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Résumé

Une nouvelle technique de radiothérapie, I'hadronthérapiadie les tumeurs a I'aide d'un faisceau
de protons ou d’'ions carbone. L’hadronthérapie est tresag#i pour le traitement du cancer car elle
permet le dépdt d'une dose létale trés localisée, en un giiiic de Bragg’, a la fin du trajet des par-
ticules. La connaissance de la position du pic de Bragg, awe@récision millimétrique, est essentielle
car I'hadronthérapie a prouvé son efficacité dans le tr@tgrdes tumeurs profondes, prés des organes
vitaux, ou radio-résistantes.

Un enjeu majeur de I'hadronthérapie est le contréle de liardélce de la dose pendant l'irradiation.
Actuellement, les centres de traitement par hadronthéeffectuent un contréle post-thérapeutique par
tomographie par émission de positron (TEP). Les rayons gantilisés proviennent de I'annihilation
de positons émis lors la désintégration béta des isotopksaifs créés par le faisceau de particules.
Les images TEP ne sont pas en coincidence directe avec le gitadg. Une alternative est I'imagerie
des rayons gamma nucléaires émis suites aux interactiélasiigues des hadrons avec les noyaux des
tissus. Cette émission est isotrope, présentant un speb@eate énergie allant d&0 keV a20 MeV.
Une technique avancée de détection des rayons gamma ess@eopElle est basée sur la diffusion
Compton avec possibilité de poursuite des électrons éiffusCette technique de détection Compton
a été initialement appliquée pour observer les rayons gaemmastrophysique (télescope Compton).
Un dispositif, inspiré de cette technique, a été modélisr aine géométrie adaptée a I'lmagerie en
HadronThérapie (IHT). Il se compose d’un diffuseur, ou llexttons Compton sont mesurés et suivis
(tracker”), et d’'un calorimétre, ou les rayons gamma sdsoabés par effet photoélectrique. Un scénario
d’hadronthérapie a été simulé par la méthode de Monte-Carlsuivant la chaine compléte de détection,
de la reconstruction d’événements individuels jusqu’@tnstruction d'images de la source de rayons
gamma. Lalgorithme 'Expectation Maximisation’ (EM) a &éopté dans le calcul de I'estimateur
du maximum de vraisemblance (MLEM) en mode liste pour effecta reconstruction d’'images. |l
prend en compte la réponse du systeme d’imagerie qui déarrhportement complexe du détecteur.
La modélisation de cette réponse nécessite des calculgnetioh de I'angle d’incidence de tous les
photons détectés, de I'angle Compton dans le diffuseur k&t dieection des électrons diffusés. Dans sa
forme la plus simple, la réponse du systéme a un événemeté@te par une conique, intersection du
cbne Compton et du plan dans lequel I'image est reconstilite forte corrélation a été observée entre
l'image de la source gamma reconstruite et la position dueiBragg. Les performances du systéme
IHT dépendent du détecteur, en termes d’efficacité de détecte résolution spatiale et énergétique, du
temps d’acquisition et de I'algorithme utilisé pour reditogr I'activité de la source de rayons gamma.

L'algorithme de reconstruction de I'image a une importafocelamentale. En raison du faible nom-
bre de photons mesurés (statistique de Poisson), desitindest induites par la résolution finie en én-
ergie, de I'effet Doppler, des dimensions limitées et desfacts générés par I'algorithme itératif MLEM,
les images IHT reconstruites sont affectées d’artefaots’qn regroupe sous le terme 'bruit’. Ce bruit
est variable dans I'espace et dépend du signal, ce qui mpeésan obstacle majeur pour I'extraction
d’'information. Ainsi des techniques de dé-bruitage ontutiiésées. Une stratégie de régularisation de
l'algorithme MLEM (WREM) en mode liste a été développée eplmuée pour reconstruire les im-
ages Compton. Cette proposition est multi-résolution serhase d'ondelettes orthogonales. A chaque
itération, une étape de seuillage des coefficients d'otidsla été intégrée. La variance du bruit a été
estimée a chaque itération par la valeur médiane des ceetfficile la sous-bande de haute fréquence.
Cette approche stabilise le comportement de I'algorithtéradif, réduit I'erreur quadratique moyenne et
améliore le contraste de I'image.

Mots-clés:Hadronthérapie, rayons gamma, imagerie Compton, recmtigin d'image, algorithme
MLEM, ondelettes.






Abstract

A novel technique for radiotherapy - hadron therapy - irméel tumors using a beam of protons or
carbon ions. Hadron therapy is an effective technique foceatreatment, since it enables accurate
dose deposition due to the existence of a Bragg peak at thefgratticles range. Precise knowledge
of the fall-off position of the dose with millimeters accuayais critical since hadron therapy proved its
efficiency in case of tumors which are deep-seated, closiaioovgans, or radio-resistant.

A major challenge for hadron therapy is the quality asswasfcdose delivery during irradiation.
Current systems applying positron emission tomographyf JR&hnologies exploit gamma rays from
the annihilation of positrons emitted during the beta demfayadioactive isotopes. However, the gener-
ated PET images allow only post-therapy information abbetdeposed dose. In addition, they are not
in direct coincidence with the Bragg peak.

A solution is to image the complete spectrum of the emittedrga rays, including nuclear gamma
rays emitted by inelastic interactions of hadrons to gdedrauclei. This emission is isotropic, and
has a spectrum ranging froid0 keV up to20 MeV. However, the measurement of these energetic
gamma rays from nuclear reactions exceeds the capabil@ll ekisting medical imaging systems. An
advanced Compton scattering detection method with ele¢tezking capability is proposed, and mod-
eled to reconstruct the high-energy gamma-ray events. tispton detection technique was initially
developed to observe gamma rays for astrophysical purpésdsvice illustrating the method was de-
signed and adapted to Hadron Therapy Imaging (HTI). It ciesf two main sub-systems: a tracker
where Compton recoiled electrons are measured, and arneteri where the scattered gamma rays are
absorbed via the photoelectric effect. Considering a hatlierapy scenario, the analysis of generated
data was performed, passing trough the complete detedtiaim rom Monte Carlo simulations to re-
construction of individual events, and finally to image mestouction. A list-mode Maximum-Likelihood
Expectation-Maximization (MLEM) algorithm was adoptedserform image reconstruction in conjunc-
tion with the imaging response, which has to depict the cempkhavior of the detector. Modeling the
imaging response requires complex calculations, corisgléhe incident angle, all measured energies,
the Compton scatter angle in the first interaction, the tdwawf scattered electron (when measured). In
the simplest form, each event response is described by @onsphe profiles. The shapes of the profiles
are approximated by 1D Gaussian distributions. A strongetation was observed between pattern of
the reconstructed high-energy gamma events, and locatithre @ragg peak.

The performance of the imaging technique illustrated byHéis a function of the detector perfor-
mance in terms of detection efficiency, spatial and energgiuéion, acquisition time, and the algorithms
used to reconstruct the gamma-ray activity. Thus besidiengattions of the imaging system, the ap-
plied imaging algorithm has a high influence on the final rstarcted images. The HTI reconstructed
images are corrupted by noise due to the low photon countsded, the uncertainties induced by fi-
nite energy resolution, Doppler broadening, the limiteddeiaised to estimate the imaging response,
and the artifacts generated when iterating the MLEM alborit This noise is spatially varying and
signal-dependent, representing a major obstacle forrimdiion extraction. Thus image de-noising tech-
niques were investigated. A Wavelet based multi-resatusivategy of list-mode MLEM Regularization
(WREM) was developed to reconstruct Compton images. At gacdtion, a threshold-based processing
step was integrated. The noise variance was estimatedtaseale of the wavelet decomposition as the
median value of the coefficients from the high-frequency-Isabbds. This approach allowed to obtain a
stable behavior of the iterative algorithm, presentingdowean-squared error, and improved contrast
recovery ratio.

Keywords: Hadron therapy, gamma rays, Compton imaging, image recmtisin, MLEM algo-
rithm, wavelets.
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Introduction

Les principales motivations d’'un examen par imagerie nadisont le diagnostic, ou la confirmation du
diagnostic, ainsi que la surveillance de I'évolution d'unaladie et de I'action de son traitement. L'une
des applications de I'imagerie dans le suivi du traitementeecontréle de la qualité de la radiothérapie.

L'hadronthérapie est une technique de radiothérapie ffiem@e contre le cancer. Elle utilise un
faisceau de particules chargées, par exemple, des prataesadons carbone. L'hadronthérapie a prouvé
son efficacité en cas de tumeurs difficiles a traiter par taérapie conventionnelle, du fait de leur radio-
résistance, de leur profondeur, ou de leur proximité dioegavitaux. Le faisceau d’hadrons permet
d’obtenir un dépot tres localisé de la dose létale en un mbiripic de Bragg’, a la fin du trajet des
particules. L'exploitation de cet avantage nécessite tict sontréle de la position du pic de Bragg.

Un centre d’hadronthérapie sera implanté a Lyon en 2013efpEX OILE (Espace de Traitement
Oncologique par lons Légers dans le cadre Européen) [Paneing., 2002]. Ce centre sera un pdle a
vocation nationale et européenne. Une premiéere explmitaté I'hadronthérapie en Europe est le projet
expérimental du GSI (Gesellschaft fur Schwerionenforaghua Darmstadt en Allemagne [Crespo et al.,
2001]. Plus récemment, un établissement hospitalier aéwtrait a Heidelberg. Plusieurs autres projets
sont en cours en Autriche, en lItalie, en Espagne, en Sueéén(ENLIGHT: European Network for
Reasearch in Light lon Therapy).

Le succés de I'hadronthérapie dépend de toute la chaineat€dissociée au traitement: diagnos-
tic, planification, irradiation, vérification de la qualiti traitement. Les données initiales du plan de
traitement sont composées par des images de la cible (tyaEyrises a I'aide de plusieurs techniques
d’'imagerie médicale et les données décrivant le faisceiaadiation. Le plan de traitement comprend
principalement: le calcul de la distribution de dose dansilite ainsi que dans les régions voisines,
le choix et la validation de la technique d’irradiation, com par exemple, I'estimation du nombre de
directions du faisceau entrant. La phase d'irradiation leiehabituellement une méthode de livraison
fractionnée de la dose [Parodi, 2004]. La méthode de véiditale la qualité de I'irradiation doit as-
surer la possibilité de controler la position du pic de Braggle détecter les écarts entre le dépbt de
dose réel et prévu. Nos travaux se concentreront sur ceedeaspect, c'est-a-dire les techniques de
surveillance permettant de vérifier la qualité de lirrdidia, en considérant les hadrons les plus légers
. les protons. Une méthode de vérification consiste & megenyons gamma secondaires issus des
réactions nucléaires au cours de l'irradiation du volunbéeciLe spectre d’énergie de ces rayons gamma
nucléaires s’étend deD0 keV a plus de20 MeV, ce qui constitue une difficulté majeure, rendant im-
possible leur détection par les dispositifs d'imagerie itelld existants. Nous proposons une nouvelle
technique d'imagerie basée sur la diffusion Compton.

Les modalités d’'imagerie médicale différent principaletgar la nature des rayonnements utilisés
pour imager I'objet a étudier. En tomographie par transimis@Computed Tomography CT), on utilise
des rayons X. lls sont atténués au sein du milieu traversénédecine nucléaire, comme par exem-
ple, la tomographie par émission de positons (TEP), ou laotwaphie d’émission monophotonique
(SPECT), utilise des radio-isotopes qui sont des sourceaytms gamma. Une image de la répartition
spatiale de l'atténuation du rayonnement ou de l'intenditécelui-ci, est reconstruite, respectivement,
pour ces modalités. Par conséquent, ces modalités d’imagécessitent la résolution d’'un probleme
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inverse. Plusieurs aspects doivent étre pris en compte ageine nucléaire, la nature du rayonnement,

ses propriétés et ses interactions dans les milieux (Jissargersés. Par conséquent, tous les proces-
sus physiques intervenant dans I'émission et la détect@nrayonnements considérés (par exemple,
les rayons gamma), ainsi que les particules secondairesXpaple, les électrons), doivent étre pris

en compte. Les principales interactions intervenant emdmildérapie sont présentées dans le premier
chapitre.

En médecine nucléaire, deux approches sont généralemses @m oeuvres. La tomographie par
émission de positons (TEP) utilise des sources qui émeatenphotons dans une configuration connue
a priori. Des positons s’annihilent avec des électrons deusisinage, ce qui entraine la production
de deux photons gamma deé1 keV dans des directions opposées. La détection des ces tetonp
permet la localisation de leurs émissions sur une droite SEBCT, des détecteurs avec collimateurs
rend possible la localisation directionnelle, en ne comiptpie les photons qui sont dans la direction
de I'entrée des collimateurs. La caméra est déplacée adtopatient, on obtient ainsi une série de
projections. Une perte importante de sensibilité est @éegpour connaitre la direction des photons, il
en résulte une faible qualité des images. Un accroissenuetaénaps d’acquisition permet un comptage
plus important au prix d’artefacts liés au mouvement deareg.

La détection de photons par le processus de diffusion Camptété introduite dans le contexte
de I'imagerie des rayons gamma pour améliorer |'efficadii@ sensibilité de détection. Des détecteurs
basés sur la diffusion Compton sont utilisés pour des aics médicales, astrophysiques, industrielles
et environnementales. La premiere utilisation de I'effetr@ton pour la détection de rayons gamma a
été proposée par [Schonfelder et al., 1973] en astrophgsians le contexte médical, [Todd et al.,
1974] ont proposé des technologies basées sur une camémtddonPlusieurs inconvénients de ce
détecteur ont été montrés. L'un des problémes renconttd®sEmation de l'ordre des événements
Compton. Une premiére caméra Compton pour SPECT a été gemas [Singh and Doria, 1983a].
Le prototype de cet appareil se composait de deux élémentdétécteur, ou les photons incidents sont
diffusés par 'effet Compton et ou I'énergie de I'électrafiuké ainsi que ses positions d’interaction sont
mesurées. Un calorimetre, ou le photon diffusé est absabégffect photoélectrique. L'énergie des
photons entrants peut étre inférieure au seuil de détedtipml’autre part, une absorption incompléte
peut avoir lieu. Les solutions proposées optimisent la gdnende détection et les matériaux des deux
détecteurs. Par exemple, 'augmentation du nombre detdétscpeut constituer une solution. Dans
ce cas, un algorithme doit reconstituer le chemin de chafotop dans les détecteurs. Le deuxiéme
chapitre de la thése présente les principaux détecteussydas gamma, en fonction leur énergie.

Les détecteurs basés sur I'effet Compton doivent avoir anérésolution énergétique afin d’obtenir
une résolution angulaire précise car I'énergie et I'an¢gerivée d’un photon sont liés par I'équation de
diffusion Compton qui est utilisée dans I'estimation de amgle. Un événement Compton est décrit
par un vecteur qui représente les positions d'interactioesurées, I'énergie déposée, la direction du
rayon gamma diffusé (ou des directions, en cas de diffus@mmpton multiples). Le processus de
mesure de données Compton d’un détecteur de géométrie exargst modélisé par la réponse du sys-
teme d'imagerie a un photon d’entrée. Il dépend de I'anglecitience du photon d’entrée, des énergies
mesurées, de la direction de I'électron diffusé, de I'argaliffusion Compton dans la premiére inter-
action. Ainsi, chaque événement Compton mesuré a une gnafhgence sur la résolution de I'image
initiale qui sera utilisée pour la reconstruction de l'iredimale. La Section 5.1 de la thése explique com-
ment I'image initiale est générée. La transformation damédes, de I'espace des événements a |'espace
de l'image, doit calculer la probabilité qu’un événemeriedt® a été émis par le point de 'image recon-
struite correspondant. Géométriquement, ces donnéespigjetées dans I'espace de I'image représen-
tent des cbnes, dans les directions d'incidences posslbiephotons. Considérant un plan paralléle au
détecteur, situé a une distance donnée, l'intersectionedaan avec le cbne génére des 'traces’ (ces
courbes sont des coniques, en termes géométriques) desvégis Compton.

Un algorithme doit reconstruire I'image en trois dimensi¢@D) a partir des rétroprojections dans



chaque plan. Cet algorithme apporte la solution du probléwerse associé. Des algorithmes ont
été proposés dans la littérature visant a trouver une eolagptimale de ce probleme inverse. lls sont
présentés dans le Chapitre 3. Deux approches sont posdildeEsministes et statistiques (itératives).
Les approches statistiques itératives présentent phssésantages sur leurs homologues déterministes.
En effet, elles permettent d’'inclure, plus facilement, uodéle de I'émission et du processus de détec-
tion. L'application d’'une méthode statistique nécessltsipurs choix, comme par exemple, le modéle
statistigue des mesures, la fonction de codt, I'algorithit@etif. Le paramétre d’estimation, ou de la
fonction de co(t, peut étre le critere du maximum de vraidende (ML), sa version pénalisée, ou
dans le cadre Bayeésien, I'estimation par maximum a postéNAP). Les algorithmes itératifs les plus
utilisés sont I'algorithme d’estimation-maximisationMl;, ses versions améliorées, comme par exem-
ple, EM ordonné en sous-ensembles, bloc-itératif EM, EMraé. L'analyse des performances inclut
I'évaluation de la résolution spatiale (par exemple, Iaeréation des bords), les propriétés du bruit ainsi
gue la performance de détection. En général, les imageastuaiies, en utilisant des méthodes pure-
ment basées sur le critere ML, présentent des artefact® qubpagent au cours des itérations. Un des
inconvénients de l'utilisation de I'estimateur pénalisé &kt le choix subjectif du paramétre de pénalité.
Les méthodes de réduction du bruit portent sur différerégkes d’'arrét des itérations, I'application des
techniques de régularisation, I'intégration d’une infation préalable sur la source ou sur le systéme de
détection. Des approches de reconstruction analytiqust gire des approches itératives déterministes
ont été proposées. Les solutions analytiques ont été amesmutermes de transformations intégrales,
harmoniques sphériques, cependant des restrictionsssprdgctions Compton sont introduites. Néan-
moins, les méthodes analytiques sont importantes pounipiEhension qu’elles apportent au probleme
de reconstruction Compton. Les approches itératives pe@iee considérées comme des processus en
deux étapes: estimation de la réponse du systéme d’'imagenige par I'application d’un algorithme
itératif. Cette vision de deux étapes de la reconstructiénative de données Compton est adoptée dans
ce mémoire.

Comme il a été mentionné précédemment, 'une des motiwatledlimagerie médicale est la surveil-
lance d’'un traitement. La mesure des rayons gamma proveeantactions nucléaires d’hadrons dans
la cible est un moyen de satisfaire cette exigence. Lesragstactuels, tels que le systeme TEP en
faisceau proposée par [Parodi et al., 2002], exploitentagsns gamma en coincidence &d keV de
I'annihilation de positons émis lors de la désintégrationpdoduit des isotopes radioactifs. Toutefois,
le faible nombre d’isotopes générés qui subissent unetdésation beta, et leur temps de décroissance
exigent un temps d’acquisition de données assez long. IRaégoent, il ne donne gu’une information
post-traitement sur le lieu ou la dose a été déposée. Camraint aux scanners TEP conventionnels, la
TEP en faisceau a un angle de couverture limité en raison 'damdry’, ce qui réduit la précision. En
outre, I'activité de positrons créés par les interactiomsldnires subit des processus métaboliques et est
lavée par le flux sanguin.

Le but ultime est de surveiller 'emplacement du dépét dedseden temps réel et en 3D. Une
méthode plus favorable pour atteindre cet objectif est laumeedu spectre complet des rayons gamma
émis lors de l'interaction du faisceau d’hadrons avec léecifela inclue les rayons gamma nucléaires
qui sont émis par la relaxation des noyaux produits. Cetiestom est isotrope et son spectre d’énergie
se situe dd 00 keV a plus de20 MeV. Elle est accompagnée par un fond plus énergique deamesutr
Une relation entre la distribution spatiale des rayons gamanivant les réactions nucléaires et la région
de la décroissance de dose a été signalée par [Min et al] 2086 un faisceau expérimental de protons.
Dans cette expérience, les rayons gamma nucléaires sagsvébpar un systeme de collimation qui
ne compte que les photons gamma émis avec un angd®°dpar rapport a la direction du faisceau.
En regle générale, en médecine nucléaire, les systéemegadztialé (TEP, SPECT) sont optimisés pour
les énergies en dessous téMeV. Ainsi, la mesure des rayons gamma énergétiques desdtitss
nucléaires dépassent la capacité de tous les systemesamédiistants. Toutefois, les rayons gamma
sont observés en astronomie, grace a des télescopes Coatpbaires positon-électrons [Zoglauer,



2005], ou avec détecteurs utilisant des micro-chambresjaqtion temporelle [Tanimori et al., 2004].

Ces systemes ne nécessitent pas de collimateurs et ontdentent élevé ainsi qu’un large champ de
vue. Par conséquent, nous avons considéré que I'adapthtioriel systéme pour la vérification de la
qualité d'un traitement d’hadronthérapie pourrait se i&vaévantageuse.

La technique d’'imagerie que nous avons proposée pour lati#tedes rayons gamma de haute
énergie est basée sur la diffusion Compton et la possiliétéuivre I'électron diffusé [Frandes et al.,
2010b]. Un instrument qui illustre cette méthode est leqiygpe MEGA (“Medium-Energy Gamma-
ray Astronomy”). MEGA est le premier télescope combiné Ctumpet paires entierement étalonné et
fonctionnant avec succes, capable de mesurer les rayomeadiénergie de prés d@0 keV a50 MeV.
Baseé sur le principe de mesure du prototype MEGA, nous avatirmigé un appareil pour I'lmagerie en
I'HadronThérapie (IHT). Il se compose de deux parties ppales: le 'tracker’ ou les électrons Compton
sont mesurés et le calorimétre ou les rayons gamma sonésupét I'effet photoélectrique. L'angle
de diffusion Compton de la premiére interaction au sein dak&r, ainsi que les positions des deux
premiéres interactions, permettent de localiser la dorau photon incident sur la surface d’'un cone.
La direction de I'électron diffusé permet de restreindagigiine de la distribution & un segment de coéne.
L'analyse des données mesurées doit couvrir la chaine eampepuis les interactions dans le détecteur
a lareconstruction de 'origine de la source. Les algorébmtilisés pour I'analyse des données acquises
par le systéeme IHT sont décrits dans la Section 4.3.4. ll@sgosent principalement d’algorithmes de
reconstruction d’événements et d'images. Chacun d’ewésepte une étape critique de I'analyse des
données, ayant une grande influence sur le résultat finaledanstruction des événements a pour but
de reconstituer la trajectoire de chaque rayon gamma daitétdeteur aussi précisément que possible,
alors que la reconstruction d’'image a pour but, a la foiselddis données de I'espace des événements a
I'espace image et d’estimer I'origine de la source la plabpble.

Des calculs Monte Carlo numériques des profils de photonsngaémis dans un fantdme en PMMA
sont présentés, avec le dépbt d’énergie des particules.céiraso d’hadronthérapie a été simulé, les
evénements Compton enregistrés par le systeme IHT ont B&égeau cours d'un traitement par des
calculs de Monte Carlo, et, ensuite, une image a été recitestt'algorithme en mode liste MLEM a
été adopté pour reconstruire les images de la distributioragons gamma émis. L'algorithme itératif
a été appliqué en conjonction avec la réponse d’'imageriefotrae la plus simple d’approximation
de la réponse est une représentation par fonctions ganssieiCe modéle de la réponse du systéeme
d’'imagerie s’est révélé insuffisamment adapté, en paigical la haute énergie des rayons gamma qui
ne sont pas toujours complétement mesurés par le systéméiHdutre, le faible nombre de photons
enregistrés ainsi que les incertitudes induites par ldutiso finie en énergie, la résolution en position,
et 'effet Doppler, produisent des images reconstruitestées a partir des événements IHT. Ce bruit
est variable spatialement et dépend du signal, ce qui rmetsin obstacle majeur pour I'extraction
d’'information. De plus des artefacts sont générés lorsitirdtion de l'algorithme MLEM. Afin de
résoudre ces problémes, des techniques de dé-bruitagmagss ont été implémentées.

Une stratégie de régularisation de I'algorithme MLEM en mtidte, dans I'espace transformé en
ondelettes orthogonales, a été développée (WREM). Uneoaétbificace de débruitage utilise le seuil-
lage des coefficients d’ondelettes (mise a zéro des petifficients), avec un seuil calculé en fonction
du niveau de bruit estimé. Cette technique est bien foréalmur un bruit indépendant des données
dont les propriétés statistiques sont connues. Malheemseist, ces conditions ne sont pas satisfaites en
imagerie Compton. Notre premier modéle suppose que leséeégnie travail, c’est a dire, les images
Compton initiales, sont représentées par le comptage mbéweénts qui suivent une statistique de Pois-
son sans sources de bruit. L'application de la méthode gempoommence par une étape de stabilisation
de la variance des données, par la transformation d’Ansedftandes et al., 2009]. Cependant, si le
bruit de Poisson est généralement admis pour caractégsatahnées de projection (comme par exem-
ple, les données TEP/SPECT), aprés quelques itérationalgierithme de reconstruction, les données
de I'espace de I'image suivent des distributions plus cexgd. Notre second modéle suppose que le



bruit présent dans les données, aprés quelques itéraginhane distribution gaussienne par application
du théoreme central limite [Frandes et al., 2010a]. Le k@dl est appliqué aux itérations suivantes
et la variance du bruit est approximée a I'aide de I'estimma@mmpirique médian, appliqué aux coeffi-
cients d’ondelettes des sous-bandes hautes fréequenégaluation de la méthode a été faite en utilisant
différentes configurations de sources mono-énergétigles. données Compton ont été acquises par
I'enregistrement des mesures produites dans une camérat@unyui a été concue comme un mod-
ele simplifié du systéme IHT. L'objectif principal de cetteide a été l'illustration de la performance
de l'algorithme d'imagerie dans une configuration donnéesyhieme de détection. Notre algorithme
nommé WREM (Wavelets Reconstruction EM) a été appliqué peconstruire des sources de rayon
gamma simulées. L'algorithme WREM est présenté dans ladbesi2.3. Les conclusions de la thése
sont développées dans le Chapitre 6.






Introduction

In medical imaging, the main reasons for examination is &guose or confirm diagnosis as well as to
monitor the progress of a disease or a treatment. A possilplcation in treatment monitoring is the
quality assurance of radiation therapy by hadron beamsienggmma-ray imaging reveals an essential
point of the treatment success.

Hadron therapy is an effective cancer treatment using elgpgrticle beams of e.g., protons or car-
bon ions. Hadron therapy proved its efficiency in case of ismdnich are hard to treat by conventional
radiotherapy because they are radio-resistant, deepesemtclose to vital organs. The hadron beam en-
ables a high precision in the dose deposition due to theegxistof a Bragg peak at the end of the beam
range. In order to exploit this benefit, a strict control omitaring technique of location and amount of
the delivered radiation dose is extremely important.

Cancer treatment by hadron beams is an on growing technigbeance, especially after the adop-
tion of the ETOILE (Espace de Traitement Oncologique pas loégers dans le cadre Européen) project
in 2005, to build a clinical center situated in the Rhone-Alpes sagiPommier et al., 2002]. A first
attempt to exploit the advantages of hadron therapy wasdberienental project from GSI (Gesellschaft
fur Schwerlonenforschung Darmstadt) [Crespo et al., 2Qdldhg with the more recently hospital based
facility from Heidelberg, Germany. Several other projets on going in Austria, Italy, Spain, Swe-
den, according to the ENLIGHT (European Network for Readear Light lon Therapy) coordination
activity.

