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Résumé

Une nouvelle technique de radiothérapie, l’hadronthérapie, irradie les tumeurs à l’aide d’un faisceau
de protons ou d’ions carbone. L’hadronthérapie est très efficace pour le traitement du cancer car elle
permet le dépôt d’une dose létale très localisée, en un pointdit ’pic de Bragg’, à la fin du trajet des par-
ticules. La connaissance de la position du pic de Bragg, avecune précision millimétrique, est essentielle
car l’hadronthérapie a prouvé son efficacité dans le traitement des tumeurs profondes, près des organes
vitaux, ou radio-résistantes.

Un enjeu majeur de l’hadronthérapie est le contrôle de la délivrance de la dose pendant l’irradiation.
Actuellement, les centres de traitement par hadronthérapie effectuent un contrôle post-thérapeutique par
tomographie par émission de positron (TEP). Les rayons gamma utilisés proviennent de l’annihilation
de positons émis lors la désintégration bêta des isotopes radioactifs créés par le faisceau de particules.
Les images TEP ne sont pas en coïncidence directe avec le pic de Bragg. Une alternative est l’imagerie
des rayons gamma nucléaires émis suites aux interactions inélastiques des hadrons avec les noyaux des
tissus. Cette émission est isotrope, présentant un spectreà haute énergie allant de100 keV à 20 MeV.
Une technique avancée de détection des rayons gamma est proposée. Elle est basée sur la diffusion
Compton avec possibilité de poursuite des électrons diffusés. Cette technique de détection Compton
a été initialement appliquée pour observer les rayons gammaen astrophysique (télescope Compton).
Un dispositif, inspiré de cette technique, a été modélisé avec une géométrie adaptée à l’Imagerie en
HadronThérapie (IHT). Il se compose d’un diffuseur, où les électrons Compton sont mesurés et suivis
(’tracker’), et d’un calorimètre, où les rayons gamma sont absorbés par effet photoélectrique. Un scénario
d’hadronthérapie a été simulé par la méthode de Monte-Carlo, en suivant la chaîne complète de détection,
de la reconstruction d’événements individuels jusqu’à la reconstruction d’images de la source de rayons
gamma. L’algorithme ’Expectation Maximisation’ (EM) à étéadopté dans le calcul de l’estimateur
du maximum de vraisemblance (MLEM) en mode liste pour effectuer la reconstruction d’images. Il
prend en compte la réponse du système d’imagerie qui décrit le comportement complexe du détecteur.
La modélisation de cette réponse nécessite des calculs, en fonction de l’angle d’incidence de tous les
photons détectés, de l’angle Compton dans le diffuseur et dela direction des électrons diffusés. Dans sa
forme la plus simple, la réponse du système à un événement estdécrite par une conique, intersection du
cône Compton et du plan dans lequel l’image est reconstruite. Une forte corrélation a été observée entre
l’image de la source gamma reconstruite et la position du picde Bragg. Les performances du système
IHT dépendent du détecteur, en termes d’efficacité de détection, de résolution spatiale et énergétique, du
temps d’acquisition et de l’algorithme utilisé pour reconstituer l’activité de la source de rayons gamma.

L’algorithme de reconstruction de l’image a une importancefondamentale. En raison du faible nom-
bre de photons mesurés (statistique de Poisson), des incertitudes induites par la résolution finie en én-
ergie, de l’effet Doppler, des dimensions limitées et des artefacts générés par l’algorithme itératif MLEM,
les images IHT reconstruites sont affectées d’artefacts que l’on regroupe sous le terme ’bruit’. Ce bruit
est variable dans l’espace et dépend du signal, ce qui représente un obstacle majeur pour l’extraction
d’information. Ainsi des techniques de dé-bruitage ont étéutilisées. Une stratégie de régularisation de
l’algorithme MLEM (WREM) en mode liste a été développée et appliquée pour reconstruire les im-
ages Compton. Cette proposition est multi-résolution sur une base d’ondelettes orthogonales. A chaque
itération, une étape de seuillage des coefficients d’ondelettes a été intégrée. La variance du bruit a été
estimée à chaque itération par la valeur médiane des coefficients de la sous-bande de haute fréquence.
Cette approche stabilise le comportement de l’algorithme itératif, réduit l’erreur quadratique moyenne et
améliore le contraste de l’image.

Mots-clés:Hadronthérapie, rayons gamma, imagerie Compton, reconstruction d’image, algorithme
MLEM, ondelettes.
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Abstract

A novel technique for radiotherapy - hadron therapy - irradiates tumors using a beam of protons or
carbon ions. Hadron therapy is an effective technique for cancer treatment, since it enables accurate
dose deposition due to the existence of a Bragg peak at the endof particles range. Precise knowledge
of the fall-off position of the dose with millimeters accuracy is critical since hadron therapy proved its
efficiency in case of tumors which are deep-seated, close to vital organs, or radio-resistant.

A major challenge for hadron therapy is the quality assurance of dose delivery during irradiation.
Current systems applying positron emission tomography (PET) technologies exploit gamma rays from
the annihilation of positrons emitted during the beta decayof radioactive isotopes. However, the gener-
ated PET images allow only post-therapy information about the deposed dose. In addition, they are not
in direct coincidence with the Bragg peak.

A solution is to image the complete spectrum of the emitted gamma rays, including nuclear gamma
rays emitted by inelastic interactions of hadrons to generated nuclei. This emission is isotropic, and
has a spectrum ranging from100 keV up to 20 MeV. However, the measurement of these energetic
gamma rays from nuclear reactions exceeds the capability ofall existing medical imaging systems. An
advanced Compton scattering detection method with electron tracking capability is proposed, and mod-
eled to reconstruct the high-energy gamma-ray events. ThisCompton detection technique was initially
developed to observe gamma rays for astrophysical purposes. A device illustrating the method was de-
signed and adapted to Hadron Therapy Imaging (HTI). It consists of two main sub-systems: a tracker
where Compton recoiled electrons are measured, and a calorimeter where the scattered gamma rays are
absorbed via the photoelectric effect. Considering a hadron therapy scenario, the analysis of generated
data was performed, passing trough the complete detection chain from Monte Carlo simulations to re-
construction of individual events, and finally to image reconstruction. A list-mode Maximum-Likelihood
Expectation-Maximization (MLEM) algorithm was adopted toperform image reconstruction in conjunc-
tion with the imaging response, which has to depict the complex behavior of the detector. Modeling the
imaging response requires complex calculations, considering the incident angle, all measured energies,
the Compton scatter angle in the first interaction, the direction of scattered electron (when measured). In
the simplest form, each event response is described by Compton cone profiles. The shapes of the profiles
are approximated by 1D Gaussian distributions. A strong correlation was observed between pattern of
the reconstructed high-energy gamma events, and location of the Bragg peak.

The performance of the imaging technique illustrated by theHTI is a function of the detector perfor-
mance in terms of detection efficiency, spatial and energy resolution, acquisition time, and the algorithms
used to reconstruct the gamma-ray activity. Thus beside optimizations of the imaging system, the ap-
plied imaging algorithm has a high influence on the final reconstructed images. The HTI reconstructed
images are corrupted by noise due to the low photon counts recorded, the uncertainties induced by fi-
nite energy resolution, Doppler broadening, the limited model used to estimate the imaging response,
and the artifacts generated when iterating the MLEM algorithm. This noise is spatially varying and
signal-dependent, representing a major obstacle for information extraction. Thus image de-noising tech-
niques were investigated. A Wavelet based multi-resolution strategy of list-mode MLEM Regularization
(WREM) was developed to reconstruct Compton images. At eachiteration, a threshold-based processing
step was integrated. The noise variance was estimated at each scale of the wavelet decomposition as the
median value of the coefficients from the high-frequency sub-bands. This approach allowed to obtain a
stable behavior of the iterative algorithm, presenting lower mean-squared error, and improved contrast
recovery ratio.

Keywords: Hadron therapy, gamma rays, Compton imaging, image reconstruction, MLEM algo-
rithm, wavelets.
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Introduction

Les principales motivations d’un examen par imagerie médicale sont le diagnostic, ou la confirmation du
diagnostic, ainsi que la surveillance de l’évolution d’unemaladie et de l’action de son traitement. L’une
des applications de l’imagerie dans le suivi du traitement est le contrôle de la qualité de la radiothérapie.

L’hadronthérapie est une technique de radiothérapie très efficace contre le cancer. Elle utilise un
faisceau de particules chargées, par exemple, des protons ou des ions carbone. L’hadronthérapie a prouvé
son efficacité en cas de tumeurs difficiles à traiter par radiothérapie conventionnelle, du fait de leur radio-
résistance, de leur profondeur, ou de leur proximité d’organes vitaux. Le faisceau d’hadrons permet
d’obtenir un dépôt très localisé de la dose létale en un pointdit ’pic de Bragg’, à la fin du trajet des
particules. L’exploitation de cet avantage nécessite un strict contrôle de la position du pic de Bragg.

Un centre d’hadronthérapie sera implanté à Lyon en 2013: projet ETOILE (Espace de Traitement
Oncologique par Ions Légers dans le cadre Européen) [Pommier et al., 2002]. Ce centre sera un pôle à
vocation nationale et européenne. Une première exploitation de l’hadronthérapie en Europe est le projet
expérimental du GSI (Gesellschaft für Schwerionenforschung), à Darmstadt en Allemagne [Crespo et al.,
2001]. Plus récemment, un établissement hospitalier a été construit à Heidelberg. Plusieurs autres projets
sont en cours en Autriche, en Italie, en Espagne, en Suède. (Selon ENLIGHT: European Network for
Reasearch in Light Ion Therapy).

Le succès de l’hadronthérapie dépend de toute la chaîne médicale associée au traitement: diagnos-
tic, planification, irradiation, vérification de la qualitédu traitement. Les données initiales du plan de
traitement sont composées par des images de la cible (tumeur) acquises à l’aide de plusieurs techniques
d’imagerie médicale et les données décrivant le faisceau d’irradiation. Le plan de traitement comprend
principalement: le calcul de la distribution de dose dans lacible ainsi que dans les régions voisines,
le choix et la validation de la technique d’irradiation, comme par exemple, l’estimation du nombre de
directions du faisceau entrant. La phase d’irradiation emploie habituellement une méthode de livraison
fractionnée de la dose [Parodi, 2004]. La méthode de vérification de la qualité de l’irradiation doit as-
surer la possibilité de contrôler la position du pic de Bragget de détecter les écarts entre le dépôt de
dose réel et prévu. Nos travaux se concentreront sur ce dernier aspect, c’est-à-dire les techniques de
surveillance permettant de vérifier la qualité de l’irradiation, en considérant les hadrons les plus légers
: les protons. Une méthode de vérification consiste à mesurerles rayons gamma secondaires issus des
réactions nucléaires au cours de l’irradiation du volume cible. Le spectre d’énergie de ces rayons gamma
nucléaires s’étend de100 keV à plus de20 MeV, ce qui constitue une difficulté majeure, rendant im-
possible leur détection par les dispositifs d’imagerie médicale existants. Nous proposons une nouvelle
technique d’imagerie basée sur la diffusion Compton.

Les modalités d’imagerie médicale diffèrent principalement par la nature des rayonnements utilisés
pour imager l’objet à étudier. En tomographie par transmission (Computed Tomography CT), on utilise
des rayons X. Ils sont atténués au sein du milieu traversé. Lamédecine nucléaire, comme par exem-
ple, la tomographie par émission de positons (TEP), ou la tomographie d’émission monophotonique
(SPECT), utilise des radio-isotopes qui sont des sources derayons gamma. Une image de la répartition
spatiale de l’atténuation du rayonnement ou de l’intensitéde celui-ci, est reconstruite, respectivement,
pour ces modalités. Par conséquent, ces modalités d’imagerie nécessitent la résolution d’un problème
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inverse. Plusieurs aspects doivent être pris en compte en imagerie nucléaire, la nature du rayonnement,
ses propriétés et ses interactions dans les milieux (tissus) traversés. Par conséquent, tous les proces-
sus physiques intervenant dans l’émission et la détection des rayonnements considérés (par exemple,
les rayons gamma), ainsi que les particules secondaires (par exemple, les électrons), doivent être pris
en compte. Les principales interactions intervenant en hadronthérapie sont présentées dans le premier
chapitre.

En médecine nucléaire, deux approches sont généralement mises en oeuvres. La tomographie par
émission de positons (TEP) utilise des sources qui émettentdes photons dans une configuration connue
a priori. Des positons s’annihilent avec des électrons de leur voisinage, ce qui entraîne la production
de deux photons gamma de511 keV dans des directions opposées. La détection des ces deux photons
permet la localisation de leurs émissions sur une droite. EnSPECT, des détecteurs avec collimateurs
rend possible la localisation directionnelle, en ne comptant que les photons qui sont dans la direction
de l’entrée des collimateurs. La caméra est déplacée autourdu patient, on obtient ainsi une série de
projections. Une perte importante de sensibilité est acceptée pour connaître la direction des photons, il
en résulte une faible qualité des images. Un accroissement du temps d’acquisition permet un comptage
plus important au prix d’artefacts liés au mouvement des organes.

La détection de photons par le processus de diffusion Compton a été introduite dans le contexte
de l’imagerie des rayons gamma pour améliorer l’efficacité et la sensibilité de détection. Des détecteurs
basés sur la diffusion Compton sont utilisés pour des applications médicales, astrophysiques, industrielles
et environnementales. La première utilisation de l’effet Compton pour la détection de rayons gamma a
été proposée par [Schönfelder et al., 1973] en astrophysique. Dans le contexte médical, [Todd et al.,
1974] ont proposé des technologies basées sur une caméra Compton. Plusieurs inconvénients de ce
détecteur ont été montrés. L’un des problèmes rencontrés est l’estimation de l’ordre des événements
Compton. Une première caméra Compton pour SPECT a été proposée par [Singh and Doria, 1983a].
Le prototype de cet appareil se composait de deux éléments. Un détecteur, où les photons incidents sont
diffusés par l’effet Compton et où l’énergie de l’électron diffusé ainsi que ses positions d’interaction sont
mesurées. Un calorimètre, où le photon diffusé est absorbé par l’effect photoélectrique. L’énergie des
photons entrants peut être inférieure au seuil de détection, et, d’autre part, une absorption incomplète
peut avoir lieu. Les solutions proposées optimisent la géométrie de détection et les matériaux des deux
détecteurs. Par exemple, l’augmentation du nombre de détecteurs peut constituer une solution. Dans
ce cas, un algorithme doit reconstituer le chemin de chaque photon dans les détecteurs. Le deuxième
chapitre de la thèse présente les principaux détecteurs de rayons gamma, en fonction leur énergie.

Les détecteurs basés sur l’effet Compton doivent avoir une haute résolution énergétique afin d’obtenir
une résolution angulaire précise car l’énergie et l’angle d’arrivée d’un photon sont liés par l’équation de
diffusion Compton qui est utilisée dans l’estimation de cetangle. Un événement Compton est décrit
par un vecteur qui représente les positions d’interactionsmesurées, l’énergie déposée, la direction du
rayon gamma diffusé (ou des directions, en cas de diffusionsCompton multiples). Le processus de
mesure de données Compton d’un détecteur de géométrie complexe est modélisé par la réponse du sys-
tème d’imagerie à un photon d’entrée. Il dépend de l’angle d’incidence du photon d’entrée, des énergies
mesurées, de la direction de l’électron diffusé, de l’anglede diffusion Compton dans la première inter-
action. Ainsi, chaque événement Compton mesuré a une grandeinfluence sur la résolution de l’image
initiale qui sera utilisée pour la reconstruction de l’image finale. La Section 5.1 de la thèse explique com-
ment l’image initiale est générée. La transformation des données, de l’espace des événements à l’espace
de l’image, doit calculer la probabilité qu’un événement détecté a été émis par le point de l’image recon-
struite correspondant. Géométriquement, ces données rétro-projetées dans l’espace de l’image représen-
tent des cônes, dans les directions d’incidences possiblesdes photons. Considérant un plan parallèle au
détecteur, situé à une distance donnée, l’intersection de ce plan avec le cône génère des ’traces’ (ces
courbes sont des coniques, en termes géométriques) des événements Compton.

Un algorithme doit reconstruire l’image en trois dimensions (3D) à partir des rétroprojections dans



chaque plan. Cet algorithme apporte la solution du problèmeinverse associé. Des algorithmes ont
été proposés dans la littérature visant à trouver une solution optimale de ce problème inverse. Ils sont
présentés dans le Chapitre 3. Deux approches sont possibles: déterministes et statistiques (itératives).
Les approches statistiques itératives présentent plusieurs avantages sur leurs homologues déterministes.
En effet, elles permettent d’inclure, plus facilement, un modèle de l’émission et du processus de détec-
tion. L’application d’une méthode statistique nécessite plusieurs choix, comme par exemple, le modèle
statistique des mesures, la fonction de coût, l’algorithmeitératif. Le paramètre d’estimation, ou de la
fonction de coût, peut être le critère du maximum de vraisemblance (ML), sa version pénalisée, ou
dans le cadre Bayésien, l’estimation par maximum a posteriori (MAP). Les algorithmes itératifs les plus
utilisés sont l’algorithme d’estimation-maximisation (EM), ses versions améliorées, comme par exem-
ple, EM ordonné en sous-ensembles, bloc-itératif EM, EM alterné. L’analyse des performances inclut
l’évaluation de la résolution spatiale (par exemple, la préservation des bords), les propriétés du bruit ainsi
que la performance de détection. En général, les images reconstruites, en utilisant des méthodes pure-
ment basées sur le critère ML, présentent des artefacts qui se propagent au cours des itérations. Un des
inconvénients de l’utilisation de l’estimateur pénalisé ML est le choix subjectif du paramètre de pénalité.
Les méthodes de réduction du bruit portent sur différentes règles d’arrêt des itérations, l’application des
techniques de régularisation, l’intégration d’une information préalable sur la source ou sur le système de
détection. Des approches de reconstruction analytique ainsi que des approches itératives déterministes
ont été proposées. Les solutions analytiques ont été obtenues en termes de transformations intégrales,
harmoniques sphériques, cependant des restrictions sur les projections Compton sont introduites. Néan-
moins, les méthodes analytiques sont importantes pour la compréhension qu’elles apportent au problème
de reconstruction Compton. Les approches itératives peuvent être considérées comme des processus en
deux étapes: estimation de la réponse du système d’imagerie, suivie par l’application d’un algorithme
itératif. Cette vision de deux étapes de la reconstruction itérative de données Compton est adoptée dans
ce mémoire.

Comme il a été mentionné précédemment, l’une des motivations de l’imagerie médicale est la surveil-
lance d’un traitement. La mesure des rayons gamma provenantdes réactions nucléaires d’hadrons dans
la cible est un moyen de satisfaire cette exigence. Les systèmes actuels, tels que le système TEP en
faisceau proposée par [Parodi et al., 2002], exploitent lesrayons gamma en coïncidence de511 keV de
l’annihilation de positons émis lors de la désintégration du produit des isotopes radioactifs. Toutefois,
le faible nombre d’isotopes générés qui subissent une désintégration beta, et leur temps de décroissance
exigent un temps d’acquisition de données assez long. Par conséquent, il ne donne qu’une information
post-traitement sur le lieu où la dose a été déposée. Contrairement aux scanners TEP conventionnels, la
TEP en faisceau a un angle de couverture limité en raison de la’gantry’, ce qui réduit la précision. En
outre, l’activité de positrons créés par les interactions nucléaires subit des processus métaboliques et est
lavée par le flux sanguin.

Le but ultime est de surveiller l’emplacement du dépôt de la dose en temps réel et en 3D. Une
méthode plus favorable pour atteindre cet objectif est la mesure du spectre complet des rayons gamma
émis lors de l’interaction du faisceau d’hadrons avec la cible. Cela inclue les rayons gamma nucléaires
qui sont émis par la relaxation des noyaux produits. Cette émission est isotrope et son spectre d’énergie
se situe de100 keV à plus de20 MeV. Elle est accompagnée par un fond plus énergique de neutrons.
Une relation entre la distribution spatiale des rayons gamma suivant les réactions nucléaires et la région
de la décroissance de dose a été signalée par [Min et al., 2006] avec un faisceau expérimental de protons.
Dans cette expérience, les rayons gamma nucléaires sont observés par un système de collimation qui
ne compte que les photons gamma émis avec un angle de90◦ par rapport à la direction du faisceau.
En règle générale, en médecine nucléaire, les systèmes de détection (TEP, SPECT) sont optimisés pour
les énergies en dessous de1 MeV. Ainsi, la mesure des rayons gamma énergétiques des interactions
nucléaires dépassent la capacité de tous les systèmes médicaux existants. Toutefois, les rayons gamma
sont observés en astronomie, grâce à des télescopes Comptonet paires positon-électrons [Zoglauer,



2005], ou avec détecteurs utilisant des micro-chambres à projection temporelle [Tanimori et al., 2004].
Ces systèmes ne nécessitent pas de collimateurs et ont un rendement élevé ainsi qu’un large champ de
vue. Par conséquent, nous avons considéré que l’adaptationd’un tel système pour la vérification de la
qualité d’un traitement d’hadronthérapie pourrait se révéler avantageuse.

La technique d’imagerie que nous avons proposée pour la détection des rayons gamma de haute
énergie est basée sur la diffusion Compton et la possibilitéde suivre l’électron diffusé [Frandes et al.,
2010b]. Un instrument qui illustre cette méthode est le prototype MEGA (“Medium-Energy Gamma-
ray Astronomy”). MEGA est le premier télescope combiné Compton et paires entièrement étalonné et
fonctionnant avec succès, capable de mesurer les rayons gamma d’énergie de près de400 keV à50 MeV.
Basé sur le principe de mesure du prototype MEGA, nous avons optimisé un appareil pour l’Imagerie en
l’HadronThérapie (IHT). Il se compose de deux parties principales: le ’tracker’ où les électrons Compton
sont mesurés et le calorimètre où les rayons gamma sont arrêtés par l’effet photoélectrique. L’angle
de diffusion Compton de la première interaction au sein du tracker, ainsi que les positions des deux
premières interactions, permettent de localiser la direction du photon incident sur la surface d’un cône.
La direction de l’électron diffusé permet de restreindre l’origine de la distribution à un segment de cône.
L’analyse des données mesurées doit couvrir la chaîne complexe depuis les interactions dans le détecteur
à la reconstruction de l’origine de la source. Les algorithmes utilisés pour l’analyse des données acquises
par le système IHT sont décrits dans la Section 4.3.4. Ils se composent principalement d’algorithmes de
reconstruction d’événements et d’images. Chacun d’eux représente une étape critique de l’analyse des
données, ayant une grande influence sur le résultat final. La reconstruction des événements a pour but
de reconstituer la trajectoire de chaque rayon gamma dans ledétecteur aussi précisément que possible,
alors que la reconstruction d’image a pour but, à la fois de lier les données de l’espace des événements à
l’espace image et d’estimer l’origine de la source la plus probable.

Des calculs Monte Carlo numériques des profils de photons gamma émis dans un fantôme en PMMA
sont présentés, avec le dépôt d’énergie des particules. Un scénario d’hadronthérapie à été simulé, les
événements Compton enregistrés par le système IHT ont été générés au cours d’un traitement par des
calculs de Monte Carlo, et, ensuite, une image a été reconstruite. L’algorithme en mode liste MLEM a
été adopté pour reconstruire les images de la distribution de rayons gamma émis. L’algorithme itératif
a été appliqué en conjonction avec la réponse d’imagerie. Laforme la plus simple d’approximation
de la réponse est une représentation par fonctions gaussiennes. Ce modèle de la réponse du système
d’imagerie s’est révélé insuffisamment adapté, en particulier à la haute énergie des rayons gamma qui
ne sont pas toujours complètement mesurés par le système IHT. En outre, le faible nombre de photons
enregistrés ainsi que les incertitudes induites par la résolution finie en énergie, la résolution en position,
et l’effet Doppler, produisent des images reconstruites bruitées à partir des événements IHT. Ce bruit
est variable spatialement et dépend du signal, ce qui représente un obstacle majeur pour l’extraction
d’information. De plus des artefacts sont générés lors de l’itération de l’algorithme MLEM. Afin de
résoudre ces problèmes, des techniques de dé-bruitage des images ont été implémentées.

Une stratégie de régularisation de l’algorithme MLEM en mode liste, dans l’espace transformé en
ondelettes orthogonales, a été développée (WREM). Une méthode efficace de débruitage utilise le seuil-
lage des coefficients d’ondelettes (mise à zéro des petits coefficients), avec un seuil calculé en fonction
du niveau de bruit estimé. Cette technique est bien formalisée pour un bruit indépendant des données
dont les propriétés statistiques sont connues. Malheureusement, ces conditions ne sont pas satisfaites en
imagerie Compton. Notre premier modèle suppose que les données de travail, c’est à dire, les images
Compton initiales, sont représentées par le comptage d’évènements qui suivent une statistique de Pois-
son sans sources de bruit. L’application de la méthode proposée commence par une étape de stabilisation
de la variance des données, par la transformation d’Anscombe [Frandes et al., 2009]. Cependant, si le
bruit de Poisson est généralement admis pour caractériser des données de projection (comme par exem-
ple, les données TEP/SPECT), après quelques itérations de l’algorithme de reconstruction, les données
de l’espace de l’image suivent des distributions plus complexes. Notre second modèle suppose que le



bruit présent dans les données, après quelques itérations,suit une distribution gaussienne par application
du théorème central limite [Frandes et al., 2010a]. Le seuillage est appliqué aux itérations suivantes
et la variance du bruit est approximée à l’aide de l’estimateur empirique médian, appliqué aux coeffi-
cients d’ondelettes des sous-bandes hautes fréquences. L’évaluation de la méthode a été faite en utilisant
différentes configurations de sources mono-énergétiques.Les données Compton ont été acquises par
l’enregistrement des mesures produites dans une caméra Compton, qui a été conçue comme un mod-
èle simplifié du système IHT. L’objectif principal de cette étude a été l’illustration de la performance
de l’algorithme d’imagerie dans une configuration donnée dusystème de détection. Notre algorithme
nommé WREM (Wavelets Reconstruction EM) a été appliqué pourreconstruire des sources de rayon
gamma simulées. L’algorithme WREM est présenté dans la Section 5.2.3. Les conclusions de la thèse
sont développées dans le Chapitre 6.





Introduction

In medical imaging, the main reasons for examination is to diagnose or confirm diagnosis as well as to
monitor the progress of a disease or a treatment. A possible application in treatment monitoring is the
quality assurance of radiation therapy by hadron beams, where gamma-ray imaging reveals an essential
point of the treatment success.

Hadron therapy is an effective cancer treatment using charged particle beams of e.g., protons or car-
bon ions. Hadron therapy proved its efficiency in case of tumors which are hard to treat by conventional
radiotherapy because they are radio-resistant, deep-seated, or close to vital organs. The hadron beam en-
ables a high precision in the dose deposition due to the existence of a Bragg peak at the end of the beam
range. In order to exploit this benefit, a strict control or monitoring technique of location and amount of
the delivered radiation dose is extremely important.

Cancer treatment by hadron beams is an on growing technique in France, especially after the adop-
tion of the ETOILE (Espace de Traitement Oncologique par Ions Légers dans le cadre Européen) project
in 2005, to build a clinical center situated in the Rhône-Alpes region [Pommier et al., 2002]. A first
attempt to exploit the advantages of hadron therapy was the experimental project from GSI (Gesellschaft
für SchwerIonenforschung Darmstadt) [Crespo et al., 2001], along with the more recently hospital based
facility from Heidelberg, Germany. Several other projectsare on going in Austria, Italy, Spain, Swe-
den, according to the ENLIGHT (European Network for Reasearch in Light Ion Therapy) coordination
activity.

The quality of hadron therapy depends on all the aspects involved into the treatment: the diagnostic
phase, the treatment planning, the irradiation phase, and the quality verification of the treatment. The
input data for the treatment plan consist of the target images acquired using several medical techniques,
and data describing the irradiation beam. Mainly two operations are included in the treatment plan: the
calculation of dose distribution within the target region as well as surroundings regions, and the choice
and validation of the irradiation technique, e.g., estimate the number of incoming beam directions. The
irradiation phase usually employs a fractional method of beam delivery by synchrotron, allowing a pulse-
to-pulse variation of the beam parameters, as used at GSI [Parodi, 2004]. The quality verification method
should assure the possibility to monitor the maximum beam range, verify the position of the irradiation
field, and detect deviations between real and planned treatment, during the irradiation. The work herein
will concentrate on the last aspect, namely the monitoring techniques enabling to verify the quality of the
treatment during irradiation, considering the lightest hadron particles: the protons. A verification method
is to measure the secondary gamma-rays issued from nuclear reactions during irradiation of the target
volume by hadron beams. The energy spectrum of these nucleargamma rays ranging from450 keV
up to 20 MeV constitute a real drawback, making their detection impossible by all existing medical
imaging devices. Herein, a novel imaging technique based onthe Compton scattering effect is proposed
to measure the nuclear gamma rays during hadron therapy. Details about the proposed quality assurance
solution will be further presented, after the main requirednotions will be introduced.

Medical imaging modalities differ mostly by the form of emanations used to generate images of the
object under study. The emanations represent the physical processes involved in the measurement. In
transmission Computed Tomography (CT), the emanations arerepresented by X-rays which are atten-
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uated along interactions within the traversed medium. Nuclear medicine, e.g., Positron Emission To-
mography (PET), or Single Photon Emission Tomography (SPECT) uses radio-pharmaceuticals which
constitute emission sources of gamma rays. Given the measurements of emanations, an image of the spa-
tial distribution of the object is reconstructed. Hence, medical imaging modalities are inverse problems.

Several aspects have to be in detail considered when medicalimages are studied. The nature of
emanations as well as their properties should be known alongwith the interactions occurring within the
traversed objects. Therefore, all physical processes involved in emission and detection of the considered
emanations (e.g., gamma rays) as well as the production of subsequent particles (e.g., electrons) should
be well understood. The main interaction processes relatedto hadron therapy are presented in the first
chapter.

