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Abstract

HE thesis is dedicated to three dimensional shape analyditha segmentation of

human skeletal muscles in the context of myopathies andtileatment. In par-
ticular, we study the local and global structural charasties of muscles. The method-
ological focus of the thesis is to devise methods for the sggation of muscles, the
consistent localization of positions in the anatomy andngégation within the muscle
data across patients. Currently diagnosis and follow-w@premations during therapy of
myopathies are typically performed by means of biopsy. Tasseveral disadvantages:
it is an invasive method, covers only a small muscle regismainly restricted to di-
agnostic purpose and is not suitable for follow-up evabratWe develop the following
methods to make the use of non-invasive imaging modalitiek as MRI for a virtual
biopsy possible: first, a novel approach to model shapeti@mgthat encodes sparsity,
exploits geometric redundancy, and accounts for the @éiffiedegrees of local variation
and image support in data. It makes the modeling and lod¢alizaf muscles possi-
ble, that exhibit sparsely distributed salient imagingdeas, and heterogeneous shape
variability. Second, we extend the shape representati@Ddatructures using diffusion
wavelets. The proposed method can represent shape vargtexploits continuous
inter-dependencies of arbitrary topology in the shape.dA&then explore several ap-
proaches for the shape model search, and appearance regtiesebased on boosting
techniques and canonical correlation analysis. Last waepitea robust diffusion wavelet
technique that covers the integration of our two shape nsagjgbroaches to finally get
an enhanced sparse wavelet based method. We validate tloaelpgs on two medical
imaging data sets that represent the properties tackledeébgigproaches: T1 weighted
MRI data of full calf muscles and computed tomography dathefeft heart ventricle.

Key words: Segmentation, Shape Analysis, Sparsity, Diffusion Way8i&|, Skeletal
muscle, Myopathy.






Résumeé

ETTE these est consacrée a la conception d’'un systeme @aidegnostic dédié
C au muscle squelletique humain. Au cours du premier voletedemanuscrit nous
proposons une nouvelle représentation basée sur les m@dgtemonieux dans le cadre
de la segmentation d'Images de Résonances Magnétiqueg ITRBIU muscle squelet-
tigue du mollet. Notre méthode Sparse Shape Model/ Modekndaes Parcimonieux
(MFP), apprend un modele statistique de formes et de textacales annoté et réussit
a en tirer une représentation réduite afin de reconstruimgmanisme musculaire sur un
exemple test. Dans la seconde partie du manuscrit, nousroés une approche basée
sur des ondelettes de diffusion pour la segmentation dulmegoelettique. Contraire-
ment aux méthodes de I'état de I'art, notre approche au dmiisphase d’apprentissage
permet a optimiser les coefficients des ondelettes, airesieur nombres et leur posi-
tions. Le modéle prend en charge aussi bien les hiérarchiesltkspace de recherche,
gue I'encodage des dépendances géométriques complexes@mngtriques de la struc-
ture d'intérét. Notre modélisation offre ainsi I'avantadg traiter des topologies arbi-
traires. L'évaluation expérimentale a été effectué surnsemble de mollets acquises
par un scanner IRM, ainsi qu’un ensemble d’images tomottenstriques du ventricule
gauche.

Mots Clés: Segmentation, Analyse de Formes, Modéles Parcimonieudel®ttes de
diffusion, Imagerie par Résonnance Magnétique, Musclelstiique, Myopathie.
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CHAPTER
1 Introduction

“A goal without a plan is just a wish.”

Antoine de Saint-Exupery



2 CHAPTER 1. INTRODUCTION

1.1 Motivation

The human body has no longer any secrets for the medicaltsxpgenks to the growing

variety of image acquisition techniques. Physicians hagess to an incredible number
of image acquisitions technologies that allow for the gitatite observation of anatomy,

physiology and pathology. Such modalities call for novetimes to make optimal use
of the information. The role of these techniques is not tdaep the doctors but to

provide them with specific and rich information for their dgons.

Data acquired by medical imaging modalities have indeetkaet a level of richness
that needs computer based methods to extract relevantriafmm in a consistent and
efficient manner. Imaging techniques hence play a key rotkagnosis and follow-up
of muscle disorders in conjunction with clinical examioati biological analysis and
muscle biopsy.

Myopathies are diseases that affect muscles connectedh&s pealled skeletal mus-
cles, and produce weakening and atrophy of skeletal mysdpscially those closest to
the center of the body resulting in reduced mobility. Sudodiers affect a large per-
centage of the population with worldwide incidence of alenitable myopathies being
at about 14%.

Clinical follow-up as well as therapeutic trial evaluatiare mainly based on func-
tional tests and physiological measurement of musclegtinghat are limited by the lack
of sensitivity or poor reliability. Muscle tissue biopsyalis a precise microscopic my-
ofiber count but this invasive method, covering a small neiacka, is mainly restricted
to diagnostic purpose and is not suitable for follow-up ea&bn.

Generally, diagnosis involves several outpatient testietermine the type of myopa-
thy like blood tests and more frequently electromyogramtitirrauscle tissue biopsy.
Magnetic Resonance Imaging as well as Diffusion Tensor MagiResonance Imaging
are , on the other hand, techniques that allow to gathenioiwieasurements about the
skeletal muscular diseases.

The scope of this thesis is to develop a framework for shapdetiing and segmen-
tation of the human skeletal muscles, and more particuthdge affected by myopathy.
The medical imaging community has focused on organs otlaer tie calf muscle, for
instance heart or brain tissues during the last decade. ddgraentation of individual
muscles within a muscle compound depicted Withgnetic Resonance Imaging (MRI)
(see Figure. 1.1, 1.2) poses new challenges to automatioesggtion systems. Although
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dominated by the global anatomy, muscle deformation etibostly locally consistent
behavior, precluding the use of global models. Muscle sedare only partially visible,
while parts exhibit structures, that can change dramétibatween patients, or during
the course of follow-up examinations.

(@) (b)
Figure 1.1 —Calf MRI: (a) healthy (b) zoom on AT, EDL and PL muscle groups.

One of the most prominent processing methods in the medicdé analysis is seg-
mentation. The segmentation of images are necessary éereatitf medical applications
ranging from computer assisted surgery, study of anatdrsiicectures , computer aided
diagnosis and the monitoring of disease progress. Theultifiof segmentation mainly
remains in the tremendous variability of objects and théatian in image quality. Ad-
ditionally, there are a lot of complex properties, such &ga&t and noise, corrupting the
medical images and leading to the failure of common segrtienteechniques.

Model-based segmentation and localization approachesf gméme interest, due to
their ability to repeatably identify positions in the anatg to learn and to apply prop-
erties of large and representative populations. Of pdaidmportance is the accurate
representation of subtle local shape variation and theecbparametrization of the as-
sociated interdependencies between parts of the anatiostricatures. This is a very
tedious task to be performed manually, and thus has to bedddrom the data, in order
to avoid a bias that would compromise the model efficiency arairacy. A second
aspect that becomes prevalent when exploring large aneabna@gions, is the highly
heterogeneous nature of their appearance, and the existialgconsistency across pa-
tients.

This thesis is part of the “DTI-Muscle” project, a collabtoam between Ecole Cen-
trale Paris, the French Association against Myopathy andryH®&ondor Hospital.
Among the objectives of this project one can cite the use ddlatively recent non-
invasive image modality to understand the global effectitdéient myopathies to mus-
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Figure 1.2 —Manual expert annotation: ROIs of the calf muscle

cles, the development of mathematical models capable dfzang such data toward
non-invasive diagnosis among the different myopathies el as the exploitation of
such modality to measure the reaction of muscles to tredtoseng different agents.
Our contribution consists of developing the required tégis to use such an image
modality towards modeling, understanding and diagnogiegriuscular diseases.

The clinical goal is to devise a method to perform a virtuapsy of muscles: the
non-invasive analysis of the local and global structure abahes and its changes dur-
ing myopathies. The methodological prerequisites for sarclautomatic method are
challenging: they involve the separation of different mieggpes, the consistent local-
ization of positions within low-contrast and only partjateliable data. The project thus
not only contributes to the therapy, but also to the rese@ramuscle diseases and their
characteristics.

1.2 Contributions

The main contribution of this thesis are methods for the sggation and localization of
musclesin MRI data. On the one hand, the contributions egpiwdelling methodology
that can cope with highly variable shape and sparsely diged image information. On
the other hand, we apply these methods to the specific quedtiauscle segmentation.

The contributions of this thesis include :

e A novel statistical shape model that aims to identify thelleinging borders be-
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tween muscle constituents, where the separation is noépredong the entire
boundary but rather on sparse locations only. Our appraacbduces a robust
version of the active shape models framework, with add#igroperties that

adapt to sparse boundaries exploring how to construct s sduape models that
use only a subset of the available landmarks. The particulbset is optimally

chosen based on, first, geometrical accuracy and influencxenall shape and
second, the discriminative power of the local appearancgemd/Ne obtain thus

a sparse model of objects or anatomical structures thas thieelocal statistical

modeling and appearance behavior into account. We comisareconstruction

and search behavior with standard shape models, that héuyse properties, and
represent objects regardless of the reliability and corifyief shape and texture
behavior in the training population.

¢ A novel multi-scale shape representation and segmentitiaamatomical struc-
tures using diffusion wavelet shape priors. The approaelsdeith complex and
soft connectivity properties of objects by encoding theierdependencies with a
diffusion kernel. The topology is learned from the traindaga instead of using a
priori choices like e.g., a sphere, and represents the skafpion of structures
with arbitrary topology by means of diffusion wavelets. Tp@posed model-
based segmentation approach accounts for the systemh#eibeof shape vari-
ation and image support in anatomical structures, with arpaterization that
goes beyond pre-defined reference manifolds. For the psearstion of com-
plex structures, it is worthwhile not to rely on a referencanmold with an a
priori topology, but to learn the appropriate topology frdme training data. For
this, we have to determine the intrinsic topology a shap&foch multiple exam-
ples are available, and have to encode this informationarstiape model, and to
use it in the representation and during the segmentation.

Given a set of training shapes and their corresponding $éas@marks, the goal
is to construct a manifold on which the training shapes |livé @ model the shape
variation on this manifold hierarchically using diffusiavavelets. Toward ad-
dressing segmentation, statistical learning at diffelevels of hierarchy (diffu-

sion kernels) on the variations of the wavelet coefficiesfsarformed. Due to the
power of the basis function representation, conventiomaédsionality reduction

technigues using the orthomax criteridtaiser, 1958lead to a very compact rep-
resentation of the manifold. The approach has definitelpttential to be used in
many other computer vision tasks where data live in a verlgddighension space.
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The experiments curried out on both calf and Left ventriclesate data indicate
clear advantage of the proposed method over the competegy on

¢ Different search strategies were introduced, for instaheeuse of our statisti-
cal wavelet-based model together with a GentleBoost ¢lassar with Canonical
Correlation analysis. The approach obtains an accurateeddiion of partially
visible surfaces and complex textures, that cannot be aethi@ith registration
based methods. During the search, the hierarchical diffusavelet shape model
is fitted to new data based on local appearance captured bglabsifier. The
method computes a local feature vector for every voxel angsnitavia a Gentle-
Boost classifier to a probability that the voxel belongs tgeacsic landmark in
the object. The classifier is trained from the data set setatiens. The proba-
bilistic output is constrained by the shape model. The nrappnto the diffusion
wavelet coefficients space ensures valid results with detgathe training data.
The result of this procedure is a probability for each voegiarding its match to
the structure to be segmented, conditioned on both locag#oizhl information.
We report results on CT left heart ventricle data sets, thetrate the impact of
the soft parameterization, as well as the global classiiset search.

e A robust diffusion wavelet method that covers the integratof our two ap-
proaches to finally get an enhanced sparse wavelet baseddné€tlnis associ-
ation undoubtedly inherits the advantages of both relaéebniques. The result-
ing technique is independent from the topology of the anatahstructure, and
can represent complex geometric and photometric deperedeotcthe structure
of interest. This leads to a fully automated segmentati@tesy using 3D-shape
models for anatomical data.

To summarize, our contribution in this work is three-fold:

e Exploit sparsity present in the data and get rid of the engsiinformation redun-
dancy.

e Learn the appropriate topology from the training data, asel & corresponding
shape representation based on diffusion wavelets to misdedriation.

e Combine different search strategies based on classifidriaal descriptors.
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1.3 Thesis Roadmap

We introduce in Chapter. 2 the medical background of ouristuithat rely particularly

on human skeletal anatomy. Anatomical diseases and ckasdicis of the calf muscle
will be investigated all along this section to introduce thader to the medical part of
our work.

Chapter. 3 provides an overview of medical image segmemtais well as the gold
standard techniques of statistical shape modeling thatitote the state of the art in the
computer and medical vision community. We do also discugewsiissues surrounding
shape representation such as alignment and landmarksgonaence.

In Chapter. 4, we propose a model that uses statistical grepef shape and appear-
ance in a manner different from standard shape models. Aspandel is obtained that
takes the non-uniform distribution of image informatiordanodel complexity on the
surface of anatomical structures into account. Our apjprizatot constrained to a single
reference manifold, but can capture and model structuragbitrary topology.

Chapter. 5 covers a 3D geometric shape model for anatonticatsres using diffu-
sion wavelets, and applies this to segmentation. The diifusavelet approach is first
described, then its use to model shape is explained whepe sfaaiations are learned at
multiple scales, hierarchically capturing the model pastars. Indeed the topology of
the structure is represented by the diffusion kernel, ledfrom annotated training data.
Finally, the application to segmentation based on a detesttheme is addressed.

In Chapter.6 we discuss how the shape model obtained elih@engh our sparse
approach or the diffusion wavelet method could be explogedng different search
strategies.

Chapter. 7 proposes a combination of the latter presentéuhitgues, sparse model
and diffusion wavelet, to generate an enhanced robust eiavedel.

At the end of each chapter, we present the experimentalatadidthat we conducted
to demonstrate the approach over medical data sets.

Finally, we draw the conclusion of all the theoretical angemmental work provided
in this manuscript, while suggesting different openingesgsh possible in the future.






CHAPTER
2 Medical Background

“The body is a big sagacity, a plurality with one sense, a wad a peace, a flock and a
shepherd.

Friedrich Nietzsche
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2.1 The Human Musculoskeletal System

2.1.1 The Skeletal Muscle Architecture

Starting from the first edition of Henry Gray’s Anatomy of theiman Body in 1858,
commonly known a&ray’s Anatomywhich has still been considered as one of the land-
mark in the field up until the most recent edition published®8[Gray, 2008, the hu-
man musculoskeletal system always found major intereshgracientist and anatomist.
Amongst the diverse clinical studies established aboutdruskeletal architecture, we
note significant consideration in muscle fif&tarici and Maganaris, 2006changes
in muscle size and architecture following, modeling andyamiag the musculoskeletal
system[Delp and Loan, 1995 skeletal muscle adaptations to disease stéeset al,,
200d. The basics of skeletal muscle mechanics are describfderzog, 2000 The
human skeleton (see Fig. 2.1) of a healthy adult is made up®&b®nes. Surprisingly
at birth babies have 300 bones, obviously we do not loose Imbsit they simply fuse
during growth.

The human skeletal system has four different functioresitserving our bodies;
mainly providing movement, support, protection, and also cells. The movement of
our body is made possible through a cooperation betweersbmigts and ligaments on
one hand with the muscles and tendons on the other hand: ppersuecause it gives
the shape, size and framework of the body; the protectiomkth&éo what our internal
vital organs can be kept safe from injuries; finally the boeksaf our body do rely on
blood to keep them alive and to bring them necessary food apgem. This explains
why the bones are able to mend in case they are broken, provethk skeletal system
is far from being just a group of bones, and how it is managingany interesting ways
to preserve our bodies strong and healthy.

Along with the recent considerable advancement in medmsaging technology, the
wide range of muscle exploration is getting larger and largk part from imaging
modalities development, diverse software and medicaiegmns have been conceived
in order to treat, exploit and of course display anatomicsges, which could be CT,
MRI, or even ultrasound. Certainly a joint effort and cotiadtion between mathemati-
cians, engineers and of course doctors has to be estabistieter to make this progress
possible.

During the muscle architectural analysis one can diststgbetween three commonly
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Figure 2.1 —The human musculoskeletal system (Copyright 2001 adam lcan

involved parameters which are ; Length (Lm), Fiber Lengtf),(Bennation Angle (e.g.,
the fiber angle relative to the force-generating a#lis,and finally the Physiological
Cross-Sectional Area (PCSA). Indeed quantitative studiassich fields get inspiration
from micro-dissection of whole muscles.

We will focus our interest on the lower leg -Figure. 2.2- anorenparticularly on the
calf muscle. In fact, the foot contains bones especiallygthes! for weight-bearing. The
latter represents a system of arches allowing for the fostigport much weight.
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Figure 2.2 —The faciae of the lower leg

2.1.2 Calf Muscle Anatomy

From a physiological point of view, the calf belongs to thewgy of "peripherical mus-
cles®, which are implicated in the limb movement. Indeed, the rfessof the calf act as
the chief extensors of the foot at the ankle-joint. They bitlsignificant power and are
extremely vital in any every day movement.

In Fig. 2.3, the regions of interests (ROIs) are depicteddalbslice[Basser and Pier-
paoli, 1998, using an individual high contrast image and the corresjmanihbels for
seven different muscles. The different muscles analyzee wespectively, the soleus
(SOL), lateral gastrocnemius (LG), medial gastrocnemiliS), posterior tibialis (PT),
anterior tibialis (AT), extensor digitorum longus (EDL)yaéthe peroneus longus (PL).

When examining the calf anatomy, we find that the Gastrocnemepresents the
most superficial muscle, composing the greater part of ttigitalso supplies to flex
the femur upon the tibia, supported by the Popliteus. Latatst right in front of the
Gastrocnemius, there is the Soleus that is a broad flat muscleexample, in walking,
our whole body is supported on the raised foot, while durtagding the Soleus insures
the body from falling forward and maintains its stabilityn®also has to keep in mind
that skeletal muscles are very sensitive and even extrepiadyic[Geaet al, 2004.
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EDL

SOL

Figure 2.3 —T1-weighted axial slice depicting a supervised segmeortati the calf muscle.

The seven different muscles are respectively; the soleD ) Sateral gastrocnemius (LG),

medial gastrocnemius (MG), posterior tibialis (PT), aintetibialis (AT), extensor digitorum
longus (EDL), and the peroneus longus (PL).

However, muscle dysfunction could occur and trouble the d&ruskeletal strength and
endurance, resulting in the inability to maintain any kiric@ask.

The boundaries between skin and muscle seem to vanish, wiakhs the segmen-
tation procedure more and more complicated for an expertefisag for an automatic
algorithm. Additionally the calf poses several challentgethe state of the art method-
ologies, e.g. the very subtle differentiation between rassand the un-even distribu-
tion of reliable image information.

The information provided in this section is deducted to gdagxtent from the most
recent Gray’s Anatomy editiofGray, 2008. For more extended details, we refer the
reader to this estimable source.

2.2 Myopathy

Myopathiesare diseases that affect the muscle system, and lead tora sketerioration
of the motoric abilities. These pathologies affect 4 to 6%haf population, i.e 25 to
30 million Europeans. Diagnosis as well as follow up for aegitherapeutic strategy
are often performed through biopsy. Magnetic resonancgimgaMRI) allows a non-
invasive observation of the muscle fibers, their texturel #doeir global structure. It
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Figure 2.4 —Ground truth of the calf muscle.

has the potential to replace biopsies (by e.g., diffusiosae imaging (DTI)) and has
the advantage of encompassing a section of the entire leg@ssed to small local
samples. This enables the analysis of local properties,edisas understanding the
global structural change of muscles affected by a diseaserudial first step in this
analysis is the accurate segmentation of individual mgscle

First, myopathy symptoms came along with childhood andest@nce period. They
had to be treated early and fast to prevent the disease geigneand harm to the body.
Indeed, in several dystrophies the heart can be serioufdgtafi and this may even
lead to death in some cases. One can characterize the mudgstiophies, which are
inherited myogenic disorders, by progressive muscle wgstnd weakness of variable
distribution and severity.

(b) (©)

Figure 2.5 —Calf MRI: (a) healthy case (b) and (c) unhealthy case whezxdahin white is
spreading all over the muscle.
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Polymyositis and Dermatomyositis
Systemic Lupus Erythematosus
Rheumatoid Arthritis

Inflammatoy bowel disease myopathies
Endocrine myopathies
Rhabdomyolysis

Steroid and other drug myopathies
Electrolite disorders

Muscle Dystrophies

Duchenne muscular dystrophy

Steinert myotonic dystrophy
Facio-scapulo-humeral muscular dystrophy
Inherited Myopathies | Limb-girdle muscular dystrophy
Congenital myopathies
Metabolic myopathies
Mitochondrial myopathies

Acid maltase defficiency
Amyotrophic lateral sclerosis

Acquired Myopathies

Neurological- Multiple sclerosis
neuromuscular Guillain-Barre syndrome
junction disorders Parkinson disease

Myasthenia gravis

Table 2.1 —Review of most predominant myopathic diseases and neunargunction
disorderdGeaet al,, 2004.

2.2.1 Neuromuscular Diseases Classification

These disorders can be classified in several groups, imgumbngenital forms, in ac-
cordance with the more distinct distribution of muscle wesds: Duchenne and Becker;
Emery-Dreifuss; distal; facioscapulo-humeral; oculaghgeal; and limb-girdle which
constitutes the most heterogeneous class. Among the disdrsted in Tab. 2.1, we will
mainly detail the two most common ones, Duchenne Musculatioghy and Steinert
Myotonic Dystrophy. More exhaustive description of thet iifshe list can be found in
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[Geaet al, 2004 and references therein.

The Duchenne Muscular Dystrophy (DMD) also known asPseudohypertrophic
Muscular Dystrophyepresents the most prevailing and also the most sevenogiat
myopathy. For the historical part, it is named after Dr. Demhe de Boulogne who
worked in Paris in the mid-19th century, and who was one ofitsedoctors to show
interest in muscular dystrophies.

Actually, this recessively inherited disorder is at thegoriof skeletal muscle pro-
gressive degeneration. The genetic abnormality is caugdteldefective gene encoded
for the Dystrophin, the latter represents actually a proter the muscle. Biologically
speaking, Dystrophin is a protein located close to plasmoia and linked to it by glyco-
proteins, that are respectively connected to laminin, @i is to the basal membrane
[Emery, 1993. Dystrophin fortifies the plasmolemma in such a way thatiitlsa more
resistant facing the mechanical forces coming from cotitragelaxation cycles. Once
dystrophin is absent, injury is more likely to happen.

Male are more likely to get this specific kind of distrophy,emas women act just like
carriers as explained in Fig. 2.6. This is due to the severssive X-linked characteris-
tic of the disease and also to the absence of descendantafiested men, analogously
women always receive at least one disease-free X chromosome

As for the symptoms, they come along first at around the agevefyiears. One
of the first trouble facing the patients is walking difficeli as well as frequent falls
followed by some change in the appearance. Those problesrduarto the early hip
and lower limb muscle implication. Muscle weakness firseet$ feet, fronts of thighs,
hips, afterward more muscles get affected such as abdomanders and also vertebral
column. Furthermore the fat infiltration of muscles geresat deformation in the limbs
Starting from the age of 12 years old, patients are not ablgatia and thus need a
wheelchair. Along with respiratory even cardiac musclestsb represent a handicap.
Without adequate support treatments, patients die on gedratween 20 and 25 years
old either from heart failure or pneumonia.

Myotonic Muscular Dystrophy (MMD)  also known as the Steinert disease represents
the second most prevealant dystrophy after the DMD -Duchdnuascular Dystrophy.
Contrary to the DMD, the Steinert Myotonic Distrophy can pap at any age, where
the patient starts wasting his muscles, and ends up with beéection issues. Itis a
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Figure 2.6 — Duchenne Muscular Distrophy: how the inheritence works ¢@€ight. US
National Library of Medicine)

slowly progressing and chronic disease, where the term thhio” is the adjective for
” Myotonia", the inability to relax muscles at will.

As for symptoms severity, they can vary considerably, evéhimvthe same fam-
ily. Nevertheless the substantial difference resides éetwthe congenital cases and
the cases beginning during adolescence/childhood. Inrfaetborn infants are affected
by severe muscle weakness, that could even lead to lifetdmang problems requiring
intensive care.

There are two types of Myotonic Muscular Dystrophy which designated type 1
and type 2. The clinical features of type 1 tend to be morersea@sembling to those of
type 1, the two types are caused by mutations in differenégien
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In terms of genetics, the gene which causes the dystrophypef 1 is known as
DMPK and is situated in the long arm of chromosome 19. The geoeded for my-
otonic dystrophy protein kinase, which is a protein expedgsimarily in skeletal mus-
cle.

