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Abstract

THE thesis is dedicated to three dimensional shape analysis and the segmentation of
human skeletal muscles in the context of myopathies and their treatment. In par-

ticular, we study the local and global structural characteristics of muscles. The method-
ological focus of the thesis is to devise methods for the segmentation of muscles, the
consistent localization of positions in the anatomy and thenavigation within the muscle
data across patients. Currently diagnosis and follow-up examinations during therapy of
myopathies are typically performed by means of biopsy. Thishas several disadvantages:
it is an invasive method, covers only a small muscle region, is mainly restricted to di-
agnostic purpose and is not suitable for follow-up evaluation. We develop the following
methods to make the use of non-invasive imaging modalities such as MRI for a virtual
biopsy possible: first, a novel approach to model shape variations that encodes sparsity,
exploits geometric redundancy, and accounts for the different degrees of local variation
and image support in data. It makes the modeling and localization of muscles possi-
ble, that exhibit sparsely distributed salient imaging features, and heterogeneous shape
variability. Second, we extend the shape representation of3D structures using diffusion
wavelets. The proposed method can represent shape variation and exploits continuous
inter-dependencies of arbitrary topology in the shape data. We then explore several ap-
proaches for the shape model search, and appearance representation based on boosting
techniques and canonical correlation analysis. Last we present a robust diffusion wavelet
technique that covers the integration of our two shape models approaches to finally get
an enhanced sparse wavelet based method. We validate the approaches on two medical
imaging data sets that represent the properties tackled by the approaches: T1 weighted
MRI data of full calf muscles and computed tomography data ofthe left heart ventricle.

Key words: Segmentation, Shape Analysis, Sparsity, Diffusion Wavelet, MRI, Skeletal
muscle, Myopathy.





Résumé

CETTE thèse est consacrée à la conception d’un système d’aideau diagnostic dédié
au muscle squelletique humain. Au cours du premier volet de ce manuscrit nous

proposons une nouvelle représentation basée sur les modèles parcimonieux dans le cadre
de la segmentation d’Images de Résonances Magnétiques (IRM) T1 du muscle squelet-
tique du mollet. Notre méthode Sparse Shape Model/ Modèle deFormes Parcimonieux
(MFP), apprend un modèle statistique de formes et de textures locales annoté et réussit
à en tirer une représentation réduite afin de reconstruire lemécanisme musculaire sur un
exemple test. Dans la seconde partie du manuscrit, nous présentons une approche basée
sur des ondelettes de diffusion pour la segmentation du muscle squelettique. Contraire-
ment aux méthodes de l’état de l’art, notre approche au coursde la phase d’apprentissage
permet à optimiser les coefficients des ondelettes, ainsi que leur nombres et leur posi-
tions. Le modèle prend en charge aussi bien les hiérarchies dans l’espace de recherche,
que l’encodage des dépendances géométriques complexes et photométriques de la struc-
ture d’intérêt. Notre modélisation offre ainsi l’avantagede traiter des topologies arbi-
traires. L’évaluation expèrimentale a été effectué sur un ensemble de mollets acquises
par un scanner IRM, ainsi qu’un ensemble d’images tomodensitométriques du ventricule
gauche.

Mots Clés: Segmentation, Analyse de Formes, Modèles Parcimonieux, Ondelettes de
diffusion, Imagerie par Résonnance Magnètique, Muscle squelettique, Myopathie.
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CHAPTER

1 Introduction

“A goal without a plan is just a wish.”

Antoine de Saint-Exupery
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1.1 Motivation

The human body has no longer any secrets for the medical experts, thanks to the growing
variety of image acquisition techniques. Physicians have access to an incredible number
of image acquisitions technologies that allow for the quantitative observation of anatomy,
physiology and pathology. Such modalities call for novel methods to make optimal use
of the information. The role of these techniques is not to replace the doctors but to
provide them with specific and rich information for their decisions.

Data acquired by medical imaging modalities have indeed achieved a level of richness
that needs computer based methods to extract relevant information in a consistent and
efficient manner. Imaging techniques hence play a key role indiagnosis and follow-up
of muscle disorders in conjunction with clinical examination, biological analysis and
muscle biopsy.

Myopathies are diseases that affect muscles connected to bones, called skeletal mus-
cles, and produce weakening and atrophy of skeletal muscles, especially those closest to
the center of the body resulting in reduced mobility. Such disorders affect a large per-
centage of the population with worldwide incidence of all inheritable myopathies being
at about 14%.

Clinical follow-up as well as therapeutic trial evaluationare mainly based on func-
tional tests and physiological measurement of muscle strength that are limited by the lack
of sensitivity or poor reliability. Muscle tissue biopsy allows a precise microscopic my-
ofiber count but this invasive method, covering a small muscle area, is mainly restricted
to diagnostic purpose and is not suitable for follow-up evaluation.

Generally, diagnosis involves several outpatient tests todetermine the type of myopa-
thy like blood tests and more frequently electromyogram or still muscle tissue biopsy.
Magnetic Resonance Imaging as well as Diffusion Tensor Magnetic Resonance Imaging
are , on the other hand, techniques that allow to gather in-vivo measurements about the
skeletal muscular diseases.

The scope of this thesis is to develop a framework for shape modelling and segmen-
tation of the human skeletal muscles, and more particularlythose affected by myopathy.
The medical imaging community has focused on organs other than the calf muscle, for
instance heart or brain tissues during the last decade. The segmentation of individual
muscles within a muscle compound depicted withMagnetic Resonance Imaging (MRI)
(see Figure. 1.1, 1.2) poses new challenges to automatic segmentation systems. Although
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dominated by the global anatomy, muscle deformation exhibits mostly locally consistent
behavior, precluding the use of global models. Muscle surfaces are only partially visible,
while parts exhibit structures, that can change dramatically between patients, or during
the course of follow-up examinations.

(a) (b)

Figure 1.1 —Calf MRI: (a) healthy (b) zoom on AT, EDL and PL muscle groups.

One of the most prominent processing methods in the medical image analysis is seg-
mentation. The segmentation of images are necessary in different medical applications
ranging from computer assisted surgery, study of anatomical structures , computer aided
diagnosis and the monitoring of disease progress. The difficulty of segmentation mainly
remains in the tremendous variability of objects and the variation in image quality. Ad-
ditionally, there are a lot of complex properties, such as artifact and noise, corrupting the
medical images and leading to the failure of common segmentation techniques.

Model-based segmentation and localization approaches areof prime interest, due to
their ability to repeatably identify positions in the anatomy, to learn and to apply prop-
erties of large and representative populations. Of particular importance is the accurate
representation of subtle local shape variation and the correct parametrization of the as-
sociated interdependencies between parts of the anatomical structures. This is a very
tedious task to be performed manually, and thus has to be learned from the data, in order
to avoid a bias that would compromise the model efficiency andaccuracy. A second
aspect that becomes prevalent when exploring large anatomical regions, is the highly
heterogeneous nature of their appearance, and the existinglocal consistency across pa-
tients.

This thesis is part of the “DTI-Muscle” project, a collaboration between Ecole Cen-
trale Paris, the French Association against Myopathy and Henry Mondor Hospital.
Among the objectives of this project one can cite the use of a relatively recent non-
invasive image modality to understand the global effect of different myopathies to mus-
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Figure 1.2 —Manual expert annotation: ROIs of the calf muscle

cles, the development of mathematical models capable of analyzing such data toward
non-invasive diagnosis among the different myopathies as well as the exploitation of
such modality to measure the reaction of muscles to treatment using different agents.
Our contribution consists of developing the required techniques to use such an image
modality towards modeling, understanding and diagnosing the muscular diseases.

The clinical goal is to devise a method to perform a virtual biopsy of muscles: the
non-invasive analysis of the local and global structure of muscles and its changes dur-
ing myopathies. The methodological prerequisites for suchan automatic method are
challenging: they involve the separation of different muscle types, the consistent local-
ization of positions within low-contrast and only partially reliable data. The project thus
not only contributes to the therapy, but also to the researchin muscle diseases and their
characteristics.

1.2 Contributions

The main contribution of this thesis are methods for the segmentation and localization of
muscles in MRI data. On the one hand, the contributions explore modelling methodology
that can cope with highly variable shape and sparsely distributed image information. On
the other hand, we apply these methods to the specific question of muscle segmentation.

The contributions of this thesis include :

• A novel statistical shape model that aims to identify the challenging borders be-
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tween muscle constituents, where the separation is not present along the entire
boundary but rather on sparse locations only. Our approach introduces a robust
version of the active shape models framework, with additional properties that
adapt to sparse boundaries exploring how to construct sparse shape models that
use only a subset of the available landmarks. The particularsubset is optimally
chosen based on, first, geometrical accuracy and influence onoverall shape and
second, the discriminative power of the local appearance model. We obtain thus
a sparse model of objects or anatomical structures that takes the local statistical
modeling and appearance behavior into account. We compare its reconstruction
and search behavior with standard shape models, that neglect these properties, and
represent objects regardless of the reliability and complexity of shape and texture
behavior in the training population.

• A novel multi-scale shape representation and segmentationfor anatomical struc-
tures using diffusion wavelet shape priors. The approach deals with complex and
soft connectivity properties of objects by encoding their interdependencies with a
diffusion kernel. The topology is learned from the trainingdata instead of using a
priori choices like e.g., a sphere, and represents the shapevariation of structures
with arbitrary topology by means of diffusion wavelets. Theproposed model-
based segmentation approach accounts for the systematic behavior of shape vari-
ation and image support in anatomical structures, with a parameterization that
goes beyond pre-defined reference manifolds. For the parameterization of com-
plex structures, it is worthwhile not to rely on a reference manifold with an a
priori topology, but to learn the appropriate topology fromthe training data. For
this, we have to determine the intrinsic topology a shape forwhich multiple exam-
ples are available, and have to encode this information in the shape model, and to
use it in the representation and during the segmentation.

Given a set of training shapes and their corresponding sets of landmarks, the goal
is to construct a manifold on which the training shapes live and to model the shape
variation on this manifold hierarchically using diffusionwavelets. Toward ad-
dressing segmentation, statistical learning at differentlevels of hierarchy (diffu-
sion kernels) on the variations of the wavelet coefficients is performed. Due to the
power of the basis function representation, conventional dimensionality reduction
techniques using the orthomax criterion[Kaiser, 1958] lead to a very compact rep-
resentation of the manifold. The approach has definitely thepotential to be used in
many other computer vision tasks where data live in a very high-dimension space.
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The experiments curried out on both calf and Left ventricle muscle data indicate
clear advantage of the proposed method over the competing ones.

• Different search strategies were introduced, for instancethe use of our statisti-
cal wavelet-based model together with a GentleBoost classifier, or with Canonical
Correlation analysis. The approach obtains an accurate delineation of partially
visible surfaces and complex textures, that cannot be achieved with registration
based methods. During the search, the hierarchical diffusion wavelet shape model
is fitted to new data based on local appearance captured by theclassifier. The
method computes a local feature vector for every voxel and maps it via a Gentle-
Boost classifier to a probability that the voxel belongs to a specific landmark in
the object. The classifier is trained from the data set segmentations. The proba-
bilistic output is constrained by the shape model. The mapping onto the diffusion
wavelet coefficients space ensures valid results with regard to the training data.
The result of this procedure is a probability for each voxel regarding its match to
the structure to be segmented, conditioned on both local andglobal information.
We report results on CT left heart ventricle data sets, that illustrate the impact of
the soft parameterization, as well as the global classifier based search.

• A robust diffusion wavelet method that covers the integration of our two ap-
proaches to finally get an enhanced sparse wavelet based method. This associ-
ation undoubtedly inherits the advantages of both relativetechniques. The result-
ing technique is independent from the topology of the anatomical structure, and
can represent complex geometric and photometric dependencies of the structure
of interest. This leads to a fully automated segmentation system using 3D-shape
models for anatomical data.

To summarize, our contribution in this work is three-fold:

• Exploit sparsity present in the data and get rid of the existing information redun-
dancy.

• Learn the appropriate topology from the training data, and use a corresponding
shape representation based on diffusion wavelets to model its variation.

• Combine different search strategies based on classifiers and local descriptors.
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1.3 Thesis Roadmap

We introduce in Chapter. 2 the medical background of our studies that rely particularly
on human skeletal anatomy. Anatomical diseases and characteristics of the calf muscle
will be investigated all along this section to introduce thereader to the medical part of
our work.

Chapter. 3 provides an overview of medical image segmentation as well as the gold
standard techniques of statistical shape modeling that constitute the state of the art in the
computer and medical vision community. We do also discuss various issues surrounding
shape representation such as alignment and landmarks correspondence.

In Chapter. 4, we propose a model that uses statistical properties of shape and appear-
ance in a manner different from standard shape models. A sparse model is obtained that
takes the non-uniform distribution of image information and model complexity on the
surface of anatomical structures into account. Our approach is not constrained to a single
reference manifold, but can capture and model structures ofarbitrary topology.

Chapter. 5 covers a 3D geometric shape model for anatomical structures using diffu-
sion wavelets, and applies this to segmentation. The diffusion wavelet approach is first
described, then its use to model shape is explained where shape variations are learned at
multiple scales, hierarchically capturing the model parameters. Indeed the topology of
the structure is represented by the diffusion kernel, learned from annotated training data.
Finally, the application to segmentation based on a detection scheme is addressed.

In Chapter. 6 we discuss how the shape model obtained either through our sparse
approach or the diffusion wavelet method could be exploitedduring different search
strategies.

Chapter. 7 proposes a combination of the latter presented techniques, sparse model
and diffusion wavelet, to generate an enhanced robust wavelet model.

At the end of each chapter, we present the experimental validation that we conducted
to demonstrate the approach over medical data sets.

Finally, we draw the conclusion of all the theoretical and experimental work provided
in this manuscript, while suggesting different opening research possible in the future.





CHAPTER

2 Medical Background

“The body is a big sagacity, a plurality with one sense, a war and a peace, a flock and a
shepherd.”

Friedrich Nietzsche
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2.1 The Human Musculoskeletal System

2.1.1 The Skeletal Muscle Architecture

Starting from the first edition of Henry Gray’s Anatomy of theHuman Body in 1858,
commonly known asGray’s Anatomy, which has still been considered as one of the land-
mark in the field up until the most recent edition published in2008[Gray, 2008], the hu-
man musculoskeletal system always found major interest among scientist and anatomist.
Amongst the diverse clinical studies established about human skeletal architecture, we
note significant consideration in muscle fiber[Narici and Maganaris, 2006], changes
in muscle size and architecture following, modeling and analyzing the musculoskeletal
system[Delp and Loan, 1995], skeletal muscle adaptations to disease states[Geaet al.,
2006]. The basics of skeletal muscle mechanics are described in[Herzog, 2000]. The
human skeleton (see Fig. 2.1) of a healthy adult is made up of 206 bones. Surprisingly
at birth babies have 300 bones, obviously we do not loose muscle but they simply fuse
during growth.

The human skeletal system has four different functionalities serving our bodies;
mainly providing movement, support, protection, and also blood cells. The movement of
our body is made possible through a cooperation between bones, joints and ligaments on
one hand with the muscles and tendons on the other hand: the support because it gives
the shape, size and framework of the body; the protection thanks to what our internal
vital organs can be kept safe from injuries; finally the bone cells of our body do rely on
blood to keep them alive and to bring them necessary food and oxygen. This explains
why the bones are able to mend in case they are broken, proves how the skeletal system
is far from being just a group of bones, and how it is managing in many interesting ways
to preserve our bodies strong and healthy.

Along with the recent considerable advancement in medical imaging technology, the
wide range of muscle exploration is getting larger and larger. A part from imaging
modalities development, diverse software and medical applications have been conceived
in order to treat, exploit and of course display anatomical images, which could be CT,
MRI, or even ultrasound. Certainly a joint effort and collaboration between mathemati-
cians, engineers and of course doctors has to be establishedin order to make this progress
possible.

During the muscle architectural analysis one can distinguish between three commonly
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Figure 2.1 —The human musculoskeletal system (Copyright 2001 adam.com, Inc)

involved parameters which are ; Length (Lm), Fiber Length (Lf), Pennation Angle (e.g.,
the fiber angle relative to the force-generating axis,θ), and finally the Physiological
Cross-Sectional Area (PCSA). Indeed quantitative studiesin such fields get inspiration
from micro-dissection of whole muscles.

We will focus our interest on the lower leg -Figure. 2.2- and more particularly on the
calf muscle. In fact, the foot contains bones especially designed for weight-bearing. The
latter represents a system of arches allowing for the foot tosupport much weight.
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Figure 2.2 —The faciae of the lower leg

2.1.2 Calf Muscle Anatomy

From a physiological point of view, the calf belongs to the group of"peripherical mus-
cles“, which are implicated in the limb movement. Indeed, the muscles of the calf act as
the chief extensors of the foot at the ankle-joint. They exhibit significant power and are
extremely vital in any every day movement.

In Fig. 2.3, the regions of interests (ROIs) are depicted in acalf slice[Basser and Pier-
paoli, 1998], using an individual high contrast image and the corresponding labels for
seven different muscles. The different muscles analyzed were, respectively, the soleus
(SOL), lateral gastrocnemius (LG), medial gastrocnemius (MG), posterior tibialis (PT),
anterior tibialis (AT), extensor digitorum longus (EDL), and the peroneus longus (PL).

When examining the calf anatomy, we find that the Gastrocnemius represents the
most superficial muscle, composing the greater part of the calf, it also supplies to flex
the femur upon the tibia, supported by the Popliteus. Located just right in front of the
Gastrocnemius, there is the Soleus that is a broad flat muscle. For example, in walking,
our whole body is supported on the raised foot, while during standing the Soleus insures
the body from falling forward and maintains its stability. One also has to keep in mind
that skeletal muscles are very sensitive and even extremelyplastic [Geaet al., 2006].
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Figure 2.3 —T1-weighted axial slice depicting a supervised segmentation of the calf muscle.
The seven different muscles are respectively; the soleus (SOL), lateral gastrocnemius (LG),
medial gastrocnemius (MG), posterior tibialis (PT), anterior tibialis (AT), extensor digitorum

longus (EDL), and the peroneus longus (PL).

However, muscle dysfunction could occur and trouble the human skeletal strength and
endurance, resulting in the inability to maintain any kind of a task.

The boundaries between skin and muscle seem to vanish, whichmakes the segmen-
tation procedure more and more complicated for an expert as well as for an automatic
algorithm. Additionally the calf poses several challengesto the state of the art method-
ologies, e.g. the very subtle differentiation between muscles, and the un-even distribu-
tion of reliable image information.

The information provided in this section is deducted to a large extent from the most
recent Gray’s Anatomy edition[Gray, 2008]. For more extended details, we refer the
reader to this estimable source.

2.2 Myopathy

Myopathiesare diseases that affect the muscle system, and lead to a severe deterioration
of the motoric abilities. These pathologies affect 4 to 6% ofthe population, i.e 25 to
30 million Europeans. Diagnosis as well as follow up for a given therapeutic strategy
are often performed through biopsy. Magnetic resonance imaging (MRI) allows a non-
invasive observation of the muscle fibers, their texture, and their global structure. It
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Figure 2.4 —Ground truth of the calf muscle.

has the potential to replace biopsies (by e.g., diffusion tensor imaging (DTI)) and has
the advantage of encompassing a section of the entire leg as opposed to small local
samples. This enables the analysis of local properties, as well as understanding the
global structural change of muscles affected by a disease. Acrucial first step in this
analysis is the accurate segmentation of individual muscles.

First, myopathy symptoms came along with childhood and adolescence period. They
had to be treated early and fast to prevent the disease progression and harm to the body.
Indeed, in several dystrophies the heart can be seriously affected and this may even
lead to death in some cases. One can characterize the muscular dystrophies, which are
inherited myogenic disorders, by progressive muscle wasting and weakness of variable
distribution and severity.

(a) (b) (c)

Figure 2.5 —Calf MRI: (a) healthy case (b) and (c) unhealthy case where the fat in white is
spreading all over the muscle.
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Acquired Myopathies

Polymyositis and Dermatomyositis
Systemic Lupus Erythematosus
Rheumatoid Arthritis
Inflammatoy bowel disease myopathies
Endocrine myopathies
Rhabdomyolysis
Steroid and other drug myopathies
Electrolite disorders

Inherited Myopathies

Muscle Dystrophies
Duchenne muscular dystrophy
Steinert myotonic dystrophy
Facio-scapulo-humeral muscular dystrophy
Limb-girdle muscular dystrophy
Congenital myopathies
Metabolic myopathies
Mitochondrial myopathies
Acid maltase defficiency

Neurological-
neuromuscular
junction disorders

Amyotrophic lateral sclerosis
Multiple sclerosis
Guillain-Barre syndrome
Parkinson disease
Myasthenia gravis

Table 2.1 —Review of most predominant myopathic diseases and neuromuscular junction
disorders[Geaet al., 2006].

2.2.1 Neuromuscular Diseases Classification

These disorders can be classified in several groups, including congenital forms, in ac-
cordance with the more distinct distribution of muscle weakness: Duchenne and Becker;
Emery-Dreifuss; distal; facioscapulo-humeral; oculopharyngeal; and limb-girdle which
constitutes the most heterogeneous class. Among the disorders listed in Tab. 2.1, we will
mainly detail the two most common ones, Duchenne Muscular Dystrophy and Steinert
Myotonic Dystrophy. More exhaustive description of the rest of the list can be found in
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[Geaet al., 2006] and references therein.

The Duchenne Muscular Dystrophy (DMD) also known asPseudohypertrophic
Muscular Dystrophyrepresents the most prevailing and also the most severe dystrophic
myopathy. For the historical part, it is named after Dr. Duchenne de Boulogne who
worked in Paris in the mid-19th century, and who was one of thefirst doctors to show
interest in muscular dystrophies.

Actually, this recessively inherited disorder is at the origin of skeletal muscle pro-
gressive degeneration. The genetic abnormality is caused by the defective gene encoded
for the Dystrophin, the latter represents actually a protein for the muscle. Biologically
speaking, Dystrophin is a protein located close to plasmolemma and linked to it by glyco-
proteins, that are respectively connected to laminin, as laminin is to the basal membrane
[Emery, 1993]. Dystrophin fortifies the plasmolemma in such a way that it can be more
resistant facing the mechanical forces coming from contraction-relaxation cycles. Once
dystrophin is absent, injury is more likely to happen.

Male are more likely to get this specific kind of distrophy, whereas women act just like
carriers as explained in Fig. 2.6. This is due to the severe recessive X-linked characteris-
tic of the disease and also to the absence of descendants fromaffected men, analogously
women always receive at least one disease-free X chromosome.

As for the symptoms, they come along first at around the age of five years. One
of the first trouble facing the patients is walking difficulties as well as frequent falls
followed by some change in the appearance. Those problems are due to the early hip
and lower limb muscle implication. Muscle weakness first affects feet, fronts of thighs,
hips, afterward more muscles get affected such as abdomen, shoulders and also vertebral
column. Furthermore the fat infiltration of muscles generates a deformation in the limbs
Starting from the age of 12 years old, patients are not able towalk and thus need a
wheelchair. Along with respiratory even cardiac muscles start to represent a handicap.
Without adequate support treatments, patients die on average between 20 and 25 years
old either from heart failure or pneumonia.

Myotonic Muscular Dystrophy (MMD) also known as the Steinert disease represents
the second most prevealant dystrophy after the DMD -Duchenne Muscular Dystrophy.
Contrary to the DMD, the Steinert Myotonic Distrophy can happen at any age, where
the patient starts wasting his muscles, and ends up with heart defection issues. It is a
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Figure 2.6 —Duchenne Muscular Distrophy: how the inheritence works (@Copyright. US
National Library of Medicine)

slowly progressing and chronic disease, where the term “Myotonic” is the adjective for
” Myotonia", the inability to relax muscles at will.

As for symptoms severity, they can vary considerably, even within the same fam-
ily. Nevertheless the substantial difference resides between the congenital cases and
the cases beginning during adolescence/childhood. In fact, newborn infants are affected
by severe muscle weakness, that could even lead to life-threatening problems requiring
intensive care.

There are two types of Myotonic Muscular Dystrophy which aredesignated type 1
and type 2. The clinical features of type 1 tend to be more severe resembling to those of
type 1, the two types are caused by mutations in different genes.
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In terms of genetics, the gene which causes the dystrophy of type 1 is known as
DMPK and is situated in the long arm of chromosome 19. The geneis coded for my-
otonic dystrophy protein kinase, which is a protein expressed primarily in skeletal mus-
cle.

2.2.2 Possible Treatments

Due to the notable advances in gene manipulation, the genes and their corresponding
protein products responsible for these disorders can now bedetected. This identification
represents a crucial step to corroborate an accurate diagnosis for not only the patients
but also for prenatal diagnosis.

