
HAL Id: tel-00535886
https://theses.hal.science/tel-00535886

Submitted on 13 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A MODULAR REWRITING APPROACH TO
LANGUAGE DESIGN, EVOLUTION AND ANALYSIS

Mark Hills

To cite this version:
Mark Hills. A MODULAR REWRITING APPROACH TO LANGUAGE DESIGN, EVOLUTION
AND ANALYSIS. Software Engineering [cs.SE]. University of Illinois at Urbana Champaign, 2009.
English. �NNT : �. �tel-00535886�

https://theses.hal.science/tel-00535886
https://hal.archives-ouvertes.fr

A MODULAR REWRITING APPROACH TO LANGUAGE

DESIGN, EVOLUTION AND ANALYSIS

BY

MARK A. HILLS

DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2009

Urbana, Illinois

Doctoral Committee:

Associate Professor Grigore Roşu, Chair and Director of Research

Professor Carl Gunter

Associate Professor Samuel N Kamin

Professor José Meseguer

Professor Peter D Mosses, Swansea University

Abstract

Software is becoming a pervasive presence in our lives, powering computing

systems in the home, in businesses, and in safety-critical settings. In response,

languages are being defined with support for new domains and complex compu-

tational abstractions. The need for formal techniques to help better understand

the languages we use, correctly design new language abstractions, and reason

about the behavior and correctness of programs is now more urgent then ever.

In this dissertation we focus on research in programming language semantics

and program analysis, aimed at building and reasoning about programming

languages and applications. In language semantics, we first show how to use

formal techniques during language design, presenting definitional techniques for

object-oriented languages with concurrency features, including the Beta language

and a paradigmatic language called KOOL. Since reuse is important, we then

present a module system for K, a formalism for language definition that takes

advantage of the strengths of rewriting logic and term rewriting techniques.

Although currently specific to K, parts of this module system are also aimed at

other formalisms, with the goal of providing a reuse mechanism for different forms

of modular semantics in the future. Finally, since performance is also important,

we show techniques for improving the executable and analysis performance of

rewriting logic semantics definitions, specifically focused on decisions around the

representation of program values and configurations used in semantics definitions.

The work on performance, with a discussion of analysis performance, provides

a good bridge to the second major topic, program analysis. We present a new

technique aimed at annotation-driven static analysis called policy frameworks. A

policy framework consists of analysis domains, an analysis generic front-end, an

analysis-generic abstract language semantics, and an abstract analysis semantics

that defines the semantics of the domain and the annotation language. After

illustrating the technique using SILF, a simple imperative language, we then

describe a policy framework for C. To provide a real example of using this

framework, we have defined a units of measurement policy for C. This policy

allows both type and code annotations to be added to standard C programs,

which are then used to generate modular analysis tasks checked using the CPF

semantics in Maude.

ii

To Sally.

iii

Acknowledgments

During the time I have been working on my dissertation I have had the good

fortune to work with a number of outstanding people, both at the University of

Illinois at Urbana-Champaign and in the broader research community.

I would first like to acknowledge all the support I’ve received over the years

from my advisor, Grigore Roşu. He has been a friend and a mentor, and his

influence can be found throughout this dissertation. The environment he has

provided in the Formal Systems Laboratory has been challenging (in the best

sense), intellectually stimulating, and fun, as all good research should be. I look

forward to continuing our collaboration in the future.

I would also like to thank the rest of my thesis committee, made up of Carl

Gunter, Sam Kamin, José Meseguer, and Peter Mosses. Their experience and

input have been important to improving the quality of this research, with advice

on not just where to focus, but, sometimes even more importantly, on where not

to focus, helping me to avoid going down blind alleys. Also, their time reading,

and rereading, various parts of the thesis, offering criticism and advice, has

helped to make this thesis much better than it otherwise would have been.

Next, I would like to thank my fellow current and former Formal Systems Lab-

mates, Feng Chen, Marcelo d’Amorim, Chucky Ellison, Dongyun Jin, Choongh-

wan Lee, Patrick Meredith, Andrei Popescu, and Traian Serbanuta, with whom

I spent many hours (days? years?) discussing programming languages, rewriting

logic, various semantics frameworks, static analysis, how to pronounce words in

Romanian, and many other topics. They have all made FSL a fun, collaborative,

and always interesting place to do research.

A number of people at the University of Illinois, but outside of my committee

and research group, have also had an impact on this research and, more generally,

my time in graduate school. Thanks to Steven Lauterberg for many interesting

conversations; to Baris Aktemur, for discussions about research, joining me

in fighting various tools on the way to finishing class projects, and getting

involved with me in defining the semantics of Beta, a wonderful language that is,

unfortunately, more widely known than used; and Ralf Sasse, for wide-ranging

discussions on everything from research to (American) football to the incredible

length of German words.

Thanks also to Elsa Gunter, for providing wonderful advise about research

iv

and teaching, for offering interesting courses, and for helping me find parking

in Hyde Park on a Saturday; and to the various support people here in the

department, whose helpfulness and kindness to me and my family have made

the experience here all the better.

Moving beyond UIUC, I would like to thank, in general, the many students

and researchers at other institutions that I have encountered over the last several

years, and specifically, Jonathan Aldrich, Andrew Black, Erik Ernst, Jeremy

Siek, and Carolyn Talcott, who have all given me advise, in formal or informal

settings, during the time I’ve been working on my dissertation.

Finally, I would like to thank my family. My parents, Clinton and Linda Hills,

and my in-laws, Fred and Elaine Longacre, have all encouraged me throughout

this process. My daughter Rebecca was born the same day I was admitted into

the graduate program, and has been a joy to watch as she’s grown during my

time at UIUC. My son Matthew decided to arrive a month early, on the night

of a paper deadline, and, outside of that initial inconsiderate act (your sister

was born on her due date, Matthew...), his sunny disposition has brightened the

house. Of course, none of this would have been possible without my wife Sally,

whose patience, encouragement, help, and love have been indispensible.

The research in this dissertation has been supported in part by NSF grants

CCF-0448501, CNS-0509321 and CNS-0720512, by NASA contract NNL08AA23C,

by the Microsoft/Intel funded Universal Parallel Computing Research Center at

UIUC, and by several Microsoft gifts.

v

Table of Contents

Chapter 1 Introduction . 1

1.1 Contributions . 2
1.2 An Overall Guide to the Thesis 4
1.3 Relationship to Previous Work 4
1.4 Related Publications . 5

Chapter 2 Background . 7

2.1 Equational Logic . 7
2.2 Term Rewriting . 12
2.3 Rewriting Logic . 14
2.4 Rewriting Logic Semantics . 17
2.5 K . 22

Chapter 3 Language Prototyping 31

3.1 Introducing KOOL . 32
3.2 Abstract Syntax . 35
3.3 State Infrastructure and Value Representations 41
3.4 Dynamic Semantics . 44
3.5 Adding Concurrency . 53
3.6 Other Extensions . 57
3.7 KOOL Implementation . 61

Chapter 4 A Prototype of Beta 63

4.1 The Beta Language . 63
4.2 Beta Semantics . 64
4.3 Beta Implementation . 69
4.4 Extending Beta . 69

Chapter 5 The K Module System 71

5.1 K Modules . 73
5.2 Module Examples . 79
5.3 An Extended Example: Creating Language Extensions 82
5.4 Translating K Modules to Maude 95
5.5 The Online Semantics Repository 96
5.6 Discussion . 100

Chapter 6 Language Design and Performance 103

6.1 Execution Performance . 103
6.2 Analysis Performance . 114

Chapter 7 Policy Frameworks 120

7.1 Abstract Analysis Domains . 122
7.2 The SILF Policy Framework . 125

vi

Chapter 8 The C Policy Framework 134

8.1 CPF Frontend and Annotation Support 134
8.2 Abstract Syntax . 138
8.3 K Cells . 138
8.4 Abstract Evaluation Semantics 140
8.5 The CPF UNITS Policy . 144
8.6 Case Study: Null Pointer Analysis 151
8.7 Discussion . 154

Chapter 9 Related Work . 156

9.1 Programming Language Semantics 156
9.2 Program Analysis . 188

Chapter 10 Conclusions and Future Work 192

References . 195

vii

Chapter 1

Introduction

Software is a pervasive presence in our lives. Computers are now a common

feature in homes and businesses, while smaller computers, known as embedded

systems, are now found in everything from household appliances to phones to

automobiles and airplanes. With the need for software growing, new languages

are being defined to meet new development challenges. These language often

include support for complex abstractions, and are targeted at challenging domains

such as families of configurable software products and ultra-large scale systems

made up of distributed software components. Even in home computing systems,

Internet connections and multi-core processors are now common, making once

more academic concerns, such as concurrency and distributed computing, into

concerns for regular application developers and game designers.

The pervasive nature of computation unfortunately has its downsides: com-

puter failures can now be quite costly. This is often just measured in monetary

costs: the loss of the NASA Mars Climate Orbiter due to a simple (yet hard to

catch) programming error [2] resulted in a loss of 327.6 million dollars between

the cost of the orbiter and associated lander [3]. Some software errors have led

to consequences more serious than just loss of money: errors in the software

used to control the Therac-25 radiation therapy machine [114] led to six known

accidents, causing serious injuries and, in three cases, death.

The research described in this thesis is aimed around a core motivating

concept: with the increased complexity of programming languages and software

systems, along with the pervasive presence of software in everyday devices and

safety-critical systems, the need for formal techniques to help better understand

the languages we use, correctly design new language abstractions, and reason

about the behavior and correctness of programs is more urgent then ever. One

branch of this research is focused on programming language semantics, specifi-

cally on improving the ability to formally design new programming languages

and extend existing languages with new features. The second branch of the

research described herein is focused on program analysis and program verifica-

tion, specifically on using semantics-driven techniques to find errors in programs

and/or show that they are correct in regards to a given specification.

Unfortunately, formal techniques for defining the semantics of a programming

language have not been very successful outside the research community, and

1

often are not used even inside the research community [145, 149]. An overall

goal across both branches of this research is to contribute to changing this, by

providing better ways to define language features, reuse defined features across

languages, and analyze programs based on a given language semantics.

1.1 Contributions

The research described in this thesis makes the following key contributions:

1. This thesis gives the first rewriting logic semantics and K definitions

of a number of complex features found in real programming languages,

including Smalltalk-like primitive operations (used to perform operations

such as arithmetic or value comparisons in pure object-oriented languages

without scalars), Beta-style inner calls, auto-boxing of scalars into objects,

coroutines, and garbage collection. This research is described in detail in

Chapters 3, 4, and 6.

2. Current K tool support requires language feature definitions to be manually

assembled into a single module before use. This thesis introduces a module

system for K, providing a mechanism to build modules containing reusable

language features, and including novel features designed for making def-

initions more concise and for working with different kinds of semantics

(standard dynamic and static semantics, semantics aimed at program

analysis, etc.). The module system also includes additional functionality

for sharing modules between different tools and over the Internet, with a

shared module repository. This research is described further in Chapter 5

3. To improve the flexibility of program analysis frameworks, we introduce

policy frameworks, the first mechanism to define generic, modular analysis

frameworks with a focus on reuse both within a single language and

(without a translation into a shared intermediate language) across multiple

languages. As a proof of concept, we also introduce the C Policy Framework,

including a policy for checking the proper usage of units of measurement,

the UNITS policy. This policy is competitive with existing state of the art

tools for checking for unit safety, with good performance and an annotation

language more expressive than those provided by any other annotation-

based unit checker of which we are aware. It also achieves a large amount of

reuse, with a significant portion of the definition shared with other policies

in CPF and with the units domain shared with policy frameworks for other

languages. Policy frameworks are described in more detail in Chapter 7,

while the C Policy Framework and the UNITS policy are described further

in Chapter 8.

The contributions listed above have primarily been driven by this author,

although all are to some extent collaborative. The basis for this work has been

2

the computation-based style of rewriting logic semantics and K (described more

in Chapter 2), developed by Grigore Roşu. The definition of Beta has been a

joint effort with Barış Aktemur, while some of the core research directions for

policy frameworks and the UNITS policy were developed in collaboration with

Grigore Roşu and Feng Chen. Work on the module system has involved close

cooperation with Grigore Roşu; Traian Florin Şerbănuţă who has been working

on the K Tools developed in Maude; and Chucky Ellison, who developed an

initial (non-modular) toolset for working with K and is an active user of the new

module system.

Broader Impact: The broader impact of these contributions is in the following

areas:

1. Research into defining complex language features using K benefits both

language designers and other researchers in language semantics, providing

definitions which can be used directly during language prototyping and for

guidance when defining new, but similar, features.

2. Research into the K module system makes some initial steps towards having

a shared repository of reusable language features, a goal not just for K but

for other styles of semantics as well (such as the work on Component-Based

Semantics, discussed in Chapter 9). It also makes the work on K more

accessible to others, providing, as the repository is loaded, a number of

pre-built and pre-tested features which are ready to be used when building

language definitions.

3. Research on policy frameworks provides a general method for adding

reusable analysis frameworks to languages, hopefully moving the creation

of analysis tools away from highly focused tools that are not reusable or

extensible and allowing semantics-based analysis frameworks to be added

more easily to a language. The work on policy frameworks is also currently

acting as a springboard for work on proving properties of programs in a

modular fashion.

As mentioned above, one goal of this research is to increase the use of formal

techniques in language design. It is hoped that, by providing tools and techniques

which can be used to prototype even complex languages; ways to leverage these

definitions for program analysis; and tool support for working with existing

feature definitions, the research outlined in this thesis will lead to an increased

use of formal techniques (in general) and K (specifically) for language design.

It is also hoped that the work on the module repository, including a standard

exchange format for language feature definition modules and tool support for

both interacting with the repository and combining modules, will also be useful

for modular semantics formalisms other than K, such as MSOS, Action Semantics,

or Monads.

3

1.2 An Overall Guide to the Thesis

Chapter 2 provides a brief introduction to some background material that is

helpful to understanding the remainder of the thesis: term rewriting systems,

equational and rewriting logic, rewriting logic semantics, and K.

Chapters 3, 4, and 5 are focused on language semantics: Chapter 3 discusses

language prototyping in the context of the KOOL language, while Chapter 4

widens this discussion to include features of the Beta programming language.

Chapter 5 then provides details on the K module system, including an online

module repository designed to hold not only K modules, but modules defined in

other formalisms as well.

Chapters 6, 7, and 8 are focused on program analysis. Chapter 6 acts as a

bridge of sorts, tying some of the work on language design in with both execution

and analysis performance. Chapter 7 then introduces the concept of policy

frameworks, using the SILF language as an illustrative example. The C Policy

Framework, built around the same principles as the policy framework for SILF,

but with a much more complex language and a keener focus on performance, is

then described in Chapter 8.

The next chapter, Chapter 9, discusses related work, especially focusing on

work in tool-supported semantics, definitional modularity, and program analysis.

An in-depth comparison of K with other formalisms is not presented, but is itself

the topic of a fair portion of the current K report [167]. The thesis then ends

with conclusions and a discussion of planned and possible future research based

on the topics presented in this thesis, found in Chapter 10. Cited references are

included at the end of the thesis.

1.3 Relationship to Previous Work

The work on rewriting logic semantics and K has similar goals to other work on

language semantics – providing a means to define and reason about programming

languages and their programs. One goal of this research has been to overcome

some of the shortcomings we found in other formalisms, while taking advantage

of the algebraic setting provided by rewriting logic. A specific goal has been

to create modular definitions made up of reusable pieces, a goal shared by a

number of other formalisms, such as MSOS, Action Semantics, Monads, and

(with Montages) Abstract State Machines. This has driven features of K, such as

context transformers (described in Chapter 2), and features of the module system

(described in Chapter 5). A comparison of this work on language prototyping

and modularity with similar work in other formalisms is provided in Chapter 9.

The work on policy frameworks grew out of this work as a method to leverage

the modularity of definitions towards creating reusable analysis frameworks.

Some of the concepts were based on earlier work on using rewriting logic se-

mantics for program analysis, and the ideas are similar to those from other

4

analysis frameworks, such as JML and Frama-C (but with a focus on multiple

programming languages). Checking the safety of programs that use units of

measurement has been a major driver of the work, with a goal of providing

a unit checker better than both our own prior work in the area and work on

competing solutions, such as solutions based on program libraries or on the use

of an analysis tool such as Osprey. Chapter 9 provides a comparison between

policy frameworks and other analysis frameworks, with a special focus just on

units of measurement.

1.4 Related Publications

This section provides a quick overview of this author’s publications, explaining

their relationship to the contents of this thesis.

K: The first appearance of K was in A Rewrite Framework for Language

Definitions and for Generation of Efficient Interpreters [86]. Although K is

used in a number of other papers, its next feature appearance was in Towards a

Module System for K [93]. K is used throughout the thesis, starting in Chapter

2, while the material on the module system is presented, in expanded form, in

Chapter 5. Chapter 5 also presents information on a module repository and a

shared exchange format for language feature modules, both of which are related

to the module system but are new to this thesis.

KOOL and SILF: KOOL, presented in Chapter 3, was first discussed in

An Application of Rewriting Logic to Language Prototyping and Analysis [91].

Around the same time, information on improving the performance of KOOL

for verification, found in Chapter 6, was published in On Formal Analysis

of OO Languages using Rewriting Logic: Designing for Performance [92]. A

number of technical reports, including A Rewrite Logic Approach to Semantic

Definition, Design and Analysis of Object-Oriented Languages [32], KOOL: A

K-based Object-Oriented Language [90], and A Rewriting Based Approach to OO

Language Prototyping and Design [89], further expanded this work. The material

on KOOL in this thesis is based directly on all of these, with the semantics

presented here reformulated to use the latest version of the K notation.

Like K, SILF was first introduced in A Rewrite Framework for Language

Definitions and for Generation of Efficient Interpreters [86]. The material on

SILF is mainly present as background for Chapter 6. KOOL and SILF then made

a joint appearance in Memory Representations in Rewriting Logic Semantics

Definitions [81], which discussed the relationship between different memory

models – including a garbage collector for KOOL – and performance. This

material is also discussed here in Chapter 6.

5

Beta: Beta, discussed in Chapter 4, was first defined using rewriting logic

semantics in An Executable Semantic Definition of the Beta Language using

Rewriting Logic [83]. The presentation here is mainly based on this technical

report, but with rules given using K notation. Chapter 4 also mentions a current

reformulation of the semantics, which has not been presented elsewhere.

Policy Frameworks: Policy frameworks first appeared in a technical report,

Pluggable Policies for C [85]. This work initially focused on a framework for C,

presented here in Chapter 8. A Rewriting Logic Approach to Static Checking

of Units of Measurement in C [84] focused specifically on units of measurement

analysis using CPF: units are used here as an example in Chapters 7 and 8, with

a focus on C in Chapter 8. An earlier approach to units analysis was presented

in Automatic and Precise Dimensional Analysis [38], but does not make a direct

appearance here. The SILF Policy Framework, based on work on both SILF and

the C Policy Framework, is new to this thesis.

6

Chapter 2

Background

This chapter provides an introduction to equational logic, term rewriting, rewrit-

ing logic, rewriting logic semantics, and K. Equational logic, introduced in

Section 2.1, provides a method for reasoning about equalities between terms,

which in our case are used to represent programs and semantic configurations.

Term rewriting, introduced in Section 2.2, represents computations by the pro-

gressive transformation of terms according to term rewriting rules, providing a

method of executing equational logic definitions. Section 2.3 introduces rewriting

logic [125, 122], an extension of equational logic with support for reasoning about

nondeterministic and concurrent computation. Rewriting logic can be used to

define the semantics of sequential and concurrent programming languages, lead-

ing to a form of semantics called rewriting logic semantics [128, 129], introduced

in Section 2.4. Finally, Section 2.5 describes K [167], a method, based on the

work on rewriting logic semantics, for formally defining programming languages.

This introduction focuses on that background needed specifically to understand

the research presented in this thesis; additional information on each of these

topics can be found in the references cited throughout this chapter.

2.1 Equational Logic

Equational logic is a logic for reasoning about equational theories, also called

algebraic specifications [206]. An equational theory is made up of two parts: Σ,

the signature, which defines the syntax provided to form terms; and E, a set of

equations between Σ-terms.

2.1.1 Signatures

Σ contains a set S of sorts, which indicate the types of terms. Sorts can represent

standard mathematical entities, such as Nat, Real, or Set, but can also be used

to define entities used in programming language semantics, such as Expression,

Statement, Value, Program, Environment, or Continuation. Using Maude

[35] syntax, these are defined using the sorts keyword:

sorts Nat Expression Value .

7

If S contains just one sort Σ is referred to as unsorted or single-sorted. Signatures

used to represent languages usually contain multiple sorts, in which case Σ is

a many-sorted signature. It is also possible to include an order relation, <,

between sorts, where, given two sorts s and s′, s < s′ indicates that the terms

of sort s are also terms in s′ – for instance, Nat < Int. This order relation is

a partial order [34, page 33] – it is transitive, but not symmetric. Again using

Maude notation:

sorts Nat Int Rat .

subsort Nat < Int < Rat .

Along with sorts, Σ also contains operations, which provide the syntax used

to form terms. In Maude, operations are defined using the op keyword:

op zero : -> Nat .

op succ : Nat -> Nat .

op plus : Nat Nat -> Nat .

Operations are given a name, like zero or plus, and, following :, a signature

indicating the number of arguments, the sort of each argument, and the result

sort, given after the arrow. Operations require 0 or more arguments, with 0-

argument operators used to represent constants. Above, zero takes no arguments

(making it a constant), succ takes one, and plus takes two. The operators

shown here are defined as prefix operators, meaning the operator will come

before its arguments, given in parentheses. Sample terms over these operators

include the following:

zero

succ(succ(zero))

plus(succ(zero),succ(succ(zero)))

The first term uses the constant zero; the second represents two as the successor

of the successor of zero; and the third represents the addition of one and two.

Operations can also be defined in a mixfix form, which allows the operators

to be used more like standard programming language syntax:

op 0 : -> Nat .

op s_ : Nat -> Nat .

op _+_ : Nat Nat -> Nat .

Argument positions in mixfix operators are indicated by the position of , with

s including a single argument and + including two, one before the + character

and one after. The same terms as given above using prefix operators would be

represented as follows using mixfix operators1:

1It is possible to assign precedences to the defined operators; we ignore that here, using
parentheses to group parts of terms in cases where the meaning would otherwise be unclear to
the reader.

8

0

s s 0

(s 0) + (s s 0)

Using the above as an aid to intuition, we can now give the following

mathematical definition of a signature Σ:

Definition 1 Σ = {S, {Σw,s}(w,s)∈S∗×S , <}, where S is a set of sorts,

{Σw,s}(w,s)∈S∗×S is an S∗ × S-indexed family of sets of operation symbols, and

< is a transitive, irreflexive, and antisymmetric order relation on S.

2.1.2 Algebras

The signature Σ provides the syntax for the equational theory, but the syntax does

not provide a semantics – it assigns no meaning to the terms. The mathematical

meaning, or model, of a signature is provided by Σ-algebras.

Definition 2 Given many-sorted signature Σ, Σ-algebra A is defined by: an S-

indexed family of sets A = {As}s∈S, called the carrier of the algebra; an element

as
A ∈ As for each constant a :→ s in Σ; and a function fw,s

A : As1
×...×Asn

→

As for each operation f : w → s in Σ (where w = s1...sn and n > 0).

We do not show the definition for algebras over order-sorted signatures here.

They are similar to that shown for many-sorted signatures, with some additional

requirements which ensure that constants present in multiple sorts related by <

represent the same value in all carriers (e.g., 0 has the same meaning as a natural

number, integer, and rational number) and that operations which are redefined

on sorts related by < agree on the result when given the same argument values

(e.g., addition over naturals, over integers, and over rationals should all agree on

the result when given the same natural number arguments).

Term Algebras: A particularly important algebra, referenced later in this

thesis, is the term algebra, TΣ. This algebra contains all well-formed terms

produced over the syntax of Σ. In a programming language context, TΣ contains

all syntactically valid programs in the language whose syntax is defined by Σ.

Using the operations defined earlier for natural numbers, TΣ would include 0, s

0, s s 0, s s s 0, ..., 0 + 0, 0 + (s 0), (s 0) + 0, etc.

2.1.3 Equations

Equations are used to indicate when two terms are equal. An (inadvisable)

example would be to say that the natural numbers 1 and 0 are equal:

eq s 0 = 0 .

9

Equations can include variables, representing arbitrary terms over the sort of the

variable. When, present, variables are considered to be universally quantified over

the equation. The following equation indicates that addition is commutative:

eq X + Y = Y + X .

This assumes that both X and Y are declared to have sort Nat, and would be

written mathematically as2:

(∀X Y) X + Y = Y + X (2.1)

Note that, with the introduction of variables, given two terms t and t′ it is

not possible to just compare t and t′ syntactically to determine if, using this

equation, t and t′ are equal. For instance, one may want to determine if the

following equality holds:

(s s s 0) + (s 0) =? (s 0) + (s s s 0)

To do so, one must first find a substitution, θ, mapping the variables in the

equation to subterms of t (here (s s s 0) + (s 0)) and t′ (here (s 0) + (s s

s 0)). Using θ̄, the homomorphic extension of θ to a function from terms to terms
3, it is then possible to see if two terms t and t′ are equal under an equation u = u′

by applying θ̄ to both u and u′, θ̄(u) = θ̄(u′), and verifying that either θ̄(u) = t

and θ̄(u′) = t′ or θ̄(u) = t′ and θ̄(u′) = t. In this example, θ(X) = s s s 0,

θ(Y) = s 0, θ̄(X + Y) = (s s s 0) + (s 0), and θ̄(Y + X) = (s 0) + (s s s 0),

so the two terms t and t′ are shown equal by the commutativity of addition.

Equations can also have conditions, which indicate that the equation only

holds when the conditions are fulfilled. Conditions are specified with the keyword

if in Maude syntax and the symbol ⇐ outside of Maude. For instance:

ceq X + Y = Y if X == 0 .

specifies that 0 is the (left) identity for the addition of natural numbers, and

could also be written (∀X Y) X + Y = Y ⇐ X == 0.

Using equations it is possible to make one step deductions, but it would not

be possible to show that two terms are equal if establishing equality requires the

use of multiple equations. This is the purpose of the equational logic deduction

system, which consists of the following rules over unconditional equations. Here

t, with or without primes and subscripts, is used to represent arbitrary terms

formed over Σ; while X is a set of variables, instead of a single designated

variable (as it was above):

(∀X)t = t (Reflexivity)

2This style of writing equations, with explicit quantifiers, was first used in [65], and has
since been used elsewhere, including in the context of defining languages [68].

3The simplest way to view this is that θ̄ recurses over the structure of a term, applying θ
to any variables it finds.

10

(∀X)t = t′

(∀X)t′ = t
(Symmetry)

(∀X)t = t′ (∀X)t′ = t′′

(∀X)t = t′′
(Transitivity)

(∀X)t1 = t′1 ... (∀X)tn = t′n

(∀X)f(t1, ..., tn) = f(t′1, ..., t
′
n)

(Congruence)

An additional rule is used specifically for conditional equations, formalizing

the notion mentioned above that the equation applies only when the condition

is true. Given equation (∀X) t = t′ ⇐ u1 = v1 ∧ ... ∧ un = vn, where u1 = v1

through un = vn are the conditions (with ∧ logical and) and X and Y are sets

of variables:

(∀Y)θ̄(u1) = θ̄(v1) ... (∀Y)θ̄(un) = θ̄(vn)

(∀Y)θ̄(t) = θ̄(t′)
(Modus Ponens)

A Note on Algebras: As discussed above, the model of a signature Σ is an

algebra, providing sets of values for each sort, a value in these sets for each

constant, and a function for each operation. The models for an equational theory

(Σ, E) are also algebras, with the additional restriction that only those algebras

in which all equations in E hold are models of (Σ, E).

2.1.4 Equational Theories in Maude

Maude captures the concept of an equational theory using a functional module,

declared using the fmod keyword and containing both the signature of the theory

and any equations. Figure 2.1.4 shows an example of a functional module that

defines natural numbers. Nat is declared as a sort. The operators then define

both the constructors (0 and s) for natural numbers and an extra operation

fmod NAT is

sorts Nat .

op 0 : -> Nat .

op s_ : Nat -> Nat .

op _+_ : Nat Nat -> Nat .

vars X Y : Nat .

eq s(X) + Y = s(X + Y) .

eq 0 + X = X .

endfm

Figure 2.1: A Sample Functional Module, in Maude

11

for addition, +. vars defines two variables, X and Y, both representing natural

numbers. Finally, two equations are defined using eq: the first gradually moves

all successors “out”, while the second specifies that 0 is the left identity (but

without using the more cumbersome conditional equation shown above).

2.2 Term Rewriting

Equational logic provides support for defining terms and reasoning about term

equalities. However, it does not provide a method for computing with terms.

This is provided by term rewriting [14].

In term rewriting, a number of rewrite rules are defined. These rules, of the

form l → r, are used to progressively change the term being rewritten. Like

equations in equational logic, rules can contain variables. To determine which

rule to apply next, the rewrite engine uses a process called matching. The rule

matches if a substitution can be found such that, after substituting terms for

the variables in the left hand side of the rule, the left hand side matches the

current term or one of its subterms. Mathematically, given a subterm t′ of term

t (where t could equal t′), rule l → r matches if a substitution θ, from variables

to terms, can be found such that θ(l) = t′. If a match is found, t′ is rewritten to

θ(r). When no more matches can be found, the final term is the result of the

computation. Since term rewriting systems are Turing complete, it is possible

that the computation will not terminate (i.e., that it will always be possible to

apply another rule).

The equations defined in equational logic can be used as term rewriting rules

by orienting them, changing an equation defined as l = r into a rewrite rule

l → r. This can be problematic in some cases. For instance, if equations are

used to define that an operator is commutative, the rewriting process could

diverge, continually swapping the positions of terms without making any progress.

Because of this, Maude (as well as other systems) allows operators to be defined

with attributes that indicate an operator is associative, commutative, and/or

has an identity (such as the empty set in a set formation operation), but only

during matching. This allows the rewrite engine to (for instance) treat an

operator as commutative when deciding which rule to apply, but it prevents

the rewrite engine from applying commutativity as a rule directly. Without

a commutative attribute, an operator would be defined as commutative by

including an additional equation:

eq X + Y = Y + X .

This would yield a rewrite rule which would cause an endless series of “flips”

around the plus:

X + Y → Y + X

12

Using the commutative attribute in Maude, this would instead be defined as:

op _+_ : Nat Nat -> Nat [comm] .

Associativity, commutativity, and identity attributes are used heavily in the

definitions described in this thesis, because they provide a natural way to define

lists and sets (including multisets), both of which are regularly used in formal

language definitions. A list is defined using an associative list formation operator

and an identity, representing the empty list:

op empty : -> List .

op _,_ : List List -> List [assoc id: empty] .

This is also one of the main uses of subsorting in the definitions described in

this thesis, allowing an item of a given sort to be treated as a trivial list (or set)

of one element:

subsort Nat < NatList .

Using an identity provides a way to eliminate corner cases. Without an identity,

an operation to return the head of a list would be defined as follows:

op hd : NatList -> Nat .

eq hd(X) = X .

eq hd(X,Xs) = X .

The first equation is needed for the trivial case, where the list is made up of

just a single item. The second equation handles the more standard case, where

the list includes a head and a tail. Using the identity, the matching process can

always “add” an implicit (empty) tail to the list for matching purposes, allowing

the operation to be defined with just one equation:

op hd : NatList -> Nat .

eq hd(X,Xs) = X .

A set or multiset is instead defined using an associative, commutative set

formation operator. A standard definition of a multiset of natural numbers

would be:

sorts NatSet .

subsort Nat < NatSet .

op nil : -> NatSet .

op _ _ : NatSet NatSet -> NatSet [assoc comm id: nil] .

This definition treats juxtaposition as set formation, and allows the elements in

the set to be rearranged at will for matching purposes. Like in the list example

given above, the use of an identity also eliminates corner cases. For instance, a

membership test for a set, without an identity, would be written as follows:

13

op _in_ : Nat NatSet -> Bool .

eq N in N = true .

eq N in N NS = true .

eq N in M = false [owise] .

eq N in M NS = false [owise] .

Note the use of [owise] here, which says that the given equation applies when

the others do not. This ensures the last two equations only hold when N and M

are not the same number (if N and M are the same, one of the first two equations

would hold instead). Using an identity, the special case, where the set consists

of only one element, can be removed:

op _in_ : Nat NatSet -> Bool .

eq N in N NS = true .

eq N in NS = false [owise] .

A large number of term rewrite engines are currently in use, including

ASF+SDF [192, 193], Elan [21], Maude [35], OBJ [66], and Stratego [199, 24].

Rewriting is also a fundamental part of existing languages, including Tom

[15, 140, 112], which integrates rewriting with Java.

2.3 Rewriting Logic

Using equational logic, it is possible to model many deterministic systems,

creating operations to represent the state of the system and equations to represent

how the system can evolve. Based on the rules of deduction for equational logic,

this means that all system states that are provably equal can be considered to be

the same, or, more accurately, all states that are provably equal are members of

the same equivalence class of terms modulo the equations in E, meaning any one

of the terms in the class can be chosen as a representative for all the other terms.

Switching to the term rewriting perspective, given a starting term t (say (s s

s 0) + (s 0)), the final term t’ (here s s s s 0) conceptually represents the

same entity. This is the same perspective taken in the lambda calculus, where

terms can be grouped into equivalence classes based on α and β equivalence,

with a term then in the same equivalence class as its fully reduced form.

One limitation of this is that it is not possible to represent transitions between

terms that do not lead to equivalent terms. This is the case in systems that

have nondeterminism or actual concurrency, such as Petri nets and programming

languages with threads. For instance, in a Petri net [159, 127], transitions change

the distribution of tokens in the net, potentially preventing other transitions

from firing or allowing new transitions to be active. In a programming language,

updates to shared memory locations in different threads can compete, potentially

changing the final result of a computation based on the order in which the

threads execute.

14

Rewriting logic [125, 122] is an extension of equational logic with support

for reasoning about nondeterminism and (more broadly) concurrency:

Definition 3 A rewrite theory R is a triple R = (Σ, E, R), with (Σ, E) an

equational theory and R a set of labeled rewrite rules l : t→ t′ ⇐ c where l is a

label, t and t′ are terms formed over Σ 4, and c is a condition.

Like equations, rules can include variables and can be conditional. Unlike

equations, rules cannot be read in both directions, which gives them the power

to evolve one term into another which need not be equationally equal to the

first. This can be seen as using rules to move between classes of terms modulo E.

Rules in rewriting logic map to rewrite rules in term rewriting systems directly,

given that they are already oriented.

2.3.1 Rewrite Theories in Maude

Maude captures the concept of a rewrite theory using a system module, declared

using the mod keyword. System modules are extensions of functional modules

that also providing support for rules, declared using the keywords rl (for

unconditional rules) and crl (for conditional rules). An unconditional rule is

declared as:

rl [LABEL] : l => r .

where LABEL (which is optional) provides a name for the rule, and l and r are

the left and right sides of the rule. Note the use of => instead of =; this is because

rules are not equalities, and can only be used for reasoning from left to right.

Conditional rules are declared similarly, but have a condition like that given

with a conditional equation:

crl [LABEL] : l => r if c .

4Technically, t and t′ are both of the same kind, meaning the sorts assigned to t and t′ are
related, potentially indirectly, by the ordering relation < discussed above.

mod CANDY-AUTOMATON is

sorts State .

ops $ ready broken nestle m&m q : -> State .

rl [in] : $ => ready .

rl [cancel] : ready => $.

rl [1] : ready => nestle .

rl [2] : ready => m&m .

rl [fault] : ready => broken .

rl [chng] : nestle => q .

rl [chng] : m&m => q .

endm

Figure 2.2: A Nondeterministic System Module, in Maude

15

mod PETRI-MACHINE is

sorts Marking .

ops null $ c a q : -> Marking .

op _ _ : Marking Marking -> Marking [assoc comm id: null] .

rl [buy-c] : $ => c .

rl [buy-a] : $ => a q .

rl [chng] : q q q q => $.

endm

Figure 2.3: A Concurrent System Module, in Maude

Figure 2.2, borrowed from a course on program verification [124], shows an

example of a nondeterministic vending machine formalized as an automaton.

The rule in models the insertion of money into the machine. Once the vending

machine is ready, several new transitions are enabled: the transaction can be

canceled, two different snacks can be purchased, or the machine could be broken.

Assuming an item is purchased, the vending machine issues a quarter (q) in

change.

Figure 2.3, from the same course [124], models a Petri net. Various tokens, $,

c, a, q, make up a “marking”, which gives the current state of the net. Markings

are defined as sets, using the syntax shown in Section 2.2. Rules define how

markings change: a $ can change to a c or an a q. Rules can also be applied

concurrently: $ $ could change, in one step, to either c c, a q a q, c a q, or

a q c (the latter two being equal).

2.3.2 Tool Support

Maude provides several tools, beyond a term rewriting engine, which have been

used in the research presented in this thesis:

1. Maude provides the ability to perform a breadth-first search over the state

space of a program, with states equivalence classes of terms modulo E and

transitions between states determined by the application of rules. This

capability can be used to find deadlocks (executions which “get stuck”)

and to explore the evolution of a system as it runs. It can also be used to

pose “what if?” questions, with the goal being to determine if a state of

interest is reachable.

2. Maude also provides an LTL model checker. The model checker uses

propositions defined over the state of the system (i.e., defined over the

term, such as the marking for Petri nets shown above); these propositions

are then included in LTL formulae. It is possible both to verify that

certain properties hold in finite state systems and to find counterexamples

where properties do not hold in either finite state or infinite state systems

(although obviously in the latter the search for a counterexample may not

terminate).

16

sorts Exp .

subsort Name < Exp .

op _; : Exp -> Stmt .

op Nil : -> Exp .

op if_then_else_fi : Exp Stmt Stmt -> Stmt .

op while_do_od : Exp Stmt -> Stmt .

Figure 2.4: RLS Abstract Syntax Definitions

2.4 Rewriting Logic Semantics

Equational logic has long been seen as a viable formalism for defining the

semantics of sequential programming languages [70, 68]. Rewriting logic extends

this by providing a formalism for defining the semantics of nondeterministic

and concurrent languages, leading to an area of research known as rewriting

logic semantics [128, 129]. One specific style of rewriting logic semantics, which

influenced the development of K (discussed in Section 2.5) and includes some of

the work discussed in this thesis, is computation-based rewriting logic semantics.

2.4.1 Computation-Based Rewriting Logic Semantics

The computation-based style of rewriting logic semantics (hereafter RLS) defines

the semantics of a programming language as a rewrite theory. The definition of

the semantics is given in an operational style, with terms used to represent the

current configuration – the current program and state – and rewriting logic rules

and equations used to represent transitions between configurations.

Sorts and Operations in RLS

The signature Σ contains sorts and operators representing: the abstract syntax

of the defined language; the configuration as a whole, as well as the various

parts that make up the configuration (e.g., an algebraic definition of the concept

of an environment); and the various auxiliary operations used as parts of the

semantics, including the individual operations used in the definitions of various

language features and the concept of a computed value. As a shorthand, this

last category is referred to later as semantic entities. Note that the distinction

between these three groups is arbitrary and made just to ease discussion: the

sort and operator syntax shown above for Maude is used to define all three.

Abstract Syntax: Examples of abstract syntax from the KOOL language,

discussed further in Chapter 3, are shown in Figure 2.4. First, a sorts declaration

defines a new sort, Exp, representing expressions in the abstract syntax for KOOL.

The subsort declaration specifies that terms of sort Name are also considered

to be of sort Exp, similar to a BNF production like Exp ::= Name . Several

operators then declare parts of the abstract syntax. The first, common in many

17

op empty : -> KState .

op _ _ : KState KState -> KState [assoc comm id: empty] .

op cset : ClassSet -> KState .

op env : Env -> KState .

op k : Computation -> KState .

op t : KState -> KState .

Figure 2.5: RLS Configuration Definitions

languages, says that an expression can also be used as a statement, indicated

by following it with a semicolon. The second defines the constant Nil, the null

reference value for KOOL. The third defines a standard conditional, with an

expression and two statements, one for each branch. The last defines a while loop,

again with a condition and then the loop body. Defining the abstract syntax

using mixfix notation provides a way to use notation which closely resembles

the actual language constructs and which can easily be mentally converted into

BNF – words in the operator are tokens, each underscore can be replaced by

the sort it represents to fill in the nonterminals, and the sort after the arrow

could be moved to the front before ::=. For instance, the operator declaration

while do od becomes Stmt ::= while Exp do Stmt od.

Configuration Items: Configuration items are also defined as operators,

and represent the same items used in other styles of semantics, such as environ-

ments, stores, and tables of information about functions, classes, methods, etc.

Configuration operators generally all have the same target sort, but can have

any argument sorts, holding individual pieces of information, arbitrary tuples,

lists, sets, finite maps, and multisets. Several sample configuration items from

KOOL, as well as the general declaration for configurations, are shown in Figure

2.5.

In Figure 2.5, all configuration items are given sort KState. KState itself

is defined as a multiset: putting together two KStates forms a new KState,

and during matching (i.e., when deciding which equations and rules to apply),

individual KState items can be rearranged (comm) and grouped (assoc) as

needed. This provides two advantages: configuration items do not need to be

named in a specific order in equations and rules; and items that are not needed

do not need to be included in the equation or rule, making the semantics more

modular (a point discussed further both in Section 2.5 and Chapter 9). Multisets

also allow the same configuration item to appear multiple times, which is useful

for items (such as threads) that can be repeated and which could (in theory)

have the same contents, but which should not be collapsed into the same item.

Four configuration items are then defined, cset, env, k, and t. cset holds a

set of classes, used in KOOL to keep track of classes that have been defined; env

holds the current environment, defined as a finite map, which maps the names of

18

variables to their locations in memory; and t is used to represent the state local

to an individual thread, defined as a multiset of other configuration items. This

provides a natural way to model the fact that some information is local to (and

present in) each thread, such as the current environment for a method running

in the thread, while some information is global to the entire computation, like

shared memory.

k holds the current computation, and deserves special mention since it is

a key part of the semantics. Computations in k are lists; each item in the list

is referred to as a computation item, each of which represents an individual

task or piece of information in the computation. The head of the list can be

seen as the “next” task, with the tail containing tasks that will be computed

later. Instead of using “,” as the list separator, an arrow, written in text as

-> and mathematically as y, is used instead, hopefully providing some added

intuition: do this (computation item ci1), then that (ci2), then that (ci3), etc,

until finished (cin is finished):

ci1 y ci2 y ci3 y ... y cin

The equations and rules used to define the semantics (discussed below) often

break up computations into smaller pieces, which are then put at the head of

the computation to indicate that they need to be computed first before the

overall computation can continue. Computations in RLS are just first-order

terms, making them easy to manipulate, for instance by saving the current

computation to resume later (for coroutines) or by creating a computation to

act as an exception handler.

The configuration item defined in Figure 2.5 are actually part of a much

larger configuration for KOOL, shown in Figure 2.6 and discussed further in

Chapter 3. Configurations in RLS are often hierarchical, with some parts of the

configuration (such as the current computation, the environment, etc) nested

inside other parts of the configuration (such as individual threads). As mentioned

above, this provides a natural way to duplicate parts of the configuration where

needed. It also provides a way to group related pieces of information and then

refer to them as a unit, instead of having to refer to each piece of information

individually.

Semantic Entities: Finally, semantic entities are defined similarly to abstract

syntax and configuration items. Figure 2.7 shows several examples: iv, which

“injects” integers into the sort Value, indicating that integers are valid values (i.e.,

results of computations) in KOOL; a definition of ObjEnv, or object environments,

used to track mappings from names to locations at each allocated “level” of

an object (this is covered in detail in Chapter 3); and release, a computation

item (as discussed in the context of the k cell above, and represented using sort

ComputationItem) defined as part of the semantics for concurrency in KOOL

19

Config

StringList

ControlEnvironment

StringList

Store

ClassSet

MethodStack ExceptionStack LoopStackComputation

Value Name

cset

mem

output

input

 k mstack estack
lstack

Nat

nextloc

Thread

env control
cobj

cclass

 t*

LockSet

LockTupleSet

busy

holds

Name
Nat

lbl tid

Nat

nextTid

Threads

threads

Nat

Bool

tc

aflag

Figure 2.6: Concurrent KOOL State Infrastructure

that, when found in the current computation (in k), indicates that a lock is to

be released.

Equations and Rules in RLS

Using the signature discussed above, a number of equations and rules are

given to define the semantics of a language. In general, equations are used to

define deterministic features, with rules defining nondeterministic and concurrent

features.

Figure 2.8 shows several examples of equations used to define the semantics

of KOOL, along with the definitions of the auxiliary operations used in the

equations. The first provides the semantics for the statement E ; (the stmt

operation allows statements to be treated as part of the computation), saying that

this is defined as the result of evaluating the expression E and then discarding

the result. Note that exp(E) is placed “on top of” (i.e., to the left of) discard

in the computation, meaning that it will be evaluated first, with the expectation

that it will produce a value. The second equation provides a semantics for an

expression made up of just the name X: X is looked up to retrieve its current

op iv : Int -> Value .

op [_,_] : Name Env -> ObjEnv .

op release : -> ComputationItem .

Figure 2.7: RLS Semantic Entity Definitions

20

value. The third equation provides the semantics for assignment: when assigning

E to X, E is evaluated, and the resulting value is assigned to X using the assignTo

computation item.

One important point to note with these first three equations is that none

of them mention the k configuration item explicitly: these equations are valid

anywhere the underlying constructs are encountered (note that in the third

equation the semantics state that the value of E will be assigned to X, but the

assignment is done later, after E is evaluated). Other equations, which define

the semantics of constructs that depend on the current configuration, explicitly

mention k to ensure that they only apply when the defined construct is the next

task to evaluate in the computation. This can be seen in the fourth equation,

which defines the semantics of lookup. The environment, Env, is a finite map;

Env[X] is the lookup operation on the map, which should yield a location L in

the store where the value assigned to X is held. The condition does this lookup,

binding the location to L. This is represented using the := syntax, which binds

the term, here just a variable, on the left hand side to the result of reducing

the right hand side to a normal form, i.e., one where no rules or equations

can apply. The equation then checks to see if L is undefined, representing the

case when a name not in the environment is used. If the location is defined,

the value at the location is looked up in the store using the location lookup

(llookup) computation item. This equation should only apply when the lookup

is the next item in the computation to ensure that changes to the state are

properly sequenced, ensuring here that the environment used is the currently

active environment. One more point to note about this equation is the use

of CS, which represents the other contents of configuration item control, a

multiset of control-flow related items (the current computation, information

about exceptions and loops, etc). A way to eliminate the need to mention

op stmt : Stmt -> ComputationItem .

op exp : Exp -> ComputationItem .

op discard : -> ComputationItem .

op lookup : Name -> ComputationItem .

op assignTo : Name -> ComputationItem .

op llookup : Location -> ComputationItem .

eq stmt(E ;) = exp(E) -> discard .

eq exp(X) = lookup(X) .

eq stmt(X <- E ;) = exp(E) -> assignTo(X) .

ceq control(k(lookup(X) -> K) CS) env(Env) =

control(k(llookup(L) -> K) CS) env(Env)

if L := Env[X] /\ L =/= undefined .

Figure 2.8: RLS Semantics with Equations

21

rl threads(t(control(k(stmt(label(X)) -> K) CS) lbl(X’) TS) KS)

=> threads(t(control(k(K) CS) lbl(X) TS) KS) .

crl threads(t(control(k(val(V) -> acquire -> K) CS)

holds(LTS) TS) KS) busy(LS)

=> threads(t(control(k(K) CS)

holds(LTS [lk(V),1]) TS) KS) busy(LS lk(V))

if notin(LS,lk(V)) .

Figure 2.9: RLS Semantics with Rules

such “unused” parts of the configuration added only for matching is part of K,

discussed in Section 2.5.

Figure 2.9 shows the semantics of two concurrency-related features, defined

using rules. The first rule, which is not conditional, defines the semantics of

label statements, which provide a way for the user to give labels in program code

that can then be used when model checking programs. When a label statement

with label X is the next item in the computation, the label associated with the

current thread is changed from X’ (the former value) to X. Here CS, TS, and KS

are all used to represent unreferenced parts of the configuration. Configuration

item t is a multiset with information for one thread, while threads is a multiset

containing all the threads active in a program.

The second rule, which is conditional, defines the semantics for lock acqui-

sition, given in K syntax in Chapter 3, Rule 3.33. Like Java, KOOL acquires

locks on specific values. Here, a lock is being acquired on a value V. The locks

the thread currently holds are in the holds item (LTS), while the locks held

by all threads are part of the busy item (LS). If the lock is not in LS (meaning

it is not held by another thread), it can be acquired, which results in it being

added both to the busy item and to the thread-local holds item. When added

to holds a lock count is also maintained, which is used to model cases where

the same thread acquires multiple locks on the same value, ensuring that the

locked value is released the proper number of times before it is removed from

busy and can be acquired by another thread.

2.5 K

K [167], based on rewriting logic and the work on the computation-based style of

rewriting logic semantics discussed above, is a general technique and notation for

defining deterministic, nondeterministic, and concurrent computation. In this

thesis, the focus is specifically on formal definitions of programming languages,

which was the first application of K. Beyond the prior work on rewriting logic

semantics, K was also influenced by work on abstract state machines (ASMs)

[74], the chemical abstract machine (CHAM) [64], and continuations [184]. K

takes its name from k, the name of the configuration item used to hold the

22

current computation. While there are many similarities between K and the

computation-based style of rewriting logic semantics, there are some significant

differences as well, mainly in providing additional support for modularity and

for writing concise language definitions.

2.5.1 K Configurations

Configurations in K are defined identically to how they are defined using RLS.

In K, each configuration item is referred to as a K cell. The current computation

is still stored inside a k configuration item, or k cell, and it is still possible (as in

the case of threads) to have multiple copies of all cells, including k, if needed

by the semantics. A second standard cell, ⊤, represents the entire configuration

(i.e., the entire term).

2.5.2 K Sorts and Operations

Signatures in K are identical to signatures in RLS with one exception: several

new attributes for operations have been added, used by K to automatically

handle some routine language definition tasks.

The most common of these is strict, which is used on operator definitions

to indicate that the operands must be evaluated first before evaluating the entire

operation. This was done manually before in RLS, leading to a large number of

equations and operators used just to indicate how operands were being evaluated.

A common case is with arithmetic operations, such as addition, where the RLS

definition would be:

op _+_ : Exp Exp -> Exp .

op plus : -> ComputationItem .

eq exp(E + E’) = exp(E,E’) -> plus .

eq val(iv(I),iv(I’)) -> plus -> K = val(iv(I + I’)) -> K .

Here, two operators had to be defined. The first is the abstract syntax for

plus, which would be needed regardless; the second is a placeholder computation

item, added into the computation to indicate that the computation is “waiting”

for the two operands to be evaluated before evaluating the plus. The actual

equations are then shown. The first says that, to evaluate E + E’, one must first

evaluate E and E’, again using the plus computation item to indicate that an

addition will occur once E and E’ are evaluated. The second equation applies

after E and E’ have been evaluated to two integer values, I and I’. In this case,

the value returned is the sum of I and I’.

In K, this can be indicated as:

op _+_ : Exp Exp -> Exp [strict] .

iv(I) + iv(I’) => iv(I + I’) .

23

Behind the scenes, K will generate the intermediate operators to evaluate E

and E’ automatically, putting the values back into the positions of the original

operands. This allows the semantic equation to use a form closer to the original

syntax, instead of having the result values on top of an intermediate computation

item in the computation. In cases where not every argument position should

be strict, a list of natural numbers, indicating the strict positions, can also be

provided. This is the case with a conditional, for instance, where one should

evaluate the condition before choosing which branch is evaluated. For cases

where the evaluation order is important, a variant of strict, seqstrict, can

be used instead, which will enforce a left to right order of evaluation on all strict

argument positions. Finally, note that the semantics given above use a rule

(indicated as in rewriting logic with =>), not an equation as may be expected;

the reason for this is explained next.

2.5.3 K Rules and Equations

A K definition consists of two types of sentences: structural equations and rewrite

rules. Structural equations carry no computational meaning, and, like equational

logic equations, can be used for reasoning both from left to right and from right

to left. When converted into term rewrite rules they are treated the same as

equations in equational logic, evaluating from left to right. One use of structural

equations is to provide definitions for auxiliary operations used in the semantics.

Examples include operations to work with the lists and sets (list length, set

membership, etc) included in the configuration, or operations to pull apart the

abstract syntax to get useful information (the type of a declaration, the number

of pointer “levels” in a C pointer declaration, the branches of a conditional, etc).

Equations used to desugar language syntax are also considered to be structural,

and include transformations such as turning a one-armed conditional into a

two-armed conditional with a default else body.

One special type of structural equation, used with the strict and seqstrict

attributes discussed above, is a heating/cooling rule. In the Chemical Abstract

Machine, computations are represented as molecular soups, with information

stored inside individual molecules. To allow computation, the information inside

each molecule needs to move outside the molecule membrane, where it can

encounter other information and interact. This process is called heating, and in

K is represented by placing operands on top of the computation. In the Chemical

Abstract Machine, the computation then cools, with the new compounds (i.e.,

the results of the computation) going back into molecules where they can no

longer directly interact. The K equivalent is when the computed values are

placed back into the original abstract syntax item, like iv(I) + iv(I’) above.