The issue of the detection of emerging photons is a the directional localization of their emission
source. In nuclear medicine, mainly two approaches are generally underlined. PET uses sources which
emit photons in a priori known configuration - positrons annihilate with electrons placed in their vicinity,
resulting in generation of two 511 keV gamma photons at (almost) opposite directions. Detection of the
two photons results into localization of their origin emission somewhere on the straight line determined
by the positions of interaction. In SPECT, collimator baseddetectors achieve directional localization,
counting only those photons which are directed perpendicular to the face of the camera. During detection,
the collimated camera is rotated around the subject (patient), resulting in a set of collected projections.
A severe loss of sensitivity is accepted to know the incomingdirection of emitted photons, resulting in
degraded image quality. Data collection times should not beincreased to improve photon counts, thus
more efficient and sensitive detection is desirable.

Photon detection by means of the Compton scattering processwas introduced for gamma-ray imag-
ing context as a solution to improve the efficiency and sensitivity of detection. Compton scattering
based detectors are mainly used for medical and astrophysical applications, as well as industrial applica-
tions, e.g., non-destructive analysis of nuclear waste, environmental monitoring. The first idea of using
Compton scatters for gamma-rays detection was proposed by [Schönfelder et al., 1973] for astrophysics
applications. In the medical context, [Todd et al., 1974] proposed the Compton camera technologies, and
several drawbacks in constructing this detectors were shown; one of them was the problem of finding the
correct order of the Compton events. A Compton camera for SPECT was firstly proposed by [Singh and
Doria, 1983a]. The prototype of the camera consisted of mainly two principal sub-parts which have to
work in coincidence. Namely, the scattering detector wherethe incoming photons are Compton scattered,
and the recoiled electron’s energy as well as its interaction positions are measured. The scattered photon
undergoes photoelectric absorption in the second detectorby deposing its full energy. When the energy
of the incoming photons are above a detectable threshold, incomplete absorption may be recorded. The
proposed solutions tried to optimize the detector geometryas well as to improve the materials composing
it. Namely, increasing the number of detectors may constitute a valuable solution in certain applications.
In this case, algorithms which reconstitute the paths of incoming photons have to be available. They
start by grouping the interactions into events which further are assigned to the photon tracks producing
them. Finding the correct order of events belonging to a track as well as their measured information
(e.g., position, energy), is an essential step in knowing ifa complete absorption was recorded, and fi-
nally, to compute the source location. The second chapter ofthe thesis introduces the principal groups
of gamma-ray detectors, which vary according to the targeted energy.

Compton detectors should have high energy resolution to allow a reasonable angular resolution.
The energy and angular parameters are related via the Compton equation. A Compton event consist
of a vector which represent the measured interaction positions, deposed energies, scattered gamma-ray
direction (or directions, in case of multiple Compton scatterings). The Compton measurement process
- in combination with a complex detector geometry - results in a multi-dimensional imaging response
which depends on all measurements (e.g., incidence angle, measured energies, direction of the scattered
electron, Compton scatter angle in the first interaction). Hence, each measured Compton event has a



high influence on the resolution of the initial image. Section 5.1 of the thesis explains how the initial
image is generated. The transformation of data from event-space to image-space requires to compute
the probability that a detected event was really emitted by the underlined image pixel. Geometrically,
these data back-projected in image space correspond to a cone of possible origin directions. Considering
a parallel to the detector plane, situated at a given distance, the intersection of this plane with the cone
generates “shapes”, or profiles of the Compton events. A profile represents the distribution of possible
true event cones from the measured one, and the distributionof true scatter planes from the measured
one.

An implementable algorithm has to be available for reconstructing the image from the measured em-
anations. This step means to find a solution to the associatedinverse problem. The source function is
generally defined over a 3D domain. Many algorithms were proposed in the literature aiming to find
its optimal expression. Part of them are reviewed in Chapter3. Two main approaches of image recon-
struction exists, namely analytic and iterative methods. Iterative approaches present several advantages
over their analytic counterparts, allowing to include intoreconstruction a model of both emission and
detection processes. Applying an iterative method demandsto make several choices, e.g., the statis-
tical model of measurements, the cost function, the iterative algorithm. The estimation parameter or
cost function may be the maximum-likelihood (ML) criterion, its penalized version, or in the Bayesian
framework, the maximum a posterior (MAP) estimate. Widely used iterative algorithms include the
expectation-maximization (EM) algorithm, along with its improved versions, e.g., ordered-subsets EM,
block-iterative EM, space-alternating EM. The image performance analysis includes evaluation of spatial
resolution properties (e.g., edge-preserving), noise properties as well as detection performance. Gener-
ally, images reconstructed purely using methods based on MLcriterion present artifacts, which propagate
during iteration. Disadvantages of using the penalized ML estimator include the rather subjective choice
of the penalty parameter. Methods to reduce noise include various stopping rules, application of regular-
ization techniques, integration of a prior information about the source or detection system.

Analytical as well as iterative approaches were proposed toreconstruct Compton data. Analytical
solutions were derived in terms of integral transforms, spherical harmonics, including restrictions to the
Compton projections possible to use. Nevertheless they areimportant for the insight they bring into
the Compton reconstruction problem. The iterative approache may be viewed as a two steps process:
estimation of the imaging response, followed by the application of an iterative algorithm. An accurate
imaging response is required when a high resolution of the final reconstructed images is needed. This
two steps vision about iterative reconstruction of Comptonscattered data is adopted herein.

When studying medical images, beside the required criteriaintroduced, an essential condition may
be underlined; namely, the necessity of obtaining an image representing useful diagnostic information
about the spatial distribution of the object under study.

As it was mentioned above, one reason to generate medical images is to obtain an easily to interpret
way of monitoring a treatment. The measurement of gamma raysoriginating from nuclear reactions
of the hadrons within the target volume is a way to fulfill thisrequirement. Current systems, such as
the in-beam PET system proposed by [Parodi et al., 2002], exploit the coincident511 keV gamma rays
from annihilation of positrons emitted during the beta decay of generated radioactive isotopes. However,
the low number of generated isotopes which undergo beta decay, and their decay time require quite
long data acquisition times. Therefore it only gives a post-therapy information about the location of the
deposed dose. Unlike conventional PET scanners, in-beam PET has limited angle of coverage due to the
gantry, reducing the quantitative precision. Moreover, positron activity created by nuclear interactions
undergoes metabolic processes and is washed out via the blood flow. The ultimate goal, however, is to
monitor location and deposed dose of the beam in real-time in3D. One way to achieve this goal is to
measure the complete spectrum of the emitted gamma rays during the interaction of the hadron beams
with the target. This includes nuclear gamma rays which are emitted by the relaxation of generated
nuclei. This emission is isotropic, and its energy spectrumranges from roughly100 keV up to20 MeV,



accompanied by a more energetic background of neutrons. A relation between the spatial distribution of
gamma rays following nuclear reactions and the dose falloffregion was reported by [Min et al., 2006]
with an experimental proton beam. There, the nuclear gamma rays are observed by a collimated system
counting only those gamma rays which are emitted with an90◦ angle with respect to the beam direction.

In general, in nuclear medicine, the detection systems (PET, SPECT) are optimized for energies
below1 MeV. Thus the measurement of energetic gamma rays from nuclear interactions exceeds the ca-
pabilities of all existing medical systems. However, thosegamma rays are a prime target for astronomical
imaging systems, such as tracking Compton and pair telescopes [Zoglauer, 2005], detectors using micro
time projection chambers [Tanimori et al., 2004]. Those systems do not require collimators and therefore
can achieve a high efficiency and large field-of-view. Furthermore, they can use gamma ray and electron
tracking to identify and thus reject a large portion of the background. Therefore, the adaptation of such
a system to hadron therapy monitoring might prove advantageous.

The proposed detection technique of the high-energy gamma-rays is based on Compton scattering
with the electron tracking possibility [Frandes et al., 2010b]. An instrument illustrating this method is
the MEGA prototype (“Medium-Energy Gamma-ray Astronomy”). MEGA was the first fully calibrated
and successfully operating combined Compton and pair telescope, capable of measuring gamma rays in
the energy range from roughly 400 keV up to 50 MeV. Based on theMEGA prototype measurement
principle, an advanced imaging device was optimized for Hadron Therapy Imaging (HTI) to observe
gamma rays from an object. It consists of two main parts: the tracker where Compton recoiled electrons
are measured, and the calorimeter where gamma rays are stopped via the photoelectric effect. The
Compton scattering angle of the first interaction within thetracker, along with the positions of the first
two interactions allow to localize the direction of the incoming photon on a cone surface. Including
information about the recoil electron direction enables tofurther restrict the origin distribution to a cone
segment. The analysis of measured data has to cover the complete detection chain starting from the hits
into the detector to reconstructing the source image. Algorithms used for the analysis of the HTI data
are described in Section 4.3.4. They mainly consist of eventand image reconstruction algorithms. Each
of them represents a critical step of data analysis, having both a high influence on the final results. Event
reconstruction has to reconstitute the path of each gamma ray into detector as accurately as possible,
while image reconstruction has to both link the data from event space to image space, and estimate the
most probable source origin.

Monte Carlo numerical experiments of the emitted gamma photons profiles into a PMMA phan-
tom are presented, along with the energy deposition of hadron particles. Considering a hadron therapy
scenario, the HTI recorded Compton events were generated during the treatment by Monte Carlo calcu-
lations, and further reconstructed. A list-mode MLEM was adopted to reconstruct images of the emitted
gamma-ray distribution. The iterative algorithm was applied in conjunction with the imaging response.
The simplest form of response approximation, i.e., estimation by 1D Gaussian functions, was adopted
herein. This model of the imaging response proved insufficiently adapted, especially to high-energy
gamma-rays which are not always completely measured by the HTI system. Moreover, the low photon
counts recorded as well as the uncertainties induced by finite energy, position resolution, and Doppler
broadening, result in noisy reconstructed images of the HTIevents. In addition, artifacts are generated
when iterating the MLEM algorithm. This noise is spatially-varying and signal-dependent, representing
a major obstacle for information extraction. Therefore image de-noising techniques were investigated.

A wavelet based multi-resolution strategy of list-mode MLEM regularization (WREM) algorithm
was developed and applied to reconstruct Compton events. Wavelet based methods are widely used for
a large range of applications. In image processing, they aremainly employed for image compression
and de-noising. One of the image de-nosing methods includesa shrinkage technique of wavelet coeffi-
cients, according to an adopted policy based on the estimated noise level. An ideal application of this
technique should include that the noise is data independent, and the statistical properties of the noise
are known. However, in case of nuclear images, and more particularly, in case of Compton images,



these aspects are not a priori available. A first model assumes that the working data, i.e., Compton ini-
tial images, are represented by Poisson counts without any other additive noise. The application of the
proposed method starts by a normalization step, which includes the data pre-processing by Anscombe
transform [Frandes et al., 2009]. However, the Poisson noise is generally assumed to characterize the
projection data (e.g., PET/SPECT data), whereas in the image space, after deconvolution, data could fol-
low different, generally more complex distributions. A second model assumes that the noise present in
the data follows a Gaussian distribution after a number of iterations, when considering the central limit
theorem [Frandes et al., 2010a]. The thersholding is applied to the further iterations, while the noise
variance is approximated as the MAD estimator using the highsub-bands wavelet coefficients. The eval-
uation of the method was done using different configurationsof mono-energetic sources. Compton data
were acquired by recording the measurements occurred on a Compton camera, which was designed as
a simplified model of the HTI system. The primary aim of the study was the illustration of the imaging
algorithm performance in a given configuration of detectionsystem. The proposed method is presented
in Section 5.2.3, while the Chapter 6 concludes the thesis.





Chapter 1

Fundamentals of particle physics and
hadron therapy

Gamma-ray imaging appears as a necessary assess in various domains, e.g., medical imaging, astro-
physics, demanding the knowledge of both gamma-rays emission and detection processes. Emission
of gamma rays is strongly related to the creation medium, which is defined by e.g., its atomic number,
dimensions, material. Meanwhile, detection implies the complex analysis of gamma ray properties, e.g.,
energy spectrum, emission time, in order to achieve an effective response to the imaging assignment.
Gamma rays lose energy in a variety of ways involving liberation of atomic electrons, which further
deposit the energy in interactions with other electrons. Hence, an understanding of the basic physical
processes is desirable.

Imaging of gamma rays reveals as a strongly required capability of the treatment quality evaluation
during radiation therapy by hadron beams. Namely, imaging of gamma rays generated during fragmenta-
tion of target nuclei constitute a verification approach that each incident beam was delivered as intended,
i.e., the beam energy (or dose) was deposed according to the treatment plan. The treatment quality ver-
ification represents a fundamental issue in hadron therapy,due to the necessity of maximizing the dose
delivered to the target volume (tumor), while preserving asmuch as possible the surrounding (healthy)
regions. This aim is a critical aspect, especially for hadron therapy, where the depth-dose distribution is
characterized by a relatively low dose at the entrance region, and a sharply elevated dose at the end of
the range. Solutions proposed to monitor the dose deposition in hadron therapy are reviewed in Section
1.2.2.

1.1 Interaction processes

Interaction processes which occur when charged particles travel within matter, determine the loss of
their energy by collision with orbital electrons, or band electrons in materials such as Silicon or Germa-
nium. Scattering of gamma rays is a process with a wide range of possible results, following statistical
distributions. Possible interaction processes vary with both particles energy, and atomic number of the
material.

Gamma rays are high-energy ionizing radiation. They could depose energy in the mass of a material
when passing through. A measure of the amount of energy per unit of mass is, in a general sense, named
dose. Dose is affected by the type of radiation, the amount ofradiation, and the physical properties of
the material. Specifically, dose is referred as the absorbeddose in tissue, or a material such as Silicon, or
Germanium.

The energy transferred to the medium per unit length of the ionization path is named Linear Energy
Transfer (LET) . The latter is useful to indicate the qualityof different types of radiation. Equal doses
of different types of ionizing radiation will produce different biological effects. Generally, X-rays (e.g.,

13
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250 kVp X-rays) are used as the reference standard to comparedifferent types of radiation. The Relative
Biological Effectiveness (RBE) is defined asDx/D, whereDx is the X-rays reference dose, whileD
is the dose of test radiation which produce the same biological effect. The RBE of gamma rays andβ
particles is1, for protons is5, while for α particles and neutrons is20, and included in the interval of
5− 20, respectively.

Particles such asα, β, positrons cause biological effects by directly ejecting an electron, while
gamma rays interact with matter creating biological effects by indirect processes, e.g., scattering, pair
creation. All of these processes liberate high energy electrons, which can further cause ionizations of e.g.,
living matter, resulting in biological changes. Generally, three consequences can occur: the change is
repaired or partially repaired (case when a form of disease could appear as a result of ionizing radiation),
or the change is not repaired. Section 1.1.2 presents gamma-rays interaction processes.

Often, Monte Carlo simulations are performed to calculate the interactions of particles as well as
their path in different matrials, e.g., components of detector systems. The program has to compute the
probability of an interaction by taking into account a largenumber of parameters, e.g., the atomic num-
ber, thickness and density of the interaction material, theinteraction cross-section, the average distance
between two interactions, i.e., the mean free path. Monte Carlo simulation programs include also de-
scription of atomic and nuclear processes for the ions transport in matter. However, the existence of
realistic models for accurate description of physical processes is a critical issue.

1.1.1 Interaction of electrons

Electrons are charged particles which are scattered when they pass through a material, or lose a part
or all their energy by several processes, e.g. ionization, emission of photons (e.g., bremmstrahlung),
ejection of secondary electrons. In a Silicon based detector, the dominant processes are ionization at low
energies, and bremmstrahlung at high energies. Electrons can interact through their Coulomb field by
inelastic scattering, or Molière scattering. The latter can be described by small-angle scatterings (forward
scattering). The scatter angle distribution can be approximated by a Gaussian. The width of distribution
projecting it on a scatter plane is expressed by

δ0,proj =
13.6MeV

βcp

√

r

R0

(

1 + 0.038 ln
r

R0

)

(1.1)

whereβcp =
E2

2+2EeE0

Ee+E0
is the velocity times the momentum of the electron,Ee is the electron energy,

E0 is the rest energy of the electron,R0 represents the radiation length in the material, whiler is the
straight path length (i.e., the straight line between the start and end points) of the electron in the material.

Small-angle scatterings consitute a drawback in a particledetector, e.g., a tracking Silicon based
gamma-ray system has to overcome the limits imposed by the scattering in the measurements of the
electron direction. Scattering in high angles is rather unlikely, but the probability increases with increas-
ing the atomic number of the material.

1.1.2 Interaction of gamma rays

Gamma rays can pass through matter without interaction, interacting with matter by scattering from the
initial path deposing only a part of their energy, or being completely absorbed by deposing all the energy.

Gamma rays are completely absorbed either by the photoelectric effect at energies below500 keV
or, at high energy range, e.g., above1 MeV, by emission of two particles (electron and positron), which
share the energy of the gamma rays. The positron loses its energy through ionization, and interaction
with an electron creating two annihilation photons with energy of 511 keV each. The latter can further
escape or interact within the medium through Compton scattering or photoelectric effect.

Instead of transferring all its energy to an electron of an atom, gamma rays are Compton scattered
yielding only a part of its energy to electrons, which are ejected from the orbital position. After they
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continue to pass through matter along a deflected path. The lost energy depends on the scattering angle,
and the nature of the scattering medium.

1.1.2.1 Photoelectric absorption

Photoelectric absorption is the process when a gamma ray interacts with a bound electron lossing all its
energy by mostly transferring it as kinetic energy to the electron, which is subsequently freed from the
material (Figure 1.1). The vacancy created is filled by the capture of an electron, or the rearrangement
of electrons from other shells of the atom, or both. Photoelectric absorption is a desirable process for
gamma-ray detection because of the full energy absorption,but it is the predominant interaction only for
low-energy gamma-rays.

Figure 1.1: Representation of the photoelectric absorp-
tion process. A photon of energyEi and momentum
~pi = h/λi interacts with an electron causing its ejec-
tion. The vacancy is taken by an orbital electron which is
generally placed at a lower orbital shell. The movement
is followed by emission of a fluorescent photon.

The energy of the photo-electronEe liberated by the interaction is given by the difference between
the gamma-ray energyEi and the electron binding energyEb:

Ee = Ei − Eb (1.2)

Generally, for most imaging detectors, the photo-electronis stopped in the active volume, which
emits a small output pulse, whose amplitude is proportionalto the energy deposited by the electron.

1.1.2.2 Rayleigh scattering

Rayleigh scattering process is the elastic scattering of X-rays by atomic electrons. Even if no energy
change is produced between photons and the medium, the scattered X-rays undergo a change of their
trajectory (Figure 1.2).

Figure 1.2: Representation of the X-ray Rayleigh scatter-
ing process. The incident X-ray is scattered by interac-
tion with an atomic electron. The energy of the scattered
X-rayE′i is equal to the energy of the incident X-rayEi.
Rayleigh scattering is most likely at low-energy X-rays
and high-Z materials.

Rayleigh scattering angles are generally small, since the atom must recoil as a whole without in-
ducing atomic excitation or ionization. Rayleigh scattering probability increases when decreasing the
photons energy.

1.1.2.3 Compton scattering

Compton scattering is the process when a photon inelastically scatters a free electron through an angleθg.
The scattered photon leaves the interaction location, having a different direction to the incident photon,
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and less energy (Figure 1.3).

Figure 1.3: Representation of the Compton scattering
process. A photon of initial momentumh/λ1 collides
an electron of massm. The scattering angleθg can be
derived using conservation of momentum and energy, the
momentum of the scattered photonh/λ2, the recoil elec-
tron mass, and the initial momentum.Eg is the scattered
gamma-ray energy, whileEe is the energy of the recoiled
electron.

Considering the theoretical assumption of an bound electron which is at rest, and the conservation of
both energy and momentum1, the Compton scattering equation can be formulated as the following:

λ2 − λ1 =
h

mc
(1− cos θg) (1.3)

The photon of initial wavelengthλ1 and energyν1 is scattered through an angleθg, and further, the
photon wavelength isλ2, and the energy isν2. The parameterh denotes the Plank’s constant, whilemc2

is the electron rest energy.
Considering

α =
hν1

mc2
(1.4)

the equation which relates the scattering angle to the change of energy∆E = hν2 − hν1 of the
photon can by approximated by the formula:

∆E =
hν1(1− cos θg)

1/α+ 1− cos θ
(1.5)

cos θg = 1− ∆E

(hν1 −∆E)α
(1.6)

The Compton equation 1.6 can be rewritten

cos θg = 1− E0

Eg
+

E0

Eg + Ee
(1.7)

whereE0 = mc2,Eg is the scattered gamma-ray energy, whileEeis the recoil electron energy.
For a mathematically valid Compton angle, the following restrictions have to be verified:

E0Ei
2Ei + E0

< Eg < Ei (1.8)

0 < Ee <
2E2

i

2Ei + E0
(1.9)

The photon is back-scattered when its energy attains the minimal value, while no scattering takes place
whenEi = Eg.

1postulated by Arthur H. Compton



1.1. INTERACTION PROCESSES 17

The equations related to the scatter angleθe of the recoil electron, and the total angleθ = θg + θe
between the scattered photon and recoil electron are approximated by the following:

cos θe =
Ee(Ei + E0)

Ei
√

E2
e + 2EeE0

(1.10)

cos θ =
Ee(Eg − E0)

Eg
√

E2
e + 2EeE0

(1.11)

For a given initial energyEi, θe takes values between0◦ (back-scattering), and90◦ (forward scattering)
whereEe = 0. When no energy is transferred to the electron,θ is equal to90◦. In the case of back-
scattering,θ is equal to180◦.

In reality, the electrons are in motion around the nucleus, thus the measured energy does not reflect
only one scattering angle, but various angles around it. This effect of electrons results in Doppler broad-
ening. Influencing the energy spectra of photons, Doppler broadening limits the accuracy obtained when
the Compton scattering angle is measured.

The Compton collision cross-sectionσc determines the probability that an incident photon will un-
dergo a Compton scatter. Consideringne electrons per unit volume, a photon beam of intensityΦ incident
on a material of thicknessdx verifies the following equation:

dΦ = −Φneσcdx (1.12)

The number of photons scattered by unit volume is directly proportional to the beam intensity, the number
of photons per unit volume, and the Compton cross-section:

dN

dV
= −dΦ

dx
= Φneσc (1.13)

Figure 1.4: Illustration of the angular dependence
of the Compton cross-section on photons energy:
At higher energy, the average Compton scattering
angle is smaller resulting in stronger forward scat-
tering.

The Klein-Nishina equation of differential Compton cross-sectiondσcdΩ for unbound electrons can be
approximated by the following formula:

dσc
dΩ

=
r2
e

2

(

Eg
Ei

)2
(

Eg
Ei

+
Ei
Eg
− sin2 θg

)

(1.14)
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Klein-Nishina cross-section as a function of the Compton scattering angleθg from 0.1, 1, and10 MeV
photons is illustrated in Figure 1.4. When considering bound electrons, i.e., the Doppler broadening ef-
fect, a more complex expression of Compton cross-section isrequired. One expression has been derived
by [Ribberfors, 1975]

(

dσc
dΩ

)

bound
=
dσc
dΩ
· Si(Ei, θg, Z) (1.15)

whereSi denotes the incoherent scattering function [Ribberfors and Berggren, 1982] of theith shell of
electrons, andZ is the atomic number of the scattering material.

1.1.2.4 Pair production

A photon can create an electron-positron pair when its energy is at least1.022 MeV, and is situated in
the presence of the electric field of a nucleus (Figure 1.5). After losing its kinetic energy, the positron
interacts with an electron in an annihilation process, which will release two gamma rays with equal
energy of0.511 MeV. These gamma rays can further interact with the absorbing material, or escape.

Figure 1.5: Representation of the pair production pro-
cess. A photon of energyEi passing nearly to an atomic
nucleus (or electron) of energyEn is converted into an
electron pair of positive and negative charge. Later, the
positron could interact with an orbiting electron, and two
annihilation photons of almost opposite directions are
emitted.

The pair production process is described by the following equations of energy and momentum con-
servation:

Ei = Ee + Ep + En + 2E0 (1.16)

~pi = ~pe + ~pp + ~pn (1.17)

When the photon energy exceeds four times the rest mass of electron, pairs can also be created in
the field of an electron. In this case, the momentum is transferred to the electron instead of nucleus. The
recoil of the electron could produce signatures in a detector, being presumably possible to measure by a
detector. For one atom with Z electrons, the probability relation for pair production on an electron and
nucleus can be expressed by

pelectron=
1

CZ
pnucleus (1.18)

whereZ is the atomic number (e.g.,Z = 14 for Silicon), andC represents a factor which depends on
the gamma-ray energy (C is close to1 whenEi >> 4mec

2).
In a detector, the pair creation is a predominant process when the energy of incident photon exceeds

an energy threshold, or when the material consists of high-Zelements. The path of the pair created
depends on both the energy of photons, and the dimension of detector.

1.1.3 Interaction of heavy charged particles

Heavy charged particles passing though matter interact mainly with electrons by Coulomb inelastic col-
lisions. At high initial energy, the interactions are shortand just a slight amount of energy is transfered.
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Increasing the depth, the particles are slowed down, and themean energy transfer during collisions with
electrons become large, transferring a higher dose to medium. Thus, the dose increases at the end of their
path to high values attaining a maximum point, called Bragg peak. Afterwards the dose decreases when
the range of particles reaches its end. Hence, the description of heavy charged particles travelling in a
medium may be viewed as a continuously slowing down process at an energy loss rate mainly given by
the electronic stopping power.

The equation of electronic stopping power is described by the Bethe-Bloch formula:

−dE
dx

= 2πr2
emec

2Ne−
Z2

β2

[

ln

(

2mec
2Wmaxβ

2

I2(1− β2)

)

− 2β2 − 2
C

Zt
− λ

]

(1.19)

whereZ is the particle charge, andβ its velocity;re andme are the electron radius and its mass, respec-
tively. Wmax is the largest possible energy loss in a single collision with an electron, whileNe− andI are
the electronic density and ionization potential of the medium with the atomic numberZt. The parameters
C andλ denote the energy and absorber dependent shell and density corrections, respectively.

The particle mean rangeR for a given initial energyE0 can be approximated by the following:

R =

∫ 0

E0

(

dE

dx

)−1

dE (1.20)

Interactions which result in energy deposition may occur randomly giving statistical fluctuations of
their number as well as the transfered energy in each interaction. The latter is known as energy straggling,
or range straggling. The deposed energy is rather independent of the traversed medium composition, but
is rather sensitive to its density.

Atomic nucleus can be at a moment in a ground state or in an exited state. The latter may be
acquired by an addition of energy to the nucleus. The emission of this excess of energy can be done
by electromagnetic radiation, i.e., emission of gamma rayswithin rather nanoseconds. The energy can
also be transferred to one of inner electrons, which will have enough energy to leave the atom. This
process is called internal conversion.

1.1.3.1 Nuclear reactions

Heavy charged particles deposit energy through interactions with atomic electrons or nuclei. Possible nu-
clear interactions induced by, e.g., protons, are both elastic or inelastic processes, which include nuclear
capture and nuclear scattering.

Nonelastic nuclear interactions occur at higher particle energies and produce secondaries, e.g., pro-
tons, neutrons, beta particles, and gamma rays. These secondary particles usually stop in the vicinity of
the interaction presenting high RBE. The secondaries as well as the fragments produced in nuclear reac-
tions could influence the spatial dose profile of distribution. The fragmentation reaction represents the
dominant interaction in the high energy interval, e.g.,60-250 MeV for protons. Other nuclear reactions
are small angles Multiple Coulomb scattering, and large elastic nuclear collisions.

The attenuation in depth of flux distribution particle follows the equation [Knoll, 2000]

Φ(x) = Φ0e
−NσRx (1.21)

whereσR is the reaction cross-section, whileΦ0 andN are the initial flux, and the atomic density,
respectively. Hence, the dose delivered by the primary particle is reduced with increasing the depth.

Nuclear fragmentation is a complex process where exited fragments are produced within≃ 10−22 s
in the collisions, which are followed by nuclear evaporation, and photon emissions in about≃ 10−21 −
10−16 s. For protons, mostly target fragmentation is possible. For heavier ions, the fragmentation prod-
ucts to generation of secondary particles along the beam path. The latter travel mostly forward and could
determine further interactions, thus undesirable dose deposition beyond the Bragg peak could appear.
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In addition, the emission of fragments results in a larger lateral spread of the beam, especially near the
Bragg peak. Hence, the nuclear fragmentation reactions maycontribute to modifications of the longitu-
dinal and transversal dimension of the deposed dose.

1.1.3.2 Gamma rays following nuclear reactions

Heavy charged particles traveling through matter lose their energy by ionization and nuclear interactions
with the nuclei of the medium. Besides others, the interactions lead to (delayed) beta decays, which
are radioactive decays with the emission of either an electron and an electron anti-neutrino (β− decay)
or a positron and an electron neutrino (β+ decay). If the resulting nucleus is in an excited state, its
de-excitation is usually accompanied by gamma-ray emission. The emission of these secondary photons
occurs usually within an extremely short time span (e.g., pico-seconds), and the photons have a charac-
teristic energy reflecting the energy level structure of thede-exited nucleus. Since nuclear states present
well-defined energies, the energy of the emitted gamma rays are also specific. For example, when a
product nucleaus such as12C is in an exited state, it has a lifetime of64 fs, and its decay gives rise to
a gamma ray of4.4 MeV energy. When16O is in exited state, gamma rays of6.13 MeV are emitted,
presenting a life-time of2× 10−11 s [Knoll, 2000].

Section 4.2 presents Monte Carlo calculations of the originlocation of secondary gamma rays emit-
ted during the first second of a PMMA phantom irradiation by proton beams at different energies. A
correlation between the lateral profiles of dose depositionand the gamma rays was observed. A special
characteristic of these gamma rays is their energy spectrum, which ranges from roughly450 keV up to
20 MeV.