Unfortunately, there is, as yet, no way of greatly affectingthe long-term course of
any of these disorders. Nevertheless, significant progressin several disciplines (e.g.,
gene manipulation, stem-cell therapy) offer cautious optimism for finding an effective
treatment in the not-too-distant future.

In the particular case of muscular dystrophy, we distinguish novel experimental treat-
ments and on-going research[Cossu and Clemens, 2001] that can be subdivided in three
major classes:

• Gene therapy: generation of new viral vectors more effective in transferring ge-
netic material from one bacterial cell to another within adult muscle fibers.

• Novel pharmacological approaches: how to recognize the molecules responsible
for the skipping of the mutated axon, i.e., the sequence in the DNA or its RNA
transcript.

• Cell therapy: a recent technique based on stem cell biology and more particu-
larly on stem (progenitor) cells transplantation. Yet the medical advancement and
knowledge remains minor, and has to be deepened in order to establish a more
significant clinical protocol for such neuromuscular disorders.
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2.3 Medical Image Modalities

The last few decades show a rising attention to modern non-invasive techniques. Re-
searchers and physiologists are able to investigate the human body, so the latter has no
longer any secret to keep.

Starting from the work of the Nobel-prize winner A.V. Hill[Bassett, 2002], who
contributed a pioneering insight to the field of skeletal muscle imaging. The in vivo
exploration of anatomical structures has finally become possible.

In this section, we provide an overview of the imaging modalities while highlighting
the gold standard technique, e.g. Magnetic Resonance Imaging, as far as the muscle
state diagnosis is concerned.

2.3.1 Acquisitions Modalities Overview

2.3.1.1 Diffusion Tensor Imaging (DTI)

Diffusion Tensor Magnetic Resonance Imaging (DTI) is a technique that allows to mea-
sure the random motion of water molecules in biological tissues in vivo such as the white
mater of the brain where it has been shown to allow non-invasive mapping of connec-
tivity. Myofibers refer to anatomical structures where the propagation/diffusion of water
could lead to a complete understanding of the muscle structure. Such local and global
structure is altered when muscular diseases are present. One has to account for the highly
sparse data of such a modality (capturing diffusion in a limited number of directions),
the presence of strong noise on the acquisition model, the extraction of the muscle fibers
from isolated measures, and the understanding of the globalmuscle structure through the
statistical characterization of these fibers. Furthermore, we would like to correlate DTI
results with morphometric data resulting from myofiber examination by microscopic his-
tological study of the same muscle. The objective of this project is the development of
a novel quantitative method for in vivo muscle imaging (DTI-muscle) leading to "near
virtual muscle histology". DTI-muscle may offer a new reliable non-invasive approach
allowing quantification of myofibers in the setting of pharmaceutical drug evaluation as
well as for gene and cell therapy clinical trials.

As demonstrated in[Bihanet al., 2001], DTI inherits its power from its own concept,
as during their random, diffusion-driven displacements molecules probe tissue structure
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Figure 2.7 —Axial view of tractography classification for a healthy case[Neji et al., 2009]

at a microscopic level far beyond the usual image resolution. Thanks to this acquisition
technique, researchers are well equipped to specify and work on the diffusion anisotropy
effects as well as tissue micro-structure. Another statistical characteristic one can ob-
serve in the diffusion MRI image voxel, is the movement of water molecules distribution
inside the voxel. Scientific interest and understanding of DTI have steadily mounted, to
gain access to diffusion tensor and especially to exploit fiber tracking in brain or more
recently in the skeletal muscle.

Previous DTI studies in medical imaging[Bihanet al., 2001] addressed more anatom-
ical structures like brain white matter, tongue or still thecardiac muscle. As for the
skeletal muscle, in[Galbanet al., 2005] the authors established how DTI is capable of
separating the different variations in diffusive properties between different muscles. A
more recent work[Neji et al., 2009] handles the problem of calf muscle segmentation
with respect to DTI modality where a novel manifold-based clustering approach for the
classification of fibers is developed (see Fig. 2.7).

Computed Tomography (CT) The idea behind CT acquisition is to combine the dig-
ital computer together with a rotating x-ray device in orderto generate detailed cross
sectional images of the muscle slices, more especially bonystructures of the foot or the
ankle (see Fig. 2.8). CT helps to delineate the structures corresponding to these anatom-
ical structures for 3D visualization, and it provides an accurate image of bones, soft
tissue and blood vessels all at the same time. This in-vivo medical imaging technique
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is commonly required in the case of fractures, infections, degenerative and rheumatoid
arthritis, and more serious issues such as bone tumors, etc..

Figure 2.8 —Axial view of CT angiography depicting aberrant accessory muscle slip of me-
dial head of rightGastrocnemiusmuscle [American Journal of Roentgenology]

Among the advantages of Computed tomography over other x-ray modalities one can
cite how it is able to clearly expose the shape and precise location of soft tissues and
bones in any slice of the foot/calf muscle. CT scans help doctors distinguish between a
simple cyst and a solid tumor and any involvement of the bone.Roughly speaking, CT
scanning can be considered as more rigorous than conventional x-ray in determining the
stage (extent) of some bone tumors, and then it can guide the doctors in their decisions
concerning the treatment. However, there is a remaining risk that it can lead to cancer
due to the absorption of the radiation by the body in the case of excessive exposure to
radiation, and it is also forbidden to some patients, like pregnant women. Indeed there is
a high supposition of a linear relationship between radiation dose and cancer risk.

Ultrasound (US) The non-invasive and real-time method of ultrasonic ecography is
devoted to measure muscle architecture, such as fiber bundlelength, muscle thickness,
and angles of pennation[Koryak, 2008]. It is considered to be a highly informative and
available technique for assessing the architecture of human skeletal muscle. The fields
of use of ultrasound scanning are varied, that goes from medicine, sports as well as
physiology of aging. The relevant use of this technique relies on its accurate ability to
assess muscle relationships with their functions, withoutassigning the patient to undergo
painful procedures as muscle biopsy. More generally, this method is dedicated for the
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heart and fetus imaging. Ultrasound uses high frequency sound waves and their echoes
produce bright spots in the image between two different types of tissues.

Originally, humanskeletal architecture was studied and investigated starting from ca-
daver specimens, however, thanks to recent ultrasound studies [Fukunagaet al., 1997]
[Koryak, 2008], physicians are able to carry those study on human body, which leads to
more rigorous and correct conclusions.

Comparing to other technique, like MRI or still tomography,ultrasound presents two
advantages: being less expensive from the clinical aspect on one hand, and allowing
physiologists to estimate muscle structural changes underfunctional stress on the other
hand. Nevertheless, ultrasound does also suffer from some inconveniences, mainly low
image quality, presence of geometric distortions caused bywave velocity, and even pres-
ence of speckle due to wave inference.

Figure 2.9 —Ultrasound estimation of a calf muscle tear.

Regarding muscular diseases, ultrasound (US) images have gradually lost their signif-
icance and they have been progressively replaced by ComutedTomography (CT) or/and
Magnetic Resonance Imaging. Nevertheless, due to its portability, low cost and lack of
ionizing radiation, the ultrasound technique may be usefulin some experiments. CT on
the other hand is able to provide a fast and extensive evaluation of muscle anatomy and
can detect fatty infiltration. Nevertheless, exposition toionizing radiation limits the use
of CT for follow-up of patients.

MRI has demonstrated significant advantages compared to thetwo former modali-
ties. MRI imaging has so far proved to be a more accurate technique to evaluate and
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follow-up muscle disorders[Filler et al., 2004]. The major attraction concerning MRI
is most probably the absence of ionizing radiation, which allows multiple examinations
and evaluation of muscle disease progression.

2.3.2 Magnetic Resonance Imaging (MRI )

Since the introduction of Medical Resonance Imaging, i.e.,approximately 30 years ago,
the role of this volume imaging technique both in research and clinical practice is getting
more and more considerable. Contrary to CT, MRI does not utilize ionizing radiation,
instead, it employs a powerful magnetic field to align the nuclear magnetization of hy-
drogen atoms in water in the body. Indeed, the principles of nuclear magnetic resonance
(NMR) represents the basis of Magnetic resonance imaging (MRI). However, to avoid
any kind of negative connotations relative to the nuclear field, the term nuclear was fi-
nally abandoned in late 1970’.

As the human body mainly constits of water, which means two hydrogen nuclei or
protons, when it undergoes an MRI acquisition, it is placed in a powerful and uniform
magnetic field. Consequently the nuclei magnetic moments are aligned in parallel or
anti-parallel way to the magnetic field. The moment rotates then around the axis of the
field, with a certain frequency, known as the Larmor frequency, that relies both on the
type of nucleus and on the strength of the magnetic field. The reaction of the tissues
relies not only on the proton density, but also on the way thatprotons recover their
initial/resting state position after the initial RF pulse (Radio Frequency).

Two parameters relative to the configuration of an MRI acquisition are repetition time
(TR) and echo time (TE). TR is relevant to the period between two consecutive RF, while
TE is the time separating the first RF and the echo.

Interest about MRI relies on how we could learn about their environment thanks to
the energy emitted, when the excited nuclei relax and realign. We have two ways of mea-
suring the relaxation time: T1-longitudinal relaxation- and T2 -transversal relaxation-,
explained as following;

T1 represents the necessary time for the nuclei realignment, using a gradient echo
(GRE) with long TE and long TR.

T2 assigned as the loss of phase coherence in the transverse plane, while utilizing spin
echo (SE).
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Figure 2.10 —T1 and T2 weighted MRI acquisitions of the brain.

Figure 2.11 —Axial view of T2*-weighted image of the calf

T2* is an extension of the T2-weighted, where local magnetic field inhomogeneities are
not equilibrated (compensated) as depicted in Fig. 2.11.

More generally, T1 and T2 -see Figure. 2.10- modalities are often used in clinical
practice. The variation over the scanner parameters produces a contrast between different
types of body tissue, so that researchers can detect diseased tissue, including tumors.
Still this kind of exam is considered as expensive compared to other exams, but benefits
from the fact that it is commonly known and admitted as being non-harmful to the body.

The excellent soft tissue resolution of MRI is superior to that of both CT and US.
Thus, MRI is the most pertinent technique to detect fatty infiltration, edema -abnormal
accumulation of fluid beneath the skin or in one or more cavities of the body-, and fi-
brosis -the formation or development of excess fibrous connective tissue in an organ.
In the case of fatty infiltration, muscle signal is increasedon T1-weighted spin echo se-
quences. Edema is a predominant finding in inflammatory disease and appears as an area
of high signal intensity on T2-weighted spin echo sequences. Fibrosis of muscle tissue
is recognizable only on MRI where it appears as a high signal area on T1-weighted spin
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echo sequences after gadolinium administration. MRI provides key qualitative informa-
tions about muscle disorders. However, a reliable quantification method of the muscle
structure remains to be obtained for precise follow up of patients and in the setting of
evaluation of clinical trials aiming at increasing the muscle mass by pharmacologic ap-
proach or stem cells engraftment.

With regard to the the calf muscle issue, the Magnetic Resonance Imaging modality
offers us the opportunity to investigate the muscle in a non-invasive way, and to dis-
criminate tissues due to its high contrast (See Fig. 2.5). Besides high resolution image
data sets are required to process to improve volume measurements. Hence, this goal is
reached through 3D imaging procedures instead of 2D ones. Likely, recently the under-
standing and development of fast imaging sequences and muscle disorders have steadily
mounted which grant large data acquisition in reasonable amounts of time as well as
concluding investigations.

A more detailed description of the physical aspect could be found in [Macovski,
1983]. There is still a wide variety of other specialized MRI scans, such as Magnetic
resonance angiography, Susceptibility weighted imaging (SWI), or Functional MRI.

2.4 Medical Problem Statement and Goals

In medical image analysis, often the assumption of consistent global regions statistics
is violated within organs. The work was motivated by the highly heterogeneous dis-
tribution of visual information in muscle MRI data (Fig. 2.12). Standard segmentation
methods fail, due to the ambiguous texture and the sparse distribution of salient image
information within the leg. The majority of work on anatomy segmentation is focused
on brain, liver or heart data[McInerney and Terzopoulos, 1995; Bizaiset al., 1995;
Butz et al., 2003]. They are often based either on the detection of prominent edges be-
tween organs or on the separation of intensities due to the reflectance properties of the
different tissues in the human body. The segmentation of individual muscles within a
muscle compound poses new challenges to automatic segmentation systems. The sparse
distribution of regions where image information allows fora reliable separation of neigh-
boring substructures, makes the use of prior shape knowledge mandatory, and motivates
the development of algorithms, that make optimal use of statistical models of shape and
appearance acquired during a training phase.
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(a) (b) (c)

Figure 2.12 — MRI data of calf muscles: (a) healthy (b) and unhealthy case,(c) manual
expert annotation of individual muscles.

In Fig 2.12, magnetic resonance imaging (MRI) slices of the human calf are depicted
[Galbanet al., 2005]. The distribution of reliable image information at the boundaries
between individual muscles is un-even, and parts can only beestimated from prior infor-
mation about shape. Since this distribution is fairly consistent over a population, it can
be learned, and integrated in a sparse model that makes optimal use of both the shape
prior and the image information.

This thesis is therefore motivated by our belief that segmenting human skeletal mus-
cles is attainable by exploiting the redundancy and the local image support present within
the image. By properly considering the challenging features of the image when perform-
ing model analysis, we aim at significantly improving the application performance and
propose solutions to the ill-proposed problem of calf muscle segmentation. Indeed, not
much work has been devoted to the skeletal issue, which brings another intriguing part
to our mission.

We will start by focusing on the shape modelling part, and on the major question of
landmark generation and correspondance. The main issue afterward is to study the spar-
sity of these landmarks. We propose a model for joint shape modeling and segmentation.
By leveraging the tools related to differential geometry (diffusion maps, diffusion dis-
tance..) and diffusion wavelets, we are able to handle the challenging medical data set
and retrieve accurate results.

The notion of multiclass inherited from diffusion waveletswill also be exploited to
analyze and decompose our data set into various levels. Sucha decomposition will help
us to discover different information content of the shape depending on the scale, the latter
information is not necessarily available from looking at the original image volume.
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2.5 Summary

In this chapter, we presented the medical background of the thesis, so that the reader
gets familiar with a useful set of vocabulary terms related to Myopathy. To recapitulate,
the most significant challenges of our study area are the following; first, the complexity
of the calf anatomic shape; second the partial visibility compounds of this muscle in
T1 MRI slice ground truth; and last the high variability in the distribution of image
information. The aim of this study is to develop new mathematical models from MRI
data in order to improve our understanding of muscular diseases. Before introducing
our shape represention technique, we give a review of the state of the art medical image
segmentation approaches in the upcoming chapter.





CHAPTER

3 Background and State of
the Art

“Science is facts; just as houses are made of stones, so is science made of facts; but a
pile of stones is not a house and a collection of facts is not necessarily science.”

Henri Poincare
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3.1 Medical Image Segmentation

3.1.1 General Overview

Segmentation is a fundamental problem in image processing,medical image analysis and
computer vision. Generally one would like to create a partition of the image in regions
with similar features, and thus subdivise data into a numberof disjoint regions according
to their appearance properties. Such a problem is difficult,since the individual voxel
values are not sufficient information for correct segmentation. Especially medical imag-
ing data is ambiguous and we typically need to integrate a priori knowledge about shape
and appearance of anatomical structures to successfully segment them.

The integration of a prior knowledge about the anatomical structures is the focus
of a large body of current research. In the following we discuss several families of
approaches that are related to our methodology. We will point out their properties and
limitations in the context of our segmentation task.

The capturing of the a priori knowledge is a difficult task, and methods range from
approaches that assume explicit properties (e.g. elasticity, smoothness), to algorithms
that use information obtained during a typically supervised training period. Supervised
segmentation and classification represent a hard and time consuming task, and with the
huge amount of medical data available this task becomes evenmore laborious.

Throughout the literature we can distinguish model-free and model-based ones.
Model-free methods make no assumption on the geometric properties of the region of
interest. Model-based methods introduce certain assumptions on the space of allowable
solutions -priors. These approaches are useful in the context of medical imageanaly-
sis where variations of anatomical structures are constrained by the anatomy, while at
the same time pose and view-point variation are taken into account. We can illustrate
schematically the segmentation problem by the Figure .

State of the art segmentation methods mainly rely on a clearly defined topology, and
an object boundary characterized by salient features (e.g,edges), where the majority of
work on anatomy segmentation is focused on brain, liver or heart data[Duncan and Ay-
ache, 2000]. In the medical and imaging community, MRI is regarded as themethod of
choice concerning in-vivo volume measurements thanks to its high sensitivity regarding
soft tissue and its non-invasive nature.
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3.1.2 A Variety of Medical Segmentation Techniques

Boundary-based methods are seeking the optimal instance ofthe model guided by
image-discontinuities, region-driven approaches aim to separate the global intensity
characteristics of the object from the background, while feature-driven methods seek
to learn patterns of support in the image. One can refer to a number of surveys published
for snakes[Yezzi et al., 1997], deformable models[McInerney and Terzopoulos, 1996],
markov random field-driven[Tu and Zhu, 2002], active appearance models[Cooteset
al., 2001], minimal paths and fast marching techniques[Deschamps and Cohen, 2001],
etc.

Deformable Contours and Surfaces Widely called upon in computer vision and pat-
tern recognition, the deformable models are curves or surfaces defined within an image
domain that can move under the influence of internal forces[Xu and Prince, 1998], [Staib
and Duncan, 1996]. Thses models gained more attention since the publication of [Kass
et al., 1988]. A growing number of papers related to 3D deformable models[Terzopou-
loset al., 1988] [McInerney and Terzopoulos, 1996] [O’Donnellet al., 1998] have been
published in the literature. As a matter of fact the use of those models is becoming more
and more common in medical imaging field.

Shape Models and Descriptors In [Staib and Duncan, 1992] the authors utilize ellip-
tic Fourier descriptors in order to depict boundary templates. Free-form as well as para-
metric deformable models are among the key processing techniques in medical imaging
segmentation. On one hand, one can find the Active Contours orSnakes as the most
famous free-form deformable models and Active Shape and Statistical Shape modeling
as the most well-known parametric deformable models. For a more exhaustive review of
free-form deformable models in both 2D and 3D and their use inmedical image analysis
we refer the reader to[McInerney and Terzopoulos, 1996] and[Xu and Prince, 1998].

Nevertheless, elastic models suffer from some limitationsin the way that they are
often too flexible, and can be trapped by misleading edges or by edges adjacent to the
structure of interest, converging to a suboptimal solution. Another drawback consists in
the initialization requirement near the final solution, involving manual intervention of
the user. Some papers, though, propose some solutions to tackle these problems like in
[Kelemenet al., 1999], [Székelyet al., 1996].
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(a) (b)

Figure 3.1 — Examples of deformable segmentation images both for the brain case (a) and
the left ventricle case (b)

Finite Element Finite element methods (FEM) are explored in[Gourretet al., 1989],
whereas[Teranet al., 2003] exploit finite volume methods (FVM), which seems to be
more intuitive than the finite element method (FEM), since they want to rely on a geo-
metrical rather than a variational framework. Indeed B-spline solids are used in the latter
paper in order to model fiber directions, and the muscle activation levels are derived from
key frame animations. Another approach was presented by Cohen et al. in[Cohen and
Cohen, 1993] where the authors generalize the ballon model -already introduced in[Co-
hen, 1991]- as a 3D deformable surface

Graph-based Technique Several graph-based approaches have been developed in the
last decade, including the Normalized Cuts by[Shi and Malik, 2000], or the graph-cut
segmentation proposed by[Boykov and Jolly, 2001]. A growing number of publications
in vision use graph-based approaches for image segmentation, for instance one can cite
[Veksler, 2000] and[Grady and Funka-Lea, 2004].

Indeed the tremendous development of efficient energy minimization algorithms has
revolutionized the field of computer vision[Szeliskiet al., 2006], with methods based
on Markov Random Fields (MRF) which have been used in medicalimaging problem
such as registration[Glockeret al., 2008].

Summary Freely deformable models involve deformation algorithms that do not take
into consideration the learning stage of shape variabilityconstraints. Nontheless one has
to keep in mind that freely-deformable models can be used to represent certain shapes,
but the stabilizing energies are mainly based on general smoothness properties and not
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on statistical consideration[Heimann and Meinzer, 2009]. More generally, conventional
low-level techniques do not implicate inherent a-priori information, and hence suffer
from lack of stability facing local image artifacts and perturbations present in the image.
Consequently we will focus more on the model-based segmentation approaches, and
ideally a shape representation that encodes variations at multiple scales, providing a
large set of features for shape analysis.

3.2 Statistical Shape Models

Knowledge-based methods aim to satisfy such a demand where one first intends to de-
termine some prior density on the space of solutions and thenconstrains the solution in
a new image from this density. That way an accurate organ segmentation would offer
precise measurements, simplify visualization and allow for a more accurate diagnosis.

Statistical models of shape and appearance variation form abasis for the work pre-
sented in this thesis. In the following we will outline the state of the art, and point out its
capabilities, and limitations. Modeling shape variation is a well studied problem, where
there are two critical components; the choice of shape representation and the construc-
tion of the prior manifold. For instance Point distributionor landmark-based models
[Cooteset al., 1995], implicit representations[Rousson and Cremers, 2005], triangu-
lated surfaces[Welch and Witkin, 1994], spherical wavelet representations[Nain et al.,
2007] and statistical atlases[Rueckertet al., 2003] are examples of shape/surface repre-
sentations. Besides shape and appearance models have been used in different contexts,
like face modeling[Edwardset al., 1998], [Matthews and Baker, 2004], tracking[Dor-
naika and Ahlberg, 2004], studying human behavior[Johnsonet al., 1998], and medical
imaging tasks.

Given the shape representation, the prior manifold can either be a subspace or a prob-
ability density function. In the first case, the space of solutions is often represented using
a linear combination of a set of basis functions modeling thevariations of the training
examples. Linear sub-spaces, determined either through Principal Component Analy-
sis (PCA), Linear Discriminant Analysis (LDA), or Non Negative Matrix Factorization
(NNMF), are methods being used to determine these subspaces. Towards dealing with
high amounts of training data, numerous provisions were considered such as Kernel-
PCA prior [Cremerset al., 2002], or sparse models, either through implicit[Florin et
al., 2007] or through explicit surface representations[Essafiet al., 2008]. In the second
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case, simple Gaussian densities, mixture of Gaussians, nonparametric densities[Taron
et al., 2009] as well as manifold learning and embedding[Charpiatet al., 2005] were
considered.

In [Rogers and Graham, 2001] the authors describe how to model present features,
which deals precisely with objects with missing data. Stillin the same context, the
authors in[Rogers and Graham, 2002] use a weighted least squares to update the shape
parameters. In this case, landmarks with distinctive muscle borders should be given
weights equal to 1 and 0 to landmarks corresponding to missing edges.

One can further cite[Chui and Rangarajan, 2000] a Robust Point Matching method
(RPM) on its own, where the authors present a robust algorithm which not only tolerates
noises but also attests of a certain ability in overcoming local minima and bad initializa-
tions. There is also the ASM version of the latter paper[Abi-Nahedet al., 2006] that
combines point distribution model both in 2D and 3D with robust point matching while
performing image global search for feature points of interest.

The vast majority of existing approaches are explicit/landmark-based, where some
critical points are deducted along with an interpolation strategy towards describing the
shape[Bookstein, 1997c]. Examples refer to active shape models[Cooteset al., 1995],
spline-driven representations[Bookstein, 1989], triangulation of surfaces[Lameckeret
al., 2004], wavelet-based representations[Nainet al., 2007], among others. An example
for accurate segmentation achieved through deformable models combined with shape
modeling is shown in[Cremers and Rousson, 2007].

Active Shape Model (ASM) represent the gold standard of the statistical shape mod-
els (SSM) with a key number of publications[Cooteset al., 1995] [Cooteset al., 1994a]
[Cooteset al., 1992] [Cooteset al., 1998a]. They are mainly based on a Point Distribu-
tion Model (PDM), and used to both capture and represent the shape variationin training
set. Active Shape Model (ASM)[Cooteset al., 1998a], build a point distribution model,
which allows for global scale analysis of shape variation byapplying principal compo-
nent analysis (PCA) to the positions of the boundary points,while using local appear-
ance to fit the model to new data. There is also lot of work on shape priors, including
Fourier representations of contours[Staib and Duncan, 1992], atlas-based segmentation
methods, level set and priors[Cremers and Rousson, 2007].

The landmarks have to undergo a process of manual annotation, followed by an align-
ment into a common coordinate system. Principal Component Analysis is then applied in
order to reduce the dimensionality of the data set and to specify the coordinate frame of
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orthogonal principal axis. Consequently the shape model allows for considerable mean-
ingful variability. One of the most significant contribution of ASM is that the model is
able to learn the characteristic pattern of the shape class.

