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Cette thèse contient deux parties. Je décris une approche pour construire une réalisation
physique d’un ordinateur quantique par Résonance Magnétique Nucléaire (RMN). Je
propose un nouveau cadre pour la RMN dans les réalisations physiques d’un ordinateur
quantique. Je construis une description de la RMN à partir de la mécanique quantique
avec laquelle je peux construire les opérateurs élémentaires essentiels pour le calcul
quantique. Je décris les expériences pour construire ces opérateurs. Je propose un
algorithme quantique en temps polynomial pour résoudre des équations de Pell simulta-
nées comme extension de l’algorithme de Hallgren pour des équations de Pell simples.
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SommaireCette thèse ontient deux parties qui peuvent être lues indépendamment.Dans la première partie je déris notre nouvelle approhe pour onstruireune réalisation physique d'un ordinateur quantique par Résonane Magné-tique Nuléaire (RMN). Avant de parler de RMN, je donne une introdutiongénérale sur le alul quantique. Je rappelle des notions de méanique quan-tique néessaires pour pouvoir dérire des algorithmes pour des ordinateursquantiques.Ensuite je rappelle la langage du alul quantique. Je déris les manipu-lations que l'on peut faire ave des quantum bits, ou qubits, équivalentsquantiques des bits pour un ordinateur ordinaire. Je détaille les avantagesdes ordinateurs quantiques pour des opérations du type � Transformée deFourier � et je traite les deux algorithmes fondateurs dans le domaine: lafatorisation en nombres premiers par l'algorithme de Shor et la reherhedans des bases de données par l'algorithme de Grover.Je ontinue ave une desription des réalisations physiques possibles pouronstruire un tel ordinateur.Je parle de plusieurs approhes di�érentes, mais elle à laquelle je onsarele plus de temps est l'approhe par RMN. C'est ave ette tehnique quel'on a jusqu'à maintenant obtenu les résultats les plus intéressants en alulquantique. Je disute es suès et également pourquoi la RMN est devenueune tehnique obsolète.A partir de e point là, je propose un nouveau adre pour la RMN dans lesréalisations physiques d'un ordinateur quantique. A�n d'obtenir un tel adre,je onstruis une nouvelle desription de la RMN à partir de la méaniquequantique ave laquelle je peux onstruire les opérateurs élémentaires essen-tiels pour le alul quantique. Je déris nos expérienes pour onstruire esopérateurs en distinguant entre des opérateurs agissant sur un qubit et desopérateurs agissant sur deux qubits. Je �nis la première partie de la thèseave une disussion sur la viabilité de ette approhe pour permettre à laRMN de regagner sa plae dans les tehniques utilisées pour onstruire unordinateur quantique.Dans la deuxième partie de ette thèse je propose un algorithme quantiqueen temps polynomial pour résoudre des équations de Pell simultanées. Cettepartie est inspirée d'une part de l'algorithme quantique de Hallgren pouriii
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ivrésoudre des équations de Pell simples en temps polynomial et d'autre partpar la démonstration de Cipu et Mignotte du fait que dans le as général,des équations de Pell simultanées ont au plus deux solutions distintes.Je ommene ette partie ave une disussion sur l'équation de Pell simple.Je traite la résolution par frations ontinues ainsi que les tehniques plusmodernes qui utilisent la théorie algébrique des nombres, notamment la no-tion du régulateur d'un orps de nombres. Je ontinue ave l'algorithme deHallgren pour résoudre des équations de Pell. Cet algorithme est en tempspolynomial ontrairement aux méthodes dérites auparavant. C'est un algo-rithme quantique basé sur des extensions de tehniques de Transformée deFourier disutées dans la première partie.Après le as des équations de Pell simples, je m'intéresse au as des équationsde Pell simultanées. Je donne d'abord une borne supérieure pour la plus pe-tite solution. Pour obtenir ette borne, j'utilise des résultats qui viennentde la théorie de l'approximation diophantienne pour les formes linéaires enlogarithmes. Après avoir obtenu une borne supérieure, je ontinue ave ladémonstration de Cipu et Mignotte du fait qu'il y a au plus deux solutionsdistintes pour une paire d'équations de Pell simultanées. Dans ette démon-stration on obtient une borne supérieure pour toutes les solutions des équa-tions de Pell simultanées. J'utilise ette borne ensuite ainsi que l'algorithmede Hallgren pour des équations de Pell simples pour onstruire un algorithmequi résout en temps polynomial des équations de Pell simultanées. Cet al-gorithme a une partie quantique, la proédure de Hallgren pour résoudre leséquations de Pell simples et obtenir les solutions fondamentales de haqueéquation, et une partie � lassique � de reherhe de solutions à partir dees solutions fondamentales, jusqu'à la borne supérieure. Je �nis ette partieave une disussion sur la possibilité d'étendre es tehniques pour résoudred'autres problèmes similaires dans la théorie de nombres.Dans les appendies je donne quelques détails supplémentaires sur la théoriedes frations ontinues et la théorie des nombres algébriques
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AbstratThis text onsists of two parts that an be read almost independently.In the �rst part I desribe a renewed approah by Nulear Magneti Reso-nane (NMR) to build a quantum omputer. I start with an introdution onquantum omputing. I brie�y desribe the most important algorithms andthe most promising physial realizations of a quantum omputer. I ontinuewith a desription of NMR and the methods used earlier to build a quan-tum omputer by NMR. I explain the shortomings of these tehniques andonstrut a new framework for quantum omputation using NMR. For thisI introdue a new quantum mehanial desription of NMR with whih thebasi quantum gates needed for quantum omputation an be built. I de-sribe the experiments to build these gates, distinguishing between one qubitoperations and two qubit operations. I onlude this part with a disussionon the pratiality of this approah and whether these methods will allowfor a revival of NMR as a quantum omputing devie.The seond part onsists of the resolution and omputation of simultane-ous Pell equations. This part is inspired by Hallgren's quantum algorithmto solve the simple Pell equation in quantum polynomial time and by theproof of Cipu and Mignotte that in the general ase, the simultaneous Pellequation has at most two solutions. I start this part with a disussion of thesimple Pell equation, the lassial tehniques used to solve it, as well as moremodern tehniques. Afterwards I desribe Hallgren's algorithm, for whih Iwill need some extensions of the quantum omputing tehniques that I in-trodued in the �rst part. After this, I takle simultaneous Pell equations.First I desribe some lassial results and solving tehniques, ulminating inthe proof by Cipu and Mignotte that there are at most two distint solu-tions for any given pair of independent Pell equations. To obtain this result,I have to introdue some Diophantine approximation theory. Finally I ex-tend Hallgren's algorithm to simultaneous Pell equations using bounds fromDiophantine approximation theory and some simple sieving tehniques toompute solutions of simultaneous Pell equations in polynomial time on aquantum omputer. I end this part with a disussion on extensions of thesetehniques to similar omputational number theory problems.In the appendies I give a short overview on ontinued frations and onalgebrai number theory. v
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No one who ahieves suessdoes so without the help ofothers. The wise and on�dentaknowledge this help withgratitude.Alfred North WhiteheadPrefaeThis thesis �nds its origin in a hane meeting between two of my advisors,Edward Belaga and Daniel Gruker during a Mathematis and Biology sem-inar in the winter of 2005, where Professor Belaga gave a talk on moleularomputing. During a o�ee break they deided to organise another onfer-ene, this time on omputing in general and on quantum omputing and itsphysial realizations in partiular. They reeived a researh grant from theANR (Agene Nationale de la Reherhe) to ontinue their interdisiplinarywork and they deided that it would be a good idea to look for a PhD studentto assist them. I applied for this position and after two pleasant meetingsthey o�ered me the possibility to work with them. As I was not the bene�-iary of a PhD grant from the Frenh state and as the ANR grant was notsu�ient to �nane a full PhD position, it was di�ult to begin our researh.At this point it beame unlikely that our ollaboration would ontinue andI started to explore other avenues. During this time I was invited by theFrenh embassy in the Hague to a reeption for former bene�iaries of theirembassy's grant to study a year in Frane. At this reeption I explained myproblems to two members of their grant ommittee, Jos van der Kruk andGilbert van der Louw, who told me that one of the appliants for that year'sgrant had refused the embassy's o�er. They then suggested me to apply forthis grant. Thanks to these �ne gentlemen and the swift and aurate help ofCatherine Délie, I ould �nally begin my researh on quantum omputing.For this, I heartfully thank them.My advisor, Daniel Gruker, has been a tremendous help on all fronts duringthe entire period of my thesis. From a �nanial point of view, he managedto �nd me a position as a tehnial assistant in my seond and third yearof researh, whih allowed me to ontinue my PhD. From an eduationalpoint of view, he taught me the basis and intriaies of Nulear MagnetiResonane with muh larity and great enthousiasm. As an experimental-ist, he showed me how to operate the mahines at our disposition and howto prepare our samples. As an advisor, he has been a driving fore behindour researh, pushing me to investigate our approah, showing an admirablepatiene for me during all these years and guiding me through the arduousproess of writing a thesis. Daniel, I annot thank you enough for all yourhelp during my PhD. It has been a great pleasure.vii
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viiiMy other advisor, Edward Belaga, has from the start foused on the globalpiture of our researh, refusing to be arried away by details and alwayskeeping in mind our ultimate goal, a funtioning quantum omputer om-bined with a well-onsidered arhiteture and well-oneived algorithms. Hehas personally taken my mathematial eduation in hand, pointing me inthe right diretions and providing important referenes for our researh. Hemade it possible for me to attend onferenes in the United States, Englandand Portugal, whih lead to many interesting ontats. It has been impres-sive to see him make time for me at the most unlikely moments. Whiletravelling between onferenes he would all me to help me out with somemathematial problem, giving me just the lue that was eluding me. I on-sider myself luky to have been his student and regret the fat that due tohis retirement he ould no longer o�ially be my advisor. Edward, I thankyou for all the time you invested in me.Beause Edward Belaga had to retire, I needed another advisor for the math-ematial ontents of my researh. Maurie Mignotte, who had previouslysupervised my Master thesis, was willing to take on this task. As my the-sis was almost �nished, his main ontributions have been to proofread mymanusript, but this he has done with his usual modesty and expertise.Along the way, he managed to help me with the �ner details on simultane-ous Pell equations and diophantine approximation theory. Maurie, I thankyou for aepting to be my advisor for just a year and for the pleasant dis-ussions that usually started with Mathematis but rarely ended there.As for the jury members, I warmly thank Frits Beukers, Franis Taulelle andYann Bugeaud not only for having aepted to be on my thesis ommitteebut also for the are with whih they have read my manusript and the usefulsuggestions they have made.A lot of people helped me with my researh during my thesis. First andforemost Tarek Khalil, who gave my work a muh �rmer physial ground-ing and who veri�ed most of my omputations. Tarek, I thank you for ourheated disussions and for your insistene to orretly formulate our frame-work. Next, my gratitude goes to Jean Rihert, who helped both Danieland me understand how to approah the dipole-dipole interation and whodouble-heked muh of our work.One of the perks of having two advisors is having two o�es and thereforetwie as many interesting olleagues. I would like to thank Jerome Steibelfor his many fun suggestions regarding our experiments; Jerome, one dayour omputer will run on beer ! Many thanks also to, amongst others :Nathalie, Thierry, Renée, Laura and Hélène, who made my stay at the In-stitute of Physis and Biology a very pleasant one.As to my fellow PhD-students at the Institute for Mathematis, what an Isay. It was a great pleasure to share o�es with Vinent, Audrey, Rémi, Ben-jamin, Alain, Jean and Auguste. To have o�ee breaks with Adrien, Cédri,Camille, Alexandre, Florian, Hélène and Anne-Laure. The most pleasant
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ixtimes were however during those sare moments of extra-mathematial a-tivity, for whih a royal thank you goes to Fabien, Aurélien, Soum, Thomas,Aurore, Ghislain, Jürgen and everybody else who ontributed to the goodspirit of the �rst �oor.During my thesis a lot of bureaurati work was done for me by people whoare far more apable than I am. I would like to thank Simone, Nathalie andYvonne espeially for all they have done for me.A nie thing about friends is that they help you keep up when your researhis desperately trying to make you feel miserable. I would like to take thisopportunity to thank Alexandre and Jannes, who both greatly restored mymorale when needed.My family has been there for me during all these years and without themI never would have �nished my thesis. Dik, thank you for the many hoursyou spent proofreading and spellheking, for making me see how to formu-late my ideas more learly and for all the times you helped me out. Willy,thank you for supporting me throughout the entire proess and helping methrough the last di�ult hurdles, when I felt ready to throw in the towel.I know it has been hard on both of you to have your son far away fromyou and I sinerely hope that in the future this will hange. Maartje, Erik,Floor, Midas, Thijs and Esther, thank you for the pleasant moments, thegood hoolate, the yling, the rolleroasters and so muh more.Finally I thank my little family of my own. Julia, you had to put up withme during all those times when morale was low, when deadlines were set,when plans were altered, when dates got pushed further and further into thefuture, when everything seemed unertain. I know that without you by myside, I would have given up long ago. You have been my rok, even if youthink that it is the other way around. A last word goes to the smallest ofmy family, my lovely daughter, Mina. You have helped me realize what isimportant and what is seondary, you may not have known it at the time,but you have done me a great servie in just being there.
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Part IQuantum Computing usingNulear Magneti Resonane
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Any su�iently advanedtehnology is indistinguishablefrom magi.Arthur C. ClarkeChapter 1Quantum Computing1.1 IntrodutionThe idea of the quantum omputer has been around for some time. Oneof its basi elements is the notion of reversible omputation, whih was de-veloped by Charles Bennett [Ben73, Ben82℄. This is a model of omputingthat is reversible, for whih a neessary ondition is that the orrespondingbinary mapping is one-to-one. A major motivation for this type of modelsis that reversible omputing an improve the energy e�ieny of omputersbeyond the von Neumann-Landauer limit [Lan61, vN66℄ of kBT log 2 energydissipated per irreversible bit operation.We onentrate on logially reversible systems, whih is a neessary but nota su�ient ondition for a omputational proess to be physially reversible.Landauer's priniple is the notion that the erasure of n bits of informationhas a ost of nkBT log 2 in thermodynami entropy.Poplavskii wrote in the seventies that lassial omputers are unable tosimulate quantum mehanial systems beause of the superposition prin-iple [Pop75℄. Manin added a few years later [Man80℄ that the exponentialnumber of basis states of a quantum system ould be exploited but that atheory of quantum omputation was needed that aptured the fundamentalpriniples without ommitting to a physial realization.Rihard Feynmann wrote in the early eighties [Fey82℄ that in order to sim-ulate the evolution of quantum systems with omputers, these omputerswould need to have quantum mehanial properties if we wanted the sim-ulation to be done e�iently. In 1985 David Deutsh proposed a universalquantum omputer [Deu85℄, whih an simulate any other quantum om-puter. In the same artile he also invented a simple quantum algorithm fora deision problem, that he proved to be faster than any lassial algorithmthat an be onstruted for this problem. Rihard Josza later produed ageneralization of this algorithm [DJ92℄. The deision problem in questionis to deide whether a given binary funtion is balaned or onstant, given3
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4 CHAPTER 1. QUANTUM COMPUTINGthat it has one of these properties.Until the middle of the nineties, no serious proposal for a physial realiza-tion of a quantum omputer had been made. While new quantum algorithmsontinued to be found, most based on the quantum omputational equiva-lent of the Fourier Transform, nobody seemed to know how to atually buildsuh a hypothetial omputer. In 1995, Cira and Zoller proposed to builda quantum omputer from ion traps [CZ95℄. From that point on, di�erentproposals for physial realizations have slowly started to outnumber the pro-posals for di�erent quantum algorithms.In the rest of this hapter we introdue the basi elements that are neededfor a quantum omputer. We give a very short overview on quantum me-hanis in general and a little more detail on quantum logi. We disuss theQuantum Fourier Transform and desribe the two important algorithms inthe domain of quantum omputation. We then proeed by detailing someproposals for physial realizations.1.2 Quantum MehanisQuantum omputing should be seen in the framework of quantum mehan-is. We give a brief overview on the basis for quantum mehanis. Fora more preise review we reommend the exellent aount by Nielsen andChuang [NC00℄ or the standard text books on quantum mehanis [Sak94,CTDL77℄.Throughout these hapters we will suppose to be working in a omplexHilbert spae V of dimension N . The standard quantum mehanial no-tation for a vetor in a vetor spae is |φ〉 whih is alled a ket. Its vetordual 〈φ| is alled a bra. An inner produt between two vetors φ,ψ is de-noted 〈φ|ψ〉. The tensor produt between two vetors is denoted as |φ〉⊗ |ψ〉but we will use the shorthand notation |φ〉|ψ〉.We will �x an orthonormal basis B = {|0〉, . . . , |N − 1〉} for V . Thus we anwrite
|φ〉 =

N−1
∑

i=0

ai|i〉, (1.2.1a)
〈φ| =

N−1
∑

i=0

a∗i 〈i|, (1.2.1b)where the ai are omplex numbers.Any linear operator A on V an be written in the form
A =

∑

i,j

aij |i〉〈j|. (1.2.2)Quantum mehanis an be summarized by 4 postulates.
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1.3. CLASSICAL AND QUANTUM LOGIC 51. To an isolated physial system we assoiate a Hilbert spae with innerprodut whih is the state spae of the system. The system is om-pletely desribed by its state vetor whih is a unit vetor in the statespae.2. The evolution of a losed quantum system is desribed by a unitarytransformation.3. Quantum measurements are desribed by a olletion {Mm} of meas-urement operators. These operators satisfy the ompleteness relation
∑

m

M †
mMm = I. (1.2.3)4. The state spae of a omposite physial system is the tensor produtof the state spaes of the omponent systems.1.3 Classial and Quantum Logi1.3.1 QubitsBits are the basi elements in lassial omputing. As a physial entitythey an be onsidered as eletroni swithes that are either swithed ON orswithed OFF. In a omputational sense they have either the value 0 or 1.The quantum mehanial analogue of bits are qubits, whih is shorthandfor quantum bits. As a physial entity they an be a multitude of objets.They ould be the two di�erent polarizations of a photon, the alignmentof a nulear spin in a uniform magneti �eld or something else entirely. Ina mathematial sense they are simply unit vetors in C2. The standardorthonormal basis for qubits is denoted as |0〉, |1〉. These vetors orrespondto the olumn vetors (1, 0)T , (0, 1)T . An arbitrary qubit |ψ〉 an be writtenas

|ψ〉 = α0|0〉 + α1|1〉, (1.3.1)with α0, α1 ∈ C and α2
0 + α2

1 = 1. Measuring the qubit |ψ〉 will give |0〉with probability |α0|2 and |1〉 with probability |α1|2. It is possible to rewriteequation (1.3.1) as
|ψ〉 = eiγ

(

cos θ
2 |0〉 + eiφ sin θ

2 |1〉
)

, (1.3.2)where θ, φ and γ are real numbers. The fator eiγ an be ignored as it hasno observable e�et. This leads to
|ψ〉 = cos θ

2 |0〉 + eiφ sin θ
2 |1〉. (1.3.3)The qubit |ψ〉 an be onsidered as a point on the three-dimensional unitsphere. This sphere is alled the Bloh-sphere.
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6 CHAPTER 1. QUANTUM COMPUTING
~z

~y

~x

•
|ψ〉

•
|0〉

•
|1〉

θ

φ

Figure 1.1: Bloh sphere representation of a qubit |ψ〉 = cos θ
2
|0〉+eiφ sin θ

2
|1〉.We an use the fourth postulate in order to ombine several qubits. Thevetors {|0〉 ⊗ · · · ⊗ |0〉, . . . , |1〉 ⊗ · · · ⊗ |1〉} form a set of n qubits that spana spae of dimension 2n. We will denote by |n〉 the qubit |z0〉 ⊗ · · · ⊗ |zk〉with zi ∈ {0, 1} and n =

∑k
i=0 zi2

i.An arbitrary qubit |ψ〉 =
∑2n−1

i=0 αi|i〉 is a unit vetor in C2n . When measuredit returns the state |j〉 with probability |αj |2. After measuring the state |ψ〉beomes |ψ′〉 = |j〉. This proess is alled the ollapse of the waveform.1.3.2 Manipulating bits and qubitsClassial bitsIn order to ompute with lassial bits we use logial gates. A logial gateis a funtion f : {0, 1}k −→ {0, 1}l with k input bits and l output bits. Thefollowing seven gates are well-known.
¬ = NOT: {0, 1} −→ {0, 1}

x 7−→ x+ 1 (mod 2)
(1.3.4a)

∨ = OR: {0, 1} −→ {0, 1}
(x1, x2) 7−→ x1x2 + x1 + x2 (mod 2)

(1.3.4b)
⊕ = XOR: {0, 1}2 −→ {0, 1}

(x1, x2) 7−→ x1 + x2 (mod 2)
(1.3.4)

∧ = AND: {0, 1}2 −→ {0, 1}
(x1, x2) 7−→ x1x2 (mod 2)

(1.3.4d)
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1.3. CLASSICAL AND QUANTUM LOGIC 7
↑= NAND: {0, 1}2 −→ {0, 1}

(x1, x2) 7−→ x1x2 + 1 (mod 2)
(1.3.4e)

FAN: {0, 1} −→ {0, 1}2

x 7−→ (x, x)
(1.3.4f)

SWAP: {0, 1}2 −→ {0, 1}2

(x1, x2) 7−→ (x2, x1)
(1.3.4g)With these gates we an ompute any funtion.Theorem 1.1. An arbitrary funtion f : {0, 1}n −→ {0, 1} an be simulatedwith the logial gates NOT, AND, XOR, FAN and SWAP.Proof. We use indution on n. For n = 1 there are four possible funtions:1. The identity funtion, whih does not need any gate.2. The NOT-funtion, whih is one of the �ve gates that an be used.3. The onstant funtion 0, whih we an produe by using the followinggates:

0 = 0(x) = ∧
(

FAN1(x),¬
(

FAN2(x)
)

)

, (1.3.5)where FANi is the i-th output bit of the FAN-funtion.4. We an obtain the onstant funtion 1 by taking the NOT of the pre-vious funtion:
1 = ¬

(

0(x)
)

. (1.3.6)Suppose now that any funtion on n bits an be omputed and let f be afuntion on n+ 1 bits. De�ne the n-bit funtions f0 and f1 by
fi(x1, . . . , xn) = f(i, x1, . . . , xn). (1.3.7)Then we have

f(x0, . . . , xn) = ⊕
(

∧
(

f0(x1, . . . , xn),¬(x0)
)

, ∧
(

f1(x1, . . . , xn), x0

)

)

.(1.3.8)Alternative proof without indution. The funtion f an be written as
f =

∑

x

f(x)χx,

=
∑

x|f(x)=1

χx

(1.3.9)
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8 CHAPTER 1. QUANTUM COMPUTINGwhere
χx(y) = δxy =

{

1, if x = y,

0, otherwise. (1.3.10)So that we an write
f =

∨

x|f(x)=1

χx, (1.3.11)where χx is a produt of zi or z̄i and
zi(y) =

{

1, if yi = 1,

0, otherwise. (1.3.12)
We atually need only three gates.Theorem 1.2. The NAND-funtion together with the FAN-funtion ansimulate the funtions NOT, AND and XOR.Proof.

¬(x) =↑
(

FAN(x)
) (1.3.13a)

∧(x1, x2) =↑
(

FAN
(

↑ (x1, x2)
)

) (1.3.13b)
⊕(x1, x2) =↑

(

↑
(

↑
(

FAN(x1)
)

, x2

)

, ↑
(

x1, ↑
(

FAN(x2)
)

)

) (1.3.13)
So the NAND-gate together with the FAN-gate and the SWAP-gate allowsus to ompute any funtion. However, the NAND-gate is not reversible,nor an it be made reversible by adding an extra bit with information onthe input. There are logial gates on three bits that are reversible and anompute any funtion. For instane the To�oli-gate

TOF(x1, x2, x3) = (x1, x2, x1x2 + x3), (1.3.14)and the Fredkin-gate
FRE(x1, x2, x3) =

(

SWAP(x1, x2)x3 + Id(x1, x2)(x3 + 1), x3

)

, (1.3.15)whih swaps the �rst two bits if and only if the third bit is set to 1.
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1.3. CLASSICAL AND QUANTUM LOGIC 9Manipulating qubitsThe quantum equivalent of logial gates on bits are unitary transforms onqubits. Given a 2n-dimensional vetor spae V with basis B and a 2m × 2mmatrix U with m ≤ n, an expansion of U relative to B is any matrix of theform
G(U ⊗ I2n−m)G−1, (1.3.16)where G permutes the basis and Ik is the k × k identity matrix.Let U = {U1, . . . , Uk} be a set of unitary matries of dimension dividing 2n.Then (B,U) is the set of all expansions of the Ui relative to B.We de�ne the following matries, whih are respetively alled the Hadamardoperator, the rotation operator of angle θ, the ontrol-Not operator and theontrol-ontrol-Not operator:

H =
1√
2

(

1 1
1 −1

)

, P (θ) =





e
iθ
2 0

0 e−
iθ
2



 , (1.3.17ab)
CNOT =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









, (1.3.17)
CCNOT =

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

























. (1.3.17d)
The ontrol-NOT operator is a speial ase of the general lass of ontrolledoperators. These operators at on two registers of qubits in a very spei�manner. If the �rst register of qubits is in a spei�ed ontrol state, usually
|1〉 · · · |1〉, then an operator U is applied to the seond register of qubits. Ifthe �rst register is not in the spei�ed ontrol state, the identity operatoris applied to the seond register. For any n > 2 and θ, suh that P (θ) isnot idempotent, the set Uτ = {H,CNOT,CCNOT,P (θ)} generates a group
GUτ that is dense in U(2n). To be a little bit more preise we de�ne thenorm of a vetor

‖|φ〉‖ =
√

〈φ|φ〉. (1.3.18)The norm of an operator U is de�ned as
‖U‖ = sup

|φ〉6=0

‖U |φ〉‖
‖|φ〉‖ . (1.3.19)
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10 CHAPTER 1. QUANTUM COMPUTINGWe say that an operator Ũ represents an operator U with preision ǫ if
∥

∥

∥
Ũ − U

∥

∥

∥
≤ ǫ. (1.3.20)With this de�nition we an say that the group GUτ represents U(2n) withpreision ǫ for any ǫ > 0.A quantum iruit is a unitary matrix built by omposing elementary oper-ations from Uτ . The size of a quantum iruit will be the minimal numberof operations omposed to obtain it. A register in a quantum omputer isa subset of the total set of qubits. Writing |φ1〉|φ2〉 means that the �rstregister is in state |φ1〉 and the seond in |φ2〉.1.3.3 LimitationsThe most important limitation for qubits is the following theorem.Theorem 1.3 (No Cloning Theorem). It is not possible to opy any givenquantum stateProof. Suppose we have two qubits. The qubit to be opied is in state |φ1〉and the other qubit in some state |s〉. Suppose that we have a opyingmahine, using a unitary operation U . Then

|φ1〉 ⊗ |s〉 U7−→ U
(

|φ1〉 ⊗ |s〉
)

= |φ1〉 ⊗ |φ1〉. (1.3.21)For another quantum state |φ2〉 we have the same relation. We now takeinner produts to get the following.
(

〈φ1| ⊗ 〈s|
)

U †U
(

|φ2〉 ⊗ |s〉
)

=
(

〈φ1| ⊗ 〈φ1|
)(

|φ2〉 ⊗ |φ2〉
)

. (1.3.22a)
〈φ1|φ2〉〈s|s〉 = 〈φ1|φ2〉〈φ1|φ2〉. (1.3.22b)

