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Résumé

Les membranes lipidiques constituent des matériaux très particuliers: d’une part,
elles sont très peu résistantes aux étirements microscopiques; d’autre part elles sont
extrêmement flexibles, présentant des déformations même à des petites échelles.
En conséquence, une portion de membrane possède un excès d’aire relatif à l’aire
optiquement visible, qu’on appelle l’aire projetée. D’un point de vue mécanique, on
peut alors distinguer trois tensions associées aux membranes lipidiques: la tension
mécanique effective τ , associée à l’augmentation de l’aire projetée et au lissage des
fluctuations; la tension σ, associée à l’aire microscopique de la membrane et donc
non-mesurable, mais couramment utilisée dans les prédictions théoriques; et son
équivalent macroscopique mesuré à travers du spectre des fluctuations, r. Jusqu’au
moment, pour interpréter les données expérimentales, on suppose l’égalité entre ces
quantités. Dans cette thèse, nous avons étudié, en utilisant le tenseur des contraintes
projeté, si et sous quelles conditions il est justifié d’assumer τ = σ. Nous avons
étudié trois géométries (planaire, sphérique et cylindrique) et obtenu la relation
τ ≈ σ − σ0, où σ0 est une constante qui dépend seulement du plus grand vecteur
d’onde de la membrane et de la température. En conséquence, nous concluons que
négliger la différence entre τ et σ est justifiable seulement pour des membranes
sous grande tension: pour des tensions faibles, il faut considérer des corrections.
Nous avons étudié les implications de ce résultat à l’interprétation des expériences
d’extraction de nanotubes de membrane. En ce que concerne r, nous questionnons
une démonstration précédente de son égalité avec τ . Finalement, la fluctuation
des forces pour les membranes planes et pour des nanotubes de membranes a été
quantifiée pour la première fois.
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Abstract

Lipid membranes constitute very particular materials: on the one hand, they
break very easily under microscopical stretching; on the other hand, they are ex-
tremely flexible, presenting deformations even at small scales. Consequently, a piece
of membrane has an area excess relative to its optically resolvable area, also called
projected area. From a mechanical point of view, we can thus identify three tensions
associated to lipid membranes: the mechanical effective tension τ , associated to an
increase in the projected area and to the flattening of the fluctuations; the tension
σ, associated to the microscopical area of the membrane and thus non measurable,
but commonly used in theoretical predictions; and its macroscopical counterpart
measured through the fluctuation spectrum, r. Up to now, the equality between
these quantities was taken for granted when analyzing experimental data. In this
dissertation, we have studied, using the projected stress tensor, whether and un-
der which conditions it is justified to assume τ = σ. We studied three geometries
(planar, spherical and cylindrical) and obtained the relation τ ≈ σ − σ0, where σ0

is a constant depending only on the membrane’s high frequency cutoff and on the
temperature. Accordingly, we conclude that neglecting the difference between τ and
σ is justifiable only to membranes under large tensions: in the case of small tensions,
corrections must be taken into account. We have studied the implications of this
result to the interpretation of experiments involving membrane nanotubes. Regard-
ing r, we have questioned a former demonstration concerning its equality with τ .
Finally, the force fluctuation for planar membranes and membrane nanotubes was
quantified for the first time.
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Préambule

Les membranes biologiques sont constituées principalement par des molécules
lipidiques amphiphiles, i. e., des molécules qui possèdent un groupe hydrophile
et un groupe hydrophobe. Le caractère amphiphile de ces molécules donne des
propriétés très particulières aux membranes lipidiques: d’une part, leur cohésion
est assurée principalement par des interactions hydrophobes-hydrophiles entre les
lipides et l’eau et d’autre par, la membrane présente une rigidité de courbure. Le
fait que les membranes s’associent surtout par répulsion à l’eau et non par des liaisons
chimiques a pour conséquence la grande mobilité de ces molécules à l’intérieur de la
membrane (ce qui explique l’expression liquide bi-dimensionnel fréquemment utilisée
pour désigner de membranes lipidiques) et une grande fragilité à des étirements au
niveau moléculaire. Une autre conséquence est leur grande flexibilité: les membranes
lipidiques sont facilement déformables, même à des échelles plus petites que celles
accessibles expérimentalement. Une portion de membrane possède alors un excès
d’aire relatif à l’aire optiquement discernable, qu’on appelle l’aire projetée.

Imaginons maintenant une expérience: une portion de membrane est attachée à
un cadre. Une force latérale τ est appliquée sur le cadre de façon à augmenter l’aire
projetée de la membrane. La force τ correspond à la force nécessaire pour lisser les
fluctuations de la membrane. Elle est donc d’origine purement entropique et nous
l’appelons alors tension mécanique effective. Expérimentalement, elle correspond
à la tension appliquée à travers des micropipettes sur des vésicules, par exemple.
Malheureusement, les prédictions théoriques concernent normalement la tension σ
associée à l’aire microscopique de la membrane, qui n’est pas mesurable. En ef-
fet, à travers l’analyse du spectre de fluctuation des membranes, il est uniquement
possible de mesurer l’équivalent macroscopique de σ, la tension r. En conséquence,
lors de l’interprétation des résultats expérimentaux, l’égalité entre ces tensions est
couramment admise. Dans cette dissertation, j’ai alors examiné, sous la direction
de Jean-Baptiste Fournier, si et sous quelles conditions cette hypothèse est valable
pour des géométries diverses.

Dans la première partie de cette thèse, nous étudions le cas d’une pièce plane
de membrane (résultats présentés dans le chapitre 2 et publiés en [1]). Dans la
littérature scientifique, nous trouvons quelques relations entre τ , σ et r, sans qu’il
aie un consensus [2], [3]. Toutes ces dérivations, cependant, partent de l’énergie
libre, ce qui peut-être très subtile, comme on discutera dans la section 2.2. Nous
avons alors utilisé comme base de nos calculs le tenseur des contraintes projeté, un
outil développé récemment [4] et introduit en 1.5.2, à partir duquel on a pu obtenir
directement la tension τ en fonction de σ:
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PRÉAMBULE

τ ≃ σ − σ0 , (1)

où σ0 est une constante qui ne dépend que de la température et du plus grand vecteur
d’onde de la membrane. Ainsi, il est justifiable de considérer τ ≈ σ seulement
pour des fortes tensions. Dans ce chapitre, nous questionnons aussi une ancienne
démonstration de l’égalité entre r et τ [2]: nous attendons donc en général τ 6= σ 6= r.

à partir du tenseur des contraintes projeté, il est aussi possible d’examiner la cor-
rélation des contraintes sur la membrane. Ces résultats inédits sont présentés dans
chapitre 3 et indiquent que ces corrélations décroissent très rapidement, indépen-
demment de la tension de la membrane. Les calculs développés dans ce chapitre ont
été fondamentaux pour introduire et mâıtriser une représentation diagrammatique
des moyennes proposée par nous et inspirée des diagrammes de Feynmann. Ces
outils sont repris dans le chapitre 6 et simplifient grandement les évaluations.

Expérimentalement, une pièce planaire de membrane est difficile à manipuler.
Plus populairement, des vésicules de grande taille qui peuvent être manipulées avec
de micropipettes sont utilisées en laboratoire. Nous avons alors étudié le cas des
vésicules quasi-sphériques fermées (dont le volume interne est fixe) et percées (dont
le volume n’est pas contraint) dans la partie II de cette thèse (résultats obtenus en
collaboration avec Alberto Imparato et publiés sur [5]). Après avoir dérivé le tenseur
des contraintes pour cette géométrie, nous concluons que la différence entre τ et σ
est bien approximée aussi dans le cas des vésicules sphériques (percées ou non) par la
relation montré dans l’eq.(1). Une conséquence intéressante est la possibilité d’avoir
une vésicule dont la pression interne est plus petite que la pression externe, ce qui
est impossible pour le cas d’une goutte de liquide.

Dans la troisième partie de la thèse, nous examinons les conséquences de nos ré-
sultats pour les expériences d’extraction de nanotube de membrane (résultats publiés
en [6]). Dans ces expériences, une bille en verre, par exemple, est attachée à la mem-
brane. Avec une pince optique, une force est appliquée à la bille et un nanotube
de membrane est extrait. Jusqu’au moment, ces expériences ont été interprétées en
supposant la validité de deux hypothèses: la différence entre entre τ et σ est nég-
ligeable et les fluctuations thermiques des tubes peuvent être également négligées.
Dans ces conditions, une relation très simple relie la force appliquée par la pince
optique à la tension de la membrane. Il a été cependant montré que ces fluctuations
sont très importantes dû à la présence de modes très peu énergétiques [7] (modes
de Goldstone). Nous avons dédié le chapitre 5 à l’étude les effets des fluctuations
thermiques sur la relation entre la force et la tension de la membrane. Curieuse-
ment, nous concluons que par cöıncidence, ces effets sont compensés par l’hypothèse
τ ≈ σ dans le régime de forte tension, justifiant à posteriori le traitement habituel
des données expérimentales.

Avec le montage expérimental utilisé pour extraire des tubes de membrane, nous
pouvons non seulement mesurer la force nécessaire pour l’extraire, mais aussi la
déviation quadratique moyenne de cette force dans la direction de l’axe du tube.
Cette quantité pourrait fournir des informations supplémentaires sur les caractéris-
tiques mécaniques des membranes. Utilisant les outils diagrammatiques introduits
précédemment, nous évaluons alors la déviation quadratique moyenne de la force
nécessaire pour extraire un tube dans le chapitre suivant. Nous prédisons une dépen-
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dance très faible de cette quantité en fonction de la tension et de la rigidité de cour-
bure. En conséquence, la fluctuation de la force est peu utile pour la caractérisation
mécanique des membranes. Par contre, nous discutons dans ce chapitre une possible
utilisation dans la caractérisation de l’activité des pompes actives insérées dans les
membranes.

Finalement, dans la dernière partie, nous présentons les premiers résultats con-
cernant une simulation numérique proposée par nous dans l’objectif de vérifier nos
prévisions. Nous considérons une pièce planaire de membrane attachée à un cadre
circulaire. La membrane a été modélisée de façon très simplifiée par des particules
effectives reliées par un réseau triangulaire dont les liaisons se réarrangeaient pour
assurer la liquidité de la membrane. L’objectif de cette simulation est de reproduire
les conditions d’une vraie expérience: la tension τ était contrôlée par la tension
appliquée au cadre circulaire et le spectre de fluctuation pouvait être mesuré. En
outre, dans ce cas, la tension interne σ pouvait être lié à l’extension des liens entre les
particules effectives et donc estimée. Dû à des contraintes de temps, nous présentons
dans ce chapitre seulement quelques résultats préliminaires.
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PRÉAMBULE

viii PRÉAMBULE
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de faire cette thèse sur un sujet que je trouve très intérressant. J’ai beaucoup
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Chapter 1

Introduction

In this section we will present membranes, first from a biological and historical
point of view (section 1.1) and secondly from a modern physical perspective (sec-
tion 1.2). In section 1.2.1, we define the quantities that are the focus of this work: the
mechanical tension τ , the Lagrange-multiplier σ and its measurable counterpart r.
The main theoretical models for membranes, as well as their validity, are presented
in section 1.3. There we derive the first fundamental results for planar membranes
in contact with a lipid reservoir. Section 1.4 summarizes the most current exper-
imental techniques used to characterize the mechanics of membranes. Finally, the
stress tensor for planar membranes is introduced in section 1.5.

1.1 Biological membranes

During the last four hundred years, the image of the cell has become more and
more complex [8] (see Fig. 1.1). As experimental techniques evolved, many questions
were answered – and many others were raised. In particular, we have learned a lot
about the cell’s boundary. We will start thus by a brief non-exhaustive historical
review (further details can be found on [8], [9], [10], [11]).

Up to the 19th century, living beings were believed to have a sponge-like mi-
croscopical structure. There would be two continuous substances: a membranous
meshwork, as one can see in inset 1.1(a), and a fluid filling the communicating cells.
The meshwork was considered the true essential constituent, while the fluid had a
mere nourishing function [8]. At that time, the term membrane named already the
cell’s boundary, although it corresponded more to what we nowadays call the cell
wall, the rigid cellulose structure that encapsulates plant cells. This image changed
in 1807, when Link showed that cells were in fact separated. He observed that col-
ored fluids did not diffuse through the surrounding cells, as one would expect with
the former theory. He concluded thus that the essential component of life was the
unitary cell itself.

Due to the low numerical aperture of the microscopical objectives available at
that time (see inset 1.1(c) for a typical image), animal cells were also believed to
have a membrane, i. e., a cell wall. Cells from both animals and plants had then
the same features: a nucleus, an aqueous plasma and a cell wall. This apparent
universality was an important support to the cellular theory proposed by Schwann
and Schleiden, which stated that every living being was constituted by cells.
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Figure 1.1: The cell through history. Inset (a) shows the first representation of the cell,
or more precisely, of the cell walls, by Hooke in 1665. Inset (b) left shows the first drawing
of the nucleus accurately made by Leeuwenhoek in 1719, while he studied the salmon
red blood cells (which are nucleated in fishes). The right photo shows a contemporary
optical microscope image of the same cells for comparison. The next inset shows a modern
photograph of plant tissue taken with roughly the same technology as in 1828, five years
before Brown, best known for his observations of the Brownian motion, named the nucleus.
Inset (d) depicts the chromosomes inside the nucleus (Flemming). Finally, sub-figure (e)
shows a nowadays electron micrography of a plant cell [12]. We can see the complicated
internal structure and identify some organelles.
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Some years later, the histologist and physiologist William Bowman [13], best
known for his work in nephrology (the Bowman’s capsule is named after him), rep-
resented for the first time an actual cell membrane. In his 1840 work, he studied
the striated muscle cells [14]. He noticed that by stretching those cells, he could
disrupt their internal fibers leaving a transparent sheath called sarcolemma intact
(see Fig. 1.2). This sheath, in that time thought a cell wall, is actually what we
currently call the cell membrane.

Subsequent experiments on the effects of osmotic pressure on plant cells showed
that the cell could pull away from the cell wall. This phenomenon is called plas-
molysis. It is caused by the selective permittivity of the cell membrane, which is
permeable to water, but not to ions, sugars and other water soluble molecules. Al-
though specialist of that time could have interpreted it as an indirect evidence of
a membrane encapsulating the cell, they blamed osmotic effects on vacuoles and
proposed the naked-cell theory: the cell was defined as a small naked lump of proto-
plasm with nucleus, in Schultze’s words (1860). It could eventually be encapsulated
by a non-essential skin (de Bary, 1861) [8].

Figure 1.2: Drawings from Bowman’s work representing boa and human striated mus-
cle cells [14]. The disrupted fibers are enclosed by a sheath called sarcolemma: the cell
membrane.

The first one to realize that there was effectively a skin of different nature around
the protoplasm was Ernest Overton in 1895 [15]. He noticed that plant cells under
a 8% sugar solution suffered plasmolysis. This indicated that sugar molecules could
not easily penetrate the cell even though the protoplasm was composed by water.
He repeated the experiment using successive solutions of alcohols, ether, acetone
and phenol with the same osmotic pressure as the sugar solution. He remarked
that in some of these cases there was no plasmolysis, depending on the substance
solubility in water. He concluded that water insoluble substances penetrated easily
the external part of the protoplasm (Grenzschicht), whereas water soluble molecules,
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as sugar, did not. He inferred thus that the boundary region was distinct from the
rest of the protoplasm (see Fig. 1.3) and that it was impregnated by a substance of
the same nature of fatty oils.

Indeed, today we know that biological membranes are mostly composed by am-
phiphilic lipids, having a hydrophobic tail and a hydrophilic head. This feature
make them self-assembly in aqueous media in large bilayers, even though there are
no chemical bonds between them. This explains the relative impermeability of mem-
branes to water soluble substances. The most abundant kind of lipid present on
membranes are phospholipids. These molecules have one or two long hydrocarbon
chains, which may contain only simple bonds (saturated) or double bonds (unsatu-
rated). As we shall see in section 1.2, the stability of the bilayer is assured by the fact
that these molecules have an effective shape close to a cylinder, whose dimensions
are typically 0.5 nm for the radius and 1.0 − 1.5 nm for the length [16]. In addition
to phospholipids, membranes may also contain cholesterol, an amphiphilic lipid that
unlike phospholipids has a ring-like tail.

Figure 1.3: Schematic representation of a plant-cell made by Overton in his 1895
work [15]. The cell wall (indicated by c.m.) and the cell membrane (indicated by pl.ext.)
are represented as different entities. Note that Overton decided arbitrarily the thickness
of the membrane.

The first indirect estimation of the membrane thickness was made by Hugo Fricke
in 1925. He measured the capacitance of blood cells and, supposing that they were
composed by lipids, deduced a thickness of 3.3 nm [17]. This is a remarkable result,
since posterior direct measures give a thickness between 5 nm and 10 nm [18]. Mean-
while, Gorter and Grendel gave a fundamental step towards the comprehension of
how lipids arrange themselves within the membrane [19]. They extracted the lipids
from a known number of red blood cells. Using a Langmuir trough, they measured
the area covered by lipids and it corresponded to twice the estimated surface area
of the erythrocytes. They deduced that the membrane was constituted by a bilayer
of lipids whose polar heads pointed outward.
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In 1932, a puzzling experiment suggested that there was more than lipids on
a membrane. Kenneth Cole studied urchin eggs by compressing them between a
plate and a gold fiber with a known force, much in the same way as in modern
experiments [20] (see Fig. 1.4). He deduced the tension of the egg’s membrane by
studying its degree of flattening. His measures yielded a tension of 0.08 dyn/cm,
which is a hundred times smaller than the tension of oily films [21]. This was a
surprising result, if one believed the membrane to be constituted only by lipids.

Figure 1.4: Original drawing and photos from Cole’s experiment on urchin eggs: the egg
(D) is compressed by a gold fiber (E).

Two years later, Danielli and Harvey solved the paradox. They centrifugated
smashed mackerel eggs in order to separate lipids from the aqueous phase. First,
they measured the surface tension of the oily phase and obtained ≈ 9 dyn/cm. Then
they added the aqueous phase and observed a tension lowering. By studying the
time evolution and the influence of temperature on their mixture, they deduced
that proteins were responsible for the tension lowering [22]. Danielli and Davson
proposed in the following year the first model of the membrane structure: every
plasma membrane would have a core of lipids bordered by two monolayers of lipids
whose polar head pointed outward and the whole would be coated by a layer of
proteins [23] (see Fig. 1.5). It was an important step, since today we know that
proteins are responsible for almost every membrane function but enclosing, such
as active transport of molecules, binding to cytoskeleton and reception of chemical
signals from the outer environment.
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Figure 1.5: Original drawing from Danielli-Davson’s paper representing the membrane
structure: a bulk of lipids bordered by ordered lipid monolayers covered with proteins.

In the 1950s the new technology of electron micrography allowed to make the first
direct images of the cell membrane (see Fig. 1.6). The use of permanganate fixation
was also important, since it stained only the hydrophilic head of lipids. Robertson
observed a three line pattern of about 7.5 nm corresponding to a simple bilayer. This
excluded the possibility of a bulk of lipids in membranes. He observed the three
lines pattern not only on the cell boundary, but also encapsulating organelles from
different animals and bacteria [18]. Moreover, using innovative staining processes, he
showed the asymmetry of some membranes’ coating, the external surface containing
also carbohydrates. These new features were incorporated in the unit membrane
model: every biological membrane shared the same architecture - a lipid bilayer,
asymmetrically coated by proteins and carbohydrates.

Figure 1.6: Electron micrography of the cell membrane [24]. The hydrophilic heads of
lipids are colored, while the hydrophobic tails are not. This results on the characteristic
three lines pattern seen above.

Some years later, the advent of the freeze fracture etch (FFE) electron microscopy
brought new advances. This technique consists on freezing cells by immersion on
nitrogen. The block of cells is then fractured. By deposing carbon and platinum
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vapor, a replica of the fractured surface is constituted. At last, the replica can be
examined by a transmission electron microscope. In the late 1960s, da Silva and
Branton showed that on biological membranes, these fractures tended to pull apart
the lipid bilayer [25], [26]. They obtained the micrography shown in Fig. 1.7(a),
which suggested that proteins were actually embedded in the lipid bilayer. Besides,
another work using fluorescent labeling showed that proteins diffuse, implying that
membranes were in fact fluid [27] (see Fig. 1.7(b)).

(a) Micrography of a fractured human erythrocyte
membrane. The left surface corresponds to the ex-
ternal fracture (EF) and the right corresponds to
the protoplasmic fracture (PF). The tiny particles
on both surfaces measure between 5 and 10 nm and
correspond to proteins. Note that they are more
numerous on the PF face due to the presence of
peripheral proteins attaching the membrane to the
cytoskeleton.

(b) Original picture of the fluo-
rescence labeled antigens exper-
iment which showed that pro-
teins diffuse on the cell mem-
brane [27]. Antigens were la-
beled in red (lower half) and
green (upper half). After some
minutes, the colors were uni-
formly distributed over the cell.

Figure 1.7: Evidences in favor of the Mosaic Fluid model.

Finally, bearing in mind these experiments, Singer and Nicholson proposed the
mosaic fluid model of membranes (see Fig. 1.8 for a sum-up), which is the basis
to the modern vision of biological membranes. They made the distinction between
peripheral proteins, i. e., those loosely attached to the membrane like those that
bind the membrane to the cytoskeleton, and the integral proteins, which are em-
bedded in the lipid bilayer. They postulated that lipids and proteins diffuse freely
inside the membrane’s surface, as a two-dimensional liquid. Consequently, mem-
branes should have no long-range order. They noted that the membrane leaflets
were probably asymmetrical with respect to lipid and protein composition due to
the energy barrier of moving the polar head from the aqueous interface into the
bilayer interior. Later experiments confirmed that asymmetry was indeed present
on biological membranes [28].
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Figure 1.8: Schematic view of a biological membrane as proposed by the fluid mosaic
model. The green inset shows the bilayer structure in detail and the blue inset represents of
a phospholipid (phosphatidylcholine), also known as lecithin, present in egg yolk. Remark
the unsaturated bond in one of its tails.

The model was elegant, but experiments rapidly showed that it was oversim-
plified. Biological membranes are not so homogeneous as the fluid mosaic model
implies. Already in the 80’s, indirect measures showed that polarized epithelial cells
present membrane domains, i. e., the cell membrane that faces a cavity has differ-
ent composition from the other faces [29]. Moreover, biological membranes present
also smaller domains, ranging from dozens to hundreds of nanometers [30]. A sim-
ple statistical reasoning suggests that heterogeneities should indeed be expected: a
random lipid and protein distribution means that the pairwise interactions between
lipid-lipid, lipid-protein and protein-protein should be within thermal energies, which
is rather improbable, given their wide variety [31].
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(a) Photo of a vesicle composed by
a 1 : 1 mixture of DLPC and DPPC,
two kind of phospholipids. The green
and red patches represent respec-
tively the fluid and the gel phase.

(b) Time evolution of a vesicle composed by a 1 : 1
DOPC and DPPC (phospholipids) mixture added
of 35% cholesterol. We see also a phase separation,
but this time both phases are liquid. Remark the
domains widen with time.

Figure 1.9: Phase separation on membranes.

At this point, model membranes, i.e., lipid bilayers reconstituted in laboratory
to mimic biological membranes (see section 1.2), confirmed and gave new insight to
the question of lipid phase separation. A mixture of phospholipids in the gel/liquid
phases segregates, as shown in Fig. 1.9(a) [32]. At the interface between these phases,
a line tension builds up and they tend to separate in order to minimize energy.
More interestingly regarding cells, it is possible to have phase separation between
two liquid phases: the liquid-disordered and the liquid-ordered [16]. Experimentally,
this may be achieved in a mixture of phospholipid and cholesterol [33], [34] (see
Fig. 1.9(b)).

Besides the segregation of lipids, it was also shown that some proteins cluster
in model membranes. In these cases, the aggregation depends on the length of
the lipids constituting the bilayer where proteins are embedded [35]. In addition,
modern techniques, such as single particle tracking, show that lipids and proteins in
living cells can have anomalous movements, such as directed or confined motion and
anomalous diffusion, possibly due to the cytoskeleton or to restrictions imposed by
lipid domains [36] (see Fig. 1.10).
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(a) typical trajectories of gold particles
attached to certain proteins on a cell sur-
face (followed for 30 s). Trajectory A cor-
responds to the stationary mode, B, E and
F to simple diffusion, C to directed diffu-
sion and D to restricted diffusion [37].

(b) Here, single particle track-
ing is used to study a model
lipid monolayer divided in two
phases: the liquid-ordered (dark
gray) and liquid-disordered (light
gray). The arrow in (a) indi-
cates the polystyrene bead that
was tracked. Fig.(b) shows the
bead’s random walk and (c) shows
a detail of this walk. Remark that
the bead remains on the liquid-
disordered phase [38].

Figure 1.10: Single particle tracking.

Finally, modern fluorescence techniques allow the direct visualization of domains
in living cells [39]. In Fig. 1.11, Fig. 1.12.A and Fig. 1.12.B, one can see patches
whose overall structure is different. The discriminating feature is the GP (general-
ized polarization): red for liquid-ordered phase, richer in cholesterol, and blue the
liquid-disordered phase. The images show clearly that there is coexistence of liq-
uid phases in cells. Moreover, it is possible to detect certain types of proteins. In
Fig. 1.12.C and in Fig. 1.12.D, transferrin receptor and caveolin-1 are respectively
shown by fluorescence. Fig. 1.12.E and Fig. 1.12.F show the merge of C and D
with B, respectively. We can see that the transferrin receptor is found mostly on
the liquid-disordered phase, while caveolin-1 is found mostly on the liquid-ordered
phase. Indeed, for a long time liquid structures called rafts composed mostly by gly-
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cosphingolipids, cholesterol and some proteins were suspected to exist [16]. These
rafts would help protein sorting and be involved in cell signaling. These images
present however only some evidence of their existence and the subject is still de-
bated [40], [41].

Figure 1.11: GP images of living macrophages (mouse RAW264.7 and human THP −1,
respectively): red stands for the liquid-ordered phase and blue to the liquid-disordered.
The circled area indicated in B shows the pixilation of the image (167 pixels inside the
circle). Note in A that liquid-ordered phase tend to be observed on the tip of filopodia [39].

Figure 1.12: Images of RAW264.7 living cells. Figure A shows the GP image and B
shows the corresponding dual-colored image. Figs.C and D show the fluorescence images
for transferrin receptor and caveolin-1, respectively. Figs.E and F correspond to the super-
position of B with C and D, respectively: light blue patches indicate colocalization with
liquid-disordered phases and yellow patches indicates colocalization with liquid-ordered
phases [39].
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In order to account for some of these results, refinements of the fluid mosaic model
were proposed. For instance, to explain protein clustering Mouritsen proposed the
Mattress Model [42] (see Fig. 1.13). The model comes from the observation that
the bilayer thickness may be smaller or larger than the length of the hydrophobic
part of embedded protein. This mismatch would expose hydrophobic parts of the
protein or of the lipids, which would in consequence deform. The deformation would
give rise to a line tension which would tend to cluster proteins and aggregate some
kinds of lipids. Another model was proposed by Erich Sackmann to explain the
confinement of proteins observed during single particle tracking. It stresses the
interactions between the membrane and the cytoskeleton. To the moment however,
there is no model that accommodates all recent results about biological membranes.

Figure 1.13: Drawing representing the Mattress model: hydrophobic mismatch deforms
lipids. Proteins tend thus to aggregate.

1.2 Model membranes and mechanical probing

As we have seen in the last section, biological membranes are very complex.
Simpler membranes reconstituted in laboratory called model membranes are thus
doubly interesting. First, they give insight to the comprehension of phenomena in
living cells. Model membranes are advantageous because they have both chemical
composition and environment controlled, allowing reproducible experiments. More-
over, these membranes are generally in thermodynamic equilibrium, which is impos-
sible to achieve in living cells. By consequence, these experiments may be described
using conventional statistical mechanics tools. Secondly, model membranes have
technological interest in their own: they are used to improve drug delivery, to build
micro-chambers for chemical reactions [43], [44] and even to build bio-electronic
devices [45] (see Fig. 1.14).
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(a) Fluorescence micrography of a
self-tightened knot (center of image)
made of lipid nanotubes extracted
from membrane vesicles. The vesicle
on the left is about 10 µm [44].

(b) Artistic representation of a bio-
electronic device composed by a nanowire
30 nm wide (gray) covered by a lipid
membrane (blue/orange). In this mem-
brane, proteins that control ion passage
were incorporated (pink) (image by Scott
Dougherty, [45]).

Figure 1.14: Technological applications of membranes.

Model membranes are prepared by dissolving phospholipids in an aqueous solu-
tion. In order to minimize the exposition of their hydrophobic tails to water, they
self-assemble in a large variety of forms, from small micelles to vesicles and bilayers,
depending on temperature, on concentration and on the effective shape of phos-
pholipids, which is a measure of their average cross section of as a function of how
profoundly buried they are on a membrane. In Fig. 1.15(a), we can see examples of
effective shapes. Note that to form a bilayer, lipids must have roughly a cylindrical
shape. In Fig. 1.15(b), we can see an asymmetrical bilayer, which naturally tends to
bend. We remark that the leaflets’ asymmetry is stable over time, since spontaneous
passage of lipids from one monolayer to the other, known as flip-flop, is very slow
in pure lipid bilayers (of the order of several hours [46]). Indeed, there is a high
energetic barrier for the hydrophilic head to traverse the hydrophobic core of the
membrane.

An essential point is the very weak water solubility of phospholipids. This implies
that once a structure such as a vesicle is formed, the number of phospholipids it
contains is constant. Besides, phospholipids do not resist to stretching, as we will
see in section 1.2.1 and thus the total area of these structures is also constant.

1.2. MODEL MEMBRANES AND MECHANICAL PROBING 13
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Figure 1.15: Inset (a) shows the effective shape of some phospholipids: in pink, phos-
phatidylcholine (PC), in blue lysophosphatidylcholine (LPC), with only one hydrophobic
tail, and in green arachidonic acid (AA), with an unsaturated tail. The upper surface corre-
sponds to the hydrophilic head. In the center, we can see some self-assembled structures.
Inset (b) shows an asymmetrical bilayer whose composition leads to a natural bending
tendency.

In this work, we are interested in the mechanical properties of liquid membranes.
To this aim, three structures are usually studied: planar membranes, vesicles and
membrane tubes. Planar membranes are also called black film membranes (BLM).
They are used since the 60’s and their name come from the destructive interfer-
ence that a light beam suffers due to the thinness of the lipid membrane. The
experimental set is constituted by two aqueous chambers separated by a plate (see
Fig. 1.16(a)). This plate, usually made of hydrophobic materials to assure the adher-
ence of lipid molecules, has a hole ranging from micrometers to several millimeters
(see Fig. 1.16(b)). A bilayer can be deposed over this aperture through a variety of
techniques [47]. BLMs are widely used to characterize the electrical properties of
membrane spanning proteins, since one can control the composition of both aqueous
solutions. It has also been used in single particle tracking [48].

Sadly, the technique presents many disadvantages for mechanical probing. First,
one cannot control the tension of the frame: it depends on the film deposition. If
the tension is too small, the membrane fluctuates a lot and is unstable. So, usually
the film is relatively tense. If however it is too tense, a minimum osmotic difference
between the two cavities leads to the rupture of the membrane [49]. Another problem
is the film deposition technique, which may involve solvents that contaminate the
membrane [50].
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(a) Drawing of the experimental set used in
black film experiments.

(b) Photo of the Teflon foil used to separate
the two chambers shown above. The hole is
about 1 mm large. The lipid membrane is de-
posed over this aperture [51].

Figure 1.16: Black lipid films.

The most popular objects used for membrane mechanical probing are uni-lamellar
vesicles, which are self-assembled bags of a single bilayer containing fluid. They are
obtained from several techniques and range in size from a few tens of nanometers to
tens of micrometers. In the last case, they are also called GUV (giant uni-lamellar
vesicles) and they are of special interest, since they have roughly the same size of
cells, they are easy to manipulate and they are directly visible with light microscopy
techniques [52]. Moreover, they are stable and they can be deflated by changing
the osmotic pressure. Each vesicle has a constant surface, since phospholipids are
weakly soluble in water and their volume is also constant, as long as the osmotic
pressure is kept constant.

They appear in a variety of fluctuating shapes (see Fig. 1.17), whose average form
depends on the enclosed volume, total area and the asymmetry between the leaflets
that form the bilayer [16], [53]. Note however that these images are coarse-grained,
as the wave length of light, about half a micron, is much bigger than the membrane
thickness. So, only low-frequency fluctuations are visible.
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Figure 1.17: Prolate, stomatocyte and starfish vesicles made of a ternary mixture of
phospholipids and cholesterol [54]. The high frequency deformations are not optically
resolvable.

In the last ten years, another structure used to characterize a membrane are
membrane nanotubes, such as those seen of Fig. 1.14(a). These tubes are formed
when a point force is applied to a lipid bilayer. Their radii range from a few to
hundreds of nanometers. We will discuss them in detail in section 1.4.4.

1.2.1 How do you characterize mechanically a membrane?

The first way to characterize the mechanical behavior of a material is by study-
ing how it behaves under a reversible deformation, i. e., by studying its elastic
deformations. On a mesoscopic scale, i. e., on length scales bigger than the material
thickness, but smaller than the persistence length, which we will define in the follow-
ing, one can imagine three of these deformations: bending, stretching and shearing.
For thin interfaces, such as lipid membranes, bending means changing the curvature
of a piece of material keeping its area constant (see Fig. 1.18(a)), stretching means
increasing the average area per molecule that composes the material by applying
a tangential stress (Fig. 1.18(b)) and shearing means changing the shape without
changing its area (Fig. 1.18(c)). As lipid membranes are composed by two leaflets,
one should also consider the friction between these layers. In the following, we will
deal only with static measures, so friction will not be important.
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Figure 1.18: Three mesoscopic elastic deformations used to characterize a thin interface:
bending, stretching and shearing.

In liquid interfaces, such as membranes in the liquid state, molecules are free to
move. Consequently, there is no resistance to shearing and we will not study this
kind of deformation. The resistance to stretching is measured by the compression
modulus K. It is defined by the amount of energy EK per unit area needed to
increase a piece of surface A0 of ∆A:

EK =
K

2

(
∆A

A0

)2

. (1.1)

Similarly, the capacity of bending is measured by the bending rigidity modulus
κ and the Gaussian curvature modulus κG defined by

Ecurv = Eκ + EκG
= 2κ (H − H0)

2 +
κG

R1R2

, (1.2)

where Ecurv is the energy per unit area needed to bend, R1 and R2 are the two
principal curvature radii seen on Fig. 1.19, H is the mean curvature, given by

H =
1

2

(
1

R1
+

1

R2

)
, (1.3)

and H0 is the spontaneous mean curvature. Due to the liquidity, the spontaneous
mean radius R0 is isotropic and H0 = 1/R0.
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Figure 1.19: Drawing representing the principal curvature radii of a surface.

Equivalently, the bending rigidity of a material is reflected by its persistence
length ξ, defined as the length beyond which the correlation in the direction of the
tangent to the surface is lost. For a free membrane, it relates to the bending modulus
through

ξ ≈ a exp

(
c κ

kBT

)
, (1.4)

where a is a molecular length of the same order of the lipid’s length, c is a constant,
kB is the Boltzmann constant and T is the temperature.

As a consequence of the Gauss-Bonnet theorem, the total contribution of the
Gaussian curvature for closed surfaces is constant:

Etot
κG

= κG

∮

S

1

R1R2
dA = 4πκG(1 − g) , (1.5)

where the integral runs over a closed surface S and g is the genus number, which
describes the topology of the surface. As we will not consider topology changes in
this work, we will not consider this contribution to the energy of closed membranes
henceforth.

Now, let’s see the figures for a typical phospholipid membrane. We will describe
in section 1.4 how these quantities are measured. First, membranes are extremely
flexible, with κ ≈ 20 kBT [55], which is about a quarter of million smaller than the
bending rigidity of a sheet of polystyrene of the same thickness. This implies that
they fluctuate a lot even in small scales, as it has indeed been measured through
NMR and X-rays techniques on stacks of bilayers [56]. Secondly, they have a high
compressibility modulus K ≈ 240 mN/m [55], which means that the stretching due
to thermal fluctuation is ∼ 10−8 % and thus negligible. Measures indicate that mem-
branes rupture under a charge of only τrup ≈ 10 mN/m [55], which means that it can
only stretch about 4% before breaking apart. Indeed, as phospholipids are bonded
to each other only by entropic forces and not by chemical bonds, it is relatively easy
to break cohesion. Therefore, under a stress smaller than the rupture charge, it is a
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good approximation to consider the total area of the membrane constant, as we have
discussed in last section. Throughout this work, unless explicitly said, we shall place
ourselves under this condition and thus only the bending energy will be considered.

The great flexibility of membranes has an important experimental consequence:
one cannot measure the true surface of a bilayer. Indeed, up to the moment, we are
not able to control exactly the number of phospholipids within a membrane. More-
over, they fluctuate on a nanometric scale, not resolvable with optical microscopy
techniques. Thus, it is useful to define two macroscopic quantities: the excess area
and the effective or entropic mechanical tension.

The excess area α is simply a measure of the average membrane crumpling which
is not optically resolvable. It is defined by

α =
〈A〉 − Ap

Ap

, (1.6)

where A is the microscopic membrane area and Ap is the optically resolvable area,
which we will also call in the following the projected area (see Fig. 1.20). Experi-
mentally, we have access only to variations on the excess area.

Figure 1.20: On the left we see an illustration of the undulating surface of a membrane.
The membrane area A corresponds to the surface area of the colored membrane, while the
macroscopically resolvable projected area Ap is a2. On the right, we see an illustration
of the diminution of the excess area due to a mechanical tension applied on the same
membrane patch: the area A remains the same, but the projected area is now a · b.

The entropic mechanical tension τ is a measurable macroscopic averaged tension
associated to the diminution of the excess area, i.e., to the flattening of fluctuations.
It is a pure entropic force, arising from the diminution of accessible configurations.
It is defined as

τ =

(
∂F
∂Ap

)

Np

, (1.7)

where F = −kBT ln(Z) is the free-energy of the membrane, Z is the partition
function and the symbol Np indicates that the derivative is taken under the condition
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that the total number of lipids is constant. In the following, as we shall consider
tensions a lot weaker than the rupture tension, it is justified to consider that the
total mechanical tension corresponds simply to τ .

1.2.2 How different are membranes from liquid interfaces?

The aim of this section is to highlight the differences between membranes and
other macroscopic materials. First, it is easy to understand why membranes behave
differently from solid membranes, such as rubber membranes, since molecules of the
later are not free to move. The difference is much subtler with liquid interfaces.
Indeed, both present two-dimensional disorder, high deformability, form thin films
(see Fig. 1.21) and in both cases the term surface tension is currently used in the
literature. We shall see, however, that this expression has a different meaning in
each context and that liquid interfaces are fundamentally different from membranes.

The surface tension γ on liquids is a constant of the material, depending only on
the molecular composition and on temperature. At microscopical level, molecules of
liquids, such as water, are strongly chemically bonded to each other and these bonds
are energetically favorable. Molecules on the surface have less neighbors and are
thus energetically costly: the surface tension tends to make the interface as small as
possible, which results in a certain interfacial stiffness.

Figure 1.21: Photo taken by International Space Station Science Officer Don Pettit of
a pure water film held by a metal loop under micro-gravity. Food coloring was added
only for visualizing [57]. We just do not observe this phenomenon in everyday life due to
gravity.

In terms of free-energy F , the surface tension is conjugated to the total area of
the interface:

γ =

(
∂F
∂A

)

V

, (1.8)

where V indicates that the derivative is taken at constant volume.
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In lipid membranes, however, if there is no stretching, there is no contribution
to the free-energy coming from the interface area. So, γ → 0: the lipids will form
a bilayer without a bulk of lipids. A noteworthy confusion in literature arises from
misleadingly calling the mechanical tension τ also surface tension. The tension τ is
also associated to a surface, but to the surface of the projected area. Moreover, it
is not a material constant since it has an entropic origin. In the following, we will
avoid the use of the ambiguous expression surface tension.

Finally, another obvious difference is the bending rigidity. Lipids in a membrane
are arranged in a particular ordered way due to the amphiphilic nature of lipids,
which leads to a bending rigidity. In liquids, it is not the case. We can see a
consequence in Fig. 1.22: while liquid drops present a sharp contact with a substrate,
membrane vesicles have a rounded contact region. Besides, one cannot expect to
extract tubes by applying point forces to liquid films, as one does in membranes (see
section 1.4.4).

(a) Metallic liquid drop over a solid sub-
strate. Note the sharp edges at the contact
between the drop and the solid [58].

(b) An optical micrography of two
vesicles adhering to a pure glass sub-
strate, which reflects the vesicles [59].
The rounded shape of the vesicle near
to the glass is due to the bending rigid-
ity.

Figure 1.22: Effect of the bending rigidity.

1.3 A model for model membranes

Here we present the three main theoretical models for liquid lipid bilayers. They
describe membranes in a length scale much larger than the membrane thickness, so
that it can be seen as a mathematical surface. They differ mainly in the description
of the membrane’s two-leaflet structure [60]. In the following three descriptions, the
microscopic area A is kept constant. In the case of vesicles, there is an additional
constraint on the volume enclosed by the surface.
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1.3.1 Spontaneous curvature (SC) model

This model was introduced by Helfrich is 1973 [61] and is the very simplest one.
The membrane is seen as an infinitely thin surface and its internal bilayer structure
is described by a spontaneous mean curvature H0. The Hamiltonian of a bilayer is
simply given by the bending energy Ecurv

HSC =

∫

S

[
2κ(H − H0)

2 +
κG

R1R2

]
dA , (1.9)

where the integral runs over the membrane surface S.

1.3.2 Bilayer couple (BC) model

In this model, the two leaflets of a bilayer may respond differently to an external
perturbation, such as chemical substances, while remaining coupled [62]. It was first
introduced in 1974 to explain qualitatively experiments on red blood cells [63], [64].
It had been observed that erythrocytes treated with amphiphilic drugs change of
shape, becoming more cup-like or instead, spiked (see Fig. 1.23). The authors pro-
posed that spike-inducing drugs tended to bind to the external leaflet of the bilayer,
while the cup-inducers binded mainly to the cytoplasmic leaflet. Each monolayer
would thus have a different area, which would force a curvature. As flip-flop tran-
sitions are very slow, this area difference would be constant over time. Another
evidence in favor of this model comes from vesicles: if the SC model were correct,
vesicles composed by a single kind of phospholipid and similarly prepared should
behave the same way, since the natural bending tendency comes exclusively from
the chemical asymmetry of the monolayers. Experiments show the contrary: vesicles
prepared the same way have different preferred curvatures, possibly due to the fact
that the two monolayers had different areas when they closed to form a vesicle [65].

Figure 1.23: Original electron micrographs of erythrocytes treated with 0.2mM of metho-
chlorpromazine (at left) and 6µM of chlorpromazine (at right) [63]. In the first case, red
blood cells become spiked, while in the later they adopt a cup-like shape.

The model proposes that the preferred curvature of a membrane depends on two
contributions: the spontaneous curvature of each monolayer that adds up to a local
spontaneous curvature of the membrane H0 and the area difference between the two
monolayers, which gives a non-local contribution [66]. The energy in this model
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is still given by equation (1.9), but there is an additional constraint in the area-
difference between the neutral surfaces of the outer and inner leaflet, the neutral
surface being the imaginary surface within a bent leaflet where there is no compres-
sion or extension. This means keeping a hard constraint on

∆A = Aout − Ain = 2DM = 2D

∫

S

H dA , (1.10)

where D is the distance between neutral surfaces and M is the total mean curvature.

1.3.3 The area-difference elasticity (ADE) model

The ADE model is the generalization of the two preceding models. It was intro-
duced in the 90’s to explain the budding transition of some vesicles, i. e., when a
vesicle adopts the shape of a parent vesicle attached through a neck to a smaller vesi-
cle (see Fig. 1.24). The BC model predicts that this transition should be continuous,
while in some experiments discontinuous transitions were observed [65].

Figure 1.24: Time sequence showing the budding transition from a pear-shaped vesicle.
In this case, the pear-like vesicle is instable, but it is not always the case [53].

The ADE model accounts for the fact that small relative compressions or exten-
sions of the bilayer have an energetic cost comparable to the bending energy. Instead
of a hard constraint on the area-difference between leaflets, the area-difference is reg-
ulated through an additional quadratic term in the energy, leading to

HADE = HSC +
κ̄

2

π

AD2
(∆A − ∆A0)

2 , (1.11)

where ∆A0 is the optimal area difference, also defined through

∆A0 =
Nout − Nin

φ0
, (1.12)

where Nout/in is the number of lipids on the outer/inner monolayer and φ0 is the
equilibrium density of lipid molecules. In the limiting case where κ̄ → 0, we recover
the SC model, whereas in the limit κ̄ → ∞, we recover the BC model.
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1.3.4 Validity of models

The question of which model describes the best a bilayer was not easy to answer.
The main difficulty when studying vesicles comes from the fact that the three models
have the same equilibrium shapes [65], [67] (one can see a map of these shapes for
the ADE model on Fig. 1.25 [66]). To complicate things, in certain cases, such
as quasi-spherical vesicles, even the thermal fluctuations of the three models is the
same [60].

