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nées comme extension de l’algorithme de Hallgren pour des équations de Pell simples.
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SommaireCette thèse 
ontient deux parties qui peuvent être lues indépendamment.Dans la première partie je dé
ris notre nouvelle appro
he pour 
onstruireune réalisation physique d'un ordinateur quantique par Résonan
e Magné-tique Nu
léaire (RMN). Avant de parler de RMN, je donne une introdu
tiongénérale sur le 
al
ul quantique. Je rappelle des notions de mé
anique quan-tique né
essaires pour pouvoir dé
rire des algorithmes pour des ordinateursquantiques.Ensuite je rappelle la langage du 
al
ul quantique. Je dé
ris les manipu-lations que l'on peut faire ave
 des quantum bits, ou qubits, équivalentsquantiques des bits pour un ordinateur ordinaire. Je détaille les avantagesdes ordinateurs quantiques pour des opérations du type � Transformée deFourier � et je traite les deux algorithmes fondateurs dans le domaine: lafa
torisation en nombres premiers par l'algorithme de Shor et la re
her
hedans des bases de données par l'algorithme de Grover.Je 
ontinue ave
 une des
ription des réalisations physiques possibles pour
onstruire un tel ordinateur.Je parle de plusieurs appro
hes di�érentes, mais 
elle à laquelle je 
onsa
rele plus de temps est l'appro
he par RMN. C'est ave
 
ette te
hnique quel'on a jusqu'à maintenant obtenu les résultats les plus intéressants en 
al
ulquantique. Je dis
ute 
es su

ès et également pourquoi la RMN est devenueune te
hnique obsolète.A partir de 
e point là, je propose un nouveau 
adre pour la RMN dans lesréalisations physiques d'un ordinateur quantique. A�n d'obtenir un tel 
adre,je 
onstruis une nouvelle des
ription de la RMN à partir de la mé
aniquequantique ave
 laquelle je peux 
onstruire les opérateurs élémentaires essen-tiels pour le 
al
ul quantique. Je dé
ris nos expérien
es pour 
onstruire 
esopérateurs en distinguant entre des opérateurs agissant sur un qubit et desopérateurs agissant sur deux qubits. Je �nis la première partie de la thèseave
 une dis
ussion sur la viabilité de 
ette appro
he pour permettre à laRMN de regagner sa pla
e dans les te
hniques utilisées pour 
onstruire unordinateur quantique.Dans la deuxième partie de 
ette thèse je propose un algorithme quantiqueen temps polynomial pour résoudre des équations de Pell simultanées. Cettepartie est inspirée d'une part de l'algorithme quantique de Hallgren pouriii
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ivrésoudre des équations de Pell simples en temps polynomial et d'autre partpar la démonstration de Cipu et Mignotte du fait que dans le 
as général,des équations de Pell simultanées ont au plus deux solutions distin
tes.Je 
ommen
e 
ette partie ave
 une dis
ussion sur l'équation de Pell simple.Je traite la résolution par fra
tions 
ontinues ainsi que les te
hniques plusmodernes qui utilisent la théorie algébrique des nombres, notamment la no-tion du régulateur d'un 
orps de nombres. Je 
ontinue ave
 l'algorithme deHallgren pour résoudre des équations de Pell. Cet algorithme est en tempspolynomial 
ontrairement aux méthodes dé
rites auparavant. C'est un algo-rithme quantique basé sur des extensions de te
hniques de Transformée deFourier dis
utées dans la première partie.Après le 
as des équations de Pell simples, je m'intéresse au 
as des équationsde Pell simultanées. Je donne d'abord une borne supérieure pour la plus pe-tite solution. Pour obtenir 
ette borne, j'utilise des résultats qui viennentde la théorie de l'approximation diophantienne pour les formes linéaires enlogarithmes. Après avoir obtenu une borne supérieure, je 
ontinue ave
 ladémonstration de Cipu et Mignotte du fait qu'il y a au plus deux solutionsdistin
tes pour une paire d'équations de Pell simultanées. Dans 
ette démon-stration on obtient une borne supérieure pour toutes les solutions des équa-tions de Pell simultanées. J'utilise 
ette borne ensuite ainsi que l'algorithmede Hallgren pour des équations de Pell simples pour 
onstruire un algorithmequi résout en temps polynomial des équations de Pell simultanées. Cet al-gorithme a une partie quantique, la pro
édure de Hallgren pour résoudre leséquations de Pell simples et obtenir les solutions fondamentales de 
haqueéquation, et une partie � 
lassique � de re
her
he de solutions à partir de
es solutions fondamentales, jusqu'à la borne supérieure. Je �nis 
ette partieave
 une dis
ussion sur la possibilité d'étendre 
es te
hniques pour résoudred'autres problèmes similaires dans la théorie de nombres.Dans les appendi
es je donne quelques détails supplémentaires sur la théoriedes fra
tions 
ontinues et la théorie des nombres algébriques
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Abstra
tThis text 
onsists of two parts that 
an be read almost independently.In the �rst part I des
ribe a renewed approa
h by Nu
lear Magneti
 Reso-nan
e (NMR) to build a quantum 
omputer. I start with an introdu
tion onquantum 
omputing. I brie�y des
ribe the most important algorithms andthe most promising physi
al realizations of a quantum 
omputer. I 
ontinuewith a des
ription of NMR and the methods used earlier to build a quan-tum 
omputer by NMR. I explain the short
omings of these te
hniques and
onstru
t a new framework for quantum 
omputation using NMR. For thisI introdu
e a new quantum me
hani
al des
ription of NMR with whi
h thebasi
 quantum gates needed for quantum 
omputation 
an be built. I de-s
ribe the experiments to build these gates, distinguishing between one qubitoperations and two qubit operations. I 
on
lude this part with a dis
ussionon the pra
ti
ality of this approa
h and whether these methods will allowfor a revival of NMR as a quantum 
omputing devi
e.The se
ond part 
onsists of the resolution and 
omputation of simultane-ous Pell equations. This part is inspired by Hallgren's quantum algorithmto solve the simple Pell equation in quantum polynomial time and by theproof of Cipu and Mignotte that in the general 
ase, the simultaneous Pellequation has at most two solutions. I start this part with a dis
ussion of thesimple Pell equation, the 
lassi
al te
hniques used to solve it, as well as moremodern te
hniques. Afterwards I des
ribe Hallgren's algorithm, for whi
h Iwill need some extensions of the quantum 
omputing te
hniques that I in-trodu
ed in the �rst part. After this, I ta
kle simultaneous Pell equations.First I des
ribe some 
lassi
al results and solving te
hniques, 
ulminating inthe proof by Cipu and Mignotte that there are at most two distin
t solu-tions for any given pair of independent Pell equations. To obtain this result,I have to introdu
e some Diophantine approximation theory. Finally I ex-tend Hallgren's algorithm to simultaneous Pell equations using bounds fromDiophantine approximation theory and some simple sieving te
hniques to
ompute solutions of simultaneous Pell equations in polynomial time on aquantum 
omputer. I end this part with a dis
ussion on extensions of thesete
hniques to similar 
omputational number theory problems.In the appendi
es I give a short overview on 
ontinued fra
tions and onalgebrai
 number theory. v

te
l-0

05
34

86
4,

 v
er

si
on

 1
 - 

12
 N

ov
 2

01
0



te
l-0

05
34

86
4,

 v
er

si
on

 1
 - 

12
 N

ov
 2

01
0



No one who a
hieves su

essdoes so without the help ofothers. The wise and 
on�denta
knowledge this help withgratitude.Alfred North WhiteheadPrefa
eThis thesis �nds its origin in a 
han
e meeting between two of my advisors,Edward Belaga and Daniel Gru
ker during a Mathemati
s and Biology sem-inar in the winter of 2005, where Professor Belaga gave a talk on mole
ular
omputing. During a 
o�ee break they de
ided to organise another 
onfer-en
e, this time on 
omputing in general and on quantum 
omputing and itsphysi
al realizations in parti
ular. They re
eived a resear
h grant from theANR (Agen
e Nationale de la Re
her
he) to 
ontinue their interdis
iplinarywork and they de
ided that it would be a good idea to look for a PhD studentto assist them. I applied for this position and after two pleasant meetingsthey o�ered me the possibility to work with them. As I was not the bene�-
iary of a PhD grant from the Fren
h state and as the ANR grant was notsu�
ient to �nan
e a full PhD position, it was di�
ult to begin our resear
h.At this point it be
ame unlikely that our 
ollaboration would 
ontinue andI started to explore other avenues. During this time I was invited by theFren
h embassy in the Hague to a re
eption for former bene�
iaries of theirembassy's grant to study a year in Fran
e. At this re
eption I explained myproblems to two members of their grant 
ommittee, Jos van der Kruk andGilbert van der Louw, who told me that one of the appli
ants for that year'sgrant had refused the embassy's o�er. They then suggested me to apply forthis grant. Thanks to these �ne gentlemen and the swift and a

urate help ofCatherine Déli
e, I 
ould �nally begin my resear
h on quantum 
omputing.For this, I heartfully thank them.My advisor, Daniel Gru
ker, has been a tremendous help on all fronts duringthe entire period of my thesis. From a �nan
ial point of view, he managedto �nd me a position as a te
hni
al assistant in my se
ond and third yearof resear
h, whi
h allowed me to 
ontinue my PhD. From an edu
ationalpoint of view, he taught me the basi
s and intri
a
ies of Nu
lear Magneti
Resonan
e with mu
h 
larity and great enthousiasm. As an experimental-ist, he showed me how to operate the ma
hines at our disposition and howto prepare our samples. As an advisor, he has been a driving for
e behindour resear
h, pushing me to investigate our approa
h, showing an admirablepatien
e for me during all these years and guiding me through the arduouspro
ess of writing a thesis. Daniel, I 
annot thank you enough for all yourhelp during my PhD. It has been a great pleasure.vii
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viiiMy other advisor, Edward Belaga, has from the start fo
used on the globalpi
ture of our resear
h, refusing to be 
arried away by details and alwayskeeping in mind our ultimate goal, a fun
tioning quantum 
omputer 
om-bined with a well-
onsidered ar
hite
ture and well-
on
eived algorithms. Hehas personally taken my mathemati
al edu
ation in hand, pointing me inthe right dire
tions and providing important referen
es for our resear
h. Hemade it possible for me to attend 
onferen
es in the United States, Englandand Portugal, whi
h lead to many interesting 
onta
ts. It has been impres-sive to see him make time for me at the most unlikely moments. Whiletravelling between 
onferen
es he would 
all me to help me out with somemathemati
al problem, giving me just the 
lue that was eluding me. I 
on-sider myself lu
ky to have been his student and regret the fa
t that due tohis retirement he 
ould no longer o�
ially be my advisor. Edward, I thankyou for all the time you invested in me.Be
ause Edward Belaga had to retire, I needed another advisor for the math-emati
al 
ontents of my resear
h. Mauri
e Mignotte, who had previouslysupervised my Master thesis, was willing to take on this task. As my the-sis was almost �nished, his main 
ontributions have been to proofread mymanus
ript, but this he has done with his usual modesty and expertise.Along the way, he managed to help me with the �ner details on simultane-ous Pell equations and diophantine approximation theory. Mauri
e, I thankyou for a

epting to be my advisor for just a year and for the pleasant dis-
ussions that usually started with Mathemati
s but rarely ended there.As for the jury members, I warmly thank Frits Beukers, Fran
is Taulelle andYann Bugeaud not only for having a

epted to be on my thesis 
ommitteebut also for the 
are with whi
h they have read my manus
ript and the usefulsuggestions they have made.A lot of people helped me with my resear
h during my thesis. First andforemost Tarek Khalil, who gave my work a mu
h �rmer physi
al ground-ing and who veri�ed most of my 
omputations. Tarek, I thank you for ourheated dis
ussions and for your insisten
e to 
orre
tly formulate our frame-work. Next, my gratitude goes to Jean Ri
hert, who helped both Danieland me understand how to approa
h the dipole-dipole intera
tion and whodouble-
he
ked mu
h of our work.One of the perks of having two advisors is having two o�
es and thereforetwi
e as many interesting 
olleagues. I would like to thank Jerome Steibelfor his many fun suggestions regarding our experiments; Jerome, one dayour 
omputer will run on beer ! Many thanks also to, amongst others :Nathalie, Thierry, Renée, Laura and Hélène, who made my stay at the In-stitute of Physi
s and Biology a very pleasant one.As to my fellow PhD-students at the Institute for Mathemati
s, what 
an Isay. It was a great pleasure to share o�
es with Vin
ent, Audrey, Rémi, Ben-jamin, Alain, Jean and Auguste. To have 
o�ee breaks with Adrien, Cédri
,Camille, Alexandre, Florian, Hélène and Anne-Laure. The most pleasant
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ixtimes were however during those s
ar
e moments of extra-mathemati
al a
-tivity, for whi
h a royal thank you goes to Fabien, Aurélien, S
oum, Thomas,Aurore, Ghislain, Jürgen and everybody else who 
ontributed to the goodspirit of the �rst �oor.During my thesis a lot of bureau
rati
 work was done for me by people whoare far more 
apable than I am. I would like to thank Simone, Nathalie andYvonne espe
ially for all they have done for me.A ni
e thing about friends is that they help you keep up when your resear
his desperately trying to make you feel miserable. I would like to take thisopportunity to thank Alexandre and Jannes, who both greatly restored mymorale when needed.My family has been there for me during all these years and without themI never would have �nished my thesis. Di
k, thank you for the many hoursyou spent proofreading and spell
he
king, for making me see how to formu-late my ideas more 
learly and for all the times you helped me out. Willy,thank you for supporting me throughout the entire pro
ess and helping methrough the last di�
ult hurdles, when I felt ready to throw in the towel.I know it has been hard on both of you to have your son far away fromyou and I sin
erely hope that in the future this will 
hange. Maartje, Erik,Floor, Midas, Thijs and Esther, thank you for the pleasant moments, thegood 
ho
olate, the 
y
ling, the roller
oasters and so mu
h more.Finally I thank my little family of my own. Julia, you had to put up withme during all those times when morale was low, when deadlines were set,when plans were altered, when dates got pushed further and further into thefuture, when everything seemed un
ertain. I know that without you by myside, I would have given up long ago. You have been my ro
k, even if youthink that it is the other way around. A last word goes to the smallest ofmy family, my lovely daughter, Mina. You have helped me realize what isimportant and what is se
ondary, you may not have known it at the time,but you have done me a great servi
e in just being there.
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Part IQuantum Computing usingNu
lear Magneti
 Resonan
e

te
l-0

05
34

86
4,

 v
er

si
on

 1
 - 

12
 N

ov
 2

01
0



te
l-0

05
34

86
4,

 v
er

si
on

 1
 - 

12
 N

ov
 2

01
0



Any su�
iently advan
edte
hnology is indistinguishablefrom magi
.Arthur C. ClarkeChapter 1Quantum Computing1.1 Introdu
tionThe idea of the quantum 
omputer has been around for some time. Oneof its basi
 elements is the notion of reversible 
omputation, whi
h was de-veloped by Charles Bennett [Ben73, Ben82℄. This is a model of 
omputingthat is reversible, for whi
h a ne
essary 
ondition is that the 
orrespondingbinary mapping is one-to-one. A major motivation for this type of modelsis that reversible 
omputing 
an improve the energy e�
ien
y of 
omputersbeyond the von Neumann-Landauer limit [Lan61, vN66℄ of kBT log 2 energydissipated per irreversible bit operation.We 
on
entrate on logi
ally reversible systems, whi
h is a ne
essary but nota su�
ient 
ondition for a 
omputational pro
ess to be physi
ally reversible.Landauer's prin
iple is the notion that the erasure of n bits of informationhas a 
ost of nkBT log 2 in thermodynami
 entropy.Poplavskii wrote in the seventies that 
lassi
al 
omputers are unable tosimulate quantum me
hani
al systems be
ause of the superposition prin-
iple [Pop75℄. Manin added a few years later [Man80℄ that the exponentialnumber of basis states of a quantum system 
ould be exploited but that atheory of quantum 
omputation was needed that 
aptured the fundamentalprin
iples without 
ommitting to a physi
al realization.Ri
hard Feynmann wrote in the early eighties [Fey82℄ that in order to sim-ulate the evolution of quantum systems with 
omputers, these 
omputerswould need to have quantum me
hani
al properties if we wanted the sim-ulation to be done e�
iently. In 1985 David Deuts
h proposed a universalquantum 
omputer [Deu85℄, whi
h 
an simulate any other quantum 
om-puter. In the same arti
le he also invented a simple quantum algorithm fora de
ision problem, that he proved to be faster than any 
lassi
al algorithmthat 
an be 
onstru
ted for this problem. Ri
hard Josza later produ
ed ageneralization of this algorithm [DJ92℄. The de
ision problem in questionis to de
ide whether a given binary fun
tion is balan
ed or 
onstant, given3
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4 CHAPTER 1. QUANTUM COMPUTINGthat it has one of these properties.Until the middle of the nineties, no serious proposal for a physi
al realiza-tion of a quantum 
omputer had been made. While new quantum algorithms
ontinued to be found, most based on the quantum 
omputational equiva-lent of the Fourier Transform, nobody seemed to know how to a
tually buildsu
h a hypotheti
al 
omputer. In 1995, Cira
 and Zoller proposed to builda quantum 
omputer from ion traps [CZ95℄. From that point on, di�erentproposals for physi
al realizations have slowly started to outnumber the pro-posals for di�erent quantum algorithms.In the rest of this 
hapter we introdu
e the basi
 elements that are neededfor a quantum 
omputer. We give a very short overview on quantum me-
hani
s in general and a little more detail on quantum logi
. We dis
uss theQuantum Fourier Transform and des
ribe the two important algorithms inthe domain of quantum 
omputation. We then pro
eed by detailing someproposals for physi
al realizations.1.2 Quantum Me
hani
sQuantum 
omputing should be seen in the framework of quantum me
han-i
s. We give a brief overview on the basi
s for quantum me
hani
s. Fora more pre
ise review we re
ommend the ex
ellent a

ount by Nielsen andChuang [NC00℄ or the standard text books on quantum me
hani
s [Sak94,CTDL77℄.Throughout these 
hapters we will suppose to be working in a 
omplexHilbert spa
e V of dimension N . The standard quantum me
hani
al no-tation for a ve
tor in a ve
tor spa
e is |φ〉 whi
h is 
alled a ket. Its ve
tordual 〈φ| is 
alled a bra. An inner produ
t between two ve
tors φ,ψ is de-noted 〈φ|ψ〉. The tensor produ
t between two ve
tors is denoted as |φ〉⊗ |ψ〉but we will use the shorthand notation |φ〉|ψ〉.We will �x an orthonormal basis B = {|0〉, . . . , |N − 1〉} for V . Thus we 
anwrite
|φ〉 =

N−1
∑

i=0

ai|i〉, (1.2.1a)
〈φ| =

N−1
∑

i=0

a∗i 〈i|, (1.2.1b)where the ai are 
omplex numbers.Any linear operator A on V 
an be written in the form
A =

∑

i,j

aij |i〉〈j|. (1.2.2)Quantum me
hani
s 
an be summarized by 4 postulates.
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1.3. CLASSICAL AND QUANTUM LOGIC 51. To an isolated physi
al system we asso
iate a Hilbert spa
e with innerprodu
t whi
h is the state spa
e of the system. The system is 
om-pletely des
ribed by its state ve
tor whi
h is a unit ve
tor in the statespa
e.2. The evolution of a 
losed quantum system is des
ribed by a unitarytransformation.3. Quantum measurements are des
ribed by a 
olle
tion {Mm} of meas-urement operators. These operators satisfy the 
ompleteness relation
∑

m

M †
mMm = I. (1.2.3)4. The state spa
e of a 
omposite physi
al system is the tensor produ
tof the state spa
es of the 
omponent systems.1.3 Classi
al and Quantum Logi
1.3.1 QubitsBits are the basi
 elements in 
lassi
al 
omputing. As a physi
al entitythey 
an be 
onsidered as ele
troni
 swit
hes that are either swit
hed ON orswit
hed OFF. In a 
omputational sense they have either the value 0 or 1.The quantum me
hani
al analogue of bits are qubits, whi
h is shorthandfor quantum bits. As a physi
al entity they 
an be a multitude of obje
ts.They 
ould be the two di�erent polarizations of a photon, the alignmentof a nu
lear spin in a uniform magneti
 �eld or something else entirely. Ina mathemati
al sense they are simply unit ve
tors in C2. The standardorthonormal basis for qubits is denoted as |0〉, |1〉. These ve
tors 
orrespondto the 
olumn ve
tors (1, 0)T , (0, 1)T . An arbitrary qubit |ψ〉 
an be writtenas

|ψ〉 = α0|0〉 + α1|1〉, (1.3.1)with α0, α1 ∈ C and α2
0 + α2

1 = 1. Measuring the qubit |ψ〉 will give |0〉with probability |α0|2 and |1〉 with probability |α1|2. It is possible to rewriteequation (1.3.1) as
|ψ〉 = eiγ

(

cos θ
2 |0〉 + eiφ sin θ

2 |1〉
)

, (1.3.2)where θ, φ and γ are real numbers. The fa
tor eiγ 
an be ignored as it hasno observable e�e
t. This leads to
|ψ〉 = cos θ

2 |0〉 + eiφ sin θ
2 |1〉. (1.3.3)The qubit |ψ〉 
an be 
onsidered as a point on the three-dimensional unitsphere. This sphere is 
alled the Blo
h-sphere.
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6 CHAPTER 1. QUANTUM COMPUTING
~z

~y

~x

•
|ψ〉

•
|0〉

•
|1〉

θ

φ

Figure 1.1: Blo
h sphere representation of a qubit |ψ〉 = cos θ
2
|0〉+eiφ sin θ

2
|1〉.We 
an use the fourth postulate in order to 
ombine several qubits. Theve
tors {|0〉 ⊗ · · · ⊗ |0〉, . . . , |1〉 ⊗ · · · ⊗ |1〉} form a set of n qubits that spana spa
e of dimension 2n. We will denote by |n〉 the qubit |z0〉 ⊗ · · · ⊗ |zk〉with zi ∈ {0, 1} and n =

∑k
i=0 zi2

i.An arbitrary qubit |ψ〉 =
∑2n−1

i=0 αi|i〉 is a unit ve
tor in C2n . When measuredit returns the state |j〉 with probability |αj |2. After measuring the state |ψ〉be
omes |ψ′〉 = |j〉. This pro
ess is 
alled the 
ollapse of the waveform.1.3.2 Manipulating bits and qubitsClassi
al bitsIn order to 
ompute with 
lassi
al bits we use logi
al gates. A logi
al gateis a fun
tion f : {0, 1}k −→ {0, 1}l with k input bits and l output bits. Thefollowing seven gates are well-known.
¬ = NOT: {0, 1} −→ {0, 1}

x 7−→ x+ 1 (mod 2)
(1.3.4a)

∨ = OR: {0, 1} −→ {0, 1}
(x1, x2) 7−→ x1x2 + x1 + x2 (mod 2)

(1.3.4b)
⊕ = XOR: {0, 1}2 −→ {0, 1}

(x1, x2) 7−→ x1 + x2 (mod 2)
(1.3.4
)

∧ = AND: {0, 1}2 −→ {0, 1}
(x1, x2) 7−→ x1x2 (mod 2)

(1.3.4d)
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1.3. CLASSICAL AND QUANTUM LOGIC 7
↑= NAND: {0, 1}2 −→ {0, 1}

(x1, x2) 7−→ x1x2 + 1 (mod 2)
(1.3.4e)

FAN: {0, 1} −→ {0, 1}2

x 7−→ (x, x)
(1.3.4f)

SWAP: {0, 1}2 −→ {0, 1}2

(x1, x2) 7−→ (x2, x1)
(1.3.4g)With these gates we 
an 
ompute any fun
tion.Theorem 1.1. An arbitrary fun
tion f : {0, 1}n −→ {0, 1} 
an be simulatedwith the logi
al gates NOT, AND, XOR, FAN and SWAP.Proof. We use indu
tion on n. For n = 1 there are four possible fun
tions:1. The identity fun
tion, whi
h does not need any gate.2. The NOT-fun
tion, whi
h is one of the �ve gates that 
an be used.3. The 
onstant fun
tion 0, whi
h we 
an produ
e by using the followinggates:

0 = 0(x) = ∧
(

FAN1(x),¬
(

FAN2(x)
)

)

, (1.3.5)where FANi is the i-th output bit of the FAN-fun
tion.4. We 
an obtain the 
onstant fun
tion 1 by taking the NOT of the pre-vious fun
tion:
1 = ¬

(

0(x)
)

. (1.3.6)Suppose now that any fun
tion on n bits 
an be 
omputed and let f be afun
tion on n+ 1 bits. De�ne the n-bit fun
tions f0 and f1 by
fi(x1, . . . , xn) = f(i, x1, . . . , xn). (1.3.7)Then we have

f(x0, . . . , xn) = ⊕
(

∧
(

f0(x1, . . . , xn),¬(x0)
)

, ∧
(

f1(x1, . . . , xn), x0

)

)

.(1.3.8)Alternative proof without indu
tion. The fun
tion f 
an be written as
f =

∑

x

f(x)χx,

=
∑

x|f(x)=1

χx

(1.3.9)
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8 CHAPTER 1. QUANTUM COMPUTINGwhere
χx(y) = δxy =

{

1, if x = y,

0, otherwise. (1.3.10)So that we 
an write
f =

∨

x|f(x)=1

χx, (1.3.11)where χx is a produ
t of zi or z̄i and
zi(y) =

{

1, if yi = 1,

0, otherwise. (1.3.12)
We a
tually need only three gates.Theorem 1.2. The NAND-fun
tion together with the FAN-fun
tion 
ansimulate the fun
tions NOT, AND and XOR.Proof.

¬(x) =↑
(

FAN(x)
) (1.3.13a)

∧(x1, x2) =↑
(

FAN
(

↑ (x1, x2)
)

) (1.3.13b)
⊕(x1, x2) =↑

(

↑
(

↑
(

FAN(x1)
)

, x2

)

, ↑
(

x1, ↑
(

FAN(x2)
)

)

) (1.3.13
)
So the NAND-gate together with the FAN-gate and the SWAP-gate allowsus to 
ompute any fun
tion. However, the NAND-gate is not reversible,nor 
an it be made reversible by adding an extra bit with information onthe input. There are logi
al gates on three bits that are reversible and 
an
ompute any fun
tion. For instan
e the To�oli-gate

TOF(x1, x2, x3) = (x1, x2, x1x2 + x3), (1.3.14)and the Fredkin-gate
FRE(x1, x2, x3) =

(

SWAP(x1, x2)x3 + Id(x1, x2)(x3 + 1), x3

)

, (1.3.15)whi
h swaps the �rst two bits if and only if the third bit is set to 1.
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1.3. CLASSICAL AND QUANTUM LOGIC 9Manipulating qubitsThe quantum equivalent of logi
al gates on bits are unitary transforms onqubits. Given a 2n-dimensional ve
tor spa
e V with basis B and a 2m × 2mmatrix U with m ≤ n, an expansion of U relative to B is any matrix of theform
G(U ⊗ I2n−m)G−1, (1.3.16)where G permutes the basis and Ik is the k × k identity matrix.Let U = {U1, . . . , Uk} be a set of unitary matri
es of dimension dividing 2n.Then (B,U) is the set of all expansions of the Ui relative to B.We de�ne the following matri
es, whi
h are respe
tively 
alled the Hadamardoperator, the rotation operator of angle θ, the 
ontrol-Not operator and the
ontrol-
ontrol-Not operator:

H =
1√
2

(

1 1
1 −1

)

, P (θ) =





e
iθ
2 0

0 e−
iθ
2



 , (1.3.17ab)
CNOT =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









, (1.3.17
)
CCNOT =

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

























. (1.3.17d)
The 
ontrol-NOT operator is a spe
ial 
ase of the general 
lass of 
ontrolledoperators. These operators a
t on two registers of qubits in a very spe
i�
manner. If the �rst register of qubits is in a spe
i�ed 
ontrol state, usually
|1〉 · · · |1〉, then an operator U is applied to the se
ond register of qubits. Ifthe �rst register is not in the spe
i�ed 
ontrol state, the identity operatoris applied to the se
ond register. For any n > 2 and θ, su
h that P (θ) isnot idempotent, the set Uτ = {H,CNOT,CCNOT,P (θ)} generates a group
GUτ that is dense in U(2n). To be a little bit more pre
ise we de�ne thenorm of a ve
tor

‖|φ〉‖ =
√

〈φ|φ〉. (1.3.18)The norm of an operator U is de�ned as
‖U‖ = sup

|φ〉6=0

‖U |φ〉‖
‖|φ〉‖ . (1.3.19)
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10 CHAPTER 1. QUANTUM COMPUTINGWe say that an operator Ũ represents an operator U with pre
ision ǫ if
∥

∥

∥
Ũ − U

∥

∥

∥
≤ ǫ. (1.3.20)With this de�nition we 
an say that the group GUτ represents U(2n) withpre
ision ǫ for any ǫ > 0.A quantum 
ir
uit is a unitary matrix built by 
omposing elementary oper-ations from Uτ . The size of a quantum 
ir
uit will be the minimal numberof operations 
omposed to obtain it. A register in a quantum 
omputer isa subset of the total set of qubits. Writing |φ1〉|φ2〉 means that the �rstregister is in state |φ1〉 and the se
ond in |φ2〉.1.3.3 LimitationsThe most important limitation for qubits is the following theorem.Theorem 1.3 (No Cloning Theorem). It is not possible to 
opy any givenquantum stateProof. Suppose we have two qubits. The qubit to be 
opied is in state |φ1〉and the other qubit in some state |s〉. Suppose that we have a 
opyingma
hine, using a unitary operation U . Then

|φ1〉 ⊗ |s〉 U7−→ U
(

|φ1〉 ⊗ |s〉
)

= |φ1〉 ⊗ |φ1〉. (1.3.21)For another quantum state |φ2〉 we have the same relation. We now takeinner produ
ts to get the following.
(

〈φ1| ⊗ 〈s|
)

U †U
(

|φ2〉 ⊗ |s〉
)

=
(

〈φ1| ⊗ 〈φ1|
)(

|φ2〉 ⊗ |φ2〉
)

. (1.3.22a)
〈φ1|φ2〉〈s|s〉 = 〈φ1|φ2〉〈φ1|φ2〉. (1.3.22b)

〈φ1|φ2〉 = 〈φ1|φ2〉2. (1.3.22
)This equation has solutions if and only if 〈φ1|φ2〉 is 0 or 1. So 
opying 
annotbe done for general states.The 
onsequen
es of this negative result are 
lear. Even for simple operationslike swit
hing two bits we would like to make a 
opy of one of the bitsbefore overwriting it. In quantum 
omputing we need to design algorithmsin su
h a way that we never need to store an intermediate result, whi
h isa fundamentally di�erent approa
h than what we are used to on 
lassi
al
omputers. So in a sense we need to develop a quantum me
hani
al way ofalgorithmi
 thinking to design algorithms for quantum 
omputers.

