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Abstract

Nonlinear behavior of soft soils observed during strong ground motions is
now well established and the deployment of vertical arrays (i.e., borehole
stations) has contributed to detailed wave propagation analyses and the as-
sessment for quantitative physical parameters such as shear-wave velocity,
pressure-wave velocity and damping factors with respect to shear strain lev-
els. Despite the growing number of studies on this phenomena, its knowledge
is still recent and research on borehole station data remains an important
step toward the understanding of the complex in-situ behavior of soft sedi-
ments subjected to strong ground motions.

The purpose of this work is threefold. First, an inversion code by ge-
netic algorithm is developed in order to inverse borehole stations data via
the Thomson-Haskell propagator matrix method. This technique allows us
to validate the one-dimensional (1D) structure (e.g., shear-wave velocity,
damping factors) of a borehole in the linear elastic domain and to show
quantitative evidence of the nonlinear behavior of the soft sediments during
the 2005 Fukuoka Prefecture western offshore earthquake, Japan. Second,
the results of the inversion are used in order to test simple and advanced
constitutive laws using the Finite Elements Method. The results clearly
show that the bi-linear assumption of the simple constitutive law produces
unrealistic velocity and acceleration time histories. The use of the advanced
constitutive law leads to better results, however, the number of parameters
to be tuned in order to obtain results consistent with the observation is an
unavoidable obstacle. Third, in order to extend the study of site effects to
higher dimensions, 2D and 3D codes of the very efficient Spectral Elements
Method are developed and validated by comparing their results in the linear
domain with those obtained theoretically or with other numerical methods.

Keywords: site effects, inversion techniques, genetic algorithm, Thomson-Haskell propaga-

tor matrix, nonlinear soil behavior, equivalent linear method, Finite Elements Method, Spectral

Elements Method, paraxial approximation





Résumé

Le comportement nonlinéaire des sols observé lors des mouvements sismiques
forts est maintenant bien admis et le déploiement des puits accélérométriques
a permis des analyses détaillées de la propagation des ondes ainsi qu’une
évaluation quantitative des paramètres physiques tels que la vitesse de ci-
saillement et de compression des ondes et les facteurs d’ amortissements
en fonction de la déformation. En dépit du nombre grandissant d’études
sur ce phénomène, sa connaissance est encore récente et les recherches sur
les données de puits accélérométriques restent une étape importante vers la
compréhension du comportement complexe in-situ des sédiments soumis à
des mouvements sismiques forts.

L’objectif de ces travaux est triple. Premièrement, un code d’inversion
par algorithme génétique est développé afin d’inverser des données de puits
accélérométriques via la théorie des matrices de propagation de Thomson-
Haskell. Cette technique nous permet dans un premier temps de valider
la structure en une dimension (1D) (e.g., vitesse des ondes de cisaillement,
facteurs d’ amortissements) d’un puits accélérométrique dans le domaine
linéaire et dans un second temps de mettre en évidence de manière quanti-
tative le comportement nonlinéaire des sédiments lors du séisme de Fukuoka,
2005, Japon. Deuxièmement, les résultats de l’inversion sont utilisés pour
tester des lois de comportement simples et avancées en utilisant la Méth-
ode des Éléments Finis. Les résultats montrent clairement que l’hypothèse
bi-linéaire de la loi de comportement simple produit des séries temporelles
non réalistes en vitesse et en accélération. L’utilisation d’une loi de com-
portement avancée mène à de meilleurs résultats, cependant, le nombre de
paramètres ajustables pour obtenir des résultats consistants avec l’observation
est un obstable inévitable. Troisièmement, afin d’étendre l’étude des effets
de site à des dimensions supérieures, des codes 2D et 3D de la Méthode en
Éléments Spectraux sont développés et validés en comparant leurs résultats
dans le domaine linéaire avec ceux obtenus théoriquement ou via d’autres
méthodes numériques.

Mots Clés: effets de site, techniques d’inversion, algorithme génétique, matrice de prop-

agation de Thomson-Haskell, comportement nonlinéaire des sols, méthode équivalent linéaire,

Méthode des Éléments Finis, Méthode des Éléments Spectraux, approximation paraxiale
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Notations

We shall use boldface symbol (e.g., u, τ ) for vector and tensor fields, and
subscripts (e.g. ui, τkl) to designate vector and tensor components in a
Cartesian coordinate system.
Overdots are used to indicate time derivatives (e.g., u̇ = ∂u/∂t, ü = ∂2u/∂t2)
and a comma between subscripts is used for spatial derivatives (e.g., ui,j =
∂ui/∂xj). Moreover, we work in the infinitesimal strain framework.
The summation convention for repeated subscripts is followed throughout
(e.g., aibi = a1b1 + a2b2 + a3b3 = a · b) and frequent use is made of the
Kronecker symbol δij :

δij = 0 for i 6= j and δij = 1 for i = j

Latin Alphabet

b yield surface shape parameter of Cyberquake law
c fourth order tensor of the generalized Hooke’s law

cijkl
ijklth component of the fourth order tensor of the
generalized Hooke’s law

cH hysteresis scale factor
c cohesion

E(x) objective function
F layer matrix

Fext External force vector
f motion-stress vector, in Section 1.2

f body forces vector, in Section 1.1
fi ith component of body forces vector
f frequency
fc characteristic frequency of a source function
Fbb backbone curve function
G shear modulus
Gsec secant shear modulus



Gnp

Green tensor representing the nth component of a
displacement generated by a unit impulse in the p-
direction

Hobs observed spectral ratio
Hthe theoretical spectral ratio
i square root of minus one
iξ takeoff angle
Je jacobian of a spectral element
K stiffness matrix
Li ith layer of a soil column
M mass matrix
m moment density tensor
M0 seismic moment

Npar
i number of bit of the inverted parameter par

NMC
pop number of Monte Carlo population

NMC
ind

number of individuals in Monte Carlo population

NMC
bes

number of best individuals found in Monte Carlo pop-
ulation

Npop number of genetic algorithm population

Nind
number of individuals in a genetic algorithm popula-
tion

ni ith component of the unit vector normal to a surface
P propagator matrix
p ray parameter

Q quality factor
S surface of a solid
T traction vector
Ti ith component of traction vector
t time variable
u displacement vector
U discretized displacement vector
ui ith component of displacement vector
V volume of a solid
vα eigen vector of a matrix
v arbitrary virtual displacement

w constant weighting vector for the Thomson-Haskell
propagator matrix method, in Section 1.2

w shape function in the spectral elements method, in
Chapter 4



w weighting factor for numerical integration
wi ith component of the constant weighting vector
x x component of a Cartesian coordinate system
x vector of unknown parameters to be inverted
y y component of a Cartesian coordinate system
z z component of a Cartesian coordinate system

zref
reference level for the exponential for the Thomson-
Haskell propagator matrix method

Greek Alphabet

α P-wave velocity
β S-wave velocity
β∗ complex S-wave velocity

β
plastic compressibility parameter of Cyberquake law,
in Table 3.1

β Newmark integration parameter, in Equation 4.5 only
ǫij ijth component of strain tensor
η vertical slowness for S waves, in Subsection 1.2.2
η viscosity of a material, in Subsection 1.2.3
η local coordinate of the reference square, in Chapter 4
δ dip angle
∆t time step
γ shear strain
γ Newmark integration parameter, in Equation 4.5 only

γela,his,mob
domain of elasticity, hysteresis and mobilisation of Cy-
berquake law

λα eigenvalue associated to the eigen vector vα
λ Lamé modulus
λ rake angle, in Chapter 4

λmin
Minimal wavelength to be accurately propagated in a
numerical model

µ Lamé modulus, i.e., shear modulus
µ∗ complex shear modulus
µsec secant shear modulus
νj jth component of the fault normal vector
ν Poisson ratio
ω angular frequency
ϕ internal friction angle
ϕs strike angle



ψ dilatancy angle

π
mathematical constant whose value is the ratio of
any circles circumference to its diameter in Euclidean
space

θ incidence angle of an incoming wave
ρ density of a medium
σc0 critical initial stress of Cyberquake law
τij ijth component of stress tensor
τs time shift of a source function
ξ vertical slowness for P waves, in Subsection 1.2.2
ξ damping ratio, in Subsection 1.2.3, Chapter 2 and 3
ξ local coordinate of the reference square, in Chapter 4
ξ general position on a fault



Introduction

The world of seismology has experienced a remarkable evolution during the
twentieth century. The pioneer works of Gutenberg, Lamb, Rayleigh or
Richter followed by those of Aki, Bouchon, Kanamori, Richards and many
others gave birth to strong fundamental basis used worldwide everyday to
determine earthquakes’ magnitude, source effects, path effects and site ef-
fects.

This thesis, grain of sand within the Earth created by those seismologists,
mainly deals with the site effects generated by the shallow soil structure as
shown in Figure 1 and with numerical methods used to tackle two or three-
dimensional problems.

Site effects are of great importance in seismology and earthquake engi-
neering because they modify the frequency content of the incident wave and
lead to an amplification of the wave propagating inside the site (e.g., soft
sedimentary bassin). As a results, the damage pattern of the engineering
structures is often linked to the subsurface geology. For a long time, site
effects during strong ground motions have been considered as linear elastic
in term of the stress-strain relation by the seismologists. In the meantime,
geotechnical earthquake scientists have demonstrated by laboratory tests
that the stress-strain relation for soft soils could be nonlinear for large strain
levels. Nowadays, both communities agree to say that during strong ground
motions, nonlinear site effects are present (in order to fix mind, an overview
of the domains of behavior for soft soils is shown in Figure 2 (e.g., Ishihara,
1996)).

With the deployment of vertical arrays, detailed wave propagation anal-
yses and the assessment for quantitative physical parameters such as shear-
wave velocity, pressure-wave velocity and damping factors with respect to
shear strain levels are now possible through different inversion techniques.

The first part of this manuscript deals with inverse analysis methodology
to determine one-dimensional (1D) soil structure at borehole stations. The
second part deals with high performance numerical tools to simulate 1D/2D
and 3D site effects.

Chapter 1 exposes the fundamental theorems used in dynamic elas-
ticity; the mathematical model used to resolve the direct problem of plane
waves propagating in a stack of homogeneous layers; and finally, the genetic



2 INTRODUCTION

F
igu

re
1:

S
h
em

atization
of

seism
ic

w
av

e
p
rop

agation
from

sou
rce

to
site.



3

Figure 2: Domains of behavior of soft soils in function of the strain levels
(e.g., Ishihara, 1996).

algorithm method used to inverse model parameters by using borehole data.
Chapter 2 applies the inversion method by genetic algorithm in order

to quantify the nonlinear response (in term of observed equivalent linear pa-
rameters) of a borehole station based on a one-dimensional inversion during
the 2005 West off Fukuoka Prefecture earthquake.

Chapter 3 summarizes the different mathematical models used to rep-
resent the stress-strain behavior of cyclically loaded soils and simulates the
nonlinear response of the Fukuoka soil column by finite elements using a
simple and an advanced constitutive nonlinear law.

Chapter 4 verifies the proper development of 1D, 2D and 3D spectral
elements codes. The verification is done by comparing the numerical results
with the theoretical ones or with other numerical methods.





Part I
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Borehole Soil Structure





Chapter 1

Inversion of Borehole Soil
Structure: Theory

Inverse problems often occur in many branches of science and mathemat-
ics where the values of some model parameters must be obtained from the
observed data. By opposition to well-posed problems, inverse problems are
often ill-posed. A well-posed problem as defined by Hadamard (1902) is a
mathematical model of physical phenomenon which has the following prop-
erties:

1. a solution exists;

2. the solution is unique;

3. the solution depends continuously on the data, in some reasonable
topology.

Even if inverse problems may break the above-mentionned properties 2 and
3, it is still useful to solve them either to consolidate or refine some model
parameters obtained via in-situ or laboratory tests or to find mathematical
solutions which can then be discussed on a physical point of view.

Among the different inverse problems which exist in seismology (e.g.,
inversions of Spectral Amplitude of Surface Wave (SASW), H/V inversions,
source inversion, etc.), we tackle in this thesis the one used to quantify
site effects via borehole station installed in sedimentary basin whose depth
ranges from few meters to several hundreds of meters.

In the following, we present in Section 1.1 the fundamental theorems
used in dynamic elasticity, then the Section 1.2 exposes the mathematical
model used to solve the direct problem of plane waves propagating in a stack
of homogeneous layers and finally we present in Section 1.3 the genetic algo-
rithm method used to inverse model parameters by using borehole station
data.
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1.1 Fundamentals in Elastic Waves Propagation

Readers are referred to Aki and Richards (2002) to have a good grasp of
basic theorems in dynamic elasticity and waves propagation in the Earth.
We only remind without demonstration the fundamental equations which
are the cornerstone of this thesis.

To analyze the distorsion of a medium, whether it be solid or fluid, elastic
or inelastic, we use the infinitesimal strain tensor defined in a Cartesian
coordinate system (x1, x2, x3) as

ǫij =
1

2
(ui,j + uj,i), (1.1)

with ǫij the ijth component of strain tensor and ui the ith component of
displacement. A comman between subscripts is used for spatial derivatives
(e.g., ui,j = ∂ui/∂xj).

To analyze the internal forces acting mutually between adjacent particles
within a continuum, we use the concepts of traction and stress tensor related
by

Ti = τijnj , (1.2)

with Ti the ith component of the traction vector acting on the plane of
normal n, τij the ijth component of stress tensor and nj the jth component
of the unit vector normal to the surface where acts the traction T. We
note that in seismology, the stress tensor is often denoted by τ whereas in
geotechnical engineering or in mechanics of continuous media, it is denoted
by σ. We choose the seismological notation for this thesis.

To obtain the equation of motion of a general particle, we equate the rate
of change of momentum of particles constituting a volume V with surface S
to the forces acting on these particles as

∂

∂t

∫ ∫ ∫

V
ρ
∂u

∂t
dV =

∫ ∫ ∫

V
f +

∫ ∫

S
TdS, (1.3)

where ρ is the bulk density of the media.
By applying Gauss’s divergence theorem which gives

∫ ∫

S
TidS =

∫ ∫

S
τijnjdS =

∫ ∫ ∫

V
τij,jdV, (1.4)

we find for a general volume V that
∫ ∫ ∫

V
(ρüi − fi − τij,j)dV = 0. (1.5)

This integrand must be zero wherever it is continuous, otherwise a volume
V could be found that violates Equation (1.5), hence we obtain the equation
of motion of a general particle

ρüi = fi + τij,j . (1.6)
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The Equation (1.6) is the key equation for wave propagation. We note that
the spatial derivative here should be carried out using an Eulerian approach
because of the use of the Gauss’s divergence theorem in Equation (1.4).
However, as shown by Aki and Richards (2002, Chap. 2 Box 2.3), in seis-
mology, the distinction between Lagrangian and Eulerian approaches rarely
needs to be made since spatial fluctuations in the displacements, velocities,
accelerations, strains and stresses have wavelengths much greater than their
amplitude. Consequently, it makes no practical difference whether a spatial
gradient is evaluated at a fixed positon (Euler) or for a particular particle
(Lagrange), and differentation with respect to xj will henceforth be assumed.

If the medium is linear elastic, then the generalization of Hooke’s law can
be used to express the stress tensor as a linear combination of all components
of the strain tensor as

τij = cijklǫkl. (1.7)

Since both stress τij and strain ǫkl are second-order tensors, it follows that
cijkl is a fourth-order tensor which consists of 34 = 81 material constants.
Using the symmetries of the stress and strain tensors (i.e., τij = τji and
ǫkl = ǫlk), the number of 81 material constants is reduced to 36 under the
symmetric condition of cijkl = cjikl = cijlk = cjilk. Using the thermody-
namic argument (i.e., cijkl = cklij) the number of independent components
in c is reduced to 21. It can be shown (e.g., Jeffreys and Jeffreys, 1972; Chen
and Mizuno, 1990) that the most general isotropic fourth-order tensor has
the form

cijkl = λδijδkl + µ(δijδjl + δilδjk), (1.8)

with λ and µ the Lamé moduli. The stress-strain relation becomes

τij = λδijǫkk + 2µǫij , (1.9)

and the equation of motion presented in Equation (1.6) becomes

ρüi = fi + (λ+ µ)uj,ji + µui,jj . (1.10)

The linear elastic stress-strain relation of Equation (1.9) is however an
idealized behavior; the stresses and strains occuring within a propagating
wave can lead to irreversible changes in the microscopic structures of the
medium and dissipative work may also be done on grain boundaries. As a
results, wave amplitude attenuates through a variety of processes that can
be summarized macroscopically as ”internal friction”. The gross effect of
this internal friction is often summarized by the dimensionless quantity Q
in seismology or ξ in geotechnical engineering with the relation ξ = 1

2Q .
Details on wave propagating in an attenuating medium can be found in Aki
and Richards (2002, Chap. 5). A panel of the different methods used to
take into account this internal friction is exposed in Chapter 3 Section 3.1.
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These phenomena (irreversible changes and dissipative work) have been
clearly identified by laboratory tests (e.g., Seed and Idriss, 1970b; Seed et al.,
1986); and it is now recognized in seismology that during strong ground
motions, the stress-strain relation becomes nonlinear in soft soils (e.g., Chin
and Aki, 1991; Darragh and Shakal, 1991; Aki, 1993; Field et al., 1997; Su
et al., 1998; Cultrera et al., 1999; Frankel et al., 2002; Aki, 2003; Bonilla
et al., 2005; De Martin et al., 2010). This assumption was for long time
accepted by the geotechnical society and since the 90s, an atmosphere of
cooperation between seismological and geotechnical communities is visible
in order to better understand the complex soils behavior at the subsurface.

The different approaches developped in the geotechnical literature to
tackle more complex stress-strain relationships are exposed in Section 3.1.

1.2 Plane Waves in a Stack of Homogeneous Lay-
ers

1.2.1 Model’s assumptions

The mathematical model used in this thesis to solve the direct problem
of waves propagation in a sedimentary basin is based on two fundamental
assumptions.

• The first one is to consider the Earth (in our case, a sedimentary
basin) as a stack of welded homogeneous horizontal layers as shown
in Figure 1.1. This assumption is justified by two blind-prediction
experiments conducted by the IASPEI/IAEE Joint Working Group
on Effects of Surface Geology on Strong Motions showing that the
geological structure is more important than the model dimension (e.g.,
Cramer and Real, 1992; Mirodikawa, 1992). This assumption is very
acceptable for flat basins or in the middle of curved basins whereas it
becomes debatable close to the edges of basins as shown by Bard and
Gariel (1986).

• The second assumption is to avoid details of seismic source by consider-
ing only the case of a plane wave incident on the stack of homogeneous
layers. This assumption may be quite good in practice for investigat-
ing waves at great distances from their source. In Chapter 2 where we
study a strong ground motion (Mw = 6.6) using a borehole station,
this assumption is justified because the borehole station is located 24
km away from the epicenter.

Moreover, for the resolution of the direct problem, we consider the medium
as isotropic linear elastic governed by Equation (1.10).

The coordinate system associated with the mathematical model is shown
in Figure 1.1. The plane (x, z) is associated with the component ux and uz
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of the coupled P- and SV-waves. The y axis corresponds to the uncoupled
SH-waves of component uy.

For the steady-state plane waves solution of Equation (1.10) and the
explanation of the different types of waves present in the Earth (e.g., P-
wave, S-wave, Rayleigh wave, etc.), the reader is referred to Aki and Richards
(2002). The following subsection describes the mathematical model used to
solve the direct problem.

1.2.2 Thomson-Haskell propagator matrix method

The Thomson-Haskell propagator matrix method is a frequency domain
method due to Thomson (1950) and corrected by Haskell (1953) which
has been extensively used in surface-wave analysis. It is a special case of
the propagator matrix method introduced to seismology by Gilbert and
Backus (1966). The Thomson-Haskell method make use of motion-stress
equations in order to relate the motion-stress vector at depth z to the one
at depth z0 via the propagator matrix computed using the layers properties
between z and z0 (see Figure 1.1 for notation). It is worth noticing that
the Thomson-Haskell may suffer from numerical instabilities for anisotropic
media or Rayleigh wave modes (e.g., Harvey, 1981; Castaings and Hosten,
1994); but these instabilities can be eliminated.

The motion-stress equation is obtained by combining the equations of
motion with the constitutive relation in such a way that only first-order
depth derivatives of stress and displacement are needed.

For example, the equation of motion for the SH-waves case (with τyy,y =
0) which reduces to

ρüy(x, z, t) = τyz,z(x, z, t) + τyx,x(x, z, t) (1.11)

can be combined with the constitutive relation which becomes for SH waves
τyz = µ∂uy/∂z, τyx = µ∂uy/∂x to give the system

df

dz
= Af , (1.12)

with

f = f(z) =

(

uy
τyz

)

(1.13)

and

A =

(

0 µ−1

ω2(µp2 − ρ) 0

)

(1.14)

where ω is the angular frequency, p the ray parameter, t the time and ρ the
bulk density. The dependence in x and t of uy(x, z, t) is simply exp[iω(px−t)]
where i is the square root of minus one.

Equations of type df/dz = Af are coupled first-order differential equa-
tions whose solutions are well-known (e.g., Gantmatcher, 1959). If vα is the
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αth eigenvector of A and λα its associated eigenvalue (α =1, 2 for SH case);
then a solution of Equation (1.12) can be written as

f = vα exp[λα(z − zref )] (1.15)

where zref is a reference level for the exponential. The most general solution
f is a linear combination of the type

f = Fw (1.16)

where F is a matrix whose columns consist in solutions of type (1.15) and
w is a constant weighting vector.

The two eigenvalues of A are

λ1,2 = ±iω
√

1/β2 − p2 = ±η, (1.17)

where β is the S-wave velocity and η is the vertical slowness for S waves.
The corresponding eigenvectors are

(

1
±iωµη

)

. (1.18)

Hence, the general solution of Equation (1.12) for SH case is

f = Fw = (1.19)

(

exp[+iωη(z − zref )] exp[−iωη(z − zref )]
+iωµη exp[+iωη(z − zref )] −iωµη exp[−iωη(z − zref )]

)(

w1

w2

)

(1.20)

where the exp[+iωη(z − zref )] has the physical meaning of a downgoing
SH-wave and exp[−iωη(z − zref )] the meaning of an upgoing SH-wave (we
remember that the z-axis points downward as shown in Figure 1.1). F is
the well-known layer matrix in seismology.

The propagator matrix P(z, z0) relates the motion-stress vector at depth
z to the one at depth z0 as

f(z) = P(z, z0)f(z0). (1.21)

Thus P(z, z0) generates the motion-stress vector at z by operating on the
vector at z0. An interesting property of P(z, z0) is that

f(z2) = P(z2, z1)f(z1)

= P(z2, z1)P(z1, z0)f(z0).
(1.22)

Hence, for a layered medium as shown in Figure 1.1, the propagator matrix
P(z, z0) for zk−1 < z < zk can be written as

f(z) = P(z, zk−1)P(zk−1, zk−2) · · ·P(z1, z0)f(z0) = P(z, z0)f(z0) (1.23)
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Providing the fact that z and z0 are in the same homogeneous layer,

P(z, z0) = F(z)F−1(z0). (1.24)

For SH case with F(z) given by Equation (1.20),

P(z, z0) =

(

cos[ωη(z − z0)]
1
ωµη sin[ωη(z − z0)]

−ωµη sin[ωη(z − z0)] cos[ωη(z − z0)]

)

. (1.25)

For P-SV case, the layer matrix is given by

F = EΛ, (1.26)

with

E =









p 1 p 1
ξ −p/η −ξ p/η

2iωρβ2pξ iωρ(1 − 2β2p2)/η −2iωρβ2pξ −iωρ(1 − 2β2p2)/η
iωρ(1 − 2β2p2) −2iωρβ2p iωρ(1 − 2β2p2) −2iωρβ2p









(1.27)

and

Λ =









exp[+iωξz] 0 0 0
0 exp[+iωηz] 0 0
0 0 exp[−iωξz] 0
0 0 0 exp[−iωηz]









, (1.28)

where ξ is the vertical slowness for P waves equal to
√

1/α2 − p2, α is the
P-wave velocity, β is the S-wave velocity and z is equal to (z − zref ). The
propagator matrix for P-SV case is more complex than for the SH case and
the reader is refered to Aki and Richards (2002, Chap. 9, Box 9.1) for its
expression.

The Equation (1.21) is the key formula for 1-D wave propagation along
borehole sensors since, knowing layers parameters, it allows theoretical com-
putation of the free surface waveform knowing the downhole waveform or
vice-versa. As for inverse problems, the objective will be to come back to
the layers parameters knowing the free surface and downhole waveform.

The Thomson-Haskell theory also allows to deconvolve a wave recorded
at a point in order to come back to the incident wave at the borehole station
(i.e., the wave formed by the source and the path effects). Deconvolution
formulae for SH and P-SV problem are given in Appendix A.

Finally, it is interesting to note that for the different types of incoming
body waves on a horizontally layered medium, five spectral ratios can be of
particular interest, namely:

• the spectral ratio in the y-direction for an incoming SH-wave;

• the spectral ratio in the x-direction for an incoming SV-wave;
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• the spectral ratio in the z-direction for an incoming SV-wave;

• the spectral ratio in the x-direction for an incoming P-wave;

• and the spectral ratio in the z-direction for an incoming P-wave.

In practice, the incoming wave is often assumed to travel vertically so that
the theoretical spectral ratio for an incoming SV-wave in the x-direction is
equivalent to the spectral ratio for an incoming SH-wave in the y-direction.
The use of several spectral ratios for inversion of soil structure and incidence
angle of the incoming wave has been first performed by Satoh (2006).

1.2.3 Attenuation model for the Thomson-Haskell method

The above formulation was derived for a linear elastic stress-strain relation-
ship without attenuation. The addition of attenuation in the Thomson-
Haskell Method can be done by using the viscoelastic Kelvin-Voigt solid
which allows the use of damping through a complex shear modulus. A
Kelvin-Voigt solid (subjected to a one-dimensional vertically incident shear-
wave) has a stress-strain relationship of the form (in the SH case)

τyz = µγyz + η
∂γyz
∂t

. (1.29)

where τyz is the shear stress, γyz the shear strain, and η the viscosity of the
material. The viscous damping, by virtue of its mathematical convenience,
is often used to represent the dissipation of elastic energy converted to heat
but also to represent the hysteresis loop of soils under shear stress. For a
harmonic shear strain loading of the form

γyz = γ0 sinωt, (1.30)

the shear stress will be

τyz = µγ0 sinωt+ ωηγ0 cosωt. (1.31)

In the plane τ − γ, these two equations form an ellipse. The elastic energy
dissipated in a single cycle is given by the area of the ellipse as

Aloop =

∫ t0+2π

t0

τ
∂γ

∂t
dt = πηωγ2

0 . (1.32)

The damping ratio, ξ, is defined as the ratio of the elastic energy dis-
sipated in a single cycle (Aloop) to the peak energy stored in one cycle
(W = 1

2µγ
2
0) via a factor 1

4π . Thus

ξ =
1

4π

Aloop
W

=
1

4π

πηωγ2
0

1
2µγ

2
0

=
ηω

2µ
. (1.33)
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In order to make the damping ratio frequency independent, the equivalent
viscosity

η =
2µ

ω
ξ (1.34)

can be used. We note that in geotechnical engineering, the damping ratio is
noted ξ and is linked with the attenuation factor Q used in seismology by
the relation

ξ =
1

2Q
. (1.35)

For vertically incident SH-waves, the equation of motion simplifies to

ρüy(z, t) = τyz,z(z, t). (1.36)

Substituting Equation (1.29) into (1.36) with γyz = ∂uy/∂z leads to the
expression

ρüy(x, z, t) = µ
∂2uy
∂z2

+ η
∂3uy
∂z2∂t

. (1.37)

For harmonic waves, the displacements can be written as

uy(z, t) = Uy(z) exp[iωt] (1.38)

which, when substituted into the wave equation (1.37) yields the ordinary
differential equation

(µ+ iωη)
d2Uy
dz2

= −ρω2Uy (1.39)

or

µ∗
d2Uy
dz2

= −ρω2Uy (1.40)

where µ∗ = µ + iωη is the complex shear modulus. Using Equation (1.34)
to eliminate the frequency dependence, the complex shear modulus can be
written as

µ∗ = µ+ 2iξ (1.41)

and the complex shear-wave velocity as β∗ =
√

µ∗/ρ. An identical reasoning
for complex primary-wave velocity can be done.