The quality of hadron therapy depends on all the aspect$vientdnto the treatment: the diagnostic
phase, the treatment planning, the irradiation phase, lduality verification of the treatment. The
input data for the treatment plan consist of the target imagpgjuired using several medical techniques,
and data describing the irradiation beam. Mainly two openatare included in the treatment plan: the
calculation of dose distribution within the target regi@veell as surroundings regions, and the choice
and validation of the irradiation technique, e.g., estartae number of incoming beam directions. The
irradiation phase usually employs a fractional method ahbeelivery by synchrotron, allowing a pulse-
to-pulse variation of the beam parameters, as used at G®IJP2004]. The quality verification method
should assure the possibility to monitor the maximum beameaaverify the position of the irradiation
field, and detect deviations between real and planned tezdfrduring the irradiation. The work herein
will concentrate on the last aspect, namely the monitogehniques enabling to verify the quality of the
treatment during irradiation, considering the lightesdroa particles: the protons. A verification method
is to measure the secondary gamma-rays issued from nuelaetians during irradiation of the target
volume by hadron beams. The energy spectrum of these nugd@ama rays ranging from50 keV
up to 20 MeV constitute a real drawback, making their detection isgilde by all existing medical
imaging devices. Herein, a novel imaging technique basdti@fompton scattering effect is proposed
to measure the nuclear gamma rays during hadron therapgilatbout the proposed quality assurance
solution will be further presented, after the main requimetions will be introduced.

Medical imaging modalities differ mostly by the form of enadions used to generate images of the
object under study. The emanations represent the physiceégses involved in the measurement. In
transmission Computed Tomography (CT), the emanationsepresented by X-rays which are atten-

7



uated along interactions within the traversed medium. &arcinedicine, e.g., Positron Emission To-
mography (PET), or Single Photon Emission Tomography (SBEGes radio-pharmaceuticals which
constitute emission sources of gamma rays. Given the maasumts of emanations, an image of the spa-
tial distribution of the object is reconstructed. Hencegdioal imaging modalities are inverse problems.

Several aspects have to be in detail considered when medieges are studied. The nature of
emanations as well as their properties should be known adatfigthe interactions occurring within the
traversed objects. Therefore, all physical processedvieslan emission and detection of the considered
emanations (e.g., gamma rays) as well as the productionbgkguent particles (e.g., electrons) should
be well understood. The main interaction processes retatéddron therapy are presented in the first
chapter.

The issue of the detection of emerging photons is a the @redtlocalization of their emission
source. In nuclear medicine, mainly two approaches arergiyenderlined. PET uses sources which
emit photons in a priori known configuration - positrons &ilate with electrons placed in their vicinity,
resulting in generation of two 511 keV gamma photons at (atyjmapposite directions. Detection of the
two photons results into localization of their origin enmtgssomewhere on the straight line determined
by the positions of interaction. In SPECT, collimator basetectors achieve directional localization,
counting only those photons which are directed perpenralid¢althe face of the camera. During detection,
the collimated camera is rotated around the subject (gtiesulting in a set of collected projections.
A severe loss of sensitivity is accepted to know the incontimgction of emitted photons, resulting in
degraded image quality. Data collection times should nahbeeased to improve photon counts, thus
more efficient and sensitive detection is desirable.

Photon detection by means of the Compton scattering precassntroduced for gamma-ray imag-
ing context as a solution to improve the efficiency and switgitof detection. Compton scattering
based detectors are mainly used for medical and astrogtgiplications, as well as industrial applica-
tions, e.g., non-destructive analysis of nuclear wastér@mmental monitoring. The first idea of using
Compton scatters for gamma-rays detection was propose8dhyhfelder et al., 1973] for astrophysics
applications. In the medical context, [Todd et al., 1974jgmsed the Compton camera technologies, and
several drawbacks in constructing this detectors were shome of them was the problem of finding the
correct order of the Compton events. A Compton camera foIC3Rkas firstly proposed by [Singh and
Doria, 1983a]. The prototype of the camera consisted of in&wvo principal sub-parts which have to
work in coincidence. Namely, the scattering detector whtegéncoming photons are Compton scattered,
and the recoiled electron’s energy as well as its interagimsitions are measured. The scattered photon
undergoes photoelectric absorption in the second detbgtdeposing its full energy. When the energy
of the incoming photons are above a detectable threshaldpiplete absorption may be recorded. The
proposed solutions tried to optimize the detector geonstryell as to improve the materials composing
it. Namely, increasing the number of detectors may corstiwaluable solution in certain applications.
In this case, algorithms which reconstitute the paths obnmog photons have to be available. They
start by grouping the interactions into events which furtiie assigned to the photon tracks producing
them. Finding the correct order of events belonging to aktewell as their measured information
(e.g., position, energy), is an essential step in knowirgy ébmplete absorption was recorded, and fi-
nally, to compute the source location. The second chapttreofhesis introduces the principal groups
of gamma-ray detectors, which vary according to the tachetergy.

Compton detectors should have high energy resolution twadl reasonable angular resolution.
The energy and angular parameters are related via the Coregteation. A Compton event consist
of a vector which represent the measured interaction positideposed energies, scattered gamma-ray
direction (or directions, in case of multiple Compton seatiys). The Compton measurement process
- in combination with a complex detector geometry - resuita imulti-dimensional imaging response
which depends on all measurements (e.g., incidence anglsured energies, direction of the scattered
electron, Compton scatter angle in the first interactiongné€¢, each measured Compton event has a



high influence on the resolution of the initial image. Settl of the thesis explains how the initial
image is generated. The transformation of data from evasutes to image-space requires to compute
the probability that a detected event was really emittedhieyunderlined image pixel. Geometrically,
these data back-projected in image space correspond teatpnssible origin directions. Considering
a parallel to the detector plane, situated at a given distahe intersection of this plane with the cone
generates “shapes”, or profiles of the Compton events. Alpnapresents the distribution of possible
true event cones from the measured one, and the distribafitnue scatter planes from the measured
one.

An implementable algorithm has to be available for recamsing the image from the measured em-
anations. This step means to find a solution to the assodiatetse problem. The source function is
generally defined over a 3D domain. Many algorithms were @segd in the literature aiming to find
its optimal expression. Part of them are reviewed in Chaptefwo main approaches of image recon-
struction exists, namely analytic and iterative methotirative approaches present several advantages
over their analytic counterparts, allowing to include inézonstruction a model of both emission and
detection processes. Applying an iterative method demémasake several choices, e.g., the statis-
tical model of measurements, the cost function, the itezagigorithm. The estimation parameter or
cost function may be the maximume-likelihood (ML) criteridts penalized version, or in the Bayesian
framework, the maximum a posterior (MAP) estimate. Widebged iterative algorithms include the
expectation-maximization (EM) algorithm, along with itaproved versions, e.g., ordered-subsets EM,
block-iterative EM, space-alternating EM. The image parfance analysis includes evaluation of spatial
resolution properties (e.g., edge-preserving), noispgites as well as detection performance. Gener-
ally, images reconstructed purely using methods based oorl#rion present artifacts, which propagate
during iteration. Disadvantages of using the penalized Btingator include the rather subjective choice
of the penalty parameter. Methods to reduce noise includeusastopping rules, application of regular-
ization techniques, integration of a prior information abtine source or detection system.

Analytical as well as iterative approaches were proposeedonstruct Compton data. Analytical
solutions were derived in terms of integral transformsesjglal harmonics, including restrictions to the
Compton projections possible to use. Nevertheless theyngvertant for the insight they bring into
the Compton reconstruction problem. The iterative apgreanay be viewed as a two steps process:
estimation of the imaging response, followed by the appboaof an iterative algorithm. An accurate
imaging response is required when a high resolution of the feconstructed images is needed. This
two steps vision about iterative reconstruction of Comscatttered data is adopted herein.

When studying medical images, beside the required critetiaduced, an essential condition may
be underlined; namely, the necessity of obtaining an imagessenting useful diagnostic information
about the spatial distribution of the object under study.

As it was mentioned above, one reason to generate medicgésriato obtain an easily to interpret
way of monitoring a treatment. The measurement of gammaaggmating from nuclear reactions
of the hadrons within the target volume is a way to fulfill thégjuirement. Current systems, such as
the in-beam PET system proposed by [Parodi et al., 2002]pigxpe coincidents11 keV gamma rays
from annihilation of positrons emitted during the beta gesgenerated radioactive isotopes. However,
the low number of generated isotopes which undergo betaydeod their decay time require quite
long data acquisition times. Therefore it only gives a gbetapy information about the location of the
deposed dose. Unlike conventional PET scanners, in-beanh®&limited angle of coverage due to the
gantry, reducing the quantitative precision. Moreovesifpon activity created by nuclear interactions
undergoes metabolic processes and is washed out via the tideo The ultimate goal, however, is to
monitor location and deposed dose of the beam in real-tindinOne way to achieve this goal is to
measure the complete spectrum of the emitted gamma raysydiné interaction of the hadron beams
with the target. This includes nuclear gamma rays which ariéted by the relaxation of generated
nuclei. This emission is isotropic, and its energy spectranges from roughlyt00 keV up to20 MeV,



accompanied by a more energetic background of neutrondatiore between the spatial distribution of
gamma rays following nuclear reactions and the dose falégffon was reported by [Min et al., 2006]
with an experimental proton beam. There, the nuclear gamagsare observed by a collimated system
counting only those gamma rays which are emitted witB@nangle with respect to the beam direction.

In general, in nuclear medicine, the detection systems (F¥PECT) are optimized for energies
below1 MeV. Thus the measurement of energetic gamma rays from awuicieractions exceeds the ca-
pabilities of all existing medical systems. However, thgamma rays are a prime target for astronomical
imaging systems, such as tracking Compton and pair telesd@mglauer, 2005], detectors using micro
time projection chambers [Tanimori et al., 2004]. Thoséeys do not require collimators and therefore
can achieve a high efficiency and large field-of-view. Furti@re, they can use gamma ray and electron
tracking to identify and thus reject a large portion of thekgaound. Therefore, the adaptation of such
a system to hadron therapy monitoring might prove advaotage

The proposed detection technique of the high-energy gamgsis based on Compton scattering
with the electron tracking possibility [Frandes et al., @[l An instrument illustrating this method is
the MEGA prototype (“Medium-Energy Gamma-ray Astronomy)EGA was the first fully calibrated
and successfully operating combined Compton and paircibes capable of measuring gamma rays in
the energy range from roughly 400 keV up to 50 MeV. Based onME&A prototype measurement
principle, an advanced imaging device was optimized forrbladrherapy Imaging (HTI) to observe
gamma rays from an object. It consists of two main parts: rdeker where Compton recoiled electrons
are measured, and the calorimeter where gamma rays areedtofp the photoelectric effect. The
Compton scattering angle of the first interaction within ti@eker, along with the positions of the first
two interactions allow to localize the direction of the intiag photon on a cone surface. Including
information about the recoil electron direction enableBuitther restrict the origin distribution to a cone
segment. The analysis of measured data has to cover theatendetection chain starting from the hits
into the detector to reconstructing the source image. Atlyos used for the analysis of the HTI data
are described in Section 4.3.4. They mainly consist of esadtimage reconstruction algorithms. Each
of them represents a critical step of data analysis, havitlg & high influence on the final results. Event
reconstruction has to reconstitute the path of each gamynat@ detector as accurately as possible,
while image reconstruction has to both link the data froomegpace to image space, and estimate the
most probable source origin.

Monte Carlo numerical experiments of the emitted gammagisoprofiles into a PMMA phan-
tom are presented, along with the energy deposition of maplasticles. Considering a hadron therapy
scenario, the HTI recorded Compton events were generatétgdbe treatment by Monte Carlo calcu-
lations, and further reconstructed. A list-mode MLEM waspatéd to reconstruct images of the emitted
gamma-ray distribution. The iterative algorithm was agglin conjunction with the imaging response.
The simplest form of response approximation, i.e., estonaby 1D Gaussian functions, was adopted
herein. This model of the imaging response proved insuffiieadapted, especially to high-energy
gamma-rays which are not always completely measured by Thesystem. Moreover, the low photon
counts recorded as well as the uncertainties induced by famergy, position resolution, and Doppler
broadening, result in noisy reconstructed images of the @¥€hts. In addition, artifacts are generated
when iterating the MLEM algorithm. This noise is spatialigrying and signal-dependent, representing
a major obstacle for information extraction. Therefore gaae-noising techniques were investigated.

A wavelet based multi-resolution strategy of list-mode MULEegularization (WREM) algorithm
was developed and applied to reconstruct Compton eventgel@fdbased methods are widely used for
a large range of applications. In image processing, theyreialy employed for image compression
and de-noising. One of the image de-nosing methods incladdésinkage technique of wavelet coeffi-
cients, according to an adopted policy based on the estihmatise level. An ideal application of this
technique should include that the noise is data independenl the statistical properties of the noise
are known. However, in case of nuclear images, and morecpkatiy, in case of Compton images,



these aspects are not a priori available. A first model assuiha the working data, i.e., Compton ini-
tial images, are represented by Poisson counts without oy additive noise. The application of the
proposed method starts by a normalization step, which desithe data pre-processing by Anscombe
transform [Frandes et al., 2009]. However, the Poissorenisigienerally assumed to characterize the
projection data (e.g., PET/SPECT data), whereas in thedrapgce, after deconvolution, data could fol-
low different, generally more complex distributions. A eed model assumes that the noise present in
the data follows a Gaussian distribution after a numbereséitons, when considering the central limit
theorem [Frandes et al., 2010a]. The thersholding is apptiethe further iterations, while the noise
variance is approximated as the MAD estimator using the sighbands wavelet coefficients. The eval-
uation of the method was done using different configuratafnmeono-energetic sources. Compton data
were acquired by recording the measurements occurred ommgtGo camera, which was designed as
a simplified model of the HTI system. The primary aim of thedgtwas the illustration of the imaging
algorithm performance in a given configuration of detecsgstem. The proposed method is presented
in Section 5.2.3, while the Chapter 6 concludes the thesis.






Chapter 1

Fundamentals of particle physics and
hadron therapy

Gamma-ray imaging appears as a necessary assess in vasioaisd, e.g., medical imaging, astro-
physics, demanding the knowledge of both gamma-rays emnissid detection processes. Emission
of gamma rays is strongly related to the creation mediumg¢hvis defined by e.g., its atomic number,
dimensions, material. Meanwhile, detection implies theplex analysis of gamma ray properties, e.g.,
energy spectrum, emission time, in order to achieve anteféecesponse to the imaging assignment.
Gamma rays lose energy in a variety of ways involving liderabf atomic electrons, which further
deposit the energy in interactions with other electronsndée an understanding of the basic physical
processes is desirable.

Imaging of gamma rays reveals as a strongly required catyabilthe treatment quality evaluation
during radiation therapy by hadron beams. Namely, imagiggunma rays generated during fragmenta-
tion of target nuclei constitute a verification approactt #ech incident beam was delivered as intended,
i.e., the beam energy (or dose) was deposed according tcetitenent plan. The treatment quality ver-
ification represents a fundamental issue in hadron thethpyto the necessity of maximizing the dose
delivered to the target volume (tumor), while preservingrash as possible the surrounding (healthy)
regions. This aim is a critical aspect, especially for hadterapy, where the depth-dose distribution is
characterized by a relatively low dose at the entrance megind a sharply elevated dose at the end of
the range. Solutions proposed to monitor the dose depogitibadron therapy are reviewed in Section
1.2.2.

1.1 Interaction processes

Interaction processes which occur when charged particée®ltwithin matter, determine the loss of
their energy by collision with orbital electrons, or bandatons in materials such as Silicon or Germa-
nium. Scattering of gamma rays is a process with a wide rahgessible results, following statistical
distributions. Possible interaction processes vary witth particles energy, and atomic number of the
material.

Gamma rays are high-energy ionizing radiation. They coelgbde energy in the mass of a material
when passing through. A measure of the amount of energy fiiesfunass is, in a general sense, named
dose. Dose is affected by the type of radiation, the amouradi&tion, and the physical properties of
the material. Specifically, dose is referred as the absaibed in tissue, or a material such as Silicon, or
Germanium.

The energy transferred to the medium per unit length of thezadion path is named Linear Energy
Transfer (LET) . The latter is useful to indicate the quabfydifferent types of radiation. Equal doses
of different types of ionizing radiation will produce difent biological effects. Generally, X-rays (e.g.,
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250 kVp X-rays) are used as the reference standard to cordffment types of radiation. The Relative
Biological Effectiveness (RBE) is defined &5,/ D, where D, is the X-rays reference dose, while
is the dose of test radiation which produce the same bidb@gitfect. The RBE of gamma rays apd
particles is1, for protons is5, while for o particles and neutrons &), and included in the interval of
5 — 20, respectively.

Particles such as, (3, positrons cause biological effects by directly ejectimyedectron, while
gamma rays interact with matter creating biological effdny indirect processes, e.g., scattering, pair
creation. All of these processes liberate high energyrelest which can further cause ionizations of e.g.,
living matter, resulting in biological changes. Generallyee consequences can occur: the change is
repaired or partially repaired (case when a form of diseasl@ppear as a result of ionizing radiation),
or the change is not repaired. Section 1.1.2 presents gaysanteraction processes.

Often, Monte Carlo simulations are performed to calculate ibteractions of particles as well as
their path in different matrials, e.g., components of detesystems. The program has to compute the
probability of an interaction by taking into account a largenber of parameters, e.g., the atomic num-
ber, thickness and density of the interaction materialjritexaction cross-section, the average distance
between two interactions, i.e., the mean free path. MontoGanulation programs include also de-
scription of atomic and nuclear processes for the ions p@msn matter. However, the existence of
realistic models for accurate description of physical peses is a critical issue.

1.1.1 Interaction of electrons

Electrons are charged particles which are scattered whenpass through a material, or lose a part
or all their energy by several processes, e.g. ionizatiomsson of photons (e.g., bremmstrahlung),
ejection of secondary electrons. In a Silicon based deteat®dominant processes are ionization at low
energies, and bremmstrahlung at high energies. Electamsnteract through their Coulomb field by
inelastic scattering, or Moliére scattering. The lattaer lba described by small-angle scatterings (forward
scattering). The scatter angle distribution can be apprateéd by a Gaussian. The width of distribution
projecting it on a scatter plane is expressed by

13.6MeV |7 r
00proi = ————4/— (1 +0.0381n — 1.1
Opros Bep  V Ro ( * nR()) (1)
E242E.Eo

where(Gep = T is the velocity times the momentum of the electrén, is the electron energy,
Ey is the rest energy of the electroR, represents the radiation length in the material, while the
straight path length (i.e., the straight line between thd sind end points) of the electron in the material.

Small-angle scatterings consitute a drawback in a partietector, e.g., a tracking Silicon based
gamma-ray system has to overcome the limits imposed by thgesag in the measurements of the
electron direction. Scattering in high angles is ratheikehy, but the probability increases with increas-
ing the atomic number of the material.

1.1.2 Interaction of gamma rays

Gamma rays can pass through matter without interactioerdoting with matter by scattering from the
initial path deposing only a part of their energy, or beingiptetely absorbed by deposing all the energy.
Gamma rays are completely absorbed either by the photdeleéfiect at energies belo®00 keV
or, at high energy range, e.g., abav&leV, by emission of two particles (electron and positronhjci
share the energy of the gamma rays. The positron loses itgyetfegough ionization, and interaction
with an electron creating two annihilation photons withrgyeof 511 keV each. The latter can further
escape or interact within the medium through Compton swadgter photoelectric effect.

Instead of transferring all its energy to an electron of amgatgamma rays are Compton scattered
yielding only a part of its energy to electrons, which arecegd from the orbital position. After they
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continue to pass through matter along a deflected path. Bhehergy depends on the scattering angle,
and the nature of the scattering medium.

1.1.2.1 Photoelectric absorption

Photoelectric absorption is the process when a gamma reraots with a bound electron lossing all its
energy by mostly transferring it as kinetic energy to theteta, which is subsequently freed from the
material (Figure 1.1). The vacancy created is filled by theiw® of an electron, or the rearrangement
of electrons from other shells of the atom, or both. Phottgteabsorption is a desirable process for
gamma-ray detection because of the full energy absorgtiarit is the predominant interaction only for
low-energy gamma-rays.

Dbi
— > Figure 1.1: Representation of the photoelectric absorp-
MVWWWWWWWWWWWWWWW tion process. A photon of energi; and momentum

— p; = h/X; interacts with an electron causing its ejec-

Db tion. The vacancy is taken by an orbital electron which is

B E’e generally placed at a lower orbital shell. The movement

b \ is followed by emission of a fluorescent photon.
Pe

The energy of the photo-electrari liberated by the interaction is given by the difference lesw
the gamma-ray energlyj; and the electron binding enerdy,:
E.=FE; — E, 1.2)

Generally, for most imaging detectors, the photo-elecisostopped in the active volume, which
emits a small output pulse, whose amplitude is proportitméte energy deposited by the electron.

1.1.2.2 Rayleigh scattering

Rayleigh scattering process is the elastic scattering odiys-by atomic electrons. Even if no energy
change is produced between photons and the medium, thersca¥-rays undergo a change of their
trajectory (Figure 1.2).

E, Pi
e
ANV Figure 1.2: Representation of the X-ray Rayleigh scatter-
- ing process. The incident X-ray is scattered by interac-
Py tion with an atomic electron. The energy of the scattered
E E X-ray _E{ is equal_ to t_he energy of the incident X-r&y.
b Rayleigh scattering is most likely at low-energy X-rays

\ and high-Z materials.

2

Rayleigh scattering angles are generally small, since tii@ anust recoil as a whole without in-
ducing atomic excitation or ionization. Rayleigh scatigrprobability increases when decreasing the
photons energy.

1.1.2.3 Compton scattering

Compton scattering is the process when a photon ineldgtstters a free electron through an argjle
The scattered photon leaves the interaction location nigaidifferent direction to the incident photon,
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and less energy (Figure 1.3).

Figure 1.3: Representation of the Compton scattering

process. A photon of initial momentury/\; collides
R an electron of mass:. The scattering anglé, can be

'\I\NVV\I\NVVV\NVVV\NW ) derived using conservation of momentum and energy, the
momentum of the scattered photbyi)., the recoil elec-

b1 = h/)‘l tron mass, and the initial momenturfiy, is the scattered

gamma-ray energy, whilg. is the energy of the recoiled

electron.

Ei = th

Considering the theoretical assumption of an bound electtdch is at rest, and the conservation of
both energy and momentumthe Compton scattering equation can be formulated as tlosving:

h
Ay — A1 = —(1 —cosb,) (1.3)

mc

The photon of initial wavelengthh; and energyv, is scattered through an anglg, and further, the
photon wavelength i&,, and the energy is,. The parametel denotes the Plank’s constant, white:
is the electron rest energy.
Considering
. hlll
‘T e
the equation which relates the scattering angle to the éhahgnergyAE = hvy — huy of the
photon can by approximated by the formula:

(1.4)

~ hvi(1 —costy)

AFE = 1.5
1/ao+1—cosf (1.5)
AFE
0,=1— ————— 1.6
5% (hvy — AE)« (1.6)
The Compton equation 1.6 can be rewritten
Ey Ey
cosly=1— —+ —— a.7)
g E, E,+E.
whereE, = mc?, E, is the scattered gamma-ray energy, wliilgs the recoil electron energy.
For a mathematically valid Compton angle, the followingniesons have to be verified:
EyE;
— < B, < E; 1.8
S5 1 By <E,<E; (1.8)
2F?
0< FE —t 1.9
< Fes 2F; + E (1.9)

The photon is back-scattered when its energy attains thenmaivalue, while no scattering takes place
whenFE; = E,.

postulated by Arthur H. Compton
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The equations related to the scatter artglef the recoil electron, and the total angle= 0, + 0.
between the scattered photon and recoil electron are appaited by the following:

E.(E; + Ep)
E;\/ E‘e2 + 2E.FE
EE(Eg — EO)
E,E? +2E.Ey

For a given initial energy;, 6. takes values betwed)? (back-scattering), angb® (forward scattering)
whereE, = 0. When no energy is transferred to the electréms equal to90°. In the case of back-
scatteringf is equal to180°.

In reality, the electrons are in motion around the nucleuss the measured energy does not reflect
only one scattering angle, but various angles around it &fect of electrons results in Doppler broad-
ening. Influencing the energy spectra of photons, Doppleadning limits the accuracy obtained when
the Compton scattering angle is measured.

The Compton collision cross-section determines the probability that an incident photon will un-
dergo a Compton scatter. Consideringelectrons per unit volume, a photon beam of intengitgcident
on a material of thicknesér verifies the following equation:

(1.10)

cosl, =

cosf = (2.12)

d® = —dn.o.dr (1.12)

The number of photons scattered by unit volume is directiypprtional to the beam intensity, the number
of photons per unit volume, and the Compton cross-section:

dN dd
— " _ 9 1.1
dV dr NeOdc ( 3)

Figure 1.4: lllustration of the angular dependence
of the Compton cross-section on photons energy:
At higher energy, the average Compton scattering
angle is smaller resulting in stronger forward scat-
tering.

The Klein-Nishina equation of differential Compton crcm:—tion% for unbound electrons can be
approximated by the following formula:

do. 12 (EN\?(E, E; )
_Te L R 1.14
Q- 2 (E) <E g, g (1.14)
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Klein-Nishina cross-section as a function of the Comptattecing angle, from 0.1, 1, and10 MeV
photons is illustrated in Figure 1.4. When considering lobelectrons, i.e., the Doppler broadening ef-
fect, a more complex expression of Compton cross-sectigggisred. One expression has been derived
by [Ribberfors, 1975]

do do
(dQ )bound ds) ( 7 ) ( )

whereS; denotes the incoherent scattering function [Ribberfos Barggren, 1982] of thé&h shell of
electrons, and’ is the atomic number of the scattering material.

1.1.2.4 Pair production

A photon can create an electron-positron pair when its gnisrgt leastl.022 MeV, and is situated in
the presence of the electric field of a nucleus (Figure 1.3)erAosing its kinetic energy, the positron
interacts with an electron in an annihilation process, whidll release two gamma rays with equal
energy of0.511 MeV. These gamma rays can further interact with the absgnimaterial, or escape.

D

Figure 1.5: Representation of the pair production pro-
cess. A photon of energl; passing nearly to an atomic
nucleus (or electron) of energy,, is converted into an
electron pair of positive and negative charge. Later, the
positron could interact with an orbiting electron, and two
annihilation photons of almost opposite directions are

\ emitted.

De

The pair production process is described by the followingatigns of energy and momentum con-
servation:

E;, =FE.+E, + E, + 2E (1.16)
Pi = Pe + Pp + Pn (1.17)

When the photon energy exceeds four times the rest massadfoglepairs can also be created in
the field of an electron. In this case, the momentum is trarexfeo the electron instead of nucleus. The
recoil of the electron could produce signatures in a detebtng presumably possible to measure by a
detector. For one atom with Z electrons, the probabilitatieh for pair production on an electron and
nucleus can be expressed by

1
Pelectron = ﬁpnucleus (1.18)

where 7 is the atomic number (e.gZ = 14 for Silicon), andC represents a factor which depends on
the gamma-ray energy(is close tol whenE; >> 4m,c?).