2.2.2 Possible Treatments

Due to the notable advances in gene manipulation, the germkthair corresponding
protein products responsible for these disorders can navetezted. This identification
represents a crucial step to corroborate an accurate diegiow not only the patients
but also for prenatal diagnosis.

Unfortunately, there is, as yet, no way of greatly affectihg long-term course of
any of these disorders. Nevertheless, significant progressveral disciplines (e.qg.,
gene manipulation, stem-cell therapy) offer cautiousmjstin for finding an effective
treatment in the not-too-distant future.

In the particular case of muscular dystrophy, we distinguisvel experimental treat-
ments and on-going researg®ossu and Clemens, 20ahat can be subdivided in three
major classes:

e Gene therapy: generation of new viral vectors more effedtivransferring ge-
netic material from one bacterial cell to another withinladwscle fibers.

e Novel pharmacological approaches: how to recognize thecntéds responsible
for the skipping of the mutated axon, i.e., the sequenceanXNA or its RNA
transcript.

e Cell therapy: a recent technique based on stem cell biologyraore particu-
larly on stem (progenitor) cells transplantation. Yet thedisal advancement and
knowledge remains minor, and has to be deepened in ordetablisk a more
significant clinical protocol for such neuromuscular ddsns.
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2.3 Medical Image Modalities

The last few decades show a rising attention to modern naasive techniques. Re-
searchers and physiologists are able to investigate thaminody, so the latter has no
longer any secret to keep.

Starting from the work of the Nobel-prize winner A.V. HilBassett, 200R who
contributed a pioneering insight to the field of skeletal odsmaging. The in vivo
exploration of anatomical structures has finally becomesipbes

In this section, we provide an overview of the imaging madegiwhile highlighting
the gold standard technique, e.g. Magnetic Resonance hignags far as the muscle
state diagnosis is concerned.

2.3.1 Acquisitions Modalities Overview
2.3.1.1 Diffusion Tensor Imaging (DTI)

Diffusion Tensor Magnetic Resonance Imaging (DTI) is a tegbe that allows to mea-
sure the random motion of water molecules in biologicalissin vivo such as the white
mater of the brain where it has been shown to allow non-irreasiapping of connec-
tivity. Myofibers refer to anatomical structures where thegagation/diffusion of water
could lead to a complete understanding of the muscle streictsuch local and global
structure is altered when muscular diseases are preseahd3rio account for the highly
sparse data of such a modality (capturing diffusion in atlchinumber of directions),
the presence of strong noise on the acquisition model, tiaaton of the muscle fibers
from isolated measures, and the understanding of the ghobstle structure through the
statistical characterization of these fibers. Furthermeeswould like to correlate DTI
results with morphometric data resulting from myofiber ex@tion by microscopic his-
tological study of the same muscle. The objective of thiggmtas the development of
a novel quantitative method for in vivo muscle imaging (Diiiscle) leading to "near
virtual muscle histology”. DTI-muscle may offer a new rél@ non-invasive approach
allowing quantification of myofibers in the setting of phao®atical drug evaluation as
well as for gene and cell therapy clinical trials.

As demonstrated ifBihanet al, 2001, DTl inherits its power from its own concept,
as during their random, diffusion-driven displacementsamaes probe tissue structure
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Figure 2.7 — Axial view of tractography classification for a healthy céieji et al., 2009

at a microscopic level far beyond the usual image resolufidvanks to this acquisition

technique, researchers are well equipped to specify anklevothe diffusion anisotropy

effects as well as tissue micro-structure. Another stesistharacteristic one can ob-
serve in the diffusion MRI image voxel, is the movement ofevamholecules distribution

inside the voxel. Scientific interest and understanding of ltave steadily mounted, to
gain access to diffusion tensor and especially to explodrfitacking in brain or more

recently in the skeletal muscle.

Previous DTI studies in medical imagifgihanet al,, 2001 addressed more anatom-
ical structures like brain white matter, tongue or still #erdiac muscle. As for the
skeletal muscle, ifGalbanet al, 2004 the authors established how DTI is capable of
separating the different variations in diffusive propestbetween different muscles. A
more recent workNeji et al, 2009 handles the problem of calf muscle segmentation
with respect to DTI modality where a novel manifold-basedstdring approach for the
classification of fibers is developed (see Fig. 2.7).

Computed Tomography (CT) The idea behind CT acquisition is to combine the dig-
ital computer together with a rotating x-ray device in ortiegenerate detailed cross
sectional images of the muscle slices, more especially btongtures of the foot or the
ankle (see Fig. 2.8). CT helps to delineate the structuresegiponding to these anatom-
ical structures for 3D visualization, and it provides anwuaate image of bones, soft
tissue and blood vessels all at the same time. This in-vivdicakimaging technique
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is commonly required in the case of fractures, infectiomgjetherative and rheumatoid
arthritis, and more serious issues such as bone tumors, etc.

Figure 2.8 —Axial view of CT angiography depicting aberrant accessongate slip of me-
dial head of rightGastrocnemiususcle Arrer i can Jour nal of Roent genol ogy]

Among the advantages of Computed tomography over othey micalalities one can
cite how it is able to clearly expose the shape and precissitotof soft tissues and
bones in any slice of the foot/calf muscle. CT scans helpatsdatistinguish between a
simple cyst and a solid tumor and any involvement of the b&wughly speaking, CT
scanning can be considered as more rigorous than convaehtigay in determining the
stage (extent) of some bone tumors, and then it can guideoitters in their decisions
concerning the treatment. However, there is a remainirkgthiat it can lead to cancer
due to the absorption of the radiation by the body in the cAsxaessive exposure to
radiation, and it is also forbidden to some patients, lilkegpant women. Indeed there is
a high supposition of a linear relationship between ragietiose and cancer risk.

Ultrasound (US) The non-invasive and real-time method of ultrasonic eqagyas
devoted to measure muscle architecture, such as fiber blemgjtn, muscle thickness,
and angles of pennatidiKoryak, 200§. It is considered to be a highly informative and
available technique for assessing the architecture of huiskeletal muscle. The fields
of use of ultrasound scanning are varied, that goes from cimeJi sports as well as
physiology of aging. The relevant use of this techniqueesetin its accurate ability to
assess muscle relationships with their functions, witlagstgning the patient to undergo
painful procedures as muscle biopsy. More generally, tlethod is dedicated for the



22 CHAPTER 2. MEDICAL BACKGROUND

heart and fetus imaging. Ultrasound uses high frequencydsaaves and their echoes
produce bright spots in the image between two differentgygidissues.

Originally, humanskeletal architecture was studied andstigated starting from ca-
daver specimens, however, thanks to recent ultrasounéesfifikunageet al., 1997
[Koryak, 2008, physicians are able to carry those study on human bodyhiazls to
more rigorous and correct conclusions.

Comparing to other technique, like MRI or still tomographlrasound presents two
advantages: being less expensive from the clinical aspecine hand, and allowing
physiologists to estimate muscle structural changes umndetional stress on the other
hand. Nevertheless, ultrasound does also suffer from spooaveniences, mainly low
image quality, presence of geometric distortions causesdldwe velocity, and even pres-
ence of speckle due to wave inference.

Figure 2.9 —Ultrasound estimation of a calf muscle tear.

Regarding muscular diseases, ultrasound (US) images hadheaily lost their signif-
icance and they have been progressively replaced by Coriatadgraphy (CT) or/and
Magnetic Resonance Imaging. Nevertheless, due to itskpbtyalow cost and lack of
ionizing radiation, the ultrasound technique may be usefabme experiments. CT on
the other hand is able to provide a fast and extensive evatuat muscle anatomy and
can detect fatty infiltration. Nevertheless, expositiomotuzing radiation limits the use
of CT for follow-up of patients.

MRI has demonstrated significant advantages compared towthéormer modali-
ties. MRI imaging has so far proved to be a more accurate iggério evaluate and
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follow-up muscle disorderfFiller et al, 2004. The major attraction concerning MRI
is most probably the absence of ionizing radiation, whidtved multiple examinations
and evaluation of muscle disease progression.

2.3.2 Magnetic Resonance ImagingyRI)

Since the introduction of Medical Resonance Imaging, agproximately 30 years ago,
the role of this volume imaging technique both in researahchnical practice is getting
more and more considerable. Contrary to CT, MRI does natetibnizing radiation,
instead, it employs a powerful magnetic field to align theleacmagnetization of hy-
drogen atoms in water in the body. Indeed, the principlesiofear magnetic resonance
(NMR) represents the basis of Magnetic resonance imagiriglMHowever, to avoid
any kind of negative connotations relative to the nucledd figne term nuclear was fi-
nally abandoned in late 1970'.

As the human body mainly constits of water, which means twdrdgen nuclei or
protons, when it undergoes an MRI acquisition, it is plaged powerful and uniform
magnetic field. Consequently the nuclei magnetic momemrtsabgned in parallel or
anti-parallel way to the magnetic field. The moment rotattes taround the axis of the
field, with a certain frequency, known as the Larmor freqyetitat relies both on the
type of nucleus and on the strength of the magnetic field. €hetion of the tissues
relies not only on the proton density, but also on the way pratons recover their
initial/resting state position after the initial RF pulstadio Frequency).

Two parameters relative to the configuration of an MRI adtjarsare repetition time
(TR) and echo time (TE). TR is relevant to the period betwaenaonsecutive RF, while
TE is the time separating the first RF and the echo.

Interest about MRI relies on how we could learn about thewirenment thanks to
the energy emitted, when the excited nuclei relax and neallde have two ways of mea-
suring the relaxation time: T1-longitudinal relaxatiomdal 2 -transversal relaxation-,
explained as following;

T1 represents the necessary time for the nuclei realignmesimga gradient echo
(GRE) with long TE and long TR.

T2 assigned as the loss of phase coherence in the transvense piaile utilizing spin
echo (SE).
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Figure 2.11 —Axial view of T2*-weighted image of the calf

T2* is an extension of the T2-weighted, where local magnetid frdhlomogeneities are
not equilibrated (compensated) as depicted in Fig. 2.11.

More generally, T1 and T2 -see Figure. 2.10- modalities &enaused in clinical
practice. The variation over the scanner parameters pesducontrast between different
types of body tissue, so that researchers can detect dis@asee, including tumors.
Still this kind of exam is considered as expensive comparedher exams, but benefits
from the fact that it is commonly known and admitted as beioig-harmful to the body.

The excellent soft tissue resolution of MRI is superior tattbf both CT and US.
Thus, MRI is the most pertinent technique to detect fattytmation, edema -abnormal
accumulation of fluid beneath the skin or in one or more casitf the body-, and fi-
brosis -the formation or development of excess fibrous cotiveetissue in an organ.
In the case of fatty infiltration, muscle signal is increasedl 1-weighted spin echo se-
quences. Edema is a predominant finding in inflammatory sesead appears as an area
of high signal intensity on T2-weighted spin echo sequenEdwosis of muscle tissue
Is recognizable only on MRI where it appears as a high sigea an T1-weighted spin
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echo sequences after gadolinium administration. MRI plewkey qualitative informa-

tions about muscle disorders. However, a reliable quaatiin method of the muscle
structure remains to be obtained for precise follow up ofgmé$ and in the setting of

evaluation of clinical trials aiming at increasing the mesmass by pharmacologic ap-
proach or stem cells engraftment.

With regard to the the calf muscle issue, the Magnetic Resmmamaging modality
offers us the opportunity to investigate the muscle in a imvasive way, and to dis-
criminate tissues due to its high contrast (See Fig. 2.5sid®@s high resolution image
data sets are required to process to improve volume measotenHence, this goal is
reached through 3D imaging procedures instead of 2D on&slyl.recently the under-
standing and development of fast imaging sequences anderdisorders have steadily
mounted which grant large data acquisition in reasonableuats of time as well as
concluding investigations.

A more detailed description of the physical aspect coulddasd in [Macovski,
1983. There is still a wide variety of other specialized MRI sgasisch as Magnetic
resonance angiography, Susceptibility weighted imagdWl), or Functional MRI.

2.4 Medical Problem Statement and Goals

In medical image analysis, often the assumption of congigflbal regions statistics
is violated within organs. The work was motivated by the higheterogeneous dis-
tribution of visual information in muscle MRI data (Fig. 2)1 Standard segmentation
methods fail, due to the ambiguous texture and the sparsédigon of salient image
information within the leg. The majority of work on anatomggsnentation is focused
on brain, liver or heart datBMclnerney and Terzopoulos, 1995; Bizait al, 1995;
Butz et al, 200d3. They are often based either on the detection of prominegeste-
tween organs or on the separation of intensities due to flectance properties of the
different tissues in the human body. The segmentation a¥ichadal muscles within a
muscle compound poses new challenges to automatic segroarsgstems. The sparse
distribution of regions where image information allows&aeliable separation of neigh-
boring substructures, makes the use of prior shape kno@ledgdatory, and motivates
the development of algorithms, that make optimal use oissied| models of shape and
appearance acquired during a training phase.
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(b)

Figure 2.12 —MRI data of calf muscles: (a) healthy (b) and unhealthy césemanual
expert annotation of individual muscles.

In Fig 2.12, magnetic resonance imaging (MRI) slices of thiman calf are depicted
[Galbanet al., 2004. The distribution of reliable image information at the bdaries
between individual muscles is un-even, and parts can ondstmated from prior infor-
mation about shape. Since this distribution is fairly cetesit over a population, it can
be learned, and integrated in a sparse model that makesabpts®a of both the shape
prior and the image information.

This thesis is therefore motivated by our belief that segmgrhuman skeletal mus-
cles is attainable by exploiting the redundancy and thd lotge support present within
the image. By properly considering the challenging featoféhe image when perform-
ing model analysis, we aim at significantly improving the laggtion performance and
propose solutions to the ill-proposed problem of calf meisglgmentation. Indeed, not
much work has been devoted to the skeletal issue, whichsengther intriguing part
to our mission.

We will start by focusing on the shape modelling part, andrenrhajor question of
landmark generation and correspondance. The main isrvaft is to study the spar-
sity of these landmarks. We propose a model for joint shapseimagy and segmentation.
By leveraging the tools related to differential geometriff¢dion maps, diffusion dis-
tance..) and diffusion wavelets, we are able to handle thdestging medical data set
and retrieve accurate results.

The notion of multiclass inherited from diffusion wavel&igl also be exploited to
analyze and decompose our data set into various levels. &debomposition will help
us to discover different information content of the shapmetheling on the scale, the latter
information is not necessarily available from looking a tiriginal image volume.
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2.5 Summary

In this chapter, we presented the medical background offtbgig, so that the reader
gets familiar with a useful set of vocabulary terms relatetMyopathy. To recapitulate,
the most significant challenges of our study area are theviiollg; first, the complexity
of the calf anatomic shape; second the partial visibilitynpounds of this muscle in
T1 MRI slice ground truth; and last the high variability inethlistribution of image
information. The aim of this study is to develop new mathecaaimodels from MRI
data in order to improve our understanding of muscular disgaBefore introducing
our shape represention technique, we give a review of the stdhe art medical image
segmentation approaches in the upcoming chapter.






CHAPTER
Background and State of
the Art

“Science is facts; just as houses are made of stones, soege@imade of facts; but a
pile of stones is not a house and a collection of facts is no¢s®arily science.”

Henri Poincare
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3.1 Medical Image Segmentation

3.1.1 General Overview

Segmentation is a fundamental problem in image processiedical image analysis and
computer vision. Generally one would like to create a partibf the image in regions
with similar features, and thus subdivise data into a nurabéisjoint regions according
to their appearance properties. Such a problem is diffisuite the individual voxel
values are not sufficient information for correct segmeatatEspecially medical imag-
ing data is ambiguous and we typically need to integrateaigmowledge about shape
and appearance of anatomical structures to successfglhyesd them.

The integration of a prior knowledge about the anatomicalcstres is the focus
of a large body of current research. In the following we dsscaeveral families of
approaches that are related to our methodology. We willtpmih their properties and
limitations in the context of our segmentation task.

The capturing of the a priori knowledge is a difficult taskdanethods range from
approaches that assume explicit properties (e.g. elgstrnoothness), to algorithms
that use information obtained during a typically superdigaining period. Supervised
segmentation and classification represent a hard and tineuiogng task, and with the
huge amount of medical data available this task becomesreves laborious.

Throughout the literature we can distinguish model-fred amdel-based ones.
Model-free methods make no assumption on the geometriceptiep of the region of
interest. Model-based methods introduce certain assongptin the space of allowable
solutions priors. These approaches are useful in the context of medical iraagky-
sis where variations of anatomical structures are comstdaby the anatomy, while at
the same time pose and view-point variation are taken intowa@. We can illustrate
schematically the segmentation problem by the Figure .

State of the art segmentation methods mainly rely on a glelafined topology, and
an object boundary characterized by salient featuresédggs), where the majority of
work on anatomy segmentation is focused on brain, liver arttéatal Duncan and Ay-
ache, 200D In the medical and imaging community, MRI is regarded astle¢hod of
choice concerning in-vivo volume measurements thanks toigh sensitivity regarding
soft tissue and its non-invasive nature.
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3.1.2 A Variety of Medical Segmentation Techniques

Boundary-based methods are seeking the optimal instandeeomodel guided by
image-discontinuities, region-driven approaches aimepagate the global intensity
characteristics of the object from the background, whiltdes-driven methods seek
to learn patterns of support in the image. One can refer tor@euof surveys published
for snakedYezziet al, 1997, deformable modelgMcinerney and Terzopoulos, 1996
markov random field-drivefiTu and Zhu, 200R active appearance modéSooteset
al., 2001, minimal paths and fast marching technigl®sschamps and Cohen, 2001
etc.

Deformable Contours and Surfaces Widely called upon in computer vision and pat-
tern recognition, the deformable models are curves or sesfdefined within an image
domain that can move under the influence of internal fok¥esand Prince, 1998[ Staib
and Duncan, 1996 Thses models gained more attention since the publicafibkass
et al, 1989. A growing number of papers related to 3D deformable mofkdszopou-
los et al, 1989 [Mclnerney and Terzopoulos, 1996’'Donnell et al,, 1999 have been
published in the literature. As a matter of fact the use o$éhmodels is becoming more
and more common in medical imaging field.

Shape Models and Descriptors In [Staib and Duncan, 199#he authors utilize ellip-
tic Fourier descriptors in order to depict boundary tengdaFree-form as well as para-
metric deformable models are among the key processingitpadsin medical imaging
segmentation. On one hand, one can find the Active ContouBhakes as the most
famous free-form deformable models and Active Shape artisttal Shape modeling
as the most well-known parametric deformable models. Fooiemxhaustive review of
free-form deformable models in both 2D and 3D and their ugeedical image analysis
we refer the reader tiMcinerney and Terzopoulos, 199&nd[Xu and Prince, 1998

Nevertheless, elastic models suffer from some limitationthe way that they are
often too flexible, and can be trapped by misleading edgey ediges adjacent to the
structure of interest, converging to a suboptimal solutdmother drawback consists in
the initialization requirement near the final solution,alwng manual intervention of
the user. Some papers, though, propose some solutionste these problems like in
[Kelemenet al., 1999, [Székelyet al., 1994 .
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Figure 3.1 —Examples of deformable segmentation images both for the bese (a) and
the left ventricle case (b)

Finite Element Finite element methods (FEM) are explored@ourretet al., 1989,
wheread Teranet al,, 2003 exploit finite volume methods (FVM), which seems to be
more intuitive than the finite element method (FEM), sinagytivant to rely on a geo-
metrical rather than a variational framework. Indeed Brsp$olids are used in the latter
paper in order to model fiber directions, and the muscle aiotin levels are derived from
key frame animations. Another approach was presented bgrCehal. infCohen and
Cohen, 199Bwhere the authors generalize the ballon model -alreadydntred if Co-
hen, 199]- as a 3D deformable surface

Graph-based Technique Several graph-based approaches have been developed in the
last decade, including the Normalized Cuts[Bji and Malik, 2000, or the graph-cut
segmentation proposed bBoykov and Jolly, 200[L A growing number of publications

in vision use graph-based approaches for image segmentidianstance one can cite
[Veksler, 2000 and[Grady and Funka-Lea, 20D4

Indeed the tremendous development of efficient energy naithon algorithms has
revolutionized the field of computer visid&zeliskiet al., 2004, with methods based
on Markov Random Fields (MRF) which have been used in medicagjing problem
such as registratiofGlockeret al.,, 2009.

Summary Freely deformable models involve deformation algorithiveg do not take

into consideration the learning stage of shape variakibtystraints. Nontheless one has
to keep in mind that freely-deformable models can be usedesent certain shapes,
but the stabilizing energies are mainly based on generabdmess properties and not
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on statistical consideratidiieimann and Meinzer, 2009More generally, conventional
low-level techniques do not implicate inherent a-priofiomrmation, and hence suffer
from lack of stability facing local image artifacts and peltations present in the image.
Consequently we will focus more on the model-based segrentapproaches, and
ideally a shape representation that encodes variationsubiipte scales, providing a
large set of features for shape analysis.

3.2 Statistical Shape Models

Knowledge-based methods aim to satisfy such a demand wherérst intends to de-
termine some prior density on the space of solutions anddbestrains the solution in
a new image from this density. That way an accurate organ eegtion would offer
precise measurements, simplify visualization and allowaf;more accurate diagnosis.

Statistical models of shape and appearance variation fdvase for the work pre-
sented in this thesis. In the following we will outline that& of the art, and point out its
capabilities, and limitations. Modeling shape variatisaiwell studied problem, where
there are two critical components; the choice of shape septation and the construc-
tion of the prior manifold. For instance Point distribution landmark-based models
[Cooteset al, 1999, implicit representationfRousson and Cremers, 230%iangu-
lated surfacefWelch and Witkin, 1994 spherical wavelet representatididain et al,,
2007 and statistical atlas¢Rueckertet al., 2003 are examples of shape/surface repre-
sentations. Besides shape and appearance models haveskden different contexts,
like face modelind Edwardset al, 1999, [Matthews and Baker, 2094tracking[Dor-
naika and Ahlberg, 20Q4studying human behaviddohnsoret al,, 1994, and medical
imaging tasks.

Given the shape representation, the prior manifold carelib a subspace or a prob-
ability density function. In the first case, the space of Bohs is often represented using
a linear combination of a set of basis functions modelingwgations of the training
examples. Linear sub-spaces, determined either throughipal Component Analy-
sis (PCA), Linear Discriminant Analysis (LDA), or Non Negest Matrix Factorization
(NNMF), are methods being used to determine these subspaoesrds dealing with
high amounts of training data, numerous provisions weresidened such as Kernel-
PCA prior[Cremerset al, 2004, or sparse models, either through implidforin et
al., 2007 or through explicit surface representatidissafiet al, 2004. In the second
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case, simple Gaussian densities, mixture of Gaussiangyarametric densitielSraron
et al, 2009 as well as manifold learning and embedd[@harpiatet al, 2004 were
considered.

In [Rogers and Graham, 200the authors describe how to model present features,
which deals precisely with objects with missing data. Stilthe same context, the
authors ifRogers and Graham, 2002se a weighted least squares to update the shape
parameters. In this case, landmarks with distinctive neubcrders should be given
weights equal to 1 and 0 to landmarks corresponding to ngssiiges.

One can further cit¢Chui and Rangarajan, 20p@ Robust Point Matching method
(RPM) on its own, where the authors present a robust algonthich not only tolerates
noises but also attests of a certain ability in overcomimglloninima and bad initializa-
tions. There is also the ASM version of the latter pajeni-Nahedet al., 2004 that
combines point distribution model both in 2D and 3D with rsbpoint matching while
performing image global search for feature points of irgere

The vast majority of existing approaches are explicit/laack-based, where some
critical points are deducted along with an interpolaticatsgy towards describing the
shapg Bookstein, 1997 Examples refer to active shape mod&®oteset al., 1999,
spline-driven representatiofBookstein, 198] triangulation of surfaced.ameckeret
al., 2004, wavelet-based representatighiin et al., 2007, among others. An example
for accurate segmentation achieved through deformableelma@dmbined with shape
modeling is shown ifCremers and Rousson, 2007

Active Shape ModelASM) represent the gold standard of the statistical shape mod-
els (SSM with a key number of publicatio€ooteset al, 1995 [Cooteset al,, 19943
[Cooteset al, 1994 [Cooteset al, 19984. They are mainly based on a Point Distribu-
tion Model PDM), and used to both capture and represent the shape vairatraming
set. Active Shape Model (ASMooteset al,, 19984, build a point distribution model,
which allows for global scale analysis of shape variatiorapplying principal compo-
nent analysis (PCA) to the positions of the boundary pointsi|e using local appear-
ance to fit the model to new data. There is also lot of work ompshaiors, including
Fourier representations of contoliBtaib and Duncan, 1992atlas-based segmentation
methods, level set and priol€remers and Rousson, 2007

The landmarks have to undergo a process of manual annqtttileaved by an align-
ment into a common coordinate system. Principal Compongeatysis is then applied in
order to reduce the dimensionality of the data set and tafygbe coordinate frame of
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orthogonal principal axis. Consequently the shape mottbalfor considerable mean-
ingful variability. One of the most significant contributi@f ASMis that the model is
able to learn the characteristic pattern of the shape class.