Figure 1.25: Phase diagram of the stationary shapes of vesicles as predicted from the
ADE-model. The quantity v is the volume-to-area ratio and ∆a0 is the effective area
difference (dimensionless) [66].

The three models predict however different stabilities for equilibrium shapes. For
instance, the SC model predicts that pear-like vesicles should be always unstable,
the BC model predicts these shapes to be always stable and the ADE model predicts
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stability for large values of κ̄. Another difference is the nature of shape transitions
induced by changes in temperature or osmotic pressure, which are in general con-
tinuous in BC and ADE and discontinuous SC.

A careful work by Döbereiner et al. [53] showed that experimental data was indeed
compatible with the theoretical phase diagram for ADE-model shown in Fig. 1.25.
This result was corroborated by good experimental and theoretical compatibility of
the analysis of the stability and of trajectories on this phase diagrams. Nowadays,
the ADE-model is accepted as the best description for closed bilayers.

There are however some situations where using SC is justifiable. First, as we have
said, the models are equivalent on the study of thermal fluctuations of quasi-spherical
vesicles. It is justifiable and simpler to use the SC model in this case. Besides, there
is no area-difference between monolayers when these are both in contact with the
same lipid reservoir and thus SC is suitable also in this case.

1.3.5 From canonical ensemble to macrocanonical

The Hamiltonian presented in the previous sections have an additional constraint
in the number of lipids per membrane, or equivalently, in the total surface. In
statistical mechanics, the ensemble of these constrained configurations is known as
the canonical ensemble. It is a standard procedure to pass to the macrocanonical
ensemble and let the area fluctuate. Physically, it means that the system we are
interested in is in contact with a large reservoir of lipids, which may be a justified
supposition in some cases. In this ensemble, one can control the average area by
adding a term

HA = σA (1.13)

to the Hamiltonian. The constant σ is a Lagrange-multiplier analogous to a chemical
potential used to impose a certain value to the average area a posteriori, once

〈A〉 =

(
∂F
∂σ

)
, (1.14)

where F is the free-energy. The Lagrange-multiplier σ has the dimension of a ten-
sion, so sometimes it is called the surface tension, term we will avoid here. It is
important to note that it is not generally measurable in experiments. It has however
a measurable macroscopic counterpart r, that we will define in the next section.

1.3.6 Fluctuation spectrum for small fluctuations

We suppose here that we study a symmetrical planar bilayer with squared pro-
jected area Ap ≡ L2, in contact with a lipid reservoir and well described by the SC
model. The energy is given by

H =

∫

S

(
2κH2 +

κG

R1R2
+ σ

)
dA . (1.15)

This energy will be used many times throughout this work. We will call it simply
the Helfrich Hamiltonian. Consider now that the membrane is reasonably tense, so
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that fluctuations are small. Its position can be described by its height h(r) with
respect to a plan Π parallel to the average plan, where r = (x, y) (see Fig. 1.26).
This is known as the Monge gauge.

Figure 1.26: Weakly fluctuating planar membrane described in the Monge gauge.

Under these assumptions, eq.(1.15) becomes

H = H0 +

∫

Ap

[κ
2

(
∇2h

)2
+

σ

2
(∇h)2 + κG det(hij) + O(h4)

]
dxdy ,

= H0 +
1

2

∫

Ap

h(r)L h(r) dxdy + O(h4) (1.16)

where H0 = σAp is a constant, hij ≡ ∂2h/∂i∂j, where i, j ∈ {x, y}, det(hij) =
hxx hyy − h2

xy and L ≡ κ∆2 − σ∆ is the operator associated to the quadratic terms
of the energy.

In order to evaluate averages involving h(r), in field theory one usually adds a
term proportional to an imaginary external field m(r) to the Hamiltonian, obtaining
the Hamiltonian

H′ = H−
∫

Ap

h(r) m(r) dx dy . (1.17)

The corresponding free-energy is

F = −kBT ln(Z) , (1.18)

with the partition function given by the functional integral

Z =

∫
D[h] e−β H′[h] , (1.19)

where β = 1/(kBT ). It follows

〈h(r)〉 ≡
∫
D[h] h(r) e−βH[h] e

−β
R

Ap
h m dA

Z

∣∣∣∣∣
m=0

= − δF
δm(r)

∣∣∣∣
m=0

(1.20)

and
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〈h(r) h(r′)〉 − 〈h(r)〉 〈h(r′)〉 = − 1

β

δ2F
δm(r)δm(r′)

∣∣∣∣
m=0

, (1.21)

where δF/δm(r) represents the functional derivative of the free-energy with respect
to the field m at the point r.

One has now to choose an appropriate measure D[h], which is in general a com-
plex task [2], [68]. Up to first order on the temperature and up to second order on h,
it is justified to consider simply a discretization of the projected plan on N2 squares
of area ā2 and let

Dnaive[h] =
∏

px,py

dhpx,py

λ
, (1.22)

where hpx,py is the height at the point rpx,py = px ā ex + py ā ey, λ is a length intro-
duced to render the measure dimensionless and both px and py ∈ {1, · · · , N} [2].
This measure, which we will call naive as in ref. [2], yields no supplemental term to
the Hamiltonian.

Evaluating the Gaussian integrals on eq.(1.19), one obtains

Z = C e
β
2

R

Ap
m(r)H−1(r,r′) m(r′) dxdy

, (1.23)

with C a constant and H−1(r, r′) ≡ Γ(r′ − r) solution of

LΓ(r) = δ(r) , (1.24)

where δ(r) is Dirac’s delta function. Using the Fourier transform

Γ(r) =
1

L

∑

q

Γn,m ei q·r , (1.25)

with q = 2π/L (n, m), n, m ∈ N and

∑

q

≡
∑

|n| ≤Nmax

∑

|m| ≤Nmax

, (1.26)

where Nmax = L/(2ā) corresponds to smallest possible wave-length, eq.(1.24) yields

Γn,m =
1

σq2 + κq4
. (1.27)

From eq.(1.20) and eq.(1.21), one obtains respectively 〈h(r)〉 = 0 and the corre-
lation function

〈h(r)h(r′)〉 =
kBT

Ap

∑

q

ei q·(r−r′)

σq2 + κq4
. (1.28)

Note that the Gaussian curvature contribution vanishes. Applying the Fourier trans-
form as defined above to h(r) and h(r′) in eq.(1.28), one obtains

〈|hn,m|2〉 =
kBT

σq2 + κq4
, (1.29)
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where the wave vectors range from qmin = 2π/L to an upper cut-off Λ = 2πNmax/L ≈
1/ā. Throughout this work, we shall consider that numerically ā ≡ a, where a is
of the order of the membrane thickness. Remark that since h(r) is real, we have
h−n,−m = h∗

n,m, where the symbol ∗ stands for the complex conjugate, yielding
|h−n,−m| = |hn,m|.

Similar calculations can be carried out for non-planar membranes, yielding a
correlation function similar eq.(1.28). Consequently, by measuring the fluctuations of
a membrane, one could deduce its bending rigidity and the tension σ. The problem is
that experimentally we have access only to a coarse-grained vision of the membrane.
One has thus to consider that the values deduced from the fluctuation spectrum are
in fact renormalized values, which we will call κeff for the bending rigidity and r for
the effective tension. Renormalization calculations [69] indicate that

κeff = κ − 3kBT

4π
ln

(
L

a

)
, (1.30)

where L is the size of the membrane and a is a microscopical cut-off. Experimentally,
the dependence of κeff as a function of L is very difficult to measure, since the
dependence is logarithmic. Numerical simulations however confirmed the logarithmic
dependence on L [70]. For a rough numerical estimate, if we consider a vesicle with
radius R ≈ 10 µm and we consider the cut-off of the order of the membrane thickness
a ≈ 5 nm, we obtain κeff ≈ κ− 2kBT . The correction is thus one order of magnitude
smaller than typical values of κ. Henceforth, we will assume κeff ≡ κ. The distinction
between r and σ will however be kept and discussed throughout this paper.

1.4 Experiments

Here we present some current experimental apparatus and techniques used to
measure the relevant mechanical parameters κ, K, τ , r and α. We will not men-
tion neither measures of κ̄, since we will focus on symmetrical membranes, neither
measures of κG, since we will work with closed membranes of fixed topology (in the
case of non-closed membranes, we will show it is not relevant in section 1.5). In
section 1.4.5, we sum up these experiments.

1.4.1 Micropipette experiments

In these experiments, a micropipette of some micrometers of diameter is held
in contact with a vesicle. One increases the membrane tension by decreasing the
pressure P 1

out on the pipette. A portion of the membrane of length L is then sucked
inside the pipette and the optical resolvable surface Ap increases (see Fig. 1.27).
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Figure 1.27: The upper figures show typical micrographs of vesicles under suction for
increasing values of ∆P (extracted from [71]). The lower drawing indicates the measurable
quantities. The inset on the right represents a zoom of the microscopic fluctuations that
are averaged out in these micrographs.

Usually, successive measures with increasing pressure are taken. The first con-
figuration, when the vesicle is just grabbed by the pipette and L is small, is the
reference configuration. The projected area of this configuration is Ai

p, R1 is the
radius of the micropipette and R2 is the radius of the vesicle in the reference con-
figuration. Under the condition of constant volume and R2 ≪ R1, the percent
difference on the projected area of a posterior measure whose projected area is Af

p

is given by

Af
p − Ai

p

Ai
p

=
1

2

[(
R1

R2

)2

−
(

R1

R2

)3
]

∆L

R1
γ , (1.31)

where ∆L is the length variation of the cylinder sucked inside the pipette relative to
the reference measure and γ is a corrective factor which arises when L is non zero
in the reference configuration [72].

Meanwhile, the average applied tension can be related to the difference of pressure
∆P = P 2

out−P 1
out through the Young–Laplace equation [73]. For a very thin interface

under tension τ and whose principal curvature radii are R′ and R′′, it states

∆P = τ

(
1

R′ +
1

R′′

)
. (1.32)

For the system shown in Fig. 1.27, one obtains thus the relation

Pin − P 2
out =

2τ

R2
(1.33)
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for the largest part of the vesicle and

Pin − P 1
out =

2τ

R1
(1.34)

for the spherical cap inside the micropipette. Finally, by subtracting eq.(1.33) from
eq.(1.34), one obtains

∆P = P 2
out − P 1

out = 2τ

(
1

R1
− 1

R2

)
. (1.35)

For very small pipettes or for vesicles under very weak tension, this relation must
be corrected [74]. Through this technique, one can apply a wide range of ten-
sions on membranes, from very small ones (∼ 10−9 N/m) up to rupture tensions
(∼ 10−2 N/m) [55], [75].

Theoretically, calculations in the macrocanonical ensemble predict two regimes:
one at low tension, where it comes from the flattening of fluctuations and thus [52], [73]
(see section 2.4 for a detailed derivation)

Af
p − Ai

p

Ai
p

=
kBT

8πκ
ln

(
σf

σi

)
, (1.36)

where σi/f is respectively the Lagrange-multiplier for the initial/final configuration;
and one at high tension, where it arises mainly through stretching and thus

Af
p − Ai

p

Ai
p

=
σf

K
. (1.37)

Even though these previsions involve the non-measurable Lagrange-multiplier σ,
in experiments it is currently assumed that σ ≈ τ [72], [73], [76]. As a consequence,
by plotting τ as a function of the variation of the projected, one can measure κ and
K (see an example in Fig. 1.28).
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Figure 1.28: Graphics showing a typical data analysis of micropipette experiments [76].
Fig.(a) and Fig.(b) show the same data with different scales for τ . In Fig.(a), the tensions
were displayed in log-scale in order to highlight the logarithmic behavior in the region
of low tension. Through the fit shown in Fig.(a) and using eq.(1.36), one measures the
bending rigidity (κ = 42 ± 5 kBT in these measures). Fig.(b) shows the same data in the
linear scale. The area compressibility K is obtained through a fit in the region of high
tensions using eq.(1.37) (K = 450 ± 85mN/m here). Remark that it was assumed that
σ ≈ τ .

1.4.2 Contour analysis experiments

The aim of these experiments is to determine r and κ by studying the mean
squared amplitude of fluctuating modes, as seen on section 1.3.6. Some experiments
were made in planar geometry, using BLM. As explained before, these membranes
tend to be too tense. Indeed, a 1999 experiment by Hirn et al. found r = (0.42 ±
0.03) mN/m [77]. The fluctuations are then dominated by the tension and one
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cannot observe the effects of the bending rigidity. For this reason vesicles are usually
preferred in spectrum fluctuation measures. A typical spectrum with the fitting can
be seen in Fig. 1.29.

Figure 1.29: Intensity of a fluctuating mode as a function of the wave vector for a
quasi-spherical vesicle. The solid line represents the fit of the data with the equivalent of
eq.(1.29) for spherical geometry, yielding κ = 9.44×10−20 J and r = 1.74×10−7 N/m [78].

1.4.3 Adhesion of vesicles

The adhesion of membranes is very important for tissue formation. At the cellular
level, the adhesion between the membrane and the cytoskeleton helps to regulate
the formation of vesicles and lamellipodia [79]. It also plays an important role in
the exocytosis and endocytosis [80]. In the context of the physics of liquids, the
adhesion of liquid drops to solid substrates is traditionally used to study tensions.
Inspired by these experiments, one finds in the literature a wide variety of papers on
the adhesion of vesicles among themselves [81], [82] and on the adhesion of vesicles
with a solid substrate [83], [84], [85], [86].

Here, we will focus on experiments dealing with the interaction of vesicles of
radius Rves with a flat solid substrate. The vesicle, usually filled with an aqueous
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solution fluid denser than the suspension medium, is attracted towards the bottom
surface. At equilibrium, it adopts a deformed shape as shown in Fig. 1.22, with a
flat region near the substrate. This region, with a radius Ra, is considered adhered
to the substrate. Frequently, the bottom surface is composed of glass, since the
technique of RICM (reflection interference contrast microscopy) is very popular to
obtain images of the adhesion region. The adhesion is ruled by the interplay of
attractive and repulsive interactions, such as:

• the short-range van der Waals attractive potential between the membrane and
the substrate. It can be corrected to take into account the screening due to
the presence of ions in the suspension medium;

• the attractive gravitational potential;

• the repulsive effective interaction coming from the reduction of the entropy of
the membrane. Indeed, the substrate imposes a spatial restriction that limits
the membrane fluctuations;

• the short-range steric repulsion coming from the lipids;

• in some cases, the substrate can be coated by polymers [87]. One must thus
consider a supplemental steric repulsion coming from the polymer coating of
the substrate;

• it is also possible to cover the substrate with a piece of membrane contain-
ing proteins that attach to specific proteins embedded in the vesicle’s mem-
brane [85], [88]. In this case, there are supplemental attractive interactions.

Two examples of resulting potentials can be seen in Fig. 1.30.
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(a) An adhesion potential including the gravity con-
tribution Vgrav, a Van der Waals contribution VVdW

and an entropic repulsive term Vsteric [84]. In this
case, we find only one shallow minimum.
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(b) Predicted adhesion potential for an experiment
involving three different polymer coatings of the
substrate [87]. The red circles indicate the deep
minima and the star indicates the shallow mini-
mum.

Figure 1.30: Examples of adhesion potentials.

Depending on the resulting potential, one can find two types of adhesion:

1. Weak adhesion: in this case, the adhering patch fluctuates strongly at a dis-
tance s(x) well above the surface, as shown in Fig. 1.33(b). It corresponds to a
shallow minimum of the adhesion potential (see Fig. 1.30). When it is a local
minimum, it is also said that the vesicle is in a pre-nucleation state.

In this case, one can measure the fluctuation spectrum of the adhering region.
Considering the rest of the vesicle as a lipid reservoir and approximating the
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energy of adhesion as quadratic near 〈s〉, which is justified given Fig. 1.30, the
Hamiltonian up to order two is given by [84]

H =

∫

Sadhe

[
κ

2

(
∇2h

)2
+

σ

2
(∇h)2 +

V ′′

2
h2

]
d2x , (1.38)

where h(x) = s(x)−〈s〉, V ′′ is the coefficient of the harmonic approximation of
the adhesion energy and Sadhe is the projected surface of the adhering portion
of the vesicle. Following the same reasoning presented in section 1.3.6, the
mean square amplitude of each mode is given by

〈|h(q)|2〉 =
kBT

V ′′ + rq2 + κq4
. (1.39)

Note that we have substituted σ by its macroscopical counterpart r, which is
experimentally measurable (see further details in the end of section 1.3.6). By
a measuring the fluctuation spectrum, it is possible thus to determine r, κ and
V ′′.

2. Strong adhesion: the vesicle is very near the substrate (less than 10 nm of
distance). The membrane fluctuations are barely detectable. The adhesion
energy is higher, corresponding to a deep minimum of the adhesion potential.

In Fig. 1.31, we show some typical RICM images from an adhering vesicle that
has weakly and strongly adhering patches. From these images, the height profile
of the adhesion region s(x) can be reconstructed. One can subsequently study the
mechanics of the membrane.

Figure 1.31: RICM micrograph of a vesicle adhering to a solid substrate. The adhering
region is surrounded by the fringes. The gray shading is inversely proportional to the
vesicle-substrate distance: the dark gray patch is very near to the substrate, while the
light gray patch is well above the solid. Pictures (a), (b) and (c) were taken at ∼ 0.1s
of interval. Note the strong fluctuations of the light gray region. The last picture shows
the average over 64 snapshots. From these images, we can conclude that the gray region
adheres only weakly to the substrate, while the dark patch is strongly adhered [88].
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Adhesion mechanics

Let’s first recall some results concerning liquid drops. As discussed in sec-
tion 1.2.2, the contact angle θc that liquid drops do with solids substrate is very
sharp. It is defined by the solid-liquid tension γSL, the solid-gas tension γSG and the
liquid-gas solid γ ≡ γLG. The mechanical equilibrium, illustrated in Fig. 1.32, gives
the Young relation

γSG = γSL + γ cos θc . (1.40)

The energy variation per unit of contact area between the liquid and the solid, also
known as the adhesion energy per unit area, is given by the Young-Dupree relation:

WA = γ(1 − cos θc) . (1.41)

Figure 1.32: Illustration of the Young’s equation: γSL is the solid-liquid tension, γSG is
the solid-gas tension and γ ≡ γLG is the liquid-gas tension. The contact angle θc is defined
by the mechanical equilibrium.

Adhering vesicles were first theoretically studied in details by Seifert et Lipowsky
in 1990 [80]. They considered a free-energy containing a contribution from curvature,
a term −WA (πR2

a) corresponding to the adhesion energy plus the area and volume
constraints. By minimizing the free-energy, they derived the equilibrium shapes,
that shared two features:

• a contact angle θc = π due to the bending rigidity;

• a curvature at the contact given by

Rc =

(
2 WA

κ

)1/2

. (1.42)

They argued that, in general, one could not expect to use the Young-Dupree relation
to link WA and the lateral tension τ of the membrane due to the effects of the bending
rigidity. In the limit, however, of small bending rigidity, the vesicle becomes a
spherical cap for an internal pressure bigger than the outer, with a rounded contact
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region of length Rc < Rves. One can thus define an effective contact angle θeff (see
Fig. 1.33(a)) that obeys an analogous of the Young-Dupree equation

WA = τ [1 − cos(θeff)] . (1.43)

(a) Definition of the effective contact
angle. The red circle at left indicates
the curvature radius Rc at the contact
point. Note that Rc < Rves [80].

(b) Drawing of a vesicle weakly ad-
hering to a substrate with the rele-
vant measurable parameters [84].

Figure 1.33: Effective contact angle.

In principle, for a vesicle under these conditions, one could measure Rc and θeff

and thus deduce WA and τ . In practice, however, as we will see later, measuring
these quantities can be very tricky and imprecise.

An alternative was thus proposed by Bruinsma [89]. He studied the equilibrium
of the forces due to the bending rigidity and tension near the rim of the contact
region and obtained

h(x) =





θeff x − θeff λ
[
1 − e−( x

λ)
]

for x > 0 ,

0 for x < 0 ,

(1.44)

where h(x) is the height of the membrane, x = 0 at the contact point and

λ =

√
κ

τ
. (1.45)

The characteristic length λ separates two regions: for x < λ, the bending rigidity
dominates and the membrane is thus curve; for x > λ, the tension dominates and
the membrane approaches a straight line (see Fig. 1.34).
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Figure 1.34: Shape of the membrane near the contact region. For x < 0, the membrane
adheres to the substrate. The contact angle θeff , here shown as θc, is determined by the
linear fit. The characteristic length λ is obtained from the intersection of the linear fit
with the x-axis [90].

Experimentally, from the height profile of the membrane, one can obtain θeff and
λ. Using eq.(1.45) one is able thus to deduce τ and subsequently WA through the
Young-Dupree’s relation [88]. This method, however, presents a serious limitation:
if the tension is very large, the length λ is undetectable [86]. In the next chapter,
we will discuss some experiments using these techniques.

1.4.4 Nanotube extraction

Membrane nanotubes, also called tethers, are cylindrical structures whose radius
range from a few up to hundreds of nanometers, while their length can reach tens
of micrometers. In living cells, they are formed by localized forces generated by
molecular motors or by polymerizing cytoskeleton filaments, such as microtubules.
These tethers are suspected to play a major hole in the intracellular transport of
vesicles [91] and in the communication between cells, since they form also between
different cells and proteins were shown to pass through these tunneling nanotubes
(TNT) [92] (see Fig. 1.35). Recently, it has been found some evidence that TNT
may even be crucial in the HIV virus spreading [93].
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Figure 1.35: Scanning electron microscopic image of a tunneling tube between two
cultured PC12 cells. The boxed areas are sections of 80 nm enlarged in A1, A2 and A3,
respectively [94].

In vitro tube extraction was used to evaluate the adhesion energy between the
cell cytoskeleton and the cell membrane. In these experiments, it was also shown
that these tethers do not contain cytoskeleton [79], [95]. Here we will restrain our-
selves to experiments of tube extraction from model membranes (see Fig. 1.36(a)).
Figs. 1.36(b)-1.36(c) sum up the main techniques used in laboratory to extract tubes.

In typical experiments with GUVs, one cannot optically resolve the tube, even
though its length is readily measurable (see Fig. 1.36(a)). The force needed to extract
the tube f can be directly measured by the force applied over the glass bead (for
an optical tweezer) or over the magnetic bead. Moreover, if the vesicle is held by a
micropipette, as in the experimental apparatus shown in Fig. 1.36(b), subfigure b,
the tension τ is measured through the applied pressure from eq.(1.35) [96]. Another
technique consists in extracting nanotubes with controlled length from BLMs. With
this configuration, it is possible to apply a difference of electrical potential between
the interior and exterior of the tube. One can thus deduce the radius of the tube
and the tension τ of the membrane [97].

From the theoretical point of view, as these tubes are so thin, it is reasonable
to consider the adjacent GUV or BLM as a lipid reservoir. For a symmetrical
membrane, the tube free energy is thus given by eq.(1.15) plus a contribution coming
from the force f that holds the tube. For a cylindrical tube of radius R and length
L, one has

H =
( κ

2R2
+ σ
)

2πRL − fL . (1.46)
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(a) Typical sequence of
nanotube extraction from
a GUV. The image was ob-
tained through differential
interference contrast mi-
croscopy to enhance con-
trast, since the tube is not
optically resolvable [98].

(b) Some methods used to extract tubes from GUV:
(a) vesicles under hydrodynamic flow [99], (b) vesicles
held by micropipette and attached to a mobile glass or
magnetic bead [96], [100] and (c) nanotube extraction
with molecular motors [101].

(c) Experimental setting used to extract nanotubes from
BLM [97].

Figure 1.36: Nanotube extraction techniques.
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The equilibrium radius R0 and force f0 are given by the minimization of eq.(1.46)
with respect to R and L respectively, yielding

R0 =

√
κ

2σ
(1.47)

and

f0 = 2π
√

2σκ = 2 × 2πR0 σ . (1.48)

Eq.(1.47) shows clearly that the radius is determined by a competition between the
tension, which tends to create a very thin tube, and the bending rigidity, which op-
poses to high curvatures [102]. Interestingly, the result given in eq.(1.48) highlights
the difference between a membrane and a liquid interface: if we had a tube consti-
tuted by a film of liquid, we should expect f = 2πR0γ. The factor 2 in f0 comes
from the curvature energy present only in membranes. One must keep in mind that
these results hold only if thermal fluctuations are neglected and the tube is a perfect
cylinder. We will discuss this point in chapter 5.

Figure 1.37: Data from the extraction of two successive tubes from the same vesicle of
diameter 18.8µm. The vertical axis shows the force needed to extract the tube while the
horizontal axis shows the square root of the tension τ measured through the difference
of pressure in the micropipette. The data show a good linear fit, indicating that in this
experiment, it was apparently justified to neglect thermal undulations and suppose σ ≈ τ .
The bending rigidity obtained through the fit is approximately 25 kBT [96]. By using
eq.(1.47), we can estimate that the tube radius are rather large, ranging from a thousand
to two hundred nanometers in this particular experiment.

From eq.(1.48), we see that one could obtain κ by measuring f0 and σ. In GUV
experiments, it is usually assumed that the measured force to extract the tube f is
well approximated by f0, which means neglecting thermal undulations. Besides, the
tension τ measured through the micropipette aspiration is assumed equivalent to σ.
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One obtains thus the curve shown in Fig. 1.37 and deduces κ by a linear fit. The
other way to obtain κ, using eq.(1.47), is explored in the BLM experiments by once
more assuming that τ ≈ σ. A recent experiment by Bashkirov [97] found very thin
tubes of about 10 nm thick, indicating a very tense membrane, and deduced values
to κ compatible with previous results.

1.4.5 Sum-up

In table 1.4.5, we see a sum-up of the techniques presented in this section and
used to mechanically probe membranes. In the last column, we can see the usual
assumption made in order to deduce results from the third column. It generally
involves the three tensions τ , σ and r. In this work, we will try to examine in
detail these assumptions. In special, we will quantify the difference between τ and
σ for the three mainly studied geometries and discuss under which conditions these
suppositions are justifiable. In chapter 5, we will also examine the role of thermal
fluctuations on the force needed to extract a tube.

Technique Direct measure Used to deduce
Usual as-
sumption

micropipette ∆P , Ap τ , ∆α, κ, K σ ≈ τ

contour anal-
ysis

〈|h(q)|2〉 r, κ

adhesion θeff , 〈|h(q)|2〉, 〈s〉 r, κ, Wadhes τ ≈ r
tube extrac-
tion (GUV)

∆P , L, f τ , κ
τ ≈ σ and
f ≈ f0

tube extrac-
tion (BLM)

∆V , L R0, κ
τ ≈ σ and
R ≈ R0

Table 1.1: Sum-up of experimental techniques and measured quantities. In the second
column, the quantities directly measurable are listed, while in the third column we list the
quantities deduced from a fit or from the use of theoretical equations. In the last column,
we present the main assumptions made to obtain the results from the previous column.

1.5 Stress tensor for a planar membrane

Here we introduce the stress tensor for planar membranes. In particular, we will
derive the projected stress tensor. This tool is very useful, since it allows not only
the direct calculation of the average mechanical tension τ , but also the evaluation
of the fluctuation of this tension due to thermal fluctuations, which has never been
done. The derivation presented here will inspire our derivation of the projected
stress tensor for other geometries in the following chapters. Note that even though
one has no reason not to consider the Gaussian curvature on the energy for open
membranes, we will show that the stress tensor does not depend on it.

42 1.5. STRESS TENSOR FOR A PLANAR MEMBRANE



CHAPTER 1. INTRODUCTION

1.5.1 Stress tensor on the local frame Σ̃

Consider a local frame on a membrane (X, Y, Z), whose the first two axes are
parallel to the principal curvature directions and the third one is parallel to the
normal of the membrane. Consider now an imaginary infinitesimal cut of length dℓ′

and normal ν = νX eX +νY eY that separates the membrane on regions 1 and 2 (see
Fig. 1.38(a)). The region 1 exerts a force dφ1→2 over the region 2 given by

dφ1→2 = Σ̃ · ν dℓ′ . (1.49)

This relation defines the local stress tensor Σ̃, a tensor with 3 × 2 = 6 components,
since the vector ν has only two components. For the Helfrich Hamiltonian, one
has [103], [4]

Σ̃ =
(
σ +

κ

2
C2

Y − κ

2
C2

X

)
eX ⊗ eX +

(
σ +

κ

2
C2

X − κ

2
C2

Y

)
eY ⊗ eY

− κ (∂XC) eZ ⊗ eX − κ (∂Y C) eZ ⊗ eY , (1.50)

where CX and CY are the principal curvatures parallel to eX and eY respectively,
C = CX + CY and ∂i stands for the derivative with respect to i.

(a) Local tangent frame (X, Y, Z).
The imaginary infinitesimal cut of
length dℓ in green, whose normal ν is
contained in the (X, Y ) plane, sepa-
rates the regions 1 and 2. Region 1
exerts a three-dimensional force dφ1→2

over 2.

(b) Components of the stress tensor on the local
frame

Figure 1.38: Stress tensor on the local frame.

1.5.2 Projected stress tensor Σ

Due to thermal fluctuations, both the tangent frame and dℓ′ are not constant. It
is thus convenient to introduce the projected stress tensor Σ, which relates the force
through an imaginary infinitesimal projected cut to the force dφ1→2 through

dφ1→2 = Σ · m dℓ , (1.51)
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where dℓ is the length of the cut’s projection on a reference fixed plane Π, (x, y, z) is
a orthonormal basis and m = mx ex +my ey is the normal to the cut’s projection on
the plane pointing towards region 1 (see Fig. 1.39). As before, Σ is a 6-component
tensor. The advantage of this definition is that one can evaluate the average of
the force exerted through two regions by simply evaluating 〈Σ〉. It gives thus a
straightforward tool to evaluate τ .

Figure 1.39: The projected stress tensor relates the three-dimensional force dφ1→2 to
the projection of an imaginary cut on a fixed plane.

We derive Σ by studying the work needed to produce a deformation [4]. An
alternative derivation is given in appendix A. First, we consider a piece of membrane
weakly departing from a plane described in the Monge gauge by its height h(r) =
h(x, y), so that we can neglect derivatives of order higher than two on h. The general
energy is thus given, up to order two, by

H =

∫

Ω

f({hi}, {hij}) dxdy , (1.52)

where Ω is the domain of the projected plan over which the membrane is defined,
∂Ω(x, y) being the curve that delimits Ω (see Fig. 1.40). In this section, latin indices
∈ {x, y}, hi ≡ ∂h/∂i, hij = ∂2h/(∂i∂j) and summation over repeated indices will
be implicit.

Imagine now that we impose an arbitrary small displacement δa = δax ex +
δay ey + δaz ez to every point of the membrane, so that the h(r) → h′(r) =
h(r) + δh(r). Besides, imagine that this displacement keeps the normal along
the boundaries of the membrane constant, so that torques perform no work (see
Fig. 1.40).

44 1.5. STRESS TENSOR FOR A PLANAR MEMBRANE



CHAPTER 1. INTRODUCTION

Figure 1.40: The upper surface, shaded in purple, represents the membrane, while the
respective projected surface Ω is represented by the lower gray shaded surface. The red
dashed curve represents the new position of the membrane after deformation.

On one hand, at equilibrium, the energy variation reads

δH =

∫

∂Ω

mi

[
f δai +

(
∂f

∂hi
− ∂i

∂f

∂hij

)
δh +

∂f

∂hij
δhj

]
ds , (1.53)

where ds is a length of an infinitesimal element of the curve ∂Ω(x, y). On the other
hand, we have in terms of the stress tensor

δH =

∫

∂Ω

δa ·Σ · m ds . (1.54)

One can then obtain Σ by comparing eq.(1.53) and eq.(1.54). In order to do so, one
must express δh and δhj over the boundary in terms of δa. As shown in Fig. 1.40,
we have h′(r+δai(r) ei) = h(r)+δaz(r). Up to first order on δh, it is easy to deduce
δh = δaz − δaj hj . Finally, one has to impose that the normal n at the boundary is
kept constant, which yields h′

k(r + δai(r) ei) = hk(r). Again, up to first order, one
has ∂kδh = −δaj hjk. These results put together lead to

Σij = f δij −
[

∂f

∂hj
− ∂k

(
∂f

∂hjk

)]
hi −

∂f

∂hjk
hik , (1.55)

Σzj =
∂f

∂hj
− ∂k

(
∂f

∂hjk

)
. (1.56)

In the case of the Helfrich Hamiltonian, one has

f = σ +
σ

2
(∇h)2 +

κ

2
(∇2h)2 + f̄ , (1.57)

where f̄ = κG det(hij) is the contribution from the Gaussian curvature. Eqs.(1.55)-
(1.56) become thus
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Σxx = σ +
σ

2

(
h2

y − h2
x

)
+

κ

2

(
h2

yy − h2
xx

)
+ κ hx∂x∇2h , (1.58)

Σxy = −σ hxhy − κ hxy∇2h + κ hx∂y∇2h , (1.59)

Σzx = σ hx − κ ∂x∇2h . (1.60)

The other components of the tensor can be obtained by permutation of x and y.
Remark that these expressions are valid up to order two in h and that the Gaussian
curvature gives no contribution to the stress tensor.
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Chapter 2

Planar membrane

As we have seen in the last chapter, membranes are very particular systems from
the mechanical point of view: they are liquid, but rigid; they disrupt very easily
under stretching and they fluctuate a lot in even in sub-optical levels.

Accordingly, the term surface tension has always been rather confusing. First,
it refers to the energy needed to bring a bunch of phospholipids in contact with
the aqueous media, which we denote γ. As these molecules are amphiphilic, there
is almost no energetic cost for creating an interface. Consequently, one can find
in the literature statements like “a membrane has vanishing surface tension” [60].
Secondly, the expression stands for the tension τ that one can mechanically apply
to a membrane, for instance, by aspiring it with a micropipette or by extracting a
nanotube. As discussed in section 1.2.1, unless in extreme situations, this tension
has entropic origin, coming from the flattening of thermal fluctuations. Thus, it
is also called effective mechanical tension. At last, surface tension denotes also
the multiplier Lagrange σ one adds to the Hamiltonian in order to fix the total
membrane’s area, as we have done in section 1.3.6. In this case, the tension is more
like a chemical potential associated to the total membrane area. The tension σ is
not experimentally measurable, but its large-scale counterpart r, renormalized by
fluctuations, is measurable through the q2 dependence of the spectrum fluctuation.

From an experimental point of view, it is fundamental to determine the relation
between r, σ and τ . In particular, it is very important to determine under which
conditions these quantities can be assumed identical. Indeed, experimentally, one
measures usually r or τ , whereas the theoretical predictions involve frequently σ,
which is non measurable. One takes currently for granted the equality between τ , σ
and r to interpret data, as one can see in the sum-up presented in table 1.4.5, even
though there is no support to this premise.

Many theoretical articles were written in order to clarify this question [2], [68],
[104], [3]. In most cases, the authors tried to derive r and τ from the free-energy F .
This route is however very tricky, since one needs to consider terms up to O(h4)
in order to evaluate r. In this case, the naive measure presented in section 1.3.6
must be subtly corrected [2]. Besides, the definition of the effective mechanical
tension τ from the free-energy is not so clear and slightly different alternatives for
the definition presented in eq.(1.7) were proposed.

In this chapter, we try to address the question of the relation between τ and σ for
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symmetrical planar membranes in contact with a lipid reservoir. We evaluate τ using
the projected stress tensor introduced in the end of the last chapter in section 1.5.2.
This calculation is much more straightforward, since one avoids problems related
to the choice of the measure. Besides, the definition of τ in terms of the projected
stress tensor is unique: τ is simply given by the average of the latter. In this section,
we show that in general, we can assume τ = σ − σ0, where σ0 is a constant non
negligible for small tensions.

In section 2.2, we compare our result to the ones derived by Cai et al. [2] and
by Imparato [3] by differentiating the free-energy with respect to the projected area
Ap. In his derivation, Imparato used the definition presented in eq.(1.7), while Cai
et al. used slightly different definition, obtaining consequently a different result. In
this section, we show that our result coincides with the one from Imparato, which
gives support to the definition presented in the last chapter

τ =

(
∂F
∂Ap

)

Np

, (2.1)

where the derivative is taken with the total number of lipids constant. Besides, we
question the previous demonstration by Cai et al. that τ = r, since their definition
of τ seems less suitable. We propose then that in general, we should have three
different values for τ , σ and r. In order to check this prediction, we present a simple
numerical experiment in section 2.3.

In section 2.4 and 2.5 we discuss some consequences to experiments, namely to
those involving micropipettes, introduced in section 1.4.1. As τ is indeed different
from σ, we propose corrections to the eq.(1.36) presented in the last chapter. We
conclude in section 2.5 with the description of the first recent numerical and exper-
imental evidences that τ 6= σ. All results presented in this chapter were obtained
under the direction of Jean-Baptiste Fournier and published in [1].

2.1 Evaluation of τ from the stress tensor

Consider a planar membrane whose projected area on a plan Π parallel to the
average plan of the membrane is Ap and well described by the Helfrich Hamiltonian
given in eq.(1.15). This membrane is not stretched and departs very weakly from
a plane. Therefore, we use the Monge’s gauge and develop H up to order two,
obtaining the Hamiltonian given in eq.(1.16), the average 〈|h(q)|2〉 given in eq.(1.29)
and the projected stress tensor is given in eqs.(1.58)-(1.60). Consider now a cut of
length L on Π parallel to ey, so that the normal to the projected cut is simply
m = ex, as shown in Fig. 2.1.
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Figure 2.1: Weakly fluctuating planar membrane described in the Monge’s gauge. The
force f is exchanged through the cut of projected length L (red). Note that we have chosen
an orthonormal basis in order to have m = ex.

The force exchanged through the cut is

f =

∫ L/2

−L/2

(Σxx ex + Σyx ey + Σzx ez) dy . (2.2)

The thermal average of f , denoted by the brackets 〈〉, is given by

〈f〉 = L (〈Σxx〉 ex + 〈Σyx〉 ey + 〈Σzx〉 ez) . (2.3)

One must evaluate the average of each term of eqs.(1.58)-(1.60). Hence, it is inter-
esting to use the Fourier transform introduced in section 1.3.6

h(r) =
1√
Ap

∑

q

hn,m ei q·r , (2.4)

with q = 2π/
√

Ap (n, m), n, m ∈ N and

∑

q

≡
∑

|n| ≤Nmax

∑

|m| ≤Nmax

. (2.5)

Note that as h(r) is real, one has h−n,−m = h∗
n,m, where the symbol ∗ indicates the

complex conjugate. The mode n = 0 and m = 0 corresponds to a simple translation
and gives no contribution to the energy. It will be therefore omitted throughout this
section.

Using this definition of the Fourier transform, the Hamiltonian for a weakly
fluctuating membrane in contact with a lipid reservoir introduced in section 1.3.6
becomes

H = σ Ap +
1

2

∑

q

(
σq2 + κq4

)
|hn,m|2 , (2.6)

where q varies between qmin = 2π/
√

Ap up to Λ = 2πNmax/
√

Ap ≈ 1/a, where a
is a microscopical cut-off comparable to the membrane thickness. The correlation
function is given by
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G(r − r′) ≡ 〈h(r)h(r′)〉

=
1

Ap

∑

q

∑

k

〈hn,mhn′,m′〉 eiq·rei k·r′

=
kBT

Ap

∑

q

ei q·(r−r′)

σ q2 + κ q4
, (2.7)

where we have used the result displayed on eq.(1.29) to obtain the last passage.

It is a straightforward calculation to evaluate averages using the correlation func-
tion. As an example, we do a step-by-step evaluation the average of Σxx:

〈Σxx〉 = σ + κ 〈hxhxxx + hxhxyy〉
= σ + κ ∂x∂x′

(
∂2

x′ + ∂2
y′

)
G (r − r′) |r=r′

= σ + κ
kBT

Ap

∑

q

(i qx)(−i qx)
(
−q2

x − q2
y

)

σ q2 + κ q4

= σ − kBT

Ap

∑

q

κ q2
x

σ + κ q2

= σ − kBT

2Ap

∑

q

κ q2

σ + κ q2
, (2.8)

where we used in the first and in the last passage the fact that by symmetry 〈h2
x〉 =

〈h2
y〉 and 〈h2

xx〉 = 〈h2
yy〉. By the same reasoning, one can demonstrate that 〈Σyx〉 = 0

and 〈Σzx〉 = 0, as expected given the symmetry of the system. We have thus the
effective tension τ , which relates to the average of the force f through

τ ≡ 〈f〉 · ex

L
= σ − kBT

2Ap

∑

q

κ q2

σ + κ q2
. (2.9)

In the thermodynamic limit, Ap is very large and the sum over q becomes an
integral whose calculation leads to

τ − σ = −kBT Λ2

8π

[
1 − σ

σr
ln
(
1 +

σr

σ

)]
, (2.10)

where σr = κΛ2. Numerically, for typical values a ≈ 5 nm and κ ≈ 10−19 J, one
obtains σr ≈ 5 × 10−3 N/m, which is of the same order of magnitude of the rupture
tension of membranes [55]. Fig. 2.2 shows the difference σ − τ normalized by

σ0 =
kBT Λ2

8π
=

σr

8πβκ
, (2.11)

as a function of σ/σr.
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Figure 2.2: The difference σ − τ normalized by σ0 as a function σ/σr. For tensions
smaller than 10−2 σr, we see that τ ≃ σ − σ0. The green shaded area corresponds to
the region where we expect our theory to need corrections due to the stretching of the
membrane.

As we can see, it is a good approximation to set τ ≃ σ − σ0 for σ < 10−2 σr.
Beyond this limit, the tension is relatively high and we expect corrections coming
from the stretching of the membrane. For the previous values of a and κ and
taking kBT ≈ 4 × 10−21 J, we obtain σ0 ≈ 5 × 10−6 N/m. As tensions as small as
τ ≈ 10−8 N/m are measured in micropipette experiments, this correction may be
non negligible (see Fig. 2.3). We will discuss the consequences of this prediction to
experiments in section 2.4.

Figure 2.3: The red dashed straight line shows the standard approximation τ ≈ σ, while
the green curve shows the behavior of τ predicted by our theory. For small tensions, the
correction is relevant. Curves for a = 5nm, κ = 10−19 J and kBT = 4 × 10−21 J.
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2.2 Derivation from the free-energy

Here we re-derive the result given in eq.(2.10) by differentiating the free-energy.
To begin, we evaluate the free-energy as in references [2] and [3]. By definition, we
have

F = −kBT ln(Z) , (2.12)

where Z is the partition function given by

Z =

∫
D[h] e−βH[h] . (2.13)

As discussed in section 1.3.6, one needs a measure to evaluate this integral. We
will consider here the naive measure, which is justified up to first order on the
temperature and up to second order on h (further discussion on the subtleties of
the measure can be found in [2] and [105]). We discretize the projected plane Π in
N2 squares of area ā2, so that the height of each one of these squares is denoted
hpx,py ≡ h(px ā ex + py ā ey). The naive measure reads

Dnaive[h] =
N∏

px=1

N∏

py=1

dhpx,py

λ
(2.14)

The factor λ is a vertical quantum introduced to keep Z dimensionless.