The use of complex wave velocities in the Thomson-Haskell propagator
matrix method is a common way to take into account the damping in wave
propagation. The influence of the damping on waves propagation in the
frequency and time domain is shown in the Subsection 1.2.5.

1.2.4 Validation of the propagator code

The propagator code developped for inversion has been first validated with
Kawase’s code on direct problems (e.g., Kawase and Sato, 1992). Validation
tests consist in propagating plane P, SV or SH waves with different incidence
angles in the soil column presented in Table 1.1. Figure 1.2 to 1.7 compare
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amplitude and phase of spectral ratio taken between free surface and 65
meters depth. The agreement between the two codes is excellent. The
results are shown up to 20 Hz, however, the agreement is very good for
higher frequencies as well.

Table 1.1: Soil column used to compare this study’s propa-
gator and Kawase’s propagator. Damping factor (ξp or ξs) is
frequency dependent of the type ξ = ξ0f

−a

No. Depth P-wave S-wave ξ0 a Density
velocity velocity

(m) (m/s) (m/s) (g/cm3)

1 1 1195.3 150 0.05 0.4 1.80
2 2 1195.3 150 0.05 0.4 1.80
3 3 1195.3 150 0.05 0.4 1.80
4 4 1195.3 150 0.05 0.4 1.80
5 5 1203.2 151 0.05 0.4 1.80
6 6 1195.7 159 0.05 0.4 1.80
7 7 1210.7 161 0.05 0.4 1.80
8 9 1214.0 170 0.05 0.4 1.80
9 10 1676.5 197 0.05 0.4 1.80
10 11 1727.6 203 0.05 0.4 1.80
11 14 1699.5 226 0.05 0.4 1.80
12 15 1778.2 249 0.05 0.4 1.80
13 17 1798.1 361 0.05 0.4 1.80
14 19 1542.5 216 0.05 0.4 1.70
15 20 1635.3 229 0.05 0.4 1.70
16 21 1635.7 240 0.05 0.4 1.70
17 24 1574.4 231 0.05 0.4 1.70
18 25 1615.3 237 0.05 0.4 1.70
19 28 1729.9 331 0.05 0.4 1.90
20 30 1758.4 361 0.05 0.4 1.90
21 32 1719.5 368 0.05 0.4 1.90
22 34 1717.5 252 0.05 0.4 1.75
23 36 1729.9 331 0.05 0.4 1.75
24 37 1720.8 284 0.05 0.4 1.75
25 38 1775.6 331 0.05 0.4 1.90
26 39 1737.7 306 0.05 0.4 1.90
27 40 1729.9 331 0.05 0.4 1.90
28 42 1769.2 292 0.05 0.4 1.75
29 43 1711.3 262 0.05 0.4 1.75
30 45 1773.7 422 0.05 0.4 1.90
31 46 1789.2 405 0.05 0.4 1.90
32 47 1785.6 397 0.05 0.4 1.90
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Figure 1.2: Comparison of this study’s propagator and Kawase’s propagator:
y-component for a vertically incident SH-wave.
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Figure 1.3: Comparison of this study’s propagator and Kawase’s propagator:
y-component for a 40◦ incident SH-wave.

Table 1.1 – continued from previous page

No. Depth P-wave S-wave ξ0 a Density
velocity velocity

(m) (m/s) (m/s) (g/cm3)

33 48 1710.9 292 0.05 0.4 1.80
34 50 1665.9 342 0.05 0.4 1.80
35 51 1718.1 382 0.05 0.4 1.80
36 54 1845.3 508 0.05 0.4 1.95
37 55 1851.4 521 0.05 0.4 1.95
38 56 1778.1 495 0.05 0.4 1.95
39 65 2335.0 650 0.05 0.4 2.00
40 ∞ 2335.0 650 0.05 0.4 2.00
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PSV spectral ratio (X-component): incidence 20
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Figure 1.4: Comparison of this study’s propagator and Kawase’s propagator:
x-component for a 20◦ incident SV-wave.
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Figure 1.5: Comparison of this study’s propagator and Kawase’s propagator:
z-component for a 20◦ incident SV-wave.
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Figure 1.6: Comparison of this study’s propagator and Kawase’s propagator:
x-component for a 20◦ incident P-wave.
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Figure 1.7: Comparison of this study’s propagator and Kawase’s propagator:
z-component for a 20◦ incident P-wave.
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1.2.5 Influence of wave velocity, damping and incidence an-
gle on a spectral ratio

The influence on S-wave spectral ratios of the main parameters which govern
the wave propagation in the Thomson-Haskell method (i.e., S-wave velocity,
damping factors and incidence angle of the incoming wave) is investigated
in this subsection. We note that the P-wave velocity has no influence on
the S-wave spectral ratios. We also suppose that the thickness of the layers
is fixed; it is justified for a borehole station since the well log allows to
determine the thiknesses. This investigation will help

• to understand the discrepancy that could be seen between observed
and theoretical spectral ratios;

• to better constrain the parameters to be inverted;

• to choose an appropriate objective function (i.e., cost function) during
the inversion by genetic algorithm (cf. Section 1.3).

For this purpose, the soil column presented in Table 1.2 consists in five
layers with increasing S-wave velocity overlying a half space. The influence
of the S-wave velocity is investigated in the frequency and time domain by
increasing or decreasing the S-wave velocity of one layer and keeping the
other parameters to their reference value.

Table 1.2: Reference soil column used to investigate the in-
fluence of physical parameters on theoretical spectral ratios.

No. Depth P-wave S-wave Damping Density
velocity velocity factor

(m) (m/s) (m/s) (%) (g/cm3)

L01 10 173.2 100 1 1.8
L02 20 346.4 200 1 1.8
L03 30 519.6 300 1 1.8
L04 40 692.8 400 1 1.8
L05 50 866.0 500 1 1.8
L06 ∞ 1385.6 800 0 2.0

In the frequency domain, Figure 1.8 shows the influence of a decrease of
20 % of the S-wave velocity of the first layer on the SH spectral ratio taken
between the free surface and the depth 50 m (a vertical incidence is assumed
for the propagation). This figure exhibits three fundamental changes that
the S-wave velocity can produce on a spectral ratio; the S-wave velocity has
an influence on

• the location (along the frequency axis) of the resonant frequencies,
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Figure 1.8: Influence of the decrease of the S-wave velocity of the first layer
of Table 1.2 on the SH spectral ratio for a vertically incident wave.

• the amplitude of the resonant frequencies,

• the number of resonant frequencies in a given frequency range.

Moreover, when the S-wave velocity of a layer decreases, then, the location
of resonant frequencies is shifted to lower frequencies or remains unchanged
(i.e., a decrease of S-wave velocity cannot lead to an increase of the location
of the resonant frequencies). On the contrary, an increase of the S-wave
velocity of one or several layers leads to an increase of the location of the
resonant frequencies. To have a full grasp of the influence of all the layers
on each resonant frequency, a variation table that summarizes the amount
of change in the location of resonant frequencies with respect to a change of
S-wave velocity can be drawn as shown in Figure 1.9. Such a table allows
to visualize how much a soil layer can influence the location of a resonant
frequency. For example, we can see in Figure 1.9 that the layer L04 has
low influence on the location of the resonant frequency F04. On the con-
trary, L01 influences quite much this frequency. An interesting property of
a spectral ratio is also that the half space has no influence on the location
of the resonant frequencies; in other words, only the soil paramaters in be-
tween the points used to compute the spectral ratio have an influence on it.
This property can be seen mathematically from Equations (1.21) and (1.23)
showing that the link between the motion-stress vector at depth z with the
one at depth z0 is the propagator matrix computed only with soil parameters
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between depth z and z0. The same kind of variation table can be computed
to visualize the change in amplitude of the resonant frequencies.

In the time domain, the S-wave velocity has an influence on both the
amplitude and the phase of the wave travelling through the soil layers. How-
ever, this influence also depends on the fundamental frequency of the input
wave: if the fundamental frequency of the input wave is much lower than
the fundamental frequency of the soil column, then a small variation of the
S-wave velocity of a layer will not greatly affects the form of the output
signal (this is not true when the fundamental frequency of the input wave is
much larger than the fundamental frequency of the soil column since a small
change in S-wave velocity can greatly affect the higher resonant frequencies
of the soil column (cf. Figure 1.8)). As an example, Figure 1.10 shows an
ouput waveform at the free surface when the incoming wave from the half
space is a Ricker wavelet of order 2 with a pseudo-frequency of 5 Hz; Figure
1.11 represents the output of the same problem when the incoming wave
from the half space is a Ricker wavelet of order 2 with a pseudo-frequency
of 0.1 Hz.

The damping factors also have an influence on the shape of a spectral
ratio. As shown in Figure 1.12, an increase of damping reduces the amplitude
of the resonant frequencies. We note that small damping factors (i.e., smaller
than 30% or 40%) have no influence on the location and the number of the
resonant frequencies, however for very high damping factors, a small increase
of the location of the resonant frequencies can be observed due to the fact
that the damping factors contribute to the magnitude of the complex shear
modulus in Equation (1.41). Besides, as shown for the influence of S-wave
velocity, a variation table can be drawn to visualize how much the increase
of the damping in one soil layer can affect a spectral ratio.

In the time domain, the damping factors have mainly an influence on
the amplitude of the peaks of the time history if the damping is supposed
to be small enough (cf. Figure 1.13). We can also note that since in the
frequency domain, the damping factor ξi of the layer Li could have or not
an influence on the resonant frequency Fj , then the damping factor ξi of the
layer Li has a specific impact on the amplitude of the peak Pk of the time
history: Figure 1.14 shows the impact of the increase to 5% of the damping
factor of the layer L01 and L02.

Concerning the incidence angle of the incoming wave (cf. Figure 1.1 for
definition), it also has an effect on the shape of a spectal ratio and conse-
quently on the time history. Figure 1.15 shows spectral ratios for incidence
angles of 0◦ (reference ratio), 30◦ and 60◦. It can be observed that an in-
crease of the incidence angle

• shifts the resonant frequencies to the high-frequency range (generally
but not always, the higher the resonant frequency, the larger the shift
toward the high frequencies);
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Figure 1.10: Influence of a 20% decrease of the S-wave velocity of the first
layer of Table 1.2 on the SH time history for a vertically incident order 2
Ricker wavelet of pseudo-frequency 5.0 Hz. The free surface time history is
shown.
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Figure 1.11: Influence of a 20% decrease of the S-wave velocity of the first
layer of Table 1.2 on the SH time history for a vertically incident order 2
Ricker wavelet of pseudo-frequency 0.1 Hz. The free surface time history is
shown.
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Figure 1.12: Influence of the increase of the damping factors of the layers
L01 to L05 to 2% or 5% on the SH spectral ratio for a vertically incident
wave.
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Figure 1.13: Influence of the increase of the damping factors of the layers
L01 to L05 to 5% on the SH time history for a vertically incident wave. The
free surface time history is shown.



1.2. Plane Waves in a Stack of Homogeneous Layers 27

-2

-1

 0

 1

 0  1  2  3  4

A
m

p
li

tu
d
e

Time (s)

Reference time history
ξ = 5% in layer L01

-2

-1

 0

 1

 0  1  2  3  4

A
m

p
li

tu
d
e

Time (s)

Reference time history
ξ = 5% in layer L02

Figure 1.14: Influence of the increase of the damping factor of the layer
L01 (top panel) or L02 (bottom panel) to 5% on the SH time history for
a vertically incident wave. Arrows indicate some peaks of the time history
where the damping factor of L01 and L02 have a different impact on their
amplitude. The free surface time history is shown.
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Figure 1.15: Influence of the increase of the incidence angle on SH spectral
ratios.

• modifies the amplitude of the resonant frequencies.

These two observations are true for any soil column.
In the time domain, both phase and amplitude of the time history are

modified as shown in Figure 1.16 (the phase shift could be deduced graphi-
cally: since the wave is plane, the larger the incidence angle, the smaller the
arrival time at the free surface).
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Figure 1.16: Influence of the increase of the incidence angle on SH time
history. The free surface time history is shown.
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1.3 Genetic Algorithm

A genetic algorithm (GA) is a search technique used in computing to find ex-
act or approximate solutions to optimization and search problems. Genetic
algorithms are categorized as global search heuristics. GA are a particular
class of evolutionary algorithms that use techniques inspired by evolutionary
biology such as inheritance, mutation, selection, and crossover (e.g., Gold-
berg, 1989; Fonseca and Fleming, 1993; Mitchell, 1998; Gen and Cheng,
1999). Genetic algorithms, despite their apparent simplicity, are highly di-
mensional, multi-faceted, nonlinear, stochastic complex systems that can
interact with a large variety of problems.

This section presents the fundamentals of the so-called ”simple genetic
algorithm method“ (the simple GA) that is used in the next chapter to invert
the parameters of the soil structure of a borehole station. The inversion
code has been developped for this thesis and is programmed in FORTRAN
90. Examples of the use of GA to invert soil parameters can be found
in geotechnical engineering (e.g., Levasseur et al., 2007; Samarajiva et al.,
2005) as well as in seismology (e.g., Zhou et al., 1995; Yamanaka and Ishida,
1996; Chang et al., 2004; Jimenez et al., 2005; Pezeshk and Zarrabi, 2005;
Bhattacharyya et al., 1999).

1.3.1 Methodology

Genetic algorithms are implemented in a computer simulation in which a
population of abstract representations (called chromosomes or the genotype
of the genome) of candidate solutions (called individuals, creatures, or phe-
notypes) to an optimization problem evolves toward better solutions. Tradi-
tionally, solutions are represented in binary as strings of 0s and 1s (represen-
tation used in this thesis), but other encodings are also possible. The evolu-
tion usually starts from a population of randomly generated individuals and
happens in generations. In each generation, the fitness of every individual in
the population is evaluated, multiple individuals are stochastically selected
from the current population (based on their fitness), and modified (recom-
bined and possibly randomly mutated) to form a new population. The new
population is then used in the next iteration of the algorithm. Commonly,
the algorithm terminates when either a maximum number of generations
has been produced, or a satisfactory fitness level has been reached for the
population. If the algorithm has terminated due to a maximum number
of generations, a satisfactory solution may or may not have been reached.
The flowchart of the genetic algorithm used in this study is shown in Figure
1.17. We note that prior to the genetic algorithm optimization, a Monte
Carlo method is used (i.e., generation of random solutions to investigate
the problem) in order to better explore the search space. Then, the best
individuals found during the Monte Carlo search are used to initialize the
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Figure 1.17: Flowchart of genetic algorithm inversion preceded by a Monte
Carlo search.

first population of the GA optimization.

1.3.2 Problem discretization

A standard representation of the solution as an array of bits of 0s and 1s is
used to discretize the search space. The process of discretization of a 1-D
soil column is shown in Figure 1.18. Each inverted parameter of layers (e.g.,
βi, ξi, etc.) is discretized within the search space using Npar

i bits where par

represents the parameter (e.g., Nβ
i , Nξ

i , etc.) and i stands for the layer; this
number of bit determines the accuracy of the discretization (the larger the
number of bits, the better the accuracy). Once all the layers are discretized
into binary individuals, they are put together to represent the entire soil
column as a binary individual as shown in Figure 1.18. The total number
of solutions is

Nsol = 2
Pn
i=1

Pm
par=1

Npar
i , (1.42)
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Figure 1.18: Discretization of the search space for the genetic algorithm
optimization. In the left-hand side graphic, the search space of the S-wave
velocity is shown in solid line and an example of soil column within the search
space is shown in dashed line. The discretization process is emphasized on
the right-hand side. An example of individual is shown at the bottom.

with n the number of layers and m the number of parameters to invert inside
a layer.

1.3.3 Initialization

Prior to the genetic algorithm optimization, a Monte Carlo search is done
on NMC

pop populations of size NMC
ind individuals (potential solutions for the

soil column) in order to explore the search space. Then, the NMC
bes best

individuals found during the Monte Carlo search are used to initialize the
first population of size Nind of the GA optimization.
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1.3.4 Evaluation and selection

During each successive generation, a proportion of the existing population is
selected to breed a new generation. Individual solutions are selected through
a fitness-based process, where fitter solutions (as measured by a fitness func-
tion (also called objective function), see below) are typically more likely to
be selected. Certain selection methods rate the fitness of each solution and
preferentially select the best solutions. Other methods rate only a random
sample of the population, as this process may be very time-consuming (e.g.,
Srivinas and Patnaik, 1994). Most functions are stochastic and designed so
that a small proportion of less fit solutions are selected. This helps keep
the diversity of the population large, preventing premature convergence on
poor solutions. Popular and well-studied selection methods include roulette
wheel selection and tournament selection. The roulette wheel, also known as
fitness proportionate selection, uses the fitness level to associate a probabil-
ity of selection with each individual. If fi is the fitness of an individual i, its
probability of being selected is pi = fi

PNind
j=1

fj
. Tournament selection involves

running several tournaments among few individuals chosen at random from
the population. The winner (in terms of best fitness) of each tournament is
selected for crossover. Selection pressure is easily adjusted by changing the
tournament size.

As an exemple, Figure 1.19 shows the processus of evaluation of the fit-
ness function of the individuals for a borehole inversion problem. The target
is the observed spectral ratio and each theoretical spectral ratio is compared
with the target in order to quantify its objective function. Figure 1.20 shows
an example of tournament from which the population of reproduction is gen-
erated.

The traditional objective function (e.g., Satoh et al., 1995a), which de-
pends on the unknown parameters to be inverted, evaluates the integrated
residual between the observation and the theory as

E(x) =

∫ fe
fs

|Hobs(f) −Hthe(f,x)|2df
∫ fe
fs

|Hobs(f)|2df
(1.43)

where E is the objective function, x is the vector of unknown parameters, fs
and fe are the start and end frequencies of integration, Ho is the observed
spectral ratio andHt is the theoretical spectral ratio. This objective function
has for advantage to try to minimize the integrated residual in the frequency
range fs to fe. However, if effects other than 1-D effects (e.g., shift of a
frequency peak due to a 2-D effects) are present in the integration range of
the observed spectral ratio, then, they are also inverted by using the 1-D
theory and could lead to false inverted parameters. In order to compensate
this shortcoming, the integration could be done piecewisely in order to avoid
the range containing an unwanted effect or another objective function (less
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Figure 1.19: Evaluation of the fitness function of the individuals of a pop-
ulation N for a borehole inversion problem in which the observed spectral
ratio is the target to be reached.

Figure 1.20: Example of a tournament pool. The individuals who participate
to the tournament are randomly selected in the population P. The winner of
the tournament (i.e., the individual with the best fitness function) is injected
in the population of reproduction.
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dependent of the integration range) could be used as shown hereafter.

In order to avoid effects other than 1-D effects embedded in the observed
spectral ratio, we present an objective function which focuses on the location
of the peaks along the frequency axis and on the amplitude of the peaks as:

E(x) =

∑nPF
i=1

|PF obsi −PF thei (x)|

PF obsi
∑nPF

j=1 PF
obs
j

+

∑nPA
i=1

|PAobsi −PAthei (x)|

PF obsi
∑nPA

j=1 PA
obs
j

(1.44)

where |.| denotes the absolute value and with x the vector containing pa-
rameters to invert, PF obsi the i-th observed peak frequency, PF thei the i-th
theoretical peak frequency, PAobsi the i-th observed peak amplitude, PAthei
the i-th theoretical peak amplitude, nPF the number of peak frequencies to
use and nPA the number of peak amplitudes to use. In order to give more
weight to low-frequency peaks, each member is divided by PF obsi . Normal-
ization by

∑nPF
j=1 PF

obs
j and

∑nPA
j=1 PA

obs
j is done to avoid overweighting the

frequency or amplitude portions.

This objective function focuses on the location of peaks along the fre-
quency axis and on the amplitude of peaks. Peaks used in an inversion can
be chosen at will to calculate the objective function. We note that this ob-
jective function has the virtue of being the summation of linear functions
of the form |Xobs

i − Xthe
i (x)|, which makes its shape simple for inversion

techniques in an n-dimensional space. Its disadvantage resides in the fact
that one has to know a priori which peaks have to be inverted.

1.3.5 Reproduction

The next step is to generate a second generation population of solutions
from those selected through genetic operators: crossover (also called recom-
bination), and/or mutation.

For each new solution to be produced, a pair of ”parent“ solutions is
selected at random for breeding from the pool selected previously. By pro-
ducing a ”child“ solution using the above methods of crossover and mutation,
a new solution is created which typically shares many of the characteristics
of its parents. New parents are selected for each new child, and the process
continues until a new population of solutions of appropriate size is generated.
An example of crossover and mutation is shown in Figure 1.21.

These processes ultimately result in the next generation population of
chromosomes that is different from the initial generation. Generally the
average fitness will have increased by this procedure for the population,
since only the best individuals from the first generation are selected for
breeding, along with a small proportion of less fit solutions (in order to keep
the diversity of the solutions).
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Figure 1.21: Example of a crossover and a mutation. In the population
of reproduction, the first two parents are representated by a gray and a
black binary. The children are generated by a uniform crossover from these
parents. A mutation is the change of a bit from 0 to 1 or vice-versa.

1.3.6 Termination

This generational process is repeated until a termination condition has been
reached. Common terminating conditions are:

• a solution is found that satisfies minimum criteria for the objective
function;

• a fixed number of generations (i.e., populations) is reached;

• an allocated budget (e.g., computation time) is reached;

• the highest ranking solution’s fitness is reaching or has reached a
plateau such that successive iterations no longer produce better re-
sults;

• a manual inspection;

• combinations of the above.

1.3.7 Validation

In order to validate the inversion code developed in this thesis, we set up
a simple problem with two unknown parameters and first perform a grid
search in the entire search space (i.e., all objective functions of the possible
couple (x1, x2) are computed) so that the surface to be obtimized is viewable
as shown in Figure 1.22. Here x1 and x2 represent the factor applied on the
S-wave velocity of two layers of the soil column presented in Table 1.2. We
note that the global minimum has been explicitly located around the couple
(x1 = 0.6, x2 = 1.4).
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Figure 1.22: Representation of the surface of an objective function in the
space x1 ∈ [0.5, 1.5] × x2 ∈ [0.5, 1.5] (x1 and x2 represent the factor applied
on the S-wave velocity of two layers of the soil column presented in Table
1.2). At the bottom of the figure, the 3-D surface is mapped in the horizontal
plane by using contour lines.
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Figure 1.23 shows the evolution of a genetic algorithm inversion of the
parameters x1 and x2 from the population 1 to 15 (we note that no Monte
Carlo search is performed for this inversion). For the initial population (i.e.,
population 1), the individuals are generated at random over the entire search
space. After five populations, we see that the global minimum is found. In
order to keep the diversity of the solutions and to better explore the entire
search space, some individuals are still present far from the global optimum.
We also note that the inversion has not been locked in a local minimum (in
order to check the robustness of the inversion, several independent inversions
have been performed and the global minimum has always been found).
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Figure 1.23: Evolution of a genetic algorithm inversion from the population
1 to 15. The crosses represent the individuals of a population. The contour
lines represent the 3-D surface of Figure 1.22.
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1.4 Conclusion

Based on the Thomson-Haskell propagator matrix method (i.e., specific case
of the linear elastic wave propagation in a one-dimensional welded homo-
geneous stack of layers), we have developed a genetic algorithm inversion
code in order to inverse in the frequency domain the soil parameters of a
soil column by matching the theoretical spectral ratios on an observed spec-
tral ratio. The advantage of the use of 1-D theory is that the spectral ratio
depends only on the soil parameters between the sensors of the borehole
station. The code is developped to invert:

• the S-wave velocity α;

• the P-wave velocity β;

• the compressional damping factor ξα;

• the shear damping factor ξβ ;

• and the incidence angle of the incoming wave.

In the following chapter, the code is used to invert the equivalent linear
soil properties of the CTI borehole station, Fukuoka, Japan, during the 2005
Fukuoka prefecture werstern offshore earthquake.



Chapter 2

Inversion of Borehole Soil
Structure: Applications

This chapter has been published as:

• De Martin, F., H. Kawase, and A. Modaressi (2010). Nonlinear Soil
Response of a Borehole Station Based on One-Dimensional Inversion
during the 2005 Fukuoka Prefecture Western Offshore Earthquake.
Bull. Seism. Soc. Am..

2.1 Inversion During the 2005 West Off Fukuoka

Earthquake

Nonlinear behavior of soft soil observed during strong ground motions is now
well established (e.g., Chin and Aki, 1991; Darragh and Shakal, 1991; Aki,
1993; Field et al., 1997; Su et al., 1998; Cultrera et al., 1999; Frankel et al.,
2002; Aki, 2003; Bonilla et al., 2005) and the deployment of vertical arrays
has contributed to detailed wave propagation analyses and the assessment
for quantitative physical parameters such as shear-wave (S-wave) velocity,
pressure-wave (P-wave) velocity and damping factors with respect to shear
strain levels (e.g., Seed and Idriss, 1970a; Chang et al., 1991; Archuleta
et al., 1992, 1993; Wen, 1994; Beresnev et al., 1995; Satoh et al., 1995a;
Zeghal et al., 1995; Ghayamghamain and Kawakami, 1996; Kawase et al.,
1996; Aguirre and Irikura, 1997; Satoh et al., 1997, 2001; Bonilla et al.,
2002; Pavlenko and Irikura, 2003; Kokusho, 2004; Pavlenko and Irikura,
2005, 2006; Assimaki and Steidl, 2007; Chávez-Garćıa and Raptakis, 2008;
Kwok et al., 2008).

A natural approach to study borehole data is one-dimensional (1-D)
modeling, which has been proved to be a good approximation for many cases
(e.g., some of the aforementioned studies). Moreover, it has been shown
during two blind-prediction experiments conducted by the IASPEI/IAEE
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Joint Working Group on Effects of Surface Geology on Strong Motions that
the geological structure is more important than the model dimension (e.g.,
Cramer and Real, 1992; Mirodikawa, 1992). However, in recent years, 2-
D or 3-D effects of basins have been found to be relevant for some strong
ground motions (e.g., Bard et al., 1988; Kawase and Aki, 1989; Kawase and
Sato, 1992; Graves, 1993; Frankel, 1994; Kawase and Matsushima, 1998).
Those geometrical effects were observed essentially in the low-frequency
range and would disappear in the high-frequency range because the shorter
the wavelength, the more local the phenomenon. Unfortunately, short wave-
lengths are thought to be vulnerable to mutual interference of multiple reflec-
tion/refraction and to intrinsic or scattering attenuation, and consequently,
clear disappearance of 2-D or 3-D geometrical effects in the high-frequency
range has not been reported yet.