While it is not necessary to write these rules by hand – one can assume that

they are automatically created by the use of strictness attributes – it is possible

to do so. When written manually, they are given a special notation using the ⇋

24

symbol to separate the two sides of the equation. This is solely to provide added

intuition, and could be represented using two equations instead, one using the

unevaluated form (like a1) and one using the evaluated form (like i1). Examples

of heating and cooling rules include:

a1 + a2 ⇋ a1 y � + a2 (2.2)

i1 + a2 ⇋ a2 y i1 + � (2.3)

if b then s1 else s2 ⇋ b y if � then s1 else s2 (2.4)

K automatically generates special operators, serving the same purpose as the

plus computation item defined manually above, to represent the intermediate

steps being taken in the computation. When an operand is placed on top of the

computation through heating, the operand position is replaced with a �, leading

to operators like � + in equation 2.2, + � in equation 2.3, and if � then else

in equation 2.4. The cooled value would then go back into the position of the

box. Note that the equations in 2.2 and 2.3 show the deterministic version

(seqstrict), since the first operand must evaluate to a value before the second

is evaluated.

Unlike structural equations, rewrite rules represent actual steps of computa-

tion. Examples include:

i1 + i2 → i, where i is the sum of i1 and i2 (2.5)

if true then s1 else s2 → s1 (2.6)

if false then s1 else s2 → s2 (2.7)

Rule 2.5 is the standard addition rule, taking i1 + i2 to the sum of i1 and i2.

Like rules in rewriting logic, K rules represent a one-way transition, allowing

reasoning from left to right only. Rules 2.6 and 2.7 provide the semantics for

the if statement, with the correct path chosen based on whether the condition

evaluates to true or false.

Up to now, the rules have not referenced K cells. The cells are given in K

rules using an XML-like notation, with an opening cell “tag”, like 〈k〉 and a

closing tag like 〈/k〉. The last rule, rule 2.8, shows an example using multiple

cells with this XML-like notation. This is a variant of the KOOL assignment

rule, with variable X being assigned value V . The environment (env) and store

(mem) cells both hold finite maps, represented as a set of pairs, with operations

defined for both to ensure the uniqueness of the first projection of each pair.

As in Figure 2.9, TS and CS are used to match other parts of the thread and

25

control states:

〈t〉 〈control〉 〈k〉 X ← V y K 〈/k〉 CS 〈/control〉 〈env〉 (X, L) Env 〈/env〉 TS 〈/t〉

〈mem〉 (L, V ′) Mem 〈/mem〉 →

〈t〉 〈control〉 〈k〉 K 〈/k〉 CS 〈/control〉 〈env〉 (X, L) Env 〈/env〉 TS 〈/t〉

〈mem〉 (L, V) Mem 〈/mem〉 (2.8)

At this point, Rule 2.8 looks like an RLS rule, but with the cells given in

an XML-like notation instead of prefix notation. K includes special notation to

help simplify rules and make them more modular. The most important is that

context needed only for matching the configuration structure, including variables

such as CS and TS and cells such as t and control , can be elided:

〈k〉 X ← V y K 〈/k〉 〈env〉 (X,L) Env 〈/env〉

〈mem〉 (L, V ′) Mem 〈/mem〉 →

〈k〉 K 〈/k〉 〈env〉 (X,L) Env 〈/env〉

〈mem〉 (L, V) Mem 〈/mem〉 (2.9)

This is not just a notational convenience: requiring this extra context makes

the rules less modular, since changes to the layout of the configuration (adding a

new level, moving cells between levels) would require changes to the rule. Since

this information is still needed for matching, it is added back in using context

transformers, which will transform each rule into a rule with a complete matching

context, based on the structure of the configuration. Context transformers are

discussed further below.

Another feature, which is just a notational convenience, is the ability to

replace variables that are given on the left-hand side of a rule but are not

otherwise used (in conditions or on the right-hand side) with an underscore,

similar to functional languages such as OCaml [163, 4]. This is used below to

replace V ′, given in Rule 2.9, with an underscore, since it is not used elsewhere

in the rule:

〈k〉 X ← V y K 〈/k〉 〈env〉 (X,L) Env 〈/env〉

〈mem〉 (L,) Mem 〈/mem〉 →

〈k〉 K 〈/k〉 〈env〉 (X,L) Env 〈/env〉

〈mem〉 (L, V) Mem 〈/mem〉 (2.10)

Since matching against lists and sets is used quite often, it is also helpful to

have special notation for both lists and sets. In K, this is indicated by using

“...”, with a “...” at the start or end of a cell indicating a list match (“...” at the

start would indicate that one is matching the tail of the list, while “...” at the

26

end would indicate that one is matching the head), and “...” at both ends of the

cell indicating a set or multiset match5. Rule 2.10 can be transformed to use

this notation, with the result given below in Rule 2.11:

〈k〉 X ← V ...〈/k〉 〈env〉... (X, L) ...〈/env〉

〈mem〉... (L,) ...〈/mem〉 →

〈k〉 · ...〈/k〉 〈env〉... (X, L) ...〈/env〉

〈mem〉... (L, V) ...〈/mem〉 (2.11)

In Rule 2.11, the “...” convention allows us to just mention the pair being

used in the environment and store, while eliding the rest of the cell contents. k

is a list, so the convention indicates that we are just matching the head. Since

we are eliminating the head element, and not replacing it with anything else, we

indicate this with ·.

Finally, some of the information in Rule 2.11 is redundant. For instance, the

environment does not change, but must be mentioned on each side of the rule,

since mentioning it just on the left-hand side would be the same as discarding

it. K provides a way to indicate that only certain parts of a term are changed

by a rule to reduce this redundancy. To do this, in the K notation it is possible

to underline the parts of a term that change, and then note the change (i.e.,

the right-hand side) underneath the line (i.e., under the left-hand side). The

arrow between the two sides (→) is also dropped, since it is no longer needed; to

reconstruct the right-hand side of the rule, the “top” of the K rule can be copied

to the right-hand side, with any underlined portions replaced by the subterms

given below the line.

〈k〉 X ← V

·

...〈/k〉 〈env〉... (X, L) ...〈/env〉 〈mem〉... (L,

V

) ...〈/mem〉

(2.12)

Rule 2.12 shows an example where this has been done. In the k cell, the · is

now under X := V , while V is now under . Since both the environment and

the first element (L) of the pair in mem do not change, each only needs to be

written once.

2.5.4 Rules and Equations in K and RLS

The use of rules and equations is slightly different in K and RLS. In RLS, equa-

tions are used to represent deterministic language features, while rules represent

language features that can be affected by nondeterminism and concurrency,

5This is purely a notational convention, to indicate that the match is being performed
modulo both associativity and commutativity; it would be possible to change the notation to
just use one “...”, but this would make the type of match less obvious in the rule.

27

such as memory reads and writes that could lead to data races, or attempts

to acquire locks. Some recent work [129] has instead looked at the use of rules

and equations in terms of computational abstraction, with the ability to move

from a specification with all equations to one with all rules seen as turning

an “abstraction knob” from a more abstract (all equations) to less abstract (all

rules) definition. This allows the language designer to capture the idea of a

computational step more closely, with each rule representing a discreet step (like

a transition in a structural operational semantics definition).

This latter view is the perspective taken in K. Computational steps are

defined as rewrite rules, while other parts of the computation are defined using

structural equations, with the ability to “tune” this based on what should be

considered a step of computation. In mapping K to Maude, structural equations

and rules can be mapped directly to Maude equations and rules, although this

mapping will often be modified based on the planned use of the semantics. For

instance, for model checking, most K rules will be mapped to equations, with

only those rules directly interacting with concurrency mapped to Maude rules.

2.5.5 Context Transformers

To ensure that rules are modular, it should be possible to continue using a rule,

unchanged, when parts of the context (i.e., K cells) not mentioned in the rule

are modified or replaced. Given a specific rule, the easiest case to deal with

is when the part of the configuration matched by a rule remains the same but

the surrounding context changes. This case is handled naturally in both RLS

and K by defining the configuration as an associative, commutative multiset of

configuration items (often referred to a a “soup”). Because the configuration is

commutative, the ordering of the individual items does not matter, meaning it is

not essential to put items in positions and then name them even when not used,

as it would be if the configuration were represented as a tuple. Associativity then

allows arbitrary groupings of items, meaning we don’t have to worry about the

order in which the set is formed (i.e., there is no difference between set 1 (2 3)

and set (1 2) 3, both can just be treated as 1 2 3).

The more challenging case is when the configuration used by a rule is changed.

A common example is when new levels are added to the cell hierarchy. For

instance, when threads are added to a language, thread-specific information is

grouped into a thread cell, often called t, while information that is global to the

computation is left at its current level. Rules that referenced both information

that is now inside the thread cell and global information would then need to

be changed to account for this added level of nesting. An example is Rule 2.8,

the assignment rule, which used the computation (k), environment (env), and

store (mem) cells. When threads are added, the computation and environment

are grouped inside t, but the store is not, since there is only one which is shared

by all threads. In RLS this leads to a revision of the assignment rule, shown

28

below in Rule 2.13.

〈t〉... 〈k〉X := V

·

...〈/k〉 〈env〉... (X, L) ...〈/env〉 ...〈/t〉 〈mem〉... (L,

V

) ...〈/mem〉 (2.13)

Rule 2.13 shows the type of change typically made within a language, but

it is also important that language features, once specified, can be used across

languages, providing a method to build languages more quickly by assembling

them from trusted pieces. This provides an additional challenge, since the

configuration in a different language may be quite different from that used in

the language where the feature was originally defined. In this case, using RLS

rules would often need to be manually changed from one language to another to

accommodate differences in configurations. K solves this problem through the

use of context transformers:

Definition 4 A context transformer, t, is a function which takes as input a K

configuration k and a K sentence (i.e., a K rule or equation) s and generates a

new sentence, s′. For any two cells c and c′ in s, s′ is created by t to include

any cells cn which occur between c and c′ in k. This process, context completion,

allows a correct match against the configuration structure k using s′. In cases

where t is unable to calculate a unique completion for s′, s is said to be ambiguous.

Context completion works using a combination of the information given in

the configuration (such as indications that cells can be repeated), information in

s (any already specified context), and various rules and heuristics (such as using

the shortest path in k between c and c′). Since in general there are many possible

completions, the rules and heuristics are needed to identify a single completion,

which should be the intended completion (i.e., the completion containing the

context that would otherwise have been written by hand). If s is ambiguous, this

means that there are multiple possible completions that comport with the given

rules and heuristics, so additional context information must be added manually

to s before s′ can be generated by t.

Using context transformers, only those portions of the configuration actually

used in a rule need to be mentioned, with other parts of the configuration, needed

only to ensure a valid match, added automatically. For instance, the assignment

rule shown originally in Rule 2.8 can remain as is, without the need to explicitly

add the thread cell as was done for Rule 2.12. This accommodates changes

within a language and changes between languages, under the assumption that

the cell names themselves do not change.

2.5.6 K Notation Changes

Since it was first introduced [86, 32] the K notation has gone through several

iterations, mainly involved with how the cells are represented. At first, K cells

were represented using standard Maude notation – the computation cell would

29

be represented as k(K), with K being the actual computation inside the cell.

This later changed to allow for specific notation for lists and sets inside cells,

replacing the standard opening or closing parentheses with a (left or right)

angle to represent that more information was included “in that direction”,

represented now using “...”. For instance, to match the first element in the

computation, the notation would use k(item >, adapted later to k(| item |>.

A more mathematical notation was then adopted, with the cell label added as

a subscript to the cell, like Litem|〉k [167]. Based on feedback from others, the

current notation uses the XML-like notation presented in this thesis. An attempt

has been made to ensure all semantic rules presented in this thesis that are

written in K, and not Maude, syntax make use of this current notation, but this

change needs to be kept in mind when referencing earlier work.

30

Chapter 3

Language Prototyping

Language design is much more an art than a science. Selecting from the

wide range of available language features, designing new features, and choosing

appropriate syntax are all important tasks which do not have clear ”best” answers.

Sometimes even small decisions in any of these areas can drastically impact the

usability, or feel, of a language.

One method to improve the language design process is language prototyping.

Prototypes provide the same advantages for designing languages as they provide

for designing programs: by actually using the language features being designed,

instead of just seeing them on paper, the designer can gain confidence that

the features work well, or discover early in the process that they do not. Also,

definitions of features in a prototype must include enough detail to allow them

to be used with programs, highlighting areas of the design that appear complete

on paper but are unclear in practice. The ability to use the prototyped features

also provides opportunities to see how different features of the same language

interact, helping to prevent poor feature interactions from making it into a

settled version of the language. Having a method for prototyping languages

that does not require the time and effort involved in modifying a compiler or

interpreter provides additional benefits, allowing the design process to proceed

more rapidly.

Ideally, language prototypes will be formal, providing a clearer definition of

the features being designed than is possible with normal textual descriptions,

such as those found in manuals. Having a formal definition also opens the

process up to the use of formal tools, such as model checkers, state space search

tools, and theorem provers. These not only allow proofs about programs and

properties of the language (the latter referred to as language meta-theory proofs),

but can also provide ways to gain confidence that a language is working as

expected. For instance, using state space search techniques, it may be possible

to show that only expected states can be reached in certain sample programs

when using certain concurrency features in a language. This type of tool support

is especially important with the addition of complex abstraction capabilities

and new concurrency features, both of which make programs and programming

languages more challenging to understand.

The remainder of this chapter illustrates language prototyping using a case

31

study of the KOOL language. KOOL is a class-based, dynamic object-oriented

language, supporting those features commonly understood to make a language

object-oriented: encapsulation, inheritance, and polymorphism. Section 3.1

provides an introduction to the language, with several examples illustrating

standard language features. Section 3.2 documents the abstract syntax of

KOOL, while Section 3.3 then provides a high-level overview of the KOOL state

configuration and the algebraic representation of KOOL program values (such

as objects and object references). Next, Section 3.4 describes the base semantics

of KOOL, including semantic rules for object creation, method dispatch, super

and self references, and exceptions.

To illustrate language prototyping, Section 3.5 details the first major extension

of KOOL, the introduction of a concurrency model similar to that used in Java,

with multiple threads and locks acquired on objects. Two additional extensions

are then highlighted in Section 3.6. Details of the implementation not covered

in the other sections in this chapter are discussed in Section 3.7.

3.1 Introducing KOOL

KOOL is dynamic, class-based object-oriented language, loosely inspired by,

but not identical to, the Smalltalk language [71]. KOOL includes support for

standard imperative features, such as assignment, conditionals, and loops with

break and continue. Many familiar object-oriented features are also supported:

• all language values are represented by objects;

• all operations are carried out via message sends;

• inheritance is based around a standard single inheritance model, with a

designated root class named Object;

• all method calls use dynamic dispatch, with the appropriate method to

invoke selected based on the dynamic class of the target object;

• methods are all public, while fields are all private outside of the owning

object;

• scoping is static, yet declaration order for classes and methods is unimpor-

tant.

In addition, KOOL allows for the run-time inspection of object types via a

typecase construct, similar to a standard case construct but branching on types

instead of program values, and includes support for exceptions with a standard

try/catch (no finally) mechanism.

The concrete syntax of KOOL is shown in Figure 3.1. The lexical definitions

of literals are not included in the figure to limit clutter, but are standard (for

instance, booleans include both true and false, strings are surrounded with

32

Program P ::= C
∗

E

Class C ::= class X is D
∗

M
∗

end | class X extends X
′

is D
∗

M
∗

end

Decl D ::= var {X,}
+

;

Method M ::= method X is D
∗

S end | method X ({X
′

,}
+

) is D
∗

S end

Expression E ::= X | I | F | B | Ch | Str | (E) | new X | new X ({E,}
+

) |

self | E Xop E
′

| E.X(())
?
| E.X({E,}

+
) | super() |

super.X(())
?
| super.X({E,}

+
) | super({E,}

+
) | primInvoke({E,}

+
)

Statement S ::= E <- E
′

; | begin D
∗

S end | if E then S (else S
′

)
?

fi |

try S catch X S end | throw E ; | while E do S od |

for X <- E to E
′

do S od | break; | continue; |

return (E)
?
; | S S

′

| E; | typecase E of Cs
+

(else S)
?

end

Case Cs ::= case X of S

X ∈ Name, I ∈ Integer, F ∈ Float, B ∈ Boolean, Ch ∈ Char, Str ∈ String,

Xop ∈ Operator Names

Figure 3.1: KOOL Syntax

double quotes, etc). Most message sends are specified in a Java-like syntax;

those representing binary operations can also be used infix (a + b desugars to

a.+(b)), with these infix usages all having the same precedence and associativity.

Finally, semicolons are used as statement terminators, not separators, and are

only needed where the end of a statement may be ambiguous – at the end of

an assignment, for instance, or at the end of each statement inside a branch of

a conditional, but not at the end of the conditional itself, which ends with fi.

One important point is that many standard expressions are not defined as part

of the KOOL syntax, but instead are handled using message sends, such as the

arithmetic, logical, and boolean operations commonly found in programming

languages.

Figure 3.2 shows an example of the typical “Hello World!” program in KOOL.

A program in KOOL is made up of any (0 or more) user defined classes, followed

by an arbitrary KOOL expression, which has access to these classes as well as

classes provided in a standard KOOL prelude. console is a predefined object,

representing the standard input and output streams, with methods to read from

(>>) and write to (<<) the stream1. "Hello World!" is a string, which is actually

an object of class String. When << is invoked with an argument, it will call that

object’s toString method and then return itself, allowing multiple calls to <<

to be chained (such as console << "Value = " << 3). Since calling toString

on a string will just return the string value, this program just writes "Hello

World!" to standard output.

Figure 3.3 shows a slightly more complex example. Here, a new class

Factorial is defined with a method Fact that calculates the factorial of the

1These method names were borrowed from C++.

33

console << "Hello World!"

Hello world!

Figure 3.2: Hello World in KOOL

parameter n. All the operations are actually method calls, including the equality

test in the condition, the multiplication of n and self.Fact(n-1), and the sub-

traction of 1 from n. This means that the operators used (such as *) are defined

as method names, not as reserved words or keywords in the language, providing a

more uniform syntax and giving users a mechanism to define their own operators.

The conditional expects an object of class Boolean to be given as the guard,

but otherwise imposes no restrictions on types. Finally, methods in KOOL can

be invoked recursively, with self here indicating that the current object is also

the target of the message send (a target always needs to be indicated, even if

it is self). The program expression uses class Factorial by creating a new

instance of the class, using new, and then invoking its Fact method by passing

in a number. The result is then printed to the console.

Finally, Figure 3.4 presents two sample class definitions, providing a sim-

ple example of inheritance and calls to super-methods using a familiar Point

and ColorPoint example. Class Point represents a point in 2D space, with x

and y coordinates, and implicitly inherits from (extends) class Object. Class

ColorPoint explicitly extends class Point, adding a new variable c to represent

the color of the point. The constructor for ColorPoint calls its parent construc-

tor, passing the x and y coordinates, while the version of toString defined in

ColorPoint also uses super, here to invoke the parent version of the toString

method. + is defined in the String class as string concatenation.

Additional examples of KOOL programs are available with the KOOL distri-

bution, available on the KOOL website [94].

class Factorial is
method Fact(n) is

if n = 0 then return 1;
else return n * self.Fact(n-1);
fi

end
end

console << (new Factorial).Fact(200)

7886578673647905035523632139321850622951359776871732632947425332443594499634033429203042
8401198462390417721213891963883025764279024263710506192662495282993111346285727076331723
7396988943922445621451664240254033291864131227428294853277524242407573903240321257405579
5686602260319041703240623517008587961789222227896237038973747200000000000000000000000000
00000000000000000000000

Figure 3.3: Recursive Factorial in KOOL

34

class Point is
var x,y;

method Point(inx, iny) is
x <- inx;
y <- iny;

end

method toString is
return ("x = " + x.toString() + " and y = "

+ y.toString());
end

end

class ColorPoint extends Point is
var c;

method ColorPoint(inx, iny, inc) is
super(inx,iny);
c <- inc;

end

method toString is
return (super.toString() + " and c = " + c.toString());

end

method write is
console << self;

end
end

(new ColorPoint(20,30,5)).write

x = 20 and y = 30 and c = 5

Figure 3.4: Inheritance and Built-ins in KOOL

3.2 Abstract Syntax

The abstract syntax of KOOL closely mirrors the concrete syntax, but in general

does not require as many cases, since in some cases several productions in the

concrete rules can be mapped to a single abstract syntax production. For instance,

binary infix operators are mapped to standard “dot-notation” message sends.

The definitions of abstract syntax shown below are provided using standard

Maude notation.

Names: The abstract syntax for names in KOOL takes advantage of the

Maude QID module, providing a way to represent arbitrary identifier strings

as quoted (i.e., preceded by a single quote, such as ’Boolean) strings in the

semantics. These quoted strings are wrapped in a special operator n, injecting

them into the Name sort. Lists of names, needed for parameter lists in method

definitions and in variable declarations, are also provided, with names in the list

separated by commas.

fmod NAME-SYNTAX is

protecting QID .

sort Name NameList .

subsort Name < NameList .

35

op n : Qid -> Name .

op empty : -> NameList .

op _,_ : NameList NameList -> NameList [assoc id: empty] .

endfm

Scalars: Scalars to represent integers, floating-point numbers, booleans, and

individual characters are also provided in the KOOL abstract syntax. Each

scalar is provided with a K-specific sort (e.g., KInt) into which it is injected.

The underlying representations are those offered by Maude. Strings are not

strictly scalars, but are literals, and so are included here as well for convenience.

fmod SCALARS-SYNTAX is

including INT .

including FLOAT .

including BOOL .

including STRING .

sorts KInt KFloat KBool KChar KString .

op i : Int -> KInt .

op f : Float -> KFloat .

op b : Bool -> KBool .

op c : Char -> KChar .

op s : String -> KString .

endfm

Expressions: Expressions in KOOL include (through subsorting) the prior

definitions of names and scalars. The abstract syntax for expressions also adds

expression lists, used in method calls, and a special expression, Nil, which

represents an object reference assigned to no object.

fmod EXP-SYNTAX is

including NAME-SYNTAX .

including SCALARS-SYNTAX .

sorts Exp ExpList .

subsort Exp < ExpList .

subsort Name KInt KFloat KBool KChar KString < Exp .

subsort NameList < ExpList .

op empty : -> ExpList .

op _,_ : ExpList ExpList -> ExpList [assoc id: empty] .

op Nil : -> Exp .

endfm

Statements: The base sort for statements in KOOL is Stmt. An expression

can be used as a statement by terminating it with a semicolon, represented with

the ; operator definition. A skip; statement is also introduced, representing a

statement that does nothing.

36

fmod STMT-SYNTAX is

including EXP-SYNTAX .

sort Stmt .

op _; : Exp -> Stmt .

op skip; : -> Stmt .

endfm

Declarations: In the KOOL abstract syntax, declarations of class fields and

local variables in methods use the var keyword followed by a list of names.

fmod DECL-SYNTAX is

including NAME-SYNTAX .

sorts Decl Decls .

subsort Decl < Decls .

op var_ : NameList -> Decl .

op empty : -> Decls .

op _,_ : Decls Decls -> Decls [assoc id: empty] .

endfm

Sequential Composition: Sequential composition is represented by having

two statement abut. No separator is needed since statements are terminated

either by keywords (fi for if statements, for instance) or by semicolons.

fmod SEQUENCE-SYNTAX is

including STMT-SYNTAX .

op __ : Stmt Stmt -> Stmt .

endfm

Blocks: Blocks, which provide lexical scoping, are opened with the begin key-

word and closed with the end keyword. The block includes a list of declarations

followed by a list of statements. Each is optional in the concrete syntax, with

default values provided in the abstract syntax to allow a normalized form of the

construct. Note that requiring declarations to come before statements in the

block, versus mixing the two, is done just to simplify parsing; the declaration

semantics add the name into the environment when its declaration is encountered,

meaning a declaration given in the middle of a sequence of statements would

only be visible after the declaration is given, not before, which would ensure

proper scoping.

fmod BLOCK-SYNTAX is

including STMT-SYNTAX .

including DECL-SYNTAX .

op begin__end : Decls Stmt -> Stmt .

endfm

37

Assignments: Assignment uses <- notation, with the value on the right and

the target on the left.

fmod ASSIGNMENT-SYNTAX is

including EXP-SYNTAX .

including STMT-SYNTAX .

op _<-_; : Exp Exp -> Stmt .

endfm

Conditionals: Conditionals, with and without else branches, are supported in

the abstract syntax. Only one is used in the semantics: a conditional without an

else clause is transformed into a conditional with an else skip; clause. Note

that this could also be done on the translation from concrete to abstract syntax.

fmod CONDITIONAL-SYNTAX is

including EXP-SYNTAX .

including STMT-SYNTAX .

op if_then_else_fi : Exp Stmt Stmt -> Stmt .

op if_then_fi : Exp Stmt -> Stmt .

endfm

Loops: for, while, and do/while loops are all supported in KOOL. KOOL

also allows break and continue statements, which either exit or restart (in the

case of the for loop, after incrementing the loop counter) the current loop.

fmod LOOP-SYNTAX is

including EXP-SYNTAX .

including STMT-SYNTAX .

including NAME-SYNTAX .

op for_<-_to_do_od : Name Exp Exp Stmt -> Stmt .

op while_do_od : Exp Stmt -> Stmt .

op do_while_od : Stmt Exp -> Stmt .

op break‘; : -> Stmt .

op continue‘; : -> Stmt .

endfm

Methods: A method in KOOL uses the method keyword, followed by the

method name, and then a list of method parameters. The method body is

bracketed with is and end, and includes a list of local declarations (optional

in the concrete syntax) and the method statement. The abstract syntax treats

multiple methods as a list, but these are converted into a method set in the

internal representation, since the order of declaration does not matter. Defined

with the method syntax is the abstract syntax for return. A return statement

without an expression is equivalent to returning the nil value.

fmod METHOD-SYNTAX is

including NAME-SYNTAX .

38

including DECL-SYNTAX .

including STMT-SYNTAX .

sorts Method MethodList .

subsort Method < MethodList .

op empty : -> MethodList .

op _,_ : MethodList MethodList -> MethodList [assoc id: empty] .

op method_‘(_‘)is__end : Name NameList Decls Stmt -> Method .

op return‘; : -> Stmt .

op return_; : Exp -> Stmt .

endfm

Classes: Classes in KOOL are given a class name, the name of the extended

class (this is not required in the concrete syntax, but is automatically added in

the abstract syntax – all classes that do not explicitly extend another class extend

Object), declarations of class fields, and a list of class methods. primclass is

used to identify that a class is used to model a primitive value in the language,

which enables support for manipulating this primitive value using the KOOL

primitives functionality.

fmod CLASS-SYNTAX is

including DECL-SYNTAX .

including NAME-SYNTAX .

including METHOD-SYNTAX .

sorts Class Classes .

subsort Class < Classes .

op _,_ : Classes Classes -> Classes [assoc id: empty] .

op empty : -> Classes .

op class_extends_is__end : Name Name Decls MethodList -> Class .

op primclass_extends_is__end : Name Name Decls MethodList -> Class .

endfm

Self: The self keyword represents the current object. It can be used wherever

a reference to the current object is needed, and also must be used when making

method calls where the current object is also the target.

fmod SELF-SYNTAX is

including NAME-SYNTAX .

including EXP-SYNTAX .

op self : -> Exp .

endfm

Super: The super keyword is used when making calls back up the inheritance

hierarchy. The abstract syntax supports two forms of super: the first is used

in regular sends, where super replaces the target object, while the second is

used inside constructors, in the case where an object wants to invoke a parent

constructor.

39

fmod SUPER-SYNTAX is

including NAME-SYNTAX .

including EXP-SYNTAX .

op super._‘(_‘) : Name ExpList -> Exp .

op super‘(_‘) : ExpList -> Exp .

endfm

Message Sends: Message sends are given in a Java-like syntax, with the

target, followed by a dot, followed by the name of the method, with a list of

expressions then given in parentheses to represent the arguments for the call.

All message sends are normalized into this form during the translation from

concrete syntax, including those that use infix operators (like +).

fmod SEND-SYNTAX is

including EXP-SYNTAX .

including NAME-SYNTAX .

including STMT-SYNTAX .

op _._‘(_‘) : Exp Name ExpList -> Exp .

endfm

New: The abstract syntax for new accepts a name, which is the name of a class,

and a list of expressions representing the arguments to the class constructor.

fmod NEW-SYNTAX is

including EXP-SYNTAX .

including NAME-SYNTAX .

op new_‘(_‘) : Name ExpList -> Exp .

endfm

Exceptions: Exceptions use a standard try/catch syntax, similar to that

used in Java. try includes the statements being handled by the exception handler.

catch includes a name, used to represent the exception value when an exception

is thrown, and a statement, which should handle the exception. Exceptions can

be thrown directly by the language semantics, and can also be thrown using the

throw keyword, which will throw the value yielded by the given expression.

fmod EXCEPTION-SYNTAX is

including STMT-SYNTAX .

including EXP-SYNTAX .

op try_catch__end : Stmt Name Stmt -> Stmt .

op throw_; : Exp -> Stmt .

endfm

Typecase: The typecase syntax provides a way to branch to different func-

tionality based on the runtime type of an expression. The typecase keyword

takes an expression, a list of cases, and an optional else case, used when no

40

other case matches. Each case accepts a name, which should be of a class, and

the statement to execute when that case holds.

fmod TYPECASE-SYNTAX is

including NAME-SYNTAX .

including EXP-SYNTAX .

including STMT-SYNTAX .

sorts ElseCase Case Cases .

subsort Case < Cases .

op empty : -> Cases .

op _,_ : Cases Cases -> Cases [assoc id: empty] .

op case_of_ : Name Stmt -> Case .

op typecase_of_end : Exp Cases -> Stmt .

op typecase_of__end : Exp Cases ElseCase -> Stmt .

op else_ : Stmt -> ElseCase .

endfm

Primitives: The primInvoke keyword provides a way to invoke KOOL primi-

tives within a method. The first parameter is the number of the primitive in

the KOOL primitive map; the remaining parameters are the arguments to the

primitive call.

fmod PRIMITIVES-SYNTAX is

including EXP-SYNTAX .

op primInvoke_ : ExpList -> Exp .

endfm

Programs: KOOL programs are made up of a list of classes and an expres-

sion. The abstract syntax uses the operator, abutting the classes and main

expression.

fmod PROGRAM-SYNTAX is

including CLASS-SYNTAX .

including EXP-SYNTAX .

sort Program .

op __ : Classes Exp -> Program .

endfm

3.3 State Infrastructure and Value

Representations

One key design decision for a programming language is to determine the class of

values which can be specified, manipulated, and stored by a language. Another,

necessary for determining a formal definition of the language, is to determine

41

op nil : -> Value .
op oref : Location -> Value .

op empty : -> Object .
op __ : Object Object -> Object [assoc comm id: empty] .
op oenv : ObjEnv -> Object .
op myclass : Name -> Object .

op o : Object -> Value .

Figure 3.5: KOOL Value Representations

the structure of the language configuration. These two decisions form a basis

for the language semantics, which will manipulate the language values and will

use various parts of the configuration inside rules. Both value representations

and parts of the KOOL configuration are described below; a description of the

semantics is deferred until Section 3.4.

3.3.1 KOOL Value Representations

Figure 3.5 shows the values available in the KOOL language. Two of the values

are used to represent object references: nil, which represents the case where

there is no valid reference, such as with a variable that has not been assigned

an object value; and oref, or “object reference”, which references a specific

location in the KOOL memory representation. Note that oref is “opaque”:

unlike pointers in C, it is not possible to “look inside” object references, create

them by hand (such as casting a number to a reference), or deallocate them.

This is similar to most object-oriented languages, such as Smalltalk and Java.

Objects are also represented as values, while the object itself is represented

as a multiset of individual object “parts”, also just identified as having sort

Object. This includes an object environment oenv, used to model field scope in

inheritance and described in more detail in Section 3.4, and myclass, used to

hold the name of the dynamic class of an object (i.e., the class used to actually

create the object). The multiset formation operation, , allows these items, or

new items defined in language extensions, to be put together to create an object.

3.3.2 KOOL State Infrastructure

As discussed in Chapter 2, the state is specified as a multiset of K cells, with

each cell holding information needed for the computation, and with the cells

formed into a hierarchy. This hierarchy of cells forms the context used by the K

rules that formally specify the semantics of the various language features being

defined. The layout of the state is determined both by the needs of the language

(as will be shown when KOOL is extended to support concurrency, it must be

possible to group certain cells into threads) and by convenience, allowing cells

to be organized in ways that make the definition more understandable.

The KOOL state is made up of multiple cells with a single explicit layer of

nesting, grouping the components responsible for defining control flow together.

42

State

StringList Control EnvironmentStringList Store ClassSet

MethodStack ExceptionStack LoopStackContinuation

Object Name

cclasscobjcset
mem

env
controloutput

input

k mstack estack
lstack

Nat

nextloc

Figure 3.6: KOOL State Infrastructure

A visual depiction of the state is shown in Figure 3.6.

During program execution, KOOL tracks local names (such as from method

parameters) that are in scope and their current memory locations. This is stored

in env. These memory locations then map to values in mem, with the next

free memory location in nextLoc. KOOL includes a garbage collector, described

in Section 6.1.2. Input and output are stored in the input and output state

components, respectively.

Those state components related directly to execution control are stored

in control. This includes several stacks that are used to quickly recover the

program to a state saved at a prior point in time: the method stack (mstack),

exception stack (estack), and loop stack (lstack). While not strictly necessary,

they save the effort of having to selectively unwind the control context to get

back to the proper context for handling a method return or exception catch,

for instance. Also included is the current computation, or k, which provides an

explicit representation of the current stream of execution and also gives its name

to our definitional approach. More details about the method and exception

stacks are provided in Section 3.4.

Finally, included are several components needed just for the object-oriented

features of the language. cobj contains a reference to the current object context

– the object inside which execution is occurring. Since an object can act as

either its dynamic class or one of its ancestor classes (for instance, in super

calls, or in cases where a method is called that is defined in an ancestor and not

overridden), cclass indicates the current class context as well. The class set (cset)

contains the class definitions available in the program, including user-defined

classes and classes specified in the prelude. The class definitions themselves

contain information structured as sets, with items representing the class name,

parent class name, and sets of methods, among others. Sets are used because of

their flexibility; tuples would need to be changed if more information needs to be

added to the tuple in an extension to the language, while sets do not: new class

items can be added without invalidating the current rules, which only match

those items they need.

43

3.4 Dynamic Semantics

As with any non-trivial language, there are actually a fair number of K-rules

needed to give the semantics of the language. This section examines some of the

more interesting features; the complete definition of the language is available

online [94]. Note that KOOL was defined using an earlier version of K; the

definition given here uses the newest version of the K notation, but may not use

all the newest features.

The semantics for each area of functionality are separated into individual

figures. Of the operators that are used, most are left undefined, since the

definition can be derived easily from the context in which the operator is

used. For instance, an operator op(X) takes a name as a parameter and,

if it is on the computation, is a computation item. Thus, it has signature

op : Name→ ComputationItem.

There are two exceptions to this. First, operators are defined for all syntactic

constructs in the language in the figure in which they are used. This helps make

the leap from the syntax of the language to the semantics. Second, operators are

defined if they have attributes, since there would be no other way to know that

they have the attributes they have been given. The rules make use of context

transformers, described in Section 2.5.5, allowing us to leave out parts of the

configuration used just to match across the hierarchy. All language syntax is

presented in a sans serif font, while semantics are presented in italics.

3.4.1 Common Operations

Figure 3.7 shows some K definitions that are used in the definitions of other

features, the first two being common to many of the languages defined as part

of the RLS work so far in K. The first contextual rule, Rule (3.1), defines how

the value (V) corresponding to a location (L) is retrieved from memory, when

the lookup operation is the next task in the computation and (L, V) is a pair

contained in the set representing the memory.

Rule (3.2) has a two-hole context, one identifying the value-to-location-assign

task on top of the computation and the other identifying the pair corresponding

to the location in the store; once matched, the assign task is eliminated (hence

the use of the identity “·”) and the current value at that location is replaced

by the assigned value. Note the use of an underscore for the current value –

similarly to many functional languages, no name is given to this value since it

will not be referred to elsewhere.

The remaining K-rules in Figure 3.7 define several operators typical in OO

programming language definitions, such as ones for locating the parent class, the

fields, or a particular method of a class, or the set of names of classes inherited

by a class; the syntax of these operators is defined at the bottom of Figure 3.7.

Rules (3.3) and (3.4) are self explanatory; information for each class is

represented as a multiset of class items “wrapped” with the constructor cls, with

44

〈k〉lookup(L)
V

...〈/k〉 〈mem〉... (L, V) ...〈/mem〉 (3.1)

〈k〉V y assign(L)
·

...〈/k〉 〈mem〉... (L,
V

) ...〈/mem〉 (3.2)

parent(C, cls(cname(C) pname(C′)))
C′

(3.3)

flds(C, cls(cname(C) flds(Xl)))
Xl

(3.4)

getInheritsSet(Object,CSet’,)
CSet’ Object

(3.5)

getInheritsSet(C
parent(C,CSet)

, CS
C CS

,CSet) [owise] (3.6)

getMthd(X, C, (cls(cname(C) (mthd(mname(X) MI:MthdItms)))))
(C,mthd(mname(X) MI))

(3.7)

getMthd(X, C
parent(C,CSet)

,CSet) (3.8)

parent : Name× ClassSet→ Name

flds : Name× ClassSet→ NameList

getInheritsSet: Name× ClassSet× ClassSet→ ComputationItem

getMthd : Name×Name× ClassSet→ ComputationItem

Figure 3.7: K Definitions of Common Operators

Rule (3.3) acting as an accessor to retrieve the parent class for class C and Rule

(3.4) retrieving the fields for class C. To get the set of classes inherited by a given

class, we can work our way back through parent classes until we reach the Object

class, the root of the class hierarchy. In Rule (3.6), class name C is added to

the set and C is replaced by C ’s parent. In Rule (3.5), where the root of the

inheritance tree has been reached, Object is added to the set and the set replaces

getInheritsSet on the computation. Thus, the set is built up in an iterative

fashion and then returned. The definition of getMthd is straightforward; since

KOOL does not allow overloaded method names and uses single inheritance, it

is sufficient to check in each class up to the root for a method with the same

name, returning the first found. If no matching method is found, an exception

(not shown here) is thrown.

3.4.2 Program Evaluation

To evaluate a program in KOOL, the program must be inserted into an initial state

on which the rewrite process can be started. The state will then proceed through

a number of transitions until it reaches a final state (assuming it terminates),

which could represent either an error execution, such as one in which an exception

is thrown but not caught, causing the program to crash, or a successful execution,

yielding some final output and no further execution steps. This is modeled using

an eval function, shown in Figure 3.8. Note that the function takes the program

and the program input, and then provides default values for all other state

components. The semantics will process all class definitions in the program

45

eval(Classes E, SL)
〈control〉〈k〉E〈/k〉 〈mstack〉·〈/mstack〉 〈estack〉·〈/estack〉 〈lstack〉·〈/lstack〉〈/control〉
〈env〉·〈/env〉 〈cobj〉·〈/cobj〉 〈cclass〉·〈/cclass〉 〈mem〉·〈/mem〉 〈nextLoc〉0〈/nextLoc〉

〈cset〉process(Classes)〈/cset〉 〈input〉SL〈/input〉 〈output〉·〈/output〉

(3.9)

Figure 3.8: Program Evaluation

within the cset and execute the program expression. Since there are no features

yet in the language that can introduce nondeterminism, a given program will

always yield the same final state, with the final result in output, if it terminates.

3.4.3 Object Creation

Since all values in KOOL are objects, object creation is one of the core sets

of rules in the semantics. At a high level, several distinct steps need to be

performed:

• Since each class that makes up the object’s type – the current class and all

superclasses up to and including Object – can contain declarations, and

since any of these declarations could be used, depending on the method

invoked and the current scope, a “layer” for each class that makes up the

object needs to be allocated, containing the layer name and name/location

mappings for all instance variables;

• the layers need to be combined into a single object such that lookups occur

correctly; specifically, lookups should start at the correct layer, based on

the static scoping rules for the language;

• the newly created object, with the various layers and information about

its dynamic class, then needs to be returned.

The rules for object creation are shown in Figure 3.9, with a visual example

provided in Figure 3.10. Rule (3.10) handles the new expression. new is provided

a class name (C) and a possibly empty list of arguments (El) to be provided to

the class constructor. The desired result is that a new object of class C will be

created and the class constructor for C, which must also be named C, will be

invoked on the newly created object. The createObj operation indicates that

we want to create a new object of class C ; this is included in a list with the

arguments El on top of the computation to make sure these are evaluated as

well. The invokeAndReturnObj is beneath these waiting for them to yield a list

of values; invokeAndReturnObj will then cause a method C to be invoked on

the newly-created object with the values resulting from evaluating El passed

as the actual parameters. We want to ensure that the object being created is

returned at the end of this process; how this is handled can be seen in Rule

(3.11), where invokeAndReturnObj is just replaced with an invoke of the same

method, a discard to remove the value returned by the method, and finally the

46

target object, effectively replacing the return value of the method with the target

object. So, this will take the new object, send it the constructor message with

the provided arguments, and return the object, which is what we need. More

details about handling message sends are provided in Section 3.4.4.

The rules that actually create the object start with Rule (3.12). As we create

each layer, we want to allocate space for any field names which become visible

at this layer. By default, this adds the names to the environment. To ensure

we don’t leak names out, or add names in inadvertently, we first want to save

the environment so we can recover it when we are finished and also clear it, so

we start with an empty environment and just include field names. This is done

by putting the environment Env on the computation (when an environment

is encountered at the top of the computation it is recovered) and setting the

env state attribute to ·. Also, the createObj computation item is changed to a

mkObj computation item, which contains two elements: the current layer that is

being built and the object that has been constructed so far. The object, also

represented as a set, is initialized with the dynamic class, which matches the

class name in the new statement, and a default environment for Object, which

is empty since Object has no fields. We set the current layer being built to the

dynamic class of the object, since we need to start with this layer and work up

the inheritance tree towards Object.

Now, we construct the object in an iterative fashion. Rule (3.13) shows the

base case of the recursive creation, which is when we reach class Object. Here,

we just take the current object and return this as the result of mkObj. Rules

(3.14) and (3.15) show how the environment layers are configured for classes other

than Object. In Rule (3.14), for class C, we want to allocate space for all fields

in the class and store them in the environment layer assigned to this class in

the object being created. To allocate space for the fields, the bind computation

new C(El)
(createObj(C),El) y invokeAndReturnObj(C)

(3.10)

(O,) y invokeAndReturnObj(C)
invoke(C) y discard y O

(3.11)

〈k〉 createObj(C)
mkObj(C,myclass(C) oenv([Object, ·])) y Env

...〈/k〉 〈env〉Env
·
〈/env〉 (3.12)

mkObj(Object, O)
O

(3.13)

〈k〉 ·
bind(flds(C,CSet)) y layer

y mkObj(C,) ...〈/k〉 〈ccls〉CSet〈/ccls〉 (3.14)

〈k〉layer
·

y mkObj(C
parent(C,CSet)

, (O oenv(OE ·
[C,Env]

))) ...〈/k〉

〈ccls〉CSet〈/ccls〉 〈env〉Env
·
〈/env〉 (3.15)

new () : Name× ExpressionList→ Expression

Figure 3.9: KOOL Object Creation Rules

47

Figure 3.10: The KOOL Object Creation Process

item is used. This item is defined to take a list of names, add the names to

the environment, and allocate storage for each name. Since there are no values

on top of the bind, each name will be assigned the initial value nil in the store.

flds is used to retrieve the fields of class C, as defined in class set CSet. The

layer computation item then says that a new layer should be formed from the

resulting environment.

The process of forming this layer is shown in Rule (3.15), where the current

environment is added into the object environment (OE) inside the object as

[C,Env], or the environment layer associated with class C. The environment

is then cleared out, and the process is continued with the parent class of C.

Eventually this will reach Rule (3.13), return the object, call the constructor,

and yield a new, initialized object.

In summary, for each layer, we grab back the fields available in the class for

that layer. We then allocate space for them, and initialize them to nil. Finally, we

save this environment, which just contains the field names and memory locations

for this layer, into the object environment (oenv), tagging them with this layer’s

name, then clear out the environment and continue by adding a layer for the

parent.

Rules (3.3) and (3.4) show the process of getting the parent class and the

fields for a given class and class set, respectively. In Rule (3.3), the class name

is used to match against the parent class name in the set representing the class,

while in Rule (3.4) the class name instead matches against the list of names

representing the fields of the class.

48

An example object creation can be seen in Figure 3.10. The class, ColorPoint,

contains two fields, c and p. It extends class Point, which contains three fields,

x, y, and p. This class extends Object by default, which has no fields. As can

be seen in the Figure, the computation item createObj(ColorPoint) will lead to

the computation item mkObj with the initial class and an initial version of the

object. Each step will then either bind fields from the class or add those fields

as a new layer in the object environment. Note that there are two copies of field

p, one at location L3 and one at location L5. The copy chosen will depend on

the method being executed – a method from class Point will use the copy of p

at L5, while a method from class ColorPoint will use the copy of p at L3. Once

the creation reaches Object, the new object has been created and is returned.

The next step, sending the ColorPoint message with the constructor arguments,

is not shown.

3.4.4 Message Sends

Message sends use dynamic dispatch by default in KOOL. Because of this,

lookups for the correct method to invoke should always start with the dynamic

class of the object, working back up the inheritance tree towards the Object

class. There are two exceptions to this rule. First, with super calls, the correct

instance of the method to call should be found by starting the search in the

parent class of the current class in the execution context (in other words, the

parent class of the class which contains the currently executing method). Second,

with constructor calls, the lookup order is the same, but the method name will

change, since constructor method names match the class name in which they

are defined. The first exception is part of the semantics for super, which are

separate; the second is part of the core send semantics, but is not shown here.

The rules for message sends are shown in Figure 3.11.

The first rule, Rule (3.16), is used to start processing the message send. The

message target, E, and the message parameters, El, are evaluated, with the

name of the message, X, saved in the invoke computation item. In Rule (3.17),

given the result of the evaluation of E and El, the current stream of execution

from the computation (K), the control state (Ctrl), and the current environment

(Env), object (O’), and class (C’) are pushed onto the method stack (with

the environment on top of the remaining computation, so it will be recovered

when this computation is run), ensuring that the current execution context can

be quickly restored when the method exits. The computation is changed to

put the value list (Vl) that resulted from evaluating the message parameters

on top of the getMthd computation item, which is on top of a different invoke

computation item that takes no parameters. This indicates that we want to find

the method to invoke, based on the method name, class name, and class set, and

then invoke it with actual arguments Vl. The environment is cleared to ensure

names in the current environment aren’t introduced into the environment of the

49

E.X(El)
(E, El) y invoke(X)

(3.16)

〈control〉〈k〉((myclass(C) O), V l) y invoke(X) y K
Vl y getMthd(X, C,CSet) y invoke

〈/k〉

〈mstack〉 ·
(Env y K,Ctrl, O′, C′)

...〈/mstack〉 Ctrl 〈/control〉

〈env〉Env
·
〈/env〉 〈cobj〉 O′

myclass(C) O
〈/cobj〉 〈cclass〉C’

C
〈/cclass〉 〈cset〉CSet〈/cset〉 (3.17)

〈k〉Vl y (C,mthd(mparams(Xl) mdecls(Xl′) mbody(K′) MI)) y invoke
bind(Xl, Xl′) y K′

〈/k〉

〈cclass〉
C
〈/cclass〉 (3.18)

〈control〉〈k〉return V y

V y K
〈/k〉 〈mstack〉(Ctrl, K, O, C)

·
...〈/mstack〉

Ctrl
〈/control〉

cobj(
O

) cclass(
C

) (3.19)

. () : Expression×Name× ExpressionList→ Expression

return : Expression→ Statement [strict]

Figure 3.11: Message Send Rules

executing method, the current object is replaced with the object the message

target evaluated to, and the current class is replaced with the dynamic class of

the target object (stored in the myclass attribute of the object), forcing method

lookup to start in the dynamic class.

Rule (3.18) shows the result of finding the method. A pair of the class name

in which the method was found and the method itself are on top of the invoke

computation item. This will be replaced with a bind of the method parameters

and declarations (Xl,Xl’), followed by the method body (K’). The values in Vl

will then be bound to the names in Xl, with the declarations Xl’ bound to nil,

giving us the proper starting state for executing the method body (by default

declarations are assigned a value of nil until they are assigned into). The class

context is changed to the class, C, in which the method was found.

Rule (3.19) shows the result of reaching the end of a method. All methods are

automatically ended with a “return nil;” statement when they are preprocessed,

so even method bodies without an explicit return will eventually encounter one.

When return is encountered, the return computation item and the rest of the

computation following return are discarded, replaced by the computation on

the method stack. The rest of the control state, the current object, and the

current class are also reset to the values from the method stack. This will set the

execution context back to what it was at the time the message was sent – back

to the context of the invoking object. The value on top of the computation is

left untouched, however, since this will be returned as the result of the message

send.

50

〈control〉〈k〉try S catch X S′ end
S y popEStack

y K〈/k〉

〈estack〉 ·
(Ctrl,Env, O,C, bind(X) y S′

y Env y K)
...〈/estack〉 Ctrl 〈/control〉

env(Env) cobj(O) cclass(C) (3.20)

〈k〉popEStack
·

〈/k〉〈estack〉
·

...〈/estack〉 (3.21)

〈control〉〈k〉throw V y

V y K
〈/k〉

〈estack〉(Ctrl,Env, O,C, K)
·

...〈/estack〉
Ctrl

〈/control〉

〈env〉
Env
〈/env〉 〈cobj〉

O
〈/cobj〉 〈cclass〉

C
〈/cclass〉 (3.22)

op try catch end : Statement×Name× Statement→ Statement

op throw : Expression→ Statement[strict]

Figure 3.12: Exception Handling Rules

3.4.5 Exceptions

KOOL includes a basic exception mechanism similar to that in many other OO

languages, such as Java or C++. Code can be executed in a try block, which

has an associated catch block. When an exception occurs, control is transferred

to the first catch block encountered as the execution stack is unwound. The

exception, represented in KOOL as an object, is bound to a variable associated

with the catch, with different classes of exceptions used for different exception

conditions (nil reference, message not supported, etc.). Along with system-

defined exceptions, custom exception classes can be created, and both can be

thrown using a throw statement. The semantics for exceptions can be seen in

Figure 3.12. One important point is that exceptions are not just added by the

programmer – they are used in the language semantics as well. For instance,

although not shown in the rules for message sends, several possible exceptions

can be raised, including an exception generated when a nil variable is used as a

message target and an exception thrown when a target object does not support

a message (the name and arity must match those in the call). An example where

an exception is thrown by the semantics rules can be seen in Figure 3.17 in

Section 3.5, where an exception is thrown on a lock release when the lock was

not already held.

Rule (3.20) shows the semantics for a try-catch statement. The current control

context (Ctrl), environment (Env), object (O), and class (C), along with an

exception computation, are all put onto the exception stack. The exception

computation is made up of a binding to the name X from the catch clause,

the statement S’ associated with the catch clause, the current environment

Env (so we recover the current environment and remove the binding of the

51

typecase E of Cases end
E y getInheritsSet y Cases

(3.23)

〈k〉o(myclass(C)) y getInheritsSet
getInheritsSet(C, C,CSet)

...〈/k〉 〈cset〉CSet〈/cset〉 (3.24)

(C) y (case C of S, Cases)
S

(3.25)

() y (Case
·

, Cases) [owise] (3.26)

() y (· : Cases)
·

(3.27)

typecase of end : Expression× Cases→ Statement

case of : Name× Statement→ Case

Figure 3.13: Typecase Rules

caught exception to X), and the current computation, K. Finally, the try-catch

block is replaced with the statement (S) from the try clause and the popEStack

computation item. So, for a try-catch block, we will execute the statement in

the try clause. If this finishes, we will pop the exception stack and continue

running. If an exception is thrown, we will instead want to execute the catch

clause, binding the exception to the name in the clause, running the body of the

catch, and then continuing with the remainder of the computation after the end

of the try-catch statement.

Rule (3.21) handles the no exceptions case, where the pop marker is found

during normal execution. In this case, the top of the exception stack is popped,

but no other changes occur. When an exception is thrown, Rule (3.22) is used. In

this case, the current context information is replaced with the information that

was saved on the exception stack, and the exception stack is popped, essentially

”unrolling” the execution stack in one shot. The value V that represents the

exception is left on top, which will cause it to be bound correctly to the catch

variable and made available to the catch statement (in Rule (3.20) the top of the

stored computation was a bind, so the value will be bound to the name from the

catch clause). Since the rest of the computation after the end of the try-catch

statement was saved as part of the exception computation, the computation will

continue correctly after the end of the exception handler.

3.4.6 Runtime Type Inspection

KOOL allows the dynamic type of an expression to be checked at runtime using

a typecase construct. This construct contains a sequence of cases, each with a

class name and a statement. If the class name in the case matches either the

dynamic class type of the expression or a superclass of the dynamic class type,

the statement is executed. Cases are evaluated from top to bottom, with an

optional else case that always matches. The rules for runtime type inspection

are shown in Figure 3.13.

Since the parsing step can convert the else case to a case matching Object,

52

we assume in the semantics that there is no longer a designated else case.

