anttila, J. Mol. Spectrosc. 179 (1996), 175-194.
- [37] F. Michelot (Private communication).
- [38] Xi-Wen Hou, Shi-Hai Dong, Xie Mi, Zhong-Qi Ma, Sciences in China 42-A (1999) 207-212.
- [39] Wei-Min Zhang, Thesis, Integrability and Chaos in Quantum systems (as viewed from Geometry and Dynamical Symmetry), Drexel University, 1989.

On peut prendre en compte l'interaction entre les vibrations d'élongations et de pliages. Hamiltonien alors peut être ecrire comme beginequation

$$\mathbf{H_{sLbL}} = a_0 \,\mathbf{n_s} + a_1 (\mathbf{N_1^2} + \mathbf{N_2^2} + \mathbf{N_3^2}) \\
+ a_2 (\mathbf{N_1 N_2} + \mathbf{N_1 N_3} + \mathbf{N_2 N_3}) + a_3 \sum_{i \neq j=1}^{3} \mathbf{b}_i^+ \mathbf{b}_j \\
+ \omega_2 \,\mathbf{v_2} + \kappa_2 \,\mathbf{v_2^2} + \omega_4 \,\mathbf{v_4} + \kappa_4 \,\mathbf{v_4^2} + \kappa_{24} \,\mathbf{v_2 v_4} + \mathbf{g_4} \,\mathbf{l_4^2} \\
+ \alpha_1 \,\mathfrak{O_1}^{(A_1)} + \alpha_2 \,\mathfrak{O_2}^{(A_1)} + \alpha_3 \,\mathfrak{O_3}^{(A_1)} + \alpha_4 \,\mathfrak{O_4}^{(A_1)} + \sum_{i=1,3} \sum_{j=2,4} \kappa_{ij} (N_1 + N_2 + N_3)_i v_2 v_4 \\$$
(6.0.1)

où le derniere terme decris l'interaction des vibrations d'élongations et de pliages. Nous avons fait l'ajustement les paramètres de Hamiltonien total pour la molécule d'arsine.

$$\begin{cases} a_0 = 2161.625(50) \ cm^{-1} \\ a_1 = -38.668(12) \ cm^{-1} \\ a_2 = -1.70(11) \ cm^{-1} \\ a_3 = -3.40(11) \ cm^{-1} \\ \omega_2 = 903.92(25) \ cm^{-1} \\ \omega_2 = 903.92(25) \ cm^{-1} \\ \omega_2 = -0.20(17) \ cm^{-1} \\ \omega_4 = 995.52(22) \ cm^{-1} \\ \chi_{24} = 2.14(72) \ cm^{-1} \\ q_4 = 3.17(17) \ cm^{-1} \\ q_4 = 3.17(17) \ cm^{-1} \\ \alpha_1 = -0.063(28) \ cm^{-1} \\ \alpha_2 = -0.057(88) \ cm^{-1} \\ \alpha_3 = 0 \ cm^{-1} \\ \alpha_4 = 0.063(14) \ cm^{-1} \\ \chi_{12} = -6.92(31) \ cm^{-1} \\ \chi_{23} = -9.57(26) \ cm^{-1} \\ \chi_{14} = -12.63(47) \ cm^{-1} \\ \chi_{34} = 3.15(57) \ cm^{-1} \end{cases}$$

En base de le jeu de paramètres obtenu on a reproduit les niveux vibrationnels pour le molécule d'arsine :

TAB. 6.1 – Niveaux d'énergie vibrationnels observés et calculés pour la molécule d'arsine AsH_3 avec 34 données expérimentales

ket	Obs. En. (cm-1)	Calc-Obs (cm-1) (33)	%init.ket (Modulus)	Calc-Obs (cm-1) Mod.1	Calc-Obs (cm-1) Mod.2	Calc-Obs (cm-1) Mod.3
(0 0 0)28 (1 0 0);(1A1 A1)> A1 >	906.752	-3.02	1.000	1.97	-1.328	1.4
(0 0 0)28 (0 1 1);(1A1 E)> E >	999.225	-0.52	1.000	0.31	9.295	0.8
(0 0 0)28 (2 0 0);(1A1 A1)> A1>	1806.149	0.89	0.999	-1.59	1.853	-2.8
(0 0 0)28 (1 1 1);(1A1 E)> E >	1904.115	0.46	0.999	0.53	-0.427	0.4
(0 0 0)28 (0 2 0);(1A1 A1)> A1 >	1990.998	0.02	0.997	-6.25	1.602	-5.2
(0 0 0)28 (0 2 2);(1A1 E)> E >	2003.483	0.18	0.999	5.92	-9.707	6.9
(1 0 0)27 (0 0 0);(1A1 A1)> A1>	2115.164	1.02	0.999	0.14	0.932	1.3
(1 0 0)27 (0 0 0);(1E A1)> E >	2126.423	0.03	0.999	0.34	-1.537	2.3
(1 0 0)27 (1 0 0);(1A1 A1)> A1 >	3013.000	0.01	0.999	0.64	3.953	-2.0
(1 0 0)27 (0 1 1);(1A1 E)> E >	3102.000	0.29	0.999	-0.16	-0.427	-2.3
(2 0 0)26 (0 0 0);(1A1 A1)> A1 >	4166.772	0.86	0.999	2.49	3.033	2.2
(2 0 0)26 (0 0 0);(1E A1)> E >	4167.935	0.73	0.999	1.34	-2.245	2.4
<pre>(1 1 0)26 (0 0 0);(1A1 A1)> A1 ></pre>	4237.700	1.15	0.986			2.0
(1 1 0)26 (0 0 0);(1E A1)> E >	4247.720	0.35	0.996			2.6
(2 0 0)26 (1 0 0);(1A1 A1)> A1>	5057.000	-4.17	0.974			-0.6

(20	0)26 (1	0	0);(1E	Α1)	>	Е	>	5057.000	-0.77	0.987			-0.9
(11	1 0)26 (1	0	0);(1A1	A1)	>	Α1	>	5128.000	0.68	0.986			-1.3
(11	1 0)26 (1	0	0);(1E	A1)	>	Е	>	5128.000	4.70	0.996			-7.9
1(20	0)26 (0	1	1);(1A1	Е)	>	Е	>	5158.000	-0.21	0.984			0.5
1(20	0)26 (0	1	1);(1E	Е)	>	A1	>	5158.000	0.38	0.964			1.1
1(30	0)25 (0	0	0);(1A1	A1)	>	A1	>	6136.340	-0.64	0.999	-0.23	-4.667	-3.2
1(30	0)25 (0	0	0);(1E	A1)	>	Е	>	6136.330	-0.62	0.999	-0.29	1.951	-2.9
(21	1 0)25 (0	0	0);(1A1	A1)	>	A1	>	6275.830	1.34	0.979	-1.37	-2.321	1.0
(21	1 0)25 (0	0	0);(1E	A1)	>	Е	>	6282.350	0.49	0.975			1.8
(21	1 0)25 (0	0	0);(2E	A1)	>	Е	>	6294.710	0.07	0.967	-1.00	2.238	2.7
(11	1 1)25 (0	0	0);(1A1	A1)	>	A1	>	6365.950	-0.36	0.963			2.7
(40	0)24 (0	0	0);(1E	A1)	>	Е	>	8028.969	-1.83	0.973	9.87*	-1.389	0.3
1(40	0)24 (0	0	0);(1A1	A1)	>	A1	>	8028.977	-1.82	0.951	9.90*	0.713	0.2
(31	1 0)24 (0	0	0);(1A1	A1)	>	A1	>	8249.520	-0.68	1.000			-3.8
(31	1 0)24 (0	0	0);(2E	A1)	>	Е	>	8257.270	-2.10	0.975			3.7
(31	1 0)24 (0	0	0);(1E	A1)	>	Е	>	8258.380	*	0.957			-2.2
(50	0)23 (0	0	0);(1E	A1)	>	Е	>	9841.400	0.33	0.999			5.3
1(50	0)23 (0	0	0);(1A1	A1)	>	A1	>	9841.400	0.22	0.999			-5.3
1(60	0)22 (0	0	0);(1A1	A1)	>	A1	>	11576.290	0.78	0.999			5.2
1(60	0)22 (0	0	0);(1E	A1)	>	Е	>	11576.290	0.78	0.999			5.0

 \ast Ces valeurs n'ont pas èté introduites dans l'ajustement des paramètres

La valeur de nos calcules est $\sigma(34, 16) = 1.98 \ cm^{-1}$. Pour comparer les résultats de notre modèle avec celui de [69] on présente ici la valeur de leur calcules : $\sigma(34, 13) = 3.58 \ cm^{-1}$. Alors, on peut dire que notre modèle reproduit les niveux vibrationnels experimentaux mieux que celle de [69] et l'approche local-normal decrit très bien les niveux vibrationnels des molécules pyramidales XY_3 .

Chapitre 7

Les programmes informatiques

Pour calculer les éléments matriciels des opérateurs $H_1^e = \sum_{i \neq j=1,2,3} b_i^+ b_j$, $H_1^p = \sum_{i \neq j=5,6,7} b_i^+ b_j$, opérateurs d'interaction pour les modèles local-local et local-normal, ainsi que pour faire l'ajustement, on a utilisé des applications informatiques comme MATHEMATICA 5.0 (en particulier le package "Quantum Algebra") et FORTRAN 95. Nous allons nous attacher à la description de l'aspect numérique du problème.

7.1 Le calcul des éléments matriciels des opérateurs H_1^e et H_1^p

On commence par la symétrisation des kets à partir des expressions du §§4.4.3. Montrons sur un exemple comment on programme le ket $|(n_1 n_2 n_3), 1E_1\rangle = \frac{1}{\sqrt{12}}[2|n_1 n_2 n_3\rangle - |n_3 n_2 n_1\rangle - |n_1 n_3 n_2\rangle + 2|n_2 n_1 n_3\rangle - |n_2 n_3 n_1\rangle - |n_3 n_1 n_2\rangle]$. D'abord il faut décrire toutes les variables qui sont concernées par la symétrisation du ket :

où meskets est notre ket symétrisé, s sont les nombres quantiques du ket symétrisé, c'est-à-dire $n_1 \equiv s_1, n_2 \equiv s_2$ et $n_3 \equiv s_3$; multis est la multiplicité du ket (dans notre cas multis $\equiv 1$); symetries est la symétrie du ket. Dans notre programme on définit la symétrie A_1 comme 1, A_2 comme 2 et E_1 , E_2 comme 3 et 4 respectivement; combils sont les nombres quantiques des kets non symmetrisés intervenant dans le ket symétrisé. Pour la description de cette variable, on a une matrice (6x3), où 6 est le nombre des kets non symétrisés possibles (c'est-à-dire sont possibles des kets suivants : $|n_1 n_2 n_3\rangle$, $|n_1 n_3 n_2\rangle$, $|n_2 n_1 n_3\rangle$, $|n_2 n_3 n_1\rangle$, $|n_3 n_1 n_2\rangle$, $|n_3 n_2 n_1\rangle$) et 3 est le nombre de quanta dans ces 6 kets possibles ; et enfin as est le poids d'un ket non symmetrisé dans le ket symétrisé (par exemple as $= 2/\sqrt{12}$ pour $|n_2 n_1 n_3\rangle$ dans $|(n_1 n_2 n_3), 1E_1\rangle$).

Tout d'abord on initialise les variables as et combils à zéro :

do l=1,4 do m=1,6

```
meskets(i)%combils(m,1)=-1000
meskets(i)%as(m)=0.d0
enddo
```

enddo

où i est le numéro du ket. Dans le cas de la variable combils, la valeur zéro est une valeur de nombre quantique possible, c'est pourquoi dans ce cas, on prend -1000 comme indiquant un "vrai zéro". On présente la partie du programme pour la symétrisation du ket $|(n_1 n_2 n_3), 1E_1\rangle$:

```
i=1
do s1=0,NNs
 do s2=0,NNs-s1
  do s3=0,NNs-(s1+s2)
     . . .
   if ((s1.ne.s2).and.(s2.ne.s3).and.(s1.ne.s3)) then
    meskets(i)%s(1)=s1
    meskets(i)%s(2)=s2
    meskets(i)%s(3)=s3
    meskets(i)%multis=1
    meskets(i)%symetries=3
    meskets(i)%combils(1,1)=s1
    meskets(i)%combils(1,2)=s2
    meskets(i)%combils(1,3)=s3
    meskets(i)%combils(2,1)=s1
    meskets(i)%combils(2,2)=s3
    meskets(i)%combils(2,3)=s2
    meskets(i)%combils(3,1)=s2
    meskets(i)%combils(3,2)=s1
    meskets(i)%combils(3,3)=s3
    meskets(i)%combils(4,1)=s2
    meskets(i)%combils(4,2)=s3
    meskets(i)%combils(4,3)=s1
    meskets(i)%combils(5,1)=s3
    meskets(i)%combils(5,2)=s1
    meskets(i)%combils(5,3)=s2
    meskets(i)%combils(6,1)=s3
    meskets(i)%combils(6,2)=s2
    meskets(i)%combils(6,3)=s1
    meskets(i)%as(1)=2.d0/dsqrt(12.d0)
    meskets(i)%as(2)=-1.d0/dsqrt(12.d0)
    meskets(i)%as(3)=2.d0/dsqrt(12.d0)
    meskets(i)%as(4)=-1.d0/dsqrt(12.d0)
```

meskets(i)%as(5)=-1.d0/dsqrt(12.d0)

```
meskets(i)%as(6)=-1.d0/dsqrt(12.d0)
i=i+1
...
endif
enddo
enddo
enddo
```

NNs correspond à la valeur de quanta maximale calculée. Ensuite nous avons informatisé le sous-programme qui calcule les éléments matriciels de n'importe quel opérateur (ou somme d'opérateurs), du type

$$b_1^{\dagger p_1} b_2^{\dagger p_2} b_3^{\dagger p_3} b_1^{m_1} b_2^{m_2} b_3^{m_3} \tag{7.1.1}$$

dans la base précédente. On obtient facilement le coefficient résultant de l'action de l'opérateur (7.1.1) sur le ket non symétrisé en utilisant l'expression suivante :

$$b_{1}^{\dagger p_{1}} b_{2}^{\dagger p_{2}} b_{3}^{\dagger p_{3}} b_{1}^{m_{1}} b_{2}^{m_{2}} b_{3}^{m_{3}} |(n_{1} n_{2} n_{3})\rangle = a |((n_{1} - m_{1} + p_{1}) (n_{2} - m_{2} + p_{2}) (n_{3} - m_{3} + p_{3}))\rangle$$
(7.1.2)

où $a = \frac{\sqrt{n_1!n_2!n_3!(n_1-m_1+p_1)!(n_2-m_2+p_2)!(n_3-m_3+p_3)!}}{(n_1-m_1)!(n_2-m_2)!(n_3-m_3)!}$. On fait ensuite le produit scalaire du ket obtenu (7.1.2) avec les kets initiaux pour obtenir les valeurs des éléments matriciels. Evidemment, cette procédure est valable pour l'opérateur H_1^p aussi.

FIG. 7.1 – Architecture du programme informatique

7.2 Le couplage élongation-pliage dans le modèle locallocal

Dans le cas du couplage élongation-pliage, il y a trois types d'opérateurs : H_1^e , H_1^p et l'opérateur $H_{e\otimes p}$ (ici ref pour operateur), il est donc nécessaire de calculer les éléments matriciels de ces opérateurs dans la base couplée :

$$| n_{e1} n_{e2} n_{e3} (n_{e4}) n_{p1} n_{p2} n_{p3} (n_{p4}) (r_e C_e \sigma_e - r_p C_p \sigma_p) \to C \sigma \rangle$$

$$= \sum_{\sigma_e, \sigma_p} [C]^{1/2} F \begin{pmatrix} C_e & C_p & C \\ \sigma_e & \sigma_p & \sigma \end{pmatrix}$$

$$| n_{e1} n_{e2} n_{e3} n_{e4}, r_e C_e \sigma_e \rangle | n_{p1} n_{p2} n_{p3} n_{p4}, r_p C_p \sigma_p \rangle$$

$$(7.2.1)$$

où

$$\mathcal{C}\left(\begin{array}{ccc}C_{e} & C_{p} & C\\\sigma_{e} & \sigma_{p} & \sigma\end{array}\right) = \left[C\right]^{1/2} F\left(\begin{array}{ccc}C_{e} & C_{p} & C\\\sigma_{e} & \sigma_{p} & \sigma\end{array}\right)$$
(7.2.2)

sont les coefficients de couplage de Clebsch - Gordan, exprimés dans le groupe moléculaire C_{3v}

On doit donc programmer la symétrisation des kets d'élongation et des ket de pliage, après le couplage élongation-pliage (7.2.1) et enfin exécuter le sous-programme qui détermine les éléments matriciels de n'importe quel opérateur (ou somme d'opérateurs), du type

$$b_1^{\dagger p_1} b_2^{\dagger p_2} b_3^{\dagger p_3} b_4^{\dagger p_4} b_5^{\dagger p_5} b_6^{\dagger p_6} b_7^{\dagger p_6} b_8^{\dagger p_7} b_8^{\dagger p_8} b_1^{m_1} b_2^{m_2} b_3^{m_3} b_4^{m_4} b_5^{m_5} b_6^{m_6} b_7^{m_7} b_8^{m_8}$$
(7.2.3)

dans la base couplée définie précédemment.

La programmation de la symétrisation des kets est la même que dans le cas §§7.1 : on doit construire deux listes de variables de type meskets (une pour les kets d'élongation et l'autre pour les kets de pliage). Dans le cas du couplage élongation-pliage, il ne faut surtout pas oublier la sommation (7.2.1). Dans ce cas nous avons 8 nombres quantiques, c'est pourquoi dans l'opérateur (7.2.3) il y a des opérateurs qui agissent chaquns sur leurs nombre quantique correspondant : $\{b_1^{\dagger p_1}, b_1^{m_1}\} \mapsto n_{e_1}, \{b_2^{\dagger p_2}, b_2^{m_2}\} \mapsto n_{e_2}, \{b_3^{\dagger p_3}, b_3^{m_3}\} \mapsto n_{e_3}, \{b_4^{\dagger p_4}, b_4^{m_4}\} \mapsto n_{e_4}, \{b_5^{\dagger p_5}, b_5^{m_5}\} \mapsto n_{p_1}, \{b_6^{\dagger p_6}, b_6^{m_6}\} \mapsto n_{p_2}, \{b_7^{\dagger p_7}, b_7^{m_7}\} \mapsto n_{p_3}$ et $\{b_8^{\dagger p_8}, b_8^{m_8}\} \mapsto n_{p_4}$. On peut utiliser l'expression 7.1.2 en prenant en compte qu'on a 8 nombres quantiques. Pour obtenir les valeurs des éléments matriciels il reste ensuite à calculer le produit scalaire des kets initiaux et des kets obtenus après action de l'opérateur (7.2.3).

7.3 L'algorithme des calculs

Nous venons d'examiner le problème du calcul des éléments matriciels des opérateurs de notre Hamiltonien. Mais le but de notre travail est de déterminer les paramètres de l'Hamiltonien. L'algorithme informatique de notre programme est représenté schématiquement sur la figure 7.1.

Nous allons maintenant discuter de la partie ajustement. Cette procedure qui paraît vraiment facile présente cependant des difficultés informatiques liées à la mémoire vive et au temps de calcul, ansi que la sensibilité aux paramètres initiaux. La problème de memoire et de temps de calcul est connecté avec le grand nombre de niveaux vibrationnels. En effet, la matrice hamiltonienne initiale est de l'ordre de 48000x48000. La théorie des groupes nous permet une première diagonalisation de cette matrice en trois sous-blocs de symétrie A_1 , A_2 et E de dimension respective 17000, 14000, 17000.

On peut introduire le nombre de polyade K puisqu'il y a une résonance 2 :1 entre les niveaux d'élongation et les niveaux de pliage $((\nu_1(A_1) \simeq \nu_3(E)) \simeq 2(\nu_2(A_1) \simeq \nu_4(E)))$, c'est pourquoi

FIG. 7.2 – La matrice hamiltonienne

on peut diviser encore nos sous-blocs de symétrie A_1 , A_2 et E en diffèrants sous-blocs vérifiant $K = 2n_e + n_p$, c'est-à-dire le nombre de polyade K subdivise chacun des trois blocs en 28 sous-blocs¹ de dimension au plus égale à 2200. On peut alors mettre en oeuvre les processus standards de diagonalisation.

Le dernier problème concerne la sensibilité des paramètres, nous avons d'ailleurs abandonner la méthode d'ajustement par les moindres carrés non-linéaires, et nous allons préférer la méthode de Levenberg-Marquardt.

7.4 La méthode de Levenberg-Marquardt

L'ajustement non-linéaire

L'ajustement des spectres expérimentaux se fait sur le critère du résidu minimum entre spectres observé et calculé. Nous allons en rappeler les grandes lignes. On pourra trouver un exposé plus complet dans [70, 71].

Si on mesure la variable y qui est une fonction de plus d'une variable, par exemple un vecteur de variables \vec{x} , alors on aura les fonctions de base suivantes : $X_1(\vec{x}), \ldots, X_M(\vec{x})$ et la fonction de mérite χ^2 représentative de la qualité de l'ajustement est

$$\chi^{2} = \sum_{i=1}^{N} \left(\frac{y_{i} - \sum_{k=1}^{M} a_{k} X_{k}(x_{k})}{\sigma_{i}} \right)^{2}$$
(7.4.1)

où a_k sont des paramètres inconnus.

Nous allons maintenant considérer l'ajustement quand un modèle dépend de M paramètres a_k (k = 1, 2, ..., M) inconnus de façon non-linéaire. On doit trouver la fonction χ^2 et la minimiser. Dans le cas d'un modèle non-linéaire la minimisation est obtenue itérativement. On doit donner des valeurs initiales aux paramètres, lancer la procédure qui nous donne une solution et la continuer jusqu'au minimum de χ^2 .

Il est suffisant d'approximer la fonction χ^2 par la forme quadratique

$$\chi^2(\vec{a}) \approx \gamma - \vec{d} \cdot \vec{a} + \frac{1}{2} \vec{a} \cdot D \cdot \vec{a}$$
(7.4.2)

¹on calcule les états vibrationnels jusqu'a $n_e = 7$ et $n_p = 14$

où \vec{d} est un vecteur de dimension M et D est une matrice de dimension $M \ge M$. On sait parfaitement comment relier les paramètres courants \vec{a}_{cour} aux paramètres minimisés \vec{a}_{min}

$$\vec{a}_{min} = \vec{a}_{cour} + D^{-1} \cdot \left[-\nabla \chi^2(\vec{a}_{cour}) \right]$$
 (7.4.3)

dans le cas seulement d'une (bonne) approximation. Mais il se peut que 7.4.2 soit une mauvaise approximation de la forme que nous essayons de minimiser. Dans ce cas, ce qu'on peut tenter est de se déplacer d'un pas de longueur fixée arbitrairement dans la direction opposée au gradient (méthode des plus fortes pentes ou "steepest descent methode"), c'est-à-dire :

$$\vec{a}_{proch} = \vec{a}_{cour} - \text{const} \times \nabla \chi^2(\vec{a}_{cour}) \tag{7.4.4}$$

Pour utiliser 7.4.3 ou 7.4.4 on doit savoir calculer un gradient d'une fonction χ^2 pour n'importe quelle liste de paramètres \vec{a} . Pour utiliser 7.4.3 on a aussi besoin d'une matrice D qui est la matrice des dérivées secondes (la matrice hessienne) de la fonction de mérite χ^2 .

Le calcul du gradient et de la matrice hessienne

On a un modèle à ajuster

$$y = y(x; \vec{a}) \tag{7.4.5}$$

et une fonction de mérite

$$\chi^{2}(\vec{a}) = \sum_{i=1}^{N} \left(\frac{y_{i} - y(x; \vec{a})}{\sigma_{i}} \right)^{2}$$
(7.4.6)

Le gradient de χ^2 avec les paramètres \vec{a} pour composants :

$$\frac{\partial \chi^2}{\partial a_k} = -2 \sum_{i=1}^N \frac{y_i - y(x_i; \vec{a})}{\sigma_i^2} \frac{\partial y_i(x_i; \vec{a})}{\partial a_k} \quad k = 1, 2, \dots, M$$
(7.4.7)

Si on prend en compte les derivées partielles suivantes, nous avons donc :

$$\frac{\partial^2 \chi^2}{\partial a_k \partial a_l} = 2 \sum_{i=1}^N \frac{1}{\sigma_i^2} \left[\frac{\partial y(x_i; \vec{a})}{\partial a_k} \frac{\partial y(x_i; \vec{a})}{\partial a_l} - (y_i - y(x_i; \vec{a})) \frac{\partial^2 y(x_i; \vec{a})}{\partial a_k \partial a_l} \right]$$
(7.4.8)

Pour simplifier les notations, il est utile de poser

$$\beta_k \equiv -\frac{1}{2} \frac{\partial^2 \chi^2}{\partial a_k} \quad \alpha_{kl} \equiv -\frac{1}{2} \frac{\partial^2 \chi^2}{\partial a_k \partial a_l} \tag{7.4.9}$$

et $[\alpha] = 1/2D$ dans 7.4.3. Avec ces notations on peut réécrire cette équation comme :

$$\sum_{l=1}^{M} \alpha_{kl} \delta a_l = \beta_k \tag{7.4.10}$$

Autrement dit, δa_l est l'incrémentation à réaliser sur le jeu de paramètres initial. Dans ce contexte de l'ajustement aux moindres carrés, la matrice $[\alpha]$ est appelée matrice de courbure.

En revanche, lorsque le χ^2 est "loin" d'être une forme quadratique, on utilisera la méthode des plus forte pentes 7.4.4 qui s'écrit simplement :

$$\delta a_l = \text{const} \times \beta_l \tag{7.4.11}$$

On voit bien que les composantes de la matrice hessienne α_{kl} dépendent des derivées premières et des secondes par rapport aux paramètres \vec{a} .

La stratégie Levenberg-Marquardt

Levenberg et Marquardt ont proposé une méthode efficace et astucieuse pour passer continûment du schéma d'inversion du hessien à celui des plus fortes pentes. Ce dernier schéma sera utilisé loin du minimum et on tend à lui substituer le schéma d'inversion du hessien au fur et à mesure que l'on approche du minimum. Cette méthode de Levenberg-Marquardt a fait ses preuves et fonctionne remarquablement bien pour des modèles et des domaines de la physique fort variés, si bien qu'elle constitue désormais le standard pour résoudre les problèmes d'ajustement aux moindres carrés de modèles non-linéaires.

La méthode est basée sur deux points importantes. Examinons l'ordre de grandeur de "const" dans l'équation 7.4.11. Ce sont les composantes de la matrice hessienne qui donnent l'information sur l'ordre de grandeur de "const".

On peut brièvement décrire la méthode de Levenberg-Marquardt comme une stratégie de recherche du χ^2 minimum utilisant au mieux les schémas 7.4.10 et 7.4.11, et cela grâce à deux idées déterminantes. La première idée consiste à modifier le schéma des plus fortes pentes 7.4.11 en remplaçant la constante (le pas) par un vecteur dont on choisit judicieusement les composantes. On peut interpréter ce choix comme une "mise à l'échelle", pour chacun des paramètres, du pas que l'on va effectuer dans la direction du minimum du χ^2 . On réalise ce choix en remarquant que cette constante de proportion entre une dérivée par rapport à a_k et une différence finie en a_k a naturellement la dimension de a_k^2 . Par ailleurs, on postule qu'un ordre de grandeur de cette constante peut être donné par une composante de la matrice de courbure $[\alpha]$; or la seule composante de $[\alpha]$ dépendante de a_k qui a la dimension requise est $1/\alpha_{kk}$, et le schéma 7.4.11 doit donc être modifié pour s'écrire en composantes :

$$\delta a_l = \frac{1}{\lambda \alpha_{ll}} \beta_l \quad \text{ou} \quad \lambda \alpha_{ll} \delta a_l = \beta_l \tag{7.4.12}$$

où λ est un facteur > 1 permettant de réduire globalement (et non composante par composante) le pas si celui-ci s'avérait trop grand (comme cela se fait dans la méthode des plus fortes pentes).

La deuxième idée consiste alors à poser :

$$\begin{array}{l}
\alpha'_{jj} \equiv \alpha_{jj}(1+\lambda) \\
\alpha'_{jk} \equiv \alpha_{jk} \ (j \neq k)
\end{array}$$
(7.4.13)

Les deux schémas 7.4.10 et 7.4.11 sont avantageusement remplacés par l'unique formulation : trouver l'incrémentation $\delta \vec{a}$ solution du système :

$$\sum_{l=1}^{M} \alpha'_{kl} \delta a_l = \beta_k \tag{7.4.14}$$

Lorsque λ est grand, la matrice $[\alpha]'$ est à diagonale dominante et le système précédent équivaut à 7.4.12; lorsqu'au contraire λ tend vers 0, ce système équivaut à 7.4.10.

L'algorithme proposé par Marquardt est le suivant :

- 1. Calculer $\chi^2(\vec{a})$ avec des paramètres initiaux;
- 2. Poser une valeur quelconque pour λ , par exemple $\lambda = 0.001$;
- 3. Résoudre les équations 7.4.13 pour $\delta \vec{a}$ et évaluer $\chi^2(\vec{a} + \delta \vec{a})$
- 4. Si $\chi^2(\vec{a} + \delta \vec{a}) \ge \chi^2(\vec{a})$, on multiplie la valeur de λ par 10 (ou un autre facteur) et on reïtère le point 4;
- 5. Si $\chi^2(\vec{a} + \delta \vec{a}) < \chi^2(\vec{a})$, on divise la valeur de λ par 10 (ou un autre facteur), on faire la correspondance $\vec{a} \mapsto \vec{a} + \delta \vec{a}$ et on recommence le point 4;

6. Arrêter la procédure quand $|\chi^2(\vec{a} + \delta \vec{a}) - \chi^2(\vec{a})| \ll 1$.

Lorsqu'on a trouvé un minimum acceptable du χ^2 pour un jeu de M paramètres \vec{a}_{min} , la variation de χ^2 autour de ce minimum χ^2_{min} pour une variation $\delta \vec{a}$ des paramètres ajustés est donnée par (en appliquant l'équation 7.4.2 au χ^2 et puisque $\vec{\nabla}\chi^2(\vec{a}_{min}) = 0$) :

$$\chi^2 = \chi^2_{min} + \delta \vec{a}[\alpha] \delta \vec{a} \tag{7.4.15}$$

On va s'intéresser en particulier à la variation du χ^2 lorsqu'on fait arbitrairement varier un seul paramètre a_1 , les autres paramètres restant fixés à leurs valeurs ajustées de \vec{a}_{min} . Notons χ^2_{M-1} , le χ^2 à M-1 degrés de liberté obtenu en fixant le paramètre a_1 à sa valeur arbitraire et soit \vec{a} le nouveau jeu de paramètres qui minimise ce χ^2 . Posons $\Delta \chi^2_1 \equiv \chi^2_{M-1} - \chi^2_{min}$ et $\delta \vec{a} = \vec{a} - a_{min}$ (remarquons qu'aucune des composantes de $\delta \vec{a}$ n'est nulle a priori). On montre que ce $\Delta \chi^2_1(a_1)$ est distribué comme le carré d'une variable aléatoire à distribution normale. Autrement dit, on aura formellement $\Delta \chi^2_1 < 1$ pour $\delta a_1 < 1\sigma$ (68.3% des cas), $\Delta \chi^2_1 < 4$ pour $\delta a_1 < 2\sigma$ (95.4% des cas), $\Delta \chi^2_1 < 9$ pour $\delta a_1 < 3\sigma$ (99.73% des cas), etc...

On peut par ailleurs relier l'incertitude δa_1 sur le paramètre a_1 à $\Delta \chi_1^2$ en remarquant que $\vec{\nabla} \chi^2(\vec{a}_{min}) = 0$ sur toutes ses composantes sauf la première, et comme, d'après 7.4.9 et 7.4.10 $[\alpha]\delta \vec{a} = -\frac{1}{2}\vec{\nabla}\chi^2$, on aura la matrice de covariance $C = [\alpha]^{-1}$ telle que :

$$\delta a_1 = -\frac{1}{2} \frac{\partial \chi^2}{\partial a_1} C_{11} \tag{7.4.16}$$

On déduit de 7.4.15 et 7.4.16 :

$$\Delta \chi_1^2 = \delta \vec{a} [\alpha] \delta \vec{a} = (\delta a_1)^2 / C_{11}$$
(7.4.17)

soit

$$\delta a_1 = \pm \sqrt{\Delta \chi_1^2} \sqrt{C_{11}} \tag{7.4.18}$$

et, donc, si l'on définit l'incertitude sur le paramètre a_1 par $\delta_1 \equiv 1\sigma$, soit $\Delta \chi_1^2 \equiv 1$, on aura finalement

$$\delta a_1 = \sqrt{C_{11}} \tag{7.4.19}$$

7.5 Le couplage élongation-pliage dans le modèle localnormal

Rappelons que dans ce cas on décrit les vibrations d'élongation comme des modes locaux et les vibrations de pliage comme des modes normaux. D'abord, comme dans §§7.2, on doit construire des états vibrationnels couplés. Pour les niveaux d'élongation, on utilise la même procédure que dans §§7.1. Examinons maintenant la procédure pour construire des états vibrationnels de pliage. En fait, nous allons développer le même principe que pour les niveaux d'élongation :

```
type(ket),dimension(2000) :: ket_bend
type ket
    integer*4 :: v2,v4,l4,sym
endtype
```

c'est-à-dire on prend la même description mais avec des notations de modes normaux $(v_2 v_4^{\pm l_4}, \Gamma)$, Γ étant la symétrie du ket. On doit maintenant construire des kets en prenant en compte leur symétrie. La symétrie des kets dépend de la valeur de l_4 . On commence par deux boucles en v2 et v4 depuis les valeurs zéro jusqu'à une valeur calculée maximale. Il faut prendre en compte qu'on doit faire des calculs jusqu'a v_2^{max} et v_4^{max} qui sont deux fois plus grands que le nombre quantique de vibration d'élongation. count est le numéro du ket. Après on réalise l'algorithme suivant : $l_4 = v_4, v_4 - 2, \ldots, 0$ si v_4 est pair ou 1 si v_4 est impair et la symétrie est donné par :

Si $l_4 = 0$ alors $\Gamma = A_1$; Si $l_4 = 3p + 1$ alors $\Gamma = E, p = 0, 1, ...;$ Si $l_4 = 3p + 2$ alors $\Gamma = E, p = 0, 1, ...;$ Si $l_4 = 3p + 3$ alors $\Gamma = A_1$ et $A_2, p = 0, 1, ...$

Voici la partie du programme qui réalise cet algorithme :

```
count=1
do v2=0,v2max
  do v4=0,v4max
    if (mod(v4,2) == 0) then
      do 14=0,v4,2
        if ( (mod(14,3) == 0).and.(14 == 0) ) then
          if (mod(14,2) == 0) then
             sym=1
             ket_bend(count)%v2=v2
             ket_bend(count)%v4=v4
             ket_bend(count)%14=14
             ket_bend(count)%sym=sym
             count=count+1
                                 else
             sym=2
             ket_bend(count)%v2=v2
             ket_bend(count)%v4=v4
             ket_bend(count)%14=14
             ket_bend(count)%sym=sym
             count=count+1
            endif
        elseif (mod(14,3) == 0) then
             sym=1
             ket_bend(count)%v2=v2
             ket_bend(count)%v4=v4
             ket_bend(count)%14=14
             ket_bend(count)%sym=sym
             count=count+1
             sym=2
             ket_bend(count)%v2=v2
             ket_bend(count)%v4=v4
             ket_bend(count)%14=14
             ket_bend(count)%sym=sym
             count=count+1
        elseif (mod(14,3) == 1) then
```

```
sym=3
       ket_bend(count)%v2=v2
       ket_bend(count)%v4=v4
       ket_bend(count)%14=14
       ket_bend(count)%sym=sym
       count=count+1
  elseif (mod(14,3) == 2) then
       sym=3
       ket_bend(count)%v2=v2
       ket_bend(count)%v4=v4
       ket_bend(count)%14=14
       ket_bend(count)%sym=sym
       count=count+1
  endif
  enddo
                    else
do 14=1,v4,2
  if ( (mod(14,3) == 0).and.(14 == 0) ) then
    if (mod(14,2) == 0) then
       sym=1
       ket_bend(count)%v2=v2
       ket_bend(count)%v4=v4
       ket_bend(count)%14=14
       ket_bend(count)%sym=sym
       count=count+1
                          else
       sym=2
       ket_bend(count)%v2=v2
       ket_bend(count)%v4=v4
       ket_bend(count)%14=14
       ket_bend(count)%sym=sym
       count=count+1
      endif
  elseif (mod(14,3) == 0) then
       sym=1
       ket_bend(count)%v2=v2
       ket_bend(count)%v4=v4
       ket_bend(count)%14=14
       ket_bend(count)%sym=sym
       count=count+1
       sym=2
       ket_bend(count)%v2=v2
       ket_bend(count)%v4=v4
       ket_bend(count)%14=14
       ket_bend(count)%sym=sym
       count=count+1
  elseif (mod(14,3) == 1) then
       sym=3
```

```
ket_bend(count)%v2=v2
             ket_bend(count)%v4=v4
             ket_bend(count)%14=14
             ket_bend(count)%sym=sym
             count=count+1
        elseif (mod(14,3) == 2) then
             sym=3
             ket_bend(count)%v2=v2
             ket_bend(count)%v4=v4
             ket_bend(count)%14=14
             ket_bend(count)%sym=sym
             count=count+1
        endif
        enddo
    endif
  enddo
enddo
count=count-1
```

Maintenant on doit faire le couplage élongation-pliage, en utilisant les coefficients de couplage Clebsch - Gordan :

$$|n_1 n_2 n_3 (n_4) (v_2 v_4^{\pm l_4}) (r_e C_e \sigma_e - C_p \sigma_p) \to C \sigma \rangle$$

$$= \sum_{\sigma_e, \sigma_p} [C]^{1/2} F \begin{pmatrix} C_e & C_p & C \\ \sigma_e & \sigma_p & \sigma \end{pmatrix} |n_1 n_2 n_3 (n_4), r_e C_e \sigma_e \rangle |(v_2 v_4^{\pm l_4}), C_p \sigma_p \rangle$$

$$(7.5.1)$$

Puis, on calcule les éléments matriciels des opérateurs de notre Hamiltonien afin de construire sa matrice, c'est-à-dire des opérateurs du type H_1^e (cf programmation précédente) et un opérateur de couplage élongation-pliage 7.5.2

$$\begin{split} H_{sb} &= \alpha \big(\mathcal{Y}^{4(A_{1})} - i \mathcal{Y}^{5(A_{1})} \big) \mathbf{a}_{2}^{(\mathbf{A}_{1})} \mathbf{a}_{2}^{(\mathbf{A}_{1})} + \beta \big(\mathcal{Y}^{4(\mathbf{A}_{1})} + i \mathcal{Y}^{5(\mathbf{A}_{1})} \big) \mathbf{a}_{2}^{+(\mathbf{A}_{1})} \mathbf{a}_{2}^{+(\mathbf{A}_{1})} \mathbf{a}_{2}^{+(\mathbf{A}_{1})} \mathbf{a}_{2}^{+(\mathbf{A}_{1})} + \\ &+ \alpha_{1} \big(\mathcal{Y}^{4(A_{1})} - i \mathcal{Y}^{5(A_{1})} \big) \big(\mathbf{a}_{4}^{(\mathbf{E}_{1})} \mathbf{a}_{4}^{(\mathbf{E}_{1})} + \mathbf{a}_{4}^{(\mathbf{E}_{2})} \mathbf{a}_{4}^{(\mathbf{E}_{2})} \big) + \beta_{1} \big(\mathcal{Y}^{4(\mathbf{A}_{1})} + i \mathcal{Y}^{5(\mathbf{A}_{1})} \big) \big(\mathbf{a}_{4}^{+(\mathbf{E}_{1})} \mathbf{a}_{4}^{+(\mathbf{E}_{2})} \mathbf{a}_{4}^{+(\mathbf{E}_{2})} \big) + \\ &+ \alpha_{2} \big(\mathcal{Y}_{1}^{4(E)} - i \mathcal{Y}_{1}^{5(E)} \big) \big(\mathbf{a}_{2}^{(\mathbf{A}_{1})} \mathbf{a}_{4}^{(\mathbf{E}_{1})} + \mathbf{a}_{4}^{(\mathbf{E}_{1})} \mathbf{a}_{2}^{(\mathbf{A}_{1})} \big) + \alpha_{2} \big(\mathcal{Y}_{2}^{4(\mathbf{E})} - i \mathcal{Y}_{2}^{5(\mathbf{E})} \big) \big(\mathbf{a}_{2}^{+(\mathbf{A}_{1})} \mathbf{a}_{4}^{+(\mathbf{E}_{1})} \mathbf{a}_{4}^{+(\mathbf{E}_{1})} \mathbf{a}_{2}^{+(\mathbf{A}_{1})} \big) + \\ &+ \beta_{2} \big(\mathcal{Y}_{1}^{4(E)} + i \mathcal{Y}_{1}^{5(E)} \big) \big(\mathbf{a}_{2}^{+(\mathbf{A}_{1})} \mathbf{a}_{4}^{+(\mathbf{E}_{1})} \mathbf{a}_{4}^{+(\mathbf{E}_{1})} \mathbf{a}_{2}^{+(\mathbf{A}_{1})} \big) + \\ &+ \beta_{3} \big(\mathcal{Y}_{1}^{4(E)} - i \mathcal{Y}_{1}^{5(E)} \big) \big(- \mathbf{a}_{4}^{(\mathbf{E}_{1})} \mathbf{a}_{4}^{(\mathbf{E}_{1})} + \mathbf{a}_{4}^{(\mathbf{E}_{2})} \mathbf{a}_{4}^{(\mathbf{E}_{2})} \big) + \\ &+ \beta_{3} \big(\mathcal{Y}_{1}^{4(E)} + i \mathcal{Y}_{1}^{5(E)} \big) \big(- \mathbf{a}_{4}^{+(\mathbf{E}_{1})} \mathbf{a}_{4}^{+(\mathbf{E}_{2})} \mathbf{a}_{4}^{+(\mathbf{E}_{2})} \mathbf{a}_{4}^{+(\mathbf{E}_{2})} \big) + \\ &+ \beta_{3} \big(\mathcal{Y}_{1}^{4(E)} + i \mathcal{Y}_{1}^{5(E)} \big) \big(- \mathbf{a}_{4}^{+(\mathbf{E}_{1})} \mathbf{a}_{4}^{+(\mathbf{E}_{2})} \mathbf{a}_{4}^{+(\mathbf{E}_{2})} \mathbf{a}_{4}^{+(\mathbf{E}_{2})} \big) + \\ &+ \beta_{3} \big(\mathcal{Y}_{1}^{4(E)} + i \mathcal{Y}_{1}^{5(E)} \big) \big(- \mathbf{a}_{4}^{+(\mathbf{E}_{1})} \mathbf{a}_{4}^{+(\mathbf{E}_{2})} \mathbf{a}_{4}^{+(\mathbf{E}_{2})} \big) + \\ &+ \beta_{3} \big(\mathcal{Y}_{1}^{4(E)} + i \mathcal{Y}_{1}^{5(E)} \big) \big(- \mathbf{a}_{4}^{+(\mathbf{E}_{1})} \mathbf{a}_{4}^{+(\mathbf{E}_{2})} \mathbf{a}_{4}^{+(\mathbf{E}_{2})} \big) + \\ &+ \beta_{3} \big(\mathcal{Y}_{1}^{4(E)} + i \mathcal{Y}_{1}^{5(E)} \big) \big(- \mathbf{a}_{4}^{+(\mathbf{E}_{1})} \mathbf{a}_{4}^{+(\mathbf{E}_{2})} \mathbf{a}_{4}^{+(\mathbf{E}_{2})} \big) + \\ &+ \beta_{3} \big(\mathcal{Y}_{1}^{4(E)} + i \mathcal{Y}_{1}^{5(E)} \big) \big) \big(- \mathbf{a}_{4}^{+(\mathbf{E}_{1})} \mathbf{a}_{4}^{+(\mathbf{E}_{2})} \mathbf{a}_{4}^{+(\mathbf{E}_{2})} \big) + \\ &+ \beta_{3} \big(\mathcal{Y}_{1}^{4(E)} + i \mathcal{Y}_{1}^{5(E)} \big) \big) \big(- \mathbf{a$$

où les opérateurs $\mathcal{Y}^{4(A_1)}, \mathcal{Y}^{5(A_1)}, \mathcal{Y}^{4(E)}_1, \mathcal{Y}^{4(E)}_2, \mathcal{Y}^{5(E)}_1$ et $\mathcal{Y}^{5(E)}_2$ sont des opérateurs qui agissent sur les kets d'élongation (§§4.4.4) et les opérateurs $\mathbf{a}_2^{(\mathbf{A}_1)}, \mathbf{a}_2^{+(\mathbf{A}_1)}, \mathbf{a}_4^{(\mathbf{E}_1)}, \mathbf{a}_4^{(\mathbf{E}_1)}, \mathbf{a}_4^{(\mathbf{E}_2)}$ et $\mathbf{a}_4^{+(\mathbf{E}_2)}$ agissent sur les kets de pliage. On doit donc maintenant trouver l'algorithme pour obtenir les valeurs des éléments matriciels de cet opérateur. Nous savons déjà programmer les éléments matriciels de combinaison des operateurs b_i^+, b_j , ce qui résoud la première partie de l'opérateur de couplage. Pour la deuxième partie concernant "la partie de pliage" on a utilisé la procédure suivante :

1. Nous avons écrit un programme avec MATHEMATICA 5.0 qui calcule les expressions pour une action de n'mporte quelles combinaisons des opérateurs $\mathbf{a_2^{(A_1)}}$, $\mathbf{a_2^{+(A_1)}}$, $\mathbf{a_4^{(E_1)}}$, $\mathbf{a_4^{(E_2)}}$ et $\mathbf{a_4^{+(E_2)}}$ sur les kets de pliage $|(v_2v_4^{\pm l_4}), C_p\sigma_p\rangle$;

2. A partir des expressions obtenues, on a fait un sous-programme en FORTRAN 95 qui permet de calculer les valeurs des éléments matriciels

Pour calculer les expressions du point 1 ci-avant, on a utilisé les éléments	matriciels réduits
pour l'oscillateur de dimension $1 : \langle v_2, A_1 a_2^{(A_1)} v_2 + 1, A_1 \rangle = \sqrt{v_2 + 1}$	et ceux de la ta-
ble 7.1 pour l'oscillateur de dimension 2 et pour les éléments matriciels	réduits conjugués
$< v_s, \{\gamma\}, C a_{s\sigma}^{+(C_s)} v_s - 1, \{\gamma'\}, C' > = (-1)^{C + C_s + C'} < v_s - 1, \{\gamma'\}, C' a_{s\sigma}^{(C_s)} v_s - 1, \{\gamma'\}, C' a_{s\sigma}^{(C_s)} v_s - 1, \{\gamma'\}, C' a_{s\sigma}^{(C_s)} v_s - 1, \{\gamma'\}, C'	$ v_s, \{\gamma\}, C >.$

l_4	C_p	l_4'	C'_p	E.M.R
0	A_1	1	E	$\sqrt{v_4+1}$
$6p \neq 0$	Г	6p + 1	E	$\sqrt{(v_4+l_4+2)/2}$
$6p \neq 0$	Г	6p - 1	E	$(-1)^{\Gamma}\sqrt{(v_4-l_4+2)/2}$
6p + 1	E	6p + 2	E	$-\sqrt{(v_4+l_4+2)}$
1	E	0	A_1	$-\sqrt{v_4+1}$
6p + 1	E	$6p \neq 0$	Γ	$-(-1)^{\Gamma}\sqrt{(v_4-l_4+2)/2}$
6p + 2	E	6p + 3	Γ	$-(-1)^{\Gamma}\sqrt{(v_4+l_4+2)/2}$
6p + 2	E	6p + 1	E	$\sqrt{(v_4 - l_4 + 2)}$
6p + 3	Γ	6p + 4	E	$-(-1)^{\Gamma}\sqrt{(v_4+l_4+2)/2}$
6p + 3	Γ	6p + 2	E	$\sqrt{(v_4 - l_4 + 2)/2}$
6p + 4	E	6p + 5	E	$\sqrt{(v_4 + l_4 + 2)}$
6p + 4	E	6p + 3	Γ	$\sqrt{(v_4 - l_4 + 2)/2}$
6p + 5	E	6p + 6	Γ	$-\sqrt{(v_4+l_4+2)/2}$
6p + 5	E	6p + 4	E	$-\sqrt{(v_4 - l_4 + 2)}$
			$\Gamma = A_1 \text{ou} A_2$	
			$p=0,1,\ldots$	

TAB. 7.1 – The matrix elements $\langle v_4, l_4, C_p || a_4^{(E)} || v_4 + 1, l'_4, C'_p \rangle$

A partir des élements matriciels réduit, on peut obtenir les éléments matriciels en utilisant le théorème de Wigner-Eckart

$$<\{v_{s}\}, C_{p}, \sigma_{p}|a_{\sigma}^{(C)}|\{v_{s}'\}, C_{p}', \sigma_{p}'>= F\left(\begin{array}{cc} C & C_{p}' & C_{p} \\ \sigma & \sigma_{p}' & \sigma_{p} \end{array}\right) <\{v_{s}\}, C_{p}||a_{\sigma}^{(C)}||\{v_{s}'\}, C_{p}'>$$
(7.5.3)

Après action de notre opérateur de couplage sur les kets, on trouve les valeurs des éléments matriciels en faisant le produit scalaire des kets initiaux et des kets obtenus après l'action de l'opérateur de couplage. Nous pouvons donc construire la matrice hamiltonienne et obtenir les valeurs propres de notre système.

Dans ce cas on a résolu les même problèmes qu'en §§7.2, c'est-à-dire maintenant on sait également obtenir des paramètres de notre Hamiltonien dans le cas du couplage élongationpliage (modèle local-normal).

Mentionnons que tous les calculs numériques obtenus avec FORTRAN 95 ont été testés avec MATHEMATICA 5.0.

