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Sommaire

Cette thése contient deux parties qui peuvent étre lues indépendamment.
Dans la premiére partie je décris notre nouvelle approche pour construire
une réalisation physique d'un ordinateur quantique par Résonance Magné-
tique Nucléaire (RMN). Avant de parler de RMN; je donne une introduction
générale sur le calcul quantique. Je rappelle des notions de mécanique quan-
tique nécessaires pour pouvoir décrire des algorithmes pour des ordinateurs
quantiques.

Ensuite je rappelle la langage du calcul quantique. Je décris les manipu-
lations que l'on peut faire avec des quantum bits, ou qubits, équivalents
quantiques des bits pour un ordinateur ordinaire. Je détaille les avantages
des ordinateurs quantiques pour des opérations du type « Transformée de
Fourier » et je traite les deux algorithmes fondateurs dans le domaine: la
factorisation en nombres premiers par ’algorithme de Shor et la recherche
dans des bases de données par I'algorithme de Grover.

Je continue avec une description des réalisations physiques possibles pour
construire un tel ordinateur.

Je parle de plusieurs approches différentes, mais celle & laquelle je consacre
le plus de temps est I'approche par RMN. C’est avec cette technique que
I'on a jusqu’a maintenant obtenu les résultats les plus intéressants en calcul
quantique. Je discute ces succés et également pourquoi la RMN est devenue
une technique obsoléte.

A partir de ce point 13, je propose un nouveau cadre pour la RMN dans les
réalisations physiques d'un ordinateur quantique. Afin d’obtenir un tel cadre,

je construis une nouvelle description de la RMN & partir de la mécanique

quantique avec laquelle je peux construire les opérateurs élémentaires essen-
tiels pour le calcul quantique. Je décris nos expériences pour construire ces
opérateurs en distinguant entre des opérateurs agissant sur un qubit et des
opérateurs agissant sur deux qubits. Je finis la premiére partie de la thése
avec une discussion sur la viabilité de cette approche pour permettre a la
RMN de regagner sa place dans les techniques utilisées pour construire un
ordinateur quantique.

Dans la deuxiéme partie de cette thése je propose un algorithme quantique
en temps polynomial pour résoudre des équations de Pell simultanées. Cette
partie est inspirée d’une part de l'algorithme quantique de Hallgren pour

iii
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résoudre des équations de Pell simples en temps polynomial et d’autre part
par la démonstration de Cipu et Mignotte du fait que dans le cas général,
des équations de Pell simultanées ont au plus deux solutions distinctes.

Je commence cette partie avec une discussion sur 1’équation de Pell simple.
Je traite la résolution par fractions continues ainsi que les techniques plus
modernes qui utilisent la théorie algébrique des nombres, notamment la no-
tion du régulateur d'un corps de nombres. Je continue avec l'algorithme de
Hallgren pour résoudre des équations de Pell. Cet algorithme est en temps
polynomial contrairement aux méthodes décrites auparavant. C’est un algo-
rithme quantique basé sur des extensions de techniques de Transformée de
Fourier discutées dans la premiére partie.

Aprés le cas des équations de Pell simples, je m’intéresse au cas des équations
de Pell simultanées. Je donne d’abord une borne supérieure pour la plus pe-
tite solution. Pour obtenir cette borne, j'utilise des résultats qui viennent
de la théorie de 'approximation diophantienne pour les formes linéaires en
logarithmes. Aprés avoir obtenu une borne supérieure, je continue avec la
démonstration de Cipu et Mignotte du fait qu’il y a au plus deux solutions
distinctes pour une paire d’équations de Pell simultanées. Dans cette démon-
stration on obtient une borne supérieure pour toutes les solutions des équa-
tions de Pell simultanées. J'utilise cette borne ensuite ainsi que l'algorithme
de Hallgren pour des équations de Pell simples pour construire un algorithme
qui résout en temps polynomial des équations de Pell simultanées. Cet al-
gorithme a une partie quantique, la procédure de Hallgren pour résoudre les
équations de Pell simples et obtenir les solutions fondamentales de chaque
équation, et une partie « classique » de recherche de solutions & partir de
ces solutions fondamentales, jusqu’a la borne supérieure. Je finis cette partie
avec une discussion sur la possibilité d’étendre ces techniques pour résoudre
d’autres problémes similaires dans la théorie de nombres.

Dans les appendices je donne quelques détails supplémentaires sur la théorie
des fractions continues et la théorie des nombres algébriques
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Abstract

This text consists of two parts that can be read almost independently.

In the first part I describe a renewed approach by Nuclear Magnetic Reso-
nance (NMR) to build a quantum computer. I start with an introduction on
quantum computing. I briefly describe the most important algorithms and
the most promising physical realizations of a quantum computer. I continue
with a description of NMR and the methods used earlier to build a quan-
tum computer by NMR. I explain the shortcomings of these techniques and
construct a new framework for quantum computation using NMR. For this
I introduce a new quantum mechanical description of NMR with which the
basic quantum gates needed for quantum computation can be built. I de-
scribe the experiments to build these gates, distinguishing between one qubit
operations and two qubit operations. I conclude this part with a discussion
on the practicality of this approach and whether these methods will allow
for a revival of NMR as a quantum computing device.

The second part consists of the resolution and computation of simultane-
ous Pell equations. This part is inspired by Hallgren’s quantum algorithm
to solve the simple Pell equation in quantum polynomial time and by the
proof of Cipu and Mignotte that in the general case, the simultaneous Pell
equation has at most two solutions. I start this part with a discussion of the
simple Pell equation, the classical techniques used to solve it, as well as more
modern techniques. Afterwards I describe Hallgren’s algorithm, for which I
will need some extensions of the quantum computing techniques that I in-
troduced in the first part. After this, I tackle simultaneous Pell equations.
First I describe some classical results and solving techniques, culminating in
the proof by Cipu and Mignotte that there are at most two distinct solu-
tions for any given pair of independent Pell equations. To obtain this result,
I have to introduce some Diophantine approximation theory. Finally I ex-
tend Hallgren’s algorithm to simultaneous Pell equations using bounds from
Diophantine approximation theory and some simple sieving techniques to
compute solutions of simultaneous Pell equations in polynomial time on a
quantum computer. I end this part with a discussion on extensions of these
techniques to similar computational number theory problems.

In the appendices I give a short overview on continued fractions and on
algebraic number theory.
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No one who achieves success
does so without the help of
others. The wise and confident
acknowledge this help with

Preface Pratiade

ALFRED NORTH WHITEHEAD

This thesis finds its origin in a chance meeting between two of my advisors,
Edward Belaga and Daniel Grucker during a Mathematics and Biology sem-
inar in the winter of 2005, where Professor Belaga gave a talk on molecular
computing. During a coffee break they decided to organise another confer-
ence, this time on computing in general and on quantum computing and its
physical realizations in particular. They received a research grant from the
ANR (Agence Nationale de la Recherche) to continue their interdisciplinary
work and they decided that it would be a good idea to look for a PhD student
to assist them. I applied for this position and after two pleasant meetings
they offered me the possibility to work with them. As I was not the benefi-
ciary of a PhD grant from the French state and as the ANR grant was not
sufficient to finance a full PhD position, it was difficult to begin our research.
At this point it became unlikely that our collaboration would continue and
I started to explore other avenues. During this time I was invited by the
French embassy in the Hague to a reception for former beneficiaries of their
embassy’s grant to study a year in France. At this reception I explained my
problems to two members of their grant committee, Jos van der Kruk and
Gilbert van der Louw, who told me that one of the applicants for that year’s
grant had refused the embassy’s offer. They then suggested me to apply for
this grant. Thanks to these fine gentlemen and the swift and accurate help of
Catherine Délice, I could finally begin my research on quantum computing.
For this, I heartfully thank them.

My advisor, Daniel Grucker, has been a tremendous help on all fronts during
the entire period of my thesis. From a financial point of view, he managed
to find me a position as a technical assistant in my second and third year
of research, which allowed me to continue my PhD. From an educational
point of view, he taught me the basics and intricacies of Nuclear Magnetic
Resonance with much clarity and great enthousiasm. As an experimental-
ist, he showed me how to operate the machines at our disposition and how
to prepare our samples. As an advisor, he has been a driving force behind
our research, pushing me to investigate our approach, showing an admirable
patience for me during all these years and guiding me through the arduous
process of writing a thesis. Daniel, I cannot thank you enough for all your
help during my PhD. It has been a great pleasure.
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My other advisor, Edward Belaga, has from the start focused on the global
picture of our research, refusing to be carried away by details and always
keeping in mind our ultimate goal, a functioning quantum computer com-
bined with a well-considered architecture and well-conceived algorithms. He
has personally taken my mathematical education in hand, pointing me in
the right directions and providing important references for our research. He
made it possible for me to attend conferences in the United States, England
and Portugal, which lead to many interesting contacts. It has been impres-
sive to see him make time for me at the most unlikely moments. While
travelling between conferences he would call me to help me out with some
mathematical problem, giving me just the clue that was eluding me. I con-
sider myself lucky to have been his student and regret the fact that due to
his retirement he could no longer officially be my advisor. Edward, I thank
you for all the time you invested in me.

Because Edward Belaga had to retire, I needed another advisor for the math-
ematical contents of my research. Maurice Mignotte, who had previously
supervised my Master thesis, was willing to take on this task. As my the-
sis was almost finished, his main contributions have been to proofread my
manuscript, but this he has done with his usual modesty and expertise.
Along the way, he managed to help me with the finer details on simultane-
ous Pell equations and diophantine approximation theory. Maurice, I thank
you for accepting to be my advisor for just a year and for the pleasant dis-
cussions that usually started with Mathematics but rarely ended there.

As for the jury members, I warmly thank Frits Beukers, Francis Taulelle and
Yann Bugeaud not only for having accepted to be on my thesis committee
but also for the care with which they have read my manuscript and the useful
suggestions they have made.

A lot of people helped me with my research during my thesis. First and
foremost Tarek Khalil, who gave my work a much firmer physical ground-
ing and who verified most of my computations. Tarek, I thank you for our
heated discussions and for your insistence to correctly formulate our frame-
work. Next, my gratitude goes to Jean Richert, who helped both Daniel
and me understand how to approach the dipole-dipole interaction and who
double-checked much of our work.

One of the perks of having two advisors is having two offices and therefore
twice as many interesting colleagues. I would like to thank Jerome Steibel
for his many fun suggestions regarding our experiments; Jerome, one day
our computer will run on beer ! Many thanks also to, amongst others :
Nathalie, Thierry, Renée, Laura and Héléne, who made my stay at the In-
stitute of Physics and Biology a very pleasant one.

As to my fellow PhD-students at the Institute for Mathematics, what can I
say. It was a great pleasure to share offices with Vincent, Audrey, Rémi, Ben-

jamin, Alain, Jean and Auguste. To have coffee breaks with Adrien, Cédric,

Camille, Alexandre, Florian, Héléne and Anne-Laure. The most pleasant
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times were however during those scarce moments of extra-mathematical ac-
tivity, for which a royal thank you goes to Fabien, Aurélien, Scoum, Thomas,
Aurore, Ghislain, Jiirgen and everybody else who contributed to the good
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During my thesis a lot of bureaucratic work was done for me by people who
are far more capable than I am. I would like to thank Simone, Nathalie and
Yvonne especially for all they have done for me.

A nice thing about friends is that they help you keep up when your research
is desperately trying to make you feel miserable. I would like to take this
opportunity to thank Alexandre and Jannes, who both greatly restored my
morale when needed.

My family has been there for me during all these years and without them
I never would have finished my thesis. Dick, thank you for the many hours
you spent proofreading and spellchecking, for making me see how to formu-
late my ideas more clearly and for all the times you helped me out. Willy,
thank you for supporting me throughout the entire process and helping me
through the last difficult hurdles, when I felt ready to throw in the towel.
I know it has been hard on both of you to have your son far away from
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me during all those times when morale was low, when deadlines were set,
when plans were altered, when dates got pushed further and further into the
future, when everything seemed uncertain. I know that without you by my
side, I would have given up long ago. You have been my rock, even if you
think that it is the other way around. A last word goes to the smallest of
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Any sufficiently advanced
technology is indistinguishable

from magic.
Chapter ]. ARTHUR C. CLARKE

Quantum Computing

1.1 Introduction

The idea of the quantum computer has been around for some time. One
of its basic elements is the notion of reversible computation, which was de-
veloped by Charles Bennett [Ben73, Ben82|. This is a model of computing
that is reversible, for which a necessary condition is that the corresponding
binary mapping is one-to-one. A major motivation for this type of models
is that reversible computing can improve the energy efficiency of computers
beyond the von Neumann-Landauer limit [Lan61, vN66| of kg7 log 2 energy
dissipated per irreversible bit operation.

We concentrate on logically reversible systems, which is a necessary but not
a sufficient condition for a computational process to be physically reversible.
Landauer’s principle is the notion that the erasure of n bits of information
has a cost of nkgT log2 in thermodynamic entropy.

Poplavskii wrote in the seventies that classical computers are unable to
simulate quantum mechanical systems because of the superposition prin-
ciple [Pop75]. Manin added a few years later [Man80| that the exponential
number of basis states of a quantum system could be exploited but that a
theory of quantum computation was needed that captured the fundamental
principles without committing to a physical realization.

Richard Feynmann wrote in the early eighties [Fey82| that in order to sim-
ulate the evolution of quantum systems with computers, these computers
would need to have quantum mechanical properties if we wanted the sim-
ulation to be done efficiently. In 1985 David Deutsch proposed a universal
quantum computer [Deu85|, which can simulate any other quantum com-
puter. In the same article he also invented a simple quantum algorithm for
a decision problem, that he proved to be faster than any classical algorithm
that can be constructed for this problem. Richard Josza later produced a
generalization of this algorithm [DJ92]. The decision problem in question
is to decide whether a given binary function is balanced or constant, given
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that it has one of these properties.

Until the middle of the nineties, no serious proposal for a physical realiza-
tion of a quantum computer had been made. While new quantum algorithms
continued to be found, most based on the quantum computational equiva-
lent of the Fourier Transform, nobody seemed to know how to actually build
such a hypothetical computer. In 1995, Cirac and Zoller proposed to build
a quantum computer from ion traps [CZ95|. From that point on, different
proposals for physical realizations have slowly started to outnumber the pro-
posals for different quantum algorithms.

In the rest of this chapter we introduce the basic elements that are needed
for a quantum computer. We give a very short overview on quantum me-
chanics in general and a little more detail on quantum logic. We discuss the
Quantum Fourier Transform and describe the two important algorithms in
the domain of quantum computation. We then proceed by detailing some
proposals for physical realizations.

1.2 Quantum Mechanics

Quantum computing should be seen in the framework of quantum mechan-
ics. We give a brief overview on the basics for quantum mechanics. For
a more precise review we recommend the excellent account by Nielsen and
Chuang [NC00] or the standard text books on quantum mechanics [Sak94,
CTDL77].

Throughout these chapters we will suppose to be working in a complex
Hilbert space V of dimension N. The standard quantum mechanical no-
tation for a vector in a vector space is |¢) which is called a ket. Its vector
dual (¢| is called a bra. An inner product between two vectors ¢, is de-
noted (¢|¢). The tensor product between two vectors is denoted as |¢) ® |1))
but we will use the shorthand notation |¢)|¢).

We will fix an orthonormal basis B = {|0),...,|N — 1)} for V. Thus we can

write

N-1

) = D_ aili), (1.2.1a)
Vo

(ol =) aifil, (1.2.1b)
1=0

where the a; are complex numbers.
Any linear operator A on V can be written in the form

A=Y aylipil (1.2.2)
,J

Quantum mechanics can be summarized by 4 postulates.
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1.3. CLASSICAL AND QUANTUM LOGIC )

1. To an isolated physical system we associate a Hilbert space with inner
product which is the state space of the system. The system is com-
pletely described by its state vector which is a unit vector in the state
space.

2. The evolution of a closed quantum system is described by a unitary
transformation.

3. Quantum measurements are described by a collection {M,,} of meas-
urement operators. These operators satisfy the completeness relation

> MM, =1. (1.2.3)
m

4. The state space of a composite physical system is the tensor product
of the state spaces of the component systems.

1.3 Classical and Quantum Logic

1.3.1 Qubits

Bits are the basic elements in classical computing. As a physical entity
they can be considered as electronic switches that are either switched ON or
switched OFF. In a computational sense they have either the value 0 or 1.
The quantum mechanical analogue of bits are qubits, which is shorthand
for quantum bits. As a physical entity they can be a multitude of objects.
They could be the two different polarizations of a photon, the alignment
of a nuclear spin in a uniform magnetic field or something else entirely. In
a mathematical sense they are simply unit vectors in C2. The standard
orthonormal basis for qubits is denoted as |0), |1). These vectors correspond
to the column vectors (1,0)7, (0,1)7. An arbitrary qubit |¢) can be written
as

1) = a0|0) + a1 [1), (1.3.1)

with ag,; € C and a3 + a3 = 1. Measuring the qubit |¢) will give |0)
with probability |ag|? and |1) with probability |aq|?. It is possible to rewrite
equation (1.3.1) as

[) = e (cos 210) + €' sin g\l)) , (1.3.2)

where 6, ¢ and v are real numbers. The factor €? can be ignored as it has
no observable effect. This leads to

1) = cos §0) —I—ewsingﬂ). (1.3.3)

The qubit [¢)) can be considered as a point on the three-dimensional unit
sphere. This sphere is called the Bloch-sphere.
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8y

<y

Figure 1.1: Bloch sphere representation of a qubit |1)) = cos g|0>—|—ei¢ sin g|1>.

We can use the fourth postulate in order to combine several qubits. The
vectors {|0) @ --- ®1]0),...,]1) ® --- ®|1)} form a set of n qubits that span
a space of dimension 2". We will denote by |n) the qubit |zp) ® -+ ® |z)
with z; € {0,1} and n = % 2,27,

An arbitrary qubit |¢)) = 212:51 ;]i) is a unit vector in C2". When measured
it returns the state |j) with probability |o;|2. After measuring the state |1)
becomes [¢') = |j). This process is called the collapse of the waveform.

1.3.2 Manipulating bits and qubits
Classical bits

In order to compute with classical bits we use logical gates. A logical gate
is a function f: {0,1}* — {0,1}! with k input bits and [ output bits. The
following seven gates are well-known.

—~ =NOT: {0,1} — {0,1}

1.3.4
r—z+1 (mod 2) ( a)
v =0R: {0,1 0,1
0.1} — {01} (1.3.4b)
(x1,22) — 129 + 21 + X2 (mod 2)
= XOR: {0,1}? 0,1
@ 0,17 = {0.1) (1.3.4c)
(x1,29) — x1 + T2 (mod 2)
A = AND: {0,1}? 0,1
017 =101} (1.3.4d)

(z1,22) — T129 (mod 2)
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7= NAND: {0,1}* — {0,1}

(1.3.4e)

(21, 72) — 129 + 1 (mod 2)
FAN: {0,1} — §0,1§2 (1.3.4f)
SWAP: {0,1}* — {0,1}? (1.3.4g)

(z1,22) — (22, 21)
With these gates we can compute any function.

Theorem 1.1. An arbitrary function f: {0,1}" — {0,1} can be simulated
with the logical gates NOT, AND, XOR, FAN and SWAP.

Proof. We use induction on n. For n = 1 there are four possible functions:
1. The identity function, which does not need any gate.
2. The NOT-function, which is one of the five gates that can be used.

3. The constant function 0, which we can produce by using the following
gates:

0=0(z) = /\(FANl(ac), —\(FAN2($))>, (1.3.5)
where FAN; is the i-th output bit of the FAN-function.

4. We can obtain the constant function 1 by taking the NOT of the pre-
vious function:

1=-=(0(z)). (1.3.6)

Suppose now that any function on n bits can be computed and let f be a
function on n + 1 bits. Define the n-bit functions fy and f; by

filxy, ..o xn) = fi,21,. .., xy). (1.3.7)

Then we have

F(@0,- . ) = @(/\ (fo(z1, - 2n), =(z0))s A(fr(21, ... ,xn),xo)).
1

(1.3.8)
O

Alternative proof without induction. The function f can be written as
! (1.3.9)

= > X

| f(z)=1
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where
1, ifx=y,
=0, = 1.3.10
Xe () Y {0, otherwise. ( )
So that we can write
f= V xo (1.3.11)

| f(z)=1

where y, is a product of z; or z; and

1, ify =1,
Zi(y) = { Y (1.3.12)

0, otherwise.

We actually need only three gates.

Theorem 1.2. The NAND-function together with the FAN-function can
simulate the functions NOT, AND and XOR.

Proof.

—(x)

/\(xl, I‘Q) =

(FAN(z)) (1.3.13a)
(FAN( 1 (xl,ajg))) (1.3.13b)

& (w1, w0) =1 <T (T (FAN(xl)),xg),T (atl,T (FAN(@)))) (1.3.13¢)

|
1

O

So the NAND-gate together with the FAN-gate and the SWAP-gate allows
us to compute any function. However, the NAND-gate is not reversible,
nor can it be made reversible by adding an extra bit with information on
the input. There are logical gates on three bits that are reversible and can
compute any function. For instance the Toffoli-gate

TOF(Qfl,.Z‘Q,.Z‘g) = (331,332,331332 —1—333), (1.3.14)
and the Fredkin-gate
FRE(.Z‘l, X9, .1‘3) = (SWAP(Qfl, .1‘2)333 + Id(l‘l, .1‘2)(.1‘3 + 1), 333), (1.3.15)

which swaps the first two bits if and only if the third bit is set to 1.
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Manipulating qubits

The quantum equivalent of logical gates on bits are unitary transforms on
qubits. Given a 2™-dimensional vector space V with basis B and a 2™ x 2™
matrix U with m < n, an expansion of U relative to B is any matrix of the
form

G(U @ Iyn-—m)G ™1, (1.3.16)

where G permutes the basis and I is the k£ x k identity matrix.

Let U = {U1,...,Ux} be a set of unitary matrices of dimension dividing 2".
Then (B,U) is the set of all expansions of the U; relative to B.

We define the following matrices, which are respectively called the Hadamard
operator, the rotation operator of angle 6, the control-Not operator and the
control-control-Not operator:

10
1 /1 1 e2 0
H=— , P(9) = . , 1.3.17ab
1 0 0O
01 00
CNOT = 000 1l (1.3.17¢)
00 10
1 0 0000 0O
01 00 O0O0O0O 0
001 0 O0O0O0O0
00 01 0O0O0O0
CCNOT = 00001000 (1.3.17d)
00 00 O0OT1TTO0TO0
00 0 O0O0O0O0 1
00 0 O0O0OO0OT1TTO0

The control-NOT operator is a special case of the general class of controlled
operators. These operators act on two registers of qubits in a very specific
manner. If the first register of qubits is in a specified control state, usually
|1)---|1), then an operator U is applied to the second register of qubits. If
the first register is not in the specified control state, the identity operator
is applied to the second register. For any n > 2 and 6, such that P(0) is
not idempotent, the set U, = {H,CNOT,CCNOT, P(0)} generates a group
GU; that is dense in U(2"). To be a little bit more precise we define the

norm of a vector
o) = v/ {¢le)- (1.3.18)

The norm of an operator U is defined as

i8]
Ul = .
101F= sup o)

(1.3.19)
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We say that an operator U represents an operator U with precision e if
HU - UH <e (1.3.20)

With this definition we can say that the group GU, represents U(2") with
precision € for any € > 0.

A quantum circuit is a unitary matrix built by composing elementary oper-
ations from U,. The size of a quantum circuit will be the minimal number
of operations composed to obtain it. A register in a quantum computer is
a subset of the total set of qubits. Writing |¢1)|¢p2) means that the first
register is in state |¢1) and the second in |¢p2).