1.2 Hadron therapy

Conventional radiation therapy is the use of radiation in cancer treatment. Generally, its application
relies on cases where other treatment techniques failed, with the limitation given by the risk of radiation-
induced cancers. Before the therapy, a detailed plan of doseto be delivered is analyzed and computed
considering all the parameters involved, e.g., tumor type,location, stage, uncertainties of internal or
external movement. Several angles of exposure which intersect the tumor are considered to preserve as
much as possible the health tissue. A generally used technique is to fraction the dose over the time for
allowing the normal cells to recover, and the tumor cells which are in a radio-resistance phase to become
more treatment sensitive. However, an optimal treatment approach has to include the capability of both
localization and tracking the beam in order to ensure a high quality assurance.

Radiation therapy improved the clinical results by using modern high-energy (4 − 20 MeV) linear
accelerator, which can deliver irradiation from differentdirections. The innovative technique of Intensity
Modulated Radiotherapy (IMR) allows a non-uniform photon flux delivery. Despite the advances, the
therapeutic effectiveness is limited by the physical and biological properties. The lateral depth dose pro-
file of photons restrict the irradiation precision of tumorssituated close to vital organs, or radioresistant.

Heavy charged particles, e.g., hadrons (protons, carbon ions), may overcome the limitations of pho-
ton irradiation by a more precise and selective energy deposition. Figure 1.6 illustrates comparatively
the depth dose profiles generated by photon and proton beams.

The application of protons for radiation therapy was first suggested by R. Wilson in the 1946 while
working at the design of the Harvard Cyclotron Laboratory (HCL) . The large mass of the proton would
minimize lateral scattering, and the energy deposition pattern would allow to place the maximum dose
within the tumor, and thus providing maximal sparing of the health tissues. Two years after, the cyclotron
at the Lawrence Berkeley Laboratory became available for physics and radio-biological investigations in
preparation for clinical use.
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Figure 1.6: Illustration of depth dose profiles of
photons with different radiation sources (discon-
tinuous lines), and protons (continuous lines). Pro-
tons depose the energy in a relatively low constant
dose which ends by a sharp peak. The modula-
tion of energy particles forms a region referred as
Spread Out Bragg Peak (SOBP). A uniform bio-
logical dose distribution within the SOBP region
can be obtained by varrriation in RBE of irradia-
tion as a function of depth.

The first treatments were performed at the particle accelerators built for physics research at Berkeley
Radiation Laboratory in 1954, and at Uppsala in Sweden, in 1957. Meanwhile, in 1961, a collaboration
began between the HCL and the Massachusetts General Hospital (MGH) to use the proton beam as a
neurosurgical tool for treatment. In the early 1970s, progresses were made by the developments of new
techniques for eye tumors. Also at MGH in Boston, a large-field fractionated radiation treatment program
was initiated for brain tumors including tools for three-dimensional treatment planning. The first hospital
based center for proton therapy was established in 1990 at the Loma Linda University Medical Center,
USA, and the Heavy Ion Medical Accelerator in Chiba (HIMAC),Japan. Since then, new facilities have
been growing worldwide [Sisterson, 2005]. Due to the ratherhigher complexity and costs of ion therapy,
most of the centers adopted the lightest ion particle, proton, which offers superior biological effectiveness
than conventional techniques.

The German project at the Gesellschaft für SchwerIonenforschung Darmstadt (GSI) is a pilot project
of an experimental carbon ion therapy since 1997, which attempts to demonstrate the clinical application
of the therapy technique [Crespo et al., 2001]. GSI uses a three-dimensional beam delivery based on a
two-dimensional intensity controlled raster scanning in combination with active energy variation from the
accelerator (88−430 AMeV), treatment planning, and therapy monitoring by meansof in-beam Positron
Emission Tomography (PET) [Parodi et al., 2002]. Recently,a new hospital-based ion beam facility was
built in Heidelberg. Various beams, e.g., protons, oxygen ions, are studied in order to investigate their
clinical impact. Several European projects dedicated to ion beam facilities are nowadays ongoing.

In order to exploit the benefits of hadron particle therapy, an accurate control of delivered dose
location is hightly demanded. The measurement of gamma raysoriginating from nuclear reactions of
the hadrons within the body is a way to fulfill this requirement. The currently available systems, e.g.,
in-beam PET, exploit the coincident511 keV gamma rays from annihilation of positrons emitted by some
of the nuclear fragments. The low number of positron emitting fragments and their decay time require
slightly long acquisition times, i.e., on the order of tens minutes, and thus only provide post-therapy
information about the location of the deposed dose. However, the ultimate goal is the three-dimensional
and real-time monitoring location and dose deposition of the beam.

1.2.1 Treatment plan

Hadron therapy requires three-dimensional planning. The position and density of each region of the beam
has to be defined. Computed Tomography (CT) is a way to obtain these data and Magnetic Resonance
Imaging (MRI) can assist in the definition of target and normal tissues boundaries. In CT, the source
corresponds to the attenuation of X-rays radiation at different rates, and media. CT data are acquired



22 CHAPTER 1. FUNDAMENTALS OF PARTICLE PHYSICS AND HADRON THERAPY

with filtered120−140 kVp X-rays, and represent the linear attenuation coefficients of these X-rays. The
X-rays are sourced outside the object and directed through it to be detected by a ring of sensors, or a rotate
fan beam scanner. The energy of X-rays are generally in the interval of20− 100 keV. Generally, the X-
ray paths are assumed to be straight lines. On their passage though the object, the X-rays are attenuated,
mainly by scattering processes. Therefore, the variable tobe measured is the X-ray attenuation density
of the object. Since the scattering process is related to theelectron density, the X-ray attenuation density
is considered as related to the mass density of the object, thereby it could provide useful diagnostic
information of the object structure. These measured data have to be converted into carbon or proton
stopping powers in order to calculate the ion energy and range required to reach the target. The system
used in treatment planning for12C therapy at GSI is presented in [Kramer et al., 2000].

The physicist or dosimetrist developing the plan typicallyselects 2-4 beams per target to achieve
the desired dose distribution. Target volumes often have a close geometrical relationship to critical
normal tissues, which suggest a few optimal beam angles to minimize normal tissue doses. Selecting a
beam direction, a field-defining aperture is designed takinginto account the lateral beam fall-off, target
motion, and set-up uncertainties. Each beam is designed to pass the target to a specified depth. After
dose calculation, individual beam parameters may still be changed until the plan is optimized.

1.2.2 Treatment monitoring

The high effectiveness of ion therapy requires an accurate precision in the monitoring of the applied
dose, especially in delicate clinical situations. Hence, ahigh precision of ion range localization is de-
manded. Minor errors could result in a severe disagreement between the dose delivered to the tumor, and
the surrounding healthy tissue. The treatment planning present an uncertainty of≃ 1%-3% in range cal-
culations. In addition, the beam delivery fractionated on along time interval could lead to unpredictable
range deviations from the X-ray CT planning due to changes ofe.g., patient position, or local anatomical
information. Therefore, the visualization of the beam distribution within the patient is strongly required.

An intensively studied method conducts the monitoring by means ofβ+ activity emitted by positrons,
e.g.,15O, 11C, which are issued from nuclear fragmentations. The first attempts of the method applica-
tion date to1970, when the possibility of assessing an accurate dose verification was observed. Despite
the results, the system was never used in clinical routine. Secondly, a PET scanner was installed at HI-
MAC to detect theβ+ profile when the beam delivery was in off-line mode. More recently, at GSI, a
double-head PET scanner was installed and investigations were carried out for in-beam monitoring of
12C ion therapy irradiation. The images were reconstructed during a fractionated treatment, i.e., using
the annihilation events registered in the beam pauses, and after the end of irradiation. Since the dose
depth profiles of ion beams are not identical to theβ+-activity distribution, the in-beam PET reduces
to comparison between the expectedβ+-activity and the one which is actually measured. The expected
distribution is calculated by Monte Carlo simulations. Note thatβ+ activity is highly sensitive to time
variations due to e.g., dynamics of positron emitters decay, washout. Hence, knowing the treatment is
divided in several sessions, the prediction ofβ+ activity distribution is a complex and delicate process.
In case of protons, the in-beam PET method presents applicability drawbacks due to the lack of positron
emitters. Until now, no definitive conclusion was drawn about its feasibility in clinical use.

An alternative to monitor the beam location and deposed doseduring irradiation treatment is to mea-
sure the complete spectrum of the emitted gamma rays. This includes nuclear gamma rays which are
emitted by the relaxation of generated nuclei. This emission is isotropic, and its energy spectrum from
roughly 100 keV up to20 MeV. A detailed description of gamma rays following nuclearreactions is
presented in Section 1.1.3.2. A relation between these gamma rays and the fall off region of an exper-
imental proton beam was reported by [Min et al., 2006]. There, the nuclear gamma rays are observed
by a collimated system counting only those photons which areemitted perpendicularly with respect to
the beam direction. Methods of nuclear gamma-ray imaging capable to determine the delivered dose
deposition for a given particle treatment fraction would bepossible if an imaging system adequate to
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e.g., gamma-ray emission spectra, would exist. A tracking Compton scattering based detection method
is proposed as a possible solution for imaging gamma rays emitted during hadron therapy. Chapter 4.3
presents the expected performance of a simulated system, which illustrates the method, along with the
reconstructed images when considering both ideal events, and events including detection uncertainties.

The ultimate goal is to infer on the dose from the measured gamma ray signal. The comparison
between expected and measured activity could indicate deviations, so a prompt intervention has to be
considered for the next treatment session. However, for in-beam PET, the clinical relevance of deviation
can not be easily extracted from the PET images alone [Parodi, 2004]. An optimal solution to the dose
quantification problem would be the development of an algorithm able to estimate the most probable dose
distribution for a gamma-ray image measured at known conditions, e.g., time of irradiation. That would
mean to solve the inverse problem of recovering the applied doseD(x) from the measured distribution
A(x). The relation can be formulated by the equationA = M × D, whereM is the transition matrix
storing the probabilities that a dose contributiondD(x) reflects the production of an activitydA(x).
However, the in-beam PET images present several drawbacks which make the problem resolution dif-
ficult. The PET images are not quantitative. Moreover, the recorded counts are extremely reduced due
to also the limited angle of the PET scanner geometry. The chosen solution is an interactive software
tool [Parodi, 2004]. An alternative describes the PET imageas a convolution of the dose distribution
with a filter function under certain assumptions, e.g., the absorbing medium is homogeneous near the
distal fall-off region. A formalism to analytically recover the filter function from the simulated PET data
was developed by [Parodi and Bortfeld, 2006]. However, the fundamental step of inverting the convolu-
tion procedure has to be concluded before being able to statethe feasibility of dose monitoring with the
measured data.
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Chapter 2

Gamma-ray detectors

2.1 General overview

Detection and measurement of gamma rays is a complex processsince they have to interact directly with
a particle in order to be detected. Generally, the interaction alters the properties of photons. There-
fore, a desired detection is by means of photoelectric absorption process in one single interaction, being
restricted to only when the underlined application permits. When considering the Compton scattering
process, the photon continues its travel after a scatteringevent by spreading out its energy. Meanwhile, it
becomes the predominant interaction process when increasing the initial energy of the incoming photons.
Usually, detector materials with high atomic numbers are used to obtain predominantly photoelectric ab-
sorption events. Contrary, the Compton based detectors made by low-atomic materials facilitate the
scattering process, and the directional localization is gained from the interaction positions, and energy
deposits. A detailed description of Compton based detectors is presented in Section 2.2. When photon
sources present energies above∼ 10 MeV, a detector based on pair creation may be considered. Pair
detectors used in gamma-ray astronomy consist of two sub-detectors: a converter and an absorber. The
use of conversion foils limits the angular resolution and energy measurement at lower energy. Modern
pair telescopes include GLAST [Gehrels and other, 1999], and AGILE [Tavani et al., 2003].

Detection of photons implies the transition of photon energy into a form of electrical energy. This
process could be achieved by means of direct detection of photons, or their conversion into light photons
followed by the light detection. Direct detection of photons requires that photons are photoelectrically
absorbed within the detector volume. On absorption, an atomis ionized and photoelectrons are ejected.
A method of collecting the photoelectrons and determination of the ejection sites has to exist. The
two main types of direct detection are based on gas-filled chamber and semiconductors [Knoll, 2000].
Semiconductor detectors present several advantages over the gas-filled detectors, including higher quality
of ionization detection, and higher mobility of charged particles.

When considering a large energy band of gamma-rays from several keV up to tens of MeV, other
detection techniques can be underlined. Temporal and spatial modulation detectors are mostly used
for gamma-ray astronomy, being rather simple detectors, and rather more complex ones, respectively.
Coded masks based systems are spatial modulation detectorsconsisting of mainly two parts: a mask with
open/opaque pixels, and a spatially resolving detector divided into pixels. Each detector pixel records
the sum of signals from different incoming directions. Coded masks detectors present the advantage of a
large Field-Of-View (FOV), at the expense of high background.

A focusing gamma-ray detector is based on Laue lenses, whichintegrated into an optical system
deviates the incident photons to a focal spot by a shifting phase and a subsequent inference. Laue
lenses based detectors include the main advantage of a detector volume much smaller than the collection
area formed by the lenses. Hence, only a small detector is necessary, and consequently, reducing the
background, which constitutes a limiting factor of detection sensitivity. The disadvantage is the very
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narrow FOV, which determines limited imaging capability. Laue lenses are mainly applied to energies
of gamma-rays up to a few MeV. An example for astrophysics is the CLAIRE balloon-flight [Halloin,
2003].

2.1.1 Scintillation detectors

One of the oldest approach to measure photon radiation is by means of scintillator detectors, which
convert photons into light photons. An optimal scintillator should complete several conditions, including
efficient and linear conversion of gamma rays, transparencyof its emitted light, short decay time [Knoll,
2000]. Generally, no scintillator could present all these properties, thus a compromise solution has to be
found.

The uniformity of light collected depends on the geometry ofthe scintillator. Dispersion and loss of
light photons result in degraded energy and position resolutions, thus light sensors should cover all faces
of the scintillator. Despite the heavily restriction of themeasured data to the emitted photons in perpen-
dicular directions, gamma cameras are still used due to their relatively reduced costs, and simplicity of
technologies.

Scintillation based detectors are widely used for nuclear imaging (e.g., emission CT). Emission CT
techniques are represented mainly by Single Photon Emission Computed Tomography (SPECT) , and
Positron Emission Tomography (PET), where the emanations are represented by gamma photons emit-
ted by e.g., a distribution of radio-pharmaceuticals in theobject. Two main differences exist between
transmission CT and emission CT. First, there is no control over the sources in emission CT other then
choosing the type and method of pharmaceutical administration. Hence, the function to reconstruct in
emission CT is the source distribution rather than a physical property of the object, as in the case of
transmission CT. Secondly, the source distribution is situated in an enclosed medium (e.g., the patient
body), therefore the emitted gamma ray beam is subject to attenuation before escaping. This constitutes
a difficult problem to emission CT since the source distribution has to be recovered before attenuation
correction. In transmission CT, the knowledge of the sourceand detector positions determine the straight
line path of the X-ray beam. In emission CT, the source position is unknown a priori, so a way to localize
the photon’s path has to be found.

In SPECT, a collimator is placed in front of a gamma camera to achieve directional localization:
only those photons directed perpendicular to the camera could be detected (Figure 2.1). The gamma
camera is rotated around the patient during the scan collecting a set of projections. A rather severe loss

(a) (b)

Figure 2.1: Schematic representation of the (a) SPECT, and (b) PET scanner geometry. In SPECT, a collimated detector is
rotated around the source of gamma ray; only those photons which arrive perpendicularly to the front of the camera can be
detected. In PET, the coincidence detection of two photons determines the source point on their emission line.
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of sensitivity is accepted for knowing the path of the incoming photon. Cone-beam collimators, which
have the holes arranged to focus at a point situated at finite distance past the body, could improve the
sensitivity by≃ 2-3 times. Another drawback of collimators is given by the penetration of gamma rays,
especially at higher energies, into the collimator material. Collimators consist of holes through which
gamma rays have to pass. The material surrounding the holes is called septal fins. If the septal fins are
too small, then gamma rays penetrate through them resultingin degraded reconstructed images. If the
septal thickness is too large, the spatial resolution is degraded, so a compromise has to be established.

Another alternative to directional localization is to use sources which emit in a priori known con-
figurations. An example is PET, which uses positron sources.A positron annihilates with an electron,
generally very near the positron position, resulting a pairof two opposite direction gamma rays (see
Section 1.1.2.4). The source direction is approximated on the straight line intersecting the two detection
points. The PET detection systems include limitations. Thetravel distance of the positron before anni-
hilation, and the angular deviation from the straight line of the photon pair degrade the image quality.
In contrast to transmission CT, emission CT suffers from lowphoton counts and poor spatial resolution.
In addition, photons which are influenced by attenuation or scattered in the object could be detected.
Altogether lead to a generally poor quality of the reconstructed images.

A widely used SPECT detector is the Anger camera. The camera consists of three main components,
including the collimator, the PhotoMultiplier Tubes (PMTs), and the lead shield (Figure 2.2).

Figure 2.2: Schematic representation of Anger
camera with parallel-hole collimator. The main ge-
ometry components are (A) multichannel collima-
tor, (B) NaI Crystal, (C) hexagonal array of pho-
tomultiplier tubes, (D) position detection network,
(E) lead shield.

The collimator performs the function of directional localization. Photons interact into scintillator
producing light photons, which following different probabilities could reach the PMTs. Electronics of
detection determine the position interactions from the PMTs data. The main interaction desirable to
occur between scintillator and gamma rays is photoelectricabsorption. However, photons could undergo
Compton scattering and further exit the scintillator, or interact in different positions. If the Compton
scattered gamma photons subsequently interact, then the light photons spread out over a large spatial
distribution.

For not increasing the data collection times, and in the sametime to improve the photon counts, a
more efficient detection system is desirable. An alternative able to attain higher efficiency includes a
first detector which replaces the collimator by a material allowing to measure photons arriving from a
large spectrum of directions. Therefore, this detection technique was firstly called electronic collimation,
taking further the name of Compton camera. A detailed presentation of its detection principle is included
in Section 2.2, along with its main advantage over collimator detectors, namely the imaging capability.
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2.1.2 Semiconductor detectors

Semiconductor detectors present rather high energy and spatial resolution for radiation imaging. Mean-
while, they are relatively sensitive to degradation causedby, e.g., neutron radiation. Semiconductor
detectors may be divided in two types: classical semiconductor detectors and memory detectors. The
memory detectors may be further divided into sub-groups including Charge-Coupled Devices (CCD)
and drift detectors. The CDD detectors are not considered herein due to their relatively poor efficiency
for gamma-ray imaging, and the need to shift out informationserially.

Classical detectors consist of, e.g., ap+n junction on one face, and ann+ junction on the opposite
face of an-type semiconductor wafer. The junction is reverse biased to completely descend the substrate,
which creates an electrical field between two junctions. Electron-hole pairs are created by a radiation
interaction into substrate, and pass towards the junctionsdue to electric field. The charge measured at
junctions results in energy measurement of radiation interaction. Two-dimensional position resolution
is obtained by dividing one face of a junction into strips, and the opposite face into strips oriented in
orthogonal direction [Knoll, 2000]. Semiconductor detectors are generally made of, e.g., Silicon or Ger-
manium. If detectors are fabricated from High Purity Germanium (HPGe), they have to be cryogenically
cooled to achieve high energy resolution. The cooling is necessary in order to reduce thermally induced
noise to acceptable levels. In certain applications, Silicon based detectors have to be operated under
cooled conditions as well. Detectors operating at room temperature are made of materials such as CdTe,
CdZnTe. Their higher atomic number determine a greater efficiency per unit volume of material, but
their use is limited by the low mobility when compared to Silicon or Germanium, and the difficulty of
producing large enough detectors.

Drift detectors consist of an-type Silicon wafer withp+ electrodes placed at even spacing on both
faces of the wafer. An electric field is applied via the electrodes to use up the Silicon bulk. A potential
surface is created so that electrons resulting from a gamma-ray interaction are collected at the center
of the semiconductor between the faces. A potential tilt parallel to the detector face is created so that
electrons from the center of detector are drifted to one end of the detector where the charge is collected by
segmented anodes. This information provides position resolution in one direction. Position resolution in
the orthogonal direction is performed by measuring the length of the time necessary to electrons to drift
out. The time of gamma-ray interaction may be obtained by detecting holes collected at the electrodes.
The count rate capability could be of about10 to 100 times better than classical detectors.

When considering a detector based on Compton scattering, the Silicon presents several advantages,
e.g., it can be used at much higher temperature than a Germanium detector, Doppler broadening is
smaller at lower atomic materials. To achieve a reasonable detection efficiency, rather thick detectors are
required. The limited usable thickness of Silicon drift detectors may be overcame by ’stacking’ many
detectors, though this increases the electronic complexity.

2.2 Compton scattering based imaging detectors

A gain in sensitivity can be achieved by replacing the collimated part of a gamma camera by a low-atomic
material, e.g., Silicon, which can enable radiation detection with a larger spectrum of incoming direc-
tions. According to a particular application, the configuration of Compton camera has to be optimized
in terms of detection efficiency and resolution. This process is a complex multi-parameter problem,
which should determine the optimal values of e.g., thickness of both scattered and absorption detectors,
positioning, distance between the two detectors, etc.

Performing directional localization by Compton scattering process implies a form of photons track-
ing through the complete interaction process in order to determine their initial energy. In collimated
detectors, the photon direction lies on a rather straight line. The direction determination becomes more
complex when the detection is based on Compton scattering. There, the photon direction lies on the
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Figure 2.3: Illustration of the conic projection from a
Compton scattering event defined by the main required
elements: the energy depositedE1 in the first interaction
at the position~r1, and the energy deposited in the back
detector at the position~r2. The Compton scattering angle
θg is computed from the measured energies.

surface of a cone determined by the interaction positions and energies deposited, being widened by mea-
surement uncertainties. Further the surface may be restricted to an arc of cone if the scattered electron
direction is (partly) known. Hence, a novel image reconstruction problem reveals.

Let ~α, ~β be unit vectors. Consider a photon of energyE0 traveling in direction−~α through a detector
capable of tracking multiple Compton events. The photon undergoes a Compton event at a position~r1

through an angleθg. Both position and energy depositedE1 are measured. The photon of changed
direction−~β could further undergo a second Compton interaction at position ~r2 deposingE2 energy.
The travel of photon continues until complete absorption, or escape the detector. Whether a photon is
likely to escape or to be completely absorbed depends on the detector geometry. In case of complete
absorption, the initial energy can be computed by the summation of energy deposited in the interactions:

E0 =
∑

i

Ei (2.1)

When the photon escapes the detector, a relation between energies can be derived:

E0 >
∑

i

Ei (2.2)

The scattering angleθg can be computed by the Formula 1.7. When the initial energy isdetermined
by Equation (2.2), the scattering angle will be less than or equal toθg. The photon direction after the first
scattering event can be computed by the following formula:

~β =
~r1 − ~r2

|~r1 − ~r2|
(2.3)

The initial direction of the photon has to verify the equation:

cos θg = ~α · ~β (2.4)

which corresponds to the localization of the photon incoming direction~α on the surface of a cone
described by its apex~r1, symmetry axis~β, and semiangleθg.

2.2.1 Considerations of geometries design

The most simplistic Compton imaging system consists of two planar position and energy sensitive de-
tectors (Figure 2.3). The first detector, called the scattering detector, is made of a low-atomic number
material for optimization of the Compton scattering likelihood. The configuration details depend mainly
on the imaging system purpose, namely the required energy and spatial resolution when photons of wide
energy spectrum are measured. The second detector is made ofa high atomic number material to opti-
mize the likelihood of a photon to undergo a photoelectric effect. Several Compton telescopes as well
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as the medical Compton scattering cameras are of this type. Measuring the data after the first two in-
teractions, assuming that only one interaction occurred ineach detector, all the required information to
determine the incoming photon direction is collected. Namely, the initial source of a photon reaching
the detector is localized on the surface of a cone by measuring the position of interaction of the first
scattering event (~r1), the energy lost during the first interaction (E1), and the photon direction (−~β) after
scattering. If the second interaction is a photoelectric event then the tracking of the photon is completed,
allowing to compute the final photon direction. When the photon undergoes other Compton scattering
events, a tracking of the photon is required until an absorption occurs, or until it escapes out of the de-
tector. Photon tracking is imperatively needed by the computation of the initial energy of the source
and by the event reconstruction process. The original parameters of the incident photons are recovered
by application of event reconstruction algorithms when theCompton scattered data is measured by an
imaging system enabling multiple Compton interactions. Ine.g., astrophysics, advanced Compton imag-
ing detectors (Compton telescopes) consist of a scattered detector formed by several e.g., Silicon layers
wherein the incident photons undergo multiple interactions. Details about the general configuration of
the detectors as well as the required event reconstructionsalgorithms can be found further in the present
section, or in [Zoglauer, 2005].

Detection of photons by means of Compton scatters was firstlyproposed by [Schönfelder et al.,
1973], in the measurement of atmospheric gamma-rays context. [Todd et al., 1974] introduced the Comp-
ton imaging system for medical applications as an improved alternative to collimated based detectors.
Since the first Compton camera prototype was developed for medical application by [Singh and Doria,
1983a], different geometry models were proposed searchingto attain an efficient design of Compton
camera. A single high-purity germanium, and a scintillatordetector were next proposed by [Singh
and Doria, 1985]. [Kamae et al., 1988] developed a Compton imager replacing the detectors of the
first camera prototype with layers of Silicon strip detectors, which were surrounded by a cylindrical
CsI(TI) scintillator. In astrophysics, the COMPTEL [Schönfelder et al., 1993a] telescope proved a real
success in covering an unprecedented energy spectrum from1 MeV to 30 MeV. For medical applica-
tions, [Bolozdynya et al., 1997] explored a model consisting of concentric hollow cylindrical detec-
tors. Meanwhile, [Tumer et al., 1997] analyzed a prototype consisting of multiple detectors followed by
CsI(TI) calorimeter arrays, or CdZnTe [Du et al., 1999]. TheUniversity of Michigan group in collabora-
tion with CERN developed a camera prototype C-SPRINT (Compton-Single Photon RINg Tomograph),
which consists of a Silicon cylindrical detector surrounded by an absorption detector [Leblanc et al.,
1999]. The optimal parameters which could solve the trade-off between sensitivity and resolution of this
prototype simulated version were studied [Chelikani et al., 2004].

Advanced Compton cameras referred as Compton telescopes can enable the tracking of electrons
recoiled in Compton scatterings. The photon direction is then further restricted to a segment of a cone,
whose length depends on the measurement accuracy of the recoil electron. Hence, the origin of the in-
coming photons could be solved with higher accuracy. The tracking Compton and pair telescope MEGA
(Medium Energy Gamma-ray Astronomy) [Zoglauer, 2005] was studied at the Max-Planck-Institut für
extraterrestriche Physik (Garching, Germany) where in 2003 a prototype version was calibrated. MEGA
mainly consists of a tracker (or scatterer) where Compton scattering and pair creation events are factor-
ized, and a calorimeter which surrounds the low hemisphere of the tracker. The latter has the purpose
to measure the interactions position as well as the deposited energy of the secondary particles. Other
examples of this group are the TIGRE [Bhattacharya et al., 2004], and detectors where gaseous time
projections chambers are used to track the recoil electron [Tanimori et al., 2004].

In case of electron tracking detectors as MEGA, an intermediate step is integrated into data analysis,
namely the event reconstruction. Event reconstruction reconstitutes the photons path into detector, i.e.,
finding the interactions which belong to an event, the start and end points of their track, classify the
event as Compton scattering, or other interaction. The initial step is the identification of electron tracks
as well as their travel direction. This determination is done by investigating the topology of the tracks
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Figure 2.4: Schematic representation of the conic projection
from one Compton event measured by the Compton Camera
(CC) imaging detector. The simulated CC system is made of a
single double-sided Silicon layer, which consists of one wafer
which has a length of10 cm, thickness of2 cm, and0.47 mm
pitch. The second detector consists of LaBr3 bars (surface area:
5× 5 mm, length:8 cm).

and the Compton kinematics, especially the energy depositson the wafers. Afterwards, searches for
the Compton interaction sequences are performed, i.e., allCompton interactions are arranged in their
kinematically correct order. The parameters guiding the search are the direction of the recoiled electron,
the redundant information when the event consists of three or more interactions, the geometry of the
detector as well as the absorption probabilities along the path of the photon [Zoglauer, 2005].

2.2.2 Angular resolution

Consider a Compton scattering based camera consisting of a scattering detector and an absorption detec-
tor, similar to the camera design proposed by [Singh and Doria, 1983a]. Both detectors are represented
by their dimensions, noted asls × ls, la × la, and the pixel size,ds × ds, da × da. The distance between
the detectors is noted byS, and the thickness of the scattering detector byts.

The accuracy of direction localization of an incident photon depends mainly on how precisely the
cone parameters are determined. Inherent measurement errors of interaction positions and scattering
angle (θg) bring uncertainty in the location of the source. Hence, themain factors influencing the mea-
surement are the energy resolution of the scattering detector, the position resolution of both detectors,
the thickness of the scattering detector, and the distance of the source to the scattering detector. All
factors contribute to the angular uncertainty∆θg in the cone angle measurement. This dependence can
be expressed by the formula [Singh and Doria, 1983a]:

tan2 ∆θg = tan2 ∆θ1 + tan2 ∆θ2 + tan2 ∆θ3 + tan2 ∆θ4 (2.5)

where∆θ1 denotes the uncertainty due to the scattering detector energy resolution,∆θ2 and∆θ3 are due
to the scattering element width and thickness, respectively. The factor∆θ4 represents the uncertainty
due to the position resolution of the absorption detector.