When a typecase is encountered, Rule (3.23) shows that this is replaced with

an evaluation of the expression E, on top of the getInheritsSet computation

item, followed by the Cases that will be checked. When the expression E is

evaluated to an object value, Rule (3.24) shows the start of building the set of

class names that will be used in the check against the cases. The getInheritsSet

computation item is changed to another item with the same name but three

parameters, a class name, a set of class names and a set of classes, with the first

two parameters set to the dynamic class of the expression result, C. The inherits

set is built according to the rules in Figure 3.7.

With the set of classes for the expression calculated, the remaining three

rules, Rules (3.25), (3.26) and (3.27), process the cases. In the first, a matching

case in the set of cases (the rest of the set is) is found, so the class name set

(C) and the remainder of the cases list are both discarded, replaced by the

statement S from the matched case. In the second, the case does not match, but

there are cases left in the list, so the current case is removed, allowing the next

to be tried. In the third, there are no cases left in the list, so both the cases

list and the class name set are discarded, allowing control to fall through to

whatever was after the case statement. This provides for the intended semantics

– the statement of the first matching case (if any) will execute, then control will

pick up with the next statement after the end of the typecase.

3.4.7 Primitives

Since all operations are modeled as message sends, there isn’t a native way in

the language to, for instance, add two numbers, or output a string. Yet, at

some point, 5 + 3 actually has to yield 8. This is done using primitives, a

concept similar to that used in Smalltalk. Each class which is used to represent

a primitive value, such as Integer, is declared as a primclass, which adds a

field that stores the primitive value. This field can be accessed by the primitive

operations to either take out the existing primitive value or put a new one in.

For instance, for 5 + 3, primitive operations would take out the value 5 and the

value 3, add them using the system version of integer addition, create a new

Integer object, and put the primitive value 8 into the new object’s primitive

value field. All “system” operations, including input and output, are handled

using primitives, providing the programmer with an object-level view of the

primitive operations.

3.5 Adding Concurrency

The dynamic semantics from Section 3.4 does not support any concurrent

operations – as defined, KOOL is a sequential language, with a single thread

of execution. In this section language prototyping is illustrated by extending

53

Statement S ::= ... | spawn E ; | acquire E ; | release E ;

Figure 3.14: KOOL Syntax Extensions for Concurrency

KOOL with native support for concurrency. There are many different options

for how concurrency can be supported. The model chosen here is simple on

purpose, but still provides enough flexibility to create programs with multiple

concurrent threads and thread synchronization operations.

To support concurrency, a new statement, spawn, is added to the syntax to

allow the creation of new threads. Threads will be able to acquire and release

locks on specific objects (similarly to the basic locking functionality in the Java

language) using acquire and release statements. Finally, the semantics should

correctly model the accesses to shared memory locations, which should compete –

if two threads both assign a value to a shared variable, the resulting value should

be nondeterministic, based on the actual execution order of the threads.

With multiple threads, and thus multiple concurrent streams of execution,

some of the state components will need to be duplicated. This includes any

components which provide context to the current thread of execution: the current

object, the current class, the entire control, and the environment. This allows

each thread to have enough local information to execute without interfering

with the execution of other threads. For instance, threads should not share the

current class, since a message send in one thread would potentially interfere with

a message send in the other if they did. However, some information, such as the

Config

StringList

ControlEnvironment

StringList

Store

ClassSet

MethodStack ExceptionStack LoopStackComputation

Value Name

cset

mem

output

input

 k mstack estack
lstack

Nat

nextloc

Thread

env control
cobj

cclass

 t*

LockSet

LockTupleSet

busy

holds

Name
Nat

lbl tid

Nat

nextTid

Threads

threads

Nat

Bool

tc

aflag

Figure 3.15: KOOL State Infrastructure, Extended for Concurrency

54

eval(Classes E,SL)
newThrd(E, ·, ·, ·) 〈mem〉·〈/mem〉 〈nextLoc〉0〈/nextLoc〉 〈busy〉·〈/busy〉
〈cset〉process(Classes)〈/cset〉 〈input〉SL〈/input〉 〈output〉·〈/output〉

(3.28)

〈t〉〈k〉spawn E
·

...〈/k〉 〈env〉Env〈/env〉 〈cobj〉O〈/cobj〉 〈cclass〉C〈/cclass〉 ...〈/t〉

·
newThrd(E,Env, O, C)

(3.29)

newThrd(E,Env, O, C)
〈t〉〈control〉〈k〉E〈/k〉 〈mstack〉·〈/mstack〉 〈estack〉·〈/estack〉 〈lstack〉·〈/lstack〉〈/control〉

〈env〉Env〈/env〉 〈cobj〉O〈/cobj〉 〈cclass〉C〈/cclass〉 〈holds〉·〈/holds〉〈/t〉
(3.30)

〈t〉〈k〉·〈/k〉 〈holds〉LTS〈/holds〉 ...〈/t〉
·

〈busy〉 LS
LS− LTS

〈/busy〉 (3.31)

spawn : Expression→ Statement

acquire : Expression→ Statement [strict]

release : Expression→ Statement [strict]

Figure 3.16: Concurrent KOOL Rules, Part 1

set of classes and the store, will be global to all threads. Figure 3.15 shows the

configuration from Figure 3.6 extended to enable concurrency.

The additional syntax and new rules for the dynamic semantics for concur-

rency in KOOL are shown in Figures 3.14, 3.16, and 3.17. It is important to

note that, even with fairly significant changes to the configuration and to the

language functionality, most of the rules are new – the only changed rule is Rule

(3.28), used for program evaluation, which does change to take account of the

new state infrastructure. This is the concurrent version of Rule (3.9). Rule

(3.28) makes use of the newThrd computation item to create a new execution

thread and set up the starting state appropriately.

The spawn statement creates a new thread based on a provided expression.

The expression is evaluated in the new thread, meaning any exceptions thrown

by the expression when it is evaluated will be handled in the new, not the

spawn’ing, thread. This is a design decision, and has been made to simplify the

semantics; an earlier version of this rule assumed that only method calls could be

spawned, and evaluated all method arguments in the current thread, providing

different exception behavior. Rule (3.29) shows the semantics of spawn. Here,

the expression E in the spawn statement is given to the newThrd item, along

with the current environment(Env), the current object (O), and the current

class(C). spawn returns no value, so it is just removed from the computation.

Rule (3.30) shows how the new thread is actually created. The passed values

for expression, environment, object, and class are plugged into the proper state

components nested within the new thread. This will start the new thread for

expression E running in the proper environment. When the thread finishes, it

needs to be removed, with any locks it holds being removed from the global busy

lock set. This is illustrated in Rule (3.31).

Along with the ability to create new threads, we also need to be able to

55

acquire and release locks. This is done using the acquire and release statements.

The semantics for acquire is shown in Rules (3.32) and (3.33). In Rule (3.32), a

lock is acquired on an object V that the current thread already holds a lock on.

This just increments the lock count on this object from N to the successor of N.

In Rule (3.33), a lock is acquired on a value V that no thread, including the

current thread, has a lock on. This adds the value V and a lock count of 1 to the

thread’s holds set, while also adding V to the current global lock set LS. The

lock count in holds is necessary to ensure that lock acquires and releases are

balanced – a thread can acquire a lock multiple times, with a recursive method

call for instance, and we need to ensure that a lock is not inadvertently released

too soon.

The semantics for release is shown in Rules (3.34), (3.35), and (3.36). In rule

(3.34), a lock on value V with lock count 1 is released. This removes the lock

from both the local holds set and the global busy set. Rule (3.35) shows what

happens when a lock on value V with lock count greater than 1 is released –

here, the count simply goes from s(N) (the successor of N) to N . Finally, if

there is an attempt to release a lock that the thread does not hold, an exception

should be thrown. This is shown in Rule (3.36), where an attempt to release a

lock on V not held by the thread results in a LockNotHeldEx exception being

thrown.

A sample concurrent program, the thread game, is shown in Figure 3.18. In

this program a new class, ThreadGame, is defined. The constructor for this class

sets field x to the value 1. The Add method then includes an infinite loop that,

during each execution of the loop body, issues a single statement, adding x to x

and assigning the result back to x.

If this program were not concurrent, this would just double the value of x

each time through the loop. However, the Run method spawns two threads, each

of which will execute the Add method. Because there is no synchronization used

to prevent data races, the two threads can easily interfere with one another. In

〈k〉(acquire V
·

...〈/k〉 〈holds〉... (V, N
s(N)

) ...〈/holds〉 (3.32)

〈k〉(acquire V
·

...〈/k〉 〈holds〉... ·
(V, 1)

...〈/holds〉 〈busy〉... LS
LS V

...〈/busy〉 if V /∈ LS (3.33)

〈k〉(release V
·

...〈/k〉 〈holds〉... (V, 1)
·

...〈/holds〉 〈busy〉... V
·

...〈/busy〉 (3.34)

〈k〉(release V
·

...〈/k〉 〈holds〉... (V, s(N)
N

) ...〈/holds〉 (3.35)

〈k〉(release V
throw new LockNotHeldEx

...〈/k〉 〈holds〉LTS〈/holds〉 [owise] (3.36)

spawn : Expression→ Statement

acquire : Expression→ Statement [strict]

release : Expression→ Statement [strict]

Figure 3.17: Concurrent KOOL Rules, Part 2

56

class ThreadGame is

var x;

method ThreadGame is

x <- 1;

end

method Add is

while true do x <- x + x; od

end

method Run is

spawn(self.Add); spawn(self.Add);

end

end

(new ThreadGame).Run

./runkool examples/ThreadGame.kool -t 10

... term omitted ...

Solution 1 (state 2294)

states: 3381 rewrites: 310427 in 14388ms cpu

SL:[StringList] --> "10"

Figure 3.18: The Thread Game in KOOL

fact, it has been proved that the variable x can take the value of any natural

number greater than 0 [139]. Figure 3.18 also shows a sample run which checks

to see if the value 10 is reachable; this is found after generating 3381 reachable

states.

3.6 Other Extensions

Because of its use in our language research and in teaching, the KOOL system has

been designed to be extensible. This section illustrates two additional extensions

to KOOL: synchronized methods and label statements.

Method M ::= synchronized method X is D∗ S end |

synchronized method X ({X ′,}+) is D∗ S end

Statement S ::= X:

Figure 3.19: KOOL Syntax, Additional Extensions

57

method X (Xs) is Ds S end (3.37)

S y nil y return (3.38)

syncmethod X (Xs) is Dls S end (3.39)

self y acquireMthd y S y nil y return (3.40)

V y acquireMthd
V y acquire y V y addELock y V y addMLock

(3.41)

Figure 3.20: Synchronized Methods

3.6.1 Synchronized Methods

As shown in Section 3.5, the KOOL language has a fairly simple model of

concurrency based on threads and object locks. synchronized methods, similar

to those in Java, would provide a higher-level abstraction over these locking

primitives. In Java, methods tagged with the synchronized keyword implicitly

lock the object that is the target of the method call, allowing only one thread

to be active in all synchronized methods on a given object at a time. We will

assume the same semantics for KOOL.

The syntax changes to add synchronized methods are minor: the keyword

needs to be added to the method syntax, which then also needs to be reflected

in the Maude-level syntax for KOOL. The extended concrete syntax for methods

is shown in Figure 3.19. The abstract syntax is similar, with a new method

operator, syncmethod:

op syncmethod_‘(_‘)is__end : Name Names Decls Stmt -> Method .

The changes to the semantics are obviously more involved. In KOOL, as in

Java, synchronized methods should work as follows:

• a call to a synchronized method should implicitly acquire a lock on the

message target before the method body is executed;

• a return from a synchronized method should release this lock;

• additional calls to synchronized methods on the same target should be

allowed in the same thread;

• exceptional returns from methods should release any locks implicitly ac-

quired when the method was called.

A quick survey of these requirements shows that adding synchronized

methods will change more than the message send semantics – the semantics for

exceptions will need to change as well, to account for the last requirement.

To handle the first requirement, a new lock can be acquired on the self object

at the start of any synchronized method simply by adding a lock acquisition

to the start of the method body, which can be done when the method definition

58

is processed. Item (3.37) shows the abstract syntax of a non-synchronized

method, with item (3.38) showing the constructed computation for executing

the method body. Here, the body statement S is executed, and then nil is

returned, ensuring that the method always returns some value. Item (3.39) then

shows the abstract syntax for a synchronized method; note the only difference

is the use of syncmethod instead of method. The computation built is different,

though, as shown in item (3.40): first self is evaluated, and is then handled

by the acquireMthd computation item. The definition of this item is shown in

Rule (3.41). self will evaluate to some value V , which is then used by acquire to

acquire a lock on the current object.

Unlike lock acquisition, lock release cannot be handled as simply, say by

just adding a release to the end of the method computation. This is because

there may be multiple exits from a method, including return statements and

exceptional returns. Because of this, locks acquired on method entry will need

to be tracked so they can be properly released on exit. This can be accomplished

by recording the lock information in the method and exception stacks (mstack

and estack in Figure 3.6) when the lock is acquired, since these stacks are

accessed in the method return and exception handling semantics. With this in

place, the second and fourth requirements can be handled by using this recorded

information to release the locks on method return or when an exception is thrown.

Looking again at Rule (3.41), the addELock and addMLock computations do

exactly this, recording the lock information in the appropriate stacks for use

later (the later definitions are not shown here).

Finally, the third point is naturally satisfied by the existing concurrency

semantics, which allow multiple locks on the same object (here, self) by the

same thread.

Overall, adding synchronized methods to the KOOL semantics requires:

• 2 modified operators (to add locks to the two stack definitions),

• 4 modified equations (two for method return, two for exception handling,

using the locks added using addELock and addMLock),

• 4 new operators (to record locks in the stacks, to release all recorded locks),

• 6 new equations (to record locks in the stacks, to release all recorded locks).

The Maude search functionality can be quite helpful to gain confidence that

new features are working as expected. For instance, an example of synchronized

methods in KOOL is shown in Figure 3.21. Here, class WriteNum contains two

synchronized methods. When the write method is called, the starting value of

the number stored in member variable num is written to the console, some simple

arithmetic operations are performed on it, and then the final value is written.

The set method assigns a new value to num. Since both methods are marked

synchronized, it should be the case that, for any given object, once one thread

59

class WriteNum is
var num;

method WriteNum(n) is
num <- n;

end

synchronized method set(n) is
num <- n;

end

synchronized method write is
console << "Start:" << num;
self.set(num + 10);
self.set(num - 8);
console << "End:" << num;

end
end

class Driver is
method run is

var w1;
w1 <- new WriteNum(10);
spawn (w1.write);
w1.set(20);
spawn (w1.write);

end
end

(new Driver).run

Figure 3.21: Synchronized Methods in KOOL

is executing either method, another thread that tries to execute either will wait.

To test this, the Driver class creates a new object of class WriteNum, spawns

one call to write, creating a new thread, modifies the value stored in the object

using set, and then creates a second thread, also calling write.

Using search to determine possible program outputs reveals that there are

only two possible solutions, with the call to set either occurring before the first

spawned thread runs (with output "Start:", "20", "End:", "22", "Start:",

"22", "End:", "24"), or after it completes (printing "Start:", "10", "End:",

"12", "Start:", "20", "End:", "22"); this is shown in Figure 3.22. By contrast,

with the synchronized keywords removed, there are 470 solutions, corresponding

to all possible orderings of output based on various interleavings of the main

thread with the two spawned threads. This is shown in Figure 3.23.

> runkool -s --final Sync5.kool

Solution 1 (state 96)

states: 98 rewrites: 10390 in 612ms cpu (612ms real)

(16976 rewrites/second)

SL:[StringList] --> "Start:","20","End:","22","Start:","22","End:","24"

Solution 2 (state 97)

states: 98 rewrites: 10390 in 612ms cpu (612ms real)

(16976 rewrites/second)

SL:[StringList] --> "Start:","10","End:","12","Start:","20","End:","22"

No more solutions.

Figure 3.22: Search Results, With Synchronization

60

> runkool -s --final Sync6.kool

Solution 1 (state 80383)

states: 80853 rewrites: 10112671 in 671633ms cpu (674345ms real)

(15056 rewrites/second)

SL:[StringList] --> "Start:","20","End:","22","Start:","22","End:","24"

...

Solution 470 (state 80852)

states: 80853 rewrites: 10112671 in 671645ms cpu (674360ms real)

(15056 rewrites/second)

SL:[StringList] --> "Start:","10","End:","Start:","20","End:","22","12"

No more solutions.

Figure 3.23: Search Results, Without Synchronization

3.6.2 Labels

To make it easier to write LTL formulae that refer to positions within a program,

label statements have been added to KOOL. A label statement is just an identifier

followed by a colon, such as X:. When a label is encountered, a cell, at the

thread level, that holds the current label is changed, allowing the change to be

captured in a proposition defined as part of KOOL’s model checking support.

This is shown in Figure 3.24, Rule (3.42).

In Maude, this is supported using the following model checking proposition:

op labeled : Nat Name -> Prop .

eq t(tid(N) lbl(X) TS) S |= labeled(N,X) = true .

3.7 KOOL Implementation

KOOL programs are generally run using the runkool script, since running a

KOOL program involves several steps and tools, and since programs can be run

in different modes (execution, search, and model checking, each with various

options). First, the KOOL prelude, a shared set of classes for use in user

programs, is added to the input program. This program is then parsed using

the SDF parser [193], which takes the program text and a syntax definition file

as input. The parser produces a file in ATerm format, an SDF format used

to represent the abstract syntax tree. A pretty printer then converts this into

Maude, using prefix versions of the operators to prevent parsing difficulties.

Finally, Maude is invoked by runkool with the language semantics and the

〈k〉label(X)
·

...〈/k〉 〈lbl〉
X
〈/lbl〉 (3.42)

Figure 3.24: Label Statements

61

KOOL

Program

KOOL

Prelude SDF

KOOL

Syntax

Definition

KOOL ATerm

Processor

Maude-Syntax

KOOL

Program

Maude

Execution

Output

Search

Result(s)

Model

Checking

Result

Figure 3.25: KOOL Program Evaluation/Analysis

Maude-format program, generating the result based on the execution mode. A

graphical view of this process is presented in Figure 3.25.

62

Chapter 4

A Prototype of Beta

KOOL was designed using prototyping techniques, and was also designed as a

platform for experimenting with language features. To show that the techniques

used for experimenting with the KOOL definition can also be used for program-

ming languages not designed with these techniques in mind, this chapter presents

parts of a definition of the Beta language [121]. At the time this material was

being written the Beta definition was being modified to take advantage of tech-

niques developed over the last few years in K and rewriting logic semantics. The

version presented here is based on an earlier version of the language definition

[83], although the semantic rules show here are presented using the newer K

format. Information about the version currently being developed can be found

online at the FSL Beta language website [82].

4.1 The Beta Language

Beta is an object-oriented language developed as the successor to the Simula 67

language [156]. It is probably best known for two features that set it apart from

more commonly used object-oriented languages, such as C++ and Java:

• Beta has collapsed the concepts of class and method into a single concept,

the pattern. A pattern consists of local variable declarations, input param-

eters (the enter block), output parameters (the exit block), and actions

(the do block). Instances of patterns are created to represent objects,

execute as methods, etc.

• To invoke inherited but overridden functionality, most object-oriented

languages provide a super-call mechanism. Beta does the opposite: method

dispatch always starts at the top of the inheritance hierarchy, and then

heads down the hierarchy towards the actual pattern using inner calls.

This provides a method to enforce behavioral subtyping [117], since a

parent pattern can either choose not to invoke a child pattern, or can at

least ensure that necessary invariants still hold after the child executes.

Both of these features, along with a number of interesting, yet more com-

mon, language features, such as deterministic alternation (i.e., coroutines) and

concurrency, make Beta a challenging language to correctly define.

63

4.2 Beta Semantics

The dynamic semantics of Beta are specified using K, translated into Maude

to provide an environment for program evaluation and analysis. In this section

several of the more interesting features of the definition are presented. The

remainder of the definition is available on the FSL Beta website [82].

4.2.1 Method Dispatch Semantics

Similar to C++, Beta provides both static and dynamic dispatch for invocations

of patterns used like methods. Standard pattern declarations make use of a

colon to separate the name of the pattern from the implementation1:

DisplayReservation:

(#

do Date.Display; Customer.Display; INNER

#);

Virtual patterns use similar notation, with :< indicating that a pattern is being

made virtual in this pattern and all inheriting patterns:

Display:< DisplayReservation

In child patterns that provide a new version of the virtual pattern, the notation

::< is used instead. This first example provides a new version of the Display

pattern, in this case overridden to properly handle displaying train reservations:

DisplayTrainReservation: DisplayReservation

(#

do ReservedTrain.Display;

ReservedCarriage.Display;

ReservedSeat.Display;

INNER

#);

Display::< DisplayTrainReservation

The second example provides a different extension of the basic reservation display

functionality, this time for flights:

DisplayFlightReservation: DisplayReservation

(#

do ReservedFlight.Display;

ReservedSeat.Display;

1The sample code shown in this section is from the book “Object-Oriented Programming
in the BETA Programming Language”, by Madsen, Møller-Pedersen, and Nygaard [121]

64

INNER

#);

Display::< DisplayFlightReservation

Rules to determine which pattern is actually invoked are then based on the

type of the variable used for invocation. When reference variables are declared,

they are declared with an initial type, say T. They can then hold an instance

of a pattern of type T or of a pattern which inherits from type T, say T’. Only

patterns declared in T or a parent of T can be invoked through the reference. If

a pattern, say m, is visible in the declaration of T and is statically dispatched we

want to invoke the closest instance of m to T declared between T and the root of

the inheritance hierarchy, Object. If m is marked as dynamic, we will perform a

similar search, but instead we will start at T’, the dynamic type of the object

instance.

Note that, in these rules and rules shown later in this section, pattern types

T are assumed to be identifiers which point to pattern definitions visible in the

current environment. Inserted items, which are given by writing the code for

the pattern inline, can be handled by assigning them a unique name, allowing

them to be treated the same as named patterns. It is assumed in the rules given

below that this has already been done.

Figure 4.1 shows several rules used to look up the correct version of an

invoked pattern, with support for dynamic dispatch. Several operators are used

in the rules, either to act as part of the computation or to track information

used in the semantics. href represents a reference variable (it holds a reference),

and holds both the pattern type T given in the variable declaration and the

currently assigned object reference oref(L). The lookup item holds the name

being looked up in the pattern, which in the case of a pattern invocation would

be the name of the pattern being invoked (in Java this would be the method

name). plookup(T) retrieves a pattern definition from the environment (Beta

scoping rules allow multiple patterns to have the same name, with standard

static name shadowing indicating which names are visible). block is just used

internally, to keep adjoining values in the computation from being collapsed into

〈k〉 href (T, oref (L)) y lookup(X)
plookup(T) y block(href (T, oref (L))) y lookup(X)

...〈/k〉 (4.1)

〈k〉 pt(pname(Xc) P) y block(href (T, oref (L))) y lookup(X)
deref (oref (L)) y dispatch(T, oref (L), pt(pname(Xc) P)) y lookup(X)

...〈/k〉 (4.2)

〈k〉pt(virtual(true) P) y dispatch(T, oref (L), pt(P ′)) y lookup(X)
oref (L) y lookup(X)

...〈/k〉 (4.3)

〈k〉pt(virtual(false) P) y dispatch(T, oref (L), pt(P ′)) y lookup(X)
pt(virtual(false) P)

...〈/k〉 (4.4)

Figure 4.1: Beta Semantics: Dynamic Pattern Lookup

65

a value list. The deref item retrieves the actual object stored at the location

pointed to by oref(L), and dispatch keeps track of the information we need for

pattern dispatch: the type T, the object reference oref(L) we are dispatching

to, and the pattern pt(P’) that defines the type T.

With all this in mind, the rules in Figure 4.1 can now be understood. In Rule

(4.1), when we are looking up a name (say m) via a reference (say with static

type T), we first get back the pattern that defines type T. In Rule (4.2), with the

pattern for T available, we use deref to retrieve the referenced object and store

the information we will need to perform the pattern dispatch later, once the

actual object has been retrieved. A rule not shown here uses the retrieved object

to find the first definition of m at the level of T or above (towards Object).

Rules (4.3) and (4.4) then trigger the correct dispatch. In Rule (4.3), if the

definition of m states that it is virtual, we will again look up m, but this time

we will use the dynamic type of the referenced object, not the static (declared)

type of the reference. In Rule (4.4), where virtual is false, we have already found

the pattern that will be instantiated by this call, so we can just return that. In

both cases, the expectation is that a pattern will be returned, which will be

instantiated to invoke the pattern code.

4.2.2 Pattern Membership Semantics

In Beta, variables can be queried for the pattern they instantiate. This is called

pattern membership and can be used to test (say, in a conditional with multiple

branches) whether an object is an instance of one of several patterns:

(if R##

// TrainReservation## then NTR+1->NTR

// FlightReservation## then NFR+1->NFR

if)

Here, the ## operator is used with variable R to determine its pattern; the

same operator is then used inside the conditional (the Beta conditional, in its

general form, uses a number of cases, each preceded by //) in two branches,

one branch testing to see if R is of pattern type TrainReservation, the other

testing to see if R is of pattern type FlightReservation.

Figure 4.2 shows rules used to retrieve the pattern. Rule (4.5) provides the

initial rule used by the ## operator: given E ##, E is evaluated, and the pattern

used to define E is then retrieved. Rules (4.6) and (4.7) handle the case where

E is an object reference. In Rule (4.6), when an object reference is returned,

the reference is dereferenced to retrieve the actual object. In Rule (4.7), once

this object is retrieved, the object’s myPattern attribute is used to get back the

actual pattern used to define the object. The use of plookup will retrieve the

pattern itself. In Rule (4.8), the lookup resulted directly in a pattern (this would

happen in cases such as FlightReservation ##), in which case that pattern is

returned.

66

〈k〉 E ##
E y getPattern

...〈/k〉 (4.5)

〈k〉 oref (L) y getPattern
deref (oref (L)) y getPattern

...〈/k〉 (4.6)

〈k〉o(myPattern(T)) y getPattern
plookup(T)

...〈/k〉 (4.7)

〈k〉pt(P) y getPattern
pt(P)

...〈/k〉 (4.8)

Figure 4.2: Beta Semantics: Pattern Membership

4.2.3 Code as Values Semantics

In Beta it is not only possible to determine the pattern of an expression, it is also

possible to treat patterns as values which can be assigned to pattern variables

and then instantiated like any other pattern. To do this, we can leverage other

parts of the language definition, including definitions for assignment and pattern

membership.

Rule (4.9) provides the base semantics for creating a pattern variable as an

extension of other rules for creating declarations (not shown), which also use the

createDec computation. Given a pattern type T, a new variable using operator

pvar is created. This is similar to href, holding both the declared type of the

pattern variable, which constrains what can be held, and the actual pattern,

initially set to nothing.

Rule (4.10) extends the pattern membership test logic, discussed earlier, with

support for pattern variables. Rule (4.11) then provides an extension to the logic

used to look up a pattern for invocation, allowing pattern variables to be used

in place of explicit pattern names. Finally, Rules (4.12) and (4.13) provide logic

to handle assignments to pattern variables. Rule (4.12) triggers evaluation of

both sides of the assignment (the assignment target is to the right of the arrow),

indicating that this should be an assignment to a pattern variable. Rule (4.13)

then specifies the logic used to assign the pattern: given an existing pattern

variable pvar, and given that E evaluated to pattern P, pattern P is saved inside

〈k〉createDec(##T)
pvar(T,nothing)

...〈/k〉 (4.9)

〈k〉pvar(T, V) y getPattern
V

...〈/k〉 (4.10)

〈k〉pvar(T, pt(P)) y lookupForInvoke
pt(P) y lookupForInvoke

...〈/k〉 (4.11)

〈k〉 E → (X ##)
(E, X) y assignToPVar(X) y nothing

...〈/k〉 (4.12)

〈k〉(pt(P), pvar(T,)) y assignToPVar(X)
pvar(T, pt(P)) y assignTo(X)

...〈/k〉 (4.13)

Figure 4.3: Beta Semantics: Code as Values

67

〈t〉 〈k〉 saveAndRecoverStack(V l) y K
frozenState(K,Env ,TS) y assignToLoc(L) y V l y K′

〈/k〉 〈env〉Env
Env ′

〈/env〉

〈altloc〉L
L′

〈/altloc〉 〈altstate〉(K′,Env ′, L′, TS′′, TS′)
TS′′

〈/altstate〉 TS
TS′

〈/t〉 (4.14)

Figure 4.4: Beta Semantics: Deterministic Alternation

the pvar, which is then assigned back to X.

4.2.4 Deterministic Alternation Semantics

The Beta deterministic alternation functionality allows Beta to support corou-

tines. Instead of using multiple threads, with objects running concurrently,

different objects run inside the same thread, with each object running until it

either finishes its do block or issues a suspend call.

The most interesting part of the alternation semantics deal with suspending

an object and restarting it later. The semantics to do this are shown in Rule

(4.14) in Figure 4.4.

This rule is triggered by a suspend call; a similar equation handles the restart.

When suspended, the current execution stack needs to be saved, and the prior

stack recovered. Several pieces of state information help with this process.

altloc contains the memory location of the variable that holds the alternating

object, which will need to be updated to hold the altered state. altstate

contains the thread state that was current when the alternating execution of this

object was started, which is the state that needs to be recovered to correctly

handle the suspend. Note that it contains similar information to the current

matched context, including its own version of the altstate, allowing nested

alternations to be properly represented.

Now, using these parts of the configuration, the rule takes the current pieces

of state that need to be saved at suspend, including the current computation

(minus the saveAndRecoverStack item), current environment, and other parts

of the thread state; puts these into a frozenState item; and assigns them back

to the location holding the alternating object that is currently executing. Next,

the remainder of the current computation is switched for the saved computation

stored in altstate (suspending also passes back the exit values for the pattern,

hence the need for Vl on top of the computation). At the same time, the rule

recovers the old environment, altloc, and altstate, along with other thread

state information, ensuring that when the computation continues it is back in

the correct state.

68

4.3 Beta Implementation

The version of the Beta semantics [83] described in this chapter uses an encoding

of the Beta syntax directly into Maude notation, using Maude sorts, operations,

and operator precedences. This has the advantage of allowing Beta programs

to be written directly as Maude terms in a Beta-like syntax. However, it is

also limiting in two ways. First, to allow Maude to disambiguate language

constructs that look similar, it is often necessary to either add a large number

of parentheses to programs or modify the syntax, giving different language

constructs distinct syntactical representations. Second, it is not possible to take

actual Beta programs and run them directly in the semantics, since they first

have to be converted to work with the Maude version of the syntax.

The version of the Beta semantics currently being developed instead uses the

Beta metaprogramming capabilities to define a Beta lexer, parser, and pretty-

printer. The pretty-printer generates terms using a Maude-defined abstract

syntax of Beta, transforming the constructs into the prefix versions of the defined

mixfix syntax2. By moving complex parsing outside of Maude, it is possible

to use syntax closer to the actual Beta language when writing rules, while

eliminating the cumbersome process of defining precedences in Maude. It is

also possible to process actual Beta programs directly, making it easier to use

the definition. Outside of these parsing and pretty-printing capabilities, the

remainder of the system in the version currently being developed, including all

semantics and analysis tools, is written in Maude.

4.4 Extending Beta

One goal of the work on language prototyping is to provide an environment where

changes to a language can be implemented quickly, allowing for experimentation

with new language features. As an example, we decided to add super calls to

the Beta language, taking our inspiration from similar work [72] which added

inner calls to a Java-like object system in MzScheme. Since Beta has both

static and virtual pattern dispatch, we have started by just adding this to static

calls, but we believe it would be fairly straight-forward to also add this feature

to dynamic calls. We also have restricted this feature to named patterns only –

it doesn’t seem as useful to allow this with anonymous patterns, since we cannot

use an anonymous pattern as a parent to other patterns.

To add super calls, we first added a new type of pattern, a Java pattern,

which can be the target of a super call. This required adding two syntax

operators: one for pattern declaration, to indicate that the pattern being defined

is a Java-style pattern; and one new expression, super, used the same as in

Java, to initiate a super-call. We then needed to add two operators to the

2It is always possible to use a mixfix operator in prefix form; one advantage of this is that
the prefix form is easier for Maude to parse, while the mixfix form can still be used when
writing equations and rules in the semantics

69

semantics as well: a boolean flag, stored as part of the information kept with

patterns, to specify whether the pattern is a Java-style or Beta-style pattern;

and a computation item, used as part of the pattern semantics to appropriately

set this boolean flag on newly created patterns.

In the language semantics, we changed a total of 9 rules and added 9 more.

Of the 9 that were changed:

• 5 were to initialize patterns to not be Java patterns by default, but to act

as standard Beta patterns;

• two were to properly handle building the inner call list used for pattern

invocations;

• one was to trigger pattern invocations to start at Object if the pattern

invocation is not of a Java pattern, i.e. to use standard Beta semantics;

• and one was to flag the Object pattern as a standard (not Java) Beta

pattern.

Of the 9 rules that were added:

• 2 were to enumerate fields in a pattern with the new Java pattern syntax;

• one was to ensure Java patterns are not added to the list for inner calls;

• one was to ensure that a pattern invocation of a Java pattern would start

at that pattern instead of at Object;

• two were to handle super calls;

• and three were to handle setting the Java flag on Java patterns.

Overall, it took roughly 2 hours to add this feature into our prior definition

of Beta. It has not yet been ported forward to the new definition, but plans are

to do so once the language definition is complete. The files with the extended

semantics, with examples with and without super, are available on the rewriting

logic semantics Beta website [82].

70

Chapter 5

The K Module System

One important aspect of formalisms for defining the semantics of programming

languages is modularity. Modularity is generally expressed as the ability to add

new language features, or modify existing features, without having to modify

unrelated semantic rules. For instance, when designing a simple expression

language, one may want to use structural operational semantics (SOS) [162] to

define the semantics of addition1:

e1 → e′1

e1 + e2 → e′1 + e2

(EXP-PLUS-L)

e2 → e′2

n1 + e2 → n1 + e′2
(EXP-PLUS-R)

n1 + n2 → n, where n is the sum of n1 and n2 (EXP-PLUS)

Further extending the language, one may want to add variables. One way to

do this is to define an environment, mapping names to values, with rules for

binding values to names (not shown here) and to retrieve the value of a binding:

〈x, ρ〉 → 〈n, ρ〉,where n = ρ(x) (VAR-LOOKUP)

With this change to the language, even though the rules for plus do not actually

reference the environment they are still modified to include it as part of the

configuration. As an example, rule EXP-PLUS-L becomes:

〈e1, ρ〉 → 〈e
′
1, ρ〉

〈e1 + e2, ρ〉 → 〈e
′
1 + e2, ρ〉

(EXP-PLUS-L)

To accommodate other language features that require extensions to the

configuration, such as stores (for updatable memory locations) or mappings to

information about classes and methods (in an object-oriented language, especially

one where this information can change as the program runs, such as Self or

Python), similar changes are made to the same language features, even in cases

where they are not used directly in the rules. Alternatively, similar changes

1The same rules are used in Chapter 9

71

may need to be made to add addition expressions to a different language with a

different configuration, even if the different elements of the configuration are not

used in the rules for addition. All these changes are required because SOS is not

modular. Improved support for modularity eliminates the need to make these

changes, offering several advantages:

• Modular definitions of language features allow other parts of a language

to change more easily by allowing existing feature definitions to remain

unchanged in the face of unrelated modifications or additions;

• A modular definition of a language feature can be more easily reused

in the definition of a different language, even one with a much different

configuration;

• Modular definitions are easier to understand, since the rules given for a

language construct only need to include the information needed by the

rule, instead of including extraneous information used in other parts of the

language (such as the store in the rules for plus).

For these reasons, improving modularity of language definitions has been a

focus of research across multiple semantic formalisms. One example is modular

structural operational semantics (MSOS) [144, 146], which solves the problem

shown above by leveraging the labels on rule transitions, not normally used in

SOS definitions of programming languages, to encode configuration elements,

with the ability to elide unused parts of the configuration. This, and other

related work in modularity, is discussed in Chapter 9.

With a tool supported semantics, modularity can also be expressed as the

ability to package language features into discreet reusable units, which can then

be assembled when defining a language. The ability to create reusable language

feature modules requires having a modular semantics, since it should be possible

to plug the same feature into multiple language definitions, even in cases where

(unused) parts of the configuration are different. Additionally, it should be

possible to provide clean interfaces to language features and to different parts of

the configuration, something not required in monolithic definitions, or even in

modular definitions written on paper.

Context transformers, described in Section 2.5, are targeted towards the first

definition of modularity, allowing rules to remain unchanged as new features

are added and as the configuration used to represent the programming language

state is changed. The K module system, described here, is targeted towards the

second, providing a method to package up K definitions into modules which can

be stored in a shared repository and then reused when creating or modifying a

language definition. Section 5.1 provides an overview of the K module system,

introducing the basic constructs used when creating modules. Section 5.2 then

illustrates these concepts in the context of a number of short examples. To show

a more complete application, Section 5.3 provides an example of a complete,

72

albeit simple, kernel of the C language, which is then extended with a new

feature requiring changes to the configuration. Current K tool support uses

Maude; Section 5.4 provides details of the current translation from K modules

into a format usable by the current K implementation. Section 5.5 then discusses

the online semantics module repository, which includes client-side tools, built

around web services technology, and an initial XML document format designed

to allow the open exchange of semantics modules. Finally, Section 5.6 presents a

discussion of some of the challenges and limitations of the material presented

here and in the last two chapters.

5.1 K Modules

The K module system provides a general module format designed to allow the

definition of all features needed in a K language definition: abstract language

syntax, configuration items, semantic rules and equations, and the ultimate

assembly of a language, including the layout of the language configuration.

5.1.1 Module Notation

The module syntax is similar to that used in Maude, but with some simplifications

and some extensions to capture common language definition scenarios. The

notation is described below, grouped into constructs used in the module header

and in the module body.

Module Headers

A module header consists of the name of the module, a number of import, export,

and requires directives (one may include 0 or more of each), and a “wrapper”

around the module body items, starting with begin and ending with endmodule.

An overview of this notation is provided in Figure 5.1.

Module Name: In the K module system, module names are specified with

a full module path, a /-separated list of individual names. Examples of valid

module MODULE/NAME is

imports IMPORTS .

exports EXPORTS .

requires REQUIRES .

version VERSION# .

description "Arbitrary string." .

begin

module body items

endmodule

Figure 5.1: The Module Header

73

names would be INT, EXP/PLUS, and IMP/BEXP/AND. This use of paths provides a

way to logically group modules. For instance, all feature definitions representing

expressions could be given under EXP. Module names are not case sensitive,

although they are traditionally given using upper case alphanumeric characters.

The names are normalized inside the module system, so Exp, exp, and EXP are

all considered to be the same module.

As well as the main module path, a module name may include an optional

tag, indicating the type of module being defined. This tag is user-defined,

although two system-defined tags are also provided, SYNTAX and LANGUAGE.

These indicate that a module defines either the abstract syntax of a language

feature or an entire language, respectively. Examples include EXP/PLUS[SYNTAX]

and KOOL[LANGUAGE].

Imports: An imports clause indicates that a module depends on the defini-

tions provided in the imported module. imports is equivalent to the Maude

including; at this time there is no equivalent to either protecting or extending.

Following the keyword imports, one or more modules may be listed by module

path, each with an optional clause indicating modifications upon import. A

standard example of an imports clause is the following:

imports IMP/CONFIG/ENVIRONMENT .

Tags can also be provided on import paths:

imports IMP/EXP/PLUS[DYNAMIC] .

Imports also provide an optional renaming clause, indicating that names of sorts

or operations are being changed. The syntax for this clause is borrowed directly

from Maude, and has been extended to also allow additions of K attributes, such

as strict, to be defined on an operator on import. This allows an operator to

be initially defined without attributes such as strictness, since different semantics

may want to handle strictness in different ways.

These represent a comment

This import would be for a standard dynamic semantics,

since we want to evaluate the guard but not the branches.

imports FUN/EXP/IF[SYNTAX]

* (op if_then_else : Exp Exp Exp -> Exp now strict(1)) .

This import would be for a static semantics, where we need

to check all branches.

imports FUN/EXP/IF[SYNTAX]

* (op if_then_else : Exp Exp Exp -> Exp now strict) .

74

Exports: An exports clause indicates that a module exports certain sorts,

operators or K cells:

exports sort Env, op _[_] : Env Id -> Loc, cell env(Env) .

If no exports clause is included in the module header, all sorts, operators, and

cells are exported from the module by default. If an exports clause is provided,

any sorts, operators, or cells not listed are considered private to just that module,

providing a method to create (for instance) local sorts and operations that do

not conflict with other sorts and operators in other modules which may share

the same name.

Requires: Using imports, it is possible for a module to include defined features,

including operations, sorts, and cells, given in another module. To defer the

decision of which module to import for these features ,they can instead be

listed in a requires clause. requires indicates that the features are used in

the current module, but that an actual definition will be provided later, inside

another module. For a module with a requires clause to be used in a language

definition, all its requirements must be met by one or more imported modules.

requires sort Env, op _[_] : Env Id -> Loc, cell env(Env) .

Version: The version number is optional, and is currently used only when

interacting with the module repository. The version number is in decimal format,

with up to three digits following the decimal point: numbers like 1, or 1.01 are

valid version numbers, but A3 or 1.1.3 are not.

Description: Like the version number, the description is optional, and is

currently only used with the module repository. The description can contain an

arbitrary string.

Module Bodies

The module body provides definitions of the items used in the syntax, semantics,

and configuration of a language. The various types of module body items that

can be defined are described below.

Sorts, Syntax Sorts, and Sort Aliases: Sort definitions in K modules use

the same syntax as sort definitions in Maude, with the keyword sort (or sorts)

followed by one or more identifiers naming the sort or sorts being defined:

sort Nat .

sorts Value ValueList .

75

To enable proper handling of definitional attributes such as strictness, it is

important that K modules make a distinction between sorts used to represent

abstract syntax and sorts used to represent non-syntax terms. Sorts defined

using sort are the latter; the keyword xsort, along with the variant xsorts,

define the former:

xsort Exp .

xsorts Stmt StmtList .

The K module system allows sort expressions using a number of built-in

sort constructors, including constructors for maps, lists, and sets. Sometimes

it is useful to define that a sort expression represents a specific concept, such

as a list of values or an environment. This makes definitions more readable

and provides better documentation, inside the definition, of the intent of the

semantics designer.

sortalias Env = KMap{Name,Loc} .

sortalias NumList = KList{Num} .

Subsorts: Subsorts are defined in K modules using the same syntax as provided

by Maude, with the < operator used to separate space-separated lists of one or

more sorts.

subsort A B C < D E < F G .

Ops and Syntax Ops: Operators are defined in K modules using syntax that

matches the syntax used in Maude. Like with sorts, it is important for K to be

able to distinguish between operators representing abstract syntax terms and

operators representing other operations in the semantics. This distinction is

made by using xop (with variant xops) for abstract syntax operators, and op

(ops) for the rest.

xop _+_ : Exp Exp -> Exp .

xop _:_?_ : Exp Exp Exp -> Exp .

op _[_] : Env Id -> Location .

Several extended attributes for operators are also supported by the K module

system. This includes strict, seqstrict, renameTo, dissolve, and aux. Other

attributes available in the K Maude syntax are represented by explicit construct

in the module system. For instance, the wrapping attribute, used in definitions

of cells, is instead handled with explicit cell declarations.

Vars and Var Prefixes: The syntax for declaring variables in K modules is

similar to the syntax for declaring variables in Maude. The keyword var (or

vars) is followed by a space-separated list of variable names, with the sort given

after a colon.

76

var N : Nat .

vars X X’ Y : Id .

In place of a sort, a sort alias can be used. Also, it is possible to include sort

expressions using K’s predefined sort constructors2 as the sort of a variable.

sortalias Env = KMap{Name,Loc} .

var Env : Env .

var Mem : KMap{Loc,Value} .

In cases where many variables of the same sort would need to be defined,

variable prefixes can be used instead. Variable prefixes allow the prefix of a

variable name to be defined as being associated with a specific sort; any variable

with this prefix will then be assumed to be of this sort assuming it is not

redefined.

varprefix Env : Env .

vars N Env’ : Nat .

...

eq Env1 Env2 = ...

eq N + Env’ = ...

For instance, given a varprefix stating that all variables that start with

Env are of sort Env, in the code above Env1 and Env2 are both considered to be

of sort Env. Since Env’ is specifically declared to be of sort Nat, it is proper to

use Env’ as a natural number in an equation that references it, such as the final

equation that adds N and Env’.

Rules and Equations: Rules and equations can be written using either a

traditional Maude format or the K contextual format. Maude-style rules and

equations, including conditional variants, look just like standard Maude rules

and equations:

eq s(N) + M = s(N + M) .

ceq check(S SL) = check(S) check(SL)

if SL =/= empty .

rl A B C => X B .

crl S SL || T TL => SL || TL

if equiv(S,T) .

2The main difference between this and the equivalent syntax in Maude for using param-
eterized sorts is that the module system automatically imports the correct module with a
definition of the sort and, in the translation into Maude, automatically creates the needed
views. This is discussed further below.

77

K contextual rules use the special keywords keq and krl to define K equations

and K rules, respectively. K rules and equations can both use the contextual,

XML-like syntax provided by K to match across multiple cells in a computation:

keq <k> [[X.F(Xl) ==> Xl -> K]] ...</k>

<mthds>... mthd(F,K) ...</mthds> .

krl <k> [[X := V ==> .K]] ...</k>

<env>... [X,L] ...</env>

<mem>... [L,[[_ ==> V]]] ...</mem> .

The format of the rules and equations follows the format supported by the

current version of the K tools package. Instead of underlining a part of the term,

as described in Chapter 2, semantic-like brackets ([[and]]) are used along

with the ==> arrow to indicate the before and after subterms (the subterms

above and below the line). The other syntax was introduced in Chapter 2 as

part of the K syntax: . represents the unit; represents an unnamed value; and

“...” is used when matching inside lists, sets, and multisets.

Cells: K cells are defined explicitly in K modules using the cell keyword. A

cell definition provides both the name of a cell and the contents:

cell nextLoc : Nat .

cell store : KMap{Location,Value} .

Contexts: Once added, strictness attributes apply to all occurrences of an

operator. Sometimes, however, it makes more sense to apply strictness only

in a certain context, such as when a construct is used with certain sorts. This

functionality is provided using the kcxt keyword, which includes the attributes

to apply to an operator given the context in which it appears. Note that the

variable name, not just the position, can be used in the strict declaration.

kcxt deref(K) := K’ [strict(K)] .

Configurations: To indicate the final configuration that a language will use,

a configuration declaration can be included using the kconf keyword. This

declaration includes the nested K cell structure, with variables indicating the

sorts inside each cell. Cells with an * character, such as <thread*>, can occur

multiple times. The information given in a configuration declaration is used by

the context transformers to automatically adapt any rules and equations to the

final language configuration.

kconf <T> <thread*> <control> <k> K </k> </control> </thread*>

<state> Sigma </state> </T> <result> V </result> .

78

5.2 Module Examples

Using the constructs introduced in Section 5.1, this section provides a number of

examples of different types of modules that can be created. Section 5.3 provides

a complete example using a version of the IMP language.

5.2.1 Semantic Entities

Semantic entities in K definitions include configuration items, such as environ-

ments and stores, and sorts or operations used during computations, such as

computation items and values. A simple example of a semantic entity definition

is provided in the module INT. INT imports two modules, one provided in the

K prelude (identified by the K/ prefix on the path), VALUE and K/INT. It then

makes Int a subsort of Value, indicating that integers are considered values in

a language that imports this module:

module INT is

imports VALUE, K/INT-SORT .

begin

subsort Int < Value .

endmodule

A second example is module ENV. This shows the definition of an environment,

which provides a mapping from names to locations (a store then maps locations

to values; the separation easily allows features like nested scopes and reference

parameters for functions). Like in module INT, existing K prelude definitions

are imported, here because sorts Name and Loc are needed inside the module

body definitions:

module ENV is

imports K/NAME-SORT, K/LOC-SORT .

begin

sortalias Env = KMap{Name,Loc} .

varprefix Env : Env .

cell env : Env .

endmodule

K provides lists, multisets, and maps by default, allowing the definition to

refer to maps from sort Name to sort Loc. The sortalias construct provides a

way to give a more intuitive name to this map – Env – which can then be used

in the remainder of the definition (including in any modules that import ENV).

To simplify definitions that use environments, the varprefix declaration

allows the definition of a variable prefix. In any modules importing this module,

any variables starting with Env and not given explicit definitions (or matching

another, more specific prefix) will automatically be given sort Env (e.g., variables

Env, Env8, Env’, etc.).

79

Finally, the cell definition defines a K cell named env. This cell is given

a sort Env, meaning it will hold items of sort Env (i.e., it will hold mappings

from names to locations). This K cell can be used in parts of the definition that

import this cell, including inside K-style rules and equations and in program

configurations.

5.2.2 Abstract Syntax

Before defining the semantics of language constructs, the abstract syntax of

those constructs needs to be defined. This is done using abstract syntax modules,

which are defined using a tag of [SYNTAX] after the module name. A first

example of an abstract syntax module is the syntax for arithmetic expressions,

shown in module EXP/AEXP[SYNTAX]:

module EXP/AEXP[SYNTAX]

imports EXP[SYNTAX] * (sort Exp renamed AExp) .

begin

xsort AExp . subsort AExp < Exp .

varprefix AE : AExp .

endmodule

One way to define the sort of arithmetic expressions would be to define a

new sort which could be made a subsort of Exp, illustrated in a comment in the

module. Here, to illustrate the use of sort renaming, the sort Exp is renamed to

AExp using a sort renaming directive on the import of module EXP. A var prefix

to refer to arithmetic expressions is then defined, allowing variables starting with

AE to be automatically treated as having sort AExp.

A second abstract syntax module, defining the addition construct, is shown

in module EXP/AEXP/PLUS[SYNTAX]:

module EXP/AEXP/PLUS[SYNTAX]

imports EXP/AEXP[SYNTAX] .

begin

xop _+_ : AExp AExp -> AExp .

endmodule

Syntax is defined using mixfix notation with an algebraic notation similar to

that used in Maude; in this case, the operator is defined using xop to indicate that

it represents part of the abstract syntax for a language. To increase reusability

of the module, it is recommended that each module define only one language

construct, although it is possible to define multiple constructs in the same

module.

80

5.2.3 Semantic Rules

Once the syntax has been defined, the semantics of each construct need to be

defined as well. One explicit goal of the module system is to allow different

semantics to be easily defined for each language construct. For instance, it should

be possible to define a standard dynamic/execution semantics, a static/typing

semantics, and potentially other semantics manipulating different notions of

value (for instance, various notions of abstract value used during analysis). An

initial example of a semantics module is a module to define a standard dynamic

semantics for integer plus:

module EXP/AEXP/PLUS[DYNAMIC]

imports EXP/AEXP/PLUS[SYNTAX] *

(op _+_ now strict, extends + [Int * Int -> Int]) .

begin

endmodule

Normally a semantics module will implicitly import the related syntax module.

Here, since the import also modifies the attributes on an imported operator,

the syntax module must be explicitly imported. Two attributes are modified.

First, a strict attribute is added to note that the operator is now strict in all

arguments, which will automatically generate the structural heating and cooling

equations. Second, extends is used to automatically “hook” the semantics of

the feature to the builtin definition of integer addition. This completely defines

integer addition in the language, so no rules are needed.

A more typical semantics module will include rules:

module EXP/AEXP/PLUS[STATIC] is

imports EXP/AEXP/PLUS[SYNTAX] with { op _+_ now strict } .

imports TYPES .

begin

vars T T’ : Type .

krl <k>[[int + int ==> int]] ...</k> .

krl <k>[[T + T’ ==> fail]] ...</k> [owise] .

endmodule

This module shows semantics for the same feature, but this time the static

semantics (for type checking) are defined. Like in the dynamic semantics, the

operator for plus is changed to be strict. In this case, though, the values being

manipulated are types, not integers, so we also need to import the types and

use them in the two rules shown, both of which use an ASCII version of the K

notation. Reductions are shown inside semantic-style brackets ([[and]]), with

an arrow (==>) dividing the before and after parts of the reduction.

81

Here, the first rule is for when an expression is type correct: the two operands

are both integers, so the result of adding them is also an integer. If one of the

operands is not an integer (the otherwise case), the rule will cause a type called

fail, representing a type error, to propagate.3

The next module shows the dynamic semantics of blocks:

module STMT/BLOCK[DYNAMIC] is

imports STMT[SYNTAX], K/K, ENV .

begin

var S : Stmt .

krl <k> [[begin S end ==> S -> restoreEnv(Env) ...<k>

<env> Env </env> .

endmodule

Here, no changes are made to the imported syntax, so there is no need to

import the STMT/BLOCK[SYNTAX] module explicitly. In this language, blocks

provide for nested scoping, so we want to ensure that the current environment is

restored after the code inside the block executes. This is done by capturing the

current environment, Env, and placing it on the computation in a restoreEnv

computation item. The rule for restoreEnv, not shown here, will replace the

current environment with its saved environment when it becomes the first item

in the computation.

5.2.4 Language Definitions

Once the semantic entities, abstract syntax, and language semantics have been

defined, they can be assembled into a language module, tagged LANGUAGE. An

example is shown in Figure 5.2. The modules used to form the semantics are

imported using imports, with the second and third imports given a tag. This

tag will automatically be added to the path for each module, providing a more

concise way to write the paths. The line kconf defines the language configuration

used for IMP, including a store, an environment, a next location counter, and

the main computation. Next, the [[]] operator initializes the configuration,

given an initial computation (K) representing the program to run.