In a detector, the pair creation is a predominant proces# Wieenergy of incident photon exceeds
an energy threshold, or when the material consists of higitefhents. The path of the pair created
depends on both the energy of photons, and the dimensioneiftde

1.1.3 Interaction of heavy charged particles

Heavy charged particles passing though matter interaailynaith electrons by Coulomb inelastic col-
lisions. At high initial energy, the interactions are shamt just a slight amount of energy is transfered.
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Increasing the depth, the particles are slowed down, anch#a energy transfer during collisions with
electrons become large, transferring a higher dose to meditius, the dose increases at the end of their
path to high values attaining a maximum point, called Bragakp Afterwards the dose decreases when
the range of particles reaches its end. Hence, the descripfiheavy charged particles travelling in a
medium may be viewed as a continuously slowing down process anergy loss rate mainly given by
the electronic stopping power.

The equation of electronic stopping power is described byBibthe-Bloch formula:

dE o o Z2 2me A Wnaz 3° , . C
_%:Qﬂremec Ne_ﬁ [ln (W —2ﬂ —2— =)

Zy
whereZ is the particle charge, andglits velocity; r. andm, are the electron radius and its mass, respec-
tively. W4 is the largest possible energy loss in a single collisioi ait electron, whileéV,- andl are
the electronic density and ionization potential of the raedwith the atomic numbef;. The parameters
C and ) denote the energy and absorber dependent shell and dems#gtons, respectively.
The particle mean rangR for a given initial energyz, can be approximated by the following:

0 —1
R = <@> dE (1.20)
Eo \ dx

Interactions which result in energy deposition may occadamly giving statistical fluctuations of
their number as well as the transfered energy in each intenad he latter is known as energy straggling,
or range straggling. The deposed energy is rather indepéeniithe traversed medium composition, but
is rather sensitive to its density.

Atomic nucleus can be at a moment in a ground state or in aecesitate. The latter may be
acquired by an addition of energy to the nucleus. The emmssidhis excess of energy can be done
by electromagnetic radiation, i.e., emission of gamma veifsin rather nanoseconds. The energy can
also be transferred to one of inner electrons, which willhamough energy to leave the atom. This
process is called internal conversion.

(1.19)

1.1.3.1 Nuclear reactions

Heavy charged particles deposit energy through intenaetiath atomic electrons or nuclei. Possible nu-
clear interactions induced by, e.g., protons, are bothielasinelastic processes, which include nuclear
capture and nuclear scattering.

Nonelastic nuclear interactions occur at higher partidergies and produce secondaries, e.g., pro-
tons, neutrons, beta particles, and gamma rays. Thesedsegquarticles usually stop in the vicinity of
the interaction presenting high RBE. The secondaries dsawéhe fragments produced in nuclear reac-
tions could influence the spatial dose profile of distributid he fragmentation reaction represents the
dominant interaction in the high energy interval, e6®-250 MeV for protons. Other nuclear reactions
are small angles Multiple Coulomb scattering, and largstielauclear collisions.

The attenuation in depth of flux distribution particle folle the equation [Knoll, 2000]

O (z) = Poe Nor® (1.21)

whereoy, is the reaction cross-section, whilgy and " are the initial flux, and the atomic density,
respectively. Hence, the dose delivered by the primarygbais reduced with increasing the depth.
Nuclear fragmentation is a complex process where exiteghfemts are produced within 10722 s
in the collisions, which are followed by nuclear evaponatiand photon emissions in abatt10—2! —
10~ s. For protons, mostly target fragmentation is possible.heavier ions, the fragmentation prod-
ucts to generation of secondary particles along the beam pat latter travel mostly forward and could
determine further interactions, thus undesirable dosesigpn beyond the Bragg peak could appear.
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In addition, the emission of fragments results in a largaréd spread of the beam, especially near the
Bragg peak. Hence, the nuclear fragmentation reactionsamatyibute to modifications of the longitu-
dinal and transversal dimension of the deposed dose.

1.1.3.2 Gamma rays following nuclear reactions

Heavy charged particles traveling through matter lose #reergy by ionization and nuclear interactions
with the nuclei of the medium. Besides others, the intevastilead to (delayed) beta decays, which
are radioactive decays with the emission of either an elednd an electron anti-neutring( decay)

or a positron and an electron neutring™( decay). If the resulting nucleus is in an excited state, its
de-excitation is usually accompanied by gamma-ray enrisdibe emission of these secondary photons
occurs usually within an extremely short time span (e.@g4seconds), and the photons have a charac-
teristic energy reflecting the energy level structure ofdeeexited nucleus. Since nuclear states present
well-defined energies, the energy of the emitted gamma nayslao specific. For example, when a
product nucleaus such &% is in an exited state, it has a lifetime 64 fs, and its decay gives rise to

a gamma ray oft.4 MeV energy. Whent60 is in exited state, gamma rays fl3 MeV are emitted,
presenting a life-time of x 10~!'* s [Knoll, 2000].

Section 4.2 presents Monte Carlo calculations of the ofmgation of secondary gamma rays emit-
ted during the first second of a PMMA phantom irradiation bgtpn beams at different energies. A
correlation between the lateral profiles of dose deposdiwhthe gamma rays was observed. A special
characteristic of these gamma rays is their energy spectmuinch ranges from roughly50 keV up to
20 MeV.

1.2 Hadron therapy

Conventional radiation therapy is the use of radiation incea treatment. Generally, its application
relies on cases where other treatment techniques faildid thng limitation given by the risk of radiation-
induced cancers. Before the therapy, a detailed plan of oke delivered is analyzed and computed
considering all the parameters involved, e.g., tumor typeation, stage, uncertainties of internal or
external movement. Several angles of exposure which ettethe tumor are considered to preserve as
much as possible the health tissue. A generally used teohmigto fraction the dose over the time for
allowing the normal cells to recover, and the tumor cellsahtare in a radio-resistance phase to become
more treatment sensitive. However, an optimal treatmepitageh has to include the capability of both
localization and tracking the beam in order to ensure a higlity assurance.

Radiation therapy improved the clinical results by usingdera high-energy4(— 20 MeV) linear
accelerator, which can deliver irradiation from differdirections. The innovative technique of Intensity
Modulated Radiotherapy (IMR) allows a non-uniform photamxftielivery. Despite the advances, the
therapeutic effectiveness is limited by the physical amdogjical properties. The lateral depth dose pro-
file of photons restrict the irradiation precision of tumsitsiated close to vital organs, or radioresistant.

Heavy charged particles, e.g., hadrons (protons, carbw),immay overcome the limitations of pho-
ton irradiation by a more precise and selective energy diémos Figure 1.6 illustrates comparatively
the depth dose profiles generated by photon and proton beams.

The application of protons for radiation therapy was firgigasted by R. Wilson in the 1946 while
working at the design of the Harvard Cyclotron LaboratorC(bl. The large mass of the proton would
minimize lateral scattering, and the energy depositiotepatwould allow to place the maximum dose
within the tumor, and thus providing maximal sparing of tlealth tissues. Two years after, the cyclotron
at the Lawrence Berkeley Laboratory became available fgsipk and radio-biological investigations in
preparation for clinical use.
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The first treatments were performed at the particle acdelerauilt for physics research at Berkeley
Radiation Laboratory in 1954, and at Uppsala in Sweden, 5718 eanwhile, in 1961, a collaboration
began between the HCL and the Massachusetts General Hddf@&l) to use the proton beam as a
neurosurgical tool for treatment. In the early 1970s, pgeges were made by the developments of new
techniques for eye tumors. Also at MGH in Boston, a largetikdctionated radiation treatment program
was initiated for brain tumors including tools for threendinsional treatment planning. The first hospital
based center for proton therapy was established in 199@dtdima Linda University Medical Center,
USA, and the Heavy lon Medical Accelerator in Chiba (HIMAG§pan. Since then, new facilities have
been growing worldwide [Sisterson, 2005]. Due to the raltigiher complexity and costs of ion therapy,
most of the centers adopted the lightest ion particle, pratdiich offers superior biological effectiveness
than conventional techniques.

The German project at the Gesellschaft fur Schwerloneciiorsgy Darmstadt (GSI) is a pilot project
of an experimental carbon ion therapy since 1997, whichrgdte to demonstrate the clinical application
of the therapy technique [Crespo et al., 2001]. GSI usesegtiimensional beam delivery based on a
two-dimensional intensity controlled raster scanningambination with active energy variation from the
acceleratord8 — 430 AMeV), treatment planning, and therapy monitoring by meafrin-beam Positron
Emission Tomography (PET) [Parodi et al., 2002]. Receatlyew hospital-based ion beam facility was
built in Heidelberg. Various beams, e.g., protons, oxyges, are studied in order to investigate their
clinical impact. Several European projects dedicatedridomam facilities are nowadays ongoing.

In order to exploit the benefits of hadron particle therapy,aacurate control of delivered dose
location is hightly demanded. The measurement of gammaargimating from nuclear reactions of
the hadrons within the body is a way to fulfill this requirerhefhe currently available systems, e.g.,
in-beam PET, exploit the coincideht 1 keV gamma rays from annihilation of positrons emitted by som
of the nuclear fragments. The low number of positron engjtfimgments and their decay time require
slightly long acquisition times, i.e., on the order of tenmutes, and thus only provide post-therapy
information about the location of the deposed dose. Howéwerultimate goal is the three-dimensional
and real-time monitoring location and dose deposition eflibam.

1.2.1 Treatment plan

Hadron therapy requires three-dimensional planning. Dis@ipn and density of each region of the beam
has to be defined. Computed Tomography (CT) is a way to olteisetdata and Magnetic Resonance
Imaging (MRI) can assist in the definition of target and ndrtissues boundaries. In CT, the source
corresponds to the attenuation of X-rays radiation at iifferates, and media. CT data are acquired
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with filtered 120 — 140 kVp X-rays, and represent the linear attenuation coeffisiethese X-rays. The
X-rays are sourced outside the object and directed thrdugloé detected by a ring of sensors, or a rotate
fan beam scanner. The energy of X-rays are generally in thevad of20 — 100 keV. Generally, the X-
ray paths are assumed to be straight lines. On their padsagght the object, the X-rays are attenuated,
mainly by scattering processes. Therefore, the variabbetmeasured is the X-ray attenuation density
of the object. Since the scattering process is related teldwron density, the X-ray attenuation density
is considered as related to the mass density of the objesrtehifa it could provide useful diagnostic
information of the object structure. These measured data t@abe converted into carbon or proton
stopping powers in order to calculate the ion energy andeaeguired to reach the target. The system
used in treatment planning f&tC therapy at GSl is presented in [Kramer et al., 2000].

The physicist or dosimetrist developing the plan typicagtects 2-4 beams per target to achieve
the desired dose distribution. Target volumes often havisecgeometrical relationship to critical
normal tissues, which suggest a few optimal beam anglesrionizie normal tissue doses. Selecting a
beam direction, a field-defining aperture is designed takitgaccount the lateral beam fall-off, target
motion, and set-up uncertainties. Each beam is designeds® the target to a specified depth. After
dose calculation, individual beam parameters may stilli@ged until the plan is optimized.

1.2.2 Treatment monitoring

The high effectiveness of ion therapy requires an accunaeigion in the monitoring of the applied
dose, especially in delicate clinical situations. Henchigh precision of ion range localization is de-
manded. Minor errors could result in a severe disagreenamteen the dose delivered to the tumor, and
the surrounding healthy tissue. The treatment planninggmtean uncertainty af 1%-3% in range cal-
culations. In addition, the beam delivery fractionated dong time interval could lead to unpredictable
range deviations from the X-ray CT planning due to changesmf patient position, or local anatomical
information. Therefore, the visualization of the beamritistion within the patient is strongly required.

An intensively studied method conducts the monitoring byanseofs™ activity emitted by positrons,
e.g.,’20, ''C, which are issued from nuclear fragmentations. The firshats of the method applica-
tion date t01970, when the possibility of assessing an accurate dose véioiicaas observed. Despite
the results, the system was never used in clinical routieeo&dly, a PET scanner was installed at HI-
MAC to detect the3™ profile when the beam delivery was in off-line mode. More reige at GSI, a
double-head PET scanner was installed and investigati@mse earried out for in-beam monitoring of
12C ion therapy irradiation. The images were reconstructeshdua fractionated treatment, i.e., using
the annihilation events registered in the beam pauses, feardtlze end of irradiation. Since the dose
depth profiles of ion beams are not identical to the-activity distribution, the in-beam PET reduces
to comparison between the expectet-activity and the one which is actually measured. The exgkct
distribution is calculated by Monte Carlo simulations. &lthat3* activity is highly sensitive to time
variations due to e.g., dynamics of positron emitters desaghout. Hence, knowing the treatment is
divided in several sessions, the prediction3of activity distribution is a complex and delicate process.
In case of protons, the in-beam PET method presents apiiiigalbawbacks due to the lack of positron
emitters. Until now, no definitive conclusion was drawn atitaufeasibility in clinical use.

An alternative to monitor the beam location and deposed doggeg irradiation treatment is to mea-
sure the complete spectrum of the emitted gamma rays. Ttlisdies nuclear gamma rays which are
emitted by the relaxation of generated nuclei. This emis&dsotropic, and its energy spectrum from
roughly 100 keV up to20 MeV. A detailed description of gamma rays following nucleaactions is
presented in Section 1.1.3.2. A relation between these garays and the fall off region of an exper-
imental proton beam was reported by [Min et al., 2006]. Th#re nuclear gamma rays are observed
by a collimated system counting only those photons whicheangdted perpendicularly with respect to
the beam direction. Methods of nuclear gamma-ray imagimpalde to determine the delivered dose
deposition for a given particle treatment fraction woulddusssible if an imaging system adequate to
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e.g., gamma-ray emission spectra, would exist. A trackiogn@ton scattering based detection method
is proposed as a possible solution for imaging gamma rayeshduring hadron therapy. Chapter 4.3
presents the expected performance of a simulated systeith Wibstrates the method, along with the
reconstructed images when considering both ideal evamise\ents including detection uncertainties.

The ultimate goal is to infer on the dose from the measuredngamay signal. The comparison
between expected and measured activity could indicateatiens, so a prompt intervention has to be
considered for the next treatment session. However, foeam PET, the clinical relevance of deviation
can not be easily extracted from the PET images alone [Pa664]. An optimal solution to the dose
guantification problem would be the development of an atgoriable to estimate the most probable dose
distribution for a gamma-ray image measured at known cimmdit e.g., time of irradiation. That would
mean to solve the inverse problem of recovering the appliesg § () from the measured distribution
A(z). The relation can be formulated by the equatibn= M x D, whereM is the transition matrix
storing the probabilities that a dose contributi@(x) reflects the production of an activigyA(x).
However, the in-beam PET images present several drawbdauicé ymake the problem resolution dif-
ficult. The PET images are not quantitative. Moreover, tlwenmged counts are extremely reduced due
to also the limited angle of the PET scanner geometry. Thearhgolution is an interactive software
tool [Parodi, 2004]. An alternative describes the PET image& convolution of the dose distribution
with a filter function under certain assumptions, e.g., theogbing medium is homogeneous near the
distal fall-off region. A formalism to analytically recowéhe filter function from the simulated PET data
was developed by [Parodi and Bortfeld, 2006]. However, tielémental step of inverting the convolu-
tion procedure has to be concluded before being able totsiateasibility of dose monitoring with the
measured data.
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Chapter 2

Gamma-ray detectors

2.1 General overview

Detection and measurement of gamma rays is a complex prsicessthey have to interact directly with
a particle in order to be detected. Generally, the intevacélters the properties of photons. There-
fore, a desired detection is by means of photoelectric ghisorprocess in one single interaction, being
restricted to only when the underlined application permit¢hen considering the Compton scattering
process, the photon continues its travel after a scatteriagt by spreading out its energy. Meanwhile, it
becomes the predominant interaction process when inoget® initial energy of the incoming photons.
Usually, detector materials with high atomic numbers asglus obtain predominantly photoelectric ab-
sorption events. Contrary, the Compton based detector® lopdow-atomic materials facilitate the
scattering process, and the directional localization ineghfrom the interaction positions, and energy
deposits. A detailed description of Compton based deteisgpresented in Section 2.2. When photon
sources present energies abevel0 MeV, a detector based on pair creation may be considered. Pai
detectors used in gamma-ray astronomy consist of two stdzies: a converter and an absorber. The
use of conversion foils limits the angular resolution andrgg measurement at lower energy. Modern
pair telescopes include GLAST [Gehrels and other, 1999 ,4@ILE [Tavani et al., 2003].

Detection of photons implies the transition of photon epergo a form of electrical energy. This
process could be achieved by means of direct detection abpbpor their conversion into light photons
followed by the light detection. Direct detection of phatarequires that photons are photoelectrically
absorbed within the detector volume. On absorption, an @&adonized and photoelectrons are ejected.
A method of collecting the photoelectrons and determimatb the ejection sites has to exist. The
two main types of direct detection are based on gas-filledntles and semiconductors [Knoll, 2000].
Semiconductor detectors present several advantagesevgas-filled detectors, including higher quality
of ionization detection, and higher mobility of chargedtmdes.

When considering a large energy band of gamma-rays fronralekeV up to tens of MeV, other
detection techniques can be underlined. Temporal andaspatdulation detectors are mostly used
for gamma-ray astronomy, being rather simple detectord,rather more complex ones, respectively.
Coded masks based systems are spatial modulation detestisting of mainly two parts: a mask with
open/opaque pixels, and a spatially resolving detectadelivinto pixels. Each detector pixel records
the sum of signals from different incoming directions. Cobdeasks detectors present the advantage of a
large Field-Of-View (FOV), at the expense of high backgmbun

A focusing gamma-ray detector is based on Laue lenses, vitiegrated into an optical system
deviates the incident photons to a focal spot by a shiftingsphand a subsequent inference. Laue
lenses based detectors include the main advantage of aatetelme much smaller than the collection
area formed by the lenses. Hence, only a small detector sseary, and consequently, reducing the
background, which constitutes a limiting factor of detestsensitivity. The disadvantage is the very
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narrow FOV, which determines limited imaging capabilityaue lenses are mainly applied to energies
of gamma-rays up to a few MeV. An example for astrophysic$iésGLAIRE balloon-flight [Halloin,
2003].

2.1.1 Scintillation detectors

One of the oldest approach to measure photon radiation isdmnsof scintillator detectors, which
convert photons into light photons. An optimal scintiliaglould complete several conditions, including
efficient and linear conversion of gamma rays, transparehitg emitted light, short decay time [Knoll,
2000]. Generally, no scintillator could present all thesgpprties, thus a compromise solution has to be
found.

The uniformity of light collected depends on the geometryhef scintillator. Dispersion and loss of
light photons result in degraded energy and position résaols, thus light sensors should cover all faces
of the scintillator. Despite the heavily restriction of tmeasured data to the emitted photons in perpen-
dicular directions, gamma cameras are still used due to tékaitively reduced costs, and simplicity of
technologies.

Scintillation based detectors are widely used for nucleeging (e.g., emission CT). Emission CT
techniques are represented mainly by Single Photon Emigsomputed Tomography (SPECT) , and
Positron Emission Tomography (PET), where the emanationsepresented by gamma photons emit-
ted by e.qg., a distribution of radio-pharmaceuticals indbgct. Two main differences exist between
transmission CT and emission CT. First, there is no contvel the sources in emission CT other then
choosing the type and method of pharmaceutical adminstraHence, the function to reconstruct in
emission CT is the source distribution rather than a phygicgperty of the object, as in the case of
transmission CT. Secondly, the source distribution isastd in an enclosed medium (e.g., the patient
body), therefore the emitted gamma ray beam is subjectaawtion before escaping. This constitutes
a difficult problem to emission CT since the source distidhuhas to be recovered before attenuation
correction. In transmission CT, the knowledge of the soarwkdetector positions determine the straight
line path of the X-ray beam. In emission CT, the source pmsis unknown a priori, So a way to localize
the photon’s path has to be found.

In SPECT, a collimator is placed in front of a gamma cameractueae directional localization:
only those photons directed perpendicular to the camerhl dmudetected (Figure 2.1). The gamma
camera is rotated around the patient during the scan doljeatset of projections. A rather severe loss

Detector

v

Source

(@)

Figure 2.1: Schematic representation of the (a) SPECT, BnBET scanner geometry. In SPECT, a collimated detector is
rotated around the source of gamma ray; only those photoichvelnrive perpendicularly to the front of the camera can be
detected. In PET, the coincidence detection of two photetarthines the source point on their emission line.
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of sensitivity is accepted for knowing the path of the incoghphoton. Cone-beam collimators, which
have the holes arranged to focus at a point situated at firstande past the body, could improve the
sensitivity by~ 2-3 times. Another drawback of collimators is given by thegteation of gamma rays,

especially at higher energies, into the collimator makei@ollimators consist of holes through which

gamma rays have to pass. The material surrounding the tsotedléd septal fins. If the septal fins are
too small, then gamma rays penetrate through them resuttidggraded reconstructed images. If the
septal thickness is too large, the spatial resolution isaitil, so a compromise has to be established.

Another alternative to directional localization is to useises which emit in a priori known con-
figurations. An example is PET, which uses positron souréepositron annihilates with an electron,
generally very near the positron position, resulting a péitwo opposite direction gamma rays (see
Section 1.1.2.4). The source direction is approximatecherstraight line intersecting the two detection
points. The PET detection systems include limitations. faeel distance of the positron before anni-
hilation, and the angular deviation from the straight lirigh® photon pair degrade the image quality.
In contrast to transmission CT, emission CT suffers from jdweton counts and poor spatial resolution.
In addition, photons which are influenced by attenuationcattered in the object could be detected.
Altogether lead to a generally poor quality of the recorgid images.

A widely used SPECT detector is the Anger camera. The canoaisists of three main components,
including the collimator, the PhotoMultiplier Tubes (PMTand the lead shield (Figure 2.2).

FE

N

D

Figure 2.2: Schematic representation of Anger

¢ camera with parallel-hole collimator. The main ge-
D A ometry components are (A) multichannel collima-
S\ tor, (B) Nal Crystal, (C) hexagonal array of pho-
tomultiplier tubes, (D) position detection network,

B

(E) lead shield.
™S4

The collimator performs the function of directional loealiion. Photons interact into scintillator
producing light photons, which following different probkiiies could reach the PMTs. Electronics of
detection determine the position interactions from the BMata. The main interaction desirable to
occur between scintillator and gamma rays is photoeleabsorption. However, photons could undergo
Compton scattering and further exit the scintillator, deract in different positions. If the Compton
scattered gamma photons subsequently interact, thengtimeplhotons spread out over a large spatial
distribution.

For not increasing the data collection times, and in the stimme to improve the photon counts, a
more efficient detection system is desirable. An altereagilsle to attain higher efficiency includes a
first detector which replaces the collimator by a materikvdhg to measure photons arriving from a
large spectrum of directions. Therefore, this detectichné&ue was firstly called electronic collimation,
taking further the name of Compton camera. A detailed ptasien of its detection principle is included
in Section 2.2, along with its main advantage over collimattectors, namely the imaging capability.
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2.1.2 Semiconductor detectors

Semiconductor detectors present rather high energy anidlsgsolution for radiation imaging. Mean-
while, they are relatively sensitive to degradation causgde.g., neutron radiation. Semiconductor
detectors may be divided in two types: classical semicadwdetectors and memory detectors. The
memory detectors may be further divided into sub-grouptudicg Charge-Coupled Devices (CCD)
and drift detectors. The CDD detectors are not consideregirhdue to their relatively poor efficiency
for gamma-ray imaging, and the need to shift out informasenally.

Classical detectors consist of, e.gp'an junction on one face, andran™ junction on the opposite
face of an-type semiconductor wafer. The junction is reverse biasedmpletely descend the substrate,
which creates an electrical field between two junctions.ctEbm-hole pairs are created by a radiation
interaction into substrate, and pass towards the junctioiesto electric field. The charge measured at
junctions results in energy measurement of radiation actéyn. Two-dimensional position resolution
is obtained by dividing one face of a junction into stripsddhe opposite face into strips oriented in
orthogonal direction [Knoll, 2000]. Semiconductor detestare generally made of, e.g., Silicon or Ger-
manium. If detectors are fabricated from High Purity German(HPGe), they have to be cryogenically
cooled to achieve high energy resolution. The cooling i®ssary in order to reduce thermally induced
noise to acceptable levels. In certain applications, @ilibased detectors have to be operated under
cooled conditions as well. Detectors operating at room tgatpre are made of materials such as CdTe,
CdznTe. Their higher atomic humber determine a greaterigfity per unit volume of material, but
their use is limited by the low mobility when compared to &l or Germanium, and the difficulty of
producing large enough detectors.

Drift detectors consist of a-type Silicon wafer withp™ electrodes placed at even spacing on both
faces of the wafer. An electric field is applied via the eledés to use up the Silicon bulk. A potential
surface is created so that electrons resulting from a gamamaateraction are collected at the center
of the semiconductor between the faces. A potential tilalbelrto the detector face is created so that
electrons from the center of detector are drifted to one étitealetector where the charge is collected by
segmented anodes. This information provides positionluisn in one direction. Position resolution in
the orthogonal direction is performed by measuring thetlenfthe time necessary to electrons to drift
out. The time of gamma-ray interaction may be obtained bgdligly holes collected at the electrodes.
The count rate capability could be of abdotto 100 times better than classical detectors.

When considering a detector based on Compton scatteriegilicon presents several advantages,
e.g., it can be used at much higher temperature than a Garmadetector, Doppler broadening is
smaller at lower atomic materials. To achieve a reasonakxton efficiency, rather thick detectors are
required. The limited usable thickness of Silicon driftefdbrs may be overcame by ’'stacking’ many
detectors, though this increases the electronic complexit

2.2 Compton scattering based imaging detectors

A gain in sensitivity can be achieved by replacing the cdllied part of a gamma camera by a low-atomic
material, e.g., Silicon, which can enable radiation déectvith a larger spectrum of incoming direc-
tions. According to a particular application, the confidima of Compton camera has to be optimized
in terms of detection efficiency and resolution. This precissa complex multi-parameter problem,
which should determine the optimal values of e.qg., thickrddoth scattered and absorption detectors,
positioning, distance between the two detectors, etc.

Performing directional localization by Compton scattgrprocess implies a form of photons track-
ing through the complete interaction process in order terdane their initial energy. In collimated
detectors, the photon direction lies on a rather straigtat liThe direction determination becomes more
complex when the detection is based on Compton scatteritgre] the photon direction lies on the
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Figure 2.3: lllustration of the conic projection from a
Compton scattering event defined by the main required
elements: the energy depositéd in the first interaction

at the position;, and the energy deposited in the back
detector at the positior,. The Compton scattering angle
0, is computed from the measured energies.

surface of a cone determined by the interaction positiodseaergies deposited, being widened by mea-
surement uncertainties. Further the surface may be restrio an arc of cone if the scattered electron
direction is (partly) known. Hence, a novel image recortitom problem reveals.

Leta, ﬁbe unit vectors. Consider a photon of enefgytraveling in direction—a through a detector
capable of tracking multiple Compton events. The photorewues a Compton event at a positign
through an anglé,. Both position and energy depositéd are measured. The photon of changed
direction —5 could further undergo a second Compton interaction atiposit, deposingE, energy.
The travel of photon continues until complete absorptiangstape the detector. Whether a photon is
likely to escape or to be completely absorbed depends ondteetdr geometry. In case of complete
absorption, the initial energy can be computed by the suimmaf energy deposited in the interactions:

Ey = Z E; (2.1)
When the photon escapes the detector, a relation betweegiemnean be derived:

The scattering anglé, can be computed by the Formula 1.7. When the initial energgtsrmined
by Equation (2.2), the scattering angle will be less thargoaétod,,. The photon direction after the first
scattering event can be computed by the following formula:

j- =T (2.3)

| =7

The initial direction of the photon has to verify the equatio

cosby=a-f (2.4)

which corresponds to the localization of the photon inca@directiona on the surface of a cone
described by its ape¥ , symmetry axis3, and semianglé,.