In this study, we first confirm the major and minor axes of several sta-
tions surrounding the epicenter and then corroborate, at the borehole sta-
tion, the 1-D velocity structure in the linear elastic domain by computing
time-dependent spectral ratios on the S-wave portion of small aftershocks.
Possible geometrical effects, soil heterogeneity and/or soil-structure interac-
tion embedded within 1-D spectral ratios are detecting using 360◦ spectral
ratios.

Finally, conspicuous evidence of nonlinearity during the S-wave portion
of the main shock is shown by computing spectral ratios whose several res-
onant frequencies are shifted toward low frequencies. In order to quantify
the degree of nonlinearity, we invert by a genetic algorithm (e.g., Goldberg,
1989; Yamanaka and Ishida, 1996) the observed equivalent linear parameters
(i.e., shear-wave velocity structure and damping factors) via the Thomson-
Haskell propagator matrix method (e.g., Thomson, 1950; Haskell, 1953).
Because of a directional effect present only in the major axis clearly visible
on 360◦ spectral ratios around 8 Hz, the conventional objective function,
which minimizes the integrated residuals between observed and theoretical
ratios cannot be used. We therefore introduce a simple objective function
that depends only on the peaks’ frequency and amplitude. To show the
efficiency of the objective function and the robustness of the inversion, we
perform eight independent inversions, which converge to very close solutions.

2.1.1 Overview of strong ground motions

Fukuoka City is located on the northern part of Kyushu Island, southwest-
ern Japan (Figure 2.1, inset on the top left-hand side). A topographic
map around the city is shown in Figure 2.1 (main panel). The 2005 West
off Fukuoka Prefecture earthquake with a JMA (Japanese Meteorological
Agency) magnitude MJ of 7.0 (Mw = 6.6) and focal depth of 9.2 km oc-
curred on March 20 2005 off the northern coast of Kyushu Island along an
unmapped fault at the northern extension of the well-known active fault,
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the Kego fault (e.g., Shibuya et al., 2009). Figure 2.2 shows the Kego fault
and accelerograms at some stations surrounding the epicenter. Here we
use K-NET (indicated by three letters + three digits) and KiK-net stations
(indicated by three letters + ’H’ + two digits), as well as Fukuoka Prefec-
ture’s seismic intensity meter network (indicated by three letters + ’S’ + two
digits). A rapid comparison between accelerograms at the K-NET station
FKO006 and the other ones clearly shows that longer-period components
are present at FKO006; suggesting the site effects due to the existence of
soft sediments within Fukuoka City.

In order to confirm the major and minor axes according to the source
mechanism, we calculate the directional energy distribution given by Equa-
tion 2.1 (e.g., Takizawa, 1982), which was successfully used to confirm the
major axis of strong motion by Kawase and Aki (1990). First, the total
power and cross spectra of the two orthogonal components n (referring to
north) and e (referring to east) is calculated in the frequency range of inter-
est:

[E] =

∫ ω2

ω1

ℜ
(

Snn(ω) Sne(ω)
Sen(ω) See(ω)

)

dω,

where [E] is the matrix of energy of velocity power spectra, ω1 and ω2 are the
lower and upper bounds of integration in the frequency domain, ℜ indicates
the real part of a complex number, Snn(ω) is a velocity power spectrum of
the n direction and Sne(ω) is a velocity cross power spectrum between the
n and e direction, and so on. The cross power spectrum Sij is computed as:

Sij(ω) =

∫ ∞

−∞
C[vivj ](τ)e

−iωτdτ,

where C[vivj ](τ) denotes the cross correlation fucntion of the velocity in the
direction i, vi, and the velocity in the direction j, vj . Then, the energy in
the direction φ measured in a clockwise direction from the n-axis can be
obtained as:

Eφ = {cosφ, sinφ}[E]

{

cosφ
sinφ

}

. (2.1)

This energy distribution will be two elliptic lobes in line with the major axis
if the ground motion is perfectly unidirectional, while it will become a single
circle if the ground motion is not directional at all. Fukuoka earthquake
being a strike-slip crustal earthquake with a strike direction equal to N122◦E,
a dip angle of 89◦ and a rake angle of -11◦ (e.g., Asano and Iwata, 2006),
we can first plot theoretical far-field radiation pattern of the now familiar
double-couple mechanism in an infinite homogeneous medium to have in
mind the predominant direction of motion. Figure 2.3 shows the S-wave
radiation pattern and its SH and SV components. The fault plane (i.e.,
radial component) and the auxiliary plane (i.e., transverse component) are
predominant planes for the S-wave. By decomposition of S-wave into SH
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Figure 2.1: Inset on the top left-hand side: Localization of Fukuoka City,
northern Kyushu Island, Japan. Main panel: Topographic map of Fukuoka
City.
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Figure 2.2: Location of the Kego fault (solid line at the south-western side
of the station FKO006) and accelerograms recorded at stations surround-
ing the epicenter (pointed out by a star) of the Fukuoka earthquake. Sta-
tions FKOxxx are stations from Kyoshin Network (K-NET) and stations
FKOHxx are stations from Kiban Kyoshin Network (KiK-Net). For both
K-Net and KiK-Net stations, accelerograms on the left-hand side represent
the north-south ground motion and accelerograms on the right-hand side
represent east-west ground motion. For KiK-Net stations, accelerograms at
the bottom are downhole records.
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Figure 2.3: Theoretical far-field S-wave radiation pattern for a double couple
point source model in an infinite homogeneous medium oriented as followed:
strike = 122◦, dip = 89◦ and rake = -11◦. North-south (NS), east-west
(EW) and strike direction are indicated by arrows. Panels (a) shows S-wave
radiation pattern and panels (b) and (c) expose SV and SH component of the
S-wave, respectively. Top panels show a 3-D view of the radiation patterns
and bottom panels show them mapped into the horizontal plane.

and SV component, we see that SH component is predominant in the fault
plane and in the auxiliary plane whereas these planes are nodal lines for the
SV component.

Figures 2.4 and 2.5 show the energy distribution calculated in the hor-
izontal plane for records observed at 22 stations (it should be noted that,
if necessary, these energy distributions have been corrected for the sensors’
rotation for K-NET and KiK-net stations based on the information pub-
lished by NIED, www.bosai.go.jp/e/). Depending on the station, observa-
tions show more or less a good agreement with the solution of the double-
couple point source model. The energy distribution in the fault plane at
the stations FKOS02, FKOS05, FKOS06 and FKO009 shows a good coher-
ence since it exhibits a major axis perpendicular to the fault plane (i.e.,
predominance of the SH-component). The same agreement can be seen for
the auxiliary plane, where stations SAG001, SAGH01 and FKOH09 exhibit
the same predominance. However, within Fukuoka City, we can notice that
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the energy distribution of FKO006, FKOS01 and CTI are slightly rotated
toward the north. This rotation could be due to basin geometrical effects
and/or to trapped waves propagating along the fault gouge. The possible
presence of trapped wave is exposed in Appendix B.

In the following, we will describe the configuration of the borehole station
and the data available at the borehole site.

2.1.2 The borehole station: configuration and data

The borehole station is CTI Engineering Co., Ltd borehole station (http://
www.ctie.co.jp /earthquake /eq 20050320.html) located within Fukuoka’s
basin in a zone where sediments’ thickness is the largest (≈ 62 m). North-
south and east-west geologic cross-sections realized 100 meters from the
borehole are shown in Figure 2.6. On the western and southern side of the
borehole, the abrupt variation of the sediments-bedrock interface is due to
the activity of the Kego fault indicated by crosses. The bedrock’s depth
increases from 10 m to 60 m in approximately 300 m.

The borehole station is composed of two sensors, with a sample frequency
of 100 Hz, located below CTI Engineering’s seven-story base-isolated build-
ing, as shown in the schematic view of Figure 2.7. One sensor is placed in the
basement of the building and the other one is located 67 meters below the
free surface embedded inside the bedrock. Hereafter, we call these sensors:
basement sensor and downhole sensor, respectively. Since the fundamental
frequency of such a base-isolated building is around 0.3-0.4 Hz, and since
the fundamental frequency of the CTI soil column is 1.4 Hz (see Subsection
2.1.3), we neglect soil-structure interaction and the basement sensor is con-
sidered as a free surface sensor. A third sensor located at the seventh story
of the building has not been used for this study. Previous studies related
to CTI Engineering site are the following: Mazda et al. (2005); Satoh and
Kawase (2005); Kawase et al. (2006).

The geology of the 1-D soil column consists of an alternation of sand
and clay overlying a thick layer of gravel and bedrock. The top 15 meters
mainly consists of sand whose S-wave velocity increases from 150 m/s to 250
m/s and whose Standard Penetration Test (SPT) N-values range between 2
and 34. Then follows an alternation of clay and sand whose S-wave velocity
ranges between 282 m/s and 411 m/s and STP N-values between 10 and the
upper limit of 50. Below, a thick layer of 11 meters of gravel whose S-wave
velocity is approximately 500 m/s overlays the engineering bedrock made of
mudstone dating from the pre-Tertiary period of Cenozoic era and whose
S-wave velocity is approximately 500m/s.

Characteristics of records of the main shock and aftershocks provided by
CTI Engineering are shown in Table 2.1. EQ01 refers to the main shock and
EQ02 to EQ25 refers to aftershocks. Figure 2.8 displays the location of their
epicenters around the CTI station. A clear alignment of the events with the
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Figure 2.4: Energy distribution in the horizontal plane (NS-EW) for the
records observed at stations within 60 km from the epicenter. The princi-
pal axis measured clockwise from the north (see station NGS023) has +/-
180◦ ambiguity. The energy distribution is calculated from velocity power
spectra which are derived from NS and EW components of velocity seismo-
grams (the entire record has been used to compute the power spectra). The
frequency range used to integrate a power spectrum is 0.1 to 10 Hz. Solid
lines represent the energy distribution calculated at the free surface sensor
and dashed lines that of the downhole sensor. The approximate location of
the Kego fault is represented by a solid straight line and the epicenter of the
earthquake by a star. The rectangle denotes the area shown in Figure 2.5.
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Figure 2.5: Zoom of the rectangle in Figure 2.4. Explanation are given
in caption of Figure 2.4. Stations FKOSxx are stations from Fukuoka
Prefecture’s seismic intensity meter network.

Figure 2.6: North-south and east-west geologic cross-section located some
hundred meters from CTI borehole station. The vertical axis has been ex-
aggerated 50 times. The borehole station is indicated by a solid line and
the sensors are represented by two points along this line. The Kego fault is
indicated by crosses.
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Figure 2.7: Schematic representation of the system {base-isolated building
+ borehole station} at the CTI Engineering site. Sensors are represented by
circles.
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Table 2.1: List of earthquakes whose parameters are determined by Japan
Meteorological Agency. MJ means Japan Meteorological Agency Magnitude.
The symbol - indicates that values are unknown.

No. Date/Time Lat./Lon. Focal depth MJ Hypocentral distance
(km) from CTI (km)

EQ01 2005.03.20/10h53 33.74/130.18 9 7.0 27.5
EQ02 2005.04.20/06h11 33.68/130.29 14 5.8 23.6
EQ03 2005.04.21/07h32 33.77/130.11 12 3.8 35.1
EQ04 2005.04.24/11h25 33.65/130.32 11 3.1 14.2
EQ05 2005.04.25/04h37 - - - -
EQ06 2005.04.28/03h43 33.67/130.30 13 3.8 17.7
EQ07 2005.05.02/01h24 33.67/130.32 11 5.0 15.5
EQ08 2005.05.03/01h29 33.61/130.41 8 3.1 8.5
EQ09 2005.05.10/11h53 - - - -
EQ10 2005.05.13/18h52 33.75/130.12 13 3.9 33.6
EQ11 2005.05.29/00h58 - - - -
EQ12 2005.05.30/08h52 33.67/130.38 8 3.0 12.0
EQ13 2005.06.03/04h23 33.77/130.09 15 4.1 37.2
EQ14 2005.06.26/19h55 33.70/130.25 10 3.4 20.6
EQ15 2005.07.05/05h10 33.74/130.12 15 4.2 33.5
EQ16 2005.05.30/14h55 - - - -
EQ17 2005.08.03/12h45 33.70/130.24 6 3.5 19.9
EQ18 2005.08.09/04h13 33.69/130.29 12 3.3 19.2
EQ19 2005.09.12/20h19 33.78/130.10 12 4.1 36.0
EQ20 2005.09.13/17h01 33.70/130.27 15 3.5 22.7
EQ21 2005.11.12/05h41 33.74/130.18 15 3.7 30.0
EQ22 2005.12.09/02h15 33.68/130.31 15 3.6 19.8
EQ23 2006.01.31/00h19 33.77/130.12 14 3.8 34.9
EQ24 2006.04.28/00h19 33.77/130.11 13 3.8 35.5
EQ25 2006.08.25/15h09 - - - -

Kego fault can be seen. Table 2.2 shows the PGA of the main shock and
aftershocks in major and minor axes.

In the following, we will describe surface-to-downhole spectral ratios per-
formed in the major and in minor axes associated to transverse and radial
components, respectively.

2.1.3 Surface-to-downhole spectral ratios during aftershocks

The original PS logging being very detailed (i.e., 12 layers with 39 measure-
ments of S-wave and P-wave velocity), we have simplified the soil column
by taking the average of velocities within each layer in order to facilitate
the inversion. The simplified linear elastic soil properties and SPT N-values
are presented in Table 2.3. The original and simplified velocity profile for
S-wave and P-wave are shown in Figure 2.9 (a) and (b), respectively. Their
one-dimensional spectral ratio computed for a vertically incident S-wave are
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Table 2.2: PGA in major and minor axes recorded during the main shock
and the aftershocks.

PGA (gal)

Major axis Minor axis

No. Free surface Downhole Free surface Downhole

EQ01 362.0 164.3 419.7 151.7
EQ02 278.8 97.6 267.3 108.9
EQ03 3.1 1.1 4.9 1.4
EQ04 3.5 1.3 4.6 1.8
EQ05 6.0 1.9 8.5 2.3
EQ06 8.1 2.4 11.2 3.2
EQ07 83.9 23.8 152.2 37.8
EQ08 15.0 4.4 28.0 9.8
EQ09 4.6 1.9 8.3 2.8
EQ10 4.8 1.6 7.7 2.1
EQ11 3.7 1.2 5.2 1.3
EQ12 5.6 2.1 10.6 2.7
EQ13 6.0 2.4 10.4 2.6
EQ14 3.0 0.8 3.3 1.2
EQ15 21.7 8.9 35.7 8.1
EQ16 3.9 1.8 5.9 2.0
EQ17 6.1 1.8 9.7 3.2
EQ18 4.4 1.4 7.7 2.2
EQ19 7.5 2.2 10.4 3.1
EQ20 5.8 2.1 7.8 2.8
EQ21 3.7 1.5 6.2 1.3
EQ22 10.6 2.0 8.9 3.2
EQ23 9.0 3.4 17.0 4.1
EQ24 4.7 1.8 7.0 3.2
EQ25 4.7 1.6 7.2 1.9
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Figure 2.8: Epicenter of the events used in this study.

shown in Figure 2.9 (c). Figure 2.9 (c) shows that the simplification has
no influence on the first six resonant frequencies and has only a small influ-
ence on higher frequencies. The fundamental frequency of the soil column
is found to be 1.4 Hz.

In order to detect resonant frequencies of the soil column in the linear
elastic domain, we use aftershocks whose PGA at the basement sensor does
not exceed 40 Gal and perform spectral ratios analyses either by choosing a
fixed S-wave portion selected by eye or by using a time-dependent (moving
window) spectral ratios around the S-wave portion.

Figure 2.10 shows spectral ratios whose S-wave portion has been cho-
sen by eye. The length of the S-wave has been tuned for each earthquake
and is generally larger than 1 second and smaller than 5 seconds. A cosine
shape of 25% at both ends of the S-wave has been used to smoothly set the
data to zero at the boundaries of the window. We can see that observed
and theoretical fundamental frequencies in the transverse direction show a
good agreement whereas the theory tends to underestimate the fundamental
frequency in the radial direction. In order to have a full vision of the direc-
tional dependence of spectral ratios, we compute 360◦ spectral ratios using
the aftershocks. 360◦ spectral ratios are spectral ratios computed by rotat-
ing simultaneously in the horizontal plane basement and downhole records
from the North and plotting them as a mapped view with respect to their
azimuth by using a color code to represent their amplitude. By computing
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Table 2.3: Simplified soil profile based on the density and PS logging pro-
vided by CTI Engineering.

No. Depth Thickness S-wave P-wave Density Mean of Soil
velocity velocity N-values classification

(m) (m) (m/s) (m/s) (g/cm3)

1 5.5 3.5 152.1 1194.3 1.80 10.25 sand
2 8.5 3.0 165.2 1209.7 1.80 2.67 sand with clay
3 16.5 8.0 248.7 1706.8 1.80 23.12 sand
4 25.5 9.0 229.6 1587.6 1.70 11.56 clay
5 33.0 7.5 351.3 1730.0 1.90 30.00 sand
6 36.0 3.0 289.0 1712.0 1.75 25.00 clay
7 40.0 4.0 324.7 1744.9 1.90 49.00 sand
8 43.0 3.0 282.0 1765.2 1.75 17.00 clay
9 47.0 4.0 411.5 1785.2 1.90 49.50 sand with gravel
10 51.0 4.0 333.2 1689.9 1.80 23.75 clay
11 62.5 11.5 500.6 1808.8 1.95 49.17 gravel
12 ∞ ∞ 500.0 1808.8 2.00 46.00 mudstone
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Figure 2.9: Panels (a) and (b) : original and simplified PS logging. Upper
and lower sensors (indicated by dots) are located at 2 meters and 67 meters
below the free surface, respectively. Panel (c): SH spectral ratio of original
and simplified soil column. Few damping has been purposely used to better
see the shift of resonant frequencies due to S-wave simplification.
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Figure 2.10: Spectral ratios performed on the S-wave portion chosen by
sight of aftershocks (dashed lines). The theoretical one-dimensional spectral
ratio for a vertically incident S-wave using the velocity logging is plotted
as a bold solid line. The left-hand side panel (a) and right-hand side panel
(b) show fault normal and fault parallel spectral ratios, respectively. The
frequency discretization of spectral ratios is 1/40.96 Hz. A Parzen spectral
window (Parzen, 1962) of bandwidth 0.1 Hz has been used to slightly smooth
observed and theoretical ratios.

360◦ spectral ratios on all aftershocks, we find for several spectral ratios
that the fundamental frequency forms a spiral instead of forming a circle in
accordance with 1-D theory as shown in Figure 2.11. Because of the partic-
ular location of the borehole station, this phenomenon could be due either
to soil heterogeneity, geometrical effects and/or soil-structure interaction.
As for the second resonant frequency, even if its position fluctuates in the
observations for both direction, the theoretical peak seems correspond well
to the observed ones. The precise position of higher frequencies are hardly
seen in the observations.

In order to find the best location of spectral ratios’ time windows to ob-
serve resonant frequencies, we also perform time-dependent spectral ratios
analyses around the S-wave portion of aftershocks. A time-dependent spec-
tral ratio is the ratio of the short-time Fourier transform of the basement
record with respect to the downhole record; the short-time Fourier transform
being defined as:

STFT {x(t)} ≡ x(τ, ω) =

∫ ∞

−∞
x(t)w(t− τ)e+iωt dt,

where w(t) is a window function and x(t) is the signal to be transformed.
x(τ, ω) is essentially the Fourier transform of x(t)w(t−τ), a complex function
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Figure 2.11: 360 degrees spectral ratios of EQ06 in the frequency range 0 to
10 Hz. Spectral ratios are computed by rotating simultaneously basement
and downhole records from the North (represented by a vertical arrow).
The coordinate (0,0) is the frequency 0 while the radius’ end represents the
frequency 10 Hz. Plots are symmetric with respect to the center (0,0) due
to the equality of Fourier spectra in two opposite directions. Axes denoted
by ⊥ and // indicate fault normal direction (i.e., transverse component) and
fault parallel direction (i.e., radial component), respectively.
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representing the phase and magnitude of the signal over time and frequency.
Time and frequency being conjugate variables, given a signal containing
some event, one cannot assign simultaneously an exact time and frequency
response scale to that event and consequently, the more precisely one variable
is known, the less precisely the other is known. Since we focus in this study
on the fundamental frequency of the soil column and its higher modes, the
sliding window used to isolate a portion of the waveform is a Tukey window
(often called cosine-tapered) of ratio 1 (i.e., no flat portion is present in the
Tukey window) and length 2.56 seconds, that is to say, 85% of its length
contains approximately three fundamental periods. Sliding windows are
overlapped by 96% which corresponds to 0.1 second. Moreover, we do not
apply a time shift between basement and downhole sensors to account for
the travel time.

We must, however, note that great care has to be taken when analyzing
results of such a time-dependent analysis. When the waveform is simple,
like a Ricker function, applying the window with smooth tapers at both
ends in order to make the waveform causal has few effects on the time-
dependent analysis as shown in Figure 2.12. When the smoothing window
of length 2.56 s enters into the S-wave portion, resonant frequencies start
appearing (e.g., time window 2.4 s), and when the window encloses the
main part of the signal, resonant frequencies become clearly visible (e.g.,
time window 3.0 s). However, when the waveform becomes complex (for
instance a summation of random Ricker functions or a natural wave), then
time-dependent analysis is influenced by the smoothing window as shown in
Figure 2.13. Both amplitude and resonant frequency location can be affected
by the window shape. Moreover, the use of Tukey windows with ratios 1.0,
0.5 or 0.25 can give quite different results.

Figure 2.14 presents observed spectral ratio showing a good agreement
with theory for the transverse component. We note that time windows for
which resonant frequencies are visible in both transverse and radial compo-
nents are rare. Hence, the transverse component has been chosen since it
seems less influenced by soil heterogeneity, geometrical effects and/or soil-
structure interaction (we note that soil heterogeneity should affect more
higher harmonic frequencies than those corresponding to the fundamen-
tal resonant frequency). Spectral ratios’ time window shown in this figure
have been chosen when the amplitude of the fundamental frequency was the
largest; except for EQ03 which shows a better overall agreement with theory
for the shown time windows, for EQ04 time window [10.50 - 13.06] s, which
is used to show the quick change in the time of peaks’ amplitudes, and for
EQ17, which shows a better overall agreement with theory for the shown
time window. The following comments can be made on Figure 2.14.

• Generally speaking, 1-D theory reproduces well the location of the
observed fundamental frequency; however, fluctuations of the location
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Figure 2.12: Time-dependent spectral ratios analysis performed between
downhole and basement waveform when the input wave is a Ricker function
of pseudo-frequency 25 Hz. Basement and downhole waveforms are shown
on top of the Figure. Ratios are computed using 2.56 s Tukey windows
with ratio 1 and translated by 0.1 s (i.e., 96% of overlapping). Numbers
on the right-hand side of each panel indicate start time of Tukey windows.
X and Y-axes boundaries of spectral ratios are indicated on bottom-most
panels. No smoothing window is applied. Vertical lines on spectral ratios
panels indicate theoretical resonant frequencies of the velocity logging and
theoretical resonant frequencies are numbered by integers above the top-
most panel of spectral ratio.
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Figure 2.13: Time-dependent spectral ratios analysis performed between
downhole and basement waveform when the input wave is a summation of
ten Ricker functions whose pseudo-frequency is randomly chosen within the
interval 0.5-25 Hz.



60 Chapter 2. APPLICATIONS OF THE INVERSION

0

10

20

30

40

S
p

ec
tr

al
 R

at
io

F1

F5

EQ03 [9.50 − 12.06] s

1−D theory

0

10

20

30

40

S
p

ec
tr

al
 R

at
io

F1

F5

EQ03 [9.50 − 12.55] s

0

10

20

30

40

S
p

ec
tr

al
 R

at
io

F1

F5

EQ04 [8.30 − 10.86] s

0

10

20

30

40

S
p

ec
tr

al
 R

at
io

F1

F5

EQ04 [10.50 − 13.06] s

0

10

20

30

40

S
p

ec
tr

al
 R

at
io

F1

F5

EQ08 [9.50 − 12.06] s

0

10

20

30

40

S
p

ec
tr

al
 R

at
io

F1

F5

EQ09 [8.60 − 11.16] s

0

10

20

30

40

S
p

ec
tr

al
 R

at
io

F1

F5

EQ10 [8.60 − 11.16] s

0

10

20

30

40

S
p

ec
tr

al
 R

at
io

F1

F5

EQ11 [9.20 − 11.76] s

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

Frequency (Hz)

S
p

ec
tr

al
 R

at
io

F1

F5

EQ12 [11.20 − 13.76] s

F1

F5

EQ13 [9.10 − 11.66] s

F1

F5

EQ15 [10.10 − 12.66] s

F1

F5

EQ17 [10.60 − 13.16] s

F1

F5

EQ18 [8.00 − 10.56] s

F1

F5

EQ19 [10.50 − 13.06] s

F1

F5

EQ20 [8.70 − 11.26] s

F1

F5

EQ21 [8.20 − 10.76] s

F1

F5

EQ23 [8.10 − 10.66] s

0 2 4 6 8 10 12 14 16 18 20
Frequency (Hz)

F1

F5

EQ25 [7.90 − 10.46] s

Figure 2.14: Observed spectral ratios computed within S-wave portion of
small aftershocks using time-dependent analyses (bold lines) plotted to-
gether with 1-D theory (thin lines) in the transverse direction. Theoretical
spectral ratios are plotted using a constant damping of the form ξ = ξ0f

−α

with ξ0 = 0.01 and α = 0.6. Both observed and theoretical ratios are
smoothed using a Parzen window of bandwidth 0.1 Hz. EQ03 and EQ04
are plotted two times with different time window to emphasis the rapid
variation in time of the shape of the ratio (especially, the amplitude of the
peak). Theoretical resonant frequencies F1, F5 are annotated to facilitate
the reading of the Figure.
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are seen on observations.

• By comparing the location of the peak along the frequency axis (i.e.,
without comparing the amplitude of the peak), EQ03 time window
[9.50-12.06] s shows, despite small frequency shifts, a good agreement
from the fundamental frequency (also called F1 hereafter, F2 being
the second theoretical resonant frequency, F3 the third theoretical res-
onant frequency and so on) to the seventh frequency. The two different
time windows for EQ03 and EQ4 exhibit the possible quick change in
the time of peaks’ amplitudes.

• No spectral ratio shows all the resonant frequencies for a unique time
window. For instance, for EQ11, F1, F2 and F3 are visible while
F4 and F5 are not; however, F4 is visible on EQ10 while F2 and
F3 are absent. This could mean that 1-D wave propagation is not
sufficient to thoroughly explain observations or that the smoothing
window influences the shape of the ratios.

• For the aftershocks, inversion of damping factors in the frequency do-
main is not possible due to the above comment.

• EQ09 and EQ20 clearly show a peak between F4 and F5, which would
not be a shift of F5 since F5 can be seen on EQ21 or EQ23. Note
that the amplitude of input waves for these earthquakes are too low
to assume soil nonlinearity.

• Expect for the resonant frequency F5 of EQ09 and EQ20, the locations
of the resonant frequencies are well reproduced up to 12 Hz by the 1-D
theory.