2.2.1 Naive measure in the Fourier space

In section 1.3.6, we have used this measure to evaluate averages, but we have
not derived explicitly F . Here, to do so, we prefer to work in the Fourier space. We
need thus to derive the equivalent of the measure above in this space. As in the last
section, let’s consider the Fourier transform

hpx,py =
1√
Ap

∑

q

hn,me
2πin px

N e
2πim py

N (2.15)

Remark that only half of the total number of modes are independent, since h−n,−m =
h∗

n,m. In terms of these independent modes, the measure is thus

Dnaive[h] =


 ∏

|n| ≤ N
2

, n 6= 0

N
2∏

m=0

∫
dhR

n,m

λ

dhI
n,m

λ


× J (2.16)

where the superscripts R and I stand, respectively, for the real and imaginary part
of hn,m and J is the Jacobian of the transformation. To simplify notations, in the
following we will simply denote
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∏

n

∏

m≥0

≡
∏

|n| ≤ N
2

, n 6= 0

N
2∏

m=0

, (2.17)

∑

n

∑

m≥0

≡
∑

|n| ≤ N
2

, n 6= 0

N
2∑

m=0

. (2.18)

To determine J , we will evaluate the partition function for a simple Gaussian
Hamiltonian. With the measure given in eq.(2.14), we have

Z =

∫ N∏

px=1

N∏

py=1

dhpx,py

λ
e
−α

PN
px=1

PN
py=1 (hpx,py )2

=

(√
π

α

)N2

(2.19)

Using the definition presented in eq.(2.15), the quadratic Hamiltonian becomes

α

N∑

px=1

N∑

py=1

(hpx,py)2 =
α

L2

∑

q

∑

q′

hn,m hn′,m′ × N2 δn′,−n δm′,−m

=
α

ā2

∑

q

[
(hR

n,m)2 + (hI
n,m)2

]
(2.20)

and the partition function is

Z = J×
∫ ∏

n

∏

m≥0

∫
dhR

n,m

λ

dhI
n,m

λ
e−

α
ā2

P

q [(hR
n,m)2+(hI

n,m)2] =

(√
π ā2

α

)N2

×J (2.21)

The partition function should be the same in both eq.(2.19) and eq.(2.21), which
implies J = 1/(ā)N2

. Summing up, in the Fourier space, for a weakly fluctuating
membrane, the naive measure is equivalent to

Dnaive[h] =
∏

n

∏

m≥0

dhR
n,m

λā

dhI
n,m

λā
. (2.22)

2.2.2 Evaluation of F and discussion

Using the Hamiltonian given in eq.(2.6), the partition function given in eq.(2.13)
with the measure (2.22) becomes

Z ≃
∏

n

∏

m≥0

∫
dhR

n,m

λā

dhI
n,m

λā
e−βH({hn,m}) ,

≃ e−βσAp
∏

n

∏

m≥0

(∫
dhR

n,m

λā
e−

β
2

P

n

P

m≥0(σq2+κq4)hR
n,m

2

)

×
(

dhI
n,m

λā
e−

β
2

P

n

P

m≥0(σq2+κq4)hI
n,m

2

)
. (2.23)
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Finally, carrying out the Gaussian integrals, we have

Z ≃ e−βσAp
∏

n

∏

m≥0

2π

βā2λ2 (σq2 + κq4)
. (2.24)

Accordingly, the free-energy is given, to lowest order in T , by

F = σ Ap + kBT
∑

n

∑

m≥0

ln

[(
σ q2 + κ q4

) ā2λ2

2πkBT

]
, (2.25)

where we remind that λ is a quantum discretizing the membrane vertical displace-
ments. Equivalently, highlighting the dependence of F on Ap, one obtains

F = σ Ap + kBT
∑

n

∑

m≥0

ln

[(
σ q̃2 +

κ q̃4

Ap

)
λ2

2πNkBT

]
, (2.26)

where we have used ā2 = Ap/N = 4π/Λ2, N being the total number of modes or
degrees of freedom, and q̃ = 2π(n, m).

With the definition presented in section 1.2.1

τ =

(
∂F
∂Ap

)

Np

, (2.27)

one obtains from eq.(2.26)

(
∂F
∂Ap

)

Np

= σ − kBT

2Ap

∑

q

κ q2

σ + κq2
, (2.28)

where the derivation was taken keeping the number of modes constant. Indeed, once
the cutoff Λ is fixed, having a total number of particles fixed is equivalent to having
a total number of modes fixed. This result coincides with our previous derivation
(eq.(2.10)) and gives some evidence of the correctness of the derivation presented
in [3]. Instead, in their work, Cai et al. used a slightly different definition for the
effective tension, assuming

τCai =
∂Flim

∂Ap

, (2.29)

where Flim is the free-energy in the limit of very large membranes. In this case, the
sum in eq.(2.25) becomes an integral and one obtains

Flim = σ Ap +
kBT Ap

2

∫
d2q

(2π)2
ln

[(
σq2 + κq4

) ā2λ2

2πkBT

]
. (2.30)

It follows

∂Flim

∂Ap
= σ +

kBT

2

∫
d2q

(2π)2
ln

[(
σq2 + κq4

) ā2λ2

2πkBT

]
. (2.31)

As this result disagrees with the one obtained in eq.(2.10), we conclude that the
definition eq.(2.27) is more appropriate: one must first differentiate with respect to
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Ap keeping the number of modes constant and only after take the thermodynamic
limit, if needed. Note that with the projected stress tensor these subtleties are
avoided, once one deals only with the straightforward evaluation of averages.

2.2.3 What about r?

In their work, Cai et al. showed also that one should have r = τ . Here we will
present in detail their reasoning and argue that their conclusion follow from the fact
that their definition of τ is slightly different from ours (compare eq.(2.31) with the
thermodynamical limit of eq.(2.28)). Thus, in general, one should have r 6= τ .

First of all, as in section 1.3.6, they introduced a conjugated field m(r) to the
Hamiltonian in order to fix a general average shape 〈h(r)〉 = h̄(r) ≡ h̄, obtaining

H′ = H−
∫

S

h(r) m(r) dA , (2.32)

where H is the physical Hamiltonian given in eq.(1.15). The corresponding partition
function is

Z =

∫
D[h] e−βH[h] eβ

R

S h m dA (2.33)

and the effective action, i. e., the Legendre transform of the free-energy, is given by

Feff = −kBT lnZ +

∫

S

h̄m dA . (2.34)

The average height of the membrane is given by

〈h(r)〉m ≡
∫
D[h] h(r) e−βH[h] e

R

S h m dA

Z =
kBT

Z
δZ

δm(r)
= h̄(r) , (2.35)

where δZ/δm(r) stands for the functional derivative of the effective partition func-
tion with respect to the field m at the point r. For m = 0, we have a simple
Gaussian integral and thus h̄(r)|m=0 = 0, which corresponds to the case of a planar
membrane. Differentiating the free-energy with respect to h̄(r) and using eq.(2.35),
one obtains

δFeff

δh̄(r)
= m(r) − kBT

Z

∫
δm(r′)

δh̄(r)

δZ
δm(r′)

dA +

∫
δm(r′)

δh̄(r)
h̄(r′) dA = m(r) . (2.36)

For the case m = 0, the correlation function is given by
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〈h(r) h(r′)〉m=0 =
(kBT )2

Z
δ2Z

δm(r)δm(r′)

∣∣∣∣
0

,

=
kBT

Z
δ
[
Z h̄(r′)

]

δm(r)

∣∣∣∣∣
0

,

= kBT

[
δm(r)

δh̄(r′)

∣∣∣∣
0

]−1

,

= kBT

[
δFeff

δh̄(r) δh̄(r′)

∣∣∣∣
0

]−1

, (2.37)

where we have used eq.(2.35) and eq.(2.36) in the second and third passage, respec-
tively.

Meanwhile, as we have seen above, Cai et al. defined the tension as

τCai =
∂Flim

∂Ap
=

∂Feff,lim [h̄ = 0]

∂Ap
, (2.38)

where the Feff,lim is the effective action for the limit of large membranes. Suppose
now that the average shape h̄(r) is tilted. The free-energy should remain the same,
since the physical area of the membrane has not changed. The dependence of the
free-energy on h̄ to lowest order should thus be [105]

Feff = τCai

∫

S

[(
1 +

1

2
(~∇h̄)2 + · · ·

)
+ · · ·

]
dA , (2.39)

where the first ellipsis involves terms O(h̄4) and the second involves high order
derivatives on h̄. Note that the dependence should remain the same if one takes the
thermodynamical limit. One has thus

δFeff

δh̄(r) δh̄(r′)

∣∣∣∣
m=0

= −τCai ∆r δ(r − r′) + · · · . (2.40)

where δ(x) is the Dirac delta function and ∆r is the Laplacian calculated at the
point r. By definition, the inverse of an operator M(r) is given by

∫
M(r − r′) M−1(r′ − r′′) dr′ = δ(r − r′′) , (2.41)

which yields

[
δFeff

δh̄(r) δh̄(r′)

∣∣∣∣
m=0

]−1

=
1

Ap

∑

q

ei q·(r−r′)

τCai q2 + O(q4)
. (2.42)

Let’s look again at eq.(2.37): the term on the left is the correlation function for a
planar membrane, given in general by

〈h(r) h(r′)〉 =
kBT

Ap

∑

q

ei q·(r−r′)

r q2 + O(q4)
. (2.43)
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Note that here the coefficient of the quadratic term r is in general different from σ.
Indeed, to obtain the correlation function given in section 1.3.6, we have used the
naive measure, while the discussion presented here remains general and valid for any
measure.

Eq.(2.37) combined with eq.(2.42) imply thus that one should have always r =
τCai. Indeed, after a careful study taking into account measure subtleties, Cai et
al. succeed to prove this assertion. We do not question their proof, but rather their
definition of τ , which seems less appropriated, since it does not yield the same results
as with the stress tensor. With our definition of τ , we have τ 6= τCai and thus in
general we should expect r 6= τ 6= σ. We will show that it is indeed the case in a
simple numerical experiment in section 2.3.

2.3 1-D Numerical experiment

Here we present a simple numerical experiment proposed to check the results of
the two last sections. We have chosen for simplicity to simulate the 1-d equivalent of
a membrane, i. e., a 1-d filament fluctuating in a 2-d space. Despite the plainness of
our numerical system, described in section 2.3.2, we have access to the three tensions
r, σ and τ . In section 2.3.3 we present and discuss the compatibility of the numerical
data with the theoretical predictions for a filament, derived in section 2.3.1.

2.3.1 The tension τ for a 1-d filament

Let’s call e‖ the average direction of the filament and e⊥ the perpendicular
direction. The filament’s length L is fixed by adjusting the conjugated variable σ
and the projected length on e‖ is denoted Lp. In the Monge’s gauge, its shape is
described by the height h(x) e⊥, where x is the ordinate in the direction e‖. For a
weakly fluctuating filament, the energy is given by the 1-d counterpart of eq.(1.15)

H1D = σ Lp +

∫

Lp

[κ
2

h2
xx +

σ

2
h2

x

]
dx . (2.44)

Accordingly, with the Fourier transform

h(x) =
1√
Lp

∑

q

hn ei qx , (2.45)

where

∑

q

≡
∑

|n| ∈ [1,Nmax]

, (2.46)

and q = 2πn/Lp, n ∈ N∗, one has

H1D = H0 +
1

2

∑

q

(
σq2 + κq4

)
|h(q)|2 , (2.47)

where 2πNmax/Lp = Λ ≈ 1/a, where a is a microscopical cut-off. It follows that
〈|h(q)|2〉 is given by the equivalent of eq.(1.29).
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In appendix B, we derive the projected stress tensor for a 1-d filament. There,
we show that it has just two components, one tangent to the filament direction Σ1D

‖ ,

developed up to order two on h, and other perpendicular to it Σ1D
⊥ , developed up to

first order in h, yielding

Σ1D
‖ = σ − σ

2
h2

x −
κ

2
h2

xx + κ hxxxhx , (2.48)

Σ1D
⊥ = σ hx − κ hxxx . (2.49)

Note that these equations are equivalent to Σxx and Σzx (eqs.(1.58) and (1.60),
respectively) for hy = 0 and hyy = 0. In order to evaluate τ1D ≡ 〈Σ1D

‖ 〉, we introduce
the correlation function for H1D:

G(x − x′) =
kBT

Lp

∑

q

ei q(x−x′)

σq2 + κq4
. (2.50)

We have thus

τ1D = σ − σ

2
〈h2

x〉 −
κ

2
〈h2

xx〉 + κ〈hxhxxx〉 , (2.51)

= σ − kBT

2Lp

∑

q

σ + 3κq2

σ + κq2
,

= σ − kBT

2

∫
dq

2π

σ + 3κq2

σ + κq2
, (2.52)

= σ − 3 kBT Λ

2π

[
1 − 2

3Λξ
arctan (Λξ)

]
, (2.53)

where we have taken the thermodynamic limit in eq.(2.52) and ξ =
√

κ/σ. For
ξ ≪ a, i.e., for non-extreme tensions, we have simply

τ1D ≈ σ − 3 kBT Λ

2π
. (2.54)

As for a two-dimensional membrane, the effective tension is smaller than the tension
σ and the difference is well approximated by a constant.

Numerically, to evaluate τ1D = 〈Σ1D
‖ 〉, one should evaluate each one of the three

averages of eq.(2.51) (〈h2
x〉, 〈h2

xx〉 and 〈hx hxxx〉) at the point x = Lp. If however
one imposes the filament to remain horizontal at its end, i. e. hx|Lp = 0, eq.(2.51)
becomes simply

τ1D = σ − κ

2
〈C2

Lp
〉 ≡ 〈σt〉, (2.55)

where CLP
= hxx|Lp is the curvature at the filament’s end and where σt stands for

the tangential tension. Eq.(2.55) is much simpler to check numerically, since one has
just to evaluate one average. We shall thus impose in our simulation hx|Lp = 0 and
verify independently both equations (2.53) and (2.55).
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2.3.2 Numerical system and dynamics

We considered a discretized version of a 1-d filament constituted of a chain of
N rod-like segments of natural length a, each rod representing a coarse-graining of
several lipids. We assumed in an approximation that all segments had the same
length a(1 + ǫ) and thus the total length of the system was L = N a(1 + ǫ). We
wanted a filament with L = N a. Imposing ǫ = 0 would not allow us however to
measure σ, which is a fundamental point of this simulation. We have thus considered
that the chain was connected to a lipid reservoir, so that ǫ was free to vary. In order
to fix 〈ǫ〉 = 0, the conjugated variable σ had to be properly adjusted, as in eq.(2.44).

Figure 2.4: Parameters of the numerical experiment. The angle θ̄ is the average angle
that the chain does with the horizontal axis (see eq.(2.57)) and eR is the end-to-end
direction. The projected length, indicated in red and denoted Lp, is the length of the
chain projected on eR. Note that we impose the last segment to be parallel to eR.

Each configuration Ωi of the chain was described by the set {θ1, ..., θN−1, ǫ},
where θi stands for the angle that the segment i makes with the horizontal axis (see
Fig. 2.4). The last segment was imposed always parallel to the vector R, defined by

R =
L

N

i=N−1∑

i=1

ui , (2.56)

where ui is the unitary vector in the direction of the i-th segment so that τ1D = 〈Σ1D
‖ 〉

can be easily checked through eq.(2.55). Associated to the vector R, we define the
average direction eR ≡ R/R ≡ e‖, where R ≡ |R|. Thus we impose uN = eR and

θN = θ̄ =
1

N

i=N∑

i=1

θi . (2.57)
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The projected end-to-end length is given by Lp ≡ |R| ≡ (L/N)
∑N

i=1 cos(θi − θ̄) (see
Fig. 2.4).

During the simulation, we considered two kinds of moves:

1. Move A: changing one segments angle θi, which corresponds to the effects
of thermal fluctuations on the chain’s shape (see Fig. 2.5(a)). In this case,
the direction eR is changed and consequently, the last segment must have its
direction corrected;

2. Move E: changing the extension of segments through ǫ, which represents the
exchange of lipids with the reservoir (see Fig. 2.5(b)).

(a) Move A: changing the angle of one segment
with respect to the horizontal. The last segment
must be adjusted so that its direction is parallel to
the vector eR.

(b) Move E: changing the extension ǫ of seg-
ments.

Figure 2.5: Two kinds of movements considered for the chain.

In addition, an external force f = τ · eR always parallel to the last segment is
exerted over the chain. The chain’s free-energy is given by a bending contribution,
a contribution coming from the Lagrange multiplier σ plus a contribution from the
external force

Hdiscret = σL +

N−1∑

i=1

1

2
κ a (1 + ǫ) C2

i − τ Lp , (2.58)

where

Ci =
θi+1 − θi

a (1 + ǫ)
(2.59)
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is an approximation of the curvature between two successive segments. Note that
the problem is invariant under rotation around the origin O, so that at any moment
we can describe the configuration on Monge’s gauge.

The imposed parameters of the simulation were N , τ in units of β a and κ in
units of β. For each τ , σ was adjusted in order to fix 〈ǫ〉 = 0, as discussed above.
We detail how it was done in the following.

In the end of section 2.3.1, we have argued that in general, one should expect
r 6= τ 6= σ, where r is the coefficient in q2 of the spectrum fluctuation

〈|hn|2〉 =
kBT

rq2 + κq4
. (2.60)

In order to measure 〈|hn|2〉 (and thus r), we have first performed a rotation so that
we were in the same situation as in section 2.3.1. We defined Θ(x) = θi − θ̄, where
x is the ordinate in the axis ex. The function Θ(x) is a series of steps of length
cos(θi − θ̄), as shown in Fig. 2.6. Note that this function is well-defined only when
there are no overhangs (|θi − θ̄| < π/2 for all segments), unlike the configuration
seen on Fig. 2.4.

Figure 2.6: Construction of function Θ(x). First, the initial configuration is rotated of
− θ̄. The tension r was deduced from the average of the Fourier transform of this curve
over a large sample of configurations.
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With the Fourier transform

Θn =

∫ Lp

0

Θ(x) e
−i 2πnx

Lp dx , (2.61)

we expect

〈|Θn|2〉−1 = β
[
r + κq2 + O(q4)

]
, (2.62)

with q = 2πn/〈Lp〉. The strategy to obtain r was to average |Θn|2 over a large set
of configurations and fit the data with eq.(2.62). Fig. 2.7 shows a representative fit.

Figure 2.7: Example the fit (solid line) of 〈|Θn|2〉−1 (crosses) with eq.(2.62) for N = 50,
κβ = 125 and τβa = 2 and σβa = 2.45535. The fit yields rβa = 2.83 ± 0.03 and
κβ = 109.28 ± 0.09. Fit with χ2

red = 0.82, indicating a good fit.

A sum-up of the variables can be seen in table 2.1.

Tension Status How

τ imposed –

σ adjusted 〈L〉 = N a

r measured 〈|Θn|2〉

Table 2.1: Sum-up of how we have dealt with tensions in the numerical experiment.
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Numerical dynamics

We used a Monte Carlo method to generate a sufficiently large sample of chain’s
configuration so that we could evaluate averages with a good precision [106]. The
configurations were generated through a Markov chain algorithm: from a certain
Ωi, a random move of kind A or E was proposed, generating a new state Ωi+1. In
order to respect the detailed balance, the configuration Ωi+1 was accepted with the
probability P (Ωi → Ωi+1) given by the Metropolis algorithm

P (Ωi → Ωi+1) = min

[
1,

p(Ωi+1)

p(Ωi)

]
. (2.63)

In the case of thermodynamic equilibrium, the probability of each configuration
is given by the Boltzmann distribution

p(Ωi) =
e−β Hdiscret(Ωi)

Z , (2.64)

where Z is the partition function. The probability of transition is then simply given
by

P (Ωi → Ωi+1) = min
[
1, e−β ∆H] , (2.65)

where ∆H = Hdiscret(Ωi+1) −Hdiscret(Ωi). In our case, we have

1. move A: an angle θi of the set {θ1, ..., θN−1} is randomly chosen. We propose a
new angle θ′i = θi+∆θ, where ∆θ = δθ× rand(−1, 1), with rand(a, b) a random
number with uniform distribution of probability between a and b. The new θ̄′

is evaluated and consequently θ′N = θ̄′. The variation of free-energy is thus

∆HA =
κ

2 a(1 + ǫ)

[
(θi+1 − θ′i)

2 − (θi+1 − θi)
2 + (θ′i − θi−1)

2

− (θi − θi−1)
2 + (θ′N − θN−1)

2 − (θN − θN−1)
2
]

− τ
L

N

[
j=N∑

j=0

cos
(
θj − θ̄′

)
−

j=N∑

j=0

cos
(
θj − θ̄

)
]

. (2.66)

If i = 0, the third and the fourth terms should not be taken into account. The
value of δθ is chosen in order to have ≈ 50% of acceptance of this kind of move.

2. move E: a new extension ǫ′ = ǫ+∆ǫ, with ∆ǫ = δǫ × rand(−1, 1) is proposed.
The free-energy variation reads

∆HE = σ a ∆ǫ − τ a ∆ǫ

j=N∑

j=0

cos
(
θj − θ̄

)

+
κ ∆ǫ

2 a(1 + ǫ)(1 + ǫ′)

j=N−1∑

j=0

(θj+1 − θj)
2 . (2.67)
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Again, δǫ was chosen in order to have ≈ 50% of acceptance for moves of kind
E.

To each move of kind E, N − 1 moves of kind A were tried in order to assure
that in average every degree of freedom is equally modified. In the following, we will
call this sequence a Monte Carlo step.

Equilibration criterion

In order to obtain meaningful averages, we had to be sure that our numerical
experiment reached equilibrium. Usually, it is enough to examine the number of
Monte Carlo steps needed to decorrelate the longest modes on the Fourier space,
which are the slowest to relax, and then choose a number of steps much larger for
the simulation [106]. As our system is really simple (in the sense that the energy
do not have several local minima) and that we have not chosen too long chains,
we have chosen two criterion that together are stronger than the relaxation of the
longest modes. First, for the equilibration of angles, we have required the average
of R, given in eq.(2.56), to be ∼ 0. One could imagine the case of a rotating fixed
configuration, which would also yield 〈R〉 ∼ 0. To exclude this improbable situation,
we have visually checked a set of configurations. Secondly, to study the equilibration
of the extension ǫ, we have examined the evolution of 〈ǫ〉 over time: when it reached
a plateau, we considered the system at equilibrium.

In our experiments, we have taken N = 50 and a larger βκ = 125 to assure
that the chain departs weakly from a straight line. For typical values ranging from
τ = −0.2 βa up to τ = 5 βa, the equilibration was attained after 5 × 105 steps.
Currently, we have made 8 × 106 steps to be sure that the sampled configurations
had an equilibrium distribution. At the end of each step, we have calculated Θ(x)
(when there were no overhangs).

Adjusting σ

As we applied τ to the membrane, we had to adjust σ in order to have 〈ǫ〉 ∼
0. To estimate also the uncertainty of σ, for each pair κ, τ we determined σmin

corresponding to ǫmax = 〈ǫ〉 = 10−3 and σmax corresponding to ǫmin = 〈ǫ〉 = −10−3.
To do so, we inspired ourselves on eq.(2.54)

(σ − τ1D)βa =
3

2π
≃ 0.5 , (2.68)

and started with two guesses (σmin − τ)βa = 0.35 and (σmax − τ)βa = 0.55. The
approach of the boundaries ǫmax and ǫmin was made through a false-point algorithm in
20 iterations at maximum [107]. The stop criterion for σmin was |〈ǫ〉−ǫmin| < 3×10−4

and equivalently |〈ǫ〉 − ǫmax| < 3 × 10−4 for σmax. A fluxogram of the adjustment
procedure is presented in Fig. 2.8. For the typical values presented in the last section,
the difference σmax − σmin was systematically of ≈ 0.001 βa.
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Figure 2.8: Fluxogram of the adjustment procedure. The processes taking place in the
main function roda.c are inside violet boxes (solid lines). Each blue box (dashed lines)
indicates a run of Monte Carlo of 8 × 106 steps. The brown box (dotted lines) indicates
that the false-point algorithm was used to suggest a new σ. It is called at most 20 times
for each boundary (usually, less than 5 times were enough).

Buckling transition

In order to verify the correctness of our simulation, we have also applied negative
tensions to the filament. Indeed, for compressive tensions bigger than a certain
limit, we expect our filament to fluctuate around a curved line, instead than around
a straight line, as shown in Fig. 2.9. This transition is known as the buckling
transition.

This transition is also characterized by an increase and a discontinuity on the
length excess, the equivalent of α, defined as

α1D =
L − 〈Lp〉
〈Lp〉

, (2.69)

as the compressive tension increases. In Fig. 2.10 we can see that we have effectively
a relatively abrupt increase of α1D as the tension approaches τ = −0.3βa. We
have thus some evidence of a buckling transition for negative tensions. We have
not however made a systematic study of the transition, since it was not the aim
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our numerical experiment. Moreover, we have found some technical problems for
τ ≤ −0.3βa, since the projected length was highly fluctuating due to the alternating
presence of buckled and straight configurations near the transition. The averages
varied a lot and thus, with the parameters presented in the last section, the false-
point method failed to converge in 20 iterations. Therefore, we have just considered
τ > −0.2βa, situation in which we are sure that we had small fluctuations around a
straight line.

(a) Buckled configura-
tion for τ = −0.3 βa.

(b) Non-buckled configura-
tion for τ = 0.5 βa.

Figure 2.9: Buckling transition.

Figure 2.10: Percent length excess as a function of τ . The shaded region on the left
represents the approach of the buckling transition.

2.3.3 Results

Once σmin and σmax were found, we have performed the numerical experiment
three times with each value. We have taken the average of these three runs for
the spectrum and for the average curvature of the last segment. For each averaged
spectrum, we have made a fit using gnuplot to obtain r (see Fig. 2.7 for an example).
We obtained κβ ≈ 110 in all fits, which we remind is a bit different from the
microscopical κβ = 125. This result is coherent with what one should expect given
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eq.(1.30), which takes into account corrections due to the renormalization. The final
results are summed up in table 2.2. In this table, σ and r are the averages of σmax

and σmin and the corresponding r. From table 2.2, it is evident that τ 6= σ (see
also Fig. 2.11). In the same graphic, we have also plotted 〈σt〉 = σ − κ〈C2

Lp
〉/2. As

predicted, we have indeed 〈σt〉 = τ .

Figure 2.11: Tensions τ (diamonds) and σ (circles on top) as a function of the shortening
of the projected length. Note that as predicted, the average of the tangential stress tensor
at the extremity 〈σt〉 (circles superposed with the diamonds) coincides with τ . The dashed
lines are just guides to the eye.

τ σ r κ/2〈C2
Lp

〉 〈Lp〉

-0.2 0.31 0.01 0.48 48.81
-0.1 0.40 0.17 0.47 48.91
0 0.50 0.32 0.47 48.99

0.5 0.98 0.97 0.46 49.20
1 1.47 1.63 0.45 49.32

1.5 1.96 2.24 0.44 49.38
2 2.46 2.81 0.43 49.43

2.5 2.95 3.45 0.42 49.48
3 3.44 4.11 0.42 49.51

3.5 3.94 4.53 0.41 49.55
4 4.43 5.19 0.41 49.56

4.5 4.93 5.71 0.41 49.59
5 5.42 6.16 0.4 49.59

Table 2.2: Sum-up of the results obtained from our numerical experiment for N = 50
and βκ = 125. The values of the four first columns are in units of βa, while the last
column is in units of a. The errors on the second and third column are of ≈ 0.001 and
≈ 0.02 respectively. The fourth column is the average of the curvature energy of the last
segment.
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Quantitatively, the fit with the theoretical equation for the difference σ−τ given
in eq.(2.53) can be seen in Fig. 2.12 (solid line). The agreement is excellent for
Λ = 1.1 a−1 (one parameter fit), which is a very reasonable value for the cut-off.
In this graphics, we have also plotted the percent difference between σ and r. The
behavior is non-trivial: the sign of σ − r changes at low tensions and we have σ 6= r
even at high tensions.

0

−1

0 1 2 3 4 5
βσa

(r − σ)/σ

(τ − σ)/σ

Figure 2.12: Lower data: comparison between τ and σ (error bars given by the symbol
size); the solid line is a fit using eq.(2.53). Upper data: comparison between r and σ; the
dashed is only a guide for the eye.

To conclude, with this simple numerical experiment, we could accede to the
tension σ needed to fix the length of the filament, which one cannot usually measure
in true experiments, simultaneously to the tension τ and r. Our data corroborates
the prediction that τ 6= σ and verify eq.(2.55). In addition, the difference between
τ and σ was well fitted by eq.(2.51), giving some support to our theory. Regarding
r, as discussed in section 2.2.3, we expected in general τ 6= σ 6= r, which our data
seems to confirm. The way in which r depends on σ seems to be non-trivial (see
Fig. 2.12) and further studies have to be done in order to understand it.

2.4 Some experimental implications

In this section, we discuss the implications of eq.(2.10) to micropipette experi-
ments. Indeed, in these experiments, it is usually assumed that σ ≈ τ , which, as we
have seen, is not justified in the limit of low tensions. We will assume that we are
dealing with very large GUV and that the difference of pressure between the inside
and the outside of the vesicle is very small, so that the membrane is locally equiv-
alent to a flat membrane. A more detailed derivation for quasi-spherical vesicles of
any size taking into account the pressure difference will be done in chapter 4.

In the limit of small fluctuations, the excess area is given by
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α =
〈A〉 − Ap

Ap
≃ 1

2
〈(∇h)2〉 ,

≃ kBT

2Ap

∑

q

1

σ + κq2
, (2.70)

where we have used the correlation function given in eq.(2.7). In the thermodynamic
limit, we have

α ≃ kBT

8πκ
ln

(
σ + σr

σ + κ (2π)2

Ap

)
, (2.71)

≃ kBT

8πκ
ln
(σr

σ

)
, (2.72)

where the last approximation is valid in the limit κ/Ap ≪ σ . 10−2 σr. Using the
fact that in this limit σ ≃ τ + σ0, we have finally

α ≃ kBT

8πκ
ln

(
σr

σ0 + τ

)
. (2.73)

In micropipette experiments, one measures the percent difference of projected
area between the initial configuration Ai

p and the final configuration Af
p :

Af
p − Ai

p

Ai
p

=

(〈A〉 − Ai
p

Ai
p

)
−
(
〈A〉 − Af

p

Ai
p

)
,

≃ αi − αf

≃ kBT

8πκ
ln

(
σf

σi

)
, (2.74)

≃ kBT

8πκ
ln

(
σ0 + τf

σ0 + τi

)
. (2.75)

Eq.(2.74) corresponds to the result presented in section 1.4.1 and usually used to
deduce κ by considering τ ≈ σ. In eq.(2.75), we see the explicit relation as a function
of τ .

In Fig. 2.13, we imagine a typical micropipette experiment with a vesicle initially
under very small tension τ i = 10−8 N/m and κ = 25 kBT . We increase the tension up
to 10−4 N/m by aspiring the vesicle. The curves in Fig. 2.13 represent the expected
relation between the logarithm of τ f/τ i and the percent of increase in the projected
area for τ = σ and for τ = σ − σ0.

First of all, note that the percent increase of the projected area is very small
(less than 0.5%), which corresponds to the validity range of our results (no stretch-
ing). For τ > σ0, we have a linear dependence of the logarithm of τ on the percent
projected area with roughly the same slope whether one takes into account the dif-
ference between τ and σ (eq.(2.75)) or not (eq.(2.74)). Thus, it is justified to deduce
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κ by fitting a straight line to data on this region, as it is usually experimentally
done (see section 4, Fig. 1.28.(a)). We predict however a different behavior for small
tensions (τ < σ0): as we can see in Fig. 2.13, in the shaded area, we do not have
a linear relation between the logarithm of τ and the area excess. Sadly, we cannot
identify this behavior in the data of Fig. 1.28, but our prediction can be tested by
further experiments using vesicles under small tension.

Figure 2.13: Theoretical relation linking the tension to the difference of the projected
area: in red (upper curve), we see the curve where the distinction between τ and σ is taken
in account (eq.(2.75)), while in blue (lower straight line) we see the usual law, supposing
that τ = σ (eq.(2.74)). Numerical values: kBT = 4 × 10−21 J, κ = 10−19 J, a = 5nm. We
considered a vesicle under initial tension τ i = 10−8 N/m. The tension is increased up to
τ = 10−4 N/m. Note that for τ < σ0, we have no more a linear behavior.

2.4.1 Natural excess area

Another related consequence concerns the natural excess area, i. e., the measure
of the fluctuations of a membrane under no external force (τ = 0). Using eq.(2.73),
we have

αeq ≃ ln(8πβκ)

8πβκ
, (2.76)

which yields αeq ≃ 0.03, 0.01, 0.005 for βκ = 5, 25, 50, respectively.

Traditionally, however, one makes σ = 0 in eq.(2.70), which leads to

αtrad
eq ≃ 1

4πβκ
ln

(
Λ
√

Ap

2π

)
. (2.77)

The main difference between these equations is the dependence in terms of the
projected area Ap, since for the last equation one expects an explicit logarithmic
dependence. Eq.(2.76) presents also a hidden dependence on Ap through eq.(1.30)
due to renormalization, although it should be a far weaker dependence. This result
is well suited for numerical verifications.
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2.5 First evidences that τ 6= σ

Here we present the first strong numerical and experimental evidences of the
correctness of our results. In the first part, we present the results of recent numer-
ical experiments far more complex than the one presented in section 2.3. In the
second part, we discuss experiments on the adhesion of vesicles to solid substrate.
We begin by mentioning a previous puzzling result by Rädler et al. [84], already
introduced in section 1.4.3. We report the attempts to understand this result made
by Seifert [108]. Finally, we describe a recent experiment that seems to corroborate
our previsions [87].

2.5.1 Numerical experiments

In the same ref. [3], discussed in section 2.2, a 2-d numerical experiment was
proposed to check the author’s predictions. The numerical system consisted on
coarse-grained amphiphilic lipids represented by chains of beads (see Fig. 2.14).
The black beads represent the hydrophobic tail, while the white one stands for the
hydrophilic head. In addition, single beads stood for water molecules.

Figure 2.14: Coarse-grained amphiphilic molecule used in the numerical experiment
proposed in ref. [3]. The black beads represent the molecule’s hydrophobic tail, while the
hydrophilic head is represented by the white bead.

The total energy was composed by four terms:

1. the hydrophobic interaction between the beads of the tail and water/hydrophilic
head;

2. an attractive interaction between two molecules, given by a Lennard-Jones
potential;

3. a harmonic potential between beads along a single molecule;

4. a three-body bending potential that models the effects of hydrocarbon chain
stiffness.
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Both molecules of lipids and water were free to move inside a fixed cuboidal box
with periodic boundary conditions. At each realization of the simulation, the size
of the box could be changed, implying a change in the membranes tension τ . The
dynamics alternated sequences of Monte Carlo steps with sequences of molecular
dynamics steps.

In order to measure τ , the forces exchanged through imaginary cuts perpendicular
to the membrane plane were averaged for different box sizes. As in real experiments,
the tension r was measured through the fluctuation spectrum. Similarly with our
simple 1-d simulation, the buckling transition was observed for high compressive
tensions. For the non-buckled regime, the results for a simulation involving 1152
amphiphilic molecules and 7200 water molecules can be seen in Fig. 2.15. In agree-
ment with the discussion of section 2.2, the author obtained indeed τ 6= r. Moreover,
negative tensions are observed for non-buckled membranes, as in our case.

In this work, the relation given in eq.(2.9) was obtained by differentiating the
free-energy with respect to the projected area. Assuming that r ≈ σ, as usually done
in laboratory experiments, the author fitted eq.(2.9) to τ by adjusting one parameter
related to the upper wave-length cutoff. As we an see in Fig. 2.16, the agreement is
very good, supporting the predicted relation between τ and σ given in eq.(2.9).

Figure 2.15: Plot of r (indicated by a circle) and τ (black circle) as a function of the
projected area per molecule ap obtained in ref. [3]. As ap increases, the fluctuations are
flattened and the tension τ increases. The tension is displayed in units of ǫ/ℓ2 and ap in
units of ℓ2, with ǫ = 1/3 × 10−20 J and ℓ = 1/3nm.
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Figure 2.16: The black squares indicate the directly measured tension τ in ref. [3]. The
circles represent the fitted values using eq.(2.9) and assuming r ≈ σ. The units are the
same as in the last figure.

Very recently, a similar simulation was performed by Neder et al. [109]. They have
also used coarse-grained amphiphilic molecules similar to the one shown in Fig. 2.14
and the energy contributions were roughly the same as in [3], added of a term −τ Ap.
Thus, the main difference in this simulation is the fact that τ is imposed (and not
measured) and the box size was free to change. In other words, the simulation was
performed at τ and Np, the number of lipids, fixed. The advantage of this method is
the possibility of controlling directly τ , while in the method used in [3], the tension
was imposed by the size of the box. The configurations were generated through
a Monte Carlo algorithm, since only static measures were done. Different phases
of the membrane were observed, depending on the temperature of the system. In
particular, we can see some snapshots for the liquid phase in Fig. 2.17.

Figure 2.17: Snapshots of bilayer configurations in the liquid phase [109]. The dark gray
molecules point upward from tail to head while the light gray point downward. In the first
snapshot at left, the membrane is tensionless. In the following two snapshots, the tension
is increased (0.01 J/m2 and 0.02 J/m2, respectively). Remark the interdigitations in the
configuration of highest tension due to the stretching of the membrane.

As before, r was measured through the fluctuation spectrum for the tensions
above mentioned (results presented in table III of [109]). For the tensionless state,
they obtained r = (0.11 ± 0.19) × 10−4 J/m2. This result seems to agree with our
prediction that r should be bigger than τ , even though one should be cautious given
the large error-bars. For the systems under higher tension, however, the trend was
inverted. This fact does not contradict our predictions, since stretching was not
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taken into account in our theory. Indeed, by measuring an overlap parameter, as
well as the nematic order parameter for the liquid phase, the authors confirmed that
stretching takes place for τ & 0.01 J/m2. Further simulations in the regime of low
tension should be useful to compare with our predictions.

2.5.2 Adhesion experiments: a puzzling result

Here we will comment on some experiments involving the adhesion of vesicles to
solid flat substrates, discussed in section 1.4.3. In 1995, Rädler et al. [84] studied the
adhesion of GUVs to solid substrates. They constituted GUVs of stearoyl-oleoyl-
phosphatidylcholine (SOPC) in a 100 mM sucrose solution, so that the vesicles were
denser than the buffer solution and sank to the bottom of the chamber, where a
glass cover slip coated with a thin film of MgF 2 and bovine serum albumin had
been deposed. The vesicle then floated above the glass slip with a height s(r),
as shown in Fig. 1.33(b), in a weakly adhered state. Using reflection interference
contrast microscopy (RICM) and phase contrast microscopy (see Fig. 2.18), the
group could measure the radius of the vesicle Rves, the radius of the contact region
Ra, and reconstruct the height profile of the adhered patch.

(a) High tension
(the bar corre-
sponds to 10 µm).

(b) Small ten-
sion

Figure 2.18: RICM micrographs of adhering vesicles under different tensions [84]. The
height profile is obtained by measuring the intensity of light through a line that passes by
the center of the contact region. The fringes at the edge of the round area indicate the
end of the contact region.

Under the supposition that energy of the contact region was well described by
eq.(1.38) and defining h(r) = s(r) − 〈s〉, they could infer:

1. the fluctuation spectrum 〈|h(q)|2〉, which once fitted with eq.(1.39) allowed to
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obtain r and V ′′ (see Fig. 2.19). The bending rigidity for SOPC, obtained in
previous experiments, was assumed to be 35 kBT ;

Figure 2.19: Fluctuation spectrum of the contact region of the adhering vesicle [84].
The solid line corresponds to the fit of eq.(1.39) from which V ′′ and r are deduced (it was
assumed that κ = 35 kBT ).

2. the correlation function 〈h(x)h(0)〉, which can be approximated by an expo-
nential asymptote

G(r, r′) = 〈h(r)h(r′)〉 ∼ ξ2
⊥ e

− r−r′

ξ‖ , (2.78)

where ξ‖ is the distance beyond which two pieces of membrane are uncorrelated
and ξ⊥ is a measure of the membrane roughness. From the experimental
data, the authors deduced ξ‖ through a fit and ξ⊥ from the value of G(0) (see
Fig. 2.20);

Figure 2.20: Correlation G(x) [84]. The solid curve shows the fit from which ξ‖ is
deduced, while ξ⊥ is deduced from G(0).

3. as we have discussed in section 1.4.3, under some conditions, the vesicle behaves
as a spherical cap and we can define an effective contact angle that respects an
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analogous to the Young-Dupree relation. After a reconstruction of the average
height profile of the adhesion patch from the RICM images, Rädler et al. tried
to obtain the effective contact angle θeff by a linear fit near the edge of the
contact region (see Fig. 2.21). They have also tried to fit a circle in the contact
region in order to obtain the curvature radius Rc, which relates to the adhesion
energy per unit area WA through eq.(1.42) in the case Rc < Rves.

Figure 2.21: Average contour of a vesicle near the contact region obtained from the
RICM images. The dark points correspond to the regime s < 100 nm, while the open data
correspond to higher order fringes and are not further considered. The solid line shows
a linear fit from which θeff is derived and the dotted line shows the fit of a circle to the
contact region aiming to obtain Rc. Note that the scales are distorted and that θeff ≈ 1o

- the membrane is extremely flat.

As the vesicle was extremely flat and rounded near the contact point, one
could not obtain θeff precisely from the height profile. Indeed, measuring the
contact angle in larger scales would lead to larger values for θeff . Concerning
Rc, the fit was made difficult by the thermal fluctuations that remain even after
averaging. Sadly, the values of Rc obtained were comparable to the vesicle’s
radius Rves. Accordingly, eq.(1.42) could not be used to obtain the value of
the adhesion energy WA.

4. the average height 〈s〉.

To sum up, Rädler et al. were able to obtain r from the fluctuation spectrum
and to made a rough estimate of the effective contact angle. They could not however
measure directly τ nor the adhesion energy WA. So, they made a theoretical estimate
of the adhesion energy to check the self-consistency of their results.

Theoretical estimate of the adhesion energy per unit area W theo
A

Here we explain just in general lines how the value of the adhesion energy per unit
area was theoretically estimated. The details are given in appendix C. Rädler et al.
considered that the contact region of the vesicle was submitted to three potentials:
two attractive, coming from the van der Waals interaction and gravity, and one
repulsive with steric origin. They considered the screened van der Waals potential,
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since some part of the MgF 2 coating of the glass cover slip is expect to be present
in small concentration in the buffer solution.

To obtain the repulsive contribution coming from the reduction of the config-
urations due to the substrate, they had to determine whether the adhesion was
dominated by the bending rigidity or by the tension, which was done by studying ξ⊥
(see appendix C for details). They concluded that the behavior of the membrane was
dominated by tension. Furthermore, they could also conclude that it was reasonable
to assume σ ≈ r in this experiment.

A plot of Vtotal = VvdW +Vsteric +Vgrav for typical experimental values (σ = 1.7×
10−5 N/m, κ = 35 kBT , b = 0.085, AH = 2.6 × 10−21 J, DM = 20 µm, DA = 10 µm,
∆ρ = 7 kg/m3) can be seen in Fig. 1.30(a). The potential presents a minimum
whose depth can be considered as a first estimate of the adhesion energy per area
W theo

A ≈ 10−9 N/m.

Coherence test: estimate of the adhesion energy through Young-Dupree
relation and discussion

The second strategy of the authors was to estimate the energy of adhesion
through the Young-Dupree relation

WYoung
A = τ (1 − cos θeff) , (2.79)

where θeff is the effective contact angle obtained through the fit shown in Fig. 2.21.
Assuming that τ ≈ r, their results are summarized in table 2.3. Despite the impreci-
sion in the measures of the effective contact angle, there seems to be an incoherence
between the theoretical estimate and the value of the adhesion energy obtained from
the Young-Dupree relation, which was initially blamed on the simplified theoretical
framework that did not account for the constraints on area and volume.

2 Rves 2 Ra θeff r W Young
A W theo

A

(µm) (µm) (deg) (10−6 N/m) (10−9 N/m) (10−9 N/m)

52 17 1.4 87.3 26.1
58 10 2.1 51.1 34.3
55 18 2.1 4.2 2.8
88 45 0.8 8.1 0.8 ∼ 1
62 27 1.1 14.5 2.7
53 15 0.7 17.3 1.3
83 64 2.1 27.3 18.3
91 31 0.9 15.9 2

Table 2.3: The first four columns show the measured parameters from eight different
vesicles. The fifth column is the adhesion energy evaluated through eq.(2.79) assuming
τ ≈ r. The sixth columns shows the theoretical estimate (the minimum of Vtot).
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A refined theory does not solve the problem...

Shortly after, Udo Seifert proposed a refined theory that considered also the
constraints on area and volume [108]. His calculations yielded a different repulsive
potential V Seifert

steric . Considering only V Seifert
steric and VvdW, he concluded that the vesicle

should present tension-induced adhesion, i. e, the potential should present a local
quadratic minimum like in the experiment of Rädler when

a ≡ 2κ(1 − cos ϕeff)

3 b kBT
<

1

3
, (2.80)

where ϕeff ≈ Ra/Rves and b is a constant. Taking b = 1/2π and κ = 35 kBT , this
condition is satisfied for a ≃ 150[1 − cos(ϕeff)] and thus ϕmax

eff ≃ 0.07 rad. In Rädler
experiment, ϕeff & 1/4 (see table 2.3) and thus the refined theory could still not
explain the data.

Finally, Seifert examined the possibility that gravity could reconcile his theory
with Rädler’s experiment. He compared the total contribution to the potential
energy coming from the bending rigidity and from gravity:

V tot
grav

V tot
κ

=
g ∆ρ VD hCM∫

1
2

κ
R2 dA

,

≃ g ∆ρ R4
ves

κ
, (2.81)

where VD is the vesicle’s volume, g is the gravitational acceleration, ∆ρ is the dif-
ference of density between the liquid contained in the vesicle and the suspension
medium and hCM is the height of the vesicle’s center of mass. As a rough estimate,
he assumed the vesicle a sphere and hCM ≈ Rves. For typical experimental values,
the ratio is of approximately one hundred: gravity is thus very important to deter-
mine the shape of a vesicle. Neglecting the adhesion energy, which is justified in
the case of weak adhesion, and neglecting the bending energy, the contact angle of
the vesicle should be zero and the tension should simply be given by the balance
between gravity and the mechanical tension:

τ ≈ 2

3
g ∆ρ R2

ves

(
Rves

Ra

)2

, (2.82)

where we have approximated hCM ≈ Rves. Numerically, for the experimental data
of Rädler et al., one obtains τ ≃ 3 × 10−7 N/m, which is still far smaller than the
values of r measured (see table 2.3). Rädler’s data remained unexplainable.