te
l-0

05
34

86
4,

 v
er

si
on

 1
 - 

12
 N

ov
 2

01
0



1.4. QUANTUM ALGORITHMS 111.4 Quantum Algorithms1.4.1 Dis
rete Fourier and Quantum Fourier TransformLet x0, . . . , xN−1 be a ve
tor of 
omplex numbers. The Dis
rete FourierTransform is de�ned by:
yk =

1√
N

N−1
∑

j=0

xje
2πijk

N . (1.4.1)The Coole-Tukey algorithm [CT65℄ for Dis
rete Fourier Transforms redu
edthe 
omplexity from O
(

en
2) to O(en log n

). Let |k〉 be a ve
tor in a 
omplexHilbert spa
e V of dimension N and let |0〉, . . . , |N − 1〉 be an orthonormalbasis for V . The Quantum Fourier Transform (QFT) is de�ned in the sameway as the Dis
rete Fourier Transform:
|k〉 7−→ 1√

N

N−1
∑

j=0

e
2πijk

N |j〉. (1.4.2)It is possible to give a matrix notation for the QFT. Let ξ = e
2πi
2N , then theunitary 2N × 2N matrix, given by

ajk = 1√
2N
ξ(j−1)(k−1), (1.4.3)is the Quantum Fourier Transform. An example for N = 3 and ξ8 = 1:

QFTN=3 =
1√
8

























1 1 1 1 1 1 1 1
1 ξ ξ2 ξ3 ξ4 ξ5 ξ6 ξ7

1 ξ2 ξ4 ξ6 ξ8 ξ10 ξ12 ξ14

1 ξ3 ξ6 ξ9 ξ12 ξ15 ξ18 ξ21

1 ξ4 ξ8 ξ12 ξ16 ξ20 ξ24 ξ28

1 ξ5 ξ10 ξ15 ξ20 ξ25 ξ30 ξ35

1 ξ6 ξ12 ξ18 ξ24 ξ30 ξ36 ξ42

1 ξ7 ξ14 ξ21 ξ28 ξ35 ξ42 ξ49

























=
1√
8

























1 1 1 1 1 1 1 1
1 ξ ξ2 ξ3 ξ4 ξ5 ξ6 ξ7

1 ξ2 ξ4 ξ6 1 ξ2 ξ4 ξ6

1 ξ3 ξ6 ξ ξ4 ξ7 ξ2 ξ5

1 ξ4 1 ξ4 1 ξ4 1 ξ4

1 ξ5 ξ2 ξ7 ξ4 ξ ξ6 ξ3

1 ξ6 ξ4 ξ2 1 ξ6 ξ4 ξ2

1 ξ7 ξ6 ξ5 ξ4 ξ3 ξ2 ξ

























. (1.4.4)
The QFT is useful be
ause the 
omplexity of the DFT is O(en log n) whereasthe 
omplexity of the QFT is O(n2). It is exa
tly this gain whi
h will allow

te
l-0

05
34

86
4,

 v
er

si
on

 1
 - 

12
 N

ov
 2

01
0



12 CHAPTER 1. QUANTUM COMPUTINGus to solve 
lassi
ally infeasible problems with quantum algorithms by usingthe QFT. The following example, of whi
h Shor's algorithm is a spe
ial 
ase,
learly shows how the QFT 
an be used in quantum algorithms.Let N > 1 be a positive integer, G = Z/NZ the additive group of integersmodulo N and X a �nite set. Suppose that we have a fun
tion f : G −→ X,su
h that for some subgroup H = 〈d〉 of G, f is 
onstant on H and separates
osets of H. Suppose that we do not know d. We want to �nd a generatorfor H. To do so we start with two registers in the zero state |0〉|0〉 and weapply the QFT to the �rst register to obtain
1√
N

N−1
∑

j=0

|j〉|0〉. (1.4.5)We then apply f to the se
ond register to get
1√
N

N−1
∑

j=0

|j〉|f(j)〉. (1.4.6)We now measure the se
ond register and obtain f(j0) for some j0. The e�e
tof measuring the se
ond register is that all registers that do not have f(j0)in the se
ond register 
ollapse. As f separates 
osets of H this means thatonly the 
oset H + j0 remains in the �rst register. If |H| = M , the �rstregister 
an be des
ribed as
1√
M

M−1
∑

s=0

|j0 + sd〉. (1.4.7)We apply the QFT to this register to obtain
1√
MN

N−1
∑

k=0

e
2πij0k

N |k〉
M−1
∑

s=0

e
2πisdk

N . (1.4.8)Using the fa
t that N = dM and evaluating the se
ond sum as a geometri
series, only the values of |k〉 that are multiples of M remain, giving
1√
d

d−1
∑

t=0

e
2πij0tM

N |tM〉. (1.4.9)Measuring the �rst register gives a multiple of M . Repeating this pro
edurewe get several multiples of M . Using the Eu
lidean algorithm we obtain Mwith high probability.
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1.4. QUANTUM ALGORITHMS 131.4.2 Fourier Transforms over Abelian GroupsThe above example works well be
ause it was straightforward to identify theelements of the group Z/NZ with the qubits |0〉, . . . , |N − 1〉. For general�nite abelian groups, this identi�
ation is not that simple and we will needto de�ne a more general form of Fourier transform. To do so we need tointrodu
e some basi
 representation and 
hara
ter theory. We follow thedes
ription of Chris Lomont [Lom℄. Every �nite Abelian group G 
an bewritten as the dire
t sum of 
y
li
 groups, so
G = Z/N1Z ⊕ · · · ⊕ Z/NkZ. (1.4.10)We suppose that we have a fun
tion f from G to a �nite set X, su
h that

f separates 
osets of a subgroup H of G. We will write elements of G as
k-tuples (g1, . . . , gk), with gi ∈ {0, . . . ,Ni − 1}. De�ne

βi = (0, . . . , 0i−1, 1i, 0i+1, . . . , 0). (1.4.11)A 
hara
ter of G is a group homomorphism χ from G to the multipli
ativegroup of nonzero 
omplex numbers C∗. For every 
hara
ter χ and everyelement g = (g1, . . . , gk) we have
χ(g) = χ

(

k
∑

i=1

giβi

)

=

k
∏

i=1

χ(βi)
gi . (1.4.12)So every 
hara
ter χ is determined by its a
tion on the βi. As the order of

βi is Ni, the order of χ(βi) must divide Ni. Therefore
χ(βi) = e

2πihi

Ni , (1.4.13)for some hi ∈ {0, . . . , Ni − 1}. So we 
an determine a 
hara
ter by a k-tuple
(h1, . . . , hk), whi
h 
an be seen as an element h ∈ G. This leads to thefollowing de�nition for 
hara
ters. For every g ∈ G, we de�ne

χg : G −→ C∗

h 7−→
k
∏

j=1

e
2πigjhj

Nj .
(1.4.14)A useful theorem on 
hara
ters is the following.Theorem 1.4. Let G be a �nite Abelian group and χ a 
hara
ter. Then

∑

g∈G

χ(g) =

{

|G| if χ = χe,

0 otherwise. (1.4.15)Here χe is the identity 
hara
ter sending every element of the group to 1.
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14 CHAPTER 1. QUANTUM COMPUTINGProof. We have
G = Z/N1Z ⊕ · · · ⊕ Z/NkZ. (1.4.16)Choose h ∈ G. Then

∑

g∈G

χh(g) =
∑

gj∈Z/NjZ

j∈{1,...,k}





k
∏

j=1

e2πihjgj/Nj





=
k
∏

j=1

∑

gj∈Z/NjZ

e2πihjgj/Nj .

(1.4.17)
If for some j we have e2πihj/Nj 6= 1, then the geometri
 series

∑

gj∈Z/NjZ

e

2πihj

N
gj
j = 0. (1.4.18)The only time this does not happen is when for all j we have

e
2πihj

Nj = 1. (1.4.19)This is the identity 
hara
ter. In this 
ase the result is ∏k
j=1Nj = |G|.We 
an now de�ne the notion of an orthogonal subgroup. Let H be a sub-group of G. The orthogonal subgroup of H is

H⊥ = {g ∈ G | χg(h) = 1, for all h ∈ H}. (1.4.20)While the 
y
li
 QFT returns multiples of the generator of H, the general�nite abelian QFT returns elements of the orthogonal subgroup of H. It isde�ned as
FG =

1
√

|G|
∑

g,h∈G

χg(h)|g〉〈h|. (1.4.21)We also de�ne a translation operator
τt =

∑

g∈G

|t+ g〉〈g|, (1.4.22)and a phase-
hange operator
φh =

∑

g∈G

χg(h)|g〉〈g|. (1.4.23)We �rst show that the Fourier transform of a subgroup is its orthogonalsubgroup.
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1.4. QUANTUM ALGORITHMS 15Theorem 1.5. We have the following relation between subgroups and Fouriertransforms:
FG|H〉 = |H⊥〉. (1.4.24)Proof. By de�nition, we have

|H〉 =
1

√

|H|
∑

h∈H

|h〉. (1.4.25)We then have:
FG|H〉 =

1
√

|G|
∑

g,h′∈G

χg(h
′)|g〉〈h′| 1

√

|H|
∑

h∈H

|h〉. (1.4.26)Using the fa
t that 〈h|h′〉 = 1, if h = h′ and zero otherwise, the aboveexpression 
an be simpli�ed to
1

√

|G||H|
∑

g∈G

(

∑

h∈H

χg(h)

)

|g〉. (1.4.27)The 
hara
ter χg of G is also a 
hara
ter of H, therefore∑h∈H χg(h) is zerounless the 
hara
ter is the identity on H, in whi
h 
ase the sum is equalto |H|. That is exa
tly the de�nition of the orthogonal subgroup, thereforewe 
an redu
e the equation to
1

√

|G||H|
∑

g∈H⊥

|H||g〉. (1.4.28)As |H||H⊥| = |G|, this is equal to
1

√

|H⊥|
∑

g∈H⊥

|g〉 = |H⊥〉. (1.4.29)
In a similar way the following three identities 
an be proved.Theorem 1.6. For all elements h, t ∈ G we have

χh(t)τtφh = φhτt, (1.4.30a)
FGφh = τ−hFG, (1.4.30b)
FGτt = φtFG. (1.4.30
)We 
an now give the algorithm for the hidden subgroup problem for general�nite abelian groups. As in the 
y
li
 
ase we start with two registers of
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16 CHAPTER 1. QUANTUM COMPUTINGqubits in the zero state and we apply the Fourier transform to the �rstregister.
|0〉|0〉 7−→ 1

√

|G|
∑

g∈G

|g〉|0〉. (1.4.31)We then apply the 
oset separating fun
tion f to the se
ond register, whi
hleads to
1

√

|G|
∑

g∈G

|g〉|f(g)〉. (1.4.32)De�ne T = (t1, . . . , tm) as a set of 
oset representatives for H in G. Weobviously have |T ||H| = |G|. Using the separation property of f we 
ansimplify the above expression to
1

√

|T |
∑

t∈T

|t+H〉|f(t)〉. (1.4.33)This is equal to
1

√

|T |
∑

t∈T

τt|H〉|f(t)〉. (1.4.34)We apply the Fourier transform to the �rst register and use the above theo-rems to obtain the following result.
1

√

|T |
∑

t∈T

τt|H〉|f(t)〉 FG7−→ 1
√

|T |
∑

t∈T

FGτt|H〉|f(t)〉

=
1

√

|T |
∑

t∈T

φtFG|H〉|f(t)〉 (1.4.35)
=

1
√

|H⊥|
∑

t∈T

φt|H⊥〉|f(t)〉.We now measure the �rst register and obtain a random element of the or-thogonal subgroup of H. Sin
e (H⊥)⊥ = H, determining a generating setfor the orthogonal subgroup determines H 
ompletely. This does howevernot mean that it is an easy task to get a generating set for H starting witha generating set for H⊥. Suppose that we have a generating set g1, . . . , gtfor H⊥. As H = H⊥⊥, we have h ∈ H if and only if
χh(gj) = 1, for all j = 1, . . . , t. (1.4.36)Let d = LCM(N1, . . . , Nk) and αi = d

Nl
. Then

χh(gj) =

k
∏

l=1

e
2πiαlhlgjl

d = 1, (1.4.37)
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1.4. QUANTUM ALGORITHMS 17if and only if
k
∑

l=1

αlhlgjl ≡ 0 (mod d). (1.4.38)So to �nd elements of H we have to solve this system of t linear equations.This is a simple linear algebra problem that 
an be e�
iently solved withthe use of Smith normal forms. Solving this equation gives an element
h = (h1, . . . , hk) ∈ H. (1.4.39)Repeating the pro
edure will lead to a set of generators for H.1.4.3 Shor's Fa
toring AlgorithmLet N be an integer. We want to �nd an integer 1 < p < N , su
h that p | N .By repeating this pro
ess for the integers p and q = N

p we will eventually�nd a fa
torization
N =

n
∏

i=1

pei

i , (1.4.40)where pi are prime numbers and ei are positive integers. The fundamentaltheorem of arithmeti
 tells us that this fa
torization is unique. The problemis to �nd integers pi that divide N . The fa
toring algorithm proposed byShor [Sho97℄ is designed to �nd the order r of an element x modulo N , whi
his the smallest positive integer, su
h that
xr ≡ 1 (mod N). (1.4.41)If we 
an �nd su
h an element, then we verify whether
x

r
2 6≡ −1 (mod N). (1.4.42)If this is the 
ase we 
ompute
GCD

(

x
r
2 ± 1, N

)

, (1.4.43)and we might �nd a non-trivial fa
tor of N . The quantum part of thisalgorithm revolves around the Quantum Fourier Transform and QuantumPhase Estimation.Quantum Phase EstimationLet U be a unitary operator and let |u〉 be an eigenve
tor of U with eigen-value e2πiφ. So
U |u〉 = e2πiφ|u〉. (1.4.44)The purpose of phase estimation is to �nd an approximation φ̃ for the un-known value 0 ≤ φ < 1. The quantum algorithm for phase estimation uses
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18 CHAPTER 1. QUANTUM COMPUTINGtwo registers of qubits. The �rst register |0〉k 
onsists of k qubits initializedin the state |0〉. The number k depends on the desired a

ura
y of the ap-proximation φ̃ and on the desired su

ess probability of the algorithm. These
ond register is initialized as |u〉 and takes as many qubits as are needed todes
ribe |u〉. On ea
h of the qubits of the �rst register a Hadamard operatoris applied:
|0〉 7−→ 1√

2

(

|0〉 + |1〉
)

. (1.4.45)Then on ea
h qubit
1√
2

(

|0〉 + |1〉
)

j+1
(1.4.46)of the �rst register a 
ontrolled-U2j gate is applied, where the integer j rangesfrom 0 to k − 1:

1√
2

(

|0〉 + |1〉
)

|u〉 7−→ 1√
2

(

|0〉|u〉 + |1〉U2j |u〉
)

=
1√
2

(

|0〉|u〉 + |1〉e2πiφ2j |u〉
) (1.4.47)

=
1√
2

(

|0〉 + e2πiφ2j |1〉
)

|u〉.Doing this operation on ea
h of the k qubits of the �rst register, we obtainthe following state:
|0〉k 7−→ 1√

2k

(

(

|0〉 + e2πiφ2k−1 |1〉
)

· · ·
(

|0〉 + e2πiφ20 |1〉
)

)

|u〉

=
1√
2k

2k−1
∑

j=0

e2πiφj |j〉,
(1.4.48)where we use the 
onvention that if

j = a0 · 20 + · · · + an2n, (1.4.49)with ai ∈ {0, 1}, then |j〉 indi
ates the qubits |a0〉 · · · |an〉. We 
an write
φ =

( a

2k
+ δ
)

, (1.4.50)where a = ak−1 . . . a0 is in binary notation,
|δ| ≤ 1

2k+1
, (1.4.51)and a

2k is the best k-bit approximation of φ. This gives
1√
2k

2k−1
∑

j=0

e
2πij

“

a
2k +δ

”

|j〉. (1.4.52)
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1.4. QUANTUM ALGORITHMS 19We apply the inverse Fourier Transform on the �rst register, sending |j〉 to
1√
2k

2k−1
∑

l=0

e
−2πijl

2k |l〉. (1.4.53)Putting this into the equation we obtain:
|0〉k|u〉 7−→

1√
2k

2k−1
∑

j=0

e
2πij

“

a
2k +δ

”

|j〉|u〉

7−→ 1√
2k





2k−1
∑

j=0

e
2πij

“

a
2k +δ

”

1√
2k

2k−1
∑

l=0

e
−2πijl

2k |l〉



 |u〉

=
1

2k

2k−1
∑

j,l=0

e
−2πijl

2k e
2πij

“

a
2k +δ

”

|l〉|u〉

=
1

2k

2k−1
∑

j,l=0

e
2πij(a−l)

2k e2πijδ|l〉|u〉.

(1.4.54)
Now the �rst register is measured. There are two 
ases to 
onsider. If δ = 0,then we will measure exa
tly |a〉 = |φ〉. If δ 6= 0, we will measure |a〉, thebest k-bit approximation of φ with probability pa = |ca|2, where

ca =
1

2k

2k−1
∑

j=0

(e2πiδ)
j

. (1.4.55)This is a geometri
 series whi
h 
an be bounded with some trigonometri
manipulations to obtain
pa ≥ 4

π2
≥ 0.4. (1.4.56)Order �ndingWe use quantum phase estimation to �nd the order of an element x mod-ulo N . The quantum algorithm for �nding the order of x uses the unitaryoperator Ux that a
ts in the following way:

Ux|y〉 =
∣

∣xy (mod N)
〉

. (1.4.57)The eigenstates of this operator are
|us〉 =

1√
r

r
∑

k=0

e−
2πisk

r
∣

∣xk (mod N)
〉

, (1.4.58)
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20 CHAPTER 1. QUANTUM COMPUTINGwith 0 ≤ s ≤ r − 1 an integer. Indeed we have that
Ux|us〉 =

1√
r

r
∑

k=0

e−
2πisk

r
∣

∣xk+1 (mod N)
〉

= e
2πis

r |us〉.
(1.4.59)So the eigenvalues of Ux are e2πis

r , with 0 ≤ s ≤ r − 1 an integer.We apply the quantum phase estimation algorithm on Ux to obtain approxi-mations of φ = s
r . There are two problems that need to be solved to exe
utethis algorithm. We have to e�
iently implement 
ontrolled-U2j operatorsfor integers j and we need to prepare an eigenstate |us〉 with a non-trivialeigenvalue. The �rst of these problems 
an be over
ome by modular expo-nentiation.Modular Exponentiation Modular exponentiation means 
omputing theremainder when dividing a positive integer xk by a positive integer N . Thatis, we want to 
ompute x′, su
h that:

x′ ≡ xk (mod N). (1.4.60)If we 
ompute this value by �rst 
al
ulating xk and then 
omputing theremainder modulo N , then this would require O(k) multipli
ations to 
om-plete. This method 
an be slightly improved by using the following relation:
a · b (mod m) ≡

(

a (mod m)
)

·
(

b (mod m)
)

(mod m). (1.4.61)So after ea
h multipli
ation by x we 
ompute the remainder modulo N .This will redu
e the size of the numbers that need to be multiplied, savingmemory, but this still requires O(k) multipli
ations.A third method redu
es both the number of operations and the memoryrequired to perform modular exponentiation. It is a 
ombination of theprevious method and a more general prin
iple 
alled binary exponentiation.We �rst 
onvert k to a binary number:
k =

n−1
∑

i=0

ai2
i, (1.4.62)where ai is either 0 or 1. We 
an then write xk in binary form:

xk = x
Pn−1

i=0 ai2i

=

n−1
∏

i=0

(

x2i
)ai

. (1.4.63)Therefore x′ is equal to:
x′ ≡

n−1
∏

i=0

(

x2i
)ai

(mod m). (1.4.64)The running time of this algorithm is O(log k).
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1.4. QUANTUM ALGORITHMS 21Eigenstate Preparation The se
ond problem that needed to be over-
ome was the preparation of an eigenstate |us〉 without the knowledge of theorder r. It is relatively straightforward to prove that
1√
r

r−1
∑

s=0

e−
2πisk

r |us〉 =
∣

∣xk (mod N)
〉

. (1.4.65)Using this result with k = 0, we obtain
1√
r

r−1
∑

s=0

|us〉 = |1〉. (1.4.66)The quantum state we produ
e before applying the inverse QFT is
|φ〉1|φ〉2 =

2n−1
∑

j=0

|j〉U j |1〉 =

2n−1
∑

j=0

∣

∣j〉|xj (mod N)
〉

, (1.4.67)where n is the size of the �rst register of qubits and is of size O(logN). In theend we have an n-bit approximation of φ = s
r . We would like to �nd r fromthis result and we 
an do this by using the 
ontinued fra
tion algorithm.Theorem 1.7. Let s

r ∈ Q be su
h that
∣

∣

∣
φ− s

r

∣

∣

∣
≤ 1

2r2
. (1.4.68)Then s

r is a 
onvergent of the 
ontinued fra
tion of φ and 
an be 
omputedby the 
ontinued fra
tion algorithm.This algorithm produ
es numbers r′, s′ with no 
ommon fa
tor, su
h that
s′

r′
=
s

r
. (1.4.69)There are two ways for the algorithm to fail. The phase estimation algorithmmay produ
e a bad estimate of s

r in whi
h 
ase the above theorem no longerapplies. The probability of this event depends on the size of the �rst registerand 
an be made negligibly small. The se
ond problem is that s will berandomly 
hosen by the quantum algorithm, when we measure, and there isalways the possibility that it is a divisor of r. In that 
ase r′ will be a divisorof r and not r itself. If this happens, then
xr′ 6≡ 1 (mod N). (1.4.70)We repeat the algorithm to obtain r′′, s′′. If r′′ 6= r and GCD(s′′, s′) = 1,then
r = LCM(r′′, r′). (1.4.71)The probability that GCD(s′′, s′) = 1 is at least 1

4 .
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22 CHAPTER 1. QUANTUM COMPUTINGRedu
ing fa
toring to order �ndingTo redu
e fa
toring a number N to 
omputing the order of an element xmodulo N we need the following theorems:Theorem 1.8. Let N be a 
omposite positive integer and x 6= ±1 a non-trivial solution to the equation x2 ≡ 1 (mod N). Then at least one of
GCD(x− 1, N) and GCD(x+ 1,N) is a non-trivial fa
tor of N .Theorem 1.9. Suppose N =

∏n
i=1 p

αi

i is the prime fa
torization of an odd
omposite positive integer. Let 1 ≤ x ≤ N − 1 be 
hosen at random. Let rbe the order of x modulo N . Then the probability that r is even and that
x

r
2 6≡ −1 (mod N), (1.4.72)is at least 1 − 1

2n .So in order to fa
tor a number N we randomly 
hoose a positive integer
x smaller than N . We use the order �nding algorithm to �nd the order rof x modulo N . If r is even, we 
ompute y ≡ x

r
2 (mod N) and 
he
kwhether y 6≡ −1 (mod N). If this is the 
ase we 
ompute GCD(y ± 1,N)and test whether either of these is a non-trivial fa
tor of N . The perfor-man
e of this algorithm is O(log3N) if we use simple multipli
ation and

O(log2N log logN log log logN) if we use fast multipli
ation.1.4.4 Grover's Sear
h AlgorithmGrover's algorithm is a quantum algorithm to sear
h an unsorted databasewith N entries in O(
√
N) time and using O(logN) storage spa
e [Gro97℄.In 
lassi
al 
omputation sear
hing an unsorted database 
annot be donein less than linear time O(N). Grover's algorithm provides a quadrati
speedup, unlike other quantum algorithms, whi
h may provide exponentialspeedup over their 
lassi
al 
ounterparts. Consider an unsorted databasewith N entries. The algorithm requires an N -dimensional state spa
e H,whi
h 
an be supplied by logN qubits. For simpli
ity we will assume that

N = 2n and that the sear
h problem has exa
tly one solution. It is possibleto generalize Grover's algorithm to sear
h problems withM solutions, but wewill not do so here. The database entries are 1, 2, . . . ,N . We 
all this set V .We suppose that i0 is the solution to the sear
h problem. Let f : V −→ {0, 1}be a fun
tion, su
h that f(x) = 1 if and only if x is the solution to the sear
hproblem. Suppose we have a unitary operator O, su
h that
O|x〉|y〉 =

∣

∣x
〉∣

∣y ⊕ f(x)
〉

. (1.4.73)If we put the se
ond register |y〉 in the superposition
|−〉 =

1√
2

(

|0〉 − |1〉
)

, (1.4.74)
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1.4. QUANTUM ALGORITHMS 23then we have that
O|x〉|−〉 = (−1)f(x)|x〉|−〉. (1.4.75)This operator is 
alled the ora
le. Grover's algorithm uses two registers.The �rst register 
onsists of n qubits initialized in state |0〉n. The se
ondregister has one qubit and is initialized in state |1〉. We start by applyingthe Hadamard operator on the �rst register

H⊗n|0〉n =
1√
N

N
∑

i=1

|i〉 = |φ〉n, (1.4.76)and on the se
ond register
H|1〉 = |−〉. (1.4.77)We apply the ora
le operator O to the �rst register and obtain

O
(

|φ〉n|−〉
)

=
1√
N

N
∑

i=1

(−1)f(i)|i〉|−〉

= |φ1〉n|−〉.
(1.4.78)The �rst register is a superposition of states, but the sear
hed element hasnegative amplitude while all other elements have positive amplitude. Thenext steps of Grover's algorithm slowly in
rease this negative amplitude,while de
reasing the positive amplitudes, making it more likely that a meas-urement of the �rst register results in the sear
hed element. We have thefollowing equality:

|φ1〉n = |φ〉n − 2√
N
|i0〉. (1.4.79)Moreover, we have 〈φ|φ〉 = 1 and 〈φ|i0〉 = 1√

N
. We apply the operator

R = 2|φ〉〈φ| − I (1.4.80)on the �rst register and get
R|φ1〉n =

(

2|φ〉〈φ| − I
)(

|φ〉n − 2√
N
|i0〉
)

=
(

1 − 4
N

)

|φ〉n + 2√
N
|i0〉 (1.4.81)

= |φG〉n.Grover's algorithm 
onsists of repeatedly applying the operator
G = R ◦O =

(

2|φ〉〈φ| − I
)

◦O (1.4.82)on the qubits. We have the following geometri
 interpretation.
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24 CHAPTER 1. QUANTUM COMPUTING
|α〉

|β〉

|φ〉

O|φ〉

G|φ〉

OG|φ〉

G2|φ〉

Figure 1.2: A geometri
al interpretation of Grover's sear
h algorithm: su
-
essive re�e
tions around the axes |α〉 and |φ〉.Let
|α〉 =

1√
N−1

∑

i6=i0

|i〉, (1.4.83)and |β〉 = |i0〉. We 
an write
|φ〉 =

√

N−1
N |α〉 +

√

1
N |β〉. (1.4.84)Let

cos θ
2 =

√

N−1
N , (1.4.85)then

|φ〉 = cos θ
2 |α〉 + sin θ

2 |β〉. (1.4.86)After straightforward 
omputation we �nd that
G|φ〉 = cos 3θ

2 |α〉 + sin 3θ
2 |β〉, (1.4.87)and more generally

Gk|φ〉 = cos (2k+1)θ
2 |α〉 + sin (2k+1)θ

2 |β〉. (1.4.88)We have that
θ = 2arccos

(

√

N−1
N

)

, (1.4.89)so the number of times we need to apply G veri�es the equation
kθ +

θ

2
=
π

2
. (1.4.90)So

k =
⌊

π−θ
2θ

⌋

. (1.4.91)Setting
θ = 2arccos

(

√

N−1
N

)

, (1.4.92)
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1.5. PHYSICAL REALISATIONS 25and using the Taylor expansion for arccos we get
k =

⌊

π
√

N
4

⌋

. (1.4.93)If we apply the Grover operator k times and we measure the �rst register,then the probability of obtaining i0 is 
lose to 1.1.5 Physi
al Realisations1.5.1 Introdu
tionThere are several 
onditions that a physi
al system needs to verify to bea good 
andidate for a physi
al realization of a quantum 
omputer. Thequbits need a robust physi
al representation where they retain their quantumme
hani
al properties. The system itself must allow us to perform a universalfamily of unitary transformations. It should be possible to prepare the qubitsin a spe
i�ed set of initial states and it should be possible to measure the�nal output states of the qubits.The di�
ulty with physi
al realizations for quantum 
omputation is thatthese requirements are often only partially met. An important obsta
le forquantum 
omputers is de
oheren
e, whi
h are pro
esses that 
orrupt thedesired evolution of the system. Every physi
al realization has a de
oheren
etime τQ. Operations on qubits need to be performed in this time, be
auseafter a time τQ, the evolution be
omes unreliable. An operation on a qubitusually takes some prede�ned time τop, depending on the physi
al systemthat is 
hosen. The ratio τQ

τop
indi
ates the maximum number of operationsthat 
an be performed on the system before it be
omes de
oherent.Representing qubitsQuantum 
omputation is based on unitary transformations on quantumstates. Qubits are two-level quantum systems and provide a useful methodof labeling for pairs of states. For instan
e a spin 3