By considering all the spectral ratios of Figure 2.14 and the possible
influence on peaks’ location of soil heterogeneity, geometrical effects, soil-
structure interaction, incidence angle of the incoming wave, and/or smooth-
ing window effects, we conclude that the S-wave velocity logging is accurate
in the linear domain for the transverse direction and does not need to be
inverted (if the spectral ratios had shown a better stability, then an inver-
sion on the mean of several spectral ratios would have been possible). The
explanation of the shift of the fundamental frequency in the radial direc-
tion would need further research, consequently, the following is based on the
conclusions drawn up for the transverse direction.

As for the damping factors of each layer used to take into account intrin-
sic absorption by anelasticity and scattering by heterogeneity, we assume it
to be of the form h = h0f

−α (e.g., Satoh et al., 2001) and constant along
the soil column. Since for this study inversion of damping factors in the
frequency domain could be influenced by other phenomenon, we adjust it
manually by comparing simulations and observations in the time domain
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Figure 2.15: Simulations and deconvolutions of EQ11 in transverse and ra-
dial direction using S-wave velocity logging and constant damping factor
along the soil column of the form ξ = ξ0f

−α with f the frequency, ξ0 = 0.13
and α = 0.6.

and find that h0 = 0.13 and α = 0.6 fit well the data. Figure 2.15 shows
simulations of basement and downhole acceleration as well as deconvolu-
tion from basement and downhole waveform. Reproduction of waveforms
in transverse and radial direction is acceptable during the S-wave portion
for a 1-D model. Phase shift for the radial component is consistent with
the fact that S-wave logging underestimates the observed fundamental fre-
quency, which is shifted to high frequencies (as seen in Figure 2.11). We
note that other simulations of aftershocks show a good agreement as well
using the same damping factors. This good agreement justifies one more
time that the S-wave velocity logging is accurate in the linear domain.

In the following, we will compute spectral ratios on the main shock
records and describe the inversion by a genetic algorithm of the S-wave
velocity structure and damping factors.

2.1.4 Inversion of the soil structure during the main shock

In order to detect possible nonlinear behavior of the CTI borehole soil col-
umn during the 2005 West off Fukuoka earthquake, we perform a time-
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dependent spectral ratios analysis in the major and minor axes. For this
time-dependent analysis, the beginning of the window is fixed to three sec-
onds (i.e., before the onset of the S-wave portion) and the end of the window
is extended incrementally. Spectral ratios in the transverse and radial di-
rections are shown in Figure 2.16 (two top panels) when the amplitude of
the fundamental mode is the highest in the transverse direction. At that
time, the length of the smoothing window is 5.9 s (i.e., it mainly covers the
S-wave portion of the signal). The fundamental frequency originally at 1.41
Hz is shifted to 1.15 Hz in the transverse direction and to 1.32 Hz in the
radial direction (the fact that the radial mode has a higher frequency than
the transverse one is consistent with observations made on aftershocks). In
both directions, the shift toward low frequencies of observed peaks F1, F3,
F5 and F6 is typical of nonlinear behavior of soft sediments (i.e., decrease
of the shear modulus). However, an inconsistency remains for F4. It is
shifted toward low frequencies in the radial direction while it is shifted to-
ward high frequencies in the transverse direction. According to 1-D theory,
the decrease of S-wave velocity of some layers can shift certain resonant
frequencies toward low frequencies and leave others unchanged; however, it
is impossible that this decrease shifts resonant frequencies toward high fre-
quencies as seen for F4 in the transverse direction. A 360◦ spectral ratios
shown in Figure 2.17 reveals that F4 is present for almost all azimuths but
disappears in the vicinity of the fault-normal direction (i.e., transverse com-
ponent) and appears to be shifted to higher frequencies. This shift could,
therefore, be due to geometrical effects and/or soil-structure interaction. We
note that this peak appears approximately at the location of the additional
peak seen for EQ09, EQ12 and EQ20 of Figure 2.14. We also note that F2
and F3 form a clear circle in accordance with 1-D theory while F1 exhibits
the same spiral pattern as observed on some aftershocks (e.g., Figure 2.11).
As a result, F4 in the transverse direction will be ignored in the 1-D inver-
sion.

In order to quantify S-wave velocity reduction that causes shift of res-
onant modes toward low frequencies, we invert by a genetic algorithm ob-
served spectral ratios presented in Figure 2.16 using the Thomson-Haskell
propagator matrix method. As the S-wave logging transfer function is ac-
curate for simulations of aftershocks, the search space of S-wave velocity is
limited to values smaller than or equal to S-wave logging’s velocity. How-
ever, because of the shift toward high frequencies of F4 in the transverse
direction which is inconsistent with the 1-D assumption, the common ob-
jective function, which tends to minimize the integrated residuals between
observed and theoretical spectral ratios (e.g., Satoh et al., 1995a) cannot be
used for this study. Therefore, we introduce a simple objective function that
is independent of the global shape of spectral ratios of the form:
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Figure 2.16: First two top panels: spectral ratios observed in transverse and
radial direction (bold solid line) plotted together with S-wave logging 1-D
theory transfer function (dashed-line) and inverted spectral ratios (thin solid
lines) from 8 independent inversions. Logging transfer function has been
computed using a constant damping of the form ξ = ξ0f

−α with ξ0 = 0.02
and α = 0.6. Bottom left panel: 8 inverted S-wave velocity structures (thin
solid lines) plotted with logging structure (dashed line). A dashed line rep-
resents the lower bound of the search space, the upper bound being the
logging’s structure. Numbers indicate layers of Table 2.3. Bottom middle
and right panels: 8 inverted damping factors in transverse and radial direc-
tion (thin solid lines). The reference value (bold solid line) is the one used
to compute theoretical ratios of the top panels. A dashed line represents the
upper bound of the inversion.
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Figure 2.17: 360 degrees spectral ratios computed during EQ01. Axes de-
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E(x) =

∑nPF
i=1

|PF obsi −PF thei (x)|

PF obsi
∑nPF

j=1 PF
obs
j

+

∑nPA
i=1

|PAobsi −PAthei (x)|

PF obsi
∑nPA

j=1 PA
obs
j

with x the vector containing parameters to invert, PF obsi the i-th observed
peak frequency, PF thei the i-th theoretical peak frequency, PAobsi the i-th
observed peak amplitude, PAthei the i-th theoretical peak amplitude, nPF
the number of peak frequency to use and nPA the number of peak amplitude
to use. In order to give more weight to low-frequency peaks, each member is
divided by PF obsi . Normalization by

∑nPF
j=1 PF

obs
j and

∑nPA
j=1 PA

obs
j is done

to avoid overweight the frequency or amplitude portions.
This objective function focuses on the location of peaks along the fre-

quency axis and on the amplitude of peaks. Peaks used in an inversion can
be chosen at will to calculate the objective function. We note that this ob-
jective function has the virtue of being the summation of linear functions
of the form |Xobs

i − Xthe
i (x)|, which makes its shape simple for inversion

techniques in an n-dimensional space. Its disadvantage resides in the fact
that one has to know a priori which peaks have to be inverted.

Neglecting the fact that large damping factors can increase S-wave ve-
locities due to their contribution in the complex shear modulus (i.e., G∗ =
G(1+2iξ), with G the shear modulus and ξ the damping value), we perform
two independent inversions by first inverting S-wave velocities to shift the-
oretical peaks to low frequencies and then damping factors to adjust peak
amplitudes (i.e., first and second member of residual E(x) are used inde-
pendently and normalization by

∑nPF
j=1 PF

obs
j and

∑nPA
j=1 PA

obs
j is omitted).

Since the transverse and radial observed resonant frequencies are close and
considering the fact that fluctuancy of peaks’ location is possible due to
phenomena other than the 1-D assumption, we use the mean of observed
resonant frequencies between transverse and radial components for PF obsi

except for F4 for which the value of the radial component has been chosen.
For peaks’ amplitude, we perform independent inversions for transverse and
radial components due to the strong discrepancy of amplitudes in the fun-
damental mode. Table 2.4 summarizes frequencies and amplitudes of peaks
targeted for the inversion.

The flowchart of the inversion is presented in Figure 1.17. Prior to the
genetic algorithm optimization, a Monte Carlo search is perfomed on five
populations of size 2048 binary individuals in order to explore the search
space. Each individual represents the S-wave velocity of 11 layers (S-wave
velocity of the bedrock has not been inverted since it is assumed to be linear
elastic). The minimum bound for the S-wave velocity of each layer is fixed
to 0.1 times the S-wave velocity of the logging. The maximum bound is the
S-wave velocity from the logging itself since it has been corroborated using
small aftershocks. A total of 4 bytes per layer has been used so that the
interval [0.1-1.0] is divided into 16 values (called inversion factors hereafter).
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Table 2.4: Peak frequency and amplitude before inversion (B) (i.e., using
S-wave logging), targeted for the inversion (T) (i.e., selected from observed
ones) and inverted (I). Inverted values of peak frequency correspond to re-
sukts of S-wave inversions.

Peak frequency Peak amplitude

Transverse Radial

Frequency B T I B T I B T I

F1 1.41 1.24 1.24 25.32 7.58 7.58 25.32 23.30 23.28
F2 3.56 3.56 3.54 28.27 11.97 11.92 28.27 20.82 20.71
F3 5.86 5.34 5.35 32.57 20.32 20.30 32.57 17.04 16.97
F4 7.74 7.00 6.98 25.05 - 10.81 25.05 15.00 14.97
F5 10.22 9.56 9.59 19.93 4.73 4.51 19.93 10.31 10.25
F6 12.08 11.33 11.32 17.55 10.86 8.09 17.55 7.13 7.69

The total number of possible solutions is therefore 24×11 = 1.759×1013.
Coefficient h0 of the damping factors are inverted for each soil layer and the
bedrock within the interval [0.0-0.3] is discretized into 32 inversion factors
(i.e., 5 bytes per layer). The total number of possible solutions is 25×12 =
1.153×1018. The exponent α of the damping factors are not inverted and
they are fixed to 0.6.

Individuals’ transfer functions are computed using the Thomson-Haskell
propagator matrix method and are smoothed with the same Parzen window’s
bandwidth used to smooth observed ratios (i.e., 0.1 Hz). Their objective
function is evaluated by E(x). Once the Monte Carlo search is terminated,
the best 1024 individuals found are used to generate the initial genetic al-
gorithm population of 1024 individuals. If the termination criterion is not
reached (i.e., a small residual or a large number of population), a selection
by tournament is performed with a pool of 10 individuals in order to gener-
ate the reproduction population of size 1024. Elitism is activated so that if
the best 10 individuals are not present in the reproduction population, they
are automatically added. The new population is generated with a crossover
probability of 85% and a mutation probability of 0.1%. If crossover does not
occur, random individuals are generated in the new population to maintain
the genetic diversity.

In order to avoid convergence to local minima, the summation of the
distance between inversion factors of individuals (i.e., N(N +1)/2 additions
with N the number of individuals in a population) is monitored and if this
summation drops below a threshold, then a new population is generated at
random. An example for an inversion of the evolution of the global minimum
residual, the minimum residual of new populations and the summation of
distance between individuals is shown in Figure 2.18. From population num-
ber 20, the objective function does not evolve anymore and the summation
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Figure 2.18: Example for an inversion of the evolution of the global minimum
residual (bold line), the minimum residual of a new population (thin line)
and the summation of distance between individual (dashed line).

of distances between individuals starts decreasing rapidly around popula-
tion 30. This means that a possible local minimum has been found and that
populations start stagnating (i.e., all individuals in a population become
identical and offsprings are identical to their parents). In order to avoid
such a possible local minimum, a random population is generated when the
summation of distance between individuals goes below a threshold fixed to
100 in term of summation of inversion factors. This has almost the effect
of starting the inversion from a totally new population; however, the best
individuals found so far are still injected inside the reproduction population
and can either be improved or participate to build new best individuals in
another region of the search space. As a result, better individuals are found
around population number 50 and 180 as shown in Figure 2.18.

In order to guarantee the robustness of the solution, eight independent
inversions are made to invert either S-wave velocity in the first step or damp-
ing factors in the second step. Evolution of the global minimum residual for
eight independent inversions of S-wave velocity is shown in Figure 2.19. The
first five population correspond to a Monte Carlo search, then genetic al-
gorithm optimization is activated and a fast convergence is visible. After
200 populations, even if a unique minimum is not found, the three distinct



2.1. Inversion During the 2005 West Off Fukuoka Earthquake 69

 0.01

 0.1

 1

 1  10  100

G
lo

b
al

 m
in

im
u
m

 r
es

id
u
al

Population’s number

8 independent inversions

Figure 2.19: Evolution of global minimum residual E(x) of 8 independent
inversions with respect to population number.

minima lead to close velocity profiles shown on the bottom left panel of
Figure 2.16 and hence this guarantees the robustness of the solution. In-
verted damping factors are shown on bottom middle and right panels of
Figure 2.16. Even if several minima are found (especially in the radial di-
rection), they are close to each other and this guarantees the quality of the
convergence. Corresponding spectral ratios are shown in the first two top
panels of Figure 2.16; for some modes, we note that small shifts between
inverted resonant frequencies and observed ones are due to the fact that the
mean of resonant frequencies between transverse and radial component has
been inverted. Accuracy of the inversion is shown in Table 2.4, which com-
pares peaks’ frequency and amplitude targeted and inverted. We also note
that by inverting only F1, F2, F3, F5 and F6 in the transverse direction,
a similar velocity profile is found and F4 goes naturally to 7.0 Hz; hence
confirming that the shift toward high frequency of F4 is not consistent with
a 1-D assumption.

Moreover, in order to reinforce the inversion obtained by using the ob-
jective function E(x) presented above, we perform a separate inversion in
the transverse direction by using the traditional objective function which
tends to minimize the integrated residuals between observed and theoretical
spectral ratios (e.g., Satoh et al., 1995a). Parameters of the search space
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and the discretization are identical but S-wave velocity and damping fac-
tors are inverted at the same time. To avoid the directional effect on F4 as
shown above, the integration is performed from 0.1 to 7.0 Hz and from 9.0
to 12 Hz. Results are shown in Figure 2.20. The localization of the signifi-
cant decrease of the S-wave velocity is consistent with the previous results
and is found to appear in the layers 6 to 9. As for the damping, the order
of magnitude is globally the same along the soil column but discrepancies
are found for the layers 1 and 5. We note that an inversion performed by
integrating the residual from 0.1 to 12 Hz includes the directional effect and
leads to different results.

Spectral ratios used for the inversion being taken over the entire S-wave
portion, the inverted profile can be used to perform time history simulations
of this S-wave portion. Acceleration simulations of the basement are shown
in Figure 2.21. The agreement with observations is acceptable in both direc-
tions. Nevertheless, observed radial accelerations are often underestimated
by the simulation, denoting an overestimation of inverted damping factors
in this direction. This can be due to the fact that spectral ratios in both
transverse and radial directions have been selected when the amplitude of
the spectral ratio in the transverse direction was the highest whereas the
amplitude of the spectral ratio in the radial direction was not at its highest
point. In order to clearly see the effect of the decrease of the S-wave velocity
on the S-wave portion of the basement acceleration, Figure 2.22 shows the
simulation of the acceleration in the transverse direction using the elastic
linear soil properties and a 1% constant damping along the soil column. The
amplitude and the duration of the signal are clearly overestimated. How-
ever, a simulation using the elastic linear soil properties and a commonly
used 5% damping reproduced quite well the observation as shown in Figure
2.23.

With regards the localization of nonlinearity with depth, the reduction of
the S-wave velocity around 35 meters depth is consistent with the variation
table of peak frequency of the soil column presented in Figure 2.24. The fact
that the observed second resonant frequency did not shift under loading as
seen on Figure 2.16 means that significant nonlinear behavior could take
place only within layers 6 and 7 that have no influence on the second mode.
We also note that in the transverse direction, the increase of damping factors
is not always consistent with the decrease of S-wave velocity. The ratio of
the length of the decrease of S-wave velocity to the length of the increase of
damping is approximately 93%. This can be due to the fact that the inversed
solution is not the best one or that other phenomena which influence the
shape of the ratio as soil-structure interaction or geometrical effects are
included in the inversion. This discrepancy is even more obvious in the
radial direction. This suggests that for this site, independent inversions
should be carried out in the transverse and radial directions.

We also note that damping factors adjusted during the aftershocks seem
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Figure 2.20: Results of 8 independent inversions obtained by using the con-
ventional objective function (e.g., Satoh et al., 1995a). Top panel: spec-
tral ratios observed in transverse direction (bold solid line) plotted together
with inverted spectral ratios (thin solid lines) from 8 independent inversions.
Bottom left panel: 8 inverted S-wave velocity structures (thin solid lines)
plotted with logging structure (dashed line). Bottom right panel: 8 inverted
damping factors in transverse direction (thin solid lines).



72 Chapter 2. APPLICATIONS OF THE INVERSION

-500

-250

 0

 250

 500

A
cc

el
er

at
io

n
 (

cm
/s

2
)

 (
ta

n
g

en
ti

al
)

Basement observation
Simulation

-500

-250

 0

 250

 500

 4  6  8  10  12  14

A
cc

el
er

at
io

n
 (

cm
/s

2
)

 (
ra

d
ia

l)

Time (s)

Basement observation
Simulation

Figure 2.21: Comparison between observed (solid line) and simulated
(dashed line) acceleration at the basement in transverse and radial direc-
tions for the main shock.
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Figure 2.22: Comparison between observed (solid line) and simulated
(dashed line) acceleration at the basement in the transverse directions using
the elastic linear soil properties and a constant 1% damping along the soil
column.
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Figure 2.23: Comparison between observed (solid line) and simulated
(dashed line) acceleration at the basement in the transverse directions using
the elastic linear soil properties and a constant 5% damping along the soil
column.

too high compared to those inverted during the main shock. This can be due
to the fact that the damping found for aftershocks is an equivalent damp-
ing manually adjusted in the time domain (because the amplitude of the
resonant peaks in the frequency domain were not constant), consequently,
this equivalent damping is mainly controlled by scattering around the fun-
damental frequency and is not comparable with damping factors inverted
in the frequency domain for the main shock. Besides, as noted by Satoh
et al. (2001), the reason why the strain dependence of damping factors is
not as significant as that of shear modulus ratios may be because scattering
attenuation is dominant in the low-strain range.

Shear modulus ratios versus shear strain are compared in Figure 2.25
with laboratory test results from Seed and Idriss (1970b) for sand and gravel
and from Vucetic and Dobry (1991) for clay (due to the fact that peaks’ am-
plitude is more sensible than peaks’ frequency when doing spectral ratios as
shown before, only shear modulus reduction is compared with standardized
curves). Shear strain levels of layers are calculated using the S-wave veloc-
ity logging and a constant damping along the soil column adjusted to 5% to
best reproduce the basement and downhole acceleration time histories (this
technique to compute the strain level is used because the Thomson-Haskell
propagator code developped here does not compute the strain level at the
middle of each layer). As for sand and gravel layers, it is clear that results
of the inversion are situated above standardized curves. This result can be
explained by the following facts:

• for layers below 40 m depth, the effective vertical stress (overburden
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  0.00   0.06   0.22   0.39   0.50   0.61

  0.00   0.20   0.78   0.78   0.46   0.33

  0.02   0.20   0.24   0.12   0.37   0.42

  0.07   0.24   0.09   0.30   0.43   0.41

  0.05   0.03   0.18   0.05   0.42   0.13

  0.13   0.00   0.39   0.26   0.33   0.78

  0.10   0.00   0.20   0.29   0.05   0.29

  0.13   0.07   0.13   0.46   0.39   0.07

  0.05   0.05   0.00   0.10   0.34   0.24

  0.10   0.15   0.05   0.05   0.49   0.73

  0.05   0.10   0.14   0.10   0.08   0.12

  0.13   0.13   0.26   0.26   0.26   0.26

  0.07   0.13   0.26   0.33   0.39   0.39

Figure 2.24: Variation table of theoretical resonant frequencies with respect
to S-wave velocity of a soil layer computed for a vertically incident S-wave
using the velocity logging. F followed by a number denotes a resonant fre-
quency and L followed by a number denotes a layer (corresponding to Table
2.3). Float numbers indicate resonant frequencies’ value. Vertical lines sym-
bolically represent the original location of a resonant frequency Fi and hori-
zontal lines located on the left-hand side and right-hand side of vertical lines
quantitatively represent the amount of shift of the frequency Fi normalized
by the height of the layer Lj with respect to the decrease or increase of the
S-wave velocity of the soil layer Lj. Factors used to decrease or increase the
S-wave velocity of a soil layer are 0.8 and 1.2, respectively. Float numbers
quantitatively indicate the amount of shift.
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Figure 2.25: (a) Comparison of the strain-dependent characteristics inverted
for sand and gravel layers with laboratory test results for sand (Seed and
Idriss, 1970b) whose effective vertical stress ranges from 0.05 to 0.5 MPa.
(b) Comparison of the strain-dependent characteristics inverted for clay lay-
ers with laboratory test results for clay (Vucetic and Dobry, 1991) whose
plasticity index (PI) ranges from 0% to 200%. For both panel, numbers
indicate layers of Table 2.3.

pressure) is larger than the one used to draw the upper bound of the
standardized curves and since the higher the effective vertical stress
the lower the shear modulus reduction with respect to shear strain,
shear modulus ratios for layers 9 or 11 are consistent with standardized
curves since they are located above them. A better agreement should
be obtained by using depth-dependent shear modulus reduction curves.

• for layers between the free surface and 40 m depth, strain levels calcu-
lated by using the S-wave velocity logging and a constant damping of
5% might be higher than the reality due to the dissipation of energy
that took place in layers 6, 7 and 8; consequently, shear moduli found
by inversion are consistent with the shift of resonant modes but shear
strain levels might be overestimated by the 1-D linear assumption.

As for clay, standardized curves show a clear dependence of shear modulus
ratios with respect to plasticity index, especially for large shear strain levels.
Since the plasticity indexes for the soil column of this study are unknown,
an accurate comparison is not possible.

2.2 Conclusion

In order to detect nonlinear behavior of soft soil during the 2005 West off
Fukuoka earthquake, we have first corroborated the S-wave velocity logging
in the linear elastic domain by using time-dependent spectral ratios analyses.
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Despite a good agreement between observation and theory in the transverse
direction for several resonant modes, the observed fundamental mode in the
radial direction exhibits a higher resonant frequency. We found by using
360◦ spectral ratios that a clear drift of the fundamental mode was visible
in the radial direction might be due to either soil heterogeneity, geometrical
effects and/or soil-structure interaction. Moreover, because of a large in-
homogeneity of peak amplitudes amongst aftershocks, frequency-dependent
damping factors have been adjusted in the time domain.

Then to show qualitative evidence of nonlinearity during the main shock
we have performed a time-dependent spectral ratios analysis, which showed
that several resonant modes were shifted toward low frequencies; thus point-
ing out shear moduli reduction for high shear strain levels.

Finally, in order to evaluate the degree of nonlinearity, we have inverted
by a genetic algorithm the equivalent linear S-wave velocity and damping
factors on the S-wave portion via the Thomson-Haskell propagator matrix
method. Because of effects inconsistent with the 1-D assumption in the
transverse direction, common objective functions which minimize integrated
residuals between observed and theoretical spectral ratios could not be used.
We have, therefore, introduced an objective function depending only on peak
frequency and peak amplitude in order to choose which modes to invert.
We note that in cases where soil heterogeneity, geometrical effects and/or
soil-structure interaction affect the 1-D assumption, transverse and radial
directions could be inverted separately. The robustness of the inversion on
S-wave velocity was shown by performing eight independent inversions that
lead to minima associated with close velocity profiles; thus guaranteeing
a convergence toward a probable global minimum. However, for inversion
results in general, it can be useful to show the 10% best solutions near the
best individual found in order to see the dispersion around this individual.

In the following Part, we present high-performance numerical tools to
deals with 1D/2D and 3D site effects. In Chapter 3, we first summarize the
main nonlinear methods exposed in the literature. Then, a simple nonlinear
constitutive law (a pertectly-plastic law using the Mohr-Coulomb criteria)
and an advanced nonlinear constitutive law (Aubry et al., 1982) implemented
in the GEFDyn code are tested on the soil column of Fukuoka (cf. Chapter
2). In Chapter 4, we develop and verify 1-D, 2-D and 3-D spectral elements
codes (EFISPEC1D, EFISPEC2D and EFISPEC3D) based on the detailed
explanations given by Komatitsch (1997).
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Chapter 3

Nonlinear Finite Elements
Simulations

3.1 Stress-Strain Behavior of Cyclically Loaded Soils

The constitutive relationship which relates the stress τij to the strain ǫij
is an important characteristic of the medium; it has a direct effect on the
acceleration as shown in the equation of motion and consequently, influ-
ences particles motion in wave propagation. Numerous models have been
developped and are still being developped because the behavior of soil is
very complex. Therefore, any attempt to incorporate various features of
soils properties in a single mathematical model is not likely to be successful.
Even if such a model could be constructed, it would be far too complex to
serve as the basis for the solution of pratical seismological or geotechnical
engineering problems. Simplifications and idealizations are essential in or-
der to produce models that can represent the main properties of the soils
related to a given application. The point at which the conflicting require-
ments of simplicity and accuracy are balanced depends on many factors, and
many combinations have been proposed. The evaluation of these models is
in general based on the following three considerations:

• Theoretical evaluation of the models with respect to the basic prin-
ciples of continuum mechanics to ascertain their consistency with the
theoretical requirements of continuity, stability and uniqueness.

• Experimental evaluation of the models with respect to their suitabil-
ity to fit experimental data and the ease of the determination of the
material parameters from standard test data.

• Numerical and computational evaluation of the models with respect
to the facility with which they can be implemented in computer cal-
culations.
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For the purpose of this thesis, three broad classes of soil models will be
briefly exposed in order to choose the most appropriates to compute the non-
linear responses of soils based on the three above-mentioned considerations.
These models are

• the equivalent linear models;

• the cyclic nonlinear models;

• simple and advanced constitutive models (also called perfectly-plastic
constitutive models and hardening-plastic constitutive models, respec-
tively).

Detailed mathematical descriptions of these models can be found in Chen
and Mizuno (1990); Kramer (1996); Potts and Zdravkovic (1999).

3.1.1 Equivalent linear model

The equivalent linear approach is most commonly used in practice in geotech-
nical engineering. It assumes that a multi-layered soil subjected to a sym-
metric cyclic shear loading exhibits a hysteresis loop (see Figure 3.1), which
relates the shear stresses τ to the cyclic distortion γ. This hysteresis loop is
first characterized by the secant shear modulus Gsec, which represents the
loop inclination:

Gsec = µsec =
τc
γc

where τc and γc are the shear stress and shear strain amplitudes, respectively.
The loop area Aloop represents the energy dissipation and is conveniently
described by the damping ratio ξ, given by:

ξ =
1

2π

Aloop
Gsecγ2

c

.

The parameters Gsec and ξ are often referred to as equivalent linear ma-
terial parameters. The equivalent linear procedure then consists in providing
G − γ and ξ − γ curves, expressing the evolution of both parameters with
respect to the cyclic distortion. These curves can be constructed by labo-
ratory tests as shown in Figure 3.2 (e.g., Seed and Idriss, 1970b; Kokusho,
1980; Seed et al., 1986) and then used for numerical computations. Such
a linear procedure is hence not capable of predicting permanent strains or
failure, for high seismic distortion levels. Moreover, the past experience
in the use of the equivalent linear method leads to the conclusion that for
problems where strain levels remain low (stiff soil profiles and/or relatively
weak input motions), this method provides reasonable results, however, for
problems involving high strain levels, this method tends to overestimate the
shear modulus reduction and the increase of damping (Joyner and Chen,
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Figure 3.1: Definition of parameters of an equivalent linear model.