The solution and a posterior confirmation

In 1995, the fact that r ≈ σ was very significantly different from τ was totally
unexpected. Let’s now re-examine the experimental data of that time under our
theoretical framework. Our theory predicts that τ should indeed be different from σ.
As a first approximation, let’s assume that we are in the conditions where τ = σ−σ0.
If we look at the values of table 2.3, we have r ≈ σ ≃ 10−5 N/m. If we suppose that
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the adhesion energy per unit area is indeed ∼ 10−9 N/m and we invert eq.(2.79),
we obtain τ ≃ 10−6 N/m, yielding σ0 ≃ 10−5 N/m. Recalling the definition of σ0

presented on eq.(2.11), this result implies that the microscopic cut-off is a ≈ 4 nm,
which is very reasonable. Therefore, our theory could explain the results of Rädler
et al.

Recently, Sengupta and Limozin made a careful study on the adhesion of vesi-
cles [87]. They examined the adhesion of stiffer GUVs composed by phosphatydil-
choline and cholesterol filled with a 200 mM sucrose solution on a substrate coated
with polymers in three different concentrations: without polymer (no-polymer coat-
ing), with cpol = 0.75 µm−2 (sparse polymer coating) and with cpol = 1 µm−2 (dense
polymer coating). They observed systematically the pre-nucleation state (weak ad-
hesion), the nucleation, i. e., the formations of the first patch of strongly adhered
membrane, the growth of these patches and the mechanics in the final state of strong
adhesion (see Fig. 2.22).

Figure 2.22: Three states studied during the experiment proposed by Sengupta et al. [87]:
at left, the vesicle is in a pre-nucleation state. It fluctuates at a height hc given by a local
minimum of the adhesion potential. In the middle, we see the nucleation: a part of the
adhesion patch adheres strongly to the substrate, which corresponds a transition to the
deep minimum of the adhesion potential. Finally, at right, we see the final strongly adhered
state. The effective contact angle, here indicated by θf , and the characteristic length λ ≡ Λ
introduced in section 1.4.3 are also represented.

From a theoretical point of view, the predicted adhesion potential for the three
coatings is shown in Fig. 1.30(b) and reproduced in Fig. 2.23. For no-polymer
coating, there is just a deep minimum and thus strong adhesion, while for sparse
polymer coating, there is also a shallow minimum at ≈ 100 nm corresponding to
weak adhesion. For the dense polymer coating, only the shallow minimum remains
and only weak adhesion is predicted. The nucleation represents thus the passage of
the shallow minimum to the deeper one.
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Figure 2.23: Predicted adhesion potential for three different coatings. The red circles
indicate the deep minima and the star indicates the shallow minimum. The curves were
obtained for Rves = 10µm, ℓster = 0.2 nm, dlip = 0.9 nm, ∆ρ = 12.8 kg/m3, AH = 2 ×
10−21 J, κ = 100 kBT , a = 4nm, b = 0.1 and Rf = 87nm.

Experimentally, as in former adhesion studies, RICM images using two different
wave-lengths were used to obtain an intensity map of the adhered region. This time,
however, a major improvement was introduced in the reconstruction of the height
profile from these images: the case of profiles with high and variable curvature was
addressed for the first time. Indeed, up to now, only the deviations caused by pure
tilts and by profiles of constant curvature were accounted for. With this new method,
the membrane profile was described by a succession of small curved segments and the
reconstruction was made fringe by fringe (see a description of the method in [87]).
The advantage of this method is that it allows a more reliable profile reconstruction
even for steeper profiles, allowing thus to obtain the contact angle more precisely.

The results concerning the membrane mechanics can be summarized as follows:

1. Pre-nucleation state: in this state, the membranes presents strong undulations
in the adhesion region. The vertical roughness ξ⊥ ≃ 15 nm was measured, from
which σ ∼ 10−5 N/m could be deduced (the relation between these quantities is
given in appendix C). As Seifert had shown in his work, gravity is dominating
in the case of weak adhesion, so that the tension τ can be deduced from
eq.(2.82), leading to τ = 10−7 − 10−6 N/m. Sengupta and Limozin verified
that this discrepancy is compatible with τ = σ − σ0 for a ∼ 5 nm.

2. Saturation of growth of the strongly adhered patch: the vesicle gains energy
by increasing the contact area. In the process, its excess are decreases up to
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the equilibrium represented in C of Fig. 2.22. As in micropipette experiments,
the excess area before and after strong adhesion should verify eq.(2.75). This
relation was verified for all vesicles studied in this work within a factor between
five and ten for σ0 ≈ 10−6 N/m.

3. Final state of strong adhesion: instead of measuring the effective contact angle
θeff and the curvature radius Rc as in Rädler’s work, the authors used the
second method proposed in section 1.4.3 to obtain the adhesion energy WA

and the membrane tension τ , by measuring the contact angle θeff and the
length λ (see Fig. 2.22). This time, the results obtained were more reliable
due to the new reconstruction method and to the fact that the effective angle
is more easily defined in the case of strong adhesion. From λ, the tension τ
could be directly derived (eq.(1.45)). Using the Young-Dupree relation and
the measured values of θeff , the adhesion energy WA for each polymer coating
could be obtained. The values obtained for WA for the different coatings were
compatible with the theoretical values, corresponding to the deep minima of
the adhesion potential (see Fig. 2.23). Sadly, in this case one cannot measure
neither r nor σ by measuring the fluctuations of the membrane, since the
membrane is too near to the substrate.

The results described in the points 1 and 2 are the first strong evidences in
agreement with our predictions.

2.6 In a nutshell

In this chapter, we have discussed the difference between the mechanical tension
τ one applies through micropipettes, for instance, and the tension σ usually added
to the Hamiltonian in theoretical calculations. Quantitatively, for large membranes,
we have found

τ = σ − σ0

[
1 − σ

κΛ2
ln

(
1 +

κΛ2

σ

)]
,

≃ σ − σ0 , (2.83)

where the last approximation is valid for small tension (σ < 10−2 σr, where σr =
κΛ2 is of the order of the rupture tension). The constant σ0 depends only on the
temperature and on the upper wave-vector cutoff Λ through

σ0 =
kBT Λ2

8π
. (2.84)

The cutoff Λ is related to a microscopical length of the same order of the membrane
thickness. Numerically, at room temperature and assuming Λ = 1/(5 nm), we ob-
tain ≈ 5 × 10−6 N/m, which is a not so small. Indeed, we predict non-negligible
corrections for experiments involving small tensions. We have also questioned a for-
mer demonstration asserting that the coefficient of the q2 term of the fluctuation
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spectrum, measured in contour analysis experiments, was equal to the mechani-
cal tension. We have presented some results supporting our predictions: a simple
numerical experiment and a recent experiment on the adhesion of GUVs.
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Chapter 3

Fluctuation of forces in planar
membranes

In the last chapter, we have examined the average force exerted through a cut of
projected length L on a fluctuating planar membrane

〈f〉 = τ L ex , (3.1)

where ex is the direction perpendicular to the cut. Using the projected stress tensor,
we have obtained τ as a function of the tension σ, introduced in the Hamiltonian in
order to fix the average area of a membrane.

In this chapter, we would like to study the mean square deviation of this force,
defined as

(∆f )2 = 〈f 2〉 − 〈f〉2 . (3.2)

In the following, we will call ∆f simply the fluctuation of the force. The results
exposed here were obtained in the company of Jean-Baptiste Fournier and remain
unpublished. Our motivation is three-fold:

1. first, as experimentally one can measure the average of forces, it should also be
possible to measure its fluctuations. Experimentally, for planar membranes or
GUVs, this may be technically difficult, since one does not control τ directly
(figures are different for experiments involving membrane nanotubes, as we
shall see in the following chapters). Numerically, however, it should be reason-
ably simple to obtain ∆f using systems similar to the one proposed in ref. [3],
introduced in section 2.5.

2. secondly, there is no theoretical prediction on the matter. Up to now, as we
have seen in last chapter, calculations on τ involved differentiations of the free-
energy, which is very tricky. The projected stress tensor simplifies calculations,
allowing one to obtain more directly the mean square deviation of forces;

3. at last, this chapter is an intermediate step towards the calculation of the
fluctuation of the force needed to hold a membrane nanotube, which will be
done in chapter 6. Indeed, this geometry is far more interesting, presenting
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highly fluctuating Goldstone modes [7]. Moreover, from an experimental point
of view, in order to extract or hold a tube, one applies directly a point force
using optical tweezer or using magnetic beads, as we have seen in section 1.4.4.
These techniques are very precise and one should thus be able to measure ∆f ,
even if it is of the order of some pN.

In the first section, we will define precisely ∆f and remind some results obtained
in the last chapter. After, in section 3.2 we shall introduce some diagrammatic tools,
which are very useful since they make calculations visual. Using diagrams, one can
easily identify terms whose contribution is zero and group rapidly other terms. It
will prove specially useful in the calculation of the fluctuation of the force. To gain
familiarity with these diagrams, we recover the result given in eq.(2.9) in section 3.3.
In section 3.4, the most technical one, we shall evaluate the correlation of each term
of the stress tensor. These results are finally used in section 3.5 to obtain ∆f .

3.1 Definitions and former results

Let us consider the same weakly fluctuating planar membrane described in chap-
ter 2, whose projected area on a plane Π parallel to the average plane of the mem-
brane is Ap (see Fig. 2.1, which we reproduce in Fig. 3.1).

Figure 3.1: Weakly fluctuating planar membrane described in the Monge’s gauge. The
force f is exchanged through the cut of projected length L (red). Note that we have chosen
an orthonormal basis in order to have m = ex.

The Hamiltonian is given by eq.(2.6) and the we remind that the corresponding
correlation function reads

G(r − r′) ≡ 〈h(r)h(r′)〉 =
kBT

Ap

∑

q

ei q·(r−r′)

σ q2 + κ q4
, (3.3)

where q = 2π/
√

Ap(m, n) and

∑

q

≡
∑

|n|≤Nmax

∑

|m|≤Nmax

(3.4)

with Nmax =
√

Ap/(2πa), corresponding to a maximum wave-vector qmax = 1/a,
with a a microscopical length of the order of the membrane thickness.
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As shown in Fig. 3.1, we consider a cut of projected length L parallel to ey. The
average force exchanged through the cut is

〈f〉 = L (〈Σxx〉 ex + 〈Σyx〉 ey + 〈Σzx〉 ez) , (3.5)

where Σij are the terms of the projected stress tensor for planar membranes intro-
duced in section 1.5.2. In chapter 2, we have obtained

〈f〉 =

(
σ − kBT

2Ap

∑

q

κ q2

σ + κ q2

)
L ex . (3.6)

In section 3.3, we will recover this result using diagrammatic tools.
The squared fluctuation of the force is given by

(∆f )2 = 〈f 2〉 − 〈f〉2 ,

= (∆fx)
2 + (∆fy)

2 + (∆fz)
2 , (3.7)

where

(∆fx)
2 =

∫∫ L/2

−L/2

[
〈Σxx(x, y)Σxx(x, y′)〉 − 〈Σxx〉2

]
dydy′ , (3.8)

(∆fy)
2 =

∫∫ L/2

−L/2

〈Σyx(x, y)Σyx(x, y′)〉 dydy′ , (3.9)

(∆fz)
2 =

∫∫ L/2

−L/2

〈Σzx(x, y)Σzx(x, y′)〉 dydy′ , (3.10)

are the squared fluctuation of the forces perpendicular to the cut, parallel to the
cut and normal to the average membrane’s plane, respectively. Note that we have
omitted 〈Σyx〉 and 〈Σzx〉 in eq.(3.8) and eq.(3.10), respectively, as these averages
vanish (see section 2.1). The evaluation of the force fluctuation is made two steps:
first, we will evaluate the correlations

Cxx(y − y′) = 〈Σxx(x, y)Σxx(x, y′)〉 − 〈Σxx〉2 , (3.11)

Cyx(y − y′) = 〈Σyx(x, y)Σyx(x, y′)〉 , (3.12)

Czx(y − y′) = 〈Σzx(x, y)Σzx(x, y′)〉 , (3.13)

in section 3.4. After, in section 3.5, we will integrate these correlations twice over
the cut’s length. First of all, let’s introduce some diagrammatic tools.

3.2 Diagrammatic tools

In physics, the word field is used to denote any physical quantity that varies in
space. Accordingly, the height of the membrane h(r) is a field. Inspired from the
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Feynman diagrams used in statistical field theory, we associate graphical represen-
tations to the fields in order to make calculations visual, allowing quicker simplifi-
cations. Each field is represented by a simple straight line with a point appended to
it. This point, called a vertex, represents the point r in which the field is evaluated.
When two or more fields are evaluated at the same point, we represent them con-
nected by the same vertex. Besides, we represent the differentiation with respect to
x or y by a slash or a dot over the lines. We present a basic diagrammatic vocabulary
in table 3.1.

Usually Diagrammatically

h(r)

hx(r)

hy(r)

h(r) h(r)

h(r) h(r′)

Table 3.1: Basic translation rules from the usual notation into diagrams.

The thermal averages of fields are performed using Wick’s theorem, which states
that the average of an even number of fields is given by the sum of all possible
complete contractions. By a complete contraction, we mean linking the free ends of
a set of fields, two by two, in a way that no single field remains. The continuous line
formed after the contraction between two fields represents the correlation function
G(r) (in this context also called propagator), suitably differentiated. If the number
of fields is uneven, the theorem states that the average vanishes.

Let’s see an example of the simplest case, involving only two fields:

〈

r r′

〉
= = ∂x|r ∂y|r′ [G(r′ − r)] , (3.14)

where ∂x|r stands for the derivation with respect to x at the point r. The arrow
indicates that the propagator leaves at the vertex r and enters at the vertex r′. It’s
direction is arbitrary: by inverting it, we would obtain ∂x|r ∂y|r′ [G(r − r′)], which
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yields the same result as in eq.(3.14), since G(r − r′) is a function of |r − r′|. For
the propagator given in eq.(3.3), we obtain

〈

r r′

〉
=

kBT

Ap

∑

q

(−i qx)(i qy) ei q·(r′−r)

σq2 + κq4
. (3.15)

In other words, every slash (resp. dot) contributes to the sum a factor i qx (resp. i qy)
if the propagator enters the vertex to which it is attached and −i qx (resp. −i qy)
otherwise.

From this result, it is easy to show that whenever we have correlation function
of the same kind of the one given in eq.(3.3), we can group slashes and dots using
the following rule: in any propagator branch, one can shift a slash or a dot from one
vertex side to the other if one multiplies the diagram’s coefficient by −1; once all
derivatives are on the same side, the side matters no more. All the derivatives can
be taken at the same point, contributing (i qx) for a slash or (i qy) for a dot, and we
represent them in the center of the propagator:

= (−1) × = (−1) × ∂x∂y [G(r′ − r)] . (3.16)

As a second example, let’s see a typical case of the average of two fields evaluated
at the same point. We have

〈 〉
= = (−1) × ,

= −∂yyG(r) ,

= −kBT

Ap

∑

q

(i qy)
2 ei q·r

σq2 + κq4
. (3.17)

Finally, in section 3.4, we will deal with averages involving four fields. A repre-
sentative example follows, where we have numbered each field to highlight all the
possible complete contractions:

〈

r r′

〉
=

r r′

+ + ,

= + + ,

(3.18)

which one can readily read by noting the equivalence

= × . (3.19)
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3.3 Getting familiar: evaluating 〈f〉 with diagram-

matic tools

From eq.(3.5), we see that to evaluate 〈f〉, one needs to evaluate the average of
some component of the projected stress tensor. These components, introduced in
section 1.5.2, can be written in terms of diagrams as

Σxx = σ +
σ

2
− σ

2
+

κ

2

− κ

2
+ κ + κ , (3.20)

Σyx = − σ − κ − κ

+ κ + κ , (3.21)

Σzx = σ − κ − κ . (3.22)

The average of eq.(3.22) is the simplest one to evaluate: since each term has only
an uneven number of fields, Wick’s theorem imply directly a vanishing average. We
shall evaluate in details the average of Σxx as an example. We have

〈Σxx〉 = σ +
σ

2
− σ

2
+

κ

2

− κ

2
+ κ + κ , (3.23)

where the vertex indicates the point r in which the average is calculated. Note that
the average does not depend on it, given the isotropy of the system. Grouping the
differentiations, we obtain

〈Σxx〉 = σ − σ

2
+

σ

2
+

κ

2

− κ

2
− κ − κ . (3.24)

Now, in the particular case of these diagrams, with only one vertex, we have

=
kBT

Ap

∑

q

(i qy)
2

σq2 + κq4
=

kBT

Ap

∑

q

(i qx)
2

σq2 + κq4
= , (3.25)

=
kBT

Ap

∑

q

(i qy)
4

σq2 + κq4
=

kBT

Ap

∑

q

(i qx)
4

σq2 + κq4
= . (3.26)
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In fact, as the correlation function is calculated at r = r′, it follows that more
generally we can exchange globally slashes and dots in a diagram. Sadly, this nice
property does not hold for the evaluation of the kind of diagram shown in eq.(3.19),
particularly important to evaluate the force fluctuation in the next section. For the
present case, it follows

〈Σxx〉 = σ − σ

2
+

σ

2
+

κ

2

− κ

2
− κ − κ ,

= σ − κ − κ , (3.27)

which reads

〈Σxx〉 = σ − κ kBT

Ap

∑

q

[(i qx)
4 + (i qx)

2(i qy)
2] eiq(r−r′)

σq2 + κq4

∣∣∣∣r=r′ ,

= σ − kBT

2 Ap

∑

q

κ q2

σ + κq2
. (3.28)

As expected, we have recovered τ given in eq.(2.9).

Taking into account the rules introduced in the last section, the average of Σyx

is very simple to evaluate. Grouping the derivatives, we have

〈Σyx〉 = σ − κ − κ − κ − κ ,

= σ − 2κ − 2κ . (3.29)

Let’s evaluate the first diagram:

=
kBT

Ap

∑

q

(i qx)(i qy)

σq2 + κq4
. (3.30)

Recalling that qx = 2πm/
√

Ap and that qy = 2πn/
√

Ap and that the sum over q
stands for two sums, one on m, and other on n, both running from −Nmax up to
Nmax, one can readily show that the contribution of this diagram vanishes. More
generally, for this kind of diagram, a uneven number of slashes or dots imply a
vanishing contribution. So, we conclude that 〈Σyx〉 = 0 and we re-obtain the result
given in eq.(3.6).
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3.4 Evaluation of the projected stress tensor cor-

relation

In this section, we will evaluate the correlation of the stress tensor at two general
points over the projected cut r = x ex + y ey and r′ = x ex + y′ ey. As we discussed
in section 3.2, these calculations will involve mostly diagrams of the general family

. (3.31)

We begin thus by reminding two properties of these diagrams:

1. they may be separated in two components of the form

≡ Gn,m , (3.32)

=
kBT

Ap

∑

q

(i)n+m qn
x qm

y ei (y−y′)qy

σq2 + κq4
,

= kBT (i)n+m

∫
d2q

(2π)2

qn
x qm

y ei (y−y′)qy

σq2 + κq4
,

= (i)n+m kBT

(2π)2

[∫ Λ

0

qn+m−1

σ + κq2

(∫ 2π

0

cosn θ sinn θ ei (y−y′) sin θ dθ

)
dq

]
,

(3.33)

where the two last passages are good approximations for very large membranes.
We remind that Λ is the upper wave-vector cutoff given by 1/a, where a is a
microscopical length of the order of the membrane thickness.

2. the contribution of propagators with an uneven number of slashes – and only
slashes – vanishes. Indeed, one can easily proof this by remarking that the sum
over q is symmetrical. Note that this property would not hold if we didn’t have
x = x′.

3.4.1 Evaluation of Cxx

Let’s begin by calculating

Cxx(y − y′) = 〈Σxx(x, y)Σxx(x, y′)〉 − 〈Σxx〉2 . (3.34)

Here we can finally understand how diagrams can simplify this calculation, since
normally, from eq.(3.20), one should have to evaluate about 7 × 7 terms like those
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shown in eq.(3.18), implying ≈ 150 terms in total. Diagrammatically, however, many
terms vanish and other can be simplified, yielding in the end

Cxx(y − y′) =
σ2

2
+

σ2

2
− σκ

+ σκ − 2σκ − 2σκ

+
κ2

2
+

3 κ2

2
+ 2κ2

+ κ2 + 2κ2 + κ2 .

(3.35)

In terms of the Gn,m defined in eq.(3.32), we obtain

Cxx(y − y′) =
σ2

2

(
G2

2,0 + G2
0,2

)
− σκ

(
G2

2,1 − G2
0,3

)
− 2σκ G2,0 (G4,0 + G2,2)

+
κ2

2

(
G2

0,4 + 3 G2
4,0 + 4 G4,0 G2,2

)
+ κ2 G2,0 (G6,0 + 2 G4,2 + G2,4) .

(3.36)

Considering very large membranes and performing the angular integral in eq.(3.33)
for each Gn,m, eq.(3.36) becomes

Cxx(y − y′) = σ2

[
1

2
B2

21(Y ) − 1

Y
B10(Y ) B21(Y ) +

1

Y 2
B2

10(Y )

]

+ σκ

[
B2

12(Y ) − 2

Y
B12(Y ) B21(Y ) +

2

Y 2
B10(Y ) B12(Y )

]

+ κ2

[
1

2
B2

03(Y ) − 2

Y
B03(Y ) B12(Y ) +

2

Y 2
B2

12(Y )

+
1

Y 2
B10(Y ) B14(Y ) +

3

Y 2
B03(Y ) B21(Y )

]
, (3.37)

where Y = |y − y′| and

Bij(y) = kBT

∫ Λ

0

dq

2π

qj Ji(q y)

σ + κq2
, (3.38)

with Ji standing for the first kind Bessel function of order i. Note that, as expected
given the isotropy of the system, Cxx depends only on the distance between the
points. At this point, it is useful to rewrite eq.(3.38):

Bij(y) =
kBT

κ
Λj−1

∫ 1

0

dq

2π

qj Ji(q Λ y)

r + q2
=

kBT

κ
Λj−1 B̃ij(Λy) , (3.39)

3.4. EVALUATION OF THE PROJECTED STRESS TENSOR CORRELATION 93



CHAPTER 3. FLUCTUATION OF FORCES IN PLANAR MEMBRANES

where B̃ij is dimensionless. To simplify notations, we have omitted the dependence
of B̃ij on r, given by

r =
σ

κΛ2
=

σ

σr
, (3.40)

with σr of the order of the membrane rupture tension. Eq.(3.37) can be rewritten
as

Cxx(y − y′) = 64π2σ2
0

{
r2

[
1

2
B̃2

21(ΛY ) − B̃10(ΛY ) B̃21(ΛY )

ΛY
+

B̃2
10(ΛY )

(ΛY )2

]

+ r

[
B̃2

12(ΛY ) − 2
B̃12(Y ) B̃21(ΛY )

ΛY
+ 2

B̃10(ΛY ) B̃12(ΛY )

(ΛY )2

]

+

[
1

2
B̃2

03(ΛY ) − 2
B̃03(ΛY ) B̃12(ΛY )

ΛY
+ 2

B̃2
12(ΛY )

(ΛY )2

+
B̃10(ΛY ) B̃14(ΛY )

(ΛY )2
+ 3

B̃03(ΛY ) B̃21(ΛY )

(ΛY )2

]}
, (3.41)

where

σ0 =
κΛ2

8πβκ
(3.42)

was already introduced in the last chapter. Note that the terms inside the brackets
are dimensionless and that Cxx depends actually only on σ0, on r and on ΛY ≡
|y − y′|/a.

In Fig.(3.2) we can see Cxx as a function of Y in units of a for different tensions.
These curves were normalized by

Cxx(0) =

(
σ2

0

2

){
3 +

[
1 − 4r + 3r2 ln

(
1 +

1

r

)]
ln

(
1 +

1

r

)}
, (3.43)

which we have obtained analytically from eq.(3.41).
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Figure 3.2: Plot of the correlation of Σxx as a function of the distance in units of the
microscopical length a = Λ−1 (normalized by the auto-correlation given in eq.(3.43)).
The black line stands for r = 1, the dark gray corresponds to r = 10−2 and the light
gray corresponds to r = 10−4. For κ ≈ 25 kBT , it corresponds to σ = 4 × 10−3 N/m,
σ = 4× 10−5 N/m and σ = 4× 10−7 N/m, respectively. The dashed line shows that in any
case, the curves are well approximated by the Gaussian e−(ΛY )2/8.

First of all, we notice that the curves do almost not depend on r – and consequently
on the tension. Accordingly, the decrease of the correlation is dominated by the
bending rigidity, which is not evident, since the 〈Σxx〉 depends strongly on the ten-
sion. Secondly, Cxx decreases relatively fast: about five times the microscopical
length a for any tension. At last, in the following we will need to integrate Cxx. It
will be thus useful to remark that for any tension, it is very well approximated by

Cxx(y − y′) ≃ Cxx(0) e−
Λ2 (y−y′)2

8 . (3.44)

3.4.2 Evaluation of Cyx

Following the same route as in the last section,

Cyx(y − y′) ≡ 〈Σyx(x, y) Σyx(x, y′)〉 (3.45)

can be written in terms of diagrams as
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Cyx(y − y′) = σ2 − 2σκ − 2σκ

+ 2σκ + 2σκ − 2κ2

− 2κ2 − 2κ2 − 2κ2

+ κ2 + 2κ2 + κ2

+ κ2 + 2κ2 + κ2 ,

(3.46)

which reads

Cyx(y − y′) = σ2 G0,2 G2,0 + 2σκ [G2,1 (G2,1 + G0,3) − G0,2 (G4,0 + G2,2)]

− 2 κ2 (G2,1 + G0,3) (G4,1 + G2,3) + κ2 G2,2 (G4,0 + 2 G2,2 + G0,4)

+ κ2 G0,2 (G6,0 + 2 G4,2 + G2,4) .

(3.47)

In the thermodynamical limit, we obtain

Cyx(y − y′) = 64π2σ2
0

{
r2

[
B̃2

10(ΛY )

(ΛY )2
− B̃10(ΛY ) B̃21(ΛY )

ΛY

]
+ 2r

B̃10(ΛY ) B̃12(ΛY )

(ΛY )2

+

[
2

B̃12(ΛY ) B̃23(ΛY )

ΛY
− B̃03(ΛY ) B̃32(ΛY )

ΛY
− B̃21(ΛY ) B̃14(ΛY )

ΛY

+
B̃03(ΛY ) B̃21(ΛY )

(ΛY )2
+

B̃10(ΛY ) B̃14(ΛY )

(ΛY )2

]}
, (3.48)

where Y = |y − y′| and B̃ij is defined in eq.(3.39).

At last, we show in Fig. 3.3 the behavior of Cyx normalized by the auto-correlation

Cyx(0) =

(
σ2

0

2

){
1 +

[
1 + r2 ln

(
1 +

1

r

)]
ln

(
1 +

1

r

)}
, (3.49)

obtained analytically from eq.(3.48).
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Figure 3.3: Plot of the normalized correlation of the transverse component of the stress
tensor for different values of r as a function of the distance in units of Λ−1. The black
line corresponds to r = 1, dark gray corresponds to r = 10−2 and light gray corresponds
to r = 10−4. For κ ≈ 25 kBT , it corresponds to σ = 4× 10−3 N/m, σ = 4× 10−5 N/m and
σ = 4 × 10−7 N/m, respectively. The dashed line shows a rough Gaussian approximation.

The correlation Cyx is very similar to Cxx, sharing with it three features:

1. as before, Cyx normalized by the auto-correlation depends only weakly on the
tension, specially in the regime of low tensions. The shape of the correlation
is dominated by the bending rigidity;

2. Cyx relaxes over approximately five times the microscopical length a;

3. the same approximation

Cyx(y − y′) ≃ Cyx(0) e−
Λ2(y−y′)2

8 (3.50)

holds, although it is less good.

3.4.3 Evaluation of Czx

The correlation of the normal component

Czx(y − y′) = 〈Σzx(x, y) Σzx(x, y′)〉 (3.51)

is the simplest one to evaluate. Diagrammatically, we have

Czx(y − y′) = − σ2 + 2σκ + 2σκ

− κ2 − 2κ2 − κ2 ,

= −σ2 G2,0 + 2σκ (G4,0 + G2,2) − κ2 (G6,0 + 2G4,2 + G2,4) .

(3.52)
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This time, in the thermodynamical limit, one can integrate Czx not only over the
angular coordinate, but also over q, obtaining

Czx(y − y′) = 32πβκ σ2
0

{
r [1 − J0(ΛY )] + J2(ΛY )

(ΛY )2

}
, (3.53)

and accordingly

Czx(0) = 8πβκ

(
σ2

0

2

)
(1 + 2 r) . (3.54)

As we can see in Fig. 3.4, Czx normalized by Czx(0) has roughly the same be
features of the former correlations: it does almost not depend on the tension and
it becomes negligible for distances bigger than ≈ 5 a. This time, however, as Czx is
very simple, directly given by an analytical function.

2 4 6 8 10
yL
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0.6

0.8

1.0
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Figure 3.4: Plot of the normalized correlation of the normal component of the stress
tensor for different r as a function of Λy. As before, the black line corresponds to r = 1,
dark gray corresponds to r = 10−2 and light gray corresponds to r = 10−4 (superposed).

3.4.4 Summing-up

Here we sum-up some important results obtained in this section. First, the three
correlations normalized by it’s value at y = y′ share the following features:

1. the normalized correlation depends only weakly on the tension;

2. they present roughly a Gaussian behavior. Moreover, Cxx and Cyx are well
approximated by

Cxx(y − y′)

Cxx(0)
=

Cyx(y − y′)

Cyx(0)
= e−

Λ2(y−y′)2

8 , (3.55)

where Λ−1 = a is the smallest wave-length cut-off;
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3. the correlation is negligible for distances larger than 5 a, which is really small,
considering a ≈ 5 nm.

Finally, as the dependence on the tension happens mainly through the correlation
at y = y′, it is interesting to plot Cxx(0), Cyx(0) and Czx(0), given in eq.(3.43),
eq.(3.49) and eq.(3.54), respectively, as a function of the tension (see Fig. 3.5). Two
important features of these curves will be reflected in the force fluctuation:

1. first, in the three cases, the dependence on the tension is not accentuated,
implying that one could actually simply neglect from start every diagram pro-
portional to σ2 and σκ in the last sections;

2. secondly, the correlation of the component of the stress tensor normal to the
membrane Czx is far bigger than the two other contributions, which are com-
parable among them.

Figure 3.5: Plot of Cxx(0) (blue dashed line), Cyx(0) (red solid line) and Czx(0) (yellow
dotted line) in units of σ0 as a function of r = σ/σr. For the plot of Czx(0), we have
chosen 8πβκ = 500 as a typical value.

3.5 Fluctuation of the force

To obtain square of the force fluctuation in each direction, defined in eqs.(3.8)–
(3.10), we must integrate the correlation function twice over the cut’s length:

(∆fx)
2 =

∫∫ L/2

−L/2

Cxx(y − y′) dydy′ , (3.56)

(∆fy)
2 =

∫∫ L/2

−L/2

Cyx(y − y′) dydy′ , (3.57)

(∆fz)
2 =

∫∫ L/2

−L/2

Czx(y − y′) dydy′ . (3.58)

3.5. FLUCTUATION OF THE FORCE 99



CHAPTER 3. FLUCTUATION OF FORCES IN PLANAR MEMBRANES

In the last section, we have seen that the correlations decrease very quickly, with
a characteristic length of about ℓ = 5 a ≈ 25 nm. Recalling that L is the length
of the projected cut, it is reasonable thus to assume L ≫ ℓ. In Fig. 3.6, we can
see a graphical representation of the integrals of eqs.(3.56)–(3.58) for the case where
L ≫ ℓ.

Figure 3.6: To obtain the square of the force fluctuation in each direction, one has to
integrate the correlation function, here represented in purple, from −L/2 to L/2 at each
point of the cut (domain shown by the blue dashed horizontal line and by the solid red
line) and then sum all the contributions over the black line. As the correlation function
decreases quickly compared to the length of the cut, remark that the final result would
change only minimally if the colored lines where far lengthier.

In Fig. 3.6, we see that for L ≫ ℓ, eqs.(3.56)–(3.58) can be well approximated by

(∆fx)
2 ≃ L

∫ ∞

−∞
Cxx(y) dy , (3.59)

(∆fy)
2 ≃ L

∫ ∞

−∞
Cyx(y) dy , (3.60)

(∆fz)
2 ≃ L

∫ ∞

−∞
Czx(y) dy . (3.61)

For the two first cases, it is not possible to obtain an analytical equation from the
exact expression of the correlation (eq.(3.37) and eq.(3.48)). We will thus use the
Gaussian approximation given in eq.(3.55), yielding

(∆fx)
2 ≃

√
8π

L

Λ
Cxx(0)

≃
√

8π
L

Λ

(
σ2

0

2

){
3 +

[
1 − 4r + 3r2 ln

(
1 +

1

r

)]
ln

(
1 +

1

r

)}
,

(3.62)

(∆fy)
2 ≃

√
8π

L

Λ
Cyx(0)

≃
√

8π
L

Λ

(
σ2

0

2

){
1 +

[
1 + r2 ln

(
1 +

1

r

)]
ln

(
1 +

1

r

)}
,

(3.63)

(∆fz)
2 ≃ 128πβκ

3

L

Λ

(
σ2

0

2

)
(1 + 3r) . (3.64)
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Not surprisingly, the dependence of the force fluctuation per unit length in terms of
the tension shown in Fig. 3.7 is very similar to the trend shown in Fig. 3.5.

Figure 3.7: Plot of ∆fx (blue dashed line), ∆fy (red solid line) and ∆fz (black dotted
line) in units of σ0

√
L/Λ as a function of r = σ/σr. In the plot of ∆fz, we have chosen

8πβκ = 500 as a typical value. Note that the ∆fz is much intenser – the yellow curve
corresponds to the actual values divided by ten. The shaded green area indicates the
region where the effects of stretching, which we have neglected, should be important.

Essentially, with Λ−1 = a, we can say that

∆fx ≈ ∆fy ∝
√

L

a

kBT

a
(3.65)

and

∆fz ∝
√

L

a

√
kBT κ

a2
. (3.66)

In both cases, the dependence on L/a can be understood by remembering that the
correlations of the projected stress tensor decreases over a characteristic length of ap-
proximately 5 a for any component. For a cut of length L, we have thus roughly L/a
uncorrelated patches of membrane, which with the Central Limit Theorem explains
the factor

√
L/a. Numerically, each patch contributes approximately kBT/a ∼

(4 × 10−21)/(5 × 10−9) N ∼ 1 pN for the transverse and parallel components of the
force fluctuation and

√
kBT κ/a2 ∼

√
(4 × 10−21 × 10−19)/(5 × 10−9)2 N ∼ 4 pN for

the normal component of the fluctuation.

A remarkable point is the fact that both the transverse ∆fx and the parallel
∆fy components of the fluctuation depend only on the temperature and on the
microscopical cutoff a, regardless of the rigidity or tension of the membrane.
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3.6 In a nutshell

In this chapter, we have evaluated for the first time the fluctuation of the force
exchanged through a cut of projected length L in a planar membrane. To do so,
we have introduced some diagrammatic tools useful in the following chapters. The
calculation was done in two steps: first, we have evaluated the correlation of some
elements of the projected stress tensor and after we have integrated them over the
cut. These correlations present some interesting features: their shape do almost
not depend on the tension and they decrease very quickly, becoming negligible for
distances larger than 5 a ≈ 25 nm, with a of the order of the membrane thickness.
For the fluctuation of the force component transverse to the cut, ∆fx, and parallel
to it, ∆fy, we have obtained the same scaling behavior

∆fx ≈ ∆fy ∝
√

L

a

kBT

a
, (3.67)

whereas for the component perpendicular to the membrane, ∆fz , we have obtained

∆fz ∝
√

L

a

kBT

a

√
kBT

κ
. (3.68)

These equations hold up to a numerical factor of the order of the unity that depends
very weakly on the tension. Interestingly, the scaling law for ∆fx and ∆fy depends
neither on the bending rigidity.
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Chapter 4

Quasi-spherical vesicles

In chapter 1, we have seen that vesicles are widely used in experiments, since
they are easy to assemble and to manipulate. Vesicles are used both in micropipette
and adhesion experiments, in which one increases the mechanical tension τ by flat-
tening the membrane’s fluctuations and in contour analysis experiments, in which
one measures r, the large-scale counterpart of the tension σ, through the fluctua-
tion spectrum. In the chapter 2, we have derived τ as a function of σ for planar
membranes, obtaining

τ = σ − σ0

[
1 − σ

σr

ln
(
1 +

σr

σ

)]
(4.1)

in the limit of large membranes. In this equation, σr = κΛ2 is a tension of the
order of the rupture tension, Λ = 1/a, where a is a microscopical cut-off of the order
of the membrane thickness and σ0 = σr/(8πβκ). This relation reduces simply to
τ ≃ σ − σ0 for membranes under small tensions (σ < 10−2 σr). We do not know,
however, if eq.(4.1) still holds for vesicles since they have a different geometry and
they present a supplementary volume constraint.

In this chapter, we shall thus calculate τ from the projected stress tensor for
the case of quasi-spherical vesicles. We shall examine both the usual case of a
closed vesicle whose volume is constrained and the case of poked vesicles. We call
poked vesicles those vesicles that are free to exchange liquid with the outer media.
Experimentally, it can be achieved by embedding special proteins in the membrane
or by making holes in it with a micropipette. They can however keep a pressure
difference with the outer media if the inner/outer fluid contains molecules bigger
than the holes, so they can not transit across the membrane.

In particular, we will address the following interesting questions, the first three
having experimental implications while the last question deals with a more theoret-
ical issue:

1. What is the difference between τ for a quasi-spherical vesicle (closed or poked)
and τ for a planar membrane? Is there a characteristic radius over which they
coincide, in which case one can simply consider the relation given in eq.(4.1)?

2. How does the volume constraint affect the expression for τ?
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3. Can τ be negative, in which case the inner pressure of the vesicle would be
smaller than the outer?

4. Can τ be obtained by differentiating the free-energy with respect to the pro-
jected area? If so, what does projected area mean in the case of a vesicle?

Usually, as discussed in chapter 1, one should use the ADE-model Hamiltonian.
We will however use the simpler Helfrich Hamiltonian, introduced in section 4.1.
There, this choice will be justified. Following the same reasoning as in section 1.5.2,
we derive the projected stress tensor for a quasi-spherical geometry in section 4.2.
In section 4.3.1 we present some averages and correlations for the case of closed
vesicles, which are used in section 4.3.2 to evaluate τclosed. The results of the last
two sections are easily transposed to the case of poked vesicles in section 4.4, where
we obtain τpoked.

Finally, we discuss the first three questions in section 4.5. We show that it
is justified to use the relation given in eq.(4.1) for quasi-spherical vesicles, closed
or poked, with a radius bigger than 1 µm. Besides, the volume constraint seems
to be unimportant for the dependence of τ on σ. Experimentally, however, σ is
not measurable. With vesicles, the true control parameter is the area excess, which
depends considerably more on the volume constraint. We expect thus some difference
between closed and poked vesicles, specially in the case of small vesicles. Lastly, we
show that negative values of τ are expected well before the transition to oblate shapes
in both cases, implying that vesicles may support an internal pressure smaller than
the outer.

At last, in section 4.6 we shall address the more theoretical question of recovering
τ for closed and poked vesicles by differentiating the free-energy. Differently for the
case of planar membranes, the sense of the term projected area for a vesicle is not
clear: it can refer to the area of a sphere with the average radius or the area of a
sphere of volume V , for instance. In this section, we shall see that indeed the term
is not well-defined, since it corresponds to different area depending on whether the
vesicle is closed or not.

All calculations and discussions presented here were done with the collaboration
of Jean-Baptiste Fournier and Alberto Imparato. The main results can be found in
ref. [5].

4.1 Parametrization and effective Hamiltonian

We consider a quasi-spherical vesicle whose area A and volume V are fixed (for
closed vesicles). Its shape is parametrized by

r = R [1 + u (θ, φ)] er , (4.2)

where u ≪ 1 (see Fig. 4.1). For closed vesicles, as in Seifert’s work [60], we choose

the sphere of volume V as the reference sphere, so that R =
(

3
4
V/π

)1/3
. Indeed, in

experiments, one can control V by lowering the ion concentration of the outer media
of the vesicle, so it inflates at its maximum. Equivalently, using a micropipette,
one can apply a large pressure difference through the membrane. In both cases, the
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excess area is negligible and thus from the optically resolvable shape, one deduces
V . In the case of poked vesicles, as there are no volume constraints, one cannot
control V . Instead, one can measure the average radius of the vesicle and deduce
the average volume of the vesicle. In this case, we choose thus simply the average
vesicle’s shape as the reference sphere, so that 〈u(θ, φ)〉 = 0.

Figure 4.1: Parametrization in spherical coordinates of a vesicle (bold line) fluctuating
around a reference sphere (dashed line). The inset shows the force exchanged through a
cut that separates region 1 and region 2.

The area constraint reads

A =

∫

S

dA , (4.3)

with

dA = |∂θr × ∂φr| dθdφ , (4.4)

where ∂θr ≡ ∂r/∂θ, ∂φr ≡ ∂r/∂φ, yielding, in terms of u

A = R2

∫ π

0

dθ

∫ 2π

0

dφ [1 + u(θ, φ)]
√

[1 + u(θ, φ)]2 sin2 θ + u2
φ + u2

θ sin2 θ . (4.5)

Here and throughout this section, ui ≡ ∂u/∂i, uij ≡ ∂2u/∂i∂j, where i, j ∈ {θ, φ}.
Latin indices will denote either θ or φ, not r. The volume constraint, important for
closed vesicles, reads

V =
1

3
R3

∫ π

0

dθ

∫ 2π

0

dφ [1 + u(θ, φ)]3 sin θ . (4.6)

As we have seen in section 1.3, the energy of a vesicle is best described by the
area-difference elasticity (ADE) model. Seifert [60] has however shown that in the
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quasi-spherical limit, the ADE Hamiltonian was equivalent to the minimal Helfrich
model, i. e., the spontaneous curvature (SC) model with vanishing spontaneous
curvature. Hence, we adopt the latter, which corresponds to an effective Hamiltonian

H =

∫

S

2κH2 dA , (4.7)

supplemented by the area and (if necessary) volume constraints given in eqs.(4.5)–
(4.6). While the volume constraint is quite easy to implement, it is difficult to handle
the surface constraint exactly [60]. We shall therefore use the traditional approach,
namely introducing a Lagrange multiplier σ playing the role of a tension in order
to take into account the area constraint. Again, as discussed by Seifert [60], this
approach gives correct results in the small excess area limit, in which we shall place
ourselves in the following. The effective Hamiltonian thus reads

H =

∫

S

(
2κH2 + σ

)
dA , (4.8)

with the additional constraint given by eq.(4.6) for closed vesicles.
From differential geometry, dA is given by eq.(4.4) and

H =
2bB − cA − aC

AC − B2
, (4.9)

with A = (∂θr)2, B = (∂θr) · (∂φr), C = (∂φr)2, a = n · ∂2
θr, b = n · ∂θ∂φr,

c = n · ∂2
φr, n = (∂θr× ∂φr)/|∂θr× ∂φr| being the normal to the surface. Up to the

second order on u(θ, φ), we have thus

H =

∫

S

h (u, {ui}, {uij}) dθdφ , (4.10)

with [110] [111]

h = (2κ + R2σ) sin θ

+ 2 sin θ
[
R2σu − κ

(
uφφ csc2 θ + uθ cot θ + uθθ

)]

+
1

2
sin θ

[
2R2σu2 + (2κ + R2σ)(u2

θ + u2
φ csc2 θ)

+ κ
(
uθ cot θ + uφφ csc2 θ

)2
+ κ uθθ (uθθ + 4u)

+ 2κ (uθθ + 2u)
(
uθ cot θ + uφφ csc2 θ

)]
+ O(u3) . (4.11)

4.2 Derivation of the stress tensor for a quasi-

spherical geometry

Let us consider an infinitesimal cut at constant longitude (φ constant) separating
a region 1 from a region 2 (see Fig. 4.1). The normal to the projection of this cut
onto the reference sphere is m = eφ. Analogously to the case of planar membranes
presented in section 1.5.2, the projected stress tensor Σ in spherical geometry relates
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by definition linearly the force dF that region 1 exerts on region 2 to the angular
length ds = dθ of the projection of the cut onto the reference sphere:

dF = Σ · m ds ,

= (Σθφ eθ + Σφφ eφ + Σrφ er) dθ . (4.12)

Likewise, for a cut at constant latitude (θ constant), with m = eθ and ds = dφ,
we have

dF = Σ · m dφ ,

= (Σθθ eθ + Σφθ eφ + Σrθ er) dφ . (4.13)

For an oblique cut, dF is obtained by decomposing m along eθ and eφ.
The derivation of the projected stress tensor in spherical geometry follows the

same route as for planar geometry (section 1.5.2). We consider a patch of membrane
delimited by a closed curve, corresponding to a domain Ω on the reference sphere
enclosed by the curve ∂Ω. The membrane within the patch is assumed to be de-
formed, at equilibrium, by means of a distribution of surface and boundary forces
(and a distribution of boundary torques). To each point of this patch, we impose an
arbitrary displacement δa = δar er + δaθ eθ + δaφ eφ that keeps the orientation of
the membrane’s normal n constant along the boundary, so that the torques produce
no work (see Fig. 4.2).