2 parti
le has four states.We 
ould make the following 
orresponden
e:
|m = 3

2 〉 = |00〉, |m = 1
2〉 = |01〉, (1.5.1ab)

|m = −1
2〉 = |10〉, |m = −3

2〉 = |11〉. (1.5.1
d)So we 
ould uses su
h a parti
le to represent two qubits. It is importantto make a good 
hoi
e to represent qubits. A poor representation results ingeneral in a quantum system with a short de
oheren
e time.A good measure of de
oheren
e for single qubits is the minimum lifetimeof an arbitrary superposition of the ground states. This measure is 
alled
T2, the transverse relaxation time. As the name suggests, there exists alsoanother measure for de
oheren
e. The longitudinal relaxation time T1 is therelaxation time of the higher energy state |1〉.
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26 CHAPTER 1. QUANTUM COMPUTINGPerforming unitary transformationsA natural goal for experimental quantum 
omputation is to be able to per-form arbitrary unitary transforms on a single qubit and a CNOT transformon two qubits. If the system allows us to perform these operations, then, intheory, we 
an perform any arbitrary unitary transform on more than onequbit. There are some issues that need to be made 
lear. In order to havesu
h an arbitrary unitary operation, we need to be able to address individ-ual qubits and arbitrary pairs of qubits, without disturbing the other qubits.When there is an error in a unitary transform, this error will propagate,
ausing de
oheren
e.State preparationIf we want to make a quantum 
omputation, we need to be able to initializethe qubits to represent the input of the 
omputation. In 
lassi
al 
omputing,the initialization rarely poses any serious problems, but in quantum 
omput-ing this is no longer true. Depending on the physi
al realization it may bevery di�
ult to intera
t with the qubits. There is one positive point to makethough. If we have any arbitrary one qubit transformation at our disposal,then we will only need to produ
e one initialized state with high �delity. Allother starting states 
an be obtained from this state by applying a unitarytransform on it. In many physi
al realizations, the initialization of 
hoi
e isthe ground state |0 . . . 0〉. There are two measures that indi
ate the qualityof initial state preparation. The �rst one is the minimum �delity of the quan-tum gate needed to transform the ground state to an input state |x0 . . . xn〉.The se
ond one is the entropy of the initial state. In general, input statesthat have non-zero entropy redu
e the a

essibility of the answer from theoutput state.MeasurementWe 
an 
onsider the measurement of the qubits as a pro
ess where the qubitsare 
oupled to a 
lassi
al system, whi
h permits to read the state of thequbits. An important 
hara
teristi
 of the pro
ess of measurement is the
ollapse of the wave fun
tion in 
ase of proje
tive measurement. Quantumalgorithms need to be designed in su
h a way that when the output is mea-sured, a useful result is found with high probability. Measuring qubits is nota simple pro
ess. Proje
tive measurements 
an be di�
ult to implement asthey need a large 
oupling between the quantum system and the 
lassi
alsystem. Furthermore, we only want to make measurements when we 
hooseto do so. Unwanted measurements 
an be 
onsidered as a de
oheren
e pro-
ess and are therefore undesirable. So the 
oupling between the quantumand 
lassi
al systems should not be too large either. The signal to noise ratiois usually a good indi
ator of the measurement 
apability of a system.
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1.5. PHYSICAL REALISATIONS 271.5.2 Opti
al photon quantum 
omputerPhysi
al des
riptionPhotons are parti
les without 
harge that do not intera
t strongly with ea
hother. It is possible to guide photons along long distan
es in opti
al �berswith low loss. They 
an be manipulated in several ways. It is possible todelay photons with phase shifters and to 
ombine them with beamsplitters.A photon 
an be represented as a qubit in the following way. The energy inan ele
tromagneti
 
avity is quantized in units of ~ω. Ea
h su
h quantumis 
alled a photon. Consider two 
avities whose total energy equals ~ω.We 
an then des
ribe the states of the qubit as being the 
avity in whi
hthe photon is lo
ated. That is state |0〉 
orresponds to a photon in the �rst
avity and |1〉 to a photon in the se
ond 
avity. Single photons 
an be de-te
ted for a wide range of wavelengths.There are several devi
es to manipulate qubits. Mirrors with high re�e
tiv-ity re�e
t photons and 
hange their propagation dire
tion in spa
e. Phaseshifters, whi
h are just transparent media with a di�erent refra
tion indexthan the va
uum. Propagation of photons through su
h a medium will resultin a phase shift. Beamsplitters, whi
h are partially silvered pie
es of glass,re�e
t a fra
tion R of the in
ident photons and transmit a fra
tion 1−R ofthe in
ident photons.
1 −R

R

Figure 1.3: A beamsplitter that re�e
ts a fra
tion R of in
ident photons andtransmits a fra
tion 1 −R.A material that has a refra
tion index that is proportional to the total in-tensity I of light going through it is 
alled a non-linear Kerr medium. Thismedium has a non-linear e�e
t on the qubits and is used for intera
tionbetween photons.
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28 CHAPTER 1. QUANTUM COMPUTINGQuantum 
omputingThe three key elements for quantum 
omputing are the phase shifter, thebeamsplitter and a non-linear Kerr medium.The phase shifter P a
ts on a qubit
|q〉 = α|0〉 + β|1〉 (1.5.2)in the following way:

P |q〉 = αe−
i∆
2 |0〉 + βe

i∆
2 |1〉, (1.5.3)where

∆ =
(n− n0)L

c0
, (1.5.4)with n the refra
tion index of light through the medium of the phase shifter,

n0 that through va
uum, L the distan
e the light travels through the mediumand c0 the speed of light in the medium. So the phase shifter a
ts as arotation around the z-axis on a single qubit.The beamsplitter B a
ts on a qubit |q〉 in the following way:
B|q〉 = (α cos θ − β sin θ)|0〉 + (α sin θ + β cos θ)|1〉, (1.5.5)where the angle θ of the beamsplitter veri�es the equation

R = cos θ, (1.5.6)with R the fra
tion of in
ident light on the beamsplitter that is re�e
ted.The beamsplitter a
ts as a rotation around the y-axis. The beamsplitter andthe phase shifter together allow us to make arbitrary single qubit operations.The non-linear Kerr medium K is used for operations on two qubits:
K =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiχL









, (1.5.7)where L is the distan
e the light travels through the medium and χ is a
hara
teristi
 
oe�
ient of the Kerr medium. If the length L is set, su
hthat
χL = π, (1.5.8)then the matrix for K be
omes:

K =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1









. (1.5.9)
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1.5. PHYSICAL REALISATIONS 29We have the following relation:
CNOT = (I ⊗H)K(I ⊗H)

=
1

2









1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

















1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

















1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1









=









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









, (1.5.10)where H is the Hadamard operator. The gate for χL = π is also 
alled theCZ or ControlZ gate. We 
an 
ombine the three basi
 operations on thequbits to make a CNOT operator. This, 
ombined with arbitrary operationson single qubits is in theory su�
ient for any quantum operator.Drawba
ksWhile single photons are easily generated and measured, it is di�
ult tomake photons intera
t. The best non-linear Kerr media available are veryweak and 
annot provide a 
ross phase modulation of π between single pho-ton states. Moreover, there is usually absorption asso
iated with the non-linearity of a Kerr medium and it is estimated that nearly 50 photons needto be absorbed in order to experien
e a π 
ross phase modulation on a singlephoton. Therefore, the de
oheren
e of the system will be very large.1.5.3 Trapped ionsPhysi
al des
riptionAn ion trap quantum 
omputer 
onsists of an ele
tromagneti
 trap withlasers and photodete
tors, and ions. The ele
tromagneti
 trap is 
onstru
tedfrom four 
ylindri
al ele
trodes, with the end segments biased at a di�erentvoltage U0 than the middle. Therefore, the ions are axially 
on�ned by astati
 potential
ΦSt =

κU0

2

(

z2 − x2 − y2
) (1.5.11)along the z-axis, where κ is a geometri
al fa
tor. A 
harge 
annot be 
on�nedin three dimensions by stati
 potentials and therefore two of the ele
trodesare grounded while the other two ele
trodes are driven by a fast os
illatingvoltage whi
h 
reates a radiofrequen
y potential

ΦRF =
(U0 cosωt+ Ur)(1 − x2−y2

R2 )

2
, (1.5.12)
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30 CHAPTER 1. QUANTUM COMPUTINGwhere R is a geometri
al fa
tor. The 
ombination of these two potentials
reates a harmoni
 potential. The motion of the ele
tromagneti
ally 
on�nedion be
omes quantized when it is su�
iently well isolated. The purpose ofthe ele
tromagneti
 trap is to allow ions to be 
ooled to the extent thattheir vibrational state is 
lose to having zero phonons. This will be thequbit state |0〉. The internal atomi
 states of a trapped ion form a qubitrepresentation. These states are a 
ombination of ele
tron spin S and nu
learspin I, giving a total spin F = S + I. Suppose that an ion has an ele
tronspin 1
2 and a nu
lear spin 1

2 . Ea
h of these spins 
ould be either 1
2 or −1

2 .This would give the obvious 
omputational basis B:
B =

{

|00〉, |01〉, |10〉, |11〉
}

, (1.5.13)where |ij〉 might 
orrespond to a trapped ion with ele
tron spin (−1)i · 1
2and nu
lear spin (−1)j · 1

2 . In physi
s, a basis 
onsisting of eigenstates of thetotal momentum operator is preferred. This operator is de�ned by the Paulioperators:
σX =

(

0 1
1 0

)

, σY =

(

0 −i
i 0

)

, σZ =

(

1 0
0 −1

)

. (1.5.14ab
)and the dire
tional momentum operators:
Jx =

σX
1 + σX

2

2
, Jy =

σY
1 + σY

2

2
, (1.5.15ab)

Jz =
σZ

1 + σZ
2

2
, J2 = J2

x + J2
y + J2

z , (1.5.15
d)where the subs
ripts indi
ate whether the operator a
ts on the ele
tron oron the nu
lear spin. The operator J2 has the following eigenstates:
|0, 0〉J =

|01〉 − |10〉√
2

, |1,−1〉J = |00〉, (1.5.16ab)
|1, 0〉J =

|01〉 + |10〉√
2

, |1, 1〉J = |11〉. (1.5.16
d)These eigenstates are des
ribed as |j,mj〉J , whi
h are eigenstates of the op-erator J2 with eigenvalue j(j+1) and of the operator Jz with eigenvalue mj .Quantum 
omputingThe key element for quantum 
omputing with spins is an ele
tromagneti
�eld. If we apply an ele
tromagneti
 �eld of frequen
y ω0 with the rightangle and duration we 
an 
onstru
t arbitrary single qubit operations.
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1.5. PHYSICAL REALISATIONS 31Drawba
ksWhile the s
aling of ion traps to a large number of qubits is 
on
eptionallyviable, there are two limitations to ion trap quantum 
omputers. Phononlifetimes are short, therefore the de
oheren
e of a trapped ion is large. More-over, it is not easy to prepare these ions in their motional ground states.1.5.4 Other physi
al realizationsSeveral other physi
al implementation s
hemes for quantum 
omputers arepossible. We will des
ribe a few of those. Quantum 
omputing by nu
learmagneti
 resonan
e will be treated in mu
h greater detail in the next 
hapter.Quantum dotsA fundamental quantum unit that 
ould serve as qubit representation is ele
-tri
 
harge. It is possible with modern ele
troni
s to manipulate 
harges atthe level of a single ele
tron. Quantum dots are three-dimensional boxes withele
trostati
 potentials that 
on�ne ele
tri
 
harge quanta. Unlike photons,net 
harge 
annot be destroyed and therefore it is ne
essary to use two boxeswith only one 
harge quantum to represent a qubit. Single qubit operations
an be performed by ele
trostati
 gates and single mode waveguide 
ouplersfor moving ele
trons and tunnel jun
tions for quantum dots. The long-rangeCoulomb intera
tion of the ele
tri
 
harge 
an be used to perform operationson two qubits. It is simple to measure single ele
tron 
harges using mod-ern �eld e�e
t transistors. De
oheren
e o

urs through un
ontrolled distant
harge motion.Super
ondu
torsAt low temperature in 
ertain metals two ele
trons 
an bind together througha phonon intera
tion to form a Cooper pair, with 
harge 2e. These pairs 
anbe 
on�ned within an ele
trostati
 box. A qubit is represented by one Cooperpair in two boxes. Single qubit gates are realized by ele
trostati
 gatesto modulate the box potential and Josephson jun
tions between 
oupledboxes. Josephson jun
tions are also used to 
ouple di�erent qubits, wherean external magneti
 �eld 
oupled to the super
ondu
ting interferometri
loops is used. Qubits are measured by measuring the ele
tri
 
harge in abox. Cooper pairs are relatively robust and therefore the main de
oheren
efa
tor is spontaneous emission of ele
tromagneti
 photons.
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All things are di�
ult beforethey are easy. Thomas FullerChapter 2Nu
lear Magneti
 Resonan
eand Quantum Computing2.1 Nu
lear Magneti
 Resonan
e2.1.1 Introdu
tionA mu
h longer introdu
tion to Nu
lear Magneti
 Resonan
e 
an be foundin the books of Shaw and Sli
hter [Sha76, Sli80℄. A magneti
 system thatposseses both magneti
 moments and angular momentum 
an exhibit a phe-nomenon 
alled magneti
 resonan
e. If the magneti
 system is a nu
leus wespeak of nu
lear magneti
 resonan
e. The fa
t that nu
lei 
an have magneti
moments was �rst suggested in 1924 by Pauli, while studying the hyper�nestru
ture of atomi
 spe
tra [Pau24℄.The angular momentum of nu
lei is quantized and nu
lei have a quantumnumber I whi
h 
an be any half integer value. A nu
leus with quantumnumber I has an angular momentum of I~.The quantization of atomi
 magneti
 moments was already demonstrated in
1921 by Stern and Gerla
h [Ste21℄. Their te
hniques to distinguish variousquantum states of atoms were re�ned to measure transition energies of nu
lei.In 1945 two groups simultaneously dis
overed resonant absorption in bulkmatter. Blo
h et al. dete
ted resonan
e absorption in water protons [BHP46℄and Pur
ell et al. dete
ted resonan
e absorption in parra�n wax [PTP46℄.The nu
leus possesses a total magneti
 moment ~µ and a total angular mo-mentum ~J. We 
an take these two ve
tors parallel and have the followingequation:

~µ = γ~J, (2.1.1)where γ is a s
alar 
onstant. This 
onstant is 
alled the gyromagneti
 ratio.A 
lassi
al �rst order approximation will give an estimate for γ. Consider aparti
le of mass m and 
harge e moving in a 
ir
ular path of radius r with33
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34 CHAPTER 2. NMR AND QUANTUM COMPUTINGperiod T . The angular momentum of this parti
le is:
~J = mvr

=
2πr2m

T
.

(2.1.2)The magneti
 moment of the parti
le 
an be 
omputed if we treat the rotat-ing parti
le as a 
urrent loop of area A with 
urrent i:
~µ = iA

=
eπr2

cT
.

(2.1.3)As we have the equation
~µ = γ~J, (2.1.4)it follows that the gyromagneti
 ratio veri�es the following equation:
γ =

e

2mc
. (2.1.5)We now 
onsider the 
onsequen
es of pla
ing a nu
leus with a magneti
moment in a magneti
 �eld ~B0. We �rst 
onsider this from a 
lassi
al pointof view. The nu
leus is a magneti
 dipole and will a
quire an energy:

E = −~µ · ~B0. (2.1.6)As the nu
leus has angular momentum, it will not only align itself withthe magneti
 �eld ~B0, but it will also pre
ess with a frequen
y ω0 at anangle θ about this �eld. This e�e
t is 
aused by the intera
tion of the torquegenerated by rotational motion of the nu
leus and the magneti
 �eld of thenu
lear magneti
 moment. The torque between the magneti
 moment of thenu
leus and the �eld is
τ = ~µ × ~B0. (2.1.7)The torque is equal to the rate of 
hange of angular momentum:
τ =

d~J

dt

= ω0
~J.

(2.1.8)The frequen
y of this pre
ession is therefore
ω0 = γ|B0|, (2.1.9)whi
h is 
alled the Larmor frequen
y. It is the basi
 phenomenon of NMR.The magneti
 �eld is proportional to the pre
ession frequen
y and the pro-portionality 
onstant is the gyromagneti
 ratio.
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2.1. NUCLEAR MAGNETIC RESONANCE 35We now 
onsider the basi
 properties of NMR from a quantum me
hani
alpoint of view. First we de�ne the dimensionless angular momentum opera-tor ~I by:
~J = ~~I. (2.1.10)The operator I

2 has eigenvalues I, whi
h are either integer of half-integer.All 
omponents of ~I 
ommute with I
2. The operator Iz has eigenvalues m,where m 
an be any of the 2I + 1 values −I, . . . , I.The appli
ation of a magneti
 �eld ~B produ
es an intera
tion energy of thenu
leus of amount −~µ ·

~B. If we take the magneti
 �eld to be B0 along the
z-dire
tion we have the following Hamiltonian:

H = −γ~B0Iz. (2.1.11)The eigenvalues of this Hamiltonian are multiples γ~B0 of the eigenvaluesof Iz and therefore the allowed energies are:
E = −γ~B0m, with m = −I, . . . , I. (2.1.12)We want to dete
t su
h a set of energy levels by spe
tral absorption. There-fore an intera
tion is needed that 
auses transitions between energy levels.Su
h an intera
tion must be time dependent and of angular frequen
y ω,su
h that:

~ω = ∆E, (2.1.13)where ∆E is the di�eren
e of energy between two levels of the spe
trum.
m = 1

2 , E = 1
2γ~B0

m = −1
2 , E = −1

2γ~B0

∆E = γ~B0

Figure 2.1: Energy levels for a spin 1

2
parti
leThe 
oupling used to produ
e magneti
 resonan
e is an alternating mag-neti
 �eld of amplitude ~B1 perpendi
ular to the stati
 magneti
 �eld. TheHamiltonian of this alternating �eld is:

H = −γ~ ~B1 ·~Ix cos(ωt). (2.1.14)
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36 CHAPTER 2. NMR AND QUANTUM COMPUTINGThe allowed transitions are between adja
ent energy levels and therefore:
~ω = ∆E

= γ~B0.

⇔
ω = γB0.

(2.1.15)We see that Plan
k's 
onstant has disappeared from the resonan
e equation.If we 
an estimate γ, we 
an 
ompute the frequen
y that produ
es a magneti
resonan
e.We now 
onsider a ma
ros
opi
 sample of nu
lei with spin 1
2 . Let N+ be thenumber of nu
lei in the state m = 1

2 and N− the number of nu
lei in thestate m = −1
2 . Obviously, the total number of nu
lei N veri�es:

N = N+ +N−. (2.1.16)Moreover, the equilibrium populations N0
+ and N0

− verify the equation:
N0

−
N0

+

= e
−γ~B0

kBT , (2.1.17)where kB is the Boltzmann 
onstant.If we apply an alternating magneti
 �eld, the total number of nu
lei willremain 
onstant, but N+ and N− will vary be
ause of the energy transitionsindu
ed by the �eld. The probability per se
ond of indu
ing a transitionfrom m = 1
2 to m = −1

2 is equal to P↓ and the probability per se
ond ofindu
ing a transition in the other dire
tion is P↑. This leads to the followingdi�erential equation:
dN+

dt
= P↑N− − P↓N+. (2.1.18)We 
an rewrite this equation as the di�eren
e between the two populations:
n = N+ −N−, (2.1.19)and obtain the following di�erential equation:
dn

dt
=
n0 − n

T1
, (2.1.20)where we have:

n0 = N

(

P↑ − P↓
P↑ + P↓

)

, (2.1.21a)
1

T1
= P↑ + P↓. (2.1.21b)

te
l-0

05
34

86
4,

 v
er

si
on

 1
 - 

12
 N

ov
 2

01
0



2.2. QUANTUM COMPUTING WITH NMR 37The solution of this di�erential equation is:
n(t) = n0 + Ce

− t
T1 , (2.1.22)with C a 
onstant that depends on n, n0 the thermal equilibrium popula-tion di�eren
e and T1 a 
hara
teristi
 time asso
iated with the approa
h tothermal equilibrium. This 
hara
teristi
 time T1 is 
alled the spin-latti
erelaxation time.2.2 Quantum 
omputing with NMR2.2.1 Ensemble systemNMR di�ers from other physi
al realizations of a quantum 
omputer in thesense that instead of a single photon or other physi
al entity it uses anensemble of systems as single qubit representation. As a dire
t 
onsequen
e,the measurement is also an ensemble average. Furthermore, it is te
hni
allyinfeasible to prepare the ensemble in a spe
ial state su
h as the ground state,therefore the initial state will be the thermal equilibrium state:

|ρ〉 =
e−βH

Z , (2.2.1)where H is the Hamiltonian of the system, β = 1
kBT and Z = Trace(eβH )is the partition fun
tion normalisation to ensure that the tra
e of ρ is equalto 1. For modest �elds at room temperature we 
an use the approximation:

|ρ〉 ≈ 2−n (1 − βH ) , (2.2.2)where the system has n spins. As spin-spin 
ouplings are small 
ompared tothe pre
ession frequen
ies, we 
an interpret the thermal state density matrixas a mixture of the pure states |00 . . . 0〉, . . . , |11 . . . 1〉.The prin
ipal output of an experiment is the free indu
tion de
ay signal:
V (t) = V0 Tr

(

e−iH tρeiH t(iXk + Yk)
)

, (2.2.3)where Xk and Yk operate only on the spin k, and V0 is a 
onstant that de-pends on the 
oil, the quality fa
tor and the sample volume. This indu
tionsignal has an exponential de
ay, whi
h is 
aused by several fa
tors. Theinhomogeneity of the stati
 magneti
 �eld, spin-spin 
oupling resulting inphase randomisation and thermalisation of the spins to their equilibrium areall 
ontributing to the exponential de
ay of the signal.For su

essful quantum 
omputation we need to perform unitary transfor-mations to a properly initialized qubit and to measure the output. In theensemble approa
h of NMR quantum 
omputing several problems need to be
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38 CHAPTER 2. NMR AND QUANTUM COMPUTINGaddressed. First, how 
an we use the thermal state (2.2.1) to initialize oursystem ? How 
an we perform arbitrary unitary transforms on this state ?Most important of all, how 
an an ensemble average measurement produ
ethe same results as proje
tive quantum measurements ?2.2.2 Labeling the qubitsThe initial state of our system is the thermal state. In order to perform quan-tum 
omputation, we want to have an initial state of qubits |0 · · · 0〉. Thereare several te
hniques to obtain this initial state from the thermal state.These te
hniques are 
alled labeling te
hniques. We 
onsider the temporallabeling te
hnique, whi
h is based on the fa
t that quantum operations arelinear and that observables measured in NMR are tra
eless. Suppose thatour initial thermal state for a two spin system is the density matrix:
ρ0 =









a1 0 0 0
0 a2 0 0
0 0 a3 0
0 0 0 a4









, (2.2.4)where the ai are positive real numbers that sum to 1. Supposing furthermorethat we 
an over
ome our se
ond problem of performing unitary transforma-tions, we use SWAP-gates to obtain states with permuted populations:
ρ1 =









a1 0 0 0
0 a3 0 0
0 0 a4 0
0 0 0 a2









, ρ2 =









a1 0 0 0
0 a4 0 0
0 0 a2 0
0 0 0 a3









. (2.2.5ab)A unitary quantum 
omputation U is applied to ea
h of these three thermalstates in three separate experiments at di�erent times, resulting in threedi�erent out
omes Ck:
Ck = UρkU

−1. (2.2.6)We take the sum of these three out
omes to obtain the following result:
∑

k

Ck =
∑

k

UρkU
−1

= U

(

∑

k

ρk

)

U−1

= (4a1 − 1)U









1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









U−1 + (1 − a1)









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









.(2.2.7)

te
l-0

05
34

86
4,

 v
er

si
on

 1
 - 

12
 N

ov
 2

01
0



2.2. QUANTUM COMPUTING WITH NMR 39In NMR the only observables that are measured, are tra
eless observables.Let M be su
h an observable. We have:
Tr

(

∑

k

CkM

)

=
∑

k

Tr (CkM)

= (4a1 − 1)Tr









U









1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









U−1M









= (4a1 − 1)Tr
(

U |00〉〈00|U−1
)

.

(2.2.8)
Therefore the sum of the three out
omes is proportional to the out
omeof an initial state |00〉. This te
hnique 
an always be a

omplished if thede
oheren
e time is su�
iently long. It is also possible to perform thesedi�erent experiments at the same time but at a di�erent spa
e, using forinstan
e magneti
 �eld gradients. In that 
ase we 
all the te
hnique spatiallabeling.2.2.3 Unitary transformationsIn order to perform arbitrary single qubit operations it is su�
ient to applya large RF at the 
orre
t frequen
y. We 
onsider the following three rotationoperators:

Rx(θ) = e−
iσXθ

2

=

(

cos θ
2 −i sin θ

2

−i sin θ
2 cos θ

2

)

,
(2.2.9a)

Ry(θ) = e−
iσY θ

2

=

(

cos θ
2 − sin θ

2

sin θ
2 cos θ

2

)

,
(2.2.9b)

Rz(θ) = e−
iσZθ

2

=





e−
iθ
2 0

0 e
iθ
2



 .
(2.2.9
)In the Blo
h sphere notation of qubits, these operators de�ne rotations of anangle θ around the three 
oordinate axes. A rotation around an arbitraryaxe û = (ux, uy, uz) is given by:

Rû(θ) = e−
iθ~σ·û

2

= cos θ
2I − i sin θ

2

(

σXux + σY uy + σZuz

)

.
(2.2.10)
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40 CHAPTER 2. NMR AND QUANTUM COMPUTINGLet R1 = Rx1
(π

2 ) be a rotation of π
2 around the x-axis of the �rst qubit andde�ne R2 likewise for the se
ond qubit. We have the identity:

R2
i e

−iaσZ
i tR2

i = eiaσZ
i t. (2.2.11)This property is 
alled the refo
using property and it is used as a te
hniqueto remove time evolution.The ControlNot gate is built from a ControlZ gate, just as in other physi
alrealizations. This CZ gate is built by using the s
alar J-
oupling betweenqubits, whi
h are indire
t intera
tions, mediated by ele
trons shared througha 
hemi
al bond. We have the following identity:

√
ie

iπσZ
1 σZ

2

4 e−
iπσZ

1

4 e−
iπσZ

2

4 = CZ. (2.2.12)So we 
an build the ControlZ gate and from equation (1.5.10) we 
an 
on-stru
t a ControlNot gate. We therefore have the basi
 operators to do quan-tum 
omputation.2.2.4 Ensemble measurementsEnsemble measurements are fundamentally di�erent from measurements ofa single series of qubits. Quantum algorithms are designed, su
h that nomatter what state the qubit 
ollapses to, the resulting measured amplitudewill tell us something meaningful. In Shor's fa
toring algorithm for instan
e,we obtain a random fra
tion p
q , with p a random integer and q the out
omethat will be extra
ted in the 
lassi
al postpro
essing phase. In an ensemblemeasurement we will not obtain this random fra
tion p

q , but rather an averageover a large number of these kind of fra
tions. The problem is that thisaverage does not 
ontain any meaningful information that 
an be extra
ted.This di�
ulty 
an be over
ome under 
ertain 
onditions. If we are ableto build quantum gates that 
an do the 
lassi
al postpro
essing part, thenit is possible to have meaningful ensemble measurements. The idea is towait for the measurement until after the postpro
essing part is done in aquantum 
omputational way and only then measure the out
ome. In theexample above, if we apply the 
ontinued fra
tion algorithm as a quantumalgorithm, then our out
ome would always be q. The average would thereforealso always be q. This te
hnique does beg the following question: if we 
ando the postpro
essing on a quantum 
omputer, is it not a better idea toalways do the postpro
essing in this fashion ? There are several reasonsnot to do so. While Fourier Transformations have exponential speedup on aquantum 
omputer, other algorithms do not have this advantage. Moreover,the de
oheren
e on quantum 
omputers is mu
h more important than thede
oheren
e on 
lassi
al 
omputers, where there is hardly de
oheren
e at all.If we are obliged to do the postpro
essing also quantum 
omputationally,that e�e
tively redu
es the number of gate operations we 
an use for the
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2.3. DRAWBACKS 41main part of a quantum algorithm before de
oheren
e sets in. It is thereforepreferable to have a 
lassi
al postpro
essing part of a quantum algorithm.Nevertheless, ensemble measurement 
an be given a useful meaning, but wehave to adapt the quantum algorithms in order for the out
ome to be useful.2.3 Drawba
ksThe physi
al realization of an NMR quantum 
omputer by labeling atoms ofmole
ules as qubits has met with impressive su

esses. The fa
toring of thenumber 15 by using Shor's fa
toring algorithm on 7 qubits 
an be 
onsideredthe high mark of NMR as a quantum 
omputer [VSB+01℄. No other physi
alrealization has so far been able to repeat this result. The NMR approa
hhas nevertheless met with severe 
riti
ism.From the point of view of long term development, physi
al realizations ofquantum 
omputers need to have several ni
e properties. One of them iss
alability. If we 
an realize an N -qubit quantum 
omputer in some sort ofphysi
al realization, it should be reasonable to hope that an (N + 1)-qubitquantum 
omputer 
an be realized by just slightly widening the physi
al
onstraints and some small additional e�ort. In 
lassi
al 
omputers the ana-log is 
lear: if we are able to pla
e N 
hips on a 
ir
uit board, we expe
tthat pla
ing (N + 1) 
hips would require some ar
hite
tural e�ort, some de-signing 
onstraints, but no fundamental problem whatsoever. The problemwith the 
urrent approa
h of NMR quantum 
omputing is that an N -qubitquantum 
omputer would be some kind of 
ompli
ated mole
ule, with ea
hqubit some properly labeled atom in this mole
ule. If we would like to buildan (N +1)-qubit quantum 
omputer we 
annot simply add another qubit tothe system. We would have to design a new mole
ule altogether. Therefore,the NMR approa
h to quantum 
omputing la
ks s
alability.Another di�
ulty with using atoms of spe
i�
ally designed mole
ules forquantum 
omputing is the inherent ar
hite
ture of the qubits. As we use theatoms of a mole
ule for qubits, some qubits will have quite some distan
ebetween them. The s
alar 
oupling between these qubits, whi
h is needed tomake a CNOT operator, will be rather weak. Therefore it will be di�
ult tohave dire
t operations between these qubits. It is possible to 
ir
umvent thisproblem by using a 
ellular automata style ar
hite
ture, where an operationon distant qubits will be exe
uted by a series of lo
al operations moving fromone qubit to the other qubit. While this approa
h may be possible, it will
ertainly 
ome with an additional 
ost of extra operations whi
h slow downthe algorithms to be exe
uted.A third di�
ulty is the weak signal be
ause of the labeling te
hniques used.By repeating experiments in a permutation, su
h that all other ground statesex
ept the initialization ground state 
an
el out, we may a
hieve initializa-tion, but the probability of the initialization state will not be in
reased. If we

te
l-0

05
34

86
4,

 v
er

si
on

 1
 - 

12
 N

ov
 2

01
0



42 CHAPTER 2. NMR AND QUANTUM COMPUTINGwant to initialize our system in the ground state |0 · · · 0〉, then the probabilityof this state is:
p0···0 =