5.3 An Extended Example: Creating Language

Extensions

The modularity features of K should allow defined language features to be reused

in new languages and in extensions to existing languages. To illustrate this

process using the K module system, an example language definition, for the

3An alternative would be to issue an error message and return the expected type in the
hope of finding additional errors

82

module IMP[LANGUAGE]

imports K/CONFIGURATION, K/K, K/LOCATION,

VALUE, ENV, STORE, INT, BOOL .

imports[SYNTAX] EXP/AEXP/NUM, EXP/BEXP/BOOL .

imports[DYNAMIC] EXP/AEXP/NAME, EXP/AEXP/PLUS,

EXP/BEXP/LESSTHANEQ, EXP/BEXP/NOT, EXP/BEXP/AND,

STMT/SEQUENCE, STMT/ASSIGN, STMT/IFTHENELSE,

STMT/WHILE, STMT/HALT, PGM .

begin

var Store : Store .

var K : K .

var Loc : Location .

kconf <T> <store> Store </store> <env> Env </env>

<k> K </k> <nextLoc> Loc </nextLoc> </T> .

op [[_]] : K -> Configuration .

eq [[K]] = <T> <store> empty </store> <env> empty </env>

<k> K </k> <nextLoc> initLoc </nextLoc> .

endmodule

Figure 5.2: Language Definition: IMP

Kernel-C language [170], is shown. This is then extended to support exceptions,

providing a typical example of how a language could be extended.

5.3.1 The Kernel-C Language

A number of modules make up the definition of the abstract syntax, configuration,

and dynamic semantics for Kernel-C. These modules are discussed below.

Configurations

Kernel-C makes use of configuration items, such as Top, provided in the K

prelude. It also uses four configuration items specific to Kernel-C. The first is

the mem cell, created with a sort alias mapping sort Mem to maps from K to K (sort

K is the general sort representing computations, and includes both unevaluated

parts of the computation and computed results). Mem is used to represent the

store:

module KERNELC/CONFIG/MEM is

import K/K .

begin

sortalias Mem = KMap{K,K} .

cell mem: Mem .

endmodule

The ptr cell is defined similarly, and is used to track pointer allocation and

deallocation. Note that we could instead define a general map, KMap, from K to

K, and then define individual cells over this map. Using different sort aliases

provides a way to indicate the type of information held in the cell directly in the

cell definition.

module KERNELC/CONFIG/PTRMAP is

83

import K/K .

begin

sortalias PtrMap = KMap{K,K} .

cell ptr: PtrMap .

endmodule

Environments are also defined similarly, as maps from K to K, and provide

mappings from names in the program to memory locations:

module KERNELC/CONFIG/ENV is

import K/K .

begin

sortalias Env = KMap{K,K} .

cell env: Env .

endmodule

Finally, the out cell, representing output, is defined to just hold a single

output stream (updated with each output operation), also represented as a K:

module KERNELC/CONFIG/OUT is

import K/K .

begin

cell out: K .

endmodule

Abstract Syntax

Kernel-C includes syntax similar to the C language. Expressions, defined in

module KERNELC/EXP[SYNTAX], include generic expressions (arithmetic, boolean,

logical) from the K prelude, as well as strings:

module KERNELC/EXP[SYNTAX] is

import K/GENERIC-EXP-K-SYNTAX .

import K/STRING-K-SYNTAX .

endmodule

The DEREF syntax module defines syntax for pointer dereferencing. Note that

dereferencing is strict, since the expression indicating what is being dereferenced

should be evaluated first:

module KERNELC/EXP/MEM/DEREF[SYNTAX] is

import KERNELC/EXP[SYNTAX] .

begin

xop *_ : Exp -> Exp [strict] .

endmodule

Module MALLOC then provides syntax for the Kernel-C malloc expression,

which is similar to the malloc call found in C. malloc is also strict, with the

expression indicating the amount of storage to allocate:

module KERNELC/EXP/MEM/MALLOC[SYNTAX] is

import KERNELC/EXP[SYNTAX] .

begin

xop malloc‘(_‘) : Exp -> Exp [strict] .

endmodule

84

Also like in C, Kernel-C includes syntax for free’ing allocated memory, with

strict indicating that the expression indicating the target of the free should

be evaluated first:

module KERNELC/EXP/MEM/FREE[SYNTAX] is

import KERNELC/EXP[SYNTAX] .

begin

xop free‘(_‘) : Exp -> Exp [strict] .

endmodule

Like C, Kernel-C includes a ternary expression. The first position is strict,

since it needs to be evaluated first to determine whether to evaluate the second

or third expression next:

module KERNELC/EXP/TERNARY[SYNTAX] is

import KERNELC/EXP[SYNTAX] .

begin

xop _?_:_ : Exp Exp Exp -> Exp [strict(1)] .

endmodule

The syntax for boolean not is also renamed, this time equationally, turning
it into a ternary expression. This ensures that separate semantics do not need
to be given for not (hence the aux attribute):

module KERNELC/EXP/BOOL/NOT[SYNTAX] is

import KERNELC/EXP[SYNTAX] .

import KERNELC/EXP/TERNARY[SYNTAX] .

begin

var E : Exp .

xop !_ : Exp -> Exp [aux] .

eq ! E = E ? 0 : 1 .

endmodule

Assignment is defined as strict in the second argument, ensuring that the

value to assign is computed before the assignment. As will be seen later, it is

not strict in the first argument since behavior varies based on which language

construct is being assigned into:

module KERNELC/EXP/ASSIGN[SYNTAX] is

import KERNELC/EXP[SYNTAX] .

begin

xop _:=_ : Exp Exp -> Exp [strict(2)] .

endmodule

The syntax for and, like that for not, is equationally transformed to use the

ternary operator:

module KERNELC/EXP/BOOL/AND[SYNTAX] is

import KERNELC/EXP[SYNTAX] .

import KERNELC/EXP/TERNARY[SYNTAX] .

begin

vars E E’ : Exp .

xop _&&_ : Exp Exp -> Exp [aux] .

eq E && E’ = E ? E’ : 0 .

endmodule

85

The syntax for or is transformed in the same way, again allowing a semantics

to be given by translation:

module KERNELC/EXP/BOOL/OR[SYNTAX] is

import KERNELC/EXP[SYNTAX] .

import KERNELC/EXP/TERNARY[SYNTAX] .

begin

vars E E’ : Exp .

xop _||_ : Exp Exp -> Exp [aux] .

eq E || E’ = E ? 1 : E’ .

endmodule

The syntax given for printf is reminiscent of that used in C for printing

integers. Note that only one integer can be printed at a time:

module KERNELC/EXP/PRINTF[SYNTAX] is

import KERNELC/EXP[SYNTAX] .

begin

xop printf‘("%d"‘,_‘) : Exp -> Exp [strict] .

endmodule

The null keyword is introduced so that it can be used in memory operations.

Like in many C implementations, null is treated identically to 0:

module KERNELC/EXP/NULL[SYNTAX] is

import KERNELC/EXP[SYNTAX] .

begin

xop null : -> Exp [aux] .

eq null = 0 .

endmodule

After defining the syntax of expressions, the syntax for Kernel-C statements

is given. Module STMT defines both statements and lists of statements, with a

renameTo attribute indicating that lists of statements are turned into computa-

tions automatically:

module KERNELC/STMT[SYNTAX] is

begin

xsorts Stmt StmtList .

subsort Stmt < StmtList .

xop __ : StmtList StmtList -> StmtList [renameTo _->_] .

endmodule

Expressions can be made into statements by following them with a semicolon:

module KERNELC/STMT/EXPSTMT[SYNTAX] is

import KERNELC/EXP[SYNTAX] .

import KERNELC/STMT[SYNTAX] .

begin

xop _; : Exp -> Stmt [strict] .

endmodule

An empty statement, represented by just a semicolon, is also available, like in

C. It is renamed to the K identity, meaning it has the same semantics as doing

nothing:

86

module KERNELC/STMT/EMPTY[SYNTAX] is

import KERNELC/STMT[SYNTAX] .

begin

xop ; : -> Stmt [renameTo .K] .

endmodule

Two forms of blocks are provided, one with statements and an empty block.

Currently Kernel-C does not provide nested scopes, so a block is automatically

turned into a regular statement, in effect discarding the block brackets:

module KERNELC/STMT/BLOCK[SYNTAX] is

import KERNELC/STMT[SYNTAX] .

begin

xop ‘{_‘} : StmtList -> Stmt [renameTo _] .

xop ‘{‘} : -> Stmt [renameTo .K] .

endmodule

Conditionals are defined to support both one-armed and two-armed varieties.

An equation automatically converts a one-armed conditional into a two-armed

conditional with an empty block, which is why the first (one-armed) version

is marked as aux (no equations should be generated for it, since it will be

transformed anyway). The if statement is then strict in the first argument,

ensuring the guard is evaluated before a branch is selected:

module KERNELC/STMT/IF[SYNTAX] is

import KERNELC/EXP[SYNTAX] .

import KERNELC/STMT[SYNTAX] .

begin

var E : Exp . var St : Stmt .

xop if‘(_‘)_ : Exp Stmt -> Stmt [aux] .

xop if‘(_‘)_else_ : Exp Stmt Stmt -> Stmt [strict (1)] .

eq if(E) St = if (E) St else {} .

endmodule

The while loop in Kernel-C looks the same as the equivalent C construct:

module KERNELC/STMT/LOOP/WHILE[SYNTAX] is

import KERNELC/EXP[SYNTAX] .

import KERNELC/STMT[SYNTAX] .

begin

xop while‘(_‘)_ : Exp Stmt -> Stmt .

endmodule

Finally, with all the other syntax defined, it is possible to define programs.

Given in a form that looks very close to a simple C program, programs take a list

of statements. The extraneous syntax is discarded, leaving just this statement

list to execute:

module KERNELC/PGM[SYNTAX] is

import KERNELC/STMT[SYNTAX] .

begin

xsort Pgm .

xop #include<stdio.h>‘#include<stdlib.h>‘void‘main‘(void‘)‘{_‘} :

StmtList -> Pgm [renameTo _] .

endmodule

87

5.3.2 Semantics

While defining the syntax of Kernel-C a number of constructs where transformed

into other constructs, using either the renameTo attribute or using equations.

Because of this, fewer semantic definitions are needed, with one definition often

providing semantics for multiple (syntax-level) language features. Some semantic

definitions are also given in the K prelude – these are brought in in module

KERNELC/EXP[DYNAMIC] by importing module K/GENERIC-EXP-SEMANTICS:

module KERNELC/EXP[DYNAMIC] is

import K/GENERIC-EXP-SEMANTICS .

endmodule

The semantics for booleans automatically transforms them into numbers,

similar to the semantics for operations that work with “booleans” in C (booleans

in quotes, because C has no real booleans):

module KERNELC/EXP/BOOL[DYNAMIC] is

import KERNELC/EXP[DYNAMIC] .

begin

eq #(true) = #(1) .

eq #(false) = #(0) .

endmodule

The semantics for dereferencing use several K constructs. The context

definition enforces strictness in assignment for the first operand when it is a

dereferencing operation; the two keq definitions then give the semantics both

for a lookup through a pointer and an assignment through a pointer:

module KERNELC/EXP/MEM/DEREF[DYNAMIC] is

import KERNELC/EXP[DYNAMIC] .

import KERNELC/CONFIG/MEM .

import KCONFIG/CONFIG .

begin

vars K1 K2 : K .

var N : Nat .

vars V V’ : KResult .

kcxt * K1 := K2 [strict(K1)] .

krl <k> [[* #(N) ==> V]] ...</k>

<mem>... #(N) |-> V ...</mem> .

krl <k> [[* #(N) := V ==> V]] ...</k>

<mem>... #(N) |-> [[V’ ==> V]] ...</mem> .

endmodule

The malloc semantics handle memory allocation, returning the new memory

location and performing the proper bookkeeping in the pointer map stored in cell

ptr. Note the use of K/FRESH-ITEM{K} below: this is a parameterized module

from the K prelude (hence the prefix of K/), with the parameter the sort K:

module KERNELC/EXP/MEM/MALLOC[DYNAMIC] is

88

import KERNELC/EXP[DYNAMIC] .

import KERNELC/CONFIG/MEM .

import KERNELC/CONFIG/PTRMAP .

import KCONFIG/CONFIG .

import K/FRESH-ITEM{K} .

begin

vars N N’ : Nat . var NV : NatVar .

op alloc : Nat Nat -> PtrMap .

eq alloc(N, 0) = .empty .

eq alloc(N, s(N’)) = (#(N) |-> #(0)) &’ alloc(N + 1, N’) .

krl <k> [[malloc(#(N)) ==> #(N’)]] ...</k>

<ptr>... [[.empty ==> (#(N’) |-> #(N))]] ...</ptr>

<nextItem> [[item(N’) ==> item(N’) + N]] </nextItem>

<mem>... [[.empty ==> alloc(N’, N)]] ...</mem> .

endmodule

Using free does the opposite, using this earlier bookkeeping information to

properly clean up allocated storage:

module KERNELC/EXP/MEM/FREE[DYNAMIC] is

import KERNELC/EXP[DYNAMIC] .

import KCONFIG/CONFIG .

import KERNELC/CONFIG/MEM .

import KERNELC/CONFIG/PTRMAP .

begin

vars N N’ : Nat .

var V : KResult .

var Mem : Mem .

op void : -> KResult .

op freeMem : PtrMap Nat Nat -> PtrMap .

eq freeMem(Mem, N, 0) = Mem .

eq freeMem((Mem &’ (#(N) |-> V)), N, s(N’)) = freeMem(Mem,N + 1,N’) .

krl <k> [[free(#(N)) ==> void]] ...</k>

<ptr>... [[#(N) |-> #(N’) ==> .empty]] ...</ptr>

<mem> [[Mem ==> freeMem(Mem, N, N’)]] </mem> .

endmodule

The ternary expression works the same as in C. The first expression is

evaluated to a numeric value. If this value is not 0, it represents the true case,

and the second expression is evaluated. If this value is 0, it represents the false

case, and the third expression is evaluated:

module KERNELC/EXP/TERNARY[DYNAMIC] is

import KERNELC/EXP[DYNAMIC] .

begin

vars K1 K2 : K .

var I : Int .

eq (#(0)) ? K1 : K2 = K2 .

ceq (#(I)) ? K1 : K2 = K1 if I neq 0 .

endmodule

89

Assignment works as expected; since this assignment does not involve deref-

erencing, the value can be stored directly in the environment, with storage to

memory limited to those cases where the value can be updated through a pointer:

module KERNELC/EXP/ASSIGN[DYNAMIC] is

import KERNELC/EXP[DYNAMIC] .

import KERNELC/CONFIG/ENV .

import KCONFIG/CONFIG .

begin

var X : Name .

var V : KResult .

var Env : Env .

krl <k> [[X := V ==> V]] ...</k>

<env> [[Env ==> Env[X <- V]]] </env> .

endmodule

Non-pointer lookups retrieve the value stored in the environment using

assignment:

module KERNELC/EXP/LOOKUP[DYNAMIC] is

import KERNELC/EXP[DYNAMIC] .

import KERNELC/CONFIG/ENV .

import KCONFIG/CONFIG .

begin

var X : Name .

var V : KResult .

krl <k> [[X ==> V]] ...</k>

<env>... X |-> V ...</env> .

endmodule

The printf expression uses the given value to update the contents of the

stream stored in cell out:

module KERNELC/EXP/PRINTF[DYNAMIC] is

import KERNELC/EXP[DYNAMIC] .

import KCONFIG/CONFIG .

import KERNELC/CONFIG/OUT .

begin

var I : Int .

var S : String .

op stream : String -> K .

krl <k> [[printf("%d",#(I)) ==> void]] ...</k>

<out> [[stream(S) ==> stream(S + string(I,10)+ " ")]] </out> .

endmodule

The base semantics for statements import the base expression semantics,

which they rely on:

module KERNELC/STMT[DYNAMIC] is

import KERNELC/EXP[DYNAMIC] .

endmodule

90

Expression statements can then be treated essentially as no-ops, once the

expression is evaluated (which is automatic because of the strictness annotation

on the ; operator). The value is not used, so it is just discarded:

module KERNELC/STMT/EXPSTMT[DYNAMIC] is

import KERNELC/STMT[DYNAMIC] .

begin

var V : KResult .

eq V ; = .K .

endmodule

The if semantics also rely on strictness, with one rule each for the situation

where the condition is false (i.e., 0) and where the condition is true (i.e., not 0):

module KERNELC/STMT/IF[DYNAMIC] is

import KERNELC/STMT[DYNAMIC] .

begin

vars K1 K2 : K .

var I : Int .

eq if (#(0)) K1 else K2 = K2 .

ceq if (#(I)) K1 else K2 = K1 if I neq 0 .

endmodule

While loops are given a semantics in a standard way, with a translation into

an equivalent conditional that first checks the while guard and then, if true,

executes the body and then schedules the loop for another iteration:

module KERNELC/STMT/LOOP/WHILE[DYNAMIC] is

import KERNELC/STMT[DYNAMIC] .

import KERNELC/STMT/IF[DYNAMIC] .

begin

vars K1 K2 : K .

keq <k> [[while (K1) K2 ==> if (K1) (K2 -> while(K1) K2) else .K]] ...</k> .

endmodule

5.3.3 Language Definition

Using the already-defined modules, the language can be constructed. Dynamic

semantics modules are imported, as well as syntax modules that are not imported

by the dynamic semantics (remember, syntax modules are automatically imported

into other modules with the same name, sans tag). The configuration is then

created – it is not really needed here, since all cells are at the same level, but

will come in handy later, and also provides good documentation. Finally, a run

operation is provided, which, given an initial computation, will correctly set up

the configuration so program execution can start:

module KERNELC/STANDARD[LANGUAGE] is

import[DYNAMIC]

91

KERNELC/EXP/BOOL, KERNELC/EXP/MEM/DEREF, KERNELC/EXP/MEM/MALLOC,

KERNELC/EXP/MEM/FREE, KERNELC/EXP/TERNARY, KERNELC/EXP/ASSIGN,

KERNELC/EXP/LOOKUP, KERNELC/EXP/PRINTF, KERNELC/STMT/EXPSTMT,

KERNELC/STMT/IF, KERNELC/STMT/LOOP/WHILE .

import[SYNTAX]

KERNELC/EXP/TERNARY, KERNELC/EXP/BOOL/NOT, KERNELC/EXP/BOOL/AND,

KERNELC/EXP/BOOL/OR, KERNELC/EXP/NULL, KERNELC/STMT/EMPTY,

KERNELC/STMT/BLOCK, KERNELC/PGM .

begin

var P : Pgm .

var K : K .

var Env : Env .

var Mem : Mem .

var Ptr : PtrMap .

var I : Item .

var S : K .

kconf <T> <k> K </k> <env> Env </env> <mem> Mem </mem>

<ptr> Ptr </ptr> <nextItem> I </nextItem>

<out> S </out> </T> .

op run : Pgm -> Config .

eq run(P)

= <T>

<k> mkK(P) </k> <env> .empty </env>

<mem> .empty </mem> <ptr> .empty </ptr>

<nextItem> item(1) </nextItem>

<out> stream("") </out>

</T> .

endmodule

5.3.4 Adding Exceptions to Kernel-C

The exceptions extension to Kernel-C provides a simple exceptions mechanism,

with a try/catch block similar to that used in Java and a throw statement

that triggers an exception. The first step to adding exceptions is to define the

configuration needed for exceptions, as well as some operators that work with

the exception state:

module KERNELC/CONFIG/EXCEPTIONS is

import KERNELC/CONFIG/ENV .

import K/K .

begin

sortalias ExStack = KList{K} .

cell es : ExStack .

vars K K’ : K .

var ES : ExStack .

op removeHandler : -> K .

krl <k> [[removeHandler ==> .K]] ...</k>

<es> [[K, ES ==> ES]] </es> .

92

op addHandler : K -> K .

krl <k> [[addHandler(K) ==> .K]] ...</k>

<es> [[ES ==> K, ES]] </es> .

op handleException : -> K .

krl <k> [[handleException -> K’ ==> K]] </k>

<es> [[K, ES ==> ES]] </es> .

endmodule

A new sort alias, ExStack, is declared. An exception stack is a list of

computations (Ks) treated as a stack. A new cell, es, is also defined; this cell will

be used in the semantics to hold the stack. Using this new sort alias and cell,

three operators are then defined, along with semantic equations. removeHandler

is used to remove the top exception handler from the stack without actually

triggering the handler; handleException does the same, but it does trigger

the exception handler, replacing the current computation (K’) with the handler

computation. addHandler adds the handler onto the stack.

It is now possible to define the syntax and semantics for exceptions. The

syntax for try/catch provides two statements: the code being handled, and the

handler for when exceptions are thrown. try/catch is itself also a statement:

module KERNELC/STMT/TRYCATCH[SYNTAX] is

import KERNELC/STMT[SYNTAX] .

begin

xop try_catch_; : Stmt Stmt -> Stmt .

endmodule

The semantics use the addHandler and removeHandler operators defined

above. When a try/catch block is encountered, the semantics are defined to

add a handler to the stack. This handler will run the computation in the catch

block and will then pick up with whatever computation is after the try/catch

construct. The code inside the try is then run after the handler is added. After

this, the removeHandler item will remove the added handler; this will only be

run if the handler is not triggered by an exception.

module KERNELC/STMT/TRYCATCH[DYNAMIC] is

import KERNELC/STMT[DYNAMIC] .

import KERNELC/CONFIG/EXCEPTIONS .

begin

vars K K’ K’’ : K .

krl <k> [[try K catch K’ ; ==>

addHandler(K’ -> K’’) -> K -> removeHandler]]

-> K’’ </k>

endmodule

The syntax for throw defines it as a statement. Unlike in Java, it does not

actually throw a value, so it is not given an expression to evaluate:

module KERNELC/STMT/THROW[SYNTAX] is

import KERNELC/STMT[SYNTAX] .

93

begin

xop throw; : -> Stmt .

endmodule

Finally, semantics are given to throw. A throw will trigger the exception

handler using the handleException item:

module KERNELC/STMT/THROW[DYNAMIC] is

import KERNELC/STMT[DYNAMIC] .

import KERNELC/CONFIG/EXCEPTIONS .

begin

krl <k> [[throw; ==> handleException]] ... </k>

endmodule

The new features are added by creating a new language version with imports

for the new modules. Note that none of the old modules needed to change. Here

we add the exception stack to the configuration, and we also add an additional

level of grouping, with the k and es cells added under another cell, control

(which we assume, for this example, is imported from the prelude, but could

easily be added manually). The use of context transformers allows the existing

rules that use k and other cells to continue to function unchanged.

module KERNELC/WEXCEPTIONS[LANGUAGE] is

import[DYNAMIC]

KERNELC/EXP/BOOL, KERNELC/EXP/MEM/DEREF, KERNELC/EXP/MEM/MALLOC,

KERNELC/EXP/MEM/FREE, KERNELC/EXP/TERNARY, KERNELC/EXP/ASSIGN,

KERNELC/EXP/LOOKUP, KERNELC/EXP/PRINTF, KERNELC/STMT/EXPSTMT,

KERNELC/STMT/IF, KERNELC/STMT/LOOP/WHILE, KERNELC/STMT/TRYCATCH,

KERNELC/STMT/THROW .

import[SYNTAX]

KERNELC/EXP/TERNARY, KERNELC/EXP/BOOL/NOT, KERNELC/EXP/BOOL/AND,

KERNELC/EXP/BOOL/OR, KERNELC/EXP/NULL, KERNELC/STMT/EMPTY,

KERNELC/STMT/BLOCK, KERNELC/PGM .

begin

var P : Pgm .

var K : K .

var Env : Env .

var Mem : Mem .

var Ptr : PtrMap .

var I : Item .

var S : K .

var ES : ExStack .

kconf <T> <ctrl> <k> K </k> <es> ES </es> </control>

<env> Env </env> <mem> Mem </mem>

<ptr> Ptr </ptr> <nextItem> I </nextItem>

<out> S </out> </T> .

op run : Pgm -> Config .

eq run(P)

= <T>

<control> <k> mkK(P) </k> <es> .empty </es> </control>

<env> .empty </env> <mem> .empty </mem>

<ptr> .empty </ptr> <nextItem> item(1) </nextItem>

94

<out> stream("") </out>

</T> .

endmodule

5.4 Translating K Modules to Maude

K module definitions are translated into a K Maude format supported by the

current release of the K tools, which is then translated to Maude. This section

focused on the first part of this translation; the second is part of ongoing work,

but is not part of the work on the module system. The K Maude format used

in the K tools is not modular, allowing either one module, with the entire

language definition, or three, one for syntax, one for the configuration, and one

for semantics. Because of this, one of the main tasks of the translation is to

“flatten” the information given in the K modules into a non-modular form.

Standard Features: Many of the constructs in the module system are already

valid in the K tools format, and require no translation. This includes subsorts

and operator definitions. Other constructs have very lightweight translations:

syntax ops are translated into regular ops with the same names, signatures, etc.

One current limitation of the module system tools support is that, because the

parsing is currently deferred until the K tools form of the semantics is presented

to Maude, several features that rely on parsing are not yet fully supported. This

includes altering of attributes on imports, some renamings, and some uses of

exports and requires.

Features Requiring Significant Translation: The remaining features are

handled as follows:

• Each sort is defined in its own module, with that module then imported into

the module that initially defined the sort. A view is created automatically

for each sort from TRIV to the sort module, mapping Elt to the sort.

• Each sort alias is defined in its own module, using import renamings to

map the original name for the sort (e.g., Map{K,K}) to the alias name (e.g.,

Mem).

• Syntax sorts, syntax operators, and subsorts using the syntax sorts are all

generated into the syntax module: the sorts are added to the module as

imports, while the operators and subsorts are added as actual operator

and subsort definitions.

• Cells are translated into operators in the configuration module, with a

special attribute on each operator describing the cell contents.

• Other items are translated into a single semantics module. Variables and

variable prefixes are used to decorate variables in rules and equations with

95

sort information, and are not otherwise included in the final generated

module. Variable prefixes are used based on reachability, to ensure that

only imported (directly or indirectly) prefixes can be used. Configurations

and contexts (with variable sort decoration) are also brought over directly.

Semantic sorts and sort aliases are handled identically to syntax sorts and

sort aliases.

Module Headers: Exports clauses that do not mention syntax items (the

standard case – generally one does not hide abstract syntax, but instead hides

special operators or sorts used inside other modules) are modeled by moving the

module contents to a second module. The original module then imports this

second module, renaming all private operators, sorts, and cells. This does not

prevent use of these private constructs, but protects against inadvertent use or

duplication, which is the goal of the exports feature.

Imports are converted directly into Maude-style including directives, with

any special prefixes (e.g., the K on K/INT-SYNTAX) removed first. These import

paths are collected based on which modules are reachable, ensuring all needed

imports are given in the proper three modules while not either importing modules

that have been translated away or that only contain information used by another

of the three modules (e.g., the syntax does not import all the semantics).

5.5 The Online Semantics Repository

One goal of the K module system is to allow modules to easily be shared and

reused. To help support this goal an online repository of semantics modules

is being developed. At this point, a basic version of the repository, targeted

specifically at K modules, has been developed. It is expected that further work

on this repository will include closer tool integration and the ability to support

additional module formats, such as standard rewriting logic semantics modules

and MSOS modules.

5.5.1 The Repository Backend

The repository currently uses a database to store information about each module.

Each module record is assigned a unique identifier, and also contains information

such as: module name; module version; a description of the module; when the

module was last updated, and by whom; the type of semantics inside the module;

the modules required for this module to work properly; and the features defined

by this module. The current main purpose of the backend is to store and provide

data for the module exchange format, described below, but in the future tools

may directly access the database to work with the modules in the repository.

96

5.5.2 An XML Format for Module Exchange

To enable the exchange of semantic modules between K tool support and the

module repository, and with an eye towards future interfacing with other tools

or other module formats, an initial definition of a shared format for exchanging

semantic modules has been defined. The XML Schema definition for this format

can be found in Figure 5.3.

An XML document containing a semantic module definition is made up of

the overall definition, a list of other required modules, and a list of features

provided by this module. Figure 5.4 focuses on the overall definition. It includes

the module name, a module namespace, providing a way to group modules by

provider, and a version number for the module. Also included are several fields

indicating when the module was last modified (lastModifiedOn), and by whom

(lastModifiedBy); the type of semantics (semanticsType), such as K or MSOS;

and a description of the module.

The requirements of the module, currently in field requirements, are given

in terms of required modules. Each required module is of type RequiredModule,

the definition of which is given in Figure 5.5. The information for the module

requirement includes a path, which is made up of the namespace followed by the

module name, and a required version. Currently the required version must be

an exact match; a possible future modification is to allow additional information,

either with version numbering patterns or comparison operations (ranges, version

greater than the given number, etc).

Individual features, of type Feature, are given inside the features tag. The

format for features is shown in Figure 5.6. A feature description is made up of a

feature name, a feature description, a numeric feature type, and the feature

contents. The meaning of these fields is dependent on the style of semantics.

In K, the name and description provide optional descriptive information, the

contents is the actual K text, and the type indicates the type of feature being

given, with different numbers for syntactic operators, k rules, etc.

Figure 5.7 provides an example of a module that defines both the abstract

syntax and semantics for addition. The name of the module is Exp/AExp/Plus,

and it is part of namespace FSL. The version number is set to 1.0, and the

semantics type to K. Two modules are listed as requirements, both in the FSL

namespace, and both at version 1.0 as well. Also, two features are defined. The

first is a syntax operator, the second a K rule for addition. The name and

description are arbitrary, while the types indicate the type of feature (6 is a

syntax operator, 14 a K rule).

5.5.3 Client-Side Tool Support

Client-side tool support is based around a command line tool that communi-

cates with the repository using web services. Currently, several operations are

supported:

97

1 <?xml version="1.0" encoding="UTF-8"?>
2 <xs:schema xmlns="http://fsl.cs.uiuc.edu/Schema" xmlns:xs="http://www.w3.org/2001/XMLSchema"
3 targetNamespace="http://fsl.cs.uiuc.edu/Schema"
4 elementFormDefault="qualified" attributeFormDefault="unqualified">
5 <xs:element name="semanticModule" type="SemanticDefinition">
6 <xs:annotation>
7 <xs:documentation>The definition of a single semantics module.</xs:documentation>
8 </xs:annotation>
9 </xs:element>

10 <xs:complexType name="SemanticDefinition">
11 <xs:sequence>
12 <xs:element name="name" type="xs:normalizedString"/>
13 <xs:element name="namespace" type="xs:normalizedString"/>
14 <xs:element name="version" default="1.0">
15 <xs:simpleType>
16 <xs:restriction base="xs:decimal">
17 <xs:fractionDigits value="3"/>
18 <xs:totalDigits value="9"/>
19 <xs:minExclusive value="0"/>
20 </xs:restriction>
21 </xs:simpleType>
22 </xs:element>
23 <xs:element name="lastModifiedBy" type="xs:string" minOccurs="0"/>
24 <xs:element name="lastModifiedOn" type="xs:dateTime" minOccurs="0"/>
25 <xs:element name="semanticsType" type="xs:normalizedString"/>
26 <xs:element name="description" type="xs:string"/>
27 <xs:element name="requirements">
28 <xs:complexType>
29 <xs:sequence>
30 <xs:element name="requiredModule" type="RequiredModule"
31 minOccurs="0" maxOccurs="unbounded"/>
32 </xs:sequence>
33 </xs:complexType>
34 </xs:element>
35 <xs:element name="features">
36 <xs:complexType>
37 <xs:sequence>
38 <xs:element name="feature" type="Feature" minOccurs="0" maxOccurs="unbounded"/>
39 </xs:sequence>
40 </xs:complexType>
41 </xs:element>
42 </xs:sequence>
43 </xs:complexType>
44 <xs:complexType name="RequiredModule">
45 <xs:sequence>
46 <xs:element name="version">
47 <xs:simpleType>
48 <xs:restriction base="xs:decimal">
49 <xs:minExclusive value="0"/>
50 <xs:totalDigits value="9"/>
51 <xs:fractionDigits value="3"/>
52 </xs:restriction>
53 </xs:simpleType>
54 </xs:element>
55 <xs:element name="path" type="xs:normalizedString"/>
56 </xs:sequence>
57 </xs:complexType>
58 <xs:complexType name="Feature">
59 <xs:sequence>
60 <xs:element name="name" type="xs:normalizedString"/>
61 <xs:element name="description" type="xs:string"/>
62 <xs:element name="type" type="xs:integer"/>
63 <xs:element name="contents" type="xs:string"/>
64 </xs:sequence>
65 </xs:complexType>
66 </xs:schema>

Figure 5.3: Module Exchange Format: Complete XML Schema

98

1 <xs:complexType name="SemanticDefinition">
2 <xs:sequence>
3 <xs:element name="name" type="xs:normalizedString"/>
4 <xs:element name="namespace" type="xs:normalizedString"/>
5 <xs:element name="version" default="1.0">
6 <xs:simpleType>
7 <xs:restriction base="xs:decimal">
8 <xs:fractionDigits value="3"/>
9 <xs:totalDigits value="9"/>

10 <xs:minExclusive value="0"/>
11 </xs:restriction>
12 </xs:simpleType>
13 </xs:element>
14 <xs:element name="lastModifiedBy" type="xs:string" minOccurs="0"/>
15 <xs:element name="lastModifiedOn" type="xs:dateTime" minOccurs="0"/>
16 <xs:element name="semanticsType" type="xs:normalizedString"/>
17 <xs:element name="description" type="xs:string"/>
18 <xs:element name="requirements">
19 <xs:complexType>
20 <xs:sequence>
21 <xs:element name="requiredModule" type="RequiredModule"
22 minOccurs="0" maxOccurs="unbounded"/>
23 </xs:sequence>
24 </xs:complexType>
25 </xs:element>
26 <xs:element name="features">
27 <xs:complexType>
28 <xs:sequence>
29 <xs:element name="feature" type="Feature" minOccurs="0" maxOccurs="unbounded"/>
30 </xs:sequence>
31 </xs:complexType>
32 </xs:element>
33 </xs:sequence>
34 </xs:complexType>

Figure 5.4: Module Exchange Format: Module Definition

1 <xs:complexType name="RequiredModule">
2 <xs:sequence>
3 <xs:element name="version">
4 <xs:simpleType>
5 <xs:restriction base="xs:decimal">
6 <xs:minExclusive value="0"/>
7 <xs:totalDigits value="9"/>
8 <xs:fractionDigits value="3"/>
9 </xs:restriction>

10 </xs:simpleType>
11 </xs:element>
12 <xs:element name="path" type="xs:normalizedString"/>
13 </xs:sequence>
14 </xs:complexType>

Figure 5.5: Module Exchange Format: Required Modules

1 <xs:complexType name="Feature">
2 <xs:sequence>
3 <xs:element name="name" type="xs:normalizedString"/>
4 <xs:element name="description" type="xs:string"/>
5 <xs:element name="type" type="xs:integer"/>
6 <xs:element name="contents" type="xs:string"/>
7 </xs:sequence>
8 </xs:complexType>

Figure 5.6: Module Exchange Format: Module Features

99

• retrieve a list of the modules contained in the repository;

• retrieve a specific module from the repository;

• retrieve a specific module from the repository, including all modules tran-

sitively required by the module.

Modules are currently inserted by generating SQL directly from the modtool

command-line interface to the module system, which is also used to perform

translations from modules in the module system into the Maude K tool format.

One future task is to make the repository open for outside updates, which will

require proper security support to ensure that only authorized users can modify

repository contents.

5.6 Discussion

Chapters 3, 4, and 5 presented methods and tools for the modular definition of

language features, including (in this chapter) a module system to allow the reuse

of these features. This section discusses some of the limitations of this work; a

comparison with other related work is provided in Chapter 9.

First, some language features seem to be inherently non-modular. While it is

possible to define these features using K, it may still be necessary to either alter

one or more imported modules (not recommended) or create new versions of

1 <?xml version="1.0" encoding="UTF-8"?>
2 <semanticModule xmlns="http://fsl.cs.uiuc.edu/Schema"
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
4 xsi:schemaLocation="http://fsl.cs.uiuc.edu/Schema/Semantics.xsd">
5 <name>Exp/AExp/Plus</name>
6 <namespace>FSL</namespace>
7 <version>1.0</version>
8 <semanticsType>K</semanticsType>
9 <description>Syntax and semantics of integer addition.</description>

10 <requirements>
11 <requiredModule>
12 <version>1.0</version>
13 <path>FSL::K/Builtins/Data/Integer</path>
14 </requiredModule>
15 <requiredModule>
16 <version>1.0</version>
17 <path>FSL::K/Builtins/Configs/K</path>
18 </requiredModule>
19 </requirements>
20 <features>
21 <feature>
22 <name>Syntax</name>
23 <description>Abstract syntax for plus.</description>
24 <type>6</type>
25 <contents>xop _+_ : AExp AExp -> AExp [strict] .</contents>
26 </feature>
27 <feature>
28 <name>Semantics</name>
29 <description>Dynamic semantics for plus.</description>
30 <type>14</type>
31 <contents>krl <k> [[I1 + I2 ==> int+(I1,I2)]]...</k> .</contents>
32 </feature>
33 </features>
34 </semanticModule>

Figure 5.7: Module Exchange Format: Example Module

100

some modules that are specific to the feature being defined. One example of this,

presented in Chapter 3, was synchronized methods. Because locks need to be

properly tracked at method entry and exit, defining synchronized methods also

required changing the definition of exceptions, ensuring that any locks acquired

on entry to a synchronized method are released as the stack frame is unrolled.

Another example would be a Java-like finally clause on an exception handler,

which impacts the semantics of method return and loop break and continue as

well. For instance, if an exception handler is provided in the body of a loop, a

break statement given inside the try block would trigger the finally clause.

In both of these cases, this means the semantics of other features need to change

when the new feature is introduced.

Second, while the K module system is quite flexible, the downside of this is

that the module system does not provide support for good definitional style. In

other words, it allows one to write modules that are not in fact modular, packing

a number of features into a single module. While we believe that this is essential,

to allow the user the freedom to define modules in a style with which the user is

comfortable, it would be useful to allow the enforcement of good style in cases

where the intent is to later share the modules with others.

Third, the support in the K module system of Maude attributes, such as the

format and prec attributes, can tie K modules defined using the module system

closely to Maude. For instance, the prec attribute could be added to the DEREF

abstract syntax shown above to allow for the proper parsing of programs given

as Maude terms:

module KERNELC/EXP/MEM/DEREF[SYNTAX] is

import KERNELC/EXP[SYNTAX] .

begin

xop *_ : Exp -> Exp [strict prec 25] .

endmodule

Or, the format attribute could be used in the abstract syntax for MALLOC to

provide proper formatting (spacing, newlines, colors, etc) of the operator when

it is output in Maude:

module KERNELC/EXP/MEM/MALLOC[SYNTAX] is

import KERNELC/EXP[SYNTAX] .

begin

xop malloc‘(_‘) : Exp -> Exp [format (g b o b o) strict] .

endmodule

Since it is not required that one use these attributes, it is still possible to

write modules for features which can then be reused in different languages (for

instance, languages where the precedence is different). However, it is currently

necessary to use these attributes if one wishes to provide programs directly as

Maude terms, instead of writing a language front-end which will generate an

abstract syntax for the program in a Maude-friendly form (such as is done in both

KOOL and Beta). One possible solution is to add a layer in the transformation

101

from K modules to a target platform, such as Maude, that allows transformations

– the addition of attributes, etc – to be performed on the individual items in a

module body.

102

Chapter 6

Language Design and

Performance

Many methods of defining languages are based solely on paper definitions,

potentially with tool support to help properly typeset rules in the semantics.

For such formalisms performance is not even a consideration. However with

executable specifications, performance can be critical, especially when using the

definitions in practical situations, such as during language prototyping or program

analysis. This chapter discusses research on improving the performance of K

definitions implemented using Maude. Section 6.1 focuses mainly on execution

performance, illustrating how changes in the memory representations used by

language definitions can speed up certain programs. Section 6.2 then shifts this

focus to analysis performance, showing how changes to the KOOL language,

discussed in Chapter 3, can both make analysis faster and allow larger programs

to be analyzed. This chapter serves as a bridge between the earlier chapters,

which have focused on language semantics, and the later chapters, which focus

more directly on program analysis.

The definitions of syntax and semantics in this chapter are shown using

Maude syntax, instead of directly in K syntax. All equations and rules use the

K definitional style in Maude.

6.1 Execution Performance

Because of the executability of the semantic rules used in K definitions, changes

to the definitions of language features and the semantic configuration can have

a large impact on performance. One temptation is to modify features in the

language directly, trying a number of permutations to determine which perform

best. While this may be acceptable in certain circumstances, in other cases it

may lead to definitions of language features that either no longer really define the

feature correctly (for instance, by restricting behavior to improve performance,

at the cost of eliminating behaviors allowed by the language) or are too complex,

sacrificing simplicity and understandability for speed.

One promising direction is to change, not the rules defining the semantics of

language features, but those defining the surrounding configuration. Since the

configuration is seen as an abstraction inside the language rules, changes to the

configuration can occur without requiring changes to the semantics of language

103

Integer Numbers N ::= (+|-)?(0..9)
+

Declarations D ::= var I | var I[N]

Expressions E ::= N | E + E | E - E | E * E | E / E | E % E | - E |

E < E | E <= E | E > E | E >= E | E = E | E != E |

E and E | E or E | not E | N | I(El) | I[E] | I | read

Expression Lists El ::= E (, E)
∗

| nil

Statements S ::= I := E | I[E] := E | if E then S fi | if E then S else S fi |

for I := E to E do S od | while E do S od | S; S | D |

I(El) | return E | write E

Function Declarations FD ::= function I(Il) begin S end

Identifiers I ::= (a− zA− Z)(a− zA− Z0− 9)
∗

Identifier Lists Il ::= I (, I)
∗

| void

Programs Pgm ::= S? FD
+

Figure 6.1: Syntax for SILF

constructs. Beyond this, configurations are often reused between languages,

allowing improvements to be directly leveraged inside other definitions. This

section describes changes to two languages, SILF [86] and KOOL, both at the

level of the memory representation in the configuration. Section 6.1.1 shows the

first memory representation change, introducing a stacked memory model to

SILF; performance comparisons show the benefit of this model, while comparisons

with the prior version show that few changes to the semantics are needed. After

this, Section 6.1.2 shows the second change, the addition of a basic mark-sweep

garbage collector to KOOL, including discussions of performance and reusability.

6.1.1 SILF and Stacked Memory

SILF, the Simple Imperative Language with Functions, is a basic imperative

language with many core imperative features: functions, global variables, loops,

conditionals, and arrays. Programs are made up of a series of variable and

function declarations, with a designated function named main serving as the

entry point to the program. The syntax of SILF is shown in Figure 6.1, while a

sample program, which computes the factorial of 200 recursively, is shown in

function factorial(n)

begin

if n = 0 then

return 1

else

return n * factorial(n - 1)

fi

end

function main(void)

begin

write factorial(200)

end

Figure 6.2: Recursive Factorial, SILF

104

Figure 6.2.

The SILF Memory Model

In SILF, memory is allocated automatically for global and local variables and

arrays, including for the formal parameters used in function calls. Users are not

able to allocate additional storage with operations like new or function calls like

C’s malloc, and are not able to create pointers/references or capture variable

addresses. SILF includes a simple memory model, where memory is represented

as a set of Location × Value pairs, referred to as StoreCells; the entire set

is just called the Store 1. This, or something very similar, is the standard

model used in a number of languages defined using K or the computation-based

definitional style2:

sorts StoreCell Store .

subsort StoreCell < Store .

op [_,_] : Location Value -> StoreCell .

op nil : -> Store .

op __ : Store Store -> Store [assoc comm id: nil] .

The main advantage of this model is that memory operations are simple to

define; memory update and lookup can be performed just using matching within

the Store, as shown here for variable lookup:

eq k(exp(X) -> K) env(Env [X,L])

= k(lookupLoc(L) -> K) env(Env [X,L]) .

eq k(lookupLoc(L) -> K) store(Mem [L,V])

= k(val(V) -> K) store(Mem [L,V]) .

Here, exp(X) means there is an expression X, a variable name; matching

is used to find the location of X, L, in the current environment, a set of Name

× Location pairs. This triggers the lookup of location L using operation

lookupLoc. When this operation is processed, matching is performed against

the store, returning the value V stored at location L.

This model has a major disadvantage, though: old locations are never

removed from the store, even when they become unreachable, which happens

quite often (formals become unreachable after each function return, for instance).

As memory grows, it takes longer to match against the store, slowing execution

performance.

1In SILF, a StoreCell is actually called a <Location><Value>, which has an associated
<Location><Value>Set representing the Store. The terminology is changed here to make it
simpler to read and type.

2Newer definitions often use the built-in MAP module instead; this is used by KOOL, for
instance, as described in Section 6.1.2.

105

Stacked Memories

As mentioned above, it is not possible in SILF to dynamically allocate memory or

take the addresses of variables. This prevents addresses from escaping a function,

since there is no way to return a pointer to something inside the function; because

of this, it should be possible to discard all memory allocated for the function call

when the function returns3. A conceptually simple way to do this is to change

from a flat memory to a stack of memories, with the memory for the current

function on top and the global memory on the bottom. Memories can still be

treated as sets of StoreCells, but each set can be much smaller, containing just

the cells allocated in the current function, and each set can easily be discarded

simply by popping the stack at function return. Following this reasoning, the

memory model for SILF can be changed appropriately:

sort StackFrame Stack .

subsort StackFrame < Stack .

op [_,_] : Nat Store -> StackFrame .

op nil : -> Stack .

op _,_ : Stack Stack -> Stack [assoc id: nil] .

Here, each element of the stack is referred to by the name StackFrame, a fa-

miliar term meant to show the intuition behind the technique. Each StackFrame

is actually a pair, a Store and a natural number representing the first location

in the frame; attempts to access a lower numbered location need to check in

earlier frames, here the bottom frame, since SILF’s scoping only allows access to

local or global names and does not allow nested functions. These StackFrames

are assembled into Stacks, with the head of the list as the top element of the

stack and the last element of the list the global frame.

Location lookup is now slightly more involved:

op stackLookup : Location Stack -> Value .

op lvsLookup : Location Store -> Value .

eq k(lookupLoc(L) -> K) store(ST)

= k(val(stackLookup(L,ST)) -> K) store(ST) .

ceq stackLookup(loc(N),([Nb,Mem], ST))

= lvsLookup(loc(N),Mem)

if N >= Nb .

ceq stackLookup(loc(N),([Nb,Mem], ST, [Nb’,Mem’]))

= lvsLookup(loc(N),Mem’)

if N < Nb .

eq lvsLookup(L,([L,V] Mem)) = V .

3This seems restrictive, but is actually standard for stack-allocated memory in imperative
or object-oriented languages without address capture, such as Java or Pascal. Heap-allocated
memory could not be similarly discarded.

106

Standard (Flat) Memory Model Stacked Memory Model
Test Case Time (sec) Time (sec)
factorial 3.711 0.747
factorial2 1664.280 11.245
ifactorial 1.047 0.978
ifactorial2 43.861 15.441
fibonacci 29.014 1.939

qsort 111.623 15.374
ssort 21.557 14.657

Single 3.40 GHz Pentium 4, 2 GB RAM, OpenSuSE 10.2, kernel 2.6.18.8-0.7-default, Maude 2.3.

Times and rewrites per second averaged over three runs of each test.

Figure 6.3: SILF: Comparing Memory Model Performance

Now, location lookup just triggers stackLookup, which has two equations

representing the two cases mentioned above. If the location number N is at least

Nb, the smallest location in the stack, the location should be in the current stack

frame. If the location number is smaller than Nb, it must be the location of a

global variable, which should be in the frame at the bottom of the stack. Both

cases then use a helper, lvsLookup, to find location L inside the store in the

appropriate frame, using matching to find the matching StoreCell and retrieve

the value.

Evaluation

To evaluate the effectiveness of the stacked memory model versus the standard

flat memory model, seven test cases were executed in SILF under both models.

The test cases implemented several standard recursive and iterative algorithms,

with the intent being to not bias the tests in favor of either recursive or iterative

styles of programming. The test cases were:

• factorial, recursively calculating the factorial for 20, 40, ..., 180, 200;

• factorial2, same as factorial, but for 1 ... 200;

• ifactorial, an iterative version of factorial;

• ifactorial2, an iterative version of factorial2;

• fibonacci, a recursive algorithm computing the fibonacci numbers from 1

to 15;

• qsort, a quick sort of two arrays of 100 elements;

• ssort, a selection sort of two arrays of 100 elements.

In all cases, the total execution time, total number of rewrites, and rewrites per

second were recorded. The performance results are shown in Figures 6.3 and 6.4.

The results indicate that the stacked memory model provides improved

performance over the flat memory model in many different programs, including

all those tested here. Based on the total rewrites it is clear that the stacked

107

Standard (Flat) Memory Model Stacked Memory Model
Test Case Total Rewrites Rewrites/sec Total Rewrites Rewrites/sec
factorial 72158 20162 82173 135148
factorial2 1321592 792 1505902 135593
ifactorial 65755 71780 83520 99422
ifactorial2 1204799 27676 1530809 100048
fibonacci 221932 7699 248870 138150

qsort 835552 7511 1087874 72071
ssort 751352 35114 1047118 72304

Figure 6.4: SILF: Memory Model Rewrites

model in some sense does more work, which is needed to maintain the stack and

look up memory locations at different levels. It is also clear, though, that it does

the work much more quickly, shown in the Rewrites/sec column, illustrating the

benefit to matching performance of keeping the store small. The cost for making

the change is fairly low, as well, since changing to the stacked memory model

requires few changes to SILF. Beyond adding new sorts and operations to model

having stacks of memory frames, it was only necessary to change 6 existing SILF

equations – specifically, those equations already dealing with memory, or with

function calls and returns.

6.1.2 KOOL and Garbage Collection

The KOOL memory representation is structured similarly to the default repre-

sentation used by SILF, with two differences. First, instead of defining the store

explicitly, it is defined using the built-in MAP module. Second, instead of just

mapping locations to values, the stores maps locations to a sort ValueTuple,

which contains the value as one of its projections:

protecting MAP{Location,ValueTuple} *

(sort Map{Location,ValueTuple} to Store) .

op [_,_,_] : Value Nat Nat -> ValueTuple .

Lookups and updates then use the MAP-provided functionality, supplemented

with some additional operations for adding more than one mapping to the Store

at once and for extracting the value from the tuple.

Since KOOL is multi-threaded, memory accesses to shared locations can

compete. In work on analysis performance [92] described in Section 6.2, memory

was segregated into memory pools, with a shared pool for locations accessible

from multiple threads and a non-shared pool for locations accessible from only

one thread. Currently, this is represented instead as one memory pool, with the

first Nat flag in the ValueTuple indicating whether the location is shared. Based

on the setting of this flag, rules or equations are used to access or update values

in the store. The logic for location lookup is shown below; similar equations and

rules for location assignment are not shown. Here, L is a location in memory,

N and M are natural numbers, V is a value, Mem is the store, and CS, TS, and KS

108

represent other parts of the state that are not needed directly in the equations

and rules:

op llookup : Location -> ComputationItem .

op slookup : Location -> ComputationItem .

op isShared : Store Location -> Bool .

op getValue : Store Location -> Value .

eq isShared(_‘,_(L |-> [V,1,N], Mem), L) = true .

eq isShared(Mem, L) = false [owise] .

ceq getValue(Mem,L) = V if [V,N,M] := Mem[L] .

ceq threads(t(control(k(llookup(L) -> K) CS) TS) KS) mem(Mem)

= threads(t(control(k(val(getValue(Mem,L)) -> K) CS) TS) KS) mem(Mem)

if not isShared(Mem,L) .

ceq threads(t(control(k(llookup(L) -> K) CS) TS) KS) mem(Mem)

= threads(t(control(k(slookup(L) -> K) CS) TS) KS) mem(Mem)

if isShared(Mem,L) .

rl threads(t(control(k(slookup(L) -> K) CS) TS) KS) mem(Mem)

=> threads(t(control(k(val(getValue(Mem,L)) -> K) CS) TS) KS) mem(Mem) .

The first two equations define the isShared operation, which returns true

when L is marked as shared (i.e., accessible by multiple threads) in Mem. The

third defines getValue, used for extracting the value at location L from the value

tuple stored in Mem. Following these definitions, the remaining two equations and

one rule define the actual process of retrieving the value at location L from the

store. In the first equation, L is not shared, so the value can be retrieved from

Mem directly using getValue. In the second equation, L is shared; this causes

lookup to switch over to a shared lookup operation. The rule then defines this

shared lookup; the definition is identical to that for unshared locations, except

in this case a rule is used, indicating that this could represent a race condition.

This model shares the same disadvantage as the original SILF model – old

locations are never removed from the store, even when they become unreachable.

And, since KOOL is a pure object-oriented language (boxing is not used here),

locations become unreachable constantly. An expression such as 1 + 2 + 3 is

syntactic sugar for (1.+(2)).+(3). New objects are created for the numbers 1, 2,

3, 3 again, and 6, with all but the last just temporaries that immediately become

garbage. Unlike in SILF, a simple solution like stack frames cannot be used to

remove unreachable objects, since often references to objects will be returned as

method results. Without more sophisticated analysis, such as escape analysis

[158, 19], it must be assumed that any objects created in a method could escape,

meaning they cannot just be discarded on method exit.