Figure 4.2: On the left we see a patch of quasi-spherical membrane before (shaded shape)
and after (dashed red shape) the displacement δa. At right, we show the same displacement
in the (θ, φ, r) space. From this drawing, it is easier to see the relation between δa, δu, δθ
and δφ.

4.2. DERIVATION OF THE STRESS TENSOR FOR A QUASI-SPHERICAL
GEOMETRY

109



CHAPTER 4. QUASI-SPHERICAL VESICLES

On the one hand, the boundary energy variation, after integration by parts, reads

δH =

∫

∂Ω

mi

[
h δi +

(
∂h

∂ui
− ∂i

∂h

∂uij

)
δu +

∂h

∂uij
δuj

]
ds , (4.14)

where ds is the arc-length in the (θ, φ) space, h is given by eq.(4.11), m is the normal
to ∂Ω, and δi ∈ {δθ, δφ} corresponds to the variation of ∂Ω. On the other hand, the
work of the force exerted through the boundary reads

δH =

∫

∂Ω

δa · Σ · m ds . (4.15)

By comparing eqs.(4.14) and (4.15), one can obtain Σ. Accordingly, one has to
derive δθ, δφ, δu, δuθ and δuφ in terms of δa. The first three can be obtained by
identifying the new membrane’s shape ũ = u + δu with the translation of the old
one: R[1+ ũ(θ + δθ, φ+ δφ)] er(θ + δθ, φ+ δφ) = R[1+u(θ, φ)] er + δa (see Fig. 4.2).
This leads to

δar = R (uθ δθ + uφ δφ + δu) , (4.16)

δaθ = R (1 + u) δθ , (4.17)

δaφ = R (1 + u) sin θ δφ . (4.18)

Let δn = ñ(θ + δθ, φ + δφ) − n(θ, φ) be the variation of the normal, where ñ is
the normal to the shape defined by ũ(θ, φ) and n = tθ × tφ/|tθ × tφ|, with ti = ∂ir.
The variation of the normal vanishes (implying no work of the torques) if δn · tθ = 0
and δn · tφ = 0 over the border, yielding

δuθ =
1

1 + u

{
δθ
[
(1 + u)2 + 2u2

θ − (1 + u) uθθ

]

+
δφ

sin θ
[(1 + u) uφ cos θ − (1 + u) uθφ sin θ

+ 2uφuθ sin θ] + δu uθ

}
,

(4.19)

δuφ =
1

1 + u

{
δθ [(1 + u) uφ cot θ + 2uθuφ

− (1 + u) uθφ] + δφ
[
(1 + u)2 sin2 θ + 2u2

φ

− (1 + u)(uθ cos θ sin θ + uφφ)] + δu uφ

}
. (4.20)

These equations, combined with eqs.(4.16)-(4.18), allow us to write δuθ and δuφ

in terms of δa. Up to order u2, we obtain
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δθ =
δaθ

R
(1 − u + u2) , (4.21)

δφ =
δaφ

R sin θ
(1 − u + u2) , (4.22)

δu =
1

R
[δar − (1 − u) (δaφuφ csc θ + δaθuθ)] , (4.23)

δuθ =
1

R

{
δar (1 − u) uθ + δaθ

[
1 + u2

θ − (1 − u) uθθ

]

+ δaφ csc θ
[
uφ[(1 − u) cot θ + uθ] − (1 − u) uθφ

]}
,

(4.24)

δuφ =
1

R

{
δaθ

[
uφ [(1 − u) cot θ + uθ] − (1 − u) uθφ

]

+ δar (1 − u) uφ + δaφ csc θ
[
sin2 θ + u2

φ

− (1 − u) (uφφ + uθ cos θ sin θ)
]}

. (4.25)

These expressions are to be inserted into eq.(4.14). Note that it is necessary to
expand h up to O(u3) in order to obtain ∂h/∂ui and ∂h/∂uij consistently at O(u2)
in eq.(4.14). This means adding

h3 = −κ sin θ
{
4 csc4 θ uφ uθ uθφ + 2u2

θ uθθ

− 2u2
φ csc2 θ

(
uφφ csc2 θ − uθ cot θ

)

+ u
[
u2

θθ + u2
θ

(
2 + cot2 θ

)
+ 2 u2

φ csc2 θ + u2
φφ csc4 θ

+ 2 uθ uθθ cot θ + 2 uθ uφφ csc2 θ cot θ + 2 uθθ uφφ csc2 θ
]

+ 2u2
(
uθθ + uθ cot θ + uφφ csc2 θ

) }
(4.26)

to eq.(4.11) before calculating the derivatives. Finally, comparing eq.(4.14) and
eq.(4.15), we obtain

Σθθ =
1

2R

{
R2σ sin θ

(
2 + 2u + u2

φ csc2 θ − u2
θ

)

+κ
[
u2

φφ csc3 θ − u2
θθ sin θ + 2uθ (uθφφ csc θ + uθθθ sin θ)

]

+κ csc θ
[
2u2

φ − u2
θ cos2 θ − 2uφφ (1 + uθ cot θ) + 4u

(
uφφ − uθθ sin2 θ

)]

+2κ
[
uθθ (sin θ + uθ cos θ) + (2u − 1) uθ cos θ

]}
,

(4.27)

Σφθ = −Rσuθuφ +
κ

R
(2uθφ − uφ cot θ) +

κ

R

(
4u uφ cot θ − uφ uφφ cot θ csc2 θ

+ uθuφ − 4u uθφ − uφφ uθφ csc2 θ − uθ uθφ cot θ + uφ uθφφ csc2 θ

+ 2uφ uθθ cot θ − uθφ uθθ + uφ uθθθ

)
, (4.28)
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Σrθ = Rσ sin θ uθ −
κ

R

[
(1 − 2u) uθ (2 sin θ − csc θ) + uθθ cos θ − 2uφφ cot θ csc θ

+ uθφφ csc θ + uθθθ sin θ
]
− κ

R

[
2u2

φ cot θ csc θ − u2
θ cos θ + 4u uφφ cot θ csc θ

− 2u uθθ cos θ − 2u uθφφ csc θ − 2u uθθθ sin θ + uφφ uθ csc θ − 3uθ uθθ sin θ
]
,

(4.29)

Σφφ =
1

2R

{
R2σ

(
2 + 2u − u2

φ csc2 θ + u2
θ

)

+ κ
[
− u2

φφ csc4 θ + u2
θθ + 2uφ csc2 θ

(
uφφφ csc2 θ + uθθφ

)]

+ κ csc2 θ
[
2u2

φ + u2
θ

(
3 sin2 θ − 1

)
+ 2uφφ (1 − uθ cot θ − 2u)

]

+ 2κ(1 − 2u)uθ cot θ − 2κ(1 − 2u)uθθ + 2κuφ uθφ csc2 θ cot θ
}

,

(4.30)

Σθφ = −Rσ csc θ uθuφ +
κ csc θ

R

[
(uφ cot θ − uθφ)

(
−2 + 4u + uθθ + uφφ csc2 θ

)

+ uθuφ

(
1 + csc2 θ

)
+ uθ

(
uφφφ csc2 θ + uθθφ

) ]
,

(4.31)

Σrφ =
csc θ

R

[
uφ

(
R2σ − 2κ + 4κu + 3uφφ csc2 θ + 3uθ cot θ − uθθ

)

− κ(1 − 2u)
(
uθφ cot θ + uθθφ + uφφφ csc2 θ

) ]
.

(4.32)

These expressions are valid up to O(u2). A verification of these results is pre-
sented in appendix E.

4.3 Closed vesicles

In this section we shall derive the effective tension for closed vesicles, τclosed,
using the stress tensor and the free-energy. As these results are readily transposable
to the case of poked vesicles, we shall present here a more detailed account of our
derivations.

4.3.1 Thermal averages and correlations for closed vesicles

In order to calculate the effective tension, we will see in section 4.3.2 that we
need to evaluate the thermal average of Σθθ. To this aim, we do the standard
decomposition of u(θ, φ) in spherical harmonics [60] [110] [111]

u(θ, φ) =
u0,0√
4π

+
∑

ω

ul,mY m
l (θ, φ) , (4.33)
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with ul,−m = (−1)mu∗
l,m and

∑

ω

=

L∑

l=2

l∑

m=−l

, (4.34)

where L is a high wave-vector cutoff (see discussion on the following). Note that the
modes l = 1, which correspond to simple translations, are discarded.

In terms of ul,m and up to order u2, eq.(4.5) and eq.(4.6) take the form, respec-
tively,

A = R2

{
4π

(
1 +

u0,0√
4π

)2

+
∑

ω

[
1 +

l(l + 1)

2

]
|ul,m|2

}
(4.35)

and

V = R3

[
4π

3

(
1 +

u0,0√
4π

)3

+
∑

ω

|ul,m|2
]

. (4.36)

The volume constraint V = 4
3
πR3 (recall the definition of R for closed vesicles)

implies therefore [60]

u0,0 = − 1√
4π

∑

ω

|ul,m|2 . (4.37)

With the help of the relation

cot θ
∂Y m

l

∂θ
+ csc2 θ

∂2Y m
l

∂φ2
= −∂2Y m

l

∂θ2
− l(l + 1)Y m

l , (4.38)

using eq.(4.37) and integrating over θ and φ, the Hamiltonian for closed vesicles in
terms of ul,m is given by [60]

Hclosed = 4πR2σ +
1

2

∑

ω

H̃l |ul,m|2 + O(u3) , (4.39)

where

H̃l = κ (l − 1) (l + 2)
(
l2 + l + σ̄

)
. (4.40)

Here

σ̄ =
σ

κ/R2
(4.41)

is the reduced tension. Note that we have discarded in Hclosed a constant energy
term, 8πκ.

We emphasize that negative values of σ̄ are allowed [60]. Indeed, the minimum
of the Hamiltonian Hclosed given in eq.(4.39) corresponds for σ̄ > −6 to a perfectly
spherical vesicle (ul,m = 0, ∀ l ≥ 2). The mean-field transition to an oblate shape
occurs thus at σ̄ = −6 (non harmonic terms being then needed to stabilize the
system).
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Standard statistical mechanics yields 〈ul,m〉 = 0, ∀ l 6= 0 and

〈ul,mul′,m′〉 = (−1)mkBT

H̃l

δl,l′ δm,−m′ , (4.42)

where kBT is the temperature in energy units.
We may now calculate the fluctuation amplitudes. Using eq.(4.42) and the Ad-

dition Theorem for spherical harmonics:

l∑

m=−l

Y m
l (θ, φ)Y m

l
∗(θ, φ) =

2l + 1

4π
, (4.43)

we obtain

〈u〉 =
〈u0,0〉√

4π
= − 1

4π

∑

ω

〈|ul,m|2〉

= −kBT

4π

L∑

l=2

2l + 1

H̃l

(4.44)

〈u2〉 =
∑

ω

∑

ω′

Y m
l (θ, φ)Y m′

l′ (θ, φ)〈ul,mul′,m′〉

=
∑

ω

kBT

H̃l

Y m
l (θ, φ)Y m

l
∗(θ, φ)

=
kBT

4π

L∑

l=2

2l + 1

H̃l

= −〈u〉 , (4.45)

〈u2
φ〉 = sin2 θ

kBT

4π

L∑

l=2

l(l + 1)(2l + 1)

2H̃l

, (4.46)

〈u2
θ〉 =

kBT

4π

L∑

l=2

l(l + 1)(2l + 1)

2H̃l

, (4.47)

The correlations of the other derivatives of u are given in appendix F. Note that
〈u〉 is negative and that 〈u〉 = −〈u2〉, which shows how the temperature-dependent
fluctuations affect the mean shape.

Cutoff

The large wavenumber cutoff L should be related to the smallest wave vector
allowed, Λ ≈ a−1, where a is a length comparable to the membrane thickness (i.e.,
π/Λ of the order of a few times a). With spherical harmonics, however, this is not
easy to implement. The requirement that we should recover the planar limit for
large values of R will guide us.

For a square patch of fluctuating flat membrane with reference area Ap and
periodic boundary conditions, the wave vectors are quantified according to q =
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2π/
√

Ap (nx, ny), where nx and ny are integers and |q| < Λ. The number of modes

is then approximately πΛ2/(2π/
√

Ap)
2 and the number of modes per unit area is

Nmodes

Ap
≈ Λ2

4π
. (4.48)

For a vesicle, we have

Nmodes

Ap
=

1

4πR2

L∑

l=2

(2l + 1) =
(L − 1)(L − 3)

4πR2
. (4.49)

Asking that the number of degrees of freedom per unit area (per lipid, in some sense)
be the same in both cases, we require these two quantities to be equal. Hence we
get

(L + 3)(L − 1) = Λ2R2 , (4.50)

which gives L = ⌊
√

4 + R2Λ2−1⌋ (⌊x⌋ is the integer part of x). In the limit R ≫ Λ−1,
this gives simply L ≃ ΛR.

Validity of the Gaussian approximation

Since our calculations are limited to O(u2), we should check, in principle, that
higher order terms are negligible. In practice this not feasible. To check the smallness
of u (which is especially critical in the case σ ≤ 0) we propose a necessary, but not
sufficient condition, requiring:

〈u2〉 =
kBT

4π

L∑

l=2

2l + 1

H̃l

=
kBT

4πκ

L∑

l=2

2l + 1

(l + 2)(l − 1)(l2 + l + σ̄)
≤ U2

max . (4.51)

In the following, we shall take

Umax = 5 % . (4.52)

Note that the presence of the factor (l2 + l + σ̄) in the denominator of eq.(4.51),
together with the condition l ≥ 2, implies σ̄ ∈ [−6,∞[, as already discussed.

Solving condition (4.51) for the typical values Λ−1 ≃ 5 nm, κ = 25 kBT , and
taking Umax = 0.05, we find

σ̄ ≥ σ̄min ≈ −4 , (4.53)

almost independently of R. It follows that for closed vesicles, negative tensions σ
are in fact within the validity range of our Gaussian approximation. However, a
negative σ does not imply, in principle, negative effective tensions τ .

In experiments, the actual control parameter is the excess area

α =
〈A〉 − Ap

Ap
. (4.54)

4.3. CLOSED VESICLES 115



CHAPTER 4. QUASI-SPHERICAL VESICLES

The average of eq.(4.35) for closed vesicles up to order two yields

〈A〉 = R2

{
4π + 8π

〈u0,0〉√
4π

+
∑

ω

[
1 +

l (l + 1)

2

]
〈|ul,m|2〉

}
, (4.55)

= 4πR2 +
kBT R2

2

∑

ω

(l + 2)(l − 1)

H̃l

. (4.56)

Consequently, taking Ap = 4πR2 (the area of the vesicle with volume V ), one obtains

αclosed =
kBT

8πκ

L∑

l=2

2l + 1

l2 + l + σ̄
. (4.57)

Our validity condition (4.53) implies αclosed ≤ αmax (αmax corresponding to α for
σ̄ = − 4), with αmax shown in Fig. 4.3. One can see that αmax ≈ c1 + c2 lnR, where
c1 and c2 are constants. Indeed, the sum in eq.(4.57) is dominated by the modes
l = 2 and l = 3, the rest of the sum being well approximated for σ̄ = O(1) by an
integral proportional to ln(R). Note that if one takes Ap = 4πR2(1+ 〈u〉)2 (the area
associated to the average radius) one obtains αmax just slightly bigger (see Fig. 4.3).

Figure 4.3: The solid line represents the maximum excess area corresponding to
√

〈u2〉 =
0.05 for closed vesicles taking Ap the area of the sphere of volume V , which we take as the
validity criterion of our Gaussian approximation. The dashed line shows the maximum
excess area for closed vesicles taking Ap the area associated to the average radius. In
abscissa is the vesicle’s radius. Here, Λ−1 ≃ 5 nm and κ = 25 kBT .

4.3.2 Evaluation of τclosed from the projected stress tensor

Imagine replacing the fluctuating vesicle by a shell coinciding with its average
shape (see Fig. 4.4(a)).
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(a) The vesicle fluc-
tuates around the av-
erage shaded spherical
shell. The dashed line
represents the reference
sphere. Note that 〈u〉 is
negative.

(b) Force exchanged
through an infinitesimal
cut at θ constant. The
length of the projected cut
is R sin θdφ, while the true
length of the membrane is
indicated in red.

Figure 4.4: The vesicle is represented by a solid thick line, while the reference sphere is
represented in with a dashed line.

The effective tension τ is the average force per unit length that is exchanged
tangentially to the shell’s surface. Because of the spherical symmetry, τ depends
neither on the point (θ, φ) nor in the direction in which it is calculated. Let us thus
consider an infinitesimal cut with θ constant of extension dφ. The component along
eθ of the force exchanged through the cut is on average df = 〈Σθθ dφ〉. The length
of the cut is on average 〈R(1 + u) sin θ dφ〉. Hence,

τ =
〈Σθθ〉

R sin θ(1 + 〈u〉) . (4.58)

Since Σθθ = σR sin θ + O(u), we obtain equivalently

τ =
1

R sin θ
〈Σθθ〉 − σ〈u〉 + O(u3) . (4.59)

Using eq.(4.27), the results presented in section 4.3.1 and in appendix F, we obtain
for closed vesicles

τclosed = σ − kBTκ

8πR2

L∑

l=2

(l + 2)(l + 1)l(l − 1)(2l + 1)

H̃l

, (4.60)

= σ − kBT

8πR2

L∑

l=2

l(l + 1)(2l + 1)

l2 + l + σ̄
. (4.61)

Note that the terms on 〈u〉 vanish and, as expected, τclosed is independent of the
point (θ, φ) in which it is calculated. It is interesting to examine τclosed in the limit
of large vesicles. In this case, the sum on eq.(4.61) may be substituted by an integral:
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τclosed − σ ≈ − kBT

8πR2

∫ RΛ

2

(l + 1)l(2l + 1)

l2 + l + σ̄
,

≈ −kBT Λ2

8π

[
1 − σ

κΛ2
log

(
1 +

κΛ2

σ

)]
+ O

(
Λ

R

)
. (4.62)

The dominant term in eq.(4.62) correctly matches the difference τ −σ for flat mem-
branes given in chapter 2, eq.(2.10).

We have also calculated the normal and orthogonal components of the tension.
Both vanish: 〈Σrθ〉 = 0 and 〈Σφθ〉 = 0. While the latter result is obvious on symme-
try grounds, the former one is interesting, implying that the shell mentioned above
can indeed be considered as a purely tense surface. This would probably not hold
for a vesicle with non-spherical average shape. As a consequence, the Laplace law
can be used without curvature corrections for a fluctuating quasi-spherical vesicle,
provided that one uses τ instead of σ. Indeed, this could be expected from renor-
malization arguments, since the Laplace law is exact (despite the curvature energy)
for a perfectly spherical membrane [74].

4.4 Poked vesicles

The route to obtain τpoked is the same as with a closed vesicle, with some minor
changes. We remind that the reference sphere in poked vesicles is the sphere where
〈u〉 = 0, since there is no constraint on volume. Accordingly, instead of eq.(4.37),
we have simply u0,0 = 0. The Hamiltonian in the Gaussian approximation becomes

H = 4πR2σ +
1

2

∑

ω

H̃ ′
l |ul,m|2 + O(u3) , (4.63)

where H̃ ′
l = H̃l +4κσ̄ [72]. The correlations given in section 4.3.1 and in appendix F

remain correct, provided one replaces H̃l by H̃l + 4κσ̄. Note that 〈u2〉 6= 〈u〉 ≡ 0
here and that, differently from the case of closed vesicles, one must have σ̄ ∈ [−3,∞[
in order to assure that correlations are positive. The discussion about the cutoff
of section 4.3.1 remains valid for poked vesicles and the validity condition for the
Gaussian approximation given in eq.(4.51) becomes

〈u2〉 =
kBT

4πκ

L∑

l=2

2l + 1

(l + 2)(l − 1)(l2 + l + σ̄) + 4σ̄
≤ U2

max . (4.64)

With the same Umax = 5% as before, we have σ̄min ≈ −2 for poked vesicles. The
average area is given by eq.(4.56) with 〈u0,0〉 = 0, yielding

〈A〉 = 4πR2 +
kBT R2

2

∑

ω

l2 + l + 2

H̃l + 4κσ̄
. (4.65)

Consequently,
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αpoked =
kBT

8πκ

L∑

l=2

(l2 + l + 2)(2l + 1)

(l − 1)(l + 2)(l2 + l + σ̄) + 4σ̄
. (4.66)

Fig. 4.5 shows αmax, i. e., αpoked with σ̄ = −2, as a function of the vesicle’s radius.
The excess area is somewhat larger than in the case of closed vesicles, but the general
behavior is the same.

Figure 4.5: The blue line stands for the maximum excess area corresponding to
√

〈u2〉 =
0.05 for poked vesicles, while the red dashed line stands closed vesicles. In abscissa is the
vesicle’s radius. Here, Λ−1 ≃ 5 nm and κ = 25 kBT .

Eq.(4.60), which gives τclosed by the stress tensor method, is valid whatever the
form of H̃l, since τ bears no term on u. Hence, we need just to replace H̃l by
H̃l + 4κσ̄, which yields:

τpoked = σ − kBT

8πR2

L∑

l=2

l (l + 1) (2l + 1)

l2 + l + σ̄ + 4σ̄
(l−1)(l+2)

. (4.67)

In the limit of large vesicles, we recover again the result for flat membranes.

4.5 Discussion on τ for closed and poked vesicles

We show in Fig. 4.6 the behavior of σ−τ as a function of the Lagrange multiplier
σ for closed and poked vesicles, as well as the limiting case of planar membranes.
First of all, although eqs.(4.67) and (4.61) differ mathematically, it turns out that
their difference as a function of σ is numerically irrelevant (see Fig. 4.6). Indeed the
extra term 4σ̄/[(l − 1)(l + 2)] in the denominator of eq.(4.67) is only important for
small l’s, while the sum is dominated by large l’s.
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Figure 4.6: Difference between the Lagrange multiplier σ and the effective mechanical
tension τ as a function of σ for κ = 10−19 J, kBT = 4 × 10−21 J and Λ−1 = 5nm. The
colored solid lines correspond to closed vesicles of R = 50nm (blue) and R = 0.5µm (red),
whereas the corresponding colored dashed lines represent the results for a poked vesicle.
The end-points indicate the limit beyond which our Gaussian approximation is no longer
valid according to section 4.3.1 (circles) or according to the discussion in section 4.4 (stars).
The thick gray line corresponds to a flat membrane (eq.(4.62)).

This representation is however not very useful, since σ is not a control parameter.
The most physical representation is shown in Fig. 4.7, where we see the behavior of
τ as a function of the excess area α. We show also the limiting case R → ∞. In this
case, the relation between α and σ is analytical and given in eq.(2.71). In the limit
of large membranes, we obtain

σ =
κΛ2

e8πβκα − 1
. (4.68)

Applying this result to eq.(4.1), we obtain an analytical expression for τ as a function
of the area excess, given by

τflat(α) =
κΛ2(1 + α)

e8πβκα − 1
− kBTΛ2

8π
. (4.69)

For vesicles, α given in eq.(4.57) (or in eq.(4.66)) is numerically inverted in order to
obtain σ(α). The result is then applied to eq.(4.61) (respectively, eq.(4.67)), yielding
the curves of Fig 4.7.
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Figure 4.7: Effective mechanical tension τ as a function of the excess area α for κ =
10−19 J, kBT = 4 × 10−21 J and Λ−1 = 5nm. The colored solid lines correspond to closed
vesicles of R = 50nm (blue leftmost curves), R = 0.5µm (red central curves) and R = 5µm
(green rightmost curves), while the corresponding dotted lines represent τpoked. The end-
points/stars indicate the limit beyond which our Gaussian approximation is no longer
valid. The gray dashed line corresponds to the flat membrane limit given in eq.(4.69).

There are several salient points:

1. Even though τclosed and τpoked are almost indistinguishable as a function of
σ, αclosed and αpoked present different dependences in terms of σ, as shown
in Fig. 4.8, especially for small values of R. This indicates that the volume
constraint affects mainly the excess area and explains the differences shown in
Fig. 4.7.
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Figure 4.8: Solid/dashed lines stand for the excess area for closed/poked vesicles for
R = 50nm (blue lower curves), R = 0.5µm (red central curves) and R = 5µm (green upper
curves). The limit of large planar membranes is shown in gray. Curves for κ = 10−19 J,
kBT = 4 × 10−21 J and Λ−1 = 5nm.

2. The results for τ deviate from the flat limit (R → ∞) essentially for R ≤ 1µm
for both closed and poked vesicles (see Fig. 4.7). Consequently, for GUVs,
one is allowed to use simply the relation given in eq.(4.1). Moreover, for small
tensions, it is justified to assume τ ≃ σ − σ0, justifying the assumptions made
on [87] and presented in section 2.5.2.

3. Negative and quite large values of τ are indeed accessible within the validity
range of our Gaussian analysis in both cases (see Fig. 4.9).

Figure 4.9: Largest negative tension within our validity condition (for Umax = 5%) as a
function of the vesicle’s radius for κ = 10−19 J, kBT = 4 × 10−21 J and Λ−1 = 5nm. The
violet dashed line stands for closed vesicles, while the blue dotted one stands for poked
vesicles. The green solid line represents the smallest value of τ for the limit of large planar
membranes.
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From Fig. 4.9, we note that the biggest negative tension τmin that GUVs (with
R ≥ 1µm) may sustain coincide with the biggest negative tension that large
planar membranes sustain:

τmin = −kBT Λ2

8π
. (4.70)

Depending on the uncertainty on the value of the cutoff, τmin may be of order
−10−6 N/m or −10−5 N/m.

Let’s recall the Young–Laplace equation

∆P = Pinner − Pouter = τ

(
1

R1

+
1

R2

)
, (4.71)

where Pinner/outer is, respectively, the inner and the outer pressure of the vesicle,
R1 and R2 are the two principal radii (R1 = R2 in the spherical case). As our
analysis shows that τ may indeed become negative, this would imply that
vesicles could sustain an inner pressure lower than the outer pressure. For
liquid drops, this situation is impossible, since the surface tension is a true
material constant always positive.

The possibility to sustain negative tensions, or negative pressure differences,
might be experimentally investigated: i) by controlling the outer osmotic pres-
sure, in the case of small vesicles, or ii) by poking a giant vesicle with a mi-
cropipette to which it would adhere and gently decreasing its inner pressure.

4. τ has a plateau at large values of α for both closed and poked vesicles, which
probably corresponds to the actual transition to oblate shapes: when τ reaches
a critical value τc < 0, the excess area rises dramatically. For small closed
vesicles we find roughly τcR

2/κ ≈ −5 while for giant closed vesicles it is given
by τc ≃ −kBTΛ2/(8π), i. e., below the mean-field threshold (see discussion
after eq.(4.41)). The high symmetry phase (spherical vesicle) is thus stabilized
by its entropic fluctuations, as one might have expected.

Experimentally, this transition might be tested by controlling the pressure
outside the vesicle. Indeed, applying the Young–Laplace pressure formula given
in eq.(4.71) for a vesicle of radius R and at τc, we find that the critical pressure
difference yielding the shape transition is ∆Pc ≈ − sup[10κ/R3, kBTΛ2/(4πR)].
Numerically, for a closed spherical vesicle with κ = 25 kBT , T = 300 K and
Λ = (1/5 nm), we find ∆Pc = − 8 × 103 Pa and ∆Pc = −25 Pa, for vesicles
with radius 50 nm and 5 µm, respectively.

5. There exists a well defined excess area α0 corresponding to a vanishing lateral
tension τ = 0 (see Fig. 4.10). This corresponds to the case where the pressure
difference between the inner and the outer media vanishes. Its value is very
much radius dependent for R ≤ 1 µm, but one recovers for R ≥ 2 µm the flat
membrane limit given in eq.(2.76).
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Figure 4.10: Spontaneous excess area α0, corresponding to τ = 0, as a function of the
vesicle radius for closed (blue dashed line) and poked (red solid line) vesicles. The dotted
horizontal line gives the flat membrane limit. The material parameters are the same as in
Fig. 4.7.

4.6 Derivation of τ using the free-energy

For a flat membrane, one may also obtain τ by differentiating the free-energy
with respect to the projected area Ap, as we have shown in section 2.2 [72], [2], [3],
but there are two pitfalls. One must: i) take the thermodynamic limit Ap → ∞
only after the differentiation, and ii) introduce a variation of the cutoff in order that
the total number of modes remains constant during the differentiation, as discussed
in [3].

Let us investigate the free-energy method in the case of quasi-spherical vesicles.
The free-energy, F , is given by

F = − 1

β
ln

∫
D[r] e−βH, (4.72)

the integral running over all the configurations of the vesicle. At the Gaussian level
and for closed vesicles, H is given in terms of spherical harmonics by eq.(4.39), and
since r = R er + R u(θ, φ) er, we may write (in agreement with ref. [60]):

D[r] =

L∏

l=2

(
l∏

m=0

R duR
l,m

)(
l∏

m=1

R duI
l,m

)
, (4.73)

where the superscripts R and I signify real part and imaginary part, respectively.
This measure corresponds to the so-called normal gauge, which is known to be
correct for small fluctuations [60]. We note that the radius R of the reference sphere
appears explicitly and that for each value of l, only half of the allowed values of m
have to be considered, as r is real. Performing the Gaussian integrals, one obtains

F = 4πR2σ + kBT

L∑

l=2

2l + 1

2
ln

(
βH̃l

R2

)
. (4.74)
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In order to obtain τclosed, we must differentiate F with respect to the vesicle’s
“projected area” Ap. Which one, however? The area AV = 4πR2 of the reference
sphere (i.e., the sphere having the same volume as the vesicle’s), or the area of the
vesicle’s average shape, defined as Am = 4π〈R(1 + u)〉2? It will turn out that the
former choice is the correct one. In a sense, this is natural because it corresponds
to our parametrization. However, it is not that obvious, because the definition of
τclosed in eq.(4.58) involves the area of the average vesicle’s shape.

Let us thus pick Ap = AV ≡ 4πR2. It is worth noticing that H̃l depends on Ap

only through σ̄ = σR2/κ, yielding

∂H̃l

∂R2
= (l − 1) (l + 2)σ . (4.75)

With this choice:

τclosed =
∂F
∂Ap

=
1

4π

∂F
∂R2

, (4.76)

we obtain

τclosed = σ − kBT

8πR2

L∑

l=2

l (l + 1) (2l + 1)

l2 + l + σ̄
, (4.77)

which is identical to the result obtained from the stress tensor approach, eq.(4.61).
How about the pitfalls mentioned above? First, we didn’t take the thermodynamic
limit before differentiating. Actually, this would not be problematic, since the quan-
tification of the modes does not involve the size of the system, like it is the case for
planar membranes. Second, we have kept L (hence the number of modes) constant
during the differentiation, in agreement with the fact that L = ⌊

√
4 + R2Λ2 − 1⌋ is

constant for a mathematically infinitesimal change of R.
We may obtain a more intrinsic expression for τclosed. With 〈A〉 = Ap (1 + α),

and Nmodes =
∑L

l=2(2l + 1), we may rewrite τclosed as

τclosed Ap = 〈A〉 σ − kBT

2
Nmodes . (4.78)

The quickest way to obtain this result is to keep separate, when differentiating with
respect to R2, the two terms coming from ln(H̃l) and ln(1/R2) in eq.(4.74). The
interpretation of this equation is not straightforward, because 1

2
kBT is the internal

energy per mode (not the free-energy per mode). Note that the same form for τ is
also valid in the planar case, as shown in [3].

In addition, let’s see what happens if we take Ap = Am ≡ 4πR2(1 + 〈u〉)2:

τAm =
∂F
∂Ap

=
∂F
∂AV

(
∂Am

∂AV

)−1

(4.79)

where we remind AV = 4πR2. Using 〈u〉 = −〈u2〉, one obtains

(
∂Am

∂AV

)−1

=
1

1 − 〈u2〉 = 1 + 〈u2〉 + O(u3) . (4.80)
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Clearly, differentiating with respect to Am yields supplemental terms of order u2

The result is thus wrong, in the sense that it differs from the result obtained by the
stress tensor method.

Let’s now re-derive eq.(4.67) by deriving the free-energy. In the case of poked
vesicles, it is given by the same expression as eq.(4.74) with H̃l replaced by H̃ ′

l :

F ′ = 4πR2σ + kBT
L∑

l=2

2l + 1

2
ln

(
βH̃ ′

l

R2

)
. (4.81)

It turns out, again, that τpoked = ∂F ′/∂(4πR2) exactly. This result is satisfying, but
at the same time it shows how slippery the free-energy approach can be: differenti-
ating with respect to the area of the average vesicle is correct in the case of poked
vesicles but not in the case of closed vesicles. The stress tensor method is thus a
much safer.

Our expression for τpoked differs from that obtained in ref. [72], where the authors
considered also a quasi-spherical membrane without volume constraint. In particu-
lar, the mechanical tension obtained in that reference cannot take negative values.
We believe that the discrepancy between the two results comes from the omission in
ref. [72] of the factors R within the measure. Indeed the factor 1/R2 in the logarithm
of our eq.(4.81) is absent in the corresponding expression (A.9) of ref. [72].

4.7 In a nutshell

In this chapter, we have compared the mechanical tension τ one applies by as-
piring a vesicle with a micropipette, for instance, with the tension σ theoretically
introduced in the Hamiltonian to fix the membrane’s area in the case of quasi-
spherical vesicles. We have studied both the case of usual closed vesicles and the
case of poked vesicles, free to exchange liquid with the outer media. We conclude
that in both cases, for GUVs, the relation between τ and σ is very well approxi-
mated by the relation obtained in the case of planar membranes, given in eq.(4.1).
Accordingly, for GUVs under small tensions, we can assume simply τ ≃ σ − σ0, as
in the case of planar membranes. Moreover, in both cases, we predict the possibility
of an internal pressure smaller than the outer, situation impossible in the case of
liquid drops. Regarding comparatively the behavior of closed and poked vesicles, we
expect the excess area of both to differ for small vesicles. At last, we have shown
that the concept of projected area for vesicles is not clear. Thus, we conclude that
it is much safer to derive τ by averaging the projected stress tensor.
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Nanotubes of membrane

127





Chapter 5

Force needed to extract a
fluctuating nanotube

In this and in the following chapter, we shall study the membrane nanotubes
presented in section 1.4.4. The main results of both chapters were obtained with
Jean-Baptiste Fournier and were published in [6]. As we have seen, these tubes are
very thin, with a radius ranging from dozens up to hundreds of nanometers, while
their length may achieve micrometers. They are very current in living cells and seem
to play an important role in cell transport and communication [92].

In laboratory, nanotubes can be extracted by applying very localized forces to
membranes. In Fig. 1.36 of chapter 1, we have presented a brief sum-up of the
more popular methods used to extract nanotubes. Here we interest ourselves in the
force needed to extract (and hold) these tubes, which can be precisely measured in
experiments using optical tweezer. The experimental procedure in this case consists
in attaching a small glass bead to a vesicle held by a micropipette [96], [100]. A laser
is pointed to the glass bead, which is thus attracted to the center of the beam with
a force that depends linearly on the distance between the bead and the center of the
beam. In experiments, one displaces the position of the center of the beam, denoted
xtrap, while measuring the position x of the bead, as shown in Fig. 5.1. One then
deduces the applied force through f = −ktrap(x − xtrap), where ktrap is a constant
that characterizes the stiffness of the optical trap.

Figure 5.1: Extraction of nanotubes using optical tweezers. The laser beam, represented
in red, traps the glass bead attached to the membrane (in blue). The laser is then displaced
and a tube is pulled. By controlling the position of the center of the laser beam xtrap and
of the bead x, one deduces the applied force in the direction of the extracted tube.

Remark that usually, as in the case of Fig. 5.1, one measures only the force in the axis
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of the tube, which is by symmetry the only component with non-vanishing average.
Note also that nanotubes are not stable: if one stops applying the point force, the
membrane will evolve to a less curve configuration and the tube will be re-absorbed
in the vesicle.

Former theoretical works studied both the formation mechanism of nanotubes [102],
[112] and their (dynamical) stability [113], [114], [115]. As nanotubes are very thin
compared to the GUVs from which they are usually pulled, it is usually assumed that
the vesicle acts as a lipid reservoir to the tube. In this case, as discussed in refs. [102]
and [112], one can neglect the pressure difference across the tube. The effective en-
ergy H′ is thus simply given by the Helfrich Hamiltonian (eq.(1.15)) plus the work
of the force that keeps the tube. For a symmetrical membrane, i. e., a membrane
whose spontaneous curvature vanishes, the energy for a perfectly cylindrical tube
with radius R and length L is [102]

H′ =
( κ

2R2
+ σ
)

2πRL − fL . (5.1)

where κ is the bending rigidity and σ is the Lagrange multiplier associated to the
microscopical area of the membrane, which we remind is not directly measurable.
The energy coming from the Gaussian curvature is omitted, since we do not consider
topological changes. Minimizing this energy with respect to R and L, one obtains,
respectively

R0 =

√
κ

2σ
(5.2)

and

f0 = 2π
√

2κσ . (5.3)

These values correspond to the mean-field values of the radius and of the force needed
to hold a tube, in the sense that thermal fluctuations relatives to the cylindrical shape
were totally neglected.

At first glance, one may think that neglecting the effects of thermal fluctuations
is largely justified, since it is a reasonable assumption for planar membranes: as
the correlation length is ∝ σ−1/2, fluctuations are quickly suppressed as the tension
increases [112]. Recently, however, it has been shown that the tubular geometry
implied a substantially different behavior: tubes should present very strong shape
fluctuations due to a one-dimensional set of extremely soft modes (Goldstone modes,
see Fig. 5.2) [7].
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Figure 5.2: The first soft, Goldstone modes [7].

Accordingly, it is natural to ask how the average force along the tube’s axis f , taking
into account its fluctuations, differs from the mean-field value f0. It is our aim this
chapter to settle this question. To do so, we follow roughly the same steps as in
the last chapter, starting by introducing the parametrization and the energy in 5.1.
Afterwards, we shall derive the projected stress tensor for quasi-cylindrical geometry
in section 5.2. As this calculation is totally new, we propose some verifications in
the same section. In section 5.3, we average the stress tensor and evaluate f . At
last, in section 5.4, we compare f with f0 and discuss in which cases one is allowed
to assume f ≃ f0. There we discuss also experimental consequences and re-interpret
the curve shown in Fig. 1.37.

5.1 Parametrization and Hamiltonian

We shall restrict our attention to deformed tubes weakly departing from the
cylinder corresponding the mean-field approximation whose radius, as we have shown
above, is given by

R0 =

√
κ

2σ
. (5.4)

Let’s consider a cylindrical coordinate system (O; r, θ, z) aligned with the tube
(see Fig. 5.3).
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Figure 5.3: Parametrization of the fluctuating tube (thick line). The thin solid line
represents the reference cylinder with radius R0.

The shape of the fluctuating tube is parametrized by

r(ρ, z) = R0 [1 + u(ρ, z)] er(ρ) + z ez , (5.5)

with u ≪ 1 and z ∈ [0, L], where L is the total length of the tube. Note that instead
of θ, we have used ρ = R0 θ ∈ [0, 2πR0], in order to have u as a function of two
variables with the same dimension.

We shall consider the situation of a relatively short tubule extracted from a
giant vesicle of radius Rves ≫ R0 (or from a vesicle connected to a lipid reservoir),
so that each monolayer of the tubule is actually exchanging material with a very
large reservoir and the standard Helfrich model (see section 1.3) is sufficient for
the calculation of equilibrium and statistical properties [102], [112]. As we do not
consider topology changes, the Hamiltonian is simply given by

H =

∫

S

(
σ +

κ

2
H2
)

dA , (5.6)

where S is the tube’s surface. Note that taking into account the area-difference
elasticity, as is done in the ADE model, is essential in the situation where very long
tubules are extracted from small vesicles [116], or when studying the formation of
small tethered vesicles under the action of an axial load [117]. Remark also that one
should usually consider the pressure difference across the membrane by adding a term
−∆P V to the Hamiltonian, where V is the volume of the tube and ∆P = Pin−Pout,
with Pin (resp. Pout) is the pressure inside (resp. outside) the vesicle from which the
tube is extracted. From the Young-Laplace equation (eq.(1.35)), ∆P relates to the
vesicle’s radius and tension through ∆P = 2τ/Rves. Let’s compare the contribution
of this term with the contribution coming the term proportional to σ for a tube of
radius R ≪ Rves and length L:

∆P V

σ A
=

∆P πR2 L

σ 2πR L
=

τ

σ
× R

Rves
≪ 1 , (5.7)

since we are extracting tubes far smaller than the vesicle and since τ < σ. It is
justified thus to neglect the pressure difference across the tubule [102], [112].

Differential geometry yields the general dA given in eq.(4.4) and H given in
eq.(4.9). For the case of quasi-cylindrical geometry, we obtain up to order two on u
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H ≃
∫

Ω

h(u, {ui}, {uij}) dρ dz, (5.8)

where i, j ∈ {ρ, z}, ui ≡ ∂iu = ∂u/∂i, Ω corresponds to the domain of the reference
cylinder of radius R0 over which the membrane stands, and [7]

h = σ
[
2 + u2 − 2 R2

0 (uρρ + uzz) + R4
0 (uρρ + uzz)

2

+ 2 R2
0 u2

ρ + 4 R2
0 u uρρ

]
+ O(u3). (5.9)

5.2 Derivation of the stress tensor for a cylindrical

geometry

In analogy to the planar and quasi-spherical cases, the projected stress tensor
relates linearly the force that the region 1 exerts over region 2 to the length of the
projected cut dℓ through

dφ1→2 = Σ · m dℓ , (5.10)

where m = mρ eρ + mz ez is the normal to the cut on the reference cylinder (see
Fig 5.4).

Figure 5.4: The upper vector in red represents the three-dimensional force exchanged
through an infinitesimal cut on the membrane. In green, we see the projection of the
cut onto the reference cylinder. Note that the vector m, normal to the projected cut, is
contained on the reference cylinder (dashed lines).

In order to derive Σ, we consider at each point of the membrane an arbitrary
infinitesimal displacement δa = δaρ eρ + δaz ez + δar er corresponding to a variation
(δρ, δz) on the projected cylinder (see Fig. 5.5). Accordingly, the membrane’s shape
becomes ũ(ρ, z) = u(ρ, z) + δu(ρ, z).

5.2. DERIVATION OF THE STRESS TENSOR FOR A CYLINDRICAL
GEOMETRY
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(a) Coordinate space used
in the parametrization of the
tube’s shape. The shaded area
represents Ω, the thick solid line
represents ∂Ω and the dashed
line represents ∂Ω after an in-
finitesimal displacement δa of
the membrane. The line in the
center represents the projected
cut.

(b) Fluctuating tube before (shaded) and after
(dashed red) a general displacement. The refer-
ence cylinder is shown by the dashed black line.

Figure 5.5: Deriving the projected stress tensor.