Chapitre 8 Conclusion et perspectives

8.1 Conclusion

Dans ce travail de thèse, nous nous sommes attachés principalement à l'étude des états vibrationnels très excités des molécules XY_3 non planaires. Pour cette étude, nous avons utilisé une approche algébrique du type U(p + 1). Ceci signifie, d'une part, que les degrés de liberté vibrationnels ont été traitées comme des oscillateurs anaharnomiques, et d'autre part, que si p degrés de liberté sont identiques, alors ils sont équivalents à un oscillateur p fois dégénéré. Ainsi, les énergies et les dégénerescences associées sont données par le groupe unitaire U(p): c'est le groupe de dégénérescence.

Cependant, l'ensemble des propriétés dynamiques du système n'est pas accessible par le groupe de dégénérescence. Le formalisme algébrique U(p + 1) propose de prendre le groupe unitaire U(p + 1) comme sur-groupe au groupe de dégénérescence.

La quasi totalité du formalisme utilisé dans ce travail repose sur l'emploi des groupes unitaires et de leurs propriétés. C'est pourquoi nous avons débuté ce manuscrit par de brefs rappels concernant les groupes continus, en l'occurence pour les groupes de Lie. Nous avons volontairement débuté ces rappels à un niveau élémentaire, afin d'essayer de satisfaire à "l'auto-suffisance" du manuscrit. Puis, nous avons rappelé les techniques de descriptions et d'études des groupes unitaires. A ce stade, ont été introduits les états de Gelfand-Zetlin (G-Z), les représentations (lexicales, adjointes, totalement symétriques). A l'aide de la notion de poids d'un état de G-Z, nous avons rappelé, dans le cadre des représentations totalement symétriques, le lien existant entre les états de G-Z et les états locaux moléculaires utilisés dans la suite du travail. Ces rappels effectués, nous avons appliqué le formalisme algébrique U(p+1) afin de décrire les états vibrationnels des molécules de symétrie C_{3v} .

Dans un premier temps, nous avons entrepris l'étude des modes vibrationnels d'élongation des molécules locales XY_3 non planaires, c'est-à-dire des molécules pour lesquelles il est possible d'étudier séparément les modes d'élongation et les modes de pliage. De plus, le choix des molécules testées dépend également de deux autres critères : l'intérêt scientifique des molécules et l'existence de données expérimentales relatives aux niveaux d'énergies vibrationnelles. C'est pourquoi le choix des molécules de stibine (SbH_3) , de phosphine (PH_3) et d'arsine (AsH_3) s'est rapidement imposé. La stibine est d'un interêt industriel important, car elle est la source la plus pure qui permet de récupérer l'antimoine qui intervient dans la fabrication de certains composés semi-conducteurs. La molécule d'arsine et de phosphine sont elles d'interêt planétologique, puisqu'elle ont été détectée dans l'atmosphère de planet-geants.

Ces trois molécules admettent des modes fondamentaux vibrationnels d'élongation très

proches : $\nu_1(A_1) \simeq \nu_3(E)$. En conséquence, ces deux molécules se comportent, en élongation, comme trois oscillateurs identiques ou comme un oscillateur trois fois dégénéré. C'est pourquoi, initialement, nous avons utilisé la chaine de groupe

$$U(4) \supset U(3) \supset S(3) \approx C_{3v} \tag{8.1.1}$$

ce qui nous a conduit à l'énergie d'ordre zéro.

Mais le Hamiltonien H_0 , d'ordre zéro ne permet pas, par exemple, de connexion entre des états du type $|n n' n" n_4\rangle$ et $|n \pm 1 n' \mp 1 n" n_4\rangle$. Or ces deux types d'états appartiennent à la même représentation totalement symétrique $[n_e, \dot{0}^2]$ (où $n_e = n + n' + n"$). Ainsi nous avons introduit un opérateur de couplage

$$\mathcal{Y}^{3(A_1)} = \sum_{i \neq j=1}^{3} b_i^{\dagger} b_j \tag{8.1.2}$$

qui vient compléter l'expression du Hamiltonien H_0 . Ce terme permet un échange de quanta entre les liaisons i et j, il s'agit donc d'un opérateur de couplage intramoléculaire. Dès lors, le Hamiltonien utilisé

$$H_1 = a_0 \,\hat{n} + a_1 \,\hat{n}^2 + a_2 \,(\hat{n}_1 \hat{n}_2 + \hat{n}_1 \hat{n}_3 + \hat{n}_2 \hat{n}_3) + a_3 \,\sum_{i \neq j=1}^3 b_i^{\dagger} b_j \tag{8.1.3}$$

possède deux contributions distinctes :

- une contribution anharmonique, représentée par les termes quadratiques
- une contribution de couplage des liaisons permettant l'échange interne de quanta. Cet effet étant représenté par l'opérateur $\mathcal{Y}^{3(A_1)}$

L'intensité relative de ces deux contributions rend compte de la prédominance d'un phénomène physique au sein de notre système moléculaire.

Afin d'ajuster ce modèle, il a fallu dans un premier temps calculer numériquement les éléments matriciels dans la base symétrisée

Puis, ce modèle a été testé sur les molécules de stibine, de phosphine et d'arsine. Les données expérimentales dont nous disposions concernaient des états caractérisés par un nombre quantique vibrationnel inférieur ou égale à 6. Suite à la procédure d'ajustement (des moindres carrés non-linéaires), nous avons mis en évidence la grande stabilité de notre modèle sur l'ensemble spectral reproduit. En effet, pour ces deux molécules, notre modèle détermine les états les plus excités avec une erreur inférieure à $2 \, cm^{-1}$. D'autres modèles basés sur des approches de type Morse ou développement en coordonnées normales, reproduisent bien l'ensemble des premiers niveaux, mais divergent dès que le nombre quantique vibrationnel atteint 4. La stabilité dont fait preuve notre modèle, nous a conduit à entreprendre une estimation de la limite de dissociation des deux molécules étudiées. Pour ce faire, nous avons remarquer que le meilleur moyen de dissociation est relative à des états du type $|(n \, 0 \, 0) \, A_1, E\rangle$. Suite à la procédure d'ajustement, ces états sont caractérisés par des coefficients de pureté avoisinant 100% ; cette remarque conduit à n'utiliser que la partie diagonale H_0 du Hamiltonien. Par cette méthode, les limites de dissociation ont été estimées avec une erreur relative inférieure à 5%.

Un autre intérêt de notre démarche, est le faible nombre de paramètres mis en jeu : 4 pour le spectre d'élongation. Ce faible nombre de paramètre favorise grandement l'interprétation physique de ces derniers. A titre de comparaison, un modèle de type Morse incluant des termes supplémentaires d'interaction reproduisant le spectre d'élongation peut posséder 7 à 8 paramètres pour une efficacité moindre sur les états fortements excités. Ceci est dû au fait que, dans le cadre d'une approche de type Morse, initialement la forme du potentiel régissant les liaisons est supposée. Or, le potentiel de Morse étant une approximation du potentiel réel, il engendre donc des erreurs sur les états excités. Ces erreurs se retrouvent de manière inhérente dans l'utilisation des fonctions (de base) de Morse servant aux calculs des éléments matriciels. Par contre, dans le cadre de l'approche algébrique, il n'est pas nécessaire de pré-supposer de forme de potentiel. Cette remarque nous a conduit à montrer que, dès l'ordre zéro, notre modèle contient le cas du Morse, c'est-à-dire que, dans un cas particulier il permet de retrouver les résultats du Morse.

Le passage mathématique $U(3) \supset S(3)$ concerne la réduction des représentations d'un groupe continu en représentations irréductibles d'un groupe discret. Un ensemble d'oscillateurs qui possèdent la même énergie peut être décrit comme appartenant à une même couche. Ces remarques conduisent à introduire le groupe semi-continu K(3) qui est définit comme le produit semi-direct :

$$K(3) = A(3) \land S(3). \tag{8.1.4}$$

Un résultat important a été mis en évidence pour les molécules XY_3 considérées : les représentations du groupe K(3) conduisent aux répartitions énergétiques possibles sur les liaisons de la molécule.

Afin d'améliorer la description des modes vibrationnels d'élongation, nous avons entrepris la construction d'un Hamiltonien d'ordre deux. Pour ce faire, nous avons effectué un développement tensoriel à l'ordre deux des générateurs symétrisés. Suite au grand nombre de termes d'ordre deux, nous avons essayé de déterminer ceux qui étaient prépondérants (ou privilégiés). Malheureusement nous n'avons déterminé aucun critère qui nous aurait permis d'effectuer un choix parmi ces opérateurs. C'est pourquoi la méthode que nous avons utilisée est celle qui consiste à effectuer des ajustements des différents modèles, et de choisir celui qui permet la meilleure reproduction spectrale pour les molécules d'arsine et de stibine.

Pour l'étude du couplage entre les modes d'élongation et de pliage, nous avons utilisé le schéma de couplage

$$(U_e(4) \supset U_e(3) \supset K_e(3) \supset S_e(3) \simeq C_{3v}) \otimes (U_p(4) \supset U_p(3) \supset K_p(3) \supset S_p(3) \simeq C_{3v}) \supset C_{3v}$$

$$(8.1.5)$$

Le Hamiltonien H_{e-p} associé étant alors

$$H_{e-p} = H_{0e} + a_3 \mathcal{Y}_e^{3(A_1)} + H_{0p} + a_7 \mathcal{Y}_p^{3(A_1)} + a_8 H_{e\otimes p}$$
(8.1.6)

où $H_{e\otimes p}$ est l'opérateur d'interaction entre les modes d'élongation et de pliage :

$$H_{e\otimes p} = \sum_{i=1}^{3} \sum_{k=5}^{7} \sum_{n>k=5}^{7} \left(b_i^{\dagger} b_4 b_k b_n b_8^{\dagger 2} + b_i b_4^{\dagger} b_k^{\dagger} b_n^{\dagger} b_8^2 \right).$$
(8.1.7)

En vue d'un ajustement de notre modèle, il a été nécessaire de calculer au préalable les éléments matriciels de l'opérateur $H_{e\otimes p}$ dans la base couplée. Ainsi, nous avons informatisé le problème, en créant un programme (sous FORTRAN 90) qui détermine les éléments matriciels de n'importe quel opérateur (ou somme d'opérateurs), du type

$$b_{1}^{\dagger p_{1}}b_{2}^{\dagger p_{2}}b_{3}^{\dagger p_{3}}b_{4}^{\dagger p_{4}}b_{5}^{\dagger p_{5}}b_{6}^{\dagger p_{6}}b_{7}^{\dagger p_{7}}b_{8}^{\dagger p_{8}}b_{1}^{m_{1}}b_{2}^{m_{2}}b_{3}^{m_{3}}b_{4}^{m_{4}}b_{5}^{m_{5}}b_{6}^{m_{6}}b_{7}^{m_{7}}b_{8}^{m_{8}}$$

$$(8.1.8)$$

dans la base couplée définie précédemment.

Le schéma de couplage mis en place nous a conduit à la base couplée de travail mais la dimension de cette base devient alors gigantesque.

En effet, la matrice hamiltonienne initiale est de l'ordre de 48000×48000 . La théorie des groupes permet une première diagonalisation de cette matrice en trois sous-blocs de symétrie A_1 , A_2 et E de dimension respective 17000, 14000 et 17000. Puis l'introduction du nombre de polyade K subdivise chacun de ces trois blocs en 28 sous-blocs de dimension au plus égale à 2200. On peut alors mettre en oeuvre les processus standards de diagonalisation.

Enfin on a montré que utilisation de l'approche local-normal decris les niveaux vibrationnels mieux que dans le cadre de l'approche local-local.

8.2 Perspectives

8.2.1 L'effet tunnel

La molécule d'ammoniac NH_3 est une des plus utilisées dans l'industrie, dans les domaines de l'agriculture, des traitements de surfaces, ou encore des piles à combustible. Cette molécule a aussi de nombreux effets sur l'environnement : l'ammoniac contribue aux phénomènes d'acidification¹ et d'eutrophisation De plus, la communauté spectroscopique lui accorde, depuis de nombreuses années, un grand intérêt planétologique, puisque c'est une des molécules primordiales de l'univers.

Cette molécule présente une barrière de potentiel d'inversion de l'ordre de 2000 cm^{-1} [3] bien inférieure à celle de la stibine et de l'arsine : elle est donc caractérisée par un fort effet tunnel. Une des principales caractéristiques, difficiles à reproduire, de l'effet tunnel de l'ammoniac, est que l'écart énergétique entre les niveaux parapluies (+ et -) croît avec les premières valeurs de n, puis se stabilise à une valeur constante pour des valeurs de n supérieures. De plus, l'algèbre de dégénérescence associée devra posséder deux étiquettes; à ce titre l'algèbre de spin su(2) apparaît donc comme une possibilité. Il existe déjà des modèles (non algébriques) traitant l'effet tunnel de la molécule d'ammoniac NH_3 . Ceux-ci sont fondés sur l'idée qu'il est possible de décrire par un oscillateur supplémentaire le passage de la molécule entre les deux états parapluies [72]. Une analogie algébrique de ces modèles nous conduirait à choisir comme groupe de dégénérescence le groupe unitaire U(1).

8.2.2 La rotation algébrique

Le traitement algébrique des degrés de liberté rotationnels présenterait les deux principaux intérêts suivants : un traitement complet et homogène des degrés rovibrationnels et de leurs interactions ; et pouvoir définir une limite de dissociation rotationnelle. Le développement d'un modèle algébrique rovivrationnel permettrait de rendre compte des interactions entre les modes vibrationnels et rotationnels avec, sans doute, un nombre de paramètres moindre que ceux des modèles déjà existants, reposant sur des développements tensoriels ou en coordonnées normales. Le second intérêt d'un traitement algébrique de la rotation serait de pouvoir travailler au sein

¹Les dépôts acides recouvrent non seulement les retombées acides sous forme de pluie mais également sous forme de neige et de brouillard (dépôts humides), ainsi que sous forme de gaz et de poussières (dépôts secs). Ces dépôts proviennent essentiellement de l'utilisation des combustibles fossiles. Le dépot de polluants acidifiants (SO_2, NO_2, NH_3) sur la végétation, les eaux de surface et les sols est à l'origine d'un grand nombre d'effets. Outre les effets sur les forêts, les dépôts acides peuvent altérer toutes les niches écologiques des zones sensibles et plus particulièrement la faune aquatique. Le patrimoine culturel est lui aussi menacé par les pollutions acides. Les pierres des édifices et des monuments, surtout celles qui contiennent du calcaire, sont dégradées par les poussières qui s'accumulent à leur surface et par le dioxyde de soufre.

d'une représentation donnée, donc un espace vectoriel porteur de dimension finie. Dès lors, il sera possible de définir une limite de dissociation rotationnelle.

8.2.3 Détermination de familles de potentiel à partir des Hamiltoniens algébriques

Lors de l'écriture d'Hamiltonien algébrique, on ne suppose pas au départ de forme de potentiel. En utilisant l'une des définitions des opérateurs bosons création et annihilation en fonction des opérateurs position et impulsion, il est possible de définir les potentiels (ou famille de potentiels) qui sont associées aux Hamiltoniens algébriques. Dès lors, il seraient intéressant de pouvoir les comparer avec ceux déjà existants, tels les potentiels de type Morse généralisés pour les modes vibrationnels d'élongation. Un exemple d'une telle application peut être trouvée dans [19]. Ces auteurs montrent que la représentation position, en coordonnées hyperboliques polaires, des opérateurs invariants du groupe (non-compact) SO(2, 1) conduit à l'équation de Schrödinger d'un particule soumise à un potentiel de Pöschl-Teller.

Bibliographie

- [1] J. Crovisie. http://www.obspm.fr/ \sim crovisie/basemole/. (free available), 2002.
- [2] P.R. Bunker and P. Jensen. Computational Molecular Spectroscopy. John Wiley and Sons, L.T.D., New-York, 2000.
- [3] P.R. Bunker, W.P. Kraemer, and V. Spirko. An ab initio investigation of the potential function and rotation-vibration energies of NH₃. Canadian Journal of Physics, 62 :1801– 1805, 1984.
- [4] B.I. Zhilinskii, V.I. Perevalov, and V.G. Tyuterev. Méthode des opérateurs tensoriels irréductibles et théorie des spectres des molécules (Traduit en russe). 1989.
- [5] E.B. Wilson, J.C. Decius, and P.C. Cross. *Molecular Vibrations*. Editions Mac Graw-Hill, New-York, 1955.
- [6] F.Iachello and R.D.Levine. Algebraic theory of molecules. Editions Oxford University Press, New-York, 1995.
- [7] J.M. Champion. Algébres, molécules et chaos : Le modèle du vibron pour les molècules triatomiques. *PHD thesis*, 1997.
- [8] L.Wiesefeld. The vibron model for methane : stretch-bend interactions. *Journal of Molec*ular Spectroscopy, 184 :277–287, 1997.
- [9] E.P.Wigner. Group Theory and its Application to the Quantum Mecanics of Atomic Spectra. Academic Press, New-York, 1959.
- [10] J.D.Louck. Recent progress toward a theory of tensor operators in the unitary groups. American Journal of Physics, 38(1):3–42, 1970.
- [11] J.D.Louck. Group theory of harmonic oscillators in n-dimensional space. Journal of Mathematical Physics, 6(11) :1786–1804, 1965.
- [12] F.Michelot and J.Moret-Bailly. Approche algébrique des spectres vibrationnels des molécules polyatomiques. *Journal de Physique*, 48:51–72, 1987.
- [13] C.Leroy. Approche algébrique de la théorie des modes locaux. PhD thesis, Dijon, 1991.
- [14] V. Boujut. Traitement algébrique et système d'oscillateurs. Applications aux modes de vibration de pliage des molécules XY₄. PHD thesis, Dijon, 1996.
- [15] I.M.Gelfand and M.L. Zetlin. Finite dimensional representations of the group of unimodular matrices. Doklady Akad. Nauk S.S.S.R., 71 :825–828, 1950.
- [16] B.G. Wybourne. Classical Groups for Physicists. Editions John Wiley Sons (Interscience Publication), New-York, 1974.
- [17] M.Kibler and P.Winternitz. Dynamical invariance algebra of the hartmann potential. Journal of Physics A, 20 :4097–4108, 1987.
- [18] M.Pétrachène and E.Trifonov. Application de la théorie des groupes en mécanique quantique. Edition Masson, Paris, 1970.

- [19] W.Greiner and B.Müller. Mécanique quantique Symétries. Editions Springer Verlag France, Paris, 1999.
- [20] H.Bacry. Leçons sur le théorie des groupes et les symétries des particules élémentaires. Editions - Gordon and Breach - Dunod, New-York and Londres, 1967.
- [21] F.Cooper, A.Khare, and U.Sukhatme. Supersymmetry in Quantum Mecanics. Editions World Scientific, New-York, 2001.
- [22] L.O'Raiffeartaigh. Broken symmetry in groups theory and its applications. Editions Academic Press (editor E.M.Loebl), New-York and Londres, 1968.
- [23] R.F.Casten, P.O.Lipas, D.D.Warner, T.Otsuka, K.Heyde, and J.P.Draayer. Contempory concepts in physics (Volume 6) : Algebraic Approaches to Nuclear Structure Interating Boson and Fermion Models. Editions Harwood Academic Publichers (editor R.F.Casten), New-York, 1993.
- [24] M.Moshinsky and Y.F.Smirnov. Contemporary concepts in physics (Volume 9): The Harmonic Oscillator in Modern Physics. Editions Harwood Academic Publishers, Amsterdam, 1996.
- [25] A.Arima and F.Iachello. Collective nuclear states as representations of an SU(6) group. Physical Review Letters, 35(16) :1069–1072, 1975.
- [26] F.Iachello and O.Scholten. The interacting boson-fermion model 2. Physical Review Letters, 43(8) :679, 1979.
- [27] J.P.Elliot, J.A.Evans, and P.Van Isacker. The interacting boson-fermion model 3-4. Nuclear Structure, A481(8) :679, 1988.
- [28] F.Iachello. Algebraic methodes for molecular rotation-vibration spectra. *Chemical Physics Letters*, 781 :581, 1981.
- [29] H.Kellman. Noninvariance groups for many-particule systems : coupled harmonic oscillators. Journal of Chemical Physics, 81(1) :389–396, 1984.
- [30] G.E.Baird and L.C.Biedenharn. On the representation of the semisimple lie groups. i. the explicit construction of invariant for the unimodular unitary group in N dimensions. *Journal of Mathematical Physics*, 4(3):436–445, 1963.
- [31] G.E.Baird and L.C.Biedenharn. On the representation of the semisimple lie groups. ii. the explicit conjugation operation for SU(n). Journal of Mathematical Physics, 5(12):1723–1730, 1964.
- [32] G.E.Baird and L.C.Biedenharn. On the representation of the semisimple lie groups. iv. a canonical classification for tensor operators for SU(3). Journal of Mathematical Physics, 5(12):1730, 1964.
- [33] J.G.Nagel and M.Moshinsky. Operators that lower or raise the irreductible vector spaces of U(n-1) contained in an irreductible vector spaces of U(n). Journal of Mathematical Physics, 6(5):682–694, 1965.
- [34] M.Ciftan. On the combinatorial structure of state vectors in u(n). ii. the generalisation of hypergeometric functions on U(n) states. Journal of Mathematical physics, 10(9) :1635–1646, 1969.
- [35] M.Ciftan and L.C.Biedenharn. Combinatorial structure of state vectors in U(n). i. hook patterns for maximal and semimaximal states in U(n). Journal of Mathematical physics, 10(1):221–232, 1969.
- [36] C.Itzykson and M.Nauenberg. Unitary groups : representations and decompositions. Reviews of Modern Physics, 38(1) :95–120, 1980.

- [37] P.S.Ponnapalli, M.Schlesinger, and R.D.Kent. U(n) generator matrix element using orthogonal gel'fand basis states. *Journal of Mathematical physics*, 32(5) :1203–1217, 1991.
- [38] R.D.Kent and M.Schlesinger. Multibody operator matrix elements and subduction coefficients in U(n). ii. Journal of Mathematical physics, 38(3) :1700–1709, 1996.
- [39] R.Floreanini, L.Lapointe, and L.Vinet. Algebraic description of S_n -invariant oscillator states. Journal of Mathematical physics, 39(11):5739–5761, 1998.
- [40] A.Tachibana and T.Iwai. Complete molecular hamiltonian based on the born-oppenheimer adiabatic approximation. *Physical Review A*, 33(4) :2262–2269, 1986.
- [41] P.Barchewitz. Spectroscopie atomique et moléculaire. Tome II. Editions Masson, Paris, 1971.
- [42] Y. Demkov. Vestnik, Leningrad State University, 11:127, 1953.
- [43] Y. Demkov. The definition of the symmetry group of a quantum system. the anisotropic oscillator. Soviet Physics JETP, 17(6) :1349–1351, 1963.
- [44] F.L.Hill and J.M.Jauch. On the problem of degeneracy in quantum mechanics. *Physical Review*, 57(4):641–645, 1950.
- [45] G.A.Baker Jr. Degeneracy of the n-dimensional, isotropic, harmonic oscillator. Physical Review, 103(4) :1119–1120, 1956.
- [46] E.Bauer. Introduction à la théorie des groupes et à ces applications à la physique. Editions Jacques Gabay, Paris, 1991.
- [47] Y.Tanabe T.Inui and Y.Onodera. Group theory and its application in physics. Editions Springer, Berlin, 1996.
- [48] H. Weyl. The theory of groups and quantum Mechanics. Editions Dover Publications Inc., New-York, 1931.
- [49] F.Testard and R.Mneimne. Introduction à la théorie des groupes de Lie classiques. Editions Hermann, Paris, 1997.
- [50] R.Deheuvels. Formes quadratiques et groupes classiques. Editions P.U.F., Paris, 1981.
- [51] G.Racah. *Group theory in spectroscopy*. Princeton Lectures (C.E.R.N. reprint), 1961.
- [52] R.Gilmore and J.P.Draayer. Dynamical group chains and integrity bases. Journal of Mathematical Physics, 26(12):3053–3067, 1985.
- [53] H.Weyl. The classical groups, their invariants and representations. Editions Princeton University, New-York, 1939.
- [54] A.I.Moliev. Gelfand-Zetlin bases for classical Lie algebra. Editions Elsevier, 2002.
- [55] E.Chacon and M.Moschinsky. Representations of finite U(3) transformations. *Physics Letters*, 23:567–569, 1966.
- [56] M.Fétizon, H.G.Gervais, and A.Guichardet. *Théorie des groupes et de leurs représentations*. Editions Ellipses, Paris, 1987.
- [57] P.Kramer. Irreductible representation of the semidirect-product group $K_n = A_n \wedge S_n$ and the harmonic-oscillator shell model. Journal of Mathematical Physics, 9:639–649, 1966.
- [58] H.V.McIntosh. Symmetry adapted functions belonging to the cristallographic point groups. Journal of Molecular Spectroscopy, 10:51–74, 1963.
- [59] H.V.McIntosh. Towards a theory of the cristallographic point groups. Journal of Molecular Spectroscopy, 5 :269–283, 1960.
- [60] H.Horie. Representations of the symmetric group and the fractional parentage coefficients. Journal of Physical Society of Japan, 10 :1783–1798, 1963.
- [61] M.Hamermesh. *Groups theory and its application to physical problems*. Editions Addison Wesley publishing company Inc, Londres, 1962.
- [62] A.J.Coleman. The symmetric group made easy. Advances in Quantum Chemistry, 4:83– 108, 1968.
- [63] J.Lummila, T.Lukka, and L.Halonen. Fermi resonances and local modes in stibine SbH_3 : a fourier interferometric and laser photoacoustic study of the overtone spectrum. *Journal* of Chemical Physics, 104 :488–497, 1996.
- [64] L.Pluchart, C.Leroy, N.Sanzharov, F.Michelot, E.Bekhtereva, and O.Ulenikov. Vibrational levels of the stibine molecule. *Journal of Molecular Spectroscopy*, 232 :119–136, 2005.
- [65] O.L.Lange and R.E.Raab. Operator methodes in quantum mechanics. Editions Oxford University Press, New-York, 1991.
- [66] H.Lin, O.Ulenikov, S.Yurchinko, X.Wang, and Q.Zhu. High-resolution spectroscopic study of the (310) local mode combination band system of AsH₃. Journal of Molecular Spectroscopy, 187 :89–96, 1998.
- [67] L.Pluchart, C.Leroy, and A.Mourbat. Study of the stretching modes of the arsine molecule. Journal of Molecular Spectroscopy, 218 :1–11, 2003.
- [68] S.N.Yurchenko, M.Carvajal, Per Jensen, F.Herregodts, and T.R.Huet. Potential parameters of PH_3 obtained by simultaneous fitting of ab initio data and experimental vibrational band origins. *Chemical Physics*, 290 :59–67, 2003.
- [69] M. Sanchez-Castellanos, O. A lvarez Bajo, C.A. Amezcua-Eccius, and R. Lemus. Vibrational excitations of arsine in the framework of a local unitary group approach. *Journal* of Molecular Spectroscopy, 240 :81–92, 2006.
- [70] K.Levenberg. A method for the solution of certain problems in least-squares. *The Quarterly Journal of Mechanics and Applied Mathematics*, 2:164–168, 1944.
- [71] D.W.Marquardt. An algorithm for least-squares estimation of nonlinear parameters. Journal of Society for Industrial and Applied Mathematics, 11:431–441, 1963.
- [72] V. Spirko, J.M.R. Stone, and D. Papousek. Vibration-inversion-rotation spectra of ammonia : Centrifugal distortion, coriolis interactions and force field in ¹⁴NH₃, ¹⁵NH₃, ¹⁴ND₃ and ¹⁴NT₃. Journal of Molecular Spectroscopy, 60 :159–178, 1976.

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

На правах рукописи

Санжаров Николай Александрович

Исследование внутренней динамики пирамидальных молекул типа XY_3

01.04.05 - Оптика

Диссертация на соискание ученой степени кандидата физико—математических наук

> Научные руководители: д.ф.-м.н., профессор О.Н. Улеников д.ф.н., профессор Мишель Лоет д.ф.н., доцент Клод Леруа

Томск 2007

Оглавление

Введение $\mathbf{5}$ 1 Теоретические аспекты формализма U(p+1) и его применение в физике 10 молекул 101.1Введение 1.2121.3131.414Группа U(n) - группа инвариатности n раз вырожденного изотропного осциллятора 14 1.51.5.1141.6161.6.1171.6.2Второй метод: подсчет 181.6.3191.7211.7.1211.7.2Экспоненциальная параметризация или экспоненциальное представление 23 1.7.3Определение констант структуры группы Ли 241.7.4251.7.527291.8 1.8.1291.8.2291.8.330 1.8.430 1.9321.9.1321.9.232

2 Применение теории цепочек групп к пирамидальным молекулам типа $XY_3(C_{3v})$ 34

	2.1	Основные	свойства молекул аксиальной симметрии типа $XY_3(C_{3v})$	34
	2.2	Выбор цеі	почки групп для молекул аксиальной симметрии типа $XY_3(C_{3v})$	36
	2.3	Изучение	группы $K(3)$	38
		2.3.1 Оп	ределение	38
		2.3.2 Из	учение НП группы $K(3)$	39
		2.3.3 Pe	дукция представления $\left n, \dot{0}^2 ight $ группы $U(3)$ на группу $K(3)$	47
		2.3.4 Ал	гебраическое изучение цепочки $K(3) \supset S(3) \supset C_{3v}$	49
		2.3.5 Оп	ераторы Казимира группы $K(3)$	54
	2.4	Симметри	зация кет-вектров и генераторов	60
		2.4.1 Вв	едение и общие свойства	60
		2.4.2 Пр	оцесс симметризации кет-векторов и генераторов в группе $S(p).$	61
		2.4.3 Оп	ределение симметризованных кет-векторов в группе $C_{3v}.\ .\ .\ .$	62
		2.4.4 Си	мметризация генераторов в рамках группы C_{3v}	63
	2.5	Гамильто	чиан, описывающий валентные колебания пирамидальных молекул	
		типа XY_3		65
		2.5.1 Гам	мильтониан первого порядка	66
		2.5.2 Фи	зическая интерпретация оператора У ^{3(A1)}	68
	2.6	Расчет ва	лентных колебательных состояний молекул типа $XY_3(C_{3v})$	69
		2.6.1 Pea	зультаты для молекулы стибина SbH_3	69
		2.6.2 Ин	терпретация результатов	72
		2.6.3 Pea	зультаты для молекулы арсина AsH_3	74
		2.6.4 Pea	зультаты для молекулы фосфина PH_3	77
	2.7	Колебател	іьный гамильтониан молекул $XY_3(C_{3v})$ (локально - локальная модель)	80
		2.7.1 Де	формационные колебания молекул $XY_3(C_{3v})$	80
		2.7.2 Ko	лебания 4-х атомных пирамидальных молекул в рамках локально-	
		лог	кального приближения	86
3	Кој	ебания 4-	·х атомных пирамидальных молекул (локально-нормальное	
	при	ближение		94
	3.1	Деформан	ционные колебания, описанные в рамках нормальных мод	94
	3.2	Локально	нормальное приближение для описания колебаний 4-х атомных	
		молекул а	ксиальной симметрии	99
За	аклю	чение	10	05
П	рило	жение 1	10	05
Α	Пра	граммы 1	расчета 1	06
-	A.1	Расчет ма	тричных элементов операторов H_1^e и H_1^p 1	-
	A.2	Локально	локальная модель	109
	A.3	Алгоритм	расчетов	10

[итер	атура																1	26
A.5	Локально-нормальная модель .	 •	 •	•	 •	•••	•	•	•	•	•	•	•	 •	•	•	 1	14
A.4	Метод Левенберг-Маркардта	 •	 •				•		•	•					•	•	 1	11

Литература

Введение

Исследование спектров молекул позволяет определять такие характеристики молекул, которые открывают возможности для исследования более сложных эффектов внутримолекулярной природы. Бурное развитие техники спектроскопии в последние годы привело к появленю новой информации о ранее неизученных колебательно-вращательных полосах молекул, а также к уточнению старых экспериментальных данных. Все это приводит к необходимости исследования теоретических моделей для изучения колебательной спектроскопии молекул для того, чтобы

- лучше понимать внутреннюю динамику молекул;
- лучше воспроизводить экспериментальные данные и, что более важно, предсказывать информацию о таких важных характеристиках, например, как энергии, интенсивности и.т.д.

В настоящее время существует ряд методов для изучения внутренней динамики молекул: ab initio метод [1], традиционные методы, использующие операторную теорию возмущения [2], но приблизительно 20 лет назад, благодаря Iachello, стали бурно развиваться методы, основанные на алгебраических формализмах [3, 4]. Алгебраические формализмы, математическим аппаратом которых является использование теории групп Ли и их алгебр, несмотря на свою абстрактность, имеют ряд преимуществ по сравнению с методами, используемыми ранее для решения данной проблемы:

- простота применения к различным молекулярным системам;
- алгебраические формализмы позволяют записать гамильтониан системы с меньшим количеством параметров, чем стандартные методы, не используя процедур дифференцирования и интегрирования.

Алгебраический формализм, используемый в данной работе и называемый формализмом U(p+1), впервые был предложен Michelot и Moret-Bailly [5]. Данный формализм предлагает использовать унитарную группу U(p+1) в качестве динамической группы системы с p степенями свободы. Стоит также отметить, что данный формализм ранее был использован при исследовании колебательных мод молекул сферической симметрии типа XY_4 [6] и показал более высокую эффективность при описании колебательных спектров, чем упомянутые

выше стандартные подходы. Применение данного формализма к молекулам более низкой симметрии (в частности к молекулам типа $XY_3(C_{3v})$) не тривиально.

С точки зрения приложения молекулы *PH*₃ и *AsH*₃ представляют интерес для астрофизики, так как они были обнаружены в атмосферах планет-гигантов, арсин и стибин используются при производстве сверхчистых полупроводников.

Сказанное выше позволяет говорить об актуальности исследования колебательных спектров молекул аксиальной симметрии типа XY₃ на основе формализма U(p+1).

Целью работы является применение формализма U(p+1) для построения колебательного гамильтониана и расчета колебательных спектров пирамидальных молекул типа XY_3 (арсина, фосфина и стибина) и на этой основе определение параметров колебательного гамильтониана для указанных выше молекул.

Конкретная реализация поставленной цели заключается в решении следующих задач:

- нахождение адекватной цепочки групп в рамках бозонного приближения [7] для описания валентных и деформационных колебаний молекул аксиальной симметрии на примере молекул арсина, фосфина и стибина;
- разработка теоретического аппарата в рамках формализма U(p + 1) и определение операторов, входящих в гамильтониан, описывающий колебательные моды вышеуказанных молекул, в том числе и операторов взаимодействия между валентными и деформационными колебаниями;
- создание програмного обеспечения, позволяющего на основе разработанной теории, рассчитывать уровни колебательной энергии вплоть до уровня диссоциации для 4-х атомных молекул аксиальной симметрии и определять параметры колебательного гамильтониана;
- осуществление количественного анализа параметров колебательного гамильтониана для пирамидальных молекул типа XY₃ и воспроизведение экспериментальных данных рассматриваемых молекул.

Основные методы исследования. Исходя из перечисленных задач, для их решения используется алгебраический метод: формализм U(p+1) в рамках бозонного приближения [7], метод Левенберга-Маркардта [8, 9], языки аналитического и численного программирования MATHEMATICA 5.0 и FORTRAN 95, методы операторной теории возмущений [2].

Научные положения, выносимые на защиту:

- Алгебраический подход и способы описания колебательной структуры молекул типа XY₃ аксиальной симметрии, использующие формализм U(p+1), приводят к появлению в колебательном гамильтониане вклада обменного типа;
- 2. От значения числа $\mathcal{L} = \frac{\Delta \nu^{\text{колеб.}}}{\nu_{\text{среднее}}^{\text{колеб.}}} = 2 \left| \frac{\nu_m \nu_n}{\nu_m + \nu_n} \right| (\nu_m, \nu_n фундаментальные частоты молекулы) зависит выбор конкретной цепочки групп, соответствующей описанию$

колебательной структуры пирамидальных молекул типа XY_3 . При значении числа $L \leq 0.01$ следует использовать цепочку групп $(U(4) \supset U(3) \supset K(3) \supset S(3) \supset C_{3v})$, в противном случае - цепочку групп $U(2) \otimes U(3) \supset U(1) \otimes U(2) \supset O(2) \supset C_{3v}$

Достоверность результатов, полученных в работе, подтверждается:

- точностью, сравнимой с экспериментальными погрешностями, результатов расчетов на основе используемых моделей и методов с экспериментальными значениями положений колебательных уровней поглощения для исследуемых в работе молекул *PH*₃, *AsH*₃ и *SbH*₃;
- согласием в тех случаях, когда было возможно сравнение результатов, полученных в данной работе, с результатами других авторов: M. Sanchez-Castellanos и др. [10] и Юрченко и др. [11];
- предсказание энергии диссоциации для молекул стибина и арсина, выполненное в рамках развиваемого подхода, согласуется с экспериментальными значениями с относительной ошибкой не более 5%.

Научная новизна работы определяется следующим фактором:

 разработан метод для описания колебательных спектров пирамидальных молекул типа XY₃ вплоть до диссоционного предела молекулы;

Научная ценность заключается в следующем:

- получены параметры гамильтониана, описывающего колебательный спектр молекулы арсина, которые позволяют восстанавливать экспериментальные данные со среднеквадратичны отклонением d_{rms} = 1.98 см⁻¹, а для фосфина - со среднеквадратичным отклонением d_{rms} = 2.33 см⁻¹;
- в рамках формализма U(p+1) оказалось возможным построить гамильтониан молекулы с меньшим количеством параметров по сравнению с традиционными подходами и описывать с более высокой точностью колебательную структуру молекул аксиальной симметрии типа XY₃.

Практическая значимость работы:

- разработанный пакет программ для расчета колебательной структуры молекул аксиальной симметрии типа $XY_3(C_{3v})$ применим для всего класса рассматриваемых молекул;
- полученные параметры колебательного гамильтониана рассматриваемых молекул могут использоваться в дальнейшем как хорошая основа для коррекции параметров внутримолекулярной потенциальной функции данных молекул, определенных с помощью *ab initio* расчетов.

Внедрение результатов и рекомендации по их дальнейшему использованию. Полученные в диссертации результаты используются университете Бургундии при чтении курса лекций "Современные методы исследования спектров молекул" и рекомендованы к использованию в учебном процессе при чтении курсов лекций «Современные проблемы молекулярной спектроскопии» и «Физика атомов и молекул» на физическом факультете Томского государственного университета. Кроме того, кафедра оптики и спектроскопии Томского государственного университета рекомендует включить материалы обзорной главы в учебное пособие, посвященное исследованию спектров молекул. Данное пособие предназначено для студентов и аспирантов кафедры.

Апробация работы и публикации. Материалы, вошедшие в диссертацию, доложены и обсуждены на следующих научных конференциях:

- 1. XVIII международная конференция по молекулярной спектроскопии высокого разрешения, Прага, Чехия, 2004;
- 2. XI всероссийская научная конференция для студентов и аспирантов ВНКСФ-XI, Екатеринбург, 2005;
- 3. Дни школы докторантов, Безансон, Франция 2006;
- 4. Конференция по атомной и молекулярной физике, Дижон, Франция, 2006;
- 5. XIX международная конференция по молекулярной спектроскопии высокого разрешения, Прага, Чехия, 2006.

Работа выполнялась при финансовой поддержке:

- грант МО РФ Е-00-32-192;
- стипендия президента РФ для обучения и стажировки за рубежом 2003 года;
- стипендия правительства Франции для диссертаций под двойным руководством.

Вклад автора при получении результатов настоящей работы состоит в следующем:

- участие в постановке задач;
- участие в теоретической разработке метода расчета колебательной структуры пирамидальных молекул типа XY₃;
- разработка алгоритма и создание пакета программ для расчета колебательных уровней энергии и определения параметров колебательного гамильтониана для рассматриваемых молекул;
- выполнение расчетов реальных спектров молекул арсина, фосфина и стибина.

Постановка задачи осуществлялась совместно с научными руководителями.

Структура и объем работы. Работа состоит из введения, трех глав и заключения общим объемом 106 страниц. Содержит 6 рисунков, 28 таблиц и список цитируемой литературы из 65 наименований. Основное содержание работы опубликовано в восьми печатных работах.

Первая глава носит обзорный характер, в которой отражены теоретические аспекты алгебраического формализма U(p+1), бозонного приближения, на основе которого построены все операторы Казимира, входящие в гамильтониан, основные понятия о группах Ли и их характеристиках, а также критерии выбора цепочки групп.

Во второй главе проводится теоретическое и количественное описание валентных колебаний молекул аксиальной симметрии типа XY₃ на основе цепочки групп, когда валентные моды описываются как трехмерный осциллятор. Вторая глава также посвящена описанию деформационных колебаний 4-х атомных молекул аксиальной симметрии в рамках приближения локальных мод. В этой главе рассматривается описание колебаний рассматриваемых молекул на основе цепочки групп, описывающей валентные и деформационные моды как два трехмерных осциллятора. Здесь показывается недостаток использования данной цепочки групп и необходимость исследования деформационных колебаний в нормальных обозначениях.

В третьей главе приводится исследование деформационных мод пирамидальных молекул типа XY₃ в нормальных обозначаниях. Кроме того изучается цепочка групп, когда валентные моды описываются как трехмерный осциллятор, а деформационные моды как один одномерный осциллятор и один двумерный осциллятор.

Глава 1

Теоретические аспекты формализма U(p+1) и его применение в физике молекул

1.1 Введение

Метод, который мы будем использовать в данной работе, обычно называемый "алгебраическим приближением", принципиально основывается на следующей схеме:

$$G_1 \supset G_2 \supset \cdots \supset \dots G_{\text{мол.}} \tag{1.1.1}$$

"Максимальная" группа G₁ должна содержать максимальное количество возможной информации об изучаемой молекулярной системе: ее энергиях, вырождении уровней, а также о возможных переходах между этими уровнями, то есть эта группа информирует нас о динамических свойствах системы; именно по этой причине большинство авторов договорились называть группу G₁ динамической [5, 12, 13].

Вторая группа G_2 математически является первой подгруппой динамической группы. Эта группа G_2 должна нам представить более частные свойства системы. На самом деле эта подгруппа дает нам немедленный доступ к различным возможным уровням энергии и их вырождениям; это свойство приравнивается к теореме Вигнера [14, 15]: подгруппа G_2 фактически является инвариантной группой гамильтониана¹. Таким образом, возможные уровни энергии молекулы классифицируются неприводимыми представлениями группы G_2 , причем размерность этих неприводимых представлений в точности нам дает значения вырождений уровней энергии.

¹На самом деле это заложено в гамильтониане нулевого порядка системы. Далее мы увидим, что гамильтониан нулевого порядка системы может быть записан с помощью инвариантов непрерывных (или полунепрерывных) групп, представленных в цепочке, но более существенным является то, что инварианты динамической группы G_1 могут быть удалены. Следовательно, инварианты группы вырождений, в первом приближении, вносят вклад в гамильтониан нулевого порядка описываемой системы.

Цепочка групп заканчивается группой молекулярной симметрии $G_{\text{мол.}}$. Можно также ввести промежуточные группы между группой вырождений и молекулярной группой симметрии. Наличие промежуточных групп зависит от рассматриваемой физической задачи. Ниже мы приведем использование различных алгебраических приближений в следующих разделах физики:

- Физика элементарных частиц: в 1961 год Геллман понял, что адроны можно упорядочить в мультиплеты группы SU(3). Основной идеей физики частиц является так называемая Стандартная Модель, которая позволяет описывать сильные взаимодействия на основе квантовой хромодинамики, и электрослабые взаимодействия, которые описываются, используя модель Вейнберг-Салама. Хромодинамика опирается на калибровочную локальную группу SU(3), в то время как в моделе Вейнберг-Салама используется группа SU(2) ⊗ U(1). В качестве различных применений алгебраических методов в физике элементарных частиц можно порекомендовать заинтересованному читателю работы [16, 17, 18, 19], где можно более подробно ознакомиться с применением вышеуказанных групп.

- Ядерная физика: в течение последних лет алгебраические методы нашли свое применение в рамках ядерной физики [20, 21]. В самом деле, в 1975 году Ф.Якелло и А.Арима [22] предложили алгебраическую модель, принимающую во внимание коллективную структуру ядра. Фундаментальными составляющими являются коррелирующие пары протонов и нейтронов, рассматриваемые как бозоны. В настоящее время данная модель известна как "Модель взаимодействующих бозонов" (МВБ-1), причем данная модель опирается на использование унитарной группы U(6). Впоследствии, в 1979 году, она была улучшена Якелло [23] и получила название МВБ-2. Данная улучшенная модель использует понятие суперсимметрии и рассматривает взаимодействие бозоны-фермионы в рамках ядра. МВБ-2 рассматривает фундаментальные составляющие фермионы (протоны и нейтроны), к которым добавляются их коррелирующие пары (бозоны). Наконец более позднее, в 1988 году, Эллиот [24] продолжил развитие данной модели (принимая во внимание изотопическую инвариантность ядерных сил), которое привело к МВБ-3 и МВБ-4.

- Молекулярная физика: в 1981 году Якелло и Левин предложили алгебраическую модель виброна [4, 3, 25], основными составляющими которой являются кванты ангармонического колебания, называемые вибронами. В 1984 году Келлман [26] изучил различные неинвариантые группы для связи нескольких осцилляторов с точки зрения описания степеней свободы в рамках этих осцилляторов. Далее, в 1987 году, Море-Байи и Мишло [5] приняли точку зрения Якелло в моделе МВБ-1, рассматривая проблему *p* степеней свободы; в этом методе неинвариантной группой или динамической группой является унитарная группа *U*(*p*+1). Именно эту точку зрения мы примем в данной работе. В настоящее время, благодаря развитию в области экспериментальной техники, имеется большое количество информации о свойствах молекул, макромолекул, биомолекул, а также полимеров и биополимеров.

- Математическая физика: множество ученых внесли свой вклад в развитие и использование

алгебраических методов. Например, можно привести работы Байрда и Бьеденхарна, которые, среди всего прочего, определили инварианты группы SU(n) [27], определение сопряженного представления [28]. Эти же авторы предложили [29] каноническую классификацию для тензорных операторов в группе SU(3). Мошинский [30] определил выражение лестничных операторов, адаптированных к канонической цепочке. Можно также упомянуть работы Шифтана по комбинаторной структуре состояний в группе U(n) [31]. Кроме того, он определил и комбинаторику максимальных и полумаксимальных состояний группы U(n)[32]. Отметим также работы Итзиксона и Науэнберга [33], касающиеся представлениям и разложениям унитарных групп. И наконец приведем более поздние опубликованные работы Поннапалли, Шлезингера и Кента, касающихся определению матричных элементов генераторов группы U(n) на основе схемы факторизации в рамках базы Гельфанда [34, 35], или работы Флореанини по алгебраическому описанию [36] нескольких идентичных осцилляторов.

1.2 Выбор цепочки групп

Начнем изучение колебательных состояний в данной работе с осуществления нескольких гипотез. Рассмотрим данные гипотезы:

- приближение Борна-Оппенгеймера [37, 38], которое состоит в разделении электронного движения и движения ядер. Также примем во внимание предположение, что ядра совершают малые перемещения в равновесном положении;
- молекула находится в основном электронном полносимметричном состоянии [38];
 что нам позволяет избежать многих сложных проблем, связанных с электронным вырождением (электронно-колебательное или электронно-колебательно-вращательное взаимодействие²);
- в первом приближении мы можем изучать раздельно вращательное и колебательные (валентные и деформационные) движения молекул, то есть мы пренебрегаем взаимодействием колебаний и вращений;
- молекулярная система отсчета удовлетворяет условиям Эккарта [37], что нам позволяет рассматривать, что нелинейная молекула, состоящая из N ядер, обладает (3N-6) колебательными степенями свободы [38].

Чтобы описать колебательные состояния системы, состоящей из *p* идентичных осцилляторов, Море-Байи и Мишло [5] предложили, принимая в расчет вышеизложенные гипотезы,

²Электронно-колебательное взаимодействие - взаимодействие между электронными и колебательными степенями свободы; что касается электронно-колебательно-вращательного взаимодействия, в данном случае взаимодействуют электронные, колебательные и вращательные степени свободы

использовать следующую цепочку групп

$$U(p+1) \supset U(p) \supset S(p) \simeq G_{\text{MOJ.}},\tag{1.2.1}$$

в которой

- U(p+1) динамическая группа (в обозначениях Выборна). Эта группа должна нам дать динамические свойства изучаемой системы, например, переходам.
- *U*(*p*) группа вырождений. Эта группа нам дает информацию об уровнях эрергии и их вырождениях.
- *S*(*p*) группа перестановок *p* идентичных объектов, здесь *p* идентичных оцилляторов.
 Эта группа изоморфна молекулярной группе симметрии *G*_{мол} рассматриваемой молекулы.

Леруа [39] использовал и изучил эту цепочку для частного случая p = 4, то есть для таких молекул, как метан или силан. В рамках данной работы мы ограничимся ситуацией трех идентичных осцилляторов и, следовательно, мы охарактеризуем колебательные состояния неплоских XY_3 молекул на основе цепочки

$$U(4) \supset U(3) \supset S(3) \simeq C_{3v}.$$
 (1.2.2)

Изучение состоит в матричном представлении геометрических элементов, составляющих молекулярную группу и дальнейшем определении симметризованных состояний на основе операции проектирования.

1.3 Динамическая группа

Динамическими группами являются группы, которые могут воспроизвести энергетический спектр и вырожденность уровней и которые, к тому же, содержат набор операторов, определяющих вероятности переходов между состояниями. Последнее свойство требует того, чтобы мы рассматривали неинвариантные группы, операторы которых не коммутируют друг с другом. Построение такой группы, имеющей вышеперечисленные свойства, позволит полностью описать динамические свойства физической системы, поэтому она носит название динамической группой системы. Из определения данной группы можно констатировать, что группа вырождений является подгруппой динамической группы.