2.2.1 Considerations of geometries design

The most simplistic Compton imaging system consists of tlemar position and energy sensitive de-
tectors (Figure 2.3). The first detector, called the sdatiedetector, is made of a low-atomic number
material for optimization of the Compton scattering likelod. The configuration details depend mainly
on the imaging system purpose, namely the required enedygatial resolution when photons of wide
energy spectrum are measured. The second detector is madegsf atomic number material to opti-

mize the likelihood of a photon to undergo a photoelectrfeaf Several Compton telescopes as well
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as the medical Compton scattering cameras are of this typsasiing the data after the first two in-
teractions, assuming that only one interaction occurrezhich detector, all the required information to
determine the incoming photon direction is collected. Nigntee initial source of a photon reaching
the detector is localized on the surface of a cone by measgtinm position of interaction of the first
scattering eventr{), the energy lost during the first interactiofi;(), and the photon direction—(ﬁ) after
scattering. If the second interaction is a photoelectrenéthen the tracking of the photon is completed,
allowing to compute the final photon direction. When the phaindergoes other Compton scattering
events, a tracking of the photon is required until an absmrgiccurs, or until it escapes out of the de-
tector. Photon tracking is imperatively needed by the caatfmn of the initial energy of the source
and by the event reconstruction process. The original petens of the incident photons are recovered
by application of event reconstruction algorithms when@uenpton scattered data is measured by an
imaging system enabling multiple Compton interactionse.tn, astrophysics, advanced Compton imag-
ing detectors (Compton telescopes) consist of a scatteredtdr formed by several e.g., Silicon layers
wherein the incident photons undergo multiple interactioDetails about the general configuration of
the detectors as well as the required event reconstruaigiesithms can be found further in the present
section, or in [Zoglauer, 2005].

Detection of photons by means of Compton scatters was fipsdposed by [Schonfelder et al.,
1973], in the measurement of atmospheric gamma-rays dofifexld et al., 1974] introduced the Comp-
ton imaging system for medical applications as an improvetrative to collimated based detectors.
Since the first Compton camera prototype was developed fdiaaleapplication by [Singh and Doria,
19834q], different geometry models were proposed seardbirggtain an efficient design of Compton
camera. A single high-purity germanium, and a scintilladetector were next proposed by [Singh
and Doria, 1985]. [Kamae et al., 1988] developed a Comptagen replacing the detectors of the
first camera prototype with layers of Silicon strip detestawhich were surrounded by a cylindrical
CslI(TI) scintillator. In astrophysics, the COMPTEL [ScHéider et al., 1993a] telescope proved a real
success in covering an unprecedented energy spectrumifidedV to 30 MeV. For medical applica-
tions, [Bolozdynya et al., 1997] explored a model consgstri concentric hollow cylindrical detec-
tors. Meanwhile, [Tumer et al., 1997] analyzed a prototypesgsting of multiple detectors followed by
CsiI(TI) calorimeter arrays, or CdZnTe [Du et al., 1999]. Thaversity of Michigan group in collabora-
tion with CERN developed a camera prototype C-SPRINT (Comy&ingle Photon RINg Tomograph),
which consists of a Silicon cylindrical detector surrouthd®y an absorption detector [Leblanc et al.,
1999]. The optimal parameters which could solve the tratibedween sensitivity and resolution of this
prototype simulated version were studied [Chelikani et24104].

Advanced Compton cameras referred as Compton telescopesnaale the tracking of electrons
recoiled in Compton scatterings. The photon direction @ntfurther restricted to a segment of a cone,
whose length depends on the measurement accuracy of theealectron. Hence, the origin of the in-
coming photons could be solved with higher accuracy. Thekiing Compton and pair telescope MEGA
(Medium Energy Gamma-ray Astronomy) [Zoglauer, 2005] waslied at the Max-Planck-Institut fur
extraterrestriche Physik (Garching, Germany) where irB20frototype version was calibrated. MEGA
mainly consists of a tracker (or scatterer) where Comptatteséng and pair creation events are factor-
ized, and a calorimeter which surrounds the low hemisphktkeotracker. The latter has the purpose
to measure the interactions position as well as the deplositergy of the secondary particles. Other
examples of this group are the TIGRE [Bhattacharya et aD4R0and detectors where gaseous time
projections chambers are used to track the recoil eleciranifnori et al., 2004].

In case of electron tracking detectors as MEGA, an interateditep is integrated into data analysis,
namely the event reconstruction. Event reconstructionnmgitutes the photons path into detector, i.e.,
finding the interactions which belong to an event, the stadt @nd points of their track, classify the
event as Compton scattering, or other interaction. Thalrstep is the identification of electron tracks
as well as their travel direction. This determination is @dy investigating the topology of the tracks
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) from one Compton event measured by the Compton Camera
(CC) imaging detector. The simulated CC system is made of a
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and the Compton kinematics, especially the energy deposithe wafers. Afterwards, searches for
the Compton interaction sequences are performed, i.eCatipton interactions are arranged in their
kinematically correct order. The parameters guiding tleeceare the direction of the recoiled electron,
the redundant information when the event consists of thremare interactions, the geometry of the
detector as well as the absorption probabilities along #tle pf the photon [Zoglauer, 2005].

2.2.2 Angular resolution

Consider a Compton scattering based camera consistingcatteisng detector and an absorption detec-
tor, similar to the camera design proposed by [Singh andeD@883a]. Both detectors are represented
by their dimensions, noted asx I, I, x l,, and the pixel size]; x ds, d, x d,. The distance between
the detectors is noted Ky, and the thickness of the scattering detectot by

The accuracy of direction localization of an incident pmotiepends mainly on how precisely the
cone parameters are determined. Inherent measuremerg efrimteraction positions and scattering
angle @,) bring uncertainty in the location of the source. Hence,rfaén factors influencing the mea-
surement are the energy resolution of the scattering detdbe position resolution of both detectors,
the thickness of the scattering detector, and the distahtleecsource to the scattering detector. All
factors contribute to the angular uncertairty, in the cone angle measurement. This dependence can
be expressed by the formula [Singh and Doria, 1983a]:

tan? A, = tan? Af; + tan® Afy + tan® Afs 4 tan? Ad, (2.5)

whereAd; denotes the uncertainty due to the scattering detectoggnesolution, Af; andAds are due
to the scattering element width and thickness, respegtivethe factorAf, represents the uncertainty
due to the position resolution of the absorption detector.

The angular uncertainty due to the energy resolution of tattering detector when considering
photons of initial energy is given by

do,
dE,

[1+ a1l — cosby)]?

Abf =
b =| al'sind,

IAE, =

AE, (2.6)

where AE; is the uncertainty in measuring the scattering endrgyanda is given by Formula 1.4.
Noise processes in the semiconductor detector determgnmmitiimum energy which is possible to mea-
sure. Hence, a minimum scattering angle above which alldhttesing events are not detectable exists.
In the ideal case, the minimum angle should be less Than
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Figure 2.5: The angular resolution measure representsifthe d
ference between the Compton scatter aiglealculated from

the measured energie®;, E2, and the angle between the
(B, 7) known initial direction, and the measured direction of thats
tered gamma ray. ARM parameter corresponds to the width of
the Compton scatter cone (or arc).
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The angular uncertainty depends also on the camera geofSeigh and Doria, 1983a]

Stan(0, — Abfy) = Stan(d, —tan"'(ds/2D)) — 1/2d (2.7)
Stan(f, +1/2A603) = (S +1/2t,)tan6, (2.8)
Stan(f, —1/2A0,) = Stanf, —1/2d, (2.9)

whereD is the distance of a point source to the front of the camera.
The factors which contribute to angular uncertainty may bigen

Aby = 6, —tan '(tan(f, — tan"'(ds/2D)) — 1/(2dsS)) (2.10)
Af3 = 2tan” (1 +1/2S5t,)0, — 26, (2.11)
Ay = 20, —2tan"'(tan6, — 1/2d,) (2.12)

The spatial uncertainty of a point source at a distabcéo the front of the camera verifies the
equation [Singh and Doria, 1983a]

Az = Dtan(Ab,) (2.13)

The above equations assume unknown the energy of the inggrhistons, deposing all the energy
in two interactions.

The Compton detector design has to consider the intendedyenegime. When increasing the
detector thickness, the efficiency improves. But this gawhtained at the expense of angular uncertainty
[Singh and Doria, 1983a]. Hence, a compromise betweenréliftgparameters describing the detector
has to be found. The optimization process of camera georsbtiyld consider inherent created effects,
such as Doppler broadening, important especially in cakmeénergy (e.g., below MeV) gamma-rays
of scattered spectra, the polarization photons.

An usual parameter describing the angular uncertaintyeidiigular Resolution Measure (ARM) .
This parameter is defined as the angle between the recaestrioack-projection cone, and the real (or
simulated) source direction, or as the shortest diatantveelea the known initial photon direction, and
the photon scatter cone defined by the measured directidre aicattered photon:

AARM =0, — 0, (2.14)

whered, is calculated from the measured interaction positions hadrtie source locationt):
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0, = arccos(d - 5) = arccos <(T_} — T_(,))(? — i1)> (2.15)
|71 — 70|l — 7]

The angled, is computed from the measured energies by the Compton farinil

Note that different scattering angles result in differef®M distributions when considering the en-
ergy uncertainty and Doppler broadening effect. A way taicedangular uncertainty is the selection of
events having certain scattering angles at the expensé@ésty.

In case of a more complex imaging system, e.g., electrokitrgcCompton telescope, the angular
resolution can be described by the ARM jointly with the SmaRlane Deviation (SPD) . When the recoil
electron is incompletely absorbed, the ARM is positive, le/its value becomes negative in case of an
incompletely absorbed photon. The SPD parameter illesrtite angle between the real scatter plane
described byw and 3, and the measured plane describedﬁoand €, assuming thatf was correctly
measured:

ASPD = arccos((@ x () - (6 x &)) (2.16)

wheree'is the direction of the recoil electron. Note that SPD isvaig only where'was measured, being
influenced by the measurement accuracy. ARM describes thgpto cone width for each individual
reconstructed Compton event, while SPD provides a measutbd length of the Compton scatter arc.

The ARM is influenced by mostly all components of the measergmprocess, the accuracy of the
energy of the electron and the scattered gamma ray as whk asturacy of directions calculations. The
energy resolution determines the Compton scattering ahglethe Formula (2.14), while the quantity
0, is influenced by the position resolution. The propagatiome&surement errors in computation of the
Compton scattering angtg (Formula (1.7)) results in the following expression

Ey 1 1 1
do,— — (2 - 1 Vap+ 1 _ap 217
9= S QN (Eg Eet Eg)2> s T B T B, 217

The angular uncertainty determines the response of an mgagyistem. Both energy and position
uncertainty on the detector contribute to the resulted anguncertainty. The interaction positions define
the axis of the back-projected cone, so uncertainty on ipasitreflect uncertainty on the cone axis
direction. However, the Doppler broadening constitutesndierent limit of measurements precision
[Zoglauer and Kanbach, 2003].

2.2.3 Efficiency parameters
The basic definition of photon detection efficiency in casa cbmplex arbitrary detector is

total number of detected photons

FEiot = . 2.18
'™ total number of photons emitted by the source ( )

It may be expressed also by the product of four factors
Etot = EgeomEabsEsampleEint (2-19)

The geometric efficiencyqeomdenotes the fraction of photons which arrive on a detectoa fwoint
source. Its expression is

A
42
whereA is the cross-sectional area of the detector,aisthe distance of the source to the detector. The
absorption efficiencyaps represents the absorption coefficient of different malerighich constitute

Egeom= (2.20)
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the detector, absorbing a part of incoming photons befderadnting within the detector volume. Its
expression is

Eaps= e L Hipiti (2.21)
wherep;, p;, andzx; are the mass absorption coefficient, density and thickrfebe &¢th material, respec-
tively.

The sample efficiencf'sampieis the fraction of emitted photons which actually emergefabsample
material. Its expression is

1 — ef(upx)s

(1pz)s
The intrinsic efficiencyFi,; is the probability that a photon interacting into detectdl kesult in a
valuable signal. A standard form to exprédss; is

Esample: (2-22)

Eig = 1 — eH0® (2.23)

Generally, the detection efficiency strongly depends omliteon source energy, i.€,; dominates
at higher energy, whilé’;psat lower energy.
The efficiency of Compton camera can be expressed by the girodu

S = &Pe (2.24)
4
where(} is the solid angle subtended by the scattering detectotiveelen the source location while
is the efficiency of the absorption detector. The paramgteepresents the probability that a photon
is scattered without further interaction in the absorpti@tector. [Singh and Doria, 1983a] derived its

value. The solid angle follows the formula [Knoll, 2000]

0- cos

—dA (2.25)
A C

whereA is the surface of the scattering detectbis the angle between the line segment from the source
to the element of are@A, and the normal tdA. The length of the line segmentds For a point source
located at a distanc® to the scattering detector, the solid anfiés given by the formula:

1 ;3
Q = 4tan <4D\/W> (2.26)
When considering a Compton scattering based camera, anstloe is important, namely the full
flux of photons under which it is exposed, unlike, e.g., Angganera, which is shielded by the collima-
tor. The absorbing detector of the Compton camera recew#ésghotons passing interacting with the
scattering detector, and all other photons passing dyredthout interaction. The absorbing detector has
to be able to handle high count rates, even though a part ot®aee rejected as not valuable events. A
proposal is to use a scintillation detector as the absont@tgctor. Even if high performance technology
exists to implement the absorbing detector, it is stillljke® be the limiting factor to the total achievable
count rate of the Compton scattering camera.

To characterize the measured count rgieof usable coincident detections, consider the count rate
rs incident on the scattering detector. The count rgtacident on the absorbing detector is

Q Q
— —Hpts 1) e 2.27
Ta =Ts {e +<Qa )QJ (2.27)
wherey, is the photoelectric absorption coefficient of the scattedetector, whilg, and(}, are the

solid angles presented to the source by the scattering aodabg detectors, respectively. The first term
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of Equation (2.27) includes photons absorbed in the saadteletector, and the second term includes the
solid angle shown by the absorbing detector over the soajteletector. The measured count rate of
valuable photon interactions, is then given by

B Prgye "7
"M 0 — 1+ e hts

whereP is the probability of a useful scatter, whiteis the dead time of the absorbing detector.

Several possibilities to improve the count statistics wepposed depending on the targeted energy
regime. When imaging sources bf0 keV, [Singh and Doria, 1983a] proposed a semiconductor naate
as the absorption detector. Generally, at this energy, en@sum absorption detector could generate
higher count rates, improved energy and position resoiuti@n Anger camera. For higher source
energy, the general choice is a scintillator based absorgketector made by either, e.g., Nal, or more
effectively by, e.g., LaBy bars. An alternative to achieve higher count rates is to ustaeked’ of
scattering layers. This design can improve the cameratséysat the expense of increased electronic
and control complexity.

(2.28)

2.2.4 Compton imaging

Compton imaging is defined as the image reconstruction psookdata generated by a Compton scat-
tering based detector. Compton data are back-projectedthietimage space without preserving the
azimuthal angle when assuming no electron tracks. The @xitylof Compton reconstruction process

arises from the possible directions of the source layindherambiguity of a surface cone. Moreover, the
measurement errors of both position and energy result inlangncertainty over the measured angle of
the cone.

Compton imaging may be considered as imaging techniqueRdtsson measurement statistics be-
side PET, SPECT, gamma astronomy, and microscopy methbédadtors which distinguish the Comp-
ton image reconstruction problem from the conventionaldgraphy are the extremely large amount of
data generated by the system, the highly complicated ge@®ietnd the low total counts in sample
bins, which make Poisson fluctuations a significant facttiese are the reasons for which all practical
reconstruction algorithms for the Compton scattering imggystems are iterative. Iterative methods
of Compton image reconstrution are presented in Sectionwhize Chapter 5 includes algorithms for
image reconstruction in particular conditions, i.e.-iisdde data acquisition.

In the early 1980’s, [Singh and Doria, 1983b] explored theai@f the two stage reconstruction.
In contrast, [Hebert et al., 1990] formulated the recomston problem as the maximum-likelihood
estimation of the three-dimensional distribution 'ditgctrom the projection data. Following the vision
of image reconstruction process divided in two stages, thediage includes the modeling of detection
process, which generates the response matrices. The sesgescribes the probabilities that a photon
emission produced a recorded valid Compton event. An atedetermination of probabilities implies
high-dimensional calculations, which require detailedwledge of the detector geometry as well as
the uncertainties arising from e.g., finite spatial and gneesolution, Doppler broadening. Hence,
the detector response modeling plays a determinant roleeoimtage reconstruction performance. The
detector response is further integrated into the imagenstnaction method, i.e., the back-projection
phase, which is part of the first stage. The second stage girtduess includes the application of an
iterative algorithm.

2.2.4.1 Theoretical analysis of the Compton detection pr@ss

The sequence of physical interactions which correspondgiagected event begins with the emission of
a photon with an initial energy, from the source poing, in direction—c«. In the following a Compton
scattering interaction is assumed to takes place in thedatgctor at the positiom, = (1,1, 21)
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through an anglé,. An energy losst, is followed by a final absorbtion ab = (x2,92,22). The
response matrix is then represented by the coefficignts/hich represent the probability that a photon
emitted from the source locatiohwill be measured as evemtdescribed by the measuremept =
{71, 7, E1}. The following formula

ti= [ ptiv)dno [ plulsdpiin) (2.29
T0€Vj

expresses the integral over the pixel voluiieof the density functiorp(y;|r¢) describing the proba-

bilities of an emission frony producing an eveny,, multiplied with a functionp(y;|y;) describing the

measurement process. The probability of an emission frarstiurce to produce a detected evgnt

can be approximated by the probabilities of each sequentesation in which the physical detection

process is divided. Assuming separable measurement plibbabits expression follows

p(yilyl) = p(r1]r)p(ra|rh)p(Ba| E5)p(Ee | EL)p(Ele) (2.30)

The probability density functiop(y;|7) describes the probability that an emission frgjin direc-
tion «, leading to the true event.

The sensitivity factor is the integral over all possiblergge’ € S, which is the set including all the
possible measurements:

%zéwwm/@wwm (2.31)

Determination of transition probabilitigs; and sensitivity factog; constitutes the most challenging
aspect of the image reconstruction process. As shown irotlmving, the quality of the reconstructed
images highly depends on the accuracy of their calculation.

Assuming a mono-energetic source, complete absorptiohersécond detector, and no Doppler
Broadening, [Wilderman et al., 1998a] includes a detailescdption of detection probabilities as well
as their impact on the response matrix calculation. In thieviing, the argumentation goes along the
lines of [Zoglauer, 2000].

The detection process of a Compton based imaging system edgdzribed by the sequence of
processes which are involved in the detection of an eient

1. The photon is emitted &}

p(ro)dro =~ const- drg (2.32)

2. The photon leaves the object reaching the detector uaseat

P = [ emrel(Fotolo g (2.33)
The parametel; denotes the length of photon patlemitted atrg in direction «,, and y is the
total absorption coefficient knowinlg and the energy,. The absorption probabilities take into

account different materials which constitute the travetimn.

3. The photon passes through the detector to the first intengooint where it is Compton scattered
at the depth of.

—uP1
pgémpton: Mgémptor(Elvrl)/le ot (El’ll)lldll (2.34)
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The parametet; denotes the distance in the first detector to the interagi@nt r;, while the
parametemcngptO,{El,m) is the Compton absorption coefficient depending on the gnéig
and the interaction point;.

4. The photon is Compton scatteredratwith an angled,. The probability of the photon to be
Compton scattered at a certain angle follows the condition:

PN(6,) = (2.35)

wherejilg; is the Klein-Nishina cross-section (Equation (1.14)), apts the total scattering cross-
section.

5. The scattered photon leaves the first detector:

D= oot (Ba,l2)l dly (2.36)

T

wherels is the distance in the first detector from interaction peinin directionﬁ.

6. The photon reaches the second interaction point whesegtCompton scattered or absorbed:

D D —pb2 )l
pCo2mpton: '“Cogmpton(E%W)/e o (B2,13)l3 (2.37)

T

or

D
Pats = beQs(Ezﬂh)/6_“t012(E2’l3)l3 (2.38)

T

wherels is the distance in the second detector to the paint

7. All the other (known) interactions in the detector may ineilarly described.

The probability density functiop(y|ro) is made up of all these probabilities multiplicatively.

2.2.4.2 Transmission probabilities in Cartesian coordinges

The following algorithm determines the source pixels $édaon a focal plane, which are intersected by
the back-projection cones for each of the detected gamngivey the positions and energy losses in the
interactions. The method of generating a typical cone @éguags to follow the next steps. First, the cone
axis is computed known the two interaction positions, Ee: (r1 —ry) = (1 — 2, Y1 — Y2, 21 — 22).
The second step is to compute the Compton angle via the Conigtmula (1.6). The image space is
viewed as being divided by a series of planes. Each plangidgedi by a series of grid lines, which form
the pixels in that plane. When an event is detected, a bagjkqgied cone is traced through a given plane.
The quadratic which describes the intersection of the coitle avplane situated at = z; follows the
equation:

(n(7—7))* = cos? 0, - |7 — 7| (2.39)

(na(w = 1) + 1y (y — 1) + a2 = 21))° = cos®6y (@ = 21)” + (y =) + (2 — ) (2.40)

wheren = (n,,n,, n.) represents the components of the unit vector along the caseThe following
algorithm determines the intersection points between thentiaries of the plane restrained to a given
view-port, and the conic [Wilderman et al., 1998b].
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\ Figure 2.6: Description of sizes:
\ I Gridlines in the y-direction
I Gridlines in the x-direction

Sy Intersections with the view-port
Sr.a S;p,  Intersections with the Gridlindg
Sr.. Intersections with the Gridline§

Sish

Svie Viewport

1. First, the intersectionSy,. of the cone with the considered plane are calculated. If tergec-
tion exists, the event is either entirely inside or outsiue plane, which intersects the view-port.
Further intersections are searched in restrained views.por

The view-port intersectionSy , and.Sy 1 of two adjacent lines,, andl; , ,, are searched.

The intersectiord; ;, with the grid linel, until the intersectiorsy , is computed.

The distance between the two intersections is calculated

If the intersection in (2) has been foundothen the search continuesifo ,, otherwise td;, ,,.
The steps from (3) to (5) are repeated if the next intei@ecf the view-port has been achieved.
The steps from (2) to (6) are repeated for the remainirggsettions of the view-port.

In case of tracked events, the angular distance of thetodhe origin of photons is computed.

© ©® N o o M W D

Finally, an additional weighting of each event is inclddaccording to the probability of track
detection.

When considering the effect of Doppler broadening and figitergy resolution, as in practical ap-
plications, the intersection line becomes broaden. Thezed weighting function is included in the
description of the relative intensities of the underlinegefs. This function depends on the normal
distanced from the pixel to the conic function, being estimated by thiéofving

d2 __d®
f(d) =0.9¢ 202 +0.1e 26)7? (2.41)

whereo is the standard deviation of the back-projected cone sgdtgaation. The cone spread distribu-
tion is not Gaussian due to the tails induced by Doppler @oeud), thus they are modeled by adding
0.9 times a Gaussian function with the computed standard denjaend0.1 times a Gaussian function
with three times the standard deviation [Wilderman et &99].

Consider the Compton camera described in Figure 2.4. Aroumifl-sigma energy resolution of
1 keV is assumed in the scattering detector, along with keV threshold. An energy resolution $3%
FWHM at662 keV, and a threshold a&f8 keV are assumed in the absorption detector. Consider aesquar
source emitting fron2 cm above the scattering detector.

Figure 2.7 illustrates back-projected images of Compt@mtsavith different scattering angles, inter-
secting the view-port, and including detection uncertaftand Doppler broadening. Figure 2.8 shows
back-projected images of several Compton events.
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Figure 2.7: Back-projected images of different Comptomese
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Figure 2.8: Images of (a) 19 Compton events, (b) 29 Comptentsy (b) 51 Compton events with measurement uncertainties
from energy, geometry of detector, and Doppler broadening.

2.3 Conclusions

Collimator based detectors widely used during the last@es@resent rather simple technologies, and
a simplified method of incident photons origin localizatidrhese advantages come at the expense of a
severe restriction of directions possible to detect, arly photons emitted at a perpendicular direction
(and in accord to the hole thickness) to the detector reptesduable signal.

Replacing the collimator by a detector able to detect pre#irm larger range of incoming directions
can improve the detection sensitivity and efficiency. Canpicattering process is used as a means
of detection in the first detector. Various geometry desigese proposed depending on the targeted
energy regime, in both medical imaging and astrophysicawbacks are represented by the complexity
of technologies and methods, which have to sort and procedtipla coincidence events as well as
directional localization. These requirements have labelyefited from high-energy physics and gamma-
ray astronomy. The cross-fertilization of these areasicoetto assist the development of Compton
based imaging devices for novel applications (see Chapter 4

The angular uncertainty of a Compton based detector insludeertainties due to energy and posi-
tion resolution as well as geometrical angular resolutidhe latter one depends on e.g., thickness and
width of the scatterer detector pixels, intrinsic resautof the absorption detector, distance between de-
tectors and the considered range of scattering angle. Herecback-projected cone affected by inherent
measurement uncertainty do not intersect the true souiggro Thus the origin of photons can not be
uniquely determined. The resulted ambiguity has to be ddbyeimage reconstruction techniques.
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Chapter 3

Compton image reconstruction

3.1 Medical image reconstrution methods

Modalities of gamma-ray imaging can be integrated into ascte# problems named inverse problems. A
general inverse problem is the determination of photonsceduom the detection measurements induced
by physical processes. Two large classes of methods foingohn inversion problem exist. Both are
based on a mathematical model, which describes the detqmtizess. In the first class, the detection
model, i.e., the direct problem, is solved analytically btain an inverse solution operator. Afterwards,
the solution is discretized, and often solved by a compuset algorithm. Two significant difficulties
of the analytic approach can be underlined: Many imagingesys can not be reliably modeled, and
even if they can be, the solution may be too difficult to drinalgtically.

In the second class, the detection model is firstly disa@dtizand the inversion problem is solved
using mostly computer based iterative algorithms. An athgaof iterative algorithms is that a greater
number of systems can be modeled, but an iterative processeceery computationally intensive, and
no guarantee exists that the initial supposed solutionoeiiverge to the real solution.

Several factors render the image reconstruction impreaisg possibly unreliable:

e Failure of the mathematical model to accurately portrajitiea

e Measurement uncertainty and noise.

Incomplete measurement of projection data set.

Discretisation of the detection model.

e Mathematical difficulties to compute an accurate estinmatibthe solution.

Generally, even if the mathematical model is exact, the emagonstruction can fail because of the
other factors. Real detection systems can introduce em@odsread-out noise in the measurement data,
so the reconstruction algorithms have to operate imprektise Often, computer based operations also
tend to amplify the noise inherently present in the datayendail. Hence, any practical reconstruction
algorithm has to be robust against errors in the measured dat

Section 3.1.1 introduces direct image reconstruction oustfapplied mostly in X-ray CT imaging,
while Section 3.1.2 presents a brief overview of iterativettmods of image reconstruction, underlying
only the main principles which constitute the base of a amrsible large number of reconstruction
methods.