1.3.3 Limitations

The most important limitation for qubits is the following theorem.

Theorem 1.3 (No Cloning Theorem). It is not possible to copy any given
quantum Sstate

Proof. Suppose we have two qubits. The qubit to be copied is in state |¢1)
and the other qubit in some state |s). Suppose that we have a copying
machine, using a unitary operation U. Then

61) ® |5) 2 U (1) © |s)) = [¢h1) © |ba). (1.3.21)

For another quantum state |p2) we have the same relation. We now take
inner products to get the following.

(1] @ (s UTU (|2) @ |5)) = ((61] @ (¢1]) (2) @ |2)).  (1.3.22a)
(D1|p2)(s|s) = (P1]p2)(d1]P2). (1.3.22b)
(01|¢2) = (p1]d2)*. (1.3.22¢)

This equation has solutions if and only if (¢1]¢p2) is 0 or 1. So copying cannot
be done for general states. O

The consequences of this negative result are clear. Even for simple operations
like switching two bits we would like to make a copy of one of the bits
before overwriting it. In quantum computing we need to design algorithms
in such a way that we never need to store an intermediate result, which is
a fundamentally different approach than what we are used to on classical
computers. So in a sense we need to develop a quantum mechanical way of
algorithmic thinking to design algorithms for quantum computers.
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1.4 Quantum Algorithms

1.4.1 Discrete Fourier and Quantum Fourier Transform

Let xg,...,zn_1 be a vector of complex numbers. The Discrete Fourier
Transform is defined by:

1 S g v (1.4.1)

The Coole-Tukey algorithm [CT65| for Discrete Fourier Transforms reduced
the complexity from 0(6"2) to O(e"!°8™). Let |k) be a vector in a complex
Hilbert space V' of dimension N and let |0),...,|N — 1) be an orthonormal
basis for V. The Quantum Fourier Transform (QFT) is defined in the same
way as the Discrete Fourier Transform:

N-1 oriik
e N |). (1.4.2)
§=0

1
k)=

2ms

It is possible to give a matrix notation for the QFT. Let £ = e2" | then the
unitary 2V x 2V matrix, given by

aji = Fpg0VED), (1.4.3)

is the Quantum Fourier Transform. An example for N = 3 and &8 = 1:

1 1 1 1 1 1 1 1
1 ¢ & ¢ ¢ & & &
1 62 64 66 68 610 12 614
1 1 3 6 9 12 15 18 21
QFTN:S = ﬁ 1 §4 ES §12 §16 §20 §24 §28
1 55 510 515 520 525 530 535
1 66 612 618 624 §3O 636 642
1 57 514 521 528 535 542 549
11 1 1 1 1 1 1
1 ¢ & ¢ ¢t & ¢ &
I SR SRS S S S
_ L e e ¢t e e
_% 1 54 1 54 1 54 1 54 . (1.4.4)
1 65 62 7 64 § 66 3
I S S B L S
I S S SR S S

The QFT is useful because the complexity of the DFT is O(e!°8™) whereas
the complexity of the QFT is O(n?). It is exactly this gain which will allow
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us to solve classically infeasible problems with quantum algorithms by using
the QFT. The following example, of which Shor’s algorithm is a special case,
clearly shows how the QFT can be used in quantum algorithms.

Let N > 1 be a positive integer, G = Z/NZ the additive group of integers
modulo N and X a finite set. Suppose that we have a function f: G — X,
such that for some subgroup H = (d) of G, f is constant on H and separates
cosets of H. Suppose that we do not know d. We want to find a generator
for H. To do so we start with two registers in the zero state |0)|0) and we
apply the QFT to the first register to obtain

LN 3 17)10)- (1.4.5)

G- (1.4.6)

<

We now measure the second register and obtain f(jo) for some jo. The effect
of measuring the second register is that all registers that do not have f(jo)
in the second register collapse. As f separates cosets of H this means that
only the coset H + jg remains in the first register. If |H| = M, the first
register can be described as

| M
Vi ; |70 + sd). (1.4.7)

We apply the QFT to this register to obtain

SN Y R (1.4.8)

Using the fact that N = dM and evaluating the second sum as a geometric
series, only the values of |k) that are multiples of M remain, giving

e~ N |tM). (1.4.9)

Measuring the first register gives a multiple of M. Repeating this procedure
we get several multiples of M. Using the Euclidean algorithm we obtain M
with high probability.
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1.4.2 Fourier Transforms over Abelian Groups

The above example works well because it was straightforward to identify the
elements of the group Z/NZ with the qubits |0),...,|N — 1). For general
finite abelian groups, this identification is not that simple and we will need
to define a more general form of Fourier transform. To do so we need to
introduce some basic representation and character theory. We follow the
description of Chris Lomont [Lom]|. Every finite Abelian group G can be
written as the direct sum of cyclic groups, so

G=Z/N\Z® ---®L/NyZ. (1.4.10)

We suppose that we have a function f from G to a finite set X, such that
f separates cosets of a subgroup H of G. We will write elements of G as
k-tuples (g1, ...,9%), with g; € {0,..., N; — 1}. Define

Bi=(0,...,0i-1,1;0i41,...,0). (1.4.11)

A character of GG is a group homomorphism x from G to the multiplicative
group of nonzero complex numbers C*. For every character xy and every
element g = (g1,...,gx) we have

k k
x(9) = x <Z gzﬂi) =TT x)7. (1.4.12)
1=1 i=1

So every character y is determined by its action on the ;. As the order of
B; is N;, the order of x(5;) must divide N;. Therefore

2mih;
X(Bi) =e Ni | (1.4.13)

for some h; € {0,...,N; —1}. So we can determine a character by a k-tuple
(h1,...,hx), which can be seen as an element h € G. This leads to the
following definition for characters. For every g € G, we define

Xg: G — C*
ko 2migih; 1.4.14
h|—>He Nj ( )
j=1

A useful theorem on characters is the following.

Theorem 1.4. Let G be a finite Abelian group and x a character. Then

> xlg) = {|§| Fx=Xer (1.4.15)

v otherwise.

Here x. 1s the identity character sending every element of the group to 1.
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Proof. We have
G=Z/N\Z@---&ZL/NZ. (1.4.16)

Choose h € G. Then

k
Sl = ¥ ([T

geqG g;€Z/N;Z \j=1
Je{1,... .k} (1.4.17)

k
_ H Z e2m'hjgj/Nj'
7j=1 g; EZ/N]'Z
If for some j we have €27i/Ni £ 1 then the geometric series

2mih
ih
SN = (1.4.18)

9;€Z/N;Z

The only time this does not happen is when for all j we have

e Vi =1. (1.4.19)
This is the identity character. In this case the result is H§:1 N;=|G|. O

We can now define the notion of an orthogonal subgroup. Let H be a sub-
group of G. The orthogonal subgroup of H is

H*={ge€G|xyh) =1, forall h € H}. (1.4.20)

While the cyclic QFT returns multiples of the generator of H, the general
finite abelian QFT returns elements of the orthogonal subgroup of H. It is
defined as

Fo=—— h)g) (hl. 14.21
G \/@g%GXg( )|g){hl ( )

We also define a translation operator

=Y [t+9)gl, (1.4.22)

geG

and a phase-change operator

én =Y _ xg(M)g)(gl- (1.4.23)

geG

We first show that the Fourier transform of a subgroup is its orthogonal
subgroup.
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Theorem 1.5. We have the following relation between subgroups and Fourier
transforms:
Fg|H) = |HY). (1.4.24)

Proof. By definition, we have
1
|H) = = > k). (1.4.25)
VIH| ieh

We then have:

g h'eG hGH

Using the fact that (h|h’) = 1, if h = b’ and zero otherwise, the above
expression can be simplified to

‘GHH ; (};{Xg ) (1.4.27)

The character x, of G is also a character of H, therefore ), - x4(h) is zero
unless the character is the identity on H, in which case the sum is equal
to |H|. That is exactly the definition of the orthogonal subgroup, therefore
we can reduce the equation to

W > [Hlg). (1.4.28)

geHL

As |H||H*| = |G, this is equal to

(1.4.29)
gEHi

O

In a similar way the following three identities can be proved.

Theorem 1.6. For all elements h,t € G we have

Xn(t)Tedn = OnTi, (1.4.30a)
Foon = 7 Fg, (1.4.30b)
Feri = ke (1.4.30c)

We can now give the algorithm for the hidden subgroup problem for general
finite abelian groups. As in the cyclic case we start with two registers of
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qubits in the zero state and we apply the Fourier transform to the first
register.

0)| 14.31
10)10) \/W > gl ( )

geG

We then apply the coset separating function f to the second register, which
leads to

(1.4.32)

\/EZ\QV

geqG

Define T = (t1,...,t,) as a set of coset representatives for H in G. We
obviously have |T'||H| = |G|. Using the separation property of f we can
simplify the above expression to

It + H)|f(t) (1.4.33)
vt

This is equal to

\/\TZ | H (1.4.34)

teT

We apply the Fourier transform to the first register and use the above theo-
rems to obtain the following result.

ﬁzﬁ' WZFGMH £

teT teT

= ﬁ tz; o Fa|H)|f (1)) (1.4.35)

1
- o[ HY) F(2)
VIHT] 2; '

We now measure the first register and obtain a random element of the or-
thogonal subgroup of H. Since (H)' = H, determining a generating set
for the orthogonal subgroup determines H completely. This does however
not mean that it is an easy task to get a generating set for H starting with
a generating set for H. Suppose that we have a generating set gi,..., g
for H-. As H = H++, we have h € H if and only if

xn(gj) =1, forallj=1,... ¢t (1.4.36)
Let d = LCM(Ny,...,Ng) and o = N Then

k 2miaghg

xulg)) =[]e @ =1, (1.4.37)
=1
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if and only if
k
Zalhlgﬂ =0 (mod d). (1.4.38)
=1

So to find elements of H we have to solve this system of ¢ linear equations.
This is a simple linear algebra problem that can be efficiently solved with
the use of Smith normal forms. Solving this equation gives an element

h=(hi,...,h) € H. (1.4.39)

Repeating the procedure will lead to a set of generators for H.

1.4.3 Shor’s Factoring Algorithm

Let N be an integer. We want to find an integer 1 < p < N, such that p | N.

By repeating this process for the integers p and g = % we will eventually

find a factorization

n
N =]]»5 (1.4.40)
=1

where p; are prime numbers and e; are positive integers. The fundamental
theorem of arithmetic tells us that this factorization is unique. The problem
is to find integers p; that divide N. The factoring algorithm proposed by
Shor [Sho97] is designed to find the order 7 of an element z modulo N, which
is the smallest positive integer, such that

z"=1 (mod N). (1.4.41)
If we can find such an element, then we verify whether
22 # -1 (mod N). (1.4.42)
If this is the case we compute
GCD(zZ £1, N), (1.4.43)

and we might find a non-trivial factor of N. The quantum part of this
algorithm revolves around the Quantum Fourier Transform and Quantum
Phase Estimation.

Quantum Phase Estimation

Let U be a unitary operator and let |u) be an eigenvector of U with eigen-
value e2™®. So
Ulu) = e2™®u). (1.4.44)

The purpose of phase estimation is to find an approximation ¢~5 for the un-
known value 0 < ¢ < 1. The quantum algorithm for phase estimation uses
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two registers of qubits. The first register |0); consists of k qubits initialized
in the state |0). The number k depends on the desired accuracy of the ap-
proximation ¢ and on the desired success probability of the algorithm. The
second register is initialized as |u) and takes as many qubits as are needed to
describe |u). On each of the qubits of the first register a Hadamard operator
is applied:

1
|0) — E(|0> +11)). (1.4.45)
Then on each qubit .
ﬁ(m + ‘1>)j+1 (1.4.46)

of the first register a controlled-U? gate is applied, where the integer j ranges
from 0 to k& — 1:

10) + 1)) ) — (|0>\u> + 1)U u)
(10)]u) + 16272 [u) ) (1.4.47)

(10) + €22 1)) Ju).

Doing this operation on each of the k£ qubits of the first register, we obtain
the following state:
1

0p — ¢—2—((|0> TP 1)) - (10) + 2P )) )
2k_1 (1.4.48)

2migj ‘]
-

1
-

I
§\~§\~S\

where we use the convention that if
j=ao 20+ +a,2", (1.4.49)

with a; € {0,1}, then |j) indicates the qubits |ag) - - - |a,). We can write

¢ = (Qk +6> (1.4.50)
where @ = ag_1 ... aq is in binary notation,
1
o] < oRT (1.4.51)

and % is the best k-bit approximation of ¢. This gives

2k

\/__i 2eij (5 +9) |y, (1.4.52)
Jj=0
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We apply the inverse Fourier Transform on the first register, sending [j) to

k
271 9

\/% e ). (1.4.53)
=0

Putting this into the equation we obtain:

223 +5
|0)|u) — Z i (2r \J>\U>

=0

k
281 27ijl

1 i (& ot
— o= 22”(2”\/_2 2 0) | Ju)

=0
Y (1.4.54)
21 omijl o ..(a
-z e e E )
J,1=0
1 221 omija—l) |
=2 e ¥ ).
41=0

Now the first register is measured. There are two cases to consider. If § = 0,
then we will measure exactly |a) = |¢). If 6 # 0, we will measure |a), the
best k-bit approximation of ¢ with probability p, = |c,|?, where

1 2mid\J
Ca =3¢ PG (1.4.55)

This is a geometric series which can be bounded with some trigonometric
manipulations to obtain

4
Pa > — > 0.4. (1.4.56)
s

Order finding

We use quantum phase estimation to find the order of an element x mod-
ulo N. The quantum algorithm for finding the order of x uses the unitary
operator U, that acts in the following way:

Uzly) = |zy (mod N)). (1.4.57)

The eigenstates of this operator are

s

lus) = 7 s

2msk

‘x (mod N)), (1.4.58)
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with 0 < s <r —1 an integer. Indeed we have that

1 r _ 2misk
Uglus) = — Ze T |azk+1 (mod N))
VIS (1.4.59)
2mis
=e r |ug).
2mis

So the eigenvalues of U, are e = , with 0 < s <r — 1 an integer.

We apply the quantum phase estimation algorithm on U, to obtain approxi-
mations of ¢ = 2. There are two problems that need to be solved to execute
this algorithm. We have to efficiently implement controlled-U? operators
for integers j and we need to prepare an eigenstate |ug) with a non-trivial
eigenvalue. The first of these problems can be overcome by modular expo-
nentiation.

Modular Exponentiation Modular exponentiation means computing the
remainder when dividing a positive integer ¥ by a positive integer N. That
is, we want to compute 2, such that:

' =zF  (mod N). (1.4.60)

If we compute this value by first calculating * and then computing the
remainder modulo N, then this would require O(k) multiplications to com-
plete. This method can be slightly improved by using the following relation:

a-b (mod m)= (a (modm))- (b (modm)) (modm). (1.4.61)

So after each multiplication by x we compute the remainder modulo N.
This will reduce the size of the numbers that need to be multiplied, saving
memory, but this still requires O(k) multiplications.

A third method reduces both the number of operations and the memory
required to perform modular exponentiation. It is a combination of the
previous method and a more general principle called binary exponentiation.
We first convert k£ to a binary number:

n—1
k=Y a2, (1.4.62)
i=0
where a; is either 0 or 1. We can then write * in binary form:
n—1 )
s | (aﬂi)az . (1.4.63)
i=0
Therefore z’ is equal to:
n—1 \a
2 = H <x21> " (mod m). (1.4.64)
i=0

The running time of this algorithm is O(log k).
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Eigenstate Preparation The second problem that needed to be over-
come was the preparation of an eigenstate |ug) without the knowledge of the
order r. It is relatively straightforward to prove that

r—1 _ 2misk

%Ze T ug) = ‘xk (mod N)). (1.4.65)
s=0

Using this result with £ = 0, we obtain

r—1
%Z ) = [1). (1.4.66)
s=0

The quantum state we produce before applying the inverse QFT is

2" -1 2"-1
[#)lo)2= Y [HUI1) = ) [)]2? (mod N)), (1.4.67)
j=0 J=0

where n is the size of the first register of qubits and is of size O(log N). In the
end we have an n-bit approximation of ¢ = 2. We would like to find r from
this result and we can do this by using the continued fraction algorithm.

Theorem 1.7. Let = € Q be such that
s 1
I G 1.4.68
‘¢) 7“‘ — 2r2 ( )

Then 7 is a convergent of the continued fraction of ¢ and can be computed
by the continued fraction algorithm.

This algorithm produces numbers 7/, s" with no common factor, such that

s_5 (1.4.69)

There are two ways for the algorithm to fail. The phase estimation algorithm
may produce a bad estimate of 2 in which case the above theorem no longer
applies. The probability of this event depends on the size of the first register
and can be made negligibly small. The second problem is that s will be
randomly chosen by the quantum algorithm, when we measure, and there is
always the possibility that it is a divisor of r. In that case 7’ will be a divisor
of 7 and not r itself. If this happens, then

2" #1 (mod N). (1.4.70)

We repeat the algorithm to obtain 7, s”. If " # r and GCD(s" ) = 1,
then
r = LCM(r", 7). (1.4.71)

The probability that GCD(s”,s') =1 is at least 1.
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Reducing factoring to order finding

To reduce factoring a number N to computing the order of an element z
modulo N we need the following theorems:

Theorem 1.8. Let N be a composite positive integer and x # +1 a non-
trivial solution to the equation x> = 1 (mod N). Then at least one of
GCD(x — 1,N) and GCD(z + 1, N) is a non-trivial factor of N.

Theorem 1.9. Suppose N = [[I'_, p;" is the prime factorization of an odd
composite positive integer. Let 1 < x < N — 1 be chosen at random. Let r
be the order of x modulo N. Then the probability that r is even and that

23 % -1 (mod N), (1.4.72)

L

1s at least 1 — 5w -

So in order to factor a number N we randomly choose a positive integer
x smaller than N. We use the order finding algorithm to find the order r

of £ modulo N. If r is even, we compute y = a:% (mod N) and check
whether y Z —1 (mod N). If this is the case we compute GCD(y + 1, N)
and test whether either of these is a non-trivial factor of IN. The perfor-
mance of this algorithm is O(log® N) if we use simple multiplication and
O(log®N log log N logloglog N) if we use fast multiplication.

1.4.4 Grover’s Search Algorithm

Grover’s algorithm is a quantum algorithm to search an unsorted database
with N entries in O(v/N) time and using O(log N) storage space [Gro97|.
In classical computation searching an unsorted database cannot be done
in less than linear time O(NN). Grover’s algorithm provides a quadratic
speedup, unlike other quantum algorithms, which may provide exponential
speedup over their classical counterparts. Consider an unsorted database
with N entries. The algorithm requires an N-dimensional state space H,
which can be supplied by log N qubits. For simplicity we will assume that
N = 2" and that the search problem has exactly one solution. It is possible
to generalize Grover’s algorithm to search problems with M solutions, but we
will not do so here. The database entries are 1,2,..., N. We call this set V.
We suppose that ig is the solution to the search problem. Let f: V — {0,1}
be a function, such that f(x) = 1 if and only if x is the solution to the search
problem. Suppose we have a unitary operator O, such that

Olx)ly) = |x)|y ® f(x))- (1.4.73)
If we put the second register |y) in the superposition

1

(l0) —11)), (1.4.74)
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then we have that

Ola)|=) = (=1)/@|a)|-). (1.4.75)

This operator is called the oracle. Grover’s algorithm uses two registers.
The first register consists of n qubits initialized in state |0),,. The second
register has one qubit and is initialized in state |1). We start by applying
the Hadamard operator on the first register

H®"|0),, \/_ Z| (1.4.76)

and on the second register

HI1) = |-). (1.4.77)

We apply the oracle operator O to the first register and obtain

N

S

= (1.4.78)
=)-
The first register is a superposition of states, but the searched element has
negative amplitude while all other elements have positive amplitude. The
next steps of Grover’s algorithm slowly increase this negative amplitude,
while decreasing the positive amplitudes, making it more likely that a meas-

urement of the first register results in the searched element. We have the
following equality:

O(|¢)nl—-)) =
= ‘Qb >n

%F

|91)n = [P)n — —|Zo> (1.4.79)
Moreover, we have (¢|¢) =1 and (¢|ig) = \/—% We apply the operator

R=2¢){(p| — I (1.4.80)

on the first register and get

R|¢1)n = (200)(0] = 1) (|6} — 5 lio)
= (1= %) [9)n + Flio) (1.4.81)

Grover’s algorithm consists of repeatedly applying the operator
G=Ro0=(2¢){¢| —I) 0O (1.4.82)

on the qubits. We have the following geometric interpretation.
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Figure 1.2: A geometrical interpretation of Grover’s search algorithm: suc-
cessive reflections around the axes |a) and |¢).

Let 1
o) = —— i), 1.4.83
0) = ——= D10 (14.83)
1#io
and |3) = |ig). We can write
|0) = \/ 2xtla) + 1/ w18). (1.4.84)
Let
cosd = /8 (1.4.85)
then
|¢) = cos §|a) +sin §|3). (1.4.86)
After straightforward computation we find that
G|¢) = cos 3|a) + sin 32|5), (1.4.87)
and more generally
G*|¢) = cos M\a) + sin M\ﬁ). (1.4.88)
We have that
6 = 2arccos < %) , (1.4.89)
so the number of times we need to apply G verifies the equation
0 =«
kO 4+ - = —. 1.4.90
So
k= VQ—;"J (1.4.91)
Setting

6 = 2arccos < %) , (1.4.92)
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and using the Taylor expansion for arccos we get
k= |=E]. (1.4.93)

If we apply the Grover operator k times and we measure the first register,
then the probability of obtaining ig is close to 1.

1.5 Physical Realisations

1.5.1 Introduction

There are several conditions that a physical system needs to verify to be
a good candidate for a physical realization of a quantum computer. The
qubits need a robust physical representation where they retain their quantum
mechanical properties. The system itself must allow us to perform a universal
family of unitary transformations. It should be possible to prepare the qubits
in a specified set of initial states and it should be possible to measure the
final output states of the qubits.

The difficulty with physical realizations for quantum computation is that
these requirements are often only partially met. An important obstacle for
quantum computers is decoherence, which are processes that corrupt the
desired evolution of the system. Every physical realization has a decoherence
time 7. Operations on qubits need to be performed in this time, because
after a time 7, the evolution becomes unreliable. An operation on a qubit
usually takes some predefined time 7,,, depending on the physical system
that is chosen. The ratio ;—Qp indicates the maximum number of operations
that can be performed on the system before it becomes decoherent.

Representing qubits

Quantum computation is based on unitary transformations on quantum
states. Qubits are two-level quantum systems and provide a useful method
of labeling for pairs of states. For instance a spin % particle has four states.
We could make the following correspondence:

Im = 2)=100), Im= %) =101), (1.5.1ab)
Im = —3) = [10), Im = —3) = [11). (1.5.1cd)

So we could uses such a particle to represent two qubits. It is important
to make a good choice to represent qubits. A poor representation results in
general in a quantum system with a short decoherence time.

A good measure of decoherence for single qubits is the minimum lifetime
of an arbitrary superposition of the ground states. This measure is called
T, the transverse relaxation time. As the name suggests, there exists also
another measure for decoherence. The longitudinal relaxation time T} is the
relaxation time of the higher energy state |1).
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Performing unitary transformations

A natural goal for experimental quantum computation is to be able to per-
form arbitrary unitary transforms on a single qubit and a CNOT transform
on two qubits. If the system allows us to perform these operations, then, in
theory, we can perform any arbitrary unitary transform on more than one
qubit. There are some issues that need to be made clear. In order to have
such an arbitrary unitary operation, we need to be able to address individ-
ual qubits and arbitrary pairs of qubits, without disturbing the other qubits.
When there is an error in a unitary transform, this error will propagate,
causing decoherence.