На самом деле динамическая симметрия возникает, когда возможно решить уравнение Шредингера различными способами: либо в различных системах кооридинат, либо в системе простых координат, которая может быть ориентирована в различных направлениях[16]. Например, в случае атома водорода мы можем работать как в сферических, так и в параболических координатах. Существует теорема, которая позволяет определять число операторов Казимира полупростой группы. При изучении колебательных мод алгебраическими методами мы ссылаемся на эту теорему, поскольку нам заранее известно максимальное число параметров, которые входят в выражение гамильтониана нулевого порядка.

1.4 Группа вырождений

Группа вырождений (или динамически инвариантная группа) - группа, которая способна дать полное описание рассматриваемой системы. Таким образом, это такая группа, которая устанавливает взаимно однозначное соответствие между собственными значениями системы и набором унитарных неприводимых представлений (УНП) группы, реализуемое в гильбертовом пространстве *H* собственных функций гамильтониана *H*, причем это соответствие определяется таким образом, что каждому УНП, реализуемому в *H*, принадлежит одно и только одно собственное значение *H* и наоборот. Степень вырождения каждого собственного значения определяется размерностью соответствующего УНП.

1.5 Группа U(n) - группа инвариатности n раз вырожденного изотропного осциллятора

Сейчас мы покажем существенные аспекты, чтобы лучше понять(физически и математически) ход нашего метода, адоптированного для изучения и описания колебательных мод неплоских молекул XY₃.

В самом деле, в обычном рассмотрении проблемы изучения колебательных мод молекул, последние описываются как набор гармонических или ангармонических осцилляторов, связанных с различными колебательными степенями свободы рассматриваемой молекулы³. Затем в квантовом приближении данной проблемы мы приведем операторы, соответствующие различным осцилляторам и взаимодействиям между ними.

В следующем параграфе мы проверим насколько удобно и корректно использование унитарных групп Ли в решении рассматриваемой проблемы. Также мы покажем, что группа инвариантности или вырождения *n*-выроженного изотропного осциллятора - это унитарная группа порядка, которую мы обозначим U(n). Этот значительный результат был получен независимо Демковым [40, 41] и Хиллом и Жошем [42]. Однако, чтобы продемонстрировать данное утверждение, мы будем использовать результат Бакера. [43].

1.5.1 *п* раз вырожденный изотропный осциллятор

Гамильтониан изотропного осциллятора размерности *n* допускает в качестве группы инвариантности или группы вырождения унитарную группу U(n) порядка *n*.

В классической механике колебательные моды молекул описываются как набор гармонических или ангармонических осцилляторов, связанных с различными степенями свободы молекулы.

³Под степенями свободы имеется в виду следующие шесть возможных элементарных движений:

[•] три связи L_1 , L_2 , L_3 ;

[•] три угла α_{12} , α_{23} , α_{13} , где α_{ij} - угол между связями L_i et L_j .

Переход к квантовой механике может осуществить квантованием физических переменных, описывающих эти осцилляторы и взаимодействие между ними.

Кроме того в классической механике в качестве гамильтониана *H* для *n* идентичных гармонических осциллятора используется

$$\mathcal{H} = \sum_{k=1}^{n} h_k = \frac{1}{2} \sum_{k=1}^{n} \frac{P_k^2}{m} + m\omega^2 q_k^2, \qquad (1.5.1)$$

затем квантуя, получаем

$$\widehat{\mathcal{H}} = \frac{1}{2} \sum_{k=1}^{n} \frac{\widehat{P}_{k}^{2}}{m} + m\omega^{2} \widehat{q}_{k}^{2}.$$
(1.5.2)

Предполагая, что

$$\widehat{\mathcal{P}}_{k} = \frac{\widehat{P}_{k}}{\sqrt{m\hbar\omega}} \qquad \mathbf{M} \qquad \widehat{\mathcal{Q}}_{k} = \sqrt{\frac{m\omega}{\hbar}}\,\widehat{q}_{k},\tag{1.5.3}$$

гамильтониан можно переписать в следующем виде:

$$\widehat{\mathcal{H}} = \frac{\hbar\omega}{2} \sum_{k=1}^{n} \left(\widehat{\mathcal{P}}_{k}^{2} + \widehat{\mathcal{Q}}_{k}^{2} \right).$$
(1.5.4)

с $[\widehat{\mathfrak{Q}}_k, \widehat{\mathfrak{P}}_k] = i \mathbb{I}$, квантовое выражение гамильтониана $\widehat{\mathfrak{H}}$ выражается:

$$\widehat{\mathcal{H}} = \frac{\hbar\omega}{2} \sum_{k=1}^{n} \left[\left(\widehat{\mathcal{Q}}_{k} - i\widehat{\mathcal{P}}_{k} \right) \left(\widehat{\mathcal{Q}}_{k} + i\widehat{\mathcal{P}}_{k} \right) + 1 \right] = \hbar\omega \sum_{k=1}^{n} \left[\left(\frac{\widehat{\mathcal{Q}}_{k} - i\widehat{\mathcal{P}}_{k}}{\sqrt{2}} \right) \left(\frac{\widehat{\mathcal{Q}}_{k} + i\widehat{\mathcal{P}}_{k}}{\sqrt{2}} \right) + \frac{1}{2} \right].$$
(1.5.5)

Можно ввести следующие обозначения:

$$\begin{cases} \widehat{a}_{k}^{\dagger} = \frac{\widehat{Q}_{k} - i\widehat{\mathcal{P}}_{k}}{\sqrt{2}} : \text{ оператор рождения кванта для осциллятора } k \\ \widehat{a}_{k} = \frac{\widehat{Q}_{k} + i\widehat{\mathcal{P}}_{k}}{\sqrt{2}} : \text{ оператор уничтожения кванта для осциллятора } k \end{cases}$$
(1.5.6)

данная форма записи позволяет нам придать квантовому гамильтониану $\widehat{\mathcal{H}}$ для *n* осцилляторов следующую форму:

$$\widehat{\mathcal{H}} = \hbar\omega \sum_{k=1}^{n} \left[\widehat{a}_{k}^{\dagger} \widehat{a}_{k} + \frac{1}{2} \right] = \hbar\omega \sum_{k=1}^{n} \left[\widehat{n}_{k} + \frac{1}{2} \right] = \hbar\omega \left[\left(\sum_{k=1}^{n} \widehat{n}_{k} \right) + \frac{n}{2} \right]$$
(1.5.7)

с оператором $\hat{n}_k = \hat{a}_k^{\dagger} \hat{a}_k$, который является оператором числа квантов осциллятора k. Очевидно, что выполняются три коммутативных условия:

$$[\hat{a}_k, \hat{a}_l] = 0 \quad \text{et} \quad [\hat{a}_k^{\dagger}, \hat{a}_l^{\dagger}] = 0 \quad \text{et} \quad [\hat{a}_k, \hat{a}_l^{\dagger}] = \delta_{kl}. \quad (1.5.8)$$

Для того, чтобы унитарная группа U(n) являлась группой инвариантности этой системы, составленной из n изотропных осцилляторов, достаточно показать, что для любого элемента \mathcal{U} , принадлежащего U(n), выполнялось

$$[\mathcal{U},\widehat{\mathcal{H}}] = 0 \qquad \Longleftrightarrow \qquad \mathcal{U}^{-1}\,\widehat{\mathcal{H}}\,\mathcal{U} = \widehat{\mathcal{H}}. \tag{1.5.9}$$

Выберем произвольный элемент группы U(n), то есть унитарное преобразование \mathcal{U} размерности n, которое мы представим в виде квадратной матрицы $n \times n$. Так как это преобразование действует только на операторы (оно оставляет скаляры инвариантными), можно записать, что после действия этого унитарного преобразования получается

$$\begin{cases} \widehat{a}_{s} \stackrel{\mathcal{U}}{\to} \widehat{a}_{s}^{\dagger} = \sum_{\substack{i=1\\n}}^{n} u_{is} \widehat{a}_{i} \\ \widehat{a}_{s}^{\dagger} \stackrel{\mathcal{U}}{\to} \widehat{a}_{s}^{\dagger\dagger} = \sum_{\substack{j=1\\j=1}}^{n} u_{sj}^{-1} \widehat{a}_{j}^{\dagger}. \end{cases}$$
(1.5.10)

Остается проверить, что выражение гамильтониана $\widehat{\mathcal{H}}$ до унитарного преобразования \mathcal{U} в точности совпадает с выражением после рассматриваемого преобразования $\widehat{\mathcal{H}}' = \mathcal{U}^{-1} \widehat{\mathcal{H}} \mathcal{U}$. Мы имеем

$$\widehat{\mathcal{H}} = \hbar\omega \sum_{k=1}^{n} \left[\widehat{a}_{k}^{\dagger} \widehat{a}_{k} + \frac{1}{2} \right] = \hbar\omega \sum_{k=1}^{n} \sum_{l=1}^{n} \left[\widehat{a}_{k}^{\dagger} \widehat{a}_{l} \,\delta_{k\,l} + \frac{1}{2} \right] = \hbar\omega \sum_{k=1}^{n} \sum_{l=1}^{n} \left[\widehat{a}_{k}^{\dagger} \widehat{a}_{l} \,\left(\sum_{s=1}^{n} u_{s\,k}^{-1} u_{l\,s} \right) + \frac{1}{2} \right],$$

$$(1.5.11)$$

преобразовывая далее выражение, тогда получаем

$$\widehat{\mathcal{H}} = \hbar \omega \sum_{s=1}^{n} \left(\sum_{k=1}^{n} \widehat{a}_{k}^{\dagger} u_{sk}^{-1} \sum_{l=1}^{n} \widehat{a}_{l} u_{ls} + \frac{1}{2} \right) = \hbar \omega \sum_{s=1}^{n} \left(\left[u_{ks} \widehat{a}_{k} \right]^{\dagger} \left[u_{sl}^{-1} \widehat{a}_{l}^{\dagger} \right]^{\dagger} + \frac{1}{2} \right), \quad (1.5.12)$$

Сейчас, используя определения операторов (1.5.10) \hat{a}_{s} et $\hat{a}_{s}^{\dagger}^{\dagger}$, можно прийти к следующему выражению

$$\widehat{\mathcal{H}} = \hbar \omega \sum_{s=1}^{n} \left(\left[\widehat{a}_{s}^{, \dagger} \right]^{\dagger} \left[\widehat{a}_{s}^{, \dagger} \right]^{\dagger} + \frac{1}{2} \right) = \hbar \omega \sum_{s=1}^{n} \left(\widehat{a}_{s}^{, \dagger} \widehat{a}_{s}^{, \dagger} + \frac{1}{2} \right) = \widehat{\mathcal{H}}', \quad (1.5.13)$$

в итоге мы имеем $\widehat{\mathcal{H}} = \widehat{\mathcal{H}}'$. То есть можно убедится, что действие любого унитарного преобразования порядка *n* оставляет гамильтониан для *n* изотропных осцилляторов (или *n* раз вырожденный осциллятор) инвариантным.

1.6 Вырождение *n*-мерного осциллятора в состоянии *p*

В данном параграфе мы будем искать число вырождения состояния E(n,p). Это число обозначается dim E(n,p),

$$E(n,p) = \hbar\omega\left(p + \frac{n}{2}\right) = \hbar\omega\left(\sum_{i=1}^{n} n_i + \frac{n}{2}\right).$$
(1.6.1)

(n,p)обозначает осциллятор размерности n,который находится в таком состояни
и|p>,что $\sum_{i=1}^n n_i = p.$

1.6.1 Первый метод: анализ волновой функции

В данном методе мы будем следовать способу, предложенному Трифоновым [14]. Метод состоит в примечании того, что волновые функции системы преобразуются как компоненты симметричного тензора ранга p в пространстве размерности n. Обозначим через $\Psi_{n_1...n_n}^{[n]}$ волновую функцию системы в этом энергетическом состоянии E(n, p). Эта функция записывается в следующем виде

$$\Psi_{n_1...n_n}^{[n]} = \frac{1}{\sqrt{\prod_{i=1}^n n_i!}} \prod_{i=1}^n \left(\widehat{a}_i^{\dagger} \right)^{n_i} \Psi_{0...0}^{[n]}$$
(1.6.2)

где $\Psi_{0...0}^{[n]}$ - волновая функция фундаментального состояния. Но, так как порядок действия операторов \hat{a}_i^{\dagger} не играет роли, эти функции $\Psi_{n_1...n_n}^{[n]}$, следовательно, трансформируются под действием унитарного преобразования как компоненты $T_{j_1...j_p}^{[n]}$ симметричного тензора порядка p в пространстве размерности n. Это означает, что преобразование осуществляется через компоненты симметричного тензора. На основании симметрии тензора можно всегда расположить индексы $j_1 \dots j_p$ в возрастающем порядке

$$j_1 \leqslant j_2 \leqslant \cdots \leqslant j_p \qquad \Longrightarrow \qquad j_1 < j_2 + 1 < \cdots < j_p + p - 1,$$
 (1.6.3)

то есть полагая, что $i_k \equiv j_k + k - 1$, тогда можно получить серию строгих неравенств:

$$i_1 < i_2 < \dots < i_p.$$
 (1.6.4)

р чисел *i_k* являются все тогда различными и могут принимать все целые значения между 1 и *n* + *p* - 1. Число независимых компонент симметричного тензора тогда можно найти

$$\mathcal{N}(n,p) = \mathsf{C}_{n+p-1}^p = \frac{(n+p-1)!}{p! (n-1!)} \tag{1.6.5}$$

Наконец, согласно теореме Вигнера $(1927)^4$ известно, что кратность вырождения энергетического уровня определяется размерностью соответствующего представления. В нашем случае рассматриваемое представление - это представление, которое осуществляется на независимых компонентах симметричного тензора (ранга *p* в пространстве размерности *n*), что обязательно предполагает, что степень вырождения dim E(n, p) энергетического состояния E(n, p) равняется $\mathcal{N}(n, p)$:

dim
$$E(n,p) = \mathsf{C}_{n+p-1}^p = \frac{(n+p-1)!}{p! (n-1)!}.$$
 (1.6.6)

⁴Для полного ознакомления с этой теоремой можно проконсультироваться в [15, 14, 44] и [45]. В этих ссылках можно найти основные следствия и применения этой теоремы в физике, в частности в квантовой механике.

1.6.2 Второй метод: подсчет

Возможно применение и другого метода, который более нагляден, чем предыдущий, поскольку основывается на подсчете. У нас есть условие

$$\sum_{i=1}^{n} n_i = p, \tag{1.6.7}$$

что означает, что мы ищем все возможные (n_1, \ldots, n_n) , которые удовлетворяют этому условию. На самом деле эта проблема идентична следующей проблеме:

"Каково число всех возможностей размещения р идентичных шаров в п идентичных ячейках?"

Начнем размещать p идентичных шаров в большом пространстве, затем введем (n - 1) идентичных перегородок, чтобы создать n идентичных ячеек. Таким образом, для сформированной единой системы из (n-1) идентичных перегородок и p идентичных шаров возможны (n+p-1)! перестановок, которые сохраняют число элементов, составляющих эту систему. Беря во внимание неразличимость (n - 1) перегородок и p шаров, поделим на p! и (n-1)!. Число различных возможных размещений p идентичных шаров в n идентичных ячейках, обозначенное как $\mathcal{N}(n, p)$, определяется следующим образом:

$$\mathcal{N}(n,p) = \mathsf{C}_{n+p-1}^{p} = \frac{(n+p-1)!}{p! (n-1)!}.$$
(1.6.8)

Это подразумевает, что число различных (n_1, \ldots, n_n) , которые удовлетворяют условию (1.6.7), равно $\mathcal{N}(n,p)$. На основе различных двух методов мы нашли один и тот же результат.

Можно представить эту функцию вырождения графически (Рис. 1.1)

Поскольку мы желаем работать численно до определенного числа n_q , нам следует тогда принять во внимание число физических состояний $N(n, n_q)$, которое определяется

$$N(n, n_q) = \sum_{p=0}^{n_q} \mathcal{N}(n, p) = \sum_{p=0}^{n_q} \mathsf{C}_{n+p-1}^p = \sum_{p=0}^{n_q} \frac{(n+p-1)!}{p! (n-1)!} = \frac{(n+n_q)!}{n! n_q!}$$
(1.6.9)

Графически эту функцию числа состояний $N(n, n_q)$ можно представить как на рис. 1.2

Можно констатировать, что число физических состояний, которое необходимо принять во внимание (мы желаем работать до определенного числа квантов n_q), значительно увеличивается с размерностью осциллятора *n*. Данное утверждение часточно подразумевает, что, поскольку мы работаем с молекулами симметрии C_{3v} , число состояний, которое мы должны принять во внимание, численно разумное.

Рис. 1.1: Вырождение $\mathcal{N}(n,p)$ энергетического состояния E(n,p) при значениях $p \leq 29$ и $n \leq 10$.

1.6.3 Частный случай: n = 3

В этом частном случае трехмерный осциллятор (то есть трижды вырожденный) находится в состоянии n_s^{5} . Можно найти, что число вырождений уровня $E(3, n_s)$ равняется

dim
$$E(3, n_s) = \mathsf{C}_{n_s+3}^{n_s} = \frac{(n_s+2)(n_s+1)}{2}$$
 (1.6.10)

Во время изучения представлений унитарных групп конечной размерности мы увидим, что размерность такого представления на самом деле есть не что иное, как размерность полносимметричного представления группы $U(3)^6$, обозначаемое $[n_s, 0, 0]$, и что этот тип частного представления имеет существенное значение в физическом описании колебательных мод рассматриваемых нами молекул. Полученный результат (1.6.10) - частный случай формулы Вейла [46]. Таким образом, в случае n = 3 число колебательных состояний,

⁵Данное обозначение n_s непосредственно обозначает последующее исследовании валентных колебательных мод различных изучаемых молекул XY_3 . Во время этого исследования n_s будет представлять полное число квантов, которые будут размещаться на трех связях молекул.

⁶данная группа будет нашей группой вырождения в используемом алгебраическом формализме.

Рис. 1.2: Число энергетических состояний $N(n,n_q)$ с $n_q\leqslant 29$ и $n\leqslant 10.$

принятое в рассмотрение до числа квантов, равного 29, представляется графически на следующем рисунке (рис. 1.6.3).

К тому же можно проверить, что в данном частном случае, число состояний, которое мы должны принять в рассмотрение, N(3, 29) = 4960.

$$N(3,29) = \sum_{p=0}^{n_q=29} \mathcal{N}(3,p) = \sum_{p=0}^{n_q=29} \mathsf{C}_{p+2}^p = \frac{1}{2} \sum_{p=0}^{n_q=29} (p+2)(p+1) = 4960, \quad (1.6.11)$$

что в точности является полученным результатом при использовании выражения (1.6.9)

$$N(3,29) = \frac{(3+29)!}{29!\,3!} = 4960. \tag{1.6.12}$$

При изучении представлений конечной размерности унитарных групп мы уточним разницу между двумя последними выражениями. Мы увидим, что эта размерность есть размерность полносимметричного представления группы U(4) (которое будет нашей динамической группой), обозначаемой $[n_s, 0, 0, 0]$. Тогда мы констатируем, что

dim
$$[n_s = 29, 0, 0, 0] = \sum_{p=0}^{n_s=29} \dim [p, 0, 0]$$
 (1.6.13)

это выражение строго идентично выражению (1.6.11), если оно отражается на языке конечномерных представлений унитарных групп.

Рис. 1.3: Число физических состояний трижды вырожденного осцилля
тора с $n_q\leqslant 29.$

1.7 Общие понятия об унитарных группах

В данной главе мы не собираемся представлять полное математическое описание унитарных групп. Читатель, интересующийся полным изучением рассматриваемых групп, может ознакомится с ним, например, в [47, 48]. Мы ограничимся изучением и классификацией конечномерных представлений унитарных групп, проблема которых была рассмотрена не так давно. Фактически исследованием классификации конечномерных представлений унитарных групп начали заниматься Гельфанд и Цетлин (Г-Ц) в 1950 году [49]. В принципе мы рассматриваем эту работу по причине того, что ее математические изложения сопровождаются хорошим пониманием физических проблем. Прежде чем изложить общий метод Г-Ц конечномерных представлений унитарных групп, необходимо ввести обозначение и понятие группы Ли, а также и основные понятия, которые будут использоваться в дальнейшем. В действительности при изучении симметрии физических систем унитарные группы (группы Ли) играют важную роль.

1.7.1 Определение генераторов группы Ли

В данном параграфе будут представлены основные характеристики групп Ли с точки зрения физика, который хотел бы использовать математический аппарат данных групп для описания рассматриваемых физических объектов. В группе Ли, обозначаемой **G**, имеется бесконечность элементов⁷ (в отличие от дискретных групп), элементы имеют

 $^{^{7}}$ Для того, чтобы непрерывная группа **G** размерности *D* была группой Ли, необходимо, чтобы ее элементы изменялись непрерывно и чтобы эта группы имела структуру дифференцируемого

индекс параметров (вещественных или мнимых), которые изменяются непрерывно в определенном интервале. Любой элемент группы может быть обозначен $\mathcal{U}(\alpha_1, \alpha_2, \ldots, \alpha_D)^8$, где α_n изменяются в данном интервале. Число независимых параметров D, необходимых для определения любого элемента группы, называется размерностью группы. Важно заметить, что размерность группы Ли есть не что иное, как размерность ее матричных представлений.

Следовательно, произведение двух элементов группы Ли может быть представлено в следующем виде

$$\mathfrak{U}(\alpha_1,\ldots,\alpha_D) \times \mathfrak{U}(\beta_1,\ldots,\beta_D) = \mathfrak{U}(\gamma_1,\ldots,\gamma_D)$$
(1.7.1)

с

 $\gamma_n = \gamma_n(\alpha_1, \dots, \alpha_D; \beta_1, \dots, \beta_D) \qquad (1 \le n \le D).$ (1.7.2)

Например, группа вращений и группа пространственных перемещений являются двумя группами Ли, размерность которых D = 3. Для группы Ли, представляющих пространственные перемещения (перемещение $\vec{r_0}$), вектор $\vec{r_0}$ составляет набор трех вещественных параметров. Для групп вращений три угла Эйлера (θ , φ , ψ) также являются набором трех вещественных параметров.

Изучение групп Ли облегчается, благодаря одной замечательной характеристике: значительная часть их свойств получаются просто путем рассмотрения соседних элементов единичного элемента II рассматриваемой группы Ли. Заметим сначала, что всегда можно выбрать параметры α_n таким способом, что единичный элемент будет соответствовать нулевым значениям всех параметров α_n , то есть

$$\mathcal{U}(0, 0, \dots, 0) = \mathbb{I}.$$
(1.7.3)

Таким образом, если все параметры α_n малы, то, следовательно, элемент, соответствующий $\mathcal{U}(\alpha_1, \ldots, \alpha_D)$, является соседним по отношению к нейтральному элементу. Рассмотрим элемент $\mathcal{U}(\alpha_1, \ldots, \alpha_D)$, соседний по отношению к нейтральному элементу II, тогда можно

многообразия, то есть, чтобы было ее возможно поставить в соответствие с пространством параметров \mathbb{R}^{D} .

⁸Это просто означает, что ему выбрано определенное векторное пространство \mathcal{E} конечной размерности *D* и он снабжен определенной базой В. Именно на этом векторном пространстве \mathcal{E} представляется элемент \mathcal{U} группы Ли **G** в выбранной форме $\mathcal{U}(\alpha_1, \alpha_2, \ldots, \alpha_D)$.

осуществить разложение до первого порядка по отношению к параметрам α_n этого элемента

$$\begin{aligned} \mathfrak{U}(\alpha_{1},\ldots,\alpha_{D}) &= \mathbb{I} + \sum_{n=1}^{D} \left(\frac{\partial \mathfrak{U}(\alpha_{1},\ldots,\alpha_{D})}{\partial \alpha_{n}} \right)_{\alpha_{n}=0} \alpha_{n} + \mathfrak{O}(\alpha^{2}) \\ &= \mathbb{I} - (i^{2}) \sum_{n=1}^{D} \left(\frac{\partial \mathfrak{U}(\alpha_{1},\ldots,\alpha_{D})}{\partial \alpha_{n}} \right)_{\alpha_{n}=0} \alpha_{n} + \mathfrak{O}(\alpha^{2}) \end{aligned}$$
(1.7.4)
$$&= \mathbb{I} - i \sum_{n=1}^{D} i \left(\frac{\partial \mathfrak{U}(\alpha_{1},\ldots,\alpha_{D})}{\partial \alpha_{n}} \right)_{\alpha_{n}=0} \alpha_{n} + \mathfrak{O}(\alpha^{2}) \\ &= \mathbb{I} - i \sum_{n=1}^{D} \alpha_{n} X_{n} + \mathfrak{O}(\alpha^{2}) \end{aligned}$$

с выражением $\mathcal{O}(\alpha^2)$, представляющему все члены второго порядка и выше по α_n . В нашем разложении мы ввели произвольным способом член i^2 , чтобы в дальнейшем использовать некоторые условия коммутирования. Определим X_n как

$$X_n = i \left(\frac{\partial \mathcal{U}(\alpha_1, \dots, \alpha_D)}{\partial \alpha_n} \right)_{\alpha_n = 0}.$$
 (1.7.5)

Назовем D операторов X_n (n = 1, ..., D) генераторами группы Ли. Эти генераторы X_n действуют в том же пространстве, что и элементы \mathcal{U} рассматриваемой группы Ли.

1.7.2 Экспоненциальная параметризация или экспоненциальное представление

Известно, что любой элемент $\mathcal{U}(\alpha_1, \ldots, \alpha_D)$, для которого параметры α_n очень малы, является соседним по отношению к единичному элементу II. Обозначим через $\mathcal{U}(\delta \alpha_1, \ldots, \delta \alpha_D)$ такой элемент, который можно выразить как

$$\mathfrak{U}(\delta\alpha_1,\ldots,\delta\alpha_D) = \mathbb{I} - i \sum_{n=1}^D \delta\alpha_n X_n + \mathfrak{O}(\alpha^2), \qquad (1.7.6)$$

запишем

$$\delta \alpha_n = \frac{\alpha_n}{N} \tag{1.7.7}$$

с $N \in \mathbb{N}$. Тогда данная частная запись параметров группы позволяет нам получить различные разложения

$$\begin{aligned} \mathcal{U}(\alpha_1, \dots, \alpha_D) &= \lim_{N \to +\infty} \left[U(\delta \alpha_1, \dots, \delta \alpha_D) \right]^N \\ &= \lim_{N \to +\infty} \left[U\left(\frac{\alpha_1}{N}, \dots, \frac{\alpha_n}{N}\right) \right]^N \\ &= \lim_{N \to +\infty} \left[\mathbbm{I} - i \sum_{n=1}^D \frac{\alpha_n}{N} X_n + \mathcal{O}\left(\frac{\alpha^2}{N^2}\right) \right]^N \end{aligned}$$
(1.7.8)
$$&= e^{-i \sum_{n=1}^D \alpha_n X_n}, \end{aligned}$$

последняя строка получается, используя тот факт, что для любого оператора \widehat{X} , имеется $e^{\widehat{X}} = \lim_{N \to \infty} \sum_{k=0}^{N} \frac{\widehat{X}^{k}}{k!} = \lim_{N \to \infty} \sum_{k=0}^{N} \frac{N!}{(N-k)!} \frac{1}{N^{k}} \frac{1}{k!} \widehat{X}^{k} \mathbb{I}^{N-k} = \lim_{N \to \infty} \sum_{k=0}^{N} \mathbb{C}_{N}^{k} \frac{\widehat{X}^{k}}{N^{k}} \mathbb{I}^{N-k} = \lim_{N \to \infty} \left(\mathbb{I} + \frac{\widehat{X}}{N} \right)^{N}.$ (1.7.9)

Выражение (1.7.8) является экспоненциальной параметризацией представления $\mathcal{U}(\alpha_1, \ldots, \alpha_D)$ рассматриваемого элемента группы Ли **G**, то есть, что оно представляет элементы $\mathcal{U}(\alpha_1, \ldots, \alpha_D)$ в экспоненциальной форме. Эта форма представления элементов группы Ли очень известна в квантовой механике. На самом деле ее можно найти, например, в математическом выражении свойств физической системы, которая обладает инвариантностью относительно вращения или перемещения.

1.7.3 Определение констант структуры группы Ли

Введем фундаментальные величины для изучения группы Ли: константы структуры. Используя (1.7.4), мы можем записать следующее математическое равенство:

$$\begin{aligned} \mathcal{U}(\alpha_1, \dots, \alpha_D) \times \mathcal{U}^{\dagger}(\alpha_1, \dots, \alpha_D) &= \left(\mathbb{I} - i \sum_{n=1}^{D} \alpha_n X_n + \mathcal{O}(\alpha^2) \right) \times \left(\mathbb{I} - i \sum_{n=1}^{D} \alpha_n X_n + \mathcal{O}(\alpha^2) \right)^{\dagger} \\ &= \left(\mathbb{I} - i \sum_{n=1}^{D} \alpha_n X_n + \mathcal{O}(\alpha^2) \right) \times \left(\mathbb{I} + i \sum_{n=1}^{D} \alpha_n^* X_n^{\dagger} + \mathcal{O}(\alpha^2) \right) \\ &= \mathbb{I} - i \sum_{n=1}^{D} \alpha_n X_n + i \sum_{n=1}^{D} \alpha_n^* X_n^{\dagger} + \mathcal{O}(\alpha^2) \end{aligned}$$

$$(1.7.10)$$

или, преобразуя последнее выражение, можно получить

$$\mathfrak{U}(\alpha_1,\ldots,\alpha_D) \times \mathfrak{U}^{\dagger}(\alpha_1,\ldots,\alpha_D) = \mathbb{I} - i \sum_{n=1}^{D} \left(\alpha_n X_n - \alpha_n^* X_n^{\dagger} \right) + \mathfrak{O}(\alpha^2).$$
(1.7.11)

Генераторы группы Ли удовлетворяют важным соотношениям, которые мы сейчас получим в определенных рамках унитарных групп. Уделим внимание этой определенной категории групп Ли, поскольку это унитарные группы, которые будут использоваться при дальнейшем изучении колебательных мод неплоских молекул типа XY₃.

1.7.4 Случай унитарных групп

Теорема

Теорема :

Генераторы унитарной группы Ли эрмитовы при использовании естественной параметризации.

Доказательство этой теоремы осуществляется в два этапа.

На первом этапе предположим, что мы работаем с унитарными группами, следовательно, элементы этой группы имеют следующее свойство:

$$\mathcal{U}^{\dagger}(\alpha_1,\ldots,\alpha_D) = \mathcal{U}^{-1}(\alpha_1,\ldots,\alpha_D).$$
(1.7.12)

Поскольку

$$\mathfrak{U}(\alpha_1,\ldots,\alpha_D) \times \mathfrak{U}^{-1}(\alpha_1,\ldots,\alpha_D) = \mathbb{I}, \qquad (1.7.13)$$

используя выражение (1.7.11), можно получить

$$\alpha_n X_n - \alpha_n^* X_n^{\dagger} = 0 \qquad (1 \leqslant n \leqslant D). \tag{1.7.14}$$

Можно выбрать, что D параметров α_n принадлежат всему полю вещественных чисел IR, тогда

$$\alpha_n = \alpha_n^* \qquad (1 \leqslant n \leqslant D). \tag{1.7.15}$$

и из (1.7.14) следует, что

$$X_n = X_n^{\dagger} \qquad (1 \leqslant n \leqslant D). \tag{1.7.16}$$

Константы структуры

Пусть $\{X_n; 1 \leq n \leq D\}$ - набор генераторов группы Ли **G**. Выберем два элемента $\mathcal{U}_1(\delta \alpha_1, \ldots, \delta \alpha_D)$ ет $\mathcal{U}_2(\delta \beta_1, \ldots, \delta \beta_D)$, принадлежащих одной группе Ли **G** так, чтобы они были близки к единичному элементу **1**. Разложим эти два элемента до второго порядка малости по генераторам

$$\begin{cases} \mathcal{U}_{1}(\delta\alpha_{1},\ldots,\delta\alpha_{D}) = \mathbb{I} - i\sum_{m=1}^{D}\alpha_{m}X_{m} - \frac{1}{2}\sum_{m=1}^{D}\sum_{n=1}^{D}\alpha_{m}\alpha_{n}X_{m}X_{n} + \mathcal{O}(\alpha^{3}) \\ \mathcal{U}_{2}(\delta\beta_{1},\ldots,\delta\beta_{D}) = \mathbb{I} - i\sum_{r=1}^{D}\beta_{r}X_{r} - \frac{1}{2}\sum_{r=1}^{D}\sum_{s=1}^{D}\beta_{r}\beta_{s}X_{r}X_{s} + \mathcal{O}(\alpha^{3}) \end{cases}$$
(1.7.17)

и, естественно, мы имеем условие $\mathcal{U}_i imes \mathcal{U}_i^\dagger = 1$ (с i=1,2). Следовательно,

$$\begin{cases} \left[\sum_{m=1}^{D} \alpha_m X_m\right]^2 - \sum_{m=1}^{D} \sum_{n=1}^{D} \alpha_m \alpha_n X_m X_n = 0 \\ \left[\sum_{r=1}^{D} \beta_r X_r\right]^2 - \sum_{r=1}^{D} \sum_{s=1}^{D} \beta_r \beta_s X_r X_s = 0. \end{cases}$$
(1.7.18)

Элемент U группы G, сконструированный как

$$\mathcal{U} = \mathcal{U}_1 \times \mathcal{U}_2 \times \mathcal{U}_1^{\dagger} \times \mathcal{U}_2^{\dagger}, \qquad (1.7.19)$$

могут быть еще записаны в форме

$$\begin{aligned}
\mathcal{U} &= \\
\left(\mathbb{I} - i \sum_{m=1}^{D} \alpha_m X_m - \frac{1}{2} \sum_{m=1}^{D} \sum_{n=1}^{D} \alpha_m \alpha_n X_m X_n + \mathcal{O}(\alpha^3) \right) \times \\
\left(\mathbb{I} - i \sum_{r=1}^{D} \beta_r X_r - \frac{1}{2} \sum_{r=1}^{D} \sum_{s=1}^{D} \beta_r \beta_s X_r X_s + \mathcal{O}(\beta^3) \right) \times \\
\left(\mathbb{I} + i \sum_{m=1}^{D} \alpha_m X_m - \frac{1}{2} \sum_{m=1}^{D} \sum_{n=1}^{D} \alpha_m \alpha_n X_m X_n + \mathcal{O}(\alpha^3) \right) \times \\
\left(\mathbb{I} + i \sum_{r=1}^{D} \beta_r X_r - \frac{1}{2} \sum_{r=1}^{D} \sum_{s=1}^{D} \beta_r \beta_s X_r X_s + \mathcal{O}(\beta^3) \right).
\end{aligned}$$
(1.7.20)

Если мы осуществим расчеты до второго порядка, то

$$\mathcal{U} = \mathbb{I} - \sum_{m=1}^{D} \sum_{r=1}^{D} \alpha_m \beta_r [X_m, X_r] \\
+ \left[\sum_{m=1}^{D} \alpha_m X_m \right]^2 - \sum_{m=1}^{D} \sum_{n=1}^{D} \alpha_m \alpha_n X_m X_n + \left[\sum_{r=1}^{D} \beta_r X_r \right]^2 - \sum_{r=1}^{D} \sum_{s=1}^{D} \beta_r \beta_s X_r X_s \in \mathbf{G},$$
(1.7.21)

принимая во внимание два условия (1.7.18), получаем

$$\mathcal{U} = \mathbb{I} - \sum_{m=1}^{D} \sum_{r=1}^{D} \alpha_m \beta_r \left[X_m, X_r \right] + \mathcal{O}(\alpha^3, \beta^3) \in \mathbf{G}.$$
(1.7.22)

Если элементы \mathcal{U}_1 et \mathcal{U}_2 не коммутируют, то элемент \mathcal{U} отличен от единичного. Это нам позволяет тогда записать, что

$$[X_m, X_r] \equiv X_m X_r - X_r X_m = i \sum_{l=1}^{D} C_m^l X_l, \qquad \text{поскольку } u \in \mathbf{G}, \qquad (1.7.23)$$

где C_{mr}^l называются константами структуры. Выражение (1.7.21) принимает следующую форму

$$\mathcal{U} = \mathbb{I} - i \sum_{m=1}^{D} \sum_{r=1}^{D} \alpha_m \beta_r \sum_{l=1}^{D} C_m^l X_l + \mathcal{O}(\alpha^3, \beta^3)
= \mathbb{I} - i \sum_{l=1}^{D} \underbrace{\left(\sum_{m=1}^{D} \sum_{r=1}^{D} \alpha_m \beta_r C_m^l x_l \right)}_{=\gamma_l} X_l + \mathcal{O}(\alpha^3, \beta^3).$$
(1.7.24)

В итоге мы получаем выражение для элемента U, который принадлежит группе Ли G

$$\mathcal{U} = \mathbb{I} - i \sum_{l=1}^{D} \gamma_l X_l + \mathcal{O}(\alpha^2, \beta^2) \in \mathbf{G}.$$
(1.7.25)

1.7.5 Определения и основные понятия

Сейчас мы рассмотрим каким образом обозначение постоянной структуры позволяет произвести простую классификацию непрерывных групп, причем что ни на есть общим методом.

Компактная группа Ли

Говорят, что группа Ли компактна, если все ее параметры принимают непрерывные значения в замкнутых и ограниченных областях, то есть в компактных областях. Алгебра рассматриваемой группы Ли также называется компактной.

Ранг группы Ли

Ранг группы Ли определяется просто максимальным числом генераторов, коммутирующих между собой.

Абелева группа

Говорят, что группа абелева, если все элементы коммутируют. В рамках унитарной группы Ли **G** размерности *D* данный факт означает, что все постоянные структуры равны нулю:

$$C^{q}_{mn} = 0, \ 1 \leqslant m, n, q \leqslant D.$$
 (1.7.26)

Это условие означает, что для всех *m* и *n*, принадлежащих области $[1, \ldots, D]$ $[X_m, X_n] = 0$. На основании определения ранга группы Ли можно утверждать, что ранг абелевой группы Ли равен размерности этой группы.

Подгруппа

Подгруппа **H** (размерности d) унитарной группы Ли **G** (размерности $D \ge d$) является набором Σ элементов, образующих группу между собой. Если обозначить через $(\alpha_1, \alpha_2, \ldots, \alpha_d)$

параметры подгруппы **H** в наборе $(\alpha_1, \alpha_2, \dots, \alpha_D)$ группы **G**, то

$$[X_m, X_n] = i \sum_{l=1}^d C_{mn}^l X_l, \quad \leqslant m, n, l \leqslant d, \tag{1.7.27}$$

что можно переписать другим эквивалентным способом

$$C_{mn}^{l} = 0, \quad 1 \leqslant m, n \leqslant d \quad \text{et} \quad d \leqslant l \leqslant D.$$
(1.7.28)

Инвариантная подгруппа

Инвариантная подгруппа **H** (размерности $d \leq D$) унитарной группы Ли **G** (размерности D и элементов \mathcal{U}) - это набор элементов $\mathcal{U}_{\mathbf{H}}$, которые содержат все Σ элементов $\overline{\mathcal{U}}_{\mathbf{H}} \equiv \mathcal{U}\mathcal{U}_{\mathbf{H}}\mathcal{U}^{-1}$, сопряженные этим элементам.

Если **H** содержит $\mathcal{U}_{\mathbf{H}}$, то она также содержит все элементы типа $\mathcal{U}\mathcal{U}_{\mathbf{H}}\mathcal{U}^{-1}\mathcal{U}_{\mathbf{H}}^{-1} = \overline{\mathcal{U}}_{\mathbf{H}}\mathcal{U}_{\mathbf{H}}^{-1}$, потому что $\overline{\mathcal{U}}_{\mathbf{H}} \in \mathbf{H}$ и $\mathcal{U}_{\mathbf{H}}^{-1} \in \mathbf{H}$, что подразумевает, что произведение этих двух элементов также принадлежат этой подгруппе **H**. А поскольку мы знаем, что

$$\mathfrak{U}\mathfrak{U}_{\mathbf{H}}\mathfrak{U}^{-1}\mathfrak{U}_{\mathbf{H}}^{-1} = \mathbb{I} - \sum_{m=1}^{D} \sum_{n=1}^{d} \alpha_{m} \beta_{n} \left[X_{m}, X_{n} \right] + \mathfrak{O}(\alpha^{2}, \beta^{2}) \in \mathbf{H}$$
(1.7.29)

с условием

$$[X_m, X_n] = i \sum_{l=1}^{\lambda} C_{mn}^l X_l \quad c \ 1 \le m \le D \quad \bowtie \ 1 \le n \le d.$$
(1.7.30)

Нам нужно определить λ такое, что $\mathcal{U}\mathcal{U}_{\mathbf{H}}\mathcal{U}^{-1}\mathcal{U}_{\mathbf{H}}^{-1}$ будет принадлежать подгруппе **H**. Можно, следовательно, записать

$$\mathfrak{U}\mathfrak{U}_{\mathbf{H}}\mathfrak{U}^{-1}\mathfrak{U}_{\mathbf{H}}^{-1} = \mathbb{I} - i\sum_{l=1}^{\lambda} \underbrace{\left(\sum_{m=1}^{D} \sum_{n=1}^{d} \alpha_{m} \beta_{n} C_{mn}^{l}\right) X_{l}}_{\equiv \gamma_{l}} + \mathfrak{O}(\alpha^{2}, \beta^{2}) \in \mathbf{H}$$

$$= \mathbb{I} - i\sum_{l=1}^{\lambda} \gamma_{l} X_{l} \in \mathbf{H}, \qquad (1.7.31)$$

что подразумевает, что $\lambda = d$. Можно также показать, что

$$[X_m, X_n] = i \sum_{l=1}^d C_{mn}^l X_l \quad c: \ 1 \le m \le D \quad \bowtie \quad 1 \le n, l \le d.$$
(1.7.32)

Простая группа

Унитарная группа Ли G называется простой, если она содержит лишь инвариантную подгруппу и единичный элемент.

Полупростая группа

Унитарная группа Ли G классифицируется как полупростая, если она ничего не содержит, кроме инвариантной абелевой подгруппы и единичного элемента.

1.8 Инвариантные операторы или операторы Казимира

1.8.1 Определение

Инвариантные операторы или операторы Казимира группы являются, по определению, операторами, которые имеют свойство коммутировать со всеми генераторами рассматриваемой группы.

Например, для группы SO(3), если мы определим J_x , J_y и J_z , то, определяя оператор $J^2 \equiv J_x^2 + J_y^2 + J_z^2$, получаем

$$[J^2, J_i] = 0$$
 $c \ i = x, y, z,$ (1.8.1)

следовательно, оператор $J^2 \equiv J_x^2 + J_y^2 + J_z^2$ является инвариантным оператором группы SO(3).

1.8.2 Теорема Рака

Введение и интерес

Очень часто полунепрерывные группы, рассматриваемые при описании физических систем, обладают свойством инвариантности относительно какого-нибудь геометрического преобразования. Когда физическая величина, характеризующая систему, обладает свойством инвариантности относительно негеометрического преобразования, говорят, что связанная с этой операцией симметрия является динамической. В общем эти динамические симметрии по происхождению имеют специфичную форму уравнения Шредингера, при котором они являются следствием классических законов. Можно, например, рассмотреть две физические системы, обладающие динамической симметрией: атом водорода и изотропный осциллятор. Что касается атома водорода, специфичная форма уравнения Шредингера происходит из потенциала кулоновского типа, который описывает динамику электрона относительно ядра. Покажем, что в рамках [16] для состояний атома водорода динамической группой симметрии будет группа SO(4), и, когда мы рассматриваем состояния континуума, динамической группой будет группа динамической симметрии SO(3,1). Зато согласно Выборну [12] динамической группой симметрии, принимая во внимание континуум, будет SO(4,2). Что касается изотропного осциллятора размерности p, его динамической группой симметрии является U(p+1), но существуют и другие возможности [12]: такие некомпактные группы, как SU(p, 1), $Sp(2p, \mathbb{R})$ или $Os(p) = N(p) \wedge H$, где N(p) - группа Гейзенберга, H - гамильтониан системы, а \wedge означает полупрямое произведение. Фактически, чтобы быть точным, это обозначение касается алгебр, а не групп. Если алгебра Гейзенберга относительно группы N(p) обобозначается как h_p , а алгебра относительно группы гамильтониана H обозначаема как

$$\mathbf{g}_H = \left\{ a^{\dagger}, a \right\}, \tag{1.8.2}$$

то операция, которая определяется как Os(p) должна быть записана как

$$\mathbf{g}_{Os(p)} = \mathbf{h}_p \oplus \mathbf{g}_H. \tag{1.8.3}$$

Например, для p = 3, то есть для изотропного осциллятора размерности 3, имеется $h_3 = \{a^{\dagger}, a, II\}^9$ такое, что

$$\mathbf{g}_{Os(3)} = \left\{ a^{\dagger}, a, \mathbf{I} \right\} \oplus \left\{ a^{\dagger}, a \right\}.$$

$$(1.8.4)$$

Теорема Рака:

Для всех полупростых групп Ли ранга k существует k инвариантных операторов.

Доказательство этой теоремы осуществлено G. Racah [50]. Эта теорема показывает нам, что группа SO(3) имеет лишь единственный инвариантный оператор J^2 .

1.8.3 Ранг унитарной группы U(n)

По определению, унитарная группа U(n) образуется набором квадратных матриц \mathcal{M} размерности $(n \times n)$, которые удовлетворяют

$$\mathcal{M}\mathcal{M}^{\dagger} = \mathbb{I}_{n} \qquad \text{avec } \mathcal{M}^{\dagger} = \mathcal{M}^{\star^{t}}. \tag{1.8.5}$$

Поэтому, так как каждая квадратная матрица \mathcal{M} имеет n^2 элементов \mathcal{M}_{ij} с $1 \leq i, j \leq n$, это означает, что унитарная группа U(n) обладает n^2 независимыми генераторами.

Как уже было показано, ранг группы Ли определяется максимальным числом коммутирующих между собой операторов. Обозначим через E_{ij} $(1 \le i, j \le n)$ n^2 генераторов группы U(n), эти генераторы удовлетворяют условию коммутирования [51]:

$$[E_{im}, E_{jn}] = \delta_{jm} E_{in} - \delta_{in} E_{jm} \qquad c E_{im}^{\dagger} = E_{mi}.$$
(1.8.6)

Это условие коммутирования означает, что самый большой набор генераторов E_{ij} $(1 \le i, j \le n)$, коммутирующих между собой, образован набором $\Omega_n \equiv \{E_{ii}\}$.

1.8.4 Форма Киллинга или метрический тензор

Определим форму Киллинга группы Ли G с D параметрами на основе соотношения

$$[g]_{nm} \equiv \sum_{p=1}^{D} \sum_{q=1}^{D} C_{np}^{q} C_{mq}^{p}, \qquad (1.8.7)$$

эта форма является симметричной, поскольку $[g]_{nm} = [g]_{mn}$, и носит еще название метрического тензора группы Ли **G**. Этому тензору можно дать другую форму (строго эквивалентную).

⁹Согласно другим авторам алгебра Гейзенберга h_3 определяется немного другим способом: добавлением элемента $a^{\dagger}a$ к трем элементам $\{a^{\dagger}, a, 1\!\!1\}$. Кроме того, вместо обозначения h_3 алгебра Гейзенберга обозначается как h_4 .

Для этого определим матричное представление 10 [16] генераторов X_i (i = 1, ..., D) следующего типа:

$$X_n | X_p \rangle \stackrel{\text{def}}{=} C^q_{np} | X_q \rangle \quad \text{is} \quad \langle X_i | X_j \rangle \stackrel{\text{def}}{=} \delta_{ij}, \tag{1.8.8}$$

что подразумевает

$$C_{np}^{q} = \langle X_{q} | X_{n} | X_{p} \rangle = [X_{n}]_{qp}.$$
(1.8.9)

Форму Киллинга можно сейчас записать как

$$[g]_{nm} \equiv \sum_{p=1}^{D} \sum_{q=1}^{D} [X_n]_{qp} [X_m]_{pq} = Tr([X_n] [X_m]) = Tr(X_n X_m).$$
(1.8.10)

Последняя запись используется для того, чтобы немного облегчить обозначение. Матрица, представляющая метрический тензор [g], является квадратной и размерности $(D \times D)$:

$$[g] = \begin{bmatrix} Tr(X_1 X_1) & Tr(X_1 X_2) & \dots & Tr(X_1 X_D) \\ Tr(X_2 X_1) & \ddots & & \vdots \\ \vdots & & Tr(X_n X_n) & & \vdots \\ \vdots & & & \ddots & \vdots \\ Tr(X_D X_1) & \dots & \dots & Tr(X_D X_D) \end{bmatrix}$$
(1.8.11)

Поскольку мы имеем дело с квадратной матрицей размерности ($D \times D$), это позволяет нам записать детерминант [g], который равен

det
$$[g] = \sum_{i=1}^{D} g_{ic} (-1)^{i+c} |M_{ic}|,$$
 (1.8.12)

где сумма осуществляется по строкам i матрицы при фиксированном столбце c, $|M_{ic}|$ - минор, связанный с рассматриваемым элементом g_{ic} , тогда

$$\det [g] = \sum_{i=1}^{D} Tr(X_i X_c) (-1)^{i+c} |M_{ic}|$$

$$= \sum_{i=1}^{D} \sum_{p=1}^{D} \sum_{q=1}^{D} C_{ip}^q C_{cq}^p (-1)^{i+c} |M_{ic}|.$$
 (1.8.13)

В итоге получим выражение детерминанта квадратной матрицы, представляющую форму Киллинга в особом представлении:

det
$$[g] = \sum_{i=1}^{D} \left[\sum_{p=1}^{D} \sum_{q=1}^{D} C_{ip}^{q} C_{cq}^{p} (-1)^{i+c} |M_{ic}| \right]$$
 (1.8.14)

¹⁰Это особое представление носит название симметричного представления.

Бозонное представление

Пусть E_{ij} ($1 \le i \le n$) n^2 генераторов группы, удовлетворяющих условию коммутирования (1.8.6).

Для построения этих n^2 генераторов можно использовать бозонное представление.