Iterative algorithms can be classified in algebraic methau$ statistical based methods. The first
class includes algebraic reconstruction technique, timell&aneous iterative reconstruction technique,
and the iterative least-squares technique. The secongh gantains algorithms which include or not

41
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a priori information about the source. Both analytical aedative methods of Compton scattered data
reconstruction are reviewed in Section 3.2, underlyingr tpecificity. Namely, analytical solutions
in terms of integral transforms are described, including filst attempt towards direct reconstruction
of Compton data proposed by [Cree and Bones, 1994]. Thisoappruses only the projections for
which the incoming photons are scattered over a perperdlidirection between the detectors. A model
which takes into account the incoming direction of photoritheut including any restriction about the
scattering direction was developed [Maxim et al., 2009].e Tiversion formula along with selected
numerical experiments are presented in Section 3.2.1.

3.1.1 Direct methods

Consider the measured data sampled function which is related to the object under shydyn integral
equation. An analytic formula to inverse the equation @gomds to a direct solution of the image
reconstruction problem. Once this inversion formula igtihua numerical solution has to be established.
The applicability of this approach depends on the consitlease, and on the operator which correlates
the unknown function to the observed data.

The mathematical model of X-ray CT considers the X-beam rerergetic and infinitesimally nar-
row. Considering the X-ray attenuatigrix) along a straight lind., the measured intensity of the beam
o follows the equation:

O = Gpe oD (3.1)

wherel is the initial X-ray intensity. Note that, ¢y, and® depend on the X-ray beam energy. The
projection over the path is

p =~ 1n(®/20) = [ u(a®)d (32)

Generally, several projections are collected to recoosthe object. However, Equation (3.2) can
be solved when all values di are known. Lets and ¢ be the parameters of ling, wheres is the
perpendicular distance of the line from the origin, whilés the angle between the line and thaxis.
The projection can be approximated by the formula

p(s, ¢) = /L oy B (3.3)

The graphical representation is illustrated in Figure 3.1.
Note that a projection along a line described(by¢p) corresponds to a point in the Radon space of
attenuation function::

f(z,y)

Figure 3.1: lllustration of a CT projection. The projecti®if](s, ¢)
is the integral over the image along the line defined laypd¢. In 2D,
the Radon transform of follows the equatioriR[f(x,y)|(s,$) =

fR2 f(x,y)d(s — x cos p — ysin @)dzdy.
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p(s, @) = Rlu(x, y)](s, ¢) (3.4)

If the projections for alls € (—oco0,00) and¢ € [0,m) are measured, then the Radon space is
completely filled. The application of the inverse Radon ¢farm allows to recover. In practice, only
a finite number of projections are collected, thus a finite Ineiof discrete points are known in the
Radon space. Several algorithms were proposed to solvevtsion problem when an incomplete set
of projections exist.

In practice, X-rays beams are neither mono-energetic, mfaritesimally narrow. Therefore, the
reconstruction algorithms based on these assumptionsagerimages with artifacts. The width of the
X-ray beam is large enough that regions to reconstruct dogldde variations of the X-ray attenuation
coefficient. This variation can lead to wrong values of theratation parameter. The effect is referred
as the partial volume effect.

The attenuation of the X-rays is mainly due to the Rayleighttecing process. Thus most of the
photons which escape the object, and are further detectidjegrade the image quality. Including
corrections could improve the images.

Considering X-ray CT data reconstruction, if the exprassalating the projections to the object is
the integral equation of the Radon transform:

= //f(a:, y)o(r — x cos ¢ — ysin ¢)dxdy (3.5)
then the analytical expression of its inverse is given by:
r,0)
f@:y) T on? / / r— xcosqb y sin ¢drd¢ (3.6)
which is decomposed into three operators:
Derivation D: Op(r. &)
_ p\T,
= 7
p(’r7 ¢) ar (3 )
Hilbert transformH: . 5. )
! _ L > p(r,
g(’l” 7¢) - T /0 (7" _ ’l”/) d?" (38)
Back-projectionB:
1 [m .
fa) = 5= [ glacos o+ ysing. 6)ds (3.9

The second step is to approximate numerically the integyalession. If thep(r, ¢) were known for
all » and¢, then the expression would generate a reliable solutiohpBu¢) are known for a finite set
of discrete values af and¢ with limited precision. Therefore two difficulties appeahen numerically
solving the inverse problem: the derivatigﬁ(a’;jﬂ, and the integration over. Generally, the derivation
is replaced by a filter (high-pass), while the Hilbert tramsf is applied in the Fourier domain. The
integration over corresponds to the back-projectiéh

The main drawback of considering the Equation (3.6) as tla¢ifimersion formula is that projections
are known only for a set of discrete values-@ind¢. The latter fact results in two difficulties, namely the
computation of derivative, and the integral overSolutions were derived approximating the derivation
by a high-pass filter, and the integration is applied in therleo domain.

e Back-projection of filtered projections in the frequencyrdon:

o0 &) Filter 1] 90, 9) f(z,y)
B o B
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e Filtering by convolution and back-projection:

Filter

p(r, &) I -‘1(7"7@ f(z,y)

e Back-projection and 2D filtering in the frequency domain:

bz, y) Filter f(z,y)

p(r, ¢)
£ 2 = \fu? +w3

B

e Back-projection and filtering by 2D convolution:

p(r, @) B | Y@y Filter | f(z,y)

] = \fu2 + w3

Four different methods of analytical inversion of the Rad@msform are schematized above. The
first and the third are versions of filtered back-projectiatnere the projection data are first backpro-
jected, filtered in the Fourier space, and then inverted byctrresponded Fourier transform. It repre-
sents a reather efficient method of CT image reconstructdltered backprojection has the advantage
of applying the filter to each measured projection, resglima calculation efficiency gain. Other X-ray
CT reconstruction methods include algorithms using limogs [Edholm and Herman, 1987], Chebyshev
polynomials [Bortfeld and Oelfke, 1999], and nonlinear ki@ojection methods [Andia et al., 2002].

3.1.2 lterative methods

“Very early it become obvious that image reconstruction wase complex than the mere problem of
analytically inverting the Radon transform, and then detiming the resulting inversion formula.”
[Defrise and Gullberg, 2006]

Iterative methods can offer improvements over analyticathods since the noise structure present
in measurements can be more realistically integrated irétection system model. Application of an
iterative reconstruction approach consists on severatelpwhich generate a significant impact on the
quality of the obtained results. First, the representaliasis of the source, the system physical model
as well as the statistical model of measurements has to adelissed. Afterwards, a critical step is the
choice of the cost function, or the estimation criterion ba tonsidered data conditions. A classical
approach is the Maximume-Likelihood (ML) estimation, whishs various limitations, e.g., fluctuations
of the solutions, noise propagation during the iterativecpss, etc. Alternatives can be derived on
the Bayesian framework obtaining the formulations of eMpximum A Posterior (MAP), Maximum
Entropy (ME). Both of them present the possibility to inctud prior knowledge about e.g., source
distribution, expected level of noise. Corruption of smos by noise can simultaneously be overcame
including a regularization step, which incorporates c@ists of the object, e.g., the smoothness degree
of the solution. A regularization method is to change the @asction by adding a roughness penalty,
which can be either separable or non-separable, quadratmnequadratic, and convex or non-convex.

Optimization of the estimation criterion implies the ctelmetween Expectation-Maximization (EM)
based iterative algorithms, e.g., Ordered-Subsets EM @W3Hudson and Larkin, 1994], Generalized
EM (GEM), Space-Alternating Generalized EM (SAGE) [Fesaled Hero, 1995], and direct optimiza-
tion algorithms, e.g., coordinate descent, conjugateigmadVersions of estimation methods as well as
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optimization algorithms were applied to PET, SPECT datavid®es of iterative methods are presented
in [Vandenberghe et al., 2001], [Qi and Leahy, 2006], [B=frand Gullberg, 2006].
Consider the discrete expression of the source functioivéndy

=3 g (3.10)
J

wheref; is the average value of functiohat pixelj. The f; is the coefficient off on the basi$,.
Let M be the measurement model, and suppses linear.

y=Mf=M fibj)=> M(b))f (3.11)
J J

and

yi =y M;(b;) [ (3.12)
J

ConsiderT the response matrix of the imaging system. The discreteesgjun off is related to the
source function by

Yi = th’jfj (3.13)
J

wherey; is the measured data at binThe response matrix represents the transition prohkiabitit; that
an emission frony; was detected ip;, i.e.,t;; = M;(b;) depend on the source model and measurements.
Considere the difference between the two sides of Equation (3.13)¢clwban be then written as

y=TFf+e (3.14)

wheree denotes the measurement errors.

The discrete reconstruction problem can be formulatedeasgtimation of the image vectgrgiven
the measured data = {y;, i = 1,N}. Iterative methods start from an initial solutigi¥, which is
forward projected resulting ~ 7 f°. The latter is compared to the measured projections, anategd
based on the knowledge about their ratio. The step is rephemtl an acceptable solution is obtained.
Iterative algorithms differ when considering the methodicihcompares the current estimate to the
measured data, and the application method of the correction

3.1.2.1 Algebraic reconstruction techniques

Algebraic Reconstruction Techniques (ART) are one of thet fachnique used for image reconstruc-
tion from projections, being proposed as an alternativargctlFourier reconstruction. It is essentially
identical to a technique described by Kaczmarz (1937) teesalsystem of simultaneous equations. The
original ART algorithm [Gordon et al., 1970] looks for sabuts toy = T f, assuming: = 0, and the
existence of a unique solution. The algorithm requires fications to allow reasonable solutions in
realistic conditions.

The additive ART algorithm considers the vector as the transpose of thieh row of matrix 7.
Consider an arbitrary initial solutiofi’. The additive iterative formula can be written as

k+1 _ ¢k yi—m,»-fk
=t —m (3.15)

wherei = (kmodJ) + 1, andJ is the number of elements ifi Note that only one element gfand
the corresponding row &f are used to updatg. To obtain a complete update grusing all rows ofl’
requires several iterations. Variations of the basic &@lgor are presented in [Herman and Lent, 1976].
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3.1.2.2 Maximum-likelihood algorithms

The ML reconstruction technique was introduced in emis§idrby [Lange and Carson, 1984] in con-

junction with the EM algorithm, taking into account the &#atal nature of photons emission. The ML

criterion states that the best estimate of the soyirbas to give the greatest probability of obtaining the
measuremeny. This condition can be expressed as the following

/= argmaxp(y|f) (3.16)
20

The method can be summarized as follows. Considering theetiten process is a Poisson process,
the probability of observing; events in theth bin is given by

Y
y; ~ Poisson(y;) = p(yi|f) = e ¥ Yi - 1=1,N (3.17)
Y

7.
wherey; is the mean number of photons detected inibbeing expressed as the sum of the mean number
of photons emitted from all source pixels times the traosiprobabilities:

M
U= tiif (3.18)
j=1

Assuming the number of detected photons in all bins indepaindariables, the likelihood function
is

N —Yi

p(ulf) = T[] P(wilf) = He—%yz (3.19)

=1
Maximization of the likelihood function is equivalent to dirthe maximum of the log-likelihood
function. The log-likelihood function can be expressedadiews

N

W(ylf) = Z i log () — v — log(yi!)) (3.20)
N M
Z yz log(z tijf] th]f] log Yi- )) (321)
_ j=1

According to the ML criterion, to estimate the sourtgiving the highest probability of generatingg
is equivalent to find the maximum ofy| f). The existence of local maximum of the likelihood function
is assured by the Kuhn-Tucker conditions. In addition, & thnction is concave, the local maximum is
a global maximum. The Kuhn-Tucker conditions of a solutfdrto maximizel(y|f) are given by

ol =0 if fF=0
LUV (3.22)

af; >0 if fr=0

while the first and second derivatives of the log-likelihdadction are

ol(ylf) < Yi >
=Y tij|l=—— -1 3.23
afj EZ: T\ tik f (3.23)

Uyl f) tijtayi

- _ 3.24
of;0f 2 Ok tirfr)? (3.24)
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A necessary and sufficient condition for a function to be ewmcis to have its Hessian negative
semi-definite

Plylf) _
<0 3.25
2.2 rag 829
for all vectorse = {cj,co--- ey}, and aII non-negative images> 0. Considering the Equation (3.24),
the inequality (3.25) is verified, resulting that the lokelihood function is concave.
The straightforward way to find a local maximum ffis to compute its partial derivatives and to
equal them to zero.

l(y

yz _ Yityy
tii + 3.26
afﬂ zz:l ’ Z 1twfj ( )

Note '[hatzf\i1 t;; is the detection sensitivity, which is the probability tleaphoton emitted from
pixel 5 will be detected.

EM algorithm

Finding the maximum of Equation (3.26) is a difficult procésxause of its non-linearity, so the
use of a numerical method is required. The iterative EM dtigar asymptotically achieves the ML of
f. At each iteration, the EM algorithm consists of two partheTirst one is the expectation step (E-
step), where the expectation of the likelihood functionhb$ained in terms of complete data, given the
measuremeny, and the estimatiorf* from the previous iteration. The second one is the maxinaizat
step (M-step), where the estimatighi™! of the current iteration can be obtained as the critical {saif
the expectation function calculated in the E-step.

To satisfy the requirement for a complete data set for the Ejdrahm, the random variable;; is
introduced as the unobserved data

1, if eventj originated in bin
Zij = _ (3.27)
0, otherwise
The relation between the measurements and completejdeda be expressed
M M
Gi=Y 2= tijf (3.28)
j=1 j=1
The log-likelihood in terms of complete data may be written
U(zij|f) = Z Z zijlog(tij fj) — tij fj —log(zi;!)) (3.29)

i=1j=1

In the E-step, the conditional expectation of the log-itkebd with respect to the measured data, and
the estimationf* from the previous iteration is

[(Z’Lj|f |y fk ZZ N log Z]fj _tijfj) (330)
where

k
k]_ . tijfj

=Yi—or . (3.31)
Mot fk

N} = Elzijlyi, f
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In the M-step, the maximum estimafé*! can be computed by setting derivative of Equation (3.30)
to zero:

OEU(zi;|f),y, f* 1
[(Zégcjz)yf]:[f_jzi:]vl];_zi:tij] lppr1 =0 (3.32)

whereXY | t.; = s; is the detection sensitivity.

3.1.2.3 Bayesian methods

ML based algorithms incorporate information about the &misnature of photons emission, and in
addition the constraint of non-negativity. Other inforioatpossible to include may be the bounds of
the solution as well as its derivatives up to a certain ortitecase of Bayesian approach, the additional
information is given by statistical properties of the oljecg., the probability density gf denoted( f),
and called prior. The joint probability density ©f, v) is given by

p(f,y) = pylfp(f) (3.33)

Introducing the marginal probability density gf and applying the Bayes formula, the conditional
probability density off for a given valuey is given by

p(f,y) _ plylf)p(f)
p(y) p(y)

The MAP estimate of the source is defined as the function wimakimizes the a posteriori proba-
bility density

p(fly) =

(3.34)

J* = argmax p(f|y) (3.35)
f>0

Considering the log of( f|y), the MAP estimator can be written

¢(f) = Uylf) +logp(f) (3.36)

which represents the sum of the log-likelihood and the loghefprior. Widely used priors are inde-
pendent of the source values, or based on interaction moddis first class includes the Gaussian
model [Huesman et al., 2000], which results in a quadratimfaghe gamma prior [Lange et al., 1987]
which allows non-negative values of source function. lmatelent priors can be derived based on the
maximum entropy criterion [Liang et al., 1989]. The prioshhe following general form

N
1 £ log( fi
p(f) = o ] [ e—filog(fi) (3.37)
i=1

whereC' is a normalization factor. These priors require the esionadf the mean values of the object,
causing biased solutions. Priors using the Markov randomietsare known as Gibbs distributions. The
Gibbs distribution has the following general form

p(f16) = 5o PV (3.38)

whereU ( f) is the Gibbs energy function.

Using a priori information may be viewed as the integratiba ¢penalty’ term at each iteration. As
the prior, the penalty term could generate the intendedeptigs to the reconstructed images, e.g., the
smoothness level. A challenge is to choose the optimal rdeshpenalty application.
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Source

Figure 3.2: lllustration of the conic projection from the
Compton scattering event generated by a point M of the
source. The event is defined by the first interaction at the
positioni, the positioni, and the Compton scattering
angled,. The dotted lines indicate the cone defined by
1 the unit vectoﬁ, and the Compton anglg,.
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3.2 Inversion of Compton scattered data

In transmission and emission CT problems, the measuredadatexpressed as line integrals. In case
of Compton scattered data reconstruction, the back-pgrojeof a detected event leads to photon source
localization on the surface of a cone (see Section 2.2.4).

In the following, the analytical as well as the iterative eggrhes proposed to reconstruct data gener-
ated by a Compton scattering based detector are presentatitidal methods were investigated using
deterministic data; herein, the method proposed by [CreeBames, 1994] is detailed, considering the
most simplistic model of Compton scattering camera. liezainethods allow integration of measure-
ment uncertainties in on a straightforward manner. TheeefdL based estimation and related penalized
likelihood versions are widely applied. Even if analytictimeds have generally several disadvantages in
comparison to their iterative counterparts, they are rieelrss important for the insight they bring into
the Compton image reconstruction problem.

3.2.1 Analytical methods

Consider the generic Compton camera presented in Secfoh 2lhe measured dataare expressed
as the integration of the photon source distribution oversilrface of the cone defined by, > andd,
(Figure 3.2). This quantity, labelegr;, 5, 6,), is called cone-surface projection, which has the form

g(r1,0,0,) = / wfdS (3.39)

cone

wherew is the weighing factor issued from geometrical considerati described by e.g., Klein-Nishina
cross-section. Here, the photons source of intensity immgtis a positive and real valued function with
compact support.

Consider

e the unit vectorsy, 3, which satisfy the realatiofi - 7 = cos 6,

e with respect to the cone axig, and ¢ are the polar and the azimuthal angles, respectively, de-
scribingd, thusa = @(/3, 6,, ¢)

e ris the distance from the apex to a given point of the cone

then the cone-surface projection has the form

= 27 e’}
g(r1,3,04) = K(Hg)/o /0 f(r1+a-r)rsinfydrde (3.40)



50 CHAPTER 3. COMPTON IMAGE RECONSTRUCTION

whereK (6,) is the Klein-Nishina distribution for Compton scatteririfhe image reconstruction prob-
lem is to determing’ giveng(r1, 3, 6,).

The first attempt to directly invert Compton data was propdsg [Cree and Bones, 1994], where
the solution is limited to cases when the scattering dioecis perpendicular to the second detector,
leading to a dramatic loss of data. [Basko et al., 1999] féated an analytical inversion formula of
Compton projections without considering the distributafipossible scattering angles. The cone surface
projections are transformed into plane projections uspigscal harmonics, which allow the application
of the Radon transform, as in case of CT inversion problentg férmulation by spherical harmonics
considers that each detector pixel is the center of an uhérspindependently of the detector geometry
design. [Parra, 2000] completes the previous work by degidn analytical formula considering the
probability of scattering at different angles based on therkNishina formula. [Gunter, 2006] applied
a fast FBP algorithm to the inversion problem assuming deteevhich should be sensitive to scattering
angles from0° to 180° degrees. In practice, a Compton camera usually can notdedlie complete
set of scattering angles due to geometry limitations. [Tamiand Hirasawa, 2002] proposed a solution
to the direct inversion problem including this limitatiorlowever, besides the spatially variant and
incomplete sampling, the angular uncertainty needs ashetmcluded into the image reconstruction
algorithm.

3.2.1.1 Inversion of the restricted cone-surface projeatin

In the following, the algorithm developed by [Cree and Bor€94] is presented. The cone-projection is
developed as follows: the scattering detector surfac&entéo extend over they-plane,r; = (z,y,0).
Then, the cone-surface projection reduces to

= 27 0
g(r1,3,04) = K(0,) / / fx +rag,y + roy, ro;)rsin@ydrde (3.41)
o Jo

whereda = (o, ay, o) = (sind, cos ¢, sin 6, sin ¢, cos 0.

[Cree and Bones, 1994] considers only the subset of corfi@esuprojections wheré = z. The
cone-surface projection is now denoted as the restricted-sarface projectiory(z,y,6,). Knowing
z = r cos 04, the restricted cone-surface projection is given by

sin 0,

2w
g9(z,y,0,) = K(b,) / f(z+ ztan 6, cos ¢,y + ztan O, sin ¢, 2)zdzdg (3.42)

cos? 6,

Denotingtan 6, = t, the restricted cone-surface projection has the form

2
g(x,y,t) OtV 1+ t2/ / f(x+ 2t cos ¢,y + ztsin ¢, 2)zdzde (3.43)

The restricted cone-surface projection can be analyidalerted, and the inversion is stated by the
following theorem:

Theorem 3.2.1 From a complete set of restricted cone-surface projectians., g(z, y, t) for (z,y) €
R? andt € [0, 00), the gamma ray source distributiof{x, y, z) can be reconstructed.

Proof The inversion is performed in the Fourier space

GQ(uvvvt) = f2[9(£7y7t)] (344)
FQ(uv v, t) =F [f(.T, Y, t)] (345)

whereF, denotes th&D Fourier transform.
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ConsiderF; acts on both sides of Equation (3.43), and apply the Founiéirtaeorem

2w roo . .
Ga(u,v,t) = K(t)tvV1+ t? / / Fy(u, v, z)e2mztucosotvsing) . g g (3.46)
o Jo

By expressing the rectangular coordinate gairv) in terms of the polar coordinates p&j, ¢) in
Equation (3.46), the-integral is recognizable as the standard integral dedimibf the zero-order Bessel
function of the first kind.

Go(u,v,t) = K(t)tv1 + t227 /OO Fa(u, v, 2) Jo(2mztVu? + v?2)zdz (3.47)
0

The z-integral is a zero-order Hankel transform acting/on
Letting{ = zvu? + v? allows to write

K(t)tV1 + 2 ¢
Ga(u,v,t) = UQ—JFUQHO[R(U:U, ﬁ)](f — t) (3.48)
The Hankel transform is self-reciprocal, so
13 ) u? + v?
By (u,0, —=—— ) = Ho[————— Ao (u, v, 1)](¢ 3.49
2 (w0 v Ve el =8 (3.49)

where care must be taken to exclude 0.
An inverse Fourier transform will givg, however the transform has to be performed on the surface

defined byz = \/ufﬁ in the (u, v, z)-space.

3.2.1.2 Inversion of the Compton transform using the full seof available projections

Reconsider that the solution proposed by [Cree and BoneéX®}] Essumes the scattered gamma-ray
direction perpendicular to the detectors. In the followiag approach towards an inversion formula
of the cone-surface projections using the full set of datssiixbe to measure is presented. A slightly
modified model of Compton projections is adopted [Maxim et2009], namely

g (ur,ug,w, v, 0,) = w f(M) cos ©dS (3.50)
MeC(ur,u2,w,,04)

where® denotes the polar angle of the cone’s poifhfs while w € [0,7/2), andy € [0,7) denote
the polar angle and the azimuthal angle of the cone’s axspectively (Figure 3.3 (a)). The model of
Compton projections is based on the model proposed by [G2066], and it assumes that the projec-
tionsg'(-, -, w, 1, 6,) of a source of intensity’, described by a poirtlu;, uz) € R?, are proportional to
the integral of the incoming flux intensity on the surfacehs coneC(u;, ua,w, ¥, 0,).

The solution proposed by [Cree and Bones, 1994] can be noevided as follows

g(xuyueg) = g,(x7y7070709) (351)

The parametric expression of the Compton projections @rite

[e'e] 2T
g (u1, us,w, 1, y) = K(Hg)/o /0 fur + ze(w, by) + za(w, by) cos ¢,
ug + 2b(w, 0y) sin ¢, z) zb(w, O4)dpdz (3.52)
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(a) Spatial domain. Con&(0,0,w, v, 6,). (b) Fourier domain. Conér(w,6,).

Figure 3.3: (a) Spatial domain. The Compton projectionstlaeeresult of the integration on the surface of the coneschvhi
present parallel axes, and the same Compton ahgldeach cone is a translation of the ca®@, 0, w, v, 0,). (b) Fourier
domain. The dashed line represents a line of the Fouriesfwan of the Compton projections. The solid line represents
slice of the Hankel-Fourier transform ¢fon the surface of the cortgr (w, 6,).

where

sin @, cos 6
0 = —— 99 3.53
a(w, by) cos?w — sin? 6, ( )
sin 0
b(w,l,) = = , (3.54)
cos?w — sin? 6,

sin w cos w
0 = — 3.55
clw0y) cos?w — sin? 6, ( )

The quantitiesa(w, 6,) andzb(w, ,) are respectively the major and minor half-axes of the alips
describing the projections, whilec(w, 6,) represents the distance from the center of the ellipse to the

vertical axisOz.
The inversion is derived similarly to [Cree and Bones, 199@lding the following formula

o oo [Ew b (w,0,)
2 ] »y Vg v
fwv)= [ [ [ e B mw )+ )

Jo(2mzb(w, 04)\/nf + n3)db,

exp(2im(zm + ym)) (07 + 03 )dm di (3.56)
where )
0
by (,0,) = — 2 DT 3.57
0, (@ f) (cos?w — sin? 6,)3/2 ( )

Only a set of projections is considered, namely projectfonsgvhich the axis has the azimuthal angle
of v = ¥ + en/2, wheree = +1, and¥ denotes the polar angle of an arbitrary fixed p@ipt 7;) in
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Figure 3.4: Spherical source situated@b, 0.5, 5), radiusk = 2.5 units. Detector of siz80 x 30 units atz = 0. One slices
is represented fap = 0 corresponding (from the first to the third column)zce= 5 (center of the sphere}, = 3 (not empty
intersection, close to the detector) and= 7 (the same distance from the center of the sphere, but fuiridverthe detector).
The intersection between the sphere and the horizonta¢ daandisc with radius.

w=m/6z=5r=25 w=m/6z=3r=15 w=m/6z=Tr=15

Figure 3.5: Spherical source placed @b, 0.5, 5), radiusk = 2.5 units. Detector of siz80 x 30 units atz = 0. One slice is
represented faw = 7 /6 corresponding (from the first to the third column):zte= 5 (center of the sphere}, = 3 (not empty
intersection, closer to the detector) ane= 7 (the same distance from the center of the sphere, but fuiribrerthe detector).
The intersection between the sphere and the horizonta fdaandisc with radius.

i 10 15 0 2 30 5 10 15 20 s} 30 5 10 15 20 25 30

w=mn/3z=5r=25 w=mn/3z=3r=15 w=mn/3z=Tr=15

Figure 3.6: Spherical source placed @b, 0.5, 5), radiusk = 2.5 units. Detector of siz80 x 30 units atz = 0. One slice is
represented faw = 7/3 corresponding (from the first to the third column):zte= 5 (center of the sphere}, = 3 (not empty
intersection, closer to the detector) ane= 7 (the same distance from the center of the sphere, but fuiribrerthe detector).
The intersection between the sphere and the horizontag jdeendisc with radius.

the Fourier space (Figure 3.3 (b)). The discrete form of trerision formula may be found in [Maxim
et al., 2009].
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Figure 3.7: Spherical source of radiizs= 2.5 placed in front of a detector &0 x 30 units and60 x 60 pixels. The artifacts
due to the finite dimension of the detector are reduced caedgarFigures 3.4, 3.5.

5 10 15 20 25 30

In the following, several numerical experiments are preskrusing simple, mathematical tractable
source conditions. The scatter detector is sampled on ieetksgrid, considering only the center of a pixel
is sensitive and receives information. For spherical ssjréormula (3.52) may be partly calculated
analytically: for a fixed angl®, the values of the coordinates of the points of the cone belonging to
the source are solutions of a second order inequality defihi@ sphere and its interior. Thus an interval
depending o is obtained. Since the considered sources are of uniforemsity 1, the integral inz is
just the length of this interval, and only discretisationpiis required.