However, there exist some limitations related to this applno First of all, their inabil-
ity (with a relatively few number of eigenvectors) to cagttine full range of anatomical
shape variability. Moreover, one has to refer to their deniyi to partial occlusions and
inability to deal with orientation changes. A reduced numiieexamples in the data
set is also considered as a handicap. In fact it is a hard itoast a high-dimensional
probability distribution of a shape starting from a relativsmall number of samples.
More simply, the number of eigenvectors necessary for shegggesentation has to be at
most equal to the number of training examples minus one evthé number of points
comprising the shape might be two or more orders of magnitigieer.

These limitations are reported in several reviews in tieediuire such agDavatzikos
et al, 2003 who propose to overcome to the first drawback by calling updrea
archical concept based on a wavelet transform. This newuiation of the ASM is
therefore capable of capturing fine and coarse variationga Bnd Sonka also present
another improvement of ASM by integratingapriori knowledge concerning the neuro
anatomical structures of the brain to resolve these prablafDuta and Sonka, 1997
In [Cooteset al, 19948 a multi resolution implementation is developed to improve
ASM code in terms of robustness, accuracy as well as speegte Th consequently a
continuous demand on more accurate and automatic appsoathieape modeling.

To summarize this global framework, such a process invalve= key aspects: (i)
Shape representation, (ii) Modeling shape variations fiaadly (iii) Inference.

Once the representation has been been defined, the nextostgipts of learning a
manifold on this space from a set of training examples. Lise@spaces, parametric as
well as non-parametric densities have been considered delsbape variation through
the observed global distribution of the landmarks withie thaining examples. Sin-
gle and multi-variate Gaussians, and kernel-based repegg®s of fixed and variable
bandwidth are some examples.

During the search, the inference step consists of recayenmninstance of the rep-
resentation being part of the model manifold that is bespstpd from the observed
image features.

Often, these three steps are treated independently. Oacgefhesentation has been
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determined, an assumption on the statistical model is madele parameters of the
manifold are determined from the training set. This maxdifslthen used along with the
image features for object extraction. One should therefwake the following observa-
tions:

(i) astrong dependency exists between the representatioh@ntbtel since by chang-
ing the distribution of control points, the model can be véifferent with regard
to its representative capabilities,

(i) a strong dependency exists between the representatioharsggmentation since
image features are often computed along this represemtatio

(i) a strong dependency exists between the model and the sediment

For a more exhaustive review of 3D statistical shape modelskdical image seg-
mentation we strongly recommend the recent reideimann and Meinzer, 2009For
a detailed version about ASM and AAM we refer the readefQootes and Taylor,
20014.

3.3 Shape Model Construction

3.3.1 Shape Representation

As far as medical image analysis is concerned, a large yarishape features were pro-
posed throughout the literature. One can consider thoserésain different categories,
like dense surface meshf$elemenet al, 1999, deformation field§Mclnerney and
Terzopoulos, 1996 Fourier surface$Staib and Duncan, 199@s extension of 1D/2D
Fourier transforms, or landmarkBookstein, 1997a

Throughout most parts of this work we use point distributmadels (PDM), and
rely on landmarks as the representation of shapes in theciolatg. Landmarks are typ-
ically points that are either labeled manually or extractetbmatically from the image
data. Landmarks are points that have corresponding posiacross a set of images
(e.g., alandmark is always located on one specific anatdfowation). They are a pre-
requisite for various landmark-based image registratimh @ppearance based models.
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While initial work relied on manually place landmarks dyyitme training of shape mod-
els[Cooteset al, 1994, subsequent approaches place landmarks in a semi-automati
[Davieset al., 20024 or fully automatic manner in the training ddt2ooteset al., 2004
[Langset al., 2007.

The choice of landmarks - or of subsets of landmarks usedhglwearch - should
satisfy several properties: 1. Given the landmarks it sthtwel possible to reconstruct
the entire structure or object with maximal accuracy, iteytshould cover the object
sufficiently densely, and 2. The landmarks should corredgonimage content that
allows for un-ambiguous localization. The selection of Bwedmarks as well as the
interpolation strategy is an important challenge towamtovering the most compact
complex representation with the best possible geometdonsruction of the object
under consideration.

Suppose we are given a set of training volumes or images

I,L,...,Iy,. (3.1)

For a set of landmarks positions are known in all exampleat iEhfor each example
I;, the landmarks are located at the positions

X; = {x},x},...x}, }- (3.2)

wherex; € R?. We will call X; € RVt a shape, and denote the set of shapes in the
training set by

X: {X17X27...,XNT}. (33)

3.3.2 Alignment and Procrustes Analysis

A prerequisite to any shape representation analysis isgo tile data set into a common
coordinate fram@Goodall, 1991. This normalization allows for getting rid of the differ-
ences across shapes that are mainly due to rotation an¢atrans Procrustes analysis
[Gower, 1975 represents the gold standard of the alignment methods ilit¢hature.
More practically, it minimizes the Procrustes distancpresenting a least square mea-
sure of the shape dissimilarity, between geometric shapese is also an effective and
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V={V.,V,,...V|

Figure 3.2 —Point Distribution Model

simple iterative approackCootes and Taylor, 200],avhose steps can be summarized
in Alg. 1.

Some downsides of the Procrustes analysis remain yet umeesaespecially the
problem of missing landmarks. For a relevant study on aligmnand some answered
drawbacks sefEricsson, 200b

3.3.3 Obtaining Correspondence
3.3.3.1 Overview
An accurate correspondence of the training volumes is aquueisite for a rigourous

point-based shape model. In fact a dense correspondencmisi&ey step in the model
building process. Landmarks are in practise said to cooras$f they are matching in
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Algorithm 1 Iterative Procrustes Analysis Algorithm

1. Translate the training set examples so that their cenfermss are at the origin.

2. Opt for one example as initial guess of the mean shapand scale it so that
[z = 1.

3. Record the first estimate agto define the default reference frame.

4. Repeat

5. Align all the shapes regarding to the estimated mean shape

6. Estimate a new mean shape

7. Impose the new mean shape by aligning it wighand scale it s4z|| = 1.

8. Until Convergence

a biological meaningful way. If all landmarks are locatedaomanifold i.e., the surface
of a muscle, we imply by corresponding positions that thifaihg landmarks;

le»,xf,...,xévT (3.4)

have to be located at the same anatomical position, in atlimgaexamples. This
correspondence is established during training by eithendgaonly the shape into ac-
count, or by using both shape constraint of a continuoustatioa of the shape (e.g.,
anatomical object) and the image content in its vicinity.

As far as the 2D correspondence problem is concerned, marasdhblished land-
marks can be determing¢@ootes and Taylor, 1996Bookstein, 1997bwhich certainly
leads to reasonable and satisfactory results. Howeveemhsé¢o be a time consuming
task and even a source of multiple errors, leading to a poadefgeneration.

As explained in[Davies, 2009, the straightforward approach to define correspon-
dence is to select a starting point on each example and gcmate a number of points
on each boundary. Actually different conceptions could beved in order to solve
this problem of correspondence, it could be distance-bESeliandet al., 200d, shape
(boundaries)-basddHill et al., 2004, or stillimage-basefRueckertet al., 2003.
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(a) Training set before (b) Aligned left ventricle.
alignment.

(c) Heart Mean Shape.

Figure 3.3 —Left Ventricle Alignment through Procrustes Analysis.

For a complete comparison and explanation of these comelgpeaes methods, we
refer the reader tfDavies, 200§ however it is noteworthy that the distance-based tech-
niques have an important side effect in a way that the reagtosition of equivalent
points can change noticeably over the data set. Regardengah-rigid image registra-
tion, they lead to reasonable but arbitrary results. Thessentially due to the existence
of an infinite number of non-rigid deformations adequate &tah the intensities in two
images.

As for 3D correspondences, they can be for example obtaigeskmi-automatic
Minimum Distance LengthMDL- proposed irDavieset al, 20023, fully automatic
technique as iCooteset al,, 2009 [Langset al,, 2007, the congealing methdollei
et al, 2009, or the covariance determinant (DetCdiptcheff and Taylor, 1998 and
finally spherical harmonics technique (SPHARMyechbuehleet al., 1994.

The DetCov method possess the specificity of minimizing the@dance matrix, and
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therefore gives privilege to compact models, but presdrgsriconvenient to have an
exorbitant computational cost. Whereas the SPHARM is ealhededicated to objects
with spherical topology, by having the spherical harmorigshe basis functions of the
parameterized surface. This approach was usdé&éemenet al, 1999 where the
authors propose to build shape models starting from a séveéd 3D shapes by defin-
ing correspondence through every surface parametenizafiaother recent technique
presented ilChui and Rangarajan, 20P@eals with the correspondence issue, however
-yet like many algorithms- it only matchs one volume to aeothather than considering
the whole data set. Typically this kind of method do not gntga continuity neither
bijectivity. Hence they are not really effective for shapedulling. In other words the
parameterisation functions do not have to be monotone ahdlhpoints need to be
matched.

A thorough survey of 3D methods for landmark correspondarase be found in
[Styneret al, 2003, where the latter three methods are evaluated regardiegaevite-
ria: compactness, generalization and specificity. Amoegotitcome of this evaluation
we point out the supremacy of the Minimum Distance LendlibL- based approach
representing a method for inductive inference. The detdithe latter method will be
therefore discussed in the upcoming section.

3.3.3.2 Minimum Distance Length

The Minimum Description Length (MDL)Davieset al, 20024 approach scores well
the issue of points correspondence. The MDL method seekshieve a compact de-
scription of the landmarks positions in the shape. In casevard to establish how well
our data set can be modeled by a specific model family, we lwafrest assume a stan-
dard multi variate Gaussian model (such in ASM or AAM). Theibadea would be to
have a model which is able to compress data, then we assutedéyatures or approx-
imates the model underlying the data. Thus a higher compresstio leads to a better
fitting of the data and the model.

Practically the MDL is originally based on the DetCov tecjue[Kotcheff and Tay-
lor, 1999 in the way that it was introduced through a different objexfunction for the
optimization process.

The principle of MDL is based on transmitting a set of shageseencoded message,
where the code emanates from a prefixed set of parametistisi@tmodels. Afterward
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the transmission incorporates the encoded data valueslhasmbe coded model pa-
rameters.

Hence MDL equilibrates the model complexity, which is egply formulated thanks
to the transmitting cost of the model parameters, agaieditting quality between both
the model and the data, determined by the coding length. Bliarply the MDL repre-
sents the necessary effort to send the model bit by bit asrshofeiquation. (3.5);

L(D,M) = L(M)+ L(D|M) (3.5)

whereL(M) is the cost of communicating the shape model &08|. M) is the cost
of the shape data encoded with the help of the model.

3.3.3.3 Robust Autonomous Model Learning

We have reviewed during the last section the major previar& an correspondence es-
tablishement between shapes, especially those handengoibulation based optimiza-
tion issue. Although these methods produce plausible dsasgdartly reliable results,

the major remaining contraint is relative to the choice gidlogy and parameterization.
The Minimum Distance Length techniqlidavieset al, 20021 for instance utilizes an

a priori chosen topology to parameterize correspondenugsi@formation throughout
the learning and the search process.

As our data set, e.g. calf muscle, presents a high varmalfitocal deformation
behavior, we called for a more weakly supervised learniggréhm for appearance
models[Langset al, 2007 based on the minimum description length (MDL) principle,
to resolve the correspondance problem.

Among the benefits of this method, one can cite that we have;
e No need for annotation (a time consuming and error prong.task
e No hypothesis about the topology of the shapes,

e No continuous representation of the volumes, during o@ton the method only
requires a distinctive sets of interest points.

The following automatic model building is even adequatedal dvith missing land-
marks issue, addressed by means of a robust model estimhataesed the idea behind



3.3. SHAPE MODEL CONSTRUCTION 43

this technique is based on a group-wise registration osgpapresentations of the train-
ing data.

Pre-Processing: Group-Wise Registration Here is the outline of the algorithm de-
veloped by[Langset al., 2007

1. Pairwise matching of; to Ny — 1 images withK interest points/landmarks.
2. Correspondance outcome is store@ire R**" .

3. Starting from this correspondance result, the autharsgad to a group wise reg-
istration that minimizes a criterion function. The latteiterion is based on the
compactness of the appearance model, depicting both shdpecal texture vari-
ation.

In fact the criterion function is inspired from the Minimumdbance Length idea,
however instead of using a two-part coding scheme, as intteoué3.5), the description
length is decomposed into multiple parts, as in Equatiog){3

C=Cg+Cr+ a(t)CE (3.6)

including a shape compactness critefia(Equation. (3.7)), a local texture param-
eter Cr (Equation. (3.8)), and finally an elasticity regularizatimeasureCr (Equa-
tion. (3.9)), as detailed in the following equations:

Cs = L(Ms) + L(Ds|Ms) + Rs — Lref (3.7)
Cr = L(Mr) + L(Dp|[Mz) + Ry (3.8)
Cp = |Vd(x)” (3.9)

where :

o [(Mg)andL(Mr) represent the transfer cost of the shape model,
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e [(Dg|Mg)andL(Dr|Mr) consider the cost of the shape data encoded with help
of the model,

e RsandRy as a penalty for the residual error not captured by the model.

® Ly =), yentropyj—1, . x(pij) helps for the normalization and constitutes
the entropy of the landmark positiops; in the each volume.

e d the displacement of any landmark throughout the data sstythy we prevent
a degenerate model.

[ Initialization 1 One step during genetic algorithm search
L. /r images
n.,n. : . nnun 29123ﬂ53?8Q|D1||2|3H|5|S
: . - = '\-..,_‘_‘ . o, - -
1. Interest points and local 2. One to many robust homography —— Each row holds the indices
texture features at their estimation resulting in intial ofhe interest points the
positions are extracted correspondences encoded in the landmark is assigned
from all training exampes comespondence matrix G ;:;'s’“""””" aining
l [ one step during direct search
- - = — 5 Projectsingle
Genetic algorithm ! . i example inw
[ cormespondence search [Drect search refinement ]—v Result — E the madel
[ Add landmarks based an J [ Add landmarks based on e e — ‘ ;=::.
exising landmarks existing landmarks e — | Model | — 5"
5 5 =—= (=)

3. GAsearch \_4. Direct search ) Build madel from remaining axam ples Search for bestcandidates for
landmarks in the neigh borhood
of projecion, and exchange

a h elemenits in G accordingly.

Figure 3.4 —Description of the Robust Autonomous Modeangset al., 2007

Afterward the optimization is insured through, at first, angc algorithm search
coupled later on with a fine search, and starting with a lichitember of landmarks,
while adding some others just after the learning processk-gpire. 3.4 for more details.

3.3.4 Dimensionality Reduction

Whenever we face a huge dat set, there is in reality only alsmaiber of parameters
that govern the data, which constitute the true dimensidghefraining set as well as a
real motivation for the data reduction. In the most typicdes we call upon the dimen-
sionality reduction techniques that were studied extehgin the literature including
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PCA (Principle Component Analysis) or rather ICA (IndepemdComponent Analysis)
[Hyvarinen and Oja, 20Q0The PCA represents though the most common technique to
decompose the shape space and that maximizes the variaheambut data. The com-
bination of PCA and feature vector has proved to wi@koteset al., 19944 in terms of
anatomical segmentation.

In practice each step during the PCA performs a variancemiakig rotation of the
original space. It generates in this manner new orderedaoasding to the variance of
the shapes in the different axis directions as seen in Fi§ue That way the principal
components exhibit a natural ordering according to theawae they describe. This kind
of model is able to capture effectively considerable valitgb

Figure 3.5 —PCA eigenvalue decomposition

Nonetheless there are some constraints with regard to tAeap@roach, such as the
size of the training set. The latter has to be consistentderato capture the variation
within a same class. Besides the assumption of the Gaugsibalplity distribution over
the data generation has to be assessed. Moreover, PCA waiksdde global variations
only, whereas more local variations are not captured. Bhibsrectly related to the fact
that the eigenvectors of the covariance matrix the mostaetemodes of variation.

Before starting to reduce the dimensionality of the datawetfirst represent each
data by its deviation from the mean

1 &
33 310

We perform then a Singular Value Decompositi®&VD over the covariance matrix
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S -see Equation. (3.11)- of the aligned data in order to evelilne principal components
of the training set. Let's suppose we have aligned the shtapasU DV = x7x, where
VU7 is actually the rotation matrix.

1 Xx

S = o D (xi—%)(x; —x)" (3.11)

i=1

Once we capture the non-rigid shape variation, global tatiog, scale and rotation
do not affect the model complexity. The aligned shapes ardeted by a multivariate
Gaussian with model meanand eigenvectors of the covariance matrix

Np
X; =X+ bie; (3.12)
j=1
where:

e ¢; represent the modes of variation of the covariance matrix
° b;i the coefficients symbolizing each shape

e N, corresponds to the number of the largest eigenvalues, @gntis number is
chosen in a way that a certain ratio of 98% of the varianceasvahn the training
data set. While varying the modes we can establish a givatslias/)\; [Cootes
and Taylor, 2001eas shown in Figure. 3.6, witk; the corresponding eigenvalues.

An alternative way to constrain the shape parameters teeardeted interval is shown

in Equation. (3.13)
( i) < M, (3.13)

i=1

where M, stands for a threshold taken from thé distribution. That way the group
of modes are considered as one multivariate distributiod,the shape parameter will
be bound to stand inside a hyperellipsoid.
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Figure 3.6 — Shape modeling example with typical hand training[§xiotes and Taylor,
20014

3.4 Shape Model Search

The initialization issue is always requiered for the shapeéats local search algorithms.
The manual interaction remains a solution that can be appléefor[Kelemenet al,,
1999 and[Pizeret al,, 2003. The construction of an atlas through an affine registration
constitutes a different option as presented in the kneeeshmaqulel segmentatidifFripp

etal, 2007 .

To answer the question how to fit a model to new points, tyjyicake will search
to define an instance of the modein an image through the use of a similarity trans-
formation T including a rotation, a translation and a sagli@ssociated with the shape

parameterd® as well as the eigenvectors (Equation. (3.14)).

y = T(X + eb) (3.14)

The main goal now would be to find the optimal couple of posesdraghe parameters,
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which is achieved thanks to the following algorithm (Algom. 2):

Algorithm 2 Active Shape Model Search Algorithm

1. Initialise shape parametbrto zero.
2. Produce the modelasx = x + eb.

3. Estimate appearance model along the normal vector toutiace at different
landmarks positions to find the best similarity transforioraf.

4. Update shape model parameter in a way thate” (y — x)
5. Impose constraints on shape parameter as explainedinis8c.4

6. Repeat Until Convergence

Different variants and extensions of the ASM search algorihave been proposed in
the literature, such as the coarse to fine straf€ppteset al., 19944 where the starting
point of the search process is the coarsest level, as soom@svargence is met, the
algorithm moves on the following level. This extension agugeto be fatser and more
powerful for fitting a new model than the classic Algorithm. 2

One of the issues inherited by the active shape model seaddaling with outliers
and preserving stability. For instance, either by focalizon how to reduce outliers
effects|Rogers and Graham, 2002r by establishing a robust point matching algorithm
that excludes outliefsAbi-Nahedet al., 2004 to set the optimum fitting model.

Apart from the local search, there has been work on globatkdaunched byHill
et al, 1994 who get inspired from the genetic algorithms. However orethdeep in
mind that global search is a constraining task seeing tlesgphce of search is large and
local minima are multiple.

Concerning generative models, and more precisely the Adippearance Model
search (AAM search), we will handle it more into details irt&@n.6.2, where the chap-
ter is dedicated to appearance based search.
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3.5 Diffusion Maps

Diffusion maps are closely related to Markvo processes.y Tagture the structure of
a graph by means of a diffusion distar{€oifman and Lafon, 2046 and embed the
graph nodes into a space whose geometry reflects the muffiadioin distances be-
tween nodes. Thereby they offer a way of dimensionality céda. A Markov chain
is constructed via pairwise similarities,which are defitachlly. A diffusion process
on the graph defines the geometry determined by the graphveelghts. Similar work
ranges from Laplacian eigenmajielkin and Niyogi, 2008 another reduction algo-
rithm that is highly related to diffusion mapSchclar, 2008 or diffusion kernel work
on graphdKondor and Lafferty, 200R Among the previous applications related to dif-
fusion maps one can cite text classification and lip reafliafpn and Lee, 2006 In the
following, we will explain the basics of diffusion maps. §heill be used in Section. 4.4
and Section. 5.4 to capture the structure of landmark behavi

Random Walk Let's consider a set of poiit = {z;}2_, with z;, €*. We aim at
walking randomly through this data set while taking an aabit starting point. We
denote byp;; the probability of transition between two consecutive p®iandmarks i
and j in a period of time t. One of the similarity type that cantéken into consideration
is the space closeness, in other words it will be the invefrigeoEuclidean distance. In
such a case the probability of walking in the same clusteooftp is bound to be higher
than the one of traveling from one cluster to another.

Markov Process The random walk described here in represents indeed a spas&
of Markov process. The transition probabilities will bersi in a matrix of dimension
N.N whereP = p;;.

For the need of diffusion maps algorithm, we will model therktsv on a graph
G = (V, ), where the nodes correspond to the landmarks and the edgbta/éd the
transition probabilities. Naturally, the more similar arge landmarks is, the higher the
edge weight will be.

The construction depicted in the Algorithm. 3 captures llgemmetry as well as in-
teresting geometric features. Furthermore as the randdkingas running, as the local
geometry information is propagatéGoifman and Lafon, 20dd Schclar, 200B The
final step of eigen decomposition enables to designate aataimbedding of the data
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Algorithm 3 Diffusion Maps Algorithm
Input: Data sef’,
Pairwise similarities.
1. Building of an undirected grap&, W on the data sdf with the weights cor-
responding to the pair wise similarities between the lan#tmar the different
states.

2. Processing of arandom walk through the grépleading to a markov transition
matrix P.

3. Eigen decomposition of the markov chain mat?ix
Output: Eigenspace (modes, eigenvalues) of the markov chain matrix

through the diffusion map, and the eigenvectors will alldig@vard for a dimensionality
reduction process and hence an embedding in a lower dinresgéace.

3.6 Examples of Muscle Segmentation

3.6.1 Prior Artin Calf Muscle Segmentation

Muscle-compounds (see Figure. 2.5) present a rather eliffand new challenge to seg-
mentation algorithms because there is no prominent differef tissue-properties be-
tween neighboring muscles. Border tissues in between esiacé only visible on spe-
cific locations, distributed in a very sparse and heterogesienanner. Indeed muscle
surfaces are only partially visible, while parts exhibitteusture that can change dra-
matically between patients or during the course of follgevexaminations. Although
dominated by the global anatomy, muscle deformation etibiostly locally consis-
tent behavior, precluding the use of e.g., a global lineadeho

State of the art medical segmentation methods mainly rely dearly defined topol-
ogy, and an object boundary characterized by salient fesifer.g, edgegPuncan and
Ayache, 2000 The musculoskeletal modeling problem in medical imagampt widely
investigated in the literature. Indeed few works have besticted to this issu&silles
et al, 2004 [Blemkeret al, 2007. Related work on muscle segmentation includes
simplex meshefGilles et al., 2004, in fact a mesh in computer graphics represents a
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collection of vertex points sampling a hyper-surface, amehected by edges, faces or
hyper surfaces. Another method presenteldF@rnandez and Hunter, 200&xplores an
atlas-based models which are deformed using a free-forormetion . The main chal-
lenges of calf T1-MRI segmentation is the total absence o¥entional image support.
Edges between classes are almost invisible while at the samehe global intensity
characteristics of the muscle regions are almost identicafact the border tissues in
between muscles are only visible on specific locationsridiged in a very sparse and
heterogeneous manner. Indeed muscle partially exhibittstres that can change dra-
matically between patients, or during the course of follggvexaminations. Neverthe-
less, and as highlighted hlemkeret al, 2007, musculoskeletal disabilities in general
and Myopathies -as far as our work is concerned- could highgyit from this kind of
studies and improve future treatments.