〈φ1|φ2〉 = 〈φ1|φ2〉2. (1.3.22)This equation has solutions if and only if 〈φ1|φ2〉 is 0 or 1. So opying annotbe done for general states.The onsequenes of this negative result are lear. Even for simple operationslike swithing two bits we would like to make a opy of one of the bitsbefore overwriting it. In quantum omputing we need to design algorithmsin suh a way that we never need to store an intermediate result, whih isa fundamentally di�erent approah than what we are used to on lassialomputers. So in a sense we need to develop a quantum mehanial way ofalgorithmi thinking to design algorithms for quantum omputers.
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1.4. QUANTUM ALGORITHMS 111.4 Quantum Algorithms1.4.1 Disrete Fourier and Quantum Fourier TransformLet x0, . . . , xN−1 be a vetor of omplex numbers. The Disrete FourierTransform is de�ned by:
yk =

1√
N

N−1
∑

j=0

xje
2πijk

N . (1.4.1)The Coole-Tukey algorithm [CT65℄ for Disrete Fourier Transforms reduedthe omplexity from O
(

en
2) to O(en log n

). Let |k〉 be a vetor in a omplexHilbert spae V of dimension N and let |0〉, . . . , |N − 1〉 be an orthonormalbasis for V . The Quantum Fourier Transform (QFT) is de�ned in the sameway as the Disrete Fourier Transform:
|k〉 7−→ 1√

N

N−1
∑

j=0

e
2πijk

N |j〉. (1.4.2)It is possible to give a matrix notation for the QFT. Let ξ = e
2πi
2N , then theunitary 2N × 2N matrix, given by

ajk = 1√
2N
ξ(j−1)(k−1), (1.4.3)is the Quantum Fourier Transform. An example for N = 3 and ξ8 = 1:

QFTN=3 =
1√
8

























1 1 1 1 1 1 1 1
1 ξ ξ2 ξ3 ξ4 ξ5 ξ6 ξ7

1 ξ2 ξ4 ξ6 ξ8 ξ10 ξ12 ξ14

1 ξ3 ξ6 ξ9 ξ12 ξ15 ξ18 ξ21

1 ξ4 ξ8 ξ12 ξ16 ξ20 ξ24 ξ28

1 ξ5 ξ10 ξ15 ξ20 ξ25 ξ30 ξ35

1 ξ6 ξ12 ξ18 ξ24 ξ30 ξ36 ξ42

1 ξ7 ξ14 ξ21 ξ28 ξ35 ξ42 ξ49

























=
1√
8

























1 1 1 1 1 1 1 1
1 ξ ξ2 ξ3 ξ4 ξ5 ξ6 ξ7

1 ξ2 ξ4 ξ6 1 ξ2 ξ4 ξ6

1 ξ3 ξ6 ξ ξ4 ξ7 ξ2 ξ5

1 ξ4 1 ξ4 1 ξ4 1 ξ4

1 ξ5 ξ2 ξ7 ξ4 ξ ξ6 ξ3

1 ξ6 ξ4 ξ2 1 ξ6 ξ4 ξ2

1 ξ7 ξ6 ξ5 ξ4 ξ3 ξ2 ξ

























. (1.4.4)
The QFT is useful beause the omplexity of the DFT is O(en log n) whereasthe omplexity of the QFT is O(n2). It is exatly this gain whih will allow
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12 CHAPTER 1. QUANTUM COMPUTINGus to solve lassially infeasible problems with quantum algorithms by usingthe QFT. The following example, of whih Shor's algorithm is a speial ase,learly shows how the QFT an be used in quantum algorithms.Let N > 1 be a positive integer, G = Z/NZ the additive group of integersmodulo N and X a �nite set. Suppose that we have a funtion f : G −→ X,suh that for some subgroup H = 〈d〉 of G, f is onstant on H and separatesosets of H. Suppose that we do not know d. We want to �nd a generatorfor H. To do so we start with two registers in the zero state |0〉|0〉 and weapply the QFT to the �rst register to obtain
1√
N

N−1
∑

j=0

|j〉|0〉. (1.4.5)We then apply f to the seond register to get
1√
N

N−1
∑

j=0

|j〉|f(j)〉. (1.4.6)We now measure the seond register and obtain f(j0) for some j0. The e�etof measuring the seond register is that all registers that do not have f(j0)in the seond register ollapse. As f separates osets of H this means thatonly the oset H + j0 remains in the �rst register. If |H| = M , the �rstregister an be desribed as
1√
M

M−1
∑

s=0

|j0 + sd〉. (1.4.7)We apply the QFT to this register to obtain
1√
MN

N−1
∑

k=0

e
2πij0k

N |k〉
M−1
∑

s=0

e
2πisdk

N . (1.4.8)Using the fat that N = dM and evaluating the seond sum as a geometriseries, only the values of |k〉 that are multiples of M remain, giving
1√
d

d−1
∑

t=0

e
2πij0tM

N |tM〉. (1.4.9)Measuring the �rst register gives a multiple of M . Repeating this proedurewe get several multiples of M . Using the Eulidean algorithm we obtain Mwith high probability.

te
l-0

05
34

86
4,

 v
er

si
on

 1
 - 

12
 N

ov
 2

01
0



1.4. QUANTUM ALGORITHMS 131.4.2 Fourier Transforms over Abelian GroupsThe above example works well beause it was straightforward to identify theelements of the group Z/NZ with the qubits |0〉, . . . , |N − 1〉. For general�nite abelian groups, this identi�ation is not that simple and we will needto de�ne a more general form of Fourier transform. To do so we need tointrodue some basi representation and harater theory. We follow thedesription of Chris Lomont [Lom℄. Every �nite Abelian group G an bewritten as the diret sum of yli groups, so
G = Z/N1Z ⊕ · · · ⊕ Z/NkZ. (1.4.10)We suppose that we have a funtion f from G to a �nite set X, suh that

f separates osets of a subgroup H of G. We will write elements of G as
k-tuples (g1, . . . , gk), with gi ∈ {0, . . . ,Ni − 1}. De�ne

βi = (0, . . . , 0i−1, 1i, 0i+1, . . . , 0). (1.4.11)A harater of G is a group homomorphism χ from G to the multipliativegroup of nonzero omplex numbers C∗. For every harater χ and everyelement g = (g1, . . . , gk) we have
χ(g) = χ

(

k
∑

i=1

giβi

)

=

k
∏

i=1

χ(βi)
gi . (1.4.12)So every harater χ is determined by its ation on the βi. As the order of

βi is Ni, the order of χ(βi) must divide Ni. Therefore
χ(βi) = e

2πihi

Ni , (1.4.13)for some hi ∈ {0, . . . , Ni − 1}. So we an determine a harater by a k-tuple
(h1, . . . , hk), whih an be seen as an element h ∈ G. This leads to thefollowing de�nition for haraters. For every g ∈ G, we de�ne

χg : G −→ C∗

h 7−→
k
∏

j=1

e
2πigjhj

Nj .
(1.4.14)A useful theorem on haraters is the following.Theorem 1.4. Let G be a �nite Abelian group and χ a harater. Then

∑

g∈G

χ(g) =

{

|G| if χ = χe,

0 otherwise. (1.4.15)Here χe is the identity harater sending every element of the group to 1.
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14 CHAPTER 1. QUANTUM COMPUTINGProof. We have
G = Z/N1Z ⊕ · · · ⊕ Z/NkZ. (1.4.16)Choose h ∈ G. Then

∑

g∈G

χh(g) =
∑

gj∈Z/NjZ

j∈{1,...,k}





k
∏

j=1

e2πihjgj/Nj





=
k
∏

j=1

∑

gj∈Z/NjZ

e2πihjgj/Nj .

(1.4.17)
If for some j we have e2πihj/Nj 6= 1, then the geometri series

∑

gj∈Z/NjZ

e

2πihj

N
gj
j = 0. (1.4.18)The only time this does not happen is when for all j we have

e
2πihj

Nj = 1. (1.4.19)This is the identity harater. In this ase the result is ∏k
j=1Nj = |G|.We an now de�ne the notion of an orthogonal subgroup. Let H be a sub-group of G. The orthogonal subgroup of H is

H⊥ = {g ∈ G | χg(h) = 1, for all h ∈ H}. (1.4.20)While the yli QFT returns multiples of the generator of H, the general�nite abelian QFT returns elements of the orthogonal subgroup of H. It isde�ned as
FG =

1
√

|G|
∑

g,h∈G

χg(h)|g〉〈h|. (1.4.21)We also de�ne a translation operator
τt =

∑

g∈G

|t+ g〉〈g|, (1.4.22)and a phase-hange operator
φh =

∑

g∈G

χg(h)|g〉〈g|. (1.4.23)We �rst show that the Fourier transform of a subgroup is its orthogonalsubgroup.
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1.4. QUANTUM ALGORITHMS 15Theorem 1.5. We have the following relation between subgroups and Fouriertransforms:
FG|H〉 = |H⊥〉. (1.4.24)Proof. By de�nition, we have

|H〉 =
1

√

|H|
∑

h∈H

|h〉. (1.4.25)We then have:
FG|H〉 =

1
√

|G|
∑

g,h′∈G

χg(h
′)|g〉〈h′| 1

√

|H|
∑

h∈H

|h〉. (1.4.26)Using the fat that 〈h|h′〉 = 1, if h = h′ and zero otherwise, the aboveexpression an be simpli�ed to
1

√

|G||H|
∑

g∈G

(

∑

h∈H

χg(h)

)

|g〉. (1.4.27)The harater χg of G is also a harater of H, therefore∑h∈H χg(h) is zerounless the harater is the identity on H, in whih ase the sum is equalto |H|. That is exatly the de�nition of the orthogonal subgroup, thereforewe an redue the equation to
1

√

|G||H|
∑

g∈H⊥

|H||g〉. (1.4.28)As |H||H⊥| = |G|, this is equal to
1

√

|H⊥|
∑

g∈H⊥

|g〉 = |H⊥〉. (1.4.29)
In a similar way the following three identities an be proved.Theorem 1.6. For all elements h, t ∈ G we have

χh(t)τtφh = φhτt, (1.4.30a)
FGφh = τ−hFG, (1.4.30b)
FGτt = φtFG. (1.4.30)We an now give the algorithm for the hidden subgroup problem for general�nite abelian groups. As in the yli ase we start with two registers of
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16 CHAPTER 1. QUANTUM COMPUTINGqubits in the zero state and we apply the Fourier transform to the �rstregister.
|0〉|0〉 7−→ 1

√

|G|
∑

g∈G

|g〉|0〉. (1.4.31)We then apply the oset separating funtion f to the seond register, whihleads to
1

√

|G|
∑

g∈G

|g〉|f(g)〉. (1.4.32)De�ne T = (t1, . . . , tm) as a set of oset representatives for H in G. Weobviously have |T ||H| = |G|. Using the separation property of f we ansimplify the above expression to
1

√

|T |
∑

t∈T

|t+H〉|f(t)〉. (1.4.33)This is equal to
1

√

|T |
∑

t∈T

τt|H〉|f(t)〉. (1.4.34)We apply the Fourier transform to the �rst register and use the above theo-rems to obtain the following result.
1

√

|T |
∑

t∈T

τt|H〉|f(t)〉 FG7−→ 1
√

|T |
∑

t∈T

FGτt|H〉|f(t)〉

=
1

√

|T |
∑

t∈T

φtFG|H〉|f(t)〉 (1.4.35)
=

1
√

|H⊥|
∑

t∈T

φt|H⊥〉|f(t)〉.We now measure the �rst register and obtain a random element of the or-thogonal subgroup of H. Sine (H⊥)⊥ = H, determining a generating setfor the orthogonal subgroup determines H ompletely. This does howevernot mean that it is an easy task to get a generating set for H starting witha generating set for H⊥. Suppose that we have a generating set g1, . . . , gtfor H⊥. As H = H⊥⊥, we have h ∈ H if and only if
χh(gj) = 1, for all j = 1, . . . , t. (1.4.36)Let d = LCM(N1, . . . , Nk) and αi = d

Nl
. Then

χh(gj) =

k
∏

l=1

e
2πiαlhlgjl

d = 1, (1.4.37)
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1.4. QUANTUM ALGORITHMS 17if and only if
k
∑

l=1

αlhlgjl ≡ 0 (mod d). (1.4.38)So to �nd elements of H we have to solve this system of t linear equations.This is a simple linear algebra problem that an be e�iently solved withthe use of Smith normal forms. Solving this equation gives an element
h = (h1, . . . , hk) ∈ H. (1.4.39)Repeating the proedure will lead to a set of generators for H.1.4.3 Shor's Fatoring AlgorithmLet N be an integer. We want to �nd an integer 1 < p < N , suh that p | N .By repeating this proess for the integers p and q = N

p we will eventually�nd a fatorization
N =

n
∏

i=1

pei

i , (1.4.40)where pi are prime numbers and ei are positive integers. The fundamentaltheorem of arithmeti tells us that this fatorization is unique. The problemis to �nd integers pi that divide N . The fatoring algorithm proposed byShor [Sho97℄ is designed to �nd the order r of an element x modulo N , whihis the smallest positive integer, suh that
xr ≡ 1 (mod N). (1.4.41)If we an �nd suh an element, then we verify whether
x

r
2 6≡ −1 (mod N). (1.4.42)If this is the ase we ompute
GCD

(

x
r
2 ± 1, N

)

, (1.4.43)and we might �nd a non-trivial fator of N . The quantum part of thisalgorithm revolves around the Quantum Fourier Transform and QuantumPhase Estimation.Quantum Phase EstimationLet U be a unitary operator and let |u〉 be an eigenvetor of U with eigen-value e2πiφ. So
U |u〉 = e2πiφ|u〉. (1.4.44)The purpose of phase estimation is to �nd an approximation φ̃ for the un-known value 0 ≤ φ < 1. The quantum algorithm for phase estimation uses
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18 CHAPTER 1. QUANTUM COMPUTINGtwo registers of qubits. The �rst register |0〉k onsists of k qubits initializedin the state |0〉. The number k depends on the desired auray of the ap-proximation φ̃ and on the desired suess probability of the algorithm. Theseond register is initialized as |u〉 and takes as many qubits as are needed todesribe |u〉. On eah of the qubits of the �rst register a Hadamard operatoris applied:
|0〉 7−→ 1√

2

(

|0〉 + |1〉
)

. (1.4.45)Then on eah qubit
1√
2

(

|0〉 + |1〉
)

j+1
(1.4.46)of the �rst register a ontrolled-U2j gate is applied, where the integer j rangesfrom 0 to k − 1:

1√
2

(

|0〉 + |1〉
)

|u〉 7−→ 1√
2

(

|0〉|u〉 + |1〉U2j |u〉
)

=
1√
2

(

|0〉|u〉 + |1〉e2πiφ2j |u〉
) (1.4.47)

=
1√
2

(

|0〉 + e2πiφ2j |1〉
)

|u〉.Doing this operation on eah of the k qubits of the �rst register, we obtainthe following state:
|0〉k 7−→ 1√

2k

(

(

|0〉 + e2πiφ2k−1 |1〉
)

· · ·
(

|0〉 + e2πiφ20 |1〉
)

)

|u〉

=
1√
2k

2k−1
∑

j=0

e2πiφj |j〉,
(1.4.48)where we use the onvention that if

j = a0 · 20 + · · · + an2n, (1.4.49)with ai ∈ {0, 1}, then |j〉 indiates the qubits |a0〉 · · · |an〉. We an write
φ =

( a

2k
+ δ
)

, (1.4.50)where a = ak−1 . . . a0 is in binary notation,
|δ| ≤ 1

2k+1
, (1.4.51)and a

2k is the best k-bit approximation of φ. This gives
1√
2k

2k−1
∑

j=0

e
2πij

“

a
2k +δ

”

|j〉. (1.4.52)

te
l-0

05
34

86
4,

 v
er

si
on

 1
 - 

12
 N

ov
 2

01
0



1.4. QUANTUM ALGORITHMS 19We apply the inverse Fourier Transform on the �rst register, sending |j〉 to
1√
2k

2k−1
∑

l=0

e
−2πijl

2k |l〉. (1.4.53)Putting this into the equation we obtain:
|0〉k|u〉 7−→

1√
2k

2k−1
∑

j=0

e
2πij

“

a
2k +δ

”

|j〉|u〉

7−→ 1√
2k





2k−1
∑

j=0

e
2πij

“

a
2k +δ

”

1√
2k

2k−1
∑

l=0

e
−2πijl

2k |l〉



 |u〉

=
1

2k

2k−1
∑

j,l=0

e
−2πijl

2k e
2πij

“

a
2k +δ

”

|l〉|u〉

=
1

2k

2k−1
∑

j,l=0

e
2πij(a−l)

2k e2πijδ|l〉|u〉.

(1.4.54)
Now the �rst register is measured. There are two ases to onsider. If δ = 0,then we will measure exatly |a〉 = |φ〉. If δ 6= 0, we will measure |a〉, thebest k-bit approximation of φ with probability pa = |ca|2, where

ca =
1

2k

2k−1
∑

j=0

(e2πiδ)
j

. (1.4.55)This is a geometri series whih an be bounded with some trigonometrimanipulations to obtain
pa ≥ 4

π2
≥ 0.4. (1.4.56)Order �ndingWe use quantum phase estimation to �nd the order of an element x mod-ulo N . The quantum algorithm for �nding the order of x uses the unitaryoperator Ux that ats in the following way:

Ux|y〉 =
∣

∣xy (mod N)
〉

. (1.4.57)The eigenstates of this operator are
|us〉 =

1√
r

r
∑

k=0

e−
2πisk

r
∣

∣xk (mod N)
〉

, (1.4.58)
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20 CHAPTER 1. QUANTUM COMPUTINGwith 0 ≤ s ≤ r − 1 an integer. Indeed we have that
Ux|us〉 =

1√
r

r
∑

k=0

e−
2πisk

r
∣

∣xk+1 (mod N)
〉

= e
2πis

r |us〉.
(1.4.59)So the eigenvalues of Ux are e2πis

r , with 0 ≤ s ≤ r − 1 an integer.We apply the quantum phase estimation algorithm on Ux to obtain approxi-mations of φ = s
r . There are two problems that need to be solved to exeutethis algorithm. We have to e�iently implement ontrolled-U2j operatorsfor integers j and we need to prepare an eigenstate |us〉 with a non-trivialeigenvalue. The �rst of these problems an be overome by modular expo-nentiation.Modular Exponentiation Modular exponentiation means omputing theremainder when dividing a positive integer xk by a positive integer N . Thatis, we want to ompute x′, suh that:

x′ ≡ xk (mod N). (1.4.60)If we ompute this value by �rst alulating xk and then omputing theremainder modulo N , then this would require O(k) multipliations to om-plete. This method an be slightly improved by using the following relation:
a · b (mod m) ≡

(

a (mod m)
)

·
(

b (mod m)
)

(mod m). (1.4.61)So after eah multipliation by x we ompute the remainder modulo N .This will redue the size of the numbers that need to be multiplied, savingmemory, but this still requires O(k) multipliations.A third method redues both the number of operations and the memoryrequired to perform modular exponentiation. It is a ombination of theprevious method and a more general priniple alled binary exponentiation.We �rst onvert k to a binary number:
k =

n−1
∑

i=0

ai2
i, (1.4.62)where ai is either 0 or 1. We an then write xk in binary form:

xk = x
Pn−1

i=0 ai2i

=

n−1
∏

i=0

(

x2i
)ai

. (1.4.63)Therefore x′ is equal to:
x′ ≡

n−1
∏

i=0

(

x2i
)ai

(mod m). (1.4.64)The running time of this algorithm is O(log k).
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1.4. QUANTUM ALGORITHMS 21Eigenstate Preparation The seond problem that needed to be over-ome was the preparation of an eigenstate |us〉 without the knowledge of theorder r. It is relatively straightforward to prove that
1√
r

r−1
∑

s=0

e−
2πisk

r |us〉 =
∣

∣xk (mod N)
〉

. (1.4.65)Using this result with k = 0, we obtain
1√
r

r−1
∑

s=0

|us〉 = |1〉. (1.4.66)The quantum state we produe before applying the inverse QFT is
|φ〉1|φ〉2 =

2n−1
∑

j=0

|j〉U j |1〉 =

2n−1
∑

j=0

∣

∣j〉|xj (mod N)
〉

, (1.4.67)where n is the size of the �rst register of qubits and is of size O(logN). In theend we have an n-bit approximation of φ = s
r . We would like to �nd r fromthis result and we an do this by using the ontinued fration algorithm.Theorem 1.7. Let s

r ∈ Q be suh that
∣

∣

∣
φ− s

r

∣

∣

∣
≤ 1

2r2
. (1.4.68)Then s

r is a onvergent of the ontinued fration of φ and an be omputedby the ontinued fration algorithm.This algorithm produes numbers r′, s′ with no ommon fator, suh that
s′

r′
=
s

r
. (1.4.69)There are two ways for the algorithm to fail. The phase estimation algorithmmay produe a bad estimate of s

r in whih ase the above theorem no longerapplies. The probability of this event depends on the size of the �rst registerand an be made negligibly small. The seond problem is that s will berandomly hosen by the quantum algorithm, when we measure, and there isalways the possibility that it is a divisor of r. In that ase r′ will be a divisorof r and not r itself. If this happens, then
xr′ 6≡ 1 (mod N). (1.4.70)We repeat the algorithm to obtain r′′, s′′. If r′′ 6= r and GCD(s′′, s′) = 1,then
r = LCM(r′′, r′). (1.4.71)The probability that GCD(s′′, s′) = 1 is at least 1

4 .
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22 CHAPTER 1. QUANTUM COMPUTINGReduing fatoring to order �ndingTo redue fatoring a number N to omputing the order of an element xmodulo N we need the following theorems:Theorem 1.8. Let N be a omposite positive integer and x 6= ±1 a non-trivial solution to the equation x2 ≡ 1 (mod N). Then at least one of
GCD(x− 1, N) and GCD(x+ 1,N) is a non-trivial fator of N .Theorem 1.9. Suppose N =

∏n
i=1 p

αi

i is the prime fatorization of an oddomposite positive integer. Let 1 ≤ x ≤ N − 1 be hosen at random. Let rbe the order of x modulo N . Then the probability that r is even and that
x

r
2 6≡ −1 (mod N), (1.4.72)is at least 1 − 1

2n .So in order to fator a number N we randomly hoose a positive integer
x smaller than N . We use the order �nding algorithm to �nd the order rof x modulo N . If r is even, we ompute y ≡ x

r
2 (mod N) and hekwhether y 6≡ −1 (mod N). If this is the ase we ompute GCD(y ± 1,N)and test whether either of these is a non-trivial fator of N . The perfor-mane of this algorithm is O(log3N) if we use simple multipliation and

O(log2N log logN log log logN) if we use fast multipliation.1.4.4 Grover's Searh AlgorithmGrover's algorithm is a quantum algorithm to searh an unsorted databasewith N entries in O(
√
N) time and using O(logN) storage spae [Gro97℄.In lassial omputation searhing an unsorted database annot be donein less than linear time O(N). Grover's algorithm provides a quadratispeedup, unlike other quantum algorithms, whih may provide exponentialspeedup over their lassial ounterparts. Consider an unsorted databasewith N entries. The algorithm requires an N -dimensional state spae H,whih an be supplied by logN qubits. For simpliity we will assume that

N = 2n and that the searh problem has exatly one solution. It is possibleto generalize Grover's algorithm to searh problems withM solutions, but wewill not do so here. The database entries are 1, 2, . . . ,N . We all this set V .We suppose that i0 is the solution to the searh problem. Let f : V −→ {0, 1}be a funtion, suh that f(x) = 1 if and only if x is the solution to the searhproblem. Suppose we have a unitary operator O, suh that
O|x〉|y〉 =

∣

∣x
〉∣

∣y ⊕ f(x)
〉

. (1.4.73)If we put the seond register |y〉 in the superposition
|−〉 =

1√
2

(

|0〉 − |1〉
)

, (1.4.74)
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1.4. QUANTUM ALGORITHMS 23then we have that
O|x〉|−〉 = (−1)f(x)|x〉|−〉. (1.4.75)This operator is alled the orale. Grover's algorithm uses two registers.The �rst register onsists of n qubits initialized in state |0〉n. The seondregister has one qubit and is initialized in state |1〉. We start by applyingthe Hadamard operator on the �rst register

H⊗n|0〉n =
1√
N

N
∑

i=1

|i〉 = |φ〉n, (1.4.76)and on the seond register
H|1〉 = |−〉. (1.4.77)We apply the orale operator O to the �rst register and obtain

O
(

|φ〉n|−〉
)

=
1√
N

N
∑

i=1

(−1)f(i)|i〉|−〉

= |φ1〉n|−〉.
(1.4.78)The �rst register is a superposition of states, but the searhed element hasnegative amplitude while all other elements have positive amplitude. Thenext steps of Grover's algorithm slowly inrease this negative amplitude,while dereasing the positive amplitudes, making it more likely that a meas-urement of the �rst register results in the searhed element. We have thefollowing equality:

|φ1〉n = |φ〉n − 2√
N
|i0〉. (1.4.79)Moreover, we have 〈φ|φ〉 = 1 and 〈φ|i0〉 = 1√

N
. We apply the operator

R = 2|φ〉〈φ| − I (1.4.80)on the �rst register and get
R|φ1〉n =

(

2|φ〉〈φ| − I
)(

|φ〉n − 2√
N
|i0〉
)

=
(

1 − 4
N

)

|φ〉n + 2√
N
|i0〉 (1.4.81)

= |φG〉n.Grover's algorithm onsists of repeatedly applying the operator
G = R ◦O =

(

2|φ〉〈φ| − I
)

◦O (1.4.82)on the qubits. We have the following geometri interpretation.
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24 CHAPTER 1. QUANTUM COMPUTING
|α〉

|β〉

|φ〉

O|φ〉

G|φ〉

OG|φ〉

G2|φ〉

Figure 1.2: A geometrial interpretation of Grover's searh algorithm: su-essive re�etions around the axes |α〉 and |φ〉.Let
|α〉 =

1√
N−1

∑

i6=i0

|i〉, (1.4.83)and |β〉 = |i0〉. We an write
|φ〉 =

√

N−1
N |α〉 +

√

1
N |β〉. (1.4.84)Let

cos θ
2 =

√

N−1
N , (1.4.85)then

|φ〉 = cos θ
2 |α〉 + sin θ

2 |β〉. (1.4.86)After straightforward omputation we �nd that
G|φ〉 = cos 3θ

2 |α〉 + sin 3θ
2 |β〉, (1.4.87)and more generally

Gk|φ〉 = cos (2k+1)θ
2 |α〉 + sin (2k+1)θ

2 |β〉. (1.4.88)We have that
θ = 2arccos

(

√

N−1
N

)

, (1.4.89)so the number of times we need to apply G veri�es the equation
kθ +

θ

2
=
π

2
. (1.4.90)So

k =
⌊

π−θ
2θ

⌋

. (1.4.91)Setting
θ = 2arccos

(

√

N−1
N

)

, (1.4.92)

te
l-0

05
34

86
4,

 v
er

si
on

 1
 - 

12
 N

ov
 2

01
0



1.5. PHYSICAL REALISATIONS 25and using the Taylor expansion for arccos we get
k =

⌊

π
√

N
4

⌋

. (1.4.93)If we apply the Grover operator k times and we measure the �rst register,then the probability of obtaining i0 is lose to 1.1.5 Physial Realisations1.5.1 IntrodutionThere are several onditions that a physial system needs to verify to bea good andidate for a physial realization of a quantum omputer. Thequbits need a robust physial representation where they retain their quantummehanial properties. The system itself must allow us to perform a universalfamily of unitary transformations. It should be possible to prepare the qubitsin a spei�ed set of initial states and it should be possible to measure the�nal output states of the qubits.The di�ulty with physial realizations for quantum omputation is thatthese requirements are often only partially met. An important obstale forquantum omputers is deoherene, whih are proesses that orrupt thedesired evolution of the system. Every physial realization has a deoherenetime τQ. Operations on qubits need to be performed in this time, beauseafter a time τQ, the evolution beomes unreliable. An operation on a qubitusually takes some prede�ned time τop, depending on the physial systemthat is hosen. The ratio τQ

τop
indiates the maximum number of operationsthat an be performed on the system before it beomes deoherent.Representing qubitsQuantum omputation is based on unitary transformations on quantumstates. Qubits are two-level quantum systems and provide a useful methodof labeling for pairs of states. For instane a spin 3