1

Z 〈0 · · · 0|e−βH |0 · · · 0〉. (2.3.1)This probability is proportional to n2−n, if we have a mole
ule with n qubits.Therefore the signal will de
rease exponentially if the number of qubits in-
reases. This problem might also be over
ome by improving the labelingte
hniques and by using opti
al pumping methods, but there will always bea de
rease in signal if the number of qubits in
reases.The last 
riti
ism to the NMR approa
h for quantum 
omputing is the mostsevere. It starts with the remark that for quantum 
omputing to be e�
ientwe need to be able to have entangled states [LP01℄. That is to say states ofthe form
|ab〉, (2.3.2)that 
annot be separated into two separate states

|a〉 ⊗ |b〉. (2.3.3)The mixed thermal state that we use in NMR quantum 
omputing does notexhibit an entangled nature [BCJ+99℄ and it 
an therefore be argued that noreal quantum 
omputing takes pla
e in an NMR quantum 
omputer. Thisobje
tion does not put into question the NMR approa
h in itself, but ratherthe use of thermal initialization states. As NMR quantum 
omputing seemsto need these thermal states, this seems like an insurmountable problem.So what are the problems that NMR quantum 
omputing needs to over-
ome ? S
alability, ar
hite
ture, signal loss in 
ase of lots of qubits and thela
k of entanglement in the so 
alled thermal state.In the next 
hapter we will try a di�erent NMR approa
h where all theseproblems 
an be addressed. Our approa
h has of 
ourse problems of its ownand whether any su

essful physi
al implementation of our s
heme will berealized remains to be seen.te
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Curiosity killed the 
at, but fora while I was a suspe
t.Steven WrightChapter 3Reviving the Nu
lear Magneti
Resonan
e Approa
h3.1 Introdu
tionAs we noted at the end of the previous 
hapter, the NMR approa
h to quan-tum 
omputing has lately met with rather severe 
riti
ism and has slowlybeen fading from the �eld of physi
al realizations. In 2001, bulk liquid NMRwas the hotbed of quantum 
omputation and physi
al realizations of quan-tum 
omputers, but in the last years no major publi
ation has appeared that
ontinues to propose this approa
h for a physi
al realization. In order forbulk liquid NMR to be made viable again, at least three of the followingproblems need to be solved:1. S
alability: A major obje
tion to the NMR approa
h is the fa
tthat it has no s
alability whatsoever. Even augmenting the number ofqubits by one would demand an entirely di�erent mole
ule on whi
hthe qubits are labeled.2. De
oheren
e: The thermal approa
h as initialization s
heme forquantum 
omputation has as a dire
t 
onsequen
e that the signal de-
reases exponentially if the number of qubits in
reases.3. Entanglement: The thermal approa
h does not exhibit entangledquantum states. These states are essential in the sense that withoutthem, quantum 
omputing 
annot be faster than 
lassi
al 
omputing.4. Ar
hite
ture: The ideal ar
hite
ture for a quantum 
omputer is onewhere every qubit 
an 
ommuni
ate dire
tly with every other qubit.In mole
ules this ar
hite
ture is naturally una
hievable and we have touse indire
t intera
tions between distant qubits.It is 
lear that the mixed thermal state is a major problem. If we 
ould workwith pure states, than we would not need to have a labeling s
heme whi
h43
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44 CHAPTER 3. REVIVING THE NMR APPROACHde
reases the signal exponentially and we would not need to worry about nothaving entangled quantum states. We therefore re
onsider bulk liquid NMR,but instead of using atoms on a spe
i�
ally designed mole
ule as qubits, wewill use magneti
 �eld gradients to 
reate di�erent resonan
e frequen
ies forspatially separated parts of the liquid. We then pro
eed to assign to spe
i�
resonan
e frequen
ies the value of a logi
al qubit. We build a frameworkaround this approa
h in whi
h we show that we 
an properly initialize thissystem. This in itself lifts three of the major obje
tions: we no longer needto use a mixed thermal state and using magneti
 �eld gradients allows us tohave an easily s
alable quantum system. The ar
hite
ture obje
tion remainsfor the moment unaddressed as this problem only be
omes an issue if wehave a working system of more than some qubits. It is however 
on
eptuallynot an insurmountable problem. For starters, via an indire
t approa
h withintera
tion via nearest neighbour qubits, there will be some loss of e�
ien
y,but it 
an be shown [Wat95, Llo93℄ that this still represents a universalquantum 
omputer. Another reason why the ar
hite
ture need not be anissue is the fa
t that we 
an potentially use magneti
 �eld gradients in threedire
tions in order to obtain more neighbours for ea
h qubit.The main problem with our approa
h is that while mole
ules have an obviousintera
tion for qubits by using the s
alar intera
tion via the shared ele
tron
loud, we do not have su
h an obvious intera
tion. We show that we 
annotdire
tly use the dipole moment between qubits as this is averaged away tozero, but we may use the long-range dipolar e�e
t, whi
h is not averaged tozero be
ause of the geometri
al 
onstraints of the sample. This is still workin progress and it is as of yet un
lear whether this approa
h will a
tuallyresult in a useful intera
tion between qubits.In the rest of this 
hapter we �rst des
ribe the framework in whi
h our
omputations are exe
uted. Via this framework we obtain the methods tomake single qubit gates as well as how to initialize these qubits. We 
on
ludewith a roadmap whi
h if followed su

essfully should lead to a working NMRquantum 
omputer. Those steps in this roadmap whi
h have already beenexe
uted will be given together with the experimental data to support them.3.2 Framework for Quantum Computing by Nu-
lear Magneti
 Resonan
e3.2.1 One spin 1
2Stati
 �eldFor one nu
lear spin 1
2 in a ~B0 magneti
 �eld, the Hamiltonian is:

H1 = −~µ · ~B0

= −γ~I1 · ~B0,
(3.2.1)
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3.2. FRAMEWORK FOR QUANTUM COMPUTING 45where γ is the gyromagneti
 ratio of the nu
lear spin and ~I1 is the spin thatveri�es the following equation:
~I1 =

1

2
~~σ, (3.2.2)with ~σ a ve
tor de�ned by the following Pauli matri
es:

σX =

(

0 1
1 0

)

, σY =

(

0 −i
i 0

)

, σZ =

(

1 0
0 −1

)

. (3.2.3ab
)The matrix notation of equation (3.2.1) is given by:
H1 = −1

2γ~

(

BZ BX − iBY

BX + iBY −BZ

)

. (3.2.4)By 
onvention, the ve
tor ~B0 = (BX , BY , BZ) is pla
ed in the Oz-dire
tion,that is ~B0 = (0, 0, B0) and the xOy-plane is 
alled the transverse plane.Therefore the matrix form of the Hamiltonian redu
es to:
H1 = −1

2γ~

(

B0 0
0 −B0

)

. (3.2.5)The two eigenvalues of the Hamiltonian H1, whi
h give the energy of thequantum states, are:
E+ = −1

2
γ~B0, E− =

1

2
γ~B0, (3.2.6ab)whi
h have the following two 
orresponding eigenve
tors:

|+〉 =

(

1
0

)

, |−〉 =

(

0
1

)

. (3.2.7ab)We will use these eigenve
tors as our 
anoni
al basis for 
omputation. If wehave more than one spin our 
anoni
al basis will not ne
essarily be the basisof eigenve
tors. Sometimes we will use the qubit notation |0〉, |1〉 in steadof |+〉, |−〉.The probability for a spin 1
2 to be in either of these states is equal to 1

2 at
T = 0. At higher temperatures the probability to o

upy a state dependson the temperature T. We 
an des
ribe the wave fun
tion as:

∣

∣ψ(0)
〉

= a|+〉 + b|−〉, (3.2.8a)
|a|2 + |b|2 = 1. (3.2.8b)The wave fun
tion for a spin 1

2 parti
le 
an be written as:
∣

∣ψ(0)
〉

=
1√
2

(

e−
iφ
2 |+〉 + e

iφ
2 |−〉

)

=
1√
2





e−
iφ
2

e
iφ
2



 .

(3.2.9)
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46 CHAPTER 3. REVIVING THE NMR APPROACHThe time evolution far from the speed of light ~c is given by the S
hrödingerequation:
i~∂
∣

∣ψ1(t)
〉

∂t
= H

∣

∣ψ1(t)
〉

. (3.2.10)If we write
∣

∣ψ1(t)
〉

=

(

x(t)
y(t)

)

, (3.2.11)then we have the following di�erential equations:
i~

(

ẋ(t)
ẏ(t)

)

= −1
2γ~

(

B0 0
0 −B0

)

·
(

x(t)
y(t)

)

= 1
2~

(

ω0x(t)
−ω0y(t)

)

,

(3.2.12)where
ω0 = −γB0 (3.2.13)is the resonan
e or Larmor frequen
y. The following time dependent wavefun
tion is the obvious solution of this system of equations:
∣

∣ψ1(t)
〉

=
1√
2





e−
i(ω0t+φ)

2

e
i(ω0t+φ)

2



 . (3.2.14)The e�e
t of an RF magneti
 �eldIn NMR a transition between the two states |+〉 and |−〉 is obtained by a
B1 magneti
 �eld rotating in the transverse plane.

~z

B0

~x

~y

~B1

α

Figure 3.1: Magneti
 �eld ~B1 rotating in the transverse plane.
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3.2. FRAMEWORK FOR QUANTUM COMPUTING 47This �eld is generated by an ele
tromagneti
 RF wave obtained by an os-
illating 
urrent in a solenoid surrounding the spin sytem. In NMR spe
-trometry the phase α of the RF �eld 
an be 
ontrolled. In this 
ase theHamiltonian has non-diagonal elements due to the RF magneti
 �eld ~B1rotating around ~B0 with an angular velo
ity ω:
HRF(t) = −1

2
γ~

(

B0 B1e
−i(ωt+α)

B1e
i(ωt+α) −B0

)

. (3.2.15)In this 
ase the time evolution is no longer trivial. We have the followingdi�erential equations:
i~∂
∣

∣ψRF(t)
〉

∂t
= HRF(t)

(

x(t)
y(t)

)

= 1
2~

(

ω0 ω1e
−i(ωt+α)

ω1e
i(ωt+α) −ω0

)

·
(

x(t)
y(t)

)

,

(3.2.16)where
ω1 = −γB1. (3.2.17)In the time-independent 
ase these equations obviously redu
e to the equa-tions (3.2.9). For the time-dependent 
ase we need to solve the followingdi�erential equations:
(

ẋ(t)
ẏ(t)

)

= − i

2

(

ω0x(t) + ω1e
−i(ωt+α)y(t)

ω1e
i(ωt+α)x(t) − ω0y(t)

)

. (3.2.18)To solve these two equations we make the following substitutions:
p(t) = x(t)e

iω0t
2 , (3.2.19a)

q(t) = y(t)e−
iω0t
2 . (3.2.19b)This leads to the following equations:

ṗ(t) =

(

ẋ(t) +
iω0

2
x(t)

)

e
iω0t
2 , (3.2.20a)

q̇(t) =

(

ẏ(t) − iω0

2
y(t)

)

e−
iω0t
2 . (3.2.20b)Therefore we have that

ṗ(t) =

(

− i

2

(

ω0x(t) + ω1e
−i(ωt+α)y(t)

)

+ iω0

2 x(t)

)

e
iω0t
2

= − iω1

2
e−i(ωt+α)y(t)e

iω0t
2 (3.2.21a)

= − iω1

2
q(t)ei

(

(ω0−ω)t−α
)

,
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48 CHAPTER 3. REVIVING THE NMR APPROACHand
q̇(t) =

(

− i

2

(

ω1e
i(ωt+α)x(t) − ω0y(t)

)

− iω0

2
y(t)

)

e−
iω0t
2

= − iω1

2
ei(ωt+α)x(t)e−

iω0t
2 (3.2.21b)

= − iω1

2
p(t)e−i

(

(ω0−ω)t−α
)

.When we take the se
ond derivative of p(t) we obtain the following se
ondorder di�erential equation:
p̈(t) = − iω1

2
q̇(t)ei

(

(ω0−ω)t−α
)

+ i(ω0 − ω)ṗ(t)

= − iω1

2

(

− iω1

2
p(t)e−i

(

(ω0−ω)t−α
)

ei
(

(ω0−ω)t−α
)

)

+ i(ω0 − ω)ṗ(t)

= i(ω0 − ω)ṗ(t) − ω2
1

4
p(t). (3.2.22)This is equivalent to

p̈(t) − i(ω0 − ω)ṗ(t) +
ω2

1

4
p(t) = 0. (3.2.23)Let λ± be the solutions of the equation

λ2 − i(ω0 − ω)λ+
ω2

1

4
= 0. (3.2.24)We have

λ± =
i
(

(ω0 − ω) ±
√

(ω0 − ω)2 + ω2
1

)

2
. (3.2.25)We have that

p(t) = C1e
λ+t + C2e

λ−t, (3.2.26)and
x(t) = p(t)e−

iω0t
2

=
(

C1e
λ+t + C2e

λ−t
)

e−
iω0t
2

= e−
iωt
2

(

C1e
i
√

(ω0−ω)2+ω2
1t

2 + C2e
−

i
√

(ω0−ω)2+ω2
1t

2

)

,

(3.2.27)
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3.2. FRAMEWORK FOR QUANTUM COMPUTING 49with initial value
x(0) = 1√

2
e−

iφ
2 . (3.2.28)A similar 
omputation for y(t) leads to:

y(t) = e
iωt
2

(

C3e
i
√

(ω0−ω)2+ω2
1t

2 + C4e
−

i
√

(ω0−ω)2+ω2
1t

2

)

, (3.2.29a)
y(0) = 1√

2
e

iφ
2 . (3.2.29b)As x(t), y(t) verify the di�erential equations:
ẋ(t) = − i

2

(

ω0x(t) + ω1e
−i(ωt+α)y(t)

)

, (3.2.30a)
ẏ(t) = − i

2

(

ω1e
i(ωt+α)x(t) − ω0y(t)

)

, (3.2.30b)we obtain the following equations for the 
onstants Ci:
C1 + C2 = 1√

2
e−

iφ
2 , C3 + C4 = 1√

2
e

iφ
2 , (3.2.31ab)

(∆ +R)C1 + ω1e
−iαC3 = 0, (∆ −R)C2 − ω1e

−iαC4 = 0, (3.2.31
d)where
∆ =

√

(ω0 − ω)2 + ω2
1, R = ω0 − ω. (3.2.31ef)The 
omputation of the 
onstants Ci is now straightforward. We have

C1 = 1
2
√

2

(

(1 − R
∆)e−

iφ
2 − ω1e−iα

∆ e
iφ
2

)

, (3.2.32a)
C2 = 1

2
√

2

(

(1 + R
∆)e−

iφ
2 + ω1e−iα

∆ e
iφ
2

)

, (3.2.32b)
C3 = 1

2
√

2

(

−ω1eiα

∆ e−
iφ
2 + (1 + R

∆)e
iφ
2

)

, (3.2.32
)
C4 = 1

2
√

2

(

ω1eiα

∆ e−
iφ
2 + (1 − R

∆)e
iφ
2

)

. (3.2.32d)These expressions are simpli�ed if the angular velo
ity ω of the RF magneti
�eld veri�es the resonan
e 
ondition:
ω = ω0. (3.2.33)In that 
ase we have

∆ = ω1, R = 0, (3.2.34ab)
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50 CHAPTER 3. REVIVING THE NMR APPROACHand the 
oe�ents Ci simplify to:
C1 = 1

2
√

2

(

e−
iφ
2 − e

i(φ−2α)
2

)

, (3.2.35a)
C2 = 1

2
√

2

(

e−
iφ
2 + e

i(φ−2α)
2

)

, (3.2.35b)
C3 = 1

2
√

2

(

−e−
i(φ−2α)

2 + e
iφ
2

)

, (3.2.35
)
C4 = 1

2
√

2

(

e−
i(φ−2α)

2 + e
iφ
2

)

. (3.2.35d)This leads to the following equations:
x(t) = e

−
iω0t
2

2
√

2

(

(

e−
iφ
2 − e

i(φ−2α)
2

)

e
iω1t
2 +

(

e−
iφ
2 + e

i(φ−2α)
2

)

e−
iω1t
2

)

,

(3.2.36a)
y(t) = e

iω0t
2

2
√

2

(

(

− e−
i(φ−2α)

2 + e
iφ
2

)

e
iω1t
2 +

(

e−
i(φ−2α)

2 + e
iφ
2

)

e−
iω1t
2

)

.

(3.2.36b)We 
an write the evolution in matrix notation:
∣

∣ψRF(t)
〉

= A(ω, ω0, ω1, α) ·
∣

∣ψRF(0)
〉

, (3.2.37)where
A(ω, ω0, ω1, α) =

(

a b
c d

) (3.2.38)is a rotation in the 
omplex plane. So in order to 
ompute the 
oe�
ientsof this matrix we need to solve the equation
(

x(t)
y(t)

)

=

(

a b
c d

)

·
(

x(0)
y(0)

)

. (3.2.39)This leads to the following equation:








e−
iωt
2

(

C1e
i∆t
2 + C2e

− i∆t
2

)

e
iωt
2

(

C3e
i∆t
2 + C4e

− i∆t
2

)









=
1√
2

(

a b
c d

)

·





e−
iφ
2

e
iφ
2



 . (3.2.40)
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3.2. FRAMEWORK FOR QUANTUM COMPUTING 51The solution of this matrix equation is:
A(ω, ω0, ω1, α) =











e−
iωt
2
(

cos ∆t
2 − iR

∆ sin ∆t
2

)

− iω1e
−

i(ωt+2α)
2

∆ sin ∆t
2

− iω1e

i(ωt+2α)
2

∆ sin ∆t
2 e

iωt
2
(

cos ∆t
2 + iR

∆ sin ∆t
2

)











.(3.2.41)It is possible to separate the stati
 �eld evolution from this equation. Wethen obtain:
A(ω, ω0, ω1, α) = E(ω) · R(ω, ω0, ω1, α), (3.2.42)whi
h leads to

E(ω) =





e−
iωt
2 0

0 e
iωt
2



 , (3.2.43a)
R(ω, ω0, ω1, α) =

(

cos ∆t
2 − iR

∆ sin ∆t
2 − iω1e−iα

∆ sin ∆t
2

− iω1eiα

∆ sin ∆t
2 cos ∆t

2 + iR
∆ sin ∆t

2

)

. (3.2.43b)At the resonan
e frequen
y, this matrix redu
es to:
A(ω0, ω0, ω1, α) =





e−
iω0t
2 0

0 e
iω0t
2



 ·
(

cos ω1t
2 −ie−iα sin ω1t

2

−ieiα sin ω1t
2 cos ω1t

2

)

.(3.2.44)The e�e
t of an RF pulse is usually des
ribed [CTDL77℄ as a rotation ofangle θ1 = ω1t in the spin spa
e arround the ve
tor ~u = (ux, uy, uz):
R

1

2

u,θ1
=

(

cos θ1

2 − iuz sin θ1

2 (−iux − uy) sin θ1

2

(−iux + uy) sin θ1

2 cos θ1

2 + iuz sin θ1

2

)

. (3.2.45)In NMR ~u lies in the transverse plane: ~u = (cosα, sinα, 0) and thereforerotations indu
ed in NMR are restri
ted to:
R

1

2

u,θ1
=

(

cos θ1

2 −ie−iα sin θ1

2

−ieiα sin θ1

2 cos θ1

2

)

. (3.2.46)We noti
e that this is exa
tly the transformation matrix that we have 
om-puted, ex
ept for the fa
t that the time evolution of the stati
 �eld ~B0 ismissing in this equation.
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52 CHAPTER 3. REVIVING THE NMR APPROACHMeasurementMeasurement in NMR is obtained by the 
urrent indu
ed in the same solenoidas that used for perturbing the spin system. The 
urrent is indu
ed by the ro-tation of the nu
lear spin magneti
 momenta in the solenoid. At equilibriumthere is no indu
ed 
urrent due to the absen
e of nu
lear magnetization. Af-ter an RF pulse (ω1, α) the magnetization of a spin 1
2 at temperature T = 0is equal to:

M(ω, ω0, ω1, α, φ, t) = ~µ = γ~I

= 1
2γ~

(

|x(t)|2 − |y(t)|2
)

.
(3.2.47)To 
ompute the magnetization, we have to 
ompute

(

x(t) y(t)
)

·
(

x̄(t)
−ȳ(t)

)

. (3.2.48)We observe the following identity for the rotation matrix A(ω, ω0, ω1, α):
Ā(ω, ω0, ω1, α) =

(

ā b̄
c̄ d̄

)

=

(

d −c
−b a

) (3.2.49)
=





e
iωt
2 0

0 e−
iωt
2



·
(

cos ∆t
2 + iR

∆ sin ∆t
2

iω1eiα

∆ sin ∆t
2

iω1e−iα

∆ sin ∆t
2 cos ∆t

2 − iR
∆ sin ∆t

2

)

.Therefore the magnetization 
an be written as
M(ω, ω0, ω1, α, φ, t) = 1

2γ~
(

|x(t)|2 − |y(t)|2
)

=
1

2
γ~
(

x(t) y(t)
)

·
(

x̄(t)
−ȳ(t)

)

=
1

2
γ~
(

x(0) y(0)
)

·
(

a c
b d

)

·
(

d −c
b −a

)

·
(

x̄(0)
ȳ(0)

)

=
γ~

4

(

e−
iφ
2 e

iφ
2

)

·
(

ad+ bc −2ac
2bd −(ad+ bc)

)

·





e
iφ
2

e−
iφ
2



 .
(3.2.50)After a few easy manipulations we get

M(ω, ω0, ω1, α, φ, t) = γ~ℜ
(

ab̄e−iφ
)

. (3.2.51)
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3.2. FRAMEWORK FOR QUANTUM COMPUTING 53If we repla
e the matrix 
oe�
ients a, b, c, d by their value and simplify thisequation we obtain the following formula for the magnetization:
M(ω, ω0, ω1, α, φ, t) =

γ~ω1 sin ∆t
2

∆

(

R
∆ sin ∆t

2 cos(φ− α) + cos ∆t
2 sin(φ− α)

)

.(3.2.52)At the resonan
e frequen
y the magnetization redu
es to
M(ω1, α, φ, t) = γ~

2 sinω1t sin(φ− α). (3.2.53)Single qubit gatesThe important single qubit gates are the NOT gate, the Hadamard gate andan arbitrary rotation gate. An apparently trivial gate, the identity gate, isalso an essential ingredient for quantum 
omputing. As the wave fun
tionevolves even in a stati
 �eld, we 
annot simply assume that not applyingan RF is the same as applying the identity operator. To a
hieve the identityoperator we need to solve the following equation:




e−
iωt
2 0

0 e
iωt
2



 ·
(

cos ∆t
2 − iR

∆ sin ∆t
2 − iω1e−iα

∆ sin ∆t
2

− iω1eiα

∆ sin ∆t
2 cos ∆t

2 + iR
∆ sin ∆t

2

)

=

(

1 0
0 1

)

.(3.2.54)This leads to the following 
onditions:
∆t ≡ 0 (mod 2π), (3.2.55a)
ωt ≡ ∆t (mod 2π). (3.2.55b)The NOT gate is de�ned as:

X =

(

0 1
1 0

)

. (3.2.56)In order to perform the NOT-gate we need to have the following equality:




e−
iωt
2 0

0 e
iωt
2



 ·
(

cos ∆t
2 − iR

∆ sin ∆t
2 − iω1e−iα

∆ sin ∆t
2

− iω1eiα

∆ sin ∆t
2 cos ∆t

2 + iR
∆ sin ∆t

2

)

=

(

0 1
1 0

)

.(3.2.57)This 
an be redu
ed to
(

cos ∆t
2 − iR

∆ sin ∆t
2 − iω1e−iα

∆ sin ∆t
2

− iω1eiα

∆ sin ∆t
2 cos ∆t

2 + iR
∆ sin ∆t

2

)

=





0 e
iωt
2

e−
iωt
2 0



 . (3.2.58)

te
l-0

05
34

86
4,

 v
er

si
on

 1
 - 

12
 N

ov
 2

01
0



54 CHAPTER 3. REVIVING THE NMR APPROACHTherefore we have
− iω1e−iα

∆ sin ∆t
2 = e

iωt
2 , (3.2.59a)

− iω1eiα

∆ sin ∆t
2 = e−

iωt
2 . (3.2.59b)Taking the produ
t of the lefthand and righthand side of these equations weget

−ω2
1 sin2 ∆t

2
∆2 = 1. (3.2.60)As all parameters are reals, this has no solution. The best we 
an do is thefollowing gate:

i

(

0 1
1 0

)

, (3.2.61)by setting the parameters as follows:
ω = ω0, (3.2.62a)

ω1t ≡ π (mod 4π), (3.2.62b)
ωt ≡ −2α (mod 2π). (3.2.62
)The Hadamard operator has been de�ned as:
H =

1√
2

(

1 1
1 −1

)

. (3.2.63)To obtain the Hadamard gate we have to set the parameters, su
h that:




e−
iωt
2 0

0 e
iωt
2



·
(

cos ∆t
2 − iR

∆ sin ∆t
2 − iω1e−iα

∆ sin ∆t
2

− iω1eiα

∆ sin ∆t
2 cos ∆t

2 + iR
∆ sin ∆t

2

)

=
1√
2

(

1 1
1 −1

)

.(3.2.64)This is impossible to attain as the pair of equations:
e−

iωt
2
(

cos ∆t
2 − iR

∆ sin ∆t
2

)

=
1√
2
, (3.2.65a)

e
iωt
2
(

cos ∆t
2 + iR

∆ sin ∆t
2

)

= − 1√
2
. (3.2.65b)have 
omplex 
onjugates on the lefthand side but not 
omplex 
onjugateson the righthand side. We 
an obtain the following matrix:

− i√
2

(

1 1
1 −1

)

, (3.2.66)
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3.2. FRAMEWORK FOR QUANTUM COMPUTING 55by setting the parameters as follows:
ωt = −2α+ 4kπ, (3.2.67a)

sin ∆t
2 = ∆

ω1

√
2
, (3.2.67b)

cos ωt
2 = R

ω1
. (3.2.67
)At the resonan
e frequen
y, the last two 
onditions redu
e to:

sin ω1t
2 = 1√

2
, (3.2.68a)

cos ωt
2 = 0. (3.2.68b)The arbitrary rotation gate that we want to build is the rotation:

P =





e
iθ
2 0

0 e−
iθ
2



 , (3.2.69)where cos θ = 3
5 . This 
an easily be a
hieved by the following parametersettings:

∆t ≡ 0 (mod 4π), (3.2.70a)
ωt ≡ −θ (mod 4π). (3.2.70b)We also need the gates that initialize the qubit in either the state |0〉 = |+〉or in the state |1〉 = |−〉. To do so we do not look at the rotation andevolution matrix, but at the magnetization formula. For simpli
ity we willassume ω = ω0. A qubit in the state |+〉 should give a magnetization of γ~

2 ,while a qubit in the state |−〉 should give a magnetization of −γ~

2 . This leadsto the following equations:
1 = sinω1t sin(φ− α), (3.2.71a)

−1 = sinω1t sin(φ− α). (3.2.71b)for respe
tively qubit |0〉 or qubit |1〉. This leads to the following 
onditions:
α ≡ φ+ π

2 (mod 2π), (3.2.72a)
ω1t ≡ π

2 (mod 2π), (3.2.72b)for initializing in the state |0〉 and
α ≡ φ+ π

2 (mod 2π), (3.2.73a)
ω1t ≡ −π

2 (mod 2π), (3.2.73b)for initializing in the state |1〉.
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56 CHAPTER 3. REVIVING THE NMR APPROACH3.2.2 Two spins 1
2For two spins we 
onsider two 
ases: one for a homogeneous magneti
�eld ~B0 and one where the two spins are in two di�erent magneti
 �elds ~BAand ~BB.Two spins in a homogeneous magneti
 �eldIn this 
ase the Hamiltonian of the system is:

H2,Hom = −
2
∑

i=1

~µi · ~B0

= −1
2γ~ (~σ1 + ~σ2) · ~B0

= −1
2γ~

(

σx
1 ⊕K σx

2

)

Bx +
(

σy
1 ⊕K σy

2

)

By +
(

σz
1 ⊕K σz

2

)

Bz,

(3.2.74)where
~B0 = (Bx, By, Bz). (3.2.75)We 
an write equation (3.2.74) in matrix form:

H2,Hom = −1

2
γ~









2BZ BX − iBY BX − iBY 0
BX + iBY 0 0 BX − iBY

BX + iBY 0 0 BX − iBY

0 BX + iBY BX + iBY −2BZ









.(3.2.76)We note that this Hamiltonian 
an be written as
H2,Hom = H1 ⊕K H1, (3.2.77)where ⊕K is the Krone
ker sum (A.7) of two matri
es.If we pla
e the z-axis along the homogeneous magneti
 �eld ~B0, this matrixbe
omes

H2,Hom = −1

2
γ~









2B0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2B0









. (3.2.78)We dire
tly obtain the eigenvalues of the Hamiltonian (3.2.74):
E++ = −γ~B0, (3.2.79a)

E+− = E−+ = 0, (3.2.79b)
E−− = γ~B0. (3.2.79
)
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3.2. FRAMEWORK FOR QUANTUM COMPUTING 57The 
orresponding eigenve
tors are:
|++〉 =









1
0
0
0









, |+−〉 =









0
1
0
0









, (3.2.80ab)
|−+〉 =









0
0
1
0









, |−−〉 =









0
0
0
1









. (3.2.80
d)The time-dependent wave fun
tion is given by:
∣

∣ψ2(t)
〉

=
1

2









e−i(ω0t−φ++)

eiφ+−

eiφ−+

ei(ω0t+φ−−)









. (3.2.81)We note that
∣

∣ψ2(t)
〉

=
∣

∣ψ1(t)
〉

⊗
∣

∣ψ1(t)
〉

, (3.2.82)by properly adjusting the phase fa
tors φi.Two spins in di�erent magneti
 �eldsIf the magneti
 �elds experien
ed by spins A and B are respe
tively ~BAand ~BB, then the Hamiltonian of the system is:
H2 = −

(

(~µA · ~BA) ⊕K (~µB · ~BB)
)

. (3.2.83)If we write this Hamiltonian in matrix form, we obtain the following:
H2 =−γ~

2









BAZ +BBZ BBX − iBBY BAX − iBAY 0
BBX + iBBY BAZ −BBZ 0 BAX − iBAY

BAX + iBAY 0 BBZ −BAZ BBX − iBBY

0 BAX + iBAY BBX + iBBY −BAZ −BBZ









,(3.2.84)where we have
~BA = (BAX , BAY , BAZ), (3.2.85a)
~BB = (BBX , BBY , BBZ). (3.2.85b)If we suppose that both magneti
 �elds are in the Oz-dire
tion, this matrixredu
es to:

H2 = −γ~

2









BA +BB 0 0 0
0 BA −BB 0 0
0 0 BB −BA 0
0 0 0 −(BA +BB)









. (3.2.86)
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58 CHAPTER 3. REVIVING THE NMR APPROACHWe dire
tly obtain the eigenvalues of the Hamiltonian (3.2.86):
E++ = −1

2
γ~(BA +BB), (3.2.87a)

E+− = −1

2
γ~(BA −BB), (3.2.87b)

E−+ =
1

2
γ~(BA −BB), (3.2.87
)

E−− =
1

2
γ~(BA +BB). (3.2.87d)The 
orresponding eigenve
tors are:

|++〉 =









1
0
0
0









, |+−〉 =









0
1
0
0









, (3.2.88ab)
|−+〉 =









0
0
1
0









, |−−〉 =









0
0
0
1









. (3.2.88
d)This leads to the following time-dependent wave fun
tion:
∣

∣ψ2(t)
〉

=
1

2















e−
i
2

(

(ωA+ωB)t−φ++

)

e−
i
2

(

(ωA−ωB)t−φ+−

)

e
i
2

(

(ωA−ωB)t−φ−+

)

e
i
2

(

(ωA+ωB)t−φ−−

)















, (3.2.89)where:
ωA = −γBA, (3.2.90a)
ωB = −γBB. (3.2.90b)As in the homogenous 
ase, the wave fun
tion for two independent spins 
anbe written as a tensor produ
t of the wave fun
tion of ea
h spin:

∣

∣ψ2(t)
〉

=
∣

∣ψ1(t)
〉

ωA
⊗
∣

∣ψ1(t)
〉

ωB
, (3.2.91)by properly adapting the phase fa
tors φi. This is simply done by takingequation (3.2.91) as the proper de�nition for the 
ase of two spins 1

2 andusing equation (3.2.14) for ea
h single wave fun
tion to obtain the following
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3.2. FRAMEWORK FOR QUANTUM COMPUTING 59wave fun
tion for two spins:
∣

∣ψ2(t)
〉

=
∣

∣ψ1(t)
〉

ωA
⊗
∣

∣ψ1(t)
〉

ωB

=
1

2





e−
i(ωAt+φ1)

2

e
i(ωAt+φ1)

2



⊗





e−
i(ωBt+φ2)

2

e
i(ωB t+φ2)

2





=
1

2















e−
i
2

(

(ωA+ωB)t+(φ1+φ2)
)

e−
i
2

(

(ωA−ωB)t+(φ1−φ2)
)

e
i
2

(

(ωA−ωB)t+(φ1−φ2)
)

e
i
2

(

(ωA+ωB)t+(φ1+φ2)
)















(3.2.92)
The measurement of the two spin 1

2 system is given by the rotation of themagnetization of ea
h spin in the solenoid. This 
an be 
omputed in twodi�erent ways. If we write the wave fun
tion as
∣

∣ψ2(t)
〉

= a++| + +〉 + a+−| + −〉 + a−+| − +〉 + a−−| − −〉, (3.2.93)then the magnetization is equal to the sum over ea
h spin of the probabilityof measuring the state |+〉 minus the probability of measuring the state |−〉.For the �rst spin the probability of measuring |+〉 is equal to:
|a++|2 + |a+−|2, (3.2.94)and the probability of measuring |−〉 is equal to:
|a−+|2 + |a−−|2. (3.2.95)A similar 
omputation for the se
ond spin gives the following formula for themagnetization:

M = 1
2γ~

(

2|a++|2 − 2|a−−|2
)

. (3.2.96)The se
ond method of 
omputing the magnetization is to 
onsider ea
h spinseparately with its 
orresponding wave fun
tion for one spin. Taking thesum of these magnetizations gives the total magnetization:
M = M1(φ1) +M2(φ2). (3.2.97)Two spins in di�erent magneti
 �elds with an RF �eldUsing the tensor produ
t notation we 
an dire
tly 
ompute the wave fun
-tion for two spins in an inhomogenous magneti
 �eld with an RF magneti
�eld ~B1 rotating around ~B0 with an angular velo
ity ω:

∣

∣ψ2(t)
〉

=
∣

∣ψ1(t)
〉

ωA
⊗
∣

∣ψ1(t)
〉

ωB

=
(

E(ω) · R(ωA) ·
∣

∣ψ1(0)
〉

ωA

)

⊗
(

E(ω) · R(ωB) ·
∣

∣ψ1(0)
〉

ωB

)(3.2.98)
=
(

E(ω) ⊗ E(ω)
)

·
(

R(ωA) ⊗R(ωB)
)

·
(

∣

∣ψ1(0)
〉

ωA
⊗
∣

∣ψ1(0)
〉

ωB

)

.
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60 CHAPTER 3. REVIVING THE NMR APPROACHThis des
ription is the most general possible for two independent spins. Wewould like to �nd a set of parameters, su
h that this matrix be
omes aControlNOT operator. As the above equation is a tensor produ
t of twomatri
es, this would imply that we 
an write
CNOT = A⊗B. (3.2.99)This leads to the following equality:









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









=

(

a1 a2

a3 a4

)

⊗
(

b1 b2
b3 b4

)

=









a1b1 a1b2 a2b1 a2b2
a1b3 a1b4 a2b3 a2b4
a3b1 a3b2 a4b1 a4b2
a3b3 a3b4 a4b3 a4b4









.