As one can see in Fig. 5.5(b), the new edge’s position satisfies R0[1+ ũ(ρ+δρ, z+
δz)] er(ρ + δρ) + (z + δz) ez = R0[1 + u(ρ, z)] er(ρ) + z ez + δa, which implies

δaρ = δρ (1 + u) , (5.11)

δaz = δz , (5.12)

δar = R0 (δu + uzδz + uρδρ) . (5.13)

We now impose that δa is done at fixed orientation of the membrane’s normal:
in this way, only the boundary forces work, not the torques. The normal to the
membrane is n = tρ×tz/|tρ×tz|, with tρ = ∂ρr = R0 uρ er+(1+u) eρ and tz = ∂zr =
R0 uz er + ez. This gives n =

[
1 − R2

0

(
u2

ρ + u2
z

)
/2
]

er(ρ) + R0 (u − 1) uρ eρ(ρ) −
R0 uz ez +O(u3). The normal variation is given by δn = ñ(ρ+ δρ, z + δz)−n(ρ, z),
ñ being the analog of n for ũ instead of u. In order to impose δn = 0, we require
that δn · tρ = 0 and δn · tz = 0, yielding, up to order u2

δuz = (uz uρ − uρz) δρ − uzz δz ,

(5.14)

δuρ =
[
R−2

0 (1 + u) + 2 u2
ρ − uρρ

]
δρ

+ (uz uρ − uρz) δz + uρ δu . (5.15)

Using eqs.(5.11)–(5.15), we may now express the variations {δρ, δz, δu, δuρ, δuz}
at the boundary in terms of the components of δa. We obtain, to order u2
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δρ =
(
1 − u + u2

)
δaρ , (5.16)

δz = δaz , (5.17)

δu = (u − 1)uρ δaρ − uz δaz + R−1
0 δar , (5.18)

δuρ =
[
R−2

0 + u2
ρ + (u − 1)uρρ

]
δaρ

− uρz δaz + R−1
0 (1 − u)uρ δar , (5.19)

δuz = [uρ uz + (u − 1)uρz] δaρ − uzz δaz . (5.20)

To obtain Σ, we study the variation of the energy after the displacement δa. On
the one hand, in terms of h, one has

δHbulk =

∫

Ω

[
∂h

∂u
− ∂i

(
∂h

∂ui

)
+ ∂i∂j

(
∂h

∂uij

)]
dρ dz (5.21)

for the bulk of the membrane and

δHboundary =

∫

∂Ω

mi

[
h δi +

(
∂h

∂ui
− ∂j

∂h

∂uij

)
δu +

∂h

∂uij
δuj

]
dℓ , (5.22)

for the boundary energy variation. On the other hand, the work of forces at the
boundary is given by

δHboundary =

∫

∂Ω

δa · Σ · m dℓ . (5.23)

By comparing the last two equations, we obtain Σzi, Σri and Σρi (i being either ρ
or z):

Σzi = h δzi −
(

∂h

∂ui
− ∂j

∂h

∂uij

)
uz −

∂h

∂uiρ
uρz −

∂h

∂uiz
uzz + O(u3) , (5.24)

Σri =
1

R0

(
∂h

∂ui
− ∂j

∂h

∂uij

)
+

1

R0
(1 − u)

∂h

∂uiρ
uρ + O(u3) , (5.25)

Σρi =
(
1 − u + u2

)
h δρi +

(
∂h

∂ui

− ∂j
∂h

∂uij

)
(u − 1)uρ

+
∂h

∂uiz

[uρ uz + (u − 1)uρz] +
∂h

∂uiρ

[
1

R2
0

+ u2
ρ + (u − 1) uρρ

]
+ O(u3) .

(5.26)
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Note that due to the presence of terms such as R−2
0 ∂h/∂uiρ (see, e.g., the ex-

pression of Σρi), it is in general necessary to have h at O(u3) in order to get the
stress components at O(u2). This means adding

h3 = −u3 − R2
0

(
6 u uρρ + 5 u2

ρ − u2
z

)
u

+ R4
0

(
u2

zz − 3 u2
ρρ − 2 uzz uρρ

)
+ 4 R4

0 uρ uz uρz

+ R4
0 (uρρ − uzz)u2

ρ + R4
0 (uρρ + 3uzz)u2

z (5.27)

to h given in eq.(5.9) before evaluating the derivatives in eqs.(5.24)–(5.26). For Σzi,
however, one may check the O(u2) terms in h are sufficient. Explicitly, we obtain
up to order two on u

Σzz = σ
{
2 + u2 + 2R2

0

[
u2

ρ + (2u − 1) uρρ

]

+ R4
0

[
u2

ρρ − u2
zz + 2uz (uzzz + uρρz)

]}
, (5.28)

Σzρ = 2 R2
0 (1 − 2 u)uρz + 2 R4

0 [uz (uρzz + uρρρ) − uρz (uzz + uρρ)] , (5.29)

Σrz = 2 R0 u uz − 2 R3
0 [(1 + u) uzzz + (1 − u)uρρz + uz uzz − uρ uzρ] , (5.30)

Σrρ = −2 R0 (1 − 4 u)uρ

− 2 R3
0 [(1 − 3 u)uρρρ + (1 − u)uρzz − 4uρ uρρ + uρ uzz + uz uρz] , (5.31)

Σρz = 2 R2
0 [(1 − u)uρz + uρ uz]

− 2 R4
0 [(uzz + uρρ)uρz − (uρρz + uzzz)uρ] , (5.32)

Σρρ = 2 u − 3 u2 + R2
0

[
u2

z + u2
ρ + 2 (1 − 3 u)uρρ

]

+ R4
0

[
u2

zz − u2
ρρ + 2 (uρzz + uρρρ) uρ

]
. (5.33)

Note that we may easily recover from Σzz the mean-field force needed to hold
a tubule. Indeed, u = 0 yields Σzz = 2σ [4], i.e., f0 = 2πR × 2σ = 2π

√
2κσ. As

we have discussed in section 1.4.4, this result is very interesting: if the mechanical
tension were due only to the tension σ, we should expect f0 = σ × 2πR0. In reality,
the curvature yields a supplementary term 1/2 (κ/R2

0) to the mechanical tension τ ,
which explains the factor two in our result. In the next two sections we shall propose
some tests to verify the correctness of these equations.

5.2.1 Verification: stress tensor in the tangent frame

Here we propose a first check by showing that from eqs.(5.28)–(5.33), one re-
obtains the stress tensor in the local frame given in eq.(1.50). We consider a general
membrane, not necessarily tubular. At a general point P of the membrane, there
are two principal curvatures CX and CY whose principal directions eX and eY are
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orthogonal. We place our reference cylinder tangent to the membrane at P , with its
axis direction ez parallel to eY and eρ parallel to eX , as shown in Fig. 5.6.

Figure 5.6: The shaded surface represents a piece of membrane. The principal curvatures,
as well as the principal directions eX and eY in P , are shown in red and green. The dashed
cylinder represents the reference cylinder.

By geometry (see Fig. 5.7), one determines the shape of the membrane near to
P in the cylindrical coordinate system, yielding

r = R0

[
1 +

1

2

(
CX +

1

R0

)
ρ2

R0
+

1

2
CY

z2

R2

]
er . (5.34)

Comparing eq.(5.5) and eq.(5.34), we identify

u(ρ, z) =
1

2

(
CX +

1

R0

)
ρ2

R0
+

1

2
CY

z2

R2
. (5.35)

Figure 5.7: Schematic representation highlighting the geometrical quantities needed to
determine u(ρ, z) in the plan perpendicular to ez.
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Applying eq.(5.35) to eqs.(5.28)–(5.33), one obtains

Σzz = σ − κ

2
C2

Y +
κ

2
C2

X , (5.36)

Σρρ = σ +
κ

2
C2

Y − κ

2
C2

X , (5.37)

Σrz = −κ
∂C

∂z
, (5.38)

Σrρ = −κ
∂C

∂ρ
, (5.39)

Σzρ = 0 , (5.40)

Σρz = 0 , (5.41)

where C = CX + CY is the total curvature. Noting that we have the equivalences
X ≡ ρ, Y ≡ z and Z ≡ r near P , these equations are identical to eq.(1.50).

5.2.2 Verification: force between two rings constraining the
tube

In order to control the validity of the formula giving Σzz, which will be the only
component used in the next sections, let us calculate the force acting between two
“undulating rings”separated by a distance L (see Fig. 5.8) by deriving the free-energy
and compare to the force obtained using the projected stress tensor.

Figure 5.8: Tube constrained by two rings separated by a distance L. We have also
considered the case of “undulating rings”. The region A goes from very far to the first ring
up to it, while the region B stands for the region between the rings.

The rings are described by the boundary conditions
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u(ρ,±L/2) = U0 cos
(nρ

R

)
, (5.42)

and ∂zu(ρ,±L/2) = 0, for n > 1. By symmetry, we assume u(ρ, z) = U(z) cos(nρ/R).
Thus the distortion energy (5.8)–(5.9) between the rings takes the form:

H = πR0 σ

∫ L
2

−L
2

[(
n2 − 1

)2
U2 − 2 n2R2

0 U U ′′ + R4
0 U ′′2

]
dz . (5.43)

The equilibrium shape is given by the Euler-Lagrange equation given in eq.(5.21),
yielding

(n2 − 1)2U(z) − 2n2R2U ′′(z) + R4U ′′′′(z) = 0 . (5.44)

The solution satisfying the boundary conditions is

U(z) = U0
[n+ sinh(n+ℓ) cosh(n−z/R0) − n− sinh(n−ℓ) cosh(n+z/R0)]

A(ℓ)
, (5.45)

where ℓ = L/(2R0), A(ℓ) = n+ sinh(n+ℓ) cosh(n−ℓ) − n− sinh(n−ℓ) cosh(n+ℓ) and
n± = (n2 ±

√
2n2 − 1)1/2.

To evaluate the balance of the forces acting over first ring, which is symmetrical
from the force acting over the second one, we have to consider the force exerted by
region A, fA, and the force exerted by region B, fB. Each region is in equilibrium,
implying that the integral of Σzz over ρ is constant in each one of them. We may
thus consider an arbitrary projected path with m = ez in each region to evaluate
forces. For the region A, we will consider a path very far from the ring, so that
u → 0. We have

fA =

∫ 2πR0

0

Σ · ez dρ ,

=

∫ 2πR0

0

Σρz dρ eρ +

∫ 2πR0

0

Σrz dρ er +

∫ 2πR0

0

Σzz dρ ez ,

=

∫ 2πR0

0

2σ dρ ez . (5.46)

In the last passage, we have used the fact that Σzz → 2σ, Σρz → 0 and Σrz → 0 as
u → 0. For the region B, we consider a path at z = 0. We obtain

fB =

∫ 2πR0

0

Σ|z=0 · ez dρ ,

=

∫ 2πR0

0

Σρz|z=0 dρ eρ +

∫ 2πR0

0

Σrz|z=0 dρ er +

∫ 2πR0

0

Σzz|z=0 dρ ez ,

=

∫ 2πR0

0

Σzz|z=0 dρ ez . (5.47)
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The forces in the other directions, eρ and er, vanish after integration, as expected
given the symmetry of the system. The resulting force is then

f(L) ez = fA − fB =

∫ 2πR0

0

(2σ − Σzz|z=0) dρ ez . (5.48)

Using eq.(5.28) to calculate Σzz, we obtain

f(L) = −B
(
n2 − 1

)2 cosh (2n+ℓ) − cosh (2n−ℓ)

A(ℓ)2
, (5.49)

where B = πRσU2
0

√
2n2 − 1. Intuitively, one should expect the rings to collapse in

order to minimize the tube’s deformation. Indeed, the resulting force between the
rings is always attractive.

In order to check this result, we propose ourselves to re-derive f(L) using a
different method that does not involve the stress tensor. First, we will evaluate the
energy stored between the rings, given in eq.(5.43). As the tube is in equilibrium,
it’s shape obeys eq.(5.44). Applying this equation to the first term of eq.(5.43), we
obtain

H = πR5
0 σ

∫ L
2

−L
2

(
−U U ′′′′ + U ′′2) dz . (5.50)

Integrating by parts the term on U U ′′′′ and reminding that U(z) is an even function,
that U(±L/2) = U0 and that U ′(±L/2) = 0, we obtain

H = 2π R5
0 σ U0 U ′′′(−L/2) ,

= 4BR0
n+n− sinh(n+ℓ) sinh(n−ℓ)

A(ℓ)
, (5.51)

where we have used the solution given in eq.(5.45) to obtain the last passage. From
the stored energy, the resulting force between the rings is given by

f(L) = −dH(L)

dL
. (5.52)

After a careful calculation, we recover the result obtained from the stress tensor
(eq.(5.28)), testifying of the correctness of the component Σzz of the stress tensor.

5.3 Evaluation of the average force

In order to hold a nanotube, one must apply a force exactly equivalent to the
force that the rest of the fluctuating tubule exerts. Thus, considering a section of
the tube with m = ez, the average force needed to hold a fluctuating tube is
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f ez =

〈∫ 2πR0

0

Σ · ez dρ

〉
,

=

∫ 2πR0

0

(〈Σrz〉 er + 〈Σρz〉 eρ + 〈Σzz〉 ez) dρ ,

=

∫ 2πR0

0

〈Σzz〉 dρ ez = (f0 + ffl) ez , (5.53)

where we remind that f0 = 2π
√

2κσ = 2πκ/R0 is the mean-field force and ffl is the
correction due to fluctuations. Note that in average, there is no force perpendicular
to the tube’s axis, as expected by symmetry reasons.

5.3.1 Correlation function

Let us consider a tubule of length L with periodic boundary conditions for sim-
plicity. The fluctuations of the tube’s shape may be decomposed in Fourier modes:

u(ρ, z) =

√
R0

2πL

∑

m,q̄

um,q̄ eiR−1
0 (mρ+q̄z), (5.54)

where m = 0,±1, . . . ,±M and q̄ = 2πnR0L, with n = 0,±1, . . . ,±N . As the modes
with m = ±1 and q̄ = 0 correspond to pure translation, they will be omitted in the
following. The cutoffs M and q̄max (or N) are related to the high wave-vector cutoff
Λ through M = ΛR0 and q̄max = 2πNR0/L = ΛR0. As in the last chapters, we
assume that π/Λ is somewhat larger than the membrane thickness a ≈ 5 nm and
we take Λ ≈ 1/a. Note that there is an uncertainty on Λ of a factor of order unity.

In terms of the Fourier modes, the Hamiltonian given in eq.(5.8) becomes [7], [118]

H ≃ κ

2

∑

m,q̄

[(
m2 − 1

)2
+ q̄2

(
q̄2 + 2m2

)]
|um,q̄|2 . (5.55)

Using the equipartition of energy, we have

〈um,q̄ un,k̄〉 =
kBT

κ

1

(m2 − 1)2 + q̄2(q̄2 + 2m2)
δm,nδq̄,k̄ , (5.56)

where δ stands for the delta of Kronecker. Hence, with u ≡ u(ρ, z) and u′ ≡ u(ρ′, z′),
the correlation function of the tubule thermal fluctuations is given by

G(ρ − ρ′, z − z′) ≡ 〈u u′〉 ,

=
kBT R0

2πκL

∑

m,q̄

eiR−1
0 [m(ρ−ρ′)+q̄(z−z′)]

(m2 − 1)2 + q̄2 (q̄2 + 2m2)
, (5.57)

=
kBT

(2π)2κ

∑

m

∫
eiR−1

0 [m(ρ−ρ′)+q̄(z−z′)]

(m2 − 1)2 + q̄2 (q̄2 + 2m2)
dq̄ . (5.58)
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Here, as in the last sections, kBT is the temperature and the brackets indicate the
thermal average. In the last passage, we have transformed the sum over n into
an integral, which is legitimate for tubes longer than a few times R0, so that both
the sum and the integral run from −ΛR0 to ΛR0. Using this correlation, one can
easily derive other correlations involving derivatives with respect to ρ or z. Let’s see
an example in detail: first, let’s evaluate an average without using the correlation
function

〈uz(ρ, z) uρρz(ρ
′, z′)〉 =

=
R0

2πL

〈
∂z

(∑

m,q̄

um,q̄ ei R−1
0 (mρ+q̄z)

)
× ∂2

ρ∂z


∑

n,k̄

un,k̄ ei R−1
0 (nρ′+k̄z′)



〉

,

=
R0

2πL

〈[∑

m,q̄

(
i q̄

R0

)
um,q̄ ei R−1

0 (mρ+q̄z)

]
×


∑

n,k̄

(
i n

R0

)2(
i k̄

R0

)
un,k̄ ei R−1

0 (nρ′+k̄z′)



〉

,

=
R0

2πL

∑

m,q̄

∑

n,k̄

(
n2q̄k̄

R4
0

)
〈um,q̄ un,k̄〉ei R−1

0 (mρ+q̄z) ei R−1
0 (nρ′+k̄z′) ,

= −kBT R0

2πκL

∑

m,q̄

(
m2q̄2

R4
0

)
ei R−1

0 [m(ρ−ρ′)+q̄(z−z′)]

(m2 − 1)2 + q̄2(q̄2 + 2m2)
, (5.59)

where we have used eq.(5.56) to obtain eq.(5.59). One can easily verify that this
result can be simply obtained from eq.(5.58) through

〈uz(ρ, z) uρρz(ρ
′, z′)〉 = ∂z|(ρ,z)

(
∂2

ρ∂z

)
|(ρ′,z′) [G(ρ − ρ′, z − z′)] , (5.60)

where |(ρ,z) indicates that the derivative is taken at the point (ρ, z). This method
can be generalized to the calculation of similar averages.

5.3.2 Average force

Calculating the average of each term of eq.(5.28), we obtain

〈Σzz〉 = 2σ +
kBT

4πR0L

∑

m,q̄

(m2 − 1)2 − q̄2(3q̄2 + 2m2)

(m2 − 1)2 + q̄2(q̄2 + 2m2)
. (5.61)

The average force is thus

f = 4πσR0 +
kBT

2L

∑

m,q̄

(m2 − 1)2 − q̄2(3q̄2 + 2m2)

(m2 − 1)2 + q̄2(q̄2 + 2m2)
,

= f0 +
kBT

2L

∑

m,q̄

(m2 − 1)2 − q̄2(3q̄2 + 2m2)

(m2 − 1)2 + q̄2(q̄2 + 2m2)
, (5.62)

with, in tubes whose length is bigger than R0,
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ffl =
kBT

4πR0

M∑

m=−M

∫ ΛR0

−ΛR0

(m2 − 1)
2 − q̄2 (3q̄2 + 2m2)

(m2 − 1)2 + q̄2 (q̄2 + 2m2)
dq̄ . (5.63)

For |m| ≫ 1 the integral yields ≃−6M + 8m arctan(M/m). A crude approximation

may then be obtained by replacing the sum over m by
∫M

−M
[−6M+8m arctan(M/m)] dm =

−4M2. It turns out that this approximation is excellent in the regimes of interest
(see Fig. 5.9). It follows

ffl ≃ −kBT

π
Λ2R0 , (5.64)

and consequently

f ≃ 2πκ

R0

[
1 − kBT

2π2κ
R2

0 Λ2

]
. (5.65)

Equivalently, using the definition of R0 given in eq.(5.4), we obtain in terms of σ

f ≃ 2π
√

2κσ

[
1 − kBT

4π2

Λ2

σ

]
. (5.66)

Hence, we find that the actual force f is significantly smaller than the mean-field
approximation f0, the correction being more important when R0 is large (Fig. 5.9).
Note, however, the strong influence of the uncertainty on Λ.

Figure 5.9: Average force f as a function of the tubule radius R0. The dashed line
corresponds to the mean-field force f0. The solid lines correspond to the renormalized
force, as given by eq.(5.65), with, from top to bottom Λa = 0.5, 1, 2, as indicated.
The circles are obtained using the exact numerical sum (5.63), showing the quality of
the approximation (5.65). The parameters used are a ≃ 5 nm, kBT ≃ 4 × 10−21 J and
κ ≃ 50 kBT .

5.3.3 Discussion on the validity of our results

Let us comment on the validity of our results. First, we should recall that
eq.(5.65) actually corresponds to the first term in a power series expansion of the
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form f = f0[1 + (kBT/κ)f1(ΛR0) + (kBT/κ)2f2(ΛR0) + . . .], the higher-order terms
arising from terms beyond O(u2) within the expressions of h and Σzz. The fact that
kBT/κ ≪ 1 for biological membranes is good for the convergence of the series, but
R0 should not become too large. Obviously, f must be positive, implying the upper
bound condition

R0 < a

√
2π2κ

kBT
≈ 150 nm , (5.67)

with a ≡ Λ−1 ≈ 5 nm and κ ≃ 50 kBT . This condition, essentially due to the
existence of an upper wave-vector cutoff, is normally verified (see, e.g., Ref. [116]).

At the same time, we must require 〈u2〉 ≪ 1 for the harmonic approximation to
be valid. As shown in ref. [4], eq. (5.58) is well approximated by

〈u(0, 0) u(ρ, z)〉 ≃ kBT

4πκ

(
L

6R0

− |z|
R0

+
z2

L R0

)
cos

(
ρ

R0

)
. (5.68)

Requiring, e.g.,
√
〈u2〉 < 0.2 corresponds to the condition L/R0 < πκ/(kBT ), i.e.,

L/R0 < 200 for κ ≃ 50 kBT . When R0 ≤ 50 nm this corresponds to L < 10 µm.
These ranges, together with the requirement that the vesicle from which the tubule
is extracted should be very large, define the conditions of validity of our analysis. To
conclude, let us comment on the influence of the boundary conditions. Due to the
force conservation principle, f cannot depend on the position at which it is measured.
Therefore, the boundary conditions are not important to the average force and it is
justified to choose periodic boundary conditions, as we have done here.

5.4 Discussion on experiments

In this chapter, we have analyzed the influence of the thermal fluctuations on the
force exerted by a nanotube which is pulled from a membrane with bending rigidity
κ and internal tension σ. Two other parameters play a role: the thermal energy
kBT and the upper wave-vector cutoff Λ ≈ 1/a (up to a prefactor of order unity),
where a is the membrane thickness. While κ, Λ and kBT are rather fixed, σ, the
in-plane stress, may span several decades as it depends on the way the membrane is
tangentially stressed. As we have seen previously, the problem is that σ itself is not
exactly a control parameter. Instead, one usually controls the effective mechanical
tension τ .

Let’s examine a typical experiment involving nanotubes, as presented in sec-
tion 1.4.4. To a giant vesicle, held by a micropipette, one attaches a glass or mag-
netic bead. This bead is subsequently displaced, forming a tube, while the vesicle
is held at the same position. By measuring the difference of pressure between the
interior of the micropipette and the aqueous solution, the tension τ can be obtained,
using eq.(1.35). Let’s suppose one is interested in studying the force f needed to
extract a tube as a function of the membrane’s tension. As we have discussed in
section 1.4.4, two assumptions are usually made:

1. firstly, one considers σ ≈ τ ;
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2. secondly, one neglects the thermal fluctuations of the tube, implying that the
force to extract a tube is simply f0.

Thus, under these assumptions, the force needed to extract a tube, which we will
call f ′

0, is given by

f ′
0 = 2π

√
2πτ . (5.69)

In Fig. 5.10, we have plotted this relation, which is simply linear in log-scale (line
in red). In experiments, as one can see for instance in the Fig. 1.37 in section 1.4.4,
this linear behavior seems to be indeed verified and consequently, up to now, these
two assumptions were held as justified [96], [98], [119].

In the chapter 2, however, we have seen that τ was considerably different from
σ, since τ has additional contributions arising from the curvature strains excited by
the thermal undulation. For a planar membrane, we have in general

τ − σ ≃ −σ0 = −kBTΛ2

8π
, (5.70)

relation still valid for large vesicles (see chapter 4). Taking into account this dif-
ference, but still neglecting thermal fluctuations, the force needed to extract a tube
should be

f0 = 2π
√

2κσ = 2π
√

2κ(τ + σ0) . (5.71)

This curve is shown in blue in Fig. 5.10, which seems to be completely incompatible
with the linear trend of experimental data.

Finally, we have seen in the previous section that the contribution of the thermal
fluctuations to the force may be important. Taking into account the difference
between τ and σ as well as the thermal fluctuations, we obtain from eq.(5.66)

f ≃ 2π
√

2κ(τ + σ0)

[
1 − 2

π

σ0

τ + σ0

]
. (5.72)

This curve is plotted in green in Fig. 5.10.
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Figure 5.10: Average force f as a function of the effectively applied mechanical tension
τ . The red solid line shows the usual relation given in eq.(5.69), under the assumption that
τ ≈ σ and neglecting thermal fluctuations. The upper blue dotted line shown the expected
relation if one considers τ = σ − σ0, but neglects the thermal fluctuations (eq.(5.71)).
Finally, the green dashed curve represents the expected relation taking into account both
the difference between τ and σ and the thermal fluctuations (eq.(5.72)). The parameters
used are Λa = 1 with a ≃ 5 nm, kBT ≃ 4 × 10−21 J and κ ≃ 50 kBT .

We observe that thermal fluctuations are indeed important: the average force f
differs significantly from the mean-field approximation f0 = 2π

√
2κσ. The relative

error (f0 − f)/f is of order 5% at τ = 10−4 J/m2, of 30% at τ = 10−5 J/m2 and
it reaches 100% at τ = 10−6 J/m2 (see Fig. 5.10). Interestingly, the relative error
(f ′

0−f)/f is much smaller than (f0−f)/f (see Fig. 5.10). Indeed, it is less than 1%
for τ > 10−5 J/m2, and it becomes larger than 20% only for τ < 10−6 J/m2. Hence f ′

0

appears to be indeed a good approximation of the average force: for τ > 10−6 J/m2,
one should expect a linear behavior. This happens however by a happy coincidence,
since one makes two non justified assumptions.

Let us discuss what could be done experimentally in order to test these predic-
tions. The difference between f and f ′

0 will be difficult to evidence, because one
should detect a difference of the order of a few pN while measuring precisely the
tension in the range τ < 10−6 J/m2. It should be easier to detect the difference
between f and f0 = 2π

√
2κσ, since it is already significant at τ ≃ 10−5 J/m2. This

could be done if the tension r were measured simultaneously from the thermal fluc-
tuation spectrum of the vesicle from which the tubule is drawn and then assuming
that r ≈ σ. It would be interesting to measure R0 as a function of τ directly, in
order to check the difference between R0 and the usually assumed relation

√
κ/(2τ)

(we expect
√

κ/[2(τ + σ0)]). This would require a specific experiment, since R0 is
normally below optical resolution.
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5.5 In a nutshell

The mean-field force needed to extract a membrane nanotube in terms of the
membrane rigidity κ and it’s microscopical tension σ is well known and given by

f0 = 2π
√

2κσ . (5.73)

Assuming that thermal fluctuations are negligible and that the mechanical tension τ
coming from the flattening of the membrane’s fluctuation is a good approximation for
σ, this relation seemed to be successfully experimentally verified. Recently, however,
it was shown that these nanotubes, due to their geometry, present very soft modes
and should thus have strong fluctuations, implying that the actual force f needed
to extract a tube should be somewhat different from f0. To evaluate this difference,
we have derived the stress tensor for quasi-cylindrical geometry and averaged it
appropriately, yielding

f ≃ f0

[
1 − 2

π

σ0

σ

]
, (5.74)

where

σ0 =
κΛ2

8πκβ
. (5.75)

Numerically, the difference between f and f0 is non-negligible. The fact that it has
not been previously noticed comes from a happy coincidence: the assumption that
σ ≈ τ seems to make up for the neglected thermal fluctuations.
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Chapter 6

Fluctuation of the force needed to
extract a membrane nanotube

As discussed in section 1.4.4, nanotubes are extracted from vesicles by applying
point forces. In the last chapter, we have described a popular method for pulling
nanotubes, which consists in attaching a glass bead to the membrane and displacing
the bead with a laser. The advantage of this method is that one deduces with
precision the applied force by measuring the position of the center of the beam and
the position of the bead along the tube’s axis (see Fig. 5.1). In general, only the force
in the direction of the tube’s axis fz is measured, since by symmetry the averages
of the transversal components of the force vanish. A typical time-sequence of the
bead’s position along the tube’s axis and force fz can be seen in Fig. 6.1.

Figure 6.1: Extraction and retraction of a nanotube using a glass bead and an optical
trap [120]. The blue well-defined line represents the displacement of the glass bead as a
function of time. The bead was moved in order to elongate the vesicle and create a tube
(from 0 up to 80 s), then kept roughly at the same point for 20 s and finally moved in the
opposite direction. The red fluctuating line shows the force applied to the bead. Note that
there is a force barrier to form a tube (region before 40 s), but afterwards, the force does
almost not depend on the length of the tube.

In the last chapter and here, we are interested in the situation where the tube’s
length is kept constant (results published in [6]). In Fig. 6.1, this corresponds to
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the interval between the dashed lines, where we can see that the force is roughly
a plateau. We have studied the average value of this plateau in the last chapter,
obtaining

〈fz〉 ≃ 2π
√

2κσ

[
1 − kBT

4π2

Λ2

σ

]
, (6.1)

where κ is the bending rigidity, Λ is a wave-vector cutoff and σ is the tension asso-
ciated to the microscopical area of the membrane.

Interestingly, in Fig. 6.1, we see that the measures of fz present a considerable
dispersion, mainly coming from the fluctuations of the bead’s position (we cannot
see this fluctuation on the blue curve due to the length scale). In effect, the bead is
subjected to many sources of thermal fluctuations, such as the fluctuating forces that
the solvent applies to the bead, producing a Brownian movement, and the thermal
fluctuations of the membrane to which the bead is attached.

As membrane nanotubes present very soft Goldstone modes [7], the membrane
fluctuation is possibly responsible for an important part of the dispersion, in which
case measures of force fluctuation could be used to characterize membranes. Indeed,
in section 1.4.4, we have seen that from measures of the average force 〈fz〉, one can
deduce the bending rigidity of a membrane. Likewise, the fluctuation of the force in
the direction of the tube’s axis, easily accessible with the same experimental setting,
could provide supplemental informations. Accordingly, our aim in this chapter is to
study the contribution of the membrane fluctuations to the fluctuation of the force
in the direction of the tube’s axis, defined through

(∆fz)
2 = 〈f 2

z 〉 − 〈fz〉2 . (6.2)

As in chapter 5, we will consider a tube small enough so that we can consider
the vesicle from which it is extracted as a lipid reservoir and we can neglect volume
constraints. In section 6.1 we remind some important results deduced in the last
chapter. To evaluate ∆fz, we will use the diagrammatic tools introduced in chap-
ter 3. We will thus sum-up some properties of these diagrams and write the stress
tensor using them in section 6.2. In section 6.3, we evaluate ∆fz . Finally, we discuss
our results in section 6.4.

6.1 Some important definitions and results

As in chapter 5, we shall restrict our attention to deformed tubes weakly depart-
ing from the mean-field cylinder, whose radius is given by

R0 =

√
κ

2σ
. (6.3)

We will keep the same coordinate system presented in Fig. 5.3 and the tube’s shape
will be parametrized by eq.(5.5).

As before, we consider a tube relatively short compared to the vesicle from which
it is extracted, so that the vesicle can be treated as a lipid reservoir. In the case of
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short tubes, one can also neglect the pressure difference across the tube’s membrane
(see discussion in section 5.1). The energy is simply given by the Helfrich Hamilto-
nian, given in eq.(5.8) and eq.(5.9). The corresponding correlation function is given
by

G(ρ − ρ′, z − z′) = 〈u(ρ, z) u(ρ′, z′)〉 ,

=
kBT R0

2πκL

∑

m

∑

q̄

e
i

R0
[m(ρ−ρ′)+q̄(z−z′)]

(m2 − 1)2 + q̄2(q̄2 + 2m2)
, (6.4)

where m ∈ {−M, · · · , M} and q̄ = 2πnR0/L, with n ∈ {−N, · · · , N}. We remind
that the upper bounds N and M are given by M = ΛR0 and q̄max = 2πNR0/L =
ΛR0, where Λ = 1/a is the high wave-vector cutoff and a is of the order of the
membrane thickness.

The force needed to extract a tube is given by

f =

(∫ 2πR0

0

Σrz dρ

)
er +

(∫ 2πR0

0

Σρz dρ

)
eρ +

(∫ 2πR0

0

Σzz dρ

)
ez , (6.5)

where Σrz, Σρz and

Σzz = σ
{
2 + u2 + 2R2

0

[
u2

ρ + (2u − 1)uρρ

]

+ R4
0

[
u2

ρρ − u2
zz + 2uz (uzzz + uρρz)

]}
(6.6)

are the components of the projected stress tensor for quasi-cylindrical geometry
derived in section 5.2. As in the last chapter, the subscript ρ (resp. z) indicates the
derivative with respect to ρ (resp. z). Here we will evaluate the fluctuation of the
force in the direction of the tube’s axis:

(∆fz)
2 = 〈f 2

z 〉 − 〈fz〉2 ,

=

∫ 2πR0

0

∫ 2πR0

0

〈Σzz(ρ, z)Σzz(ρ
′, z)〉 − 〈Σzz〉2 dρdρ′ . (6.7)

As in chapter 3, the first step is to evaluate the correlation function of the stress
tensor over the same section of tube:

C(ρ, ρ′) = 〈Σzz(ρ, z)Σzz(ρ
′, z)〉 − 〈Σzz〉2 . (6.8)

To do so, we will use another time the diagrammatic tools introduced in chapter 3.
We recall their properties in the next section.

6.2 Diagrammatic tools

Throughout this chapter, we will use notations similar to those introduced in
section 3.2. Each field u(ρ, z) is represented by a straight line. The derivatives with
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respect to ρ are represented by a dot over the field, while a derivative with respect
to z is represented by a slash. An adapted diagrammatic vocabulary is presented in
table 6.1.

Usually Diagrammatically

u(ρ, z)

uz(ρ, z)

uρ(ρ, z)

u(ρ, z) u(ρ, z)

u(ρ, z) u(ρ′, z′)

Table 6.1: Basic translation rules from the usual notation into diagrams.

Averages are performed using Wick’s theorem, i. e., by adding all complete
contractions of fields. Each contraction yields a propagator and, as in the case of
section 3.2, one can pass a derivative from one branch of the propagator to the other
by multiplying the diagram’s coefficient by −1. For instance, with r = (ρ, z) and
r′ = (ρ′, z′), we have

〈

r r′

〉
= ,

= (−1) × ,

= (−1) × ∂z∂ρ [G(r′ − r)] ,

=
kBT R0

2πκL

∑

m

∑

q̄

(i m/R0)(i q̄/R0) e
i

R0
[m(ρ−ρ′)+q̄(z−z′)]

(m2 − 1)2 + q̄2(q̄2 + 2m2)
. (6.9)

This time, once the derivatives are grouped, every slash contributes with a factor
i q̄/R0 and every dot contributes with a factor i m/R0.

In the following section, we will evaluate the propagators between points over
the same section of tube, i. e., with z = z′. In this case, as the sum over q̄ is

152 6.2. DIAGRAMMATIC TOOLS



CHAPTER 6. FLUCTUATION OF THE FORCE NEEDED TO EXTRACT A
MEMBRANE NANOTUBE

symmetrical, an uneven number of slashes over a propagator implies a vanishing
contribution. Here follows a typical example of the terms that we will need to
evaluate:

〈

r r′

〉
=

r r′

+ + ,

= + + ,

(6.10)

which one can readily read by noting the equivalence

= × . (6.11)

As the number of slashes over these propagators is uneven, the contribution of this
diagram vanishes. The first term of eq.(6.10) is also composed by diagrams with
an uneven number of slashes whose contribution vanishes. At the end, one obtains
simply

〈

r r′

〉
= . (6.12)

In the next section, we will re-derive 〈Σzz〉 in terms of diagrams in order to gain
familiarity with these tools.

6.2.1 Getting familiar: re-deriving 〈Σzz〉

The component Σzz, given in eq.(6.6), can be written in terms of diagrams as

σ−1 〈Σzz〉 = 2 + + 2R2
0 + 4R2

0 − 2R2
0

+ R4
0 − R4

0 + 2R4
0 + 2R4

0 . (6.13)

Using Wick’s theorem to evaluate the average, we obtain

σ−1 〈Σzz〉 = 2 + + 2R2
0 + 4R2

0

+ R4
0 − R4

0 + 2R4
0 + 2R4

0 . (6.14)
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Grouping the derivatives, we have

σ−1 〈Σzz〉 = 2 + − 2R2
0 + 4R2

0

+ R4
0 − R4

0 − 2R4
0 − 2R4

0 ,

= 2 + + 2R2
0 + R4

0 − 3R4
0 − 2R4

0 .

(6.15)

Let’s read eq.(6.15):

〈Σzz〉 = 2σ + σ
kBT R0

2πκL

∑

m

∑

q̄

1 + 2(i m)2 + (i m)4 − 3(i q̄)4 − 2(i m)2(i q̄)2

(m2 − 1)2 + q̄2(q̄2 + 2m2)
,

= 2σ +
kBT

4πR0L

∑

m

∑

q̄

(1 − m2)2 − q̄2(3q̄2 + 2m2)

(m2 − 1)2 + q̄2(q̄2 + 2m2)
, (6.16)

which coincides, as it should, with eq.(5.61).

6.3 Evaluation of the fluctuation of the force

Aiming to obtain ∆fz , we start this section by evaluating the correlation function
of the component Σzz of the stress tensor. In section 6.3.2, we integrate twice this
correlation and derive the force fluctuation. There, we discuss also some approxi-
mations in order to obtain a simple analytical expression. Finally, we conclude by a
short discussion on the validity of our final result in section 6.3.3.

6.3.1 Correlation of Σzz

Here we will evaluate the correlation function

C(ρ, ρ′) = 〈Σzz(ρ, z)Σzz(ρ
′, z)〉 − 〈Σzz〉2 . (6.17)

From eq.(6.13), using Wick’s Theorem and the rules presented in section 6.2, we
obtain
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σ−2 C(ρ, ρ′) = 2 + 8R2
0 + 16R2

0 + 28R4
0

+ 32R4
0 + 16R4

0 − 4R4
0 + 8R6

0

− 8R6
0 + 16R6

0 − 16R6
0 + 2R8

0

+ 6R8
0 + 8R8

0 + 4R8
0 + 4R8

0

+ 8R8
0 + 4R4

0 . (6.18)

Note that all the terms involving diagrams of the kind vanish. Explicitly, we

obtain

C(ρ, ρ′) =

(
kBT

4πR0L

)2∑

m,q̄

∑

n,k̄

fn,m,q̄,k̄ eiR−1
0 (m+n)(ρ−ρ′)

+ 2
κ

R2
0

(
kBT

4πR0L

)∑

m,q̄

m4 eiR−1
0 m(ρ−ρ′)

(m2 − 1)2 + q̄2(q̄2 + 2m2)
, (6.19)

where fn,m,q̄,q̄ is a complicated coefficient depending on m, n, q̄ and k̄:

fn,m,q̄,k̄ =
gn,m,q̄,k̄

[(m2 − 1)2 + q̄2(q̄2 + 2m2)]
[
(n2 − 1)2 + k̄2(k̄2 + 2n2)

] , (6.20)

with

gn,m,q̄,k̄ = 2 − 16 m2 + 16 m4 − 8 m n + 32 m3 n + 28 m2 n2 − 16 m4 n2

− 8 m3 n3 + 2 m4 n4 − 4 q̄2 k̄2 + 16 m2 q̄2 k̄2 + 8 m2 q̄2 k̄4

+ 4 m4 q̄2k̄2 + 8 m n q̄2 k̄2 + 6 q̄4 k̄4 + 8 m2 q̄4 k̄2 + 4 q̄6 k̄2 . (6.21)

The second term of eq.(6.19), with an unique sum over the wavenumbers, is the
contribution given by the last diagram of eq.(6.18). As expected, the correlation
depends only on ρ−ρ′. In Fig. 6.2, we show the behavior of the correlation normalized
by it’s value at ρ = 0 for two different tubes with the same length, bending rigidity
and wave-length cutoff.
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Figure 6.2: Correlation function of the component Σzz of the stress tensor normalized
by it’s value at ρ = 0 as a function of ρ/R0. In both curves, we considered tubes of length
500 nm and bending rigidity κ = 50 kBT . We have chosen Λ−1 = 5nm as the value of
the microscopical cut-off. The blue dashed curve stands for a thin tube with R0 = 30nm,
while the red solid curve stands for a tube with R0 = 100nm.

First of all, we note that even though the stress tensor correlation decreases with
the distance, we have no more the fast decay found in the case of planar membranes
(see section 3.4). In both cases, the function C(ρ) presents oscillations that remain
non negligible throughout the whole section of the tube, indicating that the stress
tensor is correlated all over the length of a tube’s cross section. This is a signature
of the fact that the fluctuations in the shape of membrane tubes are themselves
correlated over a whole cross section, whatever the tube’s radius [7]. Moreover, we
observe that the oscillations in Fig. 6.2 take place over a roughly constant wave-
length λ. For the tube with R0 = 30 nm, we have 6 oscillations distributed over
the perimeter, which gives a wave-length λ ≈ 31 nm ∼ 6 Λ−1, with Λ−1 ∼ 5 nm.
Interestingly, we find the same value for the larger tube. This characteristic wave-
length corresponds to the length beyond which the correlation of the stress tensor
in planar membranes becomes negligible (see section 3.4). It is thus probably an
universal quantity, valid for any value of R0.

To characterize better how the stress tensor correlation decreases, we have plotted
the absolute value of the extrema of the oscillations of the red curve as a function
of ρ/R0 in a log-log scale (see Fig. 6.3). This curve seems to indicate that the
amplitude of the oscillations decay with a power law, which is a characteristic sign
of long-range correlations.
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Figure 6.3: The red dots represent the absolute value of the extrema of the red solid
curve in Fig. 6.2 as a function of ρ/R0. The blue solid curve is proportional to x−1.

Finally, we have compared the contribution of the first term of eq.(6.19), involving
two sums over the wavenumbers, and the contribution of the second term of eq.(6.19),
with an unique sum over the wavenumbers, to the total stress tensor correlation. As
one can see in Fig. 6.4(a) and in Fig. 6.4(b), in general, both contributions are
oscillating and important. In the following, however, we will see that the second
term of eq.(6.19), with an unique sum and represented by the solid lines in these
figures, gives a vanishing contribution to ∆fz.

(a) Tube with R0 = 30 nm. (b) Tube with R0 = 100 nm.

Figure 6.4: Contribution of the first term of eq.(6.19) (term with the double sum over the
wavenumbers) to the stress tensor correlation (red dashed line) compared to the contribu-
tion of the second term of this equation, with an unique sum over the wavenumbers (blue
solid curve). In both cases, we have considered tubes with length 500 nm, κ = 50 kBT and
Λ−1 = 5nm.
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6.3.2 Force fluctuation ∆fz

As we have seen in eq.(6.7), the force fluctuation is given by

(∆fz)
2 =

∫ 2πR0

0

∫ 2πR0

0

C(ρ, ρ′) dρdρ′ ,

=

∫ 2πR0

0

∫ 2πR0

0

C(ρ − ρ′, 0) dρdρ′ . (6.22)

The last passage follows from the fact that the correlation function is invariant
under translation. The function C(ρ, 0) is periodic with period 2πR0. Consequently,
eq.(6.22) is equivalent to

(∆fz)
2 = 2πR0

∫ 2πR0

0

C(ρ′′, 0) dρ′′ . (6.23)

Using the fact that

∫ 2πR0

0

eiR−1
0 (m+n)ρ′′ dρ′′ = 2πR0 δn,−m , (6.24)

we obtain

(∆fz)
2 = (2πR0)

2

(
kBT

4πR0L

)2∑

m,q̄

∑

k̄

f−m,m,q̄,k̄ ,

=

(
kBT

2L

)2∑

m,q̄

∑

k̄

2(m2 − 1)4 + 4k̄2q̄2
[
k̄4 − 1 + 2m2

(
1 + 2k̄2

)
+ m4

]
+ 6k̄4q̄4

[(m2 − 1)2 + q̄2(q̄2 + 2m2)]
[
(m2 − 1)2 + k̄2(k̄2 + 2m2)

] .

(6.25)

Note that the contribution of the last term of eq.(6.19) vanishes after integration.

Long tubes

For the case of L > R0, we can substitute the sums over q̄ and over k̄ by integrals,
yielding

(∆fz)
2 =

(
kBT

4πR0

)2 M∑

m=−M

∫ ΛR0

−ΛR0

∫ ΛR0

−ΛR0

2(m2 − 1)4 + 4k̄2q̄2
[
k̄4 − 1 + 2m2

(
1 + 2k̄2

)
+ m4

]
+ 6k̄4q̄4

[(m2 − 1)2 + q̄2(q̄2 + 2m2)]
[
(m2 − 1)2 + k̄2(k̄2 + 2m2)

] dq̄ dk̄ .

(6.26)

Taking into account the fact that eq.(6.26) depends only on |m|, it can be rewritten
as

(∆fz)
2 =

(
kBT

4πR0

)2
(

T0 + 2 T1 + 2
M∑

m=2

Tm

)
, (6.27)
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with

T0 =

∫ ΛR0

−ΛR0

∫ ΛR0

−ΛR0

2q̄4k̄4
(
q̄2 + k̄2

)
+
(
1 − q̄2k̄2

)2

(1 + q̄4)
(
1 + k̄4

) dq̄ dk̄ , (6.28)

T1 =

∫ ΛR0

−ΛR0

∫ ΛR0

−ΛR0

8 + 4k̄4 + 2k̄2 (8 + 3q̄2)

(2 + q̄2)
(
2 + k̄2

) dq̄ dk̄ , (6.29)

and

Tm =

∫ ΛR0

−ΛR0

∫ ΛR0

−ΛR0

2(m2 − 1)4 + 4k̄2q̄2
[
k̄4 − 1 + 2m2

(
1 + 2k̄2

)
+ m4

]
+ 6k̄4q̄4

[(m2 − 1)2 + q̄2(q̄2 + 2m2)]
[
(m2 − 1)2 + k̄2(k̄2 + 2m2)

] dq̄ dk̄ .

(6.30)

Both integrals over q̄ and over k̄ in eq.(6.28), eq.(6.29) and eq.(6.30) can be per-
formed analytically. One can compare the contributions of some modes to the force
fluctuation in Fig. 6.5. Not surprisingly, the modes |m| = 1, which are extremely
soft [7], give a greater contribution.