Overall, the constant expansion of memory, the lack of obvious ways to

reduce the memory size, and the performance decrease related to using a larger

memory can make it difficult to run even some fairly small programs just using

109

the semantics-based interpreter. Since one of the goals of defining KOOL is to

allow for quick, easy experimentation with language features, a way to decrease

the memory size and increase performance, without having to change language

features in unwanted ways, is crucial.

Defining Garbage Collection

A solution common to object-oriented languages is to use garbage collection.

Garbage collection fits well with KOOL’s allocation model, which uses new

to create new objects but does not provide for explicit deallocation; it also

accommodates the regular use of intermediate objects, which often quickly

become garbage, in computations. If done properly, a GC-based solution also

has the advantage that it can be defined at the level of the KOOL configuration,

leaving the rules used to define language features unchanged.

The garbage collector defined below is a simple mark-sweep collector [104].

Mark-sweep collectors work by first finding a set of roots, which are references

into the store. All locations transitively reachable from the roots are marked as

being reachable (the marking phase); all unmarked locations are then removed

from memory (the sweeping phase). GC equations can be divided into language-

dependent equations, which need to be aware of language constructs, and

language-independent equations, which just work over the structure of the

memory and could be used in any language with the same Store definition.

Language-Independent Rules The rules to mark and sweep memory lo-

cations during collection are separated into four phases. In the first phase,

gcClearMem (seen in state item ingc), a flag on each memory location (the third

element of the ValueTuple) is set to 0. By default, then, all memory locations

are assumed to be unreachable at the start of collection. The state component

used to hold the memory is also renamed, from mem to gcmem. This has the

benefit of blocking other memory operations during collection without requiring

the other operations to even be aware of the collector:

op gcClearMem : -> GCState .

op unmarkAll : Store -> Store .

eq mem(Mem) ingc(gcClearMem)

= gcmem(unmarkAll(Mem)) ingc(gcMarkRoots) .

eq unmarkAll(_‘,_(L |-> [V,N,M], Mem))

= _‘,_((L |-> [V,N,0]), unmarkAll(Mem)) .

eq unmarkAll(Mem) = Mem [owise] .

In the second phase, gcMarkRoots, all locations directly referenced in com-

putation portions of the KOOL state (inside the computation and in the stacks,

110

for instance, but not in the memory) are found using KStateLocs, one of the

language-dependent portions of the collector. Each of these root locations, stored

in LS, is then marked by setting the third element of the ValueTuple at that

location to 1:

op gcMarkRoots : -> GCState .

op markLocsInSet : Store LocationSet -> Store .

op mark : Store Location -> Store .

ceq threads(KS) ingc(gcMarkRoots) gcmem(Mem)

= threads(KS) ingc(gcMarkTrans(LS)) gcmem(markLocsInSet(Mem,LS))

if LS := KStateLocs(KS) .

eq markLocsInSet(Mem, (L LS)) = markLocsInSet(mark(Mem,L), LS) .

eq markLocsInSet(Mem, emptyLS) = Mem .

eq mark(_‘,_(L |-> [V,N,M], Mem), L) = _‘,_(L |-> [V,N,1], Mem) .

Next, the third phase, gcMarkTrans, determines the locations reachable

transitively through the root locations. It works using both the iterate and

unmarkedOnly operations; the first determines the set of locations reachable in

one step from a given set of locations (if an object at location L holds references

to objects at locations L1 and L2, L1 and L2 would be reachable in one step,

but not any locations referenced by the objects at L1 or L2), while the second

filters this to only include locations that have not already been marked. At each

iteration the locations found are marked and the process continues from just

these newly-marked locations, ensuring that the traversal eventually terminates

when no new, unmarked locations are found:

op gcMarkTrans : LocationSet -> GCState .

op iterate : LocationSet Store -> LocationSet .

op unmarkedOnly : LocationSet Store -> LocationSet .

ceq threads(KS) ingc(gcMarkTrans(LS)) gcmem(Mem)

= threads(KS) ingc(gcMarkTrans(LS’)) gcmem(Mem’)

if LS’ := iterate(LS,Mem) /\ LS’ =/= emptyLS /\

Mem’ := markLocsInSet(Mem,LS’) .

eq threads(KS) ingc(gcMarkTrans(LS)) gcmem(Mem)

= threads(KS) ingc(gcSweep) gcmem(Mem) [owise] .

eq iterate(L LS, Mem)

= unmarkedOnly(ListToSet(valLocs(getValue(Mem,L))),Mem)

iterate(LS, Mem) .

eq iterate(emptyLS,Mem) = emptyLS .

Finally, the fourth phase, gcSweep, uses the removeUnmarked operation to

discard all memory locations not marked during the sweep performed in steps

111

two and three. It also moves the store back into mem, so other parts of the

semantics can again see the store:

op gcSweep : -> GCState .

eq ingc(gcSweep) gcmem(Mem)

= ingc(noGC(0)) mem(removeUnmarked(Mem)) .

Language-Dependent Equations Language-dependent equations are used

to gather the set of roots from the computation and any other parts of the

state (such as stacks) that may contain them. Traversal of the state is initiated

using KStateLocs, which returns a set of all locations found in a given state.

KStateLocs is defined inductively over the various state components, with other

operations specifically designed to deal with computations, computation items,

stacks, and other state components. Examples of the equations used to find the

locations inside the method stack and the computation are shown below:

op KStateLocs : KState -> LocationSet .

eq KStateLocs(mstack(MSTL) CS) = MStackLocs(MSTL) KStateLocs(CS) .

op MStackLocs : MStackTupleList -> LocationSet .

eq MStackLocs ([K,CS,Env,oref(L),Xc], MSTL)

= KLocs(K) KStateLocs(CS) ListToSet(envLocs(Env))

ListToSet(valLocs(oref(L))) MStackLocs(MSTL) .

eq MStackLocs(empty) = emptyLS .

op KLocs : Computation -> LocationSet .

eq KStateLocs(k(K) CS) = KLocs(K) KStateLocs(CS) .

eq KLocs(llookup(L) -> K) = L KLocs(K) .

KLocs deserves special comment, since it is the main operation that needs

to be modified to account for new language features. KLocs is defined for each

computation item in the language that may hold locations. This means that,

when new computation items which can contain locations are added, the collector

must be updated properly. A method of automatically transforming a theory

into one with garbage collection would eliminate this potential source of errors,

but has not yet been investigated.

Along with the equations used to find the roots, additional equations are used

to find any locations referenced by a value (for instance, the locations referenced

in the fields of an object). These equations are then used when finding the

set of locations reachable transitively from the root locations. In this case, it

was possible to reuse equations developed in earlier work [92] that were used to

find all locations reachable from a starting location so they could be marked as

shared.

Triggering Garbage Collection Garbage collection is triggered using the

triggerGC computation item:

112

op triggerGC : Nat -> ComputationItem .

This allows the language designer to decide how aggressive the collection

policy should be. Currently, triggerGC has been added to the three equations

in the memory operations that are used to allocate storage; no equations used

to define KOOL language features have been modified. The Nat included in

triggerGC contains the number of allocated locations. This is then used by the

collector to decide when to begin collecting:

ceq threads(t(control(k(triggerGC(N) -> K) CS) TS) KS) ingc(GC)

= threads(t(control(k(K) CS) TS) KS) ingc(GC)

if runningGC(GC) .

ceq threads(t(control(k(triggerGC(N) -> K) CS) TS) KS)

ingc(noGC(N’)) gccount(GN)

= threads(t(control(k(K) CS) TS) KS)

ingc(gcClearMem) gccount(s(GN))

if (N + N’) >= 1000 .

ceq threads(t(control(k(triggerGC(N) -> K) CS) TS) KS)

ingc(noGC(N’))

= threads(t(control(k(K) CS) TS) KS) ingc(noGC(N + N’))

if (N + N’) < 1000 .

The first equation just discards the trigger if the collector is already active.

The second initiates collection when 1000 or more allocations have occurred 4 –

N being the number of new allocations, N’ being the number already reported

with prior triggerGCs. The last equation increments the number of reported

allocations stored in noGC by the number of new allocations when the sum is

less than 1000.

Evaluation To evaluate the effectiveness of the garbage collector, five test

cases were executed in KOOL, both with the collector enabled and disabled.

Along with three numerical test cases, two test cases were added that were

designed to generate a large amount of garbage. The test cases were:

• factorial, recursively calculating the factorial for 20, 40, ..., 180, 200;

• ifactorial, an iterative version of factorial;

• fibonacci, a recursive algorithm computing the fibonacci numbers from 1

to 15;

41000 was chosen after some experimentation, but further experimentation could show that
a different number would be better. It may also be the case that there is no ideal number –
hence the prevalence of collectors with generational policies, with each generation collected at
different intervals.

113

GC Disabled GC Enabled
Test Case Time Final Store Size Time Final Store Size Collections
factorial 103.060 22193 119.987 300 22
ifactorial 97.100 21103 116.811 106 21
fibonacci 401.334 76915 399.785 935 76
addnums NA NA 516.023 946 93
garbage 259.500 32013 147.211 20 32

Single 3.40 GHz Pentium 4, 2 GB RAM, OpenSuSE 10.2, kernel 2.6.18.8-0.7-default, Maude 2.3.

Times averaged over three runs of each test. All times are in seconds.

Figure 6.5: KOOL: GC Performance

• addnums, which sums the numbers 1...100, 1...200, ..., 1...1000;

• garbage, which defines a class that holds an integer and then creates a

temporary object of this class (which quickly becomes garbage) for the

numbers 1...2000.

In all cases, the total execution time was recorded. Also recorded were the

final size of the store and (in the cases where garbage collection was enabled)

the number of collections that occurred. The performance results are shown in

Figure 6.5.

At this point, results are mixed. The factorial and ifactorial tests do

not appear to benefit from garbage collection – in both cases the collector slows

performance down, even though it obviously shrinks the size of the store. The

result for fibonacci shows little difference in execution time, although again

the store is much smaller. In these three test cases, the cost of collecting either

is higher than the benefit (factorial, ifactorial) or roughly equal to the

benefit (fibonacci). However, in the final two test cases, addnums and garbage,

garbage collection obviously helps. Without GC, addnums crashes; garbage

completes in both, but is much faster with collection enabled.

One goal in developing the collector is to be able to reuse it in other languages.

Based on the current design in KOOL, this should be straight-forward. The only

part of the collector that is language-specific is the operations and equations

used to determine the set of root locations. The other parts of the collector

definition are language-independent, and can be reused directly in any language

that uses a similar (computation-based) definitional style.

6.2 Analysis Performance

The ability to model check and search programs using language definitions in

rewriting logic is very closely tied to the performance of the definition. There

are two general classes of performance improvement: improvements that impact

execution speed, and improvements that impact analysis speed, which may even

slightly reduce typical execution speed. Two examples of improvements are

presented here, both of which have appeared in various forms in programming

114

languages but not, to our knowledge, in other rewriting logic language specifica-

tions. First, auto-boxing is introduced to the language. This allows operations

on scalar types, which are represented in KOOL as objects, to be performed

directly on the underlying values for many operations (standard arithmetic oper-

ations, for instance), while still allowing method calls to be used on an object

representation of the scalar where needed. Although mainly useful in dynamic

languages like KOOL, this technique can also be used to perform automatic

coercions between scalar and object types in statically-typed languages. Second,

memory is segregated into two pools, a shared and an unshared pool. Rules are

used when accessing or modifying memory in the shared pool, since these changes

could lead to data races, while equations are used for equivalent operations on

the unshared pool. This follows the intuition that changes to unshared memory

locations in a thread cannot cause races. This change may or may not improve

execution performance, but has a dramatic impact on analysis performance.

6.2.1 Auto-boxing

In KOOL, all values, including those typically represented as scalars in languages

like Java, are objects. This means that a number like 5 is represented as an

object, and an expression like 5 + 7 is represented as a method call. Primitive

operations are defined which extract the primitive values ”hidden” in the objects

(i.e. the actual number 5, versus the object that represents it), perform the

operation on these primitive values, and create a new object representing the

result. This provides a ”pure” object-oriented model, but requires additional

overhead, including additional accesses to memory to retrieve the primitive values

and create the new object for the result. Since memory accesses are modeled

as rules in the definition, this also increases model checking and search time by

increasing the number of states that need to be checked.

To improve performance, auto-boxing can be added to KOOL. This allows

values such as 5 to be represented as scalars – i.e. directly as the primitive

values. A number of operations can then be performed directly on the primitive

representation, without having to go through the additional steps described

above. For numbers, this includes arithmetic and logical operations, which

are some of the most common operations applied to these values. Operations

which cannot be performed directly can still be treated as message sends; the

scalar value is automatically converted to an object representing the same value,

which can then act as a message target to handle the method. Since boxing can

occur automatically, by default values, including those generated as the result of

primitive operations, are left un-boxed, in scalar form. This all happens behind

the scenes, allowing KOOL programs to remain unchanged.

An example of the rule changes to enable auto-boxing is found in Figure 6.6.

The first equation is without auto-boxing. Here, when a floating point number F

is encountered, a new floating point object of class Float is created to represent

115

eq k(exp(f(F)) -> K) = k(newPrimFloat(primFloat(F)) -> K) .
--

eq k(exp(f(F)) -> K) = k(val(fv(F)) -> K) .
eq k(val(fv(F),fv(F’)) -> toInvoke(n(’+)) -> K) = k(val(fv(F + F’)) -> K) .
eq k(val(fv(F),Vl) -> toInvoke(Xm) -> K) =

k(newPrimFloat(primFloat(F)) -> boxWList(Vl) -> toInvoke(Xm) -> K) [owise] .

Figure 6.6: Example Definition Changes, Auto-boxing

F using newPrimFloat. Any operations on this object, such as adding two floats,

will involve a message send. The next three rules are with auto-boxing enabled.

In the second equation, instead of creating a new object for F, we return a scalar

value. The third equation shows an example of an intercepted method call.

When a method is called, the target and all arguments are evaluated, with the

method name held in the toInvoke computation item. Here, + has been invoked

with a target and argument that both evaluate to scalar float values, so we will

use the built-in float + operation instead of requiring a method call. In the fourth

equation, the boxing step is shown – here, a method outside of those handled

directly on scalars has been called with the floating-point scalar value as the

target, in which case a new object will be created just like in the first equation

([owise] will ensure that we will try this as a last resort). Once created, the

new object, and the values being sent as arguments (held in boxWList), will be

used to perform a standard method call.

Auto-boxing has a significant impact on performance. Figure 6.8 shows the

updated figures for verification times with this change in place. Not only is

this faster than the solution without auto-boxing in all cases, but it is now also

possible to verify deadlock freedom for up to 5 philosophers, which was not

possible with the prior definition.

6.2.2 Memory Pools

Memory in the KOOL definition is represented using a single global store for

an entire program. This is fairly efficient for normal execution, but for model

checking and search this can be more expensive than needed. This is because all

interactions with the store must use rules, since multiple threads could compete

to access the same memory location at the same time. However, many memory

accesses don’t compete – for instance, when a new thread is started by spawning

a method call, the method’s instance variables are only seen by this new thread,

not by the thread that spawned it. What is needed, then, is a modification to the

definition that will allow rules to be used where they are needed – for memory

accesses that could compete – while allowing equations to be used for the rest.

To do this, memory in KOOL can be split into two pools: a shared memory

pool, containing all memory accessible by more than one thread at some point

during execution, and a non-shared memory pool, containing memory that is

known to be accessed by at most one thread. To add this to the definition,

an additional global state component is added to represent the shared memory

116

pool, and the appropriate rules are modified to perform memory operations

against the proper memory pool5. Correctly moving memory locations between

the pools does require care, however, since accidentally leaving memory in the

non-shared pool could cause errors during verification.

The strategy we take to move locations to the shared pool is a conservative

one: any memory location that could be accessed by more than one thread,

regardless of whether this actually happens during execution, will be moved into

the shared pool. There are two scenarios to consider. In the first, the spawn

statement executes a message send. In this scenario, locations accessible through

the message target (an object), as well as locations accessible through the actual

parameters of the call, are all moved into the shared pool. Note that accessible

here is transitive – an object passed as a parameter may contain references to

other objects, all of which could be reached through the containing object. In

many cases this will be more conservative than necessary; however, there are

many situations, such as multiple spawns of message sends on the same object,

and spawns of message sends on self, where this will be needed. The second

scenario is where the spawn statement is used to spawn a new thread containing

an arbitrary expression. Here, all locations accessible in the current environment

need to be moved to the shared pool, including those for instance variables

and those accessible through self. This covers all cases, including those with

message sends embedded in larger expressions (since the target is in scope, either

directly or through another object reference, it will be moved to the shared

pool).

This strategy leads to a specific style of programming that should improve

verification performance: message sends, not arbitrary expressions, should be

spawned, and needed information should be passed in the spawn statement to

the target, instead of set through setters or in the constructor. This is because

the object-level member variables will be shared, while instance variables and

formal parameters will not. This brings up a subtle but important distinction –

the objects referenced by the formal parameters will be shared, but not the pa-

rameters themselves, which are local to the method, meaning that no verification

performance penalty is paid until the code needs to ”look inside” the referenced

objects. Looking inside does not include retrieving a referenced object for use in

a lock acquisition statement (however, acquisition itself is a rule).

Figure 6.7 shows one of the two rules changed to support the memory pools

(the other, for assignment, is similar), as well as part of the location reassignment

logic. The first rule, which is the original lookup rule, retrieves a value V from

a location L in memory Mem. The location must exist, which accounts for the

condition – if L does not exist, looking up the current value with Mem[L] will

return undefined. CS and TS match the rest of the control and thread states,

5Note that, although this work follows the work on execution performance in this Chapter,
it actually was performed at an earlier point in time, and thus uses an older model, with
separate pools, instead of a model with a shared “bit” set on the memory location, as is
discussed in the work on garbage collection in Section 6.1

117

crl t(control(k(llookup(L) -> K) CS) TS) mem(Mem) =>
t(control(k(val(V) -> K) CS) TS) mem(Mem) if V := Mem[L] /\ V =/= undefined .

--
ceq t(control(k(llookup(L) -> K) CS) TS) mem(Mem) =

t(control(k(val(V) -> K) CS) TS) mem(Mem) if V := Mem[L] /\ V =/= undefined .

crl t(control(k(llookup(L) -> K) CS) TS) smem(Mem) =>
t(control(k(val(V) -> K) CS) TS) smem(Mem) if V := Mem[L] /\ V =/= undefined .

ceq t(control(k(reassign(L,Ll) -> K) CS) TS) mem(Mem) smem(SMem) =
t(control(k(reassign(Ll,Ll’) -> K) CS) TS) mem(unset(Mem,L)) smem(SMem[L <- V])

if V := Mem[L] /\ V =/= undefined /\ Ll’ := valLocs(V) .

ceq t(control(k(reassign(L,Ll) -> K) CS) TS) mem(Mem) smem(SMem) =
t(control(k(reassign(Ll) -> K) CS) TS) mem(Mem) smem(SMem)

if V := SMem[L] /\ V =/= undefined .

eq k(reassign(empty) -> K) = k(K) .

Figure 6.7: Example Definition Changes, Memory Pools

respectively. The second and third equation and rule replace this first to support

the shared and unshared memory pools. The second is now an equation, since

the memory under consideration is not shared. The third is a rule, since the

memory is shared. This shared pool is represented with a new part of the

state, smem. The last three equations represent the reassignment of memory

locations from the unshared to the shared pool, triggered on thread creation and

assignment to shared memory locations. In the first, the location L and its value

are in the unshared pool, and are moved to the shared pool. If the value is an

object, all locations it holds references to are also added to the list of locations

that must be processed. The second represents the case where the location is

already in the shared pool. In this case, nothing is done with the location. The

third equation applies only when all locations have been processed, indicating

we should continue with the computation (with K).

This strategy could be improved with additional bookkeeping. For instance,

no information on which threads share which locations is currently tracked. Track-

ing this information could potentially allow a finer-grained sharing mechanism,

and could also allow memory to be un-shared when threads terminate. However,

even with the current strategy, we still see some significant improvements in

verification performance. These can be seen in Figure 6.9. Note that, in every

Ph No Optimizations Auto-boxing
States Counter DeadFree States Counter DeadFree

2 61 0.645 NA 35 0.64 0.798
3 1747 0.723 NA 244 0.694 3.610
4 47737 1.132 NA 1857 1.074 40.279
5 NA 6.036 NA 14378 4.975 501.749
6 NA 68.332 NA 111679 49.076 NA
7 NA 895.366 NA 867888 555.791 NA
8 NA NA NA NA NA NA

Single 3.40 GHz Pentium 4, 2 GB RAM, OpenSuSE 10.1, kernel 2.6.16.27-0.6-smp, Maude 2.2.

Times in seconds, Ph is philosopher count, Counter is time to generate counter-example, DeadFree

is time to verify the program is deadlock free, state count based on Maude search results, NA

means the process either crashed or was abandoned after consuming most system memory.

Figure 6.8: Dining Philosophers Verification Times

118

Ph Auto-boxing Auto-boxing + Memory Pools
States Counter DeadFree States Counter DeadFree

2 35 0.64 0.798 7 0.621 0.670
3 244 0.694 3.610 30 0.637 1.287
4 1857 1.074 40.279 137 0.782 5.659
5 14378 4.975 501.749 634 1.629 34.415
6 111679 49.076 NA 2943 7.395 218.837
7 867888 555.791 NA 13670 47.428 1478.747
8 NA NA NA 63505 325.151 NA

Figure 6.9: Dining Philosophers Verification Times (2)

case, adding the shared pool increases performance, in many cases dramatically.

It also allows additional verification – checking for a counterexample works for 8

philosophers, and verifying deadlock freedom in the fixed solution can be done

for up to 7 philosophers.

119

Chapter 7

Policy Frameworks

Programs compute by manipulating explicit data, like integers, objects, functions,

or strings, a process captured by dynamic semantics techniques like those shown

in Chapters 3. and 4. However, program data may also have implicit properties

which cannot be represented in the underlying programming language. For

example, most languages have no way to indicate if a variable has been initialized,

or if a pointer is never null. Some languages leave types implicit, providing no

syntax to indicate types of variables or parameters.

Domain-specific examples are also common. A compelling example, commonly

used in scientific computing applications, is units of measurement, where program

values and variables are assumed to have specific units at specific points in

the program or along specific execution paths. An example from security is

information flow, where program data may have implicit security levels.

These implicit properties of program data give rise to implicit policies, or

rules about how this information can be manipulated. For instance, one may

require that variables be initialized on all paths before being read, or that only

non-null pointers can be assigned to other non-null pointers. Languages with

no explicit types generally still place type restrictions on operations such as

arithmetic, where only values representing numbers can be used. Programs that

use units of measurement must adhere to a number of rules, such as requiring

two operands in an addition or comparison operation to have the same unit, or

treating the result of a multiplication operation as having a unit equal to the

product of the units of the operands (e.g., given meter and second, the resulting

unit would be meter second). Applications concerned with information flow

need to ensure that computations do not violate security requirements.

Because these properties are hard to check by hand, a number of techniques

have been developed to make such implicit properties explicit and thus checkable

using program analysis techniques. For instance, attached types [131] have

been introduced in Eiffel to indicate when references can be null, while various

static analysis and type inference techniques have been applied to dynamically

typed languages such as Self [30, 6] to discover type information needed for

optimization.

Here, we focus on another common technique, the use of program annota-

tions, either given by “decorating” program constructs (types, variables, function

120

names, etc.) with type-like information (type annotations); or by including addi-

tional information in special language constructs (function preconditions, assert

statements, etc.) or special comments in the source code (code annotations).

Many systems that use annotations are designed with specific analysis domains in

mind; those that are more general often support either type or code annotations,

but not both, or provide limited capabilities to adapt to new domains. This chap-

ter presents a semantics-driven solution designed to overcome these limitations,

policy frameworks. A policy framework is built around a language front-end and

a core abstract rewriting logic or K semantics. The language semantics can be

purpose built for analysis, but is often built by modifying an existing static or

dynamic semantics of the language, abstracting concepts like value and modifying

semantic rules so they work appropriately for static analysis (for instance, if

the existing semantics defines standard execution behavior, the semantics used

for analysis would be modified to take both branches of a conditional, tracking

information along each).

Both the language front-end and the created core semantics are policy-generic,

treating type and code annotations as black boxes. Individual analysis domains,

such as units of measurement, then provide type and code annotations for the

domain, as well as giving an algebraic definition of the domain data. These

domains are both policy and, quite often, language generic, allowing them to

be reused across different policy frameworks. Finally, individual policies are

created as extensions to the policy framework, reusing inherited functionality,

importing specific analysis domains, extending the provided annotation systems,

and providing policy-specific semantics for language and annotation features.

Section 7.1 introduces analysis domains, providing examples both of domains

specific to a given programming language (like type systems) and more general

domains usable across multiple languages (like units of measurement). Section

7.2 then describes a policy frameworks for SILF, an imperative language also

Language

Semantics

Language Policy

Framework Core

Semantics

Domain1 Domain2 ... Domainn

Policy1 Policy2 ... Policyn

Figure 7.1: Multiple Polices in One Framework

121

Language1

Semantics

Language1 Policy

Framework Core

Semantics

Domain1

Policy1,1

Language2

Semantics

Language2 Policy

Framework Core

Semantics

Policy2,1

Figure 7.2: Domain Reuse Across Frameworks

used in Chapter 6. In Section 7.2, two policies for SILF are presented, one

for types (since SILF has no explicit types) and one for units of measurement.

This illustrates reuse within a single policy framework, with multiple policies

reusing the core framework functionality and inheriting multiple domains of

analysis, a concept illustrated graphically in Figure 7.1 (as mentioned earlier, the

policy framework core semantics may be based on an actual static or dynamic

semantics for the language, but this is optional, and there is currently no way

to automatically generate the policy semantics from an existing semantics).

This chapter presents only some of the highlights of the policy; the complete

specification for the SILF Policy Framework is provided online [88].

Looking forward, Chapter 8 will describe the C Policy Framework, or CPF,

illustrating that the policy frameworks concept can be applied to real, widely-

used languages. CPF will also support a policy for units of measurement using

the same analysis domain used for SILF. This illustrates the reuse of analysis

domains across policy frameworks, a concept illustrated graphically in Figure

7.2 (the same note applies here as applied in Figure 7.1).

7.1 Abstract Analysis Domains

Each analysis is based around an abstract analysis domain that indicates the

values manipulated by the analysis. One domain can be used across multiple

analysis policies and also across multiple policy frameworks. This section presents

two analysis domains. The first, for types, is specific to the SILF language,

providing a standard statically-checkable type system. The second, for units,

is reusable across languages, providing a domain whose values are units of

measurement. This domain is reused in Chapter 8 as part of the C Policy

Framework UNITS policy.

122

fmod TYPES is

including TYPE-ANNOTATION-HELPERS *

(sort PolicyExp to TypeExp, sort PolicyVal to Type) .

including SILF-HELPING-OPS *

(sort PolicyExp to TypeExp, sort PolicyVal to Type) .

sort BaseType .

subsort BaseType < Type .

ops $int $bool : -> BaseType .

op $notype : -> Type .

op $array : BaseType -> Type .

endfm

Figure 7.3: Types Domain in Maude, for SILF

7.1.1 Types

The core policy support, shared across all languages with a policy framework,

includes two sorts: PolicyVal and PolicyExp. These sorts represent generic

policy values – the abstract values manipulated by a policy – and policy expres-

sions, which are the logical formulae given in code annotations. Each policy

is expected to define the actual values and expressions usable in the policy by

adding operators which target these sorts.

Figure 7.3 shows the domain of types used in the SILF type checking policy, de-

fined in Maude. Two modules are imported: TYPE-ANNOTATION-HELPERS, which

provides operators for working with type annotations; and SILF-HELPING-OPS,

which provides operators for working with the SILF configuration. Both modules

map PolicyVal and PolicyExp to sort names more appropriate for the policy:

PolicyExp to TypeExp, PolicyVal to Type.

Using these imported sorts, several additional operators are defined. SILF

provides both integers and booleans. A new sort, BaseType, is created with

two constructors, $int and $bool, representing these basic types. BaseType

is a subsort of Type, allowing terms of sort BaseType to also be used as types

(i.e., as policy values). The type $notype is given to represent situations where

no type is given in a SILF program (for instance, on an unannotated variable

declaration) – this is needed because types are not required in the language

syntax. Finally, since SILF support arrays, a type for arrays, $array, is also

defined. $array takes a base type as a parameter, meaning it is possible to form

arrays of integers or booleans, but not of $notype or other array types.

7.1.2 Units of Measurement

Figure 7.4 shows the basic axiomatization of the units domain, used in the

units of measurement checking policies for both SILF and C. Like with the

types domain, shown above, the units domain renames sorts PolicyExp and

PolicyVal, given them names more appropriate to the domain: UnitExp and

Unit. A new sort, BaseUnit, is also introduced and made a subsort of Unit.

123

fmod UNITS is

protecting RAT .

including TYPE-ANNOTATION *

(sort PolicyExp to UnitExp, sort PolicyVal to Unit) .

sorts BaseUnit .

subsort BaseUnit < Unit .

ops $noUnit $fail $cons : -> BaseUnit .

op _^_ : BaseUnit Rat -> BaseUnit [prec 10] .

op __ : BaseUnit BaseUnit -> BaseUnit [assoc comm prec 15] .

op _^_ : Unit Rat -> Unit [ditto] .

op __ : Unit Unit -> Unit [ditto] .

op NUnit : Nat -> BaseUnit .

vars U U’ : Unit . vars N M : Rat .

eq U $noUnit = U .

eq U $fail = $fail .

eq U $cons = U .

eq $fail ^ N = $fail .

eq $noUnit ^ N = $noUnit .

eq $cons ^ N = $cons .

eq U ^ 0 = $noUnit .

eq U ^ 1 = U .

eq U U = U ^ 2 .

eq U (U ^ N) = U ^ (N + 1) .

eq (U ^ N) (U ^ M) = U ^ (N + M) .

eq (U U’) ^ N = (U ^ N) (U’ ^ N) .

eq (U ^ N) ^ M = U ^ (N * M) .

endfm

Figure 7.4: Units Domain

The rest of the module shown in Figure 7.4 defines a number of operators, used

to construct units, and equations, used to determine when two units are equal.

Several “pseudo-units” are defined as base units: $noUnit, $fail, and $cons.

$noUnit represents values with no assigned unit (for instance, loop counters

iterating through an array); $fail represents a unit error, and is used as the

result of an invalid computation; and $cons represents the unit of a constant,

allowing constants to be used in standard calculations without explicitly declaring

a unit. The next four operators define ways to build units: a unit (or base unit)

can be raised to a rational power, and the product of two units, represented

by placing the units together, is also a unit. Finally, the NUnit operator allows

for the creation of unique “fresh” units, providing a way to generate units in

situations where the actual unit is unknown, such as with unannotated function

parameters. The use of globally unique units cuts down on spurious warnings,

allowing operations like multiplication, which do not require the units to be the

same, to be performed safely even on unknown units.

The equations then are used to normalize units and determine when two

units are equal. For instance, eq (U ^ N) (U ^ M) = U ^ (N + M) states

that, given two units U ^ N and U ^ M, the product of these units is the same

as U ^ (N + M).

Figure 7.5 then shows a number of actual units, built on the unit axiomatiza-

124

fmod BASIC-UNITS is

protecting UNITS .

*** Length.

ops $meter $m : -> BaseUnit .

*** Mass.

ops $kilogram $kg : -> BaseUnit .

*** Time.

ops $second $s : -> BaseUnit .

*** Electric current.

ops $ampere $A : -> BaseUnit .

*** Thermodynamic temperature.

ops $kelvin $K : -> BaseUnit .

*** Amount of substance.

ops $mole $mol : -> BaseUnit .

*** Luminous intensity.

ops $candela $cd : -> BaseUnit .

endfm

fmod DERIVED-UNITS is

including BASIC-UNITS .

*** Frequency

ops $hertz $Hz : -> BaseUnit .

eq $hertz = $s ^ -1 .

*** Force

ops $newton $N : -> BaseUnit .

eq $newton = $m $kg $s ^ -2 .

*** Pressure, stress

ops $pascal $Pa : -> BaseUnit .

eq $pascal = $m ^ -1 $kg $s ^ -2 .

*** Magnetic flux density

ops $tesla $T : -> BaseUnit .

eq $tesla = $kg $s ^ -2 $A ^ -1 .

*** Catalytic activity

ops $katal $kat : -> BaseUnit .

eq $katal = $s ^ -1 $mol .

endfm

Figure 7.5: Units Domain, Part 2

tion given in Figure 7.4. Module BASIC-UNITS shows short and long forms of the

basic units for each of the seven base dimensions that make up the International

System of Units (SI) [5]. Equations, not shown, equate each form, allowing either

to be used in annotations. Module DERIVED-UNITS then shows several examples

of units derived from these base units, along with equations which equate each

derived unit with the actual base units the derived unit represents.

7.2 The SILF Policy Framework

The SILF language was introduced in Chapter 6, with the concrete syntax

shown in Figure 6.1. SILF provides a conceptually simple language in which to

introduce the concept of policy framework, with enough complexities (global

variables, function calls, arrays) to highlight challenges but without some of the

difficulties of a language like C (function pointers, pointer arithmetic, aliasing,

unions, etc).

7.2.1 Adding a Policy Framework to SILF

To create policies in SILF, the first step is to add the shared parts of a policy

framework: an annotation-generic front-end and a core semantics.

SILF Policy Framework Front-end

The front-end for the SILF Policy Framework (SILF-PF) is an extended version

of the existing SILF parser. Since SILF is a language that we have designed,

125

Declarations D ::= ... | var TI | var TI[N]

Statements S ::= ... | for I := E to E IVl do S od | while E IVl do S od |

assert(I): ann; | assume(I): ann;

Function Declarations FD ::= function TI(TIl) PPl begin S end

Typed Identifiers TI ::= I | tann I | tvar I

Typed Identifier Lists TIl ::= TI (, T I)
∗

| void

Invariants IV ::= inv(I): ann; | invariant(I): ann;

Invariant Lists IVl ::= IV ∗

PrePosts PP ::= pre(I): ann; | precond(I): ann; | post(I): ann; |

postcond(I): ann; | mod(I): ann; | modifies(I): ann;

PrePost Lists PPl ::= PP∗

Figure 7.6: Extended Policy Syntax for SILF

the language is extended directly to support policy frameworks, versus adding

policy annotations through comments given in program source. The original

syntax for SILF was given in Figure 6.1 in Chapter 6; Figure 7.6 shows just the

modifications to this syntax made to enable policy frameworks.

Type annotations are identifiers with a leading $, like $int or $meter, and

are represented in the BNF with tann. tvar represents a type variable, given

with similar syntax: $$, instead of just $, like $$X. These are added in the syntax

with Typed Identifiers, which also includes unannotated identifiers, and are then

allowed in the productions for both variable and function declarations.

Code annotations are added by extending the language with new constructs

for invariants on loops (for both while and for loops), assume and assert

statements, and, in function declarations, function contracts with preconditions,

postconditions, and modifies (which identifies the globals changed by a function).

The syntax for each of these is given in the BNF: PrePosts for function contracts

(with short and long forms for preconditions, postconditions, and modifies),

Invariants for loop invariants, and extensions to the statement syntax for assumes

and asserts. The code annotation. an arbitrary string, is itself represented with

ann, and is actually parsed by the policy.

Each code annotation includes a policy tag, identifying the policy associated

with the annotation language used in the annotation. This policy tag is just an

identifier, given using I, and is given before the annotation, like in pre(I).

SILF Core Policy Semantics

The core semantics includes the original SILF abstract syntax, extended with the

new type and code annotation constructs mentioned above, and the configuration

(i.e., K cells). The original dynamic semantics can be viewed as a special policy

which ignores the additional constructs, with evaluation over a concrete, versus

abstract, domain. Extensions for policies include modules providing: basic logical

connectives; pretty printing capabilities for generating error messages; support

for type annotation variables with limited forms of polymorphism; additional K

cells for analysis information; and operators for working with these extensions.

126

〈k〉 X := E
(X, E) y checkAssign(X, E)

...〈/k〉 (7.3)

〈k〉 X[E] := E′

(X, E, E′) y checkArrayAssign(X, E, E′)
...〈/k〉 (7.4)

〈k〉 if E then Dt St else Df Sf fi
E y checkIfGuard(E) y if (E, Dt y St y Env , Df y Sf y Env)

...〈/k〉

〈env〉Env〈/env〉 (7.5)

Figure 7.7: SILF Abstract Statement Semantics

K’s modularity allows new cells to be added without requiring changes to existing

rules, making it easy to extend the state with new analysis information, such as

line numbers (cell currLn), a copy of the environment current at function entry

(cell old), and error messages generated by the analysis (cell log).

Placeholders: In addition to the extensions mentioned above, each SILF

language feature is given a default generic semantics, which can then be extended

as needed by individual policies. In some cases this semantics just provides

support for part of a computation, expecting the policy to provide the other

rules. For instance, addition expressions use the following generic rule:

E + E′ → (E,E′) y plus(E + E′) (7.1)

This rule says that, to process an expression like E + E′, first evaluate E and

E′. To remember what to do with the results, the rule uses a new operator plus,

like what was described in Chapter 2. plus takes an expression, here the original

expression (E + E′), which is kept solely in case it is needed to help generate an

error message using a syntax pretty printer. In some other cases, the generic

semantics provides specific hooks that are to be given meaning by policies. The

rule for evaluating a number expression is:

N → defaultIntVal (7.2)

Different policies can then give different definitions for defaultIntVal, such as

$int for a types policy or $cons (for constant) for a units policy. All analysis

rules for handling standard SILF expressions (arithmetic, logical, and boolean

operations) use similar techniques, deferring decisions about correctness to the

actual policy.

Statement Handling: Statements in the policy framework for SILF are given

a generic semantics, again often with hooks to policy-specific functionality.

Figure 7.7 provides several examples of semantic rules for statements. Rule

(7.3) is the generic rule for assignments. To check an assignment, the semantics

127

function TX (TXs) PPl begin Dl Sl end (7.6)

checkRetType(TX) y checkSigTypes(TXs) y Dl y saveRetType(TX) y Sl y dropRetType
(7.7)

checkCall(TX ,TXs) y getRetTypeForCall(TX) (7.8)

checkRetType(TX) y checkSigTypes(TXs) y applyPM (PPl) y checkPoint y Dl y

saveRetType(TX) y savePostConds(PPl) y Sl y dropRetType y dropPostConds
(7.9)

checkAndBindCall(TX ,TXs) y checkPreConds(PPl) y applyHavoc(PPl) y

getRetValForCall(TX ,PPl) (7.10)

Figure 7.8: SILF Abstract Function Computations

first evaluates X and E. The computation item checkAssign then checks, in a

policy-specific manner, whether the value of E can be assigned to X, based on the

value of X. Rule (7.4) is similar, but also evaluates the array index expression,

and then uses computation item checkArrayAssign to ensure the assignment

meets all requirements for the policy. The final rule shown, Rule (7.5), shows the

generic semantics for a conditional. The conditional guard, E, is evaluated first;

the computation item checkIfGuard will then check the value in a policy-specific

manner. Next, computations are built into the if computation item for both

branches, ensuring that declarations and statements are both processed and that

the environment is reset to the environment active before the branch to properly

handle scoping.

Handling Functions: In the SILF dynamic semantics, a SILF program is

processed by storing a computation for each function in a function table, fenv,

and then invoking the main function’s computation (which can, in turn, invoke

other functions in the table). In the policy semantics, all functions should be

checked, which can be accomplished by invoking each in turn and evaluating

each using the policy semantics. Function calls should not actually result in a

transfer of control to another function. A second function table, ftenv, stores

information about the function which can instead be used to check each call site.

In summary, fenv and ftenv each have one entry per function; each entry in fenv

is run once for each function f , to analyze the function; this analysis will trigger

entries for each function f ′ in ftenv to be run once for each call to f ′ in f .

Figure 7.8 shows the abstract syntax for a function (in (7.6)) and the compu-

tations built for analysis that are stored as the function semantics in fenv and

ftenv. The function consists of a potentially type annotated function name (TX),

potentially type annotated function parameters (TXs), code annotations (PPl),

and then the function declarations (Dl) and statements (Sl). The computations

128

are placed in the k cell as part of the analysis step, running the function for

analysis, and referencing the parts of the function listed above (i.e., when a

computation references TXs, this is the TXs from the function). The first two

computations, the first present in fenv as the analysis semantics for the function,

the second present in ftenv for analyzing individual call sites, are for policies

without code annotations; the second two, involving the same cells, are for

policies with code annotations.

In the first computation (7.7), checkRetType checks the return type annota-

tions in a policy specific manner (the type checking policy defined below just

verifies an annotation is given, for instance). checkSigTypes does the same with

the formal parameters, while saveRetType retrieves the return type annotations

and saves them in the state, allowing them to be checked at any return statements

inside the function body. Dl, a declaration list, is evaluated to process any

local declarations in the function, while Sl is processed to evaluate the function

body. At the end of function processing, dropRetType removes the return type

annotations from the state.

The third computation (7.9) is very similar, with checkRetType, checkSig-

Types, saveRetType, and dropRetType all playing the same roles as in the first

computation. applyPM, given a list of code annotations PPl, is used to apply

the preconditions and modifies clauses for this policy. This occurs after type

annotations are checked but before any declarations are processed in the function.

Preconditions will assume facts given in their policy expressions, while modifies

will unlock any listed global variables (which are all locked on function entry)

so they can be changed inside the function. checkPoint will then capture the

current state as the old state, so it can be referenced in other annotations. Next,

savePostConds saves any postconditions in the state, similarly to how return type

annotations are saved; this way they can be referenced during the processing

of return statements, to ensure that, at function return, they hold. Finally,

dropPostConds removes saved postcondition information when function analysis

is done.

The second (7.8) and fourth (7.10) computations are much simpler. Both

assume that a list of policy values, representing actual arguments to the function

call, is provided. checkCall will then compare each provided value with the value

of the formal parameter, looking for errors. Additional checking is also performed,

such as verifying the correct number of arguments is given. checkAndBindCall is

similar, but it will also bind policy values to the formal parameters, since they

may be accessed in annotations. checkPreConds verifies that preconditions hold

at call sites, while applyHavoc will clear any globals mentioned in a modifies

clause, since the globals are assumed to hold a random value after the function

call. Finally, getRetTypeForCall and getRetValForCall both retrieve the return

value for the call, with the latter also taking any postconditions (with assignments

to @result, representing the return value of the function) into account.

129

i1 + i2 → i, if i is the sum of i1 and i2 (7.11)

($int , $int) y +(E)→ $int (7.12)

〈k〉 (t, t′) y +(E)
issueWarning(1,msg(E)) y $int

...〈/k〉, if t =/= $int or t′ =/= $int (7.13)

if true then Kt else Kf → Kt (7.14)

if false then Kt else Kf → Kf (7.15)

$bool y if(E,Kt ,Kf)→ Kt y Kf (7.16)

Figure 7.9: SILF TCHECK Policy Rules

7.2.2 Defining A Type Checking Policy for SILF

Using the generic framework defined above, and the types domain defined in

Section 7.1, the TCHECK policy adds types to SILF using type annotations, with

policy checking then equating to type checking.

Rules for the policy semantics, in conjunction with the types domain, define

the analysis. These rules generally following the dynamic semantics rules closely,

with the addition that error checking logic has been added to catch errors that,

dynamically, led to stuck states. For instance, Figure 7.9 shows the original

integer addition rule for the SILF dynamic semantics, Rule (7.11), as well as

two typing rules for addition. The first typing rule, Rule (7.12), indicates the

expected scenario: each operand is of type $int, with the entire operation also

of type $int. The second, Rule (7.13), is a type failure scenario; at least one

of the types is not $int, generating an error message (abstracted here as msg)

of severity 1 (an error) using issueWarning. This rule also returns $int as the

type, versus returning a special failure type, to prevent a cascade of messages

related to this one error (imagine this addition is part of a larger expression).

Almost all expression rules follow this same pattern, with a success case and one

or more failure cases generating appropriate error messages. For function calls,

the rules are more involved, providing definitions of the operations given as part

of the ftenv computation (for policies without annotations) shown in the core

policy semantics above.

The fourth, fifth, and sixth rules show part of the semantics of conditionals

in the original dynamic semantics and in TCHECK. Rules (7.14) and (7.15), part

of the dynamic semantics, choose either the then (Kt) or else (Kf) branch, based

on whether the condition is true or false. Rule (7.16), part of TCHECK, makes

sure the condition evaluates to a boolean (E, the original expression, in kept

in case it is needed for error messages); after this check, the then branch and

130

the else branch are both checked. Rules for other statements are very similar,

checking to ensure that arguments are of the correct type (for loops expect

integers as the index start and end, for instance) and then checking the body of

the statement.

Figure 7.10 shows an example run of the TCHECK policy. A program with

type errors is shown in the top portion of the figure, with the generated error

messages shown below. Policies define extensions to the default pretty printer

operations to print their own type annotations, such as $int in the second and

third error messages.

7.2.3 Defining a Units Policy for SILF

Again starting with the core semantics, the SILF-PF UNITS policy is designed

to check for unit safety in SILF programs. A program is considered unit safe

if it properly follows a number of unit rules, such as only adding values with

matching units. These rules are codified in the UNITS policy semantics. The

rules in UNITS use units as policy values, similarly to the way that TCHECK

used types. The domain of units was presented in Section 7.1.

In many cases units can be treated the same as types, with similar semantic

rules to those already shown for TCHECK. Figure 7.11 shows several UNITS

rules. The first, Rule (7.17), is for addition, where, if both units match, the

result is the same unit; Rule (7.18) is an error case for addition, where the units

don’t match and the second unit isn’t a constant (which can be converted to

any unit).

Rule (7.19) is a rule for multiplication, where the resulting unit is the product

of the operand units. The fourth rule, Rule (7.20), is a rule for less-than, similar

1 function $int f($int x)

2 begin

3 return x + 1;

4 end

5 function $int main(void)

6 begin

7 var $int x;

8 x := 3;

9 x := f(x);

10 x := f(x,x);

11 if x then write 1; else write 2; fi

12 if (x < 5) then write 1; else write false; fi

13 end

Type checking found errors:

ERROR on line 10: Type failure: too many

arguments provided in call to function f.

ERROR on line 11: Type failure: expression x

should have type $bool, but has type $int.

ERROR on line 12: Type failure: write expression

false has type $bool, expected type $int.

Figure 7.10: Type Checking using TCHECK

131

(u, u) y +(E)→ u (7.17)

〈k〉 (u, u′) y +(E)
issueWarning(1,msg(E)) y $fail

...〈/k〉, if u =/= u′ and u′ =/= $cons (7.18)

(u, u′) y ∗(E)→ uu′ (7.19)

(u, u) y< (E)→ $noUnit (7.20)

V y if(E,Kt ,Kf)→ Kt y Kf (7.21)

〈k〉(u, u′) y checkAssign(X, E)
·

...〈/k〉, if u == u′ or u′ == $cons (7.22)

〈k〉(u, u′) y checkAssign(X, E)
issueWarning(1,msg(X, E))

...〈/k〉, if u =/= u′ and u′ =/= $cons (7.23)

Figure 7.11: SILF UNITS Policy Rules

to addition but returning $noUnit, since booleans do not have associated units

(the error rule is similar to that for addition and is not shown).

Rules (7.21), (7.22), and (7.23) are rules for statements. Rule (7.21) handles

conditionals, and is similar to Rule (7.16) in the TCHECK policy, except there

is no need to check the value computed by the guard – any errors found in the

guard expression will have already been reported, and the guard is not expected

to have a specific unit (a more stringent requirement would be to enforce that

the guard has no unit, but that is not done here). Rules (7.22) and (7.23) then

show the regular and error cases for assignment. In Rule (7.22), the assignment

is safe if the value being assigned either has the same unit or is a constant; in

Rule (7.23), this condition does not hold, so an error message is issued.

An example run of a UNITS policy analysis is shown in Figure 7.12. Function

id returns whatever it is given, making it polymorphic on the input unit. The

errors on line 10 are standard arithmetic unit errors, while the error on line 13

is triggered by a conflict in the type of y and the postcondition of id.

Note that invariants have not come up in either policy. Up until now, they

have not been needed. If the units assigned to a variable can change over time,

for instance in each iteration of a loop, an invariant becomes essential. Since

invariants are used in CPF, their discussion is deferred until Chapter 8.

132

1 function id(x)

2 post(UNITS): @unit(@result) = @unit(x);

3 begin

4 return x;

5 end

6 function main(void)

7 begin

8 var $m x;

9 var $f y;

10 x := x + y;

11 x := id(x);

12 y := id(y);

13 y := id(x);

14 end

Unit errors found:

ERROR on line 10: Assigning incompatible unit

to explicitly annotated variable: x has

unit $meter,(x + y) has unit $fail

ERROR on line 10: Unit failure, attempting to

add incompatible units: (x + y),$meter,$feet

ERROR on line 13: Assigning incompatible unit

to explicitly annotated variable: y has

unit $feet, (id(x)) has unit $meter //

Figure 7.12: Unit Checking using UNITS

133

Chapter 8

The C Policy Framework

The C Policy Framework is an application of the Policy Frameworks concept,

described in Chapter 7, to the C language. Section 8.1 describes the CPF

frontend and annotation support, including a description of the process used to

inline annotations in C code and generate function-level analysis tasks. Examples

from the C abstract syntax used by CPF are then given in Section 8.2, while

Section 8.3 describes the K cells used in the CPF analysis configuration. The

policy-generic semantics are described in Section 8.4, with a special focus on the

analysis semantics given C statements. Two policies are then presented. The

first, the UNITS policy, is the CPF-equivalent of the UNITS policy for SILF

shown in Chapter 7, and is shown in Section 8.5. Section 8.6 then shows a

simple memory policy for guarding again null dereferences of C pointers. Finally,

Section 8.7 presents a discussion of some of the challenges and limitations of the

policy frameworks approach and the C Policy Framework.

8.1 CPF Frontend and Annotation Support

CPF supports both type and code annotations. Code annotations are provided

as comments added to the original C source. CPF annotations are differenti-

ated from standard comments with an @: /*@ for traditional “C-style” com-

ments, //@ for line comments. Supported annotations include: precondition

(pre), postcondition (post), and modifies (mod) in function headers; assume,

assert, and invariant in function bodies; and tinvariant (type invariant) on

structures and unions. Annotations also include the name of the policy, allowing

different annotations to be added for different policies; annotations with policy

ALL, or no policy, apply to all policies.

As a motivating example, Figure 8.1 shows an example of a simple function

1 #include <stdlib.h>

2 int * f(int x) {

3 int *p;

4 p = (int*)malloc(sizeof(int));

5 *p = x;

6 return p;

7 }

Figure 8.1: A Potential Pointer Error

134

1 double sqrt(double x);

2

3 double lb2kg(double w) {

4 return (10 * w / 22);

5 }

6

7 double e2s(double e, double w) {

8 return sqrt(2 * e / w);

9 }

10

11 int main() {

12 double pw = 5; double e = 2560;

13 double speed = e2s(e,lb2kg(pw));

14 }

Figure 8.2: Implicit Units

that allocates a new integer pointer, assigns it the value of x, and then returns

the pointer. Although the intention is that this function should return a non-null

pointer, there is no way to indicate this. In fact the function violates this intent,

since malloc may return a null pointer (also causing a potential error on line 5).

Another example is provided in Figure 8.2. This time the example is a

fragment of a scientific application manipulating values with associated units of

measurement. Without any direct way to represent the units, even with a short

code fragment it is not clear that this code is unit safe.

Figure 8.3, an annotated version of Figure 8.1, shows an example of a CPF

type annotation. Type annotations can be added wherever types are used in the

program: on variables, function headers, structure definitions, casts, etc. Here, a

$notnull annotation is added to the function type to indicate that the function

should always return a definitely not null pointer, a fact that can be used when

analyzing clients of this function.

Examples of CPF code annotations, including pre, post, and assume, are

shown in Figure 8.4, an annotated versions of the program fragment shown in

Figure 8.2. Type annotations are also used, since they can be mixed in the same

program. The figure shows examples of annotations (such as $kg and $lb) used

to identify the units associated with various program values.

Once the source code has been annotated, it is parsed to allow annotations

(in both styles) to be read and analysis tasks, one per function, to be generated.

Parsing takes place in two phases. First, a simple transformation is applied to

move annotations from comments or types into language syntax, producing a

1 #include <stdlib.h>

2 int * $notnull f(int x) {

3 int *p;

4 p = (int*)malloc(sizeof(int));

5 *p = x;

6 return p;

7 }

Figure 8.3: Adding Pointer Annotations

135

1 //@ post(UNITS): @unit(@result) ^ 2 = @unit(x)

2 //@ modifies: @nothing

3 double sqrt(double x);

4

5 //@ pre(UNITS): @unit(w) = $lb

6 //@ modifies: @nothing

7 double $kg lb2kg(double w) {

8 return (($kg) (10 * w / 22));

9 }

10

11 //@ post(UNITS): @unit(@result) ^ 2 = @unit(e) (@unit(w) ^ -1)

12 //@ modifies: @nothing

13 double e2s(double e, double w) {

14 return sqrt(2 * e / w);

15 }

16

17 int main() {

18 double $lb pw = 5; double e = 2560;

19 /*@ assume(UNITS): @unit(e) = $kg $m ^ 2 $s ^ -2 */

20 double speed = e2s(e, lb2kg(pw));

21 }

Figure 8.4: Unit Annotations

program using a CPF-extended C syntax that directly supports annotations.