(3.2.100)
We obtain, amongst others, the following equations:

a1b1 = 1, a4b1 = 0, a4b3 = 1. (3.2.101ab
)These equations have no solution in C and therefore it is impossible to setthe parameters, su
h that the resulting operator on the wave fun
tion is theControlNot operator. As we have the identity
(A1 ⊗A2) · (B1 ⊗B2) = (A1B1) ⊗ (A2B2), (3.2.102)we 
annot hope to build a ControlNot operator starting with another oper-ator obtained from an RF wave. The 
on
lusion is that in order to build aCNOT we need an intera
tion between the two spins. We therefore investi-gate whether the dipole-dipole 
oupling between the two spins 
an be usedas su
h an intera
tion. Before doing so we 
onsider the 
ase of N spins.3.2.3 N spinsThe des
ription we have obtained for the wave fun
tion of two spins is easilygeneralized. An N spin system in an inhomogenous magneti
 �eld has thefollowing wave fun
tion:

∣

∣ψN (t)
〉

=
N
⊗

i=1

∣

∣ψi,ωi
(t)
〉

. (3.2.103)The total magnetization M is given by the sum of all N individual magne-tizations:
M(t) =

N
∑

i=1

Mi(t). (3.2.104)In this des
ription we have not yet taken into a

ount the population di�er-en
es of the two energy levels in 
ase of N spins at temperature T .

te
l-0

05
34

86
4,

 v
er

si
on

 1
 - 

12
 N

ov
 2

01
0



3.2. FRAMEWORK FOR QUANTUM COMPUTING 613.2.4 Dipole-dipole 
ouplingThe Hamiltonian of the dipole-dipole 
oupling is:
HD =

µ0γ
2

4πr312



~I1 · ~I2 − 3

(

~I1 · ~r12

)

⊗
(

~I2 · ~r12

)

r212



. (3.2.105)We 
an write equation (3.2.105) in matrix form. First we 
ompute ~I1 · ~I2:
~I1 · ~I2 =

(

1
2~~σ1

)

·
(

1
2~~σ2

)

=
~2

4







σX
1

σY
1

σZ
1






·







σX
2

σY
2

σZ
2







= ~2

4

(

σX
1 ⊗ σX

2 + σY
1 ⊗ σY

2 + σZ
1 ⊗ σZ

2

)

=
~2

4









1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1









.

(3.2.106)
We pro
eed with ~I1 · ~r12, where the distan
e ve
tor ~r12 is de�ned as:

~r12 =





X
Y
Z



 . (3.2.107)This leads to:
~I1 · ~r12 = 1

2~~σ1 · ~r12

= 1
2~
(

σX
1 X + σY

1 Y + σZ
1 Z
)

=
1

2
~

(

Z X − iY
X + iY −Z

)

.

(3.2.108)Therefore we have:
(

~I1 ·~r12

)

⊗
(

~I2 ·~r12

)

=
~2

4

(

Z X − iY
X + iY −Z

)

⊗
(

Z X − iY
X + iY −Z

)

=
~2

4









Z2 Z(X − iY ) Z(X − iY ) X2 − Y 2 − 2iXY
Z(X + iY ) −Z2 X2 + Y 2 −Z(X − iY )
Z(X + iY ) X2 + Y 2 −Z2 −Z(X − iY )

X2 + 2iXY − Y 2 −Z(X + iY ) −Z(X + iY ) Z2









,(3.2.109)
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62 CHAPTER 3. REVIVING THE NMR APPROACHwhi
h leads to the following Hamiltonian:
H

′
D =









r2−3Z2 −3Z(X−iY ) −3Z(X−iY ) −3(X2−2iXY −Y 2)

−3Z(X+iY ) −r2+3Z2 2r2−3Z2 3Z(X−iY )

−3Z(X+iY ) 2r2−3Z2 −r2+3Z2 3Z(X−iY )

−3(X2+2iXY −Y 2) 3Z(X+iY ) 3Z(X+iY ) r2−3Z2









,(3.2.110)where
H

′
D =

r2HD

~KD
, r2 = r212, KD =

µ0γ
2~

16πr312
. (3.2.111ab
)This Hamiltonian 
an also be written in matrix form with spheri
al 
oordi-nates. This results in:

HD =~KD

0

B

B

B

B

B

@

1−3 cos2 θ −3 sin θ cos θe−iϕ −3 sin θ cos θe−iϕ −3 sin2 θe−2iϕ

−3 sin θ cos θeiϕ −1+3 cos2 θ 2−3 sin2 θ 3 sin θ cos θe−iϕ

−3 sin θ cos θeiϕ 2−3 sin2 θ −1+3 cos2 θ 3 sin θ cos θe−iϕ

−3 sin2 θe2iϕ 3 sin θ cos θeiϕ 3 sin θ cos θeiϕ 1−3 cos2 θ

1

C

C

C

C

C

A

.(3.2.112)As the dire
tion of ~r12 is random, we should 
onsider the mean value of ea
hmatrix element. To do so we 
ompute the spatial average of ea
h matrixelement:
āij(θ, ϕ) =

1

2π2

∫ 2π

θ=0

∫ π

ϕ=0
aij(θ, ϕ) sin θ dθdϕ. (3.2.113)This dramati
ally redu
es the matrix and HD be
omes:

HD = 0. (3.2.114)Therefore we 
annot use the dipole-dipole 
oupling as the intera
tion be-tween two spins to build a ControlNot operator.In a homogeneous magneti
 �eld it is well-known that the dipole-dipole 
ou-pling is averaged to zero by the random thermal motion in liquids, but ifthe two spins have two di�erent magneti
 �elds this is no longer the 
ase.This fa
t was �rst des
ribed in 1979 by Deville et al. [DBD79℄, and later byBotwell et al. [BBG90℄ in pure water. These authors have shown long-rangea
ting dipole-dipole intera
tions in liquid with magneti
 �eld gradients. The-oreti
al des
riptions of this e�e
t 
an be found in [LRVW96, JVB95℄, but forthe moment they are di�
ult to use for appli
ations to quantum 
omputa-tion. It is therefore ne
essary to �nd either another intera
tion between thespins that is not averaged to zero or to formalize their approa
h to long-rangedipole-dipole intera
tions so that it is des
ribed in the same framework thatwe use.
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3.2. FRAMEWORK FOR QUANTUM COMPUTING 633.2.5 Two 
oupled spinsIn an inhomogeneous magneti
 �eld, the Hamiltonian for two 
oupled spinsis given by:
H3 = H2 + Hc, (3.2.115)where Hc is the Hamiltonian whi
h des
ribes the 
oupling of the two spins.For the moment we do not have a des
ription for su
h a Hamiltonian, buton
e we do, we 
an use the same te
hniques as des
ribed earlier: in order to�nd the time evolution of the wave fun
tion, we have to solve the followingdi�erential equation:

i~∂
∣

∣ψ(t)
〉

∂t
= H3

∣

∣ψ(t)
〉

, (3.2.116)where
∣

∣ψ(t)
〉

=









x1(t)
x2(t)
x3(t)
x4(t)









. (3.2.117)This system of equations 
an also be written in matrix form:
Ẋ = M ·X, (3.2.118)where Ẋ is the ve
tor (ẋ1(t), . . . , ẋ4(t)

)T , the matrix M is equal to H3

i~ and
X is the ve
tor (x1(t), . . . , x4(t)

)T .The solution of this matrix di�erential equation is:
X = etM . (3.2.119)To 
ompute the exponential of the matrixM , we need to �nd the eigenve
torsof M in order to diagonalize this matrix:

M = U−1DU, (3.2.120)where U is a unitary matrix and D is a diagonal matrix:
D =









λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4









, (3.2.121)with λi the eigenvalues of M . This will lead to a des
ription of the wavefun
tion ∣∣ψ(t)
〉, from whi
h we 
an hopefully dedu
e the parameter settingsto build a CNOT-gate.
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64 CHAPTER 3. REVIVING THE NMR APPROACH3.3 Five Steps to an NMR Quantum ComputerWe want to build an NMR quantum 
omputer using the framework we de-s
ribed in the previous se
tion. The road to a small quantum 
omputer isessentially the same for any physi
al realization. For a larger quantum 
om-puter we need to take into a

ount many other important steps su
h as thede
oheren
e of the system and the �delity of the qubit operations, but fornow we 
on
entrate on the bare ne
essities for a quantum 
omputer howevershortlived this 
omputer may be. The following steps need to be followed:1. One qubit: the proposed realization needs a 
lear des
ription of whatthe physi
al equivalent of a logi
al qubit is. We need to understandhow su
h a qubit is built and how to properly des
ribe it. We alsoneed to know how the qubit is initialized and how it is measured.2. Manipulating one qubit: we need to be able to perform arbitraryunitary operations on a single qubit. It is not ne
essary to be ableto perform any arbitrary unitary operation, but we at least need tohave a generating set that 
an approximate all unitary operations. Anidentity operator, a NOT operator, a Hadamard operator and a phaseoperator are su�
ient.3. More qubits: we need to understand how we 
an have more than onelogi
al qubit in our physi
al system. We have to be able to distinguishbetween di�erent qubits and how we 
an initialize qubits simultane-ously. We also have to understand how to measure individual qubits.4. Manipulating qubits individually: we have to be able to performthe same generating set of unitary operations on individual qubits. Itis important to have the identity operator, be
ause while we performan operation on a single qubit, the other qubits evolve in time. Thise�e
t needs to be undone when we do not want su
h an evolution.5. Manipulating qubits together: the power of quantum 
omputa-tion lies in the entanglement of states and the natural parallelism of
omputation. We therefore need to have a gate whi
h entangles twoqubits. The CNOT-operator 
reates entanglement of qubits and is eas-ily des
ribed. We therefore have to be able to perform a CNOT-gateon two arbitrary qubits. An equivalent entangling gate will do as well,but we 
on
entrate on the CNOT-gate as most quantum algorithmsare des
ribed with CNOT-gates.These are the steps that we have to a
hieve experimentally in order to havea small s
ale quantum 
omputer. From that point on, other issues su
h as�delity, de
oheren
e and error 
orre
tion have to be taken into a

ount, aswell as a reasonable estimate of the real 
omputing power of the proposed
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3.4. EXPERIMENTAL RESULTS 65system, but without the �ve steps above, it is no use to think about �delityof gates or error 
orre
ting.3.4 Experimental resultsWe des
ribe our experimental setting as well as the results that we haveobtained so far with our approa
h.3.4.1 Material and methodsA sample of 10 ml of degassed water was pla
ed at room temperature in awide-bore magnet with a magneti
 �eld of 4.7 T (Magnex). The NMR spe
-trometer (SMIS) allows a phase pre
ision of the RF pulses of 0.25◦. TheRF pulses had a gaussian shaped intensity with a duration d = 600 µs, afrequen
y ω0

2π = 200.137 MHz, and half-width of 3 kHz. The inter pulse delaybetween the ends of the �rst and se
ond pulse was τ = 1 ms. The NMR sig-nal was dete
ted in quadrature mode with a sample frequen
y of 5 kHz and
8K points. The intensity of the signal is obtained as the modulus of the twoparts given by the quadrature dete
tion mode.The homogeneity of the magneti
 �eld was measured by the line width ob-tained by Fourier Transform of the free indu
tion de
ay (FID) a
quired aftera π

2 pulse. The longitudinal relaxation time T1, measured by an inversion-re
overy sequen
e, was 3.2 s and the transverse relaxation time T2, measuredby a Carr-Pur
ell-Meiboom-Gill sequen
e [CP54, MG58℄ was 1.8 s, slightlydepending on the homogeneity of the magneti
 �eld.The NMR spe
trum of water, as for all liquid samples with no J-
oupling,displays a very narrow line due to the motion averaging of the dipole-dipole
oupling. Su
h a nu
lear spin system is highly isolated from its surround-ing and it is well-known that the relaxation time T1 whi
h 
hara
terizes theenergy ex
hange with the latti
e and the inverse of the line width whi
hmeasures the de
oheren
e time are very long in high homogeneous magneti
�eld.3.4.2 ResultsWe �rst exhibit a ma
ros
opi
 quantum e�e
t in bulk liquid NMR. Afterthat, we show a method to initialize a qubit.Exhibiting a ma
ros
opi
 quantum e�e
tWe 
an show that there is a quantum interferen
e term in bulk liquid NMRby using a π
2 − τ − π

2 pulse sequen
e at the resonan
e frequen
y. In ourframework we have not given the magnetization after two pulse sequen
es
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66 CHAPTER 3. REVIVING THE NMR APPROACHbut it 
an be shown that this magnetization is proportional to
M(τ) = C sinω0τ sin β, (3.4.1)where C is a proportionality 
onstant that depends on the population dif-feren
es and β is the angle between the two pulse sequen
es.One 
an easily see that in absen
e of free evolution, i.e. τ = 0, there is nosignal. This is due to the fa
t that in the τ = 0 
ase, the π

2 − τ − π
2 sequen
e
orresponds to a single π pulse on the sample whi
h indeed gives no signal.In fa
t, a

ording to equation (3.4.1), provided that the angle β 6= 0, wehave that M(τ) 6= 0, if and only if the nu
lear spin state interferen
e term

sinω0τ is di�erent from zero. In a π/2 − τ − π/2 sequen
e, the existen
eof any NMR signal is then the eviden
e of the o

urren
e of nu
lear spininterferen
es.Experimentally, it was impossible for us to tune τ at a time s
ale smallenough to vary ω0τ over 2π. However, it is possible to ensure over typi
alexperimental times (a few minutes) an a

urate stability of ω0τ , i.e. the rmsmagnitude of the �u
tuating part of this angle ω0τ remains mu
h smallerthan 2π. Under this last 
ondition, one 
an then plot the NMR signal givenby the π
2 − τ − π

2 sequen
e as a fun
tion of β, the relative phase of the two
π
2 pulse �elds and 
ompare the results to that given by equation (3.4.1). Ifthe experimental data mat
h equation (3.4.1), then the nu
lear spin inter-feren
e term is revealed and also 
ontrolled.The NMR signal (FID) after a single π

2 pulse is dependent on the homogene-ity of the magneti
 �eld ~B0.

Figure 3.2: NMR signal of 10 ml of water after one π
2
pulse. The 
ontinuousline is obtained in a highly homogeneous magneti
 �eld (∆B0

B0

= 2.0 ·10−8) andthe dashed line in a less homogeneous �eld (∆B0

B0

= 2.7 · 10−7).
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3.4. EXPERIMENTAL RESULTS 67On Fig 3.2 one 
an see the FID re
orded after a single π
2 pulse in a highlyhomogeneous �eld (∆B0

B0
= 2.0 · 10−8, 
ontinuous line) 
ompared to a lesshomogeneous one (∆B0

B0
= 2.7 · 10−7, dashed line).With a π

2 − τ − π
2 sequen
e, it is well-known that NMR gives rise to ane
ho at a time t = τ after the se
ond π

2 pulse. This e�e
t was des
ribedin 1950 by E. Hahn as spin e
ho [Hah50℄. Here however, we have measuredthe NMR signal in a very homogeneous magneti
 �eld and with small interpulse delays where no spin e
ho is dete
ted as seen on Fig. 3.3 (
ontinuousline). Even in the less homogeneous magneti
 �eld there is a modulation of

Figure 3.3: NMR signal of 10 ml of water after two π
2
pulses with a relativephase of β = 90◦. The 
ontinuous line is obtained in a highly homogeneousmagneti
 �eld (∆B0

B0

= 2.0 · 10−8) and the dashed line in a less homogeneous�eld (∆B0

B0

= 2.7 · 10−7).the FID but no e
ho at 1 ms whi
h is the delay between the two π
2 pulses.The absen
e of an e
ho in this 
ase is equivalent to the absen
e of any e
ho fora homogeneous line in an Ele
tron Spin Resonan
e (ESR) experiment. TheFID 
orresponds to the magnetization in the transverse plane and thereforethe signal is proportional to √M2

x +M2
y . Fig. 3.4 shows the amplitude of
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68 CHAPTER 3. REVIVING THE NMR APPROACHthe NMR signal at the beginning of the FID versus the relative phase β. As

Figure 3.4: Amplitude of the NMR signal of 10 ml of water after two π
2
pulsesversus the relative phase β of the two pulses. The 
ontinuous line (� NMR1)is obtained in a highly homogeneous magneti
 �eld, the large dashed line(N NMR2) in a less homogeneous �eld. The �nely dashed lines 
orrespondto f(β) = G| sinβ| normalized to the maximum NMR signal in ea
h 
ase.
an be seen in Fig. 3.4, in the 
ase of a highly homogeneous magneti
 �eld

(∆B0

B0
= 2.0 · 10−8), the fun
tion f(β) = G| sin β|, given by equation (3.4.1)for a well de�ned value of ω0τ , �ts the experimental data quite well. Themaximum relative deviation

∆s(β) =

(

NMR1(β) − f(β)
)

max
(

NMR1(β)
) (3.4.2)between the experimental 
urve NMR1(β) and f(β) is found to be

∆s(15◦) = 9.7%. (3.4.3)In the 
ase of a less homogeneous �eld (∆B0

B0
= 2.7 ·10−7), the �t is less goodand the maximum relative deviation is found to be

∆s(18◦) = 28.3%. (3.4.4)3.4.3 Numeri
al solution of equation (3.2.18)The numeri
al solution of equation (3.2.18) is obtained by using the ode45subroutine of Matlab using an expli
it Runge-Kutta formula for ordinarydi�erential equations with initial values.
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3.4. EXPERIMENTAL RESULTS 69Referen
e parametersWe set the parameters of equation (3.2.18) as those used by our NMR spe
-tometer: Table 3.1: Parameters of the NMR spe
trometerParameter Value UnitResonan
e Frequen
y 200 MHz ω0 = −2 · 108 · 2π rad/sRadio Frequen
y amplitude 1 mT ω1 = 2.5 · 10−4 · ω0 rad/sRadio Frequen
y 200 MHz ω = ω0 rad/sInterval of integration 20 tθ = 20 · 10−6 sThe solution of equation (3.2.18) with the parameters of table 3.1 allows us to
al
ulate the magnetization of one spin a

ording to equation (3.2.47). Theresult is given in �gure 3.5 were we retrieve the main e�e
t of an NMR exper-iment, whi
h is the indu
ed magnetization after an appropriate RF pulse atthe Larmor frequen
y. The maximum magnetization 
orresponds to the so
alled π
2 -pulse and for a double duration the π-pulse with no magnetization.The solutions x(t) and y(t) of equation (3.2.18) have a real and imaginarypart os
illating around the Larmor frequen
y as shown in �gure 3.6 for thereal part of x(t) during the RF pulse.

Figure 3.5: Magnetization of one spin 1

2
versus the duration of the RF pulse.
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70 CHAPTER 3. REVIVING THE NMR APPROACH

Figure 3.6: The real part of x(t).E�e
t of the frequen
y of the RF pulseFigure 3.7 shows the e�e
t of the frequen
y of the RF on the spin magneti-zation.We �nd a well-known fa
t in NMR whi
h is the inversion of the magnetiza-tion when going through the resonan
e frequen
y.

Figure 3.7: Magnetization versus the frequen
y ω of the RF pulse, with theRF amplitude ω1 = 2 · 10−4ω0.
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3.5. CONCLUSION AND PERSPECTIVE 71Initializing the qubitTo initialize the qubit in either the state |0〉 = |+〉 or in the state |1〉 = |−〉we need either maximum positive or maximum negative magnetization. Forsimpli
ity we will assume ω = ω0. A qubit in the state |+〉 should give amagnetization of γ~

2 , while a qubit in the state |−〉 should give a magnetiza-tion of −γ~

2 . These 
onditions are always veri�ed with some period T . Theidea is to �rst observe the system and �nd out what this period is in orderto know when these maximal magnetizations o

ur. At these moments, theevolving logi
al qubit is in the state |0〉. When we want to perform singlequbit operations on one logi
al qubit, then we will wait to perform su
h anoperation until the magnetization is exa
tly maximal. In stead of measur-ing, as we did for initializing the qubit, we pro
eed to perform a single qubitoperation and measure the result only afterwards.3.5 Con
lusion and Perspe
tiveWe have exhibited a framework in whi
h NMR quantum 
omputing on purestates 
an be realized. From an experimental point of view we have shownhow to initialize a qubit into the basi
 states |0〉 or |1〉. This result a
hievesthe �rst of the �ve ne
essary steps. At the moment we are adjusting theexperimental parameter settings in order to obtain a generating set of ele-mentary one qubit gates, whi
h will result in obtaining the se
ond step. Forthe third step we will use magneti
 �eld gradients to distinguish di�erentqubits. This step as well as the fourth step is work in progress. For the �fthstep we need to establish an intera
tion between di�erent qubits. For themoment we have not yet a
hieved a theoreti
al des
ription of this intera
tionHamiltonian. Without su
h a Hamiltonian we 
annot hope to �nd the 
or-re
t parameter settings to a
hieve a CNOT operator. Therefore the 
ru
ialpoint in our approa
h is to a
hieve su
h a theoreti
al des
ription for the in-tera
tion Hamiltonian. We are trying to a
hieve su
h an intera
tion by usinglong-range dipole-dipole intera
tion. This intera
tion is not averaged awayto zero by random thermal motion in liquids, be
ause at a long distan
e thegeometri
al 
onstraints of the sample prevent a 
ompletely random thermalmotion. Whether this long-range dipole-dipole intera
tion is large enoughto serve as intera
tion between qubits is still work in progress.
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Part IISolving Simultaneous PellEquations using QuantumComputation
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S
ien
e never solves a problemwithout 
reating ten more.George Bernard ShawChapter 4Pell equations4.1 Introdu
tionLet d be a positive integer and 
onsider the equation
x2 − dy2 = 1, (4.1.1)where x, y are positive integers. This equation is 
alled the Pell equation,after the English mathemati
ian John Pell, to whom Leonhard Euler mistak-enly attributed a method of solving this type of equations. A �rst trivial ob-servation shows that (x0, y0) = (1, 0) is always a solution of equation (4.1.1)and that if d is a square there 
annot be another solution in positive integers,as for d = q2 we have:

x2 − q2y2 = x2 − (qy)2

= (x+ qy)(x− qy).
(4.1.2)So we have

(x+ qy)(x− qy) = 1, (4.1.3)whi
h implies
x+ qy = 1, (4.1.4a)
x− qy = 1, (4.1.4b)with x, q, y all positive integers. This in turn implies that (x, y) = (1, 0). Sowe 
an assume that d is not a square. If we �nd a non-trivial solution (x1, y1)to equation (4.1.1), then the fra
tion x1

y1
is a good approximation for thesquare root of d:

x

y
=
√

1+dy2

y2

=

√

d+
1

y2
.

(4.1.5)75
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76 CHAPTER 4. PELL EQUATIONSFor example, if d = 2, and x = 17, y = 12, we have
172 − 2 · 122 = 1, (4.1.6a)

17
12 ≈ 1, 4167. (4.1.6b)There are several questions that 
an be asked about Pell equations. Arethere always non-trivial solutions for any integer d that is not a square ?Are there in�nitely many solutions ? How 
an we 
ompute these solutions ?Can we 
ompute these solutions qui
kly for any d ? It is possible to pose morete
hni
al questions about this type of equations, but we will restri
t ourselvesto these simple ones. It is possible to show that for any positive integer d thatis not a square, there are an in�nite number of solutions for equation (4.1.1).Moreover, these solutions have a simple stru
ture, whi
h allows us to �nd allsolutions starting from a fundamental solution. There are several methodsto solve equation (4.1.1), but not every method has the same e�
ien
y forall integers d. We will start by looking at some 
lassi
al solving te
hniques.These in
lude the Indian method and the 
ontinued fra
tion method, whi
hare essentially the same te
hnique in a di�erent form. We pro
eed witha more modern approa
h that 
onsists of 
omputing the regulator of anasso
iated number �eld. This approa
h solves Pell equations more e�
iently,but does not solve it in polynomial time. A quantum approa
h that followsthe modern approa
h, but whi
h uses a quantum algorithm to 
ompute thisregulator does solve the Pell equation in polynomial time.4.2 Classi
al Te
hniques4.2.1 Chakravala MethodThe Indian approa
h to solve the Pell equation is 
alled the Chakravala or
y
li
 method and is based upon the Brahmagupta identity and Bhaskara'slemma :Lemma 4.1 (Brahmagupta's identity). Let a, b, c, d, n be real numbers, thenwe have the following equality:

(a2 + nb2)(c2 + nd2) = (ac− nbd)2 + n(ad+ bc)2 (4.2.1a)
= (ac+ nbd)2 + n(ad− bc)2. (4.2.1b)Proof. The lefthandside of equation (4.2.1a) is equal to:

(a2 + nb2)(c2 + nd2) = a2c2 + n(a2d2 + b2c2) + n2b2d2. (4.2.2)The righthandside of equation (4.2.1a) is equal to:
(ac−nbd)2+n(ad+bc)2 =a2c2−2nacbd+n2b2d2+n(a2d2+2adbc+b2c2)

= a2c2 + n(a2d2 + b2c2) + n2b2d2. (4.2.3)
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4.2. CLASSICAL TECHNIQUES 77The righthandside of equation (4.2.1b) is equal to:
(ac+nbd)2+n(ad−bc)2 =a2c2+2nacbd+n2b2d2+n(a2d2−2adbc+b2c2)

= a2c2 + n(a2d2 + b2c2) + n2b2d2. (4.2.4)Therefore we have equality in both 
ases.Lemma 4.2 (Bhaskara). Let a, b, c, d, e be real numbers, with d not equalto 0. If
a2 = bc2 + d, (4.2.5)then we have the following identity:

b

(

a+ ec

d

)2

+
e2 − b

d
=

(

ea+ bc

d

)2

. (4.2.6)Proof. The lefthandside of equation (4.2.6) is equal to:
b

(

a+ ec

d

)2

+
e2 − b

d
=
b(a2 + 2ace + c2e2)

d2
+
de2 − bd

d2

=
b(bc2 + d+ 2ace+ c2e2) + de2 − bd

d2

=
b2c2 + 2abce+ (bc2 + d)e2

d2

=
b2c2 + 2abce+ a2e2

d2

=

(

bc+ ae

d

)2

.

(4.2.7)
In order to solve the Pell equation

x2 − dy2 = 1, (4.2.8)we use Brahmagupta's identity on the triples (x1, y1, k1) and (x2, y2, k2) thatverify the equation:
x2

1 − dy2
1 = k1, (4.2.9a)

x2
2 − dy2

2 = k2. (4.2.9b)In this manner we obtain a new triple
(x3, y3, k3) = (x1x2 + dy1y2, x1y2 + x2y1, k1k2), (4.2.10)by multipli
ation:

(x2
1 − dy2

1)(x
2
2 − dy2

2) = (x1x2 + dy1y2)
2 − d(x1y2 + x2y1)

2. (4.2.11)
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78 CHAPTER 4. PELL EQUATIONSIn order to solve equation (4.2.8) we start with an arbitrary triplet (x1, y1, k),su
h that
x2

1 − dy2
1 = k, (4.2.12)and GCD(x1, y1) = 1. We multiply this triplet with the trivial triplet

(a, 1, a2 − d), (4.2.13)and we obtain a new triplet (ax1 + dy1, x1 + ay1, k(a
2 − d)

).We use Bhaskara's lemma to obtain the following identity:
(

ax1 + dy1

|k|

)2

− d

(

x1 + ay1

|k|

)2

=
a2 − d

k
. (4.2.14)We 
hoose a, su
h that

x1 + ay1

k
(4.2.15)is an integer and

a2 − d

k
(4.2.16)has the smallest possible absolute value.For this value a we repla
e the triplet (x1, y1, k) by

(x2, y2, k2) =

(

ax1 + dy1

|k| ,
x1 + ay1

|k| ,
a2 − d

k

)

, (4.2.17)and we repeat the pro
edure. Lagrange proved that this pro
ess alwaysterminates with a solution. We give an example with d = 113. Let x1 = 11,
y1 = 1 and k = 8, we have the obvious identity:

112 − 113 × 1 = 8. (4.2.18)So we want to �nd an integer a, su
h that
11 + a

8
(4.2.19)is an integer and

∣

∣

∣

∣

a2 − 113

8

∣

∣

∣

∣

(4.2.20)is minimal. In this 
ase, a = 13, so we obtain the new triplet:
322 − 113 × 32 = 7. (4.2.21)Repeating this pro
ess we �nd the following triplets:
852 − 113 × 82 = −7, (4.2.22a)

2872 − 113 × 272 = −8, (4.2.22b)
7762 − 113 × 732 = −1. (4.2.22
)At this point we 
ould 
ontinue the pro
ess, but instead we take the squareof the last solution, using Brahmagupta's identity to obtain the solution:

12043532 − 113 × 1132962 = 1. (4.2.23)
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4.2. CLASSICAL TECHNIQUES 794.2.2 Continued fra
tion methodThe other 
lassi
al approa
h to solve Pell equations is by using the 
ontinuedfra
tion development of √d. Let a0 =
⌊√

d
⌋, then:

√
d = a0 +

1

a1 +
1. . . +

1

an +
1

2a0

=
[

a0, a1, . . . , an, 2a0

]

.