In most of the tests a scatter detector of sigex 30 units divided in equal square pixels situated in
the planez = 0 is considered. The center of the coordinate system is plaicthe center of the scatterer.

The sampling i, is equispaced, covering the interyal 7/2 —w). The disadvantage of this choice
is to suppose that the energy resolution of the detectormdispenw. Also, the integration step is not
constant from one value af to another. The energy resolution of the absorber, excepbrie induced
by the discretization scheme @, is not considered. A simple rectangle method was considegeein.

Figures 3.4, 3.5, 3.6 show three reconstructed slices oharspwith radius? = 2.5 and center
situated at0.5,0.5,5). Following the altitude of the cut, the expected result iss& avith radiusr as
indicated downside each image. Asgrows, the reconstructed radius is slightly larger thareetgd,
especially in the in the upper slice, due to the finite sizénefdcatter detector and border effects.

A finer sampling of the detector is considered for the nuna¢tiest from Figure 3.7. A spherical
source of radiug? = 2.5 units was placed at a distancezof 5 units from a scatter detector, whose size
was30 x 30 units sampled 60 x 60 pixels [Maxim et al., 2009].

3.2.2 lterative methods

The section presents an overview of iterative methods eghpdi Compton scattering data reconstruction.
The presentation is not an exhaustive description of ajpgsed reconstruction methods, but an illustra-
tion of the principal approaches adopted to attain an effictcdmpton data reconstruction. The methods
are presented without references about the configuratitied@@ompton camera. Note that all algorithms
were applied using projection data generated accordingotecular geometry of the detector.

Reconsider the view of Compton image reconstruction as astage method. The first stage in-
cludes Compton data back-projection, while the secondisippoves the initial back-projected image
by applying an iterative algorithm. The latter includes thoalgorithms which were previously used to
reconstruct PET, or SPECT data. The early approach propgbsegpplication of ART algorithms [Singh
and Doria, 1983b]. Afterwards, MLEM based algorithms welidely used for Compton reconstruc-
tion [Sauve et al., 1993], [Wilderman et al., 1998a].

Computation of the maximal solution by direct resolutiorEgfuation (3.26) is a complicated process
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since the equation is not linear. A possible alternativen iadhieve asymptotically the ML of by an
iterative algorithm. A commonly used approach is the EM atgm. In the first step, i.e. the E-step,
the expectation of the likelihood function is obtained fréime complete data given the measurement
y and the estimation of from the previous iteration. The second step called the ép;smaximize
the expectation of the current iteration by solving thedgives of the expectation functions from the
E-step. The iterative ML-EM formula has the following form

fk N

Yitij
(3.58)
1 tij 1221 Zb 1 tzbflf:

whereXY | t.; = s; is the detection sensitivity.

An accelerate version of the EM algorithm is adopted by [Kiralg 2007], analyzing several meth-
ods to group the conical projection data into ordered ssbs&éhe OSEM algorithm applies the EM
algorithm to each sub-objective function. The update egndtas the form

k+1
frrl =

(k,1+1) £ yit

(ki+1) _ g iy 3.59
fj EieSl Lij ics, Eé\il tibflgk’l) ( )
where f;k’l) denotes the image estimate at ttike iteration andth subset, whil&; denotes théth subset.

All the proposed versions of the OSEM algorithm overrun tlassical EM algorithm, while it preserves
the same overall quality.

The reconstruction problem can be reformulated in a Bagdsamework, including a prior distribu-
tion on the image. The prior reflects characteristics of iep@yg., the smoothness degree. The image is
computed as the MAP estimate from the posterior densityhirhage conditioned on data. A Bayesian
framework approach is investigated in [Lee, 2008]. The €asttion is a maximum a posteriori es-
timate, while the iterative algorithms are firstly, a rowtiac method and secondly, a block-sequential
method, which is a relaxed version of the OSEM method. Thelagigation is done by using a convex
non-quadratic smoothing prior. The prior information refeassumptions about the spatial distribution
of the source. Both algorithms are applied in their binnatkdrersion.

When considering Row-Action ML Algorithm (RAML), the prajgon data are ordered in a sequence
of p disjoint subsetss;, I = 1, p. The update equation has the form

(k +1) _ (k 1) (k1) N _ Yi _
1E5] J s

where f# = flkp) ghtl — ¢(k+12) ande, represents a sequence of positive relaxation parameters,
which are fixed throughout a complete cycle of the subsets.

Block-Sequential EM algorithm (BSEM) with regularizatioconsists of two steps, an update of ML
using RAML, and a secondary update in the gradient direaifdhe prior.

1.

ui
f(k; I+1) f(k:l f(k:l Z ti(1 7) I=T,p (3.61)
/ 1€S) Z tl]f

2. Setfkt1/2 — f(kp) gand compute

fk+1 fk+1/2 Eka \VA Ep(fk+1/2) (362)

whereD* is the diagonal matrixD* = diag(f*+1/?).
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The algorithms are similar to the J. Fessler’s versions, g=gssler and Hero, 1994].

[Wilderman et al., 1998a] derived the MLEM algorithm in Jistode, and applied it to Compton
data, resulting in a significant computational advantager epproaches using binned projection data.
The algorithm is presented in Section 5.1.

Compton scattering data reconstruction proved a neceasags in imaging far-field point sources.
The Bayesian technique including the maximum entropy psias applied by [Strong et al., 1990] to
reconstruct COMPTEL data. Both ML and ME based estimati@msicler the pixel size constant in the
reconstruction, rendering "the biggest errors under tightast sources” [Dixon et al., 1996]. A way
to overcome the pixel size constraint, the notion of pixors \wdroduced, representing a generalized,
flexible pixel. Pixon based methods allow to change the maalgl, the system response, parameters
according to the information available in the measured.dete application of a method version in case
of COMPTEL data is reported in [Dixon et al., 1996].



Chapter 4

A tracking Compton imaging system for
hadron therapy

A novel detection method based on Compton scattering psasgeoposed as solution to gamma-rays
imaging during hadron-particle therapy [Frandes et all02Q Imaging gamma rays emitted during
target irradiation by hadron beams is a way to verify thetioceof the deposed dose.

First, the dose distribution as well as the generated pestire analyzed, considering a simplified
hadron therapy scenario. Section 4.1 describes the emissgamma rays during the first second of the
irradiation, while Section 4.2 presents the projectionghefr origin emission at different energy bands.

In the following, an instrument operating in the requirectrgy regime, called MEGA prototype
(“Medium-Energy Gamma-ray Astronomy”) is introduced. ME®vas the first fully calibrated and
successfully operating combined Compton and pair telesocmgpable of measuring gamma rays in the
energy range from roughi00 keV up to50 MeV. Based on the MEGA prototype measurement princi-
ple, an advanced Hadron Therapy Imaging HTI system modebtiesigned and optimized for detection
of gamma rays in the Compton energy regime. It is capableagking a gamma ray through several
Compton interactions until it is stopped via photoelecgftect, and also of tracking recoil electrons.
The Compton scatter angle of the first interaction and thdéipos of the first two interactions allow
to restrict the direction of the incident gamma ray to a camdase. The reconstruction of the recoill
electron direction enables to further restrict the origstribution to a cone segment.

Section 4.3 introduces the proposed detection technigsedan Compton gamma-ray tracking and
describes the design of the HTI system as well as its sintlija¢eformance. Section 4.3.6 presents the
reconstructed images of Compton scatter events simuldtadive HTI system. Section 4.3.7 discusses
the impact of the used imaging algorithm on the presentadtsesConclusions are presented in Section
4.4.

4.1 Simplified hadron therapy scenario

Monte Carlo simulations were performed using the Geant&kaupe [Agostinelli et al., 2003] (version
9.1) with its front end Cosima [Zoglauer et al., 2006]. The Gdanivermore package including the
Doppler-broadening extension G4LECS [Kippen, 2004] waisr electromagnetic interactions, and
the standard QGSP-BIC-HP physics list for hadronic intivas. The considered simulation configu-
ration consists of a PMMA (§HsO-) phantom, which was irradiated by three mono-energeticipen
proton beams with an intensity fixed H° protons/second. The start point of beam is algraxis at
—7.5 cm. The phantom is a sphere witth cm radius centered di .5 cm onz-axis (Figure 4.1).

Figure 4.2 illustrates depth dose deposition of three éeeigroton beams in the PMMA phantom.
Fragments mostly travel in forward direction at almost tame rate as the incident ions. They can cause
further fragmentation reactions. In contrast, the targefigi remain approximately at the interaction

57
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beam
direction

Figure 4.1: Schematic representation of the setup
used for gamma ray emission simulations. The
center of phantom represented by a PMMA sphere
is situated at =41.5 cm.

position (Figure 4.2). Figure 4.3 shows the 2D dose depuwsjirofiles of70, 100, and140 MeV proton
beam into the phantom. The first line representsatipgorojections for the three proton beam energies,
the second line represents the-projections, and the third line shows the-projections, considering

z =0,y =0, andz = 0, respectively.

Dose distribution of hadron beams is due to both primary awdrsdary particles. The secondary
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Figure 4.2: Dose deposition profiles of (a) 70 MeV, (b) 100 Makd (c) 140 MeV proton beam into a phantom, which is
represented by a PMMA sphere. The entrance point in the phmigtaty = —7.5 cm. The calculation was done by Monte

Carlo simulations using Geant4.
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Figure 4.3: 2D Dose deposition profiles of (a) 70 MeV, (b) 108\Mand (c) 140 MeV proton beam into a phantom, which is
represented by a PMMA sphere. The entrance point in the pimigtaty = —7.5 cm. The calculation was done by Monte
Carlo simulations using Geant4.

particles are issued mainly from nuclear interactionspdp@nportant for the treatment plan calculation,
regarding both dose deposition and RBE of the incident bedvteanwhile, secondary neutrons may
deliver dose outside the target volume, creating a lessalésieffect. In its counterpart, emitted sec-
ondaries such as gamma rays following nuclear reactionsddag a valuable information about the
location of the deposed dose during the treatment. In tHewolg, emission location of secondaries
which escape the PMMA phantom during the first second of prbeam irradiation are retrieved. The
emission location as well as the energy spectrum of gamnsavhich escape during phantom irradiation
by the proton beam dau0 MeV are also analyzed.

Interactions occurring between the incident proton beadhthe target determine emissions of var-
ious secondary particles, which further escape the phargamg3, ¢, e, n. Along with the primary
particles, the emitted secondaries are also highly impbfta hadron therapy since they contribute to
both deposed dose distribution, and RBE of the beam iriadiaFigure 4.4 shows the emission projec-
tions of secondary™ particles during the first second of irradiation by the pndb@am afl40 MeV. The
emission is isotropic, without presenting a well-definettqra.

Figure 4.5 shows the emission projections of secondgrgrticles during the first second of irradia-
tion by the proton beam at0 MeV. The emission follows the proton beam path, presenticgdéinuous
profile with a reduced fall-down at about the Bragg peak iocatand a rather spread tail after it. The
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Figure 4.4: Profile projections of escapieig particles during PMMA irradiation by a proton beamiad MeV. (a)z-projection
(y = 0,z = 0), (b) y-projection ¢ = 0,z = 0), (c) z-projection ¢ = 0,y = 0).
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Figure 4.5: Profile projections of escapingarticles during PMMA irradiation by a proton beamidd MeV. (a) z-projection
(y = 0,z = 0), (b) y-projection ¢ = 0,z = 0), (¢) z-projection ¢ = 0,y = 0).

activity observed after the Bragg peak may cause dose digpoat undesired regions of the target vol-
ume. The other emitted particles present a lower activitthefirst second of irradiation, and most of
them are absorbed into the phantom.

Nuclear gamma rays issued from de-excitation of nucleigarean emission time less than a few
nanoseconds, according to the nuclear state of the emittictpus (see Section 1.1.3.2). Moreover,
correlation was observed between their origin emissiofilprand the dose distribution lateral profile.
Figure 4.6 shows the dose deposition as well as the simutiigéribution of originated nuclear gamma
rays along the beam path for the first second of irradiatioist Before the proton comes to rest, a pro-
nounced sharp profile of gamma-ray distribution can be ebserHence, the profiles of dose distribution
and emission location of escaping gamma rays are correlated

The simulated energy spectrum of emitted gamma rays (iesetleaving the phantom) during the
140 MeV proton beam irradiation can be found in Figure 4.7. Itvgd@ continuum ranging up to
roughly 20 MeV and some nuclear lines. The most prominent lines arétiéeV line from positron
annihilation and the.4 MeV excitation line from carbon. The same nuclear lines camlbserved for
the other considered proton beam energies, @lgMeV and 100 MeV. The energy spectra of gamma
rays depend on the energy states of the excited nuclei. fbiner@n unique spectrum is expected for each
element composing the phantom.

Simulations indicate that during the first second of irreidig roughly10% of the protons at0 MeV
lead to gamma rays, which escape the PMMA phantom isotribpithen the beam energy isl0 MeV,
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the number of gamma photons increases to rougbdy of the delivered protons.

The distribution of emitted particles is a function of thaiilgin position. Obviously, close to the entry
position of the beam into the phantom lower energy gammagagsnore easily escape the phantom.
In addition, simulations show an increased concentratio®socaping gamma rays with energies above
1 MeV close to the Bragg peak. Gamma rays with energies betwdaeV and10 MeV represent the
dominant emission during the irradiation, with an intepgieak at the location of the Bragg maximum.

The time considered is the first second of irradiation. Nbt gamma-ray emission issued from
BT -activity is unlikely due to rather long-decays time. Therefore, the 'prompt emission’ is the main
gamma-ray activity in the considered time interval. Adui@l description of the gamma ray emission
during proton beam irradiation is presented in Section 4.2.

4.2 Projections of gamma ray emission

Consider the simulation configuration presented in Seetikn The2D emission projections of gamma-
rays which escape the phantom during the first second ofatiad by the proton beam at three different
energies are presented. Firstly, the origin position obn@ma rays leaving the phantom during the first
second of irradiation without energy range restriction glrewn. In this case, origin means either the
creation location, if the gamma ray left the phantom unecedt, or the last scatter position (last position
of direction change), if the gamma ray was subject to e.g.omon scatter. Figures 4.8, 4.12, 4.16
show the projections in case of proton bearitaMeV, 100 MeV, and140 MeV, respectively.

Protons collisions generate radioactive elements, whiaste fa certain life-time, i.e., decay after a
given time, e.g.121.8 s for 150, 1222.8 s for 1, 19.3 s for 1°C'. Thus in the first second of irradiation,
most of the annihilation photons are from pair productiohjohr appear somewhere within the phantom.
Figures 4.9, 4.13, 4.17 shows the origin position of the gamays at511 keV leaving the phantom
during the first second of irradiation, in case of proton beaid MeV, 100 MeV, and140 MeV, respec-
tively. Only over the time, an increasingly strong compdrergamma rays froni-decays is released
within the proton beam path.

Considering the energy interval MeV, 8 MeV], gamma rays leaving the phantom are presented in
Figure 4.10, 4.14, 4.18. When including the energy intergatriction of B MeV, 30 MeV], emission
projections of gamma rays leaving the phantom in the firsdrsgof irradiation are presented in Figure
4.11, 4.15, 4.19 for the three proton beam energies, ragplgct

The origin emission pattern of gamma rays which leave the PMiantom within the first second
of proton beam irradiation may be approximated to a 'lineheTenergy spectrum of the line emission
presents the lowest energy, e.g., belo keV, at the beginning of the path. Gamma rays at energy
ranges, e.g., betweeMeV and8 MeV, are distributed all along the path with an intensity lpkeated

Normalized units

0.8
Figure 4.6: Simulated depth dose deposition pro-
file (dotted line) and simulated depth distribution
profile of originated nuclear gamma rays (solid
line) in PMMA phantom for proton beam irradia-
0.4 tion at140 MeV. The start point of beam in PMMA
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Figure 4.7: Simulated energy spectrum of gamma

102; rays with energies belovd0 MeV leaving the
F PMMA phantom during irradiation by a proton
i beam afl40 MeV.
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Figure 4.8: SimulatedD images of (a) xy-projection, (b) xz-projection, (c) yzjection of the emission location of gamma
rays leaving the PMMA phantom during irradiation by the probeam ar0 MeV.

at about0.5 cm before the Bragg maximum. The highest energy range ofrthiteel gamma rays is
concentrated at the Bragg peak location.
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Figure 4.9: SimulatedD images of (a) xy-projection, (b) xz-projection, (c) yzjection of the emission location of gamma
rays at 511 KeV energy, leaving the PMMA phantom during iiatidn by the proton beam @b MeV.
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Figure 4.10: Simulate®D images of (a) xy-projection, (b) xz-projection, (c) yzpaction of the emission location of gamma
rays at energy interval[MeV, 8 MeV], leaving the PMMA phantom during irradiation by the fn beam at0 MeV.
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Figure 4.11: Simulate®D images of (a) xy-projection, (b) xz-projection, (c) yzpaction of the emission location of gamma
rays at energy intervaB[MeV, 30 MeV], leaving the PMMA phantom during irradiation by the fwo beam at0 MeV.
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Figure 4.12: Simulate®D images of (a) xy-projection, (b) xz-projection, (c) yzpaction of the emission location of gamma
rays leaving the PMMA phantom during irradiation by the probeam at 00 MeV.
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Figure 4.13: Simulate@D images of (a) xy-projection, (b) xz-projection, (c) yzpaction of the emission location of gamma
rays at 511 KeV energy, leaving the PMMA phantom during iiaidn by the proton beam ano MeV.
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Figure 4.14: Simulate®D images of (a) xy-projection, (b) xz-projection, (c) yzpaction of the emission location of gamma
rays at energy interval[MeV, 8 MeV], leaving the PMMA phantom during irradiation by the fon beam at00 MeV.

EF t f T F 1000
S r 1000 S50l S, 50
> 8 NOL NOL

6i a8 a8~

E 300 E 10° r 300
i 46 aF

2:— aal- a4~

C 600 C C 600
o a2 Ll 10 20—

£ a0~ 40—

K 400 L L 1400
£+ 38 38—

L L 10 L

F 36 36

= 200 r £ 200
Si - 3

qobm bl b b b b v b ) g I I O I O IO O [ Y R o A S IO P U O I N PP
10 8 6 4 2 0 2 4 6 8 10 10 8 6 4 -2 0 2 4 6 8 10 0 8 6 4 2 0 2 4 6 8 10

x [cm] x [cm] y [cm]

(a) (b) (¢)
Figure 4.15: Simulate®D images of (a) xy-projection, (b) xz-projection, (c) yzpaction of the emission location of gamma
rays at energy intervaB[MeV, 30 MeV], leaving the PMMA phantom during irradiation by the foo beam a100 MeV.
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Figure 4.16: Simulate®D images of (a) xy-projection, (b) xz-projection, (c) yzpaction of the emission location of gamma
rays leaving the PMMA phantom during irradiation by the probeam at40 MeV.
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Figure 4.17: SimulatedD images of (a) xy-projection, (b) xz-projection, (c) yajgction of the emission location of gamma
rays at 511 KeV energy, leaving the PMMA phantom during iiatidn by the proton beam at0 MeV.
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Figure 4.18: SimulatedD images of (a) xy-projection, (b) xz-projection, (c) yajction of the emission location of gamma
rays at energy interval[MeV, 8 MeV], leaving the PMMA phantom during irradiation by the fon beam at40 MeV.
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Figure 4.19: Simulate®D images of (a) xy-projection, (b) xz-projection, (c) yzpaction of the emission location of gamma
rays at energy intervaB[MeV, 30 MeV], leaving the PMMA phantom during irradiation by the o beam at40 MeV.

4.3 Quality assurance of hadron therapy

4.3.1 The proposed Compton imaging technique

The Compton scattering effect is the dominant interacti@tgss of medium-energy gamma rays, i.e.,
with an energy range from a few hundred keV upltbMeV, depending on the scatter material. A
way to reconstruct the origin of Compton scattered gamma isyo record the directions of the sec-
ondary/scattered particles, i.e., measure the directioheaergy of the scattered gamma ray as well as
the direction and energy of the recoiled electron. Comptasel techniques of energetic gamma-ray
measurement, mainly developed for medium-energy astsighyvary according to the capability of
measuring the Compton recoiled electron. One of the stdn@ampton camera designs consists of a
low-Z scatter material, where the first Compton interactales place, and a high-Z material, where the
scattered gamma-ray is absorbed. If the two detectors drseparated (as it was the case for COMP-
TEL [Schonfelder et al., 1993a]), then time-of-flight me@snents are possible. However, here it is
considered a more compact design of the scatterer, which miateallow time-of-flight measurements,
but has the capability to measure the recoil electrons.

The proposed Compton based imaging technique enables thsureenent of the recoiled electron

'

Figure 4.20: Compton imaging technique based
on gamma-ray and electron tracking. lllustra-
tion of the basic detection sub-systems: a central
tracker (the scattering sub-system) is surrounded
by a calorimeter (the absorption sub-system). Both
sub-systems are working in coincidence, i.e., a de-
tectable gamma ray has to undergo at least one in-
teraction in the tracker, and at least one interac-
tion in the calorimeter. The tracker consists of sev-
eral layers, thin enough to track the recoil electron.
The scattered photon is stopped in the second sub-
system.
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direction (Figure 4.20). As a result, the gamma-ray origain be narrowed down much more, namely
the Compton cone is reduced to a cone segment of a length wapEnds on the measurement accuracy
of the recoiled electron [Zoglauer, 2005].

The proposed Compton imaging technique records individuahts by considering the kinematics
and topology of the Compton interactions. Inherently,lal individual measurements are affected by er-
rors which propagate into the recovery process of the sauigi and direction. Moreover, the complex
geometry of detectors illustrating the imaging technigeguires a high precision of energy and position
information. However, a definitive limit for the angular obgtion possible to attain is represented by the
impossibility to determine the initial (pre-scatteringpmentum of the recoiled electron, i.e., Doppler
broadening.

The efficiency of a detector utilizing the proposed Comptasdd imaging technique is determined
by both detector technologies, and the performance of tqari#tims which have to recover what hap-
pened into the detector, i.e., the event reconstructioorisifign, and the algorithm which has to re-
construct the sources , i.e., the image reconstructiorritign The goal of event reconstruction is to
correctly order the individual hits in the detector, andnttie identify the interactions, e.g., multiple
Compton scatterings, pair creation, along with their pai@ns, e.g., energy deposits, interaction posi-
tion. The most challenging step of data analysis is imagenstcuction, which has to recover the origin
of the sources. Each lost, unassigned, or incompletelynstnacted event lowers the efficiency and in-
creases the background. Hence the capability of the dhgositto accurately perform the data analysis
has a high influence on the overall performance of the detebsaia analysis steps performed in case of
the proposed detector based on the described Compton igi&ginnique are presented in Section 4.3.4.

4.3.2 Preliminary study

A preliminary study was done by analyzing the response dfithelated version of the MEGA prototype
in the presence of various gamma-rays and neutron sourbesn&éasurement principle of the prototype
is based on the technique described in Section 4.3.1, addily enabling detection of pair creation
events. Details about the MEGA prototype can be found in fAschke, 2006].

First, five gamma-ray point sources at different energieepéaced at an on-axis position&tm
above the front side of the imaging detector. The intensig ®et tol0® photons/second. The energy
of the sources was successivéli¥eV, 3 MeV, 8 MeV, 10 MeV, and20 MeV, respectively. Figure 4.21
shows the reconstructed images of the first source. Thertotaber of Compton backprojected events
is 3 x 10%. Figure 4.22 shows the reconstructed images of the secanthgaay point source atMeV.
The number of backprojected eventstis 10*. Figure 4.23 shows reconstructed images of3ideV
point source. The number of backprojected events is10* Compton scattering still represents the
dominant interaction process, while the pair creation e/egpresent abo# 6% of the total recorded
events. The image of0 MeV point source was reconstructed usiéfyx 10° backprojected events,
respectively (Figures 4.24).

When considering thé MeV gamma-ray source, the Compton scattering effect is dantj in
contrast, for the20 MeV sources, the pair creation events result in a higherenfie. In case of the
3 MeV point source, the number of pair events used for imagensteuction isl 0%, for the8 MeV source
is 5x 103, while for the10 MeV, and20 MeV point sources, i§ x 103, and10?, respectively. Figure 4.25
shows the reconstructed images of 8heleV and20 MeV point sources using the pair creation events
after 19 iterations of the imaging algorithm. A MeV, mostly wrongly identified Compton events are
reconstructed, where just one track is present, and the@begenertates a different signature.

A strong correlation between the detector geometry, tdolges performance and the quality of
the reconstructed image exists. Errors in events deteotiduce the accuracy of sources localization
(see Section 4.3.7). The angular resolution depends onlBopmadening and both energy and spatial
resolution of the detector. In case of the prototype, thaumgesolution is limited td0°, depending
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Figure 4.23: Reconstructed images of EleV point source after (&) iterations, and (b)9 iterations.
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Figure 4.25: Reconstructed images using pair creationgweéithe (a)3 MeV, and (b)20 MeV point sources aftel9 iterations.
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Figure 4.26: Reconstructed images of SgleV neutron point source afté® iterations (a) without electron tracking, and (b)
with electron tracking.
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Figure 4.27: Reconstructed images of #ieMeV neutron point source aftés iterations (a) without electron tracking, and (b)
with electron tracking.

on considered energy. In addition, the spatial resolutidh@reconstructed images is influenced by the
imaging algorithm. Details about the reconstruction dtgar can be found in Section 5.1.

Five neutron sources at different energies, d.ddeV, 3 MeV, 8 MeV, 10 MeV, and20 MeV, were
placed aB cm above the front side of the imaging detector. The numbgiggfered events wak)?, for
each energy. The detection efficiency is ab@ft, for all the sources. Figures 4.26, and 4.27 show the
Compton images reconstructed with and without considatiegracking of the recoiled electron. The
number of backprojected events with electron trackingasgnts about one third of all reconstructed
events.

The limited resolution of the prototype motivates the ojtation of the imaging detector geome-
try, which should enable improved position and energy tgsm, and consequently, improved angular
resolution.

4.3.3 The proposed imaging detector

The geometry of the proposed gamma-ray detector HTI (Haditwerapy Imaging) is based on the
imaging technique described in Section 4.3.1. It consistao detector sub-systems (see Figure 4.28).

Figure 4.28: lllustration of the simulated version
of the HTI system. The tracker is surrounded by
the calorimeter made dfaBrs bars (surface area:
5 x 5 mm, length: 8 cm bottom,4 cm side).
The tracker consists ¢f6 layers of double-sided
Silicon-strip detectors. Each layer is made2diy

2 wafers, which have a length @f cm, thickness
of 0.5 mm and a strip pitch af.5 mm.

l

In the tracker, which is composed of several layers madeifilicon wafers, the initial interaction
happens (either Compton scattering or pair creation), hadetectrons and positrons are tracked. A

| f

o
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calorimeter surrounds the lower hemisphere of the track@rstops all secondary particles. It measures
energy and interaction positions.

The simulation model of the tracker comprisédayers of double-sided Silicon-strip detectors. Each
layer consists of by 2 wafers, which have a length @ cm, thickness 0f.5 mm and a strip pitch of
0.5 mm. Strips on one side of the wafer determine the x-positicendnteraction, orthogonal strips on
the other side of the wafer determine the correspondingsjtipn. The layers are spacéd5 cm from
each other. A uniformi-sigma energy resolution dfkeV and al0 keV threshold were assumed in the
electron tracker. The calorimeter consistd.eBrs bars (surface are&: x 5 mm, length:8 cm bottom,

4 cm side). An energy resolution df3% FWHM at662 keV, and a threshold df8 keV was assumed.
For an event to be triggered at least one hit in the trackeoaerdit in the calorimeter is required.