However, there exist some limitations related to this approach. First of all, their inabil-
ity (with a relatively few number of eigenvectors) to capture the full range of anatomical
shape variability. Moreover, one has to refer to their sensitivity to partial occlusions and
inability to deal with orientation changes. A reduced number of examples in the data
set is also considered as a handicap. In fact it is a hard to estimate a high-dimensional
probability distribution of a shape starting from a relatively small number of samples.
More simply, the number of eigenvectors necessary for shaperepresentation has to be at
most equal to the number of training examples minus one, while the number of points
comprising the shape might be two or more orders of magnitudehigher.

These limitations are reported in several reviews in the literature such as[Davatzikos
et al., 2003] who propose to overcome to the first drawback by calling upon ahier-
archical concept based on a wavelet transform. This new formulation of the ASM is
therefore capable of capturing fine and coarse variations. Duta and Sonka also present
another improvement of ASM by integrating ana priori knowledge concerning the neuro
anatomical structures of the brain to resolve these problems in [Duta and Sonka, 1997].
In [Cooteset al., 1994b] a multi resolution implementation is developed to improve
ASM code in terms of robustness, accuracy as well as speed. There is consequently a
continuous demand on more accurate and automatic approaches of shape modeling.

To summarize this global framework, such a process involvesthree key aspects: (i)
Shape representation, (ii) Modeling shape variations, andfinally (iii) Inference.

Once the representation has been been defined, the next step consists of learning a
manifold on this space from a set of training examples. Linear subspaces, parametric as
well as non-parametric densities have been considered to model shape variation through
the observed global distribution of the landmarks within the training examples. Sin-
gle and multi-variate Gaussians, and kernel-based representations of fixed and variable
bandwidth are some examples.

During the search, the inference step consists of recovering an instance of the rep-
resentation being part of the model manifold that is best supported from the observed
image features.

Often, these three steps are treated independently. Once the representation has been
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determined, an assumption on the statistical model is made and the parameters of the
manifold are determined from the training set. This manifold is then used along with the
image features for object extraction. One should thereforemake the following observa-
tions:

(i) a strong dependency exists between the representation and the model since by chang-
ing the distribution of control points, the model can be verydifferent with regard
to its representative capabilities,

(ii) a strong dependency exists between the representation and the segmentation since
image features are often computed along this representation,

(iii) a strong dependency exists between the model and the segmentation .

For a more exhaustive review of 3D statistical shape models for medical image seg-
mentation we strongly recommend the recent review[Heimann and Meinzer, 2009]. For
a detailed version about ASM and AAM we refer the reader to[Cootes and Taylor,
2001a].

3.3 Shape Model Construction

3.3.1 Shape Representation

As far as medical image analysis is concerned, a large variety of shape features were pro-
posed throughout the literature. One can consider those features in different categories,
like dense surface meshes[Kelemenet al., 1999], deformation fields[McInerney and
Terzopoulos, 1996], Fourier surfaces[Staib and Duncan, 1996] as extension of 1D/2D
Fourier transforms, or landmarks[Bookstein, 1997a].

Throughout most parts of this work we use point distributionmodels (PDM), and
rely on landmarks as the representation of shapes in the image data. Landmarks are typ-
ically points that are either labeled manually or extractedautomatically from the image
data. Landmarks are points that have corresponding positions across a set of images
(e.g., a landmark is always located on one specific anatomical location). They are a pre-
requisite for various landmark-based image registration and appearance based models.
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While initial work relied on manually place landmarks during the training of shape mod-
els [Cooteset al., 1992], subsequent approaches place landmarks in a semi-automatic
[Davieset al., 2002a] or fully automatic manner in the training data[Cooteset al., 2005]
[Langset al., 2007].

The choice of landmarks - or of subsets of landmarks used during search - should
satisfy several properties: 1. Given the landmarks it should be possible to reconstruct
the entire structure or object with maximal accuracy, i.e. they should cover the object
sufficiently densely, and 2. The landmarks should correspond to image content that
allows for un-ambiguous localization. The selection of thelandmarks as well as the
interpolation strategy is an important challenge towards recovering the most compact
complex representation with the best possible geometric reconstruction of the object
under consideration.

Suppose we are given a set of training volumes or images

I1, I1, . . . , INT
. (3.1)

For a set of landmarks positions are known in all examples. That is, for each example
Ii, the landmarks are located at the positions

Xi = {xi
1,x

i
2, . . .x

i
NL
}. (3.2)

wherexi ∈ R
d. We will call Xi ∈ R

d×NL a shape, and denote the set of shapes in the
training set by

X = {X1,X2, . . . ,XNT
}. (3.3)

3.3.2 Alignment and Procrustes Analysis

A prerequisite to any shape representation analysis is to align the data set into a common
coordinate frame[Goodall, 1991]. This normalization allows for getting rid of the differ-
ences across shapes that are mainly due to rotation and translation. Procrustes analysis
[Gower, 1975] represents the gold standard of the alignment methods in theliterature.
More practically, it minimizes the Procrustes distance, representing a least square mea-
sure of the shape dissimilarity, between geometric shapes.There is also an effective and
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Figure 3.2 —Point Distribution Model

simple iterative approach[Cootes and Taylor, 2001a], whose steps can be summarized
in Alg. 1.

Some downsides of the Procrustes analysis remain yet unresolved, especially the
problem of missing landmarks. For a relevant study on alignment and some answered
drawbacks see[Ericsson, 2006].

3.3.3 Obtaining Correspondence

3.3.3.1 Overview

An accurate correspondence of the training volumes is a pre-requisite for a rigourous
point-based shape model. In fact a dense correspondence is even a key step in the model
building process. Landmarks are in practise said to correspond if they are matching in
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Algorithm 1 Iterative Procrustes Analysis Algorithm

1. Translate the training set examples so that their centersof mass are at the origin.

2. Opt for one example as initial guess of the mean shape,x̄, and scale it so that
‖x̄‖ = 1.

3. Record the first estimate asx̄0 to define the default reference frame.

4. Repeat

5. Align all the shapes regarding to the estimated mean shape.

6. Estimate a new mean shapex̄.

7. Impose the new mean shape by aligning it withx0 and scale it so‖x̄‖ = 1.

8. Until Convergence

a biological meaningful way. If all landmarks are located ona manifold i.e., the surface
of a muscle, we imply by corresponding positions that the following landmarks;

x1
j ,x

2
j , . . . ,x

NT

j (3.4)

have to be located at the same anatomical position, in all training examples. This
correspondence is established during training by either taking only the shape into ac-
count, or by using both shape constraint of a continuous annotation of the shape (e.g.,
anatomical object) and the image content in its vicinity.

As far as the 2D correspondence problem is concerned, manually established land-
marks can be determined[Cootes and Taylor, 1995] [Bookstein, 1997b] which certainly
leads to reasonable and satisfactory results. However it seems to be a time consuming
task and even a source of multiple errors, leading to a poor model generation.

As explained in[Davies, 2002], the straightforward approach to define correspon-
dence is to select a starting point on each example and equally space a number of points
on each boundary. Actually different conceptions could be derived in order to solve
this problem of correspondence, it could be distance-based[Gollandet al., 2000], shape
(boundaries)-based[Hill et al., 2000], or still image-based[Rueckertet al., 2003].
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(a) Training set before
alignment.

(b) Aligned left ventricle.

(c) Heart Mean Shape.

Figure 3.3 —Left Ventricle Alignment through Procrustes Analysis.

For a complete comparison and explanation of these correspondences methods, we
refer the reader to[Davies, 2002], however it is noteworthy that the distance-based tech-
niques have an important side effect in a way that the relative position of equivalent
points can change noticeably over the data set. Regarding the non-rigid image registra-
tion, they lead to reasonable but arbitrary results. This isessentially due to the existence
of an infinite number of non-rigid deformations adequate to match the intensities in two
images.

As for 3D correspondences, they can be for example obtained by semi-automatic
Minimum Distance Length -MDL- proposed in[Davieset al., 2002a], fully automatic
technique as in[Cooteset al., 2005] [Langset al., 2007], the congealing method[Zollei
et al., 2005], or the covariance determinant (DetCov)[Kotcheff and Taylor, 1998], and
finally spherical harmonics technique (SPHARM)[Brechbuehleret al., 1995].

The DetCov method possess the specificity of minimizing the covariance matrix, and
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therefore gives privilege to compact models, but presents the inconvenient to have an
exorbitant computational cost. Whereas the SPHARM is especially dedicated to objects
with spherical topology, by having the spherical harmonicsas the basis functions of the
parameterized surface. This approach was used in[Kelemenet al., 1999] where the
authors propose to build shape models starting from a set of closed 3D shapes by defin-
ing correspondence through every surface parameterization. Another recent technique
presented in[Chui and Rangarajan, 2000] deals with the correspondence issue, however
-yet like many algorithms- it only matchs one volume to another, rather than considering
the whole data set. Typically this kind of method do not guarantee continuity neither
bijectivity. Hence they are not really effective for shape modelling. In other words the
parameterisation functions do not have to be monotone and not all points need to be
matched.

A thorough survey of 3D methods for landmark correspondencecan be found in
[Styneret al., 2003], where the latter three methods are evaluated regarding several crite-
ria: compactness, generalization and specificity. Among the outcome of this evaluation
we point out the supremacy of the Minimum Distance Length -MDL- based approach
representing a method for inductive inference. The detailsof the latter method will be
therefore discussed in the upcoming section.

3.3.3.2 Minimum Distance Length

The Minimum Description Length (MDL)[Davieset al., 2002a] approach scores well
the issue of points correspondence. The MDL method seeks to achieve a compact de-
scription of the landmarks positions in the shape. In case wewant to establish how well
our data set can be modeled by a specific model family, we have to first assume a stan-
dard multi variate Gaussian model (such in ASM or AAM). The basic idea would be to
have a model which is able to compress data, then we assume that it captures or approx-
imates the model underlying the data. Thus a higher compression ratio leads to a better
fitting of the data and the model.

Practically the MDL is originally based on the DetCov technique[Kotcheff and Tay-
lor, 1998] in the way that it was introduced through a different objective function for the
optimization process.

The principle of MDL is based on transmitting a set of shapes as an encoded message,
where the code emanates from a prefixed set of parametric statistical models. Afterward



42 CHAPTER 3. BACKGROUND AND STATE OF THE ART

the transmission incorporates the encoded data values as well as the coded model pa-
rameters.

Hence MDL equilibrates the model complexity, which is explicitly formulated thanks
to the transmitting cost of the model parameters, against the fitting quality between both
the model and the data, determined by the coding length. Moresimply the MDL repre-
sents the necessary effort to send the model bit by bit as shown in Equation. (3.5);

L(D,M) = L(M) + L(D|M) (3.5)

whereL(M) is the cost of communicating the shape model andL(D|M) is the cost
of the shape data encoded with the help of the model.

3.3.3.3 Robust Autonomous Model Learning

We have reviewed during the last section the major previous work on correspondence es-
tablishement between shapes, especially those handling the population based optimiza-
tion issue. Although these methods produce plausible as well as partly reliable results,
the major remaining contraint is relative to the choice of topology and parameterization.
The Minimum Distance Length technique[Davieset al., 2002b] for instance utilizes an
a priori chosen topology to parameterize correspondences and deformation throughout
the learning and the search process.

As our data set, e.g. calf muscle, presents a high variability of local deformation
behavior, we called for a more weakly supervised learning algorithm for appearance
models[Langset al., 2007] based on the minimum description length (MDL) principle,
to resolve the correspondance problem.

Among the benefits of this method, one can cite that we have;

• No need for annotation (a time consuming and error prone task).

• No hypothesis about the topology of the shapes,

• No continuous representation of the volumes, during optimization the method only
requires a distinctive sets of interest points.

The following automatic model building is even adequate to deal with missing land-
marks issue, addressed by means of a robust model estimation. Indeed the idea behind
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this technique is based on a group-wise registration of sparse representations of the train-
ing data.

Pre-Processing: Group-Wise Registration Here is the outline of the algorithm de-
veloped by[Langset al., 2007]

1. Pairwise matching ofI1 to NT − 1 images withK interest points/landmarks.

2. Correspondance outcome is stored inG ∈ R
k×n .

3. Starting from this correspondance result, the authors proceed to a group wise reg-
istration that minimizes a criterion function. The latter criterion is based on the
compactness of the appearance model, depicting both shape and local texture vari-
ation.

In fact the criterion function is inspired from the Minimum Distance Length idea,
however instead of using a two-part coding scheme, as in Equation. (3.5), the description
length is decomposed into multiple parts, as in Equation. (3.6);

C = CS + CT + α(t)CE (3.6)

including a shape compactness criteriaCS (Equation. (3.7)), a local texture param-
eter CT (Equation. (3.8)), and finally an elasticity regularization measureCE (Equa-
tion. (3.9)), as detailed in the following equations:

CS = L(MS) + L(DS|MS) +RS − Lref (3.7)

CT = L(MT ) + L(DT |MT ) +RT (3.8)

CE = |∇d(x)|2 (3.9)

where :

• L(MS) andL(MT ) represent the transfer cost of the shape model,
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• L(DS|MS) andL(DT |MT ) consider the cost of the shape data encoded with help
of the model,

• RS andRT as a penalty for the residual error not captured by the model.

• Lref =
∑

i=1,...,N entropyj=1,...,k(pij) helps for the normalization and constitutes
the entropy of the landmark positionspi,j in the each volume.

• d the displacement of any landmark throughout the data set, that way we prevent
a degenerate model.

Figure 3.4 —Description of the Robust Autonomous Model[Langset al., 2007]

Afterward the optimization is insured through, at first, a genetic algorithm search
coupled later on with a fine search, and starting with a limited number of landmarks,
while adding some others just after the learning process, see Figure. 3.4 for more details.

3.3.4 Dimensionality Reduction

Whenever we face a huge dat set, there is in reality only a small number of parameters
that govern the data, which constitute the true dimension ofthe training set as well as a
real motivation for the data reduction. In the most typical cases we call upon the dimen-
sionality reduction techniques that were studied extensively in the literature including
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PCA (Principle Component Analysis) or rather ICA (Independent Component Analysis)
[Hyvärinen and Oja, 2000]. The PCA represents though the most common technique to
decompose the shape space and that maximizes the variance ofthe input data. The com-
bination of PCA and feature vector has proved to work[Cooteset al., 1994a] in terms of
anatomical segmentation.

In practice each step during the PCA performs a variance maximizing rotation of the
original space. It generates in this manner new ordered axesaccording to the variance of
the shapes in the different axis directions as seen in Figure. 3.5. That way the principal
components exhibit a natural ordering according to the variance they describe. This kind
of model is able to capture effectively considerable variability.

Figure 3.5 —PCA eigenvalue decomposition

Nonetheless there are some constraints with regard to the PCA approach, such as the
size of the training set. The latter has to be consistent in order to capture the variation
within a same class. Besides the assumption of the Gaussian probability distribution over
the data generation has to be assessed. Moreover, PCA works to encode global variations
only, whereas more local variations are not captured. This is directly related to the fact
that the eigenvectors of the covariance matrix the most relevant modes of variation.

Before starting to reduce the dimensionality of the data set, we first represent each
data by its deviation from the mean̄x

x̄ =
1

NT

NT
∑

i=1

xi (3.10)

We perform then a Singular Value Decomposition (SVD) over the covariance matrix
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S -see Equation. (3.11)- of the aligned data in order to evaluate the principal components
of the training set. Let’s suppose we have aligned the shapesto x1, UDV = xT

i x1 where
V UT is actually the rotation matrix.

S =
1

NT − 1

NT
∑

i=1

(xi − x̄)(xi − x̄)T (3.11)

Once we capture the non-rigid shape variation, global translation, scale and rotation
do not affect the model complexity. The aligned shapes are modeled by a multivariate
Gaussian with model mean̄x and eigenvectors of the covariance matrix

xi = x̄ +

NP
∑

j=1

bi
jej (3.12)

where:

• ej represent the modes of variation of the covariance matrixS.

• bi
j the coefficients symbolizing each shapexi

• Np corresponds to the number of the largest eigenvalues, generally this number is
chosen in a way that a certain ratio of 98% of the variance is shown in the training
data set. While varying the modes we can establish a given limits±3

√
λi [Cootes

and Taylor, 2001a] as shown in Figure. 3.6, withλi the corresponding eigenvalues.

An alternative way to constrain the shape parameters to a determined interval is shown
in Equation. (3.13)

(

NP
∑

i=1

b2
i

λ i

)

≤Mt (3.13)

whereMt stands for a threshold taken from theχ2 distribution. That way the group
of modes are considered as one multivariate distribution, and the shape parameter will
be bound to stand inside a hyperellipsoid.
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Figure 3.6 — Shape modeling example with typical hand training set[Cootes and Taylor,
2001a]

3.4 Shape Model Search

The initialization issue is always requiered for the shape models local search algorithms.
The manual interaction remains a solution that can be applied as for[Kelemenet al.,
1999] and[Pizeret al., 2003]. The construction of an atlas through an affine registration
constitutes a different option as presented in the knee shape model segmentation[Fripp
et al., 2007] .

To answer the question how to fit a model to new points, typically we will search
to define an instance of the modely in an image through the use of a similarity trans-
formation T including a rotation, a translation and a scaling, associated with the shape
parametersb as well as the eigenvectors (Equation. (3.14)).

y = T (x̄ + eb) (3.14)

The main goal now would be to find the optimal couple of pose andshape parameters,
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which is achieved thanks to the following algorithm (Algorithm. 2):

Algorithm 2 Active Shape Model Search Algorithm

1. Initialise shape parameterb to zero.

2. Produce the modelx asx = x̄ + eb.

3. Estimate appearance model along the normal vector to the surface at different
landmarks positions to find the best similarity transformation T.

4. Update shape model parameter in a way thatb = eT (y − x)

5. Impose constraints on shape parameter as explained in Section.3.3.4

6. Repeat Until Convergence

Different variants and extensions of the ASM search algorithm have been proposed in
the literature, such as the coarse to fine strategy[Cooteset al., 1994b] where the starting
point of the search process is the coarsest level, as soon as aconvergence is met, the
algorithm moves on the following level. This extension appears to be fatser and more
powerful for fitting a new model than the classic Algorithm. 2.

One of the issues inherited by the active shape model search is dealing with outliers
and preserving stability. For instance, either by focalizing on how to reduce outliers
effects[Rogers and Graham, 2002], or by establishing a robust point matching algorithm
that excludes outliers[Abi-Nahedet al., 2006] to set the optimum fitting model.

Apart from the local search, there has been work on global search launched by[Hill
et al., 1992] who get inspired from the genetic algorithms. However one has to keep in
mind that global search is a constraining task seeing that the space of search is large and
local minima are multiple.

Concerning generative models, and more precisely the Active Appearance Model
search (AAM search), we will handle it more into details in Section.6.2, where the chap-
ter is dedicated to appearance based search.
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3.5 Diffusion Maps

Diffusion maps are closely related to Markvo processes. They capture the structure of
a graph by means of a diffusion distance[Coifman and Lafon, 2006], and embed the
graph nodes into a space whose geometry reflects the mutual diffusion distances be-
tween nodes. Thereby they offer a way of dimensionality reduction. A Markov chain
is constructed via pairwise similarities,which are definedlocally. A diffusion process
on the graph defines the geometry determined by the graph edgeweights. Similar work
ranges from Laplacian eigenmaps[Belkin and Niyogi, 2003], another reduction algo-
rithm that is highly related to diffusion maps[Schclar, 2008], or diffusion kernel work
on graphs[Kondor and Lafferty, 2002]. Among the previous applications related to dif-
fusion maps one can cite text classification and lip reading[Lafon and Lee, 2006]. In the
following, we will explain the basics of diffusion maps. They will be used in Section. 4.4
and Section. 5.4 to capture the structure of landmark behavior.

Random Walk Let’s consider a set of pointΓ = {xk}Nk=1 with xk ∈n. We aim at
walking randomly through this data set while taking an arbitrary starting point. We
denote bypij the probability of transition between two consecutive points/landmarks i
and j in a period of time t. One of the similarity type that can be taken into consideration
is the space closeness, in other words it will be the inverse of the Euclidean distance. In
such a case the probability of walking in the same cluster of points is bound to be higher
than the one of traveling from one cluster to another.

Markov Process The random walk described here in represents indeed a special case
of Markov process. The transition probabilities will be stored in a matrix of dimension
N.N whereP = pij .

For the need of diffusion maps algorithm, we will model the Markov on a graph
G = (V, E), where the nodes correspond to the landmarks and the edge weights to the
transition probabilities. Naturally, the more similar a pair of landmarks is, the higher the
edge weight will be.

The construction depicted in the Algorithm. 3 captures local geometry as well as in-
teresting geometric features. Furthermore as the random walking is running, as the local
geometry information is propagated[Coifman and Lafon, 2006] [Schclar, 2008]. The
final step of eigen decomposition enables to designate a natural embedding of the data
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Algorithm 3 Diffusion Maps Algorithm
Input: Data setΓ,

Pairwise similarities.
1. Building of an undirected graphG,W on the data setΓ with the weights cor-

responding to the pair wise similarities between the landmarks or the different
states.

2. Processing of a random walk through the graphG leading to a markov transition
matrixP.

3. Eigen decomposition of the markov chain matrixP.
Output: Eigenspace (modes, eigenvalues) of the markov chain matrix.

through the diffusion map, and the eigenvectors will allow afterward for a dimensionality
reduction process and hence an embedding in a lower dimension space.

3.6 Examples of Muscle Segmentation

3.6.1 Prior Art in Calf Muscle Segmentation

Muscle-compounds (see Figure. 2.5) present a rather different and new challenge to seg-
mentation algorithms because there is no prominent difference of tissue-properties be-
tween neighboring muscles. Border tissues in between muscles are only visible on spe-
cific locations, distributed in a very sparse and heterogeneous manner. Indeed muscle
surfaces are only partially visible, while parts exhibit a structure that can change dra-
matically between patients or during the course of follow-up examinations. Although
dominated by the global anatomy, muscle deformation exhibits mostly locally consis-
tent behavior, precluding the use of e.g., a global linear model.

State of the art medical segmentation methods mainly rely ona clearly defined topol-
ogy, and an object boundary characterized by salient features (e.g, edges)[Duncan and
Ayache, 2000]. The musculoskeletal modeling problem in medical imaging is not widely
investigated in the literature. Indeed few works have been dedicated to this issue[Gilles
et al., 2006] [Blemker et al., 2007]. Related work on muscle segmentation includes
simplex meshes[Gilles et al., 2006], in fact a mesh in computer graphics represents a
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collection of vertex points sampling a hyper-surface, and connected by edges, faces or
hyper surfaces. Another method presented in[Fernandez and Hunter, 2005] explores an
atlas-based models which are deformed using a free-form deformation . The main chal-
lenges of calf T1-MRI segmentation is the total absence of conventional image support.
Edges between classes are almost invisible while at the sametime the global intensity
characteristics of the muscle regions are almost identical. In fact the border tissues in
between muscles are only visible on specific locations, distributed in a very sparse and
heterogeneous manner. Indeed muscle partially exhibit structures that can change dra-
matically between patients, or during the course of follow-up examinations. Neverthe-
less, and as highlighted by[Blemkeret al., 2007], musculoskeletal disabilities in general
and Myopathies -as far as our work is concerned- could highlyprofit from this kind of
studies and improve future treatments.

Consequently prior models build from conventional image-based search approaches
will fail to separate the muscles regions. An alternative would be the explicit use of the
image support during the construction of the model. In fact selective active shape mod-
els for example[Cooteset al., 1994a] use only a small portion of the landmarks during
the search, while sparse models[Florin et al., 2007] aim to optimize shape representa-
tion by proposing a sparse representation that encodes sparsity and exploits geometric
redundancy choosing individual representative slices taking into account image support.
These methods depend heavily on the accuracy of the inter-subject registration for group
comparison and the parametrization of the shape.

Registration-based Segmentation Initialization We perform a uni-modal registra-
tion of an annotated calf MRI (the atlas) to the target volumethrough the use of a novel
deformable registration framework[Glockeret al., 2008]. The registration problem is
formulated as a markov random field (MRF) optimization and the approach is based on
discrete labelling and linear programming, which presentsthe advantage to be gradient-
free and flexible in the choice of the distance measure. This technique also guarantees
optimal properties on the solution, computational efficiency and tractability. Assuming
a prior model that involves both geometry and texture (segmented anatomical atlas), one
can define the segmentation through the deformation of the model to the image that is a
natural registration problem, and can be addressed by the proposed framework.

A scheme of registration based segmentation of muscles in MRI data is depicted in
Figure. 3.7. The expert annotation of an example is transfered to a target by non-rigid
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registration.