2 partile has four states.We ould make the following orrespondene:
|m = 3

2 〉 = |00〉, |m = 1
2〉 = |01〉, (1.5.1ab)

|m = −1
2〉 = |10〉, |m = −3

2〉 = |11〉. (1.5.1d)So we ould uses suh a partile to represent two qubits. It is importantto make a good hoie to represent qubits. A poor representation results ingeneral in a quantum system with a short deoherene time.A good measure of deoherene for single qubits is the minimum lifetimeof an arbitrary superposition of the ground states. This measure is alled
T2, the transverse relaxation time. As the name suggests, there exists alsoanother measure for deoherene. The longitudinal relaxation time T1 is therelaxation time of the higher energy state |1〉.
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26 CHAPTER 1. QUANTUM COMPUTINGPerforming unitary transformationsA natural goal for experimental quantum omputation is to be able to per-form arbitrary unitary transforms on a single qubit and a CNOT transformon two qubits. If the system allows us to perform these operations, then, intheory, we an perform any arbitrary unitary transform on more than onequbit. There are some issues that need to be made lear. In order to havesuh an arbitrary unitary operation, we need to be able to address individ-ual qubits and arbitrary pairs of qubits, without disturbing the other qubits.When there is an error in a unitary transform, this error will propagate,ausing deoherene.State preparationIf we want to make a quantum omputation, we need to be able to initializethe qubits to represent the input of the omputation. In lassial omputing,the initialization rarely poses any serious problems, but in quantum omput-ing this is no longer true. Depending on the physial realization it may bevery di�ult to interat with the qubits. There is one positive point to makethough. If we have any arbitrary one qubit transformation at our disposal,then we will only need to produe one initialized state with high �delity. Allother starting states an be obtained from this state by applying a unitarytransform on it. In many physial realizations, the initialization of hoie isthe ground state |0 . . . 0〉. There are two measures that indiate the qualityof initial state preparation. The �rst one is the minimum �delity of the quan-tum gate needed to transform the ground state to an input state |x0 . . . xn〉.The seond one is the entropy of the initial state. In general, input statesthat have non-zero entropy redue the aessibility of the answer from theoutput state.MeasurementWe an onsider the measurement of the qubits as a proess where the qubitsare oupled to a lassial system, whih permits to read the state of thequbits. An important harateristi of the proess of measurement is theollapse of the wave funtion in ase of projetive measurement. Quantumalgorithms need to be designed in suh a way that when the output is mea-sured, a useful result is found with high probability. Measuring qubits is nota simple proess. Projetive measurements an be di�ult to implement asthey need a large oupling between the quantum system and the lassialsystem. Furthermore, we only want to make measurements when we hooseto do so. Unwanted measurements an be onsidered as a deoherene pro-ess and are therefore undesirable. So the oupling between the quantumand lassial systems should not be too large either. The signal to noise ratiois usually a good indiator of the measurement apability of a system.

te
l-0

05
34

86
4,

 v
er

si
on

 1
 - 

12
 N

ov
 2

01
0



1.5. PHYSICAL REALISATIONS 271.5.2 Optial photon quantum omputerPhysial desriptionPhotons are partiles without harge that do not interat strongly with eahother. It is possible to guide photons along long distanes in optial �berswith low loss. They an be manipulated in several ways. It is possible todelay photons with phase shifters and to ombine them with beamsplitters.A photon an be represented as a qubit in the following way. The energy inan eletromagneti avity is quantized in units of ~ω. Eah suh quantumis alled a photon. Consider two avities whose total energy equals ~ω.We an then desribe the states of the qubit as being the avity in whihthe photon is loated. That is state |0〉 orresponds to a photon in the �rstavity and |1〉 to a photon in the seond avity. Single photons an be de-teted for a wide range of wavelengths.There are several devies to manipulate qubits. Mirrors with high re�etiv-ity re�et photons and hange their propagation diretion in spae. Phaseshifters, whih are just transparent media with a di�erent refration indexthan the vauum. Propagation of photons through suh a medium will resultin a phase shift. Beamsplitters, whih are partially silvered piees of glass,re�et a fration R of the inident photons and transmit a fration 1−R ofthe inident photons.
1 −R

R

Figure 1.3: A beamsplitter that re�ets a fration R of inident photons andtransmits a fration 1 −R.A material that has a refration index that is proportional to the total in-tensity I of light going through it is alled a non-linear Kerr medium. Thismedium has a non-linear e�et on the qubits and is used for interationbetween photons.
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28 CHAPTER 1. QUANTUM COMPUTINGQuantum omputingThe three key elements for quantum omputing are the phase shifter, thebeamsplitter and a non-linear Kerr medium.The phase shifter P ats on a qubit
|q〉 = α|0〉 + β|1〉 (1.5.2)in the following way:

P |q〉 = αe−
i∆
2 |0〉 + βe

i∆
2 |1〉, (1.5.3)where

∆ =
(n− n0)L

c0
, (1.5.4)with n the refration index of light through the medium of the phase shifter,

n0 that through vauum, L the distane the light travels through the mediumand c0 the speed of light in the medium. So the phase shifter ats as arotation around the z-axis on a single qubit.The beamsplitter B ats on a qubit |q〉 in the following way:
B|q〉 = (α cos θ − β sin θ)|0〉 + (α sin θ + β cos θ)|1〉, (1.5.5)where the angle θ of the beamsplitter veri�es the equation

R = cos θ, (1.5.6)with R the fration of inident light on the beamsplitter that is re�eted.The beamsplitter ats as a rotation around the y-axis. The beamsplitter andthe phase shifter together allow us to make arbitrary single qubit operations.The non-linear Kerr medium K is used for operations on two qubits:
K =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiχL









, (1.5.7)where L is the distane the light travels through the medium and χ is aharateristi oe�ient of the Kerr medium. If the length L is set, suhthat
χL = π, (1.5.8)then the matrix for K beomes:

K =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1









. (1.5.9)
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1.5. PHYSICAL REALISATIONS 29We have the following relation:
CNOT = (I ⊗H)K(I ⊗H)

=
1

2









1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

















1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

















1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1









=









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









, (1.5.10)where H is the Hadamard operator. The gate for χL = π is also alled theCZ or ControlZ gate. We an ombine the three basi operations on thequbits to make a CNOT operator. This, ombined with arbitrary operationson single qubits is in theory su�ient for any quantum operator.DrawbaksWhile single photons are easily generated and measured, it is di�ult tomake photons interat. The best non-linear Kerr media available are veryweak and annot provide a ross phase modulation of π between single pho-ton states. Moreover, there is usually absorption assoiated with the non-linearity of a Kerr medium and it is estimated that nearly 50 photons needto be absorbed in order to experiene a π ross phase modulation on a singlephoton. Therefore, the deoherene of the system will be very large.1.5.3 Trapped ionsPhysial desriptionAn ion trap quantum omputer onsists of an eletromagneti trap withlasers and photodetetors, and ions. The eletromagneti trap is onstrutedfrom four ylindrial eletrodes, with the end segments biased at a di�erentvoltage U0 than the middle. Therefore, the ions are axially on�ned by astati potential
ΦSt =

κU0

2

(

z2 − x2 − y2
) (1.5.11)along the z-axis, where κ is a geometrial fator. A harge annot be on�nedin three dimensions by stati potentials and therefore two of the eletrodesare grounded while the other two eletrodes are driven by a fast osillatingvoltage whih reates a radiofrequeny potential

ΦRF =
(U0 cosωt+ Ur)(1 − x2−y2

R2 )

2
, (1.5.12)
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30 CHAPTER 1. QUANTUM COMPUTINGwhere R is a geometrial fator. The ombination of these two potentialsreates a harmoni potential. The motion of the eletromagnetially on�nedion beomes quantized when it is su�iently well isolated. The purpose ofthe eletromagneti trap is to allow ions to be ooled to the extent thattheir vibrational state is lose to having zero phonons. This will be thequbit state |0〉. The internal atomi states of a trapped ion form a qubitrepresentation. These states are a ombination of eletron spin S and nulearspin I, giving a total spin F = S + I. Suppose that an ion has an eletronspin 1
2 and a nulear spin 1

2 . Eah of these spins ould be either 1
2 or −1

2 .This would give the obvious omputational basis B:
B =

{

|00〉, |01〉, |10〉, |11〉
}

, (1.5.13)where |ij〉 might orrespond to a trapped ion with eletron spin (−1)i · 1
2and nulear spin (−1)j · 1

2 . In physis, a basis onsisting of eigenstates of thetotal momentum operator is preferred. This operator is de�ned by the Paulioperators:
σX =

(

0 1
1 0

)

, σY =

(

0 −i
i 0

)

, σZ =

(

1 0
0 −1

)

. (1.5.14ab)and the diretional momentum operators:
Jx =

σX
1 + σX

2

2
, Jy =

σY
1 + σY

2

2
, (1.5.15ab)

Jz =
σZ

1 + σZ
2

2
, J2 = J2

x + J2
y + J2

z , (1.5.15d)where the subsripts indiate whether the operator ats on the eletron oron the nulear spin. The operator J2 has the following eigenstates:
|0, 0〉J =

|01〉 − |10〉√
2

, |1,−1〉J = |00〉, (1.5.16ab)
|1, 0〉J =

|01〉 + |10〉√
2

, |1, 1〉J = |11〉. (1.5.16d)These eigenstates are desribed as |j,mj〉J , whih are eigenstates of the op-erator J2 with eigenvalue j(j+1) and of the operator Jz with eigenvalue mj .Quantum omputingThe key element for quantum omputing with spins is an eletromagneti�eld. If we apply an eletromagneti �eld of frequeny ω0 with the rightangle and duration we an onstrut arbitrary single qubit operations.
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1.5. PHYSICAL REALISATIONS 31DrawbaksWhile the saling of ion traps to a large number of qubits is oneptionallyviable, there are two limitations to ion trap quantum omputers. Phononlifetimes are short, therefore the deoherene of a trapped ion is large. More-over, it is not easy to prepare these ions in their motional ground states.1.5.4 Other physial realizationsSeveral other physial implementation shemes for quantum omputers arepossible. We will desribe a few of those. Quantum omputing by nulearmagneti resonane will be treated in muh greater detail in the next hapter.Quantum dotsA fundamental quantum unit that ould serve as qubit representation is ele-tri harge. It is possible with modern eletronis to manipulate harges atthe level of a single eletron. Quantum dots are three-dimensional boxes witheletrostati potentials that on�ne eletri harge quanta. Unlike photons,net harge annot be destroyed and therefore it is neessary to use two boxeswith only one harge quantum to represent a qubit. Single qubit operationsan be performed by eletrostati gates and single mode waveguide ouplersfor moving eletrons and tunnel juntions for quantum dots. The long-rangeCoulomb interation of the eletri harge an be used to perform operationson two qubits. It is simple to measure single eletron harges using mod-ern �eld e�et transistors. Deoherene ours through unontrolled distantharge motion.SuperondutorsAt low temperature in ertain metals two eletrons an bind together througha phonon interation to form a Cooper pair, with harge 2e. These pairs anbe on�ned within an eletrostati box. A qubit is represented by one Cooperpair in two boxes. Single qubit gates are realized by eletrostati gatesto modulate the box potential and Josephson juntions between oupledboxes. Josephson juntions are also used to ouple di�erent qubits, wherean external magneti �eld oupled to the superonduting interferometriloops is used. Qubits are measured by measuring the eletri harge in abox. Cooper pairs are relatively robust and therefore the main deoherenefator is spontaneous emission of eletromagneti photons.
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All things are di�ult beforethey are easy. Thomas FullerChapter 2Nulear Magneti Resonaneand Quantum Computing2.1 Nulear Magneti Resonane2.1.1 IntrodutionA muh longer introdution to Nulear Magneti Resonane an be foundin the books of Shaw and Slihter [Sha76, Sli80℄. A magneti system thatposseses both magneti moments and angular momentum an exhibit a phe-nomenon alled magneti resonane. If the magneti system is a nuleus wespeak of nulear magneti resonane. The fat that nulei an have magnetimoments was �rst suggested in 1924 by Pauli, while studying the hyper�nestruture of atomi spetra [Pau24℄.The angular momentum of nulei is quantized and nulei have a quantumnumber I whih an be any half integer value. A nuleus with quantumnumber I has an angular momentum of I~.The quantization of atomi magneti moments was already demonstrated in
1921 by Stern and Gerlah [Ste21℄. Their tehniques to distinguish variousquantum states of atoms were re�ned to measure transition energies of nulei.In 1945 two groups simultaneously disovered resonant absorption in bulkmatter. Bloh et al. deteted resonane absorption in water protons [BHP46℄and Purell et al. deteted resonane absorption in parra�n wax [PTP46℄.The nuleus possesses a total magneti moment ~µ and a total angular mo-mentum ~J. We an take these two vetors parallel and have the followingequation:

~µ = γ~J, (2.1.1)where γ is a salar onstant. This onstant is alled the gyromagneti ratio.A lassial �rst order approximation will give an estimate for γ. Consider apartile of mass m and harge e moving in a irular path of radius r with33
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34 CHAPTER 2. NMR AND QUANTUM COMPUTINGperiod T . The angular momentum of this partile is:
~J = mvr

=
2πr2m

T
.

(2.1.2)The magneti moment of the partile an be omputed if we treat the rotat-ing partile as a urrent loop of area A with urrent i:
~µ = iA

=
eπr2

cT
.

(2.1.3)As we have the equation
~µ = γ~J, (2.1.4)it follows that the gyromagneti ratio veri�es the following equation:
γ =

e

2mc
. (2.1.5)We now onsider the onsequenes of plaing a nuleus with a magnetimoment in a magneti �eld ~B0. We �rst onsider this from a lassial pointof view. The nuleus is a magneti dipole and will aquire an energy:

E = −~µ · ~B0. (2.1.6)As the nuleus has angular momentum, it will not only align itself withthe magneti �eld ~B0, but it will also preess with a frequeny ω0 at anangle θ about this �eld. This e�et is aused by the interation of the torquegenerated by rotational motion of the nuleus and the magneti �eld of thenulear magneti moment. The torque between the magneti moment of thenuleus and the �eld is
τ = ~µ × ~B0. (2.1.7)The torque is equal to the rate of hange of angular momentum:
τ =

d~J

dt

= ω0
~J.

(2.1.8)The frequeny of this preession is therefore
ω0 = γ|B0|, (2.1.9)whih is alled the Larmor frequeny. It is the basi phenomenon of NMR.The magneti �eld is proportional to the preession frequeny and the pro-portionality onstant is the gyromagneti ratio.
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2.1. NUCLEAR MAGNETIC RESONANCE 35We now onsider the basi properties of NMR from a quantum mehanialpoint of view. First we de�ne the dimensionless angular momentum opera-tor ~I by:
~J = ~~I. (2.1.10)The operator I

2 has eigenvalues I, whih are either integer of half-integer.All omponents of ~I ommute with I
2. The operator Iz has eigenvalues m,where m an be any of the 2I + 1 values −I, . . . , I.The appliation of a magneti �eld ~B produes an interation energy of thenuleus of amount −~µ ·

~B. If we take the magneti �eld to be B0 along the
z-diretion we have the following Hamiltonian:

H = −γ~B0Iz. (2.1.11)The eigenvalues of this Hamiltonian are multiples γ~B0 of the eigenvaluesof Iz and therefore the allowed energies are:
E = −γ~B0m, with m = −I, . . . , I. (2.1.12)We want to detet suh a set of energy levels by spetral absorption. There-fore an interation is needed that auses transitions between energy levels.Suh an interation must be time dependent and of angular frequeny ω,suh that:

~ω = ∆E, (2.1.13)where ∆E is the di�erene of energy between two levels of the spetrum.
m = 1

2 , E = 1
2γ~B0

m = −1
2 , E = −1

2γ~B0

∆E = γ~B0

Figure 2.1: Energy levels for a spin 1

2
partileThe oupling used to produe magneti resonane is an alternating mag-neti �eld of amplitude ~B1 perpendiular to the stati magneti �eld. TheHamiltonian of this alternating �eld is:

H = −γ~ ~B1 ·~Ix cos(ωt). (2.1.14)
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36 CHAPTER 2. NMR AND QUANTUM COMPUTINGThe allowed transitions are between adjaent energy levels and therefore:
~ω = ∆E

= γ~B0.

⇔
ω = γB0.

(2.1.15)We see that Plank's onstant has disappeared from the resonane equation.If we an estimate γ, we an ompute the frequeny that produes a magnetiresonane.We now onsider a marosopi sample of nulei with spin 1
2 . Let N+ be thenumber of nulei in the state m = 1

2 and N− the number of nulei in thestate m = −1
2 . Obviously, the total number of nulei N veri�es:

N = N+ +N−. (2.1.16)Moreover, the equilibrium populations N0
+ and N0

− verify the equation:
N0

−
N0

+

= e
−γ~B0

kBT , (2.1.17)where kB is the Boltzmann onstant.If we apply an alternating magneti �eld, the total number of nulei willremain onstant, but N+ and N− will vary beause of the energy transitionsindued by the �eld. The probability per seond of induing a transitionfrom m = 1
2 to m = −1

2 is equal to P↓ and the probability per seond ofinduing a transition in the other diretion is P↑. This leads to the followingdi�erential equation:
dN+

dt
= P↑N− − P↓N+. (2.1.18)We an rewrite this equation as the di�erene between the two populations:
n = N+ −N−, (2.1.19)and obtain the following di�erential equation:
dn

dt
=
n0 − n

T1
, (2.1.20)where we have:

n0 = N

(

P↑ − P↓
P↑ + P↓

)

, (2.1.21a)
1

T1
= P↑ + P↓. (2.1.21b)
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2.2. QUANTUM COMPUTING WITH NMR 37The solution of this di�erential equation is:
n(t) = n0 + Ce

− t
T1 , (2.1.22)with C a onstant that depends on n, n0 the thermal equilibrium popula-tion di�erene and T1 a harateristi time assoiated with the approah tothermal equilibrium. This harateristi time T1 is alled the spin-lattierelaxation time.2.2 Quantum omputing with NMR2.2.1 Ensemble systemNMR di�ers from other physial realizations of a quantum omputer in thesense that instead of a single photon or other physial entity it uses anensemble of systems as single qubit representation. As a diret onsequene,the measurement is also an ensemble average. Furthermore, it is tehniallyinfeasible to prepare the ensemble in a speial state suh as the ground state,therefore the initial state will be the thermal equilibrium state:

|ρ〉 =
e−βH

Z , (2.2.1)where H is the Hamiltonian of the system, β = 1
kBT and Z = Trace(eβH )is the partition funtion normalisation to ensure that the trae of ρ is equalto 1. For modest �elds at room temperature we an use the approximation:

|ρ〉 ≈ 2−n (1 − βH ) , (2.2.2)where the system has n spins. As spin-spin ouplings are small ompared tothe preession frequenies, we an interpret the thermal state density matrixas a mixture of the pure states |00 . . . 0〉, . . . , |11 . . . 1〉.The prinipal output of an experiment is the free indution deay signal:
V (t) = V0 Tr

(

e−iH tρeiH t(iXk + Yk)
)

, (2.2.3)where Xk and Yk operate only on the spin k, and V0 is a onstant that de-pends on the oil, the quality fator and the sample volume. This indutionsignal has an exponential deay, whih is aused by several fators. Theinhomogeneity of the stati magneti �eld, spin-spin oupling resulting inphase randomisation and thermalisation of the spins to their equilibrium areall ontributing to the exponential deay of the signal.For suessful quantum omputation we need to perform unitary transfor-mations to a properly initialized qubit and to measure the output. In theensemble approah of NMR quantum omputing several problems need to be
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38 CHAPTER 2. NMR AND QUANTUM COMPUTINGaddressed. First, how an we use the thermal state (2.2.1) to initialize oursystem ? How an we perform arbitrary unitary transforms on this state ?Most important of all, how an an ensemble average measurement produethe same results as projetive quantum measurements ?2.2.2 Labeling the qubitsThe initial state of our system is the thermal state. In order to perform quan-tum omputation, we want to have an initial state of qubits |0 · · · 0〉. Thereare several tehniques to obtain this initial state from the thermal state.These tehniques are alled labeling tehniques. We onsider the temporallabeling tehnique, whih is based on the fat that quantum operations arelinear and that observables measured in NMR are traeless. Suppose thatour initial thermal state for a two spin system is the density matrix:
ρ0 =









a1 0 0 0
0 a2 0 0
0 0 a3 0
0 0 0 a4









, (2.2.4)where the ai are positive real numbers that sum to 1. Supposing furthermorethat we an overome our seond problem of performing unitary transforma-tions, we use SWAP-gates to obtain states with permuted populations:
ρ1 =









a1 0 0 0
0 a3 0 0
0 0 a4 0
0 0 0 a2









, ρ2 =









a1 0 0 0
0 a4 0 0
0 0 a2 0
0 0 0 a3









. (2.2.5ab)A unitary quantum omputation U is applied to eah of these three thermalstates in three separate experiments at di�erent times, resulting in threedi�erent outomes Ck:
Ck = UρkU

−1. (2.2.6)We take the sum of these three outomes to obtain the following result:
∑

k

Ck =
∑

k

UρkU
−1

= U

(

∑

k

ρk

)

U−1

= (4a1 − 1)U









1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









U−1 + (1 − a1)









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









.(2.2.7)
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2.2. QUANTUM COMPUTING WITH NMR 39In NMR the only observables that are measured, are traeless observables.Let M be suh an observable. We have:
Tr

(

∑

k

CkM

)

=
∑

k

Tr (CkM)

= (4a1 − 1)Tr









U









1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









U−1M









= (4a1 − 1)Tr
(

U |00〉〈00|U−1
)

.

(2.2.8)
Therefore the sum of the three outomes is proportional to the outomeof an initial state |00〉. This tehnique an always be aomplished if thedeoherene time is su�iently long. It is also possible to perform thesedi�erent experiments at the same time but at a di�erent spae, using forinstane magneti �eld gradients. In that ase we all the tehnique spatiallabeling.2.2.3 Unitary transformationsIn order to perform arbitrary single qubit operations it is su�ient to applya large RF at the orret frequeny. We onsider the following three rotationoperators:

Rx(θ) = e−
iσXθ

2

=

(

cos θ
2 −i sin θ

2

−i sin θ
2 cos θ

2

)

,
(2.2.9a)

Ry(θ) = e−
iσY θ

2

=

(

cos θ
2 − sin θ

2

sin θ
2 cos θ

2

)

,
(2.2.9b)

Rz(θ) = e−
iσZθ

2

=





e−
iθ
2 0

0 e
iθ
2



 .
(2.2.9)In the Bloh sphere notation of qubits, these operators de�ne rotations of anangle θ around the three oordinate axes. A rotation around an arbitraryaxe û = (ux, uy, uz) is given by:

Rû(θ) = e−
iθ~σ·û

2

= cos θ
2I − i sin θ

2

(

σXux + σY uy + σZuz

)

.
(2.2.10)
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40 CHAPTER 2. NMR AND QUANTUM COMPUTINGLet R1 = Rx1
(π

2 ) be a rotation of π
2 around the x-axis of the �rst qubit andde�ne R2 likewise for the seond qubit. We have the identity:

R2
i e

−iaσZ
i tR2

i = eiaσZ
i t. (2.2.11)This property is alled the refousing property and it is used as a tehniqueto remove time evolution.The ControlNot gate is built from a ControlZ gate, just as in other physialrealizations. This CZ gate is built by using the salar J-oupling betweenqubits, whih are indiret interations, mediated by eletrons shared througha hemial bond. We have the following identity:

√
ie

iπσZ
1 σZ

2

4 e−
iπσZ

1

4 e−
iπσZ

2

4 = CZ. (2.2.12)So we an build the ControlZ gate and from equation (1.5.10) we an on-strut a ControlNot gate. We therefore have the basi operators to do quan-tum omputation.2.2.4 Ensemble measurementsEnsemble measurements are fundamentally di�erent from measurements ofa single series of qubits. Quantum algorithms are designed, suh that nomatter what state the qubit ollapses to, the resulting measured amplitudewill tell us something meaningful. In Shor's fatoring algorithm for instane,we obtain a random fration p
q , with p a random integer and q the outomethat will be extrated in the lassial postproessing phase. In an ensemblemeasurement we will not obtain this random fration p

q , but rather an averageover a large number of these kind of frations. The problem is that thisaverage does not ontain any meaningful information that an be extrated.This di�ulty an be overome under ertain onditions. If we are ableto build quantum gates that an do the lassial postproessing part, thenit is possible to have meaningful ensemble measurements. The idea is towait for the measurement until after the postproessing part is done in aquantum omputational way and only then measure the outome. In theexample above, if we apply the ontinued fration algorithm as a quantumalgorithm, then our outome would always be q. The average would thereforealso always be q. This tehnique does beg the following question: if we ando the postproessing on a quantum omputer, is it not a better idea toalways do the postproessing in this fashion ? There are several reasonsnot to do so. While Fourier Transformations have exponential speedup on aquantum omputer, other algorithms do not have this advantage. Moreover,the deoherene on quantum omputers is muh more important than thedeoherene on lassial omputers, where there is hardly deoherene at all.If we are obliged to do the postproessing also quantum omputationally,that e�etively redues the number of gate operations we an use for the
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2.3. DRAWBACKS 41main part of a quantum algorithm before deoherene sets in. It is thereforepreferable to have a lassial postproessing part of a quantum algorithm.Nevertheless, ensemble measurement an be given a useful meaning, but wehave to adapt the quantum algorithms in order for the outome to be useful.2.3 DrawbaksThe physial realization of an NMR quantum omputer by labeling atoms ofmoleules as qubits has met with impressive suesses. The fatoring of thenumber 15 by using Shor's fatoring algorithm on 7 qubits an be onsideredthe high mark of NMR as a quantum omputer [VSB+01℄. No other physialrealization has so far been able to repeat this result. The NMR approahhas nevertheless met with severe ritiism.From the point of view of long term development, physial realizations ofquantum omputers need to have several nie properties. One of them issalability. If we an realize an N -qubit quantum omputer in some sort ofphysial realization, it should be reasonable to hope that an (N + 1)-qubitquantum omputer an be realized by just slightly widening the physialonstraints and some small additional e�ort. In lassial omputers the ana-log is lear: if we are able to plae N hips on a iruit board, we expetthat plaing (N + 1) hips would require some arhitetural e�ort, some de-signing onstraints, but no fundamental problem whatsoever. The problemwith the urrent approah of NMR quantum omputing is that an N -qubitquantum omputer would be some kind of ompliated moleule, with eahqubit some properly labeled atom in this moleule. If we would like to buildan (N +1)-qubit quantum omputer we annot simply add another qubit tothe system. We would have to design a new moleule altogether. Therefore,the NMR approah to quantum omputing laks salability.Another di�ulty with using atoms of spei�ally designed moleules forquantum omputing is the inherent arhiteture of the qubits. As we use theatoms of a moleule for qubits, some qubits will have quite some distanebetween them. The salar oupling between these qubits, whih is needed tomake a CNOT operator, will be rather weak. Therefore it will be di�ult tohave diret operations between these qubits. It is possible to irumvent thisproblem by using a ellular automata style arhiteture, where an operationon distant qubits will be exeuted by a series of loal operations moving fromone qubit to the other qubit. While this approah may be possible, it willertainly ome with an additional ost of extra operations whih slow downthe algorithms to be exeuted.A third di�ulty is the weak signal beause of the labeling tehniques used.By repeating experiments in a permutation, suh that all other ground statesexept the initialization ground state anel out, we may ahieve initializa-tion, but the probability of the initialization state will not be inreased. If we
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42 CHAPTER 2. NMR AND QUANTUM COMPUTINGwant to initialize our system in the ground state |0 · · · 0〉, then the probabilityof this state is:
p0···0 =