1975; Martin and Seed, 1978; Dikmen and Ghaboussi, 1984). Nevertheless,
it is still widely used in practice because it allows a very efficient class of
computational models to be used for earthquake and geotechnical engineer-
ing.
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Figure 3.2: Shear modulus (solid line) and damping ratio (dashed line)
versus shear distorsion from Seed and Idriss (1970b).

3.1.2 Cyclic nonlinear models

The nonlinear stress-strain can be represented more accurately by cyclic
nonlinear models that follow the actual stress-strain path during cyclic load-
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ing. Such models are able to represent the shear strength of the soil, and
with an appropriate pore pressure model, changes in effective stress during
undrained cyclic loading (e.g., Finn et al., 1977; Bonilla, 2000). A variety of
cyclic nonlinear models has been developed; all are characterized by

• a backbone curve

• and a series of “rules” that govern unloading-reloading behavior, stiff-
ness degradation and other effects.

The reader is referred to Bonilla (2000) for a view of the history and evolution
of the different series of rules that govern unloading-reloading behavior.

To summarize briefely, the concept and the first rules were initially ex-
posed by Masing (1926). Then, several models have followed and improved
these rules (e.g., Iwan, 1967; Finn et al., 1977; Pyke, 1979; Vucetic, 1990).
The performance of cyclic nonlinear models can be illustrated by a very
simple example in which the shape of the backbone curve is described by
τ = Fbb(γ). The shape of any backbone curve is tied to two parameters, the
initial (low-strain) stiffness and the (high-strain) shear strength of the soil.
For the simple example, the backbone function, Fbb(γ), can be described by
a hyperbola

Fbb(γ) =
µmaxγ

1 + (µmax/τmax)|γ|
.

The shape of the hyperbolic backbone curve is illustrated in Figure 3.3.
Other expressions (e.g., Ramberg and Osgood, 1943) can also be used. The
response of the soil to cyclic loading is governed by the first two rules given
by Masing (1926):

1. for initial loading, the stress-strain curve follows the backbone curve;

2. if a stress reversal occurs at a point defined by (γr, τr), the stress-strain
curve follows a path given by

τ − τr
cH

= Fbb

(

γ − γr
cH

)

,

where cH , the hysteresis scale factor, acts on the slope of the reversal
curve. Initially, Masing used cH = 2 and the first work for controlling
the hysteresis scale factor has been done by Pyke (1979). He suggested
that this factor could be stress depend as

cH =

∣

∣

∣

∣

±1 − τr
τmax

∣

∣

∣

∣

where the sign is chosen positive for loading and negative for unloading.
This operation is known as the Cundall-Pyke hypothesis because they
both reached the same formulation independently (Pyke, 1979).
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These two rules are however not sufficient to describe the soil response under
a general cyclic loading since the maximum stress τmax can be exceeded. As
a results, additional rules have been expressed:

3. if the unloading or reloading curve exceeds the maximum past strain
and intersects the backbone curve, it follows the backbone curve until
the next stress reversal;

4. if an unloading or reloading curve crosses an unloading or reloading
curve from the previous cycle, the stress-strain follows that of the
previous cycle.

Models that follow these four rules are often called extended Masing mod-
els. These rules mimic (without mathematical formulations) the yield stress
conditions and the progressive mobilization of plasticity through strain hard-
ening mechanisms of the advanced constitutive models that are exposed in
the following of this section.

γ

τ

τmax

-τmax

µmax

Figure 3.3: Hyperbolic backbone curve asymptotic to τ = µmaxγ and to
τ = τmax and τ = −τmax.

An interesting point of the cyclic nonlinear models is that the backbone
curves can be constructed directly from the shear modulus reduction curves
(data that tend to be more and more available on a site as the elastic pa-
rameters ρ, α and β). As an example, Figure 3.4 shows a laboratory tests
curves from Seed et al. (1986) as a backbone curve. On the contrary of the
equivalent linear method, the damping curve provided by laboratory tests
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cannot be used directly. However, the amount of damping can be controlled
by tunning the value of cH . In Figure 3.4, two reversals at (γr, τr) are shown
with cH = 1 and cH = 2. A modulus reduction curve presented by Seed
et al. (1986) and the associated damping curves for cH = 1.0, cH = 1.5
and cH = 2.0 are shown in Figure 3.5. As we can see, an increase of the
parameter cH increases the damping with respect to the strain level.
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Figure 3.4: Backbone curve (bold line) using a laboratory curve from Seed
et al. (1986). Two reversals are shown with cH = 1 and cH = 2.

Note that the cyclic nonlinear model does not require the shear strain to
be zero when the shear stress is zero. The ability to represent the develop-
ment of permanent strains is one of the most important advantages of the
cyclic nonlinear models over the equivalent linear models. However, cyclic
nonlinear models do not allow for the determination of shear-induced vol-
metric strains that can lead to hardening under drained conditions or to pore
pressure development with attendant stiffness degradation under undrained
conditions.

3.1.3 Simple and advanced constitutive models

The perfectly-plastic or hardening-plastic constitutive models (i.e., simple
and advanced constitutive models, respectively), mainly considering an elasto-
plastic constitutive behavior for soil deposits, are able to reproduce the in-
trinsic complex features of soil behavior under seismic loading in a wide
range of shear strains, namely from 10−6 to 10−2. Hardening-plastic con-
stitutive models can reproduce stiffness degradation, irrecoverable displace-
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Figure 3.5: Modulus reduction curve from laboratory tests (Seed et al., 1986)
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ment, volumetric strain generation, etc. The use of models based on the
elastoplasticity theory is more suitable than equivalent-linear approach as
they represent a rational mechanical process.

“Plastic” behavior of solids is characterized by a non-unique stress-strain
relationship (as opposed to that of nonlinear elasticity). Indeed, one def-
inition of plasticity may be the presence of irrecoverable strains on load
removal. If uniaxial behavior of a material is considered, as shown in Fig-
ure 3.6-(a), a nonlinear relationship on loading alone does not determine
whether nonlinear elastic or plastic behavior is exhibited. Unloading will
immediately discover the difference, with the elastic material following the
same path and the plastic material showing a history-dependent, different,
path.

Materials that have a perfectly-plastic behavior (i.e., a simple constitu-
tive model), as shown in Figure 3.6-(b), have a limiting yield stress, σy, at
which the strains are indeterminate. For all stresses below such a yield, a lin-
ear (or nonlinear) elasticity relationship is assumed. The yield surface (i.e.,
surface in the stress space which delimits the linear and plastic behavior) is
often determined by a Tresca, von Mises, Mohr-Coulomb or Drucker-Prager
criteria. Figure 3.7 (left-hand side) shows the yield surface in the Mohr
plane, characterized by the cohesion c and the internal friction angle ϕ.
Figure 3.7 (right-hand side) describes the shape of a hysteresis loop in the
plane γ - τ . By using a Mohr-Coulomb yield surface for instance, only two
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Figure 3.6: Example of uniaxial behavior of real materials.

new parameters (i.e., c and ϕ) are needed in addition to the elastic param-
eters to fully describe the simple constitutive model. From the parameters
that describe the hysteresis loop shown in Figure 3.8, the ratio between the
maximum shear modulus and the secant shear modulus as a function of the
deformation γa can be derived in a close mathematical form as

Gsec
Gmax

=
γlim
γa

. (3.1)

The same reasoning leads to a damping ratio of the form

ξ =
2

π

(

1 − γlim
γa

)

=
2

π

(

1 − Gsec
Gmax

)

. (3.2)

The shortcoming of the perfectly-plastic behavior is that the shear mod-
ulus reduction curves and damping factor curves given by Equations (3.1)
and (3.2) are far to represent a smooth shape as exhibited by the labora-
tory tests. Figure 3.9 plots these equations together with the laboratory
tests from Seed et al. (1986): we can see that once the plasicity domain is
reached, the decrease of the shear modulus is too sharp and the increase of
damping as well. Moreover, the damping is highly overestimated.

Some other advanced constitutive models use the critical state concept,
with one or more yield stress conditions depending on the loading type
(monotonous or cyclic), represented as yield surfaces in the stress space,
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Figure 3.7: Left panel: Schematic representation of Mohr-Coulomb criterion
in the plane σn−τ (i.e., normal stress - shear stress). The cohesion is defined
by the letter c and the limit of elasticity is defined by the straight line
τ = σntanϕ + c. σ1 and σ3 are major and minor principal stress defining
the Mohr circle. Right panel: Schematic representation of the nonlinear
stress-strain constitutive law. Arrows indicate the stress-strain path of a
full hysterisis under sinusoidal cyclic loading. Plasticity arises when the
stress state reaches the limit of elasticity of Mohr-Coulomb criterion.

Figure 3.8: Hysteresis loop for a perfectly-plastic behavior and definition of
the variables used to express the ratio Gsec

Gmax
and the damping factor ξ.
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Figure 3.9: Top panel: shear modulus reduction curves obtained by Equation
(3.1) plotted together with the laboratory tests results from Seed et al.
(1986). Bottom panel: Damping factor obtained by Equation (3.2) plotted
together with the laboratory tests results from Seed et al. (1986).
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in order to describe the limit between elastic and inelastic domain behav-
ior. Some models also propose progressive mobilization of plasticity through
strain hardening mechanisms (schematically represented in Figure 3.6-(c))
and specific flow rules that relates the plastic volumetric and shear strain
rates to the stress state through plastic multipliers (e.g., Mroz, 1967; Pre-
vost, 1977; Hujeux, 1979; Aubry et al., 1982; Hujeux, 1985; Prevost, 1985).

In such advanced models, parameters should be chosen such that they
are closely related to the rheology that describes the material properties
at various strain levels. In some cases, these rheological models do not
necessarily have physical parameters. Sometimes there are mathematical
parameters that cannot be measured in the laboratory. Besides, the lack of
knowledge of soil properties is common in seismic studies and a complete
geotechnical description of a site is very rare. Thus, one of the obstacles in
using such models is the difficulty in identifying their parameters. However,
some correlations can be made between laboratory tests and mathematical
parameters as shown by Lopez-Caballero et al. (2003, 2007).

3.1.4 Conclusion

After a brief vision of the different mathematical models used to mimic the
real nonlinear behavior of soil in geomechanics, one of the most attractive in
terms of simplicity of formulation, efficiency is the cyclic nonlinear model.

In term of additional parameters to the elastic ones, the cyclic nonlinear
model is approximately equivalent to the simple constitutive models, how-
ever, the realisticness of the shear modulus reduction curves is much better
than the one derived from the simple constitutive models, especially when
laboratory tests curves are directly used.

Advanced constitutive models may be the closest from the real behavior
of soil, however, numerous additional parameters are requiered for their
mathematical formulation (parameters that are sometimes not available on
a site or that have no physical meaning). It would be far too complex
to use these laws as the basis for the solution of pratical seismological or
geotechnical engineering problems. In addition, such advance models are
more complex to implement in numerical methods.

In the following section, we used the GEFDyn code and Cyberquake to
simulate the nonlinear wave propagation along the soil column of the CTI
borehole station. As for GEFDyn, a simple constitutive law is used, whereas
for Cyberquake, an advanced constitutive law is used.



90 Chapter 3. NONLINEAR FEM SIMULATIONS

3.2 Nonlinear Simulations at the CTI Borehole
Station

3.2.1 Presentation of the problem

In order to test a simple constitutive model, we use the GEFDyn code
with an elastic perfectly-plastic law using the Mohr-Coulomb yield criterion
presented above. We note that as a first approximation, no distinction is
made between sand and clay layer and both are modeled by a perfectly-
plastic law using the Mohr-Coulomb yield criterion. Besides, despite the
clear shortcomings of this simple constitutive model (i.e., quick reduction
of the shear modulus and rapid increase of the damping), we investigate
its use to have in mind its influence on the soil response. Both associated
(i.e., ϕ = ψ) and non-associated (i.e., ϕ 6= ψ) flow rules are used for the
simulations. A common modified Newton-Raphson method is used to resolve
the finite element nonlinear problem (e.g., Zienkiewicz and Taylor, 1989b).
In order not to have numerical dispersion, the recommendations exposed
in the previous chapter have been applied up to 40 Hz (i.e., 30 nodes per
minimal wavelength).

The soil column used for the simulations is the one presented in Table
2.3. Only the layers for which a nonlinear behavior has been detected by the
inversion are modeled by a nonlinear law. As shown in Chapter 2, mainly
the transverse direction at the CTI borehole station suffered from strong
nonlinearity; consequently, only this direction is investigated. The incoming
wave used for the FEM simulations of the free surface waveform is the one
deconvolved by using the Thomson-Haskell propagator matrix method using
the downhole waveform and the initial linear elastic parameters with a 5%
damping. We note that for performing a rigourous deconvolution, the soil
column inverted in Chapter 2 should be used since it is the closest from the
reality and consequently, the most adapted to recover the incoming wave.
However, in practice, an inversion is not always possible and the common
technique using the linear elastic parameters with a 5% damping is used
here. We note that simulations using an incident wave deconvolved via the
inversion results or via the 5% damping technique lead to close results in
our case.

3.2.2 Results of the nonlinear simulations

We first test the effect of an associated law on the response of the CTI soil
column. The elastic properties of the soil column are given in Table 2.3.

For this purpose, the cohesion is fixed to a small value (i.e., c = 1
kPa) and the friction angle ϕ and dilatancy angle ψ are tuned together
with a same value (the dilatancy angle has a role on the nature of the
sand: contractant or dilatant and on the mathematical flow rule: associated
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Figure 3.10: Observed and simulated displacements using an isotropic lin-
ear elastic law and an elastic associated perfectly-plastic law with a Mohr-
Coulomb criterion with ϕ = 30◦, 15◦ and 5◦.

or non-associated). Figures 3.10 to 3.12 show the simulated displacement,
velocity and acceleration for different values of the internal friction angle (the
dilatancy angle is fixed equal to the friction angle). As for the displacement,
we can see that the decrease of the friction angle (which makes appear the
nonlinear behavior for smaller stress as shown in Figure 3.7) has an effect
on the amplitude of the oscillations, on their periods and on the permanent
displacement. For the simulation using ϕ = 5◦, we observe that the overall
oscillation becomes smoother (i.e., decrease of the short periods oscillations
present between 5 s and 10 s) as in the observation. However, a simple look
at the velocity and acceleration time histories clearly shows that the simple
constitutive law is too rough: the shape of the velocity time history has a
triangle shape and the acceleration has more or less a square shape. The
positive point is that the amplitude of the velocity and acceleration that are
overestimated by the linear simulation decreases as the nonlinearity increases
(i.e., decrease of the friction angle).

In order to check if a non-associated law (i.e., a flow rule not associated
with the yield function) could lead to smoother velocity and acceleration
time histories, we perform simulations with a friction angle fixed to −15◦

and tune the dilatancy angle. Figures 3.13 to 3.15 show the displacement,
velocity and acceleration time histories. As we can see, the use of a non-
associatied law has very small effects on the results. The main phenomenon



92 Chapter 3. NONLINEAR FEM SIMULATIONS

-1

 0

 1

T
ra

n
sv

er
se

 
 v

el
o

ci
ty

 (
m

/s
)

Observation
Linear simulation

-1

 0

 1

T
ra

n
sv

er
se

 
 v

el
o

ci
ty

 (
m

/s
)

Observation
Nonlinear simulation: c = 1 kPa, ϕ =  30 º, ψ =  30 º

-1

 0

 1

T
ra

n
sv

er
se

 
 v

el
o

ci
ty

 (
m

/s
)

Observation
Nonlinear simulation: c = 1 kPa, ϕ =  15 º, ψ =  15 º

-1

 0

 1

 0  5  10  15  20

T
ra

n
sv

er
se

 
 v

el
o

ci
ty

 (
m

/s
)

Time (s)

Observation
Nonlinear simulation: c = 1 kPa, ϕ =  05 º, ψ =  05 º

Figure 3.11: Observed and simulated velocities using an isotropic linear elas-
tic law and an elastic associated perfectly-plastic law with a Mohr-Coulomb
criterion with ϕ = 30◦, 15◦ and 5◦.
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Figure 3.12: Observed and simulated accelerations using an isotropic lin-
ear elastic law and an elastic associated perfectly-plastic law with a Mohr-
Coulomb criterion with ϕ = 30◦, 15◦ and 5◦.
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Figure 3.13: Observed and simulated displacement using an isotropic linear
elastic law and an elastic non-associated perfectly-plastic law with a Mohr-
Coulomb criterion with ψ = −45◦ and +15◦.

Table 3.1: Default parameters of the Cyberquake model for sand and clay.

Elasticity Yield surface Hardening Behavior domains Initial state

Vs, Vp φ′, β, b Ep, ψ, αψ , nr γela, γhis, γmob σco/σ′

Sand cf. Table 2.3 30, 40, 0.1 20, 30, 1, 0.5 10−08, 0.1, 0.5 1
Clay cf. Table 2.3 15, 10, 1 5, 15, 1, 0.5 10−09, 10−06, 10−05 2

which governs the shape of the velocity and acceleration time histories is the
smoothness of the stress-strain curve.

As a result, we perform in the following nonlinear simulations using
the software Cyberquake with an advanced constitutive law (Hujeux, 1985;
Lopez-Caballero et al., 2007) that allows a smooth relation between the
stress and the strain. The default parameters of the nonlinear law for sand
and clay are used for the layers for which the inversion of Chapter 2 has
shown a nonlinear behavior (i.e., the layers 6 to 9 of Table 2.3). The default
parameters are summarized in Table 3.1. A detailed explanation of the
meaning of these parameters is given by Lopez-Caballero et al. (2007).

Figure 3.16 shows the observed and simulated displacements, velocities
and accelerations using the cyberquake model with the parameters of Table
3.1. We note that this simulation use the same incident wave as used previ-
ously. Consequently, if the simulation was linear elastic, the match between
observation and simulation would be perfect. The stress-strain relation in
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Figure 3.14: Observed and simulated velocity using a linear elastic law and
an elastic non-associated perfectly-plastic law with a Mohr-Coulomb crite-
rion with ψ = −45◦ and +15◦.
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Figure 3.15: Observed and simulated acceleration using a linear elastic law
and an elastic non-associated perfectly-plastic law with a Mohr-Coulomb
criterion with ψ = −45◦ and +15◦.

the middle of the layers 6 to 9 are shown in Figure 3.17. This figure clearly
shows the smooth nonlinear relation between the stress and the strain (by
opposition to the bi-linear stress-strain relation shown in Figure 3.7 (right
panel)). As a results, the velocity and acceleration shown in Figure 3.16 are
slightly more realistic. However, the damping seems too high and a tune of
the parameter of the Cyberquake law would be necessary (at least to adjust
the peak ground acceleration). We can also note that the stress-strain curves
for the clay layers (layers 6 and 8) exhibit too high maximum strain levels
that would need some calibrations to obtain better results.
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Figure 3.16: Observed and simulated displacements, velocities and acceler-
ations using the advanced constitutive law of the Cyberquake software.
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Figure 3.17: Stress-strain relation in the middle of the layers 6 to 9 using
the advanced constitutive law of the Cyberquake sotfware.
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3.3 Conclusion

We have performed in this chapter nonlinear simulations based on the re-
sults of the inversions in Chapter 2. Two nonlinear laws have been tested:
a simple constitutive law and an advanced one from Cyberquake software.
The results clearly show that the bi-linear assumption of the simple elasto-
plastic law with a Mohr-Coulomb criterion produces unrealistic velocity and
acceleration time histories. In order to obtain a smoother stress-strain rela-
tionship, we have also used an advanced constitutive law that lead to better
results, however, the number of parameters to be tuned in order to obtain
results consistent with the observation is an unavoidable obstacle. Even if
smoother results have been found in the stress-strain plane, the simulated
acceleration remained far from the observation and far from the results pre-
sented in Chapter 2 Figure 2.21 obtained using the observed equivalent linear
parameters from the inversion. Moreover, we note that for the simulations,
only the layers where nonlinear behavior have been found during the inver-
sion were allowed to behave nonlinearly. Simulations for which all layers are
allowed to behave nonlinearly overestimate the appearance of nonlinearity.



Chapter 4

The Finite Elements Method
and Spectral Elements
Method in Seismology

As shown in the previous Chapter, the one-dimensional (1D) and plane waves
assumptions are often appropriate to study the local site effects. However,
the rapid development of strong-motion seismology in the past decades has
generated much interest in 2D or 3D solutions of seismic problems. The ana-
lytical or semi-analytical solutions of the elastic wave equations can be found
for simplified problems including seismic sources (e.g., Lamb, 1904; Garvin,
1956; Niazy, 1973; Aki and Richards, 2002), however, with the current math-
ematical theories, such exact solutions are not available for complex realistic
structures.

In order to overcome the difficulty to find exact solutions, considerable
efforts have been devoted for developing accurate numerical techniques for
the solution of elastic wave equations. For more than three decades the most
widely used approaches have been:

• The methods based on the discrete wavenumber method (Bouchon
and Aki, 1977) using boundary integral equations or boundary ele-
ments (e.g., Sanchez-Sesma and Esquivel, 1979; Dravinski, 1983; Bou-
chon, 1985; Campillo and Bouchon, 1985; Campillo, 1987; Bravo et al.,
1988; Kawase, 1988; Coutant, 1989; Kawase and Aki, 1989; Gaffet and
Bouchon, 1989, 1991; Papageorgiou and Kim, 1991; Sanchez-Sesma
and Campillo, 1991; Mossessian and Dravinski, 1992; Clouteau and
Aubry, 2003). The main advantages of these methods are that the so-
lution is sought over a domain one dimension lower than the physical
domain, and that the radiation condition is a priori satisfied. Such
methods require piecewise homogeneous domains and linear constitu-
tive laws. The linear system to be solved is non-symmetric and can
be cumbersome to resolve. A solution to this shortcoming has been



100 Chapter 4. THE FEM AND SEM IN SEISMOLOGY

proposed by Bouchon et al. (1995) who use a boundary integral equa-
tion (BIE) /conjugate gradient formulation to study the propagation
of seismic waves through complex geological structures. The method
is aimed at extending the range of applications of boundary integral
equations or boundary element methods (BEM) to geological models of
relatively large size or complexity. The authors show that the system
of equations that expresses the boundary conditions at the medium
interfaces and that is inherent to the BIEM or BEM approach can be
drastically reduced in size and that only 10 to 20% of the terms of this
system contribute significantly to the solution.

• The finite difference method (e.g., Virieux, 1986; Graves, 1996; Oprsal
and Zahradnk, 2002). This is a very popular method because of its ease
of implementation, but it suffers from numerical dispersion and from
difficulties related to the implementation of boundary conditions. Re-
cent advances for absorbing properly waves impiging on the boundaries
is the implemetation of an unsplit convolutional perfectly matched
layer (e.g., Komatitsch and Martin, 2007).

• The global pseudo-spectral method (e.g., Carcione and Wang, 1993;
Tessmer and Kosloff, 1994). Pseudo-spectral methods exhibit very
weak numerical dispersion, but instabilites arise in the treatment of
boundary conditions and induce difficulties in the time integration
scheme (e.g., Komatitsch et al., 1996). Moreover, due to the use of a
global polynomial basis, numerical oscillations appear in the presence
of strong heterogeneities or sharp boundaries within the model.

• The finite elements methods (e.g., Zienkiewicz, 2005) and the spectral
elements method (SEM) (e.g., Priolo et al., 1994; Komatitsch, 1997;
Faccioli et al., 1997; Komatitsch and Vilotte, 1998; Stupazzini and
Paolucci, 2009). Classical finite element methods (FEM) circumvent
most of these problems, but are based upon low-order approximations
and come with high numerical overhead because of the large linear
systems involved in its implicit formulation, particularly in the 3-D
case (Bao et al., 1998; Dupros et al., 2008). Because of the low-order
approximations, a significant numerical dispersion can arise when few
nodes per minimal wavelength are present.

The spectral elements method has appeared more than 20 years ago in
computational fluid mechanics (e.g., Patera, 1984; Maday and Patera,
1989; Fischer and Rønquist, 1994) and is an elegant formulation of the
finite elements method with a high degree of piecewise polynomial ba-
sis. The method has been used to accurately model wave propagation
on local, regional and very large scales, both in 2-D and 3-D cases
(e.g., Komatitsch, 1997; Chaljub et al., 2003). Because of the use of
high degree of piecewise polynomial basis, the numerical dispersion is
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significantly reduced compared with the FEM for the same number of
nodes per minimal wavelength.

• The meshless methods. At the end of the 70s, Lucy (1977) introduced
the SPH (Smoothed Particle Hydrodynamics) to simulate the inter-
action of celest particles. Then, the method has been theorized by
Gingold and Monaghan (1977); Monaghan (1982). In these methods,
the classical notion of mesh is replaced by unconnected nodal data.
A method can be considered as meshless when the approximation ba-
sis is constructed from supports associated with arbitrary scattered
nodes without the need of a domain partition as for the FEM of the
FDM. These methods have been then widely studied in mechanics and
geomechanics (e.g., Randles and Libersky, 1996; Swegle et al., 1995;
Belytschko et al., 1996; Aubert, 1997; Modaressi and Aubert, 1998;
Foerster, 2003).

Each one of the above-mentionned methods has its advantages and short-
comings, however, having as objective to study nonlinear site effects, we first
lean towards time domain methods because the implementation of the non-
linear soil behavior is much easier than in the frequency domain methods.
Among time domain methods, one of the most promising is the spectral el-
ements method which combines the flexibility of the finite elements method
with the rapid convergence of spectral methods.

Consequently, we present in the following the verification in the linear
elastic domain of the 1D spectral elements code (EFISPEC, i.e., Elements
FInis SPECtraux) developed in this thesis. The verification is done by com-
paring 1D wave propogation with the Thomson-Haskell propagator matrix
code exposed in Chapter 1 and with the finite elements code Cyberquake
(e.g., Foerster and Modaressi, 2007). The development of a 1D spectral
element code allowed us to grasp the fundamentals of the method. A fu-
ture implementation of nonlinear law will be also easier starting by a 1D
assumption. The verification of the 2D spectral elements code developed
in this thesis is done by comparing 2D wave propagation with the finite
elements code GEFDyn (e.g., Aubry et al., 1985; Modaressi, 1987; Aubry
and Modaressi, 1996) and the verification of the 3D spectral elements code
with the theoretical double couple point source model in an infinite homege-
neous media. The perspective of this thesis being then to implement known
nonlinears law in the spectral element method.

Since this thesis does not aim to detail the spectral elements method,
the following sections briefly describe the basics step of the method. For a
detailed introduction to finite elements and spectral elements methods, the
reader is referred to Zienkiewicz (2005); Komatitsch (1997); Faccioli et al.
(1997); Komatitsch and Vilotte (1998).
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4.1 Virtual Work as the Weak Form of the Equa-
tions of Motion

In a finite or spectral elements approach, the strong form of the equations of
motion (1.6) is first rewritten in a weak formulation. This is accomplished
by dotting it with an arbitrary virtual displacement v and integrating by
parts over the region of interest (e.g., Zienkiewicz and Taylor, 1989a) which
gives

∫

Ω
ǫ(v)T : τ dΩ −

∫

Ω
vT · f dΩ −

∫

Γ
vT · T dΓ =

∫

V
ρvT · ü dV (4.1)

where Ω and Γ are the volume and the surface area of the domain under
study, respectively. ǫ is the virtual strain tensor related to the virtual dis-
placement vector v. f is the body force vector and T is the traction vector
acting on Γ. T denotes the transposed symbol and a colon denotes the con-
tracted tensor product. Equation (4.1) is valid for linear as well as nonlinear
stress-strain (or stress-rate of strain) relationships. Using a Galerkin formu-
lation, we consider that the test function v is equal to w, the shape functions
used for the displacement field discretization.