The second phase takes this modified version of the source, preprocesses it

using a standard C preprocessor, then parses the preprocessed source using a

modified version of the CIL parser for C [154], generating an internal, AST-like

representation of the code. This internal representation knows about the CPF

extensions, but does not know about the policy-specific annotation languages

used in the annotations, allowing the parser to remain policy generic.

After parsing, two custom CIL passes prepare the code for policy analy-

sis. The first simplifies function call sites and return statements by moving

all computation before the call or return. The second replaces call sites with

CPF statements to enforce the annotation semantics: assert for precondi-

tions, assume for postconditions, and havoc, which assigns a random value,

for modifies. Annotations on function headers are moved to the start of the

function body, with preconditions becoming assumes and modifies becoming

unlocks, which allows formal parameters and globals, locked against changes by

default, to be modified. Postconditions become asserts at each return state-

ment. Individual analysis tasks for each function are then generated in a format

readable by Maude.

An example analysis task, for function e2s in Figure 8.4, is shown in Figure 8.5.

It starts with 5 declarations, including for formal parameters and temporaries

added by CIL; an empty unlock (because of an empty modifies clause); a

checkpoint to save the starting state; and then the function body, including a

call to sqrt (the location of the call is marked in case it is needed by the policy).

sqrt has no precondition; it has an empty modifies, leading to an empty

havoc, and its postcondition (see Figure 8.4) generates the assume. Finally,

136

1 #CPFLine 13 decl(double, did(nf(’e)))

2 decl(double, did(nf(’w)))

3 decl(double, did(n(’tmp)))

4 decl(double, did(nt(’__cil_tmp4)))

5 decl(double, did(nt(’__cil_tmp5))) {

6 #CPFLine 14 #CPFUnlock(n(’UNITS),@nothing);

7 #CPFLine 14 #CPFCheckpoint

8 #CPFLine 14 (nt(’__cil_tmp4) =

9 ((i(2) * nf(’e)) / nf(’w))) ;

10 #CPFLine 14 #CPFCall("sqrt")

11 #CPFLine 14 #CPFHavoc(n(’UNITS),@nothing);

12 #CPFLine 14 #CPFAssume(n(’UNITS),

13 unit(n(’tmp)) ^ 2 =

14 unit(nt(’__cil_tmp4))); {

15 #CPFLine 14 (nt(’__cil_tmp5) = n(’tmp)) ; {

16 #CPFLine 14 #CPFIAssert(n(’UNITS),

17 unit(crrnt(nt(’__cil_tmp5))) ^ 2 =

18 unit(nf(’e)) unit(nf(’w)) ^ -1);

19 #CPFLine 14 return nt(’__cil_tmp5) ;}}}

Figure 8.5: Generated Code for Analysis

an assert1 is inserted before the return, verifying that the unit of the value

to be returned matches the annotation given for the postcondition. #CPFLine

directives keep track of the current line, used in error messages.

Running CPF The general process used to process analysis tasks with CPF

is shown in Figure 8.6. First, an annotated source file is processed by the

annotation processor and parser; this process generates multiple analysis tasks,

one for each function defined in the source file. These analysis tasks, along

with the policy to be checked, are then handed to Maude; the core and policy

semantics are read first, with the analysis tasks, encoded as Maude terms, then

each evaluated. When this process terminates, the results generated by policy

checking are displayed to the user. Messages logged during analysis include a

number representing the severity of the message (i.e., 1 for error, 2 for warning,

etc.), and can be filtered appropriately, allowing a policy to define a severity for

1CPFIAssert, used here, is like a normal assert, but is executed in the starting environment
captured when the state is checkpointed. crrnt is then used to access the current, not the
starting, environment. Another option would be to make crrnt the default and instead provide
an operation like old to access the initial state.

Annotated C

Source

Annotation

Processor/

Parser

Maude

Policy

Checking

Results
Analysis

Tasks

Core

Framework

Semantics
Policy

Semantics

Figure 8.6: Framework Execution Model

137

1 op _+_ : Exp Exp -> Exp .

2 op if__else_ : Exp Stmt Stmt -> Stmt .

3 op return_; : Exp -> Stmt .

4 op assume_; : PolicyExp -> Stmt .

5 op @unit : Exp -> Unit .

Figure 8.7: CPF C Abstract Syntax

each issued warning.

8.2 Abstract Syntax

An extended abstract syntax of C is defined as part of the policy framework to

allow semantic rules and equations (hence referred to as just rules unless the

distinction is important) to be written over a syntax as close to native C syntax

as possible. Syntactic categories, such as expressions and statements, are defined

as sorts, with operations defined for each syntactic construct, generally using

mixfix notation, which allows a style of definition accessible to those familiar

with notations such as BNF. Syntactic constructs include abstract forms of

standard C language constructs and constructs added by CIL during analysis

task generation, including: new statements for assume and assert annotations;

representations of abstract values, such as the unit values shown in Figures 7.4

and 7.5; and syntax for expressions used inside annotations, such as the @unit

annotation shown in Figure 8.4. In addition, a number of “helper” operations

written to work with the abstract syntax have been defined, to perform tasks

such as checking whether an identifier represents a formal parameter or whether

a declaration of a variable is of a structure type.

Figure 8.7 shows several examples of the CPF C abstract syntax with the

extensions mentioned above. The first operation defines the + operator as

taking two expressions (one for each underscore) and yielding an expression; the

second and third similarly define the if (including an else clause) and return

statements. The fourth is for the assume statement, added to programs during

CIL processing to represent assume annotations. Finally, the fifth is the @unit

operation, part of the UNITS policy, used inside annotations to get or set the

unit associated with a C object (a memory region that can be read or written).

8.3 K Cells

CPF includes the definition of a generic computation used by the semantic

rules to keep track of information needed by or produced during analysis. A

number of individual K cells make up this computation, including: the abstract

computation, k; the current environment, env; the environment on function

entry, origenv, used in annotations generated for postconditions or where the

138

State

OutputSet

Env

Computation

out

k

Nat

nextloc

env

EnvSet

envs

Nat

currLn

Env

origenv

StructMap

GotoMapstructMap

gotoMap

Figure 8.8: Framework Configuration

annotation requests the old value of an expression; a set of all environments, envs,

the need for which is explained below; out, containing output messages generated

during policy checking; nextLoc, holding the next (abstract) memory location

to allocate; currLn, the current line number from the original source program;

structMap, containing definitions of all structures and unions used by the function

being analyzed; and gotoMap, used when processing goto statements to keep

track of jump destinations. Individual policies can extend this with information

needed by the policy semantics. Rules will then change the information in one or

more of these cells as analysis proceeds, such as by adding new mappings from

names to values in env or modifying the abstract computation in k. A graphical

representation of the CPF configuration is shown in Figure 8.8.

Environments CPF statements and expressions are each evaluated in the

context of an environment, the definition of which is shown in Figure 8.9. An

individual entry in the environment contains an identifier (set to a default

value for C objects that are not associated with a distinct identifier, such as

list->next->x), an abstract location, an abstract value, and EnvItem, which

is a set of additional environment information which can be extended to meet

the needs of a specific policy. The concept of Value is also policy-specific, and

can represent individual values or collections of values (lists, sets, etc.). These

individual entries are combined into a set to make up the program environment,

with operators and structural equations provided to retrieve the value at a

specific name or location.

CPF statements then each return a set of environments as a result of execution,

with each environment in the set being the result of execution along a distinct

control flow path (i.e., the branches of a conditional, the cases of a switch,

paths created using goto, etc.). Merging the different environments in the set

is then done in a policy-specific manner. For instance, some policies may want

to combine returned values, for instance by using ⊤ and ⊥ to represent over

or under-determined values; others may want to track a set of possible values,

139

creating this set based on the values in the different returned environments;

other policies may want to track the individual environments to track related

changes to different objects, potentially improving the precision of the analysis

at the cost of increased analysis time. CPF provides logic to evaluate statements

with sets of environments, stored in envs, by evaluating each statement in each

environment in the set, allowing a simplified per-statement semantics which

assumes that a statement is evaluated in just one environment at a time.

8.4 Abstract Evaluation Semantics

CPF includes a collection of semantic modules for reuse in specific policies. The

semantic modules provide: generic rules designed to manage the configuration

or provide often-needed functionality, such as rules to issue warning messages;

definitions of, and generic functionality for working with, expressions used in

annotations; rules for breaking up expressions into subexpressions and (at least

partially) evaluating them, with the rules used to combine evaluation results

specific to a policy (for instance, CPF rules break a plus expression into the left

and right operands, while rules in the UNITS policy determine if the resulting

values can be added together); default definitions of many C abstract values,

such as pointers and structures; and rules for C statements.

Simple Statements Some C statements, given one environment as input,

just yield one environment in return. This includes expression statements, null

statements (i.e., a lone ;), return statements, break, and continue. In many

policies, expression statements will be the source of most checks and potential

errors, since they include most assignments and calculations. The semantic rule

for expression statements is shown in Figure 8.10. To process each statement,

CPF pairs it with each environment from the environment set. Given this pair,

with statement E ; and environment Env, the rule evaluates expression E in

environment Env (Env is made current by putting it into the env cell), the value

it evaluates to is discarded as it is not needed by the analysis, and the current

environment, containing any changes made by E to the abstract values assigned

to C objects, is captured as the result of statement evaluation.

The return, break, and continue statements all cause abrupt changes in

control flow, but do not create multiple environments. This change in control

1 op noEnv : -> Env .

2 op __ : Env Env -> Env [assoc comm id: noEnv] .

3 op [_,_,_,_] : Identifier Location Value EnvItem -> Env .

4 op _[_] : Env Identifier -> Value .

5 op _[_] : Env Location -> Value .

6

7 (Env [X,_,V,_])[X] = V .

8 (Env [_,L,V,_])[L] = V .

Figure 8.9: CPF Environments

140

〈k〉 (E; ,Env)
E y discard y captureEnv

...〈/k〉 ·
〈env〉Env〈/env〉

(8.1)

Figure 8.10: CPF Expression Statement Semantics

〈k〉 (break;,Env)
lk(Env , ′break)

...〈/k〉 (8.2)

〈k〉 (return E;,Env)
E y discard y captureLockEnv(′return)

...〈/k〉 ·
〈env〉Env〈/env〉

(8.3)

〈k〉 switch(empty,Env)
envUnlock(′break, (Env |ES))

...〈/k〉 〈envs〉ES〈/envs〉
·

(8.4)

Figure 8.11: CPF Break and Return Semantics

flow is modeled using an environment lock: the environment is locked against

changes until it is unlocked by another semantic rule, such as (for break) the

end of a switch or while statement, or (for return) the end of the function

body. Figure 8.11 shows the semantics of break and return E, with the rules

for continue and return (with no expression) being almost identical. In Rule

(8.2), break causes the environment to be locked with label ’break using the

lk operation. In Rule (8.3), return E; first evaluates expression E, with the

resulting environment then captured and locked using the captureLockEnv

computation item. The final rule, Rule (8.4), shows an example of environment

unlocking: when a switch statement has no more cases, indicated using empty,

any environments locked with break are then unlocked, since they would again

be “active” after the switch, with this set of unlocked environments being the

result of the switch computation.

Complex Statements Other C statements, given one environment as input,

can generate multiple environments due to multiple branches and nested state-

ments. This includes conditionals, loops, the switch statement, and the goto

statement. Figure 8.12 shows the semantics of the conditional. In Rule (8.5), E

is evaluated, while S and S’, the branch bodies, are saved for later using the if

computation item. When E has been evaluated, in Rule (8.6) the then branch of

〈k〉 (if (E) S else S′, Env)
E y discard y if (S, S′)

...〈/k〉 ·
〈env〉Env〈/env〉

(8.5)

〈k〉 if (S, S′)
S y else(S′, Env)

...〈/k〉 〈env〉Env〈/env〉
·

·
〈envs〉Env〈/envs〉

(8.6)

〈k〉 else(S′, Env)
S′

y mergeEnvs(ES)
...〈/k〉 〈envs〉 ES

Env
〈/envs〉 (8.7)

Figure 8.12: CPF Conditional Semantics

141

〈k〉 while (E) S
while[E, S] y repeat(while[E, S], ES, 2)

...〈/k〉 〈envs〉ES〈/envs〉 (8.8)

〈k〉 (while[E, S], Env)
E y discard y while(S) y restoreTemps(Env)

...〈/k〉 ·
〈env〉Env〈/env〉

(8.9)

〈k〉 while(S)
S y putEnvSetInK (Env)

...〈/k〉 〈env〉Env〈/env〉
·

·
〈envs〉Env〈/envs〉

(8.10)

〈k〉repeat(while[E, S], ES, N)
·

...〈/k〉

〈envs〉 ES
envUnlock(′continue, envUnlock(′break, ES))

〈/envs〉 (8.11)

〈k〉 repeat(while[E, S], ES, s(N))
while[E, S] y repeat(while[E, S], ES|ES′), N)

...〈/k〉

〈envs〉 ES′

envUnlock(′continue(ES|ES′)
〈/envs〉 if ES 6= ES′ (8.12)

〈k〉repeat(while[E, S], ES, 0)
issueWarning(1, msg)

...〈/k〉

〈envs〉 ES′

envUnlock(′continue, envUnlock(′break, (ES|ES′)))
〈/envs〉 if ES 6= ES′ (8.13)

Figure 8.13: CPF Loop Semantics

the conditional is evaluated in the environment available after the evaluation of

E. This environment is also saved with the else branch in the else computation

item, since the else body will also be evaluated in this environment. Note that

the current environment is moved from the env to the envs cell; this is because

the statement-handling logic always starts in an environment set, executing

the statement in each environment. Once the then branch finishes the else

computation item will be evaluated using Rule (8.7); the set of environments,

ES, generated by the then branch is saved using the mergeEnvs computation

item, which will take the set of environments ES and the set generated by the

else branch and merge them as the overall result of executing the conditional.

The semantics of switch are similar, except there are an arbitrary number of

branches. Each branch will begin evaluation in the environment available after

the switch expression is evaluated, plus in any environments that “fall through”

from an earlier branch. This takes advantage of the environment locking capa-

bility described above; environments locked on ’break will not be used in later

branches, but will then be unlocked at the end of the switch.

Figure 8.13 shows the rules for the semantics of while (CIL changes all loops

to while loops). In Rule (8.8), the loop expression (E), loop body (S), and

current set of environments (ES) are all saved using the repeat computation

item, to be iterated twice (once for any initialization done in the loop body,

once to check convergence). Rule (8.9) then shows evaluation of the while[E,S]

statement, which evaluates E and then, in Rule (8.10), evaluates S in the resulting

environment (this environment is also saved, since it would be the loop result in

142

cases where E evaluates to 0 in an actual execution). The last three rules then

define how the loop is repeated. In Rule (8.11), the resulting set of environments

is the same as the starting set, meaning the loop converged, so the program

continues. In Rule (8.12), the environment sets differ; with at least one iteration

left, the loop is repeated using the old and new sets of environments (| is the

set formation operator), with any environments locked by a continue statement

unlocked. In Rule (8.13), there are no iterations left and the environment set

has not yet converged, so a warning is issued (with msg standing in for the

actual warning message), indicating that the analysis may not be sound due

to potential missing mappings to abstract values in the environment. This

handles common cases, where the loop values stabilize quickly (for instance,

where objects with one value are assigned another in the loop body, stabilizing

by the second iteration), without needing an actual loop invariant, while still

allowing programmers to add one using annotations in cases where it is needed.

The goto semantics make use of the gotoMap cell, a map from labels to

a tuple of information, including the computation from the point of the label

forwards, environments active at the time the label is jumped to or encountered

during evaluation, and environments that have already been checked. To evaluate

the goto, the set of environments active at each label are accumulated during

evaluation of the function body. At the end of the function, each entry in the

goto map, for each label, is checked to see if any active environments have not

yet been checked. If so, the semantics will “jump” to that part of the code and

evaluate it with the unchecked environments. Like the while loop, this will by

default be done at the most twice, with the values either stabilizing or diverging.

In the latter case, a similar warning is generated for the same reason. The rules

for the goto semantics can be found with all CPF rules in the downloadable

CPF semantics [87].

CPF-Specific and Other C Statements CPF adds several statements to

the C language used during analysis. This includes assert, assume, invariant,

and a number of directives used to provide additional information to the semantics,

such as #CPFLine for line numbers (used in error messages) and #CPFWarn for

warning messages generated by CIL, such as when CIL cannot determine which

function is being called through a function pointer. The semantics of assert,

assume, and invariant are at least partially left to each policy to define, since

the expressions used in each are defined as part of the annotation language

for the policy. Other C statements, not discussed above, include C statement

sequences, where each statement is evaluated in turn, using the environment

set resulting from evaluating the first statement as the input to evaluating the

second statement; and blocks, which are evaluated by evaluating the body of

the block. There is no need to model scope for blocks, since CIL moves all

declarations to the start of the function body, renaming variables if needed to

maintain scope.

143

8.5 The CPF UNITS Policy

The units of measurement policy, UNITS, is used to analyze programs for unit

safety violations, i.e. for C expressions that use units in unsafe ways, such as

adding two incompatible units. UNITS uses values from the abstract units

domain, defined in Figures 7.4 and 7.5, and uses an annotation language based

on the defaults provided with CPF, extended with an operator @unit, which sets

(for assume) or calculates (for assert) the unit assigned to an expression. Type

annotations allow all predefined units, including those with rational exponents,

to be used, and also allow type variables to be used to indicate relationships

among unknown units.

8.5.1 Unit Analysis

Analysis starts by generating one analysis task for each function, a process

discussed above in Section 8.1. Once these tasks have been generated, each is

checked using the CPF + UNITS semantics in Maude. Checking is accomplished

using abstract execution over the units domain, with expressions manipulating

values representing units, pointers, structures, etc. Statements are executed

similarly to a concrete semantics, except that all paths in branching statements

are taken, and looping statements are executed at most a fixed number of times.

Assertions and assumptions written in the CPF + UNITS assertion language

are also checked as the program is executed, using annotation language-specific

semantic rules. An important point here is that units used in these annotations

are not restricted just to ground terms; @unit(E) can be used to get the unit of

any C expression, and unit expressions can be put together in complex ways,

such as saying the unit of a variable, squared, is equal to the product of the

units of two other variables.

Declarations

The CPF + UNITS rules for handling declarations provide an initial abstract

representation of memory for the global variables, formal parameters, and local

variables of a function. Different allocators are used for each C object type,

properly structuring the memory for later use in abstract C statement and

expression execution. For instance, the allocator for scalars associates a unit

with the scalar, while the allocator for pointers associates a reference to a memory

location with the pointer. Structures and unions are represented as maps from

names to other locations, so a structure s with field x would be represented

as a map from x to the location holding the abstract value of x. Allocation is

recursive; structure allocation also allocates structure fields, while allocation

of arrays and pointers allocates the base type of the array or pointer as well.

Currently, unions are represented like structures. One challenging but common

case to represent is structures which contain pointers to other structures. It is

144

not possible to allocate the entire memory representation up front, since this

could be (in theory, at least) infinite. Pointers inside structures are instead

created with an allocation trigger, which will allocate the pointer’s target on

the first attempt to access it. This allows the memory representation to grow

sensibly, modeling just what is needed to perform the unit safety analysis.

Initial values are given to local variables using a combination of assertions

(from the annotations) and assignments. For instance, an assertion may indicate

that variable x has unit $meter; a declaration like int y = x; would then

associate $meter with y as well. Initial units for formal parameters and global

variables are based just on the function preconditions. If a precondition or

assignment does not indicate the initial unit of a variable, it is assigned a globally

unique unit, which will ensure it is used correctly in expressions (described below).

Once initial values have been assigned to formal and global parameters, a locking

process locks certain memory locations to make sure they cannot be changed in

ways that are not reflected in the annotations. For instance, it is not possible to

write a new unit through a pointer given as a formal parameter. This ensures

that changes visible outside the function but not included in the preconditions

and postconditions are prevented, allowing checking to be truly modular. It is

possible to override this locking behavior using the modifies clause, which will

ensure the proper behavior (setting modified memory to unknown values) for

callers.

Statements

During abstract execution, different units can be assigned to the same C object

on different execution paths through the function body. For instance, the code

example in Figure 8.14 assigns initial units to x and y before a conditional

statement, and then assigns new units in the true branch of the conditional (not

changing the units if the conditional is not entered). To model this path-sensitive

aspect of unit assignment, a set of environments is used, with each environment

in the set representing one distinct assignment of units to C objects. Statements

in CPF + UNITS are then treated as “environment transformers” which, when

given an environment, can generate a new environment set as a result. Starting

with the first statement in the function body, each statement is executed once

for each environment in the set; each such execution yields a new environment

set, with the union of these environment sets then taken as the overall result of

executing the statement. Executing each statement in a single environment at a

time allows the semantics to be simpler, with a closer relationship to a concrete

semantics of C.

Several statements in C represent just straight-line code. Executing these in

CPF + UNITS with one input environment yields a set with just one output

environment. These include expression statements, break statements, continue

statements, return statements, and the assert and assume statements added

145

int x,y,z; //@ assume: unit(x) = unit(y) = m

if (b) {

y = 3; //@ assume: unit(y) = f

x = y;

}

z = x + y;

Figure 8.14: Path-Sensitive Unit Assignment

to model the assert and assume annotations. Expressions can never “split”

the environment: any expressions that can do so (ternary operator, short-

circuit evaluation) are transformed first in CIL into equivalent expressions using

statements and temporaries. Other statements in C can cause environment

splitting in the CPF + UNITS semantics, where the statement can possibly

return a set of environments containing multiple distinct environments. These

include conditionals, loops (CIL transforms all loops into while loops, so for

and do-while loops do not need to be modeled), switch statements, and goto

statements. In these cases, given a single input environment, an environment set

of arbitrary size could be returned.

In the case of if and switch statements, the environments generated by

each branch are merged together at the end of the statement. For an if,

a set of environments can be generated for each branch, which could also

contain conditionals, loops, etc. For a switch, each case can generate a set of

environments; also, if there is a path through a case that does not break, the

environments generated along that path fall-through to the following case.

Loops and gotos require more complex handling. For both, the body of the

construct (in the case of a goto, the code after the target label) is analyzed

twice: the first pass discovers changes that can occur when first evaluating the

construct, while the second discovers changes that occur between iterations.

If convergence is not achieved, a warning message is printed, indicating that

there may be an error. In cases where units do not change, convergence occurs

immediately, and no error is reported. Loops repeat just the loop body and the

loop test. Gotos take advantage of the semantics approach used in the CPF,

where computations can be saved and restored. In standard language definitions,

this feature can be used to model language features such as continuations or

exceptions; here, it is used to save the computation from the point of the label,

which can then be replayed, with different environments, repeatedly.

Again looking at Figure 8.14, the use of environment sets adds some additional

expressive power. Here, since x and y are both changed in the same way on the

same path, when they are added and assigned to z CPF + UNITS can determine

that both either have unit m or unit f. If, instead of environment sets, sets of

units were assigned to x and y, both could be either m or f, and combinations

where x is one and y the other would yield a false positive. Unfortunately, there

is also a cost to this feature – certain pathological situations can cause the

146

1 int main(int argc, char* argv[]) {

2 int x; //@ assume(UNITS): @unit(x) = $m

3 int y; //@ assume(UNITS): @unit(y) = $m

4 int n = 0;

5 //@ invariant(UNITS): @unit(x) = @unit(y)

6 while (n < 10) {

7 x *= x;

8 y *= y;

9 }

10 y = x + y;

11 return 1;

12 }

Figure 8.15: Loop Invariants

environment set to expand exponentially, such as programs with deeply nested

chains of conditionals that modify units differently along each branch. This

rarely occurs, though, since while values change often in the concrete domain

they change rarely in the abstract domain – it is more common to assign a new

number to a variable than a new unit. Also, while our approach provides greater

flexibility and generality, it is possible to maintain a discipline that either treats

units as types, disallowing changes once a unit is assigned, or that otherwise

considers such cases to be unit failures, ensuring that at most one environment

is created and avoiding problems with environment set expansion (although

this can come at the cost of generating more false positives). In cases where

the set does grow, our approach is to set a high-water mark on the size of the

environment set; any time the size of the set goes beyond this mark, enough

environments are discarded to stay under it and an error message is generated,

indicating that the analysis results are unsound.

Loop Invariants

One way to attempt to force loop stabilization is to use a loop invariant. In

CPF, invariants work similarly to other systems with invariants: an invariant is

checked at the start of the loop to ensure it holds, and is then checked at the end

of the loop to ensure it is reestablished along all branches inside the loop. In the

UNITS policy, the invariant also assigns fresh units to any C objects mentioned

in the invariants. These are assigned after the loop exists, with assignment done

in such a way that equalities dictated by the invariant continue to hold.

Figure 8.15 provides a simple example of a loop with an invariant. Without

the invariant, the loop would fail to stabilize, as the units assigned to both x and

y change during each iteration. Given that both start with the same unit, the

invariant does hold: the unit of x is equal to the unit of y before the loop starts

and after each iteration. Once the loop completes, a new fresh unit is assigned

to y, since the final unit of y is unknown. The model the fact that the invariant

held at the end of the loop, the same unit is assigned to x. Because of this, the

assignment to y on line 10 is correct, even if the specific unit is unknown.

In the example in Figure 8.16, while the invariant is correct, it needs to

147

1 int main(int argc, char* argv[]) {

2 int x; //@ assume(UNITS): @unit(x) = $m

3 int y; //@ assume(UNITS): @unit(y) = $m

4 int z; //@ assume(UNITS): @unit(z) = $m

5 int n = 0;

6 //@ invariant(UNITS): @unit(x) = @unit(y)

7 while (n < 10) {

8 x *= x;

9 y *= y;

10 z *= z;

11 }

12 y = x + y;

13 return 1;

14 }

Figure 8.16: Loop Invariants, Incomplete Invariant

be strengthened to include z in order to allow the loop to stabilize, since z is

changed at each iteration. As is, an error is reported, indicating that the loop

does not stabilize and the remaining analysis may be unsound.

Expressions

To evaluate expressions in CPF + UNITS the semantic rules need to properly

modify, combine, and propagate abstract values representing units and C objects

(pointers, structures, etc). Expressions, along with assert statements, are also

the point where unit safety violations are discovered, so semantics for expressions

which can produce failures need to ensure that the failures are properly handled.

Figure 8.17 includes rules for a representative set of expressions, illustrating how

abstract values are propagated and failures are detected.

Rule (8.14) models the multiplication operation. Here, given two unit values

U and U’, the result is their product, U U’. Rules (8.15) and (8.16), for addition,

are structured similarly, but must also check that the combination of the units is

correct. This is done using compatible: if one unit is $cons, or both units match,

they are compatible, but otherwise they are not. Rule (8.15) represents the case

where the units are compatible and thus can be added, with the merge operation

deciding on the new unit to be returned (merge ensures that, if one unit is $cons,

that unit is not returned as the resulting value). Rule (8.16) represents the case

where the units are incompatible, which will generate an error message and yield

$fail are the resulting unit. Rule (8.17) shows how the greater-than relational

operation is handled, and is similar to the rules for addition: to compare two

values they must have the same unit. However, the returned unit is $noUnit,

since it doesn’t make sense to assign a unit to the result of the comparison.

Rule (8.18) is used for assignment. The lvalue evaluates to an lvp, or location-

value pair, with the location and current value of the object being assigned into.

The value of the right-hand expression is assigned over the current value to the

same location using assign. While this works for units, it also works for other

C entities, such as the representations for pointers and structures. Rule (8.19)

then shows the semantics of +=, which is a combination of the rules for + and

148

〈k〉U ∗ U ′

U U ′

...〈/k〉 (8.14)

〈k〉 U + U ′

merge(U, U ′)
...〈/k〉 if compatible(U, U ′) (8.15)

〈k〉 U + U ′

issueWarning(1,msg(+)) y $fail
...〈/k〉 if compatible(U, U ′) == false (8.16)

〈k〉U > U ′

$noUnit
...〈/k〉 if compatible(U, U ′) (8.17)

〈k〉 lvp(L, V) = V ′

V ′
y assign(L)

...〈/k〉 (8.18)

〈k〉 lvp(L, U)+ = U ′

merge(U, U ′) y assign(L)
...〈/k〉if compatible(U, U ′) (8.19)

〈k〉 ∗(ptr(L′))
llookup(L′)

...〈/k〉 (8.20)

〈k〉(struct(X′, (sfield(X, L′)))).X
llookup(L′)

...〈/k〉 (8.21)

Figure 8.17: Units Expression Rules, in C

assignment, performing both the compatability check and the assignment to

the location of the lvalue. In this case, the values should be units, since it is

necessary to compare them to verify the operation is safe (in general, for many

of these rules alternate rules are needed for pointers, to take account of pointer

arithmetic).

Finally, rules (8.20) and (8.21) show how some aspects of pointers and

structures are handled. A pointer is represented as a location – a pointer to

location L has the value ptr(L). On dereference, the location held in the pointer

is looked up to retrieve its value. A structure is represented as a tuple containing

the name of the structure type, a set of structure fields, and additional declaration

information not used in the rule. When field X is looked up in a structure using

dot notation, the location of X is retrieved and then looked up to bring back the

value.

8.5.2 Minimizing Annotations

Techniques similar to those used in the earlier work on C-UNITS [168] are used

to minimize the number of annotations needed in a program. This includes the

use of default “fresh” unit values, which provide default, incompatible units in

cases where no specific unit is enforced (addition of two fresh units would fail, for

instance); support for loops that stabilize quickly without the requirement to add

loop invariants; a rich annotation language which can be used to make complex

149

Total Time Average Per Function
Test LOC x100 x400 x4000 x100 x400 x4000

straight 25 6.39 23.00 229.80 0.06 0.06 0.06
ann 27 8.62 31.27 307.54 0.09 0.08 0.08

nosplit 69 12.71 46.08 467.89 0.13 0.12 0.12
split 69 27.40 106.55 1095.34 0.27 0.27 0.27

Times in seconds. All times averaged over three runs of each test. LOC (lines of code) are per

function, with 100, 400, or 4000 identical functions in a source file.

Figure 8.18: CPF + UNITS Performance

assumptions involving multiple C objects; the ability to use constants with

values of any unit; and the flow of units from values on assignment, allowing the

reuse of temporaries without the need to annotate the change. Other techniques,

involving improvements in the handling of common loop scenarios, are the subject

of future research.

8.5.3 Evaluation

Evaluation was performed using two sets of experiments. All tests were per-

formed on the same computer, a Pentium 4 3.40 GHz with 2 GB RAM running

Gentoo Linux and Maude 2.3. In the first, the focus was on performance,

ensuring that using a per-function analysis would scale well as desired. The

results are shown in Figure 8.18. Here, each test performs a series of numerical

calculations: straight includes straight-line code; ann includes the same code as

straight with a number of added unit annotations; nosplit includes a number

of nested conditionals that change units on variables uniformly, leaving just one

environment; and split includes nested conditionals that change variable units

non-uniformly in different branches, yielding eight different environments in

which statements will need to be evaluated. LOC gives the lines of code count,

derived using the CCCC tool [118], for each function, with the same function

repeated 100, 400, or 4000 times.

As shown in Figure 8.18, performance scales almost linearly: quadrupling

the number of functions to check roughly quadruples the total processing time.

Per-function processing time is small, making CPF + UNITS a realistic option

for checking individual functions during development, something not possible

in some other solutions (such as C-UNITS) that require the entire program

be checked at once. Splitting environments increases the execution time, but

not prohibitively: with eight environments, the time per function to process

split is roughly double, not eight times, that to process nosplit, which has

just one environment. Finally, processing annotations in the units annotation

language seems to add little overhead; annotations are treated as statements

during processing, so in some sense just add additional “hidden” lines of code.

The second set of experiments compares against some of the same exam-

150

Test Prep Time Check Time LOC # Fns # Anns # Errors FP
ex18.c 0.083 0.754 18 3 10 3 0
fe.c 0.113 0.796 19 2(3) 9 1 0

coil.c 0.113 59.870 299 4(3) 14 3 3
projectile.c 0.122 0.882 31 5(2) 16 0 0

projectile-bad.c 0.121 0.866 31 5(2) 16 1 0
big0.c 0.273 5.223 2705 1 0 0 0
big1.c 0.998 22.853 11705 1 0 0 0
big2.c 33.144 381.367 96611 1 0 0 0

Times in seconds. All times averaged over three runs of each test. Function count (# Fns)

includes annotated prototypes in parentheses. FP represents False Positives.

Figure 8.19: CPF + UNITS Unit Error Detection

ples used by Osprey [101] (a unit checker discussed in more detail in Chapter

9), some of which were originally from C-UNITS, with the results shown in

Figure 8.19. fe.c is an energy calculation; coil.c is part of an electrical in-

ductance calculator; projectile.c calculates the launch angle for a projectile;

and projectile-bad.c does the same, but with an intentionally-introduced

unit error. big0.c, big1.c, and big2.c include a repeated series of arithmetic

operations and are designed to test the size of function that CPF + UNITS can

handle, with big2.c included as an especially unrealistic example.

Overall, Figure 8.19 shows that the annotation burden is not heavy: as-

sumptions on variable declarations are sometimes needed, while preconditions

and postconditions are often needed, with the number of annotations needed

by Osprey being similar (although those used by Osprey are generally smaller).

big0.c, big1.c, and big2.c require no annotations, while coil.c requires 14,

including on function prototypes. fe.c requires 9 annotations, with ex18.c

requiring 10. The projectile.c example is particularly interesting: the use

of a more flexible annotation language allows a more general version of the

program to be checked than in Osprey (which cannot relate parameter and

return value units), maintaining unit polymorphism, while projectile-bad.c

includes an error not caught by Osprey, since the error involves using a variable

with a different unit (pounds versus kilograms) in the same dimension. Overall,

only 16 annotations are needed across 5 functions and 2 prototypes in both

projectile.c and projectile-bad.c. coil.c shows a disadvantage of the

CPF + UNITS approach: one of the goto statements never stabilizes, meaning

the units keep changing with each iteration. This raises an error in the program,

which in this case appears to be a false positive.

8.6 Case Study: Null Pointer Analysis

The use of explicit memory management in C provides for improved performance,

but at the cost of several common errors, including memory leaks, multiple frees,

and dangling pointers. This section presents a policy for dealing with another,

quite common potential problem, attempts to dereference pointers which may

point to null. This policy, NOTNULL, includes an annotation language for

151

Value V ::= $undefined | $defined V T

ValueType V T ::= $zero | $other | ptr L

Location L ::= $null | $notnull N

Figure 8.20: Not Null Policy: Policy Domain

specifying the “nullness” of pointers passed as function parameters and returned

as function results. The policy presented here is part of a larger policy, inspired

by the LCLint tool [49], that is currently under development.

The NOTNULL policy uses the default abstract values provided by CPF for

C objects such as pointers and structures. Scalars, which are not distinguished

by the policy, are all represented using a single abstract value, $scalar (an

exception is that 0 is recognized in some situations, since it serves as NULL in

C). For pointers that are null (i.e., that may be assigned null), a special memory

location, nullLoc, is used. Pointers that are not null (i.e., that must point to a

non-null memory location, albeit one that may contain garbage) point to actual,

non-null locations in the CPF C memory model. Two type annotations, $null

and $notnull, are provided to allow developers to encode this information,

with unannotated pointers considered $null. Annotation @nullity provides

additional support for stating or checking null properties of pointers and can be

used with logical connectives to form more complex expressions.

Given these abstract value and annotation definitions, the next step is to

define the policy semantics used during analysis. NOTNULL includes semantics

for expressions and for two kinds of statements: conditionals and loops. Also

included are semantics for pointer allocation, to ensure that null and notnull

pointers are initialized correctly. Some of the expression rules for pointer

dereferencing and assignment are shown in Figure 8.21. The dereferencing

〈k〉 ∗(ptr(L))
llookup(L)

...〈/k〉 if L 6= nullLoc (8.22)

〈k〉 ∗(ptr(nullLoc))
issueWarning(1, msg1,Env) y $fail

...〈/k〉 〈env〉Env〈/env〉 (8.23)

〈k〉 (ptr(nullLoc)) → X
issueWarning(1, msg2,Env) y $fail

...〈/k〉 〈env〉Env〈/env〉 (8.24)

assignAllowed(ptr(nullLoc), L, (Env[, L, , dsl(DSL) dcl(D)])) = false

if isPointerDeclarator(D) and DSLContainsTAnn(DSL)

and @cpf (N) := getDSLTAnn(DSL) and isNNNotNull(NN) (8.25)

Figure 8.21: Not Null Policy: Pointer Dereferencing and Assignment

152

int *p = NULL;

if (p) {

... *p = 5; ... /* Should not cause a warning */

}

p = 10; / Should cause a warning */

Figure 8.22: Not Null Policy: Avoiding False Positives

operator, *, is strict, causing E in *E to be evaluated using heating and cooling

rules. Once E is evaluated, one of Rules (8.22) and (8.23) could apply. Rule

(8.22) handles the case where E evaluates to a pointer to location L, where

L is not nullLoc; in this case, we then look up the value at location L using

operation llookup. Rule (8.23) handles the case where the program attempts

to dereference a null pointer, and yields an error, issued using issueWarning,

with msg1 standing in for the issued warning message. Rule (8.24) defines this

same rule for pointers to structures, where field X is being accessed using the

-> operator (like p->x). Both failure cases return a special $fail value, which

is then propagated through other expressions without causing additional error

messages to be generated. Finally, Rule (8.25) is used during assignment to

determine if an assignment is allowed. This rule represents the failure case: when

assigning a value that is a null pointer, if the location being assigned to (L) is

declared to be a pointer (isPointerDeclarator), and if the declaration includes

a type annotation (DSLContainsTAnn, for declaration specifier list contains

type annotation), and if that annotation is $notnull (isNNNotNull), reject the

assignment. This catches attempts to assign null pointers to objects annotated

as not null.

For declarations, the pointer allocation semantics take account of the an-

notations on the pointer declaration, allocating storage for pointers annotated

as $notnull and assigning ptr(nullLoc) to pointers either not annotated or

specifically annotated as $null. The statement semantics for conditionals and

loops are also specialized for NOTNULL, specifically to account for specific

checks against null in the conditional or loop expression. If the expression is a

check to ensure that a pointer is not null, we can assume that it is not null in

the then branch or loop body, but that it is null in the else branch, eliminating

common false positives. An example code fragment is shown in Figure 8.22.

Here, the assignment of 5 to *p should not cause a warning to be issued, since

the user explicitly checks that p is not null, while the assignment of 10 to *p

should still cause a warning.

To allow for this scenario, the conditional logic is overridden, with specific

checks for different expression “patterns” common in null checking – the use

of just the pointer, like in if(p), or the use of a comparison against NULL, like

if(p != NULL) or if(NULL != p). In both patterns, the conditional body will

only be entered when the pointer is not null, so it is possible to assume this at

153

#include <stdlib.h>

int f($notnull int *v) {

int x,*p;

int $notnull *q;

p = (int*)malloc(sizeof(int));

q = v;

q = p;

*p = 5;

if (NULL != p) {

*p = 10;

x = *p;

free(p);

}

return x;

Figure 8.23: NotNull Example

the start of the body. Similar logic works for loops and if statements with else

branches. Note that we should not try to do the opposite, and assume a known

not null pointer is null after a check like if(!p), since this could lead to a false

positive.

Figure 8.23 shows an example of using the NOTNULL policy, with Figure

8.24 showing the analysis results. Function f takes a single parameter, an integer

pointer declared to be $notnull, and then declares three variables, an integer

x, a (potentially null) integer pointer p, and a $notnull integer pointer q. p is

allocated on line 5 using a call to malloc; since malloc returns null when no

memory is available, p could still point to null. Line 6 shows a correct assignment,

of one $notnull pointer to another. Line 7 generates an error, though, since it

could set q to null. Line 8 also generates an error, since p may still be null when

it is dereferenced. Line 9 contains an explicit check to see if p is null; since the

body is only executed when p is not null, we can assume this at the start of the

body, which is why lines 10 and 11 do not generate error messages.

8.7 Discussion

Chapters 7 and 8 presented policy frameworks, including an extended description

of the C Policy Framework. This section discusses some of the limitations of this

work; a comparison with other related work is provided in Chapter 9.

First, while the analysis semantics used as part of the policy framework are

often based on an existing semantics of the language, there is no automatic way

to either generate the analysis semantics or verify that the analysis semantics are

ERROR on line 7(1): Attempting to assign possibly null pointer to another

pointer annotated as definitely not null.

ERROR on line 8(1): Attempt to dereference possibly null pointer.

Figure 8.24: NotNull Sample Run

154

correct with regards to either the static or dynamic semantics of the language.

Work on this, in the context of generating environments for program verification

based on a dynamic semantics of the language, is ongoing.

Second, currently the focus has been on reuse of definitions of language

features across multiple policies within a language, instead of across policy

frameworks for different languages. This is in contrast to analysis domains,

which are intended to be reusable both across languages and across different

policies. The work on the module system is designed to support language feature

modules for analysis semantics as well, so we believe that it will be easier to

construct the language-specific parts of a policy framework from reusable pieces.

However, this area still needs further work.

Third, while the use of Maude provides many advantages, it can be an

unfamiliar platform for developing analysis policies for many potential users,

both in terms of the semantic techniques being used and the underlying (rewrite-

based) platform. One potential solution is to develop a layer on top of Maude for

developing analysis rules, with an automatic translation into Maude generating

the analysis semantics. This would still require some knowledge of Maude in

cases where something does not work as expected, but could provide a friendlier

environment both for those that are defining policies and for those reviewing

the policies to understand the analysis being performed.

155

Chapter 9

Related Work

Programming language semantics has been an active area of research since at

least the 1960s, with a number of different formalisms, including supporting

tools and techniques, defined between then and now. The first section in this

chapter, Section 9.1, compares a number of these formalisms with K. To maintain

focus, the formalisms presented here have been selected based either on their

popularity, on being especially relevant to the design goals of K and the work

presented in this thesis, or both. We especially focus on modularity, one of the

motivations for K and a driver for much of the work outlined in prior chapters;

tool support is also discussed briefly, with short evaluations and comparisons of

a number of popular tools built to work with language definitions.

Section 9.2 then focuses on program analysis, especially in the context of

systems that use either type or code annotations. The exception to this is a

comparison between the CPF UNITS policy and units analyses devised in other

frameworks, including solutions that make use of annotations, APIs for unit

manipulation, and language features specifically targeted at units (or features

which can easily be retargeted towards units). This provides related work and

comparative information both for the concept of policy frameworks as a whole,

and for one specific instantiation of a policy framework, the CPF UNITS policy,

that has driven much of the work on policy frameworks.

9.1 Programming Language Semantics

A number of techniques for defining the semantics of a programming language

have been developed over the years. The two most popular styles of semantics

for defining language features (instead of for verifying properties of programs)

have been operational semantics and denotational semantics. Various specific

instances of these styles are discussed below, including: structural operational

semantics, natural semantics, modular structural operational semantics, the

Scott-Strachey style of denotational semantics, and monadic semantics.

Although operational and denotational styles have been the most popular,

other semantics techniques, such as action semantics, rewriting logic seman-

tics, and abstract state machines, have also been used to define programming

languages. These are also discussed further below, along with a new style of

156

semantic definition, component-based semantics, that provides a way of struc-

turing modular language definitions to improve the reuse of individual language

features.

For each form of semantics discussed in this section, an attempt has been made

to provide enough information to motivate the comparison with K and to provide

intuition as to where tool support would be most helpful. For those interested in

learning more about the techniques discussed here, specific references that provide

more detailed explanations are cited as part of the discussion. Good overviews,

covering multiple semantic techniques, can be found elsewhere [176, 145, 155],

including detailed comparisons between these methods and both rewriting logic

semantics [172] and K [167].

9.1.1 Rewriting Logic Semantics

Rewriting logic, introduced in Chapter 2, provides a powerful computational logic

for representing deterministic, nondeterministic, and concurrent computation. As

a reminder, theories in rewriting logic are represented as triples R = (Σ, E, R),

made up of a signature Σ, a set of equations E, and a set of rules R. The

signature defines both the sorts of data in the theory, such as natural numbers

and strings, as well as the operations over that data (e.g., integer multiplication,

string concatenation)1. The equations, in conjunction with the rules of deduction

for equational logic, indicate which terms constructed over the signature are

provably equal. Rules, in conjunction with the rules of deduction for rewriting

logic, then determine transitions between equivalence classes of provably equal

terms, providing a way to indicate computational steps that do not lead to equal

states – for instance, in concurrent systems where the final result of a computation

is dependent not just on the actions taken by the various concurrently executing

parts of a system but also on the order in which the different parts actually

execute (including systems where two or more parts can execute at the same

time).

By creating the appropriate sorts, operations, equations, and rules, it is

possible to use rewriting logic to define various well-known models of concur-

rency [125, Chapter 5], such as Petri nets [159, 127], CHAM’s [64], and CCS

[132, 197]. Beyond this, it is also possible to define the semantics of program-

ming languages, including both standard sequential features of the language

(conditionals, comparison expressions) and concurrency features (threads, fu-

tures, synchronization). This area, dubbed rewriting logic semantics (or RLS)

[128, 129], encompasses much of the work in this thesis, including the creation of

formal language definitions for language prototyping and the use of an abstract

language semantics to define program analyses.

While much of the work on defining realistic languages has been focused on K

and its precursor, computation-based or continuation-based semantics, rewriting

1Additional information, such as an order relation over sorts for order-sorted signatures,
may also be included in the signature; see Chapter 2 for more details.

157

logic semantics does not impose a specific definitional style. This has led to

a number of styles being developed over the years, including several based on

existing semantic formalisms, such as structural operational semantics or action

semantics. The remainder of this section focuses on these additional styles:

providing an overview of some related work, especially in areas relevant to the

other work on language semantics documented in this Chapter; discussing tool

support; and providing a comparison with the work on K.

Operational Semantics, Denotational Semantics, and the

Abstraction Dial

From the beginning [125], the connection of rewriting logic with operational

styles of language semantics, such as structural operational semantics (SOS)

[162] (described further below), has been recognized. Rules in an SOS definition

can be encoded naturally as conditional rules in rewriting logic. For instance, a

standard rule for addition in a language with state would be the following:

〈e1, ρ〉 → 〈e
′
1, ρ
′〉

〈e1 + e2, ρ〉 → 〈e
′
1 + e2, ρ

′〉
(EXP-PLUS-L)

Here, to add two numeric expressions, e1 and e2, one step of computation is

taken, changing e1 to e′1. e′1 could be a number, n, signifying that e1 has been

completely evaluated, or it could still be an expression with additional evaluation

steps remaining (for instance, if e1 is (2+(3+4)), one step of computation would

reduce this to (2 + 7)). Assuming the language being defined has side effects, ρ

changes to ρ′ to capture any changes to the state caused by the evaluation of e1.

The Maude version of this SOS rule would be:

crl < e1 + e2 , s > => < e1’ + e2 , s’ >

if < e1 , s > => < e1’ , s’ > .

Here, given the same initial expression, e1 + e2 is evaluated to e1’ + e2, with

s changing to s’ to capture any side effects caused by the evaluation of e1. One

difference between this rule and the SOS rule given above is that e1 can evaluate

directly to a number n even when the evaluation of e1 requires the application

of multiple steps in an SOS definition. Instead of needing to come back “to

the top” of the term being reduced each time, these additional steps can take

place inside the transition from < e1, s > to < e1’, s’ >. This is because

the rewrite relation is transitive, allowing multiple rewrite steps to be taken in

the transition from < e1, s > (it will be shown how this difference is remedied

below).

Rewriting logic also has a clear relationship with denotational semantics. By

encoding a sequential programming language as an equational theory (i.e., a

rewriting logic theory with no rewrite rules, R = (Σ, E, ∅)), such a language can

be given an algebraic denotational semantics [129], the preferred method being

158

through the use of initial algebra semantics [70]. In initial algebra semantics,

programs are represented as algebraic terms, which are members of (from Chapter

2) the term algebra TΣ. TΣ is initial in the class of all Σ-algebras, meaning there

is a unique homomorphism from TΣ to any other Σ-algebra. This homomorphism

can be seen as the meaning, or program evaluation, function, taking the syntax

of the program to its denotation, a value in one of the carriers of the target

algebra. In the case of equational logic, the denotation is actually an equivalence

class, made up of all terms which can be shown to be provably equal using the

stated axioms, given as equations, and the rules of equational deduction (given in

Chapter 2). For programs that terminate, the final value (i.e., 3) of the program

will be one of the terms contained in the equivalence class including the initial

program. A program is thus considered equivalent to its denotation.

For languages with nondeterminism, including concurrency, standard deno-

tational definitions use the concept of powerdomains [161, 177], which provide

a powerset-like construct for domains, capturing the fact that a program can

produce different answers based on differing underlying orders of execution. RLS

also supports a form of denotational semantics for languages with nondetermin-

ism using the initial model semantics of rewriting logic [125]. Given a rewriting

logic theory R = (Σ, E, R), the model of a program is given in the form of

a category. The objects of this category are members of TΣ/E , equivalence

classes of terms in TΣ formed using the equations E and the rules of equational

deduction. The morphisms of the category are also equivalence classes of terms,

but in this case proof terms based on the defined rewrite rules R, the rewriting

logic rules of logical deduction, and several additional axioms [125].

The fact that rewriting logic can naturally give both an operational and a

denotational semantics to the same language provides a way to unify both styles

of semantics within a single framework. One key to this is the ability to adjust

the level of abstractness of a language definition by using what has been termed

an abstraction dial [128, 129]. This dial works by adjusting the balance between

equations and rules in a language definition, with each program state defined as

an equivalence class of terms modulo the equations in the definition, and with

transitions between states defined using rules.

At one end of the dial, the highest, most abstract setting, the semantics of

a sequential language can be defined solely using equations. These equations

are generally confluent but, for most programming languages, not terminating,

since certain language features (infinite loops, recursive function calls, etc) may

cause programs to diverge. In this highly abstract semantics, a program P , all

configurations reached while evaluating P , and (for programs that terminate)

the final result of P are all part of the same equivalence class. As was discussed

above, this provides an algebraic denotational semantics for the language.

At the other end of the dial, the lowest, least abstract setting, it is possible

to provide a very concrete, fine-grained semantics by defining language features

159

solely with rules2. In this case, the individual computational steps defined by the

semantics lead to distinct configurations. This provides a traditional operational

view of the semantics, such as that given using structural operational semantics,

while still providing an initial model semantics for the language.

For most realistic languages, the proper setting is somewhere between the

two extremes. Most languages, such as Java, are mostly sequential, with many

of the language features definable using equations. However, most realistic

languages also have nondeterministic or concurrent language features, such as

thread synchronization or accesses to shared memory locations, which need to

be defined using rules.

This ability to turn the abstraction dial by adjusting the balance between

equations and rules can be leveraged to improve uses of the semantics. One

example is for program verification. Here, the semantics should be as abstract

as possible, reducing the size of the state space that then needs to be verified.

However, the semantics cannot be too abstract, since it is important to be

able to distinguish states which violate the properties being verified from those

that do not. Generally this leads to a definition like that mentioned above,

with the sequential features of a language defined using equations and the

nondeterministic or concurrent features of a language defined using rules. The

ability to distinguish different possible concurrent executions of a program then

provides a way to detect typical concurrency errors, such as deadlocks and

data races. An example showing the importance of the distinction between

rules and equations for verification was presented in Chapter 6 in the work on

shared memory pools for KOOL, where the ability to determine which memory

locations were local to a thread, with access modeled with equations, and which

memory locations where shared between threads, with access modeled using

rules, provided a significant decrease in the size of the state space, leading both

to faster verification times and to the ability to verify more complex programs.

Adjusting the abstraction dial also provides a method to model the computa-

tional granularity of a semantics. In a course-grained semantics, like the initial

algebra semantics, the initial program and the denotation of the program are

both in the same equivalence class, with the details of the computational steps

taken to reach the result of executing the program intentionally abstracted away.

In a fine-grained semantics, like a structural operational semantics, each step is

made intentionally distinct, providing a very concrete view of the computational

process used to reach a result. Adjusting the dial to intermediate settings pro-

vides a way to focus on specific parts of the semantics. One example was provided

above, with sequential features defined using equations and nondeterministic

features defined using rules. As a second example, one could provide a more

abstract definition of expressions, defining the semantics equationally, while

providing a more concrete semantics of control flow statements by defining them

2Even in this case, quite often auxiliary operations, such as those used to manipulate the
configuration, are still defined using equations.

160

with rules. This gives the language designer a clear way to indicate what is

meant by a computational step.

However, one challenge in this is that straightforward encodings into rewriting

logic of other styles of semantics, such as structural operational semantics, do

not necessarily maintain the same computational granularity as the original

languages definitions. This was shown above in the discussion of operational

semantics, where the single rule for addition expressions given in rewriting logic

could trigger multiple computational steps (because of transitivity) instead of

just the one step taken in the SOS version of the rule. With reflexivity, a

rewriting logic rule could also take no computational steps, again not matching

the one taken by an SOS rule.

Research in this area has shown that is it possible to match the computational

granularity of a number of operational styles, including structural operational

semantics [126, 23, 172], natural semantics [172], modular structural operational

semantics [126, 23, 172], and reduction semantics [172] (i.e., context reduction).

For SOS and MSOS, this can be done by using special operators to control

reduction, ensuring that only one step can be taken at a time. The first proposed

solution [126, 23] made use of three types of configurations, shown below 3:

op <_,_> : Program Record -> Conf [ctor] .

op {_,_} : [Program] [Record] -> [Conf] [ctor] .

op [_,_] : [Program] [Record] -> [Conf] [ctor] .