(4.2.24)
When we 
onsider the periodi
 part of the 
ontinued fra
tion development

x

y
=
[

a0, a1, . . . , an

]

, (4.2.25)then we have that
∣

∣

∣

∣

x

y
−

√
d

∣

∣

∣

∣

<
1

2a0y2
. (4.2.26)From this we 
an easily derive

∣

∣

∣

∣

x2

y2
−

√
d

∣

∣

∣

∣

<
2

y2
, (4.2.27)whi
h leads to

∣

∣x2 − dy2
∣

∣ < 2. (4.2.28)As the lefthand side of the above inequality is an integer and sin
e d is nota square, we immediately dedu
e that
x2 − dy2 = ±1. (4.2.29)Therefore there are two 
ases to 
onsider. If x2−dy2 = 1, we have a solutionto the Pell equation. If x2 − dy2 = −1, then

(x2 − dy2)
2

= (x2 + dy2)
2 − d(2xy)2 = 1. (4.2.30)In that 
ase x′ = x2 + dy2 and y′ = 2xy are a solution of the Pell equation.We try to 
ompute su
h a solution again for the 
ase d = 113. We �nd that

√
113 =

[

10, 1, 1, 1, 2, 2, 1, 1, 1, 20
]

. (4.2.31)This leads to the fra
tion
x

y
=

73

776
, (4.2.32)whi
h gives

7762 − 113 × 732 = −1. (4.2.33)Taking squares at both sides leads to the same solution as the Indian method.
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80 CHAPTER 4. PELL EQUATIONS4.3 Modern Te
hniquesAs Lenstra remarks in his arti
le on the Pell equation [Len02℄, the e�
ien
yof the 
ontinued fra
tion method is 
onje
tured to be exponentially slowfor most values of d and that any method that spells out the smallest so-lution (x0, y0) of the Pell equation in full is exponentially slow for in�nitelymany values of d. One method to improve the algorithm would be to 
on-sider only the square-free part of ea
h integer d, but this only helps a littlebit. In order to build a faster algorithm we need to use the stru
ture of thering Z
[√
d
].Let d be a square-free integer and 
onsider the equation

x2 − dy2 = 1. (4.3.1)If √d 6∈ Q, then for rational numbers a, b, x, y we have that
a+ b

√
d = x+ y

√
d, (4.3.2)if and only if a = x and b = y. It is therefore possible to uniquely en
odethe solution of (4.3.1) as

x+ y
√
d ∈ R. (4.3.3)Conversely we say that σ ∈ R is a solution of (4.3.1), if

σ = s+ t
√
d, (4.3.4)for integers s, t, su
h that

s2 − dt2 = 1. (4.3.5)To solve the Pell equation it su�
es to 
al
ulate the regulator
R = log

(

x1 + y1

√
d
)

, (4.3.6)for whi
h x2
1−dy2

1 = 1 is the smallest solution. For this it su�
es to 
al
ulatethe regulator of Z
[√
d
]. Let
K = Q

[
√
d
]

=
{

u+ v
√
d | u, v ∈ Q

} (4.3.7)be a real quadrati
 number �eld. The order O of dis
riminant d is the subring
O = Z

[

d+
√

d
2

]

=
{

a+ bd+
√

d
2 | a, b ∈ Z

}

⊆ K.
(4.3.8)
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4.4. QUANTUM COMPUTATIONAL TECHNIQUES 81The units of O are of the form ±ǫk, with k ∈ Z. The regulator of O is de�nedas
R = log ǫ, (4.3.9)with ǫ > 1. The regulator satis�es the following inequalities:

log
(

2
√
d
)

< R <
√
d
(

log(4d) + 2
)

. (4.3.10)The modern method to solve the Pell equation uses the above ingredients in
ombination with the notion of power produ
ts. If (x0, y0) is the fundamentalsolution of the Pell equation x2 − dy2 = 1, then a power produ
t notation ofthe solution is a produ
t of the following form:
x0 + y0

√
d =

k
∏

i=1

(

ai + bi
√
d
)ni . (4.3.11)We have the following theorem on the relevan
e of the regulator approa
hto solve Pell equations:Theorem 4.1. There are positive 
onstants C1, C2, su
h that1. For ea
h positive non square integer d, there exists a power produ
t rep-resentation of the fundamental solution of its asso
iated Pell equationwith lenght at most C1

(

log d
)2.2. The problem of 
omputing su
h a power produ
t representation is poly-nomial time equivalent to the problem of 
omputing an integer R̃, su
hthat ∣∣R̃−R

∣

∣ < 1, where R is the regulator of the number �eld Z
[√
d
].3. There exists an algorithm that for given d 
omputes a power produ
trepresentation of the fundamental solution of its asso
iated Pell equa-tion in time at most √R(1 + log d

)C2 .The theorem above gives an algorithm for solving Pell equations that stillhas exponential run time. A more re�ned approa
h whi
h uses smooth num-bers over the number �eld Z
[√
d
] 
an 
ompute an integer approximation toa multiple of the regulator. This leads to a probabilisti
 algorithm that runsin time O(eC√

log d log log d
) under the assumption of the generalized Riemannhypothesis. This approa
h ressembles the quadrati
 sieve for fa
toring inte-gers and has the same run time halfway between exponential and polynomialtime.4.4 Quantum Computational Te
hniquesThe quantum 
omputational approa
h to solve the Pell equation is to 
on-stru
t a periodi
 fun
tion h whi
h has the regulator R as period and to apply
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82 CHAPTER 4. PELL EQUATIONSan extended version of the QFT on this fun
tion to retrieve the period.The produ
t of two subsets I, J ⊆ K is the additive subgroup ofK generatedby the set
{

xy | x ∈ I, y ∈ J
}

. (4.4.1)An invertible O-ideal is a subset I ⊆ K, with OI = I, for whi
h thereexists a subset J ⊆ K with IJ = O. The set of invertible ideals of O forman Abelian group under multipli
ation and will be denoted I. The set ofprin
ipal ideals will be denoted
P = {Oα | α ∈ K} . (4.4.2)This is a subgroup of I. An invertible ideal has the form

{

q
(

Z + −b+
√

d
2a Z

)

| a, b ∈ Z, q ∈ Q, c = b2−d
4a ∈ Z, GCD(a, b, c) = 1

}

.(4.4.3)An ideal is redu
ed if
∣

∣

∣

√
d− 2|a|

∣

∣

∣ < b <
√
d. (4.4.4)The set of all redu
ed ideals is denoted R. This is a �nite set with a group-like stru
ture under multipli
ation. We de�ne the distan
e fun
tion as:

δ : P −→ R/RZ
(

a+ b
√
d
)

O 7−→ 1

2
log
∣

∣

∣

a+b
√

d
a−b

√
d

∣

∣

∣
(mod R).

(4.4.5)The unit ideal has distan
e zero. The 
omposition of two ideals I, J ∈ I isthe produ
t I · J ∈ I. We have
δ(IJ) = δ(I) + δ(J). (4.4.6)Redu
tion is a map

ρ : I −→ I, (4.4.7)su
h that after a polynomial number of steps k an ideal ρk(I) will be in R.For the exa
t formula for the redu
tion we refer to the appendi
es. We 
angive the following bounds
δ(I) +

1√
d
≤ δ
(

ρ(I)
)

≤ δ(I) + log
√
d, (4.4.8a)

δ
(

ρ2(I)
)

> δ (I) + log 2. (4.4.8b)Multipli
ation is a map from the redu
ed ideals to itself, taking as input tworedu
ed ideals I, J , applying the redu
tion ρ repeatedly on IJ , until ρk(IJ)is a redu
ed ideal.Given a rational distan
e x, it is possible to 
al
ulate the ideal with distan
e
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4.4. QUANTUM COMPUTATIONAL TECHNIQUES 83
losest to the left of x. We de�ne this ideal Ix. We 
an now de�ne the 
osetseparating fun
tion
f : R −→ I × R

x 7−→
(

Ix, x− δ(Ix)
)

,
(4.4.9)whi
h is a periodi
 fun
tion with as period the regulator R. Using thisfun
tion f we de�ne a fun
tion f̂ whi
h is suitable for Fourier sampling.Choose an integer N ≥ 2

√
d, then we de�ne the fun
tion f̂ as

f̂ : Z −→ I × Z

i 7−→
(

I i
N
,

⌊

N
( i

N
− δ
(

I i
N

)

)

⌋

)

.
(4.4.10)This fun
tion f̂ is periodi
 with period NR.The �nite set of all prin
ipal fra
tional redu
ed ideals is PIred. This setis 
alled the prin
ipal 
y
le. δ(I) is the distan
e between an ideal I of theprin
ipal 
y
le and the ring of integers O. We de�ne the map h as follows

h : R −→ PIred × R

x 7−→
(

Ix, x̃− δ(Ix)
)

,
(4.4.11)with x̃ ≡ x (mod R) and Ix ∈ PIred the largest ideal in the prin
ipal 
y
lethat veri�es δ(Ix) < x̃. We have the following theorem:Theorem 4.2. The fun
tion h is 
omputable in polynomial time: if x is amultiple of 10−n, then we 
an 
ompute Ix and an approximation of x̃− δ(Ix)with pre
ision 10−n in time poly(logD, log x, n). Moreover, h is a periodi
fun
tion with period R and is one-to-one on every interval smaller than theperiod R.If we know the value of the integer 
losest to the regulator R we 
an turnthis into an algorithm to approximate R with arbitrary pre
ision:Proposition 4.1. If we know the value of

⌈

R
⌋

=
⌊

R+ 1
2

⌋

, (4.4.12)then there exists an algorithm that 
omputes R with pre
ision 10−n in time
poly(n, logD).Suppose we have a fun
tion f : R −→ X, with f(x+R) = f(x). In order tobe able to apply the quantum period �nding algorithm, we need to dis
retize
f by taking multiples of 1

N , with N big enough. If X is 
ontinuous, it needsto be dis
retized as well.
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84 CHAPTER 4. PELL EQUATIONSDe�nition 4.1. For f : R −→ R we de�ne the map f̃N as:
f̃N : Z −→ 1

N
Z

k 7−→
⌊

f( k
N )
⌋

N
,

(4.4.13)where ⌊x⌋N is ⌊Nx⌋
N , and ⌈x⌉N is de�ned likewise.We would like that f̃ 
ontains approximative information about the period

R of f , however if f has a big variation in an interval of 1
N around x = k

N ,then f̃ 
an take arbitrary values. We need a notion of weak periodi
ity.De�nition 4.2. A fun
tion f : Z −→ X is weakly periodi
 with period S∈R,if for all 0 ≤ k ≤ ⌊S⌋ and for all l ∈ Z, either f(k+ ⌈lS⌉
) or f(k+ ⌊lS⌋

) isequal to f(k). We write f(k) = f
(

k + ⌊lS⌉
).We are dis
retizing the fun
tion h:De�nition 4.3. The dis
retized fun
tion of h is de�ned as

h̃N : Z −→ PIred × 1

N
Z

k 7−→
(

I k
N
,
⌈

k
N − δ

(

I k
N

)

⌉

N

)

.
(4.4.14)The following proposition gives a further 
hara
terisation of h̃N :Proposition 4.2. The fun
tion h̃N has the following properties:1. h̃N is one-to-one on [0, ⌊NR⌋].2. h̃N (k) is 
omputable in time O(kc1,N c2 ,Dc3

), so if N, k = O
(

Dc4
),then h̃N (k) is 
omputable in O(Dc5

), where ci are positive 
onstants.3. Let dmin = 3
32D be a lower bound on the distan
es between redu
edideals and σ = log d. If 1

N < dmin

log d , then h̃N is weakly periodi
 withperiod NR. The 
ondition h̃N (k) = h̃N

(

k + ⌊lS⌉
) is veri�ed for all

0 ≤ k ≤ ⌊NR⌋, ex
ept possibly for a small fra
tion of size 1
log d .To build a quantum algorithm that approximates the period of a weaklyperiodi
 fun
tion in polynomial time, we need the following 
onditions:Theorem 4.3. Suppose that f : Z −→ X is weakly periodi
 with period Sand1. f(k) is 
omputable in O((log k)c1 , (log S)c2

),2. f is one-to-one on [0, ⌊S⌋],
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4.4. QUANTUM COMPUTATIONAL TECHNIQUES 853. for m ∈ Z, there exists an algorithm in O((log S)c3
) that tests whether

m is 
lose to a multiple of S: |jS −m| < 1, for an integer j.Then there exists a quantum algorithm in O((log S)c4
) that produ
es an inte-ger a, su
h that |S−a| < 1 with probability larger than O((log S)−c5

), where
ci are positive 
onstants.In order to prove the main theorem that states that there exists a polynomialtime quantum algorithm that solves the Pell equation, we need the followingtwo te
hni
al lemmata:Lemma 4.3. Let S be a real number and let q be the number of qubits inthe QFT register and let q be a power of 2. Let 0 ≤ k ≤ ⌊S⌋ and 0 ≤ l < q

S .If q > 3S2, then
∣

∣

∣

∣

c

d
− k

l

∣

∣

∣

∣

<
1

2l2
, (4.4.15)where

c =

⌊

kq

S

⌉

, d =

⌊

lq

S

⌉

. (4.4.16ab)Lemma 4.4. Let |A| ≤ 1
2 , ξ(l) be an arbitrary number, su
h that |ξ(l)| < 1

n ,where n = O(log p). Then there exists a 
onstant C, su
h that for all psu�
iently large we have
X =

∣

∣

∣

∣

∣

p−1
∑

l=0

e
2πi

“

Al
p +ξ(l)

”

∣

∣

∣

∣

∣

2

≥ Cp2. (4.4.17)With these lemmata, we 
an prove the following theorem:Theorem 4.4. Let d be a square-free positive integer. There exists a quan-tum algorithm that 
omputes the regulator R of Q
[√
d
] with pre
ision 10−nin time O((log d)c1 , nc2

) with probability O((log d)−c3 , n−c4
), if 10−n < dmin

log d ,where ci are positive 
onstants.te
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I just invent, then wait untilman 
omes around to needingwhat I've invented.R. Bu
kminster FullerChapter 5Simultaneous Pell equations5.1 Introdu
tionSimultaneous Pell equations are equations of the form:
x2 − ay2 = 1, (5.1.1a)
z2 − by2 = 1, (5.1.1b)where a, b are positive non-square integers, su
h that their produ
t is nota square either. These equations are a spe
ialized 
ase of the more generalsimultaneous Fermat equations:
x2 − ay2 = c, (5.1.2a)
z2 − by2 = d. (5.1.2b)Several natural questions 
an be posed about these type of equations. Firstof all, where do equations of this type o

ur ? Are there any solutions inpositive integers (x, y, z) ? Are there a �nite number of solutions and if so,how many solutions 
an there be ? Given an expli
it 
ase, 
an we �nd thesolutions ? Are the solutions bounded in any natural way ?We will only deal with some of these questions. We will start with an old
onje
ture on integer sequen
es. Simultaneous Pell equations o

ur in asimpli�ed version of this 
onje
ture. We will give an upper bound of thesmallest solution of equations (5.1.1), if any exists, following an approa
h byAnglin [Ang95℄. We will also reprodu
e a result by Cipu and Mignotte [CM℄that proves that there are at most two solutions in positive integers for anypair of simultaneous Pell equations. We will 
ombine these results withthe polynomial quantum algorithm of Hallgren for a single Pell equationto produ
e a polynomial quantum algorithm that solves simultaneous Pellequations. 87
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88 CHAPTER 5. SIMULTANEOUS PELL EQUATIONS5.2 A 
onje
ture on 5 integersOne of the problems of the Greek mathemati
ian Diophantus was to �ndsets of unequal fra
tions, su
h that the produ
t of any two of its elements isone less than a square. He found the following set of four fra
tions:
{

1

16
,
33

16
,
17

4
,
105

16

}

, (5.2.1)for whi
h we 
an indeed verify:
1

16
× 33

16
=

(

17

16

)2

− 1,
1

16
× 17

4
=

(

9

8

)2

− 1, (5.2.2ab)
1

16
× 105

16
=

(

19

16

)2

− 1,
33

16
× 17

4
=

(

25

8

)2

− 1, (5.2.2
d)
33

16
× 105

16
=

(

61

16

)2

− 1,
17

4
× 105

16
=

(

43

8

)2

− 1. (5.2.2ef)In the seventeenth 
entury, Pierre de Fermat looked for integer solutions tothis type of equations. He found the set
{1, 3, 8, 120} , (5.2.3)for whi
h we have:

1 × 3 = 22 − 1, 1 × 8 = 32 − 1, (5.2.4ab)
1 × 120 = 112 − 1, 3 × 8 = 52 − 1, (5.2.4
d)
3 × 120 = 192 − 1, 8 × 120 = 312 − 1. (5.2.4ef)He tried to extend this set with a �fth integer but failed. Euler extended hisset with a rational number:

{

1, 3, 8, 120,
777480

28792

}

, (5.2.5)but 
ould not �nd a �fth integer either.In 1969, Baker and Davenport proved [BD69℄ that this set 
annot be ex-tended to a �fth integer and that the only possible integer extension of thetriplet 1, 3, 8 is the integer 120. It is this se
ond part that leads to general-ized simultaneous Pell equations. Suppose that we have an integer k, su
hthat {1, 3, 8, k} is a set with produ
ts one less than a square. In that 
ase khas to verify the following equations:
1 × k = x2 − 1, (5.2.6a)
3 × k = y2 − 1, (5.2.6b)
8 × k = z2 − 1. (5.2.6
)
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5.3. AN UPPER BOUND 89By substituting k in the last two equations we obtain
3(x2 − 1) = y2 − 1, (5.2.7a)
8(x2 − 1) = z2 − 1, (5.2.7b)whi
h 
an be written as

3x2 − y2 = 2, (5.2.8a)
8x2 − z2 = 7. (5.2.8b)The question whether there are �ve integers, su
h that the produ
t of anytwo of them is one less than a square remains unanswered for the moment:Conje
ture 5.1. There are no integers a1, . . . , a5, su
h that for i 6= j wehave
aiaj = k2

ij − 1, (5.2.9)where kij are positive integers.For rational numbers a little more is known. Euler already found a set of�ve rational numbers. It is even possible to �nd six rational numbers, su
hthat the produ
t of any two of them is one less than a square of a rationalnumber:
{

11

192
,

35

192
,

155

27
,

512

27
,

1235

48
,

180873

16

}

. (5.2.10)5.3 An upper bound5.3.1 Diophantine ApproximationWe des
ribe the general strategy of diophantine approximation te
hniques.A linear form in logarithms is a form of the type:
Λ = β0 + β1 logα1 + · · · + βn logαn, (5.3.1)where α1, . . . , αn are algebrai
 numbers. Alan Baker obtained a lower boundfor the linear form |Λ| [Bak67℄, whi
h Feldman improved [Fel71℄ with thefollowing theorem:Theorem 5.1 (Feldman). The logarithmi
 form Λ veri�es the inequality:

|Λ| ≥ B−C, (5.3.2)for all algebrai
 numbers β0, . . . , βn with height at most B > 1, where C ise�e
tively 
omputable in terms of the αi and the degree of the βi.
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90 CHAPTER 5. SIMULTANEOUS PELL EQUATIONSFor the 
ase that the numbers βi are integers, su
h that for all i we have that
|βi| ≤ B and the heightH(αi) of every algebrai
 number αi is bounded by Ai,Baker and W¶stholz [BW93℄ improve this lower bound with the followingtheorem:Theorem 5.2 (Baker, W¶stholz). If the linear form Λ 6= 0, then we havethe following lower bound:

log |Λ| > −(16nd)2n+4 logB

n
∏

i=1

logAi, (5.3.3)where d is the degree of the �eld Q(α1, . . . , αn).Suppose we have a system of equations for whi
h we want to obtain an upperbound for the solutions. This 
an be a
hieved by the previous theorems andthe following strategy.1. Redu
e the equations if ne
essary to su
h equations for whi
h Baker'stheory 
an be applied.2. Redu
e these new equations to inequalities of the form
0 <

∣

∣

∣αb1
1 · · ·αbn

n − αn+1

∣

∣

∣ < c1e
−c2B, (5.3.4)where α1, . . . , αn+1 are algebrai
 numbers, b1, . . . , bn are unknown ra-tional integers, B = max

(

|bi|
) and c1, c2 are positive 
onstants thatare independent of the integers bi and 
an be e�e
tively 
omputed. Ifthe bound B is large, then the inequalites (5.3.4) imply that

|Λ| ≤ c3e
−c2B , (5.3.5)where the linear form

Λ = b1 log α1 + · · · + bn log αn − logαn+1, (5.3.6)and c3 is a positive 
onstant that 
an be e�e
tively 
omputed.3. The 
ru
ial step in the general strategy is to apply Baker's theoremwhi
h gives an inequality
|Λ| ≥ e−c4B, (5.3.7)where c4 is a positive 
onstant that 
an be e�e
tively 
omputed. Whenwe put these two inequalities together we obtain:

e−c4B ≤ |Λ| ≤ c3e
−c2B , (5.3.8)whi
h in turn leads to an expli
it upper bound B0 for B.
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5.3. AN UPPER BOUND 914. We redu
e this upper bound B0, whi
h is usually very big, to a mu
hsmaller upper bound B1, by using 
ontinued fra
tion te
hniques, Dav-enport's lemma or the LLL-redu
tion algorithm, depending on whetherthe linear form is either in two, three or more than three logarithms.5. From this upper bound B1 we dedu
e an upper bound for the unknownsin the original equations.6. Using sear
h te
hniques and properties of the initial equations we de-termine all possible solutions.Davenport's Lemma and LLL-redu
tionThe lemma of Davenport is a result proved by Baker and Davenport [BD69℄,that 
an be applied to linear forms in three logarithms to show that a 
ertaingap must exist between solutions of 
ertain equations. In its original form itis given as follows:Lemma 5.1 (Baker-Davenport). Let K,M > 6, p, q be positive integerssatisfying the following inequalities:
1 ≤ q ≤ KM, (5.3.9a)

∣

∣θq − p
∣

∣ ≤ 2

KM
, (5.3.9b)

∥

∥qβ
∥

∥ ≥ 3

K
, (5.3.9
)where θ, β are irrational numbers and ‖z‖ is the distan
e of a real number zto its nearest integer, that is ‖z‖ =

∣

∣z −
⌊

z + 1
2

⌋ ∣

∣. Then the inequality
∣

∣mθ + n− β
∣

∣ ≤ c−m, (5.3.10)has no solution in integers (m,n) in the range
logK2M

log c
< m < M. (5.3.11)For LLL-redu
tion te
hniques we follow Cohen's des
ription on latti
es andredu
tion [Coh96℄.De�nition 5.1. Let K be a �eld of 
hara
teristi
 di�erent from 2 and let

V be a K-ve
tor spa
e. A map q from V to K is a quadrati
 form if thefollowing 
onditions are satis�ed:1. For every λ ∈ K and x ∈ V we have:
q(λ · x) = λ2q(x). (5.3.12)
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92 CHAPTER 5. SIMULTANEOUS PELL EQUATIONS2. Let the fun
tion b(x, y) be de�ned by
b(x, y) =

1

2

(

q(x+ y) − q(x) − q(y)
)

. (5.3.13)Then b is a symmetri
 bilinear form.We have the obvious identity
b(x, x) = q(x). (5.3.14)If K = R, and if for all x ∈ V we have q(x) > 0, we say that q is positivede�nite.De�nition 5.2. A latti
e L is a free Z-module of �nite rank together witha positive de�nite quadrati
 form q on L ⊗ R.Let (bi)1≤i≤n

be a Z-basis for L. If
x =

∑

1≤i≤n

xibi ∈ L, (5.3.15)with xi ∈ Z, then we have that
q(x) =

∑

1≤i,j≤n

qi,jxixj , (5.3.16)where qi,j = b(bi, bj). The matrix Q =
(

qi,j
)

1≤i,j≤n
is a positive de�nitesymmetri
 matrix that veri�es

b(x, y) = Y TQX, (5.3.17)where X,Y are the 
olumn ve
tors of the 
oordinates of x and y. As Q ispositive de�nite, we have that the determinant detQ > 0. The determinant
d(L) of the latti
e L is de�ned as

d(L) =
√

detQ. (5.3.18)A latti
e L 
an also be 
onsidered as a dis
rete subgroup of rank n of theEu
lidean ve
tor spa
e L⊗R. If (bi)1≤i≤n
is a Z-basis for L, then the matrixof s
alar produ
ts

Q =
(

bi · bj
)

1≤i≤n
(5.3.19)is 
alled the Gram matrix of the ve
tors bi. We have the following theorem:Theorem 5.3. If Q is the matrix of a positive de�nite quadrati
 form, then

Q is the Gram matrix of some latti
e basis. Moreover, the Gram matrix ofa latti
e basis (bi)1≤i≤n
determines that basis uniquely up to isometry.
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5.3. AN UPPER BOUND 93The existen
e of an orthonormal basis in a Eu
lidean ve
tor spa
e is provedby the Gram-S
hmidt orthonormalization pro
edure. For the nomalizationpart of this pro
edure, square roots need to be taken, but the orthogonali-sation pro
edure works just as well without:Theorem 5.4. Let (bi)1≤i≤n
be a basis of a Eu
lidean ve
tor spa
e E. De�ne
b∗i = bi −

i−1
∑

j=1

µi,jb
∗
j , (5.3.20)where

µi,j =
bi · b∗j
b∗j · b∗j

. (5.3.21)Then the (b∗i )1≤i≤n
form an orthogonal but not ne
essarily orthonormal basisof E. We have the following equality for the determinant of the latti
e:

d(L) =
∏

1≤i≤n

∥

∥b∗i
∥

∥

2
. (5.3.22)The following inequality is a 
orollary of this theorem:Corollary 5.1 (Hadamard's inequality). Let (L, q) be a latti
e of determi-nant d(L), let (bi)1≤i≤n

be a Z-basis for L, then
d(L) ≤

n
∏

i=1

√

q(bi, bi). (5.3.23)Amongst all the Z-bases of a latti
e L, some are better than others. Thebases whose elements are the shortest are 
alled redu
ed bases. We 
an thinkof a redu
ed basis as of a basis that is almost orthogonal. A basis is 
alledLLL-redu
ed (for A. K. Lenstra, H. W. Lenstra and L. Lovász) [LLL82℄ ifthe following 
onditions are satis�ed:1. The real numbers µi,j all verify the inequality ∣∣µi,j

∣

∣ ≤ 1
2 .2. For all 1 ≤ i ≤ n we have the following inequality:

∣

∣b∗i + µi,i−1b
∗
i−1

∣

∣

2 ≥ 3
4

∣

∣b∗i−1

∣

∣

2
, (5.3.24)where the norm of a ve
tor is de�ned as |bi| =
√

q(bi, bi).We have the following theorem:
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94 CHAPTER 5. SIMULTANEOUS PELL EQUATIONSTheorem 5.5. Let (bi)1≤i≤n
be an LLL-redu
ed basis of a latti
e L, thenthe following inequalities are satis�ed:

d(L) ≤
n
∏

i=1

∣

∣bi
∣

∣ ≤ 2
n(n−1)

4 d(L), (5.3.25a)
∣

∣bj
∣

∣ ≤ 2
i−1
2
∣

∣b∗i
∣

∣, if 1 ≤ j ≤ i ≤ n, (5.3.25b)
∣

∣b1
∣

∣ ≤ 2
n−1

4 n
√

d(L). (5.3.25
)We also have for any linear independent ve
tors x1, . . . , xt ∈ L, that
∣

∣bj
∣

∣ ≤ 2
n−1

2 max
(

|x1|, . . . , |xt|
)

, with 1 ≤ j ≤ t. (5.3.26)We 
an apply LLL-redu
tion to redu
e the upper bound B0 for linear formsin logarithms. This is done in the following manner. Let
0 <

∣

∣b1α1 + · · · + bnαn + α
∣

∣ < c3e
−c2B . (5.3.27)Let L be the latti
e in Rn+1 spanned by the 
olumn ve
tors of















1 0 · · · 0 0
0 1 · · · 0 0... . . . ... ...
0 1 0

Cα1 Cα2 · · · Cαn Cα















, (5.3.28)where C is a 
onstant. Let e1 be the �rst basis ve
tor of the LLL-redu
edbasis of the latti
e L. We then have the following inequality:
|e1|2 ≤ 2n|x|2, (5.3.29)for all ve
tors x ∈ L. If we 
hoose the 
onstant C, su
h that

|e1| ≥
√

(n+ 2)2nB0, (5.3.30)then we obtain the following inequality:
B ≤ log c3C − logB0

c2
= B1. (5.3.31)This redu
es the upper bound B0 to approximately logB0.5.3.2 Upper bound for smallest solutionWe want to �nd an upper bound for the system (5.1.1). Let (x0, y0) be thesmallest solution in positive integers of equation (5.1.1a) and (z′0, y

′
0) that ofequation (5.1.1b). Consider the algebrai
 numbers

R = x0 + y0
√
a, (5.3.32a)

R′ = z′0 + y′0
√
b. (5.3.32b)
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5.3. AN UPPER BOUND 95whi
h have minimal polynomials
X2 − 2x0X + 1, (5.3.33a)
X2 − 2z′0X + 1. (5.3.33b)The 
lassi
al height H(α) of an algebrai
 number α is de�ned as the max-imum of the absolute values of the 
oe�
ients of its minimal polynomialin Z[X] with the greatest 
ommon divisor of these 
oe�
ients being 1. There-fore the height of R is 2x0. For pra
ti
al purposes we are going to assumethat a, b < 1000, so that H(R) < 4 · 1037. This o

urs for a = 661. Considerthe polynomial

p(x) =
4
∏

i1

(X −Ei), (5.3.34)where the algebrai
 numbers Ei are de�ned as follows:
E1 =

(x0 + y0
√
a)
√
b

(z′0 + y′0
√
b)
√
a
, E2 = −(x0 − y0

√
a)
√
b

(z′0 + y′0
√
b)
√
a
, (5.3.35ab)

E3 = −(x0 + y0
√
a)
√
b

(z′0 − y′0
√
b)
√
a
, E4 =

(x0 − y0
√
a)
√
b

(z′0 − y′0
√
b)
√
a
. (5.3.35
d)The polynomial p(x) 
an be written as

p(x) =
1

a2

(

a2x4 + 4a2by0y
′
0x

3 − 2ab(1 + 2ay2
0 + 2by′20 )x2 + 4ab2y0y

′
0x+ b2

)

.(5.3.36)None of the linear polynomial fa
tors of p(x) is in Q[x], therefore E1 doesnot have degree 1 or 3. The height of E1 is easily bounded by 1086. We havetherefore the following upperbounds:
(

1 + logH(R)
)

,
(

1 + logH(R′)
)

,
(

1 + logH(E1)
)

, logR, logR′, log|E1| < 200.(5.3.37)All solutions of equation (5.1.1a) are given by:
xm =

(x0 + y0
√
a)m+1 + (x0 − y0

√
a)m+1

2
, (5.3.38a)

ym =
(x0 + y0

√
a)m+1 − (x0 − y0

√
a)m+1

2
√
a

. (5.3.38b)and likewise for equation (5.1.1b):
z′n =

(z′0 + y′0
√
b)n+1 + (z′0 − y′0

√
b)n+1

2
, (5.3.39a)

y′n =
(z′0 + y′0

√
b)n+1 − (z′0 − y′0

√
b)n+1

2
√
b

. (5.3.39b)
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96 CHAPTER 5. SIMULTANEOUS PELL EQUATIONSSo to solve simultaneous Pell equations it is su�
ient to �nd all (m,n), su
hthat
ym = y′n. (5.3.40)We have the re
urren
e relations:

ym+2 = 2x0ym+1 − ym, (5.3.41a)
y′n+2 = 2z′0y

′
n+1 − y′n. (5.3.41b)So provided we know y0, y

′
0 it is relatively straightforward to 
he
k whetherthere is a solution with m,n < 100. An upper bound to the smallest solutionwill tell us upto whi
h value we need to 
ompute (m,n) to be sure that thereare no solutions. Let
P =

(x0 + y0
√
a)m+1

√
a

, (5.3.42a)
Q =

(z′0 + y′0
√
b)n+1

√
b

. (5.3.42b)Then we have that
1

P
= (x0 − y0

√
a)m+1√a, (5.3.43a)

1

Q
= (z′0 − y′0

√
b)n+1

√
b. (5.3.43b)The smallest possible value for (x0 + y0

√
a) is c = 2 +

√
3. We obviouslyhave the inequalities:

P > cm−1, (5.3.44a)
Q > cn−1. (5.3.44b)We also have the relation
P

Q
=
E1R

m

R′n . (5.3.45)The 
ase of equality ym = y′n 
an only happen if
P − 1

aP
= Q− 1

bQ
. (5.3.46)Suppose that P > Q. Then if there is a solution we have:

P

Q
− 1 =

1

aPQ
− 1

bQ2

<
1000

PQ

<
1000

cm−1cn−1

< c−max{m,n}.