The registration obtains a coarse initial segmentation andresults indicate the good
behavior of this method on our data set, while at the same timethe need for a more ac-
curate segmentation that can not be achieved by the registration. Although the technique
achieves a good appearance matching as shown in Figure. 3.8,the segmentation result is
still not rigorous enough, and there is still a need for more veracity and precision.

(a) Source Image (b) Target Image

(c) Before Registration (d) Registration output

Figure 3.7 —Registration result for MRI calf, the source and the target images in the upper
row and the difference visualisation before and after the registration in the lower row.

3.6.2 Prior Art in Left Ventricle Segmentation

The automatic delineation of the Left Ventricle (LV) is a critical component of computer-
assisted cardiac diagnosis. Information with respect to the ejection fraction, the wall mo-
tion and the valve behavior can be very useful toward predicting and avoiding myocardial
infarction as shown respectively in[Kauset al., 2004] [Jolly et al., 2001]. During our
study we will mainly focus on CT images of the left ventricle.Concerning the Computer
Tomography, the main applications of this modality in cardiac imaging are the evaluation
of cardiac masses as well as the evaluation of aortic and pericardial diseases.
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Figure 3.8 —Segmentation-based Registration result on calf muscle

(a) Source Image (b) Target Image (c) Before Registration

(d) Checkerboard visualiza-
tion

(e) Segmentation based reg-
istration result

Figure 3.9 — Another example of segmentation based registration resultwith no need for
affine pre-registration.
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The segmentation of the left ventricle is challenging mostly due to the similar visual
properties with the other chambers of the heart cavity, as well as the presence of papillary
muscles. In this context the use of edge-driven terms with regional statistics along ei-
ther with deformable contours or active shape and appearance models would not lead to
successful results. In the first case, computational complexity is an issue and the proper
handling of papillary muscles is problematic. In the secondcase, one has to deal with
either the linearity of the sub-space or the fact that building appearance modes requires
appearance normalization and too many samples.

Model-free and model-based methods were widely investigated in the past, and we
refer to[Cremerset al., 2002] for a rather comprehensive survey. The use of the shortest
path algorithm along with shape matching was considered in[Jolly, 2006], while Staib et
al. have introduced a 3D ballon model in[Staib and Duncan, 1996]. The latter model is
parameterized on an orthonormal Fourier basis in a way to allow for a constrained image
search. Thus the model fitting is achieved by balancing an internal energy term with an
external gradient-derived scalar field. Another effectivemethod to model anatomic data
is described by the M-Reps approach (medial model representation)[Pizeret al., 2003]

in a hierarchical coarse to fine fashion.

Statistical point distribution models were also devoted tosolve cardiac segmentation
issue by Cootes and Taylor in[Cooteset al., 1992], as well as in[Cooteset al., 1995],
combining in this manner shape and boundary gray-level aspects. As the image appear-
ance information was still not exploited, despite its importance and richness, it was fi-
nally introduced in Active Appearance Model (AAM) [Cooteset al., 1998b], and among
applications figures the spatio-temporal heart segmentation for the 2D case[Mitchell et
al., 2001] as well as the 3D case in[Mitchell et al., 2002]. Last, but not least, we refer
to [Paragios, 2002] for an alternative shape representation using level set functions.

For a complete review, we refer the reader to[Jolly, 2006], [Frangiet al., 2001] and
references therein.

Nevertheless one has to bear in mind that in all the above-referenced approaches, an
a priori topology is required in order to build a segmentation model.
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3.7 Summary

In this chapter, we provided an overview of the background and the state of the art of the
medical segmentation problem.

Furthermore, we highlighted the methods commonly used in the case of the calf mus-
cle and the left ventricle segmentation. Despite all the pros and cons of the segmentation
approaches described previously, they generally suffer from the lack of compatibility
with our image data, especially that the image support quality is not really taken into
account. In the vast majority of segmentation techniques, it is presumed that if ever an
image region quality is low, another one would cerainly equilibrate.

We will point out in the next chapter our choice of a more suitable shape representa-
tion regarding the challenging properties of the studied medical images this thesis and
relevant to the problem of statistical shape analysis. Therefore instead of using a priori
choices, we need a model that rather learns the intrinsic shape topology from the training
data, while represent the shape variations regarding to this topology.

Conventional shape modeling approaches rely on a pre-defined topology and
parametrize the surface of an object with regard to an according manifold like a sphere,
thus limiting themselves to specific tasks. In the ideal case, one would like a method
that learns the appropriate topology from the training dataand uses an according shape
representation to model its potentially rather heterogeneous variation and local texture
features extracted at the landmark positions. Such a powerful model has to deal with two
challenges: (i) A way to determine the intrinsic topology ofa shape for which multiple
examples are available, (ii) Means to represent the shape variation with regard to this
topology, i.e., a way to exploit arbitrary topologies.





CHAPTER

4 Sparse Shape Models

“Not everything that can be counted counts, and not everything that counts can be
counted.”

Albert Einstein
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4.1 Introduction

The localization and segmentation of muscles in MRI data poses several challenges.
The lack of contrast between the anatomical regions as well as the highly heterogeneous
distribution of salient features makes the segmentation task almost intractable with con-
ventional methods. In the following we will explain how to toexploit redundancies in
the shape variation and use the image information efficiently to obtain reliable segmen-
tation results. In this chapter we propose a sparse representation that encodes sparsity,
exploits geometric redundancy, and most importantly accounts for the varying degrees
of image support to obtain a robust segmentation of individual anatomical structures.

Indeed a novel technique for model-based vision is introduced that performs dimen-
sionality reduction while taking the image support into account. The fundamental as-
sumption of our method is that one can describe anatomical structures while just refer-
ring to a small number of elements, and reconstruct the entire structure through a well
chosen, and object specific through interpolation. Hence wehave to find the smallest
possible set of robust, most representative, best supported components and features ca-
pable to retrieve an optimal reconstruction of the originalobject through a data-driven
interpolation method. The resulting segmentation serves as a basis for the consistent lo-
calization of regions of interest in the anatomy. This is relevant in cross-sectional studies,
and during follow-up examinations.

Throughout this section one of your goals is to answer some critical questions:

1. How can we learn the structure of behavior and how can we usethis in shape and
appearance models ,

2. How can we measure the local image information that supports segmentation,

3. How can we integrate this knowledge about the structure and redundancies in
the shape variability, and the distribution of image support to achieve an optimal
sparse representation of the objects.

The remainder of the chapter is organized as follows: in Sec.4.2 we recall some
related work regarding the sparse techniques for building more localized shape models,
whereas in Sec. 4.3 the optimal shape representation and model construction based on
the data sparsity are presented. Afterward Sec. 4.6.2 dealswith the inference and the
optimal use of image support.
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4.2 Related Work

In the same line of research we find some interesting work in the literature;

• An alternative parametrization of shape is Independent Component Analysis
[Üzümcüet al., 2003] was investigated for cardiac MR images segmentation and
also compared to the principal components analysis results. Among the advan-
tages of ICA decomposition one can cite that it does not require a Gaussian distri-
bution of the input data and that is capable to capture localized shape variations.

• [Florin et al., 2007] focused on liver segmentation and called for the level-set
techniques for 2D key slice segmentation and then a 3D shape was interpolated
from 2D contours. They introduced 3D sparse models and distinguished between
two classes of regions present in the object; low support regions, and high support
ones. In fact they even propose to extend the notion of image support toward being
associated with the quality of the samples in general. The main purpose remain
to select robust regions with high support, and to be able to reconstruct the object
of interest just with these extracted elements. However theapproach is not point
distribution based, it rather accounts over key number of slices extracted from a
3D volume.

• The SPCA decomposition standing for Sparse Principal Component Analysis
[Sjostrandet al., 2007] extracts sparse and meaningful anatomical elements from
a training data set. In fact one of the inconvenient of the principal component
analysis is that the principal component contained in the loading matrix are non-
zero, which makes the interpretation arduous. The scope of SPCA is so far to
make each PC to be dependent on a limited set of variables[Sjöstrand, 2007]. The
approach can be conceived as regression type optimization problem of the PCA
using LASSO, a selection variable technique leading to sparse models[Zouet al.,
2006].

• Another method for building more localized shape models wasintroduced in[Le-
ung and Bosch, 2007b] for the classification of local wall motion abnormalities in
left ventricle; a comparison between different orthomax criterion (varimax, quatri-
max, factor-parsimony) was carried. The method relies on the rotated shape space
of the PCA, where could be found localized spatial variations. For more details
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concerning the orthomax rotation we refer the reader to the upcoming chapter and
more precisely to the Section.5.5.1.

There has also been work on statistical shape analysis usingnon-Euclidean metrics by
[Larsen and Hilger, 2003] to obtain sparse modes of variation, where the authors even
proceed to an extensive comparison between PCA, Maximum Autocorrelation Factor
(MAF), and Minimum Noise Fraction (MNF).

4.3 Sparse Shape Model Concept

Sparse shape models learn a representation and a corresponding reconstruction mecha-
nism from a set of training examples. The sparse model is built based on the statistical
behavior of the training shapes and the distribution of appearance information in the
training data. In the following we will formulate the framework, and explain how to de-
rive an optimal sparse representation from training examples. Subsequently, the method
for the reconstruction of the entire modeled structure fromthe sparse representation, and
will explain the search procedure.

In order to segment shapes based on a sub-set of elements (landmarks in our case), a
training set of volumes or images each containing an exampleof the structure of interest,
we define;

• A representation: landmarks for which corresponding positions are known in all
examples

• A model the captures the variation of the shapes in the training set, and how to
reconstruct a shape with help of this model if only a part i.e., a sub-set of landmarks
is known.

• A method to select a sub-set of landmarks, that is best suitedfor reconstruction
from new data, by taking into account the typical image support in the training
examples, and the geometrical significance of individual landmarks, i.e. how im-
portant are they for reconstruction?

The landmarks allow for consistent use of particular positions on the muscle surface.
With help of this representation we are able to assign individual positions on the surface
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properties like expected image support, or significance forthe reconstruction process,
independently from a prior choice of the coordinate system.

Since there exists a correlation in the training set of shapes, we expect to be able to
obtain a reconstruction of a shape within the object class, if only a part of the landmarks
are known. In the following a framework for the reconstruction of the shapes, i.e., the en-
tire set of landmarks from a sub-set is described. The choiceof this sub-set of landmarks
will be also explained in the following.

4.4 Sparse Shape Model Construction

Let us consider a shape representation that consists on a finite set of landmarks. Given a
set ofn training volumes and their corresponding segmented structure

I1, I2, . . . , In, (4.1)

our knowledge about the data comprisesm landmark positions in each of the exam-
ples. The number of landmarks can by high, up to a dense sampling of shape surfaces.
Landmarks are not constraint to anatomically salient points, but can be distributed on
manually segmented training examples by methods like thoseproposed in[Davieset al.,
2002b] [Langset al., 2007]. The landmark positions can be found using a number of
approaches, such as a minimum description length based criterion. Landmarks do not
have to be located on a single surface or manifold, but can define arbitrary structures and
deformation fields[Taronet al., 2007]. For each exampleIi, the landmarks are located
at the positions

Vi = {xi
1,x

i
2, . . .x

i
m, }. (4.2)

wherexi ∈ R
d. We callVi ∈ R

d×m a shape, and denote the set of shapes in the training
set by

V = {V1,V2, . . . ,Vn}. (4.3)

This data defines a shape manifold, that can be associated with geometric and image
support. This should happen while satisfying two conditions:

(i) Preservation of the information necessary to reconstruct the shapes with maximal
accuracy,
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(ii) Image information associated to the landmarks that enableslocalization in new data,
by having low ambiguity.

Let us define;

V̂ = {V̂1, V̂2, . . . , V̂n}. (4.4)

whereV̂i ∈ R
d×m′

are the representations of the full shapesVi in the training set,
with m′ ≪ m. V̂i consists of a sub set of the landmarks defining the shape, and a
corresponding reconstruction functionP expressed as following:

P : R
d×m′ → R

d×m, V̂i 7→ Vi +R (4.5)

whereR is a residual error, that should be minimal.

We will first discuss how to obtain this representationV̂ based on the shape and
appearance behavior in the training set, in order to obtain optimal search ability. In this
work we consider a multivariate Gaussian shape model, as used in [Davieset al., 2002b],
to model the shape variability.

4.4.1 Shape Maps and Redundancy

We view finding an optimal shape representation as an optimalsampling with respect to
the variations being observed in the training data. It should have low density in regions
that behave in a redundant manner, and high density in regions that exhibit uncorrelated
or complex deformation behavior in the training set. Analogously to a uniformly dis-
tributed sampling in real space, that covers the object evenly, the sparse representation
has to cover the object evenly with regard to theinformationcontained in each sampling
point. To achieve this, we have to capture the coherence of the behavior of shape regions
in the training examples. In[Langs and Paragios, 2008] shape maps are introduced.
They provide for a shape population metric, that captures the interdependencies in the
behavior of landmarks. We use the concept of shape maps to derive an optimal sampling.
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4.4.1.1 Markov Chain Description

Diffusion maps[Coifman and Lafon, 2006] represent a spectral embedding of a setX

of n nodes, for which local geometries are defined by a kernelk : X × X −→ R. The
kernelk has to achieve both symmetric and positivity preserving:

k(x, y) = k(y, x)

k(x, y) ≥ 0 (4.6)

Let us consider a Markov chain consisting ofm nodes, that correspond to the land-
marks, and edges with a valuepk(i, j) between nodes that correspond to the minimal
description lengths[Rissanen, 1978] of models encompassing the two landmarksi and
j andk− 2 other landmarks. The description lengthL is the number of bits, that it takes
to communicate a modelM, the dataD (in our case landmark positions) encoded with
help of this model, and a residual error:

L(D,M) = L(M) + L(D|M) +R (4.7)

The data term is associated with the reconstruction error, while the model term penal-
izes over-fitting through the use of expensive (in terms of number of parameters) models.
In our case it provides information about the compactness ofmodels describing the joint
variation of the landmarksi andj, or equivalently about the redundancy in their position
information in the training set. We expect low values for landmarks, that behave in a
coherent way. That is, ifdk(i, j) is the minimal description length[Davieset al., 2002b],
then the normalized graph Laplacian construction[Chung, 1997] allows us to construct
a reversible Markov chain from the symmetric graph defined bythe nodes and edges.
We first consider

d(i) =
∑

j

k(i, j)

p(i, j) =
k(i, j)

d(i)
, (4.8)

where ,
k(i, j) = e−

dk(i,j)

ǫ . (4.9)
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The fast decayǫ represents a scale parameter, whereǫ > 0. This parameter charac-
terizes the notion of neighborhood between the landmarks, thus we can formulatexi is
ǫ-close toxj . As shown in[Belkin and Niyogi, 2003], it is possible to opt for a kernel

expressed asexp
−

“

‖xi−yj‖

ǫ

”2

with a careful choice ofǫ, and then compute the normalized
graph laplacian from this kernel, which corresponds to an approximation of the heat
kernel.

The obtained kernelP conserves the positivity property, while loosing the symmetry,
however now it satisfies:

∑

j

p(i, j) = 1 (4.10)

Thus through Equation. (4.10), we can consider that the Markov chain is given by the
non-symmetric matrixP with entriesp(i, j), and its powersP t correspond to an increas-
ing time in the chain, and to the according propagation of probabilities. Equivalently we
can state thatP represents the transition kernel of a Markov chain and it engenders a
diffusion operator defined as

Pf(x) =
∑

a(x, y)f(y)dµ(y) (4.11)

4.4.1.2 Diffusion Distance

The Markov chain captures the shape variation behavior by connecting groups of co-
herent landmarks with high-valued edges, while having low value edges between land-
marks, that share only limited mutual information. The pairwise relation is captured by
the accordingdiffusion distance.

So if we recapitulate, we find that the kernelk describes the systematic behavior of
the data while at the same time capturing some relevant geometric feature, while the
Markov chain specifies the directions of the propagation following the kernel values.
When we continue the random walk, the local geometry information keep propagating.

An eigenvalue analysis ofP allows to generate adiffusion map[Coifman and Lafon,
2006], a metric space, in which adiffusion distanceparameterized byt

Dt(i, j) =
∑

u

(pt(i, l)− pt(j, l))
2

π(l)
(4.12)
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π(i) =
d(i)

∑

j d(j)
(4.13)

As underlined by the authors in[Coifman and Lafon, 2006], the diffusion distance
is smaller between points with many high value connections.The distance shows ro-
bustness towards noise, in contrast to the geodesic distance [Coifman and Maggioni,
2006].

4.4.1.3 Shape Maps

The eigenvalue decomposition ofP leads to eigenvaluesλ1, λ2, . . . and eigenfunctions
Ψ1, Ψ2, . . . that satisfy

PΨi = λiΨi (4.14)

Figure 4.1 —Left Ventricle Shape Map estimation.

The diffusion map for the diffusion operator andt timesteps,Ψt : X −→ R
w embeds

each node/landmarki = 1, . . . , m, in the Markov chain into aw dimensional Euclidean
space, resulting in the following family of diffusion maps{Ψt}t∈ℵ

Ψt(i)
△
=











λt
1Ψ1(i)

λt
2Ψ2(i)

...
λt

wΨw(i)











(4.15)
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where the diffusion distance defined in (4.12) becomes the Euclidean distance be-
tween the images ofi andj, Ψt(i) andΨt(j),

‖Ψt(i)−Ψt(j)‖ = Dt(i, j). (4.16)

Once the diffusion map is generated, the density estimationcan be performed using
an Euclidean approach. Theith landmark has an image in the map, which we denote
by Ψi = Ψt(i). The diffusion mapS, is a metric space and therefore we can estimate
the densitydΨi

of the landmark imagesΨi ∈ S for each point. The density relates to
the number of landmarks, that can be encoded by the same modelwhile retaining low
description length. It is a measure of redundancy[Wallace and Dowe, 1999], since a
model that represents the shape variation of a set of landmarks with imagesΨi in a small
neighborhood inS is compact - according to the generation of the Markov chain -and
indicates that the mutual information that landmarks carryabout each other is high.

We aim for a sampling, in which the information a landmark carry is more balanced.
Each pair of landmarks should share an approximately equal amount of information
about each other. An equal amount of mutual information about about other landmarks
k, which have diffusion map imagesΨk in its neighborhood. This would result in a
uniform distribution of imagesΨi in S. In other words the shape map assigns each
landmark a positionΨi. The distance betweenΨi andΨj in the shape map corresponds
to the coherence of the behavior of landmarks in the trainingset. We aim at a uniform
sampling in the shape map, so that the mutual information landmarks carry about each
other is evenly distributed. The next step is to add appearance information to the map.

4.4.2 Image Support

The shape diffusion map represents the shape variation structure of the training exam-
ples. The appearance information, that is used during search, is not distributed evenly on
the entire object, too. In the case of muscle MRIs only a smallratio of the surface carries
distinctive appearance (see Fig. 4.2), that allows for a separation between background
and foreground. To account for this variability we calculate theimage supportat each
landmark position during training. If we can assign a value to a landmark relating to
distinctive texture in the training setV we can further differentiate the representationV̂.
Conceptually, the model should use landmarks with salient appearance for the inference
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from the data, while reconstruction the remaining parts of the shape, as described in the
previous section.

For each landmarki we denote bygi the image support in the training set.g relates
to the chosen search strategy. Since we employ local texturepatches, we deriveg based
on the distinctiveness of the texture at the landmark position. In Fig. 4.3 the image
support for calf muscles, and left ventricles is depicted. We calculate the correlation of
texture appearance in the vicinity of landmark positions inthe training set. For distinctive
features, the correlation can be expected to show a peak at the correct position. Letb(xj

i )

be the learned texture patch at the correct landmark position xi in the training example
Ij, and for landmark positions in a local neighborhoodN let Qj

i (x) be the correlation
between the patchb(x) andb(xj

i ) normalized within the neighborhood, i.e.

∫

x∈N

Qj
i (x) = 1, (4.17)

then the image support is

gi = meanj=1,...,n

(

Qj
i (x)

∫

x∈N\xj
i

Qj
i (x)

)

. (4.18)

Figure 4.2 — Surface of a calf muscle: image support on the outer and innerpart, and the
sparse model points.

That is, for a landmark inV the image support is calculated from the local appearance
behavior at the corresponding positions in the training set.
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(a) (b)

Figure 4.3 — Image support: a. muscle surface, b. left ventricle.

In other words the choice of the landmarks will be established according to ;

• Equal amount of information with regard to the shape.

• Maximum amount of valuable image information.

The reconstruction of shapes from sparse set ofK key landmarks chosen from a set
of landmarksN , with K << NL.

4.5 Sparse Sampling of the Data

Given a metric spaceS that captures the statistical shape behavior, an accordingdensity
dΨi

and an image supportgi for each landmark we obtain a sparse sampling by minimiz-
ing the integral of absolute gradient value in the mapS

C(V̂) =

∫

S,i∈V̂

|∇(dΨi
/γgi)|, (4.19)

by choosing a subset of landmarks. That is, the function reaches a minimum if an
even distribution of landmark images weighted bygi is obtained in the shape map. This
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distribution favors landmarks that have high image supportin the training set, while in-
tegrating the statistical shape modeling and reconstruction properties of individual land-
marks.

In practice, given a diffusion mapS, a set of object landmarks imagesY0 =

{Ψ1, . . .Ψm} ⊂ S, Ŷ0 = ∅, and the according densitiesdΨ1, . . . dΨm
, and a valuer,

we perform the sparse sampling in the following iterative way:

1. choosei : dΨi
= max({dΨj

: Ψj ∈ Yt});

2. setYt+1 = Yt \ {Ψi ∪Ψj : ‖Ψj −Ψi‖ ≤ r/γgi}, Ŷt+1 = Ŷt ∪Ψi,

and iterate untilY = ∅. The valuer controls the mean density of the sparse represen-
tation.

This results in a set̂Y and a corresponding set of landmarksV̂ that forms the sparse
model representation, in which the mutual information between landmarks and the ap-
pearance information at landmark positions is distributedevenly.

In the following we will explain how to reconstruct the entire objectX form the
sparse representation̂X utilizing the diffusion mapS. In Fig. 4.2 a sparse sampling for
calf muscles is depicted together with the color coded imagesupport.

4.6 Search Process

After the model is trained, we have a complete set of landmarks in the training set,
and a set of optimally subsampled sparse landmarks. Each landmark corresponds to a
local appearance in the training examples. In the following, we will first explain how
to reconstruct the full set of landmarks from the sparse subset. With this, we will then
outline the search procedure, that fits the model to new data,given the shape variation
model, the reconstruction algorithm, and the appearance knowledge for each landmark.

4.6.1 Reconstruction and Missing values imputation

The reconstruction of the shape consists of inferring the positions of the entire shape
Vi = 〈xi

1,x
i
2, . . .x

i
m〉 from the sparse representation̂Vi = (xi)Ψi∈Ŷ

. We assume that
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we model the shape variation locally by a multi variate Gaussian with axes along the
principal components of the distribution. Furthermore, without loss of generality we
can consider that we can derive a covariance matrixΣ for the position variation of each
subset of landmarks in the shape after Procrustes alignment. The alignment discards the
influence of global displacements of the local landmark configuration.

For a landmarkxi not in the sparse representation the reconstruction can be formu-
lated in the following way: We choose thel nearest neighbors ofΨi in Ŷ (i.e. the
landmarks, that exhibit the highest coherence of behavior in the training set and are part
of the sparse representation). The use of the closest neighbors in the shape diffusion map
ensures a reconstruction based on the functionally closestrelated landmarks as opposed
to spatial neighbors.

The model learnt from the training data for this sub-setVi,j
′ of landmarks orrecon-

struction kernelcomprises a meanµ and a covariance matrixΣ. The shape vector is
partitioned into the observed partVi,j

a of the sparse representation and the missing part
Vi,j

m (i.e. one or several missing landmarks). Accordingly we partition the covariance
matrix into sub matrix corresponding to the observed valuesor coordinatesΣaa, and
the submatrix corresponding to the missing valuesΣmm, the submatrix describing their
relation isΣam = Σma⊤, i.e.:

Σ =

(

Σaa Σam

Σam⊤ Σmm

)

. (4.20)

Now we can estimate the values of the remaining shape landmarks by a linear regression
model:

Vi,j
m = µm + (Vi,j

a − µa)B + e, (4.21)

where
B = Σaa−1Σam. (4.22)

B is the regression matrix,Xm is the conditional maximum likelihood estimate of
the missing part of the shape vector, ande is a residual error. See[Schneider, 2001] for
a concise explanation of imputation. Therefore in the case of a linear model, the local
sparse reconstruction function is given by

V′
i,j 7→





V′
i,j

Vi,j
m



 (4.23)
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It allows to reconstruct the entire object shape from the sparse representation, while
using the relations learnt from the training set to define local reconstruction kernels in
the mapS.