The angular uncertainty due to the energy resolution of the scattering detector when considering
photons of initial energyE0 is given by

∆θ1 = | dθg
dEs
|∆Es =

[1 + α(1− cos θg)]
2

αE sin θg
∆Es (2.6)

where∆Es is the uncertainty in measuring the scattering energyEs, andα is given by Formula 1.4.
Noise processes in the semiconductor detector determine the minimum energy which is possible to mea-
sure. Hence, a minimum scattering angle above which all the scattering events are not detectable exists.
In the ideal case, the minimum angle should be less than5◦.
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Figure 2.5: The angular resolution measure represents the dif-
ference between the Compton scatter angleθg calculated from
the measured energies,E1, E2, and the angle between the
known initial direction, and the measured direction of the scat-
tered gamma ray. ARM parameter corresponds to the width of
the Compton scatter cone (or arc).

The angular uncertainty depends also on the camera geometry[Singh and Doria, 1983a]

S tan(θg −∆θ2) = S tan(θg − tan−1(ds/2D))− 1/2ds (2.7)

S tan(θg + 1/2∆θ3) = (S + 1/2ts) tan θg (2.8)

S tan(θg − 1/2∆θ4) = S tan θg − 1/2da (2.9)

whereD is the distance of a point source to the front of the camera.
The factors which contribute to angular uncertainty may be written

∆θ2 = θg − tan−1(tan(θg − tan−1(ds/2D)) − 1/(2dsS)) (2.10)

∆θ3 = 2 tan−1(1 + 1/2Sts)θg − 2θg (2.11)

∆θ4 = 2θg − 2 tan−1(tan θg − 1/2da) (2.12)

The spatial uncertainty of a point source at a distanceD to the front of the camera verifies the
equation [Singh and Doria, 1983a]

∆x = D tan(∆θg) (2.13)

The above equations assume unknown the energy of the incoming photons, deposing all the energy
in two interactions.

The Compton detector design has to consider the intended energy regime. When increasing the
detector thickness, the efficiency improves. But this gain is obtained at the expense of angular uncertainty
[Singh and Doria, 1983a]. Hence, a compromise between different parameters describing the detector
has to be found. The optimization process of camera geometryshould consider inherent created effects,
such as Doppler broadening, important especially in case oflow-energy (e.g., below1 MeV) gamma-rays
of scattered spectra, the polarization photons.

An usual parameter describing the angular uncertainty is the Angular Resolution Measure (ARM) .
This parameter is defined as the angle between the reconstructed back-projection cone, and the real (or
simulated) source direction, or as the shortest diatance between the known initial photon direction, and
the photon scatter cone defined by the measured direction of the scattered photon:

∆ARM = θr − θg (2.14)

whereθr is calculated from the measured interaction positions and the true source location (~r0):
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θr = arccos(~α · ~β) = arccos

(

(~r1 − ~r0)(~r2 − ~r1)

|~r1 − ~r0||~r2 − ~r1|

)

(2.15)

The angleθg is computed from the measured energies by the Compton formula 1.7.
Note that different scattering angles result in different ARM distributions when considering the en-

ergy uncertainty and Doppler broadening effect. A way to reduce angular uncertainty is the selection of
events having certain scattering angles at the expense of efficiency.

In case of a more complex imaging system, e.g., electron tracking Compton telescope, the angular
resolution can be described by the ARM jointly with the Scatter Plane Deviation (SPD) . When the recoil
electron is incompletely absorbed, the ARM is positive, while its value becomes negative in case of an
incompletely absorbed photon. The SPD parameter illustrates the angle between the real scatter plane
described by~α and ~β, and the measured plane described by~β and~e, assuming that~β was correctly
measured:

∆SPD = arccos((~α× ~β) · (~β × ~e)) (2.16)

where~e is the direction of the recoil electron. Note that SPD is relevant only when~ewas measured, being
influenced by the measurement accuracy. ARM describes the Compton cone width for each individual
reconstructed Compton event, while SPD provides a measure for the length of the Compton scatter arc.

The ARM is influenced by mostly all components of the measurement process, the accuracy of the
energy of the electron and the scattered gamma ray as well as the accuracy of directions calculations. The
energy resolution determines the Compton scattering angleθg in the Formula (2.14), while the quantity
θr is influenced by the position resolution. The propagation ofmeasurement errors in computation of the
Compton scattering angleθg (Formula (1.7)) results in the following expression

dθg =
E0

sin θg

√

√

√

√

(

1

E2
g

− 1

(Ee + Eg)2

)

dE2
g +

1

(Ee + Eg)4
dE2

e (2.17)

The angular uncertainty determines the response of an imaging system. Both energy and position
uncertainty on the detector contribute to the resulted angular uncertainty. The interaction positions define
the axis of the back-projected cone, so uncertainty on positions reflect uncertainty on the cone axis
direction. However, the Doppler broadening constitutes aninherent limit of measurements precision
[Zoglauer and Kanbach, 2003].

2.2.3 Efficiency parameters

The basic definition of photon detection efficiency in case ofa complex arbitrary detector is

Etot =
total number of detected photons

total number of photons emitted by the source
(2.18)

It may be expressed also by the product of four factors

Etot = EgeomEabsEsampleEint (2.19)

The geometric efficiencyEgeomdenotes the fraction of photons which arrive on a detector for a point
source. Its expression is

Egeom =
A

4πr2
(2.20)

whereA is the cross-sectional area of the detector, andr is the distance of the source to the detector. The
absorption efficiencyEabs represents the absorption coefficient of different materials which constitute
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the detector, absorbing a part of incoming photons before interacting within the detector volume. Its
expression is

Eabs = e−
∑

µiρixi (2.21)

whereµi, ρi, andxi are the mass absorption coefficient, density and thickness of the ith material, respec-
tively.

The sample efficiencyEsampleis the fraction of emitted photons which actually emerge from a sample
material. Its expression is

Esample=
1− e−(µρx)s

(µρx)s
(2.22)

The intrinsic efficiencyEint is the probability that a photon interacting into detector will result in a
valuable signal. A standard form to expressEint is

Eint = 1− e−µρx (2.23)

Generally, the detection efficiency strongly depends on thephoton source energy, i.e.,Eint dominates
at higher energy, whileEabsat lower energy.

The efficiency of Compton camera can be expressed by the product

S =
Ω

4π
Pǫ (2.24)

whereΩ is the solid angle subtended by the scattering detector relative to the source location whileǫ
is the efficiency of the absorption detector. The parameterP represents the probability that a photon
is scattered without further interaction in the absorptiondetector. [Singh and Doria, 1983a] derived its
value. The solid angle follows the formula [Knoll, 2000]

Ω =

∫

A

cos ϑ

c2
dA (2.25)

whereA is the surface of the scattering detector,ϑ is the angle between the line segment from the source
to the element of areadA, and the normal todA. The length of the line segment isc. For a point source
located at a distanceD to the scattering detector, the solid angleΩ is given by the formula:

Ω = 4 tan−1

(

l2s
4D
√

1/2l2s +D2

)

(2.26)

When considering a Compton scattering based camera, another issue is important, namely the full
flux of photons under which it is exposed, unlike, e.g., Angercamera, which is shielded by the collima-
tor. The absorbing detector of the Compton camera receives both photons passing interacting with the
scattering detector, and all other photons passing directly without interaction. The absorbing detector has
to be able to handle high count rates, even though a part of events are rejected as not valuable events. A
proposal is to use a scintillation detector as the absorbingdetector. Even if high performance technology
exists to implement the absorbing detector, it is still likely to be the limiting factor to the total achievable
count rate of the Compton scattering camera.

To characterize the measured count raterm of usable coincident detections, consider the count rate
rs incident on the scattering detector. The count ratera incident on the absorbing detector is

ra = rs

[

e−µpts +

(

Ωs

Ωa
− 1

)

Ωa

Ωs

]

(2.27)

whereµp is the photoelectric absorption coefficient of the scattering detector, whileΩs andΩa are the
solid angles presented to the source by the scattering and absorbing detectors, respectively. The first term
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of Equation (2.27) includes photons absorbed in the scattering detector, and the second term includes the
solid angle shown by the absorbing detector over the scattering detector. The measured count rate of
valuable photon interactionsrm is then given by

rm =
Prae

−raτ

Ωa/Ωs − 1 + e−µpts
(2.28)

whereP is the probability of a useful scatter, whileτ is the dead time of the absorbing detector.
Several possibilities to improve the count statistics wereproposed depending on the targeted energy

regime. When imaging sources of140 keV, [Singh and Doria, 1983a] proposed a semiconductor material
as the absorption detector. Generally, at this energy, a Germanium absorption detector could generate
higher count rates, improved energy and position resolution than Anger camera. For higher source
energy, the general choice is a scintillator based absorption detector made by either, e.g., NaI, or more
effectively by, e.g., LaBr3 bars. An alternative to achieve higher count rates is to use a’stacked’ of
scattering layers. This design can improve the camera sensitivity at the expense of increased electronic
and control complexity.

2.2.4 Compton imaging

Compton imaging is defined as the image reconstruction process of data generated by a Compton scat-
tering based detector. Compton data are back-projected into the image space without preserving the
azimuthal angle when assuming no electron tracks. The complexity of Compton reconstruction process
arises from the possible directions of the source laying on the ambiguity of a surface cone. Moreover, the
measurement errors of both position and energy result in angular uncertainty over the measured angle of
the cone.

Compton imaging may be considered as imaging technique withPoisson measurement statistics be-
side PET, SPECT, gamma astronomy, and microscopy methods. The factors which distinguish the Comp-
ton image reconstruction problem from the conventional tomography are the extremely large amount of
data generated by the system, the highly complicated geometries and the low total counts in sample
bins, which make Poisson fluctuations a significant factor. These are the reasons for which all practical
reconstruction algorithms for the Compton scattering imaging systems are iterative. Iterative methods
of Compton image reconstrution are presented in Section 3.2, while Chapter 5 includes algorithms for
image reconstruction in particular conditions, i.e., list-mode data acquisition.

In the early 1980’s, [Singh and Doria, 1983b] explored the idea of the two stage reconstruction.
In contrast, [Hebert et al., 1990] formulated the reconstruction problem as the maximum-likelihood
estimation of the three-dimensional distribution ’directly’ from the projection data. Following the vision
of image reconstruction process divided in two stages, the first stage includes the modeling of detection
process, which generates the response matrices. The response describes the probabilities that a photon
emission produced a recorded valid Compton event. An accurate determination of probabilities implies
high-dimensional calculations, which require detailed knowledge of the detector geometry as well as
the uncertainties arising from e.g., finite spatial and energy resolution, Doppler broadening. Hence,
the detector response modeling plays a determinant role on the image reconstruction performance. The
detector response is further integrated into the image reconstruction method, i.e., the back-projection
phase, which is part of the first stage. The second stage of theprocess includes the application of an
iterative algorithm.

2.2.4.1 Theoretical analysis of the Compton detection process

The sequence of physical interactions which corresponds toa detected event begins with the emission of
a photon with an initial energyE0 from the source point~r0 in direction−α. In the following a Compton
scattering interaction is assumed to takes place in the firstdetector at the position~r1 = (x1, y1, z1)
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through an angleθg. An energy lossE1 is followed by a final absorbtion at~r2 = (x2, y2, z2). The
response matrix is then represented by the coefficientstij , which represent the probability that a photon
emitted from the source locationj will be measured as eventi described by the measurementyi =
{~r1, ~r2, E1}. The following formula

tij =

∫

~r0∈Vj
p(~r0)dr0

∫

p(yi|y′i)p(y′i|~r0) (2.29)

expresses the integral over the pixel volumeVj of the density functionp(y′i|r0) describing the proba-
bilities of an emission fromj producing an eventy′i, multiplied with a functionp(yi|y′i) describing the
measurement process. The probability of an emission from the source to produce a detected eventy′i
can be approximated by the probabilities of each sequence interaction in which the physical detection
process is divided. Assuming separable measurement probabilities, its expression follows

p(yi|y′i) = p(r1|r′1)p(r2|r′2)p(E2|E′2)p(Ee|E′e)p(~e|~e′) (2.30)

The probability density functionp(y′i|~r0) describes the probability that an emission from~r0 in direc-
tion α, leading to the true eventy′i.

The sensitivity factor is the integral over all possible eventsy′ ∈ S, which is the set including all the
possible measurements:

sj =

∫

S
d~r0p(~r0)

∫

dy′p(y′|~r0) (2.31)

Determination of transition probabilitiestij and sensitivity factorsj constitutes the most challenging
aspect of the image reconstruction process. As shown in the following, the quality of the reconstructed
images highly depends on the accuracy of their calculation.

Assuming a mono-energetic source, complete absorption in the second detector, and no Doppler
Broadening, [Wilderman et al., 1998a] includes a detailed description of detection probabilities as well
as their impact on the response matrix calculation. In the following, the argumentation goes along the
lines of [Zoglauer, 2000].

The detection process of a Compton based imaging system may be described by the sequence of
processes which are involved in the detection of an eventi.

1. The photon is emitted at~r0

p(r0)dr0 ≈ const· dr0 (2.32)

2. The photon leaves the object reaching the detector unscattered

pobj
esc=

∫

r
e−µ

obj
tot (E0,l0)l0dl0 (2.33)

The parameterl0 denotes the length of photon pathr emitted atr0 in directionα, andµ is the
total absorption coefficient knowingl0 and the energyE0. The absorption probabilities take into
account different materials which constitute the travel medium.

3. The photon passes through the detector to the first interaction point where it is Compton scattered
at the depth ofl.

pD1
Compton= µD1

Compton(E1, r1)

∫

l
e−µ

D1
tot (E1,l1)l1dl1 (2.34)
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The parameterl1 denotes the distance in the first detector to the interactionpoint r1, while the
parameterµD1

Compton(E1, r1) is the Compton absorption coefficient depending on the energy E1,
and the interaction pointr1.

4. The photon is Compton scattered atr1 with an angleθg. The probability of the photon to be
Compton scattered at a certain angle follows the condition:

pKN(θg) =

dσc
dθg

σc
(2.35)

wheredσcdθg
is the Klein-Nishina cross-section (Equation (1.14)), andσc is the total scattering cross-

section.

5. The scattered photon leaves the first detector:

pD1
esc =

∫

r
e−µ

D1
tot (E2,l2)l2dl2 (2.36)

wherel2 is the distance in the first detector from interaction pointr1 in direction~β.

6. The photon reaches the second interaction point where it is re-Compton scattered or absorbed:

pD2
Compton= µD2

Compton(E2, r2)

∫

r
e−µ

D2
tot (E2,l3)l3 (2.37)

or

pD2
abs = µD2

abs(E2, r2)

∫

r
e−µ

D2
tot (E2,l3)l3 (2.38)

wherel3 is the distance in the second detector to the pointr2.

7. All the other (known) interactions in the detector may be similarly described.

The probability density functionp(y′i|r0) is made up of all these probabilities multiplicatively.

2.2.4.2 Transmission probabilities in Cartesian coordinates

The following algorithm determines the source pixels situated on a focal plane, which are intersected by
the back-projection cones for each of the detected gamma raygiven the positions and energy losses in the
interactions. The method of generating a typical cone equation has to follow the next steps. First, the cone
axis is computed known the two interaction positions, i.e.,~β = (r1 − r2) = (x1 − x2, y1 − y2, z1 − z2).
The second step is to compute the Compton angle via the Compton formula (1.6). The image space is
viewed as being divided by a series of planes. Each plane is divided by a series of grid lines, which form
the pixels in that plane. When an event is detected, a back-projected cone is traced through a given plane.
The quadratic which describes the intersection of the cone with a plane situated atz = zs follows the
equation:

(n(~r − ~r1))2 = cos2 θg · |~r − ~r1|2 (2.39)

(nx(x− x1) + ny(y − y1) + nz(zs − z1))2 = cos2θg
(

(x− x1)2 + (y − y1)2 + (zs − z1)
)

(2.40)

wheren = (nx, ny, nz) represents the components of the unit vector along the cone axis. The following
algorithm determines the intersection points between the boundaries of the plane restrained to a given
view-port, and the conic [Wilderman et al., 1998b].
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Figure 2.6: Description of sizes:

lb Gridlines in the y-direction
l′a Gridlines in the x-direction
SV,c Intersections with the view-port
Sl,b Intersections with the Gridlineslb
Sl′,a Intersections with the Gridlinesl′a

1. First, the intersectionsSV,c of the cone with the considered plane are calculated. If no intersec-
tion exists, the event is either entirely inside or outside the plane, which intersects the view-port.
Further intersections are searched in restrained view-ports.

2. The view-port intersectionsSl′,a andSl′,a+1 of two adjacent lines,l′a andl′a+1, are searched.

3. The intersectionSl,b with the grid linelb until the intersectionSl′,a is computed.

4. The distance between the two intersections is calculated.

5. If the intersection in (2) has been found tol′a, then the search continues tol′a−1, otherwise tol′a+2.

6. The steps from (3) to (5) are repeated if the next intersection of the view-port has been achieved.

7. The steps from (2) to (6) are repeated for the remaining intersections of the view-port.

8. In case of tracked events, the angular distance of the coneto the origin of photons is computed.

9. Finally, an additional weighting of each event is included, according to the probability of track
detection.

When considering the effect of Doppler broadening and finiteenergy resolution, as in practical ap-
plications, the intersection line becomes broaden. Therefore a weighting function is included in the
description of the relative intensities of the underlined pixels. This function depends on the normal
distanced from the pixel to the conic function, being estimated by the following

f(d) = 0.9e−
d2

2σ2 + 0.1e
− d2

2(3σ)2 (2.41)

whereσ is the standard deviation of the back-projected cone spreadfunction. The cone spread distribu-
tion is not Gaussian due to the tails induced by Doppler broadening, thus they are modeled by adding
0.9 times a Gaussian function with the computed standard deviation, and0.1 times a Gaussian function
with three times the standard deviation [Wilderman et al., 1999].

Consider the Compton camera described in Figure 2.4. An uniform 1-sigma energy resolution of
1 keV is assumed in the scattering detector, along with a10 keV threshold. An energy resolution of4.3%
FWHM at662 keV, and a threshold of28 keV are assumed in the absorption detector. Consider a square
source emitting from2 cm above the scattering detector.

Figure 2.7 illustrates back-projected images of Compton events with different scattering angles, inter-
secting the view-port, and including detection uncertainties, and Doppler broadening. Figure 2.8 shows
back-projected images of several Compton events.
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Figure 2.7: Back-projected images of different Compton events.

(a) (b) (c)

Figure 2.8: Images of (a) 19 Compton events, (b) 29 Compton events, (b) 51 Compton events with measurement uncertainties
from energy, geometry of detector, and Doppler broadening.

2.3 Conclusions

Collimator based detectors widely used during the last decades present rather simple technologies, and
a simplified method of incident photons origin localization. These advantages come at the expense of a
severe restriction of directions possible to detect, i.e.,only photons emitted at a perpendicular direction
(and in accord to the hole thickness) to the detector represent valuable signal.

Replacing the collimator by a detector able to detect photons at a larger range of incoming directions
can improve the detection sensitivity and efficiency. Compton scattering process is used as a means
of detection in the first detector. Various geometry designswere proposed depending on the targeted
energy regime, in both medical imaging and astrophysics. Drawbacks are represented by the complexity
of technologies and methods, which have to sort and process multiple coincidence events as well as
directional localization. These requirements have latelybenefited from high-energy physics and gamma-
ray astronomy. The cross-fertilization of these areas continue to assist the development of Compton
based imaging devices for novel applications (see Chapter 4).

The angular uncertainty of a Compton based detector includes uncertainties due to energy and posi-
tion resolution as well as geometrical angular resolution.The latter one depends on e.g., thickness and
width of the scatterer detector pixels, intrinsic resolution of the absorption detector, distance between de-
tectors and the considered range of scattering angle. Hence, the back-projected cone affected by inherent
measurement uncertainty do not intersect the true source position. Thus the origin of photons can not be
uniquely determined. The resulted ambiguity has to be solved by image reconstruction techniques.
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Chapter 3

Compton image reconstruction

3.1 Medical image reconstrution methods

Modalities of gamma-ray imaging can be integrated into a class of problems named inverse problems. A
general inverse problem is the determination of photons source from the detection measurements induced
by physical processes. Two large classes of methods for solving an inversion problem exist. Both are
based on a mathematical model, which describes the detection process. In the first class, the detection
model, i.e., the direct problem, is solved analytically to obtain an inverse solution operator. Afterwards,
the solution is discretized, and often solved by a computer based algorithm. Two significant difficulties
of the analytic approach can be underlined: Many imaging systems can not be reliably modeled, and
even if they can be, the solution may be too difficult to drive analytically.

In the second class, the detection model is firstly discretized, and the inversion problem is solved
using mostly computer based iterative algorithms. An advantage of iterative algorithms is that a greater
number of systems can be modeled, but an iterative process can be very computationally intensive, and
no guarantee exists that the initial supposed solution willconverge to the real solution.

Several factors render the image reconstruction imprecise, and possibly unreliable:

• Failure of the mathematical model to accurately portray reality.

• Measurement uncertainty and noise.

• Incomplete measurement of projection data set.

• Discretisation of the detection model.

• Mathematical difficulties to compute an accurate estimation of the solution.

Generally, even if the mathematical model is exact, the image reconstruction can fail because of the
other factors. Real detection systems can introduce errors, and read-out noise in the measurement data,
so the reconstruction algorithms have to operate imprecisedata. Often, computer based operations also
tend to amplify the noise inherently present in the data, or even fail. Hence, any practical reconstruction
algorithm has to be robust against errors in the measured data.

Section 3.1.1 introduces direct image reconstruction methods applied mostly in X-ray CT imaging,
while Section 3.1.2 presents a brief overview of iterative methods of image reconstruction, underlying
only the main principles which constitute the base of a considerable large number of reconstruction
methods.

Iterative algorithms can be classified in algebraic methodsand statistical based methods. The first
class includes algebraic reconstruction technique, the simultaneous iterative reconstruction technique,
and the iterative least-squares technique. The second group contains algorithms which include or not

41



42 CHAPTER 3. COMPTON IMAGE RECONSTRUCTION

a priori information about the source. Both analytical and iterative methods of Compton scattered data
reconstruction are reviewed in Section 3.2, underlying their specificity. Namely, analytical solutions
in terms of integral transforms are described, including the first attempt towards direct reconstruction
of Compton data proposed by [Cree and Bones, 1994]. This approach uses only the projections for
which the incoming photons are scattered over a perpendicular direction between the detectors. A model
which takes into account the incoming direction of photons without including any restriction about the
scattering direction was developed [Maxim et al., 2009]. The inversion formula along with selected
numerical experiments are presented in Section 3.2.1.

3.1.1 Direct methods

Consider the measured datag a sampled function which is related to the object under studyby an integral
equation. An analytic formula to inverse the equation corresponds to a direct solution of the image
reconstruction problem. Once this inversion formula is found, a numerical solution has to be established.
The applicability of this approach depends on the considered case, and on the operator which correlates
the unknown function to the observed data.

The mathematical model of X-ray CT considers the X-beam mono-energetic and infinitesimally nar-
row. Considering the X-ray attenuationµ(x) along a straight lineL, the measured intensity of the beam
Φ follows the equation:

Φ = Φ0e
−
∫

L
µ(x(l))dl (3.1)

whereI0 is the initial X-ray intensity. Note thatµ, Φ0, andΦ depend on the X-ray beam energy. The
projection over the pathL is

pL = − ln(Φ/Φ0) =

∫

L
µ(x(l))dl (3.2)

Generally, several projections are collected to reconstruct the object. However, Equation (3.2) can
be solved when all values ofL are known. Lets andφ be the parameters of lineL, wheres is the
perpendicular distance of the line from the origin, whileφ is the angle between the line and thex-axis.
The projection can be approximated by the formula

p(s, φ) =

∫

L(s,φ)
µ(x, y)dl (3.3)

The graphical representation is illustrated in Figure 3.1.
Note that a projection along a line described by(s, φ) corresponds to a point in the Radon space of

attenuation functionµ:

Figure 3.1: Illustration of a CT projection. The projectionR[f ](s, φ)
is the integral over the image along the line defined bys andφ. In 2D,
the Radon transform off follows the equationR[f(x, y)](s, φ) =
∫

R2
f(x, y)δ(s− x cosφ− y sin φ)dxdy.
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p(s, φ) = R[µ(x, y)](s, φ) (3.4)

If the projections for alls ∈ (−∞,∞) andφ ∈ [0, π) are measured, then the Radon space is
completely filled. The application of the inverse Radon transform allows to recoverµ. In practice, only
a finite number of projections are collected, thus a finite number of discrete points are known in the
Radon space. Several algorithms were proposed to solve the inversion problem when an incomplete set
of projections exist.

In practice, X-rays beams are neither mono-energetic, nor infinitesimally narrow. Therefore, the
reconstruction algorithms based on these assumptions generate images with artifacts. The width of the
X-ray beam is large enough that regions to reconstruct couldinclude variations of the X-ray attenuation
coefficient. This variation can lead to wrong values of the attenuation parameter. The effect is referred
as the partial volume effect.

The attenuation of the X-rays is mainly due to the Rayleigh scattering process. Thus most of the
photons which escape the object, and are further detected, will degrade the image quality. Including
corrections could improve the images.

Considering X-ray CT data reconstruction, if the expression relating the projections to the object is
the integral equation of the Radon transform:

p(r, φ) =

∫ ∫

f(x, y)δ(r − x cosφ− y sin φ)dxdy (3.5)

then the analytical expression of its inverse is given by:

f(x, y) =
1

2π2

∫ π

0

∫ ∞

0

∂p(r,φ)
∂r

r − x cosφ− y sinφ
drdφ (3.6)

which is decomposed into three operators:
DerivationD:

p(r, φ) =
∂p(r, φ)

∂r
(3.7)

Hilbert transformH:

g(r′, φ) =
1

π

∫ ∞

0

p(r, φ)

(r − r′)dr (3.8)

Back-projectionB:

f(x, y) =
1

2π

∫ π

0
g(x cos φ+ y sinφ, φ)dφ (3.9)

The second step is to approximate numerically the integral expression. If thep(r, φ) were known for
all r andφ, then the expression would generate a reliable solution. But p(r, φ) are known for a finite set
of discrete values ofr andφ with limited precision. Therefore two difficulties appear when numerically
solving the inverse problem: the derivation∂p(r,φ)

∂r , and the integration overr. Generally, the derivation
is replaced by a filter (high-pass), while the Hilbert transform is applied in the Fourier domain. The
integration overφ corresponds to the back-projectionB.

The main drawback of considering the Equation (3.6) as the final inversion formula is that projections
are known only for a set of discrete values ofr andφ. The latter fact results in two difficulties, namely the
computation of derivative, and the integral overr. Solutions were derived approximating the derivation
by a high-pass filter, and the integration is applied in the Fourier domain.

• Back-projection of filtered projections in the frequency domain:
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• Filtering by convolution and back-projection:

• Back-projection and 2D filtering in the frequency domain:

• Back-projection and filtering by 2D convolution:

Four different methods of analytical inversion of the Radontransform are schematized above. The
first and the third are versions of filtered back-projection,where the projection data are first backpro-
jected, filtered in the Fourier space, and then inverted by the corresponded Fourier transform. It repre-
sents a reather efficient method of CT image reconstruction.Filtered backprojection has the advantage
of applying the filter to each measured projection, resulting in a calculation efficiency gain. Other X-ray
CT reconstruction methods include algorithms using linograms [Edholm and Herman, 1987], Chebyshev
polynomials [Bortfeld and Oelfke, 1999], and nonlinear backprojection methods [Andia et al., 2002].

3.1.2 Iterative methods

“Very early it become obvious that image reconstruction wasmore complex than the mere problem of
analytically inverting the Radon transform, and then discretizing the resulting inversion formula.“
[Defrise and Gullberg, 2006]

Iterative methods can offer improvements over analytical methods since the noise structure present
in measurements can be more realistically integrated in thedetection system model. Application of an
iterative reconstruction approach consists on several choices, which generate a significant impact on the
quality of the obtained results. First, the representationbasis of the source, the system physical model
as well as the statistical model of measurements has to be established. Afterwards, a critical step is the
choice of the cost function, or the estimation criterion on the considered data conditions. A classical
approach is the Maximum-Likelihood (ML) estimation, whichhas various limitations, e.g., fluctuations
of the solutions, noise propagation during the iterative process, etc. Alternatives can be derived on
the Bayesian framework obtaining the formulations of e.g.,Maximum A Posterior (MAP), Maximum
Entropy (ME). Both of them present the possibility to include a prior knowledge about e.g., source
distribution, expected level of noise. Corruption of solutions by noise can simultaneously be overcame
including a regularization step, which incorporates constraints of the object, e.g., the smoothness degree
of the solution. A regularization method is to change the cost function by adding a roughness penalty,
which can be either separable or non-separable, quadratic or non-quadratic, and convex or non-convex.

Optimization of the estimation criterion implies the choice between Expectation-Maximization (EM)
based iterative algorithms, e.g., Ordered-Subsets EM (OSEM) [Hudson and Larkin, 1994], Generalized
EM (GEM), Space-Alternating Generalized EM (SAGE) [Fessler and Hero, 1995], and direct optimiza-
tion algorithms, e.g., coordinate descent, conjugate gradient. Versions of estimation methods as well as
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optimization algorithms were applied to PET, SPECT data. Reviews of iterative methods are presented
in [Vandenberghe et al., 2001], [Qi and Leahy, 2006], [Defrise and Gullberg, 2006].

Consider the discrete expression of the source function is given by

f =
∑

j

fjbj (3.10)

wherefj is the average value of functionf at pixelj. Thefj is the coefficient off on the basisbj .
LetM be the measurement model, and supposeM is linear.

y = Mf = M(
∑

j

fjbj) =
∑

j

M(bj)fj (3.11)

and
yi =

∑

j

Mi(bj)fj (3.12)

ConsiderT the response matrix of the imaging system. The discrete expression ofT is related to the
source function by

yi ≃
∑

j

tijfj (3.13)

whereyi is the measured data at bini. The response matrix represents the transition probabilities tij that
an emission fromfj was detected inyi, i.e.,tij = Mi(bj) depend on the source model and measurements.