State preparation

If we want to make a quantum computation, we need to be able to initialize
the qubits to represent the input of the computation. In classical computing,
the initialization rarely poses any serious problems, but in quantum comput-
ing this is no longer true. Depending on the physical realization it may be
very difficult to interact with the qubits. There is one positive point to make
though. If we have any arbitrary one qubit transformation at our disposal,
then we will only need to produce one initialized state with high fidelity. All
other starting states can be obtained from this state by applying a unitary
transform on it. In many physical realizations, the initialization of choice is
the ground state |0...0). There are two measures that indicate the quality
of initial state preparation. The first one is the minimum fidelity of the quan-
tum gate needed to transform the ground state to an input state |zq ... x,).
The second one is the entropy of the initial state. In general, input states
that have non-zero entropy reduce the accessibility of the answer from the
output state.

Measurement

We can consider the measurement of the qubits as a process where the qubits
are coupled to a classical system, which permits to read the state of the
qubits. An important characteristic of the process of measurement is the
collapse of the wave function in case of projective measurement. Quantum
algorithms need to be designed in such a way that when the output is mea-
sured, a useful result is found with high probability. Measuring qubits is not
a simple process. Projective measurements can be difficult to implement as
they need a large coupling between the quantum system and the classical
system. Furthermore, we only want to make measurements when we choose
to do so. Unwanted measurements can be considered as a decoherence pro-
cess and are therefore undesirable. So the coupling between the quantum
and classical systems should not be too large either. The signal to noise ratio
is usually a good indicator of the measurement capability of a system.
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1.5.2 Optical photon quantum computer
Physical description

Photons are particles without charge that do not interact strongly with each
other. It is possible to guide photons along long distances in optical fibers
with low loss. They can be manipulated in several ways. It is possible to
delay photons with phase shifters and to combine them with beamsplitters.
A photon can be represented as a qubit in the following way. The energy in
an electromagnetic cavity is quantized in units of Aw. Fach such quantum
is called a photon. Consider two cavities whose total energy equals Aw.

We can then describe the states of the qubit as being the cavity in which
the photon is located. That is state |0) corresponds to a photon in the first
cavity and |1) to a photon in the second cavity. Single photons can be de-
tected for a wide range of wavelengths.

There are several devices to manipulate qubits. Mirrors with high reflectiv-
ity reflect photons and change their propagation direction in space. Phase
shifters, which are just transparent media with a different refraction index
than the vacuum. Propagation of photons through such a medium will result
in a phase shift. Beamsplitters, which are partially silvered pieces of glass,
reflect a fraction R of the incident photons and transmit a fraction 1 — R of
the incident photons.

B

Figure 1.3: A beamsplitter that reflects a fraction R of incident photons and
transmits a fraction 1 — R.

A material that has a refraction index that is proportional to the total in-
tensity I of light going through it is called a non-linear Kerr medium. This
medium has a non-linear effect on the qubits and is used for interaction
between photons.
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Quantum computing

The three key elements for quantum computing are the phase shifter, the
beamsplitter and a non-linear Kerr medium.
The phase shifter P acts on a qubit

lg) = |0) + B]1) (1.5.2)
in the following way:
iA iA
Plg) = ae” 2 |0) + Be 2 |1), (1.5.3)
where
A= (nmmll (1.5.4)
CO 9 . .

with n the refraction index of light through the medium of the phase shifter,
ng that through vacuum, L the distance the light travels through the medium
and ¢y the speed of light in the medium. So the phase shifter acts as a
rotation around the z-axis on a single qubit.

The beamsplitter B acts on a qubit |g) in the following way:

Blg) = (acos @ — Fsin6)|0) + (asin + [Fcos 0)[1), (1.5.5)
where the angle 6 of the beamsplitter verifies the equation
R = cos ¥, (1.5.6)

with R the fraction of incident light on the beamsplitter that is reflected.
The beamsplitter acts as a rotation around the y-axis. The beamsplitter and
the phase shifter together allow us to make arbitrary single qubit operations.
The non-linear Kerr medium K is used for operations on two qubits:

, (1.5.7)

o O O
O O = O
O = O O

where L is the distance the light travels through the medium and y is a
characteristic coefficient of the Kerr medium. If the length L is set, such
that

xL =, (1.5.8)

then the matrix for K becomes:

(1.5.9)

O O O
O O = O
o = O O
— o O O
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We have the following relation:

CNOT =(I® H)K(I ® H)
1 1.0 O\ /100 OV/1 10 0
_1f1 -1 0 off0 10 0 1 =1 0 0
210 o1 1Jfoo0o1 o)JlO 01 1
0 01 —-1/\000-1/\0 01 -1
1 000
01 00
=lo o001l (1.5.10)
0010

where H is the Hadamard operator. The gate for xyL = 7 is also called the
CZ or ControlZ gate. We can combine the three basic operations on the
qubits to make a CNOT operator. This, combined with arbitrary operations
on single qubits is in theory sufficient for any quantum operator.

Drawbacks

While single photons are easily generated and measured, it is difficult to
make photons interact. The best non-linear Kerr media available are very
weak and cannot provide a cross phase modulation of 7 between single pho-
ton states. Moreover, there is usually absorption associated with the non-
linearity of a Kerr medium and it is estimated that nearly 50 photons need
to be absorbed in order to experience a 7w cross phase modulation on a single
photon. Therefore, the decoherence of the system will be very large.

1.5.3 Trapped ions
Physical description

An ion trap quantum computer consists of an electromagnetic trap with
lasers and photodetectors, and ions. The electromagnetic trap is constructed
from four cylindrical electrodes, with the end segments biased at a different
voltage Uy than the middle. Therefore, the ions are axially confined by a
static potential

gy = —— (2 —2° — y?) (1.5.11)

along the z-axis, where & is a geometrical factor. A charge cannot be confined
in three dimensions by static potentials and therefore two of the electrodes
are grounded while the other two electrodes are driven by a fast oscillating
voltage which creates a radiofrequency potential

2

(U coswt + U, )(1 — ngQy )
2 9y

Ppp = (1.5.12)
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where R is a geometrical factor. The combination of these two potentials
creates a harmonic potential. The motion of the electromagnetically confined
ion becomes quantized when it is sufficiently well isolated. The purpose of
the electromagnetic trap is to allow ions to be cooled to the extent that
their vibrational state is close to having zero phonons. This will be the
qubit state |0). The internal atomic states of a trapped ion form a qubit
representation. These states are a combination of electron spin S and nuclear
spin I, giving a total spin F' = S 4 I. Suppose that an ion has an electron

1 1 1

spin 5 and a nuclear spin 5. Each of these spins could be either % or —3.

This would give the obvious computational basis B:

B = {]00),]01), [10), [11) }, (1.5.13)

where |ij) might correspond to a trapped ion with electron spin (—1)¢ - %
and nuclear spin (—1)7 - % In physics, a basis consisting of eigenstates of the
total momentum operator is preferred. This operator is defined by the Pauli

operators:

X _ 0 1 Y _ 0 — z 1 0

and the directional momentum operators:

X X Y Y
g, =i tor g, =1t (1.5.15ab)
2 2
A Z
J, = % PE L (1.5.15¢d)

where the subscripts indicate whether the operator acts on the electron or
on the nuclear spin. The operator J? has the following eigenstates:
|01) — |10)
0,0)j = ————, 1,-1); = 00), 1.5.16ab
0.0y == 1.-1)s = 00) (1.5.16ab)
|01) + |10)
1,0); = ————,
00 V2

These eigenstates are described as [j, m;) s, which are eigenstates of the op-
erator J2 with eigenvalue j(j+ 1) and of the operator J, with eigenvalue m;.

11, 1), =[11). (1.5.16¢d)

Quantum computing

The key element for quantum computing with spins is an electromagnetic
field. If we apply an electromagnetic field of frequency wy with the right
angle and duration we can construct arbitrary single qubit operations.
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Drawbacks

While the scaling of ion traps to a large number of qubits is conceptionally
viable, there are two limitations to ion trap quantum computers. Phonon
lifetimes are short, therefore the decoherence of a trapped ion is large. More-
over, it is not easy to prepare these ions in their motional ground states.

1.5.4 Other physical realizations

Several other physical implementation schemes for quantum computers are
possible. We will describe a few of those. Quantum computing by nuclear
magnetic resonance will be treated in much greater detail in the next chapter.

Quantum dots

A fundamental quantum unit that could serve as qubit representation is elec-
tric charge. It is possible with modern electronics to manipulate charges at
the level of a single electron. Quantum dots are three-dimensional boxes with
electrostatic potentials that confine electric charge quanta. Unlike photons,
net charge cannot be destroyed and therefore it is necessary to use two boxes
with only one charge quantum to represent a qubit. Single qubit operations
can be performed by electrostatic gates and single mode waveguide couplers
for moving electrons and tunnel junctions for quantum dots. The long-range
Coulomb interaction of the electric charge can be used to perform operations
on two qubits. It is simple to measure single electron charges using mod-
ern field effect transistors. Decoherence occurs through uncontrolled distant
charge motion.

Superconductors

At low temperature in certain metals two electrons can bind together through
a phonon interaction to form a Cooper pair, with charge 2e. These pairs can
be confined within an electrostatic box. A qubit is represented by one Cooper
pair in two boxes. Single qubit gates are realized by electrostatic gates
to modulate the box potential and Josephson junctions between coupled
boxes. Josephson junctions are also used to couple different qubits, where
an external magnetic field coupled to the superconducting interferometric
loops is used. Qubits are measured by measuring the electric charge in a
box. Cooper pairs are relatively robust and therefore the main decoherence
factor is spontaneous emission of electromagnetic photons.
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All things are difficult before
they are easy.

Chapter 2 THOMAS FULLER

Nuclear Magnetic Resonance
and Quantum Computing

2.1 Nuclear Magnetic Resonance

2.1.1 Introduction

A much longer introduction to Nuclear Magnetic Resonance can be found
in the books of Shaw and Slichter [Sha76, Sli80]. A magnetic system that
posseses both magnetic moments and angular momentum can exhibit a phe-
nomenon called magnetic resonance. If the magnetic system is a nucleus we
speak of nuclear magnetic resonance. The fact that nuclei can have magnetic
moments was first suggested in 1924 by Pauli, while studying the hyperfine
structure of atomic spectra [Pau24|.

The angular momentum of nuclei is quantized and nuclei have a quantum
number I which can be any half integer value. A nucleus with quantum
number I has an angular momentum of Ih.

The quantization of atomic magnetic moments was already demonstrated in
1921 by Stern and Gerlach [Ste21]. Their techniques to distinguish various
quantum states of atoms were refined to measure transition energies of nuclei.
In 1945 two groups simultaneously discovered resonant absorption in bulk
matter. Bloch et al. detected resonance absorption in water protons [BHP46|
and Purcell et al. detected resonance absorption in parraffin wax [PTP46].
The nucleus possesses a total magnetic moment fi and a total angular mo-
mentum J. We can take these two vectors parallel and have the following
equation:

=

i=nd, (2.1.1)

where « is a scalar constant. This constant is called the gyromagnetic ratio.
A classical first order approximation will give an estimate for «. Consider a
particle of mass m and charge e moving in a circular path of radius r with

33
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period T. The angular momentum of this particle is:

J = muor

 2mr?m (2.1.2)

T

The magnetic moment of the particle can be computed if we treat the rotat-
ing particle as a current loop of area A with current i:

a=iA
B enr? (2.1.3)
T
As we have the equation
fa=~J, (2.1.4)

it follows that the gyromagnetic ratio verifies the following equation:

e
y=— (2.1.5)

2mec
We now consider the consequences of placing a nucleus with a magnetic
moment in a magnetic field Bg. We first consider this from a classical point

of view. The nucleus is a magnetic dipole and will acquire an energy:
E = —ji- Bo. (2.1.6)

As the nucleus has angular momentum, it will not only align itself with
the magnetic field EO, but it will also precess with a frequency wy at an
angle 6 about this field. This effect is caused by the interaction of the torque
generated by rotational motion of the nucleus and the magnetic field of the
nuclear magnetic moment. The torque between the magnetic moment of the
nucleus and the field is

T = fi x Bo. (2.1.7)

The torque is equal to the rate of change of angular momentum:

4

o dt (2.1.8)
= woJ.

T

The frequency of this precession is therefore
wo = | Bol, (2.1.9)

which is called the Larmor frequency. It is the basic phenomenon of NMR.
The magnetic field is proportional to the precession frequency and the pro-
portionality constant is the gyromagnetic ratio.
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We now consider the basic properties of NMR from a quantum mechanical
point of view. First we define the dimensionless angular momentum opera-
tor I by:

=

J=1L (2.1.10)

The operator I? has eigenvalues I, which are either integer of half-integer.
All components of I commute with I2. The operator I, has eigenvalues m,
where m can be any of the 27 + 1 values —1,..., 1.

The application of a magnetic field B produces an interaction energy of the
nucleus of amount —fi - B. If we take the magnetic field to be By along the
z-direction we have the following Hamiltonian:

H = —yhBL,. (2.1.11)

The eigenvalues of this Hamiltonian are multiples vhBy of the eigenvalues
of I, and therefore the allowed energies are:

E=—yhBym, withm=-1I,...,1. (2.1.12)

We want to detect such a set of energy levels by spectral absorption. There-
fore an interaction is needed that causes transitions between energy levels.
Such an interaction must be time dependent and of angular frequency w,
such that:

hw = AE, (2.1.13)

where AF is the difference of energy between two levels of the spectrum.

m = %, E= %vhBo

AE = ~vhB,

Figure 2.1: Energy levels for a spin % particle

The coupling used to produce magnetic resonance is an alternating mag-
netic field of amplitude By perpendicular to the static magnetic field. The
Hamiltonian of this alternating field is:

A = —yhB; - I, cos(wt). (2.1.14)
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The allowed transitions are between adjacent energy levels and therefore:

hw = AE
— VB,
TR (2.1.15)
<~
w = vBy.

We see that Planck’s constant has disappeared from the resonance equation.

If we can estimate -y, we can compute the frequency that produces a magnetic

resonance.

We now consider a macroscopic sample of nuclei with spin % Let N, be the
1

number of nuclei in the state m = 3 and N_ the number of nuclei in the

state m = —%. Obviously, the total number of nuclei N verifies:
N =N;+ N_. (2.1.16)

Moreover, the equilibrium populations NE: and NO verify the equation:

NO _hBo
o =¢ mT, (2.1.17)
+

where kg is the Boltzmann constant.
If we apply an alternating magnetic field, the total number of nuclei will
remain constant, but Ny and N_ will vary because of the energy transitions
induced by the field. The probability per second of inducing a transition
from m = % to m = —% is equal to P and the probability per second of
inducing a transition in the other direction is P;. This leads to the following
differential equation:
dN4
dt

We can rewrite this equation as the difference between the two populations:

— P{N_ — P|N,. (2.1.18)

n=Ny—N_, (2.1.19)
and obtain the following differential equation:

dn  ng—n

it 2.1.20
o T ( )
where we have:
P — P
ng=N|——], 2.1.21a
’ <PT +Pl> ( )

1
— = PT + Pl' (2.1.21b)
Ty
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The solution of this differential equation is:

t
n(t) =ng+ Ce 11, (2.1.22)

with C' a constant that depends on n, ng the thermal equilibrium popula-
tion difference and 17 a characteristic time associated with the approach to
thermal equilibrium. This characteristic time 77 is called the spin-lattice
relaxation time.

2.2 Quantum computing with NMR

2.2.1 Ensemble system

NMR differs from other physical realizations of a quantum computer in the
sense that instead of a single photon or other physical entity it uses an
ensemble of systems as single qubit representation. As a direct consequence,
the measurement is also an ensemble average. Furthermore, it is technically
infeasible to prepare the ensemble in a special state such as the ground state,
therefore the initial state will be the thermal equilibrium state:

e P7

p) = —5— (2.2.1)

where 47 is the Hamiltonian of the system, g = kBLT and Z = Trace(ef)
is the partition function normalisation to ensure that the trace of p is equal
to 1. For modest fields at room temperature we can use the approximation:

o) ~ 27" (1 — Bo#), (2.2.2)

where the system has n spins. As spin-spin couplings are small compared to
the precession frequencies, we can interpret the thermal state density matrix
as a mixture of the pure states [00...0),...,[11...1).

The principal output of an experiment is the free induction decay signal:

V(t)=VyTr (e_i%tpei‘%ﬂt(iXk + Yk)> , (2.2.3)

where X and Y} operate only on the spin k, and Vj is a constant that de-
pends on the coil, the quality factor and the sample volume. This induction
signal has an exponential decay, which is caused by several factors. The
inhomogeneity of the static magnetic field, spin-spin coupling resulting in
phase randomisation and thermalisation of the spins to their equilibrium are
all contributing to the exponential decay of the signal.

For successful quantum computation we need to perform unitary transfor-
mations to a properly initialized qubit and to measure the output. In the
ensemble approach of NMR quantum computing several problems need to be
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addressed. First, how can we use the thermal state (2.2.1) to initialize our
system 7 How can we perform arbitrary unitary transforms on this state ?
Most important of all, how can an ensemble average measurement produce
the same results as projective quantum measurements ?

2.2.2 Labeling the qubits

The initial state of our system is the thermal state. In order to perform quan-
tum computation, we want to have an initial state of qubits |0---0). There
are several techniques to obtain this initial state from the thermal state.
These techniques are called labeling techniques. We consider the temporal
labeling technique, which is based on the fact that quantum operations are
linear and that observables measured in NMR are traceless. Suppose that
our initial thermal state for a two spin system is the density matrix:

ag 0 0 O

10 a 0 0
pPo = 0 0 as 0 5 (2.2.4)

0 0 0 ay

where the a; are positive real numbers that sum to 1. Supposing furthermore
that we can overcome our second problem of performing unitary transforma-
tions, we use SWAP-gates to obtain states with permuted populations:

ag 0 0 0 ag 0 0 0
[0 a3 0 0 o0 a 0 0

PP=10 0 ag 0] 710 0 a 0 (2.2.5ab)
0 0 0 ap 0 0 0 as

A unitary quantum computation U is applied to each of these three thermal
states in three separate experiments at different times, resulting in three
different outcomes Cy:

Cp=Up UL (2.2.6)

We take the sum of these three outcomes to obtain the following result:

ZCkZZUpkU_I
k k
:U<Zpk) U-!
k

100 0 100 0
o 0000|, .. o100
=W =D o g o) U F0-a) g o

000 0 0001

(2.2.7)
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In NMR the only observables that are measured, are traceless observables.
Let M be such an observable. We have:

Tr <Z CkM) = Tr (CpM)
k k

2.2.8
UM (2:28)

o O O

=M4a; —1)Tr | U

o O o=
o O o o
o O O O

0

— (4ay — 1) Tr (U/]00) (00]U).

—

Therefore the sum of the three outcomes is proportional to the outcome
of an initial state |00). This technique can always be accomplished if the
decoherence time is sufficiently long. It is also possible to perform these
different experiments at the same time but at a different space, using for
instance magnetic field gradients. In that case we call the technique spatial
labeling.

2.2.3 Unitary transformations

In order to perform arbitrary single qubit operations it is sufficient to apply
a large RF at the correct frequency. We consider the following three rotation
operators:

icX 0
R,(0)=¢ 2
cosg —ising (2.2.9a)
I sing cos% ’
ioY 6
Ry(0) =e™ 2
B (cosg —sing) (2.2.9b)
- . 0 0 )
Sin bl COS bl
7w'Z9
R.(0)=¢ 2
o2 0 (2.2.9¢)
= 0
0 e?2

In the Bloch sphere notation of qubits, these operators define rotations of an
angle 6 around the three coordinate axes. A rotation around an arbitrary
axe U = (Ug, Uy, uz) is given by:

—

10510

R;(0) = 2
0

(2.2.10)
= cos %I —¢sin Q(axux + ayuy + azuz).
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Let Ry = R;, (%) be a rotation of § around the z-axis of the first qubit and
define Ry likewise for the second qubit. We have the identity:
R2e 1o/t R2 — ¢iaolt, (2.2.11)

7

This property is called the refocusing property and it is used as a technique
to remove time evolution.

The ControlNot gate is built from a ControlZ gate, just as in other physical
realizations. This CZ gate is built by using the scalar J-coupling between
qubits, which are indirect interactions, mediated by electrons shared through
a chemical bond. We have the following identity:

iwalz O'2Z i7rcrlZ i7rcr2Z
View @ e 4 e 4 =CZ (2.2.12)

So we can build the ControlZ gate and from equation (1.5.10) we can con-
struct a ControlNot gate. We therefore have the basic operators to do quan-
tum computation.

2.2.4 Ensemble measurements

Ensemble measurements are fundamentally different from measurements of
a single series of qubits. Quantum algorithms are designed, such that no
matter what state the qubit collapses to, the resulting measured amplitude
will tell us something meaningful. In Shor’s factoring algorithm for instance,
we obtain a random fraction %, with p a random integer and g the outcome
that will be extracted in the classical postprocessing phase. In an ensemble
measurement we will not obtain this random fraction £, but rather an average
over a large number of these kind of fractions. The problem is that this
average does not contain any meaningful information that can be extracted.
This difficulty can be overcome under certain conditions. If we are able
to build quantum gates that can do the classical postprocessing part, then
it is possible to have meaningful ensemble measurements. The idea is to
wait for the measurement until after the postprocessing part is done in a
quantum computational way and only then measure the outcome. In the
example above, if we apply the continued fraction algorithm as a quantum
algorithm, then our outcome would always be g. The average would therefore
also always be ¢. This technique does beg the following question: if we can
do the postprocessing on a quantum computer, is it not a better idea to
always do the postprocessing in this fashion ? There are several reasons
not to do so. While Fourier Transformations have exponential speedup on a
quantum computer, other algorithms do not have this advantage. Moreover,
the decoherence on quantum computers is much more important than the
decoherence on classical computers, where there is hardly decoherence at all.
If we are obliged to do the postprocessing also quantum computationally,
that effectively reduces the number of gate operations we can use for the
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main part of a quantum algorithm before decoherence sets in. It is therefore
preferable to have a classical postprocessing part of a quantum algorithm.
Nevertheless, ensemble measurement can be given a useful meaning, but we
have to adapt the quantum algorithms in order for the outcome to be useful.

2.3 Drawbacks

The physical realization of an NMR quantum computer by labeling atoms of
molecules as qubits has met with impressive successes. The factoring of the
number 15 by using Shor’s factoring algorithm on 7 qubits can be considered
the high mark of NMR as a quantum computer [VSBT01]. No other physical
realization has so far been able to repeat this result. The NMR approach
has nevertheless met with severe criticism.

From the point of view of long term development, physical realizations of
quantum computers need to have several nice properties. One of them is
scalability. If we can realize an N-qubit quantum computer in some sort of
physical realization, it should be reasonable to hope that an (N + 1)-qubit
quantum computer can be realized by just slightly widening the physical
constraints and some small additional effort. In classical computers the ana-
log is clear: if we are able to place N chips on a circuit board, we expect
that placing (N + 1) chips would require some architectural effort, some de-
signing constraints, but no fundamental problem whatsoever. The problem
with the current approach of NMR quantum computing is that an N-qubit
quantum computer would be some kind of complicated molecule, with each
qubit some properly labeled atom in this molecule. If we would like to build
an (N + 1)-qubit quantum computer we cannot simply add another qubit to
the system. We would have to design a new molecule altogether. Therefore,
the NMR approach to quantum computing lacks scalability.

Another difficulty with using atoms of specifically designed molecules for
quantum computing is the inherent architecture of the qubits. As we use the
atoms of a molecule for qubits, some qubits will have quite some distance
between them. The scalar coupling between these qubits, which is needed to
make a CNOT operator, will be rather weak. Therefore it will be difficult to
have direct operations between these qubits. It is possible to circumvent this
problem by using a cellular automata style architecture, where an operation
on distant qubits will be executed by a series of local operations moving from
one qubit to the other qubit. While this approach may be possible, it will
certainly come with an additional cost of extra operations which slow down
the algorithms to be executed.