4.6.2 Inference from New Data

Let us now consider a new data set where the goal is to determine the position of the
object being modeled. Such an inference process often involves the definition of an
objective function that seeks for an admissible solution being supported from the obser-
vations. In a standard shape model inference approach, the positions of landmarks in
new data are estimated by an energy minimization that involves both shape prior and
appearance costs.

The search with the sparse model representationV̂, the according reconstruction
functionP , and the appearance models(bi)i = 1, . . . , N for each landmark is performed
in an iterative manner. Based on a coarse initialization thelandmark positions of̂V are
updated according to the appearance model. For each landmark the position with highest
probability with regard to a local texture patch is chosen. Then the shape is constraint
by either a local or global statistical shape constraint. Inour work we use a multivariate
Gaussian. However, alternatives, like spherical wavelets[Nainet al., 2007], or elasticity
based constraints[Taronet al., 2007] can be utilized in a similar manner. After conver-
gence the entire shapeV is reconstructed from̂V by the sparse reconstruction function
P .

4.7 Experimental Validation

4.7.1 Experimental Set-up and Data Acquisition

To evaluate the performance of the proposed method we reportexperiments on two data
sets:

1. A set of 25 T1 weighted MRI calf muscles divided into two groups: 20 healthy
control patients and 5 unhealthy cases. For each volume there are 90 slices of
4mm thickness, and with voxel spacing 0.7812x0.7812x4 mm acquired with a
1.5T Siemens scanner. Standard of reference annotation by experts for the Medial
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Gastrocnemius (MG) muscle, was available (see Fig.(4.4.b)). Correspondences
for 895 landmarks on the surfaces were obtained by an MDL based optimization
[Langset al., 2007].

The data acquisitions were performed in the Henry Mondor University hospital
on a 1.5T MRI, with a Siemens scanner using a body extremity coil positioned
on both calfs. AT1-weighted spin echo sequence (TR: 500 ms; TE: 15 ms; slice
thickness: 4 mm, acquisition time: 2 min 30 s) were performedin the axial plane to
visualize the boundaries of the muscle and fatty infiltration. Thanks to our collabo-
ration with the clinical experts we were able to consider a manual segmentation of
healthy and non healthy muscle for each patient on anatomy images as presented
through figure 4.4. This supervised ground truth segmentation is an essential step
of pre processing to help the further shape analysis.

2. A set of 25 CT volumes of the heart, with an approximate voxel spacing of 1.5
mm, for which 90 anatomical standard of reference landmarks, and a set of726

control points for the left ventricle was available, also with available ground truth
segmentation from experts Fig.(4.4.a) concerning the diastole and the systole.

(a) Ground truth segmen-
tation of papillary muscles

(b) T-1 MRI slice super-
vised segmentation of a
human calf

Figure 4.4 — Standard reference segmentation of respectively the calf muscle and the left
ventricle

Normal volunteers for calf muscle study were from the MAS laboratory staff, whereas
unhealthy cases were from Henry Mondor Universitary Hospital patients and more par-
ticularly from the radiology department. Please refer to Fig. 4.5 for an overview of the
shape learning phase.

For both data sets we evaluated the reconstruction and search behavior of sparse mod-
els. To assess the shape representation of the sparse sampling, we sub-sampled the
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shapes with landmarks either evenly distributed in the realspace, or evenly distributed
in the shape diffusion map, while neglecting appearance. The goal is to understand how
the sparse sampling based on the density in the shape map affects the reconstruction of
missing landmarks.

To evaluate the search behavior we compared sparse shape models with a standard
shape model search in an active shape model manner, based on an even sampling of the
object surface, and gradients in the volumes.

Figure 4.5 —Overview of the learning phase

4.7.2 Results

For both data sets (muscles, hearts) a sparse representation was built based on both
shape model and image support. Models were initialized withminimal overlap to the
target shape, and the accuracy of the final result was quantified by means of the mean
landmark error between standard of reference annotation and search result. Indeed, the
sparse model was able to recover the shape with superior accuracy.

In Tab. 4.1 mean landmark errors after search convergence for standard shape models,
and sparse shape models are reported. In the muscle data the standard search approach
failed due to the ambiguous texture in large regions of the target shape. In Fig. 4.8
examples for standard and sparse model search results are depicted. An interesting ob-
servation was that for calf muscle image support and diffusion map density gave com-
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Mean Error Heart Data Calf Data
Standard Shape Model 18.92 37.78
Sparse Shape Model 7.85 9.51

Table 4.1 —Landmark error in voxel after finishing search with standardmodel, and sparse
model respectively for heart and calf muscle data.

plementary distributions. That indicates, that it is worthwhile to use both informations
for the representation building but raises the question of an appropriate weighting, and
its dependence on the overall data variability. This will besubject of ongoing research
on more exhaustive data sets. For the heart data, the search was initialized with min-
imum overlap. Standard search results in a mean error of 18.92 voxels, while sparse
models obtain a mean landmark error of 7.58 voxel. An exampleof the resulting search
performance with improved accuracy of sparse shape models on muscle data is shown
in Fig. 4.11.

(a) (b)

Figure 4.6 — Shape Map estimation with different number of landmarks. The saturation
encodes the density in the shape map indeed a high saturationstands for a high density.

In Fig. 4.7 shape diffusion maps, and densities are depictedfor a set of calf muscles,
and a set of left ventricles.

Reconstruction Reconstruction performance of sparse vs. standard models,with dif-
ferent noise ratios.

Search Search performance: convergence speed, and accuracy sparse vs. standard.
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(a) (b)

(c) (d)

Figure 4.7 —Sparse shape models: Calf muscle: (a) color coded density inthe shape diffu-
sion map according sparse landmark distribution (b). Left ventricle: (c) shape diffusion map

density and (d) sparse sub-sampling.
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(a) (b)

(c) (d)

Figure 4.8 — Model search result for MRI calf (upper row) and heart muscle(lower row)
data, green: standard of reference segmentation, red: search results for a. and c. standard

gradient search approach, and uniform sampling, b. and d. sparse shape models.

Reconstruction results are shown in Fig. 4.10. With an equalratio of missing land-
marks (X-axis) the sparse sampling based on the shape diffusion map consistently out-
performs uniform sub-sampling in the object space. The advantage becomes more pro-
nounced with very high ratios. This indicates that a high amount of relevant information
can be captured in a small sub-set of landmarks, when the modeling relations between
them are considered by means of the shape diffusion map. As far as the heart is con-
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(a) (b)

Figure 4.9 —Result of the sparse subsampling of the landmarks on the two sides of the MG
calf muscle surface.

(a) (b)

Figure 4.10 —Reconstruction: accuracy of the shape reconstruction withdifferent sparsity
levels: uniform sub-sampling (in blue) vs. weighted sub-sampling (in red) on muscle and

heart data.
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(a) (b)

(c) (d) (e)

(f) (g)

Figure 4.11 — Search: Model search result for MRI calf , green: standard ofreference
segmentation, red: search results. For (a) and (b) standardgradient search approach, and
uniform sampling, for (c), (d), (e) and (f) sparse shape models. The two lines of sparse

results correspond to two different control subjects.
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SPCA RPM SSM
Calf Muscle 30.24 21.78 9.51
Left Ventricle 17.07 12.33 7.85

Table 4.2 —Comparative table results between Sparse Shape Model, Sparse PCA and RPM
a robust version of ASM over the landmark error between the ground truth and the recon-

structed object relative to the two different data sets of calf and left ventricle muscle.

cerned, the sparse mean error reconstruction is equivalentto 8.7648, whereas the mean
standard error is 18.9274.

Another practical suggestion of comparison to some robust versions of the ASM,
would be the Robust Point Matching method (RPM) [Chui and Rangarajan, 2000], for
which the code is available on line (http://noodle.med.yale.edu/ chui/tps-rpm.html) Such
a comparison is beneficial to the method as it would demonstrate its real performance.

The table results Tab.4.2 clearly demonstrate that the sparse shape model provides a
far better reconstruction quality than Sparse PCA. A largerstudy with different patholo-
gies and the use of kernel PCA could improve the reconstruction of the shapes.

4.8 Contributions

We present a method to extract a sparse model of an anatomicalobject, from a set of
training image data, each of which contains a set of landmarkpoints. The novelty of the
method consists in the way we sample the shape based on shape variability and image
information distribution in the training set.

Initial experiments with atlas based segmentation, or image gradient guided muscle
separation showed insufficient accuracy, and fail in a majority of the cases. For this
reason we have developed sparse shape models with the following properties: Sparse
models use a priori knowledge about the shape and appearanceof muscles, learned dur-
ing a training phase. They learn the sparse distribution of reliable image content (high
contrast between fat and muscle tissue) and integrate this knowledge in the represen-
tation of the muscle model; they also learn the intrinsic structure of the muscle shape
variation and use it to parameterize the muscle shapes in an optimal way; finally they
identify positions on the muscle surface in a repeatable way. That is, after learning the
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model from a training set of muscles, corresponding positions can be localized in MRI
data.

Our approach seeks to identify a set of points that have distinctive appearance while
at the same time covering the object evenly with regard to theinformation contained
in each sampling point, i.e. mutual information with its neighboring points. Toward
fulfilling this goal, we have to first construct a diffusion map of the landmarks, a metric
space that determines the mutual information between the landmarks. Starting from this
map, the density at each landmark is computed in an Euclideanmetric. A subset of the
original landmarks is chosen so that the densities at the sampled landmarks are even
by minimizing the integral of density gradient of the landmark set. To favor landmarks
with salient appearance, each landmark is additionally weighted by the image support
measure, the correlation of texture appearance in the vicinity of the landmark position,
before the selection is done.

To reconstruct the full shape from the sparse sampling, eachmissing landmark is re-
constructed in a linear regression manner from these neighbor points. We demonstrate
the utilization of the sparse model in segmenting anatomical data sets - the calf mus-
cle and left ventricle- and compare results with standard uniform sub-sampling of the
object. With the same rate of sub sampling, the proposed model outperforms uniform
sub-sampling of the object space both in terms of reconstruction error, and the perfor-
mance during object search in new data.

The Sparse Shape Models adapt the representation to the shape variation and its re-
dundancy, and to the local image support as observed in the training data. In that way it
provides for an optimal landmarks set, and a mechanism to reconstruct the entire shape
from this sub-set. Sparse Models also offer improved representative power of landmarks,
and a better search stability and accuracy.

The proposed approach takes both the behavior of the landmarks in the training set,
and the local appearance of the anatomical structure into account to obtain an optimal
model. Our approach lies in taking into account both the geometric relationship and
appearance during the sampling process. The use of appearance information, more
precisely the idea of using landmarks with salient appearance (or texture distinctive-
ness), estimated in a training sample via a correlation function between local patches
in a neighborhood and the sparse sampling of the data using our criteria as expressed
in Equation. (4.19) is also of interest for the segmentationof other data that exhibits
a heterogeneous distribution of informative image content. The experiments show the
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advantages proposed over uniform subsampling method.

In the following chapter we are going to extend our approach astep further, and
instead of only using the concept of diffusion to sub-samplethe data, we will introduce
a parameterization of the shapes based on the topology encoded in the diffusion maps
learned during training.





CHAPTER

5 Hierarchical 3D Diffusion
Wavelet Shape Priors

“Il faut toujours viser la lune, car même en cas d’échec on attérrit dans les étoiles.”

Oscar Wild
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5.1 Introduction

The optimal representation of the significant variations ina set of shapes at various
scales is a challenging problem. Parameterizations chosena priori pose limitations on
the representative power, and introduce a bias on the model.An example is a reference
manifold like a sphere that is used to parameterize shapes ofgenus zero.

In the following chapter we introduce a more general formulation of a decomposable
shape parameterization. It can adapt to the training population of shapes. It allows
to learn an optimal parameterization from the training set,and to represent the shape
variation in this reference frame. Furthermore the shape parameters deal with global and
local variations present in the population separately. Therepresentation is based on the
wavelet transform and uses its ability to exploit the intrinsic multi-scale nature of the
data.

We explore a method for the parameterization of the shape variation observed in the
training data by means of diffusion wavelets[Coifman and Lafon, 2006]. the diffusion
wavelet is a very generic construction based on the notion ofa diffusion kernel. It can be
viewed as a generalization of standard parameterizations,e.g.: the kernel for a triangu-
lated spherical surface would be the adjacency matrix weighted by the mutual distances.
Defining the topology by a diffusion kernel instead of a fixed genus-zero manifold al-
lows us to incorporate, and even to learn, complex interaction patterns observed in the
training data, and use them to build an efficient shape variation prior. In the following we
will first outline the basics of diffusion wavelets[Coifman and Maggioni, 2006], then ex-
plain the associated shape variation representation, and finally detail how the orthomax
principle[Kaiser, 1958] can be used to separate coherent sub-regions of the shape.

In this chapter we will introduce the use of diffusion wavelets to represent the vari-
ation of shapes. However, instead of relying on a pre-definedmanifold (e.g. a sphere
[Nain et al., 2007]) we will learn the topology of the wavelet domain from the train-
ing data, and will encode it in a diffusion kernel. The kernelallows us to learn and
define arbitrary wavelet hierarchies, and thus to make optimal use of the training data.
The wavelet representation used in this thesis is based ondiffusion waveletsproposed in
[Coifman and Maggioni, 2006].

Let’s recall that the diffusion distance concept was already introduced and used in the
last chapter, and will also be exploited in the current one. The intuition behind such an
approach is to seek a complete embedding of the landmarks in aRiemannian manifold.
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It can also be considered as a wavelet equivalent of computing the eigenfunctions of the
Laplace-Beltrami operator on an arbitrary manifold.

The remainder of the chapter is organized as follows: We willfirst present the basic of
wavelets in Section. 5.2, and the related work in which they are applied to medical data
in Section.5.3. We then detail the theoretical background concerning diffusion wavelets
as well as variation modeling based on the shape representation using diffusion wavelets
in Section. 5.4. In Section. 5.5 we focus on the manifold construction and the inference
in new data. Finally in Section. 5.6 we report experimental results and a quantitative
validation.

5.2 Wavelets

Wavelets are a robust mathematical tool for the hierarchical decomposition of functions.
The theory is described extensively in e.g.[Meyer, 1993] [Mallat, 1989]. The decompo-
sition allows for a representation in terms of a coarse overall shape, that is enriched by
details in a coarse to fine hierarchy. Starting from the definition of a mother wavelet as a
localized function on the plane, on which it is possible to carry on affine transformation,
i.e translation, rotation and dilation. The wavelet coefficients construction is the result
of the correlation of the signal with the transformed version of the mother wavelet, in
other words this is to be considered as wavelet transform of asignal on the plane. Unlike
principal components analysis and Fourier basis functionsthat represent global shape
descriptors, wavelets captures both global and local variations.

The wavelets provide so an elegant technique for representing detail levels regardless
of the interest function type (e.g. images, curves, surfaces). Thanks to their local support
in both space and frequency, wavelets are suited for sparse functions approximations.
Their major strengths are the compact support of basis functions as well as the inherently
hierarchical representation. The domain upon which the wavelet hierarchy is defined
is of prime importance for their representative power. Roughly speaking the theorem
introduced by[Meyer, 1993] [Mallat, 1989] establishes that given an orthogonal multi-
resolution analysis, one can find a function whose dilates and translates will generate
an orthonormal basis. In practice we can find several wavelettransform, such as the
Discrete Wavelet Transform (DWT) or rather the Fast WaveletTransform (FWT).

On the other hand, wavelets can be considered as a rotation transform in function
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space. As far as compression is concerned wavelets are designed to accomplish rotations
leading to decorrelate image data by using vanishing moments. Wavelet coefficients
close to zero can consequently be removed without loosing much information through
the reconstruction.

It is beyond the scope of this section to give the detailed mathematical definitions
about the different wavelet transform discussed in the literature. However we will above
all focus in this chapter on spherical, harmonic and diffusion wavelets.

5.3 Previous Work

The wavelet representation offers a wide range of advantages for the processing of dif-
ferent medical imaging modalities, such as PET, FMRI, MRI, CT. . . These first genera-
tion of wavelets have contributed to various applications,among the most famous image
compression, denoising and retrieval. However during the two last decades a substan-
tial amount of work has been published concerning shape modeling based on wavelet
representation.

[Brammer, 1998] presented a multidimensional wavelet analysis of functional mag-
netic resonance images, whereas[Turkheimeret al., 2006] utilized wavelets for multi-
resolution Bayesian regression in PET dynamic studies. In[Nowak, 1999] wavelet-based
Rician noise is removed for magnetic resonance imaging. In 1999 [Wolstenholme and
Taylor, 1999] introduced the idea of modelling wavelet coefficient in an Active Appear-
ance Models framework by the means of Haar wavelet, an issue extended afterward by
[Stegmannet al., 2004]. During the latter work wavelets were incorporated to AAM
to obtain thus a major decrease in storage requirements. Theauthors were already an-
ticipating that a wavelet based method will play an important role in medical imaging
analysis.

The first work closely related with our approach was presented by [Davatzikoset al.,
2003]. The idea there was to build a hierarchical active shape models of 2-D anatomical
objects using 1-D wavelets, which are then used for shape based image segmentation.
The wavelet transform is interesting in a way that it is considered as a decorrelator of
real-world signals[Mallat, 1989] and thus the covariance matrix of the wavelet coef-
ficients is sparse. Starting from this assumption, the covariance matrix of the wavelet
coefficients is estimated as a a block diagonal matrix, when reordering the coefficients
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in the right range. A diagonal block of the covariance matrixwould be formed by the co-
efficients appertaining to the same band. The authors use a logarithm tree for the coeffi-
cients bands grouping in order to divide the space-frequency domain. In consequence the
coefficients holding the same scale and neighboring spatiallocation would be positioned
in the same band, following the inherited assumption that once coefficients are neighbors
in space and scale implies that they are exhaustively correlated. The wavelet transform
is therefore exploited to reorganize the model into a hierarchy of several parts: the lower
bands of the transform represent the global shape variations, whereas the higher bands
correspond to more local changes. Every band is modeled independently from the rest.
The philosophy behind the use of wavelet decomposition is toimprove the shape model
flexibility by dividing the latter into independent components.

A further extension for 3D shapes was introduced by[Yu et al., 2007] and[Nain et
al., 2007]. The generalization of wavelets to the sphere is not straightforward, particu-
larly due to the issues of sampling and dilation[Vandergheynst and Wiaux, 2010]. The
use of spherical wavelets introduced in[Schröder and Sweldens, 1995] is therefore con-
sidered as second wavelet generation. This type of wavelet came along to process closed
genus-zero surfaces to reveal their shape characteristics. Especially if one has to project
spherical data into the Euclidean space it may sometimes lead to severe distortion.

[Nainet al., 2007] proposes an improvement of the work of[Davatzikoset al., 2003]

by implementing a multi-scale wavelet based segmentation for 3D medical shapes using
conformal mapping and a subsequent spherical wavelet representation. In addition they
extend the work by proposing a novel algorithm to discover optimal multi-scale bands
from the data.

More practically the authors use spherical wavelets, a decomposition of meshes topo-
logically equivalent to spheres, to analyze the training set and represent it with a wavelet
basis. Afterwards the coefficients with very small varianceare discarded, and the others
gathered into bands. Later on principal component analysisestimates the probability
density function relative for each band, and an optimization is carried on to match the
model to new volume. Subsequently we end up with a more reduced model that prevails
the active shape model. Spherical wavelet can so characterize shape variation in a local
fashion in both space and frequency, in contrast to spherical harmonics that have a global
basis set.

As a matter of fact the authors also claim that comparing to[Davatzikoset al., 2003]

who cluster coefficients of spatially adjacent bases into bands in each frequency plane,
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they proceed to the clustering of highly correlated coefficients into a band, while at the
same time applying a constraint across bands having minimumcross-correlation[Nain,
2006].

A parallel study was conducted by[Yu et al., 2007] who compared the efficiency of
Spherical Harmonics (SPHARM) and spherical wavelets in extracting local shape vari-
ations of neuroimaging data. Spherical wavelet proved to bemore effective concerning
computational time.

However already in[Schröder and Sweldens, 1995] the authors speculate on a gener-
alization of their work on wavelets and spheres towards arbitrary topologies.

Specificities and Limitations of Spherical Harmonic and Wavelet Being a key is-
sue, the choice of the wavelet type is determinant, which canprincipally be related to
the nature of data, however we will mainly concentrate on some shortcoming related to
harmonic and spherical wavelets:

Spherical Harmonic DescriptorsSPHARM[Yu et al., 2007]: They can be considered
as a natural extension of Fourier Transform on a sphere, and thus proved to be
adequate for describing closed surface with spherical topology, which is not the
case for our data. The coefficients in the spherical harmonicbasis of different
levels have the advantage to offer a mea- sure of the spatial frequency constituents
that comprise the structure. Still they suffer from the limited global support.

Spherical WaveletUnlike SPHARM approach that only depict global variations,Spher-
ical wavelet functions can address this disadvantage by their local support at multi-
ple resolutions levels, and this throughout using even fewer coefficients[Yu et al.,
2007]. Moreover one of the pre-processing required by spherical wavelet segmen-
tation is the triangulation of the data and conformal mapping of the surfaces with
spherical topology. Seeing that we are handling arbitrary manifolds (e.g multiple
muscles) for which we aim to represent the shape variation, an automatic triangu-
lation is not straightforward. Indeed instead of establishing a triangulation we will
rather construct a kernel diffusion/operator.

These wavelet seems to be more adapted to data that can be expressed in the spherical
coordinates, whereas in the ideal case one would like to use wavelets on surfaces of genus
higher than zero. To overcome these limitations we will rather focus on a generalization
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of classic wavelet based on a diffusion scheme, on which we will concentrate in the
following section.

After the construction of wavelet around a sphere the authors in [Schröder and
Sweldens, 1995] assume in their future work that the generalization to arbitrary topolo-
gies would be of great interest and success, which finally came through diffusion
wavelets a decade later.

Most recently, and in parallel to our work[Essafiet al., 2009b], a promising approach
to use diffusion wavelet was published by[Zhu et al., 2009]. The authors consider the
idea to exploit diffusion wavelets for the matching of 3D shapes. There are substantial
differences both in terms of method and scope to our work. In contrary to[Zhu et al.,
2009], we are aiming to build a generative model of shape variation, which adapts to the
topology of a set training examples, and use it for the segmentation and reconstruction in
new volume data. Instead they only employ diffusion wavelets as descriptor of shapes.
On top of that, an important advantage of our method is the useof orthomax to obtain an
optimal subdivision of the shape. Hierarchical shape models based on diffusion wavelets
that adapt to arbitrary topologies have not yet been published, and their use in computer
vision and medical image analysis has not been described.

A comprehensive overview of the wavelets transform on manifold can be found in
[Antoine and Vandergheynst, 2009] and in the exhaustive book chapter[Schclar, 2008].

5.4 Diffusion Wavelet Model Construction

5.4.1 A Diffusion Operator Reflecting The Topology

We represent the shapes by a finite set of landmarks. Form landmarks the positions,
Vi = {xi

1,x
i
2, . . .x

i
m, }, are known inN training imagesI1, I2, . . . , IN . That is, our

shape knowledge comprisesV = {V1,V2, . . . ,VN}, wherexi
j ∈ R

d, and we callVi ∈
R

d×m a shape.

Since we are only interested in the non-rigid deformation, all anatomical shapes are
aligned by Procrustes analysis[Luo and Hancock, 2002], which produces the series of
examplesV p

i , from which we compute the mean shapeV̄ p . After the registration, we
can represent the shapes by their deviationSi (Equation. (5.1)) from the mean shape,
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Si = V p
i − V̄ p (5.1)

where

V̄ p =
1

N

N
∑

i=1

V p
i (5.2)

Now we define a topology on the set of landmarks. The representation is based on a
framework for multi-scale geometric graph analysis proposed in[Coifmanet al., 2005].
It applies the concept of diffusion to capture mutual relations between nodes in a Markov
chain, that encodes the global neighborhood or modeling structure of the shape land-
marks. In our case, this structure is the neighborhood relation between landmarks of the
shape. It determines the domain upon which the wavelet representation is built. Dif-
fusion maps provide a canonical representation of high-dimensional data. They allow
us to encode spatial relations, or the behavior[Langs and Paragios, 2008] of the shape
training population. The structure is encoded in a diffusion operatorT ∈ R

m×m. This
operator is then used to define the diffusion wavelets which represent both the global and
local properties of the data in relation to the operator.

We build the diffusion operator T on the set of points embedded in a metric space in
two different ways:

(a) Their mutual distance in the mean shape, or

(b) Their joint modeling behavior.