Введем бозонные операторы рождения и уничтожения b_i^{\dagger} и b_j $(1 \leq i, j \leq n)$, которые удовлетворяют условию коммутирования Бозе

$$\left[b_{i}^{\dagger}, b_{j}^{\dagger}\right] = \left[b_{i}, b_{j}\right] = 0 \quad \text{et} \quad \left[b_{i}, b_{j}^{\dagger}\right] = \delta_{ij} \tag{1.8.15}$$

затем чтобы построить n^2 генераторов E_{ij} унитарной группы U(n), положим, что

$$E_{ij} = b_i^{\dagger} b_j \quad \text{avec } 1 \leqslant i, \, j \leqslant n.$$
(1.8.16)

Покажем, что

$$\left[b_{i}^{\dagger} b_{m}, b_{j}^{\dagger} b_{n}\right] = \delta_{j \, m} \, b_{i}^{\dagger} \, b_{n} - \delta_{i \, n} \, b_{j}^{\dagger} \, b_{m}.$$
(1.8.17)

1.9 Алгебраическая модель гамильтониана

1.9.1 Введение

Из определения генераторов динамической группы все операторы можно записать как набор этих генераторов. Гамильтониан системы с *p* степенями свободы записавается в виде ряда по степеням генераторова *E_{ij}* унитарной группы *U*(*p* + 1) :

$$H = \alpha^0 \, \mathbb{I}_d + \sum_{i,j}^{p+1} \alpha^1_{ij} E_{ij} + \frac{1}{2} \sum_{i,j,k,l}^{p+1} \alpha^2_{ij\,k\,l} E_{ij} E_{k\,l} + \cdots \,.$$
(1.9.1)

Но такая запись гамильтониана ведет к модели с бесконечным количеством параметров. Кроме того в такой записи существует другое неудобство: она ни каким образом не рассматривает молекулярную группу симметрии. Чтобы избежать этих неудобств, Gilmore et Draayer ввели концепцию динамической симметрии. Первоначальная идея состоит в том, что гамильтониан, связанный с молекулой, должен быть инвариантом относительно действия различных действий операций симметрии группы симметрии этой молекулы. Поэтому в рамках алгебраического формализма, чтобы взять во внимание это физическое условие, необходимо построить гамильтониан на основе инвариантов групп, составляющих алгебраическую цепочку.

1.9.2 Концепция динамической симметрии

Эта концепция, предложенная Gilmore и Draayer, а также Iachello и Levine [3], позволяет получить вид спектра. Концепция динамической симметрии:

гамильтониан нулевого порядка состоит из оператров непрерывных и полунепрерывных групп алгебраической цепочки.

Пример жесткого ротатора

В случае двухатомной молекулы ее вращательные состояния можно характеризовать следующей цепочкой групп:

Цепочка групп	SU(3)	$\supset SO(2)$	
	↓ -2	↓ 	
Инвариантные операторы	J^2	J_z^2	(1.9.2)
	\downarrow	\downarrow	
Собственные значения	j(j+1)	K^2 .	

В стандартном базисе $\{ | j, K \rangle \}$ гамильтониан нулевого порядка и соответственно выражение для энергии можно записать в следующем виде:

$$H_0 = \alpha J^2 + \beta J_z^2 \implies E_0^{\{|j, K\rangle\}} = \alpha j(j+1) + \beta K^2.$$
(1.9.3)

Глава 2

Применение теории цепочек групп к пирамидальным молекулам типа $XY_3(C_{3v})$

2.1 Основные свойства молекул аксиальной симметрии типа $XY_3(C_{3v})$

Неплоская молекула типа XY_3 (РИС. 2.1) принадлежит молекулярной группе симметрии C_{3v} .

Рис. 2.1: Пирамидальная молекула типа $XY_3(C_{3v})$

Эта группа симметрии обладает шестью элементами симметрии

- единичный элемент *I*_d;
- вращение в прямом направлении вокруг оси C_3 ;
- вращение в обратном направлении вокруг оси C₃;
- три вертикальных плоскости симметрии σ₁, σ₂, σ₃,

которые образуют следующих три класса сопряженных элементов

- класс 1: единичный элемент;
- класс 2: два вращения;
- класс 3: три вертикальных плоскости симметрии,

откуда мы выделяем три неприводимых представления (НП):

- НП A_1 симметричное размерности 1;
- НП A_2 антисмимметричное размерности 1;
- НП E размерности 2.

Все сведения, позволяющие описать и характеризовать эту группу, содержаться в таблице характеров (ТАБЛ. 2.1):

C_{3v}	I_d	$3\sigma_i$	$2C_3$					
A_1	1	1	1					
A_2	1	-1	1					
E	2	0	-1					

Таблица 2.1: Таблица характеров группы C_{3v}

В данной работе рассматриваются молекулы арсина (AsH_3) , фосфина (PH_3) и стибина (SbH_3) . Эти молекулы обладают тремя связями r_1, r_2, r_3 $(r_i \equiv XY_i)$ и тремя углами между этими связями $\alpha_{12}, \alpha_{13}, \alpha_{23}$ $(\alpha_{ij} \equiv Y_i \hat{X}Y_j)$. Рассматривая, каким образом различные операции симметрии группы C_{3v} действуют на связи и углы, можно получить результаты, приведенные в таблице 2.2.

Эти молекулы обладают валентными и деформационными колебаниями. Действуя элементами группы симметрии C_{3v} на связи и углы, можно найти каким образом влентно-деформационное представление $\Gamma_{\text{вал. деф.}} = \Gamma_{\text{вал. }} \otimes \Gamma_{\text{деф.}}$ разлагается в рамках НП группы C_{3v} (ТАБЛ. 2.3).

Из результатов таблицы 2.3 можно легко найти следующие утверждения:
C_{3v}	I_d	C_3	C_{3}^{-1}	σ_1	σ_2	σ_3
атом Y ₁	1	3	2	1	3	2
атом Y_2	2	1	3	3	2	1
атом Y_3	3	2	1	2	1	3

Таблица 2.2: Действие элементов симметрии группы C_{3v} на атомы Ү

C_{3v}	I_d	$3\sigma_i$	$2C_3$
Г _{вал.} или Г _{деф.}	3	1	0

Таблица 2.3: Представление валентных и деформационных колебаний

- представление $\Gamma_{\text{вал.}} = A_1 \otimes E$ соответствует модам $\nu_1(A_1)$ и $\nu_3(E)$;
- представление $\Gamma_{\text{деф.}} = A_1 \otimes E$ соответствует модам $\nu_2(A_1)$ и $\nu_4(E)$.

В таблице 2.4 представлены частоты фундаментальных колебаний молекул, рассматриваемых в данной работе.

частота (см ⁻¹)	SbH_3	AsH_3	PH_3
$ u_1(A_1)$	1890.502	2115.164	2321.12
$ u_2(A_1)$	782.24	906.752	992.13
$ u_3(E)$	1894.497	2126.423	2326.87
$ u_4(E)$	827.75	999.225	1118.31

Таблица 2.4: Частоты фундаментальных колебаний некоторых пирамидальных молекул типа XY₃(C_{3v})

Можно сделать вывод, что для этих молекул имеется 6 колебательных степеней свободы: 3 степени свободы для валентных колебаний и 3 степени свободы для деформационных колебаний.

2.2 Выбор цепочки групп для молекул аксиальной симметрии типа $XY_3(C_{3v})$

Как было показано в параграфе 1.2, для системы, состоящей из *p* идентичных осцилляторов, возможно использовать следующую цепочку групп:

$$U(p+1) \supset U(p) \supset S(p) \approx G_{\text{мол.}}$$
(2.2.1)

Следовательно, можно выделить различные возможные физические ситуации, соответствующие наличию четырех различных мод колебаний ν_i (i = 1 до 4):

Физические ситуации	соответствующие динамические группы
$\omega_1 \simeq \omega_2 \simeq \omega_3 \simeq \omega_4$	U(7)
$\omega_1 \simeq \omega_3 \neq \omega_2 \simeq \omega_4$	$U_{ ext{baj.}}(4)\otimes U_{ ext{ded.}}(4)$
$\omega_1 \simeq \omega_2 \neq \omega_3 \simeq \omega_4$	$U_{ t вал. ext{ деф.}}(3)\otimes U_{ t вал. ext{ деф.}}(5)$
$\omega_1 \simeq \omega_4 \neq \omega_3 \simeq \omega_2$	$U_{ t Ban. \; ext{ded.}}(4) \otimes U_{ t Ban. \; ext{ded.}}(4)$
$\omega_1 \simeq \omega_2 \simeq \omega_3 \neq \omega_4$	$U_{ ext{вал. деф.}}(5)\otimes U_{ ext{деф.}}(3)$
$\omega_1 \simeq \omega_3 \simeq \omega_4 \neq \omega_2$	$U_{ ext{вал. деф.}}(6)\otimes U_{ ext{деф.}}(2)$
$\omega_1 \simeq \omega_3 \neq \omega_2 \neq \omega_4$	$U_{ t Ball A.}(4)\otimes U_{ t Ze \Phi.}(3)\otimes U_{ t Ze \Phi.}(2)$
$\omega_1 \neq \omega_2 \neq \omega_3 \neq \omega_4$	$U_{ ext{baj.}}(2)\otimes U_{ ext{ded.}}(2)\otimes U_{ ext{baj.}}(2)\otimes U_{ ext{ded.}}(2)$

Таблица 2.5: Некоторые возможные физические ситуации для четырех колебательных мод пирамидальных молекул типа $XY_3(C_{3v})$

В исследуемой нами системе имеется 3 колебательные степени свободы, соответствующие валентным модам и 3 степени свободы, соответствующие деформационным колебаниям. Пирамидальные молекулы типа $XY_3(C_{3v})$ являются молекулами, удовлетворяющими приближению локальных мод, то есть в первом приближении для данных молекул возможно изучить валентные и деформационные моды раздельно. Следовательно, чтобы найти адекватную цепочку групп, необходимо рассмотреть значения фундаментальных частот рассматриваемых нами молекул. Фактор \mathcal{L} определяет вырожденность колебательных мод, то есть можно "оценить" цепочку групп на основе значения этого фактора, фактор \mathcal{L} можно определить как:

$$\mathcal{L} = \frac{\Delta \nu^{\text{колеб.}}}{\nu_{\text{среднее}}^{\text{колеб.}}} = 2 \left| \frac{\nu_m - \nu_n}{\nu_m + \nu_n} \right|.$$
(2.2.2)

В таблице 2.6 представлены значения фактора \mathcal{L} для молекул аксиальной симметрии C_{3v} .

	SbH_3	AsH_3	PH_3
$\mathcal{L}_{\text{вал.}}$	0.0021	0.0053	0.0024
$\mathcal{L}_{ ext{ded.}}$	0.056	0.097	0.120

Таблица 2.6: Значения фактора \mathcal{L} для молекул аксиальной симметрии C_{3v}

Рассматривая значения фактора \mathcal{L} , разумно для валентных колебательных мод выбрать теоретическую модель типа $U(4) \supset U(3)$ (один трехмерный осциллятор). Для деформационных

колебательных мод фактор £ значительно отличен от нуля, поэтому в данном случае возможны (один трехмерный осциллятор, либо один одномерный осциллятор и один двумерный осциллятор):

- либо модель U_{деф.}(4) ⊃ U_{деф.}(3)
- либо модель $U_{\text{деф.}}(3) \otimes U_{\text{деф.}}(2) \supset U_{\text{деф.}}(2) \otimes U_{\text{деф.}}(1)$

Следовательно, для изучения имеются следующие цепочки групп, соответствующие двум возможным физическим ситуациям:

$$\begin{bmatrix} (U_{\text{вал.}}(4) \supset U_{\text{вал.}}(3) \supset K_{\text{вал.}}(3) \supset S_{\text{вал.}}(3)) \\ \otimes \\ (U_{\text{деф.}}(4) \supset U_{\text{деф.}}(3) \supset K_{\text{деф.}}(3) \supset S_{\text{деф.}}(3)) \end{bmatrix} \supset C_{3v} \qquad (2.2.3)$$

$$\begin{bmatrix} U_{\text{вал.}}(4) \supset U_{\text{деф.}}(3) \supset K_{\text{вал.}}(3) \supset S_{\text{вал.}}(3)) \\ \otimes \\ U_{\text{деф.}}(3) \otimes U_{\text{деф.}}(2) \supset U_{\text{деф.}}(2) \otimes U_{\text{деф.}}(1) \supset K_{\text{деф.}}(2) \otimes K_{\text{деф.}}(1) \supset S_p(\text{деф.}) \otimes S_{\text{деф.}}(1)) \end{bmatrix} \supset C_{3v}$$

$$(2.2.4)$$

Второй случай 2.2.4 соответствует ситуации, когда валентные колебательные моды можно описать в рамках операторов, построенных в локальном приближении, а деформационные моды описаны как нормальные.

2.3 Изучение группы K(3)

2.3.1 Определение

Набор осцилляторов, которые обладают одной и той же энергией, могут быть описаны как принадлежащие одной и той же оболочке. Кроме того для системы, состоящей из n одинаковых осцилляторов, чьи состояния описываются в рамках веса Г-Ц $W([m]_n)$, возможные энергетические уровни определяются как $\hbar \omega W([m]_n)$. Следовательно, стуктура оболочки полностью определяется весом состояний Г-Ц.

Вес $W([m]_n)$ связан с НП группы A(3), которая состоит из унитарных диагональных матриц (3 х 3), обозначаемых a:

$$a = \begin{pmatrix} e^{i\alpha_1} & 0 & 0\\ 0 & e^{i\alpha_2} & 0\\ 0 & 0 & e^{i\alpha_3} \end{pmatrix}$$
(2.3.1)

Сhacon *et al.* [52] показали, что действие элемента a группы A(3) на кет-вектор Г-Ц определяется как

$$\begin{pmatrix} e^{i\alpha_{1}} & 0 & 0 \\ 0 & e^{i\alpha_{2}} & 0 \\ 0 & 0 & e^{i\alpha_{3}} \end{pmatrix} \begin{vmatrix} n & 0 & 0 \\ n_{1} + n_{2} & 0 \\ n_{1} \end{vmatrix} = e^{i(\alpha_{1} + \alpha_{2} + \alpha_{3})} \begin{vmatrix} n & 0 & 0 \\ n_{1} + n_{2} & 0 \\ n_{1} \end{vmatrix}$$

$$(2.3.2)$$

или то же самое записанное другим способом

$$a|n_1n_2n_3\rangle = e^{i(\alpha_1 + \alpha_2 + \alpha_3)}|n_1n_2n_3\rangle.$$
(2.3.3)

Рассмотрим теперь группу перестановок трех идентичных объектов S(3), например, осцилляторов, связей, ... и.т.д. Обозначим через $\{p\}$ набор матриц (3 х 3), представляющих элементы группы перестановок S(3). Набор $\{ap\}$, следовательно, формирует группу, определенную как K(3), в которой группа A(3) является инвариантной подгруппой, поскольку справедливы свойства [53]:

$$\{ap\} \equiv \{q\}, \qquad A(3) \supset qA(3)q^{-1}, \qquad \forall q \in K(3).$$
 (2.3.4)

То есть группа K(3) образована произведением *ар* элементов инвариантной подгруппы A(3) и элементов группы S(3). Кроме того у этих двух групп имеется лишь один общий элемент

$$A(3)\bigcap S(3) = \mathbb{I}_3.$$
 (2.3.5)

Перечисленные свойства являются следствием того [53, 54], что группа K(3) определена как полупрямое произведение двух групп A(3) и S(3):

$$K(3) \equiv A(3) \land S(3) \tag{2.3.6}$$

2.3.2 Изучение НП группы *K*(3)

Важно изучить НП группы K(3), поскольку это нам позволит легко осуществить связь между непрерывными и дискретными группами. Можно констатировать, что НП группы K(3) характеризуются весом и перестановками компонент этого веса. Именно поэтому различные числа, имеющие определенные места в оболочке, фиксированы НП группы K(3), и группа K(3) может быть рассмотрена как группа симметрии трех идентичных осцилляторов в моделе оболочек.

Из определения группы K(3) ее структура классов сопряженных элементов похожа на структуру классов сопряженных элементов группы S(3). Чтобы охарактеризовать различные классы группы K(3), нам необходимо определить характеры матриц-представлений различных элементов $\{ap\}$, формирующих группу K(3).

S(3) имеет три класса (111 \equiv 1³), (210), (300). Собственные значения ϵ_j (j = 1, 2, 3) матриц-представлений элементов {ap} группы K(3) для этих трех случаев выражаются

как

$$\begin{cases} p = (r)(s)(t) \equiv I_d: & \epsilon_1 = e^{i\alpha_r}, \epsilon_2 = e^{i\alpha_s}, \epsilon_3 = e^{i\alpha_t} \\ p = (rs)(t): & \epsilon_{1,2} = \pm e^{i\frac{\alpha_r + \alpha_s}{2}} \\ & \epsilon_3 = e^{i\alpha_t} \\ p = (rst): & \epsilon_j = e^{i\frac{2\pi}{3}(j-1)}e^{i\frac{\alpha_r + \alpha_s + \alpha_t}{3}} & j = 1, 2, 3 \end{cases}$$
(2.3.7)

Изучим НП группы K(3), следуя методу, предложенному McIntoch [55, 56] для изучения полупрямых групп.

НП группы A(3) полностью определены. Эта группа может быть записана как прямая сумма трех групп C_{∞} :

$$A(3) = C_{\infty}(1) \oplus C_{\infty}(2) \oplus C_{\infty}(3).$$

$$(2.3.8)$$

Следовательно, НП группы A(3) могут быть выражены через прямые произведения НП трех групп C_{∞} [57]. Кроме того, НП группы C_{∞} определены как $e^{i\alpha_n}$ $(n \in \mathbb{N})$, именно поэтому НП группы A(3) могут быть охарактеризованы весом $w = (n_1n_2n_3)$. Также для всех элементов $a \in A(3)$ НП определяется как

$$D^{w=(n_1n_2n_3)}(a) = e^{i(\alpha_1n_1 + \alpha_2n_2 + \alpha_3n_3)}.$$
(2.3.9)

Теперь определим группу веса \mathcal{W} , которая является подгруппой S(3) и образована элементами h, которые удовлетворяют

$$h \in \mathcal{W}:$$
 $D^{w=(n_1n_2n_3)}(hah^{-1}) = D^{w=(n_1n_2n_3)}(a),$ (2.3.10)

то есть что перестановки $h \in \mathcal{W}$ оставляют вес $w = (n_1 n_2 n_3)$ неизменным [54].

НП группы $\mathcal{W} = \sum_i \oplus S(n_i)$ с $\sum_i n_i = n$ являются прямыми произведениями различных НП групп $S(n_i)$, представленных в рамках прямой суммы, определяющей группу \mathcal{W} . Обозначим эти НП через $f_w = f_1, f_2, ...,$ где $f_1, f_2, ...$ являются разбиениями различных групп $S(n_i)$. Используя НП группы \mathcal{W} , мы можем сконструировать прямые произведения следующих матриц:

$$\mathcal{D}^{(wf_w)}(ah) \equiv D^{w=(n_1n_2n_3)}(a)\mathcal{D}^{f_w}(h).$$
(2.3.11)

McIntosh показал [55, 56], что это представление неприводимо.

Сейчас определим набор генераторов остаточных классов справа (Г.К.О.) $\{c_i\}$ группы \mathcal{W} в S(3), который нам позволит выделить представления группы K(3) из представлений 2.3.11 группы $A(3) \wedge \mathcal{W}$. Нам нужно определить набор (Г.К.О.) $\{c_i\}$. Horie [58] предложил систематический метод для того, чтобы осуществить выбор различных c_i , например,

• Если $\mathcal{W} = S(n_1) \oplus S(n_2)$, тогда

$$c_{1} = I_{d}$$

$$c \begin{cases} 1 \leq q \leq \min(n_{1}, n_{2}) \\ 1 \leq s_{1} < s_{2} \cdots < s_{q} \leq n_{1} \\ n_{1} + 1 \leq t_{1} < t_{2} \cdots < t_{q} \leq n_{1} + n_{2} \end{cases}$$

$$c_{q+1} = (s_{1}t_{1})(s_{2}t_{2}) \cdots (s_{q}t_{q})$$

$$(2.3.12)$$

• Если $\mathcal{W} = S(n_1) \oplus S(n_2) \oplus \cdots \oplus S(n_j)$, тогда сначала возьмем (Г.К.О.) $\{c_i\}$ суммы $S(n_1) \oplus S(n_2)$ в $S(n_1 + n_2)$, затем возьмем (Г.К.О.) $\{c_i\}$ суммы $S(n_1 + n_2) \otimes S(n_3)$ в $S(n_1 + n_2 + n_3)$ и.т.д. Далее умножим справа все (Г.К.О.) $\{c_i\}$ суммы $S(n_1) \oplus S(n_2)$ на все (Г.К.О.) суммы $S(n_1 + n_2) \otimes S(n_3)$ и.т.д. Получим число (Г.К.О.) k для группы \mathcal{W} , которая является подгруппой S(3) :

$$k = \frac{\left[\sum_{i=1}^{j} n_{i}\right]!}{\prod_{i=1}^{j} n_{i}!}.$$
(2.3.13)

Пример метода Horie для случая $\mathcal{W} = S(1) \oplus S(2)$ представлен в таблице 2.7.

W	$\{c_i\}$	$M_i = \mathcal{W}c_i$
$S(1) \oplus S(2)$	$c_1 = I_d$	$M_1 = \mathcal{W}c_1 = \mathcal{W}I_d = \mathcal{W} = \{I_d, (12)\}$
	$c_2 = (13)$	$M_2 = \mathcal{W}c_2 = \{(13), (321)\}$
	$c_3 = (23)$	$M_3 = \mathcal{W}c_3 = \mathcal{W} = \{(23), (123)\}$

Таблица 2.7: Пример метода Horie для случая $\mathcal{W} = S(1) \oplus S(2)$

Определим теперь таблицу характеров группы K(3). Этот этап обязателен, если мы хотим осуществить редукции $U(3) \supset K(3)$ и $K(3) \supset C_{3v}$. Можно различить три случая для веса w, который соответствует различным возможностям для группы веса \mathcal{W} :

* $w = (n_1 n_1 n_1)$ соответствует $\mathcal{W} = S(3)$

$$\begin{array}{cccc} A(3) & S(3) \\ & & \\ H\Pi \ \mbox{группы} \ K(3): & (n_1n_1n_1) & \{300\} \\ & & (n_1n_1n_1) & \{210\} \\ & & (n_1n_1n_1) & \{111\}. \end{array}$$

Этот случай соответствует одной оболочке, которая содержит три одинаковых осциллятора. Ясно, что группа веса в этой ситуации является группой S(3) и НП группы K(3) - просто прямое произведение представлений групп A(3) и S(3):

$$\mathcal{D}^{w=(n_1n_1n_1)\{f_1f_2f_3\}}(ap) = D^{w=(n_1n_1n_1)}(a)\mathcal{D}^{\{f_1f_2f_3\}}(p) = e^{in_1(\alpha_1+\alpha_2+\alpha_3)}\mathcal{D}^{\{f_1f_2f_3\}}(p) \quad (2.3.15)$$

$$\mathcal{D}^{w=(n_1n_1n_1)\{f_1f_2f_3\}}(ap) = D^{w=(n_1n_1n_1)}(a)\mathcal{D}^{\{f_1f_2f_3\}}(p) = e^{in_1(\alpha_1+\alpha_2+\alpha_3)}\mathcal{D}^{\{f_1f_2f_3\}}(p) \quad (2.3.15)$$

$$\mathcal{D}^{w=(n_1n_1n_1)\{f_1f_2f_3\}}(ap) = \mathcal{D}^{w=(n_1n_1n_1)}(a)\mathcal{D}^{\{f_1f_2f_3\}}(p) = e^{in_1(\alpha_1+\alpha_2+\alpha_3)}\mathcal{D}^{\{f_1f_2f_3\}}(p) \quad (2.3.15)$$

$$\mathcal{D}^{w=(n_1n_1n_1)\{j_1j_2j_3\}}(ap) = \mathcal{D}^{w=(n_1n_1n_1)}(a)\mathcal{D}^{\{j_1j_2j_3\}}(p) = e^{in_1(\alpha_1+\alpha_2+\alpha_3)}\mathcal{D}^{\{j_1j_2j_3\}}(p) \quad (2.3.15)$$

$$\mathcal{D}^{(a)}(m_1,m_1)(m_2,m_3)(ap) = \mathcal{D}^{(a)}(m_1,m_1)(a)\mathcal{D}^{(m_2,m_3)}(p) = e^{m_1(a_1+a_2+a_3)}\mathcal{D}^{(m_2,m_3)}(p) \quad (2.3.15)$$

$$D = (a + b)(ap) = D = (a + b)(a)(a + b)(p) = e^{-a}(a + b)(p)(2.5.15)$$

$$\chi^{w=(n_1n_1n_1)\{f_1f_2f_3\}}(ap) = e^{in_1(\alpha_1+\alpha_2+\alpha_3)}\chi^{\{f_1f_2f_3\}}(p)$$
(2.3.16)

с характерами [59]

$$\chi\{300\}(p = I_d) = 1$$

$$\chi\{300\}(p = (ij)(k)) = 1$$

$$\chi\{300\}(p = (ijk)) = 1$$

$$\chi\{210\}(p = I_d) = 2$$

$$\chi\{210\}(p = (ij)(k)) = 0$$

$$\chi\{210\}(p = (ijk)) = -1$$

$$\chi\{210\}(p = (ijk)) = -1$$

(2.3.17)

$$\chi\{111\}(p = I_d) = 1$$

$$\chi\{111\}(p = (ij)(k)) = -1$$

$$\chi\{111\}(p = (ijk)) = 1.$$

При $p=I_d$ мы можем определить размерности различных НП группыK(3)

$$dim((n_1n_1n_1){300}) = 1$$

$$dim((n_1n_1n_1){210}) = 2$$

$$dim(n_1n_1n_1){111}) = 1.$$

(2.3.18)

* $w = (n_1 n_1 n_2)$ соответствует $\mathcal{W} = S(2) \oplus S(1)$

$$\begin{array}{ccc} A(3) & S(3) \\ \mbox{HП группы } K(3): & (n_1n_1n_2) & \{20\}\{1\} \\ & (n_1n_1n_2) & \{11\}\{1\}, \end{array} \tag{2.3.19}$$

где {20}{1} и {11}{1} соответственно являются симметричным НП и антисимметричным НП группы S(2). Эта ситуация соответствует случаю двух оболочек, которые заняты следующим образом: первая двумя идентичными осцилляторами и вторая одним осциллятором. Мы имеем элементы группы \mathcal{W} {(12), I_d }, также как ортогональные представления Юнга [59] групп S(2) и S(1):

$$S(2): \{20\}: \mathcal{D}^{\{20\}}(p) = 1 \quad \forall p \in S(2)$$

: $\{11\}: \mathcal{D}^{\{11\}}(I_d) = 1$
: $\{11\}: \mathcal{D}^{\{11\}}(ij) = -1 \quad \forall (ij) \in S(2)$ (2.3.20)

$$S(1): \{1\}: \mathcal{D}^{\{1\}}(I_d) = 1.$$

Можно, следовательно, легко получить представления группы $\mathcal{W} = S(2) \oplus S(1)$:

$$\{20\}\{1\} : \mathcal{D}^{\{20\}\{1\}}(p) = 1 \quad \forall p \in S(2)$$

$$\{11\}\{1\} : \mathcal{D}^{\{11\}\{1\}}(I_d) = 1$$

$$: \mathcal{D}^{\{11\}\{1\}}(ij) = -1 \quad \forall (ij) \in S(2).$$

$$(2.3.21)$$

Из полученного орределяем матричное представление всех элементов ap группы K(3) для трех возможных несимметризованных состояний $|n_1n_1n_2\rangle$, $|n_1n_2n_1\rangle$ и $|n_2n_1n_1\rangle$:

$$\mathcal{D}^{w=(n_{1}n_{1}n_{2})\{f_{1}f_{2}\}\{1\}}(ap) = D^{w=(n_{1}n_{1}n_{2})}(a)\mathcal{D}^{\{f_{1}f_{2}\}\{1\}}(p) = |n_{1}n_{1}n_{2}\rangle |n_{2}n_{1}n_{1}\rangle \\ = \begin{pmatrix} e^{n_{1}\alpha_{1}+n_{1}\alpha_{2}+n_{2}\alpha_{3}} & 0 & 0 \\ 0 & e^{n_{1}\alpha_{1}+n_{2}\alpha_{2}+n_{1}\alpha_{3}} & 0 \\ 0 & 0 & e^{n_{2}\alpha_{1}+n_{1}\alpha_{2}+n_{1}\alpha_{3}} \end{pmatrix} \\ \times \mathcal{D}^{\{f_{1}f_{2}\}\{1\}}(p), \\ c: \{f_{1}f_{2}\}\{1\} = \begin{cases} \{20\}\{1\} \\ \{11\}\{1\} \end{cases} . (2.3.22) \end{cases}$$

Сейчас необходимо объяснить форму матриц $\mathcal{D}^{\{f_1f_2\}\{1\}}(p)$.

 $\alpha) \ p = I_d.$

Ясно, что в этом случае имеются

$$\mathcal{D}^{\{20\}\{1\}}(I_d) = \mathbb{I}_3$$

$$\mathcal{D}^{\{11\}\{1\}}(I_d) = \mathbb{I}_3.$$
 (2.3.23)

Характер - сумма диагональных элементов матриц $D^{w=(n_1n_1n_2)}(a)$:

$$\chi^{w=(n_1n_1n_2)\{\{20\}\{1\}}(aI_d) = \chi^{w=(n_1n_1n_2)\{\{11\}\{1\}}(aI_d)$$

= $e^{i(n_1\alpha_1+n_1\alpha_2+n_2\alpha_3)}$
+ $e^{i(n_1\alpha_1+n_2\alpha_2+n_1\alpha_3)}$
+ $e^{i(n_2\alpha_1+n_1\alpha_2+n_1\alpha_3)}.$ (2.3.24)

 β) p = (12)(3) или все другие элементы (ij)(k) этого же класса. Имеются три выражения

$$\begin{cases} I_d (12) \ I_d = (12) \\ (13)(12)(23) = (12) \\ (23)(12)(13) = (12) \end{cases} \iff \begin{cases} c_1(12)c_1^{-1} = (12) \in W \\ c_2(12)c_3^{-1} = (12) \in W \\ c_3(12)c_2^{-1} = (12) \in W, \end{cases}$$
(2.3.25)

следовательно, у нас есть две матрицы

$$\mathcal{D}^{\{20\}\{1\}}((12)(3)) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\mathcal{D}^{\{11\}\{1\}}((12)(3)) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}.$$
(2.3.26)

Характеры определяются как

$$\chi^{w=(n_1 n_1 n_2) \{20\} \{1\}}(a(1 2) (3)) = e^{i(n_1 \alpha_1 + n_1 \alpha_2 + n_2 \alpha_3)}$$

$$\chi^{w=(n_1 n_1 n_2) \{11\} \{1\}}(a(1 2) (3)) = -e^{i(n_1 \alpha_1 + n_1 \alpha_2 + n_2 \alpha_3)}.$$
(2.3.27)

 γ) p = (123) или все другие элементы (ijk) того же класса.

Имеются три выражения

$$\begin{cases} I_d & (123) & (23) = (12) \\ (13) & (123) & I_d = I_d \\ (23) & (123) & (13) = I_d \end{cases} \iff \begin{cases} c_1(123)c_3^{-1} = (12) \in W \\ c_2(123)c_1^{-1} = I_d \in W \\ c_3(123)c_2^{-1} = I_d \in W. \end{cases}$$
(2.3.28)

Следовательно,

$$\mathcal{D}^{\{20\}\{1\}}((123)) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\mathcal{D}^{\{11\}\{1\}}((123)) = \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix},$$
(2.3.29)

откуда получаем характеры

$$\chi^{w=(n_1 n_1 n_2) \{20\} \{1\}}(a(1 2 3)) = 0$$

$$\chi^{w=(n_1 n_1 n_2) \{11\} \{1\}}(a(1 2 3)) = 0.$$
(2.3.30)

Затем из выражения (2.3.23) можно записать НП $w = (n_1 n_1 n_2) \{f_1 f_2\} \{1\}$ группы K(3):

$$\dim((n_1n_1n_2)\{20\}\{1\}) = 3$$

$$\dim((n_1n_1n_2)\{11\}\{1\}) = 3.$$
 (2.3.31)

* $w = (n_1 n_2 n_3)$ соответствует $\mathcal{W} = S(1) \oplus S(1) \oplus S(1)$.

В этой ситуации имеется три осциллятора в трех разных оболочках. Элемент группы веса $\mathcal{W} = S(1) \oplus S(1) \oplus S(1)$ - это единичный элемент I_d ; и НП группы $A(3) \wedge \mathcal{W}$ дано нам в виде (2.3.11):

$$\mathcal{D}^{w=(n_1 n_2 n_3)\{1\}\{1\}\{1\}}(ae) = D^{w=(n_1 n_2 n_3)}(a) \mathbb{I}_1$$

$$= e^{i(n_1 \alpha_1 + n_2 \alpha_2 + n_3 \alpha_3)}.$$
(2.3.32)

Представления группы K(3) определяются из условия

$$\mathcal{D}_{\bar{m}\,m}^{w=(n_1\,n_2\,n_3)\,\{1\}\,\{1\}\,\{1\}}(ap) = D^{w=(n_1\,n_2\,n_3)}(c_{\bar{m}}a\,c_{\bar{m}}^{-1}) \,\mathcal{D}^{\{1\}\,\{1\}\,\{1\}}(c_{\bar{m}}\,p\,c_{m}^{-1}) \,\delta(c_{\bar{m}}\,p\,c_{m}^{-1},\,h\in\mathcal{W})$$

$$= D^{w=(n_1\,n_2\,n_3)}(c_{\bar{m}}a\,c_{\bar{m}}^{-1}) \,\mathcal{D}^{\{1\}\,\{1\}\,\{1\}\,\{1\}}(I_d) \,\delta(c_{\bar{m}}\,p\,c_{m}^{-1},\,I_d\in\mathcal{W})$$

$$= D^{w=(n_1\,n_2\,n_3)}(c_{\bar{m}}a\,c_{\bar{m}}^{-1}) \,\mathbb{I}_6 \,\delta(c_{\bar{m}}\,p\,c_{m}^{-1},\,I_d\in\mathcal{W})$$

$$= D^{w=(n_1\,n_2\,n_3)}(c_{\bar{m}}a\,c_{\bar{m}}^{-1}) \,\mathbb{I}_6 \,\delta(c_{\bar{m}}\,p\,c_{m}^{-1},\,I_d\in\mathcal{W})$$

$$= D^{w=(n_1\,n_2\,n_3)}(c_{\bar{m}}a\,c_{\bar{m}}^{-1}) \,\delta(c_{\bar{m}}\,p\,c_{m}^{-1},\,I_d\in\mathcal{W})$$

$$= D^{w=(n_1\,n_2\,n_3)}(c_{\bar{m}}a\,c_{\bar{m}}^{-1}) \,\delta(c_{\bar{m}}\,p\,c_{m}^{-1},\,I_d\in\mathcal{W})$$

 \mathbf{c}

$$\{c_i\} = \{c_1 = I_d, c_2 = (12), c_3 = (13), c_4 = (23), c_5 = (321), c_6 = (123)\}, (2.3.34)$$

то есть (Г.К.О.) { c_i } - это шесть элементов группы симметрии S(3). Условие $c_{\bar{m}} p c_m^{-1} = I_d$ подобно $p = c_{\bar{m}}^{-1} c_m$, в которой матричное представление (6 × 6) элемента $p \in S(3)$ конструируется следующим образом: 1 на местах, где p появляется в таблице прозведений группы S(3) и 0 в остальных случаях (см. ТАБЛ. 2.8).

Единичный элемент I_d - единственный элемент p группы S(3), для которого в его матричном представлении диагональные элементы не равны нулю. Это означает, что соответствующий характер удовлетворяет

$$\chi^{w=(n_1 n_2 n_3)\{1\}\{1\}\{1\}}(ap) \ltimes \delta(p, I_d).$$
(2.3.35)

Впоследствии, так как матричное представление единичного элемента I_d является единичной матрицей \mathbb{I}_6 шестого порядка, можно записать, что характер (2.3.35)

S(3)	m	1	2	3	4	5	6
	Cm	I_d	(12)	(13)	(23)	(123)	(321)
m	$c_{\bar{m}}^{-1}$						
1	I_d	I_d	(12)	(13)	(23)	(123)	(321)
2	(12)	(12)	I_d	(123)	(321)	(13)	(23)
3	(13)	(13)	(321)	I_d	(23)	(123)	(321)
4	(23)	(23)	(123)	(321)	I_d	(12)	(13)
5	$(123)^{-1}$	(321)	(13)	(23)	(12)	I_d	(123)
6	$(321)^{-1}$	(123)	(23)	(12)	(13)	(321)	I_d

Таблица 2.8: Таблица произведения $\{c_m c_{\bar{m}}^{-1}\}$ группы симметрии S(3)

определяется как

$$\chi^{w=(n_1 n_2 n_3) \{1\} \{1\} \{1\}}(ap) = \delta(p, I_d) \operatorname{Tr} \left[\mathbb{I}_6 \times \begin{pmatrix} \theta_1 & 0 & 0 & 0 & 0 \\ 0 & \theta_2 & 0 & 0 & 0 \\ 0 & 0 & \theta_3 & 0 & 0 & 0 \\ 0 & 0 & 0 & \theta_3 & 0 & 0 \\ 0 & 0 & 0 & \theta_4 & 0 & 0 \\ 0 & 0 & 0 & 0 & \theta_5 & 0 \\ 0 & 0 & 0 & 0 & 0 & \theta_6 \end{pmatrix} \right]$$
(2.3.36)

с различными $\theta_i \ (1\leqslant i\leqslant 6),$ которые равны

$$\begin{cases} \theta_1 = e^{i(n_1\alpha_1 + n_2\alpha_2 + n_3\alpha_3)} & \theta_2 = e^{i(n_2\alpha_1 + n_1\alpha_2 + n_3\alpha_3)} & \theta_3 = e^{i(n_3\alpha_1 + n_2\alpha_2 + n_1\alpha_3)} \\ \theta_4 = e^{i(n_1\alpha_1 + n_3\alpha_2 + n_2\alpha_3)} & \theta_5 = e^{i(n_3\alpha_1 + n_1\alpha_2 + n_2\alpha_3)} & \theta_6 = e^{i(n_2\alpha_1 + n_3\alpha_2 + n_1\alpha_3)}, \\ (2.3.37) \end{cases}$$

а матрица, содержащая θ_i ($1 \leq i \leq 6$) выражается в базисе, составленного из несимметризовання векторов, как

$$|n_1 n_2 n_3\rangle \quad |n_2 n_1 n_3\rangle \quad |n_3 n_2 n_1\rangle \quad |n_1 n_3 n_2\rangle \quad |n_3 n_1 n_2\rangle \quad |n_2 n_3 n_1\rangle.$$
 (2.3.38)

То есть характер $\chi^{w=(n_1 n_2 n_3) \{1\} \{1\} \{1\}}(ap)$ равен

$$\chi^{w=(n_1 n_2 n_3) \{1\} \{1\} \{1\}}(ap) = \delta(p, I_d) \quad (e^{i(n_1 \alpha_1 + n_2 \alpha_2 + n_3 \alpha_3)} + e^{i(n_2 \alpha_1 + n_1 \alpha_2 + n_3 \alpha_3)} + e^{i(n_3 \alpha_1 + n_2 \alpha_2 + n_1 \alpha_3)} + e^{i(n_1 \alpha_1 + n_3 \alpha_2 + n_2 \alpha_3)} + e^{i(n_3 \alpha_1 + n_1 \alpha_2 + n_2 \alpha_3)} + e^{i(n_2 \alpha_1 + n_3 \alpha_2 + n_1 \alpha_3)})$$

$$= \begin{tabular}{ll} \delta(p\,,\,I_d) & \sum_{\substack{(r,s,t) \ = \ p(1,2,3) \\ p \in S(3) \end{tabular}} e^{i\,(n_r\alpha_1 + n_s\alpha_2 + n_t\alpha_3)} \end{tabular}$$

Далее, принимая во внимание, что матричное представление едничного элемента I_d - это единичная матрица \mathbb{I}_6 , можно записать, что

$$\dim ((n_1 n_2 n_3) \{1\} \{1\} \{1\}) = 6.$$
(2.3.40)

В таблице 2.9 подводится итог этого изучения НП группы K(3).

2.3.3 Редукция представления $\left[n, \dot{\mathbf{0}}^2\right]$ группы U(3) на группу K(3)

В качестве примера можно осуществить разложение полносимметричного представления $[n, \dot{0}^2]$ группы U(3) на группу K(3) :

$$\begin{bmatrix} n, \dot{0}^2 \end{bmatrix} = (n_1 n_1 n_1) \{300\} \, \delta(3n_1, n) + \sum_{\substack{n_1 \neq n_2 \\ 2n_1 + n_2 = n}} (n_1 n_1 n_2) \{20\} \{1\} \\ + \sum_{\substack{n_1, n_2, n_3 \\ n_1 > n_2 > n_3}} (n_1 n_2 n_3) \{1\} \{1\} \{1\} \\ \end{bmatrix}$$

$$(2.3.41)$$

Например, для n = 3 предыдущее выражение можно выразить как

Группа веса W	$K(3) = A(3) \land S(3)$	1 элемент aI_d	3 элемента $a\left(ij ight)\left(k ight)$	2 элемента <i>a</i> (<i>i j k</i>)
S(3)	$(n_1 \ n_1 \ n_1) \ \{300\}$	$e^{in_1(lpha_1+lpha_2+lpha_3)}$	$e^{i n_1(lpha_1+lpha_2+lpha_3)}$	$e^{i n_1(\alpha_1+\alpha_2+\alpha_3)}$
S(3)	$(n_1 \ n_1 \ n_1) \ \{210\}$	$2e^{in_1(lpha_1+lpha_2+lpha_3)}$	0	$-e^{i n_1(\alpha_1+\alpha_2+\alpha_3)}$
S(3)	$(n_1 \ n_1 \ n_1) \ \{111\}$	$e^{in_1(lpha_1+lpha_2+lpha_3)}$	$-e^{in_1(lpha_1+lpha_2+lpha_3)}$	$e^{i n_1(lpha_1+lpha_2+lpha_3)}$
$S(2)\oplus S(1)$	$(n_1 \ n_1 \ n_2) \ \{20\} \ \{1\}$	$\sum_{c_1;c_2;c_3} e^{i\left(n_1\alpha_1+n_1\alpha_2+n_2\alpha_3\right)}$	$e^{i\left(n_{1}\alpha_{i}+n_{1}\alpha_{j}+n_{2}\alpha_{k}\right)}$	0
$S(2)\oplus S(1)$	$(n_1 \ n_1 \ n_2) \ \{11\} \ \{1\}$	$\sum_{c_1;c_2;c_3} e^{i\left(n_1\alpha_1+n_1\alpha_2+n_2\alpha_3\right)}$	$-e^{i\left(n_{1}\alpha_{i}+n_{1}\alpha_{j}+n_{2}\alpha_{k}\right)}$	0
$\boxed{S(1)\oplus S(1)\oplus S(1)}$	$(n_1 \ n_2 \ n_3) \ \{1\} \ \{1\} \ \{1\}$	$\sum_{\substack{(r,s,t)\\ =\\ p(1,2,3)\\ p \in S(3)}} e^{i(n_r\alpha_1 + n_s\alpha_2 + n_t\alpha_3)}$	0	0

c $c_1 = I_d$; $c_2 = (13)$; $c_3 = (23)$

И

•
$$\chi^{(w = (n_1 \, n_2 \, n_3) \{1\} \times \{1\} \times \{1\})}(ap) = \delta(p, I_d) \sum_{\substack{(r, s, t) = p(1, 2, 3) \\ r \in \mathcal{C}^{(2)}}} e^{i (n_r \alpha_1 + n_s \alpha_2 + n_t \alpha_3)} = \delta(p, I_d) \left[e^{i (n_1 \alpha_1 + n_2 \alpha_2 + n_3 \alpha_3)} + e^{i (n_r \alpha_1 + n_s \alpha_2 + n_t \alpha_3)} \right]$$

 $p \in S(3)$ $e^{i(n_{2}\alpha_{1}+n_{1}\alpha_{2}+n_{3}\alpha_{3})} + e^{i(n_{3}\alpha_{1}+n_{2}\alpha_{2}+n_{1}\alpha_{3})} + e^{i(n_{1}\alpha_{1}+n_{3}\alpha_{2}+n_{2}\alpha_{3})} + e^{i(n_{3}\alpha_{1}+n_{1}\alpha_{2}+n_{2}\alpha_{3})} + e^{i(n_{2}\alpha_{1}+n_{3}\alpha_{2}+n_{1}\alpha_{3})}]$

•
$$\chi^{(w = (n_1 n_1 n_2) \{f_1 f_2\} \times \{1\}}(ap) = \sum_{c_1; c_2; c_3} e^{i(n_1 \alpha_1 + n_1 \alpha_2 + n_2 \alpha_3)} = e^{i(n_1 \alpha_1 + n_1 \alpha_2 + n_2 \alpha_3)}$$
 действие $c_1 = I_d$ на $(n_1 n_1 n_2)$
+ $e^{i(n_2 \alpha_1 + n_1 \alpha_2 + n_1 \alpha_3)}$ действие $c_2 = (13)$ на $(n_1 n_1 n_2)$
+ $e^{i(n_1 \alpha_1 + n_2 \alpha_2 + n_1 \alpha_3)}$ действие $c_3 = (23)$ на $(n_1 n_1 n_2)$

Таблица 2.9: Таблица характеров полунепрерывной группы K(3)

$$\begin{bmatrix} 3, 0^{2} \end{bmatrix} = (111) \{300\} + \sum_{\substack{n_{1} \neq n_{2} \\ 2n_{1} + n_{2} = 3}} (n_{1}n_{1}n_{2}) \{20\} \{1\} + \sum_{\substack{n_{1} \neq n_{2} \\ 2n_{1} + n_{2} = 3}} (n_{1}n_{2}n_{3}) \{1\} \{1\} \{1\} = (111) \{300\} + (300) \{20\} \{1\} + (210) \{1\} \{1\} \{1\} + \sum_{\substack{n_{1} > n_{2} > n_{3} \\ n_{1} + n_{2} + n_{3} = 3}} (n_{1}n_{2}n_{3}) \{1\} \{1\} \{1\} = (111) \{300\} + (300) \{20\} \{1\} + (210) \{1\} \{1\} \{1\} + \sum_{\substack{n_{1} \neq n_{2} \\ n_{1} \neq n_{3} = 3}} (n_{1}n_{2}n_{3}) \{1\} \{1\} \{1\} = (111) \{300\} + (300) \{20\} \{1\} + (210) \{1\} \{1\} \{1\} + \sum_{\substack{n_{1} \neq n_{3} \\ n_{1} \neq n_{3} = 3}} (n_{1}n_{2}n_{3}) \{1\} \{1\} \{1\} = (111) \{300\} + (300) \{20\} \{1\} + (210) \{1\} \{1\} \{1\} + \sum_{\substack{n_{1} \neq n_{3} \\ n_{1} \neq n_{3} = 3}} (n_{1}n_{2}n_{3}) \{1\} \{1\} \{1\} = (111) \{20\} \{1\} + \sum_{\substack{n_{1} \neq n_{3} \\ n_{1} \neq n_{3} = 3}} (n_{1}n_{3}n_{3}) \{1\} \{1\} + \sum_{\substack{n_{1} \neq n_{3} \\ n_{1} \neq n_{3} = 3}} (n_{1}n_{3}n_{3}) \{1\} \{1\} \{1\} + \sum_{\substack{n_{1} \neq n_{3} \\ n_{1} \neq n_{3} = 3}} (n_{1}n_{3}n_{3}) \{1\} \{1\} + \sum_{\substack{n_{1} \neq n_{3} \\ n_{1} \neq n_{3} = 3}} (n_{1}n_{3}n_{3}) \{1\} \{1\} + \sum_{\substack{n_{1} \neq n_{3} \\ n_{1} \neq n_{3} = 3}} (n_{1}n_{3}n_{3}) \{1\} + \sum_{\substack{n_{1} \neq n_{3} \\ n_{1} \neq n_{3} = 3}} (n_{1}n_{3}n_{3}) \{1\} + \sum_{\substack{n_{1} \neq n_{3} \\ n_{1} \neq n_{3} = 3}} (n_{1}n_{3}n_{3}) \{1\} + \sum_{\substack{n_{1} \neq n_{3} \\ n_{1} \neq n_{3} = 3}} (n_{1}n_{3}n_{3}) \{1\} + \sum_{\substack{n_{1} \neq n_{3} = 3}} (n_{1}n_{3}n_{3}) \{1\} + \sum_{\substack{n_{1} \neq n_{3} \\ n_{1} \neq n_{3} = 3}} (n_{1}n_{3}n_{3}) \{1\} + \sum_{\substack{n_{1} \neq n_{3} = 3} (n_{1}n_{3}n_{3}) \{1\} + \sum_{\substack{n_{1} \neq n_{3} \\ n_{1} \neq n_{3} = 3}} (n_{1}n_{3}n_{3}) \{1\} + \sum_{\substack{n_{1} \neq n_{3} \\ n_{1} \neq n_{3} = 3}} (n_{1}n_{3}n_{3}) \{1\} + \sum_{\substack{n_{1} \neq n_{3} \\ n_{1} \neq n_{3} = 3}} (n_{1}n_{3}n_{3}) \{1\} + \sum_{\substack{n_{1} \neq n_{3} \\ n_{1} \neq n_{3} = 3}} (n_{1}n_{3}n_{3}) \{1\} + \sum_{\substack{n_{1} \neq n_{3} \\ n_{1} \neq n_{3} = 3}} (n_{1}n_{3}n_{3}) \{1\} + \sum_{\substack{n_{1} \neq n_{3} = 3} (n_{1}n_{3}n_{3}) \{1\} + \sum_{\substack{n_{1} \neq n_{3} = 3}} (n_{1}n_{3}n_{3}) \{1\} + \sum_{\substack{n_{1} \neq n_{3} =$$

Можно также проверить соотвествие размерностей представлений:

$$\dim\left(\left[3, \dot{0}^{2}\right]\right) = \frac{(3+2)!}{3!\,2} = 10 \tag{2.3.43}$$

И

$$\dim (111) \{300\} = 1 \dim (300) \{20\} \{1\} = 3 \dim (210) \{1\} \{1\} \{1\} = 6.$$
 (2.3.44)

2.3.4 Алгебраическое изучение цепочки $K(3) \supset S(3) \supset C_{3v}$

До того, как начать изучение редукции НП группы K(3) на группу S(3), мы должны сначала определить расширенное произведение НП группы S(p).