The first, <_,_>, is the standard SOS-like configuration, used in the example

above. A rule starting and ending in this type of configuration is then used to

perform each step:

crl [step] : < P, R > => < P’, R’ > if { P, R } => [P’, R’] .

In this rule, called step, a configuration containing a program P and a record

(state) R takes a step by first forming a new configuration with the same program

and record but with the second configuration operator, like { P, R }. The rules

in the semantics defining language features are then defined to use configurations

of this second form on the left hand side of the rule. When one of these rules

makes a computational step, the result is then stored inside a configuration

formed using the third configuration operator, like [P’, R’]. The step rule

makes use of the values stored in this third kind of configuration, placing them

back into a configuration of the first form as the result of the step. The rewriting

logic rule for evaluating the left operand in an addition expression, revised to

use this format, would be:

crl { e1 + e2 , s } => [e1’ + e2 , s’]

if { e1 , s } => [e1’ , s’] .

3The brackets around the sort names in the second and third operators indicate that these
operators works over kinds, instead of sorts, which can be seen here as error terms. The ctor

attribute indicates that these operators are constructors, used as building blocks to construct
the term being reduced.

161

The use of these three configuration operators allows the definition in rewrit-

ing logic to match the SOS definition by limiting the use of both transitivity

and reflexivity. With no rules defined to transition from configurations of the

form [P , R], transitivity is no longer an issue – additional rules cannot

automatically be applied. Also, since each step must go from a configuration of

the form { P , R } to a configuration of the form [P’ , R’], reflexivity is

no longer an issue – changing from the second to the third form of configuration

can only occur when a step of computation is taken in a rule.

A later solution to this same problem [172], instead of using different configura-

tion operators to control rewriting, uses an operator that applies to configurations,

defined as:

op ._ : Config -> Config .

This operator, when applied to a configuration, allows the configuration to take

one step. This provides some additional flexibility, since it is then possible to

indicate that multiple steps should be taken by using the operator more than

once. For instance, given configuration C, . . C would indicate that two steps

should be taken. The solutions are otherwise equivalent. The same rule for

addition as was shown above, using this operator, would be:

crl . < e1 + e2 , s > => < e1’ + e2 , s’ >

if . < e1 , s > => < e1’ , s’ > .

It is important to note that the use of rewriting logic does not eliminate

the limitations of these various styles of semantics, discussed further below.

For instance, encoding SOS using rewriting logic still enforces an interleaving

semantics on concurrent computations, while encoding natural semantics using

rewriting logic does not remove the limitations that natural semantics has in

representing nondeterministic or diverging computations.

Modular Language Definitions

One important point not addressed in the above-mentioned work on rewriting

logic semantics is modularity – the ability to define each feature once and for all,

isolating it from changes caused by other features and allowing it to be reused

in different contexts. Inspired by the work on modular structural operational

semantics, also designed to meet this challenge, a modular definitional style

for rewriting logic semantics was created [126, 23]. This style has several key

features which lead to modular definitions, features which have some overlap

with those provided by K.

The first key feature is the use of record inheritance. The program configura-

tion is represented as a pair containing the current program and the program

state, called Record:

op <_,_> : Program Record -> Conf .

162

Record is an extensible record structure made up of a number of Fields, each

of which includes an Index (the name of the field) and a Component (the data

stored in the field), and where each Index is unique4:

fmod RECORD is

sorts Index Component Field Record .

subsort Field < Record .

op null : -> Record .

op _,_ : Record Record -> Record [assoc comm id: null] .

op _:_ : Index Component -> Field .

endfm

Any rules or equations (hereafter just rules unless the distinction is important) in

the language semantics that reference the Record include an additional variable,

PR, representing any parts of the record not mentioned in the rule.

The definition of Record as a set of fields, and the inclusion of PR in rules

that mention the record, both allow for record extensions as new features are

added without requiring one to revisit the definitions of existing rules. This is

because the PR variable present in the rules will automatically match any fields

not mentioned explicitly; the only rules that need to mention the fields explicitly

are those rules that access or update the information in the fields.

The second key feature is the use of abstract interfaces. Any sorts used to

represent key syntactic or semantic entities, such as statements or environments,

are defined abstractly, with a well defined interface (of operations) but no

concrete instances. The language definition maps entities to these abstract sorts

either through subsorting, making the concrete sort a subsort of the abstract

sort, or through coercions, defining an operator taking the concrete sort into the

abstract sort. This provides the same advantages as interfaces in languages such

as Java: the other rules deal with entities at the level of the interface, making

no commitments to the concrete representation, which can then be tailored to

the needs of the definition.

The third key feature is the use of certain rule formats which maintain

modularity. Rules should be of the form:

〈f(t1, ..., tn), u〉 → 〈t′, u′〉 if C

where f is a language feature, u and u′ are record expressions (including the

variable PR for the unmentioned part of the record), and t1...tn and t′ are terms

used in the semantics. In these rules, u, u′, and C should only mention basic

record syntax and operations defined as part of the abstract interfaces discussed

above. This allows the concrete representations to continue changing without

4The definition of Record presented here is slightly simplified: the uniqueness of each Index

is enforced in the actual definition by making a distinction between PreRecords and Records,
and enforcing that only PreRecords with no duplicated Indexes are Records.

163

changing the rules, which would not be possible if rules mentioned the concrete

representations directly.

Using these techniques, a semantics-preserving translation from MSOS into

a modular rewriting logic semantics was defined [126]. This has been used in

the definition of a number of languages and in the creation of a tool for working

with MSOS definitions, the Maude MSOS tool [29]. This is discussed further

below with related work on MSOS.

Program Analysis and Verification

Along with definitions of the dynamic semantics of programming languages,

rewriting logic semantics has been used extensively for program analysis and

verification. One significant part of this work has involved the development of the

JavaFAN tool [51, 54]. JavaFAN includes two language definitions, one for the

Java language and one for Java bytecodes. It then leverages the tools provided

by Maude, including the breadth-first search capability and the LTL model

checker, to verify Java programs at both the source and bytecode levels. The

distinction between equations and rules is key for verification, since transitions

caused by features defined equationally do not increase the size of the state

space. By carefully choosing which features are defined using rules, and thus

keeping the state space as small as possible, JavaFAN achieved performance

competitive with purpose-build verification tools such as Java PathFinder [78].

Similar techniques have been used for some of the work described in this thesis,

including the work on improving the performance of model checking pure object

oriented languages [92] discussed in Chapter 6. Some additional work on reducing

the state space of concurrent systems defined using rewriting logic [52, 53] may

help to increase performance further, but it is not clear how easy it would be to

apply the techniques to K-style language definitions.

Another branch of the work on program analysis and verification has leveraged

techniques similar to those used in CPF, with analysis treated as program

execution over an abstract domain. A comparison of CPF with C-UNITS

[168], a tool developed using rewriting logic semantics for checking the unit (of

measurement) safety of C programs, is provided in Section 9.2.

Language Prototyping

The work on rewriting logic semantics has led to the definitions of a number of

other languages as rewriting logic theories. Included in this work are definitions

of: the ABEL hardware description language [106]; the BC calculator language

[23]; CCS [198, 23], a calculus for defining and reasoning about concurrent

systems; CIAO [182], the Calculus of Imperative Active Objects; Creol [102], an

experimental OO language for distributed objects; E-LOTOS [196], a specification

language; MSR [28, 180], a language for specifying cryptographic protocols; Orc

[10, 11], a language for the orchestration of distributed computations; PLAN

164

[181, 182], the Programming Language for Active Networks; PLEXIL [43, 164],

the Plan Execution Interchange Language, developed by NASA to support

autonomous spacecraft operations; and the π-calculus [186].

Along with definitions of languages, rewriting logic has provided an envi-

ronment for developing tools to work with definitions in different formalisms.

The Maude MSOS Tool [29] provides support for creating MSOS definitions

of language features which are then translated into rewriting logic; the Maude

Action Tool [40] provides similar support for definitions using action semantics.

Both of these tools are described further below in the sections on MSOS and

Action Semantics, respectively.

Some work, outside of that already mentioned above, has focused specifically

on the modularity of language definitions. For instance, work on defining Eden

[79], a parallel variant of Haskell, has focused on modularity in both the degree

of parallelism allowed and the scheduling algorithm chosen to select processes

for execution, allowing easy experimentation with these aspects of the language.

Comparison: As discussed above, rewriting logic semantics does not enforce a

particular definitional style, but instead supports a number of different styles,

including the continuation-based style that resulted in the development of K.

Because of this, comparisons on issues like the modularity of a definition or

the ability to support specific features must be based on the strengths and

weaknesses of the chosen formalism. For instance, a definition created using

an encoding of SOS into rewriting logic will have the same lack of modularity

as an SOS definition defined in another tool or on paper. Maude is used as

the underlying platform for the work discussed in this section, so ultimately K

(currently translated to Maude) and the other language definitions share the

same interpreter, breadth-first search, and model checking capabilities.

One area that does provide a point of comparison is modularity. One of

the motivations in the design of K was to improve the modularity of language

definitions. The work cited above on creating modular language definitions

[126, 23], introduced in 2004, takes a similar approach (referred to below as “the

RLS approach”) to that used in K, first used as part of the work on continuation-

based semantics in 2003 [166]. One distinction between the two approaches is

that, in the RLS approach, the current program is kept separate from the rest

of the program state, while in K it is just another state component, the k cell.

A second is that, in the RLS approach, the state is a flat record, while in K it is

often a hierarchy, with information grouped into different levels based on the

needs of the definition. While not explicitly disallowed in the RLS approach,

support for something similar to context transformers would be needed to allow

this hierarchical representation (to support changes in the hierarchy) while still

allowing language features to be defined once and for all. Finally, in the RLS

approach each state component can appear only once, while in K cells can be

repeated. The ability of K to nest configuration items, including the current

165

control context, inside other items, and to replicate configuration items, provides

a natural model for defining concurrent language features: each concurrent

thread of execution is in its own cell, with its own copy of state components such

as environments and locks held by the thread. The RLS approach seemingly

would require similar support to be added to define such features. A challenge

with both approaches is that modularity requires some discipline in the creation

of definitions, requiring either an experienced (with either K or RLS techniques)

language designer or careful planning.

Other differences between K and RLS can, for the purposes of this thesis, be

treated as mainly notational, with differences in the K notation then desugared

into standard RLS notation. Some of these features were added to handle

common language definition tasks that were often encountered while writing

RLS definitions in continuation-based style. One example is the use of the

contextual, K-style rules (and equations), where changes to a term are indicated

explicitly by underlining the parts of the term that change. One reason for this

notation was that it was often cumbersome to includes unchanged parts of the

term on both sides of the rule, with these unchanged parts often making up a

substantial part of the term, thus obscuring the important part of the rule – the

part of the term actually being changed.

Tool Support: Maude has been used as the main tool in the work on rewriting

logic semantics and K. A number of tools have been developed in Maude for

working with other styles of language definition, including the Maude MSOS

tool and the Maude Action Tool, both mentioned below. There is an ongoing

effort to create a Full Maude version of the K module system, similar to the

work on the Maude MSOS tool, as well as to extend support for working with K

definitions in Maude.

9.1.2 Operational Semantics

K takes an operational approach to defining programming languages, with rules

indicating transitions between configurations. This is the same approach taken

in two popular styles of operational semantics: structural operational semantics

[162], also referred to as small step semantics or transition semantics; and natural

semantics (NS) [105], also referred to as big step semantics.

In SOS, configurations include the program and, if needed, the program

state. The program state includes information such as the environment, the

store, definitions of classes and methods, etc. Semantic rules, of the form c
l
−→ c′,

are given to define the language semantics; c and c′ are configurations and l is an

optional label. The rules are defined to capture individual steps of computation,

such as a step of evaluation of a single operand in an arithmetic operation. As

an example, the rules for addition in a simple expression language without state

are shown below:

166

e1 → e′1

e1 + e2 → e′1 + e2

(EXP-PLUS-L)

e2 → e′2

n1 + e2 → n1 + e′2
(EXP-PLUS-R)

n1 + n2 → n, where n is the sum of n1 and n2 (EXP-PLUS)

Note that the left operand, e1, is evaluated first, until it evaluates to a number,

n1. Once e1 evaluates to n1, e2 is evaluated to n2, enforcing a left to right

order of evaluation. Once both operands have been fully evaluated their sum is

computed, yielding n, the sum of n1 and n2.

In natural semantics [105], configurations are similar to SOS configurations.

However, the rules, instead of capturing an individual computational step, are

designed to completely evaluate the language feature being defined. An equivalent

rule to the above, given for natural semantics, is shown below:

e1 ⇓ n1 e2 ⇓ n2 n = n1 + n2

e1 + e2 ⇓ n
(EXP-PLUS)

As in the SOS example, e1 evaluates to n1 and e2 evaluates to n2, with n then

calculated as the value of n1 + n2.

Comparison: SOS and NS both have several advantages over K. First, language

definitions given in either can be fairly mechanically turned into language

interpreters. This is especially true of NS, where the semantics can be represented

using recursive function calls and pattern matching. The natural model for K

interpreters, as term rewrite systems in Maude (or other systems that support

both associative and commutative matching), generally has slower performance,

which is one of the motivations behind still early work on generating high

performance interpreters and compilers from K definitions [86].

Second, SOS and NS both also tend to stay closer to the abstract syntax

of a language, providing a close mapping between syntax and semantics. K

definitions quite often introduce intermediate operations to represent different

steps of computation, which, if not done carefully, can make definitions harder

to understand. This has been remedied somewhat in K by using strictness

attributes, allowing a number of the rules used to evaluate individual operands

of a language construct to be generated automatically.

Third, although some work on using a K semantics as the basis for formal

proofs of both programs and programming language meta-theory has begun

[47, 170, 169], work on using operational techniques for these proofs is currently

more advanced, with a wider array of related work and techniques that can be

referenced by practitioners.

167

K also has several advantages over both SOS and NS. First, neither SOS nor

NS are modular, with changes to the configuration requiring changes to all rules

in the semantics, even those rules that just propagate the added configuration

items. For instance, if the simple expression language used in the SOS rules

shown above is extended with an environment to support the use of variables,

one would generally change the rules as follows:

〈e1, ρ〉 → 〈e
′
1, ρ〉

〈e1 + e2, ρ〉 → 〈e
′
1 + e2, ρ〉

(EXP-PLUS-L)

〈e2, ρ〉 → 〈e
′
2, ρ〉

〈n1 + e2, ρ〉 → 〈n1 + e′2, ρ〉
(EXP-PLUS-R)

〈n1 + n2, ρ〉 → 〈n, ρ〉 where n = n1 + n2 (EXP-PLUS)

Unfortunately, the rules are not changed just when going from a semantics with

no program state to one with program state. Instead, rules are continually

adapted to include new state components, even if these components are not used

in the rules (as they were not above). This makes it much harder to use SOS

or NS to give a semantics to large languages, where it would be advantageous

to build the semantics in pieces. It also makes both frameworks poor choices

for language prototyping or for developing reusable language feature definitions,

since both would require the rules to be adapted (maybe repeatedly) to match

changes to the configuration.

Second, K supports a richer model of concurrency than either SOS or NS. SOS

supports an interleaving semantics, where a concurrent execution is represented as

multiple sequential executions, each of which is one of the possible interleavings of

computational steps that could be taken by the concurrently-executing processes.

The model supported by NS is simpler: given that each rule in the semantics is

atomic, taking the language construct to its value in one “big step”, only one

of the concurrent paths is chosen, with interleaving not allowed (e.g., given a

number of threads, each thread would run to completion before the next could

start, with no communication between the two allowed except when one yields a

result that another then uses).

Some research has tried to work around this by adding a trace relation to

natural semantics [134]. This allows some concurrent features to be captured,

with a main thread that computes a value and worker threads that can com-

municate with the main thread asynchronously, influencing the final computed

value. However, this model is still limited: interleavings are lost, since only the

computed value is deemed important, not the process used to compute this value;

worker threads cannot communicate with one another; and it is still difficult

to represent situations such as divergence and deadlock (especially of the main

thread). Because of this, concurrent languages defined in natural semantics

168

“escape” to some other form of semantics when defining the concurrency fea-

tures [13, 187]. The author is unaware of any real concurrent languages defined

completely using natural semantics.

In contrast to both SOS and NS, K supports true concurrency [138, 137, 125],

which allows defining semantic rules where multiple concurrent processes take

computational steps at the same time. This provides a semantics closer to the

actual behavior of programming languages than an interleaving-based semantics,

especially with the increasing use of multi-core, parallel, and distributed systems

that have actual concurrency, instead of just systems where concurrency is

simulated (for instance, by thread scheduling).

Third, both SOS and NS have difficulty representing language features that

involve complex control flow. Features like exceptions generally require either

modifying the configuration or passing program values representing the control

flow event (like a thrown value), with special versions of rules needed to either

check this flag or propagate this event; some features, like continuations, have no

natural definition in either SOS or NS, but instead require defining the semantics

of both the language and at least part of the evaluation mechanism (i.e., defining

a runtime that supports continuations, versus defining the language directly).

This has led to the use of conventions in actual language definitions, such as those

used in the definition of Standard ML to handle exceptions [133]. By contrast,

these features can be modeled easily in K because of the explicit representation

of the current computation as a term, which allows computations to be stored,

restored later, or constructed as necessary.

Tool Support: A classic example of a semantics-based language environment

is Centaur [22], an ambitious project which allowed languages to be defined

formally, with the formal definition then used to generate a suite of graphical

language-support tools. Language semantics were defined using natural semantics

in a Prolog-like language named TYPOL; this TYPOL definition was then

converted into Prolog, allowing programs to be evaluated in the semantics using

logical reasoning. Centaur inherits the benefits and faults of natural semantics,

including the lack of modularity, making it difficult to create reusable definitions

of language features. One goal of our work on K is to create tools like those

provided by Centaur; the K tool support currently focuses on program execution

and analysis, instead of generating tools, such as editors and debuggers, which

would be useful for language designers and language users.

Two other tools used for operational definitions are LETOS [77] and RML

[160]. LETOS provides a lightweight language development environment for

operational semantics definitions in a literate style reminiscent of literate Haskell,

with LATEX formatted documentation and specially demarcated blocks contain-

ing language definition rules. These rules can be translated to allow program

execution in either Miranda or Haskell. LETOS can also be used for denota-

tional definitions, but with reduced functionality, mainly losing the ability to

169

visualize rule application. RML is focused mainly on compiling natural seman-

tics definitions to generate efficient implementations, but lacks features such

as visualization of rule application available in some other tools. Both tools

again inherit the limitations of their formalisms, but both also provide an ability

currently lacking in K: the ability to generate interpreters in languages which

can then be compiled for performance.

The Ott system [173] is described as a meta-language and tool designed

to support the “working semanticist”. The meta-language allows definitions

of languages to be specified as inductive relations, with special support for

binding and substitution. Tool support includes the ability to include LATEX

documentation in definitions, check definitions to ensure they are consistent (in

the words of the authors, to “sanity-check” the definitions), and generate language

definitions and proof tasks for a number of commonly-used theorem provers: Coq,

HOL, Isabelle, and Twelf. Ott has been used to define a handful of languages

and language calculi, including a significant subset of OCaml and the Lightweight

Java Module System [185]. Ott’s strongest aspect is its focus on theorem proving;

the lack of executability, and the reliance on non-modular language definition

techniques, would make it difficult to use as a language design environment

and would make it hard to reuse parts of language definitions, something that

could be quite useful in a theorem proving context. With these limitations, it

is unclear how easy it will be to define an entire language in Ott or to extend

existing language definitions as languages evolve over time.

Reduction Semantics

Reduction semantics [57] was designed to provide better support for defining

control-intensive features in (especially imperative, but also functional) program-

ming languages [56]. This is done by defining reduction contexts, which are

places in a program where computation can occur; and reduction rules, which

determine steps of program evaluation. Support for control-intensive features is

provided by allowing the rules to access not just the part of the program inside

the reduction context “hole” (i.e., the redex), but also the surrounding context

of the computation, which can be saved, modified, or replaced as needed. The

ability to manipulate the computational context, and the focus on reducing terms

in a context, gives rise to two other common names for this style of semantics:

context reduction, and context-sensitive term rewriting.

Comparison: Context reduction maintains some of the same advantages of SOS

over K, such as the close relationship between the syntax and semantics, while

also providing improved support for defining control-intensive features. Work on

using context reduction for language meta-theory proofs, such as proofs of type

soundness, is also more advanced [207] than the equivalent research using K [47].

Finally, the ability to abstract the context in which a rule applies provides some

170

of the same modularity benefits as the use of matching over multisets in K or

the use of labeled configuration items in MSOS (discussed below), insulating

rules from changes not related to the referenced parts of the configuration.

At the same time, context reduction also has some limitations, both compared

to other operational styles and to K. First, the execution model for context

reduction definitions is quite complex, with the system needing to find a redex

at each step, requiring the entire term tree to be searched. Certain techniques,

such as refocusing [39], help to alleviate this, but only work in restricted cases.

For instance, refocusing requires that the unique decomposition property holds,

which states that any non-value term t can be uniquely decomposed as t = C[r],

where C is the context and r is a potential redex. However, this property only

holds in deterministic languages, since it states that there is only one part of

the program that can be evaluated (i.e., run) at any one point in time.

Second, reduction semantics only supports an interleaving semantics for

defining concurrent language features, giving it a more limited concurrency

model than the true concurrency model supported by K and rewriting logic.

Finally, although the representation of context provides some modularity, changes

in context, such as adding new context “groupings” to represent threads, would

still require changes to rules that referenced the prior context layout. This limits

the ability to reuse defined language features and to extend existing languages

with new language features, operations directly supported using the modularity

features (context transformers, the module system) of K.

Tool Support: PLT-Redex [123] is a graphical environment, built on top of

PLT-Scheme and the DrScheme interface, that allows for the development of

language definitions using context reduction. PLT-Redex includes several useful

features which have served as an inspiration as we have designed tool support

for K, including the ability to visualize reduction steps graphically, design test

suites for semantic features, and generate some forms of documentation for the

semantics.

However, PLT-Redex does have some limitations which could make it difficult

to develop and experiment with large language definitions. One important

limitation is performance: language definitions run very slowly, and often have

a large resource footprint. This can make running even small programs very

time consuming. Part of this is due to the lack of definitional constructs, like

sets, commonly used in K definitions (all lookups become list lookups in PLT-

Redex). Another is that language definitions make use of Scheme, requiring an

understanding of the Scheme semantics to get a full, formal understanding of

the semantics being defined, a problem similar to that mentioned below with

semantics-based interpreters5. On the other hand, PLT-Redex has found a

5PLT-Redex could actually be considered to be a semantics-based interpreter, but, since it
provides a number of constructs for language definition that sit on top of Scheme, it is useful
to look at it separately.

171

number of applications in language design, spawning a local workshop and a

book [55] with a number of case studies.

Modular Structural Operational Semantics

Although SOS definitions have many benefits, one of the key problems, mentioned

above, is that the definitions are not modular, making it difficult to initially

construct and then maintain definitions of realistic programming languages. One

attempt to solve this problem is Modular Structural Operational Semantics

[144, 146], or MSOS. The key difference between MSOS and SOS is in the

use of labels on rules. In SOS, labels are generally not used in definitions of

programming language features, but are instead used for giving semantics to

other systems, such as process calculi. This has been exploited in MSOS [147]

by using the rarely used labels to hold all information from the configuration

except for the current program. Using certain notational conventions, it is then

possible to define rules that only refer to the parts of the state, given in the rule

label, that they need, with the others elided. This ability to not mention parts

of the state that are not used is key to ensuring modularity – as long as only the

unused part of the state changes, the rules given in the semantics do not need to

change.

For example, the following rules give the MSOS definition of the plus expres-

sion, given above for both SOS (with and without state) and NS (just without

state):

e1
{...}
−−−→ e′1

e1 + e2
{...}
−−−→ e′1 + e2

(EXP-PLUS-L)

e2
{...}
−−−→ e′2

n1 + e2
{...}
−−−→ n1 + e′2

(EXP-PLUS-R)

n1 + n2
{–}
−−→ n, where n = n1 + n2 (EXP-PLUS)

Again, note that most of the information in the configuration is gone (or,

more accurately, hidden in the label)– these rules now look very close to those

given originally in SOS for a language with no state. The “...” over each arrow

represents unmentioned parts of the state, with “...” representing the same state

both above and below the line dividing the premise and conclusion of the rule.

This can be read as “if the transition from e1 to e′1 (for instance) makes some

change in the state, then the transition from e1 + e2 to e′1 + e2 makes the same

change in the state”. Because individual parts of the state are not named, and

because changes to this state are still propagated, the state itself can change

(say, when adding environments or updatable stores with assignment expressions)

without requiring any changes to these rules.

172

In cases where the state should not be changed by a rule, it is possible to

note this using “–”, instead of ..., over the arrow. Technically, this makes the

label unobservable, so the rule can make no changes to the state that would be

visible elsewhere. Using “–” is obligatory for axioms, to ensure that they do not

allow arbitrary changes to the state. It is also possible to use “–” for rules with

premises, which can be important in some contexts (such as for some proofs),

but which could also limit reuse of the rule, as it could no longer propagate

changes to the state not mentioned directly in the rule. An example with “–” is

shown above in the axiom given for plus expressions.

When the state is needed, the state components in the label are treated

similarly to components of an ML-like record, allowing them to be accessed by

name. A rule for name lookup could be:

x
{Env=env ,–}
−−−−−−−−−→ env(x) (LOOKUP)

To represent changes from the initial information in the state, components of

the state can be given with a prime, representing the state at the end of the rule.

For instance, a rule in an imperative language for assignment, where the state

contains an environment (mapping names to locations) and a store (mapping

locations to values) would be:

x := v
{Env=env ,Store=mem,Store′=mem[env(x)←v],–}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ skip (ASSIGN)

where mem[env(x) ← v] is the original value of mem but with the value at

location env(x) replaced with v.

One shortcoming of MSOS is that the rules, with configurations given on

labels, look more complex, or at least unfamiliar, to those familiar with standard

SOS rules. This has been addressed in Implicitly-Modular SOS (I-MSOS) [153],

which allows the use of the more familiar SOS notation when defining rules.

I-MSOS rules are then automatically translated into MSOS rules, providing both

the simplicity of SOS and the added modularity of MSOS. An example, drawn

from a recent paper [152], provides an example of the rules used to evaluate a

let construct:

ρ ⊢ E → E′

D → D′

(let D in E)→ (let D′ in E)
(LET-DECL)

ρ[ρ1] ⊢ E → E′

ρ ⊢ (let ρ1 in E)→ (let ρ1 in E′)
(LET-EXP)

(let ρ1 in V)→ V (LET-FINAL)

The shading in the definition of the relation specifies which parts of the

definition represent the state (ρ ⊢) versus which parts represent the syntax

173

(E → E′). It also provides the information needed to transform the rules into

equivalent MSOS rules. Note that, of the three rules, only the second mentions

ρ, making it implicit in the other two.

Comparison: MSOS and I-MSOS are both extensions of SOS targeting SOS’s

modularity problems. Thus, they maintain the advantages of SOS over K

(except, perhaps, in program proofs and language meta-proofs, where MSOS and

I-MSOS have not been as widely used), while also addressing one of the major

disadvantages, modularity. MSOS and I-MSOS provide the same modularity as

K with context transformers, allowing rules to continue being used unchanged

as a language evolves, and also allowing rules to be reused across languages.

Since MSOS and I-MSOS (from here just MSOS, unless the distinction is im-

portant) are built on top of SOS, they also share some of the same disadvantages.

MSOS uses an interleaving semantics, versus the true concurrency model used

in K, and continues to have some of the same challenges in defining control-flow

intensive features, especially call/cc. It is, however, now much easier to add

support for configuration “flags”, such as a flag indicating that a halt command

has executed, since only the top-level rule (such as statement sequencing) and

the rule that sets the flag need to be aware of this.

A final distinction is that the configuration itself is much more dynamic in K

than in MSOS: it is possible to rename cells or add new cells in rules where, to

the authors knowledge, it is not possible to do something similar in MSOS. While

not essential in many programming languages, this can be useful in the definition

of certain features. For instance, CPF, described in Chapter 8, regularly adds

and removes cells during program analysis, based on the needs of the rules in the

analysis semantics. As another example, KOOL, described in Chapter 3, renames

the cell holding the store during garbage collection (described in Chapter 6),

indicating that none of the rules that match the store can apply. This makes

it easier to guarantee that the mutator and the collector do not conflict. Also,

most concurrent languages defined in K create new cells to represent new threads

(and their contents). This dynamism comes with a potential cost: verifying

the correctness of both language features and programs in defined languages

may be harder with a dynamic configuration, and would make formalization

using standard techniques (such as giving the configuration as a tuple) more

challenging.

Tool Support: There have also been several tool support platforms introduced

for MSOS during its development. One method of executing MSOS definitions

that has been explored is to use Prolog [148], with evaluation then based on

Prolog reasoning. Another alternative, the Maude MSOS tool [29], is an extension

to Maude built using Full Maude [44, 35]. The Maude MSOS tool allows MSOS-

specific Maude modules to be defined using MSDF, the modular SOS definition

174

formalism. These modules are then automatically translated into standard

rewriting logic system modules using a semantics-preserving transformation [126]

from MSOS to rewriting logic, allowing MSOS rules to be used for program

execution and analysis. The K module system provides similar functionality,

leveraging the K tool kit to provide a translation into Maude while also providing

an additional layer of abstraction, allowing use of a friendlier syntax for defining

modules as well as syntactic sugar for a number of common scenarios, sort

aliasing and variable prefixes being just two examples. This additional layer

of abstraction has proven quite handy in working around some of the parsing

restrictions in Maude: for instance, because of the way that rules and equations

are parsed, variable prefixes are quite challenging to add directly into the Full

Maude version of the module system that is currently being built, something

the author unfortunately discovered in the middle of the implementation.

The Maude MSOS tool not only supports standard monolithic definitions,

but also supports the new component-based style of definition. This definitional

style, along with other work on tool support for MSOS (which also supports this

style), is discussed below.

9.1.3 Denotational Semantics

In denotational semantics, the semantics of a language construct is given as

a function which maps the construct to its denotation, a mathematical value

that provides the meaning of the construct. In the Scott-Strachey approach to

denotational semantics [183, 171, 141], semantic functions map each language

construct to a value in a Scott domain [73], formed using both primitive values

(e.g., natural numbers) and constructs such as function spaces, products, and

sums. The semantics are compositional, meaning that the semantics of a feature

is defined in terms of the semantics of its subfeatures.

As mentioned above, K takes a more operational approach to language

semantics. However, K definitions also have a clear denotational semantics. Like

definitions in rewriting logic semantics, K definitions with only equations have

an initial algebra semantics, while K definitions with rules have an initial model

semantics. Further details are provided earlier in this chapter, in the comparison

between rewriting logic semantics and denotational semantics.

Comparison: The standard techniques for denotational semantics provide

several advantages. The close link between denotational semantics and functional

languages, especially pure functional languages such as Haskell, provides a natural

way to “implement” denotational definitions, while also allowing techniques

developed for semantics (like monads, discussed below) to filter into standard

practice in the functional language community. The abstraction gained from using

denotational definitions has also proven to be valuable for better understanding

and reasoning about programs and programming language definitions. This can

be seen in work such as the LOOP project [100, 188], which used a denotational

175

definition of the JavaCard version of Java as a basis for verifying the correctness

of JavaCard applications. Finally, the use of lambda notation in the definitions

of languages provides a standard base language for describing and comparing

language features.

There are also some disadvantages to these techniques which are addressed

by K using the underlying algebraic denotational semantics and initial model

semantics of rewriting logic. Initial algebra semantics provides a more natural

mapping from the abstract syntax of a program to the semantics, without a

need to encode language semantics into potentially complex lambda terms. Also,

the first-order nature of the definitions can occasionally provide more insight,

since operations provided by the semantics are not given in terms of features of

the underlying notation which may themselves have complex definitions (such

as variable binding and substitution)6. Finally, rewriting logic provides better

support for reasoning about and representing concurrency, without the need to

use constructs such as powerdomains (for which, to this author’s knowledge,

there are still several competing definitions).

Monads

A well-known limitation of denotation semantics is that, like the definitions of

language features in structural operational semantics, denotational definitions of

language features are not modular [141]. The use of traditional lambda notation

to define the semantics imposes the same restrictions found in pure functional

languages: any state, such as (in semantics definitions) environments, stores,

etc, needs to be threaded through the defining functions. When new language

features are added that require extensions to the configuration, all existing rules

need to be modified, even those that do not use the new parts of the configuration,

to ensure the entire configuration is propagated.

One proposed solution for improving the modularity of denotational defi-

nitions is monads [135, 136]. Although quite different from the solution used

in MSOS, there are also some similarities. In MSOS, configuration items are

given as part of the labels on transitions, providing what can be viewed as an

extensible record structure for storing configuration information. Using monads,

this configuration information is instead stored inside a monad which represents

a computation. The semantic functions return computations, not values, allowing

computations to be threaded through the semantic rules. At the same time,

the monad itself is treated like an abstract data type, with an interface that

knows about the configuration items stored inside and exposes them through a

defined (functional) interface. In essence, instead of threading the configuration

through the functions in pieces, it is automatically carried inside the computation,

allowing rules that know about the monad to be defined without then needing

6Note that this could be seen as a disadvantage by some, since this can require more
formalization effort.

176

to be changed when the internals of the monad change (assuming the interface

does not also change).

Although introduced as a method to modularize denotational definitions,

monads were popularized when first applied in a more practical setting: represent-

ing state in purely functional programming languages such as Haskell, especially

in the context of language interpreters and compilers [200, 201]. This initial

work provided a way to localize stateful operations, but did not provide an easy

way to either combine different features or “plug in” features without changing

the surrounding code. Subsequent work, [111, 103, 179, 116, 115], while often

maintaining a focus on interpreters, also focused on methods of programmatically

combining monads using monad transformers, ensuring that the resulting monad

(the combination of the input monads) preserved the required mathematical

properties. The result of one line of this work is Modular Monadic Semantics

[115], which structures the semantics of a language by defining them in terms of

a number of predefined monads that provide common language building blocks

(stores, continuations, etc).

Another line of work has focused more on the theory surrounding monads,

although it has also (in many cases) maintained a practical focus, with imple-

mentations of the concepts provided in functional languages such as Scheme,

Haskell, or Gopher. This includes work on language development environments

such as Semantic Lego [48], which focused on combining monads for different

language features using a concept called stratification, allowing monads to be

combined by “building them up” in the desired order, instead of “lifting” them

through other monads with monad transformers. Even with stratification finding

general-purpose ways to combine monads has still been problematic; some recent

work has focused on defining the combination of two monads as their coproduct

[119], which appears to work in most cases except for continuations, which are

problematic for many of the proposed methods.

Finally, along with some of the work mentioned above [115], some additional

work on monads has focused on issues that are more specific to compilers

[76, 174, 175], such as the need to divide compilation up into different stages

(represented by a monad for each stage).

Comparison: Monadic semantics provides a structuring mechanism for denota-

tional semantics, so it shares many of the same benefits and limitations with

standard denotational semantics definitions. The main distinction is that monads

provide a way to make languages more modular, with individual features designed

around monads that contain the needed state. Monads have also been highly

successful as a method for structuring functional programs, leading to a number

of techniques for building language interpreters, using monads, in functional

programming languages (especially Haskell and its variants and Scheme).

In comparison with K, there are also several limitations of monadic semantics.

The main limitation, outside of those already mentioned for denotational seman-

177

tics, is that there is no truly modular way to combine different monads using

monad transformers. In some cases, there is no automatic way to meaningfully

combine modules. Instead, transformers sometimes must be written by hand,

ensuring that the correct monad laws hold (especially problematic, as usual, are

continuations). Monad composition is also order dependent, meaning that a

different semantics could be given to a language based on the order in which the

underlying monads are combined. Since the number of transformer application

orderings is quadratic in the number of monads being combined, this can quickly

grow unwieldy in large language definitions. It also seems likely that, in some

cases, it would not be possible to find an ordering that would satisfy all the

needs of the language.

These problems are dealt with in K by using one global transformation

over all the rules in the language once the rules are chosen and the language

configuration is assembled, versus using a series of individual transformations

as the language is built. This transformation should be able to build only one

proper configuration; if it can build more that one, the rules are ambiguous, and

the user is tasked with fixing the rules to ensure a unique final configuration can

be found.

Tool Support: Most of the work discussed above was conducted in the context

of creating modular interpreters, leading to several tools designed for this purpose.

Some of the most notable include: interpreters based on pseudo-monads, written

in Haskell [179]; monadic interpreters and compilers, written in Gopher (and, in

the latter case, targeting Standard ML) [116, 115]; monadic interpreters written

using Scheme [48]; and compilers built with explicit compiler stages, represented

as monads [76, 174, 175].

An advantage of these tools over the current tool support for K is the use of

more typical functional languages for implementations, which provides a more

familiar environment and features such as compilation. A disadvantage, already

mentioned above, is that the specification of the semantics of one language

using another can mask the actual complexity of certain language features, and

can require the language designer to understand both the defined and defining

languages to fully understand the language definition. Otherwise, the benefits

and limitations are as described above.

9.1.4 Action Semantics

Action semantics [142] was defined with the goal of “allow[ing] useful semantic

descriptions of realistic programming languages” [142, page xv]. It includes

several major differences from standard operational and denotational styles of

semantics, while still maintaining some of the signature features (definitions

are given using an operational style, but are also compositional and map to

denotations, albeit not given as values in Scott domains).

178

First, instead of using lambda notation (like denotational definitions), which

can become quite complicated as language definitions become larger, more com-

plex, and more realistic, action semantics uses action notation. Action notation

defines a number of primitive actions (that perform computation) and action

combinators (that combine smaller computations into larger computations), as

well as methods for defining data and yielders, entities that can be evaluated to

yield data. Although formally defined, action notation uses English instead of

mathematical notation, making language definitions more readable.

Second, action semantics has improved support for modularity over standard

operational and denotational semantics, giving it capabilities which appear

similar to those of monads. Items in the configuration are modified by actions

but propagate, for the most part, behind the scenes, using special actions to (for

instance) allocate and update storage cells. Actions are separated into facets,

each of which deals with a different kind of information (transient data, bindings,

control flow, etc)7. Parts of a definition that work on one facet then do not need

to worry about changes to other aspects of the definition. Much like MSOS,

monads, or K, this protects definitions of language features from changes in

unused parts of the state, allowing languages to evolve or features to be reused

in other languages.

Third, action semantics includes improved support for concurrency over

what is provided with denotational semantics [143]. This includes constructs to

represent nondeterministic choices in the semantics (including from intentionally

underdefined language features) as well as an asynchronous model of concurrency

and distribution similar to that found in Actors [7]. This model supports true

concurrency, with different agents making progress at overlapping times.

Originally action semantics was defined using a non-standard variant of

SOS. The current definition instead uses MSOS, providing a cleaner underlying

semantics and an opportunity to more easily extend action notation with new

constructs if needed. Alternative definitions have been based around monads

(described below as modular monadic action semantics) and ASMs (with an

implementation using a tool and technique called Montages, presented below as

part of the discussion around ASMs).

More recent work on action semantics has focused on defining languages

using a number of small (per-feature) modules. This work is discussed below

under component-based semantics.

Comparison: Conceptually, there are some similarities between action se-

mantics and K. In K, computations are driven by a number of provided and

user-defined operators which work on the computation and other parts of the

configuration. Action notation provides a similar language for action semantics,

with semantics defined in terms of actions instead of K operations. In both K and

7Some actions cover more than one facet.

179

action semantics there is no need to reference unused parts of the configuration,

and both support true concurrency.

One difference between action semantics and K involves the use of kernel and

derived operations. In K, the semantics of both kernel and derived operations

is given in K notation, and, although a boundary between the two could be

maintained, in practice it is not. In action semantics, kernel operations are defined

directly in the underlying (now MSOS) semantics, while derived operations are

defined in terms of other already-defined action semantics operations. This

makes the boundary between the two more distinct.

Both approaches have disadvantages and advantages. In action semantics, it

is harder to add new features not supported by the notation, since one needs to

“escape” to MSOS to do this. However, the focus on defining new operations in

terms of existing operations aids in understanding and reusing defined features

and in comparing different definitions. In K, the ability to easily add new

operations provides a straightforward way to support new language features, but

the unwise use of this support can lead to redundant and harder to understand

feature definitions. One purpose of the K module system is to provide a more

direct way to reuse already defined features, introducing more discipline into the

process of K language design.

Beyond this there are several other interesting points of comparison. First, in

action semantics, the division of semantic features into different facets provides

a separation of concerns in the semantics that does not exist in K and would be

beneficial. Second, like in MSOS, it is not possible to define the semantics of

call/cc in action semantics without defining the language semantics to also include

the semantics of the underlying runtime. Third, action semantics supports some

forms of concurrency – specifically, concurrency that can be modeled as agents

communicating using asynchronous messages – but not others, including standard

threading models with shared memory and threads that can be interrupted and

resume execution later. K can naturally define these features.

Tools: ASD [195], the Action Semantic Description tools, provides an environ-

ment for working with action semantics descriptions. Included are tools for

parsing descriptions, syntax-directed editing, checking for well-formedness, and

transforming programs into equivalent programs using action notation in place

of the original language constructs. ASD is written using the ASF+SDF Meta-

Environment [192], with ASD definitions translated into equivalent ASF+SDF

constructs. ASD does not appear to support running programs using action

notation, but instead is focused on working with language definitions. This is

similar to the work on the K module system, although ASD supports features we

are still adding (such as improved well-formedness checking of definitions, which

is only partial at this point since much of the parsing of rules and equations is

performed in Maude).

Another tool, the Maude Action Tool [40], is an action semantics-driven

180

interpreter. It accepts a description of a language, defined in action semantics,

and a program in the described language. The language description is translated

from action notation into Maude notation, which is then used to “desugar” the

input program into an equivalent program using action notation in place of

the syntax of the language. Another transformation is used to transform the

underlying MSOS semantics of action semantics into an equivalent rewriting

logic theory (a system module). Using this rewriting logic theory, the desugared

programs can then be executed in Maude. It would also be possible to apply

Maude’s analysis and verification features (model checking, state space search),

although it is not clear if this has yet been tried. This translation is similar in

approach to the current K tools, although in K, instead of desugaring a program

into semantic constructs, the semantics are built over the abstract language

syntax.

There are several other notable tools for working with or interpreting programs

using action semantics definitions. One [12] uses Montages [113] (discussed below

with ASMs) to define the underlying semantics of action semantics, providing a

semantics-based interpreter for running, debugging, and visualizing programs.

Another tool, the Action Environment [191, 189, 190], is discussed below in

the section on component-based semantics. Finally, Modular Monadic Action

Semantics [203], which uses monads to implement the base semantics of action

semantics and provides a monadic interpreter, is discussed later in this section.

Action semantics has also been a popular target for research on semantics-

driven compiler generation. One example is OASIS [157], which takes a semantic

description written in Scheme and generates a Perl-based compiler, which then

generates executable code for SPARC processors. Another is Actress [25], which

generates an action semantics-based compiler that then compiles source programs

into C. Work on generating high-performance interpreters and compilers using

K definitions is still in early stages of development [86].

Modular Monadic Action Semantics

One limitation of the initial version of action semantics [142] was that the

underlying semantics were based on a non-modular SOS definition, making it

challenging to extend action semantics with new facets or new basic constructs.

Another was that the theory for reasoning about programming languages defined

using action semantics, as well as reasoning about programs based on an action

semantics of the underlying language, had not been (and, to the author’s

knowledge, still has not been) a focus of the research, making this kind of

reasoning challenging.

One solution to this problem was to replace the underlying operational (SOS)

definition of action semantics with a Modular Monadic Semantics (as discussed

above), leading to a version of action semantics called Modular Monadic Action

Semantics [202, 203]. The move to an underlying monadic semantics served

181

two goals: first, it provided a modular base for defining extensions to action

semantics; and second, it opened definitions up to modular reasoning techniques

developed as part of the work on denotational semantics in general and monadic

semantics in particular.

Comparison: MMAS provides some advantages over the original version of

action semantics, both by making it easier to extend and (potentially) easier to

reason about. An example extension involves adding support for continuations,

a feature not supported in action semantics (at least without changing the

nature of the definition to account for features of the language runtime). At the

same time, this support comes at the cost of limiting the ability to represent

nondeterminism and parallelism, something available in action semantics but

problematic in monadic semantics.

With the new modular semantics underlying action semantics (through the

use of MSOS), it appears that the first advantage, making it easier to extend

action semantics, no longer holds. It is still not possible to define continuations,

but other extensions should be possible. The second advantage, making language

definitions and programs in the defined languages easier to reason about, may

still hold, but the author is unaware of any work taking advantage of MMAS

definitions for these purposes.

In comparison to K, MMAS does remove one disadvantage of action semantics,

the inability to add features such as call/cc, but again only at the cost of

weakening support for concurrency. Other advantages and disadvantages are the

same as those given above directly for action semantics.

9.1.5 Component-Based Semantics

Component-based semantics [151, 152], referred to previously as constructive

semantics [149], is a style of language definition that builds upon other modular

formalisms, such as MSOS and action semantics. The main goal of component-

based semantics is to define individual language features as reusable components,

which can then be assembled (given proper tool support) into a complete language.

A challenge is that most language features are initially defined in the context

of a specific language, making it hard to reuse features in other languages that,

even with the same semantics, may have a different syntax.

Component-based semantics approaches this problem by separating the

concrete and abstract syntax, mapping the concrete language constructs to a

number of language-independent abstract constructs (referred to in earlier work

by the same authors as Basic Abstract Syntax [99]). Abstract constructs are

defined over a number of sorts representing language constructs (like in K), with

typical sorts like Cmd for command or Exp for expression. Examples of abstract

constructs include seq, which sequences a list of commands; bind, which binds

a value to an identifier; and lookup, which retrieves the value bound to an

182

identifier [151]. The following example, taken from a recent paper [151], shows a

mapping from a while construct that allows loop breaks to the related abstract

constructs:

CmdJwhile E CK = catch(cond-loop(ExpJEK,CmdJCK),

abs(eq(breaking), skip)) (9.1)

CmdJbreakK = throw(breaking) (9.2)

Rule 9.1 translates a while command, with loop expression E and body

C, into the cond-loop construct. This construct is surrounded by a catch

construct, indicating that the loop may terminate abruptly; this is handled using

the breaking handler, which does nothing (skips). Rule 9.2 then shows the

semantics of break, which throws breaking.

The work on component-based semantics grew out of work on creating

modular language definitions using both action semantics and MSOS. For action

semantics, this work started with an initial module system for defining action

semantics modules [41]. Each module is made up of a syntax and a semantics

section, with the syntax section containing abstract syntax and the semantics

section containing the action semantics definition of the language construct.

Each module is focused on a specific feature, with more complex modules then

built by either combining or extending other modules, eventually forming a

language definition

This work was then extended [42] to provide more structure to the modules,

specifying three kinds of modules: semantic functions modules, declaring the

names and types of semantic functions (similarly to declaring an operation in

Maude); semantic equations modules, equivalent to the modules in the earlier

work, providing the syntax and semantics of a single language feature; and

semantic entities modules, providing action notation and auxiliary semantic

entities. As in the earlier work, modules are built by either extending or

combining existing modules.

This work was done directly using ASF+SDF, but managing the large number

of modules created was problematic. Because of this, a new formalism for creating

action semantics descriptions of single constructs, ASDF, was created [98]. This,

along with tool support designed for working with ASDF (discussed below), has

been used to define the semantics of Core ML [99].

Comparison: The definitional approach developed for component-based seman-

tics should work for any semantic formalism which is sufficiently modular. At

this point the main focus has been on using either action semantics of MSOS,

but we believe that K would be an appropriate choice as well, since it provides

the modularity needed for the component-based semantics technique to work.

183

The closest comparison, then, isn’t with K, but with the work on the K

module system described in this thesis. It should be possible to use the K module

system to support a component-based style, but that has not been done yet –

instead, definitions make use of the abstract syntax of the language being defined.

This limits reuse of defined language features to scenarios where, in the new

language, the feature will have not only the same semantics but the same syntax

as well. It also makes it more difficult to identify features which are shared by

multiple languages, since differences in the syntax could “hide” this. Finally,

the use of abstract constructs provides guidance about the appropriate size of a

feature definition (i.e., one definition per module), which is recommended but

not required by the module system.

However, component-based semantics also has some limitations. One is that

the use of a translation from concrete constructs to abstract constructs may make

it harder to understand a single language, even if it makes it easier to understand

and compare multiple languages, since the features would be defined in a syntax

further removed from that of the language. This translation can also make it

harder to debug definitions, something that comes up quite often while defining

complex languages, since errors can occur at both the semantics level and the

translation level, and since it is necessary to run the translation “in reverse”

to determine which language construct is the source of the problem. Finally,

the use of one abstract construct per feature is realistic when defining just the

standard static (types) and dynamic (execution) semantics of a program, but

when semantics are also defined for program analysis and verification purposes,

like in the work on Policy Frameworks discussed in Chapters 7 and 8, this

requirement would cause a proliferation of names, and would also make it harder

to define semantics as extensions to pre-existing named hooks (essentially, an

abstract construct in the component-based semantics terminology), with the

hook given different meanings by different analysis policies.

Tool Support: The Action Environment [191, 189, 190] supports the use of

action semantics and the ASDF formalism for defining programming language

features. ASDF definitions are translated to ASF+SDF, which also allows con-

structing a mapping from the concrete syntax of a language to its representation

using abstract constructs. Tools provided as part of the Action Environment

include variants of the ASF+SDF tools, available through the use of the Meta-

Environment, as well as a type checker for action semantics functions and an

action semantics interpreter. Tool support for working with ASDF definitions is

more advanced than the current support for working with K definitions, although

this is an area being actively worked on.

The Maude MSOS tool, described above, provided support for creating

component-based MSOS definitions and executing them in Maude. It has also

been shown that OBJ [66] can be used as a platform for experimenting with the

component-based style of action semantics [150].

184

9.1.6 Other Semantic Techniques

A variety of other techniques for giving semantics to programming languages

have been designed over the years. Included below are several that are especially

relevant to K and to the work described in this thesis, but are not as popular

as the operational and denotational techniques mentioned above. This includes

Abstract State Machines; other manifestations of rewriting logic semantics;

semantics-based interpreters; semantics of deterministic languages based just on

the use of equational logic; and definitions of languages in theorem provers.

ASMs

Abstract State Machines (ASMs) [96, 178, 20] can be regarded to some extent

as a “simplified programming language” with programs consisting of one loop

that may contain a large number of potentially nested conditional assignments.

More complex constructs can then be built atop this basic core, providing a

higher-level language that can be used when creating definitions. ASMs can

encode any computation and have a rigorous semantics, so any programming

language can be defined as an ASM, giving it a semantics. This has been shown

by defining non-trivial languages [96], such as Java [178] and C [75], with the

Java definition including features such as concurrency and exceptions.

One limitation in the basic ASM language is that support for modular

definitions of language features is limited. For instance, the definition for Java

separates the languages into named macros based on groupings of features

(expressions dealing with threads, expressions dealing with exceptions, etc),

joining these together into blocks of rules which are executed based on which

language feature is being evaluated. Some modularity is provided by treating the

program state like a number of global variables, since this means the state does

not need to be explicitly propagated or mentioned in rules that do not use it.

However, this may also cause modularity problems – defining a global variable

for the environment would be problematic in languages with threads, where a

program could have multiple active environments at once, one in each thread.

One way to extend this support for modular definitions is through the use of

the Montages [113] framework, which combines graphical depictions of language

constructs with static and dynamic semantics notation. Montages also provides

a framework for executing programs directly in the semantics. It works by

using the control-flow information of a program to “stitch together” the various

montages that represent each feature, creating a Montages version of the CFG

that will indicate what to run at each step.

Comparison: Since ASMs are executable, languages defined using ASM tech-

niques can also be executable, depending on proper tool support. Available tools

include ASM Gopher and AsmL [97]. There does not appear to be a common

set of higher-level constructs, targeted at multiple ASM tools, which have been

185

developed to support language design, making the process of designing a language

using ASMs seem more “low level” than in other formalisms (including MSOS

and K).

One of the main uses of abstract state machines has been verification, and

at this point the work on verification is more advanced than similar work using

K. This includes programming languages-related work on certifying compiler

back-ends [208] and verifying runtime properties of .NET code [17]. Some work

on model checking ASM definitions has also been done [204, 205], although it is

unclear if this work would scale to model checking programs in programming

languages defined using ASM techniques.

Specifically for Montages, one limitation (which does not seem fundamental)

is that it is not possible to define more than a single static and a single dynamic

semantics, making it more challenging to define alternate semantics, such as

semantics aimed at program analysis. Another limitation is that Montages uses

concrete, versus abstract, syntax, requiring the underlying Montages technology

to focus inordinately on compiler-like analysis to correctly “connect” the various

Montages in order to properly represent programs in a language. The focus in K

and most other formalisms on using abstract syntax instead eliminates the need

for this type of analysis, but at the cost of requiring a translation from concrete

to abstract syntax.

Semantics-Based Interpreters

In many cases the semantics of a language is defined inside another language by

defining a semantics-based interpreter. Many examples of this were given above,

especially in the context of monads, where most of the published work has been

accompanied by language interpreters written in Haskell, Gopher, or Scheme.

The work on K and (more generally) rewriting logic semantics could also be cast

in this light, with interpreters based on term rewrite systems derived from the

equations and rules used in the definition.