In the first case, and in order to build a matrix of graph weights for the points, we
construct a local Gaussian kernel function centered at eachpoint and then normalize the
weight matrix through the symmetric Laplace-Beltrami to form the diffusion operator T.
In the second case, when modeling their joint behavior, we derive the diffusion operator
by probing the behavior of small subsets of the landmark set,according to the method
described in[Langs and Paragios, 2008]. The resulting operator T reflects all pairwise
relations orneighborhoodsbetween individual points in the shape set.

As described in Chapter. 4, we define a diffusion operatorT based on these measures.
T is a self-adjoint operator conjugate to the Markov matrixP andI−T is the Laplacian
on our data[Coifman and Maggioni, 2006].
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Let’s consider the graphG as described in the Section. 3.5. Let’s also recall that we
havedi =

∑

j k(i, j) as the total connection of the landmarki with the rest of data set,
D corresponds to a diagonal matrix withd on its diagonal, andP = pij which origin is
explained in Section. 4.4.1.1

Pf(x) =
∑

a(x, y)f(y)dµ(y) (5.3)

Consequently and as shown in[Shi and Malik, 2000] the operatorL constitutes the
normalized Laplacian on the graph

L = D−1/2(I−P)D−1/2 (5.4)

Figure 5.1 —The diffusion kernel operator T

For the remaining work we use a Laplace-Beltrami operator. We should remind here
that the Laplacian operator captures the local geometry in the Euclidean geometry. The
Laplace-Beltrami operator does the same, but also on Riemannian geometries i.e. man-
ifolds. This corresponds to our case, because the landmarksare situated on a manifold
defined either by their mutual euclidean distance or by the shape map property model.
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More intuitively the Laplace-Beltrami operator can be seenas a generalization of the
Euclidean representation of the Laplace operator to an arbitrary Riemannian manifold.

5.4.2 Diffusion Wavelets

In [Coifman and Maggioni, 2006] the authors generalize the idea of basic wavelets pre-
sented in[Meyer, 1993] [Mallat, 1989] by adjusting the wavelet construction to the
geometry of the operator. One of the first assumptions of the authors is that the diffusion
operatorT is self adjoint and that it could be considered on the basisΦ0 as following:

Φ0 = {δk}k∈X (5.5)

whereδk is the Diracδ-function, and then take into considerationΦ̃1 = {Tδk}k∈X

and build the wavelet in a multi resolution way as illustrated in Figure. 5.2.

Figure 5.2 —Diffusion wavelet generation, downsampling and orthogonalization[Coifman
and Maggioni, 2006] .

If we refer to the diagram in Figure. 5.2, one has to note that all triangles are commu-
tative by construction and also that for any scalej there are some relations that have to
be fulfilled.

Mj = GjoT
2j (5.6)

Φ̃j = T 2jΦj−1 (5.7)
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We have so a linear mapping from̃Φj to Φj . Let’s note thatGj represent the local
multi-scale Gram-Schmidt procedure[Danielet al., 1976], which ensures that G is not
only linear and local but also sparse, consequently the orthonormal basisΦj+1 would be
coarser thanΦj .

To allow a fast computation for the diffusion[Coifman and Maggioni, 2006] inspired
by some physics and geometry examples, propose to work with the dyadic powersT 2j as
a compressed representation of the operator. In fact those powers are known to decrease
in rank, consequently they can lead to the function compression.

In Figure. 5.2 we can notice that first one has to applyT to a space of test functions
at the finest scale, compress the range via a local orthonormalization procedure, repre-
sentT in the compressed range and computeT 2 on this range, compress its range and
orthonormalize, and repeat this loop in a way that in the level j we are computingT 2j .

Figure 5.3 —Heart left ventricle: Comparison of a Ground truth and the Reconstruction by
means of diffusion wavelets.

5.4.3 Shape Variation Modeling with Diffusion Wavelets

Given the diffusion operatorT defining the manifold, we use the corresponding hierar-
chical diffusion wavelets, to represent the shape variation. First we build a hierarchical
wavelet structure, thediffusion wavelet tree: We call upon a general multi resolution
construction for efficiently computing, representing and compressingT 2j , for j > 0.
The latter are dyadic powers ofT , and we use them as dilation operators to move from
one level to the next. We can expect it to be easier to compresshigh orders of the diffu-
sion operator as they are supposed to be low ranked. During the down-sampling process,
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and throughout a recursive sparse QR decomposition we obtain the orthonormal bases
of scaling functions,Φ = {φj} that represent a smooth bump function at the scalej, the
waveletsΨj, and compressed representation ofT 2j on φj, for j in the requested range.
The scaling functions{φj} and the orthogonal wavelets{Ψj} are spanning the spaces
Vj andWj, where the first encompasses the coarse details. Both presented spaces ex-
hibit the following proprieties: in (5.8) where the subspaceWj represent the orthogonal
complement of the subspaceVj+1 in Vj

Vj+1 ⊆ Vj

Vj+1 = Vj ⊕⊥ Wj (5.8)

Giving K as maximum number of levels to compute, we obtain a representation of
T 2j onto a basisφj, with 1 ≤ j ≤ K after K steps. For a detailed description of this
construction we refer the reader to[Coifman and Maggioni, 2006].

After building the diffusion wavelet treeΦ, we use it to represent the individual train-
ing shapes. We calculate the diffusion wavelet coefficientΓ on the deviationSi from the
mean of the aligned shapes, and obtain the following diffusion wavelet coefficients for
an exampleSi,

ΓSi
= Φ−1Si (5.9)

Thus, the shape can be reconstructed by:

V p
i = V̄ p + ΦΓSi

(5.10)

Once we have generated the diffusion wavelet coefficients for all training examples,
we build a model of the variation by means of the orthomax criterion - which will be
described in the upcoming section - at each level. In the lowest level the coefficients
provide information for a coarse approximation, whereas localized variations are cap-
tured by the higher-level coefficients according to the hierarchy. For each level j, with
(1 ≤ j ≤ K), we considerΓlevelj (Equation. (5.11)) and perform principle compo-
nent analysis to reduce the dimension of the coefficient representation for all coefficients
scales.
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(a) (b) (c)

Figure 5.4 —Reconstructed surfaces for Heart CT data using projected wavelet coefficients
on the set of principal components that represent 99% of the total variance at level 1. The

axial view surfaces represent the±3
√

(λi) from left to right.

Γlevelj =
{

ΓSi/level=j

}

i=1...N
, (5.11)

This results in the eigenvectorsΣ = {σj}j=1...K , the corresponding eigenvaluesΛ =

{λj}j=1...K of the covariance matrix of the diffusion wavelets coefficients at each level j,
and the according coefficientsΓlevel

∗
j that represent each training shape in this coordinate

system.

Consequently in each level the coefficients are expressed such as:

Γlevelj = Γ̄levelj + σj

(

σ′
j .Γlevel

∗
j

)

(5.12)

Based on the model parameters{Λ, Σ} we can reconstruct a shape by first obtaining
the diffusion wavelet coefficientsΓSiRec in each level, and then reconstructing the shape
based on the diffusion wavelet tree:

V p
i = V̄ p + ΦΓSiRec (5.13)

This shape representation can now be used to model the shape variation in the training
set, and represent it in the diffusion wavelet coefficient domain.
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5.5 Prior Manifold Construction & Image-based Infer-
ence

We can consider different dimensionality reduction techniques like Principal Compo-
nent Analysis, Linear Discriminant Analysis, Non NegativeMatrix Factoriztion, statis-
tical approximation methods like mixture models, Expectation Maximization, or recent
spectral kernel methods like Locally Linear Embedding[Roweis and Saul, 2000] and
Laplacian Eigenmaps[Belkin and Niyogi, 2003] in order to decrease the dimensionality
of the diffusion wavelet coefficient representation of a training set of shapes. However
given the ability of the diffusion model to capture relevantnon-linear variations, we
choose a simple dimensionality reduction technique, and a linear sub-space representa-
tion for our experiments. To obtain a sparse and localizad representation, we adopt the
orthomax criterion[Kaiser, 1958].

5.5.1 The Orthomax Rotation

The orthomax criterion[Harman, 1976] is a technique belonging to the family of factor
analysis, that allows to obtain a simple and compact hierarchical representation through
a rotation of the model parameter system. This parametrization rotates the PCA modes
so as to enhance sparsity, while at the same time preserving the orthogonality of compo-
nents.

Despite of the simplicity of the orthomax criterion in termsof computation or con-
ception, the shape analysis community in general and medical imaging literature in par-
ticular are devoid of studies carried on with this approach as stressed by[Stegmannet
al., 2006].

Orthomax rotations reflect a re-parameterization of the PCAspace resulting in a sim-
ple basis. In[Stegmannet al., 2006] [Leung and Bosch, 2007a] the orthomax was ex-
ploited as a straightforward method to select sparser modes. Alternatively[Sjostrandet
al., 2007] introduced sparse PCA where the orthogonality is not elementary, but on the
meanwhile the method still brings out near-orthogonal components, whereas suffring
from computational issues. It can also be considered as a natural continuation of the
work on Independent Component Analysis (ICA)[Üzümcüet al., 2003] aforementioned
in section 4.2. as ICA does not imply orthogonality criteriabut still gather the maximum
of sparsity. In the same context the orthogonal orthomax criterion can be accounted
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Orthomax Type ω

Quartimax 0
Varimax 1
Equamax k/2

Parsimax p k−1
p+k−2

Table 5.1 —Variants of Orthomax Rotation[Harman, 1976]

for equivalent to the Crawford-Ferguson criterion, which is a weighted sum of row and
column complexity of the eigenvector matrix[Leung and Bosch, 2007a] .

Let R be an orthonormal rotation matrix inRk×k whereRi,j represents the elements,
and wherek implies the number of eigenvectors with the largest eigenvaluesλii=1,..,k. Σ

denotes as previously in the chapter thep×N eigenvectors matrix.

The orthogonal orthomax rotation matrixR is then calculated as follow:

R = arg max
R





k
∑

j=1

p
∑

i=1

(ΣR)4
ij −

ω

p

k
∑

j=1

(

p
∑

i=1

(ΣR)2
ij

)2


 (5.14)

whereω determines the type of Orthomax (see Table. 5.1). We explorethe varimax
version[Kaiser, 1958] for optimizing sparsity corresponding to new variables being as-
sociated to localized variation modes, i.e, we will haveω = 1.

Settingω to 1 leads us to reconsider the Equation. (5.14) as the following:

R = p

k
∑

j=1





1

p

p
∑

i=1

(

Θ2
ij

)2 − 1

p2

(

p
∑

i=1

Θ2
ij

)2




= p
k
∑

j=1

(

1

p

p
∑

i=1

(

Θ2
ij − Θ̄2

j

)2

)

(5.15)

whereΘ = ΣR, describes the varimax rotated basis, andΘ̄2
j the squared mean of

the jth column ofΘ. Throughout Equation. (5.15), one can note that the investigated
varimax rotation can be interpreted as a redistribution of the modes so that each row or
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column contains a minimum number of nonzero components, i.e. columns or rows are
as sparse as possible.

5.5.2 Modeling Using the Varimax Criterion

After projecting the landmarks into the diffusion wavelet coefficient space we perform
PCA, and subsequently rotate the coordinate system to maximize the varimax criterion.
The resulting modes represent the variation in the data in a sparse fashion. Letγj denote
the orthomax eigenvectors such asγj = R−1σj . Then Equation. (5.12) can be expressed
with the orthomax components.

Ψi∗
level =

[

Ψlevel
i∗
1 Ψlevel

i∗
2 . . . Ψlevel

i∗
K

]

(5.16)

V p
i = V̄ p + Φ.

(

Ψ̄levelj + γj

(

γ′
j.Ψ

i∗
level

))

, (5.17)

As it will be shown in the results section (Section. 5.6) the orthomax modes exhibit
local variations in most modes, unlike PCA shape modes that are ordered according to
variance, and show global variations in the modes.

An overview of the model building process (including the representation component)
is given in (Alg.1). The resulting model holds information about the diffusion wavelet
tree, the orthomax components, and coefficient variation constraints〈Φ,R, γ〉.

To summarize; the outcome of this process (see Figure. 5.5) is an efficient shape rep-
resentation as well as a compact manifold construction withrespect to the allowable
variations of this representation. We first obtain a topology from the training data and
encode it in a diffusion kernel, that defines a diffusion process[Coifman and Lafon,
2006] across the set of landmarks. It can either be based on their distance, or on their
mutual dependencies[Langs and Paragios, 2008] observed in the training data. Given
this kernel, we build a hierarchical wavelet representation of the shape variation. Finally
we build a sparse model of the individual levels of this representation with help of the
orthomaxcriterion. Keep in mind that the main goal is to capture meaningful structures
based on their behavior in the potentially very small training data set. This represen-
tation, along with the manifold can now be used for image based inference in a new
example.

It is worth mentioning that the orthomax criterion also allows rotations of subsets of
the shape model, while preserving the rest of the modes unvaried. In another context, it is
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Algorithm 4 Multi-Scale Representation: Off line Training
Input:

T : Diffusion Operator,
(Si)i∈Training Shapes: Training landmark deviation from the mean shape

1. Construct the wavelet diffusion treeΦ [Coifman and Maggioni, 2006].

2. Calculate Diffusion Wavelet Coefficient for the trainingshapesSi.

3. For each level.

(a) Compute covariance matrix of every diffusion wavelet coefficient level.

(b) Calculate a model parameterization (basis, coefficients) based on the or-
thomax criterion.

Output: Orthomax Eigenspace (modes, eigenvalues) and coefficientsof the training
examples.

interesting to note that our parametrization results in a separation of sub-parts similar to
the n-Cut proposed in[Nainet al., 2007], but replaces the hard splitting by a continuous
basis transform.

5.6 Experimental Validation

Throughout this experimental validation section, we evaluate the multiscale shape prior
based on a shape reconstruction task. The basic idea is to learn a prior within our training
data set. Afterward we project a test volume shape onto the prior so as to estimate how
close a projected test shape can be comparing to its ground truth. A common prior of
a shape model technique would consist of the mean shape and the eigenvectors of the
shape landmarks. For our approach the prior will gather the mean shape, the wavelet tree
and the eigenvectors of the diffusion wavelet coefficients from each volume. Later on
a reconstruction phase is necessary to compare the modified test shape and the relative
supervised segmentation. One of the evaluation indices is indeed the mean squared error
between the ground truth and the reconstructed test volume.

We evaluate the algorithm on two medical imaging applications to assess the perfor-
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Figure 5.5 —Scheme of Diffusion Wavelet Coefficient Process.

mance of the method in terms of representation, manifold construction and knowledge-
based segmentation. The first example is the segmentation ofthe left ventricle (LV) of
the heart using computed tomography images, and the second the segmentation of calf
muscles from T1 Magnetic Resonance Images. While in the firstcase, the performance
of the extraction of image support is acceptable, things arefar more complicated when
considering the muscle images. As described in Section. 3.6, this is due to the fact that
for the left ventricle the separation of tissue and lumen is possible while the calf images
do not exhibit clear separation between different muscles,and local deformations are far
more pronounced in this structure.

To assess our model, experiments were carried out on the following data:

1. 25 MRI calf muscles divided into two groups: 20 healthy control patients and
5 unhealthy cases. For each volume there are 90 slices of 4mm thickness, and
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(a) (b) (c)

(d) (e) (f)

Figure 5.6 —Reconstructed surfaces for heart left ventricle CT data using projected wavelet
coefficients on the set of principal components that represent 99% of the total variance at
the first level of decomposition. The axial view surfaces placed in the first row represent the

±3sqrt(λi) from left to right. Second row represent the saggital view

with voxel spacing 0.7812x0.7812x4 mm acquired with a 1.5T Siemens scanner.
Standard of reference annotation by experts for the Medial Gastrocnemius (MG)
muscle, was available (see Figure. 4.4.b). Correspondences for 895 landmarks on
the surfaces were obtained by an MDL based optimization[Langset al., 2007].

2. A set of 25 CT volumes of the heart, with an approximate voxel spacing of 1.5
mm, for which 90 anatomical standard of reference landmarks, and a set of726

control points for the left ventricle was available, also with available ground truth
segmentation from experts Figure. 4.4.a concerning the diastole and the systole.

For each data set we model the shapes of the structures through diffusion wavelet
representation in a leave-one-out cross validation strategy. We train the model on 24
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Heart Data Calf Data

Gaussian Model 1.6154 2.1277
DW Model with
spatial kernel

0.0755 0.1485

DW Model with
Shape Map ker-
nel

0.1100 0.1796

Table 5.2 —Full Landmark Reconstruction Error (in voxel) with regard to three different
shape models for heart and calf data sets.

cases, and perform model reconstruction or search on the remaining case not used for
modeling. To assess the diffusion modeling approach, we compute two measures: (i)
the reconstruction error between the test shape, together with its approximation by the
model at different scales, and (ii) the search performance.In the following we will
focus on the reconstruction accuracy. The search performance will be evaluated in detail
in Chapter. 6. We compare the reconstruction error of Gaussian shape models and the
proposed diffusion wavelet model, evaluate two different diffusion wavelet kernels: 1.
the spacial proximity of landmarks, and 2. a kernel based on ashape map distance of the
landmarks[Langs and Paragios, 2008]. Quantitative results are given by the landmark
error between the true shape, and the reconstruction resultwith one of the three models.
Qualitative results are shown in Figure. 5.7.

The main concern is to see how far our model is able to detect the local shape vari-
ations based on different kernels. To illustrate the orthomax representation, in the Fig-
ure. 5.6 we show the heart reconstructed surfaces using projected wavelet coefficients
on the set of principal components at the first level, where the surfaces represent the
coefficient values±3sqrt(λi) from left to right. Comparison of the reconstruction error
between the diffusion wavelet model and the reference modelis calculated as an average
surface error for all test shapes.

In Tab.(5.2), we report errors of a Gaussian reference model, and two diffusion
wavelet models. In Figure. 5.7 the reconstruction of the projected shape model
(heart/muscle) is depicted, this reconstruction starts from the projection of the diffu-
sion wavelet coefficients in respectively the first and the last level, and then extracting a
new subset of coefficients from the eigenvectors that constitutes 99% of the variation in
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the correspondant level. To keep the variation in reasonable limits, the shape parameters
are also restricted to±3

√
λi.

Concerning the varimax criterion application, one can easily notice in Figure. 5.8
that while the PCA modes demonstrate several spatially distributed effects within each
mode, the varimax modes in the other hand show nicely isolated effects. Moreover in
Figure. 5.9, we show the ’flattening’ of the eigenvalue spectrum carried out by the vari-
max rotation where the respective modes as well as variancesare plotted. This simple,
yet powerful modification of PCA enables us to optimize sparsity leading to localized
modes of variation, which is more suitable for applicationswith sparse parameterizations
like the often local pathological variations we are focusing on.

5.7 Contributions

We described in the current chapter a novel approach to represent prior knowledge for
image segmentation using diffusion wavelets. During the learning stage, the underly-
ing diffusion operator is learned from the data. The corresponding diffusion wavelet
structure is build, and the wavelet coefficients for the training shapes are calculated.
The diffusion kernel incorporates a notion of soft connectivity between landmarks by
encoding inter-object relationships. Consequently the approach is able to provide a hier-
archical representation. It models both geometry and appearance, and can learn arbitrary
topologies, encoded in the kernel. Results of the segmentation of MRI and CT data show
that the method has promising reconstruction performance,and is able to model shape
variation with higher accuracy than a standard Gaussian model. Until nows the diffusion
wavelet have largely been confined to the signal processing field, and have not yet been
exploited for medical image segmentation.

The learning of the wavelet domain topology from the training data enables the algo-
rithm to represent complex structures like groups of muscles in a single model. The way
of learning this domain by either using local neighborhoods, or deformation complexity
makes an adaptation to the data possible. Its impact on different data is subject of future
research.

The current chapter introduces the following ideas;

• A novel segmentation framework based on diffusion wavelet models.
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• The learning of the model parameterization: we learn the wavelet domain, instead
of using a pre-defined manifold.

• The approach encodes hierarchies and soft connectivity properties by means of the
diffusion kernel.

• The method provides the ability for search paradigm based onlocal appearance
features.

• The computational efficiency in high dimensional spaces regarding the orthomax
technique.

Undoubtly the most attractive characteristic of the wavelet kernel modeling approach
is the ability to represent local shape differences in an effective manner. Moreover the
application of diffusion wavelets to segmentation is quitenovel. We addresses an im-
portant problem, namely replacing the fixed shape representations as in ASM/AAM by
multi-scale priors which reflect inter-dependencies in training data.

As a comparaison with the work of[Nainet al., 2007], and with respect to segmenta-
tion, spherical wavelets represent a sub-case of diffusionwavelets confined to a spherical
manifold. With regard to registration approaches, the prime difference with our scope is
that we are building a generative model of shape variation, and use it for segmentation
while at the same time using the orthomax criterion to obtainan optimal subdivision of
the shape parameterization.

Furthermore we have investigated the orthomax criterion for principal components
rotation. This computationally simple technique enables us to optimize sparsity and to
have more localized modes of variation. Such an approach is of a great interest regarding
pathological changes in the anatomical structures. The combination of both diffusion
wavelet and varimax rotation is a promising way to model complex shapes with locally
different variability.

In the next chapter we demonstrate how we can perform search in new data. We
use the diffusion wavelet shape prior introduced in this chapter, and a local appearance
representation.
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(a) (b)

(c) (d)

Figure 5.7 —Diffusion Wavelets Model Reconstruction. First row: Heartresults and second:
Calf muscle. Data, green: standard of reference segmentation, red: reconstruction result for

a. finest scale and b. coarsest wavelet scale.
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(a) (b)

Figure 5.8 —Data reconstruction through (a) global PCA and (b) localized orthomax rotated
modes of the DW coefficients models. The surfaces representing the±3sqrt(λi) are respec-
tively colored in cyan, red and blue. Note the local deformation captured by the orthomax

mode.

Figure 5.9 —Comparaison between PCA and Orthomax DW eigenvalues



CHAPTER

6 Search Algorithms
Performance

"Anyone who has never made a mistake has never tried anythingnew."

Albert Einstein
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6.1 Introduction

In this chapter we explore approaches to perform search witha model that is build as
described in the previous chapters. The following sectionsfocus on the inference of
landmark positions from image data, and the subsequent estimation of the shape model
parameters. We will first review existing work, and will thengive a brief outline of the
two prime concepts we use: 1. Canonical Correlation Analysis (CCA) to learn the rela-
tion between observed appearance and optimal model parameter update; 2. Representing
appearance by means of local descriptors.

After this, we will introduce a classifier based local appearance representation, and
will explain how to learn it during training, and use it in conjunction with the proposed
shape models during search. The performance and experimental validation are finally
reported in Section. 6.6.

6.2 Related Work

A large amount of research has been published regarding appearance search. Active
Appearance Model (AAM) were proposed in[Cooteset al., 1998b]. An approach that
integrates model search with classification approaches wasproposed in[van Ginneken
et al., 2002], where optimal feature classification is proceeded in orderto select the best
set of features corresponding to each landmark, ak-Nearest Neighbors(kNN) classifier
is then used throughout the search to find optimal displacements over the landmarks.

[Zhan and Shen, 2006] proposed a gabor filter based SVM (Support Vector Machine)
framework in order to extract features from 3D ultrasound prostate data and estimate the
likelihood of a voxel to lie in a prostate tissue.

[De Bruijne and Nielsen, 2004] introduced a shape model inference on the basis of
pixels classification using particle filter. They preserve the global shape and appearance
from the deformable techniques, however get rid from the problems of localized appear-
ance variation and initialization issue by a maximum likelihood shape inference on pixel
classification. The authors were indeed inspired by object tracking literature.

[Mitchell et al., 2002] were the pioneer to introduce a 3D model exploiting AAM
using volumetric texture to represent appearance. Other related approaches combining
local features with standard shape models were developed by[Scottet al., 2003] [Qian
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et al., 2005] [Zhenget al., 2007].

In the following we will explain the basic search method employed by AAMs. In the
next section we will contrast it with the approach based on classifier driven appearance
representation.