In the tracker, gamma rays undergo either Compton scaiteripair creation. If the energy of the
produced electrons (and positrons) is abev&00 keV then they pass through several layers and the
direction of the recoil electron or electron-positronfpean be determined during data analysis.

4.3.4 Data analysis tools

Simulations of the HTI system have been performed usingahreegool as the simulations of the gamma-
ray emission patterns, Cosima, a Monte-Carlo simulatiah based on Geant4, which is part of the
MEGAIib package [Zoglauer et al., 2006].

For Compton telescopes, the first step of data analysis iswbet reconstruction. The simulation
(like real measurements) results in a set of positions aadyés. To determine the origin of the gamma
rays, the interaction sequence has to be determined byzamglgll possible paths of the gamma ray
in the tracker and the calorimeter as well as of all secorddri the tracker. For this step three differ-
ent approaches are available, the classic approach naroathiGn sequence reconstruction’ [Zoglauer,
2005], a Bayesian approach [Zoglauer et al., 2007], and eheetwork approach [Zoglauer and Boggs,
2007]. Due to the large amount of generated simulation @ate the limited amount of available com-
puting resources, the fastest approach, the classic agiphaes been chosen for the event reconstruction.
Since the HTI allows for gamma ray as well as electron tragksufficient redundant measurements
about the event is recorded to enable background rejecti@bly. For the hadron-therapy application,
the most important background sources are random coinmederother particles originating from the
phantom (e.g. neutrons), and incompletely absorbed events

The next and most challenging step during data analysis ag@meconstruction. The knowledge
of the first and second interaction position of the gamma taggawith the measured energies allows
restricting the origin of the gamma ray to a surface of a cdteeopening angle can be calculated via
the standard Compton equation. Moreover, if an electrazktimpresent, reconstructing the direction
of the recoil electron enables to restrict the incident gammay direction further to a small segment of
the cone. The applied list-mode maximume-likelihood exageh-maximization image reconstruction
algorithm (LM-MLEM) is an event-by-event approach, whicloils large data-space matrices. This
imaging algorithm was developed based on the two-dimeakiogar-field imaging algorithm proposed
by [Wilderman et al., 1998a] for medical imaging, being exted to also include tracked Compton
events. Details about the algorithm are included in Sedian

The system response matrix is computed similar to [Wildermiaal., 2001]. Each event response
is determined from the calculated emission and interagbi@mbabilities, which are described by the
Compton cones and arcs profiles. The profiles represent stiddtions of possible true event cones
for the measured one, and the distribution of possible ttaéer planes for the measured scatter plane.
The simplest form to determine the shape of the profile, wiidurrently used, is by an 1D Gaussian
approximation of the widths corresponding to the values/ddrfrom the ARM and the SPD. The ARM
is a distribution given by the smallest distance of the knasigin of the gamma ray to the Compton
cone. The SPD is defined as the angular distance on the Commerbetween the known origin of the
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photons and the calculated one. It is a measure of the leagthd Compton scatter arc, while the ARM
is a measure for the width of the Compton scatter cone or ecggction 2.2.2).

4.3.5 Simulated performance

Determining the origin of a gamma ray with a Compton cameilize$ energy and position mea-
surements. Therefore the accuracy of the reconstructidimited by the uncertainties associated to
those measurements. In addition, the angular resolutid@oaipton telescopes is limited by Doppler-
broadening resulting from the unknown momentum of the edacbound to its nucleus. Finally the
efficiency of the telescope is limited by the amount of avddeSilicon layers, the number of completely
absorbed events, and the detection thresholds.
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Figure 4.29: (a) Energy resolution of the HTI simulation rabdb) Angular resolution of the HTI simulation model as FWH
of the ARM.

The final energy resolution is defined by the energy resalutiadhe tracker and in the calorimeter.
It improves with increasing energy of the initial gamma reig@re 4.29 (a)).
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Figure 4.30: On-axis photo-peak effective area of the
HTI simulation model after event with no energy cut
selection.
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The angular resolution of a telescope can be defined by the\ofithe ARM of the telescope. The
FWHM of the ARM of the HTI simulation model is, at lowest eniexgj limited by Doppler-broadening,
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at medium energies by energy and position resolution an@jheéhenergy by position resolution alone
(Figure 4.29 (b)).

The on-axis effective area is defined as the efficiency inymingd) a detected event for each incident
gamma-ray photon. The on-axis photo-peak effective aredheoHTI simulation model can be found
in Figure 4.30. The peak is situated around a few hundred kelbw energies, the probability for a
coincidence in tracker and calorimeter decreases due tath@mss-section for Compton scattering. At
high energies the probability for a completely absorbedheslecreases due to escapes and due to more
interaction sites in the tracker, which generally increabe risk of interactions in passive material.

4.3.6 Reconstructed images

In order to estimate the imaging performance of the deteatBMMA sphere (radiug.5 cm) was placed
at8 cm distance from the imaging system (Figure 4.31). The gmantas irradiated by a proton beam
with different energies selected from the expected treatmasge,70 MeV, 100 MeV and140 MeV and
an intensity fixed at0® protons/s. The total simulation time28 seconds.

BE|

Figure 4.31: Wire-frame representation of geometry setip a
used for hadron therapy simulations. A cut-view by a badesi
plane was used.

1
i1l

The simulated data was reconstructed as described in 8&c8at.

Figure 4.32 shows reconstructed images, where the reconstruction plane is the beam plane (a
= 41.5 cm) for the three different beam energies. Only Compton sveith energies abovés0 keV
were reconstructed. As expected, elevating the proton lezeemgy from70 MeV to 140 MeV results in
increasingly long, line-shaped reconstructed beams path.

The intensity profiles of the reconstructed images alongctdral vertical line are illustrated in
Figure 4.33. For the proton beam @i MeV, the falloff region of the deposed dose is aféeb cm
from the entry point into the phantom (af7.5 cm on they-axis). When increasing the beam energy to
100 MeV and 140 MeV, the Bragg peak is translated 6d> cm and12 cm, respectively (Figure 4.33,
dashed lines).

The length of the reconstructed gamma-ray source dependseobeam energy being related to
the proton range in the phantom. The decay of the reconsttugamma ray activity allows retrieving
information about the location of the Bragg peak. Howevesuaning ideal events, i.e., no measurement
uncertainties (energy, position), and no escaping evanteposits in passive material, the intensity
profile of Compton reconstructed image obtainetidéitMeV shows a roughly abrupt decay at the Bragg
peak position (Figure 4.33, solid line). The ideal Compteaonstructed images of measured gamma
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Figure 4.32: Compton reconstructed images of measured gamays during simulated irradiation of PMMA phantom by a
proton beam at (éj0 MeV, (b) 100 MeV, and (c)140 MeV. The reconstruction plane is the beam plane.

rays during irradiation are illustrated in Figure 4.34. Toeresponding profiles are presented in Figure
4.35.

With the current imaging algorithm the Bragg peak cannotdw®vered precisely. This fact is ex-
pected since the reconstruction algorithm estimates tbhecedlistribution by a ML function using a
crude approximation for the model of data acquisition pssc@ he application of ML estimation based
algorithms in reconstruction of radioactive sources in P&Jorted the existence of both noise and edge
artifacts [Snyder et al., 1987]. Secondly, the detectoparse is not adapted for events with high-
incident energy. In addition, the algorithm does not ineledrrections for absorptions in the phantom,
and does not include the prior knowledge that the sourcedsslhaped. A more detailed discussion about
the reconstruction process is presented in the next section
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Figure 4.33: (a) Vertical intensity profiles of the Comptenanstructed images assuming ideal events (solid lind)assuming
measurement uncertainties (discontinuous lines). Bragg positions of proton beams7tMeV, 100 MeV and140 MeV are
indicated by dotted vertical lines. (b) Horizontal integgirofiles of the Compton reconstructed images assuminguneaent
uncertainties.
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Figure 4.34: Ideal Compton reconstructed images of medsygamma rays during simulated irradiation of PMMA phantom
by a proton beam at (&0 MeV, (b) 100 MeV, and (c)140 MeV. The reconstruction plane is the beam plane.

4.3.7 Discussion

In this section, the capability of the proposed imagingaystising the LM-MLEM algorithm is studied.
To achieve the reconstruction precision required by ouliegdon, an accurate modeling of the detection
system is necessary in order to correctly calculate thectietesensitivity and the response of individual
events, which determine the estimated quality of the imagerrstruction.

In the present algorithm, the response of each event is @ppated via transition probabilities rep-
resented by the Compton cones and arcs profiles. For Compéarise where the energy transferred
to the recoil electron is not sufficient to produce a traak, incident gamma rays with energies below
2 MeV, the width and the shift of the cone is mainly determingdhe energy and position measurement.
With increasing energy, the events have an electron tragkienorigin is restricted to an arc of the cone-
section whose length is determined by Moliére Scatteringth® profile becomes broader due to energy
leakage. Also, using a list-mode algorithm, a difficult desb to resolve is the absolute normalization,
i.e., reconstructing intensity/flux during the image restamction process. Since a correct normalization
for each event is extremely time consuming, this operatas riot been done for the presented images
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Figure 4.35: (a) Vertical intensity profiles of the Compt@tonstructed images (Figure 4.34) assuming ideal evemeygB
peak positions of proton beams & MeV, 100 MeV and 140 MeV are indicated by dotted vertical lines. (b) Horizontal
intensity profiles of the Compton reconstructed imagesrasgpideal events.
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and the sensitivity coefficient is assumed to be one.

In order to evaluate the reconstruction performance, a ganay line source was placed in the
PMMA phantom at the same distance from the detector as therpleeam. The length of the sources
is equal thel40 MeV proton beam path in the phantom, i.€2,cm. A mono-energetic spectrum was
assumed for all sources. The number of reconstructed eigetiis same as for the images of emitted
gamma rays activity during thet0 MeV proton beam irradiation. An equivalent response of thag-
ing algorithm can be observed, i.e., the edge artifact isgurein all reconstructed images being more
pronounced by increasing the source energy (Figure 4.36is i$ due to usual artifacts generated by
the reconstruction algorithm, the modelling of the syst@sponse, and the low number of photons.
Moreover, the imaging algorithm does not take into accooatdifferent absorption probabilities which
the photons encounter when they are emitted at differerthdeép the phantom, i.e., it is less likely to
measure a photon from the center of the phantom than frondipe & the phantom.

The present imaging algorithm includes the ordered-sabmeteleration technique. One iteration
took 2 seconds on an Intg) Coréd"2 Duo CPU, T'700 @2.40GHz, and2 GB of RAM, while the ini-
tial back-projection consumed neailg0 seconds. However, more sophisticated acceleration tgobsi
could be envisioned, e.g., space-alternating generafidddstrategies of row-action mode with dynamic
relaxation, etc. Acceleration could also be achieved biygiain architecture exploiting parallel process-
ing of data (e.g., using multiple cores or the GPU). The fattethod will allow storing a greater number
of Compton events, and an extension iB® of the algorithm.

4.4 Conclusion

Gamma rays in the Compton scattering energy regime are miadatly emitted during proton beam
irradiation of a PMMA phantom. Thus they are the primary ¢arfpr an on-line monitoring system,
which measures the dose deposition and the Bragg peakdoahiring hadron therapy.

Simulations revealed that using a tracking Compton canedetect gamma rays emitted during
irradiation of a PMMA phantom by a typical hadron therapy roeallows to recover the beam path
within the phantom. The obtained intensity profiles showraeatation between the decay of the gamma
rays spatial distribution and the Bragg peak. Howeverh&rtmprovements of the image reconstruction
algorithm are necessary to clearly extract the Bragg peakipo with millimeters precision from the
reconstructed images.



Chapter 5

List-mode wavelet based algorithm for
Compton imaging

List-mode data acquisition was firstly introduced for Coompimaging by [Wilderman et al., 1998b],
resulting in a significant computation advantage over agghves using binned-data. This data acquisition
mode requires to store the essential parameters of the @angpents, e.g., Compton scatter angle,
total energy, interaction positions, into a list. Therefarfull precision of measured Compton events is
assured. The classical MLEM algorithm including list-maté¢a acquisition is described in Section 5.1.
A novel approach of its regularization based on waveletstiw&ling is presented in Section 5.2.3. The
algorithm was evaluated using simulated data generateddmngpton camera [Frandes et al., 2010a].

Generally, the primary factors limiting the quality of threconstructed images are e.g., the detector
resolution and photon density. To overcome the finite deteesolution, i.e., the inherent measurement
uncertainties due to energy, and position resolution, gggnof the detector, it is necessary to accurately
model the photon detection process, i.e., the imaging tetegsponse.

The detection process of a Compton based imaging systenoltasalyze all the probabilities of
interactions encountered by photons in order to retrieedr thrigin direction. This analysis results
in a high dimensional calculation which demands large cdatfmn resources. Generally, the system
resolution is scarified to reduce the noise in the reconstduonages. An optimal trade-off between
resolution and noise propagation requires to also acdunaiedel the noise distribution in the data. The
model of both detector response and noise distribution atermlined by the adopted reconstruction
methods. Therefore the methods chosen for reconstruatioresent a significant aspect in the overall
performance of the imaging detector.

In the following, the statistical model associated to Canpdata acquisition process is presented.

The Statistical Detection Model

Let J be the pixelated image space domain, each pixel presentimgtensity (mean); = (f);,
j =1, M, andx; the photon count with the Poisson distribution
z;
play) = e H L (5.1)

ZCj!

Let D be the data space domain, ane- (y;),_77 @ set of measured events. The probability of detecting
an emission from the source pixelith the attributesy;) is ¢;;, which denotes an element of the system
response matrif’. Therefore the intensity of expected events is defined by

gl f) =D _tii f; (5.2)
F

77
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The sensitivity, i.e., the probability of an emission frginto be detected with any attributgs € y is
sj = »_,; tij. The total mean number of countscis= Zj-” 55 f;-
The likelihood function ofy given f is defined as

N

Wylf) =p(NIF) [T p(wil £) (5.3)

i=1

wherep(N|f) = CVN,e*C is the probability of detectingv events following a Poisson distribution.
The disctretized forward problem of the Compton imagingcpss may be illustrated as following

y=Tf+n (5.4)

The vectorn denotes the noise arising from the measurement, or adgaigitocess of Compton data.
Generally, the errors in Compton cameras are approximadollawing normal distributions [Wilder-
man et al., 2001]. Therefore the noise is estimated by a genermal distributionp, ~ N (1, 02).

To calculatef knowing bothy andT is an ill-posed inverse problem, intensively studied inltst
decades. Several attempts have formulated an inversiorufarin specific conditions of Compton data
acquisition using, e.g., analytical approaches (e.geg¢@nd Bones, 1994], [Basko et al., 1999], [Parra,
2000], [Tomitani and Hirasawa, 2002], [Maxim et al., 2009)) iterative reconstruction methods (e.g.,
[Singh and Doria, 1983b], [Brechner et al., 1987], [Brechared Singh, 1990], [Sauve et al., 1993]). A
classical reconstruction method maximizes the likelihbwotttion of estimated solution by the iterative
EM algorithm. The iterative formula of the MLEM algorithm i8pp and Vardi, 1982] with list-mode
data acquisition, and acceleration by the ordered-subsetisod included has the following form

(kl+1) f;k’l) tij

s = 5.5
£ 5j gS:L S a0 >
whereS; represents the considerdl subset of events.

Considering a unique set of events, the iterative formukridees the classical MLEM algorithm.
The sensitivity factos; = vazl t;; represents the addition of response elements over all tssilpe
measurements. The list-mode MLEM algorithm is detailedent®n 5.1.

ML criterion provides image estimation from Poisson dathiclv are corrupted by noise. Generally,
estimation by unconstrained or constrained ML criterioelds noise amplification during the iterative
process, which arbitrarily causes large changes of solsitishen only a slight change of data is pro-
duced. A remedy is to stop the iterations before artifacpgeap However, this solution is challenging.

Possible solutions could be derived by integration of waipenalization and regularization strate-
gies. A regularization method was proposed by [Knddisedel.e 1999] in context of COMPTEL
[Schonfelder et al., 1993b] data reconstruction. Considest Bayesian framework, [Lee et al., 2008]
investigated the application of maximum a posterior apgnda case of Compton scattered data. The
iterative algorithms are firstly, a row-action method andoselly, a block-sequential method, which is
a relaxed version of the OSEM method. The regularizationoisedby using a convex non-quadratic
smoothing prior. The prior information reflects assumpgiabout the spatial distribution of the source.
Both algorithms are applied in their binned-data version.

After introducing the classical MLEM algorithm in list-meddata acquisition, one version of the
algorithm is presented as improved solution to the Comptaege reconstruction problem. Namely,
Section 5.2 presents a regularization in wavelet domaihefist-mode MLEM algorithm.

5.1 The list-mode MLEM algorithm

In comparison to the bin-mode MLEM, each measurement inigiteriode MLEM is considered as a
unique and infinite small bin, thug = 1 for each detected photon, apd= 0 for the infinite number
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Figure 5.1: lllustration of the relations between data spdevents space and image space).

events, which are not detected in the current measurembatvdiue) is the total number of detected
measurements instead of the number of detector bins. Thgeimgonstruction purpose is to find the
best estimate of the discrete source according to the mezasut data sef.

The likelihood function of the list measurements is

M

Py, vz, umlf) = [ p(uil f) (5.6)

i=1

wherep(y;| f) is the conditional probability density of measuring a singVenty; knowing the event is
generated by the sourge

N

p(yilf) =Y p(yil f;, D)P(f;, D|f) (5.7)

Jj=1

wherep(y;|f;, D) is the probability density of a detected event generatenh ffg, leading to a
measuremeny; in the detector.P(f;, D|f) is the probability of detecting the event which originatad i
j given the source distributioff

[isj
N
n=1 fnsn

The log-likelihood of the list of measurements is [Parra Badrett, 1998]

P(f5, DIf) = (5.8)

M N N
(ylf) =" log (ZP(?JprD)ijj - ij%’) (5.9
) = =1
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Figure 5.2: lllustration of how the initial image is genemt The transition matriX’ = (¢;,) presents in each bin the probability
that the event originates from the given bin. In a visualespntation, cone sections appear for each measured Coavetatn
The addition over all transition probabilities generatesinitial image (°). Afterwards, the iterative algorithm maximizes the
expectation in mainly two steps. First, given the curretitreete of the image’ and the imaging responsgg, the expectation
that this event is measureg is calculated. This step is basically a forward projectiant image to data space. The second
step maximizes the expectation and corrects the previoagemThis step is basically a backprojection from data image
space.

Data space

Transition probabilities

Similarly to the bin-mode ML criterion, estimating the umn sourcef in list-mode requires to
find the maximum of Equation (5.9)

A

f=argmaxI(y|f) (5.10)
f=0

The list-mode ML estimation can also be solved using thatitex EM algorithm. After applying
the E-step and the M-step, the estimate bf! is

k M
ki1 Ji p(yilf;, D)

I (5.11)
’ sj = Sy p(yil fi, D) fF
Wheretij = p(yi|fj> D)Sj.
Finaly, the list-mode MLEM update equation is
k M .
g =1 ti (5.12)

) N
S5 = i taff

The sensitivity is not the sum over the detected eventg >°M | ¢,;, instead it has to be summed
over all possible measurements originating from souraaete;, including the events for whicl, = 0
(see Figure 5.1). The scheme of the algorithm is presentédile 5.1.

The imaging response matrix = (¢;;) represents the transition probabilities generated by t& m
sured events. A measured event is represented in image lspaa@atrixt;;, where each element gives
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Initializationf°

for each iterationk:=0to K —1do
Projection: g = t;ff Vi
Back- proj ection: e; =3t/ V]
Update: fI*! = fre;/s; V]

end for

Table 5.1: Scheme of the MLEM algorithm.

the probability that the everitoriginates from the given bip. Following [Zoglauer, 2005], Figure 5.1
illustrates the transition from data space (or event sgacg)urce space (or image space). The collection
of all measured events forms a first estimation of the souweef°, which is also called 'initial image’
(Figure 5.2).

Most of the iterative algorithms require the integrationaoform of regularization in order avoid
artifacts. In case of Compton data reconstruction, thidblpra occurs especially when the detector
response is not approximated by a high fidelity model, etghelst approximation of the transition
probabilities. Hence, in this case, the more accurate thectie response is modeled, the weak may
be the regularization. Therefore, the primary aim shouldabdeterminet;; and s; as accurately as
possible. Calculation of images by means of higher fidel#yedtor response may usually avoid to
include regularization.

Note that the regularized algorithm, which is presentechafbllowing, consider the same initial
image as the MLEM algorithm. More precisely, the imagingpesset;; is not affected by the regular-
ization included into the reconstruction method.

5.2 Regularization in wavelet domain

In the following, a multiresolution strategy to suppressady integrating a Wavelet-based Regulariza-
tion step into a list-mode accelerated version of MLEM aipon, called WREM, is proposed [Frandes
et al., 2010a]. The approach aims to attain noise controhviihe iterative method is applied, full preci-
sion of all measured information as well as computation iefficy, which is a critical point of iterative
Compton image reconstruction. The multiresolution anslgseks to decorrelate the image pixels al-
lowing to extract only the significant structure, which itated to the data.

The wavelet threshold based methods were efficiently aphlieemove white Gaussian noise, which
is represented by identically and independently distetu{id) variables following the normal distribu-
tion with mean zero. The pioneering work [Donoho and Johmestd994] proved that various wavelet
thresholding techniques have near optimal properties mmax sense for one-dimensional iid signals
estimation. The wavelet coefficients are modified accortiing threshold policy. The threshold based
methods are efficient when the signal has a sparse représenidnere most of the signal energy is
concentrated on a small subset of coefficients.

Many attempts tried to find the optimal thresholds for par@nmseestimations in statistics. Here,
the noise variance is estimated at each scale of the wawtentposition as the median value of the
coefficients from the high frequency sub-bands. The regalton of the MLEM algorithm includes at
each iteration a thresholding step, which is applied in theelet domain. The method has the effect of
an inter-smoothing operator allowing to suppress the naoiflee reconstructed images.

5.2.1 Wavelet transform and filter banks

Wavelet analysis gives the possibility to access the inébion of a signal by its localization in both
space and frequency domains. Among all possible applitdigids of wavelet based methods, digital
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Figure 5.3: Filter bank analysis treg; represent the coarse-scale signals, @nithe detail coefficients. (a) At each decompo-
sition level, the generated outputs are subsampled by @rfacf{b) At each reconstruction level, the generated coeffisiare
upsampled by a factar.

image processing is probably the most visible one. Mostiestugroblems and proposed solutions are
from one-dimensional signal processing, having an ecemiah image processing.

Wavelet transforms can be classified into continuous watralesforms (CWTSs), and discrete wavelet
transforms (DWTs). CWTs operates over every possible scaléranslation, while DWTs use a specific
set of scale and translation values. CWTs are describedanljBchies, 1992].

The DWT analyzes the signal at different resolutions by dgmusing it into coarse and detail ap-
proximations. DWT uses two sets of functions, called sgafimctions and wavelet functions, which
are associated with low-pagsand high-pas# filters, respectively. Both filters correspond to a certain
chosen wavelet basis [Mallat, 1999].

The signal decomposition is represented as a binary tréenwies which represent a sub-space with
a different space-frequency localizations. The tree isnknas a filter bank (Figure 5.3).

The wavelet and scaling function coefficients on a certadttegdollow the equations

di(k) = Yonez h(2k — n)a_1(n)
{ a(k) =>nez 9(2k — n)a;—1(n)

where the low-pass filtej and the high-pass filter are constructed from the mother scaling function,
and jointly the wavelet and scaling functions, respecfivEhed; (k) anda; (k) are the detail coefficients
at the level (i.e., the wavelet coefficients), and the approximatiorffements at the level (i.e., the scale
coefficients), respectively.

The discrete wavelet decomposition of the signamay be described as follows

(5.13)
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Figure 5.4: Graphical representation of the DaubechiesaBsis (a) low-pass, and (b) high-pass filters.



5.2. REGULARIZATION IN WAVELET DOMAIN 83

L
ao(n) =Y _ g(n —2k)ar(2k) + > > h(n — 2k)dy(2k) (5.14)

kEZ l=1keZ

where the low-pass filtgf, and the high-pass filtérare the reconstruction filters derived from the analy-
sis filtersg andh, respectively. The parametémrepresents the finest scale in the wavelet decomposition.
For example, the Daubechig8sanalysis filters are represented in Figure 5.4.

In case of a2D-signal, the wavelet separable transform is performed sy fiecomposing each
column of the image, and then decomposing each row of thdt resabtain the rows of the wavelet
coefficients matrix. Four frequency bands will be obtain&draone level of decomposition, namely
Low-Low (LL), Low-High (LH), High-Low (HL) and High-High (HH). Application of the next level of
decomposition is done to only the LL band of the current dgmasition creating a recursive decompo-
sition procedure (Figure 5.5). The sub-bands;UHL;, HH;, I = 1, L represent the detail coefficients
d; »(k), and the sub-band L1 is the low resolution image, i.e., the approximation cogffitsar,(k),
wheren denotes the subband, ahdhe spatial position.

LLs |HL,
HL,
LH, |HH, .
1
LHy | HH,

LH, of,

Figure 5.5: Schematic representation of the structurergést: by applying a 2D-DWT with three decomposition levdlam
input image. The coefficient,, € HL1, d;» € LH;, di,3 € HH;, | = 1,3 represent the image details, while € LL3
represents the approximation coefficients of the low regmilimage.

5.2.2 Noise reduction methods by wavelet thresholding

A classical approach in image de-noising proposes the aaatibn of the wavelet transform with a non-
linear thresholding of the wavelet coefficients. Standaedhmds [Donoho, 1993] address de-noising of
signals contaminated by additive white Gaussian noiseioMawavelet thresholding techniques were
investigated; the reference ones are the universal theghoposed by [Donoho et al., 1995], the sub-
band adaptive scheme [Donoho and Johnstone, 1995], andlesian approach [Chang et al., 2000].

Nuclear medical images are generally modeled as the reafizaf a Poisson process. The Poisson
noise, i.e., variations of the signal from its mean, is naadadependent as it is assumed by general
Gaussian case, but it follows the image intensities. Theslitect application of a Gaussian based stan-
dard wavelet thresholding method has proved to be inapiateprThe investigated approaches include
the application of a first pre-processing step, which ainstdbilize the noise variance, followed by the
analysis of the resulting data in a Gaussian framework. T&gpcessing step may be computed using,
e.g., the Anscombe transform [Anscombe, 1948], or the Fazsform [Fisz, 1955]. The Anscombe
procedure defines, for a given signal 0, its Gaussian counterpart
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A(u) =2y/u+3/8 (5.15)

The Fisz's method implies the application of the non noreealiHaar wavelet transform followed
by the detail coefficients transformation as

dyn(k ai(k if a;(k 0
Fldyn (k) ={ et ajgkiio (5.16)

Finally, the signal is reconstructed using the inverse rmmalized Haar transform.

In the context of Poisson data, an approach based on a Bayefgeence was proposed by [Timmer-
mann and Nowak, 1999], in which a prior distribution is plaaewavelet coefficients, andapenalized
likelihood method by [Sardy et al., 2004].

When the data are corrupted by a noise integrated in a mixesgdeGaussian model, the General-
ized Anscombe transform [Murtagh et al., 1995] is adoptesbagion to stabilize the noise variance.