4.2 Spatial Discretization

The notations on the spectral elements method follow those presented by
Komatitsch (1997); Komatitsch et al. (2001).

As in any finite elements method, a first crucial step is the design of a
mesh: the volume Ω needs to be subdivided into a number of non-overlapping
elements Ωe, e = 1, . . . , ne , such that Ω = ∪nee=1Ωe.

We note that for two-dimensional spectral elements, the discretization
has first been performed by using the classical Legendre discretization based
upon quadrilaterals and the Gauss-Lobatto-Legendre quadrature. In order
to solve more general problems with a complex geometry, the use of triangle
is also feasible (e.g., Komatitsch et al., 2001).

In two dimensions, the classical Legendre spectral element discretization
of problem based on quadrilaterals proceeds as follows: a conforming mesh
of ne non-overlapping quadrilaterals is defined on the domain Ω. These
elements are subsequently mapped individually to a reference square Λ =
[−1, 1] × [−1, 1] using an invertible local mapping Fe : Λ → Ωe , which
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enables to go from the reference domain to the physical domain as

x(ξ, η) =

ng
∑

a=1

Na(ξ, η)x
e
a

y(ξ, η) =

ng
∑

a=1

Na(ξ, η)y
e
a.

(4.2)

where ng denotes the total number of nodes used to define the geometry of
a quadrilateral. The shape functions Na(ξ, η) can be Lagrange polynomial
of first or second order for a linear or parabolic description of the edge of
the element, respectively. The value xea and yea are the coordinates of the
geometrical nodes of the element in the physical domain. ξ and η are local
axes as shown in Figure 4.1.

In the reference square Λ, a set of local basis functions consisting of
polynomials of degree N is introduced. On each element Ωe, mapped to the
reference square Λ, a set of nodes is defined and the polynomial approxima-
tions uex and uez of ux and uz are chosen as the Lagrange interpolants on this
set of nodes. These nodes, ξp ∈ [−1, 1], p ∈ 0, . . . , N , are the Gauss-Lobatto-
Legendre (GLL) points, which are the N + 1 roots of (1 − ξ2)P ′

N (ξ) = 0,
where P ′

N (ξ) is the derivative of the Legendre polynomial of degree N . They
can be computed numerically (Canuto et al., 1987). In the reference square
Λ, the restriction of a given function ue to the element Ωe can be expressed
using a product of 1-D Lagrange interpolants, a property that is often re-
ferred to as the tensorisation of the basis:

ue(ξ, η, t) =
N+1
∑

i=1

N+1
∑

j=1

uea(ξj , ηi, t)hj(ξ)hi(η). (4.3)

Here hj(ξ) denotes the j-th 1-D Lagrange interpolant, which is by definition
the unique polynomial of degree N that is equal to one at ξ = ξj and to zero
at all other points ξ = ξi for which i 6= j. It is of the form:

hj(ξ) =

Ngll
∏

l=1, l 6=j

ξ − ξl
ξj − ξl

=
(ξ − ξ1)

(ξj − ξ1)
· · · (ξ − ξl−1)

(ξj − ξl−1)

(ξ − ξl+1)

(ξj − ξl+1)
· · ·

(ξ − ξNgll)

(ξj − ξNgll)
,

with Ngll = N+1. From this definition we obtain the fundamental property:

hi(ξj) = δij . (4.4)

Once the piecewise polynomial approximation (4.3) is injected in Equa-
tion (4.1), the integrals can be approximated at the elemental level using
the GLL integration rule to obtain a system of the form

MÜ + KU = Fext.
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Figure 4.1: Local numbering of a spectral element with 25 Gauss-Lobatto-
Legendre points. GLL points are represented by dots. Two numbering are
presented, a row-column numbering with two digits separated by a comma
and a full numbering from 1 to 25.
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In the case where viscosity is present, the term CU̇ arises in the left-hand
side of the above equation.

Because of the property of Equation (4.4), the cost for computing integral
is reduced and the mass matrix is naturally diagonal. This property is
specific to the spectral element method (i.e., they are not present in the
classical finite element method). As an example, the natural diagonallity
of the mass matrix is exposed hereafter. The elemental mass matrix is
expressed as

me =

∫

Ωe
wTρw dΩe

with

w =

(

w1 0 w2 0 · · · wn 0
0 w1 0 w2 · · · 0 wn.

)

where

wp = hj(ξ)hi(η)

The indice p (with p = mod(i − 1, Ngll) ∗ Ngll + j) corresponds to the full
numbering presented in Figure 4.1 and the indices i and j correspond to the
row-column numbering of the same figure, j being associated with a column
and i to a row. Thus,

wTw =





















w2
1 0 w1w2 0 · · · w1wn 0

0 w2
1 0 w1w2 · · · 0 w1wn

w1w2 0 w2
2 0 · · · w2wn 0

...
...

...
. . .

...
...

...

w1wn 0 w2wn 0
. . .

...
...

0 w1wn 0 w2wn · · · 0 w2
n





















and for k 6= l

∫

Ωe

wkwl dΩe =
∑

i

∑

j

Jewiwjhk(ηi)hk(ξj)hl(ηi)hl(ξj) = 0

since

hk(ξj) or hk(ηi) = δkj or δki

4.3 Time Integration

Because of the natural diagonality of the mass matrix in the spectral ele-
ment method, an explicit time scheme is often used for the resolution of the
numerical problem. The equations of motion being second-order equations,
the classical Newmark method (Newmark, 1959) for second-order equations
is generally used (higher order could be used as well). The most general
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quadratic expension of the Newmark algorithm derived from the truncated
Taylor series expension is defined as

Un+1 = Un + ∆tU̇n +
∆t2

2
(1 − β)Ün +

∆t2

2
βÜn+1

U̇n+1 = U̇n + ∆t(1 − γ)Ün + ∆tγÜn+1.

(4.5)

This, together with the dynamic equation

MÜn+1 + KUn+1 = Fextn+1 (4.6)

allow the three unknowns Ün+1, U̇n+1 and Un+1 to be determined. For an
explicit time scheme, the parameter β is set to zero.

4.4 Absorbing Boundary Condition

In the FEM or SEM, boundaries of the domain behave as free boundaries
(i.e., vanishing of stress) and waves reflexions occurs. In order to avoid these
reflexions and to mimic an unbounded media, different types of absorbing
boundary conditions have been developped as the paraxial approximation
(e.g., Claerbout, 1976; Engquist and Majda, 1977), Perfectly Matched Layer
(PML) or unsplit Convolutional Perfectly Matched Layer (CPML) (e.g.,
Komatitsch and Martin, 2007).

The most simple to implement (but also the less efficient) is the paraxial
approximation. The paraxial or parabolic approximation (or 15◦ approxima-
tion) was presented for the first time by Claerbout (1976) for scalar waves,
then completed and studied in detail for elastic waves (e.g., Engquist and
Majda, 1977; Clayton and Engquist, 1977). This approximation is useful
for the computation in the transient domain and permits to build dynamic
impedance, locally in space and in time, on the boundary for which wave
absorption is needed. Cohen and Jennings (1983) and then Modaressi (1987)
proposed a numerical procedure of this approximation in the finite element
methods.

A detailed derivation of the paraxial approximation to different order
for the elastic wave equation is presented in Appendix C. In summary, the
first approximation (i.e., order 0) is such that the stress applied by a wave
impiging on a boundary is approximated by

τ(x1, x2, x3, t) =





−ρβ∂tu1

−ρβ∂tu2

−ρα∂tu3



 .

where (x1, x2, x3) forms the local coordinate of a paraxial element and α and
β are P and S-wave velocity, respectively. For this first approximation, the
elastodynamic dispersion relation is well approximated when the direction
of propagation of the wave is perpendicular to a paraxial element or at high
frequency (e.g., Clayton and Engquist, 1977; Modaressi, 1987).
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4.5 Validation of 1-D Wave Propagation

4.5.1 Mesh design for the spectral element method

In practice, a spatial sampling of the order of 4 or 5 points per minimum
wavelength has been found very accurate when working with a polynomial
degree between N = 5 and N = 8 (e.g., Seriani and Priolo, 1994; Komatitsch
et al., 1999). If higher-order polynomials are used, because of the densifica-
tion of the GLL points close to the edges of the element, there is no important
gain in precision whereas the computational time increases significantly at
the elemental level. On the other hand, if a low-order polynomial is chosen,
the spectral elements method tends to the classical low-order finite element
method and numerical dispersion and diffusion arises.

4.5.2 Comparison of the propagator method, the SEM and
the FEM

In order to test the accuracy of the spectral elements method to propagate
a wave in one dimension, we compare the numerical computation with the
Thomson-Haskell propagator matrix method (THPMM) which is the semi-
analytical reference. For this purpose, we use the soil column presented in
Table 4.1. The incoming wave is a vertically incident order two Ricker with a
pseudo frequency of f0 = 10 Hz and a time shift of 0.5 second (the maximal
energy to account for in the simulation will be approximately fmax ≈ 2.5f0

for a Ricker wavelet). For the spectral element method, the incoming wave
is input with an implicit paraxial elements positionned at the depth of 51
m.

Table 4.1: Soil column used to compare the 1-D solution be-
tween the Thomson-Haskell method, the SEM and the FEM.

No. Depth P-wave S-wave Damping Density
velocity velocity factor

(m) (m/s) (m/s) (%) (g/cm3)

1 50.0 663.325 200.0 0.00 1.80
3 ∞ 1658.312 500.0 0.00 2.00

For the SEM simulation, polynomial of order 8 are used with approxi-
mately 5 GLL points per minimum wavelength (λmin ≈ 200/25 = 8 m) and
the time step is fixed to ∆t = 1e−4 s. The comparison between the results
obtained by using the THPMM and the SEM is shown in Figure 4.2. The
agreement is excellent even for the reflexions present after 4.5 s.

On the other hand, the classical finite elements method (in our case, 3
node elements with shape functions using polynomials of order two and a
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time step ∆t of 8e−4) is soiled by numerical dispersion and/or diffusion as
shown in Figure 4.3. The common rule of thumb of 10 nodes per minimum
wavelength is far to be accurate and the results start to be acceptable for 30
nodes per minimum wavelength. However, even with 40 nodes per minimum
wavelength, the reflexions present after 4.5 s are not well reproduced by the
classical FEM as shown in Figure 4.4. An increase of the number of nodes
per minimum wavelength up to 120 leads to spurious oscillations as shown
in Figure 4.5. We note that these spurious oscillations do not occur when
increasing to 120 the number of GLL nodes per minimum wavelength for
the SEM as shown in Figure 4.6.

We note that by increasing the number of layers in the soil column in
order to increase the multiple reflections, the results of the SEM remain
excellent.
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Figure 4.2: Comparison between the Thomson-Haskell propagator matrix
method and the spectral elements method at the free surface of the soil
column presented in Table 4.1. The top panel shows the results from 0.0 s
to 2.0 s. The other panels show zoom from 0.5 s to 1.0 s, 1.5 s to 2.0 s and
4.5 s to 5.0 s
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Figure 4.3: Comparison between the Thomson-Haskell propagator matrix
method and the classical finite elements method at the free surface of the soil
column presented in Table 4.1. Panels from top to bottom show simulations
using 10 nodes, 20 nodes, 30 nodes and 40 nodes per minimum wavelength,
respectively.
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Figure 4.4: Comparison between the Thomson-Haskell propagator matrix
method and the classical finite elements method with 40 nodes per minimum
wavelength at the free surface of the soil column presented in Table 4.1. The
figure shows a reflection from 4.5 s to 5.0 s.
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Figure 4.5: Comparison between the Thomson-Haskell propagator matrix
method and the classical finite elements method with 120 nodes per mini-
mum wavelength at the free surface of the soil column presented in Table
4.1. The figure shows a reflection from 4.5 s to 5.0 s.
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Figure 4.6: Comparison between the Thomson-Haskell propagator matrix
method and the SEM with 120 nodes per minimum wavelength at the free
surface of the soil column presented in Table 4.1. The figure shows a reflec-
tion from 4.5 s to 5.0 s.

4.6 Validation of 2-D Wave Propagation in the P-

SV plane

The verification of the accuracy of the SEM in 2D has been already demon-
strated by Komatitsch (1997); Komatitsch et al. (2001). The verification
consisted in comparing the semi-analytical solution with the one obtained
by the SEM for different types of problems with point source. The results
have shown an excellent accuracy of the SEM.

4.6.1 Burried point source problem

In order to validate the code developed in this thesis, we compare the results
obtained by the SEM with the ones from the classical FEM (by taking into
account the remarks made in the previous section about the number of nodes
requiered per minimum wavelength). The problem is a burried point source
problem. The lower-left corner is taken as the coordinate (x = 0, z = 0).
The domain is a homogeneous square of size 20000 m x 20000 m presented
in Figure 4.7. The linear elastic properties of the medium are presented in
Table 4.2. The source is a point force acting vertically (i.e., z-direction)
located at the coordinate (x = 10000, z = 10000) and its shape is a Ricker
wavelet of order 2 with a center frequency of 0.25 Hz (i.e., the maximum
frequency to take into account for the numerical computation is equal to
2.5 × 0.25 = 0.625 Hz). The location of the receivers are exposed in Table
4.3. The four edges of the domain act as a free surface.

The mesh for the SEM is presented in Figure 4.7. It is composed of
quadrilaterals of size 1000 m x 1000 m. The order of the Lagrange poly-
nomial is 8 so that the number of GLL points for a minimum wavelength
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1

2

3

4

5

6

7

8

9

Figure 4.7: Domain used to compare the results of a point source problem
in the P-SV plane between the SEM and the classical FEM. The domain is
a square of size 20 km x 20 km. The mesh represents the one used in the
SEM computation. The receivers are indicated by triangles. The source is
located at receiver 1.

λmin = 2000/0.625 = 3200 m is fully accomplished (i.e., ≈ 20 GLL points
at λmin. We remember that the SEM is accurate from 4 or 5 GLL points at
λmin). As for the computation using the FEM, the domain is meshed with
quadrilaterals of size 125 m x 125 m and polynomials of order 1 are used for
the interpolation of the solution so that approximately 30 nodes are present
at λmin. For both methods, an explicit time scheme is used with a time step
of 0.25 ms. In order to make the FEM mass matrix diagonal, a conventional
lumped mass matrix is used with α = 0.5 and β = 0.

The comparison of the results is shown in Figures 4.8 and 4.9. The
agreement between the two methods is excellent: both amplitude and phase
of the signal are idendical at each receiver. We note that for the receivers
2 to 5 (Figure 4.7), no x-component is present because the point force acts
vertically so that the z-axis passing through the source is a nodal line (a
zoom on these results show that the amplitude along this line is of the order
of magnitude of the numerical noise: ≈ 10−17).
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Table 4.2: Characteristics of the linear elastic medium.

P-wave S-wave Damping Density
velocity velocity factor
(m/s) (m/s) (%) (g/cm3)

4000 2300 0.0 1.80

Table 4.3: Coordinates of the receivers shown in Figure 4.7
used to compare the SEM and the classical FEM.

No. x (m) z (m)

1 10000 10000
2 10000 12500
3 10000 15000
4 10000 17500
5 10000 20000
6 12500 12500
7 15000 15000
8 17500 17500
9 20000 20000
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Figure 4.8: Comparison of the results obtained by the SEM (solid lines) and
by the classical FEM (dashed lines) for the receivers 2 to 5. The source
function has a center frequency of 0.25 Hz.
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Figure 4.9: Comparison of the results obtained by the SEM (solid lines) and
by the classical FEM (dashed lines) for the receivers 6 to 9. The source
function has a center frequency of 0.25 Hz.
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4.6.2 Ridge subjectted to plane wave

The second test of the 2-D spectral elements code consists in reproducing a
well-known topographic effect: a ridge subjectted to a plane SV-wave. The
results will be compared to those obtained by Gaffet and Bouchon (1989)
and Komatitsch (1997). The topography is represented by a mathematical
function given by Sills (1978) as:

s(x) = h(1 − a) exp(−3a), with a = (x/l)2

where h and l denote the height and the half-width of the hill, respectively.
We choose to reproduce the case with h/l = 0.375 and ηh = h/(βtp) = 1.0,
where β denotes the S-wave velocity and tp the period of the Ricker pulse.
ηh is thus an adimensional number that represents the ratio between the
height of the hill to the wavelength of the incoming wave. The domain is
shown in Figure 4.10.

The incoming Ricker wavelet is introduced directly in the domain of the
SEM by computing analytically the initial conditions u(x, z, t0), u̇(x, z, t0)
and ü(x, z, t0) with u(x, z, t0) being a Ricker wavelet of order two in the
space domain. Periodic conditions are present along the vertical edges of
the domain (i.e., for a SEM or a FEM, the equation numbers of the nodes
located on the left edge of the domain are identical to those of the nodes
located on the right edge, or vice-versa). Snapshots of the computation
results are shown in Figure 4.10 and the synthetics along the free surface are
shown in Figure 4.11. The domain of computation is set in an adimensional
way with a S-wave velocity β = 1. The size of the domain is 60 × 30. The
discretization is done using 556 × 166 spectral elements with polynomials
of order 8 (i.e., 9 × 9 = 81 GLL nodes per spectral element). The time step
∆t is equal to 1e−3.

Quantitatively, we find the same waves-patterns as those found by Gaffet
and Bouchon (1989) and Komatitsch (1997): the ridge gives birth to a
Rayleigh wave and to a surface P-wave. The quantitative comparison, which
consists in taking the amplitude ratio between the signal recorded at the top
of the ridge to the signal recorded in the free field, leads to the same results.
The ratio found by Komatitsch (1997) for this ridge’s geometry is 2.2; we
find in this study a ratio of 2.2 as well. On the other hand, Gaffet and
Bouchon (1989) found a larger ratio equal to 2.7. The difference found by
the two different methods has not been investigated.
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x-displacement z-displacement

Figure 4.10: Snapshots of a SV-wave propagating toward a ridge. The left-
hand side panels represent the x-displacement and the right-hand side panels
the z-displacement. From top to bottom, the time of the snapshot is t = 0
s, 4 s, 8 s, 12 s and 16 s. We note that the SV-wave is injected directly at
the time t = 0 s by providing the analytical solution to the SEM.
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Figure 4.11: Top panel: synthetics of the x-displacement along the free
surface of the domain shown in Figure 4.10. Bottom panel: synthetics of
the z-displacement along the free surface.
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Figure 4.12: Zoom on the mesh of the ridge h/l = 0.375.

4.7 Arising of numerical dispersion in the numer-

ical methods

In order to test the numerical dispersion in 2-D that could arise in the clas-
sical FEM or SEM, we increase the center frequency of the source function
in order to decrease the number of nodes per wavelength. A computation
using a source function with a center frequency of 1.0 Hz is performed. For
the SEM using the mesh shown in Figure 4.7 and polynomial of order 8, the
number of GLL points at 2.5 Hz is approximately 7 or 8 (a fix number of
GLL points per wavelength in the SEM is difficult to calculate because the
GLL points are not evenly spaced). For the FEM, the mesh is designed to
have 7.36 nodes per wavelength at 2.5 Hz (i.e., 18.40 nodes per wavelength
at 1.0 Hz).

Figures 4.13 and 4.14 show the results obtained by SEM and FEM. A
clear difference is visible. In order to show that the solution obtained by
the SEM is accurate, we perform two other simulations using polynomial
of order 4 and 20 so that approximately 3 and 16 GLL points are present
for wavelengths around 2.5 Hz, respectively. Figure 4.15 exposes the com-
putation done with polynomial of order 4, 8 and 20. We can see that the
results obtained by using polynomial of order 8 and 20 are identical, con-
sequently, the simulation using poynomial of order 8 (i.e, ≈ 7 or 8 GLL
points per wavelength for this problem) is accurate. On the other hand,
the simulation using 3 GLL points per wavelength slightly deviates from the
simulation using 16 GLL points per wavelength; this means that numerical
dispersion/diffusion start to be present in the SEM when only 3 GLL points
per minimum wavelength are present.

As a result, the computation performed by the FEM presented in Fig-
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ures 4.13 and 4.14 is soiled by numerical dispersion/diffusion as well. We
note that for all the receivers, the first wave train is more or less well repro-
duced by the FEM and that the strong numerical dispersion/diffusion starts
appearing after multiple reflexions of the initial wave against the four free
surface of the domain.

In order to shown if the degradation of the solution comes from the fact
that a lumped mass matrix is used in the FEM, we also perfom a simulation
using a consistent mass matrix and an implicit time scheme. The results are
identical to the ones found with a lumped mass matrix and consequently,
the lumped process is not the cause of the numerical dispersion.
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Figure 4.13: Comparison of the results obtained by the SEM (solid lines)
and by the classical FEM (dashed lines) for the receivers 2 to 5. The source
function has a center frequency of 1.00 Hz.
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Figure 4.14: Comparison of the results obtained by the SEM (solid lines)
and by the classical FEM (dashed lines) for the receivers 6 to 9. The source
function has a center frequency of 1.00 Hz.
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Figure 4.15: Two top panels: comparison between results obtained by
the SEM using approximately 7 GLL points per wavelength (i.e., quad 81
nodes) and using approximately 16 GLL points per wavelength (i.e., quad
441 nodes). Two bottom panels: comparison between results obtained by
the SEM using approximately 3 GLL points per wavelength (i.e., quad 25
nodes) and using approximately 16 GLL points per wavelength (i.e., quad
441 nodes).
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4.8 Testing the Point Source Double-Couple in GEF-
Dyn and EFISPEC

The objective of the present section is to test the accuracy of the Finite Ele-
ments Program GEFDyn and of the 3-D spectral elements code programmed
for this thesis to generate and propagate seismic wave from a double-couple
point source model. For this purpose, we intend to compare theoretical and
numerical wave propagation in a 3-D infinite homogeneous medium. The
following steps are followed:

1. Representation of the seismic sources and calculus of theoretical seis-
mograms generated from a double-couple point source model in a
three-dimensional infinite homogeneous medium;

2. Generation of numerical seismograms using a system of equivalent
body forces or imposed displacements in GEFDyn or equivalent body
forces in the SEM code;

3. Comparison of theoretical and numerical wave propagation for two-
dimensional and three-dimensional tests.

4.8.1 Overview of the double-couple theory

Two different kinds of source can produce seismic waves: sources external to
the solid Earth (winds, ocean waves, meteorite impacts, rocket launching,
etc.) and sources internal to the solid Earth (earthquakes, underground ex-
plosions, etc.). This chapter is about internal sources and more specifically,
faulting sources (by opposition to volume sources).

Following Aki and Richards (2002), the easiest Green function to com-
pute general displacements in a volume V from an internal surface Σ (Figure
4.16) is given by

un(x, t) =

∫ ∞

−∞
dτ

∫ ∫

Σ
[ui(ξ, τ)]cijpqνj

∂

∂ξq
Gnp(x, t− τ ; ξ, 0)dΣ, (4.7)

where un is the nth component of displacement, x is the general position
of a point in the volume V , t is the time, τ is the temporal convolution,
[ui] is the ith component of displacement discontinuity on the fault, ξ is
the general position on the fault, cijpq are components of a fourth-order
tensor, νj is the jth component of the fault normal vector and Gnp is a
Green tensor representing the nth component of a displacement generated
by a unit impulse in the p-direction. Using the convolution symbol ∗, the
general displacement can be written as:

un(x, t) =

∫ ∫

Σ
[ui]νjcijpq ∗

∂

∂ξq
GnpdΣ, (4.8)
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Figure 4.16: A finite elastic body, with volume V and external surface S.
The buried fault is represented by the surface Σ across which discontinuities
may arise. That is, displacements on the Σ− side of Σ may differ from
displacements on the Σ+ side of Σ. The normal to Σ is ν, pointing from
Σ− to Σ+ and the displacement discontinuity is denoted by [u(ξ, τ)] (ξ
is a general position on Σ and square brackets referred to the difference
u(ξ, τ)|Σ+ − u(ξ, τ)|Σ−). This figure has been reproduced from Aki and
Richards (2002).

with f ∗ g =
∫ t
0 f(τ)g(t − τ)dτ =

∫ t
0 f(t − τ)g(τ)dτ . The seismic moment

density tensor m (quantity which depends on source strength and fault
orientation; and which characterizes all the information about the source
that can be learned from observing waves whose wavelengths are much longer
than the linear dimension of Σ) is defined as

mpq = [ui]νjcijpq (4.9)

and consequently,

un(x, t) =

∫ ∫

Σ
mpq ∗Gnp,qdΣ. (4.10)

For an isotropic body and for a displacement discontinuity (or slip) parallel
to Σ at ξ, then

mpq = µ(νp[uq] + νq[up]), (4.11)

with µ one of the Lamé Moduli. In order to visualize the well-known double-
couple, we take the case where

• Σ is lying in the plane ξ3 = 0 (horizontal fault)

• and the slip is in the ξ1-direction,
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then

m =





0 0 µ[u1(ξ, τ)]
0 0 0

µ[u1(ξ, τ)] 0 0



 (4.12)

Remembering that our objective is to calculate theoretical seismograms
generated from a double-couple Point Source Model and then compare theo-
retical and numerical seismograms, let us expose the double-couple solution
of the elastodynamics equation in an infinite homogeneous medium. The
demonstation is presented by Aki and Richards (2002, p.76). Supposing

the average displacement discontinuity, u =
R R

Σ
[u]dΣ

A (where A =
∫ ∫

Σ dΣ),
parallel to the fault (u · ν = 0), we can write the displacement as,

un(x, t) = µ(νp [uq] + [νq]up)A ∗Gnp,q

=

(

30γnγpγqνq − 6νnγp − 6δnpγqνq
4πρr4

)

µA

∫ r/β

r/α
τup(t− τ)dτ

+

(

12γnγpγqνq − 2νnγp − 2δnpγqνq
4πρα2r2

)

µAup(t− r/α) (4.13)

−
(

12γnγpγqνq − 3νnγp − 3δnpγqνq
4πρβ2r2

)

µAup(t− r/β)

+
2γnγpγqνq
4πρα3r

µAu̇p(t− r/α)

−
(

2γnγpγqνq − νnγp − δnpγqνq
4πρβ3r

)

µAu̇p(t− r/β)

where γ is the P-wave direction, ρ is the density of the medium, α is the
P-wave velocity, β is the S-wave velocity and r is the distance |x − ξ|.

This is the formula that we use in the present section to compute theo-
retical seismograms generated by a double-couple Point Source. We can see
that the total field un(x, t) is composed of three types of field.

The so-called near-field term is:

uNn (x, t) =

(

30γnγpγqνq − 6νnγp − 6δnpγqνq
4πρr4

)

µA

∫ r/β

r/α
τup(t− τ)dτ.

(4.14)
uN is composed of both P- and S-wave motions. It is neither irrotational
(i.e., having zero curl), nor solenoidal (i.e., having zero divergence), and this
indicates that it is not always fruitful to decompose an elastic displacement
field into its P- and S-wave components. The near-field attenuates as r−4.