6.2.1 Active Appearance Model

Active Appearance Model Search[Cooteset al., 1998b] represent the most well known
region based feature appearance model. AAMs, similar to ASMs algorithm (see Sec-
tion. 3.4), require a set of corresponding landmarks in a setof training examples. AAMs
then combine the shape and appearance in a single model. Thisgenerative model is able
to synthesize realistic images of the modeled data. Similarly to ASMs, pre-processing
steps including Procrustes analysis and PCA are required for the shapex, and analo-
gously for the pixel intensitiesg that are warped into a shape-free reference frame and
sampled. A new instance for the appearance is then produced as a linear statistical sys-
tem of the appearance model components and subsequently deformed according to the
shape model components,

g = ḡ + Φgbg (6.1)

whereḡ is the mean normalized appearance vector,Φg is a set of orthogonal indepen-
dent eigenvectors of gray value model and finallybg is a set on gray level parameters. A
combined appearance and shape model is generated by a concatenated parameter vector
b:

b =

(

Wsbs

bg

)

=

(

Φc,s

Φc,g

)

(6.2)

That holds information regarding both the appearance and the shape. HereWs rep-
resents a diagonal matrix of weights assigned for every shape parameter, resulting in the
following expression:

b = Φcc (6.3)
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wherec andΦc corresponds to the appearance vector parameter and to the eigen-
vectors controlling both the shape and the gray levels. A synthetic image for a given
parameterc is produced by the appearance vectorg and warping it with the shapex as
in Equation. (6.4).

x = x̄ + Qsc

g = ḡ + Qgc (6.4)

with

Qs = ΦsW
−1
s Φc,s

Qg = ΦgΦc,g (6.5)

Through the use of iterative updating scheme, the model parameterc can be fitted
rapidly to a new volume image exploiting theL2-norm as a cost function.

A more rapid search method was proposed in[Cootes and Taylor, 2001b], where the
dependence between model parameter update and current residual appearance error is
learned during the training phase.

The AAM model vector parameterp defines the generated synthetic image. During
each step of the training the model texture and the sampled image patch respectively
gm(p) andgs(p), the residual vectorr is then parametrized byp and computed like in
Equation. (6.6).

r(p) = gs − gm (6.6)

Using the first order Taylor expansion ofr, one obtains such approximation:

r(p + δp) ≈ r(p) +
∂r

∂p
δp (6.7)

The key idea behind the search will be to consider it as an optimization problem,
where the goal is to minimize the difference between a new image and the synthesized
one, the regression will be then expressed through the parameter update as:
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δp = −Rr(p) (6.8)

The calculation of the derivative matrixR determines the optimization efficiency. The
computation is either relying on a multivariate linear regression[Cooteset al., 1998b], or
alternatively on a numeric differentiation[Cootes and Kittipanya-ngam, 2002]. Further
details, notably the choice of shape parameters weights, and how to optimize the model
fitting regarding the derivative matrixR can be found in[Cootes and Taylor, 2001a].

In the review of[Cootes and Kittipanya-ngam, 2002], various approaches have suc-
cessfully improved AAM search performance, by modifying the original algorithm
scheme. A few examples are:

• ShapeAAMs[Cootes and Kittipanya-ngam, 2002] update only shape and pose
parameters during search, while texture parameters are directly calculated from
the training examples by using projections of image textures.

• DAMs: Direct Appearance Model[Hou et al., 2001] predict shape parameter di-
rectly from texture information, and thus without combining from shape and tex-
ture as in AAM. The DAMs result indeed in improving convergence and solution
accuracy.

• Fast AAM using CCA[Donneret al., 2006] where the authors exploit the canon-
ical correlation analysis for a faster search process, providing this way a more
precise estimation for parameter update comparing to standard model. Another
merit of this method is the fewer number of examples necessary for building the
training set, which has an important impact on acceleratingthe model construc-
tion. A direct consequence is the optimization of the regression matrix.

As for local texture descriptors, several operators have been proposed in the litera-
ture in order to extract texture features, to cite but a few; steerable filters, SIFT features,
moment invariants and shape context. An exhaustive review and evaluation concern-
ing these point descriptors is established by[Mikolajczyk and Schmid, 2005]. It is
indeed worth mentioning that steerable filters along with moments show highly effec-
tive performance in comparison with other descriptors, particularly thanks to their low
dimensionality and reliability.
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6.2.2 Canonical Correlation Analysis (CCA)

As far as linear and orthonormal transformations are concerned, PCA represents the
optimal technique as it minimizes the reconstruction errorbetween the original data and
the reconstructed one, in the mean square sense. Nevertheless, apart from PCA there
are various other linear methods in the literature that are considered as more appropriate
to regression exercise. Let’s cite for example Multivariate Linear Regression (MLR),
Partial Least Squares (PLS), or yet Canonical correlation analysis (CCA)[Melzeret al.,
2003].

Canonical correlation analysis (CCA)[Hotelling, 1936] is a robust method of mea-
suring the linear relationship between two multidimensional data sets. It is a powerful
tool able to find out the optimal bases with respect to correlations corresponding to each
set of variables. One important characteristic is obviously the invariance regarding any
similarity transformation. Originally this statistical tool has been more exploited in do-
mains like economics, meteorology, and only recently in medical imaging and computer
vision [Melzeret al., 2003] [Donneret al., 2006].

CCA shares some similarities with PCA, mainly the goal and application of data
reduction, on the other hand however CCA is more suited for regression as it takes into
account the correlation between the two sets of measurements.

More practically let’s consider a random variablex ∈ R
p with zero-mean, similarly

y ∈ R
q, and the following linear combinationsx = xwx andy = ywy. Maximizing the

functionρ (see Equation. (6.9)) with respect towx andwy is equivalent to finding the
maximum canonical correlation.

ρ =
E[xy]

√

E[x2]E[y2]
=

E[wT
x xyTwy]

√

E[wT
x xxTwx]E[wT

y yyTwy]

=
wT

x Cxywy
√

wT
x CxxwxwT

y Cyywy

(6.9)

Indeed we call out canonical variates the projections ontowx andwy, i.e. x andy.
The total covariance matrix, showed in Equation. (6.10), represents a block of matrix
composed byCxx ∈ R

p∗p andCyy ∈ R
q∗q, where the latter are the within set covariance

matrix of respectivelyx andy. On the other hand we denote byCxy ∈ R
p∗q the between
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set covariance matrix.

C =

[

Cxx Cxy

Cyx Cyy

]

= E

[

(

x

y

)(

x

y

)T
]

(6.10)

The canonical factors can thus be obtained by a Singular Value Decomposition (SVD)
of the matrixF

F = C
− 1

2
xx CxyC

− 1
2

yy (6.11)

Let the SVD ofF be expressed asF = UDVT , we can then extract theith canonical
factor as following

{

wi
x = C

− 1
2

xx ui

wi
y = C

− 1
2

yy vi

(6.12)

In Equation. (6.12) one findsui andvi that describe respectively theith column of
the matricesU andV, whereas the corresponding canonical correlations are represented
by the di- agonal components ofD.

Comparing to other correlation techniques, CCA is dependent on the coordinate sys-
tem in which the variables are described. CCA has also some very attractive properties
over Multivariate Linear Regression mainly improving predictive accuracy and scale in-
variance. In contrast to PCA, CCA is simplifying the obtained pose estimation on the
manifold.

6.2.3 Feature Space and Geometric Descriptors

Curvature Estimation Knowledge of surface curvature is of particular importanceto
a wide range of applications such as pattern matching, computer graphics, or classifica-
tion. We opt for the solution proposed by[Riegeret al., 2004] which does not only offer
a robust curvature estimation for 3D surface, but also has the merit to escape from the
majority of problems usually inherited by common estimation techniques. Indeed the
proposed estimator works on the orientation field of the surface. The Gradient Structure
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Tensor (GST) will be exploited in order to obtain the orientation field and the description
of local structure.

The curvaturek at a pointp in a tangent directiont on a surface is defined as;

kt(p) = ‖∇tN‖ (6.13)

To obtain the the principal curvatures and shape descriptor, there are two crucial steps:

1. Determine the vector field normalN and the principal directionst1 and t2, for
which the curvatures are extremal.

2. Resolve the discontinuity problem ofN and estimate‖∇tN‖.

The robust estimation is primarily established through thegeneric tool gradient struc-
ture tensor̄G able to analyze local image structure. One can define the GST as,Ḡ = ¯vvt,
wherev = ∇I andI represent the gray value image. A first processing level is aneigen-
value decomposition of̄G, leading to ordered eigenvalue and corresponding eigenvectors
{vi}. The first eigenvector is then aligned with the normal surface N , whereas the two
following ones are relied to the principal surface directions as shown in Equation. (6.14).

v1 ←→ N , v2,3 ←→ t1,2 (6.14)

The following step consists on resolving the discontinuityproblem, in other words
calculating the principal curvatures by mappingv1 into a continuous representation ful-
filling the current statement‖δM(v)‖ = K ‖δv‖. In fact the authors propose a solution
depicted by Equation. (6.15). More computational details can be found in[Riegeret al.,
2004] and references therein.

|k1,2| =
1√
2

∥

∥∇v2,3M(v1)
∥

∥ (6.15)

Gabor Jets Gabor Jets are the outputs from a set of Gabor filters[Movellan, 2002].
They are able to exploit salient visual properties such as spatial localization, orientation
selectivity, and spatial frequency properties. Moreover,one of the advantages of Gabor
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Jets is that their phase is invariant to edge positions, if the filter responses were con-
verted to amplitude and phase. These filters are indeed having a great success in faces
recognition domain.

A Gabor filter is represented by two functions, a complex sinusoidals(x, y) called
carrier and a Gaussian-shaped function known as theenvelop;

g(x, y) = s(x, y)wr(x, y) (6.16)

The complex sinusoidal carrier function is defined as following

s(x, y) = exp

(

j
(

2π(u0x + v0y) + P
)

)

(6.17)

whereu0 andv0 define the spatial frequency in Cartesian coordinates andP the phase.
For the Gaussian envelop it can be written as;

wr = Kexp

(

− π
(

a2(x− x0)
2
r(θ) + b2(y − y0)

2
r(θ)

)

)

(6.18)

whereK is a scaling factor,(x0, y0) the spatial coordinates of the Gaussian envelop
peak,a andb the scaling parameters for the two axis of the Gaussian, and finally r(θ)

stands for a rotation operation describing a clockwise rotation with the angleθ.

By utilizing the Gabor filters we aim to extract the image features for each of the
defined patch window. The amount of extracted features will be mainly related to the
fixed number of angles rotation and frequencies.

6.2.4 Classification Approaches

In Section. 6.4we will rely on classifiers for the representation of texture. In the follow-
ing we give a brief review of three classifiers, and their characteristics relevant for our
task. Let’s first review some powerful state of the art weak learning techniques, let’s re-
call that a weak learning algorithm is a processing that can always generate a hypothesis
with a weak edge for any distribution.



116 CHAPTER 6. SEARCH ALGORITHMS PERFORMANCE

Support Vector Machine The Support Vector Machines (SVMs) algorithm[Vapnik,
2000] estimates the optimal classifier in the original space whileat the same time su-
pervising its complexity by using these tighter predictorsof the generalization power of
the model. Furthermore to the theoretical arguments for itsasymptotic optimality, Sup-
port Vector learning has been empirically proven to be robust to over-fitting and to well
generalize even in case of small data sets.

AdaBoost [Freund and Schapire, 1996] as the SVM technique, boosting method be-
longs to the family of supervised and discriminative classification used in the context of
medical segmentation, and Adaboost more particularly shows better performance than
conventional boosting methods[Viola and Jones, 2001]. Indeed it can be considered as a
constraint gradient descent in an error function with respect to the margin. The approach
has even been extended in a cascade of Adaboost still by Violaand Jones resulting in a
faster detection that is for sure helpful for large data sets.

Decision Forest Generally speaking a random decision forest represent a collection of
deterministic decision trees. Mostly applied in the machine learning field, it has also
been proved to be useful and successful within the medical images[Criminisi et al.,
2009]. Combined all along with learned visual features, decisionforest can be con-
structed in such a way to detect and capture anatomical structures, leading to high com-
putational performance.

6.3 Image-based Search

Following the initial search approach described in Chapter. 4 we can perform search
based on the local appearance in the volume. The search with the diffusion model rep-
resentation, and appearance patch models(Pi)i=1,...,N for each landmark is performed
in an iterative manner, starting from a coarse initialization obtained by, e.g., atlas regis-
tration. The appearance model is based on a local texture patch model at the landmark
positions. Similar to a standard shape model inference scheme, the landmarks positions
in new data are estimated by an energy minimization involving both shape prior and
appearance costs:

1. The landmark positions of the test volumeV̂ are updated according to a local
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appearance model. For each landmark the position with highest probability of the corre-
sponding local texture patch being consistent with regard to the learn texture modelPi

is chosen within a neighborhood to of the current position estimate. We considerP (xj
i )

as the learned texture patch for the correct landmark position xi in the initial training
volume. During search for each landmark position we look fora better appearance fit in
a local neighborhoodN . That is we use correlation as the similarity measure, and we
haveCj

i (x) as the correlation between the current candidate patchp(x) and the model
patchP (xj

i ) normalized within the neighborhood, i.e.
∫

x∈N
Cj

i (x) = 1, then the image
support is

ξi = meanj=1,...,n

(

Cj
i (x)

∫

x∈N\xj
i

Cj
i (x)

)

. (6.19)

The image support is thus computed for every landmark inV from the local appearance
behavior at the corresponding positions in the training shape.

2. After fitting the shape to the image data, its variation is constrained by the dif-
fusion wavelet shape variation model. The landmarks are projected into the orthomax
coefficient space as described in Sec 5.5.1. The constraintslearned during training are
applied, and based on the resulting parameter values the shape is reconstructed.

This procedure is iterated while during each iteration, thecorrespondingV′ is recon-
structed to re-estimate the shape. After convergence the final reconstructionV′ is an
estimate of the true shape inferred from the data, and the prior model.

6.4 Appearance Classifiers Search Scheme

6.4.1 Learning a Classifier for Appearance Modeling

An alternatively to representing appearance by local features, or just the mean appear-
ance, is to use classifiers to obtain a more flexible and adaptive representation.

For each landmark we can train a classifier, that is able to differentiate between back-
ground and the landmark. Likely there is a very high level of ambiguity resulting from
such a classification if it is applied to the entire volume. However, we can treat the posi-
tive labels, or probabilistic weights resulting from the classification as hypotheses. In a
second step the shape model is used to pick the most likely hypothesis from this set.
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We adopt recent developments in machine learning that explores the use of weak
classifiers and arbitrary image features. For the heart muscle, our feature space involves
the (i) gradient phase and magnitude, (ii) structure tensorplus their (iii) curvature[Rieger
et al., 2004] and (v) the responses to Gabor filters with different phases and orientations.

Once feature vectors have been extracted from the input shapes, we can estimate the
optimal classifier as in a traditional machine learning framework. Several options can
be employed, among them one can cite Support Vector Machines(SVM) that repre-
sent a powerful clustering technique searching for a hyper-plane and a normal vector
with the least possible norm, leading to an effective separation between the labeled data.
Boosting methods are weak linear classifiers capable of generating outstanding classi-
fication results upon proper integration. Another interesting work recently presented is
compressed sensing[Donoho, 2006] where the main idea consists of recovering from
a set of subspaces the least possible number of examples ableto express the observa-
tions under a sparsity assumption. These methods were more explained in details in
Section. 6.2.4, and Boosting algorithm will be tested over our heart anatomical data set
in Section.6.2.4.

We use the Adaboost classifier, as it is provably effective and suits better to the char-
acteristics of our data and feature space in which we expect substantial variability across
training subjects, and anatomical sites. Starting from ourfeature space, we apply Gen-
tle Adaboost[Friedmanet al., 2000] to obtain a local appearance prior for the search
in new data. The boosting process aims at building a strong classifier by combining a
number of weak classifiers, which need only be better than chance. For this we call upon
a sequential learning process: at each iteration, we add a weak classifier. It is the basic
learning algorithm introduces by[Viola and Jones, 2001]. For each landmark the clas-
sification problem is as a two class training set (backgroundvs. landmark) that can be
represented as:S = {(xi, yi)}li=1 ⊂ R

N× {−1, +1}. Let’s denoteDt(i) as the weight
of the distribution on training examplei on round t. Initially all weights are set equally
D1(i) = 1/l

We use these classifiers to locate landmarks during the segmentation process. The
classifiers detect landmarks present on the ventricle muscle wall against background.
This is a very different strategy in comparison to standard search methods[Cooteset
al., 1995]. The main search strategy is: extract features from the volume, for each
landmark obtain a few candidate positions with a very strongclassifier response, fit
the DW model to these candidates, and determine the candidate configuration with the
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Figure 6.1 —Scheme of the appearance model: Based on local features, anda classifier we
can assign each position in the volume an evidence value for landmarks presence. This results
in a set of hypotheses for landmark positions, that are verified by the shape model constraint.

highest plausibility with regard to the shape prior. After continue with the local search
at the current landmark estimates constraint by the diffusion wavelet model. During the
shape model fitting we check which candidates have the highest plausibility with the
trained diffusion wavelet model.

In Figure. 6.1 the scheme of the model search is depicted. Foreach landmark the
search volumeV is projected into a hypothesis spaceVH

i that reflects the evidence for
the landmark presence for each point in the volume. This results in a position hypothesis
x̂i for each landmark. The set of landmark hypotheses〈x̂1, . . . , x̂n〉 is tested with the dif-
fusion wavelet shape model, resulting in a position prediction for each landmark. These
predictions are used to generate new hypotheses based on thelocal image supportVH′

i

and the shape model. The hypothesis space is the classifier response on each position
in the volume. During the progressing search we just consider the neighborhood of the
current landmark location estimate during the last iteration.

The method computes a local feature vector for every voxel and maps it via a Gen-
tleBoost classifier to a probability that the voxel belongs to a specific landmark in the
object. The classifier is trained from the training data set segmentations. The probabilis-
tic output is constrained by the shape model. The mapping onto the diffusion wavelet
coefficient space ensures valid results with regard to the training data. The result of
this procedure is a probability for each voxel regarding itsmatch to the structure to be
segmented, conditioned on both local and global information.
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Therefore, during the search process, the model is used together with the Gentle-
Boost classifier trained on the local appearance of the individual landmarks describing
the anatomical structure. The hierarchical diffusion wavelet shape model is then fitted to
new data based on local appearance captured by the classifier.

6.4.2 The Learning and Localization Algorithm

Let us summarize the learning and search concepts introduced in this section. The
method consists of a training phase and a search step. First,the shape model and pa-
rameterization, and the local classifiers for the appearance representation are learned.
During search they are used to locate and segment structuresin new image data.

Learning: During the training both geometry and appearance of the structure of interest
are learned.

• Givenn examples of the structure of interest location and the corresponding
images, we represent the shape variability by a diffusion wavelet shape model
as described in Chapter. 5.

• Using the same examples, we extract local features for each training volume
at different scales. For each landmark, at each resolution,we construct a
set of training samples containing local features and corresponding labels
which indicate if the position is the landmark location or the background.
Background voxels are chosen randomly in the volume except the particular
landmark positions for training.

• A cascade of classifiers that differentiates between background and landmark
on increasingly fine scales, and within more constrained neighborhoods is
learned. After the first level, we train the classifier only ina neighborhood of
the landmark position. This results in higher specificity within the vicinity of
the landmark position. To train for the fine local differentiation we take into
consideration only the neighborhood of every landmark candidate in each
training image. We train a classifier for each landmark and retain only the
ones with solid performance or wide-margins between the different classes.

Segmentation: Using both diffusion wavelet shape prior and appearance priors, we
perform the structure localization as follows: the processis initiated with the mean
shape, and proceeds in an iterative manner,
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• Perform a local search for the most probable landmark positions using the
trained classifiers,

• Constrain the solution using the diffusion wavelet coefficient constraints, and
repeat the previous search steps until convergence.

This results in landmark location estimates in the search image, that are based on the
appearance, and the shape constrained learned during the training phase.

6.5 Local Appearance Features CCA Search Scheme

6.5.1 Appearance Representation Using Local Features

We employ a search framework related to Active Feature Models (AFM
¯

) proposed in
[Langset al., 2006], where the authors introduce a local descriptor based on steerable
filters. The approach is related to Active Appearance Models(AAM

¯
) [Cooteset al.,

1998a], with the main difference that AFMs
¯

describe appearance by means of local fea-
tures, and infers model updates during search by means of canonical correlation analysis
(CCA), which has advantages given noisy data. CCA-AAMs are closely related, but
use the full appearance representation similar to AAMs. Thebenefit of the method is
considerable in the presence of complex data, like muscle data, where large parts of the
variation within the muscles have low relevance for landmark localization and a small
training set has to compromise a decent representation of the texture in the model.

We utilize a Gabor jet with frequencies{0.3, 0.6, 0.9} and directions
{0, π/4, π/2, 3π/4} to describe the local texture at the landmark positions. During
training we learn the relation between landmark displacements and the corresponding
texture feature change by CCA: model parameters are perturbed randomly generating a
large number of displaced model instances. A functional relation is then learned from
the resulting feature vectors describing local textureG and the corresponding model
parameter displacement by Canonical Correlation Analysis(CCA) δp. We generate a
set of synthetic images by perturbing the optimal parametervector, i.e.,r (popt + δp).
The vectorpopt is computed by mapping the training image texture and shape into the
model eigenspace, whereδp elements are randomly drawn from uniform distributions
in the interval[−1, 1] standard deviation. Consequently we obtainm feature vectors
with m corresponding parameter displacement vectors.
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GivenP ∈ R
q×m the set of random displacement vectors, andG ∈ R

p×m the se-
ries of relative feature vectors, we are able to execute CCA and compute the canonical
factors of these signals. Through this factor analysis we will obtain the following lin-
ear combinationsWg = (w1

g, . . . ,w
k∗

g ) andWp = (w1
p, . . . ,w

k∗

p ), respectively, where
i = 1 . . . k∗ ≤ k.

Afterward regression is applied on the leading canonical projectionsGproj = WT
g G

as well asP. These projections are then used to compute thep × k∗ transformation
matrix l = PG

†
proj, whereG†

proj = (GT
projGproj)

−1GT
proj.

6.5.2 Diffusion Wavelet Shape Model Search by Canonical Correla-
tion Analysis

During search, local features are extracted at the current landmark position estimates.
Based on the relation learned by CCA, according diffusion wavelet shape model param-
eter updates are performed . This results in an iterative search approach, that converges
to the landmark positions, based on the local appearance, and constraint by the diffusion
wavelet shape model.

At each iteration the new prediction for a model parameter update is generated at each
iteration, as a substitute of the one calculated in Equation. (6.8). Indeed the new predic-
tion δppredicted can be obtained asδppredicted = lrproj whererproj = WT

g rcurrent. As
Rcca = lWT

g can be pre-computed during training the final formulation ofthe prediction
function as following

δppredicted(rcurrent) = Rccarcurrent, (6.20)

Our segmentation framework is summarized as shown in Fig. 6.3

6.6 Experimental Results

To assess the segmentation accuracy, we combined modeling methods detailed in the
previous chapters and the listed search methods. Model searches are initialized by a
displacement equal to the mean configuration±10% of the mean volume; We carried a
leave one out strategy in order to investigate the association behavior.



6.6. EXPERIMENTAL RESULTS 123

Figure 6.2 —DW-CCA Methodology.

Figure 6.3 —Segmentation Framework.
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6.6.1 Image-based Search

To assess the search behavior we compare our method with a standard Gaussian shape
model search in an active shape model search approach. We usean even sampling of
the object surface, and gradients in the volume as texture description, and a sparse shape
model as proposed in[Essafiet al., 2008]. The latter uses a similar appearance model to
the one used in this section, and allows for the assessment ofthe effect of replacing the
multivariate Gaussian landmark model, with the diffusion wavelet shape model. The er-
ror measure is the mean distance of the model landmarks between standard of reference
and segmentation result Figure. 6.4. This gives also an indication of the displacement
along the surface, which is relevant if the result is used fornavigation. Models are ini-
tialized with minimal overlap to the target shape, and the accuracy of the final result
was quantified by the mean landmark error between ground truth annotation and search
result. For the quantitative comparison, results in Fig.(6.4) clearly show how the dif-
fusion wavelet model outperforms the sparse model with standard parameterization for
both anatomical data sets, with for example a mean value of 10.97 voxels for diffusion
wavelet model over 13.72 error voxels for the sparse model inthe calf data.

The diffusion wavelet model is able to recover the shape withsuperior accuracy. In
the muscle data the standard search approach failed due to the ambiguous texture and
local shape variability in large regions of the target shape. In Fig.(6.5) examples for
standard, sparse model[Essafiet al., 2008], and multi-scale diffusion wavelet based
search are depicted. Furthermore the diffusion wavelet shape prior is significantly better
than the local Gaussian prior. Note that one of the importantpoints that distinguishes
our methodology from robust ASMs, is that we learn the distribution of both image and
shape information during the training phase to optimally exploit the anatomical prop-
erties of the data. This is not the case for robust ASMs which for a given sampling
consider a subset of the control points according to the observed image during search. In
a typical segmentation scenario, our method runs approximately 56 seconds in average
with non-optimized code implemented in Matlab 7.5, on a 2GHzDELL Duo Computer
with 2Gb RAM.