One interesting application of these techniques is in teaching language design

and language semantics. Interesting work in defining semantics-based interpreters

for teaching includes work on using Scheme to define language interpreters [61]

and using Prolog to explore various styles of semantics [176], including SOS,

natural semantics, denotational semantics, and action semantics.

Comparison: In both cases, one strength of the approaches, shared by similar

techniques using rewriting logic semantics and K [165], is that the semantics are

executable, providing more feedback to students and making the task of language

design feel more like the task of programming. On the downside, one drawback

of using full programming languages, like Scheme, is that some of the details of

language design can get hidden inside the language: designing language features

of the defined language in terms of (especially complex) features of the defining

186

language may conceal the true complexity of a feature instead of making the

definition clear.

Term Rewriting and Equational Logic

Among the approaches based on term rewriting and related techniques, the

first extensive study on defining a programming language equationally [68],

was performed using OBJ [66] to execute the language specifications via term

rewriting. This is similar to work on defining deterministic sequential languages

using rewriting logic semantics, and influenced some of the early work on using

RLS techniques to teach programming language design [165].

The ASF+SDF Meta-Environment [192], a successor to Centaur, has focused

on program analysis, programming language semantics, and program renovation.

The Meta-Environment includes a number of tools designed specifically for work-

ing with language definitions, including parsers, pretty printers, and libraries

of syntax specifications. Some work has focused specifically on language proto-

typing [194], with motivations similar to our own. Of special note is the ability

to compile definitions to improve performance [193], an important ability for

generating realistic interpreters and analysis tools. Use of the Meta-Environment

does not impose a specific semantics style (such as SOS), but instead provides a

platform where definitions in various styles can be used.

Comparison: The work discussed here does not focus on a new style of seman-

tics; instead, it focuses on providing tools that can be used to create language

definitions, either for pedagogical purposes, for program verification and analysis,

or for language design. The work on using equational logic to define language

semantics for imperative programs can be seen as a precursor to the work on

rewriting logic semantics and K, which both extend it to support more mod-

ular definitions and concurrency. Comparing K with the Meta-Environment,

ASF+SDF provides better tool support for language definition (but not neces-

sarily for verification), including the ability to compile definitions, and a larger

library of predefined features. On the other hand, the ability in K to use commu-

tative as well as associative matching (ASF is limited to associative matching)

provides additional flexibility in defining language features (parts of the configu-

ration can be matched more easily, without regard to order, while unused parts

do not need to be mentioned at all), further enhanced by the use of context

transformers to automatically modify rules and equations to match the current

configuration. We believe this added flexibility allows more modular language

definitions to be created while still using algebraic definitional techniques.

Theorem Provers

By being both a (functional) programming language and a theorem prover, ACL2

[107] provides an environment that allows the definition and formal analysis of

187

programming languages. As part of the work on language definition with ACL2,

the operational semantics of a substantial subset of the Java Virtual Machine

(JVM) has been defined [107]. Similar work has been carried out using other

theorem provers. Definitions can be executable, although sometimes only under

certain assumptions (functions may need to be total to be usable for theorem

proving purposes as well, for instance).

Comparison: While ACL2 gains additional power through the support of the

underlying theorem prover, this also makes it more challenging for more “typical”

language designers to use as an environment for language prototyping. Also,

since ACL2 is inherently sequential, to support concurrency the semantics need

to include a formal representation of a thread scheduler, something not required

in K. Finally, the use of standard operational techniques for creating language

definitions limits modularity, requiring changes throughout the definition when

new features are added that modify the configuration. Similar restrictions

are present in other theorem provers as well, which generally base language

definitions around either standard operational or denotational techniques.

9.2 Program Analysis

The work on policy frameworks, discussed in Chapters 7 and 8, focuses on

support for annotation-driven analysis, which is the focus here as well. Because

the domain of units of measurement has provided a goal for much of our work

on analysis, a section devoted just to related work on units, including systems

that do not use annotations, is also provided.

9.2.1 Analysis Tools and Frameworks

A number of different tools and techniques have been developed around the use

of annotations for program analysis. The earliest precursor to the work presented

here was developed as a prototype to check the unit safety of programs written

in BC [33], and was policy and language specific. An extension to this work,

C-UNITS [168], is closer in style to CPF, using annotations to check unit safety

for a limited subset of C. However, C-UNITS is not extensible, offering no clear

way to either support other analysis domains or cover unsupported features of C.

JML [27], the Java Modeling Language, provides support for a wide variety

of annotations and a number of different analysis tools, including those used

for runtime and static analysis. Spec# [16] extends the C# language with

support for a number of annotations, with checking performed by generating

verification tasks for theorem provers. Both JML and Spec# are language specific

(Spec# is actually its own language) and would require potentially cumbersome

axiomatizations of analysis domains such as units (for instance, by defining units

in first-order logic). However, both provide richer support for proving properties

188

about programs that is currently available in the work on policy frameworks,

and both have seen extensive use (especially JML, which has been used in a

number of different verification tools).

Eiffel [130] uses a design by contract approach to software development,

including direct language support for annotations such as preconditions (require)

and postconditions (ensure). This support is obviously language specific, but

because of this is very well integrated into the language.

Specifically for C, a number of annotation-based systems have been developed.

LCLint [50, 49], now Splint, uses program annotations to detect potential errors

in C programs, and provides limited abilities to add new annotations by allowing

attributes and constraints to be defined for various C language objects. Splint

is faster than CPF, but CPF provides a more flexible (and easily extensible)

annotation language. Caduceus [58, 59] provides an annotation language similar

to JML, but usable in multiple languages (currently C and Java); programs are

verified by transforming them into a simpler language, called Why, which is then

further processed to generate proof tasks for various theorem provers. While the

annotation languages defined in policy frameworks are more easily extended, the

reduction of annotations and language constructs in multiple languages into a

single core language provides a level of reuse worth investigating in more detail

for policy frameworks, which give an analysis semantics for each language.

Another solution for C is Frama-C [1], which provides an extensible analysis

framework, with various analyses built in OCaml as “plugins” to the core Frama-

C tool. Frama-C uses the ACSL annotation language [18], which is based on

the annotation language used in Caduceus, and which can also be extended to

support new logical concepts. Frama-C has many similarities to CPF, including

the use of CIL, but (like in many of the above systems) the requirement to

formalize extensions in first order logic makes it harder to use Frama-C for

verification of domain-specific properties such as units.

More domain-specific systems include VCC [36], for verification of concurrent

C programs, and HAVOC [31], aimed at programs, such as device drivers, that

perform low-level memory manipulation. Both of these systems are targeted at

specific domains, and it is not obvious how to extend them to other domains

or languages. CQUAL [60] provides support for user-defined type annotations,

referred to as type qualifiers, and has the added benefit of being able to infer

many qualifiers; however, in CQUAL it is hard to natively support some complex

domains, such as units, which (as discussed below) leads to the use of more

complex solutions.

The analysis techniques used in policy frameworks have many similarities to

abstract interpretation [37]. In fact, the analysis could be seen as an abstract

interpretation, especially (in the case of units) over an enriched concrete domain

(enriched enough to allow sensible abstraction and concretization functions to be

given). An interesting goal of future research would be to investigate this link

further.

189

9.2.2 Units of Measurement

Related work on unit safety tends to fall into one of three categories: library-

based solutions, where libraries which manipulate units are added to a language;

language and type system extensions, where new language syntax or typing rules

are added to support unit checking in a type checking context; and annotation-

based solutions, where user-provided annotations assist in unit checking.

Library-based solutions have been proposed for several languages, including

Ada [80, 120], Eiffel [108], and C++ [26]. The Mission Data Systems team at

NASA’s JPL developed a significant library, written in C++, which includes several

hundred classes representing typical units, like MeterSecond, with appropriately

typed methods for arithmetic operations. An obvious disadvantage of such an

explicit approach is that the units supported by the library are fixed: adding

new units requires extending the library with new classes and potentially adding

or modifying existing methods to ensure the new classes are properly supported.

Solutions based around language and type system extensions work by in-

troducing units into the type system and potentially into the language syntax,

allowing expressions to be checked for unit correctness by a compiler or inter-

preter using extended type checking algorithms. MetaGen [9], an extension of

the MixGen [8] extension of Java, provides language features which allow the

specification of dimension and unit information for object-oriented programs.

Other approaches making use of language and type system extensions have

targeted ML [110, 109], Pascal [62, 95], and Ada [63]. One major limitation of

these types of systems is that users are often not willing to move to a custom

version of a language, but must stay with the original, even if the custom version

has some important benefits. This is one of the reasons that CPF has focused

on allowing annotations to be added in comments, where they can be ignored by

standard C compilers.

A newer tool, Osprey [101], also uses a typed approach to checking unit

safety, allowing type annotations in C programs (such as $meter int) using a

modified version of CQUAL. These annotations can then be checked using a

combination of several tools, including the annotation processor, a constraint

solver, a union/find engine, and a Gaussian elimination engine (the latter two

used to reduce the number of different constraints and properly handle the Osprey

representation of unit types as matrices). One limitation of Osprey is that there

is no way to express relationships between the units of function parameters and

return values, something possible with a richer annotation language:

//@ post(UNITS): unit(@result)^2 = unit(x)

double f(double x) { ... }

Instead, this type of relationship has to be added by hand-editing files

generated during processing. Osprey also checks dimensions (i.e., length), not

units (i.e., meters or feet), instead converting all units in a single dimension

190

into a canonical unit. This can mask potential errors: for instance, it is not an

error to pass a variable declared with unit meter to a function expecting feet.

On the other hand, Osprey includes functionality to check explicit conversions

for correctness, catching common conversion errors such as using the wrong

conversion factor.

Annotation-based systems for unit safety include the work on C-UNITS [168],

and BC [33], both mentioned above. The CPF UNITS policy was inspired by

the work on C-UNITS, and takes a similar approach, with a focus on using

abstract semantics and annotations. However, CPF UNITS has extended this

approach in three significant ways. First, it has been designed to be modular:

the abstract semantics of C have been completely redefined using concepts

developed over the last several years as part of the rewriting logic semantics

project and the work on K. As described in Chapter 8, the semantics are divided

into core modules, shared by all CPF policies, and units modules, specific to

CPF UNITS. This allows improvements in the core modules to be shared by all

policies, simplifies the unit checking logic, and greatly improves the ease with

which the semantics can be understood and modified. Second, CPF UNITS has

been designed to cover a much larger portion of C. C-UNITS was designed as a

prototype, and left out a number of important C features, with minimal or no

support for structures, pointers, casts, switch/case statements, gotos, or recursive

function calls. Support for expressions was also limited, with the main focus on

commonly-used expressions, and more complex memory scenarios (structures

with pointers, arrays of pointers, etc) were ignored. CPF UNITS supports all

these features, and makes use of a more advanced parser to handle a larger class

of C programs. Finally, CPF UNITS has been designed to be more scalable.

While C-UNITS requires a complete program for analysis, the CPF UNITS

policy analyzes individual functions, leading to smaller individual verification

tasks.

191

Chapter 10

Conclusions and Future

Work

As discussed in Chapter 1, software is now a pervasive part of our lives. Computer

programs handle bank transactions, calculate driving directions, and control small

embedded systems present in phones, cars, airplanes, and household appliances.

While formal techniques provide a firm mathematical basis for understanding

these programs, and the languages used to create them, they often are considered

too cumbersome to use. It is thus important to have formal, yet flexible, tools

and modeling techniques, which ideally should be easily understood yet powerful

enough to tackle realistic problems.

Chapter 2 presented background on techniques that we believe meet these

goals: term rewriting, rewriting logic semantics, and K. Term rewriting provides

an easily understood yet powerful model of computation; rewriting logic semantics

and K provide the flexibility needed to formally model languages with complex

features. Of special interest are features for complex control flow and concurrency,

both of which have traditionally caused problems for formal semantics techniques,

but both of which are important in real programming languages.

Chapters 3 and 4 showed how these techniques can be used for programming

language design. Chapter 3 showed an approach to language design based

around language prototyping, taking advantage of the flexibility of the underlying

semantics to provide an environment for creating new language features and

immediately testing them on real programs. Although the KOOL language was

used to provide a motivating example, these techniques can also be applied to

other languages, something shown in Chapter 4 by applying these techniques to

the Beta programming language.

One point not addressed in Chapters 3 and 4 was the ability to package

features into reusable units. This was addressed in Chapter 5, which presented

the K module system. The module system provides important functionality

for K, allowing definitions to be spread over multiple modules, combined into

complete languages, and reused in the definitions of new languages. It also

provides important tool support, including the ability to generate modules for

the K tool support developed in Maude and to retrieve modules from a shared

online module repository.

Another point not addressed in these earlier chapters is performance. With

executable specifications and a prototyping approach to language design, perfor-

192

mance can become quite important. Performance is also important for program

analysis, ensuring that analysis results are computed quickly. Chapter 6 ad-

dressed performance in the contexts of both program evaluation and program

analysis, with a special focus on definitions of memory and the representation of

program values in a pure object-oriented language.

This led directly into program analysis, which provides another way to

leverage created language definitions. Chapter 7 described the concept of policy

frameworks, presenting an example using the SILF language. To show that this

concept is not limited to simple, purpose-built languages, Chapter 8 presented

the C Policy Framework, or CPF, which applied the policy frameworks concept

to C. Two policies, one for memory safety and one for units of measurement,

were presented as part of the work on CPF. These policies illustrated how the

framework could be extended to handle a new analysis domain. The units of

measurement policy also showed that it is possible to create analysis tools to

outperform competitor tools in some areas (flexibility of annotation language,

ability to find errors) while remaining competitive in others (performance).

Future Work Along with the work already described there is much future

work yet remaining. For language prototyping, improving tool support, defining

new languages, and defining complex language constructs, all parts of the current

research, should be continued. For policy frameworks, extending the concept to

new languages and new domains, as well as extending existing tools to handle

more complex requirements (e.g., some aliasing requirements in C), are both

areas of possible research, as is focusing more on using the policy frameworks

infrastructure to facilitate verification using third-party theorem provers. The

links between policy frameworks and abstract interpretation, as well as the

ability to transform language constructs into an intermediate language for policy

analysis (similar to the Caduceus system mentioned in Chapter 9), are also

interesting ideas that should be investigated.

The research on modularity is the newest at this point. The module system

for K is still relatively young, so it is important to apply it to many real programs,

using the feedback from this process to improve the system further. Other work,

more focused on tool support, is needed to improve up-front parsing of modules

(needed for front-end tools, like plugins for Eclipse or NetBeans), visualization of

modules and module operations, and interaction with the module repository. At

the same time, a version of the module system built around an extension of Full

Maude is currently being developed, providing an alternative for people more

familiar with working directly in that environment. As the repository is intended

to support formalisms beyond K, it is also important to extend work on the

repository and the XML module exchange format to comfortably handle other

formalisms, allowing (for instance) for MSOS modules, RLS modules, Action

Semantics modules, etc to take advantage of the repository for module reuse.

At a more foundational level, it is important to develop a clearer understand-

193

ing of the theoretical underpinnings of the module system. The current planned

approach is to base this formalism around institutions [67], an approach taken

previously to formalize modules with information hiding [69] (a requirement for

the K module system) and to formalize the Maude module system [46, 45].

194

References

[1] Frama-C. http://frama-c.cea.fr.

[2] Mars Climate Orbiter. http://mars.jpl.nasa.gov/msp98/orbiter.

[3] Mars Climate Orbiter, Wikipedia. http://en.wikipedia.org/wiki/

Mars_Climate_Orbiter.

[4] Objective Caml. http://caml.inria.fr/ocaml/index.en.html.

[5] The NIST Reference on Constants, Units, and Uncertainty.
http://physics.nist.gov/cuu/Units/.

[6] O. Agesen, J. Palsberg, and M. I. Schwartzbach. Type Inference of SELF:
Analysis of Objects with Dynamic and Multiple Inheritance. Software, Practice
and Experience, 25(9):975–995, 1995.

[7] G. Agha. Actors. MIT Press, 1986.

[8] E. Allen, J. Bannet, and R. Cartwright. A First-Class Approach to Genericity.
In Proceedings of OOPSLA’03, pages 96–114. ACM Press, 2003.

[9] E. Allen, D. Chase, V. Luchangco, J.-W. Maessen, and J. Guy L. Steele. Object-
Oriented Units of Measurement. In Proceedings of OOPSLA’04, pages 384–403.
ACM Press, 2004.

[10] M. AlTurki and J. Meseguer. Real-Time Rewriting Semantics of Orc. In
Proceedings of PPDP’07, pages 131–142. ACM Press, 2007.

[11] M. AlTurki and J. Meseguer. Reduction Semantics and Formal Analysis of Orc
Programs. In Proceedings of WWV’07, volume 200 of ENTCS, pages 25–41.
Elsevier, 2008.

[12] M. Anlauff, S. Chakraborty, P. W. Kutter, A. Pierantonio, and L. Thiele. Gener-
ating an action notation environment from Montages descriptions. International
Journal on Software Tools for Technology Transfer, 3(4):431–455, 2001.

[13] I. Attali, D. Caromel, S. O. Ehmety, and S. Lippi. Semantic-Based Visualization
for Parallel Object-Oriented Programming. In Proceedings of OOPSLA’96, pages
421–440, 453–456. ACM Press, 1996.

[14] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1999.

[15] E. Balland, P. Brauner, R. Kopetz, P.-E. Moreau, and A. Reilles. Tom: Piggy-
backing Rewriting on Java. In Proceedings of RTA’07, volume 4533 of LNCS,
pages 36–47. Springer, 2007.

[16] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# Programming System:
An Overview. In Proceedings of CASSIS’04, volume 3362 of LNCS, pages 49–69.
Springer, 2005.

195

http://frama-c.cea.fr
http://mars.jpl.nasa.gov/msp98/orbiter
http://en.wikipedia.org/wiki/Mars_Climate_Orbiter
http://en.wikipedia.org/wiki/Mars_Climate_Orbiter
http://caml.inria.fr/ocaml/index.en.html

[17] M. Barnett and W. Schulte. Contracts, Components, and their Runtime Verifi-
cation on the .NET Platform. Technical Report MSR-TR-2002-38, Microsoft
Research, 2002.

[18] P. Baudin, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and V. Prevosto.
ACSL: ANSI/ISO C Specification Language. 2008.

[19] B. Blanchet. Escape Analysis for Object-Oriented Languages: Application to
Java. In Proceedings of OOPSLA’99, pages 20–34. ACM Press, 1999.

[20] E. Börger and R. Stärk. Abstract State Machines: A Method For High-Level
System Design and Analysis. Springer, 2003.

[21] P. Borovanský, C. Kirchner, H. Kirchner, P.-E. Moreau, and C. Ringeissen. An
Overview of ELAN. In Proceedings of WRLA’98, volume 15 of ENTCS, 1998.

[22] P. Borras, D. Clement, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and
V. Pascual. CENTAUR: the system. In Proceedings of SDE 3, pages 14–24.
ACM Press, 1988.

[23] C. Braga and J. Meseguer. Modular Rewriting Semantics in Practice. In
Proceedings of WRLA’04, volume 117 of ENTCS, pages 393–416. Elsevier, 2005.

[24] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser. Stratego/XT
0.17. A language and toolset for program transformation. Science of Computer
Programming.

[25] D. F. Brown, H. Moura, and D. A. Watt. Actress: An Action Semantics Directed
Compiler Generator. In Proceedings of CC’92, volume 641 of LNCS, pages
95–109. Springer, 1992.

[26] W. E. Brown. Applied Template Metaprogramming in SIUNITS: the Library of
Unit-Based Computation, 2001.

[27] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. Kiniry, G. T. Leavens, K. R. M.
Leino, and E. Poll. An overview of JML tools and applications. In Proceedings
of FMICS’03, volume 80 of ENTCS, pages 75–91, 2003.

[28] I. Cervesato and M.-O. Stehr. Representing the MSR Cryptoprotocol Specifica-
tion Language in an Extension of Rewriting Logic with Dependent Types. In
Proceedings of WRLA’04, volume 117 of ENTCS. Elsevier, 2004.

[29] F. Chalub and C. Braga. Maude MSOS Tool. In Proceedings of WRLA’06,
volume 176 of ENTCS, pages 133–146. Elsevier, 2007.

[30] C. Chambers and D. Ungar. Making Pure Object-Oriented Languages Practical.
In Proceedings of OOPSLA’91, pages 1–15. ACM Press, 1991.

[31] S. Chatterjee, S. K. Lahiri, S. Qadeer, and Z. Rakamaric. A Reachability
Predicate for Analyzing Low-Level Software. In Proceedings of TACAS’07,
volume 4424 of LNCS, pages 19–33. Springer, 2007.

[32] F. Chen, M. Hills, and G. Roşu. A Rewrite Logic Approach to Semantic
Definition, Design and Analysis of Object-Oriented Languages. Technical Report
UIUCDCS-R-2006-2702, Department of Computer Science, University of Illinois
at Urbana-Champaign, 2006.

[33] F. Chen, G. Roşu, and R. P. Venkatesan. Rule-Based Analysis of Dimensional
Safety. In Proceedings of RTA’03, volume 2706 of LNCS, pages 197–207. Springer,
2003.

[34] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
C. Talcott. Maude Manual (Version 2.4). SRI International, Menlo Park, CA,
October 2008. Revised February 2009.

196

[35] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. L.
Talcott, editors. All About Maude - A High-Performance Logical Framework,
How to Specify, Program and Verify Systems in Rewriting Logic, volume 4350 of
LNCS. Springer, 2007.

[36] E. Cohen, M. Moskal, W. Schulte, and S. Tobies. A Practical Verification
Methodology for Concurrent Programs. 2008.

[37] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proceedings of POPL’77, pages 238–252. ACM Press, 1977.

[38] M. d’Amorim, M. Hills, F. Chen, and G. Roşu. Automatic and Precise Di-
mensional Analysis. Technical Report UIUCDCS-R-2005-2668, Department of
Computer Science, University of Illinois at Urbana-Champaign, 2005.

[39] O. Danvy and L. R. Nielsen. Refocusing in Reduction Semantics. Technical
Report RS-04-26, BRICS, 2004.

[40] C. de O. Braga, E. H. Haeusler, J. Meseguer, and P. D. Mosses. Maude
Action Tool: Using Reflection to Map Action Semantics to Rewriting Logic. In
Proceedings of AMAST’00, volume 1816 of LNCS, pages 407–421. Springer, 2000.

[41] K.-G. Doh and P. D. Mosses. Composing Programming Languages by Combining
Action-Semantics Modules. In Proceedings of LDTA’01, volume 44 of ENTCS,
2001.

[42] K.-G. Doh and P. D. Mosses. Composing programming languages by combining
action-semantics modules. Science of Computer Programming, 47(1):3–36, 2003.

[43] G. Dowek, C. Muñoz, and C. Rocha. Rewriting Logic Semantics of a Plan
Execution Language. In Proceedings of SOS’09. ENTCS, 2009. To appear.

[44] F. Durán and J. Meseguer. The Maude specification of Full Maude. Technical
report, Computer Science Laboratory, SRI International, February 1999.

[45] F. Durán and J. Meseguer. Structured theories and institutions. Theoretical
Computer Science, 309(1-3):357–380, 2003.

[46] F. Durán and J. Meseguer. Maude’s module algebra. Science of Computer
Programming, 66(2):125–153, 2007.

[47] C. Ellison, T. F. Serbanuta, and G. Rosu. A Rewriting Logic Approach to Type
Inference. In Proceedings of WADT ’08, volume 5486 of LNCS, pages 135–151.
Springer, 2008.

[48] D. A. Espinosa. Semantic Lego. PhD thesis, 1995.

[49] D. Evans. Static Detection of Dynamic Memory Errors. In Proceedings of
PLDI’96, pages 44–53. ACM Press, 1996.

[50] D. Evans, J. V. Guttag, J. J. Horning, and Y. M. Tan. LCLint: A Tool for Using
Specifications to Check Code. In Proceedings of FSE’94, pages 87–96. ACM
Press, 1994.

[51] A. Farzan, F. Chen, J. Meseguer, and G. Roşu. Formal Analysis of Java Programs
in JavaFAN. In Proceedings of CAV’04, volume 3114 of LNCS, pages 501–505.
Springer, 2004.

[52] A. Farzan and J. Meseguer. State Space Reduction of Rewrite Theories Using
Invisible Transitions. In Proceedings of AMAST’06, volume 4019 of LNCS, pages
142–157. Springer, 2006.

197

[53] A. Farzan and J. Meseguer. Partial Order Reduction for Rewriting Semantics of
Programming Languages. In Proceedings of WRLA’06, volume 176, pages 61–78,
2007.

[54] A. Farzan, J. Meseguer, and G. Rosu. Formal JVM Code Analysis in JavaFAN.
In Proceedings of AMAST’04, volume 3116 of LNCS, pages 132–147, 2004.

[55] M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineering with PLT
Redex. MIT Press, 2009.

[56] M. Felleisen and D. P. Friedman. Control Operators, the SECD machine, and
the λ-calculus. In M. Wirsing, editor, Formal Descriptions of Programming
Concepts III, Proc. IFIP TC2 Working Conference, pages 193–217, Amsterdam,
1986. North-Holland.

[57] M. Felleisen and R. Hieb. A Revised Report on the Syntactic Theories of
Sequential Control and State. Theoretical Computer Science, 103(2):235–271,
1992.

[58] J.-C. Filliâtre and C. Marché. Multi-prover Verification of C Programs. In
Proceedings of ICFEM’04, volume 3308 of LNCS, pages 15–29. Springer, 2004.

[59] J.-C. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus Platform for
Deductive Program Verification. In Proceedings of CAV’07, volume 4590 of
LNCS, pages 173–177. Springer, 2007.

[60] J. S. Foster, M. Fähndrich, and A. Aiken. A Theory of Type Qualifiers. In
Proceedings of PLDI’99, pages 192–203. ACM Press, 1999.

[61] D. P. Friedman, M. Wand, and C. T. Haynes. Essentials of Programming
Languages. MIT Press, 2nd edition, 2001.

[62] N. H. Gehani. Units of Measure as a Data Attribute. Computer Languages,
2(3):93–111, 1977.

[63] N. H. Gehani. Ada’s Derived Types and Units of Measure. Software Practice
and Experience, 15(6):555–569, 1985.

[64] Gérard Berry and Gérard Boudol. The Chemical Abstract Machine. In Proceed-
ings of POPL’90, pages 81–94. ACM Press, 1990.

[65] J. Goguen and J. Meseguer. Completeness of many-sorted equational logic.
Houston Journal of Mathematics, 11(3):307–334, 1985.

[66] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Intro-
ducing OBJ. In Software Engineering with OBJ: algebraic specification in action.
Kluwer, 2000.

[67] J. A. Goguen and R. M. Burstall. Institutions: Abstract Model Theory for
Specification and Programming. Journal of the ACM, 39(1):95–146, 1992.

[68] J. A. Goguen and G. Malcolm. Algebraic Semantics of Imperative Programs.
”MIT Press”, 1996.

[69] J. A. Goguen and G. Rosu. Composing Hidden Information Modules over
Inclusive Institutions. In Essays in Memory of Ole-Johan Dahl, volume 2635 of
LNCS, pages 96–123. Springer, 2004.

[70] J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. Wright. Initial Algebra
Semantics and Continuous Algebras. Journal of the ACM, 24(1):68–95, ”January”
1977.

[71] A. Goldberg and D. Robson. Smalltalk-80: the language and its implementation.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1983.

198

[72] D. S. Goldberg, R. B. Findler, and M. Flatt. Super and Inner: Together at Last!
In Proceedings of OOPSLA’04, pages 116–129. ACM Press, 2004.

[73] C. A. Gunter and D. S. Scott. Semantic domains. In Handbook of Theoretical
Computer Science, Volume B: Formal Models and Semantics, pages 633–674.
Elsevier, 1990.

[74] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In Specification and
Validation Methods, pages 9–36. Oxford University Press, 1995.

[75] Y. Gurevich and J. K. Huggins. The Semantics of the C Programming Language.
In Proceedings of CSL’92, volume 702 of LNCS, pages 274–308. Springer, 1992.

[76] W. L. Harrison and S. N. Kamin. Modular Compilers Based on Monad Trans-
formers. In Proceedings ICCL’98, pages 122–131, 1998.

[77] P. H. Hartel. LETOS - A Lightweight Execution Tool for Operational Semantics.
Software – Practice and Experience, 29(15):1379–1416, 1999.

[78] K. Havelund. Java PathFinder, A Translator from Java to Promela. In D. Dams,
R. Gerth, S. Leue, and M. Massink, editors, SPIN, volume 1680 of LNCS, page
152. Springer, 1999.

[79] M. Hidalgo-Herrero, A. Verdejo, and Y. Ortega-Mallén. Using Maude and
Its Strategies for Defining a Framework for Analyzing Eden Semantics. In
Proceedings of WRS’06, volume 174 of ENTCS, pages 119–137. Elsevier, 2007.

[80] P. N. Hilfinger. An Ada Package for Dimensional Analysis. ACM Transactions
on Programming Languages and Systems, 10(2):189–203, 1988.

[81] M. Hills. Memory Representations in Rewriting Logic Semantics Definitions. In
Proceedings of WRLA’08, volume 238(3) of ENTCS, pages 155–172. Elsevier,
2009.

[82] M. Hills, T. B. Aktemur, and G. Roşu. FSL Beta Language Website. http:

//fsl.cs.uiuc.edu/semantics/beta.

[83] M. Hills, T. B. Aktemur, and G. Roşu. An Executable Semantic Definition of the
Beta Language using Rewriting Logic. Technical Report UIUCDCS-R-2005-2650,
Department of Computer Science, University of Illinois at Urbana-Champaign,
2005.

[84] M. Hills, F. Chen, and G. Roşu. A Rewriting Logic Approach to Static Checking
of Units of Measurement in C. In Proceedings of RULE’08. Elsevier, 2008. To
Appear.

[85] M. Hills, F. Chen, and G. Roşu. Pluggable Policies for C. Technical Report
UIUCDCS-R-2008-2931, Department of Computer Science, University of Illinois
at Urbana-Champaign, 2008.

[86] M. Hills, T. F. Şerbănuţă, and G. Roşu. A Rewrite Framework for Language Def-
initions and for Generation of Efficient Interpreters. In Proceedings of WRLA’06,
volume 176 of ENTCS, pages 215–231. Elsevier, 2007.

[87] M. Hills and G. Roşu. C Policy Framework. http://fsl.cs.uiuc.edu/cpf.

[88] M. Hills and G. Roşu. SILF Policy Framework. http://fsl.cs.uiuc.edu/

index.php/SILF_Policy_Framework.

[89] M. Hills and G. Roşu. A Rewriting Based Approach to OO Language Prototyping
and Design. Technical Report UIUCDCS-R-2006-2786, University of Illinois at
Urbana-Champaign, 2006.

199

http://fsl.cs.uiuc.edu/semantics/beta
http://fsl.cs.uiuc.edu/semantics/beta
http://fsl.cs.uiuc.edu/cpf
http://fsl.cs.uiuc.edu/index.php/SILF_Policy_Framework
http://fsl.cs.uiuc.edu/index.php/SILF_Policy_Framework

[90] M. Hills and G. Roşu. KOOL: A K-based Object-Oriented Language. Technical
Report UIUCDCS-R-2006-2779, University of Illinois at Urbana-Champaign,
2006.

[91] M. Hills and G. Roşu. KOOL: An Application of Rewriting Logic to Language
Prototyping and Analysis. In Proceedings of RTA’07, volume 4533 of LNCS,
pages 246–256. Springer, 2007.

[92] M. Hills and G. Roşu. On Formal Analysis of OO Languages using Rewriting
Logic: Designing for Performance. In Proceedings of FMOODS’07, volume 4468
of LNCS, pages 107–121. Springer, 2007.

[93] M. Hills and G. Roşu. Towards a Module System for K. In Proceedings of
WADT’08, volume 5486 of LNCS, pages 187–205. Springer, 2009.

[94] M. Hills and G. Rosu. KOOL Language Homepage. http://fsl.cs.uiuc.edu/

KOOL.

[95] R. T. House. A Proposal for an Extended Form of Type Checking of Expressions.
The Computer Journal, 26(4):366–374, 1983.

[96] J. Huggins. Abstract State Machines: Language Definitions. http://www.eecs.

umich.edu/gasm/subjects/proglang.html.

[97] J. Huggins. Abstract State Machines: Tools. http://www.eecs.umich.edu/

gasm/tools.html.

[98] J. Iversen. Formalisms and tools supporting Constructive Action Semantics. PhD
thesis, University of Aarhus, 2005.

[99] J. Iversen and P. D. Mosses. Constructive Action Semantics for Core ML. IEE
Proceedings - Software, 152(2):79–98, 2005.

[100] B. Jacobs, J. van den Berg, M. Huisman, and M. van Berkum. Reasoning
about Java Classes (Preliminary Report). In Proceedings of OOPSLA’98, pages
329–340. ACM Press, 1998.

[101] L. Jiang and Z. Su. Osprey: A Practical Type System for Validating Dimensional
Unit Correctness of C Programs. In Proceedings of ICSE’06, pages 262–271.
ACM Press, 2006.

[102] E. B. Johnsen, O. Owe, and E. W. Axelsen. A Run-Time Environment for Con-
current Objects With Asynchronous Method Calls. In Proceedings of WRLA’04,
volume 117 of ENTCS. Elsevier, 2004.

[103] M. P. Jones and L. Duponcheel. Composing monads. Technical Report
YALEU/DCS/RR-1004, Yale, December 1993.

[104] R. Jones and R. Lins. Garbage Collection: Algorithms for Automatic Dynamic
Memory Management. John Wiley & Sons, Inc., New York, NY, USA, 1996.

[105] G. Kahn. Natural Semantics. In Proceedings of STACS’87, volume 247 of LNCS,
pages 22–39. Springer, 1987.

[106] M. Katelman and J. Meseguer. A Rewriting Semantics for ABEL with Ap-
plications to Hardware/Software Co-Design and Analysis. In Proceedings of
WRLA’06, volume 176 of ENTCS, pages 47–60. Elsevier, 2007.

[107] M. Kaufmann, P. Manolios, and J. S. Moore. Computer-Aided Reasoning: ACL2
Case Studies. Kluwer Academic Press, 2000.

[108] M. Keller. EiffelUnits, 2002. http://se.inf.ethz.ch/projects/markus_

keller/EiffelUnits.html.

200

http://fsl.cs.uiuc.edu/KOOL
http://fsl.cs.uiuc.edu/KOOL
http://www.eecs.umich.edu/gasm/subjects/proglang.html
http://www.eecs.umich.edu/gasm/subjects/proglang.html
http://www.eecs.umich.edu/gasm/tools.html
http://www.eecs.umich.edu/gasm/tools.html
http://se.inf.ethz.ch/projects/markus_keller/EiffelUnits.html
http://se.inf.ethz.ch/projects/markus_keller/EiffelUnits.html

[109] A. J. Kennedy. Relational Parametricity and Units of Measure. In Proceedings
of POPL’97. ACM Press, 1997.

[110] A. J. Kennedy. Programming Languages and Dimensions. PhD thesis, St.
Catherine’s College, University of Cambridge, November 1995.

[111] D. J. King and P. Wadler. Combining Monads. In Proceedings of Functional
Programming’92, Workshops in Computing, pages 134–143. Springer, 1992.

[112] C. Kirchner, P.-E. Moreau, and A. Reilles. Formal Validation of Pattern Matching
Code. In Proceedings of PPDP’05, pages 187–197. ACM Press, 2005.

[113] P. W. Kutter and A. Pierantonio. Montages Specifications of Realistic Program-
ming Languages. J. UCS, 3(5):416–442, 1997.

[114] N. G. Leveson. An Investigation of the Therac-25 Accidents. IEEE Computer,
26:18–41, 1993.

[115] S. Liang and P. Hudak. Modular Denotational Semantics for Compiler Con-
struction. In Proceedings of ESOP’96, volume 1058 of LNCS, pages 219–234.
Springer, 1996.

[116] S. Liang, P. Hudak, and M. P. Jones. Monad Transformers and Modular
Interpreters. In Proceedings of POPL’95, pages 333–343. ACM Press, 1995.

[117] B. H. Liskov and J. M. Wing. A Behavioral Notion of Subtyping. ACM
Transactions on Programming Languages and Systems, 16(6):1811–1841, 1994.

[118] T. Littlefair. C and C++ Code Counter. http://sourceforge.net/projects/

cccc.

[119] C. Lüth and N. Ghani. Composing Monads Using Coproducts. In Proceedings
of ICFP’02, pages 133–144. ACM Press, 2002.

[120] G. W. Macpherson. A Reusable Ada Package for Scientific Dimensional Integrity.
ACM SIGAda Letters, XVI(3):56–63, 1996.

[121] O. L. Madsen, B. Møller-Pedersen, and K. Nygaard. Object-Oriented Program-
ming in the BETA Programming Language. Addison-Wesley, 1993.

[122] N. Mart́ı-Oliet and J. Meseguer. Rewriting logic: roadmap and bibliography.
Theoretical Computer Science, 285:121–154, 2002.

[123] J. Matthews, R. B. Findler, M. Flatt, and M. Felleisen. A Visual Environment
for Developing Context-Sensitive Term Rewriting Systems. In Proceedings of
RTA’04, volume 3091 of LNCS, pages 301–311. Springer, 2004.

[124] J. Meseguer. Lecture Notes from Program Verification (CS476). Dept. of Com-
puter Science, UIUC, 2008.

[125] J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73–155, 1992.

[126] J. Meseguer and C. Braga. Modular Rewriting Semantics of Programming
Languages. In Proceedings of AMAST’04, volume 3116 of LNCS, pages 364–378.
Springer, 2004.

[127] J. Meseguer and U. Montanari. Petri Nets Are Monoids: A New Algebraic
Foundation for Net Theory. In Proceedings of LICS’88, pages 155–164. IEEE,
1988.

[128] J. Meseguer and G. Roşu. Rewriting Logic Semantics: From Language Specifica-
tions to Formal Analysis Tools . In Proceedings of IJCAR’04, volume 3097 of
LNAI, pages 1–44. Springer, 2004.

201

http://sourceforge.net/projects/cccc
http://sourceforge.net/projects/cccc

[129] J. Meseguer and G. Rosu. The rewriting logic semantics project. Theoretical
Computer Science, 373(3):213–237, 2007. Also appeared in SOS ’05, volume
156(1) of ENTCS, pages 27–56, 2006.

[130] B. Meyer. Eiffel: A Language and Environment for Software Engineering. Journal
of Systems and Software, 8(3):199–246, 1988.

[131] B. Meyer. Attached Types and Their Application to Three Open Problems of
Object-Oriented Programming. In Proceedings of ECOOP’05, volume 3586 of
LNCS, pages 1–32. Springer, 2005.

[132] R. Milner. A Calculus of Communicating Systems, volume 92 of LNCS. Springer,
1980.

[133] R. Milner, M. Tofte, and D. Macqueen. The Definition of Standard ML. MIT
Press, 1997.

[134] K. Mitchell. Concurrency in a Natural Semantics. Technical Report ECS-
LFCS-94-311, LFCS, Department of Computer Science, University of Edinburgh,
1994.

[135] E. Moggi. An Abstract View of Programming Languages. Technical Report
ECS-LFCS-90-113, Edinburgh University, Department of Computer Science,
June 1989.

[136] E. Moggi. Notions of Computation and Monads. Information and Computation,
93(1):55–92, 1991.

[137] U. Montanari. True Concurrency: Theory and Practice. In Proceedings of
MPC’92, volume 669 of LNCS, pages 14–17. Springer, 1992.

[138] U. Montanari and F. Rossi. True Concurrency in Concurrent Constraint Pro-
gramming. In Proceedings of ISLP’91, pages 694–713. MIT Press, 1991.

[139] J. S. Moore. http://www.cs.utexas.edu/users/moore/publications/

thread-game.html.

[140] P.-E. Moreau, C. Ringeissen, and M. Vittek. A Pattern Matching Compiler for
Multiple Target Languages. In Proceedings of CC’03, volume 2622 of LNCS,
pages 61–76. Springer, 2003.

[141] P. D. Mosses. Denotational semantics. In Handbook of Theoretical Computer
Science, Volume B: Formal Models and Semantics, pages 575–631. Elsevier, 1990.

[142] P. D. Mosses. Action Semantics. Number 26 in Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1992.

[143] P. D. Mosses. On the Action Semantics of Concurrent Programming Languages.
In REX Workshop, volume 666 of LNCS, pages 398–424. Springer, 1992.

[144] P. D. Mosses. Foundations of Modular SOS. In Proceedings of MFCS’99, volume
1672 of LNCS, pages 70–80. Springer, 1999.

[145] P. D. Mosses. The Varieties of Programming Language Semantics. In Proceed-
ings of Ershov Memorial Conference’01, volume 2244 of LNCS, pages 165–190.
Springer, 2001.

[146] P. D. Mosses. Pragmatics of Modular SOS. In Proceedings of AMAST’02, volume
2422 of LNCS, pages 21–40. Springer, 2002.

[147] P. D. Mosses. Exploiting labels in Structural Operational Semantics. In Proceed-
ings of SAC’04, pages 1476–1481. ACM Press, 2004.

202

http://www.cs.utexas.edu/users/moore/publications/thread-game.html
http://www.cs.utexas.edu/users/moore/publications/thread-game.html

[148] P. D. Mosses. Modular structural operational semantics. Journal of Logic and
Algebraic Programming, 60-61:195–228, 2004.

[149] P. D. Mosses. A Constructive Approach to Language Definition. Journal of
Universal Computer Science, 11(7):1117–1134, 2005.

[150] P. D. Mosses. Constructive Action Semantics in OBJ. In Algebra, Meaning, and
Computation, Essays Dedicated to Joseph A. Goguen on the Occasion of His
65th Birthday, volume 4060 of LNCS, pages 281–295. Springer, 2006.

[151] P. D. Mosses. Component-Based Description of Programming Languages. In Vi-
sions of Computer Science, Proceedings of BCS International Academic Research
Conference 2008, pages 275–286. BCS, 2008.

[152] P. D. Mosses. Component-Based Semantics. In Proceedings of SAVCBS’09, pages
3–10. ACM Press, 2009.

[153] P. D. Mosses and M. J. New. Implicit Propagation in Structural Operational
Semantics. In Proceedings of SOS’08, volume 229.4 of ENTCS, pages 49–66.
Elsevier, 2008.

[154] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate Lan-
guage and Tools for Analysis and Transformation of C Programs. In Proceedings
of CC’02, volume 2304 of LNCS, pages 213–228. Springer, 2002.

[155] H. R. Nielson and F. Nielson. Semantics with Applications: An Appertizer.
Springer, 2006.

[156] K. Nygaard and O.-J. Dahl. Simula 67. In R. Wexelblat, editor, History of
Programming Languages. Addison-Wesley, 1981.

[157] P. Ørbæk. OASIS: An Optimizing Action-Based Compiler Generator. In Pro-
ceedings of CC’94, volume 786 of LNCS, pages 1–15. Springer, 1994.

[158] Y. G. Park and B. Goldberg. Escape Analysis on Lists. In Proceedings of
PLDI’92, pages 116–127. ACM Press, 1992.

[159] C. A. Petri. Concepts of net theory. In Mathematical Foundations of Com-
puter Science, pages 137–146. Mathematical Institute of the Slovak Academy of
Sciences, 1973.

[160] M. Pettersson. Compiling Natural Semantics, volume 1549 of LNCS. Springer,
1999.

[161] G. D. Plotkin. A Powerdomain Construction. SIAM Journal on Computing,
5(3):452–487, 1976.

[162] G. D. Plotkin. A structural approach to operational semantics. Journal of Logic
and Algebraic Programming, 60-61:17–139, July-December 2004.

[163] D. Rémy and J. Vouillon. Objective ML: A Simple Object-Oriented Extension
of ML. In Proceedings of POPL’97, pages 40–53. ACM Press, 1997.

[164] C. Rocha, C. Muñoz, and H. Cadavid. A Graphical Environment for the
Semantic Validation of a Plan Execution Language. In Proceedings of The Third
IEEE International Conference on Space Mission Challenges for Information
Technology, pages 201–207. IEEE Computer Society, 2009.

[165] G. Roşu. Lecture notes of course on Programming Language Design. Dept. of
Computer Science, UIUC, 2006. http://fsl.cs.uiuc.edu/index.php/CS422.

[166] G. Roşu. CS322, Fall 2003 - Programming Language Design: Lecture Notes. Tech-
nical Report UIUCDCS-R-2003-2897, University of Illinois at Urbana-Champaign,
Department of Computer Science, 2003.

203

[167] G. Roşu. K: A Rewriting-Based Framework for Computations – Preliminary
version. Technical Report Department of Computer Science UIUCDCS-R-2007-
2926, University of Illinois at Urbana-Champaign, 2007.

[168] G. Roşu and F. Chen. Certifying Measurement Unit Safety Policy. In Proceedings
of ASE’03, pages 304 – 309. IEEE, 2003.

[169] G. Roşu, C. Ellison, and W. Schulte. From Rewriting Logic Executable Semantics
to Matching Logic Program Verification. Technical report, University of Illinois,
July 2009.

[170] G. Roşu, W. Schulte, and T. F. Şerbănuţă. Runtime Verification of C Memory
Safety. In Proceedings of RV’09, volume 5779 of LNCS, 2009. To appear.

[171] D. A. Schmidt. Denotational Semantics: A Methodology for Language Develop-
ment. Allyn and Bacon, Boston, MA, 1986.

[172] T. F. Şerbănuţă, G. Roşu, and J. Meseguer. A Rewriting Logic Approach to
Operational Semantics. Information and Computation, 207:305–340, 2009.

[173] P. Sewell, F. Z. Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar, and R. Strnǐsa.
Ott: Effective Tool Support for the Working Semanticist. In Proceedings of
ICFP’07, pages 1–12. ACM Press, 2007.

[174] T. Sheard and Z. Benaissa. From Interpreter to Compiler Using Staging and
Monads. 1998.

[175] T. Sheard, Z. Benaissa, and E. Pasalic. DSL Implementation using Staging and
Monads. In Proceedings of DSL’99, pages 81–94, 1999.

[176] K. Slonneger and B. L. Kurtz. Formal Syntax and Semantics of Programming
Languages: A Laboratory-Based Approach. Addison-Wesley, 1995.

[177] M. B. Smyth. Powerdomains. In Proceedings of MFCS’76, volume 45 of LNCS,
pages 537–543. Springer, 1976.

[178] R. Stärk, J. Schmid, and E. Börger. JavaTMand the JavaTMVirtual Machine:
Definition, Verification, Validation. Springer, 2001.

[179] G. L. Steele. Building Interpreters by Composing Monads. In Proceedings of
POPL’94, pages 472–492. ACM Press, 1994.

[180] M.-O. Stehr, I. Cervesato, and S. Reich. An Execution Environment for the MSR
Cryptoprotocol Specification Language. http://formal.cs.uiuc.edu/stehr/

msr.html.

[181] M.-O. Stehr and C. Talcott. PLAN in Maude: Specifying an active network
programming language. In Proceedings of WRLA’02, volume 117 of ENTCS.
Elsevier, 2002.

[182] M.-O. Stehr and C. L. Talcott. Practical techniques for language design and
prototyping. In J. L. Fiadeiro, U. Montanari, and M. Wirsing, editors, Abstracts
Collection of the Dagstuhl Seminar 05081 on Foundations of Global Computing.
February 20 – 25, 2005. Schloss Dagstuhl, Wadern, Germany, 2005.

[183] J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Program-
ming Language Theory. MIT Press, 1977.

[184] C. Strachey and C. P. Wadsworth. Continuations: A Mathematical Semantics for
Handling Full Jumps. Higher-Order and Symbolic Computation, 13(1/2):135–152,
2000.

204

http://formal.cs.uiuc.edu/stehr/msr.html
http://formal.cs.uiuc.edu/stehr/msr.html

[185] R. Strnǐsa, P. Sewell, and M. Parkinson. The Java Module System: Core Design
and Semantic Definition. In Proceedings of OOPSLA ’07, pages 499–514. ACM
Press, 2007.

[186] P. Thati, K. Sen, and N. Mart́ı-Oliet. An Executable Specification of Asyn-
chronous Pi-Calculus Semantics and May Testing in Maude 2.0. In Proceedings
of WRLA’02, volume 117 of ENTCS. Elsevier, 2002.

[187] A. P. Tolmach and S. Antoy. A monadic semantics for core Curry. In Proceedings
of WFLP’03, volume 86 of ENTCS. Elsevier, 2003.

[188] J. van den Berg and B. Jacobs. The LOOP Compiler for Java and JML. In
Proceedings of TACAS’01, volume 2031 of LNCS, pages 299–312. Springer, 2001.

[189] M. van den Brand, J. Iversen, and P. D. Mosses. An Action Environment. In
Proceedings of LDTA’04, volume 110 of ENTCS, pages 149–168, 2004.

[190] M. van den Brand, J. Iversen, and P. D. Mosses. The Action Environment:
Tool Demonstration. In Proceedings of LDTA’04, volume 110 of ENTCS, pages
177–180, 2004.

[191] M. van den Brand, J. Iversen, and P. D. Mosses. An Action Environment. Science
of Computer Programming, 61(3):245–264, 2006.

[192] M. van den Brand, A. van Deursen, J. Heering, H. A. de Jong, M. de Jonge,
T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J. J. Vinju, E. Visser,
and J. Visser. The ASF+SDF Meta-environment: A Component-Based Language
Development Environment. In Proceedings of CC’01, volume 2027 of LNCS,
pages 365–370. Springer, 2001.

[193] M. G. J. van den Brand, J. Heering, P. Klint, and P. A. Olivier. Compiling
language definitions: the ASF+SDF compiler. ACM TOPLAS, 24(4):334–368,
2002.

[194] A. van Deursen, J. Heering, and P. Klint, editors. Language Prototyping: An
Algebraic Specification Approach, volume 5 of AMAST Series in Computing.
World Scientific, 1996.

[195] A. van Deursen and P. D. Mosses. ASD: The Action Semantic Description Tools.
In Proceedings of AMAST’96, volume 1101 of LNCS, pages 579–582. Springer,
1996.

[196] A. Verdejo. Maude como marco semántico ejecutable. PhD thesis, Facultad de
Informática, Universidad Complutense, Madrid, Spain, 2003.

[197] A. Verdejo and N. Mart́ı-Oliet. Implementing CCS in Maude 2. In Proceedings
of WRLA’02, volume 71 of ENTCS, pages 282–300, 2002.

[198] A. Verdejo and N. Mart́ı-Oliet. Implementing CCS in Maude 2. In Proceedings
of WRLA’02, volume 117 of ENTCS. Elsevier, 2002.

[199] E. Visser. Program Transformation with Stratego/XT: Rules, Strategies, Tools,
and Systems in Stratego/XT 0.9. In Domain-Specific Program Generation,
volume 3016 of LNCS, pages 216–238. Springer, 2003.

[200] P. Wadler. Comprehending Monads. In LISP and Functional Programming,
pages 61–78, 1990.

[201] P. Wadler. The Essence of Functional Programming. In Proceedings of POPL’92,
pages 1–14. ACM Press, 1992.

[202] K. Wansbrough. A Modular Monadic Action Semantics. Master’s thesis, Univer-
sity of Auckland, 1997.

205

[203] K. Wansbrough and J. Hamer. A Modular Monadic Action Semantics. In
Proceedings of DSL’97. USENIX, 1997.

[204] K. Winter. Model Checking for Abstract State Machines. Journal of Universal
Computer Science, 3(5):689–701, 1997.

[205] K. Winter. Model Checking Abstract State Machines. PhD thesis, Technical
University of Berlin, 2001.

[206] M. Wirsing. Algebraic Specification. In Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics, pages 675–788. Elsevier, 1990.

[207] A. K. Wright and M. Felleisen. A Syntactic Approach to Type Soundness.
Information and Computation, 115(1):38–94, 1994.

[208] W. Zimmerman and T. Gaul. On the Construction of Correct Compiler Back-
Ends: An ASM Approach. Journal of Universal Computer Science, 3(5):504–567,
1997.

206

	Chapter 1 Introduction
	Contributions
	An Overall Guide to the Thesis
	Relationship to Previous Work
	Related Publications

	Chapter 2 Background
	Equational Logic
	Term Rewriting
	Rewriting Logic
	Rewriting Logic Semantics
	K

	Chapter 3 Language Prototyping
	Introducing KOOL
	Abstract Syntax
	State Infrastructure and Value Representations
	Dynamic Semantics
	Adding Concurrency
	Other Extensions
	KOOL Implementation

	Chapter 4 A Prototype of Beta
	The Beta Language
	Beta Semantics
	Beta Implementation
	Extending Beta

	Chapter 5 The K Module System
	K Modules
	Module Examples
	An Extended Example: Creating Language Extensions
	Translating K Modules to Maude
	The Online Semantics Repository
	Discussion

	Chapter 6 Language Design and Performance
	Execution Performance
	Analysis Performance

	Chapter 7 Policy Frameworks
	Abstract Analysis Domains
	The SILF Policy Framework

	Chapter 8 The C Policy Framework
	CPF Frontend and Annotation Support
	Abstract Syntax
	K Cells
	Abstract Evaluation Semantics
	The CPF UNITS Policy
	Case Study: Null Pointer Analysis
	Discussion

	Chapter 9 Related Work
	Programming Language Semantics
	Program Analysis

	Chapter 10 Conclusions and Future Work
	References