A third difficulty is the weak signal because of the labeling techniques used.
By repeating experiments in a permutation, such that all other ground states
except the initialization ground state cancel out, we may achieve initializa-
tion, but the probability of the initialization state will not be increased. If we
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want to initialize our system in the ground state |0 - - 0), then the probability
of this state is:

P00 = l<0---0\e*5%’\0---0>. (2.3.1)
Z
This probability is proportional to n2~", if we have a molecule with n qubits.
Therefore the signal will decrease exponentially if the number of qubits in-
creases. This problem might also be overcome by improving the labeling
techniques and by using optical pumping methods, but there will always be
a decrease in signal if the number of qubits increases.
The last criticism to the NMR approach for quantum computing is the most
severe. It starts with the remark that for quantum computing to be efficient
we need to be able to have entangled states [LP01]. That is to say states of
the form
|ab), (2.3.2)

that cannot be separated into two separate states
la) ® |b). (2.3.3)

The mixed thermal state that we use in NMR quantum computing does not
exhibit an entangled nature [BCJ199] and it can therefore be argued that no
real quantum computing takes place in an NMR quantum computer. This
objection does not put into question the NMR approach in itself, but rather
the use of thermal initialization states. As NMR quantum computing seems
to need these thermal states, this seems like an insurmountable problem.
So what are the problems that NMR quantum computing needs to over-
come 7 Scalability, architecture, signal loss in case of lots of qubits and the
lack of entanglement in the so called thermal state.

In the next chapter we will try a different NMR, approach where all these
problems can be addressed. Our approach has of course problems of its own
and whether any successful physical implementation of our scheme will be
realized remains to be seen.
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a while I was a suspect.

Chapt er 3 STEVEN WRIGHT

Reviving the Nuclear Magnetic
Resonance Approach

3.1 Introduction

As we noted at the end of the previous chapter, the NMR approach to quan-
tum computing has lately met with rather severe criticism and has slowly
been fading from the field of physical realizations. In 2001, bulk liquid NMR
was the hotbed of quantum computation and physical realizations of quan-
tum computers, but in the last years no major publication has appeared that
continues to propose this approach for a physical realization. In order for
bulk liquid NMR to be made viable again, at least three of the following
problems need to be solved:

1. Scalability: A major objection to the NMR approach is the fact
that it has no scalability whatsoever. Even augmenting the number of
qubits by one would demand an entirely different molecule on which
the qubits are labeled.

2. Decoherence: The thermal approach as initialization scheme for
quantum computation has as a direct consequence that the signal de-
creases exponentially if the number of qubits increases.

3. Entanglement: The thermal approach does not exhibit entangled
quantum states. These states are essential in the sense that without
them, quantum computing cannot be faster than classical computing.

4. Architecture: The ideal architecture for a quantum computer is one
where every qubit can communicate directly with every other qubit.
In molecules this architecture is naturally unachievable and we have to
use indirect interactions between distant qubits.

It is clear that the mixed thermal state is a major problem. If we could work
with pure states, than we would not need to have a labeling scheme which

43
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decreases the signal exponentially and we would not need to worry about not
having entangled quantum states. We therefore reconsider bulk liquid NMR,
but instead of using atoms on a specifically designed molecule as qubits, we
will use magnetic field gradients to create different resonance frequencies for
spatially separated parts of the liquid. We then proceed to assign to specific
resonance frequencies the value of a logical qubit. We build a framework
around this approach in which we show that we can properly initialize this
system. This in itself lifts three of the major objections: we no longer need
to use a mixed thermal state and using magnetic field gradients allows us to
have an easily scalable quantum system. The architecture objection remains
for the moment unaddressed as this problem only becomes an issue if we
have a working system of more than some qubits. It is however conceptually
not an insurmountable problem. For starters, via an indirect approach with
interaction via nearest neighbour qubits, there will be some loss of efficiency,
but it can be shown [Wat95, Llo93| that this still represents a universal
quantum computer. Another reason why the architecture need not be an
issue is the fact that we can potentially use magnetic field gradients in three
directions in order to obtain more neighbours for each qubit.

The main problem with our approach is that while molecules have an obvious
interaction for qubits by using the scalar interaction via the shared electron
cloud, we do not have such an obvious interaction. We show that we cannot
directly use the dipole moment between qubits as this is averaged away to
zero, but we may use the long-range dipolar effect, which is not averaged to
zero because of the geometrical constraints of the sample. This is still work
in progress and it is as of yet unclear whether this approach will actually
result in a useful interaction between qubits.

In the rest of this chapter we first describe the framework in which our
computations are executed. Via this framework we obtain the methods to
make single qubit gates as well as how to initialize these qubits. We conclude
with a roadmap which if followed successfully should lead to a working NMR
quantum computer. Those steps in this roadmap which have already been
executed will be given together with the experimental data to support them.

3.2 Framework for Quantum Computing by Nu-
clear Magnetic Resonance
3.2.1 One spin 1
Static field
For one nuclear spin % in a By magnetic field, the Hamiltonian is:
S = —fi- Bo

Lo (3.2.1)
= I - Bo,
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where 7y is the gyromagnetic ratio of the nuclear spin and I is the spin that
verifies the following equation:

- 1
I = ;ha, (3.2.2)

with & a vector defined by the following Pauli matrices:

x (0 1 y (0 — z (1 0
o —<1 0), o _<i 0), o _<O _1>. (3.2.3ahc)

The matrix notation of equation (3.2.1) is given by:

By BX—Z'By>

—_1
S = —1yh <BX+Z_BY 5, (3.2.4)

By convention, the vector By = (Bx, By, Byz) is placed in the Oz-direction,
that is Bg = (0,0, Bp) and the xOy-plane is called the transverse plane.
Therefore the matrix form of the Hamiltonian reduces to:

By 0
A = —Lyn ( 00 —Bo) : (3.2.5)

The two eigenvalues of the Hamiltonian 5%, which give the energy of the
quantum states, are:

1 1
E, = —ifyhBo, E_ = ifyhBo, (3.2.6ah)

which have the following two corresponding eigenvectors:

+) = <é) : |—) = (g) : (3.2.7ab)

We will use these eigenvectors as our canonical basis for computation. If we
have more than one spin our canonical basis will not necessarily be the basis
of eigenvectors. Sometimes we will use the qubit notation |0),|1) in stead
of H‘>? |_>

The probability for a spin % to be in either of these states is equal to % at
T = 0. At higher temperatures the probability to occupy a state depends
on the temperature T. We can describe the wave function as:

|4(0)) = al+) +b]-), (3.2.8a)
laf* + [o]?* = 1. (3.2.8b)

The wave function for a spin % particle can be written as:

00) = 5 (% 11+ % 1)
[ (3.2.9)
L (e
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The time evolution far from the speed of light ¢ is given by the Schrédinger
equation:

ih@\gitl(t)} — | t). (3.2.10)
If we write
|1 (1)) = Gg;) (3.2.11)

then we have the following differential equations:
o ((t) 1 (Bo 0 > <$(t)>
thi . = —357h .
<y<t>> 27"\ 0 —Bo) \w®)

-(00)

wo = —’yB() (3.2.13)

(3.2.12)

where

is the resonance or Larmor frequency. The following time dependent wave
function is the obvious solution of this system of equations:

1 7i(wot+¢)
e 2
[r®) = 5 | iterrrer |- (3.2.14)
e 2

The effect of an RF magnetic field

In NMR a transition between the two states |+) and |—) is obtained by a
B1 magnetic field rotating in the transverse plane.

zZ
A
By

<y

]

Figure 3.1: Magnetic field B, rotating in the transverse plane.
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This field is generated by an electromagnetic RF wave obtained by an os-
cillating current in a solenoid surrounding the spin sytem. In NMR spec-
trometry the phase a of the RF field can be controlled. In this case the
Hamiltonian has non-diagonal elements due to the RF magnetic field B,
rotating around By with an angular velocity w:

By Ble—i(wt-i-a))

1
Hrr(t) = —57h (Blei(thrOt) —B, (3.2.15)

In this case the time evolution is no longer trivial. We have the following
differential equations:

ihdlyre (1) _ . (x(t))
—— = Hrr(t)

ot y(®) (3.2.16)
_ 1y @O wlefi(thra) ' Qf(t)
2 wy ciwt+a) —wp y(t) )
where
w1 = —’}/Bl. (3217)

In the time-independent case these equations obviously reduce to the equa-
tions (3.2.9). For the time-dependent case we need to solve the following
differential equations:

(;;(t)) i <woas(t> +wle““’”“)y(t>>, (3.2.18)

2\ wie@H (1) — woy(t)

To solve these two equations we make the following substitutions:

wwot

p(t) = z(t)e 2, (3.2.19a)

twot

qt) = y(t)e 2.

This leads to the following equations:

(3.2.19b)

) = (a’;(t) + Taz(t)) e2, (3.2.20a)

i(t) = (y’(t) - iﬂy(t)) e (3.2.20D)

iwot
p(t) = <__ (wox(t) T+ wie z(wt+a)y(t)) + me(t)) eZTO
. ' oot
= _leef’L(wt+Ol)y(t)ewTO (32213,)
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and
(1 pilwta) gy _ o Lot
i(0) = (=5 (e (o) — wnp)) - “2yte) ) %
twot
= Z%l iwthe) g (e~ 2 (3.2.21b)
_ _w_l 7i((w07w)t7a)
L)

When we take the second derivative of p(t) we obtain the following second
order differential equation:

(1) = —tq(0)e (2] iy — w)i)
_ _% <_w71 (t) fi((wofw)tfa) ei((wgw))ﬁa)) +,L~(w0 o w)p(t)
. . w?
= i(wo —w)p(t) — Zp(t)-
(3.2.22)
This is equivalent to
i} . . wi
p(t) —i(wo —w)p(t) + Zp(t) = 0. (3.2.23)
Let A+ be the solutions of the equation
w2
A —i(wp — w)A + Zl =0. (3.2.24)
We have
i ((wo —w)E 4 (wo —w)?+ w%)
Ay = 5 . (3.2.25)
We have that
p(t) = Cre+! + Gyt (3.2.26)
and
wot
w(t) = p(t)e"
_ it Alt) oot
= (C’le + 026 ) e 2 (3-2-27)
iwt i/ (wo—w)2+w?t i/ (wo—w)2+w?t
= 2 Cie 2 +Coe™ 2 |,
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with initial value

i
2.

z(0) = %e* (3.2.28)
A similar computation for y(t) leads to:
iwt i\/(wo—w)2+w%t % (wo—w)2+w%t
y(t) =e2 [ Cse 2 + Cye™ 2 , (3.2.29a)
| i@
y(0) = Lez. (3.2.29b)
As x(t),y(t) verify the differential equations:
(t) = —% (wox(t) n wle’i(“’HO‘)y(t)) , (3.2.30a)
§(t) = —% (wlei<wt+a>x(t) - woy(t)) , (3.2.30b)
we obtain the following equations for the constants Cj:
, i | i@
Ci+Cy = \ﬁe 2, Cs3+Cy = ﬁe 2, (3.2.31ab)

(A + R)Cl + wle_io‘Cg = 0, (A — R)CQ — wle_w‘a; = 0, (3.2.31(‘,(1)
where

A= 4/(wp—w)?+wi, R=wy—w. (3.2.31ef)

The computation of the constants C; is now straightforward. We have

1 R _@ w1e*m @
Ci=5501-Fe 2 —4s—e? |, (3.2.32a)
Oy = —L_ ((14_5)6—% +Me%> (3.2.32b)
2722 A A ’ o
(%% ,Z‘_QS %
03 — 2\1/5 (_W1A€ e 2 + (1 + %)e 2 ) , (3232(’)
Cy = 2\1@ (wlAe e 2 +(1— %)@ 2 ) . (3.2.32d)

These expressions are simplified if the angular velocity w of the RF magnetic
field verifies the resonance condition:

w = wp. (3.2.33)
In that case we have

A = w, R =0, (3.2.34ab)
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and the coeffients C; simplify to:

C, = ﬁ (e_ —e 2 > , (3.2.35a)
1 i i(p—2a)
02 = o) e 2 +e 2 , (3235b)
1 _i(¢—20) i
C3 = m —e +e2 y (3235C)
1 _i(¢—20) i
C4 = m € 2 +e2 . (3235(1)
This leads to the following equations:
_WTOt i i(¢p—20) \ iwyt
aj(t):eQT <e2—e 2 >e2—|—
(3.2.36a)
ip i(¢p—2a) iwit
<e 2 +e 2 >e 2 ],
WQOt i(¢—2a) 9\ dwit
y(t) = 5% <—€ 2 +e2)ez+
(3.2.36b)
i(¢p—2a) iP iwit
<e 2 +e2 >e 2
We can write the evolution in matrix notation:
|¢Rp(t)> = A(w,wo,wl, a) . ‘wRF(O», (3.2.37)
where
A(w,wp, w1, ) = a b (3.2.38)
s W0, W1, — c d L.

is a rotation in the complex plane. So in order to compute the coefficients
of this matrix we need to solve the equation

az(t)) <a b) <;1:(0))
= . . 3.2.39
(o) =( 2) G (3239
This leads to the following equation:
iwt iAt iAt
e 2 <Cle 2 4+ Che™ 2 )

i¢

1 (a b> e 2
iwt iAt iAt NG ) | ©
e 2 <C3€2 —I—C4e2> V2 e e?2

(3.2.40)
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The solution of this matrix equation is:

it (wt+2a)
e 2 (cosg—xsmm) —%sin%
Alw,wp, w1, ) = A i
i(wt42a) it
iwie 2 At Lot At | iR . At
X sin 5t e2 (cos5 +ASIIl2)
3.2.41)

It is possible to separate the static field evolution from this equation. We
then obtain:

A(w, wp, wi,a) = E(w) - R(w, wp, wi, @), (3.2.42)
which leads to
gt
2
E(w) = c Twt 9 (3243&)
0 e2
At iR At iwre Y . A
cos 5 — &' sin —wie  gin St
R(w, wo, w, @) = AT : 2 ). (3.2.43b)
——“"X sin AQt cos &t At 48 A sin ¢ At

At the resonance frequency, this matrix reduces to:

twot .
e 2 0 cos ¢4t —ie~ ' sin <4t
A(w()v wo, W1, O[) = iwot : o wit wit .
0 e 2 —e" sin 5 COS 2
(3.2.44)

The effect of an RF pulse is usually described [CTDL77]| as a rotation of
angle 61 = w;t in the spin space arround the vector @ = (ug,uy, u,):

1 cos 9—1 — U, sin 91 —iuy, — Uu,)sin 91
2 = Y (3.2.45)
w,01 e

! (—iug + uy) sin 921 cos & 5+ iu sin 921

In NMR @ lies in the transverse plane: @ = (cos «,sin«,0) and therefore
rotations induced in NMR are restricted to:

R% cos 91 —ie " sin 91 (3.2.46)
= 3.2.
u,0 . .
! —ie"™ sin %1 cos 91

We notice that this is exactly the transformation matrix that we have com-
puted, except for the fact that the time evolution of the static field Byg is
missing in this equation.
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Measurement

Measurement in NMR is obtained by the current induced in the same solenoid
as that used for perturbing the spin system. The current is induced by the ro-
tation of the nuclear spin magnetic momenta in the solenoid. At equilibrium
there is no induced current due to the absence of nuclear magnetization. Af-
ter an RF pulse (w1, ) the magnetization of a spin % at temperature T'=0
is equal to:

yh(la @) = ly®)1?).-

M(wvwo’wlv «, ¢7t) =

=

(3.2.47)

[N

To compute the magnetization, we have to compute

(2(t) y())- < f(t)) . (3.2.48)

—7(t)

We observe the following identity for the rotation matrix A(w,wq,ws, @):
- a b
A(wvwo’wl’a) = <E J)

— <_Z _2> (3.2.49)

wt At | iR .. At iwiet . At
_[e2z 0 (COST+KSIHT A SIS )
- wt | ° L ia . .
-5 iwie in At At _ iR i A
0 e 2 A sin 5 cos 5 X} sin 5

Therefore the magnetization can be written as

M(w,wo, w1, @, 6,t) = 57h(|la ()] — [y(t))
- %Vh (z(t) w(t)- ( ﬂt;)
_ %771 (z(0) y(0)) - <Z Ccz) ' <Z :Z> ' <§§8;>
~h i i
=T (% F)

i¢
ad + bc —2ac ' e?2 (3.2.50)
2bd  —(ad + bc) e

e
After a few easy manipulations we get

M(w,wp,wr, o, ¢, t) = ’yh%(ai)e*i‘z’). (3.2.51)



tel-00534864, version 1 - 12 Nov 2010

3.2. FRAMEWORK FOR QUANTUM COMPUTING 53

If we replace the matrix coefficients a, b, ¢, d by their value and simplify this
equation we obtain the following formula for the magnetization:

Fiw sin &t
M (w,wg, w1, a, ¢, t) = MTQ (& sin 4t cos(¢ — a) + cos St sin(¢ — ).
(3.2.52)
At the resonance frequency the magnetization reduces to
M(wr, o, ¢,t) = “’7 sinwitsin(¢ — ). (3.2.53)

Single qubit gates

The important single qubit gates are the NOT gate, the Hadamard gate and
an arbitrary rotation gate. An apparently trivial gate, the identity gate, is
also an essential ingredient for quantum computing. As the wave function
evolves even in a static field, we cannot simply assume that not applying
an RF is the same as applying the identity operator. To achieve the identity
operator we need to solve the following equation:

_ i At iR o At iwie T AL
e 2 0 (cos——Ksm2 —Tsm7 >_<1 0>

ot _
0 e2 —wet gin gt cos 5L+ Lsin 4L 01

(3.2.54)

This leads to the following conditions:
At= 0 (mod 2m), (3.2.55a)
wt = At (mod 27). (3.2.55h)

The NOT gate is defined as:
0 1

X = <1 0> . (3.2.56)

In order to perform the NOT-gate we need to have the following equality:

_dwt At iR At iwie e At
e 2 0 (cos——Ksm2 - —sin 5 >_<O 1>

wwt ;
- _iwie At At At 1 0
0 e 2 L— sin cos 5 + As1n 5
(3.2.57)
This can be reduced to
; —ia wt
cos &t — 1B gy At At e i At 0 5
2 A A 2 o e (3.2.58)
iwy e’ At iR At f% ’ h
—Tsm 3 cos 2 t 4 X sin 5° e 0
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Therefore we have

N wt
_zwlz sin A2t =e 2, (3.2.59a)
. wt
_zwlAe gin At At —e 2. (3.2.59b)

Taking the product of the lefthand and righthand side of these equations we
get

. o At
w?sin® 5°

As all parameters are reals, this has no solution. The best we can do is the

following gate:
(0 1
1 (1 0> ) (3.2.61)

by setting the parameters as follows:

w = wy, (3.2.62a)
wit=m (mod 4m), (3.2.62b)
wt = —2a (mod 27). (3.2.62c)

The Hadamard operator has been defined as:

H = % G _1) . (3.2.63)

To obtain the Hadamard gate we have to set the parameters, such that:

wt ; —iax
e 2 0 (cos % — K sin AQt — A sin AQt > 1 <1 1>
t |- =

0 e2 —Wf sin§t cos % + f sin 5t V2l —1
(3.2.64)
This is impossible to attain as the pair of equations:
wt 1
e 2 (cos % - % smA2 ) =—, (3.2.65a)
V2
wt 1
e2 (cos AQt + L sin %t) =——. (3.2.65h)

V2

have complex conjugates on the lefthand side but not complex conjugates
on the righthand side. We can obtain the following matrix:

_% G _1) 7 (3.2.66)



tel-00534864, version 1 - 12 Nov 2010

3.2. FRAMEWORK FOR QUANTUM COMPUTING 25

by setting the parameters as follows:

wt = —2a + 4k, (3.2.67a)
sin § = MA\/E, (3.2.67h)
cos 4t = w—Rl. (3.2.67¢)

At the resonance frequency, the last two conditions reduce to:

sin 44t = ==, (3.2.68a)
cos ¥ = 0. (3.2.68Db)

The arbitrary rotation gate that we want to build is the rotation:

7 0
2

pP=|° 0 | (3.2.69)
0 e 2

where cosf = % This can easily be achieved by the following parameter
settings:

At=0  (mod 4m), (3.2.70a)
wt = —0 (mod 4m). (3.2.70b)

We also need the gates that initialize the qubit in either the state |0) = |+)
or in the state |1) = |—). To do so we do not look at the rotation and
evolution matrix, but at the magnetization formula. For simplicity we will
assume w = wy. A qubit in the state |[+) should give a magnetization of %7’,

while a qubit in the state |—) should give a magnetization of —%h. This leads
to the following equations:

1 =sinw;tsin(¢ — «), (3.2.71a)
—1 =sinw;tsin(¢ — ). (3.2.71b)

for respectively qubit |0) or qubit |1). This leads to the following conditions:

a=¢+7%5 (mod 2m), (3.2.72a)
wit =75 (mod 27), (3.2.72b)

for initializing in the state |0) and

a=¢+7% (mod 2m), (3.2.73a)
wit = —5§ (mod 27), (3.2.73b)

for initializing in the state |1).
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3.2.2 Two spins %

For two spins we consider two cases: one for a homogeneous magnetic
— —
field Bg and one where the two spins are in two different magnetic fields B 4

and EB-

Two spins in a homogeneous magnetic field

In this case the Hamiltonian of the system is:

2
%,Hom = - Zﬁz ' EO
=1 (3.2.74)

= iy (&1 +&2) - Bo
= —%’yh(df Di U%)BI + (0'?{ DK U%)By + (Uf DK U;)BZ,
where

Bo = (B., By, B.). (3.2.75)

We can write equation (3.2.74) in matrix form:

2By Bx —iBy Bx — 1By 0
w __1 h Bx + 1By 0 0 Bx — 1By
2Hom = 797 By 1 iBy 0 0 Bx — iBy
0 Bx +iBy Bx + 1By —2B5
(3.2.76)
We note that this Hamiltonian can be written as
I Hom = H4 DK I, (3.2.77)

where @ is the Kronecker sum (A.7) of two matrices.
If we place the z-axis along the homogeneous magnetic field By, this matrix
becomes

2By 0 O 0
1 0 00 0
0 0 0 —-2Bg
We directly obtain the eigenvalues of the Hamiltonian (3.2.74):
E., = —~hBy, (3.2.792)
By =E_, =0, (3.2.79h)

E__ = ~yhBy. (3.2.79¢)
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The corresponding eigenvectors are:

1 0
[++) = X +—) = ! (3.2.80ab)
- 0 ) — O 3 /N
0 0
0 0
0 0
=t =11 =1, (3.2.80cd)
0 1
The time-dependent wave function is given by:
e~ Hwot—o++)
1 ei¢+,
o) =5 | s |- (3.2.81)
e’i(wot+¢)__)
We note that
|[a(t)) = [¥1(t)) © |91 (1)), (3.2.82)

by properly adjusting the phase factors ¢;.