Consequently prior models build from conventional imagsdud search approaches
will fail to separate the muscles regions. An alternativellddoe the explicit use of the
image support during the construction of the model. In fatécive active shape mod-
els for exampldCooteset al, 19944 use only a small portion of the landmarks during
the search, while sparse modfHorin et al, 2007 aim to optimize shape representa-
tion by proposing a sparse representation that encodesitypand exploits geometric
redundancy choosing individual representative sliceimtpikto account image support.
These methods depend heavily on the accuracy of the inbgectuegistration for group
comparison and the parametrization of the shape.

Registration-based Segmentation Initialization We perform a uni-modal registra-
tion of an annotated calf MRI (the atlas) to the target voluhreugh the use of a novel
deformable registration framewofklockeret al., 200d. The registration problem is
formulated as a markov random field (MRF) optimization areldpproach is based on
discrete labelling and linear programming, which presémsadvantage to be gradient-
free and flexible in the choice of the distance measure. Eaisntique also guarantees
optimal properties on the solution, computational efficieand tractability. Assuming
a prior model that involves both geometry and texture (sejetkanatomical atlas), one
can define the segmentation through the deformation of traehto the image that is a
natural registration problem, and can be addressed by tpoped framework.

A scheme of registration based segmentation of muscles inddR is depicted in
Figure.3.7. The expert annotation of an example is traedfés a target by non-rigid
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registration.

The registration obtains a coarse initial segmentationrasdlts indicate the good
behavior of this method on our data set, while at the samettim@eed for a more ac-
curate segmentation that can not be achieved by the rdgstrélthough the technique
achieves a good appearance matching as shown in Figurth@s:gmentation result is
still not rigorous enough, and there is still a need for mavity and precision.

(c) Before Registration (d) Registration output

Figure 3.7 —Registration result for MRI calf, the source and the targetdes in the upper
row and the difference visualisation before and after tigésteation in the lower row.

3.6.2 Prior Artin Left Ventricle Segmentation

The automatic delineation of the Left Ventricle (LV) is atimal component of computer-
assisted cardiac diagnosis. Information with respectd@jbction fraction, the wall mo-
tion and the valve behavior can be very useful toward pregj@nd avoiding myocardial
infarction as shown respectively [iKauset al., 2004 [Jolly et al, 2001. During our
study we will mainly focus on CT images of the left ventric@ncerning the Computer
Tomography, the main applications of this modality in cacdmaging are the evaluation
of cardiac masses as well as the evaluation of aortic andgydral diseases.
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(b) Combined rigid and non
rigid Registration

(a) Source and larget MK (c)Result without and with Affine Pre-
Image Registration

Figure 3.8 —Segmentation-based Registration result on calf muscle

(b) Target Image (c) Before Registration

(d) Checkerboard visualiza- (e) Segmentation based reg-
tion istration result

Figure 3.9 — Another example of segmentation based registration restiitno need for
affine pre-registration.
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The segmentation of the left ventricle is challenging mpodtle to the similar visual
properties with the other chambers of the heart cavity, disas¢he presence of papillary
muscles. In this context the use of edge-driven terms wiforal statistics along ei-
ther with deformable contours or active shape and appearaondels would not lead to
successful results. In the first case, computational coxiiplis an issue and the proper
handling of papillary muscles is problematic. In the secoaske, one has to deal with
either the linearity of the sub-space or the fact that bngdappearance modes requires
appearance normalization and too many samples.

Model-free and model-based methods were widely investhat the past, and we
refer to[Cremerset al,, 2004 for a rather comprehensive survey. The use of the shortest
path algorithm along with shape matching was considerédhity, 2004, while Staib et
al. have introduced a 3D ballon model[taib and Duncan, 1996The latter model is
parameterized on an orthonormal Fourier basis in a way éavdfir a constrained image
search. Thus the model fitting is achieved by balancing @it energy term with an
external gradient-derived scalar field. Another effectihvethod to model anatomic data
is described by the M-Reps approach (medial model repraseny[Pizeret al, 2003
in a hierarchical coarse to fine fashion.

Statistical point distribution models were also devoteddlve cardiac segmentation
issue by Cootes and Taylor [€ooteset al, 1997, as well as ifCooteset al, 1994,
combining in this manner shape and boundary gray-levelcspAs the image appear-
ance information was still not exploited, despite its intpace and richness, it was fi-
nally introduced in Active Appearance Mod@&AM) [Cooteset al,, 19984, and among
applications figures the spatio-temporal heart segmemntédir the 2D caséMitchell et
al., 2001 as well as the 3D case [Mitchell et al,, 2004. Last, but not least, we refer
to [Paragios, 2002%or an alternative shape representation using level setifurs.

For a complete review, we refer the readetdolly, 2004, [Frangiet al, 2001 and
references therein.

Nevertheless one has to bear in mind that in all the abowraeted approaches, an
a priori topology is required in order to build a segmentatiwodel.
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3.7 Summary

In this chapter, we provided an overview of the backgrourditae state of the art of the
medical segmentation problem.

Furthermore, we highlighted the methods commonly useddrcéise of the calf mus-
cle and the left ventricle segmentation. Despite all thes jarad cons of the segmentation
approaches described previously, they generally suften fthe lack of compatibility
with our image data, especially that the image support tyuedinot really taken into
account. In the vast majority of segmentation techniques,gresumed that if ever an
image region quality is low, another one would cerainly éfjrate.

We will point out in the next chapter our choice of a more dulgashape representa-
tion regarding the challenging properties of the studiedioa images this thesis and
relevant to the problem of statistical shape analysis. fbee instead of using a priori
choices, we need a model that rather learns the intrinspestogoology from the training
data, while represent the shape variations regardingsddpblogy.

Conventional shape modeling approaches rely on a pre-defiopology and
parametrize the surface of an object with regard to an asuprdanifold like a sphere,
thus limiting themselves to specific tasks. In the ideal case would like a method
that learns the appropriate topology from the training @aizh uses an according shape
representation to model its potentially rather heterogasevariation and local texture
features extracted at the landmark positions. Such a polveddel has to deal with two
challenges: (i) A way to determine the intrinsic topologyacdhape for which multiple
examples are available, (i) Means to represent the shajetiva with regard to this
topology, i.e., a way to exploit arbitrary topologies.






CHAPTER
4 Sparse Shape Models

“Not everything that can be counted counts, and not evengttihat counts can be
counted”

Albert Einstein
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4.1 Introduction

The localization and segmentation of muscles in MRI dateepaeveral challenges.
The lack of contrast between the anatomical regions as wéieahighly heterogeneous
distribution of salient features makes the segmentatiskaémost intractable with con-
ventional methods. In the following we will explain how to éaploit redundancies in

the shape variation and use the image information effigi¢atbbtain reliable segmen-
tation results. In this chapter we propose a sparse refeggsnthat encodes sparsity,
exploits geometric redundancy, and most importantly actofor the varying degrees
of image support to obtain a robust segmentation of indaiidmatomical structures.

Indeed a novel technique for model-based vision is intredubat performs dimen-
sionality reduction while taking the image support into@aat. The fundamental as-
sumption of our method is that one can describe anatomicaitates while just refer-
ring to a small number of elements, and reconstruct theeestitcture through a well
chosen, and object specific through interpolation. Hencénawe to find the smallest
possible set of robust, most representative, best sugpoot@ponents and features ca-
pable to retrieve an optimal reconstruction of the origimlgjlect through a data-driven
interpolation method. The resulting segmentation serseslzasis for the consistent lo-
calization of regions of interest in the anatomy. This isvaht in cross-sectional studies,
and during follow-up examinations.

Throughout this section one of your goals is to answer soitieatrquestions:

1. How can we learn the structure of behavior and how can weéhissen shape and
appearance models ,

2. How can we measure the local image information that supgegmentation,

3. How can we integrate this knowledge about the structuceradundancies in
the shape variability, and the distribution of image suppmachieve an optimal
sparse representation of the objects.

The remainder of the chapter is organized as follows: in &2cwe recall some
related work regarding the sparse techniques for buildingenfocalized shape models,
whereas in Sec. 4.3 the optimal shape representation andl rmmastruction based on
the data sparsity are presented. Afterward Sec. 4.6.2 dédighe inference and the
optimal use of image support.
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4.2 Related Work

In the same line of research we find some interesting workaditérature;

e An alternative parametrization of shape is Independent i&omant Analysis
[Uztimcuet al,, 2003 was investigated for cardiac MR images segmentation and
also compared to the principal components analysis resAitisong the advan-
tages of ICA decomposition one can cite that it does not requiGaussian distri-
bution of the input data and that is capable to capture Ipedlshape variations.

e [Florin et al, 2007 focused on liver segmentation and called for the level-set
techniques for 2D key slice segmentation and then a 3D shagdanterpolated
from 2D contours. They introduced 3D sparse models andhdisished between
two classes of regions present in the object; low suppordnsgand high support
ones. In fact they even propose to extend the notion of imageast toward being
associated with the quality of the samples in general. Thie marpose remain
to select robust regions with high support, and to be ablec¢orrstruct the object
of interest just with these extracted elements. Howeveagiproach is not point
distribution based, it rather accounts over key numberioéslextracted from a
3D volume.

e The SPCA decomposition standing for Sparse Principal CompAnalysis
[Sjostrancet al,, 2007 extracts sparse and meaningful anatomical elements from
a training data set. In fact one of the inconvenient of thegypial component
analysis is that the principal component contained in tlaelileg matrix are non-
zero, which makes the interpretation arduous. The scopd”@fASis so far to
make each PC to be dependent on a limited set of varigBjéstrand, 200[7 The
approach can be conceived as regression type optimizataisigmn of the PCA
using LASSO, a selection variable technique leading tossparodel§Zouet al.,,
2004.

¢ Another method for building more localized shape modelsinaeduced inLe-
ung and Bosch, 2007tfor the classification of local wall motion abnormalities in
left ventricle; a comparison between different orthomatedion (varimax, quatri-
max, factor-parsimony) was carried. The method relies enmdhated shape space
of the PCA, where could be found localized spatial variagioRor more details
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concerning the orthomax rotation we refer the reader to pleeming chapter and
more precisely to the Section.5.5.1.

There has also been work on statistical shape analysis nsmguclidean metrics by
[Larsen and Hilger, 20Q30 obtain sparse modes of variation, where the authors even
proceed to an extensive comparison between PCA, Maximurocdutelation Factor
(MAF), and Minimum Noise Fraction (MNF).

4.3 Sparse Shape Model Concept

Sparse shape models learn a representation and a corregpoecbnstruction mecha-
nism from a set of training examples. The sparse model i$ baded on the statistical
behavior of the training shapes and the distribution of apg&ce information in the
training data. In the following we will formulate the framevk, and explain how to de-
rive an optimal sparse representation from training exasgubsequently, the method
for the reconstruction of the entire modeled structure ftbensparse representation, and
will explain the search procedure.

In order to segment shapes based on a sub-set of elememé8ess in our case), a
training set of volumes or images each containing an exaofphes structure of interest,
we define;

e A representation: landmarks for which corresponding pmsstare known in all
examples

e A model the captures the variation of the shapes in the trgiset, and how to
reconstruct a shape with help of this model if only a partasub-set of landmarks
is known.

e A method to select a sub-set of landmarks, that is best stoteconstruction
from new data, by taking into account the typical image swupjothe training
examples, and the geometrical significance of individuaditaarks, i.e. how im-
portant are they for reconstruction?

The landmarks allow for consistent use of particular posgion the muscle surface.
With help of this representation we are able to assign iddii positions on the surface
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properties like expected image support, or significanceHerreconstruction process,
independently from a prior choice of the coordinate system.

Since there exists a correlation in the training set of shape expect to be able to
obtain a reconstruction of a shape within the object classly a part of the landmarks
are known. In the following a framework for the reconstrantof the shapes, i.e., the en-
tire set of landmarks from a sub-set is described. The clufittes sub-set of landmarks
will be also explained in the following.

4.4 Sparse Shape Model Construction

Let us consider a shape representation that consists onead@tiof landmarks. Given a
set ofn training volumes and their corresponding segmented sireict

I,I,....1,, (4.2)

our knowledge about the data comprisedandmark positions in each of the exam-
ples. The number of landmarks can by high, up to a dense sagnpilishape surfaces.
Landmarks are not constraint to anatomically salient goibtit can be distributed on
manually segmented training examples by methods like thageosed ifDavieset al.,,
20024 [Langset al, 2007. The landmark positions can be found using a number of
approaches, such as a minimum description length basediant Landmarks do not
have to be located on a single surface or manifold, but canelafbitrary structures and
deformation field§ Taronet al, 2007. For each examplg, the landmarks are located
at the positions

V= {x\,x},...x", }. (4.2)
wherex; € R%. We callV,; € R¥™ a shape, and denote the set of shapes in the training
set by

V={V, Vs ..., V,} (4.3)

This data defines a shape manifold, that can be associated&ometric and image
support. This should happen while satisfying two condgion

(i) Preservation of the information necessary to reconsthestshapes with maximal
accuracy,
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(i) Image information associated to the landmarks that en&dtazation in new data,
by having low ambiguity.

Let us define;

V={V,Vy,...,V,}. (4.4)

whereV,; € R¥™ are the representations of the full shapésn the training set,
with m’ < m. V, consists of a sub set of the landmarks defining the shape, and a
corresponding reconstruction functiéhexpressed as following:

P:R™™ L R™™ VsV, + R (4.5)

whereR is a residual error, that should be minimal.

We will first discuss how to obtain this representativrbased on the shape and
appearance behavior in the training set, in order to obtaiimal search ability. In this
work we consider a multivariate Gaussian shape model, asinf@avieset al., 20024,
to model the shape variability.

4.4.1 Shape Maps and Redundancy

We view finding an optimal shape representation as an opsamapling with respect to
the variations being observed in the training data. It sthévalve low density in regions
that behave in a redundant manner, and high density in regi@t exhibit uncorrelated
or complex deformation behavior in the training set. Analagly to a uniformly dis-
tributed sampling in real space, that covers the objectlgyvidre sparse representation
has to cover the object evenly with regard to itfermationcontained in each sampling
point. To achieve this, we have to capture the coherenceediehavior of shape regions
in the training examples. IfLangs and Paragios, 2008hape maps are introduced.
They provide for a shape population metric, that capturesriterdependencies in the
behavior of landmarks. We use the concept of shape mapsite @eroptimal sampling.
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4.4.1.1 Markov Chain Description

Diffusion maps[Coifman and Lafon, 204&epresent a spectral embedding of a Xet
of n nodes, for which local geometries are defined by a ketnek x X — R. The
kernelk has to achieve both symmetric and positivity preserving:

k(z,y) = k(y, x)
k(x,y) >0 (4.6)

Let us consider a Markov chain consistingrefnodes, that correspond to the land-
marks, and edges with a valgg(i, 7) between nodes that correspond to the minimal
description length§Rissanen, 1978f models encompassing the two landmailesd
j andk — 2 other landmarks. The description lendihis the number of bits, that it takes
to communicate a modeé\1, the dataD (in our case landmark positions) encoded with
help of this model, and a residual error:

L(D,M) = L(M) + L(D|M) + R 4.7)

The data term is associated with the reconstruction erfuiteihe model term penal-
izes over-fitting through the use of expensive (in terms ofiber of parameters) models.
In our case it provides information about the compactnessaafels describing the joint
variation of the landmarksandy, or equivalently about the redundancy in their position
information in the training set. We expect low values fordararks, that behave in a
coherentway. Thatis, if; (i, j) is the minimal description lengfiDavieset al., 20024,
then the normalized graph Laplacian constructiéhung, 1997 allows us to construct
a reversible Markov chain from the symmetric graph definedheynodes and edges.
We first consider

plins) = @8)

where
k(i,j)=e < . (4.9)
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The fast decay represents a scale parameter, where 0. This parameter charac-
terizes the notion of neighborhood between the landmakks, Wwe can formulate; is
e-close tozr;. As shown in[Belkin and Niyogi, 2008 it is possible to opt for a kernel

llz;—yill

expressed a&p*( ¢ ) with a careful choice of, and then compute the normalized
graph laplacian from this kernel, which corresponds to gor@pmation of the heat
kernel.

The obtained kerneP conserves the positivity property, while loosing the syrtrye
however now it satisfies:

Zp(z’,j) =1 (4.10)

Thus through Equation. (4.10), we can consider that the Mackain is given by the
non-symmetric matrix’ with entriesp(i, j), and its powerg> correspond to an increas-
ing time in the chain, and to the according propagation obabilities. Equivalently we
can state thaP represents the transition kernel of a Markov chain and ieedgrs a
diffusion operator defined as

Pf(z) =" alx,y)f(y)du(y) (4.12)

4.4.1.2 Diffusion Distance

The Markov chain captures the shape variation behavior Iopecting groups of co-

herent landmarks with high-valued edges, while having lalu& edges between land-
marks, that share only limited mutual information. The wase relation is captured by
the accordingliffusion distance

So if we recapitulate, we find that the kerrietlescribes the systematic behavior of
the data while at the same time capturing some relevant geicnfieature, while the
Markov chain specifies the directions of the propagatiotovahg the kernel values.
When we continue the random walk, the local geometry infoiongkeep propagating.

An eigenvalue analysis d? allows to generate diffusion magdCoifman and Lafon,
200d, a metric space, in whichdiffusion distancearameterized by

Dii.j) =) (pt(i’l)w—(gt(j,l)f (4.12)

u
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m(i) = (4.13)

As underlined by the authors {iCoifman and Lafon, 2046 the diffusion distance
is smaller between points with many high value connectiofise distance shows ro-
bustness towards noise, in contrast to the geodesic dist@uifman and Maggioni,
2004.

4.4.1.3 Shape Maps

The eigenvalue decomposition Bfleads to eigenvalues,, \,, ... and eigenfunctions
U, U,, ... that satisfy

Figure 4.1 —Left Ventricle Shape Map estimation.

The diffusion map for the diffusion operator ahtimestepsy, : X — R" embeds
each node/landmark= 1, ..., m, in the Markov chain into @ dimensional Euclidean
space, resulting in the following family of diffusion map#, };cx

AW (1)
Ay Ws(7)

U, (i) £ (4.15)

Ay W (7)
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where the diffusion distance defined in (4.12) becomes theidaan distance be-
tween the images afandj, ¥, (i) and®¥,(j),

H‘I’t(l) - ‘I’t(J)H = Dt(i,j). (4-16)

Once the diffusion map is generated, the density estimaaonbe performed using
an Euclidean approach. Thé landmark has an image in the map, which we denote
by ¥, = ¥,(:). The diffusion mapS, is a metric space and therefore we can estimate
the densitydy, of the landmark image¥,; € S for each point. The density relates to
the number of landmarks, that can be encoded by the same nvbdelretaining low
description length. It is a measure of redundahéfallace and Dowe, 1999since a
model that represents the shape variation of a set of larkdmath imagesV; in a small
neighborhood irS is compact - according to the generation of the Markov chand
indicates that the mutual information that landmarks calrgut each other is high.

We aim for a sampling, in which the information a landmarkgas more balanced.
Each pair of landmarks should share an approximately equaliat of information
about each other. An equal amount of mutual information aabaut other landmarks
k, which have diffusion map imageg, in its neighborhood. This would result in a
uniform distribution of imagesl; in S. In other words the shape map assigns each
landmark a positior¥;. The distance betweeh; andV; in the shape map corresponds
to the coherence of the behavior of landmarks in the traisgtg We aim at a uniform
sampling in the shape map, so that the mutual informatiodnearks carry about each
other is evenly distributed. The next step is to add appearariormation to the map.

4.4.2 Image Support

The shape diffusion map represents the shape variatioctsteuof the training exam-
ples. The appearance information, that is used duringlsgianeot distributed evenly on
the entire object, too. In the case of muscle MRIs only a smatit of the surface carries
distinctive appearance (see Fig. 4.2), that allows for asgn between background
and foreground. To account for this variability we calcalt#tieimage supportt each
landmark position during training. If we can assign a val@tiandmark relating to
distinctive texture in the training sétwe can further differentiate the representatian
Conceptually, the model should use landmarks with salippéarance for the inference
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from the data, while reconstruction the remaining partdefdhape, as described in the
previous section.

For each landmarkwe denote byy; the image support in the training setrelates
to the chosen search strategy. Since we employ local tegaiohes, we derive based
on the distinctiveness of the texture at the landmark mositiln Fig. 4.3 the image
support for calf muscles, and left ventricles is depicte@ d&lculate the correlation of
texture appearance in the vicinity of landmark positiortheitraining set. For distinctive
features, the correlation can be expected to show a peak abtrect position. Lei(x?)
be the learned texture patch at the correct landmark positin the training example
I;, and for landmark positions in a local neighborhogdet Q{(x) be the correlation
between the patch{x) andb(x’) normalized within the neighborhood, i.e.

/ Q(x) =1, (4.17)
xeN

then the image support is

Ql(x)
gi = mean;—1, (W) . (4.18)

Figure 4.2 — Surface of a calf muscle: image support on the outer and ipaty and the
sparse model points.

That is, for a landmark i the image support is calculated from the local appearance
behavior at the corresponding positions in the training set
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(a) (b)

Figure 4.3 —Image support: a. muscle surface, b. left ventricle.

In other words the choice of the landmarks will be establishecording to ;

e Equal amount of information with regard to the shape.

e Maximum amount of valuable image information.

The reconstruction of shapes from sparse seét ey landmarks chosen from a set
of landmarksV, with K << N L.

4.5 Sparse Sampling of the Data

Given a metric spac8 that captures the statistical shape behavior, an accodgingjty
dy, and an image suppoyt for each landmark we obtain a sparse sampling by minimiz-
ing the integral of absolute gradient value in the nsap

cw)= [ ¥l /r90). (4.19)

by choosing a subset of landmarks. That is, the functionhema@ minimum if an
even distribution of landmark images weighteddyys obtained in the shape map. This
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distribution favors landmarks that have high image supipatie training set, while in-
tegrating the statistical shape modeling and reconstmigiioperties of individual land-
marks.

In practice, given a diffusion mag, a set of object landmarks imagés =
{U,,...0,} c S, Y = 0, and the according densitiés . ...dy, , and a valuer,
we perform the sparse sampling in the following iterativeywa

1. choose : dy, = max({dy, : ¥; € V;});

2. seVi = Y\ {T, UV, |0 — U <7/79:}, Verr = DU,

and iterate unti)y = (). The value- controls the mean density of the sparse represen-
tation.

This results in a se¥ and a corresponding set of landmatikshat forms the sparse
model representation, in which the mutual information testwlandmarks and the ap-
pearance information at landmark positions is distrib@eshly.

In the following we will explain how to reconstruct the eetiobjectX form the
sparse representatid utilizing the diffusion mapS. In Fig. 4.2 a sparse sampling for
calf muscles is depicted together with the color coded insagpport.

4.6 Search Process

After the model is trained, we have a complete set of landmarkhe training set,
and a set of optimally subsampled sparse landmarks. Eadmkk corresponds to a
local appearance in the training examples. In the followimg will first explain how
to reconstruct the full set of landmarks from the sparse etub4ith this, we will then
outline the search procedure, that fits the model to new datan the shape variation
model, the reconstruction algorithm, and the appearano@lkalge for each landmark.

4.6.1 Reconstruction and Missing values imputation

The reconstruction of the shape consists of inferring th&tppms of the entire shape
V; = (xi,x),...x.,) from the sparse representatidh = (x;)y,... We assume that
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we model the shape variation locally by a multi variate Geussvith axes along the
principal components of the distribution. Furthermorethwut loss of generality we
can consider that we can derive a covariance maitriar the position variation of each
subset of landmarks in the shape after Procrustes alignmeatalignment discards the
influence of global displacements of the local landmark gumétion.

For a landmarkk; not in the sparse representation the reconstruction caarbeuf
lated in the following way: We choose thenearest neighbors of; in ) (i.e. the
landmarks, that exhibit the highest coherence of behanitire training set and are part
of the sparse representation). The use of the closest raighhthe shape diffusion map
ensures a reconstruction based on the functionally closkedéed landmarks as opposed
to spatial neighbors.