6.6.2 Local Appearance Features CCA Search

To evaluate the shape representation of the our model, we assess two measures: 1. re-
construction accuracy, and 2. search performance. The goalis to understand how the
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Figure 6.4 — Boxplots of (a) Heart and (b) Calf Search Segmentation. Landmark Recon-
struction Error (voxel) after finishing search phase, with comparison between three different

search models; (1) our approach, (2) sparse model and (3) standard gaussian model.

hierarchical modeling based on the diffusion kernel affects the reconstruction of the mus-
cle. We compared the reconstruction error for Gaussian shape models, and the proposed
diffusion wavelet modeling. The current strategy of combining the diffusion wavelet
shape representation and an AFM appearance model strategy outperforms the standard
search method, based on an even sampling of the object surface, and gradients in the
volumes. The accuracy of the final result was quantified by themean landmark error be-
tween ground truth annotation and search segmentation result of the muscle, as well as
the DICE similarity measure coefficient (See Figure. 6.8). The calculated mean distance
gives in addition an indication of the displacement along the surface, which is relevant
if the result is used for navigation. Models were initialized with minimal overlap to the
target shape.

Moreover, one of the main goals is to evaluate how far the diffusion wavelet model is
able to detect the local shape variations based on diffusionkernel. In term of quantitative
results the reconstruction error between the diffusion wavelet model and the reference
model is calculated as an average surface error for all test shapes which gives us 2.1277
voxel for the Gaussian model and 0.1485 for the diffusion wavelet method. In Fig 6.6
the reconstruction of the projected shape model is depicted, this reconstruction starts
from the projection of the diffusion wavelet coefficients inrespectively the first and the
last level, and then extracting a new subset of coefficients from the eigenvectors that
constitutes 99% of the variation in the correspondant level.
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To keep the variation in reasonable limits, the shape parameters are also restricted to
±3
√

λi. During the reconstruction experiments we were also able tocheck the effects of
each eigenvector of any scale on the rate error.

Regarding the muscle data our approach was able to recover the shape with superior
accuracy, in the meanwhile the standard search approach failed due to the ambiguous
texture in large regions of the target shape. In Fig 6.7 one can visualize an example
of comparison between standard and active feature model search. It is interesting to
note that with the help of image support based on local texture descriptors, the method
performs better for muscle segmentation due to a restriction to more relevant information
being used for regression and fitting.

6.6.3 Appearance Classifier Search

To assess the performance of our approach, we consider a dataset that includes 25
CT volumes of the heart, with an approximate voxel spacing of1.5 mm, for which 90
anatomical standard of reference landmarks, and a set of1451 control points for the
left ventricle was available, in addition to the ground truth segmentation from experts
concerning the diastole as well as the systole.

We have run our algorithm in a leave-one-out cross validation fashion. For the dif-
fusion wavelet building part, we obtain 9 diffusion waveletlevels of decomposition for
the shape prior. As for the initialization of our framework,we used the mean shape
displaced by a random translation of30 mm.

To evaluate the efficiency of our method, we computed two error measures: (i) the
Hausdorff distance revealing the maximum error between thestandard of reference and
our model reconstruction, as well as (ii) mean distance error of the detected landmarks.
In Fig.6.9.a, one can see that the Hausdorff distance error decreases with an increasing
number of diffusion wavelet levels used for reconstruction. When we consider the mean
reconstruction error over all data, we reach a distance of 2.2313 voxel in the image for
the finest level, while as for the coarsest level we obtain 2.7073 voxel. The comparison
of detection results for different numbers of levels used during reconstruction can be
seen in Fig.6.9. Note that diffusion wavelets have been shown to outperform standard
Gaussian models in terms of search error in[Essafiet al., 2009a] on muscle MRI data.

During the search validation experiments, we consider a multi-resolution approach
for each landmark patch which goes from 5*5 pixels to 20*20 pixels in 4 steps. We
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obtain 200 landmarks candidates, for 15 training hearts and10 testing examples. Exper-
iments were carried out using Gentle Adaboost, which is adequate to deal with a large
number of negative examples as well as the rather limited size of our training set. In the
quantitative assessment of the search/segmentation algorithm explained in Sec.6.3, we
obtain a lowest error of 4.72 voxel between ground truth and relative segmented volume.
In a typical segmentation scenario, the method takes approximately 68 seconds in av-
erage through non-optimized code implemented in Matlab 7.5, on a 2GHz DELL Duo
Computer with 2Gb RAM. One should note here that we are working toward search in
very large data sets, while searching for small complex structures, thus the efficiency
of gradient descent of ASM is limited. In an ideal case one would combine the trade
off between the reconstruction accuracy and the classification error to choose the best
candidate for the search segmentation.

6.7 Contributions

In this chapter we detail three different search schemes fordiffusion wavelet shape prior
models: 1. A search based on an image based local appearance representation analogous
to the search discussed in Chap.4, 2. a search scheme based ona local appearance repre-
sentation by classifiers, and a hypothesis selection schemebased on the shape prior, and
3. a search scheme based on local features, and the inferenceof the model parameters
based on CCA. In accordance to the results, our proposed strategies have proven to be
accurate and suitable for medical images treatment.

Undoubtly, there still is a huge variety of feature sets and classifiers that could be in-
vestigated, and in the same aspect other feature extractionand selection techniques could
be evaluated. A comparison framework could represent an interesting future direction.
The main objective remains to formulate the segmentation problem as an inference task
based on data driven hypothesis, and shape prior constraints.

We conclude that the proposed search approaches are able to use the diffusion wavelet
shape prior effectively. Together with MDL-based landmarkplacement during learning,
they present a framework to model shape and appearance of anatomical structures. The
particular advantages of the proposed approaches are the adaptability to the distribution
of informative image content, and a multiscale shape representation, that uses a param-
eterization learned from the training data to optimally represent the shape variation.
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These characteristics are particularly relevant for the computer based analysis of
anatomical structures that exhibit complex shape variability, cannot be parameterized
sensibly by an a priori chosen reference manifold, and are only partially well discern-
able in the medical imaging data.

The main concept proposed in this chapter is taking advantages of both the idea of
sparse representation and optimal image features for shaperepresentation integrated in
a global classification scheme :

Training Based on an initial set of landmarks, we assess first the discriminative power
of the appearance at each landmark position (Appearance), and second the recon-
struction contribution / shape model redundancy of each landmark.

Search We perform a coarse to fine search - starting with a global search on a small
number of highly discriminative landmarks / transitioningto local fine search.
Search is classifier based as described above.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.5 — Model search result for Heart muscle (upper row) and Calf muscles (down
row). Data in green: standard of reference segmentation, inred: search results. For (a, d, g)
standard gradient search approach, while (b, e, h) represent sparse shape models and finally

(c, f, i) diffusion wavelet model.
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(a) (b)

Figure 6.6 —Diffusion Wavelets Model reconstruction. Data, green: standard of reference
segmentation, red: reconstruction result for a. finest scale and b. coarsest wavelet scale.

(a) (b)

Figure 6.7 — Search Comparison: Model search result for T1 MRI calf , green: “gold
standard” segmentation, red: search results. (a) standardgradient search approach and (b)

active feature models search.

(a) (b)

Figure 6.8 — Results of the segmentation using the DW-AFM model. (a) Boxplots of the
Dice Similarity Coefficients Measure and (b) landmark error(voxel) after finishing the search

phase over the whole data set, with (1) our current approach and (2) standard model.
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(a)

(b) (c)

Figure 6.9 — Multiscale Diffusion Wavelets Reconstruction. (a) Hausdorff Error Distance
(in voxel) of reconstructed heart at each diffusion scale for all data in the training set. (b)
Data, green: ground truth segmentation, red: reconstruction result for finest scale and (c)

coarsest wavelet scale.

(a) (b)

Figure 6.10 —Model search result for Heart muscle. Ground truth in green,in red: search
results. (a) standard Gaussian search approach, and (b) Segmentation based on Image Clas-

sifiers.





CHAPTER

7 Robust Sparse Wavelet
Enhanced Modeling

“ Le génie, c’est l’enfance retrouvée à volonté “

Baudelaire
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7.1 Introduction

In the previous chapters, we have first introduced a model based on sparse shape and
appearance representation. Following this, we have explained how one can use diffusion
wavelets to represent shape variation in an efficient manner. Both approaches are related
to the assumption that one can observe an underlyingtopologyof the shape variability
during learning. In Chapter. 4, we have used it to find an optimal sub-set of informa-
tive landmarks. In Chapter. 5, we have defined the domain on which the wavelets are
parameterized according to this topology.

In this chapter we introduce a method for the reconstructionof missing data in a
diffusion wavelet shape model framework. By this we bring the two approaches together:
the parameterization by means of diffusion wavelets, and the reconstruction of shapes
from a subset of landmarks. There are two aspects behind thisidea:

1. One can perform robust model fitting, by identifying outliers, and excluding them
from reconstruction,

2. One can employ a sparse model based on a sub-sampling of landmarks.

Robustness is a crucial issue in computer vision and shape modeling. It aims to
guarantee that shape analysis and reconstruction are robust to noise, occlusions and clut-
ter. We will describe how to detect such outliers during diffusion wavelet shape model
search, and how to reconstruct the shape based on the remaining reliable landmarks.

The second novel aspect is the building of Sparse Diffusion Wavelet Models based on
the same concept: imputation.

We will name our approachR-SWAM standing for aRobustSparseWAveletModel.

The proposed approach aims at offering a high flexibility regarding types of distur-
bances that can be handled. The robustness and performance of theR-SWAM algorithm
is evaluated on the same data sets as the previous algorithms, to allow for comparability
of the results.

In the first part of this chapter we depict the related work of our method, then in
Section. 7.3 we detail the different steps of theR-SWAM framework. Finally we validate
the method on our medical data set.
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7.2 Related Work

An important issue of shape modelling and the capturing of small local deformations typ-
ical for muscle data is the modelling of the shape variation.A particular aspect relevant
when performing imputation and reconstruction with wavelets, is the lifting scheme. The
wavelet lifting scheme consists in decomposing wavelet transforms into a set of stages.
A comprehensive introduction is given in the work of[Heaton and Silverman, 2008] who
focus on a wavelet lifting scheme based imputation method using sparse representation
of a surface in a wavelet/lifting scheme basis. We were indeed inspired by the iterative
wavelet imputation described by the authors. The idea of

Figure 7.1 —Wavelet Lifting Scheme.

The original idea behind the lifting scheme[Schröder and Sweldens, 1995] is to start
from one basic and simple multi resolution analysis, and drive the construction of a new
and more efficient one. Consequently either the new basis functions are smoother or the
wavelets possess more vanishing moments. In fact the lifting enables to build a basis in
a fully biorthogonal framework. This scheme guarantees a finite and small support for
all the bases, as well as more performance regarding the wavelets.

Several approaches were reported in literature to make Active Appearance Model
more robust, such as[Beichel et al., 2005] who developed a robust AAM matching
algorithm to resolve problems of gross disturbances in medical data.
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7.3 Wavelet Enhanced Sparse Modelling

Our goal is to describe how a sparse model framework can be augmented with diffusion
wavelet concept to reduce model complexity in one part, but also to successfully cope
with large medical data sets.

7.3.1 Reconstruction of missing landmarks in a diffusion wavelet
shape model

Similarly to our previous shape models approaches, we startwith a Point Distribution
Model, with full landmarks describing our data. Let us definethat form landmarks the
positions,Vi = {xi

1,x
i
2, . . .x

i
m}, are known inN training imagesI1, I2, . . . , IN . That

is, our shape knowledge comprisesV = {V1,V2, . . . ,VN}, wherexi
j ∈ R

d, and we
call Vi ∈ R

d×m a shape.

Then, let us assume that we have a subsampled set of the initial landmarks, with;

V̂ = {V̂1, V̂2, . . . , V̂n}. (7.1)

whereV̂i ∈ R
d×m′

are the representations of the full shapesVi in the training set,
with m′ ≪ m. V̂i consists of a sub set of the landmarks defining the shape. Thiscan be
the result of one of the followings causes:

1. A sub-sampling procedure as described in Section. 4.5.

2. Missing landmarks due to corrupted, noisy or outliers data.

The main goal now is to try to predictVi from V̂i, however this time through the use
of the diffusion wavelet models.

As we have already built the the diffusion wavelet treeΦ of our complete training set
(as described in Section. 5.4), we use it to represent the subsampled test volume. We
calculate the diffusion wavelet coefficientΓŜi

on the deviation̂Si from the mean of the
aligned shapes, Let us denote byF0 the set of fixed landmarks andM0 the missing ones
in the subsampled shape, corresponding to;
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Figure 7.2 —Overview of theR-SWAM Framework.

Ŝi = F0 ∪M0 (7.2)

and then obtain the following diffusion wavelet coefficients for the examplêSi,

ΓŜi
= Φ−1Ŝi (7.3)

Afterward, we imputate the sparse diffusion wavelet coefficients,Γimput

Ŝi

, by project-
ing them into the original PCA space of the full diffusion wavelets training, i.e., the
eigenvectorsΣ = {σj}j=1...K , and the corresponding eigenvaluesΛ = {λj}j=1...K .

Once we finish the imputation step, we are now able to reconstruct the subsampled
shape as following:

Ŝrec
i = ΦΓ

imput

Ŝi

(7.4)

However to optimize the reconstruction, we will take into consideration the new re-
constructed valuesF1 relative to the positions of the original fixed landmarksF0.
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Ŝrec
i = F1 ∪M1 (7.5)

We will iterate then this process, until the reconstructionerror between the original
fixed landmarksF0 and the fixed reconstructed onesF1 reaches a certain thresholdǫ.

Finally the reconstructed shape is obtained by;

V̂ p
i = V̄ p + ΦΓimput

Ŝi

(7.6)

7.3.2 Sparse Diffusion Wavelet Framework

Instead of local multivariate Gaussians, as in Chapter. 4, the shape variation observed in
a training set of shapes is represented with a diffusion wavelet shape models.

The approach proceeds in the following steps:

1. Consider a set of training volumes, and correspondences across the examples for
a set of landmarks.

2. Learn a diffusion wavelet model from the complete set of landmarks

3. Choose a sparse sub set of landmarks modeling analogouslyto the approach de-
scribed in Chapter. 4.

4. Estimate diffusion wavelet coefficients based on the sparse point set of during
search volume.

5. Perform the robust reconstruction of the entire model as described in Section.7.3.1.

The above described framework is equivalent to determine the diffusion wavelet co-
efficients from an incomplete set of points. However those points will not be chosen
randomly, but established through the Sparse Shapes Model.Obviously a robust version
could always be considered, starting from RANSAC points (”RANdom SAmple Con-
sensus"), one investigates how well generated diffusion wavelets fits the ground truth
and then we can choose those which have the most support i.e. which estimate most
points.
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7.4 Experimental Results

In this experimental validation section, we evaluate the multiscale shape prior based on
a shape reconstruction task form a subset of landmarks. The prior is learned during the
training phase from a set of examples, and the full set of landmarks. Afterward we fit
an incomplete test shape with the prior so as to estimate how close a reconstructed test
shape is to the ground truth.

We then validate our approach on a set of 25 CT volumes of the heart, with an approxi-
mate voxel spacing of 1.5 mm, for which 90 anatomical standard of reference landmarks,
and a set of726 control points for the left ventricle was available, also with available
ground truth segmentation from experts concerning the diastole and the systole.

We test the diffusion wavelet model on the sparse set of landmarks obtained as de-
scribed in Chapter. 4. We calculate the residual error between full diffusion wavelet
coefficients and altered ones, the result is shown in Figure.7.3.

We compute the mean error distance in order to calculate the discrepancy between the
ground truth segmentation and the reconstructed result. This distance will then measure
boundaries of both volumes. In Table.(7.1), we report errors of diffusion wavelet models
and R-SWAM technique.

Figure 7.3 —Selection of residuals and their effect on diffusion wavelet projection

In Figure. 7.4 different iterations of the sparse diffusionwavelet reconstruction of
a subsampled heart volume is shown. One can notice that the predicted shape of the
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R-SWAM Diffusion Wavelet
10% Missing Landmarks 0.264 6.244
50% Missing Landmarks 0.313 9.328

Table 7.1 —Comparative table results between Diffusion Wavelet and R-SWAM, over the
reconstruction landmark error between the ground truth andthe reconstructed sparse volume

of the left ventricle muscle.

R-SWAM is improving with every iteration, leading to the minimization of the recon-
struction error rate. It’s interesting to note that regarding the figure results as well as
numeric values, that our robust technique is able to retrieve a sparse landmarks shape, in
an even better way than conventional methods.

To investigate the influence of different amounts of missingdata on the robust proce-
dure, we performed a comparison of R-SWAM with the standard DW model on different
rate of sparse missing landmarks which were replaced by noise. Clearly the standard
DW model fails in reconstructing the shape. The result can beshown in Figure. 7.5.
As demonstrated in the state of the art, experiments prove that standard Gaussian model
does not handle missing landmarks or outliers well. Obtained results demonstrate that
robust diffusion can overcome this kind of drawbacks.

Similarly to the previous experimental validation, this algorithm runs on a Matlab 7.5,
on a 2GHz DELL Duo Computer with 2Gb RAM.

7.5 Contributions

In this chapter, we proposed to extend the framework proposed in the two previous chap-
ters. We introduce a reconstruction algorithm, that can estimate the diffusion wavelet
shape model coefficients from a subset of landmarks. That is the model can deal with
missing landmarks, that are either due to detected outliers, or to a sparse subsampling of
the landmarks analogously to Chapter. 4. By using both the diffusion wavelet and sparse
modeling as shape representation, we are able to take advantage of the decomposition
space on the one hand and sparse decomposition on the other hand.

A part from handling the missing landmarks issue, and offering hierarchical decom-
position, our technique is general in the sense that it offers the advantage of being suit-
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able to any medical acquisition modality technique and to any anatomical structure.
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(a) iter=1 (b) iter=7

(c) iter=11 (d) iter=15

Figure 7.4 —Several Iterations of Sparse Diffusion Wavelet Reconstruction.
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(a) Non robust Diffusion Wavelet Model

(b) 10% of Missing Landmarks (c) 50% of Missing Landmarks

Figure 7.5 — (a) Non robust Diffusion Wavelet Model Reconstruction on noisy data. Com-
parison between R-SWAM reconstruction for respectively (b) 10% and (c) 50% of sparse

missing landmarks.





Conclusion

“If we knew what it was we were doing, it would not be called research, would it?”

Albert Einstein
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7.6 Contributions

In this dissertation, two knowledge-based segmentation frameworks for medical imag-
ing data are proposed. The frameworks tackle questions regarding the optimal modelling
of anatomical structures and an efficient search in ambiguous image data: 1. They cope
with heterogeneous distributions of salient image features that can be used during lo-
calization and segmentation. 2. They use the shape variability and its redundancies
observed in the training set optimally to build compact and sparse models, 3. They learn
an adaptive parameterization of the shape variation modeling domain, that can is learned
form the training data, instead of being imposed following apriori assumptions. The
medical background is the segmentation of muscles in MRI data, a problem that poses
the above mentioned challenges. The two approaches are:

• Sparse shape modelsadapt to heterogeneous distributions of redundancy in the
shape variation and sparsely distributed distinctive texture in the data. In contrast
to existing approaches they use the statistical modeling and texture behavior to
derive a sparse representation and reconstruction mechanism.

• Diffusion wavelet shape priorsare a segmentation framework based on diffu-
sion wavelets and local appearance classifiers. The conjunction of the diffusion
wavelet constraint with a search method based on a GentleBoost classifier leads to
an effective segmentation scheme.

Sparse shape models obtain a sparse model of objects or anatomical structures that
takes the local statistical modelling and appearance behavior in the training set into ac-
count. The model based segmentation is based on a sparse set of landmarks that can
be uniquely identified in new data during search. The model isbuilt based on a set of
training examples for which expert annotations are available. It integrates knowledge
about local appearance, shape variability, and the ambiguity of image data to achieve a
segmentation performance equal to or superior to a medical expert.

During search for structures in new data, the model is used with a patch based local
appearance representation to locate and segment objects. The proposed representation
can be employed with other shape modeling and search methods. The formulation based
on model compactness makes a transfer of the shape behavior mapping to other models
straightforward. A comparison of the reconstruction and search behavior with standard
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shape models that neglect these properties and represent objects regardless of the reli-
ability and complexity of shape and texture behaviour in thetraining population shows
clear advantages of this strategy.

Diffusion wavelet shape priors are a multi-scale shape modeling framework based
on a diffusion wavelets shape representation. The method takes advantage of the subtle
inter-dependencies in training data, by clustering coefficients based on correlation, and
representing the topology of the structure by a diffusion kernel, instead of a fixed pre-
defined manifold. We are using the orthomax criterion which is suitable for building
sparse representations - particularly relevant in the caseof the regions and pathologies
studied in the thesis - leading to localized modes of variation an optimal subdivision
of the shape parameterization. A segmentation framework based on diffusion wavelets
and local appearance classifiers allows to use the model during search for anatomical
structures in new data. The conjunction of the diffusion wavelet constraint with a search
method based on a GentleBoost classifier leads to an effective segmentation scheme
that can deal with ambiguous appearance and complex structures. We have shown that
in the context of anatomical structures, the diffusion wavelet transformation is able to
accurately and efficiently detect the locations and spatialscales of shape variations.

Finally a scheme for the reconstruction of partial shapes bymeans of the diffusion
wavelet shape prior is introduced. It is the basis for robustsearch approaches, and for
a sparse subsampling of the most informative landmarks and asubsequent reconstruc-
tion of the entire shape. The proposed approaches contribute a more flexible shape and
appearance model learning framework to the line of researchlargely initiated by the in-
troduction of active shape models. They make use of the information learned from the
training set, by learning not only the variation of the observed shapes, and appearance,
but also an optimal parameterization of the shape model. Diffusion wavelet shape pri-
ors can be viewed as an extension to the work on spherical wavelet shape models[Nain
et al., 2007] towards shapes without a topology known a priori. Instead ofdefining a
topology by a reference manifold, we learn a diffusion kernel that defines locality. The
validation of the localization of two complex medical data sets shows promising results
indicating the advantage of using such a learned model parameterization.
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7.7 General Limitations

The elements presented in this thesis carry on certain strengths and consistency, but still
have some limitations. One critical point in our framework consists in registering the
training volumes as a pre-processing step. We still have to investigate the sensitivity of
our approach to initialization variability, and capture range in large images, and its per-
formance when segmenting large compounds of anatomical structures. These questions
are more difficult in the case of the calf muscle data, where more investigation is needed
towards extending to the entire set of muscles..

7.8 Future Research

There remain challenges to the approaches presented in thisthesis. For future work one
can focus on the determination of the sparse model complexity, that takes the limited
training data into account to estimate a feasible number of parameters, and an integration
with model learning approaches, that learn the locations innon-annotated data and a
weakly- or unsupervised manner. Such experiments would require more data to achieve
and validate further improvement.

More efficient optimization techniques could be used in conjunction with our priors
to obtain a flexible and powerful paradigm representing/inferring shapes of arbitrary
topologies. The coarse to fine search, through objective function optimization could also
be seen more in depth. And still in the part of diffusion wavelets one can think about
different non linear prior estimation instead of pca/orthomax, such as kernel PCA for
example as described in[Dambrevilleet al., 2008]. Another attractive perspective is
the combination of the Diffusion Wavelet with the Discrete optimization presented in
[Besbeset al., 2009], where the authors explore Discrete MRF (Markov Random Fields)
for knowledge based segmentation.

A major line of future work is the integration of the proposedmethods, in a pathology
assessment framework for myopathies, for which the entire group of calf muscles has to
be modeled and assessed. We presented the application of theorthomax principle on our
data. Currently the technique presented is limited to the varimax criterion. We assumed
that similarly to[Leung and Bosch, 2007b] the results under other criteria will be anal-
ogous, because the reparametrizations are restricted by the variations of the training set.
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However in the future one would like to compare different orthomax criteria, and assess
their influence on the shape modelling.

An interesting option is to integrate segmentation and fiberclassification based on
DTI study[Neji et al., 2009] to a unified framework that allows for the computer-aided
assessment of the disease status and the comparison across subjects during follow up
examinations. The latter work refers to the application of the unsupervised learning
methods developed for muscle fiber clustering and feature extraction on diseased muscle
data. These methods were used to find characteristic features in the fiber trajectography
data, with high differentiation power between healthy and diseased tissue.

The proposed research program by AFM (French Association against Myopathy),
along with the achieved results, hold a great promise for thefuture. The project has great
potential value for the purpose of helping the diagnosis of muscular diseases, evaluating
in vivo the impact of treatments of myopathies by a non invasive method, or even more
generally exploring muscle structure through a novel, and most importantly non invasive
perspective. The prime aim remains to achieve the best possible accuracy for clinical
application, the quantitative assessment and treatment support of myopathies.
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