Considere the difference between the two sides of Equation (3.13), which can be then written as

y = Tf + e (3.14)

wheree denotes the measurement errors.
The discrete reconstruction problem can be formulated as the estimation of the image vectorf given

the measured datay = {yi, i = 1, N}. Iterative methods start from an initial solutionf0, which is
forward projected resultingy ∼ Tf0. The latter is compared to the measured projections, and updated
based on the knowledge about their ratio. The step is repeated until an acceptable solution is obtained.
Iterative algorithms differ when considering the method which compares the current estimate to the
measured data, and the application method of the correction.

3.1.2.1 Algebraic reconstruction techniques

Algebraic Reconstruction Techniques (ART) are one of the first technique used for image reconstruc-
tion from projections, being proposed as an alternative to direct Fourier reconstruction. It is essentially
identical to a technique described by Kaczmarz (1937) to solve a system of simultaneous equations. The
original ART algorithm [Gordon et al., 1970] looks for solutions toy = Tf , assuminge = 0, and the
existence of a unique solution. The algorithm requires modifications to allow reasonable solutions in
realistic conditions.

The additive ART algorithm considers the vectormi as the transpose of theith row of matrixT .
Consider an arbitrary initial solutionf0. The additive iterative formula can be written as

fk+1 = fk +
yi −mi · fk
mi ·mi

mi (3.15)

wherei = (kmodJ) + 1, andJ is the number of elements inf . Note that only one element ofy and
the corresponding row ofT are used to updatef . To obtain a complete update onf using all rows ofT
requires several iterations. Variations of the basic algorithm are presented in [Herman and Lent, 1976].
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3.1.2.2 Maximum-likelihood algorithms

The ML reconstruction technique was introduced in emissionCT by [Lange and Carson, 1984] in con-
junction with the EM algorithm, taking into account the statistical nature of photons emission. The ML
criterion states that the best estimate of the sourcef has to give the greatest probability of obtaining the
measurementy. This condition can be expressed as the following

f̂ = arg max
f≥0

p(y|f) (3.16)

The method can be summarized as follows. Considering the detection process is a Poisson process,
the probability of observingyi events in theith bin is given by

yi ∼ Poisson(~yi)⇒ p(yi|f) = e−ȳi
ȳi
yi

yi!
, i = 1, N (3.17)

whereȳi is the mean number of photons detected in bini, being expressed as the sum of the mean number
of photons emitted from all source pixels times the transition probabilities:

ȳi =
M
∑

j=1

tijfj (3.18)

Assuming the number of detected photons in all bins independent variables, the likelihood function
is

p(y|f) =
N
∏

i=1

P (yi|f) =
N
∏

i=1

e−ȳi
ȳyii
yi!

(3.19)

Maximization of the likelihood function is equivalent to find the maximum of the log-likelihood
function. The log-likelihood function can be expressed as follows

l(y|f) =
N
∑

i=1

yi log(ȳi)− ȳi − log(yi!)) (3.20)

=
N
∑

i=1

(yi log(
M
∑

j=1

tijfj)−
M
∑

j=1

tijfj − log(yi!)) (3.21)

According to the ML criterion, to estimate the sourcef giving the highest probability of generatingy,
is equivalent to find the maximum ofl(y|f). The existence of local maximum of the likelihood function
is assured by the Kuhn-Tucker conditions. In addition, if the function is concave, the local maximum is
a global maximum. The Kuhn-Tucker conditions of a solutionf∗ to maximizel(y|f) are given by

∂l(y|f)

∂fj
|f=f∗ =







= 0 if f∗j ≥ 0

≥ 0 if f∗j = 0
(3.22)

while the first and second derivatives of the log-likelihoodfunction are

∂l(y|f)

∂fj
=
∑

i

tij

(

yi
∑

k tikfk
− 1

)

(3.23)

∂2l(y|f)

∂fj∂fl
= −

∑

i

tijtilyi
(
∑

k tikfk)
2

(3.24)
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A necessary and sufficient condition for a function to be concave is to have its Hessian negative
semi-definite

∑

j

∑

l

cjcl
∂2l(y|f)

∂fj∂fl
≤ 0 (3.25)

for all vectorsc = {c1, c2 · · · cN}, and all non-negative imagesf ≥ 0. Considering the Equation (3.24),
the inequality (3.25) is verified, resulting that the log-likelihood function is concave.

The straightforward way to find a local maximum off is to compute its partial derivatives and to
equal them to zero.

∂l(y|f)

∂fj
= −

N
∑

i=1

tij +
N
∑

i=1

yitij
∑M
j=1 tijfj

(3.26)

Note that
∑N
i=1 tij is the detection sensitivity, which is the probability thata photon emitted from

pixel j will be detected.

EM algorithm

Finding the maximum of Equation (3.26) is a difficult processbecause of its non-linearity, so the
use of a numerical method is required. The iterative EM algorithm asymptotically achieves the ML of
f . At each iteration, the EM algorithm consists of two parts. The first one is the expectation step (E-
step), where the expectation of the likelihood function is obtained in terms of complete data, given the
measurementy, and the estimationfk from the previous iteration. The second one is the maximization
step (M-step), where the estimationfk+1 of the current iteration can be obtained as the critical points of
the expectation function calculated in the E-step.

To satisfy the requirement for a complete data set for the EM algorithm, the random variablezij is
introduced as the unobserved data

zij =







1, if eventj originated in bini

0, otherwise
(3.27)

The relation between the measurements and complete dataŷi can be expressed

ŷi =
M
∑

j=1

zij =
M
∑

j=1

tijfj (3.28)

The log-likelihood in terms of complete data may be written

l(zij |f) =
N
∑

i=1

M
∑

j=1

(zij log(tijfj)− tijfj − log(zij !)) (3.29)

In the E-step, the conditional expectation of the log-likelihood with respect to the measured data, and
the estimationfk from the previous iteration is

E[l(zij |f)|y, fk] =
N
∑

i=1

M
∑

j=1

(Nk
ij log(tijfj)− tijfj) (3.30)

where

Nk
ij = E[zij |yi, fk] = yi

tijf
k
j

∑M
j=1 tijf

k
j

(3.31)
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In the M-step, the maximum estimatefk+1 can be computed by setting derivative of Equation (3.30)
to zero:

∂E[l(zij |f), y, fk]

∂fj
=

[

1

fj

∑

i

Nk
ij −

∑

i

tij

]

|f=fk+1 = 0 (3.32)

where
∑N
i=1 tij = sj is the detection sensitivity.

3.1.2.3 Bayesian methods

ML based algorithms incorporate information about the Poisson nature of photons emission, and in
addition the constraint of non-negativity. Other information possible to include may be the bounds of
the solution as well as its derivatives up to a certain order.In case of Bayesian approach, the additional
information is given by statistical properties of the object, e.g., the probability density off denotedp(f),
and called prior. The joint probability density of(f, y) is given by

p(f, y) = p(y|f)p(f) (3.33)

Introducing the marginal probability density ofy, and applying the Bayes formula, the conditional
probability density off for a given valuey is given by

p(f |y) =
p(f, y)

p(y)
=
p(y|f)p(f)

p(y)
(3.34)

The MAP estimate of the source is defined as the function whichmaximizes the a posteriori proba-
bility density

f∗ = arg max
f≥0

p(f |y) (3.35)

Considering the log ofp(f |y), the MAP estimator can be written

φ(f) = l(y|f) + log p(f) (3.36)

which represents the sum of the log-likelihood and the log ofthe prior. Widely used priors are inde-
pendent of the source values, or based on interaction models. The first class includes the Gaussian
model [Huesman et al., 2000], which results in a quadratic form, the gamma prior [Lange et al., 1987]
which allows non-negative values of source function. Independent priors can be derived based on the
maximum entropy criterion [Liang et al., 1989]. The prior has the following general form

p(f) =
1

C

N
∏

i=1

e−fi log(fi) (3.37)

whereC is a normalization factor. These priors require the estimation of the mean values of the object,
causing biased solutions. Priors using the Markov random models are known as Gibbs distributions. The
Gibbs distribution has the following general form

p(f |β) =
1

C
e−β U(f) (3.38)

whereU(f) is the Gibbs energy function.
Using a priori information may be viewed as the integration of a ’penalty’ term at each iteration. As

the prior, the penalty term could generate the intended properties to the reconstructed images, e.g., the
smoothness level. A challenge is to choose the optimal method of penalty application.
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Figure 3.2: Illustration of the conic projection from the
Compton scattering event generated by a point M of the
source. The event is defined by the first interaction at the
position~r1, the position~r2, and the Compton scattering
angleθg. The dotted lines indicate the cone defined by
the unit vector~β, and the Compton angleθg.

3.2 Inversion of Compton scattered data

In transmission and emission CT problems, the measured dataare expressed as line integrals. In case
of Compton scattered data reconstruction, the back-projection of a detected event leads to photon source
localization on the surface of a cone (see Section 2.2.4).

In the following, the analytical as well as the iterative approaches proposed to reconstruct data gener-
ated by a Compton scattering based detector are presented. Analytical methods were investigated using
deterministic data; herein, the method proposed by [Cree and Bones, 1994] is detailed, considering the
most simplistic model of Compton scattering camera. Iterative methods allow integration of measure-
ment uncertainties in on a straightforward manner. Therefore, ML based estimation and related penalized
likelihood versions are widely applied. Even if analytic methods have generally several disadvantages in
comparison to their iterative counterparts, they are nevertheless important for the insight they bring into
the Compton image reconstruction problem.

3.2.1 Analytical methods

Consider the generic Compton camera presented in Section 2.2.1. The measured datag are expressed
as the integration of the photon source distribution over the surface of the cone defined byr1, r2 andθg
(Figure 3.2). This quantity, labeledg(r1, ~β, θg), is called cone-surface projection, which has the form

g(r1, ~β, θg) =

∫

cone
wfdS (3.39)

wherew is the weighing factor issued from geometrical considerations, described by e.g., Klein-Nishina
cross-section. Here, the photons source of intensity function f is a positive and real valued function with
compact support.

Consider

• the unit vectors~α, ~β, which satisfy the realation~α · ~β = cos θg

• with respect to the cone axis,θg andφ are the polar and the azimuthal angles, respectively, de-
scribing~α, thus~α = ~α(~β, θg, φ)

• r is the distance from the apex to a given point of the cone

then the cone-surface projection has the form

g(r1, ~β, θg) = K(θg)

∫ 2π

0

∫ ∞

0
f(r1 + ~α · r)r sin θgdrdφ (3.40)
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whereK(θg) is the Klein-Nishina distribution for Compton scattering.The image reconstruction prob-
lem is to determinef giveng(r1, ~β, θg).

The first attempt to directly invert Compton data was proposed by [Cree and Bones, 1994], where
the solution is limited to cases when the scattering direction is perpendicular to the second detector,
leading to a dramatic loss of data. [Basko et al., 1999] formulated an analytical inversion formula of
Compton projections without considering the distributionof possible scattering angles. The cone surface
projections are transformed into plane projections using spherical harmonics, which allow the application
of the Radon transform, as in case of CT inversion problems. The formulation by spherical harmonics
considers that each detector pixel is the center of an unit sphere independently of the detector geometry
design. [Parra, 2000] completes the previous work by deriving an analytical formula considering the
probability of scattering at different angles based on the Klein-Nishina formula. [Gunter, 2006] applied
a fast FBP algorithm to the inversion problem assuming detectors which should be sensitive to scattering
angles from0◦ to 180◦ degrees. In practice, a Compton camera usually can not provide the complete
set of scattering angles due to geometry limitations. [Tomitani and Hirasawa, 2002] proposed a solution
to the direct inversion problem including this limitation.However, besides the spatially variant and
incomplete sampling, the angular uncertainty needs aslo tobe included into the image reconstruction
algorithm.

3.2.1.1 Inversion of the restricted cone-surface projection

In the following, the algorithm developed by [Cree and Bones, 1994] is presented. The cone-projection is
developed as follows: the scattering detector surface is taken to extend over thexy-plane,r1 = (x, y, 0).
Then, the cone-surface projection reduces to

g(r1, ~β, θg) = K(θg)

∫ 2π

0

∫ ∞

0
f(x+ rαx, y + rαy, rαz)r sin θgdrdφ (3.41)

where~α = (αx, αy, αz) = (sin θg cosφ, sin θg sin φ, cos θg).
[Cree and Bones, 1994] considers only the subset of cone-surface projections where~β = z. The

cone-surface projection is now denoted as the restricted cone-surface projection,g(x, y, θg). Knowing
z = r cos θg, the restricted cone-surface projection is given by

g(x, y, θg) = K(θg)
sin θg
cos2 θg

∫ 2π

0

∫ ∞

0
f(x+ z tan θg cosφ, y + z tan θg sinφ, z)zdzdφ (3.42)

Denotingtan θg = t, the restricted cone-surface projection has the form

g(x, y, t) = K(t)t
√

1 + t2
∫ 2π

0

∫ ∞

0
f(x+ zt cosφ, y + zt sin φ, z)zdzdφ (3.43)

The restricted cone-surface projection can be analytically inverted, and the inversion is stated by the
following theorem:

Theorem 3.2.1 From a complete set of restricted cone-surface projections, i. e.,g(x, y, t) for (x, y) ∈
R2 andt ∈ [0,∞), the gamma ray source distributionf(x, y, z) can be reconstructed.

Proof The inversion is performed in the Fourier space

G2(u, v, t) = F2[g(x, y, t)] (3.44)

F2(u, v, t) = F2[f(x, y, t)] (3.45)

whereF2 denotes the2D Fourier transform.
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ConsiderF2 acts on both sides of Equation (3.43), and apply the Fourier shift theorem

G2(u, v, t) = K(t)t
√

1 + t2
∫ 2π

0

∫ ∞

0
F2(u, v, z)e2πizt(u cosφ+v sinφ)zdzdφ (3.46)

By expressing the rectangular coordinate pair(u, v) in terms of the polar coordinates pair(ρ, ϕ) in
Equation (3.46), theφ-integral is recognizable as the standard integral definition of the zero-order Bessel
function of the first kind.

G2(u, v, t) = K(t)t
√

1 + t22π

∫ ∞

0
F2(u, v, z)J0(2πzt

√

u2 + v2)zdz (3.47)

Thez-integral is a zero-order Hankel transform acting onF2.
Letting ξ = z

√
u2 + v2 allows to write

G2(u, v, t) =
K(t)t

√
1 + t2

u2 + v2
H0[F2(u, v,

ξ√
u2 + v2

)](ξ → t) (3.48)

The Hankel transform is self-reciprocal, so

F2

(

u, v,
ξ√

u2 + v2

)

= H0[
u2 + v2

K(t)t
√

1 + t2
Λ2(u, v, t)](t→ ξ) (3.49)

where care must be taken to excludet = 0.
An inverse Fourier transform will givef , however the transform has to be performed on the surface

defined byz = ξ√
u2+v2

in the(u, v, z)-space.

3.2.1.2 Inversion of the Compton transform using the full set of available projections

Reconsider that the solution proposed by [Cree and Bones, 1994] assumes the scattered gamma-ray
direction perpendicular to the detectors. In the following, an approach towards an inversion formula
of the cone-surface projections using the full set of data possible to measure is presented. A slightly
modified model of Compton projections is adopted [Maxim et al., 2009], namely

g′(u1, u2, ω, ψ, θg) = w

∫

M∈C(u1,u2,ω,ψ,θg)
f(M) cos ΘdS (3.50)

whereΘ denotes the polar angle of the cone’s pointsM , while ω ∈ [0, π/2), andψ ∈ [0, π) denote
the polar angle and the azimuthal angle of the cone’s axis, respectively (Figure 3.3 (a)). The model of
Compton projections is based on the model proposed by [Gunter, 2006], and it assumes that the projec-
tionsg′(·, ·, ω, ψ, θg) of a source of intensityf , described by a point(u1, u2) ∈ R

2, are proportional to
the integral of the incoming flux intensity on the surface of the coneC(u1, u2, ω, ψ, θg).

The solution proposed by [Cree and Bones, 1994] can be now described as follows

g(x, y, θg) = g′(x, y, 0, 0, θg) (3.51)

The parametric expression of the Compton projections writes

g′(u1, u2, ω, ψ, θg) = K(θg)

∫ ∞

0

∫ 2π

0
f(u1 + zc(ω, θg) + za(ω, θg) cosφ,

u2 + zb(ω, θg) sin φ, z)zb(ω, θg)dφdz (3.52)
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(a) Spatial domain. ConeC(0, 0, ω, ψ, θg). (b) Fourier domain. ConeCF (ω, θg).

Figure 3.3: (a) Spatial domain. The Compton projections arethe result of the integration on the surface of the cones, which
present parallel axes, and the same Compton angleθg. Each cone is a translation of the coneC(0, 0, ω, ψ, θg). (b) Fourier
domain. The dashed line represents a line of the Fourier transform of the Compton projections. The solid line representsone
slice of the Hankel-Fourier transform off on the surface of the coneCF(ω, θg).

where

a(ω, θg) =
sin θg cos θg

cos2 ω − sin2 θg
, (3.53)

b(ω, θg) =
sin θg

√

cos2 ω − sin2 θg
, (3.54)

c(ω, θg) =
sinω cosω

cos2 ω − sin2 θg
(3.55)

The quantitiesza(ω, θg) andzb(ω, θg) are respectively the major and minor half-axes of the ellipse
describing the projections, whilezc(ω, θg) represents the distance from the center of the ellipse to the
vertical axisOz.

The inversion is derived similarly to [Cree and Bones, 1994], yielding the following formula

f(x, y, z) =

∫ ∞

−∞

∫ ∞

−∞

∫ π
2
−ω

0

b′θg(ω, θg)

K(θg)
F2(g′)(η1, η2, ω, ϑ + ǫ

π

2
, θg)

J0(2πzb(ω, θg)
√

η2
1 + η2

2)dθg

exp(2iπ(xη1 + yη2))(η2
1 + η2

2)dη1dη2 (3.56)

where

b′θg(ω, θg) =
cos2 ω cos θg

(cos2 ω − sin2 θg)3/2
> 0 (3.57)

Only a set of projections is considered, namely projectionsfor which the axis has the azimuthal angle
of ψ = ϑ + ǫπ/2, whereǫ = ±1, andϑ denotes the polar angle of an arbitrary fixed point(η1, η2) in
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ω = 0 z = 5 r = 2.5 ω = 0 z = 3 r = 1.5 ω = 0 z = 7 r = 1.5

Figure 3.4: Spherical source situated at(0.5, 0.5, 5), radiusR = 2.5 units. Detector of size30× 30 units atz = 0. One slices
is represented forω = 0 corresponding (from the first to the third column) toz = 5 (center of the sphere),z = 3 (not empty
intersection, close to the detector) andz = 7 (the same distance from the center of the sphere, but furtherfrom the detector).
The intersection between the sphere and the horizontal plane is a disc with radiusr.

ω = π/6 z = 5 r = 2.5 ω = π/6 z = 3 r = 1.5 ω = π/6 z = 7 r = 1.5

Figure 3.5: Spherical source placed at(0.5, 0.5, 5), radiusR = 2.5 units. Detector of size30× 30 units atz = 0. One slice is
represented forω = π/6 corresponding (from the first to the third column) toz = 5 (center of the sphere),z = 3 (not empty
intersection, closer to the detector) andz = 7 (the same distance from the center of the sphere, but furtherfrom the detector).
The intersection between the sphere and the horizontal plane is a disc with radiusr.

ω = π/3 z = 5 r = 2.5 ω = π/3 z = 3 r = 1.5 ω = π/3 z = 7 r = 1.5

Figure 3.6: Spherical source placed at(0.5, 0.5, 5), radiusR = 2.5 units. Detector of size30× 30 units atz = 0. One slice is
represented forω = π/3 corresponding (from the first to the third column) toz = 5 (center of the sphere),z = 3 (not empty
intersection, closer to the detector) andz = 7 (the same distance from the center of the sphere, but furtherfrom the detector).
The intersection between the sphere and the horizontal plane is a disc with radiusr.

the Fourier space (Figure 3.3 (b)). The discrete form of the inversion formula may be found in [Maxim
et al., 2009].
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ω = π/6 z = 5 r = 2.5 ω = π/6 z = 3 r = 1.5 ω = π/6 z = 7 r = 1.5

Figure 3.7: Spherical source of radiusR = 2.5 placed in front of a detector of30× 30 units and60× 60 pixels. The artifacts
due to the finite dimension of the detector are reduced compared to Figures 3.4, 3.5.

In the following, several numerical experiments are presented, using simple, mathematical tractable
source conditions. The scatter detector is sampled on a discrete grid, considering only the center of a pixel
is sensitive and receives information. For spherical sources, Formula (3.52) may be partly calculated
analytically: for a fixed angleφ, the values of thez coordinates of the points of the cone belonging to
the source are solutions of a second order inequality defining the sphere and its interior. Thus an interval
depending onφ is obtained. Since the considered sources are of uniform intensity1, the integral inz is
just the length of this interval, and only discretisation inφ is required.

In most of the tests a scatter detector of size30 × 30 units divided in equal square pixels situated in
the planez = 0 is considered. The center of the coordinate system is placedat the center of the scatterer.

The sampling inθg is equispaced, covering the interval(0, π/2−ω). The disadvantage of this choice
is to suppose that the energy resolution of the detector depends onω. Also, the integration step is not
constant from one value ofω to another. The energy resolution of the absorber, except the one induced
by the discretization scheme inθg, is not considered. A simple rectangle method was considered herein.

Figures 3.4, 3.5, 3.6 show three reconstructed slices of a sphere with radiusR = 2.5 and center
situated at(0.5, 0.5, 5). Following the altitude of the cut, the expected result is a disc with radiusr as
indicated downside each image. Asω grows, the reconstructed radius is slightly larger than expected,
especially in the in the upper slice, due to the finite size of the scatter detector and border effects.

A finer sampling of the detector is considered for the numerical test from Figure 3.7. A spherical
source of radiusR = 2.5 units was placed at a distance ofz = 5 units from a scatter detector, whose size
was30× 30 units sampled in60 × 60 pixels [Maxim et al., 2009].

3.2.2 Iterative methods

The section presents an overview of iterative methods applied to Compton scattering data reconstruction.
The presentation is not an exhaustive description of all proposed reconstruction methods, but an illustra-
tion of the principal approaches adopted to attain an efficient Compton data reconstruction. The methods
are presented without references about the configuration ofthe Compton camera. Note that all algorithms
were applied using projection data generated according to aparticular geometry of the detector.

Reconsider the view of Compton image reconstruction as a twostage method. The first stage in-
cludes Compton data back-projection, while the second stepimproves the initial back-projected image
by applying an iterative algorithm. The latter includes mostly algorithms which were previously used to
reconstruct PET, or SPECT data. The early approach proposedthe application of ART algorithms [Singh
and Doria, 1983b]. Afterwards, MLEM based algorithms were widely used for Compton reconstruc-
tion [Sauve et al., 1993], [Wilderman et al., 1998a].

Computation of the maximal solution by direct resolution ofEquation (3.26) is a complicated process
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since the equation is not linear. A possible alternative is to achieve asymptotically the ML off by an
iterative algorithm. A commonly used approach is the EM algorithm. In the first step, i.e. the E-step,
the expectation of the likelihood function is obtained fromthe complete data given the measurement
y and the estimation off from the previous iteration. The second step called the M-step, maximize
the expectation of the current iteration by solving the derivatives of the expectation functions from the
E-step. The iterative ML-EM formula has the following form

fk+1
j =

fkj
∑N
i=1 tij

N
∑

i=1

yitij
∑M
b=1 tibf

k
b

(3.58)

where
∑N
i=1 tij = sj is the detection sensitivity.

An accelerate version of the EM algorithm is adopted by [Kim et al., 2007], analyzing several meth-
ods to group the conical projection data into ordered subsets. The OSEM algorithm applies the EM
algorithm to each sub-objective function. The update equation has the form

f
(k,l+1)
j =

f
(k,l)
j

∑

i∈Sl tij

∑

i∈Sl

yitij
∑M
b=1 tibf

(k,l)
b

(3.59)

wheref (k,l)
j denotes the image estimate at thekth iteration andlth subset, whileSl denotes thelth subset.

All the proposed versions of the OSEM algorithm overrun the classical EM algorithm, while it preserves
the same overall quality.

The reconstruction problem can be reformulated in a Bayesian framework, including a prior distribu-
tion on the image. The prior reflects characteristics of image, e.g., the smoothness degree. The image is
computed as the MAP estimate from the posterior density for the image conditioned on data. A Bayesian
framework approach is investigated in [Lee, 2008]. The costfunction is a maximum a posteriori es-
timate, while the iterative algorithms are firstly, a row-action method and secondly, a block-sequential
method, which is a relaxed version of the OSEM method. The regularization is done by using a convex
non-quadratic smoothing prior. The prior information reflects assumptions about the spatial distribution
of the source. Both algorithms are applied in their binned-data version.

When considering Row-Action ML Algorithm (RAML), the projection data are ordered in a sequence
of p disjoint subsetsSl, l = 1, p. The update equation has the form

f
(k,l+1)
j = f

(k,l)
j − ǫkf (k,l)

j

∑

i∈Sl
tij



1− yi
∑

j tijf
(k,l)
j



 , l = 1, p (3.60)

wherefk = f (k,p), fk+1 = f (k+1,p), andǫk represents a sequence of positive relaxation parameters,
which are fixed throughout a complete cycle of the subsets.

Block-Sequential EM algorithm (BSEM) with regularizationconsists of two steps, an update of ML
using RAML, and a secondary update in the gradient directionof the prior.

1.
f

(k,l+1)
j = f

(k,l)
j − ǫkf (k,l)

j

∑

i∈Sl
tij(1−

yi
∑

j tijf
(k,l)
j

), l = 1, p (3.61)

2. Setfk+1/2 = f (k,p) and compute

fk+1 = fk+1/2 − ǫkDk ▽ Ep(f
k+1/2) (3.62)

whereDk is the diagonal matrix,Dk = diag(fk+1/2).
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The algorithms are similar to the J. Fessler’s versions, e.g., [Fessler and Hero, 1994].
[Wilderman et al., 1998a] derived the MLEM algorithm in list-mode, and applied it to Compton

data, resulting in a significant computational advantage over approaches using binned projection data.
The algorithm is presented in Section 5.1.

Compton scattering data reconstruction proved a necessaryasses in imaging far-field point sources.
The Bayesian technique including the maximum entropy priorwas applied by [Strong et al., 1990] to
reconstruct COMPTEL data. Both ML and ME based estimations consider the pixel size constant in the
reconstruction, rendering "the biggest errors under the brightest sources" [Dixon et al., 1996]. A way
to overcome the pixel size constraint, the notion of pixon was introduced, representing a generalized,
flexible pixel. Pixon based methods allow to change the model, e.g., the system response, parameters
according to the information available in the measured data. The application of a method version in case
of COMPTEL data is reported in [Dixon et al., 1996].



Chapter 4

A tracking Compton imaging system for
hadron therapy

A novel detection method based on Compton scattering process is proposed as solution to gamma-rays
imaging during hadron-particle therapy [Frandes et al., 2010c]. Imaging gamma rays emitted during
target irradiation by hadron beams is a way to verify the location of the deposed dose.

First, the dose distribution as well as the generated particles are analyzed, considering a simplified
hadron therapy scenario. Section 4.1 describes the emission of gamma rays during the first second of the
irradiation, while Section 4.2 presents the projections oftheir origin emission at different energy bands.

In the following, an instrument operating in the required energy regime, called MEGA prototype
(“Medium-Energy Gamma-ray Astronomy”) is introduced. MEGA was the first fully calibrated and
successfully operating combined Compton and pair telescope, capable of measuring gamma rays in the
energy range from roughly400 keV up to50 MeV. Based on the MEGA prototype measurement princi-
ple, an advanced Hadron Therapy Imaging HTI system model wasdesigned and optimized for detection
of gamma rays in the Compton energy regime. It is capable of tracking a gamma ray through several
Compton interactions until it is stopped via photoelectriceffect, and also of tracking recoil electrons.
The Compton scatter angle of the first interaction and the positions of the first two interactions allow
to restrict the direction of the incident gamma ray to a cone surface. The reconstruction of the recoil
electron direction enables to further restrict the origin distribution to a cone segment.

Section 4.3 introduces the proposed detection technique based on Compton gamma-ray tracking and
describes the design of the HTI system as well as its simulated performance. Section 4.3.6 presents the
reconstructed images of Compton scatter events simulated with the HTI system. Section 4.3.7 discusses
the impact of the used imaging algorithm on the presented results. Conclusions are presented in Section
4.4.

4.1 Simplified hadron therapy scenario

Monte Carlo simulations were performed using the Geant4 package [Agostinelli et al., 2003] (version
9.1) with its front end Cosima [Zoglauer et al., 2006]. The Geant4 Livermore package including the
Doppler-broadening extension G4LECS [Kippen, 2004] was used for electromagnetic interactions, and
the standard QGSP-BIC-HP physics list for hadronic interactions. The considered simulation configu-
ration consists of a PMMA (C5H8O2) phantom, which was irradiated by three mono-energetic pencil
proton beams with an intensity fixed at106 protons/second. The start point of beam is alongy-axis at
−7.5 cm. The phantom is a sphere with7.5 cm radius centered at41.5 cm onz-axis (Figure 4.1).

Figure 4.2 illustrates depth dose deposition of three energies proton beams in the PMMA phantom.
Fragments mostly travel in forward direction at almost the same rate as the incident ions. They can cause
further fragmentation reactions. In contrast, the target nuclei remain approximately at the interaction

57
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.

beam

direction

x

0 y

z

.

Figure 4.1: Schematic representation of the setup
used for gamma ray emission simulations. The
center of phantom represented by a PMMA sphere
is situated atz = 41.5 cm.

position (Figure 4.2). Figure 4.3 shows the 2D dose deposition profiles of70, 100, and140 MeV proton
beam into the phantom. The first line represents thexy-projections for the three proton beam energies,
the second line represents thexz-projections, and the third line shows theyz-projections, considering
z = 0, y = 0, andx = 0, respectively.