Two spins in different magnetic fields

If the magnetic fields experienced by spins A and B are respectively Ba
and Bp, then the Hamiltonian of the system is:

s =~ ((fa-Ba) ok (fin- Ba)). (3.2.83)
If we write this Hamiltonian in matrix form, we obtain the following:
Baz +Bpz Bpx —iBpy DBax —iBay 0
4 __2h| Bpx +iBpy Baz — Bz 0 Bax —iBay
2 | Bax +iBay 0 Bpz — Baz Bpx —iBpy |
0 Bax +iBay Bpx +iBpy —Baz — Bpz
(3.2.84)
where we have
Ba = (Bax,Bay,Baz), (3.2.85a)
Bp = (Bpx, Bpy, Bpz). (3.2.85b)

If we suppose that both magnetic fields are in the Oz-direction, this matrix
reduces to:

Ba+ Bgp 0 0 0
_qh 0 Ba — Bp 0 0
G 2 0 0 Bp — Ba 0 (3:2.86)

0 0 0 —(Ba + Bp)
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We directly obtain the eigenvalues of the Hamiltonian (3.2.86):

B, = —%fm(BA + By), (3.2.87a)
E, — —%'yh(BA — Bp), (3.2.87D)
B = %fyh(BA — Bp), (3.2.87¢)
o %fyh(BA + Bp). (3.2.87d)

The corresponding eigenvectors are:

1 0
0 1
0 0
0 0
0 0
0 0
=t =111 - =1, (3.2.88cd)
0 1
This leads to the following time-dependent wave function:
e_% ((WA+wB)t—¢++)
4
1| e 3 (a—en)i—o.)
1) == ; , 3.2.89
‘QpQ( )> 9 6% ((wA*wB)t*¢—+) ( )
e% ((WA‘HJJB)t_QSff)
where:
wa = —vBy, (3.2.90a)
wp = —YBp. (3.2.90b)

As in the homogenous case, the wave function for two independent spins can
be written as a tensor product of the wave function of each spin:

[92(t)) = |1 (1)), @ [¥1 (1)), (3.2.91)

by properly adapting the phase factors ¢;. This is simply done by taking
equation (3.2.91) as the proper definition for the case of two spins % and

using equation (3.2.14) for each single wave function to obtain the following
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wave function for two spins:

[92(0)) = (D), @ [$1(1)),,

i(wat+dr) i(wpt+pa)
1 (e 2 e 2
= 5 i(wat+eor) ® i(wpt+¢2)
e 2 (& 2
e*% ((wA+wB)t+(¢1+¢>2)) (3.2.92)
1 €_% ((wA—wB)t+(¢1—¢2))
- 5 6% ((WA*WB)t‘i’(d)l*(z’Q))
e% (a+wp)t+(d1+62))

The measurement of the two spin % system is given by the rotation of the
magnetization of each spin in the solenoid. This can be computed in two
different ways. If we write the wave function as

[¥2(1)) = aps| ++) +ay—|+ =) ta—g| —+)+a__|——), (3.2.93)

then the magnetization is equal to the sum over each spin of the probability
of measuring the state |+) minus the probability of measuring the state |—).
For the first spin the probability of measuring |+) is equal to:

a4 las— 2, (3.2.94)
and the probability of measuring |—) is equal to:
la_ >+ Ja__|?. (3.2.95)

A similar computation for the second spin gives the following formula for the
magnetization:

M = 3yh(2lays? — 2la__|?). (3.2.96)

The second method of computing the magnetization is to consider each spin
separately with its corresponding wave function for one spin. Taking the
sum of these magnetizations gives the total magnetization:

M = Mi(¢1) + Ma(o2). (3.2.97)

Two spins in different magnetic fields with an RF field

Using the tensor product notation we can directly compute the wave func-
tion for two spins in an inhomogenous magnetic field with an RF magnetic
field Bj rotating around Bg with an angular velocity w:

[92(6)) = [¥n (), @ [$1(1)),,

= (B@- Rwa)- [ 0)),,,) @ (E@ - Rws) - [ix(0)),,,)
(3.2.98)

= (B() ® BEW)) - (R(wa) @ R(wp)) - (|01(0),,@ [¢1(0),,, )-
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This description is the most general possible for two independent spins. We
would like to find a set of parameters, such that this matrix becomes a
ControlNOT operator. As the above equation is a tensor product of two
matrices, this would imply that we can write

CNOT=A® B. (3.2.99)
This leads to the following equality:
1 0 00
01 0O o ap ag ® b1 b2
0 00 1] \ag a4 by by
0 010
(3.2.100)
a1b1 ale a2b1 ang
. (11b3 a1b4 (12b3 a2b4
o a3b1 ang a4b1 a4b2
azbs agby asby asby
We obtain, amongst others, the following equations:
(Ilbl = ]., a4b1 = O, a4b3 = 1. (32101abc)

These equations have no solution in C and therefore it is impossible to set
the parameters, such that the resulting operator on the wave function is the
ControlNot operator. As we have the identity

(A1 ® Ag) - (B1 ® By) = (A1B1) ® (A2B32), (3.2.102)

we cannot hope to build a ControlNot operator starting with another oper-
ator obtained from an RF wave. The conclusion is that in order to build a
CNOT we need an interaction between the two spins. We therefore investi-
gate whether the dipole-dipole coupling between the two spins can be used
as such an interaction. Before doing so we consider the case of N spins.

3.2.3 N spins

The description we have obtained for the wave function of two spins is easily
generalized. An N spin system in an inhomogenous magnetic field has the
following wave function:

N
[N (1)) = @) [ (1)- (3.2.103)
=1

The total magnetization M is given by the sum of all N individual magne-
tizations:
N

M(t) =) M(t). (3.2.104)
=1

In this description we have not yet taken into account the population differ-
ences of the two energy levels in case of N spins at temperature T
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3.2.4 Dipole-dipole coupling

The Hamiltonian of the dipole-dipole coupling is:

o <f1 : F12) ® (fz : Fm)
3

2
Hp =g | LI - 5
LD 12

(3.2.105)

We can write equation (3.2.105) in matrix form. First we compute I Iy

T Ty = (4h1) - (5h2)

of of
3.2.106
=2 (¥ 00X +0Y ®0) + 07 ® oF) ( )
1 0 00
_Rfo -1 20
410 2 -1 0
0 0 01

X
Fla=|Y|. (3.2.107)
Z
This leads to:
I 712 = Thé1 - T2
_1 X Y VA
_ lh A X Y
2\ X+ —Z

Therefore we have:

(f.q)@)(f.q)_h_? Z  X=\_( Z X-iv
172 22 =T \x 4y —Z X+iy —Z

72 Z(X —iY) Z(X—iY) X?-Y?-2XY
_n? Z(X +1iY) 7?2 X2 +Y? ~Z(X —iY)
4| zZ(x +ivy) X2 +v? 72 —Z(X —iYy) |
X2 42iXY —-Y? —Z(X+iY) —Z(X +iY) Z?

(3.2.109)
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which leads to the following Hamiltonian:

r2-372 —3Z(X—iY) =3Z(X—iY) —3(X2-2iXY-Y?)
/ —3Z(X+iY) —r24+322 212322 3Z(X—iY)
‘%ﬂD = . . )
—3Z(X+iY) 2r2-372 —r24+322 3Z(X—iY)
—3(X242iXY~-Y?) 3Z(X+iY)  3Z(X+iY) r2—-322
(3.2.110)
where
' g 2 2 1oy’ h
Hp = 7% =119, Kp = (3.2.111abc)

hKp '’ 1673,

This Hamiltonian can also be written in matrix form with spherical coordi-
nates. This results in:

1—3cos? 0 —3sinfcosfe” " —3sinfcosfe ¥  —3sin? e 2
—3sin 6 cos fe'¥ —1+4+3cos? 0 2—3sin? 0 3sin 0 cos fe~ ¥
Hp =hKp ) )
—3sin @ cos fe’? 2—3sin’ 0 —1+43cos? 0 3sinf cosfe™ ¥
—3sin? e?t¥ 3sin 6 cos fe'¥ 3sin 0 cos fet? 1—3cos? 0
(3.2.112)

As the direction of 712 is random, we should consider the mean value of each
matrix element. To do so we compute the spatial average of each matrix
element:

1 27w
a;j(0,¢) = —2/ / a;j(0, ) sin 6 dode. (3.2.113)
272 Jo—0J p=0

This dramatically reduces the matrix and J#p becomes:
Ftp = 0. (3.2.114)

Therefore we cannot use the dipole-dipole coupling as the interaction be-
tween two spins to build a ControlNot operator.

In a homogeneous magnetic field it is well-known that the dipole-dipole cou-
pling is averaged to zero by the random thermal motion in liquids, but if
the two spins have two different magnetic fields this is no longer the case.
This fact was first described in 1979 by Deville et al. [DBD79], and later by
Botwell et al. [BBG90| in pure water. These authors have shown long-range
acting dipole-dipole interactions in liquid with magnetic field gradients. The-
oretical descriptions of this effect can be found in [LRVW96, JVB95], but for
the moment they are difficult to use for applications to quantum computa-
tion. It is therefore necessary to find either another interaction between the
spins that is not averaged to zero or to formalize their approach to long-range
dipole-dipole interactions so that it is described in the same framework that
we use.
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3.2.5 Two coupled spins

In an inhomogeneous magnetic field, the Hamiltonian for two coupled spins
is given by:

My = A + I, (3.2.115)

where %, is the Hamiltonian which describes the coupling of the two spins.
For the moment we do not have a description for such a Hamiltonian, but
once we do, we can use the same techniques as described earlier: in order to
find the time evolution of the wave function, we have to solve the following
differential equation:

ma‘a#t(t» = JG|0(t)), (3.2.116)
where
1(t)
[p(t)) = 28 . (3.2.117)
4 (t)
This system of equations can also be written in matrix form:
X=M-X, (3.2.118)
where X is the vector (21(2), ... ,j:4(t))T, the matrix M is equal to % and

X is the vector (z1(t),... ,x4(t))T
The solution of this matrix differential equation is:

X =M, (3.2.119)

To compute the exponential of the matrix M, we need to find the eigenvectors
of M in order to diagonalize this matrix:

M =U"'DU, (3.2.120)

where U is a unitary matrix and D is a diagonal matrix:

A0 0 0

o X 0 0

D=10 0 x ol (3.2.121)
0 0 0 X

with \; the eigenvalues of M. This will lead to a description of the wave
function ‘¢(t)>, from which we can hopefully deduce the parameter settings
to build a CNOT-gate.
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3.3 Five Steps to an NMR Quantum Computer

We want to build an NMR quantum computer using the framework we de-
scribed in the previous section. The road to a small quantum computer is
essentially the same for any physical realization. For a larger quantum com-
puter we need to take into account many other important steps such as the
decoherence of the system and the fidelity of the qubit operations, but for
now we concentrate on the bare necessities for a quantum computer however
shortlived this computer may be. The following steps need to be followed:

1. One qubit: the proposed realization needs a clear description of what
the physical equivalent of a logical qubit is. We need to understand
how such a qubit is built and how to properly describe it. We also
need to know how the qubit is initialized and how it is measured.

2. Manipulating one qubit: we need to be able to perform arbitrary
unitary operations on a single qubit. It is not necessary to be able
to perform any arbitrary unitary operation, but we at least need to
have a generating set that can approximate all unitary operations. An
identity operator, a NOT operator, a Hadamard operator and a phase
operator are sufficient.

3. More qubits: we need to understand how we can have more than one
logical qubit in our physical system. We have to be able to distinguish
between different qubits and how we can initialize qubits simultane-
ously. We also have to understand how to measure individual qubits.

4. Manipulating qubits individually: we have to be able to perform
the same generating set of unitary operations on individual qubits. It
is important to have the identity operator, because while we perform
an operation on a single qubit, the other qubits evolve in time. This
effect needs to be undone when we do not want such an evolution.

5. Manipulating qubits together: the power of quantum computa-
tion lies in the entanglement of states and the natural parallelism of
computation. We therefore need to have a gate which entangles two
qubits. The CNOT-operator creates entanglement of qubits and is eas-
ily described. We therefore have to be able to perform a CNOT-gate
on two arbitrary qubits. An equivalent entangling gate will do as well,
but we concentrate on the CNOT-gate as most quantum algorithms
are described with CNOT-gates.

These are the steps that we have to achieve experimentally in order to have
a small scale quantum computer. From that point on, other issues such as
fidelity, decoherence and error correction have to be taken into account, as
well as a reasonable estimate of the real computing power of the proposed
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system, but without the five steps above, it is no use to think about fidelity
of gates or error correcting.

3.4 Experimental results

We describe our experimental setting as well as the results that we have
obtained so far with our approach.

3.4.1 Material and methods

A sample of 10 ml of degassed water was placed at room temperature in a
wide-bore magnet with a magnetic field of 4.7 T (Magnex). The NMR spec-
trometer (SMIS) allows a phase precision of the RF pulses of 0.25°. The
RF pulses had a gaussian shaped intensity with a duration d = 600 us, a
frequency % = 200.137 MHz, and half-width of 3 kHz. The inter pulse delay
between the ends of the first and second pulse was 7 = 1 ms. The NMR sig-
nal was detected in quadrature mode with a sample frequency of 5 kHz and
8K points. The intensity of the signal is obtained as the modulus of the two
parts given by the quadrature detection mode.

The homogeneity of the magnetic field was measured by the line width ob-
tained by Fourier Transform of the free induction decay (FID) acquired after
a 5 pulse. The longitudinal relaxation time 77, measured by an inversion-
recovery sequence, was 3.2 s and the transverse relaxation time 75, measured
by a Carr-Purcell-Meiboom-Gill sequence [CP54, MG58] was 1.8 s, slightly
depending on the homogeneity of the magnetic field.

The NMR spectrum of water, as for all liquid samples with no J-coupling,
displays a very narrow line due to the motion averaging of the dipole-dipole
coupling. Such a nuclear spin system is highly isolated from its surround-
ing and it is well-known that the relaxation time 7} which characterizes the
energy exchange with the lattice and the inverse of the line width which
measures the decoherence time are very long in high homogeneous magnetic

field.

3.4.2 Results

We first exhibit a macroscopic quantum effect in bulk liquid NMR. After
that, we show a method to initialize a qubit.

Exhibiting a macroscopic quantum effect

We can show that there is a quantum interference term in bulk liquid NMR

3 s K
by using a § — 7 — 5 pulse sequence at the resonance frequency. In our
framework we have not given the magnetization after two pulse sequences



tel-00534864, version 1 - 12 Nov 2010

66 CHAPTER 3. REVIVING THE NMR APPROACH

but it can be shown that this magnetization is proportional to
M (7) = C'sinwyT sin 3, (3.4.1)

where C' is a proportionality constant that depends on the population dif-
ferences and (3 is the angle between the two pulse sequences.

One can easily see that in absence of free evolution, i.e. 7 = 0, there is no
signal. This is due to the fact that in the 7 = 0 case, the § — 7 — 5 sequence
corresponds to a single 7 pulse on the sample which indeed gives no signal.
In fact, according to equation (3.4.1), provided that the angle 5 # 0, we
have that M(7) # 0, if and only if the nuclear spin state interference term
sinwgT is different from zero. In a /2 — 7 — /2 sequence, the existence
of any NMR signal is then the evidence of the occurrence of nuclear spin
interferences.

Experimentally, it was impossible for us to tune 7 at a time scale small
enough to vary wg7r over 2w. However, it is possible to ensure over typical
experimental times (a few minutes) an accurate stability of wg, i.e. the rms
magnitude of the fluctuating part of this angle wyT remains much smaller
than 27. Under this last condition, one can then plot the NMR signal given
by the § — 7 — 3 sequence as a function of 3, the relative phase of the two
% pulse fields and compare the results to that given by equation (3.4.1). If
the experimental data match equation (3.4.1), then the nuclear spin inter-
ference term is revealed and also controlled.

The NMR signal (FID) after a single § pulse is dependent on the homogene-

ity of the magnetic field Bo.
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Figure 3.2: NMR signal of 10 ml of water after one 7 pulse. The continuous
line is obtained in a highly homogeneous magnetic field (AB—BO0 =2.0-107%) and
the dashed line in a less homogeneous field (AB—E;O =2.7-1077).
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On Fig 3.2 one can see the FID recorded after a single 3 pulse in a highly

homogeneous field (AB—%) = 2.0 - 1078, continuous line) compared to a less
homogeneous one (AB]?;O =2.7-1077, dashed line).
With a § — 7 — § sequence, it is well-known that NMR gives rise to an

echo at a time ¢ = 7 after the second 5 pulse. This effect was described
in 1950 by E. Hahn as spin echo [Hah50]. Here however, we have measured
the NMR signal in a very homogeneous magnetic field and with small inter
pulse delays where no spin echo is detected as seen on Fig. 3.3 (continuous
line). Even in the less homogeneous magnetic field there is a modulation of
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Figure 3.3: NMR signal of 10 ml of water after two 7 pulses with a relative

phase of 8 = 90°. The continuous line is obtained in a highly homogeneous
magnetic field (AB]?;O = 2.0-107%) and the dashed line in a less homogeneous
field (522 =2.7-1077).

the FID but no echo at 1 ms which is the delay between the two 5 pulses.
The absence of an echo in this case is equivalent to the absence of any echo for
a homogeneous line in an Electron Spin Resonance (ESR) experiment. The

FID corresponds to the magnetization in the transverse plane and therefore
the signal is proportional to /M2 + M2. Fig. 3.4 shows the amplitude of
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the NMR signal at the beginning of the FID versus the relative phase 5. As

pil2-tau-pil2

MR Signal (A.U.)
o o o o [
L R = R

o

T
a 458 a0 135 180 225 270 ksl 360
Relative Phase b (°)

Figure 3.4: Amplitude of the NMR signal of 10 ml of water after two 7 pulses
versus the relative phase 8 of the two pulses. The continuous line (l NMR;)
is obtained in a highly homogeneous magnetic field, the large dashed line
(A NMRy) in a less homogeneous field. The finely dashed lines correspond
to f(B) = G|sin 3] normalized to the maximum NMR signal in each case.

can be seen in Fig. 3.4, in the case of a highly homogeneous magnetic field
(AB—? = 2.0-10798), the function f(3) = G|sin 3|, given by equation (3.4.1)
for a well defined value of w7, fits the experimental data quite well. The
maximum relative deviation

(NMR1(3) — f(3))

A = 3.4.2
$00) = e (NMR, (9)) (3.42)

between the experimental curve NMR;(3) and f(f3) is found to be
As(15°%) = 9.7%. (3.4.3)

In the case of a less homogeneous field (ABB;O =2.7-1077), the fit is less good

and the maximum relative deviation is found to be

As(18°) = 28.3%. (3.4.4)

3.4.3 Numerical solution of equation (3.2.18)

The numerical solution of equation (3.2.18) is obtained by using the ode45
subroutine of Matlab using an explicit Runge-Kutta formula for ordinary
differential equations with initial values.
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Reference parameters

We set the parameters of equation (3.2.18) as those used by our NMR spec-
tometer:

Table 3.1: Parameters of the NMR spectrometer

Parameter Value Unit

Resonance Frequency 200 MH7 | wg = —2- 108 - 27 rad/s
Radio Frequency amplitude | 1 mT w; =25-107%- wg rad/s
Radio Frequency 200 MHz | w = wq rad/s

Interval of integration 20 tp=20-10"Fs

The solution of equation (3.2.18) with the parameters of table 3.1 allows us to
calculate the magnetization of one spin according to equation (3.2.47). The
result is given in figure 3.5 were we retrieve the main effect of an NMR exper-
iment, which is the induced magnetization after an appropriate RF pulse at
the Larmor frequency. The maximum magnetization corresponds to the so
called §-pulse and for a double duration the 7-pulse with no magnetization.
The solutions z(t) and y(¢) of equation (3.2.18) have a real and imaginary
part oscillating around the Larmor frequency as shown in figure 3.6 for the
real part of z(¢) during the RF pulse.

Magnetization

Wlg 05 1 15 2

Time (s) " 10-5

Figure 3.5: Magnetization of one spin % versus the duration of the RF pulse.
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Real x(t)

Times (s) v 107

Figure 3.6: The real part of x(t).

Effect of the frequency of the RF pulse

Figure 3.7 shows the effect of the frequency of the RF on the spin magneti-
zation.

We find a well-known fact in NMR which is the inversion of the magnetiza-
tion when going through the resonance frequency.

One Spin Magnetization versus Opr

Magnetization

; i i i i i i ‘ i
J99 0292 0994 0996 099 1 1002 1004 1006 1008 1.01

w/(oo

Figure 3.7: Magnetization versus the frequency w of the RF pulse, with the
RF amplitude w; = 2- 10~ %wy.
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Initializing the qubit

To initialize the qubit in either the state |0) = |[4) or in the state [1) = |—)
we need either maximum positive or maximum negative magnetization. For
simplicity we will assume w = wp. A qubit in the state |[+) should give a
magnetization of %, while a qubit in the state |—) should give a magnetiza-
tion o —%l. These conditions are always verified with some period T'. The
idea is to first observe the system and find out what this period is in order
to know when these maximal magnetizations occur. At these moments, the
evolving logical qubit is in the state |0). When we want to perform single
qubit operations on one logical qubit, then we will wait to perform such an
operation until the magnetization is exactly maximal. In stead of measur-
ing, as we did for initializing the qubit, we proceed to perform a single qubit
operation and measure the result only afterwards.

3.5 Conclusion and Perspective

We have exhibited a framework in which NMR quantum computing on pure
states can be realized. From an experimental point of view we have shown
how to initialize a qubit into the basic states |0) or [1). This result achieves
the first of the five necessary steps. At the moment we are adjusting the
experimental parameter settings in order to obtain a generating set of ele-
mentary one qubit gates, which will result in obtaining the second step. For
the third step we will use magnetic field gradients to distinguish different
qubits. This step as well as the fourth step is work in progress. For the fifth
step we need to establish an interaction between different qubits. For the
moment we have not yet achieved a theoretical description of this interaction
Hamiltonian. Without such a Hamiltonian we cannot hope to find the cor-
rect parameter settings to achieve a CNOT operator. Therefore the crucial
point in our approach is to achieve such a theoretical description for the in-
teraction Hamiltonian. We are trying to achieve such an interaction by using
long-range dipole-dipole interaction. This interaction is not averaged away
to zero by random thermal motion in liquids, because at a long distance the
geometrical constraints of the sample prevent a completely random thermal
motion. Whether this long-range dipole-dipole interaction is large enough
to serve as interaction between qubits is still work in progress.
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Science never solves a problem
without creating ten more.

Chapter 4: GFORGE BERNARD SHAW

Pell equations

4.1 Introduction

Let d be a positive integer and consider the equation
a2 — dy? =1, (4.1.1)

where x,y are positive integers. This equation is called the Pell equation,
after the English mathematician John Pell, to whom Leonhard Euler mistak-
enly attributed a method of solving this type of equations. A first trivial ob-
servation shows that (zg,yo) = (1,0) is always a solution of equation (4.1.1)
and that if d is a square there cannot be another solution in positive integers,
as for d = ¢* we have:

2? — ¢*y® = 2* — ()

(4.1.2)
= ( + qy)(z — qy).
So we have
(z+qy)(z —qy) = 1, (4.1.3)
which implies
x+qy=1, (4.1.4a)
x—qy=1, (4.1.4b)

with x, ¢,y all positive integers. This in turn implies that (z,y) = (1,0). So

we can assume that d is not a square. If we find a non-trivial solution (z1,y1)

to equation (4.1.1), then the fraction % is a good approximation for the

Y

square root of d:

—
+
U
<
o

(4.1.5)

I
=)
+

@[\3| —
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For example, if d =2, and z = 17, y = 12, we have

172 —2.122 =1, (4.1.6a)
1T~ 1,4167. (4.1.6b)

There are several questions that can be asked about Pell equations. Are
there always non-trivial solutions for any integer d that is not a square ?
Are there infinitely many solutions 7 How can we compute these solutions ?
Can we compute these solutions quickly for any d 7 It is possible to pose more
technical questions about this type of equations, but we will restrict ourselves
to these simple ones. It is possible to show that for any positive integer d that
is not a square, there are an infinite number of solutions for equation (4.1.1).
Moreover, these solutions have a simple structure, which allows us to find all
solutions starting from a fundamental solution. There are several methods
to solve equation (4.1.1), but not every method has the same efficiency for
all integers d. We will start by looking at some classical solving techniques.
These include the Indian method and the continued fraction method, which
are essentially the same technique in a different form. We proceed with
a more modern approach that consists of computing the regulator of an
associated number field. This approach solves Pell equations more efficiently,
but does not solve it in polynomial time. A quantum approach that follows
the modern approach, but which uses a quantum algorithm to compute this
regulator does solve the Pell equation in polynomial time.