Figure 6.5: For very long tubes, each radial mode i gives a contribution [kBT/(4πR0)]
2×

Ti to (∆fz)
2, with Ti given by eqs.(6.28)–(6.30). We compare here the contributions of

the modes with m = 0 (lower solid line, in black), m = 1 (upper solid line, in red), m = 2
(dashed blue line) and m = 3 (dotted green line) as a function of the tube’s radius. The
vertical scale is shown in units of [kBT/(4πR0)]

2, while the radius of the tube is shown in
units of the microscopical cutoff a = Λ−1. We see that the Goldstone modes, with m = 1,
give indeed a greater contribution to the force fluctuation.

In Fig. 6.6, we show the percent contribution of these soft modes to the total fluc-
tuation. In agreement with the curves of Fig. 6.5, the modes with |m| = 1 are
responsible for more than one third of the force fluctuation.
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Figure 6.6: Percent contribution of the soft modes (|m| = 1) to the total force fluctuation.

Approximations and an analytical formula for ∆fz

In order to obtain a simple analytical expression to the force fluctuation, we con-
sider the limit of relatively thick tubes, with Λ R0 > 6. Considering a = Λ−1 = 5 nm,
this corresponds to tubes with a radius R0 > 30 nm, which is currently observed in
experiments. In this limit, we have

T0 ≈
2
√

2π

3
(Λ R0)

3 , (6.31)

T1 ≈
4
√

2π

3
(Λ R0)

3 , (6.32)

and

Tm ≈ 24(Λ R0)
2 +

8

3m

[
(Λ R0)

3 − 21m2(Λ R0) + 12m3 arctan

(
Λ R0

m

)]
arctan

(
Λ R0

m

)
.

(6.33)

The sum over m in eq.(6.27) can be approximated by an integral, yielding

M∑

m=2

Tm ≈
∫ Λ R0

2

Tm dm ≃ 2
√

2π

3
(Λ R0)

3 +
4π

3
(Λ R0)

3 ln(Λ R0) . (6.34)

At last, we obtain

(∆fz)
2 ≃ (kBT )2 R0 Λ3

6π

[
5

2
+ ln (Λ R0)

]
. (6.35)

We discuss the quality of this approximation and its meaning in section 6.4.
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6.3.3 Discussion on the validity of this result

Here we remind the conditions of validity of eq.(6.27). First, denoting u the
deformation of the tube relative to the mean-field cylinder, we considered here only
terms up to O(u2) in the Hamiltonian and in the stress tensor. Accordingly, our
result corresponds actually to the first term in a series expansion of the form

(∆fz)
2 = f 2

0

[(
kBT

κ

)2

g1(Λ R0) +

(
kBT

κ

)3

g2(Λ R0) + · · ·
]

. (6.36)

The term ∝ (kBT )2 corresponds to the contributions of terms up to order two in u,

coming from the diagrams of the form . Further terms of higher order on

kBT come from the terms beyond O(u2) in the Hamiltonian and in the stress tensor.
Secondly, eq.(6.27) is valid for tubes relatively long, i. e., whose length is bigger
than the radius, but still small compared to the radius of the vesicle from which it is
extracted. The simplified eq.(6.35) is a good approximation under the supplemental
condition Λ R0 > 6.

Finally, let us comment on the influence of the boundary conditions. Differently
from the case of the average force, there is no conservation principle for ∆fz . Here,
we have calculated ∆fz assuming periodic boundary conditions, or equivalently,
through an arbitrary section in the middle of a long enough tube. The actual value
of ∆fz at the extremity of a tubule with specific boundary conditions might be
somewhat different. Note also that we have only calculated the fluctuation of the
component of the force which is parallel to the tube axis.

6.4 Discussion and consequences for experiments

First of all, let us discuss on the dependence of ∆fz on R0. From eq.(6.35), we
have

∆fz ∝
√

R0

a

(
kBT

a

)
×
√

ln

(
R0

a

)
, (6.37)

with a = Λ−1 of the order of the membrane thickness. The first term reminds
the result obtained in chapter 3. There, we have seen that for planar membranes,
the correlation of the stress tensor decreases over a very short length, whatever the
membrane tension or rigidity. One could thus consider that a piece of membrane
was a composition of uncorrelated patches of size ≈ a and use the Central Limit
Theorem to obtain the force fluctuation. In this case, however, the force fluctuation
of tubes has a supplemental logarithmic correction relative to force fluctuation in
planar membranes. This correction can be explained by the fact that the correlation
of the stress tensor in membrane nanotubes decreases in a power law, as we have
shown in section 6.3.1.

In Fig. 6.7, we show ∆fz as a function on R0 for different values of the cutoff Λ.
The exact curve for long tubes given in eq.(6.27) is indicated by circles, while the
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approximation given in eq.(6.35) corresponds to the solid lines. We can see the good
quality of the approximation. For a given value of Λ, ∆fz does not vary much over
the experimental range of R0. On the contrary, it depends strongly on the value of
the cutoff Λ.

Numerically, we have found a force fluctuation of some pN, which is of the same
order of magnitude of the value obtained experimentally experimentally (see Fig. 6.1,
[98] and [119]). For an accurate comparison, however, time-resolved measurements
should be performed and the Brownian force on the pulling bead should be taken
into account.

Figure 6.7: Force fluctuation as a function of the tube’s radius. The solid lines corre-
spond to the approximation given in eq.(6.35). The curves for Λ a = 2, 1 , 0.5 are shown,
respectively, in blue (curve in the middle), red (upper curve) and green (lower curve). The
circles stand for the exact numerical sum (eq.(6.27)). Remark the good quality of the
approximation. In this plot, we have considered kBT = 4 × 10−21 J and a = 5nm.

Finally, we compare the average of the force needed to extract a tube, given
by eq.(5.72), with it’s fluctuation. We trace both curves as a function of the effec-
tive mechanical tension τ , since this tension can be experimentally controlled (by
changing the difference of pressure in micropipettes experiments, for instance). In
agreement with the results of the previous chapters, we assume τ = σ − σ0, where
σ0 = (kBT Λ2)/(8π). Applying this relation to eq.(6.35), we obtain

(∆fz)
2 ≃ (kBT )2 Λ3

6π

√
κ

2(τ + σ0)

[
5

2
+ ln

(
Λ

√
κ

2(τ + σ0)

)]
. (6.38)

The curve for 〈fz〉, already presented in Fig. 5.10 and the curve of ∆fz given above
is shown in Fig. 6.8. We can remark that ∆fz is in general small compared to the
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force fz needed to extract a tube, despite the presence of soft Goldstone modes: it
is comparable to fz for τ < 10−6J/m2, but quite negligible for τ > 10−5J/m2.

Figure 6.8: Average force needed to pull a tube (solid red line) and it’s fluctuation ∆fz

(dashed blue line) as a function of the effective mechanical tension τ . The parameters used
are Λ a = 1 with a ≃ 5 nm, kBT ≃ 4 × 10−21 J and κ ≃ 50 kBT .

Sadly, from Fig. 6.7 and 6.8, we conclude that ∆fz does almost not depend on the
tension of the membrane nor on it’s rigidity. The force fluctuation seems thus of little
interest in the mechanical characterization of membranes. On the other hand, the
fact that ∆fz does not depend neither in κ, neither on the membrane tension, could
be of great interest to experiments involving active membranes. Differently from the
membranes studied in this work, which are passive, active membranes have proteins
embedded in it that add non-equilibrium noise to the system. Experimentally, the
activity of these proteins depends on a external source of energy. It has been observed
that the protein activity causes an enhancement of the membrane fluctuations and of
the excess area relative to the passive case, as if the membrane were in contact with
a thermal bath of higher temperature [121]. Let’s imagine now an experiment in
which tubes were extracted from an active membrane. If the membrane fluctuations
were intensified, ∆fz should be also affected. Since it does almost not depend on
the tension nor on the bending rigidity, it could thus be a used as a direct indicator
of the proteins activity.

6.5 In a nutshell

In this chapter, we have examined the possibility of using the fluctuation of the
force along a membrane tube’s axis ∆fz as a tool to characterize membranes. We
have only considered the contribution of the membrane’s fluctuation, that can be
very important due to the presence of very soft modes. For a weakly fluctuating
tube of length L, with Rves ≫ L > R0, where Rves is the radius of the vesicle from
which the tube is pulled and R0 is the mean-field radius of the tube, we obtained
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(∆fz)
2 ≃ (kBT )2 R0 Λ3

6π

[
5

2
+ ln (Λ R0)

]
, (6.39)

where Λ−1 = a, with a of the order of the membrane thickness. Interestingly, ∆fz

can generally be written as

∆fz ∝
√

R0

a

(
kBT

a

)
×
√

ln

(
R0

a

)
, (6.40)

which reminds the result found for the force fluctuation in planar membranes. The
logarithmic correction is a signature of the long-range correlations present in the
tubes. Numerically, for a ≈ 5 nm, these equations yield ∆fz ≈ 1pN, which is
compatible with experimental data. Studying the behavior of the force fluctuation,
we have found that it is extremely sensitive to the value of Λ, whereas it does
almost not depend on the bending rigidity nor on the tension. Thus, ∆fz seems of
little usefulness to the mechanical characterization of membranes. It could however
be used in experiments involving active membranes, i. e., membranes containing
proteins whose activity can be modified, as an indicator of their activity. Indeed,
when proteins are active, the membrane fluctuations are increased, which would
affect ∆fz regardless of variations on the bending rigidity or on the tension.
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Chapter 7

Preliminary results on a 2-d
membrane simulation

In section 2.3, we proposed a simple numerical system to verify our predictions
concerning the mechanical tension τ , the internal tension σ and the tension r ob-
tained from the fluctuation spectrum of a membrane. Our model was composed of
a set of variable-sized rods, each one representing a coarse-graining of several lipids,
free to move in a two-dimensional space.

In this chapter, we present a more complex numerical experiment consisting of
a 2-dimensional membrane that evolves in a three-dimensional space, which corre-
sponds more accurately to the experimental situation. We are motivated by the
fact that a more elaborated numerical system would not only allow us to verify pre-
cisely our predictions concerning τ , σ and r, but it would also give access to other
quantities, such as the fluctuation of the force that a frame exerts over a membrane,
studied in chapter 3. Moreover, in chapters 5 and 6 we predict the dependence of the
force needed to extract a tube and its fluctuation on τ , which could also be verified
by pulling tubes from a numerical membrane. Sadly, due to time constraints, the
results presented here are far from complete and many questions are left unanswered.

In our numerical experiment, we would like to study a piece of membrane held
by a circular frame and weakly departing from a plane (see Fig. 7.1). We find many
popular methods used to numerically simulate membranes in the scientific literature,
which we sum-up briefly in section 7.1. We have chosen to use a phenomenological
model consisting in a triangular network of extensible bonds connecting effective
particles. The connectivity of the network could be modified in order to mimic
the membrane’s liquidity (see details in section 7.2) and a harmonic potential acted
over the particles at the network’s edge, forcing a circular frame. Thus, we could
measure directly the force applied to the frame and derive the effective tension τ as
well as its fluctuation ∆τ (see section 7.4.1). The minima of this potential could be
modified to widen the frame’s radius, decreasing the excess area α and increasing
the membrane’s tension.
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Figure 7.1: Numerical experiment: a fluctuating membrane weakly departing from a
plane held by a circular frame. A force could be applied to the frame in order to widen its
radius, increasing thus the membrane’s effective tension.

To obtain representative averages of τ , α and other variables, we needed to
generate large sets of configurations of the numerical membrane, which was done
through a Monte Carlo dynamics, described in section 7.3. In this section, we
discuss also which were the criteria used by us to determine whether a sampling was
large enough.

As usually done in laboratory experiments (see section 1.4.2), the bending rigid-
ity κ and tension r were deduced from the average of the fluctuation spectrum of the
membrane. Since we simulate the membrane using a network, obtaining the fluctu-
ation spectrum is somewhat complicated, as we discuss in section 7.4.2. Finally, we
explain in section 7.4.3 how we could estimate the internal tension σ. In section 7.5
we discuss some preliminary results. At last, in section 7.6, we comment briefly on
extracting tubes from our numerical membrane and we end this chapter with a brief
discussion on issues that should be investigated in the future (section 7.7).

7.1 Short panorama of numerical models on mem-

branes

Processes in membranes happen in a wide range of time, size and energy scales.
For instance, interactions between lipids and proteins inside the membrane occur
in distances of the order of the nanometer with a characteristic time of some ps,
while the evolution of the shape of a vesicle involves scales of micrometers and
may take many seconds. Consequently, depending on the process one is interested
in, several different models are used to numerically simulate biological membranes
(see [122], [123] and [124] for some reviews). Schematically, they can be grouped in
three classes:
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Figure 7.2: Illustration of the three main classes of numerical models used to simulate
biological membranes, ordered in terms of the characteristic time and length scale (figure
based on [122]).

1. atomistic models: these models try to take into account all the chemical
details of the molecules by considering the interactions between atoms. They
are used to study how lipids interact among themselves and with proteins. As
these simulations involve many degrees of freedom, they are very computer
consuming. Consequently, one can at most simulate small patches of a dozen
of nanometers for dozens of nanoseconds.

2. coarse-grained models: in these models, small groups of atoms are lumped
together into effective particles that interact via simplified potentials. The
solvent can be effectively or implicitly present. As the number of degrees of
freedom is reduced, one can observe collective movements of the membrane,
such as its self-assembly, stretching [109], pore formation [109] and thermal
fluctuations [3]. The main difficulty of these models is deciding which inter-
actions are truly essential to reproduce the membrane’s behavior. A popular
model of this category is the spring-and-bead model presented in section 2.5.
Sadly, with these models one is still restrained to length scales of hundreds of
nanometers, which is a limitation if one wants to study large-scale processes.

3. phenomenological models: these models take coarse-graining one step fur-
ther, representing several molecules as a single effective particle, which we will
call a bead in the following. The solvent is always implicit. They are suit-
able to study the universal properties of amphiphilic systems. The effective
particles can be attached between themselves through a triangular or square
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mesh or instead, the mesh can be absent [125], [126] (meshless models). In
the first case, to mimic liquidity, the topology of the mesh is changed during
the simulation. The meshwork is then called dynamic. Our previous simple
model, presented in section 2.3, belong to this category.

Throughout this work, we were interested in the general properties of membranes,
regardless of the molecular details, at length scales far bigger than the membrane’s
thickness. Accordingly, phenomenological models are the most adapted to our case.
We give some further details on them in the following.

The meshless models were first proposed by Drouffe et al. in 1991 [127]: the
beads interact via a hard-core repulsion, an anisotropic attraction that depends on
their orientation and an effective multi-body interaction favoring a closed packed en-
vironment to simulate the hydrophobic interactions between lipids and the aqueous
solvent. These models are very elegant, since one can easily observe the mem-
brane self-assembly, topological changes, pore formation and the gel-liquid transi-
tion [127], [125], [126]. As in real experiments, the bending rigidity is usually mea-
sured through the fluctuation spectrum. Recently, however, an alternative method
in which one imposes κ directly was proposed by Noguchi et al. [125]. At each
point of the membrane, a quadratic curve is fitted to the beads contained in a small
region in order to obtain the local curvature. Subsequently, the standard Helfrich
Hamiltonian is used to evaluate the configuration’s energy.

The meshwork phenomenological models are a bit older [128] (see [129] for a
comprehensive review). Actually, very similar models were already studied at that
time in other contexts, such as lattice field theories and lattice approximations to
relativistic string theories [130], [131]. The beads were connected by a triangular
meshwork that could have fixed topology, i. e., each bead had always six neighbors
or they could be connected by a meshwork whose connectivity evolved over time,
forming dynamically triangulated surfaces [132], [133]. At this point, membranes
were usually phantom, i. e., beads could superpose and the self-penetration of the
network was allowed.

In the context of biological membranes, models with fixed connectivity, repre-
senting a polymerized membrane, were first used in 1987 [134]. For the first time,
the curvature energy was taken into account by introducing an interaction between
adjacent triangles of the network. Many contemporary works were interested in the
dependence of the gyration radius of the membrane on it’s linear length [128], [135]
and in the crumpling transition [136]. As biological membranes are self-avoiding,
the effects of the self-avoidance were also studied by introducing a hard-core po-
tential between any two beads and limiting the length of the network’s bonds to
ℓmax = 2

√
3σ0, where σ0 denotes the beads radius, in order to ensure the impenetra-

bility of the surface [135] (see Fig. 7.3 for a geometrical explanation of this value).
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Figure 7.3: In order to assure that the membrane cannot self-penetrate, one imposes a
maximal length ℓmax to the network’s bonds plus a hard-core potential between any two
beads of the network. Here we show how ℓmax = 2

√
3 σ0 is obtained, with σ0 the beads’

radius.

From 1990 on, the fluidity was taken into account by dynamically modifying the
triangulation, while keeping the self-avoiding restrictions [137], [138]. Since then,
this model has been used in a wide variety of complex numerical experiments, such
as studying the dynamics of vesicles and red blood cells in flows [139], [140] and the
budding of vesicles mediated by proteins [141]. As we explain in the next section, this
well-established dynamical triangular network model was the basis for our numerical
model of membrane.

7.2 Our numerical membrane

As shown in Fig. 7.1, we wanted to simulate a relatively large piece of weakly
fluctuating membrane attached to a circular frame. Under these conditions, the
probability of overhangs is very small and thus the probability that large fluctuations
bring distant segments of the membrane into close spatial proximity is negligible.
Consequently, in an approximation, we decided to ignore the hard-core potential be-
tween any two beads and consider only the interactions between neighboring beads,
which is much less computer consuming. In this case, the meshwork phenomeno-
logical model presents a great advantage: with a mesh, we know at every instant
which beads are neighbors, since they are attached by bonds, whereas in meshless
models determining neighbors is not straightforward. So, we have decided to use a
dynamically triangulated meshwork whose beads are phantom if they are not first
neighbors.

In agreement with section 7.1, we denote the beads’ radius σ0. Each pair of
neighboring beads interact through the potential
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Vbond(ℓ) =





∞ for ℓ < ℓmin ,

s (ℓ−ℓ0)2

2
for ℓmin < ℓ < ℓmax,

∞ for ℓ > ℓmax ,

(7.1)

where ℓ is the distance between the center of adjacent beads; ℓmin = 2 σ0 and ℓmax =
2
√

3 σ0 are, respectively, the minimal and maximal distance between the center of
adjacent beads. The length ℓ0 corresponds to a preferred distance that we have
chosen as the average of the minimal and maximal allowed length: ℓ0 = (ℓmin +
ℓmax)/2 = (1 +

√
3) σ0 (see Fig. 7.4).

Figure 7.4: Potential between neighboring beads as a function of their distance ℓ. The
regions where the potential is ∞ are shaded.

In section 1.3.6, we have seen that the bending rigidity of a weakly fluctuating
membrane gives a contribution

Eκ =
κ

2

∫

Ap

(∇2h)2 dAp (7.2)

to the membrane’s energy. We will not consider topological changes in our simu-
lation, so the Gaussian contribution to the curvature energy need not to be taken
into account. In our network, we considered the commonly used bending energy
discretization [128]

Ediscret
κ =

k

2

∑

〈α,β〉
|nα − nβ |2 = k

∑

〈α,β〉
(1 − nα · nβ) , (7.3)

where the sum runs over all pairs of adjacent triangles α and β, with normal vectors
nα and nβ, respectively. This discretization, however, presents a major problem:
the relationship between κ and k depends on the membrane’s geometry. Alterna-
tive more complex discretizations were proposed (see [129] for further details), but
here we have chosen to keep this simplified discretization, since κ will be measured
through the spectrum fluctuation. Note that eq.(7.3) is a good approximation only
for nα ≈ nβ. Indeed, for two triangles with nα = −nβ , we have a contribution 2 k,
while this configuration should be prohibitively costly.
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At last, to impose a circular frame, each bead i of the network’s boundary, shown
in red in Fig. 7.5, is subject to a harmonic potential

V i
f = kf

(Ri − Rf )
2

2
, (7.4)

where kf is a constant that determines the rigidity of the potential, Ri is the distance
of the bead with respect to the center of the network and Rf is the desired frame
radius, imposed at the beginning of the simulation. Note that the projected area
of the membrane Ap is not necessarily equivalent to πR2

f : it can vary more or less,
depending on the choice of kf .

To initialize the network, we construct a planar triangular network alternating
lines with Nx and Nx + 1 beads, up to Nx lines. The beads are distanced by ℓ0 and
arranged as in Fig. 7.5.

Figure 7.5: Initial configuration of the triangular network with Nx = 5. At this point, the
network is planar and each bond measures ℓ0. The dashed circle represents the frame with
Rf = 6.96σ0 and ~Ri is the distance from a boundary bead to the center of the frame. The
red large beads are subjected to the potential (7.4) in order to impose the circular frame.
The ratio ℓ0 = (1+

√
3)σ0 has not been taken into account in this graphical representation.

During the simulation, two kinds of moves were possible:

1. Move P: the position of one bead is modified. The beads shown in blue in
Fig. 7.5 are free to move in three dimensions, while the ones belonging to the
boundary can only move in the frame’s plane.

2. Move Flip: the network’s connectivity is changed in order to represent the
membrane fluidity. This is done by eliminating an existing bond and proposing
a new one, as shown in Fig. 7.6.
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Figure 7.6: Move called flip: a bond is deleted and a new one is proposed, changing the
connectivity of the network.

In the following section, we will see how these moves were numerically imple-
mented.

7.3 Simulation dynamics

As in section 2.3, we used a Monte Carlo method to generate a large sample of
configurations. Again, the configurations were generated through a Markov chain
algorithm: from a certain configuration Ωi, a new configuration Ωi+1 was accepted
with a probability

P (Ωi → Ωi+1) = min
[
1, e−β ∆H] , (7.5)

where ∆H = Hi+1 −Hi is the energy variation. In practice, we have

1. Move P: one particle i is taken at random. If the particle belongs to the bulk of
the network (blue beads in Fig. 7.5), we propose a new position r′

i = ri + ∆r,
where ∆r = δr × [rand(−1, 1) ex + rand(−1, 1) ey + rand(−1, 1) ez] , with
rand(a, b) a random number between a and b, ez the direction perpendicular
to the frame’s plane and ex, ey two perpendicular directions contained in the
frame’s plane. Each bond attached to the particle i has its length modified.
The normal, area and projected area of all triangles that have the particle
i as a vertex must also be re-evaluated. The energy variation has thus two
contributions: one coming from the changing on the bond’s length and other
coming from the curvature. We can see a representation of them in Fig. 7.7.

In the case of a boundary bead (red large beads in Fig. 7.5), one has simply
∆r = δr × [rand(−1, 1) ex + rand(−1, 1) ey]. In addition to the former con-
tributions, one needs also in this case to consider the energy variation coming
from the frame’s potential. The value of δr was adjusted to have an acceptance
rate of ∼ 50%.
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(a) Bonds’ contribution. (b) Curvature contribution.

Figure 7.7: Contributions to the energy variation when the position of a bead, here shown
in blue, is modified. At left, we represent the energy variation due to the modification
of the length of each tether attached to the bead. At right, we represent the curvature
contribution: the normal (segment at the center of the triangles shown in green), area and
projected area of the triangles that have the blue bead as a vertex (dark violet triangles)
must be re-evaluated. One must subsequently consider the variation of the curvature
energy between all adjacent violet triangles.

(a) Before the flip. (b) After the flip.

Figure 7.8: Energy variation for a typical flip move. The red bond represents the bond
that is suppressed (at left) / created (at right). The energy variation is due to the con-
struction of a new bond of different length and to the modification of the normals (segment
at the center of the triangles shown in green) of the dark violet triangles. Consequently,
one has to consider the variation of the curvature energy between the dark violet triangles
and their neighbors, shown in light violet.

2. Move Flip: we randomly choose a bond belonging to the network’s bulk. We
propose a substitution to this bond, as shown in Fig. 7.6. The normal, area
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and projected area of the two new triangles is calculated and the total energy
variation involves the terms illustrated in Fig. 7.8. Remark that the frame
potential never contributes to this kind of move, since the position of the
beads remain constant.

Note also that the acceptance rate of flip moves is completely determined by
the tension applied to the network through the choice of Rf and by the choice
of the constants s and k. Typically, we have an acceptance rate between 1%
and 10%, depending on the chosen values. For very large tensions, this can
be a serious issue, since the energy variation ∆H is in general very large.
Consequently, almost no flip is accepted and the network does not mimic the
membrane’s fluidity.

In both kinds of move, one has to re-evaluate the normal, area and projected
area of some triangles. For each triangle, we evaluate the cross product of two of
its edges to obtain the direction of its normal and its new area. One must however
pay attention to the order in which the cross product is evaluated to assure that the
orientation of the normal is correct. Similarly, to obtain the new projected area, we
considered the cross product of the projection of two of the triangle’s edges onto the
frame’s plane.

(a) Top view. (b) Side view.

Figure 7.9: Configuration for a small network with Nx = 5 and a total of N = 27 beads,
β σ2

0 s = 1, β k = 10, β σ2
0 kf = 30 and Rf = 6.96σ0 after the first 2 × 104 Monte Carlo

steps. In the top view, we see that the boundaries roughly coincide with the imposed
circular frame after Nneg = 2× 104 steps (the center of the frame is indicated by the black
dot). Observe also that the topology of the network has changed: one finds beads with five
and seven neighbors. In the side view, we can see that the membrane fluctuates around
the plane (note that the vertical and the horizontal scales are different).

For each attempt of move P , we try a flip. We call a Monte Carlo step a set of
N sequences of a move P followed by a move flip, with N the number of beads. The
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first Nneg steps are not taken into account in the evaluation of averages to assure
that the membrane has reached equilibrium. In Fig. 7.9, we show the configuration
of a small network after Nneg = 2 × 104 Monte Carlo steps. The frame is already
roughly circular (the fit with the frame depends on the choice of kf). We will call a
complete sequence of Nneg Monte Carlo steps followed by a number of equilibrium
Monte Carlo steps Niter a run.

Figure 7.10: Snapshots of the network at every 2×104 Monte Carlo steps. The height of
the membrane is represented by the shading scale at right and the three spatial coordinates
are measured in unities of σ0. This image was obtained using the interpolation explained
in the following (section 7.4.2) for Ngrid = 128. Remark that the membrane weakly departs
from the plane and that the configurations look uncorrelated after 2 × 104 iterations.
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7.3.1 Verifications and equilibration criteria

In order to obtain meaningful averages, we have to assure that our configuration
sampling is reasonably uniform over the space of the possible configurations, i. e,
we have to assure that Niter is large enough. We have not done a systematic study
on how the equilibration time depends on the network’s size and constants at this
preliminary stage. We have rather evaluated the equilibration at each run. In the
following, we exemplify how we have carried this out using a typical network with 410
beads (Nx = 10), β k = 5, β σ2

0 kf = 10, β σ2
0 s = 1 and Rf = 33.04 σ0. We assume

that the system has already relaxed to its equilibrium state after Nneg Monte Carlo
steps. First of all, we have evaluated visually the system’s evolution, as shown in
Fig. 7.10. We can see that in this case, the configurations are already very different
after 2 × 104 Monte Carlo steps.

Visually, we have also checked if all the bonds were being flipped with a similar
frequency. For the same network as before, we show in Fig. 7.11(a) a map of the
bonds colored as a function of the relative frequency with which they were flipped.
We can see that the coloring is very uniform, indicating that the network does not
present regions with different liquidity. As a supplementary check, we have also
studied the diffusion of one bead over time (see Fig. 7.11(b)).

(a) Flip frequency. (b) Diffusion of one bead.

Figure 7.11: At left, we see the top view of the network after 2 × 105 iterations. The
inset shows a detail of the network. Each bond was colored with the relative frequency
with which flips were accepted (the average was normalized to one). We see that flips
happened uniformly in space. At right, the diffusion of a bead after the same number of
iterations testify of the membrane’s liquidity (red curve). We have superposed a network
snapshot (in green) for comparison.

On a second moment, we have studied the spatial average of the membrane’s
height: since there is no asymmetry, after a sufficiently large number of steps, one
should expect this quantity to vanish. This condition is however not sufficient, since
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the membrane can have a vanishing spatial average and be non-planar. We have
thus monitored the local average of the membrane’s height, i. e., we have studied
the average shape of the membrane (see Fig. 7.12). In practice, this was done by
constructing an interpolation that will be explained in section 7.4.2 and averaging
the height over each cell of the interpolation grid.

Figure 7.12: Average shape of the membrane after 2 × 106 Monte Carlo steps. The
average height of the membrane is represented by the shading scale at right and the three
spatial coordinates are measured in unities of σ0. Once again, we have used Ngrid = 128
to construct an interpolation grid. Note that the vertical scale is far smaller than the
horizontal. The parameters are the same as in the last figures.

Finally, we have monitored the evolution of longest Fourier modes h1,0, h0,1 and
h1,1 (in the next section we explain how we have obtained the Fourier decomposi-
tion). Typical curves can be seen in Fig. 7.13. We can see that after ≈ 104 steps, the
coefficients are uncorrelated, which means that the longest modes have relaxed. Ac-
cordingly, we have considered that in this case, 2×106 steps generated a sufficiently
large sampling of the configuration space.

(a) Mode h1,0. (b) Mode h0,1. (c) Mode h1,1.

Figure 7.13: Fourier coefficients as a function of the number of Monte Carlo steps. The
parameters of the network are the same as before.
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7.4 Measuring tensions and the excess area

In this section we describe how we measured the effective tension τ and the excess
area α. We explain also the algorithm used to derive the fluctuation spectrum, from
whose average we could derive κ and the tension r. Finally, we discuss the internal
tension σ in section 7.4.3.

7.4.1 Excess area and mechanical tension measures

In order to obtain τ , we study the total force that the harmonic potential given
in eq.(7.4) exerts over the beads at the network’s boundary, which represents the
force applied by the frame onto the membrane:

f = −kf

∑

i

(Ri − Rf ) , (7.6)

where the sum runs over the beads at the network’s edge and Ri is their distance to
the center of the frame. For kf large enough, the edge of the network fits well with
the frame with radius Rf and thus the effective tension of a configuration is given
by

τi =
f

2πRf

. (7.7)

During a run, τi was evaluated at the end of each Monte Carlo step. At the end of
it, we obtained τ = 〈τi〉 and its standard deviation (∆τ)2 = 〈τ 2

i 〉 − 〈τi〉2.
Concerning the excess area, we carefully updated the membrane’s projected area

Ap and actual area A after each attempt of move. At the end of each Monte Carlo
step, the excess area of the configuration

αi =
A − Ap

Ap

(7.8)

was added to a variable in order to obtain α = 〈αi〉 in the end of the run.

7.4.2 Fluctuation spectrum

Let’s consider a square piece of membrane with lateral size L weakly departing
from a plane, whose shape is described in the Monge’s gauge by h(r). In terms of
Fourier modes, h(r) can be written as

h(r) =
∑

q

hn,m ei q·r , (7.9)

with r = x ex + y ey, q = 2π/L (n, m), n, m ∈ N and

∑

q

≡
∑

|n|≤Nmax

∑

|m|≤Nmax

, (7.10)

where Nmax = L/(2a) corresponds to the smallest possible wave length. Note that
here we have used a slightly different normalization from the rest of this work. The
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coefficients hn,m are in general complex and h−n,−m = h∗
n,m, where the superscript ∗

stands for the complex conjugate. It is given by

hn,m =
1

L2

∫ L

0

∫ L

0

h(r) e−iq·r dr . (7.11)

In section 1.3.6, we have seen that membranes connected to a lipid reservoir could
have their energy described by the Helfrich Hamiltonian (eq.(1.15)). Accordingly,
the average of the Fourier coefficients respects

〈|hn,m|2〉 =
1

L2

kBT

rq2 + κq4
, (7.12)

where r is the macroscopic counterpart of the internal tension σ and κ is the bending
rigidity (in fact, as discussed before in section 1.3.6, it corresponds more precisely
to an effective bending rigidity due to renormalization effects). As in laboratory
experiments, we would like to measure the fluctuation spectrum of our numerical
membrane in order to derive r and κ. In the following, we will explain how it was
done.

Obtaining the fluctuation spectrum

For a general wave-vector (n, m), we have to evaluate eq.(7.11) in order to obtain
hn,m. The first numerical difficulty comes from the fact that instead of a continuous
surface h(r), we have access only to the position and height of the beads. Con-
sequently, the first step is to built an approximation to the network’s surface by
discretizing it over a square grid of Ngrid × Ngrid cells with lateral side L, as exem-
plified in Fig. 7.14. Each cell of has a lateral size ∆ = L/Ngrid. We choose L slightly
bigger than 2 Rf to avoid problems with the discontinuities at the edges of the grid.

Figure 7.14: Top view of a network with Nx = 5 and a total of N = 27 beads (red). To
evaluate the coefficients of the Fourier transform, we discretized the membrane over the
grid shown in black (Ngrid = 16 here).
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The discretized version of eq.(7.11), known as DFT (Discrete Fourier Transform)
is given by

hn,m =
1

N2
grid

Ngrid−1∑

α=0

Ngrid−1∑

β=0

hα,β e
2πi (nα+mβ)

Ngrid , (7.13)

where hα,β is the height of the cell whose bottom left corner position is r = ∆×(α, β).
At this point, we need to attribute a height to each cell of the grid, which is initially
set to zero. We do so in two steps:

• First, we obtain the plane’s equation for each triangle from the position of its
three vertex. Using this equation, we evaluate the height of some points inside
the triangle, as shown in Fig. 7.15.

(a) Top view. (b) Side view.

Figure 7.15: Initially, we know only the position of the triangle’s vertex. From them,
the plane’s equation is obtained and the height is evaluated over each dot on the triangle.

• Secondly, the cell that contains the projection of a dot receives its height. If
the projection of more than one dot falls inside the same cell, we attribute the
average of the their height to the cell (see Fig. 7.16).
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Figure 7.16: To evaluate the height of the cell shown in red, we averaged the height of
the dots whose projection are shown in violet.

Fig. 7.17 shows an example to testify of the quality of our approximation.

Figure 7.17: Piece of a network with Nx = 10 (N = 410 beads) and Ngrid = 128, shown
in red. The green dots correspond to the height of each cell of the grid, obtained through
the method explained above. Remark the good quality of the approximation procedure.
Note that the vertical scale is different from the horizontal.

Once the approximative grid is built, we can evaluate eq.(7.13) which has a great
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advantage: it can be evaluated using the FFT (Fast Fourier Transform) algorithm
with a N2

grid log(Ngrid) complexity, instead of a N4
grid complexity for naive algorithms.

We used thus the cdft (complex discrete Fourier transform) routine of the FFT
library implemented by Takuya Ooura [142], which is a general library to evaluate
FFT under the condition that Ngrid is a power of 2.

A subtlety

The prediction given in eq.(7.12) is valid for a squared piece of membrane with
lateral size L. Since our membrane is round, our situation corresponds to a squared
membrane seen through a circular mask, given by

circ(r) =





1 for r < Rf ,

0 for r > Rf .
(7.14)

So, we are actually performing numerically the Fourier transform of the function
h(r) that denotes the height of the membrane multiplied by circ(r), instead of just
performing the Fourier transform of h(r). Indicating the Fourier transform by a
superscript ,̂ we recall the convolution theorem:

̂(h circ) = ĥ ∗ ĉirc , (7.15)

where ∗ indicates the convolution between the two functions.

In order to obtain ĥ, we will evaluate the Fourier transform of circ(r). Using the
above presented definition, we have [143]

ĉirc =
1

L2

∫ L

0

∫ L

0

circ(r) e−iq·r dr ,

=
1

L2

∫ Rf

0

r circ(r)

(∫ 2π

0

e−i q·rdθ

)
dr ,

=
2π

L2

∫ Rf

0

r J0(q r) dr ,

≃ π

2 Rf

J1(q Rf)

q
, (7.16)

where Ji is the Bessel function of order i. In the last passage, we have used the fact
that L ≈ 2 Rf . This function has a very marked pike, as shown in Fig. 7.18.
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Figure 7.18: Plot of ĉirc as a function of the wave-vector q for Rf = 32σ0. Note that
the function presents a very marked pike.

From eq.(7.15), since ĉirc is so piked, we have

̂(h circ) ≃ ĥ × ĉirc(0) ,

≃ ĥ × π

4
. (7.17)

Finally, to obtain the Fourier transform of h(r), we have to multiply the Fourier
coefficients h̃n,m obtained numerically (considering the mask) by 4/π:

hn,m =
4

π
h̃n,m . (7.18)

In the following, we will keep the notation h̃n,m for the coefficients obtained with
the mask.

During a run

As the process of grid construction is relatively computer consuming, the fluc-
tuation spectrum was measured over Nspec configurations uniformly spaced during
a run. At each time, we obtained the Re(h̃n,m) and Im(h̃n,m), i. e., the real and
complex parts of each Fourier coefficient, with |n| ≤ Ngrid and |m| ≤ Ngrid. In the
end of the run, we evaluated 〈|h̃n,m|2〉 = 〈Re(h̃n,m)2〉 + 〈Im(h̃n,m)2〉.

We plotted then 1/(q2L2〈|hn,m|2〉) as a function of q2, with q2 = (4π2)/(L2) (n2 +
m2) and hnm = 4/π h̃n,m. From eq.(7.11), we expect, at least for large wave-lengths,
a linear relation between these quantities: from the y-intercept of the curve, we
derive r, while from it’s slope we obtain κ. In Fig. 7.19, we show an example such
a plot with a linear fit to the region of large wave-lengths.
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7.4.3 Internal tension σ

As discussed in section 1.3.5, the internal tension σ is the energetic cost associated
to an unitary increase in the microscopical area A of the membrane. From the energy
E of a system, it can be obtained through:

σ =

(
∂E

∂A

)
. (7.19)

Let’s consider a general triangle in the bulk of our meshwork. In an approxima-
tion, let’s consider that the triangle is equilateral and has ℓ as lateral size. From
eq.(7.1), the local energy Etri associated to this triangle is given by

Etri = 3 × 1

2
× s

(ℓ − ℓ0)
2

2
+ Ecurv , (7.20)

where Ecurv is a contribution coming from the bending rigidity. The factor 3 comes
from the three sides of the triangle, while the term 1/2 comes from the fact that
each side is shared by two adjacent triangles. Note that the first term is the only
contribution involving the bead-to-bead distance ℓ. Under the assumption that the
triangle is equilateral, its area is given by

Atri =

√
3

4
ℓ2 . (7.21)

From eq.(7.19) and under the assumption of an equilateral triangle, we can define a
local internal tension:

σloc =

(
∂Etri

∂Atri

)
,

=

(
∂Etri

∂ℓ

) (
∂Atri

∂ℓ

)−1

,

=
√

3 s
ℓ − ℓ0

ℓ
. (7.22)

Now, in our simulation, the sides of all triangles are submitted to the same
harmonic potential given in eq.(7.1). Accordingly, the hypothesis that each triangle
is in average equilateral is very reasonable. Moreover, as the system is spatially
uniform, we propose thus a generalization of eq.(7.22) as a estimate of the internal
tension:

σ =
√

3 s
〈ℓ̄〉 − ℓ0

〈ℓ̄〉 , (7.23)

where the bar over ℓ indicates the spatial average of the bead-to-bead distance, while
〈〉 indicates as usually the average over an ensemble of configurations.

In practice, we have kept track of the average length of the bonds over the
network ℓ̄ at each Monte Carlo step. At the end of the run, we could thus evaluate
the average of ℓ̄ over a the ensemble of configurations to obtain σ.
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7.5 Some first results

The results presented here consist of a preliminary set of runs for a network with
Nx = 10, with a total of N = 410 beads. We have kept the parameters β k = 5,
β σ2

0 kf = 10 and β σ2
0 s = 1. As discussed in section 7.3.1, we let the system evolve

during Nneg = 104 steps in order to assure that the final frame shape had been
attained. The averages were made in a second time, over Niter = 2 × 106 steps
during which 1500 spectra were evaluated.

We performed fifteen runs with these parameters, increasing at each run the
membrane’s tension by widening the frame’s radius: the initial radius Rf = 32.34 σ0

was successively increased of 0.35 σ0 up to Rf = 37.39 σ0. As the radius increased,
the excess area decreased from ≈ 3.3% to ≈ 2.4%.

For each run, we have plotted the fluctuation spectrum as detailed in section 7.4.2
to obtain r and κ. A typical example is shown in Fig. 7.19, where we have colored
the points in function of the angle that the wave-vector associated to the mode did
with the horizontal direction of the grid. First, we can remark that there is no clear
color pattern, which indicates that the membrane is indeed isotropic. Second, we
can see that in the region of large wave-lengths, the dots are well-fitted by a linear
curve, from which we deduce r and κ.

Figure 7.19: Deducing r and κ: the colored dots represent the inverse of the average
intensity of a mode plotted as a function of the squared wave vector. The colored scale
represents the angle that the wave-vector does with the horizontal direction of the grid.
Remark that there is no color pattern, which is an evidence of the system’s isotropy. The
line represents the linear fit for large wave lengths (λ > 9σ0, corresponding to q2 < 0.5)
from which r and κ are deduced.

We plot the results obtained for each run as a function of the corresponding
excess area in Fig. 7.20 (we remind that the smaller the excess area, the bigger the
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frame’s radius). In Fig. 7.20(a), we note a small dependence of κ as a function of the
excess area. In Fig. 7.20(b), we compare the values of τ , σ and r: the three decrease
as the excess area increases, as expected. As we predict, we have always σ bigger
than τ and their difference is bigger for small tensions. Concerning the renormalized
tension r, we find values not very different from τ and σ, which is reassuring. The
tension fluctuation ∆τ , represented by red bars, seems almost constant, which agrees
at least qualitatively with the predictions of chapter 3.

(a) Bending rigidity. (b) Tensions.

Figure 7.20: At left: values of κ in units of kBT obtained by the linear fit shown in
Fig. 7.19 for different values of excess area. At right: measured tensions as a function of
the excess area.

At this point, we have good indications that the our network mimics well a
liquid membrane under the Helfrich Hamiltonian. In the next section, we will test
quantitatively the compatibility of these results with our theoretical predictions.

7.5.1 Difference between τ , σ and r and our predictions

In chapter 2, we predicted that

τ = σ − kBT Λ2

8π

[
1 − σ

σr

ln
(
1 +

σr

σ

)]
, (7.24)

where Λ is the bigger wave-vector possible and σr = κΛ2.

In this section, we would like to verify quantitatively the compatibility of eq.(7.24)
with the data of the last section. We made a one-variable fit of eq.(7.24) by adjusting
the value of Λ. The best fit, for Λ = 1.03 σ−1

0 , is shown in Fig. 7.21(a). The com-
patibility between the data obtained from the simulation and the predicted values
is relatively poor.
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(a) Tension τ . (b) Excess area.

Figure 7.21: At left, we show with the red triangles the measured values of τ in units
of kBT/σ2

0 . We have fitted eq.(7.24) to the red triangles by adjusting Λ. The best result,
obtained for Λ = 1.03σ−1

0 , is shown with green squares. At right, we applied this value of
Λ to eq.(7.25) and obtained the predicted excess area (green squares), which are clearly
incompatible with the measured excess area (red triangles).

In chapter 2, we have also predicted the dependence of the excess area on the
tension σ:

α =
kBT

8πκ
ln
(σr

σ

)
. (7.25)

Both eqs.(7.24) and (7.25) should be valid under the same conditions. Accordingly,
we decided to make a self-consistency test by plotting the predicted values of the
excess area obtained through eq.(7.25), with the Λ obtained above. We observe
that the predicted values for the excess area are consistently smaller than the values
measured during the simulation.

Up to now, we have not a clear explanation for these results. Two hypothesis
deserve further attention:

• our membrane is not exactly very tense, since it is very easy to stretch the
bonds. Indeed, stretching a bond to its maximum costs only ∼ 0.25kBT for
β σ2

0 s = 1. It is thus possible that the simulated membrane is not under the
hypothesis of our theory. We could thus imagine further tests with a higher s,
but in this case, as discussed earlier, the membrane would loose its liquidity.

• the projected area of the membrane could be bigger, which would explain why
the measured excess area is consistently bigger than the predicted. When
we proposed the equilibration criteria in section 7.3.1, we studied the average
shape of the membrane, as shown in Fig. 7.12. We have not however excluded
the possibility of a rotating deformed shape: in this case, we would still have an
average shape nearly flat, but the membrane would actually fluctuate around
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this deformed shape, with a projected area bigger than if it fluctuated effec-
tively around a plane. To verify that, we should perform a rotation to align
the configurations before evaluating the average shape by aligning the direc-
tion of the maximum height at each step, for instance. This would however
not explain the poor fit shown in Fig. 7.21(a).

7.6 Extraction of tubes

In parallel with the studies on the membrane tension, we have explored the
possibility of extracting tubes from our simplified membrane. To pull a tube, we
have applied a harmonic potential

Vtube = ktube
(h − h0)

2

2
, (7.26)

to a central bead whose height is denoted by h. The preferred height of the tube
is defined by the choice of h0. As in the case of the frame’s force, we could obtain
the force applied to pull the tube, as well as its fluctuation. The first results for the
same parameters of the last section, with Rf = 33.04 σ0, are shown in Fig. 7.22.