The so-called intermediate-field terms are:

uIPn (x, t) =

(

12γnγpγqνq − 2νnγp − 2δnpγqνq
4πρα2r2

)

µAup(t− r/α) (4.15)
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and

uISn (x, t) =

(

12γnγpγqνq − 3νnγp − 3δnpγqνq
4πρβ2r2

)

µAup(t− r/β). (4.16)

uIP is the P-wave component and uIS is the S-wave component. Both
components attenuate as r−2.

The so-called far-field terms are:

uFPn (x, t) =
2γnγpγqνq
4πρα3r

µAu̇p(t− r/α) (4.17)

and

uFSn (x, t) =

(

2γnγpγqνq − νnγp − δnpγqνq
4πρβ3r

)

µAu̇p(t− r/β) (4.18)

uFP is the P-wave component and uFS is the S-wave component. Both
components attenuate as r−1.

4.8.2 Calculus of theoretical seismograms in a three-dimensional
infinite homogeneous medium

Before exposing the source function u, let us turn the Equation (4.13) into
its vectorial form which is easier to manipulate if we want to program the
solution. This gives:

u(x, t) =
[30(γ · ν)(γ ·

∫ r/β
r/α τudτ)γ − 6(γ ·

∫ r/β
r/α τudτ)ν − 6(γ · ν)

∫ r/β
r/α τudτ ]µA

4πρr4

+
[12(γ · ν)(γ · u)γ − 2(γ · u)ν − 2(γ · ν)u]µA

4πρα2r2
(4.19)

− [12(γ · ν)(γ · u)γ − 3(γ · u)ν − 3(γ · ν)u]µA

4πρβ2r2

+
2(γ · ν)(γ · u̇)µAγ

4πρα3r
− [2(γ · ν)(γ · u̇)γ − (γ · u̇)ν − (γ · ν)u̇]µA

4πρβ3r

Defining Cartesian coordinates as exposed in Figure 4.17, we can express u,
γ and ν as a function of the strike angle ϕs, the dip angle δ, the rake angle
λ, the take-off angle iξ and the azimuth angle ϕ.
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slip u = u(cosλ cosϕs + cos δ sinλ sinϕs)x
+u(cosλ sinϕs − cos δ sinλ cosϕs)y
−u sinλ sin δz,

fault normal ν = − sin δ sinϕsx + sin δ cosϕsy − cos δz,

P-wave direction l = γ = sin iξ cosϕx + sin iξ sinϕy + cos iξz,

SV-wave direction p = cos iξ cosϕx + cos iξ sinϕy − sin iξz,

SH-wave direction φ = − sinϕx + cosϕy.

Figure 4.17: Definition of Cartesian coordinates (x, y, z) used to obtain the
explicit dependence of u, γ, ν, p and φ on (ϕs, δ, λ, iξ, ϕ). This figure has
been reproduced from Aki and Richards (2002).

The last function to express in order to derive theoretical seismograms
is the source function u. For this purpose, let choose the smoothed ramp
function whose mathematical expression is easy to manipulate and whose
form can be seen as displacement discontinuity along a fault. The smoothed
ramp function is of the form (e.g., Bouchon and Coutant, 1994)

u(t) =
B[1 + tanh(4fc(t− τs))]

2
, (4.20)

with B the amplitude of the final displacement, tanh the hyperbolic tangent,
fc the characteristic frequency, t the time and τs the time where the function
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is centered (i.e. time shift). Figure 4.18 shows the function with B = 1,
τs = 2 and fc as a parameter. The first, second and third derivatives are
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Figure 4.18: Displacement source function of the form u =
B(1+tanh(4fc(t−τs)))

2 . The characteristic frequency is determined by fc.

obtained by using the chain rule (i.e., (f ◦g)′ = f ′(g(x))g′(x)) and are of the

form:

u̇(t) = 2Bfc[1 − tanh2(4fc(t− τs))]

ü(t) = −16Bf2
c tanh(4fc(t− τs))[1 − tanh2(4fc(t− τs))]

...
u (t) = −64Bf3

c [1 − 3tanh2(4fc(t− τs))][1 − tanh2(4fc(t− τs))]

The third derivative of the source function u is necessary if we want
to compute the general acceleration ü(x, t) since the general displacement
u(x, t) depends on u̇. Figure 4.19 shows the first, second and third deriva-
tive of the source function with respect to time. We can notice that the
third derivative is of the form of the well-known Ricker of order 2 function,
widely used in the literature, whose principal advantage is not to create high
frequencies due to its smoothed cut-off frequency (e.g., Bard and Bouchon,
1980; Bard, 1983; Modaressi, 1987).

The characteristics of the theoretical example that will be used to verify
the validity of the FEM and SEM to propagate elastic waves are given in
Table 4.4, Table 4.5 and Table 4.6.

Figure 4.20 shows displacement, velocity and acceleration seismograms
for the above-mentionned characteristics. Two receivers are located above
the source at iξ = 180◦, ϕ = 0◦ and r = [10, 20]km. The far field radiation
pattern for P- and S-wave associated to this fault parameters are shown in
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Figure 4.19: Top panel: Velocity source function. For fc = 2.0, 1.0 and 0.5
Hz, the characteristic period is shown by a horizontal arrow and is equal to
1/fc = 1/2 = 0.5 s. Middle panel: Acceleration source function. Bottom
panel: Derivative of the acceleration source function with respect to time.



132 Chapter 4. THE FEM AND SEM IN SEISMOLOGY

Table 4.4: Fault’s Parameters (horizontal fault)

Strike Dip Rake

ϕs = 0◦ δ = 0◦ λ = 0◦

Table 4.5: Source’s Parameters

Seismic Characteristic Time
Moment Frequency Shift
M0 (N.m) fc (Hz) τs (sec)

1016 1 2

Figure 4.21.

4.8.3 Comparison of theoretical and numerical waves propa-
gation in a linear elastic infinite homogeneous medium

In this section, two-dimensional and three-dimensional tests of wave prop-
agation generated from a double-couple Point Source in a linear elastic
medium are presented. The two-dimensional test can not be compared
quantitatively with wave propagation theory exposed above since this theory
holds for 3-D medium. Hence, only a qualitative comparison of radiation
pattern has been done. On contrary, the three-dimensional tests compare
quantitatively theoretical and numerical wave propagation.

Description of the two-dimensional test

The geometry we chose to test the validity of the double-couple Point Source
Model in GEFDyn is a square whose edge is 20 km. The 2-D plane used for
the simulation is the plane xz of the Figure 4.17. The mesh is composed of
quadrangle whose size is ∆x = 125m and ∆z = 125m. The point source is
located at the center of the domain and the double-couple has been mod-
eled by equivalent body forces as exposed in Figure 4.22. The fault and the
source function are those exposed in Section 4.8.2. Moreover, paraxial ele-
ments have been attached to the boundaries in order to avoid reflected waves
(e.g., Engquist and Majda (1977); Clayton and Engquist (1977); Modaressi

Table 4.6: Characteristics of the infinite homogeneous medium

ρ(kg/m3) α(m/s) β(m/s)

1800 4000 2300
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Figure 4.20: Total x-displacement (ux, top panel), total x-velocity (u̇x,
middle panel) and total x-acceleration (üx, bottom panel) for receivers at
iξ = 180◦, ϕ = 0◦ and r = [10, 20]km.
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Figure 4.21: Theoretical radiation pattern of far-field wave for a double-
couple Point Source Model in an homogeneous medium oriented as followed:
ϕs = 0◦, δ = 0◦ and λ = 0◦. Panels (a) and (b) show P- and S-wave radiation
pattern, respectively. Panels (c) and (d) expose SV- and SH-component
of the S-wave, respectively. Top panels show a 3-D view of the radiation
patterns and bottom panels show them mapped into the horizontal plane.
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(1987)).
The Finite Element simulation has been performed with a lumped mass

matrix and the Newmark-Beta Method using ∆t = 0.01s, γ = 1/2 and β =
1/4. For these algorithm parameters, the dispersion relation for harmonic
waves is given by Bamberger et al. (1980) and Modaressi (1987) as

α
∆t

∆x
≤ 0.5. (4.21)

Medium’s characteristics are exposed in Table 4.6. Characteristics are those
of a seismological bedrock and it should be noted that we chose approx-
imately 20 nodes per wavelength for this 2-D test so that the dispersion
relation of Equation (4.21) was fully satisfied.

Figure 4.22: Configuration of the equivalent body force modelling the
double-couple Point Source. The solid points indicate nodes of the Finite
Element spatial discretization.

Results of the two-dimensional test

Figure 4.23 shows the modulus of acceleration that can be assimilated to the
2-D numerical radiation pattern of P- and S-wave from the double-couple
point source. Hence, this Figure can be compared with Figure 4.21 which
exposes 3-D theoretical radiation pattern. Qualitatively, we can observe
a good agreement between theoretical and numerical radiation pattern (we
remind that the 2-D simulation has been performed in the plane xz of Figure
4.17). As for P-waves, we find they are predominant for take-off angles
iξ = π/4 modulo π/2 and nonexistent for iξ = 0 modulo π/2. On the
contrary, S-waves are predominant for take-off angles iξ = 0 modulo π/2 and
nonexistent for iξ = π/4 modulo π/2. This is what exhibits the theoretical
radiation pattern of Figure 4.21. Moreover, we have also verified that the
inward and outward motions were respected. Thus, qualitatively speaking,
the Finite Elements Method reproduce quite well the theoretical radiation
pattern.
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Figure 4.23: Visualization of the numerical radiation pattern of P-wave and
S-wave in the xz-plane of Figure 4.17 (the modulus of the acceleration is
represented on the Figure).
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Description of the three-dimensional test

As for the 3-D numerical test performed using GEFDyn, the geometry is a
cube whose edge is 6.9 km. Receivers are positionned so that the superposi-
tion of the so-called Near Field, Intermediate Field and Far Field is present.
The medium and source’s characteristics (i.e., central frequency = 1 Hz) are
the same as those used for the 2-D test. The source is located at the center
of the geometry (i.e., x = 0, y = 0 and z = 0). The spatial discretization is
made of regular hexahedron whose edge is 230 meters. The associated poly-
nomials are of order one so that four nodes per wavelength are present at
2.5 Hz (i.e., maximum frequency where energy is still present using a tanh of
central frequency of 1 Hz as source function). Paraxial elements are attached
at the six boundaries of the cube to mimic an infinite medium. Moreover,
GEFDyn offers the possibility to impose forces or displacements at a node;
consequently, we have tested both methods to represent the double-couple.
The forces or displacements are imposed as shown in Figure 4.22.

As for the 3-D numerical test using the spectral elements code EFISPEC,
two dimensions of domain are considered. The first domain is large enough
(cube of 28 km edge) so that the receivers are not infected by the reflected
waves at the boundaries. The second domain is smaller (cube of 10 km edge)
and paraxial elements are attached at the boundaries to mimic an infinite
medium. In both cases, the domain is discretized so that approximately six
nodes per wavelength are present at 2.5 Hz (polynomials of order four are
used for the simualtions). In EFISPEC, the source is implemented in a more
elegant way as:

f(x, t) = −div(m(x, t)),

with f the equivalent body force, m the moment density tensor presented
above and div the divergence operator.

Results of the three-dimensional tests

This section exposes the results for the cube whose edge is 6.9 km. First, we
have compared the theoretical source function with the simulated one using
GEFDyn. Figure 4.24 exposes the normalized displacement and velocity
at a source node where an equivalent body force or an equivalent imposed
displacement is applied. We can see that both methods reproduce well the
theory, however, the method using equivalent body forces generates some
spurious oscillations once the ramp has been reached.

Figures 4.25, 4.26 and 4.27 show raw results of ux(x, t), u̇x(x, t) and
üx(x, t) for receivers located above the source along the z-axis using equiv-
alent body forces to represent the double-couple (It should be noted that
x-component along the z-axis represents SV-wave). Figures 4.28, 4.29 and
4.30 show the same results using equivalent imposed displacements to rep-
resent the double-couple.
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Figure 4.24: Normalized displacement and velocity at a source node where
an equivalent body force (left panels) or an equivalent imposed displacement
(right panels) is applied.
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Observing displacements, we can see that both methods used to represent
the double-couple tend to overestimate final displacement. Nevertheless,
time of arrival and maximum amplitude are fairly reproduced by simulations.
We note that using equivalent body forces generates spurious oscillations
once the shear dislocation reaches its maximum.

Velocities and accelerations being first and second derivative of displace-
ment, these spurious oscillations become more pronounced on velocity seis-
mogram and accelerogram when using equivalent body forces to represent
the double-couple.

In conclusion, even if both methods used to represent the double-couple
fairly reproduce theoretical wave propagation, we can see at a glance that
using equivalent imposed displacements generates few oscillations once the
source function reaches its maximum. Moreover, simulation of amplitude of
physical quantities is much sharper. For both cases, the numerical dispersion
is the cause of the spurious oscillations.
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Figure 4.25: Comparison between theoretical and numerical x-displacement
(ux(x, t)) using GEFDyn with equivalent body forces. Receivers are located
along the z-axis (ϕ = 0◦, iξ = 180◦) at distance r = [920, 1150, 1380]m
(left column from top to bottom), r = [1610, 1840, 2070]m (middle column
from top to bottom) and r = [2300, 2530, 2760]m (right column from top to
bottom).

The following of this section exposes the results using the spectral ele-
ments code EFISPEC (for these simulations, the strike (ϕs), dip (δ) and rake
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Figure 4.26: Comparison between theoretical and numerical x-velocity
(u̇x(x, t)) using GEFDyn with equivalent body forces. Receivers are those
described in Figure 4.25.
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Figure 4.27: Comparison between theoretical and numerical x-acceleration
(üx(x, t)) using GEFDyn with equivalent body forces. Receivers are those
described in Figure 4.25.
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Figure 4.28: Comparison between theoretical and numerical x-displacement
(ux(x, t)) using GEFDyn with equivalent imposed displacements. Receivers
are those described in Figure 4.25.



4.8. Point Source Double-Couple in GEFDyn and EFISPEC 143

 -20

 -15

 -10

  -5

   0

   5

  10

  15

  20

  25

   0    2    4    6    8   10

V
el

o
ci

ty
 (

cm
/s

)

Time (sec)

Simulation
Theory

 -20

 -15

 -10

  -5

   0

   5

  10

  15

  20

  25

   0    2    4    6    8   10

V
el

o
ci

ty
 (

cm
/s

)

Time (sec)

Simulation
Theory

 -20

 -15

 -10

  -5

   0

   5

  10

  15

  20

  25

   0    2    4    6    8   10

V
el

o
ci

ty
 (

cm
/s

)

Time (sec)

Simulation
Theory

 -20

 -15

 -10

  -5

   0

   5

  10

  15

  20

  25

   0    2    4    6    8   10

V
el

o
ci

ty
 (

cm
/s

)

Time (sec)

Simulation
Theory

 -20

 -15

 -10

  -5

   0

   5

  10

  15

  20

  25

   0    2    4    6    8   10

V
el

o
ci

ty
 (

cm
/s

)

Time (sec)

Simulation
Theory

 -20

 -15

 -10

  -5

   0

   5

  10

  15

  20

  25

   0    2    4    6    8   10

V
el

o
ci

ty
 (

cm
/s

)

Time (sec)

Simulation
Theory

 -20

 -15

 -10

  -5

   0

   5

  10

  15

  20

  25

   0    2    4    6    8   10

V
el

o
ci

ty
 (

cm
/s

)

Time (sec)

Simulation
Theory

 -20

 -15

 -10

  -5

   0

   5

  10

  15

  20

  25

   0    2    4    6    8   10

V
el

o
ci

ty
 (

cm
/s

)

Time (sec)

Simulation
Theory

 -20

 -15

 -10

  -5

   0

   5

  10

  15

  20

  25

   0    2    4    6    8   10

V
el

o
ci

ty
 (

cm
/s

)

Time (sec)

Simulation
Theory

Figure 4.29: Comparison between theoretical and numerical x-velocity
(u̇x(x, t)) using GEFDyn with equivalent imposed displacements. Receivers
are those described in Figure 4.25.
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Figure 4.30: Comparison between theoretical and numerical x-acceleration
(üx(x, t)) using GEFDyn with equivalent imposed displacements. Receivers
are those described in Figure 4.25.
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angle (λ) of the source are arbitrary (i.e., ϕs = 30◦, δ = 15◦ and λ = -100◦)).
Figures 4.31 to 4.33 show the results for the large domain (i.e., no need
of absorbing conditions) at the receivers located at (x, y, z) = (0,2000,0),
(x, y, z) = (0,3000,0) and (x, y, z) = (0,4000,0). The SEM nicely reproduces
the theoretical results. Only small oscillations are visible on the acceleration
between 4 and 5 s (certainly due to a light numerical dispersion).

We note that close from the point source, the theory shows that the
physical quantities (e.g., displacement, velocity, etc.) tend to infinity due to
their dependency in 1/r. The numerical simulation is not able to reproduce
such a phenomenon as shown for a receiver located at (x, y, z) = (0,1000,0)
in Figure 4.34.

Figure 4.35 shows the same receiver than Figure 4.32 but for the domain
using paraxial approximation as boundary conditions to mimic an infinite
medium. We can see that the results are influenced by the presence of the
paraxial elements and that the wave is not absorbed totally (as already
shown by previous studies (e.g., Ma and Liu, 2006)).
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Figure 4.31: Comparison between the theoretical results and the results
obtained by the numerical simulation using EFISPEC at the receiver
(x, y, z) = (0,2000,0).
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Figure 4.32: Comparison between the theoretical results and the results
obtained by the numerical simulation using EFISPEC at the receiver
(x, y, z) = (0,3000,0).

4.8.4 Conclusion

We have tested the double-couple point source model in a 2-D and 3-D
homogeneous infinite medium using GEFDyn and EFISPEC (3-D only).

As for GEFDyn, the results are mitigated; the order of magnitude, shape
and time of arrival of physical quantities are well reproduced, however, a
clear numerical dispersion is visible. We should note that the use of equiva-
lent imposed displacements showed sharper results than the use of equivalent
body forces. Displacements, velocities and accelerations were well repro-
duced and very few spurious oscillations were generated.

As for EFISPEC, the numerical results nicely reproduced the theoretical
one. We note that the use of paraxial elements is not the best way to absorb
wave. More efficient methods have been developped as PML or CPML (e.g.,
Komatitsch and Martin, 2007).
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Figure 4.33: Comparison between the theoretical results and the results
obtained by the numerical simulation using EFISPEC at the receiver
(x, y, z) = (0,4000,0).



148 Chapter 4. THE FEM AND SEM IN SEISMOLOGY

-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

 0

 0.002

 0.004

 0  1  2  3  4  5

D
is

p
la

ce
m

en
t

Time (s)

X-component

SEM
Theory

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  1  2  3  4  5

D
is

p
la

ce
m

en
t

Time (s)

Y-component

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0  1  2  3  4  5

D
is

p
la

ce
m

en
t

Time (s)

Z-component

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0  1  2  3  4  5

V
el

o
ci

ty

Time (s)

 

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  1  2  3  4  5

V
el

o
ci

ty

Time (s)

 

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0  1  2  3  4  5

V
el

o
ci

ty

Time (s)

 

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0  1  2  3  4  5

A
cc

el
er

at
io

n

Time (s)

 

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0  1  2  3  4  5

A
cc

el
er

at
io

n

Time (s)

 

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5

A
cc

el
er

at
io

n

Time (s)

 

Figure 4.34: Comparison between the theoretical results and the results
obtained by the numerical simulation using EFISPEC at the receiver
(x, y, z) = (0,1000,0).
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Figure 4.35: Comparison between the theoretical results and the results
obtained by the numerical simulation using EFISPEC with paraxial elements
attached at the boundaries at the receiver (x, y, z) = (0,3000,0).
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4.9 Conclusion

We have developped independent 1-D, 2-D and 3-D spectral elements codes
(EFISPEC1D, EFISPEC2D and EFISPEC3D) based on the detailed ex-
planations given by Komatitsch (1997). The verification of the 1-D ele-
ment code has been performed by comparing the numerical propagation of
a Ricker wavelet with the semi-analytical solution given by the Thomson-
Haskell propagator matrix method. The accuracy of the SEM is excellent
from 4 to 5 GLL points per minimum wavelength. We have also shown that
the common rule of thumb used in the classical FEM saying that 10 nodes
per minimum wavelength are sufficient to propagate waves correctly is far
to be accurate and that 30 nodes per minimum wavelength should be used.
We have also noticed that a too large number of nodes per wavelength in
the FEM can generate spurious oscillations.

As for the 2-D spectral elements code, it has first been validated by
comparing the results of a point source problem with the classical FEM.
The agreement is excellent when no numerical dispersion is present in the
two numerical methods. Then the code has been compared qualitatively
and quantitatively on the effect of a ridge on a vertically incident SV-wave.

The verification of the 3-D spectral elements code has been done by
comparing the theoretical and numerical results of a double-couple point
source problem.

The implementation of the double-couple point source model in the GEF-
Dyn code has shown that the order of magnitude, shape and time of arrival
of physical quantities are well reproduced, however, a clear numerical dis-
persion is visible.



Conclusions and Further
Research

The results of this work clearly illustrate the influence of the nonlinear be-
havior of soft soils on the strong ground motions. However, we note that
such a detailed analysis could have been done thanks to an accurate PS
logging at the CTI borehole station. In cases where the PS logging is not
available, then Cone Penetration Test (CPT) data can be used to obtain
the shear-wave velocity via empirical relationship (e.g., Mayne, 2007). The
inversion of the S-wave velocity and damping factors (using weak or strong
motions) has been done in the frequency domain by finding the closest theo-
retical spectral ratios to the observed one taken on the S-wave portion of the
seismogram. This process gave consistent results, however, a shortcoming
remains: the use of a cosine tapered window to smooth to zero both ends
of the seismogram in order to compute the Fast Fourier Transform influ-
ence the shape of the spectral ratio. One can show that by appling a 15%,
25% or 35% cosine tapared window on the S-wave portion of the signal,
the location of the resonant peaks can be slightly moved and the height of
these peaks can be greatly affected; this can consequently skew the inversion
of the S-wave velocity or the damping factors. Further research should be
done to construct efficient time domain objective functions (e.g., Assimaki
and Steidl, 2007) to have a better accuracy of the inversion.

As for the nonlinear laws used in Chapter 3, we first investigated the
use of a simple elasto-plastic law with a Mohr-Coulomb criterion to simu-
late strong ground motions. We have shown that such ideal behavior leads
to unrealistic velocities or accelerations. In order to obtain a smoother
stress-strain relationship, we have used the advanced constitutive law of
the Cyberquake software. Even if smoother results have been found in the
stress-strain plane, the simulated acceleration remained far from the obser-
vation and far from the results obtained by the inversion. A fine tuning
of the parameters of the law could certainly help to obtain better results;
but are the laboratory tests results conducted at low frequency (i.e., low
loading rate) that we try to mimic with advanced mathematical models ap-
propriate for any range of frequency? Results are actually mitigated since
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Hardin (1965) found virtrually no significant effect of the loading rate on the
dynamic properties of sands; however, more recent experiments conducted
by Lin et al. (1996) have clearly shown a dependence of the damping with
respect to the frequency.

Besides, we note that this thesis only tackles the subject of site effects
within dry soils; however, when cohensionless soils are saturated, rapid load-
ings under undrained conditions result in a change of pore pressure and
consequently in effective stress. Liquefaction phenomenon that results from
this process can be either flow liquefaction or cyclic mobility that can cause
spectacular damages. Cyclic mobility may occur in contractant sands while
sharp acceleration peaks can be generated in dilatant soil.

Finally, this thesis has been the occasion to give birth to four major
codes (all programmed in FORTRAN 90):

• The first one has been developed to inverse borehole station data. It is
based on the Thomson-Haskell propagator matrix method and on the
genetic algorithm optimization method. The code has been developped
to invert:

– the S-wave velocity α;

– the P-wave velocity β;

– the compressional damping factor ξα;

– the shear damping factor ξβ ;

– and the incidence angle of the incoming wave.

• The second one, third one and fourth one are 1D, 2D and 3D spectral
elements codes, respectively, used to solve the elastodynamic wave
equation. Further research will be done to develop a nonlinear version
of the 1D spectral elements code and a parallel version of the 3D
spectral elements code.
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Appendix A

Deconvolution Formulae Via
The Thomson-Haskell
Method

This appendix exposes the deconvolution formulae in a stack of welded ho-
mogeneous horizontal layers subjected to SH wave (The P-SV case follows
the same logic but is slightly more complicated). This deconvolution process
in seismology consists in computing the incoming wave knowing the linear
elastic parameters of the medium and the displacement, velocity or accelera-
tion at one point of the soil column. In general, the free surface acceleration
is used but in the case of a vertical array (i.e., a borehole station), the down-
hole or intermediate records can be used as well. The reader is referred to
van Vossen et al. (2006) for more complex deconvolution on real data using
surface records.

A.1 Theory

Following the Figure 1.1 and using the notation of the Subsection 1.2.2, the
objective of this problem is to use the free surface displacement to find the
amount of upgoing wave in the half space (noted layer n+1 in the following),
that is to say, find wn+1

2 of Equation (1.20) (the superscript n+ 1 denoting
the layer number). In order to do so, we write the Equation (1.21) as

wn+1 = (Fn+1(z))−1P(z, z0)F
1(z0)w

1,

that we simplify as

wn+1 = Bw1 ⇔
(

wn+1
1

wn+1
2

)

=

(

B11 B12

B21 B22

) (

w1
1

w1
2

)

(A.1)

with the matrix B equal to (Fn+1(z))−1P(z, z0)F
1(z0). Supossing zref = z0

in Equation (1.15), the free surface condition τyz(z0) = 0 combined with the
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Equation (1.20) leads to

iωµηw1
1 − iωµηw1

2 = 0 ⇔ w1
1 = w1

2

at z0. Consequently,
uy(z0) = 2w1

1

or

w1
1 = w1

2 =
1

2
uy(z0).

Using Equation (A.1), the downgoing and upgoing quantity can be found as

wn+1
1 =

1

2
uy(z0)(B11 + B12)

and

wn+1
2 =

1

2
uy(z0)(B21 + B22).

The incoming wave is found by multiplying the upgoing quantity by its
respective phase as

uy(z)
n+1
upgoing = Fn+1

12 (z)wn+1
2 .

A.2 Example of deconvolution

In order to test the deconvolution formula in the frequency domain, we use
the soil column presented in Table 1.2. As for the direct simulation, a Ricker
of order 2 and pseudo-frequency of 5 Hz is used as the incident wave. The
free surface motion is used for the deconvolution. Figure A.1 shows the input
wave, the free surface motion and the deconvolved wave. The deconvolved
wave matches perfectly with the input wave.
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Figure A.1: Example of deconvolution. The input wave and deconvolved
wave are shown on the bottom panel. The free surface motion shown on the
top panel is used to compute the deconvolved wave.





Appendix B

Possible Presence of Trapped
Waves within the Kego Fault

In order to follow the possible presence of trapped waves propagating within
the fault gouge (trapped waves could explain the rotation of energy distribu-
tion at stations CTI, FKOS01 and FKO006), we first align the onset of the
S-wave of each velocity seismogram on the onset of S-wave of CTID01. Then,
we will try to validate the four essential characteristics of waves trapped
within a low-velocity zone enonced by Li and Leary (1990):

1. they are excited only by sources acting within a low-velocity layer;

2. their amplitudes decay exponentially with receiver offset from the low-
velocity zone;

3. they appear as extended and/or dispersive wave trains rather than as
compact pulses and their dispersion can be seen by filtering seismo-
grams in the frequency range of interest;

4. and they arrive later in time than the shear body waves traveling the
high-speed rock surrounding the low-velocity zone.