4.2 Classical Techniques

4.2.1 Chakravala Method

The Indian approach to solve the Pell equation is called the Chakravala or
cyclic method and is based upon the Brahmagupta identity and Bhaskara'’s
lemma :

Lemma 4.1 (Brahmagupta’s identity). Let a,b,c,d,n be real numbers, then
we have the following equality:

(a® + nb?) (¢ + nd?) = (ac — nbd)? + n(ad + bc)? (4.2.1a)
= (ac 4 nbd)? + n(ad — be)?. (4.2.1b)

Proof. The lefthandside of equation (4.2.1a) is equal to:
(a® + nb?) (A + nd?) = a®>? + n(a®d® + b*?) + n*b*d>. (4.2.2)
The righthandside of equation (4.2.1a) is equal to:

(ac—nbd)? +n(ad+bc)? =a*c® —2nacbd+nb*d* +n(a’d® +2adbc+b*c?)
= a’c® + n(a®d® + b*c?) 4+ n*v>d>. (4.2.3)
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The righthandside of equation (4.2.1b) is equal to:
(ac+nbd)*+n(ad—bc)* =a?c+2nacbd+n2b*d* +n(a*d* —2adbe+b>c?)
= a’c® + n(d®d® + v*c?) + n*b*d>. (4.2.4)
Therefore we have equality in both cases. [l

Lemma 4.2 (Bhaskara). Let a,b,c,d,e be real numbers, with d not equal
to 0. If
a? = b + d, (4.2.5)

then we have the following identity:

2 2 2
a+ ec e —b ea + be
= . 4.2.

Proof. The lefthandside of equation (4.2.6) is equal to:

atec\? €—b  bla?+ 2ace + 2e?)  de* —bd
b + +

d d d? d?
b(bc® + d + 2ace + c?€?) + de? — bd
_ b2c? + 2abce + (be? + d)e? (4.2.7)
42
b2c? + 2abce + a’e?
_ [be+ae 2
= 7 .
O
In order to solve the Pell equation
a2 — dy? =1, (4.2.8)

we use Brahmagupta’s identity on the triples (x1,y1, k1) and (x2, Y2, ko) that
verify the equation:

x? —dy? =k, (4.2.9a)
x5 — dys = ko. (4.2.9b)

In this manner we obtain a new triple
(23,93, k3) = (2122 + dy1ya, T1y2 + T2y1, k1k2), (4.2.10)
by multiplication:

(ac% — dy%)(acg — dy%) = (z122 + dy1y2)2 —d(z1y2 + x2y1)2. (4.2.11)
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In order to solve equation (4.2.8) we start with an arbitrary triplet (z1,y1, k),
such that

7} —dyi = k, (4.2.12)
and GCD(z1,y;) = 1. We multiply this triplet with the trivial triplet
(a,1,a* — d), (4.2.13)

and we obtain a new triplet (az1 + dy1, 1 + ay1, k(a® — d)).
We use Bhaskara’s lemma to obtain the following identity:

2 2 2
aa:l—l—dyl) <331—|—ay1> a®—d
— —d|—— =—. (4.2.14)
< || || k
We choose a, such that
Tt ay (4.2.15)
k
is an integer and
a’?—d
4.2.16
. (4:2.16)
has the smallest possible absolute value.
For this value a we replace the triplet (x1,y1,k) by
ar1 +dy1 1 +ay; o> —d
(.’EQ, Y2, k2) = ( ) ) ) (4217)
|| || k

and we repeat the procedure. Lagrange proved that this process always
terminates with a solution. We give an example with d = 113. Let 7 = 11,
y1 = 1 and k = 8, we have the obvious identity:

112 - 113 x 1 = 8. (4.2.18)
So we want to find an integer a, such that
11
ra (4.2.19)
8
is an integer and
Z-11
o — 113 (4.2.20)
8
is minimal. In this case, a = 13, so we obtain the new triplet:
322 — 113 x 32 =7, (4.2.21)
Repeating this process we find the following triplets:
852 — 113 x 82 = —7, (4.2.22a)
2877 — 113 x 27% = -8, (4.2.22b)
7767 — 113 x 73% = —1. (4.2.22¢)

At this point we could continue the process, but instead we take the square
of the last solution, using Brahmagupta’s identity to obtain the solution:

1204353% — 113 x 113296° = 1. (4.2.23)
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4.2.2 Continued fraction method

The other classical approach to solve Pell equations is by using the continued
fraction development of Vd. Let ag = L\/&J, then:

1
\/Ezao-i- 1
ay + 1
o4 (4.2.24)
1
an+Tw0
= [ao,al, ce ,an,2a0}.

When we consider the periodic part of the continued fraction development

Z = [ag,a1, ..., an], (4.2.25)
Y
then we have that )
L _Vd . (4.2.26)
Yy 2a0y?
From this we can easily derive
x? 2
@ \/g‘ -2 (4.2.27)
y? y?
which leads to
|2 — dy?| < 2. (4.2.28)

As the lefthand side of the above inequality is an integer and since d is not
a square, we immediately deduce that

2% — dy? = +1. (4.2.29)

Therefore there are two cases to consider. If 22 —dy? = 1, we have a solution
to the Pell equation. If 22 — dy? = —1, then

(z% — dy2)2 = (% + dy2)2 —d(2xy)? = 1. (4.2.30)

In that case 2’ = 22 + dy? and y’ = 2xy are a solution of the Pell equation.
We try to compute such a solution again for the case d = 113. We find that

V113 = [10,1,1,1,2,2,1,1,1,20]. (4.2.31)
This leads to the fraction
g _ %7 (4.2.32)
which gives
776% — 113 x 732 = —1. (4.2.33)

Taking squares at both sides leads to the same solution as the Indian method.
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4.3 Modern Techniques

As Lenstra remarks in his article on the Pell equation [Len(2], the efficiency
of the continued fraction method is conjectured to be exponentially slow
for most values of d and that any method that spells out the smallest so-
lution (g, yo) of the Pell equation in full is exponentially slow for infinitely
many values of d. One method to improve the algorithm would be to con-
sider only the square-free part of each integer d, but this only helps a little
bit. In order to build a faster algorithm we need to use the structure of the

ring Z[\/E]
Let d be a square-free integer and consider the equation
2 —dy® = 1. (4.3.1)
If v/d ¢ Q, then for rational numbers a, b, z,y we have that
a+bVd =z +yVd, (4.3.2)

if and only if @ = x and b = y. It is therefore possible to uniquely encode
the solution of (4.3.1) as
z+yVdeR. (4.3.3)

Conversely we say that o € R is a solution of (4.3.1), if
o=s+tVd, (4.3.4)
for integers s, t, such that
s —dt? =1. (4.3.5)
To solve the Pell equation it suffices to calculate the regulator
R =log (z1 + ylx/a), (4.3.6)

for which 22 —dy? = 1 is the smallest solution. For this it suffices to calculate
the regulator of Z[\/g] Let

K =Q[Vd

— {u +oVd | u,v e Q} 43.7)

be a real quadratic number field. The order O of discriminant d is the subring
_ 7 |d+Vd
0=z %]

(4.3.8)
:{a—l—b‘”—ﬁ\a,bEZ}gK.
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The units of O are of the form #€*, with k € Z. The regulator of O is defined
as

R =loge, (4.3.9)
with € > 1. The regulator satisfies the following inequalities:
log (2\/&) <R< \/g(log(lld) +2). (4.3.10)

The modern method to solve the Pell equation uses the above ingredients in
combination with the notion of power products. If (zg, yo) is the fundamental
solution of the Pell equation z? — dy? = 1, then a power product notation of
the solution is a product of the following form:

k
zo +yovd =[] (ai + biVa)™. (4.3.11)

i=1

We have the following theorem on the relevance of the regulator approach
to solve Pell equations:

Theorem 4.1. There are positive constants C1,Co, such that

1. For each positive non square integer d, there exists a power product rep-
resentation of the fundamental solution of its associated Pell equation
with lenght at most C’l(log d)2.

2. The problem of computing such a power product representation is poly-

nomial time equivalent to the problem of computing an integer R, such
that !R — R‘ < 1, where R is the regulator of the number field Z[\/&]

3. There exists an algorithm that for given d computes a power product
representation of the fundamental solution of its associated Pell equa-
tion in time at most \/E(l + log d)c2.

The theorem above gives an algorithm for solving Pell equations that still
has exponential run time. A more refined approach which uses smooth num-
bers over the number field Z[\/E] can compute an integer approximation to
a multiple of the regulator. This leads to a probabilistic algorithm that runs
in time O(ecv logdloglogd) under the assumption of the generalized Riemann
hypothesis. This approach ressembles the quadratic sieve for factoring inte-
gers and has the same run time halfway between exponential and polynomial
time.

4.4 Quantum Computational Techniques

The quantum computational approach to solve the Pell equation is to con-
struct a periodic function h which has the regulator R as period and to apply
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an extended version of the QFT on this function to retrieve the period.
The product of two subsets I, J C K is the additive subgroup of K generated
by the set

{zy|xel, yeJ}. (4.4.1)

An invertible O-ideal is a subset I C K, with OI = I, for which there
exists a subset J C K with IJ = O. The set of invertible ideals of O form
an Abelian group under multiplication and will be denoted Z. The set of
principal ideals will be denoted

P={Oa|aecK}. (4.4.2)
This is a subgroup of Z. An invertible ideal has the form

{q <Z+ %ﬁz) la,beZ, qeQ, c= =4 e Z, GCD(a,b,c) = 1}.
(4.4.3)
An ideal is reduced if

‘\/3 - 2|a\‘ <b< V. (4.4.4)

The set of all reduced ideals is denoted R. This is a finite set with a group-
like structure under multiplication. We define the distance function as:

0: P —R/RZ

(a+b\/3>0»—>%log

(4.4.5)

ngﬁ (mod R).

The unit ideal has distance zero. The composition of two ideals I,.J € T is
the product I -J € Z. We have

8(1J) = 8(I) + 6(J). (4.4.6)

Reduction is a map
p: I — T, (4.4.7)

such that after a polynomial number of steps k an ideal p¥(I) will be in R.
For the exact formula for the reduction we refer to the appendices. We can
give the following bounds

< 8(p(I)) < 8(I) +log Vd, (4.4.82)
5(p*(I)) > 8 (I) +log2. (4.4.8b)

Multiplication is a map from the reduced ideals to itself, taking as input two
reduced ideals I, J, applying the reduction p repeatedly on I.J, until p"’(IJ)
is a reduced ideal.

Given a rational distance z, it is possible to calculate the ideal with distance
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closest to the left of x. We define this ideal I,. We can now define the coset
separating function

fTR— T xR

which is a periodic function with as period the regulator R. Using this
function f we define a function f which is suitable for Fourier sampling.
Choose an integer N > 2v/d, then we define the function f as

f17Z—TIxZ
. i (4.4.10)
i — (Iﬁ-, {N(N —5(1%)”).

This function f is periodic with period NR.

The finite set of all principal fractional reduced ideals is PZ,eq. This set
is called the principal cycle. 6(I) is the distance between an ideal I of the
principal cycle and the ring of integers O. We define the map h as follows

h: R — PIeq XR

4.4.11

T — (Ix,ﬁc—5(lx)), ( )
with Z = 2 (mod R) and I, € PZ,eq the largest ideal in the principal cycle
that verifies 6(1;) < Z. We have the following theorem:

Theorem 4.2. The function h is computable in polynomial time: if x is a
multiple of 107", then we can compute I, and an approzimation of T — (1)
with precision 10™" in time poly(log D,log xz,n). Moreover, h is a periodic

function with period R and is one-to-one on every interval smaller than the

period R.

If we know the value of the integer closest to the regulator R we can turn
this into an algorithm to approximate R with arbitrary precision:

Proposition 4.1. If we know the value of
[R| = |R+ 3], (4.4.12)

then there exists an algorithm that computes R with precision 10" in time
poly(n,log D).

Suppose we have a function f: R — X, with f(z + R) = f(z). In order to
be able to apply the quantum period finding algorithm, we need to discretize
f by taking multiples of %, with N big enough. If X is continuous, it needs
to be discretized as well.
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Definition 4.1. For f: R — R we define the map fN as:

. 1
1 — =7
In N (4.4.13)

kr— Lf(%)JN’

where |z |N is LN—]\;CJ, and [z N is defined likewise.

We would like that f contains approximative information about the period

R of f, however if f has a big variation in an interval of % around z = %,

then f can take arbitrary values. We need a notion of weak periodicity.

Definition 4.2. A function f: Z — X is weakly periodic with period S€R,
if for all 0 < k < |S] and for alll € Z, either f(k+ [1S]) or f(k+ [LS]) is
equal to f(k). We write f(k) = f(k+ [1S]).

We are discretizing the function h:

Definition 4.3. The discretized function of h is defined as

. 1
hy: Z — Pliea X 7

o (1 [ oy )],)

The following proposition gives a further characterisation of hy:

(4.4.14)

Proposition 4.2. The function hy has the following properties:
1. hy is one-to-one on [0, [NR]].

2. iLN(kJ) 1s computable in time O(k:cl,NC?,DC?’), so if N,k = O(DC“),

then hy (k) is computable in O(DC5), where c; are positive constants.

3. Let dpin = 32% be a lower bound on the distances between reduced

ideals and o = logd. If % < iio“g“g, then hy is weakly periodic with

period NR. The condition hy(k) = hy (k + [1S]) is verified for all
0 <k <|NR], except possibly for a small fraction of size @.

To build a quantum algorithm that approximates the period of a weakly
periodic function in polynomial time, we need the following conditions:

Theorem 4.3. Suppose that f: 7 — X is weakly periodic with period S
and

1. f(k) is computable in O((log k), (log 5)%2),
2. f is one-to-one on [0,[S]],
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3. for m € Z, there exists an algorithm in O((log S)C3) that tests whether
m is close to a multiple of S: |jS —m| < 1, for an integer j.

Then there exists a quantum algorithm in O((log S)C4) that produces an inte-
ger a, such that |S —a| < 1 with probability larger than O((log S)~%), where
¢; are positive constants.

In order to prove the main theorem that states that there exists a polynomial
time quantum algorithm that solves the Pell equation, we need the following
two technical lemmata:

Lemma 4.3. Let S be a real number and let q be the number of qubits in
the QFT register and let q be a power of 2. Let 0 < k < |S| and 0 <1 < 4.
If ¢ > 352, then

- - —‘ <= (4.4.15)

where

[, |4, (a1

Lemma 4.4. Let |A| < %, (1) be an arbitrary number, such that [£(1)] < L,
where n = O(logp). Then there exists a constant C, such that for all p
sufficiently large we have

2

X = > Cp°. (4.4.17)

p=l Al
2m(—+§(l))

g e p

1=0

With these lemmata, we can prove the following theorem:

Theorem 4.4. Let d be a square-free positive integer. There exists a quan-
tum algorithm that computes the regulator R of(@[\/a] with precision 107"

in time O((log d)cl,nCQ) with probability O((log d)’c?’,nfc“), if 107" < flo‘g?l,
where ¢; are positive constants.
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T just invent, then wait until
man comes around to needing

what I've invented.
Chapter 5 R. BUCKMINSTER FULLER

Simultaneous Pell equations

5.1 Introduction

Simultaneous Pell equations are equations of the form:

22 —ay? =1, (5.1.1a)

22— by =1, (5.1.1b)

where a,b are positive non-square integers, such that their product is not
a square either. These equations are a specialized case of the more general
simultaneous Fermat equations:

2 —ay® =c, (5.1.2a)
22 —by? =d. (5.1.2b)

Several natural questions can be posed about these type of equations. First
of all, where do equations of this type occur 7 Are there any solutions in
positive integers (x,y,z) 7 Are there a finite number of solutions and if so,
how many solutions can there be 7 Given an explicit case, can we find the
solutions ? Are the solutions bounded in any natural way 7

We will only deal with some of these questions. We will start with an old
conjecture on integer sequences. Simultaneous Pell equations occur in a
simplified version of this conjecture. We will give an upper bound of the
smallest solution of equations (5.1.1), if any exists, following an approach by
Anglin [Ang95|. We will also reproduce a result by Cipu and Mignotte [CM]
that proves that there are at most two solutions in positive integers for any
pair of simultaneous Pell equations. We will combine these results with
the polynomial quantum algorithm of Hallgren for a single Pell equation
to produce a polynomial quantum algorithm that solves simultaneous Pell
equations.

87
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5.2 A conjecture on 5 integers

One of the problems of the Greek mathematician Diophantus was to find
sets of unequal fractions, such that the product of any two of its elements is
one less than a square. He found the following set of four fractions:

1 17 1
1 33 17 1051 (5.2.1)
16°16° 4 ° 16
for which we can indeed verify:
2 2
LB (I oy L9y (5.2.2ab)
16 16 16 16 4 8
2 2
L 105 IO 33 AT (25 (5.2.2cd)
16 16 16 16 4 8
1 1\? 17 1 43\ 2
16 16 16 4 16 8

In the seventeenth century, Pierre de Fermat looked for integer solutions to
this type of equations. He found the set

{1, 3, 8, 120}, (5.2.3)

for which we have:
1x3= 22-1, 1x8= 321, (5.2.4ab)
1x120=11% -1, 3x8= 52-1, (5.2.4cd)
3x120 =192 — 1, 8 x 120 = 317 — 1. (5.2.4ef)

He tried to extend this set with a fifth integer but failed. Euler extended his
set with a rational number:

{17 3.8, 120, 777480}’

—_— 2.
28792 (5.2.5)

but could not find a fifth integer either.

In 1969, Baker and Davenport proved [BD69| that this set cannot be ex-
tended to a fifth integer and that the only possible integer extension of the
triplet 1,3, 8 is the integer 120. It is this second part that leads to general-
ized simultaneous Pell equations. Suppose that we have an integer k, such
that {1,3,8,k} is a set with products one less than a square. In that case k
has to verify the following equations:

Ixk=a%-1, (5.2.6a)

3xk=19y%—1, (5.2.6b)
§xk=2"—1. (5.2.6¢)



tel-00534864, version 1 - 12 Nov 2010

5.3. AN UPPER BOUND 89

By substituting k in the last two equations we obtain

3z — 1) =y -1, (5.2.7a)
8(z% —1) =22 — 1, (5.2.7b)
which can be written as
322 —y? =2, (5.2.8a)
82 — 2% =1, (5.2.8b)

The question whether there are five integers, such that the product of any
two of them is one less than a square remains unanswered for the moment:

Conjecture 5.1. There are no integers ay,...,as, such that for i # j we
have

aa; = kj; — 1, (5.2.9)
where k;;j are positive integers.

For rational numbers a little more is known. Euler already found a set of
five rational numbers. It is even possible to find six rational numbers, such
that the product of any two of them is one less than a square of a rational
number:

1927 1927 277 277 48 ' 16

11 35 155 512 1235 180873
{ } (5.2.10)

5.3 An upper bound

5.3.1 Diophantine Approximation

We describe the general strategy of diophantine approximation techniques.
A linear form in logarithms is a form of the type:

A=y + Bilogas + - + By log ay, (5.3.1)

where o, ..., a, are algebraic numbers. Alan Baker obtained a lower bound
for the linear form |A| [Bak67|, which Feldman improved [Fel71| with the
following theorem:

Theorem 5.1 (Feldman). The logarithmic form A wverifies the inequality:

Al = B~C, (5.3.2)

for all algebraic numbers By, ..., B, with height at most B > 1, where C is

effectively computable in terms of the a; and the degree of the (;.
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For the case that the numbers (; are integers, such that for all 4 we have that
|3;| < B and the height H(«;) of every algebraic number «; is bounded by 4;,
Baker and Wiistholz [BW93| improve this lower bound with the following
theorem:

Theorem 5.2 (Baker, Wiistholz). If the linear form A # 0, then we have
the following lower bound:

n
log |A| > —(16nd)?" ™ logBHlog A, (5.3.3)
=1
where d is the degree of the field Q(aq, ..., an).

Suppose we have a system of equations for which we want to obtain an upper
bound for the solutions. This can be achieved by the previous theorems and
the following strategy.

1. Reduce the equations if necessary to such equations for which Baker’s
theory can be applied.

2. Reduce these new equations to inequalities of the form

0< ‘0/{1 b — an+1‘ < cre 2B (5.3.4)
where aq,...,a,41 are algebraic numbers, by, ...,b, are unknown ra-

tional integers, B = max (\bz\) and c¢p,cy are positive constants that
are independent of the integers b; and can be effectively computed. If
the bound B is large, then the inequalites (5.3.4) imply that

A] < cze™2P, (5.3.5)
where the linear form
A=bilogay + -+ b, log o, — log a1, (5.3.6)
and cs is a positive constant that can be effectively computed.

3. The crucial step in the general strategy is to apply Baker’s theorem
which gives an inequality

|A| > e8| (5.3.7)

where ¢4 is a positive constant that can be effectively computed. When
we put these two inequalities together we obtain:

=B < |A| < cze728, (5.3.8)

which in turn leads to an explicit upper bound By for B.
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4. We reduce this upper bound Bg, which is usually very big, to a much
smaller upper bound B, by using continued fraction techniques, Dav-
enport’s lemma or the LLL-reduction algorithm, depending on whether
the linear form is either in two, three or more than three logarithms.

5. From this upper bound B; we deduce an upper bound for the unknowns
in the original equations.

6. Using search techniques and properties of the initial equations we de-
termine all possible solutions.

Davenport’s Lemma and LLL-reduction

The lemma of Davenport is a result proved by Baker and Davenport [BD69],
that can be applied to linear forms in three logarithms to show that a certain
gap must exist between solutions of certain equations. In its original form it
is given as follows:

Lemma 5.1 (Baker-Davenport). Let K, M > 6, p,q be positive integers
satisfying the following inequalities:

1<q<KM, (5.3.92)

g —p| < —— 5.3.9b

|6g —p| < =i ( )

las] = = (5.3.90)

where 6,3 are irrational numbers and ||z|| is the distance of a real number z
to its nearest integer, that is ||z|| = |z — |z + 4| |. Then the inequality

{m@—{—n—ﬂ{ <c ™ (5.3.10)

has no solution in integers (m,n) in the range

log K2M

<m< M. (5.3.11)
log c

For LLL-reduction techniques we follow Cohen’s description on lattices and
reduction |[Coh96|.

Definition 5.1. Let K be a field of characteristic different from 2 and let
V be a K-vector space. A map q from V to K is a quadratic form if the
following conditions are satisfied:

1. For every A € K and x € V we have:

g\ - ) = Nq(z). (5.3.12)
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2. Let the function b(x,y) be defined by

(a(z +y) —aq(@) —q(y)). (5.3.13)

N =

b(z,y) =
Then b is a symmetric bilinear form.
We have the obvious identity
b(x,z) = q(x). (5.3.14)

If K =R, and if for all z € V we have g(x) > 0, we say that ¢ is positive
definite.

Definition 5.2. A lattice L is a free Z-module of finite rank together with
a positive definite quadratic form q on L ® R.