Dose distribution of hadron beams is due to both primary and secondary particles. The secondary

x

y

z
(a) (b) (c)

Figure 4.2: Dose deposition profiles of (a) 70 MeV, (b) 100 MeV, and (c) 140 MeV proton beam into a phantom, which is
represented by a PMMA sphere. The entrance point in the phantom is aty = −7.5 cm. The calculation was done by Monte
Carlo simulations using Geant4.
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Figure 4.3: 2D Dose deposition profiles of (a) 70 MeV, (b) 100 MeV, and (c) 140 MeV proton beam into a phantom, which is
represented by a PMMA sphere. The entrance point in the phantom is aty = −7.5 cm. The calculation was done by Monte
Carlo simulations using Geant4.

particles are issued mainly from nuclear interactions, being important for the treatment plan calculation,
regarding both dose deposition and RBE of the incident beams. Meanwhile, secondary neutrons may
deliver dose outside the target volume, creating a less desirable effect. In its counterpart, emitted sec-
ondaries such as gamma rays following nuclear reactions canbring a valuable information about the
location of the deposed dose during the treatment. In the following, emission location of secondaries
which escape the PMMA phantom during the first second of proton beam irradiation are retrieved. The
emission location as well as the energy spectrum of gamma rays which escape during phantom irradiation
by the proton beam at140 MeV are also analyzed.

Interactions occurring between the incident proton beam and the target determine emissions of var-
ious secondary particles, which further escape the phantom, e.g.,β, e−, e+, n. Along with the primary
particles, the emitted secondaries are also highly important for hadron therapy since they contribute to
both deposed dose distribution, and RBE of the beam irradiation. Figure 4.4 shows the emission projec-
tions of secondarye+ particles during the first second of irradiation by the proton beam at140 MeV. The
emission is isotropic, without presenting a well-defined pattern.

Figure 4.5 shows the emission projections of secondaryn particles during the first second of irradia-
tion by the proton beam at140 MeV. The emission follows the proton beam path, presenting acontinuous
profile with a reduced fall-down at about the Bragg peak location, and a rather spread tail after it. The
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Figure 4.4: Profile projections of escapinge+ particles during PMMA irradiation by a proton beam at140 MeV. (a)x-projection
(y = 0,z = 0), (b) y-projection (x = 0,z = 0), (c) z-projection (x = 0,y = 0).
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Figure 4.5: Profile projections of escapingn particles during PMMA irradiation by a proton beam at140 MeV. (a)x-projection
(y = 0,z = 0), (b) y-projection (x = 0,z = 0), (c) z-projection (x = 0,y = 0).

activity observed after the Bragg peak may cause dose deposition at undesired regions of the target vol-
ume. The other emitted particles present a lower activity inthe first second of irradiation, and most of
them are absorbed into the phantom.

Nuclear gamma rays issued from de-excitation of nuclei present an emission time less than a few
nanoseconds, according to the nuclear state of the emittingnucleus (see Section 1.1.3.2). Moreover,
correlation was observed between their origin emission profile and the dose distribution lateral profile.
Figure 4.6 shows the dose deposition as well as the simulateddistribution of originated nuclear gamma
rays along the beam path for the first second of irradiation. Just before the proton comes to rest, a pro-
nounced sharp profile of gamma-ray distribution can be observed. Hence, the profiles of dose distribution
and emission location of escaping gamma rays are correlated.

The simulated energy spectrum of emitted gamma rays (i.e., those leaving the phantom) during the
140 MeV proton beam irradiation can be found in Figure 4.7. It shows a continuum ranging up to
roughly 20 MeV and some nuclear lines. The most prominent lines are the511 keV line from positron
annihilation and the4.4 MeV excitation line from carbon. The same nuclear lines can be observed for
the other considered proton beam energies, e.g.,70 MeV and100 MeV. The energy spectra of gamma
rays depend on the energy states of the excited nuclei. Therefore an unique spectrum is expected for each
element composing the phantom.

Simulations indicate that during the first second of irradiation, roughly10% of the protons at70 MeV
lead to gamma rays, which escape the PMMA phantom isotropically. When the beam energy is140 MeV,
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the number of gamma photons increases to roughly30% of the delivered protons.
The distribution of emitted particles is a function of theirorigin position. Obviously, close to the entry

position of the beam into the phantom lower energy gamma rayscan more easily escape the phantom.
In addition, simulations show an increased concentration of escaping gamma rays with energies above
1 MeV close to the Bragg peak. Gamma rays with energies between1 MeV and10 MeV represent the
dominant emission during the irradiation, with an intensity peak at the location of the Bragg maximum.

The time considered is the first second of irradiation. Note that gamma-ray emission issued from
β+-activity is unlikely due to rather longβ-decays time. Therefore, the ’prompt emission’ is the main
gamma-ray activity in the considered time interval. Additional description of the gamma ray emission
during proton beam irradiation is presented in Section 4.2.

4.2 Projections of gamma ray emission

Consider the simulation configuration presented in Section4.1. The2D emission projections of gamma-
rays which escape the phantom during the first second of irradiation by the proton beam at three different
energies are presented. Firstly, the origin position of thegamma rays leaving the phantom during the first
second of irradiation without energy range restriction areshown. In this case, origin means either the
creation location, if the gamma ray left the phantom unscattered, or the last scatter position (last position
of direction change), if the gamma ray was subject to e.g., a Compton scatter. Figures 4.8, 4.12, 4.16
show the projections in case of proton beam at70 MeV, 100 MeV, and140 MeV, respectively.

Protons collisions generate radioactive elements, which have a certain life-time, i.e., decay after a
given time, e.g.,121.8 s for 15O, 1222.8 s for 11C, 19.3 s for 10C. Thus in the first second of irradiation,
most of the annihilation photons are from pair production, which appear somewhere within the phantom.
Figures 4.9, 4.13, 4.17 shows the origin position of the gamma rays at511 keV leaving the phantom
during the first second of irradiation, in case of proton beamat70 MeV, 100 MeV, and140 MeV, respec-
tively. Only over the time, an increasingly strong component of gamma rays fromβ-decays is released
within the proton beam path.

Considering the energy interval [2 MeV, 8 MeV], gamma rays leaving the phantom are presented in
Figure 4.10, 4.14, 4.18. When including the energy intervalrestriction of [8 MeV, 30 MeV], emission
projections of gamma rays leaving the phantom in the first second of irradiation are presented in Figure
4.11, 4.15, 4.19 for the three proton beam energies, respectively.

The origin emission pattern of gamma rays which leave the PMMA phantom within the first second
of proton beam irradiation may be approximated to a ’line’. The energy spectrum of the line emission
presents the lowest energy, e.g., below500 keV, at the beginning of the path. Gamma rays at energy
ranges, e.g., between2 MeV and8 MeV, are distributed all along the path with an intensity peak located

Figure 4.6: Simulated depth dose deposition pro-
file (dotted line) and simulated depth distribution
profile of originated nuclear gamma rays (solid
line) in PMMA phantom for proton beam irradia-
tion at140 MeV. The start point of beam in PMMA
is y =−7.5 cm.
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Figure 4.7: Simulated energy spectrum of gamma
rays with energies below30 MeV leaving the
PMMA phantom during irradiation by a proton
beam at140 MeV.
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Figure 4.8: Simulated2D images of (a) xy-projection, (b) xz-projection, (c) yz-projection of the emission location of gamma
rays leaving the PMMA phantom during irradiation by the proton beam at70 MeV.

at about0.5 cm before the Bragg maximum. The highest energy range of the emitted gamma rays is
concentrated at the Bragg peak location.
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Figure 4.9: Simulated2D images of (a) xy-projection, (b) xz-projection, (c) yz-projection of the emission location of gamma
rays at 511 KeV energy, leaving the PMMA phantom during irradiation by the proton beam at70 MeV.
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Figure 4.10: Simulated2D images of (a) xy-projection, (b) xz-projection, (c) yz-projection of the emission location of gamma
rays at energy interval [2 MeV, 8 MeV], leaving the PMMA phantom during irradiation by the proton beam at70 MeV.
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Figure 4.11: Simulated2D images of (a) xy-projection, (b) xz-projection, (c) yz-projection of the emission location of gamma
rays at energy interval [8 MeV, 30 MeV], leaving the PMMA phantom during irradiation by the proton beam at70 MeV.
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Figure 4.12: Simulated2D images of (a) xy-projection, (b) xz-projection, (c) yz-projection of the emission location of gamma
rays leaving the PMMA phantom during irradiation by the proton beam at100 MeV.
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Figure 4.13: Simulated2D images of (a) xy-projection, (b) xz-projection, (c) yz-projection of the emission location of gamma
rays at 511 KeV energy, leaving the PMMA phantom during irradiation by the proton beam at100 MeV.

x [cm]
-10 -8 -6 -4 -2 0 2 4 6 8 10

y 
[c

m
]

-10

-8

-6

-4

-2

0

2

4

6

8

10

1

10

210

310

x [cm]
-10 -8 -6 -4 -2 0 2 4 6 8 10

z 
[c

m
]

32

34

36

38

40

42

44

46

48

50

1

10

210

310

410

y [cm]
-10 -8 -6 -4 -2 0 2 4 6 8 10

z 
[c

m
]

32

34

36

38

40

42

44

46

48

50

1

10

210

310

(a) (b) (c)

Figure 4.14: Simulated2D images of (a) xy-projection, (b) xz-projection, (c) yz-projection of the emission location of gamma
rays at energy interval [2 MeV, 8 MeV], leaving the PMMA phantom during irradiation by the proton beam at100 MeV.
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Figure 4.15: Simulated2D images of (a) xy-projection, (b) xz-projection, (c) yz-projection of the emission location of gamma
rays at energy interval [8 MeV, 30 MeV], leaving the PMMA phantom during irradiation by the proton beam at100 MeV.
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Figure 4.16: Simulated2D images of (a) xy-projection, (b) xz-projection, (c) yz-projection of the emission location of gamma
rays leaving the PMMA phantom during irradiation by the proton beam at140 MeV.
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Figure 4.17: Simulated2D images of (a) xy-projection, (b) xz-projection, (c) yz-projection of the emission location of gamma
rays at 511 KeV energy, leaving the PMMA phantom during irradiation by the proton beam at140 MeV.
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Figure 4.18: Simulated2D images of (a) xy-projection, (b) xz-projection, (c) yz-projection of the emission location of gamma
rays at energy interval [2 MeV, 8 MeV], leaving the PMMA phantom during irradiation by the proton beam at140 MeV.
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Figure 4.19: Simulated2D images of (a) xy-projection, (b) xz-projection, (c) yz-projection of the emission location of gamma
rays at energy interval [8 MeV, 30 MeV], leaving the PMMA phantom during irradiation by the proton beam at140 MeV.

4.3 Quality assurance of hadron therapy

4.3.1 The proposed Compton imaging technique

The Compton scattering effect is the dominant interaction process of medium-energy gamma rays, i.e.,
with an energy range from a few hundred keV up to10 MeV, depending on the scatter material. A
way to reconstruct the origin of Compton scattered gamma rays is to record the directions of the sec-
ondary/scattered particles, i.e., measure the direction and energy of the scattered gamma ray as well as
the direction and energy of the recoiled electron. Compton based techniques of energetic gamma-ray
measurement, mainly developed for medium-energy astrophysics, vary according to the capability of
measuring the Compton recoiled electron. One of the standard Compton camera designs consists of a
low-Z scatter material, where the first Compton interactiontakes place, and a high-Z material, where the
scattered gamma-ray is absorbed. If the two detectors are well separated (as it was the case for COMP-
TEL [Schönfelder et al., 1993a]), then time-of-flight measurements are possible. However, here it is
considered a more compact design of the scatterer, which does not allow time-of-flight measurements,
but has the capability to measure the recoil electrons.

The proposed Compton based imaging technique enables the measurement of the recoiled electron

Figure 4.20: Compton imaging technique based
on gamma-ray and electron tracking. Illustra-
tion of the basic detection sub-systems: a central
tracker (the scattering sub-system) is surrounded
by a calorimeter (the absorption sub-system). Both
sub-systems are working in coincidence, i.e., a de-
tectable gamma ray has to undergo at least one in-
teraction in the tracker, and at least one interac-
tion in the calorimeter. The tracker consists of sev-
eral layers, thin enough to track the recoil electron.
The scattered photon is stopped in the second sub-
system.
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direction (Figure 4.20). As a result, the gamma-ray origin can be narrowed down much more, namely
the Compton cone is reduced to a cone segment of a length whichdepends on the measurement accuracy
of the recoiled electron [Zoglauer, 2005].

The proposed Compton imaging technique records individualevents by considering the kinematics
and topology of the Compton interactions. Inherently, all the individual measurements are affected by er-
rors which propagate into the recovery process of the sourceorigin and direction. Moreover, the complex
geometry of detectors illustrating the imaging technique requires a high precision of energy and position
information. However, a definitive limit for the angular resolution possible to attain is represented by the
impossibility to determine the initial (pre-scattering) momentum of the recoiled electron, i.e., Doppler
broadening.

The efficiency of a detector utilizing the proposed Compton based imaging technique is determined
by both detector technologies, and the performance of the algorithms which have to recover what hap-
pened into the detector, i.e., the event reconstruction algorithm, and the algorithm which has to re-
construct the sources , i.e., the image reconstruction algorithm. The goal of event reconstruction is to
correctly order the individual hits in the detector, and then to identify the interactions, e.g., multiple
Compton scatterings, pair creation, along with their parameters, e.g., energy deposits, interaction posi-
tion. The most challenging step of data analysis is image reconstruction, which has to recover the origin
of the sources. Each lost, unassigned, or incompletely reconstructed event lowers the efficiency and in-
creases the background. Hence the capability of the algorithms to accurately perform the data analysis
has a high influence on the overall performance of the detector. Data analysis steps performed in case of
the proposed detector based on the described Compton imaging technique are presented in Section 4.3.4.

4.3.2 Preliminary study

A preliminary study was done by analyzing the response of thesimulated version of the MEGA prototype
in the presence of various gamma-rays and neutron sources. The measurement principle of the prototype
is based on the technique described in Section 4.3.1, additionally enabling detection of pair creation
events. Details about the MEGA prototype can be found in [Andritschke, 2006].

First, five gamma-ray point sources at different energies were placed at an on-axis position at8 cm
above the front side of the imaging detector. The intensity was set to105 photons/second. The energy
of the sources was successively1 MeV, 3 MeV, 8 MeV, 10 MeV, and20 MeV, respectively. Figure 4.21
shows the reconstructed images of the first source. The totalnumber of Compton backprojected events
is 3× 104. Figure 4.22 shows the reconstructed images of the second gamma-ray point source at3 MeV.
The number of backprojected events is4 × 104. Figure 4.23 shows reconstructed images of the8 MeV
point source. The number of backprojected events is5 × 104 Compton scattering still represents the
dominant interaction process, while the pair creation events represent about8.6% of the total recorded
events. The image of10 MeV point source was reconstructed using49 × 103 backprojected events,
respectively (Figures 4.24).

When considering the1 MeV gamma-ray source, the Compton scattering effect is dominant; in
contrast, for the20 MeV sources, the pair creation events result in a higher influence. In case of the
3 MeV point source, the number of pair events used for image reconstruction is103, for the8 MeV source
is 5×103, while for the10 MeV, and20 MeV point sources, is5×103, and104, respectively. Figure 4.25
shows the reconstructed images of the3 MeV and20 MeV point sources using the pair creation events
after19 iterations of the imaging algorithm. At3 MeV, mostly wrongly identified Compton events are
reconstructed, where just one track is present, and the electron genertates a different signature.

A strong correlation between the detector geometry, technologies performance and the quality of
the reconstructed image exists. Errors in events detectionreduce the accuracy of sources localization
(see Section 4.3.7). The angular resolution depends on Doppler broadening and both energy and spatial
resolution of the detector. In case of the prototype, the angular resolution is limited to10◦, depending
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(a) (b)

Figure 4.21: Reconstructed images of the1 MeV point source after (a)7 iterations, and (b)19 iterations.

(a) (b)

Figure 4.22: Reconstructed images of the3 MeV point source after (a)7 iterations, and (b)19 iterations.

(a) (b)

Figure 4.23: Reconstructed images of a8 MeV point source after (a)7 iterations, and (b)19 iterations.
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(a) (b)

Figure 4.24: Reconstructed images of a10 MeV point source after (a)7 iterations, and (b)19 iterations.

(a) (b)

Figure 4.25: Reconstructed images using pair creation events of the (a)3 MeV, and (b)20 MeV point sources after19 iterations.

(a) (b)

Figure 4.26: Reconstructed images of the3 MeV neutron point source after19 iterations (a) without electron tracking, and (b)
with electron tracking.
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(a) (b)

Figure 4.27: Reconstructed images of the20 MeV neutron point source after19 iterations (a) without electron tracking, and (b)
with electron tracking.

on considered energy. In addition, the spatial resolution of the reconstructed images is influenced by the
imaging algorithm. Details about the reconstruction algorithm can be found in Section 5.1.

Five neutron sources at different energies, e.g.,1 MeV, 3 MeV, 8 MeV, 10 MeV, and20 MeV, were
placed at8 cm above the front side of the imaging detector. The number oftriggered events was103, for
each energy. The detection efficiency is about50% for all the sources. Figures 4.26, and 4.27 show the
Compton images reconstructed with and without consideringthe tracking of the recoiled electron. The
number of backprojected events with electron tracking represents about one third of all reconstructed
events.

The limited resolution of the prototype motivates the optimization of the imaging detector geome-
try, which should enable improved position and energy resolution, and consequently, improved angular
resolution.

4.3.3 The proposed imaging detector

The geometry of the proposed gamma-ray detector HTI (HadronTherapy Imaging) is based on the
imaging technique described in Section 4.3.1. It consists of two detector sub-systems (see Figure 4.28).

Figure 4.28: Illustration of the simulated version
of the HTI system. The tracker is surrounded by
the calorimeter made ofLaBr3 bars (surface area:
5 × 5 mm, length: 8 cm bottom, 4 cm side).
The tracker consists of36 layers of double-sided
Silicon-strip detectors. Each layer is made of2 by
2 wafers, which have a length of10 cm, thickness
of 0.5 mm and a strip pitch of0.5 mm.

In the tracker, which is composed of several layers made of thin silicon wafers, the initial interaction
happens (either Compton scattering or pair creation), and the electrons and positrons are tracked. A
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calorimeter surrounds the lower hemisphere of the tracker and stops all secondary particles. It measures
energy and interaction positions.

The simulation model of the tracker comprises36 layers of double-sided Silicon-strip detectors. Each
layer consists of2 by 2 wafers, which have a length of10 cm, thickness of0.5 mm and a strip pitch of
0.5 mm. Strips on one side of the wafer determine the x-position of an interaction, orthogonal strips on
the other side of the wafer determine the corresponding y-position. The layers are spaced0.35 cm from
each other. A uniform1-sigma energy resolution of1 keV and a10 keV threshold were assumed in the
electron tracker. The calorimeter consists ofLaBr3 bars (surface area:5× 5 mm, length:8 cm bottom,
4 cm side). An energy resolution of4.3% FWHM at662 keV, and a threshold of28 keV was assumed.
For an event to be triggered at least one hit in the tracker andone hit in the calorimeter is required.

In the tracker, gamma rays undergo either Compton scattering or pair creation. If the energy of the
produced electrons (and positrons) is above∼500 keV then they pass through several layers and the
direction of the recoil electron or electron-positron-pair can be determined during data analysis.

4.3.4 Data analysis tools

Simulations of the HTI system have been performed using the same tool as the simulations of the gamma-
ray emission patterns, Cosima, a Monte-Carlo simulation tool based on Geant4, which is part of the
MEGAlib package [Zoglauer et al., 2006].

For Compton telescopes, the first step of data analysis is theevent reconstruction. The simulation
(like real measurements) results in a set of positions and energies. To determine the origin of the gamma
rays, the interaction sequence has to be determined by analyzing all possible paths of the gamma ray
in the tracker and the calorimeter as well as of all secondaries in the tracker. For this step three differ-
ent approaches are available, the classic approach named ’Compton sequence reconstruction’ [Zoglauer,
2005], a Bayesian approach [Zoglauer et al., 2007], and a neural network approach [Zoglauer and Boggs,
2007]. Due to the large amount of generated simulation data,and the limited amount of available com-
puting resources, the fastest approach, the classic approach has been chosen for the event reconstruction.
Since the HTI allows for gamma ray as well as electron tracking, sufficient redundant measurements
about the event is recorded to enable background rejection reliably. For the hadron-therapy application,
the most important background sources are random coincidences, other particles originating from the
phantom (e.g. neutrons), and incompletely absorbed events.

The next and most challenging step during data analysis is image reconstruction. The knowledge
of the first and second interaction position of the gamma ray along with the measured energies allows
restricting the origin of the gamma ray to a surface of a cone.Its opening angle can be calculated via
the standard Compton equation. Moreover, if an electron track is present, reconstructing the direction
of the recoil electron enables to restrict the incident gamma-ray direction further to a small segment of
the cone. The applied list-mode maximum-likelihood expectation-maximization image reconstruction
algorithm (LM-MLEM) is an event-by-event approach, which avoids large data-space matrices. This
imaging algorithm was developed based on the two-dimensional near-field imaging algorithm proposed
by [Wilderman et al., 1998a] for medical imaging, being extended to also include tracked Compton
events. Details about the algorithm are included in Section5.1.

The system response matrix is computed similar to [Wilderman et al., 2001]. Each event response
is determined from the calculated emission and interactionprobabilities, which are described by the
Compton cones and arcs profiles. The profiles represent the distributions of possible true event cones
for the measured one, and the distribution of possible true scatter planes for the measured scatter plane.
The simplest form to determine the shape of the profile, whichis currently used, is by an 1D Gaussian
approximation of the widths corresponding to the values derived from the ARM and the SPD. The ARM
is a distribution given by the smallest distance of the knownorigin of the gamma ray to the Compton
cone. The SPD is defined as the angular distance on the Comptoncone between the known origin of the
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photons and the calculated one. It is a measure of the length for the Compton scatter arc, while the ARM
is a measure for the width of the Compton scatter cone or arc (see Section 2.2.2).

4.3.5 Simulated performance

Determining the origin of a gamma ray with a Compton camera utilizes energy and position mea-
surements. Therefore the accuracy of the reconstruction islimited by the uncertainties associated to
those measurements. In addition, the angular resolution ofCompton telescopes is limited by Doppler-
broadening resulting from the unknown momentum of the electron bound to its nucleus. Finally the
efficiency of the telescope is limited by the amount of available Silicon layers, the number of completely
absorbed events, and the detection thresholds.

(a) (b)

Figure 4.29: (a) Energy resolution of the HTI simulation model. (b) Angular resolution of the HTI simulation model as FWHM
of the ARM.

The final energy resolution is defined by the energy resolution in the tracker and in the calorimeter.
It improves with increasing energy of the initial gamma ray (Figure 4.29 (a)).

Figure 4.30: On-axis photo-peak effective area of the
HTI simulation model after event with no energy cut
selection.

The angular resolution of a telescope can be defined by the FWHM of the ARM of the telescope. The
FWHM of the ARM of the HTI simulation model is, at lowest energies, limited by Doppler-broadening,
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at medium energies by energy and position resolution and at higher energy by position resolution alone
(Figure 4.29 (b)).

The on-axis effective area is defined as the efficiency in producing a detected event for each incident
gamma-ray photon. The on-axis photo-peak effective area ofthe HTI simulation model can be found
in Figure 4.30. The peak is situated around a few hundred keV.At low energies, the probability for a
coincidence in tracker and calorimeter decreases due to a small cross-section for Compton scattering. At
high energies the probability for a completely absorbed event decreases due to escapes and due to more
interaction sites in the tracker, which generally increases the risk of interactions in passive material.

4.3.6 Reconstructed images

In order to estimate the imaging performance of the detector, a PMMA sphere (radius7.5 cm) was placed
at 8 cm distance from the imaging system (Figure 4.31). The phantom was irradiated by a proton beam
with different energies selected from the expected treatment range,70 MeV, 100 MeV and140 MeV and
an intensity fixed at106 protons/s. The total simulation time is20 seconds.

Figure 4.31: Wire-frame representation of geometry setup as
used for hadron therapy simulations. A cut-view by a back-side
plane was used.

The simulated data was reconstructed as described in Section 4.3.4.
Figure 4.32 shows reconstructed2D images, where the reconstruction plane is the beam plane (at z

= 41.5 cm) for the three different beam energies. Only Compton events with energies above450 keV
were reconstructed. As expected, elevating the proton beamenergy from70 MeV to 140 MeV results in
increasingly long, line-shaped reconstructed beams path.

The intensity profiles of the reconstructed images along thecentral vertical line are illustrated in
Figure 4.33. For the proton beam at70 MeV, the falloff region of the deposed dose is after3.5 cm
from the entry point into the phantom (at−7.5 cm on they-axis). When increasing the beam energy to
100 MeV and140 MeV, the Bragg peak is translated to6.5 cm and12 cm, respectively (Figure 4.33,
dashed lines).

The length of the reconstructed gamma-ray source depends onthe beam energy being related to
the proton range in the phantom. The decay of the reconstructed gamma ray activity allows retrieving
information about the location of the Bragg peak. However, assuming ideal events, i.e., no measurement
uncertainties (energy, position), and no escaping events or deposits in passive material, the intensity
profile of Compton reconstructed image obtained at140 MeV shows a roughly abrupt decay at the Bragg
peak position (Figure 4.33, solid line). The ideal Compton reconstructed images of measured gamma
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(a) (b) (c)

Figure 4.32: Compton reconstructed images of measured gamma rays during simulated irradiation of PMMA phantom by a
proton beam at (a)70 MeV, (b) 100 MeV, and (c)140 MeV. The reconstruction plane is the beam plane.

rays during irradiation are illustrated in Figure 4.34. Thecorresponding profiles are presented in Figure
4.35.

With the current imaging algorithm the Bragg peak cannot be recovered precisely. This fact is ex-
pected since the reconstruction algorithm estimates the source distribution by a ML function using a
crude approximation for the model of data acquisition process. The application of ML estimation based
algorithms in reconstruction of radioactive sources in PETreported the existence of both noise and edge
artifacts [Snyder et al., 1987]. Secondly, the detector response is not adapted for events with high-
incident energy. In addition, the algorithm does not include corrections for absorptions in the phantom,
and does not include the prior knowledge that the source is line shaped. A more detailed discussion about
the reconstruction process is presented in the next section.
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Figure 4.33: (a) Vertical intensity profiles of the Compton reconstructed images assuming ideal events (solid line), and assuming
measurement uncertainties (discontinuous lines). Bragg peak positions of proton beams at70 MeV, 100 MeV and140 MeV are
indicated by dotted vertical lines. (b) Horizontal intensity profiles of the Compton reconstructed images assuming measurement
uncertainties.
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(a) (b) (c)

Figure 4.34: Ideal Compton reconstructed images of measured gamma rays during simulated irradiation of PMMA phantom
by a proton beam at (a)70 MeV, (b) 100 MeV, and (c)140 MeV. The reconstruction plane is the beam plane.

4.3.7 Discussion

In this section, the capability of the proposed imaging system using the LM-MLEM algorithm is studied.
To achieve the reconstruction precision required by our application, an accurate modeling of the detection
system is necessary in order to correctly calculate the detection sensitivity and the response of individual
events, which determine the estimated quality of the image reconstruction.

In the present algorithm, the response of each event is approximated via transition probabilities rep-
resented by the Compton cones and arcs profiles. For Compton events, where the energy transferred
to the recoil electron is not sufficient to produce a track, i.e., incident gamma rays with energies below
2 MeV, the width and the shift of the cone is mainly determined by the energy and position measurement.
With increasing energy, the events have an electron track and the origin is restricted to an arc of the cone-
section whose length is determined by Molière Scattering, but the profile becomes broader due to energy
leakage. Also, using a list-mode algorithm, a difficult problem to resolve is the absolute normalization,
i.e., reconstructing intensity/flux during the image reconstruction process. Since a correct normalization
for each event is extremely time consuming, this operation has not been done for the presented images
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Figure 4.35: (a) Vertical intensity profiles of the Compton reconstructed images (Figure 4.34) assuming ideal events. Bragg
peak positions of proton beams at70 MeV, 100 MeV and 140 MeV are indicated by dotted vertical lines. (b) Horizontal
intensity profiles of the Compton reconstructed images assuming ideal events.
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Figure 4.36: Intensity profiles of the Compton recon-
structed images of gamma-ray line sources. The edge of
line sources are represented by dotted vertical lines.

and the sensitivity coefficient is assumed to be one.
In order to evaluate the reconstruction performance, a gamma-ray line source was placed in the

PMMA phantom at the same distance from the detector as the proton beam. The length of the sources
is equal the140 MeV proton beam path in the phantom, i.e.,12 cm. A mono-energetic spectrum was
assumed for all sources. The number of reconstructed eventsis the same as for the images of emitted
gamma rays activity during the140 MeV proton beam irradiation. An equivalent response of the imag-
ing algorithm can be observed, i.e., the edge artifact is present in all reconstructed images being more
pronounced by increasing the source energy (Figure 4.36). This is due to usual artifacts generated by
the reconstruction algorithm, the modelling of the system response, and the low number of photons.
Moreover, the imaging algorithm does not take into account the different absorption probabilities which
the photons encounter when they are emitted at different depths in the phantom, i.e., it is less likely to
measure a photon from the center of the phantom than from the edge of the phantom.

The present imaging algorithm includes the ordered-subsets acceleration technique. One iteration
took 2 seconds on an IntelR© CoreTM2 Duo CPU, T7700 @2.40GHz, and2 GB of RAM, while the ini-
tial back-projection consumed nearly120 seconds. However, more sophisticated acceleration techniques
could be envisioned, e.g., space-alternating generalizedEM, strategies of row-action mode with dynamic
relaxation, etc. Acceleration could also be achieved by using an architecture exploiting parallel process-
ing of data (e.g., using multiple cores or the GPU). The latter method will allow storing a greater number
of Compton events, and an extension into3D of the algorithm.