(5.3.47)

te
l-0

05
34

86
4,

 v
er

si
on

 1
 - 

12
 N

ov
 2

01
0



5.4. FINITE NUMBER OF SOLUTIONS 97It therefore follows that
0 <

∣

∣

∣

∣

log
P

Q

∣

∣

∣

∣

< c−max{m,n}. (5.3.48)A similar argument for the 
ase P < Q leads to the same inequality andtherefore, assuming m,n ≥ 10, we have
0 <

∣

∣

∣

∣

log
E1R

m

R′n

∣

∣

∣

∣

< c−max{m,n}, (5.3.49)whi
h 
an also be written as
0 < |m logR− n logR′ + logE1| < c−max{m,n}. (5.3.50)To this linear form Λ in three logarithms we apply Baker's theory and Dav-enport's lemma. The logarithm of the algebrai
 numbers R,R′, E1 as wellas the logarithm of their heights are all bounded by 200, so we 
an usetheorem 5.2 and we obtain the following estimate:

−21012003
(

max(logm, log n) + 11
)

11 < log |Λ| < c−max{m,n}, (5.3.51)whi
h results in the inequality
max(m,n) < 1041. (5.3.52)To this upper bound we apply Davenport's lemma, where we set:

θ =
logR

logR′ , (5.3.53a)
β = − logE1

logR′ , (5.3.53b)
M = 1041. (5.3.53
)This will result in the inequality in m:

max(m,n) < 83. (5.3.54)This is su�
ient as an upper bound for the smallest solution even if a se
-ond appli
ation of Davenport's lemma would redu
e this upper bound evenfurther.5.4 Finite Number of Solutions5.4.1 Introdu
tionWe will highlight some elements of the proof of Cipu and Mignotte [CM℄that the system
x2 − az2 = 1, (5.4.1a)
y2 − bz2 = 1, (5.4.1b)
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98 CHAPTER 5. SIMULTANEOUS PELL EQUATIONShas at most two distin
t solutions in positive integers x, y, z.It is interesting to note that there exist families of integers (a, b), su
h thatthe system (5.4.1) has two positive solutions.Let 1 < l,m be positive integers and de�ne the following quantities:
α = m+

√

m2 − 1, (5.4.2a)
n(l,m) =

α2l − α−2l

4
√
m2 − 1

. (5.4.2b)Then the simultaneous Pell equations of the family (a, b), su
h that
a = m2 − 1, (5.4.3a)
b = n(l,m)2 − 1, (5.4.3b)have the following two solutions in positive integers:

(x0, y0, z0) =
(

m,n(l,m), 1
)

, (5.4.4a)
(x1, y1, z1) =

(

α2l+α−2l

2 , 2n(l,m)2 − 1, 2n(l,m)
)

. (5.4.4b)An earlier result by Yuan [Yua02℄ showed that there are at most �nitelymany 
ases of simultaneous Pell equations with three solutions:Theorem 5.6 (Yuan). If max(a, b) ≥ 1.4 · 1057, then the system (5.4.1) hasat most two distin
t solutions in positive integers.Cipu and Mignotte prove that the system (5.4.1) have at most two solutionsin positive integers x, y, z, if a < b are distin
t positive integers, removingthese �nitely many ex
eptions. The basi
 idea of the proof is a three stepapproa
h. First it is shown that any system of simultaneous Pell equations
an be transformed to another system of simultaneous Pell equations withthe same number of solutions. The new system has 
oe�
ients a, b of aspe
ial type so that it is straightforward to �nd the smallest solution x0, y0, z0of the system. The se
ond step 
reates a linear form in three logarithmsfrom this smallest solution and two hypotheti
al bigger solutions x1, y1, z1and x2, y2, z2. Baker's theory on these kind of forms results in an upperbound for the biggest of these two solutions. The last step is a gap prin
iplethat shows that the distan
e y2 − y1 must ne
essarily ex
eed some kind oflower bound. It will turn out that this lower bound will 
on�i
t with theupper bound 
onstraint from the se
ond step. Hen
e there 
an be no systemof simultaneous Pell equations with three distin
t solutions.5.4.2 Transforming the equationsWe want to transform the system (5.4.1) to a system of equations with anobvious smallest solution. We need to show that this transformation doesnot redu
e the number of solutions. To do so we need to prove the followinglemma:
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5.4. FINITE NUMBER OF SOLUTIONS 99Lemma 5.2. Suppose that the system (5.4.1) has at least one solution inpositive integers. Let z0 be the smallest positive value taken by the third
omponent of a solution (x, y, z). Then for any solution (xi, yi, zi) of (5.4.1),
zi is a multiple of z0.This lemma implies that if (x0, y0, z0) is the solution of (5.4.1) with minimalthird 
omponent, then this system has as many positive integral solutionsas the system

u2 − (x2
0 − 1)v2 = 1, (5.4.5a)

w2 − (y2
0 − 1)v2 = 1. (5.4.5b)So we will 
onsider from now on that

a = m2 − 1, (5.4.6a)
b = n2 − 1, (5.4.6b)for integers n > m ≥ 2. We set

α = m+
√

m2 − 1, (5.4.7a)
β = n+

√

n2 − 1. (5.4.7b)Let (x, y, z) be a positive integer solution of (5.4.1). Then z = Uj = U ′
k,where

Uj =
αj − α−j

2
√
a

, (5.4.8a)
U ′

k =
βk − β−k

2
√
b

, (5.4.8b)with j, k positive integers.5.4.3 Linear form in three logarithmsWe will build a linear form on logarithms that depend on α, β. We �rstobserve the following inequality:
αj < βk <

√

b

a
αj , (5.4.9)whi
h follows from the fa
t that m < n, and that the map x 7−→ x − 1

x isin
reasing for positive x, and the fa
t that
αj − α−j

2
√
a

=
βk − β−k

2
√
b

. (5.4.10)
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100 CHAPTER 5. SIMULTANEOUS PELL EQUATIONSAnother useful pair of inequalities is the following:
(

1 +
4

5a2

)

β2

α2
<
b

a
<

(

1 +
1

2a

)

β2

α2
, (5.4.11)whi
h 
an easily be derived from the fa
t that a ≥ 3, b ≥ a+ 5 and the fa
tthat

2x+ 1 − 1

4x
< 2
√

x2 + x < 2x+ 1, (5.4.12)for positive x. From the inequalities (5.4.9) and (5.4.11) we obtain the fol-lowing inequality in α, β:
βk−1 <

(

1 +
1

4a

)

αj−1. (5.4.13)We have the following lemma:Lemma 5.3. Let (x, y, z) be a solution of the system (5.4.1). If z = Uj = U ′
k,with j > k, then j and k have the same parity. Moreover, if j = k + 2, then

k is even.This is easily proven by using the re
urren
e sequen
es and by inspe
tion forthe spe
ial 
ase j = k + 2. We also have a double bound on Ut:Lemma 5.4. For any t ≥ 2, we have the inequalities:
αt < Ut+1 < (2m)t. (5.4.14)As a 
onsequen
e, we have
⌊

U
1
t

t+1

⌋

= 2m− 1. (5.4.15)This leads to the following 
orollary:Corollary 5.2. If Uj = U ′
k, then

(j − 1) log α < (k − 1) log 2n. (5.4.16)We 
onsider the linear form in three logarithms:
Λ =

1

2
log

b

a
+ j log α− k log β. (5.4.17)This form is bounded from above by

Λ < − log(1 − α−2j) <
α2−2j

α2 − 1
. (5.4.18)From this inequality we obtain

log Λ < −2j log α+ log

(

α2−2j

α2 − 1

)

< −2j log α+ 0.075. (5.4.19)
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5.4. FINITE NUMBER OF SOLUTIONS 1015.4.4 Gap prin
iplesSuppose that the system (5.4.1) has at least three solutions (xi, yi, zi). Wehave
zi =

αji − α−ji

2
√
a

=
βki − β−ki

2
√
b

,

(5.4.20)for integers 1 = j1 < j2 < j3 and 1 = k1 < k2 < k3. The goal of this se
tionis to prove that if su
h a solution exists, then the gap between k2 and k3must be rather large. So large in fa
t, that it will 
reate a 
ontradi
tion withthe upper bound found for k3 in the previous se
tion. Yuan [Yua02℄ provesthe following lemma:Lemma 5.5 (Yuan). There exist integers qj, qk ≥ 2 and σj , σk ∈ {−1, 0, 1},su
h that
j3 = qjj2 + σj, (5.4.21a)
k3 = qkk2 + σk, (5.4.21b)

qjσj ≡ qkσk ≡ 0 (mod 2). (5.4.21
)Cipu and Mignotte improve this lemma to obtain the following result:Lemma 5.6. With the above notations, we have the equality
σj = σk, (5.4.22)and the inequalities
qj > qk, (5.4.23a)

mqj < nqk. (5.4.23b)So from here on, we drop the indi
es for σ. Using these lemmata, Mignotteand Cipu prove the following proposition, whi
h gives the desired gap prin-
iple:Proposition 5.1 (Cipu-Mignotte). We have the following lower bound forthe integer j3:
j3 >































1.99 j2 β
2
3 , if k2 = 2, k3 is odd, β > 8000 and l = 2,

1.99 j2 β
4
5 , if k2 = 2, k3 is odd, β > 8000 and l ≥ 3,

2.81 j2 β
k2−2

2 , if k2 > 2 is even,
3.96 j2 β

k2−3
2 , if k2 > 2 is odd, (5.4.24)where n = n(l,m), for some integers l,m > 1.
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102 CHAPTER 5. SIMULTANEOUS PELL EQUATIONSUsing this gap prin
iple together with a lower bound for linear forms in loga-rithms of three algebrai
 numbers from Matveev [Mat00℄, Cipu and Mignotteobtain the fa
t that for
max(a, b) ≥ 2.26 · 1049, (5.4.25)the simultaneous Pell equations have at most two solutions. This upperbound is now used as input in a theorem of Mignotte [Mig04, BMS06℄ toobtain a tighter lower bound for linear forms in logarithms of three algebrai
numbers. This redu
es the above upper bound so that for:
max(a, b) ≥ 1.2 · 1038. (5.4.26)the simultaneous Pell equations have at most two solutions. From that pointon Cipu and Mignotte distinguish two 
ases.In the 
ase that the solution (x2, y2, z2) veri�es

z2 = 2n, (5.4.27)an expli
it 
omputation using te
hniques from 
omputational Diophantineapproximation theory allows them to verify that there are only two solutions.In the 
ase that z2 is a higher power of the fundamental solution, they 
oulduse mu
h tighter bounds whi
h allow them to eliminate this 
ase as well.Therefore a pair of simultaneous Pell equations has at most two solutions.We end this se
tion with an as of yet unproven 
onje
ture of Yuan [Yua04℄.Conje
ture 5.2 (Yuan). The equations:
x2 − az2 = 1, (5.4.28a)
y2 − bz2 = 1, (5.4.28b)have at most one solution in positive integers, unless

ac2 = m2 − 1, (5.4.29a)
bd2 = n(l,m)2 − 1, (5.4.29b)where c, d are positive integers, in whi
h 
ase these equations have exa
tlytwo solutions in positive integers.5.5 Quantum algorithm for simultaneousPell equationsWe extend Hallgren's result for single Pell equations, by giving a polynomialtime quantum algorithm that solves simultaneous Pell equations. This algo-rithm uses Hallgren's algorithm as a subroutine.Suppose we want to solve the pair of simultaneous Pell equations
x2 − az2 = 1, (5.5.1a)
y2 − bz2 = 1, (5.5.1b)
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5.5. QUANTUM ALGORITHM 103in polynomial time. That is to say, in a time O (max(log a, log b)k
). We havethe following ingredients:1. A polynomial time quantum algorithm that 
omputes the regulator Rof Q

[√
d
] with pre
ision 10−n in time O((log d)c1 , nc2

) with probability
O
(

(log d)−c3 , n−c4
), if 10−n < dmin

log d , where ci are positive 
onstants.2. A polynomial time 
lassi
al algorithm that 
omputes a power produ
trepresentation of the fundamental solution of the Pell equation froman integer R̃, su
h that ∣∣R̃ − R
∣

∣ < 1, where R is the regulator of thenumber �eld Q
[√
d
].3. An upper bound for the smallest solution of a pair of simultaneousPell equations. This upper bound is given as max(m,n) ≤ 83, where

m,n are the powers to whi
h the fundamental solutions of the simul-taneous Pell equations need to be raised. We have some remarks forthis value 83. When we followed Anglin's approa
h to obtain an up-per bound, we restri
ted ourselves to max(a, b) ≤ 1000. On the otherhand, the upper bound is a dire
t result of the worst-
ase s
enario forone spe
i�
 fundamental solution, the 
ase of d = 661. So this upperbound will only grow every time that we hit upon a new worst-
ases
enario for a 
ertain d′ > 661.A se
ond point to note is that we already indi
ated that this upperbound of 83 
ould be improved by running Davenport's lemma againwith this new upper bound.So how do we pro
eed ? We use Hallgren's algorithm to obtain the regulatorsof both of the Pell equations. This 
an be done on a quantum 
omputer inpolynomial time. From these regulators we obtain power produ
t represen-tations of the fundamental solutions:
x2

0 − az2
0 = 1,

x0 + z0
√
a =

t
∏

i=1

(

ai + bi
√
a
)ni ,

(5.5.2a)
x′0

2 − bz′0
2

= 1,

x′0 + z′0
√
b =

t′
∏

i=1

(

a′i + b′i
√
b
)n′

i ,
(5.5.2b)where ai, a

′
i, bi, b

′
i are rational numbers and ni, n

′
i are integers. We do notuse this power produ
t representation dire
tly, but we will need it in the endto 
ompute z. We try to �nd powers m,n, su
h that zm = z′n, where

xm + zm
√
a =

(

x0 + z0
√
a
)m
, (5.5.3a)

yn + z′n
√
b =

(

y0 + z′0
√
b
)n
. (5.5.3b)
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104 CHAPTER 5. SIMULTANEOUS PELL EQUATIONSWe 
an derive the following relations from the regulators:
log zm = mRa + log 2√

a
, (5.5.4a)

log z′n = nRb + log 2√
b
. (5.5.4b)In 
ase of equality zm = z′n we have

nRb −mRa = log
√

b√
a
. (5.5.5)So for all positive integers m,n < 83, we test the above equation. This 
anbe done by �xing m and solving the equality for n. If for a pair (m0, n0) wehave equality, then

zm0
= z′n0

. (5.5.6)We now use the power produ
t representation for the smallest solution toobtain a des
ription of this smallest solution as a di�eren
e of power produ
trepresentations:
zm0

=
1

2
√
a

(

t
∏

i=1

(

ai + bi
√
a
)m0ni −

t
∏

i=1

(

ai − bi
√
a
)m0ni

)

. (5.5.7)If we do not �nd an equality before running out of bounds, then the simul-taneous Pell equations do not have a solution in positive integers. The 
aseof two solutions follows essentially the same s
heme. First we �lter out theobvious 
ases of two solutions, that is the 
ases where
ac2 = m2 − 1, (5.5.8a)
bd2 = n(l,m)2 − 1, (5.5.8b)with c, d positive integers. For the other 
ases, Yuan 
onje
tured [Yua04℄that there 
annot be two di�erent solutions in positive integers. While we
annot prove this 
onje
ture, we 
an test it. The idea is to obtain a similarbound for max(m,n), but now for the se
ond smallest solution. From thatpoint on we repeat the above pro
edure, expe
ting to run out of boundsbefore �nding a se
ond solution.5.6 Con
lusion and Perspe
tiveWe have exhibited a polynomial time quantum algorithm with polynomialtime 
lassi
al postpro
essing that �nds solutions to simultaneous Pell equa-tions. The key ingredients to this algorithm are Hallgren's algorithm that
omputes the regulator of a number �eld in polynomial time on a quantum
omputer and the upper bound on smallest solutions of simultaneous Pell
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5.6. CONCLUSION AND PERSPECTIVE 105equations obtained by Anglin. A 
ombination of these two results gives theabove algorithm. It is natural to wonder whether this pro
edure 
an be ex-tended to other types of equations. A natural extension would be to try tosolve the pair of simultaneous Fermat equations:
Ax2 −Bz2 = C, (5.6.1a)
Dy2 − Ez2 = F, (5.6.1b)with the usual 
onditions on A,B,C,D,E, F in order to prevent havingequivalent equations. Anglin [Ang95℄ gives an upper bound for the smallestsolution of this type of equations in the spe
ial 
ase B = E = 1. To extendthe above algorithm we also need to have a fast method to solve the individualequations and a fast method to test for equality of individual solutions. Wealso need a small bound for subsequent solutions and a proof that there areonly a limited number of solutions. It seems probable that any type of pairof equations where these four 
onditions are met 
an be solved in polynomialtime on a quantum 
omputer.
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Get your fa
ts �rst, then you
an distort them as you please.Mark TwainAppendix AKrone
ker produ
t and sumLet A be an m×n-matrix and B a p×q matrix. Then the Krone
ker produ
t
A⊗B (A.1)is an mp× nq matrix with the following 
oe�
ients:

A⊗B =







a11B · · · a1nB... . . . ...
am1B · · · amnB






. (A.2)The Krone
ker produ
t is a spe
ial 
ase of the tensor produ
t and thereforehas the following properties:

A⊗ (B + C) = A⊗B +A⊗ C, (A.3a)
(A+B) ⊗ C = A⊗ C +B ⊗ C, (A.3b)

(kA) ⊗B = A⊗ (kB) = k(A⊗B), (A.3
)
A⊗ (B ⊗ C) = (A⊗B) ⊗ C, (A.3d)where A,B,C are matri
es and k a s
alar. The Krone
ker produ
t is not
ommutative in general. We have the following useful result:Lemma A.1. Let A,B,C,D be matri
es, su
h that the multipli
ation A⊗Bby C ⊗D is well de�ned. We have the following identity:

(A⊗B) · (C ⊗D) = (AC ⊗BD). (A.4)As a 
onsequen
e we have the following 
orollary:Corollary A.1. The matrix A ⊗B is invertible if and only if the matri
es
A and B are invertible. In that 
ase we have

(A⊗B)−1 = A−1 ⊗B−1. (A.5)107
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108 APPENDIX A. KRONECKER PRODUCT AND SUMFor the eigenvalues and eigenve
tors of the Krone
ker produ
t we have thefollowing theorem:Theorem A.1. Let A be an m×m matrix with eigenvalues λ1, . . . , λm andlet B be an n × n matrix with eigenvalues µ1, . . . , µn. Then the eigenvaluesof A⊗B are given by λiµj .If x1, . . . , xm are linearly independent eigenve
tors of A, where the eigenve
-tor xi 
orresponds to the eigenvalue λi and x′1, . . . , x′n linearly independenteigenve
tors of B, where the eigenve
tor x′j 
orresponds to the eigenvalue µj,then xi⊗x′j are linearly independent eigenve
tors of A⊗B with 
orrespondingeigenvalues λiµj.From this result we 
an derive the tra
e and determinant of the Krone
kerprodu
t:Corollary A.2. Let A be an m×m matrix and B an n× n matrix. Then
Tr(A⊗B) = TrATrB = Tr(B ⊗A), (A.6a)

det(A⊗B) = (detA)n(detB)m = det(B ⊗A). (A.6b)Let A be an m×m matrix and B an n×n matrix. Then the Krone
ker sumof A and B is de�ned as follows:
A⊕K B = A⊗ In + Im ⊗B. (A.7)The Krone
ker sum of matri
es is non-
ommutative in general, that is

A⊕K B 6= B ⊕K A (A.8)We have the following theorem regarding the eigenvalues and eigenve
tors ofthe Krone
ker sum of matri
es:Theorem A.2. Let A be an m×m matrix with eigenvalues λ1, . . . , λm andlet B be an n × n matrix with eigenvalues µ1, . . . , µn. Then the eigenvaluesof A⊕K B are given by λi + µj.If x1, . . . , xm are linearly independent eigenve
tors of A, where the eigenve
-tor xi 
orresponds to the eigenvalue λi and x′1, . . . , x′n linearly independenteigenve
tors of B, where the eigenve
tor x′j 
orresponds to the eigenvalue µj,then xi⊗x′j are linearly independent eigenve
tors of A⊕KB with 
orrespond-ing eigenvalues λiµj.Let both A and B be n× n matri
es. We then have the following identity:
eA⊕KB = eA ⊗ eB . (A.9)There is a straightforward generalization to a Krone
ker sum of n matri
es:

A1 ⊕K · · · ⊕K An = A1 ⊗ · · · ⊗ I + · · · + I ⊗ · · · ⊗An. (A.10)We have the same relation for the exponential:
eA1⊕K ···⊕KAn = eA1 ⊗ · · · ⊗ eAn . (A.11)
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Imagination will often 
arry usto worlds that never were. Butwithout it we go nowhere.Carl SaganAppendix BContinued Fra
tionsContinued fra
tions are used to give good rational approximations of irra-tional numbers.We �rst de�ne a sequen
e of fun
tions.Let a1, . . . , an be real numbers and a1 ≥ 1.De�ne the sequen
es (fi

)

i
,
(

gi

)

i
, by

f−1 = 0, f0 = 1,

fn+1 = an+1fn(a1, . . . , an) + fn−1(a1, . . . , an−1),
(B.1a)

g−1 = 1, g0 = 0,

gn+1 = an+1gn(a1, . . . , an) + gn−1(a1, . . . , an−1).
(B.1b)By indu
tion, we 
an prove the following:Theorem B.1. The sequen
e (fi

)

i
veri�es the re
urren
e relation:

fn

(

a1, . . . , an−1, an + 1
an+1

)

= 1
an+1

fn+1(a1, . . . , an, an+1). (B.2)An analogue result holds for the sequen
e (gi

)

i
.The following result 
an be derived almost dire
tly from the previous theo-rem:Theorem B.2. For all positive integers n, we have the re
urren
e relation:

fn(a1, . . . , an) = a1fn−1

(

a2,+
1
a1
, a3, . . . , an

)

. (B.3)There is also a dire
t relation between f and g:Theorem B.3. The fun
tions fn and gn verify the equations:
gn(a1, . . . , an) = fn−1(a2, . . . , an), (B.4a)

fngn−1 − fn−1gn = (−1)n. (B.4b)When n tends to in�nity it is possible to de�ne a limit for the fra
tion fn

gn
:109
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110 APPENDIX B. CONTINUED FRACTIONSTheorem B.4. The sequen
es f2n+1

g2n+1
and f2n

g2n
are respe
tively stri
tly in
reas-ing and stri
tly de
reasing. The limit

lim
n→∞

fn

gn
(B.5)is well-de�ned.Let ai be positive integers. The �nite 
ontinued fra
tion [a1, . . . , an

] isde�ned as
a1 +

1

a2 +
1

a3 +
1. . . +

1

an

. (B.6)
We have the following relation between the sequen
e of fun
tions and 
on-tinued fra
tions:Theorem B.5. The fra
tion fn

gn

an be written as 
ontinued fra
tion:

fn

gn
=
[

a1, . . . , an

]

. (B.7)It is still possible to express the 
ontinued fra
tion as a fra
tion of fun
tionsif we extend the 
ontinued fra
tion [a1, . . . , an

]:Theorem B.6. For x ≥ 1, we have
[

a1, . . . , an, x
]

=
xfn + fn−1

xgn + gn−1
. (B.8)Let r be a real number, we de�ne the sequen
e (Xi

)

i
in the following way:

X1 = r, (B.9a)
Xn+1 =

1
(

Xn − ⌊Xn⌋
) , (B.9b)provided that Xn is not an integer. In that 
ase Xn is the nth 
ompletequotient of r. The simple 
ontinued fra
tion of r of order n is equal to:

rn =
[

[X1], [X2], . . . , [Xn]
] (B.10)

= [X1] +
1

[X2] +
1

[X3] +
1. . . + 1

[Xn]

. (B.11)
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111Theorem B.7. Every real number r 
an be expressed uniquely as a simple
ontinued fra
tion. Moreover, this simple 
ontinued fra
tion is �nite if andonly if r is a rational number.We have the following inequalities to indi
ate the quality of the approxima-tion of an irrational number by a 
ontinued fra
tion.Theorem B.8. Let n be a positive integer, x a real number and fn

gn
the nth
onvergent of x. Then

1

gngn+2
<

∣

∣

∣

∣

x− fn

gn

∣

∣

∣

∣

≤ 1

gngn+1
. (B.12)The following theorem states that all good rational approximations of anirrational number x are 
ontinued fra
tions of x.Theorem B.9. Let x be an irrational number and let p

q ∈ Q, with q > 0. If
∣

∣

∣

∣

x− p

q

∣

∣

∣

∣

<
1

2q2
, (B.13)then p

q is a 
onvergent of x.For quadrati
 relations between integers, 
ontinued fra
tions are parti
ularlyuseful.Theorem B.10. Let A,B, x, y be positive integers, and let C 6= 0 be aninteger, su
h that C2 < AB and AB not a square. If
Ax2 −By2 = C, (B.14)then x

y is a 
onvergent of √B
A .Let P,Q,R be integers, su
h that R is positive and not a square andQ divides

P 2 −R. De�ne the sequen
es (Pi

)

i
,
(

Qi

)

i
by

P1 = P, Pn+1 =

[

Pn +
√
R

Qn

]

Qn − Pn, (B.15a)
Q1 = Q, Qn+1 =

R− P 2
n+1

Qn
, (B.15b)then we have the following theorem:Theorem B.11. The simple 
ontinued fra
tion of (P+

√
R)

Q is periodi
 aftera 
ertain point, and for n su�
iently large we have
√
R > Pn > 0, (B.16a)

2
√
R > Qn > 0, (B.16b)

2
√
R > Xn > 1. (B.16
)
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112 APPENDIX B. CONTINUED FRACTIONSThe theorem above states that all quadrati
 relations between integers havea 
ontinued fra
tions expansion that eventually be
omes periodi
. The fol-lowing theorem indi
ates under whi
h 
onditions this expansion is periodi
from the beginning.Theorem B.12. The fra
tion (P+
√

R)
Q is purely periodi
, that is

(

P +
√
R
)

Q
=



a1, . . . , ak,

(

P +
√
R
)

Q



 , (B.17)if and only if √
R+ P > Q >

√
R− P > 0. (B.18)
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Mathemati
s 
onsists in provingthe most obvious thing in theleast obvious way.George PolyaAppendix CAlgebrai
 Number TheoryLet a, b be integers and let d be a positive square-free integer.Let ξ = a+ b
√
d, then ξ = a− b

√
d is 
alled the 
onjugate of ξ.Lemma C.1. We have the following relations for ξ:
ξ = ¯̄ξ, (C.1a)

ξ + η = ξ̄ + η̄, (C.1b)
ξη = ξ̄ · η̄. (C.1
)The solutions (ai, bi) of the Pell equation (4.3.1) 
an be 
hara
terized by thealgebrai
 numbers ξi = ai + bi

√
d. We have the following relations betweensolutions of this type:Proposition C.1. If the algebrai
 numbers ξi = ai+bi

√
d and ξj = aj+bj

√
dare solutions of (4.3.1), then so are the numbers ξ̄i and ξiξj. In parti
ular,

ξn
i =

(

ai + bi
√
d
)n (C.2)is a solution of (4.3.1) for all integers n.So from a given solution of (4.3.1), we 
an generate an in�nite number ofdi�erent solutions. It is natural to ask whether any solution of the Pellequation is ne
essarily of this form. The following theorem, �rst proved byLagrange, 
on�rms this.Theorem C.1 (Lagrange, 1768). Let ξ1 = a1+b1

√
d be the smallest solutionof (4.3.1), with a1, b1 > 0. Then for every positive solution (s, t) of (4.3.1)there exists a positive integer n, su
h that

s+ t
√
d =

(

a1 + b1
√
d
)n
. (C.3)113
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114 APPENDIX C. ALGEBRAIC NUMBER THEORYWe 
all ξ(d) = ξ1 = a1 + b1
√
d the fundamental solution of (4.3.1).Let

Q
[
√
d
]

=
{

r1 + r2
√
d | r1, r2 ∈ Q

} (C.4)be a quadrati
 number �eld. If
α = a+ b

√
d ∈ Q

[
√
d
]

, (C.5)then we have the following relations:
ᾱ = a− b

√
d ∈ Q

[
√
d
]

, (C.6a)
1

α
=

ᾱ

α · ᾱ ∈ Q
[
√
d
]

. (C.6b)The real number ξ ∈ Q
[√
d
] is an algebrai
 integer if there exists an integer n,su
h that

ξn + an−1ξ
n−1 + · · · + a1ξ + a0 = 0, (C.7)where all ai are integers. The set of all algebrai
 integers in Q

[√
d
] is denotedby O and is sometimes 
alled the order of dis
riminant d.Proposition C.2. The algebrai
 integers of Q are the integers.We have the following su�
ient 
ondition to verify whether a number is analgebrai
 integer:Lemma C.2. Let γ1, . . . , γl be 
omplex numbers and let

V =

{

l
∑

i=1

kiγi, ki ∈ Z

}

. (C.8)Suppose that α ∈ C veri�es αγ ∈ V , for all elements γ ∈ V . Then α is analgebrai
 integer.Proposition C.3. If
α1, α2 ∈ O ∩ Q

[
√
d
]

, (C.9)then
α1 + α2, α1α2 ∈ Q

[
√
d
]

. (C.10)There is another way to verify whether an algebrai
 number is an algebrai
integer:Proposition C.4. If ξ = r+ s
√
d, then ξ is an algebrai
 integer if and onlyif 2r and r2 − s2d are integers.
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115Let α, β ∈ Q
[√
d
], we de�ne the following rings:

Z[α] =
{

m+ nα | m,n ∈ Z
}

, (C.11a)
αZ =

{

nα | n ∈ Z
}

, (C.11b)
αZ + βZ =

{

mα+ nβ | m,n ∈ Z
}

. (C.11
)The following relations follow more or less easily from these de�nitions:
Z[α] = Z + αZ, (C.12a)
αZ = −αZ, (C.12b)

aZ +
b

2
Z = aZ +

b′

2
Z, (C.12
)where a, b are integers that verify

b′ ≡ b (mod 2a), (C.13a)
aZ + bZ = GCD(a, b)Z. (C.13b)Theorem C.2. The set of algebrai
 integers O of Q

[√
d
] 
an be des
ribedas follows:

O =
{

m+ nω | m,n ∈ Z
}

, (C.14)where
ω =

{

−1+
√

d
2 , if d ≡ 1 (mod 4),√
d, if d ≡ 2, 3 (mod 4).