1

Z 〈0 · · · 0|e−βH |0 · · · 0〉. (2.3.1)This probability is proportional to n2−n, if we have a moleule with n qubits.Therefore the signal will derease exponentially if the number of qubits in-reases. This problem might also be overome by improving the labelingtehniques and by using optial pumping methods, but there will always bea derease in signal if the number of qubits inreases.The last ritiism to the NMR approah for quantum omputing is the mostsevere. It starts with the remark that for quantum omputing to be e�ientwe need to be able to have entangled states [LP01℄. That is to say states ofthe form
|ab〉, (2.3.2)that annot be separated into two separate states

|a〉 ⊗ |b〉. (2.3.3)The mixed thermal state that we use in NMR quantum omputing does notexhibit an entangled nature [BCJ+99℄ and it an therefore be argued that noreal quantum omputing takes plae in an NMR quantum omputer. Thisobjetion does not put into question the NMR approah in itself, but ratherthe use of thermal initialization states. As NMR quantum omputing seemsto need these thermal states, this seems like an insurmountable problem.So what are the problems that NMR quantum omputing needs to over-ome ? Salability, arhiteture, signal loss in ase of lots of qubits and thelak of entanglement in the so alled thermal state.In the next hapter we will try a di�erent NMR approah where all theseproblems an be addressed. Our approah has of ourse problems of its ownand whether any suessful physial implementation of our sheme will berealized remains to be seen.te
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Curiosity killed the at, but fora while I was a suspet.Steven WrightChapter 3Reviving the Nulear MagnetiResonane Approah3.1 IntrodutionAs we noted at the end of the previous hapter, the NMR approah to quan-tum omputing has lately met with rather severe ritiism and has slowlybeen fading from the �eld of physial realizations. In 2001, bulk liquid NMRwas the hotbed of quantum omputation and physial realizations of quan-tum omputers, but in the last years no major publiation has appeared thatontinues to propose this approah for a physial realization. In order forbulk liquid NMR to be made viable again, at least three of the followingproblems need to be solved:1. Salability: A major objetion to the NMR approah is the fatthat it has no salability whatsoever. Even augmenting the number ofqubits by one would demand an entirely di�erent moleule on whihthe qubits are labeled.2. Deoherene: The thermal approah as initialization sheme forquantum omputation has as a diret onsequene that the signal de-reases exponentially if the number of qubits inreases.3. Entanglement: The thermal approah does not exhibit entangledquantum states. These states are essential in the sense that withoutthem, quantum omputing annot be faster than lassial omputing.4. Arhiteture: The ideal arhiteture for a quantum omputer is onewhere every qubit an ommuniate diretly with every other qubit.In moleules this arhiteture is naturally unahievable and we have touse indiret interations between distant qubits.It is lear that the mixed thermal state is a major problem. If we ould workwith pure states, than we would not need to have a labeling sheme whih43
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44 CHAPTER 3. REVIVING THE NMR APPROACHdereases the signal exponentially and we would not need to worry about nothaving entangled quantum states. We therefore reonsider bulk liquid NMR,but instead of using atoms on a spei�ally designed moleule as qubits, wewill use magneti �eld gradients to reate di�erent resonane frequenies forspatially separated parts of the liquid. We then proeed to assign to spei�resonane frequenies the value of a logial qubit. We build a frameworkaround this approah in whih we show that we an properly initialize thissystem. This in itself lifts three of the major objetions: we no longer needto use a mixed thermal state and using magneti �eld gradients allows us tohave an easily salable quantum system. The arhiteture objetion remainsfor the moment unaddressed as this problem only beomes an issue if wehave a working system of more than some qubits. It is however oneptuallynot an insurmountable problem. For starters, via an indiret approah withinteration via nearest neighbour qubits, there will be some loss of e�ieny,but it an be shown [Wat95, Llo93℄ that this still represents a universalquantum omputer. Another reason why the arhiteture need not be anissue is the fat that we an potentially use magneti �eld gradients in threediretions in order to obtain more neighbours for eah qubit.The main problem with our approah is that while moleules have an obviousinteration for qubits by using the salar interation via the shared eletronloud, we do not have suh an obvious interation. We show that we annotdiretly use the dipole moment between qubits as this is averaged away tozero, but we may use the long-range dipolar e�et, whih is not averaged tozero beause of the geometrial onstraints of the sample. This is still workin progress and it is as of yet unlear whether this approah will atuallyresult in a useful interation between qubits.In the rest of this hapter we �rst desribe the framework in whih ouromputations are exeuted. Via this framework we obtain the methods tomake single qubit gates as well as how to initialize these qubits. We onludewith a roadmap whih if followed suessfully should lead to a working NMRquantum omputer. Those steps in this roadmap whih have already beenexeuted will be given together with the experimental data to support them.3.2 Framework for Quantum Computing by Nu-lear Magneti Resonane3.2.1 One spin 1
2Stati �eldFor one nulear spin 1
2 in a ~B0 magneti �eld, the Hamiltonian is:

H1 = −~µ · ~B0

= −γ~I1 · ~B0,
(3.2.1)

te
l-0

05
34

86
4,

 v
er

si
on

 1
 - 

12
 N

ov
 2

01
0



3.2. FRAMEWORK FOR QUANTUM COMPUTING 45where γ is the gyromagneti ratio of the nulear spin and ~I1 is the spin thatveri�es the following equation:
~I1 =

1

2
~~σ, (3.2.2)with ~σ a vetor de�ned by the following Pauli matries:

σX =

(

0 1
1 0

)

, σY =

(

0 −i
i 0

)

, σZ =

(

1 0
0 −1

)

. (3.2.3ab)The matrix notation of equation (3.2.1) is given by:
H1 = −1

2γ~

(

BZ BX − iBY

BX + iBY −BZ

)

. (3.2.4)By onvention, the vetor ~B0 = (BX , BY , BZ) is plaed in the Oz-diretion,that is ~B0 = (0, 0, B0) and the xOy-plane is alled the transverse plane.Therefore the matrix form of the Hamiltonian redues to:
H1 = −1

2γ~

(

B0 0
0 −B0

)

. (3.2.5)The two eigenvalues of the Hamiltonian H1, whih give the energy of thequantum states, are:
E+ = −1

2
γ~B0, E− =

1

2
γ~B0, (3.2.6ab)whih have the following two orresponding eigenvetors:

|+〉 =

(

1
0

)

, |−〉 =

(

0
1

)

. (3.2.7ab)We will use these eigenvetors as our anonial basis for omputation. If wehave more than one spin our anonial basis will not neessarily be the basisof eigenvetors. Sometimes we will use the qubit notation |0〉, |1〉 in steadof |+〉, |−〉.The probability for a spin 1
2 to be in either of these states is equal to 1

2 at
T = 0. At higher temperatures the probability to oupy a state dependson the temperature T. We an desribe the wave funtion as:

∣

∣ψ(0)
〉

= a|+〉 + b|−〉, (3.2.8a)
|a|2 + |b|2 = 1. (3.2.8b)The wave funtion for a spin 1

2 partile an be written as:
∣

∣ψ(0)
〉

=
1√
2

(

e−
iφ
2 |+〉 + e

iφ
2 |−〉

)

=
1√
2





e−
iφ
2

e
iφ
2



 .

(3.2.9)
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46 CHAPTER 3. REVIVING THE NMR APPROACHThe time evolution far from the speed of light ~c is given by the Shrödingerequation:
i~∂
∣

∣ψ1(t)
〉

∂t
= H

∣

∣ψ1(t)
〉

. (3.2.10)If we write
∣

∣ψ1(t)
〉

=

(

x(t)
y(t)

)

, (3.2.11)then we have the following di�erential equations:
i~

(

ẋ(t)
ẏ(t)

)

= −1
2γ~

(

B0 0
0 −B0

)

·
(

x(t)
y(t)

)

= 1
2~

(

ω0x(t)
−ω0y(t)

)

,

(3.2.12)where
ω0 = −γB0 (3.2.13)is the resonane or Larmor frequeny. The following time dependent wavefuntion is the obvious solution of this system of equations:
∣

∣ψ1(t)
〉

=
1√
2





e−
i(ω0t+φ)

2

e
i(ω0t+φ)

2



 . (3.2.14)The e�et of an RF magneti �eldIn NMR a transition between the two states |+〉 and |−〉 is obtained by a
B1 magneti �eld rotating in the transverse plane.

~z

B0

~x

~y

~B1

α

Figure 3.1: Magneti �eld ~B1 rotating in the transverse plane.
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3.2. FRAMEWORK FOR QUANTUM COMPUTING 47This �eld is generated by an eletromagneti RF wave obtained by an os-illating urrent in a solenoid surrounding the spin sytem. In NMR spe-trometry the phase α of the RF �eld an be ontrolled. In this ase theHamiltonian has non-diagonal elements due to the RF magneti �eld ~B1rotating around ~B0 with an angular veloity ω:
HRF(t) = −1

2
γ~

(

B0 B1e
−i(ωt+α)

B1e
i(ωt+α) −B0

)

. (3.2.15)In this ase the time evolution is no longer trivial. We have the followingdi�erential equations:
i~∂
∣

∣ψRF(t)
〉

∂t
= HRF(t)

(

x(t)
y(t)

)

= 1
2~

(

ω0 ω1e
−i(ωt+α)

ω1e
i(ωt+α) −ω0

)

·
(

x(t)
y(t)

)

,

(3.2.16)where
ω1 = −γB1. (3.2.17)In the time-independent ase these equations obviously redue to the equa-tions (3.2.9). For the time-dependent ase we need to solve the followingdi�erential equations:
(

ẋ(t)
ẏ(t)

)

= − i

2

(

ω0x(t) + ω1e
−i(ωt+α)y(t)

ω1e
i(ωt+α)x(t) − ω0y(t)

)

. (3.2.18)To solve these two equations we make the following substitutions:
p(t) = x(t)e

iω0t
2 , (3.2.19a)

q(t) = y(t)e−
iω0t
2 . (3.2.19b)This leads to the following equations:

ṗ(t) =

(

ẋ(t) +
iω0

2
x(t)

)

e
iω0t
2 , (3.2.20a)

q̇(t) =

(

ẏ(t) − iω0

2
y(t)

)

e−
iω0t
2 . (3.2.20b)Therefore we have that

ṗ(t) =

(

− i

2

(

ω0x(t) + ω1e
−i(ωt+α)y(t)

)

+ iω0

2 x(t)

)

e
iω0t
2

= − iω1

2
e−i(ωt+α)y(t)e

iω0t
2 (3.2.21a)

= − iω1

2
q(t)ei

(

(ω0−ω)t−α
)

,
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48 CHAPTER 3. REVIVING THE NMR APPROACHand
q̇(t) =

(

− i

2

(

ω1e
i(ωt+α)x(t) − ω0y(t)

)

− iω0

2
y(t)

)

e−
iω0t
2

= − iω1

2
ei(ωt+α)x(t)e−

iω0t
2 (3.2.21b)

= − iω1

2
p(t)e−i

(

(ω0−ω)t−α
)

.When we take the seond derivative of p(t) we obtain the following seondorder di�erential equation:
p̈(t) = − iω1

2
q̇(t)ei

(

(ω0−ω)t−α
)

+ i(ω0 − ω)ṗ(t)

= − iω1

2

(

− iω1

2
p(t)e−i

(

(ω0−ω)t−α
)

ei
(

(ω0−ω)t−α
)

)

+ i(ω0 − ω)ṗ(t)

= i(ω0 − ω)ṗ(t) − ω2
1

4
p(t). (3.2.22)This is equivalent to

p̈(t) − i(ω0 − ω)ṗ(t) +
ω2

1

4
p(t) = 0. (3.2.23)Let λ± be the solutions of the equation

λ2 − i(ω0 − ω)λ+
ω2

1

4
= 0. (3.2.24)We have

λ± =
i
(

(ω0 − ω) ±
√

(ω0 − ω)2 + ω2
1

)

2
. (3.2.25)We have that

p(t) = C1e
λ+t + C2e

λ−t, (3.2.26)and
x(t) = p(t)e−

iω0t
2

=
(

C1e
λ+t + C2e

λ−t
)

e−
iω0t
2

= e−
iωt
2

(

C1e
i
√

(ω0−ω)2+ω2
1t

2 + C2e
−

i
√

(ω0−ω)2+ω2
1t

2

)

,

(3.2.27)
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3.2. FRAMEWORK FOR QUANTUM COMPUTING 49with initial value
x(0) = 1√

2
e−

iφ
2 . (3.2.28)A similar omputation for y(t) leads to:

y(t) = e
iωt
2

(

C3e
i
√

(ω0−ω)2+ω2
1t

2 + C4e
−

i
√

(ω0−ω)2+ω2
1t

2

)

, (3.2.29a)
y(0) = 1√

2
e

iφ
2 . (3.2.29b)As x(t), y(t) verify the di�erential equations:
ẋ(t) = − i

2

(

ω0x(t) + ω1e
−i(ωt+α)y(t)

)

, (3.2.30a)
ẏ(t) = − i

2

(

ω1e
i(ωt+α)x(t) − ω0y(t)

)

, (3.2.30b)we obtain the following equations for the onstants Ci:
C1 + C2 = 1√

2
e−

iφ
2 , C3 + C4 = 1√

2
e

iφ
2 , (3.2.31ab)

(∆ +R)C1 + ω1e
−iαC3 = 0, (∆ −R)C2 − ω1e

−iαC4 = 0, (3.2.31d)where
∆ =

√

(ω0 − ω)2 + ω2
1, R = ω0 − ω. (3.2.31ef)The omputation of the onstants Ci is now straightforward. We have

C1 = 1
2
√

2

(

(1 − R
∆)e−

iφ
2 − ω1e−iα

∆ e
iφ
2

)

, (3.2.32a)
C2 = 1

2
√

2

(

(1 + R
∆)e−

iφ
2 + ω1e−iα

∆ e
iφ
2

)

, (3.2.32b)
C3 = 1

2
√

2

(

−ω1eiα

∆ e−
iφ
2 + (1 + R

∆)e
iφ
2

)

, (3.2.32)
C4 = 1

2
√

2

(

ω1eiα

∆ e−
iφ
2 + (1 − R

∆)e
iφ
2

)

. (3.2.32d)These expressions are simpli�ed if the angular veloity ω of the RF magneti�eld veri�es the resonane ondition:
ω = ω0. (3.2.33)In that ase we have

∆ = ω1, R = 0, (3.2.34ab)
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50 CHAPTER 3. REVIVING THE NMR APPROACHand the oe�ents Ci simplify to:
C1 = 1

2
√

2

(

e−
iφ
2 − e

i(φ−2α)
2

)

, (3.2.35a)
C2 = 1

2
√

2

(

e−
iφ
2 + e

i(φ−2α)
2

)

, (3.2.35b)
C3 = 1

2
√

2

(

−e−
i(φ−2α)

2 + e
iφ
2

)

, (3.2.35)
C4 = 1

2
√

2

(

e−
i(φ−2α)

2 + e
iφ
2

)

. (3.2.35d)This leads to the following equations:
x(t) = e

−
iω0t
2

2
√

2

(

(

e−
iφ
2 − e

i(φ−2α)
2

)

e
iω1t
2 +

(

e−
iφ
2 + e

i(φ−2α)
2

)

e−
iω1t
2

)

,

(3.2.36a)
y(t) = e

iω0t
2

2
√

2

(

(

− e−
i(φ−2α)

2 + e
iφ
2

)

e
iω1t
2 +

(

e−
i(φ−2α)

2 + e
iφ
2

)

e−
iω1t
2

)

.

(3.2.36b)We an write the evolution in matrix notation:
∣

∣ψRF(t)
〉

= A(ω, ω0, ω1, α) ·
∣

∣ψRF(0)
〉

, (3.2.37)where
A(ω, ω0, ω1, α) =

(

a b
c d

) (3.2.38)is a rotation in the omplex plane. So in order to ompute the oe�ientsof this matrix we need to solve the equation
(

x(t)
y(t)

)

=

(

a b
c d

)

·
(

x(0)
y(0)

)

. (3.2.39)This leads to the following equation:








e−
iωt
2

(

C1e
i∆t
2 + C2e

− i∆t
2

)

e
iωt
2

(

C3e
i∆t
2 + C4e

− i∆t
2

)









=
1√
2

(

a b
c d

)

·





e−
iφ
2

e
iφ
2



 . (3.2.40)
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3.2. FRAMEWORK FOR QUANTUM COMPUTING 51The solution of this matrix equation is:
A(ω, ω0, ω1, α) =











e−
iωt
2
(

cos ∆t
2 − iR

∆ sin ∆t
2

)

− iω1e
−

i(ωt+2α)
2

∆ sin ∆t
2

− iω1e

i(ωt+2α)
2

∆ sin ∆t
2 e

iωt
2
(

cos ∆t
2 + iR

∆ sin ∆t
2

)











.(3.2.41)It is possible to separate the stati �eld evolution from this equation. Wethen obtain:
A(ω, ω0, ω1, α) = E(ω) · R(ω, ω0, ω1, α), (3.2.42)whih leads to

E(ω) =





e−
iωt
2 0

0 e
iωt
2



 , (3.2.43a)
R(ω, ω0, ω1, α) =

(

cos ∆t
2 − iR

∆ sin ∆t
2 − iω1e−iα

∆ sin ∆t
2

− iω1eiα

∆ sin ∆t
2 cos ∆t

2 + iR
∆ sin ∆t

2

)

. (3.2.43b)At the resonane frequeny, this matrix redues to:
A(ω0, ω0, ω1, α) =





e−
iω0t
2 0

0 e
iω0t
2



 ·
(

cos ω1t
2 −ie−iα sin ω1t

2

−ieiα sin ω1t
2 cos ω1t

2

)

.(3.2.44)The e�et of an RF pulse is usually desribed [CTDL77℄ as a rotation ofangle θ1 = ω1t in the spin spae arround the vetor ~u = (ux, uy, uz):
R

1

2

u,θ1
=

(

cos θ1

2 − iuz sin θ1

2 (−iux − uy) sin θ1

2

(−iux + uy) sin θ1

2 cos θ1

2 + iuz sin θ1

2

)

. (3.2.45)In NMR ~u lies in the transverse plane: ~u = (cosα, sinα, 0) and thereforerotations indued in NMR are restrited to:
R

1

2

u,θ1
=

(

cos θ1

2 −ie−iα sin θ1

2

−ieiα sin θ1

2 cos θ1

2

)

. (3.2.46)We notie that this is exatly the transformation matrix that we have om-puted, exept for the fat that the time evolution of the stati �eld ~B0 ismissing in this equation.

te
l-0

05
34

86
4,

 v
er

si
on

 1
 - 

12
 N

ov
 2

01
0



52 CHAPTER 3. REVIVING THE NMR APPROACHMeasurementMeasurement in NMR is obtained by the urrent indued in the same solenoidas that used for perturbing the spin system. The urrent is indued by the ro-tation of the nulear spin magneti momenta in the solenoid. At equilibriumthere is no indued urrent due to the absene of nulear magnetization. Af-ter an RF pulse (ω1, α) the magnetization of a spin 1
2 at temperature T = 0is equal to:

M(ω, ω0, ω1, α, φ, t) = ~µ = γ~I

= 1
2γ~

(

|x(t)|2 − |y(t)|2
)

.
(3.2.47)To ompute the magnetization, we have to ompute

(

x(t) y(t)
)

·
(

x̄(t)
−ȳ(t)

)

. (3.2.48)We observe the following identity for the rotation matrix A(ω, ω0, ω1, α):
Ā(ω, ω0, ω1, α) =

(

ā b̄
c̄ d̄

)

=

(

d −c
−b a

) (3.2.49)
=





e
iωt
2 0

0 e−
iωt
2



·
(

cos ∆t
2 + iR

∆ sin ∆t
2

iω1eiα

∆ sin ∆t
2

iω1e−iα

∆ sin ∆t
2 cos ∆t

2 − iR
∆ sin ∆t

2

)

.Therefore the magnetization an be written as
M(ω, ω0, ω1, α, φ, t) = 1

2γ~
(

|x(t)|2 − |y(t)|2
)

=
1

2
γ~
(

x(t) y(t)
)

·
(

x̄(t)
−ȳ(t)

)

=
1

2
γ~
(

x(0) y(0)
)

·
(

a c
b d

)

·
(

d −c
b −a

)

·
(

x̄(0)
ȳ(0)

)

=
γ~

4

(

e−
iφ
2 e

iφ
2

)

·
(

ad+ bc −2ac
2bd −(ad+ bc)

)

·





e
iφ
2

e−
iφ
2



 .
(3.2.50)After a few easy manipulations we get

M(ω, ω0, ω1, α, φ, t) = γ~ℜ
(

ab̄e−iφ
)

. (3.2.51)
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3.2. FRAMEWORK FOR QUANTUM COMPUTING 53If we replae the matrix oe�ients a, b, c, d by their value and simplify thisequation we obtain the following formula for the magnetization:
M(ω, ω0, ω1, α, φ, t) =

γ~ω1 sin ∆t
2

∆

(

R
∆ sin ∆t

2 cos(φ− α) + cos ∆t
2 sin(φ− α)

)

.(3.2.52)At the resonane frequeny the magnetization redues to
M(ω1, α, φ, t) = γ~

2 sinω1t sin(φ− α). (3.2.53)Single qubit gatesThe important single qubit gates are the NOT gate, the Hadamard gate andan arbitrary rotation gate. An apparently trivial gate, the identity gate, isalso an essential ingredient for quantum omputing. As the wave funtionevolves even in a stati �eld, we annot simply assume that not applyingan RF is the same as applying the identity operator. To ahieve the identityoperator we need to solve the following equation:




e−
iωt
2 0

0 e
iωt
2



 ·
(

cos ∆t
2 − iR

∆ sin ∆t
2 − iω1e−iα

∆ sin ∆t
2

− iω1eiα

∆ sin ∆t
2 cos ∆t

2 + iR
∆ sin ∆t

2

)

=

(

1 0
0 1

)

.(3.2.54)This leads to the following onditions:
∆t ≡ 0 (mod 2π), (3.2.55a)
ωt ≡ ∆t (mod 2π). (3.2.55b)The NOT gate is de�ned as:

X =

(

0 1
1 0

)

. (3.2.56)In order to perform the NOT-gate we need to have the following equality:




e−
iωt
2 0

0 e
iωt
2



 ·
(

cos ∆t
2 − iR

∆ sin ∆t
2 − iω1e−iα

∆ sin ∆t
2

− iω1eiα

∆ sin ∆t
2 cos ∆t

2 + iR
∆ sin ∆t

2

)

=

(

0 1
1 0

)

.(3.2.57)This an be redued to
(

cos ∆t
2 − iR

∆ sin ∆t
2 − iω1e−iα

∆ sin ∆t
2

− iω1eiα

∆ sin ∆t
2 cos ∆t

2 + iR
∆ sin ∆t

2

)

=





0 e
iωt
2

e−
iωt
2 0



 . (3.2.58)
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54 CHAPTER 3. REVIVING THE NMR APPROACHTherefore we have
− iω1e−iα

∆ sin ∆t
2 = e

iωt
2 , (3.2.59a)

− iω1eiα

∆ sin ∆t
2 = e−

iωt
2 . (3.2.59b)Taking the produt of the lefthand and righthand side of these equations weget

−ω2
1 sin2 ∆t

2
∆2 = 1. (3.2.60)As all parameters are reals, this has no solution. The best we an do is thefollowing gate:

i

(

0 1
1 0

)

, (3.2.61)by setting the parameters as follows:
ω = ω0, (3.2.62a)

ω1t ≡ π (mod 4π), (3.2.62b)
ωt ≡ −2α (mod 2π). (3.2.62)The Hadamard operator has been de�ned as:
H =

1√
2

(

1 1
1 −1

)

. (3.2.63)To obtain the Hadamard gate we have to set the parameters, suh that:




e−
iωt
2 0

0 e
iωt
2



·
(

cos ∆t
2 − iR

∆ sin ∆t
2 − iω1e−iα

∆ sin ∆t
2

− iω1eiα

∆ sin ∆t
2 cos ∆t

2 + iR
∆ sin ∆t

2

)

=
1√
2

(

1 1
1 −1

)

.(3.2.64)This is impossible to attain as the pair of equations:
e−

iωt
2
(

cos ∆t
2 − iR

∆ sin ∆t
2

)

=
1√
2
, (3.2.65a)

e
iωt
2
(

cos ∆t
2 + iR

∆ sin ∆t
2

)

= − 1√
2
. (3.2.65b)have omplex onjugates on the lefthand side but not omplex onjugateson the righthand side. We an obtain the following matrix:

− i√
2

(

1 1
1 −1

)

, (3.2.66)
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3.2. FRAMEWORK FOR QUANTUM COMPUTING 55by setting the parameters as follows:
ωt = −2α+ 4kπ, (3.2.67a)

sin ∆t
2 = ∆

ω1

√
2
, (3.2.67b)

cos ωt
2 = R

ω1
. (3.2.67)At the resonane frequeny, the last two onditions redue to:

sin ω1t
2 = 1√

2
, (3.2.68a)

cos ωt
2 = 0. (3.2.68b)The arbitrary rotation gate that we want to build is the rotation:

P =





e
iθ
2 0

0 e−
iθ
2



 , (3.2.69)where cos θ = 3
5 . This an easily be ahieved by the following parametersettings:

∆t ≡ 0 (mod 4π), (3.2.70a)
ωt ≡ −θ (mod 4π). (3.2.70b)We also need the gates that initialize the qubit in either the state |0〉 = |+〉or in the state |1〉 = |−〉. To do so we do not look at the rotation andevolution matrix, but at the magnetization formula. For simpliity we willassume ω = ω0. A qubit in the state |+〉 should give a magnetization of γ~

2 ,while a qubit in the state |−〉 should give a magnetization of −γ~

2 . This leadsto the following equations:
1 = sinω1t sin(φ− α), (3.2.71a)

−1 = sinω1t sin(φ− α). (3.2.71b)for respetively qubit |0〉 or qubit |1〉. This leads to the following onditions:
α ≡ φ+ π

2 (mod 2π), (3.2.72a)
ω1t ≡ π

2 (mod 2π), (3.2.72b)for initializing in the state |0〉 and
α ≡ φ+ π

2 (mod 2π), (3.2.73a)
ω1t ≡ −π

2 (mod 2π), (3.2.73b)for initializing in the state |1〉.
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56 CHAPTER 3. REVIVING THE NMR APPROACH3.2.2 Two spins 1
2For two spins we onsider two ases: one for a homogeneous magneti�eld ~B0 and one where the two spins are in two di�erent magneti �elds ~BAand ~BB.Two spins in a homogeneous magneti �eldIn this ase the Hamiltonian of the system is:

H2,Hom = −
2
∑

i=1

~µi · ~B0

= −1
2γ~ (~σ1 + ~σ2) · ~B0

= −1
2γ~

(

σx
1 ⊕K σx

2

)

Bx +
(

σy
1 ⊕K σy

2

)

By +
(

σz
1 ⊕K σz

2

)

Bz,

(3.2.74)where
~B0 = (Bx, By, Bz). (3.2.75)We an write equation (3.2.74) in matrix form:

H2,Hom = −1

2
γ~









2BZ BX − iBY BX − iBY 0
BX + iBY 0 0 BX − iBY

BX + iBY 0 0 BX − iBY

0 BX + iBY BX + iBY −2BZ









.(3.2.76)We note that this Hamiltonian an be written as
H2,Hom = H1 ⊕K H1, (3.2.77)where ⊕K is the Kroneker sum (A.7) of two matries.If we plae the z-axis along the homogeneous magneti �eld ~B0, this matrixbeomes

H2,Hom = −1

2
γ~









2B0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2B0









. (3.2.78)We diretly obtain the eigenvalues of the Hamiltonian (3.2.74):
E++ = −γ~B0, (3.2.79a)

E+− = E−+ = 0, (3.2.79b)
E−− = γ~B0. (3.2.79)
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3.2. FRAMEWORK FOR QUANTUM COMPUTING 57The orresponding eigenvetors are:
|++〉 =









1
0
0
0









, |+−〉 =









0
1
0
0









, (3.2.80ab)
|−+〉 =









0
0
1
0









, |−−〉 =









0
0
0
1









. (3.2.80d)The time-dependent wave funtion is given by:
∣

∣ψ2(t)
〉

=
1

2









e−i(ω0t−φ++)

eiφ+−

eiφ−+

ei(ω0t+φ−−)