(a) h0 = 10 σ0. (b) h0 = 15 σ0.

Figure 7.22: Tube pulled from a membrane for two different values of h0. At right,
remark that the angle between the triangles is very important in the protruded region.
The vertical and horizontal scales are different.

Looking at these images, we remark a first problem: the angle between the
triangles is very large. This phenomenon is still more marked for a bigger tubes
(see Fig. 7.23(a)), where the protuberance becomes almost flat. The problem comes
from the discretization of the curvature energy:

Ediscret
κ = k

∑

〈α,β〉
(1 − nα · nβ) , (7.27)

where α and β are adjacent triangles. As discussed before, this discretization is
valid only for nα ≈ nβ, since large deformations bear an unphysical finite cost. We
proposed thus an alternative discretization
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E ′discret
κ = k

∑

〈α,β〉
(1 − nα · nβ) e

0.8
(1+nα·nβ) . (7.28)

With this discretization, the energy cost is roughly the same as before for nα ≈ nβ,
but it increases exponentially as nα approaches −nβ. The resulting tube, with the
same parameters as in Fig. 7.23(a), has a more normal appearance (see Fig. 7.23(b)).

(a) h0 = 20 σ0 with eq.(7.27). (b) h0 = 20 σ0 with eq.(7.28).

Figure 7.23: Tubes pulled from membranes with the same parameters as before, but
with different discretizations for the curvature energy. The vertical and horizontal scales
are different. At left, we see an almost flat protuberance, while at right we see a normal
tube.

Due to time constraints, we have not examined the dependence of the force
needed to extract a tube as a function of its radius. It would also be interesting to
measure the tube’s radius: together with the measure of the force, one could thus
deduce the tension σ and the bending rigidity κ.

7.7 Perspectives and discussion

As mentioned at the beginning of this chapter, we presented here only preliminary
results and many issues need further attention, such as:

1. verify more carefully if the average shape of the membrane is indeed planar.

2. study the dependence of ∆τ on σ.

3. in section 2.4.1 of chapter 2, we predicted that for a membrane under no
external force, i. e., with τ = 0, the natural excess area was given by

αeq ≃ ln(8πβκ)

8πβκ
, (7.29)

which depends only on the membrane bending rigidity and temperature. If
however one forgets the difference between τ and σ, αeq should also depend
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logarithmically on the size of the membrane (see eq.(2.77)). Numerically, we
could thus adjust the frame’s radius Rf for different membrane sizes in order
to have 〈τ〉 = 0 and measure the excess area in each case.

4. study better the extraction of tubes and the effects of the alternative discretiza-
tion of the curvature energy proposed by us.

5. perform a systematic study on the time needed for a system to equilibrate as
a function of its size and parameters.

At last, even if using a network to simulate a membrane presents many advan-
tages, it presents a severe drawback: in order to assure liquidity, the bonds must
be very easily stretched. To make the bonds stiffer without affecting the membrane
liquidity, one possible solution would be to pass to a macrocanonical ensemble of
effective particles: the network would have thus a non-fixed number of beads. A new
particle could be introduced in the middle of a very stretched triangle, which would
restore the liquidity for the case of high tension. Conversely, beads should also be
deleted from the network. In practice, this is very difficult to implement already
from a data structure point of view and the results are not sure.

7.8 In a nutshell

In this chapter we presented some preliminary results of a numerical experiment
consisting in a piece of weakly fluctuating membrane attached to a circular frame.
Numerically, it was represented by a triangular network whose connectivity evolved
to simulate liquidity. At each vertex of the network, we placed effective particles
that could interact with their first neighbors. The bending rigidity was mimicked
by an interaction between adjacent triangles and the particles in the network’s edge
were submitted to a harmonic potential in order to force the circular frame. We
used a Monte Carlo method to obtain a large sample of equilibrium configurations,
from which we could evaluate averages of the mechanical tension, excess area and
fluctuation spectrum. Our first results seems to show that the network behaves
similarly to a membrane, but we could not quantitatively verify our predictions
concerning the membrane tension. Many questions in this chapter were left untackled
due to time constraints.
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Lipid membranes are very particular materials: despite being almost unstretch-
able microscopically, in mesoscopic scale they can be easily stretched through the
flattening of thermal fluctuations. Indeed, lipid membranes are highly fluctuating
and present thus an excess area relative to its optically resolvable area.

In the beginning of this work, we have seen that the term surface tension des-
ignates several quantities in the context of lipid membranes. First, there is the
tension τ needed to increase the projected area, or equivalently, to reduce the excess
area. Secondly, there is σ, the Lagrange-multiplier introduced theoretically to im-
pose a fixed microscopical area to the membrane. Finally, there is the macroscopic
counterpart of σ, r, related to the spectrum of fluctuation.

Experimentally, r can be obtained directly from the fluctuation spectrum and τ
can be measured through the Laplace pressure, for instance. On the other hand,
the theoretical predictions usually involve σ, which is not directly measurable. To
interpret experimental data, the equality between these quantities is often taken
for granted. Our main goal throughout this work was to determine under which
conditions these suppositions are justifiable, specially the equality between τ and σ.

Firstly, we have treated the simplest case of a planar membrane. In the literature,
we find some former calculations relating τ to σ and r. There was, however, no
consensus: different results were found, depending on how the calculation was made
and on the precise definition of τ . Indeed, the method involved deriving the free-
energy with respect to the projected area of the membrane, which we have shown here
to be very tricky. To work around this problem, we have chosen to use a more recent
tool: the projected stress tensor, a tensor that relates the force exchanged through
an infinitesimal cut on the membrane to the projection of this cut on the projected
plane. The definition of the mechanical tension τ is thus straightforward: it is simply
given by the average of the projected stress tensor. As supplemental advantage, the
projected stress tensor can be relatively easily derived for other geometries, such as
spherical and cylindrical, which we have treated in this dissertation.

After evaluating the average of the projected stress tensor, we have obtained an
exact relation between τ and σ for weakly fluctuating planar membranes. In a general
way, we have τ ≃ σ−σ0, which is the most important result of this dissertation. The
constant σ0 depends on the temperature and on the frequency cutoff Λ, i. e., the
highest wave-vector allowed. At room temperature and considering Λ = 1/(5 nm),
we find σ0 ≈ 5 × 10−6 N/m. Accordingly, the assumption σ ≈ τ is justifiable only
for high tensions. Otherwise, one must consider the corrected relation to interpret
correctly experimental data. Indeed, some experiments on the adhesion of vesicles
seems to agree with our predictions.
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CONCLUSION

In laboratory, planar membranes are very difficult to manipulate. Vesicles are
more commonly used, specially the giant vesicles that can be easily manipulated with
a micropipette. These vesicles can be poked, i. e., free to exchange inner material
with the suspension medium, or closed, i. e., with a fixed volume. We examined thus
how the volume constraint and the geometry affected the above mentioned relation
for quasi-spherical vesicles. For both poked and closed vesicles, we conclude that
the relation obtained in the planar case is a very good approximation. Interestingly,
we predict that the internal pressure of a spherical vesicle can be smaller than the
outer, which is impossible in liquid drops.

Another popularly geometry found in membrane experiments is the cylinder.
Indeed, nanotubes are extracted from a piece of membrane, typically a vesicle, by
applying a point force with an optical tweezer or with a magnetic field. Using
a simplified mean-field calculations and supposing σ ≈ τ , the bending rigidity is
usually obtained from the curve force versus tension. Recently, however, theoretical
calculations have predicted that the shape fluctuations for this geometry are very
strong. We expect hence that these fluctuations may affect the interpretation of force
measurements. In this work, we have found that these fluctuation do affect indeed
the value of the mean-field force. Curiously, the effect has never been observed, since
the assumption σ ≈ τ seems to coincidently make up for the thermal fluctuations.

Aside from the evaluation of tensions and forces, we have also evaluated for the
first time the standard deviation of these quantities due to thermal fluctuations. As
in tubular geometry the shape fluctuations are important, we would like to verify
if the fluctuation of the force needed to extract a membrane tube could be used to
characterize a membrane. Our results show that the force fluctuation depends on
the temperature and that it is very sensitive to the values of Λ, whereas it does
almost not depend on the bending rigidity nor on the tension. It should thus be
of little usefulness to characterize mechanically a membrane. On the other hand,
it is possibly interesting to study the activity of active proteins embedded in the
membrane, which has an effect similar to changing temperature.

Finally, while we have characterized rather well the relation between τ and σ, we
leave almost untackled the question of how r relates to the other tensions: we have
just questioned a former prediction stating that r = τ and observed a non-trivial
behavior of r in two numerical experiments proposed by us. The question is however
very important and needs further attention, since r is a popular non-invasive method
used to accede to the tension of a membrane.
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Appendix A

Alternative derivation of the
projected stress tensor

We re-derive here eqs.(1.58)–(1.60) directly from eq.(1.50). We consider a local
tangent frame (X, Y, Z) attached to the membrane, with the first two axes parallel
to the principal curvature directions and the third one parallel to the membrane
normal, as shown in Fig. 1.38(a). In this principal tangent frame, as introduced in
section 1.5.1, the force exchanged through a cut of length dℓ′ is given by

dφ = Σ̃ · ν dℓ′ , (A.1)

where ν is the normal to the cut within the tangent plane andΣ̃ is given by eq.(1.50).

Now, consider the fixed reference plane Π introduced on section 1.5.2. The
projected stress tensor Σ is defined by

dφ = Σ · m dℓ , (A.2)

where dℓ is the length of the cut’s projection onto Π and m the normal to the cut’s
projection within Π (see Fig. 1.39). We aim to obtain Σ by comparing eq.(A.1) and
eq.(A.2) when the membrane normal exhibits only small deviations with respect to
the normal to Π.

We consider an orthonormal basis (x, y, z) with ex and ey belonging to Π. We
choose m = ex, the cut’s projection being parallel to ey. Locally, the membrane
shape may be approximated by a quadratic form:

z = h(x, y) ≃ h0 + a x + b y +
1

2
α x2 + β xy +

1

2
γ y2 , (A.3)

with (a, b, α, β, γ) ≡ (hx, hy, hxx, hxy, hyy) = O(ǫ) and ǫ ≪ 1. We shall apply three
successive frame rotations in order to bring the fixed frame (x, y, z) to the tangent
principal frame (X, Y, Z).

First, we make a rotation about ex of angle θ1 = b, plus a vertical translation.
The new coordinates, indicated by a prime, are related to the old ones by
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x = x′ , (A.4)

y =

(
1 − b2

2

)
y′ − b z′ + O(ǫ3) , (A.5)

z = h0 + b y′ +

(
1 − b2

2

)
z′ + O(ǫ3) . (A.6)

Note that e′
y is thus parallel to the actual cut within the membrane. We perform

a second rotation, about the new axis e′
y of angle θ2 = a in order to make the new

plane (x′′, y′′) coincide with the tangent plane:

x′ =

(
1 − a2

2

)
x′′ − a z′′ + O(ǫ3) , (A.7)

y′ = y′′ , (A.8)

z′ = a x′′ +

(
1 − a2

2

)
z′′ + O(ǫ3) . (A.9)

Note that e′′
y ≡ e′

y is still parallel to the actual cut, while e′′
x is now the normal to

the cut within the tangent plane. In other words e′′
x = ν.

In the (x′′, y′′, z′′) coordinate system, the membrane shape is given simply by

z′′ =
1

2
α x′′2 + β x′′y′′ +

1

2
γ y′′2 + O(ǫ3) . (A.10)

Finally, we arrive to the principal tangent frame (X, Y, Z) by making a rotation
about ez′′ in order to diagonalize the quadratic form. Indeed, if we set

x′′ = X cos θ − Y sin θ , (A.11)

y′′ = X sin θ + Y cos θ , (A.12)

z′′ = Z , (A.13)

where θ is the solution of

2β cos 2θ = (α − γ) sin 2θ , (A.14)

the cross term vanishes, leaving Z = 1
2
CXX2 + 1

2
CY Y 2, where CX = α cos2 θ +

γ sin2 θ + β sin 2θ + O(ǫ3) and CY = γ cos2 θ + α sin2 θ − β sin 2θ + O(ǫ3) are the
principal curvatures.

Comparing eqs.(A.1) and (A.2) while using m = ex, ν = ex′′ and dℓ′ = dℓ(1 +
b2/2) + O(ǫ3), yields

Σxx =

(
1 +

b2

2

)
ex · Σ̃ · ex′′ + O(ǫ3) , (A.15)

Σyx =

(
1 +

b2

2

)
ey · Σ̃ · ex′′ + O(ǫ3) , (A.16)

Σzx =

(
1 +

b2

2

)
ez · Σ̃ · ex′′ + O(ǫ3) . (A.17)
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Calculating Σ̃ · ex′′ from eq.(1.50), we obtain

Σ̃ · ex′′ = cos θ
(
σ +

κ

2
C2

Y − κ

2
C2

X

)
eX

− sin θ
(
σ +

κ

2
C2

X − κ

2
C2

Y

)
eY

− κ
∂C

∂x′′eZ , (A.18)

with C = ∇2h + O(ǫ2). We have taken advantage that the terms ∝ eZ in eq.(1.50)
are equal −κ eZ ⊗∇C. Going to the (x′′, y′′, z′′) basis and using eq.(A.14), we have
simply

Σ̃ · ex′′ =
(
σ +

κ

2
γ2 − κ

2
α2
)

ex′′

− κ

2
β (α + γ) ey′′ − κ

∂C

∂x′′ ez′′ + O(ǫ3) . (A.19)

Since C = O(ǫ), we can replace ∂/∂x′′ by ∂/∂x, since the difference between
the latter is of order ǫ2. Using now directly eqs.(A.15)–(A.17), with ex′′ · ex =
(1 − a2/2) + O(ǫ3), ey′′ · ex = 0, ez′′ · ex = −a + O(ǫ3), etc., yields

Σxx = σ +
σ

2

(
b2 − a2

)
+

κ

2

(
γ2 − α2

)

+κ a ∂xC + O(ǫ3) , (A.20)

Σyx = −σ ab − κ β (α + γ) + κ b ∂xC + O(ǫ3) , (A.21)

Σzx = σa − κ ∂xC + O(ǫ3) , (A.22)

which coincide with eqs.(1.58)–(1.60).
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Appendix B

Projected stress tensor for a 1-d
filament

The derivation of the projected stress tensor for a 1-d filament follows the same
reasoning presented in section 1.5.2. The force exchanged through a cut is given by

f = Σ1D · m =
(
Σ1D

x ex + Σ1D
z ez

)
mx , (B.1)

where m = mx ex = ±ex, depending on the orientation of the projected cut. Note
that the stress tensor now has just two components. For a general filament whose
energy is given by

H =

∫

Lp

f(hx, hxx) dx , (B.2)

an arbitrary small displacement δa = δax ex + δaz ez of the membrane, at equilib-
rium, leads to the energy variation

δH =

[
f δax +

(
∂f

∂hx
− ∂x

∂f

∂hxx

)
δu − ∂f

∂hxx
δux

]
mx

∣∣∣∣
δLp

, (B.3)

where δLp indicates a sum over the two edges of the filament. Keeping the tangent
to the filament at the edges unchanged so that torques perform no work, we have

δu = δaz − δaz hx , (B.4)

and

δux = − δax hxx . (B.5)

Finally, comparing the work of the force f given in eq.(B.1) and the work given
in eq.(B.3), using eq.(B.4) and eq.(B.5), we obtain

Σ1D
x = f − ∂f

∂hx
hx −

∂f

∂hxx
hxx + ∂x

(
∂f

∂hxx

)
hx ,

Σ1D
z =

∂f

∂hx

− ∂x

(
∂f

∂hxx

)
. (B.6)

199



APPENDIX B. PROJECTED STRESS TENSOR FOR A 1-D FILAMENT

For H1D (eq.(2.44), we have

Σ1D
x = σ − σ

2
h2

x −
κ

2
h2

xx + κ hxxxhx ,

Σ1D
z = σ hx − κ hxxx . (B.7)
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Appendix C

Estimative of W theo
A

In this section we explain in details the theoretical estimative of the adhesion
energy per unit area W theo

A proposed by Rädler et al. [84]. They took into account
two attractive interactions, coming from the van der Waals interactions and gravity,
and a repulsive interaction with entropic origins, due to the restrictions imposed on
the membrane fluctuation. They considered the screened van der Waals potential
given by

VvdW = −AH

12π

[
1

s2
− 1

(s + a)2

] (
2s

λD
e
−2 s

λD

)
, (C.1)

where AH is the Hamacker constant, s is the distance between the membrane and
the substrate, a is the membrane thickness and λD is the Debye screening length,
given by

λD =

√
ε0 εrkBT

e2NA

∑
i ciz2

i

, (C.2)

where ε0 is the vacuum electrical permittivity, εr is the dielectric constant of the
solvent, e is the elementary charge, NA is the Avogadro number, zi is the charge
number of a dissolved ion and ci is the respective molar concentration. The last
term in eq.(C.1) is a correction coming from the screening of the substrate due to
the presence of ions in the solution. Indeed, it is expected that some part of the
MgF 2 coating of the glass cover slip is present in small concentration in the buffer
solution .

As vesicles are prepared in a sucrose solution, there is possibly a difference of
density between the internal fluid of GUVs and the buffer solution. The potential
due to gravity per unit area is given by

Vgrav = g ∆ρ hCM
Vv

AC
, (C.3)

where g is the gravity acceleration, ∆ρ is the density difference, Vv = 4/3πR3
ves is

the vesicle volume, AC = πR2
a is the contact area and hCM is the height of the center

of mass. Assuming that the shape of the vesicle does not change with the distance
from the substrate, we have hM ≃ R⊥ + 〈s〉, where R⊥ is the height of the center
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of mass relative to the contact region of the vesicle and so the free-energy is simply
given by

Vgrav = g ∆ρ 〈s〉 Vv

AC
. (C.4)

Finally, to evaluate the steric potential that arises when fluctuations are limited,
they used the equipartition of energy to estimate the energy per uncorrelated patch
of membrane of size ξ‖:

Vsteric = b
kBT

ξ2
‖

, (C.5)

where b is a numerical factor. To obtain ξ‖, the group assumed that the contact area
was equivalent to a flat membrane under a quadratic potential (Hamiltonian given
in eq.(1.38)) which yields two limiting cases: the case where adhesion is dominated
by rigidity (with the corresponding equations shown in the first line of table C) and
the case where adhesion is dominated by tension (second line of the same table).
Further details on the derivation of these equations are given in appendix D.

Case ξ2
⊥ ξ‖ Relation

σ < σ∗ kBT

8
√

κV ′′

(
4κ
V ′′

) 1
4 ξ2

⊥ ≈ kBT
16κ

ξ2
‖

σ > σ∗ kBT
2πσ

ln
(

2σ
σ∗

) (
σ

V ′′

) 1
2 ξ2

⊥ ≈ kBT
4πσ

ln

(
σ ξ2

‖

κ

)

Table C.1: Theoretical previsions for ξ⊥ and ξ‖ as a function of σ, κ and V ′′, with

σ∗ =
√

4κV ′′. The first line corresponds to the case where adhesion is dominated by
rigidity, while the second line corresponds to the case where it is dominated by tension.
The last column is obtained by substituting the third column on the second.

To determine whether experimentally the adhesion was dominated by rigidity or
tension, Rädler et al. plotted the measured values of ξ2

⊥ as a function of V ′′, kBT , κ
and σ (assuming r ∼ σ) using the equations given in the second column of table C.
For the equation corresponding to the case dominated by the tension, they obtained
a nice linear relation (see Fig. C.1). The same analysis was performed on ξ‖, this
time using the equations of the third column of table C. Again, a linear relation was
obtained for the lower equation (see Fig. C.1, lower figure). They concluded that
it was reasonable to assume σ ≈ r in this experiment and that the behavior of the
membrane was dominated by tension.
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(a) Experimental vertical roughness ξ⊥ as a func-
tion of the expected curve for the case dominated by
tension (lower line of table C).

(b) Lateral correlation length as a function of the
curve expected in the same limit (lower line of ta-
ble C).

Figure C.1: Experimental correlation lengths as a function of the expected curves for the
regime dominated by tension [84]. Note that the curves were traced under the assumption
σ ≈ r.

Besides, in this case, it is theoretically expected that ξ⊥ relates to the mean
separation from the substrate 〈s〉 through [144]

2

(
ξ⊥
ℓσ

)2

=
〈s〉
ℓσ

+
1

4
ln

(〈s〉
ℓσ

)
. (C.6)

where ℓσ =
√

kBT/(2πσ).

From eq.(C.5), the last equation of table C and eq.(C.6), one obtains finally
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Vsteric = b
kBT σ

κ

(
ℓσ

〈s〉

) 1
4

e−
〈s〉
ℓσ , (C.7)

where b is a dimensionless prefactor. One can see the plot of Vtotal = VvdW +Vsteric +
Vgrav for typical experimental values σ = 1.7 × 10−5 N/m, κ = 35 kBT , b = 0.085,
AH = 2.6 × 10−21 J, DM = 20 µm, DA = 10 µm, ∆ρ = 7 kg/m3 can be seen in
Fig. 1.33(b).
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Determination of ξ⊥ and ξ‖ for
planar membranes under a
quadratic potential

In this section we derive the correlation length ξ‖ and the roughness ξ⊥ for
a planar membrane under a quadratic potential [145], [144]. Assuming that the
Hamiltonian is given by eq.(1.38), the correlation function is given by

G(r − r′) =
kBT

Ap

∑

q

ei q·(r−r′)

V ′′ + σ q2 + κ q4
. (D.1)

By definition, one has

ξ2
⊥ = 〈h(r)h(r)〉

=
kBT

Ap

∑

q

1

V ′′ + σ q2 + κ q4
,

=
kBT

Ap

∫ qmax

qmin

dq

(2π)2

1

V ′′ + σ q2 + κ q4
,

=
kBT

2πσ
Ω
( σ

σ∗

)
, (D.2)

where the last step is justified for very large Ap and for σa2/κ ≪ 1 (a is a microscop-
ical cut-off of order of the membrane thickness). The crossover tension σ∗ =

√
4 κ V ′′

defines two limits: one dominated by tension (σ > σ∗) and one dominated by the
rigidity (σ < σ∗). The function Ω is given explicitly by

Ω(y) =





tan−1
“√

y−2−1
”

√
y−2−1

for y < 1 ,

tanh−1
“√

1−y−2
”

√
1−y−2

for y > 1 .

(D.3)

To estimate ξ‖, one must evaluate the general correlation function
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UNDER A QUADRATIC POTENTIAL

〈h(r)h(0)〉 =
kBT

Ap

∑

q

eiq·r

V ′′ + σ q2 + κ q4
,

=
kBT

Ap

∫ qmax

qmin

dq

(2π)2

eiq·r

V ′′ + σ q2 + κ q4
,

=
kBT

Ap

∫ qmax

qmin

dq

(2π)

q J0(qr)

V ′′ + σ q2 + κ q4
, (D.4)

where J0(x) is the Bessel function of the first kind and of order 0 and compare its
asymptotic behavior with ξ2

⊥e−r/ξ‖ .
The results coming from eq.(D.2) and eq.(D.4) for the two limiting situations are

summed up in table D.

Case ξ2
⊥ ξ‖ Relation

σ < σ∗ kBT

8
√

κV ′′

(
4κ
V ′′

) 1
4 ξ2

⊥ ≈ kBT
16κ

ξ2
‖

σ > σ∗ kBT
2πσ

ln
(

2σ
σ∗

) (
σ

V ′′

) 1
2 ξ2

⊥ ≈ kBT
4πσ

ln

(
σ ξ2

‖

κ

)

Table D.1: Theoretical previsions for ξ⊥ and ξ‖ as a function of σ, κ and V ′′. The last
column is obtained by substituting the third column on the second.
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Appendix E

Verification of the projected stress
tensor in spherical geometry: the
planar limit

In order to check the expressions given in eqs.(4.27)-(4.32), we consider the limit
R → ∞, which should yield the projected stress tensor for a flat membrane given
in section 1.5.2. We consider a general point (θ, φ) on the sphere and we define a
local system of Cartesian coordinates (x, y, z), such that dx = Rdθ, dy = R sin θdφ
and dz = dr. We want to determine the projected stress tensor Σ′ in these new
coordinates. The component of the elementary force dfα along a general direction α ∈
{x, y, z} exerted through a cut perpendicular to x reads dfα = Σ′

αx dℓ = Σαθ dφ, with
the correspondence dℓ = R sin θ dφ. Thus we have Σ′

αx = Σαθ/(R sin θ). Likewise,
Σ′

αy = Σαφ/R, since in this case dℓ = R dθ. In the limit of large R, the plane tangent
to the sphere at the point (θ, φ) becomes the reference plane of the membrane, and
the height of the membrane over this plane is h(x, y) = R u(θ, φ). Hence uθ =
R ux = hx, uφ = R sin θ uy = sin θ hy, uθθ = R2 uxx = R hxx, uφφ = R2 sin2 θ uyy =
R sin2 θ hyy, etc. Keeping the terms that are dominant in the limit R → ∞, we
obtain

Σ′
xx = σ +

σ

2

(
h2

y − h2
x

)
+

κ

2

(
h2

yy − h2
xx

)
+ κhx∂x∇2h , (E.1)

Σ′
yx = −σhxhy − κhxy∇2h + κhy∂x∇2h, (E.2)

Σ′
rx = σhx − κ∂x∇2h, (E.3)

Σ′
yy = σ +

σ

2

(
h2

x − h2
y

)
+

κ

2

(
h2

xx − h2
yy

)
+ κhy∂y∇2h , (E.4)

Σ′
xy = −σhxhy − κhxy∇2h + κhx∂y∇2h, (E.5)

Σ′
ry = σhy − κ∂y∇2h, (E.6)

which agree with the results of section 1.5.2.
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Appendix F

Correlation functions for vesicles
and their relationship

There are five fundamental correlation functions, which we have calculated ex-
plicitly:

〈
u2

φ

〉
=

∑

ω,ω′

∂φY m
l (θ, φ)∂φY

m′

l′ (θ, φ) 〈ulmul′m′〉 ,

=
∑

ω

kBT

H̃l

∂φY
m
l ∂φ (Y m

l )∗ =
∑

ω

kBT

H̃l

m2|Y m
l |2 ,

= sin2 θ
kBT

4π

∑

l=2

l(l + 1)(2l + 1)

2H̃l

(F.1)

〈
u2

φφ

〉
=

∑

ω

kBT

H̃l

m4|Y m
l |2 ,

= sin2 θ
kBT

4π

∑

l=2

l(l + 1)(2l + 1)

8H̃l

[
4 + 3(−2 + l + l2) sin2 θ

]
, (F.2)

〈
u2

θ

〉
=

∑

ω

kBT

H̃l

∂θY
m
l ∂θ (Y m

l )∗ =
kBT

4π

∑

l=2

l(l + 1)(2l + 1)

2H̃l

, (F.3)

〈
u2

θθ

〉
=

∑

ω

kBT

H̃l

∂2
θY

m
l ∂2

θ (Y m
l )∗ ,

=
kBT

4π

∑

l=2

l(l + 1)(2l + 1)(−2 + 3l + 3l2)

8H̃l

, (F.4)

〈uθ uθφφ〉 = −
∑

ω

kBT

H̃l

m2∂θY
m
l ∂θ (Y m

l )∗ ,

= −kBT

4π

∑

l=2

l(l + 1)(2l + 1)

2H̃l

[
1 +

(l + 3)(l − 2)

4
sin2 θ

]
. (F.5)

The other correlation functions either vanish or may be deduced from them.
Remembering that ul,−m = (−1)mu∗

lm, (Y m
l )∗ = (−1)mY −m

l and
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∂nY m
l (θ, φ)

∂φn
= (i m)n Y m

l (θ, φ) , (F.6)

one can demonstrate that

∂n+1Y m
l (θ, φ)

∂φn+1

∂p−1Y m
l

∗(θ, φ)

∂φp−1
= −∂nY m

l (θ, φ)

∂φn

∂pY m
l

∗(θ, φ)

∂φp
, (F.7)

which holds also in the presence of derivatives with respect to θ. From this relation,
one deduces the following rule: when averaging the product of two terms, one may
pass a derivative with respect to φ from one term to the other while multiplying by
−1. Hence,

〈u2
φ〉 = −〈u uφφ〉 , (F.8)

〈uφ uθ〉 = −〈u uφθ〉 , (F.9)

〈uφ uθθ〉 = −〈uθ uφθ〉 . (F.10)

Consequently, averages implying an odd number of derivatives with respect to φ
vanish:

〈u uφ〉 = 0 , (F.11)

〈uθ uφ〉 = 0 , (F.12)

〈uφ uφφ〉 = 0 , (F.13)

〈uθ uθφ〉 = 0 , (F.14)

〈uθθ uθφ〉 = 0 , (F.15)

〈uφφ uθφ〉 = 0 . (F.16)

Another very helpful relation is the addition theorem for spherical harmonics:

l∑

m=−l

Y m
l (θ1, φ)Y m

l
∗(θ2, φ) =

2l + 1

4π
Pl(cos(γ)) , (F.17)

where Pl is the Legendre polynomial of order l and γ = θ2 − θ1. By differentiating
this relation k times with respect to θ1 and p times with respect to θ2, one obtains

l∑

m=−l

∂kY m
l (θ1, φ)

∂θk
1

∂pY m
l

∗(θ2, φ)

∂θp
2

= (−1)k (2l + 1)

4π

dk+pPl(cos(γ))

dγk+p
. (F.18)

In particular, for θ1 = θ2 = θ, we have

l∑

m=−l

∂kY m
l (θ, φ)

∂θk

∂pY m
l

∗(θ, φ)

∂θp
= (−1)k (2l + 1)

4π

dk+pPl(1)

dγk+p
. (F.19)

Inversely, one can differentiate eq.(F.17) p times with respect to θ1 and k times with
respect to θ2, and then make θ1 = θ2 = θ, which yields
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l∑

m=−l

∂pY m
l (θ, φ)

∂θp

∂kY m
l

∗(θ, φ)

∂θk
= (−1)p (2l + 1)

4π

dk+pPl(1)

dγk+p
. (F.20)

For θ1 = θ2, we can exchange k and p and thus eq.(F.19) must be equal to eq.(F.20).
Accordingly, the sum

l∑

m=−l

∂kY m
l (θ, φ)

∂θk

∂pY m
l (θ, φ)∗

∂θp
(F.21)

vanishes for k + p odd, implying:

〈u uθ〉 = 0 , (F.22)

〈u uθθθ〉 = 0 . (F.23)

Note that this does not hold when derivations with respect to φ are also involved.
Starting again from the addition theorem, one may show that

l∑

m=−l

∂k+1Y m
l (θ, φ)

∂θk+1

∂p−1Y m
l

∗(θ, φ)

∂θp−1
= −

l∑

m=−l

∂kY m
l (θ, φ)

∂θk

∂pY m
l

∗(θ, φ)

∂θp
. (F.24)

It follows that, when averaging the product of two terms, one may pass the derivative
on θ from one term to the other while multiplying by −1. This holds only, however,
in the absence of derivatives with respect to φ. As a consequence

〈uθ uθ〉 = −〈u uθθ〉 , (F.25)

〈uθ uθθθ〉 = −〈uθθ uθθ〉 . (F.26)

Finally, one may also use the fact that ∆Y m
l (θ, φ) = 0, where ∆ is the Laplacian

in spherical coordinates, to obtain

〈uθ uθθ〉 = cot θ〈u uθθ〉 − csc2 θ〈uθ uφφ〉 . (F.27)

Since 〈uθuθθ〉 vanishes, one obtains

〈uθ uφφ〉 = − sin θ cos θ 〈u2
θ〉 . (F.28)

In conclusion, eqs.(F.1)-(F.5), together with eqs.(F.8)–(F.16), eqs.(F.22)–(F.23)
and eq.(F.28) give all the correlations needed to evaluate 〈Σ〉.

211



APPENDIX F. CORRELATION FUNCTIONS FOR VESICLES AND THEIR
RELATIONSHIP

212



Bibliography

[1] J. B. FOURNIER and C. BARBETTA. Direct calculation from the stress
tensor of the lateral surface tension of fluctuating fluid membranes. Physical
review letters, 100(7):78103, 2008.

[2] W. CAI et al. Measure factors, tension and correlations of fluid membranes.
J. Phys. II France, 4:931–949, 1994.

[3] A. IMPARATO. Surface tension in bilayer membranes with fixed projected
area. The Journal of Chemical Physics, 124:154714, 2006.

[4] J.-B. FOURNIER. On the stress and torque tensor in fluid membranes. Soft
Matter, 3:883–888, 2007.

[5] C. BARBETTA et al. On the surface tension of fluctuating quasi-spherical
vesicles. Eur. Phys. J. E, 31(3):333–342, 2010.

[6] C. BARBETTA and J.B. FOURNIER. On the fluctuations of the force exerted
by a lipid nanotubule. The European Physical Journal E: Soft Matter and
Biological Physics, 29(2):183–189, 2009.

[7] J.-B. FOURNIER and P. GALATOLA. Critical Fluctuations of Tense Fluid
Membrane Tubules. Physical review letters, 98(1):18103, 2007.

[8] J. R. BAKER. The cell-theory: a restatement, history, and critique. Quarterly
Journal of Microscopical Science, 93:157–190, 1952.

[9] J. D. ROBERTSON. Membrane structure. The Journal of Cell Biology,
91:189–204, 1981.

[10] M. EDIDIN. Lipids on the frontier: a century of cell-membrane bilayer. Nature,
4:414–418, 2003.

[11] T. HEIMBURG. Thermal biophysics of membranes. Wiley, 2007.

[12] B. ALBERTS et al. Molecular Biology of the Cell. Garland Science, 5th
edition, 2008.

[13] G. EKNOYAN. Sir William Bowman: his contributions to the physiology and
nephrology. Kidney International, 50:2120–2128, 1996.

[14] W. BOWMAN. On the minute structure and movements of voluntary muscle.
Philos. Trans. R. Soc. Lond., 130:457–501, 1840.

213



BIBLIOGRAPHY

[15] E. OVERTON. The probable origin and physiological significance of cel-
lular osmotic properties. Vierteljahrschrift der Naturfoschende Gesselschaft
(Zurich), 44:88–135, 1899.

[16] O. MOURITSEN. Life as a matter of fat. Springer, 2005.

[17] H. FRICKE. The electric capacity of suspensions with special reference to
blood. Journal of General Physiology, pages 137–152, 1925.

[18] J. D. ROBERTSON. The ultrastructure of cell membranes and their deriva-
tives. Biochem. Soc. Symp., 16:3–43, 1959.

[19] E. GORTER and F. GRENDEL. On bimolecular layers of lipoids on the
chromocytes of the blood. J. Exp. Med., 41(4):439–443, 1925.

[20] M. BALLAND et al. Power laws in microrheology experiments on living cells:
Comparative analysis and modeling. Phys. Rev. E, 74:21911, 2006.

[21] K. S. COLE. Surface forces of the arbacia egg. J. Cell. Comp. Physiol., 1:1–9,
1932.

[22] F. D. DANIELLI and E. N. HARVEY. The tension at the surface of mackerel
egg oil, with remarks on the nature of the cell surface. J. Cell. Comp. Physiol.,
5:483–494, 1934.

[23] F. D. DANIELLI and H. DAVSON. A contribution to the theory of perme-
ability of thin films. J. Cell. Comp. Physiol., 5:495–508, 1935.

[24] W. BLOOM and D. W. FAWCETT. A Textbook of histology. Hodder Arnold,
12th edition, 1994.

[25] D. BRANTON. Fracture faces of frozen membranes. PNAS, 55:1048–1056,
1966.

[26] P. da SILVA and D. BRANTON. Membrane splitting in freeze-etching: cova-
lently bound ferritin as a membrane marker. J. Cell Biol., 45:598–605, 1970.

[27] L. D. FRYE and M. EDIDIN. The rapid intermixing of cell surface antigens
after formation of mouse-human heterokaryons. J. Cell Sci., 7:319–335, 1970.

[28] J. E. ROTHMANN and J. LENARD. Membrane asymmetry. Science,
195:743–753, 1997.

[29] K. SIMONS and G. VAN MEER. Lipid sorting in epithelial cells. Biochemistry,
12:6197–6202, 1988.

[30] M. EDIDIN. Lipid microdomains in cell surface membranes. Current Opinion
in Structural Biology, 7:528–532, 1997.

[31] D. M. ENGELMAN. Membranes are more mosaic than fluid. Nature, 438:578–
580, 2005.

214 BIBLIOGRAPHY



BIBLIOGRAPHY

[32] T. G. D’ONOFRIO et al. Controlling and measuring the interdependence of
local properties of biomembranes. Langmuir, 19:1618–1623, 2003.

[33] P. F. F. ALMEIDA et al. Lateral diffusion in the liquid phases of dimyris-
toylphosphatidylcholine/cholesterol lipid bilayers: a free volume analysis. Bio-
chemistry, 31:6739–6747, 1992.

[34] S. L. VEATCH and S. L. KELLER. Separation of liquid phases in giant
vesicles of ternary mixtures of lipids and cholesterol. Biophysical Journal,
85:3074–3083, 2003.

[35] A. KUSUMI and J. S. HYDE. Spin-label saturation-transfer electron spin res-
onance detection of transient association of rhodopsin in reconstituted mem-
branes. Biochemistry, 21:5978–5983, 1982.

[36] M. J. SAXTON and K. JACOBSON. Single particle tracking: application to
membrane dynamics. Annu. Rev. Biophys. Biomol. Struct., 26:373–399, 1997.

[37] A. KUSUMI et al. Confined lateral diffusion of membrane receptors as studied
by single particle tracking (nanovid microscopy). Effects of calcium-induced
differentiation in cultured epithelial cells. Biophysical Journal, 65:2021–2040,
1993.

[38] M. B. FORSTNER et al. Simultaneous single-particle tracking and visualiza-
tion of domain structure on lipid monolayers. Langmuir, 19:4876–4879, 2003.

[39] K. GAUS et al. Visualizing lipid structures and raft domains in living cells
with two-photon microscopy. PNAS, 100:15554–15559, 2003.

[40] M. EDIDIN. The state of lipid rafts: from model membranes to cells. Annu.
Rev. Biophys. Biomol. Struct., 32:257–283, 2003.

[41] L. J. PIKE. The challenge of lipid rafts. Journal of Lipid Research, 50:S323,
2009.

[42] O. G. MOURITSEN and M. BLOOM. Mattress model of lipid-protein inter-
actions in membranes. Biophys. J., 46:141–153, 1984.

[43] O. ORWAR et al. Nanofluidic networks based on surfactant membrane tech-
nology. Anal. Chem., 75:2529–2537, 2003.

[44] T. LOBOVKINA et al. Mechanical tweezer action of self-tightening knots in
surfactant nanotubes. PNAS, 101:7949–7953, 2004.

[45] N. MISRA et al. Bioelectronic silicon nanowire devices using functional mem-
brane proteins. PNAS, 106:13780–13784, 2009.

[46] R. D. KORNBERG and H. M. MC CONNELL. Inside-outside translocation
of phospholipids in vesicle membranes. Biochemistry, 10:1111–1120, 1971.

BIBLIOGRAPHY 215



BIBLIOGRAPHY

[47] E.T. CASTELLANA and P. S. CREMER. Solid supported lipid bilayer: from
biophysical studies to sensor design. Surface Science Reports, 61:429–444,
2006.

[48] A. SONNLEITNER et al. Free brownian motion of individual lipid molecules
in biomembranes. Biophysical Journal, 77:2638–2642, 1999.

[49] M. WINTERHALTER. Black lipid membranes. Current Opinion in Colloid
and Interfaces Science, 5:250–255, 2000.

[50] S. AIMON. private communication.

[51] M. MONTAL. http://www.whatislife.com/education/fact/making membrane.html,
2003.

[52] R. DIMOVA et al. A practical guide to giant vesicles. Probing the membrane
nanoregime via optical microscopy. J. Phys.: Condens. Matter, 18:S1151–
S1176, 2006.
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[84] J. O. RÄDLER et al. Fluctuation analysis of tension-controlled undulation
forces between giant vesicles and solid substrates. PRE, 51:4526–4636, 1995.

[85] R. BRUINSMA et al. Adhesive switching of membranes: experiment and
theory. Physical Review E, 61(4):4253–4267, 2000.

[86] P. H. PUECH and F. BROCHARD-WYART. Membrane tensiometer for heavy
giant vesicles. The European Physical Journal E: Soft Matter and Biological
Physics, 15(2):127–132, 2004.

[87] K. SENGUPTA and L. LIMOZIN. Adhesion of soft membranes controlled by
tension and interfacial polymers. PRL, 29:345–350, 2010.

[88] A. ALBERSDÖRFER et al. Adhesion-induced domain formation by interplay
of long-range repulsion and short-range attraction force: a model membrane
study. Biophysical journal, 73(1):245–257, 1997.

[89] R. BRUINSMA. Adhesion and rolling of leukocytes: a physical model. In
Proc. NATO Adv. Inst. Phys. Biomater. NATO ASI Ser, volume 332, pages
61–75, 1995.

[90] R. SIMSON et al. Membrane bending modulus and adhesion energy of wild-
type and mutant cells of Dictyostelium lacking talin or cortexillins. Biophysical
journal, 74(1):514–522, 1998.

[91] A. IGLIC et al. Possible role of phospholipid nanotubes in directed transport
of membrane vesicles. Physics Letters A, 310:493–497, 2003.

[92] B. ONFELT and D. M. DAVIS. Can membrane nanotubes facilitate communi-
cation between immune cells? Biochemical Society Transactions, 32:676–678,
2004.

218 BIBLIOGRAPHY



BIBLIOGRAPHY

[93] E. A. EUGENIN et al. Tunneling nanotubes (TNT) are induced by HIV-
infection of macrophages: a potential mechanism for intercellular HIV traf-
ficking. Cellular Immunology, 254:142–148, 2009.

[94] H.-H. GERDES et al. Tunneling nanotubes: a new route for the exchange of
components between animal cells. FEBS Letters, 581:2194–2201, 2007.

[95] R. E. WAUGH and R. G. BAUSERMAN. Physical measurements of bilayer-
skeletal separation forces. Annals of biomedical engineering, 23:308–321, 1995.

[96] V. HEINRICH and R. E. WAUGH. A piconewton force transducer and its ap-
plication to measurement of the bending stiffness of phospholipid membranes.
Annals of biomedical engineering, 24(5):595, 1996.

[97] P. V. BASHIROV. Membrane nanotubes in the electric field as a model
for measurement of mechanical parameters of the lipid bilayer. Biochemistry
(Moscow) Supplement Series A: Membrane and Cell Biology, 1:176–184, 2007.

[98] G. KOSTER et al. Force barrier for membrane tube formation. PRL,
94:068101, 2005.

[99] O. ROSSIER et al. Giant vesicles under flows: extrusion and retraction of
tubes. Langmuir, 19:575–584, 2003.

[100] L. BO and R. E. WAUGH. Determination of bilayer membrane bending stiff-
ness by tether formation from giant, thin-walled vesicles. Biophy. J., 55:509–
517, 1989.

[101] C. LEDUC et al. Cooperative extraction of membrane nanotubes by molecular
motors. PNAS, 101:17096–17101, 2004.

[102] I. DERENYI et al. Formation and interaction of membrane tubes. PRL,
88:238101–2, 2002.

[103] R. CAPOVILLA and J. GUVEN. Stresses in lipid membranes. J. Phys. A:
Math. Gen., 35:6233–6247, 2002.

[104] O. FARAGO and P. PINCUS. Statistical mechanics of bilayer membrane with
a fixed projected area. The Journal of chemical physics, 120:2934, 2004.

[105] P. NELSON and T. POWERS. Renormalization of chiral couplings in titled
bilayer membranes. J. Phys. II France, 3:1535–1569, 1993.

[106] W. KRAUTH. Statistical mechanics: algorithms and computations. Oxford
University Press, USA, 2006.

[107] W.H. PRESS, S.A. TEUKOLSKY, W.T. VETTERLING, and B.P. FLAN-
NERY. Numerical recipes in C. Cambridge Univ. Press Cambridge MA, USA:,
1992.

BIBLIOGRAPHY 219



BIBLIOGRAPHY

[108] U. SEIFERT. Self-consistent theory of bound vesicles. PRL, 74:5060–5063,
1995.

[109] J. NEDER et al. Coarse-Grained Simulations of Membranes under Tension.
The Journal of chemical physics, 132:115101, 2010.

[110] W. HELFRICH. Size distributions of vesicles: the role of the effective rigidity
of membranes. Journal de Physique, 47(2):321–329, 1986.

[111] S.T. MILNER and S.A. SAFRAN. Dynamical fluctuations of droplet mi-
croemulsions and vesicles. Physical Review A, 36(9):4371–4379, 1987.

[112] T.R. POWERS et al. Fluid-membrane tethers: minimal surfaces and elastic
boundary layers. Physical Review E, 65(4):41901, 2002.
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