The model learnt from the training data for this sub¥e}’ of landmarks orecon-
struction kernelcomprises a mean and a covariance matriX. The shape vector is
partitioned into the observed pavt ;* of the sparse representation and the missing part
V;;™ (i.e. one or several missing landmarks). Accordingly weipan the covariance
matrix into sub matrix corresponding to the observed valresoordinates:**, and
the submatrix corresponding to the missing valti€¢§®, the submatrix describing their

relation isy*” = YT je.:
Zaa Eam
(2T o

Now we can estimate the values of the remaining shape latkdrbgra linear regression
model:

Vidm = ,um —+ (Vi,ja — ,LLa)B -+ e, (421)

where
B = yea-tyem (4.22)

B is the regression matriXxX™ is the conditional maximum likelihood estimate of
the missing part of the shape vector, anid a residual error. Sd&chneider, 20(1for
a concise explanation of imputation. Therefore in the cdselmear model, the local
sparse reconstruction function is given by
Vi;
Vi (4.23)
Vi;™
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It allows to reconstruct the entire object shape from thesspaepresentation, while
using the relations learnt from the training set to defin@l@econstruction kernels in
the mapsS.

4.6.2 Inference from New Data

Let us now consider a new data set where the goal is to detertheposition of the

object being modeled. Such an inference process oftenviesdhe definition of an

objective function that seeks for an admissible solutiandpsupported from the obser-
vations. In a standard shape model inference approach,ogiggms of landmarks in

new data are estimated by an energy minimization that ieghoth shape prior and
appearance costs.

The search with the sparse model representatiorthe according reconstruction
function P, and the appearance modgls; = 1, ..., N for each landmark is performed
in an iterative manner. Based on a coarse initializatiolahdmark positions oV are
updated according to the appearance model. For each lakdtimegrosition with highest
probability with regard to a local texture patch is chosehefT the shape is constraint
by either a local or global statistical shape constrainounwork we use a multivariate
Gaussian. However, alternatives, like spherical wavéhdsn et al, 2007, or elasticity
based constrain{Jaronet al., 2007 can be utilized in a similar manner. After conver-
gence the entire shapé is reconstructed froriV by the sparse reconstruction function
P.

4.7 Experimental Validation

4.7.1 Experimental Set-up and Data Acquisition

To evaluate the performance of the proposed method we repperiments on two data
sets:

1. A set of 25 T1 weighted MRI calf muscles divided into two gps: 20 healthy
control patients and 5 unhealthy cases. For each volume #rer90 slices of
4mm thickness, and with voxel spacing 0.7812x0.7812x4 mquiaed with a
1.5T Siemens scanner. Standard of reference annotatiorpeyte for the Medial
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Gastrocnemius (MG) muscle, was available (see Fig.(4.48prrespondences
for 895 landmarks on the surfaces were obtained by an MDL based izjtiion
[Langset al., 2007.

The data acquisitions were performed in the Henry Mondowélsity hospital

on a 1.5T MRI, with a Siemens scanner using a body extremitypositioned

on both calfs. AT1-weighted spin echo sequence (TR: 500 ms; TE: 15 ms; slice
thickness: 4 mm, acquisition time: 2 min 30 s) were perforimete axial plane to
visualize the boundaries of the muscle and fatty infiltratibhanks to our collabo-
ration with the clinical experts we were able to consider amahsegmentation of
healthy and non healthy muscle for each patient on anatoragesias presented
through figure 4.4. This supervised ground truth segmemtadi an essential step

of pre processing to help the further shape analysis.

2. A set of 25 CT volumes of the heart, with an approximate V/spacing of 1.5
mm, for which 90 anatomical standard of reference landmakd a set of26
control points for the left ventricle was available, alsahnwavailable ground truth
segmentation from experts Fig.(4.4.a) concerning theamand the systole.

-

e —

(a) Ground truth segmen-  (b) T-1 MRI slice super-
tation of papillary muscles vised segmentation of a
human calf

Figure 4.4 — Standard reference segmentation of respectively the aattla and the left
ventricle

Normal volunteers for calf muscle study were from the MASlatory staff, whereas
unhealthy cases were from Henry Mondor Universitary Hagjpiatients and more par-
ticularly from the radiology department. Please refer . Ei5 for an overview of the
shape learning phase.

For both data sets we evaluated the reconstruction andhdeainavior of sparse mod-
els. To assess the shape representation of the sparse rsgnvpdi sub-sampled the
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shapes with landmarks either evenly distributed in the $spate, or evenly distributed
in the shape diffusion map, while neglecting appearance.gial is to understand how
the sparse sampling based on the density in the shape matsadffe reconstruction of
missing landmarks.

To evaluate the search behavior we compared sparse shamtsnotth a standard
shape model search in an active shape model manner, basaccoarasampling of the
object surface, and gradients in the volumes.

Data acquisition Muscle localization
! . (navigation)

Shape Model Tralning

Muscle MR T1 data Ao earing ol
@
-}
r
o
=]
£
Groundiruth: sxpert E
annotations of muscles ©
3

Figure 4.5 —Overview of the learning phase
4.7.2 Results

For both data sets (muscles, hearts) a sparse representae built based on both
shape model and image support. Models were initialized withimal overlap to the
target shape, and the accuracy of the final result was quehbff means of the mean
landmark error between standard of reference annotatidrs@arch result. Indeed, the
sparse model was able to recover the shape with superioraagcu

In Tab. 4.1 mean landmark errors after search convergensgsiodard shape models,
and sparse shape models are reported. In the muscle datartdarsl search approach
failed due to the ambiguous texture in large regions of thgetashape. In Fig.4.8
examples for standard and sparse model search resultsmgctede An interesting ob-
servation was that for calf muscle image support and diffusnap density gave com-
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Mean Error Heart Data | Calf Data
Standard Shape Model 18.92 37.78
Sparse Shape Model 7.85 9.51

Table 4.1 —Landmark error in voxel after finishing search with standatiel, and sparse
model respectively for heart and calf muscle data.

plementary distributions. That indicates, that it is wattile to use both informations
for the representation building but raises the questiomadd@propriate weighting, and
its dependence on the overall data variability. This willdodject of ongoing research
on more exhaustive data sets. For the heart data, the seascinivalized with min-
imum overlap. Standard search results in a mean error oR Mh®els, while sparse
models obtain a mean landmark error of 7.58 voxel. An examiile resulting search
performance with improved accuracy of sparse shape modatsuscle data is shown
in Fig.4.11.

(@) (b)

Figure 4.6 — Shape Map estimation with different number of landmarkse Shturation
encodes the density in the shape map indeed a high satustdioas for a high density.

In Fig. 4.7 shape diffusion maps, and densities are depfotresl set of calf muscles,
and a set of left ventricles.

Reconstruction Reconstruction performance of sparse vs. standard mosligtsdif-
ferent noise ratios.

Search Search performance: convergence speed, and accuracg spastandard.
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(©) (d)

Figure 4.7 — Sparse shape models: Calf muscle: (a) color coded dengitgishape diffu-
sion map according sparse landmark distribution (b). Lefitkicle: (c) shape diffusion map
density and (d) sparse sub-sampling.
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(b)

(© (d)

Figure 4.8 — Model search result for MRI calf (upper row) and heart mugkdeer row)
data, green: standard of reference segmentation, recchsessults for a. and c. standard
gradient search approach, and uniform sampling, b. andaissghape models.

Reconstruction results are shown in Fig. 4.10. With an ecata of missing land-
marks (X-axis) the sparse sampling based on the shapeidiifugap consistently out-
performs uniform sub-sampling in the object space. The r@tdge becomes more pro-
nounced with very high ratios. This indicates that a high amaf relevant information
can be captured in a small sub-set of landmarks, when thelmgdelations between
them are considered by means of the shape diffusion map. rAssfthe heart is con-
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(a) (b)

Figure 4.9 —Result of the sparse subsampling of the landmarks on theities sf the MG
calf muscle surface.
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Ratio missing landmarks
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Figure 4.10 —Reconstruction: accuracy of the shape reconstructiondiiterent sparsity
levels: uniform sub-sampling (in blue) vs. weighted subygking (in red) on muscle and
heart data.
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(a) (b)

) )

Figure 4.11 — Search: Model search result for MRI calf , green: standardetdrence

segmentation, red: search results. For (a) and (b) stargtadient search approach, and

uniform sampling, for (c), (d), (e) and (f) sparse shape nwd&he two lines of sparse
results correspond to two different control subjects.
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SPCA RPM SSM
Cal f Muscl e 30.24 21.78 9.5]
Left Ventricle | 17.07 12.33 7.85

Table 4.2 —Comparative table results between Sparse Shape ModekeSp&A and RPM
a robust version of ASM over the landmark error between tloeigd truth and the recon-
structed object relative to the two different data sets tfarad left ventricle muscle.

cerned, the sparse mean error reconstruction is equiviaén?648, whereas the mean
standard error is 18.9274.

Another practical suggestion of comparison to some robestions of the ASM,
would be the Robust Point Matching methdRM) [Chui and Rangarajan, 20QGor
which the code is available on line (http://noodle.mecdeyadu/ chui/tps-rpm.html) Such
a comparison is beneficial to the method as it would dematestsareal performance.

The table results Tab.4.2 clearly demonstrate that thessrape model provides a
far better reconstruction quality than Sparse PCA. A lasgjedy with different patholo-
gies and the use of kernel PCA could improve the reconstnucti the shapes.

4.8 Contributions

We present a method to extract a sparse model of an anatoohijeait, from a set of
training image data, each of which contains a set of landpankts. The novelty of the
method consists in the way we sample the shape based on shrdgiality and image
information distribution in the training set.

Initial experiments with atlas based segmentation, or engrgdient guided muscle
separation showed insufficient accuracy, and fail in a nitgjaf the cases. For this
reason we have developed sparse shape models with the ifallgroperties: Sparse
models use a priori knowledge about the shape and appearbmeescles, learned dur-
ing a training phase. They learn the sparse distributiorldlle image content (high
contrast between fat and muscle tissue) and integrate tiolledge in the represen-
tation of the muscle model; they also learn the intrinsiadtire of the muscle shape
variation and use it to parameterize the muscle shapes ip@mal way; finally they
identify positions on the muscle surface in a repeatable Wast is, after learning the
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model from a training set of muscles, corresponding passtican be localized in MRI
data.

Our approach seeks to identify a set of points that havendisie appearance while
at the same time covering the object evenly with regard tarf@mation contained
in each sampling point, i.e. mutual information with its gig@boring points. Toward
fulfilling this goal, we have to first construct a diffusion maf the landmarks, a metric
space that determines the mutual information between titerarks. Starting from this
map, the density at each landmark is computed in an Euclidesric. A subset of the
original landmarks is chosen so that the densities at thelegimandmarks are even
by minimizing the integral of density gradient of the landinset. To favor landmarks
with salient appearance, each landmark is additionallyghteid by the image support
measure, the correlation of texture appearance in theityi@nthe landmark position,
before the selection is done.

To reconstruct the full shape from the sparse sampling, sas$ing landmark is re-
constructed in a linear regression manner from these neigtdints. We demonstrate
the utilization of the sparse model in segmenting anatdnadiata sets - the calf mus-
cle and left ventricle- and compare results with standatitbtm sub-sampling of the
object. With the same rate of sub sampling, the proposed hoadperforms uniform
sub-sampling of the object space both in terms of reconsbruerror, and the perfor-
mance during object search in new data.

The Sparse Shape Models adapt the representation to the wdgtion and its re-
dundancy, and to the local image support as observed indlmeng data. In that way it
provides for an optimal landmarks set, and a mechanism tmstact the entire shape
from this sub-set. Sparse Models also offer improved remtasive power of landmarks,
and a better search stability and accuracy.

The proposed approach takes both the behavior of the lakdrrathe training set,
and the local appearance of the anatomical structure irtousat to obtain an optimal
model. Our approach lies in taking into account both the ggdmrelationship and
appearance during the sampling process. The use of appeard@ormation, more
precisely the idea of using landmarks with salient appeardor texture distinctive-
ness), estimated in a training sample via a correlationtiondetween local patches
in a neighborhood and the sparse sampling of the data usingriberia as expressed
in Equation. (4.19) is also of interest for the segmentatibother data that exhibits
a heterogeneous distribution of informative image contdifite experiments show the
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advantages proposed over uniform subsampling method.

In the following chapter we are going to extend our approadtep further, and
instead of only using the concept of diffusion to sub-santipéedata, we will introduce
a parameterization of the shapes based on the topology et@éodhe diffusion maps
learned during training.
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5.1 Introduction

The optimal representation of the significant variationsiset of shapes at various
scales is a challenging problem. Parameterizations cheggiori pose limitations on
the representative power, and introduce a bias on the madetxample is a reference
manifold like a sphere that is used to parameterize shapgsnofs zero.

In the following chapter we introduce a more general forriaiaof a decomposable
shape parameterization. It can adapt to the training ptpal®f shapes. It allows
to learn an optimal parameterization from the training aaet to represent the shape
variation in this reference frame. Furthermore the shapapeters deal with global and
local variations present in the population separately. rEpeesentation is based on the
wavelet transform and uses its ability to exploit the irditnmulti-scale nature of the
data.

We explore a method for the parameterization of the shapatiar observed in the
training data by means of diffusion wavel¢@oifman and Lafon, 2046 the diffusion
wavelet is a very generic construction based on the notiadafusion kernel. It can be
viewed as a generalization of standard parameterizatéogs, the kernel for a triangu-
lated spherical surface would be the adjacency matrix wethhy the mutual distances.
Defining the topology by a diffusion kernel instead of a fixeshgs-zero manifold al-
lows us to incorporate, and even to learn, complex intevagtiatterns observed in the
training data, and use them to build an efficient shape waniatior. In the following we
will first outline the basics of diffusion wavelei€oifman and Maggioni, 20Q6then ex-
plain the associated shape variation representation, maidyfdetail how the orthomax
principle[Kaiser, 1958 can be used to separate coherent sub-regions of the shape.

In this chapter we will introduce the use of diffusion wavsl& represent the vari-
ation of shapes. However, instead of relying on a pre-definadifold (e.g. a sphere
[Nain et al,, 2007) we will learn the topology of the wavelet domain from theirtra
ing data, and will encode it in a diffusion kernel. The kerabws us to learn and
define arbitrary wavelet hierarchies, and thus to make @btirse of the training data.
The wavelet representation used in this thesis is baseliffosion waveletproposed in
[Coifman and Maggioni, 20046

Let’s recall that the diffusion distance concept was alyaattoduced and used in the
last chapter, and will also be exploited in the current onfge ihtuition behind such an
approach is to seek a complete embedding of the landmarkRiemaannian manifold.
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It can also be considered as a wavelet equivalent of congthimeigenfunctions of the
Laplace-Beltrami operator on an arbitrary manifold.

The remainder of the chapter is organized as follows: Wefinsll present the basic of
wavelets in Section. 5.2, and the related work in which threyagplied to medical data
in Section.5.3. We then detail the theoretical backgrowntterning diffusion wavelets
as well as variation modeling based on the shape represemising diffusion wavelets
in Section. 5.4. In Section. 5.5 we focus on the manifold tmetion and the inference
in new data. Finally in Section.5.6 we report experimengasuits and a quantitative
validation.

5.2 Wavelets

Wavelets are a robust mathematical tool for the hierartdeeomposition of functions.
The theory is described extensively in elyleyer, 1993[Mallat, 1989. The decompo-
sition allows for a representation in terms of a coarse dvenape, that is enriched by
details in a coarse to fine hierarchy. Starting from the dibimiof a mother wavelet as a
localized function on the plane, on which it is possible togan affine transformation,
i.e translation, rotation and dilation. The wavelet co@fits construction is the result
of the correlation of the signal with the transformed vensid the mother wavelet, in
other words this is to be considered as wavelet transfornsmfreal on the plane. Unlike
principal components analysis and Fourier basis functibasrepresent global shape
descriptors, wavelets captures both global and local tvanis.

The wavelets provide so an elegant technique for represpedétail levels regardless
of the interest function type (e.g. images, curves, susfacehanks to their local support
in both space and frequency, wavelets are suited for sparsidns approximations.
Their major strengths are the compact support of basisifumseas well as the inherently
hierarchical representation. The domain upon which theeleanierarchy is defined
is of prime importance for their representative power. Roygpeaking the theorem
introduced by[Meyer, 1993 [Mallat, 1989 establishes that given an orthogonal multi-
resolution analysis, one can find a function whose dilatesteanslates will generate
an orthonormal basis. In practice we can find several wawedasform, such as the
Discrete Wavelet Transform (DWT) or rather the Fast WavBtahsform (FWT).

On the other hand, wavelets can be considered as a rotadiosfdrm in function



86 CHAPTER 5. HIERARCHICAL 3D DIFFUSION WAVELET SHAPE PRIORS

space. As far as compression is concerned wavelets aranddsimaccomplish rotations
leading to decorrelate image data by using vanishing masneWavelet coefficients
close to zero can consequently be removed without loosinghrmformation through

the reconstruction.

It is beyond the scope of this section to give the detailecheraatical definitions
about the different wavelet transform discussed in theditee. However we will above
all focus in this chapter on spherical, harmonic and difinsvavelets.

5.3 Previous Work

The wavelet representation offers a wide range of advasttgehe processing of dif-
ferent medical imaging modalities, such as PET, FMRI, MRI, CThese first genera-
tion of wavelets have contributed to various applicati@mspng the most famous image
compression, denoising and retrieval. However during Weelast decades a substan-
tial amount of work has been published concerning shape Ingdeased on wavelet
representation.

[Brammer, 199Bpresented a multidimensional wavelet analysis of funetionag-
netic resonance images, wherddsirkheimeret al,, 2004 utilized wavelets for multi-
resolution Bayesian regression in PET dynamic studield\dnvak, 1999 wavelet-based
Rician noise is removed for magnetic resonance imaging.989 i{Wolstenholme and
Taylor, 1999 introduced the idea of modelling wavelet coefficient in aniveAppear-
ance Models framework by the means of Haar wavelet, an isdeaded afterward by
[Stegmanret al, 2004. During the latter work wavelets were incorporated to AAM
to obtain thus a major decrease in storage requirementsadthers were already an-
ticipating that a wavelet based method will play an impartate in medical imaging
analysis.

The first work closely related with our approach was preskhyd Davatzikoset al.,
200d. The idea there was to build a hierarchical active shape lad@-D anatomical
objects using 1-D wavelets, which are then used for shapedhasage segmentation.
The wavelet transform is interesting in a way that it is cdesed as a decorrelator of
real-world signaldMallat, 1989 and thus the covariance matrix of the wavelet coef-
ficients is sparse. Starting from this assumption, the ¢anee matrix of the wavelet
coefficients is estimated as a a block diagonal matrix, wieendering the coefficients
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in the right range. A diagonal block of the covariance matrould be formed by the co-
efficients appertaining to the same band. The authors uggattom tree for the coeffi-
cients bands grouping in order to divide the space-frequdamain. In consequence the
coefficients holding the same scale and neighboring spatiation would be positioned
in the same band, following the inherited assumption thaemoefficients are neighbors
in space and scale implies that they are exhaustively edect! The wavelet transform
is therefore exploited to reorganize the model into a hagnaof several parts: the lower
bands of the transform represent the global shape vargtwinereas the higher bands
correspond to more local changes. Every band is modelegemdiently from the rest.
The philosophy behind the use of wavelet decompositionisipyove the shape model
flexibility by dividing the latter into independent compants.

A further extension for 3D shapes was introduced Yy et al, 2007 and[Nain et
al., 2007. The generalization of wavelets to the sphere is not sttfaighard, particu-
larly due to the issues of sampling and dilat{Mandergheynst and Wiaux, 20lL0The
use of spherical wavelets introduced 8chroder and Sweldens, 1996 therefore con-
sidered as second wavelet generation. This type of wavate¢ @long to process closed
genus-zero surfaces to reveal their shape characterigggecially if one has to project
spherical data into the Euclidean space it may sometimedgdesevere distortion.

[Nainet al,, 2007 proposes an improvement of the work[Bfavatzikoset al., 2003
by implementing a multi-scale wavelet based segmentatioBD medical shapes using
conformal mapping and a subsequent spherical waveletsepiaion. In addition they
extend the work by proposing a novel algorithm to discovemagl multi-scale bands
from the data.

More practically the authors use spherical wavelets, amdeosition of meshes topo-
logically equivalent to spheres, to analyze the trainirigase represent it with a wavelet
basis. Afterwards the coefficients with very small variaace discarded, and the others
gathered into bands. Later on principal component anabsisnates the probability
density function relative for each band, and an optimizaisocarried on to match the
model to new volume. Subsequently we end up with a more redmoelel that prevails
the active shape model. Spherical wavelet can so charaetEtape variation in a local
fashion in both space and frequency, in contrast to sphéraceonics that have a global
basis set.

As a matter of fact the authors also claim that comparirl@tvatzikoset al., 2003
who cluster coefficients of spatially adjacent bases intalban each frequency plane,
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they proceed to the clustering of highly correlated coedfits into a band, while at the
same time applying a constraint across bands having minioross-correlatiofiNain,
2004.

A parallel study was conducted pyu et al,, 2007 who compared the efficiency of
Spherical HarmonicsSPHARNMN and spherical wavelets in extracting local shape vari-
ations of neuroimaging data. Spherical wavelet proved tmbee effective concerning
computational time.

However already inSchroder and Sweldens, 1996e authors speculate on a gener-
alization of their work on wavelets and spheres towarddrantyi topologies.

Specificities and Limitations of Spherical Harmonic and Waelet Being a key is-

sue, the choice of the wavelet type is determinant, whichprartipally be related to
the nature of data, however we will mainly concentrate onesshortcoming related to
harmonic and spherical wavelets:

Spherical Harmonic DescriptorsSPHARM[Yu et al., 2007: They can be considered
as a natural extension of Fourier Transform on a sphere, lamslgroved to be
adequate for describing closed surface with sphericallégyowhich is not the
case for our data. The coefficients in the spherical harmbasis of different
levels have the advantage to offer a mea- sure of the spagtpléncy constituents
that comprise the structure. Still they suffer from the texli global support.

Spherical Waveletnlike SPHARM approach that only depict global variatidBgher-
ical wavelet functions can address this disadvantage lyittval support at multi-
ple resolutions levels, and this throughout using even fewefficientd Yu et al,,
2007. Moreover one of the pre-processing required by spheriaablet segmen-
tation is the triangulation of the data and conformal magmihthe surfaces with
spherical topology. Seeing that we are handling arbitraapifolds (e.g multiple
muscles) for which we aim to represent the shape variatioapgomatic triangu-
lation is not straightforward. Indeed instead of estalntigla triangulation we will
rather construct a kernel diffusion/operator.

These wavelet seems to be more adapted to data that can besegbin the spherical
coordinates, whereas in the ideal case one would like to eselets on surfaces of genus
higher than zero. To overcome these limitations we willeaflocus on a generalization
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of classic wavelet based on a diffusion scheme, on which wecamcentrate in the
following section.

After the construction of wavelet around a sphere the asthof{Schroder and
Sweldens, 1995assume in their future work that the generalization to eabjttopolo-
gies would be of great interest and success, which finallyecé#mough diffusion
wavelets a decade later.

Most recently, and in parallel to our wofEssafiet al., 20094, a promising approach
to use diffusion wavelet was published [Bhu et al, 2009. The authors consider the
idea to exploit diffusion wavelets for the matching of 3D gbs. There are substantial
differences both in terms of method and scope to our work.ohtrary to[Zhu et al,,
2009, we are aiming to build a generative model of shape variatidnich adapts to the
topology of a set training examples, and use it for the segatien and reconstruction in
new volume data. Instead they only employ diffusion waetet descriptor of shapes.
On top of that, an important advantage of our method is th@fisghomax to obtain an
optimal subdivision of the shape. Hierarchical shape neased on diffusion wavelets
that adapt to arbitrary topologies have not yet been puddisand their use in computer
vision and medical image analysis has not been described.

A comprehensive overview of the wavelets transform on nodahi€an be found in
[Antoine and Vandergheynst, 200&nd in the exhaustive book chapi&chclar, 2008

5.4 Diffusion Wavelet Model Construction

5.4.1 A Diffusion Operator Reflecting The Topology

We represent the shapes by a finite set of landmarks.nFandmarks the positions,
V, = {x},x},...x'  }, are known inN training imaged;,I,,...,Iy. Thatis, our
shape knowledge compris®s= {V, V,, ..., Vy}, Wherex§ € R%, and we callV; €
R¥>™ a shape.