. (3.2.81)We note that
∣

∣ψ2(t)
〉

=
∣

∣ψ1(t)
〉

⊗
∣

∣ψ1(t)
〉

, (3.2.82)by properly adjusting the phase fators φi.Two spins in di�erent magneti �eldsIf the magneti �elds experiened by spins A and B are respetively ~BAand ~BB, then the Hamiltonian of the system is:
H2 = −

(

(~µA · ~BA) ⊕K (~µB · ~BB)
)

. (3.2.83)If we write this Hamiltonian in matrix form, we obtain the following:
H2 =−γ~

2









BAZ +BBZ BBX − iBBY BAX − iBAY 0
BBX + iBBY BAZ −BBZ 0 BAX − iBAY

BAX + iBAY 0 BBZ −BAZ BBX − iBBY

0 BAX + iBAY BBX + iBBY −BAZ −BBZ









,(3.2.84)where we have
~BA = (BAX , BAY , BAZ), (3.2.85a)
~BB = (BBX , BBY , BBZ). (3.2.85b)If we suppose that both magneti �elds are in the Oz-diretion, this matrixredues to:

H2 = −γ~

2









BA +BB 0 0 0
0 BA −BB 0 0
0 0 BB −BA 0
0 0 0 −(BA +BB)









. (3.2.86)
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58 CHAPTER 3. REVIVING THE NMR APPROACHWe diretly obtain the eigenvalues of the Hamiltonian (3.2.86):
E++ = −1

2
γ~(BA +BB), (3.2.87a)

E+− = −1

2
γ~(BA −BB), (3.2.87b)

E−+ =
1

2
γ~(BA −BB), (3.2.87)

E−− =
1

2
γ~(BA +BB). (3.2.87d)The orresponding eigenvetors are:

|++〉 =









1
0
0
0









, |+−〉 =









0
1
0
0









, (3.2.88ab)
|−+〉 =









0
0
1
0









, |−−〉 =









0
0
0
1









. (3.2.88d)This leads to the following time-dependent wave funtion:
∣

∣ψ2(t)
〉

=
1

2















e−
i
2

(

(ωA+ωB)t−φ++

)

e−
i
2

(

(ωA−ωB)t−φ+−

)

e
i
2

(

(ωA−ωB)t−φ−+

)

e
i
2

(

(ωA+ωB)t−φ−−

)















, (3.2.89)where:
ωA = −γBA, (3.2.90a)
ωB = −γBB. (3.2.90b)As in the homogenous ase, the wave funtion for two independent spins anbe written as a tensor produt of the wave funtion of eah spin:

∣

∣ψ2(t)
〉

=
∣

∣ψ1(t)
〉

ωA
⊗
∣

∣ψ1(t)
〉

ωB
, (3.2.91)by properly adapting the phase fators φi. This is simply done by takingequation (3.2.91) as the proper de�nition for the ase of two spins 1

2 andusing equation (3.2.14) for eah single wave funtion to obtain the following
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3.2. FRAMEWORK FOR QUANTUM COMPUTING 59wave funtion for two spins:
∣

∣ψ2(t)
〉

=
∣

∣ψ1(t)
〉

ωA
⊗
∣

∣ψ1(t)
〉

ωB

=
1

2





e−
i(ωAt+φ1)

2

e
i(ωAt+φ1)

2



⊗





e−
i(ωBt+φ2)

2

e
i(ωB t+φ2)

2





=
1

2















e−
i
2

(

(ωA+ωB)t+(φ1+φ2)
)

e−
i
2

(

(ωA−ωB)t+(φ1−φ2)
)

e
i
2

(

(ωA−ωB)t+(φ1−φ2)
)

e
i
2

(

(ωA+ωB)t+(φ1+φ2)
)















(3.2.92)
The measurement of the two spin 1

2 system is given by the rotation of themagnetization of eah spin in the solenoid. This an be omputed in twodi�erent ways. If we write the wave funtion as
∣

∣ψ2(t)
〉

= a++| + +〉 + a+−| + −〉 + a−+| − +〉 + a−−| − −〉, (3.2.93)then the magnetization is equal to the sum over eah spin of the probabilityof measuring the state |+〉 minus the probability of measuring the state |−〉.For the �rst spin the probability of measuring |+〉 is equal to:
|a++|2 + |a+−|2, (3.2.94)and the probability of measuring |−〉 is equal to:
|a−+|2 + |a−−|2. (3.2.95)A similar omputation for the seond spin gives the following formula for themagnetization:

M = 1
2γ~

(

2|a++|2 − 2|a−−|2
)

. (3.2.96)The seond method of omputing the magnetization is to onsider eah spinseparately with its orresponding wave funtion for one spin. Taking thesum of these magnetizations gives the total magnetization:
M = M1(φ1) +M2(φ2). (3.2.97)Two spins in di�erent magneti �elds with an RF �eldUsing the tensor produt notation we an diretly ompute the wave fun-tion for two spins in an inhomogenous magneti �eld with an RF magneti�eld ~B1 rotating around ~B0 with an angular veloity ω:

∣

∣ψ2(t)
〉

=
∣

∣ψ1(t)
〉

ωA
⊗
∣

∣ψ1(t)
〉

ωB

=
(

E(ω) · R(ωA) ·
∣

∣ψ1(0)
〉

ωA

)

⊗
(

E(ω) · R(ωB) ·
∣

∣ψ1(0)
〉

ωB

)(3.2.98)
=
(

E(ω) ⊗ E(ω)
)

·
(

R(ωA) ⊗R(ωB)
)

·
(

∣

∣ψ1(0)
〉

ωA
⊗
∣

∣ψ1(0)
〉

ωB

)

.
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60 CHAPTER 3. REVIVING THE NMR APPROACHThis desription is the most general possible for two independent spins. Wewould like to �nd a set of parameters, suh that this matrix beomes aControlNOT operator. As the above equation is a tensor produt of twomatries, this would imply that we an write
CNOT = A⊗B. (3.2.99)This leads to the following equality:









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









=

(

a1 a2

a3 a4

)

⊗
(

b1 b2
b3 b4

)

=









a1b1 a1b2 a2b1 a2b2
a1b3 a1b4 a2b3 a2b4
a3b1 a3b2 a4b1 a4b2
a3b3 a3b4 a4b3 a4b4









.

(3.2.100)
We obtain, amongst others, the following equations:

a1b1 = 1, a4b1 = 0, a4b3 = 1. (3.2.101ab)These equations have no solution in C and therefore it is impossible to setthe parameters, suh that the resulting operator on the wave funtion is theControlNot operator. As we have the identity
(A1 ⊗A2) · (B1 ⊗B2) = (A1B1) ⊗ (A2B2), (3.2.102)we annot hope to build a ControlNot operator starting with another oper-ator obtained from an RF wave. The onlusion is that in order to build aCNOT we need an interation between the two spins. We therefore investi-gate whether the dipole-dipole oupling between the two spins an be usedas suh an interation. Before doing so we onsider the ase of N spins.3.2.3 N spinsThe desription we have obtained for the wave funtion of two spins is easilygeneralized. An N spin system in an inhomogenous magneti �eld has thefollowing wave funtion:

∣

∣ψN (t)
〉

=
N
⊗

i=1

∣

∣ψi,ωi
(t)
〉

. (3.2.103)The total magnetization M is given by the sum of all N individual magne-tizations:
M(t) =

N
∑

i=1

Mi(t). (3.2.104)In this desription we have not yet taken into aount the population di�er-enes of the two energy levels in ase of N spins at temperature T .
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3.2. FRAMEWORK FOR QUANTUM COMPUTING 613.2.4 Dipole-dipole ouplingThe Hamiltonian of the dipole-dipole oupling is:
HD =

µ0γ
2

4πr312



~I1 · ~I2 − 3

(

~I1 · ~r12

)

⊗
(

~I2 · ~r12

)

r212



. (3.2.105)We an write equation (3.2.105) in matrix form. First we ompute ~I1 · ~I2:
~I1 · ~I2 =

(

1
2~~σ1

)

·
(

1
2~~σ2

)

=
~2

4







σX
1

σY
1

σZ
1






·







σX
2

σY
2

σZ
2







= ~2

4

(

σX
1 ⊗ σX

2 + σY
1 ⊗ σY

2 + σZ
1 ⊗ σZ

2

)

=
~2

4









1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1









.

(3.2.106)
We proeed with ~I1 · ~r12, where the distane vetor ~r12 is de�ned as:

~r12 =





X
Y
Z



 . (3.2.107)This leads to:
~I1 · ~r12 = 1

2~~σ1 · ~r12

= 1
2~
(

σX
1 X + σY

1 Y + σZ
1 Z
)

=
1

2
~

(

Z X − iY
X + iY −Z

)

.

(3.2.108)Therefore we have:
(

~I1 ·~r12

)

⊗
(

~I2 ·~r12

)

=
~2

4

(

Z X − iY
X + iY −Z

)

⊗
(

Z X − iY
X + iY −Z

)

=
~2

4









Z2 Z(X − iY ) Z(X − iY ) X2 − Y 2 − 2iXY
Z(X + iY ) −Z2 X2 + Y 2 −Z(X − iY )
Z(X + iY ) X2 + Y 2 −Z2 −Z(X − iY )

X2 + 2iXY − Y 2 −Z(X + iY ) −Z(X + iY ) Z2









,(3.2.109)
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62 CHAPTER 3. REVIVING THE NMR APPROACHwhih leads to the following Hamiltonian:
H

′
D =









r2−3Z2 −3Z(X−iY ) −3Z(X−iY ) −3(X2−2iXY −Y 2)

−3Z(X+iY ) −r2+3Z2 2r2−3Z2 3Z(X−iY )

−3Z(X+iY ) 2r2−3Z2 −r2+3Z2 3Z(X−iY )

−3(X2+2iXY −Y 2) 3Z(X+iY ) 3Z(X+iY ) r2−3Z2









,(3.2.110)where
H

′
D =

r2HD

~KD
, r2 = r212, KD =

µ0γ
2~

16πr312
. (3.2.111ab)This Hamiltonian an also be written in matrix form with spherial oordi-nates. This results in:

HD =~KD

0

B

B

B

B

B

@

1−3 cos2 θ −3 sin θ cos θe−iϕ −3 sin θ cos θe−iϕ −3 sin2 θe−2iϕ

−3 sin θ cos θeiϕ −1+3 cos2 θ 2−3 sin2 θ 3 sin θ cos θe−iϕ

−3 sin θ cos θeiϕ 2−3 sin2 θ −1+3 cos2 θ 3 sin θ cos θe−iϕ

−3 sin2 θe2iϕ 3 sin θ cos θeiϕ 3 sin θ cos θeiϕ 1−3 cos2 θ

1

C

C

C

C

C

A

.(3.2.112)As the diretion of ~r12 is random, we should onsider the mean value of eahmatrix element. To do so we ompute the spatial average of eah matrixelement:
āij(θ, ϕ) =

1

2π2

∫ 2π

θ=0

∫ π

ϕ=0
aij(θ, ϕ) sin θ dθdϕ. (3.2.113)This dramatially redues the matrix and HD beomes:

HD = 0. (3.2.114)Therefore we annot use the dipole-dipole oupling as the interation be-tween two spins to build a ControlNot operator.In a homogeneous magneti �eld it is well-known that the dipole-dipole ou-pling is averaged to zero by the random thermal motion in liquids, but ifthe two spins have two di�erent magneti �elds this is no longer the ase.This fat was �rst desribed in 1979 by Deville et al. [DBD79℄, and later byBotwell et al. [BBG90℄ in pure water. These authors have shown long-rangeating dipole-dipole interations in liquid with magneti �eld gradients. The-oretial desriptions of this e�et an be found in [LRVW96, JVB95℄, but forthe moment they are di�ult to use for appliations to quantum omputa-tion. It is therefore neessary to �nd either another interation between thespins that is not averaged to zero or to formalize their approah to long-rangedipole-dipole interations so that it is desribed in the same framework thatwe use.
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3.2. FRAMEWORK FOR QUANTUM COMPUTING 633.2.5 Two oupled spinsIn an inhomogeneous magneti �eld, the Hamiltonian for two oupled spinsis given by:
H3 = H2 + Hc, (3.2.115)where Hc is the Hamiltonian whih desribes the oupling of the two spins.For the moment we do not have a desription for suh a Hamiltonian, butone we do, we an use the same tehniques as desribed earlier: in order to�nd the time evolution of the wave funtion, we have to solve the followingdi�erential equation:

i~∂
∣

∣ψ(t)
〉

∂t
= H3

∣

∣ψ(t)
〉

, (3.2.116)where
∣

∣ψ(t)
〉

=









x1(t)
x2(t)
x3(t)
x4(t)









. (3.2.117)This system of equations an also be written in matrix form:
Ẋ = M ·X, (3.2.118)where Ẋ is the vetor (ẋ1(t), . . . , ẋ4(t)

)T , the matrix M is equal to H3

i~ and
X is the vetor (x1(t), . . . , x4(t)

)T .The solution of this matrix di�erential equation is:
X = etM . (3.2.119)To ompute the exponential of the matrixM , we need to �nd the eigenvetorsof M in order to diagonalize this matrix:

M = U−1DU, (3.2.120)where U is a unitary matrix and D is a diagonal matrix:
D =









λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4









, (3.2.121)with λi the eigenvalues of M . This will lead to a desription of the wavefuntion ∣∣ψ(t)
〉, from whih we an hopefully dedue the parameter settingsto build a CNOT-gate.
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64 CHAPTER 3. REVIVING THE NMR APPROACH3.3 Five Steps to an NMR Quantum ComputerWe want to build an NMR quantum omputer using the framework we de-sribed in the previous setion. The road to a small quantum omputer isessentially the same for any physial realization. For a larger quantum om-puter we need to take into aount many other important steps suh as thedeoherene of the system and the �delity of the qubit operations, but fornow we onentrate on the bare neessities for a quantum omputer howevershortlived this omputer may be. The following steps need to be followed:1. One qubit: the proposed realization needs a lear desription of whatthe physial equivalent of a logial qubit is. We need to understandhow suh a qubit is built and how to properly desribe it. We alsoneed to know how the qubit is initialized and how it is measured.2. Manipulating one qubit: we need to be able to perform arbitraryunitary operations on a single qubit. It is not neessary to be ableto perform any arbitrary unitary operation, but we at least need tohave a generating set that an approximate all unitary operations. Anidentity operator, a NOT operator, a Hadamard operator and a phaseoperator are su�ient.3. More qubits: we need to understand how we an have more than onelogial qubit in our physial system. We have to be able to distinguishbetween di�erent qubits and how we an initialize qubits simultane-ously. We also have to understand how to measure individual qubits.4. Manipulating qubits individually: we have to be able to performthe same generating set of unitary operations on individual qubits. Itis important to have the identity operator, beause while we performan operation on a single qubit, the other qubits evolve in time. Thise�et needs to be undone when we do not want suh an evolution.5. Manipulating qubits together: the power of quantum omputa-tion lies in the entanglement of states and the natural parallelism ofomputation. We therefore need to have a gate whih entangles twoqubits. The CNOT-operator reates entanglement of qubits and is eas-ily desribed. We therefore have to be able to perform a CNOT-gateon two arbitrary qubits. An equivalent entangling gate will do as well,but we onentrate on the CNOT-gate as most quantum algorithmsare desribed with CNOT-gates.These are the steps that we have to ahieve experimentally in order to havea small sale quantum omputer. From that point on, other issues suh as�delity, deoherene and error orretion have to be taken into aount, aswell as a reasonable estimate of the real omputing power of the proposed

te
l-0

05
34

86
4,

 v
er

si
on

 1
 - 

12
 N

ov
 2

01
0



3.4. EXPERIMENTAL RESULTS 65system, but without the �ve steps above, it is no use to think about �delityof gates or error orreting.3.4 Experimental resultsWe desribe our experimental setting as well as the results that we haveobtained so far with our approah.3.4.1 Material and methodsA sample of 10 ml of degassed water was plaed at room temperature in awide-bore magnet with a magneti �eld of 4.7 T (Magnex). The NMR spe-trometer (SMIS) allows a phase preision of the RF pulses of 0.25◦. TheRF pulses had a gaussian shaped intensity with a duration d = 600 µs, afrequeny ω0

2π = 200.137 MHz, and half-width of 3 kHz. The inter pulse delaybetween the ends of the �rst and seond pulse was τ = 1 ms. The NMR sig-nal was deteted in quadrature mode with a sample frequeny of 5 kHz and
8K points. The intensity of the signal is obtained as the modulus of the twoparts given by the quadrature detetion mode.The homogeneity of the magneti �eld was measured by the line width ob-tained by Fourier Transform of the free indution deay (FID) aquired aftera π

2 pulse. The longitudinal relaxation time T1, measured by an inversion-reovery sequene, was 3.2 s and the transverse relaxation time T2, measuredby a Carr-Purell-Meiboom-Gill sequene [CP54, MG58℄ was 1.8 s, slightlydepending on the homogeneity of the magneti �eld.The NMR spetrum of water, as for all liquid samples with no J-oupling,displays a very narrow line due to the motion averaging of the dipole-dipoleoupling. Suh a nulear spin system is highly isolated from its surround-ing and it is well-known that the relaxation time T1 whih haraterizes theenergy exhange with the lattie and the inverse of the line width whihmeasures the deoherene time are very long in high homogeneous magneti�eld.3.4.2 ResultsWe �rst exhibit a marosopi quantum e�et in bulk liquid NMR. Afterthat, we show a method to initialize a qubit.Exhibiting a marosopi quantum e�etWe an show that there is a quantum interferene term in bulk liquid NMRby using a π
2 − τ − π

2 pulse sequene at the resonane frequeny. In ourframework we have not given the magnetization after two pulse sequenes
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66 CHAPTER 3. REVIVING THE NMR APPROACHbut it an be shown that this magnetization is proportional to
M(τ) = C sinω0τ sin β, (3.4.1)where C is a proportionality onstant that depends on the population dif-ferenes and β is the angle between the two pulse sequenes.One an easily see that in absene of free evolution, i.e. τ = 0, there is nosignal. This is due to the fat that in the τ = 0 ase, the π

2 − τ − π
2 sequeneorresponds to a single π pulse on the sample whih indeed gives no signal.In fat, aording to equation (3.4.1), provided that the angle β 6= 0, wehave that M(τ) 6= 0, if and only if the nulear spin state interferene term

sinω0τ is di�erent from zero. In a π/2 − τ − π/2 sequene, the existeneof any NMR signal is then the evidene of the ourrene of nulear spininterferenes.Experimentally, it was impossible for us to tune τ at a time sale smallenough to vary ω0τ over 2π. However, it is possible to ensure over typialexperimental times (a few minutes) an aurate stability of ω0τ , i.e. the rmsmagnitude of the �utuating part of this angle ω0τ remains muh smallerthan 2π. Under this last ondition, one an then plot the NMR signal givenby the π
2 − τ − π

2 sequene as a funtion of β, the relative phase of the two
π
2 pulse �elds and ompare the results to that given by equation (3.4.1). Ifthe experimental data math equation (3.4.1), then the nulear spin inter-ferene term is revealed and also ontrolled.The NMR signal (FID) after a single π

2 pulse is dependent on the homogene-ity of the magneti �eld ~B0.

Figure 3.2: NMR signal of 10 ml of water after one π
2
pulse. The ontinuousline is obtained in a highly homogeneous magneti �eld (∆B0

B0

= 2.0 ·10−8) andthe dashed line in a less homogeneous �eld (∆B0

B0

= 2.7 · 10−7).
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3.4. EXPERIMENTAL RESULTS 67On Fig 3.2 one an see the FID reorded after a single π
2 pulse in a highlyhomogeneous �eld (∆B0

B0
= 2.0 · 10−8, ontinuous line) ompared to a lesshomogeneous one (∆B0

B0
= 2.7 · 10−7, dashed line).With a π

2 − τ − π
2 sequene, it is well-known that NMR gives rise to aneho at a time t = τ after the seond π

2 pulse. This e�et was desribedin 1950 by E. Hahn as spin eho [Hah50℄. Here however, we have measuredthe NMR signal in a very homogeneous magneti �eld and with small interpulse delays where no spin eho is deteted as seen on Fig. 3.3 (ontinuousline). Even in the less homogeneous magneti �eld there is a modulation of

Figure 3.3: NMR signal of 10 ml of water after two π
2
pulses with a relativephase of β = 90◦. The ontinuous line is obtained in a highly homogeneousmagneti �eld (∆B0

B0

= 2.0 · 10−8) and the dashed line in a less homogeneous�eld (∆B0

B0

= 2.7 · 10−7).the FID but no eho at 1 ms whih is the delay between the two π
2 pulses.The absene of an eho in this ase is equivalent to the absene of any eho fora homogeneous line in an Eletron Spin Resonane (ESR) experiment. TheFID orresponds to the magnetization in the transverse plane and thereforethe signal is proportional to √M2

x +M2
y . Fig. 3.4 shows the amplitude of
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68 CHAPTER 3. REVIVING THE NMR APPROACHthe NMR signal at the beginning of the FID versus the relative phase β. As

Figure 3.4: Amplitude of the NMR signal of 10 ml of water after two π
2
pulsesversus the relative phase β of the two pulses. The ontinuous line (� NMR1)is obtained in a highly homogeneous magneti �eld, the large dashed line(N NMR2) in a less homogeneous �eld. The �nely dashed lines orrespondto f(β) = G| sinβ| normalized to the maximum NMR signal in eah ase.an be seen in Fig. 3.4, in the ase of a highly homogeneous magneti �eld

(∆B0

B0
= 2.0 · 10−8), the funtion f(β) = G| sin β|, given by equation (3.4.1)for a well de�ned value of ω0τ , �ts the experimental data quite well. Themaximum relative deviation

∆s(β) =

(

NMR1(β) − f(β)
)

max
(

NMR1(β)
) (3.4.2)between the experimental urve NMR1(β) and f(β) is found to be

∆s(15◦) = 9.7%. (3.4.3)In the ase of a less homogeneous �eld (∆B0

B0
= 2.7 ·10−7), the �t is less goodand the maximum relative deviation is found to be

∆s(18◦) = 28.3%. (3.4.4)3.4.3 Numerial solution of equation (3.2.18)The numerial solution of equation (3.2.18) is obtained by using the ode45subroutine of Matlab using an expliit Runge-Kutta formula for ordinarydi�erential equations with initial values.
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3.4. EXPERIMENTAL RESULTS 69Referene parametersWe set the parameters of equation (3.2.18) as those used by our NMR spe-tometer: Table 3.1: Parameters of the NMR spetrometerParameter Value UnitResonane Frequeny 200 MHz ω0 = −2 · 108 · 2π rad/sRadio Frequeny amplitude 1 mT ω1 = 2.5 · 10−4 · ω0 rad/sRadio Frequeny 200 MHz ω = ω0 rad/sInterval of integration 20 tθ = 20 · 10−6 sThe solution of equation (3.2.18) with the parameters of table 3.1 allows us toalulate the magnetization of one spin aording to equation (3.2.47). Theresult is given in �gure 3.5 were we retrieve the main e�et of an NMR exper-iment, whih is the indued magnetization after an appropriate RF pulse atthe Larmor frequeny. The maximum magnetization orresponds to the soalled π
2 -pulse and for a double duration the π-pulse with no magnetization.The solutions x(t) and y(t) of equation (3.2.18) have a real and imaginarypart osillating around the Larmor frequeny as shown in �gure 3.6 for thereal part of x(t) during the RF pulse.

Figure 3.5: Magnetization of one spin 1

2
versus the duration of the RF pulse.
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70 CHAPTER 3. REVIVING THE NMR APPROACH

Figure 3.6: The real part of x(t).E�et of the frequeny of the RF pulseFigure 3.7 shows the e�et of the frequeny of the RF on the spin magneti-zation.We �nd a well-known fat in NMR whih is the inversion of the magnetiza-tion when going through the resonane frequeny.

Figure 3.7: Magnetization versus the frequeny ω of the RF pulse, with theRF amplitude ω1 = 2 · 10−4ω0.

te
l-0

05
34

86
4,

 v
er

si
on

 1
 - 

12
 N

ov
 2

01
0



3.5. CONCLUSION AND PERSPECTIVE 71Initializing the qubitTo initialize the qubit in either the state |0〉 = |+〉 or in the state |1〉 = |−〉we need either maximum positive or maximum negative magnetization. Forsimpliity we will assume ω = ω0. A qubit in the state |+〉 should give amagnetization of γ~

2 , while a qubit in the state |−〉 should give a magnetiza-tion of −γ~

2 . These onditions are always veri�ed with some period T . Theidea is to �rst observe the system and �nd out what this period is in orderto know when these maximal magnetizations our. At these moments, theevolving logial qubit is in the state |0〉. When we want to perform singlequbit operations on one logial qubit, then we will wait to perform suh anoperation until the magnetization is exatly maximal. In stead of measur-ing, as we did for initializing the qubit, we proeed to perform a single qubitoperation and measure the result only afterwards.3.5 Conlusion and PerspetiveWe have exhibited a framework in whih NMR quantum omputing on purestates an be realized. From an experimental point of view we have shownhow to initialize a qubit into the basi states |0〉 or |1〉. This result ahievesthe �rst of the �ve neessary steps. At the moment we are adjusting theexperimental parameter settings in order to obtain a generating set of ele-mentary one qubit gates, whih will result in obtaining the seond step. Forthe third step we will use magneti �eld gradients to distinguish di�erentqubits. This step as well as the fourth step is work in progress. For the �fthstep we need to establish an interation between di�erent qubits. For themoment we have not yet ahieved a theoretial desription of this interationHamiltonian. Without suh a Hamiltonian we annot hope to �nd the or-ret parameter settings to ahieve a CNOT operator. Therefore the ruialpoint in our approah is to ahieve suh a theoretial desription for the in-teration Hamiltonian. We are trying to ahieve suh an interation by usinglong-range dipole-dipole interation. This interation is not averaged awayto zero by random thermal motion in liquids, beause at a long distane thegeometrial onstraints of the sample prevent a ompletely random thermalmotion. Whether this long-range dipole-dipole interation is large enoughto serve as interation between qubits is still work in progress.
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Part IISolving Simultaneous PellEquations using QuantumComputation
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Siene never solves a problemwithout reating ten more.George Bernard ShawChapter 4Pell equations4.1 IntrodutionLet d be a positive integer and onsider the equation
x2 − dy2 = 1, (4.1.1)where x, y are positive integers. This equation is alled the Pell equation,after the English mathematiian John Pell, to whom Leonhard Euler mistak-enly attributed a method of solving this type of equations. A �rst trivial ob-servation shows that (x0, y0) = (1, 0) is always a solution of equation (4.1.1)and that if d is a square there annot be another solution in positive integers,as for d = q2 we have:

x2 − q2y2 = x2 − (qy)2

= (x+ qy)(x− qy).
(4.1.2)So we have

(x+ qy)(x− qy) = 1, (4.1.3)whih implies
x+ qy = 1, (4.1.4a)
x− qy = 1, (4.1.4b)with x, q, y all positive integers. This in turn implies that (x, y) = (1, 0). Sowe an assume that d is not a square. If we �nd a non-trivial solution (x1, y1)to equation (4.1.1), then the fration x1

y1
is a good approximation for thesquare root of d:

x

y
=
√

1+dy2

y2

=

√

d+
1

y2
.