Расширенное произведение представлений группы S(p)

Рассмотрим две независимые физические системы, состоящие из совершенно идентичных осцилляторов p_1 и p_2 и сответствующих им инвариантных групп $S(p_1)$ и $S(p_2)$. Поскольку нет никаких взаимодействий между этими двумя системами, инвариантная группа - это просто прямое произведение $S(p_1) \otimes S(p_2)$.

Если состояние первой системы принадлежит пространству представления $D^{(1)}$ группы $S(p_1)$, а состояние второй системы пространству представления $D^{(2)}$ группы $S(p_2)$, то, совершенно очевидно, что общая система будет в состоянии пространства $D^{(1)} \otimes D^{(2)}$ инвариантной группы $S(p_1) \otimes S(p_2)$.

Предположим теперь, что существует взаимодействие между двумя системами осцилляторов. Так как осцилляторы эквивалентны, общая система будет обладать симметрией $S(p_1+p_2)$. Возникает интересный вопрос: какому НП группы $S(p_1+p_2)$ будет принадлежать состояние общей системы.

Мы пришли к новому разложению, которое является расширенным произведением [17, 59] двух НП $D^{(\alpha)}$ и $D^{(\beta)}$:

$$D^{(\alpha)} \vee D^{(\beta)} = D^{(\mu_1)} \oplus D^{(\mu_2)} \oplus \cdots$$
 (2.3.45)

Если d_{α} и d_{β} являются размерностями НП $D^{(\alpha)}$ и $D^{(\beta)}$, тогда размерность \mathcal{N} расширенного произведения $D^{(\alpha)} \vee D^{(\beta)}$ определяется как [17] :

$$\dim \left(D^{(\alpha)} \vee D^{(\beta)} \right) = \mathcal{N} = d_{\alpha} d_{\beta} \frac{(p_1 + p_2)!}{p_1! \, p_2!}.$$
(2.3.46)

В качестве примера осущесвим операцию расширенного произведения представлений {3100} группы S(4), представленное схемой Юнга, и представления {210} группы S(3), представленное схемой Юнга : (2.3.47)

Рассмотрим метод, называемый согласно Coleman [60] "узлы и плечи", который позволяет определить размерность какого-либо НП группы перестановок. Чтобы проиллюстрировать этот метод, выберем прозвольно схему

То, что англо-саксоны называют узлами на самом деле являются ячейками, из которых состоит рассматриваемая схема Юнга.

Первый этап: использование узлов и плеч

Выберем какой-нибудь узел на предыдущей диаграмме, затем свяжем с ним натуральное число, называемое "длиной плеча", такое, чтобы оно равнялось сумме узлов справа в этой же линии и в этом же столбце плюс один. Тогда получим

Второй этап: размерность НП, соответствующего рассматриваемой схеме Юнга

Размерность НП, соответствующего рассматриваемой схеме Юнга, определяется следующим выражением

что нам дает

$$\dim\left(\boxed{\boxed{}}\right) = \frac{7!}{6 \times 5 \times 3 \times 2 \times 1 \times 2 \times 1} = 14.$$
(2.3.50)

Применяя этот метод к НП $\{3100\}$ группы S(4), представленному схемой Юнга , и представлению $\{210\}$ группы S(3), представленному схемой Юнга , на основе (2.3.46) получим

Осуществим сейчас операцию расширенного произведения . Это делается в несколько этапов. Начнем с прикрепления буквы *а* ко всем ячейкам первой линии умножающего, затем *b* ко всем ячейкам второй линий и.т.д. В итоге мы получим

$$\begin{array}{c|c} a & a \\ \hline b \\ \end{array}$$
 (2.3.52)

Далее присоединим различные ячейки <u>а</u> предыдущей схемы к диаграмме множимого таким способом, чтобы они не появлялись в одном и том же столбце. Мы получим различные схемы на этой стадии:

Как только это проделано, присоединяем ячейки <u>b</u> к ранее полученным схемам Юнга, соблюдая не только обозначенное ранее ограничение, но также и следующее: рассматривая справа налево и сверху вниз встречаемые буквы в полученной схеме, количество встречаемых букв <u>b</u> не должно превышать количество букв <u>a</u>. Затем помещаем <u>c,d</u> и.т.д. Получим следующие схемы:

Проверим, что сумма полученных размерностей (2.3.54), в точности равна размерности расщиренного произведения

$$14 + 15 + 14 + 35 + 35 + 20 + 21 + 21 + 35 = 210 = \dim\left(\square \lor \lor \square \lor \right). \quad (2.3.55)$$

Применение к НП группы K(3)

С целью облегчить чтение этого параграфа мы позволим себе напомнить в виде таблицы значительные элементы в рамках НП, классов эквивалентности и изоморфизма $S(3) \simeq C_{3v}$ (ТАБЛ.2.10).

	C_{3v}	I_d	$3\sigma_i$	$2C_{3}$
	S(3)	(1^3)	(21)	(3)
R.I.	R.I.			
C_{3v}	S(3)			
A_1	{300}	1	1	1
A_2	{111}	1	-1	1
E	{210}	2	0	-1

Таблица 2.10: Таблица характеров группы $S(3)\simeq C_{3v}$

Первое распределение: $(n_1 n_1 n_1)$

Имеются три случая:

$$K(3) \supset S(3) \approx C_{3v}$$

$$((n_1n_1n_1) \{300\}) \implies \{300\} \simeq A_1$$

$$((n_1n_1n_1) \{111\}) \implies \{111\} \simeq A_2$$

$$((n_1n_1n_1) \{210\}) \implies \{210\} \simeq E.$$

$$(2.3.56)$$

Второе распределение: $(n_1 n_1 n_2)$

Для НП $((n_1n_1n_2)$ {20} {1}) группы K(3) имеется:

Далее для НП $((n_1n_1n_2)$ {11} {1}) получаем

Третье распределение: $(n_1 n_2 n_3)$

Наконец, что касается НП $((n_1n_2n_3) \{1\}\{1\}\{1\})$ группы K(3), мы получаем:

$$(\square \lor a) \lor b = (\square a \oplus \square a) \lor b$$
$$= \square a b \oplus \square b \oplus \square a \oplus \square a$$
$$= [300] \oplus \{111\} \oplus 2\{210\}$$
$$= A_1 \oplus A_2 \oplus 2E.$$

Все полученные результаты объединены в таблице 2.11.

Из таблицы 2.11 извлечем информацию для заполнения таблицы 2.12, которая конструируется на основе НП группы K(3), разложенных на группе $C_{3v} \approx S(3)$, включая $A_1 \simeq \{300\}$.

Сравнивая две таблицы 2.12 и 2.13, ясно, что только представления Γ , индуцированные кет-векторами $|n_i n_j n_k \rangle$ в группе $C_{3v} \approx S(3)$, являются НП группы K(3), которые содержат компоненту A_1 в C_{3v} (или {300} в S(3)). Кроме того, вырождения представлений Γ определяется всего лишь размерностями соответствующих НП группы K(3).

Используя все результаты, представленные до настоящего времени, при изучении группы K(3), можно изобразить теоретическую диаграмму энергетических колебательных уровней (валентных) неплоских молекул XY_3 . На нашем примере мы выбрали $N \ge 4$ (РИС. 2.2). Мы констатируем всю пользу введения группы K(3) при описании валентных колебательных состояний молекул аксиальной симметрии типа XY_3 .

Рассматривая рисунок 2.2, можно дать физическую интерпретацию группы K(3). На самом деле согласно различным весам w, которые можно ассоциировать с подгруппой A(3), мы констатируем, что группа K(3) нам дает возможность различного энергетического распределения квантов на связях молекулы. Можно утверждать, что для пирамидальных молекул существуют лишь три возможных энергетических распределения: три связи имеют одно и то же энергетическое состояние ($w = (n_1 n_1 n_1)$), либо одна связь находится в состоянии, отличном от состояния других двух связей ($w = (n_1 n_1 n_2)$), либо все три связи

$K(3) = A(3) \wedge S(3)$	S(3)	C_{3v}	dim
$(n_1 \ n_1 \ n_1) \ \{300\}$	{300}	A_1	1
$(n_1 \ n_1 \ n_1) \ \{1^3\}$	$\{1^3\}$	A_2	1
$(n_1 \ n_1 \ n_1) \ \{210\}$	{210}	E	2
$(n_1 \ n_1 \ n_2) \ \{20\} \ \{1\}$	$\{300\} \oplus \{210\}$	$A_1 \oplus E$	3
$(n_1 \ n_1 \ n_2) \ \{11\} \ \{1\}$	$\{1^3\} \oplus \{210\}$	$A_2 \oplus E$	3
$(n_1 \ n_2 \ n_3) \ \{1\} \ \{1\} \ \{1\}$	${300} \oplus {1^3} \oplus {2{210}}$	$A_1 \oplus A_2 \oplus 2E$	6

Таблица 2.11: Разложение НП группы K(3) на группу $C_{3v} \approx S(3)$

имеют различные энергетические состояния ($w = (n_1 n_2 n_3)$). Именно поэтому группе K(3) дается еще и название группы энергетического распределения.

2.3.5 Операторы Казимира группы K(3)

Гамильтониан нулевого порядка, связанный с изучением физической системы, может быть конструирован, используя концепцию динамической симметрии [3]. Именно поэтому необходимо определить полный набор инвариантных операторов (операторов Казимира)для группы K(3). В цепочке групп (2.2.3), исключая группу K(3), имеются следующие инвариантные

$K(3) = A(3) \wedge S(3)$	S(3)	C_{3v}	dim
$(n_1 \ n_1 \ n_1) \ \{300\}$	{300}	A_1	1
$(n_1 \ n_1 \ n_2) \ \{20\} \ \{1\}$	$\{300\} \oplus \{210\}$	$A_1 \oplus E$	3
$(n_1 \ n_2 \ n_3) \ \{1\} \ \{1\} \ \{1\}$	$\{300\} \oplus \{1^3\} \oplus 2\{210\}$	$A_1 \oplus A_2 \oplus 2E$	6

Таблица 2.12: Разложение НП группы
 K(3)на группу $C_{3v}\approx S(3),$ которая содержи
т $A_1\approx\{300\}$

База векторов $ n_i n_j n_k >$	Представления Γ в $S(3)$	Представления Г в С _{3v}	Размерность
$ n_1 n_1 n_1 >$	{300}	A_1	1
$ n_1 n_1 n_2 >$	$\{300\} \oplus \{210\}$	$A_1 \oplus E$	3
$ n_1 n_2 n_3 > n_1 > n_2 > n_3$	$\{300\} \oplus \{1^3\} \oplus 2\{210\}$	$A_1 \oplus A_2 \oplus 2E$	6

Таблица 2.13: Представления Г, индуцированные в $C_{3v} \approx S(3)$ на основе базы векторов | $n_i n_j n_k >$

операторы первого и второго порядка:

$$\mathfrak{I}_{1}^{(U(4))} = \sum_{i=1}^{4} \widehat{N}_{i} = \widehat{N} \quad , \quad \mathfrak{I}_{2}^{(U(4))} = \widehat{N}(\widehat{N} + 3) \\
\mathfrak{I}_{1}^{(U(3))} = \sum_{i=1}^{3} \widehat{N}_{i} = \widehat{n} \quad , \quad \mathfrak{I}_{2}^{(U(3))} = \widehat{n}(\widehat{n} + 2) \\
\mathfrak{I}_{1}^{(S(3))} = \sum_{i=1}^{3} \widehat{N}_{i} = \widehat{n} \quad , \quad \mathfrak{I}_{2}^{(S(3))} = \sum_{i\neq j=1}^{3} \widehat{N}_{i}\widehat{N}_{j}.$$
(2.3.60)

Рис. 2.2: Теоретическая схема энергетических уровнейдля молекул аксиальной симметрии типа XY₃ при N ≥ 4

Две величины $J_1^{(S(3))}$ и $J_2^{(S(3))}$ являются инвариантными операторами группы S(3). Они построены, используя операторы веса группы. Но согласно концепции динамической симметрии, лишь инварианты непрерывных и полунепрерывных групп вносят вклад в гамильтониан нулевого порядка, соответствующий описанию колебательных состояний молекулы. Так как группа S(3) дискретна, следовательно, мы не должны рассматривать как вклад в гамильтониан две величины $J_1^{(S(3))}$ и $J_2^{(S(3))}$, но это также приводит нас к необходимости определить набор операторов Казимира для полунепрерывной группы K(3).

Компоненты веса $(n_1 n_2 n_3)$ являются собственными значениями операторов \widehat{N}_1 , \widehat{N}_2 , \widehat{N}_3 и связаны с НП абелевой подгуппы A(3) унитарной группы U(3).

Из этого следует, что НП группы K(3), индуцированные $A(3) \wedge W$ или W, составляют группу веса. Также W описывает структуру в оболочке из трех осцилляторов на основе разложения

$$W = S(n_{i_1}) \oplus S(n_{i_2}) \oplus S(n_{i_3}) \oplus \dots \oplus S(n_{i_m}), \qquad (2.3.61)$$

где группы $S(n_{i_j})$ являются перестановочными подгруппами группы S(3) с условием

$$\sum_{j=1}^{m} n_{ij} = 3. \tag{2.3.62}$$

Поскольку изучаемая физическая система - пирамидальная молекула типа XY_3 , следовательно, молекулярная группа симметрии - $S(3) \simeq C_{3v}$. Эта молекула допускает по отношению к каждой связи j, локальную подгруппу симметрии $S^j(2) \approx C_i^j$, где C_i - группа инверсии.

Необходимо показать, что операторы

$$\widehat{N}_j \ \text{i} \ \widehat{N}_k + \widehat{N}_l \ \text{c} \ 1 \le j \ne k \ne l \ne j \le 3$$

$$(2.3.63)$$

являются инвариантами под действием всех элементов локальной группы симметрии $S^{j}(2)$.

А так как действие оператора проектирования $P^{(\{300\})} = P^{(A_1)}$ группы $C_{3v} \approx S(3)$ на \widehat{N}_j и $\widehat{N}_k + \widehat{N}_l$ даст нам линейные инварианты $\sum_{j=1}^3 \widehat{N}_i = \mathcal{I}_1^{(U(3))} = \widehat{n}$, и кроме того, так как K(3) является подгруппой унитарной группы U(3), можно сделать вывод, что $\mathcal{I}_1^{(U(3))}$ также является линейным инвариантом группы K(3):

$$\mathfrak{I}_1^{(K(3))} = \mathfrak{I}_1^{(U(3))} \tag{2.3.64}$$

Образуем теперь произведение

$$\widehat{N}_j(\widehat{N}_k + \widehat{N}_l), \qquad (2.3.65)$$

результат которого есть инвариантный оператор локальной подгруппы симметрии $S^{j}(2)$. Симметризация оператора (2.3.65) в группе S(3) является строго эквивалентной симметризации относительно все локальных подгрупп $S^{j}(2)$ (j = 1, 2, 3). Другими словами, из операторов (2.3.63) возможно сконструировать линейную комбинацию, которая нам даст линейные операторы $\mathcal{J}_{1}^{(K(3))}$. А также в завершении

$$\mathfrak{I}_{2}^{(K(3))} = \underbrace{\widehat{N}_{1}(\widehat{N}_{2} + \widehat{N}_{3})}_{S^{1}(2)} + \underbrace{\widehat{N}_{2}(\widehat{N}_{1} + \widehat{N}_{3})}_{S^{2}(2)} + \underbrace{\widehat{N}_{3}(\widehat{N}_{1} + \widehat{N}_{2})}_{S^{3}(2)}.$$
(2.3.66)

Согласно подобным рассуждениям мы можем выделить инвариантные оператор
ы ${\tt J}_k^{(K(3))}$ трех распределений wгруппы вес
а ${\tt W}$:

 $\alpha(\mathbf{a})$

$$\begin{aligned} \alpha) \ w &= (n_1 \, n_1 \, n_1) \ \text{ t.e. } W = S(3). \\ \mathcal{J}_1^{(K(3))} &= \widehat{N}_1 + \widehat{N}_2 + \widehat{N}_3 = \sum_{i=1}^3 \widehat{N}_i = \mathcal{J}_1^{(U(3))}. \end{aligned}$$
(2.3.67)
$$\beta) \ w &= (n_1 \, n_1 \, n_2) \ \text{ t.e. } W = S(2) \oplus S(1). \end{aligned}$$

$$\mathfrak{I}_{2}^{(K(3))} = \widehat{N}_{1}(\widehat{N}_{2} + \widehat{N}_{3}) + \widehat{N}_{2}(\widehat{N}_{1} + \widehat{N}_{3}) + \widehat{N}_{3}(\widehat{N}_{1} + \widehat{N}_{2}) = 2(\widehat{N}_{1}\widehat{N}_{2} + \widehat{N}_{1}\widehat{N}_{3} + \widehat{N}_{2}\widehat{N}_{3}) = \sum_{i \neq j=1}^{3} \widehat{N}_{i}\widehat{N}_{j} = \mathfrak{I}_{2}^{(S(3))}.$$
(2.3.68)

 γ) $w = (n_1 n_2 n_3)$ t.e. $\mathcal{W} = S(1) \oplus S(1) \oplus S(1)$.

$$\mathfrak{I}_{3}^{(K(3))} = \widehat{N}_{1}\widehat{N}_{2}\widehat{N}_{3} = \frac{1}{6}\sum_{i\neq j\neq k=1}^{3}\widehat{N}_{i}\widehat{N}_{j}\widehat{N}_{k}.$$
(2.3.69)

Следовательно, мы определили набор из трех инвариантных операторов для группы K(3). Но набор

$$\{\widehat{N}_1,\,\widehat{N}_2,\,\widehat{N}_3\}\tag{2.3.70}$$

составляет полный набор коммутирующих операторов (ПНКО), то есть весь набор из трех независимых операторов также составляет из операторов \hat{N}_i (i = 1, 2, 3) ПНКО.

Мы работаем в рамках полносимметричного представления $\left[n, \dot{0}^2\right]$ унитарной группы U(3). Вот почему оператор \hat{n} постоянен в рамках этого полносимметричного представления. Как следствие, операторы

$$\widehat{n}, \, \widehat{n}^2, \, \widehat{n}^3 \tag{2.3.71}$$

сохраняются в НП группы K(3). Эти операторы (полносимметричные в группе $S(3) \simeq C_{3v}$) могут быть включены в выражение гамильтониана и являются необходимыми инвариантными операторами во всех группах, содержащих группу S(3), что является справедливым и в случае группы K(3). Можно записать

$$\widehat{n} = \sum_{\substack{i=1\\ =\widehat{A}_1}}^{3} \widehat{N}_i = \mathfrak{I}_1^{(K(3))}, \qquad \text{потом} \qquad \widehat{n}^2 = \sum_{\substack{i=1\\ =\widehat{A}_2}}^{3} \widehat{N}_i^2 + \sum_{\substack{i\neq j=1\\ =\widehat{A}_2}}^{3} \widehat{N}_i \widehat{N}_j = \widehat{A}_2 + \mathfrak{I}_2^{(K(3))} \qquad (2.3.72)$$

И

$$\widehat{n}^{3} = \underbrace{\sum_{i=1}^{3} \widehat{N}_{i}^{3} + 3 \sum_{i \neq j=1}^{3} \widehat{N}_{i}^{2} \widehat{N}_{j}}_{=\widehat{A}_{3}} + 6 \widehat{N}_{1} \widehat{N}_{2} \widehat{N}_{3} = \widehat{A}_{3} + \sum_{i \neq j \neq k=1}^{3} \widehat{N}_{i} \widehat{N}_{j} \widehat{N}_{k} = \widehat{A}_{3} + 6 \mathfrak{I}_{3}^{(K(3))} \quad (2.3.73)$$

Из этих выражений мы находим:

$$\begin{cases}
\widehat{A}_{1} = \sum_{i=1}^{3} \widehat{N}_{i} = \widehat{n} = \mathcal{I}_{1}^{(K(3))} \\
\widehat{A}_{2} = \sum_{i=1}^{3} \widehat{N}_{i}^{2} = \widehat{n}^{2} - \mathcal{I}_{2}^{(K(3))} \\
\widehat{A}_{3} = \sum_{i=1}^{3} \widehat{N}_{i}^{3} + 3 \sum_{i \neq j=1}^{3} \widehat{N}_{i}^{2} \widehat{N}_{j} = \widehat{n}^{3} - 6 \mathcal{I}_{3}^{(K(3))}
\end{cases}$$
(2.3.74)

 $\{\hat{A}_i\}$ с i = (1, 2, 3) составляет другой набор инвариантных операторов группы K(3). Так как \hat{n}^m (m = 1, 2, 3) превращается в постоянное слагаемое в представлении $[n, \dot{0}^2]$, действие $\mathfrak{I}_i^{(K(3))}$ (i = 1, 2, 3) является таким же, что и в представлении $[n, \dot{0}^2]$. Откуда можно сделать вывод, что \hat{A}_3 или, что то же самое $\mathfrak{I}_3^{(K(3))}$, является необходимым, чтобы разделить локальные состояния для квантовых чисел $n \geq 6$. Эти результаты приведены в таблице

2.14. Следовательно, если мы желаем ввести оператор $\mathcal{J}_{3}^{(K(3))}$ в гамильтониан, необходимы экспериментальные данные для локальных состояний (411) и (330). Но с имеющимися экспериментальными данными использование этого оператора является чисто теоретическим.

Инварианты	$\mathfrak{I}_1^{(K(3))}$	$\mathcal{A}_2^{(K(3))} =$	$\mathbb{J}_2^{(K(3))} =$	$\mathbb{I}_3^{(K(3))} =$	$\mathcal{A}_3^{(K(3))} =$	
Локальное состояние	$\sum_{i=1}^{3} \widehat{N}_i$	$\sum_{i=1}^{3} \widehat{N}_{i}^{2}$	$\sum_{i\neq j=1}^{3} \widehat{N}_i \widehat{N}_j$	$\frac{1}{6} \sum_{i \neq j \neq k=1} \widehat{N}_i \widehat{N}_j \widehat{N}_k$	$\sum_{i=1}^{3} \widehat{N}_{i}^{3} + 3 \sum_{i \neq j=1}^{3} \widehat{N}_{i}^{2} \widehat{N}_{j}$	
n=1						
(100)	1	1	0	0	1	
n=2						
(200)	2	4	0	0	8	
(110)	2	2	2	0	8	
n=3						
(300)	3	9	0	0	27	
(210)	3	5	4	0	27	
(111)	3	3	6	1	21	
n=4						
(400)	4	16	0	0	64	
(310)	4	10	6	0	64	
(220)	4	8	8	0	64	
(211)	4	6	10	2	52	
n=5						
(500)	5	25	0	0	125	
(410)	5	17	8	0	125	
(320)	5	13	12	0	125	
(311)	5	11	14	3	107	
(221)	5	9	16	4	101	
n=6						
(600)	6	36	0	0	216	
(510)	6	26	10	0	216	
(420)	6	20	16	0	216	
(411)	6	18	18	4	192	
(330)	6	18	18	0	216	
(321)	6	14	22	6	180	

Таблица 2.14: Действие инвариантных операторов группы K(3) на вырождение локальных состояний

2.4 Симметризация кет-вектров и генераторов

2.4.1 Введение и общие свойства

В алгебраической цепочке групп (2.4.1) локальный переход $U(3) \supset S(3)$ относительно валентных мод побуждает к снабжению ярлыками неприводимого представления $[n_{\text{вал.}} \equiv n, \overset{2}{0}]$ группы $U_s(3)$ квантового числа $n = n_1 + n_2 + n_3$.

Физическое значение всех этих четырех чисел:

- *n* : полное число квантов относительно валентного трижды выроденного осциллятора;
- n_i (i = 1, 2, 3) : квантовые числа относительно валентого невырожденного осциллятора *i* с условием $n \equiv n_1 + n_2 + n_3$

Также другие квантовые числа, которые появляются при использовании цепочки групп:

Динамическая группа U(4) порождена шестнадцатью следующими генераторами

$$\widehat{E}_{ij} \equiv \widehat{b}_i^+ \widehat{b}_j]_{i,j=1,2,3,4}.$$
(2.4.2)

Среди этих шестнадцати генераторов группы $U_{(4)}$, девять следующих порождают подгруппу U(3):

$$\widehat{E}_{ij} \equiv \widehat{b}_i^+ \widehat{b}_j]_{1 \le i,j \le 3}.$$
(2.4.3)

Для того, чтобы было возможно записать в цепочке групп (2.4.1) различные симметризованные кет-вектора, необходимо проверить различные физические возможности распределения квантов, которые могут существовать. Эти возможности следующие:

 α) $n_1 = n_2 = n_3 \equiv n$, где имется единственный несимметризованный кет-вектор: $|n, n, n\rangle$.

Действие операций симметрии группы C_{3v} на этот кет-вектор приводит к Г_{вал.1}:

C_{3v}	I_d	$2C_{3}$	$3 \sigma_v$	(2 4 4)
Г _{вал.1}	1	1	1	(2.4.4)

то есть $\Gamma_{\text{вал.}_1} = A_1$ размерности 1.

$$\beta) \begin{cases} n_1 = n_2 \equiv n \\ n_3 \equiv n' \end{cases}$$

Существуют три несимметризованных кет-вектора $|n, n, n'\rangle$ $|n, n', n\rangle$ $|n', n, n\rangle$.

Как и в предыдущем случае, можно показать, что

C_{3v}	I_d	$2C_3$	$3\sigma_v$
Г _{вал.2}	3	0	1

откуда $\Gamma_{\text{вал.2}} = A_1 \oplus E$ и dim $\Gamma_{\text{вал.2}} = 3$.

$$\gamma) \quad n_1 \neq n_2 \neq n_3 \neq n_1$$

Определим шесть несимметризованных кет-векторов:

$$|n_1, n_2, n_3\rangle |n_1, n_3, n_2\rangle |n_2, n_1, n_3\rangle |n_2, n_3, n_1\rangle |n_3, n_1, n_2\rangle |n_3, n_2, n_1\rangle$$

также как и действие элементов группы C_{3v} на эти кет-вектора:

откуда можно сделать вывод, что $\Gamma_{\text{вал.}_3} = A_1 \oplus A_2 \oplus 2E$ и проверить, что dim $\Gamma_{\text{вал.}_3} = 6$.

2.4.2 Процесс симметризации кет-векторов и генераторов в группеS(p).

Можно симметризовать кет-вектора относительно рассматриваемой цепочки групп (2.2.1), это осуществляется действием оператора проектирования $P_{\sigma}^{[C]}$ на несимметризованные кет-вектора в подпространствах различных НП группы S(p):

$$|(n_1 \dots n_{p+1}), r[C]\sigma\rangle = \frac{\dim[C]}{g} \sum_{\mathcal{R} \in S(p)} [\mathcal{D}^{[C]}(\mathcal{R})]^*_{\sigma\sigma} \mathcal{O}_{\mathcal{R}}|n_1, \dots, n_i, \dots, n_{p+1}\rangle$$
(2.4.7)

где

- [C] представляет НП группы S(p),

- r - число, показываещее мультиплетность НП [C].

- dim[C] показывает размерность НП [C],

- g общее число элементов группы S(p),
- $\mathcal{O}_{\mathcal{R}}$ оператор, связанный с операцией симметрии $\mathcal{R} \in S(p)$,
- $\mathcal{D}^{[C]}(\mathcal{R})$ ориентированные матрицы операций $\mathcal{O}_{\mathcal{R}}$ группы S(p),
- σ компонента НП группы S(p), котрая примает значения 1, 2, ..., dim[C].

Таким же образом можно симметризовать генераторы в группе *S*(*p*). Симметризованные генераторы можно классифицировать как три набора:

- генераторы, независящие от операторов веса. Эти генераторы диагональны в базисе $\{|n_1,\ldots,n_i,\ldots,n_{p+1}\rangle\},$

- генераторы, диагональные в рамках представления $\left[n; \overset{p-1}{0}\right]$. Эти операторы объединяют локальные состояния, определенные для одного и того же значения числа n,
- генераторы, недиагональные в рамках представления $\begin{bmatrix} n; 0 \end{bmatrix}$. Эти операторы объединяют локальные состояния с различными значениями числа n.

Применим представленный теоретический инструмент к рассматриваемым молекулам аксиальной симметрии типа XY₃.

2.4.3 Определение симметризованных кет-векторов в группе C_{3v} .

Необходимо симметризовать несимметризованный набор кет-векторов и генераторов группы U(4) в рамках рассматриваемой цепочки групп (2.4.1). Процедура симметризации в группе S(p) (p - некое целое число) уже представлена, и нам достаточно осуществить этот процесс в рамках группы C_{3v} , изоморфной группе S(3). Необходимо определить матрицы [$\mathcal{D}^{C}(\mathcal{R})$], где

- \mathfrak{R} операция симметрии группы C_{3v}
- C НП группы C_{3v} .

Приведем эти матрицы

$$\begin{cases} \mathcal{D}^{A_1}(\mathcal{R}) = (1) & \forall \mathcal{R} \in C_{3v} \\ \mathcal{D}^{A_2}(\mathcal{R}) = (-1) \text{ pour } \mathcal{R} \equiv \sigma_{v_1}, \sigma_{v_2}, \sigma_{v_3} \\ \mathcal{D}^{A_2}(\mathcal{R}) = (1) \text{ pour } \mathcal{R} \equiv I_d, C_3, C_3^{-1} \end{cases}$$
(2.4.8)

$$\mathcal{D}^{E}(\sigma_{v_{1}}) = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \quad \mathcal{D}^{E}(\sigma_{v_{2}}) = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \quad \mathcal{D}^{E}(\sigma_{v_{3}}) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\mathcal{D}^{E}(C_{3}) = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \quad \mathcal{D}^{E}(C_{3}^{-1}) = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \quad \mathcal{D}^{E}(I_{d}) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$(2.4.9)$$

Рассмотрим результат процесса симметризации:

- Симметризованное состояние типа $n_1 = n_2 = n_3 \equiv n$

$$|(n n n), A_1\rangle = |n n n\rangle$$

- Симметризованное состояние типа $n_1 = n_2 \equiv n$ и $n_3 \equiv n'$

$$|(n n n'), A_1\rangle = \frac{1}{\sqrt{3}} [|n n n'\rangle + |n n' n\rangle + |n' n n\rangle] |(n n n'), E_1\rangle = \frac{1}{\sqrt{6}} [2|n n n'\rangle - |n n' n\rangle - |n' n n\rangle] |(n n n'), E_2\rangle = \frac{1}{\sqrt{2}} [|n n' n\rangle - |n' n n\rangle]$$

- Симметризованное состояние типа $n_1 \neq n_2 \neq n_3$

В симметризованных кет-векторах типа $|(n_1 n_2 n_3), r C_{\sigma}\rangle$ выберем следующее условие обозначения $n_1 > n_2 > n_3$.

$$|(n_1 n_2 n_3), A_1\rangle = \frac{1}{\sqrt{6}} [|n_1 n_2 n_3\rangle + |n_1 n_3 n_2\rangle + |n_2 n_1 n_3\rangle + |n_2 n_3 n_1\rangle + |n_2 n_3 n_1\rangle + |n_3 n_1 n_2\rangle + |n_3 n_2 n_1\rangle]$$

$$|(n_1 n_2 n_3), A_2\rangle = \frac{1}{\sqrt{6}} [|n_1 n_2 n_3\rangle - |n_1 n_3 n_2\rangle - |n_2 n_1 n_3\rangle + |n_2 n_3 n_1\rangle + |n_3 n_1 n_2\rangle - |n_3 n_2 n_1\rangle]$$

$$|(n_1 n_2 n_3), 1E_1\rangle = \frac{1}{\sqrt{12}} [2|n_1 n_2 n_3\rangle - |n_3 n_2 n_1\rangle - |n_1 n_3 n_2\rangle + 2|n_2 n_1 n_3\rangle - |n_2 n_3 n_1\rangle - |n_3 n_1 n_2\rangle]$$

$$|(n_1, n_3, n_2), 1E_2\rangle = \frac{1}{2} [|n_1 n_3 n_2\rangle - |n_3 n_2 n_1\rangle - |n_3 n_1 n_2\rangle + |n_2 n_3 n_1\rangle]$$

$$|(n_1 n_2 n_3), 2E_1\rangle = \frac{1}{2}[-|n_1 n_3 n_2\rangle + |n_2 n_3 n_1\rangle - |n_3 n_1 n_2\rangle + |n_3 n_2 n_1\rangle$$

$$|(n_1 n_2 n_3), 2E_2\rangle = \frac{1}{\sqrt{12}} [-|n_1 n_3 n_2\rangle + |n_2 n_3 n_1\rangle + 2|n_2 n_1 n_3\rangle -2|n_1 n_2 n_3\rangle + |n_3 n_1 n_2\rangle - |n_3 n_2 n_1\rangle]$$

2.4.4 Симметризация генераторов в рамках группы C_{3v}

Найдем на какие НП разлагается представление, причисленное к динамической группе U(4), то есть той группе, которая образована генераторами E_{ij} этой группы:

$$\Gamma = 5A_1 \oplus A_2 \oplus 5E. \tag{2.4.10}$$

Шестнадцать несимметризованных генераторов динамической группы U(4) образуют три набора:

- генераторы, диагональные в базисе $\{|n_1, \dots, n_i, \dots, n_4\rangle\}$, то есть операторы веса

$$E_{11}, E_{22}, E_{33}, E_{44},$$
 (2.4.11)

которые образуют представление $\Gamma_1 = 2A_1 \oplus E$.

- генераторы, диагональные в представлении $\left[n_{e}, \dot{0}^{2}\right]$:

$$E_{12}, E_{13}, E_{32}, E_{21}, E_{31}, E_{23}, (2.4.12)$$

которые порождают представление $\Gamma_2 = A_1 \oplus A_2 \oplus 2E$.

- генераторы, недиагональные в представлении $\begin{bmatrix} n_e, 0^2 \end{bmatrix}$, то есть

$$E_{14}, E_{24}, E_{34}, E_{41}, E_{42}, E_{43}, (2.4.13)$$

образующие представление $\Gamma_3 = 2A_1 \oplus 2E$.

Можно проверить, что

$$\Gamma = \Gamma_1 \oplus \Gamma_2 \oplus \Gamma_3 \qquad \Longrightarrow \qquad \dim \Gamma = \dim \Gamma_1 + \dim \Gamma_2 + \dim \Gamma_3. \tag{2.4.14}$$

Рассмторим результат симметризации генераторов:

- Первый набор: симметризованные генераторы, которые не зависят от операторов веса.

Эти операторы, следовательно, диагональны в базисе Г-Ц и в базисе симметризованных операторов.

- Второй набор: симметризованные генераторы, диагональные в рамках полносимметричного представления [n, 0, 0] группы U(3).

Эти генераторы, которые объединяют локальные состояния с одним и тем же значением числа *n*.

- Третий набор: симметризованные генераторы, недиагональные в рамках полносимметричного представления [n, 0, 0] группы U(3).

Они объединяют локальные состояния с разным значением числа *n*.

2.5 Гамильтониан, описывающий валентные колебания пирамидальных молекул типа *XY*₃

Алгебраический гамильтониан нулевого порядка

Используя концепцию динамической симметрии, можно записать гамильтониан нулевого порядка H_0 . Этот гамильтониан конструируется из линейных и квадратичных инвариантных операторов различных непрерывных и полунепрерывных групп, представленных в цепочке групп (2.2.3)

$$H_0 = A \,\mathfrak{I}_1^{(U(4))} + B \,\mathfrak{I}_2^{(U(4))} + C \,\mathfrak{I}_1^{(U(3))} + D \,\mathfrak{I}_2^{(U(3))} + E \,\mathfrak{I}_1^{(K(3))} + F \,\mathfrak{I}_2^{(K(3))}, \qquad (2.5.1)$$

где $(A, B, C, D, E, F) \in \mathbb{R}$. Преобразуя, получаем:

$$H_0 = A \ \mathfrak{I}_1^{(U(4))} + B \ \mathfrak{I}_2^{(U(4))} + (C+E) \ \mathfrak{I}_1^{(U(3))} + D \ \mathfrak{I}_2^{(U(3))} + F \ \mathfrak{I}_2^{(K(3))}.$$
(2.5.2)

Но в рамках полносимметричного представления $\left[N = \sum_{i=1}^{4} n_i, \overset{\cdot}{0}^3\right]$ группы U(4) оператор \widehat{N} является постоянным, следовательно, операторы Казимира $\mathcal{I}_1^{(U(4))}$ и $\mathcal{I}_2^{(U(4))}$, сконструированные из оператора \widehat{N} должны быть исключены из гамильтониана H_0 , то есть

$$H_{0} = (C + E) \mathfrak{I}_{1}^{(U(3))} + D \mathfrak{I}_{2}^{(U(3))} + F \mathfrak{I}_{2}^{(K(3))}$$

$$= (C + E) \widehat{n} + D \widehat{n}(\widehat{n} + 2) + F \sum_{i \neq j=1}^{3} \widehat{N}_{i} \widehat{N}_{j}$$

$$= (C + E + 2D) \widehat{n} + D \widehat{n}^{2} + F \sum_{i \neq j=1}^{3} \widehat{N}_{i} \widehat{N}_{j}.$$
 (2.5.3)

Принимая во внимание, что $\widehat{n}^2 = \sum_{i=1}^3 \widehat{N}_i^2 + 2 \sum_{i>j=1}^3 \widehat{N}_i \widehat{N}_j$, получаем гамильтониан H_0

$$H_0 = (C + E + 2D)\,\hat{n} + D\,\sum_{i=1}^3 \hat{N}_i^2 + (2F + 2D)\sum_{i>j=1}^3 \hat{N}_i \hat{N}_j.$$
(2.5.4)

В итоге гамильтониан H_0 сводится к

$$H_0 = a_0 \,\hat{n} + a_1 \, \sum_{i=1}^3 \hat{N}_i^2 + a_2 \sum_{i>j=1}^3 \hat{N}_i \hat{N}_j \tag{2.5.5}$$

с набором вещественных параметров

$$\{a_0 = C + E + 2D, a_1 = D, a_2 = 2F + 2D\}.$$
(2.5.6)

Можно констатировать, что в базисе $\{ | n_1, n_2, n_3 \rangle \}$ (то есть также в симметризованном базисе, определенном в §§2.4.3) гамильтониан H_0 является полностью диагональным оператором. Следовательно, уравнение для нахождения собственных значений выглядит следующим образом:

$$H_0 | n_1, n_2, n_3 \rangle = E_0(n_1, n_2, n_3) | n_1, n_2, n_3 \rangle$$
(2.5.7)

или

$$\left[a_0\,\hat{n} + a_1\,\sum_{i=1}^3 \hat{N}_i^2 + a_2\sum_{i>j=1}^3 \hat{N}_i \hat{N}_j\right] \mid n_1\,,\,n_2\,,\,n_3\,\rangle = \left[a_0\,n + a_1\,\sum_{i=1}^3 n_i^2 + a_2\sum_{i>j=1}^3 n_i n_j\right] \mid n_1\,,\,n_2\,,\,n_3\,\rangle \tag{2.5.8}$$

Следовательно, можно понять, что если даже этот гамильтониан H_0 даст лучшее описание, чем гамильтониан, описывающий потенциал Морзе, он не принимает во внимание определенные тонкости колебательного спектра, например, переход от состояния $|n_1, n_2, n_3\rangle$ к состоянию $|n_1 + 1, n_2 - 1, n_3\rangle$, поскольку

$$\langle n_1, n_2, n_3 | H_0 | n_1 + 1, n_2 - 1, n_3 \rangle = 0.$$
 (2.5.9)

2.5.1 Гамильтониан первого порядка

Гамильтониан H_0 должен включать недиагональные операторы в базисе $\{ | n_1, n_2, n_3 \rangle \}$, операторы, которые, очевидно, должны быть полносимметричными, то есть преобразоваваться по НП A_1 .

Для этого необходимо принять во внимание в разложение симметризованные генераторы вплоть до второго порядка (которые приведены в (§§2.4.4). Тогда получим следующее общее выражение гамильтониана *H*, описывающего валентные колебательные состояния 4-х атомных молекул аксиальной симметрии:

$$H = \alpha_{1}^{(1)} \mathcal{Y}^{1(A_{1})} + \alpha_{2}^{(2)} \left[\mathcal{Y}^{1(A_{1})} \otimes \mathcal{Y}^{1(A_{1})} \right]^{(A_{1})} + \alpha_{3}^{(1)} \mathcal{Y}^{2(A_{1})} + \alpha_{4}^{(2)} \left[\mathcal{Y}^{2(A_{1})} \otimes \mathcal{Y}^{2(A_{1})} \right]^{(A_{1})} + \alpha_{5}^{(2)} \left[\mathcal{Y}^{1(E)} \otimes \mathcal{Y}^{1(E)} \right]^{(A_{1})} + \alpha_{6}^{(1)} \mathcal{Y}^{3(A_{1})} + \alpha_{7}^{(2)} \left[\mathcal{Y}^{3(A_{1})} \otimes \mathcal{Y}^{3(A_{1})} \right]^{(A_{1})} + \alpha_{8}^{(2)} \left[\mathcal{Y}^{1(A_{2})} \otimes \mathcal{Y}^{1(A_{2})} \right]^{(A_{1})} + \alpha_{9}^{(2)} \left[\mathcal{Y}^{2(E)} \otimes \mathcal{Y}^{2(E)} \right]^{(A_{1})} + \alpha_{10}^{(2)} \left[\mathcal{Y}^{3(E)} \otimes \mathcal{Y}^{3(E)} \right]^{(A_{1})} + \alpha_{11}^{(1)} \mathcal{Y}^{4(A_{1})} + \alpha_{12}^{(2)} \left[\mathcal{Y}^{4(A_{1})} \otimes \mathcal{Y}^{4(A_{1})} \right]^{(A_{1})} + \alpha_{13}^{(1)} \mathcal{Y}^{5(A_{1})} + \alpha_{14}^{(2)} \left[\mathcal{Y}^{5(A_{1})} \otimes \mathcal{Y}^{5(A_{1})} \right]^{(A_{1})} + \alpha_{15}^{(2)} \left[\mathcal{Y}^{4(E)} \otimes \mathcal{Y}^{4(E)} \right]^{(A_{1})} + \alpha_{16}^{(2)} \left[\mathcal{Y}^{5(E)} \otimes \mathcal{Y}^{5(E)} \right]^{(A_{1})} ,$$

$$(2.5.10)$$

где коэффициенты $\alpha_i^{(j)}$ являются вещественными, ј обозначает порядок разложения генераторов и $1 \le i \le 16$.

Очевидно, выражение H содержит операторы, которые являются операторами, включенными в H_0 . Поскольку концепция динамической симметрии применима к непрерывным и полунепрерывным группам, построим гамильтониан H, добавляя к H_0 операторы, которые инвариантны в рамках цепочки групп (2.2.3), но которые не являются операторами Казимира непрерывных и полунепрерывных групп, содержащихся в (2.2.3). Как следствие, H_0 не зависит от операторов типа $b_i^+ b_4$ и $b_4^+ b_i$ (i = 1, 2, 3, 4). Тогда мы получим гамильтониан H:

$$H = \alpha_{3}^{(1)} \mathcal{Y}^{2(A_{1})} + \alpha_{4}^{(2)} \left[\mathcal{Y}^{2(A_{1})} \otimes \mathcal{Y}^{2(A_{1})} \right]^{(A_{1})} + \alpha_{5}^{(2)} \left[\mathcal{Y}^{1(E)} \otimes \mathcal{Y}^{1(E)} \right]^{(A_{1})} + \alpha_{6}^{(1)} \mathcal{Y}^{3(A_{1})} + \alpha_{7}^{(2)} \left[\mathcal{Y}^{3(A_{1})} \otimes \mathcal{Y}^{3(A_{1})} \right]^{(A_{1})} + \alpha_{8}^{(2)} \left[\mathcal{Y}^{1(A_{2})} \otimes \mathcal{Y}^{1(A_{2})} \right]^{(A_{1})} + \alpha_{9}^{(2)} \left[\mathcal{Y}^{2(E)} \otimes \mathcal{Y}^{2(E)} \right]^{(A_{1})} + \alpha_{10}^{(2)} \left[\mathcal{Y}^{3(E)} \otimes \mathcal{Y}^{3(E)} \right]^{(A_{1})}.$$

$$(2.5.11)$$

Оставим теперь в предыдущем выражении H все операторы или тензорные произведения операторов, которые содержат генераторы первых степеней, и операторы, которые образуют H_0 , то есть

$$H = H_1 = \alpha_3^{(1)} \mathcal{Y}^{2(A_1)} + \alpha_4^{(2)} \left[\mathcal{Y}^{2(A_1)} \otimes \mathcal{Y}^{2(A_1)} \right]^{(A_1)} + \alpha_5^{(2)} \left[\mathcal{Y}^{1(E)} \otimes \mathcal{Y}^{1(E)} \right]^{(A_1)} + \alpha_6^{(1)} \mathcal{Y}^{3(A_1)}.$$
(2.5.12)

Раскроем тензорные произведения

$$\begin{bmatrix} \mathcal{Y}^{2(A_{1})} \otimes \mathcal{Y}^{2(A_{1})} \end{bmatrix}^{(A_{1})} = \begin{bmatrix} A_{1} \end{bmatrix}^{1/2} F \begin{pmatrix} A_{1} & A_{1} & A_{1} \\ \cdot & \cdot & \cdot \end{pmatrix} \mathcal{Y}^{2(A_{1})} \mathcal{Y}^{2(A_{1})}$$

$$= \widehat{N}_{1}^{2} + \widehat{N}_{2}^{2} + \widehat{N}_{3}^{2} + 2\widehat{N}_{1}\widehat{N}_{2} + 2\widehat{N}_{1}\widehat{N}_{3} + 2\widehat{N}_{2}\widehat{N}_{3}$$

$$(2.5.13)$$

И

$$\begin{bmatrix} \mathcal{Y}^{1(E)} \otimes \mathcal{Y}^{1(E)} \end{bmatrix}^{(A_1)} = \begin{bmatrix} A_1 \end{bmatrix}^{1/2} F \begin{pmatrix} E & E & A_1 \\ 1 & 1 & . \end{pmatrix} \mathcal{Y}^{1(E)}_1 \mathcal{Y}^{1(E)}_1 + \begin{bmatrix} A_1 \end{bmatrix}^{1/2} F \begin{pmatrix} E & E & A_1 \\ 1 & 2 & . \end{pmatrix} \mathcal{Y}^{1(E)}_1 \mathcal{Y}^{1(E)}_2$$

+
$$\begin{bmatrix} A_1 \end{bmatrix}^{1/2} F \begin{pmatrix} E & E & A_1 \\ 2 & 1 & . \end{pmatrix} \mathcal{Y}^{1(E)}_2 \mathcal{Y}^{1(E)}_1 + \begin{bmatrix} A_1 \end{bmatrix}^{1/2} F \begin{pmatrix} E & E & A_1 \\ 2 & 2 & . \end{pmatrix} \mathcal{Y}^{1(E)}_2 \mathcal{Y}^{1(E)}_2$$

=
$$\frac{1}{\sqrt{2}} \left[\widehat{N}_1 + \widehat{N}_2 - 2\widehat{N}_3 \right]^2 + \frac{1}{\sqrt{2}} \left[\sqrt{3} \left(\widehat{N}_1 - \widehat{N}_2 \right) \right]^2$$

=
$$2\sqrt{2} \left(\widehat{N}_1^2 + \widehat{N}_2^2 + \widehat{N}_3^2 - \widehat{N}_1 \widehat{N}_2 - \widehat{N}_1 \widehat{N}_3 - \widehat{N}_2 \widehat{N}_3 \right)$$

(2.5.14)

с коэффициентами Клебша-Гордана F.

В итоге гамильтониан нашей молекулярной системы можно записать в следующем виде

$$H_{1} = \alpha_{3}^{(1)} \left[\widehat{N}_{1} + \widehat{N}_{2} + \widehat{N}_{3} \right] + \left(\alpha_{4}^{(2)} + 2\sqrt{2}\alpha_{5}^{(2)} \right) \left[\widehat{N}_{1}^{2} + \widehat{N}_{2}^{2} + \widehat{N}_{3}^{2} \right] + \left(2\alpha_{4}^{(2)} - 2\sqrt{2}\alpha_{5}^{(2)} \right) \left[\widehat{N}_{1}\widehat{N}_{2} + \widehat{N}_{1}\widehat{N}_{3} + \widehat{N}_{2}\widehat{N}_{3} \right] + \alpha_{6}^{(1)} \mathcal{Y}^{3(A_{1})}.$$

$$(2.5.15)$$

Сравнивая выражения (2.5.5) и (2.5.15), можно утверждать, что предыдущее выражение гамильтониана H выражается как

$$H_1 = H_0 + H^{(1)} (2.5.16)$$

 \mathbf{c}

$$H_{0} = \alpha_{3}^{(1)} \mathcal{Y}^{2(A_{1})} + \alpha_{4}^{(2)} \left[\mathcal{Y}^{2(A_{1})} \otimes \mathcal{Y}^{2(A_{1})} \right]^{(A_{1})} + \alpha_{5}^{(2)} \left[\mathcal{Y}^{1(E)} \otimes \mathcal{Y}^{1(E)} \right]^{(A_{1})}$$
(2.5.17)

$$H^{(1)} = \alpha_6^{(1)} \mathcal{Y}^{3(A_1)} = a_3 \sum_{i \neq j=1}^3 b_i^+ b_j,$$

где

$$\alpha_3^{(1)} = a_0, \ \alpha_4^{(2)} = \frac{a_1 + a_2}{3}, \ \alpha_5^{(2)} = \frac{2a_1 - a_2}{6\sqrt{2}}, \ \alpha_6^{(1)} = a_3.$$
(2.5.18)

2.5.2 Физическая интерпретация оператора $\mathcal{Y}^{3(A_1)}$.