(C.15)We obviously have that 1 and ω are linearly independent over Q. Therefore
O is a two-dimensional Z-module. Two algebrai
 integers α, β ∈ O form anintegral basis of O if

O =
{

mα+ nβ | m,n ∈ Z
}

. (C.16)If we have an integral basis of the set of algebrai
 integers, then it is possibleto de�ne its dis
riminant.Proposition C.5. If the pair {α, β} forms an integral basis of O, then
D =

∣

∣

∣

∣

α β
ᾱ β̄

∣

∣

∣

∣

2 (C.17)is a positive integer, independent of the 
hoi
e of integral basis. The integer Dis the dis
riminant of Q
[√
d
]. We have

D =

{

d, if d ≡ 1 (mod 4),

4d, if d ≡ 2, 3 (mod 4).
(C.18)
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116 APPENDIX C. ALGEBRAIC NUMBER THEORYIt is possible to give another des
ription of the set of algebrai
 integers Ousing this dis
riminant:Proposition C.6. Let D be the dis
riminant of Q
[√
d
], then

O = Z

[

D +
√
D

2

]

. (C.19)An element ξ ∈ O is a unit if its inverse ξ−1 ∈ O is also an algebrai
 integer.Units of algebrai
 integers 
an be des
ribed in the following way:Proposition C.7. The number ξ = x + y
√
d ∈ O is a unit if and only if

2x ∈ Z and x2 − dy2 = ±1.Proposition C.8. If a+ b
√
d > 1 is a unit, then a, b > 0.Amongst the units of O, there is one unit that is spe
ial:Theorem C.3. Let ǫ0 be the smallest unit in O, su
h that ǫ0 > 1, then theset of units is given by
{

±ǫk0 | k ∈ Z

}

, (C.20)and ǫ0 is the fundamental unit of O.De�nition C.1. The regulator of O is log ǫ0.Let A,B be subsets of O of Q
[√
d
], then

A · B =
{

a1b1 + · · · + anbn | ai ∈ A, bi ∈ B, n ∈ N
}

. (C.21)De�nition C.2. A subset I of O is an integral ideal of O if I · O = I, andif for α, β ∈ I, we have
mα+ nβ ∈ I, (C.22)for all integers m,n.De�nition C.3. A subset I of Q
[√
d
] is a fra
tional ideal of O if I ·O = I,and if for α, β ∈ I we have

mα+ nβ ∈ I, (C.23)for all integers m,n.De�nition C.4. If γ ∈ O, then
γO =

{

γξ | ξ ∈ O
} (C.24)is an integral ideal. Ideals of this form are 
alled prin
ipal ideals.
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117Proposition C.9. We have the following equivalen
e on prin
ipal ideals:
αO = βO,

⇔
α = βǫ,

(C.25)with ǫ a unit in Q
[√
d
].De�nition C.5. The set of all prin
ipal fra
tional ideals is denoted by

PI =
{

ξO | ξ ∈ Q
[
√
d
]

}

. (C.26)Proposition C.10. Every prin
ipal fra
tional ideal I is of the form
I = αZ + βZ

=
{

m1α+m2β | m1,m2 ∈ Z, α, β ∈ Q
[
√
d
]

}

,
(C.27)with α, β linearly independent over Q.Proposition C.11. Let {α, β} be an integral basis of the fra
tional ideal I,then {α′, β′} is another integral basis of I if and only if

(

α
β

)

= M

(

α′

β′

)

, (C.28)where M is a 2 × 2 matrix with integer 
oe�
ients and determinant 1.We de�ne the norm of a fra
tional ideal I with integral basis {α, β} as
N (I) =

1√
D

∣

∣

∣

∣

det

(

α β
ᾱ β̄

)∣

∣

∣

∣

. (C.29)Proposition C.12. The norm N (I) is independent of the 
hoi
e of integralbasis {α, β}. If I = γO is a prin
ipal integral ideal, then
N (I) =

∣

∣γγ̄
∣

∣. (C.30)Proposition C.13. Every fra
tional ideal I has an integral basis {α, β},with Q ∋ α > 0. Moreover, α is uniquely de�ned as the smallest positiverational number in I. If I is an integral ideal, then α is an integer.Proposition C.14. An ideal I ⊆ Q
[√
d
] is a fra
tional ideal if and only ifthere exists a positive integer m, su
h that mI is an integral ideal.De�nition C.6. For a, b ∈ Z, a 6= 0, let τ(a, b) be the unique integer, su
hthat

τ ≡ b (mod 2a), (C.31)and with
−a < τ ≤ a, if a > √

D, (C.32a)
√
D − 2a < τ ≤

√
D, if a < √

D. (C.32b)
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118 APPENDIX C. ALGEBRAIC NUMBER THEORYProposition C.15. A subset I ⊆ Q
[√
d
] is an integral ideal of O if andonly if we 
an write I as

I = k
(

aZ + b+
√

D
2 Z

)

, (C.33)where a, b, k are integers, with a, k > 0, and b = τ(a, b), and 4a|(b2 − D).Moreover, I is uniquely represented by the triplet (a, b, k): ak is the small-est rational number in I, k
2 is the smallest positive 
oe�
ient of √D of allelements of I, b = τ(a, b) is uniquely determined and N (I) = k2a.Using the previous two propositions we obtain a unique representation of afra
tional ideal as
I =

k

l

(

aZ + b+
√

D
2 Z

)

, (C.34)with l ∈ N the smallest possible integer. This representation is 
alled thestandard form of I.We 
an de�ne a prin
ipal ideal I = γO either by the algebrai
 number γ orby the parameters a, b, k ∈ Z.Proposition C.16. Let x, y be integers and
α =

x+ y
√
D

2
∈ O, k =GCD

(

y, x+yD
2

)

, (C.35)and let u, v be integers, su
h that uy + v(x+ yD)/2 = k, then
αO = k

(

aZ + b+
√

D
2 Z

)

, (C.36)where
a =

∣

∣αᾱ
∣

∣, b = τ

(

a,
(ux+

v
2 (x+yD))

k

)

. (C.37)Let α ∈ I, where I is a fra
tional ideal. Consider the 
oordinates
α̂ = (α, ᾱ) ∈ R2. (C.38)We say that α is a minimum of I, if α > 0, and if there is no β ∈ I, β 6= 0,with |β| < |α| and |β̄| < |ᾱ|. In other words, α̂ is in the �rst quadrant of R2and the re
tangle (±α,±ᾱ) does not 
ontain any element of I, ex
ept (0, 0).A fra
tional ideal is 
alled redu
ed, if 1 ∈ I, and 1 is a minimum of I.Proposition C.17. If I is redu
ed, then it 
an be written in standard formas
I = Z +

b+
√
D

2a
Z. (C.39)
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119Proposition C.18. If the ideal
I = Z +

b+
√
D

2a
Z (C.40)is a redu
ed ideal in standard form, then a, |b| <

√
D. Therefore there areonly �nitely many redu
ed ideals.Proposition C.19. If a fra
tional ideal I 
an be written as

I = Z +
b+

√
D

2a
Z, (C.41)then I is redu
ed if and only if b ≥ 0 and b+
√
D > 2a.Corollary C.1. The ideal

I = Z +
b+

√
D

2a
Z (C.42)is redu
ed if a ≤

√
D
2 .Let

I = Z +
b+

√
D

2a
Z (C.43)be an ideal that is not ne
essarily redu
ed. Let γ(I) = b+

√
D

2a .De�nition C.7. Let ρ be a mapping from prin
ipal ideals to prin
ipal ideals.
ρ(I) =

1

γ(I)
I

= Z +
2a

b+
√
D

Z.

(C.44)We 
an write this as
ρ(I) = Z +

b′ +
√
D

2a′
Z, (C.45)where a′ = |D−b2|

4a = c and b′ = τ(−b, c).Proposition C.20. Let
I = Z +

b+
√
D

2a
Z (C.46)be an ideal that is not ne
essarily redu
ed. Let I0 = I and

Ii = ρ(Ii−1)

= Z +
bi +

√
D

2ai
Z.

(C.47)
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120 APPENDIX C. ALGEBRAIC NUMBER THEORYIf Ii is not redu
ed, then ai <
ai−1

2 , and therefore there exist an
i ≤

⌈

log2
a√
D

⌉

+ 1, (C.48)su
h that Ii is redu
ed. Let ired be the �rst su
h i. Then
α =

ired−1
∏

j=1

γ(Ij) (C.49)is a minimum in I and
Ired = Iired =

1

α
I. (C.50)De�nition C.8. The right neighbour of a minimum α of the ideal I is theminimum βR ∈ I, su
h that βR > α. The left neighbour of α is βL ∈ I, su
hthat |β̄L| > |ᾱ|.Proposition C.21. Let α ∈ Q

[√
d
] and α > 0. For every fra
tional ideal

I, the map I 7−→ αI is a bije
tion that sends minima to minima and left andright neighbours to left and right neighbours.Proposition C.22. If I = Z + γ(I)Z is redu
ed, then we have the followingproperties:(i) γ(I) > 1 and −1 < γ(I) < 0,(ii) γ(I) is a minimum of I and ρ(I) is redu
ed,(iii) γ(I) ∈ I is a right neighbour of 1 in I.We 
an write the set O of algebrai
 integers of Q
[√
d
] as

O = Z +
D +

√
D

2
Z

= Z +
τ(D, 2) +

√
D

2
Z,

(C.51)therefore O is a redu
ed prin
ipal ideal. Thus α0 = 1 ∈ O is a minimum.For integers i we say that αi−1 is the left and αi+1 is the right neighbour ofa minimum αi ∈ O.
Ji =

1

αi
O

= Z + γiZ.

(C.52)The real number αi+1

αi
is a right neighbour of 1 in Ji, and we have that:

αi+1 = γiαi, (C.53a)
Ji+1 = ρ(Ji). (C.53b)
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121Proposition C.23. For every integer i we have the following inequalities:
3D

32
≤ log(1 + 3

16D ) ≤ log αi+1

αi
≤ log

√
D, (C.54a)

log 2 ≤ log
(

αi+1

αi−1

)

. (C.54b)Proposition C.24. The sequen
e {αi

}

i

ontains all minima of O.Theorem C.4 (Redu
ed Prin
ipal Ideals Cy
le). We have the followingproperties of the redu
ed prin
ipal ideals 
y
le:(i) The sequen
e {Ji

}

i
is periodi
 with period k0 ∈ N. The repeating seg-ment {J0, . . . , Jk0−1

} of redu
ed prin
ipal ideals is 
alled the prin
ipal
y
le.(ii) Let ǫ =
αk0

α0
= αk0

, then ǫ = ǫ0 is the fundamental unit of O.(iii) Let I be a redu
ed fra
tional prin
ipal ideal, then I is in the prin
ipal
y
le.Proposition C.25. We have the following inequalities:
2R

logD
≤ k0 ≤ 2R

log 2
, (C.55)where R = log ǫ0 is the regulator of O.It is obvious that the map ρ is only invertible for the redu
ed ideals of theprin
ipal 
y
le.De�nition C.9. Let

I = Z + b+
√

D
2a Z

= Z + γZ
(C.56)be a redu
ed ideal. The 
onjugate ideal of I is de�ned as:

σ(I) = Ī

= Z + b−
√

D
2a Z

= Z + τ(a,−b)+
√

D
2a Z.

(C.57)Geometri
ally this 
an be seen as a re�e
tion by the line y = x.Lemma C.3. We have the following properties for 
onjugate ideals:(i) I is redu
ed if and only if Ī is redu
ed.(ii) If α is a minimum of I, then |ᾱ| is a minimum of Ī.
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122 APPENDIX C. ALGEBRAIC NUMBER THEORY(iii) If α is a right neighbour of a minimum β in I, then |ᾱ| is a left neigh-bour of a minimum |β̄| in Ī.Proposition C.26. The inverse of a redu
ed fra
tional prin
ipal ideal I is:
ρ−1(I) = Z + b∗+

√
D

2c∗
Z, (C.58)where b∗ = τ(a,−b), and c∗ = D−b2∗

4a . We have
ρ−1(I) = σρσ(I). (C.59)De�nition C.10. Let I1, I2 be fra
tional prin
ipal ideals of O, su
h that

I1 = γI2, (C.60)with γ ∈ Q
[√
d
]. The distan
e between the ideals I1 and I2 is de�ned as

δ(I1, I2) = log |γ| (mod R), (C.61)where R is the regulator. If I1 6= γI2 for some γ ∈ Q
[√
d
], then the distan
ebetween I1 and I2 is unde�ned. We write δ(I) instead of δ(O, I).For the prin
ipal 
y
le we have

Ji =
1

αi
O, (C.62a)

δ(Ji) = logαi, (C.62b)
δ(Ji, Jk) = log αk

αi
. (C.62
)Proposition C.27. For every integer i we have the following inequalities:

3

32D
≤ δ
(

Ji, ρ(Ji)
)

= log γi ≤ log
√
D. (C.63)Proposition C.28. For every integer i we have the following inequality:

log 2 ≤ δ
(

Ji, ρ
2(Ji)

)

. (C.64)Proposition C.29. Let
I = Z +

b+
√
D

2a
Z (C.65)be a fra
tional prin
ipal ideal that is not ne
essarily redu
ed. Pla
e the idealson the real line R at positions that 
orrespond to their distan
e to O.Let ired be the smallest integer, su
h that

Ired = ρired(I)

=
1

α
I

(C.66)
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123is redu
ed. Let Jk be the ideal in the prin
ipal 
y
le that is 
losest to I andthat veri�es ᾱkᾱ < 0. Then I lies between Jk−1 and Jk+1 and Ired is one ofthe Jk−1, Jk, Jk+1, with
∣

∣δ(I, Ired)
∣

∣ < logD, (C.67a)
δ(I) < δ

(

ρ2(Ired)
)

. (C.67b)The 
ardinality of the prin
ipal 
y
le is exponential in logD so to lo
ateideals by repeatedly applying ρ to O 
an take exponentially long. Thereforea te
hnique to jump ideals in the prin
ipal 
y
le is needed.De�nition C.11. Let I1, I2 be ideals, then I1 · I2 is a ve
tor spa
e on Z,with ve
tors
{

α · β | α ∈ I1, β ∈ I2
}

. (C.68)The ve
tor spa
e I1 ·I2 is an ideal, and if {α1, β1}, {α2, β2} are integral basesof I1, I2, then
{

α1β1, α1β2, α2β1, α2, β2

} (C.69)is an integral basis of I1 · I2.If I1 = ξ1O, I2 = ξ2O are prin
ipal ideals, then
I1 · I2 = ξ1ξ2O. (C.70)Proposition C.30. Let

Ii = aiZ +
bi +

√
D

2
Z, (C.71)for i ∈ {1, 2} be prin
ipal ideals. Let

k = GCD
(

a1, a2,
b1+b2

2

)

. (C.72)Let u, v,w be integers, su
h that
ua1 + va2 + w

b1 + b2
2

= k, (C.73)then
I3 = I1 · I2

= k
(

a3Z + b3+
√

D
2 Z

)

,
(C.74)where

a3 =
a1a2

k2
, b3 = τ

(

a3,
ua1b2+va2b1+w

b1b2+D
2

k

)

. (C.75ab)
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124 APPENDIX C. ALGEBRAIC NUMBER THEORYIf we do not redu
e modulo R, we have that δ(I1 ·I2) = δ(I1)+δ(I2). Howeverit is not ne
essarily true that if I1 and I2 are redu
ed that I1 · I2 is redu
edas well. If
I =

1

a

(

aZ + b+
√

D
2 Z

) (C.76)is a redu
ed ideal, then
I2 = I2 = I · I

=
k′

a′

(

a′Z + b′+
√

D
2 Z

)

,
(C.77)where

k′ = GCD(a, b)

= ua+ vb,
(C.78a)

a′ =
a2

(k′)2
, b′ = τ

(

a′,
ua+v

b2+D
2

k′

)

. (C.78b
)So we have that
I2 =

1

k′

(

Z + b′+
√

D
2a′ Z

)

, (C.79a)
δ(I2) = 2δ(I). (C.79b)The ideal I2 is not ne
essarily redu
ed, but 
onsider

I ′2 = k′I2

= Z +
b′ +

√
D

2a′
Z.

(C.80)We �nd that the distan
e between these ideals is
∣

∣δ(I2, I
′
2)
∣

∣ = log k′ < log
√
D. (C.81)We 
an 
onstru
t an ideal I ′′2 from I ′2 by repeatedly applying ρ, until we havea redu
ed ideal. We have that

∣

∣δ(I ′′2 , I
′
2)
∣

∣ < logD, (C.82)and therefore that
∣

∣δ(I ′′2 , I2)
∣

∣ <
3

2
logD. (C.83)So if we apply ρ or ρ−1, 2n times on I ′′2 , where

n <
3 logD

log 4
= O(logD), (C.84)then we 
an lo
alize the �rst element Jk of the prin
ipal 
y
le that veri�esthe 
ondition δ(Jk) > 2δ(I).
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125De�nition C.12. For every ideal I of the prin
ipal 
y
le, we de�ne the op-erator ∗ to be the operator that asso
iates to I the element Jk of the prin
ipal
y
le:
Jk = I ∗ I. (C.85)Proposition C.31. Let I be a redu
ed prin
ipal ideal. The ideal I ∗ I 
anbe 
omputed in O(polylogD). Moreover, if we 
onsider the sequen
e

I 7−→ I ∗ I = I(2) 7−→ · · · 7−→ I(2n)

= I2n−1 ∗ I2n−1

,
(C.86)then the �nal ideal I(2n) has distan
e

δ
(

I(2n)
)

> 2nδ(I), (C.87)and 
an be 
omputed in O(polylogD,n).De�nition C.13. Let I1, I2 be redu
ed ideals, with
Ii = Z +

bi +
√
D

ai
Z. (C.88)The ideal I1 ∗ I2 is the �rst element in the prin
ipal 
y
le, su
h that itsdistan
e ex
eeds δ(I1) + δ(I2).
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List of Symbols and A
ronyms
~µ Magneti
 moment
~σ The Pauli spin operator
~B Magneti
 �eld
~c Speed of light in va
uum: 299 792 458 m s−1

~J Angular momentum
γ Gyromagneti
 ratio, γH = 267.513 · 106 rad s−1 T−1

~ Redu
ed Plan
k 
onstant: 1.055 · 10−34 J s

C The 
omplex numbers
N The positive integers
Q The rational numbers
R The real numbers
Z The integers
H The Hamiltonian of a physi
al system
ω Angular frequen
y
τQ De
oheren
e time for a physi
al realization
τop Duration of an operation on one qubit
kB The Boltzmann 
onstant: 1.381 · 10−23 J K−1

T Temperature in Kelvin
T1 Spin-latti
e relaxation time
T2 Transverse relaxation timeDFT Dis
rete Fourier Transform127
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128 APPENDIX C. ALGEBRAIC NUMBER THEORYFID Free Indu
tion De
ayGCD Greatest Common DivisorLCM Least Common MultipleNMR Nu
lear Magneti
 Resonan
eQFT Quantum Fourier TransformRF Radio Frequen
yRMN Résonan
e Magnétique Nu
léaireSMIS Spe
trométrie de Masse à Ionisation Sé
ondaireLLL Short for Lenstra, Lenstra and Lovászode45 Matlab routine to solve ordinary di�erential equations

te
l-0

05
34

86
4,

 v
er

si
on

 1
 - 

12
 N

ov
 2

01
0



Bibliography[Ang95℄ W. S. Anglin. The Queen of Mathemati
s, An Introdu
tion toNumber Theory. Kluwer A
ademi
 Publishers, 1995.[Bak67℄ A. Baker. Linear forms in the logarithms of algebrai
 numbers III.Mathematika, 14:220�228, 1967.[BBG90℄ R. Bowtell, R. M. Bowley, and P. Glover. Multiple spin e
hoes inliquids in a high magneti
 �eld. Journal of Magneti
 Resonan
e,88(3):643�651, July 1990.[BCJ+99℄ S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popes
u,and R. S
ha
k. Separability of very noisy mixed states andimpli
ations for NMR quantum 
omputing. Phys. Rev. Lett.,83(5):1054�1057, 1999.[BD69℄ A. Baker and H. Davenport. The equations 3x2 − 2 = y2 and
8x2 − 7 = z2. Q. J. Math. Oxford, 20:129�137, 1969.[Ben73℄ C. H. Bennett. Logi
al reversibility of 
omputation. IBM Journalof Resear
h and Development, 17(6):525�532, 1973.[Ben82℄ C. H. Bennett. The Thermodynami
s of Computation�A Review.International Journal of Theoreti
al Physi
s, 21(12):905�940,1982.[BHP46℄ F. Blo
h, W. W. Hansen, and M. Pa
kard. Nu
lear Indu
tion.Phys. Rev., 69:127, 1946.[BMS06℄ Y. Bugeaud, M. Mignotte, and S. Siksek. Classi
al and mod-ular approa
hes to exponential Diophantine equations II: TheLebesgue-Nagell equation. Composition Math., 142:31�62, 2006.[BW93℄ A. Baker and G. W¶stholz. Logarithmi
 forms and group vari-eties. J. Reine Angew. Math., 442:19�62, 1993.[CM℄ Mihai Cipu and Mauri
e Mignotte. On the number of solutionsof simultaneous Pell equations.http://hal.ar
hives-ouvertes.fr/hal-00129723/fr.129

te
l-0

05
34

86
4,

 v
er

si
on

 1
 - 

12
 N

ov
 2

01
0



130 BIBLIOGRAPHY[Coh96℄ Henri Cohen. A Course in Computational Algebrai
 NumberTheory, volume 138 of Graduate Text in Mathemati
s. Springer-Verlag, Berlin and Heidelberg, 1996.[CP54℄ H. Y. Carr and E. M. Pur
ell. E�e
ts of Di�usion on Free Pre-
ession in Nu
lear Magneti
 Resonan
e Experiments. Phys. Rev.,94(3):630�638, 1954.[CT65℄ James W. Cooley and John W. Tukey. An algorithm for thema
hine 
al
ulation of 
omplex Fourier series. Math. Comput,19:297�301, 1965.[CTDL77℄ C. Cohen-Tannoudji, B. Diu, and F. Laloë. Quantum Me
hani
s.Wiley, New York, 1977.[CZ95℄ J. I. Cira
 and P. Zoller. Quantum Computations with ColdTrapped Ions. Phys. Rev. Lett., 74(20):4091�4094, 1995.[DBD79℄ G. Deville, M. Bernier, and J. M. Delrieux. NMR multiple e
hoesobserved in solid 3He. Phys. Rev. B, 19(11):5666�5688, June1979.[Deu85℄ D. Deuts
h. Quantum theory, the Chur
h-Turing prin
iple andthe universal quantum 
omputer. Pro
eedings of the Royal So
i-ety of London A, 400(1818):97�117, 1985.[DJ92℄ D. Deuts
h and R. Jozsa. Rapid solutions of problems by quan-tum 
omputation. Pro
eedings of the Royal So
iety of London A,439(1907):553�558, 1992.[Fel71℄ N. I. Feldman. An e�e
tive re�nement of the exponent in Liou-ville's theorem. Izv. Akad. Nauk, 35:973�990, 1971.[Fey82℄ R. Feynman. Simulating physi
s with 
omputers. Int. J. ofTheor. Phys., 21:467�488, 1982.[Gro97℄ Lov K. Grover. Quantum me
hani
s helps in sear
hing a needlein a haysta
k. Phys. Rev. Lett, 79(2):325�328, 1997.[Hah50℄ E. L. Hahn. Spin E
hoes. Phys. Rev., 80(4):580�594, 1950.[JVB95℄ J. Jeener, A. Vlassenbroek, and P. Broekaert. Uni�ed derivationof the dipolar �eld and relaxation terms in the Blo
h Red�eldequations of liquid NMR. J. Chem. Phys., 103(4):1309�1333,1995.[Lan61℄ R. Landauer. Irreversibility and heat generation in the 
om-puting pro
ess. IBM Journal of Resear
h and Development,5:183�191, 1961.

te
l-0

05
34

86
4,

 v
er

si
on

 1
 - 

12
 N

ov
 2

01
0



BIBLIOGRAPHY 131[Len02℄ H. W. Lenstra Jr. Solving the Pell Equation. Noti
es of theAMS, 49(2):182�192, 2002.[LLL82℄ A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. Fa
toringpolynomials with rational 
oe�
ients. Math. Ann., 261:515�534,1982.[Llo93℄ S. Lloyd. A potentially realizable quantum 
omputer. S
ien
e,261:1569�1571, 1993.[Lom℄ Chris Lomont. The hidden subgroup problem - review and openproblems. arXiv:quant-ph/0411037.[LP01℄ Noah Linden and Sandu Popes
u. Good Dynami
s versus BadKinemati
s: Is Entanglement Needed for Quantum Computa-tion ? Phys. Rev. Lett., 87(4):047901, 2001.[LRVW96℄ S. Lee, W. Ri
hter, S. Vathyam, and W. S. Warren. Quantumtreatment of the e�e
ts of dipole-dipole intera
tions in liquidnu
lear magneti
 resonan
e. J. Chem. Phys., 105(3):874�901,1996.[Man80℄ Y. Manin. Computable and un
omputable. Sovetskoye Radio,1980.[Mat00℄ E. M. Matveev. An expli
it lower bound for a homogeneousrational linear form in logarithms of algebrai
 numbers II. Izv.Ross. Akad. Nauk, 64:1217�1269, 2000.[MG58℄ S. Meiboom and D. Gill. Modi�ed Spin-E
ho Method for Measur-ing Nu
lear Relaxation Times. Rev. S
i. Instrum., 29(8):688�691,1958.[Mig04℄ M. Mignotte. A kit on linear forms in three logarithms, 2004.preprint, www-irma.u-strasbg.fr/∼bugeaud/travaux/kit.ps.[NC00℄ M. A. Nielsen and I. L. Chuang. Quantum Computation andQuantum Information. Cambridge University Press, 2000.[Pau24℄ W. Pauli. Zur Frage der theoretis
hen Deutung der Satelliteneiniger Spektrallinien und ihrer Beein�ussung dur
h magnetis
heFelder. Naturwiss., 12(37):741�743, 1924.[Pop75℄ R. P. Poplavskii. Thermodynami
al models of information pro-
essing. Uspekhi Fizi
heskikh Nauk, 115(3):465�501, 1975.[PTP46℄ E. M. Pur
ell, H. C. Torrey, and R. V. Pound. Resonan
e Ab-sorption by Nu
lear Magneti
 Moments in a Solid. Phys. Rev.,69:37�38, 1946.

te
l-0

05
34

86
4,

 v
er

si
on

 1
 - 

12
 N

ov
 2

01
0



132 BIBLIOGRAPHY[Sak94℄ J. J. Sakurai. Modern Quantum Me
hani
s. Addison-Wesley,1994.[Sha76℄ Derek Shaw. Fourier Transform NMR Spe
tros
opy. Elsevier,1976.[Sho97℄ P. W. Shor. Polynomial-time algorithms for prime fa
torizationand dis
rete logarithms on a quantum 
omputer. SIAM J. ofComput., 26(5):1474�1483, 1997.[Sli80℄ C. P. Sli
hter. Prin
iples of Magneti
 Resonan
e, volume 1 ofSolid-State S
ien
es. Springer-Verlag, 1980.[Ste21℄ O. Stern. Ein Weg zur experimentellen Pr¶fung der Ri
htungs-quantelung im Magnetfeld. Zeits
hrift f¶r Physik A Hadrons andNu
lei, 7:249�253, 1921.[vN66℄ John von Neumann. Theory of Self-Reprodu
ing Automata. Uni-versity of Illinois Press, 1966.[VSB+01℄ L. M. K. Vandersypen, M. Ste�en, G. Breyta, C. S. Yannoni,M. H. Sherwood, and I. L. Chuang. Experimental realizationof Shor's quantum fa
toring algorithm using nu
lear magneti
resonan
e. Nature, 414:883�887, 2001.[Wat95℄ John Watrous. On One-Dimensional Quantum Cellular Au-tomata. In In 36th Annual Symposium on Foundations of Com-puter S
ien
e, pages 528�537. So
iety Press, 1995.[Yua02℄ P. Yuan. On the number of solutions of simultaneous Pell equa-tions. A
ta Arithm., 101:215�221, 2002.[Yua04℄ P. Yuan. Simultaneous Pell equations. A
ta Arithm.,115:119�131, 2004.te
l-0

05
34

86
4,

 v
er

si
on

 1
 - 

12
 N

ov
 2

01
0