Let (bz) I<i<n be a Z-basis for L. If
T = Z z;b; € ﬁ, (5.3.15)
1<i<n

with x; € Z, then we have that

q(r) = Z 4i,jTi%5, (5.3.16)
1<i,j<n

where ¢; ; = b(b;, b;). The matrix Q = (qm)
symmetric matrix that verifies

1<ij<n 18 @ positive definite

b(z,y) = YT QX, (5.3.17)

where X,Y are the column vectors of the coordinates of x and y. As @ is
positive definite, we have that the determinant det () > 0. The determinant
d(L) of the lattice £ is defined as

d(L) = \/det Q. (5.3.18)

A lattice £ can also be considered as a discrete subgroup of rank n of the
Euclidean vector space LOR. If (bz) |<i<n 18 @ Z-basis for L, then the matrix
of scalar products -

Q= (bi : bj)lgz'gn (5.3.19)

is called the Gram matrix of the vectors b;. We have the following theorem:

Theorem 5.3. If Q) is the matriz of a positive definite quadratic form, then
Q is the Gram matriz of some lattice basis. Moreover, the Gram matriz of

a lattice basis (bi)1<z’<n determines that basis uniquely up to isometry.
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The existence of an orthonormal basis in a Euclidean vector space is proved
by the Gram-Schmidt orthonormalization procedure. For the nomalization
part of this procedure, square roots need to be taken, but the orthogonali-
sation procedure works just as well without:

Theorem 5.4. Let (bz) be a basis of a Euclidean vector space EE. Define

1<i<n
i—1
7=1
where
bi - b
J J

Then the (b;k)1<'i<n form an orthogonal but not necessarily orthonormal basis
of E. We have the following equality for the determinant of the lattice:

dicy =TT Ilez)* (5.3.22)

1<i<n
The following inequality is a corollary of this theorem:

Corollary 5.1 (Hadamard’s inequality). Let (L,q) be a lattice of determi-

nant d(L), let (bi)1<i<n be a Z-basis for L, then

n

(L) <[] Vb, b). (5.3.23)

=1

Amongst all the Z-bases of a lattice £, some are better than others. The
bases whose elements are the shortest are called reduced bases. We can think
of a reduced basis as of a basis that is almost orthogonal. A basis is called
LLL-reduced (for A. K. Lenstra, H. W. Lenstra and L. Lovasz) [LLL82]| if
the following conditions are satisfied:

1. The real numbers y; ; all verify the inequality ‘P‘i,j| < %

2. For all 1 <4 < n we have the following inequality:

|7+ piioabiy|* > 2|, |

, (5.3.24)

where the norm of a vector is defined as |b;| = \/q(b;, b;).

We have the following theorem:
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Theorem 5.5. Let (bz) 1<i<n b€ an LLL-reduced basis of a lattice L, then
the following inequalities are satisfied:

n n(n—1)
d(L) <[ |bs| <277 d(e), (5.3.25a)
=1
i—1
Ib;| <277 |8], ifl1<j<i<n, (5.3.25b)
—1
Iby| < 27T {/d(L). (5.3.25¢)
We also have for any linear independent vectors x1,...,xs € L, that
n—1
|b;| <272 max (lz1],. .., |2), with 1 < j < t. (5.3.26)

We can apply LLL-reduction to reduce the upper bound By for linear forms
in logarithms. This is done in the following manner. Let

0< |b1a1 + -+ bpay, + a‘ < cge 2B, (5.3.27)

Let £ be the lattice in R"*! spanned by the column vectors of

1 o .- 0 0
0 1T - 0 0
: L ] (5.3.28)
0 1 0
C’a1 CCMQ Can Ca

where C' is a constant. Let e; be the first basis vector of the LLL-reduced
basis of the lattice £. We then have the following inequality:

a2 < 2%, (5.3.29)
for all vectors x € L. If we choose the constant C', such that

lex| > /(n + 2)2" By, (5.3.30)

then we obtain the following inequality:

< log c3C' — log By

B = B. (5.3.31)

C2

This reduces the upper bound By to approximately log By.

5.3.2 Upper bound for smallest solution

We want to find an upper bound for the system (5.1.1). Let (zg,yo) be the
smallest solution in positive integers of equation (5.1.1a) and (z{),y;) that of
equation (5.1.1b). Consider the algebraic numbers

R=z9+ yo\/E, (5.3.32&)
R = z) + yyVb. (5.3.32b)
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which have minimal polynomials

X2 —2x0X +1, (5.3.33a)
X2 220X +1. (5.3.33b)

The classical height H(a) of an algebraic number « is defined as the max-
imum of the absolute values of the coefficients of its minimal polynomial
in Z[X| with the greatest common divisor of these coefficients being 1. There-
fore the height of R is 2x¢. For practical purposes we are going to assume
that a,b < 1000, so that H(R) < 4-10%". This occurs for a = 661. Consider
the polynomial

4
p(z) = ] J(X - By, (5.3.34)
where the algebraic numbers E; are defined as follows:
(z0 + yov/a) Vb (0 — yov/a) Vb
Bi= e — 5.3.35ab
"7 G+ uvbva EETNON A )
(0 + y0v/a) Vb (w0 — yov/a)Vb
By = ——— =, eV 5.3.35¢d
T G hva Ghviva e

The polynomial p(x) can be written as

p(z) = %(a%‘l + 4a2by0y6$3 — 2ab(1 + 2ay(2) + 2by62)332 + 4al72y0y633 + b2).

(5.3.36)
None of the linear polynomial factors of p(z) is in Q[z], therefore E; does
not have degree 1 or 3. The height of E; is easily bounded by 108¢. We have
therefore the following upperbounds:

(1+1ogH(R)), (1 +1logH(R')), (1 + logH (E1)),logR,logR',log| E1| < 200.

(5.3.37)
All solutions of equation (5.1.1a) are given by:
m+1 _ m+1
2, = (z0 + yov/a) ‘;‘ (zo — yov/a) : (5.3.38a)
(2o + yov/a)™ ! — (zo — yoy/a)" !
= . 5.3.38b
and likewise for equation (5.1.1b):
/ / b n+1 I b n+1
/ / b n+1 I b n+1

n 2\/5
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So to solve simultaneous Pell equations it is sufficient to find all (m,n), such
that

Ym = Yp- (5.3.40)

We have the recurrence relations:
Ym+2 = 280Ym+1 — Ym, (5.3.41a)
Ynt2 = 220Yn+1 — Yn- (5.3.41h)

So provided we know yg, y; it is relatively straightforward to check whether
there is a solution with m,n < 100. An upper bound to the smallest solution
will tell us upto which value we need to compute (m,n) to be sure that there
are no solutions. Let

(z0 + yov/a)™ !

P = NG : (5.3.42a)
o=t y\%/g)nﬂ. (5.3.42b)
Then we have that
= = (0~ WV Va (5.3.43a)
% = (20 — yb V)"V (5.3.43b)

The smallest possible value for (zg + yov/a) is ¢ = 2 + /3. We obviously
have the inequalities:

P>l (5.3.44a)
Q>c" L (5.3.44b)
We also have the relation P ER™
1
The case of equality y,, = y/, can only happen if
1 1
P——=0Q—- —. 5.3.46
aP @ bQ ( )
Suppose that P > . Then if there is a solution we have:
P 1 1
Q  aPQ bQ?
1000
< -
PQ (5.3.47)
1000
c¢m—1len—1

< max{m,n}
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It therefore follows that

0<

P
logé‘ < ¢ max{mn} (5.3.48)

A similar argument for the case P < @ leads to the same inequality and
therefore, assuming m,n > 10, we have

EiR™
0 < |log ]1%/” <c max{m’"}, (5.3.49)
which can also be written as
0 < |mlog R —nlog R + log Ey| < ¢~ max{mn}, (5.3.50)

To this linear form A in three logarithms we apply Baker’s theory and Dav-
enport’s lemma. The logarithm of the algebraic numbers R, R/, E; as well
as the logarithm of their heights are all bounded by 200, so we can use
theorem 5.2 and we obtain the following estimate:

—21%1200% ( max(log m, logn) + 11)11 < log |A| < ¢~ max{mn} (53 51)

which results in the inequality

max(m, n) < 101, (5.3.52)
To this upper bound we apply Davenport’s lemma, where we set:
log R
= 5.3.53
g B’ ( a)
log E
= — 5.3.53b
9= (5.3.53)
M = 10%, (5.3.53¢)
This will result in the inequality in m:
max(m,n) < 83. (5.3.54)

This is sufficient as an upper bound for the smallest solution even if a sec-
ond application of Davenport’s lemma would reduce this upper bound even
further.

5.4 Finite Number of Solutions

5.4.1 Introduction

We will highlight some elements of the proof of Cipu and Mignotte [CM]
that the system

22 —az? =1, (5.4.1a)
Y — b2 =1, (5.4.1b)
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has at most two distinct solutions in positive integers x,y, 2.

It is interesting to note that there exist families of integers (a,b), such that
the system (5.4.1) has two positive solutions.

Let 1 < I, m be positive integers and define the following quantities:

a=m++vVm?2—1, (5.4.2a)

a2l —Oé_2l
n(l,m) =< & 5.4.2h
amy =22 (5.420)

Then the simultaneous Pell equations of the family (a,b), such that

a=m’—1, (5.4.3a)
b=n(l,m)® -1, (5.4.3b)

have the following two solutions in positive integers:
(0,0, 20) = (m,n(l,m),1), (5.4.4a)
(z1,91,21) = (M,Qn(l,m)2 - 1,2n(l,m)) . (5.4.4b)

An earlier result by Yuan [Yua02| showed that there are at most finitely
many cases of simultaneous Pell equations with three solutions:

Theorem 5.6 (Yuan). If max(a,b) > 1.4-10%7, then the system (5.4.1) has
at most two distinct solutions in positive integers.

Cipu and Mignotte prove that the system (5.4.1) have at most two solutions
in positive integers x,y, z, if a < b are distinct positive integers, removing
these finitely many exceptions. The basic idea of the proof is a three step
approach. First it is shown that any system of simultaneous Pell equations
can be transformed to another system of simultaneous Pell equations with
the same number of solutions. The new system has coefficients a,b of a
special type so that it is straightforward to find the smallest solution xg, yo, 2o
of the system. The second step creates a linear form in three logarithms
from this smallest solution and two hypothetical bigger solutions x1,y1, 21
and xo,yo,22. Baker’s theory on these kind of forms results in an upper
bound for the biggest of these two solutions. The last step is a gap principle
that shows that the distance yo — y; must necessarily exceed some kind of
lower bound. It will turn out that this lower bound will conflict with the
upper bound constraint from the second step. Hence there can be no system
of simultaneous Pell equations with three distinct solutions.

5.4.2 Transforming the equations

We want to transform the system (5.4.1) to a system of equations with an
obvious smallest solution. We need to show that this transformation does
not reduce the number of solutions. To do so we need to prove the following
lemma:
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Lemma 5.2. Suppose that the system (5.4.1) has at least one solution in
positive integers. Let zg be the smallest positive value taken by the third
component of a solution (x,y, z). Then for any solution (z;,y;, z;) of (5.4.1),
z; 18 a multiple of zg.

This lemma implies that if (z, yo, 20) is the solution of (5.4.1) with minimal
third component, then this system has as many positive integral solutions
as the system

u? — (23 —1)v* =1, (5.4.5a)
w? — (Y —1)? = 1. (5.4.5b)

So we will consider from now on that

a=m?—1, (5.4.6a)
b=n?—1, (5.4.6b)

for integers n > m > 2. We set

a=m+\vVm?2—1, (5.4.7a)

B=n++vn?>—1. (5.4.7b)

Let (x,y,2) be a positive integer solution of (5.4.1). Then z = U; = U,
where

B - 4.
Ui = =57 (5.4.82)
k _ p—k
Ui = =5 (5.4.8b)

k 2\/5 )

with 7, k positive integers.

5.4.3 Linear form in three logarithms

We will build a linear form on logarithms that depend on «, (3. We first
observe the following inequality:

. b .
o < gF < \/;aj, (5.4.9)

which follows from the fact that m < n, and that the map z — = — % is

increasing for positive z, and the fact that

aj_afj B ﬁk_ﬁfk

2va 2V

(5.4.10)
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Another useful pair of inequalities is the following:
4\ 3 b 1\ 32
1+ ]|=<-<[|1+— ) —, 5.4.11
< - 5a2> a? " a ( - 2a> a? ( )

which can easily be derived from the fact that a > 3, b > a + 5 and the fact
that

1
2$+1—4—<2\/x2+$<2$+1, (5.4.12)

x
for positive z. From the inequalities (5.4.9) and (5.4.11) we obtain the fol-

lowing inequality in «, :

1 .
gt < (1 + 4—a> ot (5.4.13)

We have the following lemma:

Lemma 5.3. Let (x,y, z) be a solution of the system (5.4.1). If z =U; = U},
with j >k, then j and k have the same parity. Moreover, if j =k + 2, then
k is even.

This is easily proven by using the recurrence sequences and by inspection for
the special case 7 = k + 2. We also have a double bound on Uy:

Lemma 5.4. For any t > 2, we have the inequalities:
of < Uy < (2m)t. (5.4.14)

As a consequence, we have

LUEHJ = om — 1. (5.4.15)

This leads to the following corollary:
Corollary 5.2. If U; = U, then
(j—1loga < (k—1)log2n. (5.4.16)

We consider the linear form in three logarithms:

1 b
A= §1og—+jloga—k‘logﬁ. (5.4.17)
a
This form is bounded from above by
_9i a2_2j
A<—log(l-a 7)< — (5.4.18)
ac—1

From this inequality we obtain
Q22

log A < —2jlog o + log <27
ac—1

) < —2jlog a + 0.075. (5.4.19)
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5.4.4 Gap principles

Suppose that the system (5.4.1) has at least three solutions (x;,y;, ;). We
have

2= ———F——
2
g \/Z’“ (5.4.20)

= 72\/5 ,

for integers 1 = j; < jo2 < j3 and 1 =k < kg < k3. The goal of this section
is to prove that if such a solution exists, then the gap between ko and k3
must be rather large. So large in fact, that it will create a contradiction with
the upper bound found for k3 in the previous section. Yuan [Yua02| proves
the following lemma:

Lemma 5.5 (Yuan). There exist integers g, qx > 2 and 05,0, € {—1,0,1},
such that

J3 = qjj2 + 0y, (5.4.21a)
ks = qrpko + oy, (5.4.21b)
¢;0; = qxor =0 (mod 2). (5.4.21c)

Cipu and Mignotte improve this lemma to obtain the following result:

Lemma 5.6. With the above notations, we have the equality

oj = O, (5.4.22)

and the inequalities
q; > qk, (5.4.23a)
mq; < ngy. (5.4.23b)

So from here on, we drop the indices for . Using these lemmata, Mignotte
and Cipu prove the following proposition, which gives the desired gap prin-
ciple:

Proposition 5.1 (Cipu-Mignotte). We have the following lower bound for
the integer js:

( 2
1.99 j, 63, if ko =2, k3 s odd, B > 8000 and [ = 2,
4
) 1.99 js G5, if ko =2, k3 s odd, B > 8000 and [ > 3,
J3 > ko—2 (5.4.24)
2815008 2 , if ko > 2 is even,
ko—3
(396282 , ifky > 2 is odd,

where n = n(l,m), for some integers l,m > 1.
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Using this gap principle together with a lower bound for linear forms in loga-
rithms of three algebraic numbers from Matveev [Mat00], Cipu and Mignotte
obtain the fact that for

max(a,b) > 2.26 - 104, (5.4.25)

the simultaneous Pell equations have at most two solutions. This upper
bound is now used as input in a theorem of Mignotte [Mig04, BMS06]| to
obtain a tighter lower bound for linear forms in logarithms of three algebraic
numbers. This reduces the above upper bound so that for:

max(a,b) > 1.2 - 10%. (5.4.26)

the simultaneous Pell equations have at most two solutions. From that point
on Cipu and Mignotte distinguish two cases.
In the case that the solution (2,9, 22) verifies

29 = 2n, (5.4.27)

an explicit computation using techniques from computational Diophantine
approximation theory allows them to verify that there are only two solutions.
In the case that zo is a higher power of the fundamental solution, they could
use much tighter bounds which allow them to eliminate this case as well.
Therefore a pair of simultaneous Pell equations has at most two solutions.
We end this section with an as of yet unproven conjecture of Yuan [Yua04].

Conjecture 5.2 (Yuan). The equations:

22 —az? =1, (5.4.28a)
y? — b2 =1, (5.4.28b)
have at most one solution in positive integers, unless
ac®> =m? —1, (5.4.29a)
bd? = n(l,m)* -1, (5.4.29b)

where c,d are positive integers, in which case these equations have exactly
two solutions in positive integers.

5.5 Quantum algorithm for simultaneous
Pell equations

We extend Hallgren’s result for single Pell equations, by giving a polynomial
time quantum algorithm that solves simultaneous Pell equations. This algo-
rithm uses Hallgren’s algorithm as a subroutine.

Suppose we want to solve the pair of simultaneous Pell equations

22 —az? =1, (5.5.1a)
y? — b2t =1, (5.5.1b)
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in polynomial time. That is to say, in a time O (max(log a,log b)k) We have
the following ingredients:

1. A polynomial time quantum algorithm that computes the regulator R
of Q [\/&] with precision 10~ in time O((log d)er, nCQ) with probability
O((log d)_c3,n_c4), if 107" < fomﬁ, where ¢; are positive constants.

2. A polynomial time classical algorithm that computes a power product
representation of the fundamental solution of the Pell equation from
an integer R, such that {R — R{ < 1, where R is the regulator of the

number field Q [\/8] .

3. An upper bound for the smallest solution of a pair of simultaneous
Pell equations. This upper bound is given as max(m,n) < 83, where
m,n are the powers to which the fundamental solutions of the simul-
taneous Pell equations need to be raised. We have some remarks for
this value 83. When we followed Anglin’s approach to obtain an up-
per bound, we restricted ourselves to max(a,b) < 1000. On the other
hand, the upper bound is a direct result of the worst-case scenario for
one specific fundamental solution, the case of d = 661. So this upper
bound will only grow every time that we hit upon a new worst-case
scenario for a certain d’ > 661.

A second point to note is that we already indicated that this upper
bound of 83 could be improved by running Davenport’s lemma again
with this new upper bound.

So how do we proceed ? We use Hallgren’s algorithm to obtain the regulators
of both of the Pell equations. This can be done on a quantum computer in
polynomial time. From these regulators we obtain power product represen-
tations of the fundamental solutions:

2 —azy =1,
t
. 9.5.2a
$0+ZO\/5=H(ai+bi\/5)m, ( )
i=1
3362 - bz(')2 =1,
(5.5.2b)

tl
xy + 26\/5 = H (ag + ng/g)ni,
i=1

where a;,a;, b;,b; are rational numbers and n;,n, are integers. We do not
use this power product representation directly, but we will need it in the end
to compute z. We try to find powers m,n, such that z,, = z/,, where

Tm + 2mva = (2o + 20v/a)"™, (5.5.3a)

Yn + 20 Vb = (yo + 2, Vb)". (5.5.3b)
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We can derive the following relations from the regulators:

log 2, = mR, + log %, (5.5.4a)
log 2, = nRy, + log %. (5.5.4Db)

In case of equality z,, = z], we have
nRy — mR, = log %. (5.5.5)

So for all positive integers m,n < 83, we test the above equation. This can
be done by fixing m and solving the equality for n. If for a pair (mg,ng) we
have equality, then

Zme = 2y - (5.5.6)

no

We now use the power product representation for the smallest solution to
obtain a description of this smallest solution as a difference of power product
representations:

Zmo = ﬁ <H (ai + bi\/a)mom o H (ai B bi\/a)moni> : (557)

i=1 i=1

If we do not find an equality before running out of bounds, then the simul-
taneous Pell equations do not have a solution in positive integers. The case
of two solutions follows essentially the same scheme. First we filter out the
obvious cases of two solutions, that is the cases where

ac®> =m? —1, (5.5.8a)
bd* = n(l,m)* — 1, (5.5.8b)

with ¢, d positive integers. For the other cases, Yuan conjectured |Yua(4]
that there cannot be two different solutions in positive integers. While we
cannot prove this conjecture, we can test it. The idea is to obtain a similar
bound for max(m,n), but now for the second smallest solution. From that
point on we repeat the above procedure, expecting to run out of bounds
before finding a second solution.

5.6 Conclusion and Perspective

We have exhibited a polynomial time quantum algorithm with polynomial
time classical postprocessing that finds solutions to simultaneous Pell equa-
tions. The key ingredients to this algorithm are Hallgren’s algorithm that
computes the regulator of a number field in polynomial time on a quantum
computer and the upper bound on smallest solutions of simultaneous Pell
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equations obtained by Anglin. A combination of these two results gives the
above algorithm. It is natural to wonder whether this procedure can be ex-
tended to other types of equations. A natural extension would be to try to
solve the pair of simultaneous Fermat equations:

Az? — Bz* = C, (5.6.1a)
Dy? — E2* = F, (5.6.1b)

with the usual conditions on A, B,C, D, E, F in order to prevent having
equivalent equations. Anglin [Ang95] gives an upper bound for the smallest
solution of this type of equations in the special case B = E = 1. To extend
the above algorithm we also need to have a fast method to solve the individual
equations and a fast method to test for equality of individual solutions. We
also need a small bound for subsequent solutions and a proof that there are
only a limited number of solutions. It seems probable that any type of pair
of equations where these four conditions are met can be solved in polynomial
time on a quantum computer.
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Get your facts first, then you
can distort them as you please.

Appel’ldiX A MARK TWAIN

Kronecker product and sum

Let A be an m X n-matrix and B a p X ¢ matrix. Then the Kronecker product
A® B (A.1)
is an mp X ng matrix with the following coefficients:

anB e alnB
A®B= S S (A.2)
amlB e amnB

The Kronecker product is a special case of the tensor product and therefore
has the following properties:

A®(B+C)=A®B+A®C, (A.3a)
(A+B)®C=A®C+B®C, (A.3b)

(kA)® B=A® (kB) = k(A® B), (A.3c)
A®(B®C)=(A®B)&C, (A.3d)

where A, B, C are matrices and k a scalar. The Kronecker product is not
commutative in general. We have the following useful result:

Lemma A.1. Let A, B,C, D be matrices, such that the multiplication AQ B
by C' ® D 14s well defined. We have the following identity:

(A®B)- (C®D)=(AC® BD,). (A4)
As a consequence we have the following corollary:

Corollary A.1. The matrizx A ® B is invertible if and only if the matrices
A and B are invertible. In that case we have

(AeB)'=A"1e B (A.5)

107
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For the eigenvalues and eigenvectors of the Kronecker product we have the
following theorem:

Theorem A.1. Let A be an m X m matriz with eigenvalues A1, ..., A\, and
let B be an n x n matriz with eigenvalues w1, ..., . Then the eigenvalues
of A® B are given by \;pu;.

If x1,...,2y are linearly independent eigenvectors of A, where the eigenvec-
tor x; corresponds to the eigenvalue \; and 'y, ...,z linearly independent
eigenvectors of B, where the eigenvector 33; corresponds to the eigenvalue pi;,
then x¢®x;- are linearly independent eigenvectors of AR B with corresponding

ergenvalues \if;.

From this result we can derive the trace and determinant of the Kronecker
product:

Corollary A.2. Let A be an m x m matriz and B an n X n matriz. Then
Tr(A® B)=TrATr B =Tr(B® A), (A.6a)
det(A ® B) = (det A)"(det B)™ = det(B ® A). (A.6b)

Let A be an m x m matrix and B an n X n matrix. Then the Kronecker sum
of A and B is defined as follows:

Ak B=A®I,+1, ® B. (A.7)
The Kronecker sum of matrices is non-commutative in general, that is
Adxk B#Bok A (A.8)

We have the following theorem regarding the eigenvalues and eigenvectors of
the Kronecker sum of matrices:

Theorem A.2. Let A be an m X m matriz with eigenvalues Ay, ..., Ay, and
let B be an n x n matriz with eigenvalues w1, ..., . Then the eigenvalues
of A®k B are given by \; + pu;.