Это добавочное слагаемое записывается как

$$\mathcal{Y}^{3(A_1)} = \widehat{E}_{13} + \widehat{E}_{31} + \widehat{E}_{32} + \widehat{E}_{23} + \widehat{E}_{21} + \widehat{E}_{12} = \sum_{i \neq j=1,2,3} b_i^+ b_j.$$
(2.5.19)

Можно интерпретировать оператор $b_i^+ b_j$ ($i \neq j = 1, 2, 3$) следующим способом: он является оператором обмена кванта энергии между связью j и связью i. Можно, следовательно, сделать вывод, что оператор $\mathcal{Y}^{3(A_1)}$ - оператор связи между различными связями молекулы.

Появляется соперничество между H_0 и H_1 , то есть между двумя совершенно различными физическими явлениями:

- ангармоничность осцилляторов, связанных с различными связями молекулы, представляемая квадратичными слагаемыми H_0 :

$$\mathcal{B}[\widehat{n}_1^2 + \widehat{n}_2^2 + \widehat{n}_3^2] \quad \mathbf{u} \quad \mathcal{C}[\widehat{n}_1\widehat{n}_2 + \widehat{n}_1\widehat{n}_3 + \widehat{n}_2\widehat{n}_3].$$

- связь между различными связями молекулы, представляемая оператором H_1 .

Естественно, физика нашей проблемы будет зависеть от относительной "интенсивности" различны коэффициентов, представленных в выражении *H*.

2.6 Расчет валентных колебательных состояний молекул типа $XY_3(C_{3v})$

2.6.1 Результаты для молекулы стибина SbH₃

Молекула стибина вызывает интерес в промышленности, стибин - весьма изученная молекула типа XY₃, что подтверждает наличие экспериментальных данных в литературе [61]. В действительности молекула стибина в газовой фазе является самым чистым источником для получения сурьмы, которая играет важную роль при производстве полупроводников.

Токсичность составляющих сурьмы сравнима с токсичностью составляющих мышьяка. Также сурьма - это естественный продукт, который входит в состав земной коры в количестве 0,001%. С точки зрения ее токсичности, жизненно важно для окружающей среды изучить свойства сурьмы в рамках экосистемы. Было выявлено снижение плодородия почвы изза загрязнения сурьмой. В атмосфере выбросы сурьмы могут перемещаться на длинные расстояния.

Вспомним значения фундаментальных частот молекулы стибина:

$$\begin{pmatrix}
\nu_1(A_1) &= 1890.502 & \text{cm}^{-1} \\
\nu_2(A_1) &= 782.24 & \text{cm}^{-1} \\
\nu_3(E) &= 1894.497 & \text{cm}^{-1} \\
\nu_4(E) &= 827.85 & \text{cm}^{-1}
\end{cases}$$
(2.6.1)

Используемая форма гамильтониана \widehat{H}

$$H = a_0 \,\hat{n} + a_1 \,\left(\hat{n}_1^2 + \hat{n}_2^2 + \hat{n}_3^2\right) + a_2 \,\left(\hat{n}_1 \hat{n}_2 + \hat{n}_1 \hat{n}_3 + \hat{n}_2 \hat{n}_3\right) + a_3 \underbrace{\sum_{\substack{i \neq j=1,2,3 \\ \equiv y^{3(A_1)}}} b_i^+ b_j}_{\equiv y^{3(A_1)}} \tag{2.6.2}$$

Напомним, что единственный оператор $\mathcal{Y}^{3(A_1)}$, недиагональный в базисе симметризованных векторов (в группе C_{3v}). Мы осущесвили расчет матричных элементов этого оператора на основе программы, разработанной на языке программирования FORTRAN95.

Критерием воспроизводимости экспериментальных данных является среднеквадратичное отклонение $\sigma(d,p)$:

$$\sigma(d,p) = \sqrt{\frac{1}{d-p} \sum_{i=1}^{d} \left[E_i^{(cal)} - E_i^{(obs)} \right]^2}$$
(2.6.3)

где :

- *d* - число экспериментальных данных, используемых в подгонке,

- р - число параметров, описывающих используемую модель.

Матрица корреляции параметров a_i (i = 0, 1, 2, 3), представленных в гамильтониане \widehat{H} , обозначается как \mathcal{M}_{cor} .

При подгонке использовался нелинейный метод наименьших квадратов (метод Левенберга-Маркардта). В результате подгонки определен следующий набор параметров

$$\begin{cases}
 a_0 = 1926.988(431) \text{ cm}^{-1} \\
 a_1 = -33.427(085) \text{ cm}^{-1} \\
 a_2 = -0.290(252) \text{ cm}^{-1} \\
 a_3 = -1.571(380) \text{ cm}^{-1}
 \end{cases}$$
(2.6.4)

Матрица корреляции параметров \mathcal{M}_{cor} :

$$\mathcal{M}_{cor} = \begin{pmatrix} a_0 & a_1 & a_2 & a_3 \\ a_0 & 1 & & & \\ a_1 & -0.96 & 1 & & \\ a_2 & -0.37 & 0.22 & 1 & \\ a_3 & -0.44 & 0.42 & -0.02 & 1 \end{pmatrix}$$
(2.6.5)

С полученным набором параметров был проведен расчет валентных колебательных мод, который приведен в ТАБ. 2.15. В этой таблице также приведен для сравнения ананалогичный расчет, взятый из [61].

колебательное	вклад	энергия	энергия	энергия	энергия	энергия
состояние	состояния	расчет	эксперимент	расчет-эксі	і расчет-эксп	расчет-эксп
					**	
	%	(см -1)	(см -1)	(см -1)	(см -1)	(см -1)
(1 0 0)1A1>	1.000	1890.419	1890.502	-0.083	-0.82	-0.050
(1 0 0)1E1>	1.000	1895.132	1894.497	0.635	0.31	-0.053
(2 0 0)1A1>	0.996	3719.959	3719.933	0.026	-0.42	0.158
(2 0 0)1E1>	0.999	3720.196	3719.860	0.336	-0.08	-0.088
(1 1 0)1A1>	0.996	3783.690				
(1 1 0)1E1>	0.999	3788.404				
(3 0 0)1A1>	0.999	5480.008	5480.285	-0.277	-0.02	-0.018
(3 0 0)1E1>	0.999	5480.162	5480.235	-0.223	0.04	-0.034
(2 1 0)1A1>	0.995	5608.238	5607.000	1.238	0.45	0.000
(2 1 0)1E1>	0.821	5610.893				

(*) Данные, не участвующие в подгонке								
			$(13 \ 4) = 0 \ 7$	2 cm ⁻¹				
	•							
	•							
(7 0 0)1E1>	0.999	11850.996						
(7 0 0)1A1>	0.999	11850.996						
	•							
	•							
(5 1 0)1A2>	0.999	10692.949						
(5 1 0)2E1>	0.819	10692.825						
(5 1 0)1E1>	0.820	10690.792	10691.500	0.724	-2.80	-2.776*		
$ (5 1 0)1A1\rangle$	0.999	10690.792	10691.500	-0.708	-2.80	-2,772*		
(600)1E1>	0.999	10358.469	10358.000	0,469	10.93	4.915*		
(600)101>	0.999	10358 469	10358 000	0.469	10 93	4,915*		
$ (221)1A1\rangle$	0.303	9321.010						
$ (\circ 1 1) = 1 \rangle$	0.991	3323.493 0307 670						
(3 1 1)	0.988	9265.215						
$ (320)1A2\rangle$	0.999	9203.365						
(320)2E1>	0.749	9203.365						
(320)1E1>	1.000	9193.937						
(320)1A1>	1.000	9193.937						
(4 1 0)1A2>	1.000	9067.094						
(4 1 0)2E1>	0.826	9066.308						
(4 1 0)1A2>	0.999	9068.000						
(4 1 0)1E1>	0.828	9064.737						
(4 1 0)1A1>	0.998	9063.951						
(5 0 0)1E1>	0.999	8799.267						
(5 0 0)1A1>	0.999	8799.267						
(2 1 1)1E1>	0.999	7509.084						
(2 1 1)1A1>	0.996	7499.656						
(2 2 0)1E1>	0.990	7439.377						
(2 2 0)1A1>	0.992	7439.377						
(3 1 0)1A2>	1.000	7374.385						
(3 1 0)2E1>	0.850	7373.599						
(3 1 0)1E1>	0.854	7372.028						
(3 1 0)1A1>	0.994	7371.242						
(4 0 0)1E1>	0.999	7173.023	7173.783	-0.760	0.95	0.515*		
(4 0 0)1A1>	0.999	7173.023	7173.799	-0.776	0.93	0.499*		
(1 1 1)1A1>	0.996	5679.814						
(2 1 0)1A2>	1.000	5617.964						
(2 1 0)2E1>	0.821	5615.607						

(**) Расчет из работы Lummila et al. [61]

Таблица 2.15: Экспериментальные и рассчитанные значения валентных колебательных уровней энергии стибина SbH₃ для n ≤ 6

2.6.2 Интерпретация результатов

В таблице 2.15, в первой колонке приведены симметризованные колебательные состояния в локальных обозначениях. Второй столбец показывает вклад рассматриваемого колебательного состояния после процедуры диагонализации. Фактически он показывает адекватен ли выбранный локальный базис: если коэффициент равен нулю, то рассматриваемое состояние является собственным состоянием гамильтониана. Два следующих столбца содержат эксперименталь информацию, применяемую при подгонке, и рассчитанные значения уровней энергии валентных колебаний на основе нашей модели. А пятый и шестой столбцы показывают разницу рассчитанных и экспериментальных энергий для нашей модели и результаты, взятые для сравнения из работы [61].

Очевидно, что наша модель удовлетворительно воспроизводит экспериментальные данные: разница между расчетом и экспериментом порядка нескольких десятых для всех значений *n*. Среднеквадратичное отклонение при воспроизводимости 13 экспериментальных точек на основе модели из 4 параметров составило $\sigma(13, 4) = 0.72$ см⁻¹, что является значением порядка экспериментальной точности.

Модель гамильтониана, разработанная Lummila *et al.* [61], основана на модели потенциала Морзе. Значение среднеквадратичного отклонения для 7 экспериментальных уровней энергии, которые автор принял в расчет, описанный четырьмя параметрами, составило $\sigma_L(7,4) =$ 0.62 см⁻¹. Чтобы сравнить воспроизводимость нашей модели и модели [61], был осуществлен расчет в рамках нашей модели с теми же семью параметрами, что были взяты в подгонку Lummila *et al.*. Среднеквадратичное отклонение осуществленного расчета составило $\sigma(7,4) =$ 0.11 см⁻¹. Но если использовать в моделе Lummila *et al.* все экспериментальные данные, оценка среднеквадратичного отклонения в этом случае составляет $\sigma_L(13,4) = 5.35$ см⁻¹.

Кроме того, разница расчет-эксперимент при воспроизведении экспериментальных данных в нашей моделе остается одного порядка, в моделе Lummila *et al.* разница расчет-эксперимент растет со значением $n: 3 \text{ см}^{-1}$ и 11 см⁻¹ для уровней со значением n = 6.

Второй столбец ТАВ. 2.15 показывает, что базис, полученный после диагонализации, в точности совпадает с первоначальным базисом. Например, для состояния n = 4 симметрии E кет-вектора $|(400); E\rangle$, $|(211); E\rangle$, $|(220); E\rangle$ дают вклад в свои же состояния 99%, то есть оператор $\mathcal{Y}^{3(A_1)}$ не приводит в расстройству системы, что важно с точки зрения динамической симметрии.

Кроме того, модели, основанные на приближении "потенциала Морзе", то есть с потенциалом $V_M(r_i) = \sum_{i=1}^{i=p} D(1 - e^{-a r_i})^2$, для системы с p связями позволяет принимать во внимание лишь два параметра D и a. Точное решение уравнения Шредингера с потенциалом Морзе (или суммы независимых потенциалов Морзе) [62] дает выражение энергии $E_M = \alpha n + \alpha$

 $(-\frac{\beta^2}{4})\sum_{i=1}^{i=p}n_i^2 + \beta\sum_{\substack{i\neq j=1\\i\neq j=1}}^{i=p}n_in_j \ (\alpha,\beta\in \mathbb{R}$ и зависит от D и a). Заметим, что выражение энергии $E_0 = a_0 n + a_1\sum_{i=1}^{i=p}n_i^2 + a_2\sum_{\substack{i\neq j=1\\i\neq j=1}}^{i=p}n_in_j$, полученное с гамильтонианом H_0 (выведенным из концепции динамической симметрии, может в точности воспроизвести E_M в частном случае, когда $[a_0 = \alpha, a_2 = \beta, a_1 = (-\frac{\beta^2}{4}) = (-\frac{a_2^2}{4})]$. Это показывает, что гамильтониан нулевого порядка нашей алгебраической модели может в точности воспроизвести потенциал Морзе. Модель Морзе кажется неприспособленной воспроизвести экспериментальную информацию для молекулы стибина, в то время как наша алгебраическая модель восроизводит относительно хорошо экспериментальные уровни энергии валентных колебаний этой молекулы.

Матрица корреляции \mathcal{M}_{cor} показывает нам, что параметры нашей модели коррелируют относительно немного, за исключением параметров a_0 и a_1 , что связано с малым количеством экспериментальной информации, которые имеются для этой молекулы.

Последний столбец таблицы 2.15 показывает предсказательность используемой модели. Для показа предсказательности была проведена поддгонка с экспериментальными данными, которые не обозначены звездочкой. На основе параметров, полученных в результате этой подгонки, были предсказаны значения для данных, обозначенных звездочкой. Из расчета видно, что предсказательная способность лучше, чем результаты подгонки на основе модели Lummila *et al.* [61].

На основе разработанного метода можно также оценить значение диссоциационного предела молекулы стибина. В первую очередь можно заметить, что лучший способ "заставить" молек распасться - поместить максимум квантов на одну и ту же связь молекулы таким образом, чтобы возбуждение приводило к разрыву связи. Следовательно, физическое состояние, связанное с диссоциацией молекулы, обозначается как $|(n \ 0 \ 0), \ 1E, 1A_1\rangle$. Идея заключается в нахождении максимума функции $E_0(n)$ в состоянии $|(n \ 0 \ 0), \ 1E, 1A_1\rangle$. Найдем максимально возможное число *n* из условия

$$\frac{\partial E_0(n)}{\partial n} = 0 \bigg]_{n=n_{max}} \implies n_{max} = \frac{-a_0}{2a_1}$$
(2.6.6)

Поскольку мы работаем в рамках редукции $U(4) \supset U(3)$, то максимально возможное число квантов обозначается как $n_{max} = N$. Можно найти численные значения:

 $n_{max} \simeq 28,82$ $N = 29 \implies E_0(29) \simeq 27771 \text{ cm}^{-1}$ (2.6.7)

Следовательно, состояние, соответствующее диссоциации, обозначается $|(2900), 1E, 1A_1\rangle$, из которого мы можем получить значение энергии диссоциации D_e :

$$D_e \simeq \langle (N \, 0 \, 0), \ 1E, 1A_1 | \ H_0 | (N \, 0 \, 0), \ 1E, 1A_1 \rangle = E_0(29) \simeq 27771 \ cm^{-1}$$
 (2.6.8)

Это значение энергии диссоциации D_e сравнимо с экспериментальным значением [61] :

Теоретически Экспериментально

$$D_e \simeq 27771 \text{ см}m^{-1}$$
 $D_e \simeq 28900 \text{ см}^{-1}$ (2.6.9)

то есть относительная ошибка составляет 3.9%. Следовательно, представленная модель удовлетворительна для описания валентных колебаний молекулы стибина.

2.6.3 Результаты для молекулы арсина AsH₃

Молекула арсина типа - 4-х атомная молекула аксиальной симметрии типа XY₃ представляет интерес в астрофизике, в последнее время (эко)токсикологи проявляют интерес к мышьяку и его производным, к которым относится рассматриваемая молекула.

В естественном состоянии мышьяк находится в твердой форме, но она не очень распространена, в большинстве случаев мышьяк можно обнаружить с составе различных металлов, наряду с серой. Среди естественных веществ, содержащих мышьяк, следует упомянуть арсенопирит (*FeAsS*), реальгар (*AsS*), аурипигмент (*As*₂*S*₃), никелин (*NiAs*) и кобальтин (CoAsS). Мышьяк встречается и в газовой форме: легко испаряющаяся трёхокись мышьяка (*As*₂*O*₃), арсин (*AsH*₃) и метилированный арсин. В жидкой форме мышьяк встречается как неорганические As(III) и d'As(V), также как и различные формы метилированного мышьяка As(V).

Из очень чистого мышьяка производят полупроводники: арсенид галлия и арсенид индия. Россия и Франция являются лидерами по производству мышьяка.

Значение фундаментальных частот молекулы арсина [63]:

$$\begin{cases}
\nu_1(A_1) = 2115.164 \text{ cm}^{-1} \\
\nu_2(A_1) = 906.752 \text{ cm}^{-1} \\
\nu_3(E) = 2126.423 \text{ cm}^{-1} \\
\nu_4(E) = 999.225 \text{ cm}^{-1}
\end{cases}$$
(2.6.10)

Используемая форма гамильтониана \widehat{H} :

$$H = a_0 \,\hat{n} + a_1 \,\left(\hat{n}_1^2 + \hat{n}_2^2 + \hat{n}_3^2\right) + a_2 \,\left(\hat{n}_1 \hat{n}_2 + \hat{n}_1 \hat{n}_3 + \hat{n}_2 \hat{n}_3\right) + a_3 \underbrace{\sum_{\substack{i \neq j=1,2,3\\ \equiv y^{3(A_1)}}} b_i^+ b_j}_{\equiv y^{3(A_1)}} \tag{2.6.11}$$

При подгонке использовался метод Левенберга-Маркардта. В результате подгонки получен следующий набор параметров

$$\begin{cases} a_0 = 2161.759(396) \text{ cm}^{-1} \\ a_1 = -38.692(079) \text{ cm}^{-1} \\ a_2 = -1.645(405) \text{ cm}^{-1} \\ a_3 = -3.702(257) \text{ cm}^{-1} \end{cases}$$
(2.6.12)

и матрица корреляции параметров a_i (i=0,1,2,3), представленных в гамильтониане \widehat{H}

$$\mathcal{M}_{cor}(21,4) = \begin{pmatrix} a_0 & a_1 & a_2 & a_3 \\ a_0 & 1 & & & \\ a_1 & -0.96 & 1 & & \\ a_2 & -0.81 & 0.75 & 1 & \\ a_3 & -0.15 & 0.10 & -0.06 & 1 \end{pmatrix}$$
(2.6.13)

В следующей таблице приведены результаты расчета, полученных в результате подгонки параметров нашей модели.

Таблица 2.16: Экспериментальные и рассчитанные валентные колебательные уровни энергии арсина AsH_3 для $n \leqslant 6$ с 20 экспериментальными данными

колебательное	вклад	энергия	энергия	энергия	энергия
состояние	состояния	расчет	эксперимент	расчет-эк	сп эксп-расчет
					**
	%	(см -1)	(см -1)	(см -1)	(см -1)
 (1 0 0)1A1>	1.000	2115.662	2115.164	0.14	0.241
(1 0 0)1E1>	1.000	2126.759	2126.423	0.34	0.649
(2 0 0)1A1>	0.989	4167.180	4166.772	2.49	0.421
(2 0 0)1E1>	0.998	4168.405	4167.935	1.34	0.606
(1 1 0)1A1>	0.989	4238.652	4237.700	2.67	1.445
(1 1 0)1E1>	0.998	4248.534	4247.520	4.42	1.944
(3 0 0)1A1>	0.998	6136.459	6136.340	-0.23	0.215
(3 0 0)1E1>	0.998	6136.504	6136.330	-0.29	0.670
(2 1 0)1A1>	0.987	6276.143	6275.830	-1.37	0.889
(2 1 0)1E1>	0.971	6282.389	6282.350	-1.00	-1.294
(2 1 0)2E1>	0.970	6295.202	6294.710		-4.385
(2 1 0)1A2>	1.000	6299.631			
(1 1 1)1A1>	0.990	6366.126	6365.950		2.127
(4 0 0)1A1>	0.999	8027.467	8028.977	9.87	-1.482
(4 0 0)1E1>	0.999	8027.468	8028.969	9.87	-1.085
(3 1 0)1A1>	0.983	8249.148	8249.510		0.934
(3 1 0)1E1>	0.772	8257.357	8258.370		-1.074
(3 1 0)2E1>	0.781	8250.769			

(3	1	0)1A2>	1.000	8258.879		
(2	2	0)1A1>	0.974	8331.650		
(2	2	0)1E1>	0.984	8332.843		
(2	1	1)1A1>	0.987	8393.932		
(2	1	1)1E1>	0.997	8414.851		
(5	0	0)1A1>	0.999	9841.028	9841.400	-0.485
(5	0	0)1E1>	0.999	9841.028	9841.400	-0.123
(4	1	0)1A1>	0.995	10139.912		
1(4	1	0)1E1>	0.859	10139.998		
1(4	1	0)2E1>	0.860	10147.375		
(4	1	0)1A2>	0.998	10147.458		
1(3	2	0)1A1>	0.990	10284.327		
1(3	2	0)1E1>	0.994	10284.954		
1(3	2	0)2E1>	0.994	10307.174		
(3	2	0)1A2>	0.998	10307.716		
(3	1	1)1A1>	0.960	10368.110		
(3	1	1)1E1>	0.988	10371.930		
(2	2	1)1A1>	0.964	10437.916		
(2	2	1)1E1>	0.993	10456.227		
(6	0	0)1A1>	0.999	11577.189	11576.290	0.581
(6	0	0)1E1>	0.999	11577.189	11577.290	0.927
(5	1	0)1A1>	0.997	11951.990		
(5	1	0)1E1>	0.864	11951.992		
(5	1	0)2E1>	0.865	11959.413		
(5	1	0)1A2>	0.999	11959.416		
		•					
		•					
(7	0	0)1A1>	0.999	13235.959		
(7	0	0)1E1>	0.999	13235.959		

(*) [64] $\sigma(20,4) = 0,80 \text{ cm}^{-1}$

Результаты нашего расчета опять сравнивались с аналогичными результатами из [65]. Среднеквадратичное отклонение нашего расчета для 20 экспериментальных точек с четырьмя параметрами $\sigma(20, 4)$ составило 0, 80 см⁻¹. В работе [65] в подгонке участвовало 13 экспериментальны данных. Для того, чтобы сравнить нашу модель и модель [65], нами была осуществлена подгонка с теми же 13 экспериментальными точками. Среднеквадратичное отклонение подгонки 13 экспериментальных данных в рамках нашей модели из 4 параметров составило $\sigma(13, 4)$ составило 0, 55 см⁻¹, среднеквадратичное отклонение для такого же количества экспериментальных точек и параметров из [65] $\sigma(13, 4) = 5,08$ см⁻¹. В случае молекулы арсина также можно наблюдать, что коэффициенты "чистоты" состояний $|(n \, 0 \, 0)1A1 > u | (n \, 0 \, 0)1E1 >$ близки к 1, что подразумевает, что эти состояния могут быть рассмотрены как собственные состояния гамильтониана H_0 , то есть

$$H_0 |(n \ 0 \ 0), \ 1E, 1A_1 \rangle = E_0(n) |(n \ 0 \ 0), \ 1E, 1A_1 \rangle = (a_0 \ n + a_1 \ n^2) |(n \ 0 \ 0), \ 1E, 1A_1 \rangle$$
(2.6.14)

Оценим диссоционный предел молекулы арсина:

$$\frac{\partial E_0(n)}{\partial n} = 0 \bigg]_{n=n_{max}} \implies n_{max} = \frac{-a_0}{2a_1}.$$
(2.6.15)

Согласно редукции $U(4) \supset U(3)$, мы имеем $n_{max} = N$, что нам дает возможность найти численные значения:

$$n_{max} \simeq 27,93$$
 $N = 28 \implies E_0(28) \simeq 30174 \text{ cm}^{-1}$ (2.6.16)

Состояние, соответствующее диссоционному пределу $|(2800), 1E, 1A_1\rangle$, дает возможность оценить значение энергии диссоциации D_e :

$$D_e \simeq \langle (N \, 0 \, 0), \ 1E, 1A_1 | \ H_0 | (N \, 0 \, 0), \ 1E, 1A_1 \rangle = E_0(28) \simeq 30174 \ \text{cm}^{-1}.$$
 (2.6.17)

Значение D_e , полученное для энергии диссоциации в рамках нашей моделе, сравнимо со значением для энергии диссоциации, полученном экспериментально [63]:

Теоретически Экспериментально

$$D_e \simeq 30174 \text{ см}^{-1}$$
 $D_e \simeq 31669 \text{ см}^{-1}$ (2.6.18)

то есть относительная ошибка 4,66%.

2.6.4 Результаты для молекулы фосфина *PH*₃

Наконец представим результаты для молекулы фосфина *PH*₃, которая также является молекулой типа *XY*₃. Эта молекула представляет интерес в планетологии, поскольку была обнаружена в атмосфере планет-гигантов, а также, как и две предыдущие молекулы, играет важную роль в индустрии.

Значения фундаментальных частот рассматриваемой молекулы [11]:

Как и в предыдущих двух случаях, использовалась следующая форма гамильтониана \widehat{H} :

$$H = a_0 \,\hat{n} + a_1 \,\left(\hat{n}_1^2 + \hat{n}_2^2 + \hat{n}_3^2\right) + a_2 \,\left(\hat{n}_1 \hat{n}_2 + \hat{n}_1 \hat{n}_3 + \hat{n}_2 \hat{n}_3\right) + a_3 \underbrace{\sum_{\substack{i \neq j=1,2,3\\ \equiv \mathcal{Y}^{3(A_1)}}} b_i^+ b_j}_{\equiv \mathcal{Y}^{3(A_1)}} \tag{2.6.20}$$

На основе метода Левенберга-Маркардта была осуществлена подгонка, в результате которой был определен следующий набор параметров гамильтониана, описывающего валентные колебания молекулы фосфина:

$$\begin{cases} a_0 = 2365.725(411) \text{ cm}^{-1} \\ a_1 = -42.132(082) \text{ cm}^{-1} \\ a_2 = -0.172(411) \text{ cm}^{-1} \\ a_3 = -1.715(287) \text{ cm}^{-1} \end{cases}$$
(2.6.21)

и матрица корреляции \mathcal{M}_{cor}

$$\mathcal{M}_{cor} = \begin{pmatrix} a_0 & a_1 & a_2 & a_3 \\ a_0 & 1 & & & \\ a_1 & -0.95 & 1 & & \\ a_2 & -0.81 & 0.73 & 1 & \\ a_3 & -0.21 & 0.18 & -0.02 & 1 \end{pmatrix}$$
(2.6.22)

На основе полученных параметров был проведен расчет значений валентных колебательных уровней энергии молекулы фосфина *PH*₃ (ТАВ. 2.17).

Таблица 2.17: Экспериментальные и рассчитанные значения валентных колебательных уровней энергии молекулы PH_3 до $n\leqslant 6$

колебательное	вклад	энергия	энергия	энергия	
состояние	состояния	расчет	эксперимент	расчет-эксп	
	%	(см -1)	(см -1)	(см -1)	
(1 0 0)1A1	> 1.000	2320.163	2321.131	-0.968	
(1 0 0)1E1:	> 1.000	2325.308	2326.876	-1.568	
(2 0 0)1A1:	> 0.998	4562.632	4566.260	-3.627	
(2 0 0)1E1:	> 0.999	4562.853	4565.780	-2.926	
(1 1 0)1A1:	> 0.998	4644.218	4644.660	-0.442	
(1 1 0)1E1:	> 0.999	4649.074			

(3 0 0)1A1>	0.999	6717.878	6714.600	3.278
(3 0 0)1E1>	0.999	6717.881	6714.600	3.281
(2 1 0)1A1>	0.997	6881.429	6881.530	-0.100
(2 1 0)1E1>	0.968	6883.941	6883.730	0.211
(2 1 0)2E1>	0.968	6889.882	6890.860	-0.977
(2 1 0)1A2>	1.000	6892.005		
(1 1 1)1A1>	0.998	6971.689	6971.160	0.529
(4 0 0)1A1>	0.999	8788.691	8788.000	0.691
(4 0 0)1E1>	0.999	8788.691	8788.000	0.691
(3 1 0)1A1>	0.997	9039.941	9040.000	-0.059
(3 1 0)1E1>	0.834	9041.238	9040.000	1.238
(3 1 0)2E1>	0.836	9043.502		
(3 1 0)1A2>	1.000	9043.810		
(2 2 0)1A1>	0.996	9126.532		
(2 2 0)1E1>	0.997	9126.532		
(2 1 1)1A1>	0.998	9204.109		
(2 1 1)1E1>	0.999	9214.399		
(5 0 0)1A1>	0.999	10775.319		
(5 0 0)1E1>	0.999	10775.319		
(4 1 0)1A1>	0.999	11111.352		
(4 1 0)1E1>	0.865	11112.209		
(4 1 0)2E1>	0.865	11113.924		
(3 2 0)1A1>	0.998	11276.795		
(3 2 0)1E1>	0.996	11276.795		
(3 2 0)2E1>	0.996	11287.086		
(3 2 0)1A2>	0.998	11279.368		
(3 1 1)1A1>	0.993	11366.377		
(3 1 1)1E1>	0.990	11366.377		
(2 2 1)1A1>	0.964	11443.954		
(2 2 1)1E1>	0.993	11454.245		
(6 0 0)1A1>	0.999	12677.504	12678.210	-0.705
(6 0 0)1E1>	0.999	12677.504	12678.210	-0.705
(5 1 0)1A1>	0.999	13098.059		
(5 1 0)1E1>	0.866	13098.916		
(5 1 0)2E1>	0.866	13100.632		
(5 1 0)1A2>	0.999	13100.632		
•				
(7 0 0)1A1>	0.999	14495.593		
(7 0 0)1E1>	0.999	14495.593		

 $\sigma(17,4) = 1,74 \text{ cm}^{-1}$

К сожалению для данной молекулы в литературе нет результатов, аналогичных нашим, за исключением работы [11], где авторы рассматривали одновременно валентные и деформационные колебания. Среднеквадратичное отклонение проведенного расчета для 17 экспериментальных уровней в рамках нашей модели с 4 параметрами составило $\sigma(17,4) = 1,74 \text{ см}^{-1}$. Мы предполагаем, что большая разница расчет-эксперимент, превышающая значение 1 см⁻¹, связано с наличием резонанса между валентными и деформационными колебаниями. Пока мы не можем проверить эту гипотезу, поскольку не приняли во внимание это взаимодействие, но это будет сделано далее в этой работе.

Как и в случае предыдущих двух молекул, было оценено значение энергии диссоциации: для $n_{max} \simeq 28,07$ $N = 28 \implies E_0(28) \simeq 33208 \ cm^{-1}$, то есть диссоционное состояние $|(2800), 1E, 1A_1\rangle$ дает нам значение энергии диссоциации D_e

$$D_e \simeq \langle (N \, 0 \, 0), 1E, 1A_1 | H_0 | (N \, 0 \, 0), 1E, 1A_1 \rangle = E_0(28) \simeq 33208 \ c^{-1}.$$
 (2.6.23)

2.7 Колебательный гамильтониан молекул $XY_3(C_{3v})$ (локально - локальная модель)

2.7.1 Деформационные колебания молекул $XY_3(C_{3v})$

Для того, чтобы построить гамильтониан, описывающий колебательные состояния молекул XY₃, сначала нужно рассмотреть, каким образом определяются кет-вектора состояний (симметризованный базис) для деформационных колебаний, генераторы для этого типа колебаний и, очевидно, гамильтониан, позволяющих получать деформационные колебательные состояния. Деформационные колебания можно описать тем же самым способом, что и валентные колебания, то есть на основе цепочки групп, описывающей валентные колебания, в рамках приближения локальных мод. Следовательно, все, что мы использовали для описания валентных колебаний, применимо и для деформационных колебаний, но в данном случае мы должны ассоциировать бозонные операторы с углами между связями ($\alpha_{12}, \alpha_{13}, \alpha_{23}$).

Во-первых, определим соответствие между бозонными операторами и углами $\alpha_{12}, \alpha_{13}, \alpha_{23}$ (FIG. 2.3):

Можно выбрать, что

$$\{b_{5}^{+}, b_{5}\}$$
 соответсвует α_{23}
 $\{b_{6}^{+}, b_{6}\}$ соответсвует α_{13} (2.7.1)
 $\{b_{7}^{+}, b_{7}\}$ соответсвует α_{12}

и обозначить несимметризованный кет-вектор, описывающий деформационное колебательное состояние, как $|(n_5 n_6 n_7)\rangle$.

Рис. 2.3: Углы между связями неплоской молекулы XY_3

В этом случае можно рассматривать следующие операции симметрии группы $S_3 \sigma_{v1}$: (67), σ_{v2} : (57), σ_{v3} : (56), C_3 : (576), C_3^{-1} : (567).

Следующим этапом является процедура симметризации кет-векторов и генераторов. Применяя процедуру симметризации, примененную для симметризации кет-векторов и генераторов валентных колебаний, можно получить аналогичный результат и для деформационных колебаний:

- Симметризованное состояние типа $n_5 = n_6 = n_7 \equiv n$

$$|(n n n), A_1\rangle = |n n n\rangle$$

- Симметризованное состояние типа $n_5 = n_6 \equiv n$ и $n_7 \equiv n'$

$$|(n n n'), A_1\rangle = \frac{1}{\sqrt{3}} [|n n n'\rangle + |n n' n\rangle + |n' n n\rangle] |(n n n'), E_1\rangle = \frac{1}{\sqrt{6}} [2|n n n'\rangle - |n n' n\rangle - |n' n n\rangle] |(n n n'), E_2\rangle = \frac{1}{\sqrt{2}} [|n n' n\rangle - |n' n n\rangle]$$

- Симметризованное состояние типа $n_5 \neq n_6 \neq n_7$

В симметризованном кет-векторе типа $|(n_5 n_6 n_7), r C_{\sigma}\rangle$ примем следующее условие $n_5 > n_6 > n_7$.

$$|(n_5 n_6 n_7), A_1\rangle = \frac{1}{\sqrt{6}} [|n_5 n_6 n_7\rangle + |n_5 n_7 n_6\rangle + |n_6 n_5 n_7\rangle + |n_5 n_7 n_6\rangle + |n_7 n_5 n_6\rangle + |n_7 n_6 n_5\rangle]$$

$$|(n_5 n_6 n_7), A_2\rangle = \frac{1}{\sqrt{6}} [|n_5 n_6 n_7\rangle - |n_5 n_7 n_6\rangle - |n_6 n_5 n_7\rangle + |n_6 n_7 n_5\rangle + |n_7 n_5 n_6\rangle - |n_7 n_6 n_5\rangle]$$

$$|(n_5 n_6 n_7), 1E_1\rangle = \frac{1}{\sqrt{12}} [2|n_5 n_6 n_7\rangle - |n_7 n_6 n_5\rangle - |n_5 n_7 n_6\rangle + 2|n_6 n_5 n_7\rangle - |n_6 n_7 n_5\rangle - |n_7 n_5 n_6\rangle]$$

$$|(n_5, n_6, n_7), 1E_2\rangle = \frac{1}{2} [|n_5 n_7 n_6\rangle - |n_7 n_6 n_5\rangle - |n_7 n_5 n_6\rangle + |n_6 n_7 n_5\rangle]$$

$$|(n_5 n_6 n_7), 2E_1\rangle = \frac{1}{2}[-|n_5 n_7 n_6\rangle + |n_6 n_7 n_5\rangle - |n_7 n_5 n_6\rangle + |n_7 n_6 n_5\rangle$$

$$|(n_5 n_6 n_7), 2E_2\rangle = \frac{1}{\sqrt{12}} [-|n_5 n_7 n_6\rangle + |n_6 n_7 n_5\rangle + 2|n_6 n_5 n_7\rangle -2|n_5 n_6 n_7\rangle + |n_7 n_5 n_6\rangle - |n_7 n_6 n_5\rangle]$$

Для генераторов также получим

Первый набор: симметризованные генераторы, которые не зависят от операторов веса.
 То есть это генераторы, которые диагональны в базисе Г-Ц и базисе симметризованных операторов.

$$\begin{array}{rcl} \mathcal{Y}^{1(A_1)} &=& \widehat{N}_8 \\ \mathcal{Y}^{2(A_1)} &=& \widehat{N}_5 + \widehat{N}_6 + \widehat{N}_7 \\ \mathcal{Y}^{1(E)}_1 &=& \widehat{N}_5 + \widehat{N}_6 - 2\widehat{N}_7 \\ \mathcal{Y}^{1(E)}_2 &=& \sqrt{3} \left[\widehat{N}_5 - \widehat{N}_6 \right] \end{array}$$

- Второй набор: симметризованные генераторы, диагональные в рамках полносимметричного представления [n, 0, 0] группы U(3).

Эти генераторы связывают локальные состояния, характеризующиеся одним и тем же значением квантового числа *n*.

- Третий набор: симметризованные генераторы, недиагональные в рамках полносимметричного представления [n, 0, 0] группы U(3).

Они связывают локальные состояния, характеризующиеся разным значением квантового числа n.

$$\begin{aligned} \mathcal{Y}^{4(A_1)} &= E_{58} + E_{85} + E_{78} + E_{87} + E_{68} + E_{86} \\ \mathcal{Y}^{5(A_1)} &= \imath (E_{58} - E_{85} + E_{68} - E_{86} + E_{78} - E_{87}) \\ \mathcal{Y}^{4(E)}_1 &= E_{58} + E_{85} - 2E_{78} - 2E_{87} + E_{68} + E_{86} \\ \mathcal{Y}^{4(E)}_2 &= \sqrt{3}(E_{58} + E_{85} - E_{648} - E_{86}) \\ \mathcal{Y}^{5(E)}_1 &= \imath (E_{58} - E_{85} - E_{86} + E_{68} - 2E_{78} + 2E_{87}) \\ \mathcal{Y}^{5(E)}_2 &= \imath \sqrt{3}(E_{58} - E_{85} + E_{86} - E_{68}) \end{aligned}$$

Для построения гамильтониана также можно применить ту же самую идею, что и в случае валентных колебаний, то есть гамильтониан, описывающий деформационные колебания, выглядит следующий вид

$$H = a_4 \,\hat{n} + a_5 \,\left(\hat{n}_5^2 + \hat{n}_6^2 + \hat{n}_7^2\right) + a_6 \,\left(\hat{n}_5 \hat{n}_6 + \hat{n}_5 \hat{n}_7 + \hat{n}_6 \hat{n}_7\right) + a_7 \underbrace{\sum_{\substack{i \neq j = 5, 6, 7 \\ \equiv y^{3(A_1)}}} b_i^+ b_j}_{\equiv y^{3(A_1)}} \tag{2.7.2}$$

Теперь можно осуществить процедуру подгонки для расчета деформационных колебательных мод. К сожалению для молекулы стибина имеется недостатично экспериментальной информации для деформационных колебаний (всего 4 колебательных уровня энергии), поэтому расчет был осуществлен на примере молекул арсина и фосфина.

Для процедуры подгонки использовался метод Левенберга-Маркардта, в результате подгонки были определены параметры гамильтониана, описывающего деформационные колебания молекулы арсина:

$$\begin{cases}
a_4 = 973.97(2.26) \text{ cm}^{-1} \\
a_5 = -5.09738(1.43) \text{ cm}^{-1} \\
a_6 = 2.95563(2.58) \text{ cm}^{-1} \\
a_7 = -31.772(262) \text{ cm}^{-1}
\end{cases}$$
(2.7.3)

и матрица корреляции \mathcal{M}_{cor}

$$\mathcal{M}_{cor} = \begin{pmatrix} a_4 & a_5 & a_6 & a_7 \\ a_4 & 1 & & & \\ a_5 & -0.95 & 1 & & \\ a_6 & -0.38 & 0.10 & 1 & \\ a_7 & -0.13 & 0.12 & 0.02 & 1 \end{pmatrix}$$
(2.7.4)

На основе полученных параметров были рассчитаны уровни энергии для деформационных колебаний арсина ТАВ. 2.18

Таблица 2.18: Деформационные колебательные уровни энергии арсина для $n\leqslant 4$

колебательное	вклад	энергия	энергия	энергия
состояние	состояния	расчет	эксперимент	расчет-эксп
	%	(CM -1)	(CM -1)	(CM -1)
(1 0 0)A1>	1.00	905.329	906.752	-1.423
(1 0 0)E >	1.00	1000.647	999.225	1.423
(1 1 0)A1>	0.82	1809.022	1806.149	2.874
(2 0 0)E >	0.81	1899.782	1904.115	-4.332
(2 0 0)A1>	0.80	1995.690	1990.998	4.693
(1 1 0)E >	0.81	2000.249	2003.483	-3.234
(2 1 0)A1>	0.81	2711.048		
(2 1 0)E >	0.64	2796.982		
(3 0 0)A1>	0.85	2887.751		
(3 0 0)E >	0.56	2893.718		
(2 1 0)E >	0.87	2990.020		
(2 1 0)A2>	1.00	2997.654		
(1 1 1)A1>	0.74	2999.744		
(2 1 1)A1>	0.62	3611.366		
(2 2 0)E >	0.40	3692.147		
(4 0 0)A1>	0.78	3777.405		
(3 1 0)E >	0.43	3785.121		
(4 0 0)E >	0.63	3875.803		
(3 1 0)A2>	1.00	3885.550		
(3 1 0)A1>	0.37	3888.118		

(220))A1>	0.67	3979.357
(310))E >	0.72	3983.130
(211	L)E >	0.79	3996.233
•			
			$\sigma(6,4) = 5,64 { m cm}^{-1}$

Ниже также представлены результаты для молекулы фосфина. Методом Левенберга-Маркардта, в результате подгонки определены параметры:

$$\begin{cases}
 a_4 = 1077.757(002) \text{ cm}^{-1} \\
 a_5 = -0.704(001) \text{ cm}^{-1} \\
 a_6 = -14.502(005) \text{ cm}^{-1} \\
 a_7 = -42.900(001) \text{ cm}^{-1}
\end{cases}$$
(2.7.5)

а также матрица корреляции \mathcal{M}_{cor} :

$$\mathcal{M}_{cor} = \begin{pmatrix} a_4 & a_5 & a_6 & a_7 \\ a_4 & 1 & & & \\ a_5 & -0.91 & 1 & & \\ a_6 & 0.19 & -0.55 & 1 & \\ a_7 & -0.36 & 0.53 & -0.73 & 1 \end{pmatrix}$$
(2.7.6)

В следующе таблице приведен расчет уровней энергии деформационных колебаний молекулы фосфина.

Таблица 2.19: Деформационные колебательные моды фосфина для $n \leqslant 4$

колебательное	вклад	энергия	энергия	энергия	_
состояние	состояния %	эксперимент (см -1)	расчет з (см -1)	эксп-расчет (см -1)	
	• 1.000	991.25	992.13	-0.88	

(1 0 0)1E1>	1.000	1119.95	1118.31	1.64
(1 1 0)1A1>	0.83	1972.21	1972.55	-0.34
(2 0 0)1E1>	0.79	2105.12	2108.15	-3.03
(1 1 0)1E1>	0.79	2230.07	2234.93	-4.86
(2 0 0)1A1>	0.83	2234.27	2226.83	7.44
(2 1 0)1A1>	0.81	2942.91	2940.77	2.14
(2 1 0)1E1>	0.75	3079.92		
(3 0 0)1E1>	0.67	3209.39		
(3 0 0)1A1>	0.76	3212.31	3214.20	-1.89
(1 1 1)1A1>	0.69	3331.39		
(2 1 0)2E1>	0.77	3339.09		
(2 1 0)1A2>	1.00	3339.09		
(2 1 1)1A1>	0.70	3903.35		
(2 2 0)1E1>	0.59	4044.36		
(3 1 0)1E1>	0.65	4178.20		
(3 1 0)1A1>	0.59	4180.14		
(4 0 0)1A1>	0.65	4304.90		
(4 0 0)1E1>	0.99	4310.02		
(2 1 1)1E1>	0.54	4420.76		
(3 1 0)2E1>	0.61	4434.81		
(2 2 0)1A1>	0.53	4438.98		
· · · · · · · · · · · · · · · · · · ·				

 $\sigma(8,4) = 4,99 \text{ cm}^{-1}$

Из расчетов видно, что результаты воспроизводимости экспериментальных уровней в рамках рассматриваемой цепочки групп относительно средние. Мы предполагаем, что это связано либо с наличием резонанса между валентными и деформационными колебаниями, либо деформационные колебания следует описывать в рамках цепочки групп 2.2.4. Именно поэтому далее, в этой главе рассматривается взаимодействие между валентными и деформационным колебаниями в рамках цепочки 2.2.3, то есть деформационные колебания описываются в рамках локального приближения, а в следующей главе на основе цепочки групп 2.2.4

2.7.2 Колебания 4-х атомных пирамидальных молекул в рамках локально-локального приближения

В данном случае колебания пирамидальных молекул типа XY₃ исследуются на основе цепочки групп (2.2.3).

Мы уже показали эффективность цепочки групп $(U_{\text{вал.}}(4) \supset U_{\text{вал.}}(3) \supset K_{\text{вал.}}(3) \supset S_{\text{вал.}}(3) \supset C_{3v})$ для описания валентных колебаний. Следовательно, воспользуемся этой цепочкой групп для описания данного типа колебания. В таком случае гамильтониан,

описывающий валентные колебания выглядит следующим образом

$$H_e = a_0 \left(\hat{n}_1 + \hat{n}_2 + \hat{n}_3 \right) + a_1 \left(\hat{n}_1^2 + \hat{n}_2^2 + \hat{n}_3^2 \right) + a_2 \left(\hat{n}_1 \hat{n}_2 + \hat{n}_1 \hat{n}_3 + \hat{n}_2 \hat{n}_3 \right) + a_3 \underbrace{\sum_{\substack{i \neq j = 1, 2, 3 \\ \equiv \forall^{3(A_1)}}} b_i^+ b_j}_{\equiv \forall^{3(A_1)}} \left(2.7.7 \right)$$

и является частью полного гамильтониана, описывающего колебания пирамидальных молекул типа XY₃. Симметризованный базис векторов $|(n_1, n_2, n_3), C_e\rangle$, описывающий валентные колебания был определен в §§2.4.3, также будет использован при описании колебаний рассматриваемых молекул.

Следуя цепочке групп 2.2.3, деформационные колебания описываются на основе цепочки групп $(U_{\text{деф.}}(4) \supset U_{\text{деф.}}(3) \supset K_{\text{деф.}}(3) \supset S_{\text{деф.}}(3) \supset C_{3v})$, следовательно часть полного гамильтониана, описывающего деформационные колебания, записывается в следующем виде:

$$H_p = a_4 \left(\hat{n}_5 + \hat{n}_6 + \hat{n}_7 \right) + a_5 \left(\hat{n}_5^2 + \hat{n}_6^2 + \hat{n}_7^2 \right) + a_6 \left(\hat{n}_5 \hat{n}_6 + \hat{n}_5 \hat{n}_7 + \hat{n}_6 \hat{n}_7 \right) + a_7 \underbrace{\sum_{\substack{i \neq j = 5, 6, 7 \\ \equiv \mathcal{Y}^{3(A_1)}}} b_i^+ b_j}_{\equiv \mathcal{Y}^{3(A_1)}} (2.7.8)$$

с симметризованным набором кет-векторов $|(n_5, n_6, n_7), C_p\rangle$, определенных в §§2.7.1.