4.4 Conclusion

Gamma rays in the Compton scattering energy regime are predominantly emitted during proton beam
irradiation of a PMMA phantom. Thus they are the primary target for an on-line monitoring system,
which measures the dose deposition and the Bragg peak location during hadron therapy.

Simulations revealed that using a tracking Compton camera to detect gamma rays emitted during
irradiation of a PMMA phantom by a typical hadron therapy beam, allows to recover the beam path
within the phantom. The obtained intensity profiles show a correlation between the decay of the gamma
rays spatial distribution and the Bragg peak. However, further improvements of the image reconstruction
algorithm are necessary to clearly extract the Bragg peak position with millimeters precision from the
reconstructed images.



Chapter 5

List-mode wavelet based algorithm for
Compton imaging

List-mode data acquisition was firstly introduced for Compton imaging by [Wilderman et al., 1998b],
resulting in a significant computation advantage over approaches using binned-data. This data acquisition
mode requires to store the essential parameters of the Compton events, e.g., Compton scatter angle,
total energy, interaction positions, into a list. Therefore a full precision of measured Compton events is
assured. The classical MLEM algorithm including list-modedata acquisition is described in Section 5.1.
A novel approach of its regularization based on wavelet thresholding is presented in Section 5.2.3. The
algorithm was evaluated using simulated data generated by aCompton camera [Frandes et al., 2010a].

Generally, the primary factors limiting the quality of the reconstructed images are e.g., the detector
resolution and photon density. To overcome the finite detector resolution, i.e., the inherent measurement
uncertainties due to energy, and position resolution, geometry of the detector, it is necessary to accurately
model the photon detection process, i.e., the imaging detector response.

The detection process of a Compton based imaging system has to analyze all the probabilities of
interactions encountered by photons in order to retrieve their origin direction. This analysis results
in a high dimensional calculation which demands large computation resources. Generally, the system
resolution is scarified to reduce the noise in the reconstructed images. An optimal trade-off between
resolution and noise propagation requires to also accurately model the noise distribution in the data. The
model of both detector response and noise distribution are determined by the adopted reconstruction
methods. Therefore the methods chosen for reconstruction represent a significant aspect in the overall
performance of the imaging detector.

In the following, the statistical model associated to Compton data acquisition process is presented.

The Statistical Detection Model

Let J be the pixelated image space domain, each pixel presenting an intensity (mean)fj = (f)j ,
j = 1,M , andxj the photon count with the Poisson distribution

p(xj) = e−fj
f
xj
j

xj !
(5.1)

LetD be the data space domain, andy = (yi)i=1,N a set of measured events. The probability of detecting
an emission from the source pixelj with the attributes(yi) is tij, which denotes an element of the system
response matrixT . Therefore the intensity of expected events is defined by

g(yi|f) =
∑

j

tijfj (5.2)

77
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The sensitivity, i.e., the probability of an emission fromfj to be detected with any attributesyi ∈ y is
sj =

∑

i tij . The total mean number of counts isc =
∑M
j sjfj.

The likelihood function ofy givenf is defined as

l(y|f) = p(N |f)
N
∏

i=1

p(yi|f) (5.3)

wherep(N |f) = cN

N !e
−c is the probability of detectingN events following a Poisson distribution.

The disctretized forward problem of the Compton imaging process may be illustrated as following

y = Tf + n (5.4)

The vectorn denotes the noise arising from the measurement, or acquisition process of Compton data.
Generally, the errors in Compton cameras are approximated as following normal distributions [Wilder-
man et al., 2001]. Therefore the noise is estimated by a general normal distribution,n ∼ N(µ, σ2).

To calculatef knowing bothy andT is an ill-posed inverse problem, intensively studied in thelast
decades. Several attempts have formulated an inversion formula in specific conditions of Compton data
acquisition using, e.g., analytical approaches (e.g., [Cree and Bones, 1994], [Basko et al., 1999], [Parra,
2000], [Tomitani and Hirasawa, 2002], [Maxim et al., 2009]), or iterative reconstruction methods (e.g.,
[Singh and Doria, 1983b], [Brechner et al., 1987], [Brechner and Singh, 1990], [Sauve et al., 1993]). A
classical reconstruction method maximizes the likelihoodfunction of estimated solution by the iterative
EM algorithm. The iterative formula of the MLEM algorithm [Shepp and Vardi, 1982] with list-mode
data acquisition, and acceleration by the ordered-subsetsmethod included has the following form

f
(k,l+1)
j =

f
(k,l)
j

sj

∑

i∈Sl

tij
∑M
b=1 tibf

(k,l)
b

(5.5)

whereSl represents the consideredlth subset of events.
Considering a unique set of events, the iterative formula describes the classical MLEM algorithm.

The sensitivity factorsj =
∑N
i=1 tij represents the addition of response elements over all the possible

measurements. The list-mode MLEM algorithm is detailed in Section 5.1.
ML criterion provides image estimation from Poisson data, which are corrupted by noise. Generally,

estimation by unconstrained or constrained ML criterion yields noise amplification during the iterative
process, which arbitrarily causes large changes of solutions when only a slight change of data is pro-
duced. A remedy is to stop the iterations before artifacts appear. However, this solution is challenging.

Possible solutions could be derived by integration of various penalization and regularization strate-
gies. A regularization method was proposed by [Knödlseder et al., 1999] in context of COMPTEL
[Schönfelder et al., 1993b] data reconstruction. Considering a Bayesian framework, [Lee et al., 2008]
investigated the application of maximum a posterior approach in case of Compton scattered data. The
iterative algorithms are firstly, a row-action method and secondly, a block-sequential method, which is
a relaxed version of the OSEM method. The regularization is done by using a convex non-quadratic
smoothing prior. The prior information reflects assumptions about the spatial distribution of the source.
Both algorithms are applied in their binned-data version.

After introducing the classical MLEM algorithm in list-mode data acquisition, one version of the
algorithm is presented as improved solution to the Compton image reconstruction problem. Namely,
Section 5.2 presents a regularization in wavelet domain of the list-mode MLEM algorithm.

5.1 The list-mode MLEM algorithm

In comparison to the bin-mode MLEM, each measurement in the list-mode MLEM is considered as a
unique and infinite small bin, thusyi = 1 for each detected photon, andyi = 0 for the infinite number
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Figure 5.1: Illustration of the relations between data spaces (events space and image space).

events, which are not detected in the current measurement. The valueM is the total number of detected
measurements instead of the number of detector bins. The image reconstruction purpose is to find the
best estimate of the discrete source according to the measurement data sety.

The likelihood function of the list measurements is

p(y1, y2, · · · , yM |f) =
M
∏

i=1

p(yi|f) (5.6)

wherep(yi|f) is the conditional probability density of measuring a single eventyi knowing the event is
generated by the sourcef :

p(yi|f) =
N
∑

j=1

p(yi|fj,D)P (fj ,D|f) (5.7)

wherep(yi|fj,D) is the probability density of a detected event generated from fj, leading to a
measurementyi in the detector.P (fj,D|f) is the probability of detecting the event which originated in
j given the source distributionf

P (fj ,D|f) =
fjsj

∑N
n=1 fnsn

(5.8)

The log-likelihood of the list of measurements is [Parra andBarrett, 1998]

l(y|f) =
M
∑

i=1

log





N
∑

j=1

p(yi|fj,D)fjsj −
N
∑

j=1

fjsj



 (5.9)
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Figure 5.2: Illustration of how the initial image is generated. The transition matrixT = (tij) presents in each bin the probability
that the event originates from the given bin. In a visual representation, cone sections appear for each measured Comptonevent.
The addition over all transition probabilities generates the initial image (f0). Afterwards, the iterative algorithm maximizes the
expectation in mainly two steps. First, given the current estimate of the imagef and the imaging responsetij , the expectation
that this event is measuredyi is calculated. This step is basically a forward projection from image to data space. The second
step maximizes the expectation and corrects the previous image. This step is basically a backprojection from data into image
space.

Similarly to the bin-mode ML criterion, estimating the unknown sourcef in list-mode requires to
find the maximum of Equation (5.9)

f̂ = arg max
f≥0

l(y|f) (5.10)

The list-mode ML estimation can also be solved using the iterative EM algorithm. After applying
the E-step and the M-step, the estimate offk+1 is

fk+1
j =

fkj
sj

M
∑

i=1

p(yi|fj ,D)
∑N
l=1 p(yi|fl,D)fkl

(5.11)

wheretij = p(yi|fj ,D)sj.
Finaly, the list-mode MLEM update equation is

fk+1
j =

fkj
sj

M
∑

i=1

tij
∑N
l=1 tilf

k
l

(5.12)

The sensitivity is not the sum over the detected eventssj 6=
∑M
i=1 tij, instead it has to be summed

over all possible measurements originating from source elementj, including the events for whichyi = 0
(see Figure 5.1). The scheme of the algorithm is presented inTable 5.1.

The imaging response matrixT = (tij) represents the transition probabilities generated by the mea-
sured events. A measured event is represented in image spaceby a matrixtij, where each element gives
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Initialization f0

for each iteration k := 0 toK − 1 do
Projection: ȳi =

∑

j tijf
k
j ∀ i

Back-projection: ej =
∑

i tij/ȳi ∀ j
Update: fk+1

j = fkj ej/sj ∀ j
end for

Table 5.1: Scheme of the MLEM algorithm.

the probability that the eventi originates from the given binj. Following [Zoglauer, 2005], Figure 5.1
illustrates the transition from data space (or event space)to source space (or image space). The collection
of all measured events forms a first estimation of the source,i.e.,f0, which is also called ’initial image’
(Figure 5.2).

Most of the iterative algorithms require the integration ofa form of regularization in order avoid
artifacts. In case of Compton data reconstruction, this problem occurs especially when the detector
response is not approximated by a high fidelity model, e.g., at the 1st approximation of the transition
probabilities. Hence, in this case, the more accurate the detector response is modeled, the weak may
be the regularization. Therefore, the primary aim should beto determinetij and sj as accurately as
possible. Calculation of images by means of higher fidelity detector response may usually avoid to
include regularization.

Note that the regularized algorithm, which is presented in the following, consider the same initial
image as the MLEM algorithm. More precisely, the imaging responsetij is not affected by the regular-
ization included into the reconstruction method.

5.2 Regularization in wavelet domain

In the following, a multiresolution strategy to suppress noise by integrating a Wavelet-based Regulariza-
tion step into a list-mode accelerated version of MLEM algorithm, called WREM, is proposed [Frandes
et al., 2010a]. The approach aims to attain noise control when the iterative method is applied, full preci-
sion of all measured information as well as computation efficiency, which is a critical point of iterative
Compton image reconstruction. The multiresolution analysis seeks to decorrelate the image pixels al-
lowing to extract only the significant structure, which is related to the data.

The wavelet threshold based methods were efficiently applied to remove white Gaussian noise, which
is represented by identically and independently distributed (iid) variables following the normal distribu-
tion with mean zero. The pioneering work [Donoho and Johnstone, 1994] proved that various wavelet
thresholding techniques have near optimal properties in min-max sense for one-dimensional iid signals
estimation. The wavelet coefficients are modified accordingto a threshold policy. The threshold based
methods are efficient when the signal has a sparse representation where most of the signal energy is
concentrated on a small subset of coefficients.

Many attempts tried to find the optimal thresholds for parameters estimations in statistics. Here,
the noise variance is estimated at each scale of the wavelet decomposition as the median value of the
coefficients from the high frequency sub-bands. The regularization of the MLEM algorithm includes at
each iteration a thresholding step, which is applied in the wavelet domain. The method has the effect of
an inter-smoothing operator allowing to suppress the noisein the reconstructed images.

5.2.1 Wavelet transform and filter banks

Wavelet analysis gives the possibility to access the information of a signal by its localization in both
space and frequency domains. Among all possible application fields of wavelet based methods, digital
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(a) (b)

Figure 5.3: Filter bank analysis tree.ai represent the coarse-scale signals, anddi the detail coefficients. (a) At each decompo-
sition level, the generated outputs are subsampled by a factor 2. (b) At each reconstruction level, the generated coefficients are
upsampled by a factor2.

image processing is probably the most visible one. Most studied problems and proposed solutions are
from one-dimensional signal processing, having an equivalent in image processing.

Wavelet transforms can be classified into continuous wavelet transforms (CWTs), and discrete wavelet
transforms (DWTs). CWTs operates over every possible scaleand translation, while DWTs use a specific
set of scale and translation values. CWTs are described in [Daubechies, 1992].

The DWT analyzes the signal at different resolutions by decomposing it into coarse and detail ap-
proximations. DWT uses two sets of functions, called scaling functions and wavelet functions, which
are associated with low-passg and high-passh filters, respectively. Both filters correspond to a certain
chosen wavelet basis [Mallat, 1999].

The signal decomposition is represented as a binary tree with nodes which represent a sub-space with
a different space-frequency localizations. The tree is known as a filter bank (Figure 5.3).

The wavelet and scaling function coefficients on a certain scale l follow the equations

{

dl(k) =
∑

n∈Z
h(2k − n)al−1(n)

al(k) =
∑

n∈Z
g(2k − n)al−1(n)

(5.13)

where the low-pass filterg and the high-pass filterh are constructed from the mother scaling function,
and jointly the wavelet and scaling functions, respectively. Thedl(k) andal(k) are the detail coefficients
at the levell (i.e., the wavelet coefficients), and the approximation coefficients at the levell (i.e., the scale
coefficients), respectively.

The discrete wavelet decomposition of the signala0 may be described as follows
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Figure 5.4: Graphical representation of the Daubechies 8 analysis (a) low-pass, and (b) high-pass filters.
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a0(n) =
∑

k∈Z

g̃(n − 2k)aL(2k) +
L
∑

l=1

∑

k∈Z

h̃(n− 2k)dl(2k) (5.14)

where the low-pass filter̃g, and the high-pass filter̃h are the reconstruction filters derived from the analy-
sis filtersg andh, respectively. The parameterL represents the finest scale in the wavelet decomposition.
For example, the Daubechies8 analysis filters are represented in Figure 5.4.

In case of a2D-signal, the wavelet separable transform is performed by first decomposing each
column of the image, and then decomposing each row of the result to obtain the rows of the wavelet
coefficients matrix. Four frequency bands will be obtained after one level of decomposition, namely
Low-Low (LL), Low-High (LH), High-Low (HL) and High-High (HH). Application of the next level of
decomposition is done to only the LL band of the current decomposition creating a recursive decompo-
sition procedure (Figure 5.5). The sub-bands LHl, HLl, HHl, l = 1, L represent the detail coefficients
dl,n(k), and the sub-band LLL is the low resolution image, i.e., the approximation coefficientsaL(k),
wheren denotes the subband, andk the spatial position.

Figure 5.5: Schematic representation of the structure generated by applying a 2D-DWT with three decomposition levels of an
input image. The coefficientsdl,1 ∈ HL1, dl,2 ∈ LHl, dl,3 ∈ HHl, l = 1, 3 represent the image details, whilea3 ∈ LL3

represents the approximation coefficients of the low resolution image.

5.2.2 Noise reduction methods by wavelet thresholding

A classical approach in image de-noising proposes the combination of the wavelet transform with a non-
linear thresholding of the wavelet coefficients. Standard methods [Donoho, 1993] address de-noising of
signals contaminated by additive white Gaussian noise. Various wavelet thresholding techniques were
investigated; the reference ones are the universal threshold proposed by [Donoho et al., 1995], the sub-
band adaptive scheme [Donoho and Johnstone, 1995], and the Bayesian approach [Chang et al., 2000].

Nuclear medical images are generally modeled as the realization of a Poisson process. The Poisson
noise, i.e., variations of the signal from its mean, is not data-independent as it is assumed by general
Gaussian case, but it follows the image intensities. Thus the direct application of a Gaussian based stan-
dard wavelet thresholding method has proved to be inappropriate. The investigated approaches include
the application of a first pre-processing step, which aims tostabilize the noise variance, followed by the
analysis of the resulting data in a Gaussian framework. The pre-processing step may be computed using,
e.g., the Anscombe transform [Anscombe, 1948], or the Fisz transform [Fisz, 1955]. The Anscombe
procedure defines, for a given signalu ≥ 0, its Gaussian counterpart
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A(u) = 2
√

u+ 3/8 (5.15)

The Fisz’s method implies the application of the non normalized Haar wavelet transform followed
by the detail coefficients transformation as

F [dl,n(k)] =

{

dl,n(k)/
√

al(k) if al(k) 6= 0

0 if al(k) = 0
(5.16)

Finally, the signal is reconstructed using the inverse non normalized Haar transform.
In the context of Poisson data, an approach based on a Bayesian inference was proposed by [Timmer-

mann and Nowak, 1999], in which a prior distribution is placed in wavelet coefficients, and al1-penalized
likelihood method by [Sardy et al., 2004].

When the data are corrupted by a noise integrated in a mixed Poisson-Gaussian model, the General-
ized Anscombe transform [Murtagh et al., 1995] is adopted assolution to stabilize the noise variance.

Considering the measured signalu as a sum of a Gaussian variableG, of meanµG, and standard
deviationσG; and a Poisson variableP , of meanµP , the signal model is set tou = G+ αP , whereα is
the mixing coefficient. The Generalized Anscombe transformis defined as

GA(u) =
2

α

√

αu+ 3/8α2 + σ2
G − αµG (5.17)

The application of this transform is conditioned by the knowledge of the statistical properties of both
noises.

5.2.3 Wavelet-based multiresolution EM

5.2.3.1 The method

The proposed iterative algorithm is based on the list-mode MLEM algorithm derived from the equation
(5.5). In list-mode, each detected event is considered as a unique bin. The sensitivity factorsj is difficult
to calculate since the integration is done over both scatterand absorption detectors, and over all the
possible energies and scattering angles. Following [Wilderman et al., 1998b],sj was set constant (sj =
1, ∀j).

The proposed de-noising method consists on the integrationof a wavelet analysis into the iterative
procedure aiming to decorrelate the image pixels and to onlyreconstruct of the significant structures from
the measured data. First, the transformation of the data into the wavelet domain is done by applying DWT
with orthogonal Daubechies wavelets, where the length of the filter is 8. The correction factor is now
represented by the obtained wavelet coefficientsdl,n, wherel represents the wavelet level, andn the
sub-band index.

The soft-thresholding operatorηS is defined by

ηS(dl,n(k), τl,n) = sgn(dl,n(k))max(0, |dl,n(k)| − τl,n) (5.18)

The employed wavelet threshold depends on the decomposition level, and follows the expression

τl,n = 22(L−l)q σl,n (5.19)

The noise varianceσl,n was estimated by the median of the coefficients at eachHHl subband. The
parameterq denotes the threshold coefficient, which is equaled to22M−1

√
2logM , whereM is the

number of pixels in the image.
The inverse DWT is then applied to the wavelet coefficients, which result after the thresholding step.

This leads to a de-noised imagēfk.
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The wavelet processing step may be expressed by the following notation

f̄k = W[fk] = DWT−1ηSDWTfk (5.20)

In the last step, the estimatēfk is updated using (5.5), with one subset.

Initialization f0

for each iteration k := 0 toK − 1 do
Projection: ȳi =

∑

j tijf
k
j ∀ i

Back-projection: ej =
∑

i tij/ȳi ∀ j

Regularization: f
k
j = W[fkj ] ∀ j

Update: fk+1
j = f

k
j ej/sj ∀ j

end for

Table 5.2: Scheme of the WREM algorithm.

5.2.3.2 Thresholding scheme

The iterative method starts with a positive distribution computed as the following

f0
j =

N
∑

i=1

tij (5.21)

Considering the central limit theorem, the estimated distribution of the data follows approximately a
normal distribution, after several iterations. Hence, theapplication of wavelet thresholding is appropriate
without including variance stabilization technique as described in Section 5.2.2, or in [Frandes et al.,
2009]. Herein, the wavelet technique is empirically applied after4 iterations. The DWT with four levels
of decomposition (L = 4 in Equation (5.19)) was employed, and the wavelet thresholding step was
applied at all detail sub-bands.

At each iteration, the noise varianceσl,n is estimated by the median operator applied to the wavelet
coefficients at the each scale,

σl,n = mediank(|dl,n(k)|), dl,n ∈ HHl, l = 1, L (5.22)

Following [Johnstone and Silverman, 1997], the standard deviation is defined as the robust median
estimator. It has been proved to be efficient for cases when noise is correlated to data.

5.3 Results

The Compton scattered projection data was generated by Monte Carlo simulations for a Compton camera
using MEGAlib [Zoglauer et al., 2006], a Geant4 based simulation code. The lists of the exact interaction
positions and energy deposits as well as the uncertainties in the measurements were recorded. The
program read the data in list-mode applying a back-projection algorithm, which is based on [Wilderman
et al., 2001]. The coefficients of the system response matrixT = (tij) were computed and stored.

The simulated detector system is a generic Compton scattering camera, which was designed as a
simplified model of the HTI (Hadron Therapy Imaging) system proposed in [Frandes et al., 2010b], being
also described in Figure 2.4. The first detector is made of a single double-sided Silicon strip layer, which
consists of one wafer with a length of10 cm, thickness of2 mm. The wafer has128 orthogonal strips
per wafer side (0.5 mm pitch). The top and bottom sides of the wafer are p and n doped, respectively. An
uniform 1-sigma energy resolution of1 keV was assumed, along with a10 keV threshold. The second
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detector consists of LaBr3 bars (surface area:5 × 5 mm, length:8 cm). An energy resolution of4.3%
FWHM at 662 keV, and a threshold of28 keV was assumed.

The quality of the reconstructed images was evaluated considering the Mean Squared Errors (MSE)
defined as

MSEk =
1

M2

M−1
∑

i=0

M−1
∑

j=0

[

f(i, j)

maxf
− f̄k(i, j)

maxf̄k

]2

(5.23)

wheremaxf is the maximum of original image values, whilemaxf̄k is the maximum of reconstructed
image values at iterationk. The MSE was defined knowing the algorithm does not include normalization.

The error of Contrast Recovery (CR) is defined as the difference between the ratio of the maximum
point of the spot, denotedmaxs, and the background, denotedmaxb, respectively, of the reconstructed
imagesRr, and the original ratioRo.

ErrorCR = |Rr −Ro| (5.24)

whereRr = maxs
maxb

. The spot on background source is illustrated in Figure 5.6 (b).

Two simulation cases were considered, one where ideal Compton events are assumed, and the other
including measurement uncertainties. For both cases, the number of stored projections is constrained by
the storage size of the coefficientstij. The energy considered was364 keV (131I).

5.3.1 Ideal simulations

First, the performance of both algorithms was analyzed by ideal simulations, i.e., assuming ideal Comp-
ton events into the imaging detector. Ideal events represent events which are not affected by the finite
position and energy resolution of the detector, but includeDoppler broadening.

(a) (b)

Figure 5.6: Geometry of the (a) square source, and (b) spot ona background source atz = 12 cm.

Figure 5.6 illustrates the geometry of ideal events generated by the considered gamma-ray sources,
which represent a3 × 3 cm2 square source (BoxSource in Cosima [Zoglauer et al., 2006],Figure 5.6
(a)), and a spot placed at the center of a3 × 3 cm2 uniform rectangle (i.e., background), (BoxSource
and SphereSource in Cosima, Figure 5.6 (b)). The first sourcewas placed at a distance of2 cm above
the scattering detector, at the center of thexy-axis. The second simulation test includes the source in
which a central spot activity was placed. The spot is represented by a sphere of0.5 cm radius, and
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Figure 5.7: Ideal events. Reconstructed image using the proposed WREM algorithm considering (a) the square source, (b)the
spot on a uniform background source.

an intensity level of3 standard deviation above the background. Both square and background uniform
sources contained100 Poisson distributed counts per bin.

Considering ideal events, similar performance using MLEM and WREM algorithms was observed.
Figure 5.7 shows the reconstructed images using the WREM algorithm after(a) 24 iterations, in case of
the square homogeneous source, and(b) 14 iterations, in case of the spot on background source.
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Figure 5.8: Realistic simulation. Reconstructed images ofthe square source (a) using the classical MLEM algorithm, (b) using
the proposed WREM algorithm.

5.3.2 Realistic simulations

Homogeneous source

Emissions from the3×3 cm2 square homogeneous distribution were sampled until124 146 Compton
events were reconstructed. Figure 5.8 presents the images reconstructed using the classical MLEM
algorithm and our wavelet based algorithm WREM, respectively, after 16 iterations.

The intensity profiles of the reconstructed images along thecentral horizontal line are illustrated in
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Figure 5.9: Uniform square source with realistic simulation. (a) Plot of the central line intensity profile of the squaresource.
Original source (box), the reconstructed image obtained using the MLEM algorithm (dotted line), and the reconstructedimage
obtained using the WREM algorithm (continuous line). (b) Mean Square Error of the images reconstructed using the classical
MLEM algorithm (dotted line) and the WREM algorithm (continuous line).

Figure 5.9 (a). Clearly, the WREM algorithm results in a higher homogeneous gray level distribution
than the MLEM algorithm. Moreover, the classical MLEM algorithm presents a larger reconstruction
error, meanwhile the wavelet based algorithm maintains a rather constant evolution of the error, when
the iteration number was increased (Figure 5.9(b)).

Spot on background

Figure 5.10 (a) illustrates the image reconstructed using the classical MLEM algorithm. The central
hot spot is partially retrieved presenting a central cold spot. The application of the WREM algorithm
results in a more accurately reconstructed original source(Figure 5.10 (b)).
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Figure 5.10: Realistic simulation. Reconstructed images of the spot on a uniform background (a) using the classical MLEM
algorithm, (b) using the proposed WREM algorithm.

For both images, the reconstruction plane intersects the center of the spot, i.e., atz = 12 cm.
Figure 5.11 (a) presents the error of contrast recovery (5.24), while Figure 5.11 (b) presents the mean

square error (5.23), as a function of the iteration number. Indeed, considering both error measures, the
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(a) (b)

Figure 5.11: Spot on a uniform background with realistic simulation. (a) Contrast Recovery Error of the reconstructed images
using the classical MLEM algorithm (dotted line) and the WREM algorithm (continuous line). (b) Mean Square Error of the
reconstructed images using the classical MLEM algorithm (dotted line), and the WREM algorithm (continuous line).

classical MLEM algorithm results in an unpredictable optimal iteration number for an acceptable error.
Note that the noise in the data is represented by all the uncertainties which inherently arise during the
measurement process.

A more dramatic difficulty in using the MLEM algorithm is thatit is divergent. In sharp contrast,
the proposed WREM algorithm results in lower errors than theMLEM algorithm, and, in addition, it is
stable. This result is due to the regularization induced by the shrinkage of the wavelet coefficients.

(0, 0, 15)

(−3, −3, 15)

(0, 0, 12)

(0, 0, 13)

(3, 3, 12)

Figure 5.12: Schematic representation of the simu-
lation configuration, which consists of five sources
placed at different distances above the detector.
Each spot is labeled with the axis coordinate of its
center.

Spots on 3D

A third configuration considered sources at different distances from the imaging detector: five spheres
of the same radius, i.e.,0.25 cm, and the same intensity, i.e.,200 uniformly distributed Poisson counts
per bin. Two spheres were placed at2 cm above the detector at the center of the axis, i.e.,(x, y, z) =
(0, 0, 12), and at(x, y, z) = (3, 3, 12), respectively.

At a distance of3 cm above the detector at the center of the axis were placed onesphere, and two
spheres at a distance of5 cm, i.e.,(x, y, z) = (0, 0, 15) and(x, y, z) = (−3,−3, 15), (Figure 5.12).

The reconstruction was done at different depth planes according to the considered configuration.
Figures 5.13 (a) illustrates the image reconstructed at theplane corresponding toz = 12 cm of the
coordinate system, i.e., the plane which intersects the center of the two sources placed nearest to the front
of the scattering detector. As expected, the off-center source was more difficult to reconstruct. Figures
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Figure 5.13: Realistic simulation. Reconstructed images of the multiple spots source using the MLEM algorithm. The recon-
struction plane is situated at (a)z = 12 cm, (b)z = 13 cm, (c)z = 15 cm.
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Figure 5.14: Realistic simulation. Reconstructed images of the multiple spots source using the WREM algorithm. The recon-
struction plane is situated at (a)z = 12 cm, (b)z = 13 cm, (c)z = 15 cm.
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Figure 5.15: Realistic simulation. Reconstructed images of the multiple spots source using the MLEM algorithm (a), andthe
WREM algorithm (b). The reconstruction plane is situated atz = 11.75 cm



5.4. APPLICATION TO MULTI-ENERGY SOURCE 91

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x [cm]
-5 -4 -3 -2 -1 0 1 2 3 4 5

y 
[c

m
]

-5

-4

-3

-2

-1

0

1

2

3

4

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x [cm]
-5 -4 -3 -2 -1 0 1 2 3 4 5

y 
[c

m
]

-5

-4

-3

-2

-1

0

1

2

3

4

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b)

Figure 5.16: Realistic simulation. Reconstructed images of the multiple spots source using the MLEM algorithm (a), andthe
WREM algorithm (b). The reconstruction plane is situated atz = 15.26 cm

5.13 (b), (c) illustrate the images reconstructed at the other two altitude planes intersecting the center
of the spheres. Considering tangential planes to the source, Figure 5.15, and Figure 5.16 present the
reconstructed images using both algorithms. Clearly, our approach reduces the reconstruction artifacts.

5.4 Application to multi-energy source

The regularized version of the list-mode MLEM algorithm, presented in Section 5.2.3, was applied to
reconstruct multi-energy Compton events. The events were generated by the HTI system when consid-
ering the simplified hadron therapy scenario presented in Section 4.1. Only the proton beam at140 MeV
was considered, and the same analysis tools as described in Section 4.3.4 were applied.

Profiles of the reconstructed images along the central vertical and horizontal lines were considered,
and compared to the ones extracted from the images reconstructed using the classical list-mode MLEM
algorithm.