Since we are only interested in the non-rigid deformatidinrarzatomical shapes are
aligned by Procrustes analy$isuo and Hancock, 20Q2which produces the series of
examples/?, from which we compute the mean shdpe . After the registration, we
can represent the shapes by their deviatip(Equation. (5.1)) from the mean shape,
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where
_ 1 X
VP — ¥ Z 1%4 (5.2)

Now we define a topology on the set of landmarks. The repraSentis based on a
framework for multi-scale geometric graph analysis pragiis [Coifmanet al.,, 2001.
It applies the concept of diffusion to capture mutual relasi between nodes in a Markov
chain, that encodes the global neighborhood or modelingtstre of the shape land-
marks. In our case, this structure is the neighborhoodioeléetween landmarks of the
shape. It determines the domain upon which the wavelet septation is built. Dif-
fusion maps provide a canonical representation of highedsional data. They allow
us to encode spatial relations, or the behalli@ngs and Paragios, 2008f the shape
training population. The structure is encoded in a diffasdperatorl” € R™*™. This
operator is then used to define the diffusion wavelets whaphasent both the global and
local properties of the data in relation to the operator.

We build the diffusion operator T on the set of points embéddea metric space in
two different ways:

(a) Their mutual distance in the mean shape, or

(b) Their joint modeling behavior.

In the first case, and in order to build a matrix of graph wesgbt the points, we
construct a local Gaussian kernel function centered at paicth and then normalize the
weight matrix through the symmetric Laplace-Beltrami tofidhe diffusion operator T.
In the second case, when modeling their joint behavior, wizeléhe diffusion operator
by probing the behavior of small subsets of the landmarkaseprding to the method
described ifLangs and Paragios, 2008The resulting operator T reflects all pairwise
relations omeighborhood®etween individual points in the shape set.

As described in Chapter. 4, we define a diffusion operatbased on these measures.
T is a self-adjoint operator conjugate to the Markov maRltiandI — 7' is the Laplacian
on our datdCoifman and Maggioni, 2036
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Let’'s consider the grapty as described in the Section. 3.5. Let's also recall that we
haved; = _; k(i, j) as the total connection of the landmarwith the rest of data set,
D corresponds to a diagonal matrix witlon its diagonal, an® = p;; which origin is
explained in Section.4.4.1.1

Pf(z) = a(z,y)f(y)du(y) (5.3)

Consequently and as shown[i@hi and Malik, 200Dthe operator. constitutes the
normalized Laplacian on the graph

L=DY¥1-P)D '/ (5.4)
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Figure 5.1 —The diffusion kernel operator T

For the remaining work we use a Laplace-Beltrami operat@.stAbuld remind here
that the Laplacian operator captures the local geometiydarEuclidean geometry. The
Laplace-Beltrami operator does the same, but also on Riel@ageometries i.e. man-
ifolds. This corresponds to our case, because the landregksituated on a manifold
defined either by their mutual euclidean distance or by tlag@shmap property model.
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More intuitively the Laplace-Beltrami operator can be sasra generalization of the
Euclidean representation of the Laplace operator to atrarpiRiemannian manifold.

5.4.2 Diffusion Wavelets
In [Coifman and Maggioni, 20Q@he authors generalize the idea of basic wavelets pre-
sented in[Meyer, 1993 [Mallat, 1989 by adjusting the wavelet construction to the

geometry of the operator. One of the first assumptions oftkigoas is that the diffusion
operator!’ is self adjoint and that it could be considered on the bégias following:

Do = {0k prex (5.5)

whered,, is the Diracs-function, and then take into consideratidn = {T 0k }rex
and build the wavelet in a multi resolution way as illustchite Figure. 5.2.

M, M,

(I)O —_— (I)1

ks Gy Tf I G,

o, D,

Figure 5.2 — Diffusion wavelet generation, downsampling and orthodiaation [Coifman
and Maggioni, 200p.

If we refer to the diagram in Figure. 5.2, one has to note thatiangles are commu-
tative by construction and also that for any scatbere are some relations that have to
be fulfilled.

M; = GjoT¥ (5.6)
o, =T, , (5.7)
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We have so a linear mapping froﬁr}- to ®,. Let’s note that5, represent the local
multi-scale Gram-Schmidt procedu@aniel et al., 1976, which ensures that G is not
only linear and local but also sparse, consequently th@pdimal basi®;,; would be
coarser thaip,.

To allow a fast computation for the diffusi¢@oifman and Maggioni, 20Q6nspired
by some physics and geometry examples, propose to workhéttiytadic powerg'> as
a compressed representation of the operator. In fact ttmgerp are known to decrease
in rank, consequently they can lead to the function compess

In Figure. 5.2 we can notice that first one has to applp a space of test functions
at the finest scale, compress the range via a local orthotiaatian procedure, repre-
sentT in the compressed range and compiiteon this range, compress its range and
orthonormalize, and repeat this loop in a way that in thellewe are computing™ .

Figure 5.3 —Heart left ventricle: Comparison of a Ground truth and thed®estruction by
means of diffusion wavelets.

5.4.3 Shape Variation Modeling with Diffusion Wavelets

Given the diffusion operatdf’ defining the manifold, we use the corresponding hierar-
chical diffusion wavelets, to represent the shape vanattorst we build a hierarchical
wavelet structure, thdiffusion wavelet treeWe call upon a general multi resolution
construction for efficiently computing, representing amnpressingl™>, for j > 0.
The latter are dyadic powers @f, and we use them as dilation operators to move from
one level to the next. We can expect it to be easier to compighsorders of the diffu-
sion operator as they are supposed to be low ranked. Durngitvn-sampling process,
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and throughout a recursive sparse QR decomposition wenothtaiorthonormal bases
of scaling functions® = {¢;} that represent a smooth bump function at the s¢alee
wavelets¥;, and compressed representatiorf8f on ¢;, for j in the requested range.
The scaling functiong¢;} and the orthogonal wavelefal';} are spanning the spaces
V; andW;, where the first encompasses the coarse details. Both pedsgpaces ex-
hibit the following proprieties: in (5.8) where the subsp#k; represent the orthogonal
complement of the subspabg, , in V;

Visi €V
Vig =V, ot W, (5.8)

Giving K as maximum number of levels to compute, we obtainpegentation of
T% onto a basis;, with 1 < j < K after K steps. For a detailed description of this
construction we refer the reader[@oifman and Maggioni, 20046

After building the diffusion wavelet tre@, we use it to represent the individual train-
ing shapes. We calculate the diffusion wavelet coefficiean the deviatiort; from the
mean of the aligned shapes, and obtain the following diffusvavelet coefficients for
an examples;,

T =05, (5.9)

Thus, the shape can be reconstructed by:

VP =VP4 @l (5.10)

Once we have generated the diffusion wavelet coefficiemtalfdraining examples,
we build a model of the variation by means of the orthomaxedon - which will be
described in the upcoming section - at each level. In the $ovevel the coefficients
provide information for a coarse approximation, whereasliaed variations are cap-
tured by the higher-level coefficients according to thedmeny. For each level j, with
(1 < j < K), we consider’;.,.;; (Equation. (5.11)) and perform principle compo-
nent analysis to reduce the dimension of the coefficienessrtation for all coefficients
scales.
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@) (b) (c)

Figure 5.4 —Reconstructed surfaces for Heart CT data using projectsdletacoefficients
on the set of principal components that represent 99% ofatas variance at level 1. The
axial view surfaces represent th&/(\;) from left to right.

Flevelj = {Fsi/level:j}izlmNu (511)

This results in the eigenvectors= {o;},_, . the corresponding eigenvalugs=
{Aj},1._x of the covariance matrix of the diffusion wavelets coeffitgeat each level |,
and the according coefficients...;; that represent each training shape in this coordinate
system.

Consequently in each level the coefficients are expressddasi

1—‘levelj = f‘levelj + 0j (O-;WFlevel;‘() (512)
Based on the model parametérs, >} we can reconstruct a shape by first obtaining

the diffusion wavelet coefficientsg, ., .. in each level, and then reconstructing the shape
based on the diffusion wavelet tree:

VP = VP 4+ O, . (5.13)

This shape representation can now be used to model the shiagion in the training
set, and represent it in the diffusion wavelet coefficiemhdm.
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5.5 Prior Manifold Construction & Image-based Infer-
ence

We can consider different dimensionality reduction teghes like Principal Compo-
nent Analysis, Linear Discriminant Analysis, Non Negatiatrix Factoriztion, statis-
tical approximation methods like mixture models, ExpeotaMaximization, or recent
spectral kernel methods like Locally Linear EmbeddiRpweis and Saul, 200@Gnd
Laplacian Eigenmapdelkin and Niyogi, 200Bin order to decrease the dimensionality
of the diffusion wavelet coefficient representation of anireg set of shapes. However
given the ability of the diffusion model to capture relevawin-linear variations, we
choose a simple dimensionality reduction technique, amteal sub-space representa-
tion for our experiments. To obtain a sparse and localizacesentation, we adopt the
orthomax criteriorfKaiser, 1958.

55.1 The Orthomax Rotation

The orthomax criteriofHarman, 197bis a technique belonging to the family of factor
analysis, that allows to obtain a simple and compact hiereatrepresentation through
a rotation of the model parameter system. This paramatizavtates the PCA modes
S0 as to enhance sparsity, while at the same time preseherarthogonality of compo-
nents.

Despite of the simplicity of the orthomax criterion in termiscomputation or con-
ception, the shape analysis community in general and mliadieging literature in par-
ticular are devoid of studies carried on with this approasisteessed bjStegmanret
al., 2004.

Orthomax rotations reflect a re-parameterization of the B@ace resulting in a sim-
ple basis. IStegmanret al,, 2004 [Leung and Bosch, 2007 #he orthomax was ex-
ploited as a straightforward method to select sparser madlesrnatively[Sjostrandet
al., 2007 introduced sparse PCA where the orthogonality is not eléangrbut on the
meanwhile the method still brings out near-orthogonal congmts, whereas suffring
from computational issues. It can also be considered asuwahatontinuation of the
work on Independent Component Analysis (IJAimcuet al., 2003 aforementioned
in section 4.2. as ICA does not imply orthogonality critdaa still gather the maximum
of sparsity. In the same context the orthogonal orthomaeroon can be accounted
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Orthomax Type w
Quartimax 0
Varimax 1
Equamax k/2
Parsimax P

Table 5.1 —Variants of Orthomax RotatiofHarman, 197b

for equivalent to the Crawford-Ferguson criterion, whislaiweighted sum of row and
column complexity of the eigenvector matfixeung and Bosch, 200¥a

Let R be an orthonormal rotation matrix &" x k whereR, ; represents the elements,
and wheré: implies the number of eigenvectors with the largest eigle@sa;;_; ;. 2
denotes as previously in the chapter the N eigenvectors matrix.

The orthogonal orthomax rotation matkxis then calculated as follow:

= arg max Z Z (ER);, — = Z (Z (2R)§j> (5.14)

Jj=1 =1 ]1 i=1

wherew determines the type of Orthomax (see Table.5.1). We expharearimax
version[Kaiser, 1958 for optimizing sparsity corresponding to new variables\geis-
sociated to localized variation modes, i.e, we will have: 1.

Settingw to 1 leads us to reconsider the Equation. (5.14) as the foillpw

k 1 P y \2 1 P
R |54 0% ‘;(Z@>
k D
_ pz (%Z(@%-@%)ﬁ (5.15)

where® = ¥R, describes the varimax rotated basis, éjdthe squared mean of
the j** column of ®. Throughout Equation. (5.15), one can note that the inyatsil
varimax rotation can be interpreted as a redistributiorhefrhodes so that each row or
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column contains a minimum number of nonzero componentscakimns or rows are
as sparse as possible.

5.5.2 Modeling Using the Varimax Criterion

After projecting the landmarks into the diffusion waveleetficient space we perform
PCA, and subsequently rotate the coordinate system to nieiime varimax criterion.
The resulting modes represent the variation in the datapraese fashion. Let; denote
the orthomax eigenvectors suchigs= R™'o;. Then Equation. (5.12) can be expressed
with the orthomax components.

\I[i* [\I]levelil*\lllevelg* cee \I[leveli[?} (516)

level —

‘/Z—p = Vp + . (\I,levelj + i (7}'\1,;:1)6») ) (517)

As it will be shown in the results section (Section. 5.6) thinomax modes exhibit
local variations in most modes, unlike PCA shape modes tleab@ered according to
variance, and show global variations in the modes.

An overview of the model building process (including theresgntation component)
is given in (Algl). The resulting model holds information about the diffusisavelet
tree, the orthomax components, and coefficient variatiomsttaints(®, R, 7).

To summarize; the outcome of this process (see Figure.$a5) efficient shape rep-
resentation as well as a compact manifold construction vasipect to the allowable
variations of this representation. We first obtain a topglsgm the training data and
encode it in a diffusion kernel, that defines a diffusion @ss{Coifman and Lafon,
2004 across the set of landmarks. It can either be based on tistandie, or on their
mutual dependencidsangs and Paragios, 2008bserved in the training data. Given
this kernel, we build a hierarchical wavelet representatitthe shape variation. Finally
we build a sparse model of the individual levels of this repreation with help of the
orthomaxcriterion. Keep in mind that the main goal is to capture megful structures
based on their behavior in the potentially very small tragndata set. This represen-
tation, along with the manifold can now be used for image thasgerence in a new
example.

It is worth mentioning that the orthomax criterion also aiorotations of subsets of
the shape model, while preserving the rest of the modes igavdn another context, itis
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Algorithm 4 Multi-Scale Representation: Off line Training
Input:
T : Diffusion Operator,
(Si)ictraining shapes 17aiNing landmark deviation from the mean shape

1. Construct the wavelet diffusion tréde[Coifman and Maggioni, 2046

2. Calculate Diffusion Wavelet Coefficient for the trainisigapess;.

3. For each level.

(&) Compute covariance matrix of every diffusion waveletftioient level.

(b) Calculate a model parameterization (basis, coeffis)dmased on the or-
thomax criterion.

Output: Orthomax Eigenspace (modes, eigenvalues) and coeffioidrite training
examples.

interesting to note that our parametrization results inpassion of sub-parts similar to
the n-Cut proposed ifNain et al, 2007, but replaces the hard splitting by a continuous
basis transform.

5.6 Experimental Validation

Throughout this experimental validation section, we eatduhe multiscale shape prior
based on a shape reconstruction task. The basic idea istal@aor within our training
data set. Afterward we project a test volume shape onto ibe s as to estimate how
close a projected test shape can be comparing to its groutid tA common prior of

a shape model technique would consist of the mean shape aragénvectors of the
shape landmarks. For our approach the prior will gather te@mshape, the wavelet tree
and the eigenvectors of the diffusion wavelet coefficiersnfeach volume. Later on
a reconstruction phase is necessary to compare the modiiedhape and the relative
supervised segmentation. One of the evaluation indiceslesid the mean squared error
between the ground truth and the reconstructed test volume.

We evaluate the algorithm on two medical imaging applicetito assess the perfor-
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1) Shape Alignement
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Figure 5.5 —Scheme of Diffusion Wavelet Coefficient Process.

mance of the method in terms of representation, manifoldtroation and knowledge-
based segmentation. The first example is the segmentatitve déft ventricle (LV) of
the heart using computed tomography images, and the sebersgtimentation of calf
muscles from T1 Magnetic Resonance Images. While in thecase¢, the performance
of the extraction of image support is acceptable, thingdarenore complicated when
considering the muscle images. As described in Sectiontldsis due to the fact that
for the left ventricle the separation of tissue and lumeroissible while the calf images
do not exhibit clear separation between different museleg local deformations are far
more pronounced in this structure.

To assess our model, experiments were carried out on tlusvialy data:

1. 25 MRI calf muscles divided into two groups: 20 healthy tcohpatients and
5 unhealthy cases. For each volume there are 90 slices of 4msknéss, and
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@) (b) (c)
(d) (e) ()

Figure 5.6 —Reconstructed surfaces for heart left ventricle CT datagugiojected wavelet

coefficients on the set of principal components that repite88% of the total variance at

the first level of decomposition. The axial view surfacespthin the first row represent the
+3sqrt(A;) from left to right. Second row represent the saggital view

with voxel spacing 0.7812x0.7812x4 mm acquired with a 1.5m@ns scanner.
Standard of reference annotation by experts for the Mediaiti@cnemius (MG)
muscle, was available (see Figure. 4.4.b). Corresponddacg95 landmarks on
the surfaces were obtained by an MDL based optimizdtiangset al., 2007.

2. A set of 25 CT volumes of the heart, with an approximate V/spacing of 1.5
mm, for which 90 anatomical standard of reference landmarkd a set 026
control points for the left ventricle was available, alsahwavailable ground truth
segmentation from experts Figure. 4.4.a concerning theta&and the systole.

For each data set we model the shapes of the structures thdiffigsion wavelet
representation in a leave-one-out cross validation gfyat®Ve train the model on 24
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Heart Data | Calf Data

Gaussian Model | 1.6154 2.1277
DW Model with| 0.0755 0.1485
spatial kernel

DW Model with| 0.1100 0.1796
Shape Map ker

nel

Table 5.2 —Full Landmark Reconstruction Error (in voxel) with regacdthree different
shape models for heart and calf data sets.

cases, and perform model reconstruction or search on thaimerg case not used for
modeling. To assess the diffusion modeling approach, wepotentwo measures: (i)
the reconstruction error between the test shape, togeitieitesapproximation by the
model at different scales, and (ii) the search performarioethe following we will
focus on the reconstruction accuracy. The search perfarenaiil be evaluated in detail
in Chapter. 6. We compare the reconstruction error of Ganosshape models and the
proposed diffusion wavelet model, evaluate two differaffudion wavelet kernels: 1.
the spacial proximity of landmarks, and 2. a kernel basedsitape map distance of the
landmarkgLangs and Paragios, 2008Quantitative results are given by the landmark
error between the true shape, and the reconstruction reghlone of the three models.
Quialitative results are shown in Figure. 5.7.

The main concern is to see how far our model is able to detedbttal shape vari-
ations based on different kernels. To illustrate the orthomepresentation, in the Fig-
ure. 5.6 we show the heart reconstructed surfaces usingagbedj wavelet coefficients
on the set of principal components at the first level, wheeediwrfaces represent the
coefficient valuest3sqri()\;) from left to right. Comparison of the reconstruction error
between the diffusion wavelet model and the reference msdelculated as an average
surface error for all test shapes.

In Tab.(5.2), we report errors of a Gaussian reference madel two diffusion
wavelet models. In Figure. 5.7 the reconstruction of thejguted shape model
(heart/muscle) is depicted, this reconstruction stadmfthe projection of the diffu-
sion wavelet coefficients in respectively the first and tis¢ llevel, and then extracting a
new subset of coefficients from the eigenvectors that citesi 99% of the variation in
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the correspondant level. To keep the variation in reasenablts, the shape parameters
are also restricted tex3+/)\;.

Concerning the varimax criterion application, one can lgasitice in Figure. 5.8
that while the PCA modes demonstrate several spatiallyilolised effects within each
mode, the varimax modes in the other hand show nicely isbkeffects. Moreover in
Figure. 5.9, we show the 'flattening’ of the eigenvalue speutcarried out by the vari-
max rotation where the respective modes as well as variaregslotted. This simple,
yet powerful modification of PCA enables us to optimize spyateading to localized
modes of variation, which is more suitable for applicatiofith sparse parameterizations
like the often local pathological variations we are focgsum.

5.7 Contributions

We described in the current chapter a novel approach tosept@rior knowledge for
image segmentation using diffusion wavelets. During tlaenmg stage, the underly-
ing diffusion operator is learned from the data. The comesing diffusion wavelet
structure is build, and the wavelet coefficients for thenireg shapes are calculated.
The diffusion kernel incorporates a notion of soft connattibetween landmarks by
encoding inter-object relationships. Consequently ther@gch is able to provide a hier-
archical representation. It models both geometry and appee, and can learn arbitrary
topologies, encoded in the kernel. Results of the segmentat MRI and CT data show
that the method has promising reconstruction performaaee ,is able to model shape
variation with higher accuracy than a standard Gaussiaremulhtil nows the diffusion
wavelet have largely been confined to the signal processidy And have not yet been
exploited for medical image segmentation.

The learning of the wavelet domain topology from the tragnilata enables the algo-
rithm to represent complex structures like groups of mssicla single model. The way
of learning this domain by either using local neighborhqadsleformation complexity
makes an adaptation to the data possible. Its impact onreliffelata is subject of future
research.

The current chapter introduces the following ideas;

¢ A novel segmentation framework based on diffusion waveledats.
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e The learning of the model parameterization: we learn thealeadomain, instead
of using a pre-defined manifold.

e The approach encodes hierarchies and soft connectivipepties by means of the
diffusion kernel.

e The method provides the ability for search paradigm baseldcal appearance
features.

e The computational efficiency in high dimensional spaceangigg the orthomax
technique.

Undoubtly the most attractive characteristic of the wamiedéenel modeling approach
is the ability to represent local shape differences in aec#iffe manner. Moreover the
application of diffusion wavelets to segmentation is quitzel. We addresses an im-
portant problem, namely replacing the fixed shape repragens as in ASM/AAM by
multi-scale priors which reflect inter-dependencies imtrey data.

As a comparaison with the work @flainet al., 2007, and with respect to segmenta-
tion, spherical wavelets represent a sub-case of diffusarelets confined to a spherical
manifold. With regard to registration approaches, the pritfference with our scope is
that we are building a generative model of shape variatiod,use it for segmentation
while at the same time using the orthomax criterion to obéaimptimal subdivision of
the shape parameterization.

Furthermore we have investigated the orthomax criteriompfoncipal components
rotation. This computationally simple technique enabkesouoptimize sparsity and to
have more localized modes of variation. Such an approadiaigi@at interest regarding
pathological changes in the anatomical structures. Thebgmtion of both diffusion
wavelet and varimax rotation is a promising way to model clexghapes with locally
different variability.

In the next chapter we demonstrate how we can perform searoew data. We
use the diffusion wavelet shape prior introduced in thigptdia and a local appearance
representation.
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(b)

(©) (d)

Figure 5.7 —Diffusion Wavelets Model Reconstruction. First row: Haadults and second:
Calf muscle. Data, green: standard of reference segmemntadd: reconstruction result for
a. finest scale and b. coarsest wavelet scale.
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(@) (b)

Figure 5.8 —Data reconstruction through (a) global PCA and (b) localizeghomax rotated
modes of the DW coefficients models. The surfaces represgtite-+3sqrt()\;) are respec-
tively colored in cyan, red and blue. Note the local defoiorataptured by the orthomax

mode.
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Figure 5.9 —Comparaison between PCA and Orthomax DW eigenvalues



CHAPTER

6 Search Algorithms
Performance

"Anyone who has never made a mistake has never tried anytieing

Albert Einstein
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6.1 Introduction

In this chapter we explore approaches to perform searchawtiodel that is build as
described in the previous chapters. The following sectfoesis on the inference of
landmark positions from image data, and the subsequentasdin of the shape model
parameters. We will first review existing work, and will thgive a brief outline of the
two prime concepts we use: 1. Canonical Correlation Anal{GCA) to learn the rela-
tion between observed appearance and optimal model paanpetate; 2. Representing
appearance by means of local descriptors.

After this, we will introduce a classifier based local app@ae representation, and
will explain how to learn it during training, and use it in gonction with the proposed
shape models during search. The performance and expeainvathtation are finally
reported in Section. 6.6.

6.2 Related Work

A large amount of research has been published regardincaegopee search. Active
Appearance Model (AAM) were proposed[i@ooteset al., 19980. An approach that
integrates model search with classification approachegpvased ifvan Ginneken
et al, 2004, where optimal feature classification is proceeded in cimieelect the best
set of features corresponding to each landmakNeearest NeighborékNN) classifier
is then used throughout the search to find optimal displan&swer the landmarks.

[Zhan and Shen, 200@roposed a gabor filter based SVM (Support Vector Machine)
framework in order to extract features from 3D ultrasourmsfate data and estimate the
likelihood of a voxel to lie in a prostate tissue.

[De Bruijne and Nielsen, 2004ntroduced a shape model inference on the basis of
pixels classification using particle filter. They presetve global shape and appearance
from the deformable techniques, however get rid from thélers of localized appear-
ance variation and initialization issue by a maximum likebd shape inference on pixel
classification. The authors were indeed inspired by objacking literature.

[Mitchell et al, 2009 were the pioneer to introduce a 3D model exploiting AAM
using volumetric texture to represent appearance. Otleletkapproaches combining
local features with standard shape models were developé8dmftet al, 2003 [Qian
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et al, 2009 [Zhenget al.,, 2007.

In the following we will explain the basic search method eoyeld by AAMSs. In the
next section we will contrast it with the approach based assifier driven appearance
representation.