То есть цепочка групп, описывающая колебания 4-х атомных молекул аксиальной симметрии, наряду с представлениями групп, входящих в эту цепочку, выглядят следующим образом

$$\begin{bmatrix} \left[N_{s}, \dot{0}^{3}\right] & \left[n_{s}, \dot{0}^{2}\right] & \left(w_{s} = \left(n_{1}, n_{2}, n_{3}\right), f_{w_{s}}\right) & \left(\lambda_{s_{1}}, \lambda_{s_{2}}, \lambda_{s_{3}}\right) & \left(C_{s}\sigma_{s}\right) \\ \left(U_{s}(4) \supset U_{s}(3) \supset K_{s}(3) \supset S_{s}(3) \approx C_{s_{3v}}\right) & \otimes \\ \left(U_{b}(4) \supset U_{b}(3) \supset K_{b}(3) \supset S_{b}(3) \approx C_{b_{3v}}\right) & \otimes \\ \left[N_{b}, \dot{0}^{3}\right] & \left[n_{b}, \dot{0}^{2}\right] & \left(w_{b} = \left(m_{1}, m_{2}, m_{3}\right), f_{w_{b}}\right) & \left(\lambda_{b_{1}}, \lambda_{b_{2}}, \lambda_{b_{3}}\right) & \left(C_{b}\sigma_{b}\right) \end{bmatrix}$$

$$(2.7.9)$$

А гамильтониан, описывающий колебания рассматриваемых молекул, в первом приближении состоит из гамильтониана, описывающего валентные колебания, и гамильтониана, на основе которого вычисляются деформационные колебания:

$$\mathbf{H}_{_{\Pi 0 \mathbf{K}, \Pi 0 \mathbf{K}, \Pi 0 \mathbf{K}, \Pi 0}^{0} = a_{0} \mathbf{n}_{s} + a_{1} (\mathbf{N}_{1}^{2} + \mathbf{N}_{2}^{2} + \mathbf{N}_{3}^{2})
+ a_{2} (\mathbf{N}_{1} \mathbf{N}_{2} + \mathbf{N}_{1} \mathbf{N}_{3} + \mathbf{N}_{2} \mathbf{N}_{3}) + a_{3} \sum_{i \neq j=1}^{3} \mathbf{b}_{i}^{+} \mathbf{b}_{j}
+ a_{4} \mathbf{n}_{b} + a_{5} (\mathbf{N}_{5}^{2} + \mathbf{N}_{6}^{2} + \mathbf{N}_{7}^{2})$$
(2.7.10)

+
$$a_6(\mathbf{N}_5\mathbf{N}_6 + \mathbf{N}_5\mathbf{N}_7 + \mathbf{N}_6\mathbf{N}_7) + a_7\sum_{i\neq j=5}^7 \mathbf{b}_i^+\mathbf{b}_j$$

Для того, чтобы восстановить колебательные уровни 4-х атомных пирамидальных молекул, рассмотрим значения их фундаментальных частот. Таким образом, из значений фундаментальных частот видно, что необходимо принять во внимание резонанс Ферми 2:1:

$$\nu_1(A_1) \simeq 2\nu_2(A_1)$$
 and $\nu_3(E) \simeq 2\nu_4(E)$. (2.7.11)

Данный тип резонанса уже был исследован в [66]: для возбуждения одного кванта валентных колебаний деформационные колебания должны отдать два кванта, и для возбуждения двух квантов деформационных колебаний валентные колебания должны отдать один квант. Оператор, описывающий данный резонанс выглядит следующим образом $\mathcal{H}_{s-b} = \sum_{i=1}^{3} \sum_{k\geq n=5}^{7} (\mathbf{b}_{i}^{+} \mathbf{b}_{k} \mathbf{b}_{n} \mathbf{b}$ В действительности второе суммирование по k и n не различает случая, когда k = n, то есть, когда одна деформационная колебательная степень свободы обменивается двумя квантами со связью. В случае $k \neq n$ (или k > n)две различные деформационные колебательные степени свободы обмениваются каждая одинм квантом со связью. Таким образом, принимая этот факт, полный гамильтониан, описывающий колебательные моды 4-х атомных молекул аксиальной симметрии в рамках локально-локального приближения, имеет следующий вид

$$\mathbf{H} = a_{0} \mathbf{n}_{s} + a_{1} (\mathbf{N}_{1}^{2} + \mathbf{N}_{2}^{2} + \mathbf{N}_{3}^{2})$$

$$+ a_{2} (\mathbf{N}_{1} \mathbf{N}_{2} + \mathbf{N}_{1} \mathbf{N}_{3} + \mathbf{N}_{2} \mathbf{N}_{3}) + a_{3} \sum_{i \neq j=1}^{3} \mathbf{b}_{i}^{+} \mathbf{b}_{j}$$

$$+ a_{4} \mathbf{n}_{b} + a_{5} (\mathbf{N}_{5}^{2} + \mathbf{N}_{6}^{2} + \mathbf{N}_{7}^{2})$$

$$+ a_{6} (\mathbf{N}_{5} \mathbf{N}_{6} + \mathbf{N}_{5} \mathbf{N}_{7} + \mathbf{N}_{6} \mathbf{N}_{7}) + a_{7} \sum_{i \neq j=5}^{7} \mathbf{b}_{i}^{+} \mathbf{b}_{j}$$

$$+ a_{8} \sum_{i=1}^{3} \sum_{k=5}^{7} (\mathbf{b}_{i}^{+} \mathbf{b}_{k}^{2} \mathbf{b}_{4} \mathbf{b}_{8}^{+2} + \mathbf{b}_{4}^{+} \mathbf{b}_{k}^{+2} \mathbf{b}_{i} \mathbf{b}_{8}^{2}) .$$

$$+ a_{9} \sum_{i=1}^{3} \sum_{k>n=5}^{7} (\mathbf{b}_{i}^{+} \mathbf{b}_{k} \mathbf{b}_{n} \mathbf{b}_{4} \mathbf{b}_{8}^{+2} + \mathbf{b}_{4}^{+} \mathbf{b}_{n}^{+} \mathbf{b}_{k}^{+} \mathbf{b}_{i} \mathbf{b}_{8}^{2}) .$$

Для расчета матричных элементов операторов $\sum_{i=1}^{3} \sum_{k=5}^{7} \left(\mathbf{b}_{i}^{+} \mathbf{b}_{k}^{2} \mathbf{b}_{4} \mathbf{b}_{8}^{+2} + \mathbf{b}_{4}^{+} \mathbf{b}_{k}^{+2} \mathbf{b}_{i} \mathbf{b}_{8}^{2} \right)$

и $\sum_{i=1}^{3} \sum_{k>n=5}^{7} (\mathbf{b}_{i}^{+} \mathbf{b}_{k} \mathbf{b}_{n} \mathbf{b}_{4} \mathbf{b}_{8}^{+2} + \mathbf{b}_{4}^{+} \mathbf{b}_{n}^{+} \mathbf{b}_{k}^{+} \mathbf{b}_{8}^{2})$ необходимо оценить значения чисел N_{s} и N_{b} . Для квантового числа N_{s} , как уже было показано в данной работе, это число валентных бозонов связано с диссоционным пределом. Определение $N_{s} = n_{s_{max}}$ определется следующим образом: способ, чтобы молекула продиссоциировала, это разрушить ее связь, то есть сконцентрировать всю энергию на единственной связи. Другими словами диссоционный предел соответствует кет-вектору $|(n00), A_{1}$ ог $E\rangle$. Анализ валентных мод показал, что подобные кет-вектора являются "чистыми" (после диагонализации вклад первоначальнго кет-вектора ≥ 0.99). Рассмотрим производную от непрерывной функции \mathbf{H}_{SL} по n_s , когда собственные кетвектора являются состояниями типа $|(n00), A_1 \text{ or } E\rangle$, то есть

$$\begin{aligned} \mathbf{H_{SL}}|(n00), A_1 \text{ or } E \rangle &= E_{0_s}(n)|(n00), A_1 \text{ or } E \rangle \\ &= (a_0 n + a_1 n^2)|(n00), A_1 \text{ or } E \rangle. \end{aligned}$$

Так как мы полагали, что $\frac{\partial E_{0s}(n)}{\partial n} = 0 \bigg|_{n=n_{max}}$, определим $n_{max} \simeq 27.93$, то есть $N_s = 28$. Мы должны обратить внимание на тот факт, что простая оценка этого значения достаточна для расчета матричного элемента операторов $\sum_{i=1}^{3} \sum_{k=5}^{7} (\mathbf{b}_i^+ \mathbf{b}_k^2 \mathbf{b}_4 \mathbf{b}_8^{+2} + \mathbf{b}_4^+ \mathbf{b}_k^{+2} \mathbf{b}_i \mathbf{b}_8^2)$ и $\sum_{i=1}^{3} \sum_{k>n=5}^{7} (\mathbf{b}_i^+ \mathbf{b}_k \mathbf{b}_n \mathbf{b}_4 \mathbf{b}_8^{+2} + \mathbf{b}_4^+ \mathbf{b}_n^+ \mathbf{b}_k^+ \mathbf{b}_i \mathbf{b}_8^2)$. На самом деле, как было показано в [66], матричные элементы этих операторов становятся весьма чувствительными от значений N_s и N_b , котогда необходимо рассчитать высоковозбужденные колебательные уровни. Это может действительно рассматриваться как важный пункт нашего формализма, потому что наша модель не зависит от того, что происходит вбилизи диссоционного предела для низких значений квантовых чисел (как можно ожидать для любой гармонической модели, обычно разработанной вблизи условия равновесия), в то время как значения становятся преобладающими при построении матрицы гамильтониана вблизи диссоционного предела.

Для второго квантового числа N_b мы полностью согласны с точкой зрения Sanchez-Castellanos *et al.* [10]: деформационное бозонное число N_b не связано с диссоционным пределом. Может быть можно определить некоторый физический эффект, однако, он не совсем тривиален для обнаружения. Первая точка зрения может быть рассмотрена, когда N_b представляется как параметр, и здесь мы согласны с интерпретацией, используемой в [10]. Однако, мы предпочли восстанавливать все экспериментальные данные для колебательных уровней, рассматривая все целые числа N_b в диапазоне [25-60]. В итоге мы пришли к тому же заключению, что и в [10]: среднеквадратичное отклонение остается неизменным для всех значений N_b в диапазоне [25-60]. В нашем расчете мы взяли $N_b = 35$. На основе метода Левенберга-Маркардта на примере молекулы арсина была проведена

На основе метода Левенберга-Маркардта на примере молекулы арсина была проведена подгонка 33 экспериментальных уровней в модели с 10 параметрами, результаты которой приведены в следующей таблице.

Таблица 2.20: Колебательные уровни арсина, рассчитанные в локально-локальном приближении для $n \le 6$

										энергия	энергия	вклад	энергия	вклад	энергия	энергия	энергия
	ĸ	оле	ебател	іьно	be	состо	яние		3	эксперимент	расч-эксп	состоя-	расч-эксп	состоя-	расч-эксп	расч-эксп	расч-эксп
										(см-1)	(см-1)	ния	(см-1)	ния	(см-1)	(см-1)	(см-1)
											(33)	%	(27)	%	Мод.1	Мод.2	Мод.З
(0	0	0)28	(1	0 0)3	4;(1A1	1A1)>A1:	> 906.752	-6.277	1.00	-4.133	0.99	1.97	-1.328	1.4
(0	0	0)28	(1	0 0)3	4;(1A1	1E)>E :	> 999.225	-3.058	1.00	-0.580	1.00	0.31	9.295	0.8
(0	0	0)28	(1	1 0)3	3;(1A1	1A1)>A12	> 1806.149	2.490	0.86	1.990	0.79	-1.59	1.853	-2.8
(0	0	0)28	(2	0 0)3	3;(1A1	1 E)>E :	> 1904.115	-6.361	0.79	-4.496	0.85	0.53	-0.427	0.4

(0	0	0)28 (2	20	0)33;(1A1	1A1)>A1>	1990.998	3.375	0.79	5.236	0.79	-6.25	1.602	-5.2
(0	0	0)28 (:	1 1	0)33;(1A1	1E)>E >	2003.483	-2.246	0.86	-2.707	0.85	5.92	-9.707	6.9
(1	0	0)27 ((0 0	0)35;(1A1	1A1)>A1>	2115.164	-0.891	0.99	-0.223	0.75	0.14	0.932	1.3
(1	0	0)27 ((0 0	0)35;(1E	1 A 1)>E >	2126.423	0.826	0.99	0.058	1.00	0.34	-1.537	2.3
(1	0	0)27 (:	10	0)34;(1A1	1A1)>A1>	3013.000	1.387	0.99	4.560	0.99	0.64	3.953	-2.0
(1	0	0)27 (:	10	0)34;(1A1	1E)>E >	3102.000	8.717	1.00	*	1.00	-0.16	-0.427	-2.3
(2	0	0)26 ((0 0	0)35;(1A1	1A1)>A1>	4166.772	-0.147	0.98	-0.367	0.98	2.49	3.033	2.2
(2	0	0)26 ((0 0	0)35;(1E	1 A 1)>E >	4167.935	0.405	0.99	-0.218	0.99	1.34	-2.245	2.4
(1	1	0)26 ((0 0	0)35;(1A1	1A1)>A1>	4237.700	-0.022	0.98	0.904	0.98			2.0
(1	1	0)26 ((0 0	0)35;(1E	1 A 1)>E >	4247.530	1.447	0.99	1.303	0.99			2.6
(2	0	0)26 (:	10	0)34;(1A1	1A1)>A1>	5057.000	10.152	0.98	*	0.99			-0.6
(2	0	0)26 (:	10	0)34;(1E	1 A 1)>E >	5057.000	11.861	0.99	*	1.00			-0.9
(1	1	0)26 (:	10	0)34;(1A1	1A1)>A1>	5128.000	10.358	0.99	*	0.99			-1.3
(1	1	0)26 (:	10	0)34;(1E	1 A 1)>E >	5128.000	*	1.00	*	1.00			-7.9
(2	0	0)26 (:	10	0)34;(1A1	1 E)>E >	5158.000	5.492	0.98	*	0.99			0.5
(2	0	0)26 (:	10	0)34;(1E	1 E)>A1>	5158.000	7.199	0.99	*	1.00			1.1
(3	0	0)25 ((0 0	0)35;(1A1	1A1)>A1>	6136.340	-1.427	0.97	-0.623	0.94	-0.23	-4.667	-3.2
(3	0	0)25 ((0 0	0)35;(1E	1 A 1)>E >	6136.330	-2.436	0.96	-0.564	0.99	-0.29	1.951	-2.9
(2	1	0)25 ((0 0	0)35;(1A1	1A1)>A1>	6275.830	-1.736	0.97	0.697	0.98	-1.37	-2.321	1.0
(2	1	0)25 ((0 0	0)35;(1E	1 A 1)>E >	6282.350	-0.734	0.95	0.703	0.96			1.8
(2	1	0)25 ((0 0	0)35;(2E	1 A 1)>E >	6294.710	1.287	0.96	1.655	0.96	-1.00	2.238	2.7
(1	1	1)25 ((0 0	0)35;(1A1	1A1)>A1>	6365.960	0.296	0.98	1.976	0.98			2.7
(4	0	0)24 ((0 0	0)35;(1A1	1A1)>A1>	8028.977	-2.687	0.91	-2.075	0.99	9.87	-1.389	0.3
(4	0	0)24 ((0 0	0)35;(1E	1 A 1)>E >	8028.969	-2.677	0.99	-2.066	0.99	9.90	0.713	0.2
(3	1	0)24 ((0 0	0)35;(1A1	1A1)>A1>	8249.520	0.131	0.65	1.176	0.61			-3.8
(3	1	0)24 ((0 0	0)35;(2E	1 A 1)>E >	8258.380	0.723	0.70	-5.950	0.74			3.7
(3	1	0)24 ((0 0	0)35;(1E	1 A 1)>E >	8257.270	*	0.74	*	0.77			-2.2
(5	0	0)23 ((0 0	0)35;(1A1	1A1)>A1>	9841.400	0.597	0.99	-0.317	0.99			5.3
(5	0	0)23 ((0 0	0)35;(1E	1A1)>E >	9841.400	0.485	0.99	-0.238	0.99			-5.3
(6	0	0)22 ((0 0	0)35;(1A1	1A1)>A1>	11576.290	-0.431	0.99	1.236	0.99			5.2
(6	0	0)22 ((0 0	0)35;(1E	1 A 1)>E >	11576.290	-0.431	0.99	1.236	0.99			5.0

* не включены в подгонку Мод. 1 [65] Мод. 2 [67] Мод. 3 [10]

Первый столбец показывает обозначение кет-векторов в локальном приближении, во втором столбце приведены экспериментальные данные. Следующие два столбца представляют информацию о подгонке 33 экспериментальных данных арсина в рамках нашей модели: столбец 3 содержит информацию о разнице расчетной и экспериментальной энергий, а столбец 4 указывает процент от вклада первоначального кет-вектора. Параметры и матрица корреляции, полученные в результате этой подгонки:

a_0	=	$2161.496(48) \text{ cm}^{-1}$	
a_1	=	-38.669(12) см ⁻¹	
a_2	=	$-1.65(12) \text{ cm}^{-1}$	
a_3	=	$-4.42(11) \text{ cm}^{-1}$	
a_4	=	$966.461(15) \text{ cm}^{-1}$	(2713)
a_5	=	$-2.193(96) \text{ cm}^{-1}$	(2.1.10)
a_6	=	$14.41(47) \text{ cm}^{-1}$	
a_7	=	$-31.898(89) \text{ cm}^{-1}$	
a_8	=	$0.01026(5) \text{ cm}m^{-1}$	
a_9	=	$-0.00360(7) \text{ cm}^{-1}$	

$$\mathfrak{M}_{corr}(33, 10) =$$

(/	a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	١
	a_0	1.00										
	a_1	-0.38	1.00									
	a_2	-0.20	-0.00	1.00								
	a_3	-0.10	-0.04	-0.10	1.00							
	a_4	0.11	0.02	-0.05	-0.02	1.00						(2.7.14)
	a_5	-0.07	-0.02	-0.03	-0.07	-0.01	1.00					
	a_6	-0.06	-0.03	-0.11	-0.02	0.04	-0.38	1.00				
	a_7	-0.05	-0.02	0.05	-0.03	0.09	-0.07	0.02	1.00			
	a_8	-0.11	-0.02	0.04	0.01	0.45	-0.04	-0.06	-0.10	1.00		
	a_9	0.05	0.09	-0.04	-0.01	0.05	0.05	0.10	0.17	-0.05	1.00	/

Комментарии: матрица корреляции не содержит сильно коррелирующих параметров, так как самое большое число корреляции 45% для параметров (a_4, a_8). Видно, что нет существенного значения между параметрами a_8 and a_9 ($a_8 = 3a_9$), что могло бы указывать на обмен квантами между валентными и деформационными степенями свободы. Таблица 2.20 показывает, что плохо воспроизводятся пять первых чисто деформационных уровня ($n_b = 1$ и $n_b = 2$), а также |(100), A1; (100), E; E >. Еще хуже ситуация в районе 5057-5158 см⁻¹, где некоторые уровни воспроизводятся с точностью менее, чем 10 см⁻¹. Среднеквадратичное отклонение достигло значения $\sigma(33, 10) = 6.45 \text{ см}^{-1}$, что превышает экспериментальную точность в несколько раз. Следовательно, очевидно, что модель, построенная в рамках приближения локальных мод не адаптирована для описания колебательных уровней рассматриваемых уровней, поскольку аналогичный расчет, проведенный для молекулы фосфина, оказался еще хуже: среднеквадратичное отклонение для известных 35 экспериментальных колебательных уровней с тем же набором параметров составило $\sigma(35, 10) = 8.37$ см⁻¹. Мы предполагаем, что это может быть также связано с плохим соответствием между экспериментальными и рассчитанными значениями некоторых уровней или существенной неточной оценкой некоторых экспериментальных переходов, либо некоторые колебательные уровни могут

взаимодействовать посредством взаимодействия Кориолиса [68].

Поэтому, далее мы попытались удалить из расчета некоторый набор данных из нашей подгонки для того, чтобы улучшить значение среднеквадратичного отклонения σ . После нескольких попыток наилучшая ситуация появилась при описании для 27 экспериментальных данных, описанных в таблице 2.20 (столбцы 5 и 6). Для "выбранных"27 экспериментальных данных получился следующий набор параметров

$$a_{0} = 2161.7770(82) \text{ cm}^{-1}$$

$$a_{1} = -38.69467(67) \text{ cm}^{-1}$$

$$a_{2} = -1.5595(217) \text{ cm}^{-1}$$

$$a_{3} = -3.8603(16) \text{ cm}^{-1}$$

$$a_{4} = 969.149(16) \text{ cm}^{-1}$$

$$a_{5} = -1.6346(168) \text{ cm}^{-1}$$

$$a_{6} = 11.33382(22) \text{ cm}^{-1}$$

$$a_{7} = -31.47283(62), \text{ cm}^{-1}$$

$$a_{8} = -0.00244(50) \text{ cm}^{-1}$$

$$a_{9} = 0.00256(31) \text{ cm}^{-1}$$

и матрица корреляции

$$\mathfrak{M}_{corr}(27, 10) =$$

(a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	١
a_0	1.00										
a_1	-0.46	1.00									
a_2	-0.49	-0.47	1.00								
a_3	-0.29	-0.03	-0.19	1.00							
a_4	0.13	0.76	0.41	-0.06	1.00						(2.7.
a_5	-0.18	-0.14	-0.25	-0.21	-0.29	1.00					
a_6	0.15	0.90	0.45	-0.04	-0.81	0.12	1.00				
a_7	-0.15	-0.90	-0.45	0.04	0.81	-0.12	0.97	1.00			
a_8	-0.36	-0.65	-0.06	0.22	0.45	-0.09	0.56	-0.56	1.00		
a_9	0.05	0.60	0.06	-0.31	-0.52	0.09	-0.64	0.64	0.71	1.00	/

Комментарии: выбор 27 экспериментальных данных, представленных в таблице 2.20 приводит к наиболее лучшему значению среднеквадратичного отклонения $\sigma(27, 10) = 2.75 \text{ см}^{-1}$. Однако, деформационные колебательные уровни не воспроизводятся должным образом.

В таблице 2.20 для сравнения также приведена информация о ранее проведенных расчетах: столбцы Мод.1 [65], Мод.2 [67], Мод.3 [10]. Данные расчеты показывают, что воспроизведение в рамках нашей модели не лучше, а в некоторых местах и хуже, что еще раз подтверждает, что деформационные колебания необходимо описывать как два осциллятора, то есть в рамках модели, которая будет рассматриваться в данной работе далее.

Глава 3

Колебания 4-х атомных пирамидальных молекул (локально-нормальное приближение)

В данной главе рассматривается иной способ построения гамильтониана: валентные колебания описываются как трижды вырожденный осциллятор, деформационные колебания рассматриваются как два осциллятора (один одномерный осциллятор и один двумерный осциллятор).

3.1 Деформационные колебания, описанные в рамках нормальных мод

Говоря на языке алгебраического формализма, цепочка групп для описания деформационных колебаний пирамидальных молекул типа XY₃ в рамках нормальных мод с соответствующим набором квантовых чисел, определяется следующим образом

$$\begin{array}{ccccccc} U_b(1) & \otimes & U_b(2) & \supset & O_b(2) & \supset & C_{3v} \\ v_2 & v_4 & l_4 & C\sigma \end{array} \tag{3.1.1}$$

Гамильтониан, состоящий из инвариантных операторов непрерывных и полунепрерывных групп этой цепочки, записывается как

$$\mathbf{H}_{\mathbf{bN}} = \omega_2 \, \mathbf{v_2} + \kappa_2 \, \mathbf{v_2^2} + \omega_4 \, \mathbf{v_4} + \kappa_4 \, \mathbf{v_4^2} + \kappa_{24} \, \mathbf{v_2 v_4} + \mathbf{g_4} \, \mathbf{l_4^2}$$
(3.1.2)

Важно отметить, что главное различие между гамильтонианом, когда деформационные колебания описывались в рамках локального приближения, и гамильтонианом, когда описание деформационных колебаний базируется на нормальных мода, состоит в наличии в последнем оператора l_4^2 . В действительности, оказалось, что гамильтониан (3.1.2) в точности приводится в [69], когда Кориолисово взаимодействие неявно принято во внимание посредством оператора l_4^2 . Эта зависимость от взаимодействия Кориолиса ранее демонстрировалось для молекул типа XY_3 : в [70, 71, 68] для AsH_3 , в [72] для PH_3 и [73] для SbH_3 . С полученным гамильтонианом

мы воспроизвели экспериментальные данные для деформаций колебаний молекул арсина и фосфина. Для 6 экспериментальных данных молекулы арсина были получены 5 параметров

$$\omega_2 = 910.42(18) \text{ см}^{-1}$$

 $\kappa_2 = -3.67(19) \text{ см}^{-1}$

 $\omega_4 = 995.57(28) \text{ см}^{-1}$

 $\kappa_{24} = -1.32(82) \text{ см}^{-1}$

 $g_4 = 3.12(20) \text{ см}^{-1}$

 $\kappa_4 фиксировано нулю$
(3.1.3)

с соответствующей матрицей корреляции между ними

$$\mathfrak{M}_{corr}(6,5) = \begin{pmatrix} \omega_2 & \kappa_2 & \omega_4 & \kappa_{24} & g_4 \\ \omega_2 & 1 & & & \\ \kappa_2 & -0.98 & 1 & & \\ \omega_4 & 0 & 0 & 1 & \\ \kappa_{24} & -0.67 & 0.62 & -0.16 & 1 & \\ g_4 & 0 & 0 & -0.72 & 0 & 1 \end{pmatrix}$$
(3.1.4)

Аналогичная подгонка производили для молекулы фосфина, в результате которой при наличии 9 экспериментальных данных получен набор из 6 параметров:

$$\omega_{2} = 998.32(11) \text{ cm}^{-1}$$

$$\kappa_{2} = -6.069(30) \text{ cm}^{-1}$$

$$\omega_{4} = 1119.17(23) \text{ cm}^{-1}$$

$$\kappa_{24} = -2.43(10) \text{ cm}^{-1}$$

$$g_{4} = 2.026(49) \text{ cm}^{-1}$$

$$\kappa_{4} = -2.88(11) \text{ cm}^{-1}$$
(3.1.5)

с соответствующей матрицей корреляции между ними

$$\mathfrak{M}_{corr}(9,6) = \begin{pmatrix} \omega_2 & \kappa_2 & \omega_4 & \kappa_4 & \kappa_{24} & g_4 \\ \omega_2 & 1 & & & \\ \chi_2 & -0.96 & 1 & & & \\ \omega_4 & -0.13 & 0 & 1 & & \\ \kappa_4 & 0.15 & -0.14 & -0.95 & 1 & \\ \kappa_{24} & -0.45 & 0.42 & -0.28 & 0 & 1 \\ g_4 & -0.04 & 0.04 & -0.39 & 0.19 & 0.42 & 1 \end{pmatrix}$$
(3.1.6)

В этом случае параметры хорошо определены по сравнению с параметрами модели, разработанной в приближении локальных мод. Следующие две таблицы показывают качество подгонки для обеих молекул арсина и фосфина соответственно. Столбец 1 содержит кетвектора в нормальных обозначениях, столбцы 2 и 3 дают рассчитанные значения и разницу расчет-эксперимент соответственно.

Таблица 3.1: Рассчитанные в нормальном приближении значения деформационных колебательных мод арсина $n \leq 4$

кој	1e6	5a1	сельно	be -	энергия	энергия
Ċ	200	стс	яние		расчет	расчет-эксп
					(см -1)	(см -1)
(1	0	0)A1	>	906.751	0.000
(0	1	1)E	>	998.687	-0.538
(2	0	0)A1	>	1806.149	0.000
(1	1	1)E	>	1904.115	0.000
(0	2	0)A1	>	1991.132	0.134
(0	2	2)E	>	2003.617	0.134
(3	0	0)A1	>	2698.191	
(2	1	1)E	>	2802.188	
(1	2	0)A1	>	2895.236	
(1	2	2)E	>	2907.721	
(0	3	1)E	>	2989.820	
(0	3	3)A1	>	3014.790	
(0	3	3)A2	>	3014.790	
(4	0	0)A1	>	3582.878	
(3	1	1)E	>	3692.905	
(2	2	0)A1	>	3791.984	
(2	2	2)E	>	3804.469	
(1	3	1)E	>	3892.599	
(1	3	3)A1	>	3917.569	
(1	3	3)A2	>	3917.569	
(0	4	0)A1	>	3982.265	

(0	4	2)E	>	3994.750		
(0	4	4)E	>	4032.205		
(4	1	1)E	>	4576.268		
(3	2	0)A1	>	4681.377		
(3	2	2)E	>	4693.862		
(2	3	1)E	>	4788.022		
(2	3	3)A1	>	4812.992		
(2	3	3)A2	>	4812.992		
(1	4	0)A1	>	4883.719		
(1	4	2)E	>	4896.204		
(1	4	4)E	>	4933.659		
(4	2	0)A1	>	5563.415		
(4	2	2)E	>	5575.900		
(3	3	1)E	>	5676.091		
(3	3	3)A1	>	5701.061		
(3	3	3)A2	>	5701.061		
(2	4	0)A1	>	5777.818		
(2	4	2)E	>	5790.303		
(2	4	4)E	>	5827.758		
(4	3	1)E	>	6556.805		
(4	3	3)A1	>	6581.775		
(4	3	3)A2	>	6581.775		
(3	4	0)A1	>	6664.563		
(3	4	2)E	>	6677.048		
(3	4	4)E	>	6714.503		
(4	4	0)A1	>	7543.952		
(4	4	2)E	>	7556.437		
(4	4	4)E	>	7593.892		
			•				
			•				

Таблица 3.2: Рассчитанные значения энергий деформационных колебательных уровней в нормальном приближении молекулы для $n \leq 4$

колебательное	энергия	энергия	
состояние	расчет	расчет-эксп	
	(см -1)	(см -1)	
(1 0 0)A1 >	992.25	0.13	
(0 1 1)E >	1118.32	0.01	
(2 0 0)A1 >	1972.37		
(1 1 1)E >	2108.13	-0.01	
(0 2 0)A1 >	2226.82	-0.01	

(0	2	2)E	>	2234.93	0.00
(3	0	0)A1	>	2940.35	0.00
(2	1	1)E	>	3085.81	
(1	2	0)A1	>	3214.20	
(1	2	2)E	>	3222.31	
(0	3	1)E	>	3333.61	
(0	3	3)A1	>	3349.82	
(0	3	3)A2	>	3349.82	
(4	0	0)A1	>	3896.19	0.00
(3	1	1)E	>	4051.36	
(2	2	0)A1	>	4189.44	
(2	2	2)E	>	4197.55	
(1	3	1)E	>	4318.56	
(1	3	3)A1	>	4334.77	
(1	3	3)A2	>	4334.77	
(0	4	0)A1	>	4430.59	
(0	4	2)E	>	4438.69	
(0	4	4)E	>	4463.01	
(4	1	1)E	>	5152.55	
(3	2	0)A1	>	5160.65	
(3	2	2)E	>	5291.36	
(2	3	1)E	>	5307.57	
			•			
			•			

Стандартное отклонение в случае молекулы арсина составило $\sigma(6,5) = 0.57 \text{ cm}^{-1}$, для молекулы фосфина значение среднеквадратичного отклонения получилось равным $\sigma(9,6) = 0.30 \text{ cm}^{-1}$, что в обоих случаях сравнимо с экспериментальной погрешностью.

В заключении данного параграфа хотелось бы отметить, что модель, разработанная в приближении локальных мод для деформационных колебаний, воспроизводит в 10 раз хуже известные экспериментальные данные молекул арсина и фосфина, чем модель для того же вида колебаний в нормальных модах.

Следующим этапом данной работы являлся расчет колебательных уровней обеих молекул в локально-нормальном приближении.

3.2 Локально-нормальное приближение для описания колебан 4-х атомных молекул аксиальной симметрии

Очевидно, что цепочка групп в рамках локально-нормального приближения для описания колебаний пирамидальных молекул типа XY₃ определена как:

$$\begin{bmatrix} \begin{bmatrix} N_s, \dot{0}^3 \end{bmatrix} & \begin{bmatrix} n_s, \dot{0}^2 \end{bmatrix} & (w_s = (n_1, n_2, n_3), f_{w_s}) & (\lambda_{s_1}, \lambda_{s_2}, \lambda_{s_3}) & (C_s \sigma_s) \\ (U_s(4) \supset U_s(3) \supset K_s(3) \supset S_s(3) \approx C_{s_{3v}}) \\ & & & & \otimes \\ & U_b(1) \otimes U_b(2) \supset & O_b(2) & \supset C_{b_{3v}}) \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\$$

Гамильтониан рассматриваемой системы в первом приближении, без оператора взаимодействия, можно записать в следующем виде

$$\mathbf{H_{sLbL}^{0}} = a_0 \,\mathbf{n_s} + a_1 (\mathbf{N}_1^2 + \mathbf{N}_2^2 + \mathbf{N}_3^2) + a_2 (\mathbf{N}_1 \mathbf{N}_2 + \mathbf{N}_1 \mathbf{N}_3 + \mathbf{N}_2 \mathbf{N}_3) + a_3 \sum_{i \neq j=1}^{3} \mathbf{b}_i^+ \mathbf{b}_j$$
(3.2.2)

$$+\omega_2 \mathbf{v_2} + \kappa_2 \mathbf{v_2^2} + \omega_4 \mathbf{v_4} + \kappa_4 \mathbf{v_4^2} + \kappa_{24} \mathbf{v_2v_4} + \mathbf{g_4} \mathbf{l_4^2}$$

Аналогично, как и в предыдущей главе, мы берем во внимание резонанс Ферми eq.(2.7.11). Схема конструирования оператора взаимодействия в рамках рассматриваемой цепочки строится на использовании симметризованных тензорных операторов в группе C_{3v} . Операторы, которые следуют добавить в гамильтониан, определяются как

$$\begin{split} \mathfrak{O}_{1}^{(A_{1})} &= [{}^{(1)}\mathbf{T}_{sL}^{(A_{1})} \times [\mathbf{a}_{2}^{(A_{1})} \times \mathbf{a}_{2}^{(A_{1})}]^{(A_{1})} + H.c.]^{(A_{1})} \\ \mathfrak{O}_{2}^{(A_{1})} &= [{}^{(1)}\mathbf{T}_{sL}^{(A_{1})} \times [\mathbf{a}_{4}^{(E)} \times \mathbf{a}_{4}^{(E)}]^{(A_{1})} + H.c.]^{(A_{1})} \\ \mathfrak{O}_{3}^{(A_{1})} &= [{}^{(2)}\mathbf{T}_{sL}^{(E)} \times [\mathbf{a}_{2}^{(A_{1})} \times \mathbf{a}_{4}^{(E)}]^{(E)} + H.c.]^{(A_{1})} \\ \mathfrak{O}_{4}^{(A_{1})} &= [{}^{(2)}\mathbf{T}_{sL}^{(E)} \times [\mathbf{a}_{4}^{(E)} \times \mathbf{a}_{4}^{(E)}]^{(E)} + H.c.]^{(A_{1})} \end{split}$$

где Н.с. означает Эрмитово сопряжение, а

Для расчета матричных элементов от операторов рождения и уничтожения $\mathbf{a}_4^{(E)}$, $\mathbf{a}_4^{+(E)}$ мы использовали соотношения таблицы А.1.

l_4	C_p	l_4'	C'_p	П.М.Э
0	A_1	1	E	$\sqrt{v_4+1}$
$6p \neq 0$	Γ	6p + 1	E	$\sqrt{(v_4+l_4+2)/2}$
$6p \neq 0$	Г	6p - 1	E	$(-1)^{\Gamma}\sqrt{(v_4-l_4+2)/2}$
6p + 1	E	6p + 2	E	$-\sqrt{(v_4+l_4+2)}$
1	E	0	A_1	$-\sqrt{v_4 + 1}$
6p + 1	E	$6p \neq 0$	Γ	$-(-1)^{\Gamma}\sqrt{(v_4-l_4+2)/2}$
6p + 2	E	6p + 3	Γ	$-(-1)^{\Gamma}\sqrt{(v_4+l_4+2)/2}$
6p + 2	E	6p + 1	E	$\sqrt{(v_4 - l_4 + 2)}$
6p + 3	Г	6p + 4	E	$-(-1)^{\Gamma}\sqrt{(v_4+l_4+2)/2}$
6p + 3	Γ	6p + 2	E	$\sqrt{(v_4 - l_4 + 2)/2}$
6p + 4	E	6p + 5	E	$\sqrt{(v_4 + l_4 + 2)}$
6p + 4	E	6p + 3	Γ	$\sqrt{(v_4 - l_4 + 2)/2}$
6p + 5	E	6p + 6	Γ	$-\sqrt{(v_4+l_4+2)/2}$
6p + 5	E	6p + 4	E	$-\sqrt{(v_4 - l_4 + 2)}$
			$\Gamma = A_1 \text{ or } A_2$	
			$p=0,1,\ldots$	

Таблица 3.3: Приведенные матричные элементы (П.М.Э.) $< v_4, l_4, C_p ||a_4^{(E)}||v_4+1, l_4', C_p' > 0$

Полный гамильтониан рассматриваемой системы записывается в следующем виде $\mathbf{H_{sLbL}} = a_0 \, \mathbf{n_s} + a_1 (\mathbf{N}_1^2 + \mathbf{N}_2^2 + \mathbf{N}_3^2)$

+
$$a_2(\mathbf{N}_1\mathbf{N}_2 + \mathbf{N}_1\mathbf{N}_3 + \mathbf{N}_2\mathbf{N}_3) + a_3\sum_{i\neq j=1}^3 \mathbf{b}_i^+\mathbf{b}_j$$

$$+\omega_{2} \mathbf{v}_{2} + \kappa_{2} \mathbf{v}_{2}^{2} + \omega_{4} \mathbf{v}_{4} + \kappa_{4} \mathbf{v}_{4}^{2} + \kappa_{24} \mathbf{v}_{2} \mathbf{v}_{4} + \mathbf{g}_{4} \mathbf{l}_{4}^{2} +\alpha_{1} \mathfrak{O}_{1}^{(A_{1})} + \alpha_{2} \mathfrak{O}_{2}^{(A_{1})} + \alpha_{3} \mathfrak{O}_{3}^{(A_{1})} + \alpha_{4} \mathfrak{O}_{4}^{(A_{1})} + \sum_{i=1,3} \sum_{j=2,4} \chi_{ij} (N_{1} + N_{2} + N_{3})_{i} v_{2} v_{4},$$
(3.2.3)

где последнее слагаемое описывает связь между валентными и деформационными колебаниями.

С полученным гамильтонианом с известными экспериментальными колебательными уровнями молекул арсина и фосфина была проведена подгонка на основе метода Левенберга-Маркардта. Результаты приведены в следующих двух таблицах для молекул арсина и фосфина соответственно: Таблица 3.4: Колебательные уровни энергии молекулы арсина, рассчитанные в рамках локально-нормального приближения

	энергия	энергия	вклад	энергия	энергия	энергия
колебательное состояние	эксперимент	расч-эксп	состоя-	расч-эксп	расч-эксп	расч-эксп
	(см-1)	(см-1)	ния	(см-1)	(см-1)	(см-1)
		(34)	%	Мод.1	Мод.2	Мод.З
			1 000	1 07	1 200	
(0 0 0)28 (1 0 0);(141 A1) = -> A1	> 900.752	-3.02	1.000	1.97	-1.320	1.4
(0 0 0)28 (0 1 1);(1A1 E) = -> E	> 999.225	-0.52	1.000	0.31	9.295	0.8
(0 0 0)28 (2 0 0);(1A1 A1) = -> A1	> 1806.149	0.89	0.999	-1.59	1.853	-2.8
(0 0 0)28 (1 1 1);(1A1 E) = -> E	> 1904.115	0.46	0.999	0.53	-0.427	0.4
(0 0 0)28 (0 2 0);(141 41)> 41	> 1990.998	0.02	0.997	-6.25	1.602	-5.2
(0 0 0)28 (0 2 2);(1A1 E)> E	> 2003.483	0.18	0.999	-5.92	-9.707	6.9
(1 0 0)27 (0 0 0);(1A1 A1)> A1	> 2115.164	1.02	0.999	0.14	0.932	1.3
(1 0 0)27 (0 0 0);(1E A1) => E	> 2126.423	0.03	0.999	0.34	-1.537	2.3
(1 0 0)27 (1 0 0);(1A1 A1)> A1	> 3013.000	0.01	0.999	0.64	3.953	-2.0
(1 0 0)27 (0 1 1);(1A1 E)> E	> 3102.000	0.29	0.999	-0.16	-0.427	-2.3
(2 0 0)26 (0 0 0);(1A1 A1)> A1	> 4166.772	0.86	0.999	2.49	3.033	2.2
(2 0 0)26 (0 0 0);(1E A1)> E	> 4167.935	0.73	0.999	1.34	-2.245	2.4
(1 1 0)26 (0 0 0);(1A1 A1)> A1	> 4237.700	1.15	0.986			2.0
(1 1 0)26 (0 0 0);(1E A1)> E	> 4247.720	0.35	0.996			2.6
(2 0 0)26 (1 0 0);(1A1 A1)> A1	> 5057.000	-4.17	0.974			-0.6
(2 0 0)26 (1 0 0);(1E A1)> E	> 5057.000	-0.77	0.987			-0.9
(1 1 0)26 (1 0 0);(1A1 A1)> A1	> 5128.000	0.68	0.986			-1.3
(1 1 0)26 (1 0 0);(1E A1)> E	> 5128.000	4.70	0.996			-7.9
(2 0 0)26 (0 1 1);(1A1 E)> E	> 5158.000	-0.21	0.984			0.5
(2 0 0)26 (0 1 1);(1E E)> A1	> 5158.000	0.38	0.964			1.1
(3 0 0)25 (0 0 0);(1A1 A1)> A1	> 6136.340	-0.64	0.999	-0.23	-4.667	-3.2
(3 0 0)25 (0 0 0);(1E A1)> E	> 6136.330	-0.62	0.999	-0.29	1.951	-2.9
(2 1 0)25 (0 0 0);(1A1 A1)> A1	> 6275.830	1.34	0.979	-1.37	-2.321	1.0
(2 1 0)25 (0 0 0);(1E A1)> E	> 6282.350	0.49	0.975			1.8
(2 1 0)25 (0 0 0);(2E A1)> E	> 6294.710	0.07	0.967	-1.00	2.238	2.7
(1 1 1)25 (0 0 0);(1A1 A1)> A1	> 6365.950	-0.36	0.963			2.7
(4 0 0)24 (0 0 0);(1E A1)> E	> 8028.969	-1.83	0.973	9.87	-1.389	0.3
(4 0 0)24 (0 0 0);(1A1 A1)> A1	> 8028.977	-1.82	0.951	9.90	0.713	0.2
(3 1 0)24 (0 0 0);(1A1 A1)> A1	> 8249.520	-0.68	1.000			-3.8
(3 1 0)24 (0 0 0);(2E A1)> E	> 8257.270	-2.10	0.975			3.7
(3 1 0)24 (0 0 0);(1E A1)> E	> 8258.380	*	0.957			-2.2
(5 0 0)23 (0 0 0);(1E A1)> E	> 9841.400	0.33	0.999			5.3
(5 0 0)23 (0 0 0);(1A1 A1)> A1	> 9841.400	0.22	0.999			-5.3
(6 0 0)22 (0 0 0);(1A1 A1)> A1	> 11576.290	0.78	0.999			5.2
(6 0 0)22 (0 0 0);(1E A1)> E	> 11576.290	0.78	0.999			5.0

* не включены в подгонку Мод. 1 [65] Мод. 2 [67] Мод. 3 [10]

Стандартное отклонение $\sigma(34, 16) = 1.98 \text{ cm}^{-1}$. Очевидно, что данная модель удовлетворительно воспроизводит экспериментальные данные, здесь для сравнения приведены расчеты других авторов, но наиболее полным из них является расчет по модели 3, стандартное отклонение

которого для тех же экспериментальных уровней с 13 параметрами составляет $\sigma(34, 13) = 3.58 \text{ cm}^{-1}$. Параметры, полученные в результате расчета в рамках нашей модели:

$$\begin{array}{rcl} a_{0} &=& 2161.625(50) \ \mathrm{cm}^{-1} \\ a_{1} &=& -38.668(12) \ \mathrm{cm}^{-1} \\ a_{2} &=& -1.70(11) \ \mathrm{cm}^{-1} \\ a_{3} &=& -3.40(11) \ \mathrm{cm}^{-1} \\ \omega_{2} &=& 903.92(25) \ \mathrm{cm}^{-1} \\ \omega_{2} &=& 903.92(25) \ \mathrm{cm}^{-1} \\ \omega_{4} &=& 995.52(22) \ \mathrm{cm}^{-1} \\ \omega_{4} &=& 995.52(22) \ \mathrm{cm}^{-1} \\ \omega_{4} &=& 2.14(72) \ \mathrm{cm}^{-1} \\ \omega_{4} &=& 2.14(72) \ \mathrm{cm}^{-1} \\ \alpha_{4} &=& 3.17(17) \ \mathrm{cm}^{-1} \\ \alpha_{2} &=& -0.057(88) \ \mathrm{cm}^{-1} \\ \alpha_{3} &=& 0 \ \mathrm{cm}^{-1} \\ \alpha_{4} &=& 0.063(14) \ \mathrm{cm}^{-1} \\ \chi_{12} &=& -6.92(31) \ \mathrm{cm}^{-1} \\ \chi_{14} &=& -12.63(47) \ \mathrm{cm}^{-1} \\ \chi_{34} &=& 3.15(57) \ \mathrm{cm}^{-1} \end{array}$$

Аналогичные результаты получены и для молекулы фосфина.

Таблица 3.5: Колебательные уровни энергии молекулы фосфина, рассчитанные в рамках локально-нормального приближения

колебательное	состояние			энергия эксперимент (см-1)	энергия расч-эксп (см-1)	вклад состоя- ния %	энергия расч-эксп (см-1) Мод. 1
(0 0 0)28 (1	0 0);(1A1 A:	1)> A1	. >	992.13	0.39	1.000	1.71
(0 0 0)28 (0	1 1);(1A1 E)> E	>	1118.31	0.07	1.000	0.39
(0 0 0)28 (2	0 0);(1A1 A	1)> A1	. >	1972.55	0.25	0.999	3.11
(0 0 0)28 (1	1 1);(1A1 E)> E	>	2108.15	0.38	0.999	1.47
(0 0 0)28 (0	2 0);(1A1 A:	1)> A1	. >	2226.83	-0.09	0.999	-1.83
(0 0 0)28 (0	2 2);(1A1 E)> E	>	2234.93	-0.16	0.999	2.83
(1 0 0)27 (0	0 0);(1A1 A:	1)> A1	. >	2321.12	-0.24	0.999	0.79
(1 0 0)27 (0	0 0);(1E A:	1)> E	>	2326.87	-1.82	0.999	0.33
(0 0 0)28 (3	0 0);(1A1 A:	1)> A1	. >	2940.77	-0.07	0.999	3.67
(0 0 0)28 (1	2 0);(1A1 A:	1)> A1	. >	3214.20	0.34	0.999	1.36
(1 0 0)27 (1	0 0);(1A1 A:	1)> A1	. >	3305.80	0.24	0.999	-0.70
(1 0 0)27 (0	1 1);(1A1 E)> E	>	3423.90	0.32	0.999	-2.15

(0	0	0)28 (4	0	0);(1A1	A1)	>	A1	>	3896.02	0.63	0.999	2.98
(1	0	0)27 (2	0	0);(1A1	A1)	>	A1	>	4282.40	-3.44	0.999	0.66
(2	0	0)26 (0	0	0);(1E	A1)	>	Е	>	4566.26	-0.78	0.907	1.66
(2	0	0)26 (0	0	0);(1A1	A1)	>	A1	>	4565.78	-0.20	0.873	-0.11
(1	1	0)26 (0	0	0);(1A1	A1)	>	A1	>	4644.66	-0.13	0.997	0.15
(2	0	0)26 (1	0	0);(1E	A1)	>	Е	>	5540.00	-5.73	0.969	0.37
(2	0	0)26 (0	1	1);(1A1	Е)	>	Е	>	5645.40	2.39	0.997	1.18
(2	0	0)26 (2	0	0);(1A1	A1)	>	A1	>	6503.10	1.33	0.981	-0.11
(3	0	0)25 (0	0	0);(1A1	A1)	>	A1	>	6714.60	2.77	0.997	-3.73
(3	0	0)25 (0	0	0);(1E	A1)	>	Е	>	6714.60	2.77	0.997	-0.37
(2	1	0)25 (0	0	0);(1A1	A1)	>	A1	>	6881.53	-0.79	0.814	-0.97
(2	1	0)25 (0	0	0);(1E	A1)	>	Е	>	6883.73	2.37	0.851	-1.27
(2	1	0)25 (0	0	0);(2E	A1)	>	Е	>	6890.86	0.30	0.902	0.58
(1	1	1)25 (0	0	0);(1A1	A1)	>	A1	>	6971.16	-0.52	0.997	-0.06
(3	0	0)25 (1	0	0);(1E	A1)	>	Е	>	7679.10	2.60	0.997	6.55
(2	1	0)25 (0	1	1);(1E	Е)	>	Е	>	7961.90	-1.68	0.967	3.26
(2	1	0)25 (0	1	1);(1E	Е)	>	A1	>	7961.90	1.16	0.968	-0.83
(4	0	0)24 (0	0	0);(1A1	A1)	>	A1	>	8788.00	0.28	0.997	2.48
(4	0	0)24 (0	0	0);(1E	A1)	>	Е	>	8788.00	0.28	0.997	-7.60
(3	1	0)24 (0	0	0);(1A1	A1)	>	A1	>	9040.00	-1.14	0.995	-3.75
(3	1	0)24 (0	0	0);(1E	A1)	>	Е	>	9040.00	1.72	0.835	-5.24
(6	0	0)22 (0	0	0);(1A1	A1)	>	A1	>	12678.21	-1.18	0.999	-2.54
(6	0	0)22 (0	0	0);(1E	A1)	>	Е	>	12678.21	-1.18	0.999	-2.80

Мод. 1 [11]

Стандартное отклонение $\sigma(35, 17) = 2.33 \text{ cm}^{-1}$. Как и в случае молекулы арсина, данная модель удовлетворительно воспроизводит экспериментальные данные. Для сравнения мы взяли единственный проведенный расчет для этой молекулы [11]. Среднеквадратичное отклонение данного расчета для тех же 35 экспериментальных уровней, подогнанных в рамках модели MORBID, сотстоящей из 27 параметров, составило $\sigma(35, 27) = 4.35 \text{ cm}^{-1}$. Параметры, полученные в результате расчета в рамках нашей модели:

$$a_{0} = 2365.6778(82) \text{ cm}^{-1}$$

$$a_{1} = -42.1339(21) \text{ cm}^{-1}$$

$$a_{2} = -0.193(19) \text{ cm}^{-1}$$

$$a_{3} = -1.369(23) \text{ cm}^{-1}$$

$$\omega_{2} = 998.633(19) \text{ cm}^{-1}$$

$$\kappa_{2} = -6.1175(65) \text{ cm}^{-1}$$

$$\omega_{4} = 1119.295(24) \text{ cm}^{-1}$$

$$\kappa_{4} = -2.943(15) \text{ cm}^{-1}$$

$$\kappa_{24} = -2.356(55) \text{ cm}^{-1}$$

$$g_{4} = 2.024(24) \text{ cm}^{-1}$$

$$\alpha_{1} = 0.0399(42) \text{ cm}^{-1}$$

$$\alpha_{2} = -0.0723(22) \text{ cm}^{-1}$$

$$\alpha_{3} = 0 \text{ cm}^{-1}$$

$$\alpha_{4} = 0.0678(11) \text{ cm}^{-1}$$

$$\chi_{12} = -7.360(31) \text{ cm}^{-1}$$

$$\chi_{14} = -15.114(47) \text{ cm}^{-1}$$

$$\chi_{34} = -11.180(64) \text{ cm}^{-1}$$

Таким образом в рамках локально-нормального приближения с использованием рассматриваемых выше цепочек групп возможно описание колебательных мод пирамидальных молекул типа XY₃.

Заключение

В данной работе были исследованиы колебательные уровни энергии пирамидальных молекул типа XY_3 . Впервые для описания колебательной структуры 4-х атомных молекул аксиальной симметрии был адаптирован формализм U(p + 1). Это означает, что с одной стороны колебательные степени свободы рассматривались как ангармонические осцилляторы, с другой стороны если p колебательных степеней идентичны, то они рассматриваются в рамках p раз вырожденного осциллятора. В качестве группы вырождения, то есть группы, способной дать информацию об энергетических уровнях и их вырождениях, для p раз вырожденного осциллятора берется унитарная группа U(p). Динамические свойства такой системы описываются унитарной группой U(p + 1).