(4.1.5)75
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76 CHAPTER 4. PELL EQUATIONSFor example, if d = 2, and x = 17, y = 12, we have
172 − 2 · 122 = 1, (4.1.6a)

17
12 ≈ 1, 4167. (4.1.6b)There are several questions that an be asked about Pell equations. Arethere always non-trivial solutions for any integer d that is not a square ?Are there in�nitely many solutions ? How an we ompute these solutions ?Can we ompute these solutions quikly for any d ? It is possible to pose moretehnial questions about this type of equations, but we will restrit ourselvesto these simple ones. It is possible to show that for any positive integer d thatis not a square, there are an in�nite number of solutions for equation (4.1.1).Moreover, these solutions have a simple struture, whih allows us to �nd allsolutions starting from a fundamental solution. There are several methodsto solve equation (4.1.1), but not every method has the same e�ieny forall integers d. We will start by looking at some lassial solving tehniques.These inlude the Indian method and the ontinued fration method, whihare essentially the same tehnique in a di�erent form. We proeed witha more modern approah that onsists of omputing the regulator of anassoiated number �eld. This approah solves Pell equations more e�iently,but does not solve it in polynomial time. A quantum approah that followsthe modern approah, but whih uses a quantum algorithm to ompute thisregulator does solve the Pell equation in polynomial time.4.2 Classial Tehniques4.2.1 Chakravala MethodThe Indian approah to solve the Pell equation is alled the Chakravala oryli method and is based upon the Brahmagupta identity and Bhaskara'slemma :Lemma 4.1 (Brahmagupta's identity). Let a, b, c, d, n be real numbers, thenwe have the following equality:

(a2 + nb2)(c2 + nd2) = (ac− nbd)2 + n(ad+ bc)2 (4.2.1a)
= (ac+ nbd)2 + n(ad− bc)2. (4.2.1b)Proof. The lefthandside of equation (4.2.1a) is equal to:

(a2 + nb2)(c2 + nd2) = a2c2 + n(a2d2 + b2c2) + n2b2d2. (4.2.2)The righthandside of equation (4.2.1a) is equal to:
(ac−nbd)2+n(ad+bc)2 =a2c2−2nacbd+n2b2d2+n(a2d2+2adbc+b2c2)

= a2c2 + n(a2d2 + b2c2) + n2b2d2. (4.2.3)
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4.2. CLASSICAL TECHNIQUES 77The righthandside of equation (4.2.1b) is equal to:
(ac+nbd)2+n(ad−bc)2 =a2c2+2nacbd+n2b2d2+n(a2d2−2adbc+b2c2)

= a2c2 + n(a2d2 + b2c2) + n2b2d2. (4.2.4)Therefore we have equality in both ases.Lemma 4.2 (Bhaskara). Let a, b, c, d, e be real numbers, with d not equalto 0. If
a2 = bc2 + d, (4.2.5)then we have the following identity:

b

(

a+ ec

d

)2

+
e2 − b

d
=

(

ea+ bc

d

)2

. (4.2.6)Proof. The lefthandside of equation (4.2.6) is equal to:
b

(

a+ ec

d

)2

+
e2 − b

d
=
b(a2 + 2ace + c2e2)

d2
+
de2 − bd

d2

=
b(bc2 + d+ 2ace+ c2e2) + de2 − bd

d2

=
b2c2 + 2abce+ (bc2 + d)e2

d2

=
b2c2 + 2abce+ a2e2

d2

=

(

bc+ ae

d

)2

.

(4.2.7)
In order to solve the Pell equation

x2 − dy2 = 1, (4.2.8)we use Brahmagupta's identity on the triples (x1, y1, k1) and (x2, y2, k2) thatverify the equation:
x2

1 − dy2
1 = k1, (4.2.9a)

x2
2 − dy2

2 = k2. (4.2.9b)In this manner we obtain a new triple
(x3, y3, k3) = (x1x2 + dy1y2, x1y2 + x2y1, k1k2), (4.2.10)by multipliation:

(x2
1 − dy2

1)(x
2
2 − dy2

2) = (x1x2 + dy1y2)
2 − d(x1y2 + x2y1)

2. (4.2.11)
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78 CHAPTER 4. PELL EQUATIONSIn order to solve equation (4.2.8) we start with an arbitrary triplet (x1, y1, k),suh that
x2

1 − dy2
1 = k, (4.2.12)and GCD(x1, y1) = 1. We multiply this triplet with the trivial triplet

(a, 1, a2 − d), (4.2.13)and we obtain a new triplet (ax1 + dy1, x1 + ay1, k(a
2 − d)

).We use Bhaskara's lemma to obtain the following identity:
(

ax1 + dy1

|k|

)2

− d

(

x1 + ay1

|k|

)2

=
a2 − d

k
. (4.2.14)We hoose a, suh that

x1 + ay1

k
(4.2.15)is an integer and

a2 − d

k
(4.2.16)has the smallest possible absolute value.For this value a we replae the triplet (x1, y1, k) by

(x2, y2, k2) =

(

ax1 + dy1

|k| ,
x1 + ay1

|k| ,
a2 − d

k

)

, (4.2.17)and we repeat the proedure. Lagrange proved that this proess alwaysterminates with a solution. We give an example with d = 113. Let x1 = 11,
y1 = 1 and k = 8, we have the obvious identity:

112 − 113 × 1 = 8. (4.2.18)So we want to �nd an integer a, suh that
11 + a

8
(4.2.19)is an integer and

∣

∣

∣

∣

a2 − 113

8

∣

∣

∣

∣

(4.2.20)is minimal. In this ase, a = 13, so we obtain the new triplet:
322 − 113 × 32 = 7. (4.2.21)Repeating this proess we �nd the following triplets:
852 − 113 × 82 = −7, (4.2.22a)

2872 − 113 × 272 = −8, (4.2.22b)
7762 − 113 × 732 = −1. (4.2.22)At this point we ould ontinue the proess, but instead we take the squareof the last solution, using Brahmagupta's identity to obtain the solution:

12043532 − 113 × 1132962 = 1. (4.2.23)
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4.2. CLASSICAL TECHNIQUES 794.2.2 Continued fration methodThe other lassial approah to solve Pell equations is by using the ontinuedfration development of √d. Let a0 =
⌊√

d
⌋, then:

√
d = a0 +

1

a1 +
1. . . +

1

an +
1

2a0

=
[

a0, a1, . . . , an, 2a0

]

.

(4.2.24)
When we onsider the periodi part of the ontinued fration development

x

y
=
[

a0, a1, . . . , an

]

, (4.2.25)then we have that
∣

∣

∣

∣

x

y
−

√
d

∣

∣

∣

∣

<
1

2a0y2
. (4.2.26)From this we an easily derive

∣

∣

∣

∣

x2

y2
−

√
d

∣

∣

∣

∣

<
2

y2
, (4.2.27)whih leads to

∣

∣x2 − dy2
∣

∣ < 2. (4.2.28)As the lefthand side of the above inequality is an integer and sine d is nota square, we immediately dedue that
x2 − dy2 = ±1. (4.2.29)Therefore there are two ases to onsider. If x2−dy2 = 1, we have a solutionto the Pell equation. If x2 − dy2 = −1, then

(x2 − dy2)
2

= (x2 + dy2)
2 − d(2xy)2 = 1. (4.2.30)In that ase x′ = x2 + dy2 and y′ = 2xy are a solution of the Pell equation.We try to ompute suh a solution again for the ase d = 113. We �nd that

√
113 =

[

10, 1, 1, 1, 2, 2, 1, 1, 1, 20
]

. (4.2.31)This leads to the fration
x

y
=

73

776
, (4.2.32)whih gives

7762 − 113 × 732 = −1. (4.2.33)Taking squares at both sides leads to the same solution as the Indian method.
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80 CHAPTER 4. PELL EQUATIONS4.3 Modern TehniquesAs Lenstra remarks in his artile on the Pell equation [Len02℄, the e�ienyof the ontinued fration method is onjetured to be exponentially slowfor most values of d and that any method that spells out the smallest so-lution (x0, y0) of the Pell equation in full is exponentially slow for in�nitelymany values of d. One method to improve the algorithm would be to on-sider only the square-free part of eah integer d, but this only helps a littlebit. In order to build a faster algorithm we need to use the struture of thering Z
[√
d
].Let d be a square-free integer and onsider the equation

x2 − dy2 = 1. (4.3.1)If √d 6∈ Q, then for rational numbers a, b, x, y we have that
a+ b

√
d = x+ y

√
d, (4.3.2)if and only if a = x and b = y. It is therefore possible to uniquely enodethe solution of (4.3.1) as

x+ y
√
d ∈ R. (4.3.3)Conversely we say that σ ∈ R is a solution of (4.3.1), if

σ = s+ t
√
d, (4.3.4)for integers s, t, suh that

s2 − dt2 = 1. (4.3.5)To solve the Pell equation it su�es to alulate the regulator
R = log

(

x1 + y1

√
d
)

, (4.3.6)for whih x2
1−dy2

1 = 1 is the smallest solution. For this it su�es to alulatethe regulator of Z
[√
d
]. Let
K = Q

[
√
d
]

=
{

u+ v
√
d | u, v ∈ Q

} (4.3.7)be a real quadrati number �eld. The order O of disriminant d is the subring
O = Z

[

d+
√

d
2

]

=
{

a+ bd+
√

d
2 | a, b ∈ Z

}

⊆ K.
(4.3.8)
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4.4. QUANTUM COMPUTATIONAL TECHNIQUES 81The units of O are of the form ±ǫk, with k ∈ Z. The regulator of O is de�nedas
R = log ǫ, (4.3.9)with ǫ > 1. The regulator satis�es the following inequalities:

log
(

2
√
d
)

< R <
√
d
(

log(4d) + 2
)

. (4.3.10)The modern method to solve the Pell equation uses the above ingredients inombination with the notion of power produts. If (x0, y0) is the fundamentalsolution of the Pell equation x2 − dy2 = 1, then a power produt notation ofthe solution is a produt of the following form:
x0 + y0

√
d =

k
∏

i=1

(

ai + bi
√
d
)ni . (4.3.11)We have the following theorem on the relevane of the regulator approahto solve Pell equations:Theorem 4.1. There are positive onstants C1, C2, suh that1. For eah positive non square integer d, there exists a power produt rep-resentation of the fundamental solution of its assoiated Pell equationwith lenght at most C1

(

log d
)2.2. The problem of omputing suh a power produt representation is poly-nomial time equivalent to the problem of omputing an integer R̃, suhthat ∣∣R̃−R

∣

∣ < 1, where R is the regulator of the number �eld Z
[√
d
].3. There exists an algorithm that for given d omputes a power produtrepresentation of the fundamental solution of its assoiated Pell equa-tion in time at most √R(1 + log d

)C2 .The theorem above gives an algorithm for solving Pell equations that stillhas exponential run time. A more re�ned approah whih uses smooth num-bers over the number �eld Z
[√
d
] an ompute an integer approximation toa multiple of the regulator. This leads to a probabilisti algorithm that runsin time O(eC√

log d log log d
) under the assumption of the generalized Riemannhypothesis. This approah ressembles the quadrati sieve for fatoring inte-gers and has the same run time halfway between exponential and polynomialtime.4.4 Quantum Computational TehniquesThe quantum omputational approah to solve the Pell equation is to on-strut a periodi funtion h whih has the regulator R as period and to apply
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82 CHAPTER 4. PELL EQUATIONSan extended version of the QFT on this funtion to retrieve the period.The produt of two subsets I, J ⊆ K is the additive subgroup ofK generatedby the set
{

xy | x ∈ I, y ∈ J
}

. (4.4.1)An invertible O-ideal is a subset I ⊆ K, with OI = I, for whih thereexists a subset J ⊆ K with IJ = O. The set of invertible ideals of O forman Abelian group under multipliation and will be denoted I. The set ofprinipal ideals will be denoted
P = {Oα | α ∈ K} . (4.4.2)This is a subgroup of I. An invertible ideal has the form

{

q
(

Z + −b+
√

d
2a Z

)

| a, b ∈ Z, q ∈ Q, c = b2−d
4a ∈ Z, GCD(a, b, c) = 1

}

.(4.4.3)An ideal is redued if
∣

∣

∣

√
d− 2|a|

∣

∣

∣ < b <
√
d. (4.4.4)The set of all redued ideals is denoted R. This is a �nite set with a group-like struture under multipliation. We de�ne the distane funtion as:

δ : P −→ R/RZ
(

a+ b
√
d
)

O 7−→ 1

2
log
∣

∣

∣

a+b
√

d
a−b

√
d

∣

∣

∣
(mod R).

(4.4.5)The unit ideal has distane zero. The omposition of two ideals I, J ∈ I isthe produt I · J ∈ I. We have
δ(IJ) = δ(I) + δ(J). (4.4.6)Redution is a map

ρ : I −→ I, (4.4.7)suh that after a polynomial number of steps k an ideal ρk(I) will be in R.For the exat formula for the redution we refer to the appendies. We angive the following bounds
δ(I) +

1√
d
≤ δ
(

ρ(I)
)

≤ δ(I) + log
√
d, (4.4.8a)

δ
(

ρ2(I)
)

> δ (I) + log 2. (4.4.8b)Multipliation is a map from the redued ideals to itself, taking as input tworedued ideals I, J , applying the redution ρ repeatedly on IJ , until ρk(IJ)is a redued ideal.Given a rational distane x, it is possible to alulate the ideal with distane
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4.4. QUANTUM COMPUTATIONAL TECHNIQUES 83losest to the left of x. We de�ne this ideal Ix. We an now de�ne the osetseparating funtion
f : R −→ I × R

x 7−→
(

Ix, x− δ(Ix)
)

,
(4.4.9)whih is a periodi funtion with as period the regulator R. Using thisfuntion f we de�ne a funtion f̂ whih is suitable for Fourier sampling.Choose an integer N ≥ 2

√
d, then we de�ne the funtion f̂ as

f̂ : Z −→ I × Z

i 7−→
(

I i
N
,

⌊

N
( i

N
− δ
(

I i
N

)

)

⌋

)

.
(4.4.10)This funtion f̂ is periodi with period NR.The �nite set of all prinipal frational redued ideals is PIred. This setis alled the prinipal yle. δ(I) is the distane between an ideal I of theprinipal yle and the ring of integers O. We de�ne the map h as follows

h : R −→ PIred × R

x 7−→
(

Ix, x̃− δ(Ix)
)

,
(4.4.11)with x̃ ≡ x (mod R) and Ix ∈ PIred the largest ideal in the prinipal ylethat veri�es δ(Ix) < x̃. We have the following theorem:Theorem 4.2. The funtion h is omputable in polynomial time: if x is amultiple of 10−n, then we an ompute Ix and an approximation of x̃− δ(Ix)with preision 10−n in time poly(logD, log x, n). Moreover, h is a periodifuntion with period R and is one-to-one on every interval smaller than theperiod R.If we know the value of the integer losest to the regulator R we an turnthis into an algorithm to approximate R with arbitrary preision:Proposition 4.1. If we know the value of

⌈

R
⌋

=
⌊

R+ 1
2

⌋

, (4.4.12)then there exists an algorithm that omputes R with preision 10−n in time
poly(n, logD).Suppose we have a funtion f : R −→ X, with f(x+R) = f(x). In order tobe able to apply the quantum period �nding algorithm, we need to disretize
f by taking multiples of 1

N , with N big enough. If X is ontinuous, it needsto be disretized as well.
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84 CHAPTER 4. PELL EQUATIONSDe�nition 4.1. For f : R −→ R we de�ne the map f̃N as:
f̃N : Z −→ 1

N
Z

k 7−→
⌊

f( k
N )
⌋

N
,

(4.4.13)where ⌊x⌋N is ⌊Nx⌋
N , and ⌈x⌉N is de�ned likewise.We would like that f̃ ontains approximative information about the period

R of f , however if f has a big variation in an interval of 1
N around x = k

N ,then f̃ an take arbitrary values. We need a notion of weak periodiity.De�nition 4.2. A funtion f : Z −→ X is weakly periodi with period S∈R,if for all 0 ≤ k ≤ ⌊S⌋ and for all l ∈ Z, either f(k+ ⌈lS⌉
) or f(k+ ⌊lS⌋

) isequal to f(k). We write f(k) = f
(

k + ⌊lS⌉
).We are disretizing the funtion h:De�nition 4.3. The disretized funtion of h is de�ned as

h̃N : Z −→ PIred × 1

N
Z

k 7−→
(

I k
N
,
⌈

k
N − δ

(

I k
N

)

⌉

N

)

.
(4.4.14)The following proposition gives a further haraterisation of h̃N :Proposition 4.2. The funtion h̃N has the following properties:1. h̃N is one-to-one on [0, ⌊NR⌋].2. h̃N (k) is omputable in time O(kc1,N c2 ,Dc3

), so if N, k = O
(

Dc4
),then h̃N (k) is omputable in O(Dc5

), where ci are positive onstants.3. Let dmin = 3
32D be a lower bound on the distanes between reduedideals and σ = log d. If 1

N < dmin

log d , then h̃N is weakly periodi withperiod NR. The ondition h̃N (k) = h̃N

(

k + ⌊lS⌉
) is veri�ed for all

0 ≤ k ≤ ⌊NR⌋, exept possibly for a small fration of size 1
log d .To build a quantum algorithm that approximates the period of a weaklyperiodi funtion in polynomial time, we need the following onditions:Theorem 4.3. Suppose that f : Z −→ X is weakly periodi with period Sand1. f(k) is omputable in O((log k)c1 , (log S)c2

),2. f is one-to-one on [0, ⌊S⌋],
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4.4. QUANTUM COMPUTATIONAL TECHNIQUES 853. for m ∈ Z, there exists an algorithm in O((log S)c3
) that tests whether

m is lose to a multiple of S: |jS −m| < 1, for an integer j.Then there exists a quantum algorithm in O((log S)c4
) that produes an inte-ger a, suh that |S−a| < 1 with probability larger than O((log S)−c5

), where
ci are positive onstants.In order to prove the main theorem that states that there exists a polynomialtime quantum algorithm that solves the Pell equation, we need the followingtwo tehnial lemmata:Lemma 4.3. Let S be a real number and let q be the number of qubits inthe QFT register and let q be a power of 2. Let 0 ≤ k ≤ ⌊S⌋ and 0 ≤ l < q

S .If q > 3S2, then
∣

∣

∣

∣

c

d
− k

l

∣

∣

∣

∣

<
1

2l2
, (4.4.15)where

c =

⌊

kq

S

⌉

, d =

⌊

lq

S

⌉

. (4.4.16ab)Lemma 4.4. Let |A| ≤ 1
2 , ξ(l) be an arbitrary number, suh that |ξ(l)| < 1

n ,where n = O(log p). Then there exists a onstant C, suh that for all psu�iently large we have
X =

∣

∣

∣

∣

∣

p−1
∑

l=0

e
2πi

“

Al
p +ξ(l)

”

∣

∣

∣

∣

∣

2

≥ Cp2. (4.4.17)With these lemmata, we an prove the following theorem:Theorem 4.4. Let d be a square-free positive integer. There exists a quan-tum algorithm that omputes the regulator R of Q
[√
d
] with preision 10−nin time O((log d)c1 , nc2

) with probability O((log d)−c3 , n−c4
), if 10−n < dmin

log d ,where ci are positive onstants.te
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I just invent, then wait untilman omes around to needingwhat I've invented.R. Bukminster FullerChapter 5Simultaneous Pell equations5.1 IntrodutionSimultaneous Pell equations are equations of the form:
x2 − ay2 = 1, (5.1.1a)
z2 − by2 = 1, (5.1.1b)where a, b are positive non-square integers, suh that their produt is nota square either. These equations are a speialized ase of the more generalsimultaneous Fermat equations:
x2 − ay2 = c, (5.1.2a)
z2 − by2 = d. (5.1.2b)Several natural questions an be posed about these type of equations. Firstof all, where do equations of this type our ? Are there any solutions inpositive integers (x, y, z) ? Are there a �nite number of solutions and if so,how many solutions an there be ? Given an expliit ase, an we �nd thesolutions ? Are the solutions bounded in any natural way ?We will only deal with some of these questions. We will start with an oldonjeture on integer sequenes. Simultaneous Pell equations our in asimpli�ed version of this onjeture. We will give an upper bound of thesmallest solution of equations (5.1.1), if any exists, following an approah byAnglin [Ang95℄. We will also reprodue a result by Cipu and Mignotte [CM℄that proves that there are at most two solutions in positive integers for anypair of simultaneous Pell equations. We will ombine these results withthe polynomial quantum algorithm of Hallgren for a single Pell equationto produe a polynomial quantum algorithm that solves simultaneous Pellequations. 87
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88 CHAPTER 5. SIMULTANEOUS PELL EQUATIONS5.2 A onjeture on 5 integersOne of the problems of the Greek mathematiian Diophantus was to �ndsets of unequal frations, suh that the produt of any two of its elements isone less than a square. He found the following set of four frations:
{

1

16
,
33

16
,
17

4
,
105

16

}

, (5.2.1)for whih we an indeed verify:
1

16
× 33

16
=

(

17

16

)2

− 1,
1

16
× 17

4
=

(

9

8

)2

− 1, (5.2.2ab)
1

16
× 105

16
=

(

19

16

)2

− 1,
33

16
× 17

4
=

(

25

8

)2

− 1, (5.2.2d)
33

16
× 105

16
=

(

61

16

)2

− 1,
17

4
× 105

16
=

(

43

8

)2

− 1. (5.2.2ef)In the seventeenth entury, Pierre de Fermat looked for integer solutions tothis type of equations. He found the set
{1, 3, 8, 120} , (5.2.3)for whih we have:

1 × 3 = 22 − 1, 1 × 8 = 32 − 1, (5.2.4ab)
1 × 120 = 112 − 1, 3 × 8 = 52 − 1, (5.2.4d)
3 × 120 = 192 − 1, 8 × 120 = 312 − 1. (5.2.4ef)He tried to extend this set with a �fth integer but failed. Euler extended hisset with a rational number:

{

1, 3, 8, 120,
777480

28792

}

, (5.2.5)but ould not �nd a �fth integer either.In 1969, Baker and Davenport proved [BD69℄ that this set annot be ex-tended to a �fth integer and that the only possible integer extension of thetriplet 1, 3, 8 is the integer 120. It is this seond part that leads to general-ized simultaneous Pell equations. Suppose that we have an integer k, suhthat {1, 3, 8, k} is a set with produts one less than a square. In that ase khas to verify the following equations:
1 × k = x2 − 1, (5.2.6a)
3 × k = y2 − 1, (5.2.6b)
8 × k = z2 − 1. (5.2.6)
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5.3. AN UPPER BOUND 89By substituting k in the last two equations we obtain
3(x2 − 1) = y2 − 1, (5.2.7a)
8(x2 − 1) = z2 − 1, (5.2.7b)whih an be written as

3x2 − y2 = 2, (5.2.8a)
8x2 − z2 = 7. (5.2.8b)The question whether there are �ve integers, suh that the produt of anytwo of them is one less than a square remains unanswered for the moment:Conjeture 5.1. There are no integers a1, . . . , a5, suh that for i 6= j wehave
aiaj = k2

ij − 1, (5.2.9)where kij are positive integers.For rational numbers a little more is known. Euler already found a set of�ve rational numbers. It is even possible to �nd six rational numbers, suhthat the produt of any two of them is one less than a square of a rationalnumber:
{

11

192
,

35

192
,

155

27
,

512

27
,

1235

48
,

180873

16

}

. (5.2.10)5.3 An upper bound5.3.1 Diophantine ApproximationWe desribe the general strategy of diophantine approximation tehniques.A linear form in logarithms is a form of the type:
Λ = β0 + β1 logα1 + · · · + βn logαn, (5.3.1)where α1, . . . , αn are algebrai numbers. Alan Baker obtained a lower boundfor the linear form |Λ| [Bak67℄, whih Feldman improved [Fel71℄ with thefollowing theorem:Theorem 5.1 (Feldman). The logarithmi form Λ veri�es the inequality:

|Λ| ≥ B−C, (5.3.2)for all algebrai numbers β0, . . . , βn with height at most B > 1, where C ise�etively omputable in terms of the αi and the degree of the βi.
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90 CHAPTER 5. SIMULTANEOUS PELL EQUATIONSFor the ase that the numbers βi are integers, suh that for all i we have that
|βi| ≤ B and the heightH(αi) of every algebrai number αi is bounded by Ai,Baker and W¶stholz [BW93℄ improve this lower bound with the followingtheorem:Theorem 5.2 (Baker, W¶stholz). If the linear form Λ 6= 0, then we havethe following lower bound:

log |Λ| > −(16nd)2n+4 logB

n
∏

i=1

logAi, (5.3.3)where d is the degree of the �eld Q(α1, . . . , αn).Suppose we have a system of equations for whih we want to obtain an upperbound for the solutions. This an be ahieved by the previous theorems andthe following strategy.1. Redue the equations if neessary to suh equations for whih Baker'stheory an be applied.2. Redue these new equations to inequalities of the form
0 <

∣

∣

∣αb1
1 · · ·αbn

n − αn+1

∣

∣

∣ < c1e
−c2B, (5.3.4)where α1, . . . , αn+1 are algebrai numbers, b1, . . . , bn are unknown ra-tional integers, B = max

(

|bi|
) and c1, c2 are positive onstants thatare independent of the integers bi and an be e�etively omputed. Ifthe bound B is large, then the inequalites (5.3.4) imply that

|Λ| ≤ c3e
−c2B , (5.3.5)where the linear form

Λ = b1 log α1 + · · · + bn log αn − logαn+1, (5.3.6)and c3 is a positive onstant that an be e�etively omputed.3. The ruial step in the general strategy is to apply Baker's theoremwhih gives an inequality
|Λ| ≥ e−c4B, (5.3.7)where c4 is a positive onstant that an be e�etively omputed. Whenwe put these two inequalities together we obtain:

e−c4B ≤ |Λ| ≤ c3e
−c2B , (5.3.8)whih in turn leads to an expliit upper bound B0 for B.
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5.3. AN UPPER BOUND 914. We redue this upper bound B0, whih is usually very big, to a muhsmaller upper bound B1, by using ontinued fration tehniques, Dav-enport's lemma or the LLL-redution algorithm, depending on whetherthe linear form is either in two, three or more than three logarithms.5. From this upper bound B1 we dedue an upper bound for the unknownsin the original equations.6. Using searh tehniques and properties of the initial equations we de-termine all possible solutions.Davenport's Lemma and LLL-redutionThe lemma of Davenport is a result proved by Baker and Davenport [BD69℄,that an be applied to linear forms in three logarithms to show that a ertaingap must exist between solutions of ertain equations. In its original form itis given as follows:Lemma 5.1 (Baker-Davenport). Let K,M > 6, p, q be positive integerssatisfying the following inequalities:
1 ≤ q ≤ KM, (5.3.9a)

∣

∣θq − p
∣

∣ ≤ 2

KM
, (5.3.9b)

∥

∥qβ
∥

∥ ≥ 3

K
, (5.3.9)where θ, β are irrational numbers and ‖z‖ is the distane of a real number zto its nearest integer, that is ‖z‖ =

∣

∣z −
⌊

z + 1
2

⌋ ∣

∣. Then the inequality
∣

∣mθ + n− β
∣

∣ ≤ c−m, (5.3.10)has no solution in integers (m,n) in the range
logK2M

log c
< m < M. (5.3.11)For LLL-redution tehniques we follow Cohen's desription on latties andredution [Coh96℄.De�nition 5.1. Let K be a �eld of harateristi di�erent from 2 and let

V be a K-vetor spae. A map q from V to K is a quadrati form if thefollowing onditions are satis�ed:1. For every λ ∈ K and x ∈ V we have:
q(λ · x) = λ2q(x). (5.3.12)
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92 CHAPTER 5. SIMULTANEOUS PELL EQUATIONS2. Let the funtion b(x, y) be de�ned by
b(x, y) =

1

2

(

q(x+ y) − q(x) − q(y)
)

. (5.3.13)Then b is a symmetri bilinear form.We have the obvious identity
b(x, x) = q(x). (5.3.14)If K = R, and if for all x ∈ V we have q(x) > 0, we say that q is positivede�nite.De�nition 5.2. A lattie L is a free Z-module of �nite rank together witha positive de�nite quadrati form q on L ⊗ R.Let (bi)1≤i≤n

be a Z-basis for L. If
x =

∑

1≤i≤n

xibi ∈ L, (5.3.15)with xi ∈ Z, then we have that
q(x) =

∑

1≤i,j≤n

qi,jxixj , (5.3.16)where qi,j = b(bi, bj). The matrix Q =
(

qi,j
)