6.2.1 Active Appearance Model

Active Appearance Model Sear¢@ooteset al,, 19984 represent the most well known
region based feature appearance model. AAMs, similar to &&Morithm (see Sec-
tion. 3.4), require a set of corresponding landmarks in afseaining examples. AAMs
then combine the shape and appearance in a single modebdriesative model is able

to synthesize realistic images of the modeled data. SiipitarASMs, pre-processing
steps including Procrustes analysis and PCA are requirethéoshapex, and analo-
gously for the pixel intensitieg that are warped into a shape-free reference frame and
sampled. A new instance for the appearance is then prodgcadirsear statistical sys-
tem of the appearance model components and subsequerdlyngef according to the
shape model components,

g=g+ b, (6.1)

whereg is the mean normalized appearance vedbiis a set of orthogonal indepen-
dent eigenvectors of gray value model and finallyis a set on gray level parameters. A
combined appearance and shape model is generated by aeztatedtparameter vector

b:
sts . (ﬁc,s
2= (%) - () 62
That holds information regarding both the appearance amglthpe. HerdV, rep-

resents a diagonal matrix of weights assigned for everyeshapameter, resulting in the
following expression:

b= ®,.c (6.3)
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wherec and ®, corresponds to the appearance vector parameter and togee ei
vectors controlling both the shape and the gray levels. Arstic image for a given
parametec is produced by the appearance vegand warping it with the shape as
in Equation. (6.4).

x =X+ Q,c
g:g+Qgc (64)

with

Qs - (I)sws_lq)c,s
Q,=2,0., (6.5)

Through the use of iterative updating scheme, the modehpetexc can be fitted
rapidly to a new volume image exploiting tli&-norm as a cost function.

A more rapid search method was proposefldnotes and Taylor, 2001 bwhere the
dependence between model parameter update and currehialegppearance error is
learned during the training phase.

The AAM model vector parametgr defines the generated synthetic image. During
each step of the training the model texture and the sampledenpatch respectively
g..(p) andg,(p), the residual vector is then parametrized by and computed like in
Equation. (6.6).

I'(p) = 8s — 8m (6-6)
Using the first order Taylor expansiongfone obtains such approximation:
or
r(p +0p) ~ r(p) + %519 (6.7)

The key idea behind the search will be to consider it as amupdition problem,
where the goal is to minimize the difference between a nevgevand the synthesized
one, the regression will be then expressed through the paeampdate as:
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6p = ~Rr(p) (6.8)

The calculation of the derivative matidX determines the optimization efficiency. The
computation is either relying on a multivariate linear esgion Cooteset al., 19984, or
alternatively on a numeric differentiatid@ootes and Kittipanya-ngam, 200Further
details, notably the choice of shape parameters weightshew to optimize the model
fitting regarding the derivative matriR can be found inCootes and Taylor, 2001L.a

In the review off Cootes and Kittipanya-ngam, 200arious approaches have suc-
cessfully improved AAM search performance, by modifying thriginal algorithm
scheme. A few examples are:

e ShapeAAMs[Cootes and Kittipanya-ngam, 20d0@pdate only shape and pose
parameters during search, while texture parameters agetlgircalculated from
the training examples by using projections of image texture

e DAMs: Direct Appearance Modé¢Hou et al., 2001 predict shape parameter di-
rectly from texture information, and thus without combigiinom shape and tex-
ture as in AAM. The DAMs result indeed in improving convergerand solution
accuracy.

e Fast AAM using CCADonneret al,, 2004 where the authors exploit the canon-
ical correlation analysis for a faster search process,igiray this way a more
precise estimation for parameter update comparing to atdnaodel. Another
merit of this method is the fewer number of examples necgdsabuilding the
training set, which has an important impact on acceleratiegmodel construc-
tion. A direct consequence is the optimization of the regjmsmatrix.

As for local texture descriptors, several operators hawen lroposed in the litera-
ture in order to extract texture features, to cite but a feeeable filters, SIFT features,
moment invariants and shape context. An exhaustive revieesaluation concern-
ing these point descriptors is established[Mikolajczyk and Schmid, 2045 It is
indeed worth mentioning that steerable filters along withmmaots show highly effec-
tive performance in comparison with other descriptorstipalarly thanks to their low
dimensionality and reliability.
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6.2.2 Canonical Correlation Analysis CCA)

As far as linear and orthonormal transformations are cowakrPCA represents the
optimal technique as it minimizes the reconstruction eoeiween the original data and
the reconstructed one, in the mean square sense. Neveghagart from PCA there
are various other linear methods in the literature that ansiclered as more appropriate
to regression exercise. Let’s cite for example Multivagiainear Regression (MLR),
Partial Least Squares (PLS), or yet Canonical correlatiaiyais (CCA)Melzeret al,
2003.

Canonical correlation analysis (CCMotelling, 1936 is a robust method of mea-
suring the linear relationship between two multidimenalatata sets. It is a powerful
tool able to find out the optimal bases with respect to catimela corresponding to each
set of variables. One important characteristic is obviptist invariance regarding any
similarity transformation. Originally this statisticaldl has been more exploited in do-
mains like economics, meteorology, and only recently inicedmaging and computer
vision[Melzeret al,, 2003 [Donneret al,, 2004.

CCA shares some similarities with PCA, mainly the goal anpliagtion of data
reduction, on the other hand however CCA is more suited fyression as it takes into
account the correlation between the two sets of measurement

More practically let’s consider a random varialle= R? with zero-mean, similarly
y € R?, and the following linear combinations= xw, andy = yw,.. Maximizing the
function p (see Equation. (6.9)) with respectwo, andw, is equivalent to finding the
maximum canonical correlation.

Blayl Elwyxy"w,|
VE[2?] B[y \/ EwlxxTw,|Elw]yy'w,]

T
w, C.yw,

= (6.9)
\/Wmemegnywy

Indeed we call out canonical variates the projections ewt@ndw,, i.e. z andy.
The total covariance matrix, showed in Equation. (6.1Q)resents a block of matrix
composed byC,, € R”” andC,, € R??, where the latter are the within set covariance
matrix of respectivelk andy. On the other hand we denote @Y, € R”*? the between
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set covariance matrix.

ny ny

G) ] oo

The canonical factors can thus be obtained by a Singulae\&composition (SVD)
of the matrixF

F = C.2C,,C,y (6.11)

Let the SVD ofF be expressed & = UDV7, we can then extract th&* canonical
factor as following

N

u;

{ z = Ci (6.12)
; = ny V;

In Equation. (6.12) one finds; andv; that describe respectively th& column of
the matricedJ andV, whereas the corresponding canonical correlations aresepted
by the di- agonal components b.

8

[V

Comparing to other correlation techniques, CCA is depenadetthe coordinate sys-
tem in which the variables are described. CCA has also sonyeatactive properties
over Multivariate Linear Regression mainly improving pagte accuracy and scale in-
variance. In contrast to PCA, CCA is simplifying the obtainmse estimation on the
manifold.

6.2.3 Feature Space and Geometric Descriptors

Curvature Estimation Knowledge of surface curvature is of particular importatece
a wide range of applications such as pattern matching, ctangeaphics, or classifica-
tion. We opt for the solution proposed bigiegeret al., 2004 which does not only offer

a robust curvature estimation for 3D surface, but also hastérit to escape from the
majority of problems usually inherited by common estimatiechniques. Indeed the
proposed estimator works on the orientation field of theam@rf The Gradient Structure
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Tensor (GST) will be exploited in order to obtain the orig¢itafield and the description
of local structure.

The curvature: at a pointp in a tangent direction on a surface is defined as;

ki(p) = | V:N|| (6.13)

To obtain the the principal curvatures and shape descyipirne are two crucial steps:

1. Determine the vector field norm& and the principal directiong andt,, for
which the curvatures are extremal.

2. Resolve the discontinuity problem bf and estimatg V,IN||.

The robust estimation is primarily established throughgseeric tool gradient struc-
ture tensor able to analyze local image structure. One can define the 6STa v,
wherev = VI and/ represent the gray value image. A first processing level egen-
value decomposition af, leading to ordered eigenvalue and corresponding eigéongec
{v;}. The first eigenvector is then aligned with the normal sw&f&¢ whereas the two
following ones are relied to the principal surface diregti@as shown in Equation. (6.14).

V] —— N s ’U2’3 — t1’2 (614)

The following step consists on resolving the discontingitgblem, in other words
calculating the principal curvatures by mappingnto a continuous representation ful-
filling the current statemeny M/ (v)|| = K ||dv]. In fact the authors propose a solution
depicted by Equation. (6.15). More computational details loe found ifRiegeret al,,
2004 and references therein.

1
k10| = 7 | Vvos M (1) (6.15)

Gabor Jets Gabor Jets are the outputs from a set of Gabor filtetsvellan, 2002.
They are able to exploit salient visual properties such atagocalization, orientation
selectivity, and spatial frequency properties. Moreowag of the advantages of Gabor
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Jets is that their phase is invariant to edge positions,eiffiker responses were con-
verted to amplitude and phase. These filters are indeeddavimeat success in faces
recognition domain.

A Gabor filter is represented by two functions, a complex sondal s(z, y) called
carrier and a Gaussian-shaped function known asetheslop

9(x,y) = s(z,y)w(2,y) (6.16)

The complex sinusoidal carrier function is defined as foitayv

s(z,y) = exp <j (27T(UQZE + voy) + P)) (6.17)

whereu, andv, define the spatial frequency in Cartesian coordinatesatie phase.
For the Gaussian envelop it can be written as;

wy = Kexp( - 7T<a2($ — 20)7p) + V(Y — yo)g(e))) (6.18)

where K is a scaling factor(zy, y) the spatial coordinates of the Gaussian envelop
peak,a andb the scaling parameters for the two axis of the Gaussian, aatyfi-(0)
stands for a rotation operation describing a clockwisetianavith the angle.

By utilizing the Gabor filters we aim to extract the image teas for each of the
defined patch window. The amount of extracted features wiliainly related to the
fixed number of angles rotation and frequencies.

6.2.4 Classification Approaches

In Section. 6.4we will rely on classifiers for the repres&ataof texture. In the follow-
ing we give a brief review of three classifiers, and their ebteristics relevant for our
task. Let’s first review some powerful state of the art weakneng techniques, let’s re-
call that a weak learning algorithm is a processing that éaays generate a hypothesis
with a weak edge for any distribution.
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Support Vector Machine The Support Vector Machines (SVMs) algoritivapnik,
2004 estimates the optimal classifier in the original space wéiléhe same time su-
pervising its complexity by using these tighter predictoirthe generalization power of
the model. Furthermore to the theoretical arguments fasysnptotic optimality, Sup-
port Vector learning has been empirically proven to be robusver-fitting and to well
generalize even in case of small data sets.

AdaBoost [Freund and Schapire, 1998s the SVM technique, boosting method be-
longs to the family of supervised and discriminative clasaiion used in the context of
medical segmentation, and Adaboost more particularly shostter performance than
conventional boosting methofigiola and Jones, 2001Indeed it can be considered as a
constraint gradient descent in an error function with resfmethe margin. The approach
has even been extended in a cascade of Adaboost still by &alalones resulting in a
faster detection that is for sure helpful for large data.sets

Decision Forest Generally speaking a random decision forest representectioh of
deterministic decision trees. Mostly applied in the maeHmarning field, it has also
been proved to be useful and successful within the medicag@s Criminisi et al,,
2009. Combined all along with learned visual features, decismest can be con-
structed in such a way to detect and capture anatomicakstas; leading to high com-
putational performance.

6.3 Image-based Search

Following the initial search approach described in Chapteve can perform search
based on the local appearance in the volume. The searchheittiffusion model rep-
resentation, and appearance patch mo¢els_, _ for each landmark is performed
in an iterative manner, starting from a coarse initial@atbtained by, e.g., atlas regis-
tration. The appearance model is based on a local textucd patdel at the landmark
positions. Similar to a standard shape model inferencensehthe landmarks positions
in new data are estimated by an energy minimization invghboth shape prior and
appearance costs:

1. The landmark positions of the test volurkeare updated according to a local
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appearance model. For each landmark the position with kigitebability of the corre-
sponding local texture patch being consistent with regaithé learn texture mode?,

is chosen within a neighborhood to of the current positidimeste. We consideP (x?)

as the learned texture patch for the correct landmark positj in the initial training
volume. During search for each landmark position we loolafbetter appearance fit in

a local neighborhood/. That is we use correlation as the similarity measure, and we
haveC! (x) as the correlation between the current candidate patchand the model
patchP(x/) normalized within the neighborhood, N C’(x) = 1, then the image
supportis

j

& = mean;=1,. n (%) . (6.19)
foN\x{ CZ (X>

The image support is thus computed for every landmaik from the local appearance

behavior at the corresponding positions in the trainingpsha

2. After fitting the shape to the image data, its variationaestrained by the dif-
fusion wavelet shape variation model. The landmarks argegtied into the orthomax
coefficient space as described in Sec5.5.1. The consttaartsed during training are
applied, and based on the resulting parameter values tpe sheeconstructed.

This procedure is iterated while during each iteration,dhveesponding/’ is recon-
structed to re-estimate the shape. After convergence therfgonstructiorivV’ is an
estimate of the true shape inferred from the data, and tle prodel.

6.4 Appearance Classifiers Search Scheme

6.4.1 Learning a Classifier for Appearance Modeling

An alternatively to representing appearance by local featwor just the mean appear-
ance, is to use classifiers to obtain a more flexible and adapresentation.

For each landmark we can train a classifier, that is able terdifitiate between back-
ground and the landmark. Likely there is a very high levelrab#uity resulting from
such a classification if it is applied to the entire volumewdger, we can treat the posi-
tive labels, or probabilistic weights resulting from thasgification as hypotheses. In a
second step the shape model is used to pick the most likelgthgpis from this set.
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We adopt recent developments in machine learning that seglihe use of weak
classifiers and arbitrary image features. For the heart imusar feature space involves
the (i) gradient phase and magnitude, (ii) structure tepsmrtheir (i) curvatur¢Rieger
et al, 2004 and (v) the responses to Gabor filters with different phasdséentations.

Once feature vectors have been extracted from the inpuesha can estimate the
optimal classifier as in a traditional machine learning fesrark. Several options can
be employed, among them one can cite Support Vector Maclis\sl) that repre-
sent a powerful clustering technique searching for a hyfene and a normal vector
with the least possible norm, leading to an effective sdjmardetween the labeled data.
Boosting methods are weak linear classifiers capable ofrgéng outstanding classi-
fication results upon proper integration. Another intengstvork recently presented is
compressed sensin@onoho, 2006 where the main idea consists of recovering from
a set of subspaces the least possible number of exampletoadtpress the observa-
tions under a sparsity assumption. These methods were mplaireed in details in
Section. 6.2.4, and Boosting algorithm will be tested owerleeart anatomical data set
in Section.6.2.4.

We use the Adaboost classifier, as it is provably effectiveesants better to the char-
acteristics of our data and feature space in which we expéstantial variability across
training subjects, and anatomical sites. Starting fromfeature space, we apply Gen-
tle Adaboos{Friedmanet al., 200d to obtain a local appearance prior for the search
in new data. The boosting process aims at building a straaggifler by combining a
number of weak classifiers, which need only be better thanagha=or this we call upon
a sequential learning process: at each iteration, we addak wlassifier. It is the basic
learning algorithm introduces Hyiola and Jones, 2001 For each landmark the clas-
sification problem is as a two class training set (backgrotsidandmark) that can be
represented ass = {(z;,4;)},_, € R¥x {~1,+1}. Let's denoteD, (i) as the weight
of the distribution on training exampfeon round t. Initially all weights are set equally
Dy(i) =1/1

We use these classifiers to locate landmarks during the segtiza process. The
classifiers detect landmarks present on the ventricle rausall against background.
This is a very different strategy in comparison to standaaleh method§Cooteset
al., 1995. The main search strategy is: extract features from thenve)ufor each
landmark obtain a few candidate positions with a very strolagsifier response, fit
the DW model to these candidates, and determine the camdidafiguration with the
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Figure 6.1 — Scheme of the appearance model: Based on local featurea,dasksifier we
can assign each position in the volume an evidence valuaridnharks presence. This results
in a set of hypotheses for landmark positions, that are eerbiy the shape model constraint.

highest plausibility with regard to the shape prior. Aftentinue with the local search
at the current landmark estimates constraint by the ddfusiavelet model. During the
shape model fitting we check which candidates have the higi@gsibility with the
trained diffusion wavelet model.

In Figure. 6.1 the scheme of the model search is depicted.e&adn landmark the
search volumé/ is projected into a hypothesis spa¥é that reflects the evidence for
the landmark presence for each point in the volume. Thidtesua position hypothesis
x; for each landmark. The set of landmark hypothésegs. . ., x,,) is tested with the dif-
fusion wavelet shape model, resulting in a position préaictor each landmark. These
predictions are used to generate new hypotheses based lmeahanage suppoV /'
and the shape model. The hypothesis space is the classHmnge on each position
in the volume. During the progressing search we just consigeneighborhood of the
current landmark location estimate during the last iterati

The method computes a local feature vector for every voxelraaps it via a Gen-
tleBoost classifier to a probability that the voxel belongstspecific landmark in the
object. The classifier is trained from the training data sghgentations. The probabilis-
tic output is constrained by the shape model. The mapping thet diffusion wavelet
coefficient space ensures valid results with regard to thieitrg data. The result of
this procedure is a probability for each voxel regardingntsich to the structure to be
segmented, conditioned on both local and global infornmatio
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Therefore, during the search process, the model is usedhergeith the Gentle-
Boost classifier trained on the local appearance of the iddal landmarks describing
the anatomical structure. The hierarchical diffusion vietvehape model is then fitted to
new data based on local appearance captured by the classifier

6.4.2 The Learning and Localization Algorithm

Let us summarize the learning and search concepts intrddincéhis section. The
method consists of a training phase and a search step. thiesthape model and pa-
rameterization, and the local classifiers for the appearaepresentation are learned.
During search they are used to locate and segment struatunes image data.

Learning: During the training both geometry and appearance of thiettre of interest
are learned.

e Givenn examples of the structure of interest location and the sporeding
images, we represent the shape variability by a diffusioreled shape model
as described in Chapter. 5.

e Using the same examples, we extract local features for eaicting volume
at different scales. For each landmark, at each resolutiengconstruct a
set of training samples containing local features and spording labels
which indicate if the position is the landmark location oe thackground.
Background voxels are chosen randomly in the volume exbepparticular
landmark positions for training.

¢ A cascade of classifiers that differentiates between backgtand landmark
on increasingly fine scales, and within more constrainedhimrhoods is
learned. After the first level, we train the classifier onlyaineighborhood of
the landmark position. This results in higher specificityhivi the vicinity of
the landmark position. To train for the fine local differextibn we take into
consideration only the neighborhood of every landmark whatd in each
training image. We train a classifier for each landmark amaimeonly the
ones with solid performance or wide-margins between tHerdiht classes.

Segmentation Using both diffusion wavelet shape prior and appearancegrwe
perform the structure localization as follows: the prodsésitiated with the mean
shape, and proceeds in an iterative manner,
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e Perform a local search for the most probable landmark positusing the
trained classifiers,

e Constrain the solution using the diffusion wavelet coediticonstraints, and
repeat the previous search steps until convergence.

This results in landmark location estimates in the searcmgenthat are based on the
appearance, and the shape constrained learned duringithadgrphase.

6.5 Local Appearance Features CCA Search Scheme

6.5.1 Appearance Representation Using Local Features

We employ a search framework related to Active Feature Mo@&EM) proposed in
[Langset al., 2004, where the authors introduce a local descriptor based @nagiie
filters. The approach is related to Active Appearance Mo@&pEM ) [Cooteset al,
19984, with the main difference that AFMdescribe appearance by means of local fea-
tures, and infers model updates during search by means oficah correlation analysis
(CCA), which has advantages given noisy data. CCA-AAMs dosaly related, but
use the full appearance representation similar to AAMs. Bémefit of the method is
considerable in the presence of complex data, like musdtée déuere large parts of the
variation within the muscles have low relevance for landaiacalization and a small
training set has to compromise a decent representatioredéxture in the model.

We utilize a Gabor jet with frequencies{0.3,0.6,0.9} and directions
{0,7/4,7/2,3m/4} to describe the local texture at the landmark positions. irfigur
training we learn the relation between landmark displacgsmand the corresponding
texture feature change by CCA: model parameters are peduandomly generating a
large number of displaced model instances. A functionaltiah is then learned from
the resulting feature vectors describing local textGreand the corresponding model
parameter displacement by Canonical Correlation AnaGGA) éjp. We generate a
set of synthetic images by perturbing the optimal parametetor, i.e.,r (p,,: + dp).
The vectorp,,; is computed by mapping the training image texture and shatpethe
model eigenspace, wheép elements are randomly drawn from uniform distributions
in the interval[—1, 1] standard deviation. Consequently we obtairfeature vectors
with m corresponding parameter displacement vectors.
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GivenP € R?7*™ the set of random displacement vectors, &d= RP*™ the se-
ries of relative feature vectors, we are able to execute Ca&RAc@mpute the canonical
factors of these signals. Through this factor analysis weabtain the following lin-
ear combination®V, = (w},...,w!")andW, = (w),...,w"), respectively, where
1=1...k" <k.

Afterward regression is applied on the leading canoniagjggtionsG,,,; = W?G
as well asP. These projections are then used to computepthek* transformation
matrix] = PG! . whereG/ GZ,:Gpro) G

proj? proj = ( proj*

6.5.2 Diffusion Wavelet Shape Model Search by Canonical Coela-
tion Analysis

During search, local features are extracted at the curaeminhark position estimates.
Based on the relation learned by CCA, according diffusionelet shape model param-
eter updates are performed . This results in an iterativesegproach, that converges
to the landmark positions, based on the local appearande;aanstraint by the diffusion
wavelet shape model.

At each iteration the new prediction for a model parameteéatgis generated at each
iteration, as a substitute of the one calculated in Equaf®B). Indeed the new predic-
tion dppredictea CAN DE Obtained a®p,,edicted = Irpro; Wherer,,,; = WgTrcwem. As
R = 1W§ can be pre-computed during training the final formulatiothefprediction
function as following

6ppredict6d(rcu7"rent) = Rccarcurrenta (620)

Our segmentation framework is summarized as shown in F3g. 6.

6.6 Experimental Results

To assess the segmentation accuracy, we combined modeditigpds detailed in the
previous chapters and the listed search methods. Modethe=aare initialized by a
displacement equal to the mean configuratioi®)% of the mean volume; We carried a
leave one out strategy in order to investigate the assoniaghavior.
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Figure 6.2 —DW-CCA Methodology.
Training the Landmarks based Compute Shape model metric
Model shape representation from the training data
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Figure 6.3 — Segmentation Framework.



124 CHAPTER 6. SEARCH ALGORITHMS PERFORMANCE

6.6.1 Image-based Search

To assess the search behavior we compare our method withdastaGaussian shape
model search in an active shape model search approach. Wanuesen sampling of
the object surface, and gradients in the volume as textwaiggion, and a sparse shape
model as proposed ifEssafiet al,, 2009. The latter uses a similar appearance model to
the one used in this section, and allows for the assessmém efffect of replacing the
multivariate Gaussian landmark model, with the diffusicavelet shape model. The er-
ror measure is the mean distance of the model landmarks éetstendard of reference
and segmentation result Figure. 6.4. This gives also arcation of the displacement
along the surface, which is relevant if the result is usechérigation. Models are ini-
tialized with minimal overlap to the target shape, and theueacy of the final result
was quantified by the mean landmark error between grounid &rutotation and search
result. For the quantitative comparison, results in Fig)@learly show how the dif-
fusion wavelet model outperforms the sparse model withdstethparameterization for
both anatomical data sets, with for example a mean value .87 bxels for diffusion
wavelet model over 13.72 error voxels for the sparse modildarcalf data.

The diffusion wavelet model is able to recover the shape augberior accuracy. In
the muscle data the standard search approach failed due tonthiguous texture and
local shape variability in large regions of the target shapeFig.(6.5) examples for
standard, sparse moditssafiet al, 2004, and multi-scale diffusion wavelet based
search are depicted. Furthermore the diffusion wavelgiespéor is significantly better
than the local Gaussian prior. Note that one of the imponpaintts that distinguishes
our methodology from robust ASMs, is that we learn the distiion of both image and
shape information during the training phase to optimallglex the anatomical prop-
erties of the data. This is not the case for robust ASMs wharhaf given sampling
consider a subset of the control points according to therebdemage during search. In
a typical segmentation scenario, our method runs apprdglyna6 seconds in average
with non-optimized code implemented in Matlab 7.5, on a 2@HELL Duo Computer
with 2Gb RAM.