Формализм U(p+1) базируется на использовании унитарных групп Ли, поэтому в данной работе приводится основная информация, касающаяся данных групп.

Было показано, что для описания валентных колебаний пирамидальных молекул типа XY_3 целесообразно использовать трижды вырожденный осциллятор, то есть цепочку групп $U_{\text{вал.}}(4) \supset U_{\text{вал.}}(3) \supset K_{\text{вал.}}(3) \supset S_{\text{вал.}}(3) \approx C_{3v}$. Для деформационных колебаний цепочка групп, построенная на основе трижды вырожденного осциллятора, не способна корректно описать колебательную структуру 4-атомных молекул аксиальной симметрии. Поэтому деформационные колебания описываются в рамках цепочки групп, построенной для одного одномерного осциллятора и одного двумерного осцилляторов: $U_{\text{деф.}}(3) \otimes U_{\text{деф.}}(2) \supset U_{\text{деф.}}(2) \otimes U_{\text{деф.}}(2) \otimes U_{\text{деф.}}(2)$

Колебательные уровни пирамидальных молекул типа XY₃ описываются на основе предложенных выше двух цепочек, учитывая резонанс Ферми и взаимодействие между колебаниями. На основе разработанной модели были воспроизведены колебательные уровни молекул арсина и фосфина. Было показано, что воспроизводимость данной модели не хуже, а в некоторых случаях лучше ранее рассматриваемых моделей. То есть был разработан алгоритм, создан пакет програм на языках FORTRAN95 и MATHEMATICA5.0, позволяющий воспроизводить известные экспериментальные данные с точностью, лучшей, чем известные до сих пор методы.

Приложение А

Программы расчета

Для того, чтобы рассчитать матричные элементы операторов, входящих в гамильтониан нулевого приближения $H_1^e = \sum_{i \neq j=1,2,3} b_i^+ b_j$, $H_1^p = \sum_{i \neq j=5,6,7} b_i^+ b_j$, операторов взаимодействия как для локально-локальной модели, так и для локально-нормальной модели, а также для осуществления подгонки, в данной работе использовались язык программирования FOR-TRAN 95 и язык аналитического программирования MATHEMATICA 5.0 (в частности пакет "Quantum Algebra"). В данном приложении рассматриваются проблемы, которые были решены при программировании и численном расчете, для решении поставленной в данной работе задачи.

А.1 Расчет матричных элементов операторов H_1^e и H_1^p

Начнем рассмотрение с процесса программирования симметризации кет-векторов, используя результаты, приведенные в §§2.4.3. Покажем на примере, каким образом можно запрограммировать кет-вектор $|(n_1 n_2 n_3), 1E_1\rangle = \frac{1}{\sqrt{12}}[2|n_1 n_2 n_3\rangle - |n_3 n_2 n_1\rangle - |n_1 n_3 n_2\rangle + 2|n_2 n_1 n_3\rangle - |n_2 n_3 n_1\rangle - |n_3 n_1 n_2\rangle]$. Очевидно, что сначала необходимо описать все переменные, касающиеся симметризации кет-веторов:

где переменная meskets - наш симметризованный вектор, s - квантовые числа симметризованного вектора, то есть $n_1 \equiv s_1$, $n_2 \equiv s_2$ et $n_3 \equiv s_3$; multis - мультиплетность кет-вектора (в рассматриваемом нами примере multis $\equiv 1$); symetries - симметрия кет-вектора. В нашей программе мы определили симметрию A_1 как 1, A_2 как 2 и E_1 , E_2 как 3 и 4 соответственно; combils - квантовые числа несимметризованного кет-вектора. Для описания этой переменной мы ввели матрицу (6x3), где 6 - число возможных несимметризованныхкет-векторов (возможны следующие несимметризованные кет-вектора: $|n_1 n_2 n_3\rangle$, $|n_1 n_3 n_2\rangle$, $|n_2 n_1 n_3\rangle$, $|n_2 n_3 n_1\rangle$, $|n_3 n_1 n_2\rangle$, $|n_3 n_2 n_1\rangle$) и 3 - число квантовых чисел в этих возможных несимметризованных кет-векторах; и наконец as - вес несимметризованного кет-вектора (например as $= 2/\sqrt{12}$ для $|n_2 n_1 n_3\rangle$ в $|(n_1 n_2 n_3), 1E_1\rangle$).

В самом начале переменные as и combils зануляются:

```
do l=1,4
    do m=1,6
        meskets(i)%combils(m,1)=-1000
        meskets(i)%as(m)=0.d0
        enddo
enddo
```

где і - номер кет-вектора. В случае переменной combils, значение нуль возможно для квантового числа, именно поэтому в этом случае мы взяли за -1000 "истинный нуль". Рассмотрим часть программы, показывающей симметризацию кет-вектора $|(n_1 n_2 n_3), 1E_1\rangle$:

```
i=1 do s1=0,NNs
do s2=0,NNs-s1
 do s3=0,NNs-(s1+s2)
     . . .
   if ((s1.ne.s2).and.(s2.ne.s3).and.(s1.ne.s3)) then
   meskets(i)%s(1)=s1
   meskets(i)%s(2)=s2
   meskets(i)%s(3)=s3
   meskets(i)%multis=1
   meskets(i)%symetries=3
   meskets(i)%combils(1,1)=s1
   meskets(i)%combils(1,2)=s2
   meskets(i)%combils(1,3)=s3
   meskets(i)%combils(2,1)=s1
   meskets(i)%combils(2,2)=s3
   meskets(i)%combils(2,3)=s2
   meskets(i)%combils(3,1)=s2
   meskets(i)%combils(3,2)=s1
   meskets(i)%combils(3,3)=s3
```
```
meskets(i)%combils(4,1)=s2
   meskets(i)%combils(4,2)=s3
   meskets(i)%combils(4,3)=s1
   meskets(i)%combils(5,1)=s3
   meskets(i)%combils(5,2)=s1
   meskets(i)%combils(5,3)=s2
   meskets(i)%combils(6,1)=s3
   meskets(i)%combils(6,2)=s2
   meskets(i)%combils(6,3)=s1
   meskets(i)%as(1)=2.d0/dsqrt(12.d0)
   meskets(i)%as(2)=-1.d0/dsqrt(12.d0)
   meskets(i)%as(3)=2.d0/dsqrt(12.d0)
   meskets(i)%as(4)=-1.d0/dsqrt(12.d0)
   meskets(i)%as(5)=-1.d0/dsqrt(12.d0)
   meskets(i)%as(6)=-1.d0/dsqrt(12.d0)
    i=i+1
    . . .
   endif
 enddo
enddo
enddo
```

NNs соответствует значению максимального расчетного числа квантов. Далее рассмотрим алгоритм, позволяющий рассчитать матричные элементы от любого оператора (суммы операторов) типа

$$b_1^{\dagger p_1} b_2^{\dagger p_2} b_3^{\dagger p_3} b_1^{m_1} b_2^{m_2} b_3^{m_3} \tag{A.1.1}$$

в запрограммированном выше базисе. Можно легко получить результат действия оператора (A.1.1) на несимметризованный кет-вектор, используя следующее выражение:

$$b_1^{\dagger p_1} b_2^{\dagger p_2} b_3^{\dagger p_3} b_1^{m_1} b_2^{m_2} b_3^{m_3} |(n_1 n_2 n_3)\rangle = a |((n_1 - m_1 + p_1) (n_2 - m_2 + p_2) (n_3 - m_3 + p_3))\rangle$$
(A.1.2)

где $a = \frac{\sqrt{n_1! n_2! n_3! (n_1 - m_1 + p_1)! (n_2 - m_2 + p_2)! (n_3 - m_3 + p_3)!}}{(n_1 - m_1)! (n_2 - m_2)! (n_3 - m_3)!}$. Получить значение матричного элемента можно теперь, взяв скалярное произведение полученного кет-вектора (A.1.2) с первоначальными кет-вектором. Очевидно, что эта процедура также применима для нахождения значений матричных элементов оператора H_1^p .

Рис. А.1: Структура программы

А.2 Локально-локальная модель

В случае локально-локальной модели имеются три типа операторов: H_1^e , H_1^p и оператор $H_{e\otimes p}$, следовательно, необходимо рассчитать матричные элементы этих операторов в объединенном (валентно-деформационном) базисе:

$$|n_{e1} n_{e2} n_{e3} (n_{e4}) n_{p1} n_{p2} n_{p3} (n_{p4}) (r_e C_e \sigma_e - r_p C_p \sigma_p) \to C \sigma \rangle$$

= $\sum_{\sigma_e, \sigma_p} [C]^{1/2} F \begin{pmatrix} C_e & C_p & C \\ \sigma_e & \sigma_p & \sigma \end{pmatrix}$ (A.2.1)
 $|n_{e1} n_{e2} n_{e3} n_{e4}, r_e C_e \sigma_e \rangle |n_{p1} n_{p2} n_{p3} n_{p4}, r_p C_p \sigma_p \rangle$

где

$$\mathfrak{C}\left(\begin{array}{ccc}C_{e} & C_{p} & C\\\sigma_{e} & \sigma_{p} & \sigma\end{array}\right) = \left[C\right]^{1/2} F\left(\begin{array}{ccc}C_{e} & C_{p} & C\\\sigma_{e} & \sigma_{p} & \sigma\end{array}\right) \tag{A.2.2}$$

- коэффициенты Клебша-Гордана для молекулярной группы C_{3v} .

Следовательно, необходимо запрограммировать процедуру симметризации кет-векторов валентных и деформационных колебаний, затем построить объединенный валенто - деформационный колебательный базис (A.2.1) и, наконец, определить матричные элементы от оператора (или суммы операторов) типа

$$b_{1}^{\dagger p_{1}} b_{2}^{\dagger p_{2}} b_{3}^{\dagger p_{3}} b_{4}^{\dagger p_{4}} b_{5}^{\dagger p_{5}} b_{6}^{\dagger p_{6}} b_{7}^{\dagger p_{7}} b_{8}^{\dagger p_{8}} b_{1}^{m_{1}} b_{2}^{m_{2}} b_{3}^{m_{3}} b_{4}^{m_{4}} b_{5}^{m_{5}} b_{6}^{m_{6}} b_{7}^{m_{7}} b_{8}^{m_{8}}$$
(A.2.3)

в объединенном валентно-колебательном базисе.

Процедура симметризации кет-векторов такая же, что описана в §§А.1: необходимо построить два набора переменных типа meskets (один для валентных колебаний, другой для деформационных). При программировании процедуры построения объединенного базиса важно учесть суммирование (А.2.1). В данном случае мы имеем 8 квантовых чисел, вот почему в операторе (А.2.3) существуют операторы, которые действуют каждый на соответствующее ему квантовое число: $\{b_1^{\dagger p_1}, b_1^{m_1}\} \mapsto n_{e1}, \{b_2^{\dagger p_2}, b_2^{m_2}\} \mapsto n_{e2}, \{b_3^{\dagger p_3}, b_3^{m_3}\} \mapsto n_{e3}, \{b_4^{\dagger p_4}, b_4^{m_4}\} \mapsto$ $n_{e4}, \{b_5^{\dagger p_5}, b_5^{m_5}\} \longmapsto n_{p1}, \{b_6^{\dagger p_6}, b_6^{m_6}\} \longmapsto n_{p2}, \{b_7^{\dagger p_7}, b_7^{m_7}\} \longmapsto n_{p3}$ и $\{b_8^{\dagger p_8}, b_8^{m_8}\} \longmapsto n_{p4}$. Можно использовать выражение А.1.2, принимая во внимание 8 квантовых чисел. Для нахождения значения матричного элемента, необходимо затем рассчитать скалярное произведение первоначальной кет-вектора и кет-вектора, полученного в результате действия оператора (А.2.3) на первоначальный.

А.З Алгоритм расчетов

Сейчас мы рассмотрим проблему, возникшую прирасчете матричных элементов гамильтониана нашей модели в объединенном базисе. Цель нашей работы - определение параметров нашего гамильтониана. Схематически алгоритм нашей программы представлен на рисунке A.1.

Рассмторим часть, касающуюся подгонки экспериментальных данных. Эта процедура, которая кажется на первый взгляд тривиальной, однако при ее реализации возникли некоторые трудности, касающиеся времени расчета и памяти вычислительной машины, а также параметров, чувствительных даже к малейшим изменениям. Проблема памяти вычислительной машины связана с большим числом расчетных колебательных уровней. Размерность матрицы гамильтониана порядка 48000х48000. Теория групп позволяет нам разбить матрицу гамильтониана на три подматрицы, соответствующие трем неприводимым представлениям рассматриваемой молекулярной группы A_1 , A_2 et E размерности 17000, 14000, 17000.

Кроме того, из-за резонанса между валентными и деформационными колебаниями 2:1 $((\nu_1(A_1) \simeq \nu_3(E)) \simeq 2 (\nu_2(A_1) \simeq \nu_4(E)))$ можно ввести число полиады K, поэтому каждую из подматриц, принадлежащих тому или иному неприводимому представлению, можно разделить еще на подматрицы, соответствующие различным значениям числа полиады $K = 2n_e + n_p$, то есть каждая из трех подматриц еще разделится на 28 блоков ¹ размерности 2200. Далее можно применить стандартную процедуру диагонализации для каждого из подблоков.

Последняя проблема касается чувствительности параметров, поэтому мы вместо обычного нелинейного метода наименьших квадратов для подгонки применили метод Левенберг-Маркардта.

 $^{^1}$ мы рассчитываем колебательные уровни до $n_e{=}7$ и $n_p{=}14$

Рис. А.2: Матрица гамильтониана

А.4 Метод Левенберг-Маркардта

Нелинейная подгонка

Подгонка экспериментального спектра состоит в нахождении минимума разницы между экспериментальным и расчетным спектрами. Приведем кратко основы моменты процедуры подгонки. Более подробно с данной процедурой можно познакомиться в [8, 9].

Если мы измерим величину y, которая является функцией нескольких переменных, например вектора переменных \vec{x} , то базовые функции в этом случае будут иметь вид: $X_1(\vec{x}), \ldots, X_M(\vec{x})$ и функция χ^2 , представляющая качество подгонки будет выражаться как

$$\chi^{2} = \sum_{i=1}^{N} \left(\frac{y_{i} - \sum_{k=1}^{M} a_{k} X_{k}(x_{k})}{\sigma_{i}} \right)^{2}, \tag{A.4.1}$$

где a_k - неизвестные параметры.

Рассмотрим процедуру подгонки, когда модель зависит от M неизвестных параметров $a_k \ (k = 1, 2, ..., M)$ нелинейным способом. Необходимо постороить функцию χ^2 и минимизировать ее. В случае нелинейной модели минимизация осуществляется итерационно. Параметрам необходимо придать первоначальные значения, запустить процедуру, которая нам даст решение и продолжать до минимума χ^2 .

Достаточно аппроксимировать функцию χ^2 с помощью квадратичной формы

$$\chi^2(\vec{a}) \approx \gamma - \vec{d} \cdot \vec{a} + \frac{1}{2} \vec{a} \cdot D \cdot \vec{a}$$
(A.4.2)

где \vec{d} - вектор размерности M и D - матрица размерности $M \ge M \ge M$. Хорошо известно, каким образом текущие параметры \vec{a}_{cour} связаны с "минимальными" параметрами \vec{a}_{min} :

$$\vec{a}_{min} = \vec{a}_{cour} + D^{-1} \cdot \left[-\nabla \chi^2(\vec{a}_{cour}) \right]$$
(A.4.3)

в случае какого-либо "хорошего" приближения. Но может оказаться, что А.4.2 является "плохим" приближением. В этом случае необходимо произвольно сделать шаг фиксированной длины в направлении, обратном градиенту, то есть

$$\vec{a}_{proch} = \vec{a}_{cour} - \text{const} \times \nabla \chi^2(\vec{a}_{cour})$$
 (A.4.4)

Чтобы использовать A.4.3 или A.4.4, мы должны уметь рассчитывать градиент от любой функции χ^2 для любого набора параметров \vec{a} . Для использования A.4.3 нам необходима матрица D, которая является матрицей производных второго порядка от функции χ^2 .

Расчет градиента и матрицы производных второго порядка

Имеется модель для подгонки

$$y = y(x; \vec{a}) \tag{A.4.5}$$

и функция

$$\chi^{2}(\vec{a}) = \sum_{i=1}^{N} \left(\frac{y_{i} - y(x; \vec{a})}{\sigma_{i}} \right)^{2}$$
(A.4.6)

Градиент функции χ^2 , зависящей от параметров \vec{a} выражается как

$$\frac{\partial \chi^2}{\partial a_k} = -2\sum_{i=1}^N \frac{y_i - y(x_i; \vec{a})}{\sigma_i^2} \frac{\partial y_i(x_i; \vec{a})}{\partial a_k} \quad k = 1, 2, \dots, M.$$
(A.4.7)

Принимая во внимание следующие частные производные, получаем

$$\frac{\partial^2 \chi^2}{\partial a_k \partial a_l} = 2 \sum_{i=1}^N \frac{1}{\sigma_i^2} \left[\frac{\partial y(x_i; \vec{a})}{\partial a_k} \frac{\partial y(x_i; \vec{a})}{\partial a_l} - (y_i - y(x_i; \vec{a})) \frac{\partial^2 y(x_i; \vec{a})}{\partial a_k \partial a_l} \right].$$
(A.4.8)

Для упрощения обозначений удобно положить, что

$$\beta_k \equiv -\frac{1}{2} \frac{\partial^2 \chi^2}{\partial a_k} \quad \alpha_{kl} \equiv -\frac{1}{2} \frac{\partial^2 \chi^2}{\partial a_k \partial a_l} \tag{A.4.9}$$

и $[\alpha] = 1/2D$ в А.4.3. Используя эти обозначения, можно переписать наше уравнение в следующем виде:

$$\sum_{l=1}^{M} \alpha_{kl} \delta a_l = \beta_k \tag{A.4.10}$$

Другими словами, δa_l - добавка, полученная в результате процедуры подгонки, используя первоначальные параметры. В этом контексте подгонки методом наименьших квадратов матрица [α] называется матрицей кривизны.

Кроме того, поскольку χ^2 "далека"от того, чтобы быть квадратичной формой, мы будем использовать метод более наклонного спуска А.4.4, который выражается просто как

$$\delta a_l = \text{const} \times \beta_l \tag{A.4.11}$$

Можно заметить, что компоненты матрицы вторых производных α_{kl} зависят от первых и вторых производных по параметрам \vec{a} .

Алгоритм Левенберг-Маркардта

Левенберг и Маркардт предложили более эффективный и тонкий метод. Этот метод используется для нелинейной подгонки.

Метод базируется на двух важных моментах. Рассмотрим порядок величины "const"в уравнении A.4.11. Именно компоненты матрицы вторых производных дают нам информацию о порядка величины "const".

Можно кратко описать метод Левенберг-Маркардта как алгоритм нахождения минимума функции χ^2 , используя A.4.10 и A.4.11, то есть на основе двух идей. Первая идея состоит в уточнении алгоритма более наклонного спуска A.4.11, заменяя константу (шаг) на вектор. Можно интерпретировать этот выбор "выбор масштаба"для каждого параметра, шага, который мы осуществим в направлении минимума функции χ^2 . Можно утверждать, что порядок величины этой константы может быть определен компонентами матрицы кривизны [α]; поскольку единственная компонента [α] зависит от параметра a_k , который имеет требуемую размерность $1/\alpha_{kk}$, алгоритм A.4.11 должен быть модифицирован как:

$$\delta a_l = \frac{1}{\lambda \alpha_{ll}} \beta_l \quad \text{ou} \quad \lambda \alpha_{ll} \delta a_l = \beta_l \tag{A.4.12}$$

где λ - фактор > 1, позволяющий глобально (не компонента за компонентой) уменьшить шаг, который слишком большой (как это делается в мтоде более наклонного спуска).

Вторая идея состоит в предположении, что

$$\alpha'_{jj} \equiv \alpha_{jj}(1+\lambda)$$

$$\alpha'_{jk} \equiv \alpha_{jk} \ (j \neq k)$$
(A.4.13)

Два алгоритма А.4.10 и А.4.11 заменяются на единственную формулировку: найти поправку $\delta ec{a}$, то есть решение системы

$$\sum_{l=1}^{M} \alpha'_{kl} \delta a_l = \beta_k \tag{A.4.14}$$

Когда значение λ велико, преобладает диагональ матрицы [α]' и предыдущая система эквивалентна A.4.12; когда наоборот λ близко к 0, эта система эквивалентна A.4.10.

Алгоритм, предложенный Маркардтом, состоит в следующем:

- 1. Рассчитать $\chi^2(\vec{a})$ с первоначальными параметрами;
- 2. Присвоить какое-нибудь значение λ , например $\lambda = 0.001$;
- 3. Решить систему А.4.13 для $\delta \vec{a}$ и оценить $\chi^2(\vec{a}+\delta \vec{a})$
- 4. Если $\chi^2(\vec{a} + \delta \vec{a}) \geq \chi^2(\vec{a})$, мы умножаем значение λ на 10 (или другой фактор) возвращаемся к пункту 4;
- 5. Если $\chi^2(\vec{a} + \delta \vec{a}) < \chi^2(\vec{a})$, мы делим значение λ на 10 (или другой фактор), принимаем новые значения параметров $\vec{a} \mapsto \vec{a} + \delta \vec{a}$ и снова вернуться к пункту 4;

6. Остановить процедуру, когда $|\chi^2(\vec{a} + \delta \vec{a}) - \chi^2(\vec{a})| \ll 1.$

Когда мы найдем минимум функции χ^2 для набора M параметров \vec{a}_{min} , вариация χ^2 вблизи этого минимума χ^2_{min} для вариации $\delta \vec{a}$ подгоночных параметров определяется как (применяя уравнение А.4.2 к χ^2 и поскольку $\vec{\nabla}\chi^2(\vec{a}_{min}) = 0$)

$$\chi^2 = \chi^2_{min} + \delta \vec{a} [\alpha] \delta \vec{a} \tag{A.4.15}$$

Рассмотрим в частности вариацию χ^2 , когда мы произвольно варируем единственный параметр a_1 , остальные параметры остаются фиксированными их минимальному значению \vec{a}_{min} . Обозначим через $\chi^2_{M-1} \chi^2$ с M-1 степенями свободы, полученных при фиксировании параметра a_1 какому-либо произвольному значению и пусть \vec{a} - новый набор параметров, который минимизирует χ^2 . Положим, что $\Delta \chi^2_1 \equiv \chi^2_{M-1} - \chi^2_{min}$ и $\delta \vec{a} = \vec{a} - a_{min}$ (отметим, что ни одна из компонент вектора $\delta \vec{a}$ не равна нулю). Покажем, что $\Delta \chi^2_1(a_1)$ распределена как квадрат случайной величины в нормальном распределенииеst. Другими словами, формально мы будем иметь $\Delta \chi^2_1 < 1$ для $\delta a_1 < 1\sigma$ (68.3% случаев), $\Delta \chi^2_1 < 4$ для $\delta a_1 < 2\sigma$ (95.4% случаев), $\Delta \chi^2_1 < 9$ для $\delta a_1 < 3\sigma$ (99.73% случаев) и.т.д.

Мы можем, однако, связать погрешность δa_1 параметра $a_1 c \Delta \chi_1^2$, заметив, что $\vec{\nabla} \chi^2(\vec{a}_{min}) = 0$ для всех компонент, за исключением первой. Согласно А.4.9 и А.4.10 $[\alpha]\delta \vec{a} = -\frac{1}{2}\vec{\nabla} \chi^2$, матрица ковариантности $C = [\alpha]^{-1}$ такова, что

$$\delta a_1 = -\frac{1}{2} \frac{\partial \chi^2}{\partial a_1} C_{11}. \tag{A.4.16}$$

Из А.4.15 и А.4.16 следует, что

$$\Delta \chi_1^2 = \delta \vec{a} [\alpha] \delta \vec{a} = (\delta a_1)^2 / C_{11}, \qquad (A.4.17)$$

поэтому

$$\delta a_1 = \pm \sqrt{\Delta \chi_1^2} \sqrt{C_{11}}.\tag{A.4.18}$$

Следовательно, если мы определим погрешность параметра a_1 как $\delta_1 \equiv 1\sigma$ и $\Delta\chi_1^2 \equiv 1$, то

$$\delta a_1 = \sqrt{C_{11}} \tag{A.4.19}$$

А.5 Локально-нормальная модель

Напомним, что в этом случае мы описываем валентные колебания как локальные моды и деформационные моды в нормальных обозначениях. Сначала, как в §§А.2, мы должны сконструировать валентно-деформационный базис. Для построения валентных колебательных состояний используем ту же процедуру, что и в §§А.1. Рассмотрим процедуру программирования деформационных колебательных уровней. На самом деле можно использовать тот же самый принцип, что и для валентных колебаний:

```
type(ket),dimension(2000) :: ket_bend type ket
    integer*4 :: v2,v4,l4,sym
endtype,
```

то есть мы используем описание, используемое в нормальных модах $(v_2v_4^{\pm l_4}, \Gamma)$, где Γ симметрия кет-вектора. Необходимо теперь построить кет-вектора, учитывая их симметрию. Симметрия кет-векторов зависит от значения квантового числа l_4 . Начнем с двух циклов по квантовым числам v2 и v4, начиная с нуля и заканчивая максимальным рассчитываемым значением. Необходимо заметить, что мы должны взять в рассчет значения квантовых чисел до v_2^{max} et v_4^{max} , которые в два раза больше, чем квантовые числа, характеризующие валентные колебания. count - номер кет-вектора. Далее реализуем следующий алгоритм: $l_4 = v_4, v_4 - 2, \ldots, 0$, если v_4 - четно и 1, если v_4 - нечетно, симметрия определяется следующим образом:

Если $l_4 = 0$, то $\Gamma = A_1$; Если $l_4 = 3p + 1$, то $\Gamma = E$, p = 0, 1, ...;Если $l_4 = 3p + 2$, то $\Gamma = E$, p = 0, 1, ...;Если $l_4 = 3p + 3$, то $\Gamma = A_1$ и A_2 , p = 0, 1,

Ниже приводится часть программы, реализующая этот алгоритм:

```
count=1
do v2=0,v2max
  do v4=0,v4max
    if (mod(v4,2) == 0) then
      do 14=0,v4,2
        if ( (mod(14,3) == 0).and.(14 == 0) ) then
          if (mod(14,2) == 0) then
             sym=1
             ket_bend(count)%v2=v2
             ket_bend(count)%v4=v4
             ket_bend(count)%14=14
             ket_bend(count)%sym=sym
             count=count+1
                                 else
             sym=2
             ket bend(count)%v2=v2
             ket_bend(count)%v4=v4
             ket_bend(count)%14=14
             ket_bend(count)%sym=sym
```

```
count=count+1
      endif
  elseif (mod(14,3) == 0) then
       sym=1
       ket_bend(count)%v2=v2
       ket_bend(count)%v4=v4
       ket_bend(count)%14=14
       ket_bend(count)%sym=sym
       count=count+1
       sym=2
       ket_bend(count)%v2=v2
       ket_bend(count)%v4=v4
       ket_bend(count)%14=14
       ket_bend(count)%sym=sym
       count=count+1
  elseif (mod(14,3) == 1) then
       sym=3
       ket_bend(count)%v2=v2
       ket_bend(count)%v4=v4
       ket_bend(count)%14=14
       ket_bend(count)%sym=sym
       count=count+1
  elseif (mod(14,3) == 2) then
       sym=3
       ket_bend(count)%v2=v2
       ket_bend(count)%v4=v4
       ket_bend(count)%14=14
       ket_bend(count)%sym=sym
       count=count+1
  endif
  enddo
                    else
do 14=1,v4,2
  if ( (mod(14,3) == 0).and.(14 == 0) ) then
    if (mod(14,2) == 0) then
       sym=1
       ket_bend(count)%v2=v2
       ket_bend(count)%v4=v4
```

```
ket_bend(count)%14=14
     ket_bend(count)%sym=sym
     count=count+1
                        else
     sym=2
     ket_bend(count)%v2=v2
     ket_bend(count)%v4=v4
     ket_bend(count)%14=14
     ket_bend(count)%sym=sym
     count=count+1
    endif
elseif (mod(14,3) == 0) then
     sym=1
     ket_bend(count)%v2=v2
     ket_bend(count)%v4=v4
     ket_bend(count)%14=14
     ket_bend(count)%sym=sym
     count=count+1
     sym=2
     ket_bend(count)%v2=v2
     ket_bend(count)%v4=v4
     ket_bend(count)%14=14
     ket_bend(count)%sym=sym
     count=count+1
elseif (mod(14,3) == 1) then
     sym=3
     ket_bend(count)%v2=v2
     ket_bend(count)%v4=v4
     ket_bend(count)%14=14
     ket_bend(count)%sym=sym
     count=count+1
elseif (mod(14,3) == 2) then
     sym=3
     ket_bend(count)%v2=v2
     ket_bend(count)%v4=v4
     ket_bend(count)%14=14
     ket_bend(count)%sym=sym
     count=count+1
```

```
endif
enddo
enddo
enddo
count=count-1
```

Теперь необходимо построить валентно-деформационные колебательные состояния, используя коэффициенты Клебша-Гордана:

$$|n_1 n_2 n_3 (n_4) (v_2 v_4^{\pm l_4}) (r_e C_e \sigma_e - C_p \sigma_p) \to C \sigma \rangle$$

$$= \sum_{\sigma_e, \sigma_p} [C]^{1/2} F \begin{pmatrix} C_e & C_p & C \\ \sigma_e & \sigma_p & \sigma \end{pmatrix} |n_1 n_2 n_3 (n_4), r_e C_e \sigma_e \rangle |(v_2 v_4^{\pm l_4}), C_p \sigma_p \rangle$$
(A.5.1)

Затем рассчитываем матричные элементы операторов нашего гамильтониана, чтобы построить его матрицу, то есть необходимо рассчитать матричные элементы от операторов типа H_1^e (см. предыдущую программу) и оператора взаимодействия А.5.2

где операторы $\mathcal{Y}^{4(A_1)}$, $\mathcal{Y}^{5(A_1)}, \mathcal{Y}^{4(E)}_1$, $\mathcal{Y}^{4(E)}_2$, $\mathcal{Y}^{5(E)}_1$ еt $\mathcal{Y}^{5(E)}_2$ - операторы, которые действуют на кет-вектора валентных состояний (§§2.4.4), а операторы $\mathbf{a}_2^{(\mathbf{A}_1)}$, $\mathbf{a}_2^{+(\mathbf{A}_1)}$, $\mathbf{a}_4^{(\mathbf{E}_1)}$, $\mathbf{a}_4^{+(\mathbf{E}_1)}$, $\mathbf{a}_4^{(\mathbf{E}_2)}$ еt $\mathbf{a}_4^{+(\mathbf{E}_2)}$ - на кет-вектора дефломационных колебаний. Следовательно, необходимо найти алгоритм для получения значений матричных элементов этого оператора. Мы уже умеем программировать матричные элементы от комбинации операторов b_i^+ , b_j , что соответствует первой части оператора взаимодействия. Для "деформационной части" оператора взаимодействия использовалась следующая процедура:

- 1. На языке аналитического программирования МАТНЕМАТІСА 5.0 была написана программа, рассчитывающая аналитические выражения, позволяющие определить действие комбинации векторов $\mathbf{a_2^{(A_1)}}, \mathbf{a_2^{+(A_1)}}, \mathbf{a_4^{(E_1)}}, \mathbf{a_4^{(E_2)}}$ и $\mathbf{a_4^{+(E_2)}}$ на кет-вектора деформационных состояний $|(v_2v_4^{\pm l_4}), C_p\sigma_p\rangle$;
- 2. Используя полученные выражения, была написана процедура на языке программирования FORTRAN 95, позволяющая рассчитывать численно значения матричных элементов.

Для расчетов первого пункта использовались привиденные матричные элементы одномерного осциллятора: $\langle v_2, A_1 || a_2^{(A_1)} || v_2 + 1, A_1 \rangle = \sqrt{v_2 + 1}$ и для двумерного осциллятора приведенные матричные элементы брались из таблицы А.1. Кроме того, для привиденных матричных элементов сопряженных операторов использовались выражения $\langle v_s, \{\gamma\}, C || a_{s\sigma}^{+(C_s)} || v_s - 1, \{\gamma'\}, C' \rangle = (-1)^{C+C_s+C'} \langle v_s - 1, \{\gamma'\}, C' || a_{s\sigma}^{(C_s)} || v_s, \{\gamma\}, C \rangle$.

l_4	C_p	l_4'	C_p'	П.М.Э
0	A_1	1	E	$\sqrt{v_4+1}$
$6p \neq 0$	Γ	6p + 1	E	$\sqrt{(v_4 + l_4 + 2)/2}$
$6p \neq 0$	Γ	6p - 1	E	$(-1)^{\Gamma}\sqrt{(v_4-l_4+2)/2}$
6p + 1	E	6p + 2	E	$-\sqrt{(v_4+l_4+2)}$
1	E	0	A_1	$-\sqrt{v_4+1}$
6p + 1	E	$6p \neq 0$	Γ	$-(-1)^{\Gamma}\sqrt{(v_4-l_4+2)/2}$
6p + 2	E	6p + 3	Γ	$-(-1)^{\Gamma}\sqrt{(v_4+l_4+2)/2}$
6p + 2	E	6p + 1	E	$\sqrt{(v_4 - l_4 + 2)}$
6p + 3	Γ	6p + 4	E	$-(-1)^{\Gamma}\sqrt{(v_4+l_4+2)/2}$
6p + 3	Γ	6p + 2	E	$\sqrt{(v_4 - l_4 + 2)/2}$
6p + 4	E	6p + 5	E	$\sqrt{(v_4 + l_4 + 2)}$
6p + 4	E	6p + 3	Γ	$\sqrt{(v_4 - l_4 + 2)/2}$
6p + 5	E	6p + 6	Γ	$-\sqrt{(v_4+l_4+2)/2}$
6p + 5	E	6p + 4	E	$-\sqrt{(v_4 - l_4 + 2)}$
			$\Gamma = A_1$ или A_2	
			$p = 0, 1, \dots$	

Таблица А.1: Приведенные матричные элементы $< v_4, l_4, C_p ||a_4^{(E)}||v_4 + 1, l'_4, C'_p >$

Используя теорему Вигнера-Эккарта, на основе приведенных матричных элементов можно рассчитать матричные элементы

$$<\{v_{s}\}, C_{p}, \sigma_{p}|a_{\sigma}^{(C)}|\{v_{s}'\}, C_{p}', \sigma_{p}'> = F\left(\begin{array}{cc} C & C_{p}' & C_{p} \\ \sigma & \sigma_{p}' & \sigma_{p} \end{array}\right) <\{v_{s}\}, C_{p}||a_{\sigma}^{(C)}||\{v_{s}'\}, C_{p}'> \quad (A.5.3)$$

После действия оператора взаимодействия на колебательные состояния находим матричные элементы, рассматривая скаляьное произведение первоначальных кет-векторов и кет-векторов, полученных в результате действия оператора взаимодействия. Теперь можно построить матрицу нашего гамильтониана и определить собственные значения нашей системы.

В этом случае мы встретились с теми же трудностями, описанными в §§А.2, то есть сейчас мы можем определить и параметры нашего гамильтониана в рамках локальнонормального метода.

Стоит также заметить, что все расчета, проведенные на основе программы, написанной на языке программирования FORTRAN, были протестированы с помощью программы, написанной на языке аналитического программирования MATHEMATICA 5.0.

Литература

- T.J.Lee, J.M.L.Martin, and P.R.Taylor. An accurate ab initio quartic force field and vibrational frequencies for CH₄ and isotopomers. Journal of Chemical Physics, 102:254– 261, 1995.
- [2] X.-G. Wang and E.L. Sibert III. A nine-dimensional perturbative treatment of the vibrations of methane and its isotopomers. *Journal of Chemical Physics*, 111:4510-4522, 1999.
- [3] F.Iachello and R.D.Levine. Algebraic theory of molecules. Editions Oxford University Press, New-York, 1995.
- [4] F.Iachello. Algebraic methodes for molecular rotation-vibration spectra. Chemical Physics Letters, 781:581, 1981.
- [5] F.Michelot and J.Moret-Bailly. Approche algébrique des spectres vibrationnels des molécules polyatomiques. *Journal de Physique*, 48:51–72, 1987.
- [6] C. Leroy and F. Michelot. An algebraic construction of some self-conjugate operators in U(5). Canadian Journal of Physics, 72:274–289, 1994.
- [7] P. Kramer and M. Moshinsky. Nuclear Physics, 82:241–274, 1966.
- [8] K.Levenberg. A method for the solution of certain problems in least-squares. The Quarterly Journal of Mechanics and Applied Mathematics, 2:164–168, 1944.
- [9] D.W.Marquardt. An algorithm for least-squares estimation of nonlinear parameters. Journal of Society for Industrial and Applied Mathematics, 11:431–441, 1963.
- [10] M. Sanchez-Castellanos, O. A lvarez Bajo, C.A. Amezcua-Eccius, and R. Lemus. Vibrational excitations of arsine in the framework of a local unitary group approach. *Journal* of Molecular Spectroscopy, 240:81–92, 2006.
- [11] S.N.Yurchenko, M.Carvajal, Per Jensen, F.Herregodts, and T.R.Huet. Potential parameters of PH₃ obtained by simultaneous fitting of ab initio data and experimental vibrational band origins. *Chemical Physics*, 290:59–67, 2003.

- [12] B.G. Wybourne. Classical Groups for Physicists. Editions John Wiley Sons (Interscience Publication), New-York, 1974.
- [13] M.Kibler and P.Winternitz. Dynamical invariance algebra of the hartmann potential. Journal of Physics A, 20:4097–4108, 1987.
- [14] M.Pétrachène and E.Trifonov. Application de la théorie des groupes en mécanique quantique. Edition Masson, Paris, 1970.
- [15] E.P.Wigner. Group Theory and its Application to the Quantum Mecanics of Atomic Spectra. Academic Press, New-York, 1959.
- [16] W.Greiner and B.Müller. Mécanique quantique Symétries. Editions Springer Verlag France, Paris, 1999.
- [17] H.Bacry. Leçons sur le théorie des groupes et les symétries des particules élémentaires.
 Editions Gordon and Breach Dunod, New-York and Londres, 1967.
- [18] F.Cooper, A.Khare, and U.Sukhatme. Supersymmetry in Quantum Mecanics. Editions World Scientific, New-York, 2001.
- [19] L.O'Raiffeartaigh. Broken symmetry in groups theory and its applications. Editions Academic Press (editor E.M.Loebl), New-York and Londres, 1968.
- [20] R.F.Casten, P.O.Lipas, D.D.Warner, T.Otsuka, K.Heyde, and J.P.Draayer. Contempory concepts in physics (Volume 6): Algebraic Approaches to Nuclear Structure Interating Boson and Fermion Models. Editions Harwood Academic Publichers (editor R.F.Casten), New-York, 1993.
- [21] M.Moshinsky and Y.F.Smirnov. Contemporary concepts in physics (Volume 9): The Harmonic Oscillator in Modern Physics. Editions Harwood Academic Publishers, Amsterdam, 1996.
- [22] A.Arima and F.Iachello. Collective nuclear states as representations of an SU(6) group. Physical Review Letters, 35(16):1069–1072, 1975.
- [23] F.Iachello and O.Scholten. The interacting boson-fermion model 2. Physical Review Letters, 43(8):679, 1979.
- [24] J.P.Elliot, J.A.Evans, and P.Van Isacker. The interacting boson-fermion model 3-4. Nuclear Structure, A481(8):679, 1988.
- [25] L.Wiesefeld. The vibron model for methane: stretch-bend interactions. Journal of Molecular Spectroscopy, 184:277–287, 1997.

- [26] H.Kellman. Noninvariance groups for many-particule systems: coupled harmonic oscillators. Journal of Chemical Physics, 81(1):389–396, 1984.
- [27] G.E.Baird and L.C.Biedenharn. On the representation of the semisimple lie groups. i. the explicit construction of invariant for the unimodular unitary group in N dimensions. Journal of Mathematical Physics, 4(3):436-445, 1963.
- [28] G.E.Baird and L.C.Biedenharn. On the representation of the semisimple lie groups. ii. the explicit conjugation operation for SU(n). Journal of Mathematical Physics, 5(12):1723– 1730, 1964.
- [29] G.E.Baird and L.C.Biedenharn. On the representation of the semisimple lie groups. iv. a canonical classification for tensor operators for SU(3). Journal of Mathematical Physics, 5(12):1730, 1964.
- [30] J.G.Nagel and M.Moshinsky. Operators that lower or raise the irreductible vector spaces of U(n-1) contained in an irreductible vector spaces of U(n). Journal of Mathematical Physics, 6(5):682-694, 1965.
- [31] M.Ciftan. On the combinatorial structure of state vectors in u(n). ii. the generalisation of hypergeometric functions on U(n) states. Journal of Mathematical physics, 10(9):1635– 1646, 1969.
- [32] M.Ciftan and L.C.Biedenharn. Combinatorial structure of state vectors in U(n). i. hook patterns for maximal and semimaximal states in U(n). Journal of Mathematical physics, 10(1):221-232, 1969.
- [33] C.Itzykson and M.Nauenberg. Unitary groups: representations and decompositions. Reviews of Modern Physics, 38(1):95–120, 1980.
- [34] P.S.Ponnapalli, M.Schlesinger, and R.D.Kent. U(n) generator matrix element using orthogonal gel'fand basis states. Journal of Mathematical physics, 32(5):1203-1217, 1991.
- [35] R.D.Kent and M.Schlesinger. Multibody operator matrix elements and subduction coefficients in U(n). ii. Journal of Mathematical physics, 38(3):1700-1709, 1996.
- [36] R.Floreanini, L.Lapointe, and L.Vinet. Algebraic description of S_n -invariant oscillator states. Journal of Mathematical physics, 39(11):5739–5761, 1998.
- [37] A.Tachibana and T.Iwai. Complete molecular hamiltonian based on the born-oppenheimer adiabatic approximation. *Physical Review A*, 33(4):2262–2269, 1986.
- [38] P.Barchewitz. Spectroscopie atomique et moléculaire. Tome II. Editions Masson, Paris, 1971.
- [39] C.Leroy. Approche algébrique de la théorie des modes locaux. PhD thesis, Dijon, 1991.

- [40] Y. Demkov. Vestnik, Leningrad State University, 11:127, 1953.
- [41] Y. Demkov. The definition of the symmetry group of a quantum system. the anisotropic oscillator. Soviet Physics JETP, 17(6):1349–1351, 1963.
- [42] F.L.Hill and J.M.Jauch. On the problem of degeneracy in quantum mechanics. *Physical Review*, 57(4):641–645, 1950.
- [43] G.A.Baker Jr. Degeneracy of the n-dimensional, isotropic, harmonic oscillator. Physical Review, 103(4):1119–1120, 1956.
- [44] E.Bauer. Introduction a la thüorie des groupes et a ces applications a la physique. Editions Jacques Gabay, Paris, 1991.
- [45] Y.Tanabe T.Inui and Y.Onodera. Group theory and its application in physics. Editions Springer, Berlin, 1996.
- [46] H. Weyl. The theory of groups and quantum Mechanics. Editions Dover Publications Inc., New-York, 1931.
- [47] F.Testard and R.Mneimne. Introduction a la thüorie des groupes de Lie classiques. Editions Hermann, Paris, 1997.
- [48] R.Deheuvels. Formes quadratiques et groupes classiques. Editions P.U.F., Paris, 1981.
- [49] I.M.Gelfand and M.L. Zetlin. Finite dimensional representations of the group of unimodular matrices. Doklady Akad. Nauk S.S.S.R., 71:825–828, 1950.
- [50] G.Racah. Group theory in spectroscopy. Princeton Lectures (C.E.R.N. reprint), 1961.
- [51] J.D.Louck. Group theory of harmonic oscillators in n-dimensional space. Journal of Mathematical Physics, 6(11):1786-1804, 1965.
- [52] E.Chacon and M.Moschinsky. Representations of finite U(3) transformations. *Physics* Letters, 23:567–569, 1966.
- [53] M.Fütizon, H.G.Gervais, and A.Guichardet. Thüorie des groupes et de leurs reprüsentations. Editions Ellipses, Paris, 1987.
- [54] P.Kramer. Irreductible representation of the semidirect-product group $K_n = A_n \wedge S_n$ and the harmonic-oscillator shell model. Journal of Mathematical Physics, 9:639–649, 1966.
- [55] H.V.McIntosh. Symmetry adapted functions belonging to the cristallographic point groups. Journal of Molecular Spectroscopy, 10:51-74, 1963.
- [56] H.V.McIntosh. Towards a theory of the cristallographic point groups. Journal of Molecular Spectroscopy, 5:269–283, 1960.

- [57] H.Weyl. The classical groups, their invariants and representations. Editions Princeton University, New-York, 1939.
- [58] H.Horie. Representations of the symmetric group and the fractional parentage coefficients. Journal of Physical Society of Japan, 10:1783–1798, 1963.
- [59] M.Hamermesh. Groups theory and its application to physical problems. Editions Addison
 Wesley publishing company Inc, Londres, 1962.
- [60] A.J.Coleman. The symmetric group made easy. Advances in Quantum Chemistry, 4:83– 108, 1968.
- [61] J.Lummila, T.Lukka, and L.Halonen. Fermi resonances and local modes in stibine SbH_3 : a fourier interferometric and laser photoacoustic study of the overtone spectrum. *Journal* of Chemical Physics, 104:488–497, 1996.
- [62] O.L.Lange and R.E.Raab. Operator methodes in quantum mechanics. Editions Oxford University Press, New-York, 1991.
- [63] H.Lin, O.Ulenikov, S.Yurchinko, X.Wang, and Q.Zhu. High-resolution spectroscopic study of the (310) local mode combination band system of AsH₃. Journal of Molecular Spectroscopy, 187:89–96, 1998.
- [64] L.Pluchart, C.Leroy, and A.Mourbat. Study of the stretching modes of the arsine molecule. Journal of Molecular Spectroscopy, 218:1–11, 2003.
- [65] T. Lukka, E. Kauppi, and L. Halonen. Fermi resonance in the AsH₃ molecule. Journal of Chemical Physics, 102:5200–5206, 1995.
- [66] L.Pluchart, C.Leroy, N.Sanzharov, F.Michelot, E.Bekhtereva, and O.Ulenikov. Vibrational levels of the stibine molecule. *Journal of Molecular Spectroscopy*, 232:119–136, 2005.
- [67] Xi-Wen Hou, Shi-Hai Dong, Zong-Liang Fang, and Zhong-Qi Ma. Journal of Molecular Spectroscopy, 195:132–136, 1999.
- [68] Di Lonardo. Private communication.
- [69] D. Papousek and M.R. Aliev. Molecular Vibrational-Rotational Spectra. Elsevier Scientific Publishing Company, Amsterdam-Oxford-New York, 1982.
- [70] P.K.L. Yin and K.N. Rao. Journal of Molecular Spectroscopy, 29:486–494, 1969.
- [71] G. Di Lonardo, L. Fusina, and J.W.C. Johns. Journal of Molecular Spectroscopy, 104:282– 301, 1984.
- [72] L. Fusina and G. Di Lonardo. Journal of Molecular Spectroscopy, 517-518:67-78, 2000.

[73] L. Fusina and G. Di Lonardo. Journal of Molecular Spectroscopy, 216:493–500, 2002.

Titre :

ETUDE DE LA DYNAMIQUE INTERNE DES MOLECULES PYRAMIDALES NON PLANES DANS LES ETATS VIBRATIONNELS TRES EXCITES

<u>Résumé</u> :

Dans le cadre du formalisme U (p+1), nous construisons un Hamiltonien adapté aux modes d'élongation de molécules non planaires XY₃ dont le groupe d'invariance géométrique est C_{3v} . Cet Hamiltonien est ensuite couplé à deux Hamiltoniens possibles décrivant les modes de pliage de ces systèmes moléculaires : a) basé sur une approche du type U (p+1), un Hamiltonien de pliage est développé et l'interaction entre les modes d'élongation et de pliage est prise en compte par un opérateur de couplage de la résonance 2 :1, définit comme un opérateur de l'algèbre enveloppante de $U_s(4) \times U_b(4)$; b) basé sur le formalisme standard des modes normaux, un Hamiltonien de pliage est formulé et l'interaction 2 :1 est prise en compte par le produit tensoriel d'un operateur de $U_s(4)$ avec un operateur standard normal pour le pliage. Ces formalismes sont alors appliqués aux molécules de stibine, phospine et d'arsine et comparés avec des études précédentes. Le nombre quantique de polyade permet une modélisation informatique du problème, particulièrement dans le processus de diagonalisation de la matrice hamiltonienne. Les programmes et les méthodes informatiques sont expliquées dans ce travail de thèse. La thèse est entièrement écrite en français avec une traduction équivalente en russe.

Mots clés :

Spectroscopie moléculaire, approche algébrique, vibration, arsine, stibine, phosphine, résonances.

Title:

STUDY OF THE INTERNAL DYNAMICS OF NON PLANAR PYRAMIDAL MOLECULES IN VIBRATIONALY VERY EXCITED STATES.

Summary :

From the U (p+1) formalism, we built a Hamiltonian adapted to the stretching modes of nonplanar XY₃ molecules having the C_{3v} group of geometrical invariance. This Hamiltonian is then coupled with two possible Hamiltonians describing the bending modes of these molecular system: a) based on the U (p+1) approach, a bending Hamiltonian is developed and the interaction between the bending and the stretching modes is taking into account through adapted 2:1 resonance coupling operator defined as a U_s(4) x U_b(4) enveloping algebra operator ; b) based on the standard normal modes formalism, a bending modes Hamiltonian is expanded and the 2:1 interaction is taken into account as a tensorial product of a U_s(4) operator with a standard normal one for the bending. These formalisms are then apply to stibine, phosphine and arsine molecules and compare with previous studies. The quantum number of polyad allows perform a computer modelling of the problem particulary for the process of Hamiltonian matrix diagonalization. The numerical codes and computering processes are explained in this thesis work. The entire thesis is in French with an equivalent translation in Russian.

Keywords :

Molecular spectroscopy, algebraic approach, vibration, arsine, stibine, phosphine, resonances.