As for the first point, the focal depth of the 2005 West-Off Fukuoka
Prefecture earthquake has been evaluated to 9.2 km (JMA, 2005). The
source has therefore a good probability to be within a low-velocicty structure
zone because of its shallowness.

According to the point two, trapped waves should not be visible or
slightly visible at stations which are offset from the low-velocity zone like
stations FKOS02 or FKOS06. However, they should appear in the vicinity
of stations CTI or FKOS05. If we look closely at the plane f ⊥ - f ‖ (i.e.,
fault perpendicular and fault parallel, respectively) in the frequency range
[0.2-0.5] Hz and [0.5-1.0] Hz:
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• For the stations CTI, which are located along the fault gouge, we
can clearly see in FigureB.1-(a) an arrival of unexpected waves in the
frequency range [0.2-0.5] Hz from 24 to 30 seconds and from 38 to 44
seconds. The same observation can be made in the frequency range
[0.5-1.0] Hz from 26 to 34 seconds.

• For the station FKOS05, we can see in FigureB.1-(b) that in the fre-
quency range [0.2-0.5] Hz the unexpected waves arrive around 26 sec-
onds until 34 seconds. This waves train lags the waves train of CTI
stations of 2 seconds. In the frequency range [0.5-1.0] Hz, we can also
see the supposed trapped waves arriving at 32 seconds until 40 seconds.
One more time, the lag time is around 2 seconds.

• For the station FKOS06, which is offseted from the fault, we cannot
see such an unexpected arrival of train wave. A slight modification of
behaviour is seen within the time windows [30-34] s in the frequency
range [0.2-0.5] Hz. This could confirm the fact that trapped waves
decay exponentially when offset from the fault. In the frequency range
[0.5-1.0] Hz, the same observation can be done within the time interval
[36-40] s.

• For the station FKOS02, which is as FKOS06, offseted from the fault,
no change of behaviour can be seen.

The point number two is therefore confirmed as well. To validate the
point number three, we plot waves at CTIS01, FKOS05, FKOS06 and
FKOS02 filtered in the frequency range [0.2-0.5] Hz and [0.5-1.0] Hz. CTIS01
has been taken as the reference station to aligned the others stations on the
onset of the S-wave. Results are shown in Figure B.8 to B.10. The only
tangible evidence of trapped waves on these filtered velocity seismograms
is the change of behaviour at CTIS01 in the frequency range [0.2-0.5] Hz
between 25 and 30 seconds. This change is then followed by a waves train
until 38 seconds.
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(a) CTI downhole
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(b) FKOS05 station

Figure B.1: Particle orbits on the horizontal plane at CTI downhole and
FKOS05. The particle orbits are plotted in every 2 sec for each band-pass
filter velocity seismogram.
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Figure B.2: Downhole particle motion at CTI station in the planes E32S-
N32E (top), E32S-Z (middle), N32E-Z (bottom).
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Figure B.3: Free surface particle motion at CTI station in the planes E32S-
N32E (top), E32S-Z (middle), N32E-Z (bottom).
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Figure B.4: Free surface particle motion at FKOS05 in the planes E32S-
N32E (top), E32S-Z (middle), N32E-Z (bottom).
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Figure B.5: Free surface particle motion at FKSO06 in the planes E32S-
N32E (top), E32S-Z (middle), N32E-Z (bottom).
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Figure B.6: Free surface particle motion at FKOS02 in the planes E32S-
N32E (top), E32S-Z (middle), N32E-Z (bottom).
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Figure B.7: Free surface particle motion at FKO009 in the planes E32S-
N32E (top), E32S-Z (middle), N32E-Z (bottom).
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Figure B.8: Band-pass filtered velocity seismograms recorded at CTIS01
and at fkos02. Band-pass frequency range is indicated at the bottom right
of the N32E component.

The point number 4 can easily be demonstrated by observing the particle
motion for each station as shown in Figure B.1. It is clear that the the shear
body waves traveling the high-speed rock, in our case, SH-waves, arrive
before the trapped waves.

Except the litigious validation of the point number 3, all the others points
strongly reveal the presence of trapped waves within the faut gouge. Futher
experiments, like installing a permanent array perpendicular to the fault (Li
and Leary, 1990) could enforce the effective presence of a low-velocity profile
along the Kego fault.
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Figure B.9: Band-pass filtered velocity seismograms recorded at CTIS01
and at fkos05. Band-pass frequency range is indicated at the bottom right
of the N32E component.
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Figure B.10: Band-pass filtered velocity seismograms recorded at CTIS01
and at fkos06. Band-pass frequency range is indicated at the bottom right
of the N32E component.



Appendix C

Paraxial Approximation for
the Elastic Wave Equation

This appendix develops in detailed the method exposed by Modaressi (1987)
which consists in deriving the paraxial approximation in the space-time do-
main by first expressing the spectral impedance of a wave impigning on an
interface Σ in the frequency-waveumber domain.

C.1 Elastodynamic Equations in Local Coordinate

System

In order to establish the paraxial approximation along the surface Σ (cf.
Figure C.1), the displacement vector u = (u, v, w) of a general coordinate
system is first projected on the plane (x1, x2) tangent to the surface Σ and
on the x3-axis shown in Figure C.1 (this local coordinate system can be seen
as the local coordinate system of a finite element). We can then write the
displacement as

u(xΣ, x3) = uΣ(xΣ) + u3e3 = u1e1 + u2e2 + u3e3. (C.1)

The elastic wave equation

∂ttu = (α2 − β2)∇(∇ · u) + β2∇2u

can therefore be developed in the local coordinate system as











(α2 − β2)(∂11u1 + ∂12u2 + ∂13u3) + β2(∂11u1 + ∂22u1 + ∂33u1) − ∂ttu1 = 0

(α2 − β2)(∂12u1 + ∂22u2 + ∂23u3) + β2(∂11u2 + ∂22u2 + ∂33u2) − ∂ttu2 = 0

(α2 − β2)(∂13u1 + ∂23u2 + ∂33u3) + β2(∂11u3 + ∂22u3 + ∂33u3) − ∂ttu3 = 0.

In order to perform a Fourier transformation of these equations with
respect to the two space variables lying in the plane tangent to Σ and with



172 Appendix C. PARAXIAL APPROXIMATION

Figure C.1: Definition of local coordinate system used to establish the parax-
ial approximation on the boundary Σ.

respect to time, we use Fourier’s Differentiation property exposed in Ap-
pendix D.

After multiplying elastodynamic equations by e−ik1x1e−ik2x2e−iωt, in-
tegrating over dx1, dx2 and dt, and using the Differentiation property of
Fourier transform, we obtain in the space k1, k2, x3 and ω











(α2 − β2)(−k2
1u1 − k1k2u2 + ik1∂3u3) + β2(−k2

1u1 − k2
2u1 + ∂33u1) + ω2u1 = 0

(α2 − β2)(−k1k2u1 − k2
2u2 + ik2∂3u3) + β2(−k2

1u2 − k2
2u2 + ∂33u2) + ω2u2 = 0

(α2 − β2)(ik1∂3u1 + ik2∂3u2 + ∂33u3) + β2(−k2
1u3 − k2

2u3 + ∂33u3) + ω2u3 = 0.

Using Equation ((C.1)), we can rewrite them as

{

(α2 − β2)(−kΣ · uΣ + i∂3u3)kΣ + β2(−|kΣ|2 + ∂33)uΣ + ω2uΣ = 0

(α2 − β2)(ikΣ · ∂3uΣ + ∂33u3) + β2(−|kΣ|2 + ∂33)u3 + ω2u3 = 0

(C.2)
where kΣ = k1e1 + k2e2.

C.2 P, SV and SH wave decomposition

The above equations form a system of second order differential equations
whose independant variable is x3. An elegant way to solve it has been
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proposed by Modaressi (1987) and consists of decomposing the vector uΣ

along the kΣ-direction and e3∧ kΣ

|kΣ| in order to obtain the P -, SV -, SH-wave

decomposition (Figure C.2). Thus, using the direct basis ( kΣ

|kΣ| , e3 ∧ kΣ

|kΣ| , e3)

that we will write for simplification (ek, e3 ∧ ek, e3), gives

uΣ =

(

uΣ · kΣ

|kΣ|

)

kΣ

|kΣ|
+

(

uΣ · e3 ∧ kΣ

|kΣ|

)

e3 ∧ kΣ

|kΣ|
= uPSV1 ek + uSH2 e3 ∧ ek.

(C.3)

Total displacement in the basis (ek, e3 ∧ ek, e3) will be noted

u(xΣ, x3) = uΣ + uPSV3 e3 = uPSV1 ek + uSH2 e3 ∧ ek + uPSV3 e3

where u3 remains unchanged but will be noted uPSV3 for convenience. We
should also note that

kΣ = |kΣ|ek. (C.4)

Figure C.2: Definition of local coordinate system used to project uΣ ex-
pressed in the basis (e1, e2, e3) on the basis (ek, e3∧ek, e3). This projection
allows to decompose the vector u along P -, SV -, SH-directions.

Injecting the decomposition of uΣ (Equation (C.3)) into Equations (C.2),
we obtain after simplifications











[

(ω2 − α2|kΣ|2 + β2∂33)u
PSV
1 + i|kΣ|(α2 − β2)∂3u

PSV
3

]

ek+
[

β2(−|kΣ|2 + ∂33)u
SH
2 + ω2uSH2

]

e3 ∧ ek = 0
[

(ω2 − β2|kΣ|2 + α2∂33)u
PSV
3 + i|kΣ|(α2 − β2)∂3u

PSV
1

]

e3 = 0

(C.5)
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We can see that the equation along e3 ∧ ek is uncoupled, representing
therefore the SH-component. In order to solve this system of second order
differential equations whose independent variable is x3, let us write it in a
more conventional way. As for the SH-component, it gives

{

∂33u
SH
2 = −

(

ω2

β2
− |kΣ|2

)

uSH2 .

The coupled P -, SV -components gives the following system























∂33u
PSV
1 =

α2|k2
Σ| − ω2

β2
uPSV1 − i|kΣ|(α2 − β2)∂3u

PSV
3

∂33u
PSV
3 =

β2|k2
Σ| − ω2

α2
uPSV3 − i|kΣ|(α2 − β2)∂3u

PSV
1 .

Let ξ2p = ω2

α2 − |kΣ|2 and ξ2s = ω2

β2 − |kΣ|2, then above Equations become

{

∂33u
SH
2 = −ξ2suSH2 (C.6)

and










∂33u
PSV
1 = −α

2

β2
ξ2pu

PSV
1 − i

|kΣ|(α2 − β2)

β2
∂3u

PSV
3

∂33u
PSV
3 = −β

2

α2
ξ2su

PSV
2 − i

|kΣ|(α2 − β2)

α2
∂3u

PSV
1 .

(C.7)

C.3 Spectral Impedance

As for system (C.6), solutions are sought of the form uSH2 (x3) = eλx3 . Thus,

λ2 = −ξ2s

and the 2 distinct roots are λ1 = +iξs and λ1 = −iξs. The solution of
Equation (C.6) is therefore

uSH2 = A+
SHe

+iξsx3 +A−
SHe

−iξsx3 , (C.8)

where e+iξsx3 is an upcoming wave (i.e., propagating along +x3) and e−iξsx3

is a downgoing wave (i.e., propagating along −x3).
To solve the System (C.7), we reduce the system of second order differ-

ential equations to a system of first order differential equations as exposed
in Appendix E. For the System (C.7), let









w1

w2

w3

w4









=









uPSV1

uPSV3

∂x3
uPSV1

∂x3
uPSV3









, (C.9)
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such that System (C.7) and Equation (C.9) gives the following new system









w′
1

w′
2

w′
3

w′
4









=











0 0 1 0
0 0 0 1

−α2

β2 ξ
2
p 0 0 −i |kΣ|(α2−β2)

β2

0 −β2

α2 ξ
2
s −i |kΣ|(α2−β2)

α2 0



















w1

w2

w3

w4









where a prime (′) denote the derivative with respect to x3. This system can
be written as

W′ = AW.

Let the solution be

W = Zeλx3 ⇒ W′ = λZeλx3

so that the system to resolve is

λZeλx3 = AZeλx3 ⇔ (A − λI)Z = 0

where I is the identity matrix of the same dimension of A. Eigenvalues of
the matrix A can be found through the characteristic polynomial which is
equal to

∣

∣

∣

∣

∣

∣

∣

∣

∣

−λ 0 1 0
0 −λ 0 1

−α2

β2 ξ
2
p 0 −λ −i |kΣ|(α2−β2)

β2

0 −β2

α2 ξ
2
s −i |kΣ|(α2−β2)

α2 −λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

= λ4+(ξ2p+ξ
2
s )λ

2+ξ2pξ
2
s = 0.

Resolution of the biquadratic equation leads to 4 distinct eigenvalues:






















λ1 = +iξp

λ2 = −iξp
λ3 = +iξs

λ4 = −iξp

whose associated eigenvectors are

Z1 =









1
ξp/|kΣ|
iξp

iξ2p/|kΣ|









, Z2 =









1
−ξp/|kΣ|
−iξp

iξ2p/|kΣ|









, Z3 =









1
−|kΣ|/ξs

iξs
−i|kΣ|









, Z4 =









1
|kΣ|/ξs
−iξs
−i|kΣ|









.

Coming back to the sought quantities, we obtain






uPSV1 = A+
P e

+iξpx3 +A−
P e

−iξP x3 +A+
SV e

+iξsx3 +A−
SV e

−iξsx3

uPSV3 =
ξp
|kΣ|

A+
P e

+iξpx3 − ξp
|kΣ|

A−
P e

−iξpx3 − |kΣ|
ξs

A+
SV e

+iξsx3 +
|kΣ|
ξs

A−
SV e

−iξsx3
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Since we are interested in outgoing waves for paraxial approximation
(i.e., waves propagating in the x3-direction toward −∞, see Figure C.1),
displacements simplify as



















uPSV1 = A−
P e

−iξpx3 +A−
SV e

−iξsx3

uSH2 = A−
SHe

−iξsx3

uPSV3 = − ξp
|kΣ|

A−
P e

−iξpx3 +
|kΣ|
ξs

A−
SV e

−iξsx3

(C.10)

In order to determine the constants A−
P , A−

SV and A−
SH , we suppose that

u(xΣ, x3 = 0, t) is known on the boundary Σ. Writing Equations (C.10) in
x3 = 0, we obtain for uSH2 ,

uSH2 (kΣ, x3 = 0) = uSH20 ⇒ A−
SH = uSH20 ;

and for uPSV1 and uPSV3







uPSV1 (kΣ, x3 = 0) = uPSV10 ⇒ A−
P +A−

S = uPSV10

uPSV3 (kΣ, x3 = 0) = uPSV30 ⇒ − ξp
|kΣ|

A−
P +

|kΣ|
ξs

A−
S = uPSV30

whose solution is given as















A−
P =

|kΣ|2
ξpξs+ |kΣ|2

uPSV10 − ξs|kΣ|
ξpξs + |kΣ|2

uPSV30

A−
SV =

ξpξs

ξpξs + |kΣ|2
uPSV10 +

ξs|kΣ|
ξpξs + |kΣ|2

uPSV30

.

The final solution expressing displacements on the boundary Σ in the domain
(kΣ, x3, ω) is therefore































































uPSV1 (kΣ, x3, ω) =
1

ξpξs + |kΣ|2
[(

|kΣ|2uPSV10 − ξs|kΣ|uPSV30

)

e−iξpx3

+
(

ξpξsu
PSV
10 + ξs|kΣ|uPSV30

)

e−iξsx3
]

uSH2 (kΣ, x3, ω) = uSH20 e
−iξsx3

uPSV3 (kΣ, x3, ω) =
1

ξpξs + |kΣ|2
[(

−ξp|kΣ|uPSV10 + ξpξsu
PSV
30

)

e−iξpx3

+
(

ξp|kΣ|uPSV10 + |kΣ|2uPSV30

)

e−iξsx3
]

(C.11)
This complete solution of displacement allows the derivation of the spec-

tral impedance on the boundary Σ (i.e., the stress vector in the domain
(kΣ, x3, ω) on a face perpendicular to the vector e3). In order to express
the spectral impedance, let us calculate the stress vector in the space-time
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domain whose basis is (e1, e2, e3) and then perform a Fourier transformation
of the stress (as we did for the Elastodynamic equation). Stress vector on a
face whose normal is e3 is equal to

T(xΣ, x3, t) = [λtr(ε)I + 2µε] · e3 =





µ(∂3u1 + ∂1u3)
µ(∂3u2 + ∂2u3)

(λ+ 2µ)∂3u3 + λ(∂1u1 + ∂2u2)



 .

(C.12)
Using the Differentiation property of Fourier transformation exposed in Ap-
pendix D and the following formulae: λ = ρ(α2 − 2β2), µ = ρβ2 and
(λ + 2µ) = ρα2; we obtain from Equation (C.12) the spectral impedance
in the domain (kΣ, x3, ω) as

T(kΣ, x3, ω) =





ρβ2(∂3u1 + ik1u3)
ρβ2(∂3u2 + ik2u3)

ρα2∂3u3 + ρ(α2 − 2β2)(ik1u1 + ik2u2)





= ρβ2(∂3uΣ + iu3kΣ) +
[

iρ(α2 − 2β2)kΣ · uΣ + ρα2∂3u3

]

e3).

Thanks to the decomposition of Equations (C.3) and (C.4), the spectral
impedance can be rewritten as

T(kΣ, x3, ω) = ρβ2(∂3u
PSV
1 + iuPSV3 |kΣ|)ek + ρβ2∂3u

SH
2 e3 ∧ ek

+
[

iρ(α2 − 2β2)|kΣ|uPSV1 + ρα2∂3u
PSV
3

]

e3

. (C.13)

In order to evaluate the spectral impedance on the boundary Σ, we need
to calculate the quantities ∂3u

PSV
1 |x3=0, ∂3u

SH
2 |x3=0 and ∂3u

PSV
3 |x3=0. This

can be achieved by using Equation (C.11) to obtain











































∂3u
PSV
1 |x3=0 =

i

ξpξs + |kΣ|2
[

−ξpω
2

β2
uPSV10 + ξs|kΣ|(ξp − ξs)u

PSV
30

]

∂3u
SH
2 |x3=0 = −iξsuSH20

∂3u
PSV
1 |x3=0 =

i

ξpξs + |kΣ|2
[

ξp|kΣ|(ξp − ξs)u
PSV
10 − ξsω

2

α2
uPSV30

]

.

(C.14)
Finally, using Equations (C.13) and (C.14), the spectral impedance on the
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boundary Σ (i.e., x3 = 0) can be expressed as

T(kΣ, x3 = 0, ω) =
iρ

ξpξs + |kΣ|2
[

−ξpω2uPSV10 + β2|kΣ|(|kΣ|2 + 2ξpξs − ξ2s )u
PSV
30

]

ek

− iρβ2ξsu
SH
20 e3 ∧ ek

+
iρ

ξpξs + |kΣ|2
[

|kΣ|(ω2 − 2β2(ξpξs + |kΣ|2))uPSV10 − ξsω
2uPSV30

]

e3

(C.15)

In order to return in the space-time domain, we need to take the inverse
Fourier transformation of the spectral impedance. This gives

T(xΣ, x3 = 0, t) =
1

8π3

∫ ∞

−∞
dω

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2T(kΣ, x3 = 0, ω)ei(k1x1+k2x2−ωt)

(C.16)
Equation (C.16) represents the spectral action imposed by waves propa-
gating along −x3. This action is nonlocal since displacements depend on
(kΣ, ω), Fourier transformation of (xΣ, t) for every xΣ and t.

In order to obtain a local impedance, Engquist and Majda (1977) pro-
posed to develop

ξp =
ω

α

√

1 − α2
|kΣ|2
ω2

and ξs =
ω

β

√

1 − β2
|kΣ|2
ω2

as a rational approximation about small |kΣ|2/ω2. We should note that
either Taylor series or Padé series can be used. Zero and first order of
Taylor or Padé approximations are identical, giving for example for ξp

Zero order : ξp =
ω

α

√

1 − α2
|kΣ|2
ω2

≈ ω

α
+O

(

α2 |kΣ|2
ω2

)

First order : ξp =
ω

α

√

1 − α2
|kΣ|2
ω2

≈ ω

α

[

1 − α2 |kΣ|2
ω2

]

+O

(

α4 |kΣ|4
ω4

)

(C.17)

In literature, the zero order is called 1st approximation and the first order is
called 2nd approximation. The 1st approximation is very accurate for high
frequency waves and for waves impinging the boundary with low inclinaison
with respect to e3 (i.e., small |kΣ|). The 2nd approximation is a parabola
which fits the Elastodynamic equation as shown in Figure C.3.

As for the second order wave equations, Engquist and Majda (1977) claim
that from the second order approximation (i.e., 3rd approximation), Taylor
series expansion of the square root lead to instable differencing schemes.
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ω / α

ω / β

|kΣ|

ξp,s

1st Approximation (Zero Order)

2nd Approximation 
 (First Order)

Elastic Wave Equation

Figure C.3: Dispersion relation for elastic case. The curves 1st approxi-
mation and 2nd approximation are the dispersion relation of the paraxial
approximations of the elastic wave equation (circles). For each approxima-
tion, there are two curves: that approximating the larger circle is for shear
waves while the other is for compressional waves. Figure is plotted with
α/β =

√
3.

On the contrary, highly absorbing boundary condition derived from the 2nd
order Padé approximation is well posed.

In the following Section, we will expose the 1st and 2nd approximation
of the spectral impedance on the boundary Σ (Equation (C.15)).
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C.4 1st paraxial approximation

In order to derive the 1st approximation, we substitute the zero order de-
velopment of ξp and ξs (Equation (C.17)) into Equation (C.15). After sim-
plification, we obtain

T(kΣ, x3 = 0, ω) = − iρβω(uPSV10 ek + uSH20 e3 ∧ ek) − iραωuPSV30 e3

+ iρβ|kΣ|(2β − α)(uPSV30 ek − uPSV10 e3)
.

And finally, to come back in the basis (e1, e2, e3) (basis of a finite element),
we use Equation (C.3) and obtain

T(kΣ, x3 = 0, ω) = −iρβωuΣ0 − iραωu30e3 + iρβ|kΣ|(2β − α)(u30kΣ − uΣ0 · kΣe3)

=





−iρβωu10 + iρβ(2β − α)u30k1

−iρβωu20 + iρβ(2β − α)u30k2

−iραωu30 − iρβ(2β − α)(u10k1 + u20k2)



 .

Using the correspondance iω ↔ ∂t, ik1 ↔ ∂1 and ik2 ↔ ∂2, we find in the
domain (x1, x2, x3 = 0, t)

T(x1, x2, x3 = 0, t) =





−ρβ∂tu10 + ρβ(2β − α)∂1u30

−ρβ∂tu20 + ρβ(2β − α)∂2u30

−ρα∂tu30 − ρβ(2β − α)(∂1u10 + ∂2u20)



 .



Appendix D

Property of Fourier
Transformation

The Differentiation property shows that Fourier transformation of ∂
∂x1

f(x1)
is equal to i times the dual variable (i.e., k1) times the Fourier transfomation
of the function itself, such that:

f ′(x1) −→ h(k1) =

∫ ∞

−∞
f ′(x1)e

−ik1x1dx1 = ik1

∫ ∞

−∞
f(x1)e

−ik1x1dx = ik1f(k1),

where k1 is the dual variable of x1. The key of the demonstration of this
formula lies in the integration by parts. Let u = e−ik1x1 and v′ = f ′(x1),
then

h(k1) =

∫ ∞

−∞
f ′(x1)e

−ik1x1dx1 = [f(x1)e
−ik1x1 ]+∞

−∞−
∫ ∞

−∞
−ik1f(x1)e

−ik1x1dx1.

Assuming that f(x1) → 0 as x1 → ∞ (which is the case for accelerograms),
then

h(k1) = ik1f(k1).

This property can be used recursively so that Fourier transformation of the
n-th derivative of a function f(x1) is (ik1)

nf(k1).

Moreover, the computation of Fourier transformation of ∂x2
f(x1, x2)

with respect to x1 leads to:

∫ ∞

−∞
∂x2

f(x1, x2)e
−k1x1dx1 = ∂x2

f(k1, x2).
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The demonstration of this property is as easy as the first demonstration:

∫ ∞

−∞
∂x2

f(x1, x2)e
−k1x1dx1 =

∫ ∞

−∞
lim
h→0

f(x1, x2 + h) − f(x1, x2)

h
e−k1x1dx1

= lim
h→0

1

h

[∫ ∞

−∞
f(x1, x2 + h)e−k1x1dx1

−
∫ ∞

−∞
f(x1, x2)e

−k1x1dx1

]

= lim
h→0

1

h
[f(k1, x2 + h) − f(k1, x2)]

=
∂

∂x2
f(k1, x2).



Appendix E

Solving System of 2nd Order
Ordinary Differential
Equations

This appendix presents the resolution of a system of second order ordinary
differential equations. Let

∂xxV = F(v1(x), ..., vn(x), ∂xv1(x), ..., ∂xvn(x))

V(x) = (v1(x), ...., vn(x))

and
W(x) = (w1(x), ...., wn(x), ...., w2n(x))

with
wi = vi, wn+i = ∂xvi = ∂xwi, 1 ≤ i ≤ n.

Thus, we may form the first order differential system of 2n equations:

∂xW = G(W, x)

where
Gi(W, t) = wn+i, 1 ≤ i ≤ n

Gi(W, t) = Fi−n(W, t), n ≤ i ≤ 2n.





Bibliography

Aguirre, J. and K. Irikura (1997). Nonlinearity, liquefaction, and velocity
variation of soft soil layers in Port Island, Kobe, during the Hyogo-ken
Nanbu earthquake. Bull. Seism. Soc. Am. 87 1244–1258. 41

Aki, K. (1993). Local site effects on weak and strong ground motion.
Tectonophysics 218 93–111. 10, 41

Aki, K. (2003). A perspective on the history of strong motion seismology.
Physics of the Earth and Planetary Interiors 137 5–11. 10, 41

Aki, K. and P. G. Richards (2002). Quantitative Seismology, Second Edition.
University Science Books. 8, 9, 11, 14, 99, 125, 126, 127, 129

Archuleta, R. J., S. H. Seale, P. V. Sangas, L. M. Baker, and S. T. Swain
(1992). Garner Valley downhole array of accelerometers: Instrumentation
and preliminary data analysis. Bull. Seism. Soc. Am. 82 1592–1621. 41

Archuleta, R. J., S. H. Seale, P. V. Sangas, L. M. Baker, and S. T. Swain
(1993). Garner valley downhole array of accelerometers: Instrumentation
and preliminary data analysis. Bull. Seism. Soc. Am. 83 2039. 41

Asano, K. and T. Iwata (2006). Source process and near-source ground mo-
tions of the 2005 West-Off Fukuoka Prefecture earthquake. Earth Planets
Space 58 93–98. 43

Assimaki, D. and J. Steidl (2007). Inverse analysis of weak and strong motion
downhole array data from the Mw7.0 Sanriku-Minami earthquake. Soil
Dynamics and Earthquake Engineering 27 73 – 92. 41, 151
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