6.6.2 Local Appearance Features CCA Search

To evaluate the shape representation of the our model, vessasso measures: 1. re-
construction accuracy, and 2. search performance. Theigtalunderstand how the
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Figure 6.4 — Boxplots of (a) Heart and (b) Calf Search Segmentation. hzaréf Recon-
struction Error (voxel) after finishing search phase, witmparison between three different
search models; (1) our approach, (2) sparse model and (®)asthgaussian model.

hierarchical modeling based on the diffusion kernel afféloé reconstruction of the mus-
cle. We compared the reconstruction error for Gaussianesimegalels, and the proposed
diffusion wavelet modeling. The current strategy of conmgnthe diffusion wavelet
shape representation and an AFM appearance model straigggriorms the standard
search method, based on an even sampling of the object sugad gradients in the
volumes. The accuracy of the final result was quantified byrtban landmark error be-
tween ground truth annotation and search segmentatiott céshe muscle, as well as
the DICE similarity measure coefficient (See Figure. 6.8)e €alculated mean distance
gives in addition an indication of the displacement alorggbrface, which is relevant
if the result is used for navigation. Models were initiatiagith minimal overlap to the
target shape.

Moreover, one of the main goals is to evaluate how far theusiiéin wavelet model is
able to detect the local shape variations based on diffésomel. In term of quantitative
results the reconstruction error between the diffusioneletvmodel and the reference
model is calculated as an average surface error for all hegtes which gives us 2.1277
voxel for the Gaussian model and 0.1485 for the diffusioneletvmethod. In Fig 6.6
the reconstruction of the projected shape model is depitkesl reconstruction starts
from the projection of the diffusion wavelet coefficientsr@spectively the first and the
last level, and then extracting a new subset of coefficienuts fthe eigenvectors that
constitutes 99% of the variation in the correspondant level
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To keep the variation in reasonable limits, the shape paemare also restricted to
+3+/);. During the reconstruction experiments we were also abtbéck the effects of
each eigenvector of any scale on the rate error.

Regarding the muscle data our approach was able to recash#pe with superior
accuracy, in the meanwhile the standard search approdeld fdue to the ambiguous
texture in large regions of the target shape. In Fig 6.7 omevisualize an example
of comparison between standard and active feature modedrseé is interesting to
note that with the help of image support based on local textiescriptors, the method
performs better for muscle segmentation due to a restnictionore relevant information
being used for regression and fitting.

6.6.3 Appearance Classifier Search

To assess the performance of our approach, we consider aselathat includes 25
CT volumes of the heart, with an approximate voxel spacing.6fmm, for which 90
anatomical standard of reference landmarks, and a sétidf control points for the
left ventricle was available, in addition to the ground ftrgegmentation from experts
concerning the diastole as well as the systole.

We have run our algorithm in a leave-one-out cross validatshion. For the dif-
fusion wavelet building part, we obtain 9 diffusion wavdktels of decomposition for
the shape prior. As for the initialization of our frameworke used the mean shape
displaced by a random translation3sf mm.

To evaluate the efficiency of our method, we computed tworemeasures: (i) the
Hausdorff distance revealing the maximum error betweerstdedard of reference and
our model reconstruction, as well as (ii) mean distance @frthe detected landmarks.
In Fig.6.9.a, one can see that the Hausdorff distance eeanedses with an increasing
number of diffusion wavelet levels used for reconstructiien we consider the mean
reconstruction error over all data, we reach a distancea#13 voxel in the image for
the finest level, while as for the coarsest level we obtai@2Z3A0xel. The comparison
of detection results for different numbers of levels usedmdureconstruction can be
seen in Fig.6.9. Note that diffusion wavelets have been shovwoutperform standard
Gaussian models in terms of search errdigesafiet al, 20094 on muscle MRI data.

During the search validation experiments, we consider difragolution approach
for each landmark patch which goes from 5*5 pixels to 20*2¢efs in 4 steps. We
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obtain 200 landmarks candidates, for 15 training heartslartésting examples. Exper-
iments were carried out using Gentle Adaboost, which is aaleqto deal with a large
number of negative examples as well as the rather limiteglfipur training set. In the
guantitative assessment of the search/segmentatiorithlgaexplained in Sec.6.3, we
obtain a lowest error of 4.72 voxel between ground truth afative segmented volume.
In a typical segmentation scenario, the method takes appately 68 seconds in av-
erage through non-optimized code implemented in Matlabahta 2GHz DELL Duo
Computer with 2Gb RAM. One should note here that we are wgrkamward search in
very large data sets, while searching for small complexcaires, thus the efficiency
of gradient descent of ASM is limited. In an ideal case oneld@ombine the trade
off between the reconstruction accuracy and the classdicarror to choose the best
candidate for the search segmentation.

6.7 Contributions

In this chapter we detail three different search schemedifioision wavelet shape prior
models: 1. A search based on an image based local appeagpnesentation analogous
to the search discussed in Chap.4, 2. a search scheme baséatahappearance repre-
sentation by classifiers, and a hypothesis selection schasezl on the shape prior, and
3. a search scheme based on local features, and the infexttiemodel parameters
based on CCA. In accordance to the results, our proposddgitra have proven to be
accurate and suitable for medical images treatment.

Undoubtly, there still is a huge variety of feature sets dadsifiers that could be in-
vestigated, and in the same aspect other feature extractiselection techniques could
be evaluated. A comparison framework could represent @&nasting future direction.
The main objective remains to formulate the segmentatioblpm as an inference task
based on data driven hypothesis, and shape prior constraint

We conclude that the proposed search approaches are abketteeudiffusion wavelet
shape prior effectively. Together with MDL-based landmalidcement during learning,
they present a framework to model shape and appearancetofidoal structures. The
particular advantages of the proposed approaches areapéahdity to the distribution
of informative image content, and a multiscale shape reptesion, that uses a param-
eterization learned from the training data to optimallyresgnt the shape variation.
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These characteristics are particularly relevant for thenmpater based analysis of
anatomical structures that exhibit complex shape vartgbgannot be parameterized
sensibly by an a priori chosen reference manifold, and ale martially well discern-
able in the medical imaging data.

The main concept proposed in this chapter is taking advastagboth the idea of
sparse representation and optimal image features for skapesentation integrated in
a global classification scheme :

Training Based on an initial set of landmarks, we assess first theimhisative power
of the appearance at each landmark position (Appearanug)exond the recon-
struction contribution / shape model redundancy of eactirtaark.

Search We perform a coarse to fine search - starting with a globalckean a small
number of highly discriminative landmarks / transitionitgglocal fine search.
Search is classifier based as described above.
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(9) (h) (i)

Figure 6.5 — Model search result for Heart muscle (upper row) and Calfatess(down

row). Data in green: standard of reference segmentatiaednsearch results. For (a, d, g)

standard gradient search approach, while (b, e, h) repreparse shape models and finally
(c, f, i) diffusion wavelet model.
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(@) (b)

Figure 6.6 —Diffusion Wavelets Model reconstruction. Data, greenndtad of reference
segmentation, red: reconstruction result for a. finesesaatl b. coarsest wavelet scale.

(@) (b)

Figure 6.7 — Search Comparison: Model search result for T1 MRI calf , grefgold
standard” segmentation, red: search results. (a) stampfadient search approach and (b)
active feature models search.
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Figure 6.8 — Results of the segmentation using the DW-AFM model. (a) Batspof the
Dice Similarity Coefficients Measure and (b) landmark efvoixel) after finishing the search
phase over the whole data set, with (1) our current approagii2) standard model.
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Figure 6.9 — Multiscale Diffusion Wavelets Reconstruction. (a) Hau$tdgrror Distance

(in voxel) of reconstructed heart at each diffusion scateatbdata in the training set. (b)

Data, green: ground truth segmentation, red: reconstrucésult for finest scale and (c)
coarsest wavelet scale.
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Figure 6.10 —Model search result for Heart muscle. Ground truth in gr@ered: search
results. (a) standard Gaussian search approach, and (fme8tgion based on Image Clas-
sifiers.






CHAPTER

7 Robust Sparse Wavelet
Enhanced Modeling

“Le génie, c’est I'enfance retrouvée a volonté “

Baudelaire
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7.1 Introduction

In the previous chapters, we have first introduced a modeddbas sparse shape and
appearance representation. Following this, we have exgddiow one can use diffusion
wavelets to represent shape variation in an efficient mamweh approaches are related
to the assumption that one can observe an underlgipglogyof the shape variability
during learning. In Chapter. 4, we have used it to find an ogitsab-set of informa-
tive landmarks. In Chapter. 5, we have defined the domain aohathe wavelets are
parameterized according to this topology.

In this chapter we introduce a method for the reconstruabbmissing data in a
diffusion wavelet shape model framework. By this we brirgtilio approaches together:
the parameterization by means of diffusion wavelets, ard¢lconstruction of shapes
from a subset of landmarks. There are two aspects behingldas

1. One can perform robust model fitting, by identifying o, and excluding them
from reconstruction,

2. One can employ a sparse model based on a sub-samplinglafidaks.

Robustness is a crucial issue in computer vision and shamkelng. It aims to
guarantee that shape analysis and reconstruction are tomgse, occlusions and clut-
ter. We will describe how to detect such outliers duringudfbn wavelet shape model
search, and how to reconstruct the shape based on the ragegtiable landmarks.

The second novel aspect is the building of Sparse Diffusiamélét Models based on
the same concept: imputation.

We will name our approacR-SWAM standing for &RobustSparseWVA veletM odel.

The proposed approach aims at offering a high flexibilityareling types of distur-
bances that can be handled. The robustness and perfornfahedResSWAM algorithm
is evaluated on the same data sets as the previous algorithaikow for comparability
of the results.

In the first part of this chapter we depict the related work of method, then in
Section. 7.3 we detail the different steps of SWAM framework. Finally we validate
the method on our medical data set.
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7.2 Related Work

An importantissue of shape modelling and the capturing @lkical deformations typ-
ical for muscle data is the modelling of the shape variat®particular aspect relevant
when performing imputation and reconstruction with watgles the lifting scheme. The
wavelet lifting scheme consists in decomposing waveletsfiams into a set of stages.
A comprehensive introduction is given in the work{ bieaton and Silverman, 20D&ho
focus on a wavelet lifting scheme based imputation methatusparse representation
of a surface in a wavelet/lifting scheme basis. We were iddegpired by the iterative
wavelet imputation described by the authors. The idea of

even values @ -
¥ T
—™| Splir Predict Update
+ 1
{=) -
ey

oddvalues

Figure 7.1 —Wavelet Lifting Scheme.

The original idea behind the lifting scherfféchréder and Sweldens, 1995to start
from one basic and simple multi resolution analysis, andedthie construction of a new
and more efficient one. Consequently either the new basaituns are smoother or the
wavelets possess more vanishing moments. In fact thegiéimables to build a basis in
a fully biorthogonal framework. This scheme guaranteesitefand small support for
all the bases, as well as more performance regarding thdetsave

Several approaches were reported in literature to makevéd\&ppearance Model
more robust, such d8eichel et al, 2009 who developed a robust AAM matching
algorithm to resolve problems of gross disturbances in oz diata.
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7.3 Wavelet Enhanced Sparse Modelling

Our goal is to describe how a sparse model framework can beentgd with diffusion
wavelet concept to reduce model complexity in one part, lsa # successfully cope
with large medical data sets.

7.3.1 Reconstruction of missing landmarks in a diffusion weaelet
shape model

Similarly to our previous shape models approaches, we wilrta Point Distribution
Model, with full landmarks describing our data. Let us detfinat form landmarks the
positions,V; = {x!,x},...x' }, are known inN training imaged;,I,...,Iy. That
is, our shape knowledge comprisgs= {V1,V,,..., Vy}, wherex’ € R? and we
call V; € R¥™™ a shape.

Then, let us assume that we have a subsampled set of thélantimarks, with;

V={V,V, ...V, (7.1)

whereV,; € R¥™ are the representations of the full shapésn the training set,
with m’ < m. V; consists of a sub set of the landmarks defining the shape c@hibe
the result of one of the followings causes:

1. A sub-sampling procedure as described in Section. 4.5.

2. Missing landmarks due to corrupted, noisy or outliersidat

The main goal now is to try to predidt; from V;, however this time through the use
of the diffusion wavelet models.

As we have already built the the diffusion wavelet tfieef our complete training set
(as described in Section. 5.4), we use it to represent theasaled test volume. We
calculate the diffusion wavelet coefficienf on the deviatior$; from the mean of the
aligned shapes, Let us denote kythe set of fixed landmarks and, the missing ones
in the subsampled shape, corresponding to;



7.3. WAVELET ENHANCED SPARSE MODELLING 137
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Figure 7.2 —Overview of theR-SWAM Framework.
S, = Fy U M, (7.2)

and then obtain the following diffusion wavelet coefficiefar the examplé;,

I'g =@7'S; (7.3)

Afterward, we imputate the sparse diffusion wavelet COMﬁtS,F?put, by project-
ing them into the original PCA space of the full diffusion vedets training, i.e., the

eigenvectors = {o;},_, ., and the corresponding eigenvalues- {\;},_, .

Once we finish the imputation step, we are now able to reaactstine subsampled
shape as following:

Spc = @rg™™ (7.4)

However to optimize the reconstruction, we will take intosmleration the new re-
constructed valueB; relative to the positions of the original fixed landmarks
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Sree — F, UM, (7.5)
We will iterate then this process, until the reconstructoror between the original
fixed landmarkdg, and the fixed reconstructed onEsreaches a certain threshald

Finally the reconstructed shape is obtained by;

VP = VP4 orgt (7.6)

7.3.2 Sparse Diffusion Wavelet Framework

Instead of local multivariate Gaussians, as in Chaptehelshape variation observed in
a training set of shapes is represented with a diffusion leagbape models.

The approach proceeds in the following steps:

1. Consider a set of training volumes, and corresponderamessthe examples for
a set of landmarks.

2. Learn a diffusion wavelet model from the complete set néitaarks

3. Choose a sparse sub set of landmarks modeling analogousig approach de-
scribed in Chapter. 4.

4. Estimate diffusion wavelet coefficients based on thesspapnint set of during
search volume.

5. Perform the robust reconstruction of the entire modeéasiibed in Section.7.3.1.

The above described framework is equivalent to determiedliffusion wavelet co-
efficients from an incomplete set of points. However thosatgowill not be chosen
randomly, but established through the Sparse Shapes Mobeiously a robust version
could always be considered, starting from RANSAC pointsARRlom SAmple Con-
sensus"), one investigates how well generated diffusioveless fits the ground truth
and then we can choose those which have the most support hieh wstimate most

points.
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7.4 Experimental Results

In this experimental validation section, we evaluate thétisaale shape prior based on
a shape reconstruction task form a subset of landmarks. ftreiplearned during the
training phase from a set of examples, and the full set ofrfearlts. Afterward we fit
an incomplete test shape with the prior so as to estimate luse @ reconstructed test
shape is to the ground truth.

We then validate our approach on a set of 25 CT volumes of thet, veith an approxi-
mate voxel spacing of 1.5 mm, for which 90 anatomical stashdéreference landmarks,
and a set of’26 control points for the left ventricle was available, alsahwavailable
ground truth segmentation from experts concerning theéa®and the systole.

We test the diffusion wavelet model on the sparse set of lankisnobtained as de-
scribed in Chapter. 4. We calculate the residual error betwiall diffusion wavelet
coefficients and altered ones, the result is shown in Figuge.

We compute the mean error distance in order to calculates$ioesghancy between the
ground truth segmentation and the reconstructed resubk.distance will then measure
boundaries of both volumes. In Table.(7.1), we report sroddiffusion wavelet models
and R-SWAM technique.

Figure 7.3 —Selection of residuals and their effect on diffusion wavplejection

In Figure. 7.4 different iterations of the sparse diffusiwavelet reconstruction of
a subsampled heart volume is shown. One can notice that éukcted shape of the
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R-SWAM Diffusion Wavelet
10% Missing Landmarks 0.264 6.244
50% Missing Landmarks 0.313 9.328

Table 7.1 —Comparative table results between Diffusion Wavelet areVi#®AM, over the
reconstruction landmark error between the ground truthth@deconstructed sparse volume
of the left ventricle muscle.

R-SWAM is improving with every iteration, leading to the minimizat of the recon-
struction error rate. It's interesting to note that regagdihe figure results as well as
numeric values, that our robust technique is able to regréesparse landmarks shape, in
an even better way than conventional methods.

To investigate the influence of different amounts of misglata on the robust proce-
dure, we performed a comparison of R-SWAM with the standaitirdodel on different
rate of sparse missing landmarks which were replaced byendi$early the standard
DW model fails in reconstructing the shape. The result cashmvn in Figure. 7.5.
As demonstrated in the state of the art, experiments pratestandard Gaussian model
does not handle missing landmarks or outliers well. Obthmesults demonstrate that
robust diffusion can overcome this kind of drawbacks.

Similarly to the previous experimental validation, thiga&iithm runs on a Matlab 7.5,
on a 2GHz DELL Duo Computer with 2Gb RAM.

7.5 Contributions

In this chapter, we proposed to extend the framework prapisthe two previous chap-
ters. We introduce a reconstruction algorithm, that camegé the diffusion wavelet
shape model coefficients from a subset of landmarks. Thaeisnodel can deal with
missing landmarks, that are either due to detected oytbets a sparse subsampling of
the landmarks analogously to Chapter. 4. By using both tfesitbn wavelet and sparse
modeling as shape representation, we are able to take adeaot the decomposition
space on the one hand and sparse decomposition on the otiger ha

A part from handling the missing landmarks issue, and oftghierarchical decom-
position, our technique is general in the sense that it oftee advantage of being suit-
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able to any medical acquisition modality technique and tp amatomical structure.
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QR

(a) iter=1 (b) iter=7
(c) iter=11 (d) iter=15

Figure 7.4 —Several Iterations of Sparse Diffusion Wavelet Reconsac
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(a) Non robust Diffusion Wavelet Model

(b) 10% of Missing Landmarks (c) 50% of Missing Landmarks

Figure 7.5 —(a) Non robust Diffusion Wavelet Model Reconstruction ofsgalata. Com-
parison between R-SWAM reconstruction for respectively(@% and (c) 50% of sparse
missing landmarks.






Conclusion

“If we knew what it was we were doing, it would not be calleceash, would it?”

Albert Einstein
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7.6 Contributions

In this dissertation, two knowledge-based segmentatamdmvorks for medical imag-
ing data are proposed. The frameworks tackle questionsdiegehe optimal modelling

of anatomical structures and an efficient search in ambigunage data: 1. They cope
with heterogeneous distributions of salient image feattinat can be used during lo-
calization and segmentation. 2. They use the shape vatyahiid its redundancies
observed in the training set optimally to build compact goarse models, 3. They learn
an adaptive parameterization of the shape variation mogldlbbmain, that can is learned
form the training data, instead of being imposed followingreori assumptions. The
medical background is the segmentation of muscles in MR, daproblem that poses
the above mentioned challenges. The two approaches are:

e Sparse shape modeladapt to heterogeneous distributions of redundancy in the
shape variation and sparsely distributed distinctiveuiexin the data. In contrast
to existing approaches they use the statistical modelingtexture behavior to
derive a sparse representation and reconstruction mechani

¢ Diffusion wavelet shape priorsare a segmentation framework based on diffu-
sion wavelets and local appearance classifiers. The cdgunaf the diffusion
wavelet constraint with a search method based on a GentstBlassifier leads to
an effective segmentation scheme.

Sparse shape models obtain a sparse model of objects omacaltstructures that
takes the local statistical modelling and appearance l@havthe training set into ac-
count. The model based segmentation is based on a sparselaetdmarks that can
be uniquely identified in new data during search. The modklik based on a set of
training examples for which expert annotations are avhalalt integrates knowledge
about local appearance, shape variability, and the antlgigtiimage data to achieve a
segmentation performance equal to or superior to a medipaie

During search for structures in new data, the model is us#uavpatch based local
appearance representation to locate and segment objdwsprdposed representation
can be employed with other shape modeling and search methbe$ormulation based
on model compactness makes a transfer of the shape behajmimg to other models
straightforward. A comparison of the reconstruction aretde behavior with standard
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shape models that neglect these properties and repregentsotegardless of the reli-
ability and complexity of shape and texture behaviour intth@ing population shows
clear advantages of this strategy.

Diffusion wavelet shape priors are a multi-scale shape mgléramework based
on a diffusion wavelets shape representation. The mettked @dvantage of the subtle
inter-dependencies in training data, by clustering caefiits based on correlation, and
representing the topology of the structure by a diffusiom&g instead of a fixed pre-
defined manifold. We are using the orthomax criterion whelsuitable for building
sparse representations - particularly relevant in the oafiee regions and pathologies
studied in the thesis - leading to localized modes of vamatn optimal subdivision
of the shape parameterization. A segmentation framewa&dan diffusion wavelets
and local appearance classifiers allows to use the modeaigiadarch for anatomical
structures in new data. The conjunction of the diffusion&laizconstraint with a search
method based on a GentleBoost classifier leads to an effegtigmentation scheme
that can deal with ambiguous appearance and complex stesctwe have shown that
in the context of anatomical structures, the diffusion vetveansformation is able to
accurately and efficiently detect the locations and spatiales of shape variations.

Finally a scheme for the reconstruction of partial shapesbgns of the diffusion
wavelet shape prior is introduced. It is the basis for rolsestrch approaches, and for
a sparse subsampling of the most informative landmarks aubsequent reconstruc-
tion of the entire shape. The proposed approaches comribuotore flexible shape and
appearance model learning framework to the line of resdargkly initiated by the in-
troduction of active shape models. They make use of thenmdtion learned from the
training set, by learning not only the variation of the obsershapes, and appearance,
but also an optimal parameterization of the shape modefufdn wavelet shape pri-
ors can be viewed as an extension to the work on sphericalletaleape modelgNain
et al, 2007 towards shapes without a topology known a priori. Insteadedining a
topology by a reference manifold, we learn a diffusion kéthat defines locality. The
validation of the localization of two complex medical dagissshows promising results
indicating the advantage of using such a learned model peaimation.
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7.7 General Limitations

The elements presented in this thesis carry on certaingttreand consistency, but still
have some limitations. One critical point in our framewodasists in registering the

training volumes as a pre-processing step. We still haveviestigate the sensitivity of

our approach to initialization variability, and captur@ge in large images, and its per-
formance when segmenting large compounds of anatomicaltgtes. These questions
are more difficult in the case of the calf muscle data, whereermwestigation is needed

towards extending to the entire set of muscles..

7.8 Future Research

There remain challenges to the approaches presented ihdisis. For future work one
can focus on the determination of the sparse model complakat takes the limited
training data into account to estimate a feasible numbeapeters, and an integration
with model learning approaches, that learn the locationsoim-annotated data and a
weakly- or unsupervised manner. Such experiments wouldneqore data to achieve
and validate further improvement.

More efficient optimization techniques could be used in goojion with our priors
to obtain a flexible and powerful paradigm representingfimfig shapes of arbitrary
topologies. The coarse to fine search, through objectivetiitmoptimization could also
be seen more in depth. And still in the part of diffusion watglone can think about
different non linear prior estimation instead of pca/ortax, such as kernel PCA for
example as described [[IDambrevilleet al, 200d. Another attractive perspective is
the combination of the Diffusion Wavelet with the Discrefgimization presented in
[Besbest al., 2009, where the authors explore Discrete MRF (Markov RandonuB)el
for knowledge based segmentation.

A major line of future work is the integration of the proposedthods, in a pathology
assessment framework for myopathies, for which the entoegof calf muscles has to
be modeled and assessed. We presented the applicationoofttbenax principle on our
data. Currently the technique presented is limited to tmenax criterion. We assumed
that similarly to[Leung and Bosch, 2007he results under other criteria will be anal-
ogous, because the reparametrizations are restrictectlwathations of the training set.
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However in the future one would like to compare differenhorhax criteria, and assess
their influence on the shape modelling.

An interesting option is to integrate segmentation and fddassification based on
DTI study[Neji et al,, 2009 to a unified framework that allows for the computer-aided
assessment of the disease status and the comparison adogssssduring follow up
examinations. The latter work refers to the applicationhe tinsupervised learning
methods developed for muscle fiber clustering and featura&ion on diseased muscle
data. These methods were used to find characteristic featutiee fiber trajectography
data, with high differentiation power between healthy arsgased tissue.

The proposed research program by AFM (French AssociatiamagMyopathy),
along with the achieved results, hold a great promise fofutuge. The project has great
potential value for the purpose of helping the diagnosis o$calar diseases, evaluating
in vivo the impact of treatments of myopathies by a non ink@siethod, or even more
generally exploring muscle structure through a novel, andtnrmportantly non invasive
perspective. The prime aim remains to achieve the bestlpesstcuracy for clinical
application, the quantitative assessment and treatmppbsuof myopathies.
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