If x1,...,2y are linearly independent eigenvectors of A, where the eigenvec-
tor x; corresponds to the eigenvalue \; and 2',...,z) linearly independent
eigenvectors of B, where the eigenvector $; corresponds to the eigenvalue p;,
then xi®x9 are linearly independent eigenvectors of A® g B with correspond-
ing eigenvalues \;fi;.

Let both A and B be n x n matrices. We then have the following identity:
eAPKB — oA g B, (A.9)
There is a straightforward generalization to a Kronecker sum of n matrices:
A Ok Ok A=A @ @[+ +1® - ® A, (A.10)

We have the same relation for the exponential:

PR OKAn — (AL gL g eAn, (A.11)
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Imagination will often carry us
to worlds that never were. But
without it we go nowhere.

CARL SAGAN

Appendix B

Continued Fractions

Continued fractions are used to give good rational approximations of irra-
tional numbers.We first define a sequence of functions.

Let a1,...,a, be real numbers and a; > 1.

Define the sequences (fl) , (gl-)l., by

)

1 =0, =1,
f-1 Jo (B.1a)
fot1 = ant1fular, ... an) + fac1(ar,. .. an—1),
1 =1, =0,
g-1 90 (B.1b)
Int+1 = an+19n(at, ..., an) + gn-1(a1, ..., an—1).
By induction, we can prove the following:
Theorem B.1. The sequence (fl)z verifies the recurrence relation:
fn(ala sy, Qp—1,0n + anlJrl) = Kilfrﬂrl(ah oy Opy Gpy1)- (B.2)

An analogue result holds for the sequence (gl)

i

The following result can be derived almost directly from the previous theo-
rem:

Theorem B.2. For all positive integers n, we have the recurrence relation:

fn(al, R ,an) = a1 fn_1 (a2, —i—i, as,. .. ,an). (B.3)
There is also a direct relation between f and g:

Theorem B.3. The functions f, and g, verify the equations:

gn(at,...,an) = fn-1(ag,...,ay), (B.4a)
fagn-1— fa19n = (_1)n' (B-4b)

When n tends to infinity it is possible to define a limit for the fraction <%
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Theorem B.4. The sequences g”ﬁ and ZZ—” are respectively strictly increas-
n n

ing and strictly decreasing. The limit

lim In (B.5)
n—od g?’l
15 well-defined.
Let a; be positive integers. The finite continued fraction [al,...,an] is
defined as
1
a1 + 1 (B.ﬁ)
as +
2 L 1
a
3 . 1
o
Qp

We have the following relation between the sequence of functions and con-
tinued fractions:

Theorem B.5. The fraction g—: can be written as continued fraction:
&: [al,...,an}. (B.7)
In

It is still possible to express the continued fraction as a fraction of functions
if we extend the continued fraction [al, . ,an]:

Theorem B.6. For x > 1, we have

_ xfn + fnfl

= . B.8
[ah » Gn,y ZE] TGn + Gn1 ( )

Let r be a real number, we define the sequence (XZ)z in the following way:
X1 =, (B.9a)

1
Xn+1 = (

XX X))’ (B.9b)

provided that X, is not an integer. In that case X, is the nth complete
quotient of r. The simple continued fraction of r of order n is equal to:

= [[X1], [Xo], ..., [Xa]] (B.10)
= [X1] + ! - : (B.11)
[Xo] + N
[X3] + — 1
-
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Theorem B.7. Every real number r can be expressed uniquely as a simple
continued fraction. Moreover, this simple continued fraction is finite if and
only if r is a rational number.

We have the following inequalities to indicate the quality of the approxima-
tion of an irrational number by a continued fraction.

Theorem B.8. Let n be a positive integer, x a real number and g—: the nth
convergent of x. Then

1
InGn+2

1
InGnt+1

<

(B.12)

The following theorem states that all good rational approximations of an
irrational number x are continued fractions of x.

Theorem B.9. Let x be an irrational number and let % € Q, with ¢ > 0. If

az——' < —, (B.13)

then % 1S a convergent of x.

For quadratic relations between integers, continued fractions are particularly
useful.

Theorem B.10. Let A, B,x,y be positive integers, and let C # 0 be an
integer, such that C? < AB and AB not a square. If

Az® — By? = C, (B.14)

then % s a convergent of \/g.

Let P, @, R be integers, such that R is positive and not a square and ) divides
P? — R. Define the sequences (R)z’ (QZ)Z by

P, R
P =P Py = Fy+ VR Qn — P, (B.15a)
Q@n
R— P?
Q1 =Q, Qni1 = —"H (B.15h)
Q@n
then we have the following theorem:
. . . (P+VR) . o
Theorem B.11. The simple continued fraction of g i periodic after

a certain point, and for n sufficiently large we have

VR > P, >0, (B.16a)
2VR > Q, >0, (B.16b)
WR>X,>1. (B.16¢)
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The theorem above states that all quadratic relations between integers have
a continued fractions expansion that eventually becomes periodic. The fol-
lowing theorem indicates under which conditions this expansion is periodic
from the beginning.

. P+vR) . .. .
Theorem B.12. The fraction ( +Q\/_) 1s purely periodic, that is

(ovm) [ (v

g = | 5 : (B.17)

if and only if
V4P Qs VE-Po0 B15)
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Mathematics consists in proving
the most obvious thing in the
least obvious way.

GEORGE PoLya

Appendix C

Algebraic Number Theory

Let a,b be integers and let d be a positive square-free integer.
Let £ = a+ bVd, then € = a — b\/d is called the conjugate of &.

Lemma C.1. We have the following relations for &:

£:§> (Cla)
E+n==E+1, (C.1b)
En=2¢-1. (C.1¢)

The solutions (a;, b;) of the Pell equation (4.3.1) can be characterized by the
algebraic numbers & = a; + b;v/d. We have the following relations between
solutions of this type:

Proposition C.1. If the algebraic numbers & = ai:i—bi\/a and §; = aj—l—bj\/a
are solutions of (4.3.1), then so are the numbers & and &;&;. In particular,

&' = (ai‘i‘bi\/g)n (C.2)

is a solution of (4.3.1) for all integers n.

So from a given solution of (4.3.1), we can generate an infinite number of
different solutions. It is natural to ask whether any solution of the Pell
equation is necessarily of this form. The following theorem, first proved by
Lagrange, confirms this.

Theorem C.1 (Lagrange, 1768). Let & = ay+b1Vd be the smallest solution
of (4.3.1), with a1,by > 0. Then for every positive solution (s,t) of (4.3.1)
there exists a positive integer n, such that

s+tVd= (a1+b1\/3)n. (C.3)
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We call £(d) = & = a3 + biV/d the fundamental solution of (4.3.1).
Let

OV = {r-+raVd| r.m < Q) c4
be a quadratic number field. If
a=a+bVdeQ[Vd], (C.5)
then we have the following relations:

=a—bVd e Q[Vd], (C.6a)
- eq[va. (C.6b)

Sl o

The real number £ € Q [\/3] is an algebraic integer if there exists an integer n,
such that

"+ an1&" + -+ a1 +ag =0, (C.7)

where all a; are integers. The set of all algebraic integers in Q [\/E} is denoted
by O and is sometimes called the order of discriminant d.

Proposition C.2. The algebraic integers of Q are the integers.

We have the following sufficient condition to verify whether a number is an
algebraic integer:

Lemma C.2. Let v1,...,7v be complex numbers and let
l
V= {Zm k; ez}. (C.8)
=1

Suppose that o € C verifies ay € V, for all elements v € V. Then « is an
algebraic integer.

Proposition C.3. If
1,0 € Oﬂ@[\/a], (C.9)

then
a1+ g, 10 € Q[\/&] (ClO)

There is another way to verify whether an algebraic number is an algebraic
integer:

Proposition C.4. If £ = r+ sV/d, then & is an algebraic integer if and only
if 2r and ? — s2d are integers.
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Let o, 8 € Q[\/&], we define the following rings:

Zla] = {m+na|m,n e L}, (C.11a)
oZ = {na | n €7}, (C.11b)
aZ—i—ﬁZz{ma—l—nﬁMn,nGZ}. (C.11c¢)

The following relations follow more or less easily from these definitions:

Zlo) =Z+ oZ, (C.12a)
ol = —al, (C.12b)
b b

where a, b are integers that verify

¥ =b (mod 2a), (C.13a)
aZ + bZ = GCD(a, b)Z. (C.13b)

Theorem C.2. The set of algebraic integers O on[\/a] can be described
as follows:
O={m+nw|m,neZ}, (C.14)

where

—14+Vd g —
w:{ 7 fd=1 " (modd), (C.15)

Vi, ifd=2,3 (mod 4).

We obviously have that 1 and w are linearly independent over Q. Therefore
O is a two-dimensional Z-module. Two algebraic integers a, 8 € O form an
integral basis of O if

O ={ma+nB|m,neZ}. (C.16)

If we have an integral basis of the set of algebraic integers, then it is possible
to define its discriminant.

Proposition C.5. If the pair {a, B} forms an integral basis of O, then

2

p=[* "

a

18 a positive integer, independent of the choice of integral basis. The integer D

15 the discriminant of(@[\/g] We have

(C.17)

D:{ d, ifd=1 (mod 4), .18)

4d, ifd=2,3 (mod 4).
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It is possible to give another description of the set of algebraic integers O
using this discriminant:

Proposition C.6. Let D be the discriminant on[\/E}, then

D++D

O=Z 5

. (C.19)

An element £ € O is a unit if its inverse €1 € O is also an algebraic integer.
Units of algebraic integers can be described in the following way:

Proposition C.7. The number ¢ = x + yvd € O is a unit if and only if
2z € Z and x? — dy? = £1.

Proposition C.8. Ifa+ bWd>1isa unit, then a,b > 0.
Amongst the units of O, there is one unit that is special:

Theorem C.3. Let ¢y be the smallest unit in O, such that g > 1, then the
set of units is given by

{:I:elg k€ Z} , (C.20)
and €y s the fundamental unit of O.
Definition C.1. The regulator of O is logeg.

Let A, B be subsets of O of (@[\/E], then
A-B={abi+ - +anb, | a; € A, b; € B, n € N}. (C.21)

Definition C.2. A subset I of O is an integral ideal of O if I - O =1, and
if for a, 8 € I, we have
mo+nf €1, (C.22)

for all integers m,n.

Definition C.3. A subset I on[\/a} s a fractional ideal of O if [-O =1,
and if for a, 8 € I we have

ma+np €I, (C.23)

for all integers m,n.

Definition C.4. Ifv € O, then

10 ={~¢ ¢ €0} (C.24)

15 an integral ideal. Ideals of this form are called principal ideals.
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Proposition C.9. We have the following equivalence on principal ideals:
a0 = B0,
& (C.25)
a = e,
with € a unit in Q[\/E] .
Definition C.5. The set of all principal fractional ideals is denoted by

PT={¢0|¢cQ[Vd}. (C.26)
Proposition C.10. Every principal fractional ideal I is of the form
1 =aZ+ BZ

C.27
:{mla—{—mgﬂ\ml,mgEZ,a,ﬂEQ[\/g]}, ( )

with o, B linearly independent over Q.

Proposition C.11. Let {«, B} be an integral basis of the fractional ideal I,
then {o/, 3"} is another integral basis of I if and only if

(g) =M (g;) , (C.28)

where M is a 2 x 2 matriz with integer coefficients and determinant 1.

We define the norm of a fractional ideal I with integral basis {«, 5} as
1
N()=—

5 |det (g g) ‘ (C.29)

Proposition C.12. The norm N (I) is independent of the choice of integral
basis {a, B}. If I =~O is a principal integral ideal, then

N(I) = |73 (C.30)

Proposition C.13. Every fractional ideal I has an integral basis {«, 5},
with Q > a > 0. Moreover, a is uniquely defined as the smallest positive
rational number in I. If I is an integral ideal, then o is an integer.

Proposition C.14. An ideal I C Q[\/g] 18 a fractional ideal if and only if
there exists a positive integer m, such that mlI s an integral ideal.

Definition C.6. For a,b € Z, a # 0, let 7(a,b) be the unique integer, such
that
7=b (mod 2a), (C.31)

and with
—a<r71<a, if a > /D, (C.32a)
VD —2a <1< VD, if a < VD. (C.32h)
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Proposition C.15. A subset I C Q[\/&] 1s an integral ideal of O if and
only if we can write I as

I=k (aZ + %Z) : (C.33)

where a,b,k are integers, with a,k > 0, and b = 7(a,b), and 4a|(b*> — D).
Moreover, T is uniquely represented by the triplet (a,b,k): ak is the small-
est rational number in I, % is the smallest positive coefficient of /D of all
elements of I, b= 7(a,b) is uniquely determined and N'(I) = k*a.

Using the previous two propositions we obtain a unique representation of a
fractional ideal as

I =

~|

(aZ + @Z) , (C.34)

with [ € N the smallest possible integer. This representation is called the
standard form of I.

We can define a principal ideal I = 4O either by the algebraic number v or
by the parameters a, b, k € Z.

Proposition C.16. Let x,y be integers and

$+y\/5
-—— €

0, k =GCD (y, “;D) , (C.35)

and let uw,v be integers, such that vy +v(x +yD)/2 = k, then
a0 =k (aZ + %Z) , (C.36)
where

a = |aal, sz(@,W) . (C.37)

Let o« € I, where [ is a fractional ideal. Consider the coordinates
& = (o, @) € R2 (C.38)

We say that « is a minimum of I, if « > 0, and if there isno g € I, § # 0,
with |3] < |a| and |3| < |a|. In other words, & is in the first quadrant of R?
and the rectangle (o, @) does not contain any element of I, except (0,0).
A fractional ideal is called reduced, if 1 € I, and 1 is a minimum of I.

Proposition C.17. If I is reduced, then it can be written in standard form

as
b+ VD

I1=7
+ 2a

Z. (C.39)
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Proposition C.18. If the ideal

(C.40)

is a reduced ideal in standard form, then a,|b| < v/ D. Therefore there are
only finitely many reduced ideals.

Proposition C.19. If a fractional ideal I can be written as

b++vD

I1=7
+ 2a

Z, (C.41)

then I is reduced if and only if b> 0 and b+ /D > 2a.
Corollary C.1. The ideal

b D
1=z 2tVD, (C.42)
2a
15 reduced if a < Q.
Let /B
b D
I=7+ i Z (C.43)
2a
be an ideal that is not necessarily reduced. Let v(I) = bg‘gﬁ.

Definition C.7. Let p be a mapping from principal ideals to principal ideals.

pI) =——1
I
(1) (C.44)
7+ 2 2.
b+ VD
We can write this as /B
vV ++vD
o) =2+ ———1, (C.45)
2a
where a’ = |D;1b2‘ =cand b = 1(=b,c).
Proposition C.20. Let
b D
1=7Z+ i \/_Z (C.46)
2a
be an ideal that is not necessarily reduced. Let Iy =1 and
Ii = p(I;—1)
b; + VD (C.47)
_g4 kit vD,

2(12'
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If I; is not reduced, then a; < —ai2 1, and therefore there exist an
] 0gy —— | + .
2 vD ’

such that I; is reduced. Let i..q be the first such i. Then

ired -1

a=[] +1) (C.49)
j=1

1s @ minimum in I and q

Trea = Lippy = — 1. (C.50)

red

Definition C.8. The right neighbour of a minimum « of the ideal I is the
minimum Or € I, such that Br > «. The left neighbour of o is By, € I, such
that |Br| > |a.

Proposition C.21. Let a € Q[\/&] and o > 0. For every fractional ideal
I, the map I — «l is a bijection that sends minima to minima and left and
right neighbours to left and right neighbours.

Proposition C.22. If I = Z+~(I)Z is reduced, then we have the following
properties:

(i) v(I) >1 and -1 < y(I) <0,
(ii) (1) is a minimum of I and p(I) is reduced,
(115) v(I) € I is a right neighbour of 1 in I.
We can write the set O of algebraic integers of Q[\/E} as

D D

2
C.51
7(D,2) + \/EZ ( )
2 )
therefore O is a reduced principal ideal. Thus ag = 1 € O is a minimum.

For integers ¢ we say that «;_; is the left and a;4; is the right neighbour of
a minimum «o; € O.

=7+

Q; (C.52)

The real number is a right neighbour of 1 in J;, and we have that:

Q41
o

Qi1 = Vi, (C.53a)
Jiv1 = p(Ji). (C.53b)
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Proposition C.23. For every integer i we have the following inequalities:

D
33_2 <log(l + 125) < log 2L < log VD, (C.54a)
log 2 < log (a“’l) . (C.54Db)

Theorem C.4 (Reduced Principal Ideals Cycle). We have the following
properties of the reduced principal ideals cycle:

(i) The sequence {JZ}z 15 periodic with period ko € N. The repeating seg-
ment {Jo, e Jko—l} of reduced principal ideals is called the principal
cycle.

.. ap, . .
(ii) Let e = o = Quy, then € = €q 1s the fundamental unit of O.

(15i) Let I be a reduced fractional principal ideal, then I is in the principal
cycle.

Proposition C.25. We have the following inequalities:

2 < kO < ﬁ’
log D log 2

(C.55)

where R = log €q is the requlator of O.

It is obvious that the map p is only invertible for the reduced ideals of the
principal cycle.

Definition C.9. Let

_ b+vD
I=7+ +2a 4

(C.56)
=7+ 7
be a reduced ideal. The conjugate ideal of I is defined as:
o(l)=1
— 7 4 =YDz (C.57)
=7+ fa-YivDy

Geometrically this can be seen as a reflection by the line y = x.
Lemma C.3. We have the following properties for conjugate ideals:
(i) I is reduced if and only if I is reduced.

(ii) If o is a minimum of I, then |&| is a minimum of I.
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(i1i) If o is a right meighbour of a minimum (3 in I, then || is a left neigh-
bour of a minimum |B| in I.

Proposition C.26. The inverse of a reduced fractional principal ideal I is:

p (1) =2+ =YDy, (C.58)

where b, = 7(a,—b), and c, = D;lbz. We have
p~HI) = apa(I). (C.59)
Definition C.10. Let I, Iy be fractional principal ideals of O, such that
I =~1s, (C.60)
with v € Q[\/g] The distance between the ideals 11 and I is defined as
d(I1,1I2) =log|y| (mod R), (C.61)

where R is the regqulator. If Iy # ~vIy for some v € Q[\/E], then the distance
between I and Iy is undefined. We write 6(I) instead of (O, I).

For the principal cycle we have

Ji = i@, (C.62a)

a;
0(J;) = log au, (C.62b)
6(Ji, Ji) = log 2k (C.62c)

Proposition C.27. For every integer i we have the following inequalities:

3
39D < 5(Ji7P(Ji)) = log~; <log VD. (C.63)

Proposition C.28. For every integer i we have the following inequality:
log 2 < 6(J;, p*(J;)). (C.64)

Proposition C.29. Let

Z (C.65)
2a

be a fractional principal ideal that is not necessarily reduced. Place the ideals

on the real line R at positions that correspond to their distance to O.

Let ir0q be the smallest integer, such that

Lieqa = Pired (I)
C.66
- (€0
(0%
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15 reduced. Let Jy be the ideal in the principal cycle that is closest to I and
that verifies aiax < 0. Then I lies between Jip_1 and Ji41 and Lieq is one of
the Jk—lu Jk, Jk+1, with

|6(1, Irea)| < log D, (C.67a)
§(I) < 6(p*(Ivea))- (C.67b)

The cardinality of the principal cycle is exponential in log D so to locate
ideals by repeatedly applying p to O can take exponentially long. Therefore
a technique to jump ideals in the principal cycle is needed.

Definition C.11. Let Iy, Iy be ideals, then I - Is is a vector space on Z,
with vectors

{a-Blach,pel}. (C.68)

The vector space Iy - I is an ideal, and if {a, (1}, {ag, B2} are integral bases
of I, Iy, then

{a1B1, a1fa, asf, a2, B2} (C.69)

1s an integral basis of Iy - I5.
If Iy = &0, Iy = £0 are principal ideals, then

I - Iy = §60. (C.70)
Proposition C.30. Let
b; D
I, = a;7 + %Z, (C.71)

fori € {1,2} be principal ideals. Let
k = GCD (a1, as, 132). (C.72)

Let u,v,w be integers, such that

b b
uay + vas + w— —; 2 =k, (C.73)
then
Is=1 -1
C.74
— k (asZ + 5507, (C.74)
where

. ai1as . ua1b2+va2b1+ww
as = ?, b3 =7\ as, 3 . (C75ab)
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If we do not reduce modulo R, we have that 6(I1-I2) = 6(11)+d(I2). However
it is not necessarily true that if I; and I are reduced that Iy - I5 is reduced
as well. If

1
I=-= (aZ n %Z) (C.76)
is a reduced ideal, then
L=r"=1-1
K : (C.77)
= ; (CL,Z + %Z) 5
where
k' = GCD(a,b)
=ua + vb (C78a)
2 ua vm
a = (Z’)Q’ V=r (a’, %) ) (C.78bc)
So we have that
1 /
I = (z+%54Pz), (C.79a)
d(I3) =26(1). (C.79Dh)
The ideal I5 is not necessarily reduced, but consider
I, =K'
. b+ \/EZ (C.80)
N 2a’ ’
We find that the distance between these ideals is
|6(I2, I,)| = log k' < log V/D. (C.81)

We can construct an ideal I} from I by repeatedly applying p, until we have
a reduced ideal. We have that

6(15, 1) | < log D, (C.82)
and therefore that 5
6(15, I5)| < 5 log D, (C.83)
So if we apply p or p~1, 2n times on I, where
3log D
= O(log D C.84
2D 0(iog D), (1)

then we can localize the first element J; of the principal cycle that verifies

the condition §(Jg) > 25(1).
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Definition C.12. For every ideal I of the principal cycle, we define the op-
erator * to be the operator that associates to I the element Jy of the principal
cycle:

Jp=1Ix1. (C.85)

Proposition C.31. Let I be a reduced principal ideal. The ideal I x I can
be computed in O(polylogD). Moreover, if we consider the sequence

_ I2n—1 ” I2n—1 (086)
then the final ideal I") has distance
§(1@) > 2m5(1), (C.87)
and can be computed in O(polylogD,n).
Definition C.13. Let Iy, I be reduced ideals, with
b; D
L =7+ iz. (C.88)

a;

The ideal Iy * Iy is the first element in the principal cycle, such that its
distance exceeds 6(11) + 0(I2).
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List of Symbols and Acronyms

i Magnetic moment

a The Pauli spin operator

B Magnetic field

¢ Speed of light in vacuum: 299 792458 ms~!
J Angular momentum

~ Gyromagnetic ratio, v = 267.513 - 106 rads~! T—!
h Reduced Planck constant: 1.055-1073% Js
C The complex numbers

N The positive integers

Q The rational numbers

R The real numbers

Z The integers

I The Hamiltonian of a physical system

w Angular frequency

TQ Decoherence time for a physical realization
Top Duration of an operation on one qubit

kg The Boltzmann constant: 1.381-10723 JK—!
T Temperature in Kelvin

Ty Spin-lattice relaxation time

15 Transverse relaxation time

DFT Discrete Fourier Transform

127



tel-00534864, version 1 - 12 Nov 2010

128

FID
GCD
LCM
NMR
QFT
RF
RMN
SMIS
LLL

odedb

APPENDIX C. ALGEBRAIC NUMBER THEORY

Free Induction Decay

Greatest Common Divisor

Least Common Multiple

Nuclear Magnetic Resonance

Quantum Fourier Transform

Radio Frequency

Résonance Magnétique Nucléaire
Spectrométrie de Masse & Tonisation Sécondaire
Short for Lenstra, Lenstra and Lovasz

Matlab routine to solve ordinary differential equations
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