Figures 5.17, 5.18 show the horizontal profiles of the reconstructed images using list-mode MLEM,
and WREM algorithm, when considering different iteration numbers. At the first iterations, a broader
horizontal profile is observed. When increasing the iteration number, the profile becomes sharper (Figure
5.19), being closer to the dose profile along the x-axis (see the simulation configuration in Section 4.1),
or the profile of emitted gamma rays in the first second of PMMA phantom irradiation by the proton
beam.

When comparing the horizontal profiles of the reconstructedimages using alternatively the classi-
cal MLEM, and its wavelet regularized version WREM, a superior behavior of the WREM algorithm
is observed. Figure 5.20 shows the profiles depicted at different iteration numbers, ranging from a low
iteration number to the iteration where the WREM algorithm is stable, i.e., no changes of the profiles
occur when increasing the iteration number. When considering the vertical profiles, observable differ-
ences can be noticed from one iteration to the next. Namely, the classical algorithm generates iteration
dependent reconstructed images, while the WREM algorithm presents lower variability of the extracted
vertical profiles, becoming stable at an earlier iteration number. Figure 5.21 shows both the horizon-
tal and vertical profiles of the reconstructed images at the optimal iteration number of the MLEM and
WREM algorithms. A similar behavior of both algorithms can be observed.

When applying the WREM algorithm to multi-energy sources, areal drawback is represented by the
incompletely measured events, when going from lower to higher energies. Thus an accurate description
of those events is highly desirable.
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Figure 5.17: Profiles along the central horizontal line of the reconstructed images using the classical MLEM algorithm,when
considering different iterations of the algorithm.
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Figure 5.18: Profiles along the central horizontal line of the reconstructed images using the WREM algorithm, when considering
different iterations of the algorithm.

5.5 Discussion

The performance of the wavelet domain de-noising methods applied to the iterative classical MLEM
algorithm for Compton scattered data depends on several considerations.
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Figure 5.19: Profiles along the central horizontal line of the reconstructed images using the MLEM and WREM algorithms at
(a) 6 iterations, (b) 7 iterations, (c) 8 iterations, (d) 9 iterations.
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Figure 5.20: Comparative profiles along the central vertical line of the reconstructed images.
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Figure 5.21: Comparative profiles along the central (a) horizontal line, (b) vertical line of the “best” reconstructed images.

Efficient wavelet domain de-noising may be achieved when knowing the statistical properties of
the noise in data. In addition, the noise should be data-independent when the wavelet thresholding
method is applied. A generally used method to improve the de-noising procedure is the integration
of ’a priori’ knowledge about the source distribution, and the noise variance, or both, creating object-
dependent solutions. However, a practical procedure may not have this information.

The Compton imaging response is influenced by the uncertainty of measurements (e.g., energy, po-
sition), the detector geometry, read-out noise, and Doppler broadening. The data measured have high
dimensionality, and are incompletely sampled in the scattering angle. Each of these difficulties intro-
duces its own uncertainty distribution into the resulting data. Roughly speaking, all these uncertainties
can be considered as noise in data. Thus wavelet coefficientsshrinking alleviate that noise, and provides
a stable iterative method. In addition, the Compton cones donot intersect when full energy has not been
deposited in the camera. Therefore, a further step would be to adopt a combined spatial-spectral decon-
volution [Xu and He, 2007]. Moreover, in list-mode acquisition, computing the absolute normalization
to recover the source flux is difficult. This drawback is the reason why the reconstructed images were
normalized when the analysis of algorithms was performed.

The model of the imaging detector response plays an important role in the achievable resolution of
the reconstructed images. The response of each event is described by Compton cone profiles. A profile
represents the distribution of possible true event cones from the measured one, and the distribution of
true scatter planes from the measured one. In this study, theprofile shape is estimated by 1D Gaus-
sian distributions, which represent the simplest approximation form. Hence, it may be considered that
Compton measurement data follow more complex statistical properties than the classical projection data
generated in nuclear medicine (PET, SPECT).

Consider a point source of10 MeV placed at8 cm above the HTI system. The measured ARM as a
function of the measured energy for the known source position is represented in Figure 5.22.

It can be seen that the ARM distribution is strongly influenced by the measured energy, i.e., the
distribution becomes more or less broaden according to the amount of incompletely absorbed events.
Therefore, a possible way of imaging response approximation is to include the measured energy infor-
mation when retrieving the cone section profiles. Note that other dependence parameters (e.g., measured
Compton cone, distance between the first two interactions) may be further included.

The energy integrated imaging may be achieved by adopting a partially list-mode approach to store
the imaging response. A binned matrix is then used to store the cone profiles as a function of the measured
energy. Afterwards, the corresponding slice of the response is fitted along the measured cone section.
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Figure 5.22: Graphic representation of the ARM
vs. measured energy. The ARM peak is mea-
sured at the incident energy (10 MeV), where full-
absorption events were recorded. The ARM distri-
butions change according to the amount of mea-
sured energy, being more broaden where events
escaped from the detector, i.e., incompletely ab-
sorbed events.

Other approach to handle incompletely absorbed events is toderive analytically the energy integrated
response [Xu and He, 2007]. In list-mode data acquisition, an approach is to expand the response model
to also integrate the measured energy, i.e., improve the model which describe the cone-section profiles of
measured Compton events. One back-projection is then represented by the spatial information (anglesθ,
φ), and the measured energyE, i.e., thej dimension describing the contribution of eventi in the image
space is represented by (θ, φ, E).

5.6 Conclusion

A regularization technique based on wavelet thresholding was introduced into an iterative MLEM re-
construction, and evaluated on simulated Compton scattered data. The main advantage of the proposed
WREM algorithm is its stability in terms of error versus the number of iterations used. The current
threshold value depends on the wavelet decomposition scale. The noise variance was computed using
the high subbands wavelet coefficients, assuming they contain most of the noise in the data, i.e., the
noise is white. The Daubechies 8 wavelets were applied sincetheir response generally provides a good
space-frequency localization.

Further work seeks the study of the optimal model framework enabling consistent estimation of
the expected noise characteristics as well as the integration of all dependence parameters related to the
Compton data measurement process. The latter would result in a higher fidelity detector response model,
and thus improving the signal-to-noise ratio. Note that efficient implementation of the algorithm could
be achieved by using an architecture exploiting parallel processing of data (e.g., multiple cores, GPU).
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Chapter 6

Closing remarks

Hadron therapy is a new radiation therapy technique with advanced dose distribution located at a precise
point well known as Bragg peak. Further improvement in hadron therapy is possible with real time
quality assurance (QA) of dose delivery. The precise knowledge of the distal fall-off position of the dose
with millimeter accuracy is critical since very often hadron therapy is used for the treatment of a tumor
which is close to vital organs. One solution for tracking of heavy ion and proton beam dose distribution
is the measurement of positrons emitting isotopes activityusing PET technology. The generated PET
images are correlated, but not in direct coincidence with the Bragg peak.

Chapter 4 presented investigatory work about QA in proton therapy by considering the reconstruction
of gamma rays originated from inelastic interactions of protons to target nuclei. To reconstruct these
high-energy gamma events, the Compton camera with electrontracking possibility was proposed and
modeled. The proposed Compton detection technique was initially developed to observe gamma rays
in the MeV region from the universe. Herein, the imaging device illustrating this detection method was
redesigned and optimized for hadron therapy imaging to observe gamma rays from an object, which is
represented by a PMMA phantom. Monte Carlo simulations of the emitted gamma photons profiles in
the phantom for pencil proton beams is presented along with energy deposition of protons. Assuming
a hadron therapy scenario, the reconstructed images derived from numerical experiments with Geant4
are shown. A correlation was observed between the pattern ofthe reconstructed high-energy gamma
events, and the location of the Bragg peak. The capacity of the HTI imaging technique has to be viewed
as a function of at least several parameters: the detector performance in terms of detection efficiency as
well as spatial and energy resolutions, the acquisition time, and the algorithms used to reconstruct the
gamma-ray activity.

Two main challenges arise when considering an imaging system based on Compton scattering: the
detector optimization and data analysis. The first challenge demands the choice of e.g., the detector
materials as well as the geometry configuration. Data analysis has to cover the complete chain from
measurements or simulations to reconstruction of individual events, and finally to image reconstruction.
The latter requests the existence of a model describing the imaging response, which has to depict the
complex behavior of the detector. In addition, besides the performance of the imaging algorithm, the
resolution of reconstructed images is affected by the countstatistics. A reasonable solution would be to
add more detectors to the imaging system, e.g., two detectors at90◦ one from the other. However, this
improvement would need large memory resources to store and analyze the Compton events.

Each measured event creates a single-event image response.The response is approximated by the
profile of the cone, or the length of the arc, in case of trackedevents. The profile is determined by
the measurements of the scattered gamma-ray energyEg, the recoiled electron energyEe, the Doppler
broadening, the spatial resolution of the detector. The length is mainly determined by the direction and
energy of the recoiled electron. For each event, the transition probabilitiestij are calculated by including
the event cone with the derived profile perpendicular to the cone, and the length parallel to the cone.
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Hence, the approximation of the response is a complex process which has to include all the measure-
ment variables, resulting in a high-dimensional calculation. The first approximation, the simplest form,
consists of using 1D Gaussian distributions to estimate theprofile and the length, where the widths cor-
respond to the values derived from ARM and SPD (see Section 2.2.2). A second approximation form is
to find an estimation function, which includes the measured energy information. This new approxima-
tion will allow integrating in the imaging response of events which are incompletely absorbed into the
detector. In the case of gamma rays emitted during target (e.g., PMMA phantom) irradiation by hadron
beams, events which are not full-stopped into the detector are likely to appear. Hence, including the
measured energy increase the accuracy of the response description, and consequently, the quality of the
final results.

The final aim of hadron therapy monitoring is the determination of the delivered dose location during
irradiation. A first goal for a usefulness proof of the proposed gamma-ray imaging technique can be to
reach a detection capability of the dose fall-off region of the order of millimeters from the reconstructed
images. Alternatively, a solution could be to determine a filter function which applied to the planned
dose deposition will match to the estimated gamma-ray distribution, which will be further compared to
the measured gamma-ray distribution.

Possible perspectives include also a more complex characterization of the dose when studying the
feasibility of the treatment monitoring method. In addition, everything which can be included in more
complex irradiation scenarios, e.g., modulation wheel inserted in the beam configuration, complex phan-
toms (different materials, dimensions), SOBP, may be considered. In order to more accurately select the
real reasons for which potential disagreements between themeasured and predicted dose deposition are
detected, multi-modality imaging techniques, e.g., Compton imaging/CT, could be envisioned.



Bibliography

[Agostinelli et al., 2003] Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P.,
Asai, M., and Axen, D. (2003). Geant4-a simulation toolkit.Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,
506(3):250 – 303.

[Andia et al., 2002] Andia, B., Sauer, K., and Bouman, C. (2002). Nonlinear backprojection for tomo-
graphic reconstruction .IEEE Trans. Nucl. Sci., 49:61–68.

[Andritschke, 2006] Andritschke, R. (2006).Calibration of the MEGA Prototype. PhD thesis, Technical
University Munich, Germany. to be published.

[Anscombe, 1948] Anscombe, F. J. (1948). The transformation of poisson, binomial and negative-
binomial data.Biometrika, 35:246–254.

[Basko et al., 1999] Basko, R., Zeng, G. L., and Gulberg, G. T.(1999). Application of spherical har-
monics to image reconstruction for the compton camera.Phys. Med. Biol., 43:887–894.

[Bhattacharya et al., 2004] Bhattacharya, D. et al. (2004).Prototype tigre comptonγ-ray balloon-borne
instrument. 48:287–292.

[Bolozdynya et al., 1997] Bolozdynya, A., Ordonez, C. E., and Chang, W. (1997). A concept of cylin-
drical Compton camera for SPECT. InProceedings of the 1997 IEEE Nuclear Science Symposium,
pages 1047–51.

[Bortfeld and Oelfke, 1999] Bortfeld, T. and Oelfke, U. (1999). Fast and exact 2D image reconstruction
by means of Chebyshev decomposition and backprojection.Phys. in Med. and Biol., 44:1105–1120.

[Brechner and Singh, 1990] Brechner, R. R. and Singh, M. (1990). Iterative reconstruction of electron-
ically collimated SPECT images.IEEE Trans. Nucl. Sci., 37:1328–1332.

[Brechner et al., 1987] Brechner, R. R., Singh, M., and Leahy, R. (1987). Computer simulated studies of
tomographic reconstruction with an electronically collimated camera for SPECT.IEEE Trans. Nucl.
Sci., 34:369–373.

[Chang et al., 2000] Chang, S. G., Yu, B., and Vetterli, M. (2000). Adaptive wavelet thresholding for
image denoising and compression.IEEE Trans. on Image Process., 9(9):1532–1546.

[Chelikani et al., 2004] Chelikani, S., Gore, J., and Zubal,G. (2004). Optimizing compton camera ge-
ometries.Physics in Medicine and Biology, 49(8):1387–1408.

[Cree and Bones, 1994] Cree, M. J. and Bones, P. J. (1994). Towards direct reconstruction from a
gamma camera based on compton scattering.IEEE Trans. Med. Imaging, 13:398–407.

[Crespo et al., 2001] Crespo, P., Debus, J., Enghardt, W., Haberer, T., Jakel, O., Kramer, M., and Kraft,
G. (2001). Tumor Therapy with Carbon Ion Beams.Physica Medica, XVII Suppl. 4.

99



100 BIBLIOGRAPHY

[Daubechies, 1992] Daubechies, I. (1992).Ten Lectures on Wavelets. SIAM: Society for Industrial and
Applied Mathematics.

[Defrise and Gullberg, 2006] Defrise, M. and Gullberg, G. T.(2006). Image reconstruction.Physics in
Medicine and Biology, 51(13):R139–R154.

[Dixon et al., 1996] Dixon, D., Johnson, W., Kurfess, J., Pina, R., Puetter, R., Purcell, W., Tumer, T.,
Wheaton, W., and Zych, A. (1996). Pixon-based deconvolution. Astron. Astrophys. Suppl. Ser.,
120:683–686.

[Donoho, 1993] Donoho, D. L. (1993). Nonlinear wavelet methods for recovery of signals, densities,
and spectra from indirect and noisy data. InIn Proceedings of Symposia in Applied Mathematics,
pages 173–205. American Mathematical Society.

[Donoho and Johnstone, 1994] Donoho, D. L. and Johnstone, I.M. (1994). Ideal spatial adaptation by
wavelet shrinkage.Biometrika, 81(3):425–455.

[Donoho and Johnstone, 1995] Donoho, D. L. and Johnstone, I.M. (1995). Adapting to unknown
smoothness via wavelet shrinkage.J. Am. Stat. Assoc., 90:1200–1224.

[Donoho et al., 1995] Donoho, D. L., Johnstone, I. M., Kerkyacharian, G., and Picard, D. (1995).
Wavelet shrinkage: Asymptopia?J. of the Royal Stat. Soc., Series B, 57:301–369.

[Du et al., 1999] Du, Y. F., He, Z., Knoll, G. F., Wehe, D. K., and Li, W. (1999). Evaluation of a
compton scattering camera using 3d position-sensitive cdznte detectors.SPIE Proc. Int. Soc. Opt.
Eng., 32:228–238.

[Edholm and Herman, 1987] Edholm, P. R. and Herman, G. T. (1987). Linograms in image reconstruc-
tion from projections.IEEE Trans Med Imaging, 6:301–307.

[Fessler and Hero, 1994] Fessler, J. A. and Hero, A. O. (1994). Space-alternating generalized
expectation-maximization algorithm.IEEE Trans. Signal Processing, 42:2664–2677.

[Fessler and Hero, 1995] Fessler, J. A. and Hero, A. O. (1995). Penalized maximum-likelihood image
reconstruction using space-alternating generalized em algorithms.IEEE Trans. Image Proc., 4:1417–
1429.

[Fisz, 1955] Fisz, M. (1955). The limiting distribution function of two independent random variables
and its statistical application.Colloquium Mathematicum, 3:138–146.

[Frandes et al., 2010a] Frandes, M., Magnin, E., and Prost, R. (2010a). List-Mode Wavelet Thresholding
MLEM algorithm for Compton Imaging. InIEEE Nucl. Sci.submitted.

[Frandes et al., 2009] Frandes, M., Maxim, V., and Prost, R. (2009). List-Mode Wavelet-Based Mul-
tiresolution Image Reconstruction for Compton Imaging. InProceedings of the 2009 IEEE Nuclear
Science Symposium, pages 3781–3785.

[Frandes et al., 2010b] Frandes, M., Zoglauer, A., Maxim, V., and Prost, R. (2010b). A Tracking
Compton-scattering Imaging System for Hadron Therapy Monitoring. IEEE Trans Nucl Sci, 57:144–
150.

[Frandes et al., 2010c] Frandes, M., Zoglauer, A., Maxim, V., and Prost, R. (2010c). A Tracking
Compton-scattering Imaging System for Hadron Therapy Monitoring. IEEE Trans. Nucl. Sci.,
57:144–150.



BIBLIOGRAPHY 101

[Gehrels and other, 1999] Gehrels, N. and other (1999). Glast: the next-generation high energy gamma-
ray astronomy mission.Astroparticle Physics, 11(1):277–282.

[Gordon et al., 1970] Gordon, R., Bender, R., and Herman, G. T. (1970). Algebraic Reconstruction
Techniques (ART) for three-dimensional Electron Microscopy and X-ray photography.J. Theor. Biol.,
29:471–481.

[Gunter, 2006] Gunter, D. L. (2006). Filtered backprojection algorithms for compton cameras in nuclear
medicine,.Patent.

[Halloin, 2003] Halloin, H. (2003).CLAIRE: Premières Lumières d’une Lentille Gamma. PhD thesis,
Université Paul Sabatier de Toulouse.

[Hebert et al., 1990] Hebert, T., Leahy, R., and Singh, M. (1990). Three-dimensional maximum-
likelihood reconstruction for an electronically collimated single-photon-emission imaging system.J.
Opt. Soc. Am. A, 7:1305–1313.

[Herman and Lent, 1976] Herman, G. T. and Lent, A. (1976). Iterative reconstruction algorithms.Com-
puters in Biology and Medicine, 6(4):273 – 294.

[Hudson and Larkin, 1994] Hudson, H. and Larkin, R. (1994). Accelerated image reconstruction using
ordered subsets of projection data.IEEE Trans. Med. Imag., 13:601–609.

[Huesman et al., 2000] Huesman, R., Klein, G., Moses, W., andQi, J. (2000). List-mode maximum-
likelihood reconstruction applied to positron emission mammography (PEM) with irregular sampling.
IEEE Trans. Med. Imaging, 19:532–537.

[Johnstone and Silverman, 1997] Johnstone, I. M. and Silverman, B. W. (1997). Wavelet threshold es-
timators for data with correlated noise.Journal of the Royal Statistical Society B, 59(2):319–351.

[Kamae et al., 1988] Kamae, T., Hanada, N., and Enomoto, R. (1988). Prototype design of multiple
Compton gamma-ray camera.IEEE Trans. Nucl. Sci., 35:352–355.

[Kim et al., 2007] Kim, S. M., Lee, J. S., and Lee, S.-J. (2007). Fully Three-Dimensional Image Re-
construction for Compton Imaging Using Ordered Subsets of Conical Projection Data. InNuclear
Science Symposium Conference Record, pages 3070–3073.

[Kippen, 2004] Kippen, R. (2004). The GEANT low energy Compton scattering (GLECS) package for
use in simulating advanced Compton telescopes. 48:221–226.

[Knödlseder et al., 1999] Knödlseder, J., Dixon, D., Bennett, K., Bloemen, H., Diehl, R., Hermsen,
W., Oberlack, U., Ryan, J., Schönfelder, V., and von Ballmoos, P. (1999). Image Reconstruction of
COMPTEL 1.8 MeV 26Al Line Data.Astron. Astrophys., 345:813–825.

[Knoll, 2000] Knoll, G. F. (2000).Radiation Detection and Measurement. John Wiley & Sons, New
York, 3rd edition.

[Kramer et al., 2000] Kramer, M., Jakel, O., Haberer, T., Kraft, G., Schardt, D., and Weber, U. (2000).
Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization.Physics
in Medicine and Biology, 45(11):3299–3317.

[Lange et al., 1987] Lange, K., Bahn, M., and R., L. (1987). A theoretical study of some maximum
likelihood algorithms for emission and transmission tomography. IEEE Trans Med Imaging, 6:106–
14.



102 BIBLIOGRAPHY

[Lange and Carson, 1984] Lange, K. and Carson, R. (1984). EM reconstruction algorithms for emission
and transmission tomography.J. Comput. Assist. Tomogr., 8:306–316.

[Leblanc et al., 1999] Leblanc, J. W., Clinthorne, N. H., Hua, C. H., Nygard, E., Rogers, W. L., Wehe,
D. K., Weilhammer, P., and Wilderman, S. J. (1999). Experimental results from the C-SPRINT
prototype Compton camera.IEEE Trans. Nucl. Sci., 46(3):201–204.

[Lee et al., 2008] Lee, S., Lee, M., Nguyen, V., Kim, S., and Lee, J. (2008). Three-Dimensional Edge-
Preserving Regularization for Compton Camera Reconstruction. In Proceedings of the 2008 Nuclear
Science Symposium, pages 3070–3073.

[Lee, 2008] Lee, S.-J. e. a. (2008). Three-Dimensional Edge-Preserving Regularization for Compton
Camera Reconstruction. InNuclear Science Symposium Conference Record, pages 3070–3073.

[Liang et al., 1989] Liang, Z., Jaszczak, R., and Greer, K. (1989). On Bayesian image reconstruction
from projections: uniform and nonuniform a priori source information . IEEE Trans Med Imaging,
8:227–35.

[Mallat, 1999] Mallat, S. (1999).A Wavelet Tour of Signal Processing. Academic Press.

[Maxim et al., 2009] Maxim, V., Frandes, M., and Prost, R. (2009). Analytical inversion of the Compton
Transform using the full set of available projections.Inverse Probl., 9:1–21.

[Min et al., 2006] Min, C.-H., Kim, C.-H., Youn, M.-Y., and Kim, J.-W. (2006). Prompt gamma mea-
surements for locating the dose falloff region in the protontherapy.Appl. Phys. Lett., 89.

[Murtagh et al., 1995] Murtagh, F., Starck, J.-L., and Bijaoui, A. (1995). Image restoration with noise
suppression using a multiresolution support.Astron. and Astrophys., Suppl. Ser, 112:179–189.

[Parodi, 2004] Parodi, K. (2004).On the feasibility of dose quantication with in-beam PET data in
radiotherapy with and proton beams. Ph.d., TU Dresden.

[Parodi and Bortfeld, 2006] Parodi, K. and Bortfeld, T. (2006). A filtering approach based on gaussian-
powerlaw convolutions for local PET verification of proton radiotherapy.Phys. Med. Biol., 51:1991–
2009.

[Parodi et al., 2002] Parodi, K., Enghardt, W., and Haberer,T. (2002). In-beam PET measurements of
beta+-radioactivity induced by proton beams.Phys. Med. Biol., 47:21–36.

[Parra and Barrett, 1998] Parra, L. and Barrett, H. (1998). List-mode likelihood: EM algorithm and im-
age quality estimation demonstrated on 2-D PET.Medical Imaging, IEEE Transactions on, 17(2):228
–235.

[Parra, 2000] Parra, L. C. (2000). Reconstruction of cone-beam projections from compton scattered
data.IEEE Trans. Nucl. Sci., 47:1543–50.

[Pommier et al., 2002] Pommier, P., Balosso, J., Bolla, M., and Gérard, J. P. (2002). Le projet français
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• Rémy Prost and Voichiţa Maxim, my advisors, for their collaboration during the thesis period, for
allowing me to present the work at international conferences.

• Isabelle Magnin, the laboratory director, for managing theproblems which appeared, and for the
work suggestions.

• Michael Cree for sending me a copy of his PhD thesis, which wasreally helpful.

• Jürgen Knödlseder for answering my questions, and all thosewho made free-available study ma-
terials (courses, programs, presentations).

• All my office colleagues throughout this period, especiallyto Feng Yang, for her enthusiasm for
conversations about work, french, cultural traditions.

• The community of St. Archangels for their acceptance, especially at my arrival, and for all Sundays
which made me feel well integrated in Lyon.

• Andreas Zoglauer for his intellectual generosity, his helpsince this work initially started to take
shape; namely, for his help to handle MEGAlib, his advises tomanage the simulation files, to start
reading articles about iterative image reconstruction algorithms applied in astrophysics, for well
understanding problems although being at a very long distance, for... many other things which
would need too much space for being possible to write them allhere.

And my very special thanks go to my parents for their unconditioned support.

107









FOLIO ADMINISTRATIF

NOM : Frandes DATE DE SOUTENANCE : le 16 septembre 2010
PRÉNOM : Mirela

T ITRE : Détection des rayons gamma et reconstruction d’images pour la caméra Compton: Application à l’hadronthérapie.

NATURE : Doctorat NUMÉRO D ’ ORDRE: 2010-ISAL-0067
ECOLE DOCTORALE : Électronique, Électrotechnique et Automatique
SPÉCIALITÉ : IMAGES ET SYSTÈMES

COTE B.I.U. LYON : CLASSE:

RÉSUMÉ:
Une nouvelle technique de radiothérapie, l’hadronthérapie, irradie les tumeurs à l’aide d’un faisceau de protons ou d’ions

carbone. L’hadronthérapie est très efficace pour le traitement du cancer car elle permet le dépôt d’une dose létale très localisée,
en un point dit ’pic de Bragg’, à la fin du trajet des particules. La connaissance de la position du pic de Bragg, avec une
précision millimétrique, est essentielle car l’hadronthérapie a prouvé son efficacité dans le traitement des tumeurs profondes,
près des organes vitaux, ou radio-résistantes.

Un enjeu majeur de l’hadronthérapie est le contrôle de la délivrance de la dose pendant l’irradiation. Actuellement, les cen-
tres de traitement par hadronthérapie effectuent un contrôle post-thérapeutique par tomographie par émission de positron (TEP).
Les rayons gamma utilisés proviennent de l’annihilation depositons émis lors la désintégration bêta des isotopes radioactifs
créés par le faisceau de particules. Ils ne sont pas en coïncidence directe avec le pic de Bragg. Une alternative est l’imagerie
des rayons gamma nucléaires émis suites aux interactions inélastiques des hadrons avec les noyaux des tissus. Cette émission
est isotrope, présentant un spectre à haute énergie allant de 100 keV à20 MeV. La mesure de ces rayons gamma énergétiques
dépasse la capacité des systèmes d’imagerie médicale existants. Une technique avancée de détection des rayons gamma est
proposée. Elle est basée sur la diffusion Compton avec possibilité de poursuite des électrons diffusés. Cette technique de
détection Compton a été initialement appliquée pour observer les rayons gamma en astrophysique (télescope Compton). Un
dispositif, inspiré de cette technique, a été modélisé avecune géométrie adaptée à l’Imagerie en HadronThérapie (IHT). Il se
compose d’un diffuseur, où les électrons Compton sont mesurés et suivis (’tracker’), et d’un calorimètre, où les rayonsgamma
sont absorbés par effet photoélectrique. Un scénario d’hadronthérapie a été simulé par la méthode de Monte-Carlo, en suivant
la chaîne complète de détection, de la reconstruction d’événements individuels jusqu’à la reconstruction d’images dela source
de rayons gamma. L’algorithme ’Expectation Maximisation’(EM) à été adopté dans le calcul de l’estimateur du maximum
de vraisemblance (MLEM) en mode liste pour effectuer la reconstruction d’images. Il prend en compte la réponse du système
d’imagerie qui décrit le comportement complexe du détecteur. La modélisation de cette réponse nécessite des calculs com-
plexes, en fonction de l’angle d’incidence de tous les photons détectés, de l’angle Compton dans le diffuseur et de la direction
des électrons diffusés. Dans sa forme la plus simple, la réponse du système à un événement est décrite par une conique, in-
tersection du cône Compton et du plan dans lequel l’image estreconstruite. Une forte corrélation a été observée entre l’image
de la source gamma reconstruite et la position du pic de Bragg. Les performances du système IHT dépendent du détecteur,
en termes d’efficacité de détection, de résolution spatialeet énergétique, du temps d’acquisition et de l’algorithme utilisé pour
reconstituer l’activité de la source de rayons gamma.

L’algorithme de reconstruction de l’image a une importancefondamentale. En raison du faible nombre de photons mesurés
(statistique de Poisson), des incertitudes induites par larésolution finie en énergie, de l’effet Doppler, des dimensions limitées et
des artefacts générés par l’algorithme itératif MLEM, les images IHT reconstruites sont affectées d’artefacts que l’on regroupe
sous le terme ’bruit’. Ce bruit est variable dans l’espace etdépend du signal, ce qui représente un obstacle majeur pour
l’extraction d’information. Ainsi des techniques de dé-bruitage ont été utilisées. Une stratégie de régularisation de l’algorithme
MLEM (WREM) en mode liste a été développée et appliquée pour reconstituer des images Compton. Cette proposition est
multi-résolution sur une base d’ondelettes orthogonales.A chaque itération, une étape de seuillage des coefficients d’ondelettes
a été intégrée. La variance du bruit a été estimée à chaque itération par la valeur médiane des coefficients de la sous-bande
de haute fréquence. Cette approche stabilise le comportement de l’algorithme itératif, réduit l’erreur quadratique moyenne et
améliore le contraste de l’image.

M OTS-CLÉS: Hadronthérapie, rayons gamma, imagerie Compton, reconstruction d’image, algorithme MLEM, ondelettes.

L ABORATOIRES DE RECHERCHES: CREATIS (CNRS UMR 5520, INSERM U630)

DIRECTEURS DE THÈSE: Pr. Rémy Prost

COMPOSITION DU JURY: Mai Nguyen-Verger (Rapporteur), Laurent Desbat (Rapporteur), Denis Dauvergne, Isabelle
Magnin, Voichita Maxim, Rémy Prost