1≤i,j≤n
is a positive de�nitesymmetri matrix that veri�es

b(x, y) = Y TQX, (5.3.17)where X,Y are the olumn vetors of the oordinates of x and y. As Q ispositive de�nite, we have that the determinant detQ > 0. The determinant
d(L) of the lattie L is de�ned as

d(L) =
√

detQ. (5.3.18)A lattie L an also be onsidered as a disrete subgroup of rank n of theEulidean vetor spae L⊗R. If (bi)1≤i≤n
is a Z-basis for L, then the matrixof salar produts

Q =
(

bi · bj
)

1≤i≤n
(5.3.19)is alled the Gram matrix of the vetors bi. We have the following theorem:Theorem 5.3. If Q is the matrix of a positive de�nite quadrati form, then

Q is the Gram matrix of some lattie basis. Moreover, the Gram matrix ofa lattie basis (bi)1≤i≤n
determines that basis uniquely up to isometry.
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5.3. AN UPPER BOUND 93The existene of an orthonormal basis in a Eulidean vetor spae is provedby the Gram-Shmidt orthonormalization proedure. For the nomalizationpart of this proedure, square roots need to be taken, but the orthogonali-sation proedure works just as well without:Theorem 5.4. Let (bi)1≤i≤n
be a basis of a Eulidean vetor spae E. De�ne
b∗i = bi −

i−1
∑

j=1

µi,jb
∗
j , (5.3.20)where

µi,j =
bi · b∗j
b∗j · b∗j

. (5.3.21)Then the (b∗i )1≤i≤n
form an orthogonal but not neessarily orthonormal basisof E. We have the following equality for the determinant of the lattie:

d(L) =
∏

1≤i≤n

∥

∥b∗i
∥

∥

2
. (5.3.22)The following inequality is a orollary of this theorem:Corollary 5.1 (Hadamard's inequality). Let (L, q) be a lattie of determi-nant d(L), let (bi)1≤i≤n

be a Z-basis for L, then
d(L) ≤

n
∏

i=1

√

q(bi, bi). (5.3.23)Amongst all the Z-bases of a lattie L, some are better than others. Thebases whose elements are the shortest are alled redued bases. We an thinkof a redued basis as of a basis that is almost orthogonal. A basis is alledLLL-redued (for A. K. Lenstra, H. W. Lenstra and L. Lovász) [LLL82℄ ifthe following onditions are satis�ed:1. The real numbers µi,j all verify the inequality ∣∣µi,j

∣

∣ ≤ 1
2 .2. For all 1 ≤ i ≤ n we have the following inequality:

∣

∣b∗i + µi,i−1b
∗
i−1

∣

∣

2 ≥ 3
4

∣

∣b∗i−1

∣

∣

2
, (5.3.24)where the norm of a vetor is de�ned as |bi| =
√

q(bi, bi).We have the following theorem:
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94 CHAPTER 5. SIMULTANEOUS PELL EQUATIONSTheorem 5.5. Let (bi)1≤i≤n
be an LLL-redued basis of a lattie L, thenthe following inequalities are satis�ed:

d(L) ≤
n
∏

i=1

∣

∣bi
∣

∣ ≤ 2
n(n−1)

4 d(L), (5.3.25a)
∣

∣bj
∣

∣ ≤ 2
i−1
2
∣

∣b∗i
∣

∣, if 1 ≤ j ≤ i ≤ n, (5.3.25b)
∣

∣b1
∣

∣ ≤ 2
n−1

4 n
√

d(L). (5.3.25)We also have for any linear independent vetors x1, . . . , xt ∈ L, that
∣

∣bj
∣

∣ ≤ 2
n−1

2 max
(

|x1|, . . . , |xt|
)

, with 1 ≤ j ≤ t. (5.3.26)We an apply LLL-redution to redue the upper bound B0 for linear formsin logarithms. This is done in the following manner. Let
0 <

∣

∣b1α1 + · · · + bnαn + α
∣

∣ < c3e
−c2B . (5.3.27)Let L be the lattie in Rn+1 spanned by the olumn vetors of















1 0 · · · 0 0
0 1 · · · 0 0... . . . ... ...
0 1 0

Cα1 Cα2 · · · Cαn Cα















, (5.3.28)where C is a onstant. Let e1 be the �rst basis vetor of the LLL-reduedbasis of the lattie L. We then have the following inequality:
|e1|2 ≤ 2n|x|2, (5.3.29)for all vetors x ∈ L. If we hoose the onstant C, suh that

|e1| ≥
√

(n+ 2)2nB0, (5.3.30)then we obtain the following inequality:
B ≤ log c3C − logB0

c2
= B1. (5.3.31)This redues the upper bound B0 to approximately logB0.5.3.2 Upper bound for smallest solutionWe want to �nd an upper bound for the system (5.1.1). Let (x0, y0) be thesmallest solution in positive integers of equation (5.1.1a) and (z′0, y

′
0) that ofequation (5.1.1b). Consider the algebrai numbers

R = x0 + y0
√
a, (5.3.32a)

R′ = z′0 + y′0
√
b. (5.3.32b)
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5.3. AN UPPER BOUND 95whih have minimal polynomials
X2 − 2x0X + 1, (5.3.33a)
X2 − 2z′0X + 1. (5.3.33b)The lassial height H(α) of an algebrai number α is de�ned as the max-imum of the absolute values of the oe�ients of its minimal polynomialin Z[X] with the greatest ommon divisor of these oe�ients being 1. There-fore the height of R is 2x0. For pratial purposes we are going to assumethat a, b < 1000, so that H(R) < 4 · 1037. This ours for a = 661. Considerthe polynomial

p(x) =
4
∏

i1

(X −Ei), (5.3.34)where the algebrai numbers Ei are de�ned as follows:
E1 =

(x0 + y0
√
a)
√
b

(z′0 + y′0
√
b)
√
a
, E2 = −(x0 − y0

√
a)
√
b

(z′0 + y′0
√
b)
√
a
, (5.3.35ab)

E3 = −(x0 + y0
√
a)
√
b

(z′0 − y′0
√
b)
√
a
, E4 =

(x0 − y0
√
a)
√
b

(z′0 − y′0
√
b)
√
a
. (5.3.35d)The polynomial p(x) an be written as

p(x) =
1

a2

(

a2x4 + 4a2by0y
′
0x

3 − 2ab(1 + 2ay2
0 + 2by′20 )x2 + 4ab2y0y

′
0x+ b2

)

.(5.3.36)None of the linear polynomial fators of p(x) is in Q[x], therefore E1 doesnot have degree 1 or 3. The height of E1 is easily bounded by 1086. We havetherefore the following upperbounds:
(

1 + logH(R)
)

,
(

1 + logH(R′)
)

,
(

1 + logH(E1)
)

, logR, logR′, log|E1| < 200.(5.3.37)All solutions of equation (5.1.1a) are given by:
xm =

(x0 + y0
√
a)m+1 + (x0 − y0

√
a)m+1

2
, (5.3.38a)

ym =
(x0 + y0

√
a)m+1 − (x0 − y0

√
a)m+1

2
√
a

. (5.3.38b)and likewise for equation (5.1.1b):
z′n =

(z′0 + y′0
√
b)n+1 + (z′0 − y′0

√
b)n+1

2
, (5.3.39a)

y′n =
(z′0 + y′0

√
b)n+1 − (z′0 − y′0

√
b)n+1

2
√
b

. (5.3.39b)
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96 CHAPTER 5. SIMULTANEOUS PELL EQUATIONSSo to solve simultaneous Pell equations it is su�ient to �nd all (m,n), suhthat
ym = y′n. (5.3.40)We have the reurrene relations:

ym+2 = 2x0ym+1 − ym, (5.3.41a)
y′n+2 = 2z′0y

′
n+1 − y′n. (5.3.41b)So provided we know y0, y

′
0 it is relatively straightforward to hek whetherthere is a solution with m,n < 100. An upper bound to the smallest solutionwill tell us upto whih value we need to ompute (m,n) to be sure that thereare no solutions. Let
P =

(x0 + y0
√
a)m+1

√
a

, (5.3.42a)
Q =

(z′0 + y′0
√
b)n+1

√
b

. (5.3.42b)Then we have that
1

P
= (x0 − y0

√
a)m+1√a, (5.3.43a)

1

Q
= (z′0 − y′0

√
b)n+1

√
b. (5.3.43b)The smallest possible value for (x0 + y0

√
a) is c = 2 +

√
3. We obviouslyhave the inequalities:

P > cm−1, (5.3.44a)
Q > cn−1. (5.3.44b)We also have the relation
P

Q
=
E1R

m

R′n . (5.3.45)The ase of equality ym = y′n an only happen if
P − 1

aP
= Q− 1

bQ
. (5.3.46)Suppose that P > Q. Then if there is a solution we have:

P

Q
− 1 =

1

aPQ
− 1

bQ2

<
1000

PQ

<
1000

cm−1cn−1

< c−max{m,n}.

(5.3.47)
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5.4. FINITE NUMBER OF SOLUTIONS 97It therefore follows that
0 <

∣

∣

∣

∣

log
P

Q

∣

∣

∣

∣

< c−max{m,n}. (5.3.48)A similar argument for the ase P < Q leads to the same inequality andtherefore, assuming m,n ≥ 10, we have
0 <

∣

∣

∣

∣

log
E1R

m

R′n

∣

∣

∣

∣

< c−max{m,n}, (5.3.49)whih an also be written as
0 < |m logR− n logR′ + logE1| < c−max{m,n}. (5.3.50)To this linear form Λ in three logarithms we apply Baker's theory and Dav-enport's lemma. The logarithm of the algebrai numbers R,R′, E1 as wellas the logarithm of their heights are all bounded by 200, so we an usetheorem 5.2 and we obtain the following estimate:

−21012003
(

max(logm, log n) + 11
)

11 < log |Λ| < c−max{m,n}, (5.3.51)whih results in the inequality
max(m,n) < 1041. (5.3.52)To this upper bound we apply Davenport's lemma, where we set:

θ =
logR

logR′ , (5.3.53a)
β = − logE1

logR′ , (5.3.53b)
M = 1041. (5.3.53)This will result in the inequality in m:

max(m,n) < 83. (5.3.54)This is su�ient as an upper bound for the smallest solution even if a se-ond appliation of Davenport's lemma would redue this upper bound evenfurther.5.4 Finite Number of Solutions5.4.1 IntrodutionWe will highlight some elements of the proof of Cipu and Mignotte [CM℄that the system
x2 − az2 = 1, (5.4.1a)
y2 − bz2 = 1, (5.4.1b)
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98 CHAPTER 5. SIMULTANEOUS PELL EQUATIONShas at most two distint solutions in positive integers x, y, z.It is interesting to note that there exist families of integers (a, b), suh thatthe system (5.4.1) has two positive solutions.Let 1 < l,m be positive integers and de�ne the following quantities:
α = m+

√

m2 − 1, (5.4.2a)
n(l,m) =

α2l − α−2l

4
√
m2 − 1

. (5.4.2b)Then the simultaneous Pell equations of the family (a, b), suh that
a = m2 − 1, (5.4.3a)
b = n(l,m)2 − 1, (5.4.3b)have the following two solutions in positive integers:

(x0, y0, z0) =
(

m,n(l,m), 1
)

, (5.4.4a)
(x1, y1, z1) =

(

α2l+α−2l

2 , 2n(l,m)2 − 1, 2n(l,m)
)

. (5.4.4b)An earlier result by Yuan [Yua02℄ showed that there are at most �nitelymany ases of simultaneous Pell equations with three solutions:Theorem 5.6 (Yuan). If max(a, b) ≥ 1.4 · 1057, then the system (5.4.1) hasat most two distint solutions in positive integers.Cipu and Mignotte prove that the system (5.4.1) have at most two solutionsin positive integers x, y, z, if a < b are distint positive integers, removingthese �nitely many exeptions. The basi idea of the proof is a three stepapproah. First it is shown that any system of simultaneous Pell equationsan be transformed to another system of simultaneous Pell equations withthe same number of solutions. The new system has oe�ients a, b of aspeial type so that it is straightforward to �nd the smallest solution x0, y0, z0of the system. The seond step reates a linear form in three logarithmsfrom this smallest solution and two hypothetial bigger solutions x1, y1, z1and x2, y2, z2. Baker's theory on these kind of forms results in an upperbound for the biggest of these two solutions. The last step is a gap priniplethat shows that the distane y2 − y1 must neessarily exeed some kind oflower bound. It will turn out that this lower bound will on�it with theupper bound onstraint from the seond step. Hene there an be no systemof simultaneous Pell equations with three distint solutions.5.4.2 Transforming the equationsWe want to transform the system (5.4.1) to a system of equations with anobvious smallest solution. We need to show that this transformation doesnot redue the number of solutions. To do so we need to prove the followinglemma:
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5.4. FINITE NUMBER OF SOLUTIONS 99Lemma 5.2. Suppose that the system (5.4.1) has at least one solution inpositive integers. Let z0 be the smallest positive value taken by the thirdomponent of a solution (x, y, z). Then for any solution (xi, yi, zi) of (5.4.1),
zi is a multiple of z0.This lemma implies that if (x0, y0, z0) is the solution of (5.4.1) with minimalthird omponent, then this system has as many positive integral solutionsas the system

u2 − (x2
0 − 1)v2 = 1, (5.4.5a)

w2 − (y2
0 − 1)v2 = 1. (5.4.5b)So we will onsider from now on that

a = m2 − 1, (5.4.6a)
b = n2 − 1, (5.4.6b)for integers n > m ≥ 2. We set

α = m+
√

m2 − 1, (5.4.7a)
β = n+

√

n2 − 1. (5.4.7b)Let (x, y, z) be a positive integer solution of (5.4.1). Then z = Uj = U ′
k,where

Uj =
αj − α−j

2
√
a

, (5.4.8a)
U ′

k =
βk − β−k

2
√
b

, (5.4.8b)with j, k positive integers.5.4.3 Linear form in three logarithmsWe will build a linear form on logarithms that depend on α, β. We �rstobserve the following inequality:
αj < βk <

√

b

a
αj , (5.4.9)whih follows from the fat that m < n, and that the map x 7−→ x − 1

x isinreasing for positive x, and the fat that
αj − α−j

2
√
a

=
βk − β−k

2
√
b

. (5.4.10)
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100 CHAPTER 5. SIMULTANEOUS PELL EQUATIONSAnother useful pair of inequalities is the following:
(

1 +
4

5a2

)

β2

α2
<
b

a
<

(

1 +
1

2a

)

β2

α2
, (5.4.11)whih an easily be derived from the fat that a ≥ 3, b ≥ a+ 5 and the fatthat

2x+ 1 − 1

4x
< 2
√

x2 + x < 2x+ 1, (5.4.12)for positive x. From the inequalities (5.4.9) and (5.4.11) we obtain the fol-lowing inequality in α, β:
βk−1 <

(

1 +
1

4a

)

αj−1. (5.4.13)We have the following lemma:Lemma 5.3. Let (x, y, z) be a solution of the system (5.4.1). If z = Uj = U ′
k,with j > k, then j and k have the same parity. Moreover, if j = k + 2, then

k is even.This is easily proven by using the reurrene sequenes and by inspetion forthe speial ase j = k + 2. We also have a double bound on Ut:Lemma 5.4. For any t ≥ 2, we have the inequalities:
αt < Ut+1 < (2m)t. (5.4.14)As a onsequene, we have
⌊

U
1
t

t+1

⌋

= 2m− 1. (5.4.15)This leads to the following orollary:Corollary 5.2. If Uj = U ′
k, then

(j − 1) log α < (k − 1) log 2n. (5.4.16)We onsider the linear form in three logarithms:
Λ =

1

2
log

b

a
+ j log α− k log β. (5.4.17)This form is bounded from above by

Λ < − log(1 − α−2j) <
α2−2j

α2 − 1
. (5.4.18)From this inequality we obtain

log Λ < −2j log α+ log

(

α2−2j

α2 − 1

)

< −2j log α+ 0.075. (5.4.19)
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5.4. FINITE NUMBER OF SOLUTIONS 1015.4.4 Gap priniplesSuppose that the system (5.4.1) has at least three solutions (xi, yi, zi). Wehave
zi =

αji − α−ji

2
√
a

=
βki − β−ki

2
√
b

,

(5.4.20)for integers 1 = j1 < j2 < j3 and 1 = k1 < k2 < k3. The goal of this setionis to prove that if suh a solution exists, then the gap between k2 and k3must be rather large. So large in fat, that it will reate a ontradition withthe upper bound found for k3 in the previous setion. Yuan [Yua02℄ provesthe following lemma:Lemma 5.5 (Yuan). There exist integers qj, qk ≥ 2 and σj , σk ∈ {−1, 0, 1},suh that
j3 = qjj2 + σj, (5.4.21a)
k3 = qkk2 + σk, (5.4.21b)

qjσj ≡ qkσk ≡ 0 (mod 2). (5.4.21)Cipu and Mignotte improve this lemma to obtain the following result:Lemma 5.6. With the above notations, we have the equality
σj = σk, (5.4.22)and the inequalities
qj > qk, (5.4.23a)

mqj < nqk. (5.4.23b)So from here on, we drop the indies for σ. Using these lemmata, Mignotteand Cipu prove the following proposition, whih gives the desired gap prin-iple:Proposition 5.1 (Cipu-Mignotte). We have the following lower bound forthe integer j3:
j3 >































1.99 j2 β
2
3 , if k2 = 2, k3 is odd, β > 8000 and l = 2,

1.99 j2 β
4
5 , if k2 = 2, k3 is odd, β > 8000 and l ≥ 3,

2.81 j2 β
k2−2

2 , if k2 > 2 is even,
3.96 j2 β

k2−3
2 , if k2 > 2 is odd, (5.4.24)where n = n(l,m), for some integers l,m > 1.
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102 CHAPTER 5. SIMULTANEOUS PELL EQUATIONSUsing this gap priniple together with a lower bound for linear forms in loga-rithms of three algebrai numbers from Matveev [Mat00℄, Cipu and Mignotteobtain the fat that for
max(a, b) ≥ 2.26 · 1049, (5.4.25)the simultaneous Pell equations have at most two solutions. This upperbound is now used as input in a theorem of Mignotte [Mig04, BMS06℄ toobtain a tighter lower bound for linear forms in logarithms of three algebrainumbers. This redues the above upper bound so that for:
max(a, b) ≥ 1.2 · 1038. (5.4.26)the simultaneous Pell equations have at most two solutions. From that pointon Cipu and Mignotte distinguish two ases.In the ase that the solution (x2, y2, z2) veri�es

z2 = 2n, (5.4.27)an expliit omputation using tehniques from omputational Diophantineapproximation theory allows them to verify that there are only two solutions.In the ase that z2 is a higher power of the fundamental solution, they oulduse muh tighter bounds whih allow them to eliminate this ase as well.Therefore a pair of simultaneous Pell equations has at most two solutions.We end this setion with an as of yet unproven onjeture of Yuan [Yua04℄.Conjeture 5.2 (Yuan). The equations:
x2 − az2 = 1, (5.4.28a)
y2 − bz2 = 1, (5.4.28b)have at most one solution in positive integers, unless

ac2 = m2 − 1, (5.4.29a)
bd2 = n(l,m)2 − 1, (5.4.29b)where c, d are positive integers, in whih ase these equations have exatlytwo solutions in positive integers.5.5 Quantum algorithm for simultaneousPell equationsWe extend Hallgren's result for single Pell equations, by giving a polynomialtime quantum algorithm that solves simultaneous Pell equations. This algo-rithm uses Hallgren's algorithm as a subroutine.Suppose we want to solve the pair of simultaneous Pell equations
x2 − az2 = 1, (5.5.1a)
y2 − bz2 = 1, (5.5.1b)
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5.5. QUANTUM ALGORITHM 103in polynomial time. That is to say, in a time O (max(log a, log b)k
). We havethe following ingredients:1. A polynomial time quantum algorithm that omputes the regulator Rof Q

[√
d
] with preision 10−n in time O((log d)c1 , nc2

) with probability
O
(

(log d)−c3 , n−c4
), if 10−n < dmin

log d , where ci are positive onstants.2. A polynomial time lassial algorithm that omputes a power produtrepresentation of the fundamental solution of the Pell equation froman integer R̃, suh that ∣∣R̃ − R
∣

∣ < 1, where R is the regulator of thenumber �eld Q
[√
d
].3. An upper bound for the smallest solution of a pair of simultaneousPell equations. This upper bound is given as max(m,n) ≤ 83, where

m,n are the powers to whih the fundamental solutions of the simul-taneous Pell equations need to be raised. We have some remarks forthis value 83. When we followed Anglin's approah to obtain an up-per bound, we restrited ourselves to max(a, b) ≤ 1000. On the otherhand, the upper bound is a diret result of the worst-ase senario forone spei� fundamental solution, the ase of d = 661. So this upperbound will only grow every time that we hit upon a new worst-asesenario for a ertain d′ > 661.A seond point to note is that we already indiated that this upperbound of 83 ould be improved by running Davenport's lemma againwith this new upper bound.So how do we proeed ? We use Hallgren's algorithm to obtain the regulatorsof both of the Pell equations. This an be done on a quantum omputer inpolynomial time. From these regulators we obtain power produt represen-tations of the fundamental solutions:
x2

0 − az2
0 = 1,

x0 + z0
√
a =

t
∏

i=1

(

ai + bi
√
a
)ni ,

(5.5.2a)
x′0

2 − bz′0
2

= 1,

x′0 + z′0
√
b =

t′
∏

i=1

(

a′i + b′i
√
b
)n′

i ,
(5.5.2b)where ai, a

′
i, bi, b

′
i are rational numbers and ni, n

′
i are integers. We do notuse this power produt representation diretly, but we will need it in the endto ompute z. We try to �nd powers m,n, suh that zm = z′n, where

xm + zm
√
a =

(

x0 + z0
√
a
)m
, (5.5.3a)

yn + z′n
√
b =

(

y0 + z′0
√
b
)n
. (5.5.3b)
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104 CHAPTER 5. SIMULTANEOUS PELL EQUATIONSWe an derive the following relations from the regulators:
log zm = mRa + log 2√

a
, (5.5.4a)

log z′n = nRb + log 2√
b
. (5.5.4b)In ase of equality zm = z′n we have

nRb −mRa = log
√

b√
a
. (5.5.5)So for all positive integers m,n < 83, we test the above equation. This anbe done by �xing m and solving the equality for n. If for a pair (m0, n0) wehave equality, then

zm0
= z′n0

. (5.5.6)We now use the power produt representation for the smallest solution toobtain a desription of this smallest solution as a di�erene of power produtrepresentations:
zm0

=
1

2
√
a

(

t
∏

i=1

(

ai + bi
√
a
)m0ni −

t
∏

i=1

(

ai − bi
√
a
)m0ni

)

. (5.5.7)If we do not �nd an equality before running out of bounds, then the simul-taneous Pell equations do not have a solution in positive integers. The aseof two solutions follows essentially the same sheme. First we �lter out theobvious ases of two solutions, that is the ases where
ac2 = m2 − 1, (5.5.8a)
bd2 = n(l,m)2 − 1, (5.5.8b)with c, d positive integers. For the other ases, Yuan onjetured [Yua04℄that there annot be two di�erent solutions in positive integers. While weannot prove this onjeture, we an test it. The idea is to obtain a similarbound for max(m,n), but now for the seond smallest solution. From thatpoint on we repeat the above proedure, expeting to run out of boundsbefore �nding a seond solution.5.6 Conlusion and PerspetiveWe have exhibited a polynomial time quantum algorithm with polynomialtime lassial postproessing that �nds solutions to simultaneous Pell equa-tions. The key ingredients to this algorithm are Hallgren's algorithm thatomputes the regulator of a number �eld in polynomial time on a quantumomputer and the upper bound on smallest solutions of simultaneous Pell
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5.6. CONCLUSION AND PERSPECTIVE 105equations obtained by Anglin. A ombination of these two results gives theabove algorithm. It is natural to wonder whether this proedure an be ex-tended to other types of equations. A natural extension would be to try tosolve the pair of simultaneous Fermat equations:
Ax2 −Bz2 = C, (5.6.1a)
Dy2 − Ez2 = F, (5.6.1b)with the usual onditions on A,B,C,D,E, F in order to prevent havingequivalent equations. Anglin [Ang95℄ gives an upper bound for the smallestsolution of this type of equations in the speial ase B = E = 1. To extendthe above algorithm we also need to have a fast method to solve the individualequations and a fast method to test for equality of individual solutions. Wealso need a small bound for subsequent solutions and a proof that there areonly a limited number of solutions. It seems probable that any type of pairof equations where these four onditions are met an be solved in polynomialtime on a quantum omputer.
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Get your fats �rst, then youan distort them as you please.Mark TwainAppendix AKroneker produt and sumLet A be an m×n-matrix and B a p×q matrix. Then the Kroneker produt
A⊗B (A.1)is an mp× nq matrix with the following oe�ients:

A⊗B =







a11B · · · a1nB... . . . ...
am1B · · · amnB






. (A.2)The Kroneker produt is a speial ase of the tensor produt and thereforehas the following properties:

A⊗ (B + C) = A⊗B +A⊗ C, (A.3a)
(A+B) ⊗ C = A⊗ C +B ⊗ C, (A.3b)

(kA) ⊗B = A⊗ (kB) = k(A⊗B), (A.3)
A⊗ (B ⊗ C) = (A⊗B) ⊗ C, (A.3d)where A,B,C are matries and k a salar. The Kroneker produt is notommutative in general. We have the following useful result:Lemma A.1. Let A,B,C,D be matries, suh that the multipliation A⊗Bby C ⊗D is well de�ned. We have the following identity:

(A⊗B) · (C ⊗D) = (AC ⊗BD). (A.4)As a onsequene we have the following orollary:Corollary A.1. The matrix A ⊗B is invertible if and only if the matries
A and B are invertible. In that ase we have

(A⊗B)−1 = A−1 ⊗B−1. (A.5)107
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108 APPENDIX A. KRONECKER PRODUCT AND SUMFor the eigenvalues and eigenvetors of the Kroneker produt we have thefollowing theorem:Theorem A.1. Let A be an m×m matrix with eigenvalues λ1, . . . , λm andlet B be an n × n matrix with eigenvalues µ1, . . . , µn. Then the eigenvaluesof A⊗B are given by λiµj .If x1, . . . , xm are linearly independent eigenvetors of A, where the eigenve-tor xi orresponds to the eigenvalue λi and x′1, . . . , x′n linearly independenteigenvetors of B, where the eigenvetor x′j orresponds to the eigenvalue µj,then xi⊗x′j are linearly independent eigenvetors of A⊗B with orrespondingeigenvalues λiµj.From this result we an derive the trae and determinant of the Kronekerprodut:Corollary A.2. Let A be an m×m matrix and B an n× n matrix. Then
Tr(A⊗B) = TrATrB = Tr(B ⊗A), (A.6a)

det(A⊗B) = (detA)n(detB)m = det(B ⊗A). (A.6b)Let A be an m×m matrix and B an n×n matrix. Then the Kroneker sumof A and B is de�ned as follows:
A⊕K B = A⊗ In + Im ⊗B. (A.7)The Kroneker sum of matries is non-ommutative in general, that is

A⊕K B 6= B ⊕K A (A.8)We have the following theorem regarding the eigenvalues and eigenvetors ofthe Kroneker sum of matries:Theorem A.2. Let A be an m×m matrix with eigenvalues λ1, . . . , λm andlet B be an n × n matrix with eigenvalues µ1, . . . , µn. Then the eigenvaluesof A⊕K B are given by λi + µj.If x1, . . . , xm are linearly independent eigenvetors of A, where the eigenve-tor xi orresponds to the eigenvalue λi and x′1, . . . , x′n linearly independenteigenvetors of B, where the eigenvetor x′j orresponds to the eigenvalue µj,then xi⊗x′j are linearly independent eigenvetors of A⊕KB with orrespond-ing eigenvalues λiµj.Let both A and B be n× n matries. We then have the following identity:
eA⊕KB = eA ⊗ eB . (A.9)There is a straightforward generalization to a Kroneker sum of n matries:

A1 ⊕K · · · ⊕K An = A1 ⊗ · · · ⊗ I + · · · + I ⊗ · · · ⊗An. (A.10)We have the same relation for the exponential:
eA1⊕K ···⊕KAn = eA1 ⊗ · · · ⊗ eAn . (A.11)
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Imagination will often arry usto worlds that never were. Butwithout it we go nowhere.Carl SaganAppendix BContinued FrationsContinued frations are used to give good rational approximations of irra-tional numbers.We �rst de�ne a sequene of funtions.Let a1, . . . , an be real numbers and a1 ≥ 1.De�ne the sequenes (fi

)

i
,
(

gi

)

i
, by

f−1 = 0, f0 = 1,

fn+1 = an+1fn(a1, . . . , an) + fn−1(a1, . . . , an−1),
(B.1a)

g−1 = 1, g0 = 0,

gn+1 = an+1gn(a1, . . . , an) + gn−1(a1, . . . , an−1).
(B.1b)By indution, we an prove the following:Theorem B.1. The sequene (fi

)

i
veri�es the reurrene relation:

fn

(

a1, . . . , an−1, an + 1
an+1

)

= 1
an+1

fn+1(a1, . . . , an, an+1). (B.2)An analogue result holds for the sequene (gi

)

i
.The following result an be derived almost diretly from the previous theo-rem:Theorem B.2. For all positive integers n, we have the reurrene relation:

fn(a1, . . . , an) = a1fn−1

(

a2,+
1
a1
, a3, . . . , an

)

. (B.3)There is also a diret relation between f and g:Theorem B.3. The funtions fn and gn verify the equations:
gn(a1, . . . , an) = fn−1(a2, . . . , an), (B.4a)

fngn−1 − fn−1gn = (−1)n. (B.4b)When n tends to in�nity it is possible to de�ne a limit for the fration fn

gn
:109
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110 APPENDIX B. CONTINUED FRACTIONSTheorem B.4. The sequenes f2n+1

g2n+1
and f2n

g2n
are respetively stritly inreas-ing and stritly dereasing. The limit

lim
n→∞

fn

gn
(B.5)is well-de�ned.Let ai be positive integers. The �nite ontinued fration [a1, . . . , an

] isde�ned as
a1 +

1

a2 +
1

a3 +
1. . . +

1

an

. (B.6)
We have the following relation between the sequene of funtions and on-tinued frations:Theorem B.5. The fration fn

gn
an be written as ontinued fration:

fn

gn
=
[

a1, . . . , an

]

. (B.7)It is still possible to express the ontinued fration as a fration of funtionsif we extend the ontinued fration [a1, . . . , an

]:Theorem B.6. For x ≥ 1, we have
[

a1, . . . , an, x
]

=
xfn + fn−1

xgn + gn−1
. (B.8)Let r be a real number, we de�ne the sequene (Xi

)

i
in the following way:

X1 = r, (B.9a)
Xn+1 =

1
(

Xn − ⌊Xn⌋
) , (B.9b)provided that Xn is not an integer. In that ase Xn is the nth ompletequotient of r. The simple ontinued fration of r of order n is equal to:

rn =
[

[X1], [X2], . . . , [Xn]
] (B.10)

= [X1] +
1

[X2] +
1

[X3] +
1. . . + 1

[Xn]

. (B.11)
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111Theorem B.7. Every real number r an be expressed uniquely as a simpleontinued fration. Moreover, this simple ontinued fration is �nite if andonly if r is a rational number.We have the following inequalities to indiate the quality of the approxima-tion of an irrational number by a ontinued fration.Theorem B.8. Let n be a positive integer, x a real number and fn

gn
the nthonvergent of x. Then

1

gngn+2
<

∣

∣

∣

∣

x− fn

gn

∣

∣

∣

∣

≤ 1

gngn+1
. (B.12)The following theorem states that all good rational approximations of anirrational number x are ontinued frations of x.Theorem B.9. Let x be an irrational number and let p

q ∈ Q, with q > 0. If
∣

∣

∣

∣

x− p

q

∣

∣

∣

∣

<
1

2q2
, (B.13)then p

q is a onvergent of x.For quadrati relations between integers, ontinued frations are partiularlyuseful.Theorem B.10. Let A,B, x, y be positive integers, and let C 6= 0 be aninteger, suh that C2 < AB and AB not a square. If
Ax2 −By2 = C, (B.14)then x

y is a onvergent of √B
A .Let P,Q,R be integers, suh that R is positive and not a square andQ divides

P 2 −R. De�ne the sequenes (Pi

)

i
,
(

Qi

)

i
by

P1 = P, Pn+1 =

[

Pn +
√
R

Qn

]

Qn − Pn, (B.15a)
Q1 = Q, Qn+1 =

R− P 2
n+1

Qn
, (B.15b)then we have the following theorem:Theorem B.11. The simple ontinued fration of (P+

√
R)

Q is periodi aftera ertain point, and for n su�iently large we have
√
R > Pn > 0, (B.16a)

2
√
R > Qn > 0, (B.16b)

2
√
R > Xn > 1. (B.16)
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112 APPENDIX B. CONTINUED FRACTIONSThe theorem above states that all quadrati relations between integers havea ontinued frations expansion that eventually beomes periodi. The fol-lowing theorem indiates under whih onditions this expansion is periodifrom the beginning.Theorem B.12. The fration (P+
√

R)
Q is purely periodi, that is

(

P +
√
R
)

Q
=



a1, . . . , ak,

(

P +
√
R
)

Q



 , (B.17)if and only if √
R+ P > Q >

√
R− P > 0. (B.18)
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Mathematis onsists in provingthe most obvious thing in theleast obvious way.George PolyaAppendix CAlgebrai Number TheoryLet a, b be integers and let d be a positive square-free integer.Let ξ = a+ b
√
d, then ξ = a− b

√
d is alled the onjugate of ξ.Lemma C.1. We have the following relations for ξ:
ξ = ¯̄ξ, (C.1a)

ξ + η = ξ̄ + η̄, (C.1b)
ξη = ξ̄ · η̄. (C.1)The solutions (ai, bi) of the Pell equation (4.3.1) an be haraterized by thealgebrai numbers ξi = ai + bi

√
d. We have the following relations betweensolutions of this type:Proposition C.1. If the algebrai numbers ξi = ai+bi

√
d and ξj = aj+bj

√
dare solutions of (4.3.1), then so are the numbers ξ̄i and ξiξj. In partiular,

ξn
i =

(

ai + bi
√
d
)n (C.2)is a solution of (4.3.1) for all integers n.So from a given solution of (4.3.1), we an generate an in�nite number ofdi�erent solutions. It is natural to ask whether any solution of the Pellequation is neessarily of this form. The following theorem, �rst proved byLagrange, on�rms this.Theorem C.1 (Lagrange, 1768). Let ξ1 = a1+b1

√
d be the smallest solutionof (4.3.1), with a1, b1 > 0. Then for every positive solution (s, t) of (4.3.1)there exists a positive integer n, suh that

s+ t
√
d =

(

a1 + b1
√
d
)n
. (C.3)113
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114 APPENDIX C. ALGEBRAIC NUMBER THEORYWe all ξ(d) = ξ1 = a1 + b1
√
d the fundamental solution of (4.3.1).Let

Q
[
√
d
]

=
{

r1 + r2
√
d | r1, r2 ∈ Q

} (C.4)be a quadrati number �eld. If
α = a+ b

√
d ∈ Q

[
√
d
]

, (C.5)then we have the following relations:
ᾱ = a− b

√
d ∈ Q

[
√
d
]

, (C.6a)
1

α
=

ᾱ

α · ᾱ ∈ Q
[
√
d
]

. (C.6b)The real number ξ ∈ Q
[√
d
] is an algebrai integer if there exists an integer n,suh that

ξn + an−1ξ
n−1 + · · · + a1ξ + a0 = 0, (C.7)where all ai are integers. The set of all algebrai integers in Q

[√
d
] is denotedby O and is sometimes alled the order of disriminant d.Proposition C.2. The algebrai integers of Q are the integers.We have the following su�ient ondition to verify whether a number is analgebrai integer:Lemma C.2. Let γ1, . . . , γl be omplex numbers and let

V =

{

l
∑

i=1

kiγi, ki ∈ Z

}

. (C.8)Suppose that α ∈ C veri�es αγ ∈ V , for all elements γ ∈ V . Then α is analgebrai integer.Proposition C.3. If
α1, α2 ∈ O ∩ Q

[
√
d
]

, (C.9)then
α1 + α2, α1α2 ∈ Q

[
√
d
]

. (C.10)There is another way to verify whether an algebrai number is an algebraiinteger:Proposition C.4. If ξ = r+ s
√
d, then ξ is an algebrai integer if and onlyif 2r and r2 − s2d are integers.
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115Let α, β ∈ Q
[√
d
], we de�ne the following rings:

Z[α] =
{

m+ nα | m,n ∈ Z
}

, (C.11a)
αZ =

{

nα | n ∈ Z
}

, (C.11b)
αZ + βZ =

{

mα+ nβ | m,n ∈ Z
}

. (C.11)The following relations follow more or less easily from these de�nitions:
Z[α] = Z + αZ, (C.12a)
αZ = −αZ, (C.12b)

aZ +
b

2
Z = aZ +

b′

2
Z, (C.12)where a, b are integers that verify

b′ ≡ b (mod 2a), (C.13a)
aZ + bZ = GCD(a, b)Z. (C.13b)Theorem C.2. The set of algebrai integers O of Q

[√
d
] an be desribedas follows:

O =
{

m+ nω | m,n ∈ Z
}

, (C.14)where
ω =

{

−1+
√

d
2 , if d ≡ 1 (mod 4),√
d, if d ≡ 2, 3 (mod 4).

(C.15)We obviously have that 1 and ω are linearly independent over Q. Therefore
O is a two-dimensional Z-module. Two algebrai integers α, β ∈ O form anintegral basis of O if

O =
{

mα+ nβ | m,n ∈ Z
}

. (C.16)If we have an integral basis of the set of algebrai integers, then it is possibleto de�ne its disriminant.Proposition C.5. If the pair {α, β} forms an integral basis of O, then
D =

∣

∣

∣

∣

α β
ᾱ β̄

∣

∣

∣

∣

2 (C.17)is a positive integer, independent of the hoie of integral basis. The integer Dis the disriminant of Q
[√
d
]. We have

D =

{

d, if d ≡ 1 (mod 4),

4d, if d ≡ 2, 3 (mod 4).
(C.18)

te
l-0

05
34

86
4,

 v
er

si
on

 1
 - 

12
 N

ov
 2

01
0



116 APPENDIX C. ALGEBRAIC NUMBER THEORYIt is possible to give another desription of the set of algebrai integers Ousing this disriminant:Proposition C.6. Let D be the disriminant of Q
[√
d
], then

O = Z

[

D +
√
D

2

]

. (C.19)An element ξ ∈ O is a unit if its inverse ξ−1 ∈ O is also an algebrai integer.Units of algebrai integers an be desribed in the following way:Proposition C.7. The number ξ = x + y
√
d ∈ O is a unit if and only if

2x ∈ Z and x2 − dy2 = ±1.Proposition C.8. If a+ b
√
d > 1 is a unit, then a, b > 0.Amongst the units of O, there is one unit that is speial:Theorem C.3. Let ǫ0 be the smallest unit in O, suh that ǫ0 > 1, then theset of units is given by
{

±ǫk0 | k ∈ Z

}

, (C.20)and ǫ0 is the fundamental unit of O.De�nition C.1. The regulator of O is log ǫ0.Let A,B be subsets of O of Q
[√
d
], then

A · B =
{

a1b1 + · · · + anbn | ai ∈ A, bi ∈ B, n ∈ N
}

. (C.21)De�nition C.2. A subset I of O is an integral ideal of O if I · O = I, andif for α, β ∈ I, we have
mα+ nβ ∈ I, (C.22)for all integers m,n.De�nition C.3. A subset I of Q
[√
d
] is a frational ideal of O if I ·O = I,and if for α, β ∈ I we have

mα+ nβ ∈ I, (C.23)for all integers m,n.De�nition C.4. If γ ∈ O, then
γO =

{

γξ | ξ ∈ O
} (C.24)is an integral ideal. Ideals of this form are alled prinipal ideals.
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117Proposition C.9. We have the following equivalene on prinipal ideals:
αO = βO,

⇔
α = βǫ,

(C.25)with ǫ a unit in Q
[√
d
].De�nition C.5. The set of all prinipal frational ideals is denoted by

PI =
{

ξO | ξ ∈ Q
[
√
d
]

}

. (C.26)Proposition C.10. Every prinipal frational ideal I is of the form
I = αZ + βZ

=
{

m1α+m2β | m1,m2 ∈ Z, α, β ∈ Q
[
√
d
]

}

,
(C.27)with α, β linearly independent over Q.Proposition C.11. Let {α, β} be an integral basis of the frational ideal I,then {α′, β′} is another integral basis of I if and only if

(

α
β

)

= M

(

α′

β′

)

, (C.28)where M is a 2 × 2 matrix with integer oe�ients and determinant 1.We de�ne the norm of a frational ideal I with integral basis {α, β} as
N (I) =

1√
D

∣

∣

∣

∣

det

(

α β
ᾱ β̄

)∣

∣

∣

∣

. (C.29)Proposition C.12. The norm N (I) is independent of the hoie of integralbasis {α, β}. If I = γO is a prinipal integral ideal, then
N (I) =

∣

∣γγ̄
∣

∣. (C.30)Proposition C.13. Every frational ideal I has an integral basis {α, β},with Q ∋ α > 0. Moreover, α is uniquely de�ned as the smallest positiverational number in I. If I is an integral ideal, then α is an integer.Proposition C.14. An ideal I ⊆ Q
[√
d
] is a frational ideal if and only ifthere exists a positive integer m, suh that mI is an integral ideal.De�nition C.6. For a, b ∈ Z, a 6= 0, let τ(a, b) be the unique integer, suhthat

τ ≡ b (mod 2a), (C.31)and with
−a < τ ≤ a, if a > √

D, (C.32a)
√
D − 2a < τ ≤

√
D, if a < √

D. (C.32b)
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118 APPENDIX C. ALGEBRAIC NUMBER THEORYProposition C.15. A subset I ⊆ Q
[√
d
] is an integral ideal of O if andonly if we an write I as

I = k
(

aZ + b+
√

D
2 Z

)

, (C.33)where a, b, k are integers, with a, k > 0, and b = τ(a, b), and 4a|(b2 − D).Moreover, I is uniquely represented by the triplet (a, b, k): ak is the small-est rational number in I, k
2 is the smallest positive oe�ient of √D of allelements of I, b = τ(a, b) is uniquely determined and N (I) = k2a.Using the previous two propositions we obtain a unique representation of afrational ideal as
I =

k

l

(

aZ + b+
√

D
2 Z

)

, (C.34)with l ∈ N the smallest possible integer. This representation is alled thestandard form of I.We an de�ne a prinipal ideal I = γO either by the algebrai number γ orby the parameters a, b, k ∈ Z.Proposition C.16. Let x, y be integers and
α =

x+ y
√
D

2
∈ O, k =GCD

(

y, x+yD
2

)

, (C.35)and let u, v be integers, suh that uy + v(x+ yD)/2 = k, then
αO = k

(

aZ + b+
√

D
2 Z

)

, (C.36)where
a =

∣

∣αᾱ
∣

∣, b = τ

(

a,
(ux+

v
2 (x+yD))

k

)

. (C.37)Let α ∈ I, where I is a frational ideal. Consider the oordinates
α̂ = (α, ᾱ) ∈ R2. (C.38)We say that α is a minimum of I, if α > 0, and if there is no β ∈ I, β 6= 0,with |β| < |α| and |β̄| < |ᾱ|. In other words, α̂ is in the �rst quadrant of R2and the retangle (±α,±ᾱ) does not ontain any element of I, exept (0, 0).A frational ideal is alled redued, if 1 ∈ I, and 1 is a minimum of I.Proposition C.17. If I is redued, then it an be written in standard formas
I = Z +

b+
√
D

2a
Z. (C.39)
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119Proposition C.18. If the ideal
I = Z +

b+
√
D

2a
Z (C.40)is a redued ideal in standard form, then a, |b| <

√
D. Therefore there areonly �nitely many redued ideals.Proposition C.19. If a frational ideal I an be written as

I = Z +
b+

√
D

2a
Z, (C.41)then I is redued if and only if b ≥ 0 and b+
√
D > 2a.Corollary C.1. The ideal

I = Z +
b+

√
D

2a
Z (C.42)is redued if a ≤

√
D
2 .Let

I = Z +
b+

√
D

2a
Z (C.43)be an ideal that is not neessarily redued. Let γ(I) = b+

√
D

2a .De�nition C.7. Let ρ be a mapping from prinipal ideals to prinipal ideals.
ρ(I) =

1

γ(I)
I

= Z +
2a

b+
√
D

Z.

(C.44)We an write this as
ρ(I) = Z +

b′ +
√
D

2a′
Z, (C.45)where a′ = |D−b2|

4a = c and b′ = τ(−b, c).Proposition C.20. Let
I = Z +

b+
√
D

2a
Z (C.46)be an ideal that is not neessarily redued. Let I0 = I and

Ii = ρ(Ii−1)

= Z +
bi +

√
D

2ai
Z.

(C.47)
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120 APPENDIX C. ALGEBRAIC NUMBER THEORYIf Ii is not redued, then ai <
ai−1

2 , and therefore there exist an
i ≤

⌈

log2
a√
D

⌉

+ 1, (C.48)suh that Ii is redued. Let ired be the �rst suh i. Then
α =

ired−1
∏

j=1

γ(Ij) (C.49)is a minimum in I and
Ired = Iired =

1

α
I. (C.50)De�nition C.8. The right neighbour of a minimum α of the ideal I is theminimum βR ∈ I, suh that βR > α. The left neighbour of α is βL ∈ I, suhthat |β̄L| > |ᾱ|.Proposition C.21. Let α ∈ Q

[√
d
] and α > 0. For every frational ideal

I, the map I 7−→ αI is a bijetion that sends minima to minima and left andright neighbours to left and right neighbours.Proposition C.22. If I = Z + γ(I)Z is redued, then we have the followingproperties:(i) γ(I) > 1 and −1 < γ(I) < 0,(ii) γ(I) is a minimum of I and ρ(I) is redued,(iii) γ(I) ∈ I is a right neighbour of 1 in I.We an write the set O of algebrai integers of Q
[√
d
] as

O = Z +
D +

√
D

2
Z

= Z +
τ(D, 2) +

√
D

2
Z,

(C.51)therefore O is a redued prinipal ideal. Thus α0 = 1 ∈ O is a minimum.For integers i we say that αi−1 is the left and αi+1 is the right neighbour ofa minimum αi ∈ O.
Ji =

1

αi
O

= Z + γiZ.

(C.52)The real number αi+1

αi
is a right neighbour of 1 in Ji, and we have that:

αi+1 = γiαi, (C.53a)
Ji+1 = ρ(Ji). (C.53b)
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121Proposition C.23. For every integer i we have the following inequalities:
3D

32
≤ log(1 + 3

16D ) ≤ log αi+1

αi
≤ log

√
D, (C.54a)

log 2 ≤ log
(

αi+1

αi−1

)

. (C.54b)Proposition C.24. The sequene {αi

}

i
ontains all minima of O.Theorem C.4 (Redued Prinipal Ideals Cyle). We have the followingproperties of the redued prinipal ideals yle:(i) The sequene {Ji

}

i
is periodi with period k0 ∈ N. The repeating seg-ment {J0, . . . , Jk0−1

} of redued prinipal ideals is alled the prinipalyle.(ii) Let ǫ =
αk0

α0
= αk0

, then ǫ = ǫ0 is the fundamental unit of O.(iii) Let I be a redued frational prinipal ideal, then I is in the prinipalyle.Proposition C.25. We have the following inequalities:
2R

logD
≤ k0 ≤ 2R

log 2
, (C.55)where R = log ǫ0 is the regulator of O.It is obvious that the map ρ is only invertible for the redued ideals of theprinipal yle.De�nition C.9. Let

I = Z + b+
√

D
2a Z

= Z + γZ
(C.56)be a redued ideal. The onjugate ideal of I is de�ned as:

σ(I) = Ī

= Z + b−
√

D
2a Z

= Z + τ(a,−b)+
√

D
2a Z.

(C.57)Geometrially this an be seen as a re�etion by the line y = x.Lemma C.3. We have the following properties for onjugate ideals:(i) I is redued if and only if Ī is redued.(ii) If α is a minimum of I, then |ᾱ| is a minimum of Ī.
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122 APPENDIX C. ALGEBRAIC NUMBER THEORY(iii) If α is a right neighbour of a minimum β in I, then |ᾱ| is a left neigh-bour of a minimum |β̄| in Ī.Proposition C.26. The inverse of a redued frational prinipal ideal I is:
ρ−1(I) = Z + b∗+

√
D

2c∗
Z, (C.58)where b∗ = τ(a,−b), and c∗ = D−b2∗

4a . We have
ρ−1(I) = σρσ(I). (C.59)De�nition C.10. Let I1, I2 be frational prinipal ideals of O, suh that

I1 = γI2, (C.60)with γ ∈ Q
[√
d
]. The distane between the ideals I1 and I2 is de�ned as

δ(I1, I2) = log |γ| (mod R), (C.61)where R is the regulator. If I1 6= γI2 for some γ ∈ Q
[√
d
], then the distanebetween I1 and I2 is unde�ned. We write δ(I) instead of δ(O, I).For the prinipal yle we have

Ji =
1

αi
O, (C.62a)

δ(Ji) = logαi, (C.62b)
δ(Ji, Jk) = log αk

αi
. (C.62)Proposition C.27. For every integer i we have the following inequalities:

3

32D
≤ δ
(

Ji, ρ(Ji)
)

= log γi ≤ log
√
D. (C.63)Proposition C.28. For every integer i we have the following inequality:

log 2 ≤ δ
(

Ji, ρ
2(Ji)

)

. (C.64)Proposition C.29. Let
I = Z +

b+
√
D

2a
Z (C.65)be a frational prinipal ideal that is not neessarily redued. Plae the idealson the real line R at positions that orrespond to their distane to O.Let ired be the smallest integer, suh that

Ired = ρired(I)

=
1

α
I

(C.66)
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123is redued. Let Jk be the ideal in the prinipal yle that is losest to I andthat veri�es ᾱkᾱ < 0. Then I lies between Jk−1 and Jk+1 and Ired is one ofthe Jk−1, Jk, Jk+1, with
∣

∣δ(I, Ired)
∣

∣ < logD, (C.67a)
δ(I) < δ

(

ρ2(Ired)
)

. (C.67b)The ardinality of the prinipal yle is exponential in logD so to loateideals by repeatedly applying ρ to O an take exponentially long. Thereforea tehnique to jump ideals in the prinipal yle is needed.De�nition C.11. Let I1, I2 be ideals, then I1 · I2 is a vetor spae on Z,with vetors
{

α · β | α ∈ I1, β ∈ I2
}

. (C.68)The vetor spae I1 ·I2 is an ideal, and if {α1, β1}, {α2, β2} are integral basesof I1, I2, then
{

α1β1, α1β2, α2β1, α2, β2

} (C.69)is an integral basis of I1 · I2.If I1 = ξ1O, I2 = ξ2O are prinipal ideals, then
I1 · I2 = ξ1ξ2O. (C.70)Proposition C.30. Let

Ii = aiZ +
bi +

√
D

2
Z, (C.71)for i ∈ {1, 2} be prinipal ideals. Let

k = GCD
(

a1, a2,
b1+b2

2

)

. (C.72)Let u, v,w be integers, suh that
ua1 + va2 + w

b1 + b2
2

= k, (C.73)then
I3 = I1 · I2

= k
(

a3Z + b3+
√

D
2 Z

)

,
(C.74)where

a3 =
a1a2

k2
, b3 = τ

(

a3,
ua1b2+va2b1+w

b1b2+D
2

k

)

. (C.75ab)
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124 APPENDIX C. ALGEBRAIC NUMBER THEORYIf we do not redue modulo R, we have that δ(I1 ·I2) = δ(I1)+δ(I2). Howeverit is not neessarily true that if I1 and I2 are redued that I1 · I2 is reduedas well. If
I =

1

a

(

aZ + b+
√

D
2 Z

) (C.76)is a redued ideal, then
I2 = I2 = I · I

=
k′

a′

(

a′Z + b′+
√

D
2 Z

)

,
(C.77)where

k′ = GCD(a, b)

= ua+ vb,
(C.78a)

a′ =
a2

(k′)2
, b′ = τ

(

a′,
ua+v

b2+D
2

k′

)

. (C.78b)So we have that
I2 =

1

k′

(

Z + b′+
√

D
2a′ Z

)

, (C.79a)
δ(I2) = 2δ(I). (C.79b)The ideal I2 is not neessarily redued, but onsider

I ′2 = k′I2

= Z +
b′ +

√
D

2a′
Z.

(C.80)We �nd that the distane between these ideals is
∣

∣δ(I2, I
′
2)
∣

∣ = log k′ < log
√
D. (C.81)We an onstrut an ideal I ′′2 from I ′2 by repeatedly applying ρ, until we havea redued ideal. We have that

∣

∣δ(I ′′2 , I
′
2)
∣

∣ < logD, (C.82)and therefore that
∣

∣δ(I ′′2 , I2)
∣

∣ <
3

2
logD. (C.83)So if we apply ρ or ρ−1, 2n times on I ′′2 , where

n <
3 logD

log 4
= O(logD), (C.84)then we an loalize the �rst element Jk of the prinipal yle that veri�esthe ondition δ(Jk) > 2δ(I).
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125De�nition C.12. For every ideal I of the prinipal yle, we de�ne the op-erator ∗ to be the operator that assoiates to I the element Jk of the prinipalyle:
Jk = I ∗ I. (C.85)Proposition C.31. Let I be a redued prinipal ideal. The ideal I ∗ I anbe omputed in O(polylogD). Moreover, if we onsider the sequene

I 7−→ I ∗ I = I(2) 7−→ · · · 7−→ I(2n)

= I2n−1 ∗ I2n−1

,
(C.86)then the �nal ideal I(2n) has distane

δ
(

I(2n)
)

> 2nδ(I), (C.87)and an be omputed in O(polylogD,n).De�nition C.13. Let I1, I2 be redued ideals, with
Ii = Z +

bi +
√
D

ai
Z. (C.88)The ideal I1 ∗ I2 is the �rst element in the prinipal yle, suh that itsdistane exeeds δ(I1) + δ(I2).
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List of Symbols and Aronyms
~µ Magneti moment
~σ The Pauli spin operator
~B Magneti �eld
~c Speed of light in vauum: 299 792 458 m s−1

~J Angular momentum
γ Gyromagneti ratio, γH = 267.513 · 106 rad s−1 T−1

~ Redued Plank onstant: 1.055 · 10−34 J s

C The omplex numbers
N The positive integers
Q The rational numbers
R The real numbers
Z The integers
H The Hamiltonian of a physial system
ω Angular frequeny
τQ Deoherene time for a physial realization
τop Duration of an operation on one qubit
kB The Boltzmann onstant: 1.381 · 10−23 J K−1

T Temperature in Kelvin
T1 Spin-lattie relaxation time
T2 Transverse relaxation timeDFT Disrete Fourier Transform127

te
l-0

05
34

86
4,

 v
er

si
on

 1
 - 

12
 N

ov
 2

01
0



128 APPENDIX C. ALGEBRAIC NUMBER THEORYFID Free Indution DeayGCD Greatest Common DivisorLCM Least Common MultipleNMR Nulear Magneti ResonaneQFT Quantum Fourier TransformRF Radio FrequenyRMN Résonane Magnétique NuléaireSMIS Spetrométrie de Masse à Ionisation SéondaireLLL Short for Lenstra, Lenstra and Lovászode45 Matlab routine to solve ordinary di�erential equations
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