Considering the measured signabs a sum of a Gaussian varialdle of meanu, and standard
deviationo; and a Poisson variable, of meanup, the signal model is set to = G + a.P, wherea is
the mixing coefficient. The Generalized Anscombe transfisraefined as

GA(u) = 2\/au +3/8a% + 0% — auc (5.17)

The application of this transform is conditioned by the kienige of the statistical properties of both
noises.

5.2.3 Wavelet-based multiresolution EM
5.2.3.1 The method

The proposed iterative algorithm is based on the list-modl&M algorithm derived from the equation
(5.5). In list-mode, each detected event is considered agaeibin. The sensitivity factar; is difficult

to calculate since the integration is done over both scatter absorption detectors, and over all the
possible energies and scattering angles. Following [Witde et al., 1998b]s; was set constant{ =

1, Vj).

The proposed de-noising method consists on the integrafianwavelet analysis into the iterative
procedure aiming to decorrelate the image pixels and tor@alynstruct of the significant structures from
the measured data. First, the transformation of the daddhetwavelet domain is done by applying DWT
with orthogonal Daubechies wavelets, where the length efitter is8. The correction factor is now
represented by the obtained wavelet coefficiefits, wherel represents the wavelet level, andhe
sub-band index.

The soft-thresholding operatgg is defined by

ns(din(k), 11n) = sgn(dy,(k)) max(0,|d; (k)| — 71.n) (5.18)

The employed wavelet threshold depends on the decompo#atiel, and follows the expression

Tin = 22(L*l)q Oln (519)

The noise variance; ,, was estimated by the median of the coefficients at &a¢h subband. The
parametery denotes the threshold coefficient, which is equale@?®/ —'/2logM, where M is the
number of pixels in the image.

The inverse DWT is then applied to the wavelet coefficientsictvresult after the thresholding step.
This leads to a de-noised imagé.
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The wavelet processing step may be expressed by the foljowatation
¥ =Wf* = DWT lngDWT f* (5.20)
In the last step, the estimafé is updated using (5.5), with one subset.

Initializationf°

for each iterationk:=0to K —1do
Projection: g =>t;ff Vi
Back- proj ection: e; =3t/ V]
Regul ari zat i on: ff =WfF V]
Updat e: fF* —Flei/s; V]

end for

Table 5.2: Scheme of the WREM algorithm.

5.2.3.2 Thresholding scheme
The iterative method starts with a positive distributioomgmted as the following

N
="t (5.21)
=1

Considering the central limit theorem, the estimated ithstion of the data follows approximately a
normal distribution, after several iterations. Hence ahplication of wavelet thresholding is appropriate
without including variance stabilization technique asadié®d in Section 5.2.2, or in [Frandes et al.,
2009]. Herein, the wavelet technique is empirically apphbdter4 iterations. The DWT with four levels
of decomposition L = 4 in Equation (5.19)) was employed, and the wavelet threghgpldtep was
applied at all detail sub-bands.

At each iteration, the noise varianeg,, is estimated by the median operator applied to the wavelet
coefficients at the each scale,

01,0 = mediang(|dn(k)|), din € HH;, 1 =1,L (5.22)

Following [Johnstone and Silverman, 1997], the standaxiatien is defined as the robust median
estimator. It has been proved to be efficient for cases whise i®correlated to data.

5.3 Results

The Compton scattered projection data was generated byeMGarto simulations for a Compton camera
using MEGAIib [Zoglauer et al., 2006], a Geant4 based sitriacode. The lists of the exact interaction
positions and energy deposits as well as the uncertainti¢sei measurements were recorded. The
program read the data in list-mode applying a back-prajactigorithm, which is based on [Wilderman
etal., 2001]. The coefficients of the system response matex(¢;;) were computed and stored.

The simulated detector system is a generic Compton scajteemera, which was designed as a
simplified model of the HTI (Hadron Therapy Imaging) systemwgosed in [Frandes et al., 2010b], being
also described in Figure 2.4. The first detector is made afgeidouble-sided Silicon strip layer, which
consists of one wafer with a length of cm, thickness o2 mm. The wafer ha$28 orthogonal strips
per wafer side((.5 mm pitch). The top and bottom sides of the wafer are p and ndjopspectively. An
uniform 1-sigma energy resolution dfkeV was assumed, along withié keV threshold. The second
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detector consists of LaBibars (surface ared x 5 mm, length:8 cm). An energy resolution of.3%
FWHM at 662 keV, and a threshold of keV was assumed.

The quality of the reconstructed images was evaluated derisg the Mean Squared Errors (MSE)
defined as

M—-1M-1 .o T N2

M? = o [ maxy max

wheremax; is the maximum of original image values, whileax 7. is the maximum of reconstructed
image values at iteratiolh. The MSE was defined knowing the algorithm does not inclugenabzation.

The error of Contrast Recovery (CR) is defined as the diffexdretween the ratio of the maximum
point of the spot, denoteshax,, and the background, denotethx;, respectively, of the reconstructed
imagesR,., and the original ratid?,,.

Errorcr = |R, — R, (5.24)

whereR, = 32% The spot on background source is illustrated in Figure 5.6 (

maxy

Two simulation cases were considered, one where ideal Comgyvents are assumed, and the other
including measurement uncertainties. For both cases,uimber of stored projections is constrained by
the storage size of the coefficiertts. The energy considered wag4 keV (*311).

5.3.1 Ideal simulations

First, the performance of both algorithms was analyzed bglidimulations, i.e., assuming ideal Comp-
ton events into the imaging detector. Ideal events reptesamts which are not affected by the finite
position and energy resolution of the detector, but inclddepler broadening.
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Figure 5.6: Geometry of the (a) square source, and (b) spathatkground source at= 12 cm.

Figure 5.6 illustrates the geometry of ideal events geadrhy the considered gamma-ray sources,
which represent 8 x 3 cn? square source (BoxSource in Cosima [Zoglauer et al., 200gjre 5.6
(a)), and a spot placed at the center ¢f a 3 cm? uniform rectangle (i.e., background), (BoxSource
and SphereSource in Cosima, Figure 5.6 (b)). The first sovmaseplaced at a distance »ftm above
the scattering detector, at the center of theaxis. The second simulation test includes the source in
which a central spot activity was placed. The spot is repiteseby a sphere di.5 cm radius, and
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Figure 5.7: Ideal events. Reconstructed image using theopesl WREM algorithm considering (a) the square sourcehé)
spot on a uniform background source.

an intensity level o8 standard deviation above the background. Both square akdjtmaind uniform
sources containeth0 Poisson distributed counts per bin.

Considering ideal events, similar performance using MLEM 8&REM algorithms was observed.
Figure 5.7 shows the reconstructed images using the WREMitdg after(a) 24 iterations, in case of
the square homogeneous source, @nd4 iterations, in case of the spot on background source.

y [em]
y [em]

x [em] x [em]
(a) (b)

Figure 5.8: Realistic simulation. Reconstructed imagas®kquare source (a) using the classical MLEM algorithinu$ing
the proposed WREM algorithm.

5.3.2 Realistic simulations

Homogeneous source

Emissions from thé x 3 cn? square homogeneous distribution were sampled i@4ill 46 Compton
events were reconstructed. Figure 5.8 presents the imagesstructed using the classical MLEM
algorithm and our wavelet based algorithm WREM, respelgtiadgter 16 iterations.

The intensity profiles of the reconstructed images along-émgral horizontal line are illustrated in
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Figure 5.9: Uniform square source with realistic simulati¢a) Plot of the central line intensity profile of the squaceirce.
Original source (box), the reconstructed image obtainéwjuse MLEM algorithm (dotted line), and the reconstruci®eage
obtained using the WREM algorithm (continuous line). (b)aiesquare Error of the images reconstructed using the céssi
MLEM algorithm (dotted line) and the WREM algorithm (contivus line).

Figure 5.9 (a). Clearly, the WREM algorithm results in a lghomogeneous gray level distribution
than the MLEM algorithm. Moreover, the classical MLEM aligom presents a larger reconstruction
error, meanwhile the wavelet based algorithm maintaingreraconstant evolution of the error, when
the iteration number was increased (Figure 5.9(b)).

Spot on background
Figure 5.10 (a) illustrates the image reconstructed usiaglassical MLEM algorithm. The central

hot spot is partially retrieved presenting a central colotsfghe application of the WREM algorithm
results in a more accurately reconstructed original so(iigure 5.10 (b)).

y [em]
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(b)

Figure 5.10: Realistic simulation. Reconstructed imadabe spot on a uniform background (a) using the classical MLE
algorithm, (b) using the proposed WREM algorithm.

For both images, the reconstruction plane intersects thieicef the spot, i.e., at = 12 cm.
Figure 5.11 (a) presents the error of contrast recoveryjsvizhile Figure 5.11 (b) presents the mean
square error (5.23), as a function of the iteration numbmsiteéd, considering both error measures, the
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Figure 5.11: Spot on a uniform background with realisticidation. (a) Contrast Recovery Error of the reconstructeages
using the classical MLEM algorithm (dotted line) and the WNRElgorithm (continuous line). (b) Mean Square Error of the
reconstructed images using the classical MLEM algorithattédl line), and the WREM algorithm (continuous line).

classical MLEM algorithm results in an unpredictable ogtinteration number for an acceptable error.
Note that the noise in the data is represented by all the tamsges which inherently arise during the
measurement process.

A more dramatic difficulty in using the MLEM algorithm is thatis divergent. In sharp contrast,
the proposed WREM algorithm results in lower errors thanMihé&M algorithm, and, in addition, it is
stable. This result is due to the regularization inducedheyshrinkage of the wavelet coefficients.

R e ]

1 (-3,-3,15) : ! Figure 5.12: Schematic representation of the simu-
‘ | ! ! ! lation configuration, which consists of five sources
‘ ! | placed at different distances above the detector.
| 3 Each spot is labeled with the axis coordinate of its
(0,0,13) ! center.
T . 3,3, 12
(0,0, 12)
Spots on 3D

A third configuration considered sources at different disés from the imaging detector: five spheres
of the same radius, i.€0,25 cm, and the same intensity, i.2(00 uniformly distributed Poisson counts
per bin. Two spheres were placed2atm above the detector at the center of the axis, (€y, z) =
(0,0,12), and at(z,y, z) = (3, 3,12), respectively.

At a distance of8 cm above the detector at the center of the axis were placedmgmeze, and two
spheres at a distance ®tm, i.e.,(x,y, z) = (0,0, 15) and(x, y, z) = (-3, —3,15), (Figure 5.12).

The reconstruction was done at different depth planes dicapito the considered configuration.
Figures 5.13 (a) illustrates the image reconstructed aplfuee corresponding to = 12 cm of the
coordinate system, i.e., the plane which intersects thtecehthe two sources placed nearest to the front
of the scattering detector. As expected, the off-centercowas more difficult to reconstruct. Figures



90 CHAPTER 5. LIST-MODE WAVELET BASED ALGORITHM FOR COMPTON IMGING

y [em]
y [em]
y [em]

(b)

Figure 5.13: Realistic simulation. Reconstructed imadaelemultiple spots source using the MLEM algorithm. Theorec
struction plane is situated at (&)= 12 cm, (b)z = 13 cm, (¢)z = 15 cm.
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Figure 5.14: Realistic simulation. Reconstructed imadebemultiple spots source using the WREM algorithm. Therec
struction plane is situated at (a)= 12 cm, (b)z = 13 cm, (c)z = 15 cm.
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Figure 5.15: Realistic simulation. Reconstructed imadgelh@multiple spots source using the MLEM algorithm (a), dmel
WREM algorithm (b). The reconstruction plane is situated at 11.75 cm
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Figure 5.16: Realistic simulation. Reconstructed imagaehe@multiple spots source using the MLEM algorithm (a), &mel
WREM algorithm (b). The reconstruction plane is situated at 15.26 cm

5.13 (b), (c) illustrate the images reconstructed at therativo altitude planes intersecting the center
of the spheres. Considering tangential planes to the sobkigare 5.15, and Figure 5.16 present the
reconstructed images using both algorithms. Clearly, ppra@ach reduces the reconstruction artifacts.

5.4 Application to multi-energy source

The regularized version of the list-mode MLEM algorithmegented in Section 5.2.3, was applied to
reconstruct multi-energy Compton events. The events wemnergted by the HTI system when consid-
ering the simplified hadron therapy scenario presentedétid®e4.1. Only the proton beam &0 MeV
was considered, and the same analysis tools as describedtinrs4.3.4 were applied.

Profiles of the reconstructed images along the centralcabind horizontal lines were considered,
and compared to the ones extracted from the images recotestrusing the classical list-mode MLEM
algorithm.

Figures 5.17, 5.18 show the horizontal profiles of the retooged images using list-mode MLEM,
and WREM algorithm, when considering different iteratiaumbers. At the first iterations, a broader
horizontal profile is observed. When increasing the iteratiumber, the profile becomes sharper (Figure
5.19), being closer to the dose profile along the x-axis (sesimulation configuration in Section 4.1),
or the profile of emitted gamma rays in the first second of PMMwargom irradiation by the proton
beam.

When comparing the horizontal profiles of the reconstruategiges using alternatively the classi-
cal MLEM, and its wavelet regularized version WREM, a supekehavior of the WREM algorithm
is observed. Figure 5.20 shows the profiles depicted atreifféteration numbers, ranging from a low
iteration number to the iteration where the WREM algoritlevstable, i.e., no changes of the profiles
occur when increasing the iteration number. When considdhe vertical profiles, observable differ-
ences can be noticed from one iteration to the next. Namw@yclassical algorithm generates iteration
dependent reconstructed images, while the WREM algorittesgnts lower variability of the extracted
vertical profiles, becoming stable at an earlier iteratiomhber. Figure 5.21 shows both the horizon-
tal and vertical profiles of the reconstructed images at fitenal iteration number of the MLEM and
WREM algorithms. A similar behavior of both algorithms candbserved.

When applying the WREM algorithm to multi-energy sourcesea drawback is represented by the
incompletely measured events, when going from lower todrigimergies. Thus an accurate description
of those events is highly desirable.
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Figure 5.17: Profiles along the central horizontal line & tbconstructed images using the classical MLEM algoritiviren
considering different iterations of the algorithm.
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Figure 5.18: Profiles along the central horizontal line efttaconstructed images using the WREM algorithm, when derisig
different iterations of the algorithm.
5.5 Discussion

The performance of the wavelet domain de-noising methogéeabto the iterative classical MLEM
algorithm for Compton scattered data depends on severaldaations.
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Figure 5.19: Profiles along the central horizontal line @f taconstructed images using the MLEM and WREM algorithms at
(a) 6 iterations, (b) 7 iterations, (c) 8 iterations, (d)&dtions.
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Figure 5.20: Comparative profiles along the central velrtioa of the reconstructed images.
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Figure 5.21: Comparative profiles along the central (a)Zowttial line, (b) vertical line of the “best” reconstructedages.

Efficient wavelet domain de-noising may be achieved whenwikmg the statistical properties of
the noise in data. In addition, the noise should be datapewnigent when the wavelet thresholding
method is applied. A generally used method to improve theadsing procedure is the integration
of 'a priori’ knowledge about the source distribution, aihe ihoise variance, or both, creating object-
dependent solutions. However, a practical procedure melgawe this information.

The Compton imaging response is influenced by the uncertainheasurements (e.g., energy, po-
sition), the detector geometry, read-out noise, and Dogpleadening. The data measured have high
dimensionality, and are incompletely sampled in the sgaieangle. Each of these difficulties intro-
duces its own uncertainty distribution into the resultiregad Roughly speaking, all these uncertainties
can be considered as noise in data. Thus wavelet coeffighritking alleviate that noise, and provides
a stable iterative method. In addition, the Compton conesadiintersect when full energy has not been
deposited in the camera. Therefore, a further step would bddpt a combined spatial-spectral decon-
volution [Xu and He, 2007]. Moreover, in list-mode acqu@it computing the absolute normalization
to recover the source flux is difficult. This drawback is thas@n why the reconstructed images were
normalized when the analysis of algorithms was performed.

The model of the imaging detector response plays an imgamdéin the achievable resolution of
the reconstructed images. The response of each event isbéesby Compton cone profiles. A profile
represents the distribution of possible true event corms the measured one, and the distribution of
true scatter planes from the measured one. In this studyprtifde shape is estimated by 1D Gaus-
sian distributions, which represent the simplest appratiom form. Hence, it may be considered that
Compton measurement data follow more complex statisticadgrties than the classical projection data
generated in nuclear medicine (PET, SPECT).

Consider a point source @) MeV placed a8 cm above the HTI system. The measured ARM as a
function of the measured energy for the known source posisioepresented in Figure 5.22.

It can be seen that the ARM distribution is strongly influehdy the measured energy, i.e., the
distribution becomes more or less broaden according torieuat of incompletely absorbed events.
Therefore, a possible way of imaging response approximasiao include the measured energy infor-
mation when retrieving the cone section profiles. Note thfa¢rodependence parameters (e.g., measured
Compton cone, distance between the first two interactiorss) e further included.

The energy integrated imaging may be achieved by adoptiragtally list-mode approach to store
the imaging response. A binned matrix is then used to steredhe profiles as a function of the measured
energy. Afterwards, the corresponding slice of the respasmsitted along the measured cone section.
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Figure 5.22: Graphic representation of the ARM
vs. measured energy. The ARM peak is mea-
sured at the incident energy((MeV), where full-
absorption events were recorded. The ARM distri-
butions change according to the amount of mea-
sured energy, being more broaden where events
escaped from the detector, i.e., incompletely ab-
sorbed events.

Other approach to handle incompletely absorbed eventsdsrige analytically the energy integrated
response [Xu and He, 2007]. In list-mode data acquisitiorg@roach is to expand the response model
to also integrate the measured energy, i.e., improve thehwddch describe the cone-section profiles of
measured Compton events. One back-projection is thensemte by the spatial information (angtes
¢), and the measured energy i.e., thej dimension describing the contribution of evémt the image
space is represented b ¢, E).

5.6 Conclusion

A regularization technique based on wavelet thresholdiag imtroduced into an iterative MLEM re-
construction, and evaluated on simulated Compton scdttiata. The main advantage of the proposed
WREM algorithm is its stability in terms of error versus themmber of iterations used. The current
threshold value depends on the wavelet decomposition.s¢&le noise variance was computed using
the high subbands wavelet coefficients, assuming they icontast of the noise in the data, i.e., the
noise is white. The Daubechies 8 wavelets were applied sirgeresponse generally provides a good
space-frequency localization.

Further work seeks the study of the optimal model framewarbéng consistent estimation of
the expected noise characteristics as well as the integrafiall dependence parameters related to the
Compton data measurement process. The latter would raesaulttigher fidelity detector response model,
and thus improving the signal-to-noise ratio. Note thatedfit implementation of the algorithm could
be achieved by using an architecture exploiting paralletessing of data (e.g., multiple cores, GPU).
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Chapter 6

Closing remarks

Hadron therapy is a new radiation therapy technique wittaaded dose distribution located at a precise
point well known as Bragg peak. Further improvement in hadferapy is possible with real time
guality assurance (QA) of dose delivery. The precise kndgédeof the distal fall-off position of the dose
with millimeter accuracy is critical since very often hadrherapy is used for the treatment of a tumor
which is close to vital organs. One solution for tracking eéfay ion and proton beam dose distribution
is the measurement of positrons emitting isotopes activsing PET technology. The generated PET
images are correlated, but not in direct coincidence wighBragg peak.

Chapter 4 presented investigatory work about QA in protengpy by considering the reconstruction
of gamma rays originated from inelastic interactions oft@ng to target nuclei. To reconstruct these
high-energy gamma events, the Compton camera with elettacking possibility was proposed and
modeled. The proposed Compton detection technique waallinitieveloped to observe gamma rays
in the MeV region from the universe. Herein, the imaging devllustrating this detection method was
redesigned and optimized for hadron therapy imaging toregbsgamma rays from an object, which is
represented by a PMMA phantom. Monte Carlo simulations efdmitted gamma photons profiles in
the phantom for pencil proton beams is presented along wigingg deposition of protons. Assuming
a hadron therapy scenario, the reconstructed images ddrom numerical experiments with Geant4
are shown. A correlation was observed between the pattetineafeconstructed high-energy gamma
events, and the location of the Bragg peak. The capacityedfithl imaging technique has to be viewed
as a function of at least several parameters: the deteatfarpance in terms of detection efficiency as
well as spatial and energy resolutions, the acquisitiore tiand the algorithms used to reconstruct the
gamma-ray activity.

Two main challenges arise when considering an imaging sybtesed on Compton scattering: the
detector optimization and data analysis. The first chaledgmands the choice of e.g., the detector
materials as well as the geometry configuration. Data aisahas to cover the complete chain from
measurements or simulations to reconstruction of indafiédwents, and finally to image reconstruction.
The latter requests the existence of a model describingntlaging response, which has to depict the
complex behavior of the detector. In addition, besides #réopmance of the imaging algorithm, the
resolution of reconstructed images is affected by the csiatistics. A reasonable solution would be to
add more detectors to the imaging system, e.g., two deteatd90° one from the other. However, this
improvement would need large memory resources to storeraalyze the Compton events.

Each measured event creates a single-event image respimseesponse is approximated by the
profile of the cone, or the length of the arc, in case of trackeehts. The profile is determined by
the measurements of the scattered gamma-ray edgygthe recoiled electron enerdy., the Doppler
broadening, the spatial resolution of the detector. Thgtkeis mainly determined by the direction and
energy of the recoiled electron. For each event, the tiangirobabilitiest;; are calculated by including
the event cone with the derived profile perpendicular to thee¢ and the length parallel to the cone.
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Hence, the approximation of the response is a complex psasbgch has to include all the measure-
ment variables, resulting in a high-dimensional calcalatiThe first approximation, the simplest form,
consists of using 1D Gaussian distributions to estimatgitbgle and the length, where the widths cor-
respond to the values derived from ARM and SPD (see SectihB)2 A second approximation form is
to find an estimation function, which includes the measurestgy information. This new approxima-
tion will allow integrating in the imaging response of ev@mthich are incompletely absorbed into the
detector. In the case of gamma rays emitted during targgt @MMA phantom) irradiation by hadron
beams, events which are not full-stopped into the detectolilkely to appear. Hence, including the
measured energy increase the accuracy of the respons@tesciand consequently, the quality of the
final results.

The final aim of hadron therapy monitoring is the determoratf the delivered dose location during
irradiation. A first goal for a usefulness proof of the progdbgiamma-ray imaging technique can be to
reach a detection capability of the dose fall-off regionhaf order of millimeters from the reconstructed
images. Alternatively, a solution could be to determine terfifunction which applied to the planned
dose deposition will match to the estimated gamma-rayiligion, which will be further compared to
the measured gamma-ray distribution.

Possible perspectives include also a more complex chaatten of the dose when studying the
feasibility of the treatment monitoring method. In additieeverything which can be included in more
complex irradiation scenarios, e.g., modulation wheeadiitegl in the beam configuration, complex phan-
toms (different materials, dimensions), SOBP, may be demsd. In order to more accurately select the
real reasons for which potential disagreements betweem#asured and predicted dose deposition are
detected, multi-modality imaging techniques, e.g., Campinaging/CT, could be envisioned.
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RESUME:

Une nouvelle technique de radiothérapie, I'’hadronthésapiadie les tumeurs a I'aide d’un faisceau de protons @mnd’
carbone. L'hadronthérapie est trés efficace pour le tratemu cancer car elle permet le dép6t d’'une dose létalearatidée,
en un point dit 'pic de Bragg’, a la fin du trajet des particulésa connaissance de la position du pic de Bragg, avec
précision millimétrique, est essentielle car I'hadronéipée a prouvé son efficacité dans le traitement des tumeafsnues,
prés des organes vitaux, ou radio-résistantes.

Un enjeu majeur de I'hadronthérapie est le contrdle de lardéice de la dose pendant I'irradiation. Actuellemerstden-
tres de traitement par hadronthérapie effectuent un derpist-thérapeutique par tomographie par émission d&pogir EP).
Les rayons gamma utilisés proviennent de I'annihilatiorpdsitons émis lors la désintégration béta des isotopesadtifis
créés par le faisceau de particules. lls ne sont pas en deirgg directe avec le pic de Bragg. Une alternative est djeria
des rayons gamma nucléaires émis suites aux interactiélasiiques des hadrons avec les noyaux des tissus. Cegtsi@nm
est isotrope, présentant un spectre a haute énergie alanddkeV a20 MeV. La mesure de ces rayons gamma énergeétid
dépasse la capacité des systemes d'imagerie médicalarggistUne technique avancée de détection des rayons garhn
proposée. Elle est basée sur la diffusion Compton avecplitgside poursuite des électrons diffusés. Cette teclanidg

détection Compton a été initialement appliquée pour olesdes rayons gamma en astrophysique (télescope Comptan).

dispositif, inspiré de cette technique, a été modélisé amecgéométrie adaptée a I''magerie en HadronThérapie (IH3g

compose d'un diffuseur, ou les électrons Compton sont ndesirsuivis (‘tracker’), et d’'un calorimetre, ou les raygasnma
sont absorbés par effet photoélectrique. Un scénario thinétrapie a été simulé par la méthode de Monte-Carlo, igargu
la chaine compléete de détection, de la reconstruction d&weénts individuels jusqu’a la reconstruction d’imageadsurce
de rayons gamma. L'algorithme 'Expectation MaximisatigM) a été adopté dans le calcul de I'estimateur du maximn

de vraisemblance (MLEM) en mode liste pour effectuer lamstrmiction d'images. Il prend en compte la réponse du systg

d’'imagerie qui décrit le comportement complexe du détectea modélisation de cette réponse nécessite des calculs

plexes, en fonction de I'angle d’incidence de tous les phwtiétectés, de I'angle Compton dans le diffuseur et de éatiin

des électrons diffusés. Dans sa forme la plus simple, lansggpdu systéeme & un événement est décrite par une coniqu
tersection du cdbne Compton et du plan dans lequel I'imageeeshstruite. Une forte corrélation a été observée entmagje

de la source gamma reconstruite et la position du pic de Bragg performances du systeme IHT dépendent du déteg
en termes d’efficacité de détection, de résolution spatiaémergétique, du temps d’acquisition et de I'algorithrtiksé pour
reconstituer 'activité de la source de rayons gamma.

L'algorithme de reconstruction de I'image a une importafocelamentale. En raison du faible nombre de photons mes
(statistique de Poisson), des incertitudes induites p&slalution finie en énergie, de I'effet Doppler, des dimensilimitées et
des artefacts générés par I'algorithme itératif MLEM, leages IHT reconstruites sont affectées d'artefacts querégroupe
sous le terme 'bruit’. Ce bruit est variable dans I'espacedégtend du signal, ce qui représente un obstacle majeur
I'extraction d'information. Ainsi des techniques de déibmge ont été utilisées. Une stratégie de régularisagdiattjorithme
MLEM (WREM) en mode liste a été développée et appliqguée peconstituer des images Compton. Cette proposition
multi-résolution sur une base d’'ondelettes orthogonaehaque itération, une étape de seuillage des coefficiamselettes
a été intégrée. La variance du bruit a été estimée a chaqaéatépar la valeur médiane des coefficients de la souseb
de haute fréquence. Cette approche stabilise le comparnteaed’algorithme itératif, réduit I'erreur quadratiqueoyenne et
améliore le contraste de I'image.

M oTs-CLES: Hadronthérapie, rayons gamma, imagerie Compton, recmtisin d'image, algorithme MLEM, ondelettes.
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